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Abstract

Causal inference, or the assessment of the effect of interventions on outcomes of interest,

is ubiquitous in many fields. Often causal inference is made on the basis of the random-

ization of units to treatments, focusing on the design of an experiment or, in observational

studies, how to approximate an experiment. The focus on randomization has allowed for

results that do not depend on the classic structural assumptions needed in, for instance,

linear regression. However, the beautifully simple idea of using randomization as the basis

for inference can induce many subtle problems. This dissertation examines three such

problems in causal inference. First, we explore the gains of blocked designs, as compared

to non-blocked designs. Conservative variance estimators for the case of many blocks of

variable size are built, leading to more general inference tools than previously established.

Next, we examine the use of conditioning in causal inference, drawing parallels to analyzing

an experiment as if another experiment had been run. Finally, we identify challenges in the

analysis of observational data with multiple treatments and provide a framework on which

to build inference.
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Chapter 0

Introduction

Casual inference studies the quantification of the effect of an intervention(s) on an outcome of

interest. Stemming from the work of Fisher and Neyman (e.g., Fisher, 1935; Splawa-Neyman

et al., 1923/1990), there is a tradition of using the randomization of units to treatment or

control conditions as the basis of inference in this setting. This intrinsically links the design

of an experiment to its analysis. This simple idea of randomizing units to treatments and

then basing analyses off of that randomness is powerful, but also introduces many subtle

problems. In this dissertation, we explore three such problems. The first problem has to

do with the analysis of blocked designs, and in particular variance estimation under such

designs, with randomization based inference. The second problem concerns when it is valid

to analyze an experiment as if another experiment had been run, exploring how conditioning

can provide a randomization based justification. Finally we move to an observational setting

with multiple treatments, where the recreation of a hypothetical experiment is made difficult

by data sparsity with respect to treatment combinations.

Throughout this work, the careful focus on the random assignment of units to treatments

has allowed for results that are designed based and free of structural assumptions. The

following chapters involve building some foundational work to capture how estimators

behave given different assumptions regarding assignment and sampling, and then extending

this foundation. Furthermore, this dissertation provides rigorous and usable tools that are
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also transparent to applied researchers.

Insights on Variance Estimation for Blocked and Matched Pairs Designs

In the causal inference literature, evaluating blocking from a potential outcomes perspective

has two main branches of work. The first focuses on larger blocks, with multiple treatment

and control units in each block. The second focuses on matched pairs, with a single treatment

and control unit in each block. These literatures not only provide different estimators for the

standard errors of the estimated average impact, but they are also built on different sets of

assumptions. Additionally, neither literature handles cases with blocks of varying size that

contain singleton treatment or control units, a case which can occur with different forms of

matching or post-stratification. Differences in the two literatures have also created some

confusion regarding the benefits of blocking in general. In this chapter, we first reconcile

the literatures by carefully examining the performance of different estimators of treatment

effect and of associated variance estimators under several different frameworks. We then

use these insights to derive novel variance estimators for experiments containing blocks

of different sizes. We also assess in which situations blocking is not guaranteed to reduce

precision.

Conditional As-If Analyses in Randomized Experiments

The injunction to ‘analyze the way you randomize’ is well-known to statisticians since Fisher

advocated for randomization as the basis of inference. Yet even those convinced by the

merits of randomization-based inference seldom follow this injunction to the letter. Bernoulli-

randomized experiments are often analyzed as completely randomized experiments, and

completely randomized experiments are analyzed as if they had been stratified; more

generally, it is not uncommon to analyze an experiment ‘as-if’ it had been randomized

differently. This chapter examines the theoretical foundation behind this practice within a

randomization-based framework. Specifically, we ask when is it legitimate to analyze an

experiment randomized according to a design h0 as if it had been randomized according

to some other design, h. We show that a sufficient condition for this type of analysis to be

valid is that the design h be derived from h0 by an appropriate form of conditioning. We
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use our theory to justify certain existing methods, question others, and finally suggest new

methodological insights such as conditioning on approximate covariate balance.

Causal Inference for Multiple Non-Randomized Treatments using Fractional Factorial

Designs

We explore a framework for addressing causal questions in an observational setting with

multiple treatments. This setting involves attempting to approximate an experiment from

observational data. With multiple treatments, this experiment would be a factorial design.

However, certain treatment combinations may be so rare that we have no measured outcomes

in the observed data corresponding to them. We propose to conceptualize a hypothetical

fractional factorial experiment instead of a full factorial experiment and lay out a framework

for analysis in this setting. We connect our design-based methods to standard regression

methods. We finish by illustrating our approach using biomedical data from the 2003-2004

cycle of the National Health and Nutrition Examination Survey to estimate the effects of

four common pesticides on body mass index.

3



Chapter 1

Insights on Variance Estimation for

Blocked and Matched Pairs Designs

1.1 Introduction

Beginning with Neyman and Fisher, there is a long literature of analyzing randomized

experiments by focusing on the assignment mechanism rather than some generative model of

the data. One major family of experimental designs in this literature is blocked randomized

experiments, where units are grouped to hopefully create homogenous collections, and

then treatment assignment is randomized within each group (see Fisher, 1926). Ideally, this

process gives a higher precision estimate of the overall average treatment effect, as compared

to a completely randomized design.

We follow the potential outcome causal literature, (as in Imbens and Rubin, 2015;

Rosenbaum, 2010), as opposed to the experimental design literature (as in Cochran and

Cox, 1950; Wu and Hamada, 2000). Much of the prior work on randomized experiments

within the potential outcomes framework has focused on two forms of blocking: blocking

where there are several treated and control units in each block and blocking where there is

exactly one treated and one control unit in each block (matched pairs). See, for example

Imai et al. (2008) or Imbens (2011) for treatments of large blocks and Abadie and Imbens
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(2008) or Imai (2008) for treatments of matched pairs. The literature has not, however,

treated the cases where researchers have generated groups of varying size but where there

is still only one treated and/or one control in some of the blocks, which we call the “hybrid

design.” Recent textbooks such as Field Experiments: Design, Analysis and Interpretation

(Gerber and Green, 2012) and Causal Inference for Statistics, Social, and Biomedical Sciences:

An Introduction (Imbens and Rubin, 2015) do not propose a clear answer for Neyman-style

variance estimation in this case. While obtaining a point estimate for the overall average

treatment effect is straightforward in this context, assessing the uncertainty of such an

estimate is not. Currently one would instead have to turn to Fisher-style permutation

tests, which typically rely on constant treatment effect assumptions, or regression-based

approaches, which can be biased and usually require assumptions as to the residual error

structure. We build on prior work to fill this gap by providing novel methods for conducting

Neyman-style analyses for this more general hybrid design.

This gap is important as hybrid experiments with blocks of different sizes, and different

numbers of treated and control units within the blocks, can easily arise in many modern

social science experiments. For example, multisite trials in education often have several

sites (e.g., districts) with only a few schools in each site. Many matching methods used

in observational studies generate hybrid designs as well. For instance, Coarsened Exact

Matching (CEM) (Iacus et al., 2012) can lead to many variable-sized blocks, some of which

have singleton treatment or control units. “Full matching,” which identifies collections of

units that are similar on some baseline covariates (Hansen, 2004; Rosenbaum, 1991), creates

variable-sized blocks, each with either one treated or one control unit. Our approach allows

for a Neyman-style analysis in these contexts. See Section 1.7 for more on these applications.

There are several different models used for Neyman-style causal inference. The first,

the finite sample model, takes the sample of units in the experiment as fixed, using the

assignment mechanism as the sole source of randomness. Other so-called super-population

or population models assume that the units in the experimental sample come from some

larger population; this can induce additional uncertainty that needs to be accounted for.
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With blocking, there is the further complication of how the blocks in the final experimental

sample are formed. There can be fixed blocks in which every unit inherently belongs to

one of a finite number of blocks; flexible blocks made by the experimenter once a sample

is obtained; and structural blocks that capture natural groupings of units. There are also

several possible sampling mechanisms possible beyond the classic simple random sampling

of units typically assumed, such as sampling from strata corresponding to the blocks or

sampling entire blocks rather than individual units. We believe these variants in how

blocks are formed and sampled has caused the gap of the hybrid design: because much

of the current literature uses different frameworks tailored to the specific special cases of

either large blocks or matched pairs, it is not easily reconciled as the variance and variance

estimators vary across these variants. As part of our work we carefully outline the common

frameworks used and discuss how they are different from each other and how they connect

to different types of experimental design. We also analyze the performance of uncertainty

estimation for all cases.

As a consequence of our taxonomy of frameworks and block types, we also resolve some

apparent contradictions found in the literature on the classical blocked and matched pairs

designs. In particular, we derive expressions comparing blocking to complete randomization

for multiple frameworks and show which frameworks give guarantees on the benefits

of blocking and which do not. We also carefully separate out sampling variance from

assignment variance to obtain more precise statements of the benefits of blocking than have

been given in prior literature. We finally clarify how these comparisons depend on the block

types and sampling mechanism, not the block sizes.

Recent work by Fogarty (2018) has also addressed some of these issues. In particular,

Fogarty presents a method for estimating variance with small blocks of variable size, not

just matched pairs. He also makes explicit the issue of differing results under different

population and sampling frameworks by comparing multiple settings. In this chapter, we

tackle the issue of creating a cohesive hybrid estimator for experiments with large and small

blocks and also discuss the comparison of blocking and complete randomization. We do
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not focus on the use of covariates to model treatment effect heterogeneity. The approach to

causal inference used in this work has strong connections to the survey sampling literature,

as treated in, e.g., Särndal et al. (2003) or Cochran (1977).

In Section 1.2 we set out our notation and discuss complete randomization and blocking.

We begin with the finite sample framework because it is a building block for the infinite

population frameworks. Section 1.3 provides methods for estimating uncertainty in the

case of large blocks, small blocks, and the hybrid of the two, and gives their bias under

the finite sample framework. We then, in Section 1.4, provide true variance formula and

the performance characteristics of the variance estimators for several infinite population

frameworks. In Section 1.5 we systematically compare blocking to complete randomization

under the full range of frameworks and discuss how the findings differ. Section 1.6

contains finite sample simulation studies to illustrate estimator performance and Section 1.7

illustrates estimation in two data examples. For clarity in presentation, we have moved the

derivations of provided formulae to the Appendix. To make our estimators easily usable,

we refer readers to our R package, blkvar (Miratix and Pashley, 2020). Sample scripts

demonstrating its use and replicating our simulations are also available.

1.2 Overall setup and notation

We use the Neyman-Rubin model of potential outcomes (Rubin, 1974; Splawa-Neyman et

al., 1923/1990). We assume the Stable Unit Treatment Value Assumption of no differential

forms of treatment and no interference between units (Rubin, 1980). We will discuss both

completely randomized and block randomized experiments. Let there be n units in the

sample. In a completely randomized experiment, the entire collection of the units in the

sample is divided into a treatment group and a control group by taking a simple random

sample of pn units as the treatment group and leaving the remainder as control. In a

blocked randomized experiment, our sample is divided into K blocks, formed based on

some pretreatment covariate(s), with nk units in block k. Each block k is then treated as a

mini-experiment, with a fixed number of pknk units being randomly assigned to treatment
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and the rest to control, independently of the other blocks.

The sample average treatment effect (SATE) is the typical estimand in so-called finite

sample inference, which takes our sample as fixed, leaving the assignment mechanism as

the only source of randomness. Under blocking, the SATE within block k, for k = 1, ...,K, is

tk,S =
1
nk

Â
i:bi=k

�
Yi(t)�Yi(c)

�
,

where Yi(t) and Yi(c) are the potential outcomes for unit i under treatment and control,

respectively, and where bi indicates the block that unit i belongs to. The overall SATE (see

Imbens and Rubin (2015), p. 86) is then

tS =
1
n

n

Â
i=1

�
Yi(t)�Yi(c)

�
.

In this work, we consider two estimators for the SATE (and later the population average

treatment effect), one typically used for complete randomization and one for blocked

randomization. Define the variable Zi as Zi = t if unit i is assigned treatment and Zi = c

if unit i is assigned control, for i = 1, ..., n. Let IZi=t be the indicator that unit i received

treatment, nt be the total number of treated units, and nc be the total number of control

units. So, nt = Ân
i=1 IZi=t, nc = n� nt. Similarly, let nt,k, nc,k indicate these values within

block k. Define Yobs
i = Yi(Zi) as the outcome we observe for unit i given a specific treatment

Zi. The blocked randomization estimator is then a weighted average of simple difference

estimators for each block

bt(BK) =
K

Â
k=1

nk
n
btk,

with the

btk =
1
nt,k

Â
i:bi=k

IZi=tYi(t)�
1
nc,k

Â
i:bi=k

(1� IZi=t)Yi(c),

k = 1, ...,K, being simple difference estimators within each block. The complete randomiza-

tion estimator, bt(CR), is

bt(CR) =
1
nt

n

Â
i=1

IZi=tYi(t)�
1
nc

n

Â
i=1

(1� IZi=t)Yi(c).
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We will often take the expectation over the randomization of units to treatment for a

fixed sample. In particular, E
h
bM|S ,P

i
is the expected value of some estimator bM for a

given, fixed, finite sample S and for some assignment mechanism P, which may be complete

randomization or blocked randomization. To reduce clutter, we drop the P and simply write

E
h
bM|S

i
if the estimator makes the assignment mechanism clear.

In general, our estimators are unbiased, with

E
h
bt(CR)|S

i
= E

h
bt(BK)|S

i
= tS .

It is assessing variance, and the precision gains of blocking, that is more tricky. This

assessment is the goal of this chapter, but first we need to introduce a few more useful

concepts.

An important aspect of blocking is how the blocks are formed. Explicit articulation of

block formation will be useful when we discuss asymptotic properties of our estimators

and will also be used to differentiate the various population frameworks in Section 1.4. We

identify three primary ways that blocks are formed:

(a) Fixed blocks: Occurs when the total number of blocks and the covariate distribution

of blocks is fixed before looking at the sample. E.g., blocking that occurs on a single

categorical covariate.

(b) Flexible blocks: Occurs when the covariate distribution and total number of blocks

may not be known before looking at the sample’s covariates. E.g. if there are many

covariates or continuous covariates and matching or discretizing is used to form

blocks.

(c) Structural blocks: Occurs when units have some natural grouping such that the blocks

are self-contained. The members of each block are fixed and if a block is represented

in the sample, typically all members of that block are in the sample. E.g., twins or

classrooms.

Note that structural blocks are often thought of as clusters. With clusters, however, treatment

assignment is commonly assigned at the cluster level, whereas we are focusing on treatment
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assigned within cluster. We use “structural block” to clarify this difference.

1.3 Variance estimation

The prior section outlined the different experiments and treatment effect estimators in the

finite sample. We next discuss how to estimate the estimators’ variances, which are integral

to obtaining standard errors and confidence intervals. We discuss estimators built from a

Neyman-Rubin randomization perspective. See Appendix A.1 for a discussion of alternative

variance estimators (such as from linear models) that make additional assumptions on

the data structure. We first investigate bias of variance estimators under a finite sample

framework and extend to other frameworks in Section 1.4.

We start by giving the true variance in the finite sample for each of the designs. To do

so, we need some additional notation. The mean of the potential outcomes for the units in

the sample under treatment z is

Ȳ(z) =
1
n

n

Â
i=1

Yi(z).

The sample variance of potential outcomes under treatment z is

S2(z) =
1

n� 1

n

Â
i=1

(Yi(z)� Ȳ(z))2.

The sample variance of the individual level treatment effects is

S2(tc) =
1

n� 1

n

Â
i=1

⇣
Yi(t)�Yi(c)� tS

⌘2
.

Ȳk(z), S2k(z), and S2k(tc) are defined analogously over the units in block k.

For the finite sample, the variances of bt(CR) and bt(BK) are well known (see Imbens and

Rubin (2015)). For complete randomization,

var(bt(CR)|S) =
S2(t)
nt

+
S2(c)
nc

� S2(tc)
n

. (1.1)
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Extending this to blocked randomization (see Imbens (2011)), the overall variance is

var
⇣
bt(BK)|S

⌘
=

K

Â
k=1

n2k
n2

var(btk|S) =
K

Â
k=1

n2k
n2
⇣S2k(t)

nt,k
+

S2k(c)
nc,k

�
S2k(tc)
nk

⌘
. (1.2)

For complete randomization we use the Neyman-style variance estimator of

bs2
(CR) = cvar(bt(CR)) =

s2(c)
nc

+
s2(t)
nt

with s2(z) the sample variance of the units which received treatment z. This gives a

conservative estimate due to the dropping of the S2(tc)/n term. Some tightening is possible

by exploiting features such as differences in the shape of the observed treatment and control

outcome distributions; for examples see Aronow et al. (2014), Chapter 6 of Imbens and

Rubin (2015), or Schochet (2016).

For blocked experiments, the type of variance estimator one would use depends on the

sizes of blocks one has. In cases where we have at least two treated and two control units in

each block, we can directly extend the completely randomized estimator strategy by using

it within each block and weighting. Defining s2k(z) analogously to s2(z) within block k, the

typical variance estimator is

bs2
(BK) = cvar(bt(BK)) =

K

Â
k=1

n2k
n2

 
s2k(c)
nc,k

+
s2k(t)
nt,k

!
. (1.3)

This is the estimator for blocking derived in Mukerjee et al. (2018). See Imbens (2011) for

a more in depth discussion of blocking of this form. We call this the “big block” style of

blocking, and the “big block” estimator.

For the “small blocks” case, where our blocks have only one treated unit or one control

unit, we need to use an alternative approach as we cannot estimate the variance for

a treatment arm with a single unit. Our approach is presented below. To give some

background, the analytical problems that arise when estimating the variance in matched

pairs experiments, especially when working in the finite sample framework, have been

lamented by many statisticians (see, e.g., Imbens, 2011). The issues arise from the fact that

there is no way to estimate the within pair variance with only one unit assigned to treatment
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and one unit assigned to control in each pair. Previous work has found conservative

estimators, however, which we build on. For instance, Imai (2008) showed that the standard

matched pairs estimator is biased in the finite sample setting and put bounds on the true

variance. The RCT-Yes R package and documentation (Schochet, 2016) also provides a

conservative variance estimator for the matched pairs design (as well as estimators for

blocked designs); this is discussed more in Appendix A.1.3.

For a hybrid experiment with both big and small blocks, we combine results to create an

overall variance estimator.

1.3.1 Small block experiments with equal size blocks

When we have small blocks of the same size, we can directly use the usual variance estimator

in the matched pairs literature (e.g., Imai, 2008) as a variance estimator for bt(BK), no matter

what the block sizes are, as also noted by Fogarty (2018). This gives a variance estimator of

bs2
(SMALL/s) =

1
K(K� 1)

K

Â
k=1

(btk � bt(BK))2. (1.4)

This estimator directly estimates the variance of the overall block treatment effect estimator,

rather than estimating the variance for each individual block and then weighting. We

will see that, depending on the framework used, this estimator can give positively biased

estimates if the true tk tends to differ across blocks.

1.3.2 Small block experiments with varying size blocks

For experiments with small blocks of varying sizes we offer two variance estimators. The

first directly extends the standard matched pairs estimator by grouping the blocks by size

into J groups and using Equation 1.4 for each group. We then weight and combine to get an

overall variance estimator.

Stratified Small Block Variance Estimator:

bs2
(SMALL/m) =

1
⇣

ÂJ
j=1 mjKj

⌘2
J

Â
j=1

(mjKj)
2bs2

(SMALL),j, (1.5)
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where Kj is the number of blocks of size mj and

bs2
(SMALL),j =

1
Kj(Kj � 1) Â

k:nk=mj

(btk � bt(SMALL),j)
2 (1.6)

with bt(SMALL),j = Âk:nk=mj
btk/Kj. That is, grouping by the same size allows for using the

equal size block estimator above. While straightforward, this is not ideal because it requires

at least two blocks of each size in the overall experiment to estimate each bs2
(SMALL),j. See

Appendix A.5.1 for further detail.

The second approach allows the variance of all of the small blocks to be estimated at the

same time, without requiring multiple blocks of the same size.

Unified Small Block Variance Estimator:

bs2
(SMALL/p) =

K

Â
k=1

n2k
(n� 2nk)(n+ ÂK

i=1
n2i

n�2ni
)
(btk � bt(BK))2. (1.7)

For bs2
(SMALL/p) to be defined and guaranteed conservative, no one block can make up half

or more of the units. We derived this estimator using the basic form of the matched pairs

variance estimator as a weighted sum of the squared differences between the estimated

average block treatment effects and the estimated overall average treatment effect. The

weights then come from a simple optimization (see Appendix A.6), and partially account

for the different blocks having different levels of precision when estimating the variance of

the block-level impacts. This estimator has similar finite sample properties to the standard

estimator for blocks of the same size (Equation 1.4). In particular, it is also conservative and

unbiased when the block average treatment effects are all the same. When block sizes are

all the same, this reduces to the usual matched pairs type estimator.

1.3.3 Hybrid experiments

When doing variance estimation in a hybrid blocked design, we can split the blocks up into

small blocks and big blocks. Grouping the big and small blocks together allows us to write

the causal effect estimand as a combination of two estimands for our two different types of
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block sizes. Let there be nsb total units in small blocks in the sample. Then

tS =
n� nsb

n
t(BIG),S +

nsb
n

t(SMALL),S

where

t(BIG),S =
1

n� nsb
Â

k:nt,k�2,nc,k�2
nktk and t(SMALL),S =

1
nsb

Â
k:nt,k=1 or nc,k=1

nktk.

The estimator for the overall treatment effect can also be written as

bt(BK) =
n� nsb

n
bt(BIG) +

nsb
n
bt(SMALL).

For finite sample inference, we can similarly break down the variance, and estimator

of the variance, of bt(BK) because the block estimators are independent due to the block

randomized treatment assignment.

Hybrid Variance Estimator:

cvar
⇣
bt(BK)

⌘
=

(n� nsb)2

n2
cvar
⇣
bt(BIG)

⌘
+

n2sb
n2
cvar
⇣
bt(SMALL)

⌘
.

Here we would use bs2
(BK) (Equation 1.3) for cvar

⇣
bt(BIG)

⌘
and either bs2

(SMALL/m) (Equation 1.5)

or bs2
(SMALL/p) (Equation 1.7) for cvar

⇣
bt(SMALL)

⌘
. Thus, when we have small blocks, we can

estimate the variance for those small blocks separately and use the usual blocking estimator

on the larger blocks. Alternatively, one could use bs2
(SMALL/m) or bs

2
(SMALL/p) for all blocks,

but we do not recommend this.

1.3.4 Finite sample bias of the variance estimators

In the finite setting all of the above estimators are conservative, and are only unbiased in

specific circumstances. First, bs2
(CR) is known (Imbens and Rubin, 2015, p. 92; Splawa-Neyman

et al., 1923/1990) to have bias

E
h
bs2
(CR)|S

i
� var

⇣
bt(CR)|S

⌘
=

S2(tc)
n

.

If all of the blocks have at least two treated and two control units, we can extend this
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result to bs2
(BK) (Equation 1.3), which has bias

E
h
bs2
(BK)|S

i
� var

⇣
bt(BK)|S

⌘
=

K

Â
k=1

nk
n2

S2k(tc).

For the small blocks of varying sizes, we have two corollaries. See Appendix A.5.2 and

A.6 for proofs. The first is

Corollary 1.3.4.1. The bias of bs2
(SMALL/m) (Equation 1.5) under the finite framework is

E
h
bs2
(SMALL/m)|S

i
� var

⇣
bt(SMALL)|S

⌘
=

J

Â
j=1

Kjm2
j

n2sb(Kj � 1) Â
k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
.

The above extends prior results for bs2
(SMALL/s) for matched pairs (see Imai (2008), Imbens

and Rubin (2015), p. 227, or, for a more general case, Fogarty (2018)). bs2
(SMALL/m) is

conservative and unbiased when the average treatment effect is the same for all blocks of

the same size (similar to the unbiased result from Imai (2008) for bs2
(SMALL/s)).

For bs2
(SMALL/p) we have

Corollary 1.3.4.2. The bias of bs2
(SMALL/p) (Equation 1.7) under the finite framework is

E
h
bs2
(SMALL/p)|S

i
� var

⇣
bt(SMALL)|S

⌘

=
K

Â
k=1

n2k
(nsb � 2nk)(nsb + ÂK

i=1
n2i

nsb�2ni
)
(tk,S � t(SMALL),S )

2.

If the average treatment effect is the same across all small blocks then this estimator is

unbiased, and if there is heterogeneity, it is conservative.

Remark. Both small block estimators are conservative, which raises the question of whether

one is superior. The constant in front of each term of the bias of both estimators is of order

n2k/n
2. Then we expect the bias of bs2

(SMALL/m) to be less than the bias of bs2
(SMALL/p) when the

treatment effects of blocks of similar sizes are similar because the variance of impacts within

blocks of a given size will be smaller than across all of the blocks. However, bs2
(SMALL/m) has

the drawback that it can only be used when we have at least two blocks of each small size.

The improved potential performance of bs2
(SMALL/m) when there is homogeneity within

block sizes does suggest that we could group blocks in some other way if we had prior
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knowledge of which blocks were most similar. That is, bs2
(SMALL/m) relies on the blocks being

equal size so the weights factor out of the sum to give the expression for the cross-block

estimate of variation. But we could first subdivide our blocks based on some similarity

measure and apply bs2
(SMALL/p) to each group, combining the parts with the hybrid weighting

approach. This could make bs2
(SMALL/p) less conservative while maintaining its validity.

It is also worth considering the extent of conservatism of the estimators. For the case

where all blocks are the same size, when we have blocks with m control units and 1 treated

unit, as m increases the variance of the treatment effect estimator will decrease, as we are

getting a more precise estimate for the control units. However, the form of the bias of

bs2
(SMALL/s) remains the same. Therefore, with large m the bias of bs2

(SMALL/s) due to treatment

heterogeneity becomes larger relative to the true variance. This intuition extends to the

variable size case as well. In these cases alternative variance estimation strategies, such as

discussed in Appendix A.1, may become more appealing.

It is important to note that the type of blocks will impact whether the bias of these

estimators go to zero as sample size increases. For instance, one might argue for the

use of bs2
(SMALL/p) instead of bs2

(BK) even if we have big blocks, because the condition for

unbiasedness for bs2
(SMALL/p) (that all blocks have the same average treatment effect) could

be considered less stringent than for bs2
(BK) (that there is zero treatment variation within

each block). However, with fixed blocks, the number of units within each block increases as

sample size increases and the bias of bs2
(BK) will go to zero, the standard result, but the bias

of bs2
(SMALL/p) will not unless all of the blocks have the same average treatment effect. In this

case, as the blocks grow to be big, we would use bs2
(BK).

In the hybrid setting the overall bias will be a weighted sum of the biases for the big and

small block components. Therefore, because the overall weighting depends on the block

sizes, having a poor estimator for the small blocks may not have a large effect on the overall

bias if small blocks make up only a small proportion of the sample.

There is no way to unbiasedly estimate variance within small blocks without additional

structure or covariates. If we think that the treatment effects of different strata are not too

16



far apart, then we suggest using one of the previous estimators. We at least know that the

bias incurred is positive. However, if we have reason to believe that the treatment effects of

different strata will be very far apart, a plug-in estimator, as discussed in Appendix A.1,

may be more appropriate.

1.4 Infinite Population Frameworks

Up to this point we have examined blocking in a finite sample framework, conditioning on

the units in the experiment in question. In the literature, however, blocking has often been

examined under a variety of infinite population frameworks. In particular, the matched

pairs literature uses a framework where the blocks themselves are sampled from an infinite

population of blocks, whereas the big block literature typically assumes stratified random

sampling from a finite number of infinite size strata. Using different population frameworks

will give different answers to important questions of what the true variance of the treatment

effect estimate is and what the bias of our variance estimators are. In this section, we first

discuss the literature related to variance estimation for infinite populations, identifying

the apparent tensions that exist. We then systematically discuss different frameworks,

deriving the true variance of the treatment effect estimators under each of them. We also

evaluate the bias of the variance estimators introduced in Section 1.3. We focus on infinite

superpopulations; finite superpopulations substantially larger than the sample would give

similar results. We explore work pertaining to the use of linear models, such as Cochran

(1953) and Lin (2013), in Appendix A.1.1. An important note is that in some cases these

sampling schemes are chosen for convenience and that the generalizability of the experiment

to the population will depend upon the assumptions made in them being true. The sampling

model may also be considered to serve as a conservative approach to finite sample inference

(see Ding et al., 2017).

Related work

For matched pairs experiments, Imai (2008) showed that with a superpopulation of an infinite
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number of structural blocks, specifically matched pairs, from which pairs are randomly

sampled, the standard matched pairs variance estimator (Equation 1.4), is unbiased for the

population average treatment effect (PATE). On the other hand, Imbens (2011) showed that

the standard matched pairs variance estimator is biased in the setting where we have fixed

blocks and units are drawn using stratified random sampling (see Section 1.4.3 for more on

this setting). This is a clear example of how the population framework being used matters.

We therefore advise practitioners to carefully consider what population and sampling

structure they are assuming and to not simply assume a framework for convenience.

The general blocked design has been previously discussed in various forms. Imbens

(2011) discussed blocking in the context of a superpopulation with a fixed number of

strata from which units are sampled using a stratified sampling method. He formed

unbiased estimators for the variance in this context, assuming that the blocks each have

at least two units assigned to treatment and control. These results are similar to finite

sample results discussed in Section 1.3 and will be discussed more in Section 1.4.3. Imai

et al. (2008) analyzed estimation error and variance with the blocked design. Scosyrev

(2014) also analyzed the blocked experiment in the finite sample and under two sampling

frameworks, recognizing that the different settings resulted in different outcomes. Sävje

(2015) analyzed flexible “threshold” blocking and made critical points about the importance

of block structure and sampling design when analyzing blocked experiments, which we

will echo and expand on.

1.4.1 Infinite populations in general

Inference for the population average treatment effect (PATE) typically takes the sample as a

random sample from some larger population, as opposed to inference for the SATE discussed

earlier which held the sample of potential outcomes as fixed. This makes estimation an

implicit two-step process, estimating the treatment effect for the sample and extrapolating

this estimate to the population. Frequently, in fact, the estimators themselves are the same

as for finite sample inference even though the estimands are different.
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Define the PATE as

t = E[Yi(t)�Yi(c)|F ],

where F both indicates the block type and sampling framework. This is the same as the

direct average of the unit-level treatment effects for all of the units in the population, as is

commonly used (see Imbens and Rubin, 2015, p. 99), as long as our sampling mechanism is

not biased. Here we will only consider frameworks where the sampling scheme provides

a sample that, on average, has the same average treatment effect as the population but

note that bias from the sampling mechanism can be fixed using weighting if the sampling

mechanism is known (see Miratrix et al., 2018).

Under blocking, the PATE within block k is

tk = E[Yi(t)�Yi(c)|bi = k,F ],

where, again, bi indicates the block that unit i belongs to. It is possible that k indexes a

(countably) infinite set of blocks in the case of some infinite population models.

Overall, using the law of total expectation and variance decompositions, we can generally

obtain the properties of our estimators with respect to population estimands by first

obtaining expressions for a finite sample and then averaging these expressions across the

sampling distributions. In other words, we heavily exploit E
h
bM|F

i
= E

h
E
h
bM|S

i
|F
i
,

where S is a sample obtained from F , our population and sampling framework. Under any

unbiased framework F , we have the typical result (e.g. see Imbens, 2011)

E
h
bt(CR)|F

i
= E

h
bt(BK)|F

i
= E [tS |F ] = t.

There are several different frameworks that one might assume. These can generally be

characterized by two primary features: the block types, which also dictates the population

strata structure, and the sampling scheme. Note that the term strata is used for the

population here analogously to blocks in the sample. We may obtain a sample using

simple random sampling and then form blocks based on covariates post-sampling and

pre-randomization, i.e. flexible blocks. Or we may have fixed blocks (e.g. blood types)
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and use stratified sampling where we sample units from each population stratum. Finally,

we may have structural blocks and conceptualize a population of an infinite number of

these blocks (e.g. schools in an “infinite” population of schools) from which we randomly

select a fixed number of blocks. As we show next, the bias of the variance estimators can

differ depending on the framework assumed. We refer to frameworks using their sampling

method as a shorthand, leaving the block type and population structure implicit.

1.4.2 Simple random sampling, flexible blocks

In this framework, denoted SRS, units are sampled at random, without regard to block

membership, from the population. This gives the classic result for complete randomization

(see Imbens and Rubin, 2015, p. 101) of

var(bt(CR)|SRS) =
s2(c)
nc

+
s2(t)
nt

where s2(z) is the population variance of the potential outcomes under treatment z. The

classic variance estimator bs2
(CR) is unbiased in this setting.

For blocking with SRS, we focus on the use of flexible blocks, e.g. blocking using

clustering on a continuous covariate or based on observed covariates in the sample obtained.

Structural blocks do not make sense in this framework (e.g. one would always sample pairs

of twins not individuals who are twins if we wish to run a twin study) and fixed blocks

give rise to difficulties when the sample does not have units from all population strata. This

sampling framework was examined for blocked experiments with fixed blocks in Scosyrev

(2014).

For a blocked experiment, the variance in this framework, using the basic variance

decomposition, is

var(bt(BK)|SRS) = E

"
K

Â
k=1

n2k
n2

 
S2k(c)
nc,k

+
S2k(t)
nt,k

�
S2k(tc)
nk

! ���SRS
#
+ var (tS |SRS) .

The expectation is across the sampling and blocking process.
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Theorem 1.4.2.1. The variance estimator

bs2
SRS =

K

Â
k=1

nk(nk � 1)
n(n� 1)

 
s2k(c)
nc,k

+
s2k(t)
nt,k

!
+

K

Â
k=1

nk
n(n� 1)

⇣
btk � bt(BK)

⌘2
(1.8)

is an unbiased estimator for var(bt(BK)|SRS).

See Appendix A.7 for a derivation. The first term in the estimator looks similar to our

usual big block estimator and captures part of the first term in our variance decomposition.

The second term looks similar to our proposed small block estimator and accounts for the

rest of the variation. This is very similar to the estimator found in Scosyrev (2014), however

we make adjustments to achieve unbiasedness of the estimator whereas Scosyrev (2014)

focuses on consistency. Scosyrev (2014) also works with fixed blocks where the number of

blocks is assumed known before sampling and weights are used to match the sample to

the population proportions, as opposed to flexible blocks which allow random numbers of

blocks that are created post-sampling.

Remark. If we naïvely use bs2
(BK) (Equation 1.3) our bias will be

E
h
bs2
(BK)|SRS

i
� var(bt(BK)|SRS) =

1
n
E

"
K

Â
k=1

nk
n
S2k(tc)� S2(tc)

���SRS
#
.

This result follows from the derivations in Appendix A.7 and it implies that bs2
(BK) could

be anti-conservative in this setting if there is generally treatment variation across samples

(making S2(tc) > 0), but units put within the same block are nearly identical in terms of

impacts (making S2k(tc) ⇡ 0). This could happen when the experimenter is successfully

making homogenous blocks.

Similarly, if we use either of the small block variance estimators, the bias will be the

difference between the expected finite sample bias for those estimators (which depends on

treatment effect heterogeneity between blocks) and E
h
S2(tc)

���SRS
i
/n, which corresponds

to treatment effect heterogeneity across the whole population. Therefore whether these

estimators are conservative or not depends upon the structure of the population and how

the blocks are formed.
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1.4.3 Stratified sampling, fixed blocks

In the “stratified sampling” framework, denoted F1, there are K fixed strata of infinite size

in the population. Then nk units are randomly sampled from strata k (i.e., stratified random

sampling is used). Here we have fixed blocks. We assume that nk is fixed and that nk/n

is the population proportion of units in stratum k, for simplicity. Otherwise, a weighting

scheme, as mentioned in Section 1.4.1, would be needed to create an unbiased estimator

of the direct average of treatment effects in the population. This is the framework used

in Imbens (2011) and Miratrix et al. (2013), who show the following result under equal

proportions treated within each block, which simplifies the weights.

As in the finite sample, overall variance is a weighted sum of within block variances:

var(bt(BK)|F1) =
K

Â
k=1

n2k
n2

var
⇣

t̂k|F1

⌘
=

K

Â
k=1

n2k
n2
⇣s2

k (c)
nc,k

+
s2
k (t)
nt,k

⌘
, (1.9)

with s2
k (z) the population variance of the potential outcomes under treatment z in strata k.

As noted in Imbens (2011), the variance estimator of big blocks, bs2
(BK) (Equation 1.3), is

unbiased in this framework. The estimators for the variance of the small blocks, however,

can have bias. We have two results pertaining to this.

First, as with the finite sample, we can extend results for bs2
(SMALL/s) (see Imbens, 2011)

to bs2
(SMALL/m).

Corollary 1.4.3.1. The bias of bs2
(SMALL/m) (Equation 1.5) under the stratified sampling framework

is

E
h
bs2
(SMALL/m)|F1

i
� var(bt(SMALL)|F1) =

J

Â
j=1

Kjm2
j

n2sb(Kj � 1) Â
k:nk=mj

⇣
tk � t(SMALL)

⌘2
.

See Appendix A.5.2 for the derivation. As with finite sample inference, this shows that

bs2
(SMALL/m) is a conservative estimator unless the average treatment effect is the same across

all small blocks of the same size, in which case it is unbiased.

Second, for our new variance estimator we have the following result:

Corollary 1.4.3.2. The bias of bs2
(SMALL/p) (Equation 1.7) under the stratified sampling framework
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is

E
h
bs2
(SMALL/p)|F1

i
� var(bt(SMALL)|F1)

=
K

Â
k=1

n2k
(nsb � 2nk)(nsb + ÂK

i=1
n2i

nsb�2ni
)

⇣
tk � t(SMALL)

⌘2
.

This shows that bs2
(SMALL/p) is also a conservative estimator (given no block makes up

more than half the sample) and it is unbiased when the average treatment effect is the same

across all small blocks. See Appendix A.6 for a derivation.

1.4.4 Random sampling of strata, structural blocks

In the “random sampling of strata” framework, denoted F2, there are an infinite number of

strata of finite size, i.e. an infinite number of structural blocks. K strata are then randomly

chosen to be in the sample and randomization is done within each of the sample blocks.

This setting, with equal block sizes, is often used in the matched pairs literature, such as in

Imai (2008).

Within this framework, which blocks are included in the sample is itself random.

Therefore, the variance estimator needs to capture not only the within strata variance

but also the variance due to which strata are chosen to be in the sample. Furthermore,

if the block sizes vary, the total number of units is random which introduces additional

complexities.

For the more general variable-size version of this framework, the variance of bt(BK) is

var
⇣
bt(BK)|F2

⌘
= E

"

Â
k:Bk=1

n2k
n2

 
S2k(c)
nc,k

+
S2k(t)
nt,k

�
S2k(tc)
nk

!
|F2

#
+ var (tS |F2) , (1.10)

where Bk is the indicator that stratum k is included in the sample, with Bk = 1 indicating

sample membership and Bk = 0 otherwise.

When blocks are of the same size, we can simplify the expression with n2k
n2 =

1
K2 , which is

no longer random. If we have all blocks of the same size, then we can rewrite bs2
(SMALL/s)
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(Equation 1.4) using sample inclusion indicators as

bs2
(SMALL/s) =

1
K(K� 1) Â

k
Bk(btk � bt(BK))2,

and this is an unbiased estimator for var(bt(BK)|F2). This is simply the variance of the

estimated block effect in the sample. Imai (2008) showed that this estimator is unbiased in

this setting with an infinite population of matched pairs. See Appendix A.5.2 for the proof

of this result extended to other small block types of equal size.

Variance estimators when the strata vary in size are more complicated. In particular,

under this framework there is a chance that there is only a single block of a given size,

making the first variance estimator infeasible. If we condition on the number of strata drawn

of each possible strata size, assuming that there are multiple strata of the each size in the

sample, we obtain the following Corollary:

Corollary 1.4.4.1. In the conditioned case, assuming it is defined, bs2
(SMALL/m) (Equation 1.5) is an

unbiased estimator for var(bt(BK)|F2).

This result can be seen directly from the results in Appendix A.5.2.

Alternatively, if we are willing to assume that block size is independent of treatment

effect, then we have the following more general result:

Theorem 1.4.4.1 (Unbiasedness of bs2
(SMALL/p) given independence). In the case the random

sampling of strata setting where block sizes are independent of block average treatment effects,

bs2
(SMALL/p) (Equation 1.7) is an unbiased estimator for var(bt(BK)|F2).

The proof is in Appendix A.6.2.

Remark. We may also consider an infinite number of strata of infinite size, as is commonly

used in multisite randomized trials. This is the setting considered in Schochet (2016) and

the RCT-YES software (Schochet, 2016) estimator discussed in Appendix A.1.3 could be

used. The sampling scheme then has two steps: first sample the strata, then sample units

from the strata. To discuss variance, we need to add a bit of notation. Let t⇤
S denote the

expectation of the treatment effect estimator given the blocks in the sample. That is, we fix
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which strata are in the sample and take the expectation over the sampling of units from the

infinite size strata. So conditioning on which strata are in the sample we are in a stratified

sampling set up. Let this framework be denoted by F3. Then the variance of bt(BK) is

var
⇣
bt(BK)|F3

⌘
= E

"

Â
k:Bk=1

n2k
n2

 
s2
k (c)
nc,k

+
s2
k (t)
nt,k

!
|F3

#
+ var (t⇤

S |F3) .

It is straightforward to extend the results of Corollary 1.4.4.1 and Theorem 1.4.4.1 to this

case.

1.4.5 Discussion

While the variance formulas that we presented above share a similar structure with each

other and the finite sample forms, there are important differences. In the finite sample

framework (Equation 1.2), there is a term regarding treatment effect variation that reduces

the variance due to the correlation of potential outcomes. This term is retained in the

random sampling of strata framework of Section 1.4.4 but not in the stratified sampling

framework of Section 1.4.3. This difference in the true variance implies that different

variance estimators may be more appropriate in different settings and that comparisons of

blocking to complete randomization under these different assumptions will also diverge.

In fact, this difference explains much of apparent discrepancy between the matched pairs

literature and the blocking literature.

Relatedly, different variance estimators can have different amounts of bias depending on

the framework being used. The small blocks estimators (bs2
(SMALL/m) and bs

2
(SMALL/p)) in the

finite sample and the stratified sampling framework are unbiased if the average treatment

effect is the same across all of the small blocks (or all of the small blocks of the same size for

bs2
(SMALL/m)) and otherwise are more conservative as the variance of the average treatment

effects across blocks increases. For the infinite number of strata framework, under some

assumptions all of our small block variance estimators are unbiased. We have no small block

estimator that is guaranteed to be unbiased or conservative for the simple random sampling

(flexible block) framework.
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The big blocks estimator (bs2
(BK)) in the finite sample is unbiased if the treatment effect

is additive within each block and otherwise depends on the treatment effect heterogeneity

within each block. In the stratified sampling framework, however, bs2
(BK) will be unbiased.

Overall, only the framework of Section 1.4.4 of sampling structural blocks, with the

additional assumption given there, has unbiased variance estimators for a mixture of big

and small blocks. This means that, without additional assumptions allowing for plug-in

approaches, the hybrid estimators will always be conservative in the other settings discussed.

1.5 Comparing blocking to complete randomization

Much confusion in the literature surrounding the benefits of blocking can be attributed

to researchers performing isolated investigations of estimators’ properties under specific

sampling frameworks. Although researchers typically focus on finite vs. infinite population

as a distinction when assessing if blocking may be beneficial or harmful, the block types and

sampling framework being used also matter. Blocking investigations have been made from

many perspectives (e.g. Snedecor and Cochran, 1989) but we will discuss the prior work

that has been done within the causal inference potential outcomes framework. Imai (2008)

compared the true variance for the matched pairs design to the variance of the estimator for

the completely randomized design under two sampling schemes, recognizing the important

role that the sampling scheme plays. From this he concluded that “the relative efficiency

of the matched-pair design depends on whether matching induces positive or negative

correlations regarding potential outcomes within each pair” (Imai, 2008, p. 4865), a comment

similar to one made on p. 101 of Snedecor and Cochran (1989). In contrast, Imbens (2011),

assuming a stratified sampling superpopulation model, claimed that “In experiments with

randomization at the unit-level, stratification is superior to complete randomization, and

pairing is superior to stratification in terms of precision of estimation” (p. 1). Imai et al.

(2008) similarly concluded that the variance under the blocked design was lower than under

complete randomization for a superpopulation set-up. Although these conclusions are

correct for the context the authors were working in, the use of different frameworks for
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blocking and matched pairs can make the results seem inconsistent.

For our primary discussion, we assume that pk = p for all k, i.e. the proportion

of treated units is constant across blocks and is the same as the proportion of treated

units under complete randomization. We compare the variances of a blocked design vs.

complete randomization under several population frameworks to clarify the similarities and

differences under these different sampling methods. All derivations are in Appendix A.8. If

we do not assume pk = p for all k, then units in the same treatment arm can be weighted

differently and we do not have the same guarantees; see Appendix A.8.6. Section A.9 of

the Appendix relatedly discusses the performance of the complete randomization variance

estimator when treatment assignment is done according to blocked randomization, i.e.,

it gives the performance of the variance estimator that ignores blocking. Appendix A.4

examines the variances of the variance estimators, and compares the variances under blocking

to complete randomization.

Finite framework

For the finite setting, we find a result similar to those presented in other papers, such as

Imai et al. (2008) and Miratrix et al. (2013). The difference in variance of the treatment effect

estimator between the completely randomized design and the blocked design, in the finite

sample, is

var
⇣
bt(CR)|S

⌘
� var

⇣
bt(BK)|S

⌘
(1.11)

=
1

n� 1

"
Vark

 r
p

1� p
Ȳk(c) +

s
1� p
p

Ȳk(t)

!
�

K

Â
k=1

nk
n
n� nk

n
var(btk|S)

#

where

Vark (Xk) ⌘
K

Â
k=1

nk
n

 
Xk �

K

Â
j=1

nj

n
Xj

!2

. (1.12)

Whether this quantity is positive or negative depends on whether some form of between

block variation is larger than a form of within block variation. Finite sample numerical

studies in Appendix A.3.2 show an example where even in the worst case for blocking,

when all blocks have the same distribution of potential outcomes, the increase in variance
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is not too great. Most prior work state that although the difference in the brackets can

be negative, as the sample size grows this difference will go to a non-negative quantity.

However, this statement depends on the type of blocks we have. In particular, if we have

structural blocks such that as n grows, the number of blocks K also grows, the difference in

the brackets of Equation 1.11 will not necessarily go to zero or become positive as n ! •.

This has ties to the random sampling of strata framework.

Simple random sampling, flexible blocks

The difference of variances in this setting is just the expectation over Equation 1.11 with

respect to sampling of units. If we have a fixed set of covariates and a fixed algorithm

used to do blocking, then even if the covariates used to form blocks are independent from

outcomes, blocking will not increase variance and in fact this difference will be zero, as

shown in Appendix A.8.2. Hence, in the “worst case” of blocking on something irrelevant,

blocking will still not increase variance on average. However, if the algorithm or the set

of covariates used to block was allowed to adversarially change from sample to sample,

then it could hypothetically choose the worst possible blocking for each sample, making the

sample variance for blocking always higher than for complete randomization.

Stratified sampling, fixed blocks

Theorem 1.5.0.1 (Variance comparison under stratified sampling). The difference in variance

between complete randomization and blocked randomization under the stratified sampling framework

is

var
⇣
bt(CR)|F1

⌘
� var

⇣
bt(BK)|F1

⌘
=

1
n� 1

Vark

 r
p

1� p
µk(c) +

s
1� p
p

µk(t)

!
� 0

where µk(z) is the population mean of potential outcomes under treatment z in strata k and Vark(·)

is defined as in Equation (1.12).

Now, it is not possible for blocking to be harmful in the stratified sampling framework

with equal proportion treated in all blocks.

Interestingly, when comparing blocking to completely randomized experiments in an

infinite population setting, researchers have typically evaluated the completely randomized
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design under the simpler sampling mechanism of simple random sampling and analyze

the blocked design under the stratified sampling framework (e.g., see Imbens, 2011). For

further discussion and mathematical formulation of that comparison, see Appendix A.8.4.

Random sampling of strata, structural blocks

The difference between the variances is again the expectation over Equation 1.11 with respect

to sampling of blocks. Here the blocks themselves are sampled with block membership

fixed, so the expectation can be thought of as over all blocks in the population. As in the

finite framework, because the strata themselves are finite, it is possible that blocking could

result in higher variance. In particular, it is possible to have systematically poor blocks if the

block means do not vary. For instance, if we use elementary school classrooms as blocks, we

may find that schools break up students into classes such that the classrooms all look similar

to each other, in that they have similar proportions of high and low achieving students, but

by the same token have higher within classroom variability. For the case with infinite strata

of infinite size, see Appendix A.8.5.

Discussion

Different types of blocks and sampling framework can change the answer to the question

“Is blocking always beneficial in terms of the precision of my estimators?” These findings,

however, assume equal treatment proportions across blocks. With unequal proportions we

do not have such guarantees (see Appendix A.8.6). In our simulations (see Appendix A.4.1)

we in fact see degradation in the benefits of blocking on weakly predictive covariates when

the proportion treated is only approximately equal, rather than precisely. This comes from

the additional variation induced by different units being weighted differently, and is akin to

the increase in variance from weighted survey sampling. This suggests that in many realistic

scenarios, one might not want to block on covariates that are only weakly predictive.

1.6 Simulations

We compare different estimators of the variance for hybrid blocked experiments where there

are a few big blocks and many small blocks in a finite sample context. Here, 50% of our
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units are in small blocks with only one treated unit and the remainder are in big blocks

with at least two treated units. In none of our blocks were there many treated units due to

only having approximately 20% of the units treated. The 20% was approximate in order to

create varying size small blocks to see the different performance of the hybrid estimators.

We have 15 blocks with sizes ranging from 3 to 20.

The simulations presented here are for the finite sample framework, as it is both a

common mode of inference as well as a core building block to the population frameworks.

These results, however, are largely applicable to these other settings. For instance, the biases

for the small blocks variance estimators have the same form for the finite sample and the

stratified sampling frameworks.

We considered our two hybrid estimators, which correspond to estimating the variance

of the small blocks two different ways. We also considered two regression estimators: the

HC1 sandwich estimate (Hinkley, 1977) from a linear model with fixed effects and no

interaction between treatment indicator and blocking factor, and the standard variance

estimate (inverse Fisher information) from a weighted regression, weighting each unit by

the inverse probability of being assigned to its given treatment status in its block, multiplied

by the overall proportion of units in its treatment group (this is a variant of the approach in

Gerber and Green (2012); see also Miratrix et al. (2020)).1 Note that the HC1 estimator is the

“robust” estimator used in Stata (StataCorp, 2017) for estimating standard deviations.

In our simulations, we varied how well blocking separated units based on the potential

outcomes under control and on the treatment effect. The average potential outcome under

control and the treatment effect for each block were both negatively correlated with block

size, so that smaller blocks had larger control potential outcomes and larger treatment

effects. The correlation of potential outcomes within blocks was also varied between

r = 0, 0.5, and 1. See Appendix A.3.1 for more on the data generating process.

1There are actually different weighting approaches one can use in regression adjustment; in particular one
can use precision weighting or survey weighting. In additional explorations we examined survey weighting
as implemented by svyglm, and found these other options generally performed more poorly, with some
approaches resulting in substantial underestimation of variance and others having a great deal of inflation.
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We compared all of the variance estimators to the actual variance of the correspond-

ing blocking treatment estimator in Figure 1.1 by looking at the percent relative bias

([mean(ŝ2
⇤) � var(bt(BK)|S)]/var(bt(BK)|S)).2 The variation due to changing the between

block difference in the mean of control potential outcomes was found to be minimal so we

average these differences on the plots. The two hybrid estimators, the one using bs2
(SMALL/m)

(Equation 1.5) (Hybridm) for the small blocks and the one using bs2
(SMALL/p) (Equation 1.7)

(Hybridp) for the small blocks, outperform the linear model estimators, especially as the

treatment effect variation across the blocks increases. We see that Hybridm also has lower

bias than Hybridp as treatment heterogeneity increases. This is because the value of treat-

ment effects are correlated with block size and bs2
(SMALL/m) groups variance estimation by

block size. Weighted regression performance was generally similar to that of Hybridp. It

was slightly anti-conservative for samples with low treatment heterogeneity when r = 1.

For discussion of the variance of the variance estimators, see Appendix A.4.2. The

variance estimators’ variances were found to be comparable, with weighted regression

generally having the lowest variance.

When comparing the performance of estimators, there is an important note about the

linear model estimator: the sandwich estimate for a linear model is associated with a

different treatment effect estimator than the others. In particular, a linear model with

fixed effects is estimating a precision weighted estimate of the treatment effect across the

blocks. It is well known that as treatment heterogeneity increases, this estimator can become

increasingly biased. See, Raudenbush and Schwartz (2020) for a longer discussion on this

and related estimators. This is not an issue for the weighted regression which, similar to

adding interactions between treatment and block dummy variables, will recover bt(BK).

2We compare all estimators to the variance of bt(BK) to put everything on the same scale, even though the
sandwich estimate for a linear model is estimating variance for the linear model estimator.
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Figure 1.1: Simulations to assess variance estimators’ relative bias as a function of treatment variation across blocks.
Each column represents a different value of r, with values denoted at the top of the graph. The x-axis shows the standard
deviation of block treatment effects. Dots indicate average over changes in control means for specific finite samples. FE
stands for fixed effects.

1.7 Data Example

One area where analysts are often faced with many small blocks of varying sizes is found in

the matching literature. In particular, full matching (see Hansen (2004), Rosenbaum (1991))

finds sets of similar units, with either one treated and several control or vice versa, that

could be considered as-if randomized. After matching, a researcher could then analyze these

data using permutation tests and associated sensitivity checks (see, e.g. Rosenbaum (2010)),

but in this context generating confidence intervals or standard errors using permutation

inference would typically rely on a constant treatment effect assumption across the blocks.

One might alternatively wish for a Neyman-style randomization analysis such as would
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NHANES Lalonde
Estimator Estimate cSE Estimate cSE
Hybrid blocking with bs2

(SMALL/m) 2.45 N/A $560 $570
Hybrid blocking with bs2

(SMALL/p) 2.45 0.20 $560 $606
Weighted regression 2.45 0.11 $560 $560
Fixed effects regression (HC1) 2.75 0.13 $425 $601

Table 1.1: Results of NHANES (full matching), and Lalonde (CEM) for different estimation strategies.

be typically done for large block experiments to obtain inference for the average effect

in the presence of treatment variation. The average treatment effect estimate is easy to

obtain; it is the uncertainty estimation that causes the trouble. Our small block variance

estimators fills this gap. To illustrate, we analyze a data set from the National Health

and Nutrition Examination Survey (NHANES) 2013-2014 given in the CrossScreening

package (Rosenbaum and Zhao, 2017) in R statistical software (R Core Team, 2017). This

data set was also used by Zhao et al. (2018b) to analyze the effect of high fish consumption

(defined as 12 or more servings of fish or shellfish in the previous month) versus low fish

consumption (defined as 0 or 1 servings of fish or shellfish in the previous month) on a

number of biomarkers.

Although Zhao et al. (2018b) analyzed numerous outcomes, we focus on a measure of

mercury (LBXGM), converted to the log2 scale, as a simple illustration of our methods. We

use unrestricted full matching to obtain a set of all small blocks of varying size. As in Zhao

et al. (2018b), we matched on smoking, age, gender, race, income, and education. We used

Bayesian logistic regression through the brglm package (Kosmidis, 2017) and optmatch

(Hansen and Klopfer, 2006) in R (R Core Team, 2017). This resulted in 197 blocks with only

one treated or one control unit in each. Sizes of blocks ranged from 2 to 47. This type of

matching would fall into the category of flexible blocks, and we here focus on estimation of

the SATE for the finite sample.

There were some block sizes that were unique, so the hybrid estimator with bs2
(SMALL/m)

could not be used. Alternate forms of full matching could potentially avoid this concern:

full matching can include additional restrictions, such as using only a portion of the control
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group or exact matching on some important covariates, which could make the block sizes

more homogenous (Hansen and Klopfer, 2006); for simplicity we do not explore this here.

The blocking treatment effect estimate (bt(BK)) was 2.45 but using a fixed effects model with

no interaction the treatment effect estimate was 2.75. Looking at Table 1.1, we see that our

hybrid estimator using bs2
(SMALL/p) gave a much larger variance estimate (relative to the scale

of the precision estimates) than the two linear model based variance estimators.

A second method for analyzing observational datasets where our variance estimators

could be useful is coarsened exact matching (CEM). CEM coarsens covariates used to match

and then exactly matches to these coarsened variables (Iacus et al., 2012). We follow the

example from the vignette of the cem package (Iacus et al., 2016) in R using the most

automated version of CEM on the classic LaLonde data set (LaLonde, 1986), available in

the cem package. This data set consists of individuals who received or did not receive a job

training program with the outcome of interest as earnings in 1978. We use the unmodified

version of the LaLonde dataset, but otherwise follow the automated process for CEM laid

out in the vignette to create blocks (we do not follow the analysis). This resulted in the

creation of 69 blocks, some small and some big, with some ungrouped units being dropped.

The blocking treatment effect estimate (bt(BK)) was $560 but using a fixed effects model with

no interaction the treatment effect estimate was $425. From Table 1.1, the precision estimates

from all methods were similar though, again, the hybrid estimator using bs2
(SMALL/p) was the

largest and likely the most conservative.

1.8 Discussion

Blocking can be viewed under a wide variety of population frameworks ranging from a fixed,

finite-sample model to one where we envision the units as being sampled from a larger

population in pre-set groups. Because some findings regarding blocking change depending

on what framework is used, the current literature can seem confusing and contradictory.

Furthermore, because different types of blocking tend to use different frameworks, there is

a lack of clarity on how one should proceed when faced with a randomized trial containing
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blocks of all different sizes.

We have worked to clarify these subtleties and to fill this gap. We identified and

compared the true variance of a blocking-based estimator under multiple settings, and

created corresponding estimators of the impact estimator’s variance. We also provide simple,

model-free variance estimators for two types of experiments that have not received much

attention: blocked experiments with variable-sized blocks containing singleton treatment or

control units, and hybrid blocked experiments with large and small blocks combined. These

contexts are quite common, frequently appearing in, for example, the matching literature.

We analyzed the performance of both our new variance estimators and the classic variance

estimators under different frameworks, identifying when they are unbiased or conservative.

This investigation again illustrates how different sampling frameworks and block types can

impact assessments of an estimator’s performance.

We also carefully compared complete randomization to blocking, identifying that prior

literature has often collapsed the sampling step and randomization step. Overall, we showed

that blocking often, but not always, improves precision, and that guarantees about blocking

depend on the framework adopted. Blocking will not reduce precision, compared to a

complete randomization, when working in the stratified sampling framework with equal

proportion of units treated across blocks, no matter how small the blocks are or how poorly

they separate the units. Similarly, we found that in the simple random sampling setting,

given a fixed algorithm for creating flexible blocks, and when blocking on covariates that

are independent of potential outcomes, the blocking estimator will have equal variance to

the estimator under complete randomization. In the other two main frameworks considered,

however, blocking is not guaranteed to reduce variance. Without prior knowledge about

the distribution of potential outcomes, it is impossible to know before an experiment is

conducted whether blocking will improve the estimates in these latter two settings. This

being said, the above assumes the blocks have equal proportions of units treated; if the

proportions treated differ, we do not have guarantees that blocking will reduce variance,

regardless of framework.
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We do not discuss in this chaper two other issues which would be useful areas of further

investigation: degrees of freedom and stability of variance estimators. The tradeoff between

increased precision and reduced degrees of freedom by using blocked or matched pairs

designs has been noted by others (e.g., Box et al., 2005, p. 93; Imbens, 2011; Snedecor and

Cochran, 1989, p. 101) and is an important practical limitation to consider when using these

designs. The variability of our variance estimators is an important aspect in determining

the best design and analysis to use. Although we touch on the stability of our variance

estimators in the Appendix, a more in depth exploration is needed. One might think, given

the above, to implement blocking to realize some gains, but then analyze as a completely

randomized experiment to avoid these concerns. Unfortunately, this does not result in a

guaranteed valid or conservative analysis: even when proportion treated across blocks is

constant, such a move is not necessarily conservative, depending on the framework adopted

(see Appendix A.9). Future work should investigate how the real costs of degrees of freedom

loss and instability in variance estimation depend on the experimental design within these

frameworks.

Future work includes extending these results to other population settings and sampling

methods, in particular finding small block estimators for the setting of constructing blocks

post-sampling and pre-randomization. Variance estimation is also a missing and needed

piece in post-stratification research, as noted in Miratrix et al. (2013). Although conditional

answers for post-stratification would correspond to the estimators presented in this work,

the unconditional case remains open.

36



Chapter 2

Conditional As-If Analyses in

Randomized Experiments

2.1 Introduction

It is a long-standing idea in statistics that the design of an experiment should inform its

analysis. Fisher placed the physical act of randomization at the center of his inferential

theory, enshrining it as “the reasoned basis” for inference (Fisher, 1935). Building on

these insights, Kempthorne (1955) proposed a randomization theory of inference from

experiments, in which inference follows from the precise randomization mechanism used in

the design. This approach has gained popularity in the causal inference literature because it

relies on very few assumptions (Splawa-Neyman et al., 1990; Imbens and Rubin, 2015).

Yet the injunction to ‘analyze as you randomize’ is not always followed in practice,

as noted by Senn (2004) who argues that in clinical trials the analysis does not always

follow strictly from the randomization performed. For instance, a Bernoulli randomized

experiment might be analyzed as if it were a completely randomized experiment, or we

might analyze a completely randomized experiment as if it had been stratified.

This chapter studies such ‘as-if’ analyses in detail in the context of Neymanian inference,

and makes three contributions. First we formalize the notion of ‘as-if’ analyses, motivating
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their usefulness and proposing a rigorous validity criterion (Section 2.2). Our framework

is grounded in the randomization-based approach to inference. In the two examples we

described above, the analysis conditions on some aspect of the observed assignment; for

instance, in the first example, the complete randomization is obtained by fixing the number

of treated units to its observed value. The idea that inference should be conditional on

quantities that affect the precision of estimation is not new in the experimental design

literature (e.g., Cox, 1958, 2009) or the larger statistical inference literature (e.g., Särndal

et al., 1989; Sundberg, 2003), and it has been reaffirmed recently in the causal inference

literature (Branson and Miratrix, 2019; Hennessy et al., 2016). Our second contribution

is to show that in our setting, conditioning leads to valid ‘as-if’ analyses. We also warn

against a dangerous pitfall: some ‘as-if’ analyses look conditional on the surface, but are in

fact neither conditional nor valid. This is the case, for instance, of analyzing a completely

randomized experiment by conditioning on the covariate balance being no worse than

that of the observed assignment (Section 2.3). Our third contribution is to show how our

ideas can be used to suggest new methods (Section 2.4) and also show how they can be

used to evaluate existing methods (Section 2.5). Throughout we will focus on building the

foundational theory for the ‘as-if’ method of analysis.

2.2 As-if confidence procedures

2.2.1 Setup

Consider N units and let Zi 2 {0, 1} (i = 1, . . . ,N) be a binary treatment indicator for

unit i. We adopt the potential outcomes framework (Rubin, 1974; Splawa-Neyman et al.,

1990), where, under the Stable Unit Treatment Value Assumption (Rubin, 1980), each unit

has two potential outcomes, one under treatment, Yi(1), and one under control, Yi(0), and

the observed response is Yobs
i = ZiYi(1) + (1� Zi)Yi(0). We denote by Z, Y(1) and Y(0)

the vectors of binary treatment assignments, treatment potential outcomes and control

potential outcomes for all N units. Let t be our estimand of interest, which can be any
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function of the potential outcome vectors (Y(0),Y(1)). An estimator t̂ is a function of

the assignment vector Z and the observed outcomes. For clarity, we will generally write

t̂ = t̂(Z) to emphasize the dependence of t̂ on Z, but keep the dependence on the potential

outcomes implicit. Denote by h0 the design describing how treatment is allocated, so for

any particular assignment Z0, h0(Z0) gives the probability of observing Z
0 under design h0.

In randomization-based inference, we consider the potential outcomes (Y(0),Y(1)) as fixed

and partially unknown quantities; the randomness comes exclusively from the assignment

vector Z following the distribution h0. The estimand t is therefore fixed because it is a

function of the potential outcomes only, while the observed outcomes and the estimator

t̂(Z) are random because they are functions of the random assignment vector Z.

Our focus is on the construction of confidence intervals for the estimand t under

the randomization-based perspective. We define a confidence procedure as a function C

mapping any assignment Z 2 Zh0 and associated vector of observed outcomes, Yobs, to an

interval in R, where Zh0 = {Z 2 {0, 1}N : h0(Z) > 0} is the support of the randomization

distribution. Standard confidence intervals are examples of confidence procedures, and are

usually based on an approximate distribution of t̂(Z)� t. For careful choices of t̂ and h0,

the random variable t̂(Z)� t, standardized by variance varh0(t̂) induced by the design h0,

is asymptotically standard normal (see Li and Ding, 2017). We can then construct an interval


t̂(Z)� 1.96
q

V̂h0(Z), t̂(Z) + 1.96
q

V̂h0(Z)

�
, (2.1)

where V̂h0 is an estimator of varh0(t̂). Discussing the validity of these kinds of confidence

procedures is difficult for two reasons. First, they are generally based on asymptotics, so

validity in finite populations can only be approximate. Second, they use the square root of

estimates of the variance which, in practice, tend to be biased. These two issues obscure the

conceptual underpinning of ‘as-if’ analysis. We circumvent these issues by focusing instead

on oracle confidence procedures, which are based on the true quantiles of the distribution

of t̂(Z) � t induced by the design h0. Specifically, we consider 1� 2a level confidence
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intervals (0 < a < 1) of the form

C(t̂(Z); h0) = [t̂(Z)�Ua(h0), t̂(Z)� La(h0)] (2.2)

whereUa(h0) and La(h0) are the a upper and lower quantiles, respectively, of the distribution

of t̂(Z)� t under design h0. Because they don’t depend on Z, the quantiles Ua(h0) and

La(h0) are fixed. The confidence procedure in Equation (2.2) is said to be an oracle procedure

because unlike the interval in Equation (2.1), it cannot be computed from observed data.

Oracle procedures allow us to set aside the practical issues of approximation and estimability

to focus on the essence of the problem. We discuss some of the practical issues that occur

without oracles in supplementary material B.2.

2.2.2 As-if confidence procedures

Given data from an experiment, it is natural to consider the confidence procedure C(t̂(Z); h0)

constructed with the design h0 that was actually used to randomize the treatment assignment.

Consider, however, the oracle procedure

C(t̂(Z); h) = [t̂(Z)�Ua(h), t̂(Z)� La(h)],

based on the distribution of t̂(Z)� t induced by some other design h that assigns positive

probability to the observed assignment. In this case we say that the experiment is analyzed

‘as-if’ it were randomized according to h. We generalize this idea further by allowing the

design h used in the oracle procedure to vary depending on the observed assignment. This

can be formalized with the concept of a design map.

Definition 1 (Design map). Let D be the set of designs, or probability distributions, with support

in {0, 1}N. A function H : Zh0 ! D which maps each assignment Z 2 Zh0 to a design H(Z) 2 D

is a design map.

A confidence procedure C(t̂(Z);H(Z)) can then be constructed using design map H as

follows:

C(t̂(Z);H(Z)) = [t̂(Z)�Ua(H(Z)), t̂(Z)� La(H(Z))].
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This is an instance of ‘as-if’ analysis, in which the design used to analyze the data depends

on the observed assignment. That is, while we traditionally have one rule for how to create

a confidence interval, we may now have many rules, possibly as many as |Zh0 |, specified via

the design map. In the special case in which the design map H is constant, i.e H(Z) = h for

all Z 2 Zh0 , we write C(t̂(Z); h) instead of C(t̂(Z);H(Z)), with a slight abuse of notation.

Note that the design map function itself is fixed before observing the treatment assignment.

Example 1. Consider an experiment run according to a Bernoulli design with probability of treatment

p = 0.5, where we remove assignments with no treated or control units, to ensure that our estimator

is defined. That is, Zh0 is the set of all assignments such that at least one unit receives treatment

and one unit receives control, to ensure the estimator is defined, and h0 = Unif(Zh0). Let hk

(k = 1, . . . ,N � 1) be the completely randomized design with k treated units. We use the design

map H(Z) = hN1(Z) where N1(Z) = ÂN
i Zi. That is, we analyze the Bernoulli design as if it were

completely randomized, with the observed number of treated units assigned to treatment. Consider

the concrete case where N = 10. Suppose that we observe Z
obs with N1(Zobs) = 3. The design

H(Zobs) = h3 corresponds to complete randomization with 3 units treated out of 10, and the

confidence procedure C(Zobs;H(Zobs)) is constructed using the distribution of t̂(Z)� t induced by

h3. We analyze as if a completely randomized design with 3 treated units had actually been run. If

instead we observe Zobs with N1(Zobs) = 4, then the confidence procedure C(Zobs;H(Zobs)) would

be constructed by considering the distribution of t̂(Z)� t induced by h4.

Example 2. Let our units have a single categorical covariate Xi. Then this covariate forms blocks;

that is the units in the sample are partitioned based on their covariate value. Assume that the

actual experiment was run using complete randomization with fixed number of treated units N1 but

discarding assignments where there is not at least one treated unit and one control unit in each block.

That is, Zh0 is the set of all assignments with N1 treated units such that at least one unit receives

treatment and one unit receives control in each block and h0 = Unif(Zh0). This restriction on the

assignment space is to account for the associated blocked estimator being undefined. However, with

moderate size blocks we can ignore this nuisance event due to low probability. For vector k whose jth

entry is an integer strictly less than the size of the jth block and strictly greater than 1, let hk be a
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block randomized design with the number of treated units in each block corresponding to the numbers

given in vector k. We use the design map H(Z) = hN1,block(Z) where N1,block(Z) is the vector that

gives the number of treated units within each block and hN1,block(Z) is the blocked design corresponding

to N1,block(Z). We use post-stratification (Holt and Smith, 1979; Miratrix et al., 2013) to analyze

this completely randomized design as if it were block randomized.

Example 3. Assume that the actual experiment was run using complete randomization with exactly

N1 units treated. That is, Zh0 is the set of all assignments such that N1 < N units receive treatment

and h0 = Unif(Zh0). Let Xi be a continuous covariate for each unit i. Define a covariate balance

measure DX(Z), e.g.

DX(Z) =
1
N1

Â
i
ZiXi �

1
N � N1

Â
i
(1� Zi)Xi.

For an assignment Z, define A(Z) = {Z0 : |DX(Z0)|  |DX(Z)|}, the set of assignments with

covariate balance better than or equal to the observed covariate balance. We use the design map

H : Z0 ! prh0
{Z | Z 2 A(Z0)}. Then this design map leads to analyzing the completely randomized

design as if it were rerandomized (see Morgan and Rubin, 2012, for more on rerandomization) with

acceptable covariate balance cut-off equal to that of the observed covariate balance.

Example 4. Assume that the actual experiment was run using block randomization where N1,block(Z)

is a fixed vector that gives the number of treated units within each block. That is, Zh0 is the set of all

assignments such that number of treated units in each block is N1,block(Z) and h0 = Unif(Zh0). Let

h correspond to a completely randomized design, as laid out in Example 2, with N1, the total number

of units treated across all blocks, treated units. We use the design map H(Z) = h. This corresponds

to analyzing this block randomized design as if it were completely randomized .

Throughout the chapter, we focus on settings in which the same estimator is used

in the original analysis and in the ‘as-if’ analysis. In practice, the two analyses might

employ different estimators. For instance, in Example 2, we might analyze the completely

randomized experiment with a difference-in-means estimator, but use the standard blocking

estimator to analyze the ‘as-if’ stratified experiment. We discuss this point further in the
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supplementary material B.2 but in the rest of this article, we fix the estimator and focus on

the impact of changing only the design.

2.2.3 Validity, relevance and conditioning

We have formalized the concept of an ‘as-if’ analysis, but we have not yet addressed an

important question: why should we even consider such analyses instead of simply analyzing

the way we randomize? Before we answer this question, we first introduce a minimum

validity criterion for ‘as-if’ procedures.

Definition 2 (Valid confidence procedure). Fix g 2 [0, 1]. Let h0 2 D be the design used in the

original experiment and let H be a design map on Zh0 . The confidence procedure C(t̂(Z);H(Z)) is

said to be valid with respect to h0, or h0-valid, at level g if prh0
{t 2 C(t̂(Z);H(Z))} � g. When a

procedure is valid at all levels, we simply say that it is h0-valid.

This criterion is intuitive: a confidence procedure is valid if its coverage is as advertised

over the original design. The following simple result formalizes the popular injunction to

“analyze the way you randomize” (p. 317 Lachin, 1988):

Proposition 2.2.3.1. The procedure C(t̂(Z); h0) is h0-valid.

Given that the procedure C(t̂(Z); h0) is h0-valid, why should we consider alternative

‘as-if’ analyses, even valid ones? That is, having observed Z, why should we use a design

H(Z) to perform the analysis, instead of the original h0? A natural, but only partially

correct, answer would be that the goal of an ‘as-if’ analysis is to increase the precision of our

estimator and obtain smaller confidence intervals while maintaining validity. After all, this

is the purpose of restricted randomization approaches when considered at the design stage.

For instance, if we have reasons to believe that a certain factor might affect the responses of

experimental units, stratifying on this factor will reduce the variance of our estimator. This

analogy, however, is misleading. The primary goal of an ‘as-if’ analysis is not to increase

the precision of the analysis but to increase its relevance. In fact, we argue heuristically in

supplementary material B.4 that an ‘as-if’ analysis will generally not increase power.
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Informally, an observable quantity is relevant if a reasonable person cannot tell if a

confidence interval will be too long or too short given that quantity. The concept of relevance

captures the idea that our inference should be an accurate reflection of our uncertainty

given the information from the realized randomization; it should be more precise if our

uncertainty is lower and less precise if our uncertainty is higher. Defining the concept of

relevance formally is difficult. See Buehler (1959) and Robinson (1979) for a more formal

treatment or supplementary material B.3 for a precise discussion in the context of betting

games, following Buehler (1959). But for this chapter we will not attempt a formal definition

and instead, following Liu and Meng (2016), we will illustrate its essence with a simple

example.

Consider the Bernoulli design scenario of Example 1. From Equation (2.2), the oracle

interval C(t̂(Z); h0) constructed from the original design has the same length regardless of

the assignment vector Z actually observed. Yet, intuitively, an observed assignment vector

with 1 treated unit and 99 control units should lead to less precise inference, and therefore

wider confidence intervals than a balanced assignment vector with 50 treated units and 50

control units. In a sense, the confidence interval C(t̂(Z); h0) is too narrow if the observed

assignment is severely imbalanced, too wide if it is well balanced, but right overall. Let Z1

be the set of all assignments with a single treated unit and Z50 the set of all assignments

with 50 treated units. If the confidence interval C(t̂(Z); h0) has level g, we expect

prh0
{t 2 C(t̂(Z); h0) | Z 2 Z1}  g; prh0

{t 2 C(t̂(Z); h0) | Z 2 Z50} � g;

where, in general, the inequalities are strict. See the supplementary material B.3 for a proof

in a concrete setting. More formally, we say that the procedure is valid marginally, but

not conditional on the number of treated units. This example is illustrated in Figure 2.1,

which shows that the coverage is below 0.95 if the proportion of treated units is not close to

0.5, and above 0.95 if the proportion is around 0.5. To remedy this, we should use wider

confidence intervals in the first case, and narrower ones in the second. The right panel

of Figure 2.1 shows that in this case, a large fraction of assignments have a proportion of
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Figure 2.1: Left: conditional coverage for a Bernoulli experiment with 100 units each having probability 0.5 of being
treated. Right: distribution of the proportion of treated units for this Bernoulli experiment.

treated units close to 0.5, therefore the confidence interval C(t̂(Z); h0) will be too large for

many realizations of the design h0. In summary, our confidence interval should be relevant

to the assignment vector actually observed, and reflect the appropriate level of uncertainty.

In the context of randomization-based inference, this takes the form of an ‘as-if’ analysis.

The concept of relevance and its connection to conditioning has a long history in

statistics. Cox (1958) gives a dramatic example of a scenario in which two measuring

instruments have widely different precisions, and one of them is chosen at random to

measure a quantity of interest. He argues that the relevant measure of uncertainty is that

of the instrument actually used, not that obtained by marginalizing over the choice of the

instrument. In other words, the analysis should be conditional on the instrument actually

chosen. This is an illustration of the conditionality principle (Birnbaum, 1962). In the

context of randomization-based inference, this conditioning argument leads to valid ‘as-if’

analyses, as we show in Section 2.3. An important complication, explored in Section 2.3, is

that conditional ‘as-if’ analyses are only a subset of possible ‘as-if’ analyses, and while the

former are guaranteed to be valid, the latter enjoy no such guarantees.
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2.3 Conditional as-if analyses

2.3.1 Conditional design maps

We define a conditional as-if analysis as an analysis conducted with a conditional design

map as defined below.

Definition 3. [Conditional design map] Consider an experiment with design h0. Take any function

w : Zh0 ! W, for some set W, and for w 2 W define the design hw 2 D as hw(Z0) = prh0
{Z0 |

w(Z0) = w}. Then a function H : Zh0 ! D such that H(Z) = hw(Z) is called a conditional design

map.

It is easy to verify that a conditional design map also satisfies Definition 1. For Z 2 Zh0 ,

H(Z) is a design, not the probability of Z under some design. The probability of assignment

Z
0 2 Zh0 under design H(Z) is H(Z)(Z0) = prh0

{Z0 | w(Z0) = w(Z)}, where Z is fixed and

the probability is that induced by h0. We introduced the shorthand H(Z)(Z0) = hw(Z)(Z
0)

in order to ease the notation.

For an alternative perspective on conditional design maps, notice that any function

w : Zh0 ! W induces a partition Pw = {Zw}w2W of the support Zh0 , where Zw = {Z 2

Zh0 : w(Z) = w}. The corresponding conditional design map would then, for a given Z,

restrict and renormalize the original h0 to the Zw containing Z. An important note is that

the mapping function, and therefore the partitioning of the assignment space, must be fixed

before observing the treatment assignment.

Example 1 (cont.). The design map H(Z) in Example 1 is a conditional design map, with w(Z) =

N1(Z). Here we partition the assignments by the number of treated units.

Example 2 (cont.). The design map H(Z) in Example 2 is a conditional design map, with w(Z) =

N1,block(Z). Here we partition the assignments by the vector of the number of treated units in each

block .

While Definition 3 implies Definition 1, the converse is not true: some design maps are

not conditional. For instance, the design maps we consider in Examples 3 and Example 4
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are not conditional, as will be discussed in Section 2.3.2. We can now state our main validity

result.

Theorem 2.3.1.1. Consider a design h0 and a function w : Zh0 ! W. Then an oracle procedure

built with the conditional design map H(Z) = hw(Z) is h0-valid.

Proof of Theorem 2.3.1.1 is provided in supplementary material B.1. In fact, the intervals

obtained are not just valid marginally; they are also conditionally valid within eachZw 2 Pw,

in the sense that

prh0
{t 2 C(t̂(Z);H(Z)) | w(Z) = k} = g

for any k 2 W. Conditional validity implies unconditional validity because if we have valid

inference for each partition of the assignment space then we will have validity over all

partitions. Conditional validity further implies increased relevance, at least with respect to

function w. We discuss this connection more in supplementary material B.3 in the context

of betting games.

Corollary 2.3.1.1. Let P = {Z (1), . . . ,Z (K)} be a partition of the set of all possible assignments,

Zh0 . That is,

w(Z) =
K

Â
k
k1{Z 2 Z (k)}.

Then w(Z) : Zh0 ! {1, . . . ,K} indexes the partition that Z is in. Using H(Z) = hw(Z) gives an

h0-valid procedure, as a consequence of Theorem 2.3.1.1.

Details are provided in supplementary material B.1. Corollary 2.3.1.1 states that any

partition P of the support Zh0 induces a valid oracle confidence procedure; having observed

assignment Z ⇠ h0, one simply needs to identify the unique element Z 2 P containing Z

and construct an oracle interval using the design obtained by restricting h0 to the set Z .

Now that we have a formal result on the validity of conditional designs, we can discuss

an added benefit of using these conditional design maps. Consider Example 1, and the

corresponding discussion of relevance with Bernoulli designs in Section 2.2.3. This example

provides insight into an additional potential benefit of increasing relevance in terms of

replicability of studies. Under the original analysis for the Bernoulli design we would expect
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that the estimates for the bad randomizations with an extreme proportion of treated units

will be far from the truth. But if we do not adjust the precision of our estimators based

on this information, we will not only have an estimate that is far from the truth but our

confidence intervals will imply confidence in that poor estimate. Although our conditional

analysis will not cover the truth the same proportion of the time as the original analysis, we

would expect the length of our confidence intervals to reflect less certainty when we have a

poor randomization. In terms of reproducibility, this means that we are less likely to end up

being confident in an extreme result.

2.3.2 Non-conditional design maps

Theorem 2.3.1.1 states that a sufficient condition for an ‘as-if’ procedure to be valid is that

it be a conditional ‘as-if’ procedure. Although this condition is not necessary, we will

now show that some non-conditional ‘as-if’ analyses can have arbitrarily poor properties.

Example 3 provides a sharp illustration of this phenomenon and, although it is an edge

case, it helps build intuition for why some design maps are not valid.

Example 3 (cont.). The design map H(Z) = prh0
{Z0 | Z0 2 A(Z)} introduced in Example 3

is not a conditional design map. This can be seen by noticing that the sets {A(Z)}Z2Zh0
where

A(Z) = {Z0 : |DX(Z0)|  |DX(Z)|} do not form a partition of Zh0 .

This example is particularly deceptive because the design map H(Z) does involve

a conditional distribution. And yet, it is not a conditional design map in the sense of

Definition 3 because it does not partition the space of assignments; each assignment Z0,

except for the assignments with the very worst balance, will belong to multiple A(Z).

Therefore Theorem 2.3.1.1 does not apply.

Consider the special case where covariate Xi are drawn from a continuous distribution

and Yi(0) = Yi(1) = Xi (i = 1, . . . ,N) and we are interested in the average treatment

effect, which is the difference in mean potential outcomes under treatment versus control.

Suppose that assignments are balanced such that half the units are assigned to treatment

and half are assigned to control. Then given any Z, with probability one there are only
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two assignments with exactly the same value for |DX(Z)|, Z and the assignment 1� Z;

see supplementary material B.1 for proof of this statement. By construction, then, our

assignment is one of two worst case assignments in terms of balance for the set A(Z). Under

the model Yi(0) = Yi(1) = Xi, the observed difference, t̂(Z)� t = t̂(Z), will be the most

extreme in A(Z) and so would lie outside the oracle confidence interval if 2/|A(Z)|  g,

which it will generally do. Thus this design map would lead to poor coverage. In fact, we

show in supplementary material B.1 that if we instead make out inequality strict and take

A(Z) = {Z0 : |DX(Z0)| < |DX(Z)|}, the ‘as-if’ procedure of Example 3 has a coverage of

0. Intuitively, this is because the observed assignment Z always has the worst covariate

balance of all assignments within the support A(Z). Although this is an extreme example,

it illustrates the fact that ‘as-if’ analyses are not guaranteed to be valid if they are not

conditional, and can indeed be extremely ill-behaved.

Example 4 (cont.). The design map introduced in Example 4, in which we analyze a blocked design

as if it were completely randomized, is not a conditional design map. This can be seen by noticing

that the complete randomization is does not partition the blocked design but rather the blocked design

is a single partition of the completely randomized design.

Thus we can show that Example 4 can also lead to invalid analysis. If this partition is a

particularly bad in the sense of having wider conditional intervals over it, or higher variance

of estimators, we will not have guaranteed validity using a completely randomized design

for analysis. See Appendix A for further discussion on when a blocked design can result

in higher variance of estimators than an unblocked design, particularly when blocking is

structural, such as with clusters, and that units within blocks are heterogeneous but blocks

look similar to each other.

2.3.3 How to build a better conditional analysis

The original goal of the ‘as-if’ analysis of Example 3 was to incorporate the observed

covariate balance in the analysis to increase relevance. We have shown that the design map

originally proposed was not a conditional design map. We now show how to construct
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a conditional design map, and therefore a valid procedure, for this problem. The idea

is to partition the support Zh0 into sets of assignments with similar covariate balance

and then use the induced conditional design map, as prescribed by Corollary 2.3.1.1. Let

{DX(Z) : Z 2 Zh0} be the set of all possible covariate imbalance values achievable by the

design h0, and G = {G(1), . . . ,G(K)} be a partition of that set into K ordered elements. That

is, for any k, k0 with k < k0, d < d0 for all d 2 G(k), d0 2 G(k0). This induces a partition

P = {Z (1), . . . ,Z (K)} of Zh0 , where

Z (k) = {Z 2 Zh0 : DX(Z
0) 2 G(k)}.

We can therefore apply the results of Corollary 2.3.1.1. This approach is similar in spirit to

the conditional randomization tests proposed by Rosenbaum (1984); see also Branson and

Miratrix (2019) and Hennessy et al. (2016). The resulting ‘as-if’ analysis improves on the

original analysis under h0 by increasing its relevance. Indeed, suppose that the observed

assignment has covariate balance d. Then the confidence interval constructed using h0

will involve all of the assignments in Zh0 , including some whose covariate balances differ

sharply from d. In contrast, the procedure we just introduced restricts the randomization

distribution to a subset of assignments Z (k) containing only assignments with balance close

to d.

This does not, however, completely solve the original problem. Suppose, for instance,

that by chance, DX(Z) = maxG(k). By definition, the randomization distribution of the ‘as-if’

analyses we introduced above will include the assignment Z0 such that DX(Z0) = minG(k),

but not Z⇤ such that DX(Z⇤) = minG(k+1) even though Z
⇤ might be more relevant to Z than

Z
0, in the sense that we may have |DX(Z)� DX(Z⇤)|  |DX(Z)� DX(Z0)|. This issue does

not affect validity, but it raises concerns about relevance when the observed assignment is

close to the boundary of a set Z (k). Informally, we would like to choose Z (k) in such a way

that the observed assignment Z is at the center of the set, as measured by covariate balance.

For instance, fixing c > 0, we would like to construct an ‘as-if’ procedure that randomizes

within a set of the form B(Z) = {Z0 : DX(Z0) 2 [DX(Z)� c,DX(Z) + c]}, rather than Z (k).
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A naive approach would be to use the design mapping H : Z ! prh0
{Z0 | Z0 2 B(Z)}, but

this is not a conditional design mapping. Branson and Miratrix (2019) discussed a similar

approach in the context of randomization tests and also noted that it was not guaranteed to

be valid.

Let’s explore further why H : Z ! prh0
{Z0 | Z0 2 B(Z)} does not have guaranteed

validity. In this case, each assignment vector has an interval or window of acceptable

covariate balances centered around it. Let assignment Z0 have covariate balance within the

acceptable covariate balance window for some other assignment, Z⇤. That is, Z0 2 B(Z⇤).

If Z0 and Z
⇤ do not have the same covariate balance, they will have overlapping but non-

identical windows. The confidence interval for Z⇤ is guaranteed to have g · 100% coverage

over all assignments in B(Z⇤). However, there are no guarantees about which assignments

in this set will result in a confidence interval covering the truth. In particular, over the

smaller subset of assignments with exactly the same covariate balance as Z⇤, which lead to

the same design over B(Z⇤), the coverage may be less than g · 100%. Furthermore, although

the interval built for Z0 under the design for Z⇤ may cover the truth, we will never observe

it because Z
0 uses a different design to construct intervals.

To build a better solution, we need more flexible tools. The following section will

discuss how we can be more flexible, while still guaranteeing validity, by introducing some

randomness.

2.4 Stochastic conditional as-if

The setting of Example 3 posed a problem of how to build valid procedures that allow the

design mapping to vary based on the assignment. That is, we want to avoid making a strict

partition of the assignment space but still guarantee validity. We can do this by introducing

some randomness into our design map.

Definition 4. [Stochastic conditional design map] Consider an experiment with design h0. For

observed assignment Z ⇠ h0, draw w ⇠ m(w | Z) from a given distribution m(· | Z), indexed by
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Z with support on some set W, and consider the design

hw(Z
0) = prh0

{Z0 | w} µ m(w | Z0)prh0
{Z0}.

The mapping H : Z ! D, with H(Z) = hw and w ⇠ m(w | Z), is called a stochastic design

mapping.

In the special case where the distribution m(w | Z) degenerates into dw=w(Z) = 1(w =

w(Z)), Definition 4 is equivalent to Definition 3. When m is non-degenerate, the stochastic

design map H becomes a random function.

Before stating our theoretical result for stochastic design maps, we first examine how

the added flexibility these maps afford can be put to use in the context of Example 3. For

c > 0, let W = R and define

m(w | Z) = Unif
✓
w0 : |DX(Z)� w0|  c

◆
= Unif

✓
DX(Z)� c,DX(Z) + c

◆
.

Note that m(w | Z) selects a w⇤ around the observed imbalance. Having observed Z ⇠ h0

and drawn w ⇠ m(w | Z), we then consider the design

H(Z) = prh0
{Z0 | w} =

8
>><

>>:

prh0
{Z0}

n(w) if DX(Z0) 2 [w� c,w+ c]

0 otherwise

where normalizing factor n(w) = prh0
{w}/m(w | Z) = 2cprh0

{w}. In other words, we

analyze the experiment by restricting the randomization to a set A(w) = {Z0 : DX(Z0) 2

[w� c,w+ c]}. Now comparing A(w) to our original randomization set B(Z), we see that

while B(Z) is a set of w imbalances centered on observed DX(Z), A(w) is only centered on

DX(Z) on average over draws of w. The following theorem guarantees that the procedure is

valid. The proof is in supplementary material B.1.

Theorem 2.4.0.1. Consider a design h0 and a variable w, with conditional distribution m(w | Z).

Then an oracle procedure built at level g with the stochastic conditional design map H(Z), which

draws wobs and maps to hwobs = prh0
{Z0 | wobs}, is h0-valid at level g.

The idea of a stochastic conditional design map mirrors that of conditioning mechanisms
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introduced by Basse et al. (2019) in the context of randomization tests. Inference is also

stochastic here in the sense that a single draw of w determines the final reference distribution

to calculate the confidence interval. We discuss some practical challenges with this approach

in supplementary material B.2.

The randomness intrinsic to this method is similar to the introduction of randomness

into uniformly most powerful (UMP) tests (see Lehmann and Romano, 2005). One way

around this stochastic nature, which we do not discuss here, would be in the use of fuzzy

confidence intervals (see Geyer and Meeden, 2005) to report a distribution of results over

all possible random w’s, rather than a result based on one draw of w. In a fuzzy interval,

similar to fuzzy sets, membership in the interval is not binary but rather allowed to take

values in [0, 1].

2.5 Discussion: Implications for Matching

In this section we illustrate how the ‘as-if’ framework and theory we have developed

can be applied to evaluate a particular analysis method: analyzing data matched post-

randomization as if it was pair randomized. Matching is a powerful tool for extracting quasi-

randomized experiments from observational studies (Ho et al., 2007; Rubin, 2007; Stuart,

2010). To highlight the conceptual difficulty with post-matching analysis, we consider the

idealized setting where treatment is assigned according to a known Bernoulli randomization

mechanism, h0, and matching is performed subsequently. Specifically, units are assigned to

treatment independently with probability pi = logit�1(a0 + a1Xi), where Xi = (Xi,1,Xi,2) 2

R2 is a unit-level covariate vector. In addition, for simplicity, we focus on pair matching,

where treated units are paired to control units with similar covariate values. One way to

analyze the pairs is as if the randomization had been a matched pairs experiment. Although

this method of analysis has already received scrutiny in the literature (see, e.g., Schafer

and Kang, 2008; Stuart, 2010), it is worth asking: is this a conditional design map with

guaranteed validity?

If we can exactly match on Xi, then the situation is identical to that of Example 2; the as
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if pair randomized design map is a conditional design map, and the procedure is therefore

guaranteed to be valid. Exact matching is, however, often hard to achieve in practice. Instead,

we generally rely on approximate matching, in which the covariate distance between the

units within a pair is small, but not zero. Unfortunately, we will show that with approximate

matching, the as if pair randomized design map is not a conditional design map. To make

this formal, let R be a matching algorithm which, given an assignment and fixed covariates,

returns a set of L pairs which we denote M, M = {(i1,1, i1,2), . . . , (iL,1, iL,2)}. Assuming a

deterministic matching algorithm, Mobs = R(Zobs) is the matching obtained from observed

assignment Zobs. Treating the matched data as a matched pairs experiment implies analyzing

over all assignment vectors that permute the treatment assignment within the pairs. Let

Z
0 be an assignment obtained by such a permutation within the pairs of Mobs. A necessary

condition for pairwise randomization to be a conditional procedure is that R(Z0) = Mobs;

that is, for any permutation of treatment within pairs, the matching algorithm R must return

the original matches.

This condition for a valid conditional procedure is not guaranteed. To illustrate, consider

the first three steps inside the light grey box in Figure 2.2, in which we consider a greedy

matching algorithm. If we analyze the matched data as if it were a matched pairs design,

then the permutation shown is allowable by the design. However, we see in the dotted

rectangle of Figure 2.2 that if we had observed that permutation as the treatment assignment,

we would have ended up matching the units differently, and therefore would have conducted

a different analysis. This is essentially the issue we encountered with the non-conditioning

so-called fix to the rerandomization example in Section 2.4; we have not created a partition

of our space. The upshot is that when matching is not exact, analyzing the data as if it

came from a paired-randomized study cannot be justified by a conditioning argument.

A proper conditional analysis would need to take into account the matching algorithm.

Specifically, let P(M) be the set of all treatment assignment vectors that are permutations

of treatment within a set of matches M and let V(M) be the set of assignments that would
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Figure 2.2: Units are numbered in circles. Position in the graphs corresponds to covariate values. Shaded circles are
treated. Lines indicate matches. The solid edge rectangle indicates original match and one permutation. The dashed edge
rectangle indicates match based on that permutation.

lead to matches M using algorithm R. Then

prh0

�
Z
0 | R(Z0) = R(Z)

�
= prh0

�
Z
0 | Z0 2 V(R(Z))

�
.

Note that this is equal to Uni f (V(R(Z))) if assignments in V(R(Z)) have equal probability

under the original design. If we condition on having observed a certain matched set, we

would not use all within pair permutations of those matches, but rather would use all

permutations that would have resulted in the same matches given our matching algorithm.

Still, this distinction appears to matter more in theory than in practice. Matching has

been shown to be, in practice, a reliable tool to achieve covariate balance such that an

observational study resembles an experiment and thus gives us hope of obtaining good

inference.
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Chapter 3

Causal Inference for Multiple

Non-Randomized Treatments using

Fractional Factorial Designs

3.1 Introduction

There has been a growth in the literature regarding the use of factorial designs in causal

inference, though primarily focusing on randomized experiments (e.g. Branson et al., 2016;

Dasgupta et al., 2015; Dong, 2015; Egami and Imai, 2019; Espinosa et al., 2016; Lu, 2016a,b; Lu

and Deng, 2017; Mukerjee et al., 2018; Zhao et al., 2018a). These are settings in which we have

multiple treatments applied contemporaneously to subjects and interest is in understanding

not only the effect of a single treatment but also how treatments may interact. A factorial

experiment involves random assignment of all possible treatment combinations to units and

can be used to help understand these different effects. However, estimating the effects of

multiple treatments is not exclusively relevant for experiments, it is also of interest when

analyzing observational studies. In observational studies the mechanism by which units

receive different treatment combinations is unknown and possibly related to unit-specific

characteristics, which need to be accounted for. Regression models with interaction terms
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are commonly used in observational studies to estimate the effects of multiple treatments

(Bobb et al., 2015; Oulhote et al., 2017; Patel et al., 2010; Valeri et al., 2017). For instance,

Bobb et al. (2015) considers a Bayesian kernel machine regression for estimating the health

effects of multi-pollutant mixtures. However, the use of regression without a careful design

phase, in which one tries to uncover or approximate some underlying experiment, can lead

to incorrect conclusions (e.g., see Rubin, 2008).

We thus view the problem of estimating causal effects with multiple treatments in an

observational study through an experimental design perspective. With a single binary

treatment (or equivalently a single factor with two levels), conceptualizing observational

studies into plausible treatment-control hypothetical randomized experiments has been a

common strategy for estimating the causal effect of a treatment on an outcome (Bind and

Rubin, 2019; Rosenbaum, 2002; Rubin, 2008; Stuart, 2010). This is achieved via conceptual

and design stages in which one attempts to approximate a randomized experiment through

methods that aim to balance treatment groups with respect to covariates (Bind and Rubin,

2019; Imbens and Rubin, 2015; Rubin, 2008). Covariate balance is important not only to limit

overt biases (Rosenbaum, 2002, Chapter 3) but also to increase plausibility of assumptions

that allow the analysis stage to be implemented with limited model extrapolation (Imbens

and Rubin, 2015, Chapter 12). For observational data with multiple contemporaneously

applied treatments, a factorial design is a natural choice of experimental design. There

have been some extensions of matching techniques for a single binary treatment to multiple

treatments. For instance, Lopez and Gutman (2017) review and extend current methods

such as matching for obtaining causal estimates in observational studies with multiple

treatments, although they focus on a single factor with multiple levels, rather than multiple

treatments that may be applied contemporaneously. Nilsson (2013) considers matching

using the generalized propensity score (GPS) (Hirano and Imbens, 2004) in a 22 factorial

setting. However, further exploration of matching and other methods, such as weighting,

that attempt to approximate an experiment in observational studies with multiple treatments

is still needed. We discuss obtaining covariate balance further in Section 3.5.2.
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An important issue with modeling multiple treatments in the observational setting, in

addition to the usual concerns that we attempt to address in the design phase, is that we

may have limited data or no data available for some treatment combinations. If a single

treatment combination has no measurements, then the recreation of a full factorial design

is not possible. Linear or additive regression models, often used in practice, will not be

able to recover a full factorial design and the implicit assumptions these regression models

are making about the missing treatment combinations in the analysis are not transparent,

especially with respect to the implicit imputation of the missing potential outcomes. We

further discuss regression estimates in such setting in Section 3.4. When there are only one

or two observations for a certain treatment combination, utilizing a factorial design would

rely heavily on those few individuals being representative. We propose instead to embed an

observational study into a hypothetical fractional factorial experiment.

In this chapter, we discuss the estimation of the causal effects of multiple non-randomized

treatments, in particular when we do not observe all treatment combinations. First, Sec-

tion 3.2 reviews full factorial designs within the potential outcomes framework described in

Dasgupta et al. (2015). Next, Section 3.3 reviews extensions of this framework to fractional

factorial designs and expands upon current inference results. Section 3.4 explores the use of

incomplete factorial designs. Then Section 3.5 examines how to embed an observational

study into one of these experimental designs. Section 3.6 illustrates our method and chal-

lenges when working with observational data with multiple treatments with an application

examining the effects of four pesticides on body mass index (BMI) using data from the

National Health and Nutrition Examination Survey (NHANES), which is conducted through

the Centers for Disease Control and Prevention (CDC). Finally, Section 3.7 concludes.
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3.2 Full factorial designs

3.2.1 Set up

We work in the Rubin Causal Model (Holland, 1986), also known as the potential outcomes

framework (Splawa-Neyman et al., 1990; Rubin, 1974). Additionally, we assume the Stable

Unit Treatment Value Assumption (SUTVA), that is, there is no interference and no different

forms of each treatment level (Rubin, 1980). Throughout this chapter, we focus on two-

level factorial and fractional factorial designs. We closely follow the potential outcomes

framework for 2K factorial designs proposed by Dasgupta et al. (2015). We start by reviewing

the notation and basic setup.

Let there be K two-level factors; that is, there are K treatments (e.g. medications), each

having two levels (e.g. receiving a certain medication or not receiving that medication) that

are assigned in combination. This creates 2K = J total possible treatment combinations.

Let zj denote the jth treatment combination. See Table 3.1 for an example where K = 3

which illustrates the notation, with treatment combinations listed in lexicographic order

(the standard ordering, used here for consistency). Let zj,k 2 {�1,+1} be the level of

the kth factor in the jth treatment combination, so zj = (zj,1, ..., zj,K). Let there be n units

in the sample. The potential outcome for unit i under treatment combination zj is Yi(zj)

and the sample average potential outcome under treatment zj is Ȳ(zj) = Ân
i=1 Yi(zj)/n.

Ȳ = (Ȳ(z1), Ȳ(z2), . . . , Ȳ(zJ)) is the vector of mean potential outcomes for all 2K treatment

combinations.

Let Wi(zj) = 1 if unit i received treatment combination zj and Wi(zj) = 0 otherwise. As

in Dasgupta et al. (2015), ÂJ
j=1Wi(zj) = 1 and the observed potential outcome for unit i is

Yobs
i =

J

Â
j=1

Wi(zj)Yi(zj).

Let there be a fixed number, nj, of units randomly assigned to treatment combination

zj. That is, we are assuming a (possibly unbalanced) completely randomized design. An
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estimator of the observed average potential outcome for treatment zj is

Ȳobs(zj) =
1
nj

n

Â
i=1

Wi(zj)Yi(zj) =
1
nj

n

Â
i:Wi(zj)=1

Yobs
i .

Denote Ȳ
obs = (Ȳobs(z1), Ȳobs(z2), . . . , Ȳobs(zJ)) as the vector of observed mean potential

outcomes for all 2K treatment combinations.

Treatment Factor 1 Factor 2 Factor 3 Outcomes
z1 -1 -1 -1 Ȳ(z1)
z2 -1 -1 +1 Ȳ(z2)
z3 -1 +1 -1 Ȳ(z3)
z4 -1 +1 +1 Ȳ(z4)
z5 +1 -1 -1 Ȳ(z5)
z6 +1 -1 +1 Ȳ(z6)
z7 +1 +1 -1 Ȳ(z7)
z8 +1 +1 +1 Ȳ(z8)

g1 g2 g3 Ȳ

Table 3.1: Example of a 23 factorial design.

Using the framework from Dasgupta et al. (2015), denote the contrast column j in the

design matrix as gj, as illustrated in Table 3.1. Following that paper, we can also define the

contrast vector for the two-factor interaction between factors k and k0 as

gk,k0 = gk � gk0 ,

where � indicates the Hadamard (element-wise) product. Similarly, the contrast vector for

three-factor interactions is

gk,h,i = gk � gh � gi,

and all higher order interaction contrast vectors can be calculated analogously.

3.2.2 Estimands and estimators

Continuing to follow Dasgupta et al. (2015), define the finite population main causal effect

for factor k and the finite population interaction effect for factors k and k0 as

t(k) =
1

2K�1 g
T
k Ȳ and t(k, k0) =

1
2K�1 g

T
k,k0Ȳ ,
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respectively, where by finite population we mean that we are only interested in inference for

the units we have in the experiment. Higher-level interaction terms are defined analogously.

We can similarly define the individual-level effects as

ti(k) = g
T
k Yi and ti(k, k0) =

1
2K�1 g

T
k,k0Yi,

where Yi = (Yi(z1), . . . ,Yi(zJ))T. We also define the average potential outcome across

treatments as

t(0) =
ÂJ

i=1 Ȳ(zk)
2K

=
1
2K

g
T
0 Ȳ ,

where g0 is a vector of length 2K of all +1’s.

There is a correspondence between the potential outcomes and the causal effects. Con-

sider a full factorial model matrix, G, that includes the mean and interactions and whose

rows are comprised of gTk , where

k 2 {0; 1; ...;K; 1, 2; ...;K� 1;K}. Based on the definition of our estimands in Section 3.2.2,

the matrix G relates the mean potential outcomes and the factorial effects as follows:

2�(K�1)

2

6666666666666664

g
T
0

g
T
1
...
g
T
K

g
T
1,2
...

g
T
K�1,K
...

g
T
1,2,...,K�1,K

3

7777777777777775

| {z }
G

2

6664

Ȳ(z1)
Ȳ(z2)

...
Ȳ(zJ)

3

7775

| {z }
Ȳ

=

2

6666666666666664

2t(0)
t(1)
...

t(K)
t(1, 2)

...
t(K� 1,K)

...
t(1, 2, ...,K� 1,K)

3

7777777777777775

| {z }
t

.

Note that because of orthogonality, the inverse of G is simply G
T rescaled (i.e., G�1 = 1

2kG
T),

as argued by Dasgupta et al. (2015) in the context of imputing potential outcomes under

Fisher’s sharp null hypothesis. The mean potential outcomes can be rewritten in terms of

the factorial effects as

Ȳ =
1
2
G

Tt.

Let the jth row of GT be denoted by hj. The first entry of hj is +1, corresponding to the

mean, the next K entries are equal to the entries of zj, and the remaining entries correspond

61



to interactions, with the order given by the order of the rows of G. For instance, in the 23

factorial design shown in Table 3.1, h1 = (+1,�1,�1,�1,+1,+1,+1,�1) We have

Ȳ(zj) =
1
2
hjt.

This representation will be useful in Sections 3.4 and 3.5.3 when considering what can be

estimated when we do not observe all treatment combinations.

Let us now focus on estimation. The estimator for t(k) and t(k, k0) are defined as

bt(k) = 1
2K�1 g

T
k Ȳ

obs and bt(k, k0) = 1
2K�1 g

T
k,k0Ȳ

obs,

respectively. Estimators for higher-level interaction terms and t(0) are defined analogously

by replacing Ȳ by Ȳ
obs.

In Dasgupta et al. (2015), the variance of the factorial effect estimators was derived under

a balanced design; however, the variance expression was extended to unbalanced designs in

Lu (2016b), as follows:

Var (bt(k)) =
1

22(K�1)

J

Â
j=1

1
nj
S2(zj)�

1
n
S2k , (3.1)

where

S2(zj) =
1

n� 1

n

Â
i=1

�
Yi(zj)� Ȳ(zj)

�2 and S2k =
1

n� 1

n

Â
i=1

(ti(k)� t(k))2 .

An expression for the covariance between two factorial effect estimators was provided by

Dasgupta et al. (2015), which again can be extended to unbalanced factorial designs (Lu,

2016b):

Cov
�
t̂(k), t̂(k0)

�
=

1
22(K�1)

2

4 Â
j:gkj=gk0 j

1
nj
S2(zj)� Â

j:gkj 6=gk0 j

1
nj
S2(zj)

3

5� 1
n
S2k,k0 , (3.2)

where S2k,k0 = Ân
i=1 (ti(k)� t(k)) (ti(k0)� t(k0)) /(n� 1).
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3.2.3 Statistical inference

Among the various types of statistical analyses that could be performed for a factorial design

(e.g., Neymanian, frequentist linear regression, Fisherian, and Bayesian), in this chapter, we

follow the Neymanian perspective. To do so, we first need good estimators for the variances

and covariances of the estimated causal effects. A conservative Neyman-style estimator for

the variance was proposed by Dasgupta et al. (2015) and extended to the unbalanced case

by Lu (2016b):

dVar (bt(k)) =
1

22(K�1)

J

Â
j=1

1
nj
s2(zj), (3.3)

where

s2(zj) =
1

nj � 1 Â
i:Wi(zj)=1

⇣
Yi(zj)� Ȳobs(zj)

⌘2

is the estimated sampling variance of potential outcomes under treatment combination zj.

Dasgupta et al. (2015) discussed other variance estimators and their performance under

different assumptions (e.g. strict additivity, compound symmetry). In that paper, the authors

also provided a Neyman-style estimator for the covariance by again substituting s2(zj) for

S2(zj). Unfortunately, this estimator is not guaranteed to be conservative because S2k,k0 may

be positive or negative. The same authors provided a Neyman confidence region for t, the

vector of all J � 1 factorial effects. First, they define, in Equation 26,

Tn = t̂TŜ�1
t̂ t̂,

where t̂ is the vector of Neyman estimators of t that we defined earlier and Ŝt̂ is the

estimator of the covariance matrix of t̂, St̂ . Then the 100(1� a)% confidence region for t

(Equation 27 of Dasgupta et al. (2015)), is

{t̂ : pa/2  Tn  p1�a/2},

where 0 < a < 1 and pa is the is the a quantile of the asymptotic distribution of Tn. In that

paper, a Neyman-style confidence interval for individual effects was also provided as

t̂(k)± za/2

q
dVar (bt(k)),
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where the authors rely on a normal approximation for the distribution of t̂(k), typically

assumed to hold asymptotically. See Proposition 1 in Li et al. (2020) for conditions under

which the asymptotic normality holds in this setting. These asymptotic properties are also

explored in Li and Ding (2017).

Note that a model that linearly regresses an outcome against the factors coded using

contrast values �1 and +1 and all interactions between factors (but no other covariates)

will result in the same point estimates for the factorial effects as presented here, divided

by 2 (Dasgupta et al., 2015; Lu, 2016b). For a balanced design or when treatment effects

are assumed to be additive, so that the variances S2(zj) are all the same, the standard

linear regression variance estimate, relying on homoskedasticity, will be the same as the

Neymanian variance estimate (Dasgupta et al., 2015; Imbens and Rubin, 2015). However,

this is not true for an unbalanced design. Samii and Aronow (2012) showed that the

HC2 heteroskedasticity robust variance estimator (see MacKinnon and White, 1985, for

more details) is the same as the Neymanian variance estimator presented here for a single

treatment experiment. Lu (2016b) extended this finding to factorial designs, showing that

this estimator is also the same as the Neymanian variance estimator in that case. Note that

because the regression estimator is different by a factor of 2, this regression variance is

different by a factor of 4.

Fisherian and Bayesian types of analyses are also possible. See Dasgupta et al. (2015) for

a discussion of creating “Fisherian Fiducial” intervals (Fisher, 1930; Wang, 2000) for factorial

effects. The basic idea is to invert our estimands so that we write our potential outcomes

in terms of the estimands. Then, under a Fisher sharp null hypothesis, we can impute all

missing potential outcomes and generate the randomization distribution. Dasgupta et al.

(2015) also provide an in-depth discussion of Bayesian analyses for factorial designs.

3.3 Fractional factorial designs

3.3.1 Set up

There are situations in which a full 2K factorial design experiment cannot be conducted

or is not optimal. For instance, limited resources may mean there are not enough units to
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randomly assign to each of the J (= 2K) treatment combinations. Or the full factorial design

might not be the most efficient allocation of resources, for instance if the experimenter

believes that higher order interactions are not significant (Wu and Hamada, 2000). Instead,

an experimenter might implement a 2K�p = J0 fractional factorial design in which only J0 of

the total J treatment combinations are used (see, e.g., Wu and Hamada, 2000). Here we will

give a brief overview of this design, but we recommend Wu and Hamada (2000) to obtain a

much more detailed review. We follow notation in Dasgupta et al. (2015) and Dasgupta and

Rubin (2015).

To create a 2K�p design, we can write out a full factorial design for the first K� p factors,

and fill in the p columns for the remaining factors using multiplicative combinations of

subsets of the previous contrast columns. We use a generator to choose the factors whose

treatment levels we multiply together to get the treatment levels for the other factors (Wu

and Hamada, 2000). For example, if we have want to create a 23�1 design using the generator

3 = 12, then we would start by writing out a 22 design for factors 1 and 2, as in column 1

and 2 of Table 3.2. Then we generate the third column, corresponding to treatment levels

for factor 3, by multiplying together the contrast vectors for factors 1 and 2, as shown in

column 3 of Table 3.2. Note that which two factors are used initially is irrelevant in this case

because of symmetry. That is, because 3 = 12, we also have 1 = 23 and 2 = 13. However,

this may not hold in general and one should choose which factors to use based on the final

aliasing structure, which tells us which effects are confounded (discussed more below).

Treatment Factor 1 Factor 2 Factor 3 Outcomes
z
⇤
1 -1 -1 +1 Ȳ(z⇤1)

z
⇤
2 -1 +1 -1 Ȳ(z⇤2)

z
⇤
3 +1 -1 -1 Ȳ(z⇤3)

z
⇤
4 +1 +1 +1 Ȳ(z⇤4)

g
⇤
1 g

⇤
2 g

⇤
3 Ȳ⇤

Table 3.2: Example of a 23�1 factorial design.

Under this design, the contrast columns, g⇤k , are now shortened versions or subsets of

the contrast columns of a full 23 factorial design, gk. The treatment combinations in the

fractional design, z⇤j , are a subset of the full set of treatment combinations, zj, for the 23

design. Again, note that, referring to Table 3.2, g⇤3 = g
⇤
1 � g

⇤
2 . The generator 3 = 12 means
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that the main effect of factor 3 is aliased with the two-factor interaction 12. Two effects being

aliased means that we cannot distinguish the effects – they are confounded or combined

in our estimators. The full aliasing in this design is as follows: I = 123, 3 = 12, 2 = 13,

1 = 23. Note that I corresponds to a vector of all +1’s (g0). The relation I = 123 is called

the defining relation, which characterizes the aliasing and how to generate the rest of the

columns. We see that the main effects, as defined in Section 3.2.2 are aliased with the

two-factor interactions. If the two-factor interactions are negligible, the 23�1 design is a

parsimonious design to estimate the main effects. That is, we can create unbiased estimators

(reviewed in Section 3.3.2) for the main effects. The resulting design is also orthogonal, that

is all of the pairs columns are orthogonal, and balanced, which means that each g
⇤
k has an

equal number +1’s and -1’s (Wu and Hamada, 2000). These properties simplify the aliasing

structure.

We typically choose the generator or defining relation based on the maximum resolution

criterion for the design. The resolution indicates the aliasing structure, especially which

levels of effects the main effects are interacted with. Resolution is defined as the word

length (i.e., the number of factors) in the shortest word of the defining relation (see Wu

and Hamada, 2000, for more details). In our example of a 23�1 design, we only have one

defining relation, I = 123, and the word is length 3. This means that the main effects are

aliased with two-factor interactions. We can imagine an alternate aliasing structure in which

some main effects are aliased with other main effects. The effect hierarchy principle assumes

that lower-order effects are more significant than higher-order interaction effects (Wu and

Hamada, 2000). Therefore, generally one chooses a fractional design where main effects,

and some other lower-order interaction effects, are only aliased with higher-order terms (Wu

and Hamada, 2000). In particular, we may want the main effects and two-factor interactions

to be clear. This assumption goes along with the assumption of effect sparsity, that the

number of significant or important effects is small, as a justification of the use of fractional

designs over the full factorial (Wu and Hamada, 2000).
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3.3.2 Estimators

We now review estimators for the fractional design, which are similar to the full factorial

case. We follow the framework laid out in Dasgupta et al. (2015) and Dasgupta and Rubin

(2015). The estimator for t(k) is defined as

bt⇤(k) =
1

2K�p�1 g
⇤T
k Ȳ

obs
⇤ .

The estimator for t(k, k0) is defined as

bt⇤(k, k0) =
1

2K�p�1 g
⇤T
k,k0Ȳ

obs
⇤ .

Note that these estimators are no longer unbiased. Let S be the set of all effects aliased

with factorial effect k as well as k itself. The number of factors aliased with factor k is 2p � 1

(Montgomery, 2017, Chapter 8). So, S has 2p elements. Factor k may be aliased with the

negative of a main effect or interaction. Let Sk,j be the indicator for whether factor j is

negatively aliased with factor k (Sk,j = 1) or positively aliased (Sk,j = 0). Then we find, using

the orthogonality of the gk vectors, that

E [bt⇤(k)] =
1

2K�p�1 g
⇤T
k Ȳ⇤

= Â
j2S

(�1)Sk,jt(j)

= t(k) + Â
j2S\{k}

(�1)Sk,jt(j).

Hence by aliasing these effects, they get combined in our estimator.

We see that the estimator for t(k) is unbiased if the effects aliased with factorial effect k

are zero, and will be close to unbiased as long as the aliased effects are negligible, which

may be justified by the effect hierarchy principle. When aliasing occurs such that main

effects are aliased with low-order interaction terms, such as two-factor interactions, this

assumption may be unrealistic. However, if we have a large number of factors and are

only aliasing main effects with higher-order effects, this may be reasonable. For instance,

in a 26�1 fractional design, main effects can be aliased with five-factor interactions and

two-factor interactions can be aliased with four-factor interactions, where both higher-order

interactions may be assumed to be small.
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Now we extend the variance and variance estimator expressions from Dasgupta et al.

(2015) (see Section 3.2) to this setting. Recall J0 = 2K�p and define t̃(k) = E[bt⇤(k)]. Further

define the analog of S2k ,

S̃2k =
1

n� 1

n

Â
i=1

(t̃i(k)� t̃(k))2 ,

which is the variation in our newly defined aliased effects, t̃i(k). Let n⇤j be the number of

units assigned to treatment combination z
⇤
j . Then the variance of the estimator t̂⇤(k) is

Var (t̂⇤(k)) =
1

22(K�p�1)

J0

Â
j=1

1
n⇤j

S2(z⇤j )�
1
n
S̃2k . (3.4)

See Appendix C.1.2 for more details on this derivation. Similarly, we can obtain the

covariance between two fractional factorial effect estimators. Here we define an altered

version of S2k,k0 :

S̃2k,k0 =
1

n� 1

n

Â
i=1

(t̃i(k)� t̃(k))
�
t̃i(k0)� t̃(k0)

�
. (3.5)

Then, the covariance of t̂⇤(k) and t̂⇤(k0) is

Cov
�
t̂⇤(k), t̂⇤(k0)

�
=

1
22(K�p�1)

2

4 Â
j:g⇤kj=g⇤k0 j

1
n⇤j

S2(z⇤j )� Â
j:g⇤kj 6=g⇤k0 j

1
n⇤j

S2(z⇤j )

3

5� 1
n
S̃2k,k0 . (3.6)

See Appendix C.1.3 for more details on this derivation.

The variance expressions for fractional factorial designs are similar to the full factorial

case, but are now defined over aliased or grouped effects.

3.3.3 Statistical inference

It is straightforward to extend the analysis for factorial designs in Dasgupta et al. (2015)

and reviewed in Section 3.2 to fractional factorial designs. We can again use a conservative

Neyman-style variance estimator:

dVar (t̂⇤(k)) =
1

22(K�p�1)

J0

Â
j=1

1
n⇤j

s2(z⇤j ). (3.7)
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This leads to

E
h
dVar (t̂⇤(k))

i
=

1
22(K�p�1)

J0

Â
j=1

1
n⇤j

S2(z⇤j )

and thus dVar (t̂⇤(k)) is a conservative estimator and unbiased if and only if S̃2k = 0, which

would occur if the aliased effects t̃i(k) are constant. Note that this situation occurs when all

effects aliased with factor k are constant additive effects.

We can build confidence regions and confidence intervals analogously to what was

reviewed in Section 3.2.3. To be more rigorous in this section, we show how to use the

results of Li and Ding (2017) to build Wald-type confidence regions. First, note that there is

a new matrix G
⇤ that relates the treatment combinations in the fractional experiment to the

unique treatment effect estimands and estimators defined for this experiment. For the 23�1

example we have, we have

2�(K�p)

2

664

g
⇤T
0

g
⇤T
1

g
⇤T
2

g
⇤T
3

3

775

| {z }
G⇤

2

664

Ȳ(z⇤1)
Ȳ(z⇤2)
Ȳ(z⇤3)
Ȳ(z⇤4)

3

775

| {z }
Ȳ⇤

=

2

664

2t̃(0)
t̃(1)
t̃(2)
t̃(3)

3

775

| {z }
t̃

,

noting that, for instance g
⇤
0 = g

⇤
123 and t̃(2) = t̃(13) by the aliasing structure. Define t̂⇤ as

the 2K�p vector of unique treatment effect estimators that corresponds to estimands in t̃

(shown in previous example).

Now we can define asymptotic results. Assume that all S2(z⇤j ) and S̃2k,k0 have limiting

values, that the n⇤j /n have positive limiting values, and

max1jJ0max1in

⇣
Yi(z⇤j )� Ȳ(z⇤j )

⌘2
/n ! 0. Then, according to Theorem 5 of Li and Ding

(2017), nvar(t̂⇤) has a limiting value, which, following their notation, we denote by V and

p
n (t̂⇤ � t̃)

d�! N(0,V).

Further let V̂ = ÂJ0
j=1 n

⇤
j G

⇤2
j s(z⇤j )G

⇤T
j , where G

⇤
j is the jth column of G⇤. In addition to the

previous assumptions, we require that s2(z⇤j )� S2(z⇤j ) for all 1  j  J0 and that the limit of

ÂJ0
j=1 n

⇤
j G

⇤2
j S(z⇤j )G

⇤T
j is nonsingular. Then under Proposition 3 of Li and Ding (2017) and
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following their notation, the Wald-type confidence region,

{µ : (t̂⇤ � µ)T}V̂ (t̂⇤ � µ)  qJ0,1�a,

where qJ0,1�a corresponds to the 1� a quantile of the c2
J0 distribution, has at least 1� a

asymptotic coverage.

In these asymptotic results we assume that the number of treatments is constant as

n ! •, but Li and Ding (2017) discuss the case where the number of treatment combinations

grows as well.

As in the full factorial setting, linear regression yields the same point estimates (divided

by 2) and the HC2 variance estimator yields the same variance estimate (divided by 4) as

the Neymanian estimates. For proof, see Appendix C.2.

3.4 Incomplete factorial designs

3.4.1 Design and estimators

In this section, we discuss alternative experimental designs to the fractional factorial design,

in particular the incomplete factorial design which uses a subset of data from a full factorial

design but a different subset than the fractional design (Byar et al., 1993). We discuss aspects

of incomplete factorial designs, as defined and discussed in Byar et al. (1993), but with a

design-based and potential outcome perspective. In particular, the estimators we discuss

here will not use all of the available data. We therefore can consider each estimator to be

associated with a particular “design” that corresponds to an experiment that randomizes

units only to treatment combinations used in the estimator. Different estimators may give

non-zero weight to different treatment combinations, and so the hypothetical designs may

be estimand-specific.

Let us assume we ran an experiment with K binary treatments where, whether due to

human error (e.g., neglecting to randomize units to a particular treatment combination) or

lack of resources, some of treatment combinations from the full 2K factorial design were

not included in the experiment. How should we analyze this? We could reduce the data

to a fractional factorial design, which requires removing multiple treatment groups. For
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instance, we may have a factorial structure as in Table 3.3 but no outcome measurements for

treatment combination z7.

Treatment 1 2 3 Observed Outcomes
z1 -1 -1 -1 Ȳobs(z1)
z2 -1 -1 +1 Ȳobs(z2)
z3 -1 +1 -1 Ȳobs(z3)
z4 -1 +1 +1 Ȳobs(z4)
z5 +1 -1 -1 Ȳobs(z5)
z6 +1 -1 +1 Ȳobs(z6)
z7 +1 +1 -1 ?
z8 +1 +1 +1 Ȳobs(z8)

g1 g2 g3 Ȳ
obs

Table 3.3: Example of a 23 factorial design with no observations for one treatment combination.

Let us focus on estimation of t(1) first. If we recreate a fractional factorial design that

aliases the main effects with the two-way interactions, then we estimate t(1) + t(23), which

would involve using outcome data from units assigned to treatment combinations z2, z3, z5,

and z8, but not from units assigned to treatment combinations z1, z4, and z6.

Instead, we might consider building an estimator using all of the treatment combinations

except for z3, which has the same levels for factors 2 and 3 but the opposite level for

factor 1 as combination z7. Thus, in some sense, removing z3 “balances” the remaining

treatment combinations and is essentially the “naïve estimator” discussed in Byar et al.

(1993). This strategy creates a different hypothetical experimental design with a different

aliasing structure. In this case, we would be estimating

ṫ(1) =
Ȳ(z5) + Ȳ(z6) + Ȳ(z8)

3
� Ȳ(z1) + Ȳ(z2) + Ȳ(z4)

3

=
t(1|F2 = �1, F3 = �1) + t(1|F2 = �1, F3 = +1) + t(1|F2 = +1, F3 = +1)

3
,

where we let Fk denote the factor level of the kth factor so that

t(k|Fj = x, Fi = y) is the main effect of factor k conditional on level x of factor j and level y

of factor i, as in Dasgupta et al. (2015). That is, we estimate the average of the conditional

effects of factor 1 given the combinations (-1,-1), (-1,+1), and (+1,+1) for factors 2 and 3.

To find the aliasing structure, we can refer to the matrix G
T in Section 3.2.2 to rewrite
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the estimand above as

ṫ(1) =
1
3
1
2
(h8 + h6 + h5 � h4 � h2 � h1) t

= t(1) +
�t(13) + t(23) + t(123)

3
.

Now we have aliased the main effect for factor 1 with the two-factor interactions for factors

1 and 3 and factors 2 and 3, as well as the three-factor interaction, all divided by three.

This is partial aliasing because the factors are neither fully aliased nor completely clear of

each other (Wu and Hamada, 2000, Chapter 7). Whether this is preferable to aliasing the

main effect with just the two-factor interaction between factors 2 and 3 depends entirely

on subject-matter knowledge. For instance, if we know that the three-factor interaction

is negligible, then we might expect this estimator to have lower bias, as we are dividing

both two-factor interactions by 3. However, even if we had knowledge that the two-factor

interactions were of the same sign, we would not know the direction of the bias in this case

without knowing the relative magnitudes of the two-factor interactions. When estimating

the main effect for factor 2, we would naturally approximate a different design. In that case,

using the same logic as before, we would remove treatment combination z5.

As an alternative design, we may alias our main effects with the highest-order interaction

possible, allowing for a different design for each main effect estimator. So when estimating

the main effect of factor 1, we would use a design that aliases factor 1 with the three-factor

interaction. This leads to a design using treatment combinations z1, z4, z5, and z8 for which

we can build the following estimand:

ṫ(1) =
Ȳ(z5) + Ȳ(z8)

2
� Ȳ(z1) + Ȳ(z4)

2

=
1
2
1
2
(h8 + h5 � h4 � h1) t

= t(1) + t(123).

Based on the hierarchy principle, an estimator with this aliasing structure should be a

superior estimator to the original fractional factorial estimator mentioned because the

three-factor interaction is more likely to be negligible than the two-factor interactions.

Denote by ġk the analog of gk with zeros where outcome data are missing or excluded
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in a given estimator for factor k. If there is a single treatment combination with no

outcome measured, we can choose the aliasing such that factor k is aliased with the K-factor

interaction. When more rows are missing, the pattern of missingness will dictate what

aliasing structure is possible. For example, if we are missing two treatment combinations

but they are missing from the same design that aliases factor k with the negative of the

K-factor interaction, then we can still recreate the design that aliases factor k with the

positive of the K-factor interaction. But if we are missing a row from each of these designs,

neither option is possible and we must choose a different aliasing structure. If this method

is continued for each factor, one ends up with a set of ġk, each with zeros for different

treatment combinations.

Section 4.5 of Wu and Hamada (2000) gives a general strategy to design experiments

while attempting to reduce aliasing for certain main effects. There are also other designs we

can construct, such as nonregular designs that have partial aliasing (see Wu and Hamada,

2000, Chapter 7 for more details on nonregular designs).

3.4.2 Estimation and inference

More generally, denote our estimator for kth factor under one of these alternative incomplete

factorial designs as ˆ̇t(k) = ġ
T
k Ȳ

obs. It is straightforward to extend the variance expression

Var
� ˆ̇t(k)

�
and variance estimator dVar

� ˆ̇t(k)
�
, as well as the covariance of ˆ̇t(k) and ˆ̇t(k0),

from Section 3.3.3.1 See Appendix C.3 for the specification and derivation. However, terms

for some treatment combinations will be set to zero in these expressions because they are

present in one estimator but not the other.

If we run a regression with all interactions on a design with missing treatment combina-

tions, it is ambiguous what design the resulting estimators correspond to and, as discussed

above, multiple designs may be plausible to approximate the observational study. If we

specify a regression of the outcome on the fully interacted treatments, but some treatment

combinations are not present in the data, the regression will not be able to estimate all

interactions. Not including a set of interactions implies that the linear model assumes that

1In fact, it is easy to similarly extend these results to any linear combinations of interest on the 2K treatment
combinations.
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those interaction effects are zero, and we can assess how reasonable this assumption is.

However, the specific aliasing structure between the effects included in the model and those

dropped by the regression is not obvious from the usual computer output alone, though

can be discerned from the design matrix. Byar et al. (1993) and Byar et al. (1995) give more

discussion of these types of estimators and Appendix C.3.3 has further discussion.

3.5 Embedding observational studies in fractional factorial designs

3.5.1 General issues

To address causality in a non-randomized study, it has been argued that one needs to con-

ceptualize a hypothetical randomized experiment that could correspond to the observational

data (Bind and Rubin, 2019; Rosenbaum, 2002; Rubin, 2008; Stuart, 2010). The hypothetical

randomization is plausible if the treatment groups are “similar” with respect to confounding

variables (Rubin, 2007, 2008). In a setting with multiple treatments of interest, we recreate

a hypothetical factorial randomized experiment. However, in observational studies, there

may be no units that received certain treatment combinations. Therefore, our strategy is to

recreate a hypothetical fractional factorial experiment instead of a full factorial experiment.

The choice of which fractional factorial design to recreate should be based on some

criteria such as the maximum resolution criteria. Typically, it is desirable to alias main effects

with the highest order interactions, which usually means a small p, i.e., a small fraction of

total design is removed. In practice, we may not be able to control the aliasing structure.

We must choose an aliasing structure for the 2K�p fractional design such that the treatment

combination with no observations is not used. However, this strategy usually results in the

removal of units assigned to treatment combinations that were present in the observational

data set but not used in the design. That is, if only one treatment combination is not present

in the data set, we could use a 2K�1 design, but then we are not using 2K�1 � 1 treatment

combinations for which we have data.

After a design is chosen, a strategy to balance covariates should be used to ensure that the

units across treatment combinations are similar with respect to background covariates. We

assume strong ignorability, that is, that conditional on measured covariates, the assignment
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mechanism is individualistic, probabilistic, and unconfounded (Rosenbaum and Rubin,

1983). Then we can obtain unbiased causal estimates by analyzing the data as if it arose

from a hypothetical randomized experiment.

Note that these assumptions apply to all treatment combinations in the final experimental

design used. We must also assume that the treatment assignment is, at least hypothetically,

manipulable such that all potential outcomes are well-defined. This in turn ensures that

our estimands of interest are defined. If this assumption on manipulation does not hold,

we would need to consider a causal estimand that does not depend on unmeasurable or

undefined potential outcome. In particular, although our fractional factorial estimators do

not use all treatment combinations, the estimand and aliasing structure both do depend on

those potential outcomes for the unobserved treatment combinations being well defined.2

Thus, it is important that subject-matter knowledge guides us in deciding which covariates

are informative about which units have well-defined potential outcomes under all treatment

combinations. That is, only some sub-populations may have all potential outcomes in the

experiment be well-defined, similar to some analyses for noncompliance where the estimand

is only well-defined for compliers. For other groups where not all treatment combinations

could theoretically be received, there still may be interesting estimands based on the well-

defined potential outcomes, but we do not explore those specifically in this work. A

similar argument must hold for the unconfoundedness assumption. The unconfoundedness

assumption is often assumed when reasonable covariate balance is achieved (Imbens and

Rubin, 2015).

Achieving covariate balance in multiple treatment groups in non-randomized studies can

be non-trivial. We discuss this issue further in the context of hypothetical fractional factorial

designs in Section 3.5.2. Therefore, a first step might be to only obtain covariate balance

between two treatment groups, a task commonly done in the causal inference literature,

and compare outcomes for these groups. For instance, we could estimate the difference in

outcomes between the units that were assigned level +1 for all factors and the units that

2Under some assumptions, this estimand may be the same as the original. For instance, if we have a 22
experiment and there is no interaction between factor 1 and factor 2, then t(1) = Ȳ(+1,+1)� Ȳ(�1,+1) =
Ȳ(+1,�1)� Ȳ(�1,�1). Hence, even if we only observed one level of factor 2 but both levels of factor 1, we
could recover t(1). However, t(1) would not be of scientific interest if all potential outcomes are not defined.
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were assigned �1 for all factors. Under certain assumptions, testing the difference in these

groups can act as a global test for whether any effects of interest are significant. We discuss

the test and assumptions that are needed for this simple comparison to be meaningful in

Section 3.5.3.

Once we have decided to recreate a particular fractional factorial design and have

obtained a data set with covariate balance, estimation and inference can follow in a similar

way to Section 3.3 or Section 3.4. We discuss some of the relative benefits of using fractional

factorial vs. incomplete designs in Section 3.5.4

3.5.2 Covariate balance

An important stage when estimating the causal effect of non-randomized treatments is

the design phase (Rubin, 2007, 2008). At this stage, we attempt to obtain a subset of units

for which we can assume unconfoundedness. That is, units for which P(Wi|Yi(z),Xi) =

P(Wi|Xi) where Xi is a m-dimensional vector of covariates (Imbens and Rubin, 2015).

Matching strategies are often used to ensure no evidence of covariate imbalance between

treatment groups, as reviewed by Stuart (2010). Note that matching often involves removing

units and so the statistical analysis is generally performed on a subset of the original study

population. This implies that the population of units we are doing inference with respect to

may change after trimming units.

In settings with multiple treatments, matching can be difficult. There have been exten-

sions of propensity score balancing to multiple treatments, most notably the generalized

propensity score (GPS) (Hirano and Imbens, 2004) and more recently the covariate balancing

propensity score (CBPS) (Imai and Ratkovic, 2014) was introduced and shown to extend to

multiple treatments. Lopez and Gutman (2017) review techniques, including matching, for

observational studies with multiple treatments and although they do not explore factorial

(full or fractional) designs, it may be straightforward to extend their methods to this design.

Nilsson (2013) discusses matching in the 22 design. Recent work by Bennett et al. (2020)

uses template matching, which matches units to a “template” population of units, for multi-

ple treatments, though again not with factorial designs. Therefore, methods for creating

covariate balance specifically for factorial type designs require further exploration. In our

76



data illustration in Section 3.6, we employ sequential trimming and checks on covariate

balance, as discussed below.

Testing for covariate imbalance across multiple treatment groups can be done using

multivariate analyses of variance (MANOVA), which uses the covariance between variables

to test for mean differences across treatment groups, as used in Branson et al. (2016). Recall

that the factorial design has J treatment combinations. Define the following H and E

matrices (Coombs and Algina, 1996):

H =
J

Â
k=1

nk(Xk � X)(Xk � X)T

E =
J

Â
k=1

(nk � 1)Sk, where Sk =
1

nk � 1

nk

Â
j=1

(Xkj � Xk)(Xkj � Xk)
T,

where Xk is the m-dimensional vector of mean covariate values for treatment group k,

X is the average m-dimensional vector of mean covariate values for all units, that is

X = ÂJ
k=1

nk
n Xk, and Xkj is the m-dimensional vector of covariates for the jth unit in

treatment group k. Denote by qk the ordered eigenvalues of HE
�1, where k 2 {1, ..., s}

and s = min(m,K� 1). Standard MANOVA statistics which can be used to test covariate

balance are typically functions of the eigenvalues of HE
�1 (Coombs and Algina, 1996). We

chose the Wilks’ statistic (Wilks, 1932),

Wilks =
|E|

|H|+ |E| =
K

’
k=1

1
1+ qk

,

where qk corresponds to the kth eigenvalue of HE
�1.

As discussed in Imai et al. (2008), a potential drawback of testing for evidence against

covariates imbalance is that as we drop units we lose power to detect deviations from

the null hypothesis of no difference in covariates between the treatment groups. Another

diagnostic for covariate balance is checking covariate overlap via plots and other visual

summaries of the data. So called “Love plots”, which show standardized differences in

covariate means between two treatment groups before and after adjustment (Ahmed et al.,
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2006), are difficult to generalize directly because of the multitude of treatment groups and

comparisons. However, plots of standardized means or of distributions may be helpful to

detect imbalance.

3.5.3 Initial test for significance of effects

As discussed in the previous section, achieving covariate balance for more than two treatment

groups can be a challenge. Therefore, instead of attempting to achieve balance among all

treatment groups, a simple first step might be to examine two carefully chosen treatment

groups and attempt to balance these two groups only. Obtaining balance between two

treatment groups has been well-studied in causal inference, see Stuart (2010) for a review of

common matching methods for such settings. Once significant covariate imbalance can be

ruled out, we can test whether the mean difference between these two groups is significantly

different. But what can we learn from this comparison about our factorial effects?

We have from Section 3.2.2 that

Ȳ(zj) =
1
2
hjt.

So when we subtract two observed means, assuming that the observed means are unbiased

estimates of the true means (i.e. we have randomization or strong ignorability), we are

estimating

Ȳ(zj)� Ȳ(zj0) =
1
2
(hj � hj0)t,

which is the sum of terms that are signed differently in hj and hj0 .

As an example for a 23 design, we have the following matrix for GT:

G
T =

2

66666666664

h1
h2
h3
h4
h5
h6
h7
h8

3

77777777775

=

0

BBBBBBBBBB@

[r] + 1 �1 �1 �1 +1 +1 +1 �1
+1 �1 �1 +1 +1 �1 �1 +1
+1 �1 +1 �1 �1 +1 �1 +1
+1 �1 +1 +1 �1 �1 +1 �1
+1 +1 �1 �1 �1 �1 +1 +1
+1 +1 �1 +1 �1 +1 �1 �1
+1 +1 +1 �1 +1 �1 �1 �1
+1 +1 +1 +1 +1 +1 +1 +1

1

CCCCCCCCCCA

.

Now consider taking the difference between Ȳ(z8)� Ȳ(z1) = Ȳ(+1,+1,+1)� Ȳ(�1,�1,�1),
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which yields

Ȳ(z8)� Ȳ(z1) =
1
2
(h8 � h1)t

= t(1) + t(2) + t(3) + t(123).

Hence, testing whether the difference between Ȳ(z8) and Ȳ(z1) is zero is the same as testing

whether t(1) + t(2) + t(3) + t(123) is zero. If it is reasonable to assume that all main effects

are of the same sign based on subject matter knowledge and that the three-factor interaction

is also of the same sign or negligible, then this global test of whether there are any treatment

effects is relevant to the estimand of interest. According to the effect hierarchy principle

(Wu and Hamada, 2000), the main effects should dominate the three-factors interaction.

Hence, even if the interaction differs in sign, we would expect to see an effect under this

assumption if there is one. If the global test is not rejected, then we would move on to

recreating the entire factorial design. If it is unclear whether the signs of the effects are the

same (also referred as antagonistic effects), then this global test would be inappropriate

because effects could still be different from zero but their sum could be (close to) zero.

If we are particularly interested in the causal effects involving the first factor, we can

create a test specifically for those effects. For instance in the the 23 setting, we might use the

estimand Ȳ(z8)� Ȳ(z4) as a proxy for the effect of the first factor, as follows:

Ȳ(z8)� Ȳ(z4) = Ȳ(+1,+1,+1)� Ȳ(�1,+1,+1)

=
1
2
(h8 � h4)t

= t(1) + t(12) + t(13) + t(123). (3.8)

In Equation 3.8, if all terms have the same sign and we find that the difference is

significantly different than zero, then we would conclude that factor 1 has an effect, either

on its own or through interactions with the other factors. A different choice of levels for

the other factors, for instance comparing the mean potential outcome when one factor is

high vs. low when all other factors are at the low level, would result in different signs for

the interactions. The choice of which levels to compare should be based on subject matter

knowledge and reasonable assumptions.
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To reiterate, throughout this section we focused on the meaning of several estimands,

which are easily estimated under a randomized experiment. In an observational study,

we would first need to obtain balance for any treatment groups we would be using in our

estimator.

3.5.4 Comparing designs

So far our discussion of designs has focused on randomized experiments. However, there

may be added complications in the observational setting that make one design more

desirable than another. For instance, consider using a different design for each estimator as

in Section 3.4. Here we are able to use more of the data than a fractional factorial design,

but this can also incur a cost. If we have no outcome measurement for only one treatment

combination, we would use all 2K � 1 treatment combinations if we did an analysis for all

effects and used a different design for each. This approach would require us to either first

obtain balance among all 2K � 1 treatment groups or to obtain balance among the treatment

groups within each design separately. The former option may be difficult; as the number

of treatment combinations grows, obtaining covariate balance across all treatment groups

becomes increasingly difficult and may result in smaller and smaller sample sizes, especially

if trimming is used. The latter option will make joint inferences more challenging because

different units would be used in each analysis.

Therefore, although these incomplete factorial designs may improve the bias of our

estimators, the fractional factorial design in which we are using the same 2K�p rows may be

more attractive in terms of obtaining covariate balance. The fractional factorial design also

has the benefit of being a classical experimental design with an aliasing structure that is

easy to understand.

3.6 Data illustration

3.6.1 Data description

Here we give an illustration of the implementation of our methods using data on pesticide

exposure and body mass index (BMI). We use the 2003-2004 cycle of the National Health
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and Nutrition Examination Survey (NHANES) collected by the Centers for Disease Control

and Prevention (CDC). We access the data via the R (R Core Team, 2017) package RHANES

(Susmann, 2016). We focus on four organochlorine pesticides, measured via a blood serum

test and then dichotomized based on whether they were above (+1) or below (-1) the

detection limit, as given in the NHANES dataset, as factors. Organochlorine pesticides are

persistent in the environment and adverse health effects have been reported by the CDC

(2009), making them an interesting group of pesticides to study. To keep this illustration

simple, we chose to use only four pesticides and those were chosen primarily based on

data availability and exposure rates. That is, we did not use those pesticides that were so

common (or rare) that virtually everyone (or no one) in the data set was above the detection

limit (or below the detection limit). The following are the the four pesticides that were

chosen: beta-Hexachlorocyclohexane (beta-Hex), heptachlor epoxide (Hept Epox), mirex,

and p.p’-DDT. Previous findings of an association between pesticide exposures and body

mass index (BMI) (Buser et al., 2014; Ranjbar et al., 2015) led us to choose BMI as the

outcome of interest. BMI is the ratio between weight and height-squared.

We removed 271 units with missing values of pesticide and BMI observations, noting

that because this is an illustration and not intended to draw causal conclusions we drop

those units for simplicity. We also decided to study a non-farmer population as farmers

are more likely to be exposed to pesticides than the general population and may also differ

on other unobserved covariates that may affect health outcomes. This is our first step to

achieving covariate balance, leaving a dataset with 1,259 observations (see Figure C.1 in the

Appendix for more).

3.6.2 Design stage

To show the process of how estimands change as we adjust our design stage, we consider

different “designs.” First we consider analyzing the data as if it came from a 24 factorial

hypothetical experiment, without adjusting the sample to balance for covariates. Second, we

instead analyze the data as if it came from a fractional factorial 24�1 hypothetical experiment

to assess how estimates change when going from a factorial design to a fractional factorial

design. Finally, we trim units to obtain a fractional factorial 24�1 hypothetical experiment
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with covariate overlap and with no evidence of covariate imbalance with respect to gender,

age, and smoking status, to see how estimates change when a true design phase with the

aim of obtaining covariate balance is implemented.

Note that we trim units to obtain better balance on gender, age, and smoking status as

these are our first tier of most important covariates. Then additional adjustment for our

second tier of covariates, race and ethnicity and income, are done via linear regression, as

described in the following section. We also found that even with trimming, gender and

smoking status were imbalanced across the treatment groups so these were also adjusted

for in the linear regression.

There are a few notes on the definitions of these covariates. From now on we will refer

to the “race and ethnicity” covariate as simply ethnicity, as a short hand and to make clear

that this is one categorical variable in the NHANES dataset. The income variable is defined

as annual household income. For categorizing individuals as smokers vs non-smokers,

we use the question “Have you smoked at least 100 cigarettes in your life time?” and we

categorized “Yes” and “Don’t know” as smokers. Note that only one observation with value

“Don’t know” was recorded.

3.6.3 Statistical analysis

We analyzed the three datasets described in the design stage using: 1) a multiple linear

regression that regresses BMI on treatment factors; 2) a multiple linear regression that

regresses BMI on treatment factors, as well as the following covariates, as factors: ethnic-

ity, income, gender, and smoking status; 3) Fisher-randomization tests of the sharp null

hypothesis of no treatment effects.

Recall from Sections 3.3.3 and 3.2.3 that regression estimates when including all factors

and interactions, but not covariates, are our standard Neymanian estimates divided by two.

Figures C.15 and C.16 in Appendix C.4.3 show that further adjustment for ethnicity and

income are needed, even after balancing gender, age, and smoking status. Additional data

descriptions and the full statistical analyses are available in Appendix C.4. Note that due to

the right-skewed nature of the weight variable, BMI exhibits some degree of right-skewness.

Therefore we use log-transformed BMI as the outcome in these analyses.
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Full factorial design

Table 3.4 provides the counts of observations for each treatment combination (zj). There

were 1,259 units in this dataset, although, when adjusting for covariates in the regression,

units with missing covariate values were removed resulting in 1,183 units. We see that

factor combination 10 (z10) has only one observation. Relying on only one observation for a

treatment combination will lead to unstable estimates. Hence, Section 3.6.3 aims to avoid this

issue by embedding the observational study in a fractional factorial hypothetical experiment.

Nonetheless, we perform the analysis of the 24 factorial hypothetical experiment in this

section and will compare the results to the analysis of the fractional factorial hypothetical

experiment. Because there is only one unit assigned to z10, it is not possible to estimate

Neymanian variances here. See Appendix C.4.1 for full analysis results.

Factor Levels Number of Obs.
beta-Hex Hept Epox Mirex p,p’-DDT

z1 +1 +1 +1 +1 426
z2 -1 +1 +1 +1 12
z3 +1 -1 +1 +1 70
z4 -1 -1 +1 +1 51
z5 +1 +1 -1 +1 291
z6 -1 +1 -1 +1 25
z7 +1 -1 -1 +1 94
z8 -1 -1 -1 +1 54
z9 +1 +1 +1 -1 21
z10 -1 +1 +1 -1 1
z11 +1 -1 +1 -1 19
z12 -1 -1 +1 -1 19
z13 +1 +1 -1 -1 42
z14 -1 +1 -1 -1 19
z15 +1 -1 -1 -1 37
z16 -1 -1 -1 -1 78

g1 g2 g3 g4 1259

Table 3.4: Counts of observations for each treatment combination of the pesticides with farmers removed for the factorial
design. Red rows treatment combinations that we will use when recreating a fractional factorial design.
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Fractional (24�1) factorial design

In the 24�1 fractional factorial design, instead of using I = 1234, we chose I = �1234 to

exclude row 10 in Table 3.4 that has only a single observation. The dataset in this hypothetical

experiment consists of 523 observations. However, when adjusting for covariates in the

regression, units with missing covariate values were removed resulting in 488 units. In

this design, aliasing is as follows: I = �1234, 4 = �123, 3 = �124, 2 = �134, 1 = �234,

12 = �34, 13 = �24, 14 = �23. The main effects are aliased with the negative of the three-

factor interactions and the two-factor interactions are aliased with each other with reversed

signs. In order to identify main effects, we will assume that the three-factor interaction

is negligible. In practice, researchers should assess whether this aliasing assumption is

realistic. See Appendix C.4.2 for full analysis results.

Fractional factorial design with no evidence of covariate imbalance

We examined the distributions across treatments of the following covariates: gender

(recorded as male vs. female), smoking status (smoker vs. non-smoker, as defined earlier),

and age at the time of survey (in years). Figure 3.1 shows covariate imbalance with respect

to gender, smoking, and age in the fractional factorial design.

We used a rejection approach that sequentially pruned the observations of the fractional

factorial dataset until we found no evidence of imbalance across exposure groups with

respect to gender, smoking status, and age. To test for covariate balance across treatments,

we perform a MANOVA using the Wilks’ statistic (Wilks, 1932), as defined in Section 3.5.2.

Figure 3.2 shows the covariate distribution for gender, smoking status and age after trimming.

We see that gender and smoking status are still imbalanced even after trimming, and hence

were adjusted for in the linear regression that includes covariates (this is true for all

“designs”).

The first dataset that resulted in no evidence of covariate imbalance consisted of 169

observations, and the new treatment counts are presented in Table 3.5. After removing

units with missing covariate values for the regression that adjusts for income and ethnicity,

we had 158 units. Note that while gender, smoking status, and age are our first tiers of

covariates, ethnicity and income constitutes the second tiers. In practice, balancing a large
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Figure 3.1: Comparing covariates across treatment combinations in the 24�1 fractional factorial design. Text labels give
number of observations per group. For age, individuals with “>= 85 years of age” were set to 85 on the graph. Note that
all individuals older than 85 were dropped in the covariate balance stage.

set of covariates is not always possible. Therefore, choosing the most important ones should

be done using subject matter knowledge. We see here that the number of units has been

drastically reduced in our attempt to achieve covariate balance, a major challenge in this

setting. In fact, one of the treatment groups only has three observations, a very small

number. See Appendix C.4.3 for full analysis results.
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Figure 3.2: Comparing covariates across treatment combinations in the 24�1 fractional factorial design after trimming.
Text labels give number of observations per group.

3.6.4 Results comparison across different conceptualized experiments and sta-

tistical approaches

Figure 3.3 shows a comparison of the regression estimates of the main effects across designs

and statistical analyses. To compare the different methods we present univariate analyses,

that is we utilize individual tests for each main effect rather than joint tests, for better

illustration of the different methods. Recall that the standard Fisherian and Neymanian

point estimates are the unadjusted regression estimates multiplied by two. The bars show
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Factor Levels Number of Obs.
beta-Hex Hept Epox Mirex p,p’-DDT Original Trimmed

z2 -1 +1 +1 +1 12 6
z3 +1 -1 +1 +1 70 22
z5 +1 +1 -1 +1 291 102
z8 -1 -1 -1 +1 54 10
z9 +1 +1 +1 -1 21 8
z12 -1 -1 +1 -1 19 10
z14 -1 +1 -1 -1 19 3
z15 +1 -1 -1 -1 37 8

g
⇤
1 g

⇤
2 g

⇤
3 g

⇤
4 523 169

Table 3.5: Counts of observations for each treatment combination of the pesticides with farmers removed for the fractional
factorial design, before and after trimming.

two standard errors above and below the estimate calculated by the usual ordinary least

squares as the Neymanian variance estimates are not available for the full factorial design.

In practice, adjustment for multiple comparisons should be considered. All methods and

designs seem to agree on the positive effect of heptachlor epoxide and the negative effect of

mirex on BMI. Although the full factorial estimates generally agree with the estimates of

the two fractional factorial designs, differences in estimates of beta-Hexachlorocyclohexane

(Beta-Hex) and p,p’-DDT may be due to the aliasing of the three-factor interactions with the

main effects. However, it is also plausible that we have reduced our data in the fractional

design to a group with different average main effects than in the full data set.

Figure 3.4 shows a comparison of the significance of these estimates. The Fisher p-value

is the p-value for the test of no effects of any pesticides, based on effect estimates for

a given pesticide, which is suggested as a screening stage in Espinosa et al. (2016). We

obtained low p-values for the main effect of mirex on BMI across all methods and designs.

However, the p-values disagree for the other pesticides, especially the p-values testing the

effects of p,p’-DDT and beta-Hexachlorocyclohexane. Note that the HC2/Neyman p-value

is the significance based on the HC2 variance estimate (or Neyman variance estimate as

we have shown this estimator to be equivalent in settings with no covariates) and the

Normal approximation. This p-value was only calculated for the regression analysis without

covariates and was unavailable for the full factorial model due to limited data.
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3.6.5 Discussion of data illustration

We have performed a data illustration to show the benefits and challenges of using our

method and working with observational data with multiple treatments in general. Here we

outline some of the problems that we ran into, that could be improved in future analyses,

and also some of our findings. First, it is important to note that simplifications were

made in the statistical analyses to focus on illustrating how researchers can capitalize on

using fractional factorial designs to estimate the main and interactive effects of multiple

treatments in observational studies. For instance, we are aware that multiply imputing the

missing data would have been more appropriate to provide valid estimates and inferences

in the original study population. However, for simplicity we focused on the complete-case

observations. We additionally did not adjust for all important hypothetical covariates, such

as diet. Another consideration is that we log-transformed BMI to address the fact that BMI is

a ratio and so its distribution tends to have heavy tails. However, heavy-tailed distributions

could have been considered.

There were also some major challenges in working with this data and our method,

mostly related to sample size. Trimming helps mitigate bias but greatly reduced our sample

size, potentially leading to decreased power and precision. There was also a great reduction

in sample size by using the fractional factorial design which entailed dropping treatment

combinations. We could have used an incomplete factorial type design, but this could have

made the covariate balancing even more difficult, as discussed previously.

For p,p’-DDT, the full factorial design resulted in a lower p-value than the other designs,

which could be an issue of aliased interactions watering down the effect in the fractional

design. It could also have occurred because the populations are different in these two

designs. For beta-Hexachlorocyclohexane, the covariate balance adjusted fractional factorial

design differs, leading to a lower p-value for the association of beta-Hexachlorocyclohexane

with BMI compared to the other designs. We are more inclined to trust the balanced design

as this should have reduced bias. This result may indicate that there was some confounding

that made the effect appear less significant before trimming. In fact, the stark contrast

between the unbalanced and balanced fractional design suggests that confounding may be

to blame. Alternatively, by trimming we may have reduced our sample to a subpopulation
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where beta-Hexachlorocyclohexane has a larger effect on BMI than the rest of the population.

3.7 Discussion

In this chapter, we have proposed to embed observational studies with multiple treatments

in fractional factorial hypothetical experiments. This type of design is useful in settings with

many treatments, especially when some treatment combinations have few or no observations

and the aliasing assumptions are plausible. Once we recreate a factorial or fractional factorial

experiment in the design phase, we can use standard methods, extended as in Sections 3.2

and 3.3, to estimate causal effects of interest. We first reviewed the basic setup for factorial

and fractional factorial designs. Our work includes extensions of some of the known

factorial design results variance and regression results to the fractional factorial setting.

We also explored the use of incomplete factorial designs in the design-based potential

outcome framework. A main contribution of this chapter consists of extending these ideas

for observational studies. This includes discussion of tests that can be performed before the

full analysis. We have also discussed covariate balance complications that may arise when

dealing with multiple non-randomized treatments in practice.

We illustrated these methods on a data set with pesticide exposure and BMI. This

helped to exemplify the uses of our new methodology as well as identify challenges that

occur when working with observational data with multiple treatments. It is important

to note that using the small subset of the NHANES dataset, we do not intend to provide

policy recommendations on pesticide use. In the general population, organochlorine

pesticide exposure primarily occurs through diet (excluding those with farm-related jobs),

particularly eating foods such as dairy products and fatty fish (Centers for Disease Control

and Prevention (CDC), 2009). Without further adjustments for diet, we are not be able to

disentangle the causal effect of diet and pesticides. For instance, in our study individuals

are likely to have been exposed to mirex largely through fish consumption (Agency for

Toxic Substances and Disease Registry [ATSDR], 1995). Further studies could investigate

BMI differences in a group of fish consumers with high level of mirex and a “similar”

group of fish consumers with low level of mirex, where similar is with respect of important

confounding variables. Indeed, it could be that eating fish cause individuals to have both
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high levels of mirex and also lower BMI.

We have given a short overview of factorial and fractional factorial designs, as well as

some other designs, in the potential outcomes framework. However, there are many aspects

of these designs and classic analysis techniques that we did not cover. For instance, there

are many nonregular design types, such as Plackett-Burman designs, that we could have

explored more. Practitioners may also use variable selection and the principle of effect

heredity to select their model for estimating factorial effects, including via Bayesian variable

selection. See Wu and Hamada (2000) for more details on these methods from a more

classical experimental design perspective.

We see many avenues of future exploration connected to our approach. For instance,

coupling fractional factorial designs with a Bayesian framework would provide more

statistical tools and would potentially offer different methodology for dealing with missing

data. Additionally, development of balancing techniques for factorial designs with many

treatment combinations should be an area of future exploration. A particular challenge

is that as we increase the number of treatment combinations and therefore treatment

groups, matching becomes more and more difficult due to the increased dimensionality and

weighting methods may produce unstable estimators. One direction could also be to choose

the design of the observational study based upon the ability to balance different treatment

combinations. Random allocation designs (Dempster, 1960, 1961), in which randomness

of the design is incorporated, could also be utilized in this framework. Finally, we could

explore other causal estimands that may be of interest in observational studies with multiple

treatments, such as those proposed in Egami and Imai (2019).
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Appendix A

Appendix to Chapter 1

A.1 Alternative strategies for variance estimation

In Chapter 1, we examined strategies for variance estimation that put no structure on how

the individual blocks may differ from each other. At root, the focus is on estimating the

residual variance of units around their block means, and aggregating appropriately.

This section discusses alternatives along with when they might be more or less appropri-

ate. The first two subsections describe estimators that require model assumptions. Therefore

these estimators may perform well in certain circumstances, but involve assumptions that we

do not make in our analysis. The third subsection describes an estimator used for matched

pairs that is proposed in the RCT-YES software documentation. The RCT-YES estimator

assumes a specific population model that we do not consider in Chapter 1.

A.1.1 Linear regression

Perhaps the most common method of estimation for randomized trials is to simply fit a

linear model to the data with a treatment indicator and a dummy variable for each block.

If there is no interaction between the treatment and block dummies, this approach will

produce a precision-weighted estimate of the treatment effect, with an overall implicit

estimand of a weighted average of the average impacts within each block, weighted by the

estimated block precision under a homoscedasticity assumption. If there is impact variation

correlated with this precision, then this precision-weighted estimand could be different
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than the overall ATE, resulting in a biased estimator. Furthermore, if blocks have different

proportions of treated units and different sizes, this weighting might not correspond to

any easily interpretable quantity. As pointed out by Freedman, this regression model is

also not justified by randomization, which results in complications with the corresponding

standard errors (Freedman, 2008a,b). Unfortunately, however, this approach is likely the

most common in the field.

The above issues are, in part, repairable. Lin (2013) shows that the estimator from a

linear model including interactions between the treatment indicator and block dummies

is unbiased. In fact, this estimator is equivalent to the blocked estimator presented in

Chapter 1. The question is then how to estimate the standard errors from within the

ordinary least squares framework. Lin advocates a Huber-White sandwich estimator for

the general covariate case, but these have problems when the blocks have single treated

or single control units. In particular, several variants of these estimators, such as HC2 and

HC3, will not even be defined due to the characteristics of the corresponding design matrix.

The HC0 estimator can still be heavily biased if there is systematic heteroscedasticity across

the blocks. Gerber and Green (2012) (p. 116-117) advocate a weighted estimator, but this

can also fail in the presence of blocks with singleton treated or control units.

A.1.2 Pooling variance estimates

As we have seen, the most straightforward way to get an overall variance is to obtain

variance estimates for all of the block specific estimates, and then combine them in a

weighted average. For small blocks, obtaining these block specific estimates is difficult

because we do not have enough units to estimate variances of the treatment arms. In this

case we have two general options: When treatment effects are considered to be homogenous,

we can use the variance of the estimates across the blocks knowing that the variability is

dictated purely by block mean variability and not treatment effect variability. An alternative

strategy is to use the variance estimates in other blocks to estimate the variances in the

intractable blocks. We discuss this next.

One such estimator is to, given a means of assessing how similar blocks are in terms of

variance, simply use the variance of the closest big block for each small block. This typically
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requires some assumptions that, based on covariate values of the blocks, the variances of

the potential outcomes are the same or similar. Similarly, Abadie and Imbens created an

estimator of the variance for matched pairs that involves pairing the closest matched pairs

and creating a pooled variance estimator for the two blocks together (Abadie and Imbens,

2008). They found that their estimator was asymptotically unbiased given certain conditions,

such as the closeness of pairs increasing as the sample size grew. Although the asymptotic

results derived in their paper are not necessarily appropriate here, this could be a reasonable

plug-in estimator under the assumptions that (i) the covariate(s) that create the strata are

related to the potential outcomes and variance and that (ii) the small strata are more similar

to each other than the larger strata.

Covariates could also be exploited using linear regression to create variance estimates;

see, for example, Fogarty (2018). Or, if we believe that the variance of the estimator in

each block is related to the block size, we could fit a linear regression for the big blocks, of

variance versus their size, and then extrapolate to the small blocks. Alternatively, if nothing

is known and there are very few small blocks, an average (or the largest) of the big block

variance estimates might be used. This type of plug-in is used in simulations in Section 1.6.

Any of these plug-in estimators could be used, instead of plugging in for the overall

variance, to simply fill in the missing component for small blocks. For instance, if all of the

small blocks are such that they have multiple controls but only one treated unit, we can

calculate s2k(c) as usual but approximate s2k(t) based on one of the previously mentioned

methods.

There are many other plug-ins that might be appropriate, based on what assumptions

the researcher is able to make. The choice of plug-in estimator should be chosen prior to

running the experiment and should be based on the researchers assumptions and knowledge

at that time. Trying several plug-in estimators and using the smallest will create bias.
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A.1.3 The RCT-YES estimator

One might also consider an estimator suggested in the RCT-YES manuscript (Schochet, 2016,

p. 83). The form of this estimator, using block sizes as weights, is

bs2
RCT =

1
K (K� 1) ( nK )2

K

Â
k=1

⇣
nkbtk �

n
K
bt(BK)

⌘2
.

As discussed and proven in the RCT-YES documentation, this estimator is consistent under

an infinite population of an infinite number of strata of infinite size, where we sample strata

and then units within strata. This is the random sampling of strata setting in the remark

of Section 1.4.4. This estimator differs from our estimators bs2
(SMALL/m) and bs

2
(SMALL/p) by

putting the weights inside the square. Unfortunately, moving the weighting inside the

squares can cause large bias in the finite setting and the stratified sampling framework.

In fact, in the simulations comparing variance estimator performance in the finite sample,

presented in Section 1.6, the RCT-YES bias and variance was high enough that it was not

comparable to the other estimators presented. This estimator is targeting a superpopulation

quantity, thus the standard errors are larger in part to capture the additional variation of the

strata being a random sample.

We discussed the performance of the original RCT-YES estimator with Dr. Schochet

(personal correspondence, April 2018), and he proposed an alternate estimator. Again using

the block sizes as weights, this estimator has the form

bs2
RCT,2 =

1
K (K� 1) ( nK )2

K

Â
k=1

n2k
⇣
btk � bt(BK)

⌘2

and is rooted in survey sampling methods (Cochran, 1977). This estimator is more stable

because the weights are not inside the parentheses. This estimator is still motivated by a

superpopulation sampling framework, and takes the variability of the blocks into account.

Finite sample performance using this estimator on all of the blocks does not perform well,

unless all blocks have the same tk, which aligns with what we expect from explorations of

our small block estimators. If used in combination as a hybrid estimator, its performance is

very similar to that of the hybrid using bs2
(SMALL/p).
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A.2 Consequences of ignoring blocking

In this section we explore what happens when a blocked randomization was implemented

but then the experiment was analyzed as if complete randomization was used. There is a

misconception that implementing a blocked design and then ignoring the blocking when

calculating the variance estimator will result in an estimator that is conservative for the

variance of the bt(BK).

Theorem A.2.0.1 (Using completely randomized variance estimator for blocked experiment).

In the finite sample setting, analyzing a blocked experiment as if it were completely randomized could

give anti-conservative estimators for variance.

That is, it is possible to have E
h
bs2
(CR)|S ,Pblk

i
 var

⇣
bt(BK)|S ,Pblk

⌘
, where Pblk is a

blocked randomization assignment mechanism. See Appendix A.9.1 for a derivation that

proves this result (assuming pk = p for all k and with a positive correlation of potential

outcomes).

However, in the stratified sampling framework, ignoring blocking when a blocked design

was run will always result in a conservative estimator for the variance of bt(BK).

Corollary A.2.0.1 (Using completely randomized variance estimator for blocked experiment).

Analyzing a blocked experiment as if it were completely randomized will not give anti-conservative

estimators for variance if we are analyzing for a superpopulation with fixed blocks and stratified

random sampling.

See Appendix A.9.2 for more on this result (assuming pk = p for all k).

This discussion is related to the misconception that the complete randomization variance

estimator is always more stable than the blocking variance estimator, which is discussed in

Appendix A.4.1.

If we do not have pk = p for all k, on the other hand, then it is possible to have

E
h
bt(CR)|S ,Pblk

i
6= tS . This means bt(CR) could be biased, even under a constant treatment

effect assumption, because some units will be weighted more heavily than others in both

the treatment and control arms. In this case, variance comparison is less relevant.
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A.3 Details on the numerical studies

A.3.1 Data generating process for simulations

The data generating process used both for the simulations comparing the variance estimators

and also those comparing blocking to complete randomization gives us a single finite data

set. We then repeatedly randomize units to treatment, according to blocked randomization,

multiple times to assess finite sample behavior. Note that we found that the simulation

values agreed with biases calculated for our variance estimators via the bias formulas

presented in Chapter 1, in Section 1.3.4. Potential outcomes for the units in each block

were drawn from a bivariate normal distribution, with the means and covariance matrix as

follows (shown for a unit in block k):
0

@Yi(0)

Yi(1)

1

A ⇠ MVN

0

@

0

@ ak

ak + bk

1

A ,

0

@1 r

r 1

1

A

1

A .

The correlation of potential outcomes, r, was varied among 0, 0.5, and 1. We controlled

how differentiated the blocks were, and how heterogeneous the treatment effects across

blocks were, by varying ak and bk. We set ak as ak = F�1
⇣
1� k

K+1

⌘
a. Similarly, bk =

5+ F�1
⇣
1� k

k+1

⌘
b. The larger the a, the more the mean control potential outcomes for the

blocks were spread apart. The larger the b, the more heterogeneous the treatment impacts.

The parameters a and b were varied among the values (0,0.1,0.3,0.5,0.8,1,1.5,2). We keep the

number and sizes of blocks fixed. The blocks were ordered by size with the smallest block

as block one. As a consequence, the smaller blocks have both larger means under control

and larger average treatment effects.

Simulations were run over assignment of units to treatments under a blocked design,

which was done 5000 times for each combination of factors.

A.3.2 Blocking vs. complete randomization

Here we have numerical examples to explore the potential benefits and costs of blocking in

the finite sample framework. These numerical studies look at the actual variances of the

treatment effect estimators, not the costs and differences of estimating these variances. The

data generating mechanism was the same as in the simulations of Section 1.6. However,
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we kept the correlation of potential outcomes at r = 0.5 in the interest of keeping the

plots uncluttered. Other values of r gave similar results. We examined a series of scenarios

ranging from a collection of blocks where there is little variation from block to block (causing

blocking to be less beneficial) to scenarios where the blocks are well separated and blocking

is critical for controlling variation. In our first numerical study we treat 20% of all of the

blocks, which enforces specific block sizes of 5, 10, 15, and 20. 50% of the units were in

small blocks. In the second numerical study we kept the sizes of the blocks the same as in

the first numerical study but allowed the proportion treated to vary from block to block,

from 0.1 to 0.4. We kept the overall proportion treated the same so that the completely

randomized design (which randomized the same total number of units to treatment as the

blocked design) was the same in both numerical studies. To do so, the big blocks all had

less than 20% treated. The first numerical study corresponds to the mathematical argument

presented in Section 1.5 and examines how much blocking can hurt in a variety of scenarios.

The second numerical study is to illustrate what changes when proportions treated are not

the same across blocks, as discussed in Appendix A.8.6.

We see on the x-axis of Figure A.1 an R2-like measure of how predictive blocks are of

outcome, calculated for each finite data set investigated. R2 was varied by manipulating the

spread of block means under control and the spread of block treatment effects. The y-axis is

the ratio of variances of the different treatment effect estimators. Generally, as expected, we

see large gains in blocking for moderate to large R2, and a slight penalty to blocking when

the R2 is relatively small. In this example with varying proportions treated, the gains of

blocking is muted. The difference between equal and unequal proportions is potentially

augmented by the fact that, to hold the overall proportion treated constant, the four largest

blocks, of sizes 20, 15 and 10, (which have a larger overall impact on variance) had roughly

proportion 0.1 treated.
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Figure A.1: Numerical study to assess completely randomized versus blocked design, when pk = 0.2 (equal proportions)
or unequal proportions across blocks. The y axis is Var(bt(BK) |S)

Var(bt(CR) |S)
.
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A.4 The variance of the variance estimators

A.4.1 Blocking versus complete randomization

Discussions of blocking versus complete randomization often include a discussion on

the performance of the variance estimators in terms of their own variance. There is a

misconception that the variance of the blocking variance estimator will be larger than

that of the complete randomization variance estimator. For instance, the standard big

block variance estimator (bs2
(BK)) under the stratified sampling framework was assessed

in Imbens (2011). In particular, in this piece there is a discussion about how the true

variance of the blocking estimator may be lower than under complete randomization but

that the estimate of that variance may be more variable under blocking than under complete

randomization. We consider that discussion here. First, assume that nz,k � 2 for all blocks

k and all treatment assignments z. Then, as we have seen, bs2
(BK) and bs

2
(CR) are unbiased

estimators of var(bt(BK)|F1) and var(bt(CR)|SRS), respectively. This implies, based on results

from Section A.8.4, that on average the variance estimator under the blocked design is less

than that under the completely randomized design, as noted by Imbens (2011).

In Imbens (2011), p. 11, a further claim is made that

var(bs2
(BK)) � var(bs2

(CR))

It is not entirely clear whether the variance of bs2
(CR) is with respect to SRS or F1 but let

us assume that it is with respect to F1 (our example extends easily to considering complete

randomization with respect to SRS instead). This statement is only true if var(s2(c)|F1) 

var(s2k(c)|F1) and var(s2(t)|F1)  var(s2k(t)|F1) for most k = 1, ...,K. Imbens (2011) gave an

example in which this might be true. In his example, there is no variance in the potential

outcomes under control (s2
k (c) = 0 for all k = 1, ...K) and the distribution of the potential

outcomes under treatment is the same in all of the strata (s2
k (t) = s2(t) for all k = 1, ..,K).

Then, Imbens argues, because s2(t) is a less noisy estimator of s2(t) than any of the s2k(t),

the variance of the variance estimator would be smaller under the completely randomized

design. This notion of the variance estimator for complete randomization being less noisy

as it is using more data may be true in many situations. However, this result does not hold
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in general. For instance, consider a population with four strata. Within each stratum, there

is zero treatment effect and all units are identical. Between strata, however, the potential

outcomes differ. For convenience, say in stratum one Yi(c) = Yi(t) = 1, in stratum two

Yi(c) = Yi(t) = 2, in stratum three Yi(c) = Yi(t) = 3, and in stratum four Yi(c) = Yi(t) = 4.

Now assume that four units are sampled from each of the strata. In a blocked design, our

variance estimate would always be 0. But in a completely randomized design, the variance

estimate would change based on which units were assigned to treatment and control. Thus,

the blocking variance estimator would have 0 variance whereas the completely randomized

variance estimator would have non-zero variance.

So, when blocking is “good”, we expect the true variance of our treatment effect estimator

to be lower under blocking than complete randomization and the variance of our variance

estimator to also be lower. However, when the blocking is “bad” we would expect blocking

to not be beneficial in terms of variance of our estimator and in this case the variance of our

variance estimator could also be higher than under complete randomization.

A.4.2 Variance simulations

The previous discussion relates how variances of variance estimators differ under block-

ing and complete randomization. This raises the question of how the blocking variance

estimators compare amongst themselves in terms of variance. To assess this, we examine

the variance of our variance estimators from our simulation study in Section 1.6 with data

generating process given in Section A.3.1.

Results are on Figure A.2. We see that, in terms of variance, the estimators are generally

comparable. We expect more instability from estimators that utilize only information from

the estimated average treatment effects, not from the variation of the individual units. We

see that the weighted regression estimator has the lowest variability.
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Figure A.2: Simulations to assess variance estimators’ variance. The x-axis shows the standard deviation of block average
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outcomes in the simulation. FE stands for fixed effects.
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A.5 Creation and bias of bs2
(SMALL/m)

A.5.1 Creation of bs2
(SMALL/m), Equation (1.5)

To formally state the method described by Equation (1.5) from Section 1.3.2, we first express

our estimands and estimators in terms of weighted averages of estimates within collections

of same-size blocks. In the following, let there be J unique block sizes in the sample. Let mj

be the jth block size and let Kj be the number of blocks in the population of size mj. So then

n = ÂJ
j=1 mjKj. In particular, the sample average treatment effect for all units in blocks of

size mj is

t(SMALL),S ,j =
1
Kj

Â
k:nk=mj

tk,S .

Let Nj = mjKj be the total number of units in the small blocks of size mj. Then the overall

sample average treatment effect in terms of these t(SMALL),S ,j is

t(SMALL),S =
1

ÂJ
i=1 Nj

J

Â
j=1

Njt(SMALL),S ,j. (A.1)

t(SMALL),S is the same as tS as before; we add the subscript “small” here to clarify the

notation when we discuss hybrid experiments. Note that these definitions are analogous for

the infinite population, which are indicated by removing the S subscript.

The treatment effect estimators can be written in analogous form to the above. We have

unbiased estimators bt(SMALL),j =
1
Kj

Âk:nk=mj
btk for the average treatment effects in blocks of

size mj. Simply plug them into Equation A.1 to obtain an overall treatment effect estimator.

As discussed in Section 1.3.2, within each piece j, use a variance estimator with the same

form as Equation 1.4:

bs2
(SMALL),j =

1
Kj(Kj � 1) Â

k:nk=mj

(btk � bt(SMALL),j)
2.

Then combine to create an overall variance estimator:

bs2
(SMALL/m) =

1
⇣

ÂJ
j=1 Nj

⌘2
J

Â
j=1

N2
j bs2

(SMALL),j.
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A.5.2 Bias of bs2
(SMALL/m)

Proof of Corollary 1.3.4.1 and Corollary 1.4.3.1

Proof. For this section assume that we are in the finite sample framework. The results for

the stratified sampling from an infinite population framework follow directly by changing

the expectations and notation.

First we will focus on bs2
(SMALL),j which is the variance estimator for bt(SMALL),j. Note that

var
⇣
bt(SMALL),j|S

⌘
= var

0

@ 1
Kj

Â
k:nk=mj

btk
���S

1

A =
1
K2
j

Â
k:nk=mj

var (btk|S) .

E
h
bs2
(SMALL),j|S

i

= E

2

4 1
Kj(Kj � 1) Â

k:nk=mj

(btk � bt(SMALL),j)
2
���S

3

5

=
1

Kj(Kj � 1)
E

2

4 Â
k:nk=mj

⇣
bt2
k � 2btkbt(SMALL),j + bt2

(SMALL),j

⌘ ���S

3

5

=
1

Kj(Kj � 1)

0

@ Â
k:nk=mj

⇥
var (btk|S) + t2

k,S
⇤
� Kj

h
var

⇣
bt(SMALL),j|S

⌘
+ t2

(SMALL),S ,j

i
1

A

=
1

Kj(Kj � 1)

0

@ Â
k:nk=mj

Kj � 1
Kj

var (btk|S) + t2
k,S

�
� Kjt(SMALL),S ,j

1

A

=
1
K2
j

Â
k:nk=mj

var (btk|S) +
1

Kj(Kj � 1) Â
k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2

= var
⇣
bt(SMALL),j|S

⌘
+

1
Kj(Kj � 1) Â

k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
.

So the bias is

E
h
bs2
(SMALL),j|S

i
� var

⇣
bt(SMALL),j|S

⌘
=

1
Kj(Kj � 1) Â

k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
.

Now we move our attention to bs2
(SMALL/m) which is a variance estimator for bt(SMALL).
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We have

var
⇣
bt(SMALL)|S

⌘
= var

 
1

ÂJ
i=1 miKi

J

Â
j=1

mjKjbt(SMALL),j|S
!

=
1

⇣
ÂJ

i=1 miKi

⌘2
J

Â
j=1

�
mjKj

�2 var
⇣
bt(SMALL),j|S

⌘
.

So then

E
h
bs2
(SMALL/m)|S

i

=
1

⇣
ÂJ

i=1 miKi

⌘2
J

Â
j=1

�
mjKj

�2
E
h
bs2
(SMALL),j|S

i

= var
⇣
bt(SMALL)|S

⌘
+

J

Â
j=1

m2
j Kj

⇣
ÂJ

i=1 miKi

⌘2
(Kj � 1)

Â
k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
.

So the bias is

E
h
bs2
(SMALL/m)|S

i
�var

⇣
bt(SMALL)|S

⌘
=

J

Â
j=1

m2
j Kj

⇣
ÂJ

i=1 miKi

⌘2
(Kj � 1)

Â
k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
.

Proof of Corollary 1.4.4.1

Proof. Assume that we are in the random sampling of strata framework of Section 1.4.4. We

are focusing in on just the set of strata of size mj. We can either consider that there only

exist strata of this size or we can imagine a sampling mechanism that draws these strata

independently from strata of other sizes (e.g. stratified sampling by strata size), which is

the same as conditioning on the number of strata of each size in the sample. Also,

var
⇣
bt(SMALL),j|F2

⌘
= E

h
var

⇣
bt(SMALL),j|S

⌘
|F2

i
+ var

⇣
E
h
bt(SMALL),j|S

i
|F2

⌘
.

From Appendix A.5.2, we can see that

E
h
bs2
(SMALL),j|S

i
= var

⇣
bt(SMALL),j|S

⌘
+

1
Kj(Kj � 1) Â

k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
.
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From standard results from sampling theory (see (Lohr, 2009, Chapter 2)) we have

E

2

4 1
Kj(Kj � 1) Â

k:nk=mj

⇣
tk,S � t(SMALL),S ,j

⌘2
|F2

3

5 =
s2

t

Kj
= var

⇣
bt(SMALL),j|F2

⌘
.

Hence, we end up with

E
h
bs2
(SMALL),j|F2

i
= E

h
var

⇣
bt(SMALL),j|S

⌘
|F2

i
+ var

⇣
E
h
bt(SMALL),j|S

i
|F2

⌘
.

Thus, this is an unbiased variance estimator in this setting.

If we have varying size but condition on the number of strata of each size that we sample,

then we use the fact that stratified sampling causes the estimators for each strata size to be

independent.

The proof of this result for an infinite number of infinite size strata is direct by replacing

the conditioning on S by conditioning on B and using results from the stratified sampling

framework.

A.6 Creation and bias of bs2
(SMALL/p)

A.6.1 Proof of Corollary 1.3.4.2 and Corollary 1.4.3.2

Proof. For this section assume that we are in the finite sample framework. The results

for the stratified sampling framework follow directly by changing what we are taking the

expectation with respect to and exchanging notation. We explain how bs2
(SMALL/p) was

derived which also provides the bias of the estimator in these two frameworks.

To begin we consider, for an experiment with all small blocks, a variance estimator of

the form

X ⌘
K

Â
k=1

ak
⇣
btk � bt(BK)

⌘2

for some collection of ak. We then wish to find non-negative ak’s that would make this

estimator as close to unbiased as possible. In particular, we aim to create an estimator with

similar bias to bs2
(SMALL/m) but that allows for blocks of varying size. That is, we are looking

to create a similarly conservative estimator that is unbiased when the average treatment

effect is constant across blocks. This also means that we are creating the minimally biased

114



conservative estimator of this form, without further assumptions.

The expected value of an estimator of this form is

E [X|S ]

=E

"
K

Â
k=1

ak
⇣
btk � tk,S + tk,S � tS + tS � bt(BK)

⌘2
|S
#

=E
h K

Â
k=1

ak
⇣
(btk � tk,S )

2 + (tk,S � tS )
2 +

⇣
tS � bt(BK)

⌘2

+ 2 (btk � tk,S ) (tk,S � tS ) + 2 (btk � tk,S )
⇣

tS � bt(BK)
⌘
+ 2 (tk,S � tS )

⇣
tS � bt(BK)

⌘ ⌘
|S
i

=
K

Â
k=1

ak

0

BBB@
var (btk|S) +E

h
(tk,S�tS )

2 |S
i
+E

⇣
tS�bt(BK)

⌘2
|S
�

| {z }
A

+2E
h
(btk�tk,S )

⇣
tS�bt(BK)

⌘
|S
i

| {z }
B

1

CCCA

For A:

E
h
(tS � bt(BK))2|S

i
= var

⇣
bt(BK)|S

⌘
=

K

Â
k=1

n2k
n2

var (btk|S)

For B:

E
h
(btk � tk,S )(tS � bt(BK))|S

i
= E

"

(btk � tk,S )
K

Â
j=1

nj

n
�
tj,S � btj

� ���S
#

= E

"
�nk

n
(btk � tk,S )

2 + (btk � tk,S ) Â
j 6=k

nj

n
�
tj,S � btj,S

� ���S
#

= �nk
n
var (btk|S)

Due to the assignment mechanism, btj will be independent of btk so the cross terms are all

zero in the above equation.

Putting A and B together, we get

E [X|S ] =
K

Â
k=1

akvar (btk|S) +
K

Â
k=1

ak (tk,S � tS )
2 +

K

Â
k=1

ak
K

Â
j=1

n2j
n2

var
�
btj|S

�

� 2
K

Â
k=1

ak
nk
n
var (btk|S)

=
K

Â
k=1

 
ak � 2ak

nk
n

+
n2k
n2

K

Â
j=1

aj

!
var (btk|S) +

K

Â
k=1

ak (tk,S � tS )
2
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We now select ak to make the above as close to the true variance as possible. The second

term will be small if the tk,S do not vary much. But this is unknown and thus we cannot

select universal ak to control it. We would like

ak � 2ak
nk
n

+
n2k
n2

K

Â
j=1

aj =
n2k
n2

so that the first term is the true variance. Then the second term, the bias, would be similar

to that of the standard matched pairs variance estimator.

If we solve the ak as above we will obtain a conservative estimator that is unbiased when

we have equal average treatment effect for all blocks, for the stratified sampling or finite

framework. To show this, consider the bias:
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2 . (A.2)

We know var (btk|S) � 0 for all k. We also have ÂK
k=1 ak (tk,S � tS )

2 � 0 so at a minimum

it is 0. This implies that to always be conservative, the first term in the above expression

must always be at least 0. Hence, to minimize the bias but remain conservative, we set

ak � 2ak nkn +
n2k
n2 ÂK

j=1 aj �
n2k
n2 = 0. Note that tk,S and tS are unknown and so we cannot

optimize with respect to them.

Denote C = ÂK
k=1 ak. Then we want to solve
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But then

C =
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Bigger strata get weighted more heavily.

As a check, in the case where the nk are all the same, so that n = Knk, the above

boils down to ak = 1
K(K�1) and C = 1

K�1 , giving us the classic matched pairs variance

estimator.

A.6.2 Proof of Theorem 1.4.4.1: Unbiasedness of bs2
(SMALL/p) given indepen-

dence

Proof. We start from the Equation A.2. As in Section A.6, let

X ⌘
K

Â
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⇣
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⌘2
.
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Then

E [X|S ] =
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Previously we were concerned with getting the first term correct. But in the Random

Sampling of Strata setting, the second term is trickier. This is especially the case if we have

large blocks and thus can estimate the first term. So first we focus on the second term.

Keeping the variance decomposition in mind, we ultimately want the expectation of this

second term to look like var(tS ).

As a reminder, the variance decomposition is

var(bt(BK)|F2) = E
h
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+ var

⇣
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i
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We assume, for simplicity, that the block sizes are independent from the treatment effects.

This implies that E[tk,S |F2] = t.

The expected value of the second term in this setting is
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Now consider the true variance, which we are trying to estimate.

var(tS |F2) = var
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We have the last equality because
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Matching this up with the expectation of our estimator, we want
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The first equation we solved for before in Section A.6. So we will get

ak =
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(n� 2nk)(n+ ÂK
j=1

n2j
n�2nj

)
.

Let’s see if this weight works for the second term.
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Which is exactly what we wanted. So this weight works. And because it is the same

as the weight for the finite sample (where we wanted to get the first term in the variance

decomposition correct), this also takes care of the first term in the variance decomposition.

The proof of this result for an infinite number of infinite size strata is direct by replacing

the conditioning on S by conditioning on B and using results from the stratified sampling

framework.

A.7 Creation of bs2
SRS, Equation (1.8)

First, we start with the basic variance decomposition to examine what we are trying to

estimate.
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(A.3)

Let’s examine S2(tc) so we can simplify term B.
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Letting ak = nk, we have
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This means that
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So we have a way to estimate term B of Equation A.3, which means we just need to add

in a correction to get term A.

K

Â
k=1

n2k
n2

 
S2k(c)
nc,k

+
S2k(t)
nt,k

!
�

K

Â
k=1

nk(n� nk)
n2(n� 1)

 
S2k(c)
nc,k

+
S2k(t)
nt,k

!

=
K

Â
k=1

nk(nk � 1)
n(n� 1)

 
S2k(c)
nc,k

+
S2k(t)
nt,k

!

Putting it all together, we have
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is an unbiased variance estimator.
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A.8 Derivations of blocking versus complete randomization dif-

ferences

Unless otherwise noted, the following section assumes that pk = p for all k = 1, . . . ,K.

A.8.1 Finite sample, Equation (1.11)

We start by deriving the result of Equation (1.11),
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We have from usual results (Imbens and Rubin, 2015, p. 89), in addition to independence

of treatment assignment within blocks and the assumption that pk = p for k = 1, ...,K, that
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To take the difference, we need to write the complete randomization variance in terms

of the block components. First we look at the expansion of S2(z):
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Now do the same for S2(tc):
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We have now split our calculation into the between block variation and within block

variation pieces.

A is the between block variation:

We need to expand ÂK
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So then
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B is the within block variation:
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To write this another way, note that

S2k(tc) =
1

nk � 1 Â
i:bi=k

�
ti � tf s,k

�2

=
1

nk � 1 Â
i:bi=k

h
(Yi(t)� Ȳk(t))
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So then
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So we get
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This allows us to see the similarity in the two terms.

A.8.2 Simple random sampling

The simple random sampling framework has two steps: First, obtain a random sample of

units for the experiment. Then, we form blocks. We assume there is a procedure for every

sample that clusters on the observed covariate matrix X to form blocks for the given sample.

The number and size of blocks can be sample dependent. Now think about the the “worst”

case, that this set of covariates, X, are actually independent of the potential outcomes. Then
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we have, assuming equal proportions treated in each block,
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Note that conditioning on X fixes the number of units in each block and number of

blocks, but potential outcomes are independent of this value of the covariates so we can

push the expectation through.

A.8.3 Proof of Theorem 1.5.0.1: Variance comparison under stratified sampling

Proof. First use decomposition of variance and then simplify using results from the deriva-

tion in Appendix A.8.1. Let µ(z) and s2(z) be the population mean and variance, respec-

tively, of the potential outcomes of all units under treatment z. Let µk(z) and s2
k (z) be

the population mean and variance of the potential outcomes of units in stratum k under

treatment z.
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We start with expectation of the numerators in term A:
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Putting A.1 and A.2 together and combining like terms:
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The expectation of B follows in a very similar manner, except now we have treated and

control units in the calculation.
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Putting A and B into Equation A.4 and simplifying:
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The variance in the last line is the variance over the blocks, as defined in Equation 1.12.

Therefore we have that var(bt(CR)|F1)� var(bt(BK)|F1) � 0 so we are always doing better

with blocking in this setting.

A.8.4 Stratified sampling vs SRS comparisons

Corollary A.8.4.1. The difference between var(bt(CR)|SRS)� var
⇣
bt(CR)|F1

⌘
may be positive or

negative.

Proof. Compare the previous result to when we assume SRS for complete randomization
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and F1 for blocked randomization.
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A form of this result can be found in Imbens (2011).

We can then take the difference, var(bt(CR)|SRS)� var
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⌘
, between the results

under the two frameworks to see whether using different sampling frameworks over or

under estimates the benefits of blocking. First consider the form of the variance under the

two different models.
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For A we can use similar techniques from previous proofs to break the pieces up by

block:
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For B we can split up by block and then use classical results from sampling theory on

variation of sample means under SRS (Lohr, 2009, Chapter 2).
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Putting A and B together and collecting similar terms, we have
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We see that this difference could be positive or negative. In particular, if the blocks all

have the same average treatment effect but different control and treatment means, then this

expression will be negative, indicating that comparing the variance of blocking under F1

to complete randomization under SRS is an underestimate of the benefits of blocking. On

the other hand, if nc and nt are large compared to the variation of block average control

and treatment outcomes, then we would expect the negative terms in the first expression

to be small, resulting in the difference being positive. This would mean that there is an

overestimate of the benefits of blocking when comparing the variance of blocking under F1

to complete randomization under SRS.

If we have nc and nt large so nc�1
nc ⇡ 1 ⇡ nt�1

nt then we have
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A.8.5 Variance comparison under sampling of infinite size blocks

We onsider an infinite number of blocks of infinite size. Then the difference between

the variance under the completely randomized design and the blocked design under this

framework is

var
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Hence, making the population from which units in the blocks are sampled infinite guarantees

that blocking is always beneficial or at least not harmful in terms of variance compared to

complete randomization.

A.8.6 Unequal treatment proportions

Our comparison of complete randomization to blocking in Chapter 1 only applies to the

small slice of possible experiments in which the treatment proportion is equal across all

blocks. In practice, however, the proportion treated, pk, may be unequal across blocks,

and in this case the above results are not guaranteed to hold. In particular, with blocks of

variable size, it can be difficult to have the same proportion treated within each block due to

the discrete nature of units.

With varying pk, the units within each block are weighted differently than they would

be in a complete randomization when calculating a treatment effect estimate. That is,

in a complete randomization, the treated units are all weighted proportional to 1/p but

here the treated units in each block get weighted instead by 1/pk, meaning units with

low probability of treatment will “count more” towards the overall treatment mean and

their variability will have greater relevance for the overall variance of the estimator. Sävje

(2015) also noted the effect of variable proportions treated on variance and Higgins et al.

(2015) explored estimators for blocked designs with possibly unequal treatment proportions,

but also multiple treatments. The costs here are similar to the costs of variable selection

probabilities in survey sampling (see Särndal et al., 2003).
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When different blocks have different proportions of units treated, it is possible to

systematically have blocks and treatment groups with more variance to also have more

weight, which could cause blocking to be harmful even in the stratified sampling setting.

Theorem A.8.6.1 (Variance comparison with unequal treatment proportions).
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Proof. Let the proportion of units treated in a complete randomization be p and in block

randomization be pk for block k. Again, we need to break the complete randomization

variance into block components. For the finite sample, the complete randomization variance,

from Appendix A.8.1 is
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For block randomization, the variance is
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Then the difference is

var
⇣
bt(CR)|S

⌘
� var

⇣
bt(BK)|S

⌘

=
K

Â
k=1


(1� pk)(nk � 1)n� (1� p)nk(n� 1)

(1� pk)(1� p)n2(n� 1)
S2k(c) +

pk(nk � 1)n� pnk(n� 1)
pkpn2(n� 1)

S2k(t)
�

+
K

Â
k=1


n� nk

(n� 1)n2
S2k(tc)

�
+

ÂK
k=1 nk
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For the stratified random sampling (F1), we use results from the proof in Appendix

A.8.3 and the above derivation, and combine like terms to get
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More details on the derivation can be given upon request.

This can also be written as
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(A.5)

The first term in Equation A.5 is equal to the result in Proposition 1.5.0.1 and the second

term, capturing the additional variability due to varying proportions, is zero when pk = p

for all k. In general, the second term of Equation A.5 can be positive or negative.
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In particular, if by some bad luck, ppks2
k (c) > (1� p)(1� pk)s2

k (t) for all blocks where

pk > p and ppks2
k (c) < (1� p)(1� pk)s2

k (t) for all blocks where pk < p, this term will

be negative. If, in this case, the population mean potential outcomes for all blocks are

approximately equal, the entire expression will be negative. The two terms are of the

same order with respect to sample size n, making comparison easier. If pk ⇡ p then the

second term should not be too large. In small blocks, where one unit more in treatment or

control can dramatically change the proportion of treated units, we would expect unequal

proportions to have more of an impact.

A.9 Proofs of consequences of ignoring blocking

A.9.1 Proof of Theorem A.2.0.1

Proof. We perform a block randomization but then use the variance estimator from a com-

plete randomization, s2(c)
nc + s2(t)

nt . We will condition on Pblk, the assignment mechanism being

blocked randomization, throughout to make this clear. For the finite sample framework, the

true variance would still be
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⌘2

=
1

nz � 1

K

Â
k=1

Â
i:Zi=z,bi=k

h
(Yi(z)� Ȳk(z))

2 + 2 (Yi(z)� Ȳk(z))
⇣
Ȳk(z)� Ȳobs(z)

⌘

+
⇣
Ȳk(z)� Ȳobs(z)

⌘2 i

=
1

nz � 1

h K

Â
k=1

Â
i:Zi=z,bi=k

(Yi(z)� Ȳk(z))
2

| {z }
A

+2
K

Â
k=1

nz,k
⇣
Ȳobs
k (z)� Ȳk(z)

⌘ ⇣
Ȳk(z)� Ȳobs(z)

⌘

| {z }
B

+
K

Â
k=1

nz,k
⇣
Ȳk(z)� Ȳobs(z)

⌘2

| {z }
C

i
.

Now expand and take the expectation of each term separately. We start with A and note

that E [IZi=z|Pblk] is the same for all units because the proportion treated is assumed to be

the same in all blocks.

E

"
K

Â
k=1

Â
i:Zi=z,bi=k

(Yi(z)� Ȳk(z))
2 |S ,Pblk

#
= E

"
K

Â
k=1

Â
i:bi=k

IZi=z (Yi(z)� Ȳk(z))
2 |S ,Pblk

#

=
K

Â
k=1

E [IZi=z|Pblk] (nk � 1)S2k(z)

Now B,
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E

"
K

Â
k=1

nz,k
⇣
Ȳobs
k (z)� Ȳk(z)

⌘ ⇣
Ȳk(z)� Ȳobs(z)

⌘
|S ,Pblk

#

= E

"
K

Â
k=1

nz,k
⇣
Ȳobs
k (z)Ȳk(z)� Ȳk(z)2 + Ȳk(z)Ȳobs(z)� Ȳobs

k (z)Ȳobs(z)
⌘
|S ,Pblk

#

= E

"
K

Â
k=1

nz,k
⇣
Ȳk(z)Ȳobs(z)� Ȳobs

k (z)Ȳobs(z)
⌘
|S ,Pblk

#

= nz
⇣
Ȳ(z)2 �E

h
Ȳobs(z)2|S ,Pblk

i⌘

= nz
⇣
�var

⇣
Ȳobs(z)|S ,Pblk

⌘⌘

= �nz
K

Â
k=1

n2k
n2

var
⇣
Ȳobs
k (z)|S ,Pblk

⌘

= �nz
K

Â
k=1

n2z,k
n2z

nk � nz,k
nk

S2k(z)
nz,k

= �
K

Â
k=1

nz,k
nz

(1�E [IZi=z|Pblk, bi = k]) S2k(z).

Now C,

E

"
K

Â
k=1

nz,k
⇣
Ȳk(z)� Ȳobs(z)

⌘2
|S
#

=
K

Â
k=1

nz,kȲk(z)2 � 2nzȲ(z)2 + nzE
h
Ȳobs(z)2|S ,Pblk

i

=
K

Â
k=1

nz,kȲk(z)2 � 2nzȲ(z)2 + nzvar
⇣
Ȳobs(z)|S ,Pblk

⌘
+ nzE

h
Ȳobs(z)|S ,Pblk

i2

=
K

Â
k=1

nz,kȲk(z)2 � nzȲ(z)2 +
K

Â
k=1

nz,k(1�E [IZi=z|Pblk])
nz

S2k(z).

Putting it all back together,
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E
⇥
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K

Â
k=1

nz,k
nz

(1�E [IZi=z|Pblk]) S2k(z)

+
K

Â
k=1
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i
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✓
nk
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n(nz � 1)
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1
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K

Â
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So then the bias is
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1
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K

Â
k=1

nk
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�
 

K
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n� nk
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S2k(c) +
K

Â
k=1

n� nk
n2(nt � 1)

S2k(t)�
K

Â
k=1

nk
n2

S2k(tc)

!

If there is no variation between the blocks (i.e. Ȳk(z) = Ȳ(z) for all k) but there is within

block variability (i.e. S2k(z) 6= 0) then this difference will be negative. The reduction is

blunted, however, by the degree of treatment variation there is within block (making S2k(tc)

offset the negative term from the S2k(z)).
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A.9.2 Proof of Corollary A.2.0.1

Proof. We start from the result of Appendix A.9.1 and utilize work done in Appendix A.8.3

to simplify things.

E


E
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|S ,Pblk
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=E

"
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Now to get the bias we have
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Appendix B

Appendix to Chapter 2

B.1 Proofs

of Theorem 2.3.1.1. Let W be the set of values that w(Z) can take for Z 2 Zh0 . Let H(Z) =

hw(Z). Then

Ph0

⇢
t 2 C(t̂(Z);H(Z))

�
= Â

z2Zh0

Ph0(Z = z)1{t 2 C(t̂(z);H(z))}

= Â
z2Zh0

Â
x2W

Ph0(Z = z|w(Z) = x)Ph0(w(Z) = x)1{t 2 C(t̂(z);H(z))}

= Â
x2W

Ph0(w(Z) = x) Â
z:w(z)=x

Ph0(Z = z|w(Z) = x)1{t 2 C(t̂(z); hx)}

= Â
x2W

Ph0(w(Z) = x) Â
z:w(z)=x

Phx(Z = z)1{t 2 C(t̂(z); hx)}

� Â
x2W

Ph0(w(Z) = x)g

� g

which concludes the proof. The second to last step comes from Proposition 2.2.3.1:

Â
z:w(z)=x

Phx(Z = z)1{t 2 C(t̂(z); hx)} = Phx

✓
t 2 C(t̂(Z); hx)

◆
= g.

of Corollary 2.3.1.1. We have P = {Z (1), . . . ,Z (K)} a partition of the set of all possible
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assignments, Zh0 and

w(Z) =
K

Â
k
k1{Z 2 Z (k)}.

Then

Ph0(w(Z) = k) = h0(Z (k)).

We have

Ph0(Z | w(Z) = k) =

8
><

>:

h0(Z)
h0(Z (k))

if Z 2 Z (k)

0 otherwise

= hk(Z).

Hence H : Z ! hw(Z) leads to an h0-valid procedure, as a consequence of Theorem 2.3.1.1.

of Probability 1 for Rerandomized As-if Design. We have that Xi is continuous for each i. For

example, Xi could be normally distributed. So for any random finite population and any

fixed vector a with ith entry ai,

P(
n

Â
i=1

aiXi = 0) = 0.

The difference in covariate means (balance) is

DX(Z) =
1
N1

n

Â
i=1

ZiXi �
1

N � N1

n

Â
i=1

(1� Zi)Xi =
n

Â
i=1

✓
Zi
N1

� 1� Zi
N � N1

◆
Xi.

The difference in the imbalance between assignment Z and Z
0 is

DX(Z)� DX(Z
0) =

n

Â
i=1

✓
Zi � Z0

i
N1

� Z0
i � Zi

N � N1

◆
Xi =

✓
1
N1

� 1
N � N1

◆ n

Â
i=1

(Zi � Z0
i)Xi.

Let ai =
⇣

1
N1

� 1
N�N1

⌘
(Zi � Z0

i). Then we have

P(DX(Z)� DX(Z
0) = 0) = 0.
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Hence,

P(DX(Z)� DX(Z
0) = 0 8Z0 6= Z)  Â

Z0 6=Z

P(DX(Z)� DX(Z
0) = 0) = 0.

This implies that for any random finite population, the probability of any given assignment

having the same covariate balance measure as another assignment is zero. Or, in other

words, with probability one each covariate balance is unique.

of Special Case of 0 Coverage for Rerandomized As-if Design. We now consider the special case

of Example 3, with strict inequality for the rerandomization. That is, we have an original

design of complete randomization and design map H : Z ! P(Z0|Z0 2 A(Z)) where

A(Z) = {Z0 : |DX(Z0)| < |DX(Z)|} is the set of assignments with covariate balance strictly

better than the observed covariate balance. Consider the special case where Yi(0) = Yi(1) =

Xi (i = 1, ...,N), so t = 0. In that case, we have t̂(Z) = DX(Z), and so for Z ⇠ h0,

8Z0 2 A(Z), |t̂(Z)| > |t̂(Z0)|.

In particular, 8Z 2 Zh0 , t̂(Z) 62 [La(H),Ua(H)], and thus

Ph0(t 2 C(t̂(Z);H(Z))) = Ph0(0 2 C(t̂(Z);H(Z)))

= Ph0(t̂ �Ua(H)  0  t̂ � La(H))

= Ph0(Ua(H) � t̂ � La(H))

= Ph0(t̂ 2 [La(H),Ua(H)])

= 0.

Hence, analyzing the experiment as if it came from a stricter rerandomized design, whose

non-inclusive maximal imbalance is the that of the observed assignment, leads to a coverage

of 0.
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of Theorem 2.4.0.1. We have

Ph0,m

⇢
t 2 C(t̂(Z);H(Z))

�
=
Z

p(w)
✓

Â
z2Zh0

Ph0(Z = z | w)1{t 2 C(t̂(z);H(z))}
◆
dw

=
Z

p(w)
✓

Â
z2Zh0

hw(z)1{t 2 C(t̂(z); hw)}
◆
dw

=
Z

p(w)Phw

✓
t 2 C(t̂(Z); hw)

◆
dw.

Again, the key is to notice that by Proposition 2.2.3.1, Phw

✓
t 2 C(t̂(Z); hw)

◆
� g. Hence,

Ph0,m

⇢
t 2 C(t̂(Z);H(Z))

�
=
Z

p(w)Phw

✓
t 2 C(t̂(Z); hw)

◆
dw

�
Z

p(w)(g) dw

= g,

which concludes the proof.

B.2 Estimators, Designs, and Practical Considerations

Our use of oracle procedures has allowed us to highlight the key mechanisms of conditioning,

but it has obscured a number of practical issues with constructing as-if analyses in real-world

applications, which we explore here.

First, an important note is that the estimators we should use may change based on the

design we use. For instance, in post-stratification we would use the blocking estimator,

which averages block treatment effect estimates, rather than the completely randomized

estimator. These two estimators are identical when the proportion treated within each

block is the same but otherwise the completely randomized estimator will be biased for the

post-stratified design. Although this is not an issue when we have an oracle, because it will

still correctly identify the distribution of t̂(Z)� t for any estimator t̂(Z), in practice we

would want to use unbiased estimators. Our validity result still holds even if we change

the estimator for each different blocked design. This validity holds because we will have
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conditional validity for each blocked design and therefore will be valid over the entire

completely randomized design. See proof of Theorem 2.3.1.1, which shows that we just need

conditional validity to get overall validity. But in practice, a full comparison of a conditional

and non-conditional analysis may require a comparison of relevant estimators as well.

An obvious challenge in the absence of an oracle is that we may not have good analytical

control over the randomization distribution of t̂ � t in the sense of being able to derive

and estimate quantities such as variance. For instance, we may have good control over the

distribution of t̂ � t under h0 but not under conditional design hw(Z), so that even though

Theorem 2.3.1.1 guarantees the theoretical validity of this conditional ‘as-if’ analysis, there

is no way to implement it in practice. Therefore, we will often want to choose an estimator

that has good properties, such as unbiasedness or low variance, under the conditional

distribution hw(Z), as we discuss in supplementary material B.2.

A more subtle issue is that in practice to construct confidence intervals we will typically

need to estimate variance and we often only have conservative estimators of the variance

and estimators of the variance will often be even more conservative for conditional analyses.

There may also be degrees of freedom losses under a conditional analysis, which may

occur in post-stratification for example. Thus, we may see situations in which a conditional

interval is smaller than the marginal interval under the oracle, but the estimated conditional

interval is larger than the marginal conditional interval. Therefore, in practice the theoretical

benefits of conditioning must be weighed against the drawbacks of excessively conservative

variance estimation.

Other questions of practical importance when discussing conditioning are what and how

much to condition on. The theory indicates that more is always better; the more variables

we condition on, the more relevant our analysis become. But, as we condition on more

information, the partition induced on the set of all assignments becomes increasingly fine.

In the extreme case, each element of the partition may contain a single assignment. This

poses a philosophical problem from the point of view of randomization-based inference

because there is no randomness left! This is not a problem under an oracle, which would

give us a single point at the true t in this case, but this precludes any analysis in practice.

If we cannot condition on everything, we must choose what to condition on, given
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multiple options. This is analogous to the well known fact in the frequentist literature that

many ancillary statistics may exist in a given inference problem, and that two ancillary

statistics may cease to be ancillary if taken jointly (Basu, 1964; Ghosh et al., 2010). Similarly,

one must choose how fine to make the conditioning. For instance, in our stochastic design

map example of Section 2.4, one must choose the bandwidth c of covariate closeness to use.

The simple but vague answer is that one should condition on the quantity, or few quantities,

that affect relevance the most, while remaining mindful of the analytical issues described

in the previous paragraph. See Liu and Meng (2016) for a more detailed discussion on the

trade-offs of relevance and robustness.

B.3 A simple example of relevance

B.3.1 Relevance and betting

First we review how the concepts of validity and relevance as formalized by Buehler (1959)

and Robinson (1979) is made visual by the concept of betting. We follow broadly the setup

of Buehler (1959), with some modifications to accommodate our notation. Consider a betting

game between two players:

1. Player 1 chooses a distribution h⇤, and a confidence level b. Intuitively, this corresponds

to the claim P(t 2 C(t̂(Z); h⇤)) = b.

2. Player 2 chooses a way to partition Z into sets A+ and A� to use betting strategy

S(A+, A�). Under this strategy, if Z is in A+ then Player 2 bets that t is covered by

the confidence interval based on Player 1’s distribution. If Z is in A� then Player 2

bets that t is not covered by the confidence interval. Formally this strategy is defined

as follows:

• If Z 2 A+, bet that t 2 C(t̂(Z); h⇤), risking b to win 1� b.

• If Z 2 A�, bet that t 62 C(t̂(Z); h⇤), risking 1� b to win b.
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The return of this game, for Player 2, is

R =

8
><

>:

1{t 2 C(t̂(Z); h⇤)}(1� b)� 1{t 62 C(t̂(Z); h⇤)}b if Z 2 A+

1{t 62 C(t̂(Z); h⇤)}b � 1{t 2 C(t̂(Z); h⇤)}(1� b) if Z 2 A�.

and the expected return is obtained by integrating over the design h. Define

b+ = P(t 2 C(t̂(Z); h⇤) | Z 2 A+)

and

b� = P(t 2 C(t̂(Z); h⇤) | Z 2 A�).

We then have

E(R) = {b+(1� b)� (1� b+)b}P(Z 2 A+) + {(1� b�)b � b�(1� b)}P(Z 2 A�)

= {b+ � b}P(Z 2 A+) + {b � b�}P(Z 2 A�).

We can cast the validity criteria defined in Section 2.2.3 in terms of this betting (Buehler

(1959) uses the term weak exactness). Consider the strategy S(Z ,∆), where Z is the set of

all assignments. Clearly, P(Z 2 A�) = P(Z 2 ∆) = 0 and P(Z 2 A+) = P(Z 2 Z) = 1.

Moreover, b+ = P(t 2 C(t̂(Z); h⇤) | Z 2 A+) = P(t 2 C(t̂(Z); h⇤)), so

E(R) = b+ � b = P(t 2 C(t̂(Z); h⇤))� b.

It is then easy to see that the expected return for this strategy is null if and only if the

confidence interval of Player 1 has the advertised coverage b,

E(R) = 0 , P(t 2 C(t̂(Z); h⇤)) = b,

which corresponds to our frequentist strict validity criterion. We state the following proposi-

tion:

Proposition B.3.1.1. The following assertions are equivalent:

1. The procedure C(t̂(Z); h⇤) is strictly valid (in the frequentist sense).

2. The expected return of strategy S(Z ,∆) is zero.
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3. The expected return of strategy S(∆,Z) is zero.

In order to better understand Proposition B.3.1.1, suppose that the choice of design h⇤

leads to an interval with coverage below the advertised level b. That is, such that

P(t 2 C(t̂(Z); h⇤)) < b.

Now consider the strategy S(∆,Z), we have

E(R) = b � P(t 2 C(t̂(Z); h⇤)) > 0

and so Player 2 can make money by betting against Player 1. It is easy to verify that if the

interval has coverage greater than advertised, the strategy S(Z ,∆) has positive return. The

general idea here is that if Player 1 truly believes his confidence assertion, he should be

willing to play against the strategies S(∆,Z) or S(Z ,∆).

One insight from the betting perspective is that the fact that the strategies S(Z ,∆) and

S(∆,Z) have zero expected return may not be stringent enough a criterion for procedures.

Suppose that the design h⇤ is such that the procedure C(t̂(Z); h⇤) has coverage probability

b, as advertised. Now suppose that there is a set of assignments A such that

P(t 2 C(t̂(Z); h⇤) | Z 2 A) = b⇤ > b.

The key question is the following: if the observed assignment Zobs 2 A, should Player 1

report the confidence b⇤ or b? This is equivalent to asking, if you have information based

on your observed assignment that you should expect better or worse coverage using the

standard method, should you use that information to determine your actual confidence

level? The betting framework offers one perspective on the problem. Consider the strategy

S(A,∆). The expected return is

E(R) = (b⇤ � b)P(Z 2 A) > 0.

So the strategy S(A,∆) leads to a positive expected gain, and Player 2 can make money off

of Player 1 by exploiting this strategy. Following the nomenclature in Buehler (1959), we

give a definition of relevance.

Definition 5. A subset of assignment A ⇢ Z is said to be relevant for the pair {C(t̂(Z); h⇤
Z), b}
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if either S(A,∆) or S(∆, A) have non-zero expected revenue. More generally a strategy S(A+, A�)

is said to be relevant if it has non-zero expected revenue.

This suggests that the existence of relevant strategies against {C(t̂(Z); h⇤
Z), b} is prob-

lematic for the procedure, even if the procedure is valid. In fact, the notion of relevance

relates to that of conditional validity.

Proposition B.3.1.2. The set A is not relevant for {C(t̂(Z); h⇤
Z), b} if and only if the procedure is

valid conditionally on A. That, is

ES(A,∆)(R) = 0 , ES(∆,A)(R) = 0 , P(t 2 C(t̂(Z); h⇤
Z) | Z 2 A) = b.

B.3.2 Simple example

Consider the usual causal inference setup with N units, assuming SUTVA. The design h

is Bernoulli, excluding Z =~1 and Z =~0. We consider the difference in means estimator t̂.

We assume a constant additive treatment effect such that for all i, Yi(1)�Yi(0) = t. Now,

conditional on N1 = k, this is a completely randomized experiment, and E(t̂ | N1 = k) = t.

The well known result for the variance of a completely randomized design yields

Var(t̂ | N1 = k) = V⇤
✓
1
k
+

1
N � k

◆

⌘ v(k)

where V⇤ is the sample variance of the potential outcomes under one treatment (which is

the same as under the other treatment due to additive treatment effect). The estimator is

also unbiased unconditionally E(t̂) = t but the unconditional variance becomes

Var(t̂) = E[Var(t̂ | N1)] +Var(E[t̂ | N1])

= E

V⇤
✓

1
N1

+
1
N0

◆�

= V⇤E
✓

1
N1

+
1

N � N1

◆

⌘ V
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where the expectation is with respect to the distribution of N1 induced by the design h. We

assume that we’ve reached the asymptotic regime, and so t̂ ⇠ N (t,V), where randomness

is induced by design h (see Li and Ding (2017) Section 6 for an argument for why the CLT

holds here). Consider the following confidence intervals:

C(t̂(Z); h) = [t̂ � 1.96
p
V, t̂ + 1.96

p
V].

By construction, we have P(t 2 C(t̂(Z); h)) = b = 0.95. There exist winning betting

strategies against this interval. Define K = {k : v(k) < V}. Note that we have:

v(k) < V , 1
k
+

1
N � k

< E
✓

1
N1

+
1

N � N1

◆

which doesn’t depend on V⇤. So K doesn’t depend on V⇤ either. Define A = {Z : N1 2 K},

and Ak = {Z : N1 = k}. Now notice that

P(t 2 C(t̂(Z); h)|N1 = k) = P(�1.96  t̂ � tp
v(k)

r
v(k)
V

 1.96 | N1 = k)

but t̂�tp
v(k)

|N1 = k ⇠ N (0, 1). And so

P(t 2 C(t̂(Z); h)|N1 = k) = P

 
�1.96

s
V

v(k)
 t̂ � tp

v(k)
 1.96

s
V

v(k)
| N1 = k

!

= F

 
1.96

s
V

v(k)

!
� F

 
�1.96

s
V

v(k)

!

= 1� 2F
✓
� 1.96

s
V

v(k)

◆

⌘ bk

Now the key is to notice the following:

Proposition B.3.2.1. For all k 2 K, we have

bk > b

and similarly, for all k 62 K, we have

bk  b

where the strictness in the first equation comes for the the strictness in the definition of K.
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With this in place it is easy to verify that S(A, Ac) is a relevant strategy. Indeed, if

N1 = k 2 K, we have

E(R | Z 2 Ak) = P(t 2 C(t̂(Z); h) | Z 2 Ak)(1� b)� P(t 62 C(t̂(Z); h) | Z 2 Ak)b

= bk � b

> 0

and so

E(R | Z 2 A) = Â
k2K

E(R | Z 2 Ak)P(Z 2 Ak|Z 2 A)

= Â
k2K

(bk � b)P(Z 2 Ak | Z 2 A)

> 0.

Similar derivations show that E(R | Z 2 Ac) > 0. And so

E(R) = E(R | Z 2 A)P(Z 2 A) + E(R | Z 2 Ac)P(Z 2 Ac)

> 0

which means that the strategy S(A, Ac) is relevant for the procedure {C(t̂(Z); h), b}.

B.4 Heuristic argument on relevance and power

In general, if we keep our estimators the same, a conditional analysis will not result in

higher precision or smaller confidence intervals than an unconditional one. This can

be seen through a simple heuristic argument concerning the variance of our estimators.

Although the mode of inference in this chapter does not rely strictly on the variance of our

estimators, considering the variance is a proxy for considering the length of the confidence

intervals. Consider restricting randomization by conditioning on some information about

the assignment given by random variable w. We have the following well known variance

decomposition: varh0(t̂) = Eh0 [varh0(t̂ | w)] + varh0(Eh0 [t̂ | w]). It is easy to see that if

Eh0 [t̂ | w] = t then varh0(t̂) = Eh0 [varh0(t̂ | w)]. This implies that on average, over the

distribution of w, the conditional, or restricted, variance is equal to the unconditional, or
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unrestricted, variance. This argument was made by Sundberg (2003) under a predictive

view. Sundberg (2003) argued for the use of conditioning for lowering the mean-squared

error of the predicted squared error for variance estimation. Of course, if we allow different

estimators to be used for the conditional and unconditional designs, we do not have such

guarantees and in fact may see a power gain through changing the estimator. For instance,

in post-stratification typically we use a stratified adjusted blocking estimator rather than the

simple difference in means estimator.
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Appendix C

Appendix to Chapter 3

C.1 Variance derivations

C.1.1 Variance and covariance of observed mean potential outcomes

This section gives results for the building blocks necessary to obtain results such as Equa-

tion 3.1 and Equation 3.4. We start with the variance and covariance of the treatment

indicators, which give results related to those in Lemma 1 and 2 of Dasgupta et al. (2015).

For i 6= k,

Cov
�
Wi(zj),Wk(zj)

�
= E

⇥
Wi(zj)Wk(zj)

⇤
� E

⇥
Wi(zj)

⇤
E
⇥
Wk(zj)

⇤

= P(Wk(zh) = 1|Wi(zj) = 1)P(Wi(zj) = 1)�
n2j
n2

=
nj

n
nj � 1
n� 1

�
n2j
n2

=
nj(nj � n)
n2(n� 1)

.
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For i 6= k and j 6= h,

Cov
�
Wi(zj),Wk(zh)

�
= E

⇥
Wi(zj)Wk(zh)

⇤
� E

⇥
Wi(zj)

⇤
E [Wk(zh)]

= P(Wk(zh) = 1|Wi(zj) = 1)P(Wi(zj) = 1)�
njnh
n2

=
nh

n� 1
nj

n
�

njnh
n2

=
njnh

n2(n� 1)
.

These results can be used directly to get the variance of Ȳobs(zj) and covariance of

Ȳobs(zj) and Ȳobs(zh). See Lu (2016b) for proof.

C.1.2 Variance for fractional factorial design

This section gives details on the derivation of the variance of our estimators of factorial

effects under a fractional factorial design, as given in Equation 3.4. The proofs here are

similar to those given in Dasgupta et al. (2015) and Lu (2016b). We first breakdown S̃2k in

the same way that Dasgupta et al. (2015) and Lu (2016b) broke down S2k , to show that we

obtain similar results for the fractional case as the full factorial. Let g⇤kj be the jth element of

vector g⇤k .

S̃2k =
1

n� 1

n

Â
i=1

(t̃i(k)� t̃(k))2

=
1

n� 1

n

Â
i=1

2�2(K�p�1)
⇣
g
⇤T
k Y⇤i � g

⇤T
k Ȳ⇤

⌘2

=
1

n� 1
2�2(K�p�1)

n

Â
i=1

 
J0

Â
j=1

g⇤kj
⇣
Yi(z

⇤
j )� Ȳ(z⇤j )

⌘!2

= 2�2(K�p�1)

"
J0

Â
j=1

g⇤2kj S
2(z⇤j ) + Â

j
Â
h 6=j

g⇤kjg
⇤
khS

2(z⇤j , z
⇤
h)

#

Now we find the variance of bt⇤(k) in a proof analogous to that given for balanced
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factorial designs in Dasgupta et al. (2015) and for unbalanced factorial designs in Lu (2016b).

Var (bt⇤(k)) =
1

22(K�p�1) g
⇤T
k Var

⇣
Ȳ
obs
⇤

⌘
g
⇤
k

=
1

22(K�p�1)

"
J0

Â
j=1

g⇤2kj Var
⇣
Ȳobs(z⇤j )

⌘
+ Â

j
Â
h 6=j

g⇤kjg
⇤
khCov

⇣
Ȳobs(z⇤j ), Ȳ

obs(z⇤h)
⌘#

=
1

22(K�p�1)

"
J0

Â
j=1

n� n⇤j
nn⇤j

S2(z⇤j )�
1
n Â

j
Â
h 6=j

g⇤kjg
⇤
khS

2(z⇤j , z
⇤
h)

#

=
1

22(K�p�1)

J0

Â
j=1

 
n� n⇤j
nn⇤j

+
1
n

!
S2(z⇤j )�

1
n
S̃2k

=
1

22(K�p�1)

J0

Â
j=1

1
n⇤j

S2(z⇤j )�
1
n
S̃2k

C.1.3 Covariance for fractional factorial design

In this section we find the covariance between two factorial effect estimates from a fractional

factorial design. We again closely follow proofs from Dasgupta et al. (2015) and Lu (2016b),

showing that the same processes work in the fractional factorial case. First we breakdown

S̃2k,k0 .

S̃2k,k0 =
1

n� 1

n

Â
i=1

(t̃i(k)� t̃(k))
�
t̃i(k0)� t̃(k0)

�

=
1

n� 1
2�2(K�p�1)

n

Â
i=1

⇣
g
⇤T
k Y⇤i � g

⇤T
k Ȳ⇤

⌘ ⇣
g
⇤T
k0 Y⇤i � g

⇤T
k0 Ȳ⇤

⌘

=
1

n� 1
2�2(K�p�1)

n

Â
i=1

 
J0

Â
j=1

g⇤kj(Yi(z
⇤
j )� Ȳ(z⇤j ))

! 
J0

Â
j=1

g⇤k0 j(Yi(z
⇤
j )� Ȳ(z⇤j ))

!

= 2�2(K�p�1)

 
J0

Â
j=1

g⇤kjg
⇤
k0 jS

2(z⇤j ) + Â
j

Â
h 6=j

g⇤kjg
⇤
k0hS

2(z⇤j , z
⇤
h)

!

154



Cov
�
bt⇤(k), bt⇤(k0)

�
= 2�2(K�p�1)

g
⇤T
k Var

⇣
Ȳ
obs
⇤

⌘
g
⇤
k0

=
1

22(K�p�1)

h J0

Â
j=1

g⇤kjgk0 jVar
⇣
Ȳobs(z⇤j )

⌘

+ Â
j

Â
h 6=j

g⇤kjg
⇤
k0hCov

⇣
Ȳobs(z⇤j ), Ȳ

obs(z⇤h)
⌘ i

=
1

22(K�p�1)

"
J0

Â
j=1

n� n⇤j
nn⇤j

g⇤kjgk0 jS
2(z⇤j )�

1
n Â

j
Â
h 6=j

g⇤kjg
⇤
k0hS

2(z⇤j , z
⇤
h)

#

=
1

22(K�p�1)

"
J0

Â
j=1

 
n� n⇤j
nn⇤j

+
1
n

!
g⇤kjg

⇤
k0hS

2(z⇤j )

#
� 1

n
S̃2k,k0

=
1

22(K�p�1)

"
J0

Â
j=1

1
n⇤j

g⇤kjg
⇤
k0hS

2(z⇤j )

#
� 1

n
S̃2k,k0

=
1

22(K�p�1)

2

4 Â
j:g⇤kj=g⇤k0 j

1
n⇤j

S2(z⇤j )� Â
j:g⇤kj 6=g⇤k0 j

1
n⇤j

S2(z⇤j )

3

5� 1
n
S̃2k,k0

C.2 Relating linear regression estimators to Neyman estimators in

the fractional factorial design

This section gives a brief overview of a proof that the linear regression point estimates are

the same as the Neymanian estimates for the fractional factorial design. For proofs of these

results for the full factorial design, see Lu (2016b). The linear regression coefficient estimate

is

b̂ = (XT
X)�1

X
T
Y
obs,

where X is a n⇥ 2K�p matrix whose columns correspond to first an intercept, then include

the main effects, then the second order interactions not aliased with the main effects, and

so on such that no two columns are aliased. For instance, for the 23�1 design laid out

in Section 3.3, X would be a design matrix with a first column of 1’s and the rest of the

columns corresponding to levels of the first, second, and third factor. No interactions would

be included in this example because each of the two factor interactions is aliased with

a main effect and the three factor interaction is aliased with the intercept, which are all
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already included in the model. Thus the design looks a bit like the columns g⇤1 , g
⇤
2 , and g

⇤
3

of Table 3.2, but with repeated rows for each of the units assigned to the same treatment

combination. We need (XT
X)�1

X
T
X = I. Denote B = (XT

X)�1
X

T.

(BX)ij = bi· f j

where bi· is the ith row of B and f j is the jth column of XT. Using notation from Section 3.5.3,

let h⇤j be the jth row of G⇤T which is an expanded version of z⇤j which includes elements

for interactions and the intercept. Then f ji, the ith element of f j is h⇤kj, the jth element of h⇤k ,

where k is the treatment combination for the ith individual. It must be true that (BX)ii = 1

and (BX)ij = 0 for i 6= j. Consider letting the ith row of B be bi· =
1

2K�p (ñ�1 � fi)T where

ñ
�1 is the vector whose ith entry is 1

n⇤j
where j is number of the treatment combination that

the ith unit is assigned to (j = ÂJ0
k=1 kWi(zk)). Then we have

(BX)kk = bk· fk

=
1

2K�p (ñ
�1 � fk)

T
fk

=
1

2K�p (ñ
�1)T fk � fk

=
1

2K�p

J0

Â
j=1

Â
i:Wi(z⇤j )=1

1
n⇤j

=
1
J0 Â

j
1

= 1.
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For k 6= j

(BX)kj = bk· f j

=
1

2K�p (ñ
�1 � fk)

T
f j

=
1

2K�p (ñ
�1)T fk � f j

=
1

2K�p

J0

Â
s=1

1
n⇤s

Â
i:Wi(h⇤s )=1

h⇤skh
⇤
sj

=
1

2K�p

2

4 Â
s:h⇤sk=h⇤sj

1� Â
s:h⇤sk 6=h⇤sj

1

3

5

= 0.

So the kth row of B is 1
2K�p (ñ�1 � fk)T. This means that

b̂k =
⇣
(XT

X)�1
X

T
Y
obs
⌘

k

= (
1

2K�p ñ
�1 � fk)

T
Y
obs

=
1

2K�p

J0

Â
j=1

1
n⇤j

Â
i:Wi(z⇤j )=1

h⇤jkYi(h
⇤
j )

=
1

2K�p

J0

Â
j=1

h⇤jkY
obs(z⇤j )

=
1

2K�p g
⇤T
k Ȳ

obs

=
1
2
bt⇤(k).

So, indeed, the linear regression estimates are one half of the factorial effects.

Now let us consider the HC2 variance estimator. It has the form (MacKinnon and White,

1985)

dVarHC2( bb) =
⇣
X

T
X

⌘�1
X

T bWX

⇣
X

T
X

⌘�1

where bW = diag
⇣

êi
1�hii

⌘
with êi being the residual for observation i and hii being the ii value

of the hat matrix, X
�
X

T
X
��1

X
T. For discussion of this estimators in the single treatment

case and the factorial case, see Samii and Aronow (2012) and Lu (2016b), respectively. We

use similar ideas to those papers in the arguments below.
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If unit i was assigned to treatment z
⇤
k then the ith column of

�
X

T
X
��1

X
T is b·i =

1
2K�p

1
n⇤k
h
⇤T
k . We have

✓
X

⇣
X

T
X

⌘�1
X

T
◆
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n⇤k
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⇤
kh

⇤T
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1

2K�p
1
n⇤k

2K�p
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1
n⇤k

.

So then 1� hii = 1� 1
n⇤k

=
n⇤k�1
n⇤k

. This in turn means that

êi
1� hii

=
n⇤k
�
Yobs
i � Ȳobs(z⇤k )

�2

n⇤k � 1

Now we can solve for the whole expression of dVarHC2( bb). We focus on the diagonal

entries.

⇣
dVarHC2( bb)

⌘

kk
=

✓⇣
X

T
X

⌘�1
X

Tdiag
✓ êj
1� hjj

◆◆
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✓ êj
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2K�p ñ
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2K�p s1)
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Â
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n⇤j � 1

=
1

22(K�p) Â
j

1
n⇤j

s2(z⇤j )

where s1 is the vector of whose ith entry, given entry i is assigned treatment combination z
⇤
k ,

is (Yi(z⇤k )�Yi(z⇤k ))
2

n⇤k�1 . Thus, we have that
⇣
dVarHC2( bb)

⌘

kk
is 1/4 times the Neyman style variance

estimator.

158



C.3 Incomplete factorial Designs

C.3.1 Inference

This section discusses alternative incomplete factorial designs that one might use. See Byar

et al. (1993) for more discussion on incomplete factorial designs. This discussion also applies

more generally to recreating fractional designs in observational settings where we are using

a subset of treatment combinations present in the data. We follow the same outline as

proofs from Section C.1.2. In these incomplete factorial designs, for each main effect or

other estimand of interest, we define a new experimental design tailored to estimating that

effect. When this is done, we then analyze the data as if the treatment groups within the

new design are the only possible treatment groups.

First we need to introduce some notation. Let ġj be the same as gj but with zero elements

corresponding to treatment combinations that are not included in the particular design in

use. Let 2m treatment groups be used in the design, with half assigned to the +1 level of

factor one and half assigned to the �1 level of factor one. Let ṫ(k) = 2�(m�1)
ġ
T
k Ȳ . Then we

can do a breakdown Ṡ2k , defined in the first line below:
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1

n� 1

n

Â
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(ṫi(k)� ṫ(k))2

=
1

n� 1

n

Â
i=1

2�2(m�1)
⇣
ġ
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Â
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Â
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Then we have

Var
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1
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T
k Var
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Ȳ
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ġk

=
1

22(m�1)

"
J

Â
j=1
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1
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Ṡ2k .

An important note is that in terms of estimation of this variance, whether we analyze the

data as if the treatment levels in this design are the only possible treatment combinations or

if we keep the assumption that units can be assigned to any possible treatment combinations

(which aids in the interpretation and inference), the variance estimator will be the same.

This is because we can only estimate the first term in this expression which only involves

the specific treatment levels in this design.

C.3.2 Variance of estimators for incomplete factorial designs

Consider comparing two designs. The first involves J⇤ treatment groups and the second

involves J̃ < J⇤ treatment groups. Let’s assume that for all treatment groups nj = c and

S2(zj) = S2. That is, all treatment groups are the same size and effects are additive so that

the variance of potential outcomes in each treatment group is the same.

Then for the first design we have variance of

1
J⇤2

J⇤

Â
j

1
nj
S2(zj)�

1
n
S2k =

1
cJ⇤

S2.

For the second design we have

1
J̃2

J̃

Â
j

1
nj
S2(zj)�

1
n
S2k =

1
cJ̃
S2.

So in this setting the design with more treatment groups will have lower variance, which is
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intuitive. However, in general if we do not have the additive treatment effect assumption, it

is possible that the design with more treatment groups includes treatment groups that are

much more variable and therefore the variance of the estimator is actually larger.

C.3.3 Regression with missing levels

This section discusses what will result from a standard regression interacting all factors

when not all treatment combinations are observed in the data.

If the dataset is missing m treatment combinations, then the regression will be able to

estimate the first 2K �m effects (including interactions) that are not aliased and the rest will

be removed due to collinearity of the matrix columns. Then for each effect, there will be

some aliasing structure imposed but the same “design” will not necessarily be used for each

factor.

To explore this scenario more, let’s take the specific example of three factors where

we only observe five of the eight treatment combinations. For simplicity let there be one

observation for each treatment combination and let the model matrix be as follows:

X =

0

BBBBBBBBB@

1 �1 �1 +1 +1

1 �1 +1 �1 �1

1 +1 �1 �1 �1

1 +1 +1 +1 +1

1 �1 �1 �1 +1

1

CCCCCCCCCA

.

The first column corresponds to the intercept, the second through fourth columns give the

levels for the three factors, and the fifth column corresponds to the interaction between the

first and second factor. Note that the first four rows correspond to a 23�1 design, so it is

possible to recreate that design here.
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We have

⇣
X

T
X

⌘�1
X

T =

0

BBBBBBBBB@

0.25 0.25 0.25 0.25 0

�0.25 �0.25 0.25 0.25 0

�0.25 0.25 �0.25 0.25 0

0.5 0 0 0 �0.5

�0.25 �0.25 �0.25 0.25 0.5

1

CCCCCCCCCA

.

Recalling that b̂ =
�
X

T
X
��1

X
T
Y
obs, the first three columns correspond to estimates we

would get using the fractional factorial design using the defining relation I = 123. The

last two estimates, for factor 3 and the interaction between factors 1 and 2, have a different

aliasing structure. In particular, the aliasing on factor 3 is similar to aliasing structures in

Section 3.5.3 and we can find that factor 3 will be aliased with the two-factor interactions 13

and 23 as well as the three-factor interaction.

C.4 Data illustration

This section gives some additional descriptors for the data.

Figure C.1 shows that the proportion of farmers is different across the eight treatments

of the hypothetical fractional factorial experiment defined in Section 3.6.3.
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Figure C.1: Comparing number of farmers across factor levels in the 24�1 fractional factorial design. Text labels give
number of observations per group.

Figure C.2 shows the correlations between the levels of the different pesticides.

For each design, we explore regression (both saturated, i.e. with all interactions among
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factors, and unsaturated, i.e. without interactions among factors), regression with covariates

(both saturated and unsaturated for the factors), and Fisher tests for significance of effects.

We also include the HC2 standard error estimate for the saturated model without covariates,

where it is equivalent to the Neyman estimator, when possible. Note that all regression

outputs are using log BMI as output. An important note is that individuals with missing

values, either for factor levels, treatment levels, or covariates where they are used, were

removed. This action likely changes the types of individuals within the analysis and

therefore the generalizability of the results. However, as this is intended as simply an

illustration of the methods and not as a full analysis to draw substantive conclusions from,

this simple model suffices to allow us to continue with the analysis.
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Figure C.2: Plot of correlations between pesticide levels.

163



C.4.1 Full factorial design

Full factorial: Regression analysis

We start by ignoring our limited data and use a full 24 factorial approach. Table C.1 shows

an analysis with all factors and no interactions. Table C.2 shows the saturated model with all

interactions. Note that the individual who received treatment combination (�1, 1, 1,�1) has

leverage 1 because they are the only individual with that treatment combination. Because of

this data limitation, estimating variance using the HC2/Neyman variance estimator is not

possible for the saturated case. Also note that in the saturated model, the variance estimates

given in the linear model summary are all the same. This will be true of Neyman variance

estimates too, since they are the same for each factorial effect estimators. Note the changes

in significance of the estimator and even a change in sign for the estimate of beta-Hex going

from the model with just main effects to the saturated model.

Table C.1: All-pesticide model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.289 0.008 430.426 0.000
beta-Hex -0.001 0.008 -0.067 0.946

Hept Epox 0.062 0.007 9.201 0.000
Mirex -0.027 0.006 -4.709 0.000

p,p’-DDT 0.020 0.008 2.595 0.010

Full factorial: Regression analysis adjusting for covariates

This section gives the analysis of the full factorial design, adjusting for the covariates of

income, ethnicity, gender and smoking status as linear factors in the model. For simplicity,

we remove all individuals who had missing values for income or ethnicity, and assume

that those values are missing at random. This resulted in 75 units being removed. In

practice one should instead use multiple imputation to account for the missing values. One

individual refused to give income (the only such individual) and so was removed. This did

not affect the analysis. The unit assigned to the unique treatment combination, necessarily

had leverage one in the saturated model. This baseline level for income in the analysis was

“$0 to $4,999.” Baseline for ethnicity is “Mexican American.”
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Table C.2: Saturated model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.276 0.015 224.028 0.000
beta-Hex 0.010 0.015 0.713 0.476

Hept Epox 0.038 0.015 2.605 0.009
Mirex -0.050 0.015 -3.445 0.001

p,p’-DDT 0.025 0.015 1.699 0.090
beta-Hex:Hept Epox 0.012 0.015 0.830 0.407

beta-Hex:Mirex 0.007 0.015 0.456 0.649
Hept Epox:Mirex -0.037 0.015 -2.515 0.012

beta-Hex:p,p’-DDT -0.008 0.015 -0.569 0.569
Hept Epox:p,p’-DDT 0.011 0.015 0.779 0.436

Mirex:p,p’-DDT 0.015 0.015 1.016 0.310
beta-Hex:Hept Epox:Mirex 0.026 0.015 1.790 0.074

beta-Hex:Hept Epox:p,p’-DDT 0.007 0.015 0.500 0.617
beta-Hex:Mirex:p,p’-DDT 0.003 0.015 0.179 0.858

Hept Epox:Mirex:p,p’-DDT 0.014 0.015 0.969 0.333
beta-Hex:Hept Epox:Mirex:p,p’-DDT -0.004 0.015 -0.257 0.797
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Figure C.3: Basic diagnostics plot for the full model given in Table C.1.
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Figure C.4: Basic diagnostics plot for the saturated model given in Table C.2. Note that the individual with unique
treatment combination had leverage 1.

Full factorial: Fisherian analysis

We assume the sharp null hypothesis of zero individual factorial effects, for all factors and

interactions. This means that imputed missing potential outcomes for different assignments

are just the observed potential outcomes. We do the imputation, or effectively rearrange the

assignment vector, 1000 times.

As we can see from the plots and confirmed by calculation, only heptachlor epoxide

(Hept Epox) and mirex appear to be significantly different from zero at the 0.05 level. We

only examine the main effects here but could further consider interactions.
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Table C.3: All-pesticide model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.302 0.047 70.165 0.000
beta-Hex 0.001 0.008 0.070 0.944

Hept Epox 0.064 0.007 9.413 0.000
Mirex -0.031 0.006 -5.240 0.000

p,p’-DDT 0.019 0.008 2.452 0.014
Income:$ 5,000 to $ 9,999 -0.005 0.051 -0.108 0.914
Income:$10,000 to $14,999 -0.016 0.049 -0.332 0.740
Income:$15,000 to $19,999 0.022 0.049 0.445 0.657
Income:$20,000 to $24,999 0.011 0.048 0.228 0.820
Income:$25,000 to $34,999 -0.014 0.047 -0.287 0.774
Income:$35,000 to $44,999 -0.002 0.048 -0.037 0.971
Income:$45,000 to $54,999 0.000 0.049 0.002 0.999
Income:$55,000 to $64,999 0.000 0.050 0.009 0.993
Income:$65,000 to $74,999 0.011 0.052 0.206 0.837
Income:$75,000 and Over -0.004 0.046 -0.091 0.928

Income:Don’t know -0.168 0.142 -1.188 0.235
Income:Over $20,000 0.033 0.081 0.404 0.686

Ethnicity:Non-Hispanic Black 0.068 0.019 3.612 0.000
Ethnicity:Non-Hispanic White -0.023 0.015 -1.514 0.130

Ethnicity:Other Hispanic -0.022 0.033 -0.678 0.498
Ethnicity:Other Race

- Including Multi-Racial -0.055 0.029 -1.912 0.056

Gender:Male -0.005 0.012 -0.405 0.686
Smoker: Yes -0.011 0.011 -0.930 0.353
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Table C.4: Saturated model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.291 0.049 67.583 0.000
beta-Hex 0.011 0.015 0.766 0.444

Hept Epox 0.044 0.015 3.047 0.002
Mirex -0.054 0.015 -3.698 0.000

p,p’-DDT 0.025 0.014 1.700 0.089
beta-Hex:Hept Epox 0.011 0.014 0.734 0.463

beta-Hex:Mirex 0.003 0.014 0.218 0.828
Hept Epox:Mirex -0.039 0.015 -2.651 0.008

beta-Hex:p,p’-DDT -0.011 0.015 -0.724 0.469
Hept Epox:p,p’-DDT 0.009 0.015 0.639 0.523

Mirex:p,p’-DDT 0.015 0.014 1.014 0.311
beta-Hex:Hept Epox:Mirex 0.028 0.014 1.927 0.054

beta-Hex:Hept Epox:p,p’-DDT 0.004 0.015 0.270 0.787
beta-Hex:Mirex:p,p’-DDT 0.005 0.015 0.371 0.711

Hept Epox:Mirex:p,p’-DDT 0.011 0.015 0.773 0.440
beta-Hex:Hept Epox:Mirex:p,p’-DDT –0.002 0.014 -0.114 0.909

Income:$ 5,000 to $ 9,999 0.003 0.050 0.060 0.952
Income:$10,000 to $14,999 -0.016 0.048 -0.329 0.743
Income:$15,000 to $19,999 0.028 0.049 0.576 0.565
Income:$20,000 to $24,999 0.007 0.048 0.136 0.891
Income:$25,000 to $34,999 -0.011 0.047 -0.232 0.816
Income:$35,000 to $44,999 0.001 0.048 0.024 0.980
Income:$45,000 to $54,999 -0.001 0.049 -0.011 0.991
Income:$55,000 to $64,999 0.001 0.050 0.010 0.992
Income:$65,000 to $74,999 0.010 0.052 0.196 0.844
Income:$75,000 and Over -0.003 0.046 -0.073 0.942

Income:Don’t know -0.159 0.141 -1.127 0.260
Income:Over $20,000 0.039 0.081 0.488 0.626

Ethnicity:Non-Hispanic Black 0.067 0.019 3.571 0.000
Ethnicity:Non-Hispanic White -0.023 0.015 -1.505 0.133

Ethnicity:Other Hispanic -0.026 0.033 -0.792 0.429
Ethnicity:Other Race

- Including Multi-Racial -0.057 0.029 -1.971 0.049

Gender:Male -0.002 0.012 -0.133 0.894
Smoker:Yes -0.014 0.011 -1.215 0.225
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Figure C.5: Basic diagnostics plot for the full model given in Table C.3.
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Figure C.6: Basic diagnostics plot for the saturated model given in Table C.4. Note that the individual with unique
treatment combination had leverage 1.
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C.4.2 Fractional factorial design

Fractional factorial: Regression analysis

This section gives the analysis of the fractional factorial design as is, using regression. Note

that we remove farmers again, leaving 523 observations. Table C.5 shows an analysis with

all factors and no interactions. Table C.6 shows the saturated model with all interactions.

These results generally align with the full factorial analysis, in terms of sign and significance

of terms. Figures C.8 and C.9 show basic diagnostic plots for the model with all main effects

and the saturated model. Note again that it makes sense that the standard errors estimates

are the same for all estimates in the saturated model because the same groups are being

used to calculate them.

Table C.5: All-pesticide model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.283 0.013 257.366 0.000
beta-Hex 0.007 0.012 0.570 0.569

Hept Epox 0.046 0.011 4.232 0.000
Mirex -0.053 0.011 -4.673 0.000

p,p’-DDT 0.007 0.011 0.578 0.563

Table C.6: Saturated model

Estimate Std. Error HC2 t value Pr(>|t|)
(Intercept) 3.279 0.013 0.013 249.551 0.000
beta-Hex -0.004 0.013 0.013 -0.284 0.776

Hept Epox 0.035 0.013 0.013 2.699 0.007
Mirex -0.058 0.013 0.013 -4.389 0.000

p,p’-DDT -0.001 0.013 0.013 -0.102 0.919
beta-Hex:Hept Epox -0.003 0.013 0.013 -0.207 0.836

beta-Hex:Mirex -0.005 0.013 0.013 -0.359 0.720
Hept Epox:Mirex -0.028 0.013 0.013 -2.165 0.031
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Figure C.8: Basic diagnostics plot for the saturated model given in Table C.5.

Fractional factorial: Regression analysis adjusting for covariates

This section gives the analysis of the fractional factorial design, adjusting for the covariates

of income, ethnicity, gender and smoking status as linear factors in the model. We again

removed units who were missing values for income or race, reducing the sample size by 34.

One unit replied “Don’t know” for income so this unit was removed. This did not affect the

analysis.
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Figure C.9: Basic diagnostics plot for the saturated model given in Table C.6.

Fractional factorial: Fisherian analysis

Once again, only heptachlor epoxide (Hept Ex) and mirex appear to be significantly different

than zero at the 0.05 level.
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Table C.7: All-pesticide model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.332 0.074 44.845 0.000
beta-Hex 0.008 0.012 0.682 0.495

Hept Epox 0.047 0.011 4.304 0.000
Mirex -0.052 0.012 -4.464 0.000

p,p’-DDT 0.006 0.011 0.487 0.626
Income:$ 5,000 to $ 9,999 -0.079 0.083 -0.949 0.343
Income:$10,000 to $14,999 -0.066 0.077 -0.867 0.387
Income:$15,000 to $19,999 -0.060 0.078 -0.775 0.439
Income:$20,000 to $24,999 -0.031 0.077 -0.398 0.691
Income:$25,000 to $34,999 -0.027 0.076 -0.353 0.724
Income:$35,000 to $44,999 -0.014 0.076 -0.181 0.856
Income:$45,000 to $54,999 -0.036 0.076 -0.470 0.639
Income:$55,000 to $64,999 -0.001 0.080 -0.017 0.986
Income:$65,000 to $74,999 -0.017 0.080 -0.216 0.829
Income:$75,000 and Over -0.048 0.073 -0.660 0.510

Income:Over $20,000 -0.022 0.118 -0.190 0.849
Ethnicity:Non-Hispanic Black 0.064 0.030 2.149 0.032
Ethnicity:Non-Hispanic White -0.015 0.023 -0.667 0.505

Ethnicity:Other Hispanic -0.025 0.051 -0.502 0.616
Ethnicity:Other Race

- Including Multi-Racial -0.040 0.043 -0.930 0.353

Gender:Male -0.000 0.019 -0.014 0.989
Smoker:Yes -0.016 0.018 -0.888 0.375
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Table C.8: Saturated model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.331 0.074 44.901 0.000
beta-Hex -0.001 0.014 -0.075 0.941

Hept Epox 0.037 0.013 2.794 0.005
Mirex -0.057 0.014 -4.212 0.000

p,p’-DDT -0.002 0.013 -0.113 0.910
beta-Hex:Hept Epox -0.005 0.013 -0.406 0.68

beta-Hex:Mirex -0.007 0.013 -0.545 0.586
Hept Epox:Mirex -0.027 0.013 -2.027 0.043

Income:$ 5,000 to $ 9,999 -0.086 0.083 -1.035 0.301
Income:$10,000 to $14,999 -0.076 0.077 -0.995 0.320
Income:$15,000 to $19,999 -0.064 0.077 -0.831 0.406
Income:$20,000 to $24,999 -0.045 0.077 -0.583 0.560
Income:$25,000 to $34,999 -0.031 0.076 -0.407 0.684
Income:$35,000 to $44,999 -0.023 0.076 -0.308 0.758
Income:$45,000 to $54,999 -0.046 0.076 -0.606 0.545
Income:$55,000 to $64,999 -0.013 0.080 -0.162 0.872
Income:$65,000 to $74,999 -0.027 0.080 -0.336 0.737
Income:$75,000 and Over -0.056 0.073 -0.759 0.448

Income:Over $20,000 -0.028 0.117 -0.238 0.812
Ethnicity:Non-Hispanic Black 0.071 0.030 2.360 0.019
Ethnicity:Non-Hispanic White -0.010 0.023 -0.451 0.652

Ethnicity:Other Hispanic -0.025 0.051 -0.494 0.621
Ethnicity:Other Race

- Including Multi-Racial -0.041 0.042 -0.965 0.335

Gender:Male 0.003 0.019 0.139 0.889
Smoker:Yes -0.016 0.018 -0.882 0.378
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Figure C.10: Basic diagnostics plot for the saturated model given in Table C.7.
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Figure C.11: Basic diagnostics plot for the saturated model given in Table C.8.
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Figure C.12: Plots of simulated treatment effects estimated. Observed treatment effect estimates plotted in red.
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C.4.3 Fractional factorial with covariate adjustment

169 units are retained after trimming.

Fractional factorial with covariate adjustment: Regression analysis

This section gives the analysis of the fractional factorial design after trimming to attain

balance, using regression. Table C.9 shows an analysis with all factors and no interactions.

Table C.10 shows the saturated model with all interactions. Figures C.13 and C.14 show

basic diagnostic plots for the model with all main effects and the saturated model.

Table C.9: All-pesticide model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.282 0.020 167.246 0.000
beta-Hex 0.041 0.020 2.053 0.042

Hept Epox 0.032 0.018 1.779 0.077
Mirex -0.075 0.018 -4.127 0.000

p,p’-DDT -0.006 0.020 -0.327 0.744

Table C.10: Saturated model

Estimate Std. Error HC2 std t value Pr(>|t|)
(Intercept) 3.282 0.022 0.027 149.359 0.000
beta-Hex 0.038 0.022 0.027 1.719 0.088

Hept Epox 0.034 0.022 0.027 1.534 0.127
Mirex -0.077 0.022 0.027 -3.515 0.001

p,p’-DDT -0.008 0.022 0.027 -0.383 0.703
beta-Hex:Hept Epox -0.007 0.022 0.027 -0.299 0.765

beta-Hex:Mirex -0.003 0.022 0.027 -0.115 0.908
Hept Epox:Mirex -0.006 0.022 0.027 -0.264 0.792

Fractional factorial with covariate balance: Regression analysis adjusting for covariates

This section gives the analysis on the trimmed data set adjusting for ethnicity, income,

gender, and smoking status as linear factors in the regression. Figures C.15 and C.16 shows

the balance across treatment groups for income and ethnicity after trimming, indicating

further need to adjust. We see from Figure 3.2 that gender and smoking also require further

adjustment, even after trimming.
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Figure C.13: Basic diagnostics plot for the saturated model given in Table C.9.
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Figure C.14: Basic diagnostics plot for the saturated model given in Table C.10.
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Figure C.15: Balance of ethnicity in the different treatment groups after matching.
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Figure C.16: Balance of income in the different treatment groups after matching.

Units who had missing values for income or ethnicity were removed, which reduced the

sample size by 9. We found that two units had unique income values of “Over $20,000” and

“0 to $4,999”. These units were removed. This changes the baseline level for income in the

analysis from “$0 to $4,999” to “$5,000 to $9,999.”
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Table C.11: All-pesticide model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.292 0.086 38.110 0.000
beta-Hex 0.037 0.021 1.759 0.081

Hept Epox 0.047 0.019 2.509 0.013
Mirex -0.060 0.020 -3.086 0.002

p,p’-DDT -0.008 0.021 -0.383 0.702
Income:$10,000 to $14,999-0.031 0.086 -0.360 0.720

Income:$15,000 to $19,999 -0.003 0.083 -0.038 0.970
Income:$20,000 to $24,999 -0.001 0.082 -0.014 0.989
Income:$25,000 to $34,999 -0.014 0.085 -0.160 0.873
Income:$35,000 to $44,999 0.069 0.088 0.777 0.439
Income:$45,000 to $54,999 0.039 0.088 0.445 0.657
Income:$55,000 to $64,999 0.059 0.087 0.675 0.501
Income:$65,000 to $74,999 -0.048 0.083 -0.577 0.565
Income:$75,000 and Over 0.015 0.075 0.202 0.840

Ethnicity:Non-Hispanic Black 0.059 0.047 1.251 0.213
Ethnicity:Non-Hispanic White 0.016 0.036 0.435 0.664

Ethnicity:Other Hispanic 0.056 0.082 0.677 0.499
Ethnicity:Other Race

- Including Multi-Racial -0.082 0.074 -1.109 0.269

Gender:Male -0.058 0.030 -1.952 0.053
Smoker:Yes -0.003 0.029 -0.087 0.930

Fractional factorial with covariate adjustment: Fisherian analysis.

In this analysis mirex is the only pesticide that appears to have a significant effect on BMI at

the 0.05 level.

184



Table C.12: Saturated model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.278 0.088 37.234 0.000
beta-Hex 0.033 0.023 1.459 0.1470

Hept Epox 0.042 0.022 1.892 0.061
Mirex -0.056 0.023 -2.428 0.017

p,p’-DDT -0.011 0.024 -0.461 0.645
beta-Hex:Hept Epox -0.006 0.023 -0.276 0.783

beta-Hex:Mirex -0.019 0.023 -0.844 0.400
Hept Epox:Mirex -0.014 0.023 -0.600 0.549

Income:$10,000 to $14,999 -0.035 0.088 -0.393 0.695
Income:$15,000 to $19,999 0.001 0.084 0.015 0.988
Income:$20,000 to $24,999 0.004 0.083 0.044 0.965
Income:$25,000 to $34,999 -0.008 0.086 -0.088 0.930
Income:$35,000 to $44,999 0.073 0.089 0.822 0.413
Income:$45,000 to $54,999 0.037 0.089 0.411 0.682
Income:$55,000 to $64,999 0.063 0.088 0.720 0.473
Income:$65,000 to $74,999 -0.049 0.084 -0.587 0.558
Income:$75,000 and Over 0.019 0.076 0.253 0.800

Ethnicity:Non-Hispanic Black 0.072 0.049 1.492 0.138
Ethnicity:Non-Hispanic White 0.022 0.037 0.598 0.551

Ethnicity:Other Hispanic 0.055 0.083 0.665 0.507
Ethnicity:Other Race

- Including Multi-Racial -0.090 0.075 -1.198 0.233

Gender:Male -0.055 0.030 -1.830 0.069
Smoker:Yes -0.005 0.030 -0.155 0.877
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Figure C.17: Basic diagnostics plot for the model given in Table C.11.
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Figure C.18: Basic diagnostics plot for the saturated model given in Table C.12.
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Figure C.19: Plots of simulated treatment effects estimated. Observed treatment effect estimates plotted in red.
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