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`∞-Selmer groups in degree ` twist families

Abstract

Suppose E is an elliptic curve over Q with no nontrivial rational 2-torsion point. Given

a nonzero integer d, take Ed to be the quadratic twist of E coming from the field Q(
√
d).

For every nonnegative integer r, we will determine the natural density of d such that Ed

has 2-Selmer rank r. We will also give a generalization of this result to abelian varieties

defined over number fields.

These results fit into the following general framework: take ` to be a rational prime,

take F to be number field, take ζ to be a primitive `th root of unity, and take N to be an `-

divisible Z`[ζ]-module with an action of the absolute Galois groupGF of F . Given a homo-

morphism χ from GF to 〈ζ〉, we can define a twist Nχ, and we can define a (1− ζ)-Selmer

group for each of these twists. Under some hypotheses, we determine the distribution of

(1 − ζ)-Selmer ranks in this family of degree ` twists. To give a non-geometric example,

this framework allows us to determine some aspects of the distribution of `-primary part of

the class groups in families of degree ` extensions.

One of the main goals of this dissertation is to prove these results in a way that stream-

lines the approach to finding the distribution of higher Selmer groups given by the author

in [48]. Along the way, we generalize the Cassels-Tate pairing to a certain pairing between

Selmer groups defined from finite Galois modules. On the analytic side, we give a general

bilinear character sum estimate that is suitable both for the base-case work of this disserta-

tion and as a replacement for the Chebotarev density theorem in a future generalization of

[48].
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1. INTRODUCTION

Goldfeld’s Conjecture. Given an abelian variety A defined over a number field F , the

Mordell-Weil theorem states that the group of F -rational points of A is a finitely-generated

abelian group. There is then a well-defined nonnegative integer r called the rank of A over

F so that there some isomrphism

A(F ) ∼= Zr ⊕ A(F )tor

of abelian groups, where A(F )tor denotes the subgroup of points of finite order in A(F ).

There is no proven algorithm for calculating the rank of an abelian variety, and under-

standing the behavior of the ranks of abelian varieties, and in particular of elliptic curves,

constitutes one of the most fundamental problems in arithmetic geometry.

There are two close analogues of rank that are of interest to us:

• We define the analytic rank ofA/F , denoted ran(A/F ), to be the order of vanishing

of the L-function associated to E/F at s = 1. For F = Q and A an elliptic curve,

this rank is well-defined; for some higher number fields and higher dimensional

abelian varieties, its existence is conjectural.

• For any rational prime p, we define the p∞-Selmer corank ofA/F , denoted rp∞(A/F ),

to be the limit of the sequence

rp(A/F ), rp2(A/F ), rp3(A/F ), . . . ,

where rn denotes the n-Selmer rank of A/F , a nonnegative integer we will define

in greater detail later.

Conjecturally, we should always have

ran(A/F ) = rank(A/F ) = r2∞(A/F ) = r3∞(A/F ) = r5∞(A/F ) = . . . .
1



The equality of rank and analytic rank is the celebrated conjecture of Birch and Swinnerton-

Dyer (the BSD conjecture), and the equality of rank and the p∞-Selmer coranks would fol-

low as a consequence of the conjectured finiteness of the Shafarevich-Tate group X(A/F )

(the Shafarevich-Tate conjecture). For now, we note the following, easily-provable esti-

mate; for p a rational prime and k ≥ 1, we always have

(1.1) rp(A/F ) ≥ rp2(A/F ) ≥ · · · ≥ rpk(A/F ) ≥ rp∞(A/F ) ≥ rank(A/F ).

In 1979, Goldfeld conjectured the following:

Conjecture 1.1 ([13]). Given an elliptic curve E/Q with narrow Weierstrass form

y2 = x3 + ax+ b,

and given a nonzero integer d, take Ed to be the elliptic curve over Q with narrow Weier-

strass form

Ed : y2 = x3 + d2ax+ d3b.

This curve is a quadratic twist of E, and is isomorphic to E over Q(
√
d).

Then, for r ≥ 0,

lim
N→∞

#
{
d : 0 < |d| ≤ N and ran(E

d/Q) = r
}

2N
=


1/2 for r = 0

1/2 for r = 1

0 for r ≥ 2.

In particular, if both the BSD conjecture and Goldfeld’s conjecture hold, 100% of the

curves in the quadratic twist family of a given E/Q will have rank at most one.

Between this dissertation and some work in preparation, we will prove an analogue of

Goldfeld’s conjecture for 2∞-Selmer coranks. For technical reasons, we need to place

certain restrictions on the elliptic curves we consider. These restrictions vary depending on

the structure of the 2-torsion subgroup E(Q)[2] of E(Q).
2



Assumption 1.2. An elliptic curve E/Q obeys the assumptions of Theorem 1.3 if one of

the following holds:

(1) E(Q)[2] = 0; or

(2) E(Q)[2] ∼= Z/2Z and, writing φ : E → E0 for the unique isogeny of degree 2

over Q, we have

Q(E0[2]) 6= Q and Q(E0[2]) 6= Q(E[2]); or

(3) E(Q)[2] ∼= (Z/2Z)2 and E has no cyclic degree 4 isogeny defined over Q.

We note that a “generic” elliptic curve over Q satisfies E(Q)tor = 0, fitting it into the

first case given above.

Theorem 1.3. Suppose E/Q is an elliptic curve satisfying Assumption 1.2. Then, for

r ≥ 0,

lim
N→∞

#
{
d : 0 < |d| ≤ N and r2∞(Ed/Q) = r

}
2N

=


1/2 for r = 0

1/2 for r = 1

0 for r ≥ 2.

This theorem was previously shown by the author for elliptic curves within the third case

of Assumption 1.2. We note the following corollaries of this statement:

Corollary 1.4. Take E/Q to be an elliptic curve satisfying Assumption 1.2.

(1) 100% of the quadratic twists of E have rank at most one.

(2) Suppose the BSD conjecture holds for 100% of the quadratic twists of E. Then

Goldfeld’s conjecture also holds for E, and the Shafarevich-Tate conjecture holds

for 100% of the twists of E.

(3) Suppose that we have

r2∞(Ed/Q) = 0 or 1 =⇒ ran(E
d/Q) = r2∞(Ed/Q)

3



for all nonzero integers d outside of a set of density zero. Then the BSD conjecture

holds for 100% of the quadratic twists of E, and the previous part of this corollary

applies.

Proof assuming Theorem 1.3. Part (1) is immediate from the fact that the 2∞-Selmer corank

is an upper bound for the rank.

Next, it is known from work of Gross and Zagier [15] and Kolyvagin [28, 27] that, for

any elliptic curve E/Q, we have

(1.2) ran(E/Q) = 0 or 1 =⇒ ran(E/Q) = rank(E/Q) and #X(E/Q) <∞.

Assuming BSD, the 2∞-Selmer corank of E is an upper bound for the analytic rank of E;

under the assumptions of this part, Theorem 1.3 implies

ran(E
d/Q) = rank(Ed/Q) = r2∞(Ed/Q) and #X(E/Q) <∞

for 100% of the quadratic twists of E.

Part (3) again follows from the above results of Gross, Zagier, and Kolyvagin. �

Statements of the form

(1.3) rp∞(E/Q) = 0 or 1 =⇒ ran(E/Q) = rp∞(E/Q)

are known as p-converse theorems, as the direction of the implication is the opposite of the

results of Kolyvagin. These sorts of results are known in a variety of settings, with [57,

Theorem 1.4] giving a broad example. Most such results explicitly rule out application for

p = 2, with one major exception provided by the congruent number curves.

Definition 1.5. A positive integer d is called a congruent number if any of the following

equivalent conditions is satisfied:

• There is a right triangle whose side lengths are all rational and whose area is d;
4



• There is a rational square number x2 such that both x2 − d and x2 + d are also

rational squares;

• The elliptic curve

Ed
CN : y2 = x3 − d2x

has positive rank over the rational numbers.

In the first and second guises, congruent numbers have been studied since the Islamic

golden age [6], with recent attention to the problem coming from its connection to the

theory of elliptic curves [56].

The curve E1
CN satisfies the third part of Assumption 1.2, so Theorem 1.3 applies to it.

Furthermore, recent work of Kriz [31] gives that (1.3) holds for the curves of the form

Ed
CN/Q when p = 2. As a consequence, Goldfeld’s conjecture holds for the curve E1

CN,

and the BSD and Shafarevich-Tate conjectures hold for 100% of the curves in its quadratic

twist family. Furthermore, from 2-Selmer rank parity considerations of Monsky [18], we

have the following:

Corollary 1.6. Among the positive integers equal to 1, 2, or 3 mod 8, 0% are congruent

numbers.

Further, among the positive integers equal to 5, 6, or 7 mod 8, 100% are congruent

numbers.

Selmer ranks. Our results for r2∞ are consequences of distributional results on the Selmer

ranks r2, r4, r8 . . . . We start by defining these ranks.

Definition 1.7. Suppose A is an abelian variety over a number field F and suppose that n

is a positive integer. Writing GF for the absolute Galois group of F , the set of algebraic

points on A forms a GF -module. Writing A[n] for the n-torsion of A, we have an exact

sequence

0→ A[n]→ A
·n−−→ A→ 0.

5



From the associated long exact sequence in group cohomology, we have an exact sequence

0→ A(F )/nA(F )→ H1(GF , A[n])→ H1(GF , A).

Given a place v of F , writeGv for the absolute Galois group of a completion Fv. We define

Seln(A/F ) = ker

(
H1(GF , A[n])→

∏
v of F

H1(Gv, A)

)
,

so we have a natural inclusion

A(F )/nA(F ) ↪→ Seln(A/F ).

We then define the n-Selmer rank rn(A/F ) to be the maximal r so there is some injection

(Z/nZ)r ↪→ Seln(A/F )
/

im(A(F )tor).

Remark 1.8. In the literature, it is typical to leave out the correction for A(F )tor in the

above definition. We have included it because it simplifies our theorem statements slightly

and because this definition still satisfies

rn(A/F ) ≥ rank(A/F ).

Next, we give the probabilities that will appear in our main results

Definition 1.9. Given n ≥ j ≥ 0, take

PAlt(j |n)

to be the probability that a a uniformly selected alternating n× n matrix with entries in F2

has kernel of rank exactly j. The is zero unless j and n have the same parity.
6



We also will define

PAlt(j | 2∞+ b) = lim
n→∞

PAlt(j | 2n+ b) and

PAlt(j |∞) =
1

2

(
PAlt(j | 2∞) + PAlt(j | 2∞+ 1)

)
.

Theorem 1.10. Suppose E/Q is an elliptic curve that fits into either the first or third case

of Assumption 1.2. Given k ≥ 1 and any sequence of integers

r2 ≥ r4 ≥ · · · ≥ r2k ≥ 0,

we have

lim
N→∞

#{d : 0 < |d| < N, r2(Ed) = r2, . . . r2k(E
d) = r2k}

2N

= PAlt(r2k

∣∣r2k−1) · PAlt(r2k−1

∣∣r2k−2) · · · · · PAlt(r4

∣∣r2) · PAlt(r2

∣∣∞).

To put it another way, as d varies, the sequence (r2(Ed
CN), r4(Ed

CN), . . . ) behaves like a

time homogeneous Markov chain, and we give a representation of this Markov chain in the

left part of Figure 1. The probability of starting in an even state is 50%, and the probability

of starting in an odd state is 50%. The terminal states of this process are 0 and 1, and we

derive the first and third cases of Theorem 1.3 as a consequence.

We also note that this result is consistent with the BKLPR heuristics for 2∞-Selmer

groups [1]. For general k ≥ 1, the above statement is proved by the author in [48] for

elliptic curves in the third case.

In this dissertation, we will fully prove this statement in the case k = 1. We can phrase

this more explicitly as follows:

Theorem. Suppose E/Q is an elliptic curve that fits into either the first or third case of

Assumption 1.2. Given r2 ≥ 0, we have

lim
N→∞

#{d : 0 < |d| < N, r2(Ed) = r2}
2N

= α · 2r2

(2r2 − 1)(2r2−1 − 1) . . . (21 − 1)
,

7
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FIGURE 1. Diagrams for the Markov chains that model 2k-Selmer ranks
(on the left) and 2k-class ranks (on the right). Each diagram omits infinitely
many possible higher-rank states.

where we have taken

α =
1

2
·
∞∏
i=0

(
1− 2−2i−1

)
≈ .2097.

This was proved by Kane for curves in the third case of Assumption 1.2 [22].

We have a similar but more complicated result for elliptic curves with partial rational

2-torsion; this result will suffice to prove Theorem 1.3 for curves in the second case. We

will give this result as Theorem 9.19.

Class ranks. We start with our result on the 2-primary class torsion of imaginary quadratic

fields.

Notation 1.11. Given an imaginary quadratic field K, take r2(K) ≥ r4(K) ≥ . . . to be

the unique sequence of nonnegative integers satisfying

ClK[2∞] ∼= (Z/2Z)r2(K)−r4(K) ⊕ (Z/4Z)r4(K)−r8(K) ⊕ . . .

and limk→∞ r2k(K) = 0.
8



As before, we need some notation for our probability distribution. We have no alter-

nating restriction this time, which will be consistent with the fact that every class group is

finite

Definition 1.12. For n ≥ j ≥ 0, take

PMat(j |n)

to be the probability that a uniformly selected n×n matrix with entries in F2 has kernel of

rank exactly j.

We also use the notation

PMat(j |∞) = lim
n→∞

PMat(j |n).

Theorem 1.13. Given k ≥ 2 and any sequence of integers

r4 ≥ · · · ≥ r2k ≥ 0,

we have

lim
N→∞

#
{

0 < d < N : r4

(
Q(
√
−d)

)
= r4, . . . , r2k(Q(

√
−d)) = r2k

}
N

= PMat(r2k

∣∣r2k−1) · PMat(r2k−1

∣∣r2k−2) · · · · · PMat(r8

∣∣r4) · PMat(r4

∣∣∞).

The distribution of sequences of 2k-class ranks is again given by a Markov chain, and we

give a representation of this Markov chain in the right part of Figure 1. In the case k = 2,

the above theorem is a consequence of work of Fouvry and Klüners in [9]. Theorem 1.13

is consistent with what is predicted by Gerth’s extension of the Cohen-Lenstra heuristic

for the distribution of class groups [12, 4]. It is the third major result towards proving

this heuristic for imaginary quadratic fields, after the result of Davenport-Heilbronn on

3-torsion [5] and the result of Fouvry and Klüners on 4-class groups.
9



We note that ClQ(
√
−d)[2] has unbounded average size, per Gauss’s genus theory,

which is why we remove it from consideration above. A similar consideration explains

our notation below.

Notation 1.14. Take F to be a number field, take ` to be a rational prime, and take K to

be a degree ` Galois extension of F . Then ClK is a Gal(K/F ) module. Take ζ to be a

primitive `th root of unity, and choose some isomorphism from 〈ζ〉 to Gal(K/F ). Under

this isomorphism,

ClK/(ClK)Gal(K/F )

is a Z[ζ] module. Writing ω = 1− ζ , there is a unique sequence of nonnegative integers

rω(K) ≥ rω2(K) ≥ . . .

with limit zero for which there is some isomorphism

ClK[`∞]/(ClK[`∞])Gal(K/F ) ∼= (R/ωR)rω(K)−rω2 (K) ⊕ (R/ω2R)rω2 (K)−rω3 (K) . . . ,

where R is taken to be Z`[ζ]. This defines the sequence of ωk-class ranks of our field

extension.

For this more general situation, we will need more general notation for our distribution.

Definition 1.15. Given nonnegative integer j and n, and given an integer u and a rational

prime `, take

PMat
u,` (j |n)

to be the probability that a uniformly selected n × (n + u) matrix with entries in F` has

kernel of rank exactly j.

We also use the notation

PMat
u,` (j |∞) = lim

n→∞
PMat
u,` (j |n).

10



Theorem 1.16. Take F to be a number field with r1 real embeddings and r2 conjugate

pairs of complex embeddings. Take ` to be a rational prime such that

µ2` 6⊂ F.

If ` = 2, take r′1 to be an integer satisfying 0 ≤ r′1 ≤ r1. If ` > 2, take r′1 = r1. We define

u = −r2 − r′1.

For H > 0, define

XF,`,r′1
(H) =

{
K/F Gal. of deg. ` : |∆K | ≤ H, K/F splits at exactly r′1 real places

}
,

where ∆K denotes the discriminant of K/Q.

Then, given k ≥ 1 and any sequence of integers

rω ≥ rω2 ≥ · · · ≥ rωk ≥ 0,

we have

lim
H→∞

#
{
K ∈ XF,`,r′1

(H) : rω(K) = rω, . . . , rωk(K) = rωk
}

#XF,`,r′1
(H)

= PMat
u,` (rωk | rωk−1) · · · · · PMat

u,` (rω2 | rω) · PMat
u,` (rω |∞),

where our notation comes from Notation 1.14.

Conditionally on GRH, this result was previously known for Galois extensions of Q due

to work of Koymans and Pagano [30], building off base-case work of Klys that was also

conditional on GRH [26]. In this dissertation, we will prove this result in the case that

k = 1 in a way suitable for our proofs for k > 1.

1.1. Outline of this work and its connection to ongoing work. The main k = 1 results

given above are consequences of Theorem 9.14 and Theorem 9.10, statements built out of
11



the notation of Sections 8 and Section 9.1. As we mention at the beginning of Section 8,

the ω-Selmer groups considered in these sections are easier to control than other Selmer

groups. This is ultimately a consequence of the following observation: given an abelian

variety A/F , and given a quadratic twist Ad of this variety, the geometric isomorphism of

A and Ad descends to an isomorphism

A[2] ∼= Ad[2]

of finite group varieties over F . Because of this, the 2-Selmer groups of A and Ad can be

viewed as subgroups of the same cohomology group H1(GF , A[2]).

This group is still infinite, which is nonideal for an ambient space where our objects of

interest live. Our workaround is easiest to explain in the case of an elliptic curve E/Q

with full rational 2-torsion. In this case, if we choose a basis e1, e2 of E[2], we have an

isomorphism

B0 : Q×/(Q×)2 ×Q×/(Q×)2 ∼−−→ Hom(GF , E[2]) = H1(GF , E[2])

given by

(d1, d2) 7→
(
σ 7→ e1 · σ(

√
d1)√
d1

+ e2 · σ(
√
d2)√
d2

)
.

This parameterizes cocycles in E[2] as pairs of squarefree integers.

Take V0 to be a finite set of places including 2, ∞, and all places where E has bad

reduction. Write D(V0) for the set of squarefree integers divisible only by primes in V0.

Given a sequence p1, . . . , pr of distinct primes outside V0, we can then define a map

B(pi)i : D(V0)⊕D(V0)⊕Fr2⊕Fr2
∼−−→ ker

H1(GF , E[2])→
∏
v 6∈

V0∪{p1,...,pr}

H1(Iv, E[2])


by

B(pi)i

(
d01, d02, (vi1)i, (vi2)i

)
= B0

(
d01 · pv111 . . . pvr1r , d02 · pv121 . . . pvr1r

)
.

12



Write V (r) for the domain of B(pi)i . For any choice of d0 in D(V0), if we take

(1.4) d = d0 · p1 · · · · · pr,

we find that

Sel2Ed ⊆ B(pi)i(V (r)).

In particular, we can find the distribution of 2-Selmer groups of twists of the form (1.4) by

instead considering the distribution of the sizes of the subgroups

B−1
(pi)i

(Sel2Ed) ⊆ V (r).

The vector space V (r) is a more acceptable ambient space for our calculations.

Given this setup, it is particularly nice to find the distribution of 2-Selmer ranks over

families of the form

(1.5) X =

{
d = d0p1 . . . pr : (pi)i ∈

∏
i≤r

Xi,

}

where d0 is fixed and X1, . . . , Xr are disjoint sets of rational primes not meeting V0. We

will call such a family a grid in this dissertation. Given v ∈ V (r) and given d = d0p1 . . . pr,

we can determine if Sel2Ed contains B(pi)i(v) from the Legendre symbols(
pi
pj

)
for all i < j ≤ r,

in addition to the values of pi mod 8d0 ·
∏

p∈V0
p for all i ≤ r. As a consequence, given

m ≥ 0, we can decompose sums of the form

(1.6)
∑
d∈X

(#Sel2Ed)m

into terms of the form

(1.7)
∑

(pi)i∈
∏
iXi

∏
i≤k

χi(pi) ·
∏
i,j≤r

(
pi
pj

)aij
13



where the χi are Dirichlet characters of modulus dividing 8d0

∏
p∈V0

p, and the aij are all

either 0 or 1. But from work of Jutila [21], given distinct i, j ≤ r, and assuming Xi and Xj

are large enough, we can often prove excellent cancellation results about sums of the form

∑
pi∈Xi

∣∣∣∣∣∣
∑
pj∈Xj

cpj

(
pi
pj

)∣∣∣∣∣∣ .
We will give a more detailed statement of Jutila’s result in Section 6. From Jutila’s result,

many of the terms of the form (1.7) turn out to be negligible. By finding decent estimates

on the terms that remain, we can then derive estimates for the sequence of moments (1.6).

Together with parity data, the moments can be used to find the distribution of 2-Selmer

ranks in such a grid. We will prove results for natural density by covering the set of

twists up to a given height outside a statistically negligible set with a collection of non-

overlapping grids.

Now, to find the 2-Selmer statistics for quadratic twists of elliptic curves without full

2-torsion, we need to find a generalization for each step in this procedure. First, given a

grid X and a tuple of primes (pi)i in the grid, we need to find a suitable parameterization

of the portion of H1(GF , E[2]) ramified just at {p1, . . . , pr} and V0. We do this in a non-

canoncial way via Tate duality and an application of Shapiro’s lemma. Second, we need

to find an analogue for Legendre symbols; we need a function {} on pairs of primes from

p1, . . . , pr so we can determine Sel2Ed, with d = d0p1 . . . pr in terms of the data{
pi
pj

}
for i < j ≤ r.

Third, we need to prove an analogue of Jutila’s bilinear character estimates that applies for

these more general symbols. We then need to apply this bilinear estimate estimate to split

(1.6) into a negligible piece and a main-term piece. Finally, we need to patch these results

for grids together to a result for all twists up to a given height. This approach works with

14



far more generality, applying to give Selmer statistics for twists of fairly general Galois

modules.

Higher Selmer results are currenty most easily proved on grids. The calculations for

higher Selmer groups come from generalizations of the fact that E[2] ∼= Ed[2] for any

squarefree integer d. Specifically, given a sequence of squarefree integers d1, d2, . . . , we

find that the GF -module Ed1d2 [4] is isomorphic to a subquotient of

Ed1 [4]⊕ Ed2 [4]⊕ E[4],

that Ed1d2d3 [8] is isomorphic to a subquotient of

Ed1d2[8]⊕ Ed1d3 [8]⊕ Ed2d3 [8]⊕ Ed1 [8]⊕ Ed2 [8]⊕ Ed3 [8]⊕ E[8],

etc. In a grids of twists, the first result gives relations between the 4-Selmer groups corre-

sponding to squarefree integers

d0p1p2p3 . . . pr, d0p
′
1p2p3 . . . pr,

d0p1p
′
2p3 . . . pr, d0p

′
1p
′
2p3 . . . pr.

Grids contain many squares of this form, giving good aggregate control over 4-Selmer

ranks. The 8-Selmer results rely on grids containing many cubes, etc. In all cases, it is

most natural to find higher Selmer statistics over grids.

For k ≥ 1, the Cassels-Tate pairing defined on the Shafarevich-Tate group of the twist

Ed gives an alternating pairing

CTPEd,k : 2k−1Sel2
k

Ed ⊗ 2k−1Sel2
k

Ed → 1
2
Z/Z

with kernel equal to 2kSel2
k+1

Ed. We note that, modulo the image of torsion, the domain of

this pairing has dimension equal to the r2k(E
d), and the kernel of this pairing has dimension

r2k+1(Ed). We claim that this pairing behaves like a random alternating matrix. To make

15



this meaningful, take a grid X as in (1.5). For d in this grid corresponding to the tuple

(pi)i≤r, and for k ≥ 1, take

Vk,(pi)i = B−1
(pi)i

(
2k−1Sel2

k

Ed
)
⊆ V (r).

We note that CTPEd,k can be used to define an alternating pairing

Ck,(pi)i : Vk,(pi)i ⊗ Vk,(pi)i → 1
2
Z/Z

with kernel Vk+1,(pi)i .

With this in mind, choose m ≥ 1, choose a filtration

Vm ⊆ Vm−1 ⊆ · · · ⊆ V1 ⊆ V (r),

and choose a sequence C1, . . . , Cm−1 of alternating pairings

Cj : Vj ⊗ Vj → 1
2
Z/Z

so Cj has kernel Vj+1 for all j < m. Take Y to be the subset of (pi)i corresponding to

integers d in X so

Vj = Vj,(pi)i for all j ≤ m and

Cj,(pi)i = Cj for all j < m.

Our claim, which recovers the Markov-chain behavior of Theorem 1.10, is that, as (pi)i

varies through the subset Y of the grid X , the pairing

Cm,(pi)i : Vm ⊗ Vm → 1
2
Z/Z

is equidistributed among all alternating pairings killing the image of torsion; and we ac-

complish this by abusing the relationships between these pairings found over hypercubes

in the grid, as suggested above.
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We now go through the sections of this dissertation. In Section 2, we will generalize the

parameterization of cocycles in terms of V (r) to apply for abelian varieties A/F where

A[2] is a nontrivial GF module, and will also find a substitute for Legendre symbols in

situations where A[2] is not a trivial module. The notion of spin of a prime ideal, as

introduced in [10], arises naturally from these considerations.

One guiding philosophy of this dissertation is that most results about the Selmer groups

of abelian varieties should extend to results about Selmer groups for general Galois mod-

ules. In Section 3, we show that the theta group of a symmetric line bundle defined onA/F

can often be constructed from the Galois module structure of A[`∞]. In Section 4, we sim-

ilarly de-geometrize the Cassels-Tate pairing, giving a form of the pairing that applies to

short exact sequences of finite Galois modules over number fields. The proofs in this sec-

tion do not require substantially new ideas, but the central duality result could potentially

be of fundamental importance in the theory of Galois cohomology. Our work on higher

Selmer ranks depends on this new Cassels-Tate pairing, but we also use the formalism to

exhibit pieces of class groups as Selmer groups, per Proposition 8.8.

We need a generalization of Jutila’s bilinear character bounds that apply for the ana-

logues of Legendre symbols we produce in Section 2. This analytic work is done in Sec-

tion 6, a section we also consider to be of independent interest. Contrasting with similar

bilinear bounds in e.g. [29], the form of the bound we produce will explicitly depend on the

underlying choice of field extensionK/F . This sensitivity is not important in our base case

work, but will become relevant for our higher Selmer results, where we need to understand

the splitting of primes in certain metabelian extensions.

With this legwork done, we turn to defining twist families and Selmer groups in Section

8. In this section, we will find that equivariant isogenies can cause the Selmer group

distributions to misbehave. Following [24], we explain this behavior in terms of Tamagawa

ratios, with our main proposition being Proposition 8.10. In Section 9, we derive the

necessary conditions for Selmer groups to avoid being affected by Tamagawa ratios. With
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the terminology of this section in hand, we finally give our main base-case results in Section

9.1.

In Sections 10 and 11, we give the necessary linear algebra for computing the moments

of base-case Selmer groups in certain grids. We do the necessary gridding in Section 12

and Section 13 before finishing the proofs of our main base-case theorems in Section 14.

1.1.1. Some historical comments. Gerth first observed that, in quadratic fields indexed by

a certain kind of grid, the distribution of 4-class ranks could be computed with relative

ease via linear algebra and an application of the bilinear character sum bounds of Jutila

[12, 21]. The analogous work for 2-Selmer ranks of quadratic twists of elliptic curves with

full rational 2-torsion was done by Swinnerton-Dyer in [50]. 2-Selmer statistics over grids

of quadratic twists have also been found in the case that Q(E[2])/Q is an S3 extension

[25].

For many years, work on 2-Selmer distributions over grid families and work on 2-Selmer

results over more natural families proceeded independently. In natural families, the only

known viable approach was to adapt an argument of Heath-Brown that gives the 2-Selmer

rank distribution in the family of quadratic twists of the congruent number curve [18].

While still relying on certain bilinear character sum estimates, this work seems otherwise

unconnected to results over grids. The prime decomposition of the involved squarefree

integers plays little role, for example. Heath-Brown’s approach has since been used to find

distributions of 4-class ranks in quadratic fields [9].

The grid-based results and natural density results started to comingle in a paper of Kane

[22]. In this work, Kane found the distribution of 2-Selmer ranks in the family of quadratic

twists of any curve in the full rational 2-torsion case of Assumption 1.2. His approach uses

a subtle induction argument, and grids still do not appear in a substantial way; but his work

builds on the grid-based foundation set by Swinnerton-Dyer in [50], and he relies on the

prime decomposition of the involved squarefree integers.
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With the strategy outlined above, where we first decompose most of the twists up to a

certain height into non-overlapping grids, and then prove our main distribution results on

these grids, we have more fully merged finding 2-Selmer rank distributions in grid families

and finding 2- Selmer rank distributions in natural families. In addition to being a better

setup for higher Selmer rank results, this simplifies the overall strategy of finding 2-Selmer

rank distributions.

Part 1. The Cassels-Tate pairing, Theta Groups, and 1-Cocycle Parameterization

2. LEGENDRE SYMBOLS AND SPIN

Notation 2.1. Given a number field F and a finite moduleM with a continuousGF -action,

we define

X1(F,M) = ker

(
H1(GF , M) →

∏
v of F

H1(Gv, M)

)
.

Here, GF denotes the absolute Galois group of F , and Gv denotes the absolute Galois

group of Fv, the completion of F at v.

Given a finite set of places V of F and its subfields, we also define

SM/F (V ) = ker

H1(GF ,M)→
∏
v of F
v-V

H1(Iv,M)

/X1(F,M).

The base-case Selmer groups we are interested in will lie in spaces of the form SM/F (V ),

with V changing with the twist and with M and F remaining constant. The first goal of

this section is to give a way to parameterize SM/F (V ) in a way that behaves well as the

set of places V is adjusted.

With that in mind, take p to be a prime of F , and take V to be a set of places of F and

its subfields so p divides no prime of V . Take p to be a prime of F over p. We then have

an exact sequence

(2.1) 0→ SM/F (V0)→ SM/F

(
V0 ∪ {p}

) fb∗
M,F,p−−−−−→M(−1)GF,p ,
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where fb∗M,F,p is a map defined in Section 5.2 that measures the ramification of a given

cocycle class at p, where M(−1) denotes the (−1)-Tate twist, and where the superscript

GF,p indicates that we are considering the set of invariants under the action of the absolute

Galois group of the completion of F at p.

To parameterize SM/F (V ), we will ultimately need a section to the final map of (2.1).

This will rely on this final map being surjective, motivating the following definition:

Notation 2.2. We fix the following:

(1) An integer e0 ≥ 2,

(2) A Galois extension of number fields K/F , with K containing µe0 , and

(3) A finite set of places V0 of F .

We assume that the places V0 contain all archimedean places, all places where K/F is

ramified, and all places dividing e0. Furthermore, given any finite Gal(K/F )-module M ,

we assume the sequence (2.1) is exact on the right for V = V0 and any choice of p outside

V0. If these conditions are met, we say V0 unpacks the tuple (K/F, e0)

Definition 2.3. For any set V of places of F , write K(V ) for the maximal abelian exten-

sion of K of exponent dividing e0 that is ramified only over places in V .

Giving primes p, p0 of F not over V0, we say p and p0 have the same class and write

p ∼ p0 if

FrobFp ≡ FrobFp0 in Gal(K(V0)/F ).

Proposition 2.4. Given e0 and K/F as in Notation 2.2, we can find a finite set of places

V0 unpacking (K/F, e0).

We postpone the proof of this until the end of this section.

The map fb∗M,F,p is fairly natural, but giving a section for this map requires some ad-

hoc choices. After some experimentation, we have opted for a definition that built from

Shapiro’s lemma as given in Section 5.1, but even this relies on some extra choices that we
20



make now. We make heavy use of the superscript nc to emphasize the noncanonical nature

of these definitions.

Notation 2.5. Take (K/F, e0,V0) as in Notation 2.2, and take µe0 to be the group of e0-

roots of unity in K. For every intermediate field L of K/F such that K/L is cyclic, we

choose a set-theoretic section snc
L of the projection

⊕
v of L
v|V0

H1(Gv, µe0) −−→
⊕
v of L
v|V0

H1(Gv, µe0)

/
im
(
Sµe0/L

(V0)
)
.

From Shapiro’s lemma, we have an isomorphism

(2.2) SN/L(V )
sh−−→ SIndGLGFN/F

(V ).

for any set of places V of F and any field L that is intermediate to K/F . We will give

this isomorphism explicitly in Section 5.1. As a consequence, if V0 unpacks (K/F, e0), it

unpacks (K/L, e0) for any intermediate field L of the extension K/F .

Definition 2.6. Given (K/F, e0,V0) as in Notation 2.2, given sections (snc
L )L as in Notation

2.5, and given a finite Gal(K/F ) module M of exponent dividing e0 and a prime p of F

not over V0, we define a map

Bnc
M,F,p : M(−1)GF,p −−→ SM/F (V0 ∪ {p ∩ F})

as follows:

First, take L minimal so K/L is inert at p ∩ L, and define

Bnc(p) ∈ Sµe0/L
(V0 ∪ {p ∩ L}),

to be the unique element satisfying fb∗µe0 ,L,p(B
nc(p)) = 1/e0 whose restriction to

⊕
v of L
v|V0

H1(Gv, µe0)
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is in the image of snc
L .

Next, choosing m ∈M(−1)GF,p , there is a unique GF -homomorphism ρ(m) from

IndGLGFµe0
∼= Z[GF ]⊗Z[GL] µe0

to M that takes [1]⊗ ζ to m⊗ ζ for all ζ ∈ µe0 . We then take Bnc
M,F,p(m) to be the image

of Bnc(p) under the composition

Sµe0/L
(V0 ∪ {p ∩ L})

sh−−→ SIndGLGF µe0/F
(V0 ∪ {p ∩ F})

ρ(m)∗−−−−→ SM/F (V0 ∪ {p ∩ F}).

Remark 2.7. In the above situation, we can use (5.6) and Proposition 5.3 to verify that

M(−1)GF,p
Bnc
M,F,p−−−−→ SM/F (V0 ∪ {p ∩ F})

fb∗
M,F,p−−−−→M(−1)GF,p

is the identity map, so we have succeeded at finding a section of fb∗. There are three other

properties that recommend this particular section.

(1) The map Bnc
M,F,p is linear in M(−1)GF,p .

(2) Given p ∼ p0 and any

m ∈M(−1)GF,p = M(−1)GF,p0 ,

the difference Bnc
M,F,p(m)−Bnc

M,F,p0
(m) is trivial at all places over V0.

(3) With m as above, take N to be the minimal GF -submodule of M containing m⊗ ζ

for all ζ in µe0 . Then Bnc
M,F,p(m) is in the image of the map

SN/F (V0 ∪ {p ∩ F}) −−→ SM/F (V0 ∪ {p ∩ F}).

Remark 2.8. We note that

X1(F, µe0)

is equal either to 0 or Z/2Z, with the latter case possible only if e0 is divisible by 8. This is a

consequence of the Grunwald-Wang theorem, which describes precisely the scenario when
22



this group equals Z/2Z. This counterintuitive result is what forced us to define Bnc(p) as

an element of Sµe0/L
rather than as an element of H1(GL, µe0).

Definition 2.9. With the setup of Notation 2.2, take M and N to be finite Gal(K/F )

modules of exponent dividing e0. Take p, q to be primes of F not over V0. Per Section 5.2,

we have an isomorphism

invM⊗N,F,p : H2(GF ,M ⊗N)
∼−−→M ⊗N(−1)GF,p ,

where M ⊗N(−1)GF,p denotes the set of GF,p coinvariants of M ⊗N(−1).

We then define

Lnc
M⊗N/F (p, q) : M(−1)GF,p ⊗ N(−1)GF,q −−→ M ⊗N(−1)GF,p

by

(2.3) Lnc
M⊗N/F (p, q)

(
m,n

)
= invM⊗N,F,p

(
Bnc
M,F,p(m) ∪ Bnc

N,F,q(n)
)
.

Here, Bnc
M,F,p(m) denotes an element of H1(GF ,M) projecting to Bnc

M,F,p(m), with the

same notation on the N side. The resulting pairing does not depend on the choice of this

element.

Further, suppose that p, q are primes of F not over V0. Take L to be the minimal inter-

mediate field of K/F so K/L is inert at p ∩ L, and take E to be the minimal intermediate

field of K/F so K/E is inert at q ∩ E. Then, for τ ∈ GF , we define an element

anc
τ (p, q) ∈ (µe0)GL+τE

by

anc
τ (p, q) = invµe0⊗µe0 , (L+τE),p

(
resGLGL+τE

Bnc(p) ∪ τ∗resGEGE+τ−1L
Bnc(q)

)
,

where again Bnc(p) denotes an element of H1(GL, µe0) projecting to Bnc(p).
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Remark 2.10. Following Remark 2.8, we can think about the element Bnc(q) as being an

element of E×/X · (E×)e0 , where X is either {1} or {1, α} for some element with

α2 ∈ (E×)e0 .

Using this, the symbol anc
τ (p, q) can be thought of as a norm-residue symbol, or as a general

form of a Legendre symbol. The precise behavior or these symbols depends on the choice

of snc, but if q ∼ q0 in the sense of Notation 2.2 for some other prime q0, we can concretely

say that the fraction
Bnc(q)

Bnc(q0)
∈ E×

/
X · (E×)e0

is the unique element that is both locally an e0 power at all places of E over V0 and is also

a generator for an ideal of the form Ie0 ·
(
qq−1

0 ∩ L
)
.

In this paper, the anc
τ (p, q) will serve as generalizations of Legendre symbols, with the

special case anc
τ (p, p) instead a generalization of the notion of the spin of a prime ideal,

a concept first considered in [10]. These are the atomic objects that we will decompose

Selmer conditions into, with the maps Lnc appearing naturally as part of this decomposi-

tion. To aid such a decomposition, we have the following proposition.

Proposition 2.11. Use the setup of Notation 2.2. Given primes p, q of F not over V0, take

L and E as in Definition 2.9. Take M and N to be finite Gal(K/F ) modules of exponent

dividing e0, and choose any

m ∈M(−1)GF,p and n ∈ N(−1)GF,q .

Then, if p ∩ F and q ∩ F are distinct, we have

Lnc
M⊗N/F (p, q)

(
m,n

)
=
∑
τ∈B

m⊗ τn⊗ anc
τ (p, q),
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where B is any set of representatives in GF of the double coset

GL

∖
GF

/
GE.

In addition, take B′ to be B with the representative of the identity removed. Then we

have

Lnc
M⊗N/F (p, p)

(
m,n

)
=
∑
τ∈B

m⊗ τn⊗ anc
τ (p, p)

−
∑
τ∈B′

τm⊗ n⊗ anc
τ (p, p).

Proof. We start without using the assumption that p ∩ F and q ∩ F are distinct. Write

M0 = IndGLGFµe0 and N0 = IndGEGFµe0 .

We calculate

Lnc
M⊗N/F (p, q)

(
m,n

)
= invM⊗N,F,p

(
ρ(m)∗corGLGF

(
[1]⊗Bnc(p)

)
∪ ρ(n)∗corGEGF

(
[1]⊗Bnc(q)

))
= (ρ(m)∗ ⊗ ρ(n)∗) invM0⊗N0,F,p

(
corGLGF

(
[1]⊗Bnc(p)

)
∪ corGEGF

(
[1]⊗Bnc(q)

))
from (5.18). It then suffices to calculate

invM0⊗N0,F,p

(
corGLGF

(
[1]⊗Bnc(p)

)
∪ corGEGF

(
[1]⊗Bnc(q)

))
.

From (5.11) followed by Proposition 5.3 and the double coset formula, this equals

invM0⊗N0,F,p ◦ corGEGF
(

resGFGE ◦ corGLGF
(

[1]⊗Bnc(p)
)
∪ [1]⊗Bnc(q)

)
=
∑
τ∈B

invM0⊗N0,F,p ◦ corGEGF
(

cor
GE+τ−1L

GE
◦ τ−1
∗ (ψτ ) ∪ [1]⊗Bnc(q)

)
=
∑
τ1∈B

∑
τ∈B

τ1 invM0⊗N0,E,τ
−1
1 p

(
cor

GE+τ−1L

GE
◦ τ−1
∗ (ψτ ) ∪ [1]⊗Bnc(q)

)
,(2.4)
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where we have taken

ψτ = [1]⊗ resGLGτE+L
Bnc(p).

This element is only ramified at p ∩ (τE + L) and places over V0. If we now assume that

p ∩ F and q ∩ F are distinct, we find that (2.4) equals

∑
τ∈B

τ invM0⊗N0,E,τ−1p

(
cor

GE+τ−1L

GE
◦ τ−1
∗ (ψτ ) ∪ [1]⊗Bnc(q)

)
=
∑
τ∈B

τ invM0⊗N0,E+τ−1L,τ−1p

(
τ−1
∗ (ψτ ) ∪ [1]⊗ resGEGE+τ−1L

Bnc(q)
)

=
∑
τ∈B

invM0⊗N0,τE+L,p

(
ψτ ∪ [τ ]⊗ τ∗resGEGE+τ−1L

Bnc(q)
)

=
∑
τ∈B

[1]⊗ [τ ]⊗ anc
τ (p, q).

This gives the first part of the proposition.

Now suppose that q = p. In this case, (2.4) splits into two pieces: a sum over (τ, τ1)

with τ = τ1; and a sum over (τ, 1), excepting the already-counted representative of (1, 1).

The first piece can be evaluated as before. The second piece takes the form

∑
τ∈B′

invM0⊗N0,L,p

(
cor

GL+τ−1L

GL
◦ τ−1
∗ (ψτ ) ∪ [1]⊗Bnc(p)

)
=
∑
τ∈B′

invM0⊗N0,L+τ−1L,p

(
τ−1
∗ (ψτ ) ∪ [1]⊗ resGLGL+τ−1L

Bnc(p)
)

= −
∑
τ∈B′

t invN0⊗M0,L+τ−1L,p

(
[1]⊗ resGLGL+τ−1L

Bnc(p) ∪ τ−1
∗ (ψτ )

)
= −

∑
τ∈B′

[τ−1]⊗ [1]⊗ anc
τ−1(p, p).

Here, we have made use of (5.10), with t taken as in that equation. We then have the

proposition.

�
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We have described the norm residue symbols anc
τ (p, q) as the atoms from which the

Selmer conditions we are interested in are constructed. Not all these atoms are needed,

with the next proposition giving all the redundancies we need to consider.

Proposition 2.12. In the situation of Notation 2.2, choose primes p, q, p0, q0 of F not over

V0 so that p ∼ p0 and q ∼ q0. Write L for the minimal extension of F so K/L is inert

at p ∩ L, and write E for the analogous extension for q. Take τ ∈ GF . We then have the

following:

(1) For σ ∈ GL, we have anc
στ (p, q) = anc

στ (σp, q) = σanc
τ (p, q).

(2) For σ ∈ GE , we have anc
τ (p, σq) = anc

τσ(p, q) = anc
τ (p, q).

(3) Writing anc for anc
1 , we have

anc
τ (p, q)− anc(p, τq) = anc

τ (p0, q0)− anc(p0, τq0).

(4) We have

τanc(p, q)− anc(τp, τq) = τanc(p0, q0)− anc(τp0, τq0).

(5) If

p ∩ (L+ E) 6= q ∩ (L+ E) and p0 ∩ (L+ E) 6= q0 ∩ (L+ E),

we have

anc(p, q)− anc(q, p) = anc(p0, q0)− anc(q0, p0).

(6) If e0 is odd, we have

anc(p, p) = 1.

Otherwise, take ζ to be the unique element of order two in (µe0)GL . Then

anc(p, p) =


1 if xe0 + 1 = 0 has a solution x ∈ Fp∩F

ζ otherwise.
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If p0 ∩ L 6= p ∩ L, we also have

anc(p, p0)− anc(p0, p) = anc(p, p).

(7) Suppose τ represents the same class as τ−1 in

GL

∖
GF

/
GL.

Then

anc(p, τp)− anc(p0, τp0) ∈
(

(µe0)GL+τL

)2

.

Proof. For σ in GE , we have

Bnc(q) = Bnc(σq) = σ∗B
nc(q).

Part 2 follows. For σ in GL, (5.12) and (5.17) give

σanc
τ (p, q) = anc

στ (σp, q).

Applying this and part 2 for σ in GK gives

anc
τ (σp, q) = anc

τ (p, q).

Since σp = p for σ in GF,p, we then have this equality for σ in GL, and part 1 follows.

Part 3 is a consequence of

resGτEGL+τE
Bnc(τq)− τ∗resGEGE+τ−1L

Bnc(q)

only being ramified over V0, which can be proven from (5.17). This result and (5.12) give

part 4 as well.

Part 5 follows from skew commutativity of cup product and Hilbert reciprocity, in the

form of (5.22) for the field L+E. For part 6, if we take χ to be the image of −1 under the
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natural boundary map

L×/(L×)e0 −−→ H1(GL, µe0),

the symbol properties of anc give

anc(p, p) = invµe0⊗µe0 ,L,p
(
Bnc(p) ∪ χ

)
.

This has order dividing 2, giving the result for odd e0. For even e0, this symbol is either

nontrivial, in which case it must equal ζ , or is trivial. As a norm residue symbol, it is the

former only if−1 is an e0 power at p∩F . This gives the first statement of the part, and the

second statement follows from Hilbert reciprocity.

This just leaves part 7, which is substantially harder. The statement is a generalization

of a previous result on involution spin [10, Section 12]. In that paper, it was proved using

the theory of ray class fields. We will prove it instead as a consequence of our theory of

theta groups; see Proposition 3.6. �

The obvious next question is whether this last proposition has identified all the redun-

dancies between our Legendre symbol analogues anc
τ (p, q). For the symbols anc

τ (p, p), this

is a difficult unresolved question about the spin of prime ideals. When p and q are different,

the situation is much more straightforward.

Proposition 2.13. In the situation of Notation 2.2, choose primes q, p0 of F not over V0.

Take L and E to be the minimal fields over F such that K/L is inert at p0 ∩L and K/E is

inert at q ∩ E. Write q for q ∩ F . We assume p0 does not divide q.

Take B to be a set of representatives in GF for

GL

∖
GF

/
GE

and take π to be the natural projection from Gal(K(V0 ∪ {q})/F ) to Gal(K(V0)/F ).

Given σ1, σ2 in π−1(FrobFp0), we say the elements are equivalent if one equals the other
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conjugated by an element ofGK(V0), and we write π−1(FrobFp0)∼ for the set of equivalence

classes under this relation.

There is then a unique isomorphism

π−1(FrobFp0)∼
∼−−→

⊕
τ∈B

(µe0)GL+τE

so that, for all primes p not over V0 ∪ {q} satisfying p ∼ p0, we have

(2.5) FrobFp 7−−→
(
anc(p, τq) : τ ∈ B

)
.

Proof. Take C to be the trivial GF module Z/e0Z. For a set of places of V of L or any

subfield of L, take L(V ) to be the maximal abelian extension of L of exponent dividing e0

ramified only over places of V . We have a set of isomorphisms

Gal
(
K(V0)L

(
V0 ∪ {q}

)/
K(V0)

)
(2.6)

∼= Gal
(
L
(
V0 ∪ {q}

)/
L(V0)

)
∼= Hom

(
SC/L

(
V0 ∪ {τq ∩ L : τ ∈ B}

)
SC/L(V0)

, Q/Z

)
∼=
⊕
τ∈B

(µe0)GL+τE
.

This set of isomorphisms takes FrobFp(FrobFp0)−1 to

(
anc(p, τq)− anc(p0, τq) : τ ∈ B

)
.

To finish the proof, it then suffices to show that the map

π−1(FrobFp0)∼ −−→ Gal
(
K(V0)L

(
V0 ∪ {q}

)/
K(V0)

)
given by multiplication by (FrobFp0)−1 is an isomorphism. This starts by noting that this

map is well-defined, which follows from the definition of our equivalence relation, and

surjective. We just need to show injectivity.
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Call elements σ1, σ2 of Gal (K(V0 ∪ {q})/K(V0)) equivalent if

τσ1τ
−1 · FrobFp0 = σ2 · FrobFp0 in K(V0 ∪ {q})

for some τ in GK(V0). Equivalently, σ1 and σ2 are equivalent if they differ by an element of

[
GL, GK(V0)

]
.

Using a subscript ∼ to denote the corresponding set of equivalence classes, we have

π−1(FrobFp0)∼ ∼= Gal (K(V0 ∪ {q})/K(V0))∼ .

We have an isomorphism of GF modules

Gal (K(V0 ∪ {q})/K(V0)) ∼= Hom
(

SC/K(V0 ∪ {q})
SC/K(V0)

, Q/Z
)
,

where τ acts by conjugation on the first term and by τ ∗ on the second. We have isomor-

phisms

SC/K(V0 ∪ {q})
SC/K(V0)

=
SC/K(V0 ∪ {τq ∩K : τ ∈ GF/GE})

SC/K(V0)
∼= C(−1)⊗ Z[GF/GE],

with the latter isomorphism being

φ 7→
∑

τ∈GF /GE

fb∗C,K,τq(φ)⊗ [τ ].

This is an isomorphism by the hypothesis of unpacking, and it respects the GF structure of

both modules by (5.17). The Pontryagin dual of it is the GF -module

µe0 ⊗ Z[GF/GE].

The set of GL covariants of this module is isomorphic to the final term of the chain (2.6).

At the same time, it has the same cardinality as π−1(FrobFp0)∼ from the above argument.

Injectivity of the map of the proposition then follows from surjectivity. �
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Finally, we check that a set of places unpacking (K/F, e0) can always be found.

Proof of Proposition 2.4. Take V2 to contain all archimedean, all places where K/F rami-

fies, and all places dividing [K : F ] or e0. Then

ker

H1(GK ,Z/e0Z)→
∏
v|V2

H1(Gv,Z/e0Z)×
∏
v-V2

H1(Iv,Z/e0Z)


can be identified with a subset of

Hom
(
ClK, Z/e0Z

)
.

By adding at most log2 |ClK| places to V1, we can then make this kernel trivial. Call this

new set V1.

Next, for every conjugacy class of Gal(K/F ), choose a prime p of F outside V1 so, for

any p of F over p, we have that FrobFp represents the conjugacy class. V0 will consist of

these primes and those places in V1.

Now, choose a finite Gal(K/F )-module M of exponent dividing e0, and suppose φ ∈

H1(GF ,M) vanishes locally at every place in V0. Consider the inflation-restriction exact

sequence

0→ H1(Gal(K/F ), M)→ H1(GF ,M)→ H1(GK ,M).

Since φ vanishes locally at all places in V1, the same is true when restricted to GK . But

M over GK is a direct sum of submodules of Z/e0Z, so the above assumptions force φ to

have zero restriction to GK .

It then is the inflation of an element φ0 of H1(Gal(K/F ), M). This φ0 vanishes at all

the bad places of V2, and it also vanishes on all cyclic subgroups of Gal(K/F ). This is

enough to say that φ0 vanishes locally everywhere, so it lies in X1(F,M). This gives that

ker

H1(GF ,M)→
∏
v|V0

H1(Gv,M)

 = X1(F,M),
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and Poitou-Tate duality implies that (2.1) is surjective on the right for the module M∨. We

then get the proposition. �

3. THETA GROUPS

A heuristic of Poonen and Rains [44] suggests that p-Selmer groups of abelian varieties

can be modeled as the intersection of randomly-selected maximal isotropic spaces in a large

quadratic space over Fp. Given an abelian variety A defined over a field of characteristic

not equal to p, and given a principal polarization onA defined over F , there is a well-known

natural nondegenerate alternating pairing

A[p]⊗ A[p]→ µp

called the Weil pairing, and their heuristic is based on the fact that this pairing is the bilinear

form associated to a certain quadratic form on A[p]. This is a trivial observation when p is

odd, but relies on a geometric object called the theta group when p = 2.

In this section we show that, in a wide set of cases, the theta group of a line bundle and

its Galois structure can be recovered from higher Weil pairings. In particular, these objects

can be constructed for arbitrary 2-divisible Galois modules with alternating structure. As

an application of this more-general theory, we will prove the final part of Proposition 2.12,

generalizing a previous result on involution spin [10, Theorem 12.2].

I’d like to thank Adam Morgan for his help with this section, and in particular for finding

the construction ofH given below.

Definition 3.1. Suppose we have the following data:

• A group G, G-modules M and N , and a G-equivariant isogeny λ with domain M

satisfying

2M [2λ] = M [λ]
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• An alternating G-equivariant pairing

P1 : M [2λ]⊗M [2λ]→ N

• A G-equivariant map e : M [2]→ N satisfying

e(x+ y)− e(x)− e(y) = P1(x, y) for all x, y ∈M [2].

Under these circumstances, there is a unique pairing

P0 : M [λ]⊗M [λ]→ N

satisfying

P0(2m, 2n) = 2P1(m,n) for all m,n ∈M [λ]

This pairing is alternating and G-equivariant since P1 is.

Following the construction of [43], we can then define a group U to be the set

N × (M [2λ])

with the same associated G-action but with group operation

(n,m) · (n′,m′) =
(
n+ n′ + P1(m,m′), m+m′

)
.

For any (n,m) and (n′,m′) in this group, we calculate

(n,m)−1 =
(
− n, −m

)
and

(n,m)(n′,m′)(n,m)−1 =
(
n′ + 2P1(m,m′), m′

)
.

From these basic properties, we can verify that

{
(e(m), m) ∈ U : m ∈M [2]

}

34



is a normal subgroup K of U . We then define

Hλ,e,P1(M) = U/K.

We have the following commutative diagram with exact rows:

(3.1)

1 N U M [2λ] 1

1 N Hλ,e,P1(M) M [λ] 1.

×2

The groups U and H are typically non-abelian, and we can consider the commutator

pairings on either of the rows of (3.1). From the calculation

(0,m) · (0,m′) · (0,m)−1 · (0,m′)−1 =
(
2P1(m,m′), 0

)
,

we see that this pairing takes the form (m, m′) 7→ 2P1(m,m′) for the top row. On the

bottom row, this pairing is then given by (m, m′) 7→ P0(m,m′).

Proposition 3.2. Take

q : H1
(
G, M [λ]

)
→ H2(G,N)

to be the connecting map coming from the second row of (3.1), and write

∪ : H1
(
G, M [λ]

)
⊗H1

(
G, M [λ]

)
→ H2(G,N).

for the cup product induced by P0. Then, for any φ, ψ ∈ H1
(
G, M [λ]

)
, we have

q(φ+ ψ)− q(φ)− q(ψ) = −φ ∪ ψ.

We also have

q(aφ) = a2q(φ)

for any integer a.
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Proof. Given our calculation of the commutator pairing above, the first claim here is a

consequence of [43, Proposition 2.9].

To prove the second statement, note that the equivariant homomorphism

(n,m) 7→ (a2n, am)

of U descends toHλ,e,P1(M). We then get a commutative diagram

1 N Hλ,e,P1(M) M [λ] 1

1 N Hλ,e,P1(M) M [λ] 1.

×a2 ×a

from which the result follows.

�

Proposition 3.3. Suppose we are in the situation of the above proposition. Choose a

positive integer k ≥ 1. We assume that

2k+1M [22k+1λ] = M [2kλ]

and that there is a G-equivariant pairing

Pk+1 : M [2k+1λ]⊗M [2k+1λ]→ N

satisfying

2kPk+1(m,m′) = P1(2km, 2km′) for m,m′ ∈M
[
2k+1λ

]
.

Then q is zero on all elements in the image of the connecting map

H0
(
G, M [2kλ]/M [λ]

)
→ H1

(
G, M [λ]

)
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coming from the exact sequence

0→M [λ]→M [2kλ]→M [2kλ]/M [λ]→ 0.

Proof. Choose xk ∈ M [2kλ] so xk is invariant under G mod M [λ]. Our goal is to prove

that

φk(σ) = σxk − xk ∈ H1(G,M [λ])

maps to zero under q.

Choose xk+i ∈M [2k+iλ] for i equal to 1, k + 1 so that

xk+1 = 2kx2k+1 and xk = 2k+1x2k+1.

We can then take

φk+i = σxk+i − xk+i in H1(G,M [2iλ]).

for i = 1, k + 1. From the diagram (3.1) and Corollary 2.8 of [43], we have

q(φk) = φk+1 ∪P1 φk+1,

where the cup product is with respect to the pairing P1. This then equals

(2kφ2k+1) ∪Pk+1
φ2k+1,

where the ∪Pk+1
denotes the cup product on H1(G,M [2k+1λ]) coming from Pk+1. But

2kx2k+1 lies in M [2k+1λ], so 2kφ2k+1 is a coboundary. This cup product is then zero, and

we have the proposition. �

3.1. Theta groups of abelian varieties. Take F to be a field of characteristic other than

2, take A to be an abelian variety over the field F , and take L to be a symmetric line bundle

over A also defined over F with associated isogeny λ : A → Â. We assume the degree of

L is not divisible by the characteristic of F .
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For x ∈ A(F ), take τx : A → A to be the translation by x map. We can then define a

group

H(L) =
{

(x, φ) : x ∈ A[λ], φ : L
∼−−→ τ ∗xL

}
with a natural GF action. This group is the theta group, or Mumford group, and our main

references for its properties are [44] and [38]. We note that it fits in an exact sequence.

(3.2) 1→ F
× → H(L)→ A[λ]→ 1.

Proposition 3.4. In the above situation, take G = GF , take N to equal F
×

, and take P1

to be the multiplicative inverse of the Weil pairing associated to L2 = L⊗L. Finally, let e

be the quadratic form

eL∗ : A[2]→ ±1

defined in [38, p. 304].

Then there is a canonical isomorphism

η : Hλ,e,P1(A)→ H(L)

of groups with a GF -action so that (3.2) and (3.1) fit in a commutative diagram

1 N Hλ,e,P1(A) A[λ] 1

1 F
× H(L) A[λ] 1.

η

Proof. Using the fact that L is a symmetric line bundle, Mumford defines canonical homo-

morphisms

δ−1 : H(L2)→ H(L2) and η2 : H(L2)→ H(L)
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fitting into the commutative diagrams

1 F
× H(L2) A[2λ] 1

1 F
× H(L2) A[2λ] 1

δ−1 ×−1

and
1 F

× H(L2) A[2λ] 1

1 F
× H(L) A[λ] 1,

x7→x2 η2 ×2

with the appearance of A[2λ] explained by [38, Proposition 4, p. 310].

Given x in A[2λ], there is some ψ(x) in H(L2) projecting to x satisfying ψ(x)−1 =

δ−1(ψ(x)). This element is determined up to sign; in particular, η′ = η2 ◦ ψ is canonically

defined on A[2λ], and we have a commutative diagram

A[2λ]

1 F
× H(L) A[λ] 1.

×2
η′

For x, y ∈ A[2λ], we have

δ−1

(
ψ(x)ψ(y)

)
= ψ(x)−1ψ(y)−1 =

(
ψ(x)−1ψ(y)−1ψ(x)ψ(y)

)
·
(
ψ(x)ψ(y)

)−1
.

= eL
2

(x, y)
(
ψ(x)ψ(y)

)−1
,

with our notation and definition of the Weil pairing eL2 as in Mumford’s article. Correcting

for this, we find

ψ(x+ y) ∈ ± 1√
eL2(x, y)

· ψ(x)ψ(y),

so we have

η′(x+ y) = P1(x, y) · η′(x)η′(y).

This agrees with the multiplication in U as in (3.1), and we have a commutative diagram
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1 F
×

U A[2λ] 1

1 F
× H(L) A[λ] 1,

η ×2

where the central map sends (ζ, x) ∈ F× × A[2λ] to ζ · η′(x).

To prove the proposition, we just need to verify that the kernel of this map is the set of(
eL∗ (x), x

)
, with x ranging through the two-torsion points. Given the above diagram, it is

clear that the kernel should be the set of
(
η′(x), x

)
, where η′(x) ∈ H(L), which projects

to 0 in A[λ], is instead considered in F
×

. We thus just need that

η′(x) = eL∗ (x) for all x ∈ A[2].

But this is a consequence of [38, Proposition 6], and we have the proposition. �

Remark 3.5. For this example, the hypotheses of Proposition 3.3 can be shown to be sat-

isfied using the Weil pairings for L4, L8, . . . , so both Proposition 3.2 and 3.3 hold in

this case. This was already established in [44], with Proposition 3.3 being shown for the

Kummer map associated with the exact sequence

0→ A[λ]→ A→ Â→ 0.

The key element of this elegant proof was the use of the Poincaré bundle onA×Â to define

a certain set acted on freely by H(L). For Proposition 3.3, we used higher divisibility of

M as a stand-in for this geometry, and accepted that the end result would necessarily be

weaker.

The advantage of our approach is that it opens up the possibility of working with theta

groups not coming from abelian varieties. We turn to one such example next.

3.2. Involution spin. Take F to be a field of characteristic not equal to 2 and choose an

element α of F×. We assume that α is not a root of unity and that α is not in (F×)2, so
40



K = F (
√
α) is a quadratic extension. Fixing k > 1, we consider the quotient group

Mk =
{
x ∈ F× : x2k = αi for some i ∈ Z

}/{
αj : j ∈ Z

}
,

where these sets are abelian groups with multiplication as their operation. Given x in this

quotient, take v(x) to be an integer so some representative of the class of x satisfies

x2k = αv(x).

This integer is defined mod 2k, and we have an alternating GF -equivariant pairing

Pk−1 : Mk ⊗Mk −−→ µ2k ⊆ F
×

defined by

Pk−1(x, y) =
yv(x)

xv(y)
for x, y ∈M.

We can then define the theta groupH2,0,P1(Mk), and we consider the map

qH : H1(H,Mk[2])→ H2(H,µ4)

defined in Proposition 3.2. Here, H is any subgroup of GF .

The module Mk[2] is trivial over GK , and the Kummer map associated to

0→Mk[2]→Mk[4]→Mk[2]→ 0

gives a map

δ : Mk[2]→ H1(GK ,Mk[2]).

Note that δ(x) is defined over K(µ4, 4
√
α).

From considering quadratic twists and using Proposition 3.3, we find that, for any χ ∈

H1(GK ,F2) and any x in H0(GK ,Mk[2]), we have

(3.3) qGK (δ(x) + x ∪ χ) = 0.
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We calculate

δ([
√
α]) = [−1] ∪ χ√α and δ([−1]) = [−1] ∪ χ−1,

where χb denotes the quadratic character associated to K(
√
b)/K.

We can now finish the proof of Proposition 2.12.

Proposition 3.6. Suppose we are in the situation of Notation 2.2 with e0 = 2 and K/F a

quadratic extension. Take τ to be an element of GF projecting to the nontrivial element of

Gal(K/F ). Then, given primes p, p0 of F not over V0, if p ∼ p0, we have

anc
τ (p, p) = anc

τ (p0, p0).

We first will show that this proposition implies Proposition 2.12, part 7. In the notation

of that proposition, if τ shares a class with 1 in GL\GF/GL, we can apply the sixth part of

the proposition. So suppose this is not the case. Writing σ for a generator of Gal(K/L),

we must have

σkτ = τ−1σj in Gal(K/F )

for some integers k, j. By replacing τ with σkτ as needed, we may as well assume we have

τ 2 = σj+k in Gal(K/F ).

Then σj+k is in both GL and GτL, but τ is in neither. We can then apply Proposition 3.6

with

K = L+ τL and F = (L+ τL)τ .

We now turn to the proof of the above proposition.

Proof of Proposition 3.6. We first claim that we can write K = F (
√
α) with α not a root

of unity so that K(µ4, 4
√
α) is a subfield of K(V0). To see this, first choose any α so

K = F (
√
α). In F , we have a decomposition of ideals

(α) = I0 · I2
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where I0 is a product of primes of V0 and I is some other fractional ideal of K. But, since

V0 unpacks µ2 over F , we can write

I = (β) · J0 · J2

with β in F , J0 a product of primes of V0, and J some other fractional ideal. We then

replace α with α/β2 unless this number is a root of unity, in which case we replace it with

4α/β2.

From (5.3), we have

resGFGKB
nc
M1,F,p

([
√
α]) = [

√
α] ∪Bnc(p) + [−

√
α] ∪ τ∗Bnc(p)

where the cup product is between H1(GK , µ2) and H0(GK ,M1). We can rewrite this as

(
Bnc(p) ∪ [

√
α] + δ([

√
α])
)

+
(
τ∗B

nc(p) ∪ [−
√
α] + δ([−

√
α])
)

+ δ([−1]).

Using bilinearity and (3.3), we have

qGK (Bnc
M1,F,p

([
√
α])) = Bnc(p) ∪ τ∗Bnc(p) + Bnc(p) ∪ χ√α + τ∗B

nc(p) ∪ χ−√α.

where the cup pairing is the standrad one on H1(GK , µ2). From the assumptions on α,

p ∼ p0 implies

invµ4,F,p
(
qGF

(
Bnc
M1,F,p

([
√
α])
))
− anc

τ (p, p)

= invµ4,F,p0
(
qGF

(
Bnc
M1,F,p0

([
√
α])
))
− anc

τ (p0, p0).

But Poitou-Tate reciprocity also gives us

invµ4,F,p
(
qGF

(
Bnc
M1,F,p

([
√
α])
))

=
∑
v∈V0

invµ4,F,v
(
qGF

(
Bnc
M1,F,p

([
√
α])
))
,

and this latter sum is determined by the class of p in Gal(K(V0)/F ). This finishes the

proof. �
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4. THE CASSELS-TATE PAIRING

The Cassels-Tate pairing is typically defined as a pairing between the Shafarevich-Tate

group of an abelian variety over a global field and the Shafarevich-Tate group of the dual

abelian variety, as per [51] or [36]. Flach later generalized the setup to handle Shafarevich-

Tate groups coming from `-divisible Galois modules defined over global fields [8].

However, the Cassels-Tate pairing is perhaps most easily defined and understood at the

level of finite Galois modules. Because we think this simple reframing is of some indepen-

dent interest, we will keep the notation for these results self-contained and prove them for

general global fields.

Notation 4.1. Take F to be a global field (either a number field or a finite extension of the

function field F`[t] for some prime `). Take S to be a set of places of F , take SF to be the

maximal separable extension of F that is ramified only at the places of S, and write GF,S

for the Galois group Gal(SF/F ). For each place v ∈ S, take Fv to be the completion of F

at v, fix a separable closure F s
v of Fv, and fix an embedding SF ↪→ F s

v . These embeddings

induce homomorphisms Gv → GF,S , allowing us to view GF,S modules as Gv modules.

Take M to be a finite module with a continuous GF,S action. We assume that the charac-

teristic of F does not divide the order of M . In addition, if F is a number field, we assume

S contains all primes that divide the order of M and all archimedean primes.

For v ∈ S, choose a subgroup Wv of H1(Gv, M), where we use H i to denote the

standard continuous group cohomology. We assume that, for all but finitely many v, Wv is

the set of unramified cocycle classes. We then take

Sel (M, (Wv)v∈S) = ker

(
H1(GF,S,M)→

∏
v∈S

H1(Gv,M)/Wv

)
.

We will write M∨ for the module Hom
(
M, SF×

)
. Local Tate duality gives a perfect

pairing

H1(Gv,M)×H1(Gv,M
∨)→ Q/Z,

44



and we write W⊥
v for the orthogonal complement of Wv in H1(Gv,M

∨).

Take

(4.1) 0→M1
ι−→M

π−→M2 → 0

to be an exact sequence of GF,S modules. The dual exact sequence has the form

0→M∨
2

π∨−−→M∨ ι∨−−→M∨
1 → 0.

The Cassels-Tate pairing gives an answer to the following question: given M and (Wv)v

as in Notation 4.1, and given the exact sequence (4.1), when can an element φ of Sel(M2, (π∗(Wv))v)

be lifted to an element of Sel(M, (Wv)v)? We will first state our main result before giving

an intuitive argument for why this result makes sense.

Proposition 4.2.

(1) With all notation as in Notation 4.1, including an exact sequence (4.1), the natural

pairing

CTPι,π : Sel (M2, (π∗(Wv))v)× Sel
(
M∨

1 ,
(
ι∨∗ (W

⊥
v )
)
v

)
→ Q/Z

given in Definition 4.4 is well-defined and bilinear.

(2) Suppose we have

φ ∈ Sel (M2, (π∗(Wv))v) and ψ ∈ Sel
(
M∨

1 ,
(
ι∨∗ (W

⊥
v )
)
v

)
.

Taking β to be the standard isomorphism (M∨
2 )∨

∼−−→M2, we then have

CTPι,π(φ, ψ) = CTPπ∨, ι∨(ψ, β∗(φ)).

(3) The left and right kernels of CTPι,π are

π∗(Sel(M, (Wv)v)) and (ι∨)∗(Sel(M∨, (W⊥
v )v)), respectively.
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We now sketch the source of this pairing. There seem to be two distinct obstructions

to lifting an element φ from Sel(M2, (π∗(Wv))v) to Sel(M, (Wv)v). First, the long exact

sequence for group cohomology gives us an exact sequence

H1(GF,S,M)
π∗−−→ H1(GF,S,M2)→ H2(GF,S,M1).

After considering local conditions, this gives an exact sequence

(4.2)

0→ π∗(H
1(GF,S,M)) ∩ Sel(M2, (π∗(Wv))v)→ Sel(M2, (π∗(Wv))v)→X2(M1),

where we have taken

X2(M1) = ker

(
H2(GF,S,M1)→

∏
v∈S

H2(Gv,M1)

)
.

In particular, φ only lifts to H1(GF,S,M) if its image in X2 is zero

If φ lifts to a cocycle, it may still not lift to an element of Sel(M, (Wv)v). We have the

following commutative diagram with exact rows:

H1(GF,S,M1) H1(GF,S,M) ker

 H1(GF,S,M2)

→ H2(GF,S,M1)

 0

0
∏

v∈S
H1(Gv ,M1)

ι−1
∗ (Wv)

∏
v∈S

H1(Gv ,M)
Wv

∏
v∈S

H1(Gv ,M2)
π∗(Wv)

.

The snake lemma then gives an exact sequence

0→ π∗(Sel(M, (Wv)v))→ ker
(

Sel
(
M2, (π∗(Wv))v

)
→X2(M1)

)
(4.3)

→ cok

(
H1(GF,S,M1)→

∏
v∈S

H1(Gv,M1)

ι−1
∗ (Wv)

)
.
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If φ maps to zero in this cokernel, we then get that it is of the form π∗(φ
′) for some φ′ in

Sel(M, (Wv)v). This cokernel then gives the second obstruction to finding a Selmer lift of

the element φ.

The key observation about this situation is that, under Poitou-Tate duality, the group

X2(M1) is dual to

X1(M∨
1 ) = ker

(
H1(GF,S,M

∨
1 )→

∏
v∈S

H1(Gv,M
∨
1 )

)
,

and the final term of the sequence (4.3) is dual to

ker

(
H1(GF,S,M

∨
1 )→

∏
v∈S

H1(Gv,M
∨
1 )

ι−1
∗ (Wv)⊥

)/
X1(M∨

1 ).

We can then account for both obstructions using two filtered pieces of the Selmer group

Sel
(
M∨

1 ,
(
ι∨∗ (W

⊥
v )
)
v

)
.

This basic framework accounts for the form of the pairing in Proposition 4.2.

To define this pairing, we will work with cohomology groups using the language of

inhomogeneous cocycles, so we first recall this notation.

Notation 4.3. Given a topological group G and a discrete module M with a continuous G

action, and given i ≥ 0, we take C i(G,M), or the set of i-cochains, to be the set of maps

from Gi to M . For i ≥ 0, we can define a coboundary operator

d : C i(G,M)→ C i+1(G,M)
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by

df(σ1, . . . , σi+1) = σ1f(σ2, σ3, . . . , σi+1)

+
i∑

j=1

(−1)jf(σ1, . . . , σj−1, σjσj+1, σj+2, . . . , σi+1)

+(−1)i+1f(σ1, . . . , σi).

We call an i-cochain f a cocycle if df = 0, and we call it a coboundary if it is of the form

dg for some (i − 1)-cochain g. Writing Zi for the set of i-cocycles and Bi for the set of

i-coboundaries, we define

H i(G,M) = Zi(G,M)/Bi(G,M).

Finally, suppose we have discreteG-modulesM1,M2, N and a bilinearG-equivariant pair-

ing

P : M1 ⊗M2 → N.

Given f1 ∈ C i(G,M1) and f2 ∈ Cj(G,M2), we define an element f1∪P f2 in C i+j(G,N)

by

f1 ∪P f2(σ1, . . . , σi+j) = P (f1(σ1, . . . , σi), σ1σ2 . . . σif2(σi+1, . . . , σi+j)) .

The standard cohomological cup product is recovered by restricting this construction to

cocycles [41, Proposition 1.4.8].

Definition 4.4 (Cassels-Tate pairing). Given F , M , S, and (Wv)v∈S as in Notation 4.1, and

given the exact sequence (4.1) of GF,S modules, we define a pairing

CTPι,π : Sel (M2, (π∗(Wv))v)× Sel
(
M∨

1 ,
(
ι∨∗ (W

⊥
v )
)
v

)
→ Q/Z

as follows:
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Suppose (φ, ψ) is in the domain of this map, and choose cocycles φ ∈ Z1(GF,S,M2)

and ψ ∈ Z1(GF,S,M
∨
1 ) representing this pair of Selmer elements. Choose f : GF,S → M

so

φ = π ◦ f.

Then df lies in Z2(GF,S,M1). Take O×F,S to be the subset of SF where the valuation at all

places outside S is trivial. We have a standard perfect GF,S-equivariant pairing

M1 ⊗M∨
1 → O×F,S.

From Poitou-Tate duality [36], we have

H3(GF,S, O×F,S) = 0,

so there is some

ε : GF,S ×GF,S → O×F,S

so that

dε = df ∪ ψ in Z3
(
GF,S, O×F,S

)
.

Denoting the restriction to Gv by a subscript v, we can lift each φv to an element φv,M of

Z1(Gv,M) that projects to Wv. Having done this, we find that

(fv − φv,M) ∪ ψv − εv

lies in Z2
(
Gv,O×F,S

)
, and can define

CTP(φ, ψ) =
∑
v∈s

invv
(
(fv − φv,M) ∪ ψv − εv

)
,

where invv is the standard map H2(Gv, Fv
×

)→ Q/Z.
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Proof of Proposition 4.2 (1). To prove the pairing is well-defined, we must prove it does

not depend on the choice of the tuple

(ψ, φ, f, (φv,M)v, ε).

So suppose we have fixed one such tuple obeying the requirements of the definition.

• If (ψ, φ, f, (φv,M)v, ε + ∆) also obeys the requirements of the definition, we get

that ∆ is in Z2(GF , F
×

), and Poitou-Tate duality gives

∑
v∈S

invv(∆v) = 0.

Thus, the choice of ε does not affect the result.

• If (ψ, φ, f, (φv,M +∆v)v) obeys the requirements of the definition, then so does the

full tuple

(ψ, φ, f, (φv,M + ∆v)v, ε),

and we may compute the pairing from this data instead without changing the value.

The requirements of the definition force ∆v to lie in ι−1
∗ (Wv), so ∆v ∪ ψv is trivial

in H2(Gv, F
×

). The choice of (φv,M)v thus does not affect the result.

• If (ψ, φ, f+∆) obeys the requirements of the definition, we get that ∆ takes values

in M1. This partial tuple then extends to a full tuple

(
ψ, φ, f + ∆, (φv,M)v, ε+ ∆ ∪ ψ

)
.

This tuple gives an identical result to the orginal tuple, so the choice of f has no

effect.

• If (ψ, φ+∆) obeys the requirements of the definition, we find that ∆ can be written

as dx2 for some x2 ∈ M2. Choose x ∈ M so π(x) = x2. Then this partial tuple

can be extended to a full tuple

(
ψ, φ+ ∆, f + dx, ((dx)v + φv,M)v, ε

)
.
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This tuple gives an identical result to the orginal tuple, so the choice of f has no

effect.

• If (ψ + ∆) obeys the requirements of the definitionn, ∆ can be written as dy1 with

y1 in M∨
1 . Choose y so ι∨(y) = y1. Then the partial tuple can be extended to the

full tuple

(ψ + ∆, φ, f, (φv,M)v, ε+ df ∪ y).

The difference between the result computed from this tuple and the original is given

by

∑
v∈S

invv ((fv − φv,M) ∪ dy − dfv ∪ y) =
∑
v∈S

invv (−d ((fv − φv,M) ∪ y)) = 0,

so the pairing does not depend on the choice of ψ.

The bilinearity of the pairing is immediate, finishing the proof of the first part of the propo-

sition. �

We will next turn to the proof of the second part of the proposition. In the context of

Definition 4.4, choose ε′ ∈ C2(GF,S, O×F,S) so that

dε′ = −ψ ∪ df.

We then claim that we have

(4.4) CTP(φ, ψ) = −
∑
v∈s

invv
(
ψv ∪ (fv − φv,M)− ε′v

)
.

This can be proved directly by a coboundary calculation. First, define h ∈ C2(GF,S, O×F,S)

by

h(σ, τ) =
〈
df(σ, τ), ψ(στ)

〉
,
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where the pairing is the natural one. We then have

dh(σ, τ, ε) =
〈
σdf(τ, ε), σψ(τε)

〉
−
〈
df(στ, ε), ψ(στε)

〉
+
〈
df(σ, τε), ψ(στε)

〉
−
〈
df(σ, τ), ψ(στ)

〉
= −

〈
σdf(τ, ε), ψ(σ)

〉
+
〈
df(σ, τ), στψ(ε)

〉
=
(
df ∪ ψ − ψ ∪ df

)
(σ, τ, ε) = (dε+ dε′)(σ, τ, ε)

with the second equality following from bilinearity and the relations

df(σ, τε)− df(στ, ε) = df(σ, τ)− σdf(τ, ε) and

ψ(στε) = σψ(τε) + ψ(σ) = στψ(ε) + ψ(στ).

We can then take ε′ = h − ε. Per Proposition 4.2 (1), this will not change the value of the

pairing.

To prove (4.4), we need to show

(4.5)
∑
v∈s

invv
(
ψv ∪ (fv − φv,M) + (fv − φv,M) ∪ ψv − hv

)
= 0.

A similar calculation to the one given before gives

dγv = ψv ∪ (fv − φv,M) + (fv − φv,M) ∪ ψv − hv,

where γv ∈ C1(Gv, Fv
×

) is defined by

γv(σ) = −
〈
ψv(σ), (fv − φv,M)(σ)

〉
for σ ∈ Gv.

Then each summand of (4.5) is zero, and we have (4.4).

Proof of Proposition 4.2 (2). Choose (ψ, φ, f, (φv,M)v, ε) associated to CTPι,π(φ, ψ). Choose

g ∈ C1(GF ,M
∨) so ι∨ ◦ g equals ψ. Finally, for v ∈ S, choose ψv,M∨ in Z1(Gv,M

∨)
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projecting to W⊥
v satisfying ι∨ ◦ ψv,M∨ = ψv. We have

d(f ∪ g) = df ∪ φ− ψ ∪ dg,

and (4.4) gives

CTPι,π(φ, ψ)− CTPπ∨, ι∨(ψ, β∗(φ))

=
∑
v∈S

invv
((
fv − φv,M

)
∪ ψv + φv ∪

(
gv − ψv,M∨

)
− (f ∪ g)v

)
=
∑
v∈S

invv
(
−
(
fv − φv,M

)
∪
(
gv − ψv,M∨

)
− φv,M ∪ ψv,M∨

)
The result then follows from the cochain relation

(
fv − φv,M

)
∪
(
gv − ψv,M∨

)
= 0

and the orthogonality assumption

invv(φv,M ∪ ψv,M∨) = 0 for all v ∈ S.

�

Proof of Proposition 4.2 (3). From part (2), it suffices to prove the statement for the left

kernel. The claim then splits into the following two subclaims:

• Suppose φ lies in Sel (M2, (π∗(Wv))v). Then φ can be written as π∗(φ′) for some

φ′ ∈ H1(GF,S,M) if and only if CTP(φ, ψ) = 0 for all

ψ ∈X1(M∨
1 ) = ker

(
H1(GF,S,M

∨
1 )→

∏
v∈S

H1(Gv,M
∨
1 )

)
.

• If φ obeys the requirements of the first part, then it lies in π∗ (Sel(M, (Wv)v)) if

and only if CTP(φ, ψ) = 0 for all ψ in Sel
(
M∨

1 ,
(
ι∨∗ (W

⊥
v )
)
v

)
.
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To prove the first claim, we note that the map φ 7→ df induces the final map of the sequence

(4.2). Therefore, our goal is to show that

(4.6) CTP(φ, ψ) = PTP(df, ψ) for ψ ∈X1(M∨
1 ),

where PTP is the standard Poitou-Tate pairing of X2(M2) and X1(M∨
1 ). To see this, we

recall the construction of the latter pairing from Tate’s paper [51]: given fTa ∈ Z2(GF,S,M1)

representing a class of X2(M1), and given f ′Ta ∈ Z1(GF,S,M
∨
1 ) representing a class of

X1(M∨
1 ), we define

PTP(fTa, f
′
Ta) =

∑
v∈S

invv
(
gTa,v ∪ f ′Ta,v − hTa,v

)
,

where gTa,v ∈ C1(Gv,M1) is chosen so dgTa,v = fTa,v, and where hTa ∈ C2(GF,S,O×F,S) is

chosen so

dhTa = fTa ∪ f ′Ta.

Take (ψ, φ, f, (φv,M)v, ε) to be a tuple for computing CTP(φ, ψ). Then (4.6) can be veri-

fied from the dictionary

fTa = df, f ′Ta = ψ, gTa,v = fv − ψv,M , hTa = ε.

This establishes the first claim.

To establish the second, suppose φ can be written in the form π∗(φ′). We then can write

CTP(φ, ψ) =
∑
v∈S

invv
((
φ′v − φv,M

)
∪ ψv

)
.

From the construction in the snake lemma, the map

φ 7→
(
φ′v − φv,M

)
v∈S

induces the final map of (4.3). The result then follows from Poitou-Tate duality. �

The following naturality property follows from the definition.
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Proposition 4.5. Fix a global field F and set of places S as in Notation 4.1, and suppose

0 M1 M M2 0

0 N1 N N2 0

f1

ιM

f

πM

f2

ιN πN

is a commutative diagram with exact rows in the category of finite GF,S-modules. Choose

a set of local conditions (Wv,M)v∈S for N , and choose a set of local conditions (Wv,N)v∈S

for N so that

Wv,N ⊆ f∗(Wv,M) for all v ∈ S.

We assume M and N and these local conditions obey the requirements of Notation 4.1.

Then, for

φ ∈ Sel (M2, (πM∗(Wv,M))v) and ψ ∈ Sel
(
N∨1 ,

(
ι∨N∗(W

⊥
v,N)

)
v

)
,

we have

CTPιM ,πM (φ, f∨1 ∗(ψ)) = CTPιN , πN (f2∗(φ), ψ) .

4.1. Antisymmetry. The second part of Proposition 4.2 generalizes a result of Flach on

the antisymmetry of the Cassels-Tate pairing [8, Theorem 2]. In a general context, suppose

we have chosen F , S, M , and (Wv)v∈S as in Notation 4.1, and choose a GF,S-submodule

M1 of M . Choose a GF,S-equivariant homomorphism f : M →M∨ so that

f∗(Wv) ⊆ W⊥
v for all v ∈ S and f(M1) ⊆M⊥

1 .

The map f then fits into the commutative diagram

(4.7)
0 M1 M M2 0

0 M∨
2 M∨ M∨

1 0

f1

ι

f

π

f2

π∨ ι∨
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Under this circumstance, we can define a pairing

CTPι,π,f : Sel (M2, (π∗(Wv))v)× Sel (M2, (π∗(Wv))v)→ Q/Z

by

CTPι,π,f (φ, ψ) = CTPι,π (φ, f2∗(ψ)) ,

By Proposition 4.2 (2) and the naturality of the Cassels-Tate pairing, we have

CTPι,π (φ, f2∗(ψ)) = CTPπ∨,ι∨ (f2∗(ψ), β∗(φ)) = CTPι,π (ψ, f∨1 ∗(φ)) .

In particular, if f = f∨, so that the associated pairing M ×M → OF ,S× is symmetric,

then CTPι,π,f is also symmetric. Similarly, in the case where f = −f∨, the pairing on M

is antisymmetric, and CTPι,π,f is also antisymmetric.

This theory is most interesting when f is an isomorphism satisfying

(4.8) f∗(Wv) = W⊥
v for all v ∈ S and f(M1) = M⊥

1 .

In this case, f∗ and f2∗ give isomorphisms of Selmer groups, and CTPι,π,f has both kernels

equal to π∗(Sel(M, (Wv)v)).

In the anti-self dual case, we can follow the lead of [45] and ask if the antisymmetric

pairing CTPι,π,f is alternating. If it is not, we can try to characterize its diagonal entries.

There is still a terrific amount of work still to be done here, but the following partial answer

suffices for our work.

Proposition 4.6. Take F , S, and M as in 4.1, and fix k a positive integer. We assume that

M [2] is nonzero and that 2M [2a] = M [2a−1] for k + 2 ≥ a ≥ 1. We also assume there is

a GF,S-equivariant anti-self dual map

fk+2 : M [2k+2]→M [2k+2]∨.

Finally, for v ∈ S, choose a subgroup Wv of H1(Gv,M [2k+1]).
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We take

Pk+2 : M [2k+2]⊗M [2k+2]→ O×F,S

to be the pairing associated to fk+2. From this pairing, we can apply the construction of

Definition 3.1 to get the exact sequence

0→ O×F,S → H2k+1,0,Pk+2
(M [2k+1])→M [2k+1]→ 0.

Taking q to be the connecting map associated to this sequence, we assume q(Wv) = 0 for

v ∈ S.

Taking Sgood to be the set of places v ∈ S not dividing two where the action of Gv on

M [2] is unramified, we also assume

ker

H1(GF,S,M [2])→
∏

v∈Sgood

H1(Gv,M [2])

 = 0.

Take fk+1 : M [2k+1]
∼−−→ M [2k+1]∨ to be the map given by the restriction of 2∨ ◦ fk+2.

Then, defining a Cassels-Tate pairing with respect to

0→M [2]
ι−→M [2k+1]

2−→M [2k]→ 0,

we have

CTPι,2,fk+1
(φ, φ) = 0 for all φ ∈ Sel

(
M [2k], 2∗(Wv)v

)
.

Proof. In the context of Definition 3.1, given a subgroup M [λ] and a pairing

P : M [λ]×M [λ]→ O×F,S,

we will refer to the corresponding module U as UP .

For a ≤ k + 2, we can define a perfect pairing

Pa : M [2a]⊗M [2a]→ O×F,S
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so Pa(2
k+2−ax, 2k+2−ay) = 2k+2−aPk+2(x, y) for x, y ∈ M [2k+2]. We have an exact

sequence

(4.9) 0→ O×F,S → UP1 →M [2]→ 0

of Galois modules, with UP1 notably an abelian module. We claim this exact sequence

splits as a sequence of GF,S-modules. First, for H a closed subgroup of GF,S , an Ext

spectral sequence argument (per [36, Theorem 0.3]) together with the fact that

Ext1Z(M [2],O×F,S) = 0

gives an isomorphism

Ext1Z[H](M [2],O×F,S) ∼= H1(H,M [2]∨) ∼= H1(H,M [2]).

Take cH to be the image in H1(H,M [2]) of the element of Ext1 corresponding to (4.9).

We then find that cGv = 0 for all v ∈ Sgood. We will prove this by following the argument

of [43, Proposition 3.6a]. First, we note that P1 has range defined over ±1, so we may

alternatively consider the subsequence

(4.10) 0→ ±1→ U ′P1
→M [2]→ 0.

We can verify that 2U ′P1
equals zero. We have a set-theoretic GF,S equivariant lift from

M [2] to U ′P1
, so we find

dimH0(Gv,±1) + dimH0(Gv,M [2]) = dimH0(Gv, U
′
P1

).

Since Gv acts cyclically on M [2], and hence on U ′P1
, this gives

1 + dimH0(Gv,M [2]∨) = dimH0(Gv, (U
′
P1

)∨).
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In particular we find that there is an element of H0(Gv, (U
′
P1

)∨) that projects to the identity

map in Hom(±1,±1) = (±1)∨, since this is the unique nontrivial element of (±1)∨. This

element gives a section of (4.10) defined over Gv, so cGv = 0. From the assumptions of

the proposition, we then get that cGF,S is also zero.

Write ∪a for the cup product associated to Pa, and write qa for the connecting map

associated to the exact sequence

0→ O×F,S → H2a,0,Pa+1(M [2a])→M [2a]→ 0.

Given φ in Sel
(
M [2k+1], (Wv)v

)
, we can find φ′ ∈ H1(GF,S, M [2k+1]) that satisfies

2∗φ
′ = φ by the first claim in the proof of Proposition 4.2 (3). Choosing φv,k+1 ∈ Wv

that satisfies 2∗φv,k+1 = φv for v ∈ S, we then get

CTPι,2,fk+1
(φ, φ)

=
∑
v∈S

invv
(
(φ′v − φv,k+1) ∪1 2k−1

∗ φv
)

=
∑
v∈S

invv ((φ′v − φv,k+1) ∪k+1 φv,k+1)

=
∑
v∈S

invv (−qk+1(φ′v) + qk+1(φ′v − φv,k+1) + qk+1(φv,k+1)) by Proposition 3.2

=
∑
v∈S

invv (qk+1(φ′v − φv,k+1) + qk+1(φv,k+1)) by global Poitou-Tate duality

=
∑
v∈S

invv (qk+1(φ′v − φv,k+1)) since q(Wv) = 0

=
∑
v∈S

invv
(
2kq1(φ′v − φv,k+1)

)
=
∑
v∈S

invv
(
2k−1(φ′v − φv,k+1) ∪1 (φ′v − φv,k+1)

)
=
∑
v∈S

2k−1invv ((φ′v − φv,k+1) ∪1 cGv) = 0.

�

5. APPENDIX: REVIEW OF GALOIS COHOMOLOGY

5.1. Review of group cohomology. We start by collecting the facts we will need about

group cohomology. Our main reference is [41].
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Take G to be a profinite group, and take M to be a topological G-module. We will

always think of H1(G,M) as the set of continuous crossed homomorphisms from G to M

modulo the set of coboundaries.

Group change. Per [41, 1.5], given a homomorphism of profinite groups G1 → G, a G1-

module M1, and a homomorphism M → M1 that is G1 equivariant with respect to the

induced action of G1 on M , there is a canonical homomorphism

(5.1) Hk(G,M)→ Hk(G1,M1)

for any k ≥ 0. This construction can be used to define restriction, inflation, and conjugation

maps.

We consider the last case in more detail. If H is a closed subgroup of G, and τ lies in G,

we have an induced map

τ∗ : Hk(H, M)→ Hk(τHτ−1, M)

for all k ≥ 0. If τ is in H , this map is the identity map. Given a crossed homomorphism φ

representing an element of H1(G,M), we can give τ∗φ the explicit representative

τ∗φ(σ) = τφ(τ−1στ).

Corestriction. Suppose H has finite index in G. Given an acyclic resolution

0→M →M0 →M1 → . . . ,

of M , we have a commutative diagram

0 MH MH
0 MH

1 . . .

0 MG MG
0 MG

1 . . .
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where all the columns are given by the norm map. Taking homology of these complexes

then gives the corestriction maps

corHG : Hk(H,M)→ Hk(G,M).

We also get the more easily defined restriction maps

resGH : Hk(G,M)→ Hk(H,M),

which can be defined using the inclusion mapsMH
i ↪→MG

i at the level of complexes. This

definition makes sense for any closed subgroup H of G.

Using the complexes, it is easy to check that

(5.2) corHG ◦ resGH(φ) = [G : H] · φ

for φ in Hk(G,M). If H is normal in G, we also have

(5.3) resGH ◦ corHG (φ) =
∑

τ∈G/H

τ∗φ

for φ in Hk(H,M).

This last equation is a special case of the double coset formula, which we quote from

[41]. Take U to be a closed subgroup of G, and take H to be a finite index subgroup of G.

Choose a set of representatives B of the double cosets

U\G/H

Then, given φ in Hk(H,M), we have

(5.4) resGU ◦ corHG (φ) =
∑
τ∈B

corU∩τHτ
−1

U ◦ τ∗ ◦ resHτ−1Uτ∩H(φ).
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In particular, we have a commutative diagram

(5.5)

Hk(H,M) Hk(G,M) Hk(H,M)

⊕
τ∈BH

k(Hτ ,M) Hk(U,M)
⊕

τ∈BH
k(Hτ ,M)

cor

res

res

res res⊕
cor ◦ τ∗

⊕
(τ−1)∗ ◦ res

for k ≥ 0, where Hτ is defined as H ∩ τ−1Uτ .

Shapiro’s lemma. If N is an H-module, we can consider the induced module

IndHGN = Z[G]⊗Z[H] N.

We have an isomorphism

NH ∼=
(
Z[G]⊗Z[H] N

)G
given by

n 7−→
∑

σ∈G/H

[σ]⊗ n

for n in NH . This isomorphism can be written as the composition

NH →
(
Z[G]⊗Z[H] N

)H → (
Z[G]⊗Z[H] N

)G
,

where the first map sends n to [1]⊗ n, and the second map is the norm map. We can write

the inverse of this map in the form

(
Z[G]⊗Z[H] N

)G
↪→
(
Z[G]⊗Z[H] N

)H → NH ,

where the second map gives the [1] component.

If we apply this to an acyclic resolution of N , we derive Shapiro’s lemma, that we have

an isomorphism

Hk(H,N) ∼= Hk
(
G, IndHGN

)
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given in one direction as the composition

(5.6) Hk(H,N)→ Hk
(
H, IndHGN

) cor−−→ Hk
(
G, IndHGN

)
with the first map sending n to [1]⊗ n, and in the other as the composition

(5.7) Hk
(
G, IndHGN

) res−−→ Hk(H, IndHGN)→ Hk(H,N)

with the second map sending an element of Z[G]⊗Z[H] N to its [1] component.

Using these compositions, we find that the bottom row of (5.5) induces an isomorphism

(5.8)
⊕
τ∈B

Hk(Hτ ,M) ∼= Hk
(
U, IndHGN

)
,

where U is a closed subgroup of G, B is a set of representatives of U\G/H , and Hτ

denotes H ∩ τ−1Uτ .

If N is a G-module and H is a normal subgroup of G, the conjugation maps defined

above give an action of G/H on Hk(H,N). Given τ ∈ G/H , we can define an isomor-

phism

(5.9) ρτ : IndHGN −−→ IndHGN

of GF modules by

ρτ ([σ]⊗ x) = [στ−1]⊗ τx.

We then have a commutaive square

Hk(H,N) Hk(H,N)

Hk
(
G, IndHGN

)
Hk
(
G, IndHGN

)
τ∗

(ρτ )∗

with columns given by the Shapiro isomorphism.
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Cup product. Given G-modules M1 and M2, we have the natural cup product map

∪ : Hk(G,M1)⊗Hj(G,M2)→ Hk+j(G,M1 ⊗M2).

Take

t : M1 ⊗M2 →M2 ⊗M1

to be the map taking m1 ⊗m2 to m2 ⊗m1 for all m1 in M1 and m2 in M2. Then, given

φ1 ∈ Hk(G,M1) and φ2 ∈ Hj(G,M2), we have the skew-commutativity relation, that

(5.10) φ2 ∪ φ1 = (−1)k·j · t∗(φ1 ∪ φ2);

see [41, 1.4.4]. If we instead take φ1 ∈ Hk(H,M1), we have

(5.11) corHG
(
φ1 ∪ resGH(φ2)

)
= corHG (φ1) ∪ φ2 in Hk+j(G,M1 ⊗M2).

If we take φ1 in Hk(U,M1) and φ2 in Hj(U,M2), and if we take τ in G, we find

(5.12) τ∗ (φ1 ∪ φ2) = τ∗φ1 ∪ τ∗φ2 in Hk+j
(
τUτ−1,M1 ⊗M2

)
.

These are proved in [41, 1.5.3].

Procyclic corestriction. Suppose M is a Ẑ-module, and take a to be a positive integer.

Choose m in M , and take φ to be the crossed homomorphism from a · Ẑ to M sending a

to m. Then, under the corestriction map

(5.13) cor : H1
(
a · Ẑ, M

)
−−→ H1(Ẑ, M),

the class cor(φ) is represented by a crossed homomorphism sending 1 to m. This can be

proved directly from the effect of corestriction on cochains, as given in [41, 1.5].

5.2. Local bookkeeping. Take F to be a number field, and choose an algebraic closure F

of F . Given a GF module M of exponent dividing e0, and given k ≥ 0, we take M(k) to
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be the Galois module

M ⊗ (µe0)
⊗k

and we take M(−k) to be the Galois module

M ⊗ Hom
(
µe0 ,

1
e0
Z
/
Z
)⊗k

.

These modules are isomorphic to the typical Tate twists of M , but such isomorphisms

usually rely on some choice of isomorphism

µe0
∼−−→ 1

e0
Z
/
Z.

There is a canonical element of

µe0 ⊗ Hom
(
µe0 ,

1
e0
Z
/
Z
)
.

If ζ is any generator of µe0 , this element is ζ tensored with the map sending ζ to 1
e0

. We

can define a natural canonical map

M
∼−−→M(−1)(1)

by tensoring with this element. For duals, we will use the notation

M∨ = Hom(M,µe0).

Take p to be a prime of F , write Gp for the absolute Galois group of Fp, and write Ip for

the inertia subgroup of Gp. If N is a finite Gp module, we have a perfect pairing

H2−i(Gp, N
)
×H i

(
Gp, Hom(N,F

×
p )
) ∪−→ H2(Gp, F

×
p )

inv−→ Q/Z
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from local Tate duality for i = 0, 1, 2. If N is unramified at p and p does not divide the

order of M , the case i = 1 restricts to a well-defined, non-degenerate pairing

(5.14) invp : H1
(
Ip, N)Gp/Ip ×H1

(
Gp/Ip, Hom(N,F

×
p )
)
→ Q/Z

coming from the inflation-restriction sequence

0→ H1(Gp/Ip, N)→ H1(Gp, N)→ H1(Ip, N)Gp/Ip → 0.

The final surjection of this last sequence follows from the fact that Gp/Ip ∼= Ẑ has coho-

mological dimension one, which implies that H2(Gp/Ip, M) is zero.

Choose an inclusion

ι : F ↪→ F p.

This induces an inclusion

ι∗ : Gp ↪→ GF .

The image ι∗Gp is the decomposition group of a unique prime p of F . Given such an p, we

write GF,p for its decomposition group in GF . Consider the composition

invι : H2(ι∗Gp, F
×

)→ H2(Gp, F
×
p )→ Q/Z,

where the first map is the group change homomorphism (5.1) corresponding to (ι, ι∗).

Given a second inclusion ι1, we can find some τ in GF so ι1 = ι ◦ τ . We then always have

a commutative diagram

H2(GF,p, F
×

)

H2(GF,τp, F
×

) Q/Z.

invιτ∗

invι1

In particular, if GF,p = GF,τp, we find that the maps invι and invι1 coincide. We thus have

a well-defined map

H2−i(GF,p,M
)
×H i

(
GF,p,M

∨)→ Q/Z
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depending only on the choice of p and not on the specific choice of ι for evaluating inv.

Definition 5.1. From this pairing, we get an isomorphism

H2(GF,p,M)
∼−−→ Hom

(
H0 (GF,p,M

∨) ,Q/Z
) ∼= M(−1)GF,p .

We then define a map

invM,F,p : H2(GF ,M) −−→ M(−1)GF,p

as the composition of this map with the restriction map.

Given an archimedean place v of F , and given an associated decomposition group GF,v

in GF , we can extend this definition to give maps

invM,F,v : H2(GF ,M) −−→ M(−1)GF,v .

Definition 5.2. The Frobenius element is a canonical topological generator for Gp/Ip.

Write FrobFp for its image in GF,p/IF,p. For τ in GF , we have

(5.15) FrobF τp = τ ◦ FrobF p ◦ τ−1 in GF/IF,τp.

If L/F is a finite extension, we also have

(5.16) FrobL p = (FrobF p)m ,

where m is the degree of the extension of residue fields corresponding to Lp∩L/Fp. In

particular, if this extension is unramified at p, then m is just [Lp∩L : Fp].

Evaluation at FrobFp defines an isomorphism

ker
(
H1(GF,p,M)→ H1(IF,p,M)

)
−−→

(
M IF,p

)
GF,p

.
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We define a map

fbM,F,p : ker
(
H1(GF ,M)→ H1(IF,p,M)

)
−−→

(
M IF,p

)
GF,p

as the composition of the restriction map with this isomorphism.

Assume that M is unramified at p and that p does not divide the order of M . From

(5.14), we have an isomorphism

H1(IF,p,M)
∼−−→ Hom

(
H1(GF,p/IF,p,M

∨), Q/Z
) ∼−−→M(−1)GF,p .

We write

fb∗M,F,p : H1(GF ,M) −−→ M(−1)GF,p

for the composition of this with the restriction map. Note that this definition is prone to

sign errors coming from the skew commutativity of cup product.

For K a finite extension of F and τ in GF , we have the commutative diagrams

(5.17)

ker
(
fb∗M,K,p

)
MGK,p

ker
(
fb∗M,τK,τp

)
MGK,τp

fbM,K,p

τ∗ τ

fbM,τK,τp

,

H1(GK ,M) M(−1)GK,p

H1(GτK ,M) M(−1)GK,τp

fb∗
M,K,p

τ∗ τ

fb∗
M,τK,τp

and

H2(GK ,M) M(−1)GK,p

H2(GτK ,M) M(−1)GK,τp .

invM,K,p

τ∗ τ

invM,τK,τp

Finally, given a homomorphism ρ : M → N of GF modules, we note that we have a

commutative diagram

(5.18)

H2(GF ,M) M(−1)GF,p

H2(GF , N) N(−1)GF,p ,

invM,F,p

ρ∗ ρ⊗ Id

invN,K,p

68



and we can write down simlar diagrams for fb and fb∗.

Proposition 5.3. Take F to be a number field and take M to be a finite GF -module. Take

p to be a prime of F so that M is unramified at p and so the order of M is indivisible by p.

Take K/F to be a finite extension that is unramified at p. Take p to be a prime of F over p,

and take B to be a subset of GF so that

σ 7→ σp ∩K

gives a bijection between B and the set of primes of K dividing p.

The canonical restriction mapH1(GF ,M)→ H1(GK ,M) and corestriction mapH1(GK ,M)→

H1(GF ,M) then fit into a commutative diagram

(5.19)

ker
(
fb∗M,F,p

) ⋂
τ∈B ker

(
fb∗M,K,τp

)
ker
(
fb∗M,F,p

)
MGF,p

⊕
τ∈BMGK,τp MGK,p ,

res

fbF,p

cor

⊕
τ fbK,τp fbF,p

where the τ component of the first map in the second row is

m 7→ τ
(

1 + FrobFp + · · ·+ (FrobFp)[KK∩τp:Fp]−1
)
m

and the τ component of the second map is

m 7→ τ−1m.

We also have a commutative diagram

(5.20)

H2(GF ,M) H2(GK ,M) H2(GF ,M)

M(−1)GF,p
⊕

τ∈BM(−1)GK,τp M(−1)GF,p

res

invM,F,p

cor

⊕
τ invM,K,τp invM,F,p

whose bottom row is as in (5.19).
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Finally, we have a commutative diagram

H1(GF ,M) H1(GK ,M) H1(GF ,M)

M(−1)GF,p
⊕

τ∈BM(−1)GK,τp M(−1)GF,p

res

fb∗
F,p

cor

⊕
τ fb∗

K,τp
fb∗
F,p

where the τ component of the first map is

m 7→ τm

and the τ component of the second map is

m 7→
(

1 + FrobFp + · · ·+ (FrobFp)[KK∩τp:Fp]−1
)
τ−1m.

Proof. The form of the restriction map for fb is a consequence of (5.16) and (5.17). For

corestriction, we turn to the double coset formula (5.4). We see that B is a set of represen-

tatives of

GK\GF/GF,p.

We then have

resGFGF,p ◦ corGKGF (φ) =
∑
τ∈B

corGF,p∩Gτ−1K

GF,p
◦ τ−1
∗ ◦ resGKGF,τp∩GK (φ).

The group GF,p/IF,p is procyclic, so we can calculate this using (5.13), the inflation-

restriction sequence, and the fact that inflation commutes with corestriction.

If K/F is inert at p, we have

inv
(

corGK,pGF,p
(γ)
)

= inv(γ) for γ ∈ H2(GK,p, Fp
×

).

We can apply (5.11) in the form of the identity

(5.21) inv
(
φ ∪ resGF,τpGK,τp

(ψ)
)

= inv
(

corGK,τpGF,τp
(φ) ∪ ψ

)
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for φ ∈ H2(GK,τp,M) and ψ ∈ H0(GF,τp,M
∨). Together with (5.17) and the double

coset formula, the compatibility of inv with corestriction follows. The compatibility with

the restriction map comes from considering the same identity with φ in H0(GK,τp,M
∨)

and ψ in H2(GF,τp,M).

Applying (5.21) for φ in H1(GK,τp,M ) and ψ unramified at p in H1(GF,τp,M
∨) gives

the form of corestriction on fb∗ as a consequence of the form of restriction on fb and the

double coset formula. We can similarly find the form of restriction of fb∗. �

5.3. Poitou-Tate duality. We collect the parts of the nine term Poitou-Tate exact sequence

we need; see [51, Theorem 3.1] and [41, 8.6.10]. Take F to be a number field, and take M

to be any finite GF -module. For any place v of F , choose a corresponding subgroup Gv of

GF ; if the place is a finite prime p, this equals GF,p for some choice of p over p.

• Note that, when composed with the natural projection

MGF,p →MGF ,

the maps invM,F,p do not depend on the choice of p over p. Given

γ ∈ H2(GF ,M),

we have that

(5.22)
∑
v of F

invM,F,v(γ) = 0 in MGF .

• Consider the pairing

∏′

v of F

H1(Gv,M) ×
∏′

v of F

H1(Gv,M
∨)→ Q/Z

given by (
(φv)v, (ψv)v

)
7→
∑
v

invv (φv ∪ ψv) ,

where
∏′ denotes the restricted product with respect to unramified cohomology.
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Then this pairing is nondegenerate, and the image under the restriction map of

H1(GF ,M) in the left product is precisely the anihilator of the image ofH1(GF ,M
∨)

in the right product.

• In particular, take V to be a finite set of places of F containing all infinite places,

all places dividing the order of M , and all places for which Iv has nontrivial action

on M . Choose a subgroup

W ⊆
∏
v∈V

H1(Gv, M).

The above pairing then allows us to define a surjection

∏
v∈V

H1(Gv, M
∨) −−→ Hom(W,Q/Z),

and this then gives a non-degenerate pairing

ker

(
H1(GF , M)

X1(F,M)
−−→

⊕
v∈V H

1(Gv,M)

W
×
⊕
v 6∈V

H1(Iv, M)Gv/Iv

)

× cok

(
H1(GF , M

∨) −−→ Hom(W,Q/Z)×
⊕
v 6∈V

H1(Iv, M
∨)Gv/Iv

)
→ Q/Z.

Part 2. Bilinear character sums

6. MAIN RESULTS FOR BILINEAR CHARACTER SUMS

In this section, we give a general bilinear character sum estimate. Our starting point is

the following result of Jutila [21, Lemma 3]: there is some absolute constant C > 0 so that,

for any N1, N2 ≥ 3, and for any sequence of complex coefficients ad indexed by integers

of magnitude at most one, we have

(6.1)
∑

0<e<N1
e odd, squarefree

∣∣∣∣∣∣∣∣
∑
|d|<N2

d squarefree

ad

(
d

e

)∣∣∣∣∣∣∣∣ ≤ C ·
(
N1 ·N

1
2

2 + N
3
4

1 ·N2 · log3 N2

)
,
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where
(
d
e

)
denotes the Jacobi symbol, the bimultiplicative generalization of the standard

Legendre symbol. This bilinear estimate fits into the theory of large sieve inequalities, with

the standard reference being [19, Chapter 7].

Jutila’s result has been sharpened and generalized substantially since it first appeared.

Thanks to work of Heath-Brown [17], the exponents onN1 andN2 on the right side of (6.1)

can be lowered to within ε of the optimal values. Bilinear estimates of more general charac-

ters have also been found. Goldmakher and Louvel [14] directly extended Heath-Brown’s

work to quadratic Hecke families, which are certain collections of order-two Hecke charac-

ters defined over a general number field F . Follow-up work generalized this to higher-order

characters [3].

In parallel, Friedlander et al. found that estimates of bilinear sums of characters over

number fields could be combined with estimates of short character sums to find the spin

distribution of prime ideals in that number field [10, Proposition 5.1]. As part of this

program, several bilinear character sum estimates have been derived over the last few years,

with a particularly streamlined form of the argument given in [29, Proposition 3.6].

The result we give in this section is an adaptation of the argument in [10] to our more

general framework. Usually, such estimates do not make the dependence on the underlying

fields (in our case, the field extension K/F ) explicit. In our case, making this dependence

explicit is worthwhile, as this stronger form of the result has an application to our work in

later sections.

This section is largely self-contained, though we will make use of Notation 2.2 and

Propositions 2.4 and 2.13.

Notation 6.1. Take K/F to be a Galois extension of number fields, and fix an integer

e0 ≥ 2. We assume K contains µe0 .

For any set of places V of F , take K(V ) to be the maximal abelian extension of K of

exponent dividing e0 ramified only at places over V .
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Write ∆K for the magnitude of the discriminant of K, write nK/F for the degree of

K/F , and write nF for the degree of F/Q. Take nK to be the degree of K over Q.

Given a number field L and an ideal a of L, we will denote the rational norm of a by

NL(a).

Definition 6.2. Given a set of places V0 of F and a prime p of F outside V0, a tempered

function will be a real-valued class function

φ : Gal
(
K(V0 ∪ {p})

/
F
)
→ [−1, 1]

so that φ has zero mean value on cosets of

Gal
(
K(V0 ∪ {p})

/
K(V0)

)
.

Given a function tempered φp for (p,V0) and another prime q of F , we define

φp(q) =


0 if q ∈ V0 ∪ {p} or p|∆

φp(Frob q) otherwise.

Theorem 6.3. There is some absolute constant C > 0 so we have the following:

Take K/F , e0, ∆K , nK , nF , and nK/F as in Notation 6.1. Take V0 to be a set of places

obeying the conditions of Notation 2.2. For each prime p of F outside V0, take φp to be a

tempered function for (p,V0).

Then, given N1, N2 > 1, we have

(6.2)
∑
p 6∈V0

N1≤NF (p)≤2N1

∣∣∣∣∣∣∣∣
∑
q 6∈V0

N2≤NF (q)≤2N2

φq(p)

∣∣∣∣∣∣∣∣ ≤ A ·N1 ·N2 ·
(
N−α1 +N−α2

)

with

A =
(
e
|V0|
0 · log 2∆K

)C·nK
·∆C

K
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and

α =


1/4 if nK/F = 1

1/(3nK/F + 2) if nK/F is even

1/(3nK/F + 3) otherwise.

Remark 6.4. If V0 does not obey the conditions of Notation 2.2, we can add at most

C · log ∆K

places to it so it does, per the proof of Proposition 2.4.

We will adopt some notation of Weiss.

Definition 6.5 ([54]). Given a number field L and a nonzero integral ideal b of L, take

I(b) to be the set of ideals of L coprime to b and take P (b) to be the set of principal ideals

represented by a totally positive element equal to 1 mod b. A Dirichlet character mod b

will then be a homomorphism from I(b)/P (b) to C×.

Example 6.6. Suppose we are in the situation of Notation 2.2. Choose primes q, p0 outside

V0, and take L to be the subfield of K on which FrobFp0 acts trivially. Take k to be the

minimal positive integer so

anc(p0, q)k

is a single root of unity, as opposed to a class of many roots of unity.

Then there is some Dirichlet character χ of L mod q ∩ L and some complex constant c

so that, for any prime p ∼ p0 not over q ∩ L or any prime of V0, we have

anc(p, q)k = c · χ(p ∩ L)

The above theorem will follow as a consequence of the following proposition.

Proposition 6.7. There is some absolute C > 0 so we have the following:
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Take L to be a number field of degree nL and of discriminant with magnitude ∆L. Take

F to be a subfield of L of degree nF . For each prime p of F , choose some nontrivial

Dirichlet character χp of L mod p ·OL and some complex constant cp of magnitude at most

one. Then, for N1, N2 > 1, we have

∑
N1≤NL(a)≤2N1

∣∣∣∣∣∣
∑

N2≤NF (p)≤2N2

cp · χp(a)

∣∣∣∣∣∣
2

≤ N1·N2·(C·log 2∆L)nL + eC·nL ·∆3/4
L ·N

2+ 3
2
nL/F

2 .

Here, the inner sum is over primes of F , and the outer sum is over integral ideals of L.

We will prove this by a smoothing argument. A previous version of our argument used

a fairly complicated smoothing, producing a slightly larger α for nK/F > 1. These im-

provements will not make our final result stronger, so we wil instead use as smoothing

considered by Weiss. We would like to thank Jesse Thorner for pointing out the relevance

of [54].

Proof. In [54, Section 3], Weiss chooses an absolute constant A, defines a function

η1 : R→ R by η1(x) =


1
2
A if |x| < A−1

1
4
A if |x| = A−1

0 otherwise,

and takes ηk to be the kth convolution power of η1. The functions ηk(x) are symmetric

and satisfy ηk(x) ≤ ηk(y) for 0 ≤ y ≤ x, as can be proved inductively. The central limit

theorem then gives that there is some absolute c > 0 so that, for k ≥ 1, we have

ηk(x) ≥ c · k−1/2 for all x ∈ [−c, c].

Weiss then defines Hk(x) to be ηk(log x) for positive x.
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From these estimates, [54, Lemma 3.4] implies there is some absolute C > 0 and some

function

h : R≥0 → R≥0

that is at least one on [1/2, 1] so that, for any y ≥ 1, any squarefree integral ideal b of F ,

and any nontrivial Dirichlet character χ defined mod b, we have

∑
a

h

(
y

NL(a)

)
χ(a) ≤ exp(CnL) · 2ω(b) ·∆3/4

L ·NL(b)3/4 and

∑
a

h

(
y

NL(a)

)
≤ exp(CnL) · κ(L) · y + exp(CnL) · 2ω(b) ·∆3/4

L ·NL(b)3/4.

Here, κ(L) is defined to be the residue of the Dedekind zeta function for L at s = 1. From

[33], we have the bound

κ(L) < (C · log 2∆L)nL

for some absolute C > 0. Now, we can bound the expression of the Proposition by

∑
a

h

(
N1

NL(a)

) ∣∣∣∣∣∣
∑

N2≤NF (p)≤2N2

cp · χp(a)

∣∣∣∣∣∣
2

≤
∑

N2≤NF (p1),NF (p2)≤2N2

∣∣∣∣∣∣
∑

N1≤NL(a)≤2N1

h

(
N1

NL(a)

)
χp1(a) · χp2(a)

∣∣∣∣∣∣
≤ N2 ·N1 · (C · log 2∆L)nL + exp(C · nL) ·∆3/4

L ·N
2+

3nL
2nF

2 ,

where the first term in the sum comes from the diagonal terms and the second comes from

the off-diagonal terms and the error term of the diagonal terms. This gives the theorem. �

We will need the following simple degree estimate for extensions of local fields.

Proposition 6.8. Take p to be a prime number and take Kp to be a finite extension of Qp.

Take r so the residue field ofKp has pr elements. Take e1 to be a positive integer indivisible

by p, take s to be a nonnegative integer, and define e0 to be e1p
s. Then, if Lp/Kp is an

abelian extension of exponent dividing e0, the inertia subgroup of Gal(Lp/Kp) has order
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dividing

e0 · p3rs.

Proof. From local class field theory, we can write the inertia subgroup of Lp/Kp as a

quotient of

O×Kp
/

(O×Kp)
e0 ,

so we need only prove that e0p
3rs is an upper bound on the size of this group. Taking kp to

be the residue field of Kp, we know that k×p /(k
×
p )e0 has order dividing e0. Now suppose a

is an element of O×Kp that maps to one in kp. Hensel’s lemma implies that

xe0 − a = 0

has a solution for x in OKp if

a ≡ 1 mod p3s;

see [7, Theorem 7.3], for example. This gives the proposition. �

From this result, we find that

[K(V0) : K(∅)] ≤ e
nK/F (3nF+|V0|)
0 .

The degree of K(∅) over K is bounded by the size of the class group of K, which is

bounded by

C ·∆1/2
K · (log 2∆K)nK

for some absolute C. This can be found by combining the upper bound of [33] with the

lower bounds on regulators in [11]. We then get that

(6.3) [K(V0) : F ] ≤ eCnK0 ·∆1/2
K · (log 2∆K)nK · e|V0|·nK/F

0 ,
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7. PROOF OF THEOREM 6.3

For N1, N2 > 1, take S0(V0, N1, N2) to be the maximum value attained by the sum (6.2)

over all sequences of tempered functions. Given a prime p of F , p will be some fixed prime

over p in F .

Take S1(V0, N1, N2) to be the maximal value of the sum

∑
N1≤NF (p)≤2N1

p∼p0

∣∣∣∣∣∣∣∣
∑

N2≤NF (q)≤2N2

q∼q0

φq(p)

∣∣∣∣∣∣∣∣
over all choices of primes p0, q0 outside V0 and not ramifying in K/F and over all choices

of sequences of tempered function φq. We have

(7.1) S0(V0, N1, N2) ≤ [K(V0) : F ]2 · S1(V0, N1, N2).

From (6.3), this implies

S0(V0, N1, N2) ≤ e
C·|V0|·nK
0 ·∆K · (log 2∆K)nK · S1(V0, N1, N2).

Next, from Proposition 2.13 and using the fact that V0 obeys the conditions of Notation

2.2, we see that, if p ∼ p0 and q ∼ q0, and assuming p 6= q, we can write φq(p) as a linear

combination of the symbols

a(p, q) =
∏

τ∈Gal(K/F )

anc(p, τq)κ(τ)

where κ varies over functions from Gal(K/F ) to Z/e0Z for which anc(p, τq)κ(τ) is a well-

defined root of unity for all τ .

If a is any function of this type, we see that the average value of

φ(p, q)a(p, q)−1
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as p varies has magnitude at most one. This allows us to conclude that the coefficient of any

individual a has magnitude at most one. In addition, since φ is tempered, the coefficient of

the trivial symbol is zero.

If we then take S2(V0, N1, N2) to be the maximal value of the sum

∑
N1≤NF (p)≤2N1

p∼p0

∣∣∣∣∣∣∣∣
∑

N2≤NF (q)≤2N2

q∼q0

cq · a(p, q)

∣∣∣∣∣∣∣∣
over all p0, q0, all nontrivial symbols a as above, and all sequences cq of complex coeffi-

cients of magnitude bounded by one, we get

(7.2) S1(V0, N1, N2) ≤ e
nK/F
0 · S2(V0, N1, N2).

We then get

S0(V0, N1, N2) ≤ e
C|V0|nK
0 ·∆K · (log 2∆K)nK · S2(V0, N1, N2)

for some absolute choice of C > 0. From reciprocity on the terms anc, we also have

(7.3) S2(V0, N1, N2) = S2(V0, N2, N1).

Given a positive integer t, take S2,t(V0, N1, N2) to be the maximal value of

∑
N1≤NF (p)≤2N1

p∼p0

∣∣∣∣∣∣∣∣
∑

N2≤NF (q)≤2N2

q∼q0

cq · a(p, q)

∣∣∣∣∣∣∣∣
t

.

Hölder gives

(7.4) S2(V0, N1, N2) ≤ (2nFN1)
t−1
t · S2,t(V0, N1, N2)

1
t .
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Take S3(V0, N1, N2) to be the maximal value of

∑
N2≤NL(a)≤2N2

∣∣∣∣∣∣∣∣
∑

N1≤NF (p)≤2N1

p∼p0

cp · χp(a)

∣∣∣∣∣∣∣∣
2

over all choices of the field L intermediate to K/F , all choices of nontrivial Dirichlet

characters χp mod p ·OL, and all choices of the complex constants cp of magnitude at most

one. The above proposition then gives

S3(V0, N1, N2) ≤ N2 ·N1 · (C · log 2∆K)nK + exp(C · nK) ·∆3/4
K ·N

2+ 3
2
nK/F

1

Take L to be the minimal extension of F for which L∩p0 is inert. Via Example 6.6, there

is some choice of sequence of Dirichlet characters χp defined mod p · OL and coefficients

c′p of magnitude at most one so that

S2,t(V0, N1, N2) =
∑

q1,...,qt∼q0
N2≤NF (q1),...,NF (qt)≤2N2

∣∣∣∣∣∣∣∣
∑

N1≤NF (p)≤2N1

p∼p0

c′p · χp (q1 . . . qt ∩ L)

∣∣∣∣∣∣∣∣ .
Using Hölder a second time gives

S2,t(V0, N1, N2) ≤ (2N2nF )t/2 ·

(
t! ·

t∑
k=0

S3(V0, N1, 2
kN t

2)

)1/2

.

Assuming 1 ≤ t ≤ 10nK/F , we then have

S2,t(V0, N1, N2) ≤ (e0·nK)C·nK ·(C·log 2∆K)nK/2·∆3/8
K ·
(
N t

2 ·N
1/2
1 + N

t/2
2 ·N1+ 3

4
nK/F

1

)
.

Still assuming 1 ≤ t ≤ 10nK/F , we have

S2(V0, N1, N2) ≤ ∆
3
8
K · (e0 · nK · log 2∆)C·nF ·N1 ·N2 ·

(
N
− 1

2t
1 +N

1
t
· 3
4
nK/F

1 ·N−
1
t
· t
2

2

)
.
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Using reciprocity to assume N2 ≥ N1, the optimal choice of t is

t =


2 if nK/F = 1⌈
3nK/F + 1

⌉
otherwise.

With this, the theorem follows. �

Part 3. The Base Case I: Linear Algebra

8. TWISTABLE MODULES AND SELMER GROUPS

With current methods, it is far easier to control the distribution of 2-Selmer groups in

quadratic twist families than the `-Selmer group for any ` > 2. Admirable progress has

been made in other cases using methods from the geometry of numbers (see e.g. [2]), but

determining the distribution of higher Selmer groups is largely an intractable problem.

The exception at 2 is a consequence of the fact that +1 and −1 are equal in fields of

characteristic two but not in fields of any other characteristic. Because of this, if F is a

number field, χ a homomorphism GF → ±1, and N a GF module, when we define a

quadratic twist Nχ and an isomorphism

βχ : Nχ ∼−−→ N

of abelian groups so that

βχ(σn) = χ(σ)σβχ(n) for σ ∈ GF , n ∈ Nχ,

we find that βχ induces an isomoprhism

(8.1) Nχ[2] ∼= N [2]
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of GF -modules. In particular, as χ varies, the 2-Selmer group of Nχ can be seen as a

subgroup of the fixed ambient space

H1(GF , N [2])

for all χ. To find the distribution of 2-Selmer groups, we just need to understand how the

portion of this space cut out by local conditions changes as the local conditions themselves

change.

This can be generalized to twist families of higher degree. In general, for degree `k-

twists, we can prove base case Selmer results about a portion of the `-Selmer groups. We

turn to the notation we need now.

Notation 8.1. Throughout this part, K/F will denote a fixed Galois extension of number

fields, and `k will be a fixed power of a rational prime `. We assume K contains µ`k .

In addition, we will take V0 to be a set of places of F . We assume this set of places is

large enough that the conditions of Notation 2.2 are satisfied for (K/F, `k,V0). In particu-

lar, we assume it contains all archimedean places and all places over `.

F will denote a cyclic Gal(K/F )-module of order `k.

Definition 8.2. Given Notation 8.1, a twistable module will consist of the following:

• A topological group N isomorphic to some finite power of Q`/Z`,

• A continuous action of the absolute Galois group GF of F on N that is ramified

only at the places in V0, and

• An embedding of F into the group of continuous automorphisms of N so that the

conjugation action of GF on the automorphism group agrees with the action of GF

on F. We assume that a generator ζ of F satisfies

(1 + ζ`
k−1

+ ζ2`k−1

+ · · ·+ ζ(`−1)`k−1

)N = 0
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Writing ω for the ideal generated by (ζ − 1) in Z[F], we will assume that GK has trivial

action on N [ω2].

Definition 8.3. Given χ ∈ H1(GF ,F), the twist Nχ of N will be a topological group

isomorphic to N under a non-equivariant isomorphism

βχ : Nχ ∼−−→ N

so that, for all n ∈ Nχ and σ ∈ GF , we have

βχ(σn) = χ(σ)σβχ(n).

We note that βχ restricts to a GF -equivariant isomorphism

Nχ[ω] ∼= N [ω],

generalizing (8.1).

We define the set of admissible twists

XF ⊆ H1(GF ,F)

to be the set of χ so that, for all primes p of F outside V0, χ is ramified at p only if the

image of χ under the natural map

H1(GF ,F)→ H1(GF ,F /`F).

is ramified at p. If ζ has order `, this set of twists is all of H1(GF ,F).

We represent the ramification of an element χ of XF using the squarefree ideal

hF (χ) =
∏
p 6∈V0

χ is ramified at p

p.
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There are many possible ways to order these ideals. Writing NF/Q for the norm from F to

Q, we settle for the function

hF (χ) = NF/Q(hF (χ)).

Taking

F(−1) = Hom(µ`k , F),

and taking F (F(−1)) to be the minimal extension of F soGF (F(−1)) acts trivially on F(−1),

we note that all primes dividing hF (χ) split completely in F (F(−1))/F if χ is in XF .

For H > 0, we write XF (H) for the subset of XF of twists of height at most H .

A choice of local twists indexed by V0 will be a tuple (χv)v∈V0 , where χv is chosen from

from H1(Gv, F). Given a choice of local twists, we write XF ((χv)v) for the subset of XF

whose restriction to Gv gives χv for v in V0, and we take XF (H, (χv)v) to be the set of

twists in this set of height at most H .

Example 8.4. In the most important case of F = ±1, we have

XF = H1(GF ,±1) ∼= F×/(F×)2.

In this setting, the height of d in F×/(F×)2 is the product of the rational norms of all

primes of F outside V0 where F (
√
d)/F ramifies.

In the specific case of F = Q, we can represent any element of Q×/(Q×)2 by a square-

free integer

d0 · p1 . . . pr,

where d0 is divisible only by the primes in V0 and the p1 . . . pr are distinct primes not in

V0. The height of this twist is then p1 . . . pr.

In this context, a choice of local twists is equivalent to a choice of d0, a choice of the

value of p1 . . . pr mod 8, and a choice of whether p1 . . . pr is a quadratic residue or not at

the odd primes in V0.
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Definition 8.5. For each v ∈ V0 and each χv in H1(Gv,F), fix an `-divisible Z[F]-

submodule Wv(χv) of H1(Gv, N).

Now suppose χ is an element of XF . For each place v of F outside V0, define a subgroup

Wv(χ) of H1(GFv , N) as follows:

• If χ ramifies at v, take

Wv(χ) = 0.

• If χ does not ramify at v, take

Wv(χ) = im
(
H1(Gv/Iv, N)→ H1(Gv, N)

)
.

We then define the Selmer group Sel(Nχ, (Wv)v∈V0) by

Sel(Nχ, (Wv)v) = ker

(
H1(GF , N

χ) −−→
∏
v of F

H1(Gv, N
χ)

Wv(χ)

)
,

and we supress the (Wv)v in this notation if it is clear what local conditions we are using

(or if they do not matter).

For m ≥ 1, we define the ωm-Selmer group Selω
m

(Nχ, (Wv)v) to be the subgroup of

H1(GF , N [ωm]) mapping to Sel(Nχ, (Wv)v) under the natural map to H1(GF , N
χ).

Example 8.6. Given a topological groupN isomorphic to some power of Q`/Z`, and given

a continuousGF -action onN that is ramified only over the set of places V0, we can define a

twistable module N ⊗Z` Z`[ζ], where ζ denotes a primitive `th root of unity. The geometry

of this module and its generalizations is fairly well understood (see [34]). If L/F is a

Galois degree `-extension, if χ : Gal(L/F ) → 〈ζ〉 is a nontrivial homomorphism, and if

A is an abelian variety over F , we find that (A⊗Z` Z`[ζ])χ can be given the structure of an

abelian variety Aχ over F of dimension (`− 1) dimA, and that we always have

rank(A/L) = rank(A/F ) + rank (Aχ/F ) .

There are similar compatibilities between L-functions of A and its twists [35].
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In this case, the limit of the standard `k-Selmer groups of Aχ can be written in the form

Sel ((Aχ[`∞]), (Wv)v) ,

where

Wv = ker
(
H1(Gv, A

χ[`∞])→ H1(Gv, A
χ)
)

for v ∈ V0.

Remark 8.7. In the next proposition, we will find that a certain portion of the `∞-Selmer

group of a degree ` Galois extension of number fields can be written as the Selmer group

of a twistable module. We hope to extend this to find statistics of the algebraic K-groups

K2iOL as L varies through a similar family, giving evidence for the Cohen-Lenstra-esque

conjectures of [20]. These objects are related to Selmer groups defined from Tate twists

Q`/Z`(m) [53], but the precise nature of their relationship will need to wait for future

work.

Proposition 8.8. Take L/F to be a degree ` Galois extension of number fields, and take χ

to be a nontrivial homomorphism from Gal(K/F ) to Z[ζ], where ζ denotes a primitive `th

root of unity. Take

Cl∨L = Hom (ClL, Q/Z) .

Take N = Q`/Z`[ζ] to be a twistable module with a trivial GF action and with ζ acting

via multiplication. For v a place of F , take

Wv =


H1(Gv/Iv, N

χ) if L/F is unramified at v

0 otherwise.

We assume that

(8.2) ker

H1(GF , µ`)→
∏

v of F, v-`∞
v ram. in L/F

H1(Gv, µ`)×
∏

v of F, v-`∞
v unr. in L/F

H1(Iv, µ`)


is zero.
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Then we have an exact sequence

0→ (Cl∨L[`∞])Gal(L/F ) → Cl∨L[`∞]→ Sel(Nχ, (Wv)v)→ 0

of Gal(L/F )-modules.

Proof. Write G = Gal(L/F ). From Shapiro’s lemma, and specifically (5.8), we have an

isomorphism

Cl∨L[`∞] ∼= ker

(
H1(GF , N0)→

∏
v of F

H1(Gv, N0)

H1(Gv/Iv, N
Iv
0 )

)
,

of Gal(L/F ) modules, where N0 = Q`/Z`[G]. Choosing a generator σ of G, we have a

map

N0
(σ−1)−−−→ (σ − 1)N0

∼= Nχ.

Call this composition π. We calculate

π∗
(
H1
(
Gv/Iv, N

Iv
0

))
= Wv

for all v in F . From (5.9), we have an exact sequence

0→ Cl∨L[`∞]Gal(L/F ) → Cl∨L[`∞]→ ker

(
H1(GF , N

χ)→
∏
v of F

H1(Gv, N
χ)

π∗(H1(Gv/Iv, N
Iv
0 ))

)
.

We then just need to prove this last sequence is surjective on the right.

To this end, we recall that we have a surjection

N0
Norm−−→ Q`/Z`

given by adding the coefficients of each [σj]. We then have an exact sequence

0→ F`
ι−→ N0

π⊕Norm−−−−→ Q`/Z` ⊕Nχ → 0.
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For v not dividing ` or∞, we get

(ι∗)
−1(H1(Gv/Iv, N

Iv
0 )) =


H1(Gv/Iv,F`) if L/F is unramified at v

H1(Gv,F`) otherwise.

Surjectivity then follows as a consequence of the Cassels-Tate pairing and the assumption

that (8.2) is zero. �

8.1. Tamagawa ratios. We wish to understand the distribution of the Selmer groups Selω(Nχ)

as χ varies. As was observed in [24], the average size of these groups can tend to infinity as

the number of prime divisors of hF (χ) grows, with the authors showing this tendency for

quadratic twists of elliptic curves over Q with one nonzero rational 2-torsion point. This is

part of a general trend that necessitates us defining Tamagawa ratios.

Definition 8.9. Take T to be a GF -submodule of N [ω]. Given χ ∈ XF , we define the

Tamagawa ratio TN,T (χ) by

TN,T (χ) =
∏

p|hF (χ)

#H0(GFp , N/T [ω])

#H0(GFp , N [ω])
.

Proposition 8.10. Given (K/F,V0,F) as in Notation 8.1, there is some C > 0 so we have

the following:

Suppose N is a twistable module defined with respect to (K/F,V0,F). Given a GF -

submodule T of N [ω], take

ιT,∗ : H1(GF , T ) −−→ H1(GF , N [ω])

to be the map coming from the inclusion of T in N [ω]. Then, for χ in XF , we have

(8.3)
∣∣ι−1
T,∗
(
Selω(Nχ)

)∣∣ ≥ TN,T (χ) ·

(∏
v∈V0

#H1(Gv, T )

)−1
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Proof. Take V1 to be the set of primes of F dividing h. The space on the left hand side of

(8.3) is at least as large as

(8.4) ker

(
ST/F (V0 ∪ V1)→

∏
v∈V0

H1(Gv, T )×
∏
v∈V1

H1(Gv, N
χ)

)
.

For v in V1, we have an exact sequence

0→ H0(Gv, T )→ H0(Gv, N
χ)→ H0(Gv, N

χ/T )

→ H1(Gv, T )→ H1(Gv, N
χ).

Writing Uv for the image of H1(Gv, T ) in H1(Gv, N
χ), we then find that

#Uv =
#H1(Gv, T ) ·#H0(Gv, N [ω])

#H0(Gv, T ) ·#H0(Gv, N/T [ω])
= #H0(Gv, T (−1)) · #H0(Gv, N [ω]

#H0(Gv, N/T [ω])
.

To prove the second equality, we note that the set of invariants H0(Gv, T ) has the same

size as the set of coinvariants H1(Gv/Iv, T ) since Gv/Iv is procyclic.

We also have

#ST/F (V0 ∪ V1) ≥
∏
v∈V1

H0(Gv, T (−1))

by the unpacking hypothesis. We then get the proposition by comparing the size of the

domain and image of the map in (8.4). �

In particular, we always have the lower bound

|Selω(Nχ)| ≥ c ·max TTN,T (χ)

for the size of the Selmer group ofNχ, where the maximum is taken over allGF -submodules

of N [ω] and where c depends just on N .

This bound tends to be fairly sharp, in the sense of the next theorem.

Theorem 8.11. Given (K/F,V0,F) as in Notation 8.1, there is some c, C > 0 so we have

the following:
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Suppose N is a twistable module of corank g > 0 defined with respect to (K/F,V0,F).

Then, for H > 30 a positive real number satisfying

g ≤ c · log log logH,

we have

(8.5)
∑
χ∈XF
h(χ)≤H

#Selω(Nχ)

maxT TN,T (χ)
≤ exp

(
Cg2

)
·
∑
χ∈XF
h(χ)≤H

1.

We will prove this theorem in Section 14.2.

Remark 8.12. We can rewrite Theorem 8.11 to give effective bounds on C that explicitly

depend on K/F , V0, and F. We have no particular use for this sensitivity in our applica-

tions, so we have opted for the easier form above and in the remaining theorems of this

section.

On the other hand, we have a use for sensitivity in g. One of our main goals is to find

the probability that Selω(Nχ) has a certain rank as χ varies through a family. We will find

this probability by computing the average size of

Selω(N⊕m)χ

over this family, where m varies in some interval {0, . . . , s}. In order for the error bounds

on this rank distribution to decrease as H increases, we need to allow s to grow as some

unbounded function in H . This forces us to keep track of the effect of g.

8.2. Dual modules and base-case Selmer groups. Fix a twistable module N defined

with respect to (K/F,V0,F). In this section, we will consider dual twistable modules.

Definition 8.13. The topological group

W = Hom (N,µ`∞) .
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has a GF action defined by

t 7→ σφ(σ−1t) for σ ∈ GF .

We can also definie an action of F on W by

(ζφ)(t) = φ(ζ−1t).

Writing ζσ for the image of ζ under σ in F, we can calculate

σ(ζ(φ)) = ζσ(σ(φ))

using the fact that the action of GF on F agrees with the conjugation action of GF on

EndN . The module W is a free Z` module.

We define a corresponding torsion module by

(8.6) N∨ = (W ⊗Q`)/W.

The action of F on W extends to an obvious action on W ⊗ Q`, and subsequently to an

action on N∨. We then have that N∨ is a twistable module with respect to the K/F,F,V0.

We will also need to consider the module

N ′ = N∨
/

(N∨[`/ω]).

If GF acts trivially on F, this module is isomorphic to N ′.

We have a natural nondegenerate GF -equivariant pairing

(8.7) N [ω]×N ′[ω] −−→ µ`.

We also have a natural map

N [ω2]/N [ω]⊗ F /`F ∼−−→ N [ω]
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given by (x, ζ) 7→ (ζ − 1)x. We will use this pairing in (8.9) below.

Notation 8.14. Take S to be a finite set. For s ∈ S, take ps to be a prime of F not over

V0, and take ps to be a prime of F over ps. Any element of H1(GF ,F)/X1(F,F) ramified

only at V0 and the primes ps can be uniquely written in the form

(8.8) χ = χ0 +
∑
s∈S

Bnc
F,F,ps(xs),

where the xs lie in F(−1)GF,ps and χ0 lies in SF /F (V0). (We note that twisting by X1(F,F)

does not affect local behavior, and hence has no effect on the structure on the ω-Selmer

group of Nχ). For this twist to lie in XF , each xs must either be zero or a generator of

F(−1). In the former case, we can disregard ps. So we assume the latter case, which forces

us to assume (
F(−1)

)GF,ps ∼= F(−1)

for each s ∈ S. Write σs for the projection of FrobFps to the Galois group

G1 = Gal
(
K(V0)/F (F(−1))

)
,

where F (F(−1)) is the minimal extension of F for which GF (F(−1)) has trivial action on

F(−1), and where K(V0) is the maximal abelian extension of K of exponent dividing `k

ramified only over V0.

The ω-Selmer group of Nχ evidently contains X1(F,N [ω]). Modulo this group, the

Selmer group of Nχ with χ in the above form is a subgroup of

SN [ω]/F

(
V0 ∪

{
ps : s ∈ S

})
,

and any element in this set can uniquely be written in the form

(8.9) φ = φ0 +
∑
s∈S

Bnc
N [ω],F,ps

(qs ∪F xs),

where qs is an element of (N [ω2]/N [ω])σs and φ0 lies in SN [ω]/F (V0).
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Take

δ′χ ∈ Ext1GF (N ′[ω2]/N ′[ω], N ′[ω])

to be the class of the extension

0→ N ′[ω]→ (N ′)χ[ω2]→ N ′[ω2]/N ′[ω]→ 0.

Taking the notation

R =
⊕
s∈S

H0
(
〈σs〉, N ′[ω2]/N ′[ω]

)
,

we then define a bilinear pairing

(8.10) 〈 , 〉χ : H1(GF ,M)⊗R −−→ 1
`
Z/Z

by

(φ, (rs)s) 7−→
∑
s∈S

invµ`,F,ps
(
φ ∪

(
resGF,psδ

′
χ ∪ rs

))
,

where the outer product is the cup product from (8.7) and the inner is the Yoneda product.

Proposition 8.15. Take all Selmer conditions as in Definition 8.5. Given φ in the form

(8.9) and χ in the form (8.8), and supposing φ obeys the local conditions at all places of

V0, we find that

φ ∈ SelωNχ

if and only if

〈φ, (rs)s〉χ = 0 for all (rs)s ∈ R.

We will prove this proposition in Section 10.2. Write

Q =
⊕
s∈S

H0
(
〈σs〉, N [ω2]/N [ω]

)
.

Via (8.9), we can think about the pairing defined above in the form

(8.11) 〈φ, (rs)s〉χ = 〈(qs)s, (rs)s〉χ + 〈φ0, (rs)s〉0,χ,
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where the first pairing is defined on Q⊗R, and the latter pairing is defined on SN [ω]/F (V0)⊗

R.

8.3. Tuple sets of twists and moment estimates. For fixed S and (σs)s, we can choose

a fixed basis for Q, R, and SN [ω]/F (V0), and consequently think about the pairings 〈 , 〉χ

and 〈 , 〉0,χ as matrices that change with χ. To prove base-case Selmer results, we will

need some kind of equidistribution statement about these matrices and their kernels.

More specifically, suppose (xs)s is fixed in
⊕

s F(−1), and (σs)s is fixed as above. We

will take X to be a nonempty set of tuples of primes

(ps)s∈S, ps a prime of F not over V0 so that FrobFps = σs.

For each tuple (ps)s in X and each pair of distinct indices s1, s2 in S, we require ps1 and

ps2 to be over distinct primes of F . Fixing χ0, we then can consider the set of twists of the

form (8.8), where (ps)s varies over the tuple set X . We will sometimes refer to this set of

twists also with the symbol X .

Our main tool for proving rank distributions is to find estimates on sums of the form

(8.12)
1

#R

∑
χ∈X

∑
(qs)s∈Q1

∑
(rs)s∈R

exp
(

2πi ·
(〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))
for certain subsets Q1 of Q. It is most useful to this by fixing ((qs)s, (rs)s) and considering

the sum

(8.13)
∑
χ∈X

〈(qs)s, (rs)s〉χ.

• In some cases, we can prove that (8.13) is negligible. In these circumstances, we

will call ((qs)s, (rs)s) an ignorable pair.

• We can also find some subcollections of Q1 ×R where (8.13) has magnitude #X

for any choice of ((qs)s, (rs)s), but there is substantial cancellation of these sums

across the subcollection. In these case, we will call ((qs)s, (rs)s) a cancellable pair.
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• In other cases, the choice of ((qs)s, (rs)s) may be from a subcollection of pairs

where we have little control on the sums (8.13), where the size of the subcollection

depends on (σs)s and is generically of negligible size. We will call these pairs

generically negligible.

• Outside these cases, we find that (8.13) equals #X . These give the main-term

pairs, and estimating (8.12) amounts to counting the number of main-term pairs.

9. FAVORABLE TWISTS AND THE MAIN THEOREMS

Take K/F as in Notation 8.1, and take G0 = Gal(K/F (F(−1))). Recall the notation of

Tamagawa ratios from Definition 8.9. Fix a twistable module N . We call a twist χ ∈ XF a

favored twist of N if, for any GF -submodule T of N [ω], we have

TN,T (χ) ≤ 1,

with equality if and only if

(9.1) dimH0(〈σ〉, N/T [ω]) = dimH0(〈σ〉, N [ω]) for σ ∈ G0.

We call T a cofavored submodule of N [ω] if (9.1) always holds. We will denote the set

of favored twists of N by Xfav
F,N , and those of height at most H by Xfav

F,N(H). Given local

twists (χv)v∈V0 , we define Xfav
F,N(H, (χv)v) as the subset of Xfav

F,N(H) restricting over V0 to

(χv)v.

For favored twists, the Selmer group SelωNχ tends to be small, with its average size

decomposing as a sum of terms indexed by cofavored modules. For this reason, we will

restsrict our attention mostly to modules with a positive proportion of twists. The next

definition is key.

Definition 9.1. Given a twistable module N as above, we call N potentially favored if

lim
H→∞

#Xfav
F,N(H)

#XF (H)
> 0.
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Alternatively, we call N potentially favored if

• For any submodule T of N [ω] fixed by GF , we have

∑
σ∈G0

dimH0(〈σ〉, N [ω]) ≥
∑
σ∈G0

dimH0(〈σ〉, (N/T )[ω]), and

• There is some function

w : Gal(K/F (F(−1)))→ R

so that, for any submodule T of N [ω] fixed by GF , we either have

∑
σ∈G0

w(σ) · dimH0(〈σ〉, N [ω]) >
∑
σ∈G0

w(σ) · dimH0(〈σ〉, (N/T )[ω])

or

dimH0(〈σ〉, N [ω]) = dimH0(〈σ〉, (N/T )[ω]) for all σ ∈ G0.

We call the set of functions w that obey the second property the superlatives for N . N has

a superlative if and only if it has a favored twist.

Remark 9.2. We will prove that these definitions are equivalent as part of Proposition 14.6.

Given an exact sequence

0→ Zm → Zn → Zn−m → 0,

we get an associated sequence of twistable modules

0→ N⊕m → N⊕n → N⊕n−m → 0

by tensoring with N . We call any such exact sequence a basic exact sequence.

I would like to thank David Yang for his help in finding the following proposition.
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Proposition 9.3. Suppose N1 and N2 are twistable modules. Then, if N1 and N2 are

potentially favored, and if w : G0 → R+ is a superlative for both, then N1 ⊕ N2 is

potentially favored and has w as a superlative.

Proof. Take N1, N2, and w as in the statement of the proposition, and take T to be a

submodule of N1 ⊕N2. Taking the quotient of the exact sequence

0→ N1
ι−→ N1 ⊕N2

π−→ N2 → 0

by T gives the exact sequence

0→ N1/ι
−1(T )→ (N1 ⊕N2)/T → N2/π(T )→ 0.

The associated long exact sequence gives

dimH0(〈σ〉, (N1 ⊕N2)/T [ω])

≤ dimH0(〈σ〉, N1/ι
−1(T )[ω]) + dimH0(〈σ〉, N2/π(T )[ω])

for all σ in G0. Then

∑
σ∈G0

w(σ) · dimH0(〈σ〉, (N1 ⊕N2)/T [ω])

≤
∑
σ∈G0

w(σ) · dimH0(〈σ〉, N1/ι
−1(T )[ω]) +

∑
σ∈G0

w(σ) · dimH0(〈σ〉, N2/π(T )[ω])

≤
∑
σ∈G0

w(σ) · dimH0(〈σ〉, N1[ω]) +
∑
σ∈G0

w(σ) · dimH0(〈σ〉, N2[ω])

=
∑
σ∈G0

w(σ) · dimH0(〈σ〉, (N1 ⊕N2)[ω]).

If the first and last entries in this sequence are equal, the positivity of w forces

dimH0(〈σ〉, (N1 ⊕N2)/T [ω]) = dimH0(〈σ〉, (N1 ⊕N2)[ω]) for σ ∈ G0.
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So w is is a superlative forN1⊕N2. Applying this argument for the superlative 1+εw with

ε approaching zero shows that N1 ⊕N2 is potentially favored, giving the proposition. �

Remark 9.4. Given a twistable module N , a nonnegative integer a, and a GF -submodule

T of N⊕a[ω], we see that the logic of the above proposition gives that there is some se-

quence of GF -submodules T1, . . . , Tj of N [ω] and some sequence of nonnegative integers

a1, . . . , aj with sum a so that

dimH0(〈σ〉, N⊕a/T ) ≤
∑
i≤j

ai · dimH0(〈σ〉, N/Ti) for all σ ∈ G0.

This gives a useful upper bound for the function σ 7→ dimH0(〈σ〉, N⊕a/T ) in the case

that T is not cofavored.

Given twistable modules N1 and N2, write δσ,Ni for the connecting map

δσ,Ni : H0(〈σ〉, Ni[ω
2]/Ni[ω])→ H1(〈σ〉, Ni[ω])

coming from the exact sequence

0→ Ni[ω]→ Ni[ω
2]→ Ni[ω

2]/Ni[ω]→ 0.

Given a GF -equivariant map β : N1[ω]→ N2[ω], we can lift β to an equivariant map

β : N1[ω2]/N1[ω] −−→ N2[ω2]/N2[ω]

via

β(x) =
1

ζ − 1
β((ζ − 1)x).

We say β commutes with the connecting maps if we have

(9.2) δσ,N2 ◦ β = β∗ ◦ δσ,N1 for σ ∈ G0.
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Proposition 9.5. Take N1 and N2 to be potentially favored modules sharing some superla-

tive w. Suppose the only cofavored submodules of Ni are 0 and Ni[ω] for i = 1, 2. Then

the cofavored submodules of N1 ⊕N2 are 0, 0⊕N2[ω], (N1 ⊕N2)[ω], and those modules

of the form

{(x, β(x)) : x ∈ N1[ω]}

where β : N1[ω] → N2[ω] runs over all the GF -homomorphisms that commute with the

connecting maps.

Proof. Choose a cofavored submodule T of N1 ⊕ N2, and consider the standard exact

sequence

0→ N2
ι−→ N1 ⊕N2

π−→ N1 → 0.

From the argument of the previous proposition, we see that ι−1(T ) is cofavored in N2 and

π(T ) is cofavored in N1. If ι−1(T ) is nonzero, it is N2[ω], and we find that T is either

0⊕N2[ω] or (N1 ⊕N2)[ω]. So we assume it is zero.

If π(T ) is also zero, T is zero, so we can assume π(T ) is N1[ω]. Then T is the graph of

a map β : N1[ω] → N2[ω]. This graph is a GF -submodule if and only if β is linear and

GF -equivariant.

Following the logic of the previous proposition, we find that, since T is cofavored, the

connecting map

(9.3) H0
(
〈σ〉, N1[ω2]/N1[ω]

)
−−→ H1

(
〈σ〉, N2[ω]

)
corresponding to the sequence

0→ N2[ω]→ ((N1 ⊕N2)/T )[ω]→ N1[ω2]/N1[ω]→ 0

is zero for σ in G0. To see this, take x in N1[ω2]/N1[ω] fixed by σ. Its preimage in

(N1 ⊕ N2)/T [ω] consists of all elements in the class of (x, βx). Applying (σ − 1) to this
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element yields the class

σ 7→ (σ − 1)βx− β(σ − 1)x,

which is trivial if and only if β commutes with the connecting map. So T is the graph of a

function β that commutes with the connecting maps.

Conversely, we find that the graph of any GF -homomorphism β that commutes with the

connecting maps is cofavored in N1 ⊕N2, and we have the proposition. �

Remark 9.6. In the context of the above proposition, we find that the kernel and image of

any GF -homomorphism that commutes with the connecting maps are cofavored. From the

assumptions of the proposition, we find that the set of such homomorphisms consists of

the zero map and isomorphisms.

In particular, the set ofGF endomorphisms ofN1[ω] that commute with connecting maps

form a finite division ring, and hence a finite field of characteristic ` by Wedderburn’s the-

orem. The set of GF homomorphisms from N1[ω] to N2[ω] that commute with connecting

maps is then either 0 or a one-dimensional vector space over this field.

Under some technical assumptions, we can now classify the cofavored submodules of

modules of the form N⊕m. We will actually go a little further than this, proving the fol-

lowing proposition:

Proposition 9.7. TakeN1, . . . , Nr to be potentially favored modules sharing some superla-

tive. Suppose we have the following:

• For i ≤ r, the only cofavored submodules of Ni are 0 and N [ω].

• For i ≤ r, the only GF -automorphisms of Ni[ω] that commute with the connecting

maps are 0, 1, . . . , `− 1.

• For i, j ≤ r with i 6= j, there is no GF -isomorphism of Ni[ω] and Nj[ω] that

commutes with the connecting maps.
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Then, for a1, . . . , ar nonnegative integers, the cofavored submodules of

(9.4) N⊕a11 ⊕ · · · ⊕N⊕arr

are those of the form

(9.5) A1 ⊗N1[ω]⊕ · · · ⊕ Ar ⊗Nr[ω],

where Ai is a vector subspace of Fai` for i ≤ r.

Proof. We work by induction on
∑

i ai. From Proposition 9.5, the result holds for this

sum at most two. Now take a ≥ 3, and suppose every cofavored submodule of (9.4) takes

the form (9.5) for
∑

i ai < a. Then suppose
∑

i ai = a, and take T to be a cofavored

submodule of (9.4).

Suppose that Nj = 0 for some j where aj > 0. Then the image of T under the map

⊕
i

N⊕aii
∼−−→
⊕
i 6=j

N⊕aii

is cofavored, and takes the form (9.5) by the induction step. Thus T also takes this form.

So we may assume the Nj are nonzero.

Choose any direct sum of basic exact sequences

(9.6) 0→
⊕
i

N⊕bii
ι−→
⊕
i

N⊕aii
π−→
⊕
i

N⊕ai−bii → 0.

with
∑

i ai >
∑

i bi > 0. We claim that we can assume that ι−1(T ) is zero and that

(9.7) π(T ) =
⊕
i

N⊕ai−bii [ω].

First, suppose ι−1(T ) is nonzero. It is cofavored, and hence can be written in the form (9.5)

by the induction step. There is then some other direct sum of basic exact sequences

(9.8) 0→
⊕
i

N⊕cii
ιc−−→
⊕
i

N⊕aii
πc−−→
⊕
i

N⊕ai−cii → 0
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with
∑

i ci > 0 so that ⊕
i

N⊕cii [ω] = ι−1
c (T ).

The module πc(T ) is cofavored, and hence expressible in the form (9.5). T equals its

preimage in
⊕

iN
⊕ai
i [ω], and is hence also expressible in this form.

Now suppose (9.7) fails to hold. The module π(T ) is cofavored, and hence expressible

in the form (9.5). The same holds for the preimage π−1(π(T ))[ω]. We now choose (9.8) so

that

ιc

(⊕
i

N⊕cii

)
= π−1(π(T ))[ω] ⊇ T.

Because (9.7) does not hold, we have that
∑

i ai >
∑

i ci, so ι−1
c (T ) is expressible in the

form (9.5) by the induction step. But T = ιc(ι
−1
c (T )), and hence is also expressible in this

form.

We have now reduced to the case where, given any direct sum of basic exact sequences

(9.6) satisfying
∑

i ai >
∑

i bi > 0, we have ι−1(T ) = 0 and (9.7). But in this case, we

must have

dimT =
∑
i

(bi − ai) · dimNi[ω]

for all b1, . . . , br ≥ 0 so that
∑
i

ai >
∑
i

bi > 0.

Since
∑

i ai is at least three and the dimNi are all positive, it is easy to prove that this

statement cannot hold. We have thus proved the proposition. �

9.1. Main base-case results. Our main results will be concentrated in two main cases,

depending on whether N has an alternating structure.

Notation 9.8. Choose (K/F,V0,F) as in Notation 8.1. We assume that F is trivial as a

Gal(K/F )-module. Fix a generator ζ of F and take ω = 1− ζ .
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Take N to be a potentially-favored twistable module, and choose local conditions (Wv)v

as in Definition 8.5. We assume that these subgroups are `-divisible and are preserved by

the action of ζ∗.

We assume that the only cofavored submodules of N are 0 and N [ω]; if this condition,

we call N uncofavored. We also assume that the only GF -automorphisms of N [ω] that

commute with the connecting maps are 1, . . . , `− 1.

For each m > 0, we have a natural nondegenerate pairing

Pm : N [ωm]⊗N ′[ωm]→ µ`∞

If there is no nonzero GF -equivariant homomorphism β1 : N [ω] → N ′[ω] that commutes

with the connecting maps, we say that N is in the non-alternating case.

Otherwise, suppose there is a GF -equivariant isomorphism

β : N → N ′

of Z`[ζ] modules so that Pm(x, β(x)) = 0 for all m > 0 and all x in N [ωm]. If ` = 2, we

suppose there is some GF -equivariant map e : N [2]→ ±1 that satisfies

(9.9) e(x+ y) = e(x)e(y)Pm0+1(x, βy) for all x, y ∈ N [2],

where m0 is chosen so N [ωm0 ] = N [2]. From this information, we can construct a qua-

dratic form

(9.10) qH : H1(H,N [ω])→ H2(H,F
×

)

for all closed subgroups H of GF . This is the form given in Proposition 3.2 for ` = 2, and

can be defined as the cup product

qH(φ) = −1
2
φ ∪P0 β∗φ.
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for ` 6= 2.

Given this information, we say thatN is in the alternating case if, for v ∈ V0 andm > 0,

the preimage of Wv under

H1(Gv, N [ωm])→ H1(Gv, N)

is its own orthogonal complement under the pairing

(φ, ψ) 7→ φ ∪Pm β∗(ψ).

Definition 9.9. For m > 0 and N and (Wv)v in the alternating or non-alternating case, we

take Wv,m to be the preimage of Wv under

H1 (Gv, N [ωm])→ H1 (Gv, N) .

Then, for χv ∈ H1(Gv,F) chosen for v ∈ V0, we define

S ∩(N, (χv)v)

= ker

H1(GF , N [ω])→
∏
v∈V0

H1(Gv, N [ω])/Wv,1(χv) ×
∏

σ∈GF (µ
`k

)

H1(〈σ〉, N [ω])

 .

We always have

S ∩(N, (χ)v) ⊆ Selω(Nχ).

Supposing χ is ramified at at least one prime, the connecting map δNχ associated to

0→ N [ω]→ Nχ[ω2]→ N [ω]→ 0

gives an injection

δNχ,GF : H0(GF , N [ω])→ ωm−1
∗ Selω

m

(Nχ).
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For m > 0, we take

rωm(Nχ) = dimF` ω
m−1
∗ Selω

m

(Nχ)− dimF` H
0(GF , N [ω]).

Choose χ ∈ XF . Per an observation of Wiles [55], the formula

(9.11) rω (Nχ)− rω ((N ′)χ) =
∑
v∈V0

dimWv,1(χ)− dimH0(Gv, N [ω])

follows from Poitou-Tate duality and the global Euler-Poincaré characteristic formula of

Tate, with this particular statement a special case of [41, 8.7.9]. (We note that, in the

enumeration of places, each pair of complex embeddings of F corresponds to one place in

V0.)

The basic linear-algebraic idea of the various heuristics describing Selmer groups is that

SelωNχ and Selω ((N ′)χ) should behave like the kernel and cokernel of some large matrix

with entries selected uniformly at random from F`. The difference in dimension between

the kernel and cokernel of this matrix is of course the difference between the number of

rows and columns of the matrix, so Wiles’ formula frequently appears in these predictions.

Because SelωNχ always contains S ∩(N, (χ)v), we will need to adjust the matrix heuris-

tics accordingly. So define

ur/c(N, (χv)v) = dim S ∩(N ′, (χv)v)− dim S ∩(N, (χv)v)

+
∑
v∈V0

(
dimWv,1(χv)− dimH0(Gv, N [ω])

)
.

Theorem 9.10. Suppose N is a twistable module with local conditions (Wv)v in the non-

alternating case. Given ε > 0, there is then C > 0 so we have the following:

Fix (χv)v, and take

r0 = dim S ∩(N, (χv)v).

We assume XF (H, (χv)v) is nonempty for sufficiently large H .
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Suppose H > C. Then, for r ≥ 0, with notation as in Definition 1.15, the difference

(9.12)

∣∣∣∣∣#
{
χ ∈ Xfav

F,N(H, (χv)v) : rω(Nχ) = r + r0

}
#Xfav

F,N(H, (χv)v)
− PMat

`, ur/c(N,(χv)v)(r |∞)

∣∣∣∣∣
has upper bound

(log logH)−1/4+ε.

If

lim
H→∞

#Xfav
F,N(H)

#XF (H)
= 1,

we can instead bound (9.12) by

exp(2)
(

1
5

log(3) H
)−1

.

We will prove this in Section 14.3.

Example 9.11. The case k = 1 of Theorem 1.16 follows as a consequence of this result and

Proposition 8.8. Taking N as in that Proposition, we see that N is in the non-alternating

case. N [ω] is one dimensional, so it is uncofavored and has no automorphisms besides

scalar multiples. To apply the theorem to SelωNχ, we then just need to show that N [ω] and

N ′[ω] have no isomorphism commuting with boundary maps. But recall that we assumed

that µ2` does not lie in F . For ` odd, this implies N [ω] and N ′[ω] are not isomoprhic. If

` = 2, the unique isomorphism does not commute with the boundary maps.

We thus just need to show that (8.2) holds for 100% of twists of N . In light of the

Grunwald-Wang theorem, this will be a consequence of Proposition 12.5, part 5.

We have a similar result for the alternating case, where ur/c is always zero. We require a

little more notation:

Definition 9.12. Given N in the alternating case, we say N is in the parity-invariant case

if, for some (or every) choice of local twists (χv)v such that XF (H, (χv)v) is nonempty
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for sufficiently large H , the parity of rω(Nχ) does not depend on the choice of χ from

XF (H, (χv)v).

We will consider parity invariance in greater detail in Section 14.1.

Definition 9.13. Given n ≥ j ≥ 0, take

PAlt
` (j |n)

to be the probability that a a uniformly selected alternating n× n matrix with coefficients

in F` has kernel of rank exactly j. The is zero unless j and n have the same parity, in which

case it equals

`
1
4

(j2+2j−n2−2nj) · (`n − 1)(`n−1 − 1) · · · (`− 1)

(`j − 1)(`j−1 − 1) · · · (`− 1) · (`n−j − 1) (`n−j−2 − 1) · · · (`2 − 1)
.

We also will define

PAlt
` (j | 2∞+ b) = lim

n→∞
PAlt
` (j | 2n+ b) and

PAlt
` (j |∞) =

1

2

(
PAlt
` (j | 2∞) + PAlt

` (j | 2∞+ 1)
)
.

Theorem 9.14. Suppose N is a twistable module with local conditions (Wv)v in the alter-

nating case. Given ε > 0, there is then C > 0 so we have the following:

Fix (χv)v, and take

r0 = dim S ∩(N, (χv)v).

We assume XF (H, (χv)v) is nonempty for sufficiently largeH . In the parity-invariant case,

take k0 ∈ {0, 1} to be the parity of rω(Nχ) − r0 for χ from this set of twists. For r ≥ 0,

define

P (r) =


PAlt
` (r | 2∞+ k0) in the parity-invariant case

PAlt
` (r |∞) otherwise.
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Now suppose H > C. With notation as in Definition 1.15, the difference

(9.13)

∣∣∣∣∣#
{
χ ∈ Xfav

F,N(H, (χv)v) : rω(Nχ) = r + r0

}
#Xfav

F,N(H, (χv)v)
− P (r)

∣∣∣∣∣
has upper bound

(log logH)−1/4+ε.

If

lim
H→∞

#Xfav
F,N(H)

#XF (H)
= 1,

we can instead bound (9.13) by

exp(2)
(

1
5

log(3) H
)−1

.

We will prove this in Section 14.3.

As a consequence, we get the case k = 1 of our main result for abelian varieties, which

we state below. Here, we take the notation r2k(A) from the introduction.

Theorem 9.15. Take A to be an abelian variety over a number field F , and take V0 to be

a set of places of F that include the archimedean places, the places dividing 2, and the

places where A has bad reduction.

We assume that A has a polarization defined over F of odd degree. We further assume

that A[2∞] is potentially favored and uncofavored, that A[2] has no nonidentity automor-

phisms commuting with the connecting maps, and that we have an identity

(9.14) ker

(
H1(GF , A[2])→

∏
σ∈GF

H1(〈σ〉, A[2])

)
= 0.

Choose a set of local twists (χv)v∈V0 . If A/F is parity invariant (see Section 14.1), take

b ∈ {0, 1} so r2(Ad) has parity b for all χ in XF ((χv)v).

Then, given k ≥ 1, and given any sequence of integers

r2 ≥ r4 ≥ · · · ≥ r2k ≥ 0,
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we have

lim
H→∞

#{Xfav
F,A(H, (χv)v) : r2(Aχ) = r2, . . . r2k(A

χ) = r2k}
#Xfav

F,A(H, (χv)v)

= PAlt(r2k

∣∣r2k−1) · PAlt(r2k−1

∣∣r2k−2) · . . .

· · · · PAlt(r4

∣∣r2) ·


PAlt(r2

∣∣2∞+ b) in the parity invariant case

PAlt(r2

∣∣∞) otherwise.

We will now apply this theorem in the special case of elliptic curves.

9.1.1. Technical conditions for elliptic curves. For our theorems to apply to an elliptic

curve E over a number field F , we need E to be potentially favored, uncofavored, and we

need that E[2] has no nonidentity automorphism commuting with the connecting maps. In

the case of F = Q, we will find that these conditions are satisfied by the curves satisfying

Assumption 1.2.

We can find c1, c2, c3 in F (E[2])× and a, b in F so that E is isomorphic over F to

y2 = x3 + ax+ b = (x− c1)(x− c2)(x− c3)

Take e1 to be the point (c1, 0), and take e2 to be the point (c2, 0). The connecting map

E[2]→ H1(GF (E[2]), E[2])

can be given in the form

e1 7→ e1 · χc1−c2 + e2 · χ(c3−c1)·(c2−c1)

e2 7→ e1 · χ(c3−c2)·(c1−c2) + e2 · χc2−c1 ,

where χc : GF1 → F2 denotes the quadratic character associated to F1(
√
c)/F1; this

calculation can be done directly, and is the content of [47, Proposition X.1.4].

We now split into cases.
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Example 9.16. Suppose F = F (E[2]). We find that E is uncofavored if and only if none

of the isogenous curves

E/〈e1〉, E/〈e2〉, E/〈e1 + e2〉

has full rational two torsion. This is equivalent to the condition that E has no rational

cyclic 4-isogeny. Given the above form of the connecting map, this condition is equivalent

to saying that none of

(9.15) (c3 − c1) · (c2 − c1), (c3 − c2) · (c1 − c2), (c1 − c3) · (c2 − c3)

are in (F×)2. If E is not uncofavored, there is then c ∈ F\{0,±1} and d in F× so that E

is isomorphic to

dy2 = x(x− 1)(x− c2).

Equivalently, the non-uncofavored E have j-invariant in the set{
28 · (c4 − c2 + 1)3

c4(c2 − 1)2
: F\{0,±1}

}
.

We now check for a nonidentity automorphism commuting with the connecting maps.

From Remark 9.6, we can restrict our attention to the isomorphism T sending e1 to e2 to

e1 + e2 back to e1. We calculate that this commutes with the connecting maps if and only

if all three entries in (9.15) are all in −(F×)2. Taking c1 = 0, c2 = 1, c3 = λ, we must

have z0, z1 ∈ F× so

λ = −z2
0 , 1− λ = −z2

1 =⇒ −z2
0 − z2

1 = 1.

This is impossible unless there are κ0, κ1 in F so κ2
0 + κ2

1 = −1 is solvable, so this case

cannot happen for F = Q. Suppose now that this equation has a solution over F . We can
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then parameterize the F points of the conic z2
0 + z2

1 = −1, with the map

(t0, t1) 7→ (z0, z1) =

(
−κ0t

2
0 + 2κ1t0t1 + κ0t

2
1

t20 + t21
,
κ1t

2
0 + 2κ0t0t1 − κ1t

2
1

t20 + t21

)
giving a birational map from P1(F ) to this locus. We then find that the elliptic curves in

this exceptional form are isomorphic to some curve of the form

dy2 = x (x− 1)

(
x+

(−κ0t
2
0 + 2κ1t0t1 + κ0t

2
1)2

(t20 + t21)2

)
.

These curves are uncofavored unless F contains
√
−1, in which case none are uncofavored.

Example 9.17. Suppose F (E[2])/F is a Z/3Z extension. The only proper GF -submodule

of E[2] is 0, so E is uncofavored. The isomorphism T is GF -equivariant, so we need to

check that it does not commute with the connecting maps. Taking σ to be a generator of

Gal(F (E[2])/F ), we note that any curve in this case can be written in the form

(9.16) E : y2 =
(
x− 1

3
σ2α + 1

3
α
) (
x− 1

3
α + 1

3
σα
) (
x− 1

3
σα + 1

3
σ2α

)
with α an element of F (E[2]) of zero trace. We then find that T commutes with the

connecting maps if and only if α/σα is a square in F (E[2]). As in the full 2-torsion case,

this forces κ2
0 + κ2

1 + 1 = 0 to have a solution over F (E[2]), and hence over F from the

theory of Hilbert symbols, eliminating the case F = Q.

To give a particular example, take F to be a number field containing Q(µ3), and take b

to be any element of F× that is not a cube. Then, if we consider the elliptic curve

E : y2 = x3 + b,

we find that the extension F (E[2])/F is of degree 3, and the map T commutes with the

connecting maps. This corresponds to the choice α = −(ζ − 1) 3
√
b in (9.16), with ζ a

primitive third root of unity, and we see that α/σα lies in µ3 and is hence a square.
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This exception is exceptional, of course, as this elliptic curve has complex multiplication

by Z[µ3]. If ζ is a primitive third root of unity in this order, we find that either ζ or ζ2

restricts to T on E[2].

Example 9.18. If F (E[2])/F is quadratic, E can be given the equation

E : y2 = x(x2 + Ax+B).

Taking the quotient by 〈(0, 0)〉 gives the isogenous curve

E0 : y2 = x(x2 − 2Ax+ (A2 − 4B))

(see e.g. [23]). We have that E is uncofavored if and only if F (E[2]) 6= F (E0[2]), which

is equivalent to the condition

F
(√

4B − A2
)
6= F

(√
−B
)
.

E is potentially favored if E0[2] is not a trivial GF module, which occurs if −B is not

a square in F . We find that E0 is potentially favored, and is uncofavored if E is also

uncofavored.

In this case, the isomorphism T is non-equivariant. Then, under the partial two torsion

case of Assumption 1.2, Theorem 9.15 and Proposition 14.6 give the k = 1 case of the

following:

Theorem 9.19. Suppose E/Q is an elliptic curve that fits into the second case of Assump-

tion 1.2. That is, suppose we can find rational numbers A,B so that E can be given the

equation

E : y2 = x(x2 + Ax+B),

where we assume that none of −B, A2− 4B, −B(A2− 4B) are rational squares. Take V0

to be a set of places including 2,∞, and the places where E has bad reduction
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Take X fav(H) to be the set of squarefree integers of the form d0 · p1 . . . pr of magnitude

at most H , where d0 is divisible only by primes in V0, where p1, . . . , pr are distinct primes

outside V0, and where

#
{
i ≤ r : pi splits in Q

(√
A2 − 4B

)
/Q
}
> #

{
i ≤ r : pi splits in Q(

√
−B)/Q

}
.

Take X fav
0 (H) to be the complement of X fav(H) in the set of squarefree integers of magni-

tude at most H .

Then we have

lim
H→∞

#X fav(H)

#X fav
0 (H)

= 1.

Further, for 1/2 > ε > 0, we have

(9.17) lim
H→∞

#
{
d ∈ X fav(H) : r2(Ed

0) ≥ (log logH)1/2−ε}
#X fav(H)

= 1.

Finally, given k ≥ 1 and any sequence of integers

r2 ≥ r4 ≥ · · · ≥ r2k ≥ 0,

we have

lim
H→∞

#{d ∈ X fav(H) : r2(Ed) = r2, . . . r2k(E
d) = r2k}

#X fav(H)

= PAlt(r2k

∣∣ r2k−1) · PAlt(r2k−1

∣∣ r2k−2) · · · · · PAlt(r4

∣∣ r2) · PAlt(r2

∣∣,∞).

Example 9.20. If F (E[2])/F is an S3 extension, we have that the automorphism T is non-

equivariant, and E is vacuously uncofavored. From this, Theorem 9.14 always applies in

this case, finishing the verification of the k = 1 portion of Theorem 1.10.

10. BASE-CASE SELMER CONDITIONS
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10.1. Dual modules. In Section 8.2, given a twistable module N , we introduced N∨ and

N ′, two reasonable definitions of a dual twistable module. We now give some of the basic

properties of this definition.

Take a, c to be nonnegative integers. If the ideal (`c) of Z[F] contains ωa, we have an

isomorphism

N∨[ωa]
∼−−→Hom

(
N [`c]

/
N [`c/ωa], µ`c

)
φ⊗ 1

`c
7−→ (t 7→ φ(t))

If b is at most a, this gives an isomorphism

N∨[ωa]
/
N∨[ωb]

∼−−→ Hom
(
N [`c/ωb]

/
N [`c/ωa], µ`c

)
.

In particular, we have an isomorphism

N ′[ω] =N∨[`]
/
N∨[`/ω] ∼= Hom (N [ω], µ`)

φ⊗ 1
`
7−−−→ (t 7→ φ(t)).

That is to say, we have a natural nondegenerate GF -equivariant pairing

N [ω]×N ′[ω] −−→ µ`.

This defines (8.7).

Proposition 10.1. Take χ to be an element of H1(GF ,F). Then, using the notation of

Definition 8.13, the composition

W χ βW,χ−−−→ W = Hom (N,µ`∞)
β>N,χ−−−→ Hom (Nχ, µ`∞)

is equivariant under the action of GF . In particular, we have natural GF -equivariant

isomorphisms

(N∨)χ ∼= (Nχ)∨ and (N ′)χ = (Nχ)′.
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Proof. Take φ in W χ, σ in GF , and t in Nχ. Our goal is to prove

σ(β>N,χ(βW,χ(φ)))(t) = β>N,χ(βW,χ(σ(φ)))(t).

We note that, in F, the condition that χ is a class of cocycles implies

χ(σ)−1 = σχ(σ−1).

In EndN , this implies that σχ(σ−1)σ−1 equals χ(σ)−1. We then have

σ(β>N,χ(βW,χ(φ)))(t) = σ
[
β>N,χ(βW,χ(φ))(σ−1t)

]
= σ

[
βW,χ(φ)(βN,χ(σ−1t))

]
= σ

[
βW,χ(φ)

(
χ(σ−1)σ−1βN,χ(t)

)]
= σ

[
βW,χ(φ)

(
σ−1χ(σ)−1βN,χ(t)

)]
= σ (βW,χ(φ))

(
χ(σ)−1βN,χ(t)

)
=χ(σ)(σ(βW,χ(φ))) (βN,χ(t)) = βW,χ(σφ)(βN,χ(t))

= β>N,χ(βW,χ(σφ))(t),

as claimed. �

Given a closed subgroup H of GF , we can define connecting homomorphisms

δH : H0
(
H, N [ω2]/N [ω]

)
→ H1(H,N [ω]),(10.1)

δ′H : H0
(
H, N ′[ω2]/N ′[ω]

)
→ H1(H,N ′[ω])(10.2)

associated to the exact sequences

0→ N [ω]→ N [ω2]→ N [ω2]/N [ω]→ 0,

0→ N ′[ω]→ N ′[ω2]→ N ′[ω2]/N ′[ω]→ 0.
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We can alternatively take δ to be the class of the above extension in Ext1GF (N [ω2]/N [ω], N [ω]),

so δH becomes the composition of restriction with a Yoneda product, with a similar defini-

tion for δ′.

The following proposition is essential in the proof of Proposition 8.15, though it will

also have uses for H the absolute Galois group of a number field.

Proposition 10.2. Take N and H as above. Under the cup product

H1(H,N [ω])×H1(H,N ′[ω]) −−→ H2(H,µ`2)

coming from the composition of (8.7) with the inclusion µ` ↪→ µ`2 , the image of δH is

annihilated by the image of δ′H .

Proof. We first note that we have a natural pairing

〈 , 〉1 : N [`ω]×N ′[`ω] −−→ µ`2

that satisfies

`〈t, t′〉1 = 〈`t, `t′〉 for t ∈ N [`ω], t′ ∈ N ′[`ω],

where the latter pairing is (8.7). Writing ∪1 for the associated cup product, and using the

notation

ι : N [ω] ↪→ N [`ω] and ` : N [ω`]
·`−→ N [ω],

we have

φ ∪1 ι∗φ
′ = `∗φ ∪ φ′ for φ ∈ H1(H,N [ω`]), φ′ ∈ H1(H,N ′[ω]).

Take δ1,H to be the connecting homomorphism associated to

0→ N [`ω]→ N [`ω2]
·`−→ N [ω2]/N [ω]
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and the group H . Then δH = `∗ ◦ δ1,H . From the above, it is then enough to prove that the

images of δ1,H and ι∗◦δ′H annihilate each other. But ι∗◦δ′H factors through the composition

H0
(
H, N ′[ω2]/N ′[ω]

)
→ H1(H,N ′[ω])→ H1(H,N ′[ω2]),

of maps from the long exact sequence, and is hence zero. This gives the proposition. �

We have a pairing

P : N [ω2]/N [ω]×N ′[ω] −−→Hom(F, µ`)

t φ⊗ 1
`
7−→

(
ζ 7→ φ

(
(ζ − 1) t

`

))
and another pairing

P ′ : N [ω] × N ′[ω2]/N ′[ω] −−→Hom(F, µ`)

t φ⊗ 1
`2
7−→

(
ζ 7→ φ

(
(ζ − 1) t

`

))
.

We denote the associated cup products by ∪P and ∪P ′ .

The rationale for our level of detail in these constructions is that it is necessary to prove

the following somewhat obnoxious proposition. We note, however, that there is a method

to circumvent the use of this proposition in our proof; see Remark 10.6.

Proposition 10.3. Take N and H as above, with H a procyclic group with topological

generator σ. Define a pairing

PF : N [ω2]/N [ω]× F −−→N [ω]

t ζ 7−→ (ζ − 1)t,

and write ∪F for the associated cup product. Given σ ∈ GF , take

χ−1(σ) =
σ
√
−1√
−1

.
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If ` = 2, there is a unique submodule of order two of F, and we will write χ−1 for the image

in H1(H,F) of χ−1 under this embedding.

Then, for x in H0 (H, N [ω2]/N [ω]) and x′ in H0 (H, N ′[ω2]/N ′[ω]), we have

x ∪P δ′Hx′ = −δHx ∪P ′ x′ +


(x ∪F χ−1) ∪P ′ x′ if ` = 2

0 otherwise

in H1(H,Hom(F, µ`)).

Proof. Take x and x′ as in the proposition. Lift x to an element t of N [ω2] and 1
`
t of

N [`ω2], and lift x′ to an element f ⊗ 1
`2

in N ′[ω2]. By replacing f with the alternative lift

σ−1f , we note that the class x ∪P δ′Hx′ is represented by a cocycle sending σ to

ζ 7−→ f
(
(ζ − 1)1

`
t
)
− σ−1

[
f
(
σ(ζ − 1)1

`
t
)]
.

The class δHx ∪P ′ x′ is represented by the cocycle sending σ to

ζ 7−→ f
(
(ζ − 1)(σ − 1)1

`
t
)

= f
(
(ζ − 1)σ 1

`
t
)
− f

(
(ζ − 1)1

`
t
)
,

and the sum of these is

ζ 7−→ f
(
(ζ − 1)σ 1

`
t
)
− σ−1

[
f
(
σ(ζ − 1)1

`
t
)]
.

We suppose that F has order 2. This then simply equals

−1 7−→ (σ−1 − 1)f(σt) = f((χ−1(σ)− 1)t),

which agrees with the claim of the proposition.

Otherwise, take a in (Z/`kZ)× so σζ = ζa for ζ ∈ F. Since F has order greater than

two, we find that f
(
σ(ζ − 1)1

`
t
)

is valued in µ`, so the map

ζ 7−→ σ−1f
(
σ(ζ − 1)1

`
t
)
− 1

a
f
(
σ(ζ − 1)1

`
t
)
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is a coboundary of Hom(F, µ`). We are then interested in the class of

ζ 7−→ f
((

(ζ − 1)− 1
a
(ζa − 1)

)
σ 1
`
t
)
.

Using the binomial theorem on ((ζ − 1) + 1)a, we see

(
(ζ − 1)− 1

a
(ζa − 1)

)
= −1

a

((
a

2

)
(ζ − 1)2 +

(
a

3

)
(ζ − 1)3 + . . .

)
.

Mod ω2, only the first term contributes.

Suppose ` = 2. The above class is then

ζ 7−→ f
(
a−1

2
(ζ − 1)2 1

2
t
)
,

which from the definition of a can be shown to agree with (x∪F χ−1)∪P ′ x′, as a is 1 mod

4 if and only if σ fixes
√
−1.

Now suppose ` > 2. As before, the difference takes the form

ζ 7−→ f
(
−a−1

2
(ζ − 1)2σ 1

`
t
)
.

Writing q for this map, we see this satisfies

q(ζ)b = q(ζb) = q(ζ)b
2

for b ∈ (Z/`kZ)×,

the first equation coming from q being a homomorphism and the second coming from a

direct calculation. In particular,

q(ζ) = q(ζ)−1.

Since ` > 2, this implies q is trivial, and we are done. �

10.2. Selmer conditions. Take N a twistable module over (K/F,V0,F) as above. We

will take the notation

M = N [ω] Q = N [ω2]/N [ω] R = N ′[ω2]/N ′[ω].
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Given a twist χ in H1(GF ,F), the map βχ gives GF equivariant isomorphisms

βχ : Nχ[ω]
∼−−→ N [ω] and βχ : Nχ[ω2]/Nχ[ω]

∼−−→ N [ω2]/N [ω].

The connecting map (10.1) for Nχ can then be given as a map

δχ,H : H0
(
H, N [ω2]/N [ω]

)
→ H1(H,N [ω]).

For q in H0(H, N [ω2]/N [ω]), we calculate that this satisfies

(10.3) δχ,H(q) = δH(q) + q ∪F χ,

with the cup product defined as in Proposition 10.3.

We can similarly define δ′χ,H for the twist (Nχ)′, and it obeys an analogous relation to

(10.3).

We will work in the situation of Notation 8.14, so S is a finite set, (ps)s are a set of

primes indexed by S, and (σs)s is the accompanying set of Frobenius elements in

G1 = Gal
(
K(V0)/F (F(−1))

)
.

Recall that, for a given twist χ we defined a pairing between H1(GF ,M) and R =⊕
sR
〈σs〉. We now prove that this pairing can be used to check local conditions at the

primes indexed by S.

Proof of Proposition 8.15. For s ∈ S, we find that

φ− δχ,GF,ps (qs) = φ− qs ∪ χ− δGF,ps (qs)

is unramified at ps. The Selmer condition is satisfied at ps if and only if this is also zero.

Via local Poitou-Tate duality, it is enough to check that

(
φ− δχ,GF,ps (qs)

)
∪ ψ = 0
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is zero in H2(GF,ps , µ`) for all ψ in H1(GF,ps ,M
′[ω]). We also know that this pairing is

zero if ψ is unramified.

We note that the composition

H0(GF,ps , N
′[ω2]/N ′[ω])

δ′χ,GF,ps−−−−−→ H1(GF,ps , N
′[ω])

res−−→ H1(IF,ps , N
′[ω])

is surjective; this follows as a consequence of (10.3) and from GF,ps having trivial action

on F(−1). From Proposition 10.2, we then find that the local condition at ps is satisfied if

and only if

φ ∪ δ′χ,GF,ps (rs) = 0 for all rs ∈ H0(GF,ps , R).

From this, the proposition follows. �

We now will consider the pairing

〈 , 〉 :
⊕
s

Q〈σs〉 ⊗
⊕
s

R〈σs〉 → 1
`
Z/Z

in more detail. We have an isomorphism

ιR : R
∼−−→Hom(M ⊗ F, µ`)

φ⊗ 1
`2
7−→

(
t⊗ ζ 7→ φ

(
(ζ − 1) t

`

))
.

This is the map corresponds to the pairing P ′ defined before Proposition 10.3.

We will need the following notation:

Notation 10.4.

• σ0, σ1, σ2 will denote elements of G1 = Gal(K(V0)/F (F(−1)))

• For each σ0, fix a prime qσ0 of F not over V0 so that FrobFqσ0 projects to σ0.

• For each pair (σ1, σ2), take B(σ1, σ2) to be a set of representatives in Gal(K/F ) of

〈σ1〉
∖

Gal(K/F )
/
〈σ2〉.
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We assume that the class containing the identity is represented by 1.

• For any σ0, take Binv(σ0) to be the subset of B(σ0, σ0) of elements τ for which

τ−1 represents the same class. We assume the set B(σ0, σ0) is chosen so any τ in

Binv(σ0) satisfies

τ 2 ∈ 〈σ0〉.

• The map sending the class of τ to τ−1 acts freely on B(σ0, σ0) − Binv(σ0). Take

B1/2(σ0) to be a subset of B(σ0, σ0)−Binv(σ0) containing one representative from

each orbit of this action. We choose the set B(σ0, σ0) so we have

B(σ0, σ0) = Binv(σ0) ∪ B1/2(σ0) ∪ B1/2(σ0)−1.

Proposition 10.5. In the above context,

〈(qs)s, (rs)s〉χ

=
∑
s∈S

invps

(
Bnc
M,F,ps

(qs ∪F xs) ∪ δ′χ0,GF,ps
(rs)
)

−
∑
s∈S

ιR(rs) ∪ ((qs ∪F xs)⊗ xs)⊗ anc
1 (ps, ps)

+
∑
s,t∈S

ιR(rs) ∪
∑

τ∈B(σs,σt)

((τqt − qs) ∪F τxt)⊗ xs ⊗ anc
τ (ps, pt)

=−
∑
s∈S

invps

(
δχ0,GF,ps

(qs) ∪Bnc
N ′[ω],F,ps

(rs ∪F xs)
)

+
∑
s,t∈S

ιR(rs) ∪
∑

τ∈B(σs,σt)

((τqt − qs) ∪F τxt)⊗ xs ⊗ anc
τ (ps, pt).

Proof. We first note that Proposition 10.2 allows us to rewrite 〈(qs)s, (rs)s〉χ in the form

∑
s∈S

invµ`,F,ps
((
φ− δχ,GF,ps (qs)

)
∪ δ′χ,GF,ps (rs)

)
=
∑
s∈S

invµ`,F,ps
((
φ− δχ,GF,ps (qs)

)
∪
(
rs ∪F Bnc

F,F,ps(xs)
))

.
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This allows us to use the same strategy for the second claimed identity in the proposition

that we use with the first identity.

We will need one basic properties of the symbols Lnc. Take M1,M2,M3 to be three

Gal(K/F ) modules of exponent `, and take p and q to be primes of F not over V0. Choose

m1 ∈M1(−1)GF,p , m2 ∈M2(−1)GF,q , m3 ∈M
GF,p
3 ,

and take

c1 = Bnc
M1,F,p

(m1), c2 = Bnc
M1,F,p

(m2), c3 = m3.

Given a permutation i1, i2, i3 of {1, 2, 3}, take

πi1,i2,i3 : (M1 ⊗M2) (−1)GF,p ⊗M
GF,p
3 −−→ (Mi1 ⊗Mi2 ⊗Mi3) (−1)GF ,ps

to be given by the correct permutation of coordinates. Then, for any such permutation,

invMi1
⊗Mi2

⊗Mi3
,F,p (ci1 ∪ ci2 ∪ ci3)

=


πi1,i2,i3

(
Lnc
M1⊗M2/F

(p, q)(m1,m2)⊗ c3

)
if i1 < i2

−πi1,i2,i3
(
Lnc
M1⊗M2/F

(p, q)(m1,m2)⊗ c3

)
if i1 > i2.

This is best verified at the level of cocycles. The appearance of a minus sign is a conse-

quence of the skew commutativity of cup product.

We have a commutative diagram

N [ω]⊗R⊗ F N [ω]⊗N ′[ω]

R⊗N [ω]⊗ F Hom (N [ω]⊗ F, µ`)⊗ (N [ω]⊗ F) µ`,

(Id, PF)

(8.7)

(−ιR, Id)

where the vertical map is given by transposing the first two coordinates and the final hor-

izontal map is the standard pairing. We note that the minus sign in the map (Id, −ιR) is
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essential for this diagram to commute, as we have

((ζ − 1)φ)
(
t
`

)
= φ

(
(ζ−1 − 1)

(
t
`

))
.

Having noted this, the proposition is a consequence of Proposition 2.11. �

Remark 10.6. An attentive reader may note that the second identity of the proposition can

alternatively be proved as a consequence of the first identity, Proposition 10.3, and the sixth

part of Proposition 2.12. Because Proposition 10.3 is counterintuitive, we have decided this

redundancy in our presentation is worth preserving.

The full form of Proposition 10.5 has a couple important uses, as we will see in the sub-

sequent sections. However, the following consequence will tend to be far more important,

as it lets us easily characterize ignorable pairs.

Proposition 10.7. In the above situation, choose s ∈ S, and take Xs to be a set of primes

of F not over V0 whose Frobenius elements project to σs. Fix φ0, (qs)s, (rs)s, and (xs)s as

above, and take

〈φ, (rs)s〉χ
[
ps = p]

to be the result of the pairing after replacing each ps in (8.9) and (8.8) with p. Define

c(t, τ) =


−1 if s 6= t, τ ∈ B(σs, σt) or s = t, τ ∈ B1/2(σs)

−1
2

if s = t, τ ∈ Binv(σs), and ` 6= 2

0 otherwise.

Then there is some C0 ∈ 1
`
Z/Z so

〈φ, (rs)s〉χ
[
ps = p]

= C0 +
∑
t,τ

c(t, τ) · ιR(rs − τrt) ∪ (qs − τqt) ∪F xs ⊗ τxt ⊗ anc
τ (p, pt)

for all p ∈ Xs.
125



Proof. This follows from the previous proposition and the reciprocity properties given in

Proposition 2.12. �

10.3. Some cancellable pairs. In this section, we will give one basic recipe for construct-

ing cancellable pairs ((qs)s, (rs)s) in the context of (8.12).

Notation 10.8. With N as above, take M1 to be a GF submodule of M , and take

β : M1 → N ′[ω]

to be a GF -equivariant homomorphism. We assume this map is alternating, in the sense

that

β(q) · q = 0 in µ` for all q ∈M1.

Taking Q1 to be the subset of N [ω2]/N [ω] corresponding to M1 under tensoring with F,

we write β for the corresponding map β : Q1 → R.

We call (M1, β) cancellable if there is some σ0 ∈ G1 and some qA, qB ∈ Q〈σ0〉1 so that

(δ′〈σ0〉 ◦ β − β∗ ◦ δσ0)(qA) ∪ qB 6= 0 in H1(〈σ0〉, F∨)

Given (M1, β), we can define a quadratic form

fβ :
⊕
s∈S

H0(〈σs〉, Q1) −−→ 1
`
Z/Z

by

fβ
(
(qs)s

)
=
〈
(qs)s, (β(qs))s

〉
χ
,

where χ is chosen from a fixed tuple set of twistsX as in Section 8.3. Per Proposition 10.7,

this form does not depend on χ, so the associated pairs (qs)s, (β(qs))s are not ignorable.

But, if M1, β is cancellable, the pairs tend to be cancellable; if Q1 is a vector space of
126



small codimension in the domain of fβ , we tend to find that the sum

∑
(qs)s∈Q1

fβ((qs)s)

is small.

To prove this, will prove that the associated bilinear form

Bβ :
⊕
s∈S

H0(〈σs〉, Q1)⊗
⊕
s∈S

H0(〈σs〉, Q1) −−→ 1
`
Z/Z

given by

Bβ

(
(q1s)s, (q2s)s

)
= fβ((q1s + q2s)s)− fβ((q1s)s)− fβ((q2s)s)

=
〈
(q1s)s, (β(q2s))s

〉
χ

+
〈
(q2s)s, (β(q1s))s

〉
χ

has large rank.

Proposition 10.9. In the context of Notation 10.8, suppose (M1, β) is cancellable. Then

the bilinear form Bβ has rank at least

1
`

(
#
{
s ∈ S : σs = σ0

}
− 1
)
,

with σ0 chosen among the tuples (σ0, qA, qB) demonstrating that (M1, β) is cancellable.

Remark 10.10. This lower bound on the rank of Bβ could be improved without too much

effort, but we have no need for such an improved estimate.

Proof. If no s0 satisfies σs0 = σ0, the statement is vacuous. So choose an s0 so that the set

S0 =
{
s ∈ S − {s0} : σs = σ0 and xs ≡ xs0 mod p · F(−1)

}
has maximal cardinality. In particular, this set has size at least the rank bound given in

proposition statement.
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For s1 ∈ S0, define elements

EA(s1) = (q′s)s with q′s =


qA if s = s1

−qA if s = s0

0 otherwise;

EB(s1) = (q′s)s with q′s =


qB if s = s1

0 otherwise.

We claim that

(10.4) Bβ

(
EA(s1), EB(s2)

)
is


6= 0 if s1 = s2

= 0 otherwise.

This will imply that BΓ has rank at least |S0|, giving the result.

The claim (10.4) is a consequence of Proposition 10.5 and Proposition 2.12. First, sup-

pose that s1 6= s2. Then, using the abuse of notation βEB(s2), we have

〈
EA(s1), βEB(s2)

〉
χ

= ιR(β(qB)) ∪
∑

τ∈B(σ0,σ0)

τqA ∪ τxs0 ⊗ xs0 ⊗ (anc
τ (ps2 , ps1)− a

nc
τ (ps2 , ps0))

and

〈
EB(s2), βEA(s1)

〉
χ

= ιR(β(qA)) ∪
∑

τ∈B(σ0,σ0)

τqB ∪ τxs0 ⊗ xs0 ⊗ (anc
τ (ps1 , ps2)− a

nc
τ (ps0 , ps1)).

Per Proposition 2.12, these sum to zero.
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Now, for the case s1 = s2 = s, we calculate

〈
EA(s), βEB(s)

〉
χ

= invps

(
Bnc
M,F,ps

(qA ∪F xs) ∪ δ′χ0,GF,ps
(β(qB))

)
− ιR(β(qB)) ∪ qA ∪ xs ⊗ xs ⊗ anc

1 (ps, ps)

+ ιR(β(qB)) ∪
∑

τ∈B(σ0,σ0)

τqA ∪ τxs0 ⊗ xs0 ⊗ (anc
τ (ps, ps)− anc

τ (ps, ps0))

and

〈
EB(s), βEA(s)

〉
χ

= −invps

(
δχ0,GF,ps

(qA) ∪Bnc
N ′[ω],F,ps

(
β(qB)

))
+ ιR(β(qA)) ∪

∑
τ∈B(σ0,σ0)

τqB ∪ τxs0 ⊗ xs0 ⊗ (anc
τ (ps, ps)− anc

τ (ps0 , ps)).

The second and third terms of the first expression canel with the second term of the second

expression, with the extra appearance of anc
1 (ps, ps) merited by the unusual property given

as the final statement of Proposition 2.12, part six. The first terms of each expression sum

to something nonzero by the assumption of the proposition, giving the claim (10.4) and

finishing the proof. �

The above proposition admits a converse, where Bβ can be proved to be of small rank

if β commutes with the connecting maps. In the examples we consider, this situation will

only arise when β can be lifted to an alternating map from the divisible module N to N ′,

where more specific propositions can be made.

10.4. Main-term pairs. Proposition 10.9 admits a converse, where Bβ can be proved to

be of small rank if β commutes with the connecting maps. Such a statement is insuffi-

cient for our purposes, as forms of small positive rank and the zero form will contribute

differently to moments. Instead, in the special cases we can handle, we want to prove that
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non-cancellable (M1, β) give rise to main-term pairs. The two cases we are interested in

are the alternating and non-alternating case of Section 9.1.

Proposition 10.11. Suppose N is a twistable module in either the non-alternating case

or the alternating case. Choose χ ∈ XF , and recall the boundary maps δGF , δ
′
GF

defined

above. Then, for χ ∈ XF , we have

δχ,GF
(
H0(GF , N [ω2]/N [ω])

)
⊆ Selω(Nχ).

Furthermore, if r0 is H0(GF , N
′[ω2]/N ′[ω]), and if φ has the form given in (8.9) and

satisfies the local conditions at V0, we have

〈φ, (r0)s〉χ = 0,

where (r0)s denotes the tuple whose s coordinate is r for all s ∈ S.

Proof. The first part is immediate from the definitions. For the second part, we note that,

for v ∈ V0,

φ ∪ δ′χ,Gv(r0) = 0,

as a consequence of the assumption that Wv is `-divisible. The part then follows from

Poitou-Tate duality, and in particular from the fact that (10.5) is the zero map. �

This deals with all the main terms that appear in the non-alternating case. In the alter-

nating case, we have extra main-term pairs.

We first make the following observations. First, given a twistable moduleN with Selmer

structure (Wv)v, the module N⊕a is also a twistable module with a standard choice of

Selmer structure in (W⊕a
v )v. The natural analogue of the pairing 〈 , 〉χ for this direct sum

is a pairing 〈 , 〉N⊕a,χ defined by

〈(φ1, . . . , φa), (r1s, r2s, . . . , ras)s〉N⊕a,χ =
∑
i≤a

〈φi, (ris)s〉.
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Proposition 10.12. Suppose N is in the alternating case, and take

β : N → N ′

to be the equivariant alternating isomorphism given in Notation 9.8.

Given any nonnegative integer a, and given a symmetric a×a matrix T with coefficients

in Z`, we can define an alternating map

βT : N⊕a ∼= N ⊗ Za`
β⊗T−−→ N ′ ⊗ Za` ∼= (N⊕a)′.

Take χ as in the notation (8.8), and choose

φ = φ0 +
∑
s∈S

Bnc
M⊕a,F,ps

(qs ∪F xs).

We assume this obeys the local conditions for N⊕a at all places in V0. Then

〈
φ,
(
βT (qs)

)
s

〉
N⊕a,χ

= 0.

Proof. A symmetric matrix over any ring can be written as a sum of matrices LL> with

L another matrix defined over the ring. By decomposing the matrices in this way, we find

that it suffices to prove the proposition in the case a = 1 with βT = β.

Take q to be the form defined in (9.10). We now claim that

invµ`,F,ps
(
φ ∪ δ′χ,GF,ps (β(qs))

)
= −inv

(
qGF,ps (φ)

)
.

To do this, we first note that

qGF,ps (δχ,GF,ps (qs)) = qGF,ps (φ− δχ,GF,ps (qs)) = 0,
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as a consequence of Proposition 3.3 and the fact that φ − δχ,GF,ps (qs) is unramified. From

Proposition 3.2, we then get that

qGF,ps (φ) =− (φ− δχ,GF,ps (qs)) ∪ β∗δχ,GF,ps (qs)

and this gives the claim. The proposition then follows from the definition (8.10) and

Poitou-Tate duality, in the specific sense that the sum

(10.5)
∑
v of F

invv : H2
(
GF , F

×
)
−−→ Q/Z

is the zero map. �

10.5. The space Q((qs)s). Take N to be a twistable module as above, with notation as

throughout this section. We do not assume that we are in either case of Section 9.1.

Definition 10.13. Given (qs)s in Q, we take Q((qs)s) to be the subspace of Q spanned by

elements of the form

τ1qs − τ2qt for s, t ∈ S, τ1, τ2 ∈ GF .

IfQ1 is aGF submodule ofQ, we takeQ⊥1 to be the orthogonal subspace ofR with respect

to the natural pairing

Q×R −−→ (F /`F⊗F /`F)∨.

We then take

R(Q1) =
⊕
s∈S

H0
(
〈σs〉, Q⊥1

)
.

Taking M1 to be the natural image of Q1 ⊗ F in M , the exact sequence

(10.6) 0→M/M1 → (N/M1)[ω]→ Q1 → 0

gives rise to a connecting map

ρH : H0(H,Q1)→ H1(H,M/M1)
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for any closed subgroup H . We take

Q0(Q1) =
⊕
s∈S

ker ρ〈σs〉.

The long exact sequence applied to (10.6) gives

(10.7) #Q0(Q1) =
∏
s∈S

#H0(〈σs〉, N/M1[ω])

#H0(〈σs〉, M/M1[ω])
.

In addition, from the commutative diagram with exact rows

M N [ω2] Q

M π−1(Q1) Q1

M/M1 (N/M1)[ω] Q1,

π

we have a commutative square

H0(H,Q1) H1(H,M/M1)

H0(H,Q) H1(H,M)

ρH

δH

for any closed subgroup H , where the vertical maps come functorially from the standard

inclusion and projections. For s ∈ S, we note that

ker
(
H1(GF,ps/IF,ps ,M)→ H1(GF,ps/IF,ps ,M/M1)

)
and H1(IF,ps ,M

⊥
1 )GF,ps

anihilate each other with respect to the natural pairing

H1(GF,ps/IF,ps ,M)⊗H1(IF,ps , N
′[ω])→ H2(GF,ps , F

×
).

We then have the following:
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Proposition 10.14. Suppose we are in the situation considered above, and take Q1 a GF -

submodule of Q as above. Choose (qs)s ∈ Q so that qs ∈ Q1 for all s ∈ S. Then

〈(qs)s, (rs)s〉χ = 0 for all (rs)s ∈ R(Q1)

if and only if (qs)s ∈ Q0(Q1).

Proof. Given the above discussion, this follows from Proposition 10.5. �

11. IGNORABLE PAIRS

We have already seen two of the types of pairs (qs)s, (rs)s that appear in the moment

calculation (8.12). In this section, we consider ignorable pairs, where the sum

∑
χ∈X

〈(qs)s, (rs)s〉χ

can be forced to be small. Our techniques for forcing this sum to be small come from ana-

lytic number theory, and this somewhat limits what we can say. Ideally, given Proposition

10.7, we would be able to say that (qs)s, (rs)s is ignorable whenever

(rs − τ0rt) · (qs − τ0qt) 6= 0

for some choice of distinct s, t ∈ S and some choice of τ0 ∈ GF . For the tuple sets

that come from decomposing XF (H), this is too strong. Instead, we take the following

notation.

Notation 11.1. Take a twistable module N , an indexing set S, and a set of G1 elements

(σs)s as above. Furthermore, fix a partition of S into three disjoint subsets Ssm, Smed, and

Slg.
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Definition 11.2. Given
(
(qs)s, (rs)s

)
in Q × R, we say that the pair is ignorable by the

large sieve if there are distinct indices s, t in Smed ∪ Slg and there is some τ0 in GF so that

(11.1) (rs − τ0rt) · (qs − τ0qt) 6= 0.

We say the pair is ignorable by Chebotarev if there is some s ∈ Slg satisfying

(11.2) (rs − τrs) · (qs − τqs) = 0 for all τ ∈ GF

and there is some t in Ssm and τ0 in GF so (11.1) holds.

If either condition is satisfied, we call
(
(qs)s, (rs)s

)
ignorable.

Remark 11.3. The reasonability of this definition comes from Proposition 10.7. The condi-

tion (11.2) is needed because the Chebotarev density theorem is believed to be insufficient

to prove equidistribution results for most kinds of spin, which are the terms of the form

anc
τ (ps, ps).

The slight complication of the definition of an ignorable pair makes the resultant theory

substantially more cumbersome. We turn to it now.

11.1. Characterizing non-ignorable pairs.

Definition 11.4. Given (qs)s in Q, we call s0 ∈ Slg a pariah index for (qs)s if there are not

disjoint subsets S1, S2 of Slg − {s0} and some choice of

(a1s)s∈S1 ∈
⊕
s∈S1

F` and (a2s)s∈S2 ∈
⊕
s∈S2

F`

satisfying

∑
s∈S1

a1s =
∑
s∈S2

a2s = 1 and
∑
s∈S1

a1sqs =
∑
s∈S2

a2sqs = qs0 .

We denote the set of pariahs by Spar((qs)s).
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We call s0 an m/l pariah index if s0 lies in Smed ∪ Slg and the condition given above is

satisfied with Slg replaced by Smed ∪ Slg. We denote the set of m/l pariahs by Sm, par.

The possibility of pariah indices make bilinear sum computations more annoying than

they might otherwise be. Fortunately, there cannot be too many of them, and their impact

on the general moment (8.12) can typically be made negligible. We will return to this

second claim later, but the first claim follows from the next proposition.

Proposition 11.5. Taking g to be the corank of N , and given (qs)s in Q, we have

#Spar((qs)s) ≤ 2g + 2

Proof. This statement is vacuous if Slg has fewer than g + 2 elements. So we assume

#Slg ≥ g + 2.

Choose s0 ∈ Slg, and choose a sequence s1, . . . , sr ∈ Slg so that

qs1 − qs0 , . . . , qsr − qs0

gives a basis for the F`-vector space spanned by all elements of the form qs − qt with

s, t ∈ Slg.

Take S ′lg = Slg − {s0, . . . , sr}. Choose t0 in S ′lg, and choose a sequence t1, . . . , tr′ ∈ Slg

so that

qt1 − qt0 , . . . , qtr′ − qt0

gives a basis for the space spanned by all elements of the form qs − qt with s, t ∈ S ′lg.

We then have r ≤ g and r′ ≤ g, and we also have

Spar((qs)s) ⊆ {s0, . . . , sr} ∪ {t0, . . . , tr′},

giving the proposition. �

The same proposition holds for Sm, par using the same logic.
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Definition 11.6. Given S ′ ⊆ S and (qs)s ∈ Q, take

Q(S ′) = Q(S ′, (qs)s)

to be the vector subspace of Q((qs)s) generated by the elements

τ1qs − τ2qt for s, t ∈ S ′, τ1, τ2 ∈ GF .

Given (qs)s, take

Snpar = Slg − Spar, Sm,npar = Slg ∪ Smed − Sm, par.

We call (qs)s unlawful if Q(Snpar, (qs)s) is a proper submodule of Q(S, (qs)s).

Proposition 11.7. In the above situation, suppose the pair
(
(qs)s, (rs)s

)
in Q ×R is not

ignorable by the large sieve. Then the equation

Γ(τ1qs − τ2qt) ≡ τ1rs − τ2rt for all s, t ∈ S ′, τ1, τ2 ∈ GF

defines GF -equivariant homomorphisms

Γm,npar : Q(S ′)→ R/Q(Slg ∪ Smed)
⊥ with S ′ = Sm,npar

Γm, l : Q(S ′)→ R/Q(Sm,npar)
⊥ with S ′ = Slg ∪ Smed,

with Γm, npar alternating.

If the pair is also not ignorable by Chebotarev, the same equation definesGF -equivariant

homomorphisms

Γnpar : Q(S ′)→ R/Q(S)⊥ with S ′ = Snpar

Γ : Q(S ′)→ R/Q(Snpar)
⊥ with S ′ = S,

with Γnpar alternating.
137



Remark 11.8. If (qs)s is not unlawful, these four maps are all equal.

Proof. Assume to start that
(
(qs)s, (rs)s) is non-ignorable by the large sieve.

Given

a : Smed ∪ Slg → F` satisfying
∑

s∈Smed∪Slg

as = 0

and any function τ : S → GF , we have

(11.3)

 ∑
s∈Smed∪Slg

asτsrs

 ·
 ∑
s∈Smed∪Slg

asτsqs

 = 0,

as this sum can be rewritten in the form

−
∑

{s,t}⊆Smed∪Slg

asat (τsrs − τtrt) · (τsqs − τtqt).

If s0 ∈ Slg ∪ Smed is not an m/l pariah index, we can choose S1, S2, a1, and a2 as in

Definition 11.4 so that we have

qs0 =
∑
s∈S1

a1sqs =
∑
s∈S2

a2sqs.

Choosing τ ∈ GF , we can show(
rs0 −

∑
s∈S1

a1sτrs

)
·

(
qs0 −

∑
s∈S1

a1sτqs

)
= 0,

(∑
s∈S1

a1sτrs −
∑
s∈S2

a2srs

)
·

(∑
s∈S2

a2sqs −
∑
s∈S1

a1sτqs

)
= 0,

(
−τrs0 +

∑
s∈S2

a2srs

)
·

(
−τqs0 +

∑
s∈S2

a2sqs

)
= 0

by applying (11.3) three times. But these sum to give

(11.4) (rs0 − τrs0) · (qs0 − τqs0) = 0 for s0 ∈ Sm,npar, τ ∈ GF .
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Take val : F`[GF ] → F` to be the homomorphism sending [σ] to 1 for all σ in GF . For

S ′ a subset of S, define

I(S ′) =

{
(αs)s ∈

⊕
s

F`[GF ] :
∑
s

val(αs) = 0

}
.

Repeating the argument used to prove (11.3) and applying (11.4) as necessary, we can

show that, for all (αs)s ∈ I(Sm,npar), all s1 ∈ Smed ∪ Slg, all s0 ∈ Sm,npar, and any τ ∈ GF ,

we have τrs1 − rs0 +
∑

s∈Sm,npar

αsrs

 ·
τqs1 − qs0 +

∑
s∈Sm,npar

αsqs

 = 0.

By taking the difference with the case given by s1 = s0, τ = 1, we get

(τrs1 − rs0) ·

 ∑
s∈Sm,npar

αsqs

 = −

 ∑
s∈Sm,npar

αsrs

 · (τqs1 − qs0).
Except in the case where Sm,npar is empty, we can sum some number of identities of this

form together to show

(11.5)

 ∑
s∈Smed∪Slg

α′srs

 ·
 ∑
s∈Sm,npar

αsqs

 = −

 ∑
s∈Sm,npar

αsrs

 ·
 ∑
s∈Smed∪Slg

α′sqs


for all (αs)s ∈ I(Sm,npar) and (α′s)s ∈ I(Smed ∪ Slg). If Sm,npar is empty, (11.5) is vacuously

true. The existence and equivariance of Γm,npar and Γm,l follow from this equation, as does

the alternating property of the former map.

If
(
(qs)s, (rs)s

)
is also non-ignorable by Chebotarev, we can conclude from (11.4) that

(τrs1 − rs0) · (τqs1 − qs0) = 0 for all s1 ∈ S, s0 ∈ Snpar, τ ∈ GF .

Following the same argument as before, we find

(11.6)

(∑
s∈S

α′srs

)
·

 ∑
s∈Snpar

αsqs

 = −

 ∑
s∈Snpar

αsrs

 ·(∑
s∈S

α′sqs

)
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for all (αs)s ∈ I(Snpar) and (α′s)s ∈ I(S). The existence and equivariance of Γnpar and Γ

follow from this equation, as does the alternating property of the former map. �

11.2. Counting non-ignorable pairs. For our first result, we will fix (qs)s ∈ Q and give

upper bounds on the number of non-ignorable pairs that contain it.

Proposition 11.9. There is a C > 0 determined from just (K/F,V0,F) so we have the

following:

Take N to be a twistable module of corank g, and take all other notation as above.

Choose (qs)s ∈ Q, and write M(S ′) for the image of

Q(S ′, (qs)s)⊗ F

inM for any subset S ′ of S. Then the number of (rs)s ∈ R so
(
(qs)s, (rs)s

)
is not ignorable

by the large sieve has upper bound

exp(Cg2) ·
∏

s∈Smed∪Slg

#H0
(
〈σs〉, M/M(Smed ∪ Slg)

)
·
∏
s∈Ssm

#H0
(
〈σs〉, M

)
.

The number of (rs)s ∈ R so
(
(qs)s, (rs)s

)
is not ignorable (by either large sieve or Cheb-

otarev) has upper bound

exp(Cg2) ·
∏
s∈Slg

#H0
(
〈σs〉, M/M(S)

)
·
∏
s∈Smed

#H0
(
〈σs〉, M/M(Slg ∪ Smed)

)
·
∏
s∈Ssm

#H0
(
〈σs〉, M/M(Snpar)

)
.

Proof. We first note that, for any GF submodule Q1 ⊆ Q and any σ0 in GF (F(−1)), we have

#H0
(
〈σ0〉, Q⊥1

)
= #H0 (〈σ0〉, M/(Q1 ⊗ F)) .

This follows from the existence of an equivariant perfect pairing

M ⊗R→ Hom(F, µ`),
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from the fact that σ0 fixes F(−1), and from the standard equality

#
(
Q⊥1
)〈σ0〉

= #
(
Q⊥1
)
〈σ0〉

.

To bound the number of (rs)s that are not ignorable by the large sieve, we use the exis-

tence of the map Γm,npar. Having fixed this map and the value of rs0 for some s0 ∈ Sm,npar,

there are

#H0
(
〈σs〉, Q(Smed ∪ Slg)

⊥)
consistent choices of rs for each s in Sm,npar − {s0}. The choice of Γm,npar, the value of

rs at the m/l pariahs, and the value of rs0 can then be absorbed by the exp(Cg2) term.

Accounting for the possible values of rs for s ∈ Ssm gives the first estimate.

For the second estimate, we need three of the homomorphisms from Proposition 11.7,

using Γ, Γm,npar, and Γnpar to constrict the possibilities of rs for s in Ssm, Smed, and Slg

respectively. With this setup, the proof follows as before. �

Definition 11.10. We will write Sjury for the set of s in Slg for which σs equals 1.

The jury indices are key to bounding the number of unlawful (qs)s we need to consider,

as we will see in the next proposition:

Proposition 11.11. There is a C > 0 determined just from (K/F,V0,F) so we have the

following:

Write g for the corank of N . Take Qmin and Qmax to be GF -submodules of Q, with Qmin

properly contained in Qmax, and write Mmin and Mmax for the corresponding subspaces of

M . Recall the notation Q0(Q1) from Definition 10.13.

Then the number of (qs)s in Q0(Qmax) that satisfy

Q(Snpar) ⊆ Qmin
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has upper bound

(1 + #Slg)
Cg · exp(Cg2) · `(−#Sjury + #Ssm∪Smed) · dimQmax/Qmin

·
∏
s∈S

min
Mmin⊆M1⊆Mmax

#H0 (〈σs〉, (N/M1)[ω])

#H0 (〈σs〉, (M/Mmax)[ω])
,

with M1 varying over all GF modules containing Mmin and contained in Mmax.

Proof. Given a subspace M1 of M , take 1
ω
M1 to be the maximal subspace of N [ω2] satis-

fying

ω
(

1
ω
M1

)
= M1.

Applying the definition of ρH from Definition 10.13 with Q1 = Qmax, we find that the

intersection

ker ρ〈σs〉 ∩H0(〈σs〉, Qmin)

is identified as the kernel of the connecting map

H0(〈σs〉, Qmin)→ H1(〈σs〉, M/Qmax)

corresponding to the standard exact sequence

0→M/Mmax → 1
ω
Mmin/Mmax → Qmin → 0.

In particular, this intersection has size

#H0
(
〈σs〉, 1

ω
Mmin/Mmax

)
#H0 (〈σs〉, M/Mmax)

.

After absorbing the choice of pariah indices into the (1 + |Slg|)Cg term using Proposition

11.5 and absorbing the choice of qs at the pariahs and some basepoint into the exp(Cg2)
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term, we find that the count of (qs)s ∈ Q0(Qmax) satisfying Q(Snpar) ⊆ Qmin is at most

(1 + #Slg)
Cg · exp(Cg2)·

∏
s∈Ssm∪Smed

#H0
(
〈σs〉, 1

ω
Mmax/Mmax

)
#H0 (〈σs〉, M/Mmax)

·
∏
s∈Slg

#H0
(
〈σs〉, 1

ω
Mmin/Mmax

)
#H0 (〈σs〉, M/Mmax)

.

We now claim that, for all GF -modules M1 satisfying Mmin ⊆ M1 ⊆ Mmax and all s, we

have

(11.7) #H0
(
〈σs〉, 1

ω
Mmin/Mmax

)
≤ #H0

(
〈σs〉, 1

ω
M1/M1

)
.

We first note that the standard inclusion gives us an inequality

#H0
(
〈σs〉, 1

ω
Mmin/Mmax

)
≤ #H0

(
〈σs〉, 1

ω
M1/Mmax

)
.

Next, from the long exact sequence associated to the exact sequence

0→Mmax/M1 → 1
ω
M1/M1 → 1

ω
M1/Mmax → 0

and the equality

#H0(〈σs〉,Mmax/M1) = #H1(〈σs〉,Mmax/M1),

we get the inequality

#H0
(
〈σs〉, 1

ω
M1/Mmax

)
≤ #H0

(
〈σs〉, 1

ω
M1/M1

)
.

Combining this with the previous inequality gives (11.7).

To finish the proof of the proposition, we note that we also have

#H0
(
〈σs〉, 1

ω
Mmin/Mmax

)
≥ 1

#Qmax/Qmin

·#H0
(
〈σs〉, 1

ω
M1/Mmax

)
for all M1 as before, with equality when σs = 1. �
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11.3. Bounding moments using non-ignorable pairs. We now turn to finding bounds

for the expression (8.12).

Notation 11.12. Fix a twistable module N , and take X to be a tuple set of twists defined

with respect to an indexing set S = Ssm ∪ Smed ∪ Slg and G1-tuple (σs)s, as in Section 8.3.

Take cLS to be the maximum value taken by the expression

(11.8)
1

|X|
·

∣∣∣∣∣∑
χ∈X

exp
(

2πi ·
〈
(qs)s, (rs)s

〉
χ

)∣∣∣∣∣
as (qs)s, (rs)s varies over pairs that are ignorable by the large sieve. If there is no pair

ignorable by the large sieve, take cLS = 0.

Similarly, take cCheb to be the maximum value this expression takes over pairs ignorable

by Chebotarev, again taking cCheb = 0 if there is no such pair.

These maxima are always at most one.

Fix φ0 in SM/F (V0). Our goal is to find upper bounds for

(11.9)
1

#R

∑
χ∈X

∑
(qs)s∈Q1

∑
(rs)s∈R

exp
(

2πi ·
(〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))
for various subsets Q1 of Q. We note that, if Q2 is a subset of Q1 so that

q + Q1 = Q1 for all q ∈ Q2,

and if Q3 is a set of representatives of the quotient Q1/Q2, we can bound (11.9) by

(11.10)
#Q2

#R

∑
χ∈X

∑
(qs)s∈Q3

∑
(rs)s∈R

exp
(

2πi ·
(〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))
.

Proposition 11.13. There is a C > 0 determined just from (K/F,V0,F) so we have the

following:

Take N and X as above, and choose a GF -submodule Qm,l of Q. Taking

Q1 =
{

(qs)s ∈ Q : Q
(
Smed ∪ Slg, (qs)s

)
= Qm,l

}
,
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the sum (11.9) has upper bound

TN,Mm,l(X) · exp
(
Cg2 + Cg ·#Ssm

)
· |X| + exp(Cg ·#S) · cLS · |X|,

where Mm,l denotes the subspace of M associated to Qm,l and TN,Mm,l(X) equals the Tam-

agawa ratio TN,Mm,l(χ) for any χ chosen from X .

Proof. We start by applying (11.10) with Q2 taken as the subset of Q of elements that are

zero outside Ssm and with Q3 taken as the subset of Q1 of elements that are zero outside

Smed∪Slg. Taking Q′3 to be the subset of Q3 for which there is no element (rs)s in R(Qm,l)

supported over Smed ∪ Slg for which

〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ
6= 0

for any (or all) χ ∈ X , we find that the sum (11.10) remains unchanged if we replace Q3

with Q′3. From Proposition 10.14 and (10.7), we can bound the size of Q′3 by

exp(Cg) ·
∏

s∈Smed∪Slg

#H0(〈σs〉, (N/Mm,l)[ω])

#H0(〈σs〉, M/Mm,l[ω])
.

But, fixing (qs)s in Q′3, we can bound

(11.11)
1

#R

∑
χ∈X

∑
(rs)s∈R

exp
(

2πi ·
(〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))
by

cLS · |X| + exp(Cg2) ·
∏

s∈Smed∪Slg

#H0 (〈σs〉, M/Mm,l)

#H0 (〈σs〉, M)

using the first part of Proposition 11.9 and the definition of cLS. Taking products gives the

proposition. �

We next show that, in cases where there are many jury indices, the contribution of un-

lawful (qs)s to (11.9) is fairly small.
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Proposition 11.14. There is a C > 0 determined just from (K/F,V0,F) so we have the

following:

Take N and X as above, and choose GF -submodules Qmin, Qmax of Q so Qmax properly

contains Qmin, with Mmin,Mmax the associated submodules of M . Take

Q1 =
{

(qs)s ∈ Q : Q
(
S, (qs)s

)
= Qmax, Q

(
Snpar((qs)s), (qs)s

)
= Qmin

}
.

Then, for any GF -module M1 containing Mmin and contained in Mmax, the expression

(11.9) is at most

(1 + #S)Cg · exp(Cg2) · `(−#Sjury + 2·#Ssm∪Smed) · dimQmax/Qmin · TN,M1(X) · |X|

+ exp(Cg ·#S) · (cLS + cCheb) · |X|.

Proof. Given (qs)s ∈ Q1, there is a subset S0 of Slg of size at most O(g) so that Q(Snpar)

equals Q(S0 ∩ Snpar) and so, for every s0 in S0 ∩ Snpar, there are disjoint subsets S1, S2 of

S0 − {s0} and functions

ai : Si → F` satisfying
∑
s∈Si

ai = 1 for i = 1, 2

so that

qs0 =
∑
s∈S1

a1sqs =
∑
s∈S2

a2sqs.

This can be proved by the same greedy algorithm argument used for Proposition 11.5. By

adjoining another O(g) indices from S to S0, we can additionally force

Q
(
S, (qs)s

)
= Q

(
S0, (qs)s

)
.

For any such S0, define Q2(S0) to be

{(qs)s ∈ Q : qs = 0 for s ∈ S0, qs ∈ Qmin for s ∈ Slg, qs ∈ Qmax for s ∈ S} .
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Taking Q1 to be the set of tuples
(
(qs)s, S0

)
so that (qs)s is in Q1 and S0 is a subset of at

most O(g) indices satisfying the requirements given above, we see that

(
(q1s + q2s)s, S0

)
∈ Q1 if

(
(q1s)s, S0

)
∈ Q1 and (q2)s ∈ Q2(S0).

We can then consider the set of equivalence classes of Q1 mod the union of the Q2(S0).

Take Q3 to be a set of representatives for this set of equivalence classes. We then have

#Q3 ≤ (1 + #S)Cg · exp(Cg2)

for some C as in the proposition statement, since this bounds the number of ways to choose

S0 and the values of qs at S0.

So, fixing ((q1s)s, S0) in Q3, we can reduce to bounding

1

#R

∑
χ∈X

∑
(qs)s∈Q2(S0)

∑
(rs)s∈R

exp
(

2πi ·
(〈
φ0, (rs)s

〉
χ

+
〈
(qs + q1s)s, (rs)s

〉
χ

))
.

Since Q2(S0) is a vector space, this is bounded by

(11.12)
1

#R

∑
χ∈X

∑
(qs)s∈Q2(S0)

∑
(rs)s∈R

exp
(

2πi ·
(〈

(qs)s, (rs)s
〉
χ

))
.

Take Q′2 to be the subspace of (qs)s in Q2 so that

〈
(qs)s, (rs)s

〉
χ

= 0

for all (rs)s in R(Qmax). The above sum is then unchanged if we replace Q2(S0) with Q′2,

and we have

#Q′2 ≤ (1 + #S)Cg · exp(Cg2) · `(−#Sjury + #Smed∪Slg) · dimQmax/Qmin

·
∏
s∈S

#H0 (〈σs〉, (N/M1)[ω])

#H0 (〈σs〉, M/Mmax)
.

from Proposition 10.14 and Proposition 11.11.
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Now take (qs)s ∈ Q′2. Then (11.12) can be bounded by

(cLS + cCheb) · |X| +
|X|
#R

· exp(Cg2) · `#Ssm∪Smed·dimQmax/Qmin

∏
s∈S

#H0(〈σs〉,M/Mmax)

via Proposition 11.9. The proposition is proved by combining this with the estimate on the

size of Q3 and the size of Q′2. �

Having dealt with the case that we do not have access to the Chebotarev density theorem,

and having dealt with unlawful (qs)s, the remaining case we need to deal with is the full

case.

Proposition 11.15. There is a C > 0 determined just from (K/F,V0,F) so we have the

following:

Take N and X as above, and choose a GF -submodule Q1 of Q, with M1 the associated

submodule of M . Taking

Q1 =
{

(qs)s : Q
(
S, (qs)s

)
= Q

(
Snpar((qs)s), (qs)s

)
= Q1

}
,

we can bound (11.9) by

exp(Cg2) · TN,M1(X) · |X|

+ exp(Cg ·#S) · (cLS + cCheb) · |X|.

Proof. Take Q′1 to be the subset of (qs)s in Q1 so that

〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

= 0 for all (rs)s ∈ R(Q1).

We can restrict (11.9) from Q1 to Q′1 without changing its value.

We can bound the size of Q′1 using Proposition 10.14 and (10.7) and can use the second

part of Proposition 11.9 to estimate (11.11). This is enough to prove the proposition. �
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For Proposition 11.14 to be useful, we need Sjury to be large and for Ssm ∪ Smed to be

small. If we pull this out as an assumption, the previous two propositions can be combined

to the following useful form.

Assumption 11.16. With notation as above, we say Assumption 11.16 is satisfied if

(11.13) #{s ∈ S : σs = σ0} ≥
|S|

2|G1|
for all σ0 ∈ G0

and

#Ssm ∪ Smed ≤ |S|
8|G1| .

Proposition 11.17. There is a C > 0 determined just from (K/F,V0,F) so we have the

following:

Take S = Ssm∪Smed∪Slg and (σs)s obeying Assumption 11.16. TakeN to be a twistable

module defined with respect to (K/F,V0,F), and define cLS and cCheb as in Notation 11.12.

Take Q0 to be a GF submodule of Q, with M0 the associated submodule of M . Defining

Q(Q0) = {(qs)s ∈ Q : Q((qs)s) = Q0} ,

take Q1 to be a subset of Q(Q0). Take φ in SM/F (V0), and take X as above.

Then, if Q(Q0) is nonempty, the sum (11.9) has upper bound

exp(Cg2) · TN,M0 ·
#Q1

#Q0

· |X| + exp
(
Cg2 − #S

C

)
· TN,M0(X) · |X|

+ exp(Cg ·#S) · (cLS + cCheb) · |X|.

11.4. Estimating moments using non-ignorable pairs. If the twistable module N is in

either the alternating or non-alternating case of Notation 9.8, we have additional control on

the general moment (8.12) coming from our work on main-term pairs in Section 10.4.

Proposition 11.18. Given (K/F,V0,F), with F trivial as a Gal(K/F ) module, there is

some C > 0 so we have the following:
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TakeN to be a twistable module of corank g with local conditions (Wv)v that is either in

the alternating case or non-alternating case. Take n1, n2 to be nonnegative integers, and

take

N1 = N⊕n1 , N2 = N⊕n2 , N0 = N1 ⊕N2.

These all carry standard Selmer structures induced from N . We use the notation M0, Q0,

etc.

Choose a nonempty index set S = Ssm ∪ Smed ∪ Slg, sequences (σs)s and (xs)s, and a

tuple set of twists X so Assumption 11.16 holds.

Taking the notation

R =
⊕
s∈S

H0(〈σs〉, R0), Q =
⊕
s∈S

H0(〈σs〉, N0)

QN0,+(Q1) = {(qs)s ∈ Q : Q((qs)s) ⊆ Q1}),

QN0(Q1) = {(qs)s ∈ Q : Q((qs)s) = Q1} ,

we take Q1 to be a subset of QN0(Q1). We assume either that

• There is no β : M1 → N ′0[ω] so (M1, β) is cancellable, in the sense of Notation

10.8; or

• The space Q1 is the intersection of QN0(Q1) with a coset of QN0,+(Q1) of some

subspace of codimension at most |S|/8|G1|.

Choose φ0 ∈ SM0/F (V0). We assume that, for (qs)s in Q1, the element

φ = φ0 +
∑
s∈S

Bnc
N [ω],F,ps

(qs ∪F xs)

satisfies the local conditions at all v in V0.

For any (qs)s in Q1, the projection of qs to Q2 does not depend on the choice of s. We

also presume it does not depend on the choice of (qs)s from Q1. Call this element π2(Q1).
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For each σ0 ∈ G1, we can consider the composition

SM0/F (V0)→ SM2/F (V0)
res−−→ H1(〈σ0〉, M2).

If φ0 − δGF (π2(Q1)) is nonzero under this composition for some σ0, then

(11.14)
1

#R

∑
χ∈X

∑
(qs)s∈Q1

∑
(rs)s∈R

exp
(

2πi ·
(〈
φ0, (rs)s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))
is zero. Otherwise, taking

b =


1
2
n1(n1 + 1) in the alt. case

0 in the n-alt. case,

the difference between (11.14) and

(
#H0(GF ,M)

)n2 ·
(
#H0(GF , R)

)n1 · `b · #Q1

#QN0(Q1)
· |X|

has magnitude at most

exp
(
Cg2

0 −
#S
C

)
· |X| + exp(Cg0 ·#S) · (cLS + cCheb) · |X|,

where g0 = g · (n1 + n2).

Proof. Via Proposition 10.11, we see we can adjust the set of φ under consideration by

δGF (π2(Q1)) without changing any pairings. So we may as well assume that π2(Q1) is

zero.

Under this assumption, if φ0 does not vanish on M2 when restricted to some 〈σ0〉, we

choose s0 so σs0 equals σ0 using Assumption 11.16, and we note there is some choice of

rs0 ∈ R2 so, if (rs)s equals rs0 at s0 and otherwise equals 0, we have

〈φ0, (rs)s〉χ 6= 0.
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From this, we find (11.14) is zero in this case. So suppose φ0 does vanish on M2 when

restricted to any 〈σ0〉.

For any positive constant C determined from (K/F,V0,F), the statement is vacuous if

|S| is smaller than Cg0. So we assume that |S| is at least this large.

Take Q′1 to be the subset of (qs)s in Q1 where

Q
(
Snpar((qs)s), (qs)s

)
= Q′.

Via Proposition 11.14, replacing Q1 with Q′1 changes (11.14) by at most

(
Cg2

0 −
#S
C

)
· TN,M ′(X) · |X|.

For (qs)s in Q′1 and a non-ignorable pair
(
(qs)s, (rs)s), we have a map

Γ : Q1 −−→ R1.

defined as in Proposition 11.7. We then find that the value of rs − Γ(qs) projected to R1

does not depend on s ∈ S. Calling this value r0, we find from Proposition 10.11 that (rs)s

and (rs − r0)s give equal pairing values.

We next note that, if (rs)s is in
⊕

sH
0(〈σs〉, R2), we have

〈φ, (rs)s〉χ = 0

for all φ from Q1 and all χ in X .

We then find (11.14) is within the error stated for the proposition of

∏
s∈S

(
#H0(〈σs〉, R)

)−n1 ·H0(GF , R)n1

·
∑

Γ

∑
χ∈X

∑
(qs)s∈Q′1

exp
(

2πi ·
(〈
φ0, (Γ(rs))s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))
,

where Γ ranges over alternating equivariant maps from Q1 to R1.
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We next claim that we can restrict that sum over Γ to homomorphisms that commute

with the connecting maps, in the sense of Section 9. Outside, (M1,Γ) is cancellable, so

we can assume that Q1 comes from a coset Q2 of small codimension in QN0,+(Q1). From

Proposition 10.9, we have a bound∣∣∣∣∣∣
∑
χ∈X

∑
(qs)s∈Q2

exp
(

2πi ·
(〈
φ0, (Γ(rs))s

〉
χ

+
〈
(qs)s, (rs)s

〉
χ

))∣∣∣∣∣∣ ≤ exp
(
Cg2

0 −
|S|
C

)
·|X|·|Q2|.

From Proposition 11.11, this statement still holds when we replace Q2 by Q′1.

But, by applying Proposition 9.7 to the graph of a map fromM⊕n1 toR⊕n1 , we find that,

in the non-alternating case, the only Γ that commutes with the connecting maps is the zero

map; and, in the alternating case, the Γ are the `b different βT considered in Proposition

10.12. Applying this proposition then finishes our proof. �

Part 4. The Base Case II: Gridding

12. GRIDS OF TWISTS

12.1. Grids of ideals.

Notation 12.1. Fix (K/F,V0,F) as in Notation 8.1. We take P to be the set of primes

of F outside V0 that split completely in the extension F (F(−1))/F . We write K(V0) as

before, for the maximal exponent ` abelian extension of K ramified only over V0, and we

write

G1 = Gal(K(V0)/F (F(−1))).

We will takeG1/∼ to be the set of equivalence classes ofG1 under conjugation by Gal(K(V0)/F ).

Take H to be a positive real number satisfying log(3) H > 1. We define

α(H) = exp

(
exp(3)

(
1
4

log(3) H
)−1
)

and a0(H) = exp(3)
(

1
3

log(3) H
)
.
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For i a nonnegative integer, we then define

Pi(H) =
{
p ∈P : a0(H) · α(H)i ≤ NF/Q(p) < a0(H) · α(H)i+1

}
.

If C is a class of G1/∼, we will also define

Pi(H,C) = {p ∈Pi(H) : Frob p = C} .

We also take the notation

imed(H) =
⌈
exp(3)

(
1
2

log(3) H
)⌉

.

Definition 12.2. With (K/F,V0,F) and H as above, take S to be a finite set partitioned as

Ssm ∪ Smed ∪ Slg. For s ∈ Ssm, take ps be a prime in P satisfying NF/Q(ps) ≤ a0(H). For

s ∈ Smed ∪ Slg, take is to be a nonnegative integer. We make the following assumptions:

• For s1 6= s2 in Ssm, ps1 and ps2 are distinct.

• For s1 6= s2 in Smed ∪ Slg, is1 and is2 are distinct.

• For s ∈ Smed ∪ Slg, s is in Smed if and only if is < imed(H).

Taking the notation

Xs =


{ps} if s ∈ Ssm

Pis(H) if s ∈ Smed ∪ Slg,

we define a set of ideals X of F by

(12.1) X =

{∏
s∈S

ps : ps ∈ Xs for s ∈ S

}
.

If X contains no ideal of norm greater than H , we will say that X is an unfiltered grid of

ideals of height H .

Now, suppose that the tuple

(
H,S, (ps)s∈Ssm , (is)s∈Smed∪Slg

)
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defines an unfiltered grid of ideals of height H . For s ∈ S, take Cs to be an class of G1/∼.

For s ∈ Ssm, we assume that ps has Frobenius class Cs. Then, defining

Xs =


{ps} if s ∈ Ssm

Pis(H, Cs) if s ∈ Smed ∪ Slg,

the set X defined by (12.1) will be called a grid (or filtered grid) of ideals of height H .

Notation 12.3. Fix (K/F,V0,F) and H , and take all notation as above. Write H for the

set of squarefree products of primes in P . Given h ∈ H that satisfies NF/Q(h) ≤ H , we

will write ω(h) for the number of distinct prime divisors of h, and ωsm(h) for the number

of prime divisors of norm at most a0(H).

In addition, we will call h good if the following assumptions hold:

(1) (Not too many primes) We have

ω(h) ≤ (log logH)2.

(2) (Inside a grid) There is a grid of ideals of height H described by the information

(
S, (ps)s∈Ssm , (is)s∈Smed∪Slg , (Cs)s

)
that contains h.

(3) (Not too many small primes) We have

|Ssm| ≤ (log(2) H)
1
3

+ 1
100 and |Smed| ≤ (log(2) H)

1
2

+ 1
100 .

(4) (Enough primes) We also have

|S| = ω(h) ≥ log(2) H

log(3) H
.
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(5) ((Cs)s is balanced) For any C in G1/∼, we have∣∣∣∣# {s ∈ Slg : Cs = C} − #C

#G1

·#S
∣∣∣∣ ≤ #S3/4.

(6) (No Siegel zeros) Given x ≥ 2, there is at most one positive squarefree integer

dx,sie ≤ x so the Dedekind zeta function associated to Q(
√
dx,sie) has a real zero

particularly close to s = 1; we give a more precise specification for this potentially-

defined integer in Proposition 12.11. Taking

x = exp(3)
(

2
5

log(3) H
)
,

we assume that either ` 6= 2, that dx,sie does not exist, or that NF/Q(aV0 · hsm) is

indivisible by dx,sie, where hsm is the product of the primes of h indexed by Ssm and

aV0 is the product of all rational primes over the finite places of V0.

(7) (Prepared for higher Selmer work) Among the primes indexed by

{s ∈ Slg : Cs = {1}},

there are at least (log logH)2/3−1/100 primes of norm at most

exp(3)
(

2
3

log(3) H
)

and at least (log logH)1−1/100 primes of norm at least

exp(3)
(

3
4

log(3) H
)
.

(8) ((Cs)s is not overbalanced) Given a nonzero function f : G1/∼ → Z whose

magnitude does not exceed exp(2)
(

1
2

log(4) H
)
, we have∣∣∣∣∣∑

s∈S

f(Cs)

∣∣∣∣∣ ≥ #S1/4.
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Given an integer j satisfying 1 ≤ j ≤ 8, we will write Hbad,j(H) for the set of h as

above that have the first j − 1 properties enumerated above but which do not have the jth

property.

We will need the following estimate on the number of ideals in H .

Proposition 12.4. Take (K/F,V0,F) as above, and write dF for the degree of F (F(−1))

over F . Fix some A > 0. Then there is some C > 0 determined from this information so

that we have the following:

For x > C and r a positive integer no larger than A · log log x, we have

x

C · log x
· (d−1

F · log log x)r−1

(r − 1)!
≤ #

{
h ∈H : ω(h) = r and NF/Q(h) < x

}
≤ Cx

log x
· (d−1

F · log log x)r−1

(r − 1)!
.

The upper bound here is a special case of Proposition 13.1, which is given in the next

section. The lower bound is substantially more annoying, and I do not know of a good

way to prove it without invoking the methods of Section 5 of [48], and specifically without

using Lemma 5.1 of that paper.

This lower bound is important for our work because of the form of the following propo-

sition. To render the contribution of Hbad,j(H) negligible, we need to be able to compare

it with the main term provided by Proposition 12.4.

Proposition 12.5. Fix a real number δ, and take

κ = 1− exp(δ) · d−1
F .

In addition, fix some sufficiently small ε > 0. Then there is a real numberC > 0 determined

just from (K/F,V0,F), δ, and ε so that, for all H > C and j in {1, . . . , 7}, we have

(12.2)
∑

h∈Hbad,j(H)

exp
(
δ · ω(h) + aj(h, H)

)
≤ H

(logH)κ
· Ej(H),
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where we have taken

a1(h, H) = ω(h) · (1− ε) log(3) H E1(H) = exp

(
−
(

log(2) H
)2
)

a2(h, H) = ω(h) · exp(2)
(

1
4

log(3) H
)1−ε

E2(H) = exp(3)
(

1
4

log(3) H
)−1+ε

a3(h, H) = ωsm(h) ·
(

1
100
− ε
)

log(3) H E3(H) = exp(2)
(

1
3

log(3) H
)−1

a4(h, H) = ωsm(h) ·
(

log(2) H
) 2

3
− 1

100
−ε

E4(H) =
(logH)κ

(logH)1−ε

a5(h, H) = ωsm(h) ·
(

log(2) H
) 1

6
− 1

100
−ε

E5(H) = exp(2)
((

1
2
− ε
)
· log(3) H

)−1

a6(h, H) = ωsm(h) ·
(

log(2) H
) 1

15
− 1

100
−ε

E6(H) = exp(2)
(

2
5

log(3) H
)−1+ε

a7(h, H) = 0 E7(H) = exp(2)
((

2
3
− ε
)
· log(3) H

)−1

a8(h, H) = 0 E8(H) =
(

log(2) H
)− 1

4
+ε

.

We will prove this in Section 13.

12.2. Grids of twists. Take X to be a grid of height H with associated index set S. Given

h =
∏
s∈S

ps

in this set, there are

#SF /F (V0) ·
(

(`− 1) ·#F
`

)|S|
twists defined mod X1(F,F) that satisfy hF (χ) = h.

It would be best to consider this set of twists simultaneously, but these twists can vary in

their behvaior when restricted to the places in V0, which is nonideal. The following setup

helps us remedy this situation.

Notation 12.6. Take (K/F,V0,F) as before. For every conjugacy classC of Gal(K(V0)/F )

that acts trivially on F(−1), fix an element σbp(C) of Gal(K(V0)/F ) in this conjugacy

class.
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SupposeX is a filtered grid of heightH associated to the tuple (Xs)s∈S of sets of primes

and the tuple (Cs)s∈S of conjugacy classes of Gal(K(V0)/F ). For s ∈ S, we take Xbp,s to

be the set of primes p of F such that p divides some prime in Xs and

FrobF p = σbp(Cs) in Gal(K(V0)/F ).

Choose x ∈ F(−1). For s ∈ S, we define a subset Xtw,s(x) of the module of twists

H1(GF ,F)/X1(F,F)

by

Xtw,s(x) =
{
Bnc

F,F,ps(x) : ps ∈ Xbp,s

}
.

Given (χ0, (xs)s) in

(12.3) SF /F (V0) ×
∏
s∈S

F(−1)×,

we then take Xtw(χ0, (xs)s) to be the set of twists of the form

χ0 +
∑
s∈S

χs for some (χs)s ∈
∏
s∈S

Xtw,s(xs).

The setsXbp,s are infinite, but can easily be collapsed down to finite sets via the following

claim:

Proposition 12.7. In the above situation, given s ∈ S and p1s, p2s in Xbp,s, and given

x ∈ F(−1)×, we have

Bnc
F,F,p1s(x)−Bnc

F,F,p2s(x) 6= 0

if and only if

p1s ∩ F (F(−1)) 6= p2s ∩ F (F(−1)).

Furthermore, if this difference is nonzero, it is ramified at p1s ∩ F .
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Proof. This follows from the form of the construction of the sections Bnc and from (5.17).

�

From this, for x ∈ F(−1) the map p 7→ Bnc
F,F,p(x) descends to a bijection

{
p ∩ F (F(−1)) : p ∈ Xbp,s

}
∼−−→ Xtw,s.

At this point, we have split the set of twists χ for which hF (χ) lies in X into several pieces

Xtw(χ0, (xs)s). Our next claim is that these pieces do not overlap.

Proposition 12.8. Still in the context of Notation 12.6, suppose (χ10, (x1s)s) and (χ20, (x2s)s)

both lie in (12.3). Then the sets

Xtw(χ10, (x1s)s) and Xtw(χ20, (x2s)s)

are either disjoint or identical.

Proof. Suppose these sets overlap. We can then find (p1s)s, (p2s)s in the product of the

Xbp,s so that

χ10 +
∑
s∈S

Bnc
F,F, p1s(x1s) = χ20 +

∑
s∈S

Bnc
F,F, p2s(x2s).

There is then some tuple (τs)s∈S of elements from GF so that p2s = τsp1s for all s. Then,

for (ps)s in the product of the Xbp,s, the construction of Bnc forces

χ10 +
∑
s∈S

Bnc
F,F, ps(x1s) = χ20 +

∑
s∈S

Bnc
F,F, τsps(x2s),

and the proposition follows. �

Proposition 12.9. There are positive real numbersC, c > 0 determined just from (K/F,V0,F)

so we have the following:

Take N to be any twistable module defined from (K/F,V0,F). Fix (χ0, (xs)s) in (12.3),

and takeX to be a filtered grid of ideals of heightH > C. Then, defining cLS as in Notation
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11.12 for Xtw(χ0, (xs)s), we have

cLS ≤ exp(3)
(

1
3

log(3) H
)−c

.

In addition, if X contains no ideals in Hbad,j(H) for j = 1, 3, 6, we have

cCheb ≤ exp(3)
(

1
3

log(3) H
)−c

.

Proof. Suppose ((qs)s, (rs)s) is ignorable by the large sieve. Then there are distinct indices

s1, s2 in Smed ∪ Slg and an element τ0 in GF so that

(rs1 − τ0rs2) · (qs1 − τ0qs2) 6= 0.

Fix χs ∈ Xtw,s(xs) for s ∈ S − {s1, s2}. For

(p1, p2) ∈ Xbp,s1 ×Xbp,s2 ,

define a twist χ[p1, p2] by

χ[p1, p2] = χ0 + Bnc
F,F,p1(xs1) + Bnc

F,F,p2(xs2) +
∑

s 6=s1,s2

χs.

The set of twists of this form give a subset of Xtw that is in bijection with Xtw,s1 ×Xtw,s2 .

We denote this subset by Ztw Our goal is to show that∣∣∣∣∣∑
χ∈Ztw

exp
(

2πi ·
〈
(qs)s, (rs)s

〉
χ

)∣∣∣∣∣ ≤ C · exp(3)
(

1
3

log(3) H
)−c
·#Xtw,s1 ·#Xtw,s2 .

From Proposition 10.7, we find there are a sequence of elements a(p1), b(p2) of 1
`
Z/Z

indexed by primes from Xbp,s1 and Xbp,s2 respectively and a sequence of elements cτ ∈

F`(−1) indexed by

B (σbp(Cs1), σbp(Cs1))
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so that 〈
(qs)s, (rs)s

〉
χ[p1,p2]

= a(p1) + b(p2) +
∑
τ

cτa
nc
τ (p1, p2)

for all (p1, p2) in Xbp,s1 × Xbp,s2 . By the ignorability hypothesis, we know the cτ are not

all zero. From Proposition 2.13, for fixed p2, we can define a function

fp2 : Gal
(
K
(
V0 ∪ {p2 ∩ F}

)
/F
)
→ C

so that

fp2(FrobF p) = exp

(
2πi ·

(∑
τ

cτ · anc
τ (p, p2)

))
for primes p not dividing V0 or p2∩F for which FrobF p projects to σbp(Cs1) in Gal(K(V0)/F ),

and so that

f(σ) = 0 if σ 6= σbp(Cs1) in Gal(K(V0)/F ).

This function is furthermore of zero average on cosets of

Gal
(
K
(
V0 ∪ {p2 ∩ F}

)
/K(V0)

)
,

so we can apply Theorem 6.3 to get the claim of the proposition.

Now suppose ((qs)s, (rs)s) is ignorable by Chebotarev. If the pair is also ignorable by

the large sieve, the above argument works. So we can assume it is not ignorable by the

large sieve. In particular, there must be some s1 ∈ Slg, s2 ∈ Ssm, and τ0 ∈ GF so

(rs1 − τ0rs2) · (qs1 − τ0qs2) 6= 0.

while we have

(rs1 − τrs) · (qs1 − τqs) = 0 for all s ∈ Ssm ∪ Smed, τ ∈ GF .
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Fix a choice of ps ∈ Xbp,s for s 6= s1. For p1 in Xbp,s1 , take

χ[p1] = χ0 + Bnc
F,F,p1(xs1) +

∑
s 6=s1

Bnc
F,F,p(xs).

Then we can use Proposition 10.7 to write

〈
(qs)s, (rs)s

〉
χ[p1]

= C +
∑
s∈Ssm

∑
τ∈Bs

cτ (s) · anc
τ (p1, ps)

for all p1 in Xbp,s. Here, the Bs are subsets of GF representing double cosets, the cτ (s) are

coefficients, and C is some element of 1
`
Z/Z not depending on p1. If we take

Ksm = K(V0 ∪ {ps ∩ F : s ∈ Ssm}),

we find that there is a function

f : Gal(Ksm/F )→ C

with zero average on the coset of Gal(Ksm/K(V0)) containing σbp(Cs1) so that

f(Frob p) = exp

(
2πi ·

(∑
s∈Ssm

∑
τ

cτ (s) · anc
τ (p, p2)

))

for p ∈ Xbp,s1 .

We now wish to apply Theorem 12.10. We can bound the degree nKsm of Ksm/Q by

C · exp(C · |Ssm|), and we can bound its discriminant by

(
C · exp(3)

(
1
3

log(3) H
))exp(C·|Ssm|)

≤ exp(3)
((

1
3

+ 1
100

+ ε
)

log(3) H
)
,

with the last inequality true for sufficiently large H relative to the choice of ε > 0, and

where we are using

#Ssm ≤ (log(2) H)
1
3

+ 1
100 .

163



From the assumption that X does not meet Hbad,6(H), we get that the Dedekind zeta

function for Ksm has no real zero in the range(
1− c

nKsm ! · log x
, 1

)
,

with x defined as in Notation 12.3.

We have bounds

nKsm ! · log x ≤ exp(2)
(

2
5

log(3) H
)2

for all sufficient H . Then Theorem 12.10 applies, and the proposition follows.

�

12.3. The Chebotarev Density Theorem. We start by quoting the effective form of the

Chebotarev density theorem that we will use.

Theorem 12.10 ([32]). There are absolute effective constants C, c so we have the follow-

ing:

Take L/K to be a Galois extension of number fields, take nL to be the degree of L over

Q, and take ∆L to be the absolute value of the discriminant of L. Take φ to be a real valued

class function on G = Gal(L/K) of magnitude at most one.

• The Dedekind zeta function for L has at most one real zero in the interval

[1− α, 1] with α =


1/2 if L = Q

1/(4 log ∆L) otherwise.

If this zero exists, it is simple. Take β0 to be this zero if it exists, and take β0 = 1/2

otherwise.

• Under the assumption

logN ≥ 10nL(log ∆L)2,
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we have∣∣∣∣∣∣∣∣
∑

p prime in K
NK/Q(p)≤N

φ(Frob p) − 1

|G|

(∑
σ∈G

φ(σ)

)
Li (N)

∣∣∣∣∣∣∣∣ ≤ Li (Nβ0) + CnLNe
−c

√
logN
nL .

Stronger forms of this theorem are now known (see [52]), but this statement suffices for

our purposes. To use this theorem, we need some control on the Siegel zero βL. Our source

on this is [49].

Proposition 12.11. There exists an absolute effective constant c > 0 so we have the fol-

lowing:

For any x ≥ 2, there is at most one rational squarefree integer dx,sie of magnitude at

most x such that the zeta function associated to Q(
√
dx,sie) has a real zero in the interval(

1− c

log x
, 1

)
.

Furthermore, the integer dx,sie satisfies

dx,sie ≥ c · log x.

Finally, supposeK is a number field of degree nK and discriminant of magnitude at most x.

We assume K does not contain Q(
√
dx,sie) if dx,sie exists. Then the Dedekind zeta function

for K contains no zero in the interval(
1− c

nK ! · log x
, 1

)
.

Proof. For the first part, suppose d1, d2 < x are distinct squarefree rational integers other

than 1, and take L = Q(
√
d1,
√
d2). L/Q is then a degree 4 extension of discriminant di-

viding 28(d1d2)2. Its Dedekind zeta function is a product of the Riemann zeta function with

three Artin L-functions corresponding to the quadratic characters for Q(
√
d1), Q(

√
d2) and

Q(
√
d1d2). These Artin L-functions are entire. Per the first part of the above theorem, the

165



Dedekind zeta function for L has at most one zero in the range

(1− (16 log(4x))−1, 1).

In particular, only one of the three mentioned L-functions can have a zero in this range.

The uniqueness of dx,sie follows by adjusting c. Its effective lower bound follows from [49,

Theorem 1], though this result was known earlier; this theorem actually gives the stronger,

still-effective statement

dx,sie ≥ c(log x)2.

Finally, the result for K/Q is a direct consequence of [49, Lemma 8]. �

We note that the discriminant bound in the above argument comes from the following

three standard facts given e.g. in [40, Chapter 3.2]:

• Given an extension of number fields L/K, the different dL/K is the ideal in OL

generated by all elements of the form

f ′α(α)

where α ranges over those elements of L for which L = K(α) and fα is the

minimal monic polynomial with coefficients in OK having α as a root.

• Given a tower of extensions M/L/K of number fields, we have

dM/K = dM/L · dL/K .

• The discriminant ∆L/K equals NL/K(dL/K).

For a rational integer d, consideration of the polynomial x2−d gives that, for a number field

K not containing
√
d, K(

√
d)/K has different dividing (2

√
d). Then Q(

√
d1,
√
d2)/Q has

different dividing (4
√
d1d2), and the discriminant bound follows.
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13. BAD GRIDS AND THE PROOF OF PROPOSITION 12.5

13.1. Preliminary results. We start with a couple of the propositions we need. We take

(K/F,V0,F) as above.

Given this information, there are positive constants C, c so that, for C0 a class of G1/∼,

we have

(13.1)

∣∣∣∣∣∣∣∣∣∣
∑
p of F

NF/Q(p)<x
Frob p=C0

1 − |C0|
|Gal(K(V0)/F )|

· Li(x)

∣∣∣∣∣∣∣∣∣∣
≤ Cx exp(−c

√
log x)

for x ≥ 1. Applying partial summation, we find that there is a function

cMert : G1/∼ → R

and a new pair of constants C, c > 0 so that, for x ≥ 3, we have

(13.2)∣∣∣∣∣∣∣∣∣∣
∑
p of F

NF/Q(p)<x
Frob p∼C0

1

NF/Q(p)
− |C0|
|Gal(K(V0)/F )|

· log log x − cMert(C0)

∣∣∣∣∣∣∣∣∣∣
≤ C exp(−c

√
log x),

This is a generalization of one of the Mertens’ theorems. We will need a generalization

of one of the others as well, though we leave it as the following weak statement: there is

some C > 0 so, for x ≥ 1, we have

(13.3)
∑
p of F

NF/Q(p)<x

logNF/Q(p)

NF/Q(p)
≤ C · log x.

This can again be proved via partial summation. As a consequence of these statements, we

can use an argument due to Hardy and Ramanujan [16] to prove the following upper bound

Proposition 13.1. Take (K/F,V0,F) as above.Then there is some constant C > 0 depend-

ing just on this information so we have the following:
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Take the notation H and dF as before. Suppose we have integers r > k ≥ 0 and real

numbers x, y > 2 satisfying

yk+1 ≥ x,

and take πr,k(x, y) to be the number of ideals h in H of norm at most x that satisfy

ω(h) = r and for which h is divisible by at least k prime ideals of norm at most y. Then

πr,k(x, y) ≤ Cx

log x
· (d−1

F · log log y + C)k

k!
· (d−1

F · log log x+ C)r−k−1

(r − k − 1)!
.

Proof. From (13.2) and (13.3), we can follow [16] to show that there is some C > 0 so

that

(13.4)
∑
p∈P

NF/Q(p)≤y

log x

NF/Q(p) · log(x/NF/Q(p))
≤ d−1

F · log log y + C

for positive reals x, y satisfying
√
x ≥ y ≥ 2. The argument from [16] also gives the

inequality

πr,0(x, y) ≤ 1

r − 1

∑
p∈P

NF/Q(p)≤
√
x

πr−1,0

(
x

NF/Q(p)
, y

)
,

and we can then use this inequality and (13.4) to inducitvely prove

πr,0(x, y) ≤ Cx

log x
· (d−1

F · log log x+ C)r−1

(r − 1)!
,

with (13.1) giving the case r = 1.

We also have the relation

πr,k(x, y) ≤ 1

k

∑
p∈P

NF/Q(p)≤y

πr−1,k−1

(
x

NF/Q(p)
, y

)
,

which holds for k > 0. Using the above estimate on πr,0 as a base case, the full proposition

can be proved inductively from this relation and (13.4). �

We also need a basic estimate for the binomial distribution.
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Proposition 13.2. Choose p in the interval (0, 1), take n a positive integer, and take

X1, . . . , Xn to be i. i. d. random variables with

Xi =


1 with probability p

0 with probability 1− p

Then there is a positive real number C depending on p but not on n so that, for any integer

a,

Pr

(∑
i≤n

Xi = a

)
≤ C√

n
.

In addition, for δ ≥ 0, we have

Pr

(∣∣∣∣∣∑
i≤n

Xi − pn

∣∣∣∣∣ ≥ δn1/2

)
≤ 2 exp(−2δ2).

Proof. The second part of this proposition is the form of Hoeffding’s inequality given as

[42, Theorem 1]. For the first part, assuming a and n−a are both positive, we use Stirling’s

approximation to say there is an absolute constant C0 > 0 so that(
n

a

)
pa(1− p)n−a ≤ C0 ·

nn+1/2

aa+1/2 · (n− a)n−a+1/2
pa(1− p)n−a

≤ C0 ·
(pn
a

)a
·
(

(1− p)n
n− a

)n−a
· n1/2

a1/2 · (n− a)1/2
≤ C0 ·

n1/2

a1/2 · (n− a)1/2
,

with the last inequality a consequence of the AM-GM inequality. If

|a− pn| ≤ 1
2
pn,

we can prove the claim of the first part of the proposition with C = 2C0(1−p)−1p−1. Oth-

erwise, we can apply Hoeffding’s inequality, getting a different C that still only depends

on p. This gives the proposition. �

13.2. The proof of Proposition 12.5.
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13.2.1. The case j = 1 of Proposition 12.5. Take r > (log(2) H)2. The contribution of the

portion of Hbad,1 with r prime divisors to (12.2) can be bounded by Proposition 13.1. This

contribution is at most

H

logH
· (d−1

F · log logH + C)r−1

(r − 1)!
· exp ((1− ε) · r · log log logH) ,

where we have absorbed the exp(δ · ω(h)) term into the a1 term by potentially shrinking ε.

Via Stirling’s approximation, we can find some new C so this is bounded by

H
logH

exp
(
r · C0 + (2− ε)r log(3) H − r log r

)
≤ H

logH
exp (r · C0 − εr log r) ≤ H

logH
exp(−r),

with the last inequality holding for all r large enough (with respect to ε and C0). This gives

the j = 1 case of the proposition.

13.2.2. The case j = 2 of Proposition 12.5. For j = 2, we note that there are two reasons

an ideal h in H of norm at most H can fail to appear in a grid of ideals of height H:

(1) It can have more than one prime factor from some interval Pi(H), or

(2) It can share a space X as in (12.1) with an ideal of norm greater than H .

Our starting point is to note that there are constants C0, C1, c > 0 depending just on F so

that, for N > C1, the number of integral ideals of F of norm at most N is within C1N
1−c

of C0N (see [39] for a streamlined approach to this old result). From (13.2), we have

∑
p∈Pi(H)

1

NF/Q(p)
≤ C ·

(
log log(a0α

i+1)− log log(a0α
i)
)

+ C exp
(
−c
√

log(a0αi)
)
.

for some constants C, c > 0 depending on F . Replacing C as necessary, this expression

has upper bound
C

(logα)−1 + i
.

170



As such, the number of ideals of norm at most H with at least two prime divisors from

Pi(H) is bounded by
CH

((logα)−1 + i)2

for some C depending just on F . Summing over all i, we see the number of ideals in

Hbad,2(H) that are bad for the first reason listed above is bounded by

CN

exp(3)
(

1
4

log(3) H
)

for some C depending on F . If the ideal h is in Hbad,2 for the second reason, we have

H ≥ NF/Q(h) ≥ H · α−ω(h).

Having already restricted ω(h) to have upper bound (log(2) H)2, the number of ideals sat-

isfying can be bounded by
CN(

exp(3)
(

1
4

log(3) H
))1−ε ,

where C depends on F and the positive constant ε > 0. From this and the bound ω(h) ≤

(log(2) H)2, we get the claim of the proposition for j = 2.

13.2.3. The case j = 3 of Proposition 12.5. We note that the prime divisors of h in a grid

that are indexed by Ssm are those that are of norm at most y, where y is a positive real

satisfying

log log y = (log(2) H)1/3.

Those indexed by Smed have norm at most y, where

log log y ≤ (log(2) H)1/2
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for sufficiently large H . We now claim that, for β either 1/2 or 1/3 and for ε in the interval

(0, 1), there is some C > 0 so, for H > C,

∑
j≥(log(2)H)β+

1
100

exp
(

(1−ε)j
100
· log(3) H

)
·(d
−1
F · (log(2) H)β + C0)j

j!
≤ C·exp(2)

(
β · log(3) H

)−1

and ∑
r≥0

H

logH
exp(δr) · (d−1

F · log(2) H + C0)r

r!
≤ CH

(logH)κ

The proposition for j = 3 then follows by multiplying these together and applying Propo-

sition 13.1. The latter claim follows simply from

ex =
∑
j≥0

xj

j!
,

and the former claim comes from applying Stirling’s formula again, so that the summand

at j is bounded by

exp
(
j · C1 +

(
β + 1−ε

100

)
· j · log(3) H − j log j

)
for some C1 not depending on H . The estimate follows for sufficient j since

j ≥ (log(2) H)β+1/100 and so log j ≥ (β + 1/100) · log(3) H.

13.2.4. The case j = 4 of Proposition 12.5. The contribution to (12.2) from ideals in

Hbad,4(H) with r prime divisors is bounded by

H

logH
· (eδd−1

F · log(2) H + C0)r−1

(r − 1)!

((
log(2) H

) 1
3

+ 1
100 ·

(
log(2) H

) 2
3
− 1

100
−ε
)
,

where we are using the fact that these ideals do not have too many small prime divisors.

Assume that r ≥ 1. Using Stirling’s approximation, there is C0 so this is bounded by

H

logH
· exp

(
rC0 + r log(3) H − r log r + (log(2) H)1−ε

)
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With r ≤ log(2) H/ log(3) H , we calculate

r log(3) H − r log r ≤ log(2) H · log(4) H

log(3) H

for H sufficiently large; this can be proved by noting that

−r log

(
r

log(2) H

)
increases for r in the range from 1 to

log(2) H · exp

(
− 1

log(2) H

)
and decreases thereafter. The case j = 4 can then be demonstrated directly, with the

contribution from r = 1 handled separately.

13.2.5. The case j = 5 of Proposition 12.5. Given a grid X with associated indexing set

S, we can apply Hoeffding’s inequality and the Chebotarev density theorem, or specifically

Proposition 13.2 and (13.1), to say that the number of ideals in X with too few jury primes

is bounded by

|X| ·

(
C · exp

(
−c|S|1/2

)
+ |S| · exp(3)

((
1

3
− ε
)

log(3) H

)−1
)

for ε positive and at most 1
3
, for H sufficiently large relative to (K/F,V0,F) and ε, and for

c and C also determined from this information. The rest follows from

|S| ≥ log(2) H

log(3) H
and |Ssm| ≤

(
log(2) H

) 1
3

+ 1
100
.

13.2.6. The case j = 6 of Proposition 12.5. Suppose dx,sie exists for

x = exp(3)
(

2
5

log3 H
)
.
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There is then an absolute c > 0 so that

dx,sie > c · exp(2)
(

2
5

log(3) H
)
.

Take d0 to be the product of all primes dividing dx,sie that are not divisible by some prime

in V0. Then there is a c determined from V0 so

d0 > c · exp(2)
(

2
5

log(3) H
)
.

The ideals h in Hbad,6(H) satisfy ωsm(h) ≤ (log(2) H)
1
3

+ 1
100 . Taking k to be the number of

prime divisors of d0, we can assume k is then at most this large. We can then bound the

number of squarefree ideals of F whose norm divides some power of d0 by

([F : Q] + 1)k ≤ exp
(
C · (log(2) H)

1
3

+ 1
100

)
,

where C depends on F .

The number of ideals in Hbad,6(H) with r + k prime divisors is then bounded by

CH

d0 · logH
· (d−1

F · log(2) H + C)r

r!
· exp

(
C · (log(2) H)

1
3

+ 1
100

)
.

We can then bound (12.2) for j = 6 by

CH

d0 · logH
· exp

((
C + (log(2) H)

1
15
− 1

100
−ε
)
· (log(2) H)

1
3

+ 1
100

)
·
∑
r≥0

(eδd−1
F · log(2) H + C)r

r!
,

and the part follows.

If this integer has k prime factors, there are at most

([F : Q] + 1)k
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If Hbad,5(H) is nonempty, we must have

k ≤ (log(2) H)
1
3

+ 1
100 + C0

for some C0 determined from F and V0. We can then bound the number of ideals in this

class by
CH

exp(2)
(

2
5

log(3) H
) · exp

(
C · (log(2) H)

1
3

+ 1
100

)
for H > C, where C is some constant determined from K,F,V0. This is bounded by

CH

exp(2)
(

2
5

log(3) H
)1−ε ,

where C depends now also on the positive constant ε. The case j = 5 then follows from

ωsm(h) ≤ (log(2) H)
1
3

+ 1
100 .

13.2.7. The case j = 7 of Proposition 12.5. We will some variations of Proposition 13.1.

If
√
x ≥ y2 ≥ y1 ≥ 0, we can follow the same argument as in [16] to show

(13.5)
∑
p∈P

NF/Q(p)≤y

log x

NF/Q(p) · log(x/NF/Q(p))
≤ d−1

F · (log log y2 − log log y1) + C.

By starting with this and applying the same argument as Proposition 13.1, under the same

circumstances as the proposition, we find the number of ideals counted by πr,k(x, y) that

have exactly k prime factors less than y is bounded by

(13.6)
Cx

log x
· (d−1

F · log log y + C)k

k!
· (d−1

F · (log log x− log log y) + C)r−k−1

(r − k − 1)!
.

We can also restrict the count to products of primes p satisfying FrobF p = 1 in Gal(K(V0)/F ).

Writing d for the degree of this extension, the resulting number of ideals is

Cx

log x
· (d−1 · log log y + C)k

k!
· (d−1 · (log log x− log log y) + C)r−k−1

(r − k − 1)!
.
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Following a similar induction argument to Proposition 13.1, we find that the number of

ideals in H with exactly r1 > 0 prime factors satisfying FrobF p = 1, of which exactly

k have norm less than y, in addition to r2 > 0 prime factors satisfying FrobFp 6= 1, is

bounded by

Cx

log x
·

(
(d−1

F − d−1) log(2) x+ C
)r2

(r2 − 1)!
·

(
d−1 · log

(
log x
log y

)
+ C

)r1−k
(r1 − k − 1)!

·

(
d−1 · log(2) y + C

)k
k!

.

The sum (12.2) over ideals with at most k prime divisors of norm at most y satisfying

FrobF p = 1 is then bounded by

Cx

log x
· exp

(
eδ ·
(

(d−1
F − d

−1) log(2) x + d−1 · log
(

log x
log y

)
+ C

))

·
∑
j≤k

(
eδ · d−1 · log(2) y + C

)j
j!

The first part follows from this estimate, and the second part follows similarly.

13.2.8. The final case of Proposition 12.5. The case j = 8 will follow from basic proper-

ties of a multinomial distribution. Choose k ≥ 2, and take X1, X2, . . . to be a sequence of

i.i.d. random variables valued in the set {1, . . . , k}, writing pi for the probability than X1

equals i for i ≤ k. We assume all these k probabilities are positive. There is then C deter-

mined from k and the pi so that, for n > 0 and n1, . . . , nk summing to n, the probability

that

#{j ≤ k : Xj = 1} = n1, . . . , #{j ≤ k : Xj = k} = nk

has upper bound C · n− 1
2

(k−1); this can be seen by applying Proposition 13.2 k − 1 times.

If b1, . . . , bk are integers not all equal to zero, and if b is also an integer, we can apply

this result and Hoeffding’s inequality to say that, for ε > 0, there is a C > 0 so that the

probability of ∑
i≤k

bi ·#{j ≤ k : Xj = i} = b
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has upper bound C · n− 1
2

+ε.

Now, take X to be an unfiltered grid of height H . The number of class functions f as in

part 7 of Proposition 12.5 is bounded by

exp
(
C · exp

(
1
2

log(4) H
))

for some C depending on the starting data. The number of ideals in Hbad,7(H) in X can

then be bounded by

|X| · (log(2) H)−
1
4

+ε,

and from this we can finish the proof for j = 8, and hence can finish the proof of the

proposition. �

14. PROOFS OF THE BASE-CASE THEOREMS

14.1. The parity of Selmer ranks in grids. Take N to be a twistable module defined

with respect to (K/F,V0,F), and take (Wv)v to be a set of local conditions in the sense of

Definition 8.5. We will assume that (N, (Wv)v) is in the alternating case of Notation 9.8,

though for the theory below there is no need to assume that F is a trivial GF module or that

N is potentially favored and uncofavored.

Take

ε : Gal(K/F (F(−1))) −−→ F2

to be the map defined by

(14.1) ε(σ) = dimH0(〈σ〉, N [ω]) mod 2.

Fix a set of local twists (χv)v∈V0 . From [37, Theorem 6.6] and the subsequent discussion,

we know that there is k0 ∈ F2 so that, for χ ∈ XF (∞, (χv)v), we have

(14.2) dim Selω(Nχ) = k0 +
∑

p|hF (χ)

ε(Frob p).
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Definition 14.1. We say that N is in the parity-invariant case if

∑
p|hF (χ)

ε(Frob p) = 0 for all χ ∈ XF (∞, (1)v∈V0) .

Following the argument of [37], the following always hold:

• If ` > 2, N is in the parity-invariant case if and only if ε is zero.

• If ` = 2 and ε is not a homomorphism, N is not in the parity-invariant case.

• If ` = 2 and there is some homomorphism from Gal(K/F ) to F2 that restricts to ε,

then N is in the parity-invariant case.

The only remaining cases have ` = 2 and F (F(−1))/F a nontrivial extension, which

forces |F | to be divisible by four. We opt not to comment further on these cases.

Outside the parity invariant-case, we can show that about half the twists in XF (H, (χv)v)

have even Selmer rank, and about half have odd Selmer rank. This is easiest to show in

the transition from unfiltered boxes of twists, and relies on the following simple statistical

result.

Proposition 14.2. Given a finite abelian group A and ε > 0, there is c > 0 so we have the

following:

Take A0 to be a generating subset of A that contains 0. Choose a positive integer r ≥ 0,

and take X1, . . . , Xr to be independent random variables valued in A0 so, for a0 ∈ A0 and

i ≤ r, the probability that Xi takes value a0 is at least ε. Then, for all a ∈ A, we have∣∣∣∣∣Pr

(∑
i≤r

Xi = a

)
− |A|−1

∣∣∣∣∣ ≤ exp(−cr).

Proof. For a random variable X valued in A, take

X̂ : Hom
(
A,C×

)
−−→ C
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to be the associated characteristic function

φ 7→
∑
a∈A

φ(a) · Pr(X = a).

We then find

Pr(X = a) = |A|−1 ·
∑

φ∈Hom(A,C×)

φ(−a) · X̂(φ)

for all a ∈ A. ForX,X ′ independent variables valued inA, we also have X̂ +X ′ = X̂ ·X̂ ′,

and we find

Pr

(∑
i≤r

Xi = a

)
= |A|−1 ·

∑
φ∈Hom(A,C×)

φ(−a) ·

(∏
i≤r

X̂i(φ)

)

From the assumptions on A0 and X1, . . . , Xr, we know that there is some c0 > 0 deter-

mined from ε so that ∣∣∣X̂i(φ)
∣∣∣ ≤ 1− c0

for all nontrivial φ and all i ≤ r. From this estimate and the previous equality, the propo-

sition follows. �

Proposition 14.3. Take N to be a twistable module in the alternating case but outside the

parity-invariant case. There are then real numbers c, C > 0 so we have the following:

Take H > C, and suppose that X is an unfiltered grid of ideals of F of height H with

associated indexing set S = Ssm∪Smed∪Slg. We assume this grid does not meet Hbad,j(H)

for j = 1, 3, 4. Take (χv)v∈V0 to be a set of local twists chosen so XF (∞, (χv)v) is nonzero.

Define ε from N as in (14.1). Then∣∣∣∣∣∣
#
{
χ ∈ XF (H, (χv)v) : hF (χ) ∈ X and

∑
p|hF (χ) ε(p) ≡ 0

}
# {χ ∈ XF (H, (χv)v) : hF (χ) ∈ X}

− 1

2

∣∣∣∣∣∣ ≤ exp(−c|S|).

Proof. Take A to be the abelian group

F2⊕

(∏
v∈V0

H1(Gv,F)

)/
SF /F (V0).

179



Take A0 to be the subset of this group of elements of the form

(
ε(FrobFp),

(
resGvB

nc
F,F,ps(x)

)
v

)
,

where p varies through all primes of F not over V0 for which FrobFp acts trivially on

F(−1), and where x varies through all generators of F(−1).

Because there is an alternating automorphism of N [ω], we know that N [ω] has even

dimension as an F` vector space, so

ε(1) = 0.

Because of this, we find thatA0 contains 0. In addition, we find that the span ofA0 contains

F2⊕0; this is an equivalent condition to N being outside the parity-invariant case. From

our assumptions on the bad ideals allowed in X , we can choose C so that, for H > C,

|Smed ∪ Slg| ≥ 1
2
|S|.

For s ∈ Smed ∪ Slg, we have a natural map from

{χ ∈ XF : hF (χ) ∈ Xs}

to A0. By the Chebotarev density theorem, if we choose a twist uniformly at random from

this set, the probability that it maps to a given a ∈ A0 has lower bound 1
2
|A0|−1 so long as

H is sufficiently large. The result then follows from Proposition 14.2. �

14.2. Moment estimates on good grids of twists. We start by proving Theorem 8.11, a

coarse moment estimate on the size of SelωNχ.

Proof of Theorem 8.11. From Proposition 12.4, there is some c, C > 0 determined from

K/F so that, for H > C,

#XF (H) ≥ c ·H
(logH)κ

,
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where we have taken

κ = 1− (`− 1)`k−1 · d−1
F .

We have the trivial bound

dim Selω(Nχ) ≤ Cg(1 + |S|)

for C determined from (K/F,V0,F). From this bound and Proposition 12.5, we find that

the contribution to the moment from twists in Hbad,j(H) is within the right hand side of

(8.5) for j = 1, 2 (twists with too many prime factors of their height and twists outside any

grid).

We deal with j = 3, 4, 5, 6 next. In these cases, it is useful to split the sets of bad twists

into grids Xtw. We can bound the sum of #SelωNχ over Xtw using Proposition 11.13,

using Proposition 12.9 to bound the term cLS. Using these estimates, and using the fact

that there are at most exp(Cg2) choices of Qm, l in Proposition 11.13, the case then follows

from Proposition 12.5. We note that the case j = 3, in addition to the case j = 1 handled

above, forced us to assume that g is bounded by c · log(3) H .

Finally, if Xtw either a good grid or a grid from Hbad,j(H) with j = 7, 8, we can bound

the sum of #SelωNχ overXtw by exp(Cg2)·#Xtw using Proposition 11.17 for the unlawful

portion and Proposition 11.15, with our bound on cCheb coming from the second part of

Proposition 12.9. From this, we get the proposition. �

We now will focus on twistable modulesN in the alternating case and the non-alternating

case. The following notation is convenient.

Notation 14.4. Given integers n ≥ j ≥ 0 and a prime `, take gr`(j, n) to equal the number

of j-dimensional subspaces of Fn` . We can calculate

gr`(j, n) =
(`n − 1)(`n−1 − 1) . . . (`n−k+1 − 1)

(`k − 1)(`k−1 − 1) . . . (`− 1)
.
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Given a twistable module N , we define

Pfav(N) = lim
H→∞

#Xfav
F,N(H)

#XF (H)
.

We will later prove that this limit exists.

Proposition 14.5. Take N to be a twistable module with local conditions (Wv)v defined

with respect to (K/F,V0,F). We assume that N is either in the alternating or non-

alternating case. Given ε > 0, there is then c, C > 0 so we have the following:

Take H > C, and take Xtw to be a grid of twists of height H . If Pfav(N) = 1, we assume

that the associated grid of ideals does not meet Hbad,j(H) for j = 1, . . . , 7. If Pfav(N) < 1,

we instead assume that the associated grid of ideals is good. We also assume that Xtw is

a subset of Xfav
F,N . Write (χv)v∈V0 for the local twists found from restricting any element of

Xtw.

Take m to be a nonnegative integer that satisfies

m ≤ (log(2) H)1/8−ε.

Then, defining

b(j) =


j(j+1)

2
if N is in the alternating case

j · ur/c(N, (χv)v) otherwise,

and taking

Sχ =
SelωNχ

S ∩(N, (χv)v) + δχ,GF (H0(GF , Q))
,

we find that ∑
χ∈Xtw

(#Sχ)m − |Xtw| ·
m∑
j=0

gr`(j,m) · `b(j)

has magnitude less than

exp
(
−(log logH)1/4−ε) · |Xtw|.
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Proof. We will consider the Selmer group on N⊕m whose local conditions are given by

(W⊕m
v )v. We will first use

(14.3)
∑
χ∈Xtw

(#SelωNχ)m =
∑

Q0⊆Q⊕m

∑
χ∈Xtw

#
{
φ ∈ Selω(N⊕m)χ : Q(φ) = Q0

}
,

with the sum being over GF submodules of Q⊕m, where Q = N [ω2]/N [ω].

From Proposition 9.7, the cofavored submodules of N⊕m are those of the form

A⊗F` N [ω],

where A is a subspace of Fm` . If T is a GF -submodule of N⊕m[ω] that is not of this form,

Remark 9.4 gives

TN⊕m,T (Xtw) ≤ exp(−(log logH)1/4−ε).

From this, Proposition 11.17, and Proposition 12.9, we find that the contribution of non-

cofavored Q0 to the right hand side of (14.3) fits in the error of the proposition.

So fix A ⊆ Fm` , and consider the sum

(14.4)
∑
χ∈Xtw

#
{
φ ∈ Selω(N⊕m)χ : Q(φ) = A⊗Q

}
.

Taking j to be the rank of A, we may change bases so A = (F`)j⊕0, which corresponds

to the splitting N0 = N1 ⊕N2 with

N0 = N⊕m, N1 = N⊕j, N2 = N⊕m−j.

Recalling the notation of Proposition 11.18, we take U to be the subset of (φ0, (qs)s) in

SN0[ω]/F (V0) ⊕ QN0(Q1)

for which the element defined by

Φ(φ0, (qs)s) = φ0 +
∑
s∈S

Bnc
N [ω],F,ps

(qs ∪F xs)
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satisfies the local conditions at V0, and so that

φ0 − δGF (π2((qs)s))

projects to S ∩ (N2, (χv)v). Take V to be the subspace defined by the same condition in

W = SN0[ω]/F (V0) ⊕ QN0,+(Q1).

From Proposition 11.18, the difference between (14.4) and

(14.5)
#SN0[ω]/F (V0) ·#V

#W
·
(
#H0(GF , N [ω])

)m−j · (#H0(GF , N [ω])
)j · `b0 · |Xtw|

is bounded by

exp
(
−(log(2) H)1−ε

)
· |Xtw|

forH sufficiently large, where b0 is j(j+1)/2 in the alternating case and is otherwise zero.

Take

W ′ = SN0[ω]/F (V0) ⊕
⊕
s∈S

H0(〈σs〉, Q1).

W ′′ = SN1[ω]/F (V0) ⊕
⊕
s∈S

H0(〈σs〉, Q1).

Then

W/V ∼= W ′/(V ∩W ′) ∼= SN2[ω]/F (V0)/S ∩ (N2, (χv)v) ⊕ W ′′/(V ∩W ′′).

Choose any χ in Xtw, and take V to be the set of places where χ ramifies outside V0. Then

W ′′ is identified with SN1[ω]/F (V ∪ V0), and V ∩W ′′ is identified with the kernel of the

map

SN1[ω]/F (V ∪ V0)→
∏
v∈V0

H1(Gv, N1[ω])
/
Wv(χv)

⊕j.
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Then W ′′/(V ∩ W ′′) has order equal to the image of this map. This image is identified

with #SM/F (V0) ·#X1(F,M) ·
∏

v∈V #H1(Iv,M)Gv/Iv

# ker
(
H1(GF ,M)→

∏
v∈V0

H1(Gv,M)/Wv(χ)×
∏

v 6∈V ∩V0
H1(Iv,M)

)
⊕j .

The proposition then follows as a consequence of (9.11). �

14.3. The proofs of the base-case Selmer rank theorems. We now finally justify the

double definition we gave of potentially favored twistable module.

Proposition 14.6. Suppose N is a twistable module defined from the data (K/F,V0,F).

Take

(Yσ)σ∈G1

to be a multivariate normal distribution with covariance matrix Σ satisfying

Σσ1,σ2 =


d−1(1− d−1) if σ1 = σ2

−d−2 if σ1 6= σ2,

with d equal to the degree of the extension G1. Take P0,fav(N) to be the probability that

∑
σ∈G1

(1 + ε · Yσ) · dimH0(〈σ〉, N [ω])

≥
∑
σ∈G1

(1 + ε · Yσ) · dimH0(〈σ〉, (N/T )[ω]).

holds for all GF -submodules T of N [ω] and all ε ≥ 0.

Then

Pfav(N) = P0,fav(N).

Proof. Take X to be an unfiltered grid of ideals of height H that does not meet Hbad,j(H)

for j = 1, 3, 4. It suffices to prove that, among the twists χ in XF

(
H, (χv)v

)
satisfying
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h(χ), the proportion which favorN is Pfav(N) with error going to zero asH goes to infinity,

as we can use Proposition 12.5 to see that the set of remaining twists is negligible.

Take S = Ssm ∪ Smed ∪ Slg to be the indexing set of S, and take

S1 = Smed ∪ Slg.

As a consequence of the Chebotarev density theorem, we can remove o(H) · |S|−1 · |Xs|

primes from Xs for each s ∈ S1 to force

#{p ∈ Xs : Frob p = C0} = |Xs| ·
|C0|
|G1|

for all s ∈ S and any class C0 of G1/∼. Take X ′ to be the product of these sets; we see

that X has at most o(H) · |X| ideals not contained in X ′.

Define a random function

Y : G1/∼ → Z

by

Y (h)(C) = #

{
p|h(χ) : p ∈

⋃
s∈S1

Xs, Frob p = C

}
,

where h is chosen uniformly at random from X ′. Equivalently, this is a multinomial distri-

bution where the probability of C is |C|/|G1|, and we consider the adjustment

Y ′(C) = Y (C)− |C|·|S1|
|G1|

Per the multivariate central limt theorem (see [46, 2.7]), we find that the random function

C 7→ |S1|−1/2 · Y ′(C)

converges to the random function

C 7→
∑
σ∈C

Yσ(C)
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as |S1| heads to infinity. The probability that a twist from X ′ is favorable with respect only

to the primes indexed by S1 is thus given by Pfav(N). Since

#Ssm = o
(

#S
1/2
1

)
,

the same is true when we adjoin the primes in Ssm. �

Remark 14.7. With some additional work, this last proposition can be made to apply to

twists in sets XF (H, (χv)v) with local constrictions. The same probabilities are recovered.

To move from moments to ranks, we will follow the trend of the literature and use a brief

argument in the theory of holomorphic functions. In particular, the argument given below

is quite similar to the proof of Lemma 18 in [18].

Proposition 14.8. There is C > 0 so we have the following:

Take a0, a1, . . . and b0, b1, . . . to be sequences of nonnegative real numbers, and take

F (z) =
∑
i≥0

aiz
i and G(z) =

∑
i≥0

biz
i.

Choose ε > 0, C0 > 0, a positive integer m, and a prime `.

• Suppose that we have

F (`m+1), G(`m+1) ≤ `C0m+ 1
4
m2

and

|F (z)−G(z)| ≤ ε for z ∈ {1, `, . . . , `m}.

Then

|ai − bi| ≤ `Cm
(
ε+ `C0m− 1

4
m2
)

for i ≥ 0.

• Suppose that we have

F (`m+1), G(`m+1) ≤ `C0m+ 1
2
m2
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and

|F (z)−G(z)| ≤ ε for z ∈ {±1,±`, . . . ,±`m}.

Then

|ai − bi| ≤ `Cm
(
ε+ `C0m− 1

2
m2
)

for i ≥ 0.

Proof. By replacing m with the nonnegative integer m − 1 if necessary, we can assume

that F and G are holomorphic on an open disk containing the circle of radius `m+1.

For the first case, we will make use of the definitions

R(z) =
m∏
i=0

(
1− z

`i

)
,

Rj(z) =
(

1− z

`j

)−1

·R(z) for j ≤ k,

H(z) = F (z)−G(z)−
∑
j≤m

F (`j)−G(`j)

Rj(`j)
Rj(z).

H(z) has zeros at 1, `, . . . , `k, and hence can be written in the form H1(z)R(z), where H1

is holomorphic on any open set where F and G are holomorphic.

Since (1− `j−i) is an integer for j > i, we have the bound

∣∣Rj(`
j)
∣∣ ≥ m∏

i=j+1

(
1− `j

`i

)
≥
∞∏
i=1

(
1− 2−i

)
> 0

for all j ≤ m. This gives an absolute lower bound for the magnitude of Rj(`
j).

For i ≥ 1, we have `i − 1 ≥ `i−1. We consequently have

|R(z)| ≥
m∏
i=0

`m−i = `
m(m−1)

2

for all z satisfying |z| = `m+1. For z on the same circle, we have

|Rj(z)| ≤ `
(m+2)(m+1)

2

for j ≤ m, as follows from the estimate `i + 1 ≤ `i+1.
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From these estimates and the assumptions on F and G, we find there is some absolute

C1 > 0 so that, for all z satisfying |z| = `m+1, we have

|H1(z)| ≤ `C1(m+1) ·
(
ε+ `−

1
4
m2 +C0m

)
.

Writing H1(z) in the form ∑
i≥0

ciz
i,

we have

ci ≤ `(−i+C1)(m+1) ·
(
ε+ `−

1
4
m2 +C0m

)
from Cauchy’s integral formula.

Writing
∞∏
i=0

(
1− z

`i

)
=
∑
i≥0

diz
i,

we see that ∑
i≥0

|di| ≤
∞∏
i=0

(
1 + 2−i

)
<∞.

From this absolute bound, we can bound the ith coefficient of the power series expansion

of H using the above bounds on ci. After noting that the coefficients of

∑
j≤m

F (`j)−G(`j)

Rj(`j)
Rj(z).

are bounded by some constant times (m+ 1)ε, we can derive the bound for the coefficients

of the power series expansion of F −G that is claimed in the proposition.

The second part follows the same argument starting from the alternative function

R(z) =
m∏
i=0

(
1− z

`i

)(
1 +

z

`i

)
.

�
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Proof of Theorem 9.10 and Theorem 9.14. We will give the main argument in the non-

alternating case. Take

u = ur/c (N, (χv)v) .

We start by noting that, if we take

G(z) =
∑
r≥0

lim
n→∞

PMat
`, u (r|n) · zr,

then, for m ≥ 0, we have

G(`m) = ·
m∑
j=0

gr`(j,m) · `u·j.

There is some C0 determined from u but not m so this has upper bound `
1
4
m2+C0m for

m ≥ 1.

Then, given a grid of twists Xtw of height H as in Proposition 14.5, we can apply Propo-

sition 14.8 with

m = (log(2) H)1/8−ε

to say that

#{χ ∈ Xtw : SelωNχ = r + r0} − lim
n→∞

PMat
`, u ·#Xtw ≤ #Xtw exp

(
−(log(2) H)1/4−ε

)
,

for H ≥ C, where C depends on N and ε.

Combining this with Proposition 12.5 then gives the theorem.

The alternating case is much the same, and only requires the observation that the Selmer

rank parity is constant for twists from Xtw, which allows us to apply Proposition 14.8. �
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