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Abstract

The human hematopoietic system is a paradigm for stem cell biology wherein a heterogeneous tissue (blood) is

established and maintained by a small pool of stem and progenitor cells. Herein, this dissertation represents a col-

lection of new approaches, both computational and technical, to chart cell fate transitions and clonal properties

of the hematopoietic system. I present specific innovations that enable the massive-scale inference of chromatin

accessibility in single cells as well as their clonal relatedness within humans. Importantly, these concepts, tech-

nologies, and innovations are broadly applicable to understanding human tissue biology in other systems.

Chapter 1 introduces the concept of charting lineal relationships between cells (i.e. lineage tracing) in human

tissue by utilizing somatic mitochondrial DNA (mtDNA) mutations as clonal markers via single-cell genomics

technologies. Further, I show that this concept enables scalable lineage tracing at a greater throughput (~1,000x)

than other approaches for human cells. In Chapter 2, I demonstrate that somatic mtDNAmutations can be

propagated longitudinally in vivo over ~3 years and in lineage-restricted progenitors. Together, these chapters

provide the theoretical basis for scalable lineage tracing of hematopoietic cells.

Next, Chapter 3 introduces a droplet microfluidics platform that enables profiling accessible chromatin in

hundreds of thousands of single cells. I show how this approach can be utilized to dissect multi-lineage non-

coding regulatory logic of hematopoietic tissue in response to stimuli. In Chapter 4, I identify and correct a

previously uncharacterized artifact termed ‘barcode multiplets’ in single-cell data. Importantly, I show that, if

uncorrected, barcode multiplets artificially inflate clonality estimates. These two chapters provide a technical

basis for accurate, large-scale profiling and clonal estimation of human cells.
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Chapter 5 synthesizes these advances (mtDNA-based lineage tracing and droplet-based single-cell genomics)

into one assay, termed mtscATAC-seq. Importantly, this multimodal approach provides a technical basis to si-

multaneously infer both contemporary cell state (via accessible chromatin) and cell fate (via somatic mutation

lineage tracing), altogether enabling the dissection of complex tissues and stem cell hierarchies in vivo.

Taken together, this body of work summarizes several key advances that uniquely enable the study of develop-

mental and regenerative processes in native human tissue.
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You don’t have to see the whole staircase, just take the first
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The genesis and maintenance of multicellular organisms requires the differentiation of cells

through a hierarchy of fate-decisions, leading to a functional end-state. In 1957, ConradWaddington posited

a model for this developmental process by conceptualizing cellular differentiation as a ball rolling down a three-

dimensional surface with many bifurcations (Waddington, 1957). Since Waddington’s schematic, thousands

of studies have helped define the key molecular effectors underlying theoretical bifurcations, including lineage-

specific transcription factors. An extensively characterized paradigm of this differentiation hierarchy is the hu-

man hematopoietic system, wherein a relatively small number (~104−106) of hematopoietic stem and progenitor

cells (HSPCs) are responsible for constituting trillions (~1014) of cells with vastly different functions in the hu-

man body (Lee-Six et al., 2018; Orkin & Zon, 2008). Despite being the best characterized model of multi-lineage

cellular differentiation in adult humans, fundamental questions underlying the hematopoietic differentiation

remain unanswered. These include: 1) Howmany HSPCs actively constitute blood production at a given time?

2) To what extent do HSPCs contribute equally or unequally across all hematopoietic lineages (so-called “lineage-

bias”)? 3) How do clonal dynamics become altered in diseased or pre-diseased state? 4) What are the distinct

molecular programs that emerge during differentiation frommultipotentency toward a terminal state?

In order to study these fundamental questions underlying human hematopoiesis, hematopoietic stem cells,

and other multipotent cell types in complex tissues in the human body, I purpose that two pieces of information

about a cell are essential to determine. First, a characterization of a cell’s state defines where a cell exists along

some differentiation trajectory. Though canonically estimated by the presence or absence of cell surface antigens,

recent approaches using single-cell transcriptomics (Weinreb et al., 2020) and epigenomics (Buenrostro et al.,

2018) similarly provide a high-dimensional readout characterizing the molecular phenotype of the cell. Second,

an account of a cell’s lineage defines the relationships between a cell and its progenitor ancestors as well as other

related cells. Molecular techniques termed ”lineage tracing” enable the mapping of cell-cell relatedness but have

been difficult to ascertain in human cells without genetic manipulation. Together, a combined inference of cell

state and cell lineage will aid in our understanding of the properties underlying cellular differentiation and clonal

composition of human tissues, including in the hematopoietic system.
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0.1 Ascertaining single-cell states

As cell fate decisions occur at a single-cell level, methods and technologies that provide this resolution are es-

sential to study differentiating systems, such as the human hematopoietic system. Fundamentally, these ap-

proaches rely on the variable transcription of genes, which is an essential feature underlying the establishment

and maintenance of cellular identity (Shema et al., 2019). Here, genetic transcription is regulated by a diverse

set of transcription factors and non-coding genomic elements that enable transcriptional machinery to actively

transcribe a locus. Importantly, complementary advances in inferring the activity of these non-coding elements

(via chromatin accessibility) and active genes (via mRNA sequencing) have provided molecular frameworks to

infer cell states in a massively-parallel fashion. Many such technologies exist for obtaining these measurements in

single-cells, all relying on the physical separation biological nucleic acids and subsequent barcoding with technical

oligonucleotides (Klein &Macosko, 2017). When these technologies are paired with sophisticated computational

tools, comprehensive state maps of cellular hierarchies across a range of complex tissues and organisms have been

attainable (Weinreb et al., 2020). As single-cell epigenomic assays provide an opportunity to define regulators,

and thus putative mechanisms, of gene regulatory logic underlying cell fate transitions (Shema et al., 2019), con-

tinued innovation of techniques that profile the non-coding genome will be a focus of this work.

0.2 Lineage tracing approaches

A variety of lineage tracing techniques have been established that broadly fall into two categories. The first class

of lineage tracing techniques tag individual cells (mostly in model organisms) with heritable genetic markers, in-

cluding fluorescent reporter genes, high diversity DNA barcode libraries, or CRISPR-based genetic scars (Wood-

worth et al., 2017). As these engineering techniques are generally not applicable to humans, a second class of

lineage tracing studies utilized in humans have relied on the detection of naturally occurring somatic mutations,

including single nucleotide variants (SNVs), copy number variants (CNVs), and microsatellites (Woodworth

et al., 2017; Lodato et al., 2015). This second class of techniques utilizes the principle that acquired somatic mu-
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tations are propagated to daughter cells but are absent in distantly related cells, providing a naturally-occurring

means for lineage reconstruction. To detect these mutations, these approaches often rely on techniques such as

single-cell whole-genome sequence (scWGS) or WGS derived from single-cell colonies to survey cells. In either

case, these strategies remain expensive and provide only modest throughput. Furthermore, no technology read-

ily pairs scWGS with a concomitant measure of cell state at any reasonable throughput, making the dissection

of complex human tissues challenging with either approach. Thus, further work is needed to develop new ap-

proaches that enable paired state and lineage inference in single-cells via a scalable technology.

0.3 Somatic mtDNAmutations for lineage tracing

A core hypothesis underlying advances in this dissertation is that mitochondrial DNA (mtDNA) sequence vari-

ation could provide an innate and natural barcode from which to infer clonal relationship in human cells. The

mtDNA genome is 16.6 kb, which is small enough for cost-effective sequencing, but still provides a substantial

target for somatic genetic diversity. Futhermore, mitochondrial genomes have high copy number (100s-1,000s),

and mutations in mtDNA often reach high levels of heteroplasmy (defined as the proportion of mitochon-

drial genomes containing a specific mutation) due to a variety of factors (Stewart & Chinnery, 2015; Wallace &

Chalkia, 2013). Notably, the utility of mtDNAmutations for clone tracking has already been indirectly demon-

strated in various tissues using various cell staining procedures, primarily for active/inactive mtDNA-associated

proteins (Taylor et al., 2003; Teixeira et al., 2013). Thus, the inference of somatic mutations in mtDNAmay

provide an efficient target for clonal lineage tracing in native human cells.

Importantly, for application in the hematopoietic system, a critical feature of this approach is the fact

that mtDNA replicates independently of cell cycle (Mishra & Chan, 2014). Thus, even quiescent long-term

hematopoietic stem cells will continue to accumulate somatic mtDNAmutations even without dividing. Uti-

lizing this fact, I hypothesize that many (if not a majority) of HSCs will accumulate sufficient independent

mtDNAmutations to be individually barcoded. As such, progeny cells from each HSC can be identified by
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measuring the mtDNA variation in single cells. Finally, as mtDNA and mtRNA are already detected by many

single-cell genomics assays, I hypothesize that a scalable platform that can simultaneously infer cell state and cell

lineage (via somatic mtDNAmutations) is achievable through innovations in single-cell genomics techniques.
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Every cell in your body has the same DNA. Except it

doesn’t.

Carl Zimmer

1
Lineage tracing in humans enabled by

mitochondrial mutations & single-cell genomics
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Abstract

Lineage tracing provides key insights into the fate of individual cells in complex organisms. While effective ge-

netic labeling approaches are available in model systems, in intact humans most approaches require detection of

nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information.

Here, we show that somatic mutations in mitochondrial DNA (mtDNA) can be tracked by single cell RNA or

ATAC sequencing. We leverage somatic mtDNAmutations as natural genetic barcodes and demonstrate their

utility as highly accurate clonal markers to infer cellular relationships. We track native human cells both in vitro

and in vivo, and relate clonal dynamics to gene expression and chromatin accessibility. Our approach should

allow clonal tracking at a 1,000-fold greater scale than with nuclear genome sequencing, with simultaneous infor-

mation on cell state, opening the way to chart cellular dynamics in human health and disease.

1.1 Introduction

Recent innovations in single cell genomics have enabled insights into the heterogeneity of human cell popula-

tions and have redefined concepts about lineage commitment and development (Giladi & Amit, 2018). While

all cells in the human body are derived from the zygote, we lack a detailed map integrating cell division (lineage)

and differentiation (fate). As a result, we have a limited understanding of how cellular dynamics play a role in

physiologic and pathologic conditions for any given tissue.

Two classes of methods have been developed to study cellular relationships and clonal dynamics in complex

tissues of vertebrates. In model organisms, most approaches to date rely on an engineered genetic label to tag

individual cells with heritable marks (Woodworth et al., 2017; Kester & van Oudenaarden, 2018), such as flu-

orescent reporter genes, high diversity DNA barcode libraries, mobile transposable elements, Cre-mediated re-

combination, or CRISPR-based genetic scars (McKenna et al., 2016; Pei et al., 2017; Sun et al., 2014; Yu et al.,

2016). Recent studies have combined several of these tracing methods with single cell RNA-seq (scRNA-seq) to

interrogate both lineage relationships and cell states (Raj et al., 2018; Spanjaard et al., 2018).
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However, the genetic manipulations required for such approaches cannot be applied in intact humans (Bi-

asco et al., 2016). Limited lineage tracing studies in humans have relied on the detection of naturally occurring

somatic mutations, including single nucleotide variants (SNVs), copy number variants (CNVs), and variation in

short tandem repeat sequences (microsatellites or STRs), which are stably propagated to daughter cells, but are

absent in distantly related cells (Ju et al., 2017). Detection of nuclear somatic mutations by whole genome se-

quencing in individual cells remains costly, is difficult to apply at scale, and has substantial error rates (Tao et al.,

2017; Lodato et al., 2015). Moreover, most methods have not been combined with approaches that provide in-

formation about cell type and state based on gene expression or epigenomic profiles. As a result, we have had a

limited ability to study cellular dynamics in humans in health and disease.

We hypothesized that mitochondrial DNA (mtDNA) sequence variation could provide an innate and natu-

ral barcode from which to infer clonal relationships. This sequence variation has several promising attributes for

its utility in clonal and lineage tracing. The 16.6 kb long genome provides a substantial target for genetic diver-

sity, but is sufficiently small for cost-effective sequencing. Although there is some variation in the measurements,

mtDNAmutation rates are estimated to be 10- to 100-fold higher than for nuclear DNA (Stewart & Chinnery,

2015). Mitochondrial genomes have high copy number (100s-1,000s), and mutations in mtDNA often reach

high levels of heteroplasmy (proportion of mitochondrial genomes containing a specific mutation) due to a com-

bination of vegetative segregation, random genetic drift, and relaxed replication (Figure 1.1.A) (Stewart & Chin-

nery, 2015; Wallace & Chalkia, 2013). Indeed, the utility of mtDNAmutations for clone tracking has already

been indirectly demonstrated in various tissues (Taylor et al., 2003; Teixeira et al., 2013).

Critically, mtDNA sequences and genetic variation are detected by existing methods, including the single

cell assay for transposase accessible chromatin-sequencing (scATAC-seq) and single cell RNA-seq (scRNA-seq).

While sequencing reads mapping to the mitochondrial genome are often treated as an experimental nuisance,

we reasoned that they can open an opportunity to trace cellular hierarchies at scale. To demonstrate the utility

of mtDNA variation for clonal tracing, we must show that heteroplasmic mtDNAmutations (1) can be reliably

detected in single cells; (2) are propagated in daughter cells; (3) can be used to accurately determine clonal rela-
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tionships; (4) can be combined with cell state measurements to learn meaningful biology; and (5) can be applied

to study human samples.

Here, we investigate these properties, provide evidence that scRNA- and scATAC-seq provide reliable mea-

surements of mtDNA genetic variation, and demonstrate how these mutations can be used as endogenous ge-

netic barcodes to retrospectively infer cellular relationships in clonal mixtures of native hematopoietic cells, T

lymphocytes, leukemia, and solid tumors.

1.2 Results

1.2.1 mtDNA genotypingwith ATAC-seq allows accurate clone tracking and asso-

ciationwith chromatin state

To test if mtDNA genotypes can correctly identify clonal relationships we performed a proof-of-principle ex-

periment, where we derived and propagated sub-clones of the hematopoietic TF1 cell line (Figure 1.1.B). We

generated a “ground truth” experimental lineage tree of 65 individual sub-clonal populations over 8 generations

(generation time ~3 weeks between two consecutive bottlenecks) (Figure 1.1.C). For each generation, we isolated

single cells from the parental colony and expanded each clone to derive sub-clones in an iterative process. The

original population and each expanded sub-clone were profiled by ATAC-seq, which captures the full mitochon-

drial genome as an unwanted by-product (Figure A.1.A). On average, the 16.6 kb mitochondrial genome was

covered at 3,380-fold per million mapped reads. We determined high-confidence heteroplasmic mitochondrial

genotypes with a computational variant-calling pipeline that utilizes individual per-base, per-allele base quality

(BQ) scores and verified that our calls were reproducible across sequencing runs (Figure A.1.B,C; Appendix A).

The large range of detected mutations included clone- and sub-clone-specific mutations that were propagated

over generations (Figure 1.1.D and Figure A.1.D). Most mutations were C>T transitions, consistent with pre-

vious reports (Ju et al., 2017). Although some somatic mutations were shared among multiple first-generation

clones and their progeny (e.g., Figure 1.1.D 8003 C>T), nearly all progeny of an individual clone shared muta-
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Figure 1.1: Mitochondrial muta ons are stably propagated in human cells in vitro. (A) Dynamics of mtDNA heteroplasmy in single cells.
Each cell has mul ple mitochondria, which in turn contain many copies of mtDNA that may acquire soma c muta ons over me. (B)
Proof-of-principle design. Each TF1 cell clone and sub-clone is assayed with ATAC-seq. (C) Supervised (true) experimental TF1 lineage
tree. Colors indicate each primary clone from ini al split. (D) Allelic heteroplasmy of four selected variants reveals stable propaga on
and clone-specificity. Color bar: allelic heteroplasmy (%). (E) Unsupervised hierarchical clustering of TF1 clones. Color: primary clones
as in (C). (F) Between-clone and within-clone accuracy of iden fying the most-recent common ancestor (MRCA) per trio of clones based
on mtDNA muta onal profile. (G) Schema c of mitochondrial relatedness matrixKmito where each pair of clones is scored based on
mitochondrial genotype similarity. (H) Random effects model for variance decomposi on of epigenomic peaks. (I) Two examples of
peaks inherited in clonal lineages. Peaks represent the sum of open chroma n for the clones with the most samples.

10



tions that were unique and stably propagated over the course of the experiment (e.g., Figure 1.1.D 15089 C>T,

1495 C>T, Figure A.1.D). Furthermore, we detected new somatic mutations that arose within sub-clones and

were stably propagated (Figure 1.1.D, 2110 G>A; Figure A.1.D).

We used these high-confidence mtDNAmutations to reconstruct clonal relations with high accuracy (Fig-

ure 1.1.E,F). Ordinal hierarchical clustering on individual samples grouped nearly all (sub-)clones belonging to a

single clonal family correctly (Figures 1.1.C,E). Specifically, we accurately identified the most recent common an-

cestor (MRCA) at 96% between first-generation clones and 79% within sub-clones derived from first-generation

clones (Figure 1.1.F and Figure A.1.E; Appendix A). Moreover, we correctly inferred clonal contributions to

heterogeneous bulk populations comprised of three clones at various concentrations (Figure A.1.F; Appendix A).

We next paired mitochondrial genotypes with chromatin state information for each clone and identified dif-

ferences in chromatin state that follow inferred clonal relationships. We approximated the pairwise clone-clone

mitochondrial relatedness (Figure 1.1.G; Appendix A) and performed a random effects variance decomposi-

tion of each chromatin accessibility peak in our TF1 clones (Figure 1.1.H), asking how “heritable” a chromatin

feature is in a population. Of 91,607 peaks tested, 8,570 peaks were highly heritable (> 90% variance explained;

Figure 1.1.I and Figure A.1.G). Overall, this demonstrates the utility of ATAC-seq for mtDNA genotyping to

enable accurate clone tracing, while simultaneously providing information on cell state.

1.2.2 Successful detection of mtDNAheteroplasmy using single cell genomics

Because the mitochondrial genome is almost completely transcribed (Figure 1.2.E), we hypothesized that hetero-

plasmic mitochondrial mutations might be detected by scRNA-seq. Across six scRNA-seq protocols (Ziegen-

hain et al., 2017), full length scRNA-seq methods showed more extensive coverage of the mtDNA genome than

3’ end directed scRNA-seq (Figure 1.2.A and A.2.A,B). Importantly, there was a high concordance between

heteroplasmic allele frequency estimates from scRNA-seq and whole genome sequencing from the same cell

(Han et al. (2018a); Figure 1.2.B). However, several highly heteroplasmic mutations were specific to mtRNA

(Figure 1.2.B): some likely reflect RNA-editing, including one that has been previously validated (2619 A>G)
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(Bar-Yaacov et al., 2013), but many others are observed at low frequencies (<20%) and reflect either RNA tran-

scription errors or technical errors in scRNA-seq (Venteicher et al., 2017).

We systematically compared our ability to detect clones frommtDNAmutations at various levels of het-

eroplasmy in three TF1 cell clones (Figure 1.2.C: clones C9, D6, G10) using bulk and scATAC-seq, bulk and

scRNA-seq (SMART-seq2), and a newly developed single cell mtDNA sequencing protocol based on rolling

circle amplification (scMito-seq; Figure 1.2.C and A.2.C, Appendix A). We observed high concordance in the fre-

quencies of RNA and DNA-derived mitochondrial genotypes across all methods (in addition to RNA-specific

mutations, as described above; Figure 1.2.D and A.2.E). As expected, scATAC- and scMito-seq had more uni-

form and deeper coverage of the mitochondrial genome than SMART-seq2 (Figure 1.2.E and A.2.D). Data from

every method allowed us to detect the previously identified unique clonal allele for 95.4% (210/220) of cells and

to accurately infer clonal relationships by hierarchical clustering (Figure 1.2.F and A.2.F).

1.2.3 Mitochondrial mutation clones match those from lentiviral barcoding

To compare mitochondrial mutations to an exogenous gold standard of clone detection, we used a lentiviral

barcoding approach. We infected TF1 cells with a modified Perturb-seq lentiviral construct (Dixit et al., 2016)

expressing a mNeonGreen gene carrying a 30 bp random nucleotide sequence in its untranslated region (Figure

A.3.A). We sorted 25 mNeonGreen+ cells and expanded them, followed by bulk ATAC-seq and scRNA-seq of

158 quality-controlled cells (Figure 1.3.A). Notably, there was no correlation between the number or types of

barcodes discovered and mitochondrial coverage (Figure A.3.B). The 158 cells included 15 informative barcodes

that mapped cells to one of 11 non-overlapping groups (Figure A.3.A). To filter any artefactual mitochondrial

mutations from scRNA-seq (Figures 1.2.B, 1.3.C and A.2.E, A.6.F,G), we restricted our analysis to the 20 vari-

ants that were present in the bulk ATAC-seq at allele frequencies > 0.5% and which had high per-allele base qual-

ity scores in bulk and in the sum of single cells (Figures 1.3.B,C, Appendix A).

Hierarchical clustering by these 20 mitochondrial mutations correctly inferred clonal structure in single cells

in a comparable manner with gold-standard exogenous barcodes (Figure 1.3.D). Of note, specific mutations were

12



Figure 1.2: Mitochondrial muta ons are detected using single cell genomics (A) Coverage of mouse mitochondrial genome by six
scRNA-seq methods. Shown is the frac on (%) of the mitochondrial genome (y axis) covered by reads from each of six methods (color
code), at different levels of coverage (x axis). (B) Agreement in allelic heteroplasmy es mates from single cell whole genome sequenc-
ing (WGS) and scRNA-seq from the same single cells. Shown is the allele frequency for scRNA- (y axis) and scWGS-seq (x axis) based
es mates for two cell lines (HCC827: orange; SKBR3: purple). Two examples of RNA-specific changes are highlighted. (C-F) Iden fi-
ca on of mitochondrial muta ons by scRNA-, scATAC- and scMito-seq in three TF1 clones. (C) Bulk and single cell data collected for
three TF1 clones (boxed). Each clone (n = 3) was processed with variable numbers of single-cell libraries (k). (D) Agreement in allelic
heteroplasmy es mates from bulk ATAC- (x axis) and bulk RNA-seq (y axis) from three indicated TF1 clones (as in (C)). Two examples of
RNA-specific changes are highlighted. (E) Coverage of the mitochondrial genome of the TF clone G10 by each indicated assay. Inner
circle: mitochondrial genome; middle blue outline: coverage; outer grey circle: genome coordinates. For single cell assays, coverage is
the sum of single cells. (F) Four clone-specific muta ons that are reliably detected by various single-cell assays with heteroplasmies as
low as 3.8%. Each boxplot shows the % heteroplasmy (y axis) of one muta on across scATAC-, scMito- and scRNA-seq in the three TF1
clones (color code as in (C)). Dots: individual cells.
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Figure 1.3: Valida on of mitochondrial muta ons as clonal markers in single cells using len viral barcoding. (A) Experimental overview.
TF1 cells were infected with a len viral vector expressing the mNeonGreen gene and a 30bp random barcode in the untranslated region
(Figure 1.3.A). 25 cells were sorted and expanded, followed by bulk ATAC-seq and scRNA-seq. (B) Filtering of high confidence muta-
ons. Base quality (BQ) scores from scRNA- (y axis) and from bulk ATAC-seq (x axis). White box: high-confidence variants detected
by both technologies (BQ >20) (Appendix A). (C) Allele frequencies determined by the sum of single cells from scRNA-seq (y axis) and
bulk ATAC-seq (x axis). Black – filtered; red – retained. (D-F) mtDNA inferred clones agree with barcode-based clones. (D) Hierarchi-
cal clustering of TF1 mitochondrial genotyping profiles (rows) for cells assigned to annotated barcode groups (columns) (from Figure
1.3.A). Color bar: Heteroplasmy (% allele frequency). (E) Cell-cell similarity from mitochondrial muta ons called in (C). Column and rows
are annotated by barcode group. (F) Between-group accuracy of iden fying the most-similar pair per trio of clones based on mtDNA
muta onal profile using detected barcodes as a true posi ve.

14



shared among a number of barcode groups (7790 G>C and 4038 T>A), suggesting these may reflect common

sub-clonal structure in the original population. A cell-cell similarity matrix using a Pearson correlation distance

metric of the 20 mutations (Figure 1.3.E) effectively classified pairs of cells within the same barcode group (area

under receiver operating characteristic curve (AUROC): 0.96; area under the precision recall curve (AUPRC):

0.84; Figures S3C,D). Cells that were most similar based upon mitochondrial genotypes correctly predicted

shared barcode pairs in a trio analysis with 95% accuracy (Figure 1.3.F). In this context, mitochondrial muta-

tions provided a significantly more accurate measure of shared clonality than alterations in copy number variants

(CNVs) inferred from scRNA-seq (FiguresA.3.E,F).

1.2.4 mtDNAmutation diversity across human tissues

To assess the broader applicability of mitochondrial genotyping, we examined mtDNAmutations across diverse

human tissues, similar to previous studies that have shown widespread inter- and intra-individual diversity of het-

eroplasmic mtDNAmutations (Ye et al., 2014). We analyzed mitochondrial genotypes from bulk RNA-seq of

8,820 individual samples in the GTEx project, spanning 49 tissues with at least 25 donors, as well as 462 donors

with at least 10 tissues (Consortium et al. (2017);Figure 1.4.A; Appendix A). There was significant variation in

the proportion of mitochondrial reads mapping to the mitochondrial transcriptome across tissues, consistent

with known differences in the absolute numbers of mitochondria and levels of mitochondrial gene expression

in each tissue (Figures 1.4.B,C and A.4.A). After stringent filtering to remove artifacts related to RNA-seq (Ap-

pendix A), we identified 2,762 mutations that were tissue-specific within an individual donor at a minimum of

3% heteroplasmy (Figures 1.4.D-G and A.4.B), revealing a diverse spectrum of mutations. The majority of mu-

tations were C>T (G>A) or T>C (A>G) transitions (Figure 1.4.E), consistent with previous reports (Ju et al.,

2014).

Each of the 49 tissues examined had at least one tissue specific mutation across all donors, only 28 non-

polymorphic mutations were shared between any two tissues from any one donor (minimum heteroplasmy of

5%), and no non-polymorphic mutations were shared between three such tissues, indicating that these mutations
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Figure 1.4: Tissue-specific mitochondrial heteroplasmic muta ons. (A) Analysis overview. (B) Propor on of aligned reads that map to
the mitochondrial genome for each ssue. (C)Mitochondrial genome coverage for different ssues. Inner circle: mitochondrial genome;
middle circular tracks: mean coverage for heart (green), liver (blue), and blood (red); outer grey circle: genome coordinates. (D-G) Tissue-
specific heteroplasmic muta ons (> 3% heteroplasmy) in GTEx RNA-seq data. (D) Distribu on along the mitochondrial genome. Inner
circle: mitochondrial genome. Dots: % heteroplasmy of each ssue specific muta on; outer grey circle: genome coordinates. (E) Num-
ber of observed ssue-specific heteroplasmic muta ons (y axis) in each class of mononucleo de and trinucleo de change. (F) Number
of ssue-specific heteroplasmic muta ons (y axis) at different allele frequency thresholds (x axis). (G) Number of ssue-specific hetero-
plasmic muta ons (y axis) across the 10 ssues (x axis) with the largest number of ssue specific muta ons in GTEx.
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arose somatically and in a tissue-specific manner. However, this is likely an underestimate of the true extent of

heteroplasmy at the level of individual cells, due to measurement of bulk populations (Kang et al., 2016). Most

of the predicted deleterious mutations (Appendix A) did not show an appreciable difference in median hetero-

plasmy compared to the benign ones (Figures A.4.C-D), although high heteroplasmic (>20%) mutations were

present at 3.6- to 4.4-fold fewer than expected (Figures A.4.E-F). Of note, these levels are substantially below

the estimated biochemical threshold of 60-90% heteroplasmy, where deleterious mtDNAmutations are gener-

ally thought to have an effect (Stewart & Chinnery, 2015). Thus, even predicted damaging mutations appear

to be tolerated at heteroplasmy levels suitable for lineage tracing, although high-throughput functional studies

of mtDNAmutation and large population genetic studies are needed to refine these definitions. Overall, this

diversity of mitochondrial mutations within individual humans indicates that these can be leveraged to probe

questions related to cellular relationships across a range of healthy tissues and cell types.

1.2.5 Stable propagation of heteroplasmic mtDNAmutations in primary

hematopoietic cells

We next tested if mtDNAmutations are clonally propagated in primary human cells. We plated CD34+

hematopoietic stem and progenitor cells (HSPCs) from two independent donors in semi-solid media, derived

65 erythroid and myeloid colonies, and profiled 8-16 cells per colony by scRNA-seq for a total of 935 cells that

passed quality metrics (Figure 1.5.A). Cells composing any individual colony are derived from a single, distinct

hematopoietic progenitor cell. As expected, based on expression profiles, the cells partitioned into two major

clusters, corresponding to erythroid and myeloid cells, consistent with colony morphology and irrespective of

donor (Figures 1.5.A-D and A.5.A,B). Conversely, the mtDNAmutation profile separates single cells according

to their donor of origin, as well as their single cell-derived colony of origin based on highly heteroplasmic muta-

tions (Figures 1.5.E-G and A.5.A,B).

Supervised analysis shows that colony-specific mutations within each donor are faithfully propagated (Mann-

Whitney U Test p-value < 10−10), a significant subset of which distinguishes most cells in each colony from all
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Figure 1.5: Mitochondrial muta ons are stably propagated in primary hematopoie c cells. (A)Overview of experiment. Hematopoie c
colonies are derived from single primary CD34+ HSPCs in semi-solid media, which were then picked and sorted before performing
scRNA-seq. (B-D) Expression profiles separate cells by types and not by donor. t-Stochas c Neighborhood Embedding (tSNE) plots of
cells’ expression profiles, labeled by donor (B) or by expression of HBB (C, marking erythroid cells) or MPO (D, marking myeloid cells).
(E-G)Mitochondrial muta on profiles separate cells by donor. tSNE plots of mitochondrial muta on profiles, with cells labeled by donor
(E), a polymorphic muta on unique to donor 1 (F), or a heteroplasmic muta on present only in a specific colony (G). (H) Colony-specific
muta ons for Donor 1. Shown are the allele frequencies and base pair change of muta ons (rows) that are found by supervised analysis
as specific to the cells (columns) in each colony (sorted by colony membership; colored bar on top), color bar: allelic heteroplasmy (%).
(I) 14 selected colony-specific muta ons in Donor 1 colonies. Box plots show the distribu on of heteroplasmy (%, y axis) in cells of a
specific colony for the indicated muta on, and in the cells in all other colonies. Dots: individual cells.
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other cells from the same donor (Figures 1.5.H and A.5.C). Specifically, we identified unique clonal mutations

in 71% of colonies for donor 1 and 47% for donor 2, each detected at similar frequencies in at least 80% of cells of

the same colony (Figure 1.5.F; Appendix A), although certain experimental challenges, such as mixing between

adjacent colonies (Figures A.5.D,E) likely result in an underestimate. The extent of heteroplasmy varied con-

siderably, including multiple mutations that nearly achieved homoplasmy (Figure A.5.I). We observed similar

mutational diversity with bulk ATAC-seq of colonies similarly derived from two other donors (Figure A.5.H),

and in 268 sorted phenotypic hematopoietic stem cells (HSC) from three additional donors from a published

scATAC-seq study (Figure A.5.I; Buenrostro et al. (2018)). Importantly, the colony-specific mitochondrial mu-

tations do not overlap between donors in the scRNA-seq analysis (Figure A.5.G) and show very limited overlap

between donors in the scATAC-seq analysis (Figure A.5.J). Thus, adult human HSPCs show a large spectrum of

mtDNAmutational diversity and these mutations are stably propagated in daughter cells at a level that allows for

lineage or clonal tracing studies of in vivo human hematopoiesis.

1.2.6 mtDNAmutations from scRNA-seq and scATAC-seq allow inference of

clonal structure in primary human cells

To assess our ability to accurately infer clonal structures in complex primary human cell populations, we ob-

tained 30 primary CD34+HSPCs from donor 2, expanded them into a single large population over 10 days,

and processed cells by bulk ATAC-seq and either scATAC- or scRNA-seq (Figure 1.6.A and A.6.A). We used

probabilistic k-medoids clustering of these mtDNAmutation profiles to cluster individual cells (Appendix A).

Our clustering assigned cells with high-confidence to 10 clusters consisting of 3-36 cells per cluster, with cells in

each cluster sharing one or two heteroplasmic mutations at comparable frequencies (Figures 1.6.B and A.6.E),

consistent with expectations under a simulated setting (Figure 1.6.C, Appendix A). Notably, when all RNA-

based mtDNAmutations (including the artefactual variants) were included, we could not readily discern clusters

(Figures A.6.F,G). Applying this approach to cells with mtDNAmutations called from scATAC-seq, we were

similarly able to assign 95 of 148 cells (64%) to 9 different clusters (Figures 1.6.C and A.6.B,D,H) and identify
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clone-specific regions of open chromatin (Figure 1.6.D, Appendix A).

1.2.7 Somatic mtDNAmutations are consistent with and further refine human T

lymphocyte clones defined by TCR rearrangements

As a test of the ability of mtDNAmutations to correctly resolve human cell clones in vivo, we turned to T lym-

phocytes, where T cell receptor (TCR) rearrangements are frequently used as natural markers of clonality. We

applied our method to tumor-infiltrating T lymphocytes from human lung and liver cancers (Zheng et al., 2017a;

Guo et al., 2018). Supervised analysis of T lymphocytes sharing a unique TCR sequence revealed shared specific

mtDNAmutations that were absent from other T lymphocytes (Figure 1.6.E). In some instances, mtDNAmu-

tations in T lymphocytes with the same TCR rearrangement further classified cells into subpopulations (Figure

1.6.F). These mutations may have arisen after TCR rearrangement as subpopulations underwent stimulation

and proliferation, or the TCRmay have developed independently from clonally distinct T lymphocyte progen-

itor cells. Moreover, some mtDNAmutations were shared across T lymphocytes with unique TCR sequences,

suggesting they shared a common ancestor prior to V(D)J recombination (Figure 1.6.G). These findings further

demonstrate that mtDNAmutations are reliable clonal markers in vivo.

1.2.8 Somatic mtDNAmutations reveal subclones in primary human colorectal

cancer

To test our approach in solid tissues and tumors, we analyzed EPCAM+ cells from a colorectal adenocarcinoma

primary tumor resection by bulk ATAC-seq and scRNA-seq (Figure 1.7.A). To derive the non-cancer mtDNA

genotype, we processed EPCAM+ cells from two adjacent, presumed healthy sites by bulk ATAC-seq. We identi-

fied 11 mtDNAmutations specific to the tumor and absent in adjacent healthy tissue (Figure 1.7.B). Across 238

cells from the tumor sample, we were able to partition 107 cells (45%) into 12 distinct clusters by mtDNAmuta-

tions (Figures 1.7.B,C and A.7.A), suggesting the presence of clonal heterogeneity. We annotated the clusters by
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Figure 1.6: Mitochondrial muta ons iden fy clonal contribu ons in polyclonal mixtures of human cells. (A-D) Determina on of clones
in primary hematopoie c cells. (A) Overview of experiment. CD34+ HSPCs are expanded, genotyped in bulk and single cells, and clonal
origin is inferred. (B, C) Iden fica on of confident cell subsets based on retained heteroplasmic muta ons by unsupervised clustering
of scRNA- or scATAC-seq using probabilis c k-medoids. Cells (columns) are sorted by unsupervised clustering on the variants (rows).
Clusters: colored bar on top; grey: unassigned cells; color bar: allelic heteroplasmy (%). (D) Example locus with one clone-specific (le )
and one shared (right) open chroma n peak recovered by mitochondrial clustering. (E-G) Rela onship between mitochondrial muta ons
and TCR clones in human T lymphocytes. Each panel shows data from independent pa ents. (E) Shown are the allele frequencies of
heteroplasmic muta ons (rows) that are concordant with individual TCR clones (columns, color code). (F) Sub-clonal rela ons within
a single TCR clone. Heteroplasmic muta ons (rows) that differ between cells within a single TCR clone (columns). (G) Heteroplasmic
muta ons (rows) shared among a variety of TCR clones (columns, color code). Color bar: allelic heteroplasmy (%).
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knownmarkers of colonic epithelial cells (Figures 1.7.D,E and A.7.A-C, Dalerba et al. (2011)). Of note, 28/30

(93%) of the tumor cells expressing the stem cell marker LGR5 shared the 9000 T>Cmutation (Figures 1.7.D,F).

Expression of the proliferation marker MKI67 was particularly high in these cells, potentially explaining the large

contribution of this population to the tumor tissue (Figures 1.7.E,F).

1.2.9 Somatic mtDNAmutations as stable clonal markers in CML in humans in vivo

To further validate the utility of our approach in vivo, we focused on chronic myelogenous leukemia (CML).

Using our mitochondrial genotyping pipeline we analyzed scRNA-seq data from 2,145 cells profiled across 49

samples from 31 CML patients, collected at the time of diagnosis, when CML clones predominate, and at 3 and

6 months of therapy, when malignant clones are expected to decrease in frequency relative to benign HSPCs

(Giustacchini et al., 2017). Since neither bulk ATAC-seq, nor DNA-seq were available, we applied particularly

conservative quality thresholds (Appendix A).

The mitochondrial genotypes robustly separated donors by unsupervised analysis (Figures 1.7.G and A.7.D,J),

consistent with our observations of mtDNA variation across humans (Figure 1.4), and, in some patients, further

partitioned cells in a manner consistent with disease stage (Figures 1.7.H,I and A.7.E,F). In one striking example,

three heteroplasmic mtDNAmutations were nearly exclusive to BCR-ABL positive cells, but absent in non-

leukemic cells from the same donor (Figure 1.7.J). Importantly, integration of these mtDNAmutations appears

to improve stratification of malignant cells vs. benign cells compared to the BCR-ABL genotyping assay alone,

resulting in 100% concordance with transcriptional signatures (Figure 1.7.K, boxed cells). Interestingly, although

the frequency of BCR-ABL positive cells decreased with treatment (compare cells in cluster 1 and 2 to cells in

cluster 3), one mitochondrial mutation (6506 T>C) present in the majority of BCR-ABL positive cells at diag-

nosis continued to mark BCR-ABL positive cells post-treatment, thereby validating the stable propagation of

mtDNAmutations over extended periods of timein vivo (Figure 1.7.K). On the other hand, BCR-ABL positive

cells with the 4824 T>Cmutation (that also harbor the 6506 T>Cmutation) were depleted, implying that this

sub-clone was likely more susceptible to therapy.
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Figure 1.7: Applica on of mitochondrial muta on tracking in human cancer in vivo. (A-F) Iden fica on of clones in human colorectal
cancer. (A) Cells from tumor and adjacent normal ssue are sorted based on EPCAM+ surface marker expression and genotyped us-
ing bulk ATAC-seq and scRNA-seq. (B) Iden fica on of clonal subsets based on heteroplasmic muta ons (rows) across cells (columns),
sorted by unsupervised clustering (clusters: colored bar on top; grey: unassigned cells). Right: allele frequencies in the bulk healthy and
tumor popula ons. (C) Heteroplasmy levels per single-cell. Colors and clusters are from panel B. (D-F) Clone of predominantly LGR5+
cells. tSNE of scRNA-seq profiles from the tumor, colored by expression for (D) LGR5 (E)MKI67 (Color bar: log2 counts per million) and
(F) heteroplasmy of the 9000 T>C allele (color bar: % allelic heteroplasmy). (G) Near-perfect separa on of donors based on mitochon-
drial genotypes. tSNE of mitochondrial muta on profiles of 2,145 single cells from 31 donors with CML, colored by donor ID. Boxes:
Donors analyzed for sub-clones in (H-L). (H,I) Iden fica on of puta ve sub-clonal structure within donors. tSNE of mitochondrial mu-
ta on profiles of cells from donor CML1266 (H), sampled at pre- (blue) and during (red) blast crisis, and for donor OX00812 (I), sampled
at diagnosis and <6 months of treatment (magenta) or >6 months treatment (green). (J) Shown are the allele frequencies of three highly
heteroplasmic muta ons (rows) across BCR-ABL posi ve vs. nega ve cells (columns). Color bar: allelic heteroplasmy (%). (K) Consensus
clustering of CML656 transcripts suggests variable annota on in BCR-ABL posi ve cells at diagnosis. Heatmap showing propor on of
mes (red/blue) that two cells (columns, rows) belong to the same cluster. Color bars denote from top to bo om: me of collec on,
BCR-ABL status, and allele frequencies (6506T>C, 4824T>C). Boxes indicate cells where mitochondrial muta ons suggest that the BCR-
ABL status was incorrectly determined by the BCR-ABL genotyping assay alone. (L) Differen ally expressed genes (x-axis) between cells
in Cluster 1 comparing cells with and without the 4824 T>C muta on. P-value (y-axis) is from an empirical Bayes moderated t-test. (M)
mtDNA muta ons dis nguish recipient- and donor-specific cells a er HSCT in AML.
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Unsupervised clustering by expression profiles partitioned this patient’s cells into three clusters. Clusters 1 and

2 were comprised of cells from the initial sample at diagnosis, but separated by BCR-ABL status as well as by mi-

tochondrial genotype. Cluster 3 was comprised of cells obtained 3 and 6 months after the start of treatment (Fig-

ure 1.7.K). Differential expression analysis of Cluster 1 cells stratified by the 4824 T>Cmutation status (Figure

1.7.L) identified the induction of PDIA6, a gene implicated in cancer cell proliferation (Gao et al., 2016), in cells

lacking the mutation, suggesting that it may be associated with the observed variation in sub-clone frequencies.

Thus, mitochondrial genetic analysis can improve stratification of malignant cells and enhance understanding of

clonal evolution and therapy resistance.

1.2.10 In vivo chimerism inferred frommtDNAmutations

Mitochondrial genotyping has the potential to allow efficient tracking of donor and recipient chimerism during

HSC transplantation (HSCT). We analyzed scRNA-seq profiles of peripheral blood mononuclear cells (PBMCs)

from an AML patient before and after HSCT, which were profiled with 3’ directed massively parallel scRNA-

seq (Zheng et al., 2017b). Although such approaches have substantially reduced coverage of mtDNA (Figures

A.2.A and A.7.G,H), we reasoned that a small number of homoplasmic mutations should be detectable. Indeed,

our analysis revealed two homoplasmic mitochondrial alleles distinguishing the donor and recipient cells (Figure

1.7.M), and inferred that 99.6% of cells sampled post-transplant were donor-derived, but four recipient cells were

still present. These results demonstrate the potential of using mitochondrial mutations to measure the dynamics

of donor chimerism in transplantation settings. Such approaches may demonstrate even greater sensitivity in

conjunction with currently employed approaches (Zheng et al., 2017b).

1.3 Discussion

Here, we describe an approach for high-throughput and unsupervised tracing of cellular clones and their states at

single cell resolution in native human cells by mtDNAmutation detection. This approach is likely to be broadly
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useful and immediately applicable, since mtDNAmutations can be readily detected by commonly employed sin-

gle cell genomic methods, including scRNA-seq and scATAC-seq, which concomitantly provide readouts of cell

state. We show that somatic mtDNAmutations with levels as low as 5% heteroplasmy can be stably propagated

and serve as clonal markers in primary human cells. We additionally provide an improved mutation detection

framework, where mutations are first identified based on a DNA-based bulk sample (lower threshold 0.5%), and

then called in scRNA-seq data, allowing for accurate mutation detection in RNA-based measurements. Over-

all, in our validation experiments, mitochondrial genotypes correctly inferred clonal lineage with ~95% accuracy

(Figures 1.1-1.3), achieving similar accuracy as widely applied genetic labeling methods.

Our approach has three key advantages: (1) it is highly scalable; (2) it is directly applicable to human tissues;

and (3) it is combined with assays to profile a cell’s state at the chromatin or transcriptome level. Conversely, sin-

gle cell whole genome sequencing can be applied in human tissues, but is neither scalable nor combined with a

functional state profile, whereas exogenous genetic barcoding cannot be applied to native human samples. For ex-

ample, 18,000 individual cells’ mitochondrial genomes can be sequenced at 100-fold coverage for the sequencing

cost of a single nuclear genome at 10-fold coverage, a depth not sufficient for confident mutation calling (Lodato

et al., 2015).

Our approach can be further enhanced in several ways. First, additional assays devised to focus on directly

measuring mitochondrial genomes can reduce cost and increase coverage (Figure 1.2.D). For example, we de-

veloped a scMito-seq protocol (Figure 1.2.C), potentially providing a higher fidelity of mitochondrial muta-

tion detection based on rolling-circle amplification (Ni et al., 2015) that could be also used in combination with

scRNA-seq (Macaulay et al., 2015). Currently, massively parallel scRNA-seq data from droplet based approaches

have limited coverage of the mitochondrial genome (Figures A.2.A and A.7.G,H), restricting their immediate

utility and application, though a combined enrichment and capture of mitochondrial transcripts could improve

this approach (Zemmour et al., 2018; Dixit et al., 2016). Finally, mtDNA sequencing could be combined with

nuclear DNA sequencing strategies to detect SNVs, CNVs, and microsatellites to further increase the fidelity and

reach of current single cell clonal tracing applications.
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One potential limitation with using mtDNAmutations for clone detection or lineage inference may arise

from the horizontal transfer of mitochondria between cells, which has been described in specific contexts, but

the extent and physiologic relevance of such a process remains unclear. The transfer of organelles appears to be

primarily triggered by various stress responses, is restricted to specific cell types, and can be a feature of malignant

cells, but the extent of organelle transfer appears to be limited (Caicedo et al., 2015; Griessinger et al., 2017; Mar-

lein et al., 2017; Moschoi et al., 2016; Torralba et al., 2016). Moreover, such transfer would have to be extensive

to significantly confound the analysis (Figure 1.7.I) and we have been unable to detect evidence of such transfer

in our data (Figures 1.3, 1.6, 1.7.J,K and 1.7.M). Another limitation is that we are currently unable to account

for phenotypic effects of the mtDNAmutations used for clonal tracing. Although most mutations likely have at

most small effects at the heteroplasmy levels investigated here, accurate maps of allele heteroplasmy and cellular

function will be an important area for further investigation.

Overall, we show that measuring somatic mitochondrial mutations provides a powerful and scalable approach

to assess cellular dynamics of native human cells. Mitochondrial mutations readouts are readily compatible with

single cell measurements of cell state to provide a potent means to relate stem and progenitor cells with their dif-

ferentiated progeny that should facilitate probing the molecular circuits that underlie cell fate decisions in health

and disease. Clonal tracking using mitochondrial mutations opens up a novel avenue to infer critically needed

relationships in large-scale efforts, such as the Human Cell Atlas or in tumor cell atlases, to better understand the

mechanics of homeostasis and development across a reference map of human tissues (Regev et al., 2018).

1.4 Acknowledgements

We thank members of the Regev and Sankaran laboratories for valuable comments and the Broad Institute Flow

Cytometry Facility for assistance with cell sorting. We are grateful to Leslie Gaffney for assistance with illustra-

tions. Funding: CAL is supported by F31 CA232670 from the National Institutes of Health (NIH). JCU is

supported by 5T32 GM007226-43 from the NIH. JDB received support from the Broad Institute Fellows pro-

26



gram and the Allen Institute Distinguished Investigator Award. JHC is supported by 5T32CA207021-03 from

the NIH. KP is supported by a research fellowship of the German Research Foundation (DFG). This research

was supported by a Broad Institute SPARC grant (AR and VGS), the New York Stem Cell Foundation (NYSCF,

VGS), the Howard Hughes Medical Institute (AR), the Klarman Cell Observatory (AR), a gift from Arthur,

Sandra, and Sarah Irving (NH), and NIH grants R33 CA202820 (AR), R01 DK103794 (VGS), R33 HL120791

(VGS), and R01 CA208756 (NH). VGS is a NYSCF-Robertson Investigator.

1.5 Author contributions

Conceptualization, LSL with input from CAL, JCU, AR, and VGS; Methodology, LSL, CAL, JCU, KP, AR,

and VGS; Formal Analysis, CAL with input from JCU, LHL, LSL, MJA, JDB, AR, and VGS; Investigation,

LSL, CAL, EC, CM, KP, WG, AB, TL, and CR; Resources, AR, VGS, MA, JDB, JHC, GMB, NH, and OR;

Writing – Original Draft, LSL, CAL, JCU, AR, and VGS with input from all authors; Writing – Review and

Editing, LSL, CAL, JCU, AR, and VGS with input from all authors; Visualization, CAL, JCU, LSL, and LHL;

Supervision, AR and VGS; Project Administration, OR, AR, and VGS; Funding Acquisition, AR and VGS.

1.6 Code and data availability

All sequencing data generated in this work is available on the gene expression omnibus (GEO) accession

GSE115218, along with tables that contain variant calls and heteroplasmy estimates for all primary data gener-

ated in this study. Custom code used for producing mtDNA genotypes from single-cell data are available here at

https://github.com/sankaranlab/mito-genotyping.

27



There is nothing permanent except change.

Heraclitus

2
Longitudinal assessment of clonal mosaicism in

human hematopoiesis via mtDNA tracing
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Abstract

Our ability to track cellular dynamics in humans over timein vivo has traditionally been limited. Here, we

demonstrate how somatic mutations in mitochondrial DNA (mtDNA) can be used to longitudinally track the

dynamic output of hematopoietic stem and progenitor cells in humans. Over the course of three years of blood

sampling in a single individual, our analyses reveal somatic mtDNA sequence variation and evolution reminis-

cent of models of hematopoiesis established by genetic labeling approaches. Furthermore, we observe fluctua-

tions in mutation heteroplasmy, coinciding with specific clinical events, such as infections and further identify

lineage-specific somatic mtDNAmutations in longitudinally sampled circulating blood cell subsets in individu-

als with leukemia. Collectively, these observations indicate the significant potential of how tracking of somatic

mtDNA sequence variation presents a broadly applicable approach to systematically assess hematopoietic clonal

dynamics in human health and disease.

2.1 Introduction

Recent studies have described the application of lineage tracing in model organisms (Rodriguez-Fraticelli et al.,

2018; Pei et al., 2017) and genetically modified cells in humans undergoing gene therapy (Scala et al., 2018; Biasco

et al., 2016). These studies have provided insights into clonal dynamics in complex tissues. In the hematopoietic

system, such inferences have provided previously unappreciated knowledge on the contributions of hematopoi-

etic stem and progenitor cells (HSPCs) to blood cell production (Jacobsen &Nerlov, 2019). However, as most

methods rely on the introduction of exogenous genetic labels (e.g. lentiviral- and transposon-based barcoding

or Cre-loxP based recombination), these techniques are not readily amenable to broadly study physiologic and

pathologic processes in humans. Assessing the dynamics of and outputs fromHSPCs in an unperturbed setting

in humans represents a methodological challenge, leaving open questions about their frequency, functionality,

and longevity (Scala & Aiuti, 2019). This raises the important question of how we can effectively and longitudi-

nally study clonal dynamics in humans.
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While somatic mutations in the nuclear genome have been leveraged to perform clonal lineage tracing in hu-

mans, these approaches are expensive and often error-prone in single-cells, limiting broader or routine appli-

cations (Lee-Six et al., 2018; Lodato et al., 2015). Recently, we and others have demonstrated the utility of so-

matic mitochondrial DNA (mtDNA) mutations as natural genetic barcodes that may be stably propagated across

cell divisions (see Chapter 1). Importantly, common genomic techniques, including the assay for transposase-

accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq), provide the means to concomi-

tantly assess cell type and state with mtDNA genotypes. As our previous work demonstrated substantial somatic

mtDNAmutational diversity within HSPCs, we reasoned that tracking these mutations would enable assessment

of clonal contributions to blood production. Specifically, as progenitor cell-specific mutations would be prop-

agated to differentiated circulating blood cells, we hypothesized that fluctuations of mtDNAmutations should

be reflective of the clonal output of progenitor cells over time. However, the utility of this approach to evaluate

longitudinal clonal dynamics remains unexplored.

2.2 Results

We reasoned that assessment of somatic mtDNAmutations in data from recent studies that have longitudinally

profiled human peripheral blood using genomic approaches could enable clonal inferences in circulating blood

and immune cells (Figure 2.1.A; B.1.A; Rendeiro et al. (2020); Chen et al. (2018a)). As virtually the entirety

of human mtDNA is transcribed, we reasoned that we could examine patterns of somatic mutation dynamics

from bulk RNA-seq data. To these ends, we processed 57 RNA-seq datasets that had been sampled over the

course of 161 weeks serially from a single individual (Chen et al., 2018a). Using our genotyping pipeline from

Chapter 1, we were able to identify numerous high-confidence mtDNAmutations and illustrate their dynamics

over nearly 3 years of peripheral blood sampling (Figure 2.1.B). These mutations were selected as they did not

show evidence of RNA-editing or other known biases. For example, while the 10000A>G allele was gradually

lost over the course of three years, the 295C>T allele increased in heteroplasmy during this time. In contrast,
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the 13636T>C allele appeared to be stably propagated over the full three years in vivo. Other mutations such as

829A>G and 10278A>C became more prominent in discrete windows spanning several months. Collectively,

these observations support distinct models of hematopoiesis, including those involving clonal succession (pro-

gressive recruitment of distinct clones, marked by specific mtDNAmutations) and others involving stability of

specific clones over periods of time (Yu et al., 2016; Scala et al., 2018). Considering all available alternative al-

lele frequencies, we observed a decay in the Spearman correlation of mutation frequencies comparing baseline

to subsequent time points (Figures 2.1.C and B.1.B), further reflecting the dynamic evolution of mitochondrial

mutations in the sampled circulating blood and immune cells.

As we previously observed highly-heteroplasmic mtDNAmutations in clonal lymphocytes (defined by T-cell

receptor rearrangements; see Chapter 1), we hypothesized that a subset of mutations may reflect clonal expansion

of lymphocytes in response to foreign pathogens (Figure B.1.C). Indeed, we observed a rare mutation (2394T>A)

emerge specifically when the donor was exposed to human respiratory syncytial virus (RSV; Figure 2.1.D), not-

ing the heteroplasmy was 0.0% at the previous timepoint (34 days prior). We confirmed the occurrence of this

specific mutation in matched whole-genome bisulfite sequencing (WGBS) data comparing time points where

viral infections were detected (Figure 2.1.E). These results paired with our previous observations suggest that

a subset of lymphocytes carrying the 2394T>A allele clonally expanded upon RSV infection and persisted at

detectable frequencies in peripheral blood for at least 10 days. Furthermore, we note the recurrence of two mu-

tations (1575A>G and 14250G>C) at times of clinically documented infection with adenovirus (ADV) and

human rhinovirus (HRV; Figure 2.1.F), respectively, suggesting virus-specific proliferation of distinct clonal lym-

phocyte populations in response to these infections. Together, our association of heteroplasmic variation with

these clinical infections indicate that mtDNA heteroplasmy can enable the assessment of clonal dynamics and

would be of particular value in settings where other clonal markers (such as lymphocyte receptor sequences) are

unavailable.

As HSPCs can give rise to multiple lineages, an extension of our results from bulk peripheral blood measure-

ments would be to examine the relative contributions of HSPCs to specific blood cell lineages, marked by the

31



Figure 2.1: Evidence of clonal mosaicism from mtDNA muta ons over 3 years in vivo. (A) Schema c of soma c mtDNA muta ons in
human cells. Each cell contains mul ple mitochondria, which in turn contain mul ple copies of mitochondrial DNA (mtDNA). (B) Exam-
ples of variable muta ons in vivo across three years of observa on that reflect clonal mosaicism in one donor. (C) Spearman correla on
of 57 me points (ordered by rela ve me of sampling) across me points sampled. Correla on value is measured with the baseline
sample. (D) Heteroplasmy of 2394T>A allele, which is associated with human respiratory syncy al virus (RSV) detec on in this donor;
inset shows heteroplasmy levels for 2394T>A for ~23 days a er the ini al detec on of RSV. (E) Corrobora on of 2394T>A allele in
me of RSV infec on using WGBS data at the six me points at specific days (le ) that correspond to infec on (right). (F) Heteroplasmic
muta ons specific the day of detec on for adenovirus (ADV, 1575A>G) and human rhinovirus infec ons (HRV, 10310T>G).
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presence of distinct somatic mtDNAmutations that are absent in other lineages (Figure 2.1.A). To explore this

concept, we reanalyzed 188 ATAC-seq profiles from surface phenotype-sorted circulating blood cell populations

from a cohort of eight patients with CLL that were collected up to 40 weeks following the initiation of ibrutinib

treatment (Rendeiro et al., 2020). Importantly, as mtDNA is nucleosome-free and therefore is highly suscepti-

ble to transposon insertion, ATAC-seq provides a facile approach for capturing somatic mutations in mtDNA.

Strikingly, we observed many instances of recurrently detected lineage-specific mutations across the sampled

time points, suggesting the presence of these somatic mtDNAmutations in a lineage-biased progenitor, includ-

ing 1496T>C in CD4+ T-lymphocytes (Donor CLL7), 10685G>A in CD8+ T lymphocytes (Donor CLL5),

and 822G>A in NK cells (Donor CLL1; Figure 2.2.B). Alternatively, some of these may represent mtDNA

mutations in clonally expanded and long-lived T lymphocytes. The persistence of these three mutations over

the course of sampling is distinguished from 6453T>C, a CD19+CD5- B-lymphocyte-specific mutation, that

declined over >20 weeks of sampling (Figure 2.2.C). Furthermore, we identified mutations that were shared

among multiple lineages, indicating that these mtDNAmutations may exist in multipotent progenitor popu-

lations (2.2.D). The incidence of these mutations in both CD19+CD5+ leukemic cells and CD19+CD5- B-

lymphocytes further support the notion that mtDNAmutations could be informative to trace sub-clonal struc-

ture in response to targeted therapies, such as ibrutinib9. Indeed, we observed instances of mutations (2885T>C

and 7496T>C) decreasing in frequency with treatment, suggesting that particular subclones carrying these alleles

are sensitive to the administered therapy (Figure 2.2.E).

To further verify the utility of our approach in potentially tracking clonal evolution in response to treatment,

we processed an additional 81 bulk ATAC-seq samples from patients with cutaneous T cell lymphoma (CTCL)

treated with histone deacetylase (HDAC) inhibitors (Qu et al., 2017). Reanalysis of these longitudinally col-

lected samples confirmed the detection of mtDNA sequence variation, further highlighting the utility of these

mutations to track clonal dynamics in response to therapies, including putative treatment sensitive and resistant

clones (Figure B.2). While our analyses largely elucidated specific examples of heteroplasmic mutations and their

dynamics, the bulk nature and relative sparsity of mtDNA transcriptome/ genome coverage of these data (RNA-
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Figure 2.2: Inference of puta ve mul -lineage contribu ons from HSPCs. (A) Schema c of hematopoie c stem and progenitor cell
(HSPC; unobserved) and six FACS-sorted popula ons. (B) Examples of cell type-specific muta ons in vivo across up to 240 days of
evalua on. Donor is indicated at the top of panel (e.g. CLL7). (C) Heteroplasmy of 6453T>C allele in donor CLL5, a CD19+CD5- B-
cell-specific muta on that decreases in frequency over 150 days of observa on. (D)Muta ons in two donors that are present in both
CD19+CD5+ (CLL) and CD19+CD5- B-cells. Arrow highlights one observed CD19+CD5- sample. (E) Examples of shared CLL and B-cell
muta ons that decay at different rates for two donors.
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seq for Figure 1; single-end sequencing ATAC-seq for Figure 2) limit confident detection of low frequency vari-

ants/ clones that would enable more comprehensive analyses. We suggest that future work utilize complementary

bulk and single-cell genotyping assays optimized for mtDNA sequence capture, as we have previously shown that

this can increase the resolution of inferences for clonal HSPC population dynamics (see Chapter 1).

2.3 Discussion

Overall, our results illustrate the potential to leverage somatic mtDNAmutations to longitudinally study clonal

dynamics and somatic mosaicism in human hematopoiesis in vivo, and we hope this further stimulates the design

of such prospective studies in this poorly charted area of biomedical research. For example, such studies could

enable assessments of cellular dynamics and responses to stressors, such as infections or acute blood loss, or com-

plement existing strategies to track subclonal evolution in leukemia via bulk and single-cell analyses. While these

results reflect a multitude of scenarios where bulk heteroplasmy changes could reflect clonal mosaicism, we note

that mtDNA heteroplasmy has been described to drift over time. However, our previous work has shown that

mtDNAmutations, depending on heteroplasmy, may be stably propagated to daughter cells over many cellular

generations9. In this respect, we emphasize the need for systematic longitudinal studies with single-cell technolo-

gies and computational tools to comprehensively model and reliably infer clonal dynamics for future analyses.

Taken together, our analyses illustrate a broadly applicable strategy to facilitate our understanding of clonal dy-

namics in human health and disease.
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Progress in science depends on new techniques, new

discoveries and new ideas, probably in that order.

Sydney Brenner

3
Droplet-based combinatorial indexing for massive

scale single-cell chromatin accessibility
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Abstract

Although recent technical advancements have facilitated the mapping of epigenomes at single-cell resolu-

tion, the throughput and quality of these methods have limited their widespread adoption. Here, we describe a

high-quality (105 nuclear fragments per cell) droplet microfluidics–based method for single-cell profiling of chro-

matin accessibility. We use this approach, named ‘droplet single-cell assay for transposase accessible chromatin’

(dscATAC-seq), to assay 46,653 cells for the unbiased discovery of cell types and regulatory elements in the adult

mouse brain. We further introduce combinatorial indexing to this droplet platform (dsciATAC-seq), resulting in

lower coverage and higher throughput measurements. We demonstrate the utility of this approach by measuring

chromatin accessibility across 136,463 resting and stimulated human bone marrow derived cells to reveal changes

in the cis- and trans-regulatory landscape across cell types and upon stimulation conditions at single-cell resolu-

tion. Altogether, in this work we describe a total of 510,123 single-cell profiles, demonstrating the scalability and

flexibility of this droplet-based platform.

3.1 Introduction

Although the primary sequence of the eukaryotic genome is largely invariant across cells in an organism, the

quantitative expression of genes is tightly regulated to define the functional identity of cells. Eukaryotic cells

use diverse mechanisms to regulate gene expression, including an immense repertoire (> 106) of DNA regula-

tory elements (Roadmap Epigenomics Consortium et al., 2015; Thurman et al., 2012). These DNA regulatory

elements are established and maintained by the combinatorial binding of transcription factors (TFs) and chro-

matin remodelers, which together function to recruit transcriptional machinery and drive cell-type specific gene

expression (Spitz & Furlong, 2012; Calo &Wysocka, 2013). DNA regulatory elements, characterized by their

functional roles (promoter, enhancer, insulator, etc.), are marked by a diverse array of histone and DNAmodifi-

cations (Calo &Wysocka, 2013). Both classical observations (Weintraub &Groudine, 1976) and recent genome-

wide efforts (Thurman et al., 2012) have shown that active regulatory elements are canonically nucleosome free
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and accessible to transcriptional machinery. Thus, methods that measure chromatin accessibility based on sen-

sitivity to enzymatic digestion followed by sequencing (Boyle et al., 2008; Hesselberth et al., 2009; Buenrostro

et al., 2013) provide an integrated map of chromatin states which encompass a diverse repertoire of functional

regulatory elements.

Methods to assay chromatin accessibility genome-wide have been used for a variety of applications including

the discovery of i) cell type-specific cis-regulatory elements, ii) master TFs that shape the regulatory landscape,

or iii) mechanisms for disease-relevant non-coding genetic variation (Gerstein et al., 2012; Maurano et al., 2012;

Thurman et al., 2012). However, these “epigenomic” approaches are generally applied to bulk samples, limiting

their resolution into the regulatory diversity underlying heterogeneous cell populations. In parallel, methods to

measure the transcriptomes of single-cells have been used to discover new cell types (Plasschaert et al., 2018) and

new functional cell states (Tirosh et al., 2016; Wagner et al., 2016), and provide additional motivation for the

development of tools to measure chromatin regulation at single-cell resolution (Kelsey et al., 2017).

Technological innovations have enabled the development of single-cell epigenomic methods (Kelsey et al.,

2017; Jin et al., 2015; Rotem et al., 2015); however, these approaches remain relatively low-throughput and high-

cost. Assay for Transposase Accessible Chromatin (ATAC-seq; Buenrostro et al. (2013)) is particularly promising

for single-cell studies due to the relative simplicity of the experimental protocol, and widespread use. Previous

efforts have adapted ATAC-seq to profile chromatin accessibility in single-cells, either by individually isolating

cells (Buenrostro et al., 2015) or by combinatorial addition of DNA barcodes (Cusanovich et al., 2018), to en-

able de novo deconvolution of cell types and the discovery of cell-type specific regulatory factors. However, these

current methods for single-cell ATAC-seq (scATAC-seq) remain either relatively low-throughput (100s to 1,000s

of cells/experiment) or provide low-complexity data (1,000s of fragments per cell). Therefore, new methods for

sensitive, scalable, and high-throughput profiling are needed to measure the full repertoire of regulatory diversity

across normal and diseased tissues.

To meet the challenges of assaying chromatin states in the breadth and depth of complex cell populations

within tissues, we report the development of a droplet-based scATAC-seq assay. In brief, our approach utilizes a
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droplet microfluidic device to individually isolate and barcode transposed single-cells. We demonstrate that this

approach results in substantially higher data quality than existing methods, and describe an approach to improve

cell throughput and cell capture efficiency by super-loading barcoded beads into droplets. Further, we extend this

droplet barcoding approach by combining this method with barcoded transposition (Cusanovich et al., 2018)

followed by super-loading cells into droplets, to develop droplet-based single-cell combinatorial indexing for

ATAC-seq (dsciATAC-seq), providing chromatin accessibility profiles at significantly improved throughput.

We apply these approaches to generate accessibility profiles of 510,123 cells, which includes i) a reference map

of chromatin accessibility in the mouse brain (46,653 cells), and ii) an unbiased map of human hematopoietic

states in the bone marrow (60,495 cells), isolated cell populations from bone marrow and blood (52,873 cells),

and bone marrow cells in response to stimulation (75,958 cells). These unbiased chromatin accessibility profiles

provide new insights into the regulators defining cells within these tissues. Further, we find that pooled stimulus

of human bone marrow derived cells uncovers mechanistic insights driving genetic variants leading to human

disease. Overall, this new approach for high-throughput single-cell epigenomics charts a clear course towards

obtaining an epigenomic atlas across normal tissues, and provides new opportunities for single-cell epigenomic

profiling at a massive scale.

3.2 Results

3.2.1 DscATAC-seq implemented on a droplet microfluidic device

In this work we describe a method for single-cell chromatin accessibility profiling using droplet microfluidics

and ATAC-seq. Consistent with previously described methods for bulk ATAC-seq, nuclei are first transposed

using Tn5 transposase to integrate sequencing adapters into regions of open chromatin (Buenrostro et al., 2013).

Importantly, previous studies have described that transposed nuclei and DNA remain intact following trans-

position (Buenrostro et al., 2013; Amini et al., 2014). We therefore leverage this finding and use intact trans-

posed nuclei as input material into a droplet microfluidics device, which co-encapsulates transposed chromatin
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with PCR reagents and barcoded beads into a single droplet (Figure 3.1.a). Each bead contains clonal copies of

oligonucleotides that encode a common PCR primer sequence and a bead-specific DNA barcode. Following co-

encapsulation, we perform droplet PCR to add cell-identifying DNA barcodes to transposed chromatin, and the

resulting pool of PCR products are then collected and prepared for sequencing. We refer to this droplet-based

scATAC-seq platform as dscATAC-seq.

To develop a robust and high-sensitivity platform, we optimized the concentration of Tn5 transposase (Fig-

ure 3.1.b; C.1.a-c). We found that increasing the total abundance and concentration of Tn5, notably the same

enzyme contained within a widely available commercial product (Appendix C), significantly improves the total

number of nuclear fragments, including improvements to the fraction of reads at transcription start sites (TSS)

and distal elements (Figure 3.1.b; C.1.a-c). Furthermore, we also adapted previously described transposition

methods to reduce the proportion of mitochondrial reads (Corces et al. (2016, 2017); Appendix C). Altogether,

these optimizations combined with droplet encapsulation and PCR, provide a platform for high-yield and high-

efficiency single-cell epigenomic profiling.

To optimize cell capture and throughput, we developed a joint experimental and computational strategy to

super-load beads into droplets. Our computational strategy, which we call the bead-based scATAC processing

(bap), determines bead barcodes with a high overlap of Tn5 insertion positions along the genome to identify and

merge barcodes within a common droplet (Figure C.1.d, Figure C.2.a-b). This analytical approach enables load-

ing beads at higher density, to increase the number of droplets with one or more beads, by identifying single-cells

barcoded with more than one bead barcode (Figure C.2.c-d; see Appendix C). To validate our approach we in-

cluded a library of random oligonucleotides to a dscATAC-seq experiment, enabling us to define true-positive

bead pairs based on the overlap of these exogenous sequences (Figure C.2.b,e-j). Using these orthogonal readouts,

the unique Tn5 insertions across single-cells and the random oligonucleotides introduced in this experiment, we

computed precision-recall and receiver operating curves to verify the accuracy and precision of the bap approach

(mean area under the receiver-operating curve (AUROC)=1.000 and mean area under the precision recall curve

(AUPRC)=0.997) (Figure C.2.k, Appendix C). We also found consistent experimental results across a range of
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Figure 3.1: dscATAC-seq enables high-resolu on characteriza on of open chroma n regions in single cells. (a) Schema c of technology.
Cells are transposed with Tn5 transposase, transposed chroma n is then barcoded and amplified in a microfluidic device. (b) Compari-
son of per-cell library sizes using different Tn5 condi ons using K562 cells. Three replicates (Rep1, Rep2, Rep3) are noted for the con-
centrated enzyme mixture (n=500 cells for each). (c) Comparison of the aggregate chroma n accessibility profiles from GM12878 cells
using different technologies, and visualiza on of single-cell chroma n accessibility profiles from dscATAC-seq. Aggregate chroma n
accessibility profile from dscATAC-seq is representa ve of ≥10 replicates. (d) Spearman correla on of reads in chroma n accessibility
peaks across bulk and single-cell technologies for GM12878 and K562 cells (n=1 for each). (e) The number of unique fragments align-
ing to human or mouse genomes using human (GM12878) and mouse (3T3) cells at 800 beads/μL. (f) Quality metrics of scATAC-seq
methods for GM12878 cells. Median library size for dscATAC-seq was 165,204 reads (le panel, all reads reported are passing quality
filters), compared to profiles generated from the Fluidigm C118 (50,443 reads) and a recently op mized sciATAC-seq method (Pliner
et al., 2018). Median frac on of mapped nuclear fragments for dscATAC-seq is 95% (middle panel). Boxplots: center line, median; box
limits, first and third quar les; whiskers, 1.5x interquar le range. Sample size for each method is shown in Figure C.3.c.
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bead concentrations without loss of data quality (Figure C.2.l-o). To compare the efficacy of our approach, we

uniformly processed cell line data (GM12878 and K562) generated using dscATAC-seq and from four other re-

cently published approaches (Buenrostro et al., 2018; Preissl et al., 2018; Pliner et al., 2018). We found that bulk

ATAC-seq (Buenrostro et al., 2013), DNase-seq (Thurman et al., 2012) and the aggregate chromatin accessibility

across the different single-cell technologies (Buenrostro et al., 2018; Preissl et al., 2018; Pliner et al., 2018) were

highly correlated (Figure 3.1.c,d). We also observed <2% collision rate (defined by >10% alternate species) with

800 beads/μL and 5,000 beads/μL (Figure 3.1.e and Figure C.2.n-o). Notably, this estimated collision rate (<2%)

is considerably lower than other previously described high-throughput sciATAC-seq methods (>5%; Cusanovich

et al. (2018)) (Figure C.3.a). Our dscATAC-seq method achieved improved library complexity per cell and num-

ber of cells per experiment without compromising the proportion of reads mapping to the nuclear genome (Fig-

ure 3.1.f and Figure C.3.b,c) – common quality metrics for scATAC-seq experiments. Notably, dscATAC-seq

recapitulates known variation in TF motif activity across single GM12878 cells as previously reported (Figure

C.3.d). Taken together, our newmethodology provides an approach for high-resolution profiling of chromatin

accessibility across thousands of single cells.

3.2.2 Epigenomic diversity of the adult mouse brain

We sought to determine whether our approach could be applied to large-scale efforts to identify cell types within

complex tissues de novo. Thus, we applied the dscATAC-seq platform to whole brain tissues derived from two

mice using our super-loaded bead concentration (5,000 beads/μL). Over 12 experimental libraries, we observed

a median cell capture of 5,324/5,600 (95%), consistent with our theoretical expectation (Figure C.2.f). Cells

passing additional stringent quality filters had a median of 34,046 unique nuclear reads, 58.8% reads in peaks and

an average of 2.5 bead barcodes per cell for 46,653 total cells (Figure C.4.a).

To characterize differences in chromatin accessibility across cell types, we first reduced dimensionality of our

mouse brain profiles by computing k-mer deviation scores (7-mers) using the chromVAR algorithm (Schep et al.,

2017). Cell clusters are identified using the Louvain modularity method built from a cell nearest-neighbor graph
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Figure 3.2: De novo classifica on of cell types in the mouse brain. (a) A t-SNE visualiza on of cells (n=46,653) derived from two mouse
whole brains across 12 experimental batches. Cells are colored by their iden ty across 27 clusters. (b) Aggregate chroma n accessibility
profiles per cluster surrounding the promoter region of known marker genes. Aggregate profiles were combined over 12 experimental
libraries. (c) Correla on matrix of mouse brain clusters defined by scRNA-seq (Zeisel et al., 2018) with dscATAC-seq clusters. Margin
labels indicate cell class. Each row is min/max normalized from the Spearman correla on of scRNA-seq derived marker genes. (d) Pro-
moter region chroma n accessibility scores for previously defined mouse brain marker genes. Per-cluster marker genes are denoted. (e)
Chroma n accessibility signal across 135,737 cell type-specific peaks within clusters defined in the mouse brain. (f-h) Cluster-specific
ac vity of known TF regulators in the mouse brain, each panel depicts the chromVAR devia on score for each transcrip on factor mo-
fs, including (f) Bcl11b (microglia), (g) Sox10 (oligodendrocytes), and (h) dopaminergic neurons. (i)Within-cluster varia on shown by
the Junb mo f. (j) Comparison of promoter region chroma n accessibility scores between Junb mo f high cells and low cells in EN01.
Empirical densi es of 47 annotated IEG compared to all annotated genes is shown. Sta s cal test: two-tailed, two-sample Kolmogorov-
Smirnov (n = 24, 360 genes).
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using the 7-mer scores, which uncovered 27 cell clusters. We then use these 7-mer features to subsequently map

each cell to a two-dimensional representation using t-Distributed Stochastic Neighbor Embedding (t-SNE) (Fig-

ure 3.2.a). Importantly, these clusters are largely uncorrelated with known technical confounders (Figure C.4.b-

d), and we observe a largely consistent pattern when compared to dimensionality reduction and clustering us-

ing latent semantic index (LSI) of our dscATAC-seq data as has been previously performed (Cusanovich et al.

(2018); Figure C.4.e). For comparison with previous techniques, we also analyzed published sciATAC-seq data

from two mouse brains, where we identified 13 clusters using this computational approach (Figure C.4.f), which

we attribute to the fewer cells assayed (5,744 cells), lower library complexities (median 14,681), and a smaller frac-

tion of reads in peaks per cell (median 30.0%) (Figure C.4.g,h).

To annotate these clusters, we calculated per-cluster promoter region accessibility scores (weighted-sum of

chromatin accessibility ±100 kb around the TSS) (Figure C.5.a). Of note, dimension reduction using promoter

region chromatin accessibility scores for all genes resulted in reduced resolution of neuronal subclusters (Figure

C.5.b). We therefore used previously annotated mouse brain marker genes to correlate our promoter region ac-

cessibility scores to a recently described single-cell transcriptomic atlas of cell types across 9 regions of the adult

mouse brain (Zeisel et al., 2018). We then used the highest correlation to the scRNA-seq clusters to partition

these dscATAC-seq clusters into the major mouse brain cell types. These clusters include microglia (MG1),

oligodendrocytes (OG1), oligodendrocyte progenitor cells (OPC; P1), astrocytes (A1), endothelial cells (E1),

inhibitory neurons (IN01-IN5) and excitatory neurons (EN01-EN17) (Figure 3.2.a). Pooled ATAC-seq signal

(Figure 3.2.b) and promoter region accessibility scores (Figure C.5.c-d) at known cell type specific gene markers

further validated the cluster assignments. Interestingly, we also observed consistently higher library complexity

and a higher ratio of distal to promoter reads per cell for annotated neurons compared to other cell types, suggest-

ing that neurons may have overall increased chromatin accessibility at distal regulatory elements (Figure C.5.e-g).

To refine cluster annotations, we employed an optimal matching algorithm to link our promoter accessibil-

ity scores to two published scRNA-seq datasets ( Saunders et al. (2018); Zeisel et al. (2018); Figure 3.2.c). Here,

we identified multiple scRNA-seq clusters to be highly correlated with each of our scATAC-seq clusters, likely
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reflecting the nature of the annotations which classify cell types both by expression signatures and from regions

of the brain. To define most likely pairs, we employed the Gale-Shipley algorithm to maximize the global correla-

tion (Spearman) of our cluster assignments to scRNA-seq clusters (Appendix C). Differentially enriched genes

in each scATAC-seq cluster provided further insights into the putative cell identities (Figure 3.2.d). For instance,

chromatin accessibility enrichment of Sst in IN04 suggests that this cluster corresponds to Sst+ (Somatostatin-

expressing) neurons, a defined subset of GABAergic inhibitory neurons with high levels of spontaneous activity

(Urban-Ciecko & Barth, 2016). Further, Syt6, a marker of layer 6 pyramidal neurons (Ullrich & Südhof, 1995),

is enriched in EN12. Htr1a and Htr2c, which encode serotonin receptors and are knownmarkers of serotonin

neurons (Meneses, 2015), are enriched in EN10 and EN07, respectively. Lhx1, a TF enriched in the suprachi-

asmatic nucleus that maintains synchrony among circadian oscillator neurons (Hatori et al., 2014) is enriched

in EN04. In addition to the inference of cell types, our approach also enabled the unbiased identification of

135,737 cell type-specific chromatin regulatory elements (Figure 3.2.e), which further validates the unique iden-

tity of each cell cluster and provides a general resource for defining regulatory elements to drive cell type-specific

reporters in effort to better understand the mouse brain (Visel et al., 2013).

To further utilize the underlying chromatin data of our resource, we sought to further examine cell type-

specific TF regulators within each cluster using transcription factor motif deviations. We observed strong en-

richments of the Bcl11b (Figure 3.2.f) and Sox10 (Figure 3.2.g) motifs in the microglia and oligodendrocyte clus-

ters, respectively. These knownmaster regulators further validate their cluster assignment using our approach.

Next, we identified a highly-specific activity of the Nr4a2 motif (Figure 3.2.h), suggesting that the EN13 cluster

is comprised of dopaminergic neurons, given the critical role of this TF in the development and maintenance of

the dopaminergic system (Kadkhodaei et al., 2009). In addition to observing cluster-specific transcription factors,

we found considerable within-cluster variability of the Junb TF motif specific to neuron clusters (Figure 3.2.i).

We hypothesized that this variability may reflect neural activity driving immediate early gene (IEG) expression

(Yap &Greenberg, 2018). Indeed, this hypothesis was supported by a statistically-significant enrichment of 47

previously annotated IEG genes between the Junb-high (z-score >0) and Junb-low (z-score <0) cells within the
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EN01 cluster (two-sample Kolmogorov-Smirnov test; p=1.93x10-7; Figure 3.2.j). Altogether, we observe that the

dscATAC-seq platform provides a powerful means for defining and annotating cell types and states while further

identifying cell type-specific chromatin features.

3.2.3 Droplet-based sciATAC-seq for massive-scale profiling

Although the dscATAC-seq approach can be scaled to generate data for large cell numbers by simply performing

the experiment across many replicates, as shown above (Figure 3.2), we reasoned that we could further increase

cell throughput by surpassing Poisson loading of cells in droplets (one cell per droplet). We therefore sought to

combine this approach with combinatorial indexing (Cusanovich et al., 2015) to improve throughput and enable

multiplexing of multiple samples in a given experiment. To achieve this, we developed a method for droplet-

based sciATAC-seq (dsciATAC-seq), wherein we load Tn5 transposase with barcoded DNA adapters to add well-

specific DNA barcodes to open chromatin. Following barcoded transposition, transposed cells are pooled and

loaded at high density to co-encapsulate multiple Tn5 barcoded cells with multiple beads in each droplet (Figure

3.3.a,b). Here, each individual cell may be identified by both the per droplet bead barcode and the well-specific

Tn5 barcode, enabling an increase in cell throughput proportional to the initial number of Tn5 barcodes used in

the experiment. Thus, using our droplet-based platform with barcoded Tn5 reactions increases the number of

theoretical barcode combinations to enable a greater cell or sample throughput, if cells originate from different

samples.

First implementing this technology with 24 transposase barcodes, we generated high-quality chromatin acces-

sibility profiles for up to 50,000 cells in a single well of the device representing one experimental sample. Species

mixing analysis (using Tn5 barcode-aware parsing; Appendix C) confirmed that we could increase cell through-

put approximately 10-fold while maintaining a collision rate lower than 5% using 24 transposase barcodes (Figure

3.3.c-e and Figure C.6.a) and confirmed a further reduction in the overall detected collision rates at large cell

inputs with 48 barcodes (Figure C.6.b). Altogether, in this cell titration experiment, we generated 274,144 single-

cell profiles demonstrating the massive scalability of this approach. Notably, to perform this experiment, we sepa-
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Figure 3.3: dsciATAC-seq enables massive scale single-cell experiments. (a) Schema c of dsciATAC-seq. Cells are transposed with
barcoded Tn5, pooled, and then further processed through the droplet PCR microfluidic device. (b) Representa ve image of droplets
containing mul ple beads and cells. Blue arrows indicate beads and red arrows indicate transposed nuclei. (c,d) The number of unique
reads aligning to the mouse or human genome from dsciATAC-seq profiles of human (K562) and mouse (3T3) cells with (c) 8,000 and (d)
80,000 cell input. (e) Summary of species mixing and cell yield results at variable cell inputs.
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rately purified and in vitro assembled barcoded Tn5 (Picelli et al., 2014). As this proof-of-concept experiment did

not utilize the optimized Tn5 concentration described in Figure 3.1.b, we observed fewer reads per cell but main-

tained a high fraction of reads in peaks (72.2%). Together, these experiments demonstrate that barcoded Tn5 can

enable super-loading of cells into droplets to achieve a significantly greater throughput for generating epigenomic

profiles from 104 to 105 single-cells per experiment.

3.2.4 Chromatin accessibility profiling of human bone marrow

Barcoded Tn5 transposition enables a significantly increased cell throughput and the opportunity to multi-

plex scATAC-seq to multiple conditions or samples. Notably, tissue-scale perturbations (Bendall et al., 2011)

have been used to uncover diverse cell response dynamics (Bodenmiller et al., 2012). We therefore reasoned that

pooled stimulation across heterogenous cell types within bone marrowmononuclear cells (BMMCs) would

provide unique avenues to understand the functional roles of epigenomic diversity within the human bone mar-

row. To achieve this, we used dsciATAC-seq using 96 transposase barcodes to profile BMMCs from two human

donors before (untreated controls) and after stimulation, producing chromatin accessibility profiles for a total of

136,463 cells passing quality filters (Figure 3.4.a and Figure C.7.a-f).

The reference map of 60,495 resting cells (untreated controls) revealed the major lineages of hematopoietic

differentiation de novo. To analyze these reference datasets, we projected the untreated BMMCs onto hematopoi-

etic development trajectories using a reference-guided approach, whereby single-cells are scored by principal com-

ponents trained on bulk sorted hematopoietic ATAC-seq profiles (Corces et al. (2016); Figure 3.4.a; Appendix

C). With this approach, we are able to visualize and predict cell labels given the bulk reference map of epigenomic

states (Figure 3.4.b). Further, using the Louvain modularity method, we identified 15 distinct clusters from the

60,495 resting cells, which recapitulate the major constitutive cell types in the human hematopoietic system (Fig-

ure 3.4.c). These de novo derived single cell clusters reflect changes in chromatin accessibility mediated by key

lineage-specific transcription factor motifs, including those associated with the step-wise progression of B-cell

development from hematopoietic stem cells (HSCs) to mature B-cells (Figure 3.4.c,d). While our embedding and
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Figure 3.4: Profiling human bone marrow cells with dsciATAC-seq reveals the major lineages of hematopoie c differen a on. (a)
Schema c of experimental and computa onal workflow used to assess bone marrow mononuclear cells dsciATAC-seq data. 96 Tn5
transposase barcodes are used to define different donors and s mula on condi ons. Library QC box displays the summary of data
passing quality filters across all assayed cells. 136,463 cells were iden fied passing filters of 60% reads in peaks and 1,000 unique nu-
clear reads. (b,c) Two dimensional t-SNE embedding of single bone marrow mononuclear cells without s mula on (n=60,495 cells).
Cells are colored by (b) the most correlated cell type from a bulk ATAC-seq reference or (c) 15 de novo defined cluster assignments
covering known hematopoie c cell types. Cell types covering the B-cell differen a on trajectory are highlighted. (d) Single-cells are
colored by TF mo f accessibility scores, computed using chromVAR, for the mo fs RFX3, ID4, BCL11A and EBF1. (e,f) Confusion matrix
showing the percent overlap between (e) published scATAC-seq data and (f) isolated subsets collected in this study.
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cell clustering were defined from bulk projections in keeping with our previous work, we note a considerable con-

cordance of these data using our de novo k-mer strategy (Figure C.7.g-i). Furthermore, we observed unexpected

epigenomic heterogeneity across transcription factor motifs, including CEBPD and BCL11A, within monocyte

clusters (Mono-1 andMono-2), which likely reflects the heterogenous developmental transitions frommyeloid

progenitors to mature monocytes, myeloid dendritic cells (mDCs) and granulocytes (Figure C.8.a).

To validate the clusters and cell type annotations from our approach, we assigned previously profiled FACS-

sorted single-cell ATAC-seq profiles from progenitors in human bone marrow and peripheral blood monocytes

(2,034 cells; see Buenrostro et al. (2018)) to clusters defined here. We classified these published single-cell data to

clusters based on the minimum Euclidean distance of a single-cell profile to a cluster medoid. We observed sig-

nificant overlap between each isolated subset and its corresponding cluster in the dsciATAC-seq data, validating

the progenitor cell type annotations (Figure 3.4.e). Furthermore, we performed dscATAC-seq on CD34+ bone

marrow progenitor cells, peripheral blood mononuclear cells (PBMCs), and from bead-enriched subpopulations

from PBMCs to derive a total of 52,873 cells, which validated our cluster label assignments for mature cell types

(Figure 3.4.f and Figure C.8.b). We also used an orthogonal approach to visually validate these findings by di-

mensionality reduction using the uniformmanifold projection (UMAP) algorithm (Becht et al., 2018), which

allows for data to be projected onto the dsciATAC-seq base dimensionality (Figure C.8.c-f). Collectively, we have

used this approach to define a reference epigenomic atlas of cell states within hematopoietic cells in the human

bone marrow, highlighting the applicability of our combinatorial approach to generate accurate large-scale epige-

nomic maps to define cell types within primary human tissues.

3.2.5 Regulatory consequences of multi-lineage stimulation

Our multiplexed, droplet-based sciATAC-seq method further provides a unique opportunity to decipher regu-

latory consequences of perturbation without concerns for batch-effects confounding experimental results. To

characterize the response of each immune cell cluster to stimulation conditions, we explored the differences be-

tween our untreated control cells and ex vivo cultured and LPS-stimulated BMMCs (Figure 3.4.a). To determine
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trans-acting regulators altered in response to these perturbations, we developed an analytical strategy wherein we

compute differential TF scores by i) defining a K-nearest neighbor map connecting stimulus to control condi-

tions, and ii) computing differential TF scores by calculating the difference in TF scores between each cell and the

average of 20-nearest stimulus cells (Figure 3.5.a).

Interestingly, we found significant and highly correlated epigenomic responses to both ex vivo culture and LPS

stimulation (Figure C.9.a-e), suggesting that the effects of ex vivo culture dominates those induced by LPS. For

clarity we simply refer to these conditions as “stimulation” for downstream analysis. With this stimulation data

representing the full spectrum of bone marrow hematopoietic cell states, we found cell type-specific induction of

a diverse repertoire of TF motifs (Figure 3.5.b-d and Figure C.9.f-j). This list of differential TFs included induc-

tion of the Jun and NFkB motifs, largely localized to human hematopoietic stem and progenitor cells (HSPCs)

(Figure 3.5.b,c), depletion of the SPIB motif in myeloid cell types (Figure 3.5.d) and relatively weak induction

of MAFF (myeloid) and IRF8 motifs (MEP and CLP to pre-B) (Figure C.9.i,j). Interestingly, Jun and NFkB

were largely correlated in HSPCs, with the exception of CLP and early erythroid differentiation, wherein cells

appeared to respond exclusively by NFkB motif induction (Figure 3.5.b).

Next, we examined the cis-regulatory consequences of stimulus across our multi-lineage defined cell states. To

compute differential chromatin accessibility peaks within each cluster, we devised a permutation test per peak,

permuting control and perturbation cell labels, which allowed us to improve the robustness of our statistical

methods by considering each cell as an independent observation (Figure C.9.k-l; Appendix C). This analysis

revealed a total of 9,638 distinct stimulus-responsive chromatin accessibility peaks (FDR 1%). Interestingly, we

broadly observed a gain in the total number of chromatin accessibility peaks, represented by the Mono-1 cluster

with 2,114 peaks gained compared to 1,264 peaks lost (binomial p-value < 2.2e-16) (Figure 3.5.e). A global gain

in chromatin accessibility upon stimulation was also corroborated by an approximate 20% gain in the average

library complexity per-cell. The most prominent cell types that responded to the stimulation treatment included

the two monocyte and CD4 T-cell clusters. Unexpectedly, we also observed 501 chromatin accessibility peaks

gained in the HSPC cluster, and approximately 34% of these HSPC gained peaks were unique to HSPCs (Figure
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Figure 3.5: Iden fica on of s mulus-response regulators in human bone marrow. (a) Schema c depic ng the computa onal workflow
for comparing s mulus versus control single-cell data. (b-d) Differen al TF devia on scores for (b) Jun, (c) NF-κB and (d) SPIB mo fs in
response to s mula on for n=60,495 res ng cells. (e) Summary of the number of differen al chroma n accessibility peaks across each
cluster at a false discovery rate (FDR) of 1% a er a two-sided permuta on test. Bars above the zero line represent gained chroma n
accessibility peaks, bars below the zero line represent lost chroma n accessibility peaks. (f) Hierarchical clustering of peaks (top) gained
or (bo om) lost across clusters, restricted to the differen al peaks iden fied in HSPCs. (g) Locus specific views of the ACTB promoter
and three fine-mapped variants iden fied through genome-wide associa on studies. The do ed line represents the loca on of the SNP
in each window.
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3.5.f), thus uncovering an HSPC-specific stimulus response signature. Altogether, considering the TF motif

and peak-specific analyses, we find that HSPCs respond to stimulus using the NFkB and Jun TF motifs to drive

an HSPC-specific stimulus response. This finding supports reports suggesting that HSPCs are responsive to

interferon-mediated immune signaling (Essers et al., 2009; Espín-Palazón et al., 2014), and may be used to further

characterize the regulatory basis of interferon signaling in HSPCs to nominate chemical inhibitors to facilitate ex

vivo expansion and gene editing of HSCs for hematopoietic stem cell transplantation (HSCT).

We further hypothesized that this approach to uncover cell type-specific stimulation changes could elucidate

mechanisms of relevant cell types and regulatory regions for variants implicated in genome-wide association stud-

ies (Farh et al., 2015). Towards this effort, we observed stimulation response chromatin accessibility peaks near

the IL10 locus in monocytes overlapping the pleiotropic rs302405 variant locus associated with Type 1 Diabetes

(posterior probability (PP) = 0.38), Crohn’s Disease (PP=0.40), and Ulcerative Colitis (PP=0.41), as well as chro-

matin accessibility gains at the variant rs2387397 associated with Celiac Disease (PP=0.32) within the natural

killer (NK) and T-cell clusters (Figure 3.5.g). Additionally, we observed a Mono-2 stimulation-specific peak over-

lapping rs6677309, a fine-mapped variant associated with multiple sclerosis (PP=0.49), near the CD58 locus

(Figure 3.5.g). Interestingly, CD58 presentation by activated monocytes has been shown to expand CD56+NK

cells (Lopez et al., 2001), which may promote an autoimmune response in multiple sclerosis (Laroni et al., 2016).

Overall, this single experiment comprising 60,495 resting and 75,968 stimulated cells enabled the unbiased dis-

covery of regulatory changes across stages of hematopoietic differentiation, and the unbiased identification of the

regulatory consequences of ex vivo perturbation across multiple lineages, providing new opportunities to better

define cell types within complex tissues and their relationship to stem cell therapy and autoimmune disease.

3.3 Discussion

In the genomics era of cell atlases, a major goal of single-cell methods is to provide an unbiased classification of

cell types and the epigenomic, transcriptomic and proteomic features that define them (Regev et al., 2018). We
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find that scATAC-seq maps can provide information rich measurements of cells (105 fragments per cell), which

enables the identification of cell types and their underlying regulatory elements. Further, previous work has sug-

gested that regulatory element activity may be a more accurate reflection of cell potential and perhaps more cell

type-specific than gene expression measurements (Corces et al., 2016). The scATAC-seq approach described here

produces single-cell profiles at higher-throughput, improved yield and higher sequencing efficiency than previous

scATAC-seq methods, providing a robust platform for identifying new cell types within heterogeneous tissues.

We expect that the combination of this scATAC-seq approach with scRNA-seq profiling will provide a more ac-

curate definition of cell types and further integration of these data (Stuart et al., 2019) will enable opportunities

to define mechanistic gene regulatory models to understand their function.

We present a series of technological innovations leading to a high-throughput epigenomic profiling approach

that enables super-loading loading of cells and beads into microfluidic droplets. To achieve this, we have devel-

oped a computational approach to identify droplets with multiple barcoded beads and paired this approach with

combinatorial indexing by barcoded transposition to add multiple cells per droplet. Combining these approaches

dramatically improves cell throughput to approximately 25,000 cells per well (100,000 cells per droplet device),

which we expect may be further improved with optimizations of the approach and additional Tn5 barcodes.

More generally, we expect this conceptual framework of combinatorial indexing coupled with a microfluidics

device may be compatible with other methods for high-throughput PCR and other single-cell genomics assays

leveraging combinatorial indexing for cell barcoding (Cao et al., 2018; Mulqueen et al., 2018).

This approach allows for multiplexing of many samples in a single experiment. In this work, we multiplex

control and perturbation conditions across an entire tissue, enabling us to define shared and cell type-specific

regulatory changes induced upon stimulation across diverse cell types. These advances for multiplexing exper-

iments along with advances in high-throughput sequencing, opens new opportunities to define not only cell

type-specific chromatin accessibility, but also changes across diverse genetic and environmental conditions. As

such we expect this approach to be used to profile epigenomic variation across healthy individuals or from co-

horts of diseased patients to determine the functional roles of both regulatory elements and cell types underlying
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common traits or in disease (Rakyan et al., 2011). Altogether, these advances enable a new era of single-cell epige-

nomic studies at a massive scale, providing a powerful new tool to connect the vast repertoire of DNA regulatory

elements to function.
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3.6 Code and data availability

Raw sequencing files and processed files for all data generated in this study were deposited at Gene Expression

Omnibus (GEO) under accession number GSE12358. Complete code and documentation for the software suite

developed in this study (bap - bead-based ATAC-seq processing tool) is available on GitHub under the following

weblink: https://github.com/caleblareau/bap. Scripts corresponding to the analyses contained in this paper are

further provided at: https://github.com/buenrostrolab/dscATAC_analysis_code.
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Reality is merely an illusion, albeit a very persistent one.

Albert Einstein

4
Inference & effects of barcode multiplets in

droplet-based single-cell assays
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Abstract

Awidespread assumption for single-cell analyses specifies that one cell’s nucleic acids are predominantly cap-

tured by one oligonucleotide barcode. Here, we show that ~13 − 21% of cell barcodes from the 10xChromium

scATAC-seq assay may have been derived from a droplet with more than one oligonucleotide sequence, which

we call “barcode multiplets”. We demonstrate that barcode multiplets can be derived from at least two differ-

ent sources. First, we confirm that approximately 4% of droplets from the 10x platformmay contain multiple

beads. Additionally, we find that approximately 5% of beads may contain detectable levels of multiple oligonu-

cleotide barcodes. We show that this artifact can confound single-cell analyses, including the interpretation of

clonal diversity and proliferation of intra-tumor lymphocytes. Overall, our work provides a conceptual and com-

putational framework to identify and assess the impacts of barcode multiplets in single-cell data.

4.1 Introduction

Droplet-based partitioning systems have become an essential tool for single-cell genomics research. In contrast

to plate-based single-cell assays, droplet-based methods, including scRNA-seq (Klein &Macosko, 2017; Zheng

et al., 2017b) and scATAC-seq (see Chapter 3 and Satpathy et al. (2019)) enable profiling of thousands of cells in

a single experiment. The marked increase in throughput is achieved by parallel barcoding of cellular nucleic acids

with beads containing high-diversity DNA barcodes. Critically, downstream computational analyses assume that

one barcode sequence equates to one cell.

In this work, we provide multiple lines of evidence that indicate that cells often associate with multiple bar-

codes by (i) multiple beads occurring within the same droplet or (ii) heterogeneity of oligonucleotide sequences

within a single bead (Figure 4.1a). Here, we refer to these instances whereby multiple DNA barcodes occur

within the same droplet as “barcode multiplets”. We find that barcode multiplets can considerably impact single-

cell analyses and demonstrate that rare cell events (e.g., the analysis of cell clones) can be particularly affected by

this artifact. Further, we provide a computational solution to identify these barcode multiplets in existing single-
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cell datasets, particularly from the scATAC-seq platform. Finally, we provide recommendations to mitigate these

biases in existing assays.

4.2 Results

4.2.1 Bead multiplets quantified through imaging

While cell doublet rates are routinely quantified by species-mixing analyses, analogous multiplet rates for bead

loading are scarcely discussed. Importantly, commonly used droplet-based assays (e.g. the 10xChromium plat-

form) leverage a close-packing ordering of beads (Abate et al., 2009) to load predominantly one bead per droplet

and achieve “sub-Poisson” loading. First, we sought to test this assumption and empirically quantify bead load-

ing within droplets. To achieve this, we loaded hydrogel training beads into droplets following recommended

guidelines and imaged the resulting solution. Beads were readily visible and quantifiable per droplet (Figure 4.1.b;

Figure D.1.a-d), enabling empirical estimates of the number of beads per droplet. A total of 3,865 droplets span-

ning 30 total fields of view (FOV) over three experimental replicates were quantified (Appendix D). Importantly,

while the training beads do not differ from those used in the regular protocol, the training buffer is required to

visualize beads after loading.

On average, we found that 16.1% of droplets contained no beads, 80.0% contained exactly one bead, and 3.9%

had two or more beads (Figure 4.1.c). These results were consistent with the previously reported results of this

platform (Zheng et al., 2017b) and confirm the sub-Poisson loading of beads into droplets (compare to Figure

D.1.e for optimal Poisson loading). While the mean of the bead loading was consistent with previous reports, we

note considerable run-to-run variability from our imaging replicates, ranging from 0.8% to 8.4% (Figure D.1.f).

Furthermore, we noted occurrences of large droplets with multiple beads (Figure D.1.g) that likely originated

from the errant merging of several individual droplets, yielding another source of potential barcode multiplets.

While our imaging results indicate that the occurrence of bead multiplets likely varies between machines and

individual runs, we note that the training kits are only a proxy for the reagents used in producing single-cell data,
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Figure 4.1: Quan fica on of barcode mul plets from mul ple beads in 10x Chromium pla orm. (a) Schema c of bead loading varia-
on and phenotypic consequences. Droplets with 0 beads fail to profile nucleic acid from the loaded cell (“dropout”) whereas barcode
mul plets frac onate the single-cell data. Barcode mul plets can be generated by either heterogeneous barcodes on an individual bead
or two or more beads loaded into the same droplet. The * indicates the bead mul plet that can be quan fied via imaging. (b) Repre-
senta ve example of beads loaded into droplets from the 10x Chromium pla orm. The white box is magnified 3x for the panel on the
right, revealing mul ple beads loaded into droplets. Stars indicate beads (except 0) and are colored by the number of beads contained
in the droplet. The image is representa ve of a total of 30 fields of view taken from 3 independent experiments. (c) Empirical quan fi-
ca on of number of bead barcodes based on image analysis over 3 replicates with previously published data (Zheng et al., 2017b). (d)
Percent of barcodes associated with mul plets under the distribu on observed in (c). Error bars represent standard error of mean over
the experimental replicates. 61



and may reflect a higher rate of bead doublets. Though imperfect, our results suggest that multiple beads may

co-occur in droplets and motivates additional computational analysis to determine potential barcode multiplets

While our estimate of the occurrence of multiple beads in droplets confirms previous reports2, we emphasize

that this problem is exacerbated when considering potential barcodes in single-cell data. On average, we esti-

mate that 11.4% of barcodes would represent barcode multiplets, reflecting droplets with heterogeneous oligonu-

cleotide sequences (Figure 4.1.d; Appendix D). Moreover, we note that imaging provides a lower-bound estimate

for the true occurrence of barcode multiplets for two reasons. First, droplets with four or more beads were as-

signed a count of four since the exact number of beads could not be reliably determined in these instances (e.g.

Figure D.1.d). Second, imaging cannot evaluate the possibility of heterogeneous beads, a second class of artifact

that leads to barcode multiplets (Figure 4.1.a). Despite the alarmingly high prevalence of barcode multiplets, the

effect of this confounding phenomenon has not been systematically considered in single-cell analyses. Intuitively,

these observed barcode multiplets fractionate data from the cell to multiple barcodes, resulting in a reduction of

data per cell and the substantial overestimation of the total number of cells sequenced by artificial synthesis of

barcodes reflecting the same single cell. With this artifact could be confirmed by imaging, we sought to further

understand its properties and effects in single-cell data.

4.2.2 Identifying barcode multiplets in 10x scATAC-seq datawith bap

Recently, we developed a computational framework called bead-based ATAC processing (bap), which identifies

instances of barcode multiplets in droplet single-cell ATAC-seq (dscATAC-seq; see Chapter 3). Critically, we dis-

criminate between multiple true cells and barcode multiplets by considering the Tn5 insertion sites, noting that

barcode multiplets would amplify the same exact fragments (Figure 4.2.a; Figure D.2). Thus, our computational

approach leverages the molecular diversity of Tn5 insertion sites across the genome to identify pairs of barcodes

that share more insertion sites than expected and merge these corresponding barcode pairs (Figure 4.2.a). Pre-

viously, we utilized bap to facilitate super-loading beads into droplets to achieve a ~95% cell capture rate with

a mean 2.5 beads/droplet (see Chapter 3). Here, we reasoned that bap may identify barcode multiplets in 10x
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Figure 4.2: Verifica on of bap to iden fy barcode mul plets using 10x scATAC-seq data. (a) Schema cs of methodology to detect bar-
code mul plets whereby cellular nucleic acids are tagged by two different oligonucleo de sequences and later inferred from sequencing
a scATAC-seq library from the same Tn5 inser ons per fragment. (b) Schema c of mixing experiment. Two channels were combined and
the resul ng merged files were analyzed with bap. (c-e) Knee plots comparing the top 500,000 barcode pairs from (c) only channel 1, (d)
only channel 2, and (e) between channels. The number of pairs calls is indicated by the number of points above the blue horizontal line
(Appendix D).

scATAC-seq data.

After updating bap to facilitate processing of the 10x scATAC data (Figure D.2; Appendix D), we conducted

an initial in silico experiment in order to verify the applicability of our approach to 10x scATAC-seq data. Here,

we combined two channels from a similar biological source ( ~5,000 cells of peripheral blood mononuclear cells;

PBMCs) and executed bap on the resulting combination (Figure 4.2.b; Appendix D). As any barcode pairs

merged between channels would be false positives, our approach facilitated an estimation of the false positive

rate of our approach in 10x data. After executing bap with the default parameters, 1,874 barcode pairs were iden-

tified as sharing an unusual number of shared transposition events. Specifically, 931 pairs from channel 1 (Figure

4.2.c) and 943 pairs from channel 2 (Figure 4.2.d) were identified. However, zero pairs were identified between
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channels (Figure 4.2.e), indiciating a very low false positive rate for bap when applied to this assay. Moreover,

the shape of the ranked-ordered barcode pair curves for the channels separately were distinct from the between-

channel curve (Figure 4.2.c-e). Overall, these results support the utility of bap in inferring barcode multiplets

from the 10x platform.

After establishing the applicability of bap for 10x scATAC-seq data, we sought to better understand the prop-

erties of barcode multiplets determined by bap, focusing on two datasets (“This Study” and “Public”; Appendix

D) of ~5,000 human PBMCs (Figure 4.3.a). Overall, we estimated the percentage of barcodes in multiplets were

13.2% (This Study; Figure D.3.a) and 17.6% (Public; Figure 4.3.b). These cell barcodes were identified from the

high-quality, error-corrected barcode sequences from CellRanger with abundant reads in peaks. Additionally,

since individual barcodes in the space of all possible barcodes are separated by a minimumHamming distance of

three in the 10x platform, the high prevalence of barcode multiplets is unlikely to be caused by sequencing errors.

Importantly, these implicated barcodes are normally considered in downstream analyses, including cell cluster-

ing and clonotype abundance estimates. Furthermore, we suggest that additional multiplets are present in the

library but likely did not pass thresholds for reads detected due to the fractionation of data associated with these

barcodes (Figure D.3.b; Appendix D).

Surprisingly, from these experiments, we observed instances in both datasets where barcode multiplets con-

tained at least 7 distinct barcodes. In particular, we observed two instances of multiplets containing 9 unique bar-

codes in the Public dataset. Here, each implicated barcode contained a restricted longest common subsequence

(rLCS) of 9 (Figure 4.3.c; Appendix D). As such, we suggest that these barcode multiplets likely reflect error dur-

ing barcode synthesis resulting in a single bead with multiple barcodes, resulting in a “complex bead” (Figure

4.1.a). Visualization of these barcode multiplets from dimensionality reduction using t-distributed stochastic

neighbor embedding (t-SNE) confirmed these barcodes reflect markedly similar chromatin accessibility profiles

(Figure 4.3.d; D.3.c). Overall, barcode multiplets generally co-localized with barcode singlets and do not dramat-

ically alter the interpretation of cell types in an embedding (Figure 4.3.e). However, we find that certain regions

of the t-SNE embedding contained a disproportionate concentration of barcode multiplets, which may lead to
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Figure 4.3: Inference and effect of barcode mul plets in single-cell ATAC-seq data. (a) Default t-SNE depic on of public scATAC-seq
PBMC 5k dataset. Colors represent cluster annota ons from the automated CellRanger output. (b) Quan fica on of barcodes affected
by barcode mul plets for the same dataset (iden fied by bap). (c) Depic on of two mul plets each composed of 9 oligonucleo de bar-
codes. Barcodes in each mul plet share a long common subsequence, denoted in black. (d) Visualiza on of two barcode mul plets from
(c) in t-SNE coordinates. (e) Visualiza on of all implicated barcode mul plets from this dataset. The zoomed panel shows a small group
of cells affected by five mul plets, indicated by color. (f) Empirical distribu on of the mean restricted longest common subsequence
(rLCS) per mul plet. A cutoff of 6 was used to determine either of the two classes of barcode mul plets. (g) Percent difference of the
mean log2 fragments between pairs of barcodes within a mul plet. The reported p-value is from a two-sided Kolmogorov–Smirnov
test. Boxplots: center line, median; box limits, first and third quar les; whiskers, 1.5x interquar le range. (h) Overall rates of barcode
mul plets from addi onal scATAC-seq data comparing v1.0 and v1.1 (NextGEM) chip designs.
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errant identification of presumed rare cell types (e.g. 5 unique multiplets shown in Figure 4.3.e).

To further elucidate these identified barcode multiplets, we annotated these barcodes with graph-based Lou-

vain clusters (produced using the default CellRanger execution). As expected, we observed a significant enrich-

ment of barcode multiplet pairs occurring in the same cluster (91.1% for This Study; 74.1% for Public) compared

to a permuted background (11.6% and 8.6% respectively; Figure D.3.d; Appendix D). We note that barcode mul-

tiplets not within the same cluster largely reflect barcodes split between multiple clusters of the same cell type (e.g.

myeloid cells; see Multiplet 5 in Figure D.3.c). Additionally, we observed a statistically-significant association be-

tween the Louvain cluster assignment and inferred barcode multiplet status for both This Study (p=0.0065) and

Public datasets (p=2.46e-05; chi-squared test; Appendix D). These results indicate that the barcode multiplets

can occur in clusters unevenly, potentially confounding inferences regarding cell-type abundance. Additionally,

through iteratively downsampling and re-executing bap, we confirmed the stability of our metric with sequenc-

ing depths as low as a median 10,000 fragments detected per barcode (Figure D.3.e; Appendix D), confirming

the broad utility of this approach. Overall, as these barcode multiplets represent quasi-independent observations

of the accessible chromatin landscape of the same single cell, we suggest that these identified barcode multiplets

may be utilized in a variety of different useful applications. Examples include determining sequencing saturation,

inferring sequencing biases, and benchmarking bioinformatic clustering approaches. Furthermore, these barcode

multiplets can be merged to improve data quality (see Chapter 3).

4.2.3 Contributions of types of barcode multiplets

Having verified the overall detection of the effects of barcode multiplets in these datasets, we sought to deter-

mine the relative contributions of each source of barcode multiplets to the overall abundance (Figure 4.1.a). To

achieve this, we established a null distribution by computing the rLCS for random pairs of barcodes from the 10x

whitelist (Appendix D). Over 1,000,000 sampled pairs, we determined that pairs with an rLCS ≥6 were extremely

uncommon assuming an independent co-occurrence (<0.5% probability of co-occurring; Figure D.3.f). Thus, for

inferred multiplets with a mean rLCS ≥6, we interpret these to be most likely caused by heterogeneous barcodes
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within a single bead. After computing the mean rLCS between pairs of barcodes per multiplet, we determined

that 87.5% of multiplets were likely caused by these complex or heterogeneous beads in the Public dataset (Figure

4.3.f). Using this classification, we could further estimate the prevalence of these complex beads to be 6.41% in

this dataset (Appendix D). Parallel analyses for This Study dataset yielded similar results (83.5% of barcode multi-

plets were due to complex beads; 4.95% of beads were heterogenous beads). Interestingly, the percent difference

between the log2 number of valid fragments for these two classes of multiplets showed greater variability in the

number of fragments per barcode for the complex beads than for barcode multiplets presumably caused by two

beads (Figure 4.3.g; Appendix D). This result supports the idea that there may be a predominant individual bar-

code sequence on these complex beads though there is detectable heterogeneity. Finally, as 10x recently released

their v1.1 “NextGem” design, we processed two additional datasets that were run with the two different chip

designs in parallel. Our results confirm that the abundance of barcode multiplets persists across both of these

two different chip designs (Figure 4.3.f) as well as the rates of complex beads and multiple beads underlying the

multiplets (Figure D.3.g).

4.2.4 External corroboration of barcode multiplets

In response to a pre-print version of this chapter, 10xGenomics released a letter a software solution to identify

multiplets from the output of the CellRanger-ATAC pipeline. In principle, their approach similarly utilizes

the molecular diversity of Tn5 cut sites to identify putative barcode multiplets. After obtaining this script, we

evaluated our two well-characterized PBMC datasets and determined that the rates of barcode multiplets were

extremely similar as >98% of barcodes were concordantly classified as belonging to a barcode multiplet or not

(Figure D.3.h; Appendix D). As a solution to the barcode multiplet artifact, the 10xmethod discards the lower

abundance barcodes per multiplet. While further analysis is required to determine the optimal strategy for han-

dling barcode multiplets, these results corroborate our estimates inferred and reported from bap.
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4.2.5 Confounding of clonal lymphocytes estimation from barcode multiplets

We suggest that many applications of the 10xChromium platform are unlikely to be impacted by bead mul-

tiplets. However, droplet single-cell approaches are now employed for purposes requiring increasingly precise

quantitation, such as highly multiplexed perturbations (Dixit et al., 2016), clonal lymphocyte analyses (Simone

et al., 2018), or diagnostics (Haque et al., 2017). Thus, for analyses of rare events, such as those routinely quanti-

fied in CRISPR perturbations or in clonal analyses of cells, the surprisingly high prevalence of barcode multiplets

may become particularly problematic. As one example, we hypothesized that barcode multiplets may signifi-

cantly alter quantitation of cell clones distinguished by unique B-cell receptor (BCR) and T-cell receptor (TCR)

sequences in a tumor microenvironment (Figure 4.4.a). Though there is no current approach to define bead mul-

tiplets in scRNA-seq data, we reasoned that certain abundant BCR and TCR clonotypes may be explained by

complex beads representing one true cell (similar to Figure 4.3.c). To test this, we reanalyzed a publicly available

dataset generated using the 10xV(D)J platform that analyzed lymphocytes from a non-small-cell lung carcinoma

(NSCLC) tumor (Figure 4.4.a). Indeed, we observed two instances of a BCR clone with four or more cells that

could be more parsimoniously interpreted as barcode multiplets derived from a single B-cell (Figure 4.4.b). In

particular, all presumed cells from these clones shared an rLCS of ≥9, an extremely unlikely event assuming true

clonal cells would be randomly assigned barcode sequences (Figure D.3.f; D.1.a). Indeed, the distribution of the

rLCS across all BCR clonotypes indicated a detectable bias indicative of barcode multiplets (Figure D.1.a; Ap-

pendix D). Furthermore, we identified additional clones that were depicted with a more complex heterogeneous

structure that still broadly reflected bead synthesis errors (Figure 4.4.c).

Having established the clear possibility of barcode multiplets occurring in these data, we sought to determine

how the interpretation of the overall clonality would be changed when accounting for the barcode multiplets.

Using conservative estimates of barcode multiplets from the scATAC-seq analyses, we conducted a series of sim-

ulations (Appendix D). Overall, the percentage of cells associated with a clonotype comprised of at least two cells

decreases considerably for both BCR (24.5% to 18.6%; Figure 4.4.d) and TCR (23.6% to 17.9%; Figure 4.4.e)
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Figure 4.4: Confounding of intratumor clonal lymphocytes inference from barcode mul plets. (a) Schema c of intra-tumor lymphocytes
iden fied from single-cell V(D)J sequencing on the 10x pla orm. (b) Iden fica on of two presumed clonotypes composed of 5 and 4
barcodes. These clonotypes are likely to have been derived from one cell observed mul ple mes via barcode mul plets. (c) Example
of a presumed clone composed of 5 barcodes with mul ple constant sequences. (d,e) Overall summary of prevalence of (d) B-cell and
(e) T-cell clone size before and a er adjus ng for observed rates of barcode mul plets in single-cell data. Error bars represent standard
errors of the mean across 100 permuta ons.

69



clonotypes. Further analyses indicated a clone false discovery rate as high as 23.5% (BCR) and 22.5% (TCR) in

these data (Appendix D), painting a much more conservative picture of clonality within NSCLC tumors. The

results from these simulations indicate that bead multiplets may significantly confound clonal analysis and that

this quantifiable discrepancy may falsely lead to conclusions of clonal expansion of lymphocytes in primary tu-

mors.

4.3 Discussion

Overall, our work provides a new perspective to consider barcode multiplets in single-cell data. Though the ex-

act chemistry of the training beads and reaction is different than what is typically employed in the 10x single-cell

reactions, our imaging results confirm detectable bead multiplets as previously reported (Zheng et al., 2017b).

Additionally, we show that bap, a computational algorithm designed to infer barcode multiplets, can be applied

to sequenced scATAC-seq data from the 10x platform and confidently identify barcode multiplets. As the rates

inferred from imaging and from bap are derived from distinct sources (i.e. bead/droplet counting versus sequenc-

ing), discretion is required when comparing between the detection modalities. Further analyses of multiplets

identified by bap indicate that putative heterogeneity of beads in the 10x reaction is the predominant driver of

the surprisingly high rates of multiplets in these datasets. Our analyses of clonal cells marked by BCRs and TCRs

further suggest that bead sequence heterogeneity may be an artifact present across multiple sources of 10x single-

cell data.

Conceptually, the presence of heterogeneity in beads is unlikely to be caused by an on/off process and instead

likely exists as a spectrum across all beads used in these assays. As the estimated number of complex beads relies

on sufficient amplification and detection of lower-frequency barcodes inside of droplets, the proportion of bar-

codes affected by this artifact becomes a function of the read depth (Figure D.3.e) and the barcode threshold

(Figure D.3.b), which are in turn functions of the underlying chemistry of the assays. While our estimation of

the clone false discovery rate assumed comparable rates for barcode multiplets for scATAC-seq and scRNA-seq
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methods, technical differences across these assays could also result variable barcode multiplet abundances. As

such, our work motivates further investigation into the relationship between barcode multiplets and clonal diver-

sity across various technical platforms.

As single-cell approaches move toward the precise quantification of rare cell types, trajectories, perturbations,

and clones, an understanding of potential artifacts is essential as their confounding effects may become exacer-

bated in large datasets. Additionally, as these measurements move toward clinical applications9, particularly in

tumors where TCR repertoire may serve as a prognostic biomarker (Cui et al., 2018), barcode multiplets may

significantly confound interpretation. In some analyses (with <15% clones), we anticipate that many identi-

fied clonal cells may arise from bead multiplets. While our existing computational approach (bap) can facilitate

the identification of barcode multiplets in scATAC-seq data, further experimental and computational tools are

needed to more broadly identify these effects in RNA or genome sequencing droplet-based assays. We envision a

combination of dense exogenous barcodes via cell hashing (Stoeckius et al., 2018) and evolved by CRISPR-Cas9

(Raj et al., 2018) or intrinsic features such as clonal mutations, rearrangements, or highly correlated abundances

with barcode sequence similarity metrics could be leveraged to better infer barcode multiplets. Such approaches

would complement existing tools that robustly identify cell doublets (Wolock et al., 2019; McGinnis et al., 2019)

and empty droplets (Lun et al., 2019) from droplet-based scRNA-seq and further mitigate hidden confounders

in single-cell data. Until then, we suggest that inferences regarding rare cell events should be corroborated across

multiple channels or technologies to validate interpretation.

Taken together, our estimation and identification of barcode multiplets has a wide range of potential applica-

tions and confounding effects that influence widely-used droplet-based single-cell assays.
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By the end of several generations, all the descendants of

the tribe, male or female, might track their mitochondrial

ancestry...

Siddhartha Mukherjee, The Gene

5
Massively parallel single-cell mtDNA genotyping

& chromatin profiling in human cells
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Abstract

Natural mitochondrial DNA (mtDNA) sequence variation enables the inference of clonal relationships

among human cells, and, in the case of pathogenic mutations, can contribute to human diseases. Unlike other

genotyping approaches, mtDNA can be profiled along with measures of cell state, but has not yet been combined

with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a

high-throughput, droplet-based mitochondrial single-cell Assay for Transposase Accessible Chromatin with

sequencing (mtscATAC-seq) protocol and computational framework that facilitate high-confidence mtDNA

mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile.

This enables the paired inference of individual cell mtDNA heteroplasmy, clonal relationships, cell state, and ac-

cessible chromatin variation. Our multi-omic analyses reveal single-cell variation in heteroplasmy of a pathologic

mtDNA variant (m.8344A>G), which we associate with intra-individual chromatin variability and clonal evo-

lution. Moreover, using somatic mtDNAmutations, we clonally trace thousands of differentiating hematopoi-

etic cells in vitro and in patients with chronic lymphocytic leukemia, linking epigenomic variability to subclonal

evolution in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal

properties of human cells in vivo in health and disease.

5.1 Introduction

Mitochondria play a central role in cellular metabolism and are unique organelles, carrying their own genome -

often in high copy number - encoding a subset of proteins, tRNAs, and rRNAs essential to their function. Mu-

tations in the mitochondrial genome are associated with a multitude of clinical phenotypes that are estimated to

affect ~1 in 4, 300 individuals, making them among the most common inherited metabolic disorders (Stewart

& Chinnery, 2015). Critically, the fraction of mitochondrial genomes carrying a specific variant - heteroplasmy

- may dictate the degree of severity in an organ system in affected patients (Stewart & Chinnery, 2015; Shoffner

&Wallace, 1992; Elliott et al., 2008). Furthermore, the high mutation rate (~2-10x that of nuclear DNA), leads
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to accumulation of somatic mtDNAmutations with time that may contribute to aging phenotypes (Stewart &

Chinnery, 2015). While genomic approaches are emerging to quantify the level of heteroplasmy, the large major-

ity of sequencing assessments have been based on bulk cell populations, limiting detection of somatic mutations

in individual cells (Morris et al., 2017; Kang et al., 2016).

Recently, we (see Chapter 1) and others (Xu et al., 2019) have shown that commonly used single-cell profiling

approaches can detect heteroplasmic or homoplasmic mutations, which we further leveraged as natural genetic

markers in clone and lineage tracing of human cells along with their cell state. Due to the relatively small size

of the mitochondrial genome (16.6 kb) and its higher copy number per cell, retrospective inference of cellular

relationships by somatic mtDNAmutations is significantly more cost-effective and robust compared to muta-

tion detection in the nuclear genome by single cell whole-genome sequencing. Moreover, single-cell RNA- and

ATAC-seq (scRNA/ATAC-seq) allow concomitant mtDNAmutation detection along with the transcriptional

or accessible chromatin cell state. While this presents a powerful system for larger scale clonal / lineage tracing

in humans in vivo, only modest-throughput single-cell genomic assays had sufficient coverage of mitochondrial

sequences for reliable mutation detection, whereas the massively parallel methods needed to draw meaningful

conclusions on many biological systems had insufficient mitochondrial coverage. Therefore, additional innova-

tions are required to increase the scale and scope of joint single-cell mtDNA genotyping in conjunction with cell

state measurements.

As recently reported droplet-based scATAC-seq techniques enable the profiling of accessible chromatin in

thousands of cells per experiment (see Chapter 3), we hypothesized that with appropriate modification, they

may facilitate the enrichment of non-chromatinized (and thus readily transposase-accessible) mtDNA. However,

these droplet-based protocols rely on processing of nuclei, thereby depleting mitochondria and resulting in only

~1% of reads mapping to mtDNA, compared to 20-50% in the original ATAC-seq protocol (Buenrostro et al.,

2013); a level that is inadequate for single-cell mutation calling and clonal inferences.

Here, we establish mtscATAC-seq, a massively parallel protocol for high and uniform single-cell mitochondrial

genome coverage that retains high-quality chromatin accessibility data concomitantly, and combine it with ro-
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bust computational methods to identify rare, clonal mtDNAmutations in healthy and diseased cells. We demon-

strate the wide applicability of mtscATAC-seq to quantify single-cell mitochondrial genotypes in the context of

mitochondrial disease and clonally trace thousands of native human cells in vitro and in vivo. Given the multi-

omic nature, we envision the broad utility and applicability of mtscATAC-seq to enhance our understanding of

mtDNA genotype-phenotype correlations and reconstruct clonal dynamics across diverse areas of human health

and disease.

5.2 Results

5.2.1 Development and validation of mtscATAC-seq

To develop mtscATAC-seq, we modified the droplet-based scATAC-seq workflow of the widely used 10xGe-

nomics Chromium controller to improve mtDNA yield and genome coverage. As most scATAC-seq proto-

cols use nuclei, depleting cytoplasmic mitochondria, we turned to processing whole cells to retain mtDNA.We

further reasoned that mild lysis or permeabilization of cells would be required for the Tn5 enzyme to integrate

adapters into accessible nuclear chromatin and mtDNA.Moreover, as cells contain multiple mitochondria,

which may be more readily released upon cell lysis or permeabilization, we reasoned that fixation should mini-

mize leakage of mtDNA between cells. Finally, we aimed to identify conditions retaining high-quality chromatin

accessibility data.

We systematically tested for conditions that satisfy all of these desired features in a mixture of two human

hematopoietic cell lines (GM11906 and TF1; Figure 5.1.a) by evaluating mtDNA abundance, specificity (i.e.,

mtDNA fragments associated with its corresponding nuclear genome), and fragment complexity (for mtDNA

and chromatin). Because each cell line harbored private homoplasmic mutations, we could sensitively detect

mtDNA abundance, cell doublets, and possible mtDNA crosstalk due to cell lysis or permeabilization and tag-

mentation that occurs in a pool prior to droplet-mediated separation of cells. Omitting digitonin and tween-

20 in the lysis and wash buffers (“Condition A”) yielded substantially more mtDNA fragments per single-cell
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(median 21.5%) than the recommended lysis protocol (1.9%; Figure 5.1.b; Appendix E), consistent with ear-

lier observations (Corces et al., 2016). These modified conditions retain high-quality chromatin accessibility

data: while per-cell complexity of nuclear fragments slightly decreased (Figure E.1.a), other metrics associated

with scATAC-seq data quality improved, such as the fraction of reads in annotated DNase hypersensitivity peaks

(from 74.1% to 79.7%; Figure 5.1.c) and fraction overlapping transcription start sites (TSS) (from 27.9% to 33.2%

Figure E.1.b). BioAnalyzer traces confirmed an increased ratio of nucleosome free to mononucleosome frag-

ments, consistent with the increased recovery of mtDNA (Figure E.1.c). Based on 43 high-confidence homoplas-

mic mtDNA variants private to each cell line (Appendix E), ~8.7% of barcodes carried otherwise cell type-specific

homoplasmic variants at intermediate (60%-90%) heteroplasmy, indicating contamination of mtDNA fragments

across cells (Figure 5.1.d; Figure E.1.d). Because this contamination may occur due to the release of mitochondria

during processing, we added a fixation step with formaldehyde (FA), consistent with other scATAC-seq work-

flows (Chen et al., 2018b). Indeed, fixation with 0.1 or 1% FA led to a ~3x reduction in mtDNA fragment cross-

contamination (Figure 5.1.e,f; Figure E.1.d), a 55% increase in mitochondria fragment complexity (Figure E.1.e),

and restoration of chromatin library complexity (Figure E.1.f). After removing cell doublets (Appendix E), the

empiric rate of contamination was 0.16% (Figure 5.1.f), which is consistent with the order of magnitude for

short-read sequencing error (Ross et al., 2013). Importantly, FA treatment did not introduce additional mtDNA

mutations as shown by comparison of variant allele frequencies of unfixed and fixed aggregated cell data (Figure

E.1.f).

Furthermore, we observed regions of lower coverage across the mitochondrial genome per single-cell, which

we determined were due to high homology (and thus low mappability) to nuclear mitochondrial DNA segments

(NUMT). We reasoned that due to the high mtDNA copy number and the high Tn5 accessibility of mtDNA,

ambiguous fragments could be confidently assigned to the mitochondrial genome with a low false positive rate.

Indeed, we estimated that only ~1 accessible fragment fromNUMTs would be detected per cell (by analyzing

a compendium of DNase hypersensitivity data (Roadmap Epigenomics Consortium et al., 2015; ENCODE

Project Consortium, 2012) and additional public scATAC-seq data; Appendix E), such that these are unlikely to
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Figure 5.1: Op miza on of a high-throughput single-cell mitochondrial DNA genotyping pla orm with concomitant accessible chro-
ma n measurements. (a) Schema c of cell line mixing experiment between indicated two human hematopoie c cell lines. (b) Distribu-
on of percentage of mtDNA reads per single cell for screened condi ons. (c) Distribu on of percentage of reads mapping to annotated
DNase hypersensi vity peaks (nuclear reads only) per single cell. (d)Mitochondrial SNP mixing depic on of variants for the TF1 or
GM11906 cell line for “Condi on A” as in (b). Both axes are log transformed. (e) Same as (d) but for “Condi on A” with 1% FA treat-
ment. (f) Summary of contamina on (percent of reads from minor cell popula on) for FA treated and untreated comparison. (g) Depic-
on of overall mitochondrial genome coverage improvements from three biotechnical and computa onal op miza ons (mtscATAC-seq)
compared to the original protocol. Boxplots: center line, median; box limits, first and third quar les; whiskers, 1.5x interquar le range.
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be a confounding element in heteroplasmy estimation. We therefore developed a computational approach that

effectively assigns reads that map to both the mitochondrial and nuclear genome strictly to mtDNA, facilitating

near-uniform coverage without altering chromatin complexity (Figure 5.1.g; Figure E.1.g-i).

Overall, mtscATAC-seq combines our modified lysis, cell fixation, and computational analysis of multi-

mapping reads, leading to a ~20-fold increase in mean mtDNA coverage per cell (from 9.6x to 191.0x; Figure

5.1.g) and in fraction of mtDNA reads (median per cell from 1.9% to 36.8%; Figure E.1.h) with only modest re-

duction in chromatin complexity (median per cell from 87,569 to 73,864; Figure E.1.e) and in reads mapping to

pre-annotated DNase hypersensitivity peaks (from 74.1% to 72.3%), retaining cell type-specific accessible chro-

matin peaks (93.8% of 777,704 peaks; Figure E.1.j; Appendix E).

5.2.2 Single-cell features of pathogenic mtDNAmutations

We used mtscATAC-seq to identify pathogenic mtDNAmutations in individual cells, and gain insights into their

impact. The GM11906 lymphoblastoid cell line used in the mixing experiment (Figure 5.1) was derived from

a patient diagnosed with myclonic epilepsy with red ragged fibers (MERFF), a mitochondrial disorder that in

80-90% of cases is caused by a 8344A>Gmutation that alters tRNA function2 (Figure 5.2.a). Bulk ATAC-seq

analyses of these cells estimated a population heteroplasmy of 44% for the 8344A>G allele, consistent with pre-

vious reports (Dames et al., 2013). We retained 818 high-quality data GM11906 cells with at least 50x single-cell

mtDNA coverage and 40% reads in ATAC peaks (Figure 5.2.b). Interestingly, we observed a broad range of het-

eroplasmy values (0% to 100%) for the 8344A>G allele, with a median of 38%, consistent with the heteroplasmy

estimation from bulk ATAC-seq (Figure 5.2.c), and from previous family studies of this mutation (Wallace &

Chalkia, 2013). We independently replicated the distribution of heteroplasmy levels with 70 high-quality cells

from the Fluidigm C1 scATAC-seq platform (Buenrostro et al., 2015) and in situ hybridization (Lee et al. (2015);

Figure 5.2.c-e, Figure E.2.a). Thus, our mtscATAC-seq approach enables reliable single-cell genotyping of mito-

chondrial variants, including those causing disease.

Analysis of matched chromatin profiles highlighted specific loci and TF activities that are associated with dif-
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Figure 5.2: Pathogenic mtDNA variability and clonal evolu on in cells derived from a pa ent with MERRF. (a) Schema c of the mito-
chondrial lysine tRNA secondary structure with sequence and the pathogenic single nucleo de variant (8344A>G). (b) Quality control
filtering for GM11906 single cells based on mean mtDNA genome coverage and percentage of nuclear reads in chroma n accessibility
peaks. (c) Quan fica on of 8344A>G heteroplasmy variability in single GM11906 cells across three technologies. Numbers (n) of cells
plo ed are shown. Color represents the within-assay coverage percen le. Black bars indicate the median heteroplasmy per technology;
the do ed line presents the mean heteroplasmy as determined for bulk ATAC-seq. (d) Field of view for in situ genotyped GM11906
cells, highligh ng (e) single cells with low, medium, and high heteroplasmy as indicated for the pathogenic allele. (f) Per-gene score
Spearman correla ons with the 8344A>G allele heteroplasmy. The grey dots show values for a permuta on. Pseudo bulk accessibility
track plots are shown for the (g) NR2F2, (h) TRMT5, and (i) SENP5/ NCBP2-AS2 loci. Pseudo-bulk groups were binned based on 0-10%
(low), 10-60% (mid), and 60-100% (high) 8344A>G heteroplasmy. (j) Per-muta on heteroplasmy correla on with 8344A>G allele. The
8202T>C muta on is highlighted as the most correlated muta on. (k) Single-cell heteroplasmy for two indicated muta ons. The circled
popula on represents a double-posi ve popula on for both muta ons. (l) Abundances of each variant on single sequencing reads in the
double posi ve popula on. (m) Schema c of the co-evolu on of two subclonal popula ons marked by indicated muta ons detected
based on single-cell genotyping data. Puta ve cell transi ons are indicated with solid arrows that may be a result of selec ve pressure
of the pathogenic variant and/ or gene c dri .
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ferent levels of the 8344A>G allele. First, promoter accessibility scores (see Chapter 3) of 32 and 94 genes were

confidently positively or negatively correlated, respectively, with single-cell 8344A>G heteroplasmy, correspond-

ing to <1% false discovery rate (FDR) (Figure 5.2.f; Appendix E). Binning cells into high (>60%; n=273), inter-

mediate (10-60%; n=228), and low (<10%; n=313) heteroplasmy for the pathogenic allele highlighted distinct

chromatin features near NR2F2, TRMT5, and the SENP5/ NCBP2-AS2 loci (Figure 5.2.g-i). Notably, genes

near these loci have been broadly linked to mitochondria biology, including in mitochondrial pathology (Wu

et al., 2015) and function (Zunino et al., 2007), respiratory chain deficiencies (Powell et al., 2015), and cell sig-

naling under hypoxic conditions (Kugeratski et al., 2019). The accessibility profiles at other loci were virtually

indistinguishable (Figure E.2.b,c), suggesting that the observed variations in Figure 5.2.g-i may be a consequence

of disease allele heteroplasmy. Furthermore, we identified transcription factors (TFs) whose activity may be as-

sociated with the mutation by scoring TF binding sites (from ChIP-seq; Appendix E) whose accessibility was

correlated with pathogenic heteroplasmy. In particular, MEF2A andMEF2C were strongly anti-correlated with

pathogenic heteroplasmy. Notably, the transcription factor MEF2 is a target of mitochondrial apoptotic cas-

pases, supporting a model where pathogenic allele heteroplasmy may regulate nuclear factor activity, suggesting

mechanisms of coordination between both genomes (Brusco &Haas (2015); Figure E.2.d,e). While any individ-

ual cis- or trans- alteration requires further experimental investigation, these analyses demonstrate the potential

to study the altered cellular circuits resulting from pathogenic mtDNA variants in a heteroplasmy-dependent

manner.

Notably, a second highly heteroplasmic mutation, 8202T>C (bulk heteroplasmy 34%) was the most correlated

mutation with the 8344A>G variant across the single cells (Figure 5.2.j). Using MITOMAP (Lott et al., 2013),

we annotated the non-synonymous variant (phenylalanine to serine) as a “probably damaging” mutation in the

mitochondrially encoded gene cytochrome C oxidase II (MT-CO2). 456 of our 818 high-quality GM11906

cells were positive for both mutations (>5% heteroplasmy), whereas the remaining cells showed 0% heteroplasmy

for either both or 8202 alone, but not 8344 alone (Figure 5.2.k). Of the 5,230 mtDNA paired-end reads that

covered both variants from the double-positive population, 99.6% exclusively contained either both mutated
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or wildtype alleles (Figure 5.2.l). The co-occurrence of both mutations on the same haplotype and the presence

of 8344A>G+/8202T>C- cells suggests the evolution of at least two subclonal populations, each spanning the

complete spectrum from low to very high 8344A>G heteroplasmy (Figure 5.2.k,m), demonstrating how the

mtscATAC-seq approach can enhance our understanding of variation and clonal dynamics in the context of

mitochondrial disease.

5.2.3 Inference of confident mutations for clonal lineage tracing

To facilitate clonal tracing of human cells based on reliable mtDNA variation, we developed the Mitochondrial

Genome Analysis Toolkit (mgatk; Figure 5.3.a; Appendix E), as a computational pipeline to identify clonal sub-

structure in complex populations profiled using mtscATAC-seq. Recent variant callers developed for single-cell

genotyping were designed to distinguish amplicon error from true mutations or account for allelic dropout (Za-

far et al., 2016), neither of which predominantly confound heteroplasmy estimates frommtscATAC-seq (Ap-

pendix E). Instead, mgatk focuses specifically on clonal mtDNA variant calling in single cells, by leveraging the

high mtDNA copy number, near-uniform coverage across the mtDNA genome (Figure 5.1.g), and an overall

high per-cell coverage in mtscATAC-seq. Because our focus is on clonal variants, mgatk not only estimates the

heteroplasmy for every possible mitochondrial variant in individual cells (~50,000), but then prioritizes indi-

vidual mutations based on aggregate properties from experimental batches. Specifically, mgatk identifies high-

confidence clonal mutations by aggregating signal across cells, leveraging between-cell variability and quantifiable

strand bias (Figure 5.3.a; Appendix E). Thus, rather than calling variants in individual cells, mgatk leverages the

high-throughput nature of our data to identify between-cell properties to distinguish signal from noise. The re-

sulting mutations are then used as a feature set for downstream analyses, such as the inference of clonal families.

We validated mgatk by identifying anticipated clonal substructure in the 855 TF1 cells (>50x mean mitochon-

drial genome coverage) profiled in the mixture experiment (Figure 5.1). Because these cells were expanded from

a population of 30 individually flow cytometry sorted TF1 cells, we expected observing multiple sub-clones. We

identified 48 reliable mtDNA variants by bivariate filtering of variants with a relatively high variance mean ratio
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Figure 5.3: Iden fica on of high-confidence variants and subclonal structure in TF1 cells. (a) Schema c of mgatk workflow. (b) Iden -
fica on of high-confidence variants from high strand concordance in paired-end sequencing data and high variance mean ra o (VMR).
(c) Unsupervised clustering of TF1 cells using 48 high-quality variants into 13 popula on clusters. Each column is a cell. Rows show
detected muta on. Heatmap color indicates percent heteroplasmy. (d) Phylogene c reconstruc on of clonal TF1 groups. The tree was
constructed using neighbor joining; each p represents a cell cluster from (c).
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(VMR) and concordant heteroplasmy from both strands (Figure 5.3.b; Appendix E). Using these 48 variants as

features, we determined 13 clonal cell subsets using a shared nearest neighbor clustering approach, with most cells

carrying multiple cluster-distinct variants (Figure 5.3.c; Appendix E). Variants called by other approaches lacked

sensitivity compared to mgatk (Figure E.3.a,b), and variants called only by these other methods had substantial

strand bias (Figure E.3.c; Appendix E). The 48 high-confidence variants not only allowed us to reconstruct a

putative phylogenetic tree for the identified TF1 subclones (Figure 5.3.d), as we previously showed with low

throughput methods6, but to do so at a throughput that can be readily scaled up to many thousands of cells per

experiment.

Though mgatkwas optimized for mtscATAC-seq data, its unsupervised application performed comparably

well to our previous supervised identification of multiple hematopoietic colony specific variants from 935 cells

profiled by SMART-seq2 (from Chapter 1; Figure E.3.d-h; Appendix E). Furthermore, variants identified by

mgatk substantially outperformed other unsupervised variant calling approaches in discerning cells that shared a

clonal origin (Figure E.3.g,h; Appendix E). However, as SMART-seq2 and other scRNA-seq methods detect a

substantial number of false-positive variants, corroboration by mtDNA sequencing is still highly recommended

(see Chapter 1); conversely, mtscATAC-seq captures DNA directly, thus minimizing potential artifacts. Overall,

mgatk analysis of mtscATAC-seq data provides the most robust and high-throughput means to identify high-

quality mtDNA variants associated with cell states by a single-cell genomic assay.

5.2.4 Linking cell state to fate in hematopoietic differentiation

The multi-modal output of mtscATAC-seq simultaneously informs us of features of cell state and clonal related-

ness, allowing us to better study complex human differentiation processes, where genetic barcoding is not possi-

ble, and high throughput is required. To illustrate this potential, we focused on a case study in hematopoiesis, a

process fueled by possibly 10, 000 − 100, 000s of distinct hematopoietic stem/progenitor cells (HSPCs; Lee-Six

et al. (2018)), potentially requiring the sampling of large cell numbers to capture clonal spectra. Furthermore,

previous reports suggest the presence of functional heterogeneity and differentiation (lineage) bias within the
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early HSPC pool (Rodriguez-Fraticelli et al., 2018; Jacobsen &Nerlov, 2019), though in most instances we lack

ways to simultaneously link HSPC cell state to downstream fate of recently derived differentiating daughter cells

(Weinreb et al., 2020), especially in humans.

To examine this, we first benchmarked mtscATAC-seq in an in vitromodel of human hematopoiesis, where

clonal contributions could be anticipated. We cultured ~500 or ~800 CD34+HSPCs in progenitor expansion

media, before induction of monocytic or erythroid differentiation with erythropoietin (EPO), stem cell factor

(SCF), and interleukin-3 (IL-3). Over the course of 20 days we profiled cells from two independent cultures (two

and three timepoints for the 500 and 800 cell input, respectively), yielding 18,964 high quality mtscATAC-seq

cell profiles (Figure 5.4.a; Appendix E), with a mean 24,333 unique nuclear fragments per cell, 49.0% of which

were in accessibility peaks, and a mean 73.6x mtDNA coverage per cell. Dimensionality reduction (Granja

et al., 2019), transcription-factor motif scoring (Schep et al., 2017), and inference of pseudotime trajectories

highlighted differentiation continuums fromHSPCs to either erythroid or monocytic populations, consistent

with our experimental expectations (Figure 5.4.b,c; Figure E.4.a-d; Appendix E). These findings verify that

mtscATAC-seq can reconstruct continuous cell state transitions comparable to previous scATAC-seq studies

(Granja et al., 2019; Satpathy et al., 2019; Buenrostro et al., 2018).

Application of mgatk identified 179 and 308 high-confidence, heteroplasmic variants in the 500 cell and 800

cell input cultures, respectively, which were enriched for transitions (95.0 and 95.1%; Figure 5.4.d; Appendix E),

consistent with previous findings. In both cultures, there were substantial shifts in heteroplasmy, including sig-

nificantly wider distribution of allele frequency fold changes than expected if the HSPCs underwent differentia-

tion uniformly (Figure 5.4.e,f; Kolmogorov–Smirnov p<2.2x10-16). Along our sequential sampling experiment,

the heteroplasmy change in the 800-cell input culture from the second sampling (day 14 / day 8) largely explained

the third (day 20 / day 14; Figure 5.4.g), suggesting that clonal contributions largely did not diverge further dur-

ing continued differentiation. However, our sequential clonal tracing captures complexities in these temporal

cell state transitions. For example, we observe patterns suggestive of variable clone proliferation dynamics, such as

cells that expanded earlier (3712G>A) or later (14322A>G) in the culture system (Figure 5.4.h). Analysis of 18
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Figure 5.4: Clonal lineage tracing across accessible chroma n landscapes in an in vitromodel of hematopoiesis. (a) Schema c of exper-
imental design. Approximately 800 or 500 CD34+ HSPCs were derived from the same donor, expanded, and differen ated in two
independent cultures over the course of 20 days as shown. Stars represent mepoints/ popula ons of cells that were profiled via
mtscATAC-seq. (b) Two dimensional embedding of all quality controlled cells using UMAP. Single-cell transcrip on factor mo f devi-
a on scores for indicated factors are shown in color for all cells. (c) Pseudo me trajectories for monocy c and erythroid trajectories
are depicted. (d) Iden fica on of high confidence variants derived from both cultures. The number of variants passing both thresholds
(do ed lines) is indicated. (e) Changes in heteroplasmy for 179 variants iden fied from the 500 input culture from day 8 to day 14. Val-
ues represent the mean over all single-cells in the library. (f) Increased variability in heteroplasmy shi s for the 500 cell input culture.
P-value is reported from a Kolmogorov–Smirnov test comparing the observed and permuted distribu ons log fold-changes. (g) Compari-
son of heteroplasmy shi s for the 800 cell input culture. Linear regression indicates that most of the variability in heteroplasmy changes
at the late me point (day 20, y-axis) can be explained by the intermediate me point (day 14, x-axis). Colored dots are highlighted in
the next panel. (h) Heteroplasmy trajectories for four selected muta ons from (g). Values represent the mean over all single-cells in the
library for the indicated me point. (i) Three examples of clonal popula ons marked by indicated muta ons iden fied in the 800 cell in-
put culture that result in erythroid, monocy c, or bipotent differen ated cell outcomes. (j) Systema c iden fica on of clonal outcomes
using the late me point (day 20). Y-axis depicts the difference between z-score in erythroid and monocy c bias of a single clone. (k)
Differences in transcrip on factor mo f ac vity comparing erythroid-biased and monocy c biased clones at the earliest sampled me
point (day 8). 86



shared mutations between the two cultures suggested that proliferation capacity was independent of the specific

mutation at least for these mutations, as their heteroplasmy fold-changes were not correlated between the two

experiments (Figure E.4.e,f).

Interestingly, we observed six “confirmed” pathogenic mutations between the two cultures, including

12316G>A and 3243A>T (Figure 5.4.h), both of which alter normal mitochondrial tRNA function, possibly

explaining their observed decreased population frequencies over the course of the culture. Each of these six mu-

tations occurs at a maximum of 0.1% allele frequency in the bulk population, but exceed 30% heteroplasmy in

some individual cells (Figure E.4.g), confirming that our approach enables the detection and study of deleterious

somatic mtDNA variants in cells of otherwise healthy individuals.

Combining the mtDNAmutation and clonal status with the cells’ chromatin profiles, we inferred properties

and possible fates of HSPCs in our cultures, distinguishing bi-potent progenitors from those biased in favor of

an erythroid vs. monocytic fate. We used a community detection algorithm to partition the cells from the two

cultures to 167 clonal groups by mtDNAmutations (Figure E.4.h,i; Appendix E), with most cells carrying at

least one high-quality somatic mtDNAmutation (Figure E.4.j). We then examined the states of the cells in each

clone, to identify HSPCs from day 8 in clones with biased (enriched) membership of monocytic or erythroid

cells on day 20 (Figure 5.4.i). Specifically, of the 65 clonal populations with at least 10 cells at day 20 we observed

in the 800 input culture (Figure 5.4.j; Appendix E), 9 were erythroid-biased and 22 were monocytic-biased (z-

score >5; Figure 5.4.j).

To further leverage our data association of cell state and fate, we examined the chromatin features of HSPCs in

biased clones and in bi-potent ones. Indeed, well characterized erythroid (GATA1 and KLF1) or monocytic tran-

scriptional regulator motifs (SPI1 and CEBPA) were more accessible in day 8 cell clones that preferentially gave

rise to daughter cells of erythroid or monocytic lineage by day 20, respectively (Figure 5.4.k). However, when

restricting this analysis towards day 8 cells within the early progenitor cluster (cluster 8; Figure E.4.c), this associ-

ation diminishes, though our power to detect such lineage biasing features (if present and causal for such obser-

vations) may be limited given the number of cells profiled at this stage (n=257). Overall, these results suggest that
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applying our framework for clonal inferences in an in vivo human context could facilitate systematic studies that

were previously limited to model organisms or gene therapy trials (Sun et al., 2014; Scala & Aiuti, 2019).

5.2.5 Clonal heterogeneity in chronic lymphocytic leukemia

Finally, we applied mtscATAC-seq to cells obtained directly in vivo from patients with putatively clonal malig-

nancies. We profiled peripheral blood mononuclear cells (PBMCs) from two patients with chronic lymphocytic

leukemia (CLL), which is conventionally characterized as a monoclonal B-cell malignancy (Figure 5.5.a). Single-

cell B-cell receptor sequencing by ex vivo 5’ scRNA-Seq (Appendix E) confirmed a predominantly monoclonal

population of leukemic cells in both patients (Figure 5.5.b). Based on our previous work, we hypothesized that

somatic mtDNAmutations may arise during tumorigenesis, which mark and enable tracking of genetic sub-

clones that may further aid to resolve intra-tumor heterogeneity6. We collected 23,467 high quality mtscATAC-

seq profiles (mean 55.5x mtDNA coverage; 11,423 unique nuclear fragments per cell and 70.8% in peaks), and

applied mgatk to CD19+ and predominantly leukemic cells to reveal 43 mutations and 15 putative subclones

across the two patients (Figure 5.5.c; Figure E.5.a,b). This marked genetic diversity in a perceived highly clonal

malignancy reinforces the effectiveness of our high-throughput approach to identify rare subclonal structure,

including a cluster marked by the 12067C>Tmutation present in 0.4% of the entire leukemic cell population

(Figure 5.5.c).

To better understand the functional consequences of this subclonal structure, we related the mtDNA clones

with both their chromatin profiles and receptor clonotypes, leveraging the mtDNA coverage from 5’ scRNA-

seq (Figure E.5.c,d) to relate to variants identified frommtscATAC-seq. Interestingly, leukemic cells with the

14858G>AmtDNAmutation did not carry the predominant BCR clonotype, presenting a distinct sub-clonal

population showing various differentially-expressed genes (Figure 5.5.b,d; Figure E.5.e; Appendix E). Moreover,

all cells in Patient 1 were positive for trisomy 12, a common cytogenetic abnormality in CLL (Roos-Weil et al.,

2018), suggesting that the copy number alteration preceded the somatic mtDNA diversity detected (Figure

5.5.e). Performing a per-peak association with our putative subclones, we observed hundreds of loci associated
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Figure 5.5: Clonal and func onal heterogeneity in chronic lymphocy c leukemia resolved by soma c mtDNA muta ons. (a) Schema c
of experimental design. Popula ons of peripheral blood mononuclear cells (PBMCs) from two CLL pa ents were separated by FACS
or magne c bead enrichment and profiled with mtscATAC-seq and 10x 5’ scRNA-seq. (b) Frac on of CD19+ cells with major B cell
receptor (BCR) clonotype as determined from V(D)J receptor sequencing. (c) Inference of subclonal structure from soma c mtDNA mu-
ta ons for pa ent 1. Cells (columns) are clustered based on mitochondrial genotypes (rows). Colors at the top of the heatmap represent
clusters or puta ve subclones. Color bar, heteroplasmy (% allele frequency). (d) Clonotype receptors (columns) associated with soma c
mtDNA muta ons (rows) from pa ent 1. Colors at the top of the heatmap represent BCR clonotypes. Color bar, heteroplasmy (% allele
frequency). (e) Es mated copy number of chromosome 12 across puta ve subclones for pa ent 1. (f) Sub-clone associa ons with ac-
cessible chroma n. Red dots denote peaks associated at a false-discovery rate of <0.01. (g) Examples of subclone-associated differen-
al accessibility peaks near the TIAM1 and (h) ZNF257 promoters. (i) Schema c of scATAC projec on framework using latent seman c
indexing (LSI) and UMAP. A healthy PBMC reference embedding with indicated cell types is shown. (j) Projec on of cells collected from
Pa ent 1 and (k) Pa ent 2. Colors indicate cells posi ve for indicated soma c mtDNA muta ons. Non-B-cells are highlighted. (l) Gene
signature plots of PBMCs from single-cell RNA-seq for Pa ent 1 corrobora ng mtDNA muta ons in non-B-cells.
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with subclonal structure in these tumors (Figure 5.5.f; Figure E.5.f), including promoters of the ZNF257 and

TIAM1 genes, the latter of which had previously been associated with chemoresistance in CLL and colorec-

tal cancer (Izumi et al. (2019); Hofbauer et al. (2014); Figure 5.5.g,h). These results provide a broad basis for

how paired chromatin accessibility and mtDNA genotyping can resolve epigenetic differences in malignant sub-

populations at single-cell resolution.

Among the identified variants from mgatk, six mutations (four in patients 1, two in patient 2) attained ho-

moplasmy in a subset of cells and were markedly enriched in the CD19+ population (Figure E.5.g,h). Notably,

the same variants were also identified in non-B cells, including T lymphocytes, natural killer (NK), and myeloid

cells (Figure 5.5.i-l; Figure E.5.i,j). These results point to the involvement of an early hematopoietic progenitor

cell with residual multi-lineage capacity in the pathogenesis of CLL, as suggested by previous reports (Alizadeh

&Majeti, 2011), but that could now be demonstrated in vivo in patient samples with the use of mtscATAC-

seq/ mgatk. These results could further be corroborated in the scRNA-seq data of patient 2 upon integration

of calling somatic mutations in nuclear genes (i.e. chr4:109,084,804A>C “LEF1” and chr19:36,394,730G>A

“HCST”; identified by exome sequencing) (Figure E.5.i,j). Taken together, our results demonstrate the wide

applicability of our mtscATAC-seq/ mgatk platform enabling the retrospective inference of cellular population

dynamics in healthy and disease states.

5.3 Discussion

Here, we develop and validate our high-throughput platform for measuring mtDNAmutation heteroplasmy

and concomitant accessible chromatin states in thousands of single-cells per reaction. Notably, we verify data

standards (Figure 5.1.), chart the cis- and trans- effects of pathogenic mutations (Figure 5.2.), and infer subclonal

population structure (Figure 5.3.), all from a single experiment. By leveraging somatic mtDNA variation in more

complex settings, our results further indicate the potential of natural genetic mtDNA barcodes to inform cel-

lular dynamics (Figure 5.4.) and clonal heterogeneity within malignant cells in vivo (Figure 5.5.). Furthermore,
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our platform provides an intrinsic coupling of these mutations to cell state and function due to concomitant ac-

cessible chromatin readouts. Unlike high-throughput scRNA-seq approaches that suffer from uneven coverage

of mitochondrial RNA and a high false positive error rate, our improved technical platform and computational

identification of variants enables robust inferences in complex settings, readily extending the scope of single-

cell genomic applications. While our demonstration of mtscATAC-seq focused on the popular 10xGenomics

Chromium system, we expect its adaptation to alternative scATAC-seq workflows.

In addition to pathogenic mitochondrial variants, such as 8344A>G, our high-throughput platform should

facilitate the examination of functional mtDNAmutations in these relatively common disease settings (Stewart

& Chinnery, 2015). We note that as 46 out of 90 “confirmed”MITOMAP-predicted pathogenic mtDNAmu-

tations alter tRNA function (Lott et al., 2013), heteroplasmy estimation for most of these causal variants require

a DNA-based assay for robust detection and analysis of single-cell variability rather than a poly-A based RNA-

based technique. Furthermore, alterations in mtDNA have been associated with a variety of complex human

diseases, including Alzheimer’s Disease (Corral-Debrinski et al., 1994), Parkinson’s Disease (Bender et al., 2006),

cardiomyopathies (Lee &Han, 2017), pediatric cancers (Triska et al., 2019), and various other malignancies.

More generally, the accumulation of somatic mtDNAmutations may contribute to aging phenotypes (Stewart

& Chinnery, 2015). As our approach facilitates rapid genotyping and concomitant chromatin profiles in thou-

sands of cells, potential molecular consequences of mtDNA variants may now be dissected using our platform

(Figure 5.2), which is not otherwise possible using bulk approaches due to the unappreciated diversity of somatic

variants with possible distinct effect sizes present in single cells of healthy tissues (Kang et al., 2016).

Despite the relatively small size of the mitochondrial genome, the prevalence of somatic mutations, though

not necessarily present in every cell, is expected to enable inferences of clonal contributions and cellular pop-

ulation dynamics of complex human tissues at any moment and over time in vivo (see Chapters 1 and 2). In

contrast to other high-throughput single-cell somatic mutation detection technologies that typically require a

priori knowledge of specific variants called frommRNA transcripts (Nam et al., 2019), our approach enables de

novo discovery of variants to inform the inference of subclonal structure in primary human cells. Though not all
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variants correlated with a data-driven population (e.g. Figure E.5.b), we expect that additional improvements in

variant calling, community detection methods, and heteroplasmy-specific distance functions will further aid to

resolve cellular hierarchies in greater detail. Furthermore, our analyses in the context of CLL provides a vignette

of integrating nuclear point mutations, copy number alterations, immune receptor rearrangements, and mtDNA

variation to further resolve clonal structure and functional heterogeneity. The advances presented here now en-

able new avenues to study how cellular dynamics plays a role in human health and disease.
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”You miss 100% of the shots that you don’t take” -Wayne

Gretsky

Michael Scott, The Office
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Conclusion
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In the 63 years since the conception of the Waddington landscape, our understanding of the molecular ac-

tors governing cell fate decisions and transitions has greatly expanded. In particular, the identification of master

regulator transcription factors underlying cell lineages, particularly in the hematopoietic system, has annotated

the ”guy-wires” underlying cellular differentiation. Over the past decade, the capabilities of single-cell sequenc-

ing has further clarified this model where stem and progenitor cells do not occupy discrete cell states but instead

exist along continuous trajectories– akin to pathways along theWaddington landscape (Buenrostro et al., 2018;

Jacobsen &Nerlov, 2019). While the picture of this model of cellular differentiation has become increasingly

clear with new technologies, we still have a limited understanding of how individual cell behaviors are dictated

in humans in vivo. In particular, methods that couple cell state and cell fate in single cells have been largely inac-

cessible but should enable greater resolution in the hierarchical processes governing cell fate, differentiation, and

composition of complex human tissue. As such, the innovations presented in this work were designed to develop

scalable technologies to enable approaches to answer these fundamental questions.

Prior to the work presented in this dissertation, a primary method for inferring lineages of human tissue relied

on single-cell whole-genome sequencing (scWGS), requiring ~$1, 000 / cell and severely affected by error rates

in amplification of nucleic acids (Lodato et al., 2015), key limitations of these techniques. Further, these scWGS

approaches do not provide measures of cell state, limiting inferences about cellular composition of human tissue.

In Chapter 1, I introduced the concept of lineage tracing in human tissue with somatic mitochondrial mutations.

Co-opting existing single-cell assays, we showed that both the plate-based Smart-seq2 and the microfluidic Flu-

idigm C1 assays enabled single-cell mitochondrial genotyping (in addition to concomitant transcriptomic and

epigenomic readouts). Ultimately, these approaches profile batches of up to 96 cells per experiment at a cost of

~$15 / cell (including sequencing). In Chapters 3 and 5, I introduce droplet microfluidic approaches to perform

these single-cell genomics assays (specifically single-cell ATAC-seq) at a substantially greater throughput (~5,000

cells / reaction) and significantly lower cost ($0.1 / cell). Specifically, Chapter 3 introduces a scATAC-seq plat-

form on via the BioRad ddSEQ platform while Chapter utilizes the 10x Genomics Chromium controller for the

application of mtscATAC-seq. As technologies in this space continue to rapidly advance, I expect that additional
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layers of genomic information may be ascertained per cell utilizing similar principles of droplet microfluidics.

Ultimately, these technical innovations make applications of clonal lineage tracing substantially more tractable

in human tissue. Forecasting trends in the field to potential findings over the next two decades, I predict the fol-

lowing. First, I anticipate that multi-modal measurements in single-cells will become routine wherein cellstate

may be simultaneously ascertained from a compendium of cell surface markers, whole transcriptome abun-

dances, genome-wide accessible chromatin, and intracellular protein state. These, coupled with lineage infor-

mation (from immune cell clonotype receptors and/or somatic mutations) will enable the de novo inference of

key molecular effectors and trajectories assumed by stem and progenitor cells that comprise human tissues and

will lead to the identification of therapeutic targets to combat a variety of complex diseases. Second, I predict that

these multimodal and clonal measurements will provide direct instruction on the transition states in our adaptive

immune system that facilitates immunity to viruses and other highly contagious pathogens. Such innovations

will be essential in defending our expanding population against new pathogens, such as SARS-Cov-19. Finally, I

predict that as a consequence of this work, a routine diagnostic blood test will be facilitated by single-cell technol-

ogy to infer pre-malignant hematologic states and enable preventative measures against blood cancers and heart

disease.

In summary, the goal of this dissertation was to continue the development of scalable experimental and

computational solutions to infer attributes of clonal composition and cell states in complex human tissue. By

innovating and understanding new approaches for lineage tracing in human tissues (Chapters 1,2) and high-

resolution (i.e. single-cell) measures of cell state (Chapter 3,4), my work addresses these limitations from two

different angles. In Chapter 5, I introduce a concomitant high-throughput clonal lineage (via mtDNAmuta-

tions) and cell state (via chromatin accessibility) with scalable throughput and demonstrate its utility in the hu-

man hematopoietic system in a variety of applications. While many biological questions remain unanswered, the

technical advances forwarded by this dissertation directly enable previously inconceivable experimental designs

to chart cell states and composition in complex human tissues. Importantly, lessons learned from the continued

investigation of human biology with these approaches stand to enable new avenues of therapeutic intervention.
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A.1 Experimental model, subject, and method details

A.1.1 TF1 Cell Culture

TF1 cells (ATCC) were maintained in Roswell Park Memorial Institute Medium (RPMI) 1640, 10% fetal

bovine serum (FBS), 2mM L-Glutamine and 2ng/ml recombinant human Granulocyte-Macrophage Colony-

Stimulating Factor (GM-CSF) (Peprotech) and incubated at 37°C and 5% CO2. 293T cells (ATCC) were main-

tained in Dulbecco’s Modified Eagle Medium-High Glucose (DMEM), 10% fetal bovine serum (FBS), and 2mM

L-Glutamine and incubated at 37°C and 5% CO2.

A.1.2 Primary Cell Culture and methylcellulose colony assays

CD34+ hematopoietic stem and progenitor cells were obtained from the Fred Hutchinson Hematopoietic Cell

Processing and Repository (Seattle, USA) and were cultured in StemSpan II with 1x CC100 (Stemcell Technolo-

gies) at 37°C and 5% CO2. For methylcellulose colony assays, 500 cells per ml were plated inMethoCult H4034

Optimum (Stemcell Technologies) according to the manufacturer’s instructions. Individual colonies were picked

at day 10 or 12 after plating for single cell sorting.

A.1.3 Human colorectal cancer specimen

Primary untreated colorectal tumor and adjacent non-neoplastic tissue were surgically resected from a 75-year-old

male patient with pathologically diagnosed colorectal adenocarcinoma at Massachusetts General Hospital. Writ-

ten informed consent for tissue collection was provided in compliance with IRB regulations (IRB compliance

protocol number 02-240. Broad Institute ORSP project number ORSP-1702).
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Figure A.1: Detec on of mitochondrial muta ons with ATAC-Seq. (A) Coverage of mitochondrial genome by bulk ATAC-Seq. The mi-
tochondrial genome coverage per million reads (y axis) of each TF1 bulk ATAC-seq sample (x axis), sorted by coverage and colored by
parent clone as in Figure 1C. (B) mtDNA muta ons are consistently detected across replicate sequencing runs. Heteroplasmy (square
root of allele frequency) for each high-confidence muta on (x, y axis) in two technical replicates of the bulk TF1 sample. Pearson corre-
la on coefficient between the replicates is indicated. (C) Gaussian mixture model fit over per-base pair, per-allele base quali es. Shown
is the distribu on of per-base pair, per-allele base quali es scores (x axis), fit with three Gaussian curves (colors) represen ng three mix-
ture components: blue: high-confidence variants. Ver cal dashed line: threshold for 99% probability of belonging to the distribu on of
high confidence variants. (D) Le : known lineage of TF1 clones annotated with sample IDs. Right: Hierarchical clustering of bulk TF1
clones by high confidence mtDNA variants. Shown are the samples (columns) labeled by clone (color code as in Figure 1.1.C, sample IDs
are annotated at the bo om of the heatmap) and ordered by hierarchical clustering (dendrogram, top) based on the square root of the
allele frequency (color bar) of high-confidence variants (rows) iden fied in (C). Box indicates a subclone-specific muta on as highlighted
in Figure 1.1.D (right). The square root transforma on shows lower-frequency variants with more intensity. The color bar is shown with
a square root transforma on that maps to an allele frequency range of 0.0025-0.2. Posi on of each muta on and the base pair change
is shown. (E)Most recent common ancestor (MRCA) analysis to quan fy lineage reconstruc on accuracy. Schema c showing hypothet-
ical clones where colors represent arbitrary clonal popula ons. Trios are analyzed to determine the pair that has the MCRA, including
between-clone (e.g., A, C, D) and a within-clone (e.g., B, C, D) example. (F) Deconvolu on of synthe c samples. For each of two mixture
experiments shown are the true propor ons (“Experiment”) and inferred propor ons (“Inferred”) for each clone in the mixture, as well
as the average devia on. (G) Variance component model. Variance explained by the sample structure (y axis, %) for each chroma n
accessibility peak (points, rank ordered by variance explained), by the mitochondrial genotypes (red) and the clone ID (black).
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Figure A.2: Assessment of mitochondrial muta ons by single cell genomics. (A,B) Coverage of the mitochondrial genome by six dif-
ferent scRNA-seq methods applied to mESCs. (A) Log2(coverage) along the mm10 mitochondrial genome for each method. Arrows:
a gene uniformly covered by full-length scRNA-seq (SMART-seq methods) but showing, as expected, increased coverage of the 3’
end of the transcribed gene in all other methods. (B) Cumula ve density plot of the mean base pair coverage for each method. Grey
dashed line: median coverage. Bo om arrow: SMART-seq approaches cover 50% of bases at 30x or greater. Top arrow: CEL-seq2 and
SCRB-seq cover 3’ transcript ends more deeply. (C) scMito-seq. Mitochondrial sequence specific primers are used for replica on of cir-
cular mtDNA using the Phi29 polymerase. (D, E) Performance of scATAC-, scRNA-, and scMito-seq. (D) Coverage of the mitochondrial
genome per million sequence reads (y axis) for cells (bars) from three primary clones (color as in Figure 1C) in each of the three methods.
The median cell coverage per million reads is noted. (E) Allele frequencies as ascertained by the sum of reads from single cells from each
method (y axis) compared to bulk ATAC-seq (x axis) for the same three clones as (D). (F) Clones iden fied by genotype-based clustering
across methods. Hierarchical clustering of all TF1 mitochondrial genotyping profiles (columns), including bulk (black) and single cells
(grey) from independent single cell assays (purple, yellow, maroon), across the three TF1 clones assayed (red, green, blue as in Figure
A.1.C). Color bar: Heteroplasmy frequency (%).
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Figure A.3: mtDNA based clone assignment of single cells agrees with len viral barcode assignment. (A) Len viral barcodes. 15 infor-
ma ve len viral barcodes (columns) were used to classify 158 cells to 11 barcode clusters (rows) of at least two cells per cluster. Two
30-mer barcodes are highlighted at the bo om with a scheme of the len viral construct. Groups g01-04 are cells that contain two
dis nct barcodes (mul plicity of infec on > 1). (B) Low correla on (Spearman ρ = 0.089) between barcode and mitochondrial cover-
age. Per-cell (dots) mitochondrial coverage (y axis) and len viral barcode coverage (x axis). Colors: barcode clones as in in (A). (C, D)
Concordance between barcode and mtDNA clones. Receiver opera ng characteris c (ROC) and precision-recall (PR) curves using the
Pearson correla on distance as a metric for pairs of cells sharing barcodes. Area under the ROC (AUROC) and PR (AUPRC) are denoted.
(E) The same metrics (MRCA, AUROC, AUPRC) for mitochondrial and CNV-based distance predic ng the same barcode iden ty in this
experiment. (F) Visualiza on of the scRNA-seq data, colored by barcode as in (A), using the UPGMA algorithm.
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Figure A.4: Detec on of heteroplasmic mitochondrial muta ons across human ssues. (A)Mitochondrial genome coverage for three
ssues (addi onal to those in Figure 1.4.C). Inner circle: mitochondrial genome annota on; middle circular tracks: mean coverage for
tes s (orange), skeletal muscle (black), and esophagus (purple); outer grey circle: coordinates of the mitochondrial genome. (B) Tissue
specific muta ons. Beeswarm plot shows the allele frequency (y axis, %) of 372 ssue-specific muta ons with a heteroplasmy >10%.
Dots: muta on in a ssue from a specific donor. Red: eight muta ons with above 75% heteroplasmy. (C-F) Reduced number of protein
damaging muta ons than expected. (C, D) Empirical distribu ons of ssue-specific allele frequencies (x axis, %) for variants annotated
as (C) protein-damaging (red) or benign (grey) by PolyPhen2, or (D) pathogenic (red) or neutral (grey) from APOGEE. Median hetero-
plasmy is noted and similar across all annota ons (between 4-5%). (E, F) The number of damaging (E) and pathogenic (F) muta ons (y
axis) expected and observed at the tails of the distribu ons (>20% heteroplasmy). The number of expected muta ons are calculated as
the product of the number of muta ons and the marginal propor ons in each category. Many of the pathogenic muta ons with higher
heteroplasmy were found in transformed fibroblasts/ lymphocytes.
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Figure A.5: Mitochondrial muta ons in primary hematopoie c cells. (A, B) Cell rela ons based on expression profiles or mitochondrial
genotype. tSNE plots computed on expression profiles (top) and mitochondrial genotypes (bo om) colored by (A) the number of genes
detected (min. 5 counts) per cell, related to Figure 1.5, or (B) the fold coverage of the mitochondrial genome per cell, related to Figure
1.5. (C) Colony-specific mitochondrial muta ons for donor 2. Shown are the allele frequencies of muta ons (rows) that are found by
supervised analysis as specific to the cells (columns) in each colony (sorted by colony membership; colored bar on top). Posi on of
each muta on and the base pair change is shown. Color bar: Heteroplasmy frequency (%). (D)Mixed colonies. Le : Image of colony
105, a mixture of two hematopoie c colonies as confirmed by imaging, gene expression data, and mtDNA genotypes. Right: Sca er
plots of the expression levels for a myeloid (MPO, x axis) and erythroid (HBB, y axis) for each cell (dot) in the colony, colored by the
allele frequency (color bar) of a heteroplasmic muta on iden fied only in the myeloid cells. (E) Iden fica on of poten al contaminant
cell in colony 112 based on expression and mtDNA genotype. Sca er plots as in (D) for the cells in colony 112. Arrow: cell lacking
the mitochondrial muta on iden fied in all other cells of this colony, also lacks HBB expression. (F) Percentage of individual colonies
separated based on mitochondrial muta ons (y axis) for donor 1 and donor 2 for the scRNA-seq colony experiment in Figures 1.5.H
and A.5.C. (G) Colony-specific muta ons for donor 1 and donor 2 iden fied in 1.5.H and A.5. Care non-overlapping. (H)Mitochondrial
muta ons iden fied through bulk ATAC-seq in primary hematopoie c colonies derived from individual CD34+ HSPCs separate 85% and
100% of those colonies in each of two donors. (I) Sorted phenotypic HSCs (CD34+CD38-CD45RA-CD90+) assayed with scATAC-seq
for three addi onal donors show unique muta ons in >75% of cells. (J)Muta ons that dis nguish individual HSCs are mostly non-
overlapping between donors.
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Figure A.6: Mitochondrial muta ons iden fy clonal contribu ons in polyclonal mixtures of human cells. (A) Allele frequencies for re-
tained muta ons agree between scRNA-seq and bulk ATAC-seq. Allele frequencies determined by the sum of single cells from scRNA-
seq (y axis) and bulk ATAC-seq (x axis). Black – filtered; red – retained. (B) Concordance of allele frequencies between single cell and
bulk ATAC-seq. Variant allele frequencies determined by the sum of single cells from scATAC-seq (y axis) and bulk ATAC-seq (y axis),
which were retained for (red) or filtered from (black) further analysis. (C, D) Number of cells classified by clustering by mitochondrial
genotypes. Distribu on of the number of cells clustered successfully by mitochondrial genotypes across simula ons using cell input
from (C) scRNA-seq (compare to Figure 1.6.B) or (D) scATAC-seq (compare to Figure 1.6.C). Do ed line: observed number of classified
cells. (E) Selected cluster-specific muta ons (compare to Figure 1.6.B). Box plots show the distribu on of heteroplasmy (%, y axis) of
8 selected cluster-specific muta ons in individual cells for each of 8 clusters, in the specific cluster for the muta on, and in the cells in
all other clusters. Dots: individual cells. Dark bar indicates the median single-cell heteroplasmy. (F, G) Inclusion of scRNA-seq-specific
muta ons hampers successful clustering of cells. (F) Variant allele frequencies determined by the sum of single cells from scRNA-seq (y
axis) and bulk ATAC-seq (x axis). Red: RNA-seq specific muta ons retained in the analysis in (G) but not in Figure 1.6.B. (G) Hierarchical
clustering of cells from Figure 1.6.B but when also including the RNA-only muta ons from (F). Shown are the allele frequencies of re-
tained heteroplasmic muta ons (rows) from scRNA-seq across cells (columns), where cells are sorted by unsupervised clustering. The
color bar shown above the cells is the classifica on inferred from Figure 1.6.B, demonstra ng the u lity of the addi on of the bulk sam-
ple for high confidence-variant filtering and exclusion of artefactual variants. (H) Cluster specific muta ons (compare to Figure 1.6.C).
Boxplots for eight selected cluster-specific muta ons from each of eight clusters derived from the scATAC-seq experiment. Individual
cells are denoted by dots and colored by their cluster membership in the unsupervised analysis.

104



Figure A.7: Applica on of mitochondrial muta on tracking in human cancer in vivo. (A) tSNE of clones iden fied from mitochondrial
muta ons in Figure 1.7.B. The same coordinates are used to show (B)MUC2 expression and (C) SLC26A2 expression. Color bar: log2
counts per million. (D) Separa on of donors by mitochondrial genotype does not reflect coverage. tSNE plots of 2,145 single cells from
31 donors computed on mitochondrial genotypes (as in Figure 1.7.G), with each cell colored by total coverage (le ) or the propor on of
mitochondrial reads mapping to the mitochondrial transcriptome (right). (E, F) Changes in observed allele frequencies at different stage
of disease. Box plots show the distribu on of allelic frequencies of a specific muta on at different mepoints of disease/ sampling as
indicated in Figures 1.7.H,I. Dots are individual single cells; dark bar represents median heteroplasmy. (G, H) Reduced mitochondrial
coverage by 3’ droplet based scRNA-seq. (G) The mitochondrial transcriptome coverage (y axis) for the top 500 barcodes and cells (dots)
from the 10x Chromium Single Cell 3ʹ scRNA-Seq (le ) and SMART-seq2 (right) datasets, respec vely. (H) Aggregate mitochondrial
transcriptome across cells in the 10x Chromium Single Cell 3ʹ scRNA-seq dataset. Rounded edges: 3’ ends of transcripts, which are
rela vely well-covered (compare to Figure 1.2.E). (I) mtDNA transfer. Heteroplasmy in donor cell (x axis) vs. recipient cell (y axis) from
simula ons assuming different rates (1, 5 and 10%; colored lines) of horizontal mtDNA transfer from donor to recipient cell and fixed
mtDNA content per cell. Dashed line: 5% heteroplasmy in the recipient cell. (J Near homoplasmy muta ons. Heatmap of the allele
frequency (color bar, %) of each of 164 mitochondrial muta ons (rows) with near-homoplasmy in one or more of the 2,145 single cells
(columns) from 31 donors, sorted by donor annota ons (color code on top, as in Figure 1.7.G).
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A.1.4 Lentiviral barcoding of TF1 cells

TF1 cells were infected with a modified Perturb-seq lentiviral construct (Dixit et al., 2016) expressing a mNeon-

Green gene carrying a 30bp random nucleotide sequence in its untranslated region (Figure A.3.A). For produc-

tion of lentiviruses, 293T cells were transfected with the appropriate viral packaging and genomic vectors (pVSV-

G and pDelta8.9) using FuGene 6 reagent (Promega) according to the manufacturer’s protocol. The medium

was changed the day after transfection to RPMI 1640 supplemented with 10% FBS, L-Glutamine and Penicillin/

Streptomycin. After 24h, this medium was collected and filtered using an 0.22-μm filter immediately before in-

fection of TF1 cells. The cells were mixed with viral supernatant in the presence of 8 μg/ml polybrene (Millipore)

in a 6-well plate at a density of ~300,000 cells per well. The cells were spun at 2,000 r.p.m. for 90 min at 22 °C

and left in viral supernatant overnight. The medium was replaced the morning after infection. Twenty-five bar-

coded mNeonGreen+ cells were sorted at day 3 post infection and expanded for 11 days before processing using a

combination of bulk ATAC-seq and scRNA-seq.

A.1.5 Single cell sorting

Single cells were sorted into 96 well plates using the Sony SH800 sorter with a 100µm chip at the Broad Institute

Flow Cytometry Facility. Sytox Blue (ThermoFisher) was used for live/ dead cell discrimination. For scRNA-seq,

plates were spun immediately after sorting and frozen on dry ice and stored at -80C until further processing.

A.1.6 Bulk ATAC-seq

For ATAC-seq library preparations 5,000-10,000 cells were washed in PBS, pelleted by centrifugation and lysed

and tagmented in 1x TD buffer, 2.5µl Tn5 (Illumina), 0.1% NP40, 0.3x PBS in a 50µl reaction volume as de-

scribed (Corces et al., 2017). Samples were incubated at 37°C for 30min at 300rpm. Tagmented DNAwas pu-

rified using the MinElute PCR kit (Qiagen). The complete eluate underwent PCR, as follows. After initial ex-

tension, 5 cycles of pre-amplification using indexed primers and NEBNext®High-Fidelity 2X PCRMaster Mix
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(NEB) were conducted, before the number of additional cycles was assessed by quantitative PCR using SYBR

Green. Typically, 5-8 additional cycles were run. The final library was purified using a MinElute PCR kit (Qia-

gen) and quantified using a Qubit dsDNAHS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a

Bioanalyzer 2100 system (Agilent).

A.1.7 Single cell ATAC-seq

The C1 Fluidigm platform using C1 single cell Auto Prep IFC for Open App and Open App Reagent Kit were

used for the preparation of single cell ATAC-seq libraries as previously described (Buenrostro et al., 2015).

Briefly, cells were washed and loaded at 350 cells/µl. Successful cell capture was monitored using a bright-field

Nikon microscope and was typically >85%. Lysis and tagmentation reaction and 8 cycles of PCRwere run on

chip, followed by 13 cycles off chip using custom index primers and NEBNext®High-Fidelity 2X PCRMaster

Mix (NEB). Individual libraries were pooled and purified using the MinElute PCR kit (Qiagen) and quantified

using a Qubit dsDNAHS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100

system (Agilent).

A.1.8 Bulk RNA-seq

Cells were lysed in RLT or TCL lysis buffer (Qiagen) supplemented with beta-mercaptoethanol and RNAwas

isolated using a RNeasy Micro kit (Qiagen) according to the manufacturer’s instructions. An on-column DNase

digestion was performed before RNAwas quantified using a Qubit RNAHS Assay kit (Invitrogen). 1-10ng of

RNAwere used as input to a modified SMART-seq2 (Picelli et al., 2014) protocol and after reverse transcrip-

tion, 8 cycles of PCRwere used to amplify transcriptome library. Quality of whole transcriptome libraries was

validated using a High Sensitivity DNAChip run on a Bioanalyzer 2100 system (Agilent), followed by library

preparation using the Nextera XT kit (Illumina) and custom index primers according to the manufacturer’s in-

structions. Final libraries were quantified using a Qubit dsDNAHS Assay kit (Invitrogen) and a High Sensitivity
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DNA chip run on a Bioanalyzer 2100 system (Agilent).

A.1.9 Single cell RNA-seq

Single cells were sorted into 5ul TCL lysis buffer (Qiagen) supplemented with 1% beta-Mercaptoethanol. RNA

isolation, reverse transcription and PCRwere conducted as described using a modified SMART-seq2 protocol

(Picelli et al., 2014). Quality control and library preparation were conducted as described above.

A.1.10 Single cellMito-seq

Single cells were sorted in to 500l TCL lysis buffer (Qiagen) supplemented with 1% beta-mercaptoethanol. DNA

was isolated with AMPure XP beads (Beckman Coulter) and the REPLI gMitochondrial DNA kit (Qiagen) was

used for amplification at 33C for 8h in a 16.5ul reaction volume. Amplified DNAwas cleaned up with AMPure

XP beads (Beckman Coulter), quantified using a Qubit dsDNAHS Assay kit (Invitrogen) and library prepara-

tion was performed using the Nextera XT kit (Illumina) using custom index primers according to the manufac-

turer’s instructions.

A.1.11 Processing of human colorectal cancer and adjacent healthy tissues

Fresh tissue was collected into RPMI 1640 medium supplemented with 2% human serum (Sigma), cut into 1

mm2 pieces, and enzymatically digested for 20min at 37°C using the Human Tumor Dissociation Kit (Mil-

tenyi Biotec) in the presence of 10µMROCK inhibitor Y-2763 (Sigma). Cell suspension was passed through

70μm cell strainers and centrifuged for 7min at 450g at 4°C. Supernatant was removed and cells were subject to

ACK Lysing Buffer (Life Technologies) for 2min on ice, centrifuged for 7min at 450 g at 4C, and resuspended in

RPMI 1640 supplemented with 2% human serum (Sigma). The single cell suspension was stained with Zombie

Violet in PBS (Invitrogen) for 10min on ice and subsequently with antibodies against human CD326, CD45,

and CD235a (Biolegend) in RPMI 1640 medium supplemented with 1% human serum in the presence of 10µM
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Y-2763 for 15 min on ice. Zombie Violet- CD235a- CD45- CD326+ cells were bulk sorted into 1.5ml Eppendorf

tube containing 1x TD buffer, 2.5µl Tn5 (Illumina), 0.1% NP40, 0.3x PBS in a 50µl reaction volume for ATAC-

seq as described above. Using the identical gating scheme, single cells were sorted into Eppendorf twin-tec PCR

plates containing 10μl TCL lysis buffer (Qiagen) supplemented with 1% beta-Mercaptoethanol and processed for

scRNAseq as described above.

A.1.12 Sequencing

All libraries were sequenced using Nextseq High Output Cartridge kits and a Nextseq 500 sequencer (Illumina).

Libraries were sequenced paired-end (2x 38 or 2x 75 cycles).

A.2 Bioinformatics methods for bulk sequencing

A.2.1 Data processing and read alignment

For each sequencing library generated in this study, libraries were sequenced on an Illumina NextSeq 500 and

demultiplexed using the bcl2fastq program. For each library, raw .fastq reads were aligned using either Bowtie2

version 2.3.3 (Langmead & Salzberg, 2012) or STAR version 2.5.1b (Dobin et al., 2013) to the hg19 reference

genome. For the mESC scRNA-seq coverage comparison (Figure 1.2.A), reads from the published dataset

(Ziegenhain et al., 2017) were aligned to the mm10 reference genome.

RNA-seq and scRNA-seq transcript counts were computed using STAR’s “–quantModes GeneCounts” flag

using the Gencode 19 release .gtf file.

For the published droplet based scRNA-Seq (10X Genomics) AML dataset (Zheng et al., 2017b), processed

.bam files (aligned to GRCh37) were downloaded from the public downloads page on the 10xwebsite.

Raw .fastq files for public RNA-seq and scRNA-seq data were downloaded from the Gene Expression Om-

nibus (GEO), European Nucleotide Archieve (ENA), the database of Genotypes and Phenotypes (dbGaP)
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resources or European Genome-Phenome Archive (EGA), as follows: GSE75790 (mESC scRNA-seq); PR-

JEB20143 (SIDR scDNA/RNA-seq); phs000424.v7.p2 (GTEx); T lyphocytes (EGAS00001002072;

EGAS00001002430).

A.2.2 Mitochondrial genotyping

For each sequencing sample, per-base, per-allele counts were determined using a custom Python script that im-

ported aligned .bam files using the pysammodule (https://github.com/pysam-developers/pysam). Raw reads

were filtered such that they had an alignment quality of 30 and were uniquely mapping to only the mitochon-

drial genome. The mean base-quality score was computed per-base, per-allele for each sample for quality control.

At a given mitochondrial genome position x, the allele frequency (AF) of a base bwas computed using the num-

ber of readsR supporting that particular base at position x:

AFx,b =
Rb∑

b∈A,C,G,T Rb

where
∑

b∈A,C,G,T Rb is the coverage of a given position x.

A.2.3 Variant quality control and filtering

To remove variants whose inferred heteroplasmy may reflect sequencing errors, we examined the distribution

of per-base, per-allele base-quality scores, noting a clear pattern of high quality and low-quality variants (Figure

A.1.C). To determine high quality variants, we fit a mixture of three Gaussian distributions (Figure A.1.C, la-

beled by different colors), and filtered such that only alleles that had >99% probability of belonging to the blue

(largest mean BQ) Gaussian were retained. This conservative empirical threshold for a BQ cutoff was determined

to be 23.8 based on this mixture model approach (Figure A.1.C, vertical dotted line).

As one poorly quantified position allele would affect the estimates for all other alleles at the specific position,

we filtered positions that contained one or more alleles with a BQ less than the empirical threshold unless the
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allele had a non-significant (i.e., less than 1 in 500) effect on heteroplasmy. In total, we called 44 high-quality

variants across our TF1 (sub-)clones (Figure A.1.D) that were present at a minimum of 2.5% heteroplasmy in at

least one sample. Throughout the study, we observed a preponderance of C>T, T>C, G>A, and A>Gmutations

(transitions), consistent with previous reports (Ju et al., 2014). Of note, we used bulk ATAC-seq to nominate

high-quality variants across three other hematopoietic cell lines (GM12878, K562, and Jurkat) and observed 29-

64 heteroplasmic mutations per line, suggesting our inferences in Figures 1.1-1.3 would generalize to other cell

lines.

A.2.4 Mitochondrial distance matrix

As input to the variance components models (Figure 1.1.G), we computed a mitochondrial relatedness matrix

Kmito = 1 − D, whereD is a symmetric, pairwise distance matrix whose elements encode the distance between

pairs of cells or clones based on the differences in their respective allele frequencies. We defineD for pairs of ob-

servations i, j over high-quality variants x ∈ X using the matrix of allele frequencies (AF) and coverage frequen-

cies (C), such that only variants sufficiently well-covered (minimum number of reads at the position > 100) are

included. Explicitly, we define the mitochondrial distance between observations i, j using the distance di,j as fol-

lows:

di,j =

∑
x

√∣∣AFx,i − AFx,j
∣∣ ∗ (1Cx,i > 100 ∗ 1Cx,j > 100)∑

x (1Cx,i > 100 ∗ 1Cx,j > 100)

where 1 is the indicator function. Intuitively, this representation of mitochondrial distance simultaneously

accounts for variation in rare heteroplasmy (through the square root transformation) and only compares pairs of

cells by their high-confidence variants. We note that the square root transformation yields a one-to-one mapping

of allele frequencies and provides relative weight to variants whose allele frequencies are very close to zero.

For the bulk ATAC-seq of TF1 (sub-)clones analyzed in Figure 1.1, all quality-controlled variants passed the

coverage requirement; however, the additional indicator functions for coverage were necessary for subsequent
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single cells experiments.

For the hierarchical clustering of the TF1 lineage cells, we used a modified mitochondrial distance metric com-

puted from the Pearson correlation distance. Intuitively, this metric is less dependent on the absolute values of

the variant heteroplasmy. We note that while an ideal tree reconstruction algorithm would facilitate the inclusion

of internal nodes, we found no such algorithms readily available, as most tree reconstruction approaches do not

allow for internal observations. Further, we did not pursue the development of such approaches here.

A.2.5 Variance components model

To determine the proportion of the variance of chromatin accessibility that could be explained by the mito-

chondrial lineage in each peak, we performed a variance decomposition using a random effects model (Figure

1.1.H). Briefly, the chromatin accessibility counts measured from ATAC-seq for 91,607 accessibility peaks were

summed, centered, and scaled for each sample. We then estimated for each peak the proportion of variance ex-

plained due to the random variance component (σ2e ) and due to the variance component from the sample-sample

structure inferred by the mitochondrial genotype (σ2m), using average information restricted maximum likelihood

(AIREML). Explicitly, our model for the variance of chromatin accessibility account for an individual peak is:

Peak Accessibility ∼ N(0, σ2mKmito + σ2e I)

and the proportion of the variance explained by the mitochondrial structure then is the ratio of σ2m over the

total variation:

σ2m
σ2m + σ2e

The proportion of the variance explained by the mtDNAmutation substructure is shown for each peak in

Figure A.1.G alongside an analogous calculation, where the substructure is only defined by a binary indicator of

clonal membership for pairs of samples.

112



A.2.6 Most CommonRecent Ancestor (MRCA) analysis

To determine our ability to accurately reconstruct the experimental lineage in Figure 1.1 by mitochondrial mu-

tations, we determined the proportion of correctly identifiedMost-Recent Common Ancestors (MRCA) for

trios of (sub-)clones, similar to an approach recently reported by Biezuner et al. (2016). For any given set of three

samples in the predicted tree (e.g. A, C, and D; in Figure A.1.E), three possible arrangements are possible: (1)

A and C share anMRCA compared to D; (2) C and D share anMRCA compared to A; or (3) A and D share

anMRCA compared to C. Given the true experimental lineage tree (in this example, arrangement 2), we deter-

mined whether or not our reconstructed lineage correctly identified the MRCA. Thus, by chance, a random tree

reconstruction would be 33% accurate. Here, we distinguish comparisons within-clone (e.g., B,C,D in Figure

A.1.E) or between clones (e.g. A,C,D) and demonstrate that our tree reconstruction significantly outperforms

what is expected by chance in both settings.

A.2.7 Clonal mixture deconvolution (TF1 clones)

To demonstrate that clonal mixtures can be deconvoluted, we mixed our second-generation clones in known pro-

portions and inferred these proportions from the mitochondrial genotype of the mixture. For two knownmix-

ture fractions (Figure A.1.F), we genotyped each mixed sample with bulk ATAC-seq and then used the second-

generation allele frequencies to infer each mixture, by fitting a support vector regression model to estimate the

mixing proportions, in a manner analogous to CIBERSORT (Newman et al., 2015). As shown in Figure A.1.F,

the average deviation of the inferred and true mixing proportions are 1.7% and 3.0%, demonstrating that a priori

defined genotypes can be used to approximate the contributions of complex mixtures.

A.2.8 Comparison of scRNA-seq methods

To compare mitochondrial coverage with different scRNA-seq methods, we downloaded a dataset of 583

scRNA-seq profiles frommouse embryonic stem cell (mESC) (Ziegenhain et al., 2017). Reads were aligned to
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the mm10 reference genome using STAR. Per-base pair coverage estimates were computed for each single cell

using reads uniquely mapping to the mitochondrial genome.

To verify that heteroplasmic variants were expressed at a comparable frequency as these heteroplasmies in

DNA, we downloaded 38 high-quality profiles, where both mitochondrial genome and transcriptome were avail-

able (Han et al., 2018b). Reads frommtDNA and RNAwere aligned as described above to the hg19 reference

genome, using Bowtie2 and STAR, respectively, and heteroplasmic allele frequencies were plotted for variants

with at least 50 reads covering the locus in both RNA and DNA both with a minimum BQ score of 20 in the

same cell.

A.2.9 Comparison of scRNA-Seq, scATAC-Seq and scMito-Seq (TF1 clones)

To compare given single cell profiling methods to the corresponding bulk method or to other single cell and bulk

methods, we summed all raw allele counts for high-quality cells (minimum of 100Xmitochondrial genome cov-

erage). We performed such comparisons for nine characterized, clone-specific heteroplamsic variants (Figure

A.2.F) and for variants identified as RNA-specific (Figure 1.2.D). We further plotted the allele frequency com-

paring the two technologies for heteroplasmic variants, revealing concordance across all the technologies (Figure

A.2.E).

A.2.10 Validation of clonal mutations in single cells using lentiviral barcoding

To detect barcodes in TF1 scRNA-seq libraries, we appended a 221 base pair “chromosome” to the standard

STAR hg19 reference genome where the 30bp random sequence was soft-masked. Custom Python scripts deter-

mined reads uniquely aligning to the lentiviral construct that overlapped the random 30bp barcode. From the 20

mutations nominated in Figure 1.3.C, a cell-cell distance metric was computed from the Pearson correlation of

the square root of the heteroplasmy matrix. This metric was similarly used for the MRCA analysis as described

for Figure 1.1. For each pair of cells, we used the group designation from the lentiviral barcode assignment as
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a binary classifier and the mitochondrial distance metric as a diagnostic metric of cell-cell similarly to compute

receiver operating characteristics.

A.2.11 CNV calling for lentivirally barcoded TF1 cells

Copy number variation (CNV) was determined using the InferCNV tool run using the default settings (Patel

et al., 2014). We modified the main script to return the cell-cell distance matrix computed before performing the

default hierarchical clustering. This cell-cell distance matrix (computed over the CNV bins) was used as input to

our MRCA computation.

A.3 GTEx analyses

Raw .fastq files were downloaded from dbGAP as noted above for nearly 10,000 samples sequenced on Illumina

Hi-Seq with 75bp paired-end reads. We retained 8,820 samples belonging to one of 49 tissues that had at least

25 total samples, from individuals with at least 10 tissues, and with mean mitochondrial genome coverage of

1000x. We define a “tissue specific mutation” (Figures 1.4.D,F,G) for a given mitochondrial variant if the variant

is present at least at 3% heteroplasmy (or more where indicated) in an individual tissue but no more than 0.5%

(within our margin of error for bulk RNA-seq) in any of the other tissues for a specific donor. We removed mu-

tations that occurred within a given tissue in more than 10 individuals to exclude the possibility of tissue-specific

mitochondrial RNA-editing events. While the noise in the RNA-seq assay inherently leads to more false positives

and less certainty in the heteroplasmy estimation, our procedure of comparing heteroplamsic values against other

tissues within a donor provides a conservative means toward identifying putative somatic mutations that arose

during development or homeostasis.

To compute the expected number of pathogenic and damaging mutations (Figures 1.4.E,F), we multiplied

the number of loci that were observed above a defined heteroplasmy threshold (e.g., 20%) by the rate at which

damaging or pathogenic mutations occur in the mitochondrial genome.
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Dimensionality reduction using mRNA expression profiles or mitochondrial genotypes We performed a t-

stochastic neighbor embedding (t-SNE) of the cells by either their expression or mitochondrial genotype profiles

(Figures 1.5 and A.5). First, we identified a set of 935 high quality scRNA-seq profiles that (1) have at least 500

genes detected, (2) had a total count of at least 2,000 across expressed genes, and (3) had a mean mitochondrial

genome coverage of at least 100x. For dimensionality reduction by expression profiles, we first batch-corrected a

log counts-per-million matrix of gene expression values using sva (Leek et al., 2012) and used the top 10 principal

components for our t-SNE. For the dimensionality reduction by mitochondrial genotype profiles, we used all

variants with a mean BQ score of 25 present at a heteroplasmy of at least 0.5% in our population of cells and

similarly computed t-SNE coordinates using the top 10 principal components of the heteroplasmy matrix. We

observed no significant batch effect in the mitochondrial allele frequencies.

Supervised identification of colony and cell-specific mutations in hematopoietic cells To identify mutations

that effectively separate individual colonies in donors 1 and 2 (Figures 1.5 and A.5), we searched for mutations

present at a minimum of 80% of cells within a colony, at a minimum heteroplasmy of 5%, but are not present at

greater than 5% heteroplasmy in more than two cells from all the other colonies together.

To identify mutations that separate individual bulk ATAC colonies (donor 3 and 4), we searched for mu-

tations that were present at a heteroplasmy > 5% in a particular colony but absent (< 0.5% heteroplasmy) in all

other colonies.

To identify cell-specific mutations in FACS-sorted HSCs (donors 5, 6, and 7), we searched for mutations that

were present at > 5% heteroplasmy for a particular cell, but otherwise absent (< 0.5%) in all other cells for a spe-

cific donor.
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A.4 Single-cell bioinformatics analyses

A.4.1 Separation of clonal mixtures of CD34+ HSPCs

For the analysis of CD34+HSPCs, we identified variants that had a mean BQ score of at least 20 for both the

sum of single cells and the bulk ATAC-seq and were detected in bulk at a heteroplasmy of at least 0.5%. This

identified 14 for scRNA- (Figure A.6.A) and 16 high quality variants for scATAC-seq (Figure A.6.B).

Using these variants and cells passing filter (minimum average mitochondrial genome coverage of 100x), we

performed a fuzzy k-medoids clustering and assigned a cell to a cluster if it had an assignment probability greater

than 95% and left it unassigned otherwise. We identified 9 clusters for scATAC-seq and 10 for scRNA-seq that

corresponded directly to one or more mutations (Figures A.6.B,C). While other cells showed evidence of muta-

tions, these occurred at lower heteroplasmy values than the frequencies for cells assigned to the group (Figures

A.6E,F).

A.4.2 Simulated density of assignment

To verify that our probabilistic cluster was within the range of expectation, we performed a simulation study by

parameterizing attributions of our mixing experiment (Figures A.6C,D). Specifically, for each of the 30 input

CD34+ cells, we simulated a proportion of the specific cell in the final population pi, i ∈ 1, . . . , 30, using a Beta

distribution:

pi ∼ Beta(1, 29)

In expectation, the proportion in the terminal cell populations would be 1/30, consistent with the expectation

of the draw from the Beta distribution. From this vector of population proportions p, we simulate the number of

cellsN sampled from our single-cell sampling using a multinomial distribution:
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n ∼ Multinomial(N, p)

whereN = 372 and 148 for the scRNA-Seq and scATAC-Seq, respectively. Thus, ni represents the number

of cells that were derived from a single original cell i. Next, we simulated whether cell i contained a mutation that

could be detected and clustered in a group of cells (r = 1). This was achieved using a Bernoulli draw for each cell:

ri = Bern(q)

where qwas estimated to be 0.5 based on our analyses in Figure 1.5 for scRNA-seq. Finally, the total number

of cells clustered (c, the unit shown on Figures A.6.C,D) is computed from the following: c =
∑30

i =1 ri ∗ ni

For both scATAC- and scRNA-seq, we computed c over 10,000 simulations each. Our observed number

of cells clustered in Figures A.6.C,D fell comfortably within the 95% coverage interval for both scATAC- and

scRNA-Seq (Figures A.6.C,D).

A.4.3 Analysis of colorectal cancer data

Bulk ATAC-seq and scRNA-seq libraries were aligned using bowtie2 and STAR as described above. We identi-

fied variants that had a mean BQ score of at least 20 for both the sum of single cells and the bulk ATAC-seq and

were detected in bulk at a heteroplasmy of at least 0.5%, yielding 12 high-quality variants. Clusters were defined

using a similar procedure as described in the previous section. With the exception of 15044 G>A, the highest het-

eroplasmy in the bulk healthy samples was 0.0009. In total, 12 high-confidence clusters were identified with at

least 2 cells. A t-SNEmapping of cells was rendered for the mRNA profiles as described above (Figures 1.7.D-F

and A.7.A-C).
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A.4.4 Dimensionality reduction of CML scRNA-seq data

To address spurious variants in scRNA-seq in the absence of a bulk DNA guide (Figure A.6.G), we hypothesized

that using a more stringent measure of quality, base alignment quality (BAQ) (Li, 2011), could facilitate the iden-

tification of fewer higher quality variants. Indeed, we identified 242 high-quality variants that had a minimum

BAQ score greater than 20 with a mean heteroplasmy of 0.5% in the population of high quality cells (minimum

mean mitochondrial genome coverage of 100x).

We performed a t-SNE on the first 25 principal components from the z-score normalized heteroplasmy matrix

using default parameters (perplexity = 30). We used a Mann-Whitney U-Test to identify variants that co-varied

with annotated patient sub-phenotypes at a significance of p < 10−3 within a given donor.

A.4.5 Analysis of CML scRNA-seq data

Clustering of the scRNA-seq data for donor CML656 was performed using SC3 (Kiselev et al., 2017) on pro-

cessed expression values available through GEO accession GSE76312, with default parameters for clusters of

size 2, 3, and 4. The data form the 29 cells in cluster 1 were re-processed using STAR (Dobin et al., 2013) using

parameters noted above, followed by differential expression testing using limma-voom (Law et al., 2014). The

lowest non-zero allele frequency of 4824 T>C for a cell in cluster 1 was 4%, providing a clear basis for determin-

ing cells that were 4824 T>C + (that is, any cell with a non-zero allele frequency for 4824 T>C were considered

4824 T>C +). In total, 14 cells in cluster 1 were negative for the mutation whereas 15 were positive, which served

to define categories for differential gene expression within cluster 1 cells.

A.4.6 Analysis of T lymphocyte scRNA-seq data

Raw .fastq files were downloaded from the European Genome-phenome Archive. Meta data associated with

each cell was further downloaded with the raw sequencing data, and included a definition of clones based on

TCR sequences inferred by TRACER (Stubbington et al., 2016). In instances where we observed heterogeneity
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in mitochondrial mutations within a clonal marker (e.g. Figure 1.6.F), we verified that TCR annotations were

supported by > 100 reads as reported in the meta data.

A.4.7 Processing the AML scRNA-Seq dataset

For the AML datasets previously generated by 10xGenomics (Zheng et al., 2017b), cells from two patients

(AML027 and AML035) were analyzed for mitochondrial genotypes. Aligned and processed .bam files were

downloaded from the 10xwebsite and further processed using custom Python scripts. Cell barcodes associated

with at least 200 reads uniquely aligning to the mitochondrial genome were considered for downstream analy-

sis. Barcodes were further filtered by requiring coverage by at least one read at two specific variants at mtDNA

positions 3010 and 9698. We note that we did not observe a barcode that contained a read to support both alter-

nate alleles (3010G>A and 9698T>C). We determined that 4 out of 1,077 cells were derived from the recipient

(1.7.M), a higher estimate than in the previously reported analysis performed with nuclear genome variants (re-

ported exactly 0%) (Zheng et al., 2017b), though these four cells were not included in the published analysis as

they did not pass the author’s barcode/ transcriptome filters. We did not observe a well-covered set of variants

separating the donor/ recipient pair in the AML027 dataset, and did not further analyze it for mutations but

only for determining well-covered barcodes (Figure A.7.G,H).
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Figure B.1: Theore cal basis for heteroplasmy varia on in vivo. (A) Schema c illustra ng how the varying contribu ons of progenitor
cells, carrying specific soma c mtDNA muta ons at indicated allele frequencies, may affect heteroplasmy levels in bulk popula on
level measurements of peripheral blood. (B) Spearman correla on of 57 me points (ordered by rela ve me of sampling) across me
points sampled. Correla on value is measured with the tenth sample. Compare to Figure 2.1.C. (C) Schema c illustra ng how the clonal
expansion of an gen-specific lymphocytes carrying clone-specific soma c mtDNA muta ons may lead to fluctua ons in heteroplasmy
levels in bulk popula on level measurements of peripheral blood.

B.1 Data acquisition

Raw sequencing reads were downloaded from Gene Expression Omnibus (GEO) accessions GSE33029 and

GSE111405 for data related to Figure 2.1. For Figure 2.2, raw sequenced reads were obtained from accessions

GSE85853 and GSE111015.

B.2 Bioinformatics methods

Alignment to the hg19 reference genome was performed using appropriate tools for RNA-seq: STAR (Dobin

et al., 2013), ATAC-seq: bowtie2 (Langmead & Salzberg, 2012), and whole-genome bisulfite sequencing: bis-

mark (Krueger & Andrews, 2011). Reads aligning to the mtDNA genome were extracted using samtools Li
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Figure B.2: Suppor ng evidence for mtDNA muta on dynamics in response to therapeu c treatment cases of CTCL in vivo. (A) Ex-
amples of two muta ons losing heteroplasmy over 5 weeks of sampling from a responder treated with romidepsin. (B) Example of a
heteroplasmic muta on that persists at steady states across three weeks in a non-responder to vorinostat treatment. (C) Heteroplasmy
of 7586G>A muta on as measured in bulk peripheral blood and enriched leukemic or host cells over two weeks of treatment in pa ent
P11, who responded to romidepsin therapy. Note loss of heteroplasmy in the host cells, but stable levels in the leukemic popula on,
sugges ng persistence of leukemic cells carrying the 7586G>A allele. (D) Heteroplasmy of the 3580C>A allele present in enriched
leukemic cells, but absent in host cells at day 0 of treatment (le ). Loss of the 3580C>A allele in bulk peripheral blood at the indicated
me points following start of treatment, sugges ng therapy-sensi vity of leukemic cells carrying the respec ve allele (right). We note
that other popula ons (e.g. sorted a er day 0) were not available.
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(2011), and PCR-duplicated reads were removed using Picard tools. Per-sample, per-mutation heteroplasmy

abundances were estimated using our previously reported pipeline. All depicted mutations were selected on the

basis of supervised analyses. Mutations in RNA-seq were specifically filtered against a set of purported RNA-

editing events as we have previously described in Chapter 1. All meta-data (e.g. sample, timepoint) was curated

from the GEO accessions that contained the raw high-throughput sequencing data.
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C.1 Biological methods

C.1.1 Cell lines

GM12878 (Coriell Institute for Medical Research) human lymphoblastoid cells were maintained in RPMI 1640

mediummodified to include 2 mML-glutamine (ATCC), 15% FBS (ATCC) and 1% Penicillin Streptomycin

(Pen/Strep) (ATCC). K562 (ATCC) human chronic myelogenous leukemia cells were maintained in Iscove’s

Modified Dulbecco’s Medium (IMDM) (ATCC) supplemented with 10% FBS and 1% Pen/Strep. NIH/3T3

(ATCC) mouse embryonic fibroblast cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

(ATCC) supplemented with 10% Calf Bovine Serum and 1% Pen/Strep. All cell lines were maintained at 37°C

and 5% CO2 at recommended density and were harvested at mid-log phase for all experiments. All suspension

cells were harvested using standard cell culture procedure, and adherent cells were detached using TrypLE Ex-

press Enzyme (Gibco). After harvesting, cells were washed twice with ice cold 1x PBS (Gibco) supplemented with

0.1% BSA (MilliporeSigma). Cells were then filtered with a 35 μm cell strainer (Corning) and cell viability and

concentration were measured with trypan blue on the TC20 Automated Cell Counter (Bio-Rad). Cell viability

was greater than 90% for all samples. See the Life Sciences Reporting Summary for more information.

C.1.2 Mouse tissues

Flash frozen adult mouse whole brain tissue was purchased from BrainBits (SKU: C57AWB). Nuclei isolation

was performed using the Omni-ATAC protocol for isolation of nuclei from frozen tissues (Corces et al., 2017).

Nuclei permeability and concentration were measured with trypan blue on the TC20 Automated Cell Counter.

For all samples, over 95% of the nuclei were permeable to trypan blue, meaning that the nuclei isolation was suc-

cessful.
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Figure C.1: Op miza on of Tn5 transposi on for dscATAC-seq. (a) Frac on of reads mapping to the nuclear genome for each of the Tn5
concentra ons. The remaining reads map to the mitochondrial genome. Different volumes (2.5-10 μL) of the standard commercial Tn5
(TDE1) are compared against 3 replicates of a custom Tn5 concentra on (2.5 μL) op mized for dscATAC-seq for K562 cells. (b) Number
of unique reads mapping near transcrip on start sites (TSS) or (c) distal regulatory elements for the same Tn5 condi ons. Center line,
median; box limits, first and third quar les; whiskers, 1.5x interquar le range. All three panels (a-c) show the top 500 cells sorted by
library size. (d) Schema c of biochemical process leading to mul ple fragments becoming tagged by mul ple bead barcodes in the same
droplet.
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Figure C.2: Valida on of bead merging computa onal approach. (a) Browser shot of paired-end reads near the DIAPH1 and GAPDH
loci. Reads are colored by bead barcode sequence. (b) Schema c of verifica on experiment where a library of random oligonucleo des
was encapsulated into droplets together with Tn5 transposed cells and barcoded beads. The schema c shows a droplet containing a
library of random oligos, a cell and two beads with different barcode sequences. (c) The expected number of beads per drop as a func-
on of bead concentra on. Inference of this line was determined by a maximum likelihood es ma on for a double-truncated Poisson
distribu on. (d) Percent of drops with one or more beads as a func on of bead concentra on. Values are es mated using the probabil-
ity density func on of a Poisson distribu on parameterized by the mean number of beads per drop from (c). (e) Jaccard index overlap
metric for pairs of bead barcodes loaded at a concentra on of 200 beads/μL. For each pair of bead barcodes observed, the Jaccard in-
dex was computed over the observed random oligonucleo de sequences. (f) The bap overlap score computed from the dscATAC-seq
data (agnos c to oligonucleo des) from the same experiment. In each panel, pairs of bead barcodes nominated for merging are high-
lighted in blue. Merged pairs were determined by compu ng a “knee” inflec on point. The same two panels are shown in (g-j) but for
increased bead concentra on: (g,h) 800 beads/μL; (i,j) 5,000 beads/μL. (k) (le panel) Area under the receiver opera ng curve (AUROC)
values for true posi ve bead merges nominated from the random oligonucleo de sequences. Four metrics are compared, including our
novel computa onal approach, termed bap. Various bead concentra ons per experimental condi on are shown below the x-axis. (right
panel) The same condi ons and metrics but showing the area under the precision-recall curve (AUPRC). (l) %TSS enrichment scores
for the same pool of cells processed at different bead concentra ons. (m) Per-cell library complexi es across a range of tested bead
concentra ons, the same as in panel (l). Both panels (l,m) show the top 500 cells sorted by library size. (n) Species mixing plots and
collision rates (text) for the same experiment (800 beads/μL) with and without bead merging. (o) The same plots as in (n) but at a bead
concentra on of 5,000 beads/μL. 128



Figure C.3: Addi onal quality controls of dscATAC-seq. (a) Species mixing plots and es mated collision rates for exis ng scATAC-seq
methods. (b) Frac on of reads in peaks for the comparison in Figure 3.1.f. The chroma n accessibility peak set was obtained from
ENCODE DNase-seq data for GM12878 and thus agnos c to the datasets compared here. Center line, median; box limits, first and
third quar les; whiskers, 1.5x interquar le range. (c) Number of cells (GM12878 only) compared in panel (b) and Figure 3.1.f. (d) Rank
sorted variability across transcrip on factor mo fs within the GM12878 dscATAC-seq profiles.
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Figure C.4: Quality control informa on for the dscATAC-seq mouse brain and comparison with exis ng data. (a) Distribu on of number
of beads per cell iden fied across the two mice (bead input concentra on = 5,000 beads/μL) for high-quality cells that pass quality
controls. The corresponding bead merging curves are shown to the right for the twelve libraries. (b)Mouse brain cells in the t-SNE
from Figure 3.2.a colored by number of bead barcodes detected per cell. The same coordinates are shown for (c) mouse donor, and (d)
experimental well. (e) de novo embedding using latent seman c indexing (LSI). Colors match annota ons from Figure 3.2.a. All plots
show the same (n=46,653) cells shown in Figure 3.2.a. (f) t-SNE of previously published sciATAC-seq data for mouse brain (Cusanovich
et al., 2018) using the same 7-mer method (Louvain, t-SNE; compare to Figure 3.2.a; n=5,744 cells). (g) Comparison of the percentage of
reads mapping to the nuclear genome (separated into TSS-proximal or distal chroma n accessibility peaks) between whole mouse brain
data generated using dscATAC-seq or a recently op mized sciATAC-seq method (Cusanovich et al., 2018). Center line, median; box
limits, first and third quar les; whiskers, 1.5x interquar le range. (h) Raw total number of reads mapping to distal chroma n accessibility
peaks (see blue from panel (g) between dscATAC-seq and the sciATAC-seq method described in (g)). Boxplots summarize thousands of
cells for each comparison. Center line, median; box limits, first and third quar les; whiskers, 1.5x interquar le range.
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Figure C.5: Chroma n accessibility scores for valida on of cell clusters from mouse brain. (a) Schema c demonstra ng the approach
used to define chroma n accessibility scores surrounding gene promoters. (b) t-SNE of cells by promoter region chroma n accessibility
scores for all genes. The same colors and cells (n=46,653) used in Figure 3.2.a are shown here. (c) Hierarchical clustering of chroma n
accessibility scores calculated as shown in (a) for each cluster derived from the mouse brain dscATAC-seq dataset using Pearson cor-
rela on. 27 clusters from Figure 3.2.a are depicted. (d) Representa ve chroma n accessibility scores for known marker genes defining
cell types in the mouse brain, plots are tled by the marker gene and defined cell type. (e)Mouse brain cells in the t-SNE from Figure
3.2.a colored by per-cell log10 library complexity (n=46,653 cells). (f) Per-cell log10 library complexity for each cluster derived from the
mouse brain dscATAC-seq dataset. Center line, median; box limits, first and third quar les; whiskers, 1.5x interquar le range. (g) Per-cell
ra o of total reads in peaks to TSS reads per cluster.
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Figure C.6: Species mixing analysis of dsciATAC-seq. (a-b) Species mixing analysis for human (K562) and mouse (3T3) cell mix generated
using (a) 24 or (b) 48 Tn5 transposase barcodes. For each panel a schema c of the experimental procedure is included (le ), and pri-
mary results from a cell tra on plo ng total mouse or human nuclear fragments (right). In these plots points are labeled as either low
quality (black), mouse (red), human (blue) or mixed (purple).

C.1.3 Human peripheral blood and bone marrow cells

Cryopreserved human bone marrow (BM) mononuclear cells, isolated BMCD34+ stem/progenitor cells, pe-

ripheral blood mononuclear cells (PBMC), and isolated peripheral blood CD4+, CD8+, CD14+, CD19+ and

CD56+ cells were purchased from Allcells. Cells were quickly thawed in a 37°C water bath, rinsed with culture

medium (IMDMmedium supplemented with 10% FBS and 1% Pen/Strep) and then treated with 0.2 U/μL

DNase I (Thermo Fisher Scientific) in 10 mL of culture medium at 37°C for 30 min. After DNase I treatment,

cells were washed with medium once and then twice with ice cold 1x PBS + 0.1% BSA. Cells were then filtered

with a 35 μm cell strainer (Corning) and cell viability and concentration were measured with trypan blue on the

TC20 Automated Cell Counter (Bio-Rad). Cell viability was greater than 80% for all samples.
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Figure C.7: Quality control analysis of human bone marrow dsciATAC-seq data. (a-f) Single-cell data derived from BMMCs colored
by their (a) donor, (b) frac on of reads in peaks (FRiP), (c) log10 unique nuclear fragments, (d) log10 total aligned nuclear fragments,
(e) log10 library size, and (f) frac on of reads with PCR duplicates. (g) de novo embedding and clustering of the human BMMC data
using the 7-mer k-mer strategy. Colors represent Louvain clustering from the principal components of the 7-mer devia ons. (h,i) Same
coordinates as (g) but colored according to annota ons defined in Figure 3.4.b,c, respec vely. All panels show n=60,495 cells.
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Figure C.8: Cell types iden fied in the human bone marrow dsciATAC-seq data. (a) Selected transcrip on factor devia on mo fs shown
for res ng cells (n=60,495 cells) profiled using dsciATAC-seq. (b) Embedded cells from isolated subtypes profiled using the standard
dscATAC-seq pla orm (n=52,873 cells). (c) UMAP embedding of single-cell data colored by clusters iden fied (compare to Figure 3.4.c).
(d-f) Projec on of addi onal single-cell data onto UMAP coordinates of the dsciATAC-seq bone marrow data, projec ng (d) sorted
progenitor subsets (Buenrostro et al., 2018), (e) peripheral blood mononuclear cells (PBMCs) or (f) isolated subsets (shown individually in
(b)).
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Figure C.9: S mula on of human bone marrow derived cells. (a) S mulated BMMC (n=75,968) cells projected onto the UMAP coor-
dinates defined by the non-s mulated control cells (n=60,495 cells). (b,c) Cell-cell TF score variability for the s mula on and control
cells showing (b) ex vivo culture and (c) ex vivo culture and LPS s mula on, only unique TF mo fs are highlighted. (d,e) Cell-cell TF score
variability for the control cells and variability of s mula on a er normalizing to the control TF variability for (d) ex vivo culture and (e)
ex vivo culture and LPS s mula on condi ons, only unique TF mo fs are highlighted. (f-j) Depic ons of transcrip on factor devia on
scores in res ng cells (top) compared to the differen al a er s mula on (bo om) for selected mo fs. A total of n=60,495 cells are
plo ed. (k) Sample summary of differen al peak analysis for the Mono-1 cluster. Each dot represents a chroma n accessibility peak
found in at least 1% of cells. The overall % of cells with element are shown on the x-axis whereas the y-axis depicts the difference in the
% of cells with the element accessible (s mulated - res ng). Peaks found significantly different at a 1% FDR (two-sided binomial test;
Benjamini Hochberg corrected) are colored in red and blue. (l) Overall summary sta s cs per-popula on from differen al peak analy-
sis showing the Z-sta s c from the two-sided permuta on test for differen al accessibility. Each colored curve represents the overall
Z-sta s cs for all peaks in the specified cluster.
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C.1.4 Human bone marrowmononuclear cells stimulations

BMmononuclear cells were quickly thawed in a 37°C water bath, rinsed with culture medium (RPMI 1640

medium supplemented with 15% FBS and 1% Pen/Strep) and then treated with 0.2 U/μL DNase I in 10 mL of

culture medium at 37°C for 30 min. After DNase I treatment, cells were washed with medium once, filtered with

a 35 μm cell strainer and cell viability and concentration were measured with trypan blue on the TC20 Auto-

mated Cell Counter. Cell viability was greater than 90% for all samples. Cells were plated at a concentration of 1

x 106 cell/mL, rested at 37°C and 5% CO2 for 1 h and then either incubated in serum containing media (RPMI

1640 medium supplemented with 15% FBS and 1% Pen/Strep) at 37°C and 5% CO2 for 6 h (ex vivo culture)

or treated with 20 ng/mL Lipopolysaccharide (LPS) (tlrl-3pelps, Invivogen) for 6 h (LPS stimulation). After

stimulation, cells were washed twice with ice cold 1x PBS + 0.1% BSA and cell viability and concentration were

measured with trypan blue on the TC20 Automated Cell Counter. As a control, we processed cells immediately

after counting, without any incubation.

C.1.5 Cell lysis and tagmentation

For a detailed description of tagmentation protocols and buffer formulations refer to the SureCell ATAC-Seq

Library Prep Kit User Guide (17004620, Bio-Rad). Harvested cells and tagmentation related buffers were chilled

on ice. For cell lines, a protocol based on Omni-ATACwas followed(Corces et al., 2017). Briefly, washed and

pelleted cells were lysed with the Omni-ATAC lysis buffer containing 0.1% NP-40, 0.1% Tween-20, 0.01% Digi-

tonin, 10 mMNaCl, 3 mMMgCl2, and 10 mMTris-HCl pH7.4 for 3 min on ice. The lysis buffer was diluted

with ATAC-Tween buffer that only contains 0.1% Tween-20 as a detergent. Cells were collected and resuspended

in OMNI TagmentationMix. This mix is formulated with ATACTagmentation Buffer and ATACTagmenta-

tion Enzyme, both of which are included in the SureCell ATAC-Seq Library Prep Kit (17004620, Bio-Rad). The

OMNI TagmentationMix was buffered with 1X PBS supplemented with 0.1% BSA. Cells were mixed and agi-

tated on a ThermoMixer (5382000023, Eppendorf) for 30 min at 37°C. Tagmented cells were kept on ice prior to
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encapsulation.

For PBMCs and BMmononuclear cells, lysis was performed simultaneously with tagmentation. Washed and

pelleted cells were resuspended inWhole Cell TagmentationMix containing 0.1% Tween-20, 0.01% Digitonin,

1X PBS supplemented with 0.1% BSA, ATACTagmentation Buffer and ATACTagmentation Enzyme. Cells

were tagmented using a thermal protocol and maintained thereafter as described in the Omni-ATAC protocol

described above.

For mouse tissues, nuclei were washed with ATAC-Tween buffer containing 0.1% Tween-20, 10 mMNaCl, 3

mMMgCl2, and 10 mMTris-HCl pH7.4 prior to the whole cell protocol described above.

C.2 Methods for dscATAC-seq/dsciATAC-seq

C.2.1 Optimized Tn5 concentration

To test if the concentrated Tn5 (part of the SureCell ATAC-Seq Library Prep Kit, 17004620, Bio-Rad) per-

formed better than the standard commercial Tn5 enzyme (TDE1, 15027865, Illumina), we prepared dscATAC-

seq libraries for K562 cells using different amounts of TDE1 and our new concentrated Tn5. K562 cells were

prepared and lysed as described in the Omni-ATAC protocol described above. Cells were then resuspended in

OMNI TagmentationMix containing ATACTagmentation Buffer and either 1) different amounts of TDE1

(2.5, 7.5 or 10μL in a 50μL reaction, see Figure 3.1.b) or 2) the concentrated Tn5 (2.5μL in a 50μL reaction, 3

replicates, see Figure 3.1.b). Cells were mixed and agitated on a ThermoMixer for 30 min at 37°C. Tagmented

cells were kept on ice prior to encapsulation and libraries were prepared using our standard method as described

below. The top 500 cells based on library complexity are shown for all comparisons.

C.2.2 Droplet library preparation and sequencing

For a detailed protocol and complete formulations, refer to the SureCell ATAC-Seq Library Prep Kit User Guide

(17004620, Bio-Rad). Tagmented cells or nuclei were loaded onto a ddSEQ Single-Cell Isolator (12004336, Bio-
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Rad). Single-cell ATAC-seq libraries were prepared using the SureCell ATAC-Seq Library Prep Kit (17004620,

Bio-Rad) and SureCell ddSEQ Index Kit (12009360, Bio-Rad). Bead barcoding and sample indexing were per-

formed in a C1000 Touch™Thermal cycler with a 96-DeepWell ReactionModule (1851197, Bio-Rad): 37°C

for 30 min, 85°C for 10 min, 72°C for 5 min, 98°C for 30 sec, 8 cycles of 98°C for 10 sec, 55°C for 30 sec, and

72°C for 60 sec, and a single 72°C extension for 5 min to finish. Emulsions were broken and products cleaned

up using Ampure XP beads (A63880, Beckman Coulter). Barcoded amplicons were further amplified using a

C1000 Touch™Thermal cycler with a 96-DeepWell ReactionModule: 98°C for 30 sec, 6-9 cycles (cycle num-

ber depending on the cell input, Section 4 Table 3 of the User Guide) of 98°C for 10 sec, 55°C for 30 sec, and

72°C for 60 sec, and a single 72°C extension for 5 min to finish. PCR products were purified using Ampure XP

beads and quantified on an Agilent Bioanalyzer (G2939BA, Agilent) using the High-Sensitivity DNA kit (5067-

4626, Agilent). Libraries were loaded at 1.5 pM on a NextSeq 550 (SY-415-1002, Illumina) using the NextSeq

High Output Kit (150 cycles; 20024907, Illumina) and sequencing was performed using the following read pro-

tocol: Read 1 118 cycles, i7 index read 8 cycles, and Read 2 40 cycles. A custom sequencing primer is required for

Read 1 (16005986, Bio-Rad; included in the kit).

C.2.3 Assembly of indexed Tn5 transposome complexes

To generate indexed Tn5 transposome complexes, we modified the Illumina Nextera Read 1 Adapter to contain

a 6 nt barcode (96 distinct barcodes). Each indexed oligo was mixed with the Illumina Nextera Read 2 Adapter

and annealed to a 15 nt mosaic end complementary oligonucleotide (5’ phosphorylated and 3’ Dideoxy-C). All

oligonucleotides were HPLC purified (IDT). For the annealing reaction, oligonucleotides were mixed at a 1:1:2

molar ratio (Read 1: Read 2: complementary mosaic end) at 100 μM final concentration in 50mMNaCl. The

mixture was incubated at 85°C, ramped down to 20°C at a rate of -1°C/min, and then 20°C for 2 additional min-

utes. After being diluted 1:1 in glycerol, the annealed oligonucleotide mixture was then mixed 1:1 with 14.8 μM

purified Tn5. The Tn5/oligonucleotide mixture was incubated for 30 min at room temperature and then kept at

-20°C prior to the tagmentation reactions.
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C.2.4 Species mixing controls

Human and mouse cell lines were processed and lysed using the Omni-ATAC-seq protocol as described above.

For the 24-plex control experiment in Figure 3.3 and C.6, K562 and NIH/3T3 cells were mixed at a 1:1 ratio and

tagmented with Tn5 loaded with indexed oligonucleotides 1-3, 13-15, 25-27, 37-39, 49-51, 61-63, 73-75, 85-87 in

50 μL reactions (10 μL of indexed Tn5 per reaction) with 25,000 cells each. Cell line tagmentation buffer com-

ponents and reaction conditions were the same as described above. After the tagmentation reaction, all cells were

pooled, washed with tagmentation buffer without Tn5 and processed using our standard protocol for droplet

library preparation and sequencing. Different cell numbers were used as input, as indicated in Figure 3.3.

For the 48-plex control experiment in Figure C.6, K562 and NIH/3T3 cells were mixed at a 1:1 ratio and tag-

mented with Tn5 loaded with indexed oligonucleotides 1-6, 13-18, 25-30, 37-42, 49-54, 61-66, 73-78, 85-90 in

50 μL reactions (10 μL of indexed Tn5 per reaction) with 25,000 cells each. Cell line tagmentation buffer com-

ponents and reaction conditions were the same as described above. After the tagmentation reaction, all cells were

pooled, washed with tagmentation buffer without Tn5 and processed using our standard protocol for droplet

library preparation and sequencing. Different cell numbers were used as input, as indicated in Figure C.6.

C.2.5 Human BMmononuclear cells stimulations

BM-MNCs from 2 donors were stimulated and washed as described above. For the experiment in Figures 4 and

5, BM-MNCs were tagmented with Tn5 loaded with indexed oligonucleotides 1-96 in 20 μL reactions (4 μL

of indexed Tn5 per reaction) with 8,000 cells each (Control, ex vivo culture and LPS stimulation as described

above). BM-MNC tagmentation buffer components and reaction conditions were the same as described above.

After the tagmentation reaction, all cells were pooled, washed with tagmentation buffer without Tn5 and pro-

cessed using our standard protocol for droplet library preparation and sequencing. Pooled cells were split into 16

different samples for droplet library preparation, with varying cells inputs (20,000, 40,000 or 80,000 cells). After

sequencing, data from all 16 samples were merged for the analyses. Sequencing data for the dsciATAC-seq exper-

139



iments were processed with bap as described below using the “–tn5-aware” flag that inhibits cell merging across

different Tn5 barcodes.

C.3 Bioinformatics methods for sequencing data analysis

C.3.1 Raw read processing

Per-read bead barcodes were parsed and trimmed using UMI-TOOLs (Smith et al., 2017), and the remaining

read fragments were aligned using BWA (http://bio-bwa.sourceforge.net/) on the Illumina BaseSpace online

application. Constitutive elements of the bead barcodes were assigned to the closest known sequence allowing for

up to 1 mismatch per 6-mer or 7-mer (mean >99% parsing efficiency across experiments). For the dsciATAC-seq

experiments, bead barcodes were parsed using a custom python script aware of the 96 possible Tn5 barcodes. All

experiments were aligned to the hg19 or mm10 reference genomes (or a combined reference genome in the case

of species mixing experiments).

To identify systematic biases (i.e. reads aligning to an inordinately large number of barcodes), barcode-aware

deduplicate reads, and perform bead merging (see below), we developed a software suite called the bead-based

ATAC-seq processing (bap) tool. This software uses as input a .bam file for a given experiment with a bead bar-

code identifier indicated by a SAM tag. We generalized this pre-processing pipeline to handle other datasets (Flu-

idigm C1, sciATAC-seq) to enable consistent comparisons across various technologies (Figure 3.1).

C.3.2 Identification of multiple beads per droplet

An integral part of the technique described herein relies on the robust identification of pairs of bead barcodes

that share exact insertions at a rate that exceeds what may be expected by chance. We note that our procedure

readily enables multiple beads per droplet (Figure C.2). First, highly abundant barcodes are detected in the exper-

iment wherein each unique barcode sequence is quantified among nuclear-mapping reads, and our knee calling

algorithm establishes a per-experiment bead threshold. Next, sequencing reads assigned to a bead barcode passing
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filter are de-duplicated using the insert positions of the paired-end reads (as previously implemented in Picard

tools).

After initial deduplication, we further remove paired-end reads that map to more than 6 bead barcodes, rea-

soning that these represent a technical confounder. Next, for each pair of bead barcodes passing the bead filtering

step, we compute the Jaccard index over the insertion positions of reads, providing a measure of how similar the

Tn5 insertions are between any pair of bead barcodes. From these pairwise Jaccard index statistics, we perform

a second knee call to determine pairs likely to have originated from the same droplet (Figure C.2.d). Finally, to

assign droplet-level barcodes, we then loop over the original bead barcodes in order of their original nuclear read

abundance. For a given bead barcode, if it is paired with any other bead barcodes that passed the pairwise knee,

those bead barcodes are “merged” into one droplet barcode. This iteration repeats until all bead barcodes have

been assigned to precisely one droplet barcode. To facilitate comparisons without droplet merging (e.g. Figure

C.2.j,k), our pipeline facilitates the “–one-to-one” flag, which maps one bead barcode onto one droplet barcode;

this option was employed primarily to process other scATAC-seq datasets that would not have beads that would

require merging. Additional details regarding this procedure and comparisons in Figure C.2.g are discussed in the

final paragraphs of this document.

C.3.3 Species mixing analysis

We carried out the same quantification procedure for all species mixing datasets analyzed in this work. Namely,

reads were mapped to a hybrid hg19-mm10 reference genome using BWA. Cells were identified using the bap

knee calling described above. The output of this pipeline yields the number of unique nuclear reads mapping to

the mouse and human genomes, which were compared per-cell. We further excluded cells with less than 1,000

reads mapping to either the human or mouse genomes and identified collisions as those that had less than a 10x

enrichment over the minor genome. The overall collision rate is reported as the number of annotated collision

cells over the total number of cells compared (mouse + human + collisions).
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C.3.4 Peak calling

For each scATAC-seq experimental sample, chromatin accessible summits were called using MACS2 callpeak

with custom parameters previously described (Corces et al., 2016). To generate a non-overlapping set of peaks

per analysis, we first extended summits of each experiment to 500 bp windows (+/- 250 bp). We combined these

500 bp peaks, ranked them by their summit significance value, and retained specific non-overlapping peaks based

on this ordering. We further removed peaks that overlapped the ENCODE blacklist and a custommitochondrial

blacklist generated by aligning a synthetic mtDNA genome to the nuclear genome.

C.3.5 Library complexity estimation

Per-cell library complexities were estimated using the Lander-Waterman equation (Lander &Waterman, 1988)

using a custom R function translated from a previously established Java function implemented in Picard tools.

Per-cell counts of total number of mapped nuclear reads passing quality filters and the number of unique nuclear

reads served as inputs. The library complexity thus represents a metric that estimates the total number of unique

nuclear reads given by the cell independent of sequencing depth.

C.3.6 Comparison to public datasets

To benchmark the dscATAC-seq platform against existing datasets, we downloaded raw sequencing data (.fastq

format) for GM12878 cells via three different combinatorial indexing scATAC-seq methods19,24,25 and 384

cells processed with the Fluidigm C1 (Buenrostro et al., 2015) from GEO. All dataset were processed using

the same pipeline, which included BWA alignment and downstream processing with bap using the “–one-to-

one” flag that skips bead merging. We note that in all three combinatorial indexing scATAC-seq experiments,

GM12878 cells were mixed with mouse cells. As such, we compared only annotated human cells (>9:1 ratio of

human to mouse reads) from these experiments for downstream analysis.

To determine the correlation between single-cell ATAC-seq experiments, we used a merged peak set compris-
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ing of 175,581 combined DNase-seq hypersensitivity peaks from GM12878 and K562 made available through

the ENCODE Project. The sum of single cells (agnostic to cell ID) were compared against bulk Dnase-seq pro-

files generated from ENCODE and Omni-ATAC (Corces et al., 2017). To score the fraction of reads in peaks

across single cell experiments, we used only the GM12878 DNase-seq peak set (124,321 peaks) to ensure that

peak selection did not bias our quantification and comparison of technologies.

C.3.7 Validation of multiple beads per droplet inference

To validate our ability to merge cells marked by multiple droplet beads, we introduced a diverse library of random

oligonucleotides (14 nucleotides random region) to our microfluidic reaction (Figure C.2). Human PBMCs were

processed with this library of random oligos at bead concentrations of 200, 800, and 5,000 beads/μL, spanning

the ranges used for the data presented in this work. The random oligonucleotides were spiked in to the cells at a

final concentration of 5 nM after the tagmentation reaction, and samples were processed and sequenced using

our standard protocol (described above). Among pairs of beads merged, the average number of oligos observed

per bead ranged from 792-1,979 per experiment.

We reasoned that bead barcodes sharing a noticeable overlap of these oligos (Figure C.2.a,b) would be bar-

codes from two beads contained in the same droplet. We identified reads containing our random oligo by first

identifying the 15 bp constant sequence and subsequently parsing the 14 bases downstream of the constant se-

quence. For each experiment, we called a knee on the bead barcode pairwise Jaccard indices (per observed 14 base

oligonucleotide) and computed the overlap of random sequences observed (Figure C.2.c) for barcodes passing the

nuclear read knee. For pairs of bead barcodes passing the oligo overlap knee, we annotated these as true positives.

Next, we computed our bapmetric pairwise for each bead barcode using the overlap of pairs of inserts over

each fragment (or paired-end read). This produces a metric for all pairs of bead barcodes with at least 500 unique

nuclear reads observed per barcode (Figure C.2.d). Using the true-positives defined from the random oligos

data and a continuous overlap metric from bap, we computed precision-recall and receiver operating curves

(mean area under the receiver-operating curve (AUROC) = 1.000 and mean area under the precision recall curve
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(AUPRC) = 0.997 (Figure C.2.d). We further compared other possible metrics for bead merging, including Pear-

son and Spearman correlation and a Jaccard index over reads in peaks, finding that our approach was the most

robust and specific (Figure C.2.g). We note that the library of random oligonucleotides provides a completely

orthogonal measure of bead overlap compared to the nuclear DNA fragments used in the bap algorithm.

C.4 Theory of beads and droplet concentrations

In this setting, we are interested in estimating the number of beads per droplet at variable bead concentrations

using observed data. Given that our observed data does not yield any droplets with zero beads (cells not captured)

nor can any measurement be relied on with greater than 6 beads (physical limit for bead; observed values likely

reflect merged droplets), the observed number of beads per droplet is modeled by a double-truncated Poisson

distribution. The probability density function of a double-truncated Poisson distribution for a single observation

can be written as follows:

Pr (Yi = yi |c1 ≤ yi ≤ c2) =
λyi

yi !
∑c2

k=c1 λ
yi /k!

Here, c1 is our lower bound (1 in our case) of the empirical data and c2 is the upper bound (in our case 6) for

observed numbers of beads / droplet y. Let i ∈ 1, 2, . . . , n. Then, we observe n cells and yi denotes the number

of beads per drop for cell i. The log likelihood (l) of observing a value can thus be computed as follows:

l (λ|y) =
n∑
i=1

yi log(λ)−
n∑
i=1

log (yi !)− log

 c2∑
k=c1

λk

k!


Here, a closed form solution of λ (parameter of the Poisson distribution indicating the mean number of beads

per cell) is impossible. Thus, we estimate the value using the optim() function in R, providing the maximum

likelihood estimate (MLE).

Given the MLE estimate for λ, from plugging into the Poisson PDF, we can trivially compute:
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p = exp{−λ}

where p is the proportion of droplets with 0 beads. We can then approximate the number of droplets with

a barcode as 1 − p. Empirical values of λwere determined using GM12878 and mouse brain data at different

bead concentrations (800 and 5,000 beads/μL) and were found to be robust across the various datasets analyzed

throughout.

C.5 Bioinformatics methods for single-cell data

C.5.1 de novoK-mer clustering

Here, we computed bias-corrected deviation z-scores forK k-mers and a set of S samples (dscATAC-seq cells)

with P peaks computed via the chromVARmethodology. Here, our implementation utilizes a binarized ma-

trixM (dimension P byK) wheremi,k is 1 if k-mer k is present in peak i and 0 otherwise based on the reference

genome annotation. For all applications, we used k = 7, resulting inK = 8,192 (47/2) 7-mers. We note that the

division by 2 is to account for reverse-complement k-mers that would be identical as both strands of the reference

genome are considered when buildingM. Using the matrix of fragment counts in peaks X (dimension P by S),

where xi,j represents the number of fragments from peak i in sample j, we produce a deviation score matrix Z of

dimension S samples (rows) andK 7-mers (columns).

The matrix Z is computed using an expectation of peak accessibility based on technical confounders present in

assays (differential PCR amplification or variable Tn5 tagmentation conditions). This is achieved by generating

50 background peaks intrinsic to the set of epigenetic data examined. The full details describing the computa-

tion of Z have been previously described in the chromVAR (Schep et al., 2017) manuscript. Finally, as any of

the 8,192 7-mers are highly correlated, we then use the top principal components of the matrix Z as input for

downstream processes, including the Louvain clustering and t-SNE embedding.
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C.5.2 Cell type specific promoter region chromatin accessibility scores and regu-

latory region analysis in mouse brain

To define cluster-specific regulatory elements and promoter region chromatin accessibility scores, we defined

pseudo-bulk cell types by aggregating the counts per cell over each of the annotated cluster definitions. First, the

peak x cell type counts matrix (X) was count-per-million (CPM) normalized, and peaks with an overall mean

CPM > 1 were retained. This filtered peak x cell type matrix was then z-score transformed. Explicitly, for cell type

j and peak i, our transformed statistic was:

zi,j =
xi,j −mean(xi,∗)

sd(xi,∗)

We identified 135,737 cell type-specific chromatin accessibility peaks with a zi,j > 3 in at least one cell type

(some value j), which were assigned to clusters based on the maximum z-score value (argmaxj zi,j). Peaks were

separated and clustered based on the population with the maximum value in Figure 3.2.e. An identical procedure

was used for the promoter region accessibility scores x cell type matrix starting with the annotated set of 310

marker genes from a previous scRNA-seq analysis of mouse brain (Saunders et al., 2018), resulting in 262 genes

where the zi,j > 3 criterion was met for the promoter gene scores (Figure 3.2.d).

C.5.3 Promoter region chromatin accessibility scores

To annotate our de novo clusters from the whole mouse brain, we computed per-cluster promoter region chro-

matin accessibility scores representing a weighted-sum of chromatin accessibility around the transcription start

site (TSS) of each gene in our reference data. Specifically, for gene g and cluster i, we define a chromatin accessi-

bility score gi from the following:

gi =
∑
j∈J

xi,j ∗ e−dj/k
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Here, xi,j represents the counts-per-million normalized chromatin accessibility count for cluster i and chro-

matin accessibility peak j. Accessibility peaks used per gene Jwere restricted to those within 100,000 bp of a cor-

responding TSS, and dj represents the distance (in base pairs) between the TSS and the center of peak j. The

scaling constant, k, was fixed to 5,000 for all chromatin accessibility score computations.

C.5.4 Mouse brain cluster annotation

To annotate the dscATAC-seq mouse brain clusters in a data-driven manner based on the molecular signature

of the distinct cell types in the brain, we used a resource containing scRNA-seq data for 690,000 individual cells

sampled from 9 regions of the adult mouse brain (Saunders et al., 2018), which identified 565 subclusters within

the broad classes of cell types in the brain. The list of cell types includes neurons, astrocytes, microglia, oligoden-

drocytes, polydendrocytes, and components of the vasculature. We note that many of these subclusters are from

analysis of specific brain regions and further re-clustering within broadly defined clusters, leading to a large num-

ber of clusters. We use this data resource to 1) assign each one of our clusters to one of the broad cell classes iden-

tified in their study and 2) further refine the annotation by identifying which gene expression signature (within

the 565 subclusters) provides an optimal match to each one of our dscATAC-seq clusters. To do this, we first

obtained the union of the class_marker and type_marker genes identified in the scRNA-seq study (total of 310

unique genes). We then calculated the Spearman correlation coefficient between the per-cluster promoter re-

gion chromatin accessibility scores (27 clusters) and the aggregated scRNA-seq signal per cluster (565 clusters) at

those 310 marker genes (Saunders et al., 2018). We then employed the Gale-Shipley algorithm to assign an opti-

mal matching of scRNA-seq clusters to our scATAC-seq clusters. Here, the Gale-Shipley algorithm assigns pairs

that maximize the global utility of the matches, noting our utility function was Spearman correlation. To clas-

sify the 27 dscATAC-seq clusters, we used the broad class assignment of the most correlated scRNA-seq cluster,

except for the ”Neuron” class, which was further divided into Excitatory and Inhibitory neurons based on the

annotation of Slc17a7 or Gad1 respectively. We then performed the same computational approach using another

scRNA-seq dataset with 262 clusters (Zeisel et al., 2018) to validate the robustness of our approach. When dis-
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playing the overall correlation structure (Figure 3.2.c), we restricted the scRNA-seq clusters to those that had one

or more class matches to the scATAC-seq data (500 out of 565 clusters).

C.5.5 Bulk-guided clustering

Bulk-guided clustering of single cells (Figure 3.4) was performed as previously described (Buenrostro et al., 2018).

Briefly, a matched peakset (k=156,311 peaks) was used for both BMMCs dsciATAC-seq (n=136,463 single cells),

and bulk ATAC-seq profiles previously generated for sorted hematopoietic cell populations for 16 cell types

(Corces et al., 2016). PCA was first run on quantile-normalized bulk ATAC-seq data generating principal com-

ponents (PCs) capturing variation across cell types. Single cells were then projected in the space of these bulk-

trained PCs by multiplying the scATAC-seq reads in peaks matrix with the peaks x PC loading coefficients matrix

to yield a matrix of single-cell projection scores (cells x PCs). The derived single-cell scores were then scaled and

centered, and the corresponding single-cell data visualized using t-SNE. Predicted labels for single cells were ob-

tained by correlating projected single cell scores with bulk PC scores, and choosing the most-correlated bulk cell

type based on Pearson correlation coefficient. To define clusters for the control (unstimulated) BMMC dataset

(Figure 3.4.c), Louvain clustering was performed using the igraph package where the 20 nearest neighbors per cell

were used to build the embedding.

C.5.6 Single-cell classification

To assign most-alike clusters generated form the 15 clusters of the control (unstimulated) BMMC dataset (Figure

3.4.c) to additional datasets (Figure 3.4.e,f), the medoids of each per-cluster principal component were deter-

mined over all cells assigned from the Louvain clustering at baseline. Next, for each cell from a new dataset (i.e.

FACS-sorted populations and stimulation-response cells), we assigned to the cell a reference cluster based on the

minimum Euclidean distance between each cell’s principal components and the medoids of the clusters.
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C.5.7 Analysis of differential TF motifs

To compute differential TF scores in normal and stimulation conditions, we determine the 20-nearest stimulus

condition neighbors for each single-cell in the resting condition using the bulk-guided PC scores and a Pearson

correlation distance metric. To calculate differential TF motifs, we subtract the mean of the 20 stimulus cells by

the TF score for each cell in the normal condition. Last, to suppress noise in the comparison, we smooth the dif-

ferential TFs by taking the mean of the 20 nearest neighbors in the control condition. Again, the nearest neigh-

bors are calculated using the bulk-guided PC scores, with Pearson correlation as a distance metric.

C.5.8 Differential peak identification in bone marrow stimulation

We devised a permutation test that accessed whether the proportion of cells with an accessibility element was dif-

ferential between the stimulated and resting conditions, controlling for overall differences in accessibility (using

measures at promoters). First, we filtered our consensus peak set such that the given peak was accessible in at least

1% of cells irrespective of stimulation or resting. Then, for an individual regulatory element i, we determined the

proportion of cells in the resting pr and the stimulated ps conditions that observed one or more fragments over-

lapping the accessibility peak. Next, we computed the proportion of all promoters annotated in our dataset for

both resting (p′r) and stimulated (p′s). Our observed differential statistic thus is given by:

ps
p′s

− pr
p′r

To determine statistical significance, we permuted the stimulation and resting labels 1,000 times to generate

a permuted distribution. We observed the corresponding z-statistic (Figure C.9.l) to be centered with a largely-

Gaussian distribution. After converting these Z-statistics to p-values using a standard normal distribution, we

computed a per-cluster false discovery rate (FDR) and established a significance threshold of 1% uniformly across

clusters. We further computed an effect size of the difference between stimulated and resting, given simply by

ps − pr. We summarized the differential association in Figure 3.5.g where the red bars (FDR < 10−5) and pink

149



bar (FDR < 10−2) represent the statistical significance of the change in chromatin accessibility for each cell type

cluster.

C.5.9 Overlap with fine-mapped GWAS SNPs

To identify regulatory regions affected by our stimulation conditions that may be relevant for hu-

man disease, we overlapped differential peaks identified per cell type with single nucleotide polymor-

phisms (SNPs) identified through genetic fine-mapping studies of 21 immune traits as previously

described (Farh et al., 2015). Specifically, we downloaded the per-SNPmeta-data available online

(http://pubs.broadinstitute.org/pubs/finemapping/dataportal.php) and intersected differentially-accessible peaks

with annotated positions of fine-mapped variants with a posterior probability > 0.3 computed by PICS (Farh

et al., 2015) across all reported traits.

C.6 Supplemental note about computational bead mergingwith bap

C.6.1 Premise

The graphic shown in Figure C.2.a shows a simplified data example for six selected bead barcodes that were

inferred to contribute to a total of three cells. For all six barcodes, one or more fragments was observed at

each of the GAPDH and DIAPH1 promoters. However, upon closer examination, certain barcode pairs (e.g.

pink/brown; orange/grey) annotate reads that share the same exact Tn5 insertion position. This demonstration

highlights the value of considering the exact Tn5 insertion position for each fragment, rather than reads across a

peak, when considering potential statistics to identify and merge these bead pairs. The computational approach

used for bap does this.

The biochemical basis for this approach is characterized in Figure C.1.d. In brief, after the oligonucleotides

(containing bead barcodes) are cleaved from the physical bead, they act as primers and anneal and amplify the

cellular DNA fragments via PCR, therefore tagging each DNA fragment with a bead barcode. During successive
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rounds of PCR, oligonucleotides containing different bead barcodes may PCR amplify the same fragment. As

a result, when the full library is sequenced, the same individual DNA fragment will be associated with multiple

barcodes. Our approach seeks to define co-occurrence of bead barcodes from these DNA fragments.

C.6.2 Statistic

Explicitly, for arbitrary bead barcodes a and b, the fragment universeUa∪b is all unique fragments (defined based

on the genomic coordinates of the Tn5 insertion sites) tagged by the two bead barcodes. Further,Ua andUb are

the fragments in the universe of each fragment for the barcodes individually. All of these Tn5 insertion universes

are defined by first removing highly abundant fragments (i.e. observed in >6 bead barcodes) as these likely repre-

sent a technical artifact. The bap statistic, s, for a and b is defined as follows:

sa,b =
|Ua ∩ Ub|
|Ua∪b|

C.6.3 Comparison to other statistical methods

To compare the efficacy of our chosen approach (bap) to other plausible approaches (that do not resolve the exact

position of the Tn5 insertion), we considered three additional metrics shown in Figure C.2.k. We define each

metric below:

• bap: Pairwise (between bead barcodes) jaccard index computed over Tn5 insertion sites after removing

highly abundant fragments (i.e. observed in >6 bead barcodes). This is represented by the sa,b statistic

described above.

• Pearson: Pairwise Pearson correlation metric of the reads by barcodes matrix.

• Spearman: Pairwise Spearman correlation metric of the reads by barcodes matrix.
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• jaccard peak: Pairwise jaccard index value computed over fragments observed within chromatin accessibil-

ity peaks.

From these metrics, the corresponding AUROC and AUPRC values were computed for each experiment

using the same set of true-positive bead barcode merges. The true-positive set is defined by the orthogonal mea-

sure that includes droplet PCR with a high-diversity oligonucleotide as a template alongside the transposition

fragments within cells. These metrics are reported in the barplots shown in Figure C.2.k.

Finally, we distinguish between the metric that is computed pairwise (used to compute AUROC and AUPRC

statistics) and the defined threshold value on the bap statistic that results in bead merges from our algorithm.

This data-driven, dynamic threshold for bead merges per-library is determined using the “knee-calling” algorithm

described in the following section.

C.6.4 Potential drawbacks to this approach

As open chromatin fragments are cell type specific and are also the basis for our bead merging algorithm, theo-

retically, there may be a tendency for ‘false-positive’ merges (i.e. two bead barcodes tag two unique cells but are

merged into one cell) to be enriched across cells of the same cell type. Notably, in our analyses of these data, we

have found no empirical evidence of this occurring or confounding our results. However, we encourage others

to acknowledge this possibility, particularly as this approach is used in new ways. Notably, if false positives are

a concern additional approaches may be used, such as indexing single-cells using combinatorial Tn5 and/or the

introduction of random oligonucleotides into the droplet mix.

Additionally, we note that all of our data settings in which we evaluated the bead merging algorithm were

diploid genomes. Highly variable ploidy could impact the accuracy of bead merges, particularly for model or-

ganisms with a chromosomal copy number significantly greater than two. Further, the computational efficiency

of our approach is on the order ofO
(
n2
)
, where n is the number of bead barcodes. Larger datasets with signifi-

cantly greater diversity of bead barcodes may hinder our approach for bead merging.
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C.6.5 Dynamic threshold determination or ”knee-calling”

To identify high-quality cells, knee calling is performed by first generating a Gaussian kernel density estimate

(KDE) of the log10 transformed unique nuclear read counts per bead barcode. The KDE is then used to create

a density distribution of 10,000 evenly spaced values between the minimum (cmin) and maximum (cmax) log10

transformed unique nuclear read counts (we denote this vector as c). Local minima in this density distribution

were identified and used as potential inflection points below which barcodes were filtered from further analysis.

To choose a specific local minimum for thresholding (cthres), we picked the smallest value (among the vector of

possible minima) that satisfied the following criteria:

log10 (cmax)− log10 (cthres) > d

and

∑
i∈I 1(log10 (ci) > log10 (cthres))

|I|
> 0.20

In other words, criterion (1) enforces that the difference between the number of reads for the most abundant

bead and the threshold is larger than some value d (d = 0.5). We observed this criterion to be useful in settings

where the top few (~10) beads contained a disproportionately high number of reads. For this second criterion, we

nominate a set of barcodes I such that ∀ i ∈ I, ci > mode (c), where |I| represents the total number of barcodes

in this set. As we observed many more droplets with no cell, the mode of the vector cmost likely represents a

value associated with a bead barcode that is not associated with a cell. Thus, this second criterion enforces that at

least 20% of these plausible barcodes that are more abundant than the mode pass the knee detection. In a scenario

where no data-driven parameter can be determined, our algorithm fixes the fragment threshold to a default value

of 500. We note that for all libraries presented in this manuscript, our approach successfully determined a data-

driven threshold for each individual library. Further, we note that this conceptually takes a conservative approach
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and in almost all analyses, more stringent filtering criteria are applied.

C.6.6 Jaccard index for bead merging

Here, we note that this pairwise computation attempts to find a relatively small number of true bead pairs that

originated from the same droplet. To achieve this, the same procedure and criterion using a Gaussian KDE is

further applied to the bap Jaccard index score (s) for pairs of bead barcodes to identify beads originating from

the same droplet. Notably, the log10 transformation is not applied for the scores. Additionally, we define the

threshold difference to be d = 0.05, and the set of barcode pairs I is all non-zero pairs (which is consistent with

the definition above using the mode since 0 is empirically almost always the mode observed per-library). In a sce-

nario where no data-driven parameter can be determined, our algorithm fixes the fragment threshold to a default

value of 0.005. We note that for all libraries presented in this manuscript, our approach successfully determined a

data-driven threshold for each individual library.
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Supplemental material for Chapter 4
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D.1 Biological and experimental methods

D.1.1 Loading and visualizing bead loading in droplets

We used the 10xChromiumController Training Kit (PN-12024, PN-120238) to generate GEMs following man-

ufacturer’s instructions. The GEMs were carefully collected without disrupting the emulsion. After GEM for-

mation, 10 µL of GEMs from each 10x channel was immediately loaded onto Countess Cell Counting Chamber

Slides (C10228, Thermofisher) for visualization. We captured 10 bright field images under an Olympus IX70 mi-

croscope, and beads per droplet were counted based on manual inspection of images. To quantify the proportion

of barcodes affected by multiple beads (barcode multiplets), we used the following equation:

%multiplets =
∑4

b=2 bnb∑4
b=1 bnb

x 100

where b is the number of beads present in a given droplet and nb is the number of droplets with b beads. Here,

the expression is capped at 4 as droplets with 4+ beads could not be reliably quantified. Thus, in these instances,

the value of barcodes per droplet were conservatively assigned a count of 4. For the Zheng et al. (2017b) data, we

used the following abundances from previous imaging data: 15% of droplets had 0 beads; 80% of droplets had 1

bead; and 5% of droplets had 2 beads. As neither the raw data nor the quantification values have been published,

these values were approximated from an examination of a plot previously reported.

D.1.2 Profiling PBMCs using 10x scATAC-seq

For 10x scATAC-seq experiments with PBMCs (PB003F, AllCells), frozen cells were quickly thawed in a 37°C

water bath for about 30s and transferred to a 15 mL tube. 5 mL of pre-warmed RPMI 1640 (ATCC, 30-2001)

supplemented with 10% Fetal Bovine Serum (FBS) were added to the sample drop by drop. The cells were pel-

leted by spinning at 300g for 5min at room temperature. The supernatant was removed, and cells were washed

with 1 mL PBS. The cells were then pelleted again, resuspended in 1 mL PBS, and used for 10xATAC v1.0 pro-
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Figure D.1: Details of barcode mul plet quan fica on via imaging. (a) Alterna ve field of view. Boxes highlight individual droplets
shown in subsequent panels. The image is representa ve of a total of 30 fields of view taken from 3 independent experiments. (b-d)
Examples of 2, 3, and 4+ beads per droplet, respec vely. (e) Theore cal support for op mal bead loading under Poisson distribu on
assump ons. The do ed line (top) represents the theore cal maximum for 1 bead loaded into droplets, and the full distribu on at
this point is shown in the bar graph. (f) Quan fica on of beads per droplet for each replicate. Above each panel, the machine and the
version of the chip used for the training kit is indicated. Error bars represent standard error of mean over n=10 independent fields of
view for each of the three experimental replicates (n=30 total). (g) Example of presumed merged droplet containing mul ple (~6) beads.
The selected droplet was one of ~10 droplets that was likely the consequence of merging taken from a total of 30 fields of view taken
from 3 independent experiments.
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Figure D.2: Summary of the bap workflow for 10x scATAC-seq data. An overview of the inputs and computa onal workflow for the
applica on of bap to 10x scATAC-seq data.

tocol following manufacturer’s instructions. The corresponding library was sequenced on an Illumina NextSeq

500.

D.2 Bioinformatics and data analysis methods

D.2.1 Data preprocessing

Raw sequencing data was processed with Cell Ranger ATAC version 1.0.0. Reads were aligned to the hg19 ref-

erence genome available on the 10xGenomics website. Processed 10x PBMC datasets were downloaded from

https://www.10xgenomics.com/resources/datasets/ from the version 1.1 PBMC 5k scATAC-seq dataset. The

requisite input files for bap included the .bam file and the high-quality barcodes file. Additional annotations from

Louvain clustering and t-SNE coordinates were also downloaded for downstream visualization and analyses. For

the comparison of the chip technologies (Figure 4.3.g), we again downloaded the PBMC 5k scATAC-seq datasets

from the “ChromiumNext GEMATACDemonstration.”

D.2.2 Processing 10x scATAC-seq datawith bap

In order to facilitate the processing of 10x scATAC-seq data with bap, no major substantive changes were re-

quired for the underlying barcode multiplet identification algorithm that has been previously outlined in Chap-

ter 3. However, additional command-line options were added, including the –barcode-whitelist flag, which im-
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Figure D.3: Suppor ng informa on for barcode mul plets learned from scATAC-seq data. (a)Quan fica on of barcodes affected by
barcode mul plets for the PBMC dataset generated with this work (“This Study”). (b) Percentage of barcode mul plets iden fied for
different numbers of input barcodes. (c) Visualiza on of seven addi onal barcode mul plets from the Public dataset. (d) Propor on
of bead pairs occurring in the same chroma n accessibility-defined Louvain cluster compared to a permuted background. Error bars
represent standard error of mean over n=100 independent permuta ons per each dataset (two independent experimental replicates).
(e) Downsampling analysis of the dataset generated in this work (“This Study”). Barcode mul plets were examined at downsampled
intervals from 10%-90% by units of 10%. The highlighted sample represents 40% downsampling and corresponds to a median 10,000
fragments detected per barcode. At all downsampled thresholds, we detected 0 pairs that were not present in the 100% sample. (f)
Distribu on of the restricted longest common subsequence (rLCS) for 1,000,000 randomly sampled barcode pairs in the 10x barcode
universe. A threshold at 6 is drawn for use in other analyses. (g) Breakdown of types of barcode mul plets from the Next-gem compar-
ison data. (h) Comparison of methods to detect barcode mul plets. The rates of barcode mul plets detected by each solu on is shown
in black. The % agreement between the two methods (per barcode) is shown in red.
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Figure D.4: Evidence of barcode mul plets from rLCS of BCR clones. (a)Observed and permuted (within clonotype) restricted longest
common subsequence for the BCR clone dataset. The inset shows a zoom for rLCS ≥9 and the percent of barcodes depicted in the
panel.

ports the error-corrected, quality-controlled barcodes identified as “cells” by CellRanger, enabling analysis of

the filtered output from the default 10x pipeline. This functionality augments the default process in bapwhere

abundant barcodes are identified via quantification and knee-calling in terms of total reads observed per barcode.

Versions 0.5.9+ of bap facilitate full analysis and merging of barcode multiplets with 10x scATAC-seq data.

D.2.3 In silico mixing experiment

Using two different public PBMC 5k datasets, we sought to determine a putative false positive rate for the appli-

cation of bap to 10x scATAC-seq data. Here, we denoted the PBMC-5k “Public” dataset as Channel 1 and the

PBMC-5k from the NextGEM beads as Channel 2. We modified the CB tags (which contains the error-corrected

barcodes) in the .bam files for each channel to ensure that each barcode for each experiment was uniquely iden-

tifiable. These modified bam files were subsequently merged. Next, the same modification to the barcodes was

made, and the two high-quality barcodes files were combined into a single file. We then executed bap using the

default parameters with this merged .bam and merged barcode list file. Using a single threshold determined by the

knee call, we identified pairs of barcodes originating from the same or different channels as summarized in Fig-

ure D.2.c-e. The top 500,000 barcode pairs were plotted in rank order for each of these three plots, and the same
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single threshold was visualized in all three panels.

D.2.4 Assigning bead barcodes to multiplets

The identification of multiplets follows the same strategy previously described in Chapter 3. In brief, a per-

barcode pair summary statistic (modified jaccard index) is computed using the one base pair location of Tn5

insertions. We emphasize that this statistic has been validated using an orthogonal oligonucleotide library as we

have previously described in Chapter 3. From this distribution of millions of barcode pairs, we computationally

infer an inflection point threshold T (similar to a ”knee-call” used by CellRanger to identify true cell barcodes).

To derive multiplets, we iteratively consider the barcode pairs (e.g. b1 and b2) with the highest remaining overlap

score and append any additional barcodes whose overlap value with either b1 or b2 exceeds T. For example, if the

statistic between b1 and b3 exceeds T, then b1, b2, and b3 are assigned to one multiplet. This process continues

until all barcodes are assigned a multiplet that had an overlap score exceeding T. All remaining barcodes are as-

signed as singlets. To facilitate processing of the 10x scATAC-seq data, we modified the command line interface

and internal data structures of bap, but the conceptual basis and execution is the same as previously described3.

D.2.5 Classifying and quantifying complex beads

To determine multiplets driven by putative bead barcode synthesis errors, we considered all pairs of barcodes

within an annotated multiplet and computed the restricted longest common subsequence (rLCS) between them.

Explicitly, the rLCS is the largest consecutive number of characters that match between two strings without shift-

ing the strings. We note the necessity of defining a distance metric (rLCS) that is distinguished from the longest

common subsequence (LCS) as our metric does not allow insertions or deletions when performing the string

matching. Additionally, rLCS is distinguished from the Hamming distance as the matching characters must all

occur in a continuous unit (which is not enforced by Hamming).

To determine an appropriate threshold to classify multiplets as having originated frommultiple beads or a sin-
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gle heterogeneous bead, we established a null distribution of the rLCS shown in Figure D.3.f. To achieve this,

1,000,000 random draws of barcode pairs were determined and the rLCS was computed. We selected an rLCS

threshold of 6 as pairs with an rLCS ≥6 represented less than 0.5% of the data, which was used to classify mul-

tiplets from the real data (Figure 4.3.f). To determine whether the number of fragments was similarly captured

between barcodes contained in multiplets, we computed the pairwise percent difference of the log2 unique frag-

ments (“passed_filter” in the CellRanger-ATAC .csv file). The per-multiplet average of the mean pairwise percent

difference is plotted in the boxplots in Figure 4.3.g, and we used a two-sided Kolmogorov–Smirnov test to verify

that the droplets containing multiple beads had a more even ratio of reads compared to multiplets driven by bead

heterogeneity.

To quantify the percent of beads that had heterogeneity, the numerator was the number of multiplets identi-

fied with an rLCS ≥ 6 (from Figure 4.3.f). The denominator was the total number of barcodes analyzed while 1)

still counting all barcodes in perceived bead multiplets but 2) collapsing the heterogenous barcode multiplets to

only 1 barcode. For example, in the “This Study” dataset, the total number of barcodes passing the CellRanger

knee was 5,453. Of these, 4,732 barcodes were from singlets, 121 barcodes were associated with multiplet beads

per droplet (and thus not complex), and 600 barcodes were associated with 253 complex beads. The complex

bead rate can be computed as follows:

complex bead rate =
# complex beads

# singlet beads + # beads in bead multiplets + # complex beads

For our example of the “This Study” dataset:

253
4732 + 121 + 253

= 4.95%
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D.2.6 Chi-square test for cluster / multiplet

To test for association between barcode multiplets and cluster identification, we performed a chi-square test for

independence. For the n Louvian clusters identified by CellRanger, we assembled a 2xn contingency table, tab-

ulating barcodes into corresponding entries in the contingency table. The two rows specified whether each bead

barcode was predicted to occur in a multiplet or not as identified by bap. P-values were computed using the chi-

squared statistic with n− 1 degrees of freedom.

D.2.7 Evaluation of barcode multiplets with different numbers of variable input

barcodes

To test the abundance of barcode multiplets with different numbers of considered barcodes, we executed bap

with 5,000-10,000 barcodes at intervals of 1,000 barcodes (6 additional executions) in addition to the 5,205

found by CellRanger’s knee call. Each barcode set was nominated based on the ranking of fragments in peaks,

the same metric used by CellRanger to determine an optimal threshold. Our results (Figure D.3.b) show that the

inferred cutoff underestimates the barcode multiplets in the Public data, consistent with our imaging results. We

interpret this plot to show that barcode multiplets often occur near the inflection point (consistent with these

barcodes having fewer reads due to the fractionated data). However, this rate flattens when additional barcodes

added do not represent multiplets but other ambient fragments that cannot be associated with a highly-observed

barcode.

D.2.8 Enrichment for barcode multiplet pairs in the same cluster

For each barcode multiplet identified by bap, we considered all possible pairwise combinations of constitutive

barcodes. For example, multiplets consisting of precisely two bead barcodes had one pair whereas multiplets

consisting of four barcodes contained six barcode pairs (all combinations; choose two). For these pairs, we com-

puted the proportion that occurred in the same Louvain cluster produced by the default CellRanger execution.
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A background rate was generated by performing 100 permutations of the full dataset where cluster labels were

permuted.

D.2.9 Downsampling analyses

To evaluate the stability of the bap statistic as a function of coverage, we downsampled the dataset generated here

(“This Study”) at intervals of 10% and reran bap on the resulting downsampled .bam files. Here, we used the

full set of high-quality barcodes determined from the CellRanger execution on the full dataset. Moreover, we

determined the set of identified barcode pairs from the full dataset as a ‘true positive’ set of pairs to compare the

downsampled results. Figure D.3.e shows the results of this downsampling, including the 40% subsample (that

corresponded to a median 10,132 fragments per barcode) that achieved >90% sensitivity in detecting the set of

barcode pairs from the full data. Critically, in each of the 9 downsampled executions of bap, no barcode pairs

were identified that were not present in the full dataset.

D.3 Comparison of our approachwith 10x solution

After contacting 10x support, we obtained the “clean_barcode_multiplets_1.0.py” script, which identifies

barcode multiplets in single-cell ATAC-seq data. We executed this code and evaluated the output for the two

scATAC-seq datasets closely analyzed in this work (“Public” and “This Study”). While the procedure used to

identify multiplets similarly utilizes shared Tn5 insertions, the treatment of multiplets once detected is different

from bap. Specifically, for each multiplet, the barcode with the most unique fragments is retained and the other

barcodes are filtered out. Further, 10x refers only to the barcodes that are filtered out as ‘multiplets’, rather than

counting the most prevalent barcode as part of a barcode multiplet as we’ve done throughout this manuscript.

For comparison purposes, we used our definition of barcode multiplet (as stated in the abstract) and reported the

rates from each tool (see script in Code Availability for the exact procedure). Finally, to compute the concordance

between the two methods, we assigned each barcode whether or not it was part of a barcode multiplet from both
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sources and report the percentage of barcodes that had a matching annotation across the detection methods.

D.4 Clonotype analyses with 10x 5’ kit

D.4.1 Estimation of multiplet-adjust BCR / TCR clonotype abundances

In order to estimate the number of cells contributing to each clonotype (defined by a unique BCR or TCR se-

quence), we downloaded the per-barcode clone identification files (BCR:

vdj_v1_hs_nsclc_b_all_contig_annotations.csv; TCR: vdj_v1_hs_nsclc_t_clonotypes.csv) from the 10xCell-

Ranger output for the public NSCLC tumor dataset. Here, each barcode is assigned a clonotype group when

detected with high confidence in the CellRanger pipeline. To simulate the occurrence of barcode multiplets, we

executed the following simulation procedure.

For each barcode iwith a total of n barcodes in the experiment (all assigned a clonotype), we simulate a cor-

responding multiplet valuemi which defines the barcode multiplicity; i.e. the number of unique barcodes that

overall co-occur with barcode i inside a theoretical droplet. We performed our simulation by specifying the fol-

lowing probability distribution function:

P(mi = 1) = 0.93; P(mi = 2) = 0.05; P(mi = 3) = 0.01P(mi = 4) = 0.005; P(mi = 5) = 0.005

Importantly, the values defined in the probability distribution function are grounded in the empirical esti-

mates from bap across our two datasets but likely represent conservative estimates assuming a similar distribution

of barcode multiplets from scATAC-seq holds in this assay. In other words, P(mi = 1) = 0.93 is likely overesti-

mated and P(mi > 5) = 0 is underestimated, and from this parameterization, the expected rate of barcode mul-

tiplets is 15.8%. Here, we denote the set of valuesmi asM (of length n). To account for k clonotypes with exactly

one barcode that could only be generated from a barcode singlet, we define a new setM′ such thatM′ ∪ K = M

where |K| = k and ∀mi ∈ K, mi = 1. Thus, the elements ofM′ represent the barcode multiplicities for
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clonotypes annotated with two or more cells.

To estimate the multiplet-adjusted cell number per clonotype, we iteratively sample from the setM′ until

we have observed sufficient barcode numbers to explain the original clonotype abundances, akin to observing

droplets with variable barcode abundances. More precisely, for a given clonotype j comprised of cj barcodes (from

the raw CellRanger output), we seek to compute the multiplet-adjusted number of cells c′j. To achieve this, we

sample fromM′ until the summeets or exceeds cj. c′j then is the number of draws corresponding to the number

of multiplet-aware droplets needed to explain the clonotype abundance and can be interpreted as the number of

cells present in the clone under the simulation setting. As an example, suppose cj = 4, representing a clone of

four barcodes. If we sample a 4 or 5 fromM′, then c′j = 1, meaning that one droplet explains the clone in this

scenario. Last, the new per-clonotype abundances in the library are then represented by the union ofKwith the

set of all cj. These multiplet-adjusted abundances were computed over 100 iterations, and the numbers reported

in the main text represent the mean over these simulations. We note that anR script that achieves this approach is

available in the repository noted in Code Availability.

We define the “clone false discovery rate” as the proportion of clonotypes with at least 2 cells that then be-

comes explained by a barcode multiplet (i.e. c′j = 1; cj > 1) under our simulation setting. The numbers reported

in the main text represent means for each of the BCR and TCR clones over the 100 simulations. Finally, we note

that while this simulation assumes that the multiplet rates inferred for scATAC-seq are transferable to scRNA-

seq, alternative approaches, such as estimating the complex bead rate from scRNA-seq directly, are likely unreli-

able without a sensitive multiplet detection approach as presented with bap. Ultimately, our simulation results

provide an anchor to interpret the potential shift in clonotype abundance from the lens of our barcode multi-

plet artifact. However, additional experiments and analytical tools are needed to accurately determine clonotype

abundance.
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D.4.2 Determination of multiplet-driven clonotypes

In scATAC-seq data, barcode multiplets were identified using our approach previously described. However,

no such approach exists for scRNA-seq. Thus, to identify potential multiplets, we were required to consider

potential multiplets defined only by barcode similarity, which would be reflective of synthesis errors resulting

in a bead with heterogeneous barcodes (Figure 4.1.a). To determine these potential multiplets, we considered

all pairs of barcodes within an annotated clonotype and computed the restricted longest common subsequence

(rLCS) between them. Analysis of the distribution of pairs (Figure D.4.a) within clonotype labels revealed was

used to identify the clones shown in Figure 4.4. When computing a permuted distribution (Figure D.4.a), labels

of clonotypes were shuffled such that random barcode pairs were considered.

167



E
Supplemental material for Chapter 5
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E.1 Biological methods

E.1.1 Cell lines and cell culture

TF1 cells (ATCC) were maintained in Roswell Park Memorial Institute Medium (RPMI) 1640, 10% fetal

bovine serum (FBS), 2mM L-Glutamine and 2ng/ml recombinant human Granulocyte-Macrophage Colony-

Stimulating Factor (GM-CSF) (Peprotech) and incubated at 37C and 5% CO2. GM11906 cells (Corriell) were

maintained in Roswell Park Memorial Institute Medium (RPMI) 1640, 15% fetal bovine serum (FBS) and 2mM

L-Glutamine and incubated at 37C and 5% CO2.

E.1.2 Primary cells and cell culture

CD34+ hematopoietic stem and progenitor cells were obtained from the Fred Hutchinson Hematopoietic Cell

Processing and Repository (Seattle, USA). The CD34+ samples were de-identified and approval for use of these

samples for research purposes was provided by the Institutional Review Board and Biosafety Committees at

Boston Children’s Hospital. CD34+ cells were thawed and cultured in StemSpan II with 1x CC100 (StemCell

Technologies, Inc.) at 37C and 5% CO2. At indicated time points, these cells were seeded in media support-

ing the differentiation into monocytic and erythroid cells. Briefly, cells were cultured at a density of 105 − 106

cells per milliliter (ml) in IMDM supplemented with 2% human AB plasma, 3% human AB serum, 1% peni-

cillin/streptomycin, 3 IU/ml heparin, 10 mg/ml insulin, 200 mg/ml holo-transferrin, 1 IU erythropoietin (Epo),

10 ng/ml stem cell factor (SCF) and 1 ng/ml IL-3 and incubated at 37C and 5% CO2.

E.1.3 Chronic lymphocytic leukemia samples

Cryopreserved peripheral blood mononuclear cells from chronic lymphocytic leukemia patients consented on

institutional review board approved protocols were obtained from AllCells or from AdrianWiestner at the Na-

tional Institute of Health. Cryopreserved cells were thawed by serial dilution in RPMI with 10% fetal bovine
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Figure E.1: Addi onal valida on of biotechnical and computa onal basis for single-cell mtDNA genotyping. (a) Comparison of chro-
ma n library complexity (es mated number of unique fragments) across screened lysis condi ons as shown in Figure 5.1. (b) The same
variable lysis condi ons showing the TSS rate per cell. (c) BioAnalyzer traces of mtscATAC-seq library fragment size distribu on for
regular condi ons and mtDNA-enriched condi ons. (d) Heteroplasmy heatmap of single cells (columns) for 43 private homoplasmic
muta ons (rows) in the TF1 or GM11906 cell lines with (le ) and without (right) FA treatment. Color bar, heteroplasmy (% allele fre-
quency). (e) Comparison of mtDNA fragment complexity and chroma n complexity between the original/ regular 10x scATAC protocol
and modified lysis condi ons with and without formaldehyde (FA) treatment. (f) Heteroplasmy of sum of single-cell ATAC-seq libraries
with variable FA treatment. (g) Schema c, method, and results of improving mtDNA genome coverage via hard-masking the reference
genome. (h) Comparison of % reads mapping to mtDNA and (i) chroma n complexity with (red) and without (blue) the hard masking.
Boxplots: center line, median; box limits, first and third quar les; whiskers, 1.5x interquar le range. (j) Accessible chroma n landscapes
aggregated from single cells near the ETV2 locus for both cell lines as assayed via regular scATAC-seq and mtscATAC-seq.
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Figure E.2: Further inferences in analysis of the GM11906 (MERRF) lymphoblastoid cell line. (a) Alterna ve field of view for GM11906
in situ genotyping imaging experiment. Pseudo bulk accessibility track plots are shown for the (b) ETV2 and (c) CD19 loci. Pseudo-bulk
groups represent 0-10% (low), 10-60% (mid), and 60-100% (high) m.8344A>G heteroplasmy. (d) Spearman correla on of heteroplasmy
against the ChIP-seq devia on scores computed via chromVAR. Each bar is a single transcrip on factor with selected factors high-
lighted. (e) Depic on of MEF2C devia on scores from chromVAR for m.8344A>G heteroplasmy bins, corresponding to 0-10% (Low),
10-60% (Mid), and 60-100% (High). Boxplots: center line, median; box limits, first and third quar les; whiskers, 1.5x interquar le range.
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Figure E.3: Valida on of soma c mtDNA muta on calling via mgatk. (a) Venn diagrams depic ng comparisons of heteroplasmic muta-
ons iden fied by mgatk, samtools/bc ools, and (b) FreeBayes. (c) Comparison of heteroplasmy es mated from reads aligned to either
strand. The top row are three variants called specifically by mgatk; 3549C>A was iden fied only by FreeBayes. 7399C>G and 546A>C
were called specifically by bc ools. (d) Iden fica on of 67 and (e) 36 heteroplasmic variants from previously published SMART-seq2
hematopoie c colony data. Blue variants represent known RNA-edi ng events. (f) Comparison of popula on heteroplasmy values for
variants replicated by mgatk from a previous supervised approach. Boxplots: center line, median; box limits, first and third quar les;
whiskers, 1.5x interquar le range. (g) Concordance between discerning cells sharing a clonal origin based on colony-specific mtDNA
muta ons and their unsupervised iden fica on using indicated algorithms (mgatk, bc ools, FreeBayes) and previously described super-
vised approach (see Chapter 1). Receiver opera ng characteris c (ROC) using the per cell pair mtDNA similarity metric to iden fy pairs
of cells sharing a clonal origin based on sets of mtDNA variants. The number of variants in each set is also depicted. (h) Area under the
ROC (AUROC) is denoted for each donor group and indicated variant caller as depicted in (g).
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Figure E.4: Suppor ng informa on for clonal lineage tracing across accessible chroma n landscapes in an in vitromodel of
hematopoiesis. (a) Depic on of single-cell UMAP embedding showing the original distribu on of cells for each library/ me point,
(b) rela ve cell density, (c) Louvain cluster, and (d) mitochondrial DNA coverage per single cell. (e) Overlap of variants called for each
of the two datasets. (f) Comparison of log2 fold change in heteroplasmy from day 14 to day 8 for 18 overlapping variants. The p-value
shown is for the beta 1 coefficient of the depicted linear regression model. (g) Known pathogenic mtDNA muta ons detected from a
healthy donor. Each dot is a cell separated by the sampled library. All cells with a heteroplasmy of at least 2% are shown. (h) Depic on
of unsupervised clustering of groups of cells based on shared soma c mtDNA muta ons (y-axis) with corresponding individual mtDNA
muta ons (x-axis) associated with each cluster for the 500 cell input and (i) 800 cell input culture. Color bar, heteroplasmy (% allele fre-
quency). (j) Frac on of cells (y-axis) carrying number of soma c mtDNA variants (x-axis) above indicated thresholds (≥1%, ≥5%, ≥10%
heteroplasmy; red, black, and blue lines, respec vely) for indicated cultures.
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Figure E.5: Addi onal details for clonal and func onal heterogeneity in chronic lymphocy c leukemia revealed by soma c mtDNA mu-
ta ons. (a) Iden fica on of high-confidence variants for Pa ent 1 (top) and Pa ent 2 (bo om). The number of variants is indicated.
(b) Inference of subclonal structure from soma c mtDNA muta ons for pa ent 2. Cells (columns) are clustered based on mitochon-
drial genotypes (rows). Colors at the top of the heatmap represent clusters or puta ve subclones. Color bar, heteroplasmy (% allele
frequency). (c) Dot plots showing the mitochondrial genome coverage (log10; y-axis) for the top 500 cells per technology for four indi-
cated scRNA-seq technologies. (d) The mean per-posi on mitochondrial genome coverage for the same 500 cells as in (c). (e) Volcano
plot showing differen al gene expression analysis from major and minor clonotypes defined by BCR sequence. Immunoglobulin (IG)
genes are shown in purple; all other genes with an FDR < 0.05 are shown in blue. (f) Histograms showing the distribu on of hetero-
plasmy across the profiled popula on of cells for six selected variants, four from Pa ent 1 (le ) and two from Pa ent 2 (right). The
number of variants in the top heteroplasmy bin (>90%) are shown in red. (g) Heteroplasmy from the sum of single-cells in the CD19+
and CD19- mtscATAC-seq experiments for indicated muta ons and pa ents. (h) Results for per-peak chi-squared associa on with sub-
clonal group. Each dot is a peak rank-sorted by the chi-squared sta s c. (i) Allele frequency from the sum of single cells from the 5’
CD19+ and CD19- scRNA-seq libraries for two indicated variants - chr4:109,084,804A>C (“LEF1”) and chr19:36,394,730G>A (“HSCT”).
(j) Corrobora on of T cells based on gene expression signatures and carrying indicated soma c nuclear and mtDNA muta ons (pa ent
2).
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serum. B lymphocytes were isolated using the negative selectionMojosort Human Pan B Cell Isolation Kit (Bi-

olegend, 480082) and CD19 negative immune cells were isolated from a separate aliquot using the positive selec-

tionMojosort Human CD19 selection Kit (Biolegend, 480106).

E.1.4 Flow cytometry analysis and sorting

For flow cytometry analysis and sorting cells were washed in FACS buffer (1% FBS in PBS) before antibody stain-

ing. For the CLL patient derived PBMC staining a FITC-conjugated CD19 antibody (HIB19, 302206, Biole-

gend) was used at 1:50 dilution. For live/ dead cell discrimination Sytox Blue was used according to the manu-

facturer’s instructions (Thermo Fisher, S34857). FACS analysis was conducted on a BD Bioscience Fortessa flow

cytometer at the Whitehead Institute Flow Cytometry core. Data were analyzed using FlowJo software v10.4.2.

Cell sorting was conducted using the Sony SH800 sorter with a 100 µm chip at the Broad Institute Flow Cytom-

etry Facility. Sytox Blue (ThermoFisher) was used for live/ dead cell discrimination.

E.2 Genomics methods

E.2.1 Single cell ATAC-seq (C1 Fluidigm)

The C1 Fluidigm platform using C1 single cell Auto Prep IFC for Open App and Open App Reagent Kit were

used for the preparation of single cell ATAC-seq libraries as previously described20. Briefly, cells were washed

and loaded at 350 cells/ml. Successful cell capture was monitored using a bright-field Nikon microscope and

was >85%. Lysis and tagmentation reaction and 8 cycles of PCRwere run on chip, followed by 13 cycles off chip

using custom index primers and NEBNext High-Fidelity 2X PCRMaster Mix (NEB). Individual libraries were

pooled and purified using the MinElute PCR kit (QIAGEN) and quantified using a Qubit dsDNAHS Assay kit

(Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system (Agilent).
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E.2.2 Single cell ATAC-seq and mtscATAC-seq

ScATAC-seq libraries were generated using the 10xChromiumController and the Chromium Single Cell

ATAC Library and Gel Bead Kit (1000111) according to the manufacturer’s instructions (CG000169-Rev

C; CG000168-Rev B) or as detailed below with respect to the modifications enabling increased mtDNA yield

and genome coverage. 1.5ml - 2ml DNA LoBind tubes (Eppendorf) were used to wash cells in PBS and down-

stream processing steps. After washing cells were fixed in 0.1 or 1% formaldehyde (FA; ThermoFisher 28906) in

PBS for 10 min at RT, quenched with glycine solution to a final concentration of 0.125M before washing cells

twice in PBS via centrifugation at 400g, 5 min, 4C. Cells were subsequently treated with lysis buffer (10mMTris-

HCL pH 7.4, 10mMNaCl, 3mMMgCl2, 0.1% NP40, 1% BSA) for 3 min for primary hematopoietic cells and

5 min for cell lines on ice, followed by adding 1ml of chilled wash buffer and inversion (10mMTris-HCL pH

7.4, 10mMNaCl, 3mMMgCl2, 1% BSA) before centrifugation at 500g, 5 min, 4C. The supernatant was dis-

carded and cells were diluted in 1x Diluted Nuclei buffer (10x Genomics) before counting using Trypan Blue

and a Countess II FL Automated Cell Counter. If large cell clumps were observed a 40µm Flowmi cell strainer

was used prior to processing cells according to the Chromium Single Cell ATAC Solution user guide with no ad-

ditional modifications. Briefly, after tagmentation, the cells were loaded on a Chromium controller Single-Cell

Instrument to generate single-cell Gel Bead-In-Emulsions (GEMs) followed by linear PCR as described in the

protocol. Additional incubation (30 min to 12h) at 60C to further facilitate decrosslinking prior to the first 72C

elongation step did not improve results (data not shown) and we suggest using the PCR conditions specified in

the 10x scATAC-seq protocol. After breaking the GEMs, the barcoded tagmented DNAwas purified and further

amplified to enable sample indexing and enrichment of scATAC-seq libraries. The final libraries were quantified

using a Qubit dsDNAHS Assay kit (Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100

system (Agilent).
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E.2.3 Single cell RNA-seq

ScRNA-seq libraries were generated using the 10xChromiumController and the Chromium Single Cell 5′ Li-

brary Construction Kit and human B cell and T cell V(D)J enrichment kit according to the manufacturer’s in-

structions. Briefly, the suspended cells were loaded on a Chromium controller Single-Cell Instrument to generate

single-cell Gel Bead-In-Emulsions (GEMs) followed by reverse transcription and sample indexing using a C1000

Touch Thermal cycler with 96-DeepWell ReactionModule (BioRad). After breaking the GEMs, the barcoded

cDNAwas purified and amplified, followed by fragmenting, A-tailing and ligation with adaptors. Finally, PCR

amplification was performed to enable sample indexing and enrichment of scRNA-Seq libraries. For T cell and B

cell receptor sequencing, target enrichment from cDNAwas conducted according to the manufacturer’s instruc-

tions. The final libraries were quantified using a Qubit dsDNAHS Assay kit (Invitrogen) and a High Sensitivity

DNA chip run on a Bioanalyzer 2100 system (Agilent).

E.2.4 Sequencing

All libraries were sequenced using Nextseq High Output Cartridge kits and a Nextseq 500 sequencer (Illumina).

10x scATAC-seq libraries were sequenced paired end (2 x 72 cycles). 10x 5’ scRNA-seq libraries were sequenced

as recommended by the manufacturer.

E.2.5 Processing scATAC-seq data

Raw sequencing data was demuliplexed using CellRanger-ATACmkfastq. Raw sequencing reads for all libraries

were aligned to the hg19 reference genome using CellRanger-ATAC count. The raw output of the CellRanger-

ATAC count execution, including the barcodes passing knee and the position-sorted .bam file served as inputs

into the command-line interface of mgatk, which produces a PCR-deduplicated, per-cell, per-strand count of

all alleles at all positions in the reference mitochondrial genome. To minimize the impact of barcode multiplets

(see Chapter 4), we placed stringent thresholds on the mean mtDNA coverage per-barcode, which also provided
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greater confidence in the downstream heteroplasmy analyses.

E.3 Masked reference genome andNUMT comparison

To effectively assign putative multi-mapping reads to the mtDNA, we modified the existing CellRanger-ATAC

reference genome by hard-masking nuclear mitochondrial DNA segments (NUMT). These regions were de-

tected by simulating reads of length 20 from the reference mtDNA genome and encoding 1 base “errors” via the

ART program60. Simulated reads were then aligned to the reference genome (with the mitochondrial chromo-

some excluded). As these reads were simulated to originate from the mtDNA genome but aligned to the nuclear

genome, we hard masked these regions using bedtools (Quinlan &Hall, 2010). Comparisons of data from Figure

5.1 were performed by re-aligning the same datasets to the reference genome with and without masking. Com-

plete documentation to reproduce the masking and modification of the CellRanger-ATAC reference genome are

available as part of the mgatkwiki (https://github.com/caleblareau/mgatk/wiki).

To estimate the number of accessible NUMT fragments that would be assigned to mtDNA, we considered

two different approaches. First, we used a public GM12878 dataset from 10xGenomics that was aligned to the

standard hg19 reference and counted the number of fragments per cell overlapping our NUMT blacklisted re-

gions, which resulted in a mean 1.4 and median 1.0 fragments per cell. Second, we used a compendium of DNase

accessible peaks from 164 distinct samples from the ENCODE and Roadmap Consortia, and estimated that

these samples contained a mean 22.6 peaks overlapping our NUMT blacklist. Next, using the GM12878 peakset

and the same scATAC-seq dataset, we determined that a mean 4.1% of the GM12878 DNase peaks were detected

over all cells. The product of these two numbers (22.6*0.041=0.93 fragments/cell) provides an alternative esti-

mate for the number of accessible chromatin fragments overlapping NUMTs (~1 fragment) that were blacklisted.

As our mtscATAC-seq assay generates ~5, 000 − 10, 000 mtDNA fragments, we conclude that our blacklist

approach yields negligible NUMT contamination.
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E.4 Comparison of experimental conditions

For all comparisons shown in the boxplots and violin plots, the top 1,000 cells/barcodes based on chromatin li-

brary complexity were plotted. The top 1,000 number was chosen to ensure the selection of real cells rather than

barcode multiplets (see Chapter 4. For the overall coverage comparison (Figure 5.1.g), the top 2,000 cells based

on nuclear complexity were averaged (to represent the 2,000 cells loaded). Cells were assigned TF1, doublet, or

GM11906 using the sum of alleles at homoplasmic mitochondrial SNP loci (Figure E.1.d) using a 99% thresh-

old for assignment to either major cell-type for our final protocol. We assigned barcodes as cell doublets (Figure

5.1.d,e) when this 99% threshold was not met for the major celltype. For both mtDNA and chromatin complex-

ity estimation (Figure E.1.e), we used the number of unique and duplicate fragments as part of the CellRanger-

ATAC (chromatin) and mgatk (mitochondria) output as inputs into the Lander-Waterman equation (Lander &

Waterman, 1988), which estimates the total number of unique molecules present given these two measurements.

Complexity measures were computed per barcode passing the knee filter from the default CellRanger-ATAC ex-

ecution. To verify that cell type-specific accessible peaks were retained in mtscATAC-seq, we determined 77,704

peaks present in either the TF1 or GM11906 cell lines using the regular 10x scATAC-seq conditions. These were

determined from assigning barcodes to either cell line using mtDNA SNPs and calling peaks on the aggregate

bulk population as previously described10. We repeated this peak calling procedure with our mtscATAC-seq

data, identifying 72,887 peaks that overlapped the 77,704 peaks (93.8%).

E.5 Mitochondrial pathogenic variants

We queriedMITOMAP(Lott et al., 2013) version r102 and filtered for “Confirmed” pathogenic base-

substitution variants. 46 variants were annotated to alter tRNA function whereas 42 were annotated to alter

protein coding sequences in one or more protein-coding genes. Two additional variants were annotated to alter

rRNA function.
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E.5.1 In situ detection of mitochondrial heteroplasmy

All solutions below were prepared in 1x phosphate buffered saline (PBS), and incubations were carried out at RT

unless otherwise specified. Two million GM11906 cells were fixed with 2 mL 1% paraformaldehyde for 10 min

and quenched by adding 666 µL 1MTris-HCl pH 8 and incubating for 5 min. Cells were then permeabilized

with 0.5% Triton-X 100 for 20 min and embedded in 4% acrylamide gels63. The mitochondrial target sequence

(on the antisense strand) was made accessible for hybridization by enzymatic removal of the sense strand64,65:

restriction digest with 0.5 U/µL XbaI at 37C for 1 h, followed by adding 0.2 U/µL lambda exonuclease (both

New England Biolabs) at 37C for 30 min. The oligonucleotide probe sequences against the wildtype and mutant

alleles were pooled at 100 nM each in 2x SSC and 20% formamide, hybridized to the cell gels at 37C overnight,

and circularized with 6U/µL T4 ligase (Enzymatics) for 2 hours. Rolling circle amplification, crosslinking, and

in situ sequencing were performed as previously described (Lee et al., 2015). The cell gel was stained with DAPI

(Thermo Fisher) and imaged on a Nikon Eclipse Ti microscope with a Yokogawa CSU-W1 confocal scanner unit

and an Andor Zyla 4.2 Plus camera using a Nikon Plan Apo 60X/1.40 objective. Z-stack images spanning 24

µm at 0.4 µm intervals were acquired in the following channels: 405nm excitation with a 452/45 emission filter;

488nm excitation with a 525/50 emission filter; 561nm excitation with a 579/34 emission filter.

E.5.2 Image processing and heteroplasmy quantification

Each image stack was transformed into 2D by taking the maximum intensity projection across z-planes. Individ-

ual nuclei boundaries were defined by performing watershed segmentation on the DAPI staining. Wild-type and

mutant probes were detected using a local maxima finder and uniquely assigned to individual cells based on spa-

tial proximity. Probes that could not be unambiguously assigned to a cell were excluded from heteroplasmy and

coverage measurements.
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E.5.3 Epigenomic correlates with pathogenic heteroplasmy

To identify chromatin accessibility features associated with pathogenic heteroplasmy in the GM11906 cell line,

we considered two approaches that complemented our estimation of heteroplasmy at the single-cell level. First,

to assess cis-associations, we computed single-cell gene scores as previously described10,11 and computed per-

gene associations with heteroplasmy using Spearman correlation (Figure 5.2.f). To establish a background distri-

bution, we permuted heteroplasmy per-cell and recomputed the per-gene association statistic. We reported the

number of gene scores correlated with heteroplasmy if the magnitude of the Spearman correlation exceeded 0.2.

However, we note that a 1% false positive rate from the permutation testing would be a threshold of 0.087, result-

ing in 752 positively and 1,992 negatively correlated gene scores. We reported the more conservative results after

examination of the accessible chromatin tracks where loci exceeding a magnitude 0.2 correlation revealed more

robust peak differences. Second, to assess trans-associations, we downloaded a compendium of 78 high-quality

ChIP-seq peak sets from lymphoblastoid cell lines from the ENCODE project (ENCODE Project Consortium,

2012). Per single-cell deviation scores were computed for these factors using chromVAR (Schep et al., 2017).

E.6 Variant calling and evaluation

To best identify informative clonal mutations from our mtscATAC-seq assay, we first considered existing vari-

ant calling approaches. Notably, algorithms designed for genotyping typically utilize a Bayesian framework to

determine the empirical probability of a certain non-reference allele being truly observed at a particular location.

In this setting, the ploidy of the genome is often parameterized in the model, and the allele frequency directly in-

fluences the confidence of detecting the mutation. As mtDNA copy number per cell is variable and informative

clonal mutations may occur at very low allele frequencies, we found these existing approaches to be unsuitable

for our mtscATAC-seq assay. Therefore, we developed a variant calling framework to identify high-confidence

heteroplasmic mutations in a manner that 1) is largely independent of the mean allele frequency; 2) is robust

to variability in genome ploidy of a cell; and 3) utilizes the features intrinsic to the high-throughput single-cell
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mtDNA data, including near-uniform deep coverage, minimal dropout per-cell, and thousands of single-cells per

experiment. Our resulting variant calling framework, mgatk, achieves these goals.

Analyses of mtscATAC-seq from this manuscript revealed that certain positions with substantial heteroplasmy

across biological diverse sources was primarily driven by sequencing error. These “recurrently-mutated” loci were

due in part to several low-complexity stretches in the mitochondrial genome. However, by further evaluation of

these variants, we determined that the erroneous heteroplasmy was primarily driven by one strand, reflective of

a photobleaching effect from the sequencing machine. Hence, we devised the per-variant “strand concordance”

value to capture the agreement of heteroplasmy between the strands, which is defined as the Pearson correlation

between allele counts for all cells that have at least one count observed for the specific alternate allele. We note

that for most variants, retention of all cells results in most observations being (0,0) for the strand correlation, in-

flating the statistics globally, making it less useful for discriminating variants. Additionally, while our approach

works for mtscATAC-seq and full-length scRNA-seq methods (e.g. SMART-seq2), our approach is not appro-

priate for 3’ scRNA-seq methods.

To compare our proposed variant calling approach to other tools, we analyzed the 855 TF1 single cells (Fig-

ure 5.3.) profiled in this manuscript. First, our execution of monovar (Zafar et al., 2016) failed as the genotype

likelihood model is a function of a factorial of the max depth, which cannot be stored for the extremely deep cov-

erage that results from our protocol. We then evaluated samtools/bcftools (Li, 2011) and FreeBayes (Garrison

&Marth, 2012), treating each of the 855 cells as individual samples. To compare to mgatk (Figure E.3.a,b), the

resulting .vcf files from each of these tools were filtered to remove clear homoplasmic variants and that had a vari-

ant quality ≥100. While our analyses indicated mgatk had greater sensitivity in resolving heteroplasmic variants

informative for subclonal structure, relaxing this variant quality threshold did not improve detection of these

informative variants and instead resulted in far more variants with strand discordance (Figure E.3.c). Finally, we

acknowledge that other variant calling tools, such as GATK, utilize a Fisher’s exact test to flag variants with high

strand discordance that can be removed in downstream processing. We found this approach to be unsuitable for

this data due to our high copy-number, resulting in extremely-small p-values for all variants, including those that
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clearly correlated with subclonal structure.

E.6.1 Evaluation of mgatkwith SMART-seq2 data

To further benchmark our variant calling algorithm, we reanalyzed 895 high-quality cells from poly-clonal

hematopoietic cells carrying somatic mtDNAmutations identified from SMART-seq2 scRNA-seq data (see

Chapter 1). Previously aligned .bam files were re-processed with mgatk for each donor, and variant calling mir-

ror the parameters established in the TF1 example (i.e. strand concordance ≥ 0.65; -log10(VMR) ≥ 2; see Figure

E.3.g,h). From these samples, we had previously identified 78 variants showing subclonal structure using a su-

pervised approach (i.e. the per-cell colony annotations were used in the identification of the variants). This set of

78 variants represents a “silver standard” as variants showed disproportionate heteroplasmy in a particular clone

based on aMann-Whitney U-test previously described (see Chapter 1).

Overall, mgatk identified 103 variants across the two donors. This set replicated 64 of the 76 (84.2%) previ-

ously identified sub-clonal variants. The variants that were not replicated were rarer in the population of cells

(p=0.00045; Wilcoxen Rank-Sum Test; Figure E.3.f). While we generally believe the mgatk variant calling ap-

proach to be sensitive to low-frequency variants, we note that this supervised variant calling procedure (when

clonal annotations are known) is theoretically better-powered to detect low-frequency mutations. However, we

note that one previously-identified variant, 4214T>C, had only non-zero heteroplasmy on one strand, strongly

suggestive of an artifactual variant that was nonetheless identified by our previous supervised approach.

To evaluate the efficacy of variant identification approaches for inferring clones, we tested their ability to cor-

rectly classify true-positive pairs of cells that were derived from the same clone (see Chapter 1). We computed per

cell pair mtDNA similarity metric (the negation of our previous mitochondria distance; see Chapter 1), using

mutations identified by three unsupervised approaches (mgatk, bcftools, and FreeBayes), as well as our previous

supervised approach for each donor. Area under the receiver operating curve (AUROC, Figure E.3.g,h) were

computed and can be interpreted as the efficacy of classifying pairs of cells from the same clone based on sets of

mtDNA variants.
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E.6.2 TF1 analyses

To identify putative subclones, we used the heteroplasmy matrix (capped at 10% as shown in Figure 5.3.c) as

input into Principal Component Analysis. Next, we used the top 10 PCs as inputs into the FindNeighbors/

FindClusters functions from Seurat68 with default hyperparameters for these functions (k.param = 20; reso-

lution = 0.8). In principle, this approach identifies communities of cells whose overall mutations are similar,

and subclones are identified using a modularity optimization. Finally, we performed tree reconstruction using

neighbor-joining on the distance between the average heteroplasmy of cells per clone using the phangorn R pack-

age (Schliep, 2011).

E.7 In vitro analyses

For each mtscATAC-seq library, cells were processed using CellRanger-ATACwith default settings, including

the ‘–force-cells 6000‘ flag. Each library was further filtered such that cells had minimum 25% fragments in ac-

cessibility peaks, 1000 unique nuclear fragments, and 20x mtDNA coverage. Cutoffs were determined from ex-

amination of the density of each parameter. Somatic mtDNAmutations were identified using default thresholds

from mgatk.

Clustering and embedding using UniformManifold Approximation and Projection70 (UMAP) were per-

formed on the top 30 reduced dimensions from Latent Semantic Indexing (LSI) as previously described for the

chromatin accessibility features (Cusanovich et al., 2018). Annotation of cell states were determined using tran-

scription factor motif scoring via chromVAR(Schep et al., 2017) with default parameters, noting that the back-

ground peak selection was performed using all libraries merged. Pseudotime trajectories were defined using a

semi-supervised approach from LSI and embedding as previously described (Granja et al., 2019).

To determine cell clones, we used the mutations by cells matrix per culture (capped at 10%) as input to the

FindNeighbors/ FindClusters functions from Seurat with hyperparameters k.param = 10; resolution = 2, which

yielded good separation of the rare cell clones. Clone-specific mutations were shown for all mutations exceeding
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0.5% mean heteroplasmy in cell clones (Figure 5.4.i,j). We defined erythroid and monocytic cells in the day 20

library as those that exceeded a 0.5 pseudotime score along the specific axes (from Figure 5.4.c) and retained 65

clones from the 800 cell culture that had at least 10 total cells that were differentiated. To compute the lineage

bias z-score (Figure 5.4.j), we computed the fraction of monocytic/erythroid labels in a cell clone and permuted

these labels 100 times over the day 20 library. Finally, to infer putative lineage-priming chromatin accessibility,

we identified 9 erythroid-biased and 22 monocytic-biased clones (z-score >5 from Figure 5.4.j) and computed the

mean transcription factor deviation scores from the day 8 cells belonging to each clone. The difference in means

between the erythroid and monocytic-biased clones is plotted (Figure 5.4.k).

E.8 Chronic lymphocytic leukemia scATAC analyses

For each mtscATAC-seq library, cells were processed using CellRanger-ATACwith default settings, including

the ‘–force-cells 6000‘ flag. Each library was further filtered such that cells had minimum 50% fragments in ac-

cessibility peaks, 1000 unique nuclear fragments, and 20x mtDNA coverage. Somatic mtDNAmutations were

identified using mgatkwith the default parameters for the CD19 positive cells profiled with mtscATAC-seq (Fig-

ure 5.5.a). Putative sub-clones were identified using the mutations for patient 1 (n=19) and patient 2 (n=24) sep-

arately using the FindNeighbors/ FindClusters functions from Seurat where the heteroplasmy matrix was capped

at 10%. We used the default parameters for patient 1 (k.param = 20; resolution = 0.8 Figure 5.5.c) and modified

parameters for patient 2 (k.param = 50; resolution = 1.5; Figure E.5.b) to effectively identify subclones. For vi-

sualization of cell x mutation heatmaps, subsets of cells from patient 1 (2,368/5,631; Figure 5.5.c) and patient 2

(2,538/5,865; Figure E.5.b) were visualized as the remaining cells had 0% heteroplasmy at all called mutations.

To determine copy number alterations (Figure 5.5.e), we first constructed overlapping 10Mb bins genome-

wide using a step size of 2Mb. Next, we overlapped the .fragments.tsv file from the 10xCellRanger-ATAC out-

put with these bins to compute a bin x cell matrix for both the CLL samples as well as a healthy control PBMC

sample. Next, we computed a per-cell, per-bin z-score of the number of fragments after normalizing each cell
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to a consistent sequencing depth. The chromosome 12 z-score (Figure 5.5.e) represents the per-cell mean of the

z-scores from the bins mapping to chromosome 12.

To identify chromatin accessibility peaks associated with mtDNAmutation-derived subclones, we performed

a series of χ2 association tests. After binarizing the chromatin accessibility count per-peak, per-cell, a contingency

table of dimension n∗2 was assembled, where n is the number of subclones per tumor. The resulting chi-squared

statistics were associated with p-values using n−1 degrees of freedom, and correction for multiple testing was per-

formed using the Benjamini–Hochberg procedure. To further visualize a null association statistics, we permuted

the subclone annotations per peak to visualize a null distribution of the chi-square statistics (see gray from Figure

5.5.f; Figure E.5.f). The TIAM1 and ZNF257 loci were selected based on strong association (both in the top 10

most-associated peaks) and proximity to annotated transcription start sites.

To identify non-B-cells with mtDNAmutations, we first embedded a healthy PBMC 5k sample from the

10xGenomics public dataset using LSI and UMAP as previously described (Granja et al., 2019). Using the LSI

components the projection capability of UMAP, we projected CD19 negative cells from both CLL donors onto

the reduced dimension space (Figure 5.5.j,k). Cells were annotated as positive for specific mtDNAmutations

if the heteroplasmy exceeded 20% (corresponding to at least 4 unique molecules containing the alternate allele;

Figure 5.5.j,k).

E.8.1 Exome sequencing

Enriched CLL cells and in vitro expanded CD3+ T lymphocytes to serve as a germline control were subjected

to whole exome sequencing using the clinical somatic exome workflow through the Broad Institute Genomics

Platform. The exome product targets 35.1 Mb with a total bait size of 38.9 Mb and are optimized to cover the

following: 99% of ClinVar variants; complete Mitochondrial genome; full ACMG59 gene list; Online Mendelian

Inheritance in Man (OMIM) putative gene sequences; Catalogue of Somatic Mutations in Cancer (COSMIC)

variants; Internal ‘ONCO Panel’ and additional key promoters and other motifs that have been identified as

potential cancer hot spots. Automated library preparation occurs as follows. Samples were plated at a concen-
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tration of 2 ng/µl and volume of 50 µl (total 100ng input) into fresh matrix tubes allowing positive barcode

tracking throughout the process. Library Construction: Samples were sheared to yield ~180 bp size distribu-

tion. cfDNA samples do not proceed through this step. Kapa Hyperprep kits were used to construct libraries in

a process optimized for somatic samples, involving end repair, adapter ligation with forked adaptors containing

unique molecular indexes and addition of P5 and P7 sample barcodes via PCR. After SPRI purification libraries

were quantified with Pico Green. Libraries were normalized and equimolar pooling was performed to prepare

multiplexed sets for hybridization. Sample pools were then split and hybridized in up to 8 separate reaction wells

to accommodate volumes. Automated capture was performed, followed by PCR of the enriched DNA and SPRI

purification. Post-capture QC:Multiplex pools were quantified with Pico Green and DNA fragment size was

estimated using Bioanalyzer electrophoresis. Sequencing: Final libraries were quantitated by qPCR and loaded

across the appropriate number of Illumina flow cell lanes to achieve the target coverage. Completed exomes con-

tained >= 85% of target bases covered at >= 50x depth and ranged from 130-160x mean coverage of the targeted

region. Both tumor and normal samples were processed and used for variant identification.

E.8.2 CLL scRNA-seq analyses

5’ scRNA-seq libraries, including VDJ sequencing, were processed using default parameters with CellRanger

3.1.0. Mitochondrial genotyping was conducted using mgatkwith the “–umi-barcode” tag specifying the SAM

tag from the CellRanger .bam output marking the error-corrected UMI barcode. Cell-type specific signatures

(Figure 5.5.k; Figure E.5.j) were computed using Seurat’s AddModuleScore68 where gene bins were com-

puted on a control set of healthy PBMCs. Cell-type specific genes were determined from the Immune Cell

Atlas (available here: https://github.com/caleblareau/immune_cell_signature_genes). Two nuclear variants,

chr4:109,084,804A>C (“LEF1”; p.S112A) and chr19:36,394,730G>A (“HSCT”; p.A56T), encoded missense

mutations that were detected using whole-exome sequencing and somatic mutation calling. These mutations

were covered by the 5’ scRNA-seq libraries, enabling single-cell examination (Figure E.5.j). Cells were annotated

as positive for mtDNAmutations (Figure 5.5.l; Figure 5.5.j) when supported by at least two distinct UMIs.
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