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Abstract

In many areas of healthcare, clinical prediction models are used to assess disease risk and guide

decisions about prevention and treatment. Accurate risk stratification is key to reducing morbidity

and mortality through the effective delivery of precision medicine. This dissertation proposes and

compares methods for improving the accuracy of risk prediction models through the integration

of different models and/or datasets and the adaptation of machine learning algorithms that have

achieved high accuracy in other prediction problems. Chapters 1 and 2 focus on cancer risk pre-

diction, while Chapter 3 addresses general settings where multiple studies are available for training

and validation.

In Chapter 1, we propose to combine existing breast cancer risk prediction models that embed

complementary information. Numerous models have been developed, but they often give predictions

with conflicting clinical implications. Integrating information from different models can potentially

improve the accuracy of risk predictions. BRCAPRO and BCRAT are two widely used models that

are based on different risk factors and methodologies. BRCAPRO is a Mendelian model that uses

detailed family history information to estimate the probability of carrying a BRCA1/2 mutation,

as well as future risk of breast and ovarian cancer, based on mutation prevalence and penetrance

(age-specific probability of developing cancer given genotype). BCRAT uses a relative hazard model

based on first-degree family history and non-genetic risk factors. We consider two approaches for

combining BRCAPRO and BCRAT: 1) modifying the penetrance functions in BRCAPRO using

relative hazard estimates from BCRAT, and 2) training an ensemble model that takes as input

BRCAPRO and BCRAT predictions. We assess the performance of the combination models in

simulations and data from the Cancer Genetics Network, and show that they achieve performance

gains over BRCAPRO and BCRAT among individuals with a strong family history of cancer.
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In Chapter 2, we propose to adapt neural networks for family history-based breast cancer risk

prediction. The prevailing models for assessing familial risk of breast cancer are Mendelian models,

but these models rely on many assumptions about cancer susceptibility genes. Training more

flexible models, such as neural networks, on large datasets can potentially lead to accuracy gains.

While there is an extensive literature on neural networks and their state-of-the-art performance in

many tasks, there is little work applying them to family history data. The neural network models we

propose eliminate the need to explicitly specify the effects of cancer susceptibility genes, overcoming

one of the main limitations of Mendelian models. In data simulated under Mendelian inheritance,

we demonstrate that neural networks are able to achieve nearly optimal prediction performance.

Moreover, when the data generated from a Mendelian model are subject to misreporting of cancer

diagnoses, neural networks are able to outperform the Mendelian model. Using a large dataset of

over 200,000 family histories from the Risk Service, we train neural networks to predict future risk

of breast cancer. We validate them using data from the Cancer Genetics Network and show that

they achieve competitive performance with BRCAPRO.

In Chapter 3, we compare methods for training prediction models using multiple studies. In

precision medicine and other settings, systematic data sharing and data curation initiatives are

opening opportunities for developing and validating models on multiple studies, which can lead to

improved generalizability. Two general approaches for integrating information across studies are:

1) merging all of the studies and training a single model and 2) multi-study ensembling, which

involves training a separate model on each study and combining the resulting predictions. We

provide theoretical and empirical analyses comparing the performance of these approaches in the

presence of potential heterogeneity in predictor-outcome relationships across studies. In a linear

regression setting, we show analytically and confirm via simulations that merging yields lower

prediction error than ensembling when the effects of the predictors are relatively homogeneous

across studies. However, as heterogeneity increases, there exists a transition point beyond which

ensembling outperforms merging. We provide analytic expressions for the transition point in various

scenarios, study asymptotic properties, and illustrate how transition point theory can be used for

deciding when to merge versus when to ensemble using metagenomic data.
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1

Combining Breast Cancer Risk
Prediction Models

1.1 Introduction

Breast cancer is the second most common cancer and the second leading cause of cancer death

in women in the U.S (Siegel et al., 2020; American Cancer Society, 2020). Identifying individuals

at high risk is critical for guiding decisions about risk management and prevention, including

screening, genetic counseling and testing, and preventative procedures. In clinical practice, at least

24 breast cancer risk prediction models have been developed to help identify higher-risk individuals

(Cintolo-Gonzalez et al., 2017). These models estimate an individual’s risk of carrying a pathogenic

mutation in a breast cancer susceptibility gene and/or an individual’s future risk of breast cancer,

and they are based on a wide range of risk factors, methodologies, and study populations. Some

models, such as the Breast Cancer Risk Assessment Tool (BCRAT) (Gail et al., 1989, 2007; Matsuno

et al., 2011; Banegas et al., 2016), are regression-based models that use hormonal/reproductive risk

factors (such as age at first live birth) and summaries of family history. Others, such as BRCAPRO

(Parmigiani et al., 1998), BOADICEA (Antoniou et al., 2004, 2008; Lee et al., 2019), and IBIS,

(Tyrer et al., 2004), use detailed family history information and principles of genetic inheritance.

IBIS and BOADICEA (Lee et al., 2019) also take into account non-genetic risk factors. Different

models can output discordant risk predictions with conflicting treatment implications (Jacobi et al.,

2009; Ozanne et al., 2013). One solution is to select a single model upon which to base intervention

decisions (Collins et al., 2016; Phillips et al., 2019). However, identifying the most accurate model

for a given patient can be difficult, and, even if such a model is identified, other models could

still contribute additional relevant information. Thus, it is important to systematically integrate

information from different models to improve risk stratification and reduce cancer morbidity.

We investigate methods for combining BRCAPRO (Parmigiani et al., 1998) and BCRAT (Gail
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et al., 1989, 2007; Matsuno et al., 2011; Banegas et al., 2016), two widely used and validated

(Spiegelman et al., 1994; Rockhill et al., 2001; Berry et al., 2002; Amir et al., 2003; Terry et al.,

2019; McCarthy et al., 2019) breast cancer risk prediction models based on different approaches

and risk factors. BRCAPRO is a family history-based model that provides carrier probabilities for

breast cancer susceptibility genes BRCA1 and BRCA2 as well as future risk estimates for invasive

breast cancer and for ovarian cancer. It translates family history data into risk estimates using

Mendelian laws of inheritance, Bayes’ rule, and literature-based estimates of mutation prevalence

and penetrance (age-specific probability of developing cancer given genotype). BCRAT estimates

an individual’s future risk of invasive breast cancer based on a relative hazard model that includes

age, hormonal and reproductive risk factors, breast biopsy history, and first-degree family history of

breast cancer. The model was originally developed using case-control data from white women par-

ticipating in a U.S. mammography screening program and was later updated for African-American

(Gail et al., 2007), Asian-American (Matsuno et al., 2011), and Hispanic (Banegas et al., 2016)

women.

Although there is some overlap in the inputs to BRCAPRO and BCRAT, the two models are

largely complementary (Figure 1.1). A validation study in a U.S. screening population found

that 6-year risk predictions from BRCAPRO and BCRAT had a moderate correlation of 0.53

(McCarthy et al., 2019). BRCAPRO uses extensive family history information while BCRAT

considers only first-degree relatives. BCRAT considers several non-genetic risk factors that are not

considered by BRCAPRO, including age at menarche, age at first live birth, and breast biopsies.

Therefore, combining the two models could potentially improve predictions compared to BRCAPRO

or BCRAT alone. We consider two combination approaches: 1) penetrance modification and 2)

training an ensemble model.

The first approach involves modifying penetrance functions (age-specific probabilities of devel-

oping cancer given genotype) to account for additional risk factors. We develop a penetrance

modification model, BRCAPRO+BCRAT (M), based on an approach that incorporates BCRAT

relative hazards into the BRCAPRO penetrance functions using a relative hazard model (Liu et al.,

2013). This approach has similarities to the one used in IBIS, a hybrid of a family history-based

model and a proportional hazards model for other risk factors.

2



Ensemble learning involves training multiple base models and combining their predictions. A

wide variety of ensemble methods have been developed, including stacking (Wolpert, 1992), bagging

(Breiman, 1996, 2001), boosting (Freund et al., 1996), and Bayesian model averaging (Hoeting et al.,

1998). The extensive literature (mostly empirical, though some theoretical work has been done)

shows that ensembles can outperform their base models (Opitz and Maclin, 1999; Dietterich, 2000b;

Kleinberg, 1990; Perrone and Cooper, 1992; Schapire et al., 1998; Kuncheva, 2002; Van der Laan,

Polley, and Hubbard, Van der Laan et al.), especially when the base models produce dissimilar

predictions (Krogh and Vedelsby, 1995; Cunningham and Carney, 2000). Ensembling often leads

to accuracy gains because averaging reduces variance and can expand the sets of functions that can

be represented by the base models (Dietterich, 2000a). In the setting of breast cancer risk prediction,

Ming et al. (2019) compared various machine learning models to BCRAT and BOADICEA and

showed that boosting and random forest, which is a form of bagging, had higher discriminatory

accuracy than the existing models. In this paper, we consider an ensemble model, BRCAPRO

+ BCRAT (E), based on stacking, which involves training a meta-model to optimally combine

predictions from the base models. We use logistic regression for the meta-model.

We assess the added predictive value of the combination models compared to BRCAPRO and

BCRAT in simulations and a real data application, where we train the ensemble model on data from

the Newton-Wellesley Hospital (NWH) and validate all models on data from the Cancer Genetics

Network (CGN). In the data application, we also use IBIS as a reference for comparison to evaluate

the relative performance of combining existing models versus developing a hybrid model from the

ground up.

1.2 Methods

1.2.1 General Notation

Given a female proband (individual who presents for risk assessment) without a previous diagnosis

of breast cancer, the goal is to predict her risk of developing invasive breast cancer within τ years

based on family history H (described in Section 1.2.2) and other risk factors X (described in Section

3



§ Age at menarche
§ Age at first live 

birth
§ Number of 
breast biopsies

§ Atypical 
hyperplasia

§ Age
§ Race

§ 1st-degree 
relatives with 
breast cancer

§ Breast/ovarian cancer 
history of relatives of 
any degree, including 

information on
• Age at diagnosis
• Current/death age 
•Male breast cancer

• Contralateral breast cancer
•Mastectomy/oophorectomy

• Genetic testing
•Marker testing

§ Ashkenazi Jewish 
ancestry

Figure 1.1: Inputs to BRCAPRO and BCRAT.

1.2.2) while accounting for death from other causes as a competing risk. τ is a pre-specified positive

integer.

Let ã be the proband’s current age, T̃B the age at onset of breast cancer, T̃D the age at death

from other causes, and T̃ = min(T̃B, T̃D) the time to the first event (either breast cancer or death),

with ã, T̃B, T̃D, and T̃ taking on continuous values in the interval [0,∞). Let a = ⌊ã⌋, TB = ⌊T̃B⌋,

TD = ⌊T̃D⌋, and T = ⌊T̃ ⌋, where ⌊·⌋ denotes the floor function. a, TB, TD, and T are discrete

versions of ã, T̃B, T̃D, and T̃ observed at yearly intervals. Let J denote the type of the first event,

with J = B if T̃B ≤ T̃D and J = D otherwise.

BRCAPRO uses a discrete model for T while BCRAT and IBIS use continuous models for T̃ .

We will consider discrete T in the combination models.
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1.2.2 Existing Models

BRCAPRO

BRCAPRO (Parmigiani et al., 1998) estimates the probability of carrying a deleterious germline

mutation in BRCA1 and BRCA2 using Bayes’ rule, laws of Mendelian inheritance, mutation preva-

lence and penetrance, and family history. It also estimates future risk of breast and ovarian cancer

based on the carrier probabilities and penetrances.

Family history can be represented as a pedigree, or a graph where each node is a family member

and edges flow from parents to offspring. Let R be the number of relatives in the pedigree besides the

proband and let r = 0, 1, . . . , R index the family members, where r = 0 corresponds to the proband.

For each family member r, let Hr be a vector containing the following information on demographics

and breast/ovarian cancer history: current age or age at death, gender, race/ethnicity, relation to

the proband, breast cancer status, age at breast cancer diagnosis if affected, ovarian cancer status,

age at ovarian cancer diagnosis if affected, genetic testing results if available, whether the individual

has had a prophylactic mastectomy, mastectomy age if applicable, whether the individual has had

a prophylactic oophorectomy, and oophorectomy age if applicable. Let H = (H0, . . . , HR).

Additionally, let Gr be family member r’s BRCA1/BRCA2 genotype, with Gr = 0 if r is a

non-carrier, Gr = 1 if r is a carrier of a mutation in BRCA1 only, Gr = 2 if r is a carrier of a

mutation in BRCA2 only, and Gr = 3 if r is a carrier of mutations in both BRCA1 and BRCA2.

Using Bayes’ rule and the assumption of conditional independence of phenotypes given genotypes

(across individuals as well as cancer types), the proband’s probability of having genotype G0 is

P (G0|H) =
P (G0)

∑
G1,...,GR

∏R
r=0 P (Hr|Gr)P (G1, . . . , GR|G0)∑

G0
P (G0)

∑
G1,...,GR

∏R
r=0 P (Hr|Gr)P (G1, . . . , GR|G0)

. (1.1)

The summation over genotypes is calculated using the Elston-Stewart peeling algorithm (Elston and

Stewart, 1971) and P (G1, . . . , GR|G0) is calculated based on Mendelian laws of inheritance. The

prevalences P (G0) are obtained from the literature and are ethnicity-specific (in particular, different

prevalences are used for Ashkenazi Jewish and non-Ashkenazi Jewish individuals). P (Hr|Gr) is

calculated using literature-based penetrances for breast and ovarian cancer. The penetrances are
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functions of age and are cancer- and sex-specific. The penetrance functions for non-carriers are

based on rates from the Surveillance, Epidemiology, and End Results (SEER) program and are

race-specific, while the penetrance functions for carriers are from a meta-analysis of published

studies (Chen et al., 2020).

After estimating the carrier probabilities, BRCAPRO calculates future risk of breast and ovarian

cancer through a weighted average of the genotype-specific risks. To simplify the notation, from

here on we will omit the subscript 0 from G0 (throughout the rest of the paper, we only refer to

the proband’s genotype and not the genotypes of the other family members). The proband’s risk

of developing breast cancer between ages a and a + τ , conditional on having genotype g and not

having breast cancer by age a, is

P (T ≤ a+ τ, J = B|T > a,G = g) =

a+τ∑
t=a+1

P (T = t, J = B|T ≥ t, G = g)P (T ≥ t|G = g)

P (T > a|G = g)

=
a+τ∑

t=a+1

λg
B(t)

t−1∏
u=a+1

(
1− λg

B(u)− λD(u)
)

(1.2)

where λg
B(t) = P (T = t, J = B|T ≥ t, G = g) is the cause-specific hazard of breast cancer

conditional on genotype g and λD(t) = P (T = t, J = D|T ≥ t) is the cause-specific hazard of death

from causes other than breast cancer. λg
B(t) is calculated from the female breast cancer penetrance

for genotype g, P (T = t, J = B|G = g), using the recursive formula

λg
B(t) =

P (T = t, J = B|G = g)∏t−1
u=1(1− λg

B(u)− λD(u))
, (1.3)

while λD(t) is estimated based on SEER mortality rates for all causes except breast cancer.

The final risk estimate is

P (T ≤ a+ τ, J = B|T > a,H) =
3∑

g=0

P (T ≤ a+ τ, J = B|T > a,G = g)P (G = g|H). (1.4)

Software for running BRCAPRO is available through the BayesMendel R package (Chen et al.,

2004b). We used v2.1-6.1 (selecting the crude risk option).
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BCRAT

BCRAT (Gail et al., 1989, 2007; Banegas et al., 2016; Matsuno et al., 2011) estimates the relative

hazard of developing breast cancer based on age (dichotomized into < 50 and ≥ 50) and the

following risk factors: X1 = age at menarche, X2 = number of benign breast biopsies, X3 = age at

first live birth (if nulliparous, set X3 = 25), X4 = number of female first-degree relatives with breast

cancer, and X5 = presence of atypical hyperplasia (0, 1, or unknown). Let X = (X1, . . . , X5).

The relative hazard for an individual of age t with risk factors X compared to an individual of

age t with no BCRAT risk factors (other than age) is

r(t,X) = exp(β1I[X1 ∈ [12, 13]] + β2I[X1 < 12]+

β3I[X2 = 1] + β4I[X2 ≥ 2] + β5I[t ≥ 50]I[X2 = 1] + β6I[t ≥ 50]I[X2 ≥ 1]+

β7I[X3 ∈ [20, 24]] + β8I[X3 ∈ [25, 29]] + β9I[X3 > 29]+

β10I[X4 = 1] + β11I[X4 = 2]+

β12I[X3 ∈ [20, 24]]I[X4 = 1] + β13I[X3 ∈ [25, 29]]I[X4 = 1] + β14I[X3 > 29]I[X4 = 1]+

β15I[X3 ∈ [20, 24]]I[X4 ≥ 2] + β16I[X3 ∈ [25, 29]]I[X4 ≥ 2] + β17I[X3 > 29]I[X4 ≥ 2]+

β18I[X2 > 0]I[X5 = 0] + β19I[X2 > 0]I[X5 = 1]), (1.5)

where I[·] denotes the indicator function (equal to 1 if the bracketed expression is true and 0

otherwise). The relative hazard model includes interactions between age and number of biopsies,

as well as age at first live birth and number of affected relatives. The regression coefficients were

estimated from U.S. case-control studies. Separate models were fit to data from white, African-

American, Asian, and Hispanic women to obtain race-specific estimates.

The risk of developing breast cancer between ages ã and ã+ τ , conditional on not having breast

cancer at age ã, is

P (T̃ ≤ ã+ τ, J = B|T̃ > ã,X) =

∫ ã+τ

ã
λ̃B,0(t)r(t,X) exp

{
−
∫ t

ã
(λ̃B,0(u)r(u,X) + λ̃D(u))du

}
dt,

(1.6)

where λ̃B,0(t) = lim
dt→0

P (t ≤ T̃ < t+dt, J = B|T̃ ≥ t,X = 0)/dt is the cause-specific hazard of breast
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cancer for those with no BCRAT risk factors and λ̃D(u)) = lim
dt→0

P (t ≤ T̃ < t+dt, J = D|T̃ ≥ t)/dt

is the cause-specific hazard of death from causes other than breast cancer. λ̃B,0(t) is calculated

from λ̃B(t) = lim
dt→0

P (t ≤ T̃ < t+ dt, J = B|T̃ ≥ t)/dt, the cause-specific hazard of breast cancer in

the general population, using the formula (see Gail et al. (1989))

λ̃B,0(t) = λ̃B(t)(1−AR(t)), (1.7)

where, letting P (X|t) be distribution of X for age t,

AR(t) = 1− 1∑
X r(t,X)P (X|t)

, (1.8)

is the population attributable risk due to X for those of age t. P (X|t) and r(t,X) are both assumed

to be constant for t < 50 and for t ≥ 50, so AR(t) is as well. Race-specific estimates of λ̃B(t) and

AR(t) are obtained from SEER data and λ̃D(t) is estimated based on SEER mortality rates for all

causes except breast cancer. In the implementation of the model, the age scale is divided into 13

intervals and λ̃B(t) and λ̃D(t) are assumed to be constant on each interval (see Gail et al. (1989)

for more details).

Software for running BCRAT is available through the BRCA R package (https://cran.r-project.

org/web/packages/BCRA/index.html). We used version 2.1 of the R package.

IBIS

In our data application, we also use the IBIS model (Tyrer et al., 2004; Brentnall and Cuzick,

2019) as a reference for comparison since it combines detailed family history information with

non-genetic risk factors. It first calculates carrier probabilities and risk of breast cancer based on

family history, then incorporates additional risk factors Y (age at menarche, age at menopause,

height, body mass index, age at first live birth, menopausal hormone therapy, atypical hyperplasia,

lobular carcinoma in situ (LCIS), breast density, and SNPs) via a relative hazard model. The

carrier probabilities are calculated using a similar approach as in BRCAPRO, but in addition to

BRCA1 and BRCA2, IBIS considers a hypothetical low-penetrance susceptibility gene that acts

as a surrogate for all other breast cancer susceptibility genes. The prevalence and penetrance of
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BRCA1 and BRCA2 are obtained from the literature and the prevalence and penetrance of the

hypothetical gene are estimated using data from a Swedish population-based study. The penetrance

function for non-carriers is based on rates from the Thames Cancer Registry.

IBIS calculates a weighted average of the cumulative penetrances for each genotype:

P (T̃ ≤ t, J = B|H) =
∑
g,γ

P (T̃ ≤ t, J = B|G,Γ)P (G = g,Γ = γ|H), (1.9)

where Γ denotes the proband’s carrier status with respect to the hypothetical gene (Γ = 0 for

non-carriers and Γ = 1 for carriers). In IBIS, joint carriers of BRCA1 and BRCA2 are modelled as

BRCA1 carriers.

The risk of developing breast cancer between ages a and a+ τ , conditional on not having breast

cancer at age a (we use a instead of ã here because while IBIS is based on the continuous-time

framework, integer-valued ages are used in the implementation), is

P (T̃ ≤ a+ τ, J = B|T̃ > a,H, Y ) =

∫ a+τ

a
λ̃B,H(t)s(Y ) exp

{
−
∫ t

a
(λ̃B,H(u)s(Y ) + λ̃D(u))du

}
dt,

(1.10)

where λ̃B,H(t) = lim
dt→0

P (t ≤ T̃ < t + dt, J = B|T̃ ≥ t,H)/dt and s(Y ) is a normalized version of

the relative hazard of breast cancer associated with risk factors Y where the normalization factor

is the average relative hazard in the general population:

s(Y ) = ϕ(Y )(1−AR) =
ϕ(y)∫

ϕ(Y )f(Y )dy
(1.11)

where AR denotes the population attributable risk due to Y , ϕ(Y ) is the relative hazard associated

with Y (relative to the no-risk population), and f(Y ) is the prevalence of Y in the population.

s(Y ) is approximated by

s(Y ) ≈
∏
j=1

ϕ(Yj)∫
ϕ(Yj)f(Yj)dy

(1.12)

using the assumption that the risk factors are independent (j indexes the risk factors in Y ).

Software for running IBIS is available at http://www.ems-trials.org/riskevaluator/. We

used the command line program for version 8 and the competing mortality option.
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1.2.3 Model Combination Approaches

Penetrance Modification: BRCAPRO+BCRAT (M)

Liu et al. (2013) proposed to combine BRCAPRO and BCRAT by incorporating the relative hazards

for BCRAT covariates into the genotype-specific hazard functions in BRCAPRO. Since BCRAT is

not recommended for known carriers of BRCA1/2 mutations (one of the patient eligibility criteria

for using the risk calculator at https://bcrisktool.cancer.gov/calculator.html is the absence

of a positive test result for BRCA1/2), we consider applying the relative hazards for BCRAT

covariates to only the non-carrier hazard function in BRCAPRO.

We extend the BCRAT relative hazard model,

λ̃B(t|X) = λ̃B,0(t)r(t,X), (1.13)

where λ̃B(t|X) = lim
dt→0

P (t ≤ T̃ < t+ dt, J = B|T̃ ≥ t,X)/dt, to obtain a model for non-carriers:

λ̃B(t|X,G = 0) = λ̃0
B(t)r

0(t,X), (1.14)

where λ̃B(t|X,G = 0) = lim
dt→0

P (t ≤ T̃ < t+dt, J = B|T̃ ≥ t,X,G = 0)/dt, λ̃0
B(t) = lim

dt→0
P (t ≤ T̃ <

t + dt, J = B|T̃ ≥ t, G = 0)/dt, and r0(t,X) is the relative hazard of breast cancer compared to

the average hazard among non-carriers (discussed in more detail below). Models 1.13 and 1.14 are

continuous-time models. To incorporate the hazard modification into the discrete-time framework

used by BRCAPRO, we consider the discrete-time analogue induced by Equation 1.14 under the

setting where we observe only integer-valued t (see Chapter 2.4.2 of Kalbfleisch and Prentice (2011)):

λB(t|X,G = 0) = 1−
(
1− λ0

B(t)
)r0(t,X)

, (1.15)

where λB(t|X,G = 0) = P (T = t, J = B|T ≥ t,X,G = 0). Note that, while BCRAT uses

the continuous-time framework and BRCAPRO the discete-time framework, for white women,

the estimated general population hazard in BCRAT, λ̃B(t) = λ̃B,0(t)/(1 − AR(t)), is similar to

the estimated non-carrier hazard in BRCAPRO, λB(t|X,G = 0) (Figure S.1.1 in Supplementary
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Section S.1.1).

We then modify the calculation of the non-carrier risk in BRCAPRO by replacing λ0
B(t) in

Equation 1.2 with λB(t|X,G = 0) to get

P (T≤a+τ,J=B|T >a,G=0,X)=

a+τ∑
t=a+1

(
1−
(
1−λ0

B(t)
)r0(t,X)

) t−1∏
u=a+1

((
1−λ0

B(u)
)r0(u,X)−λD(u)

)
.

(1.16)

As in BRCAPRO, the final risk is a weighted average of the genotype-specific risks:

P (T≤a+τ,J=B|T >a,H,X)=

3∑
g=0

P (T≤a+τ,J=B|T >a,G=g,X)P (G=g|H), (1.17)

This combination approach assumes that the BCRAT risk factors modify the hazard of breast

cancer in the same way for all non-carriers (conditional on age). It is similar to replacing the

non-carrier future risk from BRCAPRO with the future risk from BCRAT (with some adjustments

for the different baseline hazards used in BRCAPRO and BCRAT). The modification of the hazard

function induces a modification of the corresponding penetrance function (see Equation 1.3), so we

refer to the combination model as BRCAPRO+BCRAT (M), where “M” stands for (penetrance)

modification.

The relative hazard approach for incorporating the BCRAT risk factors has similarities to the

one used in IBIS, but IBIS averages the genotype-specific risks before incorporating non-genetic risk

factors, while BRCAPRO+BCRAT (M) incorporates the BCRAT risk factors before averaging the

genotype-specific risks. The advantage of the latter is that it allows for the effects of the BCRAT

risk factors to differ by genotype. Differing effects by genotype have been found for some BCRAT

risk factors, such as age at menarche (see Milne and Antoniou (2016) for a review). However,

in general, the effects of the BCRAT risk factors on carriers are not well-studied (only a limited

number of prospective studies have been done and they had small sample sizes (Milne and Antoniou,

2016)), so the current version of BRCAPRO+BCRAT (M) only modifies the non-carrier hazards.

Similar to s(Y ) from IBIS (Equation 1.11), r0(t,X) is a normalized version of r(t,X) where the
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normalization factor is the average relative hazard among non-carriers:

r0(t,X) = r(t,X)(1−AR0(t)) =
r(t,X)∑

X r(t,X)P (X|t, G = 0)dy
(1.18)

where AR0(t) is the population attributable risk fraction among non-carriers. The normalization

is necessary because r(t,X) modifies λ̃B,0(t) and is with respect to the no-risk population; in order

to modify λ0
B(t), we need the relative hazard with respect to the non-carrier population.

Due to low mutation prevalence, we approximate AR0(t) with AR(t), i.e. we assume P (X|t, G =

0) ≈ P (X|t). Therefore, BRCAPRO+BCRAT (M) takes parameters from existing models and

does not need to be trained on new data (however, the parameters should be updated as new data

becomes available). Though race-specific estimates of AR(t) are available from BCRAT, they are

based on data from the 1980s to early 2000s, so we re-estimated AR(t) based on the distribution of

BCRAT covariates in more recent data from the 2015 National Health Interview Survey (NHIS),

which uses a cross-sectional sample of U.S. adults designed to be representative of the U.S. general

population. As in IBIS (Equation 1.12), we assumed that the risk factors are independent, except

we used the joint distribution of age at first live birth and number of affected first-degree relatives

because Equation 1.5 includes an interaction between these variables. The race-specific estimates

from the NHIS are given in Supplementary Section S.1.1.

Since P (G = g|H) already accounts for family history, it may seem redundant to include the

BCRAT family history variable (X4, the number of affected first-degree relatives) among the

penetrance-modifying risk factors. However, its inclusion could be useful because 1) there is a

strong interaction between the family history variable and age at first live birth in BCRAT, and

2) the BCRAT family history variable could potentially account for residual familial risk due to

non-BRCA-related factors, such as low-penetrance genes and shared environmental factors, which

are not currently considered by BRCAPRO.

Logistic Regression Ensemble: BRCAPRO+BCRAT (E)

The second model combination approach involves training a logistic regression ensemble model that

uses BRCAPRO and BCRAT as the base models. This approach is similar to stacking (Wolpert,
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1992), which involves training two or more base models, typically using complementary information

and/or approaches, and then training a meta-model to combine their predictions, but differs from

typical stacking procedures because BRCAPRO and BCRAT are pre-trained. For the ensemble

approach, we consider a binary outcome of whether or not a proband develops breast cancer within

τ years, where τ is fixed.

Let FB(τ) = P (T ≤ a + τ, J = B|T > a,H,X). Let F 1
B(τ) be the τ -year BRCAPRO risk

prediction and F 2
B(τ) the τ -year BCRAT risk prediction. For a given value of τ , we combine the

τ -year BRCAPRO and BCRAT predictions using the model

log
FB(τ)

1− FB(τ)
= β0 + β1F

1
B(τ) + β2F

2
B(τ) + β3F

1
B(τ)F

2
B(τ). (1.19)

Other covariates and/or models can also be added to the logistic regression.

This combination approach is based on the assumption that predictions from BRCAPRO and

BCRAT capture complementary risk information. We refer to the ensemble model as BRCAPRO

+ BCRAT (E).

In contrast to the penetrance modification model, the ensemble model needs to be trained using

prospective follow-up data. The ensemble model should ideally be trained on a dataset repre-

sentative of the target population. When the training data are not representative of the target

population, reweighting methods can be used to account for differences in the covariate distribu-

tions. One widely used method is importance weighting (Sugiyama et al., 2007), which weights each

training observation by the ratio of the joint probability distributions of the covariates in the target

and training populations (Sugiyama et al., 2007). The importance weights can be estimated using

kernel mean matching (Huang et al., 2007), Kullback-Leibler importance estimation (Sugiyama

et al., 2008), or least squares importance fitting (Kanamori et al., 2009).

1.2.4 Model Evaluation Metrics

In the simulations and data application, we consider the binary outcome of whether a proband

develops breast cancer within τ = 5 years.

We evaluate model performance using four measures (Steyerberg et al., 2010): 1) the ratio
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of observed (O) to expected (E) events (where E is calculated by summing everyone’s predicted

probabilities), a measure of calibration (with 1 indicating perfect calibration); 2) the area under the

receiver operating characteristic curve (AUC) or concordance (C) statistic, which is the probability

that an individual who experiences the event has a higher score than an individual who does not

and is a measure of discrimination; 3) the Brier score, which is the mean squared difference between

the predicted probabilities and actual outcomes; and 4) standardized net benefit (SNB) (Kerr et al.,

2016), which is the difference between the true positive rate and a weighted false positive rate, based

on a pre-specified risk threshold (the weight is the ratio of the odds of the threshold risk to the

odds of the outcome). For SNB, we use a 5-year risk threshold of 1.67% (the clinical risk threshold

for eligibility for chemoprevention). We report the Brier score in terms of relative difference with

respect to BRCAPRO since this metric is prevalence-dependent and therefore more difficult to

interpret on its original scale.

Since there is censoring in the validation data for the data application (some individuals were

followed for fewer than τ years and were breast-cancer free when they were lost to follow-up), we

use inverse probability of censoring weights (IPCW) (Uno et al., 2007; Gerds and Schumacher,

2006) to calculate the O/E, AUC, and Brier score: individuals with observed outcomes are used

to calculate the performance measures and are weighted by their inverse probability of not being

censored by the minimum of 1) their age at the end of the projection period, and 2) the age at which

they were diagnosed with breast cancer. Letting C denote censoring time, an individual is weighted

by 1/P (C > a + τ) if they did not develop cancer within τ years and 1/P (C > TB) otherwise.

Individuals who are censored are not directly used to calculate the performance measures, but are

used to estimate the censoring distribution, P (C > t). We estimate the censoring distribution by

fitting a Kaplan-Meier curve.

1.3 Simulations

We compared the performance of the combination models to BRCAPRO and BCRAT in data

simulated under the assumptions of the penetrance modification model.
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1.3.1 Data Generation

We first generated each proband’s baseline family history, consisting of 1) the family structure, 2)

dates of birth, 3) genotypes, and 4) cancer ages and death ages.

We simulated pedigrees to mimic family structures observed in real families from the CGN

database (described in Section 1.4.1), including the number of sisters, number of brothers, and so

on. We restricted the family members to first- and second-degree relatives of the proband.

For probands, dates of birth and baseline dates for risk assessment were also sampled from the

CGN database. For non-probands, dates of birth were generated relative to the proband’s date of

birth by assuming that the age difference between a parent and a child has mean 27 and standard

deviation 6. We generated the birth dates of the proband’s parents and children based on the

proband’s birth date, then the birth dates of the proband’s grandparents and siblings based on the

birth dates of the parents, then the birth dates of the proband’s aunts and uncles based on the

birth dates of the grandmothers.

Next, we generated the BRCA genotypes for each family member. We first generated the geno-

types of the grandparents using the default Ashkenazi Jewish allele frequencies for BRCA1 and

BRCA2 in BRCAPRO to mimic a higher-risk population (CGN participants represent a higher-

risk population than the general population since they were selected for family history of cancer).

For individuals in subsequent generations, we generated genotypes according to Mendelian inheri-

tance.

For all individuals, we generated baseline breast and ovarian cancer phenotypes conditional on

genotype. Ages of onset were sampled from {1, 2, . . . , current age}, with probabilities given by the

genotype-specific penetrance functions from BRCAPRO, and the probability of being unaffected

at baseline given by one minus the cumulative penetrance up to the current age. Probands were

assumed to be alive at baseline, but we generated a death age for each non-proband from a dis-

tribution with mean 80 and standard deviation of 15. If an individual had cancer with an age of

onset greater than their age at death, then the individual’s cancer status was changed to unaffected.

Probands with breast cancer at baseline were excluded from the analyses.

We then generated baseline BCRAT covariates (excluding number of affected first-degree relatives
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and age at first live birth, which were calculated from the baseline family history), from the CGN,

sampling different covariates independently of each other. The BCRAT covariates were used to

transform the BRCAPRO non-carrier penetrance into the BRCAPRO+BCRAT (M) non-carrier

penetrance.

For probands who did not have breast cancer at baseline, future ages of onset were generated from

the BRCAPRO+BCRAT (M) penetrances (for carriers, the BRCAPRO+BCRAT (M) penetrances

are the same as in BRCAPRO), which were rescaled to be conditional on not having developed

cancer by the baseline age. Cases were defined as probands who developed breast cancer within 5

years of their baseline age.

After excluding 4,443 probands who had breast cancer at baseline, we used 50,000 probands to

train the ensemble model and the remaining 45,557 for validation. There were 751 cases in the

training set and 717 cases in the validation set.

1.3.2 Results

BRCAPRO+BRCAT (M), the true model, had the best performance (Table 1.1). The ensemble

model performed nearly as well as the true model and outperformed BRCAPRO and BCRAT. Both

combination models were well-calibrated, with O/E=1.00 (95% CI 0.93-1.07) for BRCAPRO+BCRAT

(M) and O/E=1.05 (95% CI 0.98-1.12) for BRCAPRO+BCRAT (E), while BRCAPRO and BCRAT

underpredicted the number of cases, with O/E=1.14 (95% CI 1.07-1.22) for BRCAPRO and

O/E=1.13 (95% CI 1.05-1.20) for BCRAT. The combination models had slightly higher AUCs

than BRCAPRO and BCRAT: 0.70 (95% CI 0.68-0.72 for BRCAPRO+BCRAT (M), 0.69 (95% CI

0.67-0.71) for BRCAPRO+BCRAT (E), 0.68 (95% CI 0.66-0.70) for BCRAT, and 0.67 (95% CI

0.66-0.69) for BRCAPRO. Also, the combination models performed better than BRCAPRO and

BCRAT with respect to the Brier score and SNB. Across bootstrap 1000 replicates of the valida-

tion dataset, both combination models outperformed BRCAPRO and BCRAT with respect to all

performance measures in more than 96% of the replicates. BRCAPRO+BCRAT(M) outperformed

BRCAPRO+BCRAT(E) more than 99% of the time with respect to AUC and Brier score, 75% of

the time with respect to calibration, and 59% of the time with respect to SNB.
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With a training set of 50,000, the ensemble model was able to achieve similar performance to

the true model and performance gains over BRCAPRO and BCRAT.

Table 1.1: 5-year performance in a simulated dataset with 45,557 probands (717 cases). B+B: BR-
CAPRO+BCRAT. ∆BS: % relative improvement in Brier Score compared to BRCAPRO. The “Compar-
isons Across Bootstrap Replicates” section shows pairwise comparisons involving the combination models
across 1000 bootstrap replicates of the validation dataset; the row for A > B shows the proportion of
bootstrap replicates where model A outperformed model B with respect to each metric.

O/E AUC SNB ∆BS
Performance Metrics
B+B (M) 1.00 (0.93, 1.07) 0.70 (0.68, 0.72) 0.26 (0.21, 0.30) 0.36 (0.19, 0.52)
B+B (E) 1.05 (0.98, 1.12) 0.69 (0.67, 0.71) 0.25 (0.21, 0.30) 0.17 (0.03, 0.31)
BRCAPRO 1.14 (1.07, 1.22) 0.67 (0.66, 0.69) 0.22 (0.18, 0.26) 0.00 (0.00, 0.00)
BCRAT 1.13 (1.05, 1.20) 0.68 (0.66, 0.70) 0.21 (0.17, 0.26) -0.06 (-0.35, 0.22)
Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 0.746 0.997 0.585 0.999
B+B(M)>BRCAPRO 0.973 1.000 0.989 1.000
B+B(M)>BCRAT 0.961 1.000 0.999 1.000
B+B(E)>BRCAPRO 0.991 1.000 0.998 0.990
B+B(E)>BCRAT 0.990 0.996 0.997 0.986

1.4 Data Application

We trained an ensemble model for 5-year risk of breast cancer using data from the Newton-Wellesley

Hospital (NWH) and validated it, along with BRCAPRO+BCRAT (M), BRCAPRO, BCRAT, and

IBIS, on data from the CGN.

In the analyses, we excluded women with invasive breast cancer/ductal carcinoma in situ/lobular

carcinoma in situ/bilateral mastectomy/bilateral oophorectomy prior to baseline, women who tested

positive for BRCA1/2 prior to baseline (BCRAT requirement), women < 20 years old at baseline

(BCRAT requirement), and women with projection age > 85 years old (IBIS requirement).

1.4.1 Datasets

The characteristics of the training and validation datasets are summarized in Table 1.2.

17



NWH

After applying the exclusion criteria, the training cohort consisted of 37,881 women who visited

the breast imaging department of the NWH in Newton, Massachusetts for screening or diagnostic

imaging from February 2007 through December 2009. During the initial (baseline) visit, information

was collected on personal and family history of cancer, reproductive history, sociodemographic

factors, and lifestyle factors. Family history was limited to relatives with cancer. Breast cancer

diagnoses through 2015 were determined from the Massachusetts State Cancer Registry, Partners

Hospital Cancer Registries, and patient self-reporting. The median age of the probands was 49,

with an inter-quartile range (IQR) of 43-58. 30,758 (81.2%) of the probands were white. 5,684

(15.0%) had at least one affected first- or second-degree relative. The median follow-up time was

6.7 years (IQR 6.3-7.2), and 5-year outcomes were observed for all probands. 495 probands were

diagnosed with breast cancer within 5 years of baseline.

Since the NWH cohort represents a general screening population while the CGN validation

cohort (described below) represents a higher-risk population enriched for family history of cancer,

we applied importance weights to the training data based on the distributions of the BCRAT

covariates, 5-year BCRAT predictions, and 5-year BRCAPRO predictions. To estimate the weights,

we used least squares importance fitting. Since the distributions of the BRCAPRO and BCRAT

predictions were highly right-skewed, we used log-transformed versions of predictions in the logistic

regression model.

CGN

The validation cohort consists of 7,314 women who enrolled in the CGN, a national research network

consisting of 15 academic medical centers that was established for the purpose of studying inherited

predisposition to cancer. Enrollment began in 1999 and ended in 2010. One of the criteria for

enrollment was a personal and/or family history of cancer. Participants provided information on

personal and family history of cancer, sociodemographic factors and lifestyle factors through an

initial (baseline) phone interview and annual follow-up updates. From 2009 onward, information

was also collected on reproductive history, cancer treatments, cancer screening results, and genetic
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testing results.

The median age of the probands was 47 (IQR 38-57); 6,104 (83.5%) of the probands were white.

3,143 (42.9%) had at least one female first-degree relative with breast cancer. The median follow-up

time was 7.3 years (IQR 6.0-8.3) and 934 (12.8%) probands were censored within 5 years without

being diagnosed with breast cancer. 112 probands developed breast cancer during the first 5 years

of follow-up. Demographic characteristics stratified by center are given in Supplementary Section

S.1.3. Since follow-up times and breast cancer incidence rates varied by center, we estimated the

censoring distribution separately for each center.

Information on some risk factors was missing or incomplete. We did not have information on

atypical hyperplasia (used in BCRAT and IBIS), breast density (used in IBIS), polygenic risk scores

(used in IBIS, or hormone replacement therapy (used in IBIS). Participants were asked whether they

had ever had a benign breast biopsy but were not asked about the number of biopsies (categorized

as 0, 1, or ≥ 2 in BCRAT). Since participants were asked about reproductive history starting in

2009, 4,157 (56.8%) were missing age at menarche (used in BCRAT and IBIS). Ashkenazi Jewish

status (used in BRCAPRO and IBIS) was not available for the UWASH center. We coded the

missing variables according to the specifications of the software for each model. Number of breast

biopsies was coded as 1 for participants who indicated that they had previously had a biopsy.

Table 1.2: NWH and CGN cohort characteristics.

Variable Category NWH CGN
N 37881 7314
Age (median [IQR]) 49 [43, 58] 47 [38, 57]
Race (%) White 30758 (81.2) 6104 (83.5)

Black 479 (1.3) 257 (3.5)
Hispanic 548 (1.4) 694 (9.5)
Asian 1228 (3.2) 160 (2.2)
Native American 25 (0.1) 29 (0.4)
Unknown 4843 (12.8) 70 (1.0)

Affected 1st-degree Relatives (%) 0 32197 (85.0) 4171 (57.0)
1 5277 (13.9) 2496 (34.1)
2+ 407 (1.1) 647 (8.8)

Follow-up Time (median [IQR]) 6.7 [6.3, 7.2] 7.3 [6.0, 8.3]
Censored in <5 Years (%) 0 (0.0) 934 (12.8)
5-year Cases (%) 495 (1.3) 112 (1.5)
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1.4.2 Results

The performance measures are shown in Table 1.3. Calibration plots are provided in Figure 1.2 and

scatter plots, density plots, and correlations are provided in Figure 1.3. The weights from the en-

semble model are provided in Supplementary Section S.1.2. BRCAPRO+BCRAT (M) (O/E=1.06,

95% CI 0.9-1.29), IBIS (O/E=1.01, 95% CI 0.86-1.124), and BCRAT (O/E=1.18, 95% CI 1-1.44)

were well-calibrated overall while BRCAPRO+BCRAT (E) (O/E=1.24, 95% CI 1.05-1.51) and BR-

CAPRO (O/E=1.34, 95% CI 1.14-1.64) underestimated risk. BRCAPRO+BCRAT (M), BCRAT,

and IBIS overestimated risk in the top decile of risk (Figure 1.2). The AUCs were 0.68 (95% CI

0.64-0.72) for BRCAPRO+BCRAT (M), 0.68 (95% CI 0.64-0.72) for BRCAPRO+BCRAT (E), 0.67

(95% CI 0.63-0.71) for BCRAT, 0.67 (95% CI 0.63-0.71) for IBIS, and 0.65 (95% CI 0.6-0.69) for BR-

CAPRO. IBIS had the highest SNB (SNB=0.3, 95% CI 0.18-0.4), followed by BRCAPRO+BCRAT

(M) (SNB=0.25, 95% CI 0.16-0.35). All models performed similarly with respect to the Brier score.

Predictions from BRCAPRO+BCRAT (M) were highly correlated with predictions from each of the

other models in the entire cohort (Figure 1.3), with Pearson correlation coefficients ranging from

ρ = 0.77 with BRCAPRO to ρ = 0.91 with BRCAPRO+BCRAT (E). BRCAPRO+BCRAT (E),

which assigned a higher weight to BCRAT than to BRCAPRO (see Supplementary Section S.1.2),

was very highly correlated with BCRAT (ρ = 0.95) and moderately correlated with BRCAPRO

(ρ = 0.66).

In probands who met the NCCN criteria for further genetic risk evaluation (Table 1.3), BR-

CAPRO+BCRAT (M) and IBIS had the highest AUCs and SNBs, but both models overestimated

risk. BRCAPRO and BCRAT had the lowest AUCs and SNBs. In probands who did not meet

the NCCN criteria, all models underestimated risk. BRCAPRO had a slightly lower AUC than

the other models and BRCAPRO+BCRAT (M) and IBIS had slightly higher SNBs than the other

models.

To quantify the improvement of the combination models over the other models, we also looked

at pairwise performance comparisons with respect to AUC, Brier score, and SNB across 1000

bootstrap replicates of the CGN cohort (Table 1.3). In the overall cohort, both combination

models outperformed BRCAPRO and BCRAT in the majority of the replicates. The combination
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models also outperformed IBIS with respect to AUC and Brier score, but IBIS almost always had

a better SNB. BRCAPRO+BCRAT (M) outperformed BRCAPRO+BCRAT (E) with respect to

AUC and SNB, while the two models performed similarly with respect to the Brier score. In

probands meeting the NCCN criteria, BRCAPRO+BCRAT (M) outperformed each of the other

models in the majority of the replicates.

Figure 1.2: Calibration plots by deciles of predicted risk.
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Table 1.3: 5-year performance in the CGN cohort, overall and stratified by family history (whether or
not the proband met the NCCN criteria for further genetic risk evaluation National Comprehensive Can-
cer Network (2019); in applying the criteria, we only used information on breast and ovarian cancer diag-
noses in relatives). B+B: BRCAPRO+BCRAT. ∆BS: % relative improvement in Brier Score compared to
BRCAPRO. The “Comparisons Across Bootstrap Replicates” section shows pairwise comparisons involv-
ing the combintion models across 1000 bootstrap replicates of the validation dataset; the row for A > B
shows the proportion of bootstrap replicates where model A outperformed model B with respect to each
metric.

O/E AUC SNB ∆BS
Overall (112 cases)
Performance Metrics
B+B (M) 1.06 (0.90, 1.29) 0.68 (0.64, 0.72) 0.25 (0.16, 0.35) 0.14 (-0.41, 0.65)
B+B (E) 1.24 (1.05, 1.51) 0.68 (0.64, 0.72) 0.21 (0.11, 0.31) 0.29 (-0.31, 0.78)
BRCAPRO 1.34 (1.14, 1.64) 0.65 (0.60, 0.69) 0.17 (0.06, 0.27) 0.00 (0.00, 0.00)
BCRAT 1.18 (1.00, 1.44) 0.67 (0.63, 0.71) 0.19 (0.08, 0.30) 0.20 (-0.63, 0.86)
IBIS 1.01 (0.86, 1.24) 0.67 (0.63, 0.71) 0.30 (0.18, 0.40) -0.15 (-0.68, 0.40)
Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 928 575 904 234
B+B(M)>BRCAPRO 969 933 956 667
B+B(M)>BCRAT 881 749 980 372
B+B(M)>IBIS 365 730 171 844
B+B(E)>BRCAPRO 996 911 774 866
B+B(E)>BCRAT 24 831 701 739
B+B(E)>IBIS 112 634 52 922
Strong Family History (34 cases)
Performance Metrics
B+B (M) 0.83 (0.55, 1.14) 0.71 (0.63, 0.77) 0.45 (0.19, 0.62) 0.62 (-1.68, 1.8)
B+B (E) 1.16 (0.77, 1.6) 0.68 (0.59, 0.76) 0.41 (0.13, 0.55) 0.77 (-0.93, 1.87)
BRCAPRO 1.36 (0.89, 1.87) 0.66 (0.57, 0.74) 0.3 (0.04, 0.45) 0 (0, 0)
BCRAT 1.06 (0.7, 1.46) 0.66 (0.56, 0.75) 0.32 (0.07, 0.48) 0.78 (-1.43, 2.16)
IBIS 0.76 (0.5, 1.04) 0.69 (0.61, 0.76) 0.43 (0.12, 0.57) -0.41 (-3.14, 1.25)
Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 472 899 714 364
B+B(M)>BRCAPRO 677 947 935 741
B+B(M)>BCRAT 348 903 953 373
B+B(M)>IBIS 927 709 714 909
B+B(E)>BRCAPRO 883 673 866 831
B+B(E)>BCRAT 304 855 855 516
B+B(E)>IBIS 613 412 442 882
Less Family History (78 cases)
Performance Metrics
B+B (M) 1.2 (0.97, 1.47) 0.66 (0.61, 0.71) 0.17 (0.04, 0.28) -0.05 (-0.39, 0.34)
B+B (E) 1.27 (1.03, 1.56) 0.66 (0.61, 0.72) 0.12 (-0.02, 0.24) 0.09 (-0.2, 0.37)
BRCAPRO 1.32 (1.06, 1.61) 0.63 (0.59, 0.69) 0.11 (0, 0.24) 0 (0, 0)
BCRAT 1.23 (1, 1.51) 0.67 (0.62, 0.72) 0.14 (0, 0.26) -0.03 (-0.41, 0.33)
IBIS 1.17 (0.95, 1.43) 0.66 (0.61, 0.71) 0.24 (0.11, 0.36) -0.03 (-0.42, 0.3)
Comparisons Across Bootstrap Replicates
B+B(M)>B+B(E) 952 346 910 196
B+B(M)>BRCAPRO 967 850 819 387
B+B(M)>BCRAT 939 251 900 411
B+B(M)>IBIS 90 398 111 428
B+B(E)>BRCAPRO 983 922 572 742
B+B(E)>BCRAT 36 320 312 967
B+B(E)>IBIS 51 472 33 763
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Figure 1.3: Scatter plots, density plots, and correlations (stratified by outcome). Red corresponds to
cases and blue corresponds to non-cases. LR: logistic regression. TC: IBIS.
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1.5 Discussion

The availability and use of multiple risk prediction models can lead to confusion in clinical practice.

Combining models addresses this problem and also provides a way to develop more comprehensive

models without building new models from the ground up. We validated two approaches for combin-

ing BRCAPRO, a Mendelian model based on detailed family history information, with BCRAT, an

empirical model based on a simple summary of family history and various non-genetic risk factors.

We compared the performance of the combination models to BRCAPRO, BCRAT, and IBIS, a

family history-based model that also accounts for non-genetic risk factors. Another family history-

based model, BOADICEA, was recently extended to incorporate non-genetic risk factors, but the

software for the updated version (https://canrisk.org/) was not publicly available for research

use when we performed our analyses. The penetrance modification model, BRCAPRO+BCRAT

(M), achieved comparable performance to IBIS in the CGN cohort, outperforming BRCAPRO over-

all and outperforming BCRAT among women with a strong family history of breast/ovarian cancer.

The ensemble model, BRCAPRO+BCRAT (E), showed similar discrimination to the penetrance

modification model but had worse calibration and lower net benefit overall. These results suggest

that there is value in combining BRCAPRO and BCRAT, though the CIs for the performance

measures were overlapping and there was a relatively small number of cases in the subset with a

strong family history. Further validation in independent prospective studies is needed.

While BCRAT performed well in the entire CGN cohort, it had lower discriminatory accuracy

and net benefit than IBIS and the combination models in probands with a strong family his-

tory. This suggests that detailed family history information is important for achieving reliable risk

stratification among higher-risk subgroups for which early screening and prevention measures can

substantially reduce cancer risk and mortality (Metcalfe et al., 2008). Furthermore, BCRAT is not

suitable for known BRCA1/2 carriers, while the other four models all take into account genetic

testing results (the ensemble model does so indirectly through the BRCAPRO risk prediction).

Missing information on BRCAT and IBIS risk factors in the CGN dataset (atypical hyperpla-

sia, age at menarche, and, for IBIS, mammographic density, hormone replacement therapy, and

polygenic risk scores) could potentially have affected the discrimination of BCRAT, IBIS, and
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the combination models, but the models still had relatively good discrimination. The CGN also

did not collect genetic testing information for non-probands. Genetic testing information could

considerably improve the discrimination of BRCAPRO, IBIS, and the combination models (Gail,

2019).

One limitation regarding the ensemble model applied to the CGN cohort is that the training data

from NWH was not representative of the validation data from the CGN. The NWH cohort was a

lower-risk cohort (as seen in Table 1.4.1–it had a lower proportion of women with a first-degree

family history of breast cancer) and the family history information available for the NWH cohort

was less detailed than that for the CGN cohort. We used importance weighting to address this

limitation, but since this approach relies on accurate estimation of the probability distributions of

risk factors in the training and target populations, the ensemble model we trained may have been

sub-optimal for CGN participants. The performance of the ensemble approach could potentially

be improved by training on data that is more representative of the validation data. In simulations,

where the training and validation datasets were both generated under BRCAPRO+BCRAT (M),

the ensemble model performed as well as BRCAPRO+BCRAT (M).

The two combination approaches each have their strengths and limitations. Ensembling via lo-

gistic regression calibrates the model to the training data, which can be a strength or a limitation

depending on how well the training data represents the target population. The model might require

recalibration in order to be suitable for a population different from the training population. Differ-

ences between the training and validation populations could also negatively affect discrimination

and other performance measures. The penetrance modification approach, on the other hand, does

not require training, but relies on accurate estimates of prevalence, penetrance, and relative risks.

These estimates should be updated as new information becomes available. Another disadvantage

of ensembling via logistic regression is the need to dichotomize the time-to-event outcome. An

ensemble model for variable-year risk prediction would require additional assumptions on how the

ensemble weights vary over time and/or prospective training data with long-term follow-up. In

contrast, the penetrance modification approach uses a survival model that automatically handles

different risk prediction periods. One advantage of ensembling is its greater flexibility compared

to the penetrance modification approach. Ensembling can easily handle any number of models
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that can be of any form. Including additional risk factors is also straightforward. The penetrance

modification model requires more assumptions because it specifically combines a penetrance-based

model with a relative risk model via proportional hazards. Additional risk modifiers can be incor-

porated as new relative risk estimates become available, but it is important to properly scale the

relative risks to be compatible with the hazard functions they are meant to modify and to consider

whether the effects of the risk modifiers differ by carrier status. BRCAPRO+BCRAT (M) currently

modifies only the non-carrier hazard function using the BCRAT relative risk. Future work is needed

to extend the model to include modifiers of the carrier hazard functions. One more advantage of

ensembling is that once the model is trained, it only requires the predictions from the models being

combined and not the raw inputs (besides any additional risk factors that are explicitly included

in the ensemble model), which are potentially less accessible than the predictions.

Given our validation results, the penetrance modification approach seems more promising than

ensembling in the context of breast cancer risk prediction. BRCAPRO+BCRAT (M) achieved

competitive performance by leveraging the strengths of BRCAPRO and BCRAT, improving on

aspects of both models.
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2

Prediction of Hereditary Breast
Cancer Using Neural Networks

2.1 Introduction

Family history is a major risk factor for many types of cancer, including breast, colorectal, and

pancreatic cancer. Various family history-based cancer risk prediction models have been developed

(Berry et al., 1997; Chen et al., 2006; Wang et al., 2010, 2007) and are used in clinical practice

to guide decisions about screening and interventions. Existing models are primarily based on two

approaches: 1) using Mendelian laws of inheritance to translate detailed family history information

into risk predictions (Berry et al., 1997; Tyrer et al., 2004; Antoniou et al., 2004; Wang et al.,

2007, 2010) and 2) using summaries of family history (for example, the number of relatives with

a previous cancer diagnosis) as covariates in regression models (Gail et al., 1989; Balmaña et al.,

2006).

Mendelian models take as input a pedigree (Figure 2.1) that reflects family history (including

relatives’ cancer diagnoses, ages at cancer onset, and current ages) and genealogical information.

They estimate an individual’s probability of carrying a mutation in a cancer susceptibility gene

using Mendelian laws of inheritance, Bayes’ Rule, and estimates of mutation prevalence and pen-

etrance (probability of disease given genotype) from epidemiological literature (for example, see

Chen and Parmigiani (2007)). The individual risk of cancer is then calculated as a weighted aver-

age of mutation carrier and non-carrier risks of developing cancer. Mendelian models are typically

recommended over regression-based models for individuals with a strong family history of cancer,

since Mendelian models use more detailed family history information (Quante et al., 2012; Pichert

et al., 2003). However, they rely on explicit assumptions about cancer susceptibility genes, some

of which may be unrealistic or restrictive. Known susceptibility genes account for a limited pro-

portion of familial risk (Easton, 1999). Existing Mendelian models consider only a small subset of
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these genes and do not incorporate information on shared environmental risk factors. Furthermore,

Mendelian models are sensitive to misreporting of family history (Braun et al., 2014; Katki, 2006)

and rely on accurate estimation of mutation prevalence and penetrance, which is challenging due

to low mutation prevalence, heterogeneity of prevalence across populations, and the presence of

genetic variants of unknown clinical significance.

Figure 2.1: Example of a pedigree with family history of breast and ovarian cancers. Circles represent
females and squares represent males. The arrow indicates the proband, the individual undergoing risk
assessment. Numbers below each family member represent the individual’s current age if alive and unaf-
fected, age at death if dead, and age of diagnosis if affected by breast or ovarian cancer.

The main limitations of Mendelian models can be overcome by neural networks (NNs) that

eliminate the need to explicitly specify the effects of cancer susceptibility genes. A NN consists of

layers of nodes that convert inputs into predictions through a series of non-linear transformations.

Under mild assumptions, NNs are theoretically capable of approximating any continuous function

with arbitrary precision (Cybenko, 1989; Hornik, 1991; Leshno et al., 1993), and in practice they

have achieved state-of-the-art performance in many tasks, such as image recognition (Krizhevsky
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et al., 2012) and natural language processing (Hinton et al., 2012). The flexibility of NNs combined

with large databases can potentially lead to accuracy gains over Mendelian models. However, while

the literature on NNs is extensive, little work has been done to evaluate their performance in the

context of family history-based cancer risk prediction. Kokuer et al. (2006) trained a NN to classify

families into risk categories for hereditary colorectal cancer, but they used simple summaries of

family history and cross-validated their model on a relatively small dataset with 313 pedigrees.

To the best of our knowledge, there is no previous work leveraging large databases of pedigrees to

develop NNs for cancer risk prediction.

In this paper, we develop new NN models to predict future risk of breast cancer based on pedigree

data. We propose a method for mapping pedigrees to fixed-size NN inputs and apply two types of

NNs : 1) standard fully-connected NNs (FCNNs), and 2) convolutional NNs (CNNs) that exploit

pedigree structure. We compare the performance of the NNs to BRCAPRO (Parmigiani et al.,

1998), a widely used Mendelian model, and logistic regression (LR). In our data application, we

train NNs using over 200,000 families from the Risk Service database and validate the models on

data from the Cancer Genetics Network (CGN). Although we focus on breast cancer risk prediction

in our simulations and data application, the proposed approach can also be applied to other cancers.

2.2 Methods

2.2.1 Notation

Notation used throughout the paper is summarized in Table S.2.1 in Supplementary Section S.2.1.

For a given type of cancer, consider a proband (someone who presents for risk assessment) who

has not previously been diagnosed with that cancer. Let t be a pre-specified number of years. Let

Y0 = 1 if the proband develops the cancer of interest within t years and Y0 = 0 otherwise. The goal

is to estimate P (Y0 = 1|H), where H represents family history and is described below.

Family history can be visualized using a pedigree (Figure 2.1), a directed graph where nodes

correspond to family members and edges flow from parents to offspring. The pedigree graph can be

represented as a matrix where each row corresponds to a family member, containing their features
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as well as the indices of their parents. Let H denote this matrix.

Let R be the number of relatives in the pedigree besides the proband. The family members are

indexed by r = 0, 1, . . . , R, where r = 0 corresponds to the proband. We have K features for each

family member r: Hr1, . . . , HrK . In this paper, we will consider the following K = 6 features for

breast cancer risk prediction: Hr1 = current age or age at death, Hr2 = breast cancer status (1

if affected, 0 otherwise), Hr3 = ovarian cancer status (1 if affected, 0 otherwise), Hr4 = age at

onset of breast cancer (0 if unaffected), Hr5 = age at onset of ovarian cancer (0 if unaffected), and

Hr6 = sex (0 if female, 1 if male). Furthermore, let Ar1 be the index of r’s father and Ar2 the

index of r’s mother (either of which can be unknown). Let Hr = (Hr1, . . . , HrK , Ar1, Ar2) ∈ RK+2.

H is a matrix with R + 1 rows and k + 2 columns, where for r = 0, . . . , R, row r + 1 contains the

information for family member r.

2.2.2 Fully-Connected Neural Networks

A NN (Bishop et al., 1995) is a directed graph consisting of an input layer, hidden layers, and an

output layer. The nodes perform computations that transform input features into a prediction or

classification. Each node receives a set of inputs via incoming edges, computes a function of its

inputs, and propagates the result via outgoing edges.

A FCNN is a NN where in each layer, every node is connected to every node in the previous

layer. FCNNs take as input a fixed-length vector X. In the context of cancer risk prediction, we

propose a FCNN where X is a vector representation of the pedigree H and the output is a predicted

probability for Y0 = 1. We describe how H is mapped to X in Section 2.2.3.

Let L be the number of hidden layers in the FCNN. Let l = 0 and l = L + 1 correspond to

the input and output layers respectively. Let Nl be the number of nodes in layer l, where N0

is the length of X and NL+1 = 1. Each hidden layer node takes a weighted sum of its inputs,

adds a bias term, and then applies a nonlinear activation function ϕ : R → R. Commonly used

activation function include the logistic function ϕ(z) = σ(z) = exp(z)
1+exp(z) and the rectifier function

ϕ(z) = ReLU(z) = max(0, z).
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The outputs of the layers are

a0 = X ∈ RN0 ,

al = ϕl(W lal−1 + bl) ∈ RNl , (l = 1, . . . , L+ 1),

where W l ∈ RNl×Nl−1 is the matrix of weights for layer l with row i consisting of the weights of

node i, bl ∈ RNl is the bias vector for layer l, and ϕl : RNl → RNl represents the component-wise

application of the activation function ϕ. The output layer (l = L+1) consists of a single node that

uses the logistic activation function, outputting the predicted probability

Ŷ0 = aL+1 = σ(wL+1aL + bL+1).

Given a cost function C and NT training observations (Xn, Y0n), n = 1, . . . , NT , the weight and

bias parameters are randomly initialized and iteratively updated to minimize
∑NT

n=1C(Y0n, Ŷ0n)

using an optimization method such as stochastic gradient descent. Examples of cost functions

include mean squared error, C(y, z) = (y − z)2 and cross-entropy loss, C(y, z) = −y log(z) − (1 −

y) log(1− z).

The number of parameters (W, b) in a FCNN grows quickly with the size of the input and the

number and size of the hidden layers. Various regularization methods have been developed to avoid

overfitting, including weight decay (Hinton, 1987; Krogh and Hertz, 1992) and dropout (Srivastava

et al., 2014).

2.2.3 Standardizing and Flattening Pedigrees

Since FCNNs require a fixed-size input, they cannot be directly applied to pedigrees, which vary

in size and structure. It is possible to generate a fixed-size input based on simple summaries of

family history, but this can result in substantial loss of information. Therefore, we propose the

following approach: define a reference pedigree with pre-specified relatives (for example: proband,

grandparents, parents, sister, brother) and map each actual pedigree H to a standardized version

H ′ that matches the structure of the reference pedigree (each relative in the reference pedigree may

31



or may not be present in the actual pedigree), then flatten H ′ into a fixed-length vector input X

for a FCNN.

We first describe the reference pedigree (see Figure 2.2(B) for an example of a reference structure;

the choice of reference structure can vary depending on the family structures in the available data).

Let the reference pedigree contain the proband and Q′ other types of relatives (father, mother,

brother, sister, etc). Let q = 0, 1, . . . , Q′ index the relative types, with q = 0 corresponding to

the proband. Let R′
q be the number of relatives of type q for q ∈ {0, 1, . . . , Q′}. Let the family

members be indexed by r = 0, 1, . . . , R′, where R′ =
∑Q′

q=1R
′
q, r = 0 corresponds to the proband,

r = 1, . . . , R1 corresponds to relatives of type q = 1, r = R1+1, . . . , R1+R2 corresponds to relatives

of type q = 2, and so on.

Now we consider an actual pedigree matrix H and describe how to standardize and flatten it

(Figure 2.2). For q = 0, 1, . . . , Q′, Rq is the number of relatives of type q in H (R0 = 1). To

construct a standardized pedigree matrix, H ′, with the same structure as the reference pedigree

matrix, we compare the number of relatives of type q in the actual pedigree to the number in the

reference pedigree for each q ∈ {0, 1, . . . , Q′}. If the two numbers are the same (Rq = R′
q), then

we include all of the R′
q actual relatives in H ′. If the actual number is smaller than the reference

number (Rq < R′
q), then we include the Rq actual relatives in H ′ and represent each of the R′

q−Rq

absent relatives using a vector of pre-specified null values (zeros). If the actual number is larger

than the reference number (Rq > R′
q), then we randomly select R′

q of the actual relatives to include

in H ′. We also include a column in H ′ to indicate whether each row corresponds to a relative

who is absent from the actual pedigree (0 if present, 1 if absent). Therefore, H ′ is an R′ + 1

by K + 1 matrix where each row consists of a family member’s K cancer history features, along

with the presence/absence indicator. Let H ′
r be the vector for relative r in H ′. We flatten H ′ by

concatenating its rows to get a vector, X = (H ′
0
T ,H ′

1
T , . . . , H ′

R′
T ) ∈ R(R′+1)(K+1), which can be

used as input to a FCNN.
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Figure 2.2: Consider a reference pedigree that includes the proband’s grandparents, parents, uncles,
aunts, and siblings, with each couple having m = 2 children of each sex. (A) Actual pedigree H. (B) Stan-
dardized pedigree H ′, obtained by mapping H to the reference structure. The actual pedigree has more
maternal aunts than the reference pedigree, so we randomly select the desired number of maternal aunts
to include in H ′. The actual pedigree has fewer paternal aunts, brothers, and sisters than the reference
pedigree, so in H ′, we use pre-specified non-informative values for the paternal aunts, brothers, and sisters
absent from H. (C) Flattened pedigree X, which is used as input for a FCNN.

2.2.4 Convolutional Neural Networks

FCNNs can be inefficient to train and are prone to overfitting because the number of parameters

grows quickly with network size (Geman et al., 1992). CNNs (LeCun et al., 1998), which are

widely used in problems where the input has a spatial structure, such as image classification,

reduce the number of parameters by using convolutional layers that enforce selective connections

and weight sharing. A convolutional layer can be viewed as a fully-connected layer where certain

weights are set to 0 and certain weights are constrained to have the same value. To exploit the

correlation structure of the input (for example, pixels that are spatially close often have highly

correlated values), a convolutional layer applies the same functions repeatedly to different fixed-
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size neighborhoods of the input (for example, sets of neighboring pixels). These functions are called

convolutional filters.

Analogous to neighboring pixels, closely related individuals are likely to have similar levels of

susceptibility to cancer due to genetic similarity and shared environment. Therefore, we propose

to adapt CNNs to pedigree data. For reference, a description of a standard CNN is provided in

Supplementary Section S.2.1. While standard CNNs were designed for inputs that have a fixed size

and structure, various generalizations have been proposed for graphs that vary in size and structure

(Wu et al., 2019), such as molecular compounds. We follow the general steps used in the graph

CNN framework proposed by Niepert et al. (2016): 1) standardize the graphs to have the same

size and structure, then 2) define a sequence of neighborhoods within each standardized graph and

apply convolutional filters to those neighborhoods. However, while Niepert et al.’s algorithm, which

is based on graph isomorphism tests, is applicable to arbitrary graphs, our approach leverages the

structure of pedigrees.

Like in the FCNN approach, we use a standardized and flattened pedigree X as the input (Figure

2.2). Prior to running the CNN, for each family member r inH ′, we define a fixed-size neighborhood

centered at r consisting of r and r’s first-degree relatives: mother, father, m1 sisters, m2 brothers,

m3 daughters, andm4 sons. Similar to Figure 2.2, if r has more thanm1 sisters, thenm1 of them are

randomly selected, and if r has fewer than m1 sisters, then we use a pre-specified index representing

an absent relative whose features are set to zero (analogous to zero padding in standard CNNs,

as described in Supplementary Section S.2.1). The same approach is used for brothers, daughters,

and sons. The neighborhood is represented by a vector N (r) of length U = 3 +
∑4

i=1mi. Within

N (r), the individuals are ordered by relative type with respect to r.

We propose a CNN where all of the hidden layers are convolutional. There are L hidden layers.

Hidden layer l applies Ml real-valued convolutional filters f l
1, . . . , f

l
Ml

to each of the R′+1 neighbor-

hoods of the pedigree (Figure 2.3). For i = 1, . . . ,Ml, let f l
i : R

U(Ml−1) → R (let M0 = K +1 since

each relative has K + 1 features in H ′ - see Section 2.2.3). Let alr ∈ RMl be the output of layer l

for neighborhood/family member r. Let al−1
N (r) ∈ RU∗Ml−1 be the vector obtained by concatenating
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the layer inputs of the relatives in N (r). The output from applying filter i to r’s neighborhood is

f l
i (a

l−1
N (r)) = ϕ

(
wl
ia

l−1
N (r) + bli

)
,

where wl
i ∈ RU∗Ml−1 is the vector of weights for filter i and bli ∈ R is the bias for filter i.

Let f l = (f l
1, . . . , f

l
Ml

) : RU∗Ml−1 → RMl . The layer outputs for relative r are

a0r = H ′
r ∈ RK+1,

alr = f l(al−1
N (r)) ∈ RMl (l = 1, . . . , L)

and the overall layer outputs are

al =
[
al0 , . . . , a

l
R′

]
∈ RMl∗(R′+1) (l = 0, 1, . . . , L)

The final output is a transformation of aL0 using a logistic activation function:

Ŷ0 = σ(wL+1aL0 + bL+1)

where wL+1 ∈ RML and bL+1 ∈ R.

As in FCNNs, the weight and bias parameters are optimized with respect to
∑NT

n=1C(Y0n, Ŷ0n)

and the optimization can be carried out using stochastic gradient descent.

Model Space

The proposed CNN for pedigrees satisfies a universal approximation property analogous to that of

FCNNs (Cybenko, 1989; Hornik, 1991; Leshno et al., 1993). Fix a reference pedigree H∗ of size

R′ + 1 containing relatives of up to degree d of the proband. Let Q′ be the number of relative

types in H∗ besides the proband and let m = max
q=0,1,...,Q′

R′
q. Let X ∗ ⊂ R(R′+1)(K+1) be the space of

standardized and flattened pedigrees with the same structure as H∗. We consider the CNN’s ability

to approximate functions from X ∗ to [0, 1]. We first state the universal approximation theorem for

standard FCNNs (Cybenko, 1989; Hornik, 1991; Leshno et al., 1993) and then verify that the same
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Figure 2.3: The neighborhoods centered at relatives 0, 2, and 7 are shown above using shaded boxes.
The same convolutional filters are applied to all neighborhoods of the pedigree.

property extends to CNNs (proof provided in Supplementary Section S.2.1).

Universal Approximation Theorem for FCNN (forward direction of Theorem 1 from

(Leshno et al., 1993)) Let k be a positive integer and I a compact subset of Rk. Let g : I → R

be continuous. Let ϕ : R → R be a piecewise continuous, locally bounded, and non-polynomial

activation function. Then given ϵ > 0, there exists a positive integer N , and for i = 1, . . . , N ,

constants αi, bi ∈ R and vectors wi ∈ Rk such that

F (X) =

N∑
i=1

αiϕ(w
T
i X + bi),
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satisfies |F (X)− g(X)| < ϵ ∀X ∈ I.

Theorem 2.1. [Universal Approximation Theorem for Pedigree CNNs] Assume that the elements

of H ′
r ∈ RK+1 are bounded for r = 0, 1, . . . , R′. Let g : X ∗ → [0, 1] be continuous. Let ϕ : R → R be

a continuous and invertible activation function. Let the fixed-size neighborhood about each relative

contain m1 = · · · = m4 = m sisters/brothers/daughters/sons. Then given ϵ > 0, there exists a

pedigree CNN of the form described in subsection 2.2.4 with d hidden layers with activation function

ϕ, Ml convolutional filters for hidden layer l, bias terms bli ∈ R (i = 1, . . . ,Ml; l = 1, . . . , L + 1),

and weight vectors wl
i ∈ RU∗Ml−1 (i = 1, . . . ,Ml; l = 1, . . . , L+ 1), such that the final output

F (X) = σ(wL+1aL0 (X) + bL+1)

satisfies |F (X)− g(X)| < ϵ ∀X ∈ X ∗.

2.2.5 Benchmark Methods

In our simulations and data application, we focused on breast cancer risk prediction and compared

NNs to the Mendelian BRCAPRO model and to LR, which is equivalent to a single-node FCNN

with a logistic activation function. For LR, we used the flattened pedigree X as the input.

BRCAPRO (Berry et al., 1997; Parmigiani et al., 1998) is widely used in clinical practice and has

been validated in various populations (Berry et al., 2002; Euhus et al., 2002; Terry et al., 2019; Mc-

Carthy et al., 2019). It estimates the probability of carrying a germline mutation in breast/ovarian

cancer susceptibility genes BRCA1 and BRCA2, as well as future risk of breast/ovarian cancer.

Let γr be the genotype of relative r (0 for non-carrier of a pathogenic BRCA1 or BRCA2

mutation, 1 for BRCA1 carrier, 2 for BRCA2 carrier, and 3 for BRCA1 and BRCA2 carrier).

BRCAPRO first estimates P (γ0|H0, . . . , HR), the conditional distribution of proband’s genotype

given the family history, using Bayes’ rule:

P (γ0|H0, . . . , HR) =
P (γ0)P (H0, . . . , HR|γ0)∑3
γ=0 P (γ)P (H0, . . . , HR|γ)

.

The prevalence P (γ) is obtained from the literature and, under the assumption of conditional
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independence of phenotypes given genotypes,

P (H0, . . . , HR|γ0) =
∑

γ1,...,γR

(
R∏

r=0

P (Hr|γr)

)
P (γ1, . . . , γR|γ0),

where the penetrance P (Hr|γR) is obtained from the literature. The conditional distribution

P (γ1, . . . , γR|γ0) is derived assuming Mendelian inheritance of BRCA1 and BRCA2 mutations.

After estimating the carrier probabilities, BRCAPRO calculates future risk of breast cancer

through a weighted average of the genotype-specific penetrance functions P (Y0 = 1|γ0):

P (Y0 = 1|H) =
∑
γ0

P (Y0 = 1|γ0)P (γ0|H0, . . . , HR).

2.2.6 Implementation

We ran BRCAPRO using the BayesMendel R package (version 2.1-6) (Chen et al., 2004a). The

NNs were implemented in Python using Keras (https://github.com/keras-team/keras) with

the Theano backend (Team et al., 2016). For the CNNs, we used code from Hechtlinger et al.

(2017) (https://github.com/hechtlinger/graph_cnn).

In the simulations and data application, 10% of the training set was held out for tuning NN

hyperparameters. In the simulations, the final FCNN architecture consisted of 2 hidden layers with

sizes 30 and 10 respectively, and the final CNN architecture consisted of 2 convolutional layers with

10 and 5 filters respectively. In the data application, the final FCNN architecture consisted of 2

hidden layers of size 30 and the final CNN architecture consisted of 2 convolutional layers with 5

filters each. We also used a dropout layer following the first hidden layer in each NN, with a dropout

rate of 20%. We used the Exponential Linear Unit (ELU) activation function (Clevert et al., 2015),

the Adam optimizer (Kingma and Ba, 2014), and the mean squared error loss function.

In the simulations, we used a reference pedigree of size 26 containing the proband’s grandparents,

parents, aunts (2 maternal, 3 paternal), uncles (3 maternal, 2 paternal), siblings (2 sisters, 3

brothers), and children (2 daughters, 2 sons). This was chosen based on the distribution of family

structures in the CGN (see Supplementary Section S.2.2). We used m1 = m2 = 3 and m3 = m4 = 2

for the CNN neighborhoods. In the data application, we used a reference pedigree of size 19 with
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the same relative types as in the simulations, but restricted to 2 relatives of each type and omitted

sons and daughters due to the smaller family sizes in the training dataset (see Supplementary

Section S.2.2). We used m1 = m2 = 2 and m3 = m4 = 1 for the CNN neighborhoods.

2.2.7 Model Evaluation

We evaluated model performance using three metrics (Steyerberg et al., 2010): 1) the ratio of

observed (O) to expected (E) events (where E is the sum of the predicted probabilities for the

validation set), a measure of calibration, 2) the area under the receiver operating characteristic

curve (AUC), which is the probability that an individual who experiences the event has a higher

score than an individual who does not and is a measure of discrimination, and 3) the Brier score,

which is the mean squared difference between the predicted probabilities and actual outcomes. We

obtained 95% confidence intervals for the performance measures by bootstrapping the validation

set.

2.3 Simulations

We evaluated the performance of the proposed NN approaches in predicting 10-year risk of breast

cancer in two simulation settings: one where BRCAPRO is the true model and one where the data

do not satisfy the assumptions of BRCAPRO.

2.3.1 Data Generation

We simulated 1,000,000 pedigrees using the generating model assumed by BRCAPRO. To simulate

each family, we first sampled a family structure (number of sisters, brothers, etc) from the CGN

dataset (described in Section 2.4.1). For probands, we also sampled dates of birth and baseline

dates for risk assessment from the CGN. For non-probands, dates of birth were generated relative

to the proband’s date of birth by assuming that the age difference between a parent and a child

has mean 27 and standard deviation 6.
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Next, we generated the genotypes for each family member. We first generated the genotypes

of the proband’s grandparents (the oldest generation) using the default Ashkenazi Jewish allele

frequencies in BRCAPRO (0.014 for BRCA1 and 0.012 for BRCA2) to mimic a higher-risk popu-

lation. For individuals in subsequent generations, we generated genotypes according to Mendelian

inheritance.

We generated ages of onset for breast and ovarian cancer conditional on the genotypes. Each age

of onset was randomly generated from {1, . . . , 94}, with probabilities given by the genotype-specific

penetrance functions from BRCAPRO (the cumulative lifetime probability of breast cancer ranges

from 0.12 for non-carriers to 0.79 for carriers of mutations in both BRCA1 and BRCA2). We also

generated a death age for each individual from a distribution with mean 80 and standard deviation

15. If an individual’s age of onset was greater than their baseline age or death age, then their

cancer status at baseline was set to 0.

We excluded probands who died or were diagnosed with breast cancer prior to baseline. For the

remaining probands (n = 887, 353), we predicted 10-year risk of breast cancer using the baseline

family history.

2.3.2 Results

We used 800,000 families for training and the other 87,353 for testing. In the training set, 23,606

probands developed breast cancer within 10 years, while in the test set, 2570 probands developed

breast cancer within 10 years.

We investigated how much training data is needed for the performance of the NNs to approach

that of the true model by training NNs on increasingly large subsets of the entire training set, with

sample sizes ranging from 50,000 to 800,000 (Figure 2.4). As the sample size increased, the NNs

achieved higher AUCs and their predictions became highly correlated with those from BRCAPRO,

the true model in this setting. For sample sizes under 100,000, the CNN had a higher AUC than the

FCNN, though, as expected, the differences between the two approaches decreased with increasing

sample size. With 200,000 or more training examples, both the FCNN and CNN achieved AUCs

similar to that of BRCAPRO. For all sample sizes, the correlation between the CNN predictions
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and BRCAPRO predictions was higher than that between the FCNN predictions and BRCAPRO

predictions.

When the entire training set was used, the FCNN and CNN had correlations of 0.9 and 0.92 with

BRCAPRO, while the LR model trained on the data had a correlation of 0.82 with BRCAPRO

(Table 2.1). Across 1000 bootstrap replicates of the test set, the NNs outperformed LR with respect

to AUC and Brier score more than 99% of time.

Figure 2.4: AUC and correlation (ρ) of 10-year risk predictions from NN with predictions from BR-
CAPRO (true model) as a function of training sample size in simulations.

Under the true model, the proband’s risk of breast cancer increases with more affected relatives

and earlier diagnosis ages. To assess whether NN and LR predictions reflected these trends, we fixed

a family structure and varied the phenotypes of the mother and maternal grandmother (Figure 2.5).

We considered five scenarios that are ordered by increasing risk with respect to the true model: (A)

no affected relatives, (B) grandmother with breast cancer, (C) grandmother with breast cancer at an

earlier age, (D) grandmother with breast cancer, mother with breast cancer, and (E) grandmother

with breast cancer, mother with breast and ovarian cancer. While the NNs gave similar predictions

to BRCAPRO across all scenarios (Figure 2.5), LR slightly underpredicted risk in Scenario (D)
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Table 2.1: 10-year performance in 87,353 simulated families (training set of 800,000) based on true and
misreported family history. ρ denotes the correlation with predictions from BRCAPRO. The “Compar-
isons Across Bootstrap Replicates" section shows pairwise comparisons between the NN models and the
other models across 1000 bootstrap replicates of the test set; the row for A > B shows the proportion of
bootstrap replicates where model A outperformed model B with respect to each metric.

O/E AUC sqrt(Brier Score) ρ
True Family History
Absolute Performance
FCNN 0.93 (0.89, 0.96) 0.66 (0.65, 0.67) 0.168 (0.165, 0.171) 0.90 (0.89, 0.91)
CNN 0.99 (0.95, 1.03) 0.66 (0.65, 0.67) 0.168 (0.165, 0.171) 0.92 (0.91, 0.92)
BRCAPRO 1.02 (0.98, 1.06) 0.67 (0.66, 0.68) 0.168 (0.164, 0.171) 1.00 (1.00, 1.00)
LR 1.00 (0.96, 1.04) 0.65 (0.64, 0.66) 0.168 (0.165, 0.171) 0.82 (0.81, 0.83)
Comparisons Across Bootstrap Replicates
FCNN>CNN 0.021 0.582 0.038 0.000
FCNN>BRCAPRO 0.083 0.000 0.000 0.000
FCNN>LR 0.025 1.000 0.991 1.000
CNN>BRCAPRO 0.691 0.000 0.000 0.000
CNN>LR 0.465 1.000 1.000 1.000
Misreported Family History
Absolute Performance
FCNN 1.06 (1.03, 1.10) 0.64 (0.64, 0.65) 0.168 (0.165, 0.171)
CNN 1.01 (0.97, 1.05) 0.64 (0.63, 0.65) 0.168 (0.165, 0.172)
BRCAPRO 0.81 (0.78, 0.84) 0.63 (0.62, 0.64) 0.169 (0.166, 0.172)
LR 1.00 (0.96, 1.03) 0.64 (0.63, 0.65) 0.168 (0.165, 0.171)
Comparisons Across Bootstrap Replicates
FCNN>CNN 0.033 0.665 0.038
FCNN>BRCAPRO 1.000 1.000 1.000
FCNN>LR 0.061 0.968 0.486
CNN>BRCAPRO 1.000 1.000 1.000
CNN>LR 0.406 0.900 0.996

and severely underpredicted risk in Scenario (E). LR assumes a restrictive functional form for the

relationship between the features and the outcome, and this functional form does not match that

of BRCAPRO, so the LR model is misspecified in these simulations. NNs with multiple hidden

nodes are more flexible than LR and therefore less susceptible to misspecification.

Perturbations of Mendelian Models Misreported cancer diagnoses can considerably dis-

tort predictions from Mendelian models (Katki, 2006; Braun et al., 2014). In the second simulation

setting, we introduced noise to the simulated family histories through incorrectly reported diag-

noses, diagnosis ages, and current ages for non-probands. For diagnoses, we used false negative and

false positive rates for self-reported family history of breast and ovarian cancer from Ziogas and

Anton-Culver (2003). For ages, we used rates from Braun et al. (2017) (see Supplementary Section

S.2.2 for more details).
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Figure 2.5: Under the first simulation settting, we fixed a simulated family structure (proband, grand-
parents, parents, 1 paternal aunt, 1 maternal aunt, 2 maternal uncles) for a 40-year-old proband and var-
ied the level of family history across 5 scenarios (ordered by increasing risk with respect to BRCAPRO,
the true model):

1. no affected relatives

2. maternal grandmother diagnosed with breast cancer at age 80

3. maternal grandmother diagnosed with breast cancer at age 60

4. maternal grandmother diagnosed with breast cancer at age 60, mother diagnosed with breast cancer
at age 50

5. maternal grandmother diagnosed with breast cancer at age 60, mother diagnosed with breast cancer
at age 50 and ovarian cancer at age 60. We calculated 10-year risk predictions for each scenario
using each model

Under misreporting, BRCAPRO overestimated risk and had a worse AUC and Brier score than

the NNs across 1000 bootstrap replicates of the test set (Table 2.1), showing that NNs are able to

outperform BRCAPRO when Mendelian assumptions are not fully satisfied.

43



2.4 Data Application

We trained FCNN, CNN, and LR models on the Risk Service cohort to predict 5-year risk of

breast cancer and compared their performance to BRCAPRO on an independent dataset from the

CGN. We excluded male probands, probands who had breast cancer/bilateral mastectomy/bilateral

oophorectomy before baseline, probands under 18 years old, and probands for whom we could not

run BRCAPRO (probands over 89 years old at baseline and probands with related parents in their

pedigree).

2.4.1 Datasets

Risk Service

The Risk Service (Chipman et al., 2013) is a web service for family history-based cancer risk

prediction. It has been used in a wide range of clinics, including primary care, breast imaging,

and genetic counseling clinics, to run various family history-based cancer risk prediction models,

including BRCAPRO. Patient-reported model inputs are saved to a database. As of January 2018,

the database contained over 450,000 families, with 285,161 probands consenting to the use of their

data for research.

Training a future risk prediction model requires baseline and follow-up data, but the Risk Service

does not follow probands over time. We therefore defined each proband’s baseline date to be 5 years

prior to the date at which they used the Risk Service and the follow-up date to be the date at which

they used the Risk Service. We retrospectively reconstructed the family history at the baseline date

based on the ages and diagnosis ages of the family members. However due to a considerable amount

of missing age information for non-probands (74% of first- and second-degree relatives were missing

age and 34% of affected first- and second-degree relatives were missing age at diagnosis), we decided

not to use ages or diagnosis ages of non-probands for training and we imputed baseline cancer status

for non-probands with missing diagnosis ages (see Supplementary Section S.2.2 for more details).

The training set consisted of 279,460 probands (Table 2.2). The median age was 45 and the

median family size was 8. Also, 36,783 probands (13.2%) had at least one affected first-degree
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relative and 13,307 (4.8%) developed breast cancer during the follow-up period.

CGN

The CGN is a national consortium of 15 academic medical centers that was established for the

purpose of studying inherited predisposition to cancer (Anton-Culver et al., 2003). Between 1999

and 2010, 26,941 participants with cancer or a family history of cancer were recruited through

population-based registries, high-risk clinics, and self-referral. They provided information on per-

sonal and family history of cancer, sociodemographic factors and lifestyle factors through an initial

(baseline) phone interview and annual follow-up updates.

The validation cohort consisted of 7,489 probands. The median age was 47 and the median

family size was 16. The majority (54.1%) of probands were recruited from population-based cancer

registries. Also, 42.9% of probands had at least one female first-degree relative with breast cancer

(a much higher proportion than in the Risk Service), 114 (1.5%) probands developed breast cancer

within 5 years of baseline, and 1017 probands (13.6%) were lost to follow-up within 5 years without

being diagnosed with breast cancer (Table 2.2). To adjust for censoring, we used inverse probability

of censoring weights (Uno et al., 2007; Gerds and Schumacher, 2006): individuals with observed

outcomes were used to calculate the performance measures and were weighted by their inverse

probability of not being censored by the minimum of 1) the length of the risk prediction period

(5 years) and 2) the time to breast cancer diagnosis. Censored individuals were not directly used

to calculate the performance measures, but were used to estimate the censoring distribution. We

assumed independent censoring and estimated the censoring distribution using the Kaplan-Meier

estimator.

2.4.2 Training and Validation Populations

There are many differences between the Risk Service and CGN cohorts (Table 2.2). Since CGN

participants were recruited based on family history of cancer, the CGN cohort represents a higher-

risk population and has more probands with a positive family history (Table 2.2). Due to different

data collection and ascertainment procedures, the family history information available in the CGN
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Table 2.2: Risk Service and CGN cohort characteristics.

Variable Category Risk Service CGN
N (probands) 279460 7489
Age (median [IQR]) 45 [39, 55] 47 [38, 57]
Family Size (median [IQR]) 8 [7, 14] 16 [12, 21]
Affected 1st-degree Relatives (%) 0 242677 (86.8) 4277 (57.1)

1 35241 (12.6) 2549 (34.0)
2+ 1542 (0.6) 663 (8.9)

Ascertainment (%) Population-Based — 4050 (54.1)
Clinic-Based — 2187 (29.2)
Self-Referral — 1247 (16.7)
Unknown — 5 (0.1)

Censored (%) 0 (0.0) 1017 (13.6)
Cases (%) 13307 (4.8) 114 (1.5)

is more detailed than in the Risk Service. To handle the considerable amount of missing age

information in the Risk Service data, we did not use current or diagnosis ages of non-proband

relatives in the NN features and used only their breast and ovarian cancer affection statuses (we

still used the proband’s age).

Moreover, the Risk Service cohort is affected by selection bias because individuals who are

diagnosed with breast cancer often seek genetic counseling shortly after diagnosis. Therefore, the

breast cancer incidence rate among Risk Service probands during the defined follow-up period is

higher than in the CGN cohort (Table 2.2) even though the CGN cohort represents a higher-risk

population. To address this issue, we re-calibrated the models trained on the Risk Service to general

population incidence rates adjusted for family history. We calculated age-specific 5-year risks based

on 2012-2016 incidence rates in the general U.S. population from the Surveillance, Epidemiology,

and End Results (SEER) program (Horner et al., 2009). We then modified the risk based on the

number of affected first-degree relatives using relative risk estimates from on Hormonal Factors in

Breast Cancer (2001). To re-calibrate each model, we used the Risk Service data to fit a linear

regression with the family history-adjusted 5-year SEER risk as the outcome and the 5-year risk

from the model as the predictor. Similar approaches have been used in regression calibration

problems (Carroll, 2006). While BRCAPRO was not trained on the Risk Service and is calibrated

to general population incidence rates, we also evaluated a re-calibrated version of BRCAPRO

obtained via the SEER re-calibration approach.
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2.4.3 Results

Overall, FCNN, CNN, LR, and BRCAPRO had similar AUCs in the CGN data (Table 2.3): 0.65

(95% CI 0.61-0.69) for BRCAPRO, 0.64 (95% CI 0.59-0.68) for the CNN, 0.63 (95% CI 0.58-0.68)

for the FCNN, and 0.62 (95% CI 0.57-0.67) for LR. All models underpredicted risk except for LR,

which was well-calibrated.

Among probands recruited from population-based registries, the NNs and LR had slightly higher

AUCs than BRCAPRO. The CNN had the highest AUC (0.69, 95% CI 0.62-0.74), outperforming

BRCAPRO with respect to AUC in 97% of bootstrap replicates. Among probands recruited from

high-risk clinics, all models underpredicted risk and BRCAPRO had a slightly higher AUC (0.62,

95% CI 0.52-0.7) than the other models.

2.5 Discussion

The main contributions of our paper are 1) adapting FCNNs and CNNs to family history data

and 2) investigating the potential of NNs for learning genetic susceptibility to cancer from family

history data. Our simulations and data application show that NNs are a promising approach for

developing new risk prediction models.

In simulations under the assumptions of BRCAPRO, we examined how much training data is

required for NNs to achieve comparable performance to BRCAPRO. The FCNNs and CNNs trained

on 200,000 or more families were highly correlated with BRCAPRO and had AUCs similar to that

of BRCAPRO. With training set sizes under 200,000, the CNN performed better than the FCNN,

showing that leveraging pedigree structure via convolutions can lead to more efficient training.

Moreover, the NNs had higher accuracy than LR and were able to recognize rare patterns that are

strongly indicative of hereditary cancer, such as the presence of multiple affected individuals on the

same side of the family and the presence of multiple cancers in the same individual. In the setting

where family history was subject to misreporting, the NNs outperformed BRCAPRO.

In our data application, we trained NNs on over 200,000 families from the Risk Service database

and validated the models on families from the CGN. In the CGN, the NNs achieved competitive
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Table 2.3: 5-year performance in the CGN cohort, overall and stratified by ascertainment mode.
BRCAPROC : Re-calibrated version of BRCAPRO. The “Comparisons Across Bootstrap Replicates"
section shows pairwise comparisons between the NN models and the other models across 1000 bootstrap
replicates of the test set; the row for A > B shows the proportion of bootstrap replicates where model A
outperformed model B with respect to each metric.

O/E AUC sqrt(Brier Score)
Overall (114 cases)
Absolute Performance
FCNN 1.14 (0.94, 1.33) 0.63 (0.58, 0.68) 0.129 (0.117, 0.140)
CNN 1.08 (0.89, 1.26) 0.64 (0.59, 0.68) 0.129 (0.117, 0.139)
BRCAPRO 1.27 (1.05, 1.47) 0.65 (0.61, 0.69) 0.129 (0.117, 0.139)
BRCAPROC 1.14 (0.94, 1.33) 0.65 (0.61, 0.69) 0.129 (0.117, 0.139)
LR 1.01 (0.84, 1.18) 0.62 (0.57, 0.67) 0.129 (0.118, 0.140)
Comparisons Across Bootstrap Replicates
FCNN>CNN 0.148 0.383 0.500
FCNN>BRCAPROC 0.582 0.264 0.496
FCNN>LR 0.209 0.710 0.986
CNN>BRCAPROC 0.854 0.301 0.486
CNN>LR 0.292 0.766 0.989
Population-Based (63 cases)
Absolute Performance
FCNN 1.11 (0.85, 1.39) 0.68 (0.62, 0.74) 0.127 (0.112, 0.142)
CNN 1.04 (0.80, 1.29) 0.69 (0.63, 0.75) 0.127 (0.112, 0.142)
BRCAPRO 1.35 (1.04, 1.69) 0.65 (0.59, 0.70) 0.128 (0.112, 0.143)
BRCAPROC 1.20 (0.92, 1.50) 0.65 (0.59, 0.70) 0.128 (0.112, 0.142)
LR 1.02 (0.78, 1.27) 0.67 (0.60, 0.73) 0.128 (0.112, 0.143)
Comparisons Across Bootstrap Replicates
FCNN>CNN 0.316 0.365 0.524
FCNN>BRCAPROC 0.841 0.862 0.779
FCNN>LR 0.334 0.805 0.963
CNN>BRCAPROC 0.766 0.970 0.797
CNN>LR 0.441 0.800 0.944
Clinic-Based (39 cases)
Absolute Performance
FCNN 1.46 (1.03, 1.89) 0.58 (0.47, 0.68) 0.144 (0.122, 0.164)
CNN 1.40 (1.00, 1.82) 0.59 (0.49, 0.69) 0.144 (0.122, 0.164)
BRCAPRO 1.36 (0.96, 1.76) 0.62 (0.52, 0.70) 0.145 (0.122, 0.164)
BRCAPROC 1.25 (0.88, 1.61) 0.62 (0.52, 0.70) 0.145 (0.122, 0.164)
LR 1.21 (0.85, 1.56) 0.57 (0.47, 0.66) 0.145 (0.122, 0.164)
Comparisons Across Bootstrap Replicates
FCNN>CNN 0.023 0.355 0.328
FCNN>BRCAPROC 0.045 0.246 0.643
FCNN>LR 0.049 0.568 0.911
CNN>BRCAPROC 0.050 0.307 0.686
CNN>LR 0.055 0.696 0.961
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performance compared to BRCAPRO in the overall cohort. They had slightly better discriminatory

accuracy than BRCAPRO in population-based probands but performed worse than BRCAPRO in

clinic-based probands with a stronger family history. These results are promising because BR-

CAPRO is based on domain knowledge accumulated over two decades of epidemiological studies

(including Miki et al. (1994); Wooster et al. (1995); Easton et al. (1995); Antoniou et al. (2002);

Chen and Parmigiani (2007)) while the NNs were trained on a single dataset. The poorer per-

formance of the NNs in clinic-based probands may partly be explained by the fact that the NNs

used less detailed family history information than BRCAPRO. Due to missing data in the train-

ing set, we did not include age information on non-probands in the NN inputs. This information

could potentially improve the accuracy of the NNs. The performance of the NNs could also be

improved by considering risk factors besides family history. Since NNs are empirical models, they

can easily be extended to handle additional features by adding the features to the input vector. It

is less straightforward to incorporate additional risk factors into Mendelian models because explicit

assumptions need to be made about how the risk factors modify the genotype-specific risks.

In addition to pursuing accuracy gains through additional data and risk factors, an important

direction for future work is to establish ways of measuring and promoting interpretability. While

NNs allow for greater flexibility than Mendelian models and regression models, their predictions

are challenging to interpret. Various methods have recently been proposed for developing more

interpretable NN models, especially for image classification (Dong et al., 2017; Zhang et al., 2018;

Chen et al., 2019), but further investigation is needed in the context of family history-based cancer

risk prediction.

While NNs require further development and validation before they can be considered as a viable

competitor to existing family history-based risk prediction models, our work indicates that they

can potentially be a helpful tool for investigating and assessing familial risk.
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3

Merging versus Ensembling in
Multi-Study Machine Learning:
Theoretical Insight from Random

Effects

3.1 Introduction

Prediction and classification models trained on a single study often perform considerably worse

in external validation than in cross-validation (Castaldi et al., 2011; Bernau et al., 2014). Their

generalizability is compromised by overfitting, but also by various sources of study heterogeneity,

including differences in study design, data collection and measurement methods, unmeasured con-

founders, and study-specific sample characteristics (Zhang et al., 2018). Using multiple training

studies can potentially address these challenges and lead to more replicable prediction models. In

many settings, such as precision medicine, multi-study learning is motivated by systematic data

sharing and data curation initiatives. For example, the establishment of gene expression databases

such as Gene Expression Omnibus (Edgar et al., 2002) and ArrayExpress (Parkinson et al., 2010)

and neuro-imaging databases such as OpenNeuro (Gorgolewski et al., 2017) has facilitated access

to sets of studies that provide comparable measurements of the same outcome and predictors. Even

if the original measurements are not be comparable, they can often be made comparable through

preprocessing (Lazar et al., 2012; Benito et al., 2004). For problems where such a set of studies is

available, it is important to systematically integrate information across datasets when developing

prediction and classification models.

One common approach is to merge all of the datasets and treat the observations as if they are all

from the same study (for example, see Xu et al. (2008); Jiang et al. (2004)). The resulting increase in

sample size can lead to better performance when the datasets are relatively homogeneous. Also, the

merged dataset is often representative of a broader reference population than any of the individual
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datasets. Xu et al. (2008) showed that a prognostic test for breast cancer metastases developed

from merged data performed better than the prognostic tests developed using individual studies.

Zhou et al. (2017) proposed hypothesis tests for determining when it is beneficial to pool data

across multiple sites for linear regression, compared to using data from a single site.

Another approach is to combine results from separately trained models. Meta-analysis and

ensembling both fall under this approach. Meta-analysis combines summary measures from multiple

studies to increase statistical power (for example, see Riester et al. (2012); Tseng et al. (2012);

Rashid et al. (2019)). A common combination strategy is to take a weighted average of the study-

specific summary measures. In fixed effects meta-analysis, the weights are based on the assumption

that there is a single true parameter underlying all of the studies, while in random effects meta-

analysis, the weights are based on a model where the true parameter varies across studies according

to a probability distribution. When learners are indexed by a finite number of common parameters,

meta-analysis applied to these parameters can be used for multi-study learning, with useful results

(Riester et al., 2012). Various studies have compared meta-analysis to merging. For effect size

estimation, Bravata and Olkin (2001) showed that merging heterogeneous datasets can lead to

spurious results while meta-analysis protects against such problematic effects. Taminau et al. (2014)

and Kosch and Jung (2018) found that merging with batch effect removal had higher sensitivity than

meta-analysis in gene expression analysis, while Lagani et al. (2016) found that the two approaches

performed comparably in reconstruction of gene interaction networks. Ensemble learning methods

(Dietterich, 2000a), which combine predictions from multiple models, can also be used to leverage

information from multiple studies. Ensembling can lead to lower variance and higher accuracy,

and is applicable to more general classes of learners than meta-analysis. Patil and Parmigiani

(2018) proposed multi-study ensembles, which are weighted averages of prediction models trained

on different studies, as an alternative to merging. They showed empirically that when the datasets

are heterogeneous, multi-study ensembling can lead to improved generalizability and replicability

compared to merging and meta-analysis.

In this paper, we provide explicit conditions under which merging outperforms multi-study en-

sembling and vice versa. We study merged and ensemble learners based on ordinary least squares

and ridge regression. We hypothesize a mixed effects model for heterogeneity and show that merg-

51



ing has lower prediction error than ensembling when heterogeneity is low, but as heterogeneity

increases, there exists a transition point beyond which ensembling outperforms merging. We char-

acterize this transition point analytically under a fixed weighting scheme for the ensemble. We also

discuss optimal ensemble weights for least squares and ridge regression. We study the transition

point via simulations and compare merging and ensembling in practice, using microbiome data.

3.2 Problem Definition

We will use the following matrix notation: IN is the N ×N identity matrix, 0N×M is an N ×M

matrix of 0’s, 0N is a vector of 0’s of length N , tr(A) is the trace of matrix A, diag(u) is a diagonal

matrix with u along its diagonal, and (A)ij is the entry in row i and column j of matrix A. Other

notation introduced throughout the paper is summarized in Supplementary Table S.3.1.

Suppose we have K studies that measure the same outcome and the same p predictors, and the

datasets have been harmonized so that measurements across studies are on the same scale. For

study k, let nk denote the number of observations, Yk ∈ Rnk the outcome vector, and Xk ∈ Rnk×p

the design matrix, where the first column of Xk is a vector of 1’s if there is an intercept. Assume

the data are generated from the linear mixed effects model

Yk = Xkβ +Zkγk + ϵk (3.1)

where β ∈ Rp is the vector of fixed effects, Zk ∈ Rnk×q is the design matrix for the random

effects obtained by subsetting Xk, γk ∈ Rq is the vector of random effects with E[γk] = 0nk and

cov(γk) = G = diag(σ2
1, . . . , σ

2
q ) where σ2

i ≥ 0, ϵk ∈ Rnk is the vector of residual errors with

E[ϵk] = 0nk and cov(ϵk) = σ2
ϵ Ink , and cov((γk)i, ϵk) = 0nk for i = 1, . . . , q. For j = 1, . . . , q, if

σ2
j > 0, then the effect of the corresponding predictor differs across studies, and if σ2

j = 0, then the

predictor has the same effect in each study.

The relationship between the predictors and the outcome in a given study can be seen as a

perturbation of the population-level effect vector β. The degree of heterogeneity in predictor-

outcome relationships across studies can be summarized by the sum of the variances of the random

52



effects divided by the number of fixed effects: σ2 = tr(G)/p. We are interested in comparing the

performance of two multi-study learning approaches as σ2 varies: 1) merging all of the studies and

fitting a single linear regression model, and 2) fitting a linear regression model on each study and

forming a multi-study ensemble by taking a weighted average of the predictions.

Learners. For low-dimensional settings where p < nk for all k, we consider merged and ensemble

learners based on least squares. The least squares estimator of β based on the merged data is

β̂LS,M = (XTX)−1XTY (3.2)

where Y = (Y T
1 , . . . ,Y T

K )T ∈ R
∑K

k=1 nk andX =

[
XT

1 | . . . |XT
K

]T
∈ R

∑K
k=1 nk×p. The least squares

estimator based on study k is

β̂LS,k = (XT
kXk)

−1XT
k Yk (3.3)

and the least squares ensemble estimator is

β̂LS,E =
K∑
k=1

wkβ̂LS,k (3.4)

where
K∑
k=1

wk = 1.

For settings where XT
kXk is not invertible, such as high-dimensional settings where p > nk for

some k, we consider merged and ensemble learners based on ridge regression. In ridge regression,

the predictors are typically standardized prior to fitting the model (Hoerl and Kennard, 1970).

The coefficient estimates based on the standardized data are then transformed back to the original

scale. Ridge regression is location-invariant (Brown, 1977), so without loss of generality, we assume

that the predictors are scaled but not centered prior to applying ridge regression. We first provide

the form of the ridge regression estimators in the case where an intercept is included. Let the

scaled versions of Xk and X be denoted by X̃k = XkSk and X̃ = XS, where Sk,S ∈ Rp×p

are positive definite scaling matrices. If scaling is not necessary or desirable (for example, if the

predictors are measured in the same units), then set Sk = S = Ip. Otherwise, let Sk be diagonal
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with (Sk)11 = 1 and (Sk)jj equal to the inverse standard deviation of column j of Xk for j > 1

and let S be diagonal with (S)11 = 1 and (S)jj equal to the inverse standard deviation of column

j of X for j > 1. The merged ridge regression estimator of β can be written as

β̂R,M = S(X̃T X̃ + λI−
p )−1X̃TY = (XTX + λI−

p S−2)−1XTY , (3.5)

where λ ≥ 0 is the regularization parameter and I−
p is obtained from Ip by setting (Ip)11 = 0, so

that the intercept is not regularized (Brown, 1977). The estimator of β from study k is

β̂R,k = Sk(X̃
T
k X̃k + λkI

−
p )−1X̃T

k Yk = (XT
kXk + λkI

−
p S−2

k )−1XT
kYk, (3.6)

where λk ≥ 0 is the regularization parameter for study k, and the ensemble estimator is

β̂R,E =
K∑
k=1

wkβ̂R,k (3.7)

If there is no intercept, then we set (Sk)11 and (S)11 to be the inverse standard deviations of the

first columns of Xk and X respectively and replace I−
p with Ip in the expressions above.

To make progress analytically, we assume that the weights wk and the regularization parameters

λ and λk are predetermined (for example, using independent data (Tsybakov, 2014)). For linear

regression, averaging predictions across study-specific learners is equivalent to averaging the esti-

mated coefficient vectors across study-specific learners and then computing predictions. Multi-study

ensembling based on linear regression on scaled variables has points in common with meta-analysis

of effect sizes. In the univariate case, a standard meta-analysis is also a weighted average of βk’s,

though typically weights reflect precision of estimates rather than cross-study features of predic-

tions. When p > 1, β̂LS,E weights each dimension of the coefficient vector equally in a given study

while meta-analytic approaches, which involve either performing separate univariate meta-analyses

for each predictor or performing a multivariate meta-analysis (for example, see Jackson et al. (2010,

2011)), do not impose this constraint.

Performance Comparison. Given a test set with design matrix X0 and outcome vector Y0,

the goal is to identify conditions under which multi-study ensembling has lower mean squared
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prediction error than merging, i.e.

E[∥Y0 −X0β̂·,E∥22] ≤ E[∥Y0 −X0β̂·,M∥22]

where the expectations are taken with respect to Y0 and ∥(u1, . . . , um)T ∥2 =
√∑m

i=1 u
2
i .

3.3 Theoretical Results

3.3.1 Overview

We consider two cases for the structure ofG: equal variances and unequal variances. Let σ2
(1), . . . , σ

2
(r)

be the distinct values on the diagonal of G and letmj be the number of random effects with variance

σ2
(j). In the equal variances case where r = 1 and σ2

j = σ2 for j = 1, . . . , q, we provide a necessary

and sufficient condition for the ensemble learner to outperform the merged learner. In the unequal

variances case, we provide sufficient conditions under which the ensemble learner outperforms the

merged learner and vice versa. These conditions allow us to characterize a transition point in terms

of the heterogeneity measure σ2 between a regime that favors merging and a regime that favors

ensembling.

Theorems 3.1 and 3.2 state the equal variances and unequal variances results for least squares.

Theorems 3.3 and 3.4 state the analogous results for ridge regression. Theorems 3.1-3.3 are special

cases of Theorem 3.4 (proved in Supplementary Section S.3.2), but for clarity of presentation,

we start with the simplest case and then present the more general cases. We also consider an

asymptotic version of the transition point (Corollary 3.1), provide optimal ensemble weights for

least squares (Proposition 3.1) and ridge regression (Proposition 3.2), and discuss how to interpret

the results.

To present the results more concisely, let R = XTX and M = R+λI−
p S−2. For k = 0, 1, . . . ,K,

let Rk = XT
kXk and Mk = Rk + λkI

−
p S−2

k . Let Γ(j) ∈ Rq×mj be a matrix where (Γ(j))il = 1

if random effect i is the lth random effect with variance σ2
(j) and (Γ(j))il = 0 otherwise, so that

GΓ(j) subsets G to the columns corresponding to σ2
(j).
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3.3.2 Least Squares

For the least squares results, assume nk > p for all k.

Theorem 3.1. Suppose σ2
j = σ2 for j = 1, . . . , q and

tr(R−1
K∑
k=1

XT
kZkZ

T
kXkR

−1R0)−
K∑
k=1

w2
ktr(Z

T
0 Z0) > 0. (3.8)

Define

τLS = σ2
ϵ ×

q

p
×

∑K
k=1w

2
ktr(R

−1
k R0)− tr(R−1R0)

tr(R−1
∑K

k=1X
T
kZkZ

T
kXkR−1R0)−

∑K
k=1w

2
ktr(Z

T
0 Z0)

(3.9)

Then E[∥Y0 −X0β̂LS,E∥22] ≤ E[∥Y0 −X0β̂LS,M∥22] if and only if σ2 ≥ τLS.

By Theorem 3.1, for any fixed weighting scheme that satisfies Condition 3.8, τLS represents a

transition point from a regime where merging outperforms ensembling to a regime where ensembling

outperforms merging. Assuming Rk is not identical for all k, if equal weights wk = 1/K are used,

then Condition 3.8 is satisfied (by Jensen’s operator inequality (Hansen and Pedersen, 2003)) and

τLS > 0, so the transition point always exists.

Theorem 3.2.

1. Suppose

max
j=1,...,r

tr(R−1
K∑
k=1

XT
kZkΓ(j)Γ

T
(j)Z

T
kXkR

−1R0)−
K∑
k=1

w2
ktr(Γ

T
(j)Z

T
0 Z0Γ(j)) > 0 (3.10)

and define

τLS,1 =
σ2
ϵ

p

K∑
k=1

w2
ktr(R

−1
k R0)− tr(R−1R0)

max
j=1,...,r

1
mj

(tr(R−1
K∑
k=1

XT
kZkΓ(j)Γ

T
(j)Z

T
kXkR−1R0)−

K∑
k=1

w2
ktr(Γ

T
(j)Z

T
0 Z0Γ(j)))

.

(3.11)

Then E[∥Y0 −X0β̂LS,E∥22] ≥ E[∥Y0 −X0β̂LS,M∥22] when σ2 ≤ τLS,1.
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2. Suppose

min
j=1,...,r

tr(R−1
K∑
k=1

XT
kZkΓ(j)Γ

T
(j)Z

T
kXkR

−1R0)−
K∑
k=1

w2
ktr(Γ

T
(j)Z

T
0 Z0Γ(j)) > 0 (3.12)

and define

τLS,2 =
σ2
ϵ

p

K∑
k=1

w2
ktr(R

−1
k R0)− tr(R−1R0)

min
j=1,...,r

1
mj

(tr(R−1
K∑
k=1

XT
kZkΓ(j)Γ

T
(j)Z

T
kXkR−1R0)−

K∑
k=1

w2
ktr(Γ

T
(j)Z

T
0 Z0Γ(j)))

.

(3.13)

Then E[∥Y0 −X0β̂LS,E∥22] ≤ E[∥Y0 −X0β̂LS,M∥22] when σ2 ≥ τLS,2.

Theorem 3.2 shows that in the more general scenario where the random effects do not necessarily

have the same variance, there is a transition interval such that the merged learner outperforms the

ensemble learner when σ2 is smaller than the lower bound of the interval and the ensemble learner

outperforms the merged learner when σ2 is greater than the upper bound of the interval.

Corollary 3.1. Suppose there exist positive definite matrices A1,A2,A(j) ∈ Rp×p such that as

K → ∞,

1. 1
K

∑K
k=1Rk → A1

2. 1
K

∑K
k=1R

−1
k → A2

3. 1
K

∑K
k=1X

T
kZkΓ(j)Γ

T
(j)Z

T
kXk → A(j) for j = 1, . . . , r

where → denotes almost sure convergence. Let wk = 1/K.

1. If

max
j=1,...,r

(tr(A−1
1 A(j)A

−1
1 R0)− tr(ΓT

(j)Z
T
0 Z0Γ(j))) > 0 (3.14)
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then

τLS,1 →
σ2
ϵ

p
× tr(A2R0)− tr(A−1

1 R0)

max
j=1,...,r

1
mj

(tr(A−1
1 A(j)A

−1
1 R0)− tr(ΓT

(j)Z
T
0 Z0Γ(j)))

(3.15)

2. If

min
j=1,...,r

(tr(A−1
1 A(j)A

−1
1 R0)− tr(ΓT

(j)Z
T
0 Z0Γ(j))) > 0 (3.16)

then

τLS,2 →
σ2
ϵ

p
× tr(A2R0)− tr(A−1

1 R0)

min
j=1,...,r

1
mj

(tr(A−1
1 A(j)A

−1
1 R0)− tr(ΓT

(j)Z
T
0 Z0Γ(j)))

(3.17)

Corollary 3.1 presents an asymptotic version of Theorem 3.2 as the number of studies goes to in-

finity. If all study sizes are equal to n and the predictors are independent and identically distributed

within and across studies, then A1 = E[Rk], A2 = E[R−1
k ], and A(j) = E[XT

kZkΓ(j)Γ
T
(j)Z

T
kXk].

In the special case where p = q = 1 and the predictor follows N(0, v), τLS,1 = τLS,2 converges to

σ2
ϵ

(n− 2)v
, (3.18)

so asymptotically the transition point is controlled simply by the variance of the residuals, the

variance of the predictor, and the study sample size.

Proposition 3.1. The optimal weights for the least squares ensemble are

wk =
(tr(GZT

0 Z0) + σ2
ϵ tr(R

−1
k R0))

−1∑K
k=1(tr(GZT

0 Z0) + σ2
ϵ tr(R

−1
k R0))−1

. (3.19)

The optimal weight for study k is proportional to the inverse mean squared prediction error

of the least squares learner trained on that study. In the equal variances setting, tr(GZT
0 Z0) =

σ2tr(ZT
0 Z0). The optimal weights depend on σ2, so τLS depends on σ2 under the optimal weighting

scheme. Thus, it is difficult to obtain a closed-form expression for the transition point. However,

the transition point under any fixed weighting scheme provides an upper bound for the transition
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point under the optimal weighting scheme, and the optimal weights transition point (σ2 such that

σ2 = τLS) can be computed numerically. In practice, σ2 and σ2
ϵ are not known, so the optimal

weights need to be estimated. Weight estimation increases the variance of the ensemble learner and

may result in a higher transition point than when the optimal weights are known. However, our

simulations suggest that if σ2 and σ2
ϵ can be reasonably estimated (for example, via a linear mixed

effects model), then the estimation will have little impact on the transition point (see Supplementary

Figure S.3.4).

3.3.3 Ridge Regression

Next, we present results for ridge regression that generalize the linear regression results and are

applicable to both low- and high-dimensional settings. Let bE = −
∑

k wkλkX0M
−1
k I−

p S−2
k β be

the bias of the ensemble predictions in the test set and bM = −λX0M
−1I−

p S−2β the bias of the

merged predictions in the test set.

Theorem 3.3. Suppose σ2
j = σ2 for j = 1, . . . , q and

tr(M−1
K∑
k=1

XT
kZkZ

T
kXkM

−1R0)−
K∑
k=1

w2
ktr(M

−1
k XT

kZkZ
T
kXkM

−1
k R0) > 0. (3.20)

Define

τR =
q

p
×

σ2
ϵ

(
K∑
k=1

w2
ktr(M

−1
k RkM

−1
k R0)− tr(M−1

K∑
k=1

RkM
−1R0)

)
+ bTEbE − bTMbM

tr(M−1
K∑
k=1

XT
kZkZ

T
kXkM−1R0)−

K∑
k=1

w2
ktr(M

−1
k XT

kZkZ
T
kXkM

−1
k R0)

(3.21)

Then E[∥Y0 −X0β̂R,E∥22] ≤ E[∥Y0 −X0β̂R,M∥22] if and only if σ2 ≥ τR.

Theorem 3.4.

1. Suppose

max
j=1,...,r

tr(M−1
K∑

k=1

XT
k ZkΓ(j)Γ

T
(j)Z

T
k XkM

−1R0)−
K∑

k=1

w2
ktr(M

−1
k XT

k ZkΓ(j)Γ
T
(j)Z

T
k XkM

−1
k R0)>0 (3.22)
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and define

τR,1=

σ2
ϵ

(
K∑

k=1
w2

ktr(M
−1
k RkM

−1
k R0)−tr(M−1

K∑
k=1

RkM
−1R0)

)
+bTEbE−bTMbM

p max
j=1,...,r

1
mj

(tr(M−1
K∑

k=1

XT
k ZkΓ(j)Γ

T
(j)

ZT
k XkM−1R0)−

K∑
k=1

w2
ktr(M

−1
k XT

k ZkΓ(j)Γ
T
(j)

ZT
k XkM

−1
k R0))

.

(3.23)

Then E[∥Y0 −X0β̂R,E∥22] ≥ E[∥Y0 −X0β̂R,M∥22] when σ2 ≤ τR,1.

2. Suppose

min
j=1,...,r

tr(M−1
K∑

k=1

XT
k ZkΓ(j)Γ

T
(j)Z

T
k XkM

−1R0)−
K∑

k=1

w2
ktr(M

−1
k XT

k ZkΓ(j)Γ
T
(j)Z

T
k XkM

−1
k R0)>0 (3.24)

and define

τR,2=

σ2
ϵ

(
K∑

k=1

w2
ktr(M

−1
k RkM

−1
k R0)−tr(M−1

K∑
k=1

RkM
−1R0)

)
+bTEbE−bTMbM

p min
j=1,...,r

1
mj

(tr(M−1
K∑

k=1

XT
k ZkΓ(j)Γ

T
(j)

ZT
k XkM−1R0)−

K∑
k=1

w2
ktr(M

−1
k XT

k ZkΓ(j)Γ
T
(j)

ZT
k XkM

−1
k R0))

.

(3.25)

Then E[∥Y0 −X0β̂R,E∥22] ≤ E[∥Y0 −X0β̂R,M∥22] when σ2 ≥ τR,2.

Proposition 3.2. Let vk = tr(M−1
k XT

kZkGZT
kXkMkR0)+σ2

ϵ tr(M
−1
k XT

kXkM
−1
k R0) and bk =

λkX0M
−1
k I−

p S−2
k β. Then the optimal weights for the ridge regression ensemble are

wk =

∑K
j=1(C

−1)kj∑K
i=1

∑K
j=1(C

−1)kj
(3.26)

where C ∈ RK×K has entries (C)kk = vk + bTkbk and (C)jk = bTj bk for j ̸= k.

Since β̂R,k is biased for λk > 0, the optimal weights for ridge regression depend on the true

population-level effects β as well as G and σ2
ϵ . Using a first-order Taylor approximation, the

optimal wk is approximately proportional to

(vk + bTkbk)
−1 − (vk + bTkbk)

−2 −
∑
j ̸=k

bTj bk(vj + bTj bj)
−1(vk + bTkbk)

−1,

where the first two terms depend on the inverse mean squared prediction error and the third
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term depends on the covariances between the bias terms from study k and the bias terms from

other studies, as well as the magnitudes of the studies’ prediction errors. If the magnitudes of

the prediction error and bias term for study k are held fixed and the other studies are held fixed,

then the optimal weight for study k increases as it becomes less correlated with the other studies.

This is similar to a result from Krogh and Vedelsby (1995) that decomposes the prediction error

of an ensemble into a term that depends on the prediction errors of the individual learners and a

correlation term that quantifies the disagreement across the individual learners; the decomposition

implies that if the individual prediction errors are held fixed, then the performance of the ensemble

improves as the correlation term decreases.

As with least squares, the transition point under any fixed weighting scheme provides an upper

bound for the optimal weights transition point, which can be calculated numerically. Weight

estimation can potentially shift this transition point, but we expect the shift to be small when the

fixed effects and the variances of the random effects and residual errors can be estimated reasonably

(see Supplementary Figure S.3.4).

3.3.4 Interpretation

The covariance matrices of linear regression coefficient estimators can be written as a sum of two

components, one driven by between-study variability and one driven by within-study variability.

For example, when all predictors have random effects, the covariance of the least squares ensemble

is

cov(β̂LS,E) =

K∑
k=1

w2
kG+ σ2

ϵ

K∑
k=1

w2
kR

−1
k

and the covariance of the merged least squares learner is

cov(β̂LS,M ) = (XTX)−1
K∑
k=1

[RkGRT
k ]R

−1 + σ2
ϵR

−1.

Since the merged learner ignores between-study heterogeneity, the trace of its first component is

generally larger than that of the ensemble learner. However, since the merged learner is trained on

a larger sample, the trace of its second component is generally smaller than that of the ensemble
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learner. The merged and ensemble learners based on least squares are unbiased, so the transition

point depends on the trade-off between these two components. When p = 1, Expression 3.18

shows that having a higher-variance predictor favors ensembling over merging, since increasing the

variance of the predictor amplifies the impact of the random effect.

Unlike least squares estimators, ridge regression estimators are biased as a result of regularization.

The transition point for ridge regression depends on the regularization parameters used on the

merged and individual datasets. It also depends on the true coefficient vector β through the

squared bias terms in the mean squared prediction errors of the merged and ensemble learners, so

an estimate of β is needed to compute the expressions in Theorems 3.3 and 3.4. These expressions

can vary considerably for different choices of regularization parameters and different values of β.

We did not provide the asymptotic results for ridge regression as K → ∞ (with the study sizes

held constant) because this scenario is not entirely fair to the ensemble learner. For p > nk and

sufficiently large K, the merged learner will be in the low-dimensional setting while the ensemble

learner will remain in the high-dimensional setting. As K → ∞, the bias term approaches 0 for

the merged learner (assuming λ/K → 0) but not for the ensemble learner, which suggests that

when K is sufficiently large, merging will always yield lower mean squared prediction error than

ensembling.

In general, the transition points for least squares and ridge regression depend on the design

matrix of the test set. However, the test design matrix drops out when it is a scalar multiple of an

orthogonal matrix. For example, this occurs when p = 1.

3.4 Simulations

We conducted simulations to verify the theoretical results for least squares and ridge regression and

to compare them to the empirical transition points for three methods for which we cannot derive

a closed-form solution: lasso, single hidden layer neural network, and random forest. We also ran

a linear mixed effects model, univariate random effects meta-analyses, and multivariate random

effects meta-analysis. We used the R packages glmnet, nnet, randomForest, nlme, metafor,

and mvmeta for ridge regression/lasso, neural networks, random forests, linear mixed effects models,
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univariate meta-analyses, and multivariate meta-analyses respectively.

We considered four simulation scenarios corresponding to the settings in Theorems 3.1-3.4. We

used 4 training studies and 4 test studies of size 40 and set σ2
ϵ = 1 for all scenarios. For the

low-dimensional settings, we set p = 10, q = 5, and generated 5 β’s from N(0, 1) and 5 from

N(0, 0.012), with 5 of the β’s having random slopes. For the high-dimensional settings, we set

p = 100, q = 10, and generated 30 β’s from N(0, 1) and 70 from N(0, 0.012), with 10 of the β’s

having random slopes. For each simulation scenario, we fixed the predictor values in the training

and test sets and the model hyperparameters. Predictor values were sampled from datasets in

the curatedOvarianData R package (Ganzfried et al., 2013). Model hyperparameters were tuned

once using 5-fold cross-validation with outcomes generated under σ2 = 0. For various values of σ2,

including 0 and the theoretical transition point, we generated random slopes, residual errors, and

outcomes for each training and test study according to Model (3.1), then trained and tested the

following approaches: linear mixed effects model, random effects meta-analysis of univariate least

squares estimates, random effects multivariate meta-analysis, and merged and ensemble learners

based on least squares, ridge regression, lasso, neural networks, and random forests. For ridge

regression and lasso, the predictors were standardized prior to model fitting. For linear mixed

effects, we fit the true model, using restricted maximum likelihood to estimate G. For meta-

analysis of univariate least squares estimates, we used the DerSimonian and Laird method. For

multivariate meta-analysis, we used restricted maximum likelihood to estimate G, constraining

the covariance matrix to be diagonal. Least squares, linear mixed effects, and meta-analysis were

only applied in the low-dimensional setting. We performed 1000 replicates for each value of σ2

and estimated the mean squared prediction error of each estimator by averaging the squared error

across replicates.

As seen in Figures 3.1 and 3.2, the empirical transition points for least squares and ridge re-

gression agree with the theoretical results from Theorems 3.1 and 3.3 (see Supplementary Section

S.3.3 for plots for Theorems 3.2 and 3.4). The methods all have similar empirical transition points

except for random forest, which performed considerably worse than all of the other approaches (see

Figure S.3.3 in S.3.3). The poor performance of random forest could be because the data were gen-

erated from a linear model. The univariate meta-analysis approach also performed poorly, which is
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unsurprising because the generating model is a multivariate model. The performance of the other

models relative to the data generating model is summarized in Figure 3.3 for three values of σ2.

When σ2 = 0, the merged regression learners and multivariate meta-analysis perform as well as

or slightly better than the mixed effects model and outperform the ensembles. The merged neural

network does slightly worse than the regression learners. At the least squares transition point, all

models perform similarly. Beyond the transition point, the models continue to perform similarly

(when heterogeneity is high, all models perform poorly), with the ensembles slightly outperforming

the merged learners and multivariate meta-analysis performing as well the mixed effects model. For

each of the three values of σ2, lasso performed best, even slightly outperforming the mixed effects

model and multivariate meta-analysis. This is likely because several of the true β’s were close to 0.

3.5 Data Application

To illustrate in a practical example, we compared the performance of merging and ensembling

used datasets from the curatedMetagenomicData R package (Pasolli et al., 2017), which contains

a collection of curated, uniformly processed human microbiome data. We focused on three gut

microbiome studies that measured cholesterol as well as gene marker abundance in stool, restricting

to samples from female patients: 1) a study of Chinese type 2 diabetes patients and non-diabetic

controls (n1 = 151 samples from independent female patients) (Qin et al., 2012), 2) a study of

middle-aged European women with normal, impaired or diabetic glucose control (n2 = 145 samples

from independent female patients) (Karlsson et al., 2013), and 3) a study of patients with a family

history of type 1 diabetes (n0 = 32 samples from 13 female patients) (Heintz-Buschart et al., 2017).

We used merging and ensembling to train linear regression models to predict cholesterol, calculated

the theoretical transition interval, and evaluated the performance of the two approaches.

We considered two scenarios: 1) training on different subsets of the same study and testing on a

held out subset, and 2) training on different studies and testing on an independent study. In the first

scenario, we randomly split the samples from Qin et al. (2012) into five datasets of approximately

equal size, using four for training and the remaining one for testing. We used age and the top

five marker abundances most correlated with the outcome in the training set as the predictors.
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Figure 3.1: Relative performance of merging and ensembling as a function of heterogeneity when p = 10,
q = 5, and the random effects have equal variances. MSPE: mean squared prediction error. The vertical
dashed lines correspond to the theoretical transition points from Theorems 3.1 and 3.3. The empirical
transition point occurs at the value of σ2 where the log ratio of the prediction errors for ensembling and
merging is equal to 0.
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Random Forest

Figure 3.2: Relative performance of merging and ensembling as a function of heterogeneity when
p = 100, q = 10, and the random effects have equal variances. MSPE: mean squared prediction error.
The vertical dashed line corresponds to the theoretical transition point from Theorem 3.3. The empirical
transition point occurs at the value of σ2 where the log ratio of the prediction errors for ensembling and
merging is equal to 0.
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σ2 =0.16

Figure 3.3: Performance comparisons for three values of σ2 when p = 10, q = 5, and the random ef-
fects have equal variances (the random forest and univariate meta-analysis results are omitted to avoid
stretching the y-axis but are shown in Supplementary Section S.3.3). MSPE: mean squared prediction er-
ror; LME: linear mixed effects model; LS,M: merged least squares learner; LS,E: ensemble learner based
on least squares; R,M: merged ridge regression learner; R,E: ensemble learner based on ridge regression;
L,M: merged lasso learner; L,E: ensemble learner based on lasso; NN,M: merged neural network; NN,E:
ensemble learner based on neural networks; MA: multivariate meta-analysis.

In second scenario, we used the datasets from Qin et al. (2012) and Karlsson et al. (2013) for

training and the dataset from Heintz-Buschart et al. (2017) for testing. We used age and the top

twenty marker abundances most correlated with the outcome in the training set as the predictors.

In each scenario, we fit merged and ensemble versions of least squares and ridge regression. We

estimated G by fitting a linear mixed effects model using residual maximum likelihood, allowing

each predictor to have a random effect. Using equal weights for the ensemble learners, we calculated

the theoretical transition bounds from Theorems 3.2 and 3.4 and compared them to the estimate

67



of σ2. We evaluated the performance of merging, ensembling with equal weights, and ensembling

with optimal weights by calculating the prediction error on the test set. To estimate the optimal

weights, we plugged in estimates of G, σ2
ϵ , and β from the mixed effects model in the expressions

in Propositions 3.1 and 3.2.

In the first scenario, σ2 was estimated to be 0.0052, τLS,1 was 0.2662, and τR,1 was 0.0502, so

merging was expected outperform ensembling. In the test set, the merged versions of least squares

and ridge regression had lower prediction error than the corresponding ensembles (Figure 3.4). In

the second scenario, σ2 was estimated to be 18.3222, τLS,2 was 15.2472, and τR,2 was 4.4232, so

ensembling was expected to outperform merging. In the test set, the ensemble versions of least

squares and ridge regression had lower prediction error than the corresponding merged learners

(Figure 3.5).
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Figure 3.4: Root mean squared prediction error (RMSPE) for the first data illustration scenario with
bootstrap confidence intervals.
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Figure 3.5: Root mean squared prediction error (RMSPE) for the second data illustration scenario with
bootstrap confidence intervals.

3.6 Discussion

The availability of large and increasingly heterogeneous collections of data for training classifiers

is challenging traditional approaches for training and validating prediction and classification algo-

rithms. At the same time, it is creating opportunities for new and more general paradigms. One of

these is multi-study ensemble learning, motivated by variation in the relation between predictors

and outcomes across collections of similar studies. A natural benchmark for these methods is to

combine all training studies to exploit the power of larger training sample sizes. In previous work

(Patil and Parmigiani, 2018), merged learners were shown to perform better than ensemble learners

in simulations under low-heterogeneity settings. As heterogeneity increased, however, there was a

transition point in the heterogeneity scale beyond which acknowledging cross-study heterogeneity

became preferable, and the ensemble learners outperformed the merged learners.

In this paper, we provide the first theoretical investigation of multi-study ensembling. In linear

models, we have been able to prove that multi-study ensembling can achieve better optimality
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properties than merging all studies prior to training under certain conditions, a question that

was still open. We characterized the relative performance of the two approaches as a function

of inter-study heterogeneity, explicitly identifying the transition point beyond which ensembling

outperforms merging for least squares and ridge regression. We confirmed the analytic results

in simulations and demonstrated that when the data are generated by a linear model, the least

squares and ridge regression solutions can serve as proxies for the transition point under other

learning strategies (lasso, neural network) for which closed-form derivation is difficult. Finally, we

estimated the transition point in cases of low and high cross-study heterogeneity in microbiome

data and showed how it can be used as a guide for deciding when and when not to merge studies

together in the course of learning a prediction rule.

We focused on deriving analytic results for least squares and ridge regression because of the

opportunity to pursue closed-form solutions. Other widely used methods such as lasso, neural

networks, and random forests are not as easily amenable to a closed-form solution, so we used

simulations to study the performance of merging versus ensembling for these methods. In our

simulation settings, the merged learners based on least squares, ridge regression, lasso, and neural

networks had comparable accuracy, as did the corresponding ensemble learners. The methods all

had similar empirical transition points as well, with the exception of random forest, which did

not reach a transition point within the specified heterogeneity levels, and also performed worse in

general than the other methods, as is expected in data generated by linear models. The analytic

results for least squares/ridge regression could potentially serve as an approximation for other

methods that perform comparably, though it is important to consider how the reliability of such an

approximation could be affected by the nature of the data and choice of model hyperparameters.

In practice, the analytic transition point and transition interval expressions could be used to

help guide decisions about whether to merge data from multiple studies when there is potential

heterogeneity in predictor-outcome relationships across the study populations. σ2 can be estimated

from the training data and compared to the theoretical transition points or bounds for least squares

and/or ridge regression. Various methods can be used to estimate σ2, including maximum likelihood

and method of moments-based approaches used in meta-analysis (for example, see Jackson et al.

(2016)), with the caveat that estimates will be imprecise when the number of studies is small.

70



Under Model (3.1), fitting a correctly specified mixed effects model will generally be more effi-

cient than both the merged and ensemble versions of least squares. However, more flexible machine

learning algorithms can potentially yield better prediction accuracy than the true model. For ex-

ample, in the the low-dimensional simulations, the mixed effects model was outperformed by either

the merged learner or ensemble learner based on lasso for most levels of heterogeneity. Moreover,

fitting a mixed effects model can be computationally difficult when the number of predictors is large

and standard mixed effects models are not appropriate for high-dimensional data, though there are

methods for penalized mixed effects models (Bondell et al., 2010; Ibrahim et al., 2011; Schelldorfer

et al., 2011; Fan and Li, 2012).

A limitation of our derivations is that they treat the following quantities as known: the subset

of predictors with random effects, the ensemble weights, and the regularization parameters for

ridge regression. In practice, these are usually selected using statistical procedures that introduce

additional variability. Furthermore, we obtained closed-form transition point expressions for cases

where the ensemble weighting scheme does not depend on the variances of the random effects. Such

weighting schemes are generally sub-optimal (the optimal weights given by Propositions 3.1 and

3.2 depend on G), so the closed-form results are based on a conservative estimate of the maximal

performance of multi-study ensembling. Another limitation is the assumption that the random

effects are uncorrelated, which is often not true in practice.

In summary, although this work is predicated upon the assumption that cross-study heterogeneity

manifests as random effects and assumes that weights and regularization parameters are known,

we believe it provides a theoretical rationale for multi-study ensembling and a strong foundation

for developing practical rules and guidelines to implement it.
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Supplementary Materials

S.1 Supplementary Materials for Chapter 1

S.1.1 Penetrance Modification Parameters

Hazard Functions in BRCAPRO and BCRAT

Figure S.1.1: BRCAPRO cause-specific hazard of breast cancer for White female non-carriers (λ0
B(t))

and BCRAT cause-specific hazard of breast cancer for White women in the general population (λ̃B(t) =
λ̃B,0(t)/(1−AR(t))).

Population Attributable Risk Estimates for BCRAT Covariates

White Black Hispanic Asian Native American
< 50 1.81 1.41 1.37 2.10 1.55
≥ 50 1.96 1.44 1.41 2.43 1.94

Table S.1.1: Estimates of 1−AR(t) from NHIS 2015.
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S.1.2 Ensemble Weights From NWH

We fit the model

log
FB(τ)

1− FB(τ)
= β0 + β1 log(F

1
B(τ)) + β2 log(F

2
B(τ)) + β3 log(F

1
B(τ)) log(F

2
B(τ)),

to the NWH cohort, where τ = 5. The estimated weights are given in Table S.1.2.

Table S.1.2: Ensemble weights.

Estimate Standard Error
β̂0 2.55 1.31
β̂1 0.86 0.32
β̂2 1.21 0.28
β̂3 0.11 0.06

S.1.3 CGN Characteristics by Center

Table S.1.3: CGN cohort characteristics by center.

Variable N Age Affected 1st-degree Relatives Follow-up Censored Cases
(median [IQR]) (%) (median [IQR]) (%) (%)

Category 0 1 2+
BAYLOR 69 47 [38, 52] 34 (49.3) 28 (40.6) 7 (10.1) 7.5 [6.1, 8.6] 12 (17.4) 0 (0.0)
COLORADO 1198 51 [41, 64] 528 (44.1) 547 (45.7) 123 (10.3) 7.6 [6.4, 8.5] 85 (7.1) 23 (1.9)
DUKE 286 46 [38, 53] 134 (46.9) 116 (40.6) 36 (12.6) 7.2 [6.2, 8.2] 40 (14.0) 9 (3.1)
EMORY 136 44 [38.8, 51] 56 (41.2) 51 (37.5) 29 (21.3) 7.2 [6.6, 8.3] 29 (21.3) 3 (2.2)
GEORGETOWN 309 43 [35, 52] 107 (34.6) 147 (47.6) 55 (17.8) 7.8 [6.3, 8.5] 81 (26.2) 2 (0.6)
JH 469 47 [39, 56] 279 (59.5) 148 (31.6) 42 (9.0) 8.0 [6.1, 9.0] 73 (15.6) 10 (2.1)
MDAND 295 45 [37, 53] 215 (72.9) 64 (21.7) 16 (5.4) 6.1 [4.2, 7.0] 87 (29.5) 4 (1.4)
UCI 608 48 [37, 59] 352 (57.9) 223 (36.7) 33 (5.4) 5.3 [4.0, 7.1] 209 (34.4) 4 (0.7)
UNC 229 46 [39, 53] 80 (34.9) 111 (48.5) 38 (16.6) 8.0 [7.1, 9.0] 28 (12.2) 6 (2.6)
UNM 324 [41, 63] 160 (49.4) 123 (38.0) 41 (12.7) 6.6 [6.0, 7.5] 43 (13.3) 11 (3.4)
UPENN 540 45 [37, 53] 297 (55.0) 185 (34.3) 58 (10.7) 8.1 [6.6, 9.1] 76 (14.1) 8 (1.5)
UTAH 880 47 [35, 61] 522 (59.3) 298 (33.9) 60 (6.8) 7.3 [5.4, 8.0] 61 (6.9) 14 (1.6)
UTSA 92 43 [35.8, 52] 29 (31.5) 48 (52.2) 15 (16.3) 5.1 [4.0, 6.5] 36 (39.1) 1 (1.1)
UTSW 247 41 [33.5, 47] 88 (35.6) 116 (47.0) 43 (17.4) 6.6 [5.6, 7.6] 30 (12.1) 4 (1.6)
UWASH 1632 46 [37, 56] 1290 (79.0) 291 (17.8) 51 (3.1) 7.6 [6.9, 8.3] 44 (2.7) 13 (0.8)
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S.2 Supplementary Materials for Chapter 2

S.2.1 Methods

Notation Table

Table S.2.1: Notation table for Chapter 2.

Variable Description
R number of relatives (besides the proband)
r indexes family members (r = 0 for the proband)
Hri ith feature for family member r
Hr vector of features for family member r
K number of features per family member
Ar indices of r’s parents
H family history matrix
Y0 proband’s outcome

Notation for NN
X vector input to NN
L number of hidden layers in NN
l indexes NN layers (l = 0 for input layer, l = L+ 1 for output layer)
al output of layer l
w NN weight parameter
b NN bias parameter
ϕ activation function
σ logistic function
C cost function
NT training sample size
Q′ number of relative types in reference pedigree
R′

q number of relatives of type q in reference pedigree
R′ number of relatives in reference pedigree (besides the proband)
H ′ standardized version of H that has the same structure as the reference pedigree
Rq number of relatives of type q in actual pedigree
Nl number of nodes in fully-connected layer l
Ml number of filters in layer l
N (r) neighborhood about member r, consisting of r and r’s first-degree relatives
mi number of relatives of type i (i = 1, 2, 3, 4 for sisters, brothers, daughters, sons)

in neighborhood
U neighborhood size (U = 3 +

∑4
i=1 mi)

Standard CNNs

A NN is a CNN if it contains at least one convolutional layer. A convolutional layer applies the

same functions repeatedly to different fixed-size regions of the layer input (for example, sets of

pixels in images). These functions are called convolutional filters.
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Using the same notation as in Section 2.2.2 (see also Table S.2.1) unless otherwise specified, we

describe a CNN that takes as input a fixed-length vector X and outputs a predicted probability.

Suppose the L hidden layers are all convolutional layers. Let convolutional layer l have Ml real-

valued convolutional filters f l
1, . . . , f

l
Ml

that act on sliding windows of the input to the layer. The

output of layer l will be a matrix with Ml columns and Nl rows, where Nl is the number of windows

to which the Ml filters are applied. Nl is determined by two pre-specified quantities: the length

(number of rows) of each window, which we denote by Ul, and the distance by which we slide (along

the row axis) to move from one window to the next, which we denote by Sl (typically called the

stride). Therefore, Nl = ⌊(Nl−1 − Ul)/Sl⌋. Let N0 be the length of X. Let M0 = 1.

For i = 1, . . . ,Ml, f l
i : RUl∗Ml−1 → R. Let the flattened version of the jth window for layer l

(obtained by concatenating the rows of the window) be denoted by vl−1
j ∈ RUl∗Ml−1 . Each filter

f l
i takes a weighted sum of the elements of vl−1

j and adds a bias term, then applies an activation

function. The output from applying filter i to the jth window is

f l
i (v

l−1
j ) = ϕ

(
wl
iv

l−1
j + bli

)

where wl
i ∈ RUl∗Ml−1 is the vector of weights and bli ∈ R is the bias for filter i.

Let f l = (f l
1, . . . , f

l
Ml

) : RUl∗Ml−1 → RMl . Then the outputs of layers 0, . . . , L are

a0 = X,

al =
[
f l(vl−1

1 ) , . . . , f l(vl−1
Nl

)
]T

, (l = 1, . . . , L),

where al ∈ RNl×Ml .

The output of the final (l = L) convolutional layer is flattened into a vector of length ML ×NL

before being passed to the fully-connected output layer. The calculation of the prediction in the

output layer and the optimization of the weight and bias parameters proceed in the same way as

for FCNNs.

When Sl > 1, the sliding windows might not exactly cover the length of the input. To resolve

this issue, CNNs are often combined with zero padding, which involves adding zeros to the borders
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of the layer input. We use a similar approach to apply convolutions to pedigrees (described in

Section 2.2.4).

Proof of Theorem 2.1

Let Nd
r be the number of relatives of r of degree d. We first show by induction that for d ≥ 0, there

exists a CNN with d convolutional layers such that for any relative r, adr ∈ R(K+1)
∑

i=0d
N i

r (r’s

output vector from layer d), is a continuous and invertible transformation of the original features

H ′
s of r’s relatives s of degree≤ d.

For d = 0, the result holds trivially since a0r = H ′
r. Let d > 0 and consider a CNN with d − 1

convolutional layers that satisfies the statement for d − 1. Any degree d relative of r is a degree

d− 1 relative of some first-degree relative of r. Therefore, by the induction assumption, there is a

subset of ad−1
N (r) that is a continuous and invertible transformation of the original features of relatives

of r of degree ≤ d (the subset has size (K + 1)
∑

i=0d N
i
r). Add a dth convolutional layer where

Md = (K + 1)
∑

i=0d N
i
r and define the ith component of fd to be the application of activation

function ϕ to the ith element of the subset (setting the weight for the ith element to 1 and the

remaining weights to 0). Since ϕ is continuous and invertible, adr = fd(ad−1
N (r)) is a continuous,

invertible transformation of the original features of relatives of r of degree ≤ d.

By the result above, there exists a CNN with d − 1 convolutional layers such that ad−1
r is a

continuous and invertible transformation of the original features of relatives of r of degree ≤ d− 1.

It follows that V = ad−1
N (0) ∈ RU×Md−1 (obtained by concatenating the outputs from layer d− 1 for

the proband’s neighborhood) is a continuous and invertible transformation of the original features

X, since any degree d relative is a degree d − 1 relative of some first-degree relative. Let tau :

RU(R′+1)(K+1) → RMd−1 denote the continuous and invertible transformation, so that V = τ(X).

Suppose we add another convolutional layer with Md filters. Then computing ad0 is equivalent

to applying a fully-connected layer with UMd nodes to V . Since the original features are bounded

and τ is continuous, V is contained in a compact subset of RU×Md−1 . The logistic function σ is

uniformly continuous on any compact subset of R, so there exists δ > 0 such that

|X1 −X2| < δ =⇒ |σ(X1)− σ(X2)| < ϵ

86



By the universality theorem for FCNNs, there exists a value of Md and parameters for layer d

such that

|ad0 − σ−1(g(X))| < δ

and

|σ(ad0)− g(X)| < ϵ

While the Universal Approximation Theorem for FCNN states that a given continuous function

with compact support can be approximated by a single-layer FCNN with a finite number of neurons,

N , to any degree of precision, it does not provide an upper bound for N . In practice, N might be

very large. Similarly, our theorem states that a given continuous function with compact support

can be approximated by a CNN with d convolutional layers, but does not provide an upper bound

for the number of convolutional filters Md for the final convolutional layer d (we showed above that

the theorem is satisfied by a CNN with Md proportional to N).

S.2.2 Simulations and Data Application

Misreporting Rates

For the second simulation setting, we perturbed the family histories using misreporting rates for

breast and ovarian cancer from Ziogas and Anton-Culver (2003) (Table S.2.2).

Table S.2.2: Accuracy of probands’ reported family history of breast and ovarian cancer. FNR: False
negative rate. FPR: False positive rate.

Degree FNR FPR

Breast Cancer

1 0.05 0.03

2 0.18 0.03

Ovarian Cancer

1 0.17 0.01

2 0.56 0.02
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We perturbed diagnosis ages based on the rates reported in Braun et al. (2017): 3% of breast

diagnosis ages and 4% of ovarian cancer diagnosis ages were misreported. We assumed the difference

between the true age and misreported age has mean 4 and standard deviation 3.

Reference Pedigree Structure

In the simulations, we sampled family structures from the CGN, so we chose a reference pedigree

structure based on the relative counts in the CGN. We only used first- and second-degree relatives

since studies have shown that excluding third- and higher-degree relatives has little effect on the

performance of family history-based models (Biswas et al., 2013; Terry et al., 2019). In the CGN,

the third quartile for the number of children of the proband’s maternal/paternal grandparents was

6, the third quartile for the number of children of the proband’s parents was 5, and the third

quartile for the number of children of the proband was 3. We used these numbers to define a

symmetric family structure where each couple has an equal number of sons and daughters: the

proband’s grandparents each have 3 sons and 3 daughters, the proband’s parents have 3 sons and

3 daughters, and the proband has 2 sons and 2 daughters. We used a slightly larger family size

(26) than the third quartile for family size (21) in the CGN in order to capture more of the family

history.

In the data application, we reduced the size of the reference family to 19 because the Risk Service

families (median size 8, IQR 7-14) were smaller than the CGN families (median size 16, IQR 12-21).

We excluded sons and daughters of the proband from the reference structure because only 18% of

Risk Service probands had a son or daughter in their pedigree (versus 72% in the CGN).

Missing Age Information in the Risk Service

Ages and diagnoses ages were available for all but 185 probands, who were excluded from the

training set. If an affected first- or second-degree relative was missing age or age at diagnosis, then

we set their baseline cancer status as affected. One justification for this imputation approach is

that probands may have more accurate memory of recent diagnoses (i.e. within the last 5 years)

among relatives than less recent diagnoses. Therefore, the missing diagnoses ages are more likely

to correspond to less recent diagnoses.

88



We considered including current age and age at diagnosis in the models trained on the Risk

Service (and adding a missing indicator for each age variable), but in cross-validation on the Risk

Service, the models without age information performed better than the models with age information,

so we excluded the age information (other than the proband’s current age).

89



S.3 Supplementary Materials for Chapter 3

S.3.1 Notation Table

Table S.3.1: Notation table for Chapter 3.

Variable Value / Description
K number of training studies
nk sample size in study k (k = 0 corresponds to test dataset)
Yk outcome vector for study k
Xk fixed effects design matrix for study k
Y (Y T

1 , . . . ,Y T
K )T ; outcome vector for merged dataset

X
[
XT

1 | . . . |XT
K

]T ; design matrix for merged dataset
p number of predictors (including the intercept)
q number of predictors with random effects
r number of unique variance values for random effects
Γ (Γ)il = 1 if predictor i is the lth predictor with a random effect and (Γ)il = 0 otherwise; matrix such that XkΓ

subsets Xk to the columns with random effects
Zk XkΓ; random effects design matrix for study k
β vector of fixed effects
γk vector of random effects
σ2
i variance of random effect i

G diag(σ2
1 , . . . , σ

2
q ); covariance matrix for random effects

σ2 tr(G)/p; heterogeneity summary measure
ϵk vector of residual errors for study k
σ2
ϵ variance of residuals

β̂LS,M (XTX)−1XTY ; merged least squares estimator
wk ensemble weight for study k

β̂LS,E
∑

k wk(X
T
k Xk)

−1XT
k Yk; ensemble least squares estimator

Sk Ip if scaling is unnecessary, diagonal matrix with (Sk)jj = inverse standard deviation of jth column of Xk

otherwise; scaling matrix for study k
S Ip if scaling is unnecessary, diagonal matrix with (S)jj = inverse standard deviation of jth column of X

otherwise; scaling matrix for merged data
X̃k SkXk; ridge design matrix for study k

X̃ SX; ridge design matrix for merged dataset
I−
p Ip with (Ip)11 = 0

β̂R,M S(X̃T X̃ + λI−
p )−1X̃TY ; merged ridge estimator of β

β̂R,k Sk(X̃
T
k X̃k + λkI

−
p )−1X̃T

k Yk; ridge estimator of β based on study k

β̂R,E
∑K

k=1 wkβ̂R,k; ensemble ridge estimator of β
Rk XT

k Xk

R XTX

Mk Rk + λkI
−
p S−2

k

M R+ λI−
p S−2

Γ(j) (Γ(j))il = 1 if random effect i is the lth random effect with variance σ2
(j)

and (Γ(j))il = 0 otherwise; matrix
such that GΓ(j) subsets G to the columns corresponding to σ2

(j)

τLS transition point for least squares (Theorem 3.1)
τLS,1 lower bound of transition interval for least squares (Theorem 3.2)
τLS,2 upper bound of transition interval for least squares (Theorem 3.2)
bE Bias(X0β̂R,E) = −

∑
k wkλkX0M

−1
k I−

p S−2
k β

bk Bias(X0β̂R,k) = λkX0M
−1
k I−

p S−2
k β

bM Bias(X0β̂R,M ) = −λX0M−1I−
p S−2β

τR transition point for ridge regression (Theorem 3.3)
τR,1 lower bound of transition interval for ridge regression (Theorem 3.4)
τR,2 upper bound of transition interval for ridge regression (Theorem 3.4)
vk tr(M−1

k XT
kZkGZT

k XkMkR0) + σ2
ϵ tr(M

−1
k XT

kXkM
−1
k R0)
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S.3.2 Calculations and Proofs
Covariance Matrices and MSPEs

Cov(Yk) = ZkGZT
k + σ2

ϵ Ink

Cov(β̂LS,k) = ΓGΓT + σ2
ϵ (X

T
kXk)

−1

Cov(β̂LS,E) =
K∑
k=1

w2
kΓGΓT + σ2

ϵ

K∑
k=1

w2
k(X

T
kXk)

−1

Cov(β̂LS,M ) = (XTX)−1
K∑
k=1

[XT
kZkGZT

kXk](X
TX)−1 + σ2

ϵ (X
TX)−1

E[∥Y0 −X0β̂LS,E∥22] = tr(Cov(X0β̂LS,E))

=
K∑
k=1

w2
ktr(ΓGΓTXT

0 X0) + σ2
ϵ

K∑
k=1

w2
ktr((X

T
kXk)

−1XT
0 X0)

=

K∑
k=1

w2
ktr(GZT

0 Z0) + σ2
ϵ

K∑
k=1

w2
ktr((X

T
kXk)

−1XT
0 X0)

=
r∑

j=1

σ2
(j)tr(Γ

T
(j)Z

T
0 Z0Γ(j))

K∑
k=1

w2
k + σ2

ϵ

K∑
k=1

w2
ktr((X

T
kXk)

−1XT
0 X0)
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E[∥Y0 −X0β̂LS,M∥22] = tr(Cov(X0β̂LS,M ))

= tr((XTX)−1
K∑
k=1

[XT
kZkGZT

kXk](X
TX)−1XT

0 X0)+

σ2
ϵ tr((X

TX)−1XT
0 X0)

= tr(G

K∑
k=1

ZT
kXk(X

TX)−1XT
0 X0(X

TX)−1XT
kZk)+

σ2
ϵ tr((X

TX)−1XT
0 X0)

=

r∑
j=1

σ2
(j)tr(

K∑
k=1

ΓT
(j)Z

T
kXk(X

TX)−1XT
0 X0(X

TX)−1XT
kZkΓ(j))+

σ2
ϵ tr((X

TX)−1XT
0 X0)

=
r∑

j=1

σ2
(j)tr((X

TX)−1
K∑
k=1

XT
kZkΓ(j)Γ

T
(j)Z

T
kXk(X

TX)−1XT
0 X0)+

σ2
ϵ tr((X

TX)−1XT
0 X0)

Cov(β̂R,k) = M−1
k XT

kZkGZT
kXkM

−1
k + σ2

ϵM
−1
k RkM

−1
k

Cov(β̂R,E) =
∑
k

w2
kM

−1
k XT

kZkGZT
kXkM

−1
k + σ2

ϵ

∑
k

w2
kM

−1
k RkM

−1
k

Bias(β̂R,E) = −(
∑
k

wkλkM
−1
k I−

p S−2
k )β

Cov(β̂R,M ) = M−1
∑
k

XT
kZkGZT

kXkM
−1 + σ2

ϵM
−1RM−1

Bias(β̂R,M ) = −λ(M−1I−
p S−2)β
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E[∥Y0 −X0β̂R,E∥22] = tr(Cov(X0β̂R,E)) + bTEbE

=
∑
k

w2
ktr(M

−1
k XT

kZkGZT
kXkMkR0)+

σ2
ϵ

∑
k

w2
ktr(M

−1
k XT

kXkM
−1
k R0) + bTEbE

=
∑
k

w2
ktr(GZT

kXkM
−1
k R0M

−1
k XT

kZk)+

σ2
ϵ

∑
k

w2
ktr(M

−1
k XT

kXkM
−1
k R0) + bTEbE

=

r∑
j=1

σ2
(j)

∑
k

w2
ktr(Γ

T
(j)Z

T
kXkM

−1
k R0M

−1
k XT

kZkΓ(j))+

σ2
ϵ

∑
k

w2
ktr(M

−1
k XT

kXkM
−1
k R0) + bTEbE

E[∥Y0 −X0β̂R,M∥22] = tr(Cov(X0β̂R,M )) + bTMbM

= tr(M−1
∑
k

XT
kZkGZT

kXkM
−1R0)+

σ2
ϵ tr(M

−1
∑
k

XT
kXkM

−1R0) + bTMbM

=
∑
k

tr(GZT
kXkM

−1R0M
−1XT

kZk)+

σ2
ϵ tr(M

−1
∑
k

XT
kXkM

−1R0) + bTMbM

=

r∑
j=1

σ2
(j)

∑
k

tr(ΓT
(j)Z

T
kXkM

−1R0M
−1XT

kZkΓ(j))+

σ2
ϵ tr(M

−1
∑
k

XT
kXkM

−1R0) + bTMbM

=
r∑

j=1

σ2
(j)tr(M

−1
∑
k

XT
kZkΓ(j)Γ

T
(j)Z

T
kXkM

−1R0)+

σ2
ϵ tr(M

−1
∑
k

XT
kXkM

−1R0) + bTMbM

Proof of Theorem 3.4

Theorems 3.1-3.3 are special cases of Theorem 3.4, so we provide a proof for Theorem 3.4.
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σ2=

r∑
j=1

mjσ
2
(j)

p

≤
σ2
ϵ

(∑
kw

2
ktr(M

−1
k RkM

−1
k R0)−tr(M−1

∑
kRkM

−1R0)
)
+bTEbE−bTMbM

p max
j=1,...,r

1
mj

(tr(M−1
∑

kX
T
kZkΓ(j)Γ

T
(j)Z

T
kXkM−1R0)−

∑
kw

2
ktr(Γ

T
(j)Z

T
kXkMkR0M

−1
k XT

kZkΓ(j))

=τR,1

=⇒
r∑

j=1

σ2
(j)(tr(M

−1
∑
k

XT
kZkΓ(j)Γ

T
(j)Z

T
kXkM

−1R0)−
∑
k

w2
ktr(M

−1
k XT

kZkΓ(j)Γ
T
(j)Z

T
kXkM

−1
k R0))

≤σ2
ϵ

(∑
k

w2
ktr(M

−1
k RkMkR0)−tr(M−1

∑
k

RkM
−1R0)

)
+bTEbE−bTMbM

(assuming Condition 3.22 holds)
⇐⇒E[∥Y0−X0β̂R,M∥22]≤E[∥Y0−X0β̂R,E∥22]

Proofs of Propositions 3.1 and 3.2 (Optimal Weights)

Least Squares. For least squares, we want to minimize

K∑
k=1

w2
ktr(GZT

0 Z0) + σ2
ϵ

K∑
k=1

w2
ktr(R

−1
k R0)

subject to the constraint
∑

k wk = 1.

Using Lagrange multipliers, we get the system of equations

2wk

(
tr(GZT

0 Z0) + σ2
ϵ tr(R

−1
k R0)

)
= α (for k = 1, . . . ,K; α is the Lagrange multiplier)∑

k

wk = 1

which is solved by

wk =

(
tr(GZT

0 Z0) + σ2
ϵ tr(R

−1
k R0)

)−1∑
k

(
tr(GZT

0 Z0) + σ2
ϵ tr(R

−1
k R0)

)−1

Plugging the optimal weights into the MSPE of the ensemble learner, tr(Cov(X0β̂LS,E)), we

get

tr(Cov(X0β̂LS,E)) =
1∑

k

(
tr(GZT

0 Z0) + σ2
ϵ tr(R

−1
k R0)

)−1
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In the equal variances setting,

tr(Cov(X0β̂LS,E)) =
1∑

k

(
σ2tr(ZT

0 Z0) + σ2
ϵ tr(R

−1
k R0)

)−1

so tr(Cov(X0β̂LS,E)) is approximately linear in σ2 when tr(R−1
k R0) is similar across studies or

when σ2 is large.

Ridge Regression. For ridge regression, let

vk = tr(M−1
k XT

kZkGZT
kXkMkR0) + σ2

ϵ tr(M
−1
k XT

kXkM
−1
k R0)

bk = λkX0M
−1
k I−

p S−2
k β.

We want to minimize ∑
k

w2
kck +

(∑
k

wkbk

)T (∑
k

wkbk

)

subject to the constraint
∑

k wk = 1.

Using Lagrange multipliers, we get the system of equations

2wk(vk + bTkbk) + 2
∑
j ̸=k

wjb
T
j bk = α (for k = 1, . . . ,K)

∑
k

wk = 1.

The solution to the system is

w
α

 =

C −j

jT 0


−1 0

1

 (27)

where C has entries (C)kk = (vk + bTkbk) and (C)jk = bTj bk for j ̸= k and j = (1, . . . , 1)T ∈ RK .

w = C−1J(jTC−1j)−1 (28)
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S.3.3 Additional Simulation Results
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Random Forest

Figure S.3.1: Relative performance of merging and ensembling as a function of heterogeneity when p =
10, q = 5, and the random effects have unequal variances. MSPE: mean squared prediction error. The
vertical dashed lines correspond to the bounds from Theorems 3.2 and 3.4.
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Ridge Regression
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Figure S.3.2: Relative performance of merging and ensembling as a function of heterogeneity when p =
100, q = 10, and the random effects have unequal variances. MSPE: mean squared prediction error. The
vertical dashed lines correspond to the bounds from Theorem 3.4.
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σ2 =0.05 (least squares transition point)
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σ2 =0.16

Figure S.3.3: Figure 3.3 with random forest and univariate meta-analysis results included. MSPE: mean
squared prediction error; LME: linear mixed effects model; LS,M: merged least squares learner; LS,E: en-
semble learner based on least squares; R,M: merged ridge regression learner; R,E: ensemble learner based
on ridge regression; L,M: merged lasso learner; L,E: ensemble learner based on lasso; NN,M: merged neural
network; NN,E: ensemble learner based on neural networks; RF,M: merged random forest; RF,E: ensemble
learner based on random forests; MA: multivariate meta-analysis; MA2: multiple univariate meta-analyses.
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Figure S.3.4: Relative performance of merging and ensembling as a function of heterogeneity when p =
10, q = 5, and the random effects have equal variances. MSPE: mean squared prediction error. We used
the same simulated data as described in the first simulation scenario in Section 4. However, instead of
using equal weights in the ensembles, we estimated the optimal weights by plugging in estimates of G, σ2

ϵ ,
and (for ridge regression) β obtained from fitting the correctly specified linear mixed effects model. The
vertical dotted lines correspond to the transition points based on the true optimal weights. The vertical
dashed lines correspond to the transition points based on equal weights. The empirical transition point
occurs at the value of σ2 where the log ratio of the prediction errors for ensembling and merging is equal
to 0.
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