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Robust Predictions with Observational Data 

 

Abstract 

 

Data science, as currently practiced, is an awkward fit for studying biology or medicine, 

which currently exist in a state where causal mechanisms to explain many of our observations 

are often unavailable. While mechanistic deductions are possible in narrow, well defined areas 

(signaling pathways, binding and protein folding, etc.), a deterministic, internally consistent 

model of human physiology is still far off. Consequently, the field has developed to serve two 

purposes simultaneously: both to construct such a framework, but also to help patients in the 

present with the incomplete information that we have access to. Modern data scientists and 

researchers utilize massive datasets to attempt to extract insights from a highly complex, largely 

mysterious system. Given the implications that research recommendations can have on physician 

behavior, and acknowledged missingness in our understanding, ensuring the reliability and 

validity of our methods is of paramount importance. 

The rise of statistical learning and large datasets has led to significant optimism regarding 

the ability of such models to influence or even make predictions about patient outcomes. 

However, constructing inductions that can fit into the otherwise deductive medical and scientific 

frameworks can be a fraught process. I examine how such work can be framed so as to resultant 

predictive models “useful” to both clinicians and scientists, and suggest methods for this that can 

exist within existing research frameworks. In particular, I examine three cases in detail. First, I 



vi 

describe the basis and implications of temporal bias for the first time, a flaw present in a 

ubiquitous study design that prevents reliable predictions of the future. Next, I describe 

knowledge parasitism, a phenomenon where machine learning models piggyback off of the 

decisions and expertise of clinicians, making their predictions consequently less likely to extend 

beyond what a clinician may already suspect. Finally, I describe the tendency for propensity 

matching to “launder” bias in surgical studies, acting to conceal overlooked biases and introduce 

new biases, reducing the confidence and applicability of the findings. 
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Introduction 

Recent advances in the availability of observational healthcare data have coincided with 

rapid developments in statistical techniques for processing such data. There has consequently 

been a significant amount of optimism regarding the ability of “big data” to help guide clinical 

practices or explore disease etiology (Belle et al., 2015). The British philosopher John Stuart 

Mill proposed that a scientific framework or theory should primarily be evaluated through its 

ability to predict future events (Mill, 1843). The contributions of models or studies built on large 

observational datasets typically take the form of implicit (observed associations) or explicit (risk 

stratification/disease risk models) predictions about the future. However, there are multiple 

epistemological and societal flaws that make big data an awkward lens with which to study 

biology or medicine. These include:  

● The epistemological tension between the methods of big data and the goals of 

medicine and biology.  

● The social utility of mechanisms in medicine. 

● The societal treatment of big data methodologies. 

These will be discussed in turn.  

 

Inductive Methods and Deductive Ends 

Tension exists between the inductive methods used to study observational data and the 

deductive ends that medicine and biology strive for. Most biological sciences aim to generate 

mechanistic frameworks, which can then be used to derive deductions. The diagnostic process in 

medicine has also been described as largely deductive (Heneghan et al., 2009). In contrast, the 

specific brand of induction utilized by modern statistical learning has the potential to highlight 

https://paperpile.com/c/VZvmYF/DZznn
https://paperpile.com/c/VZvmYF/DZznn
https://paperpile.com/c/VZvmYF/DZznn
https://paperpile.com/c/VZvmYF/JnnUc
https://paperpile.com/c/VZvmYF/anACS
https://paperpile.com/c/VZvmYF/anACS
https://paperpile.com/c/VZvmYF/anACS
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induction’s particular weaknesses, while also ignoring principles of experimental design learned 

from more traditional studies.  

 Inductive logic is defined as based on “evidential support,” and is utilized when the 

premises provide only partial support to the conclusions. This is in contrast to deductive logic, 

where the premises provide total support (Hawthorne, 2018). The primary challenge for 

researchers across times and domains has been to evaluate the situations where the premises fall 

short and to rationalize the extension of a conclusion to untested waters. While the act of using 

inductive reasoning and experimental observations to develop deductive frameworks is not new, 

biomedical researchers gradually refined a balanced approach, by creating restricted domains 

where deduction can function, and gradually extending these domains with inductive 

experimentation or observation when warranted (Glass and Hall, 2008). An example of this 

process is highlighted in the global response to the recent COVID-19 outbreak. Certain public 

health advice was immediately deduced given previous background knowledge regarding other 

coronaviruses. For example: heating coronaviruses to a certain temperature renders them inert, 

COVID-19 is a coronavirus, therefore, heating food to that temperature minimizes infection 

chance (ANSES, 2020). However, certain properties unique to COVID-19, such as its ability to 

transmit from asymptomatic individuals, were initially unknown and had to be induced from 

multiple reliable observations (McIntosh, 2020). Experimental mainstays such as system 

validation, repeatability, the idea of controls, and the use of domain knowledge in guiding 

experiments have been critical in bridging the gap between inductive and deductive modes of 

reasoning (Glass, 2010).  

These safeguards on induction, painstakingly built up through hundreds of years of 

experimentation, have been released with the introduction of machine learning and statistical 

https://paperpile.com/c/VZvmYF/ZohYt
https://paperpile.com/c/VZvmYF/ojcaZ
https://paperpile.com/c/VZvmYF/o6sVk
https://paperpile.com/c/VZvmYF/TPUDp
https://paperpile.com/c/VZvmYF/1KI6U
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tools that serve to accentuate the inherent weaknesses of induction. These include, i) the ability 

for machine learning/AI techniques to quickly and efficiently (but indiscriminately) induce 

associations from data, ii) the perceived lack of bias of methods founded on massive data sets or 

data driven methods, and iii) the hype-driven environment produced by traditional publication 

biases. In these spheres, the role of the scientist to induce from data has been completely 

removed. Instead, they are left only to design experiments and interpret the outcomes, both 

processes fraught with selective pressures.  

  When dealing with large, complex, high-dimensional datasets, the parable of the blind 

men and the elephant is particularly illuminating. Often, the totality of the datasets of interest are 

beyond the comprehension of individual researchers. While researchers were previously limited 

to extracting linear or combinatorial relationships due to the limits of human conception, “black-

box” statistical techniques have enabled comprehensive sets of associations and correlations to 

be drawn in a manner that is very difficult to both interpret and challenge on methodological 

grounds.   

The size of the datasets used has another pernicious side effect: because constructing a 

dataset is an expensive and labor-intensive process, researchers analyzing a given dataset are 

rarely the ones to assemble it. As such, they are often left in the dark regarding hidden biases or 

assumptions that are baked into the data, biases that consequently influence the model that is 

created. David Hume’s famous critique of induction was predicated on a rejection of the 

Uniformity Principle: the assumption that identical conditions necessarily produce identical 

results (Hume, 1739). In the land of observational data, the equivalent principle, the assumption 

that an identical inference would be uncovered in an alternate dataset collected with an identical 

methodology, can no longer be assumed to hold. A modern Humean might take the extreme 

https://paperpile.com/c/VZvmYF/3CB3A
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position that a physical law derived from experiment could fail to function in the future. In 

contrast, concerns about generalizability are very relevant in observational studies. Data 

collection processes are subject to myriad intricacies and subtleties that are not perfectly 

understood, and external validation datasets are increasingly perceived as a luxury rather than a 

requirement. The lack of repeatability and predictability between models and predictions held up 

as the nightmare scenario by Humean proponents is in fact a lived reality by data scientists. 

Despite a tsunami of research, very few big-data or machine learning based models have been 

deployed due to concerns about generalizability (Rajkomar, Dean and Kohane, 2019; Topol, 

2019). Researchers have little conception of how well their datasets represent the wider world or 

the domain of interest. In this environment, hypothesis validation, let alone identification of 

causal relationships, becomes incredibly difficult. 

 

(Lack of) Mechanisms 

By treating big data methodologies as an inductive process, it follows that mechanisms 

are a critical area of concern. Hume’s description of the problem of induction is again helpful 

(Hume, 1739): because induction is defined by the incomplete knowledge base used to draw 

conclusions, how can one be certain that counterexamples do not exist in the unobserved regions 

of knowledge? The rise of largely uninterpretable statistical modelling has provided an 

unprecedented opportunity for both inadvertent experimental error and outright fraud, all 

facilitated by the lack of mechanism. 

 One of the clearest historical examples of the impact that mechanism can have is the 

manner in which the original cure for scurvy was lost to medical science. Even when the correct 

question is asked and the correct experiment is conducted, the findings can lose all utility if the 

https://paperpile.com/c/VZvmYF/sV70q+KYosn
https://paperpile.com/c/VZvmYF/sV70q+KYosn
https://paperpile.com/c/VZvmYF/3CB3A
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underlying mechanism is wrong or unchallenged. James Lind is famous for having conducted the 

first clinical trial on scurvy-afflicted sailors and discovering that citrus fruit was an effective 

cure. However, more than 150 years after this landmark experiment, Robert Scott’s Discovery 

expedition to the Antarctic was famously struck by scurvy, despite awareness of the disease and 

ample (but misguided) preparations (Baron, 2009).  

Although Lind’s experiments were powered to detect the curative ability of citrus fruits, 

the mechanism that was proposed to explain their antiscorbutic properties was insufficient: the 

vitamin model had not yet been proposed. By the 19th century, improved technology shortened 

naval voyages such that sailors were no longer at risk of scurvy at all while at sea. Consequently, 

the impacts of a shift in British Admiralty policy mandating the use of fresh lemon juice (an 

effective, but expensive antiscorbutic) to the use of processed lime juice (a cheaper, and largely 

ineffective one) were not noticed (Ceglowski, 2010). At the time of the Discovery expedition, 

skepticism had arisen regarding the power of citrus after high profile incidents where lime juice 

failed to prevent scurvy in other polar expeditions. The leading proposed mechanism involved a 

toxicity model: bacterial contamination in meat led to the buildup of acids in the blood, resulting 

in the characteristic symptoms of scurvy. Rather than carrying lemon juice (regarded as a 

superstition of the past), Scott’s anti-scurvy preparations were largely composed of different 

methods for preserving meat and preventing spoilage, methods that happened to destroy any 

vitamin C present in the food. Scott’s decision was not unreasonable, as the acid intoxication 

theory was championed by both one of the most distinguished physicians of the time, Almroth 

Wright, and one of the most famous polar explorers, Fridtjof Nansen. Scott’s shock at the 

presence of scurvy in his crew despite his best efforts thus does not come as a surprise.  

https://paperpile.com/c/VZvmYF/zllRA
https://paperpile.com/c/VZvmYF/3FsrM
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During the 150-year period between Lind and Scott, the mechanistic theories regarding 

scurvy were subjected to little rigorous experimental testing. Wright described only six case 

studies in support of his acid intoxication theory, and modern re-analysis has concluded that only 

one likely had scurvy (Baron, 2009; Wright, 1900). The antiscorbutic efficacy of processed lime 

juice was never contemporaneously validated through experiment, but Lind himself was willing 

to advocate for similar products (Lind, 1772). Despite the lack of hard evidence, few physicians 

acknowledged the weaknesses of their theories. While it is easy to be critical of figures from the 

past, it is important to remember how much additional understanding we have in comparison. 

While this particular instance of mechanistic blindness was fueled by a combination of neglect 

and ignorance, we now have study methodologies that accelerate this process for us. 

We are similarly faced today with complex, high-dimensional biological systems that we 

hope to understand. The failure modes of statistical inference typically stem from deviations 

between the contexts in which inferences are applied, and the datasets from which the inferences 

are derived (Kyriacou, 2004). In Lind’s case, the gap in understanding occurred between the 

antiscorbutic power of fresh lemons, and the corresponding lack of power in processed limes. 

One famous modern example involved the discovery by researchers that a machine learning 

algorithm for detecting malignant lesions was simply looking for the presence of rulers next to 

the lesions, which were only placed by dermatologists next to lesions of concern (Schlessinger et 

al., 2019). Without an understanding for why this model outputs particular predictions, its 

performance would otherwise seem quite strong.  

  Mendeleev’s famous prediction regarding the existence of particular undiscovered 

elements, or Le Verrier’s prediction of an additional body (Neptune) affecting Uranus’s observed 

orbit provide examples for how biology can develop and mature as a field. The critical 

https://paperpile.com/c/VZvmYF/iTIGo
https://paperpile.com/c/VZvmYF/iTIGo
https://paperpile.com/c/VZvmYF/Bvtm7
https://paperpile.com/c/VZvmYF/kDmIz
https://paperpile.com/c/VZvmYF/Sn79O
https://paperpile.com/c/VZvmYF/Sn79O
https://paperpile.com/c/VZvmYF/Sn79O
https://paperpile.com/c/VZvmYF/Sn79O
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component of a prediction that is often neglected is the mechanistic hypothesis that it proves or 

disproves. The aspirational, long-term goal of research medicine is to deterministically identify 

patient outcomes under counterfactual scenarios for the purpose of improving care. While this 

may be out of reach in the short term, researchers and clinicians continue to develop work that 

they know will eventually become obsolete because this work forms the foundation for the 

‘semi-deterministic’ future observed in the development other fields. It is therefore important to 

remember that inductive research methods are a self-defeating tool, where their primary goal is 

to advance knowledge and understanding to the point where induction from observation is no 

longer necessary. 

 

Social Perceptions of Data 

Despite their mechanistic limitations, machine learning and data-driven techniques 

occupy a privileged position in society. The perception of these methodologies as infallible or 

free from bias stems from their impenetrability as well as the high technical requirements needed 

to truly understand their internal processes. Given this position, burdens of proof for predictions 

made in these ways ought to be held to a higher standard. Justifications for conclusions such as 

“the data speaks for itself” or “numbers are numbers” are defeatist in two ways: i) they concede 

that the system at hand is beyond comprehension and ii) they indicate that the authors do not 

have enough confidence in their predictions to see them actually deployed. Predictions based on 

observations can be overturned by a sufficient number of opposing observations, leaving nothing 

behind, while the falsification of a hypothetical mechanism still contributes to our understanding 

about a system. Even from a purely aspirational perspective, researchers and scientists should 
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hold their work to higher standards. Carefully defining where and when such models or results 

are appropriate is critical in both managing expectations and limiting damage.   

More practically, a higher emphasis on identifying appropriate context can help avoid 

unintended consequences. The roles of domain experts in guiding the training, development, or 

deployment of such models is often marginalized, often due to the false confidence fostered by 

the uncritical acceptance of data-driven predictions. The recent entry of the Apple Watch as an 

automatic monitoring and detection system for atrial fibrillation (AF) is an illuminating example 

regarding the utility of risk predictions that are separated from the guidance of physicians. 

Traditional determinations of AF, rendered by a physician, were the result of a specific workflow 

by three factors: i) the self-selection of patients who are symptomatic to consult a physician, ii) 

the expertise of the physician to order the right tests and diagnose the condition and iii) the 

judgement of the physician regarding whether the patient presentation is significant. These 

criteria define a very narrow, specific set of patients and conditions that could be termed 

“clinically relevant” AF (Husten, 2019). Consequently, AF criteria are only applicable to those 

cases where a physician has already made a judgement call. The Apple Watch, in contrast, 

detected every unfiltered instance of “AF.” Without the implicit guidance of physicians to select 

the most clinically relevant cases of AF, the Apple Watch was consequently affected by 

significant numbers of false positives (Loftus, 2019; Perez et al., 2019).  

Due to the direct impacts that biomedical research has on patient outcomes and popular 

perceptions of health, it is critically important for us to avoid constructing “soaring efface(s)” 

(Ceglowski, 2010) upon small foundations of evidence, something that is tragically easy to do 

with modern datasets and methods. Two high profile controversies emphasize this: the 

Fleischmann-Pons experiments into cold fusion (Fleischmann and Pons, 1989), which were 

https://paperpile.com/c/VZvmYF/C8mF0
https://paperpile.com/c/VZvmYF/N7ZOM+eeXk3
https://paperpile.com/c/VZvmYF/N7ZOM+eeXk3
https://paperpile.com/c/VZvmYF/N7ZOM+eeXk3
https://paperpile.com/c/VZvmYF/3FsrM
https://paperpile.com/c/VZvmYF/UabEQ
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ultimately discredited (Miskelly et al., 1989), kicked off a flurry of misguided research activity, 

but had little impact on the wider public. In contrast, Wakefield’s fraudulent study claiming an 

association between the MMR vaccine and autism (Wakefield et al., 1998) sparked a public 

health crisis that has yet to be resolved (Flaherty, 2011). The public trust in scientists’ findings is 

critical for further advancements, but is also a precious resource.  

The task of generating robust predictions with observational data is made significantly 

more difficult by the tensions present between the methodologies of big data and the goals of 

research biology and medicine. Cavalier use of these tools has the potential for significant social 

harms, due to the inferential power that these tools have, the privileged societal position they 

occupy, and the direct impacts that the biomedical field has. In this work, I investigate three 

pitfalls that prevent predictions from reliably informing clinical practice or disease etiology.  

In Chapters 1-2, I describe Temporal Bias, a flaw present in many observational studies 

and models that acts to accentuate differences between case and control cohorts, resulting in 

exaggerated effect sizes and prediction accuracies relative to prospective clinical deployment. I 

then describe the technical and study development of a clinically deployable model for 

Parkinson’s disease with temporal bias in mind.  

In Chapters 3-4, I describe the tendency for machine learning models to act as 

Knowledge Parasites, and the implications in practice of models that may not be able to truly 

infer beyond what a clinician already knows about a patient.  

In Chapters 5-7, I describe the phenomenon where the use of statistical techniques results 

in Laundering Bias in the surgical literature, where the assumptions and limitations of studies 

are obscured. I describe a series of recommendations for avoiding this, and implement them in 

observational study examining the risks of bariatric surgery.   

https://paperpile.com/c/VZvmYF/Fmg6r
https://paperpile.com/c/VZvmYF/Fmg6r
https://paperpile.com/c/VZvmYF/Fmg6r
https://paperpile.com/c/VZvmYF/UQWQP
https://paperpile.com/c/VZvmYF/UQWQP
https://paperpile.com/c/VZvmYF/UQWQP
https://paperpile.com/c/VZvmYF/t1Y5e
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Chapter 1: Temporal Bias: Preventing Reliable Predictions of the Future   

 

Chapter Introduction 

 This chapter introduces the basis for and impacts of Temporal Bias, a flaw that stems 

from the disconnect between the settings in which models are trained and the settings in which 

they are truly applied in practice. The utility of observational data towards any medical or 

biological application is contingent on collecting the proper data in the first place, something that 

temporal bias prevents. This chapter was adapted from a manuscript aimed informing a wide 

audience about the impacts that this bias could have, ranging from prediction errors to replication 

failures.  

 
Main Text 

The ability to predict future events is one of the defining features of science as a 

discipline (Platnick and Popper, 1977). Case-control studies have become one of the main tools 

for predicting events or defining associations using observational data (Song and Chung, 2010). 

The essence of this study design is to define two populations that differ by some characteristic of 

interest (helpfully termed “case” and “control”) and to measure differing exposures between 

these groups. In this way, exposures can be interpreted as “predictors” or “risk factors” for 

“case” status, but are not guaranteed to be causal (Lewallen and Courtright, 1998; Marshall, 

2004). With the proliferation of observational datasets and novel machine learning techniques, 

these studies have expanded into fields where risk prediction is a central focus (Weiss et al., 

2012). However, we have identified a structural flaw, seen widely in basic case-control study 

designs, which we call “temporal bias.” At its core, temporal bias represents a failure to collect 

information along the entire control-to-case trajectory at hand. This temporal bias not only 

https://paperpile.com/c/VZvmYF/IcJqY
https://paperpile.com/c/VZvmYF/Qbse
https://paperpile.com/c/VZvmYF/9wWgH+NqpJs
https://paperpile.com/c/VZvmYF/9wWgH+NqpJs
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
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amplifies reported effect sizes relative to what would be observed in practice, but also obfuscates 

the prospective use of models or identified risk factors. 

A classical example of temporal bias and its impacts can be seen through the initial 

discovery of lyme disease, a tick-borne bacterial infection. Lyme disease is characterized by i) an 

initial bite, ii) an expanding ring rash, and iii) arthritic symptoms, in that order (Steere et al., 

2016). However, the original 1976 discovery of lyme disease (then termed “lyme arthritis”) 

focused exclusively on patients who manifested with arthritic symptoms (Steere et al., 1977). 

This enabled researchers to definitively identify the prognostic value of a ring rash towards 

arthritis, but not tick bites, due to the latter symptom’s temporal distance from the researcher’s 

focus. By focusing on predictive features immediately prior to the event in question, researchers 

capture a biased representation of the full trajectory from healthy-to-diseased. A 

contemporaneous doctor cognizant of “lyme arthritis” and presented with a patient presenting 

with a tick bite would miss the possibility of disease until further symptoms developed. 

Similarly, a predictive model for lyme arthritis focused on ring rashes would report numerous 

false negatives if it were deployed in practice: patients who had yet to develop ring rashes would 

contract arthritis at a future time. These errors stem from the incomplete picture of symptoms 

that was captured. 

 However, temporal bias is not a problem of the past. The central flaw, an overemphasis 

on features collected near the case event, still occurs in the literature today. Within the medical 

domain, there are numerous examples of temporal bias in both clinical medicine and machine 

learning (Rand et al., 1985; Himes et al., 2009; X. Wang et al., 2014; Chou et al., 2016; 

Ranganath et al., 2016; Choi et al., 2017; Integrative Analysis of Lung Cancer Etiology and Risk 

(INTEGRAL) Consortium for Early Detection of Lung Cancer et al., 2018; Norgeot et al., 

https://paperpile.com/c/VZvmYF/XEMlC
https://paperpile.com/c/VZvmYF/XEMlC
https://paperpile.com/c/VZvmYF/XEMlC
https://paperpile.com/c/VZvmYF/XEMlC
https://paperpile.com/c/VZvmYF/48Pjc
https://paperpile.com/c/VZvmYF/48Pjc
https://paperpile.com/c/VZvmYF/48Pjc
https://paperpile.com/c/VZvmYF/n6Prw+Zral3+XobAJ+aLCLV+zRqSs+HZGTQ+QAuAy+FBMIW
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2019). Given the ease and intuitive nature of the case-control study, temporal bias is also not 

restricted to medical applications. We have identified instances of temporally biased 

experimental design in areas as diverse as operations research (data center and hard drive failures 

(Murray, Joseph F, Hughes, Gordon F and Kreutz-Delgado, Kenneth, 2005; Y. Wang et al., 

2014; Botezatu et al., 2016; Queiroz et al., 2017; Lin et al., 2018)), meteorology (severe weather 

prediction, (Marzban and Stumpf, 1996; McGovern et al., 2011)), and political science 

(identifying factors behind failed states, (King and Zeng, 2001; Goldstone et al., 2010)). As 

algorithms trained using large datasets and advanced machine learning methods become more 

popular, understanding biases in the way they were generated is critical. Despite increasing 

interest in machine learning risk prediction, few tools for use on individual patients have become 

standard practice (Rajkomar, Dean and Kohane, 2019; Topol, 2019). As evidence-based 

medicine becomes the norm, a clear picture of the quality of the component studies is required. 

In this article, we describe the basis for temporal bias and examine three representative instances 

of temporal bias in the medical, machine learning, and nutritional literature to identify the impact 

that this phenomenon has on observed effect sizes, predictive power, and experimental 

reproducibility.  
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Background 

Of interest are the expansive set of studies that focus on predicting future events and obey 

the following general conditions:  

1: Events to be predicted take the form of state transitions (healthy-to-diseased, stable-to-

failed, control-to-case, etc.). This implies that there exists a bulk population of controls, 

from which cases differentiate themselves. Soon-to-be cases progress along a trajectory 

away from the control population. This trajectory terminates at the occurrence of the case 

event. 

2:  Risk-of-event is equivalent to measuring progress along a control-to-case trajectory in 

time. Because risk prediction utilizes features from the present to assess the chance of a 

future event occurring, an event that is truly random would not be an appropriate domain 

for either a case-control study or a risk prediction algorithm. The trajectory can be 

thought of as the ground truth progression along a pathway towards the event in question, 

and are defined relative to the specific populations chosen for the study. This assumes 

that the researchers have taken the exchangeability (Hernan, 2006) of their case and 

control populations into account: if members of the control population are chosen poorly 

and cannot experience the case event, then there can be no trajectory.  

3: At the population level, the trajectory commences when the to-be-diseased population 

first begins to diverge from non-diseased population, and reaches a maximum when the 

disease event actually occurs. This requires that the trajectory is aligned to the event in 

question. Diseased individuals must consequently referred to using terms such as “days to 

disease,” while control individuals exist in an undefined point along this timeline. This is 

https://paperpile.com/c/VZvmYF/BK4WU
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only required due to the retrospective nature of these studies, and is a major departure 

from prospective deployment.  

4: Features actually measured are proxies for an individual’s position along the trajectory. 

Regardless of their positive or negative association with the event, features subject to 

temporal bias will tend to diverge between cases and controls with a continuous 

trajectory, and become better at differentiating the controls from cases as case individuals 

get closer to their event. For example, genome-wide association studies (GWAS) take the 

form of case-control studies that treat genomic variants as the exposure. Because these 

variants are constant with respect to time, GWAS studies are not subject to temporal bias.  

 

 As a result, we can distill prediction studies into a common structure (Figure 1.1): the 

members of the diseased population begin as controls at a point in the past, and progress along a 

trajectory until the disease occurs. Most case-control studies apply a dichotomous framework 

over this continuous trajectory.  

Temporal bias occurs when cases are sampled unevenly in time across this trajectory 

(Figure 1.1B). (A full theoretical basis for temporal bias is presented in the Methods section.) 

Note that this is a separate but analogous effect compared to selection bias: the control 

population may be exchangeable with the diseased population, but must tautologically exist at a 

prior point along the disease trajectory compared to cases. Rather than operating over the 

selection of which patients to include in the study, temporal bias acts over the selection of when 

each subject is observed.  

This important temporal feature yields two implications:  
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1. If the features of diseased subjects are evaluated based on a point or window that is 

defined relative to the case event (a future event, from the perspective of the feature 

measurements), features in the end of the trajectory will be oversampled.  

2. The resulting model cannot be prospectively applied because the study design implicitly 

leaked information from the future: a prospective evaluator has no way of knowing if a 

particular subject is within the observation window defined by the study.  

 

 

Figure 1.1 Prospective risk can be represented as a trajectory. A) The (single-class) case-

control paradigm often imposes a dichotomous (binary) framework onto a continuous trajectory. 

B) Experiments utilizing observations of cases that are concentrated at the time when the case 

event occurs cannot capture any information regarding the transition trajectory, resulting in 

temporal bias. C) In order to predict a patient’s position along the trajectory, experiments 

capturing the entire transition from non-diseased to diseased are necessary.  

 

 Temporal bias is intuitively understood within certain epidemiological circles- in fact:  

recall bias, caused by the tendency for survey respondents to remember recent events at a higher 

rate relative to past events, can be interpreted as a specific instance of temporal bias. Similarly, it 

is understood that case-control studies represent a lower “level of evidence” relative to other 

study designs (Burns, Rohrich and Chung, 2011). Methodologies have been proposed that, while 

https://paperpile.com/c/VZvmYF/bOU76
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not explicitly designed to address temporal bias, are immune to it (density-based sampling, 

among others (Rothman, 2012)). However, these tend to focus on point exposures or necessitate 

impractically exact sampling strategies. Despite this important shortcoming, the ease of the case-

control framework has allowed temporal bias to proliferate across many fields. We examine 

three representative examples below.  

 

Temporal Bias Can Inflate Observed Associations and Effect Sizes 

The INTERHEART study (Yusuf et al., 2004) examined the association between various 

risk factors and myocardial infarction (MI) using a matched case-control design among a global 

cohort. Individuals presenting at hospitals with characteristic MI were defined as cases, and 

subjected to interviews and blood tests, while matched controls were identified from relatives of 

MI patients or healthy cardiovascular individuals presenting with unrelated disorders. One risk 

factor of interest included lipoprotein (a) [Lp(a)], a blood protein (Jacobson, 2013; Hippe et al., 

2018). While Lp(a) levels are thought to be influenced by inheritance, significant intra-individual 

biological variance with time has been reported (Garnotel et al., 1998; Nazir et al., 1999).  

 One particular analysis utilized data from this study to examine the positive association 

between blood levels of Lp(a) and MI across different ethnicities and evaluate the possible 

efficacy of Lp(a) as a risk prediction feature (Paré et al., 2019). However, because cases were 

only sampled at the time of the MI event, the resulting effect sizes are difficult to interpret 

prospectively. Indexing case patients by their case status leaks information regarding their status 

to which a physician prospectively examining a patient would not have access.  Intuitively, if 

Lp(a) was static until a spike immediately prior to an MI event, it could not be used as a 

prospective risk predictor, even though a significant association would be observed given this 

https://paperpile.com/c/VZvmYF/sK71K
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particular experimental design. This limitation cannot be overcome using only the data that was 

collected, as information regarding the dynamics of Lp(a) over time is completely missing. To 

evaluate the influence of temporal bias, we estimated the size of the Lp(a)-MI association had the 

experiment been done prospectively. This analysis was done by simulating control-to-case 

trajectories using INTERHEART case/control population Lp(a) distributions by imputing the 

missing data. We conducted extensive sensitivity testing over different possible trajectories to 

evaluate the range of possible effect sizes. This approach allowed for the recalculation of the 

association strength as if the study had been conducted in a prospective manner from the 

beginning.  

 Table 1.1A summarizes the observed effect size in the simulated prospective trials 

compared to the reported baseline. In all cases, the simulated raw odds ratio between Lp(a) and 

MI was significantly lower than the observed raw odds ratio due to apparent temporal bias 

present in the latter measurement. This is an intuitive result, since case individuals as a group 

will be more similar to controls (healthier) when sampled at random points in time rather than 

when they experience an MI event (Figure 1.1B). Although it cannot be definitively proven that 

prospective effect sizes would be smaller, as this would require longitudinal data that do not 

exist, this exercise provides a valuable insight. The degree of temporal bias scales with the area 

under the imputed trajectory: linear and logistic trajectories were more susceptible to temporal 

bias than logarithmic trajectories. In order to observe the full reported odds ratio, the underlying 

trajectory would need to resemble a Heaviside step function in which cases spontaneously 

experience a spike in Lp(a) levels at the point of their divergence from the controls, an 

assumption that is neither explicitly made in the study nor has a basis in biology. We repeated 

the imputation process with Heaviside step functions, varying the position of the impulse in the 
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trajectory (Table 1.1B). As the impulse location approaches the beginning of the trajectory, the 

effect size relative to the baseline approaches 1. This observation illustrates the assumption 

intrinsic in the original INTERHEART experimental design: that MI individuals had static risk 

profiles during the runup to their hospitalizations.  

 To characterize these findings in a real-world dataset, we examined the Lp(a) test values 

and MI status of 7,128 patients seen at hospitals and clinics within the Partners Healthcare 

System - representing Brigham and Women's Hospital and Massachusetts General Hospital 

among others - who had indications of more than one Lp(a) reading over observed records. This 

dataset included 28,313 individual Lp(a) tests and 2,587 individuals with indications of 

myocardial infarction. We identified significant intra-individual variation in Lp(a) values in this 

population: the mean intra-individual standard deviation between tests was 12.2 mg/dl, compared 

to a mean test result of 49.4 mg/dl. In this dataset, biased Lp(a) measurement selection among 

case exposure values led to inflated association strength between Lp(a) and MI by 37.2% (Table 

1.1C) relative to random selection. This is a conservative estimate- we would expect the 

deviation to increase upon correcting for ascertainment bias in the dataset. “Control” individuals 

would be less cardiovascularly healthy than true controls, while “cases” would typically not be 

sampled immediately prior to an MI, and consequently appear to be healthier than 

INTERHEART cases.  

  



19 

Table 1.1. The observed Lp(A)-MI association is magnified by temporal bias. (Table 

continues on next pages) A) Association effect sizes from simulated prospective trials relative to 

INTERHEART sizes. Effect sizes less than 1 represent smaller simulated effects compared to 

those from INTERHEART. B) As the imputed trajectory approaches an idealized step function 

where the impulse appears earlier in the trajectory, the effect size approaches the observed 

baseline. C) Association effect size sensitivity to variance in real-world continuous Lp(a) 

observations. 

A) 

Initial Case State Imputation Method Trajectory Type Effect Size relative to Reported 

Baseline (95% CI) 

Weighted Sampling Linear 0.172 (0.160-0.196) 

Weighted Sampling Logistic 0.169 (0.150-0.187) 

Weighted Sampling Logarithmic 0.403 (0.390-0.417) 

Percentile Matching Linear 0.518 (0.507-0.528) 

Percentile Matching Logistic 0.517 (0.506-0.527) 

Percentile Matching Logarithmic 0.639 (0.631-0.647) 

Percent Shift Linear 0.389 (0.376-0.401) 

Percent Shift Logistic 0.386 (0.373-0.399) 

Percent Shift Logarithmic 0.539 (0.530-0.549) 
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B) 

Initial Case State Imputation 

Method 

Heaviside Step Function: 

Impulse Location 

Effect Size relative to 

Reported Baseline (95% CI) 

Weighted Sampling First 10% of Trajectory 0.808 (0.801-0.814) 

Weighted Sampling First 1% of Trajectory 0.980 (0.977-0.984) 

Weighted Sampling First 0.1% of Trajectory 0.998 (0.997-0.999) 

Percentile Matching First 10% of Trajectory 0.898 (0.895-0.901) 

Percentile Matching First 1% of Trajectory 0.989 (0.989-0.989) 

Percentile Matching First 0.1% of Trajectory 0.999 (0.999-0.999) 

Percent Shift First 10% of Trajectory 0.860 (0.857-0.864) 

Percent Shift First 1% of Trajectory 0.987 (0.985-0.989) 

Percent Shift First 0.1% of Trajectory 0.999 (0.999-0.999) 
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C) 

Lp(a) Selection Method Normalized Lp(a)-MI Coefficient p-value 

Largest Available Lp(a) 1.372 < 2E-16 

Smallest Available Lp(a) 0.519 9.08E-4 

Random Lp(a) 1 6.34E-12 

 

Prospective Prediction Failure due to Temporal Bias 

 As the availability of observational data has skyrocketed, event prediction has become a 

popular task in machine learning, particularly in medical domains. The resulting models are 

typically intended to act as risk evaluation, serve in triage, or assist the understanding of disease 

etiology. Because of this focus on prediction, many methods utilize the idea of a prediction 

window: a gap between when an event is observed and when features are collected. For example, 

a model that differentiates patients six months prior to MI onset from healthy matched controls 

may be said to “detect” MI six months in advance. However, because the window is defined 

relative to a case event, it represents an uneven sampling of the disease trajectory. This finding 

means that, in the vast majority of cases, this idea shares the same temporal bias as sampling 

cases at the time of event. While it could be argued that this type of model could be deployed 

prospectively and would still provide information on which patients were 6 months away from 

an MI, this prediction requires unfounded assumptions regarding the trajectory of MI onset. For 

example, if the trajectory is such that patients’ risk in the years prior to the MI is approximately 
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uniform, a model trained in this way would provide many false positive 6-month MI predictions. 

This outcome can be interpreted as a generalization failure to patients more than 6 months away 

from an MI. Because window sizes are often chosen without respect to the underlying transition 

trajectory, significant potential for temporal bias still exists, driven by factors such as differential 

diagnosis periods or missed exposures. 

 To illustrate fundamental issues with the use of event-indexed observation windows, we 

constructed predictors for childbirth that exploit the intrinsic asymmetry of the observable “risk” 

trajectory of delivery utilizing insurance claims data. Cases and controls are significantly more 

difficult to distinguish more than nine or ten months prior to delivery compared to later in 

pregnancy because the case population is not yet pregnant. Features collected while the case 

population is pregnant are far more informative regarding delivery status. A case-control study 

that uses a window defined three months prior to delivery will capture these informative, 

pregnancy related features. In contrast, a cohort study fixed to examine features collected in 

January will occasionally be presented with largely uninformative features when the case 

individual’s delivery takes place late in the year (Figure 1.2A). Using 2015 data from an de-

identified nationwide medical insurance claims dataset, we simulated three studies:  

I. Models are both trained and evaluated under the case-control (CC) paradigm: one month 

of records, three months prior to the delivery date (cases) or matched baseline date 

(controls) are used (CC-CC model). 

II. Models are trained under the case-control paradigm, but evaluated under the cohort 

paradigm, where records from January are used to predict delivery in 2015 (CC-Cohort 

Model). 
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III. Models are both trained and evaluated under the cohort paradigm (Cohort-Cohort 

Model). 

 For each simulated study, records within the observation window of diagnoses, 

procedures, and prescriptions ordered were fed into both deep recurrent neural nets and logistic 

regression models.    

The significant difference in performance (Figure 1.2B) between CC-CC and CC-Cohort 

models illustrates a central trait of temporally biased sampling. Uneven sampling across the 

transition trajectory improves validation AUC under artificial validation conditions, but model 

performance collapses when deployed in a prospective manner. In contrast, models designed 

with the prospective task from the outset (Cohort-Cohort) had intermediate performance that 

reflected the inherent ambiguity of the available observations. These findings were robust across 

both deep neural networks and logistic regression based models. In fact, while the more complex 

deep neural network performed better than the logistic regression model for the CC-CC task, it 

was performed worse than the logistic regression on the CC-Cohort task. In this case, 

methodological improvements on an unrealistic task led to more significant declines in 

performance on a more realistic task.  
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Figure 1.2. Case-control predictors for delivery report false negatives when applied 

prospectively due to temporal bias. A) The ground truth trajectory for delivery  

(orange) is composed of parts: an informative period, 9-10 months prior to the delivery, and a 

largely uninformative period prior. Case-control windows are indexed to delivery/baseline date, 

and so only sample a single (informative) slice of the trajectory. Cohort windows always occur in 

January, and so uniformly sample the trajectory. B) Model performance (Validation AUROC) 

for deep recurrent neural networks and logistic regression for each study design. Error bars 

represent the 95% confidence intervals. C) Comparison of confusion matrices for CC-CC (left) 

and CC-Cohort (right) models. D) CC-Cohort validation model confidence distributions for late 

(Oct/Nov/Dec) deliveries given January features.  
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For women with October/November/December deliveries, claims data from January are 

mostly uninformative, and a reliable prediction at that point is not possible at the population 

level, especially when using features trained during pregnancy. The confusion matrices produced 

by CC-CC and CC-Cohort models revealed that much of the performance collapse can be traced 

to false negatives (Figure 1.2C). We examined the confidence that the deep convolutional 

networks assigned to October/November/December deliveries when evaluated on cohort 

structured data were predictive (Figure 1.2D). Models trained under a case-control regime 

incorrectly label these individuals as high confidence controls, while models trained under a 

cohort regime more appropriately capture the intrinsic ambiguity of the prediction task. Unlike 

these models, clinicians do not have the luxury of examining only patients three months/six 

months/one year prior to disease incidence: they must assess risk in real time. Rather than to 

present a toy example, this is intended to represent the extreme case of the potential 

consequences of releasing a predictive model trained in this manner. 

 It is critical to note that this is a problem that cannot be solved methodologically. As 

evidenced by the comparison of the performance of the deep neural network and logistic 

regression models, novel or exotic machine learning techniques cannot compensate for the fact 

that the data fed into the models represent a distorted view of the actual population distribution 

that would be encountered prospectively. Even with perfect measurement and modelling, 

temporal bias and the issues that result would still be present: the underlying trajectory would 

still be unobserved. 

 A useful analogy exists with the observer effect/Schrodinger’s cat in the physical 

sciences, where the observation of a particle induces the collapse of its wavefunction into a well-
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defined state. When a predictor is constructed that “knows” that a certain set of its subjects have 

experienced a delivery, the set of potential pathways experienced by these subjects similarly 

collapses to a subset compatible with a delivery. Simply knowing that a subject had a delivery 

necessitates that the same subject experienced a fertilization event in the past, and implies certain 

factors regarding the subject’s physical health (e.g. fertility, sexual activity). In contrast, a 

prospective prediction must look into the futures of individuals of every potential pathway, 

without the guidance of information from the future- a much more difficult task.  

 

Temporal Bias-Induced Replication Failure 

  The Mediterranean diet (characterized by consumption of olive oil, fruits, vegetables, 

among other factors) has been implicated as a protective factor against coronary heart disease, 

but the mechanism for this association is unclear. One paper set out to examine whether olive oil 

consumption specifically was associated with MI using patients from a Spanish hospital 

(Fernández-Jarne et al., 2002). MI patients and matched controls were interviewed regarding 

their olive oil consumption over the past year, and a protective effect against MI was observed 

among the highest quintile of olive oil consumers. In response, another group analyzed data from 

an Italian case-control study and were unable to identify the same association between the upper 

quintile of olive oil consumption and MI (Bertuzzi et al., 2002). Crucially, these analyses 

differed in the size of the observation window used: one year and two years respectively. As a 

result, not only were these studies sampling the MI trajectory unevenly, they sampled different 

parts of the MI trajectory. To examine the degree to which differing amounts of temporal bias 

present in each study could have contributed to the failure-to-replicate, we utilized longitudinal 

data from nearly 100,000 individuals from the Nurses’ Health Study (NHS) regarding olive oil 

https://paperpile.com/c/VZvmYF/OfrwA
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https://paperpile.com/c/VZvmYF/mM1GZ
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consumption patterns and MI to provide a baseline “ground truth.” We simulated retrospective 

case-control studies that considered different “lookback” periods to determine if the presence or 

magnitude of a protective effect was sensitive to the manner in which an experiment was 

conducted. Figure 1.3A details the simulation setup: longitudinal records (Figure 1.3A) were 

used to identify case (red) and control (green) individuals. MI dates and matched baseline dates 

are chosen for cases and controls, respectively. For each patient, exposures during the lookback 

time are recorded. The association between MI and the observed exposures were then calculated 

and the influence of the lookback time on association strength was assessed.  
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Figure 1.3. Temporal bias results from arbitrary alignment of cases and future-indexed 

lookback times. A) Over a particular time period, longitudinal data of olive oil consumption is 

continuous for all cohort members with time. Circles represent MI events, while diamonds 

represent matched, but otherwise arbitrarily chosen baseline points for controls. B) Case-control 

studies arbitrarily align MI patients at the date of the MI. As a result, the time dimension is 

inverted and anchored to the MI date, the position of controls is consequently lost. C) Strength of 

olive oil consumption-MI association given years of consumption prior to baseline considered. 

Effect size is normalized to the average 1-year association strength. Points are colored based on 

statistical significance after FDR correction.  
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 The simulated studies that examined one year of past olive oil consumption relative to the 

MI/baseline date detected a protective effect, as originally observed. However, the magnitude 

and statistical significance of this effect decayed as the size of the lookback period was 

increased, consistent with the results of the failed replication. When a two-year lookback period 

was used, only 41% of simulated studies observed a statistically significant result (Figure 1.3C). 

The observed protective effect in these cases is an artifact of methodology, rather than medicine, 

physiology, or society. The act of looking back from the MI date/matched baseline has the effect 

of inverting the time axis to “time-from-MI '' and aligning the case individuals (Figure 1.3B). 

However, no such treatment is possible for control individuals, and their position along the new 

temporal axis is unknown. As a result, there is no functional basis for comparing healthy 

individuals to individuals artificially indexed to a future event (MI) because these represent 

groups that can only be identified retrospectively, after the MI has already occurred. While there 

may indeed be a prospective association between olive oil and MI, protective or otherwise, these 

case-control studies were not powered to detect such an effect. Because both olive oil 

consumption and MI risk are time-varying features, the strength of the instantaneous association 

between the two will naturally depend on when each feature is measured.  

 

Discussion 

 Temporal bias can be thought of as a flaw present in the application of case-control 

experiments to real-world, prospective applications. Because these experiments do not uniformly 

sample the control-to-case trajectory, features and observations in certain parts of the trajectory 

are oversampled and assigned disproportionate weight. Furthermore, because the case 

observations that are model-applicable can only be identified after the case event actually occurs, 
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the resulting experimental findings are impossible to use prospectively. Temporal bias serves to 

amplify differences between the case and control populations, improving apparent predictive 

accuracy and exaggerating effect sizes of predictors. In prospective cases, it may also result in 

researchers failing to discover predictive signals that were outside the window considered. 

Because the magnitude of its effects is a function of an often-unobserved trajectory, temporal 

bias is poorly controlled for and can lead to replication bias between studies.  

The various effects of temporal bias stem from the disconnection between the 

retrospective case-control experimental protocol and the act of prospective induction or 

prediction. As a result, any field or domain where prediction, time-varying association, or 

comparative analysis is important is at risk. Temporal bias is consequently ubiquitous across the 

literature. Examples in clinical medicine and machine learning (Rand et al., 1985; Himes et al., 

2009; X. Wang et al., 2014; Chou et al., 2016; Ranganath et al., 2016; Choi et al., 2017; 

Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Consortium for Early 

Detection of Lung Cancer et al., 2018; Norgeot et al., 2019) typically take the form of the 

examples we have described: studies comparing biomarkers collected at the time of diagnosis to 

those from healthy controls, or prediction studies that utilize event-based windows. However, we 

have also identified analogous temporal bias in diverse non-medical domains: data center and 

hard drive failures (Murray, Joseph F, Hughes, Gordon F and Kreutz-Delgado, Kenneth, 2005; 

Y. Wang et al., 2014; Botezatu et al., 2016; Queiroz et al., 2017; Lin et al., 2018), severe 

weather prediction, (Marzban and Stumpf, 1996; McGovern et al., 2011), and identification of 

factors behind failed states (King and Zeng, 2001; Goldstone et al., 2010)). While the windows 

or experimental parameters in these studies may have been chosen based on the author’s domain 

knowledge regarding the transition trajectories at hand, analysis on the presence or magnitude of 
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bias may be illuminating. Several naive examples of sensitivity analyses in hard-drive failure 

prediction, where the devices themselves collect longitudinal monitoring and performance data, 

are presented in Supplementary Results.  

Temporal bias is not a novel phenomenon. The first documented case-control study in the 

medical literature was Reverend Henry Whitehead’s follow-up (Paneth, Susser and Susser, 2002) 

to John Snow’s famous report (Snow, 1856) on the Broad Street cholera outbreak. Whitehead 

aimed to evaluate Snow’s hypothesis that consuming water from the Broad Street pump led to 

infection. Whitehead surveyed both families of infected and deceased as well as individuals 

without cholera regarding their consumption of pump water during the time deaths were 

observed (Whitehead, 1865; Newsom, 2006).  

  

https://paperpile.com/c/VZvmYF/yXU6l
https://paperpile.com/c/VZvmYF/y80xD
https://paperpile.com/c/VZvmYF/Y7kkG+zeavJ
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Figure 1.4. Preventing Temporal Bias. A) Whitehead’s cholera study benefited from the short 

period between infection and death. Had Whitehead been faced with an outbreak of typhoid 

fever, his sampling strategy would oversample late-stage features. B) Hypothetical interview 

data from Whitehead’s case-control study. Lacking underlying knowledge regarding disease 

etiology, Whitehead’s experimental design would have experienced temporal bias given a 

disease with a longer incubation period. Shaded columns represent information hidden to the 

investigator. C) Randomizing the lookback window among case patients can uniformly sample 

the trajectory, if the lookback times go far back enough. D) Evaluating person-days, person-

weeks, or person-months can allow for the entire trajectory to be considered. E) Creating a well-

defined date from which a “look forward” window is deployed does not uniformly sample the 

trajectory, but is still prospectively implementable since the starting date can be determined in 

real time.  

 

 The outbreak began on August 31st, 1854 (Snow, 1856), with deaths occurring in the days 

that immediately followed. Whitehead’s subsequent efforts in identifying pump-water exposure 

among outbreak victims focused on the time period between August 30th and September 8th, 

corresponding to a lookback time between 1 and 10 days, depending on when the victim died. 

https://paperpile.com/c/VZvmYF/y80xD
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This would normally result in temporal bias towards the end of cholera trajectory. Although 

Whitehead’s conclusions were ultimately correct, the comparatively brief incubation period (2 

hours to 5 days (Centers for Disease Control and Prevention, no date)) of cholera contributed to 

the success of the experiment and Whitehead’s later ability to identify the index patient. The 

rapid transition from healthy to diseased ensured that Whitehead’s chosen lookback time would 

have uniformly sampled the disease trajectory. Had Whitehead instead been faced with an 

outbreak of another waterborne disease such as typhoid fever, which can have an incubation 

period as long as 30 days (Mintz, Slayton and Walters, 2015), Whitehead’s chosen window 

would oversample exposure status in the runup to death, leading to temporal bias that would 

overemphasize features in the latter portion of the disease trajectory (Figure 1.4A). Because the 

disease etiology and trajectory were unknown at the time, the association between Broad Street 

water and death is much less clear in the case of a hypothetical typhoid fever epidemic (Figure 

1.4B).  

 Since Whitehead’s attempt, both practical and psycho-social factors have also contributed 

to unconscious adoption of bias-susceptible experimental designs. From a data efficiency 

perspective, case-control studies are often characterized by large class imbalances. A case-

control experiment is one of the only ways to take efficient advantage of all minority class 

observations in a model. The analogous cohort experiment would require identifying a starting 

alignment date common to all study subjects. Furthermore, longitudinal observational data are 

often expensive or difficult to acquire, compared to the ease of one-shot, non-temporal case-

control datasets. Without the use of retrospective observations, a case-control study is one of the 

only types that can be conducted immediately after the study is conceived, rather than waiting for 

observations to be generated, as in prospective studies. 

https://paperpile.com/c/VZvmYF/JGwtr
https://paperpile.com/c/VZvmYF/UPT0V
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 The human and scientific tendency to condense high-dimensional, complex subjects into 

well-defined states is also a contributing factor. The need to define individuals as “case” or 

“control,” “diseased” or “healthy” is a necessary part of medicine and research but necessitates a 

loss of fidelity regarding the patient’s actual condition. This is unavoidable- even in the 

framework of precision medicine, the conceit is that the smallest groups for which distinct advice 

is relevant can be identified and that this better than “imprecise” medicine. However, not even 

the most precise methods have enabled n=1 diagnosis.  An awareness and understanding that 

patients are unique in their complexities and situations can mitigate the potential impacts of 

temporally biased findings. 

More concerningly, publication biases towards larger effect sizes and higher accuracy 

may have driven researchers towards methods that accentuate the differences between cases and 

controls. Temporal bias can be interpreted as a relatively invisible symptom of this subconscious 

aversion towards ambiguity in prognostic models. Strong predictive models (in terms of 

accuracy) are naturally easier to create when structural differences between the two groups are 

used to provide additional signal. The increasing popularity of large data sets and difficult-to-

interpret deep learning techniques facilitates this strategy.  

 This is not to say that case-control studies should be abandoned wholesale. These studies 

for practical reasons (data efficiency, cost, ease of deployment) have contributed countless 

numbers of discoveries to the scientific canon across fields. However, a systematic 

understanding of where and why temporal bias exists is critical in the transition of research 

findings to applications in the clinic and beyond. There are several strategies to minimize 

temporal bias where it exists and evaluate the size and direction of its effects otherwise. (Figure 

1.4B-E)  
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1) Assuming that a suitable control population can be identified, the following two 

conditions can enable uniform sampling of the control-to-case trajectory: i) the use of a 

randomized lookback time, and ii) the length of the maximum lookback time plus the 

length of the observation window is longer than the transition period (as with Whitehead 

and cholera).  

2) Person-time classification or prediction tasks, where multiple windows are drawn from 

sufficiently extended case observations for use can also uniformly sample the trajectory 

in question. This approach takes the form of sampling case trajectories more than once.  

3) The use of well-defined baseline dates for exposure evaluation is particularly attractive 

due to ease of deployment. Assessing exposure after a particular birthday, at the start of a 

particular month/year, or after a well-defined event makes the prospective deployment 

population much easier to identify. While, strictly speaking, these forward-facing 

windows do not uniformly sample the trajectory, they also do not invert the flow of time 

(Figure 1.3A) and, thus, can be used prospectively.  

Finally, sensitivity analyses, such as those demonstrated in our Lp(a)/MI or delivery 

prediction experiments, combined with researchers’ background domain knowledge regarding 

the state transition trajectory in question can be used to estimate effects of prospective 

deployment. An increasing focus on considering the deployability of a given model, the nature of 

the underlying trajectory, or even whether a particular feature can realistically be predicted from 

features at hand can also serve to prevent temporal bias from infiltrating a study.   

While temporal bias is common and has far reaching implications, it is unique among 

experimental or epistemological flaws in that once understood, it is fairly easy to detect. As 

experiments grow ever broader in scope and higher in ambition, transparency regarding the 
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extent to which temporal bias influences findings is key to ensuring the consistency of 

associations or predictions, allowing for the reproducibility of results, and maintaining greater 

credibility of the scientific process.  

Theoretical Framework for Temporal Bias 

We present a theoretical framework for understanding temporal bias for an arbitrary case-

control study. These types of studies can have two objectives, 1) to utilize observed features to 

predict the transition of controls to cases or 2) to evaluate the strength of association between 

observed features and case-control transition. Variables and descriptions are presented in Table 

1.2, while a narrative description of the framework is presented below. 
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Table 1.2: Variables and Descriptions 

Variable Description 

s Given an observation in a case individual, the time of the 

observation relative to the future event. Always a negative value.  

f(s) Trajectory of observations and predictors towards the future event. 

General form:

 

Case population Defined by the presence of the event, aligned in time such that 

events among all individuals happen simultaneously (s=0). 

Control population Defined by absence of event. 

𝐹𝑠=0 Distribution of observed f(s) at s=0. 

𝐹𝐶 Distribution of observed f(s) of control population. 

𝑤1,𝑤2 
Relative weight of control and case populations respectively. 

𝑠𝐶 
Minimum magnitude timegap s when 𝐹𝐶 and 𝑤1𝐶 + 𝑤2𝐹𝑠=0 are 

identically distributed. 

𝐹𝑠𝐶
 Distribution of observed f(s) at s=𝑠𝐶. 

i 
Lookback time, defined by the experimenter during a study. A 

positive value. 

j 
Observation window, defined by the experimenter during a study. A 

positive value. 

k 
Defined as 𝑖 + 𝑗 + 𝑠𝐶 
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The case population is defined by the first occurrence of a characteristic event that serves 

to align population members in time. This event is the subject of the study: individuals who 

experience the event are cases while those who do not are potential controls. We next define a 

timegap 𝑠 that represents the amount of time between an observation and the characteristic event. 

For every member of this population, this event is fixed to occur at timegap 𝑠 =  0. We next 

define a control (non-case) population whose members are i) representative of the population 

that produced the cases and ii) are at risk of experiencing the event in question. Let 𝑓(𝑠) 

represent the predictor trajectory (Condition 2, Background). Let 𝐹𝑠=0 and 𝐹𝐶 represent the 

distribution of observed 𝑓(𝑠) for the case population at 𝑠 = 0 and for the control population, 

respectively. Note that individual observations from 𝐹𝐶 do not correspond to uniform values 𝑠 

because controls do not have an event against which to index, by definition. We define 𝑠𝐶 as the 

minimum timegap when 𝐹𝐶 and 𝑤1𝐹𝐶  + 𝑤2𝐹𝑠𝐶
are identically distributed (Condition 3, 

Background), where 𝑤1 and 𝑤2 are the relative populations of the control and case population, 

respectively, and 𝐹𝑠𝐶
 is the distribution of observed 𝑓(𝑠) among cases at 𝑠𝐶. That is, 𝑠𝐶is defined 

as the earliest point where the cases begin to diverge from the controls. Because controls are 

selected due to not experiencing the event, their observations correspond to otherwise unknown 

values of 𝑠 ≤  𝑠𝐶  (Figure 1.3B). By definition, controls transition to cases and not vice versa, so 

𝑚𝑎𝑥(𝑓(𝑠)) =  𝐹𝑠=0
̅̅ ̅̅ ̅̅  and 𝑚𝑖𝑛(𝑓(𝑠)) = 𝐹𝐶

̅̅ ̅ (Condition 1, Chapter 1, Background). Finally, we 

note that 𝐹𝐶 does not necessarily represent “zero progression”; it is, rather, an abstraction of the 

baseline progression of the control population toward the event in question. This is a 

representation of the fact that there is a non-zero chance that controls transition to cases, 

assuming controls were properly selected with exchangeability in mind. We can now express the 

general form of 𝑓(𝑠): for 𝑠 ≤ 𝑠𝐶, 𝑓(𝑠) = 𝐹𝐶; for 𝑠 > 𝑠𝐶, 𝑓(𝑠) increases to 𝐹𝑠=0at 𝑠 = 0. This 
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process appears to introduce a discontinuity in 𝑓(𝑠) when 𝑠 = 𝑠𝐶. This is an artifact of the binary 

nature of the case-control experiment. In essence, although the ground truth trajectory may be 

continuous, the experiment naturally uses the observed control distribution to define a cutoff 

beneath which controls are considered exchangeable. The discontinuity occurs when the true 

trajectory intersects with this cutoff.  

 During the experiment itself, a look-back time 𝑖 and observation window 𝑗 are defined 

where 𝑖, 𝑗 ≥ 0. For static time point predictions, 𝑗 = 0. These values are not necessarily constant 

for all features or across all patients. Observations of the case population correspond to those 

made at values of 𝑠 between [−𝑖 − 𝑗, −𝑖], while observations of the control population still 

correspond to 𝑠 ≤ 𝑠𝐶(where all observations are members of the 𝐹𝐶 distribution). When 𝑖 = 𝑗 =

0, the case observations correspond directly to 𝑠 = 0. We assume that 𝑖 is chosen by the 

experimenter based on the period of time when a prediction or evaluation would be useful. 

Therefore, in prospective deployment, individuals with observations made at 𝑠 >  −𝑖 will not 

need to be considered for the purpose of model evaluation. Comparisons between the case 

observations [𝐹−𝑖−𝑗 , 𝐹−𝑖]  and control populations 𝐹𝐶can then be made, leading to odds ratios for 

observations and the event, or “predictive models” for the event. 

 Temporal bias occurs when 𝑖 + 𝑗 < |𝑠𝐶| and 
1

𝑗
∫ 𝑓(𝑠)

−𝑖

−𝑖−𝑗
 𝑑𝑠 >

1

−𝑖−𝑗
∫ 𝑓(𝑠)

−𝑖−𝑗

𝑠𝐶
 𝑑𝑠, while 

the magnitude of the bias can be estimated by 
∫ 𝑓(𝑠)

−𝑖
−𝑖−𝑗  𝑑𝑠

𝑓(−𝑖)∗(𝑘+𝑗+𝑠𝐶)
, where 𝑘 = 𝑖 + 𝑗 + 𝑠𝐶. Prospective 

deployment of an odds ratio or model can be thought of as randomly sampling 𝑓(𝑠) over s 

between [𝑠𝐶 , 0]. Note that this task is impossible: all values of 𝑠 are negative and defined 

relative to a case event occuring in the future. The precise value of 𝑠 for a given individual 

cannot be known until this event happens, while if an individual is censored, this value will never 
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be known. The tension of using 𝑠, rather than conventional time, is an artifact of the fact that 

case-control studies intrinsically leak information regarding case status from the future. The 

case-control window structure assumes an instantaneous transition between 𝑠 = 0 and 𝑠 =  𝑠𝑐 +

𝑖 + 𝑗. As we show, this results in an exaggeration of odds ratios or predictive accuracies due to 

sampling cases artificially at timepoints close to the event.  

 

Figure 1.5: Schematic of Generic Temporal Bias Scheme. The investigator attempts to use 

features in the observation window (j) with a prediction window offset (i) to predict an 

individual’s position across the entire trajectory: an impossible task.  

 

 

Materials and Methods 

Lipoprotein(a) Trajectory Imputation 

 Centiles of lipoprotein A values [Lp(a)] for myocardial infarction (MI) of 4441 Chinese 

patients (cases) and healthy matched controls (controls) were utilized as described by Paré, et al. 
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(Paré et al., 2019) to construct log-normal distributions of Lp(a) values for each cohort. One 

hundred fifty thousand case and control measurements were drawn and a linear model was fit to 

establish the baseline coefficient of association between Lp(a) and MI in the presence of 

temporal bias. For trajectory imputation, for each case patient, a starting Lp(a) value was 

generated using one of three methods: i) random sampling from the control distribution such that 

the drawn value is smaller than the case value, ii) percentile matching (if the case value fell in 

the Nth percentile of the case distribution, the Nth percentile value from the control was drawn), 

and iii) a uniform shift of 15% (representing the observation that the median control value was 

15% lower than the median case). This starting value is understood to represent the Lp(a) 

measurement of the case patient in the distant past at the point when they were cardiovascularly 

healthy. For each pair of case-starting and case-ending values, a linear/logarithmic/logistic/step 

function was fit using the two values as starting and ending points. New case observations were 

generated by randomly selecting a point along the generated trajectory allowing for the 

computation of a “prospective” effect size. All individual experiments were repeated 100 times 

with newly drawn sample cohorts.  

 To examine the potential impact of inadvertent selection bias on the observed association 

between Lp(a) and MI, the Lp(a) values and MI for all patients with more than two Lp(a) 

observations prior to the first recorded MI event were extracted from the Partners Research 

Patient Data Registry database. This work was approved by the Partners Institutional Review 

Board (Protocol #2018P000016). Case and control patients were defined based on MI status, and 

for each patient in each cohort, the i) largest available, ii) smallest available, and iii) mean Lp(a) 

values were computed and used to identify the observed effect size under each selection scheme. 

All calculations were conducted in R using the glmnet package.  

https://paperpile.com/c/VZvmYF/FHKrU
https://paperpile.com/c/VZvmYF/FHKrU
https://paperpile.com/c/VZvmYF/FHKrU
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Delivery Prediction from Sequential Claims Data 

Records of health insurance claims in 2015 from a deidentified national database were 

utilized for this study. Delivery events were identified based on International Classification of 

Diseases (ICD9/10) diagnostic code, Current Procedural Terminology (CPT) code, or the birth 

year of newly born members linked by subscriber-parent annotations. Cases were defined as 

individuals who experienced a delivery between February and December, 2015, while controls 

were defined as individuals who did not experience a delivery during any of 2015. Thirty 

thousand cases were randomly selected and matched to 30,000 controls based on age and ZIP 

code. For each individual, case-control and cohort feature windows were defined. Case-control 

windows were set as the month of records that was three months prior to the delivery/matched 

baseline date for cases and controls respectively. Cohort windows were set as the month of 

records from January, 2015. Three studies were simulated: 1) The CC-CC study consisted of 

model training using case-control windows and model evaluation using case-control windows. 2) 

The CC-Cohort study consisted of model training using case-control windows and model 

evaluation using cohort windows. 3) The Cohort-Cohort study consisted of model training using 

cohort windows and model evaluation using cohort windows. For each study, deep recurrent 

neural networks and logistic regression models were trained over the features present in each 

window. For deep recurrent neural network-based models, the linear sequence of features inside 

the window was provided in the form of International Classification of Diseases (ICD9) codes 

for diagnoses, Current Procedural Terminology (CPT) codes for procedures, and National Drug 

Codes (NDC) for prescriptions. The sequence length was set to 20 events, individual sequences 

were either padded or clipped to meet this requirement. Logistic regression models utilized 

binary occurrence matrices for all events as features. Both models contained demographic 
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information in the form of age. Sex was excluded as a feature because all cohort members were 

female. All calculations were conducted in Python using the Keras and scikit-learn packages.  

Simulation of Olive Oil/Myocardial Infarction Case-Control Study 

Data from the Nurses’ Health Study (NHS) was used for this analysis. All nutrition and 

disease incidence surveys between 1994 and 2010 were considered. Internal NHS definitions of 

first MI were utilized to define the case population. Case individuals were only considered if 

they had at least two consecutive nutritional surveys with answers to all olive oil related 

questions prior to the first MI event. Individuals with any history of cardiovascular disease 

including MI and angina were excluded from the control population. Control individuals were 

only considered if they had at least two consecutive nutritional surveys with answers to all olive 

oil related questions. In total, 3,188 total qualifying MI individuals were identified, and 94,893 

controls. A baseline date for each control individual was defined based on the availability of 

consecutive nutrition surveys. For each case, a matched control was identified based using age at 

baseline and sex. For all individuals, total cumulative yearly olive oil consumption was 

computed by summing olive oil added to food and olive oil salad dressing consumption, as 

validated by Guasch-Ferré, et al. (Guasch-Ferré et al., 2015). For each experiment, a lookback 

time between 1-4 years was selected, and the cumulative total olive oil consumed during the 

lookback time relative to the MI date/baseline was calculated. For each lookback time, the effect 

size between the top quintile (based on total consumption) and the remaining population and 

statistical significance were calculated to match the protocols of Fernández-Jarne et al. and 

Bertuzzi, et al. (Bertuzzi et al., 2002; Fernández-Jarne et al., 2002). Each experiment, including 

case-control matching, was repeated 200 times. All calculations were conducted in R using the 

glmnet package.  

https://paperpile.com/c/VZvmYF/QhD67
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https://paperpile.com/c/VZvmYF/OfrwA+mM1GZ
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Chapter 2: Characterizing prediagnostic Parkinson’s disease and predicting onset in a clinically 

useful manner 

 

Chapter Introduction  

 This chapter applies ideas about temporal bias to construct a clinically useful classifier 

for Parkinson’s disease diagnosis. Previous work in risk stratification was impacted by temporal 

bias, making it impossible for clinicians to determine which patients were within the scope of the 

model in real time. Because the manuscript that this chapter was adapted from was aimed 

primarily at a neurology audience, temporal bias was only referenced conceptually in the text, 

rather than by name. A technical addendum is also present at the end of the chapter, describing 

the development of modeling methods used.  

 
 

Main Text 

 

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder 

worldwide and is increasing in incidence as the general population ages (Pringsheim et al., 

2014). Current treatment strategies focus on alleviating clinical symptoms, which have dramatic 

effects on quality of life but have little ability to slow disease progression (Lang and Espay, 

2018). However, a new class of drugs is being developed that targets recently discovered 

genomic loci (Hardy et al., 2009; Nalls et al., 2014; Chang et al., 2017; Deng, Wang and 

Jankovic, 2018; Iwaki et al., 2019) associated with PD to modify disease progression. These 

include inhibitors of leucine‐rich repeat kinase activity, antibodies against α-synuclein, and 

compounds that modulate glucocerebrosidase activity (Sardi and Simuni, 2019). The targets of 

these therapeutics are common pathways that may either cause PD or enhance the risk of 

https://paperpile.com/c/VZvmYF/7Y79A
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https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/kFMCP+idOaF+kXSKc+uYGKt+3dhQ4
https://paperpile.com/c/VZvmYF/xnwhd
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developing the disease. The success of the new class of therapeutics will rely in part on the 

ability to identify PD cases earlier, when an intervention has greater potential to have an impact. 

The primary goal of this study is to facilitate the early identification of PD onset through 

prediction and characterization of prediagnostic PD.  

Perhaps the most challenging aspect for early intervention using this new therapeutic 

pipeline is that approximately 30-60% of substantia nigra pars compacta dopaminergic neurons 

have already died by the time PD is diagnosed (Gaig and Tolosa, 2009; Tabbal et al., 2012) 

There is evidence that clinical symptoms, including non-motor features, begin to occur several 

years before a PD diagnosis (Berg et al., 2015; Mahlknecht, Seppi and Poewe, 2015). Early 

detection of these symptoms may enable earlier identification of people at high risk ultimately 

leading to faster diagnoses. Certain prediagnostic features, based on clinical observations, have 

been widely studied and include impaired olfaction, constipation, urinary disorders, disturbed 

sleep patterns, anxiety and depression, autonomic dysfunction, and many others (Gonera et al., 

1997; Abbott et al., 2001, 2005; Ross et al., 2008; Postuma et al., 2012; Lerche et al., 2014; 

Schrag et al., 2015; Darweesh et al., 2017). Further insight into the first clinical presentations of 

these prediagnostic features, as well as others not traditionally thought to be components of 

prediagnostic PD, and their temporal relationships would help to delineate the pathophysiology 

of early Parkinson’s disease progression. This would enable the identification of people at 

increased risk of developing overt Parkinson’s disease, who could be eligible for inclusion in 

clinical trials of early neuroprotective strategies and ultimately preventative interventions. 

Using a curated set of these variables from the period just prior to a PD diagnosis, Schrag 

et al. (Schrag et al., 2019) demonstrated that it is possible to develop an algorithm to effectively 

predict whether a person will develop PD within five years. However, one limitation of this 

https://paperpile.com/c/VZvmYF/JLiFV+tWAiV
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https://paperpile.com/c/VZvmYF/EMI65+jbyfN+FqGrv+uyaGt+lxmmL+icAB2+jh3xr+ScyFW
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study was their focus on the entire time period up to an individual’s PD diagnosis. We 

hypothesized that this algorithm was primarily influenced by patients where clinicians already 

suspected PD. In this case, because the data captured included the complete medical history that 

was used for PD diagnosis at their subsequent visit with a neurologist, we suspected that the 

signal driving selectivity of this algorithm, and others built on similar methods, derived primarily 

from features close in time to the diagnosis itself. Given that the delay to diagnosis is well-

established in PD and has been shown to take a median of around one year (Breen et al., 2013), 

this would limit the impact of this diagnostic algorithm. 

Furthermore, the technical development of the algorithm makes prospective real-world 

usage in the clinic difficult. Because the algorithm specifically distinguishes patient cohorts 

selected based on their future PD status (first presentations within 5 years from a PD diagnosis),  

a clinician would not know which individuals to apply the algorithm to until after a patient’s PD 

diagnosis. It is not possible to evaluate if someone is within 5 years of a PD diagnosis in real 

time. Consequently, we sought to develop a predictor with well-defined entry criteria to enable 

clinical utility based on specific clinical events. 

In this study, we utilized two large health record databases to develop a predictor of 

which individuals progress into PD with a focus on actionability that takes into account the 

unique features surrounding the trajectory of PD. Ultimately, accurate, prospective identification 

of high-risk individuals would allow for both earlier diagnosis, intervention, and more effective 

large-scale evaluation of potential therapeutics. 

  

https://paperpile.com/c/VZvmYF/Uq3WR
https://paperpile.com/c/VZvmYF/Uq3WR
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Methods: 

Data 

The main components of this study were performed utilizing two data sources:  

1) The Partners Healthcare Research Patient Data Registry, composed of electronic 

medical records (EMR) approximately 6 million individuals in Massachusetts. Data used in this 

study covers patients records from the early 1990s through the end of 2018. 

2) A de-identified administrative claims database from a large private insurance company 

representing more than 75 million unique members during a period extending from January 1, 

2008 through December 31, 2018.  Members with zip codes in Massachusetts were excluded 

from our analyses so as not to overlap with the first dataset.  

In both datasets we extracted gender, year of birth, coverage or enrollment duration, zip 

code, ethnicity, diagnoses (in the form of International Classification of Diseases, 9th and 10th 

Revision codes (ICD9/10)) and procedures (in the form of Current Procedural Terminology 

codes (CPT)). Medication prescriptions were not evaluated due to incomplete coverage for this 

population in the Claims data. 

 

Subject/Control Selection Criteria 

We utilized a similar set of case criteria to other studies identifying PD cohorts in large 

medical records databases (Alonso et al., 2007; Schrag et al., 2015)- these criteria are 

specifically modeled after inclusion criteria for PD clinical trials. Individuals were first required 

to have at least two ICD diagnosis codes for PD. The first of these codes was set as their baseline 

point and a second code was required within the 2 years following their baseline point and at 

least 90 days after their first. A minimum age of 50 at baseline was set to remove cases not likely 

https://paperpile.com/c/VZvmYF/fkHvk+EMI65
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to be sporadic idiopathic PD. Subjects were required to have at least two years of claims data 

prior to their baseline diagnosis and 2 years following in order to capture the prodromal period of 

the disease and to track progression.  The two years of data prior to their baseline limits the 

possibility of inclusion of patients with PD that were diagnosed previously (Lewis et al., 2005). 

Subjects who presented with diagnoses for encephalitis, Alzheimer’s disease or similar 

cognitive disorders that could phenocopy a true idiopathic PD diagnosis during the window prior 

to baseline were removed. Subjects with any presentation prior to baseline date of schizophrenia, 

other Parkinson’s like disorders including metabolic neurogenic disorders (e.g. Wilson’s 

Disease), or other degenerative diseases that produce a clinical syndrome of parkinsonism 

(Multiple system atrophy, Progressive supranuclear palsy) were removed. All codes utilized are 

listed in Table S2.1. 

A control cohort was structured in a similar manner. First, an artificial baseline point in 

time was established such that the distribution of available records following their baseline point 

matched the distribution of the same time window for the PD cohort. This was done to ensure a 

comparable follow-up window in which all controls must have representative data. We finally 

required that all subjects have at least 2 years prior to and post their baseline date, the latter being 

a criteria already established from the baseline point matching, and be at least 50 years of age at 

their baseline point. Finally, we selected a matched subset of controls to PD cases using age 

(within 5 years) and gender. 

We later resampled the databases for anyone having either a gait and/or tremor disorder 

diagnosis based on ICD codes (Table S2.1). Cases were defined as those patients eventually 

diagnosed with PD and controls set to those who did not. For both cohorts, we utilized first 

diagnosis of gait and/or tremor disorder prior to PD diagnosis as their baseline points.  All other 

https://paperpile.com/c/VZvmYF/bwqiL
https://paperpile.com/c/VZvmYF/bwqiL
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inclusion/exclusion criteria were repurposed using this new baseline point.  No matching was 

conducted for these tasks, as the entry criteria were well defined. Subjects with a PD diagnosis at 

baseline were excluded as the prediction task was already accomplished by the clinician. 

 

Prediagnostic PD Trajectory Modeling/PD Progression Prediction 

We conducted two parallel forms of modeling to examine the trajectory of prediagnostic 

PD: 1) a logistic regression model using an occurrence matrix of individual features; 2) deep 

learning over a patient’s observed temporal sequence of claims. The sequence was sampled at 

different time points corresponding to different prediction windows sizes: 0, 15, 30, 45, 75, 90, 

180, 270, 360, 450, 640, and 720 days prior to PD diagnosis/baseline. For each time point, a two-

year long observation from the patient’s sequence was used. As an example, for the 75 day time-

point, records between 75 and 805 days prior to the baseline were utilized in the model, while 

records within 75 days of baseline were excluded. The features included were patient 

demographic data, diagnoses (ICD codes mapped to PheWAS (Denny et al., 2010) codes to 

reduce dimensionality), procedures (both CPT & ICD), and time between data points. We later 

repeated these tasks to model progression into PD using the two year window prior to first gait 

and/or tremor disorder diagnosis. 

 

Static Regression Model 

We fit a penalized regression model to predict the diagnosis of PD using a static 

prediction vector constructed of the values of demographic data and counts of diagnoses, 

procedures and time between data points. We measured predictive accuracy via area under the 

receiver operator characteristics using 5-fold cross validation. We then calculated odds ratios and 

https://paperpile.com/c/VZvmYF/0przO
https://paperpile.com/c/VZvmYF/0przO
https://paperpile.com/c/VZvmYF/0przO
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95% confidence intervals on the entire dataset. We performed univariate association testing 

using age and gender-controlled logistic regression to identify features that demonstrated an 

association with PD onset. We first performed this association testing with all features and then 

again with the features present in at least 0.5% of the population. This process was repeated 

independently in both the insurance claims dataset as well as the Partners research database. We 

filtered to identify features with significant p-values after multiple testing using the Bonferroni 

adjustment (Haynes, 2013) in both datasets.  

 

Deep Learning Temporal Sequence Model 

We trained a deep recurrent neural network (RNN) using gated recurrent units (GRU) to 

predict the onset of PD using each patient’s sequence of interactions with the healthcare system 

(claim or entry into medical record). Sequences for the RNN were constructed using temporal 

embeddings trained from a separate cohort of one million individuals older than 50.(Beam et al., 

2020) Temporal sequences were constructed by interleaving tokens signifying the time between 

events with tokens representing the events themselves. A co-occurrence matrix was created over 

all tokens, where events that happened within 7 days of each other were said to co-occur. This 

window was chosen because events that are temporally close are likely to reflect simultaneous 

aspects of patient physiology. This matrix was then factored to produce a unique embedding 

vector for each token. Given an observation window, temporal sequences of events with the 

window were created for case and control individuals, using the previously created embeddings. 

Sequences were clipped or padded to a length of 1200 tokens to ensure equal lengths between 

individuals, with clipping occurring on the earliest events in a window when necessary. 

Sequences were classified by a deep GRU recurrent neural network. Models were retrained from 

https://paperpile.com/c/VZvmYF/Bp0pj
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scratch using randomly selected train, test, and validation splits to produce confidence intervals. 

Neural network models were trained only in claims data due to the large amount of data required 

to construct embedding vectors. A technical addendum on this process is presented at the end of 

the chapter.  

 

Comparison between Predictive Models trained using different Data Modalities 

We compared the predictive model trained using EMR data to the model trained using 

administrative claims data in two ways: 1) comparing the performance of the model outputs and 

2) comparing the features driving the model performance between the two different models. This 

comparison of relative feature importance was performed by first calculating the Pearson 

correlation of each data modality separately. This was compared to the correlation of feature 

importance between the two different data modalities.  

 

Comparative Diagnosis Prevalence 

Trends in comparative diagnosis prevalence were identified by first identifying a set 

population of PD cases and age/gender matched control individuals with coverage prior to and 

after each particular window. For every given time point, defined as the 365 days relative to the 

point itself, and a given diagnosis, the prevalence of that diagnosis within that window was 

computed. Prevalence was computed for PD case and control populations separately.  For 

example, a tremor frequency of 0.08 among cases at day 730 implies that 8.0% of PD cases had a 

tremor diagnosis between 730 and 365 days prior to their PD diagnosis.  

  



52 

Results 

Cohort Demographics 

Table 2.1 describes the demographics of the EMR and Claims based cohorts, stratified by 

the PD case status.  Age of first diagnosis was slightly higher in the claims cohort, but was over 

70 in both datasets. Our cohorts align with accepted estimates of PD incidence in the 

population(Poewe et al., 2017) (Table 2.1). Population statistics between cases and matched 

controls largely align between the EMR and Claims data though the latter population is slightly 

younger (owing to the transfer of individuals above 65 to Medicare) and has more extended 

terms of coverage due to the nature of the data sources. EMR records only capture an 

individual’s interactions with that particular hospital system, while claims records capture all of 

an individual’s paid interactions while they were insured.  

  

https://paperpile.com/c/VZvmYF/ebjBh
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Table 2.1. Population statistics between cases and matched controls in EMR and Claims Data. 

Ethnicity data was only available for a subset of patients. 

 EMR Claims 

 PD 

Cases 

Matched 

PD 

Controls 

PD 

Cases 

Matched 

PD 

Controls 

Total 3251 18851 5131 23085 

Male (%) 1903 

(58.5) 

11131 

(59.0) 

3151 

(61.4) 

14177 

(61.4) 

Age at Enrollment (STD) 63.15 

(10.78) 

63.94 

(10.909) 

69.01 

(10.33) 

68.71 

(10.34) 

Age at Baseline (STD) 72.48 

(9.33) 

72.64 

(10.39) 

73.70 

(10.23) 

73.69 

(10.23) 

Fraction White (among 

available) 

87.6 87.8 81.8 80.6 

Percentage African 

American (among 

available) 

2.4 3.44 1.92 4.25 

Percentage Hispanic 

(among available) 

2.4 1.47 3.42 2.85 

Percentage Asian (among 

available) 

1.66 1.01 2.84 2.85 

Percentage Other Race 

(among available) 

5.93 6.21 1 9.41 

Enrollment Months (STD) 209.08 

(78.66) 

186.77 

(75.62) 

106.51 

(17.84) 

104.86 

(18.62) 

Enrollment Months Prior to 

Baseline (STD) 

111.88 

(72.57) 

104.29 

(68.90) 

61.49 

(17.59) 

64.95 

(18.47) 

Enrollment Months After 

Baseline (STD) 

97.68 

(58.94) 

82.99 

(51.43) 

45.14 

(16.06) 

40.04 

(13.44) 
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Parkinson’s Disease Trajectory is Characterized by a Prodromal Period  

 

Figure 2.1. Area under the ROC Curve predicting PD onset at various points prior to PD 

diagnosis. A.) Logistic Regression vs. Neural Network in Claims  B.) EMR vs. Claims Logistic 

Regression C.)  Top 20 diagnoses for predicting PD immediately prior to PD diagnosis. 
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We began by using a deep neural network to construct an unbiased prediction algorithm 

for future PD diagnosis utilizing two years of observations prior to the PD diagnosis in cases and 

matched controls. In contrast to prior models, we sequentially compared different time periods 

before the PD diagnosis date. We found a significant spike in prediction accuracy as the size of 

this window was reduced, which reached a maximum immediately prior to the PD diagnosis 

(Figure 2.1A,B). We found that the accuracy of the deep neural network and a logistic regression 

model trained on identical claims data converged as the diagnosis date approached, implying that 

the most relevant signal for that time period was additive, with linear relationships between 

clinical events (diagnoses, prescriptions and procedures), whereas earlier time points appeared to 

be driven by non-linear, complex relationships between factors that only neural networks could 

resolve. The increase in performance closer to PD diagnosis date by both prediction models 

indicated the existence of a pre-diagnostic window during which motor symptoms were present 

but the diagnosis had not yet been made. Clinicians have described a time period immediately 

ranging between 3 months to one year (Breen et al., 2013) where PD is suspected and the patient 

is referred to neurologists or subjected to more rigorous clinical evaluation before a formal PD 

diagnosis is rendered. Consequently, the strong performance of classifiers that include this period 

may be illusory: the models draw signal from the actions of clinicians who already suspect PD. 

We find that the dominant features of this window include diagnoses of abnormality of gait, as 

well as diagnoses corresponding to tremor disorders (abnormal involuntary movements, essential 

tremor) (Figure 2.1C), which likely represent proxy diagnoses for PD prior to a neurologist 

confirming the diagnosis. 

  

https://paperpile.com/c/VZvmYF/Uq3WR
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Gait and Tremor Disorders highlight PD Differential Diagnostic Window 

 

Figure 2.2. Frequency of phenotypes relative to PD diagnosis date (cases)/matched baseline date 

(controls). Each point represents the frequency of the phenotype among the population in the 

year defined at the point: a tremor frequency of 0.08 at day 730 implies that 8.0% of PD cases 

had a tremor diagnosis between 730 and 365 days prior to their PD diagnosis.  

 

In order to better characterize the predictive implications and utility of this pre-diagnostic 

window, we examined the rates of different diagnoses relative to the PD diagnosis date 

corresponding to select phenotypes: gait disorders, tremor disorders, constipation (a known 

prodromal symptom of PD), as well as a phenotype with little if any known physiological 

connection to PD: breast cancer screening (Table S2.1B). Gait and tremor diagnoses were chosen 

based on their strength of association and the presence of sufficient patients to create PD 
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classifiers indexed to their first diagnosis point. In the case of constipation, we found elevated 

rates of diagnosis prior to the PD diagnosis date, that elevate prior to and post PD diagnosis.  A 

small spike at PD diagnosis is likely due to increased documentation at this critical inflection 

point in care. In contrast, constipation among PD controls increases more gradually over the 

whole window, but is agnostic to the baseline date itself. This behavior is consistent with 

constipation’s role as a symptom of PD. Breast cancer testing, a test performed as a part of the 

standard of care, showed little variance between PD cases and controls throughout the entire 

window, consistent with the lack of evidence for a physiological association to PD. We find that 

gait and tremor disorders among PD cases slowly diverge from controls until a large spike 

approximately one year prior to the PD diagnosis, and fall off in the years post diagnosis likely 

due to their replacement with a PD code. This suggests that gait and tremor diagnoses are being 

used as proxy diagnoses in the runup to the PD diagnosis, consistent with the presence of a pre-

diagnostic window. 

 

Predicting Parkinson’s Disease Progression from First Gait/Tremor diagnosis 

Based on the importance of gait and tremor diagnoses in the prediagnostic models and the 

above finding that they are widely used as proxies for a PD diagnosis, we constructed three new 

cohorts where baseline classification dates were defined as i) the diagnosis of first gait or tremor 

disorder, ii) the first diagnosis of gait disorder only, and iii) the first diagnosis of tremor disorder 

only. In all three cases, all patients were gait/tremor naive prior to their baseline. Two years of 

features for each patient prior to the baseline were collected. The shift from a predictor based on 

a case-control study to a cohort study is useful in several ways. Not only are cohort studies 

considered a higher level of evidence (Burns, Rohrich and Chung, 2011), but the presence of a 

https://paperpile.com/c/VZvmYF/bOU76
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well-defined entry date allows for deployment of a predictor in clinical workflow. We used 

identical model architectures/parameters (both neural network and penalized logistic regression) 

for gait and tremor indexed models as for prediagnostic models (Figure 2.1). The primary 

difference was the selection of the baseline point: a point in the future for the prediagnostic 

models, compared to a point at present for the gait/tremor models. We find that as the models are 

directed to focus on more specific cohorts, accuracy declines, in both claims and EMR, as well 

as between both logistic regression and deep neural network based models (Table 2.2). The 

strongest predictor for future PD diagnosis for all three (gait or tremor, gait only, tremor only) 

cohorts was bipolar disorder (Table 2.3A, Table S2.2-3), an association that has been highlighted 

by other epidemiologic studies (Faustino et al., 2019). Progression into PD from gait disorders 

only was uniquely defined by a histories of features such as urinary tract infection and chronic 

laryngitis, while progression from tremor disorders only was uniquely defined by parasomnia. 

While both of these symptoms are known to be early symptoms of PD, the distinction in their 

contribution towards risk in these gait and tremor defined cohorts may indicate differences 

between two subsets of disease. The models trained on both data sources showed strong 

correlation (Pearson correlation of 0.71) between individual feature odds ratios. 

We examined the strongest performing model (Table 2.2A), the neural network 

predicting PD progression from either first gait or tremor in more depth (Table 2.2B, Table 2.3). 

For this model, we examined the average days-in-advance that the model predicted PD for 

individuals who truly went on to experience a PD diagnosis on record at various false positive 

rate (FPR) thresholds. While the mean days saved declined slightly as the FPR threshold is 

increased, the average was still in excess of 300 days with an FPR rate of 0.01. This indicates 

https://paperpile.com/c/VZvmYF/FC5SV
https://paperpile.com/c/VZvmYF/FC5SV
https://paperpile.com/c/VZvmYF/FC5SV
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that model performance is not dominated by individuals who immediately go on to develop PD 

after a gait or tremor diagnosis, and that among this selective cohort, early diagnosis is feasible.  
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Table 2.2. (Table continues on next page) A) Claims, EMR Prediction accuracy at first gait or 

tremor, first tremor, and first gait. B) Analysis of advance prediction time at various FPR 

thresholds for first gait or tremor Deep Neural Network Model.  

A) 

  

Claims  

  

Demographics 

Validation AUROC (95% Confidence) 

 PD Cases Percent 

Progressi

ng to PD 

Average 

days to PD 

(SD) 

Deep Neural 

Network 

Logistic 

Regression 

First Gait 

or 

Tremor 

8475 2.43 469 (493) 0.874 (0.869-

0.879) 

0.803 (0.791-

0.816) 

First Gait 

Only 

3925 1.37 575 (521) 0.769 (0.759-

0.780) 

0.791 (0.772-

0.809) 

First 

Tremor 

Only 

4550 6.69 377 (447) 0.698 (0.679-

0.718) 

0.697 (0.674-

0.719) 

 

  

EMR 

  

Demographics 

Validation AUROC 

(95% Confidence) 

 PD 

Cases 

Percent 

Progressing to PD 

Average days to 

PD (SD) 

Logistic Regression 

First Gait or 

Tremor 

1349 3.08 548 (517) 0.804 (0.792-0.816) 

First Gait Only 694 2.23 606 (530) 0.714 (0.679-0.750) 

First Tremor 

Only 

681 5.24 479 (490) 0.757 (0.730-0.784) 
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B) 

FPR FNR Mean Days Saved 

(SD) 

0.90 0.00 377 (399) 

0.80 0.01 375 (397) 

0.70 0.03 369 (395) 

0.60 0.04 368 (396) 

0.50 0.07 360 (390) 

0.40 0.12 348 (384) 

0.30 0.18 339 (376) 

0.20 0.26 334 (372) 

0.10 0.33 322 (371) 

0.01 0.44 303 (369) 
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Table 2.3. (Table continues on next page) A) Strongest positive features in first gait/tremor 

cohort B) Difference in PD progression odds ratio between deep learning prodromal cohorts 

(Figure 2.1) and gait/tremor cohorts (Table 2.2). 

A) 

Description Gait/Tremor OR Gait/Tremor Adjusted 

P Value 

Bipolar disorder 3.392 1.04E-88 

Major depressive disorder 1.628 1.44E-27 

Voice disturbance 2.04 8.74E-21 

Memory loss 1.725 5.39E-18 

Other non-epithelial cancer of skin 1.334 4.14E-17 

Senile cataract 1.233 1.75E-16 

Other persistent mental disorders 

due to conditions classified 

elsewhere 

1.944 1.33E-14 

Actinic keratosis 1.219 1.06E-12 

Urinary incontinence 1.414 1.16E-12 

Depression 1.293 6.30E-12 

Symptoms concerning nutrition, 

metabolism, and development 

1.434 2.70E-10 

Frequency of urination and polyuria 1.269 1.47E-09 

Malaise and fatigue 1.133 5.64E-07 

Seborrheic dermatitis 1.475 8.92E-07 

Inflammation of eyelids 1.325 1.06E-06 
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B) 

Description Prediagnostic 

OR 

Prediagnostic 

Adjusted P value 

Gait/Tre

mor OR 

Gait/Tremor 

P Value 

Mental Health Diagnoses 

Major depressive disorder 3.10 2.28E-103 1.63 1.43E-27 

Mood disorders 3.62 4.54E-18 1.77 1.50E-05 

Bipolar 5.68 1.82E-73 3.39 1.03E-88 

Depression 2.57 3.73E-109 1.29 6.29E-12 

Anemia-related Diagnoses 

Other anemias 1.13 0.412 0.74 2.67E-18 

Iron deficiency anemia 

secondary to blood loss 

(chronic) 

1.61 3.4812E-05 0.77 0.028 

Other Diagnoses 

Constipation 2.24 4.42E-72 1.17 0.0006 

Frequency of urination and 

polyuria 

1.66 4.96E-39 1.26 1.47E-09 

Urinary incontinence 2.11 2.56E-46 1.41 1.16E-12 

Hypersomnia 2.61 3.65E-12 1.43 0.010 

Hypotension NOS 1.97 3.53E-19 0.8 0.054 

Dizziness and giddiness 2.29 2.35E-133 1.08 0.025 
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Upon review of the results, we highlighted sets of diagnoses that were significantly 

different between the first prediagnostic model and the gait and tremor cohort model (Table 

2.3B). In particular, the odds ratio directionality of anemia and hypotension reversed when 

evaluated in the presence of first gait/tremor, meaning that these diagnoses were no longer 

predictive of future PD. Similarly, while constipation is a known symptom of prediagnostic PD 

(Poewe et al., 2017), it is less useful at predicting who will progress to PD from gait/tremor than 

in the original cohorts. These results suggest that distinct trajectories into PD may be present, 

including trajectories characterized by gait or tremor disorders. These findings also suggest that 

the controls defined in gait/tremor indexed cohorts represent a distinct population from 

traditionally defined PD controls, and that the true real-world PD progression prediction task is 

sensitive to the particular comparisons that a clinician is making.  

 

Discussion: 

Disease modification remains a major unmet need for PD. Despite many attempts, not a 

single study has been successful. One of the potential reasons for these failed studies is the 

advanced disease state of the studied populations. The present study bridges this gap by 

providing a novel approach to identify the population at risk of “converting” to PD, before 

marked symptoms. This main original contributions of this work are: (1) the unbiased 

characterization of prediagnostic PD, by utilizing a well curated cohort of PD patients and 

matched controls; (2) the mapping of the temporal relationships of prediagnostic features to 

evaluate which diagnoses define the later stage of this period (i.e. the “pre-conversion” or 

suspected PD that we defined as a pre-diagnostic window); and (3) the deployment of novel 

https://paperpile.com/c/VZvmYF/ebjBh
https://paperpile.com/c/VZvmYF/ebjBh
https://paperpile.com/c/VZvmYF/ebjBh
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machine learning approaches to develop a clinically deployable model for predicting which 

patients will progress into PD.  Implementation of this strategy would facilitate earlier diagnosis 

and, ultimately, preventative interventions. 

The presence of a pre-diagnostic period has complicated and obfuscated attempts to 

develop predictive models for PD using standard machine learning approaches.  Our models, 

along with those proposed by Schrag, et al (Schrag et al., 2019), that included the pre- diagnostic 

window all had AUROC values between 0.8 and 0.85, despite the large differences in input data 

and imputation methods. Hand curated factors and simple linear models performed roughly as 

well as highly complex neural networks with access to a comprehensive record of interactions 

with the health care system. This observation implies that within this period, signal is 

overwhelmingly dominated by proxy diagnoses for PD, and that the signal here is illusory: 

physicians likely already suspect PD in most of the true positive cases. In order to establish 

clinical utility for decision support surrounding PD, it is critical for predictive models to identify 

novel signals at critical times in care, rather than report what a doctor already suspects about a 

diagnosis. 

One way to ensure this bias is through restricting the scope of a predictive model to a 

more homogenous cohort defined by a specific inflection point in their health. By identifying 

that the prediagnostic period is, for many, characterized by an initial gait and tremor disorder, we 

avoid the biases that stem from attempting to determine if a particular model is appropriate for a 

particular patient. It is feasible for a physician to determine if a patient has their first gait or 

tremor disorder whereas it is unlikely if a physician can predict if a patient is 1/2/3 years from a 

diagnosis of PD. This ‘specificity-first’ approach can also yield insights into the heterogeneity of 

the disease state: as mentioned before, PD can be thought of as a syndrome with numerous 

https://paperpile.com/c/VZvmYF/InS29
https://paperpile.com/c/VZvmYF/InS29
https://paperpile.com/c/VZvmYF/InS29
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subtypes. An example of a subtype can be seen by the way gait/tremor defined PD trajectory 

behaves in a different manner than PD as a whole. The algorithm proposed by Schrag et al. 

(Schrag et al., 2019) nominates an additive relationship between various factors, among them 

dizziness, hypotension, gait, and tremor. In contrast, at the time of a first gait or first tremor 

diagnosis, we found hypotension was no longer predictive of PD onset and dizziness had only a 

very weak effect. This suggests that among gait/tremor defined PD, an algorithm agnostic to 

latent PD subtypes may overestimate risk of progression among some patients.  

Our study has several limitations driven primarily by the use of real world data collected 

primarily from billing and patient care. First, we used a data-driven approach to define a 

sufficient quiescence period prior to de novo PD diagnoses. Despite this, there is no guarantee 

that an individual may not have received a PD diagnosis either prior to appearing in the data 

(first visit or enrollment into insurance coverage) or outside of the data (in another insurance 

plan or health system, or through prescriptions, which were not included in this study). 

Unfortunately, our study was unable to include prescription data to exclude drug-induced 

Parkinson’s cases.  The association between Bipolar disorder and PD diagnosis has been 

previously described(Faustino et al., 2019), although many Bipolar treatments (anti-psychotic 

medications, valproic acid) are known to cause secondary Parkinsonism. We were not able to 

clarify this association. Finally, the pre and post-baseline record restrictions that we implemented 

to ensure the integrity of our cohorts would serve to bias our analysis towards populations with 

extended lengths of coverage. 

Overall, this approach is well suited for not only guiding clinical decision-making 

regarding referrals and accelerated diagnoses, but also allows for more closely aligning machine 

learning predictors with the infrastructure around clinical trials. Reliable risk stratification could 

https://paperpile.com/c/VZvmYF/InS29
https://paperpile.com/c/VZvmYF/InS29
https://paperpile.com/c/VZvmYF/InS29
https://paperpile.com/c/VZvmYF/FC5SV
https://paperpile.com/c/VZvmYF/FC5SV
https://paperpile.com/c/VZvmYF/FC5SV
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identify eligible patients earlier while also providing a proxy endpoint that can be tracked in a 

continuous manner. By providing the basis for identifying distinct subpopulations and disease 

progression trajectories, physiological hypotheses regarding the nature of the disease can be 

elucidated and more precise recommendations made to clinicians.  

 

Technical Addendum 

 This subsection describes the technical development of the model architecture used 

earlier in this chapter. Alzheimer’s disease was used as the focus due to increased availability of 

patient data.  

 

Introduction 

An important first step in using deep learning for patient risk stratification is the manner 

of representation of patient sequences (Ching, Himmelstein, Beaulieu-Jones, Kalinin, Do, Way, 

Ferrero, Agapow, Zietz, Hoffman, Xie, et al., 2018). Clinical data is frequently high 

dimensional: for example, there are 68,000 ICD 10 diagnosis codes. Traditional approaches of 

representation (e.g. one-hot encoding) lead to challenges with dimensionality. Consequently, 

concept embeddings have become a common way to map concepts into a meaningful vector 

space with a fixed dimension (Mikolov, Tomas and Sutskever, Ilya and Chen, Kai and Corrado, 

Greg S and Dean, Jeff, 2013). An embedding for a concept can be learned by predicting the 

concepts likely to occur prior to or after a specific event. These methods can encode longitudinal 

patient histories into sequences that can be passed directly into machine learning models (Choi, 

Chiu and Sontag, 2016; Brett K. Beaulieu-Jones, Kohane and Beam, 2019; Beam et al., 2020). 

Series of embeddings can then be easily passed into deep learning methods developed to predict 

https://paperpile.com/c/VZvmYF/MGHxX
https://paperpile.com/c/VZvmYF/MGHxX
https://paperpile.com/c/VZvmYF/MGHxX
https://paperpile.com/c/VZvmYF/MGHxX
https://paperpile.com/c/VZvmYF/TAYB5
https://paperpile.com/c/VZvmYF/TAYB5
https://paperpile.com/c/VZvmYF/JADI0+zAGXM+T8joR
https://paperpile.com/c/VZvmYF/JADI0+zAGXM+T8joR
https://paperpile.com/c/VZvmYF/JADI0+zAGXM+T8joR
https://paperpile.com/c/VZvmYF/JADI0+zAGXM+T8joR
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using sequences (e.g. Recurrent Neural Networks and Temporal Convolutional Networks) in 

domains such as natural language processing (Mikolov, Tomas and Karafiat, Martin and Burget, 

Lukas and Cernocky, Jan and Khudanpur, Sanjeev, 2010; Sundermeyer, Martin and Schluter, 

Ralf and Ney, Hermann, 2012), signal processing (Giles, Lawrence and Tsoi, 2001), and speech 

recognition (Graves, Mohamed and Hinton, 2013).  

In terms of predictors themselves, Temporal Convolutional Neural Networks (TCN) have 

been used to predict disease diagnoses from laboratory tests (Razavian, Narges and Sontag, 

David, 2015). (Choi et al., 2017) employed Recurrent neural networks (RNNs) have been used to 

predict heart failure (Choi et al., 2017) and mortality from ICU data (Beaulieu-Jones, 

Orzechowski and Moore, 2018). More recently, RNNs have been utilized to  predict inpatient 

outcomes using raw standardized representations (FHIR) (Bender and Sartipi, 2013) from two 

different institutions without needing to explicitly map features (Rajkomar et al., 2018). A key 

challenge to each of these methods is the ability to map gaps between patient events or 

interactions with the health system in the encoding representation. Many previous studies have 

focused on stratifying patient risk by predicting outcomes over a relatively short period of time 

(e.g. 24 hours after hospital admission). Some previous works have imputed measurements that 

occur in the gaps between interactions, but do not impute discrete events (Futoma, Joseph and 

Hariharan, Sanjay and Heller, Katherine, 2017). In longer time windows, the only data available 

occurs when a subject has an interaction with the healthcare system. Over a longer time window, 

it is not possible to impute events that may occur in between interactions because these events 

would be missing not at random (Graham, 2009). The data reflects the way the healthcare system 

operates. Interactions with the healthcare system represent snapshots of deviations in patient 

physiology, as opposed to continuous monitoring of quantitative biomarkers. Furthermore, the 

https://paperpile.com/c/VZvmYF/ncnET+mB0pR
https://paperpile.com/c/VZvmYF/ncnET+mB0pR
https://paperpile.com/c/VZvmYF/ncnET+mB0pR
https://paperpile.com/c/VZvmYF/T1o1L
https://paperpile.com/c/VZvmYF/Nm7oP
https://paperpile.com/c/VZvmYF/RllLS
https://paperpile.com/c/VZvmYF/RllLS
https://paperpile.com/c/VZvmYF/HZGTQ
https://paperpile.com/c/VZvmYF/HZGTQ
https://paperpile.com/c/VZvmYF/HZGTQ
https://paperpile.com/c/VZvmYF/HZGTQ
https://paperpile.com/c/VZvmYF/HZGTQ
https://paperpile.com/c/VZvmYF/HZGTQ
https://paperpile.com/c/VZvmYF/xpcRX
https://paperpile.com/c/VZvmYF/xpcRX
https://paperpile.com/c/VZvmYF/uH03O
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/qT2qS
https://paperpile.com/c/VZvmYF/qT2qS
https://paperpile.com/c/VZvmYF/yE9Ec


69 

idea of imputation begins to break down when the features imputed move from continuous lab 

values to sequence of observed events. While imputation strategies can estimate unmeasured 

values, this approach does not easily extend to discrete events. Applying machine learning on 

data created by the healthcare system is an exercise in modeling the dynamics of the healthcare 

system and not necessarily the health of a patient or progression of disease. 

Previous attempts to address this limitation have taken several approaches, including 

appending the time to the next event at each observation (Graham, 2009; Choi et al., 2017) or 

constructing a custom RNN structure utilizing masking and time interval vectors as input (Che et 

al., 2018). These methods still fundamentally provide sequential input to the model in uneven 

steps. As an analogy, CNNs have demonstrated exceptional performance at image classification 

by taking into account the spatial organization between adjacent pixels. Their performance 

would likely suffer if they were presented with a random subset of discontinuous pixels along 

with annotations of their relative distance to neighbors. 

 

Overview 

In this study we used a large insurance administrative claims dataset, containing records 

of diagnoses and procedures for nearly 70 million individuals between 2010 to 2018, to predict 

the onset of Alzheimer’s disease (AD) using 7 clinically deployable cohorts. By choosing a 

relevant diagnosis as the index date, models are evaluated in a manner that is relevant to the 

clinic without the biases that accompany arbitrary index date selection. 

To build these predictive models, we introduced a novel encoding scheme for time that 

can be input to standard sequence-based models. This novel encoding scheme embeds irregularly 

spaced events in association. 

https://paperpile.com/c/VZvmYF/yE9Ec+HZGTQ
https://paperpile.com/c/VZvmYF/yE9Ec+HZGTQ
https://paperpile.com/c/VZvmYF/yE9Ec+HZGTQ
https://paperpile.com/c/VZvmYF/iZlmn
https://paperpile.com/c/VZvmYF/iZlmn
https://paperpile.com/c/VZvmYF/iZlmn
https://paperpile.com/c/VZvmYF/iZlmn
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Methods 

Cohort Definition 

We first identified classes of diagnoses from the literature that were found to have a 

temporal association with AD or suggested to be potential risk factors of AD. For each of these 

seven clusters, i) Memory Impairment (Amaducci et al., 1987; Wolk, David A and Dickerson, 

Bradford C, 2016) , ii) Executive Function Disorders (Wolk, David A and Dickerson, Bradford 

C, 2016), iii) Depression and Mood Disorders (Speck et al., 1995; Larson, 2016), iv) Motor 

Function Disorders (Shadlen, Marie-Florence and Larson, Eric B, 2010), v) Seizures, vi) Sleep 

Disorders, and vii) Cardiology and Vascular Disorders (Luchsinger et al., 2005; Whitmer et al., 

2005; Keene, C Dirk and Montine, Thomas J and Kuller, Lewis H, 2016), we utilized Phenome-

Wide Association Study (PheWAS) codes (Denny et al., 2010) to identify sets of corresponding 

ICD9 (Slee, 1978) codes that formed the basis for each examined cohort. 

Data from this study was collected using deidentified claims data from a nationwide US 

health insurance plan that contains data from more than 75,000,000 individuals over a 10 year 

period. For each cohort, we identified the subset of individuals who had their first annotation of 

the cohort diagnosis after the age of 60 (this would become their baseline date), had no 

annotation or Alzheimer's prior to the baseline, and also had at least 24 months of records prior 

to and 24 months of records after the baseline. The records prior to the baseline served as both a 

quiescence period in order to select the population who had not been previously diagnosed with 

Alzheimer's and the observation window leading up to the index event. The records in the 24 

months after the index event were used to check for Alzheimer's diagnoses. 

https://paperpile.com/c/VZvmYF/MqeAj+ziLjs
https://paperpile.com/c/VZvmYF/MqeAj+ziLjs
https://paperpile.com/c/VZvmYF/MqeAj+ziLjs
https://paperpile.com/c/VZvmYF/MqeAj+ziLjs
https://paperpile.com/c/VZvmYF/ziLjs
https://paperpile.com/c/VZvmYF/ziLjs
https://paperpile.com/c/VZvmYF/JvFjy+5ceVo
https://paperpile.com/c/VZvmYF/JvFjy+5ceVo
https://paperpile.com/c/VZvmYF/JvFjy+5ceVo
https://paperpile.com/c/VZvmYF/eaxrN
https://paperpile.com/c/VZvmYF/xCxzY+u2hiI+xBGG6
https://paperpile.com/c/VZvmYF/xCxzY+u2hiI+xBGG6
https://paperpile.com/c/VZvmYF/xCxzY+u2hiI+xBGG6
https://paperpile.com/c/VZvmYF/xCxzY+u2hiI+xBGG6
https://paperpile.com/c/VZvmYF/xCxzY+u2hiI+xBGG6
https://paperpile.com/c/VZvmYF/xCxzY+u2hiI+xBGG6
https://paperpile.com/c/VZvmYF/0przO
https://paperpile.com/c/VZvmYF/0przO
https://paperpile.com/c/VZvmYF/0przO
https://paperpile.com/c/VZvmYF/0lgRN
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Figure 2.3: Cohort Data Selection/Processing A) Timeline segregation scheme. Only event 

sequences within the observation window were utilized in the model. B) Observed patient events 

arranged on a timeline. C) Traditional event-sequence encoding. D) Time-gapped encoding of 

patient event. 

 

 

Data Preparation and Event Embedding 

Our dataset consists of events characterized by the patient experiencing the event, the 

time the event occurred, the class of event (diagnosis, procedure, prescription), and the identity 

of the event (hospital diagnosis of myocardial infarction, inpatient prescription of donepezil, 

etc.). Furthermore, demographic information for each patient, including age at enrollment, sex, 

ZIP code, and period of enrollment is also available. External databases for classifying different 

classes of event were utilized to collapse similar concepts to single classes. Diagnoses expressed 

as ICD9  codes were collapsed to the phenotype level using PheWAS codes for the purposes of 

cohort identification and selection. For example, ICD9 code 001, corresponding to Cholera, and 
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ICD9 code 002, corresponding to Typhoid Fever, would be collapsed into PheWAS code 008: 

Intestinal infection. Prescriptions were collapsed to the pharmaceutical level using Generic 

Product Identifier (GPI) codes, resulting in different dosages, name brands/generics being treated 

according to their main active ingredient. For modelling, all ICD10 codes were cross-walked 

back to ICD9 for compatibility prior to October, 2015. Embeddings were trained on ICD9 codes. 

Procedures were expressed using Current Procedural Terminology (CPT) codes. The provider-

submitted date the service was started was used for all events. 

We first selected a sample of 10 million enrollees who had coverage over the age of 60 

and identified their associated events and composed timestamped sequences of events 

corresponding to an individual's enrollment period. We next composed seven logarithmically 

grouped bins from the entire distribution of inter-event time gaps (1 day, 3 days, 6 days, 15 days, 

36 days, 86 days, 208 days or greater). In order to compensate for the unevenly spaced event 

sequences, we modeled the time between each event as a discrete event. Between each pair of 

medical events in an individual's sequence, we inserted a dummy event corresponding to the 

logarithmic bin that the inter-event time gap was assigned to. As an example, a sequence of three 

events that occurred on the same day would be transformed into a sequence of five: the original 

three events separated by "Time gap" dummy events (Figure 2.3B-D). For each pair of events, 

we computed co-occurence statistics based on 30-day temporal windows. For embedding 

schemes that utilized time gaps, events were always defined as co-occuring with their adjacent 

time gaps, even if they were separated from their adjacent events by more than 30 days. We 

required that events co-occur within 30 days at least 10 times across all data. This included 

23,193,710 co-occurring pairs and 9,228,186,699 total co-occurences. These co-occurence 

matrices were transformed into Euclidean embedding sets as described in Beam et al. (Beam et 

https://paperpile.com/c/VZvmYF/zAGXM
https://paperpile.com/c/VZvmYF/zAGXM
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al., 2020). Unlike other concept embedding schemes, we added additional events for time-

spacings and trained additional embedding models for them as well as all observed events 

(Figure 2.3B, Table 2.4). In order to assess the impact of explicitly modelling the inter-event 

gaps of time, embeddings were created using the event-only sequences to serve a comparison 

group (Figure 2.3C, Table 2.5). 

 

  

https://paperpile.com/c/VZvmYF/zAGXM
https://paperpile.com/c/VZvmYF/zAGXM
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Table 2.4: Cohort Demographic Statistics 

Cohort Total Enrollees 

with Index 

Event (IE) 

AD Onset 

after IE 

(count) 

AD 

Incidence 

after IE  

AD Onset 

Age: Years 

(STD) 

Days from 

IE to AD 

(STD) 

Any Unspecified 

Diagnosis 

3,598,330 43,791 1.22% 82.54 NA 

Memory 

Impairment 

212,994 47,234 22.18% 83.38 363 (211) 

Executive 

Function 

Disorders 

80,200 14,213 17.72% 82.36 369 (213) 

Depression and 

Mood Disorders 

661,242 42,260 5.80% 84.19 369 (216) 

Seizures 580,788 33,966 5.81% 84.53 392 (219) 

Sleep Disorders 361,702 12,389 3.43% 82.97 411 (216) 

Cardiology and 

Vascular 

Disorders 

582,881 29,893 5.13% 83.89 390 (220) 
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Model Training and Evaluation 

For each cohort, individuals were labeled based on if they were diagnosed with 

Alzheimer's after their baseline. Events from the observation window were replaced with 

corresponding event Euclidean embedding vectors. Binary prediction models were created using 

the vector sequences and patient demographics vectors using a stacked gated recurrent unit 

(GRU) architecture. A branching model with separate processing of vector sequences and patient 

demographics was utilized. For events with no corresponding embedding, a generic embedding 

of the corresponding type  (diagnosis, procedure, etc) was substituted. These were created by 

calculating the average embedding vector of all events of that type. For these models, patient 

sequences were padded/clipped to 600 events (1200 with gaps). For sequences that were clipped, 

the most temporally distant events were preferentially removed. Event sequences were fed into 

the model in reverse order, with events closest to the baseline input first. Sequences of event 

vectors were padded with zero vectors. Individual vectors had the day of the window (0-730) and 

time-to-next-event (in days) appended. To evaluate the utility of the temporal information in the 

feature set, models were also trained without gap information, and with their sequences shuffled, 

rather than arranged by date. Models were initialized and trained using TensorFlow and Keras on 

four NVIDIA Titan X GPUs. 

 

Results 

Study Population 

Summary statistics calculated for each of the cohorts, along with a reference cohort of 

"Any Unspecified Diagnosis" are presented in Table 2.4. All of the phenotypes described by our 

literature informed cohorts had higher subsequent incidences of Alzheimer's relative to the 
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reference cohort. All cohorts had a similar age at AD onset and similar time periods between 

index events and the initial diagnosis. On average, all cohorts represented predictions around one 

year in advance of the Alzheimer's diagnosis date. 

 

Model Performance 

Table 2.5: Model Performance: Influence of temporal information  

 Logistic 

Regression 

Shuffled 

Euclidean  

Euclidean Gapped Euclidean  

Memory Impairment 0.51 

(0.50-0.52) 

0.51 (0.50-

0.54) 

0.56 (0.54-

0.59) 

0.65 (0.63-0.67) 

Executive Function 

Disorders 

0.65 (0.63-

0.67) 

0.64 (0.58-

0.66) 

0.66 (0.62-

0.73) 

0.71 (0.64-0.79) 

Depression and 

Mood Disorders 

0.68 (0.67-

0.69) 

0.70 (0.61-

0.77) 

0.72 (0.65-

0.77) 

0.79 (0.74-0.82) 

Motor Function 

Disorders 

0.67 (0.66-

0.68) 

0.68 (0.57-

0.73) 

0.70 (0.62-

0.74) 

0.72 (0.64-79) 

Seizures 0.58 

(0.57-0.59) 

0.62 (0.56-

0.72) 

0.71 (0.65-

0.74) 

0.77 (0.72-0.82) 

Sleep Disorders 0.66 (0.63-

0.69) 

0.72 (0.76-

0.78) 

 

0.78 (0.72-

0.83) 

0.82 (0.76-0.85) 

Cardiology and 

Vascular Disorders 

0.52 

(0.50-0.54) 

0.53 (0.51-

0.56) 

0.58 (0.55-

0.64) 

0.64 (0.57-0.68) 

 

 

For all cohorts, increasing the fidelity of the temporal information contained in the 

embedding improved the validation AUC (Table 2.5). Furthermore, for all cohorts besides Motor 

Function, the difference in performance between gapped and un-gapped embeddings was larger 
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than the difference between un-gapped sequences (in the proper order) and shuffled sequences 

(in random order). We did not observe significant trends in performance between cohorts and 

factors such as cohort size, Alzheimer's incidence rate, or time to Alzheimer's. We hypothesize 

that the specific biological relationship between Alzheimer's and the defining phenotype of each 

cohort is the dominant factor in general performance of a given model, as well as the relative 

influence that timing and ordering of features has on performance within a cohort. Cohorts 

defined by Depression & Mood, Seizures, and Sleep disorders had particularly strong predictive 

performance (AUC > 0.75) when time-gapped embedding schemes were used. 

 

Discussion 

The expansion of previous event-sequence paradigms to include inter-event timings 

effectively doubles the feature-space available to models. It has been shown that the time in 

which a medical test is conducted can be just as informative as the test result itself (Agniel, 

Kohane and Weber, 2018)). Similarly, we show here that the knowledge of whether a series of 

events occurs on the same day, or over a year long period can significantly improve the 

predictive accuracy irrespective of cohort. In addition, the modeling of event time gaps serves as 

a way to bridge the gap between health care data and more traditional modalities of continuous 

monitoring. Unlike biomonitoring data, modalities such as electronic medical records or claims 

data do not represent patient state. Instead, they represent a decision, on the part of the patient, to 

engage (or not engage, in the case of time gaps), with the health care system. The knowledge that 

a patient had not been seen by a primary care physician since their last yearly checkup is intuited 

by the clinician during a visit, but is often not made available to machine learning models, 

despite its significant implications regarding patient physiology.

https://paperpile.com/c/VZvmYF/SyAUw
https://paperpile.com/c/VZvmYF/SyAUw
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Chapter 3: Machine Learners as Knowledge Parasites 

Chapter Introduction 

The previous chapter introduced one metric of model utility as “the ability to produce 

predictions beyond what a clinician would suspect on their own.” This chapter, adapted from a 

perspective aimed at a clinical audience, introduces the idea of a “knowledge parasite:” a model 

that learns by “looking over a clinician’s shoulder”, rather than truly assisting with the diagnostic 

process. This phenomenon is directly caused by the inability for models to justify the decisions 

or predictions that they make.  

 
 

Main Text 

 

A patient presents to the emergency department complaining of chest pain. An 

examination and history prompt you, the physician, to suspect a pulmonary embolism (PE), and 

you order a d-dimer test. The results of the d-dimer, as well as the subsequent chest x-ray, raise 

your confidence in a PE, so you order a chest CT scan. Without examining the patient 

themselves, a rotating medical student arrives at a similar conclusion of PE based on observing 

which tests have been ordered. While the medical student’s belief in a PE diagnosis may be both 

justified and correct, the medical student has not proven they would arrive at the same 

conclusion without your presence, knowledge, and prior actions.  

 Machine learning models ostensibly designed to predict patient outcomes from electronic 

medical records (EMRs) and administrative data have become a popular focus for research and 

investment. Physician-initiated data comprises large portions of EMRs and administrative data 

sources and leads to the generation of models that typically function similarly to the medical 
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student in the PE example. Instead of basing decisions from a patient’s current state, they use the 

prior decisions and actions taken by a physician. Upon interpretation of the chest CT results, you 

conclude that the patient is in no danger and order them released. However, a predictive 

algorithm could classify your patient as “high-risk” based on a CT scan that you ordered and 

interpreted, even though you determined the patient not to be at risk (Figure 3.1). Rather than 

surpassing or even capturing your knowledge, the model instead acts as a “parasite,” looking 

over your shoulder and presenting your own expertise without clean attribution to what (or 

whom) is powering the model.  

 

 

Figure 3.1. Confidence of Physician and Machine in pulmonary embolism (PE) vs. time. Events 

undertaken by the physician are annotated.  
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The confluence of machine learning progress in a variety of fields and the accessibility of 

large medical datasets prompted an explosion of interest in individualized decision support.  

Given the complexity of patient care and the ability to monitor patients in more dimensions than 

ever before (e.g. EMR or real time vital sign monitoring), there is significant interest in 

predicting outcomes of health, for example, mortality or disease onset. Despite strong statistical 

performance, few, if any, models for predicting risk in conditions as diverse as heart failure to 

hospital readmissions to Parkinson’s disease, have made inroads into clinical workflows.  

The majority of healthcare data, including electronic medical records and administrative 

data, while often thought of as a measure of patient state, are actually a representation of 

deliberate actions undertaken by the physician. Consider the act of ordering a chest CT. In this 

case, the physician acts as a filter: only patients with appropriate presentations will prompt a CT. 

Knowing this, a machine learning algorithm (or enterprising trainee) can borrow the judgement 

and expertise of experienced physicians by reporting that patients who receive CTs should be 

treated as higher-risk. This concept introduces an important distinction between physician 

initiated and non-physician-initiated data elements. Conflating these data elements deemphasizes 

the role that physicians have in deciding under what circumstances to act, and what course of 

action to take.  

To highlight the difference between these data, contrast the comparative utility of the 

model that evaluates patient risk based on the presence or absence of a CT scan (physician-

initiated data) with a second model that reports risk based on an image-based examination of the 

CT itself (non-physician initiated data). In the first case, all of the information that the model has 

regarding the patient’s physiology is filtered through your eyes as the attending physician. You 

decide if and when to order a scan based on your own evaluation of the patient. In contrast, the 
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second model receives the same scan that the radiologist receives, and could be argued to have 

access to pixel-level features that human clinicians cannot reliably comprehend. Conclusions that 

this image-based model reaches are significantly more likely to represent novel information 

because they are based off of physiological measurements of the patient.      

When predicting individual patient outcomes, the points at which physician-initiated data 

based model guidance would be most useful (the patients with the most unique or ambiguous 

presentations) are often the points where these models are least equipped to provide it. This is 

commonly because the signal that they capture is derived from the aggregate behavior and 

expertise of a large number of physicians: inferred over thousands of observations. This means 

the resulting predictions are the exact opposite of individualized: they represent the average 

decision making across many doctors for many patients who happen to present similarly. 

This is not to say that these models do not possess value, but that their value is not 

necessarily to help a clinician make an individual treatment decision. The task of prediction is 

inextricably linked with the task of inferring causal relationships from real world observations, 

and consequently, requires very high levels of evidence. Instead, these models have the potential 

to construct faithful representations of the decisions made by physicians. Doing this could make 

a significant impact for tasks including real-time monitoring, telemetry, and surveillance. 

Additionally, studying these models provides an understanding of the standard of care and 

provides the ability to examine deviation from standards in an attempt to quantify process 

quality.  

For example, while the predictions of a model may arrive too late to influence the 

decisions of a responsible physician, they collectively can provide a real-time, updating picture 

of the overall health status of a hospital’s current patient load, enabling administrators to better 
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allocate resources and dictate staffing levels. Alternatively, these models and datasets are 

perfectly positioned to detect which clinical guidelines might be applicable to a particular 

patient, or if ordered treatments align with standard practice. High level understanding of where 

and why deviations exist could enable guideline creation that is simultaneously data driven and 

more responsive to physician’s needs.  

 There is an important contrast to note. Machine learning algorithms have been shown to 

provide novel insights by looking for features beyond what could be seen by trained physicians. 

Imaging analysis of retinal scans for diabetic retinopathy patients or of malignant pathology 

represent genuine advances in patient-level risk assessment specifically because they capture 

data that is not physician initiated. Consequently, machine analysis of data modalities such as 

vital signs, telemetry, imaging or genotype data is far more likely to produce genuine insights 

that expand upon and complement a physician’s existing expertise. Promoting the routine 

collection of these non-physician-initiated data elements can provide the basis for the 

development of tools that are better able to offer clinically meaningful insights when deployed 

alongside, and under the supervision of, physicians. 

Capturing the initial promise of machine learning requires a proper understanding of 

where their inductions are sourced from, and the limits that these inferences are subjected to. 

Properly navigating the gulf between data that is and is not physician initiated is critical in 

determining the proper use cases for models. The characterization of machine learning as 

recapturing rather than surpassing the expertise of physicians will enable both researchers and 

physicians to determine how and where models can make the greatest impact. 
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Chapter 4: Machine Learning for Patient Risk Stratification: Standing on, or looking over, 

the shoulders of clinicians? 

Chapter Introduction 

This chapter examines the “knowledge parasite” phenomenon from a quantitative point 

of view, utilizing metrics of healthcare dynamics as a direct simulation of a model that “looks 

over a clinician’s shoulder.” I describe the concepts of “clinician-initiated” data elements and the 

prognosis-diagnosis dichotomy. For these models, I show that the source of a prediction is 

important in identifying optimal use cases.  

 

Main Text 

Machine learning for healthcare promises to have a major impact on the delivery of data-

driven personalized medicine (Beam and Kohane, 2016; Topol, 2019). One of the applications 

with the widest potential is patient risk stratification (i.e. diagnosis, prognosis) (Ching, 

Himmelstein, Beaulieu-Jones, Kalinin, Do, Way, Ferrero, Agapow, Zietz, Hoffman and Others, 

2018). Individualized patient risk stratification requires machine learning models to predict the 

future disease state of a patient based on his or her current clinical state and available history 

(Weiss et al., 2012). One major obstacle to this vision is that the true physiological state of a 

patient is often incompletely characterized and obfuscated through various sources of bias in the 

electronic medical record (EMR) (Botsis et al., 2010; Weiskopf and Weng, 2013; Crown, 2015; 

van der Bij et al., 2017; Beaulieu-Jones et al., 2018). Despite this, most current machine learning 

investigations utilizing these data rely on a major simplifying assumption: that the state of a 

patient can be inferred through the use of routinely collected data in the EMR (Shickel et al., 

2018). However, these data encode information about how clinicians and the healthcare system 

https://paperpile.com/c/VZvmYF/sV70q+oIzqp
https://paperpile.com/c/VZvmYF/4VAVe
https://paperpile.com/c/VZvmYF/4VAVe
https://paperpile.com/c/VZvmYF/4VAVe
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/qmhDm+kq9aS+wkuEd+G1jcC+fxMyj
https://paperpile.com/c/VZvmYF/YJbBN
https://paperpile.com/c/VZvmYF/YJbBN
https://paperpile.com/c/VZvmYF/YJbBN
https://paperpile.com/c/VZvmYF/YJbBN
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as a whole react to the patient, potentially confounding prediction models built to use it. Machine 

learning models trained using EMR-derived features are consequently linked to the individual 

decisions and assessments made by clinicians.  

When a patient’s physiology reaches a state that necessitates examination, the clinician’s 

beliefs regarding potential patient outcomes are updated, which then inform which actions the 

clinician chooses to make (or not make). These actions, in turn, influence the patient’s resulting 

physiology, and the cycle repeats (Figure 4.1A). Consequently, we define “clinician-initiated 

data” as data elements that represent the specific insight or expertise of the clinician, rather than 

direct or routine physiological measurements of the patient. For models that learn from clinician 

initiated data and are expected to change clinical behavior, there should be an onus to 

demonstrate that the model is not merely looking over a clinician's shoulder and quantifying a 

risk the clinician may already suspect. An example of this distinction between clinician and non-

clinician initiated data can be seen in the differences between white blood cell counts taken as 

part of routine testing given to all patients in a ward versus white blood cell counts ordered out of 

patient concern. It has been observed that patients with abnormal white blood cell counts on 

average have better 3-year survival than patients who have normal white blood cell counts taken 

at abnormal times (Agniel, Kohane and Weber, 2018). Clinicians order specific panels of tests 

based on their clinical suspicion, expectations, or concerns about changes in clinical state. The 

timing of that order will also often represent a concern on the part of the provider, and many tests 

require manual orders and are not automatic. The primary difference between a blood test 

manually ordered in the middle of the night (clinician-initiated) and a routine one (non-clinician-

initiated) is the decision-making agency of the physician. In the first case, a clinician chooses to 

order the test deliberately, based on concern prompted by examination of patient physiology. In 

https://paperpile.com/c/VZvmYF/SyAUw
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contrast, when a test is part of a routine process, there is no selection on patient physiology or 

clinician expertise.  

 Finally, this feedback cycle between patient physiology and physician belief/action 

highlights the distinction between diagnostic and prognostic tasks, and the differing burdens of 

evidence and assumptions required for each. The act of diagnosing a patient involves making a 

direct assessment of patient physiology, and for most patients, there exists a well defined answer. 

In contrast, prognosis involves making a prediction regarding the outcomes of a patient, and 

crucially assumes that the patient receives a particular standard of care in the future. Thus, like a 

physician's beliefs about a patient, the prognosis is dynamic and reacts to specific actions 

undertaken by the physician.  
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Figure 4.1. Clinician-initiated data alone is a filtered representation of patient physiology  A.) 

Clinician-initiated and non-clinician initiated data are distinguished by their proximity as 

readouts of patient physiology, as well as the presence of the expertise of the clinician.  B.) 

Physician actions are a reflection of their beliefs regarding a patient, which are formed through 

examination of patient physiology.  
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Diagnostic predictions made from clinician-initiated actions may not accurately predict 

beyond what the average clinician would decide for the average similar patient. As an illustrative 

example, we can deconstruct the timing and frequency of actions and orders by a clinician for 

patient presenting to the emergency department with chest pain (Figure 4.1B) (O’Gara, Kushner 

and Ascheim, 2013). In this example, a model utilizing this data may learn a test order for 

troponin means a patient is more likely to have from Myocardial Infarction (MI). Knowing that a 

patient has MI in combination with demographic risk factors and comorbidities may lead to 

impressive predictive performance for in-hospital mortality but is unlikely to aid clinical 

decision-making. It is identifying a behavior or concern by the clinician and not predicting a state 

that would enable clinical intervention. A trained machine learning model could effectively learn 

the correlation between abnormal clinical behavior and patient risk, but is not predicting a state 

that would enable clinical intervention. The model would only label a patient as ‘increased risk’ 

after the test had already been ordered, and the window for altering decision-making has passed. 

This idea, that models are merely interpreting the existing thoughts of clinicians based on their 

actions rather than identifying true signal, may help explain why increased model performance 

has not translated to significant clinical impact in most applications of risk stratification 

(Rajkomar, Dean and Kohane, 2019; Topol, 2019). 

To evaluate the hypothesis that machine learning models may be modelling the existing 

thoughts of clinicians we quantified the ability of a deep neural network to predict patient 

outcomes using different subsets of data. We trained three models using: 1) patient demographic 

data only, 2) patient demographic data and data available at the time of presentation to the 

hospital, and 3) patient demographic data, data available at the time of presentation, and actions 

https://paperpile.com/c/VZvmYF/P0pJh
https://paperpile.com/c/VZvmYF/P0pJh
https://paperpile.com/c/VZvmYF/sV70q+KYosn
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taken during the first day of admission. The performance of these models was compared to 

published state-of-the-art methods using complete EMR details.  

 

Results 

We compared prediction results using charge details to state of the art benchmarks that 

utilize EMR-based clinical data, including notes, diagnoses, vital signs, histories, and laboratory 

orders/results. By evaluating the information content of a data source that contained exclusively 

clinician-initiated data elements, we could evaluate whether it was sufficient to achieve strong 

predictive performance on its own.  

To do this, we utilized chargemaster details, a data modality that represents a record of 

the specific tasks undertaken by a hospital for a specific patient, and are used to help generate 

patient bills. These details represent the actions taken by clinicians (clinician-initiated data) and 

the resources used in order to provide care to a patient during a given encounter (Table 4.1, 

Tables S5.1-2). However, because they are primarily an administrative product and not used for 

clinical decision making, they contain only the events that occurred and resources used. 

Additionally, due to the de-identified nature of the data, timing and order of events within a day 

cannot be expected to be consistent or reliable. Importantly, because the 24 hour period after 

admission cannot be identified, all predictions using charge data are done at the end of the first 

day of admissions, and may include significantly less than 24 hours of data.  
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Table 4.1. Example first day charge details for a patient with MI.  

Description Department Quantity 

EKG ROUTINE TRACING ONLY EKG 1 

ECHO 2D W/ OR W/O M-MODE COMPLETE W/ 

COLOR FLOW CARDIOLOGY 1 

ER LEVEL V EMERGENCY ROOM 1 

XR CHEST 2 VIEWS 

DIAGNOSTIC 

IMAGING 1 

CULTURE BLOOD LABORATORY 2 

PARTIAL THROMBOPLASTIN TIME (PTT) LABORATORY 1 

PROTHROMBIN TIME (PT) LABORATORY 1 

COMPLETE CBC AUTO W/O DIFF LABORATORY 1 

TROPONIN QN LABORATORY 2 

B-TYPE NATRIURETIC PEPTIDE LABORATORY 1 

LACTATE/LACTIC ACID LABORATORY 1 

CREATINE KINASE (CPK) MB ONLY LABORATORY 1 

CREATINE KINASE (CPK) LABORATORY 2 

COMPREHENSIVE METABOLIC PANEL  LABORATORY 1 

THERAPEUTIC/DIAG INJ IV PUSH SINGLE INITI 

SUB/DRUG IV THERAPY 1 

DOCUSATE NA, COLACE CAP 100MG PHARMACY 1 

ASPIRIN TAB 325MG (EA) PHARMACY 1 

MOXIFLOXACIN, AVELOX IVPB 400MG PHARMACY 1 

MOXIFLOXACIN, AVELOX TAB 400MG PHARMACY 1 

METOPROLOL, LOPRESSOR TAB 25MG PHARMACY 1 

IPRATROPIUM, ATROVENT INH SOL 0.02% 2.5ML PHARMACY 1 

HEPARIN NA VL 5,000U/ML 1ML PHARMACY 1 

FUROSEMIDE, LASIX TAB 20MG PHARMACY 2 

ALBUTEROL, PROVENTIL INH SOL 0.083% 3ML 

(2.5MG) PHARMACY 3 

R&B TELEMETRY PRIVATE ROOM AND BOARD 1 
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Our analysis included 42,896,026 inpatient hospitalizations between 2013 and 2018 from 

973 hospitals nationwide (Table 4.2, Figure S4.1). These hospitalizations included over 4.4 

billion events occurring prior to and during the first day of admission as well as 21 static features 

available at the time of admission (demographic and provider details). In contrast, the EHR 

baseline of only 216,221 patients included more than 46.8 billion data points (Rajkomar et al., 

2018). We constructed 3 sets of classifiers, based on 1) demographics only, 2) demographic and 

provider details only, and 3) demographic, provider, and chargemaster details.  

Due to the lack of event timing data, models trained with chargemaster details were only 

given data up to the end of the first day of admission. In contrast, published benchmarks 

(Rajkomar et al., 2018) include full clinical details (including clinical notes) for the first twenty 

four hours after admission. Given that patients are admitted throughout the course of the day, 

many of the patients used to train our models had significantly less than twenty four hours of 

data. 

To evaluate our hypothesis that clinical machine learning models based on a record of 

clinician-initiated actions are sufficient to predict inpatient outcomes, we constructed classifiers 

for three popular endpoints: mortality, readmission within 30 days, and extended length of stay 

(admissions of seven days or more). We deployed these classifiers over all admissions lasting 

more than one day, and included only the first day of a given stay in the classifier. Individual 

patients with more than one stay were classified separately, and no linkage between a given 

patient’s stays was created. Finally, the published EMR baselines performed resource intensive 

neural network architecture and hyperparameter searches for over 200,000 GPU hours. The 

models trained on chargemaster data were trained using basic architectures on two GPUs for all 

outcomes in less than 24 hours.  

https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e
https://paperpile.com/c/VZvmYF/w458e


91 

 

Table 4.2. Population information for data included for risk stratification using machine 

learning.  

 2013 2014 2015 2016 2017 2018 Total 

Hospitals 

Included 

778 783 797 786 770 755 973 

Total 

Encounter

s 

79,209,1

78 

82,145,81

1 

85,037,6

15 

85,391,0

57 

84,448,4

80 

84,641,6

11 

500,873,752 

Inpatient 

Admission

s 

8,556,41

1 

8,682,382 8,812,59

5 

8,683,13

3 

8,288,08

9 

8,052,27

8 

51,074,888 

Multi-day 

Inpatient 

Admission

s 

7,175,15

4 

7,338,193 7,425,86

0 

7,296,84

9 

6,939,02

1 

6,720,94

9 

42,896,026 

Total 

Population

:  

Mortality 

120,583 

(1.68%) 

123,764 

(1.69%) 

129,640 

(1.75%) 

126,844 

(1.74%) 

124,310 

(1.79%) 

121,549 

(1.81%) 

746,690 

(1.74%) 

Total 

Population

: Extended 

Length of 

Stay 

1,466,58

0 

(20.44%) 

1,492,958 

(20.35%) 

1,518,80

3 

(20.45%) 

1,506,12

5 

(20.64%) 

1,449,17

4 

(20.88%)  

1,437,55

2  

(21.39%) 

8,871,192 

(20.68%) 

Total 

Population

: 30-day 

Readmissi

on 

941,911 

(13.13%) 

937,562 

(12.78%) 

950,561 

(12.80%) 

887,418 

(12.16%) 

925,833 

(13.34%) 

901,290 

(13.41%) 

5,544,575 

(12.93%) 

All MI 

Admission

s (% of all 

admissions

) 

69,448 

(0.81%) 

71,609 

(0.82%) 

78,975 

(0.90%) 

82,952 

(0.96%) 

84,407 

(1.02%) 

84,551 

(1.05%) 

471,942 

(0.92%) 
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 2013 2014 2015 2016 2017 2018 Total 

Multi-day 

MI 

Admission

s  (% of 

total multi-

day 

admissions

) 

56,594 

(0.79%) 

57,665  

(0.79%) 

63,026 

(0.85%) 

65,925 

(0.90%) 

66,859 

(0.96%) 

67,135 

(1.00%) 

319,539 

(0.88%). 

MI 

Cohort: 

Mortality 

3,497 

(6.18%) 

3,393 

(5.88%) 

3,625 

(5.75%) 

3,569 

(5.41%) 

3,583 

(5.36%) 

3,337 

(4.97%) 

21,004 

(5.57%) 

MI 

Cohort: 

Extended 

Length of 

Stay 

9,172 

(16.21%) 

 

8,941 

(15.51%) 

9,463 

(15.01%) 

10,024 

(15.21%) 

10,036 

(15.01%) 

10,174 

(15.15%) 

57,810 

(15.33%) 

MI 

Cohort: 

30-day 

Readmissi

on 

8,764 

(15.49%) 

8,891 

(15.42%) 

9,340 

(14.82%) 

9,811 

(14.88%) 

10,098 

(15.10%) 

10,140 

(15.10%) 

57,044 

(15.12%) 
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Figure 4.2. Performance comparison between Chargemaster and EMR data across cohorts 

and outcomes. A.) Comparison of mortality, readmission and length of stay performance (area 

under receiver-operating curve, AUROC) on randomly selected validation data. B) Average 

relative features per patient for each model version  C.)  Outcome comparison on a myocardial 

infarction (MI) patient cohort between models trained on MI patients exclusively and all 

available patients.  
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We found that, relative to the EMR baseline, abbreviated patient representations were 

able to capture significant amounts of signal for all three tasks (Figure 4.2A). In particular, 

chargemaster data only modestly underperformed the baseline (AUCs of 0.89, 0.71, and 0.82 

compared to 0.95, 0.77, and 0.86 for mortality, readmissions, and LOS respectively). 

Performance was attenuated by the significant limitations intrinsic to chargemaster data, 

including missing data modalities, significantly fewer total and per-patient data elements (Figure 

3.2B), lack of reliable event ordering, and the presence of less than 24 hours of data per 

encounter. Classifiers that utilized crude metrics of patient demographics and provider 

information captured the majority of signal relative to published EMR baselines over all three 

tasks. These results suggest that critical elements in EMR-based models are reflections and 

readouts of a clinician's expertise.  

However, clinical practice is highly sensitive to context, and the act of prognosis 

frequently involves implicit diagnostic prerequisites. Consequently, we hypothesized that models 

trained on clinician-initiated data would be better able to predict cohort-specific outcomes when 

patients outside the cohort (representing irrelevant patient presentations) were excluded. We 

trained a model specifically on patients who arrived at the emergency department suffering from 

myocardial infarctions (MI). The MI cohort included MI patients hospitalized at hospitals with at 

least 100 such instances between 2013-2017. Models trained over this restricted subset 

demonstrated better performance predicting outcomes from MI hospitalizations in 2018 than the 

general model which was trained over all hospitalizations (Figure 4.2C). The model trained with 

the more expansive training set (unrefined by diagnosis) underperformed relative to one trained 

on a targeted subset, where physicians had diagnosed every patient with MI. This emphasizes 

that the prognostic performance of these models is dependent on the work of physicians to first 
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establish a well-defined diagnosis. Because these models derive signal primarily from patient 

interactions with healthcare providers, the observed effect may be caused by the potential for 

clinical actions to take on divergent interpretations when present in different contexts. The ability 

for a model trained generally to “guess” at a clinician’s thinking may be less effective when 

required to work across contexts, as the range of mechanisms that must be inferred is much 

wider.  

 

Discussion 

The results of our experiments indicate machine learning models trained only on 

clinician-initiated administrative data can currently achieve performance close to models trained 

on more detailed, complete, EMR data. This is an important result because it provides insight 

into the current utility of machine learning models for patient risk stratification from clinical data 

and the primary source of signal that these models utilize. The results of our experiments also 

indicate the value of easier to access, lower resolution datasets (e.g. administrative vs. EMR). 

Finally, the results provide baseline performance levels that should be exceeded prior to claims 

that machine learning models can provide tangible guidance to clinicians, rather than simply 

looking over their shoulders.  

Models trained only on clinician-initiated data currently achieve performance close to 

state-of-the-art models including all available data elements. This indicates that current models 

extrapolate from the thinking of the clinician and therefore do not demonstrate the ability to 

diagnose substantially better than clinicians. Operationalizing models requires identifying the 

specific contexts and situations where they can provide genuine guidance. Future models which 

aim to guide clinicians should demonstrate the ability to either suggest future actions a clinician 
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should take or demonstrate improved accuracy through the dominant use of non-clinician-

initiated data (e.g. raw imaging results) and data that are difficult or expensive to interpret (e.g. 

constant real time streaming data).  

The idealized use case of machine learning models for patient risk stratification is to have 

generalizable models that provide specific and personalized projections for individual patients. 

However, models that derive their predictions from clinician-initiated data may paradoxically 

produce predictions based on what a physician would do for an average, similarly presenting 

patient, rather than the individual patient in question. Acknowledging the selective role that 

clinicians play in terms of what decisions and actions they choose to make on what data is 

available for models is critical for developing models that can truly assist clinician decision 

making.  

The implications of understanding where and how models derive their signal is important 

in identifying ideal use cases. While models may superficially display strong prognostic 

performance, if this performance is derived from the diagnostic efforts of physicians, the model 

cannot truly be thought of as acting independently. This observation can also explain the 

necessity for models to be retrained across institutions.  The physiological phenomena 

underpinning disease are largely static, but physicians have diverse behavior profiles 

corresponding to different disease trajectories that might not be captured in a single training set. 

Instead, the use of existing clinician-generated data (e.g. EMR and chargemaster) within 

machine learning is currently most likely to be useful in recognizing divergence in practice in  

large populations as opposed to guiding prospective clinical decision making. The robustness of 

population level prognosis stems from the efforts of individual physicians to make diagnoses 

from the physiology of the patients. 
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Freed from the expense of collecting clinical details and the epistemological burden of 

predicting individual patient outcomes in an unbiased manner, machine learning models could 

have tremendous utility in allowing patients to view quantified prognoses, as well as guiding 

value-based care decisions, hospital logistics and staffing management. This is especially true 

using administrative byproducts such as chargemaster details. Acknowledging these models are 

effective at learning current clinician intuition, rather than attempting to assist individual 

clinicians, these models could be used to quantify current status across multiple clinicians. An 

example would be a tool providing administrators with a more holistic view for the current 

inpatient load and acuity levels of their patients. Such a tool could enable better planning, 

staffing and resource allocation. The ability to train cohort specific models also suggest values in 

lower resolution administrative datasets which may have larger patient counts that allow for the 

training of specialized models. A key challenge in this endeavor will be to identify cohorts 

prospectively in order to choose which model should be used.  

The promise of machine learning in healthcare necessitates an understanding of where the 

dominant sources of predictive signal are located, as well as what information is truly useful in 

shifting marginal decisions. Through an understanding of the unique conditions in which 

healthcare data are created and utilized, researchers can better identify the cases where machine 

predictions are likely to be beneficial.  

 

Methods 

Data 

The Premier Healthcare Database (PHD) (Premier Applied Sciences, 2019) is a large-

scale, provider-based, all-payer database containing data on more than 215 million total patients 

https://paperpile.com/c/VZvmYF/hx3aT
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and 115 million inpatient admissions. It includes more than six million inpatient admissions each 

year between 2013 and 2018 and a total of over 35 million admissions more than one day 

between 2013 and 2017 (training) and 6.7 million admission lasting longer than one day in 2018 

(test) (Table 3.2).  

The PHD contains information on providers (hospital, organizational and clinician) and 

visit characteristics. It includes patient demographics, disposition and discharge information as 

well as diagnoses for admission and discharge, and billed services such as procedures, 

medications and devices, laboratory tests, diagnostic and therapeutic services.  

Subsets of data: 

1. Demographic Data Only -  

Age, Gender, Race, Marital status, Insurance Type (e.g. private, public, government etc.) 

2. Demographic Data and information available at time of admission 

All from #1 and Admission Month, Source of Admission (e.g. another healthcare 

provider, home etc.), Type of Admission (e.g. Emergency, Urgent, Elective), Admitting 

Physician Speciality, Point of Origin (e.g. emergency department, obstetrics and 

gynecology etc.) 

3. Demographic data, information at admission and charges during the first calendar day of 

admission.  

All from #1 and #2 as well as charge codes for all actions taken from presentation at the 

hospital until the end of the first calendar day of admission.  

Cohort Selection 

We include predictions of inpatient mortality, 30-day readmission, prolonged length of 

stay (greater than 7 days). All available hospitalizations with length of stay greater than one day 
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were included, and separate hospitalizations of the same patient were treated separately. 

Hospitalizations that ended in mortality were excluded from cohorts predicting readmission, and 

hospitalizations that ended in mortality after less than 7 days were excluded from cohorts 

predicting prolonged length of stay.  

 Model Architecture and Training 

To make these predictions we first learn 8-dimensional clinical concept embeddings as in 

Beaulieu-Jones et al. (B. K. Beaulieu-Jones, Kohane and Beam, 2019) for 36,089 distinct 

charges using 94,708,714 co-occurrence pairs and 146,531,783,286 total relationships. Charges 

over the first day are converted into a sequence 100 events long and pre-padding with 0’s and 

pre-clipping where necessary.  

Two separate model architectures were utilized depending on the type of data utilized: 

models based on demographics and provider details utilized logistic regression due to the small 

number of features, while those based on charge data utilized a stacked recurrent neural network 

(gated recurrent unit (GRU)). Models were trained using the Adam optimizer until convergence 

based on test accuracy-informed early stopping. Dropout regularization was applied to each 

model. A table of model hyperparameters is provided in the supplement. All models were trained 

using the Tensorflow framework. 

Evaluation 

Models were randomly partitioned into training, validation, and test sets in an 80:10:10 

ratio respectively. Validation area under the receiver operating curve (AUROC) was the primary 

metric for evaluating and comparing model performance. 

https://paperpile.com/c/VZvmYF/sEs7D
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Chapter 5: Laundering bias: propensity matching and causal reasoning in the surgical 

literature 

Chapter Introduction 

 Surgery is a domain where observational data has significant potential. The presence of a 

well-defined intervention from which predictions must be made eliminates many concerns about 

temporal bias, while a focus on prognostic questions can alleviate some aspects of knowledge 

parasitism. However, one of the most popular statistical techniques in surgical comparative 

effectiveness research, propensity matching, has gained the reputation of being a “cure” for bias 

or confounding. In this chapter, adapted from an article aimed at a surgical audience, we 

demonstrate the risk of this mindset, and how propensity matching can actually act to launder 

bias instead.  

 
Main Text 

 

Introduction 

It has been well documented that surgical data has unique limitations that, in the absence 

of advances in recording, monitoring, or data collection, necessitate statistical solutions 

(Bababekov et al., 2018; Gelman, 2018). Surgical studies often have limited sample sizes at 

single institutions and enforced standardization is particularly difficult for surgical procedures. 

To address these limitations, there has been a rise in the use of propensity matching-based 

studies to conduct comparative analysis of surgical data. In parallel to the growth of large 

datasets(Haider, Bilimoria and Kibbe, 2018), such as NSQIP or the UK Biobank (Sudlow et al., 

2015), the use of propensity matching to reduce bias or confounding has become very popular. In 

https://paperpile.com/c/VZvmYF/t7YJs+oKNDQ
https://paperpile.com/c/VZvmYF/t7YJs+oKNDQ
https://paperpile.com/c/VZvmYF/t7YJs+oKNDQ
https://paperpile.com/c/VZvmYF/7eqO3
https://paperpile.com/c/VZvmYF/FujBE
https://paperpile.com/c/VZvmYF/FujBE
https://paperpile.com/c/VZvmYF/FujBE
https://paperpile.com/c/VZvmYF/FujBE
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2018, the share of surgical papers that specifically utilized propensity matching was nearly 100 

times higher than levels in 2000. 

 

 

Figure 5.1: Relative Pubmed Publications involving Propensity Matching in Surgery Relative to 

Growth in Surgical Literature, 2000-2018 

 

 

Unfortunately, the act of propensity matching does not ensure that the studies utilizing it 

are free from bias. In fact, given their popular interpretation, propensity score matching may 

inadvertently be serving to obscure limitations in the datasets and confounders present in the 

study design, effectively “laundering” bias. Not only can propensity score matching hide existing 

biases, it can also introduce novel biases of its own, leading to misleading or contrary 

conclusions later in the analysis. This is a critical issue in surgery, where decisions from limited 

data can mix with poor research to have serious consequences.  
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In the current report, we illustrate how propensity matching can provide potentially 

incorrect conclusions for use of resuscitative endovascular balloon occlusion of the aorta 

(REBOA), a controversial technique in trauma surgery. REBOA is a method for hemorrhage 

control that involves the inflation of a balloon in the aorta above the level of injury to reduce 

bleeding and maintain blood pressure. However, surgery to treat the underlying cause of 

bleeding is almost always required. While originally conceived for application in battlefield 

medicine(Stannard, Eliason and Rasmussen, 2011), REBOA use and efficacy in civilian 

hospitals has recently been the subject of study in several countries using large observational 

datasets. Four studies in particular attempted to discern the treatment effect of REBOA compared 

to non-REBOA controls on mortality using propensity score matching and specific inclusion 

criteria(Norii, Crandall and Terasaka, 2015; Inoue et al., 2016; Otsuka et al., 2018; Joseph et al., 

2019). We examined the use of propensity matching in each, and identified oversights in each 

that could upend conclusions regarding the influence of REBOA on excess mortality.  

The issues we identified fell into two central categories:  

1. Suppressing data missingness. Consider two patients who present to the ED with 

identical demographics and vitals- all easily measurable features. In contrast, data 

on a patient’s journey to the ED is less routinely collected. A propensity match 

using the available data might decide that these patients are equivalent, while 

neglecting that one had a multi-hour extrication, while the other arrived in the 

hospital immediately after injury. Propensity matching can act to obscure the 

quality or scope of the data by collapsing many features into a single matching 

parameter. Differences that may seem obvious to an attending physician are only 

visible in the data if the relevant features are deliberately collected.  

https://paperpile.com/c/VZvmYF/U0G1w
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
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2. Amplifying bias. The act of using propensity matching with some features may 

introduce bias where it was previously not present. Consider attempting to 

measure the effectiveness of ambulatory transfusions on survival, while matching 

based on surgery type. Because patients who underwent surgery necessarily 

survived both transport and the ED, patients who expired prior to surgery would 

not be counted in either group, a bias that would likely reduce the observed 

benefit of transfusions. When attempting to determine the appropriateness of 

including a feature in a model, the causal relationships the feature has with the 

exposure and outcome must be considered. 

We used a convenience sampling method to identify 4 major papers (Norii, Crandall and 

Terasaka, 2015; Inoue et al., 2016; Otsuka et al., 2018; Joseph et al., 2019) in the surgical 

literature that cited each other as evidence for and against the use of this procedural method for 

severely injured trauma patients. No effort was made to be comprehensive about the literature 

review as the purpose of the selection was to serve as an example for our analysis. In the 

following examples, we identified factors that could raise doubt regarding the presence or 

strength of REBOA’s impact on mortality. 

 

The REBOA-Outcome Effect Can Be Mediated Through Time-to-Surgery 

We first examine an instance where the neglecting to include a factor in the propensity 

match could have allowed confounding to slip through. In this case, the use of propensity 

matching acted to suppress the data missing from the model.  

One research group examining the association between REBOA and excess mortality 

utilized data from the American College of Surgeons Trauma Quality Improvement Program 

https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
https://paperpile.com/c/VZvmYF/vjwgF+ztQ9W+xEERX+KchzG
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data set between 2015 and 2016 (Joseph et al., 2019). The authors found that patients who 

received REBOA had higher mortality rates than the matched non-REBOA patients and 

concluded that this excess mortality may be due to the placement of REBOA. They constructed a 

pre-emergency department profile of each patient, consisting of sex, ethnicity, vital signs upon 

admission, and the type/number/severity of injuries. These variables form the basis of propensity 

score matching between REBOA and non-REBOA exposed patients. Crucially, they were only 

able to utilize factors observed or computed prior to REBOA placement in their analysis, making 

an implicit assumption that post-REBOA factors were identical between groups. While this is 

understandable, there are factors after REBOA placement that can act on mortality.  

The authors observed that REBOA patients waited significantly longer for their 

subsequent surgeries compared to the matched non-REBOA patients: a notable exclusion given 

the well-documented association between time-to-surgery and mortality. To evaluate the 

relationships between REBOA placement, delay in surgery, and poor patient outcomes, we 

suggested three plausible narratives: i) the placement of REBOA obstructs blood flow, leading to 

necrosis in tissue in the lower body, leading to worse patient outcomes (the central hypothesis of 

the study), ii) placement of REBOA takes a non-trivial amount of time, delaying the surgery, 

leading to poorer outcomes, and iii) the placement of REBOA temporarily stabilizes a patient, 

leading them to be triaged differently, delaying their surgery and leading to poorer outcomes. 

Differential triage could be a result of reduced availability of an on-call surgeon at the time of 

REBOA placement or a specific decision by the trauma team. The mechanism that the excess 

mortality operates through is critical in the actionability of the observation. If excess mortality is 

caused due to physiological action by the REBOA, it could be prudent to discourage its use, but 

https://paperpile.com/c/VZvmYF/ztQ9W
https://paperpile.com/c/VZvmYF/ztQ9W
https://paperpile.com/c/VZvmYF/ztQ9W
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if the mortality was caused by altered physician behavior, communication regarding this effect 

could be sufficient.  

These narratives are diagrammed in Figure 5.2a. Arrows indicate that the factor at the tail 

directly causes the factor at the head. We can collapse intermediate terms to view a simplified 

diagram in Figure 5.2b. This specific effect diagrammed is referred to as effect mediation, as the 

time-to-surgery mediates the physiological effect of the REBOA on mortality, if indeed such an 

effect exists.  

  

  

Figure 5.2: Mediation of the REBOA-Outcome Causal Effect by Delay in Surgery 
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  Figure 5.2 summarizes the role of delay in surgery: while the placement of REBOA may 

cause poorer subsequent outcomes, it also may cause delay in surgery. Therefore, we can 

hypothesize the existence of an indirect (mediating) effect of REBOA placement on outcomes 

through delay in surgery. Without controlling for this factor during the matching process, it 

becomes impossible to determine the relative contributions of the direct physiological and 

indirect (non-physiological) effects. The assumption that propensity matching alone could 

eliminate all bias helped obfuscate the assumption that REBOA acted only through physiological 

mechanisms.  

  

Surgery Type is an Imperfect Proxy for Patient Physiology 

We now present an example where the choice of including a feature in a propensity 

match induced a new bias. One examination(Inoue et al., 2016) of the treatment effect of 

REBOA utilized records from the Japan Trauma Data Bank (JTDB) (Yokota, 2016). A similar 

set of factors (demographics, severity/cause/type of injury, vitals, among other factors) were 

utilized in the propensity score analysis as the other analyses. Uniquely, they included the type of 

surgery conducted as a measure of patient indication. After taking into account REBOA’s role in 

the ED, this choice ends up embedding a bias into the study that was not originally present.  

Figure 5.3 describes the journeys of three hypothetical patients. First, a moderately ill 

patient is stable enough to proceed to surgery without additional intervention, and goes on to 

experience better outcomes, consistent with their initial presentation. A second severely ill 

patient arrives at an institution where REBOA is available, is stabilized sufficiently to proceed to 

surgery, but ultimately experiences poorer outcomes consistent with their poorer initial 

presentation. However, imagine a third patient, with identical illness severity as the second 

https://paperpile.com/c/VZvmYF/xEERX
https://paperpile.com/c/VZvmYF/xEERX
https://paperpile.com/c/VZvmYF/xEERX
https://paperpile.com/c/VZvmYF/7dEUu
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patient, who arrived at an institution where REBOA was unavailable. They might not have 

survived to receive a surgery, and would therefore be unavailable to serve as a non-REBOA 

control, despite identical pre-REBOA presentation. If this severely ill cohort represents a non-

trivial fraction of the overall non-REBOA population, their systematic exclusion from the 

controls would cause their group outcomes to seem better. The use of propensity matching, in 

effect, would be penalizing REBOA for stabilizing critically ill patients enough to receive 

surgery.   

  

   
Figure 5.3: Controlling for type of surgery can alter the population of severely ill patients in non 

REBOA institutions.  

 

Surgery Type is an Imperfect Proxy for Patient Physiology 

The act of controlling for surgery type ends up embedding an additional bias of 

indeterminate direction, due to the multiple care paths that are possible for a given presentation. 

Using pelvis injury as an example, this can be thought of in two ways.   
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1) Prior to matching, REBOA patients were significantly more likely to have pelvis 

hemorrhage surgery compared to pelvis fixation, and vis versa for non-REBOA patients. This 

encodes the assumption that there are no systematic differences regarding who receives REBOA 

among patients who receive the same surgery. However, surgery performed is an imperfect 

proxy for patient indication, particularly when more than one course of treatment for a given 

injury is possible. Patients who present with crushed pelvis will typically be referred to surgery 

unless they are stable enough to undergo interventional radiology therapy (IR) instead. However, 

IR is not available at every hospital. All patients who received both REBOA and pelvis 

hemorrhage surgery were necessarily severely injured. In contrast, some non-REBOA patients 

with less severe phenotypes may have arrived at hospitals without IR facilities, resulting in them 

receiving pelvis hemorrhage surgery. This bias would serve to enrich the non-REBOA cohort 

with patients with less severe phenotypes. A candidate for IR therapy is known to be an unlikely 

candidate for REBOA and likely to have positive outcomes. Matching based on surgery rather 

than indication will embed this effect into a portion of the control population (Figure 5.4a).  

2) The non-REBOA population is highly heterogeneous- an opposite causal effect among 

a different subpopulation could be imagined (Figure 5.4b). There exist patients whose initial 

indications are so severe that they are immediately sent into surgery without intervening 

REBOA. For these patients with the most severe phenotypes, knowing that they were sent to 

surgery could also imply that they were not given REBOA, and, given their initial state, imply 

that they were more likely to experience poor outcomes. As a result, we are left with two 

simultaneous, opposite effects induced by the choice to control on surgery type. Understanding 

the net effect would require knowing the relative size of the IR/severe phenotype subpopulations 

of the non-REBOA cohort as well as the individual magnitudes of each causal effect.  
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Figure 5.4: Controlling for type of surgery can simultaneously produce a negative (A) and 

positive (B) treatment effect of REBOA 

 

Bias Through Hospital Facilities is Unavoidable 

In other cases, researchers make a deliberate choice to control for a factor to eliminate a 

particular cause of bias, only to inadvertently induce a new bias.  

We examined two studies(Inoue et al., 2016; Otsuka et al., 2018) that only selected 

patients from hospitals that had the capability to place a REBOA catheter. In the former case, 

this was an explicit inclusion criterion among JTDB hospitals, while the latter considered only 

data from a single hospital with the ability to place REBOA. In general, restricting the analysis to 

only REBOA sites would serve to control for differences between hospitals with and without 

REBOA. Facilities with capabilities to place REBOA may be larger, more centralized, or better 

equipped in general, which may influence baseline patient survival (Figure 5.5A). However, 

within sites who place REBOA, patients are not treated in a random manner. No amount of 

propensity score matching or adjustment can change the fact that a physician observed the non-

REBOA patients in these studies and chose not to place a REBOA. The REBOA cases and 

https://paperpile.com/c/VZvmYF/vjwgF+xEERX
https://paperpile.com/c/VZvmYF/vjwgF+xEERX
https://paperpile.com/c/VZvmYF/vjwgF+xEERX
https://paperpile.com/c/VZvmYF/vjwgF+xEERX
https://paperpile.com/c/VZvmYF/vjwgF+xEERX
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available controls are two fundamentally different populations. The fact that they did not have a 

REBOA placed implies that they a physician determined that REBOA was not necessary upon 

examination, implying that they would have better outcomes from the outset. The authors are 

consequently left with a choice regarding which bias to let through: controlling for one induces 

the other, and vis versa.  

  

 

Figure 5.5: Controlling for location bias induces physician-mediated selection bias. A) 

Controlling for the Confounding Factor of Hospital Type B) Loss of Exchangeability through 

Hospital Inclusion 

  

In this case, part of the challenge stems from selection of the question at hand. The 

central question of evaluating the treatment effect of REBOA relative to non-REBOA controls is 

an unrealistic one, given both i) the extreme heterogeneity of the non-REBOA cohort and ii) the 

artificial framing of the study question. Even in the most ambiguous cases, surgeons do not 

choose between REBOA and non-REBOA, but REBOA and a specific alternative, such as 

resuscitative thoracotomy. This fact is obscured when the non-REBOA group is described as 

“propensity-matched.” Given the surgical contexts in which REBOA is currently deployed and 
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the extreme heterogeneity among “non-REBOA groups”, it is unlikely that existing observational 

datasets can be used to evaluate the treatment effect of REBOA relative to non-REBOA controls.   

 

Discussion 

The central risk of an over-reliance on propensity-matched observational studies is 

unjustified confidence in the strength of the discovered relationships. An understanding of how 

the features utilized in a particular study align with real life is necessary to determine if a given 

study can properly be conducted with a particular dataset, or if additional data must be collected. 

Propensity matching alone cannot compensate for missing features or identify causal 

relationships. Ultimately, the onus must be with researchers to produce work that is cognizant of 

its own potential limitations. In those cases where data limitations are not insurmountable, 

researchers should strive to generate associations that are useful to clinicians or other researchers 

without extensive reanalysis of the experimental design.  

When considering big data research findings that evaluate the efficacy of an intervention, 

it is critical for clinicians to decide whether a particular result applies to a given patient. This is 

currently a largely ad hoc, clinician-directed process. This results in a conundrum for clinicians, 

particularly when research findings contradict the way in which a patient presents. The trend of 

big data driven papers promoting views that are the result of assumptions that aren’t explicit has 

driven this phenomenon. The lack of transparency surrounding the appropriate interpretation of 

research findings makes it difficult for an otherwise educated population to weigh the relative 

value and limitations of each study. What research in this space so often fails to address is how 

assumptions change directionality or effect size. In this increasingly evidence-driven era of big 
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data, it is critical for researchers to provide clinicians with the tools to critically evaluate 

boundaries of what is published and promoted. 

Often, the incentives surrounding research publication facilitate experimental designs that 

inadvertently accentuate structural differences between case and control populations to produce 

larger and more dramatic effect sizes or studies with unrealistically broad scope. In contrast, the 

problems that clinicians face where research can provide the most guidance are often very 

specific with ambiguous prior evidence. Propensity matching ends up functioning as an 

obfuscation tool, covering up bias where it exists while lending a veneer of credibility.   

Ultimately, the promise of observational research hinges on our collective ability to 

transition learnings and conclusions to the clinic when appropriate and to further experimental 

testing when needed. Making this determination in an effective manner hinges on a partnership 

between researchers and physicians and transparent communication regarding what experiments 

were done and what findings result. 
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Chapter 6: Recommendations for Transparency and Frameworks in Surgical Research 

Chapter Introduction 

 This chapter, adapted from a companion piece to Chapter 5, aims to justify the need for 

transparency in communication and provide practical guidance for reporting model design, 

aiming to deflate the public perception that matching has achieved among surgical audiences.  

 
Main Text 

 

The proliferation of large, observational datasets and the statistical techniques used to 

study them has coincided with a rising interest among physician-researchers to apply these tools 

to understand complex systems (Weiss et al., 2012). Unfortunately, this can often lead to an 

uncritical acceptance of research findings that are generated in this manner. A perception that 

algorithmically created recommendations are “less biased” or that a large dataset should be 

allowed to “stand on its own” implicitly concedes that the processes behind the question at hand 

are beyond comprehension. However, the ability to justify decisions and recommendations is 

foundational to medicine. The infrastructure surrounding best practice can only exist because 

decision-making processes can be articulated and these processes represent reproducible 

phenomena. 

 Consider the problem of determining whether to intubate an acutely ill trauma patient in 

the emergency department (ED), and how observational analysis might provide useful guidance. 

A naive comparison of the patients who were/were not intubated might lead to the observation of 

better outcomes in one group over the other, but this observation will not be actionable unless i) 

a clinician can have a sense of why the association exists and what moderating factors may exist 

and ii) a clinician knows for which patients or situations the association applies. Consequently, 

https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
https://paperpile.com/c/VZvmYF/zIHI0
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we believe that the limitations and mechanisms that are integral parts of conclusions drawn from 

observational research can be encouraged by transparency in describing identifiable assumptions 

utilized as part of a study. 

The Strengthening the Reporting of Observational studies in Epidemiology 

(Vandenbroucke et al., 2014) (STROBE) guidelines are a useful tool in the reporting of medical 

research, but barriers for effective communication of limitations and mechanisms to clinicians 

still exist. We therefore propose amendments to enable researchers to more clearly present the 

assumptions implicit in their studies, and also appropriately consider the contexts in which their 

findings should and should not be applied.  

1. Within Study Design (4): presenting a framework: what are all the factors the 

authors think affect exposure and outcome (Table 6.1)? What factors do they have 

or are missing? What is the implication of feature missingness on their 

conclusions?  

2. Within Variables (7): presentation of a causal narrative or directed acyclic graph 

for each variable chosen to include and exclude from analysis. 

3. Within Interpretation (20) and Generalizability (21): proposing a testable 

mechanism for any observed significant associations and proposing, with as much 

specificity as possible, which patients are subject to study and where the learning 

from this study would be applied.  

https://paperpile.com/c/VZvmYF/E7OXw
https://paperpile.com/c/VZvmYF/E7OXw
https://paperpile.com/c/VZvmYF/E7OXw
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Figure 6.1: Summary of recommendations for STROBE A) A comparison of the dataset features 

with the Universe of Data, a framework that describes the author’s conception of all possible 

features that could influence exposure or outcome, can reveal deficiencies in the dataset or 

model. B) An example framework for exposures in emergency surgery. Terms highlighted in red 

are often collapsed into “patient state upon arrival”. C) Example table of features considered for 

inclusion/exclusion to the model.  
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Table 6.1: Examples of features by class 

Feature Class Examples of features 

Non-Temporal: Healthcare 

Institutions 

Available health care/medical/pharmaceutical institutions, 

general practices 

Non-Temporal: Comorbidities Presence of heart disease, diabetes, obesity, etc. in patients 

Non-Temporal: 

Demographics 

Age, sex, genetic background 

Injury: Mechanism Piercing vs blunt force, location of injury 

Injury: Pre-Transport Events Patient physiology, time-to-transport, availability/type of first 

aid 

Transport: Transport 

Character 

Ambulance, helicopter, types/expertise of emergency medical 

services 

Transport: Pre-Hospital 

Events 

Patient physiology, time-to-hospital, types of care 

administered in transport 

ED: Choice of Hospital Distance, presence in dataset (ascertainment bias), size, 

availability of surgeons/facilities/procedures 

ED: Provider Characteristics Experience level of provider, comfort/preferences regarding 

procedures 

ED: Pre-Exposure Events Patient physiology, time-to-exposure (if any) 
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ED: Exposure Intubation vs. No Intubation 

ED: Post-Exposure Events Time-to-surgery 

Surgery: Surgery 

Characteristics/Events 

Types of surgery, comparative risk of complications between 

procedures 

Post-Surgery: Post-Surgery 

Events 

Complications, post-operative care  

Post-Surgery: Mortality Mortality 

 

We first propose for physicians and researchers to think about their datasets as a pool of 

data that exists within a framework that has direction, assumptions, and limitations. This 

framework exists as a hypothetical ‘universe of data’ that surrounds data collected for a specific 

intervention/exposure and outcome. This universe contains every feature that could conceivably 

affect the exposure or outcome, even if they cannot necessarily be observed or measured, and 

represents the author’s working model of the factors in play (Figure 6.1A, Table 6.1). In the 

example of evaluating the effectiveness of an acutely injured patient requiring possible 

intubation and surgery, this may take the form of a timeline detailing a patient’s journey through 

their encounter (Figure 6.1B, Injury, Transport, ED, Surgery, Post-Surgery), along with a 

separate set of non-temporal observations, such as comorbidities or demographics. By 

conceptualizing this universe of relevant factors around an intervention, it is significantly easier 

to visualize biases, assumptions, and putative mechanisms present in an analysis. These 

assumptions most frequently manifest in the form of i) the appropriateness of the dataset for the 

question and ii) the choice of covariate control. As an example, hospital monitoring datasets 
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typically do not contain annotations of patient deterioration during transport- it is easy to imagine 

that intubation would be differentially effective on patients depending on how soon after injury 

that it is utilized. Avoiding this bias would require more precise cohort definitions or an 

alternative dataset and highlights the instances where certain datasets are not powered to answer 

certain questions. Identifying the gap between desired and available data is critical to 

understanding what potential conclusions can be drawn, and when they are applicable. Readers 

or reviewers could compare their own internal frameworks to those presented by the authors to 

evaluate the appropriateness of presented findings to their own contexts.  

Our second proposal involves a systematic treatment of inclusion criteria and propensity 

matching factors through the presentation of a causal narrative justifying its presence or absence 

in a model. This could take the form of a table, presented in the appendix, that would allow a 

clinician to easily understand the scope and limitations of the presented models (Figure 6.1C). In 

the case of intubation, the intuition behind controlling for injury location can be clarified by the 

observation that injury location exists prior to both intubation and mortality and possesses 

plausible mechanisms of influence over both, confirming its status as a confounding factor to be 

controlled. A less trivial example involves time-to-surgery, which is influenced by the manner in 

which intubation is delivered, and has a strong influence over mortality. Controlling for time-to-

surgery could be warranted if the authors hoped to disentangle whether the benefits of intubation 

outweigh the delay to the surgery.  

These considerations set the groundwork for the precise definition of clinically relevant 

cohorts as well as mechanistic, testable hypotheses for why the findings were observed. These 

elements are critical for allowing readers to determine the appropriateness and applicability of a 

study to their patients. For instance, lacking other data on patient physiology during transport, 
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this intubation study might have restricted itself to patients with comparatively less severe 

presentations who could be stabilized while in an ambulance. A reader would consequently know 

not to apply the findings of said study to the most severe phenotypes. Finally, by encouraging 

researchers to be upfront regarding their perception of their experimental systems, other 

researchers can compare their own sets of assumptions to those made by the study authors. An 

observation that intubation was associated with increased subsequent mortality would be easier 

to accept if a plausible, testable mechanism was supported by the data.  

 The inductive power that big data and statistical learning can provide can obscure the 

deductive processes of medical research and clinical translation. By encouraging transparency of 

assumptions and promoting the proposal of mechanistic hypotheses, frameworks empower 

physicians to identify which research findings are relevant to their patients. 
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Chapter 7: Association of Bariatric Surgery with Subsequent Depression 

Chapter Introduction 

 This chapter collects the recommendations described previously into a single, 

constructive, study, examining the association of depression onset after bariatric surgery.  

● By focusing on depression onset after surgery, there is a well-defined context and 

audience for the findings, and any results would be immune to temporal bias due to the 

fixed index date.  

● Rather than making individualized predictions, this study aims to examine population-

level prognosis, sidestepping concerns about knowledge parasitism.  

● In accordance with the specific recommendations regarding frameworks and matching 

features, details and rationales regarding the study design are presented. Stratified 

experiments are also conducted to provide mechanistic hypotheses for observed 

associations.  

 

Main Text 

Introduction 

Bariatric surgery is recognized as an effective treatment for severe obesity, resulting in 

large, sustained weight loss and improved quality of life (Nguyen and Varela, 2017) . Post-

operative depression has been implicated as a predictor of poor overall weight loss after surgery. 

As a result, evaluating the relationship between bariatric surgery and depression is important in 

ensuring the success of the procedure (Sheets et al., 2015). However, it is difficult to separate the 

potential of bariatric surgery to reduce pre-existing depressive symptoms from reduction of 

depression after surgery at the population level due to confounding by the presence/absence of 

https://paperpile.com/c/VZvmYF/ljPqz
https://paperpile.com/c/VZvmYF/Dyk6A
https://paperpile.com/c/VZvmYF/Dyk6A
https://paperpile.com/c/VZvmYF/Dyk6A
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pre-existing mood disorders. This analysis is further complicated by the bi-directional 

associations between depression and obesity (Luppino et al., 2010). Previous studies have tended 

to focus on the reduction in depressive symptoms in the same individuals before and after 

bariatric surgery, generally reporting a reduction in depression rates between 55-65% over two 

years (Burgmer et al., 2014; Mitchell et al., 2014; Ivezaj and Grilo, 2015).  The Swedish Obese 

Subjects (SOS) study reported long-term reductions in depression among bariatric surgery 

patients relative to conventionally treated patients, but the studied individuals seeking surgery 

had higher baseline incidence of depression relative to the control population (Rydén and 

Torgerson, 2006). In contrast, an increase in suicide among gastric bypass surgery patients 

relative to matched nonsurgical controls has been reported (Kennedy, 2008), but this observation 

was similarly attributed to the presence of preoperative depression (Jones-Corneille, Wadden and 

Sarwer, 2007). A separate study of patients in Pennsylvania implicated both disappointment with 

weight regain and lack of follow-up appointments with the association between bariatric surgery 

and suicide (Tindle et al., 2010). 

A clear understanding of the influence of bariatric surgery on post-surgical depression 

risk will assist the determination of ideal candidates for weight loss surgery from a psychological 

standpoint, and inform surgical follow-up standards of care. We performed a causal-inference 

analysis of post-surgical rates of depression in populations undergoing and eligible for bariatric 

surgery (body mass index (BMI) ≥ 40 or BMI ≥ 35 with a comorbid condition) (Hedley, 2004), 

and without a history of depression. To our knowledge, our utilization of health insurance claims 

data for this analysis represents the largest such study to date.  

 

 

https://paperpile.com/c/VZvmYF/Y1NPA
https://paperpile.com/c/VZvmYF/Y1NPA
https://paperpile.com/c/VZvmYF/Y1NPA
https://paperpile.com/c/VZvmYF/MHgOO+biCF5+ySAsp
https://paperpile.com/c/VZvmYF/MHgOO+biCF5+ySAsp
https://paperpile.com/c/VZvmYF/MHgOO+biCF5+ySAsp
https://paperpile.com/c/VZvmYF/MHgOO+biCF5+ySAsp
https://paperpile.com/c/VZvmYF/MHgOO+biCF5+ySAsp
https://paperpile.com/c/VZvmYF/70Uu0
https://paperpile.com/c/VZvmYF/70Uu0
https://paperpile.com/c/VZvmYF/E6pFB
https://paperpile.com/c/VZvmYF/xTuVL
https://paperpile.com/c/VZvmYF/xTuVL
https://paperpile.com/c/VZvmYF/OaiWO
https://paperpile.com/c/VZvmYF/OaiWO
https://paperpile.com/c/VZvmYF/OaiWO
https://paperpile.com/c/VZvmYF/8gPjC
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Methods 

Using un-identifiable member claims data from Aetna, a prospective cohort study was 

simulated. The claims dataset contained diagnosis and intervention records for more than 63 

million individuals in the United States between 2008 and 2016. Race, ethnicity, and 

socioeconomic data were not present in the database. International Classification of Diseases, 

Ninth Revision (ICD-9) codes were used to define diagnoses, while ICD-9 and Current 

Procedural Terminology (CPT) codes were used to define procedures and interventions. 

Phenome-wide association study (PheWAS) (Hedley, 2004; Denny et al., 2010) codes were used 

to map ICD-9 codes according to phenotype. All calculations were conducted using Microsoft 

SQL Server and R statistical software, version 3.4.3 (Hedley, 2004; Denny et al., 2010; Tierney, 

2012). R packages survival and data.table were also used. The Harvard Medical School 

Institutional Review Board waived the approval requirement, as it determined this analysis of the 

dataset not to be human subjects research. 

Using annotations of diagnoses and procedures, all individuals who were eligible for and 

who underwent bariatric surgery were identified, with relevant codes and criteria defined using 

published UnitedHealthcare Commercial Medical Policy (UnitedHealthcare, 2018). Patients 

undergoing non-bariatric abdominal surgery were identified using CPT codes for anesthesia for 

abdominal surgeries. For patients with multiple surgeries, the earliest date available was used. 

Non-surgical groups were assigned a placeholder surgery date to enable comparisons with 

surgical groups. These dates were calculated by identifying the earliest eligibility date and 

adding the median eligibility-to-surgery time observed in the bariatric surgery cohort. A similar 

process was conducted for comparisons against non-bariatric abdominal surgeries, identified 

using anesthesia codes. Some of the most common surgeries in this category included 

https://paperpile.com/c/VZvmYF/8gPjC+0przO
https://paperpile.com/c/VZvmYF/8gPjC+0przO
https://paperpile.com/c/VZvmYF/8gPjC+0przO
https://paperpile.com/c/VZvmYF/8gPjC+0przO+GMAyy
https://paperpile.com/c/VZvmYF/8gPjC+0przO+GMAyy
https://paperpile.com/c/VZvmYF/8gPjC+0przO+GMAyy
https://paperpile.com/c/VZvmYF/8gPjC+0przO+GMAyy
https://paperpile.com/c/VZvmYF/p0kYD
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cholecystectomies, appendectomies, and hernia repairs. Individuals were required to have at least 

6 months of observations prior to their surgery/placeholder date to be included in the study. An 

analysis of all depression diagnoses in our dataset found that that the mean number of days 

between depression diagnoses was 58 days, and that 93% of all depression diagnoses were 

separated by fewer than 6 months, indicating that it was unlikely that unobserved depression 

diagnoses prior to the observation period were frequent. Subsequent diagnoses of depression 

were identified using phenotype-level codes corresponding to “Depression” or “Major 

Depressive Disorder” (Table S7.3). Individuals with codes corresponding to diagnoses of 

depression prior to their surgery/placeholder date were excluded from the analysis.  

To examine the effect of bariatric surgery on subsequent depression diagnosis, Cox 

proportional hazard models and Kaplan-Meyer cumulative incidence estimates were used to 

evaluate hazard ratios for depression between three pairs of groups (Table 7.1):  

● Bariatric surgery patients vs. bariatric surgery eligible individuals who did not receive 

bariatric surgery (referred to here as “surgery eligible individuals”). Note that while 

bariatric surgery patients are also technically eligible for surgery, the phrase “surgery 

eligible individuals” will refer to those who did not receive bariatric surgery.  

● Bariatric surgery patients vs. surgery eligible individuals who received non-bariatric 

abdominal surgery (referred to as “other abdominal surgery patients”). Patients with both 

bariatric surgeries and non-bariatric abdominal surgeries were placed in the bariatric 

surgery cohort.  

● Other abdominal surgery patients vs. surgery eligible individuals who received no 

abdominal surgeries, bariatric or otherwise (referred to as “non-surgery individuals”).  
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Table 7.1: Study Cohort Distribution 

All individuals considered are either bariatric surgery patients or eligible for bariatric surgery. 

While bariatric surgery patents are also eligible for bariatric surgery, the term “surgery eligible” 

refers to individuals who did not receive bariatric surgery in this analysis. (Table continued on 

next page) 

  Number (%) 

  
Bariatric Surgery 

Patients 

  Bariatric Surgery Patients 

    

Prior Psych 

Evaluation   

No Prior Psych 

Evaluation 

Total 64090   25861   38229 

Men  18403 (28.7)   6983 (27)   11420 (29.87) 

Age, years, mean (SD) 46.19 (13.59)   43.86 (11.52)   47.76 (14.63) 

Post-Surgical Depression 

Diagnosis (>=1) 7421 (11.57)   2647 (10.24)   4774 (12.49) 

Protracted Post-Surgical 

Depression Occurrences 

(>= 3 Diagnoses/6 

Months) 2550 (3.98)   951 (3.68)   1599 (4.18) 

BMI, mean (SD) 44.76 (7.08)   45.37 (7.13)   44.12 (6.98) 

6 Month Code Count, 

mean (SD) 120.63 (123.64)   121.71 (92)   119.9 (141.07) 

6 Month Diagnosis 

Count, mean (SD) 56.21 (55.04)   58.84 (41.96)   54.44 (62.29) 

6 Month Procedure 

Count, mean (SD) 64.42 (71.64)   62.87 (52.99)   65.47 (81.87) 

Follow-up Time, days, 

mean (SD) 748.78 (665.53)   716.38 (647.54)   770.71 (676.56) 
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  Number (%) 

  
Bariatric Eligible 

Individuals 

  Bariatric Eligible Individuals 

    

Other Abdominal 

Surgery Patients   

Non-Surgery 

Individuals 

Total 713050   220706   492344 

Men  327413 (45.92)   97702 (44.26)   229711 (46.65) 

Age, years, mean (SD) 53.22 (15.59)   57.69 (12.63)   51.62 (16.66) 

Post-Surgical Depression 

Diagnosis (>=1) 64932 (9.11)   13843 (6.27)   51089 (10.38) 

Protracted Post-Surgical 

Depression Occurrences 

(>= 3 Diagnoses/6 

Months) 20051 (2.81)   3991 (1.8)   16070 (3.26) 

BMI, mean (SD) 41.58 (7.06)   41.15 (6.95)   41.8 (7.11) 

6 Month Code Count, 

mean (SD) 53.43 (83.12)   103.06 (132.03)   46.52 (74.16) 

6 Month Diagnosis 

Count, mean (SD) 24.77 (36.93)   48.07 (60.34)   24.86 (42.86) 

6 Month Procedure 

Count, mean (SD) 28.67 (48.28)   54.99 (74.7)   24.86 (33.20) 

Follow-up Time, days, 

mean (SD) 892.33 (654.27)   857.24 (646.68)   985.22 (640.32) 

 

 

Sex, age, and pre-surgical ICD code count (6 months) were treated as covariates in all 

hazard-ratio models, and sex-stratified multivariate analyses were conducted. Analyses were 

further stratified by bariatric surgery type and whether bariatric surgery patients had annotations 

of psychiatric evaluation 6 months prior to the surgery.  

To identify what phenotypes were associated with post-bariatric surgery depression risk, 

propensity matched case/control groups were created, using both surgery eligible and other 

abdominal surgery patient cohorts as controls. Sex, age, pre-surgical ICD code count (6 months), 

and ZIP code were included as parameters in the match. Pre- and post-surgical phenotypes were 
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examined separately. Phenotype counts and depression status were recorded for all patents in all 

cohorts, and phenotype-specific risk ratios for depression were computed. Only phenotypes that 

(i) were found to be significantly associated with depression in the bariatric surgery cohort, (ii) 

were not found to be significantly associated with depression in either of the control cohorts, and 

(iii) had at least 100 co-occurring depression diagnoses were examined. Bonferroni correction 

was used to correct for multiple hypothesis testing. Details on variable selection and 

experimental design are included in the appendix.  

 

Results 

In total, 777 140 individuals were considered, including 64 090 bariatric surgery patients 

(Table 7.1). Among all considered individuals, there were 72 353 individuals diagnosed with 

depression (PheWAS code in 296.2 group), for a population incidence of 9.3%. This is lower 

than previous estimates15 of depression prevalence among individuals with obesity, but can be 

rationalized by the exclusion of individuals with histories of depression prior to surgery from the 

analysis. Among bariatric surgery patients, 7 421 subsequent depression diagnoses were 

recorded, for a population incidence of 11.57%. The mean follow-up time for bariatric surgery 

patients was 748 days, compared to 892 days for bariatric eligible individuals and 985 days for 

non-bariatric abdominal surgery patients.  
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Figure 7.1: Incidence of Post-Surgical Depression   

Text represents the hazard ratio and confidence interval between the two plotted cohorts. A) 

Time-to-depression curve for bariatric surgery patients compared to bariatric eligible individuals. 

B) Time-to depression curve for bariatric surgery patients compared to bariatric eligible 

individuals with other abdominal surgeries. C) Time-to-depression curve for bariatric eligible 

individuals with other abdominal surgeries compared non-surgery individuals. D) Time-to-

depression curve for bariatric surgery patients with pre-surgical psychiatric evaluations 

compared to bariatric surgery patients without pre-surgical psychiatric evaluations. All hazard 

ratios are adjusted for sex, age, and 6-month claim count.  

 

Figure 7.1 summarizes the results of Cox regression models over the patient cohorts. 

Bariatric surgery was found to have a hazard ratio of 1.31 (95% CI, 1.27-1.34, P < 2e-32) 

towards subsequent depression when compared to surgery eligible individuals. Furthermore, 

bariatric surgery was found to have a hazard ratio of 2.15 (95% CI, 2.09-2.22, P < 2e-32) 
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compared to other abdominal surgery patients. Other abdominal surgery patients had a hazard 

ratio of 0.49 (95% CI, 0.48-0.50, P < 2e-32) relative to non-surgery individuals. Age and code 

count 6 months prior to surgery were found to have minor effects (hazard ratios between 0.98-

1.02, all P< 2e-32) on the hazard ratio. Pre-surgical BMI measurements were available for a 

subset of patients examined (n = 132 000). Within this cohort, BMI was observed to have a small 

but statistically significant hazard ratio (1.01, P = 6.1e-12) with respect to depression (Figure 

S7.2). As an additional point of comparison, the depression hazard ratio for patients undergoing 

laparoscopic bariatric surgeries (n = 58 536) compared to bariatric eligible individuals 

undergoing non-bariatric laparoscopic surgeries of the stomach and esophagus (n = 2 679) was 

found to be 1.39 (95% CI, 1.30-1.50, P < 2e-32), consistent with the finding that the non-

bariatric laparoscopic surgery cohort had no elevated risk of depression relative to the non-

surgical group (HR = 1.03, 95% CI, 0.98-1.09, P < 2e-32) (Table S7.2). 

Psychiatric evaluation prior to bariatric surgery is commonly recommended (Brolin, 

1996; Roberts et al., 2000).  The effect of psychiatric evaluations or testing 6 months prior to 

bariatric surgery on the risk of subsequent depression was examined. Relative to bariatric surgery 

patients without pre-surgical psychiatric evaluations/tests, patients who received them (n = 25 

861) prior to bariatric surgery had a hazard ratio of 0.85 (95% CI, 0.81-0.89, P = 3.208e-12). For 

this study, depression was defined as a single observation of a depression code patient’s record. 

These annotations do not make reference to the severity or degree of diagnosis. The prevalence 

of protracted depression, defined as 3 or more diagnoses of depression within a 6-month period, 

was examined with respect to bariatric surgery. Although the absolute incidence of protracted 

depression was lower compared to standard depression, similar trends in hazard ratio were 

observed (Figure S7.1).  

https://paperpile.com/c/VZvmYF/qQhWv+BJnSm
https://paperpile.com/c/VZvmYF/qQhWv+BJnSm
https://paperpile.com/c/VZvmYF/qQhWv+BJnSm
https://paperpile.com/c/VZvmYF/qQhWv+BJnSm
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Figure 7.2: Sex-Stratified Time-to-Depression Diagnosis Curves 

Red curves represent the case groups in each plot (bariatric surgery or other abdominal surgery 

patients) while blue represent the control groups (surgery eligible individuals, other abdominal 

surgery patients, non-surgery individuals, respectively). Error bars represent 95% confidence 

intervals.  

 

 

Figure 7.2 shows the hazard ratios for the bariatric surgery comparisons stratified by sex. 

Consistent with previous studies (Mechanick et al., 2013), the rate of depression was found to be 

higher among female individuals, but men were typically more susceptible to a post-bariatric 

surgery depression effect. With respect to surgery eligible patients, male patients undergoing 

bariatric surgery had a hazard ratio of 1.40 (95% CI, 1.329-1.475, P < 2e-32) while female 

patients had a hazard ratio of 1.271 (95% CI, 1.236-1.307, P < 2e-32) (Supplementary Figures 3-

4). Compared to the other abdominal surgery cohort, male patients undergoing bariatric surgery 

had a hazard ratio of 2.299 (95% CI, 2.165-2.442, P < 2e-32) while female patients had a hazard 

ratio of 2.104 (95% CI, 2.031-2.178, P < 2e-32). The effect of sex on postsurgical depression 

https://paperpile.com/c/VZvmYF/mrcmp
https://paperpile.com/c/VZvmYF/mrcmp
https://paperpile.com/c/VZvmYF/mrcmp
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diagnosis risk was significantly smaller in magnitude when considering non-bariatric surgeries. 

When evaluating the hazard ratios for other abdominal surgery patients compared to non-surgery 

individuals, the hazard ratio for men was 0.509 (95% CI, 0.492-0.526 P < 2e-32) compared to 

0.482 (95% CI, 0.471-0.494, P < 2e-32) for women. The difference in hazard ratios between men 

and women for all comparisons was found to be significant with p < 0.0001 based on bootstrap 

analysis.  
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Figure 7.3: Procedure-Stratified Time-to-Depression Hazard Ratios 

The error bars represent 95% confidence intervals. Blue bars represent hazard ratios relative to 

surgery eligible individuals, while red bars hazard ratios relative to other abdominal surgery 

patients. The asterisk represents a non-statistically significant hazard ratio. 

 

Figure 7.3 describes the hazard ratios of post-surgical depression stratified by surgery 

type. Individuals with more than one surgery were classified based on the last annotated surgery 

present in their record. The individual surgical cohorts are summarized in Table S7.1. Vertical 

sleeve gastrectomy (VSG) surgical patients (n = 19 852) had significantly lower rates of post-
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surgical depression compared to the overall population, while Roux-en Y Gastric Bypass 

(RYGB) surgical patients (n = 18 877) and patients who underwent revision/reversal surgeries (n 

= 12 319) had significantly higher rates. Other surgical groups included adjustable bands (n = 15 

799), vertical bands (n = 506), and duodenal switches (n = 6 686). Consistent with the group-

level sex-stratified analysis, in every examined surgery type, men had higher hazard ratios than 

women. In particular, a significant hazard ratio for depression was not observed for female VSG 

patients relative to female bariatric eligible individuals (Supplementary Figures 5-8).  

Table 7.2: Phenotypes Associated with Depression in Bariatric Surgery Patients Only 

Phenotypes are grouped by PheWAS code. Depression risk ratio is observed in the bariatric 

patient cohort. A p-value threshold of 3E-05 was used to account for multiple hypothesis testing.  

Presurgical Phenotype 

Depression Risk 

Ratio   
P-Value 

Memory Loss 1.997   8.11E-08 

Chronic Airway Obstruction 1.408   6.58E-07 

Postsurgical Phenotype 

Depression Risk 

Ratio   
P-Value 

Sleep Disorders 2.043   1.95E-12 

Peritonitis and retroperitoneal infections 1.783   8.42E-10 

Postoperative infection 1.638   4.83E-09 

Complications of medical procedures NOS 1.71   4.58E-08 

Pleurisy; pleural effusion 1.484   4.58E-08 

Cellulitis and abscess of trunk 1.496   1.58E-05 

 

Table 7.2 summarizes the results of PheWAS analysis of post-surgical bariatric surgery, 

split between pre- and post-surgical phenotypes. Phenotypes were only included in these lists if 

they were not found to have significant associations with depression in surgery eligible and other 

abdominal surgery cohorts. Post-surgical phenotypes related to infections and surgical 

complications were significantly associated with depression in the bariatric surgery group but not 

in the cohort who underwent other abdominal surgeries, implying a specific association with the 

specific bariatric surgeries undergone by the patients with subsequent depression.  
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Discussion 

We report a robust association between bariatric surgery and subsequent depression. 

Because the follow-up times in the control cohorts were longer than those in the cases, it is 

unlikely that the observed association is due to early censoring. This observation is likely an 

artifact of utilizing insurance claims records: the case group was significantly younger than the 

controls, and were consequently more likely to experience changes in employment. We, 

however, note that age was not found to be a significant covariate in our analysis. This also 

implies that the presented risk ratios are conservative, due to the possibility of missed instances 

of depression among the cases. The observed trends were also found to be robust to the 

definition of depression used (protracted or not). Two findings suggest that that the specific 

processes and impacts unique to bariatric surgery may be responsible for our observations: i) 

non-bariatric abdominal surgery patients have reduced depression risk ratios, likely due to the 

therapeutic value of the surgery itself, and ii) laparoscopic bariatric surgeries also have an 

elevated hazard ratio against depression relative to esophageal/stomach laparoscopic surgery 

patients. Differential susceptibility towards this effect based on sex was also observed. Despite a 

higher population incidence of depression among female individuals, the post-surgical effect size 

was found to be higher among men. Among the subset of patients with pre-surgical BMI 

measurements, we observed only a very small effect size of BMI with respect to depression risk, 

implying that our observations are unlikely to be driven by higher BMI measurements in the 

bariatric surgery group. Previous studies reported more significant effect sizes (Bjerkeset et al., 

2008) or a U-shaped relationship (de Wit et al., 2009) between BMI and depression. We 

hypothesize that the lack of observed effect in our cohort is due to our study design: all patients 

were eligible for bariatric surgery, and had significantly elevated BMI and baseline depression 

https://paperpile.com/c/VZvmYF/7rLgJ
https://paperpile.com/c/VZvmYF/7rLgJ
https://paperpile.com/c/VZvmYF/7rLgJ
https://paperpile.com/c/VZvmYF/7rLgJ
https://paperpile.com/c/VZvmYF/3tBVL
https://paperpile.com/c/VZvmYF/3tBVL
https://paperpile.com/c/VZvmYF/3tBVL
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risk as a result. Therefore, trends observed over a wider BMI range might not be applicable to 

our cohorts.  

A survey of 81 bariatric surgery programs found that only half required formal 

psychiatric assessment prior to surgery (Martin-Fernandez, Heinberg and Ben-Porath, 2019). Our 

finding that post-surgical depression was less common in patient populations with these 

screenings reinforce the value of these evaluations even in populations without histories of 

depression. These screenings may be interpreted as indicators of programs with greater priority 

on mental health care or stricter patient selection mechanisms.  

Based on our control of confounders and the temporal control we applied to cohort 

selection, our results lead us to hypothesize a potential causal relationship between the surgery 

and subsequent depression in a subset of patients, relating to the success and frequency of 

surgery. Postsurgical phenotypes related to infection and surgical complications were strongly 

associated with depression among patients undergoing bariatric surgery, and revision/removal 

surgeries had some of the highest hazard ratios for subsequent depression. Crucially, 

postoperative surgical complications and infections were only associated with depression in 

bariatric surgery patients, and not in other abdominal surgery patients. These associations could 

provide hints at the mechanism and time-scale of post-bariatric surgical depression, such as 

perturbations of the gut microbiome or disappointment at the outcome of the surgery, though 

further study would be needed to investigate any of these hypotheses. Previous reports of post-

surgical depression often implicated long-term weight loss as a primary factor (McGuire et al., 

1999), while our phenotype association data provides evidence for a shorter-term mechanism as 

well. Similarly, we observe a higher risk of post-surgical depression among RYGB patients 

https://paperpile.com/c/VZvmYF/hrRfv
https://paperpile.com/c/VZvmYF/ty0CH
https://paperpile.com/c/VZvmYF/ty0CH
https://paperpile.com/c/VZvmYF/ty0CH
https://paperpile.com/c/VZvmYF/ty0CH
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relative to other surgeries, which could be attributed to the fact that patients undergoing it 

typically have more severe baseline conditions (English et al., 2018; Griggs et al., 2018) 

We were able to achieve a significantly higher sample size than comparable clinical 

studies through our use of clinical insurance records, allowing us to focus on a specific subset of 

the population (those without histories of depression) and compute comparable placeholder 

surgery dates for comparisons with non-surgery populations, which emulated a prospective 

clinical trial and were able to controlled for potential confounders not addressed in previous 

studies. Furthermore, we were able to utilize matched diagnosis data for our patient population to 

uncover new phenotypic associations with post-surgical depression.  

Our study contains several limitations. First, although we enforced similar inclusion 

criteria on our cases and controls, based on the inclusion criteria for consideration for bariatric 

surgery, our cases still had higher pre-surgery claims counts relative to the controls, raising the 

possibility that they had poorer baseline health. Second, although we removed individuals with 

pre-existing diagnoses of depression, other comorbid conditions present among the population 

who received bariatric surgery could contribute to the observations noted. The limited 

demographic and sociological information present in the insurance claims dataset restricted the 

pool of covariates that could be controlled or adjusted for in the analysis (Table 7.3-4). Features 

that we were unable to measure include ethnicity, marital status, and socioeconomic status, as 

well as information about the providers. Furthermore, the population of individuals with health 

insurance may not be representative of the population at large. Annotations of procedures and 

interventions required the presence of billed procedure codes. Discrepancies between procedures 

billed for and procedures actually carried out as well as differences between when a procedure 

occurs and is billed for exist. Finally, we were unable to completely eliminate the possibility that 

https://paperpile.com/c/VZvmYF/X5ctT+AU6Ip
https://paperpile.com/c/VZvmYF/X5ctT+AU6Ip
https://paperpile.com/c/VZvmYF/X5ctT+AU6Ip
https://paperpile.com/c/VZvmYF/X5ctT+AU6Ip
https://paperpile.com/c/VZvmYF/X5ctT+AU6Ip
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the observed association results from a hypothetical association between the decision to undergo 

bariatric surgery and subsequent depression, as opposed to the surgery itself.  

 

Conclusions 

This study examined the frequency of depression diagnoses after bariatric surgery in 

individuals without a prior history of depression, relative to both non-surgical and non-bariatric 

surgery controls. We report an increased risk of depression following bariatric surgery that is 

amplified in men and reduced in patient cohorts with pre-surgical psychiatric evaluations. Our 

findings also show that this effect is comparatively larger in patients undergoing gastric bypass, 

and smaller among patients undergoing vertical sleeve surgeries. Furthermore, we find that this 

effect is most pronounced in the presence of post-surgical infections or complications, as well as 

in patients with pre-surgical histories of memory loss or chronic airway obstruction. For patients 

considering bariatric surgery and their physicians, this research provides a clearer estimate of 

post-surgical depression risk and associated exacerbating and mitigating factors.   

 

 

 

 

Appendix: Experimental Design and Variable Selection 

 

In accordance with the recommendations made in Chapter 6, a framework describing the 

total features influencing bariatric surgery and depression is presented in Figure 7.4, as well as a 

comparison of what features are available and utilized in the model in Table 7.3. Finally, a table 

justifying the treatment of matching variables is presented in Table 7.4.  
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Figure 7.4: Framework of features influencing bariatric surgery status and postsurgical 

depression  
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Table 7.3: Comparison of features present in dataset to features present in framework (Table 

continues on next page) 

 

 Features Present in 

Dataset 

Features Missing from 

Dataset 

Implications of 

Missingness  

Health Care 

Institutions 

Proxy for rural/urban 

(ZIP code) 

N/A, all patients were 

in the US and had 

health insurance. 

None 

Demographics Age, sex, proxy for 

socioeconomic status 

(ZIP code) 

Race/ethnicity 

 

Marital Status 

Propensity for both 

surgery (Cheung et al., 

2013; Johnson-Mann et 

al., 2019) and 

depression (Simpson et 

al., 2007) are 

influenced by race.  

 

Marital status is known 

to affect adherence to 

postoperative 

guidelines (Wheeler, 

2008) as well as 

depression.  

Etiology Weak proxy for obesity 

etiology 

(diagnosis/procedural 

records) 

Actual obesity 

etiology 

True etiology is often 

not recorded or even 

known to 

patient/provider, 

potential source of 

unmeasured 

confounding.  

Comorbidities Strong proxy for 

comorbidities 

(diagnosis/procedural 

records) 

 

BMI  

Unmeasured/acted 

upon comorbidities. 

Can affect propensity 

for depression, but 

unlikely to influence 

propensity for surgery 

if provider is unaware.  

Pre-Decision 

Care 

Strong proxy for pre-

decision care 

(diagnosis/procedural 

records) 

Care at out-of-

network providers 

Provider is likely to be 

aware of out-of-

network treatments, 

influencing propensity 

for surgery, potential 

source of unmeasured 

confounding.  

https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/3Vm3w+Air1S
https://paperpile.com/c/VZvmYF/oOOBG
https://paperpile.com/c/VZvmYF/oOOBG
https://paperpile.com/c/VZvmYF/oOOBG
https://paperpile.com/c/VZvmYF/oOOBG
https://paperpile.com/c/VZvmYF/YdrK9
https://paperpile.com/c/VZvmYF/YdrK9


139 

Decision None All factors influencing 

a decision to 

undertake surgery 

Likely the strongest 

confounding factor, as 

individuals do not make 

the decision to undergo 

surgery randomly. We 

attempt to control for 

this by comparing to 

non-bariatric surgeries, 

but this is imperfect. 

Provider 

Characteristics 

None All information about 

providers 

Propensity to 

recommend surgery 

may be different 

between small vs. large 

hospitals, for-profit vs. 

not-for-profit, etc.  

Pre-Surgery 

Events 

Strong proxy for pre-

surgery care (diagnosis 

and procedural records) 

Care at out-of-

network providers, 

but unlikely, as 

surgery was covered 

through insurance. 

  

What pre-surgical 

care was available. 

Lack of availability of 

pre-surgical care may 

indicate non-

comparable surgeries 

for psych eval vs. no 

psych eval 

comparisons.  

Surgery Directly measured 

 

Weak proxies for 

success of surgery 

(complications that 

require procedures) 

Success of surgery Expectations regarding 

surgery results 

influence both 

propensity for surgery 

and propensity for 

depression.  

Post-Surgery 

Events 

Strong proxy for post-

surgery care (diagnosis 

and procedural records) 

Care at out-of-

network providers, 

but unlikely, as 

surgery was covered 

through insurance.  

 

Patient weight 

loss/expectations.  

Presence or absence of 

strong post-surgical 

care is an indicator of 

program quality, 

influencing propensity 

for surgery and 

depression.  

 

 

Depression Directly measured Severity  Associations among 

subgroups of 

depression will be 

undetectable.  
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Table 7.4: Rationale for including/excluding features in matching  

 

Factor Rationale/Causal Narrative  Decision 

Age/Sex Age and sex are a strong influence on both 

the comorbidity profile of the patients and 

the risk of depression. 

Included in match. 

ZIP code ZIP is the only proxy available for 

socioeconomic status and provider, both of 

which are strong influences on propensity 

for surgery and depression.  

Included in match but 

confounding is still present.  

BMI BMI is one of the central criteria for 

receiving bariatric surgery.  

Include in match so 

cases/controls have similar 

levels of pre-surgery obesity.  

Pre-surgery 

comorbidities 

Comorbidities that influence surgery 

through policy include diabetes, 

cardiovascular disease, coronary artery 

disease, cardiomyopathy, and sleep apnea 

(UnitedHealthcare, 2018), while those that 

influence surgery through patient choices 

may include any that interfere with day to 

day life. To select just one, diabetes is 

known to significantly increase the odds of 

comorbid depression (Anderson et al., 

2001). 

Include in match, but 

controlling for every 

individual factor would 

massively increase the 

number of hypotheses 

evaluated, making statistical 

significance difficult. We use 

a combination of surgery 

eligibility + code count as a 

proxy, but this is explicitly a 

compromise.  

Total Claims 

Count 

Healthcare utilization can be captured by 

counting total claims over an individual’s 

coverage period. However, the presence 

and success of a surgery contributes to this 

count.  

Exclude from match to 

prevent anomalously sick 

controls from being utilized.  

Post 

Baseline/Surgery 

Enrollment 

Health insurance coverage in our dataset is 

highly correlated with employment. 

Success of surgery or presence of 

depression could influence changes in 

employment that affect coverage time.  

Exclude to prevent controls 

with unnaturally extended 

coverage from being utilized.  

 

https://paperpile.com/c/VZvmYF/p0kYD
https://paperpile.com/c/VZvmYF/TXLNp
https://paperpile.com/c/VZvmYF/TXLNp
https://paperpile.com/c/VZvmYF/TXLNp
https://paperpile.com/c/VZvmYF/TXLNp
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Conclusions 

 We can distill the critical components that underlie the ability to make robust predictions 

from observational data into several points: 

● Have a question worth answering: determining whether or not this is present for a given 

study requires extensive consultation with domain experts and reflection regarding the 

available data. Domain experts and clinicians provide valuable context about the 

intricacies of a domain and are the end consumers of the work that we produce. It is 

therefore critical to design studies that address questions they care about, and so that they 

can identify when and where our predictions are most valid. This can take the form of 

narrowing the focus of a study, both to eliminate flaws such as temporal bias as well as to 

make the identification of hypothetical mechanisms easier. Furthermore, certain 

questions are incompatible with certain datasets. Making this concession is not an 

admission of defeat, but an indicator that we have a strong understanding of our system.  

● Benchmark against the real world: performance and utility are intertwined, but are often 

not treated as so. Optimizing for accuracy, AUC, or effect size is not helpful if the strong 

performance can only be realized retrospectively, or if the predictions do not represent an 

advance beyond what a human practitioner already knows. Prediction in the real world is 

inherently a hard task filled with uncertainty- particularly among questions that are worth 

answering, it is not always reasonable to expect AUC = 0.9. Real-world benchmarks, 

particularly “clinical judgment,” may be difficult to approximate or evaluate in a study, 

but are the ultimate standards that models will be judged against.  

● Work to make prediction obsolete: prediction from observation is fundamentally a 

response to uncertainty about the causal relationships of interest. A machine learning 
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model to predict chemical reaction products given starting materials would be of dubious 

utility since the systems are sufficiently well understood. Similarly, when observed 

reaction products are not what was expected, the fault typically lies with the execution of 

the reaction rather than with the prediction. The idea of a prediction becomes obsolete 

once comprehensive mechanistic understanding of the system is achieved. In order to 

maximize impact, the predictions that we make should be towards the specific end of 

eliminating the uncertainty that exists, through improving mechanistic understanding or 

advancing hypotheses.  

 Resolving the tension between big data and biomedical research will involve significant 

shifts in the ways that research is conducted and evaluated. Conducting research with a focus on 

utility, modesty, and mechanism will be critical in delivering on the promise that new datasets 

and methodologies bring.  
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Supplementary Materials 

 

Supplementary Materials for Chapter 1 

Temporal Bias in Hard Drive Failure Prediction 

We examined instances of temporal bias in a non-medical application: hard drive failure 

prediction. Hard drives utilize Self-Monitoring, Analysis and Reporting Technology (SMART), 

an internal self-monitoring and reporting process that records various physical internal metrics. 

There have been numerous attempts to develop algorithms or techniques to utilize these internal 

metrics for early warning systems (Hughes et al., 2002). Hughes, et al. (Murray, Joseph F, 

Hughes, Gordon F and Kreutz-Delgado, Kenneth, 2005) utilized a dataset containing the records 

of the 600 immediately prior to failure for a set of disk drives, as well as records from a number 

of healthy drives.  

  

https://paperpile.com/c/VZvmYF/nw2Nl
https://paperpile.com/c/VZvmYF/nw2Nl
https://paperpile.com/c/VZvmYF/nw2Nl
https://paperpile.com/c/VZvmYF/Ho2ee
https://paperpile.com/c/VZvmYF/Ho2ee
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To establish the presence of temporal bias, we examined the heterogeneity of the disc 

decay trajectories from an information content point of view. We identified “early” and “late” 

sections from each failed drive, defined as the earliest and latest 20-hour sections from each 

failed drive respectively and constructed logistic regression classifiers for future disk status. 

Assuming a homogeneous trajectory, features learned from late sections should be similarly 

predictive when deployed over early sections; however, we observed a significant drop in test 

AUC when temporally selected sections were tested against non-matching sections (Figure 

S1.1A). This implies the presence of temporal bias within this dataset: the early sections were 

distinguishable from controls, and late features fail to generalize to earlier sections. These imply 

that the observed period does not uniformly sample the hard drive failure trajectory.  

 

Figure S1.1: Temporal Bias in Disk Failure Prediction. A) The disk drive failure trajectory is 

heterogeneous over the final 600 hours. Features trained on early/late sections of the trajectory 

fail to generalize when tested over late/early sections respectively. B) Simulated prospective 

deployment of rules trained in a temporally biased manner show significant numbers of false 

alarms.  
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 Botezatu, et al. (Botezatu et al., 2016) constructed an algorithm built on the Backblaze 

monitoring dataset, containing continuous readings of SMART statistics and failure times for 

more than 50,000 hard disks. This algorithm examined the distribution of changepoints for 

particular parameters based on a “days-before-failure” metric when considering what observation 

window size to utilize. We examined the prospective performance of the Seagate-specific 

decision tree rules generated using their algorithm on the same Backblaze dataset. We compared 

predicted replacement dates to actual failure dates where available for disks from 2015-2018.  

We defined a “true failure” prediction as a predicted replacement date between 1 and 99 days 

prior to the true replacement date. Extended false alarms had replacement dates more than 100 

days in advance of predictions. We grouped no observed failures into two groups based on when 

observations were censored: “well documented” (censor date > 1 year after predicted 

replacement date) and “partially-documented” (censor date < 1 year after predicted replacement 

date. For these two groups of disks, all disks were operating normally in all observations. If the 

algorithm predicted a replacement date on the same day the disk failed, the disk was classified as 

“no early warning.” Figure S1.1B summarizes the distribution of result 

 

  

https://paperpile.com/c/VZvmYF/KfUxz
https://paperpile.com/c/VZvmYF/KfUxz
https://paperpile.com/c/VZvmYF/KfUxz
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Supplementary Materials for Chapter 2 

Table S2.1A: Included and excluded codes for initial analysis 

Initial Inclusion Criteria 

Disease ICD9 ICD10 CPT 

Parkinson's Disease 332, 332.0 G20 NA 

Pre-PD exclusions 

AD/Cognitive Issues 331* G30* NA 

Dementia 290* F03.90 NA 

Multiple Systems 

Atrophy/Progressive 

Supranuclear Palsy 

333.0 G90.3, 

G23.1 

NA 

Schizophrenia 295* F20* NA 

Lewy Body Dementia 331.82 G31.83 NA 

Encephalitis 323* G04* NA 

Wilson's Disease 275.1 E83.01 NA 
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Table S2.1B: Included and excluded codes for feature tracking and gait/tremor indexed analysis 

Feature ICD9 ICD10 CPT 

Screening mammography, bilateral (2-view 

study of each breast), including computer-aided 

detection (cad) when performed 

NA NA G0202 

Tremor/Abnormal Movements 781.0, 781.7, 

333.1, 

333.90, 

333.99 

R25.0, 

R25.1, 

R25.2, 

R25.3, 

R25.8, 

R25.9, 

R29.0, 

G25.0, 

G25.1, 

G25.2 

NA 

Gait Disorders 781.2 R26.0, 

R26.1, 

R26.81, 

R26.89, 

R26.9 

NA 

Constipation 564.00, 

564.01, 

564.02, 

564.09 

K58.1, 

K59.00, 

K59.01, 

K59.02, 

K59.03, 

K59.04, 

K59.09 

NA 
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Table S2.2: Tremor-only Cohort, PD associated Diagnoses 

Description OR Adjusted P Value 

Bipolar 2.03 8.69E-16 

Difficulty in walking 1.43 0.000320 

Senile cataract 1.16 0.00124 

Lack of coordination 1.54 0.00568 

Voice disturbance 1.47 0.00811 

Memory loss 1.38 0.00860 

Other non-epithelial cancer of skin 1.19 0.00861 

Osteoporosis NOS 1.21 0.0193 

Parasomnia 1.92 0.0348 

Symptoms concerning nutrition, metabolism, and development 1.26 0.0380 
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Table S2.3: Gait-only Cohort, PD associated Diagnoses 

Description OR Adjusted P 

Value 

Bipolar 4.32 2.40E-49 

Major depressive disorder 2.20 1.09E-35 

Other persistent mental disorders due to conditions 

classified elsewhere 

2.61 6.23E-21 

Urinary incontinence 1.68 1.73E-16 

Depression 1.55 2.34E-16 

Other non-epithelial cancer of skin 1.40 2.4712 

Memory loss 1.87 3.99E-12 

Voice disturbance 2.21 4.88E-12 

Malaise and fatigue 1.26 5.44E-12 

Degeneration of intervertebral disc 1.28 3.79E-11 

Frequency of urination and polyuria 1.41 3.35E-10 

Actinic keratosis 1.26 6.65E-09 

Senile cataract 1.24 8.76E-09 

Dizziness and giddiness (Light-headedness and vertigo) 1.28 1.75E-08 

Orthostatic hypotension 1.85 2.35E-08 
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Psychosis 1.99 3.80E-08 

Symptoms concerning nutrition, metabolism, and 

development 

1.55 4.83E-08 

Generalized anxiety disorder 1.75 1.43E-07 

Syncope and collapse 1.33 5.95E-07 

Mood disorders 2.53 9.28E-07 

Seborrheic dermatitis 1.68 3.93E-06 

Functional disorders of bladder 1.57 3.93E-06 

Retention of urine 1.36 5.25E-06 

Urinary tract infection 1.22 6.61E-06 

Chronic laryngitis 2.32 5.46e-04 
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Supplementary Materials for Chapter 4 

 
Figure S4.1. Histogram of length of stays for included admissions (in millions).  

 

Table S4.1. Example first day charges for an MI patient with little data available. 

Description Department Quantity 

PF ER LEVEL V 

PROFESSIONAL 

FEES 1 

EKG ROUTINE TRACING ONLY EKG 2 

ER LEVEL V 

EMERGENCY 

ROOM 1 

THERAPEUTIC/DIAG INJ IV PUSH SINGLE INITI 

SUB/DRUG IV THERAPY 1 

*LORAZEPAM, ATIVAN INJ 2MG PHARMACY 1 

R&B ONCOLOGY PRIVATE 

ROOM AND 

BOARD 1 
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Table S4.2. Example first day charges with unclear treatment actions. (Table continues on next 

page) 

Description Department Quantity 

PF ER LEVEL V PROFESSIONAL FEES 1 

EKG ROUTINE TRACING ONLY EKG 2 

PRESSURIZED OR NONPRESSURIZED 

INHALATION TX 

RESPIRATORY 

THERAPY 1 

ER LEVEL V EMERGENCY ROOM 1 

CPAP PER DAY 

RESPIRATORY 

THERAPY 1 

CPAP PER DAY 

RESPIRATORY 

THERAPY 1 

RT TIME FLAT RATE 

RESPIRATORY 

THERAPY 1 

*XR CHEST 1 VIEW PORTABLE 

DIAGNOSTIC 

IMAGING 1 

CULTURE BLOOD LABORATORY 2 

PARTIAL THROMBOPLASTIN TIME (PTT) LABORATORY 1 

PROTHROMBIN TIME (PT) LABORATORY 1 

COMPLETE CBC AUTO W/AUTO DIFF LABORATORY 1 

TROPONIN QN LABORATORY 1 

LACTATE/LACTIC ACID LABORATORY 1 

GLUCOSE BY DEVICE LABORATORY 1 

CREATINE KINASE (CPK) MB ONLY LABORATORY 1 

CREATINE KINASE (CPK) LABORATORY 1 

COMPREHENSIVE METABOLIC PANEL 80053 LABORATORY 1 

NEW THERA PROPHY/DIAG INJ EA ADD SEQ 

PUSH SUB/DRUG IV THERAPY 2 

IV INFUSION SUBSTANCES/DRUG CONCURRENT 

96368 IV THERAPY 1 

IV INFUSION SUBST/DRUG EA ADD SEQ UP TO 1 

HR 96367 IV THERAPY 1 

IV INFUSION SUBSTANCES/DRUGS EACH ADDL 1 IV THERAPY 3 
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HR 96366 

IV INFUSION SUBSTANCES/DRUGS UP TO 1 HR 

96365 IV THERAPY 1 

0.9% NACL VL 10ML PHARMACY 1 

0.9% NACL 250ML PHARMACY 1 

ASPIRIN TAB CHW 81MG (EA) PHARMACY 4 

ALBUTEROL, NONCOMP INH SOL 1MG PHARMACY 5 

INSULIN ASPART PROT/ASPART, NOVOLOG 70/30 

PER DOSE PHARMACY 0.05 

IPRATROPIUM/ALBUTEROL, DUONEB INH SOL 

3ML PHARMACY 1 

LIDOCAINE, XYLOCAINE VL 2% 10ML PHARMACY 1 

HEPARIN NA VL 1,000U/ML 1ML PHARMACY 1 

HEPARIN NA VL 1,000U/ML 1ML PHARMACY 1 

*FUROSEMIDE, LASIX VL 40MG 4ML PHARMACY 3 

FENTANYL, SUBLIMAZE AMP 0.05MG/ML 2ML PHARMACY 1 

CEFTRIAXONE, ROCEPHIN VL 250MG PHARMACY 1 

AZITHROMYCIN, ZITHROMAX VL 500MG PHARMACY 1 

NON REVENUE ITEM 

ADMINISTRATIVE 

FEES 5 

R&B ICU ROOM AND BOARD 1 
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Table S4.3. Admitting Physician Specialty (where available). (Table continues on next pages) 

Admitting Physician Specialty # Admissions 

INTERNAL MEDICINE (IM) 8,683,840 

HOSPITALIST (HOS) 7,668,355 

OBSTETRICS/GYNECOLOGY (OBG) 4,295,512 

UNKNOWN 3,254,355 

PEDIATRICS (PD) 3,209,914 

FAMILY PRACTICE (FP) 2,286,362 

ORTHOPEDIC SURGERY (ORS) 1,824,100 

PSYCHIATRY (P) 1,765,802 

GENERAL SURGERY (GS) 1,479,856 

NEONATAL - PERINATAL MEDICINE (NPM) 892,949 

CARDIOVASCULAR DISEASES (CD) 876,613 

UNSPECIFIED (US) 672,255 

NEUROLOGICAL SURGERY (NS) 433,030 

PULMONARY DISEASES (PUD) 426,366 

PHYSICAL MEDICINE AND REHAB (PM) 348,622 

EMERGENCY MEDICINE (EM) 331,833 

OTHER SPECIALTY (OS) 297,251 

CRITICAL CARE MEDICINE (CCM) 255,352 

NEPHROLOGY (NEP) 235,647 

UROLOGY (U) 226,721 

THORACIC SURGERY (TS) 225,508 

CARDIOVASCULAR SURGERY (CDS) 219,539 

HEMATOLOGY/ONCOLOGY (HO) 199,818 

VASCULAR SURGERY (VS) 198,145 

TRAUMA SURGERY (TRS) 171,277 

NEUROLOGY (N) 170,404 

OBSTETRICS (OBS) 141,561 

COLON/RECTAL SURGERY (CRS) 141,120 

PULMONARY CRITICAL CARE MEDICINE (PCC) 100,151 
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PEDIATRIC CRITICAL CARE MEDICINE (CCP) 92,561 

GYNECOLOGICAL ONCOLOGY (GO) 84,902 

CERTIFIED NURSE MIDWIFE (CNM) 80,432 

MEDICAL ONCOLOGY (ON) 79,390 

INTERVENTIONAL CARDIOLOGY 73,798 

GASTROENTEROLOGY (GE) 73,657 

MATERNAL AND FETAL MEDICINE (MFM) 73,394 

CHILD AND ADOLESCENT PSYCHIATRY (CHP) 72,002 

GERIATRICS - INTERNAL MEDICINE (IMG) 63,311 

GENERAL PRACTICE (GP) 63,155 

SURGICAL CRITICAL CARE (CCS) 62,820 

INTENSIVIST (INT) 62,410 

INFECTIOUS DISEASES (ID) 61,761 

GYNECOLOGY (GYN) 60,553 

PEDIATRIC HEMATOLOGY/ONCOLOGY (PHO) 57,319 

PLASTIC SURGERY (PS) 52,931 

PEDIATRIC SURGERY (PDS) 47,671 

OTOLARYNGOLOGY (OTO) 46,239 

NURSE PRACTITIONER (ARNP) 45,990 

ORTHOPEDIC SURGERY OF THE SPINE (OSS) 40,801 

SURGICAL ONCOLOGY (SO) 35,813 

CARDIAC ELECTROPHYSIOLOGY (ICE) 34,263 

ANESTHESIOLOGY (AN) 33,296 

PODIATRY (POD) 27,802 

ENDOCRINOLOGY AND METABOLISM (END) 27,738 

GERIATRIC MEDICINE - FAMILY PRAC. (FPG) 26,737 

HEMATOLOGY (HEM) 24,599 

TRANSPLANT SURGERY (TTS) 22,886 

SPORTS MEDICINE - ORTHOPEDICS (OSM) 17,005 

PHYSICIAN ASSISTANT (DRA) 15,025 

PEDIATRIC GASTROENTEROLOGY (PG) 14,909 
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HEMATOLOGY (HMP) 14,270 

RHEUMATOLOGY (RHU) 12,860 

DENTAL/ORAL SURGERY (DOR) 12,790 

PEDIATRIC PULMONOLOGY (PDP) 12,645 

ADDICTION MEDICINE (ADM) 11,677 

ADOLESCENT MEDICINE (ADL) 11,538 

PEDIATRIC NEPHROLOGY (PN) 11,536 

PEDIATRIC INFECTIOUS DISEASES (PDI) 11,382 

PEDIATRIC EMERGENCY MEDICINE (PEM) 11,054 

PEDIATRIC CARDIOLOGY (PDC) 10,281 

HAND SURGERY (HS) 10,273 

PSYCHOANALYSIS (PYA) 9,921 

PAIN MANAGEMENT (APM) 9,236 

PEDIATRIC NEUROLOGY (CHN) 8,820 

VASC. & INTERVENTIONAL RADIOLOGY (VIR) 8,050 

HOSPICE & PALLIATIVE CARE 7,694 

RADIOLOGY - DIAGNOSTIC (DR) 7,337 

CERTIFIED REG. NURSE ANESTHETIST (CRNA) 7,067 

RADIOLOGY (R) 6,868 

ABDOMINAL SURGERY (AS) 6,725 

RADIATION ONCOLOGY (RO) 6,093 

PEDIATRIC ORTHOPEDICS (OP) 5,976 

OPHTHALMOLOGY (OPH) 5,900 

PEDIATRIC SURGERY - NEUROLOGICAL (NSP) 5,247 

ALLERGY AND IMMUNOLOGY (AI) 4,745 

MEDICAL GENETICS (MG) 4,503 

PEDIATRIC ALLERGY (PDA) 4,327 

NUCLEAR MEDICINE (NM) 4116 

REPRODUCTIVE ENDOCRINOLOGY (REN) 4,003 

DERMATOLOGY (D) 3,986 

SPORTS MEDICINE (FSM) 3,540 
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PEDIATRIC ENDOCRINOLOGY (PDE) 3,336 

PEDIATRIC UROLOGY (UP) 2,557 

SLEEP MEDICINE 2,533 

OCCUPATIONAL MEDICINE (OM) 2,460 

MAXILLOFACIAL SURGERY 2266 

ALLERGY (A) 2,115 

ANATOMIC/CLINICAL PATHOLOGY (PTH) 2,000 

SPORTS & INTERNAL MEDICINE (ISM) 1,413 

GENERAL PREVENTATIVE MEDICINE (GPM) 1,254 

NEUROPATHOLOGY (NP) 1,237 

OSTEOPATHIC MANIPULATIVE MEDICINE 

(OMM) 1,210 

CLINICAL GENETICS (CG) 1,149 

LEGAL MEDICINE (LM) 1,072 

PEDIATRIC OTOLARYNGOLOGY (PDO) 1,046 

HEAD AND NECK SURGERY (HNS) 1,017 

CLINICAL PHARMACOLOGY (PA) 905 

CHIROPRACTICE (CRP) 780 

FACIAL PLASTIC SURGERY (FPS) 744 

NUCLEAR RADIOLOGY (NR) 579 

DIABETES (DIA) 565 

NEURORADIOLOGY (RNR) 522 

PUBLIC HLTH & GEN?L PREV. MEDICINE (PHP) 508 

DERMATOPATHOLOGY (DMP) 460 

NUTRITION (NTR) 458 

CLINICAL PATHOLOGY (CLP) 388 

PSYCHOLOGIST, CLINICAL 256 

CLINICAL NEUROPHYSIOLOGY (CN) 230 

PEDIATRIC OPHTHALMOLOGY (PO) 220 

PEDIATRIC RHEUMATOLOGY (PPR) 200 

CERTIFIED CLINICAL NURSE SPECIALIST 174 
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ANATOMIC PATHOLOGY (ATP) 146 

IMMUNOLOGY (IG) 146 

CHEMICAL PATHOLOGY (PCH) 125 

PHYSICAL THERAPY 18 

OCCUPATIONAL THERAPY 14 

PEDIATRIC RADIOLOGY (PDR) 14 

OPTOMETRY 10 
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Table S4.4. Admission Type (where available).   

Admission Type # Admissions 

EMERGENCY 22,237,533 

ELECTIVE 8,868,840 

URGENT 6,657,028 

NEWBORN 4,352,538 

TRAUMA CENTER 357,779 

 

Table S4.5: GRU model hyperparameters 

Hyperparameter Value 

Sequence Length 100 

Embedding Shape 8 dimensions 

GRU hidden size 128/64/32 

GRU hidden dropout 0.1/0.1/0.1 

Dense hidden size 32/16 

Dense Hidden dropout 0.1 

Early Stopping Patience 100 
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Supplementary Materials For Chapter 7 

 

 

 

 
Figure S7.1: Incidence of Post-Surgical Protracted Depression   

Protracted Depression was defined as 3 or more diagnoses of depression within a 6-month 

period. A) Time-to-protracted depression curve for bariatric surgery patients compared to 

bariatric eligible individuals. B) Time-to-protracted depression curve for bariatric surgery 

patients compared to bariatric eligible individuals with other abdominal surgeries. C) Time-to-

protracted depression curve for bariatric eligible individuals with other abdominal surgeries 

compared to bariatric eligible individuals without other abdominal surgeries. D) Time-to-

protracted depression curve for bariatric surgery patients with pre-surgical psychiatric 

evaluations compared to bariatric surgery patients without pre-surgical psychiatric evaluations- 

the p-value for this test was not found to be significant. All hazard ratios are adjusted for sex, 

age, and 6-month claim count.  
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Figure S7.2: Influence of BMI on Depression Incidence    

Individuals with BMI annotations were examined to identify a relationship between BMI and 

depression risk in bariatric eligible individuals and bariatric surgery patients. A) Time-to-

depression curve for bariatric eligible individuals and bariatric surgery patients. B) Time-to-

protracted depression curve for bariatric eligible individuals and bariatric surgery patients. All 

hazard ratios are for BMI with respect to depression/protracted depression.  
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Figure S7.3: Incidence of Post-Surgical Depression in Men 

A) Time-to-depression curve for male bariatric surgery patients compared to male bariatric 

eligible individuals. B) Time-to-depression curve for male bariatric surgery patients compared to 

male bariatric eligible individuals with other abdominal surgeries. C) Time-to-depression curve 

for male bariatric eligible individuals with other abdominal surgeries compared to male bariatric 

eligible individuals without other abdominal surgeries. D) Time-to-depression curve for male 

bariatric surgery patients with pre-surgical psychiatric evaluations compared to male bariatric 

surgery patients without pre-surgical psychiatric evaluations- the p-value for this test was not 

found to be significant. All hazard ratios are adjusted for age, and 6-month claim count.  
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Figure S7.4: Incidence of Post-Surgical Depression in Women 

A) Time-to-depression curve for female bariatric surgery patients compared to female bariatric 

eligible individuals. B) Time-to-depression curve for female bariatric surgery patients compared 

to female bariatric eligible individuals with other abdominal surgeries. C) Time-to-depression 

curve for female bariatric eligible individuals with other abdominal surgeries compared to female 

bariatric eligible individuals without other abdominal surgeries. D) Time-to-depression curve for 

female bariatric surgery patients with pre-surgical psychiatric evaluations compared to female 

bariatric surgery patients without pre-surgical psychiatric evaluations. All hazard ratios are 

adjusted for age, and 6-month claim count.   
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Table S7. 1: Procedure-stratified Cohort Characteristics (Table continues on next page) 

 

  Number (%) 

  
Revisions/Removals 

  
Gastric Bypass 

  
Vertical Band 

Total 12319   18877   506 

Men  3118 (25.31)   5240 (27.76)   137 (27.08) 

Age, years, mean (SD) 57.69 (12.63)   45.52 (12.33)   45.52 (14.43) 

Post-Surgical Depression 

Diagnosis (>=1) 1714 (13.91)   2734 (14.48)   77 (15.22) 

Protracted Post-Surgical 

Depression Occurrences (>= 3 

Diagnoses/6 Months) 566 (4.59)   974 (5.16)   26 (5.14) 

BMI, mean (SD) 42.21 (7.08)   45.61 (6.84)   43.59 (6.06) 

6 Month Code Count, mean 

(SD) 135.68 (160.28)   120.15 (102.46)   126.42 (136.15) 

6 Month Diagnosis Count, 

mean (SD) 61.16 (70)   55.98 (46.02)   56.56 (58.99) 

6 Month Procedure Count, 

mean (SD) 74.52 (93.35)   64.17 (59.46)   69.85 (80.14) 

Follow-up Time, days, mean 

(SD) 706.94 (638.97)   858.76 (724.02)   912.75 (736.48) 
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  Number (%) 

  
Adjustible Band 

  
Duodenal Switch 

  
Vertical Sleeve 

Total 15799   6686   19852 

Men  4022 (25.46)   2579 (38.57)   5673 (28.58) 

Age, years, mean (SD) 43.67 (11.52)   50.94 (16.53)   44.51 (11.93) 

Post-Surgical Depression 

Diagnosis (>=1) 2368 (14.99)   860 (12.86)   1549 (7.8) 

Protracted Post-Surgical 

Depression Occurrences  (>= 

3 Diagnoses/6 Months) 739 (4.68)   311 (4.65)   520 (2.62) 

BMI, mean (SD) 43.22 (5.82)   45.3 (7.36)   45.44 (7.58) 

6 Month Code Count, mean 

(SD) 95.77 (67.1)   142.48 (189.48)   118.95 (91.84) 

6 Month Diagnosis Count, 

mean (SD) 45.36 (30.57)   63.42 (81.23)   57.21 (42.49) 

6 Month Procedure Count, 

mean (SD) 50.4 (39.21)   79.06 (111.84)   61.74 (52.03) 

Follow-up Time, days, mean 

(SD) 1038.12 (772.13)   831.17 (670.27)   569.85 (503.56) 
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Table S7. 2: Laparoscopic Surgery Cohort Characteristics 

 

 

  Number (%)     

  

Laparoscopic 

Bariatric 

Surgeries 
 

Bariatric Eligible, non-

Bariatric Laparoscopic 

Surgeries of the Stomach 

and Esophagus  

Total 58536   2681 

Men  16745 (28.61)   712 (26.56) 

Age, years, mean (SD) 45.74 (13.05)   52.15 (13.36) 

Post-Surgical Depression Diagnosis (>=1) 6887 (11.77)   282 (10.52) 

Protracted Post-Surgical Depression 

Occurrences (>= 3 Diagnoses/6 Months) 2347 (4.01)   94 (3.51) 

BMI, mean (SD) 44.81 (7.04)   42.89 (7.91) 

6 Month Code Count, mean (SD) 115.27 (114.59)   128.91 (121.88) 

6 Month Diagnosis Count, mean (SD) 54.12 (50.65)   61.57 (56.4) 

6 Month Procedure Count, mean (SD) 61.15 (66.72)   67.34 (68.39) 

Follow-up Time, days, mean (SD) 766.47 (670.93)   921.15 (656.78) 
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Figure S7.5: Incidence of Post-Surgical Depression Relative to Non-Surgical Controls, 

Stratified by Procedure 

A) Time-to-depression curve for Revision/Removal surgery patients compared to bariatric 

eligible individuals. B) Time-to-depression curve for Gastric Bypass patients compared to 

bariatric eligible individuals. C) Time-to-depression curve for Vertical Band patients compared 

to bariatric eligible individuals. D) Time-to-depression curve for Adjustable Band patients 

compared to bariatric eligible individuals. E) Time-to-depression curve for Duodenal Switch 

patients compared to bariatric eligible individuals. F) Time-to-depression curve for Vertical 

Sleeve patients compared to bariatric eligible individuals. All hazard ratios are adjusted for sex, 

age, and 6-month claim count. 
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Figure S7.6: Incidence of Post-Surgical Depression Relative to Abdominal Surgical 

Controls, Stratified by Procedure 

A) Time-to-depression curve for Revision/Removal surgery patients compared to bariatric 

eligible individuals with other abdominal surgeries. B) Time-to-depression curve for Gastric 

Bypass patients compared to bariatric eligible individuals with other abdominal surgeries. C) 

Time-to-depression curve for Vertical Band patients compared to bariatric eligible individuals 

with other abdominal surgeries. D) Time-to-depression curve for Adjustable Band patients 

compared to bariatric eligible individuals with other abdominal surgeries. E) Time-to-depression 

curve for Duodenal Switch patients compared to bariatric eligible individuals with other 

abdominal surgeries. F) Time-to-depression curve for Vertical Sleeve patients compared to 

bariatric eligible individuals with other abdominal surgeries. All hazard ratios are adjusted for 

sex, age, and 6-month claim count. 
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Figure S7.7: Incidence of Post-Surgical Depression Relative to Non-Surgical Controls, 

Stratified by Procedure and Sex 

Error bars represent 95% confidence intervals of hazard ratios. Data for Vertical Band patients is 

not shown in this plot.  

 
Figure S7.8: Incidence of Post-Surgical Depression Relative to Abdominal Surgical 

Controls, Stratified by Procedure and Sex 

Error bars represent 95% confidence intervals of hazard ratios. Data for Vertical Band patients is 

not shown in this plot.  
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Table S7.3: Depression Diagnosis-Phenotype Codes (Table continues on next page) 

 

ICD9 ICD9 String PheCode Phenotype 

296.2 

Major depressive disorder, 

single episode 296.22 Major depressive disorder 

296.2 

Major depressive disorder, 

single episode, unspecified 

degree 296.22 Major depressive disorder 

296.21 

Major depressive disorder, 

single episode, mild degree 296.2 Depression 

296.22 

Major depressive disorder, 

single episode, moderate degree 296.22 Major depressive disorder 

296.23 

Major depressive disorder, 

single episode, severe degree, 

without mention of psychotic 

behavior 296.22 Major depressive disorder 

296.24 

Major depressive disorder, 

single episode, severe degree, 

specified as with psychotic 

behavior 296.22 Major depressive disorder 

296.25 

Major depressive disorder, 

single episode, in partial or 

unspecified remission 296.22 Major depressive disorder 

296.26 

Major depressive disorder, 

single episode in full remission 296.22 Major depressive disorder 

296.3 

Major depressive disorder, 

recurrent episode 296.22 Major depressive disorder 

296.3 

Major depressive disorder, 

recurrent episode, unspecified 

degree 296.22 Major depressive disorder 

296.31 

Major depressive disorder, 

recurrent episode, mild degree 296.2 Depression 

296.32 

Major depressive disorder, 

recurrent episode, moderate 

degree 296.22 Major depressive disorder 
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296.33 

Major depressive disorder, 

recurrent episode, severe 

degree, without mention of 

psychotic behavior 296.22 Major depressive disorder 

296.34 

Major depressive disorder, 

recurrent episode, severe 

degree, specified as with 

psychotic behavior 296.22 Major depressive disorder 

296.35 

Major depressive disorder, 

recurrent episode, in partial or 

unspecified remission 296.22 Major depressive disorder 

296.36 

Major depressive disorder, 

recurrent episode, in full 

remission 296.22 Major depressive disorder 

311 Depressive disorder NEC 296.2 Depression 
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