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Defining the Roles of the Microtubule-Associated Protein TACC  

in Drosophila synapse development 

 

ABSTRACT 
 

The development of the synapse, the essential functional unit of the nervous system, is 

a highly regulated process underlying neuronal circuitry and plasticity. Following axon 

pathfinding, complex signaling networks coordinate development of precise connections 

between pre- and postsynaptic compartments to establish a stable junction. Among the major 

effectors of these signaling networks are the actin and microtubule (MT) cytoskeletons. Despite 

comprehensive studies of the neuronal cytoskeleton in the postsynaptic context, a molecular 

understanding of the presynaptic cytoskeleton is still developing, and presynaptic MTs remain 

particularly enigmatic. Pioneering studies at the Drosophila neuromuscular junction (NMJ) have 

revealed critical roles for several MT-associated proteins (MAPs); however, many outstanding 

questions remain, such as how MT assembly/stabilization are coupled to morphological 

changes, and the potential significance of plus-end dynamic instability at the synapse. 

 In my dissertation research, I have aimed to address these questions through studies of 

the MAP dTACC, a novel regulator of synaptogenesis in Drosophila. TACC-family proteins are 

primarily known for regulating spindle MTs in mitotic cells, but have also been studied in 

interphase systems, including non-synaptic neurons. Here, I report that presynaptic dTACC is a 

negative regulator of bouton addition, and therefore synapse expansion. Consistent with known 
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roles, dTACC localizes to the presynaptic MT lattice and is required to maintain the integrity of 

higher-order MT architecture in motor axon terminals. I furthermore describe the development of 

a live-imaging and automated analysis strategy to investigate the effect of dTACC on synaptic MT 

dynamics, and the resultant finding that dTACC regulates both pre- and postsynaptic plus-end 

dynamics. This is consistent with previously described roles for dTACC and moreover raises the 

possibility that dTACC acts as a plus-end tracking protein (+TIP) at the synapse. Taken together, 

these findings support a model of synaptogenesis where a precise equilibrium of NMJ expansion 

and restriction is modulated by changes to the underlying cytoskeleton, which is under the control 

of a complex network of MAPs and other factors. Future research will focus on elucidating the 

biochemical mechanisms underlying the function of synaptic dTACC as well as the roles of 

dTACC in the postsynaptic compartment.  
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Quod est inferius est sicut quod est superius. 

Et quod est superius est sicut quod est inferius, 

ad perpetranda miracula rei unius 

That which is below is like that which is above 

and that which is above is like that which is below 

to do ye miracles of one only thing. – Emerald Tablet 

 

 

 

 

Κατά τον δαίμονα εαυτού 

Be true to your own spirit. – Unknown 



 

 

CHAPTER 1: INTRODUCTION TO SYNAPSE DEVELOPMENT AND 

THE SYNAPTIC CYTOSKELETON 

 

Vivian T. Chou and David Van Vactor 

Department of Cell Biology and Program in Neuroscience, Blavatnik Institute,  

Harvard Medical School, Boston, MA, 02115, USA. 
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This is a version of a manuscript that will be submitted as a review article to Neural 

Development. Vivian Chou drafted, revised, and edited the article under the supervision of 
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Synapses: The Fundamental Units of the Nervous System 

The birth of modern neuroscience can be traced back to a period of seminal research in the 19th 

and early 20th centuries. Among the field’s foremost pioneers was Santiago Ramón y Cajal, who 

postulated in 1888-1889 that the animal nervous system was comprised of autonomous nerve 

cells, subsequently termed “neurons” by Heinrich Wilhelm von Waldeyer in 1891 (Glickstein, 

2006; López-Muñoz et al., 2006). Key to Cajal’s theory was that despite the physical separation 

between neurons, they are connected through “protoplasmic kisses,” or contact points, and 

capable of intercellular communication. This notion was further developed by Charles 

Sherrington, who postulated in 1897 that neuron-to-neuron communication occurs by way of 

specialized junctions known as “synapses,” thereby enabling the emergence of complex, unified 

behaviors through coordination of individual neurons (Levine, 2007).  Remarkably, the basic 

principles of early neuron doctrine endure today: we continue to regard synapses as 

fundamental contact sites and functional units of the nervous system. Given that the human 

brain contains approximately 100 billion neurons (Herculano-Houzel, 2009; Saleeba et al., 

2019) that are connected through trillions of synapses (Colón-Ramos, 2009; Comer et al., 

2019), understanding synaptogenesis—the process by which synaptic connections develop and 

mature, and thereby form circuits that underlie all cognition and behavior—remains a 

monumental task.  

 Among the foremost motivations for achieving a better understanding of synaptogenesis 

is that it is essential to proper neurodevelopment, which in turn is critical to normal functions 

such as learning and memory. Neurodevelopmental abnormalities can lead to a diverse range 

of disorders with clinical presentations that range across, but are not limited to, cognitive, 

emotional, and behavioral domains (Mitchell, 2011; Thapar et al., 2017). Neurodevelopmental 

disorders typically onset during in pre-pubescent children (Thapar et al., 2017) and can arise 

from defects in synaptogenesis (Melom and Littleton, 2011), as well as other steps such as 
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neuronal migration (Valiente and Marín, 2010) and axon guidance (Engle, 2010). Due to the 

phenotypic variability and complexity of many neurodevelopmental disorders as well as the 

influence of non-hereditary factors (Homberg et al., 2016; Mitchell, 2011; Thapar et al., 2017), it 

has been challenging to establish a precise genetic etiology for many neurodevelopmental 

conditions. However, progress in the past several years has helped to implicate specific genes 

in specific diseases. For instance, mutations in the synaptic cell adhesion protein Neurexin-1α 

have now been identified in patients with a wide spectrum of neurodevelopmental disorders, 

including autism, schizophrenia, intellectual disability, language delay, epilepsy, as well as the 

neuromuscular condition hypotonia (Ching et al., 2010; Glessner et al., 2009; Guilmatre et al., 

2009; Kirov et al., 2008). Neurodevelopmental disorders continue to be prevalent, particularly in 

low- and middle-income countries, with few effective therapies (Boivin et al., 2015; Davidson et 

al., 2015; Homberg et al., 2016; Thapar et al., 2017). In the coming years, understanding of the 

underlying mechanisms of processes such as synaptogenesis may contribute to interventions 

that address patient needs as well as relieve socioeconomic burdens associated with disease.  

 

Overview of Synaptogenesis 

Formally, chemical synapses are specialized asymmetric junctions that link a presynaptic 

neuron and a postsynaptic target (Chia et al., 2013; Jessell and Kandel, 1993). In humans, 

synaptogenesis begins primarily during embryonic development (Südhof, 2018). 

Synaptogenesis follows the process of axon pathfinding, whereby axons navigate a complex 

and dynamic environment to their proper targets by responding to a series of extracellular 

guidance cues (Cammarata et al., 2016; Comer et al., 2019; Lowery and Van Vactor, 2009). 

Once axons arrive at their destinations, synapse formation is initiated through adhesive 

interactions via cell-adhesion molecules (CAMs) and bi-directional signaling between the pre- 

and postsynaptic compartments (Chia et al., 2013; Südhof, 2018). As the synapse matures, the 
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presynaptic axon assembles the machinery that mediates neurotransmitter release via 

membrane fusion of synaptic vesicles (SV), which occurs within specialized regions known as 

active zones (AZ) upon an influx of Ca2+ ions via voltage-gated channels (Ackermann et al., 

2015; Jin and Garner, 2008; Südhof, 2012, 2018; Zhai and Bellen, 2004). Concurrently, the 

postsynaptic compartment, which may be the dendrite of another neuron or another cell type, 

accumulates neurotransmitter receptors within specialized regions that form in precise 

alignment with the presynaptic release sites (Scannevin and Huganir, 2000; Sheng and Kim, 

2011, 2002). Synaptogenesis involves numerous other cellular and biochemical events, 

including local cytoskeletal arrangements (Bodaleo and Gonzalez-Billault, 2016; Goellner and 

Aberle, 2012; Gordon-Weeks and Fournier, 2014; Nelson et al., 2013) and long-range 

cytoskeletal transport (Kapitein and Hoogenraad, 2011; Pack-Chung et al., 2007). Throughout 

synaptogenesis, conserved signaling pathways such as BMP (Bayat et al., 2011; Keshishian 

and Kim, 2004), Wnt/Wingless (Wg) (Koles and Budnik, 2012; Packard et al., 2002; Speese and 

Budnik, 2007), Fibroblast Growth Factor (FGF) (Sen et al., 2011), and LAR receptor protein 

tyrosine phosphatase (LAR-RPTP) (Han et al., 2016; Johnson et al., 2006; Um and Ko, 2013) 

coordinate the complex interplay of cellular and molecular events.  

 Synaptogenesis is not a singular event but rather a dynamic process. While the most 

intense period of synaptogenesis in humans occurs during embryonic and early postnatal 

stages, nervous system development persists throughout adolescence and even into the early 

30s (Petanjek et al., 2011). Such plastic changes encompass not only the addition of new 

synapses but also their “pruning” or removal; it is estimated that half of the synapses within the 

prefrontal cortex of human newborns are removed by adulthood (Petanjek et al., 2011). 

Crucially, neuronal structural plasticity forms the basis to learning and memory and reflects the 

ability of synapses to respond not only to baseline developmental cues but to acute external 

stimuli (Bailey et al., 2015; Jessell and Kandel, 1993; Kandel, 2001). This remarkable property 
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of neurons is predicated on reciprocal bidirectional signaling and precisely orchestrated 

assembly and function of both the pre- and postsynaptic compartments (Bailey et al., 2015; 

Jessell and Kandel, 1993; Kandel, 2001), emphasizing the importance of understanding the 

synapse as an integrated whole. 

  In the remainder of Chapter 1, I will discuss in greater detail the major events in 

synaptogenesis that I have outlined above. Emphasis will be placed on the molecules and 

processes that are relevant to the work described in Chapters 2-4. Since my dissertation is 

devoted to Drosophila neurobiology, I will draw largely on work that has been performed in 

invertebrates, although vertebrate studies will be discussed as well. I will specifically focus on 

the Drosophila larval neuromuscular junction (NMJ), a powerful model synapse which bears 

both structural and biochemical similarities to the excitatory glutamatergic synapses of 

vertebrate central nervous system (CNS) (Collins and DiAntonio, 2007; Rushton et al., 2009; 

Van Vactor and Sigrist, 2017). Moreover, the fly NMJ can be manipulated and characterized 

with a diverse experimental toolkit encompassing sophisticated genetic, light imaging, 

ultrastructural, and electrophysiological techniques, among others. This technical versatility, 

combined with the biological simplicity of the system, has made the Drosophila NMJ invaluable 

to gaining a cellular- and molecular-level understanding of synaptic development and 

neurotransmission.   

 

Synaptic Specification: Finding the Right Target  

Upon the physical contact of a growth cone with its target, the specification and alignment of the 

correct pre- and postsynaptic partners is coordinated by various CAMs (Giagtzoglou et al., 

2009; Hagler and Goda, 1998; Südhof, 2018; Thalhammer and Cingolani, 2014). CAMs act 

throughout synapse development, and beyond their roles in adhesion, are involved in processes 

ranging from SV organization, receptor clustering, and structural and functional plasticity 
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(Giagtzoglou et al., 2009; Hagler and Goda, 1998; Thalhammer and Cingolani, 2014). CAMs are 

divided into two classes: those that engage in homophilic interactions with another molecule of 

the same type, and those that engage in heterophilic interactions with a different CAM or the 

extracellular matrix (Sun and Xie, 2012; Thalhammer and Cingolani, 2014). It is now understood 

that CAMs are not necessarily limited to a single mode of binding. For instance, SynCAM 

(Biederer et al., 2002; Fogel et al., 2007; Frei et al., 2014) and the type II classical cadherins 

(Brasch et al., 2018) display both homophilic and heterophilic binding in vivo, while type I 

classical cadherins show both forms of binding in vitro (Ounkomol et al., 2010; Prakasam et al., 

2006), although only homophilic interactions are observed in vivo (Basu et al., 2015).   

 Conventionally homophilic CAMs include NCAM/CD56 (Lüthi et al., 1994; Muller et al., 

1996) and the related Drosophila protein Fasciclin II (Beumer et al., 2002; Davis et al., 1997; 

Schuster et al., 1996); DSCAM (Agarwala et al., 2000, 2001); SynCAM (Biederer et al., 2002; 

Fogel et al., 2007; Frei et al., 2014); and the type I and II classical cadherins (Brigidi and Bamji, 

2011; Hirano and Takeichi, 2012; Seong et al., 2015; Suzuki and Takeichi, 2008). Of the 

homophilic CAMs, the type I cadherin N-cadherin/Cadherin 2 is the most highly expressed as 

well as best studied in the context of the CNS. N-cadherin localizes within (Yamagata et al., 

1995) and at the periphery (Uchida et al., 1996) of the synaptic cleft and redistributes in 

response to activity (Yam et al., 2013). Beyond providing adhesive connections, N-cadherins 

are involved in neurotransmission (Vitureira et al., 2012), presynaptic short-term plasticity 

(Jüngling et al., 2006), dendritic spine morphogenesis (Abe et al., 2004; Togashi et al., 2002), 

activity-dependent plasticity and stabilization of dendrites (Mendez et al., 2010; Okamura et al., 

2004), and long-term potentiation (Bozdagi et al., 2000, 2010). Other homophilic CAMs have 

similarly diverse functions, including neuronal morphogenesis (Ashley et al., 2005; Hutchinson 

et al., 2014; Wang et al., 2002a; Yu et al., 2009), homeostatic (Spring et al., 2016) and activity-

dependent plasticity (Beumer et al., 2002; Muller et al., 1996), organization of synaptic 
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architecture (Biederer et al., 2002; Kohsaka et al., 2007), and long-term potentiation (Lüthi et al., 

1994; Mayford et al., 1992).  

Heterophilic interactions at the synapse are mediated by CAMs such as Dpr and DIP in  

Drosophila (Morey, 2017; Zinn and Özkan, 2017), Teneurins (Mosca, 2015; Tucker and 

Chiquet-Ehrismann, 2006), and Neurexins and Neuroligins (Bottos et al., 2011; Craig and Kang, 

2007; Knight et al., 2011; Südhof, 2008); these latter two molecules are perhaps the best-

characterized synaptic CAMs of all. Neurexins include three vertebrate members and a single 

fly ortholog, Neurexin-1 (Dnrx), while vertebrate Neuroligins 1-4 each have a corresponding 

Drosophila ortholog (Dnlg1-4) (Bottos et al., 2011; Knight et al., 2011); additional orthologs of 

both Neurexin and Neuroligin are present across taxa. Neurexins and Neuroligins are both 

exclusively synaptic, and expression of either is sufficient to induce synaptic differentiation in 

vitro (Graf et al., 2004; Scheiffele et al., 2000). Loss of either Neurexins or Neuroligins results in 

severe, or even lethal, defects in synapse formation and function (Chen et al., 2010, 2017; 

Etherton et al., 2009; Li et al., 2007; Varoqueaux et al., 2006), reflecting their central role in 

promoting the formation of stable junctions between pre- and postsynaptic components across 

organisms (Banerjee et al., 2017; Banovic et al., 2010; Chen et al., 2012; Chih et al., 2005; 

Chubykin et al., 2007; Owald et al., 2012; Varoqueaux et al., 2006). Work at the Drosophila 

NMJ indicates that the postsynaptic targets of Dnrx-Dnlg1 include neurotransmitter receptors 

(Owald et al., 2012) and the WAVE regulatory complex, which modulates actin cytoskeletal 

dynamics (Xing et al., 2018); presynaptic targets of Dnrx-Dnlg1 include core AZ components 

(Owald et al., 2012) and BMP pathway receptors and effectors (Banerjee et al., 2017). 

Incidentally, Drosophila also expresses a protein known as Neurexin IV (Baumgartner et al., 

1996) that is more properly classified as a contactin-associated protein (CASPR)/paranodin 

(Bellen et al., 1998; Peles et al., 1997). Unlike “true” Neurexins, Neurexin IV does not have 
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known roles at the synapse, although it does regulate axon-glia interactions (Bellen et al., 1998; 

Bhat et al., 2001) and axon pathfinding (Banerjee et al., 2010). 

 The trans-synaptic binding and communication between CAMs, in concert with signaling 

cues, orchestrates membrane contacts between pre- and postsynaptic partners. Following the 

formation of this stable junction, the presynaptic axon takes on a distinct morphology which 

varies across cell/tissue types and organism. For instance, at the vertebrate NMJ, presynaptic 

axons form an individual terminal structure that houses all release sites, such that a given motor 

neuron innervates a muscle at a single site (Shen and Cowan, 2010; Ziv and Garner, 2004). By 

contrast, in the vertebrate CNS, synaptic release sites are distributed in varicosities, or 

“boutons,” along the length of interneuron axons, which are thus said to form synapses en 

passant (Shen and Cowan, 2010; Ziv and Garner, 2004). En passant synapses are widely 

observed in invertebrate nervous systems, including at the Drosophila NMJ where detailed 

imaging studies have revealed that the motor axon terminal forms an elaborate arborized 

structure (Rushton et al., 2009; Van Vactor and Sigrist, 2017; Zito et al., 1999). Expansion of the 

fly NMJ occurs through the Wnt/Wg-dependent addition of new boutons (Ataman et al., 2008). 

Possible modes of bouton addition include asymmetric budding, similar to yeast cell division; 

symmetric bouton division; or de novo formation from the axon shaft (Zito et al., 1999). Besides 

bouton addition, bouton elimination or pruning is also critical to refinement of synaptic structure 

and preventing overexuberant growth (Rushton et al., 2009; Van Vactor and Sigrist, 2017). 

Intermediary structures such as presynaptic “debris” or filopodia-like synaptopods are also 

observed during synaptic expansion, although unlike boutons, such structures are only 

observed very transiently (Ataman et al., 2008; Fuentes-Medel et al., 2009; Rushton et al., 

2009; Van Vactor and Sigrist, 2017). These sequential morphological processes of bouton 

addition, followed by expansion to full size and if necessary, pruning, are modulated by baseline 
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and/or activity-dependent signaling cues to achieve a synaptic size and structural that facilitates 

proper connectivity and strength.    

 

Rapid Initiation of Presynaptic AZ Assembly 

The membrane-level changes from bouton addition, expansion, and pruning are coordinated 

with progressive assembly of the subcellular molecular machinery necessary for synaptic 

function and maturation (Figure 1.1).  Numerous light imaging experiments in Drosophila have 

revealed that upon forming, boutons initially lack pre- and postsynaptic specializations (Ataman 

et al., 2006, 2008; Vasin et al., 2014). Subsequent ultrastructural studies in flies have shown 

that these immature “ghost” boutons are highly transient, as AZ precursors and SV docking 

become visible within minutes, although postsynaptic specializations are slower to form (Vasin 

et al., 2014). Work in C. elegans indicates that certain components of the AZ cytomatrix  

may aggregate into precursor structures within 5 minutes of the arrival of the growth cone 

(Lipton et al., 2018). However, work in Drosophila indicates that it may take hours for all core AZ 

components to arrive (Fouquet et al., 2009; Owald et al., 2010). These processes of bouton 

addition and maturation can still observed in cut axons, albeit at a lower frequency than in intact 

preparations, indicating local machinery is sufficient to support at least some level of synaptic 

expansion in the absence of protein synthesis (Vasin et al., 2014). At the fly NMJ, rapid synaptic 

expansion from embryos through the third instar larval stage ultimately results in a ~100-fold 

increase in synaptic connections (Rushton et al., 2009), with mature boutons each housing ~10 

AZs (Collins and DiAntonio, 2007). 

 At least five core presynaptic AZ components are conserved across multiple 

taxa: RIM/Unc-10, Munc13/Unc13, RIM-Binding Protein (RBP), Liprin-α/SYD-2, and 

ELKS/CAST/ERC/Bruchpilot (Brp) (Ackermann et al., 2015; Südhof, 2012). In addition to these 

highly conserved components, vertebrate AZs include Bassoon and Piccolo  
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Figure 1.1. Overview of bouton growth and synaptic maturation. Addition of boutons is 

initiated by membrane outgrowth (A), followed by size expansion (B). Within minutes, AZ 

precursors are formed as early components such as Syd-1 and Liprin-α accumulate (C), 

followed by maturation (D) as the remaining AZ components, SVs, and glutamate receptors 

(GluRs) are recruited. Inset (D’) shows bidirectional trans-synaptic pathways that are known to 

be important for synaptic development. Major pathways include anterograde Wnt and retrograde 

BMP signaling, while pathways mediated by Synaptotagmin 4 (Syt4), LAR, Fragile X Mental 

Retardation protein 1 (FMR1), Jelly Belly (Jeb), and Mind-The-Gap (MTG) have also been 

described. The FGF pathway has also been reported, but pathways details, e.g. directionality, 

have not been defined.  
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(Gundelfinger et al., 2016; Waites et al., 2005; Ziv and Garner, 2004), the latter of which has a 

putative Drosophila ortholog Fife (Bruckner et al., 2012, 2017), while invertebrate AZs also 

include Syd-1 (Dai et al., 2006; Owald et al., 2010; Patel et al., 2006), which may be related to 

mouse MSYD1A (Wentzel et al., 2013). Together, these core architectural components form an 

AZ structure that facilitates the release of neurotransmitter-filled SVs and the organization of 

Ca2+ channels (Ackermann et al., 2015; Owald et al., 2010; Südhof, 2012). In terms of 

geometry, the precise spatial arrangement of the AZ machinery produces a characteristic 3-

dimensional structure that is closely apposed to the postsynaptic cytomatrix (Figure 1.2).  

 Despite the existence of local assembly mechanisms (Vasin et al., 2014), in general, AZ 

development relies on trafficking of AZ components, as well as SV precursors (SVPs) and other 

materials, via long-range motor transport (Goldstein et al., 2008; Hurd and Saxton, 1996; 

Maeder et al., 2014; Pack-Chung et al., 2007; Pilling et al., 2006), although mechanisms such 

as diffusion may also contribute (Miller and Heidemann, 2008; Popov and Poo, 1992). Several 

models exist for how AZ and SV components are organized into functional structures at release 

sites. Ex vivo studies have suggested the possibility that specialized dense core vesicles 

(DCVs) known as Piccolo/Bassoon Transport Vesicles (PTVs) traffic components in a 

unitary/quantal manner, such that each PTV contains a pre-assembled AZ “packet” (Shapira et 

al., 2003; Zhai et al., 2001). It has been proposed that AZ and SV materials are co-transported 

in aggregates of 1-2 PTVs and 5-6 SVPs that can very quickly form a functional AZ upon 

delivery (Bury and Sabo, 2011; Tao-Cheng, 2007; Waites et al., 2005; Wu et al., 2013; Ziv and 

Garner, 2004). However, the existence of PTVs and ready-to-go AZs packets has not been 

conclusively established through in vivo studies (Lipton et al., 2018; Petzoldt et al., 2016).  
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Figure 1.2. Schematic of the concentric organization of the presynaptic AZ and 

postsynaptic receptor clusters at the Drosophila NMJ. The presynaptic AZ (A) consists of a 

central cluster of the Ca2+ channel subunit Cacophony (Cac), which is contained within a funnel-

like Brp structure. Surrounding the Brp/Cac core are proteins such as Dnrx, Syd-1, and Liprin-α. 

Additional proteins, such as Fasciclin II (FasII) and Unc13, are found in the peripheral AZ (peri-

AZ) region. The peri-AZ region also includes adhesion plaque structures that mediate membrane 

interactions. In the postsynaptic specialization (B), receptor clusters are organized with GlurIIA-

enriched receptors occupying the center, and GluRIIB-enriched receptors in a surrounding ring. 

This reflects the preferential recruitment of GluRIIA in early synapses, followed by GluRIIB as the 

synapse matures. Precise alignment of pre- and postsynaptic specializations (C) facilitate 

neurotransmission across the synaptic cleft. This interaction is regulated by CAMs such as Dnrx 

and Dnlg, which bind trans-synaptically (dotted lines).    
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Early AZ Assembly: Syd-1, Liprin-α, and Unc-13 

In vivo studies in invertebrates suggest that while AZ assembly occurs very rapidly, a sequence 

of steps can still be distinguished: the earliest arriving AZ components “seed” the recruitment of 

additional core architectural molecules, followed by SV accumulation (Lipton et al., 2018). In 

support of hierarchical AZ assembly, ample studies in C. elegans and Drosophila indicate that 

two of the earliest components to be recruited to presynaptic AZs are the scaffolding proteins 

Syd-1 and Liprin-α/SYD-2 (synapse-defective) (Astigarraga et al., 2010; Dai et al., 2006; 

Fouquet et al., 2009; Li et al., 2014; Owald et al., 2010, 2012; Patel et al., 2006; Spinner et al., 

2018; Stigloher et al., 2011; Zhen and Jin, 1999); evidence in flies suggests that these 

components may precede other AZ proteins by hours (Fouquet et al., 2009; Owald et al., 2010). 

In both worms and flies, Syd-1 and Liprin-α have close spatial as well as functional relationships 

in driving early AZ assembly (Owald et al., 2010; Patel et al., 2006) as well as SV organization 

(Li et al., 2014; Stigloher et al., 2011). In flies, loss of syd-1 and liprin-α results in reduced NMJ 

size as well as increased AZ size as observed by light and electron microscopy, respectively 

(Kaufmann et al., 2002; Owald et al., 2010), indicating potential defects in AZ organization. 

Furthermore, loss of either syd-1 or liprin-α in Drosophila leads to decreased neurotransmission 

(Kaufmann et al., 2002; Owald et al., 2010).  

 The Syd-1 scaffold protein localizes to presynaptic terminals and appears to be nervous-

system specific in worms (Dai et al., 2006; Hallam et al., 2002; Patel et al., 2006), where it was 

first identified, as well as in flies (Owald et al., 2010). Early studies established that Syd-1 has 

PDZ, C2 and RhoGAP-like domains (Hallam et al., 2002), although the RhoGAP activity of Syd-

1 was long disputed and was only recently discovered to be required for the clustering of 

ELKS/Brp (Spinner et al., 2018). Syd-1 is potentially one of the earliest AZ components to be 

recruited, as Syd-1 is upstream of Liprin-α in C. elegans (Dai et al., 2006; Patel et al., 2006) as 

well as in Drosophila, where Syd-1 is required for proper Liprin-α accumulation (Owald et al., 
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2010). Syd-1 also interacts with the Dnrx-Dnlg trans-synaptic complex via direct binding to Dnrx 

to regulate postsynaptic receptor clustering (Owald et al., 2012). To date, no unambiguous 

mammalian orthologs of Syd-1 have been identified, although mouse MSYD1A has been 

suggested as a possible ortholog on the basis of partial sequence similarity and comparable 

roles in SV docking and synaptic transmission (Wentzel et al., 2013).  

 In contrast to Syd-1, the Liprin family member Liprin-α is highly conserved across 

metazoans, with ~50% similarity between the human and C. elegans orthologs, and is widely 

expressed in many tissues in addition to the nervous system (Miller et al., 2017; Spangler and 

Hoogenraad, 2007). Structurally, Liprin-α contains an N-terminal coiled-coil region that mediates 

homo- and hetero-multimerization and an C-terminal Liprin homology (LH) region containing 

three SAM (sterile-α-motif) domains (Kaufmann et al., 2002; Serra-Pagès et al., 1995, 1998). 

The SAM domains of the LH region, in particular, are thought to mediate the interactions of 

Liprin-α with Syd-1 and at least a dozen other proteins involved in synaptic development and/or 

function (Miller et al., 2017; Spangler and Hoogenraad, 2007). Indeed, Liprin-α was first 

identified from its interactions with a member of the LAR-RPTPs (Serra-Pagès et al., 1995, 

1998); while these initial observations were at the focal adhesions of non-neuronal cells, studies 

of LAR as well as Liprin-α have since focused on their diverse functions in the nervous system. 

LAR, in particular, has critical roles in axon guidance, neurite extension, as well as synapse 

assembly, formation, and plasticity (Han et al., 2016; Um and Ko, 2013).  

 A recent study in Drosophila has shown that Unc13A, one of the two fly isoforms of 

Unc13, a central regulator of neurotransmitter release, may be co-recruited with Syd-1 and 

Liprin-α (Böhme et al., 2016). Unc13 was first identified in C. elegans (Maruyama and Brenner, 

1991), with subsequent studies demonstrating its role in SV docking, priming, and fusion 

(Augustin et al., 1999; Brose et al., 1995). Unc13 primes the SNARE/SM machinery for 

exocytosis (Lai et al., 2017; Palfreyman and Jorgensen, 2017) and regulates the kinetics of 
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release (Böhme et al., 2016). Through its regulation of SV release, Unc13 is also involved in 

diverse forms of plasticity, including short-term augmentation and long-term potentiation and 

depression (Rosenmund et al., 2002; Xu et al., 2017). Super-resolution microscopy has 

revealed that the two Drosophila isoforms, Unc13A and Unc13B, occupy distinct localization 

patterns relative to other core AZ components and to Ca2+ channels, suggesting that different 

isoforms may act via independent pathways to tune and optimize SV release (Böhme et al., 

2016). Interestingly, the shift from recruitment of Unc13A to Unc13B that occurs as AZ 

assembly progresses is reminiscent of a model where distinct receptor subunits in the 

postsynaptic compartment are recruited in a sequential manner (Figure 1.2) (Owald et al., 

2012), perhaps reflecting separate roles of individual molecular isoforms at various stages of 

synapse maturation.  

  

Downstream AZ Assembly: RIM, RIM-BP, and Brp  

Following recruitment of Syd-1 and Liprin-α (Dai et al., 2006; Fouquet et al., 2009; Owald et al., 

2010; Patel et al., 2006), and the Unc13A isoform (Böhme et al., 2016), the remaining AZ 

components are localized, including Unc13B, RIM/Unc-10, RIM-BP, and ELKS/Brp. Like Unc-

13, RIM (Rab3-interacting molecule) was first discovered as a regulator of SV release and 

neurotransmission (Mittelstaedt et al., 2010; Wang et al., 1997), and was later found to promote 

SV priming by monomerizing Unc-13 from autoinhibitory homodimeric complexes (Deng et al., 

2011; Kaeser, 2011; Lu et al., 2006). RIM also has roles in both short- and long-term plasticity 

(Castillo et al., 2002; Schoch et al., 2002) and Ca2+ channel localization to the AZ (Graf et al., 

2012; Han et al., 2015b; Kaeser, 2011; Kaeser et al., 2011). In particular, the regulation of Ca2+ 

channels by RIM is mediated by its interactions with RIM-BP (Mittelstaedt and Schoch, 2007; 

Wang et al., 2000). Together, RIM and the RIM-BP scaffold protein form a complex that interact 

with Ca2+ channels (Hibino et al., 2002; Kaeser et al., 2011). The importance of RIM-BPs has 
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been further demonstrated in Drosophila, where mutations in rim-bp results in defects in Ca2+ 

channel clustering as well as disruptions in Brp distribution, AZ ultrastructure, and synaptic 

release (Liu et al., 2011). 

 In addition to Unc-13, RIM, and RIM-BP, the scaffold ELKS/Brp is also recruited several 

hours following initiation of AZ assembly by Syd-1 and Liprin-α (Fouquet et al., 2009). While 

primarily enriched in the nervous system, Brp was initially identified for its role in carcinomas 

under the name ELKS (Nakata et al., 1999), subsequent studies of ELKS/Brp proteomic 

interactions identified it as an AZ component, and the protein was renamed CAST (Ohtsuka et 

al., 2002) and ERC (Wang et al., 2002b) in accordance with its newly-discovered roles. The 

Drosophila ortholog was later named bruchpilot, or German for crash pilot, to reflect the 

unsteady flight of brp mutants (Kittel et al., 2006; Wagh et al., 2006). The many names of Brp, 

which have resulted from multiple rediscoveries in different contexts, reflect its diverse functions 

across systems. Consistent with this, direct proteomic interactions of Brp and its orthologs have 

been observed with multiple other core AZ components, including but not limited to Liprin-α, 

Unc-13, RIM, Piccolo/Fife and Bassoon (Held and Kaeser, 2018; Hida and Ohtsuka, 2010). Of 

the core conserved AZ components, Brp remains arguably the most puzzling, as many of its 

precise functions and mechanisms remain a mystery (Hamada and Ohtsuka, 2018; Held and 

Kaeser, 2018; Hida and Ohtsuka, 2010; Südhof, 2012); further studies of Brp are expected to 

reveal fundamental insights into the AZ.    

 Detailed work in Drosophila have provided compelling clues to the functions of Brp at the 

AZ. Drosophila Brp is expressed in two isoforms, both of which are necessary at the synapse 

(Matkovic et al., 2013). Immunofluorescence has revealed that Brp forms distinct puncta in the 

presynaptic terminal of the NMJ (Kittel et al., 2006; Wagh et al., 2006) as well as in other 

nervous system cells, such as R8 photoreceptors (Sugie et al., 2015). Importantly, Brp is an 

essential structural component of the AZ and is a major component of the electron-dense T-bar 
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visible by electron microscopy (Fouquet et al., 2009), with loss of Brp resulting in the complete 

elimination of T-bars (Kittel et al., 2006; Wagh et al., 2006). Super-resolution STED microscopy 

has revealed that Brp puncta are in fact donut-shaped structures that represent the top half of a 

funnel-shaped Brp complex which is attached to the membrane of synaptic release sites 

(Fouquet et al., 2009; Kittel et al., 2006), and that the two Drosophila Brp isoforms alternate in a 

circular pattern (Matkovic et al., 2013). Further work combining dSTORM super-resolution with 

electrophysiology demonstrated that AZs consist of approximately 137 rod-like Brp proteins 

organized into about 15 heptameric structures, and that proper neurotransmission relies on a 

precise maintenance of the stoichiometry and organization of this multimeric structure (Ehmann 

et al., 2014). In addition to its role as a key AZ structural component, Brp is thought to regulate 

synaptic release by controlling the size of the readily releasable pool (RRP) of SVs (Matkovic et 

al., 2013). Brp is also necessary for short-term plasticity and Ca2+ channel clustering (Kittel et 

al., 2006), consistent with observations that the Drosophila Ca2+ channel subunit Cacophony 

(Cac) is recruited to the AZ contemporaneously (Fouquet et al., 2009).  

 The discussion in this chapter of AZ composition, architecture, and function addresses 

only a modest fraction of the expansive body of work on this highly complex and vital structure. 

The cytomatrix of the presynaptic AZ encompasses many other proteins, including: the scaffolds 

Piccolo/Fife and Bassoon; the Ras superfamily GTPases, such as Rab3 and Rac1, and their 

respective GTPase activating proteins (GAPs) and guanine nucleotide exchange factors 

(GEFs); membrane trafficking machinery such as the SNARE proteins, synapsin, and 

synaptotagmin; the tripartite CASK/Mint1/Veli complex; developmental signaling pathways; and 

the cytoskeletal network (Ackermann et al., 2015; Held and Kaeser, 2018; Kaeser and Regehr, 

2017; Sudhof, 2004; Südhof, 2012). Furthermore, despite significant progress in the field as a 

whole, many questions about the AZ remain. Ongoing and future studies will address topics 

such as the precise ultrastructure/nanostructure of the AZ, how the AZ is involved in both short- 
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and long-term plasticity, and how the AZ senses and regulates synapse stability and integrity 

(Ackermann et al., 2015; Südhof, 2012).  

 

The Postsynaptic Cytomatrix 

In contrast to the presynaptic terminal, which is always neuronal (Südhof, 2018), the 

postsynaptic target cell is most commonly neuronal but can also be of another cell type, such as 

glia (Bergles et al., 2000; Ge et al., 2006; Jabs et al., 2005; Lin and Bergles, 2004b, 2004a) or 

effector organs, as in the case of the Drosophila NMJ. Early ultrastructural studies of dendritic 

spine of excitatory synapses detected a 3-dimensional structure known as the postsynaptic 

density (PSD) directly underneath the neuronal membrane (Gray, 1959; Kennedy, 2000; Palay, 

1956). The dendritic spine PSD, and analogous cytomatrix structures in other postsynaptic cell 

types (Zhai and Bellen, 2004), is rich in diverse protein types, including neurotransmitter 

receptors as well as scaffolding, signaling, and cytoskeletal molecules (Scannevin and Huganir, 

2000; Sheng and Kim, 2011, 2002). Glutamate receptors (GluR), the most prevalent receptor 

type, are present at excitatory glutamatergic synapses that predominate in the vertebrate CNS 

as well as the invertebrate NMJ (DiAntonio, 2006; Scheefhals and MacGillavry, 2018). GluRs 

are classified as ionotropic GluRs (iGluRs), an abundant subtype that mediate fast synaptic 

transmission on millisecond timescales, and as metabotropic GluRs (mGluRs),which are slower-

acting and less frequently occurring (DiAntonio, 2006; Scheefhals and MacGillavry, 2018). 

iGluRs can be further subdivided into AMPA-, NMDA-, and kainate-type receptors, with AMPA 

and NMDA receptors being most common (Scheefhals and MacGillavry, 2018). At the 

Drosophila NMJ, only AMPA/kainate receptors have been identified on the basis of genomic 

sequencing (DiAntonio, 2006; Littleton, 2000). However, more recent work has suggested that 

the iGluRs at the fly NMJ may be distinct from the classical vertebrate iGluR subtypes, as they 

display divergent structural and neurotransmitter-binding properties (Han et al., 2015a).   
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 At the Drosophila NMJ, GluRs are heterometric tetramers composed of three invariant 

subunits, GluRIII/GluRIIC, GlURIID, and GluRIIE, as well as one of either GluRIIA or GluRIIB 

(DiAntonio et al., 1999; Featherstone et al., 2005; Marrus and DiAntonio, 2004; Petersen et al., 

1997; Qin et al., 2005; Schuster et al., 2019). Recruitment of GluRs to the postsynaptic 

cytomatrix is thought to occur after the arrival of early presynaptic components Syd-1 and Liprin-

α but prior to the recruitment of Brp and Cac (Figure 1.1) (Fouquet et al., 2009). GluRIIA and 

GluRIIB differ in their single channel properties, and they are responsible for large and small 

glutamate-gated currents, respectively (DiAntonio et al., 1999; Sigrist et al., 2002). The ratio of 

GluRs containing the GluRIIA versus GluRIIB subunits changes throughout the lifespan of a 

synapse, with younger synapses preferentially incorporating GluRIIA, followed by GluRIIB 

incorporation as the synapse matures (Schmid et al., 2008). GluRIIA recruitment is thought to 

be an essential driver of synapse formation and its incorporation into the GluR tetramer is nearly 

irreversible (Rasse et al., 2005; Schmid et al., 2008; Sigrist et al., 2002); this latter property, 

along with the tendency for GluRIIA incorporation to precede GluRIIB, likely accounts for the 

concentric arrangement of GluRs, where GluRIIB-rich receptors form a ring around GluRIIA-rich 

core (Figure 1.2) (Owald et al., 2012). The proper temporal sequence of subunit recruitment, as 

well as relative spatial arrangement of GluRIIA- and GluRIIB-associated receptors is thought to 

be necessary not just for the initiation synaptogenesis but also subsequent stabilization and 

maturation (Owald et al., 2012).  

 Aside from neurotransmitter receptors, the postsynaptic cytomatrix is also highly 

abundant in scaffold proteins. Many of these scaffolds contain PDZ domains, which are ~90 

amino acid sequences that mediate interactions with other proteins and the synaptic membrane 

(Scannevin and Huganir, 2000; Sheng and Kim, 2011). The best-studied PDZ protein is PSD-

95/SAP90 (Cho et al., 1992; Kistner et al., 1993) and its Drosophila ortholog Discs Large (Dlg), 

which was first identified as a tumor suppressor (Woods and Bryant, 1991) and shortly after 
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discovered to be important to synaptic growth and structural plasticity (Budnik et al., 1996; Guan 

et al., 1996; Lahey et al., 1994). Dlg belongs to the membrane-associated guanylyl kinases 

(MAGUKs) family of PDZ proteins (Scannevin and Huganir, 2000; Sheng and Kim, 2011) and 

regulates the clustering of Shaker K+ ion channels (Tejedor et al., 1997) and of Fasciclin II 

(Thomas et al., 1997). Dlg is also necessary for clustering of GluRIIB-containing receptors 

(Chen and Featherston, 2005), while vertebrate PSD-95 regulates the clustering of NMDA 

receptors (Rao et al., 1998).  While Dlg is a primarily postsynaptic protein, it is also present at 

lower levels in the presynaptic AZ (Budnik et al., 1996). Recently, this presynaptic population 

has also been shown to regulate the localization of Cac, with effects on synaptic release 

probability and short-term plasticity (Astorga et al., 2016). 

 Various factors expressed in the postsynaptic cytomatrix of Drosophila play additional 

roles in synaptic maturation and stabilization. The Drosophila ortholog of the p21-activated 

kinase (PAK) (Civiero and Greggio, 2018; Zhao and Manser, 2012), dPak, is required for GluR 

clustering, normal Dlg levels, muscle ultrastructure, and the formation of the subsynaptic 

reticulum (SSR), a postsynaptic system of tubular-lamellar membrane folds that envelops the 

presynaptic bouton (Lee and Schwarz, 2016; Parnas et al., 2001; Sone et al., 2000; Wan et al., 

2000). Another key regulator of SSR expansion is Syndapin, a member of the F-BAR family of 

membrane-sculpting proteins (Kumar et al., 2009a; Quan and Robinson, 2013). Syndapin does 

not regulate presynaptic membrane trafficking as might be expected (Kumar et al., 2009b) and 

instead appears to exclusively postsynaptic; it likely mediates SSR development by regulating 

the muscle actin cytoskeleton (Kessels and Qualmann, 2002; Oh and Robinson, 2012). In 

addition, the essential postsynaptic protein Neto recruits dPak and GluRs to synaptic sites and 

also modulates the balance of GluRIIA/GluRIIB at the NMJ, thereby promoting postsynaptic 

stabilization (Kim et al., 2012, 2015; Ramos et al., 2015) in a manner similar to its vertebrate 

orthologs Neto1 and 2 (Ng et al., 2009; Zhang et al., 2009). 
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Trans-synaptic Communication Between Compartments 

Despite the distinction between pre- and postsynaptic compartments, effective bidirectional 

communication is essential to the coordinated assembly, maturation, and function of the entire 

synapse (Figure 1.2). Key orchestrators of trans-synaptic communication include signal 

transduction pathways, in particular the Wnt/Wg pathway, which is the primary driver of 

anterograde signaling (Koles and Budnik, 2012; Packard et al., 2002; Speese and Budnik, 

2007), and the BMP pathway, which is the major contributor to retrograde signaling (Bayat et 

al., 2011). At the fly NMJ, Wg is secreted from the presynaptic terminal and binds DFrizzled2 

receptor embedded in the postsynaptic membrane, thereby enabling anterograde signaling 

(Mathew et al., 2005; Packard et al., 2002). Presynaptic Wg ligand also mediates a divergent 

pathway that regulates the presynaptic cytoskeleton; this glycogen synthase kinase 

(GSK3)/Shaggy- dependent signaling is thought to occur through either a retrograde or local 

pathway (Franco et al., 2004; Gögel et al., 2006; Miech et al., 2008). By contrast, the BMP 

ligand Glass Bottom Boat (Gbb) is secreted by the muscle and binds with tetrameric receptors 

containing Wishful Thinking (Wit), Thickveins (Tkv), and Saxophone (Sax) in the presynaptic 

membrane (Aberle et al., 2002; McCabe et al., 2003, 2004).  

 Besides Wnt/Wg and BMP, numerous other signal transduction pathways of 

consequence have been described at the fly NMJ. Multiple studies have established roles of 

retrograde signaling by Synaptotagmin 4 (Syt 4) (Barber et al., 2009; Yoshihara et al., 2005) 

and LAR (Leukocyte common antigen related) (Johnson et al., 2006; Kaufmann et al., 2002). 

Syt 4 is a postsynaptic Ca2+ sensor that regulates presynaptic SV fusion and activity-dependent 

structural plasticity in response to postsynaptic Ca2+ influx (Barber et al., 2009; Yoshihara et al., 

2005). Presynaptic neuronal morphology and AZ assembly and function are also regulated by 

LAR, a receptor protein tyrosine phosphatase (RPTP) that interacts with the muscle-localized 

heaparan sulfate proteoglycans (HSPGs) Dallylike (Dlp) and Syndecan (Sdc) (Johnson et al., 
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2006; Kaufmann et al., 2002). Dlp and Sdc have more recently been found to also act via the 

Fragile X Mental Retardation 1 (FMR1) protein in a retrograde manner in order to interface with 

the Wnt and Jelly Belly-Anaplastic Lymphoma Kinase (Jeb-Alk) signaling pathways (Friedman 

et al., 2013). The Jeb-Alk pathway is itself an anterograde trans-synaptic signaling pathways 

that regulates presynaptic morphology and neurotransmission (Rohrbough et al., 2013) under 

the control of Mind-The-Gap (MTG), a presynaptically secreted molecule that modulates the 

extracellular environment of the synaptic cleft (Rohrbough and Broadie, 2010; Rohrbough et al., 

2007; Rushton et al., 2009, 2012). Interestingly, the two Drosophila FGF receptors, Heartless 

(Htl) and Breathless (Btl), have been reported to interact with the spinal muscular atrophy-

associated (SMA) protein Survival Motor Neuron (SMN) to regulates NMJ morphogenesis, 

consistent with the roles of FGF at vertebrate synapses (Fox et al., 2007; Muha and Müller, 

2013; Sen et al., 2011).  Muscle-expressed Htl is itself required for presynaptic morphology, 

although the precise trans-synaptic mechanisms by which this is achieved remain to be defined 

(Sen et al., 2011). 

 Trans-synaptic communication at the fly NMJ also occurs through complexes formed by 

CAMs, including Dprs and DIPs (Morey, 2017; Zinn and Özkan, 2017), Teneurins (Mosca, 2015; 

Tucker and Chiquet-Ehrismann, 2006), and the previously described Dnrx and Dnlg proteins 

(Bottos et al., 2011; Craig and Kang, 2007; Knight et al., 2011; Südhof, 2008). Dprs/DIPs 

comprise a network of about 30 members (Carrillo et al., 2015; Cosmanescu et al., 2018; Özkan 

et al., 2013; Tan et al., 2015) with well-established roles in the synaptic connectivity of the fly 

visual system (Menon et al., 2019; Xu et al., 2018). While Dpr11 and DIP-γ both appear to be 

expressed on both sides of the NMJ synapse, tissue-specific expression has confirmed that 

Dpr11 and DIP-γ form trans-synaptic complexes; these Dpr11-DIP-γ complexes are required to 

prevent the abnormal clustering of small satellite boutons, possibly in concert with BMP 

signaling (Carrillo et al., 2015). Similarly, the two Drosophila Teneurins, presynaptic Ten-a and 
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postsynaptic Ten-m, form a trans-synaptic complex that regulates synaptic specification, 

neuronal morphology, synaptic architecture, and neurotransmission (Mosca et al., 2012). 

Notably, loss of neuronal ten-a and muscle ten-m produces defects in not only their respective 

compartment but also in the apposing cell: ten-a phenotypes include reduction in postsynaptic 

spectrin and SSR, while ten-m phenotypes include disruptions in presynaptic MTs, SVs, and T-

bar morphology (Mosca et al., 2012). Such bidirectional CAM-mediated functions are further 

exemplified by the Dnrx-Dnlg1 complex. For instance, while the AZ component Syd-1 is 

exclusively presynaptic, it binds Dnrx directly and can therefore act via Dnrx-Dnlg1 to regulate 

GluRs composition and clustering (Owald et al., 2012); this illustrates one mechanism by which 

the core AZ machinery can organize their postsynaptic counterparts. Moreover, loss of muscle 

Dnlg1 results in defects in both presynaptic morphology and AZ assembly, indicating a 

reciprocal mechanism by which the postsynaptic apparatus can regulate release sites (Owald et 

al., 2012). Interestingly, Dnlg1 also regulates  BMP pathway receptor subunits Wit/Tkv and the 

Mad (Banerjee et al., 2017), in a retrograde manner, further underscoring the bidirectional 

nature of Dnrx-Dnlg1 function.     

Many of the molecules and pathways involved in the communication mechanisms 

described above have well-established roles in regulating both membrane morphogenesis and 

AZ assembly, raising the possibility that these two processes are coupled. In fact, the 

morphological and AZ phenotypes associated with numerous Wg, BMP, and LAR pathway 

components are consistent with an inverse relationship between the size of the AZ and the size 

presynaptic terminal as determined by bouton number. For instance, within the LAR pathway, 

this correlation is true for the LAR receptor itself as well as for Liprin-α (Kaufmann et al., 2002), 

the HSPG ligand Dlp (Van Vactor et al., 2006), the kinase Abelson (Abl) (Lin et al., 2009), the 

Rho-GEF Trio (Pawson et al., 2008; Spinner et al., 2018), and the F-actin assembly molecule 

Ena (unpublished data). The negative correlation between AZ and NMJ size is also observed for 
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Syd-1, and its downstream effectors Dnrx and Dnlg1; while Syd1 and Dnrx-Dnlg are not 

confirmed LAR interactors, they potentially interfaces with the LAR pathway through the 

interaction of Syd-1 and Liprin-α (Owald et al., 2010, 2012). While causative relationships and 

underlying mechanisms cannot yet be concluded, the accumulated evidence suggests that the 

regulatory machinery of bouton growth and AZ assembly are not fully independent. The 

coordination of morphogenesis and AZ formation may ensure the proper allocation of a finite 

pool of biological material: conceivably, restricting AZ size ensures that all boutons are 

populated with release sites even as membrane expansion continues. While such models can 

neither be confirmed nor rejected at present, the continued progress in elucidating a more 

thorough picture of synapse development might one day yield concrete evidence of a common 

upstream regulator of membrane morphogenesis and AZ assembly, and the biological rationale 

for the existence of such a mechanism.  

 

The Dendritic Cytoskeleton: A Dynamic System 

The morphological expansion of the neuron occurs during development and is followed by 

continual modifications and refinements thereafter (Figure 1.1). In mammals including humans, 

such changes have now been observed well into adulthood (Lee et al., 2006; Petanjek et al., 

2011), in defiance of the long-held belief that the adult brain has limited capacity for structural 

plasticity. That the resultant neuronal structure is inextricably linked to its function is a 

fundamental tenet of neurobiology that has been demonstrated both theoretically and 

empirically (Jack et al., 1976; Kasai et al., 2003; Miller and Jacobs, 1984; Rall, 1977); for 

instance, in silico and experimental studies indicate that bouton size has considerable impacts 

on SV release probability (Knodel et al., 2014; Kurdyak et al., 1994; Li et al., 2002). The close 

structure-function ties in neurons, combined with the plastic nature of the nervous system, 

necessitates a system of molecules capable of dynamically supporting and modulating synaptic 
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architecture, and therefore function. Providentially, the cytoskeletal network provides such a 

backbone, in both a physical and biochemical sense. In Drosophila, the neuronal cytoskeleton 

includes elements such as actin, microtubules (MTs), and cortical spectrin (Goellner and Aberle, 

2012), while additional polymers such as neurofilaments are present in some organisms (Kurup 

et al., 2018; Yuan et al., 2017). Collectively, the various polymers of the neuronal cytoskeleton 

network play indispensable roles in the development, maturation, and function of the synapse 

(Bodaleo and Gonzalez-Billault, 2016; Long and Van Vactor, 2013). Here, I will focus on the two 

most prominent cytoskeletal networks in neurons, actin and MTs (Goellner and Aberle, 2012), 

and the biochemical properties that make them singularly well-suited to driving multiple facets of 

synapse development and function. 

 Actin and MTs display rapid, polarized assembly and disassembly at their barbed and 

plus ends, respectively. Both actin and MTs are capable of self-regulated polymerization, 

although in physiological contexts, they typically assemble under the control of a wide array of 

molecules (Akhmanova and Steinmetz, 2008, 2015; Galjart, 2010; Pollard, 2007, 2016; Pollard 

et al., 2000). Key proteins associated with actin dynamics and organization include profilin, 

ADF/cofilin, Arp2/3, WASP, Scar/WAVE, WASH, formins, Rho GTPases, and capping protein 

(Pollard, 2007, 2016).  MTs display the remarkable property of dynamic instability, in which they 

rapidly shift between states of assembly and disassembly (Cassimzeris et al., 1988; Desai and 

Mitchison, 1997; Howard and Hyman, 2003; Mitchison and Kirschner, 1984); this intrinsic 

behavior can also be modulated by MT-associated proteins (MAPs), such as plus-tip tracking 

proteins (+TIPs) (Akhmanova and Steinmetz, 2008, 2015; Galjart, 2010). Notably, 

polymerization of both actin and MTs is thought to generate protrusive forces that promote 

membrane deformation and rearrangements (Cooper, 2013; Etienne-Manneville, 2013; Pollard 

and Cooper, 2009). Furthermore, MTs are thought to engage in a “search-and-capture” 

mechanism that facilitates interactions between membrane, organelles, and other molecules 
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(Kirschner and Mitchison, 1986; Mimori-Kiyosue, 2003); in neurons, this exploratory behavior 

likely promotes efficient cellular responses to signaling cues (Baas et al., 2016). such as plus-tip 

tracking proteins (+TIPs) (Akhmanova and Steinmetz, 2008, 2015; Galjart, 2010). Taken 

together, both actin and MT dynamics have been well-established in the motility, migration, and 

morphogenesis of neurons and other cell types (Cooper, 2013; Etienne-Manneville, 2013; 

Kessels et al., 2011; Pollard and Cooper, 2009; Vitriol and Zheng, 2012). More specific 

properties of the synaptic cytoskeleton, and their specific roles in synaptogenesis, are described 

in the following sections.  To reflect this historical sequence and research progression, I will 

proceed to first discuss findings relating to the dendritic actin and MT cytoskeletons and then 

summarize the current understanding of the presynaptic cytoskeleton.  

 Towards the end of the 19th century, Ramón y Cajal discovered that dendrites make 

synaptic contacts through numerous micron-sized filopodia-like protrusions, which are now 

known as spines (Glickstein, 2006; Nimchinsky et al., 2002). Modern studies have since shown 

that at excitatory synapses, dendritic spines house the PSDs and are thus essential sites of 

signal input; moreover, spine morphogenesis is driven by a dense actin network (Bertling and 

Hotulainen, 2017; Bosch and Hayashi, 2012; Dent et al., 2011; Hotulainen and Hoogenraad, 

2010; Shirao and González-Billault, 2013; Spence and Soderling, 2015). Precise modulation of 

the equilibrium between globular-actin (G-actin) and filamentous-actin (F-actin) has significant 

effects on actin assembly rates and therefore actin-driven spine morphogenesis (Hotulainen and 

Hoogenraad, 2010; Spence and Soderling, 2015). While certain features of the dendritic 

cytoskeleton resemble the machinery of other motile and migratory structures, they also have 

unique features. For instance, while filopodia typically contain uniform-polarity F-actin bundles, 

dendritic F-actin forms mixed-polarity branched networks as well as other non-linear structures 

such as rings (Bertling and Hotulainen, 2017; Dent et al., 2011). F-actin in dendritic spines is 

thought to form at least three distinct pools: a dynamic, treadmilling pool at the spine tip; a 
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largely stable pool at the spine base; and a broadly-distributed pool that drives spine 

enlargement in a glutamate-dependent manner (Honkura et al., 2008). Collectively, these actin 

behaviors are important to spine morphogenesis and also stabilize the PSD and mediate 

activity-dependent structural plasticity in mature dendrites (Hotulainen and Hoogenraad, 2010). 

The continuous remodeling of dendritic actin is modulated by numerous factors also found in 

systems such as filopodia and lamellipodia; these include but are not limited to Rho family 

GTPases such as RhoA, Rac1, and Cdc42; the Arp2/3-WASP and WAVE complexes; profilin 

and cofilin; and capping protein (Hotulainen and Hoogenraad, 2010; Spence and Soderling, 

2015). 

 While an abundant actin network in dendritic spines has been recognized for decades, 

dendritic spine MTs were only recently confirmed to exist. After many attempts over the years to 

detect and visualize spine MTs (Dent et al., 2011), multiple independent ex vivo imaging studies 

finally demonstrated conclusively that MTs invade the spines in an activity-dependent manner 

(Gu et al., 2008; Hu et al., 2008; Jaworski et al., 2009; Penzes et al., 2009). These and 

subsequent studies (Hu et al., 2011; Kapitein et al., 2011; McVicker et al., 2016; Merriam et al., 

2011; Wagner et al., 2011) demonstrated that at a given time, MTs are only present in ~9% of 

dendritic spines and that each invasion lasts only minutes; the rarity and transience of these 

events accounts for the difficulty in detecting spine MTs. Dendritic spine MT dynamics are likely 

mediated by +TIPs: for instance, the end-binding protein 3 (EB3) is known to affect spine 

morphology (Jaworski et al., 2009), possibly through crosstalk with actin-associated proteins 

such as drebrin (Dent, 2017; Geraldo et al., 2008). Present evidence aside, many other 

questions remain about the mechanisms and functional significance of MT spine invasions, 

particularly in comparison to the current understanding of dendritic spine actin. Nonetheless, 

there is ample motivation to address these questions. For instance, MT invasions into dendritic 

spines are thought to play key roles in spine enlargement (Merriam et al., 2011) as well as the 
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maturation of spines from thin-type to mushroom-type structures (Gu et al., 2008; Jaworski et 

al., 2009). Moreover, dynamic MT spine invasions are also thought to be critical to activity-

dependent structural plasticity of cultured neurons, and may be fundamental to brain functions 

such as learning and memory (Dent, 2017; Dent et al., 2011).  

 MTs are also a major component of the main dendritic and axon shaft, where they are 

essential to neuronal structure, organization, and long-range motor transport (Kevenaar and 

Hoogenraad, 2015; Maeder et al., 2014; Van De Willige et al., 2016). A central feature of MTs 

within these major neuronal structures is their polarity; this property is thought to be a major 

determinant of function. Axonal MTs display uniform plus-end out orientation while dendritic 

MTs are characterized by mixed polarity (Kapitein and Hoogenraad, 2011; Kevenaar and 

Hoogenraad, 2015; Matamoros and Baas, 2016; Rolls, 2011). Throughout vertebrate systems, 

plus- and minus-end out dendritic MTs occur in approximately equal numbers (Baas et al., 

1988; Burton, 1988; Yau et al., 2016); dendritic MTs in C. elegans (Maniar et al., 2012; 

Stepanova et al., 2003; Yan et al., 2013) and Drosophila (Hill et al., 2012; Rolls, 2011; Rolls et 

al., 2007; Stone et al., 2008) are also mixed, but are predominantly (~90%) minus-end out. This 

orientation of MTs is thought to contribute to processes such as cargo sorting or the 

development of distinct subcellular identities between different neuronal compartments (Kapitein 

and Hoogenraad, 2011; Rolls, 2011). While the mechanisms of MT orientation remains largely 

unexplained, work in Drosophila dendrites has suggested that, as in the dendritic spine, +TIPs 

are likely to be critical; specifically, the +TIPs EB1 and APC are thought to recruit kinesin-2 to 

establish polarity (Chen et al., 2014; Mattie et al., 2010).  

 

The Presynaptic Cytoskeleton 

As in postsynaptic dendrites and other neuronal compartments, actin and MTs are important 

determinants of the development and function of the presynaptic terminal. At the motor axon 
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terminal of the fly NMJ, actin and MT networks are regulated, both directly and indirectly, by 

classic developmental signaling molecules, such as Wg, BMP, and LAR-Abl (Luchtenborg et al., 

2014; Pawson et al., 2008; Piccioli and Littleton, 2014; Van Vactor and Sigrist, 2017). A 

comprehensive, molecular-level understanding of how the presynaptic cytoskeleton functions 

downstream of these signaling pathways is still maturing, with many remaining puzzles. For 

instance, how does actin and MT polymerization drive morphogenesis and structural plasticity, 

and what are the functional consequences of these membrane changes? How do actin and MTs 

interface with other components of the presynaptic machinery, and how are these interactions 

coordinated? I will describe current progress in addressing these questions, beginning with 

studies of the better-characterized actin cytoskeleton and proceeding to presynaptic MTs, which 

remains a largely open frontier.  

 The presence of F-actin throughout the presynaptic terminal was established through a 

combination of biochemical (Morciano et al., 2009; Stevens et al., 2003), functional (Morales et 

al., 2000), and ultrastructural studies (Landis et al., 1988); related studies also revealed the 

presence of F-actin at the AZ (Bloom et al., 2003; Hirokawa et al., 1989; Phillips et al., 2001). 

Consistently, actin localizes to puncta within the presynaptic boutons of the Drosophila NMJ 

(Pawson et al., 2008). The assembly and organization of presynaptic actin is mediated by 

interactions with CAMs, such as immunoglobulin receptors (Besse et al., 2007; Stavoe and 

Colón-Ramos, 2012) and Cadherins (Sun and Bamji, 2011). In cultured cells, F-actin 

recruitment has also been found to depend on the HSPG Sdc, which was furthermore required 

for formation of in vitro synapses (Lucido et al., 2009). Further studies have indicated that at the 

Drosophila NMJ, presynaptic actin is regulated by a diverse set of molecules, including Nervous 

Wreck (Nwk) (Coyle et al., 2004), Dap160/Intersectin (Koh et al., 2004; Marie et al., 2004), Cyfip 

(Zhao et al., 2013), Enabled (Ena; unpublished), and Diaphanous (Pawson et al., 2008). Loss of 
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these molecules results in NMJ morphogenesis defects, once again underscoring the 

importance of actin and its associated regulatory proteins in proper synaptic development.  

 Collectively, these and other studies have revealed a role for actin as an AZ scaffold and 

SV organizer (Cingolani and Goda, 2008a; Dillon and Goda, 2005; Long and Van Vactor, 2013; 

Nelson et al., 2013; Rust and Maritzen, 2015; Sankaranarayanan et al., 2003). For instance, in 

C. elegans, colocalization of F-actin and the neurabin ortholog NAB-1 is required to drive 

association of NAB-1 with Syd-1 and Liprin-α and subsequent AZ assembly (Chia et al., 2012). 

Similarly, the Drosophila adaptor protein Nwk, which directly binds the Arp 2/3 interactor WASP, 

has a peri-AZ localization and is required for normal AZ density and synaptic transmission 

(Coyle et al., 2004) as well as SV clustering and endocytosis (Rodal et al., 2008). Other actin-

regulatory proteins, including the adaptor protein Dap160 (Koh et al., 2004; Marie et al., 2004), 

the WAVE complex-interactor Cyfip (Zhao et al., 2013), and direct actin interactor Ena 

(unpublished data) have similarly been shown to regulate SVs at release sites in flies. Similar 

roles for actin in SV organization been reported in lampreys (Bloom et al., 2003; Shupliakov et 

al., 2002). It is thought that actin may regulate SV organization by physically tethering SVs in a 

synapsin-dependent manner (Bleckert et al., 2012; Bloom et al., 2003; Fdez and Hilfiker, 2006).  

 As with dendritic spine MTs, the localization of presynaptic MTs has remained more 

contentious than that of actin despite many attempts to resolve the issue. Early ultrastructural 

evidence in lampreys (Schmitt, 1968), combined with biochemical work (Feit et al., 1971; Gozes 

and Littauer, 1979), suggested the presence of MTs not only in presynaptic terminals but in 

close proximity to AZs and SV release sites (Bird, 1976; Gray, 1975). However, other 

ultrastructural studies reported MTs and MAPs might be absent from axon terminals (Matus et 

al., 1981, 1975). Given that presynaptic MTs are now known to be labile and highly sensitive to 

fixation conditions (Bodaleo and Gonzalez-Billault, 2016; Matamoros and Baas, 2016), these 

discrepancies can be attributed to differences across experimental protocols and model 
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systems. The field has converged over time, and multiple ultrastructural and light imaging 

studies in systems including C. elegans, Drosophila, and vertebrates have established that MTs 

are present in presynaptic terminals (Bartlett and Banker, 1984; Caceres et al., 1986; Cumming 

et al., 1983; Paysan et al., 2000; Roos et al., 2000) and are moreover proximal to the AZ 

(Lepicard et al., 2014; Perkins et al., 2010; Stigloher et al., 2011)  

 Considerable evidence for the roles of presynaptic MTs has emerged from genetic 

studies of MAP phenotypes at the Drosophila NMJ (Bodaleo and Gonzalez-Billault, 2016; Long 

and Van Vactor, 2013). Perturbations in direct MT-interactors such as futsch/map1b (Lepicard 

et al., 2014; Roos et al., 2000), stathmin (Graf et al., 2011), and the formins diaphanous 

(Pawson et al., 2008) and DAAM (Migh et al., 2018) all produce NMJ undergrowth. Mutations in 

additional factors that regulate MTs, such as DVAP-33A (Pennetta et al., 2002), dapkc (atypical 

protein kinase C) (Ruiz-Canada et al., 2004), and the giant Ankyrin2 isoform ank2-XL (Stephan 

et al., 2015) also result in undergrowth. Orthologs of these molecules have been implicated in 

disease, and additional links are likely to be discovered in the future. For instance, mutations in 

both futsch and DVAP-33A have been associated with amyotrophic lateral sclerosis (ALS) 

(Coyne et al., 2014; Nishimura et al., 2004; Ratnaparkhi et al., 2008), and mutation of stathmin 

is associated with SMA (Wen et al., 2010). In addition, the human dapkc ortholog is potentially 

implicated in the pathology of Alzheimer’s (Crary et al., 2006), and formins are linked to multiple 

diseases (Kawabata and Kengaku, 2019). These observations, along with broader findings that 

MTs are critical to neuronal health (Lasser et al., 2018; Matamoros and Baas, 2016), underline 

the importance of proper MT regulation and of sufficient synaptic growth and size. 

In addition to the clear requirement for MAPs and other factors in promoting synaptic 

expansion, there is also compelling evidence for the importance of preventing of overexuberant 

synapse growth via presynaptic MT regulation. For instance, significant NMJ overgrowth results 

from mutation of spastin, the most frequently affected locus in hereditary spastic paraplegias 
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(HSP) (Sherwood et al., 2004), and from mutation of dfxr (homolog of FMR1), which regulates 

Futsch expression and is associated with Fragile X syndrome, one of the most common forms 

of inherited intellectual disability (Penagarikano et al., 2007; Zhang et al., 2001). Overgrowth 

phenotypes are also observed for loss of katanin, which is associated with microcephaly 

(Bartholdi et al., 2014; Mao et al., 2014); spichthyin (homolog of NIPA1 and ichthyin), which is 

associated with HSP (Wang et al., 2007); and tubulin-specific chaperone E (tbce), which is 

associated with hypoparathyroidism-intellectual disability-facial dismorphism, a fatal condition 

(Jin et al., 2009). Loss of pavarotti/MKLP1/KIF23, a kinesin that cross-links MTs and is 

necessary for vertebrate neuron development (Yu et al., 1997, 2000) also results in overgrowth 

(McLaughlin et al., 2016). Collectively, the under- and overgrowth phenotypes observed upon 

MT or MAP perturbation at the fly NMJ suggest that a maintaining a precise equilibrium of both 

synapse expansion and restriction is imperative and that MTs have critical roles in this process.  

 These studies at the fly NMJ established important roles for presynaptic MTs while 

raising questions about underlying mechanisms. Perhaps one of the most pressing issues is the 

significance of MT polymerization and plus-end behaviors: it is largely unknown how these 

unique MT properties might drive presynaptic development, but the importance of MT assembly 

in dendritic spines and growth cones strongly suggests comparable roles in the presynaptic 

compartment (Akhmanova and Steinmetz, 2008, 2015; Dent, 2017; Dent and Gertler, 2003; 

Jaworski et al., 2008; Lowery and Van Vactor, 2009; Vitriol and Zheng, 2012). An interesting 

explanation emerges when one also considers the indisputable role of MTs in providing physical 

tracks for motor transport through presynaptic terminal (Goldstein et al., 2008; Kapitein and 

Hoogenraad, 2011; Maeder et al., 2014). Could plus-end assembly and disassembly provide an 

additional layer of local, fine-grained control over the delivery of cargos to critical regions, such 

as the AZ? Such a possibility is consistent with demonstrations at the fly NMJ of a distinct sub-

population of exploratory presynaptic MTs (Pawson et al., 2008), similar to pioneer MTs in the 
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neuronal growth cone. Conceivably, these pioneer-like MTs may facilitate a search-and-capture 

mechanism (Kirschner and Mitchison, 1986; Mimori-Kiyosue, 2003) that allows for the rapid 

distribution and rearrangements of components, such as AZ machinery or SVs, perhaps in 

cooperation with the role of AZ-localized presynaptic actin (Cingolani and Goda, 2008a; Dillon 

and Goda, 2005; Nelson et al., 2013). To date, the presynaptic roles of MT +TIPs have not yet 

been defined in the Drosophila NMJ or other comparable presynaptic systems (Akhmanova and 

Steinmetz, 2008, 2015), but if MT plus-end dynamics do mediate presynaptic organization, the 

+TIP network would almost certainly be one of the major regulatory mechanisms that would 

warrant further investigation. 

 Within the presynaptic terminal, MT assembly and dynamics might also regulate the 

membrane rearrangements that result in morphological changes, such as bouton growth and 

arborizations. Specifically, could the forces produced by MT polymerization induce membrane 

deformations that are necessary during bouton growth? Given that MT invasions promote 

enlargement and morphogenesis of dendritic spines (Gu et al., 2008; Jaworski et al., 2009; 

Merriam et al., 2011), it is interesting to imagine that the presynaptic pioneer MTs (Pawson et 

al., 2008) described above produce similar “invasions” that define new sites of bouton addition 

and enlargement. A further question concerns how the fundamental properties of MT assembly 

and stabilization might contribute to the overall neuronal morphology: for instance, does a more 

substantial and stable MT network imply greater NMJ expansion? It is well known that Futsch 

(Roos et al., 2000) and Spastin (Sherwood et al., 2004) have opposite roles in stabilizing and 

severing MTs, and also have opposite roles in promoting and restricting NMJ size, respectively, 

which is indeed consistent with a positive correlation between synaptic size and MT assembly. 

However, the collective evidence over the years hints at a more complex relationship between 

MT and NMJ expansion. Assuming that a given neuron has finite resources, formation of a very 

extensive MT network would eventually exhaust the pool of available tubulin; if the neuron were 
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still expanding, some MT disassembly and severing would likely be necessary to generate the 

necessary materials for further MT outgrowth (Roll-Mecak and Vale, 2006). Such explanations 

of how MT assembly relates to NMJ expansion remain thus far largely speculative, but the 

growing body of work on presynaptic MTs, bolstered by key technical and experimental 

advances, may begin to offer answers in the near future.   

 

Overview of Dissertation 

My dissertation research crystallized through a desire to unravel some of the many mysteries 

surrounding the roles and regulation of presynaptic MTs. While I considered each of the 

questions discussed in the previous paragraph throughout my studies, the focal points of my 

work became (1) the potential relationships between presynaptic MT assembly and stability and 

synaptic expansion and (2) the significance of presynaptic MT plus-end dynamics, potentially by 

+TIPs. In the course of investigating these questions, I have gravitated towards the protein 

dTACC, the Drosophila ortholog of the highly conserved TACC family of MAPs (Ding et al., 

2017; Hood and Royle, 2011; Peset and Vernos, 2008; Thakur et al., 2013). dTACC drew initial 

interest as a novel regulator of synaptic morphogenesis, and understanding its function in the 

broader context of presynaptic MT biology and synaptogenesis is the crux of my dissertation. 

The following chapters collect several independent dTACC storylines, which each form the 

basis for a completed or emerging manuscript.  

In Chapter 2, I describe our lab’s initial, unexpected discovery that dTACC is a negative 

regulator of synapse growth despite being a MT-stabilizing protein in other contexts. In the 

remainder of Chapter 2 and in Chapter 3, I discuss the subsequent light-imaging work that 

helped define roles for dTACC in regulating presynaptic MTs at the developing synapse. 

Chapter 2 focuses on immunofluorescence studies that investigated the effect of dTACC on 

overall MT architecture, while Chapter 3 focuses on the design and application of a timelapse 



 

35 

 

imaging strategy to understanding the effect of dTACC on MT plus-end behaviors and is 

consistent with the possibility that dTACC has +TIP functions at the synapse. Thus, Chapters 2 

and 3 use complementary static and dynamic methods to elucidate dTACC function. More 

broadly, our lab’s work on dTACC is motivated by the broader question of how MT 

stability/polymerization and synapse expansion are related. While the simple model where MT 

stability and synapse growth correlate is attractive to consider, the reality is undoubtedly far less 

elegant, given that synaptogenesis is a mutable and complex amalgamation of different cellular 

and subcellular events that themselves are in constant flux. We thus aim to provide some 

perspectives into how cytoskeletal and morphological changes are potentially related.  

Finally, in Chapter 4, I summarize my findings and describe ongoing work on 

postsynaptic dTACC. While our lab’s work has ostensibly focused on presynaptic dTACC, we 

serendipitously discovered a postsynaptic population of dTACC that is closely associated with 

the presynaptic AZ. Our results are still highly preliminary and clear roles for postsynaptic 

dTACC have not yet emerged; thus, I will focus chiefly on potential future directions.  

 

Chapter 1. Introduction to synapse development and the synaptic cytoskeleton.  

This chapter provides a general survey of the synaptogenesis literature and the overarching 

motivation and key findings of my dissertation. 

Chapter 2. dTACC restricts bouton addition and regulates microtubule organization at 

the Drosophila neuromuscular junction.  

This chapter is a reprint of the Chou V.T., Johnson, S., et al. (2020) manuscript published in 

Cytoskeleton and describes the identification of dTACC as a novel regulator of synaptogenesis 

and of presynaptic MT architecture.  

Chapter 3. A new 3D particle tracking tool for noninvasive in vivo analysis of synaptic 

microtubule dynamics in dendrites and at the neuromuscular junction of Drosophila. 
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This chapter is a reprint of the Chou V.T., Yesilyurt H.G., et al. manuscript that is forthcoming in 

the Journal of Visualized Experiments and describes the use of an in vivo imaging strategy to 

investigate the role of dTACC in both pre- and post-synaptic MT plus-end dynamics.  

Chapter 4. Conclusions and future directions.  

This chapter summarizes Chapters 2 and 3 and describes the unexpected identification and 

potential future investigation of a postsynaptic dTACC population.  
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ABSTRACT 

Regulation of the synaptic cytoskeleton is essential to proper neuronal development and wiring. 

Perturbations in neuronal microtubules are associated with numerous pathologies, yet it remains 

unclear how changes in microtubules may be coupled to synapse morphogenesis. Studies have 

identified many microtubule regulators that promote synapse growth. However, less is known 

about the factors that restrict growth, despite the potential links of synaptic overgrowth to severe 

neurological conditions. Here, we report that dTACC, which is implicated in microtubule assembly 

and stability, prevents synapse overgrowth at the Drosophila neuromuscular junction by restricting 

addition of new boutons throughout larval development. dTACC localizes to the axonal 

microtubule lattice and is required to maintain tubulin levels and the integrity of higher-order 

microtubule structures in motor axon terminals. While previous reports have demonstrated the 

roles of microtubule-stabilizing proteins in promoting synapse growth, our findings suggest that in 

certain contexts, microtubule stabilization may correlate with restricted growth.  
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INTRODUCTION 

Synapses are the essential functional units of the nervous system. Formation of intricate synaptic 

geometry, which involves complex arborization of cell processes and cell-cell connections, is 

critical to the function and plasticity of neural circuits. Following axon pathfinding, signaling 

pathways coordinate synaptic morphogenesis and the formation of stable junctions between pre- 

and postsynaptic compartments (Goda and Davis, 2003; Collins and DiAntonio, 2007; Van Vactor 

and Sigrist, 2017). A major target and effector of these signaling networks is the presynaptic 

microtubule (MT) cytoskeleton (Broadie and Richmond, 2002; Ruiz-Cañada and Budnik, 2006; 

Rushton et al., 2009). MTs have been linked to numerous neurodevelopmental and 

neurodegenerative disorders (Bodaleo and Gonzalez-Billault, 2016; Goellner and Aberle, 2012; 

Lasser et al., 2018; Matamoros and Baas, 2016). However, despite the clear importance of 

synaptic MTs, our understanding of their regulation and function still lags behind our 

comprehension of the upstream signaling pathways that orchestrate synapse development. 

 Despite limited mechanistic understanding, synaptic morphogenesis has been well 

characterized at the phenomenological level through studies at the Drosophila neuromuscular 

junction (NMJ) (Jan and Jan, 1976). In this system, a motor axon contacts its target muscle during 

late embryogenesis and transitions from a motile, sheet-like growth cone into a branched structure 

decorated with synaptic varicosities (“boutons”) (Yoshihara et al., 1997). Throughout larval 

development, the NMJ rapidly expands through the addition of new immature boutons (Schuster 

et al., 1996; Zito et al., 1999), which then recruit presynaptic active zone components and 

postsynaptic receptors as they mature (Rushton et al., 2009; Vasin et al., 2014). In response to 

both developmental cues and neural activity (Budnik et al., 1990; Chklovskii et al., 2004; Van 

Vactor and Sigrist, 2017), the NMJ undergoes continuous remodeling via both bouton addition 

and removal (Eaton et al., 2002; Fuentes-Medel et al., 2009). These processes are modulated by 

numerous signaling pathways, such as BMP (Bayat et al., 2011; Keshishian and Kim, 2004), FGF 
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(Sen et al., 2011), LAR (Han et al., 2016; Um and Ko, 2013), and Wnt/Wg (Packard et al., 2002; 

Park and Shen, 2012; Speese and Budnik, 2007).  

 While the downstream MT-related targets of developmental signaling pathways remain 

largely unknown, several components of the Wnt/Wg pathway directly regulate the MT 

cytoskeleton by binding MTs themselves and/or with MT-associated proteins (MAPs) (Salinas, 

2007). One such target of Wnt/Wg signaling is the MAP Futsch (homolog of MAP1B), which is 

phosphorylated by glycogen synthase kinase 3 (GSK3)/Shaggy (Sgg) in both mammals and flies 

(Cohen and Frame, 2001; Franco et al., 2004; Gögel et al., 2006). At the Drosophila NMJ, Futsch 

promotes MT stability and synaptic expansion (Lepicard et al., 2014; Roos et al., 2000), while 

inhibition of Futsch by Sgg restricts synapse size (Franco et al., 2004). These findings suggest a 

model where increased stabilization of MTs is associated with increased NMJ expansion. 

Additional factors that are associated with MT stability, such as the formins Diaphanous (Pawson 

et al., 2008) and DAAM (Bartolini and Gundersen, 2010; Migh et al., 2018), have also been found 

to promote NMJ expansion.  

As a counterbalance to MT-stabilizers, MT destabilizers/severing proteins, such as 

Spastin (Sherwood et al., 2004) and Katanin (Mao et al., 2014) restrict NMJ size. Consistently, 

repression of Futsch mRNA levels by Dfxr (homolog of FMR1) prevents NMJ overgrowth (Zhang 

et al., 2001), further supporting the notion that MT stability correlates with NMJ expansion. 

Interestingly, mutation of human spastin is the most frequent cause of hereditary spastic 

paraplegias (HSP) (Solowska and Baas, 2015), while mammalian katanin has been associated 

with behavioral deficits and intellectual disability (Banks et al., 2018; Bartholdi et al., 2014). 

Similarly, dfxr is associated with Fragile X syndrome, one of the most common forms of inherited 

intellectual disability (Penagarikano et al., 2007). The synaptic phenotypes and disease relevance 

of genes such as spastin, katanin, and dfxr has led to the understanding that excessive synaptic 

growth is highly detrimental. Collectively, these findings suggest that a complex set of factors is 
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responsible for maintaining a precise balance of both synapse expansion and restriction to ensure 

neurological function and health.  

 Here, we report a new negative regulator of synapse growth, the Drosophila homolog of 

the highly conserved TACC (transforming acidic coiled coil) family (Peset and Vernos, 2008; Hood 

and Royle, 2011; Thakur et al., 2013; Ding et al., 2017). Early studies of Drosophila and 

mammalian TACC-family proteins showed that these proteins are often concentrated near MT 

minus ends and have roles in regulating MTs and spindle function during mitosis (Gergely et al., 

2000b, 2000a), in cooperation with the MT polymerase ch-TOG/XMAP215/Minispindles (Msps) 

(Akhmanova and Steinmetz, 2008, 2015; Brouhard et al., 2008; Lee et al., 2001). Similar 

observations have since been reported across phyla (Bellanger and Gönczy, 2003; Le Bot et al., 

2003; Peset et al., 2005; Samereier et al., 2011; Sato et al., 2004; Srayko et al., 2003). TACC can 

also localize at the MT plus-end, where it is thought to regulate MT assembly dynamics (Long et 

al., 2013; Lucaj et al., 2015; Nwagbara et al., 2014; Rutherford et al., 2016; Samereier et al., 

2011; Srayko et al., 2003). However, TACC localization to the MT lattice has been observed in 

multiple settings (Gergely et al., 2000b; Peset et al., 2005; Sato et al., 2004; Thadani et al., 2009).  

Altogether, these studies strongly suggest that TACC proteins serve as conserved mediators of 

both the assembly and stability of MTs (Peset and Vernos, 2008; Hood and Royle, 2011; Thakur 

et al., 2013; Ding et al., 2017). 

Given (1) prior studies suggesting that increased MT stability correlates with growth and 

(2) the established roles of TACC proteins in MT assembly and stability, dTACC would naturally 

be expected to promote synapse growth.  Surprisingly, we discovered instead that presynaptic 

dTACC negatively regulates the growth of the larval NMJ by limiting addition of synaptic boutons 

during development. We also found that within the motor axon terminal, dTACC associates 

abundantly along the lattice of MTs and regulates both the integrity and higher-order organization 
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of MTs. Our results suggest that in certain contexts, assembly and/or organization of MTs by 

proteins such as dTACC may restrict NMJ expansion. 

RESULTS AND DISCUSSION 

Presynaptic dTACC is required to restrict NMJ size 

The NMJ has a highly stereotyped morphology consisting of a branched motor axon terminal that 

is decorated by numerous presynaptic boutons (Fig. 2.1A). In this system, boutons are often 

quantified as a measure of overall NMJ size. To determine the effect of dTACC on synapse 

morphogenesis, we initially counted mature type I boutons at the muscle 6/7 NMJ in late-stage 

third instar dtacc mutant larvae labeled with the neuronal membrane marker anti-horseradish 

peroxidase (HRP) (Jan and Jan, 1982). To generate a strong dtacc loss background, we raised 

transheterozygotes using two independently derived alleles: dtacc592 (d-taccstella), a complete null 

(Lee et al., 2001), and dtacc1 (d-TACC1), which has been previously described as a very strong 

allele (Gergely et al., 2000b). We combined dtacc592 and dtacc1 over Df(3R)110, a deletion at the 

locus (Fig. 2.2A) and confirmed that these animals showed phenotypes comparable to 

dtacc592/dtacc1 transheterozygotes (Fig. 2.1). However, dtacc592/Df(3R)110 and dtacc1/Df(3R)110 

animals were very weak, suggesting that haploinsufficiencies uncovered by the deletion 

contributed to pleiotropy. Thus, we focused our remaining analysis on dtacc592/dtacc1 

transheterozygotes to avoid additional phenotypes resulting from deletion of flanking genes. 

Our analysis showed that dtacc592/dtacc1 animals display striking NMJ overgrowth 

compared to genetically matched w1118 controls (Fig. 2.1B,C,H); this phenotype was reminiscient 

of mutations in MT destabilizers such as spastin (Sherwood et al., 2004) and katanin (Mao et al., 

2014). We also found that dTACC is haploinsufficient, as dtacc592/+ heterozygotes showed a 

significant and reproducible 1.35-fold increase in bouton number compared to controls (Fig. 

2.1H), revealing that the NMJ is highly sensitive to levels of dTACC. As expected, dtacc592/ dtacc1 

animals displayed an even more dramatic but qualitatively comparable phenotype, including a  
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Figure 2.1. dTACC is a negative regulator of NMJ size. A, Schematic of larval ventral 

musculature and nerve innervation pattern. For clarity, only select structures are depicted. Inset 

shows the morphology of the NMJ, including varicosities or “boutons.” B-J, Loss of dTACC  results 

in NMJ overgrowth. B-G, Images show third instar NMJs stained with the neuronal membrane 

marker α-HRP. In contrast to w1118 controls (B), dtacc592/dtacc1 flies (C) showed increased NMJ 

size, as did elaVC155; Dcr2 x dtacc-RNAi (E) and OK6 x dtacc-RNAi (G) animals compared to their 

respective elaVC155; Dcr2 x w1118 (D) and OK6 x w1118 (F) controls.         Quantification of bouton 

number (H) indicates that dTACC is haploinsufficient, as dtacc592/+ heterozygotes show a 1.35-

fold increase in bouton number, while dtacc592/dtacc1 flies show a more severe, albeit qualitatively 

indistinguishable, 2.05-fold increase. elaVC155; Dcr2 x dtacc-RNAi (I) and OK6 x dtacc-RNAi (J)  

animals  showed 1.21 and 1.33-fold increase, respectively, in bouton number, comparable to 

dtacc592/+ heterozygotes.  Relative to controls, dtacc592/dtacc1 also showed increased axonal 
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Figure 2.1 (continued). branch number (K) and NMJ length (L). M, dtacc592/dtacc1 NMJs showed 

a decrease in average bouton area. Raw bouton counts: w1118, 96.6; dtacc592/+, 167.6; 

dtacc592/dtacc1, 198.6; elaVC155; Dcr2 x w1118 , 144.8; elaVC155; Dcr2 x dtacc-RNAi , 174.9; OK6 x 

w1118 , 127.1; OK6 x dtacc-rnai , 169.4. * P < 0.05, *** P < 0.001, t-test; error bars indicate ± s.e.m; 

number of NMJs quantified indicated on graph; scale bar, 20 µm.  
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Figure 2.2. Confirmation of TACC null alleles and first instar phenotype. A, 

dtacc592/Df(3R)110 and dtacc1/ Df(3R)110 flies were generated. Both individual TACC alleles 

produced overgrowth compared to w1118 controls. B-D, dtacc phenotype in first-instar animals. 

Compared to controls (B), dtacc1 animals (C) showed significant overgrowth, as confirmed by 

quantification (D). *** P < 0.001, determined by Student’s t-test; error bars indicate ± s.e.m; 

number of NMJs quantified indicated on graph; scale bar, 5 µm. 
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2.05-fold increase in bouton number compared to controls (Fig. 2.1B,C,H). There is thus a 

proportional relationship between dTACC levels and bouton number, suggesting that dTACC  

expression or activity could modulate NMJ expansion. Notably, the dtacc592/ dtacc1 overgrowth 

phenotype was apparent as early as in first-instar larvae (Fig. 2.2B-D), indicating a continuous 

requirement for dTACC throughout the span of NMJ development. To determine if the change in 

neuronal structure reflects a presynaptic requirement for dTACC, we drove pan-neuronal and 

motoneuron-specific RNAi knockdown of a UAS-dtacc-RNAi construct using elaVC155 and OK6-

GAL4 drivers, respectively. Both elaVC155 (Fig. 2.1D,E,I) and OK6 (Fig. 2.1F,G,K) driven RNAi 

showed significant overgrowth, indicating that dTACC is required presynaptically, and, more 

specifically, in motoneurons. The fold-increase in bouton number in dtacc-RNAi animals was 

comparable to that observed in dtacc592/+ heterozygotes  (Fig. 2.1H), likely reflecting the partial 

efficacy of the RNAi-knockdown.  

In the dtacc592/dtacc1 background, we also quantified branching within the motor axon 

terminal, overall length of the NMJ, and bouton size; both branch number and NMJ length 

confirmed highly significant increases of NMJ size in dtacc592/dtacc1 compared to control (Fig. 

2.1K,L). We found that dtacc592/dtacc1 animals display a ~33% decrease in average bouton area 

(Fig. 2.1M). This bouton size phenotype, along with the dtacc overgrowth phenotype, raised the 

question of which step(s) of bouton formation may require dTACC. During normal NMJ expansion 

(Zito et al., 1999), baseline bouton addition is controlled by developmental signaling cues (Fig. 

2.3Ai), which coordinate and balance neuronal expansion with muscle growth [reviewed by Van 

Vactor and Sigrist, 2017]. Bouton addition can also be induced acutely by activity-dependent cues 

in response to stimuli (Fig. 2.3Aii) (Budnik et al., 1990; Chklovskii et al., 2004). Immediately 

following baseline or activity-induced addition, nascent boutons lack pre- and postsynaptic 

markers and thus have a “ghost”-like appearance (Fig. 2.3Ai,ii, black triangles) (Ataman et al., 

2006). However, this is a highly transient state, as components required to form the presynaptic  
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Figure 2.3. dTACC regulates bouton addition during development. A, Schematic showing 

the steps of bouton formation, including addition of boutons in response to (i) baseline or (ii) 

activity dependent growth, followed by (iii) bouton maturation via recruitment of pre- and 

postsynaptic components. Boutons may continue to (iv) grow to full size and stabilize or (v) retract 

instead, leaving “footprints” of post-synaptic material. B,C, NMJ stained α-HRP and 

counterstained with with α-Brp (Nc82; B) or α-Dlg (4F3; C). Nascent boutons (triangle) can be 

identified by the lack of post-synaptic markers such as Dlg. D, E, dtacc592/dtacc1 flies showed a 

2-fold increase in Brp-negative boutons (D) and in Dlg-negative boutons (E) compared to w1118 

controls. F, spaced stimulation paradigm used to induce rapid activity-dependent bouton budding. 

G, controls and dtacc592/dtacc1 showed nearly identical fold-changes (2.36 and 2.31-fold, 

respectively) in the number of nascent boutons following activity compared to mock-treated 

controls. * P < 0.05, t-test; error bars indicate ± s.e.m; number of NMJs quantified indicated on 

graph; scale bar, 1 µm. 
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active zone and postsynaptic cytomatrix begin to accumulate within ~30 minutes of new bouton 

formation (Fig. 2.3Aiii)  (Vasin et al., 2014). Following maturation, boutons may continue to grow 

to full size and stabilize (Fig. 2.3Aiv). Alternatively, boutons can be removed or pruned,  

occasionally leaving visible “footprints” of postsynaptic material, such as the scaffold protein Discs 

Large (Dlg; Fig. 2.3Av) (Eaton et al., 2002).  

We investigated the potential involvement of dTACC in each of these steps. We 

considered the possibility that dTACC promotes bouton pruning (Fig. 2.3Av) but did not find 

changes in Dlg footprints in dtacc animals, making this explanation unlikely (see Materials and 

Methods). Furthermore, we found no striking defects in the overall distributions of synaptic 

cytomatrix antigens in dtacc animals, such as the core active zone component Bruchpilot (Brp; 

Fig. 2.4A,B) or Dlg (Fig. 2.4C,D), suggesting that there were no catastrophic effects on initial 

bouton maturation (Fig. 2.3Aiii). However, the ~33% decrease in average bouton area (Fig. 2.1E) 

did suggest a defect at the stage where maturing boutons grow to full size (Fig. 2.3Aiv). Reduction 

in bouton growth could reflect some compensation for the effects of overgrowth. Alternatively, this 

could arise because synthesis and/or transport may not increase at the same rate as bouton 

number, thus making materials too sparse to form normal-sized boutons. In either scenario, the 

defects in bouton growth and number raised the possibility that there might be upstream defects 

in bouton initiation. 

 

dTACC regulates bouton initiation in response to baseline developmental cues 

To investigate the potential role of dTACC in bouton addition, we looked for changes in the 

incidence of nascent boutons, which can be identified by the lack of maturation markers such as 

Brp (Fig. 2.3B) or Dlg (Fig. 2.3C). Compared to w1118 controls (mean = 0.8 boutons/NMJ), 

dtacc592/ dtacc1 animals showed a 2-fold increase in the number of Brp-negative nascent boutons 

(mean = 1.6 boutons/NMJ, p = 0.04; Fig. 2.3D). Consistent with the Brp presynaptic marker, Dlg 
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Figure 2.4. dtacc animals show normal accumulation of pre- and postsynaptic markers. 

w1118 and dtacc592/dtacc1 animals were co-stained with the neuronal membrane marker α-HRP 

and the presynaptic active zone marker α-Brp (A,B) or the postsynaptic marker α-Dlg (C,D). 

Compared to w1118 (A,C) animals, the distribution of markers in dtacc592/dtacc1 (B,D) animals was 

grossly normal. Scale bar, 5 µm
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staining revealed that compared to controls (mean = 1 bouton/NMJ), dtacc animals also showed 

a 2-fold increase in small nascent boutons lacking postsynaptic specializations (mean = 2.1  

boutons/NMJ, p = 0.008; Fig. 2.3E). Collectively, these results revealed an increased frequency 

of “ghost” boutons in dtacc animals, which suggested a greater rate of bouton initiation.  

The increased bouton addition in dtacc animals observed through end-point analysis could 

occur in response to baseline developmental cues (Fig. 2.3Ai) and/or to neural activity from 

external stimuli (Fig. 2.3Aii). To evaluate these scenarios, we tested the requirement of dTACC 

in acute activity-dependent growth using a spaced-stimulation paradigm (Fig. 2.3F) that induces 

rapid budding of “ghost” boutons (Ataman et al., 2008; Nesler et al., 2013; Piccioli and Littleton, 

2014; Vasin et al., 2014). Both w1118 and dtacc592/ dtacc1 animals showed an increase in Dlg-

negative nascent boutons upon stimulation, and the fold increase was indistinguishable between 

controls and dtacc animals (2.36- and 2.31-fold, respectively; Fig. 2.3G). These results indicate 

that dTACC is not required for acute activity-dependent bouton initiation. This suggests that the 

greater frequency of nascent boutons in dtacc animals likely reflects an increase in baseline 

bouton addition in response to developmental cues. This potential role of dTACC as a negative 

regulator of baseline bouton addition is consistent with the observation that significant NMJ 

overgrowth can be observed throughout the span of development (Fig. 2.2B-D). Moreover, the 

2-fold increase in putative nascent boutons in dtacc animals (Fig. 2.3) is equal to the 2-fold 

increase we previously observed in mature bouton number (Fig. 2.1). This doubling of both 

nascent and total bouton numbers further supports the model that increased bouton number in 

dtacc mutants is due to increased baseline bouton addition.  

 

dTACC colocalizes with the lattice of synaptic MTs.  

To better understand how dTACC might affect NMJ growth, we asked if dTACC associates with 

MTs at the NMJ. While TACC has been most frequently reported to localize to MT minus- or plus-
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ends (Ding et al., 2017; Hood and Royle, 2011; Peset and Vernos, 2008; Thakur et al., 2013), 

dTACC puncta have been observed along the lattice of spindle MTs (Gergely et al., 2000b). 

Furthermore, Xenopus TACC3, the TACC isoform most highly expressed in the Xenopus 

embryonic nervous system (Rutherford et al., 2016; Tessmar et al., 2002), abundantly decorates 

the length of MTs in egg extracts (Peset et al., 2005), and the S. pombe TACC homolog 

Alp7/Mia1p is found along MTs both in vivo (Sato et al., 2004) and in vitro (Thadani et al., 2009).  

We investigated the precise nature of dTACC protein localization at the NMJ to distinguish 

between potential modes of MT interaction in vivo. We generated and validated a novel 

monoclonal antibody against dTACC (see Materials and Methods). Quantification of dTACC 

intensity and Western blotting confirmed loss of signal in dtacc mutants (Fig. 2.5A,B). Using this 

antibody, we found that the majority (~90%) of dTACC signal in controls was found in polymer 

lattice-like structures within the axon terminal (Fig. 2.6A; solid triangles) which strongly resemble 

the MT lattice at the core of the axon, consistent with prior reports that C. elegans TAC-1 localizes 

to the axons of sensory neurons (Chen et al., 2015). A smaller fraction of dTACC intensity (~10%) 

was found in punctate bouton-associated structures (Fig. 2.6A; hollow triangles). When we used 

our antibody on dtacc592/ dtacc1 animals, dTACC signal was dramatically reduced with the minor 

punctate fraction virtually abolished and the major lattice-like staining markedly decreased (Fig. 

2.6B). Although dTACC was not detectable on a Western blot with our antibody (Fig. 2.5A), there 

was small residual immunohistochemical signal in the dtacc592/ dtacc1  mutant (Fig. 2.5B) that 

may reflect residual expression (as much as 5% in dtacc592/ dtacc1) predicted by previous 

characterization of the dtacc1  background (Gergely et al., 2000b). Motivated by our finding that 

dTACC is required throughout early NMJ development (Fig. 2.2B-D), we also examined dTACC 

distribution in first instar larvae (Fig. 2.5C) and found, as expected, that dTACC is highly 

expressed in the ventral nerve cord (VNC) of the CNS (Fig. 2.5D) and throughout motor/sensory 

axon tracts (Fig. 2.5E).  
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Figure 2.5. Validation of the TACC antibody. A, Western blotting showed complete reduction 

of dTACC antibody signal in dtacc592/dtacc1 null animals. α-alpha-tubulin (Ab7291) was used as 

a loading control. B, dTACC staining intensity was significantly reduced in dtacc null flies by 

~68%. *** P < 0.001, determined by Student’s t-test; error bars indicate ± s.e.m; number of NMJs 

quantified indicated on graph. C-E, First instar w1118 animals were co-stained with α-dTACC and 

α-HRP. C, Schematic showing dissection technique of first instars, which removes the brain lobes 

but leaves the ventral nerve cord (VNC) intact. Strong dTACC staining was observed in the VNC 

(D) and throughout the motor and sensory axon tracts (E; triangles), along with some muscle 

staining. Scale bars, 50 µm.  
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Figure 2.6. TACC colocalizes with tubulin at the synaptic terminal. A, B, Validation of dTACC 

antibody in NMJs stained with α-dTACC and α-HRP. Compared to control w1118 flies (A), 

dtacc592/dtacc1 flies showed reduced dTACC staining (B). In controls (A), the majority of TACC 

showed a filamentous distribution highly reminiscent of the MT lattice within motor axon terminals 

(solid triangles), while a smaller TACC population formed puncta (hollow triangles; see high 

magnification inset). In dtacc592/dtacc1 animals (B), punctate TACC was virtually absent, and 

filamentous TACC was dramatically reduced. C, Colocalization of α-dTACC and α-alpha-tubulin 

(Ab15246) in the axon terminal. The distribution of filamentous TACC was similar to the 

distribution of tubulin, while punctate TACC appeared spatially distinct from tubulin. The Manders’ 
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Figure 2.6 (continued). overlap coefficients were M1 = 56.3% ± 3.7 (percent TACC colocalizing 

with tubulin) and M2 = 58.6% ± 6.8 (percent tubulin colocalizing with TACC; n=15 NMJs). Scale 

bar, 5 µm for main panels, 1 µm for insets. D-F, Spatial relationships between punctate dTACC 

and MTs were examined through 3D-SIM of samples stained with α-dTACC and α-alpha-tubulin 

(D). Double white lines (D) represent positions from which intensity profile plots were drawn. E, 

Representative intensity profile plot showing separation between the peaks of α-dTACC and α-

tubulin staining. F, Quantification of mean distance between peaks of α-dTACC and α-tubulin 

staining measured from intensity profile plots (n=71 puncta). Mean dTACC-MT distance was 

found to be 98.6 nm. Scale bar, 500 nm.  
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Importantly, we tested the colocalization of dTACC with MTs by staining for alpha-tubulin 

(Ab15246 for all tubulin immunohistochemistry) and found that the distribution of lattice-like TACC 

and alpha-tubulin was highly coincident (Fig. 2.6C). The Manders’ overlap coefficient M1 (percent  

dTACC colocalizing with tubulin) was found to be 56.3% ± 3.7, while M2 (percent tubulin 

colocalizing with dTACC) was 58.6% ± 6.8 (n=15 NMJs) (Manders et al., 1993). We also 

considered the possibility that the punctate fraction of dTACC might be associated with MT plus-

ends within the motor terminal. To test this idea, we used 3-dimensional structured illumination 

microscopy (3D-SIM) to measure the average distance between dTACC and MTs based on a 

published methodology (Lepicard et al., 2014). Compared to confocal microscopy, 3D-SIM 

improves resolution by two-fold in all three dimensions and can thus resolve objects with up to 

eight-fold smaller volume (Gustafsson et al., 2008; Gustafsson MG, 2000; Schermelleh et al., 

2010). At this improved resolution, we noted that dTACC puncta appeared visually distinct from 

synaptic MTs (Fig. 2.6D). To confirm this observation, we generated intensity profile plots (Fig. 

2.6E) of dTACC and tubulin staining (Fig. 2.6D, double lines show sample line scans) and found 

that the mean distance between the dTACC and tubulin peaks was 98.6 nm (Fig. 2.6F). Although 

this method may not be sensitive enough to detect single MTs or MTs that are highly dynamic 

and/or labile, we were unable conclude that the distal puncta of dTACC in boutons are closely 

associated with MTs. 

 Overall, our results suggested that in the NMJ arbor, the majority of dTACC is spatially 

localized with the lattice of MTs, similar to prior observations in Xenopus, Drosophila and fission 

yeast (Gergely et al., 2000b; Peset et al., 2005; Sato et al., 2004; Thadani et al., 2009). 

Interestingly, purified yeast Alp7 localizes to regions of overlap between adjacent (parallel or anti-

parallel) MTs where it is thought to mediate cross-linking of bundled MTs, thereby promoting the 

assembly and stability of linear MT arrays both in vitro and in vivo (Thadani et al., 2009). A role in 

cross-linking kinetochore MTs is also observed for TACC3 in HEK293 cells (Booth et al., 2011). 
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Given that neuronal MTs are organized into polarized bundles that resemble the MT arrays found 

in S. pombe (Baas et al., 2016; Bartolini and Gundersen, 2006; Hoogenraad and Bradke, 2009), 

it seemes possible that dTACC serves a similar function in regulating synaptic MT organization. 

Interestingly, this possibility would be consistent with findings that Pavarotti, a kinesin that cross-

links MTs and stabilizes the mitotic spindle, is also a negative regulator of NMJ size (McLaughlin 

et al., 2016).  

 

dTACC is required for normal levels and organization of synaptic MTs. 

The MT-lattice localization of dTACC at the NMJ is consistent with previous studies of TACC 

function in MT organization and stability. In Drosophila embryos, loss of dTACC results in short 

astral and spindle MTs (Gergely et al., 2000b), and similar roles in regulating both mitotic and 

interphase MTs have been observed for TACC proteins in a variety of systems (Peset and Vernos, 

2008; Hood and Royle, 2011; Thakur et al., 2013; Ding et al., 2017). Thus, the close association 

of dTACC with the MT lattice suggested a specific role in regulating MTs within motor axon 

terminals.  

To investigate if dTACC regulates synaptic MTs, we compared the staining intensity and 

distribution of tubulin in dtacc592/ dtacc1 animals to w1118 controls (Fig. 2.7A,B). Due to the fragility 

of MTs, we used a specifically optimized fixation protocol (see Materials and Methods). Control 

tubulin staining was clear and robust, with distinct filamentous structures (Fig. 2.7A). There was 

a clear concentration of tubulin in the main axon shaft, with thinner filaments leading out into the 

branches of the synaptic terminal where bouton addition is more frequent. In contrast to previous 

demonstrations (Jin et al., 2009; Mao et al., 2014; Sherwood et al., 2004; Trotta et al., 2004) of 

robust muscle MT staining, we observed comparatively weaker post-synaptic MT signal. This 

likely reflects differences in our protocol, which was specifically optimized to target the labile, 

unstable presynaptic MT population.      
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Figure 2.7. TACC is regulates the architecture and higher-order organization of synaptic 

MTs. A-C, Comparison of tubulin intensity in control and dtacc592/dtacc1 NMJs stained with α-

tubulin (Ab15246) and α-HRP. Control animals (A) showed robust tubulin staining with clear 

filamentous structures (triangles). Tubulin staining was most concentrated in the main axonal 

shaft (solid triangles), while thinner tubulin filaments were observed in terminal branches (hollow 

triangles). In dtacc592/dtacc1 flies (B), tubulin staining appeared weaker and was often undetected 

in branches. Quantification (C) indicates that detectable tubulin intensity was significantly reduced 

dtacc592/dtacc1 flies. Scale bar, 10 µm. D-G, Analysis of Futsch-labeled MT arrangements in 

control and dtacc592/dtacc1 NMJs labeled with α-Futsch (22C10) and α-HRP. Futsch-decorated 

MTs in the three terminal boutons of each branch were categorized into continuous, looped, and 

diffuse patterns (D-F). Side-by-side comparison of boutons showed that Futsch MT structures are 

clearly reproducible between controls and dtacc592/dtacc1 mutants. Quantification (G) shows that 

in dtacc592/dtacc1, the distribution of different MT structures is altered, with the frequency of  



 

86 

 

Figure 2.7 (continued).continuous and looped structures very significantly decreased and diffuse 

staining very significantly increased. * P < 0.05, *** P <0.001, t-test; error bars indicate ± s.e.m; 

number of NMJs quantified indicated on graph; scale bar, 1 µm.  
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Compared to controls, dtacc animals displayed diminished or undetectable tubulin staining in 

terminal branches, where the majority of bouton addition events occur. While tubulin was still 

detected in the main axon shaft, this population was also visibly reduced (Fig. 2.7B). Consistently, 

quantification indicated a ~32% overall decrease in tubulin intensity in dtacc animals (Fig. 2.7C). 

This reduction in staining could reflect a decrease in total tubulin mass, however, no obvious 

decrease in alpha-tubulin (Ab7291) was detected on our Western blots of dtacc mutant larvae 

(Fig. 2.5A). This suggested that total MT polymer must be reduced in dtacc mutants. Alternatively, 

since single MTs may be difficult to resolve with in vivo light microscopy compared to bundled MT 

arrays, a change in the spatial organization of MTs could also reduce detectable tubulin staining.  

This encouraged us to seek an additional histological probe for MTs and their in situ organization. 

To further understand correlation between the NMJ size and MT phenotypes, we next 

tested the effect of dTACC on the formation of higher-order MT structures that have been 

associated with different states of bouton growth and division (Conde and Cáceres, 2009; Roos 

et al., 2000; Ruiz-Cañada and Budnik, 2006). Most non-dividing, en passant boutons are 

traversed by a continuous Futsch-decorated MT bundle, while non-dividing boutons on the ends 

of branches (i.e. terminal boutons) often display Futsch-labeled MT loops. Actively growing or 

dividing terminal boutons display reorganization of loops into dispersed structures, which can 

appear as diffuse or punctate staining (Conde and Cáceres, 2009; Roos et al., 2000; Ruiz-Cañada 

and Budnik, 2006). Given that Futsch binds a subpopulation of stabilized MTs (Roos et al., 2000) 

and is not known to bind individual tubulin dimers, the diffuse appearance of dispersed/splayed 

MTs likely reflects structures such as short MT fragments, or longer individual MTs that are 

splayed from the main bundle, as opposed to free tubulin.  

We investigated the effects of dtacc loss on Futsch-labeled MTs structures previously 

categorized as “continuous”, “looped”, or “diffuse” (Jin et al., 2009; Sherwood et al., 2004). These 

structures are clearly and reproducibly distinguished in both w1118 controls and in dtacc592/ dtacc1 
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animals (Fig. 2.7D-F). We focused on the three most terminal boutons of each branch, as branch 

ends are the sites of most active growth (Zito et al., 1999). Loss of dtacc produced consistent, 

measurable changes to Futsch-MT structures: compared to controls, mutants showed very 

significantly decreased frequency of both continuous (40% vs. 24%) and loop structures (23% vs. 

11%; Fig. 2.7G). In contrast, the majority of dtacc boutons (65%) showed diffuse staining, in 

contrast to controls (37%) (Fig. 2.7G). Our findings thus suggest that dTACC promotes the 

organization of MTs into stable continuous and looped structures in wild-type, whereas dtacc loss 

nearly doubles the number of boutons containing dispersed/splayed MT structures.  

Collectively, our findings suggest that dTACC serves to restrict NMJ overgrowth and 

regulate MT organization and/or assembly. These studies support the notion that MT regulaton is 

vital to controlling synapse expansion, as implied by studies of several other MT-associated 

factors. Interestingly, the frequency of diffuse Futsch staining is increased by 1.8-fold in dtacc 

mutants (Fig. 2.7G). This is reminiscent of the 2-fold increase in the number of both mature (Fig. 

2.1) and nascent boutons (Fig. 2.3) in dtacc animals, and is thus consistent with the possibility 

that bouton addition and MT organization are linked. A parallel correlation between MT 

reorganization and membrane growth has been well-established in the axonal growth cone: MTs 

are splayed/dispersed in migrating growth cones, and shift to bundled and looped distributions in 

paused growth cones (Dent et al., 1999; Kalil et al., 2000; Tanaka and Kirschner, 1991; Tanaka 

et al., 1995). Given the resemblance of the MT organizations we observe at the NMJ (Fig. 2.7D-

F) to the distributions of MTs at the growth cone, and the correlation of different MT structures to 

different growth states in both systems, it seems plausible that the growth cone and synapse 

share common mechanisms of coupling membrane growth and MTs reorganization despite 

differences in structure and dynamics. 

Our result that the dtacc overgrowth phenotype (Fig. 2.1) correlates with a reduction in 

detectable tubulin (Fig. 2.7A-C), while surprising, is consistent with the loss-of-function 
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phenotypes of other MT regulators. For instance, loss of tubulin-specific chaperone E (tbce), 

which facilitates the folding of α-tubulin, results in NMJ overgrowth, along with a decrease in both 

presynaptic Futsch staining and the postsynaptic MT network (Jin et al., 2009). Intriguingly, the 

overgrowth phenotype of spastin mutants is also accompanied by a reduction in both tubulin and 

Futsch staining, despite the function of Spastin as a MT-destabilizer (Sherwood et al., 2004). It 

has been proposed that the MT severing activity of Spastin generates seeds that nucleate the 

growth of new MTs (Roll-Mecak and Vale, 2006), thus explaining the attenuated MT network of 

spastin mutants (Sherwood et al., 2004). Collectively, our findings in dtacc mutants, as well as 

the previous studies of tbce and spastin, suggest that NMJ growth may not be correlated solely 

with MT stabilization and levels, but may also be related to the organization of MTs. This possibility 

is consistent with prior studies that have shown a correlation of displayed/splayed MT structures 

with actively growing or dividing boutons (Conde and Cáceres, 2009; Roos et al., 2000; Ruiz-

Cañada and Budnik, 2006). Indeed, both tbce and spastin mutants show increases in diffuse 

Futsch-MT staining concurrent with NMJ overgrowth (Jin et al., 2009; Sherwood et al., 2004).  

In conclusion, we demonstrate that dTACC is a negative regulator of bouton addition 

during the development of the NMJ and that dTACC associates with and regulates the stability 

and organization of synaptic MTs. We provide evidence that dTACC promotes MT structures 

associated with paused bouton growth and division. Further studies may investigate the functional 

partners of dTACC at the NMJ, and how the roles of dTACC may relate to the roles of factors 

such as TBCE and Spastin, which show similar overgrowth and MT organization phenotypes.  

 

MATERIALS AND METHODS 

Drosophila Genetics  

Stocks were raised at 25°C according to standard procedures. The w1118, elaVC155-GAL4, UAS-

Dcr2, OK6-GAL4, and Df(3R)110 stocks were obtained from the Bloomington Stock Center 
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(Bloomington, IN, USA). The UAS-dtacc-RNAi stock was obtained from the Vienna Drosophila 

Resource Center (Vienna, Austria). To enhance dtacc-RNAi expression, elaVC155-GAL4 was also 

used to express UAS-Dcr2, an endonuclease that promotes processing of long dsRNAs to 

siRNAs. The previously described mspsP (Cullen et al., 1999), dtacc1 (Gergely et al., 2000b), and 

dtacc592(Lee et al., 2001) stocks were provided by Jordan Raff. 

 

Antibody production and purification 

dTACC sequence containing amino acids 146-327 was His-tagged, bacterially expressed, and 

purified. dTACC antibody was raised in mice against and purified by PrimmBiotech, Inc. 

(Cambridge).  

 

Immunohistochemistry 

First instars and wandering third instars were dissected in Ca2+-free saline and fixed in 4% 

paraformaldehyde in PBS for 10 min, except for tubulin immunostaining, where larvae were 

dissected in Brinkley Buffer 1980 (80mM PIPES, 1mM MgCl2, 1mM EGTA, pH 6.8) and fixed in 

4% paraformaldehyde in PBS with 5mM EGTA. Primary antibodies obtained from the 

Developmental Studies Hybridoma Bank (Iowa City, IA, USA) include: mouse anti-Brp NC82 

(1:50), mouse anti-Dlg 4F3 (1:50), and mouse anti-Futsch (1:50). The following primary antibodies 

were also used for immunohistochemistry: mouse anti-dTACC (1:50) and rabbit anti-alpha-tubulin 

(1:200; Ab15246; Abcam). Secondary antibodies conjugated to AlexaFluor 488 and 594 were 

used (1:200; Invitrogen). Anti-HRP antibodies conjugated to AlexaFluor 594 and 647 were used 

(1:200; Jackson Immunoresearch).   
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Activity assay 

The spaced-stimulation paradigm was adapted from published protocols (Ataman et al., 2008; 

Nesler et al., 2013; Piccioli and Littleton, 2014). Larvae were semi-dissected in HL3 (in mM): 70 

NaCl, 5 KCl, 0.2 CaCl2, 20 MgCl2, 10 NaHCO3, 5 trehalose, 115 sucrose, 5 HEPES-NaOH, pH 

7.2. Relaxed fillets were pulsed with four 5 min 25ºC incubations with high K+ solution (in mM): 

40 NaCl, 90 KCl, 1.5 CaCl2, 20 MgCl2, 10NaHCO3, 5 Trehalose, 5 sucrose, and 5 HEPES-NaOH, 

pH 7.2, spaced by 15 min in 25ºC HL3. After the fourth high K+ pulse, larvae were allowed to 

recover in HL3 solution for 15 min, stretched, and then fixed. Nascent boutons were identified by 

lack of Brp or Dlg staining.  

 

Western blotting 

30 wandering third-instar larvae of each genotype were dissected in ice-cold dissection buffer 

(PBS, 1 mM EGTA, 1× cOmplete, Mini Protease Inhibitor Cocktail; Roche), leaving body wall 

musculature.  Dissected pelts were homogenized in lysis buffer (dissection buffer, 0.5% Tween-

20).  Homogenates were loaded onto 4-15% SDS-PAGE gels (BioRad).  Protein was transferred 

to PVDF membrane (BioRad) and immunoblotted using standard protocols and exposed using 

chemiluminescence reagents (Thermo Scientific). The following antibodies were used for blotting: 

mouse anti-TACC (1:50), mouse anti-alpha tubulin (1:5000; Ab7291; Abcam) goat anti-mouse 

HRP (1:1000; Cell Signaling Technology). 

 

Image acquisition and analysis 

Synaptic arbors of muscle 6/7 in the abdominal segment A2 were used for all analyses. Imaging 

was performed on a Nikon A1R point scanning confocal and a Nikon Yokogawa spinning disc 

confocal with a Hamamatsu ORCA-R2 cooled CCD camera. 3D-SIM was performed on a 

DeltaVision OMX Blaze microscope (GE Healthcare Life Sciences) with a PCO sCMOS camera. 
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Lasers were adjusted to prevent oversaturation. Images were processed and analyzed with 

ImageJ and/or MATLAB. Bouton number and size were counted and traced by hand. An HRP 

mask was used to restrict analysis to neuronal signal for intensity analysis, and MATLAB scripts 

were used to quantify dTACC and tubulin signals relative to HRP. Line scans were used to create 

intensity profiles to distinguish different Futsch structures.  

 

Statistics 

All comparisons were done using Welch’s t-test for unequal variances using Graphpad.  
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ABSTRACT 

Microtubules (MTs) play critical roles in neuronal development, but many questions remain 

about the molecular mechanisms of their regulation and function. Furthermore, despite progress 

in understanding postsynaptic MTs, much less is known about the contributions of presynaptic 

MTs to neuronal morphogenesis. In particular, studies of in vivo MT dynamics in Drosophila 

sensory dendrites have yielded significant insights into polymer-level behavior. However, the 

technical and analytical challenges associated with live imaging of the fly neuromuscular 

junction (NMJ) have limited comparable studies of presynaptic MT dynamics. Moreover, while 

there are many highly effective software strategies for automated analysis of MT dynamics in 

vitro and ex vivo, in vivo data often necessitates significant operator input or entirely manual 

analysis due to the inherently less favorable signal/noise ratio and complex cellular morphology.  

To address this, we collaborated with DRVision to optimize a new software platform, Aivia, for 

automated and unbiased in vivo particle detection. We performed multiparametric analysis of 

live time-lapse confocal images of EB1-GFP labeled MTs in both dendrites and the NMJ of 

Drosophila larvae, finding striking differences in MT behaviors. We furthermore analyzed MT 

dynamics following knockdown of the MT-associated protein (MAP) dTACC, a key regulator of 

Drosophila synapse development, and identified statistically significant changes in MT dynamics 

compared to wild-type. We therefore demonstrate a novel strategy for the automated 

multiparametric analysis of both pre- and postsynaptic MT dynamics at the polymer level that 

significant reduces human-in-the-loop criteria. We furthermore show the utility of our method in 

detecting distinct MT behaviors upon dTACC-knockdown, indicating a possible future 

application for functional screens of factors that regulate MT dynamics in vivo. Future 

applications of this method may also focus on elucidating cell type and/or compartment-specific 

MT behaviors, and multi-color correlative imaging of EB1-GFP with other cellular and sub-

cellular markers of interest.  
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INTRODUCTION 

Morphogenesis is the process by which cells organize to form functional structures through the 

coordination of intra- and intercellular changes. A remarkable example of morphogenesis is the 

development of the highly specialized neuronal structure. Neurons display remarkable 

polarization in which they extend two structurally and functionally distinct types of processes, 

dendrites and axons (Craig and Banker, 1994; Rolls, 2011), which can achieve immense 

lengths. The complexity of neuronal development arises not only from the sheer size of 

dendrites and axons but also from the difficulty in forming their intricately branched geometries 

(Jan and Jan, 2010; Lewis and Polleux, 2012; Lewis et al., 2013; Whitford et al., 2002). The 

challenges of neuronal morphogenesis, and its consequences for learning and memory (Kandel, 

2001), motivate the ongoing investigation of both its genetic control and the underlying cell 

biological mechanisms. Such mechanisms include, but are not limited to, the intracellular 

transport of membrane (Witte and Bradke, 2008) and the many cytoskeletal (Hoogenraad and 

Bradke, 2009; Jan and Jan, 2010; Kapitein and Hoogenraad, 2011; Lewis and Polleux, 2012; 

Lewis et al., 2013; Rolls, 2011; Whitford et al., 2002) rearrangements needed for changes in 

neuronal morphology.         

Studies of neuronal morphogenesis have leveraged a variety of advanced visualization 

techniques. Static methods, such as electron microscopy or fluorescence microscopy of fixed 

probes, have been widely used to perform high-resolution morphological and structural analysis. 

However, besides the artifacts that are inevitable to any preservation method, static 

visualization, by definition, cannot capture the dynamic changes that underpin morphogenesis. 

Thus, many pivotal insights originated from time-lapse fluorescence microscopy of living tissues. 

Early work by Lichtman and colleagues (Kerschensteiner et al., 2005; McCann and Lichtman, 

2008; McCann et al., 2008; Misgeld et al., 2007; Turney and Lichtman, 2008; Turney et al., 

2012) utilized in vivo imaging of the mammalian nervous system to investigate axon 
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regeneration/degeneration, organization of synaptic components, and long-range axonal 

transport. Furthermore, seminal studies in primary neuronal explants were critical to establishing 

the importance of microtubule (MT) dynamics to axonal elongation and motility (Tanaka and 

Kirschner, 1991; Tanaka et al., 1995). Crucially, early neuronal explant studies established the 

use of fluorescently-tagged end-binding family proteins (EBs) to gain invaluable insights into MT 

plus-end dynamics in developing neurons at the level of individual MT polymers (Stepanova et 

al., 2003). These studies drew upon observations that the EB family member EB1 preferentially 

localizes to MT plus ends (Tirnauer and Bierer, 2000) in S. cerevisiae (Schwartz et al., 1997; 

Tirnauer et al., 1999) and in cultured cells (Juwana et al., 1999; Mimori-Kiyosue et al., 2000). 

Since then, EB1 and other plus tip tracking proteins (+TIPs) (Akhmanova and Hoogenraad, 

2005; Akhmanova and Steinmetz, 2008, 2015; Galjart, 2010; Schuyler and Pellman, 2001; 

Vaughan, 2005) have been widely used in in vivo studies of MT dynamic instability (Desai and 

Mitchison, 1997; Howard and Hyman, 2003; Mitchison and Kirschner, 1984), including in the 

context of neuronal development (Bearce et al., 2015; Voelzmann et al., 2016; Van De Willige et 

al., 2016).  

Drosophila has emerged as a powerful model for in vivo imaging studies of MT dynamics 

during neuronal development due to the vast genetic and imaging toolkit available in the system 

(Bier, 2005; Rebollo et al., 2014; del Valle Rodríguez et al., 2012; Venken and Bellen, 2005) as 

well as the similarities in structure and function between Drosophila and vertebrate neurons 

(Rolls, 2011). A key early study at the neuromuscular junction (NMJ) of Drosophila larvae 

performed repeated noninvasive imaging of a fluorescent membrane marker through the 

translucent cuticle of intact animals to document presynaptic terminal morphogenesis (Zito et 

al., 1999). Using a similar method to image whole, live Drosophila larvae, our lab provided an 

initial demonstration of subcellular, particle-level analysis of processive movement of motor 

cargos in the axons (Miller et al., 2005). More  recently, meticulous studies by Rolls and 
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colleagues in the sensory dendrites of intact Drosophila larvae (Hill et al., 2012; Mattie et al., 

2010; Rao et al., 2016; Rolls et al., 2007; Stewart and McLean, 2004; Stone et al., 2008, 2010) 

have characterized postsynaptic MT plus-end dynamics by performing particle tracking and 

analysis of green fluorescent protein (GFP)-tagged EB1. Such studies in Drosophila (Hill et al., 

2012; Mattie et al., 2010; Rao et al., 2016; Rolls et al., 2007; Stewart and McLean, 2004; Stone 

et al., 2008, 2010) and other systems(Hu et al., 2008, 2011; Jaworski et al., 2009; Merriam et 

al., 2011, 2013; Yau et al., 2016) have significantly advanced our understanding of single-

polymer behavior of MT plus ends in the dendrites of developing neurons (Dent, 2017; Dent et 

al., 2011; Gu and Zheng, 2009; Hoogenraad and Akhmanova, 2010; Kapitein et al., 2010; 

Shirao and González-Billault, 2013; Svitkina et al., 2010).  

Despite the impressive in vivo studies of postsynaptic MT dynamics (Hill et al., 2012; Hu 

et al., 2008, 2011; Mattie et al., 2010; Merriam et al., 2011, 2013; Rao et al., 2016; Rolls et al., 

2007; Stewart and McLean, 2004; Stone et al., 2010, 2008; Yau et al., 2016), there have been 

far fewer comparable studies of presynaptic MT dynamics at the developing axon terminal. MT 

dynamics at the Drosophila larval NMJ have been studied using fluorescent speckle microscopy 

(FSM) and fluorescence recovery after photobleaching (FRAP) (Yan and Broadie, 2007); these 

techniques evaluated the overall tubulin kinetics but not the behavior of individual MT plus ends. 

As of this writing, there has been one sole investigation of individual MT plus ends at the 

Drosophila NMJ; this study combined live time-lapse imaging with manual analysis of 

kymographs to characterize a population of dynamic, EB1-GFP labeled “pioneering MTs” that 

appeared distinct from a broader population of stabilized MTs (Pawson et al., 2008). This 

paucity in research on presynaptic MT dynamics may be due at least in part to anatomy: while it 

is relatively straightforward to obtain images of dendrites due to their proximity to the larval 

cuticle, NMJs are obstructed by other tissues, making it challenging to acquire images of 

sufficient signal/noise ratio for particle-level analysis. Nonetheless, given the well-established 
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importance of the presynaptic MTs to synaptic morphogenesis and stabilization (Broadie and 

Richmond, 2002; Ruiz-Cañada and Budnik, 2006; Rushton et al., 2009), as well as their links to 

neurodevelopmental and neurodegenerative disorders (Bodaleo and Gonzalez-Billault, 2016; 

Goellner and Aberle, 2012; Lasser et al., 2018; Matamoros and Baas, 2016), bridging this gap 

between our understanding of pre- and postsynaptic MTs is likely to yield invaluable insights.   

An additional challenge to analysis of in vivo MT dynamics in general, in contrast to in 

vitro or ex vivo analysis, is the limited automated software tools that can extract dynamics 

parameters from in vivo data. Presently, one of the most popular and powerful techniques for 

analysis of +TIP-labeled MT plus ends is plusTipTracker (Applegate et al., 2011; Matov et al., 

2010), a MATLAB-based software that allows automated tracking and analysis of multiple 

dynamics parameters. Notably, plusTipTracker measures not only MT growth but also shrinkage 

and rescues: while +TIP labels such as EB1-GFP only associate with growing plus ends, 

plusTipTracker can algorithmically infer shrinkage rates and rescue events. However, while 

plusTripTracker has been very successfully applied to many contexts, including our lab’s 

previous multiparametric analysis of ex vivo MT dynamics in Drosophila S2 cells (Long et al., 

2013), plusTipTracker is not optimal for analysis of in vivo data given their lower signal/noise 

ratio. As a result, in vivo studies of plus-end dynamics at dendrites (Hill et al., 2012; Mattie et al., 

2010; Rao et al., 2016; Rolls et al., 2007; Stewart and McLean, 2004; Stone et al., 2008, 2010) 

and at the NMJ(Pawson et al., 2008) of Drosophila have relied on manual generation and 

analysis of kymographs using software such as ImageJ (Schneider et al., 2012), or on semi-

automated strategies that involve numerous human-in-the-loop components.    

Here, we present an experimental and analytical workflow that reduces the experimental 

and analytical overhead required to perform noninvasive polymer-level analysis of presynaptic 

MT dynamics in both sensory dendrites and the motor axon terminal of Drosophila third-instar 

larvae. We describe a method to immobilize intact larvae and therefore avoid injuries known to 
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trigger stress responses as well as other non-physiological conditions that might perturb in vivo 

MT dynamics. To label dynamic MT plus-ends, we expressed EB1-GFP pan-neuronally using 

the GAL4/UAS system (Brand and Perrimon, 1993), allowing visualization of MTs at both 

dendrites and NMJ with a single driver. While some early steps are inevitably subject to human 

decision-making, such as the selection of animal specimens and identification of regions to 

image, we sought to automate the steps following data acquisition. Crucially, we optimized a 

new software, Aivia, to perform automated, unbiased analysis requiring minimal human input. 

While other particle-tracking methods are available (Cheezum et al., 2001; Ma et al., 2019; 

Manzo and Garcia-Parajo, 2015; Shen et al., 2017; Zwetsloot et al., 2018), we chose to 

optimize Aivia, which is now available to users for a variety of applications, because it was 

algorithmically well-suited to address the particular challenges of our data. Specifically, the use 

of coherence-enhancing diffusion filtering (Weickert, 1999) was very effective in automated 

segmentation and background removal, and Aivia furthermore implements custom algorithms 

specifically designed to automate particle detection and tracking. We found that Aivia was well-

suited to handle the low signal/noise ratio inherent to our data, as well as other challenges, such 

as movement of EB1-GFP comets through different focal planes. While it is not feasible to 

exhaustively test the performance of Aivia against all other particle analysis software, we found 

that the performance of Aivia equaled or approached our benchmark of human performance. 

Furthermore, to our knowledge, there has been no other software specifically trained on in vivo 

data from sensory dendrites and the presynaptic terminal. Given that the performance of image-

analysis algorithms is often highly specific to the data they were designed for, and that 

generalized computer vision is not yet possible, we reasoned that training Aivia to the specific in 

vivo data of interest would be the most algorithmically sound approach.   

Given the extensive work on dendritic MTs (Hill et al., 2012; Mattie et al., 2010; Rao et 

al., 2016; Rolls et al., 2007; Stewart and McLean, 2004; Stone et al., 2008, 2010) as well as the 
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consistent quality of data that can be acquired from this system, we first validated our image 

acquisition and Aivia-based analysis strategy in Drosophila sensory dendrites. Importantly, we 

showed in dendrites that the use of different neuronal Gal4 drivers, even in otherwise identical 

wild-type backgrounds, results in significant differences in EB1-GFP dynamics due to 

differences in expression of the EB1 construct, emphasizing the importance of using a single 

Gal4 driver for consistent results. We next used our strategy for multiparametric analysis of 

EB1-GFP dynamics at the presynaptic terminal of the NMJ. To further illustrate the investigative 

value of our method, we applied our imaging and software strategy to assess both pre- and 

postsynaptic EB1-GFP dynamics following knockdown of dTACC, the Drosophila homolog of 

the highly conserved TACC (transforming acidic coiled coil) family (Ding et al., 2017; Hood and 

Royle, 2011; Peset and Vernos, 2008; Thakur et al., 2013). Our prior work in Drosophila S2 

cells (Long et al., 2013), as well as work by Lowery and colleagues in the Xenopus growth cone 

(Lucaj et al., 2015; Nwagbara et al., 2014; Rutherford et al., 2016), has shown that TACC family 

members regulates MT plus-end dynamics. Furthermore, we recently reported evidence from 

confocal and super-resolution immunofluorescence imaging that dTACC is a key regulator of 

presynaptic MTs during neuronal morphogenesis (Chou et al., 2020), raising the question of 

whether dTACC regulates live MT dynamics. Here, we show that we can detect differences in 

MT behaviors upon dTACC knockdown using our current method. We thus present an in vivo 

method that can effectively identify and characterize key regulators of MT dynamics, particularly 

in the presynaptic compartment, within the developing neuron.   

 

PROTOCOL 

1. Generation of Drosophila specimens. 

1.1. Select a suitable MT plus-end marker. This study utilized GFP-tagged EB1, a well-

characterized plus-end marker with a strong, clear signal (Mimori-Kiyosue et al., 2000; 
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Schwartz et al., 1997; Tirnauer and Bierer, 2000; Tirnauer et al., 1999). Alternatives 

include other +TIPs such as EB3 (Juwana et al., 1999; Stepanova et al., 2003), 

CLASP/Orbit (Lee et al., 2004; Maiato et al., 2003), and CLIP-170 (Komarova et al., 

2002; Perez et al., 1999).  

1.2. Obtain or generate flies with MT marker under control of UAS promoter, e.g. UAS-EB1-

GFP.  

1.3. Choose the appropriate tissue-specific Gal4-driver. This study used the pan-neuronal 

driver elaV-Gal4 to drive expression in both sensory dendrites and at the NMJ.  

1.4. Perform crosses to generate flies to express the MT plus-end marker in the desired 

cells/tissues. NOTE: For any Gal4-driver and UAS-transgene combination, the 

experimental design should include proof-of-concept and validation experiments to 

characterize the system and avoid artifacts from overexpression. 

 

2. Equipment setup.  

2.1. Setup a workstation, including the steromicroscope and illumination source, close to the 

confocal microscope to minimize the time spent between sample preparation and 

imaging to prolong the health and viability of the larvae.  

2.2. Prepare the anesthetic by mixing a 9% chloroform mixture (0.1 mL chloroform + 1.0 mL 

halocarbon oil) in an 1.5mL Eppendorf tube. To avoid separation, mix well by inverting 

the tube prior to each new slide. 

2.3. Prepare the glass slide: Cut four strips of double-sided tape (~15 mm wide). Line up two 

of the pieces on the glass slide, leaving a space of ~5 mm in between the strips. Layer 

the remaining two pieces on top of the first two to double the thickness of the tape. 

2.4. Add a large drop (~100 microliters) of chloroform/oil mixture onto the glass slide in the 

5mm space between the tape pieces.  
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3. Preparation of larval samples for imaging.  

3.1. Fill a container, e.g. a 6-well plate, with 1X PBS.  

3.2. Collect 3rd instar larva from the fly vial using a probe or tweezers. Identify larva at the 

proper stage by their crawling behavior and by the presence of 9-12 prominent, serrated 

mouth-hooks. Use stereomicroscope to assist in staging larva.  

3.3. Place larva in the PBS and move it gently to wash off any remains of food or other 

debris. Dry the larva gently on a KimWipe.  

3.4. Anesthetize the larva by placing it into chloroform/oil drop on the slide from Step 2.  

3.5. Place #1.5 coverslip on top. Adhere the coverslip to the tape by applying gentle 

pressure, thus immobilizing the larva without damaging it.  

3.6. Seal the chamber with Vaseline or nail polish if preferred. 

 

4. Time-lapse confocal imaging of live samples.  

4.1. Prepare confocal microscope and the 60x objective lens with oil immersion. Place the 

sample on the stage. 

4.2. Use the acquisition software, e.g. Metamorph, to configure experiments. Set the time-

lapse duration to 30 seconds at an interval of 2 seconds, for a total of 16 frames. Set 

laser  exposure and intensity to ensure sufficient signal while avoiding saturation and 

photobleaching. For EB1-GFP imaging, the 488nm laser was set to an exposure time of 

100 ms and intensity of 30%. 

4.3. Use the eyepieces of the microscope to find the larva in widefield-green illumination. 

Find the dendrites or NMJs by adjusting the stage slowly. Do not expose larva to 

illumination (widefield or confocal) for any longer than necessary.  

4.3.1. Dendrites appear as thin bright-green webs of nerves easily distinguishable from 

thick long axon bundles.  



 

 111  

  

4.3.2. NMJs appear as groups of bright-green individual boutons, approximately 5µm in 

diameter, at the ends of thick long axon bundles that diverge from the nerve cord. 

4.4. Using the live camera feed, quickly focus on region of interest using 488nm illumination. 

Immediately stop illumination once proper focus is found to avoid phototoxicity.  

4.5. Initiate image acquisition. EB1 comets are recognizable as bright, motile punctae. 

 

5. Image processing and analysis with Aivia software.  

5.1. Analyze each video file individually. Within Aivia, select File>Import>Image Sequence 

and drag the TIF files in the box that appears. Preview the video within Aivia.  

5.2. Under the Detection Parameters menu, tune the software parameters to ensure 

detection of only clearly visible punctae and avoid detection of spurious objects. For 

instance, reducing particle intensity results in greater sensitivity of software to punctae 

but increases potential false-positives. The precise values of the parameters will vary 

empirically.  

5.3. Use the cursor to select the EB1 puncta detected in the previous step. Multiple EB1 

puncta can be selected and analyzed simultaneously using Ctrl+Select. NOTE: 

Depending on the project aims and application, additional heuristics may be used to 

filter the puncta. For instance, punctae with a lifetime of fewer than 8-10 seconds (4-5 

frames) might be omitted because they do not present sufficient information about the 

entire growth event. The need for such heuristics will vary empirically.  

5.4. Run the Neuron Particle Tracking software recipe for the selected puncta. Aivia will 

output results for the tracking parameters listed in Table 3.1. For ease of later analysis 

and interpretation, the results can be stored in Excel or similar spreadsheet software. 
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RESULTS 

We raised flies from stable stocks that constitutively express the UAS-EB1-GFP transgene 

either pan-neuronally (elaV-Gal4; UAS-EB1-GFP) or in sensory neurons (221-Gal4; UAS-EB1-

GFP). EB1 was chosen for this study because of it specifically localizes to growing ends and 

dissociates immediately upon pause and shrinkage (Akhmanova and Steinmetz, 2008, 2015; 

Vaughan, 2005), and has been shown through multiple studies, including in Drosophila (Hill et 

al., 2012; Mattie et al., 2010; Pawson et al., 2008; Rao et al., 2016; Rolls et al., 2007; Stewart 

and McLean, 2004; Stone et al., 2008, 2010), to be a robust marker that does not have 

significant detrimental effects on underlying biology of the organism. We performed imaging of 

wandering third-instar larvae on an inverted spinning-disc confocal microscope (Fig. 3.1A, B). 

Larvae were staged based on behavior (active crawling along vial walls) and the presence of 

large, extended mouth hooks with 9-12 teeth (Fig. 3.1C). Sensory dendrites superficially located 

near the larval cuticle (Fig. 3.1D) were imaged to provide comparisons with published data, 

while NMJs located at deeper image planes on the surface of body wall muscle within the 

animal (Fig. 3.1E) were imaged to define parameters characteristic of presynaptic MT 

dynamics.   

Following image acquisition as described in the protocol above, we performed 

automated, unbiased analysis of the EB1-GFP comets using Aivia software (Fig. 3.2), 

producing measurements for nine dynamics parameters (Table 3.1).  Statistical analysis, 

including exploratory data analysis and hypothesis testing, was performed in MATLAB. We 

noted through data visualization and the Anderson-Darling test that our data contained non-

normally distributed values. Thus, to avoid making assumptions about the underlying distribution 

of the data, all hypothesis testing was performed using the non-parametric Wilcoxon-Mann-

Whitney test. We compared EB1-GFP dynamics under the control of both the elaV-Gal4 and 

221-Gal4 drivers in otherwise equivalent wild-type backgrounds (Fig. 3.3).  Interestingly, we
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Figure 3.1. Experimental setup. A,B, Schematic (A) and actual example (B) of imaging setup. 

Anesthetized, whole-mount larvae were imaged on an inverted spinning disc confocal. C, 

Example of slide preparation using third-instar larvae. D, Larvae were staged by their crawling 

behavior and by the presence of 9-12 prominent, serrated mouth-hooks. Imaging was 

performed on (E) sensory neuron dendrites, which have a relatively superficial location close to 

the outer cuticle, and (F) the presynaptic terminal of the NMJ, which is located deeper within the 

animal. Scale bar, 2 µm.   
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Figure. 3.2. Demonstration of dendrite and NMJ analysis with Aivia. A, Summary of the 

Aivia automated analysis processing pipeline. A common issue of typical morphological 

approaches to background removal is the enhancement of image signal along the edges of 

small and narrow structures (e.g. dendrites). To address this, we applied a coherence-

enhancing diffusion filter (Weickert, 1999) in Aivia to the raw image to extract the whole dendrite 

/ NMJ structure as background and to isolate the EB1 comets on the image. This approach 

enables Aivia to identify and track the comets even where the contrast between the background 

structure and the EB1 comet is low. B, Workflow integration by the Aivia software interface that 

allows the user to 1) optimize analysis parameters for a given image and 2) review the analysis 

results. 
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Table 3.1. Plus-end dynamic parameters analyzed with Aivia. 
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found highly significant differences (P < 0.005) in several measured parameters (mean 

acceleration, sinuosity, growth length). While EB1 is not generally expected to perturb native MT 

biology to an adverse degree (Komarova et al., 2002; Piehl and Cassimeris, 2003; Stepanova et 

al., 2003), MTs are nevertheless highly sensitive to EB1 expression levels (Damme et al., 2004; 

Mathur et al., 2003; Yang et al., 2017; Zhang et al., 2009). Our results indicate clear differences 

in MT dynamics in response to different EB1 dosages. To avoid artifacts from differences in 

genetic expression, we carried out all further experiments in both dendrites and at the NMJ 

using only the elaV-Gal4 pan-neuronal driver.  

We first validated our method in sensory dendrites (Fig. 3.4) and repeated the protocol 

at the NMJ (Fig. 3.5). To assess the potential of our strategy for investigating the role of specific 

molecules on MT dynamics, we compared EB1-GFP dynamics of wild-type control animals to 

animals expressing UAS-dtacc-RNAi. We chose to test dTACC because it is a known regulator 

of MT plus-end dynamics (Long et al., 2013; Lucaj et al., 2015; Nwagbara et al., 2014; 

Rutherford et al., 2016) in other systems, and also based on our recent evidence that dTACC 

regulates presynaptic MTs at the Drosophila NMJ (Chou et al., 2020). To enhance dtacc-RNAi 

expression, elaV-GAL4 was also used to express UAS-Dcr2, an endonuclease that promotes 

processing of long dsRNAs to siRNAs. Upon reduction of dTACC expression to ~50% (Chou et 

al., 2020), we find significant changes in EB1-GFP dynamics in both dendrites (Fig. 3.4) and at 

the NMJ (Fig. 3.5). Notably, the effects of dTACC knockdown in dendrites closely resembles the 

effects of dTACC knockdown we previously observed in S2 cells (Long et al., 2013). In contrast, 

we observed some striking differences between dendrites and the NMJ upon dTACC 

knockdown. While loss of dTACC affects seven parameters in dendrites, and three parameters 

at the NMJ, all but one of the parameters (sinuosity) are unique to either dendrites or NMJ. 

Furthermore, while sinuosity is affected by dTACC loss in both contexts, the effect is opposite 

between dendrites (increase) and the NMJ (decrease). We therefore show that our protocol 
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Figure. 3.3. Comparison of elaV- and 221-Gal4 drivers in wild-type control dendrites. To 

determine the effects of Gal4-dependent UAS-EB1-GFP expression levels on EB1-GFP 

dynamics, elaV-Gal4; UAS-EB1-GFP and 221-Gal4; UAS-EB1-GFP were expressed in a w1118 

control background. Highly significant differences were observed in mean acceleration, 

sinuosity, and growth length. ** P < 0.005, Wilcoxon-Mann-Whitney-test; error bars indicate ± 

s.e.m; number of NMJs quantified indicated on graph.  
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Figure. 3.4: Neuronal RNAi-knockdown of TACC affects EB1-GFP dynamics in sensory 

dendrites. A, Representative time-lapse images of EB1-GFP comet dynamics in control elaV-

Gal4; UAS-EB1-GFP; UAS-Dcr2 x w1118 sensory dendrites. Image series on right shows detailed 

view of region indicated by the box in the left-hand image. In each panel, the solid white arrow 

indicates the position of the EB1-GFP comet at the most recent timepoint, while the hollow 

arrow indicates the original position of the comet at t=0s. B, comparison of EB1-GFP dynamics 

in elaV-Gal4;UAS-EB1-GFP; UAS-Dcr2 x w1118 and elaV-Gal4; UAS-EB1-GFP; UAS-Dcr2 x 

UAS-tacc-rnai dendrites. Knockdown of dTACC significantly affects all dynamics parameters 

other than mean acceleration and growth lifetime. * P < 0.05, ** P < 0.005, Wilcoxon-Mann-

Whitney-test; error bars indicate ± s.e.m; number of NMJs quantified indicated on graph; scale 

bar, 1 µm.   
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Figure. 3.5: Neuronal RNAi-knockdown of TACC affects EB1-GFP dynamics at the NMJ. 

A, Representative time-lapse images of EB1-GFP comet dynamics at the presynaptic terminal 

of control elaV-Gal4; UAS-EB1-GFP; UAS-Dcr2 x w1118 NMJs. Image series on right shows 

detailed view of region indicated by the box in the left-hand image. In each panel, the solid white 

arrow indicates the position of the EB1-GFP comet at the most recent timepoint, while the 

hollow arrow indicates the original position of the comet at t=0s. B, comparison of EB1-GFP 

dynamics at elaV-Gal4; UAS-EB1-GFP; UAS-Dcr2 x w1118 and elaV-Gal4; UAS-EB1-GFP; UAS-

Dcr2 x UAS-tacc-rnai NMJs. Knockdown of dTACC significantly affects max velocity, mean 

acceleration, and sinuosity. * P < 0.05, ** P < 0.005, Wilcoxon-Mann-Whitney-test; error bars 

indicate ± s.e.m; number of NMJs quantified indicated on graph; scale bar, 1  
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can not only identify significant differences in MT dynamics between genetic backgrounds but 

can also demonstrate distinct roles for a single MT regulator in different contexts.   

 

DISCUSSION 

In this paper, we discuss a protocol to perform noninvasive intravital imaging of MT dynamics in 

the dendrites and at the NMJ of Drosophila during development. Human input is required during 

the experimental steps, such as in selecting animals to image, and may introduce bias in the 

data collection process that cannot be reasonably removed. Thus, we sought to minimize bias 

by performing automated analysis with Aivia, which was optimized to handle the low 

signal/noise ratio inherent to our in vivo data. The algorithms used by Aivia allows machine-

based particle detection, kymograph generation, and track analysis, reducing the need for 

human input compared to traditional methods. We note that our analysis with Aivia is not 

completely equivalent to that which is possible with plusTipTracker: while it is possible to infer 

shrinkage and rescue events with plusTipTracker, the current Aivia algorithms cannot perform 

such measurements. Nonetheless, given the considerable constraints on data quality that are 

inherent to in vivo data, our Aivia-based method makes progress towards achieving automated, 

reproducible data analysis in vivo.   

We observed significant effects on multiple MT dynamics parameters upon knockdown 

of dTACC in both dendrites and at the NMJ. We thus demonstrate that our method may be a 

potential screening tool for regulators of synaptic MT dynamics; moreover, we identified a 

potential role for dTACC in dendrites. While we have recently established the role of presynaptic 

dTACC in the development of the motor axon terminal, the roles of postsynaptic dTACC are 

unknown. Thus, future studies by our research group may focus on role of postsynaptic dTACC, 

either in sensory dendrites and/or in the muscle of the NMJ.  
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We noted key differences in the effects of dTACC-knockdown on MT dynamics in 

sensory dendrites and the NMJ, indicating clear biological differences between the two contexts. 

This raises the question of whether MT dynamics differ between neuronal types, between 

distinct compartments of a single neuron, or both. The differences we observed between 

dendrites and the NMJ might reflect differences between sensory and motor neurons, but could 

also indicate differences between dendritic and axonal compartments, independent of the 

neuronal type. Because our focus in the present study was on developing a robust methodology 

rather than comprehensive characterization of neuronal MT dynamics, we have not performed 

analysis of motor neuron dendrites or the axon terminals of sensory neurons. Due to their less 

accessible location within the animal, these structures are more challenging to image and 

analyze, compared to the structures we discuss presently. We anticipate that with our optimized 

protocol will enable efficient and informative future studies of compartment- and cell-type 

differences in MT dynamics.  

We envision that our in vivo imaging and analysis strategy will be of value to researchers 

who are interested in detailed understanding of MT dynamics behaviors during critical stages of 

neuronal development. A key future innovation would be multi-color imaging through co-

expression of EB1-GFP with other markers, such as those that label the cell membrane (CD8 

(Lee and Luo, 1999), myristol (Resh, 1999)), the actin cytoskeleton (moesin (Edwards et al., 

1997), LifeAct (Riedl et al., 2008)), and other structures of interest. This would allow correlative 

analysis of the spatiotemporal interactions of MTs with other key cellular structures. While such 

multi-color imaging has been used to study MT-actin interactions in the neuronal growth cone 

(Dent and Kalil, 2001; Schaefer et al., 2002; Suter and Forscher, 2000), it has not been 

demonstrated in dendrites or the presynaptic axon terminal. Thus, developing a comparable 

method for in vivo Drosophila studies will be a significant addition to the imaging toolkit for 

understanding the role of MTs in the broader context of neuronal development.    
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Chapter Contribution 

Experiments on post-translational MT modifications were performed in collaboration with 

Maxime Vounatsos. Jennifer Long performed dTACC pull-downs and confocal colocalization 

experiments with the AZ. Seth Johnson obtained results on the dTACC cell specificity 

phenotype, confocal colocalization of dTACC with PAK, and the effect of Liprin-α on dTACC 

localization. All other experiments were performed by Vivian Chou. 



 

132 

  

Summary of conclusions 

The overarching motivation for my dissertation was to investigate the relatively uncharted 

territory of how the presynaptic MT cytoskeleton contributes to synaptogenesis. The actin 

cytoskeleton has well-defined postsynaptic roles in dendritic spine morphogenesis and plasticity 

and in presynaptic AZ structure and SV organization (Bosch and Hayashi, 2012; Cingolani and 

Goda, 2008; Dillon and Goda, 2005; Luo, 2002; Matus, 1999; Nelson et al., 2013; Schubert and 

Dotti, 2007). In recent years, MTs have also been well-studied in postsynaptic dendritic spines 

and in neuronal axon transport (Dent, 2017; Dent et al., 2011; Kapitein and Hoogenraad, 2011; 

Maeder et al., 2014). By comparison, understanding of presynaptic MTs is still maturing. 

Nevertheless, considerable insights have emerged from genetic studies of the Drosophila NMJ, 

beginning with pioneering work on the MT-stabilizing protein Futsch/MAP1B (Roos et al., 2000) 

and spanning the last two decades. When I started my dissertation in 2014, newly published 

findings demonstrated the role of Futsch in regulating AZs and neurotransmission (Lepicard et 

al., 2014); the roles of the TRPV channel Inactive in promoting NMJ growth, Futsch 

phosphorylation, and MT stabilization (Wong et al., 2014); and the role of the MT-severing 

protein Katanin in restricting synapse growth and regulating Futsch-labeled MT loop structures 

(Mao et al., 2014). More recent studies have revealed roles for the kinesin Pavarotti/KIF23 in 

preventing overgrowth (McLaughlin et al., 2016) and for the formin DAAM in promoting NMJ 

growth and regulating the architecture of Futsch-labeled MTs (Migh et al., 2018).  

My project on the role of dTACC at the NMJ was instigated by our lab’s discovery that 

dTACC is a novel regulator of synaptogenesis. Through my work on dTACC, I also considered 

broader questions of (1) how presynaptic MT assembly/stability and synaptic expansion might 

be related, and (2) the possible significance of presynaptic MT plus-end dynamics. In Chapter 2, 

I describe our finding that dTACC restricts NMJ size, specifically by suppressing bouton 

addition, and that this role in NMJ growth is concurrent with a role in promoting the integrity of 
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presynaptic MT architecture. We subsequently performed live-imaging analysis in Chapter 3 to 

determine the effects of dTACC on MT dynamics in both sensory dendrites and at the 

presynaptic terminal, finding that loss of dtacc disrupts MT dynamics in both compartments 

and/or cell types. Collectively, this work is consistent with the possibility that dTACC regulates 

synapse growth through regulation of MT architecture, dynamics, or both.  

More broadly, our work is consistent with a model of synaptogenesis where there is a 

complex interplay of cytoskeletal and morphological changes, driven by a diverse array of MAPs 

and other molecules, that modulates a precise equilibrium of NMJ expansion and restriction. 

While early work on molecules such as Futsch (Roos et al., 2000) and Spastin (Sherwood et al., 

2004) might have suggested a straightforward model where greater MT stability correlates with 

greater NMJ growth, further studies have since revealed a more complex relationship. In 

support of this more nuanced view, our work in Chapter 2 demonstrates that presynaptic 

dTACC is required to prevent NMJ overgrowth, despite the known roles of TACC proteins in MT 

stability.  Though the underlying mechanisms remain unknown, we speculate that some degree 

of MT destabilization may be required for the morphological and cellular rearrangements 

necessary for growth, and that increased MT stabilization may serve as a “brake” during 

synapse expansion. Future work might investigate this idea by further developing the 

experimental and analytical strategy in Chapter 3 for live imaging of synaptic MT dynamics. For 

instance, dual-color imaging of membrane dynamics concurrent with MT dynamics could 

contribute insight into how MT dynamic instability correlates with morphological events such as 

bouton addition or elimination. Such imaging, combined with acute (e.g. pharmacological or 

optogenetic) perturbations to induce rapid changes in MTs or NMJ growth, may help to better 

dissect the causative relationships between cytoskeletal and morphological changes.  

An outstanding question regarding dTACC concerns the mechanisms through which it 

regulates MTs. Multiple studies in mitotic cells have demonstrated that minus-end localized 
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TACC proteins stabilize the mitotic spindle by forming a complex with ch-TOG/XMAP215/Msps 

at the centrosome, thereby recruiting additional stability factors and promoting MT crosslinking 

(Ding et al., 2017; Hood and Royle, 2011; Peset and Vernos, 2008). Such TACC-Msps 

interactions have been observed in dividing cells of multiple organisms as well as in the growth 

cone (Lee et al., 2001; Nwagbara et al., 2014; Samereier et al., 2011; Srayko et al., 2003). 

However, it is not known whether Msps is required at the NMJ nor whether Msps interacts with 

dTACC in this context. We observed that mspsP homozygotes show larval/pupal lethality, 

consistent with prior reports (Cullen et al., 1999), yet we find that complete dtacc null flies are 

viable through adulthood, albeit female sterile. Thus, because Msps is essential in Drosophila, 

dTACC cannot be required for all Msps functions. Given that the fission yeast ortholog of 

dTACC can bind the MT lattice in a purified system lacking Msps (Thadani et al., 2009), it 

seems entirely possible that the MT-lattice binding of dTACC we observe at the NMJ can occur 

independent of Msps. Thus, a future priority will be to determine whether the role of dTACC at 

the Drosophila presynaptic terminal reflects one of its Msps-independent roles. 

Interestingly, the MT plus-end dynamics phenotypes we observed in Chapter 3 upon 

dtacc reduction in both dendrites and at the presynaptic terminal are consistent with reports that 

dTACC tracks MT ends (Lucaj et al., 2015; Nwagbara et al., 2014; Rutherford et al., 2016; 

Samereier et al., 2011; Srayko et al., 2003), suggesting a possible +TIP role for synaptic 

dTACC. We plan future live imaging of dTACC itself to test this possibility, i.e. we will determine 

if dTACC tracks dynamically with EB1 or a similar +TIP marker. The effect of dTACC on MT 

architecture might also suggest roles in regulating post-translational modifications (PTMs) of 

tubulin, such as acetylation (Ac-Tub). We have not found evidence of this at presynaptic 

terminal (Fig. 4.1), although we speculate that dTACC may regulate tubulin PTM in another 

region, e.g. in the distal axon. Thus, future work may aim to define the precise effect, if any, of 

dTACC on MT PTMs.  
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Figure 4.1. dtacc animals show normal acetylation of tubulin. Control w1118 and 

dtacc592/dtacc1 NMJs were stained with α-Ac-Tub (A-C), as well as with α-alpha tubulin to detect 

total tubulin and α-HRP. No difference in Ac-Tub signal per total tubulin signal was observed 

between (A) controls and (B) dtacc animals, as confirmed by quantification (C). ns, i.e. not 

significant, indicates P >=0.05, determined by Student’s t-test; error bars indicate ± s.e.m; 

number of NMJs quantified indicated on graph; scale bar, 5 µm.  
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While dTACC is viewed first and foremost as a MAP, it may be worthwhile to pursue the 

possibility that dTACC has functional interactions with proteins outside of MTs. Notably, 

Xenopus TACC3/Maskin, the TACC isoform most highly expressed in the embryonic nervous 

system (Rutherford et al., 2016; Tessmar et al., 2002), interacts with the RNA-associated 

protein CPEB and binds eIF4E in competition with eIF4G, thereby acting as a translational 

repressor (Barnard et al., 2005; Cao and Richter, 2002; Stebbins-Boaz et al., 1999; Zukin et al., 

2009) (Fig. 4.2A). Preliminary pull-down data indicate that fly dTACC also binds with eIF4E and 

CPEB/Orb2, as well with eIF3-S10 (Fig. 4.2B), suggesting that dTACC may have a similar role 

as a translational repressor in Drosophila. Consistently, work on the Drosophila protein 

interaction network (DPiM) indicates that Msps co-purifies with various translational proteins, 

including poly(A)-binding protein and ribosomal subunits (Guruharsha et al., 2011). While our 

data indicates that dTACC and Msps must have some independent functions in Drosophila, we 

speculate that dTACC may in fact interact with Msps to function as a translational repressor.  

 

Potential AZ role of dTACC: preliminary findings  

My dissertation was largely focused on understanding the roles of dTACC in the context of the 

presynaptic MT cytoskeleton. In Chapter 2, I describe our finding of two distinct dTACC pools at 

the NMJ, i.e. “filamentous” and “punctate” dTACC. Until now, I have been primarily concerned 

with the filamentous population due to its colocalization with presynaptic tubulin. It has been 

comparatively challenging to ascertain the biological significance of the punctate dTACC 

population. Super-resolution analysis with 3D-SIM suggested that dTACC puncta are spatially 

separated from the plus ends of presynaptic MTs by ~100nm; however, we could not fully 

eliminate the possibility that dTACC puncta are associated with the plus ends of presynaptic 

MTs bundles that are too sparse or labile to detect by 3D-SIM. In the absence of definitive 
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Figure 4.2. TACC proteins are translational repressors. A, Xenopus TACC3/Maskin, which 

is the TACC isoform most highly expressed in the frog embryonic nervous system, interacts with 

the RNA-associated protein CPEB and binds eIF4E in competition with eIF-4G to repress 

translation. B, Immunoprecipitation of dTACC in flies results in co-immunoprecipitation of the 

translational proteins eIF4E, eIF3-S10, and Orb2, the Drosophila ortholog of CPEB.
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evidence for plus-end localized dTACC puncta, we considered instead that dTACC might be 

associated with the presynaptic AZ, given the striking resemblance of punctate dTACC staining 

to the core AZ component Bruchpilot (Brp) (Wagh et al., 2006). While dTACC and Brp did not 

overlap in a conclusive way, dTACC frequently appeared adjacent to Brp (Fig. 4.3A), 

suggesting localization peripheral to Brp. Similarly, while we did not observe clear colocalization 

of dTACC with the actin-regulator and SV organizer Nervous Wreck (Nwk) (Coyle et al., 2004) 

(Fig. 4.3B), dTACC was again consistently proximal. Furthermore, high-throughput data 

indicated proteomic interactions of dTACC with known AZ components (human Syntaxin 5 and 

Cadherin 1/E-Cadherin, C. elegans Syd-1; Fig. 4.3C). Thus, while our results do not support a 

role for dTACC as a core AZ component, the consistent spatial relationships of dTACC to AZ 

proteins nevertheless led to the conjecture that dTACC is a “peri-AZ” protein.  

Of the predicted proteomic interactions of TACC proteins, we were particularly interested 

in the binding of C. elegans TAC-1 with Syd-1. In worms as well as in flies, Syd-1 is an essential 

early component that drives AZ assembly (Dai et al., 2006; Owald et al., 2010; Patel et al., 

2006). At the fly NMJ, Syd-1 staining is observed in both the neuron and muscle. However, only 

the presynaptic population of Syd-1, which predominates in staining intensity, has been 

characterized; presynaptic Syd-1 forms clusters surrounding a central core consisting of Brp 

and Cacophony (Cac)-containing voltage-sensitive Ca+2-channels (Owald et al., 2010). We 

proceeded to use 3D-SIM at the fly NMJ to test the colocalization of dTACC with the AZ-

localized presynaptic population of Syd-1. Consistent with prior proteomic data, we found partial 

overlap of these proteins, in which large dTACC puncta form diffuse “rings” surrounding 

presynaptic Syd-1 (Fig. 4.4A-C). Manders’ colocalization coefficients indicate that 50% of TACC 

overlapped with (non-aggregated) Syd-1, and 35% of Syd-1 overlapped with dTACC.  This 

suggests a concentric arrangement of AZ components: dTACC surrounds Syd-1, which, in turn, 

clusters around Brp surrounding the Ca+2 channel core (Fig. 4.4D).  
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Figure 4.3. dTACC interacts with both MAPs and AZ regulators and has a peri-AZ 

localization. A, B, w1118 muscle 6/7 NMJs were stained with α-dTACC and either (A) Brp and 

(B) Nwk. Insets (A, B) shown for areas indicated by white boxes. C, Subnetwork of dTACC 

interactions. Interactions with MAPs (left) are drawn from published literature, while interactions 

with AZ proteins (right) were extracted from the CCSB Database. Interactions shown include 

those found for human, Drosophila, and C. elegans TACC orthologs. Scale bar, 1μm.
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Figure 4.4. dTACC shows partial colocalization with Syd-1. Syd-1-GFP was expressed in 

the motor neurons of third instar larvae. NMJs were labeled with α-GFP (A) and α-dTACC (B). 

At super-resolution, dTACC and Syd-1 were observed to have similar but non-identical 

localizations (C). D, Simplified lateral view of synapse components. Scale bar, 400 nm. 
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Punctate dTACC represents a postsynaptic population 

During our initial investigation of punctate dTACC, we unexpectedly observed a striking cell-type 

specificity of dTACC puncta that provided a surprising but crucial clue to their nature. This 

serendipitous discovery occurred when we examined dTACC-GFP expressed under control of a 

ubiquitous ubiquitin (Ubi) promotor to better characterize dTACC localization in a variety of 

contexts. In a small number of Ubi-dTACC-GFP flies, we observed mosaicism in which dTACC-

GFP expression was absent from a single muscle at the NMJ (Fig. 4.5). Anti-GFP antibodies 

detected no dTACC-GFP puncta on the boutons associated with these dTACC-negative 

muscles (Fig. 4.5A). However, these boutons still had filamentous, endogenous dTACC staining 

within the motor axon terminals (Fig. 4.5B). This fortuitous discovery provides invaluable 

context, as it reveals that dTACC is present in both pre- and postsynaptic compartments, and 

that that “peri-AZ” punctate dTACC staining in fact represents a postsynaptic localization. 

Notably, this result conclusively validates our earlier finding that dTACC puncta are not 

associated with presynaptic MT plus ends and furthermore explains the lack of complete 

overlap of dTACC with the AZ. Nonetheless, the consistently peripheral localization of dTACC 

with AZ markers suggests that there is a systematic spatial arrangement of postsynaptic dTACC 

relative to the presynaptic AZ, perhaps to facilitate trans-synaptic functional interactions.   

Having already noticed consistent localization of dTACC peripheral to Brp, we performed 

3D-SIM to more closely examine how these proteins are arranged in 3-dimensional space (Fig. 

4.6). Our results provide evidence that despite being located in separate cell compartments, 

dTACC and Brp appear to be associated in a consistent way. In certain imaging planes, the 

alignment of Brp and dTACC across the synaptic cleft becomes readily apparent: Brp appears 

as discs that demarcate the neuronal membrane, while dTACC clouds are clearly superficial to  
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Figure 4.5. dTACC puncta are only present on boutons innervating muscles that express 

dTACC. A small number of Ubi-dTACC-GFP flies fail to express dTACC-GFP in a single muscle 

(here, muscle 6, in contrast to 7; A) due to mosaicism. In boutons that innervate GFP-negative 

muscle (B, C), dTACC puncta are absent, but filamentous dTACC is still present (arrows). 

Scale, 5μm.



 

143 

  

the boundary implied by the arrangement of Brp (Fig. 4.6Aiii). Interestingly, the cloud-like 

dTACC puncta, and their arrangement relative to Brp, closely resemble the diffuse clouds of  

the glutamate receptor (GluR) subunit GluRIID that surround Brp (Owald et al., 2010). We 

performed further colocalization experiments to confirm the proximity of dTACC to the 

postsynaptic cytomatrix. As expected, dTACC overlaps with dPak, the Drosophila ortholog of 

the p21-activated kinase (PAK) (Fig. 4.6B). PAK is a serine/threonine kinase that regulates 

actin dynamics downstream of the Rac1 and Cdc42 Rho family GTPases (Civiero and Greggio, 

2018; Zhao and Manser, 2012) and has postsynaptic roles both in dendritic spines (Harden et 

al., 1996; Parnas et al., 2001; Zhang et al., 2005) and at the NMJ, where it regulates receptor 

organization along with postsynaptic ultrastructure and maturation (Lee and Schwarz, 2016; 

Parnas et al., 2001; Sone et al., 2000; Wan et al., 2000). We thus propose a preliminary spatial 

model (Fig. 4.6C) where diffuse dTACC accumulations colocalize with GluR clusters, possibly 

regulating receptor organization, levels, and/or maturation. Future experiments will assess the 

colocalization of dTACC with GluR subunits and other proteins in the postsynaptic cytomatrix.  

 

Trans-synaptic interactions of dTACC 

While punctate dTACC clearly represents a postsynaptic population, potential interactions with 

presynaptic components would be consistent with well-established precedents for trans-synaptic 

communication (Bailey et al., 2015; Jessell and Kandel, 1993). For instance, the dTACC 

interactor Syd-1 regulates GluR clustering via direct interactions with Neurexin-Neuroligin (Dnrx-

Dnlg1) (Banerjee et al., 2017; Owald et al., 2012; Xing et al., 2018). Specifically, loss of syd-1 

increases overall GluR levels as determined by GluRIID intensity and disrupts GluRIIA and 

GluRIIB incorporation, consistent with a defect in GluR maturation (Owald et al., 2010, 2012); 

these defects can be rescued by presynaptic but not postsynaptic Syd-1 expression  
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Figure 4.6. Spatial relationships of dTACC with pre- and postsynaptic proteins.  

A, Immunocolocalization of Brp and ubiquitously expressed dTACC-GFP. Panels (ii, iii) both 

display insets of the top-left bouton in (i), with select Brp and dTACC puncta shown/omitted for 

purposes of illustration (iii). Presynaptic Brp are consistently found at the periphery of the 

bouton membrane (iii, hollow arrows), while cloud-like dTACC clusters are consistently found 

“outside” the Brp puncta (iii, solid arrows). B, Immunocolocalization of dTACC with the 

postsynaptic marker Pak (B). C, Proposed arrangement of pre- and postsynaptic components. 

Scale, 500 nm.  



 

145 

  

(Owald et al., 2010), demonstrating the trans-synaptic nature of this interaction. Given the 

spatial relationships of dTACC and Syd-1 (Fig. 4.4), we asked if Syd-1 interacts with 

postsynaptic dTACC by testing the effect of syd-1ex3.4 mutation on dTACC distribution (Fig. 4.7). 

Compared to wild-type animals (Fig. 4.7A), syd-1ex3.4 animals show a dramatic loss of puncta 

(Fig. 4.7B); similar effects were observed with presynaptic syd-1-rnai knockdown (data not 

shown). Loss and overexpression of the Syd-1 associated factor liprin-α also perturbed dTACC 

localization (Fig. 4.7C). Somewhat surprisingly, Syd-1 and Liprin-α appear to have opposite 

effects on dTACC: Liprin-α overexpression results in a loss of puncta similar to that observed 

upon syd-1 loss (Fig. 4.7C), while loss of liprin-α results in a qualitative increase in the size and 

intensity of dTACC puncta compared to controls (Fig. 4.7D). While further experiments are 

necessary to confirm the interactions of Syd-1 and Liprin-α, these preliminary experiments 

suggest possible trans-synaptic interactions of postsynaptic dTACC with core AZ components.  

Collectively, the present literature indicates a model where the Syd-1, along with Liprin-

α, has functions not only in presynaptic AZ assembly but also in postsynaptic GluR organization 

via Dnrx-Dnlg1 (Owald et al., 2010, 2012). While it is not yet known which other postsynaptic 

molecules may be involved in regulation of GluRs downstream of Syd-1-Dnrx-Dnlg1, our results 

suggest that dTACC may be a candidate for this role. We speculate that dTACC, under control 

of the Syd-1-Dnrx-Dnlg1 functional complex, may regulate GluR clustering, possibly in 

cooperation with dPak, which is required for receptor clustering and composition (Lee and 

Schwarz, 2016). Future experiments will assess whether dTACC, like Syd-1, affects the 

distribution and/or intensity of invariant GluR subunits and therefore overall GluR levels, and will 

also measure the effect of dTACC on GluRIIA/GluRIIB incorporation to determine roles in 

receptor maturation. Furthermore, epistasis and tissue-specific knockdown experiments will be 

required to confirm whether postsynaptic dTACC is indeed required for the postsynaptic roles of 

Syd-1.  
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Figure 4.7. Liprin-α and Syd-1 regulate punctate dTACC localization. A, Wild-type dTACC 

shows filamentous and punctate distributions. B, syd-1 loss reduces punctate dTACC. C, Pre-

synaptic Liprin-α overexpression reduces punctate TACC in a manner similar to syd-1 loss, 

while liprin-α nulls (D) show larger and brighter puncta. Scale, 5μm. 
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Potential roles for dTACC on the core architecture of presynaptic AZ 

Effective trans-synaptic communication across the synaptic cleft requires not only anterograde 

signals but also reciprocal retrograde signals. Such bidirectional communication establishes 

feedback loops between pre- and postsynaptic compartments, in spite of their physical 

separation, and thereby facilitates coordinated assembly, maturation, and function of the entire 

synapse. Given that dTACC is proximal to Syd-1 and Brp (Fig. 4.4, 4.6) and shows putative 

interactions with core AZ components Syd-1 and Liprin-α (Fig. 4.7), we considered that 

postsynaptic dTACC might be part of one such retrograde pathway that controls the presynaptic 

AZ. In particular, confocal microscopy has demonstrated that Syd-1 regulates Brp area and 

clustering (Owald et al., 2010), and ultrastructural work has demonstrated the effect of Liprin-α 

on AZ size and shape (Kaufmann et al., 2002). We thus sought to determine if dTACC regulates 

the presynaptic AZ in a similar fashion. To this end, we performed super-resolution microscopy 

to evaluate the effect of dtacc loss on the core AZ component, Brp, based on three parameters: 

volume, integrated density, and the number of Brp puncta per bouton (Fig. 4.8A). Brp volume 

reflects the architecture of the AZ, with increased (or decreased) volume possibly reflecting 

improper organization where components are not correctly distributed. Integrated density is 

proportional to the concentration of Brp at the AZ, and changes to this parameter might indicate 

over/underexpression of Brp, relative to normal levels. Finally, Brp density indicates the number 

of release sites present in each bouton and thus reflects the allocation of release machinery 

across the entire neuron.  

We proceeded to measure these parameters upon loss of both pre- and postsynaptic 

dtacc. Our work on presynaptic dTACC in Chapter 2, and on both motor terminal and dendritic 

dTACC in Chapter 3, consistently indicates that both pre- and postsynaptic dTACC play 

important roles at the synapse. Thus, while the AZ-proximal population of dTACC appears to be 

predominantly, if not entirely, muscle-localized, we also considered the possible roles of  
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Figure 4.8. Pre- and postsynaptic loss of dTACC result in changes to Brp. (A) Parameters 

measured using super-resolution microscopy. Presynaptic dtacc-rnai driven by elav-Gal4 in the 

dtacc1/+ heterozygous background resulted insignificant changes to all three parameters (B-D), 

while post-synaptic dtacc-rnai driven by DMEF-Gal4 in a wild-type background resulted in 

significant reduction of Brp puncta volume (B). * P < 0.05 ** P < 0.01 *** P < 0.001; Mann-Whitney; 

N = 13 control animals, 15 elav-Gal4 x UAS-dtacc-rnai; dtacc1/+ animals, 11 postsynaptic elav-

Gal4 x UAS-dtacc-rnai  animals.
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presynaptic dTACC on the AZ. We therefore compared the effects of UAS-dTACC-RNAi 

expression both pre- and postsynaptically using the elaVC155- and DMEF-GAL4 neuronal- and 

muscle-drivers, respectively. Consistent with the synaptic localization of dTACC-GFP in muscle, 

postsynaptic dtacc knockdown resulted in significant reduction to Brp volume (Fig. 4.8B), 

although Brp integrated density (Fig. 4.8C) and puncta density (Fig. 4.8D) did not change 

significantly. Interestingly, presynaptic loss resulted in significant changes to all three 

parameters (Fig. 4.8B-D). In the future, we will conduct cell-type specific rescue of dtacc nulls to 

conclusively determine the pre- and post-synaptic roles of dTACC.  

While our experiments have not found a presynaptic dTACC population at the AZ, 

quantification of Brp indicates that both pre- and postsynaptic dTACC regulate AZ assembly, 

suggesting that a transient pool of dTACC may be present at the presynaptic AZ. The possibility 

of a smaller, peri-AZ pool of dTACC alongside a larger postsynaptic pool is reminiscent of the 

localization of Discs Large (Dlg) at the Drosophila NMJ. At the light level, Dlg has an ostensibly 

postsynaptic localization (Budnik et al., 1996; Guan et al., 1996; Lahey et al., 1994). However, 

immuno-electron microscopy reveals a peri-AZ population of Dlg, in addition to the expected 

SSR-localized postsynaptic population (Lahey et al., 1994), consistent with genetic data 

indicating a presynaptic requirement for Dlg (Budnik et al., 1996). This dual localization of Dlg 

may explain its roles in both pre- and postsynaptic morphogenesis and plasticity as well as in 

neurotransmitter release at the Drosophila NMJ (Budnik et al., 1996; Guan et al., 1996). Future 

experiments will address the possible existence of a transient pool of dTACC at the pre-synaptic 

AZ by performing immunogold-labeling and electron microscopy of dTACC. To this end, we are 

optimizing a high pressure freezing/freeze substitution protocol (compare Fig. 4.9A and B). This 

improved protocol will also be used to further characterize the effects of dtacc loss at the 

ultrastructural level, along with immuno-localization of dTACC.  
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Figure 4.9. Optimization of ultrastructural analysis. For optimized preservation, flies were 

briefly fixed and then subjected to high pressure freezing/freeze substitution. Compared to 

conventional methods (A), the optimized protocol (B) improved preservation of structures, e.g. 

the T-bar (thin arrow), adhesion plaque (triangles), and the SSR (block arrows). Scale, 50 nm.
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Incidentally, Liprin-α, like both dTACC and Dlg, not only displays pre- and postsynaptic 

expression but is in fact overwhelmingly postsynaptic (Miller et al., 2017; Spangler and 

Hoogenraad, 2007). Yet, in spite of this, Liprin-α has been studied almost exclusively in the 

presynaptic context. Work in dendritic spines indicates that Liprin-α interacts with the PDZ-

domain protein GRIP in the PSD and regulates receptor clustering and synaptic morphology 

under control of LAR signaling (Dunah et al., 2005; Wyszynski et al., 2002); postsynaptic Liprin-

α is also regulated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Hoogenraad et 

al., 2007). Outside of these studies, the roles of postsynaptic Liprin-α, including at the 

Drosophila NMJ, is largely a mystery. Syd-1 also displays some postsynaptic staining, although 

unlike Liprin-α, Syd-1 appears to be primarily presynaptic (Owald et al., 2010). As of this writing, 

it is not known whether Syd-1 has any postsynaptic roles.  Thus, as we continue to investigate 

the roles of both pre- and postsynaptic dTACC, we are also interested in considering the 

possible roles of Liprin-α and Syd-1 on both sides of the synapse.  

 

Functions of dendritic dTACC 

The primary focus of my dissertation has been to study synaptogenesis at the Drosophila NMJ. 

As such, my discussion of postsynaptic dTACC has focused on a muscle-localized population. 

Nonetheless, our findings in Chapter 3 indicate that dtacc loss also produces defects in 

postsynaptic MT dynamics in dendrites. To this end, a future priority will be to determine if dtacc 

loss produces morphological phenotypes in dendrites, such as defects in arborization (Wang et 

al., 2019). In the longer term, our lab may investigate the specific consequences of dTACC-

mediated dendritic MT dynamics. Numerous studies have established the existence of a 

population of highly dynamic MTs that transiently invade nascent dendritic spines, thereby 

regulating dendritic morphogenesis and plasticity (Gu et al., 2008; Hu et al., 2008, 2011; 

Jaworski et al., 2009; Kapitein et al., 2011; McVicker et al., 2016; Merriam et al., 2011; Penzes 
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et al., 2009; Wagner et al., 2011). The molecular regulation of MT invasions is largely unknown, 

although the +TIP EB3 has been implicated (Jaworski et al., 2009). Given our finding that 

dTACC regulates MT plus-end dynamics in dendrites, and that TACC proteins can behave as 

+TIPs (Lucaj et al., 2015; Nwagbara et al., 2014; Rutherford et al., 2016; Samereier et al., 2011; 

Srayko et al., 2003), it is tempting to speculate on a role for dTACC in regulating dynamic MT 

invasions of dendritic spines. Additional experiments in ex vivo mammalian systems suited for 

dendritic spine imaging would be necessary to test this possibility, as MTs have not yet been 

detected in Drosophila dendritic spines (Leiss et al., 2009). Conversely, dTACC may have a 

separate role in regulating non-spine MTs in the main dendritic shaft. Notably, the +TIPs EB1 

and APC are required for proper MT steering and polarity in dendrites (Chen et al., 2014; Mattie 

et al., 2010; Van De Willige et al., 2016), which is thought to orchestrate long-range MT-based 

transport. Thus, while dTACC may regulate MT spine invasions, an alternative/additional role 

may be in MT steering, through which dTACC may regulate the distinctive orientations of 

dendritic MTs and thus modulate cargo sorting and transport (Kapitein and Hoogenraad, 2011; 

Matamoros and Baas, 2016; Rolls, 2011). 

  

MATERIALS AND METHODS 

Drosophila genetics 

Stocks were raised at 25°C according to standard procedures. The w1118, elaVC155-GAL4, UAS-

Dcr2, OK6-GAL4, DMEF-GAL4, and Ubi-dTACC-GFP stocks were obtained from the 

Bloomington Stock Center (Bloomington, IN, USA). The UAS-dtacc-RNAi stock was obtained 

from the Vienna Drosophila Resource Center (Vienna, Austria). To enhance dtacc-RNAi 

expression, elaVC155-GAL4 was also used to express UAS-Dcr2, an endonuclease that 

promotes processing of long dsRNAs to siRNAs. The liprin-αR60 and liprin-αR117 were previously 

generated in the lab (Kaufmann et al., 2002). The previously described mspsP (Cullen et al., 
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1999), dtacc1 (Gergely et al., 2000) and dtacc592(Lee et al., 2001) stocks were provided by 

Jordan Raff, while the UAS-Liprin-α-GFP (Fouquet et al., 2009), UAS-Syd-1-GFP, and syd-1ex3.4 

(Owald et al., 2010) stocks were provided by Stephan Sigrist.  

 

Immunohistochemistry 

Wandering third instars were dissected in Ca2+-free saline and fixed in 4% paraformaldehyde in 

PBS for 10 min, except for tubulin immunostaining, where larvae were dissected in Brinkley 

Buffer 1980 (80mM PIPES, 1mM MgCl2, 1mM EGTA, pH 6.8) and fixed in 4% 

paraformaldehyde in PBS with 5mM EGTA. Primary antibodies include: mouse anti-Brp NC82 

(1:50; Developmental Studies Hybridoma Bank, Iowa City, IA, USA); rabbit anti-alpha-tubulin 

(1:200; Ab15246; Abcam); mouse anti-acetylated tubulin (1:800; 6-11B-1; Sigma-Aldrich); rabbit 

anti-GFP (1:500; A-6455; ThermoFisher); and mouse anti-dTACC (1:50) (Chou et al., 2020). 

Rabbit-anti-Pak (1:1000) was provided by Nicholas Harden (Harden et al., 1996). Rabbit-anti-

Nwk antibody was provided by Avital Rodal (Rodal et al., 2008). Secondary antibodies 

conjugated to AlexaFluor 488 and 594 were used (1:200; Invitrogen). Anti-HRP antibodies 

conjugated to AlexaFluor 594 and 647 were used (1:200; Jackson Immunoresearch).  

  

Image acquisition and processing 

Synaptic arbors of muscle 6/7 in the abdominal segment A2 were used for all analyses. Imaging 

was performed on a Nikon A1R point scanning confocal and a Nikon Yokogawa spinning disc 

confocal with a Hamamatsu ORCA-R2 cooled CCD camera. 3D-SIM was performed on a 

DeltaVision OMX Blaze microscope (GE Healthcare Life Sciences) with a PCO sCMOS camera. 

Lasers were adjusted to prevent oversaturation. Images were processed and analyzed with 

ImageJ. An HRP mask was used to restrict analysis to neuronal signal for tubulin intensity 

analysis, and MATLAB scripts were used to quantify dTACC and tubulin signals relative to HRP.  
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Cell culture, immunoprecipitation, and Western blotting 

Drosophila S2 cells were grown and maintained in Schneider’s Drosophila medium 

supplemented with 10% heat-inactivated fetal bovine serum and penicillin-streptomycin. S2 cells 

were harvested by washing and aspirating with 1x in PBS, and 1 ml lysis buffer (with protease 

and phosphatase inhibitor) was added directly to the dishes. Cells were triturated, collected into 

a 1.5 ml tube (Eppendorf), rotated at 4°C for 30 minutes, and spun to collect the supernatant. 

For each immunoprecipitation, 20 µl of protein G beads were used. Tubes were washed 6 times 

lysis buffer, twice with Naar buffer, and twice with PBS, then combined with 40 µl of 4x Laemmli 

buffer, boiled for 10 minutes, and spun at 10,000 rpm for 5 minutes. The supernatant was spun 

again to remove all beads. 4-15% agarose gels were loaded and run at 20 mA constant per gel. 

Protein was transferred to PVDF membrane and immunoblotted using standard protocols and 

exposed using chemiluminescence reagents. The following antibodies were used for blotting: 

mouse anti-eIF4E( 1:500, Developmental Studies Hybridoma Bank) mouse anti-eIF3-S10 

(1:500, Abnova), mouse anti-Orb2 (1:500, Developmental Studies Hybridoma Bank).  

 

Super-resolution quantification of Brp puncta 

For analyzing Brp puncta at the synapse (Fig. 4.7), maximum intensity projections from z-stacks 

were quantified using the following Fiji/ImageJ protocol.  

• Brp puncta volume and integrated density 

o Drag and drop.SIR.dv files into ImageJ and split channels 

o Convert to 16 bit image 

o Using the 16 bit Brp channel (Channel 1), select Analyze >> 3D objects counter  

§ Auto-threshold: set lower limit 10, upper limit auto 

§ Manual threshold not advised 
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o Will provide number of puncta, puncta volume, puncta integrated density, map, 

and run info (can customize) 

o Get z-projection sum of volume map à compare to z-stack sum of original image 

to double-check if correct objects detected 

o Copy output to Excel and determine average à compare to control 

• Brp puncta/bouton 

o Number of 3D objects found/manually counted boutons in image 

 

Electron microscopy 

Third instar larvae were pinned onto Sylgard-coated plates using 0.1 mm minutien pins (Fine 

Science Tools) and dissected in ice-cold Ca2+-free saline. For conventional EM fixation, pelts 

were fixed for 2-4 hours in yellow fixed (2.5% formaldehyde, 5% glutaraldehyde 0.06% picric 

acid, 0.1M sodium calcodylate, and 0.06% calcium chloride), then transferred to fresh fix and 

stored overnight at 4°C. Fillets were then rinsed in 0.2M cacodylate buffer, pH 7.4, then 

unpinned and trimmed. Samples were post-fixed with osmium tetroxide and embedded 

according to standard protocols (Harvard Medical School Electron Microscopy).  

For high pressure freezing/freeze-substitution, larvae were dissected as described and 

briefly fixed with a solution of 4% paraformaldehyde and generously washed with PBS. Larvae 

were submerged in Ca2+-free saline, loaded into and frozen by a Leica EM ICE. Once frozen, 

samples were processed in a Leica EM AFS-2 using a standard 72 hour freeze-substitution 

protocol and a fixative of uranyl acetate, glutaraldehyde, water (“Giovanni’s fix”). Samples were 

kept cold between steps by submersion in storage dewars filled with liquid nitrogen.  

For all samples, sections were cut parallel to the surface of the muscle. Once a A2 6/7 

muscle bouton was identified ~50-90 nm sections were taken for a total of 5 µm. Sections were 
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mounted on single slot grids, stained with lead and uranyl acetate, and imaged on a JEOL 

1200EX – 80kV electron microscope at 6,500x, 10,000x and 25,000x magnification. 

 

Statistics 

All comparisons were done using Welch’s t-test for unequal variances using Graphpad.  
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CHAPTER 5: APPENDIX
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Figure supplement 5.1. Optimization of MT preservation and MT-Brp measurement. 

Triangles indicate synaptic MTs. Samples were prepared  using (A) standard lab protocol or (B) 

optimized dissection/fixation and stained with α-tubulin (tub) (A, B scale=2 µm). To determine 

MT-Brp distance (C), α-tub and α-Brp intensity profiles were plotted to measure the distance 

between their peak intensities.  
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Figure supplement 5.2. Verification that MTs localize proximal to AZs. MTs and AZs were 

labeled with α-tub and α-Brp. Mean distance between MT and AZ peaks of staining intensity was 

quantified as in Lepicard et al., 2014. Our replication of the published method yielded a data 

distribution with close resemblance to the distribution in Lepicard et al., 2014. Using our data, 

mean MT-AZ distance was found to be 85 nm (n=112 AZs, 3 larvae); compared to published 

mean distance of 54 nm (n=227 AZs, 3 larvae).  
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Figure supplement 5.3.  Brp and dTACC distances relative to MTs indicate a dTACC-AZ 

offset. Using WT animals, the distance between MTs and Brp (green, mean = 84.6 nm, N=127 

AZs) or MTs and dTACC puncta (blue, 98.6 nm, N=71 AZs) was measured. If dTACC were a 

MT-AZ anchor, we expect MT-dTACC distances to be smaller than MT-Brp distances. However, 

the average MT-dTACC distance was 14 nm greater than the MT-Brp distance (P = 0.044). 

Thus, TACC is unlikely to be between AZs and MTs. Thus, based on dTACC and AZ positions 

relative to MTs, it is unlikely that dTACC is a MT-AZ anchor. 
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Table supplement 5.1. Effect of dTACC RNAi on MT-AZ distance.
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Figure supplement 5.4. Elevated activity reduces overall dTACC levels at the NMJ. 

Compared to mock-stimulated controls (A) induction of activity with high K+ (B) produces a 

significant ~10% decrease in dTACC (C), with filamentous and punctate TACC affected equally. 

* P < 0.05, ** P < 0.005, t-test; error bars ± s.e.m; sample size on graph; scale 10 μm. 
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Figure supplement 5.5. dtacc animals show reduced polyglutamylation of tubulin. Control 

w1118 and dtacc592/dtacc1 NMJs were stained with α-Glu-Tub as well as with α-HRP and α-alpha 

tubulin to detect total tubulin. While controls showed clear Glu-Tub staining in both the main 

axon shaft (solid triangles) and in branches (hollow triangles; A), dtacc animals showed 

reduced/absent staining (B). Quantification (C confirmed a statistically significant reduction in 

dtacc animals  of Glu-Tub staining per total tubulin. * P < 0.05, determined by Student’s t-test; 

error bars indicate ± s.e.m; number of NMJs quantified indicated on graph; scale bar, 5 µm.  

  



 

170 

  

 

Figure supplement 5.6. dtacc animals show reduced GluRIIA staining. Control w1118 and 

dtacc592/dtacc1 NMJs were stained with α-GluRIIA, one of two variant subunits in fly GluR 

complexes, as well as with α-HRP. Compared to controls (left), dtacc animals showed 

qualitatively reduced GluRIIA levels. Scale bar, 5 µm.  
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Figure supplement 5.7. Comparison of EB1 dynamics in dendrites and at the NMJs of 

wild-type animals. EB1-GFP dynamics in dendrites (dark green) and at the NMJ (light green) 

were compared in control animals of the genotype elaV-Gal4;UAS-EB1-GFP; UAS-Dcr2 x w1118. 

Significant differences in multiple parameters were observed in the two different structures/cell 

types. * P < 0.05, ** P < 0.005, Wilcoxon-Mann-Whitney-test; error bars indicate ± s.e.m; 

number of NMJs quantified indicated on graph.   

 


