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Dissertation Abstract 
 
Mathematical models that simulate the burden of disease and project health and 

economic outcomes under various scenarios can help policymakers decide how to 

optimally allocate resources. This dissertation uses simulation modeling to evaluate 

cervical cancer prevention policy and describe its effects in South Africa, an HIV-endemic 

setting where the risk of cervical cancer is heterogeneous.  

In the first chapter, I evaluated the cost-effectiveness of cervical cancer screening 

in unvaccinated women. I built a microsimulation model of HIV infection, HPV infection 

and cervical disease, which captured the impact of HIV infection on HPV and cervical 

natural history. Disease dynamics were represented by transitions between mutually 

exclusive health states, including oncogenic and non-oncogenic HPV infection, grade of 

pre-cancer, and stage of cancer. I calibrated the model to South African epidemiologic 

data and compared current screening guidelines to 55 alternative strategies that varied 

the age to start screening and screen frequency for women based on their HIV status and 

history of HIV testing. Costs included cancer and HIV screening, diagnosis and treatment. 

Health outcomes included cancer cases and disability-adjusted life years (DALYs) 

averted. I conducted a cost-effectiveness analysis to determine the optimal screening 

strategy at different willingness to pay (WTP) values. 

I found it was always optimal to screen HIV-uninfected and women of unknown 

HIV status starting at a younger age and more frequently than current guidelines 
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recommend. For women with a diagnosed HIV infection, optimal screen frequency 

depended upon WTP; at a WTP of $1,300, it was optimal to reduce screen frequency 

compared to current guidelines and at a WTP of $5,200 it was optimal to increase screen 

frequency relative to current guidelines. These findings were robust to variations in cost 

and improvements in screen coverage and efficacy. 

In the second chapter, I quantified the impact of HPV vaccination on the cost-

effectiveness of cervical cancer screening and determined whether the impact was 

moderated by differential vaccine protection in women living with HIV. Human 

papillomavirus (HPV) vaccination may offer an opportunity to reduce the frequency of 

cervical cancer screening.  

I refined a microsimulation model of HIV infection, HPV infection and cervical 

carcinogenesis. I assumed all women in the model received a completed course of the 

HPV vaccine at age 9. I modeled infection with HPV genotypes 16, 18, 31, 33, 45, 52, 58, 

other oncogenic genotypes, and all non-oncogenic genotypes. I calibrated the model to 

South African epidemiologic data and compared current screening guidelines (which are 

agnostic to vaccination status) to 15 alternative strategies that varied screen start age 

and screen frequency for “low-risk” women and screen frequency for “high-risk” women, 

and considered various rates of vaccine waning in immunocompromised women. Costs 

included cancer screening, diagnosis and treatment. Health outcomes included cancer 

cases and disability-adjusted life years (DALYs) averted. I conducted a cost-effectiveness 

analysis to determine the optimal screening strategy at different willingness to pay (WTP) 

values and rates of vaccine waning. 



 vi 
 
 

 

I found that at a willingness to pay of $5,200 per DALY averted, the upper end of 

an empirical WTP range for South Africa, it would always be cost-effective to increase 

screening relative to current guidelines for bivalent vaccinated women. The optimal 

strategy at this WTP was consistent with the optimal strategy in Chapter 1 in unvaccinated 

women, suggesting that screening guidelines need not be differentiated by vaccination 

status. At the lower end of the WTP range ($1,300 per DALY averted), it would be cost-

effective to increase the screen start age to 40 years old for low-risk women. These results 

were robust to changes in rate of vaccinate decline in immunocompromised women, 

vaccine efficacy in women living with HIV, and screen coverage and compliance. When 

we considered the nonavalent vaccine and when CIN and HPV treatment was perfectly 

effective, the optimal screening strategy was less frequent across the WTP range. 

This analysis suggested that it could be cost-effective to relax screening frequency 

in vaccinated women, depending upon WTP and vaccine type used. They also provided 

confidence that any differences in vaccine efficacy in women living with HIV will not drive 

major differences in screening. 

In the third chapter, I explored the impact of model structural uncertainty on our 

epidemiologic inference and policy results. Decisions about model structure will 

undoubtedly have consequences for epidemiologic outcomes, estimates of cost-

effectiveness, and policy conclusions. Yet structural uncertainty is frequently ignored, 

even though it may have a much greater impact on model results and conclusions than 

parameter uncertainty. While it is common to acknowledge potential limitations of model 

structure and identify assumptions that have been made, there is no clear guidance on 
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methods to explicitly evaluate structural uncertainties. And while modelers are guided by 

the principle of making a model only as complex as necessary, there is little consensus 

on what qualifies as necessary. 

In this chapter, I compared several alternative model structures that capture the 

process of natural immunity and meaning of HPV re-detection and quantified the impact 

associated with these structural decisions both in terms of our prediction accuracy and 

policy implications. I found that all five model structures fit the calibration targets well, with 

only small variations in performance. The fitted models resulted in significant variation in 

key model parameters, such as the level and duration of natural immunity, and rates of 

progression between HPV infection, lesion and invasive cervical cancer. Allowing for 

infections to become latent and re-activate impacted the age distribution of causal HPV 

infections and the subsequent health impact and cost-effectiveness of vaccination 

strategies that vary the end age of vaccination. Model structures that do not allow for 

latency predicted a four-year older average age of causal HPV infection compared to 

models that accounted for latency. Structural decisions regarding who acquires natural 

immunity did not produce much difference in other model natural history outcomes nor 

cost-effectiveness of vaccination policy. 

These results imply that the specific structural uncertainties I explored are 

meaningful for the way we have, and potentially should, model HPV. Specifically, models 

that ignore the possibility of HPV latency and re-activation may over-estimate the benefit 

of vaccinating up to older ages. They also demonstrate that decisions regarding who 

acquires natural immunity and at what level are less influential, so long as natural 
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immunity exists in the model. While this analysis was specific to HPV modeling decisions, 

it serves as an example of how structural decisions matter for modeling in general.  
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Cervical Cancer Screening In An HIV Endemic Population: A 
Model-Based Cost-Effectiveness Analysis
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ABSTRACT 
 
Background 
South Africa provides less comprehensive cervical cancer screening than international 
guidelines recommend, despite having one of the highest rates of cervical cancer in the 
world. Using simulation modeling, we evaluated alternative screening strategies that vary 
the age to start screening and screen frequency based on a woman’s HIV status and 
history of HIV testing to determine whether there is an opportunity to improve targeted 
cervical cancer screening. 
 
Methods 
We developed a microsimulation model of HIV infection, HPV infection, and cervical 
carcinogenesis. Disease dynamics were represented by transitions between health 
states (i.e., oncogenic and non-oncogenic HPV infection, grade of pre-cancer, stage of 
cancer, HIV infection, CD4 count). We grouped HPV genotypes into two categories: 1) 
oncogenic and 2) non-oncogenic. We calibrated the model to South African 
epidemiologic data and compared 55 strategies that varied screen start age and screen 
frequency for women considered “low-risk” (women without HIV and women who do not 
know their HIV status) and “high-risk” (women with diagnosed HIV). We included costs 
of screening, diagnosis and treatment, for both cervical disease and HIV. Health 
outcomes included cancer cases and disability-adjusted life years (DALYs) averted. We 
conducted a cost-effectiveness analysis to determine the optimal screening strategy for 
willingness to pay (WTP) values between $1,300 and $5,200 per DALY averted. 
 
Findings 
We found that within the reported WTP range, “low-risk” women are under-screened 
according to current guidelines. At a WTP less than $3,300, “high-risk” women are over-
screened and above $4,290 they are under-screened. The number of cervical cancer 
cases would be reduced by between 75 and 83 percent compared to no screening, 
within the reported WTP range. Modeling results were robust to assumptions regarding 
screen coverage and adherence, discount rate, and costs of screening, diagnostics and 
treatment, and sensitive to CIN treatment efficacy and classification of women into risk 
groups. We found that it would no longer be cost-effective to increase screening for 
“high-risk” women, if all women who do not know their HIV status were classified as 
“high-risk” (per the WHO guidelines), or if CIN treatment was 100 percent effective. 
 
Conclusion 
Revising South Africa’s cervical cancer screening guidelines could improve efficiency 
and overall health benefits. The optimal screen start age and frequency depended on a 
woman’s risk group and specific WTP. 
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1.1. Background 
 
Human papillomavirus (HPV) is the most prevalent sexually transmitted infection 

globally. While HPV infections usually clear spontaneously within one to two years, 

persistent infection with an oncogenic HPV infection can cause precancerous lesions 

called cervical intraepithelial neoplasia (CIN) that, if untreated, may eventually progress 

to invasive cervical cancer.  

Women living with human immunodeficiency virus (HIV) have higher HPV 

incidence, reduced HPV clearance, and a two- to ten-fold higher incidence of cervical 

cancer compared to women without HIV.1–7 Women with HIV also face an almost 2-fold 

higher risk of cervical cancer mortality compared to HIV-uninfected women with cervical 

cancer.2,8 Antiretroviral therapy (ART) reduces the impact of HIV on CIN2 and CIN3 

regression and HPV progression.9,10 

Despite having one of the highest rates of cervical cancer and the largest burden 

of HIV in the world, South Africa recommends less frequent screening than international 

guidelines for low- and middle-income countries11 (see Table 1.1 for a comparison of 

guidelines). In South Africa, “low-risk” women are defined as women without HIV as well 

as women who do not know their HIV status and are recommended to receive three 

lifetime screens between ages 30 and 50; “high-risk” women are defined as women 

known diagnosis of HIV and are offered screening every three years, starting at age of 

HIV diagnosis over their lifetime.  

TABLE 1.1. National and International Guidelines for Cervical Cancer Screening 
 “Low-Risk” Women “High-Risk” Women 
 Definition Recommendation Definition Recommendation 

South Africa 2017 
National Policy 

Women without 
HIV; Women with 

Every 10 years from 
age 30-50. 

Women with 
diagnosed HIV. 

Every 3 years from 
age of HIV diagnosis, 
in perpetuity. 
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unknown HIV 
status. 

World Health 
Organization (WHO) 

2013 Guidelines 

Women with a 
negative HIV test 
in the last year. 
 

A minimum interval 
of 5 years with HPV 
testing and 3-5 years 
with cytology among 
women ages 30-49. 

Women with 
diagnosed HIV; 
Women with known 
HIV status. 

Starting at age of HIV 
diagnosis or age of 
sexual debut; 
rescreen within 3 
years, in perpetuity. 

 
To inform policy recommendations in South Africa, we classified women into risk 

groups based on the South African guidelines (Table 1.1) and evaluated the clinical 

impact and cost-effectiveness of current and alternative screening strategies, varying 

screen start ages and frequencies based on HIV status and history of HIV testing. 

1.2. Methods 
 
1.2.1. Overview 
 

We developed a microsimulation model of HIV infection, HPV infection and cervical 

cancer, reflecting key features of HPV and cervical cancer natural history, HIV natural 

history, interactions between HIV and HPV, and patterns in testing, care and treatment 

for both HIV and cervical disease. We fit the model to epidemiologic data13 from South 

Africa and quantified the health and economic consequences of alternative cervical 

cancer screening strategies. Compared to no screening, we estimated changes in 

cervical cancer incidence and mortality; health care costs; and the incremental cost-

effectiveness of 55 screening strategies that varied screen start age and frequency to 

identify the optimal screening algorithms for women based on their HIV status and history 

of HIV testing. 

 
1.2.2. Modeling Approach 

We developed an individual-based microsimulation model of cervical 

carcinogenesis and HIV, which was represented by a sequence of annual transitions 
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between health states, including HPV infection (i.e., oncogenic; non-oncogenic), grade of 

pre-cancer (i.e., cervical intraepithelial neoplasia, CIN2 and CIN3), stage of invasive 

cancer (i.e., local, regional, and distant), and HIV infection (see Figure 1.1). Transitions 

were governed by the calendar year of the simulation, age and health history, including 

duration of HPV infection, prior oncogenic or non-oncogenic HPV infection, HIV status, 

CD4 cell count, and years on ART. 
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FIGURE 1.1 Model Schematic 
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1.2.3. HPV Natural History 
1.2.3.1. HPV Incidence 

Women faced an annual, age-specific probability of infection with oncogenic and 

non-oncogenic HPV. In the absence of robust HPV incidence data in South Africa we 

calibrated HPV incidence based upon published cross-sectional data of cohorts at three 

clinical sites in Khayelitsha township in Cape Town, South Africa. Three studies recruited 

women without cervical cancer from this community, for a total of 1,371 HIV+ women and 

8,050 HIV-uninfected women aged 17 to 65 years12. We pooled all HPV types to generate 

age-specific HPV prevalence rates, which we used baseline values for HPV incidence. 

1.2.3.2. HPV Clearance and Progression 
Women could subsequently clear the infection, it could persist, or it could progress 

to CIN2 or CIN3. These probabilities were based on duration of infection and HPV group 

(oncogenic vs non-oncogenic). In the absence of data from South Africa on HPV 

clearance and progression, we calibrated these values and generated prior distributions 

based on a published model of HPV and cervical cancer that used an analysis of primary 

data from the control arm of the Costa Rica Vaccine Trial (2004–2010), which included 

3,736 women aged 18–25 years at enrollment13,14. We assumed HPV clearance 

probabilities were constant for oncogenic and non-oncogenic HPV, and assumed 

oncogenic HPV infections progressed faster to CIN2 and CIN3 than non-oncogenic 

infections. 

We assumed women who cleared their infection developed lifelong naturally-

acquired immunity that reduced the probability of re-infection with the same group of HPV.  

CIN Regression and Progression 
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High-grade lesions (i.e. CIN2 or CIN3) could naturally regress, persist, or 

progress to invasive cervical cancer, depending upon duration and grade of lesion and 

HPV group. In the absence of data from South Africa on CIN regression and 

progression, we calibrated these values. We centered the prior mean of these 

regression probabilities on estimates from the placebo arm of a randomized controlled 

trial of oral β-carotene supplementation for women with CIN2 or CIN315. We calibrated 

and applied a risk ratio associated with a reduced risk of regression for women with 

oncogenic genotypes compared to non-oncogenic genotypes. We also centered the 

prior mean for pre-cancerous progression to invasive cervical cancer based on data 

derived from a natural history study of women with carcinoma in situ from whom 

treatment was withheld in New Zealand from 1965 to 197413,16.  

We also assumed that among those women whose pre-cancerous lesions 

spontaneously regressed, some also cleared their associated HPV infection. We 

calibrated the share of regressed lesions that also cleared HPV infection using an 

uninformed prior.  

1.2.3.3. Cancer Progression, Detection and Mortality 

We modeled progression between cancer stages sequentially. Cancer detection 

occurred through presentation at a health clinic following the development of symptoms, 

or by screening. Undetected cervical cancer could progress to later stages and could be 

detected through symptoms or by screening and cancer progression ended upon cancer 

detection. Women faced cervical cancer survival based on the stage of disease at 

diagnosis and HIV status.8 
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Women with HIV faced an elevated risk of HPV infection, decreased probability of 

HPV clearance and increased risk of progression to CIN and cervical cancer. To model 

the heterogeneity in risk associated with HIV infection, we derived risk rates to be applied 

to our HPV transition probabilities for women living with HIV based on a systematic review 

and meta-analysis17. Where possible, HIV-associated risk rates were stratified by CD4 

count and ART status17. We assumed HPV does not modify the risk of HIV infection or 

HIV natural history, but allow cervical cancer screening to provide an additional 

opportunity for HIV testing. 

1.2.4. HIV Natural History 

Women faced annual age- and year-specific risks of HIV infection, based on 

historical and projected HIV incidence estimates18. We categorized CD4 cell count to 

model HIV progression as follows: <200/mm3, 200/mm3-350/mm3, 350/mm3-500/mm3 

and >500 /mm3. Upon HIV acquisition, women were assigned a CD4 count of >500/mm3. 

A woman’s CD4 count declined over time in the absence of ART and rebounded in the 

presence of ART, based on time on ART and CD4 cell count at ART initiation. We did not 

model ART failure. 

Women had an probability of testing for HIV, which depended on age, HIV status, 

and history of prior testing19 (see table S2 below). Women faced the same probability of 

testing for HIV at each cervical screen. a chance to start ART based on eligibility 

guidelines and individual behavior20. ART became publicly available in April 2004, 

following inception of the national public-sector ART program. Initially, treatment eligibility 

was limited to individuals with CD4 <200/mm3. In 2011, ART was expanded to individuals 
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with CD4 <350/mm3, and was expanded even further in 2015 to include individuals with 

CD4 <500/mm3. In 2016, all individuals living with HIV were eligible for treatment, 

regardless of CD4 count. We modeled these changes in ART eligibility and initiation over 

time. We also allowed women to disengage from care (see table S3 below) and 

independently re-engage19. We assumed a woman’s probability of being lost to ART care 

was uncorrelated with her probability of being screened or treated for cervical cancer. 

Women with HIV faced elevated risks of HPV infection, progression to CIN and invasive 

cervical cancer and cervical cancer-related mortality.  

Each year, death could occur from cervical cancer, HIV-related causes, or non-

HIV background mortality. For women not on ART, HIV-related mortality was based on 

the current CD4 count; in contrast, for women on ART, HIV-related mortality was based 

on the CD4 count at which treatment was initiated and the length of time on ART. We 

adjusted background mortality to account for the fraction of deaths due to HIV-related 

causes based on the Global Burden of Disease estimates21. In order to keep the 

population size fixed over time, for every death in the model, a woman was born into our 

population. 

1.2.5. Model Calibration 
 

We calibrated the model to identify parameter sets that achieved good fit to 

South African epidemiologic data, including HPV and CIN prevalence by age and HIV 

status and cervical cancer incidence by age. We calibrated 35 uncertain model 

parameters, selected based on in-country data availability.  
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We used simulated annealing to search the parameter space. For all uncertain 

parameters, we developed prior probability distributions expressing the uncertainty in 

model parameters and defined lower and upper bounds for each parameter to restrict 

the parameters to plausible regions (see tables below)13. We sampled each parameter 

from its prior distribution and ran the natural history model with 1,000,000 women, for 

120 years. A vector of output statistics was compared to corresponding calibration data 

and a goodness of fit (GOF) score was calculated as the sum of the squared distance 

between the observed and target data weighted inversely proportional to the width of 

the target confidence interval (see equation 1).  

 

Equation 1:	#$%! =	 ' (
)*+,*+",! − +./01+"

23" ∗ 2
6
$%_'()*+

",-
,  

where j is parameter set and i is calibration target ∈ [1,61] 

In each subsequent iteration, we randomly sampled a new “neighboring” 

parameter set from a truncated normal distribution centered on the previously saved 

parameter set. We then re-ran the model, calculated the GOF of the parameter set and 

corresponding acceptance probability, and decided whether or not to keep the new 

parameter set by comparing the probability of acceptance to a randomly generated 

number (see equation 2). The probability of acceptance decreased over time as the 

temperature cooled (see equation 3). 

Equation 2: 9(.;;1,+) = =
1, ?@	#$%%./ ≤ #$%012

exp (
#$%012 − #$%%./

E 6 , ?@	#$%%./ > #$%012
 

Equation 3: E = 1.001" , where i is current iteration number ∈ [1, 1,000] 
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We repeated this procedure 1,000 times and ran 1,000 independent searches to 

improve chances of finding an optimal parameter set.22 We present the 50 best-fitting 

parameter sets from the compendium of calibration runs compared to target data (see 

Appendix).    

1.2.6. Validation Procedure 

As a predictive check of our calibrated model, we conducted a model validation to 

check how well the model fit selected epidemiologic data that were not used in the 

calibration process. We compared model outputs to age-standardized cancer incidence 

at five historical time points (2005, 2006, 2007, 2008 and 2009) and used visual inspection 

to determine how well we fit the data. Our validation results (see Supplemental Appendix) 

indicate a good model fit. 

We also tested how well our calibrated model fit the current and expectations for 

the future HIV epidemic in South Africa. In our model simulations, HIV prevalence among 

15 to 49 year old women ranged from 25 percent in year 2019 to 18 percent in year 2108 

(due to declining HIV incidence over this 90-year period). According to our model 

simulations, an average of 92 percent of women with HIV were tested and diagnosed 

approximately two years after HIV infection. Additionally, ART coverage increased from 

52 percent in year 2019 to 90 percent in year 2108 in our model simulations and ART 

initiation occurred on average four years after diagnosis. These projections remained 

stable over time. 
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We initiated the model with a population of 4 million women, chosen to minimize 

both Monte Carlo stochastic error and computational burden (see Supplemental 

Appendix). We used cervical cancer incidence to assess stochastic error because it is the 

most rare outcome. We distributed the population across one-year age buckets according 

to the South African population pyramid and ran the simulation in the absence of 

screening for 90 years to populate all health states and reach a steady state equilibrium 

(we call this the “burn-in period”). At the end of the burn-in period, we ran the simulation 

for 90 years for each screening strategy.  

1.2.7. Screening Tests and Strategies 
 

We modeled the use of conventional cytology, liquid-based cytology and HPV 

DNA testing, per the South African cervical cancer screening policy. These screening 

tests differ in their test performance, costs, and logistical requirements for successful 

implementation (Table 1.2).  

We anchored the distribution of screen tests to the South African guidelines, 

which aim to gradually phase in and replace cytology with HPV-based screening. To 

reflect this, women in the model were assigned a screen test modality at the start of the 

simulation, and each year, a small share of women gained access to HPV DNA testing 

based on a gradual rollout (Table 1.2).  

TABLE 1.2. Baseline and Sensitivity Analysis Values for Selected Model Variables  
Baseline  Sensitivity Analysis  

Screening, triage, and diagnostic test performance 
(sensitivity/specificity to detect CIN2+)a   
 Cytology (HIV-uninfected) 0.78/0.8623,24 0.65/0.95 
 Cytology (HIV-infected) 0.97/0.6123,24 0.65/0.95 
 Colposcopy  0.95/1.023,24 -- 
 Liquid-based cytology adequacy 0.97923,24 -- 
 Conventional cytology adequacy 0.90923,24 -- 
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Distribution of screen tests by 2020/2030/2050 (%)   
 Liquid-based cytology  30/10/5 -- 
 Conventional cytology 50/30/15 -- 
 HPV  20/60/80 -- 
Coverage and adherenceb   
 Access to routine screening (% of population)  100% 50% 
 Screen adherence (probability of returning for 

next recommended clinical visit) 
100% 80% 

 Access to colposcopy (% of HPV-based 
facilities) 

50% -- 

 Access to cryotherapyc 10% -- 
 HIV testingd Based on age, prior history 

of testing, current CD419  
-- 

 ART initiationd Based on current year, 
current CD4 count, and 

time19 since HIV diagnosis 

-- 

 ART lost to follow up rated (r) ! = #$!"# 
# = 0.13 , ) = 0.75 and t = 
years on ART19 

-- 

Treatment eligibility and efficacy   
 Eligibility for cryotherapy (CIN2, CIN3, Cancer)  85%, 75%, 10%25 -- 
 Effectiveness of cryotherapy to treat CIN2/3 83%26 100% 
 Effectiveness of cryotherapy to clear HPVe 84%27,28 100% 
 Effectiveness of LLETZ to treat CIN2/3 79%26 100% 
 Effectiveness of LLETZ to clear HPVe 79%27,28 100% 
Direct Medical Costs (2019 US$)   
 Conventional cytology $825 -- 
 Liquid-based cytology $1725 -- 
 HPV DNA test $5925 $0 - $60 
 Colposcopy  $7325 $0 - $75 
 Cryotherapy  $425 -- 
 LLETZ $5925 $0 - $60 
 Local cancer treatment $3,20025 -- 
 Regional cancer treatment $9,70025 -- 
 Distant cancer treatment $9,80025 -- 
 HIV test (positive result) $529 -- 
 HIV test (negative result) $329 -- 
 HIV treatment and care (per year) $26029 $0 - $260 
Direct Non-Medical Costs (2019 US$)   
 Patient time (hourly) $1.4230 -- 
Disability values   
 HIV, no ART 0.58231 -- 
 HIV, ART, no cancer 0.08131 -- 
 HIV, localized cancer  0.21531 -- 
 Local cancer 0.04931 -- 
 Regional cancer 0.28831 -- 
 Distant cancer 0.54031 -- 
Notes: a) The Hybrid Capture HPV test detects oncogenic HPV infection. b) Low- and high-risk women face the 
same probability of screen coverage. c) Women who do not have access to or are not eligible for cryotherapy 
receive LLETZ. d) Probability of ART initiation is agnostic to prior/disrupted ART care. See appendix for more 
details. e) Probability that a woman clears her HPV infection after cryotherapy or LLETZ, which is conditioned on 
clearing CIN2/CIN3 lesion.  
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Current South African guidelines recommend that “low-risk” women (i.e. women 

who have tested HIV-negative or have unknown HIV status) are screened every 10 years 

from age 30 to 50 and “high-risk” women (i.e. women with an HIV diagnosis) are screened 

every three years, starting at age of HIV diagnosis for their lifetime (Table 1.1).  

For each alternative strategy, we varied the screen interval and ages to start and 

end screening (Table 1.3). For “low-risk” women, we considered starting screening at age 

20, 25 or 30 and screening at 3-, 5-, 7-, or 10-year intervals. Screening always ended at 

age 50. For “high-risk” women, screening always started at age of HIV diagnosis and 

ended at age 80, and we considered screening at 1-, 2-, 3-, 4-, or 5-year intervals. 

Because women are able to acquire HIV over time, we consider combinations of 

strategies for both low- and high-risk women. We did not consider any strategies where 

“low-risk” women were screened more aggressively than “high-risk” women. This resulted 

in a total of 55 strategies, including no screening as a comparator. 

We assumed that women could be offered an HIV test at their cervical screen 

encounter, and if a woman living with HIV was diagnosed, she would be switched to the 

“high-risk” screening strategy. On average, less than 10 percent of women living with HIV 

in the simulated population had unknown HIV status and thereby were classified as “low-

risk”. 

TABLE 1.3. Cervical Cancer Screening Strategies 
Screen Interval Screen Start Age Screen Stop Age 

“Low-Risk” Women 
1. 3-year 
2. 5-year 
3. 7-year 
4. 10-year 

1. 20 years  
2. 25 years  
3. 30 years  50 years  

“High-Risk” Women 

1. 1-year 
2. 2-year 
3. 3-year 

Age of HIV diagnosis 80 years  
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4. 4-year 
5. 5-year 

Our follow-up and management strategies for cervical screen-positive women 

were based on South African guidelines. For liquid-based and conventional cytology, a 

result of atypical squamous cells of undetermined significance or worse (ASCUS+) was 

followed by a confirmatory colposcopy, which occurred at a separate clinical encounter. 

Women also faced a risk of having an inadequate smear, which required repeat testing 

(at a separate clinical encounter). In total, cytology could result in three or more clinical 

visits for a result of ASCUS+. For HPV-based screening, a positive HPV test was followed 

by confirmatory colposcopy (we assume 10 percent availability), depending on 

availability. In the absence of colposcopy, women were referred for immediate same-day 

treatment. HPV-based screening could result in between one and three clinical visits for 

an HPV positive result. 

Women with a histologically confirmed diagnosis of CIN2 or CIN3 a received large-

loop excision of the transformation zone (LLETZ) or cryotherapy, depending on 

availability and eligibility (see Table 1.2). We assumed that among women whose lesions 

were removed, some failed to clear their HPV infection, and we varied the probability of 

HPV clearance after cryotherapy in sensitivity analyses. Following treatment, women 

were re-screened the following year and if negative, returned to routine screening. 

Women with detected cancers underwent staging and subsequent stage-specific 

treatment. Surgeries were used to remove cancer in early stages, and chemotherapy and 

radiotherapy were used to treat regional and distance cancers. We assumed that all 
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women who had access to and received screening services, as well as women who are 

symptom-detected, had access to cancer treatment services.  

In our main analysis, we assumed all women have access to screening services 

and adhere to management protocols. We relaxed these assumptions in sensitivity 

analyses (Table 1.2).  

1.2.8. Estimation of cost and cost-effectiveness  

Costs were estimated from in-country data sources, including direct medical and 

non-medical costs (Table 1.2). Direct medical costs of screening, diagnosis and treatment 

of CIN were estimated from a study of cervical cancer screening and treatment in women 

living with HIV in Johannesburg from 2009 to 201026,32. Direct medical costs of HIV 

testing, laboratory-based CD4 count testing, and antiretroviral therapy and its associated 

care were derived from a review of cost data that was used to inform a recent HIV 

investment case prepared by the South African government.29 Non-medical costs 

included women’s time, which was valued using an estimate of patient-reported hourly 

income30. We assumed a single patient visit required on average a full day of lost income, 

which we estimated at 8 hours. Costs are reported in 2019 US dollars (US$). 

Model outcomes included total and HIV-stratified cervical cancer incidence, cancer 

and non-cancer related mortality, disability-adjusted life years (DALYs) and total costs. 

Costs and DALYs were discounted at an annual rate of 3 percent. In sensitivity analyses, 

we considered a higher discount rate pegged to the South African Reserve Bank 

repurchase rate of 6.5 percent. 
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For each of a sample of 50 best-fitting parameter sets, we simulated 55 screening 

strategies over a 90-year period with a starting population of 4 million women (chosen to 

minimize both stochastic error and computational burden), based on the current 

population age profile. We used an open cohort disease model, where new individuals 

enter the simulation in each year, to capture multiple incoming birth cohorts33. We 

summed the costs and health benefits for all women for each strategy and averaged 

across the 50 parameter sets. We rounded costs to the nearest $100 and ICERs to the 

nearest $10. 

We conducted a cost-effectiveness analysis to determine the optimal screening 

strategy for the mixed population of women with and without HIV. We first eliminated 

strategies that were dominated strongly, meaning that there is always a combination of 

other strategies with both lower costs and greater health benefits or weakly, meaning any 

intervention that has an incremental cost-effectiveness ratio (ICER) that is greater than 

that of a more effective intervention. We then compared ICERs of non-dominated 

strategies to a range of willingness to pay (WTP) values between $1,300 - $5,200 USD 

per DALY averted for South Africa34. We identified the strategy with the highest ICER less 

than the WTP threshold to be the optimal screening strategy.  

1.3. Results 
Cervical cancer screening significantly reduced cervical cancer incidence, with 

variation based on screen frequency and age. Screening annually for “high-risk” women 

and every three years for “low-risk” women starting at age 20 was the most aggressive 

and effective strategy, yielding an 84 percent reduction in cervical cancer incidence 
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compared to no screening. Screening “low-risk” women every 10 years starting at age 

30 and “high-risk” women every five years, the least aggressive screening strategy, 

decreased cervical cancer incidence by 65 percent compared to no screening. 

Resource use varied widely across the 55 screening strategies considered. With 

current screening guidelines, total costs for a cohort of 4 million women, including HIV 

and cancer care, exceeded $4.6 billion. The most resource intensive screening strategy 

considered increased the cost by 28 percent compared to current guidelines ($5.9 

billion). 

The total cost and total DALYs averted of screening with each strategy are 

displayed in Figure 1.2. The strategies on the efficiency frontier consist of cervical 

screening strategies that are considered cost-effective at different WTP values. Of the 

55 screening strategies considered, nine strategies were on the efficiency frontier. All 

other screening strategies, including current guidelines, were dominated.  

Working our way along the efficiency frontier, we found that 10-yearly screening 

for “low-risk” women starting at age 30 and 5-yearly screening for “high-risk” women 

reduced cervical cancer incidence by 65 percent compared to no screening at a cost of 

$270 per DALY averted. Lowering the screen start age for “low-risk” women to age 25 

cost an additional $30 per DALY averted and yielded an additional 4 percentage point 

reduction in cervical cancer incidence.  

In all other non-dominated strategies, screening started at age 20 for “low-risk” 

women, 10 years younger than current guidelines, and occurred more frequently than 

current guidelines. 7-yearly screening for “low-risk” women and 5-yearly screening for 
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“high-risk” women reduced cervical incidence by 75 percent at a cost of $1,020 per 

DALY averted. It cost at least $4,290 per DALY averted to also screen “high-risk” 

women more frequently than current guidelines. Screening “low-risk” women 3-yearly 

and “high-risk” women 2-yearly reduced cervical cancer by 83 percent. The most costly 

and effective strategy on the efficiency frontier, screening “high-risk” women annually, 

cost $12,430 per DALY averted. 

Within a WTP range of $1,300 to $5,200, we found that “low-risk” women were 

under-screened according to current guidelines – it was always optimal to lower the age 

to start screening 20 years and increase the interval of screening to at least 7-yearly. 

Within this range, there was variation in the optimal strategy for “high-risk” women. At a 

WTP less than $3,300, “high-risk” women were over-screened according to current 

guidelines; above $4,290 they were under-screened.  
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FIGURE 1.2. Efficiency Frontier 
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TABLE 1.4. Health Impact, Cost, and ICERs of Efficient Screening Strategies  

Strategy Incidence 
Reduction* 

Discounted Lifetime Cost** 
(000,000s) 

Discounted DALYs** 
(000s) ICER 

No Screen -- $4,178 (2,896-5,956) 39,115 (35,560-44,200) -- 
10y/ 30 years (LR), 5y (HR) 65 $4,602 (3,295-6,373) 37,565 (34,150-41,928) $270 
10y/ 25 years (LR), 5y (HR) 69 $4,642 (3,330-6,418) 37,428 (34,009-41,873) $300 
7y/ 20 years (LR), 5y (HR) 75 $4,821 (3,490-6,596) 37,252 (33,927-41,634) $1,020 
7y/ 20 years (LR), 4y (HR) 76 $4,857 (3,503-6,661) 37,232 (33,918-41,630) $1,710 
5y/ 20 years (LR), 5y (HR) 78 $4,981 (3,631-6,754) 37,162 (33,809-41,601) $1,800 
5y/ 20 years (LR), 4y (HR) 78 $5,018 (3,649-6,819) 37,146 (33,785-41,587) $2,210 
3y/ 20 years (LR), 3y (HR) 82 $5,433 (4,031-7,254) 37,021 (33,724-41,425) $3,330 
3y/ 20 years (LR), 2y (HR) 83 $5,548 (4,097-7,441) 36,994 (33,693-41,417) $4,290 
3y/ 20 years (LR), 1y (HR) 84 $5,878 (4,281-7,941) 36,968 (33,616-41,383) $12,420 

*Percent reduction compared to no screening. 
**Values represent the average model output across the 50 best-fitting input parameter sets from the calibrated model; values in parentheses 
indicate the minimum and maximum values across the 50 parameter sets. 

 
There was variation in the optimal strategy across the simulations. At a WTP of 

$5,200, screening “low-risk” women every three years starting at age 20 and “high-risk” 

women every two years was cost-effective in 40 percent of simulations (Figure 1.3). At 

this WTP, it was always cost-effective to increase the screen frequency for “low-risk” 

women to at least every five years, starting at age 20. 

FIGURE 1.3. Variation Across Simulations 
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We tested assumptions regarding screen coverage and adherence, treatment 

efficacy, discount rate, classification of high- and low-risk based on HIV status, and costs 

of screening, diagnostics and treatment, to determine the robustness of our results. We 

found that at a WTP of $5,200, our results were robust to all assumptions tested except 

CIN treatment efficacy and definition of risk. When treatment for CIN was assumed to be 

100% effective or when we classified women with unknown HIV status as “high-risk”, 

(according to the WHO definition), increasing the screening frequency for “high-risk” 

women was no longer cost-effective within the WTP range (Figure 1.4, Table 1.5). 

 
FIGURE 1.4. Cost-Effectiveness Plane, Sensitivity Analysis 
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TABLE 1.5. Impact of Cost on Optimal Screening Strategies, Under Different Willingness to Pay Values* 
Scenario $1,300 $2,000 $3,000 $4,000 $5,200 

Cost of ART (base case $260): 
$0 - $120 

5y/ 20 years 
(LR), 5y (HR) 

5y/ 20 years 
(LR), 4y (HR) 

3y/ 20 years 
(LR), 3y (HR) 

3y/ 20 years (LR), 
2y (HR) 

Cost of ART (base case $260): 
$120 - $260 

7y/ 20 years 
(LR), 5y (HR) 

Cost of Colposcopy (base 
case $73): $0 

5y/ 20 years 
(LR), 4y (HR) 

3y/ 20 years 
(LR), 3y (HR) 

Cost of Colposcopy (base 
case $73): $20 - $70 

5y/ 20 years 
(LR), 5y (HR) 

5y/ 20 years 
(LR), 4y (HR) 

Cost of HPV (base case $59): 
$0 - $30 

5y/ 20 years 
(LR), 4y (HR) 

3y/ 20 years 
(LR), 3y (HR) 

3y/ 20 years 
(LR), 2y (HR) 

Cost of HPV (base case $59): 
$30 - $60 

5y/ 20 years 
(LR), 5y (HR) 

5y/ 20 years 
(LR), 4y (HR) 

3y/ 20 years 
(LR), 3y (HR) 

Cost of HPV (base case $59): 
$60+ 

7y/ 20 years 
(LR), 5y (HR) 
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*The table indicates the optimal screening strategy under a range of willingness to pay values as benchmarks 
of good value for money. The optimal strategy was the most effective strategy with an ICER less than the 
indicated threshold. Color coding indicates unique screening strategies ordered from most aggressive (light 
green) to least aggressive (dark green). 

 
1.4. Discussion 
 

In this analysis, we found that cervical cancer screening has a large impact on 

cervical cancer incidence, mortality and DALYs, and that depending on WTP, South 

African guidelines could be changed to improve efficiency and health outcomes. Our 

results indicate that, while accounting for the dynamic nature of HIV, and within the 

reported WTP range, it is always cost-effective to increase the frequency of screening 

for “low-risk” women and may be cost-effective to either decrease or increase the 

frequency for “high-risk” women, depending on WTP. 

We found that the optimal strategy is sensitive to the WTP, meaning that the value 

South Africa places on averting an additional DALY will make a difference in determining 

its optimal screening strategy. We presented results for a WTP range of $1,300 to 

$5,20034. Within this range, it was always cost-effective to increase the frequency of 

screening for “low-risk” women and to start screening at a younger age. For “high-risk” 

women, there was more variation – at the lower end of the WTP range, it was cost-

effective to decrease the frequency of screening to every five years, whereas at the top 

end of the range it was cost-effective to increase screening frequency to every two years. 

This analysis supports a review of cervical cancer screening guidelines in South 

Africa, where cervical cancer is the leading causing of female cancer mortality and 

approximately 3.5 million women are living with HIV and face an elevated risk of HPV and 

cervical cancer compared to HIV-uninfected women. This work builds upon the existing 
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literature on the impact of HIV on cervical cancer, including a model-based analysis of 

screening in HIV-infected women in South Africa which concluded that HPV screen-and-

treat every 2 years was optimal for women living with HIV25. We add to this literature by 

simulating multiple cohorts of women that are representative of the general female 

population in South Africa, accounting for lifetime HIV risk, natural history and historical 

and projected HIV testing and treatment patterns. Furthermore, we evaluated cervical 

screening in this population by HIV status and history of testing, per the current guidelines. 

Our conclusions were consistent with prior results. 

If South Africa classified women who have not been tested for HIV in the last year 

as “high-risk” (per the WHO guidelines), it would no longer be cost-effective to increase 

screening for “high-risk” women, suggesting that our results were sensitive to the 

classification of women who do not know their HIV status. These results are driven by the 

large share of HIV-uninfected women who do not know their HIV status, who would be 

driving up the cost of screening while not be benefitting from additional screening. 

Our analysis has important limitations. In the absence of robust registry and 

population-level data, we relied upon primary data collected in small studies across South 

Africa, which impacts the generalizability of our results. In order to address this, we tested 

assumptions in sensitivity analyses, such as cost of services and test performance, and 

calibrated uncertain parameters to capture the range of uncertainty. 

We made structural choices to reduce the uncertainty and dimensionality of the 

model, such as pooling HPV genotypes into oncogenic and non-oncogenic groups. We 

felt comfortable with this simplifying structural assumption since the screening strategies 
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considered in this analysis did not detect differentially detect by individual HPV 

genotypes. However, this is a limitation in the model’s ability to evaluate new technologies 

that rely on genotyping, which are increasingly being used in South Africa. 

We did not account for HPV vaccination, which was introduced in South Africa in 

2014, targeting age 9-10 year old girls. As a result, we may have overestimated the effect 

of screening on cancer prevention, especially as vaccination coverage increases over 

time, since cervical cancer burden is expected to decrease with benefits accruing to both 

vaccinated and unvaccinated women. Therefore, any conclusions from this analysis are 

relevant to unvaccinated women and women who are not gaining herd immunity benefits 

from vaccination. 

The HIV component of the model was simplified based on our best understanding 

of the natural history and the availability of data. While we captured our understanding of 

the impact of HIV on HPV, we were not able to capture all aspects of HIV natural history, 

including HIV treatment failure, drug resistance and the potential impact of HPV natural 

history on HIV acquisition. Women infected with genital HPV appear to have an elevated 

risk of acquiring HIV compared to women without HPV, perhaps due to an increase in 

HIV-susceptible cells in the genital tract following the immune response to an HPV 

infection35,36. We do not expect it to systematically bias our results as we are not 

considering any variation in HIV natural history within cervical cancer screening 

strategies. We also faced limitations in understanding HPV natural history and cancer 

incidence in women living with HIV and relied on calibration to observed data to inform 
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model parameters. Additionally, behavioral processes such as ART disengagement and 

re-engagement in care are uncertain were not included in the model.  

1.5. Conclusion 
 

Our analysis found that screening “low-risk” women starting at age 20 and every 3 

to 7 years and “high-risk” women every 2 to 5 years was good value for money given a 

WTP range of $1,300 to $5,200 per DALY averted. These findings suggest that current 

South African guidelines may be under-screening both “low-risk” and “high-risk” women. 

However, cost-effectiveness is but one consideration in designing health policy. 

Policymakers must also be concerned with the distribution of health benefits and costs, 

feasibility, and budget impact. 
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The Impact of HPV Vaccination on Optimal Cervical Cancer 
Screening in an HIV Endemic Population 
 



 30  

Abstract 
 
Background 
Widespread human papillomavirus (HPV) vaccination is expected to significantly 
decrease cervical cancer incidence and may allow a reduction in the intensity of 
screening. The protective benefit of vaccination may be lower or wane more rapidly in 
women living with HIV whose immune systems becomes compromised, but despite this 
uncertainty, no modeling analyses account for a reduction in vaccine efficacy in the 
presence of untreated HIV. As a result, prior analyses may be overly optimistic about 
the impact of vaccination in HIV-endemic settings. In this analysis, I explore the 
conditions under which cervical cancer screening intensity could be decreased in HPV-
vaccinated women in South Africa and separate cervical cancer screening guidelines 
established for vaccinated women.  
 
Methods 
I developed a microsimulation model of HIV infection, type-specific HPV infection, 
cervical carcinogenesis and patterns of HIV and cancer testing and treatment. Disease 
dynamics were governed by individual-level attributes such as age, prior health history, 
and current health status. I calibrated the model to South African epidemiologic data 
and compared current screening guidelines to 15 alternative strategies, varying the 
duration of vaccine waning in women whose CD4 count fell below 350 cells/mm3. I 
calculated the expected discounted lifetime costs and DALYs for each strategy, the 
incremental cost-effectiveness ratios (ICERs) for non-dominated strategies and 
compared these to willingness to pay (WTP) values ranging from $1,300 and $5,200 per 
DALY averted, based on empirical cost-effectiveness estimates. 
 
Results 
HPV vaccination had a large impact on cervical cancer incidence in this population. In 
the absence of screening, vaccination reduced incidence of cervical cancer by 42 to 79 
percent, depending on vaccine type and duration of vaccine waning in women whose 
CD4 falls below 350 cells/mm3. I found that at a WTP of $5,200 per DALY averted, it 
would be optimal to screen vaccinated women equally or more aggressively than 
current guidelines recommend for all vaccine waning duration scenarios. When I 
considered a lower WTP of $1,300 per DALY averted, I found it would be optimal to 
screen vaccinated women less aggressively than current guidelines recommended. 
Compared to my analysis of unvaccinated women, it would always be optimal to screen 
vaccinated women equally or less aggressively than unvaccinated women. 
 
Conclusions 
These results demonstrate that there may be opportunities to differentiate screening 
guidelines according to HPV vaccination status, even in an HIV-endemic setting where 
vaccine efficacy may be diminished. However, the optimal strategy depends on 
willingness to pay.   
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2.1. Background 
Human papillomavirus (HPV) vaccination provides promising primary prevention 

against cervical cancer40–44. Bivalent, quadrivalent and nonavalent vaccines protect 

against HPV types 16/18, 6/11/16/18, and 6/11/16/18/31/33/45/52/58, respectively, and 

are highly efficacious against infection with vaccine-targeted HPV and associated 

precancers45,46. 

The best evidence to date on the population health impact of HPV vaccination 

comes from Australia, where the vaccine was first introduced to girls in 2007 and 

extended to include boys in 2014. Australian researchers were among the first to report 

reductions in the prevalence of vaccine-type HPV infections, by 86 percent in 18- to 24-

year-olds who had received three vaccine doses and 76 percent for those who had 

received one or two doses47–49. Reductions in grade 2 and 3 cervical intraepithelial 

neoplasia (CIN) have also been seen in Australia, where women under the age of 20 

had a prevalence decline from 10.9 to 5.0 per 1,000 screened women over a period of 

10 years, and prevalence in 20- to 24-year-olds decreased from 21.5 to 13.5 per 1,000 

screened women in a similar time period47,50.  

While it is too early to observe changes in the incidence of cervical cancer as a 

result of HPV vaccination, it has been estimated that with 50 percent coverage of the 

bivalent vaccine, there could be a worldwide reduction of cervical cancer incidence of 

246,086 cases annually51. If coverage reached 90 percent, the number of averted cases 

would increase to a total of 442,955 per year and up to 93 percent of cervical cancers 

could be prevented with widespread coverage of the nonavalent vaccine51.  
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Vaccination against HPV is expected to have the greatest impact in low‐ and 

lower‐middle‐income countries (LLMICs), where the highest burden of cervical cancer 

exists and access to screening and treatment is limited. At a cost of $4.50 per dose (the 

bivalent vaccine price negotiated for Gavi-eligible countries), HPV vaccination is 

considered highly cost-effective in LLMICs52,53. In the last ten years, 43 LLMICs have 

delivered the HPV vaccine to young adolescent girls through pilot programs, 

demonstration programs, and national introductions, thanks largely to the inclusion of 

HPV vaccines in the Gavi portfolio54. As of June 2018, there were eight countries in sub-

Saharan Africa with a national HPV immunization program, and nearly twice as many 

with pilot programs55,56.  

Widespread HPV vaccination may offer a unique opportunity to reduce cervical 

cancer screening intensity over time, as the risk of HPV infection, pre-cancerous lesions 

and related cancers decreases. However, it will likely not obviate the need for screening 

entirely, as the vaccine does not protect against all oncogenic HPV types. Modeling 

analyses of cervical screening in the United States and the United Kingdom has found 

that screening in HPV-vaccinated women can be modified to start at later ages and 

occur at decreased frequency57,58. However, no separate screening algorithm for HPV-

vaccinated women has been agreed upon, and the WHO cervical cancer prevention 

guidelines provide no differential guidance for screening in HPV-vaccinated women. 

Changes in optimal screening approaches among HPV-vaccinated women may depend 

on a variety of factors, including age of vaccination, vaccine completion rates, type-

specific vaccine efficacy, duration of protection, and setting-specific elements, such as 
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HPV genotype distribution in cancer, the burden of human immunodeficiency virus 

(HIV), and availability of HIV screening and treatment services.  

The benefit of HPV vaccination may be attenuated by immune compromise from 

untreated HIV infection – acquired before or after vaccination. CD4 T-cells are important 

for initial control of HPV at the vaginal and uterine epithelium, are key to recruit memory 

B-cells to the female genital tract, and provide growth factors for B cells and plasma 

cells59. Depletion of CD4 T-cells caused by untreated HIV infection may impact 

production of HPV antibodies and the subsequent efficacy and duration of the vaccine, 

an effect which has been seen in other vaccines60,61. In a review of the literature on 

routine vaccines, the duration of seroprotection was shorter in individuals with HIV, and 

a substantial proportion of patients with HIV lost protective antibodies before guideline-

recommended timing for a booster60. This effect was evident in vaccination against 

hepatitis B, measles, varicella60, where HIV reduced long-term immunity against these 

pathogens.  

HPV vaccine safety and immunogenicity studies show that the bivalent and 

quadrivalent vaccines have acceptable safety and reactogenicity in women with HIV62–

65. However, they also show evidence of lower HPV seroconversion among women with 

low CD4 counts62,65, as well as among women not on antiretroviral therapy (ART)64. The 

clinical significance of these findings is unclear, as the protective titers of HPV 

antibodies have not been defined and to date, there have been no studies with vaccine 

efficacy as endpoints in women with HIV and no studies in women who acquired HIV 

after HPV vaccination.  
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While the majority of data on the effect of HIV on long-term vaccine-induced 

immunity comes from individuals who had a compromised immune system at the time of 

vaccination, in this analysis I am interested in the effect of immune compromise/decline 

after vaccination (I assumed women were immune-competent at time of vaccination – 

either HIV-uninfected or living with treated, suppressed HIV infection). The literature 

establishes a mechanism for the effect of CD4 decline on antibody level and I use this 

to explore the impact of a range of scenarios, varying the rate of vaccine waning in 

immunocompromised women. 

Despite uncertainty in the duration of HPV vaccine protection in 

immunocompromised women, disease simulation models and policy analyses of HPV 

vaccination and cervical cancer screening have not accounted for a possible reduction 

in vaccine duration and efficacy in women with untreated HIV66,67. As a result, these 

models may overestimate the magnitude of health effects and therefore be overly 

optimistic about the impact of HPV vaccination in HIV-endemic settings. 

South Africa introduced the HPV vaccine in 2014, targeting grade 4 girls with two 

doses of the bivalent vaccine. In its first campaign, over 350,000 grade 4 girls were 

vaccinated in more than 16,000 public schools across South Africa, which translated to 

94.6 percent of schools reached and 86.6 percent of age-eligible girls vaccinated.68 

South Africa is also home to the largest number of people living with HIV in the world; 

24 percent of 15- to 49-year-old women are living with HIV. Thanks to a highly effective 

and prolific prevention of mother-to-child transmission program, perinatal HIV infection 

has been virtually eliminated, meaning that almost all girls who are vaccinated against 
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HPV are not living with HIV at the time of vaccination. Additionally, for the vanishingly 

small group of HIV-infected 9-year-old girls, I assume that all have suppressed infection 

and are on antiretroviral therapy (ART). However, young women and adolescent girls 

account for a disproportionate share of new HIV infections. In this analysis, I explored 

the impact of different levels of vaccine efficacy and duration among women living with 

HIV with immune decline and subsequent optimal cervical cancer screening policy. 

Specifically, I compared the cost-effectiveness of various cervical cancer 

screening strategies in women who were vaccinated against HPV at age 9 with the 

bivalent vaccine; I identified the optimal mix of screening strategies for these women 

and considered how the optimal strategy would change based on rate of vaccine 

waning in immunocompromised women.   

2.2.  Methods 
2.2.1. Overview 

Using an individual-based microsimulation model, I quantified the health and 

economic consequences of alternative cervical cancer screening strategies in HPV-

vaccinated women. I estimated cervical cancer incidence and mortality; health care 

costs; and the incremental cost-effectiveness of 15 screening strategies that varied the 

screen frequency and screen ages to identify the optimal screening strategy for HPV-

vaccinated women based on their HIV status and history of HIV testing. I varied rate of 

vaccine waning in women living with HIV whose CD4 count is below 350 cells/mm3 to 

determine the influence of vaccination on screening in an HIV-endemic setting.  

2.2.2.  Modeling Approach 
I refined an individual-based model of HPV infection, HIV infection and cervical 

carcinogenesis that I developed and described in Chapter 1. Disease dynamics were 
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governed by individual attributes, including age, HIV status, ART status and time on 

ART, current and baseline CD4 count, genotype-specific HPV infection and duration of 

infection, grade and duration of pre-cancerous lesion (i.e., cervical intraepithelial 

neoplasia, CIN, grade 2 and 3), stage of cancer (i.e., local, regional and distant) and 

duration with cancer. Details of the model structure and assumptions are described in 

Chapter 1. Some changes were made for this analysis, which are described in detail 

here.  

Women faced an age- and type-specific risk of HPV infection. Unlike the binary 

stratification of HPV genotype in Chapter 1 (oncogenic and non-oncogenic), I stratified 

HPV genotypes into nine categories to capture the impact of various vaccination 

strategies on future burden of cervical cancer. These included types 16, 18, 31, 33, 45, 

52, 58, other high-risk (oncogenic types that are not covered by the nonavalent vaccine) 

and all low-risk. A woman with an HPV infection could clear the infection (and 

subsequently acquire type-specific natural immunity that decreased future risk of 

infection with the same type), persist with the infection, or develop CIN2 or CIN3. These 

transitions were all governed by duration and type of infection. CIN could clear, persist, 

or progress to invasive cervical cancer based on lesion duration and associated HPV 

type. I assumed that women could acquire multiple HPV infections and lesions 

independently, but assumed an HPV infection could cause only a single lesion. I 

assumed a woman with CIN could only clear the associated causal HPV infection when 

the CIN cleared. Once a woman developed invasive cervical cancer, I assumed she 

could not acquire new HPV infections or lesions. 



 37  

Women faced an annual probability of HIV infection that was based on reported 

HIV incidence trends over time for South Africa. A detailed description of the HIV natural 

history assumptions can be found in Chapter 1. In summary, women were assigned a 

CD4 cell count of 500 cells/mm3 at the time of HIV infection. In the absence of ART, 

CD4 count declined over time. Once a woman was tested and diagnosed, she was able 

to initiate ART and her CD4 count rebounded. Women could drop out from ART care 

and re-engage; I assumed that women who dropped out of ART care faced a reduced 

probability of re-initiating care by a factor of 0.5. Women faced HIV-specific mortality 

based on her current and nadir CD4 count. I also assumed HPV infection did not impact 

HIV natural history. 

Unlike the multi-cohort open model used in Chapter 1, I simulated a single cohort 

of 10 million girls from age of vaccination until death. I chose 10 million in order to 

minimize Monte Carlo error around estimates of the impact of HIV natural history on 

HPV vaccination and screening. All women received two doses of the bivalent HPV 

vaccine at age 9, which reduced future risk of type-specific HPV infection. I also 

considered the nonavalent vaccination, which protects against an additional 5 high-risk 

genotypes. I assumed the vaccine was 100 percent effective against the genotypes it 

targeted and this protection lasted lifelong for all immunocompetent women in the model 

(women without HIV and women with a CD4 count above 350 cells/mm3) (Table 2.1). In 

sensitivity analysis, I considered baseline vaccine efficacy of 80 percent in all HIV-

infected women, rather than 100 percent, to test the robustness of this assumption. If a 

women’s CD4 count fell below 350 cells/mm3, I assumed her vaccine efficacy began to 
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wane, and varied the rate of waning from 2.5 to 50 percentage point decline per year 

(meaning that it takes between 2 and 40 years for a woman to lose any vaccine 

protection). If her CD4 count fell below 200 cells/mm3, I assumed her vaccine efficacy 

waned twice as quickly compared to below 350 cells/mm3. If she re-initiated ART and 

her CD4 count rebounded above 200 cells/mm3, her vaccine efficacy waning slowed 

and once it rebounded above 350 cells/mm3 it stopped waning entirely, but never 

returned to its initial level (see Figure 2.1 for an example of vaccine efficacy decline 

following CD4 decline and Equation 1 below for full specification). 

Equation 1 

!" = $" − 	' ∗ )*+!"#	%&&'()& − 2' ∗ )*+!"#*%&& 

 
where, SE is the starting efficacy and ! is the rate of vaccine decline. 

 
Figure 2.1. Example of HPV Vaccine Efficacy Decline in Immunocompromised Women 
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2.2.3.  Calibration 
I calibrated the model to identify parameter sets that would achieve a good fit to 

South African epidemiologic data. I calibrated 49 model parameters and fit to 100 

calibration targets. I developed prior probability distributions to express uncertainty in 

model parameters. I used simulated annealing to search the parameter space and 

weighted least-squares, weighted by the relative strength of each calibration target, to 

score the model output. Details of the calibration approach I used for this analysis were 

previously provided in Chapter 1.  

Calibrated model parameters included infection duration-specific HPV clearance 

and progression, lesion duration-specific CIN2+ clearance, and CIN2+ progression to 
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cancer, and genotype-specific hazard rates for HPV and CIN clearance and progression 

that were applied for each duration. For these parameters, I defined prior means and 

standard deviations using empirical data13,15,37,69 and applied HIV-related hazard rates 

on transition probabilities from a meta-analysis of the impact of HIV on HPV natural 

history17. Calibration targets included high-risk HPV prevalence by age and HIV status, 

CIN2+ prevalence by age and HIV status, HPV type distribution by HIV status in CIN2, 

CIN3 and cancer, and age-specific cancer incidence7,12,70. 

I ran the natural history model (with no screening or vaccination) with 10 million 

women starting at age 9 until death. Results for a sample of the 50 best-fitting 

parameter sets are presented in the appendix. I simulated each scenario using these 50 

best-fitting sets and calculated a point estimate for each outcome of interest by 

calculating the mean across the simulation results. 

2.2.4. Screening Strategies 
I modeled the use of conventional cytology, liquid-based cytology and HPV DNA 

testing, per South African cervical cancer screening policy. As a baseline, I simulated 

the current distribution of screen tests in South Africa, per current guidelines and in 

sensitivity analysis explored HPV testing and cytology testing alone in sensitivity 

analysis (Table 2.1). 

TABLE 2.1. Baseline and Sensitivity Analysis Values for Selected Model Variables  
Baseline  Sensitivity Analysis  

Vaccine characteristics   
 Vaccine Type Bivalent Nonavalent 

 Efficacy (genotype-specific) 100% protective against 
16, 18 

100% protective against 
16, 18, 31, 33, 45, 52, 
58 

 Efficacy reduction in women living with 
HIV 0% 20% 

 Annual rate of vaccine decline in women 
with CD4 200 - 350 cells/mm3 (!) 10%, 25%, 50%   -- 
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 Annual rate of vaccine decline in women 
with CD4 < 200 cells/mm3 2!  -- 

Screening, triage, and diagnostic test performance 
(sensitivity/specificity to detect CIN2+)a   

 Cytology (HIV-uninfected) 0.78/0.8623,24 -- 
 Cytology (HIV-infected) 0.97/0.6123,24 -- 
 Colposcopy  0.95/1.023,24 -- 

 Fraction of liquid-based cytology requiring 
re-testing 0.97923,24 -- 

 Fraction of conventional cytology requiring 
re-testing 0.90923,24 -- 

Distribution of screen tests (%)   
 Liquid-based cytology  30% 0%, 50% 
 Conventional cytology 50% 0%, 50% 
 HPV  20% 100%, 0% 
Coverage and adherenceb   

 Access to routine screening (% of 
population)  100% 50% 

 Screen adherence (probability of returning 
for next recommended clinical visit) 100% 80% 

 Access to colposcopy (% of HPV-based 
facilities) 50% -- 

 Access to cryotherapyc 10% -- 

 HIV testingd 
Based on age, prior 
history of testing, current 
health19  

-- 

 ART initiationd Based on time since HIV 
diagnosis19 -- 

 ART lost to follow up rated (r) 
# = %&!"# 

% = 0.43 , + = 0.75 and t = 
years on ART19 

-- 

Treatment eligibility and efficacy   

 Eligibility for cryotherapy (CIN2, CIN3, 
Cancer)  85%, 75%, 10%25 -- 

 Effectiveness of cryotherapy to treat 
CIN2/3 83%26 100% 

 Effectiveness of cryotherapy to clear HPVe 84%27,28 100% 
 Effectiveness of LLETZ to treat CIN2/3 79%26 100% 
 Effectiveness of LLETZ to clear HPVe 79%27,28 100% 
Direct Medical Costs (2019 US$)   
 Conventional cytology $825 -- 
 Liquid-based cytology $1725 -- 
 HPV DNA test $5925 -- 
 Colposcopy  $7325 -- 
 Cryotherapy  $425 -- 
 LLETZ $5925 -- 
 Local cancer treatment $3,20025 -- 
 Regional cancer treatment $9,70025 -- 
 Distant cancer treatment $9,80025 -- 
 HIV test (positive result) $529 -- 
 HIV test (negative result) $329 -- 
 HIV treatment and care (per year) $26029 -- 
Direct Non-Medical Costs (2019 US$)   
 Patient time (hourly) $1.4230 -- 
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Disability values   
 HIV, asymptomatic (CD4 > 500 cells/mm3) 031 -- 

 HIV, symptomatic no AIDS (CD4 > 200 
cells/mm3 and < 500 cells/mm3) 0.27431 -- 

 HIV, AIDS (CD4 < 200 cells/mm3) 0.58231 -- 
 Local cancer 0.04931 -- 
 Regional cancer 0.28831 -- 
 Distant cancer 0.54031 -- 
Notes: a) The Hybrid Capture HPV test detects oncogenic HPV infection. b) Low- and high-risk women faced the 
same probability of screen coverage. c) Women who did not have access to or were not eligible for cryotherapy 
received LLETZ. d) Women with prior/disrupted ART care had a 0.5 reduction in probability of re-initiating ART. 
See appendix for more details. e) Probability that a woman cleared her HPV infection after cryotherapy or LLETZ, 
which was conditional on clearing CIN2/CIN3 lesion.  
 

For cervical cancer screening, I classified women into cervical cancer risk groups 

based on the South African guidelines, and varied screen ages and frequencies for 

women based on their risk classification. Women were “low-risk” (LR) if they did not 

have HIV or if they had not been diagnosed with HIV and were “high-risk” (HR) if they 

had a diagnosed HIV infection. The model reclassified HIV-infected women as HR when 

her HIV was diagnosed. Each screening strategy varied the screen interval for HR and 

LR women and age to start screening for LR women. I kept the screen end age for LR 

women (50 years old) and the screen start and end ages for HR women (age of HIV 

diagnosis, in perpetuity) constant. I anchored the most aggressive strategy to the 

optimal strategy at a willingness to pay (WTP) of $5,200 per DALY averted in my 

analysis of screening among unvaccinated women in South Africa (2y HR, 3y LR 

starting at age 20) and the least aggressive to the optimal strategy in an analysis of 

screening after HPV vaccination in the United Kingdom (5y HR, 10y LR starting at age 

40)57. I considered 15 screening strategies (Table 2.2) and five vaccine waning 

scenarios for immunocompromised women (Table 2.1). 

TABLE 2.2. Screening Strategies 
Screen Start Age (LR) Screen Frequency (LR) Screen Frequency (HR) 

20 years 3-year 2-year 
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20 years 3-year 3-year 
20 years 5-year 4-year 
20 years 5-year 5-year 
20 years 7-year 4-year 
20 years 7-year 5-year 
30 years 10-year 3-year 
30 years 10-year 4-year 
30 years 10-year 5-year 
35 years 10-year 3-year 
35 years 10-year 4-year 
35 years 10-year 5-year 
40 years 10-year 3-year 
40 years 10-year 4-year 
40 years 10-year 5-year 

Notes: Routine screening starts at age of HIV diagnosis and continues in perpetuity for HR 
women. Routine screening ends at age 50 for LR women. 

Follow-up and management strategies for cervical screen-positive women were 

based on South African guidelines. For liquid-based and conventional cytology, a result 

of atypical squamous cells of undetermined significance or worse (ASCUS+) was 

followed by a confirmatory colposcopy, which occurred at a separate clinical encounter. 

Women also faced a risk of having an inadequate smear (cytologist was unable to read 

the pap smear), which required repeat testing (at a separate clinical encounter). In total, 

cytology could result in three or more clinical visits for a result of ASCUS+. For HPV-

based screening, a positive HPV test was followed by confirmatory colposcopy, 

depending on availability (Table 2.1). In the absence of colposcopy, women were 

referred for immediate same-day treatment. HPV-based screening could result in 

between one and three clinical visits for a positive HPV result. I assumed that, unless a 

woman was lost to follow-up (LTFU), all of her clinical encounters resulting from a 

positive screening test occurred within one year. I assumed that LTFU from HIV care 

was uncorrelated with cervical cancer screening adherence and compliance. 
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Women with a histologically confirmed diagnosis of CIN2 or CIN3 received large-

loop excision of the transformation zone (LLETZ) or cryotherapy, depending on 

availability and eligibility (see Table 2.1). I assumed that among women whose lesions 

were removed, some HPV infection failed to resolve, and varied the probability of 

CIN/HPV treatment efficacy in sensitivity analyses (see Table 2.1). Following treatment, 

women were re-screened with the same screening test the following year and if 

negative, returned to routine screening. Women with detected cancers underwent 

staging and subsequent stage-specific treatment. Surgeries were used to remove 

cancer in early stages, and chemotherapy and radiotherapy were used to treat regional 

and distance cancers. I assumed that all women who had access to and received 

screening services, as well as women who are symptom-detected, had access to 

cancer treatment services. I assumed all women have access to screening services and 

adhere to management protocols.  

For each parameter set, I simulated each screening strategy in a cohort of 10 

million girls who had been vaccinated with the bivalent vaccine, starting at age 9 over 

their lifetime. At the end of the simulation, I summed the lifetime costs and health 

benefits for the entire cohort of girls, for each intervention and averaged across the 50 

parameter sets.  

2.2.5. Estimation of cost and cost-effectiveness  

Costs were estimated from in-country data sources, including direct medical and 

non-medical costs (Table 2.1). Direct medical costs of screening, diagnosis and 

treatment of precancerous lesions were estimated from a study of cervical cancer 
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screening in women living with HIV in Johannesburg in 2014.32 I did not include vaccine 

costs because I assumed these did not differ between strategies (all simulated women 

were assumed to be previously vaccinated) and did not compete bivalent and 

nonavalent vaccine scenarios against each other. Non-medical costs included women’s 

time, which was valued using an estimate of patients’ reported income30. Model 

outcomes included absolute lifetime cervical cancer incidence and mortality, disability-

adjusted life years (DALYs) and lifetime costs. For the cost-effectiveness analysis, costs 

and DALYs were discounted at an annual rate of 3 percent.  

I conducted a cost-effectiveness analysis to determine the optimal screening 

strategy. I first eliminated dominated strategies (strategies that were more costly and 

less effective than a linear combination of other strategies). I considered the strategy 

with the highest ICER less than the willingness to pay (WTP) threshold to be the most 

cost-effective screening strategy. For the main analysis, I assumed South Africa was 

willing to pay $5,200 to an avert an additional DALY. This WTP value is equal to the 

2016 GDP per capita of South Africa and the upper end of a reported WTP range34. I 

explored the impact of lower WTP values in sensitivity analyses. 

2.3. Results  
2.3.1. Health Impact  

Before considering screening, I explored the impact of HPV vaccination on health 

metrics that may influence optimal screen age and interval, including cervical cancer 

incidence, age of causal infection and average time between causal HPV infection, CIN 

lesion and invasive cervical cancer. I found that the bivalent vaccine reduced cervical 
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cancer incidence by 42 – 43 percent and the nonavalent vaccine yielded a 77 – 78 

percent reduction, depending on rate of vaccine waning in immunocompromised 

women. If the vaccine was only 80 percent effective in women living with HIV, the 

vaccine impact on cervical cancer decreased by approximately four percentage points 

(Figure 2.2). On average, rate of vaccine waning in immunocompromised women did 

not drive large variation in vaccine impact on the population level, likely because there 

were very few women with a CD4 below 350 cells/mm3 in the model who lived long 

enough to acquire cervical cancer. 
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FIGURE 2.2. Cervical cancer incidence by vaccination scenario 
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In the absence of vaccination or screening, I found the average age of causal 

HPV 16, 18, high-5 (31, 33, 45, 52, 58), and all high-risk infections to be 31, 32, 28 and 

30 years old, respectively. Vaccination delayed the average age of causal HPV infection 

by 9 to 17 years, depending on the HPV genotype and rate of vaccine decline (Figure 

2.3).  

FIGURE 2.3. Age of causal HPV infection by rate of vaccine waning 

 

I evaluated the health impact of various cervical cancer screening strategies in 

vaccinated women. Cervical cancer screening yielded a 72 to 81 percent reduction in 

cervical cancer incidence, depending on the frequency and age of screening and 

vaccine type (Figure 2.4). 

FIGURE 2.4. Cervical cancer incidence by vaccine and screening 
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Screening averted between 0.46 and 2.16 disability-adjusted life years (DALYs) 

per girl compared to no screening, depending upon rate of vaccine waning in 

immunocompromised women and screening age and frequency (Figure 2.5). The faster 

the rate of vaccine waning in immunocompromised women, the more beneficial 

screening was in terms of DALYs averted. Though these differences were very small 

and so may not drive differences in cost-effectiveness. 

FIGURE 2.5. Total DALYs averted by screening strategy in vaccinated women 
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2.3.2. Cost-effectiveness analysis 
At a WTP of $5,200 per DALY averted, it was always optimal to screen bivalent-

vaccinated women more aggressively than current guidelines recommend, independent 

of rate of vaccine waning in women with CD4 < 350 cells/mm3 (Table 2.3). I found that it 

was optimal to screen HR women every two years (instead of currently recommended 3 

years) and LR women every 3 years (instead of currently recommended 10 years) 

starting at age 20. This strategy cost $3,100 - $4,100 per DALY averted compared to 

the next best alternative strategy, depending on rate of vaccine efficacy decline. These 

screening strategies reduced cervical cancer incidence and mortality by 77 to 78 

percent relative to no screening. 

TABLE 2.3. ICERs of cervical cancer screening strategies after bivalent vaccination 
  Rate of annual vaccine efficacy decline after CD4 falls below 

350 cells/mm3 
 50% 25% 10% 

5y (HR); 10y (LR) from age 40 $600 $600 $600 

0.00

0.50

1.00

1.50

2.00

2.50

5y
(HR);
10y
(LR)
from

age 40

4y
(HR);
10y
(LR)
from

age 40

3y
(HR);
10y
(LR)
from

age 40

5y
(HR);
10y
(LR)
from

age 35

4y
(HR);
10y
(LR)
from

age 35

3y
(HR);
10y
(LR)
from

age 35

5y
(HR);
10y
(LR)
from

age 30

4y
(HR);
10y
(LR)
from

age 30

3y
(HR);
10y
(LR)
from

age 30

5y
(HR);

7y
(LR)
from

age 20

4y
(HR);

7y
(LR)
from

age 20

5y
(HR);

5y
(LR)
from

age 20

4y
(HR);

5y
(LR)
from

age 20

3y
(HR);

3y
(LR)
from

age 20

2y
(HR);

3y
(LR)
from

age 20

Bivalent_50pp Bivalent_25pp Bivalent_10pp
Nonavalent_50pp Nonavalent_25pp Nonavalent_10pp
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4y (HR); 10y (LR) from age 40 $700 $700 $800 
3y (HR); 10y (LR) from age 40 $1,000 $900 $1,000 
3y (HR); 10y (LR) from age 30 $2,100 $2,100 $2,100 
4y (HR); 7y (LR) from age 20 $2,100 $2,100 $2,100 
4y (HR); 5y (LR) from age 20 $2,900 $2,800 $2,800 
3y (HR); 3y (LR) from age 20 D $3,100 $3,000 
2y (HR); 3y (LR) from age 20 $3,100 $4,100 $3,500 

Notes: Grey shading indicates strategy that is optimal at a WTP of $5,200/DALY averted. Blue shading indicates 
strategy that is optimal at a WTP of $1,300/DALY averted.  
Abbreviations: LR, low-risk; HR, high-risk; D, dominated. 

 
At a WTP of $1,300 per DALY averted, it was always optimal to reduce screen 

intensity for bivalent-vaccinated women relative to current guidelines. For bivalent-

vaccinated women, it was optimal to increase the age to start screening to age 40 for 

LR women every 10 years (resulting in 1-2 lifetime screens) and to screen HR women 

every 3 years, independent of rate of vaccine waning in immunocompromised women 

(Table 2.3). This strategy would reduce cervical cancer incidence by 73 to 74 percent 

relative to current guidelines and would cost between $900 and $1,000 per DALY 

averted relative to the next best alternative, depending on rate of vaccine waning in 

immunocompromised women. 

2.3.3. Sensitivity Analysis 
I explored the impact of the nonavalent vaccine, varying CIN treatment efficacy, 

screen modality (HPV testing alone vs. cytology alone), and vaccine efficacy in women 

living with HIV on policy conclusions.  

The nonavalent vaccine protects against an additional 5 oncogenic genotypes, 

that combined with types 16 and 18 cause 75 to 80 percent of cancers. At a WTP of 

$5,200, It was also always optimal to screen LR nonavalent-vaccinated women more 

aggressively than current guidelines recommend and optimal to screen HR women 

equally or less frequently than current guidelines recommend, depending on rate of 
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vaccine waning after immune decline (Table 2.5). Irrespective of WTP and rate of 

vaccine decline after immune compromise, it was always optimal to screen nonavalent-

vaccinated women less frequently than bivalent-vaccinated women. At a WTP of $1,300 

per DALY averted, no screening algorithm considered was cost-effective. 

I found that when CIN and HPV treatment was 100% effective at clearing lesions 

and infections, screening could be reduced even further at both ends of the WTP range 

(Table 2.4). For all other parameters, my results were consistent with the main analysis. 

TABLE 2.4. Optimal screening strategy based on key sensitive parameters 
 WTP = $1,300 WTP = $5,200 
 50% 25% 10% 50% 25% 10% 

Baseline 3y (HR); 10y (LR) from age 40 2y (HR); 3y (LR) from age 20 

Nonavalent No Screening 3y (HR); 3y (LR) from age 
20 

4y (HR); 5y (LR) from 
age 20 

All Cytology 
Screening 

3y (HR); 10y (LR) from age 40 2y (HR); 3y (LR) from age 20 

All HPV Screening 

80% VE in HIV+ 
50% screen 

coverage, 80% 
screen 

compliance 
Perfect CIN/HPV 

Treatment 5y (HR); 10y (LR) from age 40 5y (HR); 5y (LR) from age 20 
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2.4. Discussion 
In this analysis, I found that HPV vaccination had a large impact on cervical 

cancer incidence. In the absence of screening, vaccination reduced incidence of 

cervical cancer by 42 to 79 percent, depending on vaccine type and duration of vaccine 

waning in women whose CD4 falls below 350 cells/mm3. These findings suggested that 

the health impact (and cost-effectiveness) of screening may vary based on vaccine 

type, but that rate of waning in women whose CD4 falls below 350 cells/mm3 may not 

drive variation in cost-effectiveness. They also revealed that screening would still be 

important in the era of vaccination, especially for bivalent vaccinated women. A bivalent 

vaccine that wanes at a rate of 50 percentage points per year in immunocompromised 

women would only reduce cervical cancer incidence by 44 percent.  

I found that at a WTP of $5,200/DALY, it would be optimal to screen vaccinated 

women equally or more aggressively than current guidelines recommend for all vaccine 

waning scenarios. I found it was optimal to screen bivalent-vaccinated women every 2 

years if HR and every 3 years if LR, starting at age 30. This is the same algorithm that 

was optimal in my analysis of unvaccinated women in Chapter 1, suggesting that we 

should not differentiate cervical cancer screening by vaccination status. 

These results were sensitive to WTP. At a WTP of $1,300, it was optimal to 

reduce screen intensity for nonavalent- and bivalent-vaccinated women relative to both 

current guidelines and my results for screening in unvaccinated women in Chapter 1. 

These results suggest that at a low WTP, it may be optimal to differentiate screening 

guidelines by vaccine status.  
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I also found that rate of vaccine waning in immunocompromised women does not 

drive variation in the cost-effectiveness of cervical cancer screening algorithms. The 

main reason is that I assumed the vaccine began to wane when a woman’s CD4 fell 

below 350 cells/mm3 and waned at a faster rate when CD4 fell further below 200 

cells/mm3. However, when women acquire HIV, they are assigned an initial CD4 count 

of 500 cells/mm3, that declines in the absence of ART. However, it takes many years to 

fall below 350 cells/mm3, and once a woman starts ART, her CD4 count rebounds. Most 

HIV-infected women in the model did not persist with a CD4 count below 350 and 200 

cells/mm3 for very long. Additionally, a woman with a CD4 count this low faced a 

competing risk of AIDS-related mortality, which likely occurred long before development 

of invasive cervical cancer. On average in South Africa71, women take 4-5 years to be 

linked to care following HIV infection, and initiate care at a CD4 count of 350 cells/mm3. 

Therefore, on average, women with HIV will never lose HPV vaccine protection, and 

among those who do, they will either initiate ART, rebound and their efficacy will cease 

to wane, or they will die before the effects of diminished immunity are realized. I may 

have detected a larger effect of HIV on vaccine impact in a setting with less robust HIV 

screening and treatment than South Africa. However, in the era of universal ART 

following diagnosis, this analysis suggests that women living with HIV will benefit from 

HPV vaccination and their HIV will not drive a need for differential screening.  

South Africa introduced the bivalent vaccine to 9-year-old girls nationally in 2014, 

but included no special provision for cervical cancer screening in vaccinated women in 

its 2017 Cervical Cancer Prevention Policy Strategic Plan [cite]. Our analysis evaluated 
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in what circumstances it would be cost-effective to develop separate guidelines for 

vaccinated women, accounting for the uncertain effect of HIV on vaccine efficacy. I 

found that only at a WTP of $1,300 would it always be optimal to reduce screening for 

vaccinated women relative to unvaccinated women. At a WTP of $5,200, it depended 

on the vaccine type used as well as parameters such as CIN treatment efficacy.  

This analysis builds upon literature on the impact of HPV vaccination on cervical 

cancer incidence and cervical cancer screening by explicitly accounting for the 

heterogeneous and highly uncertain impact of HIV and immune decline on duration of 

vaccine protection. To my knowledge, no other analyses of HPV vaccination consider a 

differential vaccine impact by HIV status, despite considerable evidence that HIV may 

impair vaccine durability. This analysis also motivates further exploration of the relative 

value of cytology versus HPV-based screening tools in an era of HPV vaccination, and 

the possibility of dual or co-testing.  

This analysis faced some limitations resulting from choices made around model 

structure and data availability. I assumed HPV infection status had no impact on HIV 

infection or natural history, despite limited evidence that HPV may increase risk of HIV 

acquisition. Therefore, I did not allow HPV vaccination to impact HIV incidence. As a 

result, I may be underestimating the impact of vaccination. I also assumed that the 

vaccine efficacy waned linearly, and the slope of decline was twice as steep when a 

woman’s CD4 count fell below 200 cells/mm3 compared to below 350 cells/mm3. These 

assumptions were not data driven, but rather explorations in the absence of clinical trial 

data to determine what level of efficacy is required to impact screening. With respect to 
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HIV and cervical cancer screening and treatment behavior, I did not account for any 

correlation in cervical cancer screen compliance and ART compliance – I assumed 

these were independent. I suspect that outcomes may have been better if I accounted 

for any correlation, as all of the mortality risk would be concentrated in those lost to 

follow up from both cervical cancer and HIV screening and care. 

Due to model structure (static vs. dynamic), we did not account for herd 

immunity.  To overcome this limitation, we restricted our analysis to vaccinated women, 

assuming 100 percent vaccine coverage. However, women who lose protection against 

the vaccine gain no secondary benefits from other vaccinated women. Therefore, I 

consider these results to be a conservative estimate of vaccine impact.  

I also did not explicitly compare screen modalities. Future analyses should 

consider the impact of HPV vaccination on the relative value of HPV-based screening 

and value of co-testing72. 

2.5. Conclusion 

This analysis found that depending on vaccine type and WTP, it may be optimal 

to reduce cervical cancer screening in vaccinated women and to differentiate screening 

based on vaccination status. These results were not driven by nor dependent upon 

differential vaccine waning in HIV-infected women. While these results describe the 

conditions when differential screening guidelines may be optimal based on a cost-

effectiveness analysis, I do not consider the feasibility of separating guidelines for 

vaccinated and unvaccinated women, including accurately identifying an individual’s 

vaccination history, which must also be factored into health policy decision-making.  
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Chapter 3.  

The Impact of Structural Uncertainty in HPV Modeling: A Case 
Study
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Abstract 
 
Background 
Decisions about model structure may have consequences for epidemiologic outcomes, 
estimates of cost-effectiveness, and policy conclusions. Yet structural uncertainty is 
frequently ignored. In this chapter, I explored a highly uncertain process of HPV natural 
history – naturally-acquired immunity and the meaning of an HPV re-detection – to 
determine in what circumstances the way these mechanisms are modeled influenced the 
ability to fit the model to target data, the assumptions made about disease natural history, 
and the health impact and cost-effectiveness of HPV vaccination policies. 
 
Methods 
I used a microsimulation model of type-specific HPV infection and cervical 
carcinogenesis to compare five alternative model structures that capture decisions 
around who acquires natural immunity and the meaning of HPV re-detection. I 
calibrated all five model structures to South African epidemiologic data. I compared (i) 
calibration fit, (ii) other model natural history outcomes such as age of causal HPV 
infection that were not included in calibration, and (iii) the health impact and cost-
effectiveness of HPV vaccination. I compared five vaccine strategies that varied the 
upper age limit of vaccination, using both the bivalent and nonavalent vaccine. 
 
Results 
I found that all five model structures fit the calibration targets well, with only small 
variations in performance. The fitted models resulted in significant variation in key model 
parameters, such as the level and duration of natural immunity, and rates of progression 
between HPV infection, lesion and invasive cervical cancer. Allowing for infections to 
become latent and re-activate impacted the age distribution of causal HPV infections and 
the subsequent health impact and cost-effectiveness of vaccination strategies that vary 
the end age of vaccination. Model structures that do not allow for latency predicted a five-
year older average age of causal HPV infection compared to models that accounted for 
latency. Structural decisions regarding who acquires natural immunity did not produce 
much difference in other model natural history outcomes nor cost-effectiveness of 
vaccination policy. 
 
Conclusion 
These results imply that the specific structural uncertainties I explored are meaningful 
for the way we have, and potentially should, model HPV. Specifically, models that 
ignore the possibility of HPV latency and re-activation may over-estimate the benefit of 
vaccinating up to older ages. They also demonstrate that decisions regarding who 
acquires natural immunity and at what level are less influential, so long as natural 
immunity exists in the model. While this analysis was specific to HPV modeling 
decisions, it serves as an example of how structural decisions matter for modeling in 
general.  
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3.1. Background 

Decision analytic models are increasingly used to inform health care resource 

allocation and decision-making. The growing profile of decision analysis in policymaking 

begets a need for robust methods for appropriately characterizing uncertainty. There 

are a number of sources of uncertainty, which have been generally classified and 

described as parameter, methodological, and structural73. Parameter uncertainty 

reflects uncertainty in the true value of a given parameter. Methodological uncertainty 

can be defined uncertainty that leads to differences in the choice of analytic methods, 

such as the perspective of the evaluation.  

This analysis focuses on structural uncertainty, which includes uncertainties that 

lead to differences in the types of simplifications and scientific judgments that must be 

made when developing and interpreting a model. In the context of disease modeling, 

this includes uncertainty in our scientific understanding of a disease process, as it may 

be unobserved or unobservable. Even for the most well-understood disease 

mechanisms, there are alternative and plausible ways to describe those mechanisms. 

There are also trade-offs between capturing process complexity and managing 

computational burden; additional complexity is costly, and decision analysts and 

modelers must decide how much complexity is required and what can be simplified. 

Additionally, models are only as good as the data that we input, and we may make 

structural choices based on data availability, as the absence of data adds parameter 

uncertainty to the model, which we wish to minimize. In fact, structural sensitivity and 

uncertainty analyses can be used to quantify the value of generating new data.  
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The 2012 ISPOR (a professional society for health economics and outcomes 

research) report on good modeling practice makes specific recommendations about 

how to characterize and report parameter uncertainty, including use of probabilistic 

sensitivity analysis, a technique used to quantify the level of confidence in the output of 

the analysis, in relation to uncertainty in the model inputs74. Little attention, however, 

has been paid to structural uncertainty, as it is more difficult to sample from the space of 

plausible model structures than to sample from the parameter space. Despite this, 

structural uncertainty may have greater impact on model results and conclusions than 

parameter uncertainty73,75. 

Decisions about model structure will likely have consequences for estimates of 

epidemiologic outcomes, estimates of cost-effectiveness, and policy conclusions. While 

it is common to acknowledge potential limitations of model structure and identify 

assumptions that have been made, there is no clear guidance on methods to explicitly 

incorporate structural uncertainties into policy analyses. Some approaches that have 

been considered include model averaging, where a set of plausible models are 

weighted by some measure of model adequacy; as well as creating a global model that 

includes as many relevant features as is computationally feasible and expresses 

structural uncertainties as parameters76. Both of these approaches are difficult and 

imply that we have built a set of models or features and are able to weight or 

parameterize each accordingly. Modelers are often guided by the principle of making a 

model only as complex as necessary, based on the premise that adding detail may 

propagate uncertainty and lead to overfitting, where model results cannot be 
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generalized outside of the exact model setting. However, there is little consensus on 

what qualifies as necessary and what a modeler should do in a specific modeling 

situation. 

There has been a growing trend of case studies exploring the impact of structural 

assumptions on model prediction and policy choices77,78. One analysis used the 

concepts of inference robustness assessment79 to isolate the effects of structural 

choices in a model of HIV vaccination80. Another compared twelve mathematical models 

of HIV to isolate the effects of model structure, parameters and assumptions about the 

underlying epidemic on estimates of intervention impact81. A recent analysis explored 

the impact of structural assumptions about viral latency and reactivation on human 

papillomavirus (HPV) vaccine impact in South Africa82. Consortia of modeling groups 

like CISNET (the Cancer Intervention and Surveillance Modeling Network) have 

conducted comparative modeling, using common inputs and common outputs83,84. 

While these analyses are informative, efforts to expand the volume of work is hampered 

by the high costs and low incentives for undertaking such model comparisons. 

This analysis contributes towards an understanding of the impact of structural 

uncertainty in HPV modeling. I explored a highly uncertain process of HPV natural 

history – naturally-acquired immunity and the meaning of an HPV re-detection – to 

determine in what circumstances the way these mechanisms are modeled influenced 

the ability to fit the model to target data, the assumptions made about disease natural 

history, and the health impact and cost-effectiveness of HPV vaccination policies.  
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3.1.1. HPV Natural History 

HPV is a sexually transmitted infection that can cause high-grade pre-cancerous 

cervical lesions (called cervical intraepithelial neoplasia, CIN, grade 2 or grade 3) that 

can progress to invasive cervical cancer. A large share of HPV infections, especially at 

a young age, are transient. However, while much is known about the natural history of 

HPV, there is a high degree of uncertainty around the biological process that occurs 

after HPV is no longer detectable by available tests, and if this has implications for risk 

of future infection. 

Neutralizing antibodies generated during and after HPV infection are thought to 

be a critical mechanism for preventing, controlling, and eliminating HPV infection85. 

Serological assays, which measure antibodies against HPV, are able to identify 

individuals who mounted an immune response to a previous genotype-specific HPV 

infection and may therefore be protected against subsequent HPV infection. Studies 

have shown that women with the highest seropositive tertile of HPV type-specific 

antibodies have a significantly reduced risk of subsequent infection with the same 

genotype86. These studies suggest that some women may not mount an immune 

response that is sufficient to generate protection against future infection. Some mount 

no immune response at all – only approximately half of women in whom HPV DNA is 

detected generate antibodies86. Additionally, natural immunity may wane over time, 

leading a woman’s risk of re-infection to increase. 

There is also uncertainty around the meaning of a re-detected HPV infection of 

the same type. As assumed in many existing models, it could mean a newly-acquired 
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HPV infection, caused by a new sexual exposure. In contrast, a re-detected HPV 

infection could also mean re-activation of a latent infection that was acquired previously. 

Empirical data suggests that among older women with a newly re-detected HPV 

infection, some had no recent sexual contact that would have led to a new HPV 

infection, providing evidence for some reactivation of a latent infection87,88. 

Despite these uncertain aspects of HPV natural history, analyses typically do not 

account for and quantify the impact of these structural assumptions. Based on a 

systematic review of modeling approaches to evaluate the cost-effectiveness of HPV 

vaccination, out of thirty-four models selected, none assumed that re-detection of a prior 

HPV infection could have been the result of reactivated latent infection.89 Models varied 

in the their assumptions regarding the acquisition and duration of natural immunity.  

3.2. Methods 

In this analysis, I examined structural assumptions around the development of 

natural immunity and plausible interpretation of re-detection of an HPV infection.  

3.3.1. Who gets immunity? 

 The first source of structural uncertainty is around who develops natural 

immunity, which I modeled in three ways. In the first model structure, I assumed that no 

one develops natural immunity, meaning that all women are fully susceptible to future 

infection following HPV clearance. In all other model structures, I assumed women 

develop some form of immunity following clearance of an HPV infection. In the second 

model structure, all women who clear an HPV infection were assumed to acquire the 

same level of natural immunity, meaning that they all face the same future risk reduction 
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of type-specific HPV infection. This structure assumes women are homogenous in their 

immune response following HPV clearance. In the third model structure, I assumed that 

a fraction of women acquire full natural immunity against future type-specific infection. 

Women who do not acquire full immunity have no immunity. This model structure allows 

for heterogeneity among women in their response to HPV. 

3.3.2. Meaning of a re-detected HPV infection 

 The second source of uncertainty is around the meaning of a re-detected HPV 

infection of the same type as a prior infection, which I modeled in two possible ways. In 

the first, when an infection becomes no longer detectable, the woman is assumed to 

have cleared the infection from her system. Therefore, a new infection with the same 

type could only have occurred through a new sexual exposure. In the second model 

structure, when an infection becomes no longer detectable, it is assumed to be latent in 

a woman’s system but below the limits of detection by conventional testing. In this case, 

a re-detected infection of the same type as a prior infection implies re-activation of a 

latent infection.  

This assumption impacts the duration of HPV infection (referred to as the HPV 

timer), which drives the probability of progression to a high-grade cervical lesion. In the 

first model structure, the infection timer starts when the new infection occurs, meaning 

that it is agnostic to any prior infections. In the second model structure, the duration of 

prior infection is counted in the HPV timer. To illustrate the difference, imagine a woman 

acquired an HPV 16 infection at age 15. It cleared spontaneously in a year, as most 

infections do at that age. Then she acquired another HPV 16 infection at age 26. In the 
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first model structure, her risk of clearance, persistence and progression would be based 

on a duration with HPV 16 of less than one year (i.e. she faced the same risk at 26 she 

faced at 15). In the second model structure, I assumed that her re-activated infection at 

age 26 was dormant in her tissue for 10 years. When the infection re-activated, I 

counted the duration of the prior active infection (but not the dormancy period), such 

that a woman would face a higher probability of infection persistence and progression 

with a re-activated infection. 

3.3.3. Generic Model Overview 

I adapted the microsimulation model of type-specific HPV infection and cervical 

cancer I developed and described in Chapter 2. In summary, women face a risk of HPV 

infection with types 16, 18, 31, 33, 45, 52, 58, other high-risk and low-risk. HPV infection 

can clear, persist, or progress to high-grade cervical lesion, dependent upon HPV 

genotype and duration of infection. High-grade lesions can also clear, persist, or 

progress to invasive cervical cancer, dependent upon the associated HPV genotype 

and lesion duration. I assumed women could have multiple HPV infections and CINs 

simultaneously, and that an HPV infection could only cause a single lesion. Once a 

lesion progressed to invasive cervical cancer, I stopped HPV and lesion natural history. 

A detailed description of the model can be found in chapters 1 and 2.  

I simulated a total of 5 million women who are distributed across all ages 

according to the population pyramid, starting in the first year of vaccination for 100 

years, with incoming birth cohorts. In order to generate a representative population in 

year 2014, I ran an open population model for 100 years in the absence of screening or 
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vaccination. At the end of the 100-year burn-in period, I calculated calibration targets. 

For the policy analyses, I took the simulated population in year 100 as the starting 

population and simulated these women for an additional 100 years, with annual 

incoming birth cohorts. See Figure 3.1 for a schematic of the simulation process.  

Figure 3.1. Schematic of simulation process 

 

In contrast to the model in chapters 1 and 2, I did not model HIV natural history. I 

took this element out of the modeling framework to minimize structural and parameter 

uncertainty and to better isolate the structural uncertainty I wanted to interrogate. 

I specified five unique model structures, calibrated the same parameters in each 

model to the same data using the same procedure (Table 3.1). I compared the ability of 

each model structure to fit the target data. Then, I quantified differences in underlying 

disease natural history across the five unique model structures. I compared age of 

causal HPV infection, dwell-time between causal HPV infection and progression to CIN 

and to cancer. I evaluated the health impact and cost-effectiveness of HPV vaccination 
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policy that extends the age of vaccination to women of older ages using all five models 

to assess whether model structure impacted policy conclusions.  

TABLE 3.1. Summary of model structures 
Model Who gets immunity? Duration of HPV infection 
Model 1 No women get immunity Infection timer starts at re-infection 
Model 2 All women get the same degree of immunity Infection timer starts at re-infection 

Model 3 All women get the same degree of immunity Infection timer counts duration of 
prior infection 

Model 4 The fraction of women who get complete immunity, all 
else get none Infection timer starts at re-infection 

Model 5 The fraction of women who get complete immunity, all 
else get none 

Infection timer counts duration of 
prior infection 

 

3.3.4. Calibration 

For all five model structures, I calibrated the same set of uncertain parameters, 

using the same calibration procedure, to the same calibration target data, with the 

exception of the no immunity model, for which I fixed immune degree to zero. See 

Chapter 1 for technical details of calibration procedure. In summary, I used simulated 

annealing to iteratively search the parameter space and weighted-least squares to 

score the model output. 

Calibration parameters included immune degree for HPV 16 and for all other 

HPV types (assumed it was the same from all other genotypes), as well as duration- or 

age- and genotype-specific relative risks of HPV incidence, clearance and progression 

and CIN progression and regression. The relative risks were applied to baseline 

incidence, clearance, progression and regression probabilities69. Calibration targets 

included age-specific HPV prevalence12, type- specific HPV prevalence90, HPV type 

distribution in CIN2 and CIN312 and cancer91, and age-specific cancer incidence92. 
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3.3.5. Vaccination Strategies 

I compared the health impact and cost-effectiveness of vaccine strategies that 

varied the age of vaccination by model structure. I considered bivalent and nonavalent 

vaccination, with 100 percent coverage, and compared no vaccination to five strategies 

that varied the upper age limit of vaccination from 12 to 45 years old (Table 3.3). 

TABLE 3.3. Vaccination Strategies 
Parameter Value 
Vaccine Start Age 9  
Vaccine End Age -12, -26, -35, -45  
Vaccine Type Bivalenta, Nonvalentb 
Vaccine Efficacy (% reduction in risk of future infection)  
 Women with no prior infection 100% 
 Women with latent infection 0% 
Vaccine Duration Lifelong 
a Bivalent vaccine protected against types 16/18. 
b Nonavalent vaccine protected against types 16/18/31/33/45/52/58. 

 
I assumed the vaccine was 100 percent protective against targeted genotypes, 

with no cross-protection against untargeted genotypes. I assumed that the vaccine 

offered no therapeutic benefit for active infection and no efficacy against re-infection for 

women with a latent infection, suggesting vaccination may not protect against re-

activated HPV. 

3.3. Results 
 
3.3.1. Calibration Results 

 
All five model structures were able to fit the target calibration data, meaning that I 

was able to find parameter sets that generated model output that closely resembled 

observed data. I found that Model 2 was able to achieve the “best fit” and Models 3 and 

5 did not perform as well, as measured by both minimum goodness of fit and difference 

between the minimum and maximum goodness of fit across the top 50 best-fitting 

parameter sets (Table 3.2).  
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TABLE 3.2. Summary of Calibration Performance by Model Structure 
 Model 1 Model 2 Model 3 Model 4 Model 5 

Minimum GOF 55.3744 48.1943 85.3272 52.5975 88.5265 
Max - Min 34.6058 33.572 44.6738 27.2384 42.0415 

 

Plotted below are boxplots generated from the top 50-best fitting parameter sets 

of model output for each calibration target and model structure alongside the observed 

data (Figure 3.2). I found that for age-specific cervical cancer incidence calibration 

targets, models 3 and 5 overestimated incidence in 40 to 50-year-old women, and 

underestimated incidence in 50 to 70-year-old women (Figure 3.2). For all other targets, 

the models generated a similar fit to the observed data.
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FIGURE 3.2. Comparison of Calibration Fit Across Model Structures 

  

Observed Data 
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3.3.2. Calibration Parameters 

Given the relatively good fit of the calibration targets for all five model structures, 

I hypothesized that either the calibration targets were statistically independent of the 

structural decisions (for fixed values of the model parameters), or there were 

compensatory changes in other parameters to allow the model to fit. To explore this, I 

compared the calibrated parameter values across model structures. Through visual 

inspection, I could see some differences between model structures in certain model 

parameters, including notably degree/fraction of immunity (Figure 3.3). 

FIGURE 3.3. Selected Calibration Parameter Values by Model Structure 
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3.3.3. Other Model Natural History Outcomes 

I first evaluated the impact of model structure on the underlying disease natural 

history in the absence of screening or vaccination. I quantified and compared the 

implied distribution of age of HPV causal infection for HPV types 16, 18 and 

31/33/45/52/58.  

 For all HPV genotypes, model structure impacted the age of causal HPV 

infection; the effect was most pronounced for HPV 16 and 18 infections, which are 

targeted by the bivalent vaccine currently being used in South Africa (Figures 3.4 and 

3.5). Additionally, most of the variation was driven by the meaning of a re-infection, 

rather than by who gets natural immunity. For HPV 31/33/45/52/58, which represent the 

additional five oncogenic genotypes targeted by the nonavalent vaccine, there was 

almost no difference in the age of causal HPV infection between the model structures 

(Figure 3.6). 

For HPV 16, the genotype attributed to the largest share of cervical cancers, 

there was a six year age difference across the five model structures in the age by which 

50 percent of causal infections occurred and that age difference doubled by the age at 

which 75 percent of causal infections occurred (Figure 3.4). Both model structures that 

assume that re-infections are latent yielded the youngest age by which 50 percent of 

causal infections occurred. The model structure that assumed no women acquired 

immunity after clearing an infection yielded the oldest age of causal HPV 16 infection.   

FIGURE 3.4. Distribution of Age of Causal HPV 16 Infection 
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FIGURE 3.5. Distribution of Age of Causal HPV 18 Infection 

 

FIGURE 3.6. Distribution of Age of Causal HPV 31/33/45/52/58 Infections 
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3.3.4. Policy Outcomes 

 
I found significant differences by model structure in the health impact of vaccine 

strategies that varied the end age of vaccination, driven by differences in the distribution 

of age of causal HPV infection. For the bivalent vaccine, which protects against HPV 

genotypes 16 and 18, Models 1 had the smallest reductions in cervical cancer incidence 

at vaccine end ages below 26 and Model 2 had the largest cervical cancer incidence 

reductions at all vaccine end ages (Figure 3.7). 

For models 3 and 5, the slope of incidence reduction relative to vaccine end age 

was flatter than for the other models, indicating that latency models may predict 

diminishing marginal gains to vaccinating at older ages. 

FIGURE 3.7. Cervical cancer incidence reduction by model structure and age of vaccination 
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 I found that bivalent vaccination up to age 45 was always cost-effective, even at 

the lower-bound empirical estimate of WTP in South Africa ($1,300 per DALY averted)34 

(Table 3.3). Model structure had a small impact on estimates of cost-effectiveness 

(ICERs ranged from $108 - $328), but not enough to impact policy conclusions.  

Table 3.3. ICERs for Bivalent Vaccine Strategies 
 Model 1 Model 2 Model 3 Model 4 Model 5 

9 to 12 Dominated Dominated Dominated Dominated Dominated 
9 to 18 $19 $16 $14 $15 $19 
9 to 26 $22 $28 $27 $24 $36 
9 to 35 $47 $43 $80 $47 $85 
9 to 45 $106 $130 $328 $152 $222 

Notes: Grey shading indicates strategy that is optimal at a WTP of $5,200/DALY averted. Blue shading 
indicates strategy that is optimal at a WTP of $1,300/DALY averted.  

 

For the nonavalent vaccine, at the lower-bound empirical estimate of WTP in 

South Africa ($1,300 per DALY averted)34, vaccinating up to age 45 was cost-effective 
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only for models 1 and 4. For all other models, it was cost-effective to vaccinate women 

up to age 35. At the upper-bound empirical estimate of WTP in South Africa ($5,200 per 

DALY averted)34, vaccinating up to age 45 was cost-effective for all model structures 

(Table 3.4).  

Table 3.4. ICERs for Nonavalent Vaccine Strategies 
 Model 1 Model 2 Model 3 Model 4 Model 5 

9 to 12 Dominated Dominated Dominated Dominated Dominated 
9 to 18 $181 $149 $134 $139 $173 
9 to 26 $232 $293 $251 $240 $329 
9 to 35 $524 $498 $918 $606 $774 
9 to 45 $911 $1,771 $1,728 $1,107 $3,994 

Notes: Grey shading indicates strategy that is optimal at a WTP of $5,200/DALY averted. Blue shading 
indicates strategy that is optimal at a WTP of $1,300/DALY averted.  
 

Consistent with expectations, vaccinating past age 26 was more expensive per 

DALY averted for Models 3 and 5, relative to other model structures, for both the 

bivalent and nonavalent vaccination. I found that vaccination women from 9 to 12 years 

old was dominated by vaccinating up to age 18 for all model structures and for both the 

nonavalent and bivalent vaccine.  I also found that vaccinating resulted in the most 

DALYs averted for Model 3 at every age and for both vaccine types relative to all other 

model structures (Figure 3.8).
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FIGURE 3.8. Efficiency Frontier for Vaccine Strategy by Model Structure 
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3.4. Discussion 

Appropriately characterizing uncertainty is critical in cost-effectiveness analysis. 

While much attention has been paid to parameter uncertainty, other and potentially 

equally or more important sources of uncertainty include the decisions we make when 

constructing a model. In this analysis, I explored the impact of structural uncertainties 

on calibration performance, non-calibrated model natural history parameters, and policy 

conclusions, within the context of HPV and cervical cancer modeling. I looked at 

decisions regarding the acquisition of natural immunity and the meaning of a re-

detected HPV infection. I specified five distinct models that varied along these 

dimensions.  

I found that all five model structures were able to fit the data used for model 

calibration, with minimal differences in performance. I determined that there was 

significant parameter variation in order to fit to the observed data, which yielded 

differences in non-calibrated model natural history outcomes, such as age of causal 

HPV 16 and 18 infection. I explored whether strategies that varied the upper age limit of 

vaccination were impacted by model structure, and found that vaccinating past age 26 

was more expensive per DALY averted for the model structures that interpreted a re-

detected HPV infection as a re-activated latent infection.  

These results imply that the specific structural uncertainties I explored are 

meaningful for the way we have, and potentially should, model HPV. Specifically, 

models that ignore the possibility of HPV latency and re-activation may over-estimate 

the benefit of vaccinating up to older ages. They also demonstrate that decisions 



 79 

regarding who acquires natural immunity and at what level are less influential, so long 

as natural immunity exists in the model.  

This analysis faced several limitations. First, in order to minimize the number of 

model structures, we assumed that the dimensions of uncertainty were mutually 

exclusive, meaning that either a re-detected infection resulted from a latent infection or 

a new infection, but not both (and similarly for who acquires natural immunity). We 

expect reality to fall somewhere in between – some women clear infection, and some 

women have latent infections. Moreover, women may sometimes clear infection and 

other times have latent infections – meaning that there may be variation both within and 

between individuals. While we did not explore this possibility, in a future analysis we 

could parameterize the model structures themselves to allow for and explore the impact 

of combinations of model structures.  

Additionally, the model is static, meaning that agents in the model do not interact 

with each other. Therefore, the effects vaccination and natural immunity are only 

realized at the individual level and herd immunity cannot be captured. This also means 

we cannot distinguish between a new infection that resulted from a sexual contact and 

one that resulted from a re-activated latent infection.  

We also were not able to conduct out of sample model prediction or validation, as 

we used all observed data we had access to for calibration. Out of sample prediction 

would have been a secondary measure of model fit, by comparing model output to 

observed data that were not used in the fitting process.   

3.5. Conclusion 
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In this analysis, I used HPV as a case study to explore the impact of structural 

uncertainty on model fit, natural history outcomes, and cost-effectiveness results. This 

analysis suggested that the specific structural uncertainties I explored are meaningful 

for the way we have, and potentially should, model HPV. While this analysis was 

specific to HPV modeling decisions, it serves as an example of how structural decisions 

matter for modeling in general.  
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Supplemental Material 
 
Chapter 1 Appendix 
 
Calibration Parameter Priors  
 
HPV Incidence Risk Ratio in HIV-Uninfected Womena  
HPV Type Prior Mean Lower Bound Upper Bound Source 

 Non-
Oncogenic  0.272 0 1 

Based on distribution 
of HPV types in 

prevalent infection12 Oncogenic  0.728 0 1 
Abbreviations: HPV, human papillomavirus 
aAnnual probability of new type-specific HPV infection applied to HPV prevalence inputs. 
 
HPV Clearancea in HIV-Uninfected Women  
Infection 
Duration 
(years) 

Prior Mean Lower Bound Upper Bound Source 

<1 0.55 0 1 Pooled genotypes-
specific monthly- risk of 

clearance and 
converted to annual 

probabilities13,37. 

1-2 0.44 0 1 
2-5 0.35 0 1 
5+ 

0.216 
0 1 

Abbreviations: HPV, human papillomavirus 
aAnnual probability of HPV clearance. 
 
HPV Progressiona to CIN2 in HIV-Uninfected Women  
Infection 
Duration 
(years) 

Prior 
Mean 

Lower Bound Upper Bound Source 

Oncogenic      
<1 0.006 0 0.1 Pooled genotypes-

specific monthly- risk of 
progression and 

converted to annual 
probabilities13,37. 

1-2 0.015 0 0.2 
2-5 0.05 0 0.3 
5+ 

0.08 
0 

0.4 
Risk Ratio 
for non-
oncogenic 
types 0.1 0 1 

Author assumption 

Abbreviations: HPV, human papillomavirus; CIN, cervical intraepithelial neoplasia 
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aAnnual probability of progression from HPV to CIN2. Assume HPV progresses to CIN3 
at a 20% higher rate compared to CIN2. 
 
CIN2 Clearancea in HIV-Uninfected Women  
Lesion 
Duration 
(years) 

Prior Mean Lower Bound Upper Bound Source 

1-5 0.459 0 0.8 Pooled genotype-
specific monthly- 
risk of clearance 
and converted to 

annual 
probabilities13,37. 

6-10 0.387 0 0.7 
11-20 0.306 0 0.6 
21-29 0.024 0 0.5 
30-39 0.012 0 0.3 
40-49 0.006 0 0.2 
50+ 0.006 0 0.1 

Risk Ratio 
for non-

oncogenic  1.1 1 2 

Author assumption 

Regress to 
NLb 0.5 

0 1 

Abbreviations: HPV, human papillomavirus; CIN, cervical intraepithelial neoplasia; NL, no 
lesion 
aAnnual probability of CIN2 clearance. Assume constant by age and duration with 
infection. Assume CIN3s regress at 50% of CIN2 regression probabilities. bShare of 
regressed CIN2+ lesions that clear HPV as well (all others persist with HPV). 
 
CIN3 Progressiona to Invasive Cervical Cancer in HIV-Uninfected Women  

Lesion 
Duration 
(years) 

Prior Mean Lower Bound Upper Bound Source 

1-5 0 0 0.1 Pooled genotype-
specific monthly- risk of 

clearance and converted 
to annual 

probabilities13,37 

6-10 0.0016 0 0.2 
11-20 0.0018 0 0.3 
21-29 0.042 0 0.4 
30-39 0.118 0 0.5 
40-49 0.44 0 0.8 
50+ 0.53 0 0.8 

aAnnual probability of CIN3 progression to invasive cervical cancer. We assume CIN2s 
are less cancerous and therefore progress to cancer at 20% of the calibrated CIN3 
progression rates. 
 
Relative Risks in HIV-Infected Womena   

 Prior Mean Lower Bound Upper Bound Source 
NL to HPV 2.6 1 4 
HPV to NL 0.68 0 1 
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HPV to CIN2 2 1 5 Meta-analysis on 
impact of HIV on HPV 

natural history17 
CIN2 to NL 0.67 0 1 
CIN3 to CA 2 1 5 

Abbreviations: HPV, human papillomavirus; CIN, cervical intraepithelial neoplasia; NL, no 
lesion 
aRelative to HIV-uninfected women 
 
Calibration Targets  
 
Prevalence of Oncogenic HPV Infectiona (by age 
and HIV status)4 

Observed Value (95% CI) 

HIV-Infected  
17-24 0.75 (0.7108,0.7892) 
25-29 0.6 (0.5608,0.6392) 
30-34 0.59 (0.5508,0.6292) 
35-39 0.55 (0.5108,0.5892) 
40-44 0.46 (0.4208,0.4992) 
45-49 0.42 (0.3808,0.4592) 
50-54 0.43 (0.3908,0.4692) 
55-59 0.54 (0.5008,0.5792) 
60-65 0.34 (0.3008,0.3792) 
HIV-Uninfected  
17-24 0.6 (0.5608,0.6392) 
25-29 0.38 (0.3408,0.4192) 
30-34 0.25 (0.2108,0.2892) 
35-39 0.2 (0.1608,0.2392) 
40-44 0.19 (0.1508,0.2292) 
45-49 0.18 (0.1408,0.2192) 
50-54 0.13 (0.0908,0.1692) 
55-59 0.17 (0.1308,0.2092) 
60-65 0.14 (0.1008,0.1792) 

Abbreviations: HPV, human papillomavirus 
a Among all women 
 
Prevalence of CIN2+, Oncogenic HPV (by age 
and HIV status)4 

Observed Value (95% CI) 

HIV-Infected  
17-24 0.13 (0.0908,0.1692) 
25-29 0.055 (0.0158,0.0942) 
30-34 0.13 (0.0908,0.1692) 
35-39 0.155 (0.1158,0.1942) 
40-44 0.08 (0.0408,0.1192) 
45-49 0.055 (0.0158,0.0942) 
50-54 0.08 (0.0408,0.1192) 
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55-59 0.075 (0.0358,0.1142) 
60-65 0.08 (0.0408,0.1192) 
HIV-Uninfected  
17-24 0.02 (0.0004,0.0396) 
25-29 0.03 (0.0104,0.0496) 
30-34 0.025 (0.0054,0.0446) 
35-39 0.04 (0.0008,0.0792) 
40-44 0.035 (0.0154,0.0546) 
45-49 0.035 (0.0154,0.0546) 
50-54 0.035 (0.0154,0.0546) 
55-59 0.03 (0.0104,0.0496) 
60-65 0.02 (0.0004,0.0396) 

Abbreviations: CIN, cervical intra-epithelial neoplasia 
 
Cancer Incidence per 100,000 (by age)38 Observed Value (95% CI) 
15-19 0.9 (0.802,0.998) 
20-24 7.6 (1.72,13.48) 
25-29 32 (22.2,41.8) 
30-34 39.3 (29.5,49.1) 
35-39 53.7 (43.9,63.5) 
40-44 55.3 (45.5,65.1) 
45-49 55.7 (45.9,65.5) 
50-54 87.3 (77.5,97.1) 
55-59 118.1 (108.3,127.9) 
60-64 108 (98.2,117.8) 
65-69 131.7 (121.9,141.5) 
70+ 79.9 (70.1,89.7) 

 
 
HPV Type Distribution in CIN4 Observed Value (95% CI) 
CIN2, HIV-Infected  
Oncogenic 0.222 (0.183,0.261) 
Non-oncogenic 0.1 (0.061,0.139) 
CIN2, HIV-Uninfected  
Oncogenic 0.226 (0.187,0.265) 
Non-oncogenic 0.097 (0.058,0.136) 
CIN3, HIV-Infected  
Oncogenic 0.519 (0.450,0.558) 
Non-oncogenic 0.148 (0.109,0.187) 
CIN3, HIV-Uninfected  
Oncogenic 0.403 (0.364,0.442) 
Non-oncogenic 0.111 (0.072,0.150) 
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Calibration Fit Results 
Boxplots represent the distribution of model results and the dashed lines represent the 
mean and 95% confidence interval of the calibration targets. 
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Validation Targets 
 
Age-Standardized Cancer Incidence per 100,000 
(by year)39 

Observed Value (95% CI) 
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2005 22.4 (12.6,32.2) 
2006 23.6 (13.8,33.4) 
2007 22.7 (12.9,32.5) 
2008 23 (13.2,32.8) 
2009 23.3 (13.5,33.1) 
2013 22.06 (12.26,31.86) 

 
Validation Fit Results 
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Computational Cost of Simulation per Cohort Size 
Cohort Size Computational Time (minutes) Memory (GB) 

1 million 5.85 0.37 
2 million 11.7 0.74 
3 million 17.55 1.11 
4 million 24.5 1.52 
5 million 29.25 1.85 
10 million 58.5 3.7 
15 million 87.75 5.55 
20 million 117 7.4 
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Chapter 2 Appendix 
Calibration Parameter Priors  
 

HPV Prevalence by Age and HIV status Observed Value 
Living with HIV  
17-24 0.75 
25-29 0.6 
30-34 0.59 
35-39 0.55 
40-44 0.46 
45-49 0.42 
50-54 0.43 
55-59 0.54 
60-64 0.34 
Living without HIV  
17-24 0.6 
25-29 0.38 
30-34 0.25 
35-39 0.2 
40-44 0.19 
45-49 0.18 
50-54 0.13 
55-59 0.17 
60-64 0.14 

 
HPV Genotype Distribution in CIN2 by HIV status Observed Value 
Living with HIV  
HPV 16 0.2020202 
HPV 18 0.09090909 
HPV 31 0.14141414 
HPV 33 0.1010101 
HPV 45 0.07070707 
HPV 52 0.09090909 
HPV 58 0.22222222 
HPV other high-risk 0.5959596 
Living without HIV  
HPV 16 0.15909091 
HPV 18 0.06818182 
HPV 31 0.06060606 
HPV 33 0.09090909 



 92 

HPV 45 0.0530303 
HPV 52 0.09090909 
HPV 58 0.09848485 
HPV other high-risk 0.33333333 

 
HPV Genotype Distribution in CIN3 by HIV status Observed Value 
Living with HIV  
HPV 16 0.5 
HPV 18 0.14285714 
HPV 31 0.07142857 
HPV 33 0.25 
HPV 45 0.07142857 
HPV 52 0.07142857 
HPV 58 0.17857143 
HPV other high-risk 0.64285714 
Living without HIV  
HPV 16 0.32954545 
HPV 18 0.09090909 
HPV 31 0.10227273 
HPV 33 0.10227273 
HPV 45 0.13636364 
HPV 52 0.03409091 
HPV 58 0.10227273 
HPV other high-risk 0.22727273 

 
HPV Genotype Distribution in Cancer by HIV status Observed Value 
Living with HIV  
HPV 16 0.406 
HPV 18 0.189 
HPV 31 0.019 
HPV 33 0.002 
HPV 45 0.094 
HPV 52 0.007 
HPV 58 0.007 
HPV other high-risk 0.276 
Living without HIV  
HPV 16 0.489 
HPV 18 0.15 
HPV 31 0.011 
HPV 33 0.04 
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HPV 45 0.08 
HPV 52 0.018 
HPV 58 0.008 
HPV other high-risk 0.204 

 
Cancer incidence by age Observed Value 
15-19 0.9 
20-24 7.6 
25-29 32 
30-34 39.3 
35-39 53.7 
40-44 55.3 
45-49 55.7 
50-54 87.3 
55-59 118.1 
60-64 108 
65-69 131.7 
70+ 79.9 

 
Cancer incidence by age in women living with HIV Observed Value 
18-25 145 
26-35 407 
36-45 741 
46+ 352 

Calibration Fit Results  

Boxplots represent the distribution of model results and the dashed lines represent the 
mean and 95% confidence interval of the calibration targets. 
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