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Three Essays in Environmental and Development Economics

Abstract

In these three essays I examine the relationship between environmental quality and economic devel-

opment in a variety of settings. In Chapter 1, I examine the impact of the world’s largest anti-poverty

program (NREGA) on agricultural burning and its subsequent contribution to air pollution in India.

I find that agricultural burning increases substantially after the implementation of NREGA. I find

evidence that this is due to farmers mechanizing part of the production process in response to higher

wages induced by NREGA. The increase in agricultural burning leads to a substantial increase in the

emissions of particulate pollutants from biomass burning. In Chapter 2, I and a co-author examine how

chronic exposure to particulate air pollution in the United States may worsen the mortality impacts

of a pandemic. Using an instrumental variables approach based on shifts in electric power generating

capacity due to the shock of hydraulic fracturing, we show that mortality from COVID19 increases in

counties that have experienced higher levels of PM2.5 pollution in the ten years prior to the pandemic.

In Chapter 3, co-authors and I examine how exposure to high temperatures during schooling may

reduce student learning. Using data from both the United States and 58 other countries we find that

hotter days in the year(s) leading up to an exam substantially reduce performance on that exam. The

impact of hot days is concentrated on school days as compared to weekends or summer days. The

impact of heat is larger in low income districts of the United States and low income countries. We

discuss the implications that this may have for climate change and long-run economic growth.
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Introduction

Environmental protection or economic development? This is the trade-off that policy-makers frequently

face. Economists have worked to add nuance to this simple trade-off for many years. In particular, they

highlight the ways that environmental quality can impact economic development and how economic

development can occur in ways that do not require as severe of a trade-off.

Contributing to this effort is the focus of my doctoral dissertation. In the three chapters that

follow, I examine three different settings in which development policy has impacted environmental

quality in unexpected ways or in which environmental quality has had important impacts on human

development and well-being.

In the first chapter I examine the unintended consequences of a development policy in India on

environmental quality. India’s Mahatma Gandhi National Rural Employment Guarantee Act (NREGA)

is the worlds largest anti-poverty program. It was intended to offer an avenue for economic development

and poverty reduction in rural Indian communities by providing a Federal jobs guarantee to residents of

rural districts. NREGA offered workers jobs on local public works projects financed by the Federal

government. The program succeeded in providing employment to rural workers and in raising rural

wages. However, it had the unintended consequence of increasing the number of fires to clear post-

harvest residue on rural farms.

Using a difference-in-differences framework that takes advantage of the sequential implementation

of NREGA across Indian districts over three years, I show that fires on agricultural land increased by

21% after the implementation of NREGA in a district. This increase in fires occurs only among fires

that occur on agricultural land; there is no increase in fires on plantations, scrubland, or in forests.

It appears that the use of fires increased because farmers responded to the higher wages that

1



resulted from NREGA implementation by harvesting their crops with mechanical combines instead

of manual labor. Mechanical combines leave more residue on the fields after the harvest which must

be removed before planting the next seasons crops. Burning is the least expensive way for farmers

to remove this residue. I find that burning increased more, after the implementation of NREGA, in

areas that had more ability to mechanize and more experience with burning prior to NREGA.

The increase in agricultural fires after NREGA leads to an increase in the emission of particulate

pollution. Using the same difference-in-differences framework, I find that the number of months in

which the Indian Ambient PM2.5 standard was exceeded increases by 11% after the implementation

of NREGA. Crop burning is a substantial source of particulate pollution in urban India during the

burning season and the increase in pollution from NREGA added to pollution levels that were already

among the highest in the world.

In Chapter 2, I continue my focus on air pollution and examine how chronic exposure to high

levels of particulate air pollution in the United States increased mortality from the 2020 COVID19

pandemic. COVID19 is a respiratory disease whose transmission and lethality may both be increased

by particulate air pollution. Specifically, chronic exposure to high levels of particulate air pollution

may increase the ability of the virus to enter the cells of the body and infect an individual. Chronic

exposure to particulate air pollution may also increase the chance that patients who are infected suffer a

hyperinflammatory response to the disease, a key cause of mortality from COVID19.

In order to identify the impact of air pollution on COVID19 mortality specifically as opposed

to other determinants of mortality that may be correlated with air pollution I use an instrumental

variables approach that relies on the shift away from coal fired power generation that occurred in the

United States in response to hydraulic fracturing. This approach relies on the shift from relatively

dirty coal-fired electricity generation to relatively clean natural gas generation due to changes in the

natural gas price that occurred after the hydraulic fracturing revolution. The shift away from coal

generation provides an exogenous change in pollution levels in downwind counties.

Using this change, I find that a 1% increase in pollution levels increases COVID19 mortality

by approximately 0.75%. This is impact is consistent with existing work that finds substantial

mortality impacts of increased air pollution in both direction and magnitude. It suggests an additional
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consequence of elevated air pollution increased mortality during pandemics that regulators and

policy-makers may wish to consider in choosing the appropriate level of particulate pollution to

tolerate.

Finally, in Chapter 3, I shift my attention to the impacts of climate change and specifically to the

impact of exposure to high temperatures during the learning process. Heat negatively impacts cognitive

performance across a range of environments. We know from previous research that students who

take exams on hot days perform worse on those exams relative to their peers who take exams on cooler

days. However, we know little about how heat impacts what students learn on a normal school day

and how much of that they retain. We know even less about the impacts of heat outside of the United

States.

To shed light on that question I use data from two data sets combined with natural variation in

temperature across countries during the school year to show that students appear to learn substantially

less during hotter years. I combine data on nearly all U.S. students from 2009 to 2015 with data

from the PISA international assessment on student performance on a standardized exam across 58

countries. I show that in the United States student performance declines by 0.04% of a standard

deviation for every school day above 80◦F in the year leading up to an exam. In the international data

an additional 80◦F day reduces performance by 0.22% of a standard deviation.

These declines are much larger in lower income school districts in the United States and in countries

in the bottom half of the income distribution in the international sample. Further, minority students

in the United States appear to suffer larger negative consequences from heat exposure relative to

white students. Internationally, I examine whether the decline in performance can be explained by

correlated shocks to agriculture and I find no evidence that declines in nutrition can explain the decline

in student performance.

These results suggest that heat can have a long-term impact on economic growth by reducing the

rate at which human capital is created. Much more research is needed to clearly establish that link

and measure its magnitude. These results indicate a clear additional cost of climate change however

and one that may need to be included in calculations of the social cost of carbon.
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Chapter 1

Earth, Wind, and Fire: The Impact of

Anti-Poverty Efforts on Indian

Agriculture and Air Pollution

1.1 Introduction

What drives the relationship between income growth and environmental quality? Economists have

observed a correlation between income growth and reductions in environmental quality since at least

the early 1990s (Grossman and Krueger, 1995) but the mechanisms driving that relationship remain

unresolved (Harbaugh et al., 2002). One possibility is that rising incomes and wages lead to a transition

from labor intensive production to capital and pollution intensive production (Arrow et al., 1995;

Kuznets, 1973). The transition from human powered cotton production to steam powered production in

England is a classic example: as firms replaced human labor with coal-fired powered cotton, production

increased and shifted to Manchester which suffered notable declines in air quality (Longhurst and

Conlan, 1970; Rodgers, 1960).1 In London the replacement of human labor with power from coal

1Longhurst and Conlan (1970) quotes the Manchester police commission in the 1800s: “the increase of steam engines as
well as smoak issuing from chimnies used over stoves, foundries, dressers, dyehouses and bakehouses are become a great
nuisance to the town." There is no support for the claim that the downward sloping portion of the “environmental kuznets
curve" reflects a causal relationship (Harbaugh et al., 2002), but the correlation between increasing environmental damage
and income growth over some range of starting income has robust empirical support (Stern, 2018; Dinda, 2004; Dasgupta
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throughout the 19th century increased pollution and led to the appearance of the infamous “London

Fog" (Clay and Troesken, 2010).

A central challenge in demonstrating that increasing incomes has a causal impact on pollution by

increasing mechanization has been the simultaneity of income growth and mechanization (Ebenstein

et al., 2015). As I’ve suggested, and show in a theoretical exercise in Section 2, rising incomes could

drive increases in mechanization by raising labor wages and leading firms to invest in labor-saving

mechanization.2 Allen (2011) argues that firms choice to invest in labor-saving production techniques in

response to higher relative wages in England is the central reason the Industrial Revolution began there.

However, exogenous innovation in production techniques also leads to labor-saving mechanization

that raises labor productivity with wage increases coming as a consequence of higher productivity

(Solow, 1957).3

I show empirically that a policy raising incomes led to an increase in pollution. I address the

problem of simultaneity by measuring how air pollution changes after an exogenous shock to wages

generated by India’s Mahatma Gandhi National Rural Employment Guarantee Act (NREGA), the

world’s largest anti-poverty program. To explain the mechanism, I start by outlining a model showing

that rising incomes could lead to firms to invest in labor-saving, but polluting, mechanization.4 My

model suggests that farmers may have responded to NREGA by mechanizing harvest. This is consistent

with both Hornbeck and Naidu (2014) and Clemens et al. (2018), who show that farmers mechanize

after shocks to the low-skill labor market in the U.S. Mechanization could lead to an increase in

cropland fires in India because it leaves between 80% and 120% more biomass on a field relative

to manual harvesting (Yang et al., 2008; Jitendra et al., 2017). Biomass must be removed prior to

et al., 2002; Cole et al., 1997; Cuaresma and Heger, 2019; Wilebore et al., 2019).

2In section 2 I also discuss how Pigouvian policy could induce producers to adopt a cleaner labor-saving technology.
Rising incomes might also lead to worse environmental quality as consumption increases with higher incomes.

3Humphries (2013) and Kelly et al. (2014) argue that wages were not in fact higher in England at the time of the
Industrial Revolution and adoption of labor-saving technology was driven by concerns other than wages. Higher subsequent
wages were a side-effect of increased labor productivity. Zheng and Kahn (2017) point out that the causality could also go
in the opposite direction: firms in polluted cities in 19th England had to pay higher wages to attract workers because of the
pollution.

4The mechanism increasing pollution in my model is different from, but not mutually exclusive to, arguments that
income’s causal impact operates by increasing consumption (e.g. Alix-Garcia et al. (2013)). I show evidence that the
consumption mechanism does not appear to be operating in my context.
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planting and fires are the least expensive way to remove biomass (Ministry of Finance, 2018).

To explore these ideas, I use a difference-in-differences framework, taking advantage of the

staggered roll-out of NREGA coupled with data on nearly one million fires, to show that of NREGA

increased cropland fires by between 9% and 21%.5 NREGA is representative of the common workfare

approach to raising incomes in which governments guarantee work in return for some combination

of cash and/or aid.6 NREGA statutorily covers all rural districts in India and guarantees residents

employment on public projects that use low-skill labor. Wages on NREGA projects are set by the

statute and low-skill wages are paid by the Federal government. NREGA was rolled out sequentially in

roughly one third of the districts in India each year in 2006, 2007, and 2008. After the implementation

of NREGA, low-skill wages increased by between 4% and 8% (Imbert and Papp, 2015).

The contribution of cropland fires to air pollution is an acute policy challenge in India. As much as

40% of the pollution in Delhi during the winter may be due to crop residue burning (Bikkina et al.,

2019). Increases in cropland fires are believed to be a major reason that winter air quality in Delhi

is among the worst in the world (Shyamsundar et al., 2019) with levels of PM2.5 that exceed WHO

standards by as much as 1,000% (Liu et al., 2018). To my knowledge this is the first paper that

uses quasi-experimental methods and data from all of India to identify potential causes of the rise in

cropland fires. Satellite data allows me to construct measures that focus precisely on the outcome of

interest - cropland fires - as opposed to all fires.7

I show that air emissions also increase after the implementation of NREGA. Focusing specifically

on air pollution from burning biomass I show that NREGA increased the emission rates of particulate

5I solve a second problem, in addition to simultaneity, that has made studying the relationship between income growth
and environmental quality difficult. In many contexts, especially in developing countries, data on environmental quality is
sparse and mis-measured (Donaldson and Storeygard, 2016). This limits the ability of researchers to measure outcomes
over large spatial and temporal horizons. I use data on fire location from NASA’s MODIS satellite platform that provides
more than a decade of data on my primary outcome covering all of India to overcome this obstacle. I combine this with
remotely sensed data from the European Space Agency on land use across India to isolate fires that occur on cropland. By
focusing on cropland fires I am explicitly not examining the impact of NREGA on swidden or “slash-and-burn" agriculture.
In all my analysis I focus on mainland India and omit disputed territories.

6The World Bank records 94 labor-based programs active in 2018 among the 142 (66%) countries for which they have
programmatic data (Bank, 2018).

7The use of cropland fires to clear residue after harvest is a long-standing practice globally and contributes substantially
to local air pollution. Agricultural burning is widely used in Pakistan and China and is used more intensively in Africa than
anywhere else (Korontzi et al., 2006). The drivers of cropland fires appear to be similar across countries (Cassou, 2018;
Andini et al., 2018) thus understanding these drivers is important beyond India.
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pollution. I join a growing body of literature in both development and environmental economics

that uses remotely sensed data to measure pollution over large areas with otherwise poor monitoring

coverage (Auffhammer, 2018; Barrows et al., 2018). I show that the rate of emissions from biomass

burning of black carbon, organic carbon, and SO2 – pre-cursor pollutants to PM2.5 and PM10 –

increased by between 30% and 50% after the implementation of NREGA.8 I also show that the

number of months in which the Indian ambient standard for PM2.5 is exceeded increases by 11% after

implementation of NREGA.

In showing that NREGA increases pollution emissions I contribute to the literature on the health

impacts of NREGA (Thomas, 2015; Dasgupta, 2017; Nair et al., 2013). Emissions from cropland

fires have been shown to have negative health consequences (Rangel and Vogl, 2016; Pullabhotla,

2018) and so my results suggest that there may have been important health impacts from NREGA,

particularly in downwind districts, that are not captured by existing work.9

To use the variation in implementation timing to identify the impact of NREGA I must assume that,

in the absence of NREGA, the frequency of cropland fire would have evolved similarly in districts that

received NREGA in a given year and those that did not. This is a fundamentally untestable assumption.

However, as a proxy I find no evidence of pre-trends in cropland fires prior to the implementation

of NREGA. My results add to the growing literature on the impacts of NREGA by expanding that

literature to environmental and agricultural impacts.10 I also provide further evidence that large-scale

interventions in agricultural labor markets can have perverse effects (Lee et al., 2017).11

Finally, I return to the mechanisms driving the increase in cropland fires. My model predicts that

if mechanization is the mechanism through which NREGA increased fires, districts that had more

8Biomass emissions are calculated from satellite emissions data (van der Werf et al., 2006).

9It is unclear whether my results suggest these previously estimated health impacts are an over or under-estimate of
the true effect. Previous estimates will be net of any negative effect within a district which suggests they underestimate the
true effect. However, downwind pollution created by NREGA means the SUTVA assumption may not hold in previous
studies employing difference-in-differences, which suggests that their estimates may be biased upwards.

10The large literature on the impacts of NREGA on labor markets and other outcomes motivated and informed this
project. For a comprehensive review see Sukhtankar (2016). Bhargava (2014) and Gehrke (2013) are particularly notable
for examining the impact of NREGA on agricultural production practices and output.

11These effects are not always negative. If development depends on increasing the productivity of the agricultural sector
shifting to mechanization may be a positive outcome (Herrendorf et al., 2013). The negative effects arise here because of a
failure to internalize social costs of pollution.
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fires prior to NREGA should have seen larger increases after the implementation of NREGA. Further,

districts where more farms had mechanized prior to NREGA should also see a greater increase in the

number of fires after NREGA. To test these predictions I conduct two heterogeneity analyses. In the

first I examine the differential impact of NREGA by the number of pre-NREGA fires in a district.

In the second I assign each district a score in a mechanization index and examine how the impact of

NREGA varies across this index.12

I show that NREGA leads to a large increase in cropland fires in districts with high levels of

pre-NREGA fires using both the national set of districts in which NREGA was implemented and a

subset of districts in which an RCT randomly improves the implementation of NREGA.13 Next, I show

in the full sample that fires increase by 27% in districts with the highest mechanization score compared

to no statistically significant change in districts with low mechanization scores. I measure the same

pattern of results in the RCT data. This pattern of impacts is consistent with my model predictions and

suggests that mechanization in response to higher wages may be the channel through which NREGA

increased cropland fires. This complicates policy recommendations encouraging distribution of land

among many small farms (Sanchez et al., 2019). There is a clear positive relationship between farm

size and fire use in India, consistent with larger farms being more able to mechanize.14 On the other

hand, precisely because larger farms are more likely to enjoy economies of scale and be able to afford

capital investments, they may be more able to invest in capital equipment that enables shifts away from

fire use (e.g. seed drills) (Shyamsundar et al., 2019; Cassou, 2018).

To further isolate the mechanization channel I test for evidence of two alternative mechanisms:

(1) an increase in production that may have led to more fires and (2) a shift in cropping patterns

due to NREGA’s role as implicit insurance. Increases in income driven by NREGA may have led to

changes in local demand that raised production. I show reduced form estimates of NREGA’s impact

on total hectares planted and total tonnage produced that suggest there were not large changes in the

12I construct the mechanization index based on predictors of mechanization cost, including the level of mechanical
harvesters, collected from the Indian Agricultural Input Survey.

13I analyze data from the RCT conducted by Muralidharan et al. (2016) in Andhra Pradesh.

14Evidence from both China (Wang et al., 2018) and Indonesia (Yamauchi, 2016) support the claim that larger farms
are more able to substitute mechanization for labor.
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area or tonnage of crops specifically associated with the use of fires.15 Alternatively, NREGA provided

implicit insurance that may have allowed farmers to shift into higher value but higher variance crops.

While others have found that NREGA induced shifts into higher value crops (Raghunathan and Hari,

2014) I do not find evidence of an increase in the overall volume of agricultural output due to NREGA.

Further, the crops that are shifted into are not associated with the use of fires in my data.

My results speak to the growing body of work on “envirodevonomics" outlined by Greenstone

and Jack (2013) and the general question of how economic development – and concurrent changes in

incomes, consumption, and production – impacts environmental quality.16 I contribute most directly to

the work examining the environmental impacts of raising incomes (Alix-Garcia et al., 2013; Gertler

et al., 2006).17 I move this work forward by showing, using an exogenous shock, that raising incomes

led to an increase in pollution and introducing evidence that the up-sloping portion of the EKC may

capture a causal relationship in some settings.18

The trade-off between income growth and environmental quality does not imply that governments

should not strive to raise incomes. Rather, the trade-off necessitates understanding the mechanisms

linking income growth and environmental quality to promote policies that maximize both. Producers

may respond to income raising policy by choosing production processes with higher environmental

externalities.19 Government’s should employ appropriate Pigouvian policies (Weitzman, 1974; Stavins,

1996; Blackman, 2010; Kremer and Willis, 2016) at all levels of development to ensure producers

15Data on agricultural outcomes comes from the ICRISAT Meso dataset (Rao et al., 2012).

16Pollution, in particular air pollution, tends to be substantially above recommended limits in developing countries
(Alpert et al., 2012; Liu et al., 2018) and these elevated levels of pollution lead to meaningful negative impacts on health
and other economic outcomes (Cropper et al., 2012; Ebenstein et al., 2017; Barrows et al., 2018). Work examining the
causes of these elevated levels of pollution has focused on institutional failures (Greenstone and Hanna, 2014) and potentially
lower willingness to pay for environmental quality (Kremer et al., 2011).

17This work has often focused explicitly on the impact of anti-poverty programs. Alix-Garcia et al. (2013) show
evidence of an anti-poverty and environment trade-off in places with little market access. But the same low levels of market
access that drive the negative effects they observe may generate positive environmental change in other settings (Barbier,
2010). Determining the extent of this trade-off is especially important because the poor disproportionately live in more
environmentally degraded areas (Dogo et al., 2017).

18The need for government policy to encourage firms to choose less polluting technology in my model supports arguments
that the downward sloping part of the EKC is driven by policy changes and does not result causally from income growth (see
e.g. Frankel (2003))

19The opening example of England in the Industrial Revolution provides a non-agrarian example where increased labor
costs led to increases in mechanization, and power demand, in manufacturing that results in higher pollution.
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consider the full costs associated with their choices.20

1.2 A model of mechanization driven by wage changes

The setting in which I examine the impact of income growth on pollution is the Indian agricultural

sector, but the model I present here is more general. It could apply broadly to any setting in which firms

face a choice among multiple production technologies, some more labor intensive than others, and

where the labor saving production technologies produce at least weakly more pollution externalities

than the labor intensive technology. I start by outlining the general model and then discuss the

predictions it makes in my specific context of Indian agriculture.21

Farmers produce crops that they sell at fixed prices, normalized to one. Each farmer has a fixed

quantity of land A ≥ 1 with fixed productivity. They face a choice between production technologies

they can use to produce crop Y. One is a labor intensive production technology G(L) and one is a

capital intensive technology F(L). F relies on mechanization to produce output so also includes the

use of fire to clear residual biomass. There is no fire used in G. Farmers do not consider the social

costs of F and G but I assume that F imposes a cost of emissions e > 0 on society. e is monotonically

increasing in the number of farmers who employ F. Workers earn wages w and capital is purchased

at a fixed cost. Farmers are price takers in both labor and capital markets, reflecting the relatively small

size of most agricultural operations in India.

I assume that F(L) > G(L) for all L, 0 < F
′
(L) < G

′
(L), and F

′′
(L) < 0, G

′′
(L) < 0.

Further, F
′−1(x) < G

′−1(x). Farmers face the associated profit conditions πG = AG
(

L
)
− wL

and πF = AF
(

L
)
− K − wL and jointly choose a production technology and optimal level of labor

L to maximize profits. Farmers will adopt F(L∗∗) when the increase in profits exceeds the cost of

20Kremer and Willis (2016) discuss the details of how governments should design Pigouvian subsidy policies to encourage
the uptake of durables that reduce social ills. Their context is latrines to limit open defecation but the model applies to
tractors that reduce air pollution as well. They argue that they dynamically optimal Pigouvian subsidy may be declining
over time.

21I draw heavily on both Hornbeck and Naidu (2014) and Clemens et al. (2018). Hornbeck and Naidu (2014) show an
increase in out migration of relatively unskilled labor leads to an increase in the use of labor-saving capital in response.
Clemens et al. (2018) show how farmers rapidly mechanize agricultural production in crops with a readily available
mechanization technology in response to a change in U.S. immigration policy that substantially reduces the supply of migrant
labor from Mexico.
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switching to capital intensive production (K). The gap in profits between F(L∗∗) and G(L∗) is larger

when farmers have more land, which leads to the following proposition:

Proposition 1. There exists an Â > 0 such that iff A = Â then πF = πG, iff A > Â then πF > πG

and farmers choose F, and iff A < Â then πF < πG and farmers choose G. Â = K−wL∗+wL∗∗

F(L∗∗)−G(L∗) such

that Â is increasing in K and decreasing in w. Further, e is decreasing in Â. For proof see appendix

A.1.

NREGA acts as a shock to the agricultural labor market that makes it more difficult for farmers to

hire labor. As a result, NREGA raises the equilibrium wage in the agricultural labor market (Imbert

and Papp, 2015). Farmers face the same choice between G and F but the increase in w implies that

ÂPost−NREGA < ÂPre−NREGA and so the number of farmers using F increases.

Finally, as an extension, consider a third production technology JC where C denotes that this is

a clean technology. Specifically, eG ≤ eC < eF so that emissions associated with the sustainable

technology are lower than with the new technology that farmers adopt. This could be because the

new technology does not require the removal of residue (i.e. no till) or mechanizes the removal so

that burning is not necessary (Shyamsundar et al., 2019). However, consistent with the experience of

Indian farmers, KLE > K such that the low emissions technology is more expensive to adopt than the

existing labor saving technology. This highlights that without Pigouvian policy setting a price τ on the

emissions associated with the existing labor saving technology (so that the farmer faces a choice of KC

versus K + τ) the adoption of JC will be below the social optimum.

1.2.1 Heterogeneity in fire response

Assume A is distributed such that A = AD + µ where µ has a distribution H(µ) that is constant

across space and the median A, AD, varies by district. Then

Proposition 2. The level of pollution e in a district is increasing with AD if Â is everywhere greater

than AD and µ has a constant mean zero distribution that is single-peaked at 0. For any two districts

D and D
′

the increase in pollution for an ε shift downwards in Â will be greater in D
′

if AD < AD′ .

For proof see appendix A.1.
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This implies that for a given wage shock some districts may see larger changes in fires. In particular,

those districts where the AD is higher prior to NREGA will see larger increases.

1.3 Agricultural fires in India and NREGA

In this section, I provide brief background on the use of fires in agriculture to clear crop residue in

India and on the NREGA workfare program. I begin with a discussion of the use of fires.

1.3.1 Fires in Indian agriculture

While slash-and-burn agriculture is still widely used in some parts of the world (notably Africa and

Indonesia) (Korontzi et al., 2006; Andini et al., 2018) the predominant use of fire in agriculture in

India today is to clear harvest residue off of fields in order to prepare the field for the subsequent

season’s planting (Jain et al., 2014; Bhuvaneshwari et al., 2019).22 Fires are widely used despite being

nominally illegal since the mid-1990s (Lohan et al., 2018). While governments in some states have

begun to enforce these laws, the expected cost of violation is small. In 2012 the state government of

Haryana handed out a total of roughly $12,000 in fines (Anand, 2016). That works out to an expected

fine of 0.75USD per fire in the state. Farmers face an average marginal cost of roughly 50USD to clear

their fields of residue without using fire (Ministry of Finance, 2018).

While fires offer an easy and inexpensive means of clearing crop residue, they have substantial

negative effects. The primary negative effect is the increase of both local and global air pollutants. The

largest source of carbonaceous particulate matter globally is crop residue burning (Cassou, 2018).

NASA data on the practice suggests that agricultural fires contribute an average of 12.5 million tons

of carbon emissions annually, roughly 1% of the global emissions from agriculture (NASA, 2017a;

Smith et al., 2014). More significant than their contribution to climate change is the impact that

cropland fires have on local air pollution and health. Source-apportionment studies have suggested that

pollution from cropland fires can raise local concentrations of PM2.5 to more than 1,000% above the

WHO 24-hour guideline of 25µg/m3 (Bikkina et al., 2019; Balakrishnan et al., 2019; Liu et al., 2018).

22For a brief discussion of the history of fire use and details of its global use see appendix section A.2.
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Exposure to these elevated levels of pollution leads to reductions in child height for age and weight for

age scores (Singh et al., 2019; Rangel and Vogl, 2016) and increased infant mortality (Pullabhotla,

2018).

There is a large body of literature that shows exposure to high levels of general particulate pollution

– not solely pollution from crop burning – has negative economic consequences aside from health

effects. Hanna and Oliva (2015) show reductions in pollution levels in Mexico City due to a refinery

closure increased weekly hours worked. Chang et al. (2016) show substantial declines in worker

productivity as exposure to PM2.5 increases in California and Deschenes et al. (2017) show that

individuals make substantial defensive investments to avoid the consequences of air pollution. Air

pollution exposure may also have significant long-run effects, particularly on the formation of human

capital. Ebenstein et al. (2016) shows that exposure to particulate pollution reduces student test

scores while Voorheis et al. (2017) argues that early life exposure to elevated air pollution levels

reduces college attendance by 19-22 year-olds in the U.S. There is also evidence that elevated levels of

particulate pollution have direct negative consequences for agricultural yields (Burney and Ramanathan,

2014).

Frequent and long-term use of crop residue burning may also decrease the productivity of agricul-

tural land (Smil, 1999; Vasilica et al., 2014; Sawyer, 2019; Prasad et al., 1999; Mandal et al., 2004). It

does so by destroying micro-nutrients in the soil and removing valuable fertilizer including nitrogen

and phosphorus. Others have argued, however, that the extent to which burning negatively impacts

soil quality is highly dependent on the type of soil. Further, farmers who shift from a production

process that includes burning to one that removes residue from the field without burning may suffer

short-term yield losses if they fail to adjust their use of fertilizer as well (Jain et al., 2014; Bhargava,

2014).

The use of fire is particularly prevalent in the parts of India that grow crops in a coupled rice-wheat

cropping system (Jain et al., 2014; Prasad et al., 1999) because of the short turn-around time between

harvest of rice and planting of wheat. In this system farmers plant rice during the monsoon season

(“kharif"), roughly from August to December, and wheat immediately following rice harvest during the

pre-monsoon (“rabi") season from January to March or April. This system of agriculture is particularly
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widespread in Punjab, Haryana, Uttar Pradesh and Uttarakhand (NAAS, 2017). It is worth noting

that Andhra Pradesh, the location of the RCT I analyze, is not a major producer of wheat or rice and

the rice-wheat cropping process is not widespread in the state.23

The other major Indian crop in which fire plays a role in the production process is sugarcane.

Here the fields are burned prior to harvest, and residue is burned after harvest, to make it easier to

conduct the harvest (Rangel and Vogl, 2016; Jain et al., 2014). In India the primary states producing

sugarcane and burning residue are Uttar Pradesh, Karnataka, and Gujarat (FLA, 2012).

Figure 1.1 shows the general pattern of cropland fires across India in the years from 2003-2005,

prior to the implementation of NREGA. Consistent with the expected pattern of fire use by crop

type, fires are concentrated in the northwest and Indo-Gangetic plain. The sugarcane producing areas

of the country also show some local hot spots. Areas that predominantly produce oilseeds, namely

Rajasthan and Maharashtra, have low levels of fire.

My data confirms that districts that plant more rice, wheat, and sugarcane have more fires in the

pre-NREGA period. Areas with more land in larger farms also appear to have more fires. In table 1.1 I

show the correlation between several district characteristics in the pre-NREGA period and the level

of fires over the same time period. Column one shows the univariate relationship while column two

shows the results including all predictors in the same regression. Areas that have a higher per capita

GDP in agriculture see more fires, although this relationship becomes much weaker and less significant

when accounting for the total area planted in fire-associated crops in the district. The same pattern

can be seen in the relationship between combines and fires. The presence of combines is important

because in the rice-wheat production process existing work has suggested that farmers who harvest

with combines are more likely to use fires (Yang et al., 2008; Jain et al., 2014; NAAS, 2017). Like

with agricultural GDP this relationship becomes much weaker when incorporating cropped area, likely

because of colinearity between combine presence and area in rice/wheat and the amount of land in

larger farms.

23In appendix figures A.7a-A.7c I show the distribution of wheat, rice and sugarcane production across India in the
pre-NREGA period. I also show maps of the average crop coverage on October 31st each year as an approximation of
which areas most heavily engage in rice-wheat production in appendix figures A.8 and A.9. It is clear from these that Andhra
Pradesh, the location of the RCT improving NREGA implementation, does not heavily use rice-wheat production.
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1.3.2 NREGA

Roll-out of NREGA

The objective of NREGA is explicitly to provide employment to rural households on projects that create

public assets that “address causes of chronic poverty...so that the process of employment generation

is on a sustainable basis" (GOI, 2007). The essential feature of the program is a guarantee of 100 days

of employment for rural households in a given financial year. The first districts received NREGA in

February of 2006 (“phase 1"). The targeting formula used to select these first districts is unknown

(Sukhtankar, 2016).24 However, the government had an explicit goal of including the poorest districts

in the country in the first wave and every state had to have at least one district in the first wave (Shah

and Steinberg, 2015).25 After the initial roll-out another 130 districts received the program in April

2007 (“phase 2") with the remaining roughly 270 districts receiving the program in April 2008 (“phase

3").

Table 1.2 summarizes the pre-NREGA (pre-2006) level of a number of measures of economic

development and the primary outcome variables in this study by NREGA phase. The table highlights

that earlier districts were on average poorer, more rural, slightly more agricultural and had less land

in cash crops than later districts. Differences between each phase are not equal however, with the

largest differences between districts in the first two phases and those in phase three.

Impact of NREGA in the literature

Despite, or perhaps because of, the size of NREGA, program implementation has been inconsistent.

This inconsistency has resulted in heterogeneous impacts across states and difficulty in precisely

assessing the true impact of NREGA.26 In the most comprehensive review of the research on NREGA,

Sukhtankar (2016) suggests that there are four aspects of NREGA that the substantial literature

24For details on the history of workfare in India as well as background on the structure of NREGA see appendix section
A.3.

25States may have explicitly considered the poverty level of districts when assigning them to phases (Zimmermann, 2013;
Shah and Steinberg, 2015; Commission et al., 2003).

26One reason for the heterogeneity in implementation has been substantial corruption and rent-seeking by implementing
officials (Niehaus and Sukhtankar, 2013; Jha et al., 2009).
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agrees on: (1) the above mentioned heterogeneity in impact, (2) despite the statutory requirement that

employment be provided on demand there has been meaningful rationing of employment provision, (3)

NREGA has increased rural, private sector wages, and (4) the overall impact on rural productivity is

ambiguous.

There is wide consensus in the published estimates that NREGA increased unskilled wages by

between 5% and 8%, increased labor participation in public works, and may have led to declines in the

supply of labor to the private sector (Azam, 2011; Sukhtankar, 2016; Berg et al., 2012; Imbert and

Papp, 2015). The most commonly cited study (Imbert and Papp, 2015) shows that NREGA increased

wages of low-skill workers by 5% on average. This increase is concentrated in the dry season, when

they show the bulk of NREGA work occurs, and is accompanied by a decline in private sector labor

supply of 1.3%. When they focus on the states in which the fraction of time spent on public works

projects by rural, prime age adults was above one percent (“star" states), they find wages increased

by 9% and private sector employment fell by 3%. Deininger and Liu (2013) shows that NREGA led

to an increase in the accumulation of non-financial assets in the medium run. They suggest that the

overall increase in wage income exceeded the program costs. Raghunathan and Hari (2014) shows

that farmers plant riskier crops after the implementation of NREGA which increases their incomes

above the direct wage support of the program. Berg et al. (2012) suggests that the wage increase

takes between 6 and 11 months after program implementation to materialize and is biased towards

low-skill labor.

In the only large-scale RCT on NREGA to-date (Muralidharan et al., 2016), the data of which I

re-examine here, (MNS) shows that improving the implementation of NREGA increases wages by

7%. They focus only on Andhra Pradesh but note that the similarity in the size of their estimates on

the impact of improving NREGA to the impacts of initial implementation highlight the importance

of implementation heterogeneity. They also do not find substantial evidence of impacts on migration

but note that their migration data differs from the data used in previous studies.27

27Other attempts to estimate the impact of NREGA on migration have been limited but suggest it may have had important
impacts. A government review of the impacts of NREGA claims that the program led to a 27% decline in cross-district
migration caused by economic distress. One of the few academic studies of the impact of NREGA on migration finds a
reduction in rural to urban migration of around 8% (Imbert and Papp, 2014). While not direct evidence of reductions in
migration, several studies have estimated a positive spillover of NREGA on wages in neighboring districts that is hypothesized
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The impact of NREGA on education also suggests NREGA tightened local labor markets. Shah

and Steinberg (2015) show that NREGA decreased the educational attainment of 13-16 year-olds by

decreasing school enrollment. The effects are similar for boys and girls. They suggest that NREGA

induces these changes by tightening local labor markets which raises the opportunity cost of schooling.

As a result, boys leave school to provide labor in the market and girls substitute into domestic work.

Thomas (2015) finds positive impacts of NREGA on a number of health outcomes. Infant mortality

declines by 6% and maternal mortality declines by 10%. These declines appear to be driven by an

increase in the rate of breast feeding, institutional delivery, and immunization. Similarly Dasgupta

(2017) shows that NREGA reduces the negative impact of droughts on height for age by improving

child nutrition.28 Overall the evidence on health outcomes is broadly consistent with the hypothesis

that, by increasing incomes, NREGA also led to improved health outcomes.

Overall the existing literature on NREGA suggests that it had positive impacts on wages, incomes,

and potentially health outcomes. It is clear that NREGA had meaningful impacts on local labor markets.

In particular it appears to have tightened labor markets, especially for unskilled labor, by providing

an outside option for unskilled labor in the form of public works at a wage that may have been above

the prevailing agricultural wage and therefore made unskilled labor more expensive (OKeefe, 2005).

1.4 Research design and implementation

I follow much of the existing literature analyzing NREGA and utilize a difference-in-differences

framework that takes advantage of the phased roll-out of NREGA across the country to examine its

overall impact on the use of fires in agriculture. As a robustness check, I also utilize the treatment

pattern from the MNS experiment to determine if improving the implementation of NREGA leads to

to operate via reductions in inter-district migration (Prasann, 2016; Muralidharan et al., 2017). These estimates suggest
that wages in neighboring districts may have increased by as much as 9% and that the estimated impact of NREGA on wages
in districts in which it was implemented may be substantially underestimated due to these spillovers.

28Beyond Thomas (2015), comprehensive research on the health impacts of NREGA is difficult to find. Nair et al. (2013)
use a small sample of households in Rajasthan to show that the incidence of child stunting and malnutrition is lower among
families that participate in NREGA projects. Uppal (2009) finds weak evidence that participation in NREGA improves a
variety of child health measures in Andhra Pradesh. Sharma (2015) shows that participation in NREGA improves child
health outcomes as proxied by height and weight measures. Banerjee and Maharaj (2019) shows that NREGA reduces the
negative impact of extreme heat on infant mortality.
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an increase in cropland fires.

1.4.1 Data

In this section, I describe the primary outcome measure – cropland fires – as well as the construction

of several key control variables.

Cropland Fires: The source of the raw data on fire presence comes from from NASA’s Fire

Information for Resource Management System (FIRMS).29 The FIRMS data provides the latitude

and longitude and detection time of fires around the world using imagery from the MODIS and

VIIRS imaging platforms. For all the primary analysis I use only data from MODIS because VIIRS

does not provide sufficient temporal coverage.30 MODIS Aqua imagery is available from mid-2002

to the present. Imagery from the satellites are collected every 6-12 hours for every point on earth and

are processed using NASA’s image processing algorithm to identify fires based on the emissions of

mid-range infrared radiation. The algorithm is designed to filter out spurious signals (e.g. solar glare

and gas flaring). NASA suggests that the imagery can detect fires as small as 50m2 if conditions are

ideal and at sizes around 100m2 under average conditions. They also report that fires are located at

the correct location with a spatial margin of error of less than 100m on average. Unfortunately, the

resolution of MODIS is such that the data available in FIRMS only measures whether at least one

fire exists in given square kilometer. As a result, MODIS does not provide any information about the

size of the detected fire or the total burned area. Further, it does not distinguish between pixels with

only one fire and those with multiple fires.

I combine the FIRMS data on fire presence with remotely sensed landcover data from the European

Space Agency’s Copernicus system to determine the land uses on which fires occur.31 Copernicus land

cover data assigns each pixel to a land class based on imaging that measures its reflectivity. Classes

include water/ice, urban, wetland, irrigated cropland, non-irrigated cropland, various classes of forest,

29I primarily use data from MODIS, available here: https://earthdata.nasa.gov/firms

30See the appendix for additional details on the difference between MODIS and VIIRS imagery.

31Copernicus data is available here:https://land.copernicus.eu/imagery-in-situ
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and various classes of dry shrubland. I use the cropland classes to determine which fires occur on

cropland and focus my analysis on these cropland fires. I assign cropland fires based on land use in

2006. I supplement the land use data from Copernicus with additional polygon layers from the Harvard

Center for Geographic Analysis (CGA) that identify roads and urban areas in India. I verify that my

cropland fires do not include any fires that occur in locations that the CGA defines as urban. Finally,

I aggregate the assigned cropland fires to the subdistrict or district by month level.

Figure 1.1 shows the annual average number of monthly fires per subdistrict prior to NREGA. Fires

are concentrated in the northwest of the country, particularly in Punjab, and along the Indo-Gangetic

Plain. However, it is clear that burning occurs on cropland throughout India. Both of these facts

are confirmed by figure 1.2 showing the distribution of states by mean monthly fires in subdistricts.

While fires are used in most states in India, their use in Punjab and Haryana is far more widespread than

in other states (see notes on figure 1.2). Note that Andhra Pradesh, the location of the RCT conducted

by MNS, is roughly in the middle of the distribution. As a result it may be broadly representative of

the median state in terms of the frequency of cropland fires but it does not appear to be representative

of the areas in which fire use is most widespread. However, splitting the subdistricts that are included

in the MNS RCT into quartiles based on the frequency of cropland fires prior to NREGA suggests

that the RCT subdistricts in the fourth quartile more closely resemble the states in which fires are

used most frequently. For example, the subdistricts in Haryana have a monthly average of 3.37 fires

prior to NREGA compared to a monthly average of 2.6 in subdistricts in the fourth quartile of RCT

subdistricts in Andhra Pradesh.

Weather Controls: I collect weather re-analysis data from ERA5. ERA5 is a weather re-analysis

product produced by by the European Commission’s Copernicus Climate Change Service.32 When

working with weather data there is a trade-off between using re-analysis data, which combines

observed data with a physics model to provide data at a fine resolution over long time periods, and

data collected from weather stations. Station data has the advantage of being based only on

observation and not including a modeled component. However, station networks often lack complete

geographic coverage of a given study area and station records may be incomplete, introducing

32Data available here: https://cds.climate.copernicus.eu/cdsapp!/dataset/reanalysis-era5-land?tab=overview
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FIGURE 1.1: PRE-NREGA FIRES BY SUBDISTRICT

NOTES: The count of total fires by subdistrict in the
years 2003-2005, prior to implementation of NREGA.
Darker areas had more fires. White areas had no fires.
Data comes from the NASA FIRMS database.

temporal gaps in coverage as well. Re-analysis solves these problems but relies on models to do so.

Despite the reliance on models, re-analysis data is broadly believed to provide a reasonable best

estimate of weather variables (Auffhammer et al., 2013). As a result, it is widely used in both

environmental and development economics (Schlenker and Lobell, 2010; Hsiang, 2016; Emerick,

2018). I chose re-analysis data for this project because comprehensive station data is not available.

Specifically I use data from the ERA5 Land hourly product. This provides data at an hourly level

on a grid of 0.1◦×0.1◦, which translates to a 9km resolution. ERA5 Land is an improvement over

the existing, widely used ERA-Interim product (Garg et al., 2018; Barrows et al., 2018). Hersbach

(2016) discusses the technical improvements of ERA5 Land over ERA Interim. I collect data on
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FIGURE 1.2: MEAN MONTHLY CROPLAND FIRES BY STATE FROM 2003-2005

NOTES: The mean of the average number of fires
within each subdistrict in a state. The mean for Andhra
Pradesh, the location of the RCT, are shown with a
lighter color bar and highlighted in red. The mean num-
ber of fires is calculated by finding the average number
of fires by subdistrict across the pre-NREGA years and
taking the mean of these by state. The overall average for
Andhra Pradesh, the location of the MNS RCT, is shown
as well as the mean for the subdisricts in each quar-
tile of the distribution of the number of pre-treatment
fires. These are highlighted in red. The following are
omitted from the figure because their levels are so high
including them would make it difficult to see variation in
the remaining states: Punjab (Mean: 18.88), Haryana
(Mean:3.37), and Andhra Pradesh, Q4 (Mean: 2.61).

cloud cover, temperature, and precipitation over the full sample from 2003 to 2014.33 I aggregate these

weather variables to the district level in the primary analysis and the subdistrict level when I work with

the RCT sample.

Agricultural Data: I collect data on Indian agriculture from a number of sources. The first is the

ICRISAT Meso data (Rao et al., 2012). This data is collected by the International Crops Research

Institute for the Semi-Arid Tropics and measures the performance, structure, and behavior of the

agricultural economy at a district level in India since 1966. I use data from 2003 to 2014. Because

33In on-going work I am collected data on wind speed and direction for the same grid points.

21



Indian district boundaries have changed over time they provide both an apportioned, where they

adjust data for boundary changes, and unapportioned data in which data is not re-apportioned based on

changes. I use the unapportioned data and manually re-apportion data to the district boundaries as they

were recorded in the 2001 census to align with my other data sources. I use data on district level

cropping patterns and land holdings from ICRISAT.

I supplement agricultural data from ICRISAT with data from the Indian Ministry of Agriculture.

I scrape agricultural census data from 2001, 2005, and 2011 at the district and subdistrict level. This

provides additional data on characteristics of agricultural holdings and planting patterns at the district

level to supplement ICRISAT data and provides resolution at the subdistrict level not available in

the ICRISAT data. I also scrape the agricultural input survey data from 2001, 2006, and 2011 to

collect data on machine inputs to production.34 I also scrape data from the cost of cultivation survey to

measure trends in input costs at the state level.

SHRUG Data: To measure baseline conditions in the districts in the primary analysis I use data

from the 2001 Census compiled in the new Socioeconomic High-resolution Rural-Urban Geographic

panel for India (SHRUG) dataset (Asher et al., 2019). I use the night lights data provided in SHRUG

in robustness checks as well.

Pollution Data: Previous work on the relationship between agricultural fires and pollution has relied

on data from air quality monitoring stations (Pullabhotla, 2018). Like with weather data this has the

disadvantage of limiting the analysis of pollution to areas with monitors that have been active over

the full time period. To get around this issue, I use satellite data from the Modern-Era Retrospective

analysis for Research and Applications (MERRA) database provided by NASA (Rienecker et al.,

2011). This is a satellite based product used by economists to study air pollution from coal fired power

in India (Barrows et al., 2018) that provides data on the monthly average emissions rates for black

carbon, organic carbon, and sulfur dioxide (SO2) on a 0.5◦×0.625◦ grid. Importantly for my study,

MERRA separately identifies the emissions of the above pollutants by source, including biomass

34The agricultural census can be found here: http://agcensus.dacnet.nic.in/districtsummarytype.aspx. The agricul-
tural input survey can be found here: http://inputsurvey.dacnet.nic.in/districttables.aspx. Cost of cultivation data is here:
https://eands.dacnet.nic.in/Cost_of_Cultivation.htm.
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burning. I also collect concentrations of black carbon, organic carbon, sulfur dioxide, and sulfate

which allows me to calculate the concentration of PM2.5 (He et al., 2019).

1.4.2 Empirical framework

Following the difference-in-differences method of Shah and Steinberg (2015) I estimate the effect of

NREGA on fire use from the change in fires before and after implementation of NREGA within a

district controlling for month by year and district fixed effects.35 In the primary framework, districts

are treated when NREGA becomes statutorily effective in the district. In the RCT robustness checks,

treatment occurs after the baseline surveys occurred as in MNS.36 As a result, in both cases I am

estimating the Intent to Treat (ITT) effect.

I assume that the number of fires Fimy in district i in month m of year y follows a Poisson

distribution. This is appropriate given both the count nature of the data and the skewness of the

distribution of monthly fires. The standard probability density function is:

P =
λke−λ

k!
(1.1)

which becomes:

f
(

Fimy|Ximy
)
= exp

(
− µ(Ximy)

)
µ(Ximy)

Fimy /Fimy! (1.2)

where Ximy is the set of observed covariates and µ(Ximy) ≡ E
[
Fimy|Ximy

]
≡ E

[
Fimy|Nimy, δmy, ψi, Wimy

]
is the link function that defines the conditional mean of Fimy given Ximy in parametric form. I assume

the standard exponential form for µ
(
Ximy

)
(Ranson, 2014) and taking logs of both sides get:

log
(

µ(Ximy)

)
= βNimy + ωiWimy + δmy + ψi (1.3)

35In my setting all districts are eventually treated. There has been an explosion of econometric research on the use
of difference-in-differences in settings like mine including De Chaisemartin and DHaultfŒuille (2017); Roth (2018);
Goodman-Bacon (2018); Athey (2018); Abraham and Sun (2018). Although several propose adjustments to the standard
difference-in-differences model they are not straightforward to implement in my Poisson fixed effects model. I am in the
process of implementing the fuzzy difference-in-differences approach suggested by De Chaisemartin and DHaultfŒuille
(2017). Goodman-Bacon (2018) and Abraham and Sun (2018) suggest that even if the difference-in-differences estimator is
biased by varying treatment effects over time, the event-study, which I show below, accurately illustrates treatment effects
even if every unit is treated eventually.

36Appendix figure A.2 shows the pattern of NREGA roll-out. Appendix figure A.3 shows the treatment pattern from
Muralidharan et al. (2016).
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where Nimy is an indicator that NREGA had been implemented in district i in month m and year y.

Wimy is a vector of weather controls including minimum and maximum temperature, cloud cover,

and total precipitation. δmy is a month × year fixed effect and ψi is a district fixed effect. I estimate

versions of equation 1.3 with and without Wimy. Because of the impact that cloud cover has on the

ability of satellites to detect fires and the impact that temperatures and precipitation can have on the

presence of fire, my preferred specification includes Wimy.37 β is the estimate of interest and measures

the approximate percentage change in monthly fires after the implementation of NREGA.38 I cluster

standard errors at the district level (Abadie et al., 2017).

I estimate this fixed effects Poisson model using maximum likelihood (Hausman et al., 1984;

Wooldridge, 1999; Correia et al., 2019). I choose a Poisson model both because of the count and

skewed nature of the outcome fire data and because of the properties of the fixed effects Poisson

estimator.39 Since fires are not used in every district or every month my data has many zeros. The

Poisson model accounts for these zeros more easily than a linear fixed effects model with log(Fimy)

and avoids the bias caused, when the share of zeros is non-trivial, by some common methods of

transforming data to account for zeros (Nichols et al., 2010). Further, the fixed effects Poisson,

estimated using maximum likelihood, produces unbiased estimates of the coefficients even if my fire

data does not exactly match the Poisson distributional assumptions (Wooldridge, 1997, 1999; Lin and

Wooldridge, 2019). The same cannot be said for other common approaches to dealing with data with

many zeros like the negative binomial or zero-inflation model (Blackburn, 2015).40 Another advantage

of the fixed effects Poisson is that it avoids the incidental parameters problem (Charbonneau, 2012;

Cameron and Trivedi, 2001) which allows me to estimate a model with a large number of geographic

37Cloud cover introduces non-classical measurement error into my estimates and failing to control for it may lead to
attenuation bias (see appendix section A.4). There is also evidence that large-scale burning induces cloud creation (Fromm
et al., 2010; Gatebe et al., 2012; Jain et al., 2014). This will exacerbate the attenuation effect.

38The precise interpretation of β is the difference in the logs of the expected count of fires. For small changes this is
approximately equal to the percent change in the count of fires.

39As a robustness check I run a standard OLS fixed effects specification as well. Results are qualitatively the same.

40Ranson (2014) points out that this robustness does not hold for the covariance matrix. I run robustness checks where
I bootstrap my standard errors as suggested in Ranson (2014). The results of the bootstrapping confirm the results from the
primary estimation technique.
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and temporal fixed effects.

In any difference-in-differences study the crucial identifying assumption is that the trends in

the outcome variable, in this case cropland fires, would have been similar across all groups without

the treatment. This is a fundamentally untestable assumption. Instead, common practice is to test

whether the trends were parallel prior to the implementation of the policy being evaluated. Here that

requires that the trend in cropland fires in the years leading up to treatment in phase 1 districts was

similar to that in phase 2 and phase 3 districts. Like Imbert and Papp (2015) and Shah and Steinberg

(2015) I am relying on the assumption that the assignment of districts to NREGA phases was based

on features of the district that do not include the trend in fires and are not correlated with trends in

fires.

I show evidence in figure 1.3 that the trends in pre-NREGA fires did not differ across the phases.

Figure 1.3 shows the results of an event study on the year of NREGA implementation where the

outcome is monthly cropland fires. There is a clear and significant increase in fires after the implementa-

tion of NREGA but little evidence of trends in the number of fires prior to NREGA’s implementation. I

show event studies for a number of other outcomes (e.g. area planted in various crops) in the appendix.

Framework for analyzing the RCT data

The RCT conducted by MNS focused on improving the implementation of NREGA by improving

the provision of biometric smartcards connected to bank accounts that enabled electronic payment of

NREGA wages.41. Electronic wage payments reduced the opportunity for corruption in the payment

process, reduced the time between work and payment, and increased the likelihood that workers

received payment for their participation in NREGA. This in turn increased participation in NREGA

projects and wages received from NREGA projects.

The government of Andhra Pradesh (GoAP) began the initial smartcard program in 2006 with the

beginning of NREGA. However, early implementation was heterogeneous because different banks

were used to implement the program in different districts. In 2010 the GoAP restarted the program in

41I provide a brief description of the RCT here. For more details see the appendix or Muralidharan et al. (2016) and
Muralidharan et al. (2017)
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FIGURE 1.3: IMPACT OF NREGA ON FIRES

NOTES: Each point is the estimated ωτ coefficient from

the regression log
(

E
[
Fimy|Ximy

])
= ∑τ∈T ωτYτi +

Wimy + ψi + δmy, where Yτ is an indicator for event-
time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4},
ψi is a district fixed effect , δmy is a month × year
fixed effect and Wimy are weather controls. Fimy is the
number of cropland fires in month m in year y in district
i. 95% CIs are show in dashed grey lines. The figure
uses the full sample. I pool event years less than -3 and
greater than 4 into those boundary values. The base
year is the year prior to NREGA implementation.

eight districts in which initial implementation had been particularly poor. MNS were able to randomize

the timing with which subdistricts in these eight districts received the new program. Specifically, 112

of the subdistricts were assigned to a treatment group, 45 to a control group, and the remaining 139

to a buffer group. The treated subdistricts received the program beginning in June 2010 and there was a

two year lag between implementation in the treated and control subdistricts. Baseline surveys were

conducted in the treated and control subdistricts prior to implementation and endline surveys were

conducted in treated subdistricts prior to implementation in control subdistricts. MNS show balance

across the treated and control subdistricts on their outcomes variables as well as a range of baseline

socioeconomic characteristics. I replicate their balance table in the appendix (appendix table A.1).
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Unfortunately, the balance does not extend to the frequency of cropland fires. While the difference in

pre-treatment fires between treated and control subdistricts is not significant the relative difference is

sizable. Control subdistricts have approximately 30% fewer fires than treated subdistricts.

Because the assignment of subdistricts to treated and control in the MNS RCT did not result in

perfect balance in the frequency of pre-treatment fires across the treated and control subdistricts (see

appendix table A.2) I use the same difference-in-differences approach when analyzing the RCT sample.

I modify the estimating equation from 1.3 to be:

log
(

µ(Ximy)

)
= βTimy + ωiWimy + δmy + ψi (1.4)

where in the RCT sample I replace Nimy with Timy – an indicator for treatment having occurred in

subdistricts i in month m in year y where treatment occurs in the treated subdistricts after the baseline

survey in 2010 as in Muralidharan et al. (2016). Further, in the RCT sample ψi becomes a subdistrict,

rather than district, fixed effect.

1.5 Main results

I present the main results in three subsections. First, I discuss the impact of implementing NREGA

on fires across the entire country using my primary difference-in-differences specification and the

full country sample. Second, I present the results from the RCT that improved the implementation

of NREGA in Andhra Pradesh. Finally, I present results that show how the effect of NREGA varies

in both samples when (sub)districts are divided based on the level of fires in the unit prior to the

implementation of NREGA.

1.5.1 Nationwide mean impacts

Table 1.3 shows that NREGA increased fires by approximately 21% after implementation (column 2 of

table 1.3). Although the confidence interval is wide – I cannot rule out an increase of between 11% and

30% at 95% confidence – I can easily reject a zero effect at 99% confidence. This suggests that NREGA

had a sizable impact on the frequency of cropland fires. To put these estimates in perspective, the

average number of monthly fires increased by approximately 40% from the beginning of my sample in
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2003 to the end in 2014. The estimates here suggest that between 25% and 75% of that increase can be

explained by NREGA.

The estimates of NREGA’s impact when I do not to control for the weather conditions in the district

at the time of fire detection are substantially smaller than the estimates in the preferred specification

(column 1 of table 1.3). This is consistent with the expectation that failure to control for cloud cover

biases the estimates towards zero because it introduces non-classical measurement error.42 Even with

this potential bias, when I do not control for weather I estimate that NREGA increased the frequency

of cropland fires by approximately 10% with a range from 1% to 18% at 95% confidence. While the

estimated impact when I do not control for weather is smaller than my preferred specification, the

expected impact is still meaningful and there is reason to believe that this estimate may be biased

downwards.

1.5.2 Mean impacts using the RCT sample

When I turn to the RCT subsample the results in table 1.4 show that the improvement in the implemen-

tation of NREGA did not have a large average impact on cropland fires in the subdistricts of Andhra

Pradesh where the experiment was conducted. While the estimates in table 1.4 are imprecisely esti-

mated - I cannot rule out an increase in fires of roughly 28% with 95% confidence - the estimates for

both specifications (controlling for weather and not) are close to zero. There are several explanations

for the difference in results. The first is that fires do not appear to have been widely used in Andhra

Pradesh prior to the implementation of NREGA. As figure 1.2 showed, the average number of monthly

fires prior to NREGA in Andhra Pradesh is far below the average in states known for using fires. To

the extent that there is learning by doing (i.e. I learn how to use fires from my neighbor who uses

fires) or protection from legal ramifications of burning (i.e. I can blame sparks from my neighbors

field for the fire on mine if the authorities attempt to fine me) we may expect areas with higher levels

of fires prior to NREGA to have seen larger effects. Second, as table 1.1 shows, the cropland fires

are associated with certain crops and certain agricultural practices. In particular, places that practice

42Because the measurement error is not classical the standard result that measurement error in the dependent variable
only reduces precision, and does not introduce attenuation bias (Hausman, 2001), does not apply. See the appendix section
A.4 for a discussion of this measurement error.
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coupled rice-wheat production are more likely to use fires and areas that have higher cropping levels

in October have more fires (Jain et al., 2014; Bhuvaneshwari et al., 2019; Shyamsundar et al., 2019).

Andhra Pradesh has relatively little area in agriculture in October and, on average, plants less area in

coupled rice-wheat production than states in which fires are widespread (see appendix table AA.2).

Further, the level of combines, an important determinant of the share of residue in a given field that

is burned (Yang et al., 2008), is lower in Andhra Pradesh than in states with more fires.

1.6 Implications for air pollution

The primary concern regarding the use of fires to clear crop residue stems from concern about that

this practice may increase air pollution. Previous estimates of the contribution of crop burning to

pollution in Delhi suggest that substantial amounts, from 17% to 60% of particulate emissions in Delhi

in the winter months are the result of upwind crop burning Liu et al. (2018); Bikkina et al. (2019). In

a direct examination of the impact of upwind crop burning on infant mortality in India, Pullabhotla

(2018) suggests that an increase of five upwind fires in a given year increases the infant mortality rate

by approximately 10%.

The availability of satellite measures of emissions enables me to directly examine how the increase

in cropland fires caused by NREGA translates to an increase in the emissions of three precursor

pollutants of PM10 and PM2.5: black carbon, organic carbon, and sulfur dioxide (SO2). I use data from

the MERRA-2 satellite platform that measures the monthly emissions rates from biomass burning of

these three pollutants by district to determine the impact of NREGA on their emissions. To do so

I replace cropland fires (Fimy) as the outcome of equation 1.3 with the monthly average emissions

rate of each of these three pollutants and re-estimate the same difference-in-differences model on the

national sample.

1.6.1 Direct effect of NREGA on pollutant emissions

To begin I present the event study for the emissions rate of each of the three pollutants in figure 1.4.

Each panel shows the trend in emissions rates for black carbon, organic carbon, and SO2 before and

after the implementation NREGA. In all three panels there is a clear increase in emissions rates in
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the year of NREGA implementation that continues to grow in the year after implementation before

leveling off and remaining above pre-NREGA levels. For both black carbon and organic carbon the

pre-trends are relatively flat and not-distinguishable from zero. SO2 shows more of an increasing trend

but this is driven primarily by the estimates on the earliest years in the sample.43

43I pool the early and late years of the sample because I do not have a balanced sample in event time. In other words,
the estimates of the coefficient on event time -4 is only identified by districts in Phase 2 or Phase 3. As a result, I pool
event time -5 and -4 with -3 in figure 1.4. If I do not do this pooling, and drop event time -4 and -5 instead, the slight trend
disappears.
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TABLE 1.1: WHAT PREDICTS AVERAGE MONTHLY FIRES OVER 2003-2005?

Outcome: Average cropland fires by district (1) (2)

Avg. Per Capita GDP .099 .124
( .115) ( .132)

Avg. Per Capita GDP, Ag .323*** .13
( .078) ( .093)

Avg. Area Planted in Rice (000s HA) .44*** .237*
( .099) ( .121)

Avg. Area Planted in Wheat (000s HA) .389*** .189***
( .034) ( .07)

Avg. Area Planted in Sugarcane (000s HA) .238*** .23***
( .046) ( .014)

Avg. Area Planted in Other Crops (000s HA) -.025 -.122
( .062) ( .105)

Combines in 2006 (000s) .119*** .018
( 9.0e-03) ( .015)

Share of holdings >4 HA .5*** .471***
( .064) ( .091)

Covariates regressed separately X
State FE X X

NOTES: In all columns the outcome is the average number of monthly fires in a district averaged over the years 2003-2005.
In column 1 each row is a seperate regression. In column 2 all covariates listed down the left are included in the same
regression. In all cases the specification is a fixed effects poisson regression. All independent variables are measured as
Z scores so that units are comparable. Per Capita GDP (Ag) reports the average per capita value of (agricultural) GDP in
the district in from 2003 to 2005 measured in Lakh Rs. Average Area Planted in Wheat, Rice, and Sugarcane measures
the district average area in each crop from 2003-2005 in 1,000s of hectares as reported in the ICRISAT Meso data (Rao
et al., 2012). Total area reports the total area in all other crops also in 000s of HA from the same data. Combines reports
the number (in 000s) of self-propelled combines in the district as recorded in the 2006 Agricultural Input Survey. The
Share of Holdings in each size class reports the share of acreage in the district in holdings within each size class in 2005 as
reported in the ICRISAT Meso data. All columns include state fixed effects. Standard errors clustered at the state level
are reported in parentheses.
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TABLE 1.2: SUMMARY OF PRE-NREGA ECONOMIC, AGRICULTURAL AND FIRE DATA

Phase 1 Phase 2 Phase 3
(1) (2) (3)

Data from 2001 Census
Total Population (000s) 1,712.12 1,772.15 1,693.61
Total Households (000s) 320.12 326.19 320.43
% Rural 0.84 0.83 0.73
% Urban 0.16 0.17 0.27
% Scheduled Castes 0.15 0.15 0.15
% Literate 0.48 0.52 0.57
% with domestic electricity 0.88 0.87 0.91
% with agricultural electricity 0.74 0.59 0.72
% with electricty 0.75 0.65 0.74
% Paved road 0.49 0.56 0.68
% Mud road 0.82 0.82 0.76

Data from 2011 Census, 2012 SECC and VCF Data
Distance to nearest place with >100k population 50.78 41.87 40.74
Per capita consumption, rural 15.64 16.59 19.02
% HH with cultivation as main income 0.35 0.37 0.38
Avg. Forest Cover, 2002-05 11.31 15.15 13.34
Avg. Night Lights 29.50 27.93 61.63

Data from NASA FIRMS
Monthly Fires prior to NREGA 3.61 3.73 7.33

Data from ICRISAT, Planning Commission and 2006 Input Survey
Avg. Per Capita GDP, Ag 3.70 4.22 4.90
Avg. Per Capita GDP 14.39 15.13 21.26
Avg. Area Planted in Sugarcane (000s HA) 5.86 5.71 10.36
Avg. Area Planted in Rice (000s HA) 102.43 117.19 58.77
Avg. Area Planted in Wheat (000s HA) 39.76 57.85 61.63
Avg. Area Planted in Other Crops (000s HA) 172.67 165.39 207.96
Share of holdings >4 HA 0.26 0.28 0.33
Combines in 2006 (000s) 1.41 1.12 1.41

NOTES: Columns 1-3 report the mean of the named variable by district according to the NREGA phase of that district. Data from
the 2001 Census, the 2011 Census, the 2012 SECC and the VCF data come from the SHRUG dataset (Asher et al., 2019). Fire data
is downloaded and assembled from the NASA FIRMS data and is derived from imagery from the MODIS satellite. ICRISAT
data comes from the ICRISAT meso dataset (Rao et al., 2012). GDP data is scraped from the Indian Planning Commission website
and covers the years 2003-2005 for most districts. Information on combines is scraped from the Indian Ministry of Agriculture
website and comes from the 2006 Agricultural Input survey.
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TABLE 1.3: NATIONWIDE IMPACT OF NREGA ON MONTHLY FIRES

Cropland Fires

Post-NREGA 0.096∗∗ 0.213∗∗∗

(0.044) (0.051)
Districts 558 558
Months 144 144
N 80,352 80,352

Avg. monthly fires pre-NREGA 5.46 5.46

District FE X X
Year × Month FE X X
Weather Controls X

NOTES: Each column represents separate regressions. In all columns the outcome is monthly cropland fires. In all columns
the coefficient can be interpreted as the approximate percentage change in fires after NREGA was statutorily implemented

in a district. In all columns the base regression is a Poisson of the form log
(

E
[
Fimy|Ximy

])
= βPostimy + γi + ψmy

where Fimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA
treatment takes effect in district i. γi are district fixed effects while δmy is a year by month fixed effect. In column 2 I
include controls for the monthly average cloud cover, precipitation and minimum and maximum temperature in district i
in month, year my. N refers to the number of districts × months included in each regression. The sample is a balanced,
monthly panel of districts in India from 2003 to 2012. Heteroskedasticity robust standard errors clustered at the district
level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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TABLE 1.4: IMPACT OF RANDOMIZED IMPROVEMENTS IN NREGA IMPLEMENTATION IN ANDHRA
PRADESH ON MONTHLY FIRES

Cropland Fires

1[Treated x Post] 0.027 0.018
(0.137) (0.143)

Subdistricts 145 145
Months 104 104
N 15,080 15,080

Avg. monthly fires pre-NREGA .2 .2

Subdistrict FE X X
Year × Month FE X X
Weather Controls X

NOTES: Each column represents separate regressions. In all columns the outcome is monthly cropland fires. In all
columns the coefficient can be interpreted as the approximate percentage change in fires after treatment in the RCT in
Muralidharan et al. (2016) (MNS) occurs in a subdistrict. In all columns the base regression is a Poisson of the form

log
(

E
[
Fimy|Ximy

])
= exp

(
β[Postimy × Treatedi] + γi + δmy

)
where Fimy is the outcome in district i in month m in

year y. Postimy is a dummy variable equal to one after MNS treatment and Treatedi is a dummy indicating that subdistrict i
was among the treated subdistricts. γi are subdistrict fixed effects while δmy is a year by month fixed effect. In column 2
I include controls for the monthly average cloud cover, precipitation and minimum and maximum temperature in subdistrict
i in month, year my. N refers to the number of subdistricts × months included in each regression. The sample is a balanced,
monthly panel of subdistricts in the MNS sample from 2003 to 2012. Heteroskedasticity robust standard errors clustered at
the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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FIGURE 1.4: IMPACT OF NREGA ON EMISSIONS FROM BIOMASS BURNING OF VARIOUS POLLUTANTS

(A) Black Carbon (B) Organic Carbon (C) SO2

NOTES: Each point is the estimated ωτ coefficient from the regression log
(

E
[
Fimy|Ximy

])
= ∑τ∈T ωτYτi + Wimy + ψi +

δmy, where Yτ is an indicator for event-time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4}, ψi is a district fixed effect
, δmy is a month × year fixed effect and Wimy are weather controls. Eimy is the average monthly rate of emissions of the
named pollutant in ng/m2s in month m in year y in district i. 95% CIs are shown in dashed grey lines. The figure uses the
full sample. I pool event years less than -3 and greater than 4 into those boundary values. The base year is the year prior to
the implementation of NREGA.
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TABLE 1.5: EFFECT OF NREGA ON EMISSION RATES OF POLLUTANTS FROM BIOMASS BURNING AND
MONTHS EXCEEDING AMBIENT PM2.5 STANDARD

Emissions Rates Ambient PM2.5 Standard

Black Carbon Organic Carbon SO2 Share of months > standard

Post-NREGA 0.384∗∗∗ 0.378∗∗ 0.491∗∗∗ 0.014∗∗∗

(0.143) (0.163) (0.176) (0.003)
Districts 558 558 558 560
Months 144 144 144 144
N 80,352 80,352 73,656 80,640
Pre-NREGA Mean 45.81 536.09 52.09 .12

District FE X X X X
Year × Month FE X X X X
Weather Controls X X X X

NOTES: Each column represents separate regressions. In columns 1-3 the outcome is the monthly emissions rate of the
pollutant named at the top of the column measured in ng/m2s. In column 4 the outcome is the share of months in which the
measured PM2.5 concentration exceeds the annual ambient air quality standard for India set by the Air Prevention and
Control of Pollution Act (1981). Concentrations are measured in µg/m3. All data comes from the MERRA-2 satellite
system. In columns 1-3 the coefficient can be interpreted as the approximate percentage change in the outcome after
NREGA was statutorily implemented in a district. In column 4 the coefficient is the change in percentage points in the
percent of months that exceed the Indian Ambient standard of 40µg/m3. In columns 1-3 the base regression is a fixed

effects Poisson of the form log
(

E
[
Eimy|Ximy

])
= βPostimy + γi + δmy where Eimy is the outcome in district i in

month m in year y. In column 4 I use a linear fixed effects specification of the form Timy = βPostimy + γi + δmy where
Timy is an indicator for whether district i had PM2.5 levels that exceed ambient standards in month m in year y. Postimy
is a dummy variable equal to one after NREGA treatment takes effect in district i. γi are district fixed effects while
δmy is a year by month fixed effect. In all columns I include controls for the monthly average cloud cover, precipitation
and minimum and maximum temperature in district i in month t. N refers to the number of districts × months included
in each regression. The sample is a balanced, monthly panel of districts in India from 2003 to 2012. The mean of the
outcomes prior to NREGA for each is presented. Heteroskedasticity robust standard errors clustered at the district level are
in parentheses. (* p<.10 ** p<.05 *** p<.01).

For all three pollutants that I examine, the implementation of NREGA significantly increases the

emissions rate from biomass burning. Beginning with black carbon, column 1 of table 1.5 indicates

that NREGA increased the emissions rate from biomass burning by 38%. Organic carbon emissions

also increase by 37% while SO2 emissions increase by an estimated 49%.

These estimated effects indicate substantial increases in the average monthly emissions rates as

a result of the implementation of NREGA. They provide some confirmatory evidence that NREGA

increased the number of fires; if fires increase one would expect to see a corresponding increasing

in emissions from biomass burning. The size of the change in emissions rates is substantially larger
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than the estimated change in the number of fires. There are two explanations for this. The first is that

the quantity of biomass burned per fire may have increased. This would be consistent with the model

explored below of increased fires being driven by increased combine use. Previous estimates suggest

fields cleared with combines have roughly 100% more biomass than fields cleared manually (Yang

et al., 2008). To the extent that fires that consume more biomass have higher emissions (Smil, 1999)

this increase in biomass is comparable to the difference between the estimated increase in emissions

rates and the increase in fires.

Fires being used more intensively following NREGA would also explain a larger increase in

emissions than raw fires. While the MODIS satellite can detect fires as small as 100m2 it does not

distinguish between pixels that have one fire and those that have many fires (Korontzi et al., 2006).

As a result, if the implementation of NREGA induces the use of fires in areas that already had frequent

fires, MODIS will underestimate the increase in fires. Using more finely resolved data on fires in the

period after 2014 from the VIIRS satellite platform I show in the appendix that MODIS does indeed

under-count fires relative to VIIRS (appendix figure A.6a and A.6b).

Translating these increases in emissions rates into precise changes in pollutant concentrations

is difficult and would require a model of pollution dispersion. I do not create such a model here.

Rather, I estimate the impact of the change in emissions on pollution concentrations in two ways. First,

I estimate the correlation between emissions rates of black carbon, organic carbon, and SO2 using

data on emissions concentrations from MERRA at the district × month level (appendix table A.3.44

These estimated correlations suggest that in months with emissions rates that are higher than average

PM2.5 concentrations are also higher than average.

Consistent with this correlational evidence I show that the implementation of NREGA is associated

with an increase of approximately 11% in the number of months in which PM2.5 levels exceed the

annual ambient standard set by the Indian government.45 I look specifically at PM2.5 as it has the

44MERRA provides estimates of the monthly concentration of black carbon, organic carbon and SO4. I convert these into
a measure of PM2.5 using the formula described in He et al. (2019).

45The Air (Prevention and Control of Pollution) Act 1981 set standards for Annual and 24-hour concentrations in the ambi-
ent air of a number of pollutants. They are detailed here: http://www.arthapedia.in/index.php?title=Ambient_Air_Qual-
ity_Standards_in_India
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largest negative impacts on health (Behrer and Mauter, 2017; Muller and Mendelsohn, 2007; Nel, 2005;

Chen et al., 2016). The annual threshold for ambient concentrations is set by the Central Pollution

Control Board at 40 µg/m3. I calculate the share of district × months that have an average PM2.5

level that exceeds this threshold and use a linear fixed effects regression in the difference-in-differences

framework to determine if the implementation of NREGA increased the share of months in which

the threshold was exceeded.

Column 4 of table 1.5 shows that implementation of NREGA increases share of months that exceed

the threshold by 0.014 percentage points. This represents an 11% increase relative to the pre-NREGA

baseline rate.46 Figure 1.5 shows the event study of the share of district×months that exceed the

standard. There are no obvious pre-trends and a clear increase after the implementation of NREGA.

This discussion of pollution concentration has focused on the level of pollutant concentrations in

the districts in which NREGA is implemented. That leaves out the change in concentration levels that

are downwind of the implementing district. These downwind effects may be more severe than the

impacts in implementing districts (Behrer and Mauter, 2017). Even if they are less severe considering

pollution only in the implementing district presents only a partial picture of the impact of NREGA on

pollutant concentrations. In on-going work I am collecting the necessary wind data to more closely

examine the impact on pollutant concentrations in downwind districts.

There are potential negative health effects from an increase in pollution resulting from the observed

increases in fires. While existing studies of NREGA’s impact on health find generally positive effects,

it is possible that these effects would have been larger absent the increase in pollution. Previous work

has estimated substantial infant mortality and reductions in birth weight from exposure to cropland

fire smoke (Pullabhotla, 2018; Rangel and Vogl, 2016; Singh et al., 2019) and forest fire smoke

Jayachandran (2009).47 Rangel and Vogl (2016) in particular find meaningful negative impacts on

infant health based on changes in concentrations similar to what I observe after the implementation

46When I use the 24-hour threshold of 60 µg/m3 I observe a similar increase, 0.007 percentage points or roughly 10%
on the pre-NREGA baseline rate.

47Additional work suggests that those same forest fires reduced the later in life wages of those children who were exposed
but survived and that the pollution exposure rates they experienced may be comparable to the exposure rates residents of
Delhi experience from crop burning (Tan-Soo and Pattanayak, 2019).
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FIGURE 1.5: EVENT STUDIES OF THE SHARE OF DISTRICTS WHERE PM2.5 EXCEEDS ANNUAL INDIAN
AMBIENT STANDARD

NOTES: Each point is the estimated ωτ coefficient from
the linear regression Timy = ∑τ∈T ωτYτi + Wimy +
ψi + δmy, where Yτ is an indicator for event-time year
τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4}, ψi is a
district fixed effect , δmy is a month × year fixed effect
and Wimy are weather controls. Timy is an indicator for
whether district i had PM2.5 levels that exceed ambient
standards in month m in year y. 95% CIs are show in
dashed grey lines. The figure uses the full sample. I
pool event years less than -3 and greater than 4 into
those boundary values. The base year is the year prior
to NREGA implementation.

39



of NREGA. An important dimension of these potential health effects is their potentially unequal

distribution. Previous work (Behrer and Mauter, 2017) suggests that while the region containing the

source of emissions suffers negative consequences from those emissions the majority of the damages

may occur outside of the region containing the polluting source. This is particularly true if there are

major cities downwind of the emitting region. Rangel and Vogl (2016) find clear evidence that crop

burning has negative effects in downwind areas but, because crop burning is driven by economic

activity in the burning areas, increased burning may be associated with slight improvements in health.

1.7 Heterogeneity of NREGA’s impact on cropland fires

Proposition 2 of my model indicates the impact of NREGA on cropland fires will vary across districts

based on AD. Specifically, given a distribution of A that is single-peaked and where the threshold farm

size for adoption of mechanization (Â) is above the median (AD) of A, districts with initially higher

AD will see a larger increase in fires after the implementation of NREGA. Districts with more large

farms will see a larger increase in fires after the implementation of NREGA. In other words, districts

with more large farms are likely to have more fires prior to NREGA because more farmers will find

themselves above a fixed Â threshold. This implication is confirmed in table 1.1, which shows a strong

correlation between the frequency of pre-NREGA fires and the number of large farms in a district.

Districts with more large farms are also likely to be more mechanized prior to NREGA for the same

reason that there will be more farms above a fixed Â.

Figure 1.6 indicates that the average distribution of farm sizes across India does appear to be

single-peaked. Further, Foster and Rosenzweig (2011) report that in the pre-NREGA period (the late

1990s) fewer than 10% of farms were mechanized, suggesting a level of Â substantially above AD.

1.7.1 Heterogeneity of impact by pre-NREGA fire use

Based on the predictions of my model, the first heterogenity analysis I conduct is by the level of

pre-NREGA fires. These districts should have higher AD and therefore see a larger increase in fires

after the implementation of NREGA. To determine whether the impact of NREGA was larger in

areas that had more frequent fires prior to the implementation of NREGA I divide both samples, the
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FIGURE 1.6: AVERAGE DISTRIBUTION OF FARM SIZE BY DISTRICT, 2005

NOTES: I plot here the distribution of farms by size class across all
districts in my sample in India in 2005. The vast majority of farms
are marginal or small with holdings of no more than 1 hectare.
Data comes from the Agricultural Input Survey in 2005. Marginal
farms are those less than 1 hectare (HA), small farms are between
1 and 2 HA, semi-small are between 2 and 4, medium are between
4 and 10 and large are greater than 10.

full national sample and the RCT sample, into quartiles based on their level of pre-NREGA fires. I

then run the specifications described in equation 1.3 on the districts and subdistricts in each quartile

of pre-NREGA fires.

The results in table 1.6 suggest that areas with the highest number of monthly fires prior to NREGA

saw substantially larger increases in the use of fire after NREGA than areas that had lower monthly

fire frequency. Column 1 reports the impact by quartile of pre-NREGA monthly fires, where higher

quartiles had more fires, for the national sample. I find that districts in the fourth quartile saw an

estimated increase in fires of 27% after the implementation of NREGA. This is substantially larger

than the estimated effect for any other quartile and the estimates in every other quartile do not approach

significance at standard levels. I can reject a null effect in the fourth quartile at p < 0.001. The fourth

quartile estimate suggests that districts that had many fires prior to NREGA saw an additional six

fires per month after the implementation of NREGA. Previous work on the relationship between fires

and pollution suggests that six additional fires have a meaningful impact on downwind air pollution
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(Pullabhotla, 2018).48

Column 2 of table 1.6 broadly confirms these results using the RCT sample. Within the RCT

subdistricts those that had the highest number of pre-NREGA monthly fires see the largest increase in

fires after NREGA. These districts see an estimated increase in monthly fires of roughly 45%, although

from a low base. The estimated effect in the other quartiles is either not significantly different from

zero or strongly negative. There are essentially no monthly fires in the lowest quartile of the RCT

sample however, so the large percentage change has little economic meaning.

Because the number of subdistricts in the RCT sample is small and this heterogeneity exercise

necessarily divides them further, in addition to providing the standard asymptotic estimates of statistical

inference I also use a randomization inference approach. Randomization inference is an approach

to inference in the style of a Fisher test that is recommended as an alternative to asymptotic based

inference for RCTs, particularly those with small samples (Athey and Imbens, 2017; Young, 2018).

In the randomization inference approach, treatment and control status is randomly reassigned and

parameters are re-estimated providing a distribution of estimated effects under the sharp null of zero

effect. The actual effect estimate can then be compared to this distribution to get an implied p-value.

I report p-values from this randomization inference approach in brackets in column 2. This

approach reduces the significance of all of my estimates using the RCT sample but the estimated effect

in the fourth quartile remains significant at the 5% level.

Overall, the results from the primary analysis suggest that the implementation of NREGA increased

the number of cropland fires across all of India. This effect seems to have been concentrated within the

areas that had a higher than average frequency of monthly fires prior to NREGA. The concentration

results appear to be confirmed in the smaller RCT sample in Andhra Pradesh, an area in which fires are

not frequently used relative to other parts of India. These results are consistent with the prediction of

my model.

48I show in appendix table A.10 that the effects of NREGA do not vary across states that are more expeditious in
implementing a separate government program.
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TABLE 1.6: HETEROGENEITY OF TREATMENT IMPACT BY FREQUENCY OF FIRE USE PRE-NREGA

All of India Andhra Pradesh

(A) Quartile 1 of pre-treatment fires

Post-NREGA (Treatment) 0.17 -0.85∗∗

(0.12) (0.42)
RI p Value [ 0.12]
Districts 138 T:5 C:3
Months 144 47
N 19,872 1,692
Avg. monthly fires pre-NREGA .18 0.01

(B) Quartile 2 of pre-treatment fires

Post-NREGA (Treatment) 0.14 -0.32
(0.12) (0.32)

RI p Value [ 0.18]
Districts 140 T:11 C:3
Months 144 73
N 20,160 2,263
Avg. monthly fires pre-NREGA .96 .95

(C) Quartile 3 of pre-treatment fires

Post-NREGA (Treatment) 0.04 0.09
(0.11) (0.18)

RI p Value [ 0.47]
Districts 140 T:25 C:13
Months 144 88
N 20,160 3,608
Avg. monthly fires pre-NREGA 2.59 2.66

(D) Quartile 4 of pre-treatment fires

Post-NREGA (Treatment) 0.27∗∗∗ 0.45∗∗∗

(0.06) (0.17)
RI p Value [ 0.04]
Districts 140 T:25 C:5
Months 144 89
N 20,160 3,293
Avg. monthly fires pre-NREGA 18.12 12.16

Subdistrict FE X X
Month × Year FE X X
Weather Controls X X

NOTES: Each column represents seperate regressions. In all columns the outcome is monthly cropland fires. In column one the coefficient can be interpreted as the approximate
percentage change in fires after NREGA was statutorily implemented in a district. In column two the coefficient can be interpreted as the approximate percentage change in
fires after treatment in the RCT in Muralidharan et al. (2016) (MNS) occurs in a subdistrict. In column one the sample is all districts in India that were part of the NREGA
program. In column two the sample is the subdistricts in Andhra Pradesh included in the MNS RCT. In column one the specification is a Poisson of the form E

[
Fimy |Ximy

]
=

exp
(

β ∑4
f=1

[
Postimy × Pre− Firesi f

]
+ γi + δmy

)
where Fimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment

takes effect in district i. Pre-Firesi f is an indicator for where district falls in the distribution of total pre-NREGA fires. γi are district fixed effects while δmy is a year by month fixed

effect. In column two the specification is a fixed effects Poisson regression of the form E
[
Fimy |Ximy

]
= exp

(
β ∑4

f=1
[
[Postimy × Treatedi × Pre − Firesi f

]
+ γi + δmy

)
where

Fimy is the outcome in subdistrict i in month m in year y. Postimy is a dummy variable equal to one after MNS treatment and Treatedi is a dummy indicating that subdistrict i was
among the treated subdistricts. Pre-Firesi f is an indicator for where subdistrict falls in the distribution of total pre-NREGA fires where the distribution is calculated within Anhdra
Pradesh. γi are subdistrict fixed effects while δmy is a year by month fixed effect. Each panel is a different quartile of pre-NREGA fires with Q4 corresponding to the largest number
of pre-NREGA fires. N refers to the number of (sub)district × months included in each regression. Districts reports the treated and control (sub)districts in each sample. In the
NREGA sample all districts are eventually treated. The average number of monthly fires (the outcome) in the pre-treatment period in each quartile are reported. The samples are a
balanced, monthly panel of subdistricts in Andhra Pradesh from 2003 to 2012 and districts in India from 2003 to 2014. All columns include controls for weather in the month the
outcome number of fires is measured. Heteroskedasticity robust standard errors clustered at the (sub)district level are in parentheses. In column two I also report the p-values from
a randomization inference test on the MNS sample in which treatment is randomly assigned 1,000 times and the specification above is re-estimated for each assigned treatment. (*
p<.10 ** p<.05 *** p<.01). 43



1.7.2 Heterogeneity in fire response by mechanization levels

The second heterogeneity test I conduct is by the level of pre-NREGA mechanization. To test

whether the impact of NREGA varies by the level of pre-NREGA mechanization I construct an index

of mechanization for each district. The construction of this index is driven by the features of the

model described above and the relationship between fire use and mechanization in Indian agriculture

as described in the existing literature (e.g. among others Jain et al. (2014) and Bhuvaneshwari et al.

(2019)). I follow Asher and Novosad (2018) and use an index rather than testing multiple measures

of mechanization to limit concerns of multiple hypothesis testing. 49

To construct the index I consider the average level of the following variables in the years prior to

2006: the share of agricultural land in both marginal and medium or large holdings (less than 1 HA

or more than 4 HA), the number of combines in 2006, and the production areas of wheat, rice, and

sugarcane (the ability to mechanize varies across crops in India (Solomon, 2016)). To make the index I

turn these averages into Z scores. Each district receives a Z score for each individual measure. I then

add them together to determine an index measuring the cost of mechanization in a given district. The

higher the index score the higher the predicted level of mechanization. In the appendix I show that this

score is positively correlated with the number of combines in a district in 2011. I then divide districts

into quartiles based on their mechanization index score, as I did when examining heterogeneity by

pre-NREGA fire frequency, and run my difference-in-differences regression from equation 1.3 on

districts in each quartile.50

I find in the full, nationwide sample, districts with the highest mechanization scores have substan-

tially larger increases in the frequency of fire after the implementation of NREGA. Districts in the

highest quartile of the index see a 27% increase in monthly fires after the implementation of NREGA

(table 1.7). This is compared to an effect that is not different from zero in all other quartiles of the

49For details of each component of the index, as well as heterogeneity results by the individual components, see appendix
section A.14.

50Li (2017) suggests that areas with higher land concentrations, an important piece of my mechanization score, had
lower pre-NREGA agricultural wages than other districts, which suggests my mechanization score is not simply capturing
districts with high wages prior to NREGA. Using, imperfect, wage data from ICRISAT I find that the correlation between
the Z score of district wages in 2005 and the mechanization index is -0.11 (p = 0.71). I directly measure the correlation
between the Z score of per capita GDP and my mechanization score and find that it is -0.07 (p = 0.45) which suggests that I
am also not simply identifying wealthier districts.
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TABLE 1.7: HETEROGENEITY OF TREATMENT IMPACT BY EASE OF MECHANIZATION INDEX

All of India

(A)Quartile 1 of Ease of Mechanization Index

Post-NREGA -0.013
(0.087)

Districts 140
Months 144
N 20,160
Avg. monthly fires pre-NREGA 2.82

(B)Quartile 2 of Ease of Mechanization Index

Post-NREGA -0.008
(0.075)

Districts 143
Months 144
N 20,592
Avg. monthly fires pre-NREGA 2.7

(C)Quartile 3 of Ease of Mechanization Index

Post-NREGA 0.144
(0.112)

Districts 135
Months 144
N 19,440
Avg. monthly fires pre-NREGA 3.06

(D)Quartile 4 of Ease of Mechanization Index

Post-NREGA 0.265∗∗∗

(0.084)
Districts 140
Months 144
N 20,160
Avg. monthly fires pre-NREGA 13.28

District FE X
Month × Year FE X
Weather Controls X

NOTES: The outcome is monthly cropland fires. The coefficient can be interpreted as the approximate percentage change in fires after NREGA was statutorily implemented in a
district. The sample is all districts in India that were part of the NREGA program. The specification is a fixed effects Poisson of the form E

[
Fimy |Ximy

]
= exp

(
β ∑4

z=1
[
Postimy ×

Mechiz
]
+ γi + δmy

)
where Fimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment takes effect in district i. Mechiz

is an indicator for where district i falls in the distribution of the ease of mechanization index. The ease of mechanization index is the sum of a district’s Z score across measures of land
concentration, combine presence and crop types. The mechanization index is calculated based on levels of each component variable in the district prior to 2006. γi are district fixed
effects while δmy is a year by month fixed effect. γi are district fixed effects while δt is a year by month fixed effect. Each panel is a different quartile of the mechanization index
with quartile 4 corresponding to the places mechanization is predicted to be easiest. N refers to the number of district × months included in each regression. Districts reports districts
in each sample. The average number of monthly fires (the outcome) in the pre-treatment period in each quartile are reported. The sample is a balanced, monthly panel of districts in
India from 2003 to 2014. All columns include controls for weather in the month the outcome number of fires is measured. Heteroskedasticity robust standard errors clustered at the
district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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index.51

This suggests that districts in which more farmers could feasibly respond to the agricultural labor

market shock caused by NREGA by mechanizing their harvests saw larger increases in fires. Larger

increases in the use of fire in these districts is consistent with the predictions of my model and suggests

that it was an increase in mechanization in response to the labor shock imposed by NREGA that

drove the increase in fires. However, it is possible that NREGA impacted the use of fires through

other channels. I explore two of these in the next section.

1.8 NREGA’s impact on agricultural output

NREGA’s shock to agricultural labor markets may have done more than simply changing low skill

labor wages. Changing the cost and availability of labor may have caused farmers to change which

crops they planted as well. Alternatively, by increasing incomes in local markets, NREGA may have

increased demand, and prices, for agricultural products and incentivized farmers to increase their

production of existing crops. If this increased production occurred in crops that used fire as part of

the production process the increase in fires may have been driven by the increased crop production

as opposed to being driven directly by changes in the labor market. I call this a consumption effect.

NREGA may have also acted as an implicit insurance program for farmers Sukhtankar (2016).

By guaranteeing the availability of outside employment in the event of a crop failure NREGA may

have encouraged farmers to plant higher value but higher risk crops. If these crops are associated

with more fire use than the previously planted, lower value crops it could be that the insurance aspects

of the NREGA program are the driving force behind the change in fire frequency. I explore both of

these potential explanations now.

51I am limited in my ability to construct the same mechanization index for the RCT sample because a lack of data on
inputs by subdistrict. However, I construct a similar index based only on plot size and crop type for the RCT sample and
conduct the same exercise on the RCT sample. I show the results in the appendix. They are broadly consistent with those
presented here; the largest effects are in the subdistricts that score highest on the mechanization index.
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1.8.1 NREGA had little impact on production

I find that NREGA had little impact on the area planted (in 000s of HA) or total tonnage produced

of crops most associated with fire production (wheat, rice, and sugarcane) Jain et al. (2014). When I

use the full, national sample I find no effect on total area planted or total tonnage of fire associated

crops or in total area planted and tonnage in non-fire associated crops. In the appendix I show event

studies for each of these crop outcomes. In all cases the trend after the implementation of NREGA is

flat or declining and in no case is it different from zero.

Using the same difference-in-differences approach as described by equation 1.3, replacing cropland

fires (Fimy) with the area in each crop (Aimy) and tonnage produced (Timy) in each crop as the outcome,

I confirm the lack of impact suggested by the event studies (see table 1.8). In all crops I examine

(total crops, other non-fire associated crops, wheat, and sugarcane), except rice, I estimate an effect

of NREGA that is not statistically different from zero and is, in most cases, estimated to be close to

zero with relatively high precision. The only crop I estimate a statistically significant effect for at

standard levels is rice, which sees a small (approximately 3%-4%) increase in area under production

and total tons produced. This increase is small relative to the estimated change in fires and relatively

imprecisely estimated.

Based on these estimates I can reject an increase in fires of more than 0.40 % due to increasing

area in wheat production at 95% confidence. Similarly I can reject changes greater than 1.60 % and

0.27 % for changes in the area in rice and sugarcane production. To determine these bounds I take

the estimated change in area planted due to NREGA from table 1.8 and convert that estimated change

in area into standard deviation units based on the distribution of area planted in each crop across all

of India. This makes the units comparable to the units in table 1.1 where I estimate the correlation

between area planted in wheat, rice, and sugarcane and the frequency of fires. Based on the correlations

in table 1.1, I estimate the predicted change in fires for each crop based on the predicted change in

area planted from table 1.8. I use the delta method to calculate standard errors for these estimates. I

report the upper end of the 95% confidence interval for the estimated change in fires.

NREGA may have led to small increases in the area planted and total tons produced of rice. I find

no evidence that it led to meaningful increases in area planted or tonnage of other crops. The estimated
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increase in fires due to the changes in area produced is small both in absolute terms and relative to

the estimated overall impact of NREGA on the frequency of fires. No more than 30% of the smallest

estimated increase in fires is estimated to be due to changes in area under production and the estimated

changes in production would account for no more than approximately 10% of the estimated change

in fires in the preferred specification.
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TABLE 1.8: EFFECT OF NREGA ON CROP PRODUCTION

All Crops Wheat Rice Sugarcane Other Crops
Area Tons Area Tons Area Tons Area Tons Area Tons

Post-NREGA 0.011 0.016 -0.001 0.014 0.025∗∗ 0.039∗∗ 0.034 -0.119 0.006 0.032
(0.007) (0.022) (0.019) (0.025) (0.010) (0.019) (0.040) (0.102) (0.008) (0.060)

Districts 492 492 441 429 473 473 442 441 492 491
N 56,376 56,376 50,388 48,948 54,180 54,180 51,264 51,132 56,376 56,256

District FE X X X X X X X X X X
Year × Month FE X X X X X X X X X X
Weather Controls X X X X X X X X X X

NOTES: Each column represents separate regressions. In all columns the outcome is identified in the column heading. Area is measured in 000s of hectares while
quantity produced is measured in 000s of tons. In all columns the coefficient can be interpreted as the approximate percentage change in the outcome after NREGA
was statutorily implemented in a district. In all columns the base regression is a fixed effects Poisson of the form E

[
Cimy|Ximy

]
= exp

(
βPostimy + γi + δmy

)
where Cimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment takes effect in district i. γi are
district fixed effects while δmy is a year by month fixed effect. All columns include controls for the monthly average cloud cover, precipitation and minimum and
maximum temperature in district i in month t. N refers to the number of districts × months included in each regression. The sample is a balanced, monthly panel of
districts in India from 2003 to 2012. Heteroskedasticity robust standard errors clustered at the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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1.8.2 Changes in crop choice induced by NREGA’s role as insurance

Table 1.8 provides no evidence that the overall production of non-fire associated crops, which includes

higher value, higher variance crops, increases as measured either by area in production or total tons.

Existing work (Gehrke, 2013; Raghunathan and Hari, 2014) has suggested that farmers do in fact

shift into higher variance, higher value crops such as cotton after the implementation of NREGA.

I find no evidence of such a change but no evidence that production of these crops decline. More

importantly, the production process of the crops that farmers may have shifted into (Gehrke, 2013)

does not typically include fire (Jain et al., 2014; Bhuvaneshwari et al., 2019). It is therefore difficult

to explain the observed increase in fires as being driven by NREGA’s implicit insurance provision

leading to transitions in crop type.

1.9 Conclusion

In this paper, I tested for the casual link between incomes and environmental quality by studying the

impacts of India’s anti-poverty program, NREGA. NREGA led to increases in the frequency of cropland

fires of between 9% and 21%. It also led to large increases, between 30% and 50%, in the emissions

rate of black carbon, organic carbon, and SO2 from biomass burning. These pollutants are important

contributors to both PM2.5 and PM10 pollution. I also find evidence that the increase in cropland fires

is concentrated in districts that had a higher number of cropland fires prior to the implementation

of NREGA. In districts that had higher levels of a number of indicators of mechanization prior to

NREGA I find an increase in cropland fires of 28%. Empirically ruling out alternative explanations for

the increase in cropland fires, the findings are consistent with a model that suggests districts with more

mechanization prior to NREGA saw larger effects on fires.

I cannot rule out that the increase in fires is driven by some other aspect of NREGA or a feature

of districts that is correlated with my mechanization index. However, higher pre-NREGA wages are

not highly correlated with higher scores in the mechanization index nor is district level wealth. I also

observe low correlation between the mechanization index and pre-NREGA fires, suggesting that the

mechanization index is not simply identifying areas with high levels of fire prior to NREGA. Despite
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this, it remains possible that the observed increase is driven by some factor other than changes in

mechanization and these results should be interpreted with caution.

With that in mind, it is important to remember that this is not an analysis of NREGA in its entirety.

Estimating the welfare consequences of NREGA inclusive of the measured increase in cropland fires

is beyond the scope of this paper. Others have found meaningful increases in income, consumption,

and health as a result of NREGA that may offset any negative effects of increased emissions from

increases in the number of fires. How the distribution of these benefits compares to the distribution

of negative impacts from the emissions increase I measure deserves the attention of future work.

The results presented here do not call for, nor justify, wholesale changes to NREGA. Nor should

they be interpreted as casting doubt on the value of anti-poverty programs generally. Rather, they

suggest that policy-makers should be cognizant of the potential consequences of large policy changes

that raise wages and incomes on environmental quality and consider ways to mitigate negative impacts.

In the context of NREGA one possible policy response to the increase in fires in the short-run is

to allow NREGA labor to be used to clear residue. There is some precedent for allowing NREGA

labor to be used on private plots (GOI, 2009). Allowing the use of NREGA labor to collect residue

may make the use of fire to clear it less appealing to farmers.

Another potential policy response is to expand existing programs to encourage the adoption of

the agricultural practices that do not require residue removal or mechanize such removal (Shyamsundar

et al., 2019). Burning has declined as an agricultural practice in much of North America and Europe as

the result of the adoption of “no till" agricultural practices (Korontzi et al., 2006; Marlon et al., 2008).

Recent work has suggested that re-allocation of existing subsidies to more promising technology might

encourage more widespread adoption of capital that reduces the need to burn (Shyamsundar et al.,

2019).

There are lessons here for policy-makers beyond India as well. Many countries around the world

have a goal of raising incomes with some form of a work guarantee scheme. The results here highlight

that these kinds of interventions in labor markets, and programs to raise incomes generally, can have

environmental impacts by changing production decisions. Governments may be able to reduce these

environmental impacts by incorporating Pigouvian tax and subsidy policies, which encourage firms
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to internalize environmental externalities, into income raising policies.
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Chapter 2

The Impact of Historic Air Pollution

Exposure on COVID19 Deaths1

2.1 Introduction

The coronavirus disease that emerged in late 2019 (COVID19) in Wuhan China has rapidly spread

around the world to become the first global pandemic since 2009. As COVID19 has spread, a growing

body of research has focused on understanding the environmental conditions that may modulate its

spread, including the role of temperature (Carleton and Meng, 2020), weather (Liu et al., 2020), and air

pollution (Wu et al., 2020; Setti et al., 2020). Much of this work has been motivated by the observation

that the spread of other respiratory diseases, most notably seasonal influenza, are modulated by both

temperature and particulate air pollution (Singer et al., 2020). We add to this by examining the impact

of chronic exposure to particulate air pollution with an instrumental variables approach that suggests

that particulate air pollution increases COVID19 deaths but this impact is approximately 30% smaller

than that estimated using cross-sectional data (Wu et al., 2020).

COVID19 is a severe acute respiratory syndrome (SARS) caused by a novel coronavirus, severe

acute respiratory syndrome coronavirus 2 (SARS-COV-2) (Gorbalenya et al., 2020; Zhu et al., 2020;

Zhou et al., 2020). It endangers human health by damaging the lungs and inducing respiratory

1Co-authored with Christopher R. Behrer (Duke University)
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distress. In severe cases, patients are unable to breathe effectively on their own and require mechanical

ventilation. Roughly half of U.S. deaths from COVID19 co-occurr with pneumonia or hypertension

(CDC, 2020). In these respects, it resembles previous epidemics caused by coronaviruses (e.g. SARS

or MERS) but SARS-COV-2 appears to be both more virulent and more transmissible than past

coronaviruses (Wu and McGoogan; Sanche1 et al., 2020; WHO, 2003). Further, it appears to have

more negative non-respiratory health effects (Mehta et al., 2020).

Because COVID19 endangers human health primarily by attacking the lungs, the CDC has

suggested that individuals who suffer comorbidities related to the respiratory system (e.g. asthma)

may be more susceptible to COVID19. Individuals with lungs compromised by chronic exposure to

particulate air pollution may be less able to fight off the effects of this new virus. Although it is not a

coronavirus, the seasonal flu poses greater risks to patients with previously compromised respiratory

systems (Singer et al., 2020).

Rates of respiratory problems are higher in areas that experience higher levels of particulate air

pollution. This is true both within and across countries (Jiang et al., 2016; Mo et al., 2018; Cohen et al.,

2017). Higher rates of respiratory problems in areas with higher particulate air pollution suggest that

these areas may also experience more severe cases of COVID19. Cases that would manifest as mild

symptoms in healthy individuals may manifest more severely in individuals compromised by perennial

exposure to particulate air pollution. The association between exposure to particulate air pollution

and severity of COVID19 has been proposed in the clinical literature (Misra et al., 2020).

Specifically, pathophysiology of COVID19 suggests that particulate air pollution may increase

COVID19 mortality by increasing its spread and by increasing its virulence. COVID19 enters the body

by binding to a specific protein receptor (Hoffmann et al., 2020). Chronic particulate air pollution has

been associated with the up-regulation of the process that generates those proteins (Chen et al., 2016).

Therefore, chronic exposure to particulate air pollution may increase the ability of COVID19 to enter

the body. Further, mortality from COVID19 is frequently associated with the occurrence of cytokine

storms that trigger hyperinflammation (Mehta et al., 2020; Chen et al., 2020a).2 Clinical literature

2A simple definition of a cytokine storm is a runaway reaction in the body that causes the immune system to turn on
the body’s own cells.
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has shown that exposure to particulate pollution is associated with higher levels of cytokines in the

lungs even after the exposure event (van Eeden et al., 2001).

That areas with higher levels of particulate air pollution may suffer more severe cases of COVID19

is supported by more than physiology. In both Italy and China, two early hot-spots of the disease,

the first and most severely effected areas were also areas with unusually high levels of particulate

air pollution. The annual average PM2.5 level in Wuhan is ≈ 150µg/m3, six times the WHO

recommended limit.3 In Italy the first cases, and the largest number of deaths to date, have occurred

in the Po river valley. This is the industrial center of Italy and regularly has the highest levels of

particulate air pollution in the country, and often in all of Europe. PM2.5 levels in Milan, the largest

city in the Po river valley, average between 100µg/m3 and 150µg/m3 from December to February.

In this paper we use data on the spread of COVID19 through the United States and satellite

measures of particulate air pollution to examine the relationship between COVID19 mortality and

historic exposure to particulate air pollution. To overcome concerns about confounding by unobservable

determinants of COVID19 mortality due to the residential sorting process driven by particulate air

pollution, we use an instrumental variables approach to estimate the impact of pollution levels of

COVID19 mortality. We leverage the fact that roughly 50% of local particulate air pollution in the

United States comes from distant power generation combined with wind direction and the hydraulic

fracturing boom to instrument for local particulate air pollution with the unexpected closure of coal

fired power plants 100 to 150 miles away from the county of interest.

We show that a 1µg/m3 increase in a county’s ten year average PM2.5 levels increases COVID19

deaths by 9%. A 1µg/m3 increase in the ten year annual average of PM2.5 represents a 12% increase

for the mean county in our sample, implying a 1% increase in particulate pollution leads to a 0.75%

increase in mortality. We can compare this to recent cross-sectional estimates form the U.S. (Wu

et al., 2020) that suggest a 1µg/m3 increase in the ten year annual average of PM2.5 leads to a 15%

increase in mortality from COVID19. Consistent with the cross-sectional estimate being confounded

by unobserved determinants of mortality that are correlated with particulate air pollution levels, our

estimates for the causal impact of particulate air pollution are 30% smaller.

3Beijing, famous for its poor air quality, has an average of ≈ 100µg/m3
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Our paper joins a long line of literature documenting the negative health consequences of particulate

air pollution (Manisalidis et al., 2020; Deschenes et al., 2017; Chay and Greenstone, 2003a,b; Chay

et al., 2003). There is less work on the role that chronic exposure to particulate air pollution may

play in exacerbating the spread of a pandemic. The most notable study in this space examines how

particulate air pollution in U.S. cities prior to the 1918 Spanish Flu may have lead to substantial excess

mortality in some cities (Clay et al., 2018). Using variation in the share of electricity provided by coal

fired power they find that “high coal" cities experienced all-age mortality rates that were ten percent

higher than “low coal" capacity cities. They find that accounting for variation in city characteristics

(e.g. poverty rates) and the public health response of the city to the pandemic does not change the

impact that particulate air pollution appears to have had on excess mortality.

We briefly discuss the literature on particulate air pollution and health as well as our current

understanding of the pathophysiology of COVID19 in section 2. In section 3 we outline our empirical

approach and describe the IV strategy we utilize. In section 4 we describe our data and discuss results

in section 5. Section 6 concludes.

2.2 Particulate air pollution and COVID19 mortality

Chronic exposure to particulate air pollution may increase COVID19 mortality by increasing trans-

mission of the virus and by increasing its virulence once infected. We briefly highlight findings from

three relevant literatures. First, we discuss existing evidence on the health effects of chronic exposure

to particulate air pollution. Second, we review the limited existing evidence on the relationship

between chronic exposure to particulate air pollution and the progression of epidemic and pandemic

infectious disease. Finally, we discuss the emerging scientific and clinical literatures which describe

the pathophysiology of COVID19, specifically the role of the angiotension-converting enzyme 2

(ACE2), and risk factors for mortality including chronic respiratory, cardiovascular, metabolic, and

immunologic disease.
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2.2.1 Health effects of exposure to particulate air pollution

It is well known that particulate air pollution exposure increases mortality from a range of causes. This

is particularly true of exposure to PM2.5 for the elderly, a population that appears disproportionately

impacted by COVID19. Anderson (2015) finds a 3-7% increase in over-75 mortality for a doubling

of time spent downwind of an LA highway, an increase he argues is due to elevated exposure to a

range of pollutants but especially particulate pollution. More recently, Deryugina et al. (2019) use

variation in the amount of out-of-county pollution carried into a county based on changes in the

direction of the wind to show substantial increases in mortality due to PM2.5 pollution among the

Medicare population. Coal fired power plays a large role in the generation of out-of-state pollution and

has substantial impacts on mortality among the very young and the elderly from respiratory disease

(Clay et al., 2016; Gupta and Spears, 2017). Chronic exposure to high levels of particulate pollution

can have more subtle health effects as well. Bishop et al. (2018) estimate that a 1 µg/m3 increase in

decadal PM2.5 levels increases dementia diagnosis by 1.68 percentage points, or roughly 8% of the

mean number of dementia diagnoses among 80-year-olds.

2.2.2 Air pollution and pandemics

Work on the relationship between particulate air pollution and respiratory pandemics has been limited

by the infrequency of pandemic events. However, using air pollution index (API) data, Cui et al. (2003)

find that moving from a low API area to a high API area was associated with a doubling of the mortality

rate during the 2002 SARS outbreak in China. This is consistent with more geographically resolved

evidence from Beijing during the same outbreak that finds short-term increases in air pollution during

the outbreak are associated with an increase in the relative risk of SARS mortality (Kan et al., 2005).

While they lack data on the specific pollutant loads Clay et al. (2018) and Clay et al. (2019) find that

areas with higher levels of air pollution, proxied by coal power generation, experienced more excess

mortality from the 1918 flu and that this effect was roughly 50% as important as pre-pandemic infant

mortality rates in predicting excess mortality.
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FIGURE 2.1: COVID19 DEATHS BY COUNTY

NOTES: Darker green counties have higher death
counts. Deaths come from the NYT database on
COVID19 deaths as of April 19, 2020.

2.2.3 Pathophysiology and epidemiology of COVID19

COVID19 is caused by SARS-COV-2, a betacoronavirus that enters human cells by binding to the

angiotension-converting enzyme 2 (ACE2) receptor (Hoffmann et al., 2020). The ACE2 receptor is

expressed on type II pneumocytes of human lung tissue, but also in cells of the gut, heart, kidney, and

blood vessels (Hamming et al., 2004). It regulates blood pressure, heart function, and ongoing research

suggests it may also play a role in regulation of insulin secretion (Li et al., 2020b). Hypertension

and pulmonary events are two of the most common causes of mortality among those exposed to high

levels of air pollution (Manisalidis et al., 2020). As a result, ACE2 has been suggested as a potential

channel between air pollution and mortality (Aztatzi-Aguilar et al., 2015). Importantly, diabetes,

pulmonary conditions and hypertension are all frequent comorbidities of COVID19 (CDC, 2020; Shi

et al., 2020; Muniyappa and Gubbi, 2020).

Evidence from epidemiological studies indicate that ACE2 production may be up-regulated by

chronic exposure to particulate air pollution (Aztatzi-Aguilar et al., 2015). This results in more ACE2

receptors in the lungs of those who have been exposed to chronically high particulate air pollution. A

higher number of ACE2 receptors may increase the probability that COVID19 viruses can successfully
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FIGURE 2.2: 10 YEAR ANNUAL AVERAGE PM2.5 (µg/m3)

NOTES: Darker blue counties have higher annual av-
erage levels of PM2.5 pollution. Pollution is generally
concentrated in urban areas but non-urban areas with
high coal fired electricity production, the deep south,
midwest and Ohio River Valley, in particular also have
high pollution loads in non-urban areas. Data come
from Van Donkelaar et al. (2019).

bind and enter the cells of an individual who has breathed in the virus. While the specific biologic

mechanisms of SARS-COV-2, the ACE-2 receptor are still active areas of research, there is a clear

channel through which particulate air pollution may increase the probability of infection conditional

on breathing in the virus.

When infection with SARS-COV-2 reaches the lungs, it directly damages lung cells and induces

an inflammatory immune response (Luks et al., 2020). These processes can lead to impaired surfactant

production, fluid accumulation (edema), impaired gas exchange, and alveolar collapse causing cough,

shortness of breath, and in severe cases, respiratory failure requiring mechanical ventilation (Force

et al., 2012). In severe cases, cardiovascular, metabolic, and immunologic processes appear to be

implicated (Mehta et al., 2020). Specifically cardiac injury, leukocytosis (elevated white blood cell

count), elevations in other inflammatory markers (IL-2R, IL-6, IL-10, TNA-α), and hyperglycemia

were associated with mortality (Li et al., 2020a). This pattern of effects, as well as profound lab

abnormalities of inflammatory markers, suggests immunologic involvement and, in some severe
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cases, cytokine storms (Mehta et al., 2020; Chen et al., 2020a,b).

Both lab and field epidemiological studies have shown that particulate pollution stimulates cytokine

generation (van Eeden et al., 2001; Tan et al., 2000; Chen et al., 2018). This has been suggested as the

biological mechanism linking particulate air pollution and pulmonary and respiratory mortality (Seaton

et al., 1995). Further, there is evidence that elevated expression of cytokines can persist for many years

after initial exposure (Gruzieva et al., 2017). Aberrant regulation of cytokine levels in the lungs has

been suggested as a potential cause of cytokine storms in response to viral loading (Tisoncik et al.,

2012; Cillóniz et al., 2009). As a result, to the extent that chronic exposure to particulate air pollution

leads to up-regulation of cytokines in the lungs it may contribute to increased COVID19 mortality

by increasing the likelihood that patients experience the extreme inflammatory consequences of a

cytokine storm.

2.3 Empirical approach

A challenge in assessing the impact of chronic pollution exposure on the mortality rates from COVID19

is isolating the direct impact of exposure to air pollution. Because areas that suffer consistently higher

air pollution may have lower housing costs (Sullivan, 2016; Chay and Greenstone, 2005) residential

sorting may lead to systematic differences between populations that are exposed to chronically higher

and lower levels of air pollution. These differences may be correlated with COVID19 mortality rates in

ways that confound simple cross-sectional estimates of the impact of chronic air pollution on mortality

rates (e.g. Wu et al. (2020)).

To separately identify the direct impact of chronic exposure to air pollution on mortality rates,

we use an instrumental variables approach. We rely on plausibly exogenous changes in the make-up of

the power generation fleet in areas upwind and at substantial distance from the county of interest to

instrument for changes in the long-run average level of pollution in a given county. Our IV approach

is similar to that used in Johnsen et al. (2019) to measure the impact of hydraulic fracturing on air

pollution and Bishop et al. (2018) using variation in power plant emissions to estimate the impacts

of particulate air pollution on dementia.

Specifically, we instrument for the long-run average level of PM2.5 pollution in a county from 2008
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to 2017 with the number of coal fired power plants and the number of gas fired power plants that are

opened or retired within a band 100 miles to 150 miles outside of the county of interest. Displacement

of coal by natural gas reduces pollution levels in areas downwind of the plants either by removing

generating capacity, and the associated pollution, and/or by displacing relatively dirty coal generation

with relatively clean natural gas generation (Johnsen et al., 2019). As a result, we use the opening and

closing of coal and natural gas plants to predict pollution levels over the subsequent years in downwind

counties. We then examine whether areas with larger predicted exposures experience more deaths

from COVID19. We estimate the following system of equations:

Avg. PM2.5 Conc.i = αj + ψ1Plant Retirementikq × Wind Shareiq + ψ2

New Plantsikq × Wind Shareiq + δXi + ηPi + εi

(2.1)

Log(COVID19 Mortality)i = αj + β ̂Avg. PM2.5 Conc.i + φXi + κPi + µi (2.2)

where we instrument for the ten year annual average PM2.5 concentration in county i in state j from

2008-2017 with the interaction of the number of coal plants retired or opened and the number of new

natural gas plants from 2006-2016 within distance band k of county i in compass quadrant q and

the share of time that the wind blew into county i from quadrant q (Wind Shareiq).4 In our primary

specification k is a band from 100 to 150 miles around county i.5 Equation 2.2 takes the predicted values

of the average PM2.5 concentration and relates them to COVID19 deaths. β describes how a change

in our predicted level of PM2.5 changes the number of COVID19 deaths in county i. Xi are vectors

of county specific controls related to health quality, NAAQS attainment status, contemporaneous air

quality, average wind direction, and the spread of COVID19. We select non-NAAQS controls using

a cross-validation LASSO procedure where the starting data includes county average mortality rates of

common COVID19 comorbidities, 5-year ACS county average socio-demographic variables, and cell

phone based measures of the severity of lockdown implementation by county. Our cell phone based

measures of lockdown severity come from anonymized data that tracks how often cell phones within

4Compass quadrants are Northeast, Southeast, Southwest, and Northwest and correspond to angles of degree 0◦-90◦,
90.1◦-180◦, 180.1◦-270◦, and 270.1◦-360◦.

5In figures B.2 and B.3 we present first and second stage estimates for a range of distance bands.
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a county at the same location over time. We mandate that NAAQS non-attainment status for PM2.5

in 2019 and the total number of years in our sample the county was in non-attainment, the number of

days since the first COVID19 case in the county, the total population and population density of the

county, and the number of hospital beds in the county remain in the LASSO. In table 2.1 we detail

the variables that are included as controls as well as the set that the LASSO procedure selected over.

Pir is a vector of controls for the number of existing coal and gas plants in the radius r of county i

where r is the outer envelope of the k distance band. These include those within county i. We include

state fixed effects (αj) in all regressions.

In order for these to be valid instruments for chronic PM2.5 pollution exposure, they must satisfy

two conditions: (1) there is a meaningful relationship between the number of new or retiring plants in

our distance band and the average annual PM2.5 pollution exposure in the county of interest and (2) the

opening or closing of a plant in our distance band is plausibly exogenous with regard to correlated

determinants of COVID19 mortality within the county of interest. That is, the exclusion restriction

must hold. We offer an argument for why each of these conditions are satisfied here and present

empirical evidence to support the first condition in the results section.

In the United States at the beginning of our sample, on average, more than 50% of the air pollution

mortality in a given state was due to pollution generated out of state and transported by prevailing

winds (Dedoussi et al., 2020). Of this cross-state pollution, the power generation sector accounts

for the largest share at more than 70%. To highlight the role of emissions in distant counties in

determining local air pollution, we show in figure 2.3 the counties from which a marginal increase in

emissions contributes the most to PM2.5 pollution in Allegheny County in Pennsylvania. Data comes

from the AP2 air quality model (Fowlie and Muller, 2019) and shows the top quartile of counties by

contribution to pollution levels in Allegheny County.6 While many of these counties are located in

close proximity to Allegheny County, it is clear that the the counties in the band from 100 to 150 miles

away, particularly those in the Ohio River Valley, are a meaningful source of pollution.

Over the time period we study, 2005-2018, there has been a decline in both the absolute and relative

6Note that this is not a map of which counties contribute the most pollution to Allegheny County in absolute terms.
That is, it is not a map of which counties have many power plants. Rather, it shows the counties in which the emission of 1
additional ton of pollution would generate the most pollution in Allegheny County.
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TABLE 2.1: LASSO VARIABLES

Mandated Inclusion Initial List Selected List

Total population Average smoking rate Average smoking rate
Population density Mortality rate from pulmonary Mortality rate from pulmonary

causes causes
Hospital beds Difference from normal Difference from normal

activity since activity < 50% activity since activity < 50%
Days since first case Days since activity < 75% Days since activity < 50%
Years in non-attainment, Days since activity < 50% Days since activity < 25%
2006-2017 Days since activity < 25% Native American population
Attainment status, White population Asian population
2019 Black population Other race population

Hispanic population Median gross rent
Native American population Total public transit use

Asian population Total without health insurance
Other race population

Population over 55
Population over 65
Population over 75

Population in group quarters
Population over 25,

less than high school
Population over 25, BA degree

Per capita income
Families in poverty

Owner occupied housing
Renter occupied housing

Median rent
Vacant housing units
Total male population

Mortality rate from
ischaemic causes

All cause mortality rate

NOTES: “Mandated Inclusion" are the variables we require the LASSO proceedure to always include. “Initial List" are
the variables that the LASSO selects over. We use 10-fold cross-validation LASSO to select controls. “Selected List" are
the variables chosen by this procedure that we include in our regressions in addition to the mandated list.
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FIGURE 2.3: RANGE OF PM2.5 DAMAGES

NOTES: Darker red counties are those from which
a larger share of the marginal unit of pollution ulti-
mately reaches Allegheny county Pennsylvania (marked
in black). All colored counties contribute a level of pollu-
tion that puts them in the top 25% of contributing coun-
ties according to the AP2 model (Fowlie and Muller,
2019). We show counties in the top 25% because dam-
ages are continuous and all counties contribute some
non-zero level of pollution. The black rings denote 100
and 150 miles from Allegheny county.

contribution of out-of-state electrical power generation on pollution levels (Dedoussi et al., 2020).

This has been driven in part by generation transitioning from old coal to natural gas or more modern

coal generation (Burney, 2020; Holland et al., 2018). These changes in the electrical generation fleet,

and its consequent impact on pollution levels, have had a meaningful impact on the average level of

pollution exposure over our time period, even for counties at a large geographic remove from where

the generating plants may be located. Within our sample, the average county has experienced the

closure of slightly more than 4 coal fired power plants in the band 100 to 150 miles away from the

county (see table 2.2).

The location of power plants is clearly not exogenous. The count of power plants located in the

band from 100 to 150 miles from a county would not be a valid instrument because, to the extent that
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TABLE 2.2: SUMMARY STATISTICS

Mean SD Min Max

Outcomes
Avg. PM2.5, 2008-2017 7.96 1.96 2.60 12.78
Total Deaths 11.52 183.29 0 9,708
Total Deaths (w/o NYC or KC) 8.39 57.07 0 1,577

Power Plants
Retiring Coal, Q1 1.16 2.69 0 19
Retiring Coal, Q2 0.98 2.59 0 26
Retiring Coal, Q3 1.04 2.72 0 24
Retiring Coal, Q4 1.00 2.55 0 32
New Gas, Q1 0.76 2.59 0 31
New Gas, Q2 0.94 3.11 0 31
New Gas, Q3 0.64 2.38 0 40
New Gas, Q4 0.96 3.16 0 35

Wind Direction
Northeast 33.70 8.92 1 76
Southeast 25.01 9.79 4 75
Southwest 16.93 4.65 1 45
Northwest 24.36 8.56 4 78

CDC Data
Influenza deaths/100K 23.76 13.14 0.0 135.1
Obesity deaths/100K 0.67 1.20 0.0 10.2
Diabetes deaths/100K 29.89 14.15 0.0 135.9
Avg. smoking rate 25.89 3.71 9.6 39.2

Lockdown controls
Difference from normal since <50% 26.69 15.42 2.3 221.1
Days since activity <75% 32.94 4.95 0.0 42.0
Days since activity <50% 20.05 7.47 0.0 42.0
Days since activity <25% 4.33 6.97 0.0 35.0

NOTES: “Deaths w/o NYC or KC exclude deaths from New York and Kansas City because the New York Times data on
COVID19 deaths groups all the counties in these cities together. Power plant statistics are for the distance band 100 to
150 miles. CDC data reports county average death rates from 1999 to 2016. Smoking rates are calculated from 2005 to
2016. Wind direction reports the share of time by county the wind blows from the named compass quadrant. Lockdown
data is based on cell phone location data from Couture et al. (2020).
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they influence pollution levels in distant locations, patterns of residential sorting should reflect their

influence. Instead, we rely on the opening and closing of old and new power plants for our identification.

We assume that the process of residential sorting happens with a time lag such that pollution levels

fall immediately after the closing of a power plant but the process by which neighborhoods change

in response to the new levels of pollution occurs slowly over time.7

The validity of our instrument thus relies on the assumption that retirement or construction of a

plant in our distance band, conditional on the number of plants that were operating at the beginning

of our study period, is done for reasons that are exogenous to activity in our county of interest. In

particular, we assume that plants are not more likely to be retired or constructed in areas that are

contributing relatively more pollution to downwind areas in 2005.8 We believe this assumption is

justified because during our time period there was substantial turnover in the power generating fleet

in the United States. More than 300 coal fired generators were retired and more than 600 natural gas

generators were brought online.

In many cases the choice to retire coal and construct natural gas generators was driven by the

negative shock to natural gas price from the revolution in hydraulic fracturing (Hausman and Kellogg,

2015). Hydraulic fracturing substantially, and unexpectedly, reduced the price of natural gas by

around 70% from 2008 to 2012 (Knittel et al., 2015). There was substantial geographic variation

in where hydraulic fracturing lowered gas prices for generating firms (Johnsen et al., 2016; Linn

and Muehlenbachs, 2018). This variation was driven in large part by the location of the tight shale

formations that held the gas which was made accessible by new hydraulic fracturing techniques and

was exogenous to the location of existing power plants (EIA, 2016). Johnsen et al. (2019) use the

variation in a similar IV strategy to show that decreases in the cost of natural gas led to an average

28% decline in coal usage in power generation and a 35% increase in air quality in the areas of highest

7Wind direction is commonly used as a source of exogenous variation in studies of air pollution. We do not use it as
such here. We include the interaction with wind to increase the precision of our instrument. Because we are interested in
long-term effects, and wind patterns are relatively consistent over long time periods, they do not provide us with exogenous
variation.

897.5% of the counties in our sample have at least one coal fired power generation unit within 150 miles as of 2005
and roughly 50% have a coal fired power plant that closes in the band 100 to 150 miles away during that time period (figure
2.4). An additional 27% have had a new natural gas plant open in that same band. We do not find any evidence that pollution
levels in 2008 predict the number of plants that close in our sample.
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FIGURE 2.4: COUNTIES IN EACH BANDWIDTH

NOTES: The count of counties that have at least one
coal fired unit closing between 2006 and 2016 in each of
the distance bandwidths 0-50 miles, 50-100 miles, 100-
150 miles, 150-200 miles, and 200-250 miles. Closing
plants within a county are grouped in the 0-50 miles bin.

displacement.

An important assumption for the validity of our instrument is that there is a mismatch in the timing

between when counties experience lower pollution levels and the attainment of a new equilibrium in the

sorting process that determines the socioeconomic make-up of the county. Existing research has shown

that areas become wealthier, whiter, and contain a greater share of home-owners relative to renters

after the reduction in air pollution that comes from the closure of coal-fired power plants (Sullivan,

2016). This occurs as the reduction in air pollution makes the neighborhood more attractive and thus

raises housing costs. However, this process takes time. Reforms of the power sector in California in

2000 substantially reduced air pollution by 2001 but these changes took nearly ten years, until 2009, to

fully manifest as changes in the make-up of LA neighborhoods (Sullivan, 2016). This delay occurred

despite the closure leading to the cleaner air occurring in LA and being reasonably salient to residents

of LA as opposed to the variation we rely on that occurs hundreds of miles away. Intuitively, such

a delay makes sense; it takes time for households to recognize the change in pollution and for real
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estate markets to adjust. Our identification relies on the condition that power plant closures lead to near

immediate changes in pollution levels but neighborhood demographics change slowly in response.

One might reasonably be concerned that hydraulic fracturing has economic consequences other than

shifting the mix between natural gas and coal in power generation. If these economic consequences

spill over into neighboring counties it might confound our instrument. In particular, if hydraulic

fracturing raised wages or incomes, or tax revenue, in neighboring counties, COVID19 mortality might

be reduced through a channel other than air pollution that is correlated with our pollution instrument.

Feyrer et al. (2017) examines exactly the question of spillovers and finds that hydraulic fracturing does

increase wages, business income, and government royalties. However, these effects are concentrated

in areas relatively near to the county in which hydraulic fracturing occurs. The increase in wages

declines to near zero by 100 miles away from the site of hydraulic fracturing (see figure B.1). Further,

the additional royalty revenue dissipates within approximately two years of the drilling of the well.

To the extent that the largest drilling shock occurs from 2008 to 2012, that suggests the additional

government revenue may not be affecting COVID19 mortality in 2020.

2.4 Data

2.4.1 Air pollution data

There are two main sources of air pollution data for the United States - monitor data from the EPA’s

system of ground based monitors and remotely sensed data that measures air pollution by processing

satellite imagery to detect certain types of particles. There are advantages and disadvantages to each

type of data. One major drawback of monitor based data is its incomplete geographic coverage that

can lead to substantial underestimation of the true levels of air pollution across counties (Sullivan and

Krupnick, 2018). This is exacerbated by the fact that regulators may strategically locate monitors to

avoid detecting the highest levels of pollution in their jurisdiction (Grainger et al., 2016).

To avoid the potential bias from ground-based monitor data, we use remotely sensed air pollution

data. Specifically, we use pollution data from the North American Regional analysis conducted by

Van Donkelaar et al. (2019). This remotely sensed data combines observed data on aerosol optical depth
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(AOD) from NASA MODIS, MISR, and SeaWIFS satellite systems with a physics model of chemical

transport to provide data at a fine resolution over long time periods. Remotely sensed pollution data

is generally believed to provide a reasonable best estimate of pollution levels (Auffhammer et al., 2013)

and is widely used in both environmental economics (Schlenker and Lobell, 2010; Hsiang, 2016).

We focus on PM2.5 because it has the most deleterious consequences for human health and collect

data on PM2.5 levels from 2006 to 2017 across the continental United States.9 The satellite data is

reported on a 0.01◦x0.01◦ (≈4mi x 4 mi) grid. We assign grid points to counties and calculate a

county average annual exposure by averaging across all grid points in the county. For each county

in the United States we then calculate the ten year average level of each of the pollutants. We end

our average in 2017 because recent work from the Po river valley (Setti et al., 2020) and from China

(Yongjian et al., 2020) suggests high contemporaneous levels of pollution may facilitate the spread

of the virus by allowing the virus to bind to particulate matter in the air. Ending our average in 2017

avoids confounding our estimates with contemporaneous effects.10

2.4.2 COVID19 mortality data

Our COVID19 mortality data comes from the database on cases that has been assembled by the New

York Times. Their database provides the current cumulative case and death count for all counties in

the United States that have reported at least one case. From this data we calculate the date the first

case was announced for each county and the date of the first death. 11

In order to include cases in New York City and Kansas City we group all the counties that comprise

each metropolitan area together in out analysis. This is because the NYT reports aggregate cases for

both cities. For the pollution data we calculate averages across all five counties. For the Census ACS

data (discussed below) we aggregate as total or median (as appropriate) across each the five counties.

We do this because the New York Times reports a single aggregate case and death count for all the

9We also collect data on NH4, SO3, and NO4 but as we show in table B.1 these pollutants do not appear to have a strong
impact on COVID19 mortality.

10We use nearly contemporaneous data on NAAQS attainment status to control for short-term effects.

11The data can be accessed here: github.com/nytimes/COVID19-data
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counties in New York City. We do the same for Kansas City for the same reason. We group all four

counties that touch on Kansas City together and then add the cases and deaths that the New York Times

reports for Kansas City to that total.

2.4.3 Other data

We combine our air pollution and mortality data with a number of other data sets in order to control

for additional covariates of mortality.

EIA power plant data The Energy Information Agency (EIA) requires power generation facilities

in the U.S. with greater than 1MW nameplate capacity to provide information about the annual

operation of their facilities on a form 860. This information includes the location, primary fuel types,

gross load, operating hours, and retirement or planned retirement ages of the generators. We use the

database of EIA-860 data assembled in Burney (2020) for coal and natural gas plants retired or opened

from 2005 to 2016. This provides us with the latitude and longitude coordinates of each coal and

natural gas plant operating in the U.S. during that time period as well as the opening or closing dates

for plants that did not operate continuously for the whole time period. We map this data and count

the number of new, retiring, and existing plants of each type within various distance bands from

every county in the United States.12

ACS data In order to control as best as possible for the range of socioeconomic characteristics that

may be correlated with chronic particulate pollution exposure, we download the comprehensive

5-year average ACS report from the U.S. Census at the county level for 2018. We match this to the

COVID19 mortality data by FIPS code, subject to the changes described above.

DEX data As the COVID19 pandemic has worsened across the United States, cities, counties, and

states have responded with various containment measures and lockdowns in an attempt to limit the

spread of the virus. In order to control for these measures we have included data measuring the average

interaction of anonymized cell phone data at the county level from Couture et al. (2020). To measure

interactions Couture et al. (2020) count the number of distinct devices that visited any commercial

12We map the location of all plants in the figure 2.5.
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FIGURE 2.5: LOCATION OF EXISTING, NEW, AND RETIRING PLANTS, 2006-2016

EXISTING COAL PLANTS EXISTING NATURAL GAS PLANTS

RETIRED COAL PLANTS NEW NATURAL GAS PLANTS

establishments in a single day. They report the county average across all cell phones in the county on

that day. We use average over time to determine when activity in a given county falls below seventy

five percent, fifty percent, and twenty five percent of the average level from the beginning of the

sample (January 20, 2020) to March 1, 2020. For each county we then construct variables that count

the days between crossing these thresholds and the most recent mortality report. We also calculate

the difference in average activity levels after activity falls below the 50% threshold and the baseline

activity level to account for the fact that lockdowns may become less severe or less obeyed over time.

CDC data We download the count of deaths and crude death rates from 1999-2016 for a range of

comorbidities from the CDC WONDER system for all counties in our sample. The WONDER

system reports mortality statistics for a range of causes of death across U.S. counties. The data is based

on death certificates. We collect data on all cause mortality, pulmonary heart disease, ischaemic

heart disease, hypertensive diseases, diabetes, obesity, influenza, and acute respiratory diseases.

EPA Greenbook data The EPA designates counties’ non-attainment if they are not in compliance

with the National Air Quality Standards (NAAQS) based on data from the EPA monitoring network.

We collect data from the EPA Greenbook reporting historic compliance with the NAAQS standards
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on whether a county is in non-attainment with the PM2.5 standard in 2019 as well as the number of

years from 2006 to 2017 that the county was in non-attainment.

Wind direction data We collect data on the direction that the wind blows into a county on a daily

level from 2005 to 2016 from Deryugina et al. (2019). We assign a quadrant to each angle recorded

in this data and calculate the share of days over this time period the wind blows into a county from

each quadrant. For counties in our sample that are not in the data collected by Deryugina et al.

(2019) we use the average across available counties in the same state.

2.5 Results

We begin briefly with a discussion of the cross-sectional relationship between exposure to chronic

particulate air pollution and COVID19 mortality. In table 2.3 we show the results of the simple

cross-sectional, state-fixed effects regression of the log of one plus county deaths on the ten year annual

average level of PM2.5 pollution. In our preferred specification, in which we include controls selected

by LASSO for the days since the first case was detected, a range of socioeconomic characteristics

from the ACS, and the number of days since economic activity declined substantially as a result of

lockdowns, a one unit increase in annual average PM2.5 levels is associated with an increase of roughly

5% in the number of COVID19 deaths in a county.13

Our estimates differ substantially from those published in Wu et al. (2020) who find increases of

15% in mortality from COVID19 due to a 1µg/m3 increase in the ten year annual average of PM2.5.

There are several potential explanations for this discrepancy. The first is that we use more recent data

on deaths than used in Wu et al. (2020). As the COVID19 epidemic grows, death counts are changing

rapidly. The three week difference in the data used may explain the difference in results, particularly

if the places that had high early death counts have higher-than-average levels of air pollution. We

also control for more county features than in Wu et al. (2020). In particular we have richer controls

for the change in activity after the advent of COVID19, which may be correlated with deaths and air

pollution, and for contemporaneous air pollution.

13Our ACS controls include controls for the age and racial profile of a county, the population and population density,
number of renters, common methods of commuting to work, health insurance status, and average incomes.
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TABLE 2.3: CHRONIC PM2.5 POLLUTION AND COVID19 MORTALITY

LN1+ IHS

Avg. PM2.5, 2008-2017 0.048∗∗∗ 0.063∗∗∗

(0.014) (0.017)
N 3,096 3,096

LASSO Controls X X
State FE X X

NOTES: The outcome in column 1 is the log of deaths+1 in a county as of April 19th. In column 2 it is the inverse
hyperbolic sine. Coefficients should be interpreted as the percent change in deaths for a one unit change in annual average
PM2.5 from 2008 to 2017. At the mean a one unit change in PM2.5 represents a 12% change in PM2.5. LASSO controls
include controls for the number of days since the first reported case, mortality rates from diabetes and obesity, population
density, levels of health insurance, the racial and age makeup of a county, and days since the county experience a lockdown
as well as post-lockdown activity levels. Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05
*** p<.01).

2.5.1 First-stage IV results

We present results from our first stage estimates in table 2.4. To ease readability we present the total

effect of plant retirements and openings in each quadrant accounting for wind share.14 As hypothesized,

the retirement of coal fired power plants reduces average PM2.5 levels over 2008 to 2017. Our first

stage results imply that the average county in our sample experienced a reduction of ten year annual

average PM2.5 levels of approximately 0.15 µg/m3 (≈10% of 1 SD) due to changes in the power

generation mix relative to the counter-factual of no change in the generation mix. For comparison’s

sake, scaling the estimates in Johnsen et al. (2019) to our distance bandwidths suggests that the closure

of a large coal fired power plant would reduce ten year annual average PM2.5 levels by 0.08 µg/m3.

More surprisingly, the opening of new gas fired power plants also reduces average PM2.5 levels

in some cases. In a setting in which power generators are choosing how to meet power demand by

utilizing a mix of generating sources, some dirtier than others, it is reasonable that adding more,

relatively clean, natural gas sources will reduce overall pollution. Whether new gas generation capacity

increases or reduces pollution will depend on the generation mix prevailing upwind of a given county

14Our fist stage equation estimates the impact of a plant retirement (ψA
1 ) and the interaction with wind share (ψB

1 ). The
total effect of a plant closure in quadrant q is ψA

1 +ψB
1 × Wind Shareqi. We evaluate this total effect at the mean wind share

for each quadrant and present these results in table 2.4.
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TABLE 2.4: FIRST-STAGE RESULTS

(1) (2)

Retiring Coal, Q1 -0.041∗∗∗ -0.041∗∗∗

(0.008) (0.008)
Retiring Coal, Q2 -0.028∗∗ -0.023∗

(0.012) (0.012)
Retiring Coal, Q3 -0.045∗∗∗ -0.044∗∗∗

(0.007) (0.007)
Retiring Coal, Q4 -0.006 -0.008

(0.009) (0.008)
New Gas, Q1 0.005 0.003

(0.006) (0.006)
New Gas, Q2 -0.033∗∗∗ -0.031∗∗∗

(0.006) (0.006)
New Gas, Q3 0.029∗∗∗ 0.029∗∗∗

(0.010) (0.009)
New Gas, Q4 -0.021∗∗∗ -0.017∗∗∗

(0.006) (0.005)

F-statistic 119.38 114.28
State FE X X
LASSO Controls X X
NAAQS Controls X

NOTES: The outcome in all columns is the the percent change in annual average PM2.5 from 2008 to 2017. At the mean
a one unit change in PM2.5 represents a 12% change in PM2.5. LASSO controls include controls for the number of days
since the first reported case, mortality rates from diabetes and obesity, population density, levels of health insurance, the
racial and age makeup of a county, and days since the county experience a lockdown as well as post-lockdown activity
levels. Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05 *** p<.01).
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FIGURE 2.6: PREDICTED 10 YEAR ANNUAL AVERAGE PM2.5 (µg/m3)

NOTES: Darker purple counties have higher predicted
annual average levels of pollution. Pollution levels are
predicted using the opening and closing of coal and
natural gas power plants 100 to 150 miles away from a
given county.

prior to the new plant. Consistent with this idea, we observe that the gross load (a measure of plant

utilization) of older coal fired power plants declines as new natural gas plants are brought online within

a given area and there is a substitution of operating time from older coal fired power to newer gas

fired power. In California this likely means new gas will increase local pollution because there is

little coal to displace. In the Ohio River Valley, one of the most polluted areas in the country, new

gas likely displaces coal and reduces pollution. The relative impacts of coal and natural gas on air

pollution, as well as the signs we estimate, are consistent with the results in Johnsen et al. (2016).

The F-statistics on the instruments in our first stage are substantially greater than 10, suggesting we

do not have a weak instrument problem (Stock and Yogo, 2002).

2.5.2 IV results

Our IV estimates reported in table 2.5 are inflated relative to our OLS results. In our preferred

specification, controlling for the LASSO controls as well as NAAQS status, we find that a one unit

increase in ten year annual average PM2.5 increases COVID19 deaths by approximately 9.5%. This
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implies a 1% increase in ten year annual average PM2.5 increases COVID19 deaths by ≈0.75%.15

The inflation of our IV results relative to our OLS results is relatively moderate. In our preferred

specification the IV estimates are 100% larger than the OLS estimates. This is consistent with the

differences in OLS and IV estimates in existing work using a similar instrumental strategy (Johnsen

et al., 2019).16 Despite this inflation, our IV estimates are substantially smaller than the existing

cross-sectional correlations.

TABLE 2.5: INSTRUMENTAL VARIABLE RESULTS

LN1+ LN1+ IHS IHS

Avg. PM2.5, 2008-2017 0.107∗∗ 0.096∗∗ 0.133∗∗ 0.121∗∗

(0.047) (0.049) (0.058) (0.059)
N 3,097 3,097 3,097 3,097

State FE X X X X
LASSO Controls X X X X
NAAQS Controls X X

NOTES: The outcome in columns 1-2 is the log of deaths+1 in a county as of April 19th. In column 3-5 it is the inverse
hyperbolic sine. Coefficients should be interpreted as the percent change in deaths for a one unit change in annual average
PM2.5 from 2008 to 2017. At the mean a one unit change in PM2.5 represents a 12% change in PM2.5. LASSO controls
include controls for the number of days since the first reported case, mortality rates from diabetes and obesity, population
density, levels of health insurance, the racial and age makeup of a county, and days since the county experience a lockdown
as well as post-lockdown activity levels. Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05
*** p<.01).

2.5.3 IV robustness checks

Our IV estimates are robust to specification choice. We present results of the LIML and GMM model

in place of the 2SLS approach in tables B.2 and B.3 (Pischke, 2018). In both cases estimates are

slightly larger than in the 2SLS case but are consistent with the 2SLS approach. In columns 3-6 of

table 2.5 we present 2SLS results using the inverse hyperbolic sine instead of log 1+deaths. Our results

using the IHS imply an increase in deaths of 1% for every 1% increase in ten year annual average

PM2.5 pollution. We also present results in table B.4 excluding NYC and KC because of the unusual

15In our data a one unit increase in PM2.5 represents a ≈12% increase in 10 year annual average PM2.5 levels from the
mean.

16The inflation of their IV to OLS estimates ranges from 19% to 72% depending on the specification.
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way in which cases are aggregated in those cities. Our estimates are somewhat smaller but similar

and remain significant.

To test the robustness of our distance band choices we show the result of different 50 mile

bandwidths in figures B.3 and B.4. The point estimates are stable across the first three distance bands

(0-50 miles, 50-100 miles, and 100-150 miles) and begin to decline in the fourth (150-200 miles)

and fifth (200-250 miles). This is consistent with the influence of power plants on pollutant levels

waning beyond 150 miles as suggested by the results in figure B.2 testing the change in the first stage

estimates for different distance bandwidths. Our results suggest that the influence of power plants on

particulate pollution levels begins to decline steeply after 150 miles. The impacts in both bands from

150-200 miles and 200-250 are close to and not statistically different from zero.

2.5.4 Effect on COVID19 case counts

In addition to the impact on deaths we examine the impact of chronic exposure to particulate air

pollution on the number of COVID19 cases. Recall the current understanding of the pathophysiology

of COVID19 suggests particulate air pollution may increase both mortality and transmission, thus

increasing cases. Our analysis of the impact on cases comes with the significant caveat that COVID19

case numbers appear to be substantially under-counted in the United States due to shortages of testing

materials.17 Despite this the estimates in table 2.6 suggest that particulate air pollution may also

increase case counts. We estimate a roughly 13% increase in cases for a 1µg/m3 increase in the ten

year annual average level of PM2.5.

2.6 Conclusion

Understanding role of exposure to chronic particulate air pollution in modulating the impact of

the COVID19 pandemic is important for understanding which areas may expect to suffer higher

hospitalization and mortality rates from the pandemic. Early estimates of the role of chronic exposure

to particulate air pollution may have overestimated its impact. Our estimates suggest that particulate

17Deaths may also be under-counted but it is generally thought that death counts are more accurate than case counts.

77



TABLE 2.6: INSTRUMENTAL VARIABLE RESULTS WITH CASES

LN1+ LN1+ IHS IHS

Avg. PM2.5, 2008-2017 0.140∗∗ 0.126∗∗ 0.164∗∗ 0.151∗∗

(0.062) (0.062) (0.067) (0.067)
N 3,097 3,097 3,097 3,097

State FE X X X X
LASSO Controls X X X X
NAAQS Controls X X

NOTES: The outcome in columns 1-2 is the log of cases+1 in a county as of April 19th. In column 3-5 it is the inverse
hyperbolic sine. Coefficients should be interpreted as the percent change in cases for a one unit change in annual average
PM2.5 from 2008 to 2017. At the mean a one unit change in PM2.5 represents a 12% change in PM2.5. LASSO controls
include controls for the number of days since the first reported case, mortality rates from diabetes and obesity, population
density, levels of health insurance, the racial and age makeup of a county, and days since the county experience a lockdown
as well as post-lockdown activity levels. Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05
*** p<.01).

air pollution may in fact play a causal role in increasing mortality from the virus but our estimates

suggest that its impact is roughly 30% smaller than the existing cross-sectional estimates.

We estimate that a 1 µg/m3 increase in the ten year annual average PM2.5 level, which represents

a 12% increase from the mean, increases mortality from COVID19 by 9.5%. There are multiple

physiological pathways through which particulate air pollution may increase mortality. Chronic

particulate air pollution exposure may up-regulate the production of protein receptors in the lungs

that the virus binds to in order to enter the body. This may increase transmission of the virus and we

find evidence that suggests particulate air pollution may increase case counts. Chronic particulate air

pollution may also increase the production of cytokines in the lungs and increase the probability of

patients experiencing cytokine storms, believed to be a source of COVID19 mortality.

More research on the relationship between COVID19 and air pollution is necessary. In particular,

understanding the role of short-term air pollution in modulating the spread, and potentially the mortality,

of the virus is critical. The relationship between short-term air pollution exposure may be important

in guiding decisions about when to lift lock-downs and managing social interactions after they are

lifted. Areas with higher levels of pollution may need to maintain stricter social distancing than areas

with lower levels.

This work also underlines the important health consequences of air pollution in general. While
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pandemics are rare events, our evidence suggests that some areas experienced substantial excess deaths

as a result of their existing exposure to air pollution. Minimizing the costs of future pandemics may be

an important consideration for policy-makers choosing how to regulate air pollution.
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Chapter 3

Learning is Inhibited by Heat Exposure,

Both Internationally and Within the

U.S.1

3.1 Introduction

Both across and within countries, people living in hotter climates complete less formal schooling,

score lower on standardized tests, and exhibit worse economic outcomes than those living in cooler

climates (Montesquieu, 1750; Dell et al., 2012; Park et al., 2020). Such associations are important

given the growing role of cognitive skill in income mobility and economic growth (Goldin and Katz,

2009; Chetty et al., 2014; David, 2014; Hanushek and Woessmann, 2016), and because of current and

expected changes to the earth’s climate, which appear to influence macroeconomic growth (Burke

and Emerick, 2016). Whether and how climatic factors causally affect human capital development,

however, remains debated, in part because so many other institutional and economic factors are

correlated with a warmer historical climate. Some argue that initial conditions during colonization

influenced the institutions created in hotter, more disease-prone climates, leading to lower levels of

human capital today (Acemoglu et al., 2001). Others emphasize the role of correlated impediments to

1Co-authored with R. Jisung Park (UCLA) and Joshua Goodman (Boston University)

80



agricultural productivity (Schlenker et al., 2006) or child nutrition and health (Currie, 2009), which

may in turn change the incentive to pursue schooling (Maccini and Yang, 2009; Shah and Steinberg,

2017).

We propose a more direct mechanism that may operate alongside institutional, agricultural, or other

factors. Across a range of laboratory and field environments, temperature has been shown to affect

working memory, stamina, and cognitive performance (Seppanen et al., 2006; Park, forthcoming),

and to lead individuals to reduce time spent engaging in labor activities (Graff Zivin and Neidell,

2014). This suggests that, in addition to the channels above, heat may directly affect students’ capacity

to learn or teachers’ ability and willingness to teach. Given vast international differences in thermal

conditions experienced by students (Table 3.1), even small marginal effects of heat on learning could

result in large educational disparities over time. Students in Indonesia and Thailand, for instance,

experience over 200 days above 80◦F per school year, compared to approximately 40 such days in

the United States and South Korea. Causal estimates of the returns to schooling suggest that small

changes in educational achievement can result in persistent differences in lifetime earnings potential

(Acemoglu and Autor, 2011). There is, however, limited evidence on how heat exposure affects the

rate of learning and human capital accumulation in the context of formal schooling (Graff Zivin et al.,

2017; Park et al., 2020).

We provide evidence that heat exposure during learning periods directly impacts human capital

accumulation, suggesting another channel through which climate is linked to macroeconomic devel-

opment. To do so, we provide two sets of analyses, each using quasi-experimental research designs

and incorporating region-specific academic calendars to measure temperature shocks that occur on

school days preceding cognitive testing. The empirical designs focus on heat exposure during the

school year - as opposed to momentary reductions in cognitive performance due to temperature on

the day of assessment - and exploit year-to-year variation in weather within a given region to isolate

the causal impact of hotter school years on learning.

The first analysis uses test score data from 58 developed and developing countries participating

in the Programme for International Student Assessment (PISA) between 2000 and 2015. PISA’s tests

are designed to measure formal learning in math, reading, and science in nationally representative
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TABLE 3.1: HEAT EXPOSURE IN SELECTED PISA COUNTRIES

School Days> 80◦
Per Capita

Income (USD)
Avg. PISA

Score

Indonesia 240 2,180 -1.17
Thailand 204 3,937 -0.76
Brazil 119 7,043 -1.08
Mexico 145 8,160 -0.87
Vietnam 114 1,894 0.09
Israel 80 27,759 -0.40
United States 44 46,247 -0.08
South Korea 36 19,467 0.35
Spain 24 25,224 -0.14
Turkey 26 8,899 -0.59
France 12 34,616 -0.01
Netherlands 7 45,164 0.18

NOTES: The school day measures report average annual number of school days over 80◦ experienced by each country
during our sample period from 1995-2015. Per capita income reports the average per capita income in constant USD
over the same time period using data from the World Bank. Normalized PISA Score reports the average normalized overall
PISA score within each country over our sample period.

samples of 15-year-olds. We find compelling evidence that students in school during hotter periods

score worse on these exams than their peers in the same country who are schooled in cooler periods.

The effects of years with more hot days (above 80◦F) on subsequent performance persists even when

adding controls for changes in economic conditions (e.g. per capita income) and possible spurious

correlation between regional time trends in warming and educational performance. To isolate the

causal impact of heat exposure on learning, we link within-country temperature fluctuations over

time to within-country fluctuations in test scores, controlling for country- and time-varying confounds.

Exploiting variation in the timing of hot days within a given calendar year, we provide suggestive

evidence on the potential mechanisms at play. Heat on school days prior to PISA exams lowers test

scores while heat on non-school days (e.g. weekends, summer vacation) has little effect, consistent

with our hypothesis that heat directly interferes with learning time. In addition, including controls

for potential correlated shocks to agricultural yields does not affect the magnitude or significance of

these findings. Specifically, the effects are robust to controlling for hot days during region-specific

rice growing seasons as well as time-varying, country-level measures of agricultural employment,
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suggesting that the effects of hot temperature are not driven solely by correlated shocks to nutrition

or time reallocation decisions in response to correlated changes in economic incentives to pursue

schooling.

Even with a rich set of controls, the range of countries in our data implies these effects could be

driven by other correlated mechanisms noted above, particularly in lower-income, agrarian economies.

The second analysis therefore focuses on the United States, a highly developed, non-agrarian setting

where nutrition and agricultural income-related channels seem less likely to be empirically first-order

in explaining the impact of heat on achievement. We use district-level annual math and English

Language Arts (ELA) test scores from over 12,000 U.S. school districts, from the Stanford Education

Data Archive (SEDA). These tests are mandatory components of school accountability systems,

so that the sample of test-takers represents the near-universe of American students. The tests are

deliberately aligned with school curricula to measure learning that is meant to occur during formal

schooling. Similarly to the international data, we link within-district temperature fluctuations over

time to within-district fluctuations in test scores to isolate the causal effect of hotter temperature during

the school year.

We find that US students in school during hotter years score worse than peers in the same district

schooled in cooler periods. Consistent with the international evidence and the hypothesis that heat

interferes with learning, we find that heat on school days entirely drives our results. These results are

robust to the inclusion of controls for district-level changes in school funding and demographic com-

position, potential spurious correlation between regional warming patterns and trends in educational

achievement, and controls for exam-day temperature.

Across both sets of analyses, we find that the marginal damage associated with hotter temperature

appears to be larger for lower income populations, consistent with previous work on climate adaptation

(Carleton et al., 2018). These results suggests that the effects of hot temperature may be regressive

not only across but also within countries, consistent with recent work (Hsiang et al., 2018; Park et al.,

2020). In the U.S., heat’s effects appear to be larger for racial minorities and students in lower income

school districts, who likely have less access to potentially compensatory resources. We also present

novel evidence suggesting that the effect of heat exposure during learning periods on achievement
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is larger for younger students. The effect of heat on children may be more pronounced if children

rely more heavily than adults on well-functioning institutions to enable effective avoidance behaviors

or carry out necessary protective investments. These and other reasons suggest that children may be

more susceptible to hyperthermia and heat-exhaustion (Rowland, 2008), but so far there has been

little evidence regarding the differential impact of heat exposure on learning across age groups.

We note three observations about these analyses. First, they study the impact of heat on learning,

rather than momentary reductions in cognition that may arise from temperature stress. Existing

evidence suggest many factors including temperature (Graff Zivin et al., 2017; Park et al., 2018), air

pollution (Ebenstein et al., 2016), sleep deprivation (Alhola and Polo-Kantola, 2007), and attentional

capture (Mani et al., 2013) can affect short-run cognition. The mechanism studied here does not operate

through such short-term reductions in cognition during test-taking or in the immediate lead-up to test

taking, and controls for the possibility of correlation between heat exposure during learning periods

and hot temperature during a subsequent exam. The outcome measures are standardized assessments

designed to capture cumulative learning throughout formal schooling, as opposed to tests of raw

intelligence or cognitive capacity that are highly sensitive to test-taking conditions, in contrast to

prior studies (Graff Zivin et al., 2017).

Second, these results encompass students in both the developing and developed world, presum-

ably with varying levels of adaptation investment. Previous studies find that the effect of climatic

shocks on health and economic outcomes vary substantially by income or previous exposure (Dell

et al., 2012; Burke et al., 2015; Carleton et al., 2018), and that investments such as air conditioning

may be effective at mitigating heat-related impacts (Barreca et al., 2016). Given vast differences in

the rate of air conditioning across countries, and notably between the US and most other countries,

it is important to assess the external validity of existing US-based findings (Graff Zivin et al., 2017;

Park et al., 2020). Recent survey evidence suggests that, whereas 90 percent of US households

have some form of air conditioning, only 73 percent, 19 percent and 13 percent of households in

Australia, Sweden and Mexico respectively have air conditioning (Davis and Gertler, 2015; Randazzo

et al., 2020). This study suggests that the smaller macro-level effects of temperature documented in

developed economies(Burke et al., 2015) may mask substantial heterogeneity within these countries .
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Third, we suggest a seemingly universal physiological channel through which heat affects human

capital accumulation, in contrast to an older and racially charged literature arguing that the asso-

ciation between climate and human capital is driven by genetic or cultural factors. Such literature

claimed that those living in tropical countries were genetically and culturally “lazy" or otherwise

disinclined to engage in cognitively intensive activities (Gilfillan, 1920; Huntington, 1922). The

unfortunate implications of this work may have inhibited discussion of a simpler and more policy-

relevant explanation for the observed associations between heat and human capital. We suggest that the

universal physiological burden of heat reduces students’ capacity to learn and teachers’ capacity to

teach, independent of intelligence or disposition. Hotter climates may thus interfere with economic

development by reducing the human capital stock of nations, which implies that investments aimed

at protecting students from heat exposure may confer important economic benefits, particularly in

hotter, poorer countries.

3.2 Results

3.2.1 International analysis

The first analysis explores the relationship between heat exposure and standardized performance on

the Programme for International Standardized Assessments (PISA). The sample comprises exam

records from 58 countries who participated in PISA, which is administered by the OECD and provide

internationally harmonized exams to nationally representative samples of 15 year olds every 3 years

since 2000.

Our sample spans a wide range of incomes and average climates, including poor tropical countries

such as Vietnam and Thailand as well as many richer temperate countries such as South Korea, France,

and New Zealand. Average per capita income across the countries in our sample is $25,962 in current

U.S. dollars (Table 3.2), with some as low as $662 per capita (Kyrgyz Republic) and some as high

as $80,857 (Luxembourg). The countries in our sample are plotted in Figure 3.1, and represent

approximately 144 million 15-19 year olds across the participating countries.

Our empirical design leverages random variation in temperature within a given country over
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TABLE 3.2: SUMMARY STATISTICS FOR PISA SAMPLE

Full Sample Richer Sample Poorer Sample
Variable N Mean SD N Mean SD N Mean SD

Hot school days 58 114 177 24 67 125 34 156 205
Normalized PISA Score 58 -0.28 0.49 24 0.02 0.27 34 -0.54 0.48
Employment in Ag. 58 10 11 24 3 2 34 16 12
Per capita Income 58 25,962 21,704 24 44,320 18,076 34 9,807 6,311
Population, 15-19 58 3.0 5.2 24 2.4 4.5 34 3.7 5.7

NOTES: School days measures the total number of days over 80◦F in the previous three years. Population is reported
in millions. Employment in Agriculture is as a percentage of total employment. Employment, Income and Population
data all come from the World Bank World Development Indicators data. We calculate hot school days based on NOAA’s
GHCN data. PISA scores come from the NCES and we standardize them as described in the supplementary materials.
Rich countries are defined as countries whose per capita income in 1995 was greater than $14,000, the average per capita
income in 1995 in countries in our sample. Poor countries are those countries with per capita income less than $14,000
in 1995.

multiple years. While unobserved determinants of student achievement may be correlated with

average climate in the cross-section, year-to-year fluctuations in temperature within a country are

plausibly random, particularly when adjusting for correlated global or regional trends in warming and

development. Our strategy compares deviations from country-specific averages in PISA performance

with deviations from country-specific average temperature, controlling flexibly for other time-varying

factors including precipitation and share of labor force in agriculture. We focus on the impact of

the number of days with temperatures above 80◦F, noting that previous studies of heat on cognitive

performance and other behavioral outcomes find adverse impacts beginning around 80◦F (Graff Zivin

et al., 2017; Park et al., 2018, 2020).

We find that hotter temperatures in years leading up to the PISA exam negatively impact student

performance. Each additional day above 80◦F during the 3 years preceding an exam lower scores by

0.18 percent of a standard deviation (p= 0.007, 95% CI = [-0.22, -0.04], Figure 3.2). We measure

hot days over 3 years to maintain consistency with the periodicity of the PISA exams. A one standard

deviation increase in hot days conditional on country and year fixed effects amounts to 14 school

days. Cold days have statistically insignificant impacts on performance (β = 0.07, p = 0.517, 95%

CI = [-0.14, 0.28]). These results are robust to the inclusion of continent-specific temperature trends,

which suggests that they are not driven by spurious correlation between regional warming patterns
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TABLE 3.3: PRIOR HEAT AND NATIONAL ACHIEVEMENT - PISA

PISA
Scores

PISA
Scores

Richer
Sample

Poorer
Sample

(A) All Days

Total hot days -0.125 -0.126 -0.024 -0.143
(0.051) (0.045) (0.071) (0.038)
[0.017] [0.007] [0.733] [0.001]

{-0.23,-0.02} {-0.22,-0.04} {-0.17,0.12} {-0.22,-0.07}
N 282 282 132 150

(B) School Days

Hot school days -0.200 -0.224 -0.099 -0.256
(0.077) (0.070) (0.143) (0.053)
[0.012] [0.002] [0.493] [0.000]

{-0.36,-0.04} {-0.36,-0.08} {-0.39,0.20} {-0.36,-0.15}
Hot non-school days 0.037 0.038 0.127 0.088

(0.099) (0.091) (0.146) (0.092)
[0.710] [0.676] [0.394] [0.342]

{-0.16,0.24} {-0.14,0.22} {-0.18,0.43} {-0.10,0.28}
N 282 282 132 150

Continent Specific Linear Trend X X X
Precipitation controls X X X
Additional controls X X X

NOTES: Heteroskedasticity robust standard errors clustered by country are in parentheses. p-values reported in brackets
and 95% confidence intervals in curly brackets. Temperature is measured with the daily maximum temperature on days
in each country in the three years prior to the year the exam was taken. All columns include country and year fixed effects, a
continent-specific linear trend, and controls for temperature in the year of the exam and precipitation in both the year of
the exam and the three years proceeding the exam. The outcome is the average across PISA scores available in a given
year standardized according to PISA’s methodology as described in the Materials and Methods. All regressions weight
countries by the number of 15-19 year olds using data from the World Bank. “Additional controls refers to time-varying,
country-specific indicators of economic development, including per capita income, share of male and female employment
in agriculture, and total share of employment in agriculture, taken from the World Bank.

88



and long-run trends in educational achievement, as well as specifications that allow for different

functional forms of temperature.

To provide evidence on potential mechanisms, we assess the impact of heat that occurs during three

sets of mutually exclusive days of the year for each country in our sample: weekdays during the school

year (henceforth “school days"), weekends during the school year, and summer vacation days. The

effect of hot temperature on learning appears to be driven almost exclusively by hot school days (Figure

3.3 and Appendix Table C.1). Each additional hot school day lowers scores by 0.22 standard deviations

(p= 0.002, 95% CI = [-0.36, -0.08], Table 3.3). A Wald test indicates a significant difference between

the impact of hot school days and hot non-school days (F1,57=3.41, p=0.07).

To further probe whether heat impacts learning through other correlated shocks, including the

effects of heat on agricultural productivity, we run analyses that control for hot days during the rice

growing season (Appendix Table C.2). In the countries for which we have data on growing seasons we

find that hot school days, controlling for the number of hot days during the rice growing season, still

appear to reduce student performance by 0.31 percent of a standard deviation (p= 0.013, 95% CI =

[-0.55, -0.07]), whereas hot growing season days have statistically insignificant impacts (β=-0.297,

p = 0.322, 95% CI = [-0.90, 0.31]). Furthermore, the findings are robust to including controls for

changes in per capita income, share of labor force in agriculture, and female labor force participation,

suggesting that they are likely not driven solely by correlated shocks to (gender-specific) economic

incentives for educational investment (Shah and Steinberg, 2017).

Splitting the sample into “rich" and “poor" countries (above and below mean per capita income

in 1995 in our sample, listed in Appendix Table C.3), we find that temperature exerts a significant

impact in poorer countries (β=-0.14, p = 0.001, 95% CI = [-0.22, -0.07], Figure 3.3) but less so in

richer ones (β=-0.024, p = 0.733, 95% CI = [-0.17, 0.12], Figure 3.3) , consistent with lower levels of

adaptation and/or other channels (e.g. conflict (Hsiang et al., 2013)) through which heat can affect

student outcomes in developing countries.

Taken together, these results provide further evidence consistent with the claim that hotter tem-

perature during learning periods exert a negative and casual impact on human capital accumulation.

While these reduced form effects do not on their own demonstrate the mechanisms through which such
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FIGURE 3.2: IMPACT OF TEMPERATURES ON PISA AND SEDA EXAM SCORES.
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NOTES: In both figures the shaded areas connect coefficients representing the effect of an
additional school day in each temperature bin on subsequent achievement in hundredths
of a standard deviation, with light to dark shading corresponding to 99 percent, 95 percent
and 90 percent confidence intervals respectively. Sample sizes are N=281 and N=825,416
for panels (a) and (b) respectively. In panel (a) we show the impact of days below 60◦F
(+0.07 standard deviations, p = 0.517, 95% CI = [-0.14, 0.28]), days between 70◦F
and 80◦F (-0.06 standard deviations, p = 0.316, 95% CI = [-0.17, 0.56]), and days
greater than 80◦F (-0.18 standard deviations, p = 0.007, 95% CI = [-0.31, -0.05]) on
performance on the PISA exams. In panel (b) we show the impact of days below 60◦F
(-0.012 standard deviations, p = 0.335, 95% CI = [-0.035, 0.012]), days between 70◦F
and 80◦F (-0.018 standard deviations, p = 0.226, 95% CI = [-0.05, 0.011]), and days
greater than 80◦F (-0.043 standard deviations, p = 0.03, 95% CI = [-0.08, -0.004]) on
performance on the SEDA exams.
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impacts arise, they are consistent with the possibility that a portion of the effect is driven through

heat’s disruptive impact on learning.

To better understand the extent to which our results are driven by physiological channels, we

conduct a second set of analyses using more spatially resolved data from a highly developed, non-

agrarian setting – where non-physiological factors are plausibly less influential – and with a richer

set of demographic and location-specific characteristics.

3.2.2 U.S. analysis

Our second analysis examines data on standardized student achievement for over 12,000 U.S. school

districts between 2009 and 2015 (Figure 3.4). Drawn from the Stanford Educational Data Archives

(SEDA, (Reardon et al., 2017)), these records comprise the near-universe of state-administered

standardized math and verbal assessments for 3rd-8th graders, representing over 270 million test

scores. These assessments, typically taken in March, April or May, vary across states but have been

standardized by SEDA for national comparability. Similarly to PISA exams, these tests are meant

to capture cumulative learning specific to each state-grade-subject. These data are thus uniquely

suited for assessing the effect of heat during formal instructional periods, in contrast to tests used in

other US studies(Graff Zivin et al., 2017; Park et al., 2020). Our unit of observation is at the level

of district-by-grade-by-subject-by-year, resulting in approximately 825,000 observations, matched to

district-level daily weather information using data from approximately 3,400 weather stations from the

National Climatic Data Center (NCDC). To account for possible differences in school-year heat arising

from regional differences in start/end dates, we use state-specific academic calendars as represented by

the largest urban district in each state.

We again exploit random variation in year-to-year temperature within a given district over time

to account for potential correlation between unobserved determinants of educational achievement

and average climates across districts. For instance, schools in the American South typically perform

worse than schools in the Northeast, but many factors other than climate including teacher quality

and legacies of segregation may affect this cross-sectional relationship. The number of hot days during

any given school year within a particular district, however, is plausibly exogenous, especially when
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FIGURE 3.3: HETEROGENEITY OF HOT TEMPERATURE IMPACTS - PISA
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NOTES: The first two columns show the impact on subse-
quent standardized achievement of hot (≥80◦F) school
days – i.e. weekdays during the school year – versus
hot weekends, holidays, and summer vacation in the
three years leading up to any given PISA assessment for
all participating countries in our sample over the pe-
riod 2000-2015 (n=271). We show the impact of hotter
school days(-0.22 standard deviations, p = 0.002, 95%
CI = [-0.36, -0.08]), hot non-school days (+0.03 stan-
dard deviations, p = 0.676, 95% CI = [-0.14, 0.22])
in the first two columns. Columns 3 through 6 show
the corresponding effects for countries with below mean
and above mean income in 1995 in our sample n=150,
columns 5 and 6). We show the impact of hot school
days (-0.099 standard deviations, p = 0.493, 95% CI
= [-0.39, 0.2])and hot non-school days (+0.127 stan-
dard deviations, p = 0.394, 95% CI = [-0.18, 0.43]) in
richer countries in columns 3 and 4 (n=132). Columns
5 and 5 (n=150) we show the impact in poorer coun-
tries of hot school days (-0.256 standard deviations,
p < 0.001, 95% CI = [-0.36, -0.15]) and hot non-school
days (+0.088 standard deviations, p = 0.342, 95% CI
= [-0.10, 0.28]). Consistent with existing literature (e.g.
(Barreca et al., 2015)) all coefficients can be interpreted
as the effect relative to an additional day in the 60◦’s
F on combined math, verbal, and science scores. We
provide our coefficient estimates and standard errors (in
parenthesis) at the end of each bar.
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taking aggregate (regional) warming patterns into account.

TABLE 3.4: PRIOR YEAR TEMPERATURE AND TEST SCORES - SEDA

Math and ELA scores Math scores ELA scores
(1) (2) (3) (4) (5) (6)

(A) All hot days

Total hot days -0.043 -0.036 -0.066 -0.047 -0.031 -0.028
(0.020) (0.020) (0.025) (0.025) (0.018) (0.017)
[0.030] [0.071] [0.008] [0.057] [0.079] [0.104]

{-0.08,-0.00} {-0.07,0.00} {-0.11,-0.02} {-0.10,0.00} {-0.07,0.00} {-0.06,0.01}
N 825,416 825,416 400,953 400,953 424,198 424,198

(B) School vs.
non-school days

Hot school days -0.065 -0.070 -0.111 -0.107 -0.036 -0.039
(0.026) (0.027) (0.033) (0.034) (0.024) (0.024)
[0.014] [0.010] [0.001] [0.002] [0.131] [0.099]

{-0.12,-0.01} {-0.12,-0.02} {-0.18,-0.05} {-0.17,-0.04} {-0.08,0.01} {-0.09,0.01}
Hot non-school days -0.021 0.015 0.001 0.039 -0.034 -0.011

(0.028) (0.025) (0.034) (0.031) (0.027) (0.024)
[0.447] [0.561] [0.974] [0.215] [0.204] [0.635]

{-0.08,0.03} {-0.04,0.06} {-0.06,0.07} {-0.02,0.10} {-0.09,0.02} {-0.06,0.04}
N 825,416 825,416 400,953 400,953 424,198 424,198

Additional controls X X X

NOTES: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses, with p-values in brackets
and 95% confidence intervals in curly brackets. Coefficients in each column and panel come from a regression of
hundredths of a standard deviation in test scores on the number of days above 80◦F. Also included are controls for the
number of days from 70-80◦F and below 60◦F, so that days from 60-70◦F are the baseline category. Temperature is
measured with the daily maximum temperature on school days from June to February prior to the test. All regressions
include fixed effects for each school district and for each combination of test year, grade and subject (Mathematics or
English Language Arts). Each observation is a district-year-grade-subject combination and all regressions are weighted
by the number of test-takers per observation.

We find that students who experience hotter temperatures during the school year prior to their

exams exhibit reduced learning. Each additional day of 80◦F or hotter temperature reduces achievement

by approximately 0.04 percent of a standard deviation (Figure 3.2 and Table 3.4, p=0.071, 95% CI =

[-0.07, 0.00]). Our measures of significance are robust to correlation in error terms within any given

state, which typically holds over 200 school districts. This effect is concentrated among school days,

with each additional hot school day lowering achievement by 0.07 percent of a standard deviation

(Figure 3.5, p=0.01, 95% CI = [-0.12, -0.02]). Similarly to the international analysis, heat on non-

school days, such as weekends and summers, has no statistically significant impact on achievement

(β=0.015, p=0.561, 95% CI = [-0.04, 0.06]). A Wald test indicates a significant difference between the
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impact of hot school days and hot non-school days (F1,3394=5.54, p=0.019). These estimates imply

that a student who experiences an additional school week (five school days) with daily maximum

temperatures above 80◦F will learn 0.35 percent of a standard deviation less than she otherwise would

have during that school-year, which is equivalent to reducing teacher quality by about 3-4 percent

(Chetty et al., 2011).

The impact of heat exposure on learning is not confounded by precipitation, exam-day weather

shocks, changing demographic compositions or resource levels of school districts, or spurious cor-

relation between regional warming patterns and trends in educational achievement. That only hot

weekdays during the school year reduce learning suggests once again that the set of mechanisms

likely includes a reduction in contemporaneous educational inputs – whether in terms of the amount or

intensity of learning time.

In the US, the impact of heat on math achievement is about three times larger than on ELA

achievement. Each additional hot school day lowers math scores by 0.11 percent of a standard

deviation (panel B, columns 3-4 of Table 3.4, p=0.002, 95% CI = [-0.17, -0.04]) but lowers ELA

scores by less than 0.04 percent of a standard deviation (panel B, columns 5-6 of Table 3.4, p=0.099,

95% CI = [-0.09, 0.01]). There is little evidence that heat on non-school days affects achievement in

either subject.

Importantly, hot temperature affects disadvantaged students much more than advantaged ones.

Heat has substantially larger impacts on the achievement of students in lower income school districts

and little impact in higher income districts, defined respectively as those in the lower and upper

thirds of the district-level income distribution. Each additional hot school day lowers achievement

in lower income districts by 0.12 percent of a standard deviation but has little discernible effect on

achievement in higher income districts (Figure 3.5 and Table 3.5, p=0.002, 95% CI = [-0.19, -0.04]).

Each hot school day lowers the achievement of Black and Hispanic students by 0.10-0.12 percent of

a standard deviation but has no statistically significant impact on White students (Table 3.6, Black

students: p=0.017, 95% CI = [-0.19, -0.02]; Hispanic students: p=0.012, 95% CI = [-0.21, -0.03];

White students: β=-0.009, p=0.593, 95% CI = [-0.04, 0.02]). A week above 80◦F for the average

Black or Hispanic student reduces learning by an amount equivalent to reducing teacher value-added
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FIGURE 3.5: HETEROGENEITY OF HOT TEMPERATURE IMPACT - SEDA
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NOTES: The first two columns show the impact on subse-
quent standardized achievement of hot (≥80◦F) school
days (-0.07 standard deviations, p = 0.01, 95% CI =
[-0.12, -0.02]) – i.e. weekdays during the school year
– versus hot weekends, holidays, and summer vacation
(+0.015 standard deviations, p = 0.974, 95% CI = [-
0.06, 0.07]) for all U.S. school districts over the period
2009-2015 (n=825,416). Columns 3 through 9 show the
effect of hot school days for the bottom (-0.11 standard
deviations, p = 0.002, 95% CI = [-0.19, -0.04]) and top
terciles (+0.017 standard deviations, p = 0.456, 95%
CI = [-0.03, 0.06]) of the district income distribution,
for Black (-0.1 standard deviations, p = 0.017, 95% CI
= [-0.19, 0.02]), Hispanic (-0.12 standard deviations,
p = 0.012, 95% CI = [-0.21, -0.03]) and White (-0.009
standard deviations, p = 0.593, 95% CI = [-0.04, 0.02])
students within each district, and for elementary (-0.1
standard deviations, p = 0.003, 95% CI = [-0.17, -
0.03]) and middle school students (-0.027 standard devi-
ations, p = 0.249, 95% CI = [-0.07, 0.02]) in each
district respectively (n=273,466; 273,266; 183,060;
222,042; 733,219; 425,301; 400,095 for columns 3-
9 respectively). All coefficients can be interpreted as
the effect relative to an additional day in the 60’s◦F on
combined math and English Language and Arts scores.
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TABLE 3.5: HETEROGENEITY BY DISTRICT INCOME AND TEMPERATURE - SEDA

All Lower income Higher income Grades 3-5 Grades 6-8
(1) (2) (3) (4) (5)

Math and ELA -0.070 -0.118 0.017 -0.103 -0.027
(0.027) (0.038) (0.023) (0.035) (0.023)
[0.010] [0.002] [0.456] [0.003] [0.249]

{-0.12,-0.02} {-0.19,-0.04} {-0.03,0.06} {-0.17,-0.03} {-0.07,0.02}
N 825,416 381,254 444,162 425,301 400,095
Test scores (MM) 270.9 149.5 121.4 141.8 129.1

Math -0.107 -0.187 0.033 -0.162 -0.024
(0.036) (0.043) (0.032) (0.044) (0.022)
[0.003] [0.000] [0.296] [0.000] [0.277]

{-0.18,-0.04} {-0.27,-0.10} {-0.03,0.10} {-0.25,-0.08} {-0.07,0.02}
N 400,953 183,547 217,406 211,442 189,326
Test scores (MM) 129.3 71.2 58.1 70.2 59.1

ELA -0.049 -0.082 0.012 -0.057 -0.036
(0.026) (0.036) (0.021) (0.028) (0.027)
[0.065] [0.022] [0.567] [0.043] [0.179]

{-0.10,0.00} {-0.15,-0.01} {-0.03,0.05} {-0.11,-0.00} {-0.09,0.02}
N 424,198 197,586 226,612 213,563 210,471
Test scores (MM) 141.7 78.3 63.3 71.6 70.0

NOTES: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses, with p-values in brackets
and 95% confidence intervals in curly brackets. Coefficients in each column and panel come from a regression of
hundredths of a standard deviation in test scores on the number of days above 80◦F. Also included are controls for the
number of days from 70-80◦F and below 60◦F, so that days from 60-70◦F are the baseline category. Temperature is
measured with the daily maximum temperature on school days from June to February prior to the test. All regressions
include fixed effects for each school district and for each combination of test year, grade and subject (Mathematics or
English Language Arts). Each observation is a district-year-grade-subject combination and all regressions are weighted
by the number of test-takers per observation. Lower income and higher income districts are those with an average student
poverty rate respectively above and below 50 percent.
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by 5 to 6 percent of a standard deviation.

TABLE 3.6: HETEROGENEITY BY RACE AND GENDER - SEDA

All White Black Hispanic Male Female
(1) (2) (3) (4) (5) (6)

Math and ELA -0.070 -0.009 -0.104 -0.118 -0.079 -0.072
(0.027) (0.017) (0.043) (0.047) (0.033) (0.026)
[0.010] [0.593] [0.017] [0.012] [0.018] [0.007]

{-0.12,-0.02} {-0.04,0.02} {-0.19,-0.02} {-0.21,-0.03} {-0.14,-0.01} {-0.12,-0.02}
N 825,416 733,219 183,060 222,042 695,141 684,263
Test scores (MM) 270.9 137.2 41.0 56.1 135.4 129.0

Math -0.107 -0.002 -0.138 -0.187 -0.099 -0.121
(0.036) (0.021) (0.046) (0.058) (0.039) (0.035)
[0.003] [0.937] [0.003] [0.001] [0.011] [0.001]

{-0.18,-0.04} {-0.04,0.04} {-0.23,-0.05} {-0.30,-0.07} {-0.18,-0.02} {-0.19,-0.05}
N 400,953 357,385 88,276 106,134 337,617 332,431
Test scores (MM) 129.3 66.4 19.8 26.1 64.7 61.6

ELA -0.049 -0.010 -0.081 -0.090 -0.067 -0.037
(0.026) (0.016) (0.047) (0.039) (0.031) (0.024)
[0.065] [0.518] [0.083] [0.020] [0.030] [0.116]

{-0.10,0.00} {-0.04,0.02} {-0.17,0.01} {-0.17,-0.01} {-0.13,-0.01} {-0.08,0.01}
N 424,198 375,501 94,593 115,560 357,142 351,420
Test scores (MM) 141.7 70.8 21.2 30.0 70.7 67.4

NOTES: Heteroskedasticity robust standard errors clustered by weather sensor are in parentheses, with p-values in brackets
and 95% confidence intervals in curly brackets. Coefficients in each column and panel come from a regression of
hundredths of a standard deviation in test scores on the number of days above 80◦F. Also included are controls for the
number of days from 70-80◦F and below 60◦F, so that days from 60-70◦F are the baseline category. Temperature is
measured with the daily maximum temperature on school days from June to February prior to the test. All regressions
include fixed effects for each school district and for each combination of test year, grade and subject (Mathematics or
English Language Arts). Each observation is a district-year-grade-subject combination and all regressions are weighted
by the number of test-takers per observation.

The effect of hot school days is also larger for younger students than for older students. Each

additional such day lowers the achievement of third through fifth graders by 0.08-0.13 percent of

a standard deviation but has a statistically insignificant impact on those in grades six through eight

(Figure 3.5 and Table 3.5, p=0.003, 95% CI = [-0.17, -0.03])). This is consistent with previous

evidence suggesting that younger children are likely to be more adversely affected by thermal stress,

either due to physiology or behavior (Rowland, 2008). This could, however, be due to other factors

such as the potentially lower prevalence of school air conditioning in elementary schools relative to

middle schools.
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3.3 Discussion

Taken together, these results suggest a different perspective on how climate shapes human cognitive

capacity. Thermal conditions in the physical learning environment appear to causally influence cumula-

tive learning: a fact not yet documented in the voluminous literature on cross-country comparisons in

student achievement (Woessmann, 2016). It appears that heat exposure during the learning period, all

else equal, directly slows the rate of human capital formation, in part through persistent disruptions to

the learning process. As noted above, the realized temperature environments facing students across the

world vary dramatically, suggesting important implications for our understanding of differences in

educational achievement and human capital.

We find heat exposure to be a compelling mechanism. It matches emerging findings on the effects

of temperature on labor capacity (Kjellstrom and Crowe, 2011; Graff-Zivin and Neidell, 2012),

morbidity and mortality (Deschênes and Greenstone, 2011; Anderson et al., 2013), and short-run

cognition (Graff Zivin et al., 2017; Park, forthcoming). We note, however, that this analysis does not

imply that heat exposure is the only mechanism at play: many others are likely relevant in explaining

the relationship between climate and levels of human capital across countries. Teasing apart the

potential mechanisms in greater detail – for instance, whether hotter temperatures drive student/teacher

absenteeism; and understanding the extent to which these mechanisms interact – for instance, whether

poor nutrition and hunger exacerbate heat-induced cognitive impacts – are important questions for

future work.

Importantly, the magnitude of these disruptions appear to vary greatly across socioeconomic

groups – both across and within countries. As shown in Figure 3.5, the effect of an additional 80◦F day

in US school districts in the lower third of average income is approximately -0.12 (p=0.002, 95%

CI = [-0.19, -0.04]) percent of a standard deviation, while the effect in the top third is statistically

indistinguishable from zero. Impacts are also larger for some racial minorities, particularly Black

and Hispanic students. This is consistent with evidence from the United States suggesting that school

and home air conditioning status is correlated with student race and income (Park et al., 2020), and

suggest that climatic factors may contribute to longstanding racial achievement gaps.

How large are these effects? Suppose we take the US estimates as a lower bound for the rest of the
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world, given relatively high rates of air conditioning there. Education researchers have, for instance,

examined the impact of improving teacher quality or reducing class sizes on learning outcomes. Our

US analyses suggest that, even with relatively high levels of air conditioning, a school year with 30

additional days above 80◦F reduces learning by approximately 2.1 percent of a standard deviation. This

is large enough to offset the gains of reducing class sizes by approximately 3-4 percent, or to offset

improving teacher quality by 20 percent of a standard deviation. For lower income students, the effect

of the same temperature event appears to be nearly 3 times larger. These sizable magnitudes suggest

the learning impacts of a hotter climate could result in large real consequences, especially given that

students in many tropical economies regularly experience more than 100 such days per school year

(Table 3.1). Put differently, greater heat exposure during the school year may lead students in Brazil

to learn 6 percent less than their South Korean counterparts per year, which, over time, might explain

around a third of the difference in their PISA performance.2

This perspective has important policy implications. It suggests that climate may have a more

direct and persistent influence on economic growth than previously appreciated. Human capital

accumulation is central to national economic growth and individual economic mobility (Goldin and

Katz, 2009; Hanushek and Woessmann, 2016), and current climatic conditions appear to slow the

rate of human capital accumulation for some more than others. This suggests that policies aimed at

improving physical learning environments, whether in the form of electric infrastructure or low-income

energy assistance, may pay larger dividends over time than previously appreciated. These pro-growth,

pro-adaptation policies may or may not include school air conditioning, which may improve student

cognition as well as teacher attendance/retention, but which may also exacerbate the climate externality.

Making such investments to facilitate learning in hotter environments may be particularly important

in light of evidence suggesting that education itself may be an important climate adaptation strategy

(Lutz et al., 2014).

It also suggests that current estimates of the social costs of carbon (SCC) may be understated.

2The gap in average PISA performance between South Korea and Brazil is approximately 1.43 standard deviations,
while the difference in hot school days is approximately 85 per year. Assuming that PISA exams test knowledge that is
accumulated over 9 years of formal schooling, and assuming for simplicity that effects accumulate linearly, this would
amount to 0.53/1.43=0.37 of the PISA gap at age 15.
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Existing integrated assessment models do not include direct impacts on human capital, and often

model climate impacts as a non-accumulating reduction in the level of GDP as opposed to cumulative

growth rate effects. Adding these arguments to the damage function would likely shift the entire

distribution of estimates to be more negative (Greenstone et al., 2013). Accounting for within-country

regressivity of these impacts, as suggested by our findings, may also imply larger SCC estimates,

regardless of one’s choice of pure rate of time preference or discount rate (Anthoff and Emmerling,

2019).

3.4 Methods

3.4.1 Data description

Global Temperature Data

We use separate temperature data sets for our global and domestic analyses given varying geographic

and temporal coverage. For the global analysis, which uses PISA test scores from many different

countries, we start with data from NOAA’s Global Historical Climatology Network (GHCN). This

provides us with daily data from a network of more than 100,000 stations located in approximately 180

countries. The data provided includes daily max and min temperatures and total daily precipitation.

We collect data starting in 1995 and pull all the available data for the countries that appear in our PISA

sample.

In order to count school vs. non-school days we exclude weekend days from the school days and

assign each country a dummy called “summer" on the days that students in that country are typically

on summer vacation. When schools start on a range of days, for example “the first two weeks of

September," we choose a date at or adjacent to the midpoint of the range. We separately identify

weekends that occur during the school year and those that occur during the summer so that we can

examine whether heat on non-school days during the school year has different effects than heat on

non-school days outside of the school year.

To create our temperature bins we count the number of days with maximum temperature in 10◦F

bins from 0◦F to 140◦F by station. We group all days below 0◦F into a single bin. Each country is
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then assigned the weighted average (across all stations) number of days in each temperature bin in

each year. Weights are based on the population living within 15km of the station as measured by

LandScan population data. We weight stations based on their population in 2000, at the beginning of

our sample. We also create lagged variables that count the number of days in each bin in each of five

lagged years as well as the cumulative days in each bin over the previous 1-5 years. The cumulative

lag variable does not count the number of days in a given bin in the contemporaneous year.

Because we use a temperature binning approach where we average across the number of days

in each bin by country-year - as opposed to averaging temperature across stations within a country

and then binning - we need to impute the missing days. Most of the existing literature avoids this

problem because it averages across stations in a geography to create a geography based average

temperature for each day, and then counts the number of days in any given bin for each geography’s

average temperature. Over small geographies this may lead to relatively small measurement error.

Over larger geographies such as the countries in our PISA sample, however, we believe that such

an approach would introduce substantial measurement error. For example, in the US the average

temperature for a given day in June might by 70◦F but that masks the fact that much of the Southern

U.S. might be experiencing 90◦F+ temperatures. Creating station specific bins and then averaging

within the bins accounts for this by allowing those 90◦F+ days in June in the South to count as 90◦F+

days. We do this through an iterative process that identifies days with a missing temperature reading

and the closest days before and after that day with a reading.

We assign a weighted average of the nearest non-missing days where the weights are the number

of days between the missing and non-missing day. For example, if April 5th was missing but April

4th and 9th were not, the temperature on the 5th would be imputed as the average of the temperature on

the 4th and 9th with greater weight on the 4th. The 6th-8th would be imputed iteratively using the same

process. We limit the gaps we impute in this way to 21 days. In total, impute temperature on 2.2% of

the station-days in our sample in this way.

If, after this iterative process, there are still days with missing data for a given station we impute

those data as the average temperature at all stations in the country with non-missing data on that day.

This imputation affects 3.8% of our data.
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To calculated population weighted temperature averages we use data from LandScan on the

population in each 1km x 1km pixel across all of the countries in our sample. We draw 15km buffers

around each weather station and then assign the population within the buffer to that weather station.

When we calculate the average within temperature bins across stations we weight each station by this

count of population. We do this separately for each year in our sample. As a robustness check we

also calculate Thiessen polygons around each station and assign the population within each Thiessen

polygon to each station. The results are similar.

U.S. Temperature Data

Daily temperature data come from the National Oceanic and Atmospheric Administration’s Daily

Global Historical Climatology Network, which includes station-level data for thousands of weather

stations across the United States. We focus on the subset of nearly 3,400 weather stations with daily

temperature data available for at least 95 percent of the days from from July 1, 2004 through June

30, 2015, the time period covering potential test-taking dates of our sample. Doing so allows us to

assign each school district a single, stable weather station over the entire time period, which avoids

endogeneity concerns driven by the possibility that stations coming online or going offline are somehow

correlated with local population growth, economic conditions or temperatures conditions in ways that

might contaminate our estimates (Auffhammer and Mansur, 2014). We impute the small proportion

of missing daily observations with those from the nearest stations with non-missing data.

We assign each school district to the weather station nearest to that district’s centroid, resulting in

an average distance of 9.6 miles between each district’s centroid and the weather station being used

to measure temperature at that district. We define our primary heat exposure variable as the number

of days the average daily maximum temperature exceeded a given multiple of 10◦F from June 1 to

February 28 in the year prior to the test. We use daily maximum temperature because schooling

occurs during the daytime when such temperatures usually occur. Of course, to the extent that daytime

maximum and nighttime minimum temperature is correlated, some of our effect may be driven by

disrupted sleep. We do not take a stand on whether sleep is a factor or not, as both in-class and at-home

disruptions through learning that are brought about by the physiological effects of heat are of interest.
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We use the June-February time period because the exact timing of SEDA’s standardized exams

varies by state and year but almost always occurs between March and May. We focus particularly

on temperature experienced on school days, treating non-school days (weekends and all summer

days between June 15 and August 15) as separate sources of variation. We also use the weather

stations to construct test date temperature, rain and snowfall, as well as cumulative rain and snowfall

exposure over the year prior to the test, which help account for potential independent effects of such

precipitation.

PISA Data

PISA assessments are designed to capture cumulative skills developed during formal schooling (e.g.

arithmetic, basic scientific concepts, reading comprehension), and to be comparable across countries.

Our data on average PISA scores by country comes from the National Center for Education Statistics

(NCES) International Data Explorer. The NCES assembles average country scores by year in math,

science and reading from the PISA microdata provided by the OECD. We follow the advice of the

NCES and do not compare math and science scores from 2000 or 2003 (for science) with later years

because of changes in PISA methodology. We do not modify the raw PISA data from NCES except

to drop countries from the sample for which we do not have temperature data and those with only

one year of PISA data. We exclude PISA data from sub-national units (from individual states within

the U.S. for example). A minimum of 5,000 students are sampled in each country that participates

unless the total population of 15 year old students is less than 5,000, in which case all students are

tested. Some large countries sample more students. In total, more than 500,000 students took a PISA

exam across all participating countries in 2015.

PISA scores are designed to have a global average of 500 and student-level standard deviation

of 100, which we use to compute standardized versions of each country’s math, science, and reading

scores. In any given year, there is wide variation in performance across countries. On the 2009 PISA

exam, for example, South Korean students averaged 546 points in math while Indonesian students

averaged 371 points. Our primary outcome measure is the average of each country’s three subject

scores in any given year, standardized so that effects can be interpreted in terms of student-level
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standard deviations (similar to SEDA).

Summary Statistics for PISA Sample

See Table 3.2 for summary statistics on the PISA sample. On average, countries in our sample are

hotter than the United States - experiencing 114 school days over the previous 3 years above 80◦F vs.

only 97 such days in the US - and poorer (per capita income=$26,000 vs $42,000) with lower PISA

scores (Normalized score = -0.28 vs. -0.08). We also split the sample into rich and poor countries

based on where a country’s per capita income in 1995 ranks in our sample. We define rich as countries

that have a per capita income in 1995 above $14,000, roughly the average in our sample for that year.

Splitting the sample into rich and poor indicates that the rich sample is substantially cooler, wealthier

and has a lower population of test takers than the poor countries. PISA scores are substantially better

in the rich sample on average, with lower variance within the sample.

SEDA Data

Data from the Stanford Education Data Archive (SEDA) are based on the standardized accountability

tests in math and English Language Arts (ELA) administered annually by each state to all public-school

students in grades 38. SEDA combines information on the test scores in each school district with

information from the National Assessment of Educational Progress, creating scores that are nationally

comparable across districts in different states.

Our version of SEDA’s data spans the school years ending 2009-15 and contains elementary and

middle school students from approximately 12,000 school districts across all 50 states. We observe

a standardized measure of both math and ELA achievement at the district-by-grade-by-year level.

We observe this measure averaged across all test-takers in a school district, as well as for some

demographic subgroups. The particular standardization used implies that effect sizes can be interpreted

in student-level standard deviations.
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Other International Data

In addition to temperature and PISA performance data we collect data on a set of potentially relevant

co-variates for the countries in our sample. All of these data come from the World Bank’s World

Development Indicators. We collect time-varying measures of the share of total employment in

agriculture, per capita income, share of male and female employment in agriculture, total population,

and the share of the population made up by 15-19 year olds. The only data we modify is the 15-19

year old population share, which we combine with the total population to estimate the absolute number

of 15-19 year-olds in each country-year. We match all data to temperature and PISA country-years

using country ISO codes.

3.4.2 Empirical approach

Our econometric approach exploits the quasi-random variation within a given geography’s total

exposure to days above 80◦F in the years between test takes. The geographic unit in PISA is a

country and in SEDA is a school district. The time between test takes is 3 years in PISA and 1 year in

SEDA. To account for serial correlation in temperature shocks across geographies we cluster standard

errors at the relevant geographic unit. In all statistical tests we assume normality but do not formally

test for it. All tests of significance are two-tailed.

We estimate several versions of the base model:

Z̄it =
9

∑
k=1

βkTMAXikg + σXit + γt + δi + ωct + εit (3.1)

where Z̄it is the normalized PISA score in country i and year t. TMAX is the total number of days

with maximum temperature in each of k degree bins in geography i in the gap g between exam takes.

Xit is a vector of geography-year specific controls, including total annual precipitation in the year

of the exam as well as the gap year(s), the same set of k degree bins in the year of the exam and,

in the case of the PISA data, the controls from the World Bank described above. Parameters δi and

γt are geography and year fixed effects. ωct is a continent-specific time trend included in the PISA

regressions. εit is the error term. We weight each geography by the total number of 15-19 year-olds

in that country in the exam year in the PISA data, as calculated from the World Bank data, and by the
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students in each district taking the exam in the SEDA data.

Our variable of interest is β9 for the bin representing days over 80◦F. Because we omit the 60-70◦F

bin from our set of controls the coefficient βk should be interpreted as exchanging one day over the

relevant gap in the 60-70◦F bin for one > 80◦F.

Identification rests on the assumption that the number of days in any given temperature bin,

and therefore the 80◦F+ bin we are interested in, varies randomly within a geography from year-to-

year. This year-to-year variation results in random variation in the aggregate exposure that students

experience in the lead up to their exams. To account for possible spurious correlation between regional

warming trends and secular changes in educational outcomes, we include continent-specific trends in

all regressions. Our approach is analogous to the now widely used binning of annual temperatures first

described in (Deschênes and Greenstone, 2007).

School vs. Non-school days Estimation

In our primary specifications we bin all days in a year together. We also separately report results of the

effect of school days above 80◦F and non-school days above 80◦F. There we estimate the following

model:

Z̄it =
9

∑
k=1

βkTMAXSchool
ikg +

9

∑
k=1

ψkTMAXNon−school
ikg + σXit

+γt + δi + ωct + εit

(3.2)

where the variables are as before but β reports the estimates of the impact of days while school is in

session while ψ reports the effects of non-school days.
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Summer vs. Non-summer Estimation

We distinguish school year days further by separating school year weekend days from school year

non-weekend days. We estimate:

Z̄it =
9

∑
k=1

βkTMAXSchool
ikg +

9

∑
k=1

ψkTMAXSummer
ikg

+
9

∑
k=1

φkTMAXSchool weekend
ikg + σXit + γt + δi + ωkt + εijt

(3.3)

where the variables are as before but β reports the estimates of the impact of days while school is in

session while ψ reports the effects of non-school days.

Subject Specific Estimation

Finally, we estimate subject specific effects. There we return to the original estimating equation:

Z̄its =
9

∑
k=1

βkTMAXikg + σXit + γt + δi + ωct + εit (3.4)

However, we replace Z̄it with the subject specific normalized score, Z̄its for each of reading, science

and math in PISA and ELA and math in SEDA. In each case we calculate the normalized score in

the way described above. In the PISA data, for both math and science we use the shorter panel in order

to avoid data comparability issues due to changes in the PISA methodology in those subjects. To

estimate the subject specific effects of school and non-school days we substitute Z̄its into equation 3.2.

108



References

ABADIE, A., ATHEY, S., IMBENS, G. W. and WOOLDRIDGE, J. (2017). When should you adjust
standard errors for clustering? Tech. rep., National Bureau of Economic Research.

ABAY, K. A., ABATE, G. T., BARRETT, C. B. and BERNARD, T. (2019). Correlated non-classical
measurement errors,second bestpolicy inference, and the inverse size-productivity relationship in
agriculture. Journal of Development Economics, 139, 171–184.

ABRAHAM, S. and SUN, L. (2018). Estimating dynamic treatment effects in event studies with
heterogeneous treatment effects. Available at SSRN 3158747.

ACEMOGLU, D. and AUTOR, D. (2011). Skills, tasks and technologies: Implications for employment
and earnings. In Handbook of labor economics, vol. 4, Elsevier, pp. 1043–1171.

—, JOHNSON, S. and ROBINSON, J. A. (2001). The colonial origins of comparative development: An
empirical investigation. The American Economic Review, 91 (5), 1369–1401.

ALHOLA, P. and POLO-KANTOLA, P. (2007). Sleep deprivation: Impact on cognitive performance.
Neuropsychiatric Disease and Treatment.

ALIX-GARCIA, J., MCINTOSH, C., SIMS, K. R. and WELCH, J. R. (2013). The ecological footprint
of poverty alleviation: evidence from mexico’s oportunidades program. Review of Economics and
Statistics, 95 (2), 417–435.

ALLEN, R. C. (2011). Why the industrial revolution was british: commerce, induced invention, and
the scientific revolution 1. The Economic History Review, 64 (2), 357–384.

ALMÅS, I., AUFFHAMMER, M., BOLD, T., BOLLIGER, I., DEMBO, A., HSIANG, S. M., KITAMURA,
S., MIGUEL, E. and PICKMANS, R. (2019). Destructive Behavior, Judgment, and Economic
Decision-making under Thermal Stress. Working Paper 25785, National Bureau of Economic
Research.

ALPERT, P., SHVAINSHTEIN, O. and KISHCHA, P. (2012). Aod trends over megacities based on space
monitoring using modis and misr. American Journal of Climate Change, 1 (03), 117.

AMBASTA, P., SHANKAR, P. V. and SHAH, M. (2008). Two years of nrega: The road ahead. Economic
and Political Weekly, pp. 41–50.

ANAND, G. (2016). Farmers unchecked crop burning fuels indias air pollution. The New York Times.

109



ANDERSON, G. B., DOMINICI, F., WANG, Y., MCCORMACK, M. C., BELL, M. L. and PENG,
R. D. (2013). Heat-related emergency hospitalizations for respiratory diseases in the medicare
population. American journal of respiratory and critical care medicine, 187 (10), 1098–1103.

ANDERSON, M. L. (2015). As the wind blows: The effects of long-term exposure to air pollution on
mortality. Journal of the European Economic Association.

ANDINI, A., BONNET, S., ROUSSET, P. and HASANUDIN, U. (2018). Impact of open burning of crop
residues on air pollution and climate change in indonesia. Current Science, 115 (12), 2259–2266.

ANTHOFF, D. and EMMERLING, J. (2019). Inequality and the social cost of carbon. Journal of the
Association of Environmental and Resource Economists, 6 (2), 29–59.

ARROW, K., BOLIN, B., COSTANZA, R., DASGUPTA, P., FOLKE, C., HOLLING, C. S., JANSSON,
B.-O., LEVIN, S., MÄLER, K.-G., PERRINGS, C. et al. (1995). Economic growth, carrying
capacity, and the environment. Ecological economics, 15 (2), 91–95.

ASHER, S., LUNT, T., MATSUURA, R. and NOVOSAD, P. (2019). The Socioeconomic High-resolution
Rural-Urban Geographic Dataset on India (SHRUG), working paper.

— and NOVOSAD, P. (2018). Rural roads and local economic development. The World Bank.

ATHEY, S. (2018). The impact of machine learning on economics.

— and IMBENS, G. W. (2017). The econometrics of randomized experiments. In Handbook of
Economic Field Experiments, vol. 1, Elsevier, pp. 73–140.

AUFFHAMMER, M. (2018). Quantifying economic damages from climate change. Journal of Economic
Perspectives, 32 (4), 33–52.

—, HSIANG, S. M., SCHLENKER, W. and SOBEL, A. (2013). Using weather data and climate model
output in economic analyses of climate change. Review of Environmental Economics and Policy,
7 (2), 181–198.

— and MANSUR, E. T. (2014). Measuring climatic impacts on energy consumption: A review of the
empirical literature. Energy Economics, 46, 522–530.

AZAM, M. (2011). The impact of indian job guarantee scheme on labor market outcomes: Evidence
from a natural experiment. Available at SSRN 1941959.

AZTATZI-AGUILAR, O. G., URIBE-RAMÍREZ, M., ARIAS-MONTAÑO, J. A., BARBIER, O. and
DE VIZCAYA-RUIZ, A. (2015). Acute and subchronic exposure to air particulate matter induces
expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-ii
type-i receptor as a molecular target of particulate matter exposure. Particle and fibre toxicology,
12 (1), 17.

BALAKRISHNAN, K., DEY, S., GUPTA, T., DHALIWAL, R., BRAUER, M., COHEN, A. J., STANAWAY,
J. D., BEIG, G., JOSHI, T. K., AGGARWAL, A. N. et al. (2019). The impact of air pollution on
deaths, disease burden, and life expectancy across the states of india: the global burden of disease
study 2017. The Lancet Planetary Health, 3 (1), e26–e39.

110



BANERJEE, R. and MAHARAJ, R. (2019). Heat, infant mortality and adaptation: Evidence from
india. Journal of Development Economics, p. 102378.

BANK, T. W. (2018). The State of Social Safety Nets 2018. Tech. rep., The World Bank, Washington,
DC.

BARBIER, E. B. (2010). Poverty, development, and environment. Environment and Development
Economics, 15 (6), 635–660.

BARRECA, A., CLAY, K., DESCHÊNES, O., GREENSTONE, M. and SHAPIRO, J. S. (2015). Conver-
gence in adaptation to climate change: Evidence from high temperatures and mortality, 1900-2004.
American Economic Review, 105 (5), 247–51.

—, —, DESCHENES, O., GREENSTONE, M. and SHAPIRO, J. S. (2016). Adapting to climate change:
The remarkable decline in the us temperature-mortality relationship over the twentieth century.
Journal of Political Economy, 124 (1), 105–159.

BARROWS, G., GARG, T. and JHA, A. (2018). The economic benefits versus environmental costs of
india’s coal fired power plants. Available at SSRN 3281904.

BEHRER, A. P. and MAUTER, M. (2017). Allocating damage compensation in a federalist sys-
tem: Lessons from spatially resolved air emissions in the marcellus. Environmental Science and
Technology, 51.

BERG, E., BHATTACHARYYA, S., DURGAM, R. and RAMACHANDRA, M. (2012). Can rural public
works affect agricultural wages? evidence from india.

BHARGAVA, A. K. (2014). The impact of india’s rural employment guarantee on demand for agri-
cultural technology.

BHUVANESHWARI, S., HETTIARACHCHI, H. and MEEGODA, J. N. (2019). Crop residue burning in
india: Policy challenges and potential solutions. International journal of environmental research
and public health, 16 (5), 832.

BIKKINA, S., ANDERSSON, A., KIRILLOVA, E. N., HOLMSTRAND, H., TIWARI, S., SRIVASTAVA,
A., BISHT, D. and GUSTAFSSON, Ö. (2019). Air quality in megacity delhi affected by countryside
biomass burning. Nature Sustainability, p. 1.

BISHOP, K. C., KETCHAM, J. D. and KUMINOFF, N. V. (2018). Hazed and Confused: The Effect
of Air Pollution on Dementia. Working Paper 24970, National Bureau of Economic Research.

BLACKBURN, M. L. (2015). The relative performance of poisson and negative binomial regression
estimators. Oxford Bulletin of Economics and Statistics, 77 (4), 605–616.

BLACKMAN, A. (2010). Alternative pollution control policies in developing countries.

BURKE, M. and EMERICK, K. (2016). Adaptation to climate change: Evidence from us agriculture.
American Economic Journal: Economic Policy, 8 (3), 106–40.

—, HSIANG, S. M. and MIGUEL, E. (2015). Global non-linear effect of temperature on economic
production. Nature, 527 (7577), 235–239.

111



BURLIG, F. and PREONAS, L. (2016). Out of the darkness and into the light? development effects
of rural electrification. Energy Institute at Haas WP, 268.

BURNEY, J. and RAMANATHAN, V. (2014). Recent climate and air pollution impacts on indian
agriculture. Proceedings of the National Academy of Sciences, 111 (46), 16319–16324.

BURNEY, J. A. (2020). The downstream air pollution impacts of the transition from coal to natural gas
in the united states. Nature Sustainability, pp. 1–9.

CAMERON, A. C. and TRIVEDI, P. K. (2001). Essentials of count data regression. A companion to
theoretical econometrics, 331.

CARLETON, T., DELGADO, M., GREENSTONE, M., HOUSER, T., HSIANG, S., HULTGREN, A.,
JINA, A., KOPP, R. E., MCCUSKER, K., NATH, I. et al. (2018). Valuing the global mortality
consequences of climate change accounting for adaptation costs and benefits. NBER working
paper.

— and MENG, K. C. (2020). Causal empirical estimates suggest covid-19 transmission rates are
highly seasonal. medRxiv.

CASSOU, E. (2018). Field Burning. Tech. rep., World Bank, Washington, DC.

CDC (2020). Provisional death counts for coronavirus disease (COVID-19). Tech. rep., Centers for
Disease Control.

CHANG, T., GRAFF ZIVIN, J., GROSS, T. and NEIDELL, M. (2016). Particulate pollution and the
productivity of pear packers. American Economic Journal: Economic Policy, 8 (3), 141–69.

CHARBONNEAU, K. (2012). Multiple fixed effects in nonlinear panel data models. Unpublished
manuscript.

CHAY, K., DOBKIN, C. and GREENSTONE, M. (2003). The clean air act of 1970 and adult mortality.
Journal of risk and uncertainty, 27 (3), 279–300.

CHAY, K. Y. and GREENSTONE, M. (2003a). Air quality, infant mortality, and the Clean Air Act of
1970. Tech. rep., National Bureau of Economic Research.

— and — (2003b). The impact of air pollution on infant mortality: evidence from geographic variation
in pollution shocks induced by a recession. The quarterly journal of economics, 118 (3), 1121–1167.

— and — (2005). Does air quality matter? evidence from the housing market. Journal of political
Economy, 113 (2), 376–424.

CHEN, L., LIU, H., LIU, W., LIU, J., LIU, K., SHANG, J., DENG, Y. and WEI, S. (2020a). Analysis
of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua jie he he hu
xi za zhi= Zhonghua jiehe he huxi zazhi= Chinese journal of tuberculosis and respiratory diseases,
43, E005–E005.

CHEN, R., HU, B., LIU, Y., XU, J., YANG, G., XU, D. and CHEN, C. (2016). Beyond pm2. 5: the
role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta
(BBA)-General Subjects, 1860 (12), 2844–2855.

112



—, LI, H., CAI, J., WANG, C., LIN, Z., LIU, C., NIU, Y., ZHAO, Z., LI, W. and KAN, H. (2018).
Fine particulate air pollution and the expression of micrornas and circulating cytokines relevant
to inflammation, coagulation, and vasoconstriction. Environmental health perspectives, 126 (1),
017007.

CHEN, T., WU, D., CHEN, H., YAN, W., YANG, D., CHEN, G., MA, K., XU, D., YU, H., WANG,
H. et al. (2020b). Clinical characteristics of 113 deceased patients with coronavirus disease 2019:
retrospective study. Bmj, 368.

CHETTY, R., FRIEDMAN, J. N., HILGER, N., SAEZ, E., SCHANZENBACH, D. W. and YAGAN, D.
(2011). How does your kindergarten classroom affect your earnings? evidence from project star.
The Quarterly Journal of Economics, 126 (4), 1593–1660.

—, — and ROCKOFF, J. E. (2014). Measuring the impacts of teachers ii: Teacher value-added and
student outcomes in adulthood. The American Economic Review, 104 (9), 2633–2679.

CILLÓNIZ, C., SHINYA, K., PENG, X., KORTH, M. J., PROLL, S. C., AICHER, L. D., CARTER,
V. S., CHANG, J. H., KOBASA, D., FELDMANN, F. et al. (2009). Lethal influenza virus infection in
macaques is associated with early dysregulation of inflammatory related genes. PLoS pathogens,
5 (10).

CLAY, K., LEWIS, J. and SEVERNINI, E. (2016). Canary in a coal mine: Infant mortality, property
values, and tradeoffs associated with mid-20th century air pollution. Tech. rep., National Bureau
of Economic Research.

—, — and — (2018). Pollution, infectious disease, and mortality: evidence from the 1918 spanish
influenza pandemic. The Journal of Economic History, 78 (4), 1179–1209.

—, — and — (2019). What explains cross-city variation in mortality during the 1918 influenza
pandemic? evidence from 438 us cities. Economics & Human Biology, 35, 42–50.

— and TROESKEN, W. (2010). Did Frederick Brodie discover the world’s first environmental Kuznets
curve? Coal smoke and the rise and fall of the London fog. Tech. rep., National Bureau of Economic
Research.

CLEMENS, M. A., LEWIS, E. G. and POSTEL, H. M. (2018). Immigration restrictions as active
labor market policy: Evidence from the mexican bracero exclusion. American Economic Review,
108 (6), 1468–87.

COHEN, A. J., BRAUER, M., BURNETT, R., ANDERSON, H. R., FROSTAD, J., ESTEP, K., BAL-
AKRISHNAN, K., BRUNEKREEF, B., DANDONA, L., DANDONA, R. et al. (2017). Estimates and
25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of
data from the global burden of diseases study 2015. The Lancet, 389 (10082), 1907–1918.

COLE, M., RAYNER, A. and BATES, J. (1997). The environmental kuznets curve: an empirical
analysis. Environment and Development Economics, 2 (4), 401416.

COMMISSION, P. et al. (2003). Report of the task force on. Identification of Districts for Wage and
Self employment programmes, Technical Report New Delhi.

113



COOK, J. and SHAH, M. (2019). Aggregate Effects from Public Works: Evidence from India, working
paper.

CORREIA, S., GUIMARÃES, P. and ZYLKIN, T. (2019). Ppmlhdfe: Fast poisson estimation with
high-dimensional fixed effects. arXiv preprint arXiv:1903.01690.

COUTURE, V., DINGEL, J. I., GREEN, A., HANDBURY, J. and WILLIAMS, K. (2020). Location
exposure indeex based on PlaceIQ data. Tech. rep.

CROPPER, M., GAMKHAR, S., MALIK, K., LIMONOV, A. and PARTRIDGE, I. (2012). The health
effects of coal electricity generation in india. Resources for the Future Discussion Paper, (12-25).

CUARESMA, J. C. and HEGER, M. (2019). Deforestation and economic development: Evidence
from national borders. Land Use Policy, 84, e347 – e353.

CUI, Y., ZHANG, Z.-F., FROINES, J., ZHAO, J., WANG, H., YU, S.-Z. and DETELS, R. (2003). Air
pollution and case fatality of sars in the people’s republic of china: an ecologic study. Environmental
Health, 2 (1), 15.

CURRIE, J. (2009). Healthy, wealthy, and wise: Socioeconomic status, poor health in childhood, and
human capital development. Journal of Economic Literature, 47 (1), 87–122.

DASGUPTA, A. (2017). Can the major public works policy buffer negative shocks in early childhood?
evidence from andhra pradesh, india. Economic Development and Cultural Change, 65 (4), 767–804.

DASGUPTA, S., LAPLANTE, B., WANG, H. and WHEELER, D. (2002). Confronting the environmental
kuznets curve. Journal of Economic Perspectives, 16 (1), 147–168.

DAVID, H. (2014). Skills, education, and the rise of earnings inequality among the other 99 percent.
Science, 344 (6186), 843–851.

DAVIS, L. W. and GERTLER, P. J. (2015). Contribution of air conditioning adoption to future energy
use under global warming. Proceedings of the National Academy of Sciences, 112 (19), 5962–5967.

DE CHAISEMARTIN, C. and DHAULTFŒUILLE, X. (2017). Fuzzy differences-in-differences. The
Review of Economic Studies, 85 (2), 999–1028.

DEDOUSSI, I. C., EASTHAM, S. D., MONIER, E. and BARRETT, S. R. (2020). Premature mortality
related to united states cross-state air pollution. Nature, 578 (7794), 261–265.

DEININGER, K. and LIU, Y. (2013). Welfare and poverty impacts of India’s national rural employment
guarantee scheme: evidence from Andhra Pradesh. The World Bank.

DELL, M., JONES, B. F. and OLKEN, B. A. (2012). Temperature shocks and economic growth:
Evidence from the last half century. American Economic Journal: Macroeconomics, 4 (3), 66–95.

DERYUGINA, T., HEUTEL, G., MILLER, N. H., MOLITOR, D. and REIF, J. (2019). The mortality
and medical costs of air pollution: Evidence from changes in wind direction. American Economic
Review, 109 (12), 4178–4219.

114



DESCHÊNES, O. and GREENSTONE, M. (2007). The economic impacts of climate change: evidence
from agricultural output and random fluctuations in weather. American Economic Review, 97 (1),
354–385.

— and GREENSTONE, M. (2011). Climate change, mortality, and adaptation: Evidence from annual
fluctuations in weather in the us. American Economic Journal: Applied Economics, 3 (4), 152–185.

DESCHENES, O., GREENSTONE, M. and SHAPIRO, J. S. (2017). Defensive investments and the
demand for air quality: Evidence from the nox budget program. American Economic Review,
107 (10), 2958–2989.

DESHINGKAR, P., JOHNSON, C. and FARRINGTON, J. (2005). State transfers to the poor and back:
The case of the food-for-work program in india. World Development, 33 (4), 575–591.

DINDA, S. (2004). Environmental kuznets curve hypothesis: A survey. Ecological Economics, 49 (4),
431 – 455.

DOGO, H., BRANDON, C., HEGER, M., CHONABAYASHI, S., GASKELL, J., BANGALORE, M., NOR-
MAN, T., LEE, J. J., SPENCER, P. and ELIZONDO, A. C. (2017). Exploring Hidden Dimensions:
Environmental and Natural Resource Aspects of Poverty. Tech. rep.

DONALDSON, D. and STOREYGARD, A. (2016). The view from above: Applications of satellite
data in economics. Journal of Economic Perspectives, 30 (4), 171–98.

EBENSTEIN, A., FAN, M., GREENSTONE, M., HE, G., YIN, P. and ZHOU, M. (2015). Growth,
pollution, and life expectancy: China from 1991-2012. American Economic Review, 105 (5), 226–31.

—, —, —, — and ZHOU, M. (2017). New evidence on the impact of sustained exposure to air
pollution on life expectancy from chinas huai river policy. Proceedings of the National Academy
of Sciences, 114 (39), 10384–10389.

—, LAVY, V. and ROTH, S. (2016). The long-run economic consequences of high-stakes examinations:
evidence from transitory variation in pollution. American Economic Journal: Applied Economics,
8 (4), 36–65.

EIA (2016). Many natural gas-fired power plants under construction are near major shale plays. Tech.
rep., U.S. Energy Information Administration.

EMERICK, K. (2018). Agricultural productivity and the sectoral reallocation of labor in rural india.
Journal of Development Economics, 135, 488–503.

FEYRER, J., MANSUR, E. T. and SACERDOTE, B. (2017). Geographic dispersion of economic shocks:
Evidence from the fracking revolution. American Economic Review, 107 (4), 1313–34.

FLA (2012). TASK AND RISK MAPPING OF SUGARCANE PRODUCTION IN INDIA. Tech. rep.,
The Fair Labor Association.

FORCE, A. D. T., RANIERI, V., RUBENFELD, G., THOMPSON, B., FERGUSON, N., CALDWELL,
E. et al. (2012). Acute respiratory distress syndrome. Jama, 307 (23), 2526–2533.

115



FOSTER, A. D. and ROSENZWEIG, M. R. (2011). Are indian farms too small? mechanization, agency
costs, and farm efficiency.

FOWLIE, M. and MULLER, N. (2019). Market-based emissions regulation when damages vary across
sources: What are the gains from differentiation? Journal of the Association of Environmental and
Resource Economists, 6 (3), 593–632.

FRANKEL, J. A. (2003). The environment and globalization. Tech. rep., National Bureau of Economic
Research.

FROMM, M., LINDSEY, D. T., SERVRANCKX, R., YUE, G., TRICKL, T., SICA, R., DOUCET,
P. and GODIN-BEEKMANN, S. (2010). The untold story of pyrocumulonimbus. Bulletin of the
American Meteorological Society, 91 (9), 1193–1210.

GAIHA, R. (1997). Do rural public works influence agricultural wages? the case of the employment
guarantee scheme in india. Oxford Development Studies, 25 (3), 301–314.

GARG, T., JAGNANI, M. and TARAZ, V. (2018). Temperature and human capital in india. Available at
SSRN 2941049.

GATEBE, C., VARNAI, T., POUDYAL, R., ICHOKU, C. and KING, M. (2012). Taking the pulse of
pyrocumulus clouds. Atmospheric environment, 52, 121–130.

GEHRKE, E. (2013). Does the indian employment guarantee reduce households risk exposure?
assessing the effects of the nrega on crop choice. Unpublished manuscript, IZA–Institute of Labor
Economics. Retrieved from http://www. iza. org/conference_files/worldb2013/gehrke_e8393. pdf.

GERTLER, P., MARTINEZ, S. and RUBIO-CODINA, M. (2006). Investing cash transfers to raise
long term living standards. The World Bank.

GILFILLAN, S. C. (1920). The coldward course of progress. Political Science Quarterly, 35 (3),
393–410.

GOI (2007). NATIONAL RURAL EMPLOYMENT GUARANTEE ACT 2005 (NREGA): Report of the
Second Year April 2006 March 2007. Tech. rep., Ministry of Rural Development, Government of
India.

— (2009). GUIDELINES FOR IMPLEMENTATION OF WORKS ON INDIVIDUAL LAND UNDER
NREGA. Tech. rep., Ministry of Rural Development, Government of India.

GOLDIN, C. D. and KATZ, L. F. (2009). The race between education and technology. Harvard
University Press.

GOODMAN-BACON, A. (2018). Difference-in-differences with variation in treatment timing. Tech.
rep., National Bureau of Economic Research.

GORBALENYA, A., BAKER, S., BARIC, R. et al. (2020). The species severe acute respiratory
syndrome-related coronavirus: classifying 2019-ncov and naming it sars-cov-2. Nature Microbiology,
p. 1.

116



GRAFF ZIVIN, J., HSIANG, S. M. and NEIDELL, M. (2017). Temperature and human capital in the
short-and long-run. Journal of the Association of Environmental and Resource Economists.

GRAFF-ZIVIN, J. and NEIDELL, M. (2012). The impact of pollution on worker productivity. The
American Economic Review, 102 (7), 3652–3673.

GRAFF ZIVIN, J. and NEIDELL, M. (2014). Temperature and the allocation of time: Implications
for climate change. Journal of Labor Economics, 32 (1), 1–26.

GRAINGER, C., SCHREIBER, A. and CHANG, W. (2016). How states comply with federal regula-
tions: strategic ambient pollution monitoring. Tech. rep., Working paper, University of Wisconsin-
Madison.

GREENSTONE, M. and HANNA, R. (2014). Environmental regulations, air and water pollution, and
infant mortality in india. American Economic Review, 104 (10), 3038–72.

— and JACK, B. K. (2013). Envirodevonomics: A research agenda for a young field. National
Bureau of Economic Research.

—, KOPITS, E. and WOLVERTON, A. (2013). Developing a social cost of carbon for us regulatory
analysis: A methodology and interpretation. Review of Environmental Economics and Policy, 7 (1),
23–46.

GROSSMAN, G. M. and KRUEGER, A. B. (1995). Economic growth and the environment. The
quarterly journal of economics, 110 (2), 353–377.

GRUZIEVA, O., MERID, S. K., GREF, A., GAJULAPURI, A., LEMONNIER, N., BALLEREAU, S.,
GIGANTE, B., KERE, J., AUFFRAY, C., MELÉN, E. et al. (2017). Exposure to traffic-related air
pollution and serum inflammatory cytokines in children. Environmental health perspectives, 125 (6),
067007.

GUPTA, A. and SPEARS, D. (2017). Health externalities of india’s expansion of coal plants: Evidence
from a national panel of 40,000 households. Journal of environmental economics and management,
86, 262–276.

HAMMING, I., TIMENS, W., BULTHUIS, M., LELY, A., NAVIS, G. and VAN GOOR, H. (2004). Tissue
distribution of ace2 protein, the functional receptor for sars coronavirus. a first step in understanding
sars pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of Great Britain
and Ireland, 203 (2), 631–637.

HANNA, R. and OLIVA, P. (2015). The effect of pollution on labor supply: Evidence from a natural
experiment in mexico city. Journal of Public Economics, 122, 68–79.

HANUSHEK, E. A. and WOESSMANN, L. (2016). Knowledge capital, growth, and the east asian
miracle. Science, 351 (6271), 344–345.

HARBAUGH, W. T., LEVINSON, A. and WILSON, D. M. (2002). Reexamining the empirical evidence
for an environmental kuznets curve. Review of Economics and Statistics, 84 (3), 541–551.

HAUSMAN, C. and KELLOGG, R. (2015). Welfare and distributional implications of shale gas. Tech.
rep., National Bureau of Economic Research.

117



HAUSMAN, J. (2001). Mismeasured variables in econometric analysis: problems from the right and
problems from the left. Journal of Economic perspectives, 15 (4), 57–67.

HAUSMAN, J. A., HALL, B. H. and GRILICHES, Z. (1984). Econometric models for count data
with an application to the patents-R&D relationship. Tech. Rep. 17, National Bureau of Economic
Research Cambridge.

HE, L., LIN, A., CHEN, X., ZHOU, H., ZHOU, Z. and HE, P. (2019). Assessment of merra-2 surface
pm2. 5 over the yangtze river basin: Ground-based verification, spatiotemporal distribution and
meteorological dependence. Remote Sensing, 11 (4), 460.

HERRENDORF, B., ROGERSON, R. and VALENTINYI, K. (2013). Growth and Structural Transfor-
mation. Working Paper 18996, National Bureau of Economic Research.

HERSBACH, H. (2016). The era5 atmospheric reanalysis. In AGU Fall Meeting Abstracts.

HOFFMANN, M., KLEINE-WEBER, H., SCHROEDER, S., KRÜGER, N., HERRLER, T., ERICHSEN,
S., SCHIERGENS, T. S., HERRLER, G., WU, N.-H., NITSCHE, A. et al. (2020). Sars-cov-2 cell
entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell.

HOLLAND, S. P., MANSUR, E. T., MULLER, N. and YATES, A. J. (2018). Decompositions and
policy consequences of an extraordinary decline in air pollution from electricity generation. Tech.
rep., National Bureau of Economic Research.

HORNBECK, R. and NAIDU, S. (2014). When the levee breaks: black migration and economic
development in the american south. American Economic Review, 104 (3), 963–90.

HSIANG, S. (2016). Climate econometrics. Annual Review of Resource Economics, 8, 43–75.

—, OLIVA, P. and WALKER, R. (2018). The distribution of environmental damages. Review of
Environmental Economics and Policy.

HSIANG, S. M., BURKE, M. and MIGUEL, E. (2013). Quantifying the influence of climate on
human conflict. Science, 341 (6151), 1235367.

HUMPHRIES, J. (2013). The lure of aggregates and the pitfalls of the patriarchal perspective: a critique
of the high wage economy interpretation of the british industrial revolution. The Economic History
Review, 66 (3), 693–714.

HUNTINGTON, E. (1922). Civilization and climate. Yale University Press.

IMBERT, C. and PAPP, J. (2014). Short-term migration and rural workfare programs: Evidence from
india. Journal of the European Economic Association.

— and — (2015). Labor market effects of social programs: Evidence from india’s employment
guarantee. American Economic Journal: Applied Economics, 7 (2), 233–63.

JAIN, M., MONDAL, P., GALFORD, G., FISKE, G. and DEFRIES, R. (2017). An automated approach
to map winter cropped area of smallholder farms across large scales using modis imagery. Remote
Sensing, 9 (6), 566.

118



JAIN, N., BHATIA, A. and PATHAK, H. (2014). Emission of air pollutants from crop residue burning
in india. Aerosol and Air Quality Research, 14 (1), 422–430.

JAYACHANDRAN, S. (2009). Air quality and early-life mortality evidence from indonesias wildfires.
Journal of Human resources, 44 (4), 916–954.

JHA, R., BHATTACHARYYA, S., GAIHA, R. and SHANKAR, S. (2009). capture of anti-poverty
programs: An analysis of the national rural employment guarantee program in india. Journal of
Asian Economics, 20 (4), 456–464.

JIANG, X.-Q., MEI, X.-D. and FENG, D. (2016). Air pollution and chronic airway diseases: what
should people know and do? Journal of thoracic disease, 8 (1), E31.

JITENDRA, S. V., KUKRETI, I., PANDEY, K., NIYOGI, D. G. and MUKERJEE, P. (2017). India’s
burning issue of crop burning takes a new turn. Down to Earth.

JOHNSEN, R., LARIVIERE, J. and WOLFF, H. (2019). Fracking, coal, and air quality. Journal of the
Association of Environmental and Resource Economists, 6 (5), 1001–1037.

—, LARIVIERE, J. S. and WOLFF, H. (2016). Estimating indirect benefits: fracking, coal and air
pollution.

KAN, H., CHEN, B.-H., FU, C., YU, S.-Z. and MU, L. (2005). Relationship between ambient air
pollution and daily mortality of sars in beijing. Biomedical and Environmental Sciences, 18 (1), 1–4.

KELLY, M., MOKYR, J. and GRÁDA, C. Ó. (2014). Precocious albion: a new interpretation of the
british industrial revolution. Annu. Rev. Econ., 6 (1), 363–389.

KJELLSTROM, T. and CROWE, J. (2011). Climate change, workplace heat exposure, and occu-
pational health and productivity in central america. International Journal of Occupational and
Environmental Health, 17 (3), 270–281.

KNITTEL, C. R., METAXOGLOU, K. and TRINDADE, A. (2015). Natural gas prices and coal
displacement: Evidence from electricity markets. Tech. rep., National Bureau of Economic Research.

KORONTZI, S., MCCARTY, J., LOBODA, T., KUMAR, S. and JUSTICE, C. (2006). Global distribution
of agricultural fires in croplands from 3 years of moderate resolution imaging spectroradiometer
(modis) data. Global Biogeochemical Cycles, 20 (2).

KREMER, M., LEINO, J., MIGUEL, E. and ZWANE, A. P. (2011). Spring cleaning: Rural water
impacts, valuation, and property rights institutions. The Quarterly Journal of Economics, 126 (1),
145–205.

— and WILLIS, J. (2016). Guns, latrines, and land reform: Dynamic pigouvian taxation. American
Economic Review, 106 (5), 83–88.

KUZNETS, S. (1973). Modern economic growth: findings and reflections. The American economic
review, 63 (3), 247–258.

LEE, J., PERI, G. and YASENOV, V. (2017). The Employment Effects of Mexican Repatriations:
Evidence from the 1930’s. Tech. rep., National Bureau of Economic Research.

119



LI, X., XU, S., YU, M., WANG, K., TAO, Y., ZHOU, Y., SHI, J., ZHOU, M., WU, B., YANG, Z. et al.
(2020a). Risk factors for severity and mortality in adult covid-19 inpatients in wuhan. Journal of
Allergy and Clinical Immunology.

LI, Y. (2017). Land Inequality and the Provision of Public Works-Evidence from National Rural
Employment Guarantee Scheme. Tech. rep., Unpublished Job Market Paper.

—, ZHOU, W., YANG, L. and YOU, R. (2020b). Physiological and pathological regulation of ace2,
the sars-cov-2 receptor. Pharmacological Research, p. 104833.

LIN, W. and WOOLDRIDGE, J. M. (2019). Testing and correcting for endogeneity in nonlinear
unobserved effects models. In Panel Data Econometrics, Elsevier, pp. 21–43.

LINN, J. and MUEHLENBACHS, L. (2018). The heterogeneous impacts of low natural gas prices on
consumers and the environment. Journal of Environmental Economics and Management, 89, 1–28.

LIU, J., ZHOU, J., YAO, J., ZHANG, X., LI, L., XU, X., HE, X., WANG, B., FU, S., NIU, T. et al.
(2020). Impact of meteorological factors on the covid-19 transmission: A multi-city study in china.
Science of The Total Environment, p. 138513.

LIU, T., MARLIER, M. E., DEFRIES, R. S., WESTERVELT, D. M., XIA, K. R., FIORE, A. M.,
MICKLEY, L. J., CUSWORTH, D. H. and MILLY, G. (2018). Seasonal impact of regional outdoor
biomass burning on air pollution in three indian cities: Delhi, bengaluru, and pune. Atmospheric
environment, 172, 83–92.

LOHAN, S. K., JAT, H., YADAV, A. K., SIDHU, H., JAT, M., CHOUDHARY, M., PETER, J. K. and
SHARMA, P. (2018). Burning issues of paddy residue management in north-west states of india.
Renewable and Sustainable Energy Reviews, 81, 693–706.

LONGHURST, J. and CONLAN, D. (1970). Changing air quality in the greater manchester conurbation.
WIT Transactions on Ecology and the Environment, 3.

LUKS, A. M., FREER, L., GRISSOM, C. K., MCINTOSH, S. E., SCHOENE, R. B., SWENSON, E. R.
and HACKETT, P. H. (2020). Covid-19 lung injury is not high altitude pulmonary edema. High
Altitude Medicine & Biology.

LUTZ, W., MUTTARAK, R. and STRIESSNIG, E. (2014). Universal education is key to enhanced
climate adaptation. Science, 346 (6213), 1061–1062.

MACCINI, S. and YANG, D. (2009). Under the weather: Health, schooling, and economic conse-
quences of early-life rainfall. American Economic Review, 99 (3), 1006–26.

MANDAL, K. G., MISRA, A. K., HATI, K. M., BANDYOPADHYAY, K. K., GHOSH, P. K. and
MOHANTY, M. (2004). Rice residue-management options and effects on soil properties and crop
productivity. Journal of Food Agriculture and Environment, 2, 224–231.

MANI, A., MULLAINATHAN, S., SHAFIR, E. and ZHAO, J. (2013). Poverty impedes cognitive
function. Science, 341 (6149), 976–980.

MANISALIDIS, I., STAVROPOULOU, E., STAVROPOULOS, A. and BEZIRTZOGLOU, E. (2020).
Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8.

120



MARLON, J. R., BARTLEIN, P. J., CARCAILLET, C., GAVIN, D. G., HARRISON, S. P., HIGUERA,
P. E., JOOS, F., POWER, M. and PRENTICE, I. (2008). Climate and human influences on global
biomass burning over the past two millennia. Nature Geoscience, 1 (10), 697.

MEHTA, P., MCAULEY, D. F., BROWN, M., SANCHEZ, E., TATTERSALL, R. S. and MANSON,
J. J. (2020). Covid-19: consider cytokine storm syndromes and immunosuppression. The Lancet,
395 (10229), 1033–1034.

MINISTRY OF FINANCE, G. (2018). Economic Survey 2017-18 (Volume I and Volume II). OUP India.

MISRA, D. P., AGARWAL, V., GASPARYAN, A. Y. and ZIMBA, O. (2020). Rheumatologists perspec-
tive on coronavirus disease 19 (covid-19) and potential therapeutic targets. Clinical Rheumatology,
pp. 1–8.

MO, Z., FU, Q., ZHANG, L., LYU, D., MAO, G., WU, L., XU, P., WANG, Z., PAN, X., CHEN,
Z. et al. (2018). Acute effects of air pollution on respiratory disease mortalities and outpatients in
southeastern china. Scientific reports, 8 (1), 1–9.

MONTESQUIEU, C. S. (1750). The spirit of the laws.

MORRISON, K. D. (1994). Monitoring regional fire history through size-specific analysis of mi-
croscopic charcoal: The last 600 years in south india. Journal of Archaeological Science, 21 (5),
675–685.

MULLER, N. Z. and MENDELSOHN, R. (2007). Measuring the damages of air pollution in the united
states. Journal of Environmental Economics and Management, 54 (1), 1–14.

MUNIYAPPA, R. and GUBBI, S. (2020). Covid-19 pandemic, corona viruses, and diabetes mellitus.

MURALIDHARAN, K., NIEHAUS, P. and SUKHTANKAR, S. (2016). Building state capacity: Evidence
from biometric smartcards in india. American Economic Review, 106 (10), 2895–2929.

—, — and — (2017). General Equilibrium Effects of (Improving) Public Employment Programs:
Experimental Evidence from India. Working Paper 23838, National Bureau of Economic Research.

NAAS (2017). Innovative Viable Solution to Rice Residue Burning in Rice-Wheat Cropping System
through Concurrent Use of Super Straw Management System-fitted Combines and Turbo Happy
Seeder. Tech. rep., National Academy of Agricultural Sciences, New Delhi.

NAIR, M., ARIANA, P., OHUMA, E. O., GRAY, R., DE STAVOLA, B. and WEBSTER, P. (2013).
Effect of the mahatma gandhi national rural employment guarantee act (mgnrega) on malnutrition
of infants in rajasthan, india: a mixed methods study. PloS one, 8 (9), e75089.

NASA (2017a). Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015. Tech.
rep., Center for International Earth Science Information Network (CIESIN), Columbia University.

— (2017b). India Annual Winter Cropped Area, 2001-2016. Tech. rep., Center for International Earth
Science Information Network (CIESIN), Columbia University.

NEL, A. (2005). Air pollution-related illness: effects of particles. Science, 308 (5723), 804–806.

121



NICHOLS, A. et al. (2010). Regression for nonnegative skewed dependent variables. In BOS10 Stata
Conference, Stata Users Group, vol. 2, pp. 15–16.

NIEHAUS, P. and SUKHTANKAR, S. (2013). Corruption dynamics: The golden goose effect. American
Economic Journal: Economic Policy, 5 (4), 230–69.

OKEEFE, P. (2005). Workfare programs in india and internationally: Note on issues and experience.
The World Bank Office, New Delhi, India.

PARK, J., BANGALORE, M., HALLEGATTE, S. and SANDHOEFNER, E. (2018). Households and
heat stress: estimating the distributional consequences of climate change. Environment and Develop-
ment Economics, 23 (3), 349–368.

PARK, R. J. (forthcoming). Hot temperature and high stakes performance. Journal of Human Re-
sources.

—, GOODMAN, J., HURWITZ, M. and SMITH, J. (2020). Heat and learning. American Economic
Journal: Economic Policy.

PISCHKE, J.-S. (2018). Weak instruments.

PRASAD, R., GANGAIAH, B. and AIPE, K. (1999). Effect of crop residue management in a rice–
wheat cropping system on growth and yield of crops and on soil fertility. Experimental Agriculture,
35 (4), 427–435.

PRASANN, A. (2016). The Spillover Effects of Public Works on Labor Allocation and Wages: Evidence
from National Rural Employment Guarantee Scheme, India. Tech. rep.

PULLABHOTLA, H. (2018). Fires, wind, and smoke: Air pollution and infant mortality. Job Market
Paper. Available here.

PYNE, S. J. (2019). Fire: a brief history. University of Washington Press.

— and GOLDAMMER, J. G. (1997). The culture of fire: an introduction to anthropogenic fire history.
In Sediment Records of Biomass Burning and Global Change, Springer, pp. 71–114.

RABOTYAGOV, S. S., CAMPBELL, T. D., WHITE, M., ARNOLD, J. G., ATWOOD, J., NORFLEET,
M. L., KLING, C. L., GASSMAN, P. W., VALCU, A., RICHARDSON, J. et al. (2014). Cost-
effective targeting of conservation investments to reduce the northern gulf of mexico hypoxic zone.
Proceedings of the National Academy of Sciences, 111 (52), 18530–18535.

RAGHUNATHAN, K. and HARI, S. (2014). Providing more than just employment? evidence from
the nrega in india. Unpublished Working Paper.

RANDAZZO, T., DE CIAN, E., EURO-MEDITERRANEO, C. and MISTRY, M. (2020). Climate
change impacts on household electricity expenditure: the contribution of air conditioning in oecd
countries. Working Paper.

RANGEL, M. A. and VOGL, T. (2016). Agricultural fires and infant health. Tech. rep., National
Bureau of Economic Research.

122



RANSON, M. (2014). Crime, weather, and climate change. Journal of environmental economics and
management, 67 (3), 274–302.

RAO, P. P., PANDEY, L., JAGADEESH, E., DEB, U. K., JAIN, R. and BASU, K. (2012). Meso-level
database coverage and insights village dynamics in south asia.

REARDON, S. F., KALOGRIDES, D. and SHORES, K. (2017). The geography of racial/ethnic test
score gaps. cepa working paper no. 16-10. Stanford Center for Education Policy Analysis.

RIENECKER, M. M., SUAREZ, M. J., GELARO, R., TODLING, R., BACMEISTER, J., LIU, E.,
BOSILOVICH, M. G., SCHUBERT, S. D., TAKACS, L., KIM, G.-K. et al. (2011). Merra: Nasas
modern-era retrospective analysis for research and applications. Journal of climate, 24 (14),
3624–3648.

RODGERS, H. (1960). The lancashire cotton industry in 1840. Transactions and Papers (Institute of
British Geographers), (28), 135–153.

ROTH, J. (2018). Pre-test with Caution Event-study Estimates After Testing for Parallel Trends. Tech.
rep., Working Paper.

ROWLAND, T. (2008). Thermoregulation during exercise in the heat in children: old concepts revisited.
Journal of Applied Physiology, 105 (2), 718–724.

RUE, D., WEBSTER, D. and TRAVERSE, A. (2002). Late holocene fire and agriculture in the copan
valley, honduras. Ancient Mesoamerica, 13 (2), 267–272.

SACKS, W. J., DERYNG, D., FOLEY, J. A. and RAMANKUTTY, N. (2010). Crop planting dates: an
analysis of global patterns. Global Ecology and Biogeography, 19 (5), 607–620.

SANCHE1, S., LIN, Y. T., XU, C., ROMERO-SEVERSON, E., HENGARTNER, N. and KE, R. (2020).
High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerging
Infectious Diseases.

SANCHEZ, F. M. A., RESTUCCIA, D. and RUD, J. P. (2019). Are Small Farms Really more Productive
than Large Farms? Tech. rep., National Bureau of Economic Research.

SAWYER, J. (2019). Estimating losses when cornstalk fields are accidentally burnt. Tech. rep., Iowa
State University Extension.

SCHLENKER, W., HANEMANN, W. M. and FISHER, A. C. (2006). The impact of global warming
on us agriculture: an econometric analysis of optimal growing conditions. The Review of Economics
and Statistics, 88 (1), 113–125.

— and LOBELL, D. B. (2010). Robust negative impacts of climate change on african agriculture.
Environmental Research Letters, 5 (1), 014010.

SEATON, A., GODDEN, D., MACNEE, W. and DONALDSON, K. (1995). Particulate air pollution
and acute health effects. The lancet, 345 (8943), 176–178.

SEPPANEN, O., FISK, W. J. and LEI, Q. (2006). Effect of temperature on task performance in office
environment. Lawrence Berkeley National Laboratory.

123



SETTI, L., PASSARINI, F., DE GENNARO, G., DI GILIO, A., PALMISANI, J., BUONO, P., FORNARI,
G., PERRONE, M. G., PIAZZALUNGA, A., BARBIERI, P., RIZZO, E. and MIANI, A. (2020).
Evaluation of the potential relationship between Particulate Matter (PM) pollution and COVID-19
infection spread in Italy. Tech. rep., mimeo.

SHAH, A. and MEHTA, A. K. (2008). Experience of the maharashtra employment guarantee scheme:
are there lessons for nregs? Available at SSRN 1538914.

SHAH, M. and STEINBERG, B. M. (2015). Workfare and human capital investment: Evidence from
India. Tech. rep., National Bureau of Economic Research.

— and — (2017). Drought of opportunities: Contemporaneous and long-term impacts of rainfall
shocks on human capital. Journal of Political Economy, 125 (2), 527–561.

SHARMA, A. (2015). Employment guarantee scheme and child health outcome: Evidence from
mgnrega using propensity score matching analysis. Available at SSRN 2708549.

SHI, S., QIN, M., SHEN, B., CAI, Y., LIU, T., YANG, F., GONG, W., LIU, X., LIANG, J., ZHAO,
Q. et al. (2020). Association of cardiac injury with mortality in hospitalized patients with covid-19
in wuhan, china. JAMA cardiology.

SHYAMSUNDAR, P., SPRINGER, N., TALLIS, H., POLASKY, S., JAT, M., SIDHU, H., KRISHNAPRIYA,
P., SKIBA, N., GINN, W., AHUJA, V. et al. (2019). Fields on fire: Alternatives to crop residue
burning in india. Science, 365 (6453), 536–538.

SINGER, G., ZIVIN, J. G., NEIDELL, M. and SANDERS, N. (2020). Air pollution increases influenza
hospitalizations. medRxiv.

SINGH, P., DEY, S., CHOWDHURY, S. and BALI, K. (2019). Early life exposure to outdoor air
pollution: Effect on child health in india.

SMIL, V. (1999). Crop residues: Agriculture’s largest harvest: Crop residues incorporate more than
half of the world’s agricultural phytomass. Bioscience, 49 (4), 299–308.

SMITH, P., BUSTAMANTE, M., AHAMMAD, H., CLARK, H., DONG, H., ELSIDDIG, E. A., HABERL,
H., HARPER, R., HOUSE, J., JAFARI, M. et al. (2014). Agriculture, forestry and other land use
(afolu). In Climate change 2014: mitigation of climate change. Contribution of Working Group
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press.

SOLOMON, S. (2016). Sugarcane production and development of sugar industry in india. Sugar Tech,
18 (6), 588–602.

SOLOW, R. M. (1957). Technical change and the aggregate production function. The review of
Economics and Statistics, pp. 312–320.

STAVINS, R. N. (1996). Correlated uncertainty and policy instrument choice. Journal of environmental
economics and management, 30 (2), 218–232.

STERN, D. I. (2018). The environmental kuznets curve. Companion to Environmental Studies, pp.
49–54.

124



STOCK, J. H. and YOGO, M. (2002). Testing for weak instruments in linear IV regression. Tech. rep.,
National Bureau of Economic Research.

SUKHTANKAR, S. (2016). Indias national rural employment guarantee scheme: What do we really
know about the worlds largest workfare program?

SULLIVAN, D. M. (2016). The true cost of air pollution: Evidence from house prices and migration.
Harvard University.

— and KRUPNICK, A. (2018). Using satellite data to fill the gaps in the us air pollution monitoring
network. Resources for the Future Working Paper, pp. 18–21.

TAN, W. C., QIU, D., LIAM, B. L., NG, T. P., LEE, S. H., VAN EEDEN, S. F., D’YACHKOVA, Y.
and HOGG, J. C. (2000). The human bone marrow response to acute air pollution caused by forest
fires. American journal of respiratory and critical care medicine, 161 (4), 1213–1217.

TAN-SOO, J.-S. and PATTANAYAK, S. K. (2019). Seeking natural capital projects: Forest fires, haze,
and early-life exposure in indonesia. Proceedings of the National Academy of Sciences, 116 (12),
5239–5245.

THOMAS, M. (2015). Guaranteeing children a better life? the impact of the mahatma gandhi national
rural employment guarantee act on child health and learning in rural india. University of Texas
Austin Working Paper.

TISONCIK, J. R., KORTH, M. J., SIMMONS, C. P., FARRAR, J., MARTIN, T. R. and KATZE, M. G.
(2012). Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev., 76 (1), 16–32.

UPPAL, V. (2009). Is the nregs a safety net for children. Young Lives Student Paper, Oxford: Young
Lives.

VAN DER WERF, G. R., RANDERSON, J. T., GIGLIO, L., COLLATZ, G. J., KASIBHATLA, P. S. and
ARELLANO JR, A. F. (2006). Interannual variability in global biomass burning emissions from
1997 to 2004. Atmospheric Chemistry and Physics, 6 (11), 3423–3441.

VAN DONKELAAR, A., MARTIN, R. V., LI, C. and BURNETT, R. T. (2019). Regional estimates of
chemical composition of fine particulate matter using a combined geoscience-statistical method
with information from satellites, models, and monitors. Environmental science & technology, 53 (5),
2595–2611.

VAN EEDEN, S. F., TAN, W. C., SUWA, T., MUKAE, H., TERASHIMA, T., FUJII, T., QUI, D.,
VINCENT, R. and HOGG, J. C. (2001). Cytokines involved in the systemic inflammatory response
induced by exposure to particulate matter air pollutants (pm10). American journal of respiratory
and critical care medicine, 164 (5), 826–830.

VASILICA, S., FÎNTÎNERU, G. and MIHALACHE, M. (2014). Multicriteria analysis of the effects of
field burning crop residues. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42 (1), 255–262.

VOORHEIS, J. et al. (2017). Air quality, human capital formation and the long-term effects of
environmental inequality at birth. Tech. rep., Center for Economic Studies, US Census Bureau.

125



WANG, X., YAMAUCHI, F., HUANG, J. and ROZELLE, S. (2018). What constrains mechanization
in chinese agriculture? role of farm size and fragmentation. China Economic Review.

WEITZMAN, M. L. (1974). Prices vs. quantities. The review of economic studies, 41 (4), 477–491.

WHO (2003). Consensus document on the epidemiology of severe acute respiratory syndrome (SARS).
Tech. rep., World Health Organization.

WILEBORE, B., VOORS, M., BULTE, E. H., COOMES, D. and KONTOLEON, A. (2019). Uncondi-
tional transfers and tropical forest conservation: Evidence from a randomized control trial in sierra
leone. American Journal of Agricultural Economics, 101 (3), 894–918.

WOESSMANN, L. (2016). The importance of school systems: Evidence from international differences
in student achievement. The Journal of Economic Perspectives, 30 (3), 3–31.

WOOLDRIDGE, J. M. (1997). Quasi-likelihood methods for count data. Handbook of Applied Econo-
metrics Volume 2: Microeconomics, pp. 321–368.

— (1999). Distribution-free estimation of some nonlinear panel data models. Journal of Economet-
rics, 90 (1), 77–97.

WU, X., NETHERY, R. C., SABATH, B. M., BRAUN, D. and DOMINICI, F. (2020). Exposure to air
pollution and covid-19 mortality in the united states. medRxiv.

WU, Z. and MCGOOGAN, J. M. (). Characteristics of and important lessons from the coronavirus
disease 2019 (covid-19) outbreak in china: summary of a report of 72 314 cases from the chinese
center for disease control and prevention. Jama.

YADAV, R. (2007). Mechanization of sugar cane production in india. In Proceedings of the XXVI
ISSCT Congress held in Durban in July/August, vol. 7.

YAMAUCHI, F. (2016). Rising real wages, mechanization and growing advantage of large farms:
Evidence from indonesia. Food Policy, 58, 62–69.

YANG, S., HE, H., LU, S., CHEN, D. and ZHU, J. (2008). Quantification of crop residue burning in
the field and its influence on ambient air quality in suqian, china. Atmospheric Environment, 42 (9),
1961–1969.

YONGJIAN, Z., JINGU, X., FENGMING, H. and LIQING, C. (2020). Association between short-
term exposure to air pollution and covid-19 infection: Evidence from china. Science of The Total
Environment, p. 138704.

YOUNG, A. (2018). Channeling fisher: Randomization tests and the statistical insignificance of
seemingly significant experimental results. The Quarterly Journal of Economics, 134 (2), 557–598.

ZHANG, T. and WOOSTER, M. (2016). Small fire detection algorithm development using viirs 375m
imagery: application to agricultural fires in eastern china. In EGU General Assembly Conference
Abstracts, vol. 18.

ZHENG, S. and KAHN, M. E. (2017). A new era of pollution progress in urban china? Journal of
Economic Perspectives, 31 (1), 71–92.

126



ZHOU, P., YANG, X.-L., WANG, X.-G., HU, B., ZHANG, L., ZHANG, W., SI, H.-R., ZHU, Y.,
LI, B., HUANG, C.-L. et al. (2020). A pneumonia outbreak associated with a new coronavirus of
probable bat origin. Nature, 579 (7798), 270–273.

ZHU, N., ZHANG, D., WANG, W., LI, X., YANG, B., SONG, J., ZHAO, X., HUANG, B., SHI,
W., LU, R. et al. (2020). A novel coronavirus from patients with pneumonia in china, 2019. New
England Journal of Medicine.

ZIMMERMANN, L. (2013). Why guarantee employment? evidence from a large indian public-works
program. Unpublished manuscript.

127



Appendix A

Appendix to Chapter 1

A.1 Model proofs

Proposition 1:

By assumption:

1. G(L) and F(L) are continuous

2. F(L) > G(L) for all L

3. 0 < F
′
(L) < G

′
(L)

4. F
′′
(L) < 0, G

′′
(L) < 0

5. F
′−1(x) < G

′−1(x)

Farmers face the adoption condition AF
(

L
)
− wL −

[
AG

(
L
)
− wL

]
= K. Solving for A and

substituting for farmers optimal labor choices in F and G yields the equation for Â in the text:

Â =
K − wL∗ + wL∗∗

F(L∗∗)− G(L∗)

The assumptions above imply F(L∗∗)− G(L∗) > 0 and that wL∗∗ − wL∗ < 0 so it is clear that Â

is increasing in K and decreasing in w.
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To see that Â is unique note that:

1. ∂πF/∂A > ∂πG/∂A and ∂2πF/∂A∂A = ∂2πG/∂A∂A

2. K is weakly positive so that there exists some A where πF ≤ πG.

Then by the intermediate value theorem there exists a Â that defines the point at which farmers are

indifferent between F(L) and G(L) and it is unique. That also implies, because e is monotonically

increasing in the number of farmers who choose F(L), that e is decreasing in Â.

Proposition 2:

By assumption:

1. A = AD + µ

2. µ has a constant single-peaked distribution H(µ) with mean zero

3. Â is everywhere greater than AD

Since the level of pollution is increasing in the number of farmers above Â the level of pollution e

in any given district D will be a function of the distribution of µ and Â such that e ≡ e(1− H[Â]). As

AD approaches Â from below for a constant distribution of µ the area 1 − H(Â) is strictly increasing.

Further, I’ve shown that Â is declining in w. Assume some increase in w that results in an ε shift

down in Â. Then for a AD < AD′ , for a single peaked distribution, H(1 − [Â − ε], AD)− H(1 −

Â, AD) < H(1 − [Â − ε], AD′ )− H(1 − Â, AD′ ) so the change in pollution moving from Â to

Â − ε is increasing in AD.

A.2 Fires and agriculture

Fire has been used by humans to manage landscapes for at least 40,000 years (Pyne and Goldammer,

1997) and in the cultivation of corn for at least 5,000 years (Rue et al., 2002). Sediment cores indicate

that fire was used to manage agricultural fields in India at least 600 years ago (Morrison, 1994). The use

of fires in agriculture is still widespread today in both developed and developing countries. Historically
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fires were used to clear land for planting in a swidden (“slash-and-burn") style of agriculture and its

use evolved over time to include preparing fields for harvest and clearing residue to prepare fields for

re-planting (Pyne, 2019).

Analysis of satellite imagery suggests that there are roughly 1.5 million fires annually with the

largest number in Russia (Korontzi et al., 2006). The widespread use of fires in Russia, Eastern Europe

(namely the Ukraine) and North America mean that in absolute terms fire use in agriculture is more

common in the developed world than the developing world (Cassou, 2018). On a per hectare basis,

however, African countries are the most frequent users of fire. This is in part due to declines in recent

years in the use of fires in North America and the European Union (Marlon et al., 2008), driven in

part by increasing regulation around the practice. It should be noted, however, that the use of fires

to clear crop residue was widespread in California and Western Canada until the mid-1990s when

increasing concerns over air pollution led to regulation to eliminate the practice (Cassou, 2018).

A.2.1 Agricultural mechanization in India and fires

Rice, wheat, and sugarcane are the three crops most associated with the use of fire on cropland in India.

Of these, the harvest of rice and wheat can be mechanized using existing technology present in India

(Yadav, 2007; Solomon, 2016). Mechanizing the rice and wheat harvest is done using combines, which

data from the Agricultural Input Survey shows are present throughout India prior to the implementation

of NREGA but tend to be present at higher levels in areas with higher use of fire.

The relationship between mechanization and the use of fires is driven by the fact that harvesting with

a combine leaves more residue on the field than harvesting by hand (Yang et al., 2008). Specifically,

combine harvesting leaves stocks that tend to be around 30-40cm as opposed to the 10-15cm that

harvesting by hand leaves. The higher stalks interfere with the ability of farmers to plant the following

season’s crops and must be removed to facilitate planting (Jain et al., 2014; Smil, 1999; Cassou, 2018;

Bhuvaneshwari et al., 2019).1 Burning is the least expensive way of dealing with this residue (Cassou,

2018), as interviews with farmers indicate: “Ankit Choyal Jat...offers an answer. ’If I can clear my

1No-till agriculture is an alternative to clearing the residue after a combine harvest. In this practice the standing residue
is plowed back into the field. However, it requires specialized planting equipment that is both expensive and not widely
present in India (Jain et al., 2014; Bhuvaneshwari et al., 2019).
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farm using a one-rupee matchbox, why will I spend thousands? (Jitendra et al., 2017)’

While combines were used in harvesting prior to the implementation of NREGA, the shock that

NREGA provided to agricultural labor markets may have led to a substantial increase in their use.

The only existing study of the impact of NREGA on agricultural production processes that I am aware

of Bhargava (2014) shows that the use of labor saving animal-based production processes increased

after the implementation of NREGA. Data from the Agricultural Input Survey shows a substantial

increase in the average number of combines from 2006 to 2011 (figure A.1) – an increase that is

much larger both in absolute and percentage terms than the increase from 2001 to 2006. Such an

increase is consistent with broad state level trends from the Cost of Cultivation survey that show a

decline in the amount of labor used in agriculture and an increase in the amount spent on machine

inputs to production over the period that NREGA was implemented.

The notion that farmers responded to the impact of NREGA on agricultural labor markets by

mechanizing is supported by their own statements as well. Media interviews with farmers from areas

that have seen the largest increase in burning frequently include quotes like the following (Jitendra

et al., 2017):

Hari Ram Karore, a 71-year-old farmer who owns more than 10 hectares (ha) in the same village,
says, We started using combine harvester machines to tide over the labour scarcity. The machine
finishes the task of reaping, threshing and winnowing in a few hours and is also economical, he
adds.
Residents of villages around Kota say that mechanisation has killed the practice of using wheat
stalk and straw as fodder, and burning is the only way out. The cuttings left by the machines are
too sharp. Not only do they injure us, even animals find it difficult to graze on, says Shital Devi.

These quotes are supported by more formal work interviewing farmers (FLA, 2012) that indicates

farmers believe the supply of unskilled agricultural labor has declined as a result of NREGA. This is

consistent with survey data from the 2011 India Human Development Survey that suggests a large

share (≈33%) of surveyed villages believe there to be fewer agricultural laborers than in the past and

individual households report a 30% decline in the hours worked in agriculture. Fewer households in

the IHDS report traveling for work after NREGA as well.

Broadly, the hypothesis that NREGA may have reduced the supply of unskilled labor to agriculture

is consistent with the existing literature on its impacts Imbert and Papp (2014, 2015) that show small
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reductions in labor in the private sector and possible reductions in migration. The estimated effects

in the literature are smaller than those suggested by interviews with farmers but Asher and Novosad

(2018) suggest that survey-based estimates of the amount of labor in agriculture may underestimate the

impacts of policies because of respondents misunderstanding the intention of the questions. Reductions

in the supply of agricultural labor in response to NREGA are also consistent with the documented

increase in local consumption and the effect that this has on local labor markets measured by Emerick

(2018). It is also true that the research on NREGA has not reached a conclusion about its overall

impact on the share of labor in agriculture, the productivity of that labor, or the production practices

employed in agriculture (Sukhtankar, 2016). These remain important areas of research.

FIGURE A.1: PRESENCE OF COMBINES OVER TIME

NOTES: The average number self-powered combines
by district over time. Data scrapped from the Indian
Agricultural Input survey conducted in 2001, 2006 and
2011. The dashed lines indicate the phases of NREGA.
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A.3 NREGA details

A.3.1 A brief history of Indian workfare

The NREGA program is the latest in a succession of work-based anti-poverty programs in India

dating back to at least the British Raj (Imbert and Papp, 2015). The most notable program prior

to NREGA was the Maharashtra Employment Guarantee Scheme (MEGS) introduced in 1977 by

the Government of Maharashtra (Shah and Mehta, 2008). MEGS was not a national program but

much of the design of MEGS was incorporated into NREGA. Like NREGA the aim of MEGS was to

provide employment to rural residents, focused on labor-intensive work, and targeted the formation

of public goods. The number of person-days of work that it generated reached an early peak 1980

and declined through the 1990s before climbing again through the early 2000s. Variation in the number

of person-days supplied through MEGS appears to be tied to changes in the wage schedule and declines

in the level of activist support for the program (Shah and Mehta, 2008). Of particular relevance to

this study and NREGA, estimates suggest that MEGS increased agricultural labor wages by around

18%(Gaiha, 1997).

After independence, the national government experimented with a number of national rural

workfare programs. A series of small-scale and pilot programs in the 1960s and 1970s were rolled

into the national Food for Work Programme (FWP) in 1977. Despite receiving significant investment,

there is little evidence that the FWP had a meaningful impact on reducing rural unemployment, due, at

least in part, to poor implementation and exclusion of the poorest citizens (Deshingkar et al., 2005).

The FWP became the National Rural Employment Program in the 1980s. In 2001, the Sampoorn

Grameen Rozgar Yojana (SGRY) program combined this with several existing poverty alleviation

programs and rural infrastructure programs to consolidate effort and provide additional employment,

food security, and infrastructure in rural areas (GOI, 2007). Wages were paid in a combination of

cash and food supplies. By 2008 the SGRY program had been fully merged with NREGA.
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A.3.2 Details of NREGA

The law creating NREGA was passed in September 2005 and the program was implemented in the

first districts in February 2006. Figure A.2 shows the districts included in each phase. I map districts

on 2001 geographies and apportion all data to the districts as they existed in 2001.

To participate in NREGA households obtain job cards from their local districts and then are able

to apply for work whenever they would like. The district office is to provide work within 5 km of

their house within 15 days of receiving their applications. The district must pay an unemployment

allowance in cash if they fail to provide employment. Wages are to be paid at a statutorily set minimum

wage that is not less than 60 Rs/day.

NREGA project lists are prepared at the district level and projects must be in one of the permitted

categories. Those are: water conservation, drought proofing, flood protection, land development, minor

irrigation, and rural connectivity (GOI, 2007).2 All projects must have a ratio of labor expense to

material expense of at least 60/40 and the use of contractors and machinery is not allowed.3 The

cost of NREGA is split between the central government and state governments but, crucially, the full

cost of unskilled labor is borne by the central government. State governments bear none of the cost

of unskilled labor and 25% of the cost of skilled labor and materials, giving states an incentive to

prioritize projects that use a greater share of unskilled labor.

The scale of the program is remarkable. It is generally agreed that NREGA is the largest work-

fare/rural poverty reduction program in the world (Ambasta et al., 2008). By 2014, 121 million job

cards had been registered. In 2009-2010 there were 2.8 billion person-days of work conducted under

the program (Sukhtankar, 2016). Participation appears to have grown steadily from implementation

in 2006 to around 2013. Roughly 11% of the world’s population is covered by the program(Niehaus

and Sukhtankar, 2013). In principle, NREGA marked a shift from existing anti-poverty programs by

being demand, as opposed to supply, driven (GOI, 2007). In practice, implementation challenges and

2This work can occur on private land if it is owned by a member of a scheduled caste or tribe. The operational guidelines
of NREGA were modified in 2009 to allow for work to also be conducted on private land if the total holdings of the owner
placed them in the “small" or “marginal" categories and the owner participated in the work GOI (2009).

3The use of contractors and machinery was understood to be an obstacle to the effectiveness of previous programs in
providing pro-poor benefits (Ambasta et al., 2008).
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state capacity may have limited the extent to which it was able to fully meet demand (Sukhtankar,

2016; Niehaus and Sukhtankar, 2013). By March 2007, demand for work exceeded supply in at least

30% of the states with significant demand (GOI, 2007). Despite this, NREGA provided an average

of three times the number of person-days of employment in its first years as SGRY provided in its final

years.

FIGURE A.2: MAP OF NREGA DISTRICTS BY PHASE OF ROLL-OUT

NOTES: Indian districts are mapped by their NREGA
phase. Phase one districts received NREGA in February
2006. Phase two received it in April 2007. Phase 3
received it in April 2008.
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A.4 Measurement error and my estimates

There are at least three types of measurement error present in my measurement of cropland fires. The

first is introduced by the presence of cloud cover, which makes it difficult for satellites to measure the

presence of fires. The presence of clouds therefore leads me to systematically under count the true

number of fires. This will attenuate my estimates towards zero. To see this consider the a district that

has 5 “true" fires prior to treatment and 7 fires after treatment. In that case the “true" treatment effect

is an increase of 2 fires. Now consider the case with a constant level of cloud cover that reduces my

counts of fire by 50%. Now I measure 2.5 fires prior to treatment and 3.5 fires after treatment and

estimate that treatment increased fires by only 1 fire. The same attenuation would exist in the case of

a negative treatment effect.

The second case relates to the fact that widespread fire use can lead to the creation of clouds

(Fromm et al., 2010; Gatebe et al., 2012; Jain et al., 2014). This will exacerbate the attenuation

described above because it suggests I under count fires by more when there are more fires. In the

example above it suggests that clouds lead to counting 2.5 fires prior to treatment but, due to increased

cloud cover driven by the increase in fires, I only count 3 fires after treatment and therefore estimate

that treatment only increased fires by 0.5.

The final source of measurement error is due to the large resolution of MODIS. As I discuss below,

MODIS under counts the number of fires because its resolution is 1 square kilometer and it cannot

distinguish between pixels with 1 or 10 fires. The impact of this measurement error is more ambiguous

than the previous two but recent work suggests it may also lead to attenuation (Abay et al., 2019).

A.5 The Andhra Pradesh NREGA improvement RCT

Figure A.3 shows the spatial distribution of treated and control subdistricts from the RCT in Muralidha-

ran et al. (2017) (MNS). Treated subdistricts received treatment following the completion of baseline

surveys in June of 2010. Buffer subdistricts received treatment following treated subdistricts and meant

that there was at least a two year gap between the treatment of the treated and control subdistricts.

In table A.1 I replicate the balance table from MNS showing balance across treated and control
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FIGURE A.3: MAP OF MNS TREATED AND CONTROL SUBDISTRICTS

NOTES: This map replicates the map of treatment shown
in the appendix of Muralidharan et al. (2017). It shows
the treated, control and buffer subdistricts of the RCT
that improved the implementation of NREGA by pro-
viding biometric smart bank cards to participants as
described in Muralidharan et al. (2017) and Muralid-
haran et al. (2016).
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subdistricts on socio-economic covariates. Column 3 reports the coefficient from a regression of

treatment on the named covariate in a linear regression with state fixed effects.

In table A.2 I report summary data for the average number of pre-NREGA fires by subdistrict

across all of India an the treatment and control subdistricts in the MNS RCT. I also report pre-NREGA

levels of several covariates that are important in predicting fires. Except for monthly fires and average

share of crop coverage all variables are reported at the district level for the All of India sample and at

the subdistrict level for the MNS sample due to data limitations.

A.6 All of India compared to Andhra Pradesh

Figure A.4 shows the distribution of pre-NREGA fires in Andhra Pradesh and the MNS sample. I

use the same scale as in figure 1.1 in the main text so the figure is exactly analogous to the figure

showing the distribution of pre-NREGA fires across all of India. Subdistricts that are included in the

MNS RCT are outlined, in black for treated subdisricts and blue for control subdistricts.

There are two main takeaways from figure A.4. The first is that the frequency of fires is lower in

Andhra Pradesh than in the states of India with the most fires. This confirms the results in figure 1.2

that show Andhra Pradesh is near the median state in the number of pre-NREGA fires. The second

is that the subdistricts included in the MNS sample are, broadly, not the same subdistricts in which

fires most frequently occur in Andhra Pradesh but in the majority of the MNS sample districts fires

are present. Further, the treated and control subdistricts appear roughly balanced on the frequency of

fire.

A.7 Relationship between MODIS and VIIRs fire detection

VIIRs is similar to the MODIS platform in that it is a source for satellite based imagery. However,

VIIRs is newer than MODIS, with the imagery available starting in 2012, and has higher resolution.

The lack of data prior to 2012 means I cannot use VIIRs for the primary analysis.

VIIRs and MODIS are able to detect roughly the same size fires but VIIRs provides data at a much

finer pixel resolution than MODIS. VIIRs resolution is roughly 375m compared to 1km for MODIS.
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TABLE A.1: BALANCE TABLE

Treatment Control Difference p-value

(1) (2) (3) (4)

(A) Numbers based on official records from GoAP in 2010
% population working .53 .52 .0072 .41
% male .51 .51 .00043 .67
% literate .45 .45 .0034 .72
% SC .19 .18 .0019 .85
% ST .1 .12 -.014 .48
Jobcards per capita .54 .55 -.0074 .72
Pensions per capita .12 .12 .0012 .76
% old age pensions .48 .49 -.013 .09
% weaver pensions .0088 .011 -.0018 .63
% disabled pensions .1 .1 .0019 .59
% widow pensions .21 .2 .013** .04

(B) Numbers based on 2011 census rural totals
Population 45697 45600 392 .85
% population under age 6 .11 .11 -.00074 .66
% agricultural laborers .23 .24 -.0048 .61
% female agri. laborers .12 .12 -.0031 .55
% marginal agri. laborers .071 .063 .0078 .16

(C) Numbers based on 2001 census village directory
# primary schools per village 2.9 3.2 -.3 .28
% village with medical facility .67 .7 -.032 .41
% villages with tap water .59 .6 -.0033 .94
% villages with banking facility .12 .16 -.034** .024
% villages with paved road access .8 .82 -.01 .78
Avg. village size in acres 3394 3743 -316 .38

NOTES: I report here baseline characteristics across treated and control subdistricts. Column 3 reports the difference in treatment and control
means. Column 4 reports the p-value on the treatment indicator from simple regressions of the outcome with district fixed effects as the only
controls. The table exactly replicates that found in Muralidharan et al. (2016). They provide the following notes: “A “jobcard" is a household
level official enrollment document for the NREGS program. “SC" (“ST") refers to Scheduled Castes (Tribes), historically discriminated-against
sections of the population now accorded special status and affirmative action benefits under the Indian Constitution. “Old age", “weaver", “dis-
abled" and “widow" are different eligibility groups within the SSP administration. “Working" is defined as the participation in any economically
productive activity with or without compensation, wages or profit. “Main" workers are defined as those who engaged in any economically pro-
ductive work for more than 183 days in a year. “Marginal" workers are those for whom the period they engaged in economically productive
work does not exceed 182 days. The definitions are from the official census documentation. The last set of variables is taken from 2001 census
village directory which records information about various facilities within a census village (the census level of observation). “# primary schools
per village" and “Avg. village size in acres" are simple mandal averages - while the others are simple percentages - of the respective variable
(sampling weights are not needed since all villages within a mandal are used). Note that we did not have this information available for the 2011
census and hence use the 2001 data. Statistical significance is denoted as: *p < 0.10, **p< 0.05, ***p< 0.01."
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TABLE A.2: AVERAGE LEVEL OF COVARIATES PREDICTIVE OF FIRES NATIONALLY AND BY MNS TREAT-
MENT STATUS

All of India MNS Treated MNS Control

Mean SD Max Mean SD Max Mean SD Max

Avg. monthly fires 0.57 2.71 70.38 0.21 0.37 2.22 0.15 0.23 1.00
Avg. share planted in rice 0.32 0.27 0.92 0.32 0.26 1.00 0.30 0.29 0.92
Avg. share planted in wheat 0.17 0.18 0.62 0.00 0.00 0.00 0.00 0.00 0.00
Avg. share planted in sugarcane 0.03 0.07 0.57 0.01 0.03 0.21 0.01 0.02 0.13
Combines in 2005(000s)* 1.35 5.45 64.60 0.02 0.04 0.22 0.02 0.03 0.11
Share of holdings >4 HA 0.30 0.20 0.96 0.25 0.09 0.44 0.27 0.10 0.54
Avg. share of crop coverage 22.00 20.13 84.50 10.79 7.59 40.50 10.82 6.35 30.01

NOTES: Statistics for each covariate are calculated for years prior to NREGA implementation. The all of India sample includes all
districts in India outside of Nicobar and Jammu & Kashmir. The MNS Treated and MNS Control refer to the subdistricts in the RCT
conducted in Andhra Pradesh by Muralidharan et al. (2016) (MNS). Average monthly fires and average share of crop coverage are
calculated at the subdistrict for both the All of India and MNS samples. All the remaining covariates are measured at the district level
for the All of India sample and at the subdistrict level for the MNS sample because of data limitations. The average district in the
MNS sample has 19 subdistricts. Data used to calculate the share planted in each crop in the All of India sample comes from the
ICRISAT meso data (Rao et al., 2012) and is the average over the years 2003-2005. Data used to calculate the share planted in the MNS
sample comes from the Indian Agricultural Census in 2005 and is the level reported for 2005. Data on combines comes from the Indian
Agricultural Input Survey in 2005. For the MNS sample I use the number of tractors reported to the Ministry of Statistics of Andhra
Pradesh as a proxy for the number of combines. This likely overestimates the number of combines in Andhra Pradesh. Data on the share
of holdings >4 HA comes from the Agricultural Census in 2005 for both samples. The share of crop coverage reports the average share
of the subdistrict area that is classified as agricultural on October 31st over the years 2003-2005 in the SEDAC Indian Winter Cropping
dataset (Jain et al., 2017; NASA, 2017b).
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FIGURE A.4: PRE-MNS FIRES

NOTES: The count of fires by subdistrict in the years
prior to implementation of the MNS RCT in Andhra
Pradesh. The subdistricts that participated in the RCT
are outlined. Darker areas had more fires. White ar-
eas have no fires. Data comes from the NASA FIRMS
database.
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Both classify a pixel as having a fire if at least one fire is detected in that pixel. However, the finer

resolution of VIIRs means it is able to count more pixels that contain fires. For example, two fires

located 750m apart within a given square km would be counted as only one fire by MODIS but would

likely be distinguished as two separate fires by VIIRs. Figure A.5 shows clearly that MODIS detects

substantially fewer individual fires than VIIRs.

Korontzi et al. (2006) shows that MODIS and VIIRs are both highly accurate in counting a pixel

that should contain a fire as containing a fire. So while MODIS underestimates fires it does not appear

to mis-classify pixels that include low numbers of fires as non-fire.

FIGURE A.5: MONTHLY FIRES DETECTED BY MODIS AND VIIRS FROM 2012-2017

NOTES: I count the number of fires detected by the
MODIS and VIIRs platforms in each month from 2012-
2017. Each black circle is a month plotted according to
the fires detected by MODIS and VIIRs in that month.
The dashed blue line is the 45◦ line. If MODIS and VIIRs
detected the same number of fires each month would be
on the 45◦ line. The observed distribution suggests that
MODIS undercounts fires relative to VIIRs.
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A.8 Plot size and fire relationship robustness

I show in the main text in figure 1.1 that districts in which a larger share of agricultural land is in

large plots there are more frequent cropland fires. Given the large pixel size of MODIS one might think

this is simply due to the increased likelihood that MODIS detects a fire on a large plot because they are

likely to be larger as a result of the plot size. I can test this prediction by comparing the relationship

between share of agricultural land in large plots and cropland fires detected by MODIS and cropland

fires detected by VIIRs. If the relationship is driven only by the lower resolution of MODIS then the

relationship between size and fires should be weaker when I use fires detected by VIIRs.

Figures A.6a and A.6b show that the relationship appears to be stronger when I use the fires

detected by VIIRs. This suggests that it is not being driven by areas with larger plots having larger

fires that are easier for MODIS to detect.

FIGURE A.6: COMPARISON OF PLOT SIZE AND FIRES RELATIONSHIP BY SATELLITE

(A) MODIS (B) VIIRS

NOTES: Panel a shows the relationship between the number of monthly fires in a district
and the share of farmland in that district in plots greater than 4 hectares when the fires
were detected with the MODIS platform. Panel b shows the same but when the fires were
detected by the VIIRS platform. In both figures the sample period is 2012-2017 and the
sample covers all districts in India. The VIIRS platform can detect fires up to 10x smaller
than the MODIS platform (Zhang and Wooster, 2016).
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A.9 Changes in pollutant concentrations after NREGA implementa-

tion

Because I cannot measure the dispersion of pollutants from biomass burning I do not estimate the causal

effect of NREGA on pollution. Instead, I show that emissions rates are correlated with concentrations

at the district month level. The correlation I measure suggests that an emissions rate ten percent higher

than average has PM2.5 concentrations that are between 0.5% and 0.8% higher than average.

TABLE A.3: CORRELATION BETWEEN EMISSIONS RATES AND CONCENTRATION OF PM2.5

Black Carbon Organic Carbon SO2

Log Emissions Rate 0.08∗∗∗ 0.05∗∗∗ 0.08∗∗∗

(0.005) (0.003) (0.005)
Districts 556 556 556
N 80,064 80,064 73,392

District FE X X X
Weather Controls X X X
Year × Month FE X X X

NOTES: The outcome is the log of the monthly concentration PM2.5 in µg/m3.The coefficient can be interpreted as
the approximate percentage change in concentration for a percentage change in emissions rates. The specification is a
linear fixed effects regression of the form log(PMimy) = βlog(ERimy) + γi + δmy where PMimy is the concentration
of PM2.5 in district i in month m in year y. ERimy is a the rate of emissions of the named pollutant in district i. γi are
district fixed effects while δmy is a year by month fixed effect. γi are district fixed effects while δt is a year by month fixed
effect. N refers to the number of district × months included in each regression. The average number of monthly fires
(the outcome) in the pre-treatment period in each quartile are reported. The sample is a balanced, monthly panel of districts
in India from 2003-2014. Heteroskedasticity robust standard errors clustered at the district level are in parentheses. (*
p<.10 ** p<.05 *** p<.01).

A.10 Cropping patterns across India

Figures A.7a-A.7c show the distribution of planted area in wheat, rice, and sugarcane across India.

I show the annual average in 000s of hectares in each crop over the years 2003-2005. Data comes from

the ICRISAT meso database (Rao et al., 2012).

Wheat production is clearly concentrated in Punjab and along the Indo-Gangetic plain. This

broadly aligns with the areas that have the highest frequency of fires as shown in figure 1.1 in the main

text. The relationship between fires and coupled rice-wheat production is highlighted by comparing
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the map of rice production with the map of wheat production and fires. The districts with the highest

frequency of fires are the districts where high production of rice and wheat appear to overlap. Notably,

there are districts of high wheat production with low rice production and vice-versa, these districts

do not appear to have as high a frequency of fire. Districts with a high area in sugarcane production

also appear to have more frequent fires although the visual correlation is not as strong.

The importance of the coupled rice-wheat production for fire use is brought out more clearly in

figure A.8. Here I show the average share of a subdistrict’s area that is covered in crops on October 31st

where the average is calculated across the years 2003-2005. The area covered by crops is calculated by

NASA from remotely sensed imagery (NASA, 2017b; Jain et al., 2017) and measures not the area of

cropland but the share of a pixel on which crops are actively growing on October 31st each year. This

is not a perfect proxy for areas that engage in coupled rice-wheat production but it captures areas

that are growing rice crops during the post-monsoon season and the visual correlation between these

areas and those that grow wheat in figure A.7a is high. Figure A.8 highlights that areas that appear

to most intensively engage in coupled rice-wheat production are also the areas that have the highest

frequency of fires. Figure A.9 shows that much of AP, and many of the sample subdistricts in MNS

do not appear to engage in coupled rice-wheat production.
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FIGURE A.7: CROPPING PATTERNS IN WHEAT, SUGARCANE, AND RICE ACROSS INDIA

(A) Wheat (B) Rice (C) Sugarcane

NOTES: The average area planted by district annually in 000s of hectares in wheat, rice and sugarcane in the pre-NREGA period from 2003-2005. Data
comes from the ICRISAT meso dataset (Rao et al., 2012).
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FIGURE A.8: AVERAGE CROP COVERAGE ON OCTOBER 31st

NOTES: This figure shows the average share of pixels in
a subdistrict across the areas of India for which data is
available that have crop coverage on October 31st over
the years 2003-2005. Crop coverage is measured by
reflectivity detected by satellite as described in Jain et al.
(2017). Data comes from the Center for International
Earth Science at Columbia University NASA (2017b).

A.11 Event studies for non-fire outcomes

Figures A.10-A.13 show the event studies of NREGA’s impact on the area planted in rice, wheat,

sugarcane and all other crops in 000s of HA. Data comes from the ICRISAT meso dataset (Rao et al.,

2012). In all cases I confirm that the assumption of no differential pre-trends appears to hold. Further,

each shows little to no evidence of an increase in area planted after the implementation of NREGA.

Consistent with the results in table 1.8 rice shows a small increase after NREGA’s implementation

147



FIGURE A.9: AVERAGE CROP COVERAGE ON OCTOBER 31st IN ANDHRA PRADESH

NOTES: This figure shows the average share of pixels in
a subdistrict across Andhra Pradesh is available that
have crop coverage on October 31st over the years 2003-
2005. Crop coverage is measured by reflectivity detected
by satellite as described in Jain et al. (2017). Data
comes from the Center for International Earth Science
at Columbia University NASA (2017b).
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but this decays quickly and is never statistically different from zero. It is distinctly different from the

impact of NREGA on fires that shows initial increases that persist over time.

Figure A.11 suggests NREGA had no impact on area planted in wheat while figure A.12 shows

weak evidence that sugarcane production declines after the implementation of NREGA. A decline

in sugarcane production is consistent with both anecdotal evidence (FLA, 2012) and the model

presented in the main text. That model suggests that facing higher labor costs farmers can either reduce

production or mechanize. However, the technology to mechanize the harvest of sugarcane in India is

not widespread (Yadav, 2007; Solomon, 2016). That suggests that mechanization is not as feasible in

the short-term, which leads farmers to reduce production in the face of higher labor costs (Clemens

et al., 2018).

The area planted in other crops (figure A.13) follows a similar pattern to rice production, showing a

small initial increase that decays. This is consistent with farmers shifting into other, higher value crops

(e.g. cotton) after the implementation of NREGA (Rabotyagov et al., 2014; Gehrke, 2013).

In figure A.14 I show the event study of NREGA’s impact on monthly cropland fires in the first

and fourth quartiles of the mechanization index. This corresponds to the regression results in panel

A and panel D of table 1.7 in the main text. The event study confirms that there is no evidence of

pre-trends within the two quartiles. Further, it shows the same increase in fires in the districts with

the highest score in the mechanization index that are reported in the table 1.7.

In figure A.15 I show the average level of night lights appears to decline initially and then recover

after the implementation of NREGA. This is consistent with the findings in Cook and Shah (2019)

where they find that night lights decline after NREGA implementation in phase 1 and 2 districts but

to increase in phase 3 districts. If one is concerned that may measure of fires is simply identifying

areas with more night lights the decline in night lights after the implementation of NREGA suggests

that measurement error of this type cannot explain my results. I also show in figure A.16 that there

does not appear to be a strong relationship between districts with high night lights and high fires.
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FIGURE A.10: AREA PLANTED IN RICE EVENT STUDY

NOTES: Each point is the estimated ωτ coefficient from

the regression log
(

E
[
Cimy|Ximy

])
= ∑τ∈T ωτYτi +

Wimy + ψi + δmy, where Yτ is an indicator for event-
time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4},
ψi is a district fixed effect , δmy is a month × year fixed
effect and Wimy are weather controls. Cimy is the area
planted in rice in 000s of hectares in month m in year y
in district i. 95% CIs are show in dashed grey lines. The
figure uses the full sample. I pool event years less than
-3 and greater than 4 into those boundary values. The
base year is the year before NREGA is implemented.

A.12 Predictive power of mechanization index

The goal of the mechanization index is to identify areas in which mechanization may be a more viable

option for farmers. While I cannot observe the direct impact of NREGA on mechanization because

of data limitations I do observe combine counts in 2011, five years after the first implementation

of NREGA. As a result, I can test the ability of the mechanization index to predict the number of

combines five years after NREGA’s implementation.

In figure A.17 I show that the mechanization index appears to predict combine levels in 2011

reasonably well. I show the binscatter of the district level count of combines in 2011 and the

mechanization index score calculated based on data from 2003 to 2005. Data on combines comes
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FIGURE A.11: AREA PLANTED IN WHEAT EVENT STUDY

NOTES: Each point is the estimated ωτ coefficient from

the regression log
(

E
[
Cimy|Ximy

])
= ∑τ∈T ωτYτi +

Wimy + ψi + δmy, where Yτ is an indicator for event-
time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4},
ψi is a district fixed effect , δmy is a month × year fixed
effect and Wimy are weather controls. Cimy is the area
planted in wheat in 000s of hectares in month m in year
y in district i. 95% CIs are show in dashed grey lines.
The figure uses the full sample. I pool event years less
than -3 and greater than 4 into those boundary values.
The base year is the year before NREGA is implemented.

from the agricultural input survey. The mechanization index is calculated as described in the main

text. I plot the linear best fit line using all the data in the dashed light blue line. Because there is a clear

outlier in the binscatter I also show the linear best fit line excluding that data in the darker dotted line.

Note that the excluded data is not a single district but rather the binned data for the approximately 30

districts with the highest mechanization index scores and the highest level of combines in 2011.
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FIGURE A.12: AREA PLANTED IN SUGARCANE EVENT STUDY

NOTES: Each point is the estimated ωτ coefficient from

the regression E
[
Cimy|Ximy

]
= exp

(
∑τ∈T ωτYτi +

Wimy + ψi + δmy

)
, where Yτ is an indicator for event-

time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4},
ψi is a district fixed effect , δmy is a month × year fixed
effect and Wimy are weather controls. Cimy is the area
planted in sugarcane in 000s of hectares in month m in
year y in district i. 95% CIs are show in dashed grey
lines. The figure uses the full sample. I pool event years
less than -3 and greater than 4 into those boundary
values. The base year is the year before NREGA is
implemented.

A.13 Effect of NREGA on crop production by mechanization index and

pre-NREGA fires

To verify that the lack of a mean effect on cropping levels is not masking heterogeneity across districts

in cropping responses that is correlated with the mechanization index, and so allowing for changes

in cropping levels to drive the results shown in table 1.7 in the main text, I show that the impact of

NREGA on cropping levels does not vary by the mechanization index in table A.4. Across all crops

and all levels of the mechanization index the results indicate that NREGA has little impact on cropping
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FIGURE A.13: AREA PLANTED IN OTHER CROPS EVENT STUDY

NOTES: Each point is the estimated ωτ coefficient from

the regression log
(

E
[
Cimy|Ximy

])
= ∑τ∈T ωτYτi +

Wimy + ψi + δmy, where Yτ is an indicator for event-
time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4},
ψi is a district fixed effect , δmy is a month × year fixed
effect and Wimy are weather controls. Cimy is the area
planted in all other crops in 000s of hectares in month m
in year y in district i. 95% CIs are show in dashed grey
lines. The figure uses the full sample. I pool event years
less than -3 and greater than 4 into those boundary
values. The base year before is the year NREGA is
implemented.

levels, consistent with the results in table 1.8 in the main text.

There appear to be slight increases in production and area planted of rice in the second quartile

of the mechanization index and slight increases in area planted in the fourth quartile. Sugarcane

shows a slight increase in production in the second quartile as well. However, none of these changes

can explain the pattern of results in the main text where the increase in fires appears to be strongly

concentrated in the districts with the highest mechanization index score.
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TABLE A.4: EFFECT OF NREGA ON CROP PRODUCTION BY MECHANIZATION INDEX

Wheat Rice Sugarcane All Crops
Area Tons Area Tons Area Tons Area Tons

(A) Mech. Index, Q1

Post-NREGA 0.001 0.007 0.017 0.055 -0.009 -0.246∗ 0.003 -0.032
(0.012) (0.017) (0.019) (0.033) (0.033) (0.129) (0.011) (0.038)

Districts
Months 120 120 120 120 120 120 120 120
N 13,224 12,384 16,860 16,860 15,972 15,972 16,860 16,860
Mean

(B) Mech. Index, Q2

Post-NREGA 0.011 0.054 0.070∗ 0.097∗ 0.093 0.204∗∗ 0.005 0.122
(0.056) (0.077) (0.037) (0.053) (0.066) (0.096) (0.021) (0.081)

Districts
Months 111 111 111 111 111 111 111 111
N 8,880 8,760 8,976 8,976 8,112 8,112 9,240 9,240
Mean

(C) Mech. Index, Q3

Post-NREGA -0.031 -0.012 0.006 0.058 0.077 -0.283 0.019 0.103∗∗

(0.042) (0.065) (0.020) (0.043) (0.088) (0.182) (0.015) (0.044)
Districts
Months 108 108 108 108 108 108 108 108
N 12,456 12,096 13,620 13,620 11,988 11,976 13,980 13,980
Mean

(D) Mech. Index, Q4

Post-NREGA -0.044 -0.058 0.023∗ -0.004 0.056 0.024 0.008 -0.033
(0.032) (0.041) (0.012) (0.023) (0.061) (0.100) (0.010) (0.027)

Districts
Months 116 116 116 116 116 116 116 116
N 15,828 15,708 14,724 14,724 15,192 15,072 16,296 16,296
Mean

District FE X X X X X X X X
Year × Month FE X X X X X X X X
Weather Controls X X X X X X X X

NOTES: Each column represents separate regressions. Outcomes for each column are listed in the column headings. Area is measured as area planted in 000s of HA and Tons

measures annual production in Tons. In all columns the base regression is a poisson fixed effects of the form log
(

E
[
Cimy |Ximy

])
= β ∑4

z=1
[
Postimy × Mechiz

]
+ γi + δmy

where Cimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment takes effect in district i. Mechiz is an indicator for
where district i falls in the distribution of the ease of mechanization index. The ease of mechanization index is the sum of a district’s Z score across measures of land concentration,
combine presence and crop types. The mechanization index is calculated based on levels of each component variable in the district prior to 2006. γi are district fixed effects while
δt is a year by month fixed effect. The Ease of Mechanization Index is an index that considers, in NREGA districts, the type of crops planted, the average area of holdings and the
number of combines prior to treatment in a given district. Areas that have larger farms, plant more wheat and/or rice, and have more pre-treatment combines are given higher scores.
In the Andhra Pradesh subdistricts the index omits combines for lack of data. N refers to the number of district × months included in each regression. The sample is a balanced,
monthly panel of districts in India from 2003 to 2014. Heteroskedasticity robust standard errors clustered at the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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A.14 Heterogeneity by mechanization index components

My index of mechanization is the sum of a district’s Z score across several different measures of

how easy it may be to mechanize the harvest in a given district. These are all measured over the

pre-NREGA period from 2003-2005 and are:

1. The share of agricultural land in holdings larger than 4 hectares. I consider this because the

efficiency of harvesting by combines increases as the area of land harvested increases. As

Clemens et al. (2018) shows, mechanization is more efficient at lower levels of labor per unit

land. Larger farms have more available land to spread the labor of operating the combine over.

2. The share of land in marginal holdings. This is not mechanically determined by the share of

land in large holdings because there are several size classes in between marginal and large.

Increasing the share of land in marginal holdings, holding the share in large holdings constant

reduces mechanization. This happens for two reasons. The first is simply the inverse of the

reason mechanization is more frequently used on larger holdings; combines are less efficient

on smaller plots with higher levels of labor per unit land. There is an additional reason why

mechanization occurs less used less on marginal land however. NREGA allows marginal farmers

to use labor from NREGA on projects on their private land (GOI, 2009). While marginal farmers

cannot use NREGA labor on the harvest, to the extent that money is fungible, using NREGA

labor on projects that farmers would have otherwise paid for themselves frees money to pay

for harvest labor.4 Because more land in marginal plots should reduce mechanization I invert

the Z score by multiplying by -1 when I calculate the mechanization index.

3. The number of combines in the district in 2005. Combines are the unit of capital most directly

related to mechanization of the harvest and their use is a primary reason for the increase in the

use of fires (Yang et al., 2008; Bhuvaneshwari et al., 2019; Shyamsundar et al., 2019). Using

combines to harvest leaves more residue on the field than harvesting by hand and it is this

increased residue that interferes with the next season’s planting. Farmers often do not own their

4Fungibility may not be an innocuous assumption in this context if farmers are engaging in any form of mental
accounting.
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own combines but rather rent a combine and operator’s time for a specific harvest (Shyamsundar

et al., 2019). Having more combines at implementation of NREGA facilitates mechanization,

all else equal, by reducing congestion in this rental market.

4. The area planted in rice and wheat. As discussed above, the use of fires is most intense in

areas of coupled rice-wheat production. To account for this I measure the average annual area

planted in rice and wheat.

5. The area planted in sugarcane. Farmers who grow primarily sugarcane do not have the ability

to easily mechanize in India (Yadav, 2007; Solomon, 2016). Areas that have more land planted

in sugarcane should, as a result, see less mechanization than other areas. To account for this I

invert the Z score for sugarcane area by multiplying by -1 before I calculate the mechanization

index.

In table A.6 I show that across each individual component of the mechanization index the use of

fires increases in areas that the component would predict are easier to mechanize. For several of the

components the effect seems to begin after the median, as opposed to only in the top quartile as with

the overall mechanization index, but others follow the same pattern as the overall mechanization index.

The only exception is the area planted in sugarcane. However, this is consistent with the distribution of

districts by the area planted in sugarcane. All districts except the first quartile, the areas with the most

sugarcane production, have essentially no area planted in sugarcane. As a result, the large increases

in fires outside in the second through fourth quartile are consistent with farmers in sugarcane producing

areas not being able to mechanize easily while those in non-sugarcane producing areas are more able

to mechanize the harvest.

A.15 Heterogeneity by mechanization index in the MNS sample

Data limitations restrict my construction of the mechanization index for Andhra Pradesh so my

ability to examine heterogeneity in the response of fires across the mechanization index in the RCT

is constrained. Specifically, I do not have access to data that measures the number of combines in

Andhra Pradesh prior to the implementation of NREGA. This is an important part of the mechanization
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index because the ability to rent time from a combine operator, a primary method of mechanizing in

this context, is facilitated when there are more combines. Despite this, I can construct a measure of

mechanization index that uses the number of tractors to proxy for the number of combines. This is

likely an overestimate of the number of combines in a given district.

Examining heterogeneity across my Andhra Pradesh specific mechanization index using the RCT

sample confirms the results in the main text. While the results are very noisily estimated I see the same

pattern where the only quartile in which fires increase is that in which mechanization is predicted to

be easiest. Despite the noise in the estimates, this is also the only quartile in which the estimate is

statistically different from zero at conventional (10%) levels.

A.16 Changes in agricultural wages after NREGA

Using data from the Indian Agriculture Ministry on wages in specific agricultural occupations across

some Indian states I attempt to replicate the results in Imbert and Papp (2015). I do not find a general

increase in agricultural wages in the sample of states for which I have data (table A.8). When I attempt

to replicate their specification focusing on star states and restricting to districts in phase 1 relative

to untreated districts in phase 3 of NREGA (table A.9) I find increases in the wage of field labor –

perhaps the best approximately of general unskilled agricultural labor – that is consistent with their

results.

There are many potential reasons why I fail to replicate their results. The most likely is a

combination of a small sample - my data on wages is far less comprehensive than theirs with data

on wages in fewer than half the districts in India - and inaccuracies in the collection of wage data.

While my data reports wages by occupation it is collected by the Agriculture Ministry and is likely

less complete and less accurate than the NSS data that Imbert and Papp (2015) uses.
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A.17 Robustness

A.17.1 RGGVY comparison

In 2005 the Indian government rolled out a national program (“Rajiv Gandhi Grameen Vidyutikaran

Yonana" (RGGVY)) intended to electrify those villages that remained un-electrified or were “under-

electrified" (see Burlig and Preonas (2016) for more detail). The program had a similar financing

structure as NREGA – funding came from the Federal government but projects were implemented at

a local level. Crucially, funding was dispersed under two different five year plans, the 10th and the

11th and not all districts receive funding under both.

In order to receive funding a State had to submit a district specific proposal to the Rural Electrifica-

tion Corporation (REC), overseen by the Ministry of Power. Proposals were reviewed by the REC

and funds were disbursed by them on approval.

Submitting a proposal was a costly act by the state, requiring surveys, and a detailed village-by-

village implementation plan indicating which households and public places were to be electrified

(Burlig and Preonas, 2016). Performing this costly action earlier or faster may be an indicator of

a government’s ability to effectively implement programs. Under that assumption, districts that received

funding in the 10th Five Year plan may be more effective at implementing government programs than

those that did not. However, this assumption may not be valid. It may have been the case that lower

capacity or less developed districts were specifically targeted by the REC for assistance in putting

together their applications in order to facilitate participation in the 10th five year plan. In that case,

participation in the earlier round of funding may indicate lower government capacity. There are a

number of reasons district government capacity might impact the fire response to NREGA. One is

simply that if higher capacity districts can better implement NREGA the labor market shock may be

larger (Imbert and Papp, 2015).

I divide districts into those that receive funding under RGGVY in the 10th Five Year Plan and the

11th Five Year Plan (districts that receive funding in both are included in the 10th). I show a map of

these districts in A.18. I then run the primary specification described in equation 1 of the main text

on each sub-sample.
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The results in table A.10 indicate no difference in the impact of NREGA on fires between the

early implementing and late RGGVY implementing districts. This is consistent with what Burlig

and Preonas (2016) find in measuring the direct impacts of the program.5 I also find no evidence of

a direct effect of the RGGVY program on fires. This is not evidence that government capacity did

not impact the implementation of NREGA - in part due to the lack of certainty around how district

participation in each phase of the RGGVY program was determined in practice - but it is reassuring

that I do not find substantial differences in the impact of NREGA on fires based on the timing of an

unrelated government program.

A.17.2 Placebo tests

To ensure that the results I report in the main text are not due to underlying differences in districts

that are correlated with the implementation timing of NREGA by chance I run a placebo test where I

maintain the order of treatment but move it forward in time by two years for all districts. As a result,

phase 1 districts are treated in 2004, phase 2 in 2005 and phase 3 in 2006. As I report in table A.11

I find no treatment effect in this placebo treatment. That suggests that my results are not driven by

differences in districts across phases that are correlated with the treatment timing.

A.17.3 Randomization test

As a further test of the robustness of the main results I conduct something similar to a randomization

inference test on the full, national implementation of NREGA. I keep the timing of implementation

the same (i.e. phase 1 districts receive NREGA in February 2006) but I randomly assign districts

to phases. This imposes a null hypothesis of no effect of program implementation. I then run the

primary specification, with weather controls, 1,000 times and plot the distribution of the estimated

impact of NREGA implementation in figure A.19.

Comparing the distribution of estimated effects under the null of no effect to the effect I estimate in

table 1.3 in the main text (shown in the dashed red line in figure A.19) shows that it is highly unlikely

5They find no differential effects by early or late. However, while they find very strong increases in the rate of
electrification and use of electricity they find negligible effects on several measures of income and economic activity.
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the effect I estimate is due to chance assignment of districts to phases. The implied p-value on my

estimated effect from this randomization exercise is < 0.001.

A.17.4 Changing timing of harvest

I find some evidence that the timing of the kharif harvest shifts over time from October to November

(figures A.20 and A.21). Some have argued that shifting the kharif harvest to later in the year is

the primary cause of the increased pollution from crop fires in Delhi in December in January. This

occurs because of a shift in wind patterns in early December that cause more pollution to be blown

from Punjab to Delhi. I cannot rule this out as a potential cause of the increase in pollution in Delhi.

However, the major increase in fires occurs in the post-rabi harvest. This can clearly be seen in the

monthly patterns. The timing of fires shifts during the kharif harvest but there is no evidence that

the overall number of fires declines. Further, as table 1.3 shows, NREGA substantially increases

pollution within districts. Thus, while the increase in Delhi’s pollution is likely due to many causes

there is still clear evidence that NREGA increases the frequency of cropland fires.

160



FIGURE A.14: MECHANIZATION INDEX EVENT STUDY

NOTES: Each point is the estimated ωτ coefficient from

the regression log
(

E
[
Fimy|Ximy

])
= ∑τ∈T ωτYτi +

Wimy + ψi + δmy, where Yτ is an indicator for event-
time year τ in the set T = {−3,−2,−1, 0, 1, 2, 3, 4},
ψi is a district fixed effect , δmy is a month × year fixed
effect and Wimy are weather controls. Fimy is number
of cropland fires in month m in year y in district i. 95%
CIs are show in dashed grey lines. I run the regression
separately on districts in the first quartile of the mecha-
nization index, areas where mechanization is predicted
to be more difficult, and the fourth quartile, areas where
mechanization is predicted to be easier, to generate each
line. The figure uses the full sample. I pool event years
less than -3 and greater than 4 into those boundary
values. The base year is the year before NREGA is
implemented.
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FIGURE A.15: NREGA’S IMPACT ON AVERAGE NIGHT LIGHTS EVENT STUDY

NOTES: Each point is the estimated ωτ coefficient from
the regression Limy = ∑τ∈T ωτYτi + ψi + δy, where
Yτ is an indicator for event-time year τ in the set T =
{−3,−2,−1, 0, 1, 2, 3, 4}, ψi is a district fixed effect ,
δy is a year fixed effect. Liy is average of the night lights
in year y in district i. 95% CIs are show in dashed grey
lines. Data on night lights comes from (Asher et al.,
2019). The figure uses the full sample. I pool event years
less than -3 and greater than 4 into those boundary
values. The base year is the year before NREGA is
implemented.
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FIGURE A.16: SCATTER OF DISTRICTS BY FIRES AND TOTAL NIGHT LIGHT LUMINOSITY

NOTES: The scatter of monthly fires and the total annual
luminosity of a district as reported in Almås et al. (2019).
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FIGURE A.17: ABILITY OF MECHANIZATION INDEX TO PREDICT COMBINE LEVELS IN 2011

NOTES: The binscatter of mechanization index against
the average number of combines by district in 2011.
Higher values of the mechanization index indicate that
mechanization was expected to be easier in that district.
The mechanization index is calculated based on data
from 2003-2005. The average number of combines by
district in 2011 is collected by scraping the Agricultural
Input Survey data for 2011. The lighter dashed line
is the OLS best fit line including the districts with the
highest mechanization score and the greatest number
of combines. The darker dotted line is the same OLS
best fit line excluding the 30 districts with the highest
mechanization index and highest number of combines in
2011.
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TABLE A.5: EFFECT OF NREGA ON CROP PRODUCTION BY PRE-NREGA FIRES

Wheat Rice Sugarcane All Crops
Area Tons Area Tons Area Tons Area Tons

(A) Quartile 1 of
pre-treatment fires

Post-NREGA -0.013 0.086∗∗ 0.029 0.064 0.045 0.124 0.031∗∗ 0.009
(0.028) (0.039) (0.021) (0.045) (0.082) (0.195) (0.013) (0.045)

Districts 99 99 107 107 99 98 118 118
Months 144 144 144 144 144 144 144 144
N 10,608 10,608 11,640 11,640 10,932 10,812 12,864 12,864

(B) Quartile 2 of
pre-treatment fires

Post-NREGA -0.019 -0.024 0.002 0.043 0.013 0.213 -0.011 -0.004
(0.026) (0.041) (0.013) (0.040) (0.069) (0.203) (0.012) (0.036)

Districts 112 103 123 123 111 111 126 126
Months 144 144 144 144 144 144 144 144
N 12,660 11,580 13,872 13,872 12,816 12,804 14,244 14,244

(C) Quartile 3 of
pre-treatment fires

Post-NREGA -0.000 0.046 0.028 0.084∗ 0.017 -0.156 0.011 0.039
(0.050) (0.069) (0.025) (0.043) (0.061) (0.199) (0.016) (0.050)

Districts 108 106 111 111 104 104 114 114
Months 144 144 144 144 144 144 144 144
N 12,468 12,228 12,804 12,804 12,180 12,180 13,164 13,164

(D) Quartile 4 of
pre-treatment fires

Post-NREGA 0.022 -0.004 0.015 -0.002 0.042 0.031 0.004 0.060∗

(0.041) (0.041) (0.018) (0.028) (0.079) (0.086) (0.010) (0.033)
Districts 122 121 132 132 128 128 134 134
Months 144 144 144 144 144 144 144 144
N 14,652 14,532 15,864 15,864 15,336 15,336 16,104 16,104

District FE X X X X X X X X
Year × Month FE X X X X X X X X
Weather Controls X X X X X X X X

NOTES: The outcome is the total area planted and tons produced of each crop. The coefficient can be interpreted as the approximate percentage change after NREGA was statutorily

implemented in a district. The sample is all districts in India that were part of the NREGA program. The specification is a fixed effects Poisson of the form log
(

E
[
Cimy |Ximy

])
=

β ∑4
z=1

[
Postimy × Pre − Firesi f

]
+ γi + δmy where Cimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment takes

effect in district i. Pre-Firesi f is an indicator for where district falls in the distribution of total pre-NREGA fires. γi are district fixed effects while δmy is a year by month fixed effect.
Each panel is a different quartile of pre-NREGA fires with Q4 corresponding to the largest number of pre-NREGA fires. N refers to the number of district × months included in each
regression. Districts reports districts in each sample. The average number of monthly fires (the outcome) in the pre-treatment period in each quartile are reported. The sample is a
balanced, monthly panel of districts in India from 2003 to 2014. All columns include controls for weather in the month the outcome number of fires is measured. Heteroskedasticity
robust standard errors clustered at the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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TABLE A.6: HETEROGENEITY OF TREATMENT IMPACT BY COMPONENTS OF MECHANIZATION INDEX

Share of
land >4HA

Inverted share
of marginal land Combines

Area in
Wheat & Rice

Inverse area
sugarcane

(A)Quartile 1

Post-NREGA 0.166 -0.074 0.111 0.126 0.008
(0.150) (0.178) (0.091) (0.084) (0.070)

Districts 100 100 243 122 123
Months 144 144 144 144 144
N 14,400 14,400 34,992 17,568 17,712

Avg. monthly
fires pre-NREGA 1.73 1.81 2.46 1.93 6.42

(B)Quartile 2

Post-NREGA -0.044 -0.014 0.111 0.119 0.389∗∗∗

(0.111) (0.107) (0.091) (0.080) (0.120)
Districts 100 100 243 123 123
Months 144 144 144 144 144
N 14,400 14,400 34,992 17,712 17,712

Avg. monthly
fires pre-NREGA 4.21 3.58 2.46 3.57 10.21

(C)Quartile 3

Post-NREGA 0.212 0.351∗∗∗ 0.028 0.209∗∗ 0.333∗∗∗

(0.142) (0.132) (0.120) (0.106) (0.103)
Districts 100 100 103 123 123
Months 144 144 144 144 144
N 14,400 14,400 14,832 17,712 17,712

Avg. monthly
fires pre-NREGA 3.57 3.98 4.15 3.86 4.74

(D)Quartile 4

Post-NREGA 0.289∗∗∗ 0.298∗∗∗ 0.264∗∗∗ 0.176∗∗ 0.266∗

(0.101) (0.102) (0.090) (0.078) (0.154)
Districts 100 100 116 122 121
Months 144 144 144 144 144
N 14,400 14,400 16,704 17,568 17,424

Avg. monthly
fires pre-NREGA 17.08 17.22 14.73 14.68 2.57

District FE X X X X X
Month × Year FE X X X X X
Weather Controls X X X X X

NOTES: The outcome is monthly cropland fires. The coefficient can be interpreted as the approximate percentage change in fires after NREGA was statutorily implemented in a
district. The sample is all districts in India that were part of the NREGA program. The specification is a fixed effects Poisson of the form E

[
Fimy |Ximy

]
= exp

(
β ∑4

z=1
[
Postimy ×

Mechiz
]
+ γi + δmy

)
where Fimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment takes effect in district i. Mechiz

is an indicator for where district i falls in the distribution of the ease of mechanization index. The ease of mechanization index is the sum of a district’s Z score across measures of land
concentration, combine presence and crop types. The mechanization index is calculated based on levels of each component variable in the district prior to 2006. γi are district fixed
effects while δmy is a year by month fixed effect. γi are district fixed effects while δt is a year by month fixed effect. Each panel is a different quartile of the mechanization index
with quartile 4 corresponding to the places mechanization is predicted to be easiest. N refers to the number of district × months included in each regression. Districts reports districts
in each sample. The average number of monthly fires (the outcome) in the pre-treatment period in each quartile are reported. The sample is a balanced, monthly panel of districts in
India from 2003 to 2014. All columns include controls for weather in the month the outcome number of fires is measured. Heteroskedasticity robust standard errors clustered at the
district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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TABLE A.7: HETEROGENEITY OF TREATMENT IMPACT BY EASE OF MECHANIZATION INDEX

Andhra Pradesh

(A)Quartile 1 of Ease of Mechanization Index

Post-NREGA -0.305
(0.231)

Subdistricts T:17 C:8
Months 79
N 2,844
Avg. monthly fires pre-NREGA .35

(B)Quartile 2 of Ease of Mechanization Index

Post-NREGA -0.050
(0.217)

Subdistricts T:20 C:9
Months 88
N 3,432
Avg. monthly fires pre-NREGA .17

(C)Quartile 3 of Ease of Mechanization Index

Post-NREGA -0.637
(0.476)

Subdistricts T:22 C:8
Months 86
N 3,010
Avg. monthly fires pre-NREGA .16

(D)Quartile 4 of Ease of Mechanization Index

Post-NREGA 0.452∗

(0.264)
Subdistricts T:10 C:8
Months 64
N 2,240
Avg. monthly fires pre-NREGA .11

District FE X
Month × Year FE X
Weather Controls X

NOTES: The outcome is monthly cropland fires. The coefficient can be interpreted as the approximate percentage change in fires after NREGA was statutorily implemented in a district.
The sample is the subdistricts in Andhra Pradesh included in the MNS RCT. The specification is a fixed effects Poisson of the form E

[
Fimy |Ximy

]
= exp

(
β ∑4

z=1
[
Postimy ×

Treatedi × Mechiz
]
+ γi + δmy

)
where Fimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after MNS treatment and Treatedi is a

dummy indicating that subdistrict i was among the treated subdistricts. Mechiz is an indicator for where subdistrict i falls in the distribution of the ease of mechanization index within
Andhra Pradesh. The ease of mechanization index is the sum of a district’s Z score across measures of land concentration, tractor presence and crop types. Note this is not directly
comparable to the Z score in the main text because it lacks a measure of combine presence. The mechanization index is calculated based on levels of each component variable in the
subdistrict prior to 2006. γi are district fixed effects while δmy is a year by month fixed effect. γi are district fixed effects while δt is a year by month fixed effect. Each panel is
a different quartile of the mechanization index with quartile 4 corresponding to the places mechanization is predicted to be easiest. N refers to the number of subdistrict × months
included in each regression. Subdistricts reports the treated and control subdistricts in each sample. The average number of monthly fires (the outcome) in the pre-treatment period in
each quartile are reported. T The samples are a balanced, monthly panel of subdistricts in Andhra Pradesh from 2003 to 2012. All columns include controls for weather in the month
the outcome number of fires is measured. Heteroskedasticity robust standard errors clustered at the subdistrict level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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TABLE A.8: EFFECT OF NREGA ON AGRICULTURAL WAGES

Harvesters Field Labor Sowers Weeders Ploughman Carpenters All Ag

Dry-season -0.013 0.018 0.001 0.001 0.001 -0.006 0.004
(0.020) (0.022) (0.020) (0.020) (0.027) (0.027) (0.017)

Wet-season -0.024 0.024 0.010 0.006 0.007 -0.011 0.010
(0.024) (0.024) (0.021) (0.023) (0.032) (0.028) (0.019)

Districts 240 250 231 213 231 258 283
N 5,692 6,367 5,773 5,257 5,706 6,454 7,327

District FE X X X X X X X
Year × X X X X X X X
Month FE

NOTES: The outcome is the log of the monthly wage in the occcupation identified in the column title. The coefficient can
be interpreted as the approximate percentage change in wages in each season after NREGA was statutorily implemented in
a district. The sample is phase 1 and phase 3 districts in the months prior to April 2008, replicating the specification in
citeimbert2015. The specification is a linear fixed effects regression of the form Wimy = Postimy × Seasonmy + γi + δmy
where Wimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA
treatment takes effect in district i. Seasonmy is an indicator for whether the month occurs in the dry (January to June) or
wet (July to December) season. γi are district fixed effects while δmy is a year by month fixed effect. γi are district fixed
effects while δt is a year by month fixed effect. Each panel is a different quartile of the mechanization index with quartile
4 corresponding to the places mechanization is predicted to be easiest. N refers to the number of district × months included
in each regression. Districts reports districts in each sample. The average number of monthly fires (the outcome) in the
pre-treatment period in each quartile are reported. The sample is a balanced, monthly panel. Heteroskedasticity robust
standard errors clustered at the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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TABLE A.9: EFFECT OF NREGA ON AGRICULTURAL WAGES (IP STAR REPLICATION)

Harvesters Field Labor Sowers Weeders Ploughman Carpenters All Ag

Star × Post
× Dry-season -0.047 0.033 -0.010 -0.037 -0.059 0.009 0.009

(0.031) (0.022) (0.029) (0.027) (0.060) (0.032) (0.032)
Star × Post
× Wet-season -0.086∗∗ 0.048∗∗ -0.021 -0.035 -0.058 0.010 0.010

(0.037) (0.023) (0.029) (0.032) (0.071) (0.036) (0.036)
Non-star × Post
× Dry-season -0.002 0.006 0.005 0.016 0.023 -0.015 -0.015

(0.022) (0.031) (0.023) (0.023) (0.027) (0.027) (0.027)
Non-star × Post
× Wet-season -0.002 0.007 0.022 0.022 0.030 -0.025 -0.025

(0.026) (0.033) (0.024) (0.025) (0.031) (0.029) (0.029)
Districts 240 250 231 213 231 258 258
N 5,692 6,367 5,773 5,257 5,706 6,454 6,454

District FE X X X X X X X
Year × X X X X X X X
Month FE

NOTES: The outcome is the log of the monthly wage in the occcupation identified in the column title. The coefficient can
be interpreted as the approximate percentage change in wages after NREGA was statutorily implemented in a district.
The sample is phase 1 and phase 3 districts in the months prior to April 2008, replicating the specification in citeimbert2015.
The specification is a linear fixed effects regression of the form Wimy = Postimy × Seasonmy × Stari + γi + δmy where
Wimy is the outcome in district i in month m in year y. Postimy is a dummy variable equal to one after NREGA treatment
takes effect in district i. Seasonmy is an indicator for whether the month occurs in the dry (January to June) or wet (July
to December) season. Stari is an indicate for whether Imbert and Papp (2015) classify the state of district i as a star state.
γi are district fixed effects while δmy is a year by month fixed effect. γi are district fixed effects while δt is a year by
month fixed effect. Each panel is a different quartile of the mechanization index with quartile 4 corresponding to the
places mechanization is predicted to be easiest. N refers to the number of district × months included in each regression.
Districts reports districts in each sample. The average number of monthly fires (the outcome) in the pre-treatment period in
each quartile are reported. The sample is a balanced, monthly panel. Heteroskedasticity robust standard errors clustered
at the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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FIGURE A.18: RGGVY PHASE 1 DISTRICTS

NOTES: Districts that were included in the first phase
of the RGGVY electrification program are shown here.
The first phase districts are those that received funding
from the program in the 10th Five Year plan. Districts
that receive funding in both phases are included in the
first phase in this figure. The figure is based on data
from Burlig and Preonas (2016).
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TABLE A.10: EFFECT OF NREGA ON BY RGGVY PHASE

Cropland Fires

Post-NREGA, RGGVY Phase 1 0.214∗∗∗

(0.070)
Post-NREGA, RGGVY Non-phase 1 0.213∗∗∗

(0.053)
Districts 558
Months 144
N 80,352

District FE X
Year × Month FE X
Weather Controls X

Notes: Each column represents separate regressions. In all columns the outcome is monthly cropland fires. In all columns
the base regression is a fixed effects Poisson of the form yit = βPost + ψ[Post × NREGA × RGGVYi] + γi + δt where
yit is the outcome in district i in month t. Post is a dummy variable equal to one after NREGA treatment takes effect in
a given phase and NREGA is a dummy indicating the NREGA phase of district i. RGGVY is an indicator for whether
district i was in the first phase of the RGGVY program. γi are district fixed effects while δt is a year by month fixed effect.
In all cases N refers to the number of district × months included in each regression. The sample is a balanced, monthly
panel of districts in India from 2003 to 2012. Heteroskedasticity robust standard errors clustered at the district level are
in parentheses. (* p<.10 ** p<.05 *** p<.01).

TABLE A.11: EFFECT OF NREGA ON FIRES (PLACEBO 1)

Cropland Fires

post 0.032 0.018
(0.048) (0.052)

Districts 558 558
Months 144 144
N 80,352 80,352

District FE X X
Year × Month FE X X
Weather Controls X

Notes: Each column represents seperate regressions. In all columns the outcome is monthly cropland fires. In all columns
the base regression is a fixed effects poisson of the form yit = βPost + ψ[Post × NREGA] + γi + δt where yit is the
outcome in district i in month t. Post is a dummy variable equal to one after NREGA treatment takes effect in a given
phase and NREGA is a dummy indicating the NREGA phase of district i. γi are district fixed effects while δt is a year
by month fixed effect. In columns 2 I include controls for the monthly average cloud cover, precipitation and minimum and
maximum temperature in district i in month t. N refers to the number of district × months included in each regression. The
sample is a balanced, monthly panel of districts in India from 2003 to 2012. Heteroskedasticity robust standard errors
clustered at the district level are in parentheses. (* p<.10 ** p<.05 *** p<.01).
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FIGURE A.19: DISTRIBUTION OF ESTIMATED IMPACT COEFFICIENT WITH RANDOM NREGA ASSIGNMENT

NOTES: The distribution of the β coefficient from the
primary specification in the paper under the random
assignment of NREGA phase to districts. The dashed
vertical line is the actual estimated coefficient in the
paper. I randomly assign districts to be in phase 1, 2,
or 3 of NREGA and re-estimate the primary specification,
with weather controls, 1,000 times to get the distribution
under random assignment. This is in the spirit of a
randomization inference exercise. I can reject the null
of no effect with a p< 0.001.
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FIGURE A.20: MONTHLY PATTERN OF FIRE USE PRE- AND POST-NREGA

NOTES: The monthly pattern of fires averaged over
all districts pre- and post-NREGA. Implementation of
NREGA is measured at the district level. The count of
fires by month by district is averaged over the pre- and
post-NREGA period for that district. Data comes from
the NASA FIRMS database.
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FIGURE A.21: MONTHLY PATTERN OF FIRE USE OVER TIME

NOTES: The monthly pattern of fires averaged over all
districts by each year in the sample. The count of fires
by month by district is averaged over within each year.
Lighter lines indicate earlier years. Data comes from
the NASA FIRMS database.
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Appendix B

Appendix to Chapter 2

TABLE B.1: OTHER POLLUTION EXPOSURE AND COVID19 MORTALITY

NH4 SO3 NO3

Avg. NH4, 2008-2017 0.017
(0.015)

Avg. SO3, 2008-2017 -0.018
(0.014)

Avg. NO3, 2008-2017 0.013∗∗∗

(0.005)
N 3,096 3,096 3,096

State FE X X X
LASSO Controls X X X

NOTES: The outcome in each column is the change in the level of the pollutant specified in the column heading.LASSO
controls include controls for the number of days since the first reported case, mortality rates from diabetes and obesity,
population density, levels of health insurance, the racial and age makeup of a county, and days since the county experience a
lockdown as well as post-lockdown activity levels. Heteroskedasticity robust standard errors are in parentheses (* p<.10
** p<.05 *** p<.01).
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TABLE B.2: INSTRUMENTAL VARIABLE RESULTS - LIML

LN1+ LN1+ IHS IHS

Avg. PM2.5, 2008-2017 0.121∗∗ 0.111∗ 0.148∗∗ 0.138∗∗

(0.056) (0.058) (0.067) (0.070)
N 3,097 3,097 3,097 3,097

State FE X X X X
LASSO Controls X X X
NAAQS Controls X X

NOTES: The outcome in columns 1-2 is the log of deaths+1 in a county as of April 19th. In column 3-5 it is the inverse
hyperbolic sine. In all columns we estimate a LIML model rather than 2SLS. Coefficients should be interpreted as the
percent change in deaths for a one unit change in annual average PM2.5 from 2008 to 2017. At the mean a one unit
change in PM2.5 represents a 12% change in PM2.5. LASSO controls include controls for the number of days since the
first reported case, mortality rates from diabetes and obesity, population density, levels of health insurance, the racial
and age makeup of a county, and days since the county experience a lockdown as well as post-lockdown activity levels.
Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05 *** p<.01).

TABLE B.3: INSTRUMENTAL VARIABLE RESULTS - GMM

LN1+ LN1+ IHS IHS

Avg. PM2.5, 2008-2017 0.118∗∗∗ 0.111∗∗ 0.147∗∗∗ 0.137∗∗

(0.046) (0.047) (0.056) (0.058)
N 3,097 3,097 3,097 3,097

State FE X X X X
LASSO Controls X X X X
NAAQS Controls X X

NOTES: The outcome in columns 1-2 is the log of deaths+1 in a county as of April 19th. In column 3-5 it is the inverse
hyperbolic sine. In all columns we estimate a two stage GMM model rather than 2SLS. Coefficients should be interpreted
as the percent change in deaths for a one unit change in annual average PM2.5 from 2008 to 2017. At the mean a one
unit change in PM2.5 represents a 12% change in PM2.5. LASSO controls include controls for the number of days since
the first reported case, mortality rates from diabetes and obesity, population density, levels of health insurance, the racial
and age makeup of a county, and days since the county experience a lockdown as well as post-lockdown activity levels.
Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05 *** p<.01).
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TABLE B.4: INSTRUMENTAL VARIABLE RESULTS WITHOUT NYC OR KC

LN1+ LN1+ IHS IHS

Avg. PM2.5, 2008-2017 0.103∗∗ 0.092∗ 0.128∗∗ 0.116∗

(0.048) (0.049) (0.058) (0.060)
N 3,095 3,095 3,095 3,095

State FE X X X X
LASSO Controls X X X X
NAAQS Controls X X

NOTES: The outcome in columns 1-2 is the log of deaths+1 in a county as of April 19th. In column 3-5 it is the inverse
hyperbolic sine. In all columns we exclude NYC and Kansas City due to the way the NYT aggregates data in these cities.
Coefficients should be interpreted as the percent change in deaths for a one unit change in annual average PM2.5 from 2008
to 2017. At the mean a one unit change in PM2.5 represents a 12% change in PM2.5. LASSO controls include controls
for the number of days since the first reported case, mortality rates from diabetes and obesity, population density, levels
of health insurance, the racial and age makeup of a county, and days since the county experience a lockdown as well as
post-lockdown activity levels. Heteroskedasticity robust standard errors are in parentheses (* p<.10 ** p<.05 *** p<.01).
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FIGURE B.1: RANGE OF HYDRAULIC FRACTURING’S ECONOMIC SHOCK

NOTES: We replicate the wage results in Figure 3 of
Feyrer et al. (2017). They examine how the economic
shock of hydraulic fracturing propagates through space.
Diamonds indicate the coefficients from a regression of
the one year change in wages on the total value of new
production aggregated within circles with radii indicated
by the mileage counts on the x-axis. 95% CIs are show
in light grey. The key result is that the economic impact
of new wells appears to decline to zero at 100 miles from
the well location.
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FIGURE B.2: FIRST STAGE BY BANDWIDTH

NOTES: Each point represents the average impact of
closing a coal fired power plant in any of the four quad-
rants estimated from our first stage regression using a
range of different distance bandwidths. 95% CIs are
show in light grey. Consistent with the pattern of emis-
sions transport in figure 2.3 closure of plants in each
distance band less than 150 miles has a meaningful neg-
ative impact on air quality in a given county. The large
confidence bounds on the estimates in the 0 to 50 mile
and 50 to 100 mile bands are likely due to relatively low
number of closing plants in each band (see figure 2.4)

.
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FIGURE B.3: SECOND STAGE BY BANDWIDTH

NOTES: Each point represents the percentage change in
deaths in a county from a change of a 1 µg/m3 in the ten
year annual average PM2.5 from our main specification
using various distance bands

.
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FIGURE B.4: SECOND STAGE BY BANDWIDTH - IHS

NOTES: Each point represents the percentage change in
deaths in a county from a change of a 1 µg/m3 in the ten
year annual average PM2.5 from our main specification
using the inverse hyperbolic sine using various distance
bands

.
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Appendix C

Appendix to Chapter 3

TABLE C.1: SUMMER AND WEEKEND TEMPERATURES - PISA

PISA Scores PISA Scores PISA Scores PISA Scores

Total hot days -0.126
(0.045)
[0.007]

{-0.22,-0.04}
Hot school days -0.198 -0.290 -0.309

(0.084) (0.072) (0.074)
[0.022] [0.000] [0.000]

{-0.37,-0.03} {-0.43,-0.15} {-0.46,-0.16}
Hot summer days 0.051 0.083

(0.135) (0.133)
[0.708] [0.534]

{-0.22,0.32} {-0.18,0.35}
Hot school weekend days 0.341 0.353

(0.163) (0.164)
[0.040] [0.035]

{0.02,0.67} {0.03,0.68}
N 282 282 282 282

Notes: Heteroskedasticity robust standard errors clustered by country are in parentheses. p-values reported in brackets
and 95% confidence intervals are reported in curly brackets. All regressions include additional controls so that heat effects
are measured relative to days between 60 and 70◦F. All columns include country and year fixed effects, a continent-specific
linear trend, and controls for temperature in the year of the exam and precipitation in both the year of the exam and the
three years proceeding the exam. All columns also control for measures of development from the World Bank.
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TABLE C.2: IMPACT OF CROP SEASONS - PISA

PISA Scores PISA Scores

(A) All Days

Total hot days -0.206 -0.278
(0.050) (0.154)
[0.000] [0.083]

{-0.31,-0.10} {-0.60,0.04}
Hot rice season days 0.102

(0.260)
[0.699]

{-0.43,0.64}
N 120 120

(B) School Days

Hot school days -0.410 -0.312
(0.088) (0.116)
[0.000] [0.013]

{-0.59,-0.23} {-0.55,-0.07}
Hot non-school days 0.039 0.305

(0.089) (0.259)
[0.665] [0.251]

{-0.14,0.22} {-0.23,0.84}
Hot rice season days -0.297

(0.294)
[0.322]

{-0.90,0.31}
N 120 120

Notes: Heteroskedasticity robust standard errors clustered by country are in parentheses. p-values reported in brackets
and 95% confidence intervals are reported in curly brackets. All regressions include additional controls so that heat effects
are measured relative to days between 60 and 70◦F. All columns include country and year fixed effects, a continent-specific
linear trend, and controls for temperature in the year of the exam and precipitation in both the year of the exam and the
three years proceeding the exam. All columns also control for measures of development from the World Bank. We define
rice growing seasons based on the data in Sacks et al. (2010). The reduced sample is due to the fact that some countries
in the full sample do not grow rice.
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TABLE C.3: LIST OF RICH AND POOR COUNTRY SAMPLES - PISA

Rich Countries Poor Countries

Australia Argentina
Austria Azerbaijan

Belgium Brazil
Canada Bulgaria

Denmark Chile
Finland Costa Rica
France Croatia

Germany Czech Republic
Iceland Estonia
Ireland Greece
Israel Hungary
Italy Indonesia
Japan Jordan

Luxembourg Kazakhstan
Netherlands Korea, Rep.

New Zealand Kyrgyz Republic
Norway Latvia
Qatar Lithuania

Singapore Mexico
Spain Montenegro

Sweden Peru
Switzerland Poland

United Kingdom Portugal
United States Romania

Russian Federation
Serbia

Slovak Republic
Slovenia
Thailand

Trinidad and Tobago
Tunisia
Turkey

Uruguay
Vietnam
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