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Abstract

The world around us appears unimaginably complex: creases on sheets of paper, the

patterns on animals, not to mention the assembly of life itself. In this thesis, I use com-

putational tools to shed light on the organizing principles of a selection of systems that

appear disordered at first glance. The topics are diverse, as are the tools I used to investi-

gate them. Yet, in all cases, the ultimate aim has been the same: to uncover simple rules/-

patterns about seemingly complex systems using an evolving computational toolbox.

The first chapter looks at how nuclei arrange themselves in the dance of life. In col-

laboration with the Extavour Lab (Harvard Department of Organismic and Evolutionary

Biology (OEB)), we tracked live imaged 3-D datasets of nuclei from the cricket Gryllus bi-

maculatus. We found that nearly every quantifiable aspect of themotion of nuclei can be

explained by the local density that the nuclei experience. From this experimental data,

we developed a computational model that we used to bolster our findings andmake con-

cretepredictionsaboutembryonicdevelopment. Someof thesepredictionswewereable

to experimentally validate through experimental modification of developing embryos.

In thesecondchapter,mycollaboratorsand Icharacterize thegeometricpatterns formed
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by the veins in insect wings. Dividing up the wing into a series of polygonal shapes, we

ask geometric questions about the open spaces formed by the veins. Looking at odonate

wings (dragonflies and damselflies), we propose a simple developmental that is able to

recapitulate the complex patterns observed. Then, we extend the mathematical toolkit

introduced in the first manuscript to a broader selection of insect wings.

In the third chapter, I use machine learning to ask if we can uncover geometric order

in a classically disordered system: crumpled sheets. We find that by augmenting experi-

mental datasets of crumpled mylar with simulated examples from a sister system—rigid

flat folding—weareable toachievenon-trivial predictionson thegeometric arrangement

of ridges and valleys in the experimental data.

In the fourth chapter, I use a variational autoencoder (VAE) to encode and decode 3-D

crystal structures. This project is a first step in a larger goal of using modern deep learn-

ing methods as a way to search the unimaginably large space of potential structures for

possibly (environmentally) useful molecules. The approaches presented in this chapter

could easily be extended tomany other types of 3-D structure, a topic that is still largely

unexplored in the field of generativemodels.

In the fifth chapter, I discuss a few other projects that I worked on in the course of

my PhD. In the first project, I discuss a collaboration where we develop a novel machine

learning architecture with a physically informed inductive bias. We assume the world

is composed of sparsely interacting mechanisms that infrequently interact. We create

a neural network architecture based on this idea and show that it achieves impressive
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prediction results on physical systems and also generalizes better than currentmethods.

In the latter part of the chapter, I discuss two new computational methods relating to

GraphNeural Networks that my collaborators and I developed.

These disparate topics can all be characterized by using data-driven methods and de-

velopingdata-driven techniques to cast a simplifying light on seemingly complex systems.
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0
Introduction

0.1 Background

I entered graduate school froma somewhatwinding path, having doneundergraduate re-

search in protein folding and also in planet formation. These seemingly disjoint projects

where both anchored in requiring relatively large computational power and large com-

puter codes. Rather than commit to a specific discipline, I startedmyPhD inAppliedMath-
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ematics. I was unsure where I would end up, and as I write my thesis, I do not find myself

that surprised to end upwhere I have— specifically, handing in a document that looks like

a shuffle of a few different thesis topics.

While drawn fromdifferent areas of science, all of the projects in this thesis are rooted

in simple questions about extracting order in a complex systems that I have approached

computationally. In the play Arcadia, Tom Stoppard writes:

The unpredictable and the predetermined unfold together tomake everything the

way it is.140

Coaxing the unpredictable from the predetermined, across a wide range of scientific dis-

ciplines, characterizes the essence of this thesis quite well. For example, a few questions

explored are:

1. How do nuclei arrange themselves into a cricket?

2. How do the patterns form on a dragonflywing?

3. How are creases arranged on a crumpled sheet?

4. Canwe encode natural laws to automatically generate novel, physical structures?

From a distance, these questions seemworlds apart. However, I have been pleasantly

surprised how transferable the skills needed to study these seemingly disparate topics

have been. There is enchanting beauty in the underlying structure of the natural world,

once you peel back some of the layers of complexity.

I think that it is hard to know when you are living during a renaissance, but I suspect

that in some time the early 2000s will be viewed as the start of one in the sciences. Ad-

vances in computational power, microscopy,84 imaging, and many other means of data

2



collection havemademany types of research only possible in the last few years. In fact, I

think eachproject in this thesis is uniquely a product of the201X’s. In the last decade, the

quantity and quality of scientific data has increased tremendously. Data can be collected

at previously inaccessible length and time scales, scales that are inherent in many com-

plex systems. Additionally, hundreds of years of research exists and through digitization

efforts is becoming readily available for immediate access. This new era of information

has exciting implications for science, but tools to effectively agglomerate all of the infor-

mation in one place are still being developed. With sudden access to large amounts of

data (both in quantity and quality), many new questions can be asked and sometimes old

questions can be answered. Terabytes of data have become increasingly common, and

with this “data revolution,” new computational tools need to be developed.

This is not always a trivial task because most existing numerical methods scale poorly

with the size of data. Inmany cases, completely newmethods need to be developed espe-

cially as thewealthof information indatasetsquicklyout-pace theamountof information

humans can possible process.84,91,67

To accommodate the new data surplus, many newmethods have been developed that

have been broadly classified under the “machine learning” umbrella (though in practice

these methods vary quite a bit).89 Machine learning methods have become exceedingly

popular in many fields, often replacing or supplementing traditional methods. For exam-

ple, machine learning has achieved state-of-the-art image segmentation results with ar-

chitectures such as SegNet14 and U-Net.119 Recently, a team used neural networks to
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solve theMany-ElectronSchrödinger Equation– anexample of usingmachine learning as

a replacement for an extremely computationally expensive calculation.108 In fact, using

machine learning to assist in computationally hard problems has become quite common.

For example, there has been much recent work using machine learning methods to pre-

dict quantum mechanical properties otherwise solved with Density Functional Theory

(DFT).28,167,128Countless other applications that previously reliedon complexnumerical

calculations suchas rendering3-Dscenes,51 learningprotein structure,3,78 andevenper-

formingsymbolicmathematics.10Aclearallureofmachine learningmethods is that, after

an often lengthy training time, inference is quite fast. That is, complex ray-tracing proce-

dures for rendering frames or stochastic relaxation of protein structure inROSETTA135

can become nearly instantaneous. Machine learning methods have achieved impressive

results in the search for specific particles in large datasets,17,21 automatically segment-

ing 3-D volumes frommicroscopy data,137,27 and classify galaxies in large datasets.45 In

fact, in many cases, machine learningmethods are able to achieve superior performance

to the hand-crafted rules of humans in a fraction of the computation time.52,108

Machine learninghasalsoopenedupentirelynewresearchdirections in thenatural sci-

ences. For example, recent work leveraging the corpus of scientific literature in material

science has had some remarkable results: by usingword2vec96,97 and countless material

science abstracts, Tshitoyan et al use automated approaches to predict future trends in

thefield.150Other groups haveused “generativemodels” to search vase chemical search-

spaces.61,172,82 The use of machine learning tools in the natural sciences has resulted in
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the term “data-driven science”26,18,151,102,76

“Data-driven science” accurately characterizes most of the work I did during my PhD.

During my PhD, I deployed old tools at new scales and also created new tools to analyze

new (and old) datasets. Below, I briefly summarize each of the chapters to follow.

Midway through my first year, through serendipitous circumstances, I began a collab-

orationwith SethDonoughe andDr. Cassandra Extavour (OEB), studying themovement

and division of many nuclei sharing a single cell in a developing cricket, Gryllus bimacula-

tus.46Ourworkon thisproblem isChapter1. In this chapter, I discussourattempt to from

froma∼10 terabyte light-sheetmicroscopy datasets to a usable list of nucleus locations

and identities through time. To accomplish this, we used (and extended) a series of exist-

ing tools,110,113,114,125,137,162 and also developed new ones. This chapter represents the

largest amount of time I devoted to a single project and is in preperation for publication

[as of October, 2019].

Chapter2discussespatterns in insectwings.75,123 I continuedmy interest in imageseg-

mentation and an image segmentation codewas birthed, basedon thePython scikit-fmm

level set library.58 We subsequently deployed this code on a large dataset of odonate

(dragonfly and damselfly) wings. In this chapter, I discuss the work that led to two pa-

pers thatmathematically characterize the domains that insectwings are partitioned into

by veins. The underlying geometry that emerges in nature is an inherently fascinating

topic— sudden structure often appearing in unexpected places.152,41 Dragonfly wings,

admired for their beauty, are a great example. While the decidedly geometric arrange-
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ment of veins looks simple, it turns out to be unexpectedly complex. Existing models fail

to explain theobservedpatterns– specifically thediscrepancybetween theobservedpat-

terns and Voronoi cell like geometries.157,41,152 To study both the observed patterns in

thewings, butalso to try toexplainourfindingsdevelopmentally,wefirst collecteda large

dataset of insect wings from both original and previously published sources.

Using this data, we performed a comprehensive analysis of the observed geometries

and scaling relationships. We also look at how different shapes are arranged throughout

thewing. Basedonourobservations,weproposedadevelopmental sequence that is able

to recapitualte the complex patterns observed.

In followupwork,withProfessor L.Mahadevan and (nowDrs.) Mary Salcedo and Seth

Donoughe, we deployed a suite of geometric analyses on a very large dataset of insect

wings, characterizing geometry at three different levels. We used a much more encom-

passing dataset and looked at a hierarchy of descriptors about wings. We looked at the

geometry of entire wings, the internal venation patterns, and the geometry of domains–

regions of thewings formed by the vein boundaries. For bothmanuscripts, a large part of

the contribution is the release of all the processed data and code.

In Chapter 3, I discuss a different collaboration employing tools from deep learning

to try to uncover patterns in crumpled sheets, a classically disordered system.74 In con-

trast to rigid flat-folding, crumpled sheets donot obey rigid geometric constraints. While

many statistical properties of crumpled sheets have beenwell characterized,65,7 specific

geometric relationships have not been well explored. In this chapter, we explore the ge-
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ometric constraints of crumpled sheets using tools from deep learning. To supplement

our rather small experimental dataset, we found we are able to augment our experimen-

tal data with computer generated data from a simpler, sister system. This allowed us to

drastically increase our amount of training data. Finally, to bring the project full-circle

and say something about physics, wemade in silico perturbationswherewemodified our

augmented data so that it no longer obeyed physical constraints. We show that using

physical accurate flat-folding data improves performance, and that perturbing this data

in physically unrealistic ways deteriorates the performance.

Chapter 4 discusses my work on generative models for 3-D crystal unit cells.76 One

active area of research at the interface of machine learning and the natural sciences has

been in drug discovery– the attempt to automatically search for candidate molecules

with particular properties. For automated drug discovery, 1-D (string) and 2-D (graph)

moleculerepresentationsareused. Forcrystal structures, the3-D informationofmolecules

is of particular importance. Relatively little work has been done in the generation of 3-D

objects164,174,24,2,154 andvery littleonthegenerationof3-Drepresentationsofmolecules.

The work in this chapter presents one way to go about this, through a voxelized density

representation and a variational autoencoder. Using this approach, we train an encoder

to create ameaningful latent space representation of the 3-Dmolecule. A prior distribu-

tion is imposed on the latent space so that random samples can later be reconstructed.

In addition to training the encoder-decoder pair, aU-Net119,104 segmentation network is

trained that segments the resulting decoded output into atoms in space. A very powerful
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application of the project emerged and is discussed in Chapter 4.109

Chapter 5 discusses a series of projects that I was not the primary author on and some

unpublishedwork.66,142,143 Three different papers are included in this chapter, aswell as

someunpublishedwork. In thefirst of thesemanuscripts, I discuss aproject that explores

a different intersection betweenmachine learning and physics than that discussed in the

previous two chapters. We know that the world around us can be thought of as sum of

many interacting systems. While often individual systems may not be inherently com-

plex, many such systems combine to create phenomena that can be very difficult to un-

derstand. Viewed as a whole, most machine learning methods do not inherently favor a

“decomposition” into smaller subsystems, and therefore attempt to “learn” from the en-

tire input. Formanysimple tasks, likeballs colliding ina confinedgeometry,155 thismeans

that baselinemodels are quite poor at predicting future states of such a system. Here,we

createanetworkarchitecture that is forced todivide tasksbetweencompetingnetworks

andnotonlybetter captures theunderlyingdynamicsof the systemsconsidered, but also

generalizes much better to new systems that are from a different distribution from the

training data.66

The next part of the chapter discusses two manuscripts I worked on developing two

newmethods using graph neural networks.173,165 In the first, we present a method to si-

multaneously learn clusters of nodes as well as low-dimensional node embeddings. We

find that by jointly performing these taskswe are able to improve the performancewhen

compared to performing either task alone. In the second manuscript, inspired by Info-
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Max72wedevelop amethod for constructing lowdimensional node representations that

are information rich bymaximizing the mutual information at different hierarchies. This

results in state of the art supervised and semi-supervised prediction tasks on a variety of

different datasets.

0.2 Manuscripts Included in the Thesis

Authors marked with a † contributed equally to the given work. Manuscripts that are

included in this thesis are as follows:

Chapter 1: Morphogenesis

[1] Seth Donoughe†, Jordan Hoffmann†, Taro Nakamura, Chris H. Rycroft, Cassandra G.

Extavour, Blastoderm formation in the cricket proceeds by a local density sensing mechanism.

In prep.

Chapter 2: Geometry of InsectWings

[2] Jordan Hoffmann†, Seth Donoughe†, Kathy Li, Mary K. Salcedo, and Chris H. Rycroft.

A simple developmental model recapitulates complex insect wing venation patterns. PNAS,

2018, 115 (40) 9905-991075

[3] Mary Salcedo†, Jordan Hoffmann†, Seth Donoughe, Lakshminarayanan Mahadevan,
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Size, shape, and structure of insect wingsBiologyOpenPreprint: https://www.biorxiv.org/

content/early/2018/11/26/478768123

Chapter 3: Machine Learning on Crumpled Sheets

[4] JordanHoffmann†, YohaiBar-Sinai†, LisaLee, JovanaAndrejevic, ShrutiMishra, Shmuel

Rubinstein and Chris H. Rycroft. Machine Learning in a data-limited regime: Augmenting ex-
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(4)74
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Chapter 5: Other projects
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0.3 Code from PhD

I’ve tried to put any code that could be useful onmyGitHub page at https://github.com/

hoffmannjordan. Almost every paper I have published should have an associated reposi-

tory, along with a fewmiscellaneous repositories from other projects.
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It’s the wanting to know that makes us matter.

Tom Stoppard, Arcadia

1
Blastoderm formation in the cricket

proceeds by local nucleus crowding

Of the various projects in this thesis, this is the project that I spent themost timeworking

on, and the one that exposed me to the most different fields and ideas. The diversity of

ideas I got to play with during this project had clear influence on the later chapters. The

12



main text of the manuscript corresponding to chapter is in progress, but reproduced in

the most current state below. The figures and the Supplemental Information are nearly

finalized and are also included in this chapter.

1.1 Contributions

This project was a natural symbiosis– Seth and I got along fantastically and this whole

project was great fun. I wrote the code, when needed, and performed most of the me-

chanics of the data analysis. With Seth, we planned what should be done and we split

most of the manual labor tasks between us, such as manual tracking the nuclei.163 Seth

and I both designed the figures, which are shown below. The text was written in collabo-

ration with Seth Donoughe.

1.2 Abstract

Inmost insects, development begins as a syncytium: that is, many nuclei divide andmove

within the single shared cytoplasmof the egg. It is essential for the nuclei to form a single

layer—the blastoderm—which becomes the incipient embryo. A long-standing question

is how these proliferating and migrating nuclei become organized into a single cortical

layerwith thepropernumber, timing, and spatial arrangement. Recentwork showed that

inDrosophilamelanogaster, cytoplasmic flows and synchronousmitotic divisions regulate

the early stages of syncytial blastoderm formation. Herewe show that thismechanism is

13



not conserved across insects, by providing evidence that cricket Gryllus bimaculatus has

an altogether different solution to the problem. We quantify nuclear dynamics during

the syncytial cleavages that lead to blastoderm formation in transgenic cricket embryos

and find that: (1) Cytoplasmic flows are unimportant for nucleusmovement. (2) Division

cycles, nucleus speeds and directions of movement are not synchronized across the em-

bryo, but instead are heterogeneous in space and time, and are correlated with local nu-

clear density. We use these observations to propose a simple geometric model that uses

local nucleus density to determine division timing, speed of movement, and orientation

ofmovement. Themodel accurately predicts nucleus behaviour in unperturbed embryos

and in embryos manipulated to contain regions of different nuclear density. It serves as

a falsifiable hypothesis that is a contrast to the common paradigms of localized polarity

determinants and cell lineage being the primary determinants of early embryonic cell be-

haviour. Finally, we use the model to make precise predictions about initial fate determi-

nation in crickets and the dynamics of blastoderm formation in other insect species.

1.3 Introduction

Proper nucleus positioning within a cell is an essential process cell function in many con-

texts.115,98,68 The task of properly positioning nuclei is further specialized in syncytial

cells—thosewithmultiplenuclei sharing thesamecytoplasm.54,118,20Naturallyoccurring

syncytia includemusclecells, heterokaryotic fungi, plantendosperm,numerous tissues in
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nematodes, andearly cleavage stage invertebrate embryos.86,141,111,132,127Among inver-

tebrates, there have likely beenmultiple independent evolutionary origins of a syncytial

phase of embryonic development;127 here we focus on insects.

When an insect egg is fertilized, the oocyte and sperm pronuclei fuse, forming the zy-

goticnucleus in themiddleofa single, largecell.5,6 Inmost insect taxa, thefirstnucleusun-

dergoesa seriesof superficial cleavages—nucleusdivisionswithout cell cleavage.5,6,83Dur-

ing this period of development, each nucleus is surrounded by a small island of yolk-free

cytoplasm, which is in turn submerged in cytoplasm that is dense with yolk granules. As

the divisions proceed, nuclei move throughout the egg. Some nuclei remain submerged

in the middle of the egg, while most of them travel into the periplasm, a region of yolk-

depleted cytoplasm at the periphery of the egg.5,6 The nuclei in the periplasm form a syn-

cytial blastoderm, a single layer of nuclei surrounding the yolk-rich cytoplasm in themid-

dle.5,6

The sequence of nuclear divisions and movements that generate the insect syncytial

blastoderm are necessary precursors to the patterned and differentiated embryo, and

thus researchers have worked for more than 100 years to understand how nuclear be-

haviorsaregeneratedandcoordinated. Syncytialblastodermformationhasbeenstudied

most closely in the fruitflyDrosophilamelanogaster.55Beginningwith thefirst zygoticdivi-

sion,D.melanogaster nuclei undergo 13 nearly synchronous divisions. For the first 6 divi-

sion cycles (sometimes described as “axial expansion’’), nuclei remain relatively far from

the periplasm as they spread out along the anterior-posterior (A-P) axis.138,170,56 Then,
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during cycles 7 through 9, the nuclei simultaneously move into the periplasm (leaving a

small subset behind as “vitellophages’’).16 Finally, during cycles 10 through13, the nuclei

remain in the periplasm dividing in place, increasing the local nuclear density, and assum-

ing an arrangementwith orderly spacing.138,170,56,48Nucleusmovements during axial ex-

pansion are achieved by a subset of the actin cortex constricting, which in turn causes a

cytoplasmic flow that carries nuclei towards the poles.156,121,44 The movement into the

periplasm does not appear to involve cytoplasmic flows, but it also requires actomyosin

contractility170,57. It is also clear thatmicrotubules (MTs) are essential for forming a syn-

cytial blastoderm,170,57,80,79 in a distinct function from their role in nuclear divisions.70

Namely, there is evidence for local forces acting on nuclei via their astral MTs, including

mutual repulsion forces among nuclei16 and pulling forces on the adjacent cortical actin

network.145

Among superficially cleaving insect taxa, it appears to be universal that nuclei travel to

the periplasm, yet they differ in the timing, speeds, and the paths that they traversewhile

getting there.85,5,6 This raises the question of how the broadly shared cellularmachinery

of the insect egg is able to generate such embryological diversity. There is evidence from

fixed preparations that some of the mechanisms described in flies are might be operat-

ing in more distantly related insects, such as cytoplasmic streaming49 andMT-mediated

pulling.161But inorder toassess suchpossibilities, quantitative, nucleus-leveldataon the

dynamicsofblastodermformationareneeded for speciesother thanD.melanogaster, and

so far they are lacking. Therefore, we set out to investigate an informative comparator:
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Figure 1.1: Relativemovement of nuclei and yolk suggests that nucleimove actively, rather than
being moved along by flowing cytoplasm. A, Time points from a time-lapse of syncytial develop-
ment in the cricketG. bimaculatuswithfluorescently labelednuclei. Embryoswere live-imagedus-
ing a lightsheetmicroscope over ~8 hours of development, capturing nuclear divisions andmove-
ments throughout the syncytial embryo. The nuclei eventually form a single layer, after which
cellularization occurs and the embryonic rudiment forms. Embryos are oriented laterally with
anterior to the left in all micrographs. B, Nuclei were automatically tracked to produce a 3D+T
dataset with full nuclear lineages. All nucleus tracks are displayed for an example embryo, with
the lineage descended from a single nucleus highlighted. Color scale represents time. C, Exam-
ple time points from a time-lapse of a transgenic cricket line with nuclei and lipids fluorescently
marked. In the right column, positions of nuclei are shown as black outlines. Cyan and magenta
arrowheads mark two different yolk granules. As the nucleus moves, the yolk granules remain in
place. D, Correlations between the instantaneousmovement vectors of pairs of non-sister nuclei.
White line indicates median and box indicates interquartile range.

17



the two-spotted field cricketGryllus bimaculatus (order Orthoptera).

G. bimaculatus is a powerful complement to D. melanogaster for the study of syncytial

development. Cricket eggs are larger (about five-fold longer and three-fold wider)95,46

andtheirblastodermformationoccursmoreslowly (14hoursversus2hours).170,99Crick-

ets are sister to the clade containing Diptera, and their eggs and embryonic organiza-

tion differ substantially from the holometabolous species that have been described in

detail.46 Crucially, a transgenic cricket line has been developed that presents a strong

fluorescent contrast between syncytial nuclei and the surrounding cytoplasm during the

entirety of pre-blastoderm development.99 This enabled us to record, track, and analyze

themovements of nuclei during syncytial development, starting frommitotic cycle 2 and

ending at the formation of the blastoderm (see Fig. 1.1).

We used lightsheet microscopy to capture multiview three-dimensional time-lapses

3D + T) of syncytial development, and use a semi-automated approach to reconstruct

divisions and tracks through space.137,162 Then we analyzed nucleus divisions, speeds,

and movement orientations, finding that each of them co-varies predictably with local

nucleus density. We also found that the patterns of movement are more consistent with

activemovement through the cytoplasm, thanwith passivemovement within a cytoplas-

mic flow. Based on our empirical description, and inspired by previously published work

on active nucleus migration in other contexts,62,145,43 we built a simple computational

model of nucleus movement during syncytial development that includes only local inter-

actions among nuclei. This model was able to capture all the main features of cricket
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nucleus division and motion, without any cytoplasmic polarity information. Finally, we

used the model to generate falsifiable hypotheses about fate determination in crickets

and blastoderm formation in other species.

1.4 Methods

Animal culture: Crickets were maintained as previously described.46 We used an estab-

lished nucleus-marked transgenic line of crickets,99 in which the endogenous actin pro-

moter drives expression of the cricketHistone 2B (H2B) protein fused to EGFP (a line ab-

breviated hereafter asAct-H2B-EGFP). To label yolk and nuclei together, we generated a

newtransgenic insertionwithmembrane-tagged tandemmTomato (hereafter: Act-mem-

mTomato) expressed under the control of the cricket actin promoter. The mTomato pro-

teinwas localizedtoyolkandparticularlystrongly in thecytoplasmimmediatelysurround-

ingeach syncytial nucleus (i.e. within the “energid’’). Details of this lineare included in the

Supplemental Information. We crossed Act-mem-mTomato to Act-H2B-EGFP to obtain

mature females with both transgenes. Thenwe crossed them towild-typemales and col-

lected eggs.

Collecting eggs: To collect eggs for live-imaging, females were allowed to lay eggs for

two hours at a time. Eggs were examined on a dissection microscope within five hours

of collection to confirm that they were fertilized, and then mounted for microscopy (as

described below). After imagingwild-type and experimental control embryos, theywere
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placed in a 10 mm diameter plastic petri dish (VWR 25384-342), the bottom of which

had been coveredwith Kimwipes (VWR21905-026)moistenedwith distilledwater. The

dish was placed in an incubator set to 28.5 ◦C, and the embryos continued developing.

Embryoswere checked daily and dead oneswere removed. Only data fromembryos that

completed development and hatchedwere used for subsequent analysis.

Microscopy: For 3D+T imaging, eggs were mounted within five hours of collection in-

dividually in a column of 1% low-melt agarose (Bio-Rad 1613112) in distilled water. Sus-

pended in themountingagarosewere1micrometerdiameter redfluorescentpolystyrene

beads (ThermoFisher F8821) at 0.015% of the stock concentration. Live-imaging was

conductedwith a Zeiss Z.1 Lightsheetmicroscope, with the agarose column immersed in

a bath of distilled water, held at 28.5 ◦C. Embryos were imaged one at a time, positioned

with the A-P axis oriented vertically. For each time point, z-stacks were captured at four

orfiveangles, rotationallydistributedabout the longaxisof theegg. Dataweresimultane-

ously captured in the red and green channels, with 100-200 optical sections per z-stack,

with a time interval of 90 seconds. Among lightsheet datasets, z-step size ranged from 4

to10micrometer, depending on theoverall size of thefield of viewneeded to capture the

egg. For 2D+T imaging of whole embryos, eggsweremounted and in agarosemicrowells

as previously described47 and imaged using epifluorescence in a Zeiss Cell Discoverer

with a 5× objective. Epifluorescence datasets were captured as a z-stack at each time

point. For bothmodes ofmicroscopy, time-lapseswere recorded for 6-10 hours at a time.

Embryo constrictions were conducted with a custom device that is described in the Sup-
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plemental Information. For imaging yolk and nuclei together, embryos were individually

mounted in glass-bottomdishes in a small puddle ofmolten 0.5% low-melt agarose in dis-

tilled water, then covered in distilled water and imaged on a Zeiss 880 confocal micro-

scope at 28.5 ◦C.

Imageprocessingand segmentation: Lightsheetdatasetswereprocessedusing theMulti-

viewReconstructionplug-in forFiji.114,113 Inepiflourescencedatasets, z-sliceswerecom-

bined using the ‘Extended Depth of Focus’ (mode=‘Contrast’) in Zen Blue (Zeiss). Confo-

cal datasets were processed in Fiji to generate maximal intensity projections and mon-

tages. Nucleus tracks were generated with Ilastik137 and manually corrected with Fiji

plug-inMaMuT.162Additionaldetails of imageprocessingare included in theSupplemen-

tal Information.

Measuring and simulating quantitative features of nucleus behavior:Dataanalysiswasper-

formed using custom scripts written in Mathematica and Python. For each script, the

input is a list of nucleus positions in (x, y, z, t) as well as a set of links connecting nuclei

through successive timepoints; these datawere used to calculate nucleus speed, correla-

tion of nucleus movement vectors, local nucleus density, rate of change in number of nu-

clei, movement into open space, andmovement toward the periplasm. See Supplemental

Information for the specifics of these calculations and a granular description of nucleus

movement simulations.

Softwareanddatapresentation: RawdatawerecapturedwithZen (Zeiss), andprocessed

inFiji125 and Ilastik137 asdescribedabove. Figureswereassembledwith Illustrator (Adobe).
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1.5 Results

G. bimaculatus syncytial blastoderm formation occurs over ~8 hours of development, fol-

lowed by cellularization and coalescence of the embryonic rudiment (Fig. 1.1A).99,46We

recordedblastodermformation in totowith3D+T lightsheetmicroscopy, andthentracked

the movements and divisions of nuclei as they expanded throughout the egg. This en-

abled us to reconstruct lineages (Fig. 1.1B) andquantify nucleus behaviors. Each of those

behaviorswaspresent ineach lightsheetdataset thatweanalyzed. Tobolster thenumber

of observations for each trend presented, we additionally use 64 confirmatory epifluo-

rescence3D+Tdatasets. Wewere unable to directly address 3Dphenomenausing these

data, but we were able to estimate density, compute speed, and estimate the number of

nuclei present (Section 1.4 in the Supplemental Information describes the datasets and

sample sizes in more detail). The patterns of nuclear behavior we observed in G. bimac-

ulatus were qualitatively similar to the data previously published on other orthopteran

speciesusingfixedpreparations, includingSchistocercagregariaandLocustamigratoria.120,42,73

For example, some nuclei move into the periplasm before they have migrated through-

outmost of the anterior-posterior axis. Moreover, nucleusmovement to the surface pro-

ceeds unevenly, with some going early and others going later (Fig. 1.1A).120,42,73
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1.5.1 Nucleusmovements are not consistent with cytoplasmic flow

Using a transgenic construct that labeled lipids in the embryo, we visualized yolk and nu-

cleusmovements together (Fig. 1.1C), finding that yolk and adjacent nuclei donot tend to

move together, even when they are quite close in space. In the example time series, the

nucleus moves through the frame of reference that the nucleus moves (Fig. 1.1C, middle

column; outlined in right column). However, the surrounding yolk (arrowheads) does not

tmove along with the nucleus. These observations are inconsistent with a bulk cytoplas-

mic flow that moves yolk and nuclei together. To further test this finding, we computed

pairwise correlations in movement vectors between each possible pair of nuclei during

blastoderm formation. If nuclei where embedded in an underlying flow,wewould expect

nearby nuclei to move more similarly to one another, as compared to nuclei that are far-

ther apart. This was not the case. Irrespective of separation distance, nuclei exhibited a

random pattern of pairwise correlations ce (Fig. Fig. 1.1D).

1.5.2 Mitotic cycle duration is positively correlated with local nucleus density

Nextwe turned tonuclear divisionpatterns. Using a subset of thedata inwhichwemanu-

ally scoreddivisions,wefind thatover time, thedivisioncycle increasesandsynchronicity

decayswithina fewdivisioncycles (Fig.1.3A).Foranexample lineage,wefindthatearlydi-

vision cycles are approximately 50minutes long (from the 4 nucleus stage). However, af-

ter four division cycles, the division time has increased bymore than two-fold (Fig. 1.3A).
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With amuch larger set of automatically tracked nuclei, we used percent change in nucleus

number as a proxy for division rate. This showed that as preblastodermdevelopment pro-

gressed, overall synchronicity diminished. We wondered whether this could be caused

by variation in the duration of the cell cycle across the embryo (Fig. 1.3B). To measure

whether the division rates are slowing down uniformly throughout the embryo, we plot-

ted the relationship between the local division ratewith the local nucleus density. For each

nucleus, we computed the local density at a given time and then also how long in the fu-

ture this density doubles1. We found that there is a very clear trend of doubling time

with local density that is consistent across many different local densities, at many differ-

ent points in developmental time (Fig.1.3C-E). These results are somewhat reminiscent

of late-blastoderm data from D. melanogaster, wherein divisions 10 through 13 exhibit

lengthening cell cycle durations as nucleus density also increases.56,81During this period

of development the syncytial nuclei detect overall density via the nucleo-cytoplasmic ra-

tio of the embryo, which in turn determines the number of cell cycles that occur before

cellularization.50 InD.melanogaster, it appears that nuclei aremainly sensitive to nucleus

density late in blastoderm formation. The present data raise the possibility that in G. bi-

maculatus, by contrast, nuclei are able to detect local density throughout the entirety of

blastoderm formation.

1To account for noise, we actually used a factor of 1.75, rather than 2. This was done because
later in development it is very unlikely that we have false positive nucleus detections and false
negatives are far more likely.

24



Figure 1.2: Nuclei oscillate between two movement phases in each division cycle. A, Nucleus
position along anterior-posterior axis, plotted over 200 minutes of syncytial development. Each
point represents a single nucleus at a single time point, colored according to its instantaneous
speed. The fastest nuclei are shown in red and the slowest in blue. The first zygotic nuclear di-
vision occurs ~60% from the anterior end of the egg. Imaging began after the second nuclear di-
vision cycle. Nuclei undergo roughly synchronous speed oscillations, visible as alternating bands
of blue and red. B, Schematic of nuclei considered in three equal sized bins: anterior third, mid-
dle third, and posterior third (turquoise, dark blue, and purple, respectively). C, Compared to the
anterior and posterior poles, speed oscillations dissipate earliest in the middle third of the em-
bryo,where local nucleardensity ishighest. D-E,Nuclei arebinned into threegroups, according to
their local density: lowest quartile in green, first to third quartile in yellow, highest quartile in red.
Center line representsmedian and shaded regions represent 40th to 60th percentile. D, Nucleus
speed traces after division. Eachdivision occurswithin 3minutes; plotted speeds begin after divi-
sion has concluded and nuclei have re-formed. Nuclei move relatively quickly after a division and
then slow down. This biphasic pattern is most pronounced for low density nuclei. E, Autocorrela-
tion of movement, calculated as the correlation of nucleus movement vector from one 3-minute
interval to the subsequent 3-minute interval. F-G, The relationship between a nucleus’s current
speed and how crowded its local environment is; the x-axis represents local density, calculated as
number of neighbors withing a 150-micron radius (see SI for details). Data are shown from two
periods of time post-division: t=3 to t=13 minutes (F) and t=33 to t=39 minutes (G). H-I, Nuclei
far from the surface of the egg tend to move into nearby open space (see SI for details), and this
tendency is strongest among the fastestmoving nuclei (H). By contrast, nuclei near the periplasm
do not tend tomove into nearby open space (I).
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1.5.3 Divisions

Figure 1.3: Divisions of an embryo. A, Nucleus speed traces after division. Nuclei are binned
into three equal-sized bins, according to their local density: lowest third in green, middle third
in orange, highest third in purple. Center line represents median and shaded regions represent
interquartile range. B-C, Plots showing the relationship between a nucleus’s current speed, and
how crowded its local environment is. At 7.5 minutes B and 34.5 minutes C post-division, each
nucleus’s speed is plotted against its local density. We find that there is a negative relationship
between speed and density, but only during the 15 minutes following each division. D, Nucleus
positionalonganterior-posterior axis is plotted through time forblastodermformationofoneem-
bryo. Points are colored according to instantaneous speed, smoothed over three time steps. The
fastest nuclei are red and the slowest are blue. The first zygotic nucleus division occurs ∼40%
from the posterior end of the egg, highlighted by a black arrow in panel E. E, Percent change to
nucleus number over time. Nearly synchronous nucleus division cycles appear as peaks. F, Nu-
clei also undergo synchronous speed oscillations, moving quickly after divisions and then slowing
down. These oscillations dissipate at different times across the anterior-posterior axis of the em-
bryo. Nuclei are separated into three equal sized bins: anterior third, middle third, and posterior
third (turquoise, orange, and purple, respectively). Colored arrowheads indicate the timepoint at
which each third of the nuclei ceased synchronous speed oscillations.
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Figure 1.4: A simple model based on local spatial crowding is able to recapitulate most features
of cricket syncytial development. A-D, Schematic representation of a computational method for
simulating syncytial development. Nucleusmovements are simulated ina3Degg, but it is schema-
tizedhere in2D. SeeMethods section for details on its implementation. Diagramsarenot to scale.
A, The nucleus (orange) moves due to a pull from a shell (blue) that grows from an origin point on
the nucleus (green). Each voxel within the shell pulls on the nucleus. The nucleus causes a steric
effect on the shape of the shell, and as a consequence, the shell is asymmetric and there is a net
pull on the nucleus. B, The egg shell occludes the growth of the shell, which results in a smaller
shell. C, The shell’s origin divides into two. The daughter origins are assigned random positions
opposite one another on the surface of the nucleus. Then the nucleus divides, with each daughter
nucleus inheriting a single origin, which in turn grows a new separate shell. D, Nuclei continue to
divide and spread. As local nuclear density increases, shells are unable to grow as large. As a con-
sequence, nucleus speeddecreases. E, 3Dpathsof simulated syncytial development,withnucleus
positions tracked over time. F, G, Side-by-side comparisons of example time points, matched by
nucleus number. H, Whole-embryo nucleus speeds from a simulated and real embryo. The x-axis
represents the number of nuclei present, plotted on a log scale. In this panel, as well as panels J
andK, anexample real embryo is shown ingray, anda simulatedembryo inmagenta. I, Nuclei from
simulated embryos are binned into three groups, according to their local density: lowest quartile
ingreen, first to thirdquartile inyellow, highestquartile in red. Plot showsnucleus speed tracesaf-
ter division. Center line representsmedian and shaded regions represent 25th to 75th percentiles
of speeds. Compare to Figure 3D. J, Autocorrelation of movement, calculated as the correlation
of nucleus movement vector from one 3-minute interval to the subsequent 3-minute interval. K,
Tendency to move into nearby open space, calculated as the correlation of an nucleus’s instanta-
neousmovement vectorwith the vector towards the centroid of its Voronoi cell157 (seeMethods
for details).
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1.5.4 Nucleus speed is biphasic and negatively associated with density

To determine whether density is associated with other features of nucleus behavior, we

computed time-since-last-division, speed, location in space, proximity to the periplasm,

and tendency to move into space for each nucleus at each time point. We found that all

of these features vary course of blastoderm formation. First, we plotted position along

the A-P axis and instantaneous speed of all nuclei throughout the first 200 minutes of

blastoderm formation (Fig. 1.2A). Nucleus speed, indicated by the colors of dots, oscil-

lated from fast to slow. As nuclear density increased—shown as a higher density of dots

near one another, at the same time—peak speeds reduced and periodicity becamemuch

less apparent (Fig. 1.2A). We divided all nuclei at each time point into three equal sized

terciles on the basis of nucleus location (anterior, middle, and posterior; Fig. 1.2B).When

we plotted speed over time for each tercile, it could be observed that while there was os-

cillatory speeds for all three terciles, itwas less pronounced for themiddle tercile and the

oscillations continued longer in the anterior and posterior terciles(Fig. 1.2C).

To describe the oscillatory behavior in more detail, we used the nuclear tracks to plot

speed and autocorrelation over time, with ‘time’ re-zeroed to begin at the most recent

division for each nucleus. In doing so, wee found that nucleus speed oscillated between

‘fast’ and ‘slow’ phases, labeled Phase A and Phase B. Immediately after a division, each

daughter moves quite quickly for between 20 and 28 minutes before nearly ceasing to

move. At this point, the nucleus does not move for between 10 and 20 minutes before
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again dividing and repeating this process (Fig. 1.2D). This suggests that there are twodis-

tinctphasesofmotion thatmustbeconsidered.This patternexplains thewavesof global

speed, highlighted in Fig. 1.2C,where the embryo has been separated into terciles, based

on relative position along theA-P axis of the embryo. The central, dark blue region of the

embryo has the fastest decay in speed (Fig. 1.2C), which is the region that will have the

highest density of nuclei.

For each nucleus, we computed the time-since-division aswell as its local density. Sep-

arating all of the data by density, we find that during the Phase A, nuclei at the lowest

density move substantially faster than those at the highest density (Fig. 1.2D, F, G). Dur-

ing the Phase B, there does not appear to be a discernible difference. We also note that

autocorrelation of movement is slightly higher during Phase A than Phase B (Fig. 1.2E).

1.5.5 Nuclei tend tomove into unoccupied space in the egg

Weobserved that oncenuclei reach theperiplasm, they cease tomove through space like

other nuclei. Theymove freely within the periplasm, but they do not leave the periplasm

itself.Therefore we binned nuclei into those that were in the periplasm and those that

were not, and for each subset we calculated the tendency of nuclei to move into nearby

unoccupied space. For each nucleus, we can compute the direction that is into the most

open space relative to all the other nuclei present (see methodological details in Supple-

mental Information). We find that Phase A nuclei that are far from the periplasm have

29



a very high correlation between their movement vector and the vector most into open

space (Fig. 1.2H).Once nuclei have reached the periplasm, there is no clear signal that nu-

clei are moving into open space, during Phase A or Phase B (Fig. 1.2I). (Note: for Phase B

nuclei late in development, we cannot discount the possibility that there is a subtle ten-

dency to move into open space, due to the higher density of nuclei and the associated

uncertainty in preciselymeasuringmovement vectors, that a subtle signal is swampedby

other factors).

1.5.6 Building a simulation framework of syncytial development

To summarize the previous two sections: , nuclei alternate between two broadly distinct

behaviors (Fig. 1.2C-I). PhaseA is aperiodafter eachdivisionwhenagivennucleusmoves

through the syncytium. It is followed by Phase B, when the nucleus largely stays in place.

With the goal of understanding how nuclei spread out throughout the cytoplasm, we fo-

cused on Phase A. During this phase, nuclei exhibit three conspicuous movement traits:

theymovewithahighdegreeofauto-correlationover time, ataspeedthat isanti-correlated

with the local density of nuclei, in a direction that is preferentially oriented into open

space.

In the present study, we askedwhether these three traits could be generated by differ-

ent modes of preblastoderm nucleusmovement, specifically:

1. A precise, stereotyped sequence of oriented nuclear divisions

2. Cytoplasmic flows that move nuclei
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3. Whole-embryomorphogengradient(s) thatspecifynucleusspeed inaconcentration-

dependent—–and thus position-dependent—–manner

4. Brownianmotion of nuclei

5. Mutual repulsion of nuclei

6. A local, asymmetric, active pulling force on each nucleus

These modes of movement are not mutually exclusive. Based on the empirical data

presented above, we concluded that (1) through (4) are not important contributors to

the three movement traits listed above. We also used a simplified modeling approach to

assess theplausibilityof (5) and (6). Thiswasaneffort togeneratequantitative, falsifiable

hypotheses, rather than an attempt to explain all physical phenomena that are occurring

during preblastoderm formation. Therefore,weused aminimal set of assumptions about

how early cricket development proceeds. At the time of this writing, work on (5) remains

in progress. Therefore, belowwewill only describe themodeling work to assess (6).

Thismodel is intended to represent a class of hypotheses that aremolecularly specific

in proposing someability of nuclei to sense their neighbors andget pulled asymmetrically

into open space. We propose a simple geometric concept that does both at the same

time. The model is based on mutually exclusive shells around nuclei that can ‘pull’ on

the cytoplasm/yolk/cortical actin network surrounding them (see Fig. 1.4A-D). We fit a

force associatedwith the pull, calibrated on the empirical speed distribution and a radius

based on measured density dependencies, and then directly implemented the division

and movement-to-periplasm biases that were observed in the empirical data. We found
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that ourmodelwas already able to capture all threePhaseAnuclear behaviors at onces—

namely autocorrelation ofmovement, density-dependent speed, and themovement into

open space.

Morespecifically,we imbuedeachshellwithanability topullonthecytoplasmit touches

witha small tugateachvoxelon its surface, the relativemagnitudeofwhich isdetermined

by the constantP. Thenetmovement of a nucleus is thus determinedby the sumof all the

pulling vectors across its shell’s surface. Each tug on the point cloud causes a torque on

the nucleus; this means that a shell with certain shapes can cause an entire nucleus to

rotate. During every nuclear cycle, a shell begins in an “on state,” during which it gener-

atesmovement, and an “off state,” duringwhich the shell is absent,with thenucleimoving

only due to simulated Brownian motion. Each nucleus stays in the “on state” for T min-

utes before switching back. Rmax, P, and Twere tuned to match the speed oscillations in

the previously described empirical data (see the Methods section for details). We like-

wise incorporated a density-dependent nuclear cycle, with the period of time in the “off

state” determined by a linear fit to local nuclear density in the empirical data. Lastly, we

found that our model of local interactions in a homogenous cytoplasm did not to recapit-

ulate the formation of a syncytial blastoderm, as therewas no forcemoving nuclei to the

periplasm. Therefore,weaddeda slight attraction toward the surfaceof theegg, themag-

nitudeofwhichwas determinedby the constant S.We tuned S tomatch the rate atwhich

nuclei move towards the surface of the egg in empirical data (full details can be found in

the Supplemental Information).
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1.5.7 Simulation results

We did not explicitly encode density-dependent speeds, autocorrelation of movement,

or an attraction to open space, yet all of these patterns emerged in the simulated nucleus

movements. We also did not incorporate viscosity of the cytoplasm, fluid flows, pushing

forces of any kind, or anymaternally provided signals in the yolk (spatially heterogenous

orotherwise). Still the themodel successfully recapitulated several quantitative features

that wemeasure of the true data.

For instance, throughout syncytial blastodermformation, thedistributionof simulated

nuclei along theA-P axismatches that of real embryos. We show a single time point (468

minutes from the start) from a real dataset (green) plotted on top of a series of simulated

embryos (Fig. XXX2). Simulated divisions and Brownian motion are stochastic, so each

simulated embryo is unique. Simulated speed oscillations are likewise similar to empiri-

cal oscillations (Fig. 1.4H). Themodel is less effective inmatching themovement of nuclei

into the periplasm. Simulated nuclei move toward the surface, but they never become as

close to the surface as is observed in real embryos, largely because of steric effects lim-

iting the extent to which the nuclei can be pulled towards the surface. It is possible that

nuclei reaching the periplasm in real embryos become physically anchored or otherwise

undergo a change that alters their movement tendencies. Based on the results of these

simulations, we concluded that (6) is a compelling fit to the empirical data of nucleus be-

2This figure is being updated based on the newmodel geometry.
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havior. Thus,wehypothesize that there is a local, asymmetric, activepulling forceoneach

nucleus.

Our model of asymmetric pulling shells was able to capture the complex motions that

are observed empirically in wild-type embyros. Next, we simulated what would happen

if the embryo were to be physically manipulated. We simulated the development of an

embryowhose eggshell has been radially squeezed down adding a geometric bottleneck

in the middle of the egg. We found that the change in geometry specifically affected the

patternofnucleusmovements in silico. On thewhole, nuclei in simulatedconstrictedeggs

slow down earlier, and nuclei that pass through the constricted region suddenly acceler-

ate, moving faster than those that do not pass through the constriction.
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Figure 1.5: Constricting developing embryos. A, Three images showing different stages of devel-
opment of a constricted embryo. In the final stage, nuclei havemoved through the constriction. B,
By measuring the speed of nuclei in each side of the constriction, we find that nuclei that escape
through the small constriction move at the same speed as those in the anterior side much earlier
in time. Each trace represents a different embryo. C, Based on the number of nuclei and the ge-
ometry of each region, we compute the average density and the 25th-75th percentiles of density.
Each trace represents a different embryo. D, For each nucleus, we compute the density and the
speed. We show that the speed-density relationship is the same on both sides of the constriction.
E, Tracks for three different windows of development. F, For three different embryos we show
themean speed as a function of time. Once nuclei get through the barrier theymovemuch faster,
shown in pink.
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Figure 1.6: Nuclear fate. A, On the left, we show a rendering of a snapshot from the model. The
embryonic region is outlined inwhite. Each shell has been colored bywhat fraction of the descen-
dants end up in the embryonic region. The more blue shells are entirely fate determined to be
“extra-embryonic” and the more red nuclei have a higher fraction of their nuclei end up as “em-
bryonic”. On the rightwe show a heat map showing, through time (x-axis) what fraction of nuclei
havehad their fate determined (y-axis). The image is the result of 100different randomruns from
the model. B, Relative to the long axis of the embryo, we compute the expected time before coa-
lescence where a nucleus would need to begin moving towards the embryonic region. The calcu-
lation is based on the observed density profiles as a function of (x, t) and the 95th percentile of
speed as a function of density.

1.5.8 Constricting embryos

Next, we put this prediction to the test empirically by experimentally manipulating em-

bryos. We did so by developing a device to physically constrict an egg from the outside

bywrapping ahumanhair around it, while holding in place inwater on a glass bottomdish

for time-lapsemicroscopy, (see Supplemental Information for detailedmethods). To test

the ingredients of the model—and the central hypothesis that density is key to most as-
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Figure 1.7: Running the model in a diversity of egg shapes. A, Using the model, we leave all pa-
rameters the same and only change the external geometry. In all cases, we show a single snap
showfromthemodel,withshells coloredby instantaneousspeed. Warmercolors represent faster
speeds. B, Using themodel, we leave all parameters the same and only change the external geom-
etry to match that of Schistocerca gregaria. On the left, we show a series of panels approximated
fromHo, et al. showing the locationofnuclei at three timepoints. On the right,weshowourmodel
with shells colored by speed. Note that a very high density region forms before nuclei reach the
far end of the embryo.

Figure 1.8: Simulated late stage of development. Using the model, we show a single time point
which each “shell” rendered. In each shell, the pulling rods are faintly shown.
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Figure 1.9: Simulated late stage of development. Similar to Fig. 1.8, we show a rendering of a late
developmental stage in an ellipsoidal geometry.

Figure 1.10: Developmentalmodel ofGryllus. Eight different snapshots though time of the devel-
opmental model. In each snapshot, the shells are shown in different colors.

38



pects ofmotion—we constricted the anterior end of the eggs. By pinching a region down

to about one-third the radius of the embryo, we were able to alter the local and global

patterns of nucleus density over time, and then see if the effects match those predicted

by themodel. Because nucleus density changes are occurring at a time and place that are

different from an unconstricted egg, we were able to decouple speed, autocorrelation,

and space-seeking behavior from possible unobserved cytoplasmic determinants. .

By constricting embryos and altering the local density of each nucleus, we found that

nuclei still obeyed the same density-dependent relationships, even when the overall vol-

ume available to the nuclei is smaller (see Fig. 1.5A). As nuclei divided and move around

in the posterior region, the total space available to themwas compressed, which caused

individual nuclei to experience higher densities earlier in development than they would

otherwise (Fig. 1.5C). We found that nuclei slow down as we would expect if density de-

termined speed, not location or developmental time (Fig. 1.5B, D). In some cases, nuclei

were able to get through the constricted bottleneck region and were then exposed to

the constricted anterior region (see example tracks in Fig. 1.5E). In these cases, the pio-

neer nuclei behaved as one would expect based on their density and not their develop-

mental time. Specifically, we found that nuclei that move through the bottleneck nearly

two hours after axial expansion begins move at the same speed as those much earlier in

time (Fig. 1.5)F).
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1.5.9 Using themodel tomake specific hypotheses

Withthesimulationable torecapitulate themovementanddivision featuresof thecricket

embryo, we were able to use it address an open question: when are nuclei fated to be-

come either embryonic or extraembryonic tissue. InG. bimaculatus a relatively small frac-

tion of nuclei end up in the embryonic region when coalescence occurs while the rest

become extraembryonic tissue.99 We showed that the mechanics and geometry of the

embryo dramatically restrict fate outcomes of nuclei at early stages of preblastoderm

development. In fact, we find that the first few divisions almost entirely determine the

embryonic versus extraembryonic fate of all nuclei (see Fig. 1.6).

One approach to studying cell fate decisions is to track individual nuclei (or cells) from

a time point before a differentiation decision until a time point after the cell fate decision

has been visibly (and obviously) made. The can require extremely high accuracy in track

reconstruction. For example, for tracking nucleus fates from the beginning of cricket

development through the first known cell fate decision (embryonic vs. extraembryonic

fate), we would need to have track link accuracy higher than 99%. With 95% accuracy, a

nucleus is expected to have typical track length 13 time point. Even with 99% accuracy,

tracks lengths would be less than 75 time points—hardly two division cycles.Thus, from

our data, it is difficult to track individual nuclei for the time needed to answer questions

pertaining to nuclear fate. However, using our validated model for in silico nucleus be-

havior, we are able to make predictions about fate determination without perfect track
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reconstructions. We defined adefinined an region of the periplasmwhere the embryonic

rudiment would form. Then, we could ask for any given nucleus what fraction of its de-

scendants end up in the predefined region at a later time point. Over time, the fraction

of nuclei in each region for a given nucleus approaches either (0,1) or (1,0). This is shown

in Fig. 1.6A.We can also address the question of fate from a different angle, based on ob-

served speeds and densities. Based on the data, we estimated how early in development

fate determining decisions could possibly be made. We asked, based on our data, at any

given time point in development, what is the furthest away from the embryonic region

that a nuclei can be such that, traveling optimally, it would be able tomake it into the em-

bryo? We do this by fitting the 95th percentile of speed as a function of density, and by

fitting density as a function of location (approximated using the x-axis of the re-oriented

embryo) and time. Weusemaximum speed rather than average speed to ensurewe have

a very conservative estimate. Based on the results in Fig. 1.6B, we find strong evidence

that early divisions matter very much in fate determination. Once the density of nuclei

becomes high enough, nuclei move so slowly that their descendants could never possibly

make it in to theembryonic rudiment. In the empirical data,wedonot ever seedistant nu-

cleimoving atypically quickly towards the zone of embryonic coalescence, bolstering our

hypothesis that early divisions are particularly formative for subsequent fate outcomes.

Using the model, it is possible for us to alter the geometry of the egg, leaving all other

parameters the same as inG. bimaculatus. Examples are shown in Fig. 1.7. While we have

not yet performed quantitative analysis comparing results to other species, we do com-
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pare our results qualitatively to development in Schistocerca gregaria, described byHo, et

al (1997).73 Schistocerca gregaria is a grasshopper that lays eggs that are nearly 5× longer

thanG.bimaculatuseggs.73Additionally, inSchistocerca, thefirstnucleus is divisionoccurs

more asymmetrically along the A-P axis than that ofG. bimaculatus. The result is that em-

bryonic coalescencebeginsatoneendof theembryobeforenuclei haveeven reached the

other end.73 We found that our model, with only the geometry changed, accurately cap-

tures the gestalt of the grasshopper blastoderm formation (see Fig. 1.7). We also show

that, evenwithout an identifiedmolecular basis for the nucleus-moving forces in the em-

bryo, our simulation framework can be used to better understand fate determination in

crickets and to explain patterns of blastoderm formation in other insect species.

1.6 Discussion

Inusing3D+Timagingandquantitativecharacterizationofnucleusmovements,wefound

that preblastoderm development of crickets has several striking difference from that of

fruit flies. In cricket, at a given time, the duration of division cycles vary in space; nucleus

speeds are strongly associated with local density; and nuclei move with a high degree of

autocorrelation in tonearbyunoccupied space. Wepropose that all of thesepatterns can

bemost readily explained by positing an ability for each nucleus to sense the geometry of

their neighbors and then divide andmove accordingly by being pulled into adjacent open

space. explainedmost convincingly
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Although itwas intentionallybuilt as a simplification,we foundourmodelhelpful in illu-

minating the empirical cricket data. In real embryos, we observed that nucleus speed,mi-

toticcycleduration, andmovementorientationareall associatedwithgeometric features—

i.e. the density and placement—of neighboring nuclei. The “shell” serves as a generalized

representation of an unknownmechanism by which a nucleus can sense the positions of

neighbors. Large shells result in a higher speed in the simulation, and the largest shells

form on the frontiers. Likewise, unimpeded nuclei do tend to move faster in the embryo,

with the fastest nuclei moving on the frontiers, towards the poles. We interpret these re-

sults as evidence that syncytial nuclei move via active migration through the cytoplasm.

Theremay be cytoplasmic flows and/or spatially heterogenous cytoplasmic signals in the

eggaswell, but neitherof them is required inorder tobuild amodel that broadly captures

the dynamics of syncytial nucleusmovements in the cricket embryo.

Our model for the neighbor-sensing mechanism and nucleus-moving force was inten-

tionally leftmolecularlyabstract. Theshell-basedmodelconforms, qualitatively, tobetter-

studiedsystemsofnucleuspositioning, inD.melanogasterandC.elegans, suchananucleus-

associatedMTaster interactingwithaperipheralactomyosincortexofminus-enddirected

motors.62,145,43 However, other MT-independent molecular mechanisms could also gen-

erate an asymmetric active force: locally diffused and degraded gradients coupled to dy-

namic and asymmetric remodeling of the local cytoskeleton, or asymmetric contractile

interactions with a largely uniformly actomyosin network at the periphery of each en-

ergid, long range forces exerted by MTs in the cytoplasmic builk independent of asters,
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or amolecular mechanism that we have not observed.

Ourresults showthatcytoplasmicflowsasdramaticas thoseobserved inD.melanogaster

are not present in G. bimaculatus (see Fig.1.1C, D). It is conceivable that there are cryp-

tic flows in the middle of the cytoplasm, a small portion of the volume of the egg where

our ability to detect and track nuclei was weakest. However, according to the model in-

troduced in Deneke et al 2019,44 it should not be possible to only have flows in the mid-

dle without a corresponding counterflow in the cortex. In fact, there is a subtle elasticity

in the cytoplasm that is actually detectable in our data: immediately after Phase A nu-

clei move quickly towards the egg’s poles, there is a very slight tendency for the nuclei

drift slightly backwards away from the direction of their fast movement. Although it is

too small to account for the large-scalemotions of nuclei we documented, it nonetheless

demonstrates that our simplified geometric model without fluid flow is missing an ingre-

dient thatwould be helpful for capturing the patterns preblastodermdevelopmentmore

accurately.

Recentworkshowedthat syncytial insecteggshaveawiderangeof shapesandsizes.34

Inoursimulations, eggsizeandshape—aswell as the locationof the initial zygoticdivision—

contribute to the patterns of nucleus behavior over the course of blastoderm formation.

If an asymmetric pulling mechanism turns out to be a good descriptor for syncytial nu-

cleus movements insects with eggs of diverse sizes and shapes, we would hypothesize

that over amacroevolutionary timescale, themechanisms that regulate syncytial nuclear

behaviour in early insect embryos co-vary predictably with eggmorphology. Specifically,
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larger eggs should tend to have greater inequality in the nucleus density across the egg.

This, in turnwould lead toabroadervariation in speedsand likewiseastrongerdifference

in the timing ofwhen nuclei reach the periplasm. By a similar logic, eggs that are closer to

a spherical shape should have a reduced tendency for asymmetry in their spatial distribu-

tion of speeds. An alternative is also possible: that themolecularmechanisms underlying

nucleus movements are more diverse than previous workers anticipated. Quantitative,

comparative research will be needed in order to determine precisely how distinct the

pre-blastoderm nuclear patterns are among insect species. As for whether the molecu-

lar mechanisms underpinning nucleus movements differ among taxa, that too is an open

question. Descriptiveaccountsof the cleavage stage fromother species reveal that there

are still more patterns awaiting deeper study.
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1.7 Supplemental Information

Most of the technical details for this project have beenwritten in the supplemental infor-

mation, included below.

46



Blastoderm formation in the cricket proceeds
by local nucleus crowding
Supplemental Information

Seth Donoughe†,1,2, Jordan Hoffmann†,3, Taro Nakamura4, Chris H. Rycroft3,5, Cassandra G. Extavour1,6

Contents
1 Processing, segmenting, and tracking time-lapse datasets 2

1.1 Datasets from lightsheet microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Datasets from epifluorescence microscopy . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Datasets from confocal microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Microscopy sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Nucleus tracking accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Quantitative measurements of nucleus behavior 4
2.1 Nucleus speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Correlation of nucleus movement vectors . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Local nucleus density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Rate of change in number of nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Motion toward open space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Simulating blastoderm formation 7
3.1 Overview and aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Model components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Egg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.3 Division geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.4 Density-dependent cell cycle duration . . . . . . . . . . . . . . . . . . . . . . 8
3.2.5 Bias of nucleus movement toward periplasm . . . . . . . . . . . . . . . . . . . 8
3.2.6 Candidate movement mode: Asymmetric pulling shell . . . . . . . . . . . . . 8
3.2.7 Code output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Methods for physically constricting embryos 10
4.1 Assembling the egg constriction device . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Using the egg constriction device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
† Seth Donoughe and Jordan Hoffmann contributed equally to this work
1Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
2Present address: Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
3Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
4Division of Evolutionary Development, National Institute for Basic Biology, Okazaki, Japan
5Computational Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, USA
6Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA

47



Donoughe et al. 2019 – Supplemental Information page 2 of 14

5 Predicting pre-blastoderm nucleus movements in diverse insects 13

6 Data and code availability 13

References 13

1 Processing, segmenting, and tracking time-lapse datasets

1.1 Datasets from lightsheet microscopy

Lightsheet datasets were fused using the Multiview Reconstruction plugin for Fiji [1, 2]. Fluo-
rescent beads embedded in the agarose served as interest points for registration; these were used to
combine multiple views as a weighted average fusion.[1] Deconvolution was done for 10 iterations with
the Multiview Reconstruction plugin.[2] Calculations were performed on a 32-core workstation
with 128 GB of RAM running Ubuntu 14.04.

Nucleus segmentation and tracking was performed with Ilastik [3]. After importing all data
as a 4D sequence, a pixel classifier was trained to differentiate nuclei from background. A pixel
probability map was generated, and then nuclei were identified using the object classification tool.
Nuclei were automatically tracked in Ilastik, with the tracking tool configured to ignore divisions.
In our hands, automated tracking of nucleus movements was very accurate but automated detection
of divisions was less accurate. Therefore, in order to capture divisions, a custom script was used
to convert the automated tracking output from Ilastik into an XML file that was parsable by
the semi-automated tracking Fiji[4] plugin MaMuT [5]; this feature is now included in more recent
versions of Ilastik. We used MaMuT to manually identify each division and stitch tracks together
to generate continuously tracked lineages.

1.2 Datasets from epifluorescence microscopy

Arrays of up to 40 eggs were recorded at a time by tiling across a field of microwells, each of which
held a single egg, oriented laterally. Datasets were processed in Zen Blue (Zeiss) by combining
z-slices with the Extended Depth of Focus tool (mode=Contrast) and then stitching tiles together
with the Stitching tool.

Nuclei were segmented in Ilastik as described above. Nucleus movements were automatically
tracked in Ilastik. Divisions were manually identified in MaMuT. For eggs mounted in this manner,
approximately one-half to one-third of the z-depth of the embryo could be imaged clearly; the signal
from rest of the embryo was diffused by the yolk of the egg. The number of well-segmented nuclei
fluctuated slightly between time points, depending on the particular paths traveled by individual
nuclei; the effect of this variability was strongest for the first few division cycles. Thus, for 2D+T
time-lapses, we performed automated analysis on these datasets beginning at the earliest time point
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when there were at least 25 nuclei. We also performed manual tracking on divisions and movements
of nuclei before there were 25 detectable nuclei; in some of those cases, we were able to sometimes
capture even the first division.

1.3 Datasets from confocal microscopy

Embryos were imaged individually as 3D+T time-lapses, and then cropped and assembled into
montages and figures using Fiji and custom Python scripts.

1.4 Microscopy sample sizes

Lightsheet datasets of blastoderm formation: These 3D+T time-lapses enabled us to reconstruct
detailed reconstruction of nucleus movements and divisions but they are time-intensive to analyze.
For the present study we include four tracked and processed 3D+T datasets. Figures 1, 2, and 3 in
the main text show data from a single embryo. The same analyses were repeated on the other three
datasets; we found that the same patterns of nucleus dynamics held across all embryos.

Epifluorescence datasets of blastoderm formation: We also analyzed a much larger set of 2D+T
datasets to confirm that the lightsheet-recorded embryos exhibited typical cricket development. We
have captured and analyzed 64 such datasets.

Epifluorescence datasets of initial cleavages: We recorded and manually tracked the positions of
nuclei after three division cycles for >30 individuals in order to assess whether the initial divisions
are stereotyped. As described in the main text, we found that the division positions and orientations
differ among individuals. However, we did detect a subtle bias in division orientation, which may be
due to the geometric constraints of nuclei dividing near the inner surface of an elongated ellipsoid
volume. These results are summarized in Fig. 1.6 in the main text.

Epifluorescence datasets of constricted embryos: We include 11 time-lapses of constricted embryos.
These embryos do not hatch, so our criteria for including a constriction dataset were: no visible
ruptures of the eggshell, no premature arrest of nucleus movements, and no nuclear aggregations
during development. In our recordings of unconstricted embryos, we found that each of these issues
reliably predicted that blastoderm formation would fail.

Confocal datasets of yolk and nucleus movement: We include 13 time-lapse datasets of eggs laid by
females with Act-mem-mTomato and Act-H2B-EGFP transgenes. We used a magnification such
that about one-fifth of the length and one-half of the breadth of the egg was recorded at a time.
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1.5 Nucleus tracking accuracy

In order to assess the accuracy of automated nucleus tracking, we took 300 successive frames of a
lightsheet dataset, used the semi-automated tracking function of MaMuT. Then we inspected each
nucleus position and link that was initially tracked, and manually corrected any incorrect positions
or links, resulting in >40,000 single time-point nucleus observations. Then, we used Ilastik to
segment and automatically track the same dataset, resulting in a comparable number of detected
nuclei.

Treating the manually corrected dataset as ground truth, we assessed the accuracy of the automated
approach by calculating the distance from each nucleus in the manually tracked dataset to the
closest corresponding nucleus in the automatically tracked dataset. Table 1 shows percentiles of
these distances. In general, the spatial discrepancy between ground truth nucleus position and
automatically tracked nucleus position was much smaller than the diameter of a single nucleus (~10
microns; see Fig. 1.1 in the main text for comparison).

Percentile Distance (microns)
10% 0.6
25% 0.9
50% 1.4
75% 1.9
90% 2.9

Table 1: Tracking discrepancy. Percentiles of spatial discrepancies between each nucleus in a manually
tracked dataset and the closest corresponding nucleus in an automatically tracked dataset. We calculated
distances for >40,000 manually tracked nucleus-time points.

2 Quantitative measurements of nucleus behavior

2.1 Nucleus speed

For 3D+T datasets, we defined a vector

~xt = (xt, yt, zt) (1)

for a nucleus position at time t. Using this notation, instantaneous nucleus speed, st, was defined as
half of the displacement over two time points,

st =
1
2‖~xt+2 − ~xt‖. (2)

For 2D+T time-lapses, speed was defined in an analogous manner, calculating movement only in
the xy plane. The z-component of motion was not available in such datasets, which meant that
calculated speeds were an underestimate of the true nucleus speed in 3D space. However, once nuclei
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reach inner surface of the eggshell, the majority of their movement is constrained to the periplasm.
This means that for nuclei that were near the center of the image, far from the edges of the egg, the
distorting effect of flattening the z-dimension was smallest. For 2D+T datasets with a small number
of nuclei (i.e. those for which we tracked the positions of nuclei over the first three divisions) we
mounted the eggs in a manner that minimized distortion. Since the initial divisions typically occur
near the ventral midline, we oriented the egg with the ventral midline centered toward the light
path. We also excluded any datasets for which the visible nuclei were mostly near the edges of the
egg.

2.2 Correlation of nucleus movement vectors

For each embryo, the set of ~xt across all t was re-oriented so that its first principal component lay
along the x axis, in effect rotating the dataset so that the long axis of the embryo was parallel to the
x axis. For each ~xt, the motion vector from ~xt to ~xt+2 was computed, and then used to calculate
the correlation between pairs of nuclei.

2.3 Local nucleus density

We defined local nucleus density as the number of nuclei within radius R = 150 µm1, weighted by
the volume of space around the focal nucleus, considering only the space that is contained within
the eggshell. For a nucleus near the periplasm of the egg, the sphere of space within R includes
some volume that is outside of the egg itself.

Therefore, we needed to numerically represent the surface of the egg. We took a single time point
at the uniform blastoderm stage, segmented the nuclei, and fit a parabola to the Anterior-Posterior
(A-P) axis of the cloud of points. We used this parabola to transform the positions of nuclei by
mapping the parabola to a straight line. Then we calculated the convex hull of the transformed
points, and applied the reverse transformation to the convex hull. This produced the volume B.

We took the sphere S defined by R, and then defined

V = volume(S ∩ B). (3)

The volume fraction was computed as
φ =

V
4
3πR3

(4)

and the local density was defined as
ρ =

#

φ
, (5)

1We found that R = 150 µm was effective at capturing density-dependent speeds and division rates across the
range of densities found during cricket blastoderm formation; similar results were obtained for radii from 50 to 300 µm.
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where # represents the count of nuclei within R.

For 2D+T datasets, local nucleus density was treated in an analogous manner: we computed the
region of overlap of a 150 µm circle with the 2D convex hull of all nuclei at the blastoderm stage.
Then we counted the number of nuclei within that area and calculated the area-weighted density as
above. In practice, this means that nuclear densities were calculated from volumes with different
shapes in the 2D+T vs. 3D+T datasets (i.e. cylindrical vs. spherical), and therefore their measured
values cannot be compared to one another in absolute terms.

2.4 Rate of change in number of nuclei

Early in embryogenesis, a small fraction of the nuclei are in the very middle of the egg, where their
observable fluorescence signal is most diffuse. Since it is possible that some unobserved divisions
occur in that small portion of the egg volume, percent change in nucleus number was used as a
proxy for nucleus division, rather than counting nuclei directly. At each time point for a given
embryo, the total number of nuclei present was smoothed by the application of a Gaussian blur
with a width of three time points. A Hermite interpolant was fit through the data and then divided
by its derivative: N ′(t), by N(t), to produce a rate of change in the number of nuclei at each time
point.

2.5 Motion toward open space

We defined direction towards the “largest open space” as the vector towards the centroid of
the 3-dimensional Voronoi cell formed by each nucleus and bounded by the inner surface of the
eggshell—as approximated by the convex hull of nuclei at the blastoderm stage.

For each nucleus, we considered ~v = 1
2 (~xt+2 − ~xt), and calculated its correlation c with a vector

into the direction into open space, ~s, as

c =
~x · ~s

‖~x‖‖~s‖
. (6)

In order to account for noise in this calculation, average “movement into space” vectors were
calculated for each nucleus over a sliding window of three time points. In addition, we computed
the shortest distance from all nucleus locations ~xt to the inner surface of the eggshell, dS . We
binned nuclei by dS into those that are near the surface (dS < 50 µm) and far from the surface
(dS ≥ 50 µm), as shown in Figure 3.
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3 Simulating blastoderm formation

3.1 Overview and aim

As described in the main text, our initial goal of a modeling approach was to assess whether mutual
repulsion of nuclei or a local, asymmetric, active pulling force on each nucleus could satisfactorily
recapitulate the empirical patterns of nucleus behaviors. Here we report on the model in closer
detail.

3.2 Model components

3.2.1 Egg

We used the shape of a real cricket egg, approximated from the positions of nuclei during the
uniform blastoderm stage, as described in Section 2.3. As a function of position along the A-P axis
z, each cross section is assumed to be well approximated by an ellipse with radii r1(z) and r2(z)

with a center at (x(z), y(z)). This defines a boundary B. For simulated G. bimaculatus embryos, all
calculations were done on a discretized 3D grid with dimensions 400× 100× 100 (4,000,000 total
voxels). We found that this resolution was sufficient to compare hypothesized models of nucleus
movements; for future work it could also be rescaled to improve accuracy at the cost of compute
time. The same procedure allows us to define more complex egg shapes, as shown in the main text.
For those egg shapes, we adjusted the pixel dimensions accordingly.

3.2.2 Nuclei

Nuclei were treated as spheres (radius = 5µm) that could move anywhere within the egg. The
cytoplasm was treated as a uniform material. We did not simulate the viscosity or elasticity of the
cytoplasm. Rather, nucleus movements were simply generated as the sum of any repulsion and
attraction forces. Each source of force in the simulation is described below as a separate component
to the model. Overall, the forces were assigned magnitudes such that the maximum nucleus speeds
in the simulation matched those of the empirical data.

3.2.3 Division geometry

Nuclei divided in random directions throughout the simulation, irrespective of the proximity of
neighbors, proximity of the eggshell, or the orientation of previous divisions in a lineage. The
physical separation of daughter nuclei after mitosis and re-formation of their nuclear envelopes was
treated as zero. That is, newly divided daughters formed immediately adjacent to one another.
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3.2.4 Density-dependent cell cycle duration

In the empirical data, we observed a strong positive association between local nucleus density and
cell cycle duration. We did not attempt to explain the density-dependent cell cycle duration in G.
bimaculatus. Instead, we included the empirical relationship directly. We fit a logistic curve to the
empirical density vs. cell cycle duration data (shown in Figure 2 in the main text), and then drew
from it with normally distributed noise. The magnitude of the noise increased over time, going from
a standard deviation of 90 seconds at the beginning of the simulation up to 360 seconds at the end
of the simulation, when nucleus density was highest.

3.2.5 Bias of nucleus movement toward periplasm

In an unmanipulated embryo, the first zygotic division tends to occur about ~60% of the way along
the A-P axis, from the anterior pole of the egg. That division is also typically slightly offset along
the dorsal-ventral (D-V) axis, occurring closer to the ventral side of the egg. During the first few
cell cycles, nuclei spread apart in space, with some of them moving through “open space” across the
yolk-rich middle of the egg, and others moving within the periplasm, close to the inner surface of
the eggshell. From the 3D+T datasets, it was clear that as nuclei continue to divide and spread out
within the egg, their movement paths have a subtle bias towards the periplasm. The mechanistic
basis of this bias in unknown. We speculate that it might be similar to the comparatively more
coordinated movement of syncytial nuclei into the periplasm in D. melanogaster during cell cycles
7 through 9 [6–10]. We hard-coded this tendency in our simulations by introducing a component
to a nucleus’s motion vector that is in the direction of the nearest point on the inner surface of
the eggshell. The strength of this bias was adjusted to match the bias towards the periplasm in
the empirical data. Specifically, 25% of the instantaneous motion term for each nucleus was set
as motion towards the nearest point on the surface, which was computed using an optimization
routing. For each time-step, this bias term is included on each nucleus with 50% probability.

3.2.6 Candidate movement mode: Asymmetric pulling shell

As described in the main text, we hypothesized that there is a local, asymmetric, active pulling
force on each nucleus. To assess the plausibility of this hypothesis we developed a simple geometric
structure that serves as an abstracted stand-in for one of many possible cell biologically exact
mechanisms: an asymmetric “shell,” originating on each nucleus, that causes a local force to pull
them through the cytoplasm.

We model the motion of nuclei by ascribing a pulling shell that emerges from a single origin on a
nucleus. The shell grows uniformly in all directions to some maximal radius, Rmax, except for where
its growth is impeded by the surface of the nucleus from which it originated, the surface of another
shell, or inner surface of the eggshell.
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The parameter Rmax defines a region of influence around each nucleus. For each nucleus, we compute
this region by using the Python library scikit-fmm [11]. To compute the shells, we use a level
set method [12], which is a computationally efficient way to identify all the voxels that should be
assigned to each nucleus. Specifically, we initialize the locations of nuclei to be zeroes of a level set.
We use a uniform background velocity field, though the code framework is in place to alter this if
desired. Then, we solve the Eikonal equation

F (~x)|∇T (~x)|= 1, (7)

where F (~x) describes the speed at each coordinate, xi,j,k and T (~x) describes the travel time to each
coordinate. By setting the background field to a uniform value, this allows us to efficiently compute
regions of influence around each nucleus. After computing each region, we carve out a region due to
steric effect of the point of shell growth’s asymmetric relationship with the nucleus.

For all pixels that have a travel time less than our Rmax, we assign them to a nucleus based on which
nucleus they are closest to. Then, for each nucleus, we remove voxels that should not be considered
due to steric effects—either they are outside the boundary of the egg or they are occluded based on
the position of the nucleus relative to the shell’s origin. Voxels that are omitted due to this second
case are checked for whether they should belong to another nucleus. For each voxel in a shell, we
compute the vector ~fN = normalized(pi,j,k −Nx,y,z) where pi,j,k represents each voxel in the shell.
This represents a tug in that direction. To normalize based on R, we divide each tug by a factor of
R2 where R represents the distance from the pixel to the nucleus.

For each nucleus, ~ni we compute the corresponding shell, Si. We compute a movement vector ∆ by
computing

∆ =
∑
j

α
Sj − ~n

||Sj − ~n||22
. (8)

The parameter α is fit from the experimental data where we match the maximum speed at the
4-nucleus stage. The parameter is fixed, and does not vary in time.

After each division, shell origins are randomly positioned on opposite sides of the two daughter cells.
This means their the motion vectors are initially 180◦ apart from one another. The angle of each
division is random.

3.2.7 Code output

The code outputs three different variables at each time point. For time t the code outputs the
locations of nuclei, the time since division of each nucleus, and finally the shell corresponding
to each nucleus. The locations variable contains the (x, y, z) coordinates of all nuclei that are
present. The nuclei remain in the same order over time, with those that divide having one of their
daughter nuclei appended to the end of the list. To allow the lineages to be properly calculated, the
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time since division variable contains the time since division of each nucleus. Each nucleus has
an associated “shell” that is responsible for moving the nuclei around. For each time point, each
nucleus’ shell is stored in the shell variable, where N corresponds to the position in the locations
variable.

4 Methods for physically constricting embryos

4.1 Assembling the egg constriction device

Embryos were constricted in a custom device. Components were laser-cut out of sheets of acrylic
(thickness = 1.59 mm, McMaster-Carr 8560K172; thickness = 3.18 mm, McMaster-Carr 8560K257),
and then assembled with acrylic welding solution (IPS Weld-On 3 Acrylic Plastic Cement) following
the procedure described previously [13]. The device’s construction also required a common binder
clip (width = 20 mm), two steel nails (diameter = 2 mm; length = 39 mm), and a rubber band
(thickness = 1 mm). We were able to successfully constrict eggs with versions of the device that
were assembled with several different types of nails, rubber bands, and binder clips. The constricting
fiber was held in place by being pinched in a block of elastomer (Dow Corning Sylgard 184 Elastomer
Kit) into which a slit had been cut with a razor blade. A crafting hot glue gun was used to attach
acrylic components to non-acrylic components. Schematics of all components are shown to scale
along with additional assembly instructions in Fig. S1.

4.2 Using the egg constriction device

Figure S2A is a photograph of the device in use, with human hairs used as the constricting fibers.
Eggs were placed in water-filled acrylic troughs on a removable platform, and then constricted one
at a time. To do so, a hair was threaded through the removable plastic platform, around an egg,
back through a hole at the bottom of a trough in the removable platform, and then attached to a
ratchet mechanism. Detailed instructions for this procedure are shown in Fig. S2B. This allowed
the user to increase tension on the hair while observing the egg on a dissection microscope. As
tension increased, the egg was incrementally constricted. After the desired extent of constriction
was achieved, temporary dabs of hot glue were used to affix the hair in place for the duration of
imaging.

The device is able to hold multiple constricted eggs at a time for simultaneous imaging, up to a
maximum of seven eggs. Once a set of eggs was constricted, the removable platform was taken from
the constriction device, placed in a glass bottom 6-well dish (MatTek P06G-1.5-20-F), and imaged
using a Zeiss Cell Discoverer microscope following previously described methods [13].
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Figure S1: Assembling a device for constricting eggs. A, Diagram of all acrylic components. Pieces in
light gray were cut from 1.59 mm-thick acrylic sheet; the rest were cut from 3.18 mm-thick acrylic sheet. B,
The assembled device also included a binder clip and two steel nails. Before welding the trough plate to the
removable platform, the trough plate was positioned so that the rectangular holes in the platform lined up
with the corresponding holes in the trough plate. After the rest of the components were welded together as
shown, one steel nail was inserted through a washer, then the pawl, then the ratchet mount plate. Hot glue
was applied to the top of the washer, fixing it to the nail. More hot glue was applied to the underside of the
ratchet mount plate where the nail emerged, fixing the nail to the plate. A razor was used to cut a block of
Sylgard elastomer with approximate dimensions 4 mm × 8 mm × 8 mm, and then slice the block through
half its depth when oriented with the largest face flat on a table. The second nail was inserted through the
other washer, gear, and then the ratchet mount plate. The Sylgard block was positioned as shown, and then
hot glued to the gear. Hot glue was applied to the top of the second washer, fixing it to the nail. More hot
glue was applied to the nail where it emerged underneath the ratchet mount plate, fixing it in place.
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Figure S2: Constricting eggs. A, Photograph of the constriction device in use on a dissection microscope.
To prepare the device for use, a small rubber band was cut, inserted through the largest hole in the ratchet
mount plate, wrapped underneath the side plate, and then tied in a knot. The re-joined rubber band is a
loop with the band slotting into the notch on the pawl, as shown. The tension on the rubber band pushes the
pawl pushed against the gear to make a ratchet. White arrows highlight the rubber band, binder clip, fiber
clamp, removable platform, and gear. Hot glue indicated with orange arrows. Note: the hot glue, rubber
band, and fiber clamp were not shown in Fig. S1. The fiber clamp is an unattached rectangle of acrylic that,
when squeezed by the binder clip, effectively held the fibers clamped in place. B, Cut-away schematic of fiber
threading path (not to scale). Acrylic components are depicted in light gray, nail in dark gray, Sylgard block
in purple, hot glue in orange, water in light blue, and binder clip in dark blue. The egg is shown in yellow as
a cross-section end-on. The constricting fiber (a human hair) is shown in magenta.

1. One hair was clamped between the end plate and fiber clamp.

2. The hair was threaded by hand through the path shown, and ultimately inserted into the slit in the
elastomer block. A large loop was left in the place where the embryo would go. The removable platform
can be taken off of the device to make threading easier.

3. The egg was placed into the trough.

4. Distilled water was added to the trough to fill its entire volume.

5. The gear was manually cranked while the egg was observed by the user with a dissection microscope.
Surface tension kept it from leaking through the bottom hole.

6. When the desired constriction was achieved, hot glue was used to affix the hair at the two locations
indicated with orange droplets.

7. The hair was cut at the two locations indicated with scissors. There are troughs for up to seven eggs;
the constriction process was repeated on multiple eggs and then the removable plate was removed. To
image the eggs, the removable plate was inverted, with constricted eggs still in the troughs, and placed
into a glass bottom dish. The dish was filled with distilled water, and then the eggs were imaged with
an inverted microscope.
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5 Predicting pre-blastoderm nucleus movements in diverse insects

After assembling a model that has been fine tuned on Gryllus, we are able to alter only the surrounding
geometry and ask how development changes and whether the resulting nuclear distributions match
what is observed in other species. For a selection of shapes, see Fig. 1.7.

6 Data and code availability

All code will be made available upon the submission of the manuscript. The tracks from the
lightsheet and epifluoresence datasets are available upon request.
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What are a friend’s books for if not to be borrowed?

Tom Stoppard, Arcadia

2
Geometry of InsectWings

2.1 Background

The geometry of the world around us has fascinated mankind for centuries. Over time,

the study of pattern formation has become increasingly quantified, with specific natural

mechanismsgivingrise toparticularpatterns. Oneexcellentexample isTuringpatterning,

based on (at least) two chemicals that interact with one another through timewhere the
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different chemicals can interconvert.152 This has led tomanybeautiful collaborations be-

tween observation of the natural world, physics, and mathematics.94,146 More recently,

this has expanded tomorebroadly include computation aswell. Mathematical tools have

beendeployed forunderstandinggeometric structure that span fromanthropology to zo-

ology, from the nanoscale to the exascale.

In the growing era of automated tools for data science, datasets themselves have be-

come an increasingly valuable resource. However, centuries of data collection often sits

in a non-digitized form in older books and artwork. For this project, we made extensive

useof data frommanydifferent previously published sources. Alongwith eachof the two

manuscriptsdescribedbelow,we includedthesegmentedscans thatweused inhope that

future scientists canmake use of the dataset.

While at first glance it may not appear so, Voronoi cells157 are not a good approxima-

tion tomanyof the shapes inDragonflywings. In fact, the shapesondragonflywingshave

not been well studied, and often it seems that their geometric regularity lulls one into a

false sense of understanding. EvenD’Arcy Thomson oversimplifies the geometry of drag-

onflywings in “OnGrowth and Form”, commenting that angles appear to be either 90◦ or

120◦.146 To understand how the shapes emerge, we calculated the circularity and abso-

lute area of over 100,000 wing domains from over 500 individual wings, characterizing

wingsbasedon thedistributionof shapes along theproximal–distal (P-D) axis. Fromhere,

we asked whether we could create a testable model of wing development that captured

the diverse set of wing domains observed.

62



With Professor L. Mahadevan and his graduate student, Mary Salcedo, we deployed

many of the same quantitative characterizations over a larger dataset of insect wings,

which included representatives from every winged insect family. Rather than attempt

to unravel underlying developmental hypotheses, in this case we chose to deploy a hier-

archical set of quantitative geometric analyses over these wings.

The work in Hoffmann et al. (2018)75 proposes a developmental model for the com-

plex patterns present in odonate wings. In the manuscript, we rely on “inhibitory” cen-

ters that equilibrate over time. Between these centers, domains form, and then thewing

undergoes a transformation. We have begun work where we replace this aspect of the

model with a reaction–diffusion (RD) equation approach.106,152

2.2 Contributions

2.2.1 PNAS 2018

I developedandwroteall code for this project, including the imagesegmentation tool, the

optimization tool, theplotting code, andanalyzedwinggeometry. Sethand Idesigned the

figures together, producing my favorite set of figures in any published manuscript I have

seen. Iwrote a largepart of themathematical supplement (included in this document as a

supplement) and assisted in writing themain text of themanuscript. I took an active role

in directing the progress of the research, andwith Sethwe conceived of the optimization

code that led to the developmental hypothesis. All of the code I developed for the project
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is available onmyGitHub page. Additionally, we uploaded all of the segmented odonate

wings for future work. This represents a very large dataset of preprocessed data that

other scientists can easily access.

2.2.2 bioRxiv 2019

A large part of this work relied on code I developed for the previousmanuscript. The seg-

mentation code needed to be expanded to handlemore diverse sets of images. Addition-

ally, tohandle themorediverse setofwingdomains,weneeded toexpand thepolygoniza-

tion code to handlewing domain shapes thatwhere not present in the original dataset of

Odonatawings. Along with Mary Salcedo, I helped collect the new dataset that we used

for the manuscript. Again, we uploaded all of the segmented odonate wings for future

work along with all of the code needed for the manuscript. I performed all the calcula-

tions and all clustering presented in themanuscript.

2.3 Publication

This project resulted in two publications. The first of which focuses primarily on odonate

wings and the second of which extends the ideas to other species as well.
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Insect wings are typically supported by thickened struts called veins.
These veins form diverse geometric patterns across insects. For
many insect species, even the left and right wings from the same
individual have veins with unique topological arrangements, and
little is known about how these patterns form. We present a large-
scale quantitative study of the fingerprint-like “secondary veins.”
We compile a dataset of wings from 232 species and 17 families
from the order Odonata (dragonflies and damselflies), a group with
particularly elaborate vein patterns. We characterize the geometric
arrangements of veins and develop a simple model of secondary
vein patterning. We show that our model is capable of recapitulat-
ing the vein geometries of species from other, distantly related
winged insect clades.

insect wings | patterning | image segmentation | computational
modeling | Odonata

Insect wings are a marvel of evolution and biological engineering.
They are lightweight, strong, durable, and flexible—traits made

possible by “wing veins,” the thickened, strut-like structures em-
bedded in the wing surface. The density and spatial arrangement of
wing veins vary tremendously among insects (1–3), wherein they
serve many functions: stiffening the wing (4), resisting crack prop-
agation (5–7), forming the vertices of corrugation (8–10), con-
ducting hemolymph (11, 12), supporting sensory structures (13, 14),
and contributing to an architecture that undergoes useful passive
deformation in response to aerodynamic forces (4, 9, 15, 16).
The study of wing veins has mostly focused on “primary

veins”—those whose relative positions are shared between left and
right wings of the same individual and among individuals of the
same species. The morphology of primary veins has served as es-
sential evidence in the effort to place long-extinct insects into a
comprehensive insect phylogeny (17, 18). Likewise, subtle shifts in
the positions of homologous primary veins, quantified with the tools
of comparative morphometrics, have provided insight into evolu-
tionary patterns (19, 20) and fluctuating asymmetry—deviations
from perfect symmetry that indicate developmental noise (21, 22).
In addition to primary veins, many insect species also have

“secondary veins.” These veins, sometimes referred to as “cross-
veins,” cannot be matched one-to-one on the left and right wings
of the same individual (2) (see labels on Fig. 1A). In some taxa,
secondary veins comprise a large majority of wing veins yet re-
main poorly described. For species that have them, secondary
veins form a unique pattern on every wing, which suggests that a
stochastic patterning mechanism is responsible for their forma-
tion. To our knowledge, the geometric arrangement of secondary
veins has not been quantitatively characterized for any species. It
is not known whether a universal developmental process generates
the diverse secondary vein arrangements found among insects. In
fact, because the best-studied model species (e.g., Drosophila
melanogaster) do not have secondary veins, the developmental
basis of their patterning remains a mystery.
We collected original high-resolution micrographs and com-

bined them with published wing tracings, resulting in vein patterns

of 468 wings from 232 insect species. This dataset is composed of
wings that span a 36-fold range in area, and it includes repre-
sentatives from three taxonomic orders. We developed computa-
tional tools to segment images of wings and used them to calculate
geometric traits for each digitized wing image, including vein
lengths, connectivities, angles, and densities.
With the resulting data, we describe clade-specific distributions

of secondary vein arrangements; we also show that these distri-
butions scale with wing size. Then, we synthesize our work with
published developmental data to create a minimal geometric
model of secondary vein development based on evenly spaced
inhibitory signaling centers. This model is able to recapitulate the
vast majority of secondary vein arrangements that are observed in
our dataset. Furthermore, our model allows us to make specific,
testable hypotheses about wing development for all insects with
stochastically patterned secondary veins, a group that collectively
spans ∼400 My of evolution (23).

Results
We initially focus on dragonflies and damselflies (order: Odo-
nata), a group of aerial predators whose wings have especially
complex venation patterns. An overlapping projection of the
left and right wings of an example dragonfly, Erythremis sim-
plicicolis, allows us to identify the primary and secondary veins,
as defined above (Fig. 1A; see SI Appendix for details). This
categorization of veins is similar to those used in previous
studies (24, 25).

Significance

The wing veins of the fruit fly Drosophila melanogaster have
long been studied as an example of how signaling gradients in
a growing tissue can generate precise, reproducible patterns.
However, fruit fly wings represent only a small slice of wing
diversity. In many insect species, wings are like human fin-
gerprints: even the left and right wings of the same individual
have unique vein patterns. We analyze wing geometry in many
species and then present a minimal developmental model for
how vein patterns can be formed. This model will serve as a
hypothesis for future empirical work.
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In many insect species, wing veins form tens to thousands of
closed polygonal shapes called “vein domains” (Fig. 1A, examples
highlighted in purple). Characterizing the areas and shapes of vein
domains is a tractable way to study the geometric properties of
veins. We present a custom method to segment wing images based
on level sets (SI Appendix). This approach is well-suited to studying
the morphologies of diverse wing vein patterns, robust to variations
in image resolution, and it requires minimal parameter adjustment.
This allows us to precisely calculate attributes—such as area and
circularity—of every vein domain in a wing. Circularity is defined as
the ratio of a domain’s area to the area of a circle whose perimeter
is equal to that of the domain. The left and right wings of
E. simplicicolis are shown, with each domain colored according
to its area and circularity (Fig. 1B). When vein domain area is
plotted against circularity for left and right wings (Fig. 1C), it is
clear that each wing’s set of domain shapes is a unique fingerprint,
yet the marginal distributions of each trait are strikingly similar.
Our dataset includes published wing tracings from 215 odonate

species, including representatives from 17 families, whose wings
range from 20 to 725 mm2 in area (Fig. 2A). We took high-resolution
micrographs of example species to verify that the wing tracings ac-
curately capture the geometric arrangement of veins (SI Appendix,
Figs. S1 and S4–S6). We segmented the vein domains on all wings in
the dataset, finding that the number of vein domains scales allo-
metrically with wing size: species with larger wings have larger and
more numerous vein domains (Fig. 2B). The full segmented dataset
contains 150,000+ vein domains, from <0.01 to >5 mm2 in area (SI
Appendix, Fig. S13A).
These data enable us to explore how vein domain area and

circularity vary along the proximal to distal (P–D) axis (i.e., from a
wing’s base to its tip) for each forewing and hindwing. We divide
wings into 21 equally spaced rectangular bins along the P–D axis.
For a given bin, we determine the area and circularity of each vein
domain within it, and then calculate an area-weighted mean for
the entire bin. For each wing, we plot the P–D morphology trace
of its vein domains in a 2D space determined by circularity and
area (Fig. 2C). By plotting P–D traces of many species, we show
that damselflies and dragonflies exhibit distinct, clade-specific
patterns (Fig. 2 D and E), and within each group, P–D morphol-
ogy traces are related to wing size (SI Appendix, Fig. S13 B and C).
In nature, there are many developing structures that can be

approximated as a flat tissue that is stochastically partitioned.
Examples include leaf vascularization (26, 27), reptile scale for-
mation (28), and a variety of pigmentation patterns (29).

Theoretical and empirical work has shown that such patterns can
form in different ways—as a bifurcating process in which branches
grow toward secreted signal sources (26), a mechanism wherein
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stresses in the growing tissue trigger localized differentiation (27,
28), or diffusion-based systems with feedback loops that generate
evenly spaced domains from a noisy precursor signal (29). Each
class of processes produces characteristic geometric patterns.
Secondary veins in odonate wings have several features that are

consistent with a simultaneous, diffusion-based patterning mech-
anism: (i) secondary veins that terminate in space are extraordi-
narily rare (SI Appendix, Table S1), (ii) 180° joints rarely occur
among secondary veins (SI Appendix, Fig. S15), and (iii) domains
made of secondary veins tend to be approximately the same size as
their immediate neighbors (SI Appendix, Fig. S16). Last, rectangles
tend to form between closely spaced parallel primary veins while
pentagons and hexagons predominate in regions where primary
veins are distantly spaced. Collectively, these features are con-
spicuously similar to those of a Voronoi tessellation of evenly
spaced seeds in a 2D region (SI Appendix, Fig. S29) (30). A
Voronoi tessellation is produced by taking a set of seed locations
on a plane, and then partitioning every seed into its own region in
space. The shape of each region is given by the set of all points
that are closer to its seed than to any other. Voronoi tessellations
are mathematically tractable, and they appear in nature in dif-
ferent contexts (31–33); we use them as the basis for a minimal
model of secondary vein patterning.
We hypothesized that, to a first approximation, the development

of secondary veins proceeds as follows. First, the positions of pri-
mary veins are established on the wing pad (Fig. 3A) (34–42).
Second, an as-yet-undescribed stochastic patterning mechanism
generates evenly spaced inhibitory centers within the regions bound
by the primary veins (Fig. 3B) [see, for example, mammalian hair
follicle patterning (43) and avian feather bud patterning (44)].
Third, secondary veins arise at the inhibitory signal’s local minima,
which can be well approximated by Voronoi cells (Fig. 3C). Finally,
during subsequent nymphal development and wing eclosion, the

wing undergoes anisotropic growth (41, 45) (Fig. 3D). This sim-
plified sequence of steps serves as a tool to generate testable hy-
potheses about the mechanisms of wing vein patterning.
We use the developmental sequence described above to sim-

ulate the formation of secondary veins in an example wing, the
hindwing of the dragonfly Dromogomphus spinosus. To start with
the simplest possible model, we ignore wing growth altogether by
simulating secondary veins as though they emerge on a fully
formed adult wing (SI Appendix, Fig. S21 A–C). First, we man-
ually divide the wing into regions that are bounded by primary
veins and the wing margin. Next, we use the following procedure
to generate a set of evenly spaced inhibitory centers for each wing
region: we randomly place “inhibitory centers” equal in number to
the number of vein domains in the matching region of the real
wing, and then use Voronoi iteration as a method to evenly space
the inhibitory centers (46). Finally, we position secondary veins at
local minima of the inhibitory signal. When we compare the
simulated wing to a left–right pair of real wings, we find that this
model recovers some natural vein features, yet it systematically
overestimates vein domain circularity (SI Appendix, Fig. S21D).
Next, we modified the model to include wing pad growth and

shape change. As above, we use primary veins to define wing re-
gions (Fig. 3E), and then estimate the former morphology of the
wing pad (Fig. 3F; described below). We evenly space inhibitory
centers on the wing pad and place secondary veins at local minima
(Fig. 3G). Last, we simulate anisotropic growth by reforming the
wing pad into the shape of the mature wing (Fig. 3H).
To estimate the shape of a wing pad, we make two assump-

tions about wing development based on earlier literature (34–
41): the wing pad develops as a roughly convex shape, and the
pattern of secondary veins that forms on the wing pad is com-
posed of well-spaced polygons, which tend to maximize the cir-
cularity of vein domains. We use the mature wing to calculate a
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corresponding wing pad shape via a coordinate transformation
that maximizes the circularity of all vein domains, while con-
straining the wing pad to be approximately convex (an example
transformation for D. spinosus is shown in Fig. 3 E and F; see SI
Appendix for further details).
To assess the effectiveness of our wing pad shape estimation,

we use a published micrograph of the hindwing pad from the
dragonfly Anax junius, which was dissected from the nymph be-
fore secondary veins had formed (47). We use primary veins as
landmarks to map the adult wing onto the wing pad, and then
color each vein domain according to its relative size change (Fig.
3I and SI Appendix, Fig. S23). This shows that the nymphal wing
pad-based map produces a coordinate transformation that is
strikingly similar to the map we independently calculate using
the circularity maximization procedure described in the previous
paragraph (Fig. 3J).
When we employ this computational model to simulate sec-

ondary veins for the hindwing of D. spinosus, it results in the
secondary-venation pattern shown in Fig. 3H. Real and simulated
veins from different parts of the wing are shown side-by-side in
Fig. 3L. The simulated wing has a vein domain area distribution,
circularity distribution, and P–D morphology trace that closely
match those of the true wing (Fig. 3 K and M; left and right wings
of the same individual shown for comparison). We simulated
secondary veins for odonates from several different families, and
in each case the same simple model recapitulates the observed
geometric rearrangements of veins (e.g., SI Appendix, Fig. S30);
conversely, the model does not generate any arrangements that
are not seen in true wings.
Next, we apply the secondary vein simulation model to repre-

sentatives from orders Orthoptera and Neuroptera. With respect
to Odonata, these orders are drawn from distantly related parts of
the insect phylogeny (Fig. 4A)—the last common ancestor of the
three orders may have been the shared ancestor of all extant
winged insects (23). As above, we treat primary veins as boundaries
and simulate secondary veins within them. Likewise, the model
recapitulates most of the secondary vein patterns in each example
species (Fig. 4 B and C), producing distributions of vein domain
size and circularity that are broadly similar to those of the true
wings. However, there are a few subregions in the wing of each
species where the model does not capture vein domain geometry as
accurately. For instance, in lacewing and grasshopper, vein do-
mains along the trailing wing margin in the real wings have a sys-
tematically lower circularity than the analogous vein domains in
simulations. A possible explanation for this mismatch is considered
in Discussion.
We assess model sensitivity to variation in the density of in-

hibitory centers by resimulating secondary venation at a range of
densities. The resulting venation patterns have substantial changes
to their vein domain area and circularity distributions (SI Appen-
dix, Fig. S27D), demonstrating that it is essential for the model to
include an accurate estimate of the number of inhibitory centers in
each region. With the model described so far, the density of in-
hibitory centers in each region is drawn directly from real wings,
effectively “baking it” into the model. Therefore, we ask whether it
is possible to accurately model the secondary vein pattern using
primary vein morphology as the only input. The thickness of pri-
mary veins varies substantially across a wing (10, 48). We hy-
pothesized that if primary veins are the source of a morphogen
that affects inhibitory centers in nearby tissue, primary vein
thickness on the wing pad could indicate the strength or concen-
tration of that signal. This, in turn, would determine the length
scale of the pattern generator. We show in an example wing that
the relative thicknesses of primary veins are correlated with the
thicknesses of the corresponding veins on the adult wing (SI Ap-
pendix, Fig. S26). Therefore, we use primary vein thickness on the
adult wing as a proxy for relative thickness on the wing pad. We
inquire how the thickness of primary veins is related to the area of

nearby vein domains. We do so by measuring the thickness of each
primary vein segment in an adult wing. Then, we calculate the
shortest distance from each vein domain to every primary vein and
compute a proximity-weighted primary vein thickness (Fig. 5A; see
SI Appendix for details). Across multiple species, we find a positive
relationship between primary vein thickness and vein domain area
(Fig. 5C and SI Appendix, Fig. S28). We use this relationship to
simulate secondary veins without predetermining the number of
inhibitory centers in each wing region. Using high-resolution
micrographs of wings from the dragonflies Libellula cyanea and
Sympetrum vicinum, we measure primary vein thickness to pro-
duce a distribution of thicknesses and domain areas. We use this
distribution to simulate a wing from E. simplicicolis—a species that
was not used to generate the sample distribution. We stochasti-
cally simulate an E. simplicicolis wing repeatedly, computing the
P–D morphology trace each time. The variation between simu-
lated wings is comparable to the disparity we observe between left
and right real wings of the same individual (Fig. 5B). Therefore,
knowing only the thickness and arrangement of primary veins on a
wing, we are able to simulate secondary veins whose pattern is
comparable to that of a real wing.

Discussion
The molecular basis of primary wing vein patterning has been
studied extensively in Drosophila melanogaster (49), but because
fruit flies do not have secondary veins, the developmental basis
of these “fingerprint” veins is still unknown. Some previous
researchers have qualitatively described secondary veins and
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speculated about how their curious geometric patterns are
formed. K. G. Andrew Hamilton (2) described the patterns
from diverse species and attempted to place them in broad
morphological categories. D’Arcy Thompson (50) likened
them to the shapes formed by interfaces equilibrating under
tension, as one can observe in clusters of soap bubbles.
However, only with the advent of high-throughput digital
image quantification tools has it become possible for us to
chart the geometric attributes of secondary veins in detail and
test a model to explain their patterning.
The model we present is not molecularly specific, but it allows

us to make falsifiable hypotheses about the development of sec-
ondary veins: first, the position of a primary vein is established
before the positions of neighboring secondary veins. Second, there
exists an inhibitory signal that restricts secondary vein formation to
certain locations in the developing wing. Third, there is a sto-
chastic input to the process that evenly spaces inhibitory centers.
These are probably generated by a reaction–diffusion process (29),
a simple feedback system that is able to generate diverse patterns,
including pigmentation patterns that are observed on insect wings
(51). Similarly, a reaction–diffusion-based hypothesis for wing vein
patterning has been proposed for the wings of Orosanga japonicus
(52). Finally, we hypothesize that once secondary vein locations
have been established, vein morphogenesis itself is deterministic.
Our model is consistent with empirical observations, but we have
not proven that the model captures a specific molecular mecha-
nism. Further testing of the model would entail a mechanistic
investigation into the abovementioned hypotheses that form its
foundation. This will require detailed developmental description,
as well as functional genetic and developmental experiments on
developing wings of species that have reticulate secondary veins.
Our model is largely effective in recapitulating secondary vein

arrangements in three orders of insect wings. However, there are
two features of real wings for which the model is systematically
inaccurate: (i) wing regions in which there is a pronounced
gradient in the size of domains, and (ii) wing regions in which
secondary vein segments are arranged in an atypically collinear

manner (SI Appendix, Figs. S31 and S32). The existence of the
latter case suggests that a strict dichotomy of primary veins and
secondary veins cannot fully describe wing vein identities. We
hypothesize that after primary vein positions are established,
secondary veins can take on primary vein–like function and
morphology in wing regions that are sufficiently distant from an
inhibitory signal that emanates from primary veins [for further
discussion of vein identity, see other authors (53, 54) who have
reviewed the evolution and development of diverse wing veins in
closer detail].
To discern the functional ramifications of a given arrangement

of wing veins, it is necessary to consider additional aspects of wing
morphology beyond the topology and thickness of veins (3). In
odonates, for instance, wing veins are tubular struts composed of
several different layers of cuticle (48) that are joined together in a
variety of mechanically complex ways (9, 55–58). It will be in-
structive to integrate large-scale vein arrangement data with
functional manipulations of wings. The biomechanical effects of
venation patterns can be assessed from another perspective as
well: recent work on miniature winged robots has used natural
veined insect wings as models for biomimetic wings (59, 60). The
present study, by illuminating principles of geometric wing design,
could guide efforts to generate life-like, synthetic vein patterns,
and in turn be used to examine how vein patterns affect the me-
chanical properties of a wing.
A variety of open questions in morphological evolution could be

addressed using the approach we take in the present study. Phe-
notypic description is typically the most expensive aspect of a
project and usually requires a great deal of expertise (61, 62). The
centuries-long documented history of life science scholarship is
rich with observations that were recorded as images, but they
remain mostly untapped for large-scale investigations, partly be-
cause phenotypes have not been recorded in a precise, machine-
parsable manner (63). We suggest that the method used here
could be applied to many biological questions that are answerable
with existing image-based data. To demonstrate the possibilities of
this approach, we apply our quantification tools to diverse pat-
terned tissues (SI Appendix, Fig. S3), finding that it enables us to
effectively characterize each of them. This offers a fruitful avenue
for future research.

Methods
Microscopy and Collecting Published Images. Wings were dissected from speci-
mens and imaged with a flat-mount scanner, macroscopic photography, or
dissection microscope. Each technique produces a 2D image of the 3D wing.
Since some wings are corrugated (10, 64, 65), capturing them in 2D introduces
a slight distortion to vein domain shapes. For typical vein domains, this dis-
tortion results in an underestimate of vein domain area and circularity by
1–5% (SI Appendix, Figs. S8–S10). When measuring the thicknesses of pri-
mary veins, we found that lighting conditions could affect the measured
lengths by altering the apparent thickness of a vein. To compare the data
from multiple species, we plotted relative vein thickness, calculated by
subtracting the smallest vein thickness from every measured thickness on
that wing. Images in electronic publications were extracted digitally; im-
ages in printed publications were digitally scanned (40, 45, 66–68).

Segmenting Wing Images and Calculating Vein Domain Attributes. Segmen-
tation of wing images was accomplished with a code based on the fast
marching method with a variable background velocity field (69, 70). The
segmented images were used to make a polygonal representation of each
vein domain, which provided two advantages over the segmented image: (i)
domain perimeter was a more rigorously defined quantity, and (ii) geo-
metric computations were less sensitive to segmentation-related noise.
Segmented wing images are available for all wings examined in this paper.
See https://github.com/hoffmannjordan/insect-wing-venation-patterns.

Full methods are available in SI Appendix. This includes mathematical
details on calculating wing attributes, simulating secondary veins, mea-
suring primary vein thickness, and validating the use of wing tracings from
published sources.
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Fig. 5. Primary vein thickness correlates with the length scale of secondary
vein spacing. (A) An example wing from the dragonfly Petalura gigantean,
with vein domains colored by proximity-weighted primary vein thickness
(see text for details). (B) P–D morphology traces of many simulated wings,
generated by drawing from the distribution of primary vein thickness vs.
vein domain density. Gray boxes show 25th to 75th percentiles for bins along
the P–D axis of simulated wings. Green traces represent the real left and
right wings of a single individual. (C) In dragonflies, there is a relationship
between the thickness of nearby long veins and the size of domains. The x
axis shows the thickness of the nearby long veins; the y axis shows the size of
wing domains. Wing images courtesy of Wikimedia Commons/John Tann.
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INTRODUCTION

Of all the multicellular species on our planet, insects are the most speciose, with

more than one million species1. Most are capable of flight owing to that remarkable

evolutionary innovation, wings which themselves show a range of hierarchies of

complexity, varying greatly in size and venation, stiffness and flexibility, pigmentation6

and flight behaviors2–5, while being subject to strong selective pressures by ecological

niche specialization7.

From a physical perspective, insect wings are slender quasi two-dimensional

membranes criss-crossed by a network of tubular veins. The patterns formed by veins

can partition some wings into just a few domains and others into many thousands.

The venation network allows for fluid and nutrient transport across the structure

while providing a mechanical skeleton that stiffens the wing3,8–10. While phylogenetic

analysis and geometric morphometrics have been deployed to understand the variation

of and selection pressures on wing morphology3,6,11–14, their scope has been limited

to a few species or orders at most. Here we complement these studies by using a

set of simple quantitative measures to compare morphological variation in wing size,

shape, and structure of insect wings across species, families and orders.

We start by assembling 555 wings drawn from 24 taxonomic orders, sampling

representatives from nearly every extant insect order. We then deploy a range

of geometrical and topological methods on these structures, and establish three

complementary approaches to quantify wing size, shape, venation complexity and

domain size and shape. Our dataset and analysis will, we hope, serve as a first step

in functional and phylogenetic approaches to test hypotheses about wing evolution

and physiology.

MATERIALS AND METHODS

Image collection and segmentation

Our dataset of wing images with representatives from most recognized insect

orders is depicted in Fig. 1. We use a combination of original micrographs (hand-

caught and donated specimens), a collection of scans from entomological literature

(1840s - 1930s) sourced at the Ernst Mayr Library, Harvard University (Cambridge,
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MA) and online through the Biodiversity Heritage Library15(see SI for details).

Entomological texts were chosen based on the quality and diversity of insects de-

scribed and how well wing shape, venation, and morphological data were represented.

This is not an unbiased sample of insects but we attempted to maximize diversity

at the order level. By incorporating newly available data16, we obtained taxonomic

coverage enriched for Odonata, a group with particularly complex wings. Insects are

referred to by their common order-level names.

To quantitatively characterize an insect wing, we first segment a wing image

using a Level-Set approach16 (see SI for details and dataset availability). Using this

polygonal reconstruction, we are able to accurately and efficiently compute many

geometric properties of an insect wing that is only possible with well-segmented

data. For each wing, we also use the connectivity of neighboring vein domains and

vertices to construct an adjacency matrix describing topological relationships between

neighboring vertices.

RESULTS

Since absolute wing size in insects is roughly correlated with body size1, we do

not consider size directly. However, using these geometrical and topological datasets,

we then calculate the basic geometric features of a wing: scaled venation length

(Fig. 2a), scaled contour curvature (Fig. 2b), and scaled venation length (Fig. 2c).

For each case, we normalize shape and wing contour to compare with a circle. We

also studied the topology of venation using methods from network analysis (Fig. 2d).

Finally, we studied the distributions of geometric domains, regions bound by veins,

in terms of two simple statistical measures (Fig. 2e): 1) Circularity (K): the ratio

of domain perimeter to the circumference of a circle with the same area and 2)

Fractional area (W ): the ratio of each individual domain area to the area of the

entire wing. Together, these metrics serve as complementary features for quantifying

the range of morphological characteristics of insect wings.

Wing shape, venation length and contour curvature

Our first morphometric feature characterizes all interior venation relative to wing

contour, in terms of the scaled wing perimeter P (contour), and the scaled interior

3
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venation network, L (which excludes perimeter). Both of these geometric features

are normalized by the square root of the wing area in order to isolate total vein

length from overall wing size (Fig. 2a). Then, we define contour, the normalized

perimeter,

P = P̃ − 2
√
π, (1)

so that a circle with unit area would have P = 0. Additionally, L, the summation

of all lengths of interior vein connectivity within the wing, yields the density of

wing venation. In Fig. 3a, we plot the scaled wing contour length L against the

venation contour P , noting that a wing at the origin (0, 0) corresponds to a circular

wing without any internal venation. We see that wings with dense venation (e.g.

locust, Orthoptera) occupy the upper middle/right sections of the graph and wings

with sparse venation (e.g. fruit fly (Diptera)) occupy the lower/left regions of the

morphospace.

Our second morphospace characterizes wing shape complexity treated in terms

of its boundary curvature κ(s) as a function of the arc-length distance from the

wing hinge. In Fig. 3b, we show a plot of wing curvature varying from wing base

(s = 0 and s = 1) to wing tip (s = 0.5) for representative wings from six orders (top

to bottom): Diptera, Plecoptera, Odonata, Neuroptera, Orthoptera, Phasmatodea.

There seems to be no particular pattern to the distribution of curvature that we can

discern.

Wing vein topology

Wing venation forms a physical network, with the intersection of veins as nodes

(Fig. 4). We use tools from network analysis17,18 to clustering the network into

communities quantifying a third major trait of a wing: a topological measure of the

complexity of venation patterns. We start by building an unweighted symmetric

adjacency matrix, A, where every nodeij = nodeji (see Fig. 2d). To partition a wing

network into clusters or communities19, we use the maximum modularity measure,

which compares a given network to a randomly generated network and is maximized

by a partition factor20 (see SI for other network versions comparison with more

methods). This allows us to determine the number and size of clusters, each of which

indicates a higher density of internal connections within a group of nodes, relative to
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connections across clusters.

We deployed simple network analysis to understand venation hierarchies and

patterns. deployed. Clustering a network into communities quantifies a third major

trait of a wing: a topological measure of the complexity of venation patterns. In

Fig. 4 we show range of venation patterns seen in wings, with sparse venation in

Diptera at one end, and the dense venation in Odonata at the other end. For wings

with sparse venation there are few clusters, e.g. Diptera, Hymenoptera, whereas

those with dense venation shows many clusters, e.g. Orthoptera, Odonata. Our

comparative network analysis is a first step in understanding how we use venation

topology as a precursor to quantifying mechanical and hydrodynamical aspects of

wings. It is an open question whether topology metrics will provide insight into wing

function.

Wing domain size and shape distribution

In addition to whole-wing topological and geometric features, we also considered

fine-grain features. We found that wings with sparse venation tend to have more

rectangular domains (Fig.5a), while wings with dense venation (Fig.5a) tend to

have higher numbers of more circular domains. In Figure 5b, we show the domain

distributions from representatives of six insect orders with varying complexities of

wing shape and venation. This morphospace quantifies domain shapes (circularity,

K), their distribution in a wing and how much area they occupy within a wing

(fractional area, W ). Within this space, domains at (0, 1) are small and circular

while domains at (0,0) are small and rectangular.

Building on the recent work16, we plotted domain shapes and how they vary in

space across the span of a wing. In Fig. 5c, we consider the proximal to distal axis (P–

D axis, wing base to tip) of the wing (similar to wing span). This axis is divided into

N = 25, rectangular bins, where each bin encompasses all domains across that chord

(distance from leading edge and trailing edge of the wing). Following the method of

Hoffmann et al, we then compute the area-weighted mean area and circularity of

all domains within each bin. Then we apply a set of normalized coordinates on this

P–D axis, through the computed domain area-circularity space, which is smoothed

with a Gaussian of width twice the number of bins (2/25 here) and rescaled by the

wing’s perimeter. Similarly, portions of the P–D curves located near (0, 1) describe

5

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/478768doi: bioRxiv preprint first posted online Nov. 26, 2018; 

75



regions of the wing that are dominated by small, circular domains while portions of

curves near (1,0) contain domains are characterized by larger, rectangular domains.

In Fig. 5a, we show that domain circularity and fractional area vary within a

wing, providing a geometrically minimal description of the internal structure of a

wing. Dipteran wings have larger, more rectangular domains, while Odonate wings

are made up of smaller, rounder domains. While sparsely veined wings comprise a

handful of rectangular domains, e.g. fruit flies (gray, Fig. 5b) and stoneflies (purple,

Fig. 5b), other species have thousands of domains. For example, species within the

order Megaloptera (Fig. 1) have large, elongate wings, but contain mostly rectangular

domains. Furthermore, we see an asymmetry in the distribution of domains, where,

as domain number increases, higher numbers of smaller, more circular domains are

found in the wing’s trailing edge.

Following the method described in Hoffman et al.16, in Fig. 5c, we summarize

the distribution of domains across the span of a wing, from the proximal to the

distal region, showing six species, each of which belongs to a different order. The

resultant J-shaped curves represent the entire distribution of domains across the

span of a wing. For a dragonfly wing (Odonata, green) the domain morphospace

includes more rectangular domains at its wing base (faded green) than at the wing

tip, where domains are more circular and more numerous (light green). In contrast,

a Plecopteran wing (stonefly, purple), has the opposite domain distribution: larger

domains (increased fractional area) and domains are more rectangular at wing tip

(dark purple) than at the wing tip. For larger, more elongate wings, rectangular

domains tend to be found near the proximal end of the wing while the distal end

tends to have smaller, more circular wing domains (Fig. 5a). For approximately 468

Odonate wings (Fig. 5b,c, green), domains near the wing base tend to be rectangular,

taking up a larger fractional area of the entire wing. Near the distal end, domains

are more circular, taking up less area. In contrast, Neuropteran wings have more

elongate and rectangular domains towards the wing tip. Some domains makeup

over 10% the total area of the wing (i.e. Diptera), while the smallest account for

only 1/10,000 the entire area (i.e. Odonata) of an insect wing. With these domain

distributions, our P-D curve morphospace (Fig. 5c) categorizes the spatial geometries

of domains across the span of a wing.

6
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DISCUSSION

Our study has assembled a large dataset of wings from across insect orders. Using

this data set, we analyzed segmented wings to create morphospaces comparing simple

topological and geometric features of the insect wing, compartmentalizing normalized

shape, size and venation structure across the insect phylogeny. By providing these

data of segmented images and adjacency matrices, our hope is that others can use

different approaches from geometric morphometrics to understand the evolution of

wing venation patterns, while also informing modeling efforts for wing flexibility9,21–23.

The morphospace of Fig. 3, parses the complexity of wing shape and venation,

characterizing contour and internal venation. Results suggest that fliers characterized

as forewing dominated tend to have more sparse venation (i.e. Diptera, Hymenoptera)

than those that are hindwing or both wing dominated fliers.

The range in shape and branching internal venation also relate to an insect’s flight

characteristics and its resistance to damage. Insects with higher numbers of cross

veins (thus higher numbers of domains), especially towards the trailing edge, are

more likely to reduce tearing and fracturing of the wing that might occur throughout

its lifespan24,25. Within Odonata, species with larger wings have larger and more

numerous domains16. While not always applicable across orders, an asymmetry

regarding domain number and size across the wing span could be beneficial; from

a structural integrity perspective, asymmetry provides fracture toughness24. Since

cross-veins effectively transfer tensile stresses to neighboring wing domains25, wings

with higher numbers of small domains (increased cross veins) in the trailing edge

could reduce damage propagation24.

Our paper is but the first step in addressing the origins and functional consequences

of insect wings, and we hope that others will take up the challenges posed by these

questions using the datasets and the simple morphometric approaches that we have

outlined.
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Supporting Information (SI)

SI Datasets

Full methods available in the SI Appendix. This includes: detail on the geometric

and topological analysis and lists of species shown in figures. Code: https://

github.com/hoffmannjordan/Fast-Marching-Image-Segmentation and https:

//github.com/hoffmannjordan/size-and-shape-of-insect-wings.
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Figure 1. Wing taxonomy: size, shape and structure Adapted from Misof et al.26,
this order-level representation of insect wing size, venation patterns, shapes and wing
domains (as defined in the figure on the right) exhibits the range and diversity of our
sampling. Insect orders labeled in light gray are not sampled or characterized as wingless
(full species list in SI). Scale bars are for wings represented on the phylogeny.
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Figure 2. Wing morphometrics We focus on broad comparative geometric and topological
components, illustrated here using as examples Diptera (Drosophila melanogaster) and
Odonata (Anax junius) wings. For geometric features, we analyze curvature, shape and
area, and internal venation. (A) Contour, κ, is given by the radius of curvature or κ−1

(where s is arc length along the wing). (B) Shape: all wings are normalized to have an area
equal to that of a circle with an area of unity (removing absolute size effects). Wing shape
is characterized by its scaled perimeter, P , where P̃ is the actual perimeter of the wing.
(C) Venation is treated as a network, and quantified in terms of the sum of its total internal
length, L, where Ni and Nj are representative nodes. We continue analyzing venation using
topological measures where (D) the wing is a network of vein junctions (nodes) and the
lengths of vein between them (edges). Lastly, we observe the geometries and distributions
of vein domains. (E) Domains are characterized by their circularity (shape relative to that
of a circle) and fractional domain size (domain area relative to area of entire wing).
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Figure 3. Wing shape, wing contour and internal venation Comparison of three
geometric traits (of all sampled orders) where (A) contour is defined using a scaled curvature
(κ) (scaled by total perimeter P ) as a function of arc length, s, where the wing base is
s = 0 and the wing tip is s = 0.5. (B). The total sum of all internal vein lengths L (scaled
by the perimeter P ), as a function of the normalized perimeter P (scaled by the square
root of the area of the wing, see text) characterizes venation density. Species (per insect
order) are represented by either circles or crosses.

13

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/478768doi: bioRxiv preprint first posted online Nov. 26, 2018; 

83



Figure 4. Wing venation network analysis A wing is a network made up of vein
junctions (nodes) and the lengths between them (edges). Using segmented wing images,
where each 2D component of the wing is mapped out, we characterize a network using a
common community detection algorithm, maximum modularity (see text for details and
definitions). Here we show a sampling of wing types and their resultant patterning of
clusters.
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Figure 5. Wing domain sizes and shapes (A) Circularity (K) and fractional area (W )
characterize the distribution of polygonal shapes that make up the vein-bounded domains
within wing (see text for definitions). (B) Circularity as a function of Fractional Domain
Size. (C), Along the proximal to distal (P–D, wing span from base to tip) axis across a
wing, we show circularity varies by fading color (lighter = wing base, darker = wing tip),
for six insect orders.
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Overview of this document

We have divided this supplement into six main sections: (1) Data collection, image processing, and

segmentation, (2) Quantitatively characterizing the arrangement of wing veins, (3) Procedure for sim-

ulating secondary vein patterns, (4) Simulation results, (5) Availability of data and code, and (6)

Acknowledgements for images obtained from published books.

1 Data collection, image processing, and segmentation

The dataset of insect wings studied in this paper is a combination of original micrographs of wild-collected

specimens and published wing tracings from the scientific literature. In this section, we describe our

techniques for acquiring those images and a custom computational method that we used to segment the

wing veins. We also show that this method is robust and effective for segmenting many different types of

biological images. Finally, we assess segmented wing images to confirm that wings from different sources

are comparable.

1.1 Original micrographs

Some specimens were collected by the authors in the vicinity of Swarthmore College in Swarthmore, PA or

the Concord Field Station, in Bedford, MA. Other specimens were donated from the Harvard University

entomology teaching collections. Insects were caught with nets, euthanized, pinned, spread, and identified.

Wings were removed with forceps at the wing hinge and then imaged with either a scanner or microscope.

Imaging with a flatmount scanner: Wings were placed under a glass slide on a film and document scanner

(CanoScan 9000F Mark II), illuminated with white reflected light, and then scanned at a resolution of

2400 dots per inch (DPI). Imaging with a microscope: Wings were illuminated with transmitted white

light and imaged with a Zeiss AxioZoom V16 microscope at 35× optical magnification. Using Zen Pro

software (Zeiss), the stage was moved to tile the entire wing with overlapping imaging positions. A
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Z-stack was captured at each position. Z-stacks were fused using the “Tiling” and “Extended Depth of

Focus” functions in Fiji/ImageJ (NIH).

1.2 Published wing images

We used Google Scholar and Web of Science to compile a maximally inclusive list of candidate books,

reviews, and field guides for Odonata. We then pared down the list to those sources that could be obtained

as a physical copy, contained descriptions of multiple species, and included detailed wing drawings that

were printed at a high enough resolution to resolve even the smallest vein domains [1, 2, 7, 9]. We

scanned each wing image from each source at 1200 DPI. In cases where there was notation on the wing

diagrams, we used Adobe Photoshop to manually remove the arrows and/or text if it was possible to

do so without disturbing the drawn wings veins. Otherwise, graphically annotated wings were discarded.

There is a highly conserved vein domain called the pterostigma that is often pigmented. We manually

filled this domain in with white pixels to ensure that it properly segmented as a wing domain. For all

published wing images, if the length of the wing was given in the text, we used it. When the length of

the wing was not listed, we used the length given in The Encyclopedia of Life [20]. When multiple wing

measurements were listed, we used the mean length.

1.3 Segmenting wing images

Naturalists have used images—drawings, photographs, and micrographs—to capture the shapes and

patterns of biological tissues for hundreds of years. Historically, measurements of morphological traits

have been made by hand, and it is especially laborious to extract phenotypes from complex biological

images in a high dimensional, quantitative way. Software-based image analysis tools have made this

process dramatically faster, but most morphological traits are still not readily quantifiable in an automated

manner.

Many diverse tissues and patterns take the form of bounded shapes on a surface, such as the edges

of cell junctions in epithelia, coat patterning in mammals, and insect wing veins. Thus, the process of

taking a bitmap image of bounded shapes and segmenting into “edges” and “background” is a common

problem in many disciplines. Several general purpose tools have been created for this purpose, such as

the widely used image processing toolbox Fiji/ImageJ or the machine learning based tool ilastik [10].

Additionally, a few tissue specific segmentation tools have been created [11, 12, 13, 14].

We found that most standard segmentation tools were ineffective for our purpose of segmenting a

wide range of images coming from different sources. In Fig. S1 we show a selection of the wing images

used in the present study, including micrographs and scans from published sources.1 Additionally, we

wanted our segmentation tool to unambiguously resolve contacts between wing domains, a capability that

is not offered by some existing segmentation methods. Therefore, to segment wing images, we developed

a custom code based on the fast marching method with a variable background velocity field [17, 18]. We

implement it using the open-source scikit-fmm python library [19] which solves the Eikonal equation

1
Note: Most images used in this study are between 2000 and 4000 pixels along the long axis.

389



Figure S1: Example wing images used in manuscript. The left hand column shows wing micrographs reprinted
with permission from [8]. Images on the right come from published sources where authors have traced wings.
Images marked with ‘+’ are from [2], p. 16, Figure 53; p. 97, Figure 587; p. 100, Figure 604; p. 134, Figure
704; p. 157, Figure 864. (c) 2006 Johns Hopkins University Press. Reprinted with permission of Johns Hopkins
University Press. Images marked ‘−’ are reprinted with permission from the artist [7]. Note that in the published
wing images, we have filled in the pterostigma domain (typically pigmented) with white pixels to ensure it is
properly segmented as a wing domain.

F (~x)|∇T (~x)|= 1 where T (~x) is the travel time from a set of pre-determined seed points, and F (~x) is a

spatially varying speed.

We begin by generating candidate seed points using either a watershed-based segmentation or

connected components after Otsu thresholding.2 Figure S2 outlines the process of our segmentation.

Panel A shows the original wing image. Panel B shows the background velocity field we construct from our

image. We threshold the original image and find connected components, each of which is given a different

random color in panel C. To generate seed points from our connected components, we only include

components that have an area of at least 30 pixels, which excludes very small components generated by

imaging noise. If a component’s dimensions are greater than 500 pixels in both x and y , we treat it as

background by randomly dropping a large number of additional seed points in it. We do this in order to

chop up the background space and ensure that wing domains do not bleed outside the wing. Remaining

connected components are treated as wing domains; the centroid of each domain is assigned a single

2Which segmentation method we use depends on the type of input image. For published drawings, we used watershed,
whereas for micrographs we used Otsu thresholding.
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seed at its centroid. Panel D shows our seed points as white crosses. From each seed point, we compute

T (~x), shown in Panel E.

We use the wing image to create a background velocity field where we set the velocity in the darkest

pixels to be 1000 times slower than in the lightest pixels. Thus, when the fronts from two different seed

points collide, they collide in the vein. This was essential as it allowed us to accurately resolve neighbor

information, something that we leverage to convert each domain shape into a polygon. This is helpful for

analyzing vein geometry, because a polygon-based representation of vein domains minimizes the effect of

pixel-scale noise on the quantitative features of domains.3 Due to imperfections in the printing process of

book images, there are occasionally very small domains that are not seeded accurately. However, when

we calculate attributes for all the domains in a wing, we weight values by their constituent domain’s area,

meaning that these seeding errors have a negligible effect.

1.4 Segmenting other biological images

We show that our segmentation method is effective on a variety of biological images in Fig. S3.

1.5 Assessing the accuracy and consistency of wing images

Since many of the images used in the present study are published wing tracings, we establish that authors

of those sources are able to accurately and consistently recapitulate the veins of wings. We do so by

comparing our original micrographs to drawings of the wings of the same species in published sources.

We also establish that the authors of our published sources do not substantially differ from one another in

their drawings of wings.

1.5.1 Comparing between original wing micrographs and published sources

In Fig. S4, we show examples of real wings we captured and imaged directly, compared to wing images of

the same species taken from published sources. We find that they are quite similar and that the drawings

accurately capture the characteristics of the wings used in this manuscript. For two examples, we show

area and circularity maps.

1.5.2 Comparing between wing images from different published sources

In Fig. S5 we compare wings of the same species from two sources. Overall, we find that the two

sources agree with one another quite well. In Fig. S6 we compare the size and circularity of domains in a

Dromogomphus spinosus from both sources.

3Segmentation imperfections along veins tend to be approximately the same thickness (a few pixels in size). Therefore,
the fractional change in properties like area and perimeter is larger for smaller domains. Converting domains to polygons
minimizes this effect.
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Figure S2: Segmentation of wing images. Panel A shows the raw image of an insect wing. Panel B shows the
background velocity field created from the raw wing image. A black pixel has a value of 0.0 and a white pixel to
have a value of 1.0. To set the velocity, the formula vi ;j = pi ;j + 0:001 is used, where the offset of 0.001 ensures
that the speed through a black vein is 1000 times slower than through free space. Panel C shows connected
components after thresholding. Points within these components are used as seeds for our fast marching method.
Panel D shows the seed points from each connected component denoted by a white cross. Panel E shows the
travel time matrix plotted on a logarithmic scale obtained after solving an equation of the form F (~x)|∇T (~x)|= 1.
F (~x) represents the speed and T (~x) represents the travel time matrix. The figures on the right (B’, C’, D’, E’)
are magnifications of the regions boxed in blue.
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Figure S3: Segmenting patterns in biology. Row A: Alligator scales. Image courtesy of Matt Eich (photogra-
pher) [32]. Row B: Developing ventral epidermis on an embryo of Drosophila melanogaster. Fixed and stained
to show adherens junctions, following immunohistochemistry methods described in Simone and Dinardo (2010)
[33]. Row C: Abdominal scale imprint of a Trachodon. Image courtesy of Wikimedia Commons/Henry Fairfield
Osborn [34]. Row D: Giraffe Image courtesy of Public Domain Pictures/Petr Kratochvil [35]. Row E: Reticulate
whipray. Image courtesy of Krystof Tichy (photographer) [36]. First column shows the input image, the second
column shows the segmented image with domains colored randomly, the third column shows the relative area of
different regions, the fourth column shows the circularity, and the fifth column shows neighbor number.
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Figure S4: Comparing original micrographs and published wing images. Panel A shows a series of original
dragonfly wing micrographs (on the left) and published images (on the right). Panels B and C show the
segmentation of two different wings, colored by size and circularity, following the color scales in Fig. 1 of the main
text. Reprinted with permission from Michael L. May (artist) [1]. From [2], p. 16, Figure 53; p. 97, Figure 587; p.
100, Figure 604; p. 134, Figure 704; p. 157, Figure 864. (c) 2006 Johns Hopkins University Press. Reprinted with
permission of Johns Hopkins University Press.

2 Quantitatively characterizing the arrangement of wing veins

2.1 Calculating circularity

For each wing polygon Pi , we compute its circularity by computing the length of its perimeter (@i ) and

its area (A(Pi )). Defining the radius of a circle with the same perimeter to be Rc = @i=(2ı), we can

then write that the area of the equivalent circle is Ac = R2
cı. The circularity is then given by

C(Pi ) =
A(Pi )

Ac

: (1)
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Figure S5: Comparison of wing images from two sources. Plot showing the number of wing domains that are
present in equivalent wings of the same species from the two sources used [1, 2].
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Figure S6: Comparison of a Dromogomphus spinosus wing from two sources. The original wing (top), the
wing with domains colored by size (middle), and the wing with domains colored by circularity (bottom). Reprinted
with permission from Michael L. May (artist) [1]. From [2], p. 16, Figure 53; p. 97, Figure 587; p. 100, Figure
604; p. 134, Figure 704; p. 157, Figure 864. (c) 2006 Johns Hopkins University Press. Reprinted with permission
of Johns Hopkins University Press.

2.2 Vein domain area and circularity for dragonfly and damselfly forewings

In Fig. S7 we show the area and circularity of domains in the smallest, median, and largest dragonfly and

damselfly wings.

2.3 Correcting for corrugation

Our original micrographs and the published wing tracings are both two-dimensional projections of wings

that have some three-dimensional corrugation [21]. This results in distortion to the observed shapes,

illustrated in Fig. S8. Here we attempt to bound the effect of this corrugation on our quantification of

domain sizes and shapes. We consider the effect of corrugation slope on fractional area and circularity.

We consider “worst case” scenarios, but most of the wing does not have extreme corrugation [21, 22]. In

fact, near the tip of the wing, corrugation is nearly absent [22].

2.3.1 The effect of corrugation on area measurements

Let us consider a rectangle with sides of lengths a and b. We can write that b = ‚a where ‚ represents

the aspect ratio of the rectangle. We observe the rectangle as having Ao = ‚a2. Suppose that the wing
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Figure S7: Dragonfly and damselfly wings with domains colored by area and circularity. The smallest,
median, and largest dragonfly and damselfly wings in our dataset of segmented wings. Scale bar represents 5 mm
for all images.

is angled in the direction along the side ‚a. The true length of this side is then h = (‚a)=cos(„). We can

write

At = a

„

a‚

cos „

«

(2)

as the true area. The ratio of the observed area to the true area is therefore

Ao

At

=
‚a2

a
` a‚
cos „

´ = cos „: (3)

In Fig. S9 we plot the distortion of area that results as a function of „. Note that for most domains, the

angle is between 0◦ and 5◦. Very few domains lie on corrugations that are angled more than 20◦ (see the

profiles in Fig. S9 Panel B).
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Figure S8: Corrugation of a wing. Odonate wings are corrugated. Here we show a top-down projection (top
row) and side-on view (bottom row) of a corrugated sheet. From the top-down views, the squares appear
distorted along the axis of corrugation. This distortion is investigated in Figure S9.

2.3.2 The effect of corrugation on circularity measurements

Here we consider how various angles of corrugation would affect the circularity calculation of wing domains

that have the shape of a regular triangle, square, pentagon, and hexagon. We also consider the effect

on a rectangular domain with aspect ratio 4. In Fig. S10 we show how the circularity of various shapes

changes as a function of „.

We find that for the range of angles that we consider, the effect on circularity is quite small. For

the entire range of shapes we observe, deviations of 0–10◦ of the measured circularity differ from true

circularity by less than 1%. Larger deviations in angles only occur in a very limited region of the wing

and still result in only minor deviations. The most extreme effect that we see is for a relatively oblong

rectangular shape where the change is 11%. For a pentagonal shape, the change is 1.4%.

2.4 Displaying vein domain shape and size features for a single wing

Vein domain shapes and sizes vary across each wing. In an effort to capture this diversity and compare

among wings, we plot domain data from whole wings in several different ways. We use wing maps with

each domain colored in according to its area or circularity (e.g. Fig. 1B, C in the main text). We also show

single-wing scatter plots with each point representing a single domain from a wing, alongside marginal

distributions of circularity and area (e.g. Fig. 1C in the main text). We show wings with data grouped

by wing region (e.g. Fig. S33). We also plot vein domain features, averaged within bins that span a

particularly important biological axis in wings: the proximal-to-distal axis.

2.4.1 Proximal-to-distal morphology traces

The proximal-to-distal (P–D) axis is a well-defined and widely studied axis of insect wings. The P–D axis

begins at the hinge where the wing joins the body wall and extends to the farthest tip of the wing. It is
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Figure S9: Effect of corrugation on area. Panel A shows the distortion of area that results from varying its
corrugation slope „ for a rectangular object. Note that the curve plotted is merely cos(„). Panel B shows cross
sections of the wing where the corrugation has been measured. Angles for the most extreme cases have been
computed. The ‘C’, ‘SC’, ‘R’, ‘N’, and ‘M’ refer to the costa, subcosta, radius, nodus, and mediana primary
veins, respectively. Republished with permission of Company of Biologists, from [21]; permission conveyed through
Copyright Clearance Center, Inc.

often used as a way to orient morphological or biomechanical attributes of a wing [39, 40, 42, 43]. It has

also been identified as a key axis of tissue specification in the wing [38, 41]. In this study we use “P–D wing

traces” to summarize how vein domain characteristics vary along the long axis of the wing, which enables

us to compare among distantly related insects. It also provides results that can be directly compared to

much of the existing morphological, biomechanical, and developmental literature on insect wings. This

approach necessarily obscures differences between domains that are in the same position along the P–D

axis. Therefore, this is certainly not the only way to summarize vein domain characteristics within a wing.

It is nonetheless effective at capturing similarities and differences among insects that are both closely and

distantly related. For readers that are interested in comparing species without the dimensional reduction of

P–D traces, we have included complete sets of domain attributes for a wing from each odonate species that

we study in this paper at https://github.com/hoffmannjordan/insect-wing-venation-patterns.

To construct a P–D wing trace, we represent a wing as a curve through area–circularity space as

one moves from the hinge at the wing base to the farthest tip of the wing. To do this, we begin by

orienting the wing with the main principal component along the x-axis. We then partition the wing into

21 equal-width rectangular bins along the long axis. We then compute the circularity of each polygonal

domain and then compute the area of overlap between the given polygon and the bin we are considering.

That is, to calculate the mean circularity of slice i , which we denote Si , we compute

1
P

Pj
Area(Si ∩ Pj)

X

Pj

Area (Si ∩ Pj) C(Pj) (4)

where the sum is taken over all polygons Pj . This produces a smoothly varying mean circularity as we

move along the long axis of the wing. For polygon Pi , we obtain the area fraction fi that overlaps with
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Figure S10: Effect of corrugation on circularity. For a series of shapes and angles, the circularity of each
polygon is shown. Column A shows a rectangle with aspect ratio 4. Columns B–E show a triangle, square,
pentagon, and hexagon. Even for the most extreme corrugation slopes, the error in calculated circularity is quite
small.

the bin. We construct the vector of all area fractions in bin i , denoted ~Fi . We also have the vector of all

circularities ~C and all areas ~A. For each bin, we compute

(~Fi · ~A; ~Fi · ~C) (5)

giving us the weighted mean area and the mean circularity of the wing domains in the region.

2.5 Comparing forewings and hindwings of the same species

As many workers have observed, forewings and hindwings are more similar to one another in damselflies as

compared to dragonflies. In Figure S11, we show the forewing and hindwing of two example dragonflies

and damselflies using P–D traces, with images of the wings themselves inset. As expected, the difference

between P–D traces of damselfly forewings and hindwings is less than that of dragonflies.

2.6 Intraspecific and intra-individual wing comparisons

Within our dataset, we have 3 sets of Sympetrum rubicundulum hindwings. Each hind wing was imaged

and segmented to allow us to look at the variation in P–D trace within an individual compared to the

variation within a species. In Fig. S12, we show the left/right traces for each individual (Panel A) as well

as the variation between the different individuals (Panels B–D). With only three individuals, we cannot

conclude that we have effectively captured intraspecific variation, although it is a promising avenue for

future work.

In Fig. S13, we show all vein domains in our dataset (over 150,000). Additionally, we show how P–D

trajectories vary for the largest and smallest three damselflies and dragonflies in our dataset.
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Figure S11: Comparing forewings and hindwings of the same species. A comparison of the forewing and
hindwings of two dragonflies (on the left) and two damselflies (on the right). Reprinted with permission from
Michael L. May (artist) [1]. From [2], p. 85, Figure 353; p. 119, Figure 506; p. 196, Figure 1138; p. 209, Figure
1211. (c) 2010 Johns Hopkins University Press. Reprinted with permission of Johns Hopkins University Press.
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Figure S12: Variation in P–D traces within individual/species. Panel A shows the P–D traces for the left/right
wings of three individuals. In Panels B–C just the left/right wings are shown. In Panel D, all wings are shown, the
left wings in purple. The six wings are shown on the right.

2.7 Domain features of dragonfly in genus Epiophlebia

We computed domain features from a drawing of Epiophlebia superstes. This genus of dragonfly is of

particular interest, as they have the oldest last common ancestor with the rest of the dragonflies. We

plotted its P–D trace alongside distributions of traces from dragonflies and damselflies. We used an image

from Tillyard [31]. Interestingly, the trace through area–circularity space of the Epiophlebia appears to be

intermediate between the distributions of damselflies and other dragonflies, as shown in Fig. S14.

2.8 Other quantitative measures of wings

2.8.1 Interior angle distribution

Different regions of the wings are bound by a different number of primary veins. Between two veins

that are relatively close together, we typically observe rectilinear domains that form a brick-like pattern.

As these long, relatively straight veins diverge, domains have more freedom in forming complex angle

distributions. We choose four different wings (two dragonflies and two damselflies) and randomly selected

a set of domains bound by zero, one, and two primary veins. For each of these wing domains, we measured

all internal angles and in Fig. S15 we show smoothed angular distributions.

2.8.2 Domain sizes in a region

In Fig. S16, we show four wings (two dragonflies and two damselflies) and how each domain’s area

compares to the mean area of all neighboring domains. We see that there is a very strong positive

relationship.
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Figure S13: Variation in domains and P–D traces. Panel A shows area versus circularity for all vein domains
in our dataset (n > 150,000); dragonflies in green and damselflies in purple. Panels B, C show P–D traces of the
three largest and three smallest damselflies B and dragonflies C.

2.8.3 Unconnected vein ends

We observe very few domains that contain incomplete veins. We take a selection of wings imaged directly

by the authors and count how many unconnected ends we see in the table below.

2.8.4 Comparison of the number of domains in corresponding regions in left and right wings

In Fig. S17, we count and highlight the number of wing domains in corresponding regions. Shown are

the left and right forewing and hindwing from the same individual (Erythremis simplicicolis, shown as an

example).

3 Procedure for simulating secondary vein patterns

Here we include further details about the vein simulation procedure that is described in the main text and

schematized in Fig. 3. Below we have included a subsection for each step of the procedure:
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Figure S14: Wing trace of an Epiophlebia. Panel A shows the drawing of a Epiophlebia superstes from
Tillyard [31]. Panels B–C show a segmented wing with domains colored by area and circularity. The wing is 31
mm long. Panel D shows the curve of the wing (in blue) juxtaposed next to the distributions of wing traces of
dragonflies and damselflies.

Aeshna constricta 1
Aeshna verticalis 2
Epitheca cynosura 0

Erythemis simplicicollis 0
Somatochlora tenebrosa 1

Sympetrum rubicundulum 0
Sympetrum vicinum 0

Table 1: Number of unconnected vein ends

• Identifying primary veins for the species we will simulate

• Transforming the adult wing to the shape of its former wing pad

• Seeding inhibitory centers on the wing pad and evenly spacing them using Lloyd’s algorithm

• Calculating secondary vein placements as the Voronoi tessellation of the inhibitory centers

• Transforming the wing pad back to the shape of the adult wing

3.1 Identifying primary veins for the species we will simulate

When we simulate secondary veins, primary veins are treated as fixed boundaries within which a stochastic

process operates. Thus, the first step of our modeling procedure is to identify the primary veins. We

manually identify primary veins, based on three sources of information: (1) overlap among left–right wing

pairs, (2) morphological criteria based on published anatomical literature, and (3) conservation of relative

positions for consensus vein identifications in the published taxonomic literature. The specific details of this
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Figure S15: Interior angle distribution of domains. Smoothed histograms showing the interior angle distributions
of domains bounded by primary veins on zero, one, or two sides (magenta, green, and blue, respectively). Shaded
region represents the 1st and 3rd quantiles.

literature-based process for primary vein identification is described in the section below (Section 3.1.1). We

then describe two computational alternatives that would allow one to identify primary veins without relying

on published anatomical descriptions (Section 3.1.2). We show that these alternatives are not sufficiently

effective for the present dataset, but we argue that they should be practical with datasets that include

more example wings from a given species. Finally, we show that our technique for simulating secondary

veins produces life-like vein patterns even when we vary the primary vein arrangements, demonstrating

that our vein simulation results are not highly sensitive to primary vein identification (these results are

discussed in Section 4.2.2 and shown in Fig. S34).

3.1.1 Literature-based approach for identifying primary veins

As described in the main text, we define a “primary vein” as any wing vein that has a matching counterpart

on the opposite wing of the same individual and on the wings of other individuals of the same species.

Put more simply: primary veins are all the veins that are conserved at the species level.

Thus, the set of primary veins includes long connected segments of veins that are largely collinear, as

well as a few conserved cross-veins. Conversely, we define a “secondary vein” as any wing vein that does

not have a consistently identifiable counterpart on the opposite wing of the same individual and on the

wings of other individuals.4

4Naming conventions for insect wing veins has been a matter of considerable debate in the literature because assigning a
label to a specific vein is sometimes an act of proposing (or supporting) a hypothesis about evolutionary homology. In
this study, we use terms with no intended homology-related implications. For instance, we use “wing vein” to refer to any
thickened, strut-like structure in the wing, irrespective of its developmental or evolutionary origin. For the extant taxa
included in this paper, the wing veins that we examine also happen to be pigmented and opaque, but we do not consider
these traits to be essential attributes of a wing vein. The terms “main vein,” “longitudinal vein,” “cross-vein,” “transverse
vein,” “fixed vein,” and “variable vein”—not to mention “branch,” “sector,” and numerous taxon-specific terms—have been
employed in the literature to refer to subsets of wing veins that may differ from the subsets of veins that we refer to as
“primary” and “secondary” veins. For a more comprehensive discussion of wing vein terminology, we refer readers to the
many excellent treatments of the topic [3, 4, 5, 6].
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Figure S16: Domain size compared to mean neighbor domain size. For each domain in one of four wings,
shown on the right, we compute the area of the wing domain. The x-axis shows the area of a given wing domain
and the y -axis shows the mean area of all neighboring domains. Reprinted with permission from Michael L. May
(artist) [1]. From [2], p. 85, Figure 353; p. 119, Figure 506; p. 196, Figure 1138; p. 209, Figure 1211. (c) 2010
Johns Hopkins University Press. Reprinted with permission of Johns Hopkins University Press.

The simplest way to identify a primary vein is to examine a number of wings from the same species

and find the veins whose relative positions can be unambiguously matched across all the wings of that

species. Fortunately, that is precisely what entomologists have been doing for over a century. The set of

well-conserved veins has been described in many sources [1, 2, 3, 4, 5, 6, 9, 15, 16]. This work has shown

that for the majority of primary veins, they are conserved across a wide diversity of species, and even at

the level of taxonomic family and order. This previous research has also shown that conserved veins share

many morphological features as well: they form the peaks and troughs of wing corrugation [21, 22], often

take on a pattern of collinear segments [1, 3, 4, 5, 16], and bear microscopic cuticular structures that are

either different from or absent in the rest of the wing [8, 15, 44, 45].

First, we overlap and align the left and right wings from the same individual; see examples in Fig. S25.

Then, we manually identify vein placements that are unambiguously shared between the overlapping

wings. In cases where veins are close, but not precisely overlapping, we rely on the expertise of previous

entomologists to resolve ambiguities. We do so by only identifying a candidate vein as a primary vein

if it has the position and/or neighbor collinearity of previously described, well-conserved veins. Finally,

we connect all primary veins to form closed shapes by connecting each unconnected end to its closest

neighbor.
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Figure S17: Number of domains in regions from the left and right wings of a Erythremis simplicicolis.
For a selection of regions bounded by primary veins, we show the number vein domains in the corresponding
regions of paired wings. Even in the same individual, corresponding wing regions on the left and right wings have
a variable number of domains.

3.1.2 Automated approaches for identifying primary veins

Here we discuss two approaches that we have implemented to automatically detect of primary veins.

The first method is premised on the fact that primary veins are generally connected to other collinear

primary vein segments. Therefore, we score segments based on their collinearity with their neighbors. For

this approach, we take one focal vein segment at a time, and for each of its two ends we consider each

adjoining vein segment. For each of these, we compute the correlation between the focal vein segment

and each of its connected neighbors. We take the maximum value of these correlations at each of the two

ends, and discard the smaller values. This results in two correlations. Finally, we compute a “primary vein

score” for the focal segment. This is the sum of 0.9 times the larger correlation and 0.1 times the smaller.

This weighting scheme was chosen so that intersections that end in a ⊥ do not get discarded. In Figure

S18 we show the results of this procedure as applied to the left and right wings of a single individual,

wherein vein segments with a “primary vein score” over 0.75 are displayed. In Figure S19 we mirror the

left wing onto the right wing to assess whether the veins are shared. We find that when we use this

approach on a single left–right pair of wings—but without using any additional additional information

from the published literature—we identify long connected primary veins effectively. However, there are

also many other scattered, short segments that meet the straightness criterion, but whose positions are

rarely shared between the left and right wings. It seems likely that most of these are collinear with their

neighbors due to chance alone. If one had access to a larger set of wings, by comparing across more

individual wings, one could exclude non-shared segments.

Therefore, we developed an alternative automated approach for identifying primary veins based on

correlations of vein segments between multiple wings. After aligning two wings of the same individual, we

use a sliding window to calculate the correlation between both wings in a box centered at each pixel. The

box side length is allowed to vary across the wing, so that it is always proportional to the local domain
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Figure S18: Vein correlations Each vein segment has been assigned a “primary vein score” based on its collinearity
with its neighbors. Those that have a correlation over a critical value (0.75) are shown in both the left and the
right wing (blue and black, respectively).

Figure S19: Vein correlations, aligned. We flip the left wing onto the right wing where the only veins shown are
those that meet a straightness criterion.

size (square root of area). This accounts for the fact that domain size itself varies across the wing. Then,

we take the maximum correlation at each pixel and multiply this resulting matrix by a binarized input

vein matrix, which gives a correlation value to each vein pixel. These can also be treated as “primary vein

scores,” assigned at the pixel level. Preliminary results are shown in Figure S20. The result is that veins

in an arrangement that is conserved over multiple wings have larger correlation values than those that are

not conserved. In the present study we only have one or at most a few wings for each species, so this is

not an approach we use for the simulations included in this paper.

Both of these automated approaches require multiple individuals of a given species. In the future, either

of these techniques (or perhaps both in combination) could be a promising avenue for high-throughput

analysis of even larger wing datasets.

3.2 Transforming the adult wing to the shape of its former wing pad

In Fig. S21, we show the result of our model without properly estimating the shape on the wing pad.

Once primary veins have been identified, we estimate the shape of the wing earlier in development—that

is, when it was a wing pad and the veins were only beginning to form. The geometry of the wing that we

observe is not the same as the geometry of the developing wing. The vein arrangement that formed on

the nascent wing pad grows and distorts as the wing itself grows [1, 3, 37].5 We approximate the effects

5As described in the main text, we outline the development of wing in broad strokes by supposing that all the primary
veins form first, followed by secondary veins. This is almost certainly an oversimplification, but it is suitable for our general
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Figure S20: Local correlation of two wings. We flip the left wing onto the right wing and determine the local
correlation of vein arrangements. Regions with higher correlations are brighter colors than those with smaller
correlations.

of this process of anisotropic growth by a process of maximization of the circularity of vein domains.

3.2.1 Remapping a wing to maximize area-weighted circularity of polygonal domains

In our minimal model of vein patterning, we suppose that inhibitory centers emerge stochastically and

equilibrate in space, producing a roughly even spacing. These secrete some diffusible signal. Veins form at

local minima of this inhibitory signal. Based on this model, the most likely geometry of veins on the wing

pad is an arrangement with maximally circular polygonal domain shapes. We consider a transformation

that will map a coordinate (x; y) → (x ′; y ′) where the unprimed coordinates represent what we observe

and the primed coordinates are transformed such as that the mean polygon is most circular.

Let us represent an (x; y) coordinate as ~x . We write a transformation

~x ′ = ~x +
N
X

i=0

N
X

j=0

~̧ i ;jTi

„

x

xmax

«

Tj

„

y

ymax

«

(6)

for some integer N (we use N = 3), where we want to find the two-vectors ~̧ i ;j to maximize our objective

function. Ti represents the i-th Chebyshev polynomial. When all ~̧ i ;j are ~0, we have the identity mapping.

We divide by xmax and ymax in x and y to ensure that the x and y coordinates are bounded by −1 and 1.

model. An alternative is that secondary vein inhibitory centers develop after their adjacent primary veins, but before the
primary veins have completed their development. We show in the main text that our model can recapitulate secondary vein
patterns in Odonata, Orthoptera, and Neuroptera. This suggests that although these distantly related taxa have differing
vein ontogenies, they share essential features that are consistent with the assumptions of our model. See [3, 37] for a more
detailed discussion of the development of diverse insect wing veins.
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Figure S21: A model for simulating secondary vein patterning. Panels A-C show a process for simulating
secondary veins without taking tissue growth into account (D. spinosus shown as an example). Gray domains
in C are bounded on all sides by primary wing veins; these are not simulated in the model. Panel D shows P–D
morphology traces for the simulated wing and a left-right pair of real wings.

To compute the ~̧ i ;j , we want to maximize the area-weighted circularity, where we weight the circularity

of each domain by its original area. However, in order to keep the resulting wing pad shapes consistent

with examples in the biological literature (see references 34, 36, 38, 39, 40, 41, and 42 in the main text

for examples), we impose the constraint that the resulting shape be convex. Since the wings are generally

long and thin, we found that maximizing area-weighted circularity alone would lead to a poorly constrained

degree of freedom corresponding to a bending mode along the proximal-to-distal axis. Requiring that the

shapes be convex is therefore a biologically reasonable way to fully constrain the maximization problem.

To penalize shapes that are not convex, we multiply the circularity term by a factor ‚ that we define to be

‚ =

P

i Areatransformed(Pi )

Area(Convex Hull)
: (7)

In the above equation we define the convex hull to be that of the entire wing. In Figure S22, we investigate

how different methods of including the ‚ term affect the resulting shape. When the term is omitted, the

bending mode along the P–D axis is visible. We choose to use a linear term, but find that the specific

exponent of ‚ has negligible effect on the wing pad shape that results. For our optimization routine, we

want to find

max ‚
X

i

(Areaorig(Pi )Circtrans(Pi )) : (8)

In the expression above, Areaorig(Pi ) represents the original area of polygon Pi and Circtrans(Pi ) represents

the circularity of the transformed polygon Pi . While we can no longer easily differentiate this quantity,

by artificially perturbing each component of the ~̧ i ;j we are able to estimate the derivative. We use

our numerically computed gradients for the Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization

method [29].
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‚ Area divided by that of convex hull

Areaorig(Pi ) Original Area of Polygon i

Circtrans(Pi ) Circularity of Transformed Polygon i

Figure S22: The effect of gamma. We define ‚ to be the ratio of the total area of the wing domains to the
convex hull enclosing the wing domains. In our optimization routine we incorporate a multiplicative factor of ‚1

into our objective function. Without a ‚ (or equivalently, with ‚0), we get shapes that are not biologically realistic.
In this figure we show ‚0 on top, ‚0:5 second from the top, ‚2 in the middle, and ‚3 second from the bottom. On
the bottom, we overlay the final three shapes. We find they are all quite similar and the choice of exponent is not
crucial for our analysis.

3.2.2 Comparing circularity maximization to biological data

In order to assess the accuracy of our circularity maximization routine for estimated wing pad shape, we

use an example published wing pad for hindwing of a developing Anax junius [1]. A tracing of the wing

pad is shown in Figure S23. Many primary veins are visible on the pad, with the identities of specific wing

morphologies indicated by the author. We begin by tracing primary veins that are identifiable on both the

wing pad and the adult wing. Next, we randomly select 15,000 pixels that belong to veins from both

the observed wing and the image of the wing on the wing pad. To compute the mapping, we write a

transformation of the form in Equation 6. We denote points within the veins of the wing pad as pi and

points in the (transformed) observed wing as qj . We can then write the cost function as

cost =
X

i

minj(d(pi ; qj)) +
X

j

mini (d(qj ; pi )): (9)
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Figure S23: Comparing circularity maximization with landmark-based growth of the wing pad. Panel A
shows the developing wing pad of (Anax junius), as adapted from [1]. Panel A’ shows a wing image of an adult
from the same species. The adult wing is 50 mm long. Corresponding vein regions are marked in black. Panel B
shows the wing veins we marked in A’ in blue along with landmarks identified from the wing pad in black. Panel
C shows the result after using the landmarks to map the wing pad onto the adult wing. The transformed wing pad
landmarks are shown in green. Panel D shows the relative local growth in the wing pad, mapped onto the adult
wing, as estimated via the circularity maximization routine described in the text. The colormap represents the
estimated relative local growth of the wing. Blue domains are estimated to grow the least, while magenta grows
the most. Panel E shows the relative local growth of the wing, as estimated from landmarks on the wing pad and
the adult wing. Scale bar in Panel A’ applies to Panel D and E. Panels B and C are unscaled. The original source
for Panel A [1] did not include scale information; given that we are estimating relative growth, the absolute scale
is not needed.

We include two symmetric terms such that we minimize the distance between points from the transformed

wing to the wing pad and from the wing pad to the transformed wing (this ensures that all points are not

collapsed in space). The procedure and its results are outlined in Fig. S23, Panels A–C.

We assess the accuracy of our circularity maximization routine for estimating the wing pad by

comparing the wing-to-pad transformation for the estimated wing to the transformation for the true wing.

For each wing domain, we compute the fractional area before and after the deformation. The results are

shown in Fig. S23 Panel D. On the whole, we found that our circularity maximization routine broadly

captures patterns of anisotropic growth of the wing. Specifically, we find that base of the wing grows

relatively less that the rest of the wing during development, while other parts of the wing get relatively

larger; this pattern is recapitulated with the circularity maximization routine.
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3.3 Seeding inhibitory centers on the wing pad and evenly spacing them using

Lloyd’s algorithm

To equilibrate seed points in space, we use an algorithm known as Lloyd’s algorithm or Voronoi Iteration [30].

A Voronoi cell is defined to be the region around a seed point that is closer to the seed than to any other

seed. Lloyd’s algorithm proceeds by iteratively moving all seeds to the centroid of their Voronoi cell.

Figure S24: Iterations of Lloyd’s algorithm. The random initial configuration (iteration 0), and iterations 1, 5,
10 and 100 of Lloyd’s algorithm. At each iteration, domains are colored by circularity (top row) and size (middle
row). The bottom row shows various reference shapes colored by their circularity.

Figure S24 shows several iterations of Lloyd’s algorithm. A random collection of points equilibrate

into an equally spaced lattice. Note that the geometry of domains around the boundary are different

from those in the interior.

In the transformed wing, we drop a number of seed points into each primary vein bound region. The

number of seeds is either determined empirically from real wings (main text, Figs. 3–4) or estimated

from the local thickness of primary veins (main text, Fig. 5); we discuss this further in the next section.

We find that the initial spatial distribution of seeds in each region does not matter at all. After iterating

their position through Lloyd’s algorithm, they equilibrate to indistinguishable distributions. The number

of required iterations varied depending on wing size and number of domains. We terminated Lloyd’s

algorithm once the mean change in seed positions dropped below 0.1% of the length of the wing.6

After updating the locations of all points, we remap the distorted wing back to the untransformed wing

geometry.

6Typically, we ran between 100 and 1000 iterations to reach the endpoint.
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Figure S25: Overlaying left/right wings of the same individual. Panel A: Dragonfly, Panel B: Neuroptera,
Panel C: Orthoptera.

3.3.1 Determining the number seed points in each region

As described in the main text, we use two approaches to determine the number of inhibitory centers

that we seed into regions bound by primary veins: (1) we use the empirical count of domains in each

region in the true wing (shown in main text Fig. 3); (2) we use information based on the thickness of

surrounding primary veins (shown in main text Fig. 5). The latter approach is described in the main text

and in further detail in this section.

Near larger domains, primary veins are thicker; near smaller domains, primary veins are thinner (see

main text Fig. 5, and additional information below in Section 3.3.2). We hypothesized that the primary

veins on the wing pad are the source of a morphogen whose concentration determines the local length

scale of the pattern generator. If so, one might expect that the thickness of the primary veins would be

positively related to the strength of the secreted signal. There is little data available on the morphology

of primary veins on the wing pad, but in one example case, we find that the thicknesses of primary veins

on the wing pad are correlated with their thicknesses on the adult wing (Fig. S26). Therefore, we use

adult vein thickness as a proxy for wing pad vein thickness hereafter.

For three different species for which we had original wing micrographs, we used Fiji to manually

measure the primary vein thicknesses in pixels (the measured primary veins from an example wing are

shown in Fig. S27 Panel A) across the wing. Then, for each wing domain centroid we compute the

distance to each primary vein. We take a weighted average of primary vein thickness, where we weight

each thickness by

weight = exp

„

−
r

0:515663 mm

«

(10)

where r is the distance from the centroid of the domain in consideration to the closest point on the

primary vein. We also introduce a scale factor to convert the pixel value to a width in mm. This results in

a locally weighted “primary vein thickness” (in mm) for each domain (Fig. S27 Panel B). We emphasize

that the exponential decay function in Eq. (10) is a modeling assumption, and that other functional
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Figure S26: Vein thickness correlates between wing pad and adult wing. Various non ambiguous vein
thicknesses were manually measured in ImageJ/Fiji on the wing pad and on the adult wing. Pixel values were
rescaled so the wings were the same size. The correlation coefficient is 0.7246.

forms, such as a Gaussian decay, exp(−r2=L2) could be used. We suggest that an exponential decay is

a reasonable choice, since it is the steady-state solution for a signal that is diffusing from a vein and

decaying with a constant rate. We expect that our results are insensitive to the precise choice of this

decay, but this could be investigated further in future work. The pooled data from three example species

is shown in Fig. S27 Panel C.

We use the empirical relationship between primary vein thickness and domain size (Fig. S27 Panel C)

to determine the number of inhibitory seeds in each wing region for a species that was not included in

our initial dataset of primary vein thicknesses. We measure the primary vein thicknesses of the new wing,

and then randomly draw domains from the thickness distribution shown in Fig. S27 Panel C until the

cumulative domain area exceeds the true area of the region. This results in a simulated wing venation

pattern whose circularity-area P–D trace is shown in gray in Fig. S27 Panel D, compared to the true left

and right wing traces shown in green.

We also evaluated the sensitivity of our simulation results to the number of inhibitory seeds, finding

that varying the number of seeds in a region alters the local domain geometries (Fig. S27 Panel D). With

too many seeds, domains are both smaller and more circular than the true wing. With too few seeds,

domains tend to be larger and more rectangular. To assess this sensitivity, and the relative success of our

model, we perform simulations where we seed each region with 0.5, 0.75, 1.25, and 1.5 as many seed

points as are found in the real wing (Fig. S27 Panel D).
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Figure S27: Primary vein thickness correlates with nearby domain sizes. Panel A shows the primary vein
segments used colored by their thickness. Panel B shows weighted local primary vein thickness (in mm) for each
domain. In Panel C we plot vein thickness against domain area for all domains. Panel D shows the P–D trace
distribution of simulations of a new wing, with seed number determined solely by measuring primary vein thickness
and drawing from the distribution of thicknesses and domain areas C. The results are shown in gray. The two
green curves represent the true left and right wings of the simulated species. We also assessed the sensitivity of
the simulation to inhibitory seed number by purposefully overseeding/underseeding regions by scale factors ranging
from 0.5 to 1.5. Wing traces from those simulations are shown in brown.

3.3.2 Scaling of vein thickness and domain size across species

As described above, there is a positive relationship between the size of a domain and the thickness of

nearby primary veins. To see the extent of this relationship across species, we use a selection of wing

images and follow the procedure described in Section 3.3.1. Results are shown in Fig. S28. We find

that subtle differences in illumination can affect the measured vein thickness in a wing-specific manner.

Therefore we shift all profiles towards the origin by subtracting the smallest vein thickness among all

measured veins on that wing. We then fit the relationship between domain size and vein thickness in

all wings using an equation of the form domain size = a(vein thickness)b. We report a 90% confidence

interval on a and b for each fit.

3.4 Calculating secondary vein placements as the Voronoi tessellation of the in-

hibitory centers

As described above, a Voronoi tessellation is defined to be the region around a seed point that is closer to

the seed point than to any other point. Many features of odonate wing domains are qualitatively similar
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Figure S28: Scaling of vein thickness with domain size. Left panel shows the scaling of vein thickness and
domain size for six wings (outlined in corresponding colors underneath). Error bars represent a measurement error
of one pixel. To minimize the effect of illumination on measured thickness, we shift all points towards the origin
before fitting (right panel). Fits are of the form a(vein thickness)b. 90% confidence intervals of the parameters
are given. Wing images courtesy of Wikimedia Commons/John Tann [23, 24, 25, 26, 27, 28].

to shapes that can result from a Voronoi tessellation around equilibrated points. For example, domains in

large regions are mostly hexagonal or pentagonal shapes while those in more confined regions tend to be

more rectilinear shapes (see the angle distribution in Fig. S15), and cells tend to be similar sizes to their

neighbors (see Fig. S16). In Fig. S29, we show various shapes that result from a Voronoi tessellation of

evenly spaced seeds.

Our simplified model of secondary vein development is premised on the idea that an inhibitory signal

emanates from seeds whose positions are equilibrated in space. In simulating secondary vein geometries

on the wing pad, we simply take the equilibrated seed locations in each region and calculate the Voronoi

tessellation to simulate the secondary veins.

3.5 Transforming the wing pad back to the shape of the adult wing

Once the secondary veins have been calculated on the estimated wing pad, we reverse the transformation

described in Section 3.2 to recover the shape of the adult wing. As described above in Section 3.2.2, we

find that our procedure for estimating the growth of the wing pad effectively recapitulates an example

wing pad from the literature.

4 Simulation results

4.1 Modeling a damselfly

In the main text we demonstrate simulated venation for a dragonfly, grasshopper, and lacewing. Here, we

also apply the same code to model a damselfly, Hypolestes clara. Results are shown in Fig. S30.
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Figure S29: Example Voronoi Shapes. In various geometries and densities, the Voronoi cells of equilibrated
points are shown, colored by circularity. For the case of a square, we show how circularities transform under a
shear. The bottom panel shows near-equilibrated distributions for four runs of different biologically reasonable
geometries and densities.
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Figure S30: Modeling Hypolestes clara. The model applied to the wing of Hypolestes clara.

4.2 Accuracy of vein simulations

4.2.1 Absolute and relative error of vein simulations

In Fig. S32, we compute the relative error in circularity and area between the real vein pattern and our

simulated vein pattern for an example dragonfly and damselfly. In Fig. S32, we show the relative error.

To calculate these error values, we begin by finding the length of the longest axis, L. We also subdivide

each polygonal domain into many small triangles. Each triangle vertex is assigned the area and circularity

of the polygon it comes from. We then smooth an area map and a circularity map over the entire wing,

where we use a weight proportional to exp(−di j=(0:025L)) where di j represents the distance between

vertices i and j . Consistent with the results from our P–D wing traces, we see that we underestimate the

size of wing domains near the trailing edge of the wing in both dragonflies and damselflies. As a result,

we slightly overestimate the area near the leading edge of the wing. It is worth noting that our largest

error in the dragonfly comes from a mismatch for just the largest single wing domain in the dragonfly at

the base of the wing.

We also assess the error of the simulation in each of the regions bound by primary veins. In Fig. S33

we show the relative error in each region between a simulated dragonfly and damselfly. Domains that are

bound by primary veins on all sides are shown in gray.

4.2.2 Sensitivity of primary vein selection on simulated vein patterns

There is broad consensus on which veins are conserved (that is, which ones are primary veins), but there

are probably a few of cases in which the published literature includes errors in identifying veins—e.g.

secondary veins erroneously identified as primary veins—and vice versa. It is also possible that a simple

dichotomy of primary and secondary veins does not fully describe all veins on all species. Therefore, we

do not assume that our vein categorizations are perfect. In order to assess the sensitivity of our simulated
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Figure S31: Absolute error of the simulation. Smoothed area and circularity maps for a real wing (top row)
and model (middle row). The difference between these are shown in the bottom row.

results to our identification of primary veins, we take an example wing and simulated secondary veins

under different sets of primary veins.

With each set of primary veins, we use them as region boundaries for our simulation approach as

described in Section 3. Here, we assess several slightly different sets of primary vein identifications. In

one case, we use just the primary veins named in [1] (Fig. S34, top row). The simulation captures most

of wing effectively. In the middle part of the wing, however, simulated domains are slightly more circular

than in the real wing.

In second case, we adapt the findings of Appel and Gorb (2014) [15]. Specifically, they show that in

many species, long, straight veins also have microscopic cuticular structures that are shared in common

with the conserved veins defined by Needham [1, 15]. Under the assumption that shared cuticular

morphology indicates shared primary vein identity, we increase the set of primary veins using Appel and

Gorb’s findings as a guide. In doing so, we improve the performance of the vein simulation (Fig. S34,

second row).

Lastly, we show that we can randomly perturb the identifications of primary veins without severely

influencing the results of the model. As described above, our approach for simulating secondary veins

involves equilibrating the positions of inhibitory seeds in closed regions. Thus, after identifying primary

veins, we connect unconnected ends in order to close all regions. We do so by joining each unconnected

end to the closest primary vein neighbor (Section 3.1.1). In the bottom third and fourth rows of Fig. S34,

we remove some primary veins and alter how we connect unconnected vein ends. This shows that the

specifics of these choices do not greatly influence our results.

5 Availability of data and code

Integer csv files of segmented images of all data along with code used in the manuscript are freely available.

All code and data can be found at https://github.com/hoffmannjordan/insect-wing-venation-patterns.
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Figure S32: Relative error of the simulation. Smoothed area and circularity maps for a real wing (top row) and
model (middle row). The difference between these are shown in the bottom row, where percent error is plotted.

5.1 Dragonfly wing data

In Fig. S35, we show segmented and polygonized plots of every dragonfly used in the manuscript colored

by size and circularity.

A high quality version of this image is available at: http://seas.harvard.edu/~chr/wing_data/

Dragonfly_Wing_Aug_14.png [157.8 MB]

5.2 Damselfly wing data

In Fig. S36, we show segmented and polygonized plots of every damselfly used in the manuscript colored

by size and circularity.

A high quality version of this image is available at: http://seas.harvard.edu/~chr/wing_data/

Damselfly_Wing_Aug_14.png [28.4 MB]
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Figure S33: Error of the model by region. For each region bound by primary veins of a damselfly and dragonfly,
we have plotted the relative error.
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Figure S34: Effect of region boundaries on trace. Four different region boundaries and their corresponding
P–D wing traces. The wing is an Arigomphus villosipes. The wing is 32.5 mm long. In the top row, we identify
primary veins as those indicated as broadly conserved in Needham 2014 [1]. In the second row, we show veins
adapted from Appel and Gorb 2014 [15] where they assessed veins for a variety of cuticular structures and found
a subset of veins that have common features. In the bottom two rows, we begin with the set of primary veins
shown in the second row, alter some primary veins, and then randomly alter the connections formed in linking the
unconnected vein ends. The simulated P–D wing traces are shown in grey; real wing traces are shown in green.
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Figure S35: All dragonflies used in the manuscript, colored by size and circularity.
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Figure S36: All damselflies used in the manuscript, colored by size and circularity.
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Overview of this document

Here we provide an overview of the data used in the manuscript. We establish the reliability of the
collected data, which comes from a wide variety of sources. We then briefly outline the mathematical and
computational tools used in the manuscript, all of which are made freely available. Lastly, we provide the
algorithms and calculations used in the manuscript.

1 Data collection, image processing, and segmentation

The data used in this manuscript comes from a large number of different sources. A few individuals are
from original micrographs, however the majority of the data is sourced from previously published sources.
While we sampled broadly, our data was limited to those insect wings with low pigmentation, or accurate
drawings. Wing images from dense entomological texts can have have beautifully accurate wing drawings,
but not always the morphological information (i.e. size). Since we normalized for wing size, we sampled
hundreds of wings to gain insight on geometric complexity of the wings. A detailed list of sources is
provided in section 2 below.
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1.1 Original micrographs

Original micrographs of actual wings were taken using a CanonScan 9000F Mark II and then processed in
Fiji/ImageJ using the stitching and extended depth of focus tools.

1.2 Published wing images

Published wing images where either taken (1) from online resources (Biodiversity Heritage Library)[1]
or (2) from books at the Ernst Mayr Library, Cambridge, MA. For images taken from online resources,
images were contrast-adjusted with Adobe Photoshop when needed. For images taken from textbooks,
images were scanned again with the CanonScan. For insect wings represented within Odonata, segmented
images were taken from Hoffmann et al.[2].

1.3 Use of images

The supplemental material of Hoffmann et al.[2] show an extensive analysis of comparing insect wing
drawings to micrographs. The authors show that these drawings are true-to-form and accurately capture
the geometries that we are interested in.

1.4 Segmenting wing images

The segmentation of wing images was done using the code used in Hoffmann et al.[2]. This code is
available online at https://github.com/hoffmannjordan/insect-wing-venation-patterns. Due
to the increased diversity of wing domain shapes, the procedure needed to be modified to handle an
increased diversity of wing domains. Specifically, regions that are particularly non-convex need to be
properly accounted for. This was done through a combination of code changes (available online) and
by manually adding looped regions in certain parts of the wing. These looped regions serve to help in
wing domains that are not convex. A loop will not polygonize out, but allows us to add nodes when we
polygonize that would not be otherwise captured.

Wings segmented in our study range in the segmentation quality from poor to well-segmented.

1.5 Vein domain shape and size features for a single wing

After segmenting a wing, each domain is turned into a polygonal representation. This allows us to more
accurately compute a variety of statistics about the shape of individual domains, and when grouped,
about the shape of the entire wing.

2 Orders and species represented

While our data encompasses 789 wings, we represent several orders with key examples, understanding
that within an order the variation of wing venation is highly variable.
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Table 1. Insects represented in Figure 1
Species Family Order Reference
Blattela germanica Ectobiidae Blattodea [3], Pg. 126, Fig. 199
Isonychia bicolor Isonychiidae Ephemeroptera [3], Pg. 265, Fig. 264
Ogcodes adaptatus Acroceridae Diptera [4], Fig. 27
Merope tuber Meropiedae Mecoptera [3], Pg. 305, Fig. 317
Anaea archidona (Hewitson) Nymphalidae Lepidoptera [5], Plate 1, Fig. 1
Costora iena Mosley Sericostomatidae Trichoptera [6], Pg. 47, Fig. 23
Paramigdolus tetropioides Vesperidae Coleoptera [7], Pg. 140, Fig. 172
Stylops crawfordi Pierce Stylopidae Strepsiptera [8], Plate 1, Fig. 5b
Steniolia duplicata Crabronidae Hymenoptera [9], Plate 1, Fig. 8
Paracaecilius anareolatus Caeciliusidae Psocodea [10], Pg. 499, Fig. 1
Forficula auricularia Forficulidae Dermaptera [3], Pg. 295, Fig. 305
Zorotypus hubbardi Caudell Zorotypidae Zoraptera [11], Pg. 96, Plate 6
Schistocerca gregaria Forskal Locustidae Orthoptera [12], Fig. 4
Eusthenia spectabilis Eustheniidae Plecoptera [3], Pg. 247, Fig. 246
Raphidia adnixa Raphidiidae Raphidioptera [3], Pg. 173, Fig. 168
Zootermopsis angusticollis Termopsidae Isoptera [3], Pg. 132, Fig. 126
Ctenomorpha titan Phasmatidae Phasmatodea [13], Pg. 122, Fig. 46
Clothoda nobilis Clothodidae Embioptera [3], Pg. 265, Fig. 265
Corydalus primitivus Corydalidae Megaloptera [3], Pg. 155, Fig. 149
Cryptoleon nebulosum Myrmeleonidae Neuroptera [3], Pg. 205, Fig. 202
Anax junius Aeshnidae Odonata Salcedo
Mantis religiosa Mantidae Mantodea [14], Fig. 4
Leptocysta novatis Tingidae Hemiptera [15], Pg. 66, Fig. 14

2.1 List of species in Figure 1

Table 1 lists species in the Figure 1 phylogeny. Insects hand-caught by MK Salcedo were captured in
Bedford, MA at the Concord Field Station in 2015.

2.2 List of species for six representative wings

Table 2 lists the species of our six representative insect wings shown in Figures 2 - 5. The listed
Myrmeleontidae sp. was collected by Dino J. Martins in North Kajiado, Oloosirkon, Kenya in 2008.

Table 2. Six representative insect wings
Species Family Order Reference
Drosophila melanogaster Drosophilidae Diptera [16], Pg. 166
Acroneuria xanthenes Newm. Acroneurinae Plecoptera [17], Plate 16, Fig. 10
Anax junius Anax junius Odonata Salcedo
Myrmeleontidae sp Myrmeleontidae Neuroptera Martins
Schistocerca americana Acrididae Orthoptera Salcedo
Ctenomorpha titan Phasmatidae Phasmatodea [13], Pg. 122, Fig. 46
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3 Quantitative characterization

3.1 Initialization

For each polygonized wing, the coordinates are rescaled such that the entire wing has area 1. This
effectively removes all size information for each wing, allowing comparison between species. In each of
the analyses discussed below, the area is first rescaled before applying the technique [2].

3.2 Network analysis

We deployed a suite of network analysis tools on the diverse set of insect wing geometries. We tried both
weighted [18] and unweighted analysis [19](techniques are described below).

3.2.1 Unweighted

After polygonizing an insect wing, we construct a list of vertices. We then construct an adjacency matrix,
M = N × N matrix of 0’s, where N represents the number of vertices. For each i ; j pair of vertices that
are connected, we set Mi ;j = 1.

3.2.2 Weighted

Applying weighted connections between nodes (vein junctions) with length, L, allowed weighting Mi ;j =

1=Ln where L is the distance between nodes i and j and n = 1; 2. We also looked at an analysis using
the resistance between nodes, L=r4, where r was computed using the 2D width from segmented images
of original micrographs (giving us an approximate thickness of veins). Rather than measure the radius of
each vein segment, we took a handful of original micrographs and measured approximately 50 cross vein
radii and their location. We then interpolated over the wing as a proxy.

3.3 Curvature

When computing curvature [20], », we do not use our polygonized wing. Instead, we use our original
segmentation and extract the boundary of the wing region. Then we orient each wing such that the
base of the wing is on the left and the perimeter of the wing runs clockwise. We choose a distance of
N = 0:02LP , and for each point on the perimeter, P , we take pi , pi−N and pi+N where L is length of the
entire perimeter. From here, we perform a linear-least square fit to a circle, where we define » = 1=R.

3.4 Internal venation length

For all nodes N, we sum up the distances between all nodes. In doing this calculation, we then subtract off
the perimeter, which we calculate separately. In the corresponding main text figure, we omit a selection
of wings to improve visibility.
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3.4.1 Proximal-to-Distal morphology traces

We characterize representatives of our large dataset using the P–D morphology traces introduced in [2].
We divide the wing into 25 equal spaced bins along the long axis of the insect wing. To calculate the
mean circularity of each slice i , which we denote Si , we compute

1P
Pj

Area(Si ∩ Pj)
X
Pj

Area (Si ∩ Pj) C(Pj) (1)

where the sum is applied over all polygons Pj . This produces a smoothly varying mean circularity as we
move along the long axis of the wing from base to wing tip. For polygon Pi , we obtain the area fraction
fi that overlaps with the bin. We construct the vector of all area fractions in bin i , denoted ~Fi . We also
have the vector of all circularities ~C and all areas ~A. For each bin, we compute

(~Fi · ~A; ~Fi · ~C) (2)

giving us the weighted mean area and the mean circularity of the wing domains in the region.

4 Availability of data and code

Integer csv files of segmented images of all data along with code used in the manuscript are freely
available. All code and data can be found at:
https://github.com/hoffmannjordan/size-and-shape-of-insect-wings. A more general seg-
mentation code can be found at
https://github.com/hoffmannjordan/Fast-Marching-Image-Segmentation.
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The unpredictable and the predetermined unfold to-

gether to make everything the way it is.

Tom Stoppard, Arcadia

3
Machine Learning & Crumpled Sheets

3.1 Background

The “big-data” requirements of traditionalmachine learning40,87,23 arenot typically avail-

able in a bench-top environment. Experiments are often laborious, and collecting data

can be a slow, tedious process. Trying to remedy this disparity has been a hot topic of

research, and has been approached frommany different angles.
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Some scientists haveworked on designing specific neural networks and regularization

methods that attempt to reduce the affects of over-fitting.139,63,101Others haveworked

on ways to best leverage a small amount of training data to extract the most informa-

tion.107,39,15,87,134,166

In rigid flat-folding, there is a very clear relationship between the ridges and valleys in

the crease network.

1. Creasescannotbeginor terminate in the interiorofasheet—theymusteither reach

the boundary or create closed loops.

2. The number of ridge and valley creases that meet at each vertex differs by two

(Maekawa’s theorem).153

3. Alternating sector angles must sum to π (Kawasaki’s theorem).153

Together, these rules necessitate that provided the ridge network, one can infer the

locations of the valleys with near certainty.

In crumpled sheets, these constraints are relaxed and therefore make the predictions

far more complicated. As a result, the degree to which the same question can be an-

swered is unclear.

3.2 Contributions

For thisproject, Iwroteall code for themachine learningaspectof theproject. WithYohai

Bar-Sinai and Shruti Mishra, I designed the figures and discussed what code should be

written. I participated in all discussions about how to use machine learning as a tool to
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try to get at the underlying physics of the system. Chris H. Rycroft wrote themajority of

theC++flat-folding code,which Imodified tohelp streamline theprocess for generating

in silico training data. Yohai and I wrote the main text and supplement of the manuscript

whichwas then editedwith the help of all of the other coauthors. As these things go, a lot

of exploratory work went into this project that didn’t make it into the paper. With Yohai

andShruti, I didpreliminarywork lookingat recurringmotifs andhowtheseevolve.90We

also tried “differentiating” the prediction to look for any underlying patterns.

3.3 Publication
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Machine learning in a data-limited regime: Augmenting
experiments with synthetic data uncovers order in
crumpled sheets
Jordan Hoffmann1*, Yohai Bar-Sinai1*†, Lisa M. Lee1, Jovana Andrejevic1, Shruti Mishra1,
Shmuel M. Rubinstein1†, Chris H. Rycroft1,2

Machine learning has gained widespread attention as a powerful tool to identify structure in complex, high-
dimensional data. However, these techniques are ostensibly inapplicable for experimental systems where data
are scarce or expensive to obtain. Here, we introduce a strategy to resolve this impasse by augmenting the
experimental dataset with synthetically generated data of a much simpler sister system. Specifically, we study
spontaneously emerging local order in crease networks of crumpled thin sheets, a paradigmatic example of
spatial complexity, and show that machine learning techniques can be effective even in a data-limited regime.
This is achieved by augmenting the scarce experimental dataset with inexhaustible amounts of simulated data
of rigid flat-folded sheets, which are simple to simulate and share common statistical properties. This consid-
erably improves the predictive power in a test problem of pattern completion and demonstrates the usefulness
of machine learning in bench-top experiments where data are good but scarce.

INTRODUCTION
Machine learning is a versatile tool for data analysis that has perme-
ated applications in a wide range of domains (1). It has been particu-
larly well suited to the task of mining large datasets to uncover
underlying trends and structure, enabling breakthroughs in areas as
diverse as speech and character recognition (2–5),medicine (6), games
(7, 8), finance (9), and even romantic attraction (10). The prospect of
applying machine learning to research in the physical sciences has
likewise gained attention and excitement. Data-driven approaches
have been successfully applied to data-rich systems such as classifying
particle collisions in the Large Hadron Collider (LHC) (11, 12), clas-
sifying galaxies (13), segmenting large microscopy datasets (14, 15), or
identifying states of matter (16, 17). Machine learning has also
enhanced our understanding of soft matter systems: In a recent series
ofworks, Cubuk, Liu, and collaborators (18–20) have used data-driven
techniques to define and analyze a novel “softness” parameter gov-
erning the mechanical response of disordered, jammed systems.

All examples cited above address experimentally, computationally,
or analytically well-developed scientific fields supplied by effectively
unlimited data. By contrast,many systems of interest are characterized
by scarce or poor-quality data, a lack of established tools, and a limited
data acquisition rate that falls short of the demands of effective ma-
chine learning. As a result, the applicability of machine learning to
these systems is problematic and would require additional tools. This
would potentially be of high value to the experimental physics com-
munity and would require novel ways of circumventing the data lim-
itations, either experimentally or computationally. Here, we study
crumpling and the evolution of damage networks in thin sheets as a
test case for machine learning–aided science in complex, data-limited
systems that lack a well-established theoretical, or even a phenomeno-
logical, model.

Crumpling is a complicated and poorly understood process: As a
thin sheet is confined to a small region of space, stresses spontaneously
localize into one-dimensional regions of high curvature (21–23),
forming a damage network of sharp creases (Fig. 1B) that can be
classified according to the sign of the mean curvature: Creases with
positive and negative curvature are commonly referred to as valleys
and ridges, respectively. Previous works on crumpled sheets have
established clear and robust statistical properties of these damage
networks. For example, it has been shown that the number of creases
at a given length follows a predictable distribution (24), and the
cumulative amount of damage over repeated crumpling is described
by an equation of state (25). However, these works do not account for
spatial correlations, which is the structure we are trying to unravel.
The goal of this work was to learn the statistical properties of these
networks by solving a problem of network completion: Separating
the ridges from valleys, can a neural net be trained to accurately re-
cover the location of the ridges, presented only with the valleys? For
later use, we call this problem partial network reconstruction. The
predominant challenge we are addressing here is a severe data lim-
itation. As detailed below, we were unable to perform this task using
experimental data alone. However, by augmenting experimental
data with computer-generated examples of a simple sister system
that is well understood, namely, rigid flat folding, we trained an ap-
propriate neural network with significant predictive power.

The primary dataset used in this work was collected in a previous
crumpling study (25), where the experimental procedures are detailed
and are only reviewed here for completeness. Mylar sheets (10 cm by
10 cm) are crumpled by rolling them into a 3-cm-diameter cylinder
and compressing them uniaxially to a specified depth within the cy-
lindrical container, creating a permanent damage network of creasing
scars embedded into the sheet. To extract the crease network, the sheet
is carefully opened up and scanned using a custom-made laser profi-
lometer, resulting in a topographic height map from which the mean
curvature is calculated. The sheet is then successively recrumpled and
scanned between 4 and 24 times, following the same procedure. The
curvature map is preprocessed with a custom algorithm based on the
Radon transform (for details, see section S1) to separate creases from
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the flat facets and fine texture in the data (Fig. 2A). The complete dataset
consists of a total of 506 scans corresponding to 31 different sheets.

RESULTS
Failures with only experimental data
As stated above, the task we tried to achieve is partial network recon-
struction: inferring the location of the ridges given only the valleys
(Fig. 2A). Our first attempts were largely unsatisfactory and demon-
strated little to no predictive power. Strategies for improving our
results included subdividing the input data into small patches of dif-
ferent length scales, varying the network architecture, data represen-
tation, and loss function, and denoising the data in different ways.We
approached variants of the original problem statement, trying to pre-
dict specific crease locations, distance from a crease, and changes in
the crease network between successive frames. In all these cases, our
network invariably learned specific features of the training set rather
than general principles that hold for unseen test data, a common pro-
blem known as overfitting. The main culprit for this failure is insuffi-
cient data: The dataset of a few hundred scans available for this study is
small comparedwith standard practices inmachine learning tasks [for
example, the problem of handwritten digit classification using the
MNIST database, which is commonly given as an introductory exer-
cise in machine learning, consists of 70,000 images (5)]. Moreover, as
creases produce irreversible scars, images of successive crumples of the
same sheet are highly correlated, rendering the effective size of our
dataset considerably smaller.

Overfitting can be addressed by constraining themodel complexity
through insights from physical laws, geometric rules, symmetries, or
other relevant constraints. Alternatively, it can bemediated by acquir-
ingmore data. Sadly, neither of these avenues is viable: Current theory
of crumpling cannot offer significant constraints about the structure
or evolution of crease networks. Furthermore, adding a significant
amount of experimental data is prohibitively costly: Achieving a data-
set of the size typically used in deep learning problems, say 104 scans,
would require thousands of lab hours, given that a single scan takes
about 10 min. Last, data cannot be efficiently simulated since, while
preliminary work on simulating crumpling is promising (26, 27), gen-
erating a simulated crumpled sheet still takes longer than an actual
experiment. A different approach is needed.

Turning to a sister system: Rigid flat folding
An alternative strategy is to consider a reference system free from data
limitations alongside the target system, with the idea that similarities
between the target and reference systems allow a machine learning
model of one to inform that of the other. This is similar to transfer

learning (28), but in this case, rather than repurpose a network, we
supplement the training data with that of a reference system. In our
case, a natural choice of such a system is a rigid flat-folded thin sheet,
effectively amore constrained version of crumpling that is well under-
stood. Rigid flat folding is the process of repeatedly folding a thin sheet
along straight lines to create permanent creases, keeping all polygonal
faces of the sheet flat during folding. For brevity, we will henceforth
omit the word “rigid” and refer simply to flat folding.

Known rules constrain the structure of the flat-folded crease network:
Creases cannot begin or terminate in the interior of a sheet—they must
either reach the boundary or create closed loops; the number of ridge
and valley creases that meet at each vertex differs by two (Maekawa’s
theorem); last, alternating sector angles must sum to p (Kawasaki’s
theorem) (29). Given these rigid geometric rules, we expect partial
network reconstruction of rigid flat-folded sheets to be a much more
constrained problem than that of crumpled ones.

However, while experimentally collecting flat-folding data is only
marginally less costly than collecting crumpling data, simulating it on
a computer is a straightforward task, which provides a dataset of a
practically unlimited size. We wrote a custom code to do this using
the Voro++ library (30) for rapid manipulation of the polygonal
folded facets, as described in section S2. Typical examples are shown
in Figs. 1C and 2B and fig. S1.

Having flat folding as a reference system provides foremost a con-
venient setting for comparing the performance of different network
architectures. The vast parameter space of neural networks requires
testing different hyperparameters, loss functions, optimizers, and data
representations with no standard method for finding the optimal
combination. This problem is exacerbated when it is not at all clear
where the failure lies: Is the task at all feasible? If so, is the network
architecture appropriate? If so, is the dataset sufficiently large?
Answering these questions with our limited amount of experimental
data is very difficult. In contrast, for flat-folded sheets, we are certain
that the task is feasible and our dataset is comprehensive, so experi-
mentation with different networks is easier. After testing many archi-
tectures, we identified a network capable of learning the desired
properties of our data, reproducing linear features and maintaining
even nonlocal angle relationships between features.

Network structure
The chosen network is amodified version of the fully connected SegNet
(31) deep convolutional neural net. As outlined in Fig. 2A, each crease
network is separated into its valleys and ridges. The neural net,N , is
given as an input binary image of the valleys, denoted X (“input” in
Fig. 2). The output of the network, NðXÞ, is the predicted distance
transform of the ridges, Y. That is, for each pixel, Y is the distance to

Fig. 1. Examples of crease networks. (A) A 10 cm by 10 cm sheet of Mylar that has undergone a succession of rigid flat folds. (B) A sheet of Mylar that has been
crumpled. (C) A simulated rigid flat-folded sheet. The sheet has been folded 13 times. Ridges are colored red, and valleys are blue.
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the nearest ridge pixel (“target” in Fig. 2). Training is performed by
minimizing the L2 distance (the “loss”) between the predicted dis-
tance transform, Ŷ ¼ NðXÞ, and the real one

L ¼ ∑
i
ðŶ i � YiÞ2 ð1Þ

where the summation index i represents image pixels. The motiva-
tion for this choice of representation is that creases are sharp and
narrow features, and therefore, if we requireN to predict the precise
location of a crease, even slight inaccuracies would lead to vanishing
gradients of L, making training harder. See Materials and Methods
below for full details of the implementation.

In silico flat folding
For exclusively in silico–generated flat-folding data, the trained network
performs partial network reconstruction with nearly perfect accuracy,
as demonstrated in Fig. 2B: The agreement between the true location
of the valleys (red lines) and their predicted location (bright colors) is
visibly flawless. As a means of quantifying accuracy, we present the
confusion matrices of the predicted and true output (Fig. 2B).

Confusion matrices are a common way to quantify classification
errors, and since we are predicting the distance from a crease, the
problem can be thought of as a classification problem: Choosing
some thresholds according to typical values of the distances, we can
ask for each point in space whether it is close to a crease, far from it,
or at an intermediate distance. The confusion matrix measures what
percentage of each class is correctly classified and, if not, what class it
is wrongly classified as.We define three equal bins, based on the relative
distance from the predicted ridges. The upper row in the matrix
corresponds to pixels that are closest to the ridges, and the lower row
corresponds to the farthest pixels. Similarly, the first and last columns
correspond to the closest and farthest predicted distances. Thus, the top
left entry in the matrix contains the probability of correctly predicting
regions closest to a ridge, which is approximately 90%.

Partial network reconstruction of in silico flat-folded sheets is itself a
nontrivial task requiring the knowledge of a complicated set of geomet-
rical rules. Tasked to a human, inferring these rules from the data would
require non-negligible effort inwriting an explicit algorithm. The neural
network, however, solves this problem with relative ease.

Experimental flat folding
As an intermediate step between in silico flat-folding and experimen-
tal crumpling data, we next examine the performance of the neural
network on experimental flat-folding scans. Figure 2C reveals that
the resulting prediction weakens by comparison, a consequence of
noise present in experimental data that is absent from the in silico
samples. Noise occurs in the form of varying crease widths, fine tex-
ture, and missing creases that are undetected in image processing. In
some cases, even the true creases that aremissed during processing are
correctly predicted, which also introduces error to our accuracymetric
(see, for example, the center of the second panel of Fig. 2C). While
sufficient data of experimental flat folding would likely allow the
network to distinguish signal from noise, in our data-limited regime,
noise must be added to the generated in silico data to help the network
learn to accurately predict experimental scans and avoid overfitting.

We examine the effect of adding several types of noise on the pre-
diction accuracy on experimental input (Fig. 3, A to E). We observe
considerable improvement and find that adding experimentally realis-
tic noise (Fig. 3E) is more effective than toggling individual pixels ran-
domly (Fig. 3, B and D). We found that the noise type that leads to
optimal training is to randomly add and remove patches of input that
are approximately the same length scale as the noise in the experimen-
tal scans. We also find that it is important to provide input data with
lines of variable width to prevent the network from expecting only
creases of a particular width. For complete details of the different noise
properties, see Materials and Methods.

While the values in the confusion matrices in Fig. 3E might seem
low, it is noteworthy that themetric used here is not trivial to interpret:
It compares the L2 distance from a distance map, which is particularly
sensitive to noise since a localized noise speckle in a region remote
from valleys perturbs a large region of space (essentially, of the size
of its Voronoi cell). To gauge the effect of noise on the accuracymetric,

A B

C

In silico

Experimental
–

(input)

Far Near

Confusion matrix accuracy:
(target)

Fig. 2. A schematic of the processing pipeline. (A) From the height map, a
mean curvature map is calculated and denoised with a Radon transform–based
method. Valleys (black) and ridges (red) are separated. The binary image of the
valleys (X) is the input to the neural network (N ). The distance transform of the
binary image of the ridges is the target (Y). Brighter colors represent regions closer
to ridges. These color conventions are consistent through all the figures in this paper.
(B) Two samples of predictions on generated data. The true fold network is super-
imposed on the predicted distance map. It is seen that the true ridges (red) coincide
perfectly with the bright colors, demonstrating strong predictive power. Below the
predictions, we show confusion matrices, with the nearest third of pixels, the middle
third, and the furthest third. (C) Two predictions, as well as their corresponding con-
fusion matrices, using the network trained on generated data (without noise) and
applied to experimental scans.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Hoffmann et al., Sci. Adv. 2019;5 : eaau6792 26 April 2019 3 of 8

 on June 4, 2019
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

143



we randomly toggle a fraction P of pixels in an otherwise perfect flat-
folding example and recompute the entries of its confusion matrix, as
presented in Fig. 3F. With realistic noise levels, i.e., P ~ 10−3, we can
expect accuracy values between 0.75 and 0.80 in the upper left and
lower right entries of the confusion matrix, comparable to the values
reported in Fig. 3E. That is, for experimental flat folding, we achieve
accuracy levels that are comparable to what is expected for a perfect
prediction with noisy preprocessing.

Experimental crumpling
For crumpling, we train the neural network using a combination of
30% experimental crumpling and 70% in silico flat-folding data,
which was noised as described above. We also tried pretraining on
in silico data prior to training on crumpling data but observed no im-
provement. Training on this combined dataset, the resulting predic-
tions accurately reconstruct key features of the crease networks
in crumpled sheets, which were not achieved in prior attempts. In
Fig. 4, we present predictions on entire sheets (Fig. 4A) and a few close-
ups on selected regions (Fig. 4B). The confusion matrices suggest that

the network is often relatively accurate in predicting regions that are
directly near a crease (upper left entry) and large open spaces (lower
right entry), classifying these regions with 50 to 60% accuracy. In addi-
tion, fig. S3 shows the prediction on each of the 16 successive crumples
of the same sheet held out from training.

The ratio of 70% in silico data was chosen since it provides optimal
predictions, as shown in Fig. 5A. We present three different metrics to
quantify the predictive power: the L2 loss of Eq. 1, the Pearson corre-
lation between the prediction and the target, and the average of the
upper left and lower right of the confusion matrix (classification ac-
curacy). We find that all accuracy metrics are optimized for training
on 50 to 70% in silico data. It is also interesting to see in what way this
affects the prediction: In Fig. 5D, we show that when trained solely on
experimental data, the neural network produces a blurred and in-
decisive prediction, while for 100% flat-folding data, the network pre-
dicts only unrealistic straight and long creases.

In addition to these metrics, one can compare the network’s output
to “random” network completion, i.e., to a network that construes a
pattern having the statistical properties of a crease network but is only

Fig. 3. Effect of noise type on prediction. (A to E) An example noised image (top), an example prediction (middle), and the corresponding confusion matrix (bottom)
for different types of artificial noise. Noise types are described concisely in the title of each panel, and complete specifications are given in Materials and Methods. (F) The
upper left value of the confusion matrix when each pixel of the near-perfect prediction from Fig. 2B was randomly toggled with probability P. (G) The network from (E) applied
on an additional experimental scan (from left panel of Fig. 2C). The average confusion matrix on all experimental scans is shown.
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weakly correlated with the input image. Although a generative model
for crease networks is not available, we can sample crease patterns
from the experimental data and compare the predicted distance maps
to those measured from these randomly selected samples. This is dis-
cussed in section S5, where it is seen that our prediction for a given
crease pattern is overwhelmingly closer to the truth than any sampled
patch from other experiments (fig. S5).

The similarity of flat folding and crumpling
These results demonstrate that augmenting the dataset with in
silico–generated flat-folding data allows the network to discern some
underlying geometric order in crease networks of experimental
crumpling data. This suggests that the two systems share some com-
mon statistical properties, and it is interesting to ask how robust this
similarity is. One may suspect that the main contribution of the in
silico data is merely having a multitude of intersecting straight lines,
which are the main geometric feature that is analyzed, but that the
specific statistics of these lines is not crucial.

As explained above, flat-folding networks are characterized by two
theorems: Maekawa’s theorem, which constrains the curvatures (ridge/
valley) of creases joined in each vertex, and Kawasaki’s theorem, which
constrains the relative angles at vertices. We tested the sensitivity of our
prediction to replacing the in silico data used in training with crease
networks that violate these rules: We obtained crease networks that

violate Maekawa’s theorem by taking flat-folding networks and ran-
domly reassigning curvatures to each crease, and crease networks that
violate Kawasaki’s theorem by perturbing all vertex positions. Last, we
obtained crease networks that violate both rules by performing both
perturbations simultaneously. Examples of perturbed networks are
shown in fig. S6, with additional details about the perturbation process.

The effect is quantified in Fig. 5 (B and C). We define, for a given
sheet, the “deterioration” as the ratio between the loss of a network
trained on 70% experimental data and 30% perturbed flat-folding data
to that of a network trained on the same ratio of experimental and
unperturbed data. It is seen that breaking the flat-folding rules leads
to consistently worse performance for all types of perturbations.

We cross-validated with four different experiments covering a total
of 198 sheets. Although for some small fraction (<5%) of the sheets
training on perturbed data has led tomarginally better performance, this
happenedmostly in sheets with low loss, and the improvement is neg-
ligible. On average, the network trained on perturbed data has a loss
approximately 35% higher than that of the network trained on un-
perturbed data.

These results, namely, that training on perturbed flat-folding
networks led to inferior performance, again suggest a similarity be-
tween crumpled crease networks and flat-folded networks. We did
not quantitatively study the detailed effect of the different kinds of
perturbations—i.e., whether violating Kawasaki’s rule, Maekawa’s rule,

Fig. 4. Predictions on crumpling. (A) One sheet that was successively crumpled, shown after four and seven crumpling iterations. Color code follows Fig. 2.
(B) Closeups on selected smaller patches from the same image, broken down to prediction, prediction and target, and prediction and input.
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or both results in more or less accurate predictions. Instead, equipped
with this physical insight, we propose to directly probe the statistical
similarity with traditional methods by measuring vertex properties in
crease networks, a study that will be reported elsewhere.

DISCUSSION
Experimental data are paramount to our understanding of the
physical world. However, prohibitive data acquisition rates in many
experimental settings require augmenting experimental data to
draw meaningful conclusions. In particular, computer simulations
now play a significant role in exploratory science; many experimental
conditions can be accurately simulated to corroborate our understand-
ing of empirical results.

Despite these advances, the simulation of certain phenomena is
inhibited by insufficient theoretical knowledge of the system or by
demanding computational resources and development time. For
crumpling, without a deeper understanding that would allow the

use of simplified/reduced models, simulations require prohibitively
small time steps, small domain discretization, or both (26). Here, we
show that even with a small experimental training set, augmenting the
dataset by computer-generated, artificially noised data of flat folding,
salient features of the ridge network can be predicted from the sur-
rounding valleys: The network successfully predicts the presence of
certain creases, as well as their pronounced absence in certain loca-
tions (see Fig. 4B). Moreover, our results demonstrate a statistical sim-
ilarity between flat folding and crumpling, evidenced by the fact that
when flat-folding data are replaced with data of similar geometry but
different statistics, the algorithm does not succeed in learning the
underlying distribution to the same extent (Fig. 5B).

Our results demonstrate the capacity of a neural network to learn,
at least partially, the structural relationship of ridges and valleys in a
crease pattern of crumpled sheets. The next step is to understand the
network’s decision process, with the aim of uncovering the physical
principles responsible for the observed structure. However, while in-
terpretation of trained weights is currently a heavily researched topic

A

D

B C

b

in silico

Pure crumpling flat folding

both
Fig. 5. Effect of fraction generated data. (A) Three quantifications of the predictive power of the model when trained on varying amounts of generated data and a
constant amount of crumpling data. Strong predictive power corresponds to low loss (red) and large Pearson correlation and classification accuracy (blue and green,
respectively). (B) Deterioration (see main text) for each sheet in the validation set, as a function of the rescaled loss. Colors correspond to different perturbations and
marker styles to cross-validation sample. It is seen that all tested perturbations lead to worse predictive power (above the gray reference line). The few points below the
reference line occur at high crumple number and low absolute loss. (C) Histogram of all points in (B). Values to the right of the red line correspond to deterioration
when using unphysical data. (D) Example target and predictions for the various models considered in previous panels.
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[see (32–34), among many others], there is not yet a standard method
to do so. Our ongoing work seeks to probe the network’s inner
workings by perturbing the input data. For example, we can individ-
ually alter input pixels and quantify the effect of perturbation on the
prediction relative to the original target. Alternatively, we can examine
the effect of adding or removing creases or test the prediction on in-
puts that do not occur naturally in crumpled sheets. Some preliminary
results are discussed in section S4.

Improving the experimental dataset by performing dedicated
experiments or replacing the simulated flat folding with simulated
crumpling data is also a promising future direction. While we have
only demonstrated the advantages of data augmentation for one prob-
lem, it is tempting to imagine how it may apply to other systems in
experimental physics. In addition to providing insights into the struc-
ture of crease patterns, a quantitative predictive model (i.e., an oracle)
could serve as an important experimental tool that allows for targeted
experiments, especially when experiments are costly or difficult. As
shown above, a trained neural network is able to shed light on where
order exists, even if the source of the order is not apparent.

Replacing the scientific discovery process with an automated
procedure is risky. Frequently, hypotheses that were initially proposed
are not the focal points of the final works they germinated, as observa-
tions and insights along the way sculpt the research toward its final
state. This serendipitous aspect of discovery has been of immense im-
portance to the sciences and is difficult to include in automated data
explorationmethods, which is an area of ongoing research (35–37). By
showing that data-driven techniques are able to make nontrivial pre-
dictions on complicated systems, even in a severely data-limited re-
gime, we hope to demonstrate that these tools should become a
valuable tool for experimentalists in many different fields.

MATERIALS AND METHODS
Experiments
Experimental flat-folding and crumpling data were performed on
10 cm by 10 cm sheets of 0.05-mm-thick Mylar. Flat folds were per-
formed successively at random, without allowing the paper to unfold
between successive creases. Crumpled sheets were obtained by first
rolling the sheet into a 3-cm-diameter cylinder and then applying axial
compression to a specified depth between 7.5 and 55 mm. Sheets were
successively crumpled between 4 and 24 times.

To image the experimental crease network, crumpled/flat-folded
sheets were opened up, and their height profile was scanned using a
home-built laser profilometer. The mean curvature map was calcu-
lated by differentiating the height profile and then denoised using a
custom Radon-based denoiser (the implementation details of which
are given in section S1). A total of 506 scans were collected from 31
different experiments.

Network architecture and training
Data were fed into a fully convolutional network, based on the SegNet
architecture (31) with the final soft-max layer removed, as we did not
perform a classification problem. The depth of the network allows for
long-range interactions to be incorporated without fully connected
layers. The network was implemented in Mathematica, and optimiza-
tion was performed using the Adam optimizer (38) on a Tesla 40c
graphics processing unit (GPU) with 256 GB of random-access
memory (RAM) and a computer with a Titan V GPU and 128 GB
of RAM. Code is freely available. See “materials availability” below.

For training, the in silico–generated input data were augmented
with standard data augmentation methods: Symmetric copies of each
original were generated by reflection and rotation. All images were
down sampled to have dimensions of 224 by 224 pixels. For crumpling
data, creases were also linearized to lookmore similar to the experimen-
tal input. An example of the effect of linearizing is shown in fig. S2.

Noise
Noise was added to the input in a few different ways (presented in
Fig. 3B). The noise of each panel was generated as follows:

A. No noise.
B. “White” noise: Each pixel was randomly toggled with 5%

probability.
C. Random blur: Input was convolved with a Gaussian with a

width drawn uniformly between 0 and 3. The array was then thresholded
at 0.1. Here and below, “thresholded at z” means a pointwise threshold
was imposed on the array, such that values smaller than z were set to
0 and otherwise set to 1.

D. Each pixel was randomly toggled with 1% probability and then
passed through random blur (C).

E. Input was random blurred [as in (C)] but thresholded at 0.55.
We denote the blurred-and-thresholded input as ~X . Then, ~X was
noised using both additive and multiplicative noise, as follows:
Y and Z are two random fields drawn from a pointwise uniform
distribution between 0 and 1 and convolved with a Gaussian of width
seven (pixels) and thresholded at 0.55. Last, the “noised” input is

minð~X þ ð1� YÞ; 1Þð1� ZÞ
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Here we detail the detection method used to identify
crease networks from maps of mean curvature prior to
machine learning. We refer to our technique as a Radon-
based detection method, as it repurposes the key principle
behind a Radon transform—recovering a signal through
integration along directed paths—for crease detection. By
integrating a quantity of interest, in our case the mean
curvature, along paths of regularly spaced orientations
within local regions of the curvature map, we construct a
signal array that enhances the signature of creases and
reduces noise. A strong signal is recovered if an inte-
gration path coincides with the direction of an extended
structure such as a crease; a weak signal is produced by
features that are point-like or isotropic, representative of
noise and fine texture in the data. The raw curvature
maps of each 10 cm× 10 cm sheet are 3000× 3000 pixels.
Prior to processing, curvature maps are downsampled
for computational efficiency. A downsampling factor of
4 was found to preserve the integrity of the crease pat-
tern while providing a useful speedup in computation
for a final resolution of 75 pixels per cm. Next, a linear
integration path is centered about a given pixel of the
curvature map, traversing the diameter of a fixed circular
local window. The average curvature along a particular
direction is computed by exact numerical integration of
the bicubic interpolant on the grid defined by pixel centers.
The integration direction is systematically rotated about
the central pixel, and the maximum average curvature
over all path orientations is selected as the signal. This
process is repeated for all pixels in the curvature map,
resulting in a signal array of only the average curvatures
that are a maximum along local, linear paths. Integrals
along 24 equally spaced path orientations on the interval
of 0 to 180 degrees were considered at each pixel and the
maximum selected as the signal. We examined a range of
integration path lengths up to 8 mm, as the integration
window defines a length scale that must accommodate
features of varied sizes. While smaller integration paths
can detect finer details particularly at low crease densities,
they sacrifice some of the advantage afforded by longer
paths in accruing a strong signal that is well separated
from noise. An integration path length of 3.2 mm suit-
ably mediated such effects and provided a clear crease
network. Finally, global and local thresholds are applied
to the signal array to separate the real creases from the
background noise. A combination of the two was observed

Fig S1. In silico generated flat-folded crease net-
work Two random flat-folding patterns, with (left) and
without (right) inward folding. Ridge folds are colored red
and valley folds are colored in blue.

to work well in retaining the desired crease network: The
global threshold is more permissive of noise but acts uni-
formly across the signal array, while the local threshold
accommodates variations in signal intensity, and thus
provides sensitivity to softer (less sharp) creases. We
use a global threshold of 0.12 as the minimum signal in-
tensity retained as a crease (0.12 is approximately 10%
the magnitude of the largest creases), and set the local
threshold to label as noise any pixel whose intensity falls
below 20% of the maximum signal in a 3.2 mm× 3.2 mm
neighborhood centered about the pixel. In training with
crumpled sheets, the crease networks were also linearized
as shown in ig. S2. This was done with a custom script
that skeletonized the input and used the Mathematica
function MorphologicalGraph.

A custom code was written in C++ to simulate flat
folding. The code makes use of the Voro++ software
library [30], which provides routines for fast manipulation
of polygons. To begin, the sheet is represented as a single
square. To simulate a simple flat fold on a given chord,
the square is cut into two polygons, and one polygon
is reflected about the chord. Subsequent flat folds are
simulated by taking the collection of polygons represent-
ing the folded sheet, cutting them by a given chord, and
reflecting those on one side about the chord. Through-

adon transform based detection
method

–Section S1.

. –

In silico generation of flat-folding dataSection S .2
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Fig S2. Comparison between the preprocessed cur-
vature map and the linearized version. The denoised
curvature map of an entire crumpled sheet with three enlarged
insets (a-c) for better visibility. Red and blue are creases
retained after the Radon-based denoising, green and orange
are the linearized representation.

out the process, each polygon keeps track of an affine
transformation from its current configuration back to its
position in the original square sheet. By transforming
all polygons back to the original sheet, the flat folding
map of valleys and ridges can be constructed. The code
can also simulate inward folds where a ray is selected and
the sheet is pinched in along this ray. For computational
efficiency, the code computes a bounding circle during
the folding process, whereby the collection of polygons
representing the folded sheet is wholly within the circle.

While folding along a given chord is strictly well-defined,
there is no natural way to draw a random chord from a dis-
tribution (e.g. Bertrand’s paradox in probability theory)
and a choice must be made regarding the way a chord is
drawn. Our choice is the following: A fold is determined
by a straight line in R2 and therefore can be parameter-
ized by its angle and offset. At each iteration the angle is
drawn uniformly in the range [0, 2π) radians and the offset
uniformly over the bounding circle. If the chosen fold line
does not actually create a fold (because the line misses all
polygons) then a new angle and displacement are chosen
and so forth. For inward folds, we first choose a point
uniformly inside the bounding circle, then determine if
the point is inside any polygon; if not, we keep choosing
new points until we find one that is. We then choose a
random orientation for the ray from this point and two
random angles α and β uniformly from (0, π) for the first
two folded segments that are counter-clockwise from the
ray, after which the remaining two angles at the point are
given by γ = π − α and δ = π − β.

Our data set was generated by folding the sheet n times,
where n is chosen uniformly in the range from 7 to 15.
Each fold has a random sign (ridge or valley) with equal
probability. For each sheet, the probability of inward folds
was chosen uniformly over the range [0%, 50%]. Figure S1
shows a selection of generated crease patterns.

P 16

The validation set (an experiment held out from train-
ing) consists of 17 successive crumples of the same sheet
of paper. In fig. S3, we show the prediction on the first
sixteen of these sheets. For each prediction of an entire
sheet, the image was computed in overlapping patches of
size 224× 224. Each pixel was considered to be the aver-
age value based on a sequence of predictions. Preliminary
work was done on automatically detecting regions that
were the best and the worst predicted. This along with
aspects discussed below, are the topic of ongoing work.

In their paper, Lehman et al. discuss some computa-
tional oddities in the field of computational evolution [39].
They present a series of important ideas through short
tales where the computer produced unexpected behavior
that, when understood, were a key step in learning how
to successfully use the computational tools. We think
examples similar to these are important to share as the
use of machine learning in the experimental sciences is
still in its infancy. In this spirit, we discuss some of our
attempts to tie the predictions of the network back to the
underlying physics of crumpling.
A potential pitfall of using neural networks is that they
will provide an output for any input, no matter how absurd
either the input or output is. No warning appears. This
is powerful, but requires caution, as neural networks allow
for predictions on inputs that are physically impossible
to create. Thus, one should take all the following probing
attempts with a grain of salt.
It is tempting to “differentiate” the input signal to see
if perturbations at any particular location cause large
changes in the neural network’s prediction. In ig. S4 A
and A’ we do this, perturbing the input (empty space and
white lines) by making each pixel slightly more crease-like
if it is not a crease or less crease-like if it is a crease. The
background color shown is the magnitude of the change
relative to the original prediction. Our hope was that this
map may correlate with some known aspect of the physics.
However, we do not think that this is the case. We tried
aligning sequential images and estimating whether new
creases tend to form with higher probability in regions
that correlate with this sensitivity map—we do not find
this to be the case. We are currently exploring more
sophisticated ways of differentiating the trained network.

rediction on sheetsSection S .3

.

workSection S . Probing the network: Ongoing4
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Fig S3. Prediction on a sheet that was crumpled 16 times. The prediction is shown in blue for a given set of valleys
(black). The true creases are overlaid in red .Confusion matrices for 8 of the 16 matrices are shown in the right. The color
corresponds to the outline of the matrix.

Similarly, we can ask questions such as: What would
happen if we translate a particular crease 5 mm to the
left? What if we artificially remove parts of folds in flat-
folding? What if we remove entire creases? In fig. S4B,
we present the results of removing entire creases form
a crumpled sheet. The ridges are colored by their total
effect on the prediction, that is, if the original input is X
and the perturbed input is X̃ (after removing a crease),

we define the total magnitude of the change as∑
i

(
N (X)i −N (X̃)i

)2
(1)

where i runs over all pixels. The hope is that these
unphysical perturbations to the input can provide insight
into the working of the network. However, as stated above,

.
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Fig S4. Additional test results. A The result of approximate differentiation (see text in Sect. IV) on flat-fold (A) and
crumpling (A’) inputs. Unfortunately, experimentally testing these results or correlating them with other physical quantities
proved difficult. B Creases colored by the magnitude of the change caused by their removal (Eq. 1). Cooler colors correspond to
weaker change and warmer colors to stronger change. While some trends are clearly discernible (e.g. there is a strong correlation
between the change magnitude and the crease length), we are still trying to interpret these results in terms of the underlying
physics.

Fig S5. Prediction ccuracy. A The loss (orange line)
of a given reconstruction (bottom) compared to the of losses
distribution from all other patches from similarly crumpled
sheets. From this data we calculate the z-score of this patch
to be 3.6. B Repeating this procedure for all patches, we
calculate the distribution of z-scores, giving an average z-score
of nearly 3. Three representative patches are shown at their
z-score location.

interpreting them should be done with care, since in these
cases the input to the neural net might be too dissimilar
to anything in the training data, making predictions less
reliable.

uantification

It is common to benchmark Machine Learning predic-
tion accuracies with respect to a suitably-defined random
guess. For example, in the MNIST digit recognition task,
making random choices will achieve a 10% accuracy, be-

cause there are only ten classes to choose from. In our
case, however, there exists no generative model for crease
networks, so there is no random guess that we can com-
pare the output of our network to. As a surrogate, we
can draw a random crease network from our data. That
is, we compare our predictions on a given patch to many
patches from other, similar experiments. This is presented
in fig. S5: For a given patch, we compute the loss of our
prediction (Eq. 1 in the main text) compared to the true
value. In fig. S5A we compare this loss with the distribu-
tion of losses obtained by comparing other patches to the
true value. Examining hundreds of different predictions,
in fig. S5B, we find that our predictions have an average
z-score of nearly 3. The z-score for a patch is defined
as z = (µ− L)/σ where L is the loss for this patch and
µ, σ are, respectively, the mean and standard deviation
of all losses calculated from other patches on the same
true value. We find that the prediction returned by the
net is substantially better than patches taken from other
experiments.

Additionally, we can compute the Pearson correlation
between the distance transform of the input and target,
as well as between our prediction and the target. In the
following table we show, for four representative crumple
iterations, the Pearson correlation between the target
distance map and either the distance map of the input or
the network prediction.

Iteration Input distance map Prediction
1 0.44 0.68
3 0.35 0.66
6 0.31 0.54
11 0.52 0.74

.
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It is seen that our prediction is significantly better than
simply returning the distance transform of the input.

. Perturbing the

As discussed in the main text, we assessed the sensitivity
of the prediction accuracy to perturbing the in silico
data. In fig. S6 we present examples of perturbed crease
networks (panels A-D) and the resulting validation loss as
a function of the number of times the sheet was crumpled.
It is seen that all perturbations lead to inferior predictions.

Perturbations were performed in the following manner:
1. Maekawa’s theorem was violated by taking flat-

folding networks and randomly reassigning curva-
tures (ridge/valley) to each crease. On average,
Maekawa’s rule is violated in 50% of the vertices.

2. Kawasaki’s theorem was violated by perturbing the
position of the vertices, while keeping the topology
of the network fixed and ensuring that creases do not

cross each other. This results in alternate angles
that no longer sum to π. The average absolute
deviation of from π is 0.4, amounting to ∼ 13%
change. The code is available on GitHub.

3. Finally, both rules were violated by combining both
procedures 1-2.

Fig S6. Examples of perturbed in silico data. A-C
One realization of each perturbed in silico data set, corre-
sponding to the perturbations described in Sec. VI. Code to
generate all types of perturbation available online.

in silico dataSection S6

.
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It’s the best possible time to be alive, when almost ev-

erything you thought you knew is wrong.

Tom Stoppard, Arcadia

4
GenerativeModel for 3-D Crystal

Structures

4.1 Background

Generative models have proven tome remarkably effective in a wide variety of domains

including image generation, text generation, and graph generation. Tools from this area
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brought many new words to the public vernacular, largely as generative adversarial net-

works (GANs) showed that photo-realistic images could be created of a wide variety of

subjects.64

Generative models have also been particularly transformative in the sciences– partic-

ularly in the discovery of molecules. Drug-like molecules are of tremendous importance

and their discovery has been very expensive, time consuming, and often amatter of luck.

The hypothesized space of drug-like molecules is enormous with estimates beginning at

1040−60 possible candidates.112 The idea, at a high level, is to use machine learning to

learn a compressed representation of known molecules that follows a known distribu-

tion. Then,molecules can be reverse engineered by “decoding” samples of the knowndis-

tribution. By attempting to encode additional auxiliary information in this compressed

representation ofmolecules the hope is that one can perform an optimization procedure

in this compressed space and then generate molecules with specific properties. A differ-

ent approach is to condition the encoded latent space on properties of interest. In both

cases, the key point is coming up with a useful representation of the molecules. Early

work encoded and decoded the SMILES representation of molecules160– a string rep-

resentation that works well for organic molecules.61 However, this representation has

many problems stemming from the fact that a specific grammar must be learned, and as

a result, many random samples do not actually decode to physically realizablemolecules.

More recently, graph representations have been favored82 as they do not suffer from

generatedmolecules being unphysical.
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Forsmalldrug-likemolecules, thesetworepresentationsallowedfor tremendousprogress.

Drug discovery has been greatly impacted by AI with remarkable results in terms of the

discovery, testing, and synthesis of new molecules.172,129,31 Another important class of

structuresarecrystal structures. Unlikemanydrug likemolecules, crystal unit cells are in-

herently3-Dstructures. Additionally, crystal structurescontainelements foundthrough-

out theperiodic table asopposed todrug-likemoleculeswhich tend tooccupya relatively

small chemical space.22,122 Combined, these two differences make the representations

used for smaller molecules unhelpful here. An additional difficulty is that in addition to

encoding anddecoding the location and identity of atoms in a crystal unit cell, six degrees

of freedomare also required. Specifically, the crystal unit cell side lengths (�, �, �) and an-

gles (�, �, �) need to be encoded as well. In this work, we propose a representation that

we showovercomesmanyof the difficulties that need to be addressed. Weare able to ac-

curately reconstruct the location of atoms in space as well as their approximate identity.

4.2 Contributions

Of the projects inmy PhD, this perhaps represents the single project I feel themost own-

ership of, in fraction of the work done. I wrote all of the code used in the manuscript,

generated the figures, and wrote the paper. This project also represented a substantial

departure from my typical set of computational tools. Through this project, I learned a

great deal. With Louis, we read and discussed the literature to understand what had al-
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ready been done. Papers frommany different fieldswere relevant, so reading and discus-

sionwasvery important. JianTangandYoshuaBengioadvisedmeon theproject andJean

Michel Sellier supervised Louis. Yoshihide Sawada provided the dataset and the code to

generate the dataset from his collaborators.

4.3 Preprint
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ABSTRACT

Generative models have achieved impressive results in many domains including
image and text generation. In the natural sciences, generative models have led
to rapid progress in automated drug discovery. Many of the current methods fo-
cus on either 1-D or 2-D representations of typically small, drug-like molecules.
However, many molecules require 3-D descriptors and exceed the chemical com-
plexity of commonly used dataset. We present a method to encode and decode
the position of atoms in 3-D molecules from a dataset of nearly 50,000 stable
crystal unit cells that vary from containing 1 to over 100 atoms. We construct a
smooth and continuous 3-D density representation of each crystal based on the
positions of different atoms. Two different neural networks were trained on a
dataset of over 120,000 three-dimensional samples of single and repeating crystal
structures, made by rotating the single unit cells. The first, an Encoder-Decoder
pair, constructs a compressed latent space representation of each molecule and
then decodes this description into an accurate reconstruction of the input. The
second network segments the resulting output into atoms and assigns each atom
an atomic number. By generating compressed, continuous latent spaces represen-
tations of molecules we are able to decode random samples, interpolate between
two molecules, and alter known molecules.

1 INTRODUCTION

Generative models have recently seen tremendous success in generating 2-D images of every day
objects (Kingma and Welling, 2013; Goodfellow et al., 2014; Brock et al., 2018; Razavi et al., 2019).
The size and accuracy of generated results has greatly improved to the point where samples from
the latent space decode to photo-realistic samples (Brock et al., 2018; Razavi et al., 2019). A very
exciting and important future avenue for generative models is the generation of 3-D structures, like
in the world around us. Adversarial networks and autoencoders have been extended into 3-D and
have shown they are able to encode useful representations of everyday objects (Wu et al., 2016; Zhu
et al., 2018; Brock et al., 2016; Achlioptas et al., 2017; Valsesia et al., 2018). Representations using
point clouds have gained popularity as a way to capture the underlying distribution of different types
of objects (Achlioptas et al., 2017; Yang et al., 2019).

As machine learning approaches are able to understand and recreate the underlying distributions for
many different types of objects in our world, the application of these tools in the physical sciences
is a very exciting direction. A clear field where generative models can have a tremendous impact is
in material discovery, which matters for example to design new batteries or carbon capture devices
for fighting climate change.

One very successful area of applying generative models to the sciences has been the field of drug
discovery (Jin et al., 2018; Gómez-Bombarelli et al., 2018; Assouel et al., 2018) (see Schwalbe-Koda
and Gómez-Bombarelli (2019) for an excellent summary of many methods). The success of machine
learning in this domain has been enormously helpful as a process that was often painstakingly slow
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has been rapidly accelerated in searching an unimaginably large space of possible drug compounds,
estimate to be up to 1060 (Polishchuk et al., 2013). Additionally, excellent datasets such as QM9
(Ramakrishnan et al., 2014) and ZINC (Irwin et al., 2012) which contain molecules of interest along
with their precomputed properties have allowed for comparing different methods and developing
state-of-the-art tools.

Figure 1: Examples of crystal unit cells. Each example shows the unit cell of a crystal. Different
colors represent different atomic species. A red, green, and blue line represent the 3 axes of the crys-
tal. Note that they vary in length and angle. Additionally, some unit cells have just one or two atoms
(excluding equivalent positions due to translation) while others have nearly 100. Visualizations were
made with Mercury (Macrae et al., 2008).

By learning a compressed, useful, latent space representation, this enormous space of molecules can
be embedded in a simpler latent space that is easier to search. Using generative models, compounds
hypothesized to have specific properties can be rapidly generated and then a targeted subset of these
can be experimentally tested. For example, in Gómez-Bombarelli et al. (2018), an auxiliary property
prediction task is introduced for a network separate from the encoder/decoder. This allows for opti-
mization of properties in the latent space and then the resulting latent space vector is decoded into a
candidate molecule that can undergo more rigorous computational testing before it is experimentally
synthesized.

Most of the work combining generative models with chemical discovery has focused on molecules
that can be represented in either 1 dimension (such as a SMILES string (Weininger, 1988)) or by
leveraging a 2 dimensional representation of a molecule, such as a graph. While 1-D and 2-D repre-
sentations have been very successful for many drug compounds, these representations are not suffi-
cient to describe all molecules. For example, it is possible for different molecules, with very differ-
ent properties, to have identical graphs (Gebauer et al., 2019). Additionally, there are more complex
classes of compounds where the 3-D structure is integral to the molecules properties. Therefore, in
this work we focus on generating 3-D representations of molecules. Generating 3-D structures is still
a relatively nascent field, when compared to image and text generation. The data requirements for
modeling 3-D structures are larger than their 2-D counterparts and there are fewer standard datasets
(Nguyen-Phuoc et al., 2019). There is an extra dimension in 3-D problems, providing additional
symmetries that often need to be learned (Weiler et al., 2018).

In addition to drug discovery, a promising avenue for molecular design is for minimizing environ-
mental impact through the design of more efficient or more environmentally compounds for a variety
of applications. Designing more efficient materials for photo-voltaic panels and more environmen-
tally friendly materials for batteries are both very exciting research directions for using machine
learning as a tool towards mitigating climate change (Niu et al., 2015; Tabor et al., 2018; Gebauer
et al., 2019; Rolnick et al., 2019). Many of the compounds of interest are crystal structures made of
a single small sub-unit that repeats in all directions. This sub-unit is referred to as a “unit cell” and
can vary in size and shape as well as internal arrangement and chemical composition.
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In this work, we present an alternative to standard methods for encoding 3-D chemical structures.
We directly encode and decode 3-D volumes of density from two different data representations. In
the first, we use single unit cells, as shown in Fig. 1. Each unit cell is centered in the cube, but
randomly rotated. In the second representation, we repeat the unit cell along each axis such that the
resulting sampled cube contains repeated unit cells of crystal structures, like those shown in Fig. 2
(and Fig. 5C). Many very interesting and important molecules, such as material for solar panels or
batteries, are composed of crystalline units. We train a variational autoencoder (VAE) and a network
to segment the decoded output based on the true locations of atoms in tandem. By coupling these
two tasks, we are able to accurately encode and decode 3-D atomic positions and species. As far as
we are aware, this is not an explored direction as a means to represent molecules for encoding and
decoding their 3-D arrangement. We summarize our contribution as follows:

• We propose a method for encoding and decoding 3-D structures. By jointly training a VAE
and a segmentation network on the output of the decoder, we train the entire network in an
end-to-end fashion.

• We consider two different problems: (1) encoding and decoding single unit cells and (2)
encoding and decoding repeated unit cells. In both cases we accurately reconstruct the
locations of atoms. We also achieve good results in atom identification and future work
will improve this front. By sampling from z ∼ N (0, 1), we generate complex structures
that have physically realistic spacing between atoms.

Figure 2: Network Architecture. We encode and decode a 30 × 30 × 30 voxel grid representing
10 Å on each side. Each voxel contains the value of the density. The output of the decoder is
passed into a 3-D U-Net. We train the two models in parallel. In the schematic, we show the
crystal represented as a repeated unit cell rather than a single unit cell. The black arrows indicate
deterministic transformations. From the cif file, the species matrix is constructed. From this, the
density matrix is computed.

2 PRELIMINARIES AND RELATED WORK

There are many classes of compounds that are of interest for data-driven discovery. There has been
significant work exploring the generation of molecules with potential medicinal properties. These
molecules tend to be organic molecules and can be represented efficiently using a string or a graph.
A more complex class of molecules are inorganic crystal structures which vary in complexity across
many different axes. Crystals are materials that are made up of a repeating pattern of a simpler “unit
cell.” Crystal structures are of key interest for many environmental problems, such as materials for
solar panels and batteries (Niu et al., 2015).

In contrast to problems in drug discovery, many crystals are not composed solely of organic
molecules. Crystals commonly contain many heavy (non-Hydrogen) atoms which make various
quantum mechanical calculations of their energetic properties very difficult and time consuming.
For example, the common benchmark dataset QM9 for predicting quantum mechanical properties
includes over 130,000 molecules contains fewer than 9 “heavy” atoms (Ramakrishnan et al., 2014).

There have been two parallel lines of work applying machine learning to material sciences. The first
deals with the prediction of physical properties from a compound without performing a computa-
tionally expensive density functional theory (DFT) calculation.
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Figure 3: Single unit cell accuracy. (A) We show the voxel wise reconstruction error (plotted with
mean square error) during training. (B) For random molecules in the test set, we plot the number
of true atoms and the number of recovered atoms after segmentation. (C) For the reconstructed
atoms, we plot the predicted atomic number versus the atomic number of the nearest true atom. (D)
We compute the distance from each true atom to the nearest predicted atom and vice-versa (orange
and blue, respectively). (E) For three different crystals we plot the predicted versus reconstructed
density at each voxel. We also show 2D slices through the target and prediction, along with the 3-D
reconstructions. For plotting, the density on each figure is normalized between 0 and 1 though is not
decoded as such.

Recently, Xie and Grossman introduced crystal graph convolutional networks (CGCNN) for ac-
curate prediction of 8 different DFT calculated properties on crystal structures (Xie and Gross-
man, 2018). MatErials Graph Network (MEGNet) uses graph neural networks (Chen et al., 2019)
to predict a variety of energetic properties on both the QM9 dataset (Ramakrishnan et al., 2014)
as well 69,000 crystal structures from the Materials Project (Jain et al., 2013). Another network,
SchNet, uses 3-D spatial information to directly leverage the interactions between separate atoms.
They then use a continuous-filter convolution for accurate property prediction (Schütt et al., 2018).
These methods, and many more, have all achieved impressive results on many standard benchmark
datasets. Cubuk, et al. use transfer learning to search an enormous space of molecules for promising
Lithium ion conductors (Cubuk et al., 2019).

Another line of work is concerned with generating molecules, often molecules that have specific
properties. In the past decade, generative models for drug discovery have achieved impressive re-
sults. Typically a representation of a compound, such as a SMILES string (Gómez-Bombarelli et al.,
2018; Segler et al., 2017) or a graph (Jin et al., 2018; Assouel et al., 2018; Mansimov et al., 2019)
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is encoded and decoded. Then, by sampling the resulting latent space, novel molecules can be gen-
erated. Either by performing an auxiliary task with the latent space (as done in Gómez-Bombarelli
et al. (2018)) and then performing optimization or by conditioning the latent space on desirable
properties, novel chemical structures are obtained.

One possible representation of drug-like molecules is a SMILES string. However, a difficulty faced
using the SMILES representation is ensuring that the decoder decoded a valid SMILES string
(Gómez-Bombarelli et al., 2018; Kusner et al., 2017). Additionally, there is not a strong notion
of distance between molecules and their SMILES representation (Jin et al., 2018). One approach,
ChemTS, uses SMILES strings along with recurrent neural networks and Monte Carlo Tree Search
to better ensure generated strings decode to real molecules (Yang et al., 2017). By explicitly penal-
izing invalid SMILES strings in their reward function they are able to bypass the difficulty in their
decoded molecules being non-physical.

More recently, graph based methods have proven very successful in generating synthetically at-
tainable molecules. By building a database of molecule fragments (like LEGO bricks), a graph is
formed based on the connectivity of different structures (Jin et al., 2018). These methods have far
fewer difficulties ensuring that the decoder produces physically valid molecules. For generation of
physical molecules, this is a very important consideration, as there are many hard constrains that
most be obeyed. Other graph based approaches include flow based models (Madhawa et al., 2019).
Also using graph neural networks, E. Manismov and collaborators developed a method to, given
a graph, recreate conformations of a 3-D molecule and predict its energetic properties (Mansimov
et al., 2019). In Mansimov et al. (2019), the authors propose a graph-based generative method that is
able to generate molecules with desired target properties. Impressively, they recover 3-D positional
information for the atoms and show they achieve the required accuracy for relaxation.

An additional challenge for generative models in the physical sciences is ensuring that samples
from the latent space, z, decode into physically plausible objects. The decoded objects need to obey
physical constraints and an object that may appear physical is not certain to actually be experimen-
tally realizable. In many domains this is not of specific concern, for example a generated animal is
scored on some likelihood based on its visual appearance, not whether or not the generated creature
is genetically possible. Recently, there have been generative models leveraging the 3-D nature of
the problem. G-SchNet, a generative model for 3-D molecules (Gebauer et al., 2019) leverages the
SchNet architecture- a start-of-the-art property prediction network (Schütt et al., 2018). They show
they are able to generate molecules, placing atoms in 3-D space in a rotationally invariant manner.
By appropriately conditioning the placement of new molecules based on the location and identity of
previous molecules, they ensure the symmetries that are required for the molecules to relax in a DFT
calculation. They propose expanding G-SchNet to generating crystal structures as a future direction.

While there is a rich literature in the generation of organic compounds, recently there has been work
in the generation of more complex crystal structures, such as CrystalGAN (Nouira et al., 2018).
The authors of CrystalGAN introduce geometric constraints and show that their method is able to
produce stable structures compared to methods that do not include such domain knowledge such as
DiscoGAN (Kim et al., 2017). CrystalGAN uses a dataset with a much larger selection of elements
than much previous work, but they limit themselves to molecules of particular chemical structure.

3 METHODS

We use a dataset containing 46,744 cif files which contains the information describing the unit
cells of properly relaxed crystal structures from the Materials Project (Jain et al., 2013; Xie and
Grossman, 2018). We use 80% of the data for testing and the other 20% for training. Using the
Python library pymatgen we preprocess all of the data into the density 3-D matrices (Ong et al.,
2013) described below. The boundary box of a crystal structure is controlled by six different degrees
of freedom (see Fig. 1). Each side can have a different length and the angles between the three sides
is also variable. Additionally, the internal complexity of each crystal can also vary widely– some
unit cells in our dataset contain a single atom while other unit cells can have over one hundred
different atoms. This tremendous variability in structure makes a universal representation difficult.
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Figure 4: Repeating unit cell accuracy. (A) For each position in 3-D space, we compute the
difference between the truth and the reconstruction. We show different percentile bands of the
reconstruction error between the target and predicted density, plotted using the mean square error
(MSE). (B) For the species matrix from U-Net we ask what the error of top-1 predictions is between
our predictions and the ground truth. (C) For our segmented matrices, we ask the distance from the
nearest segmented atom to the ground truth. We show the distance errors by percentile for both the
nearest true atom to each predicted atom and vice-versa (orange and blue, respectively). (D) After
segmenting the reconstructed density maps we show the predicted and true number of atoms. (E)
We plot the predicted nearest atom species versus the true species of the closest corresponding atom,
as long as the distance is less than 0.5 Å. We find 65.4% are correctly predicted.

3.1 DATA REPRESENTATION

As a first step for the problem of generating novel, physical crystal structures we begin with the
simpler problem of encoding and decoding physical locations of atoms in space. We begin by
considering a cube with side length 10 Å, which we represent by M . We divide this cube into 30
equally spaced bins, resulting in a 30× 30× 30 cube with each voxel representing 0.33 Å on each
side (see Fig. 2 and Fig. 3E). This data representation is similar to many computer vision tasks, so
we use similar convolution based network architectures.

We consider the crystal structures in our dataset where the maximum side length is less than 10
Å. We consider two different data representations of different complexity. In the first, we shift
each single unit cell to the center of our grid, then we randomly rotate it. In this representation, we
encode and decode a single unit cell. We randomly sample 3 different rotations for each crystal.
In this case, the encoded structures typically have between 1 and 30 atoms, with a few reaching
between 50 and 100. In the second representation, we repeat these unit cells in each direction. This
means that each cube contains at least one unit cell, but some will contain more than one cell. We
choose one representation where a unit cell begins at (0, 0, 0) and randomly sample 2 other cubes
in this space resulting in a dataset of over 100,000 examples. In this representation, we typically
encode the locations of between 20 to 100 atoms, with some having over 200. An advantage of our
representation is that we are agnostic to the number of atoms that we are encoding and decoding.
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Figure 5: Accuracy of Model. (A) For each position in 3-D space, we plot the predicted and target
density for 4 different random crystals from the test set. The red dashed line is an identity line. (B)
For each of the panels in (A), we show 4 different z-slices through the true and predicted density
fields. (C) We show the full 3-D reconstruction of the prediction and the true density field.

Using both these representations, we compute a density field, where each pixel (i, j, k) is defined to
have value

Mi,j,k =
1

σ3(2π)3/2

∑
m

Zmexp

(
−d(

~Zm, (i, j, k))
2

2σ2

)
(1)

Where d(·, ·) represents the Euclidean distance between the two arguments. ~Zm represents the 3-D
coordinates of atom Zm. We set σ to 1.0 Å. When plotting, we multiply the output by σ3(2π)3/2.
We do this because when σ = 1 this results in the value of Z (the atomic number) being present at
its location in space. Because of the structure of this representation, when the density of molecules
increases, there are more interactions making it harder to reconstruct the true identity of an atom.
Ultimately, our aim is to be able to reconstruct the location and species of the different atoms in this
grid. To that end, we also construct a species matrix, S, where each voxel is either a 0 or equal to
the atomic number of an atom that is within 0.5 Å. We construct two neural networks that attempt to
learn M and S in parallel. These two networks are trained together and are detailed in the following
section.

3.2 NETWORK ARCHITECTURE

We use a variational autoencoder (Kingma and Welling, 2013) to encode and decode our 3-D density
maps, M . We use a β multiplier on the Kullback-Leibler (KL) loss term to encourage no correla-
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Figure 6: Species reconstruction and latent space interpolation. (A) For five different randomly
selected crystal unit cells we show the target and our reconstruction. Atoms are colored using
default atomic colors, atoms with similar atomic number do not necessarily have similar colors. (B)
We show the reconstruction of latent space interpolation between two molecules for 3 random sets
of targets. For a video, see the supplemental materials.

tions between different elements of the latent space (Higgins et al., 2017). Our encoder, E(·), is
a convolutional neural network. The decoder, D(·), uses upsampling and convolutions in favor of
transposed convolutions to avoid checkerboard artifacts (Odena et al., 2016). We use batch nor-
malization (Ioffe and Szegedy, 2015), LeakyReLU activations, and the code is written in Pytorch
(Paszke et al., 2017). The optimization is done using the Adam optimizer with a learning rate of
10−5 (Kingma and Ba, 2014). We use a latent space size of 300 for all experiments. This means
that when considering a repeating unit cell, more information needs to be stored.

Simultaneously with training the VAE, we train a 3-D U-Net segmentation model, Unet(·), with an
attention mechanism to segment the output of the decoder (Ronneberger et al., 2015; Oktay et al.,
2018). For accurate segmentation, especially in the case of a repeating lattice, it is important to be
able to capture the dependencies between different atoms. We found that a U-Net model worked
well, though future work (discussed later) will explore sequentially classifying atoms. We include a
weighted (by γ) loss from the segmentation in the loss of the encoder/decoder. In our experiments,
we set γ to 0.1. We experimented with γ = 0 and γ = 0.33 and found that 0.1 proved an acceptable
intermediate. With γ = 0.33 we found slightly improved segmentation results (approximately a 6%)
improvement, but surprisingly slightly worse density reconstruction results. When we completely
removed the effect of the species loss from the density reconstruction, species reconstruction results
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degraded by around 4% and the changes in density reconstruction were negligible. This allows us
to train the entire network in an end-to-end fashion. The entire model is shown in Fig. 2.

We use three terms in the loss function for the VAE with the most weight given to the reconstruction
of the density matrices. The segmentation network is only concerned with the final segmentation of
the reconstruction from the decoder. Currently, we treat each atom type as a different class, with an
additional (most common) class for “no atom.” The loss function used for the VAE is

LVAE = LRE(M̂ ,M) + β(DKL(q(z|M)||p(z))) + γLBCE(Ŝ,S). (2)

The first term is the reconstruction error and the third term is the binary cross entropy loss from
the segmentation. The second term is the Kullback-Leibler divergence between the prior (set to
p(z) = N (0, 1)) and q(z|M) the posterior of the latent vector given input M . We use a loss given
by

LU-Net = LBCE(Ŝ,S) (3)

for the segmentation. In the above expression, M is the input density field. z = E(M) and

M̂ = D(z) (4)

is the reconstructed density field. The variable S represents a 1-hot species matrix. Lastly,

Ŝ = Unet

(
M̂
)

(5)

represents the probability matrix from the segmentation routine, which will be of shape: [batch ×
classes× x-dim× y-dim× z-dim].

4 RESULTS

We find that we are able to accurately encode and decode 3-D representations of density fields (see
Figs. 3 and 4). Using the segmentation network, we segment the output of the decoder into distinct
atoms. Using a trained network, we show that random samples from the latent space decode to
samples that obey many of the same statistics as the training distribution (see Figs. 7 and 9). Addi-
tionally, in the case of a repeating unit cell, we alter our training routine to condition the generation
of molecules on the largest atomic number present.

4.1 ACCURACY ON A UNIT CELL

In Fig. 3 we plot the results of applying our model to single unit cells of crystals. We find out model
is able to very accurately segment the locations of molecules with nearly 99% of atoms placed
within 0.5 Å of their true location. Nearly 90% of unit cells are reconstructed with the correct
number of atoms and 97% of unit cells are reconstructed with less than 2 atoms extra or missing.
66% of species are correctly classified in test set, with nearly 100 possible classes. When an atom is
incorrectly classified, it is usually by one or two atomic numbers (98% are within 2 atomic numbers).
Next, we will discuss the same network applied to repeating unit cells. We go into more detail on
the reconstruction errors for repeated unit cells, as these are more complex than single unit cells. In
all cases, the results for single unit cells are improvements over the results of multiple unit cells. For
most figures, there are corresponding panels between the single unit cell and repeated cell results.

4.2 ACCURACY ON A REPEATING LATTICE

In Fig. 4 we assess the accuracy on a variety of different metrics for both the encoder-decoder
network as well as the segmentation of the output.

4.2.1 RESULTS FROM THE ENCODER-DECODER

Our encoder-decoder architecture is able to accurately reconstruct the voxel-wise density (Fig. 4A
and Fig. 5). We find a strong correlation between the predicted and target voxel value (Fig. 5A).
This is essential for achieving an accurate segmentation of the correct atoms and their corresponding
positions. Due to the strong penalty on the KL term we find that there is an increased spread in the
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Figure 7: Decode random latent space vectors. For 5 different random latent space vectors we
show the reconstructed density field and the resulting segmentation. Notice that in some cases small
amounts of density are predicted but are not segmented into an atom (for example, in columns 3 and
4).

resulting predictions when attempting to encode and decode repeating unit cells. This is less of an
issue when encoding and decoding single unit cells. In Fig. 12, we show reconstructions with β/10.
As expected, reducing the effect of the KL penalty results in less blurry predicted density maps.
However, by reducing β we find that there are correlations in our latent space that result in less
physical samples when drawing from N (0, 1) in the case of repeated unit cells.

4.2.2 RESULTS FROM SEGMENTATION

Using the output of the segmentation network, we take the S̃ = argmax(S). From this represen-
tation, we find the connected components and use majority voting to assign each cluster an atom
identity. In Fig. 4B we show the accuracy of all top-1 predictions. We compare the results of our
segmented matrix, S̃ with the true values, Ŝ. From the center of mass of each predicted atom i, we
compute the distance to the nearest true atom as follows

minj d(S̃i, Ŝj) ∀ j and mini d(S̃i, Ŝj) ∀ i. (6)

Similarly, we can compute the distance from each true atom to the nearest predicted atom. By
computing this metric in both directions, we are able to verify that our model is placing atoms in
the correct locations but only in those locations. In Fig. 4C we show the percentiles of all pairwise
minimum distances in our reconstructed samples. We find that 50% of all reconstructed atoms are
in 0.2 Å. For both directions, the 75th percentile error was under 1 Å and the 90th percentile of
reconstructed atoms were within 2 Å. For predicted atoms that are within 0.5 Å of a true atom’s
location, we find that 65.4% of the time our prediction matches the atomic number exactly Fig. 4E.
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Figure 8: Interpolation between two molecules. In (A) we show the interpolation between two
crystal density maps. We show three equally spaced intermediates the corresponding segmentation.
In (B), we show the same interpolation but highlight different two dimensional slices (y-axis). Along
the x-axis we label the fraction of the way between the two latent space vectors.

For 120 randomly selected reconstructed crystals from the test set, we compare the number of atoms
after segmentation with the true number (Fig. 4D and Fig. 3B). In Fig. 4E we compare the predicted
species compared with the species of the nearest true atom, independent of the distance to the nearest
atom. We find that based on the results of Fig. 4, our current model is able to more accurately
reconstruct the locations of atoms than obtain their true atomic number. This makes sense, given the
enormous number of possible classes. However for repeating unit cells, when an atom is correctly
predicted to be within 0.33 Å of a true atom location nearly 70% of the time the atom is assigned
exactly the correct Z value. The correlation between the true and predicted value is 0.98 suggesting
that when the network makes an incorrect assessment, it chooses a nearby atomic number.

Further improvements in this placement and identification of atoms is necessary in achieving
molecules that will appropriately relax in a DFT simulation for the calculation of quantum me-
chanical properties. To be able to generate potentially interesting crystal structures, it is important
to ensure that different regions of the latent space decode to physically realistic molecules.
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Figure 9: Random latent space samples. (A) We look at the spacing between nearest atoms from
random draws from the latent space compared to those from real crystal structures. In blue we
show the distribution of random reconstructions. In red we show the distribution of true inter-atomic
spacing. (B) We pass z ∼ N (0, 1) into our decoder and then segment the output.

4.3 LATENT SPACE INTERPOLATION

We encode two different true density maps into vectors z1 and z2, respectively. We then linearly
interpolate between these two values in latent space, constructing intermediate vectors z̃i. We decode
the resulting latent space vectors which result in predicted density maps, D(z̃). Passing these into
the trained segmentation routine, we find that intermediate results segment into atoms (see results
on a single unit cell in Fig. 3 and Fig. 6). See results on a repeating lattice in 8 and Fig. 11)1. More
videos of latent space interpolation for both single unit cells and repeating unit cells are available in
the Supplement.

4.4 RANDOM DRAWS

We can randomly sample a latent space vector z ∼ N (0, 1) and we then decode the output. We do
this for both single unit cells as well as for repeating lattices.

4.4.1 UNIT CELL

Using the network trained to encode and decode single unit cells, we decode a z ∼ N (0, 1). In
Fig. 7 we show the decoded density fields along with the resulting segmented output. There are a
few desirable features: single cells are centered, atoms tend to be of similar atomic number, even in
different parts of the reconstructed output, and atoms are not ever too close together.

4.4.2 REPEATING LATTICE

In Fig. 9 we plot a variety of random density fields from the latent space along with their segmented
counterparts. While the resulting molecules are certainly not accurate enough to relax under a DFT
calculation, we plot a histogram of of inter-atom distances. We find that the reconstructions obey a
similar intra-molecule distance distribution as found in true samples.

4.5 CONDITIONAL VAE

Moving forward, an important step will be creating structures that have specific chemical properties.
Moving towards this direction, we attempt to condition the generation of molecules on the largest

1See https://youtu.be/ZpFN5tSo5Pg
https://youtu.be/pxYb8cnLxio
https://youtu.be/q2d8LZq8RW4
https://youtu.be/H3ca2NETRD0
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Figure 10: Conditional generation of molecules. We multiply the input and output of the bot-
tleneck by the maximum density during training. Then, randomly decoding samples of αz where
z ∼ N (0, 1) and α is a random target, we find we are able to generate density maps that decode
appropriately. If we take a true decoded value and re-scale the output we find we are able to control
scale without affecting geometry. (A) We show the target and generated max value. (B) Using an
encoded z, we multiply it by different target values and decode them. We find that we are able to
change scale without affecting the geometry. (C) We show a decoded sample. We cut away the right
most corner facing the viewer. (D) For the molecule shown in (C), we show the results of varying
one value in the latent space from -3 to 3. We plot the difference in the slice when compared the the
unaltered, decoded, z for a slice that is in-plane with many atoms.

species present (Sohn et al., 2015). To do this, we multiply the input and output of the bottleneck by
the largest present density. By doing this, we are still able to get the network to train but find that we
are able to control the magnitude of the resulting density field without perturbing the geometry (see
Fig. 10B). We attempted to condition the encoder and decoder by concatenation though we found
this was not sufficient to generate density fields with the desired property.

The ability to condition on specific properties has obvious applications in the targeted generation of
molecules. In this case, we choose to condition on the largest present density as a way to generate
molecules that do not have an atom with more than a specified maximum atomic number present.
We find that by varying different parameters in the latent space, some vary the field in such a way
that appears to correlate with the location of atoms (see Fig. 10C,D). However, unlike as in work on
2-D problems, the changes in the 3-D scalar field are much harder to interpret (Chen et al., 2016;
Higgins et al., 2017). Future work will attempt to use improved factorizing techniques (Kim and
Mnih, 2018; Chen et al.). Additionally, one could seek to condition the generation of single unit
cells on quantum mechanical properties or by adding an auxiliary loss using the latent space to
predict quantum mechanical properties.

5 CONCLUSIONS AND FUTURE WORK

The ability to encode and decode 3-D structures is a very interesting direction of recent work and
increasingly important in helping create models that can understand the world that we live in. In
current material design, a lot of focus has been on molecules where the 3-D structure can be safely
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ignored. However, in many cases this is not the case. We do not know of an effective data represen-
tation for these 3-D molecules and find that by directly utilizing a proxy for density we are able to
encode and decode the geometry of these molecules.

An important future direction of research is to come up with successful representations for encoding
crystal structures such that they can be easily encoded and decoded. Coming up with a representation
of crystal unit cells (and 3-D structures in general) so that decoded molecules are physically plausible
is an important aspect that needs to be carefully considered.

Our approach is currently unable to generate molecules that are physically stable, but there are
promising directions in this direction. Using ideas similar to G-SchNet, using the decoded density
field, atoms can be placed sequentially, conditioned on the placement of previous atoms (Gebauer
et al., 2019). Working towards decoding molecules that are able to relax is a very exciting direction.

Another improvement would be to alter the structure of our encoder/decoder. Currently, we use
standard 3-D convolutions. However, using SE(3) equivariant kernels from M. Weiler et al. is
a promising direction for improved performance (Weiler et al., 2018). We feel that our current
approach could be extended beyond the domain of material science, as we are able to encode a 3-D
distance map, this approach could be broadly applied to many objects. In essence, we are able to
learn a distance transform from an object. This is more general than for encoding and decoding
atomic structures.

To try to facilitate further research in the creation of 3-D representation of more complex atomic
structures, we will release the code shortly.
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7 SUPPLEMENTAL INFORMATION

7.1 VIDEOS

7.1.1 SINGLE UNIT CELL VIDEOS

https://youtu.be/ZpFN5tSo5Pg
https://youtu.be/3yPVdgd2mQ0
https://youtu.be/pxYb8cnLxio
https://youtu.be/ZZbHmZy7Idw

7.1.2 REPEATING LATTICE VIDEOS

https://youtu.be/q2d8LZq8RW4
https://youtu.be/U5-x3jL2zcc
https://youtu.be/H3ca2NETRD0

8 TRAINING DETAILS

We used a Tesla V100 for training. We used a learning rate of 1e-5 and a batch size of 24.

8.1 NETWORK DETAILS

8.1.1 ENCODER

3D convolution, kernel size of 5 and stride of 2. 16 channels.
Batch Norm and LeakyReLU activation.
3D convolution, kernel size of 3 and stride of 1. 32 channels.
Batch Norm and LeakyReLU activation.
3D convolution, kernel size of 3 and stride of 1. 64 channels.
Batch Norm and LeakyReLU activation.
3D convolution, kernel size of 3 and stride of 2. 128 channels.
Batch Norm and LeakyReLU activation.
Fully connected layer with a bottleneck size 300.

8.1.2 DECODER

Fully connected layer.
Reshape to 128 5,5,5
Trlinear upsample by a factor of two.
Conv3D with 64 channels, kernel size of 5, leakyReLU.
Trlinear upsample by a factor of two.
Conv3D with 32 channels, kernel size of 5, leakyReLU.
Trlinear upsample by a factor of two.
Conv3D with 16 channels, kernel size of 4, leakyReLU.
Conv3D with 1 channels, kernel size of 4, ReLU.

9 ACCURACY OF RANDOM DRAWS IN A REPEATING LATTICE

To test whether random samples from the latent space, z̃, decode to physically realistic molecules,
we trained a discriminator. We trained an auto-encoder that was able to very accurately reconstruct
molecules by greatly reducing the penalty on β (see Fig. 12). Then, we compute real latent space
representations of our different molecules, z. We then draw a λ ∼ U(0, 1) and construct a new latent
space vector

ẑ = λz̃N (0,1) + (1− λ)zreal (7)
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where z̃ is a random sample from a unit normal and zreal is a random “true” latent space. We pass this
through the decoder and provide this a label (1− λ, λ). We then randomly draw z ∼ N (0, 1) from
our trained network and pass this reconstruction D̃ into the discriminator network, which outputs
a prediction of the distance from a true crystal reconstruction versus a random draw from a latent
space of a previously trained network. Applying this network to random samples from z ∼ N (0, 1)
we get a mean value of 0.84 with a standard deviation of 0.05. For true decoded samples, we find
a mean value of 0.90 with a standard deviation of 0.01. In Fig. 13, we show results of the trained
network and predictions on three different datasets. We find that the target latent space decodes to
high-scoring samples (see Fig. 13B) and that out of distribution samples typically decode to much
lower scores.

Figure 11: Interpolation between two molecules. From i − v we show two views of the output
from the segmentation routine decoding the latent space between two different molecules. In the
primed corresponding figures we show the density fields that are output by the decoder. We show
the output of each grid normalized between 0-1 in blue-green and on a fixed color map in magma.
We also vary the opacity to show the locations of predicted atoms.
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Figure 12: Results with smaller β. We decrease β by a factor of 10. By reducing the penalty on
the Kullback-Leibler (KL) term we are able to generate more accurate reconstructions. However,
sampling z ∼ N (0, 1) does not fully sample the encoded space of molecules.

Figure 13: λ prediction for different samples. Using the network in Fig. 12 we train a discriminator
network to predict the “distance” from a real crystal. We apply this discriminator to real decoded
samples, random latent space draws, and out of distribution draws (right).
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Figure 14: Decoded samples of repeating unit cells. Results from the encoder-decoder.

Figure 15: Segmented Output from the decoded samples. The segmented output from Fig. 14.
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Nowopen evenwider,Mr. Stevens… Just out of curios-

ity, we’re going to see if we can also cram in this tennis

ball.

Gary Larson

5
Other Problems

This chapter discusses a series of projects I worked on duringmy PhD that I was not first

authoron. Manyof theseprojects representquiteabitofworkandalso fantastic learning

experiences.
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5.1 RIMsmodel

This project is particularly exciting tome. I think that it is representative of the direction

of themachine learning wind, and I am excited to see follow upwork.

5.1.1 Background

Machine learning is a very powerful tool but a major limitation is poor generalization.

Slight changes in datasets can have large effects on predictions and out of distribution

inputs can have surprising outputs. We know that physical processes in the world often

have a modular structure, with complexity emerging through combinations of simpler

subsystems. Modular structures are aggregates of mechanisms that can perform func-

tions without affecting the remainder of the system, and interact as needed. Despite

this, mostmachine learningmodels employ the opposite inductive bias– specifically, that

all processes interact and that the entire input is compressed into a single latent space.

This can lead to poor generalization to out of distribution data and a lack of robustness to

changing task distributions. Recentwork has been interested in learning disentangled la-

tent space representations,25,71,30 but the aim of this work is quite different. The central

questionmotivating thiswork ishowamachine learningapproachcan learn independent,

but sparsely interacting recurrent mechanisms in order to benefit from such modularity.

In thispaper,we introduceRecurrent IndependentMechanisms (RIMs), thatpartition the

overall model into k small modules, each of which is recurrent in order to capture dynam-
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ics. Each of the RIMs have their distinct functions, including state dependent activation,

that activatedmodules talk with one another, and that non activemodules follow the de-

fault function. This has also the advantage of enabling a localization of the computation

in the whole system. These learned mechanisms should not be too complex, otherwise

it is easy for an individual mechanism to dominate (and hence the system may not learn

anythingmeaningful).

5.1.2 Contributions

This project birthed from follow up work where Anirudh Goyal, Shagun Sofhani, and I

were extending the original RIMsmodel (from Anirudh Goyal, Alex Lamb, Sergey Levine,

Yoshua Bengio, and Bernhard Schölkopf) to the bouncing balls dataset. However, due to

the conference cycle, we ended up merging most of the work into the first paper. I had

a large part in interfacing and then running the code on the bouncing balls dataset. I an-

alyzed results on the bouncing balls dataset, generated figures, etc. I also played a large

role in writing and editing the manuscript. There are some exciting improvements that

will hopefully be in a follow-up paper soon. I also generated several newdatasets thatwe

did not add to the current manuscript.

5.1.3 Publication: Recurrent Independent Mechanisms: A New Architecture

for Improving Generalization
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RECURRENT INDEPENDENT MECHANISMS

Anirudh Goyal1, Alex Lamb1, Jordan Hoffmann1, 2, *, Shagun Sodhani1, *, Sergey Levine4

Yoshua Bengio1, **, Bernhard Schölkopf 3, **

ABSTRACT

Learning modular structures which reflect the dynamics of the environment can
lead to better generalization and robustness to changes which only affect a few of
the underlying causes. We propose Recurrent Independent Mechanisms (RIMs),
a new recurrent architecture in which multiple groups of recurrent cells operate
with nearly independent transition dynamics, communicate only sparingly through
the bottleneck of attention, and are only updated at time steps where they are most
relevant. We show that this leads to specialization amongst the RIMs, which in
turn allows for dramatically improved generalization on tasks where some factors
of variation differ systematically between training and evaluation.

1 INTRODUCTION

Physical processes in the world often have a modular structure, with complexity emerging through
combinations of simpler subsystems. Machine learning seeks to uncover and use regularities in the
physical world. Although these regularities manifest themselves as statistical dependencies, they are
ultimately due to dynamic processes governed by physics. These processes are often independent and
only interact sparsely. For instance, we can model the motion of two balls as separate independent
mechanisms even though they are both gravitationally coupled to Earth as well as (weakly) to each
other. They may, however, occasionally strongly interact via collisions.

The notion of independent or autonomous mechanisms has been influential in the field of causal
inference, where it is applied not only to dynamic processes but also to time independent datasets. For
instance, it has been argued that the conditional distribution of the average annual temperature given
the altitude of a place is an abstraction of a causal mechanism (subsuming complex physical processes
involving air pressure, etc.) that is independent of the distribution of the altitudes of settlements
(Peters et al., 2017), and will thus apply invariantly for, say, different countries in the same climate
zone with different altitude distributions.

A complex generative model, temporal or not, can be thought of as the composition of independent
mechanisms or “causal” modules. In the causality community, this is often considered a prerequisite
of being able to perform localized interventions upon variables determined by such models (Pearl,
2009). It has been argued that the individual modules tend to remain robust or invariant even as other
modules change, e.g., in the case of distribution shift (Schölkopf et al., 2012; Peters et al., 2017). One
may hypothesize that if a brain is able to solve multiple problems beyond a single i.i.d. (independent
and identically distributed) task, it would be economical to learn structures aligned with this, by
learning independent mechanisms that can flexibly be reused, composed and re-purposed.

In the dynamic setting, we think of an overall system being assayed as composed of a number of fairly
independent subsystems that evolve over time, responding to forces and interventions. A learning
agent then need not devote equal attention to all subsystems at all times: only those aspects that
significantly interact need to be considered jointly when taking a decision or forming a plan (Bengio,
2017). Such sparse interactions can reduce the difficulty of learning since few interactions need to
be considered at a time, reducing unnecessary interference when a subsystem is adapted. Models
learned this way may be more likely to capture the compositional generative (or causal) structure
of the world, and thus better generalize across tasks where a (small) subset of mechanisms change
while most of them remain invariant (Simon, 1991; Peters et al., 2017; Parascandolo et al., 2018).
The central question motivating our work is how a machine learning approach can learn independent
but sparsely interacting recurrent mechanisms in order to benefit from such modularity.

1 Mila, University of Montreal,2 Harvard University, 3 MPI for Intelligent Systems, Tübingen, 4 University
of California, Berkeley, ** Equal advising, * Equal Contribution. :anirudhgoyal9119@gmail.com
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Figure 1: Illustration of Recurrent Independent Mechanisms (RIMs). A single step under the proposed
model occurs in four stages (left figure shows two steps). In the first stage, individual RIMs produce a query
which is used to read from the current input. In the second stage, an attention based competition mechanism is
used to select which RIMs to activate (right figure) based on encoded visual input (blue RIMs are active, based
on attention score, white RIMs remain inactive). In the third stage, individual activated RIMs follow their own
default transition dynamics while non-activated RIMs remain unchanged. In the fourth stage, the RIMs sparsely
communicate information between themselves, also using attention.

2 RECURRENT INDEPENDENT MECHANISMS WITH SPARSE INTERACTIONS

Our approach to modelling a dynamical system of interest divides the overall model into k small
subsystems (or modules), each of which is recurrent in order to be able to capture dynamics. We refer
to these subsystems as Recurrent Independent Mechanisms (RIMs), where each RIM has distinct
functions that are learned automatically from data. We refer to RIM k at time step t as having state
ht,k, where t = 1, . . . , T . Each RIM has parameters θk, which are shared across all time steps.

At a high level (see. Fig. 1), we want each RIM to have its own independent dynamics operating
by default, and occasionally to interact with other relevant RIMs and with selected elements of the
encoded input. The total number of parameters can be kept small since RIMs can specialize on
simple sub-problems, similar to Parascandolo et al. (2018). This specialization and modularization
not only has computational and statistical advantages (Baum & Haussler, 1989; Bengio et al., 2019),
but also prevents individual RIMs from dominating and modelling complex, composite mechanisms.
We expect this to lead to more robust systems than training one big homogeneous neural network
(Schmidhuber, 2018). Moreover, modularity also has the desirable implication that a RIM should
maintain its own independent functionality even as other RIMs are changed. A more detailed account
of the desiderata for the model is given in Appendix A.

2.1 INDEPENDENT RIM DYNAMICS

Now, consider the default transition dynamics which we apply for each RIM independently and during
which no information passes between RIMs. We use h̃ for the hidden state after the independent
dynamics are applied (and before attention is applied). First, for the RIMs which are not activated
(we refer to the activated set as St), the hidden state remains unchanged:

h̃t+1,k = ht,k ∀k /∈ St. (1)

Note that the gradient still flows through a RIM on a step where it is not activated. For the RIMs
that are activated, we run a per-RIM independent transition dynamics. The form of this is somewhat
flexible, but in this work we opted to use either a GRU (Chung et al., 2015) or an LSTM (Hochreiter
& Schmidhuber, 1997). We generically refer to these independent transition dynamics as Dk, and
we emphasize that each RIM has its own separate parameters. Aside from being RIM-specific, the
internal operation of the LSTM and GRU remain unchanged, and the active RIMs are updated by

h̃t+1,k = Dk(ht,k) = LSTM(ht,k, A
(in)
k ; θ

(D)
k ) ∀k ∈ St (2)

as a function of the attention mechanism A
(in)
k applied on the current input, described in the next two

subsections below, after explaining the key-value mechanism used to select arguments for this update.

Note that we are using the term mechanism both for the mechanisms that make up the world’s dynamics as
well as for the computational modules that we learn to model those mechanisms.

2
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2.2 KEY-VALUE ATTENTION TO PROCESS SETS OF NAMED INTERCHANGEABLE VARIABLES

Each RIM should be activated and updated when the input is relevant to it. We thus utilize competition
to allocate representational and computational resources. As argued by Parascandolo et al. (2018),
this tends to produce independence among learned mechanisms, provided the training data has
been generated by a set of independent physical mechanisms. In contrast to Parascandolo et al.
(2018), we use an attention mechanism for this purpose. In doing so, we are inspired by findings
from experimental psychology in the study of the interplay of top-down attention and bottom-up
information flow, conceptualized in the biased competition theory of selective attention (Desimone &
Duncan, 1995): A brain’s capacity for parallel processing of complex entities is limited, and many
brain systems representing visual information use competition (operating in parallel across the visual
field) to allocate resources, often biased by feedback from higher brain areas.

The introduction of content-based soft-attention mechanisms (Bahdanau et al., 2014) has opened the
door to neural networks which operate on sets of typed interchangeable objects. This idea has been
remarkably successful and widely applied to most recent Transformer-style multi-head dot product
self attention models (Vaswani et al., 2017; Santoro et al., 2018), achieving new state-of-the-art
results in many tasks. Soft-attention uses the product of a query (or read key) Q of dimensionality
Nr × d matrix Q, and d dimension of each key) to a set of No objects each associated with a key (or
write-key) matrix KT (No × d), and after normalization with a softmax yields outputs in the convex
hull of the values (or write-values) Vi (row i of matrix V ). Its result is computed as

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V,

where the softmax is applied to each row of its argument matrix, yielding a set of convex weights. As
a result, one obtains a convex combination of the values V . If the attention is focused on one element
for a particular row (i.e., the softmax is saturated), this simply selects one of the objects and copies
its value to row j of the result. Note that the d dimensions in the key can be split into heads which
then have their attention matrix and write values computed separately.

When the inputs and outputs of each RIM are a set of objects or entities (each associated with a key and
value vector), the RIM processing becomes a generic object-processing machine which can operate
on “variables” in a sense analogous to variables in a programming language: as interchangeable
arguments of functions. Because each object has a key embedding (which one can understand both
as a name and as a type), the same RIM processing can be applied to any variable which fits an
expected "distributed type" (specified by a query vector). Each attention head then corresponds to
a typed argument of the function computed by the RIM. When the key of an object matches the
query, it can be used as input for the RIM. Whereas in regular neural networks (without attention)
neurons operate on fixed variables (the neurons which are feeding them from the previous layer),
the key-value attention mechanisms make it possible to select on the fly which variable instance (i.e.
which entity or object) is going to be used as input for each of the arguments of the RIM dynamics,
with a different set of query embeddings for each RIM. These inputs can come from the external
input or from the output of other RIMs. So, if the individual RIMs can represent these “functions
with typed arguments,” then they can “bind” to whatever input is currently available and best suited
according to its attention score: the “input attention” mechanism would look at the candidate input
object’s key and evaluate if its “type” matches with what this RIM expects (specified in the query).

2.3 SELECTIVE ACTIVATION OF RIMS AS A FORM OF TOP-DOWN MODULATION

The proposed model learns to dynamically select those RIMs for which the current input is relevant.
We give each RIM the choice between attending to the actual input instances or a special null input.
The null input consists entirely of zeros and thus contains no information. At each step, we select
the top-kA (out of kT ) RIMs in terms of their value of the softmax for the real input. Intuitively, the
RIMs must compete on each step to read from the input, and only the RIMs that win this competition
will be able to read from the input and have their state updated.

In our use of key-value attention, the queries come from the RIMs, while the keys and values come
from the current input. The mechanics of this attention mechanism follow (Vaswani et al., 2017;
Santoro et al., 2018), with the modification that the parameters of the attention mechanism itself are
separate for each RIM. The input attention for a particular RIM is described as follows. The input

3
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xt at time t is seen as a set of elements, structured as rows of a matrix (for image data, it can be the
output of the CNN). We first concatenate a row full of zeros, to obtain

X = ∅ ⊕ xt. (3)

⊕ refers to the row-level concatenation operator. Then, linear transformations are used to construct
keys (K = XW k, one per input element and for the null element), values (V = XW v, again one
per element), and queries (Q = RW q

k , one per RIM attention head) where R is a matrix with each
row ri corresponding to the hidden state of an individual RIM (i.e ht,k). W v is a simple matrix
mapping from an input element to the corresponding value vector for the weighted attention and W k

is similarly a weight matrix which maps the input to the keys. W q
k is a per-RIM weight matrix which

maps from the RIM’s hidden state to its queries. The attention thus is

A
(in)
k = softmax

(
RW q

k (XW
k)T√

de

)
XW v, where θ(in)k = (W q

k ,W
e,W v). (4)

Based on the softmax values in (4), we select the top kA RIMs (out of the total K RIMs) to be
activated for each step, which have the least attention on the null input (and thus put the highest
attention on the input), and we call this set St. Since the queries depend on the state of the RIMs, this
enables individual RIMs to attend only to the part of the input that is relevant for that particular RIM,
thus enabling selective attention based on a top-down attention process (see. Fig 1). In practice, we
use multiheaded attention, and multi-headed attention doesn’t change the essential computation, but
when we do use it for input-attention we compute RIM activation by averaging the attention scores
over the heads.

2.4 COMMUNICATION BETWEEN RIMS

Although the RIMs operate independently by default, the attention mechanism allows sharing of
information among the RIMs. Specifically, we allow the activated RIMs to read from all other RIMs
(activated or not). The intuition behind this is that non-activated RIMs are not related to the current
input, so their value should not change. However they may still store contextual information that is
relevant for activated RIMs. For this communication between RIMs, we use a residual connection as
in (Santoro et al., 2018) to prevent vanishing or exploding gradients over long sequences.

Qt,k = W̃ q
k h̃t,k, ∀k ∈ St (5)

Kt,k = W̃ e
k h̃t,k, ∀k (6)

Vt,k = W̃ v
k h̃t,k, ∀k (7)

ht+1,k = softmax
(
Qt,k(Kt,:)

T

√
de

)
Vt,: + h̃t,k ∀k ∈ St, where θ(c)k = (W̃ q

k , W̃
e
k , W̃

v
k ). (8)

2.5 VARIATIONS ON THE RIMS ARCHITECTURE

The RIMs architecture that we study is highly homogeneous and generally the only hyperparameters
are the number of RIMs K and how many RIMs are activated on each time step KA. All of the
datasets that we consider are temporal, yet there is a distinction between datasets where the input on
each time step is highly structured (such as a video, where each time step is an image) and where this
is not the case (such as language modeling, where each step is a word or character). In the former
case, we can get further improvements by making the activation of RIMs not just sparse across time
but also sparse across the (spatial) structure.

Multiple Heads: As in Vaswani et al. (2017); Santoro et al. (2018), we use multiple heads (both
for communication between RIMs as well as input attention (as in Sec 2.3) by producing different
sets of queries, keys, and values to compute a linear transformation for each head (different heads
have different parameters), and then applying the attention operator for each head separately in order
to select conditioning inputs for the RIMs.
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3 RELATED WORK

Neural Turing Machine (NTM) and Relational Memory Core (RMC): the NTM (Graves et al.,
2014a) consists of a sequence of independent memory cells, and uses an attention mechanism
while performing targeted read and write operations. This shares a key idea with RIMs: that input
information should only impact a sparse subset of the memory by default, while keeping most of
the memory unaltered. RMC (Santoro et al., 2018) uses a multi-head attention mechanism to share
information between multiple memory elements. We encourage the RIMs to remain separate as much
as possible, whereas Santoro et al. (2018) allow information between elements to flow on each step
in an unsconstrained way. Instead, each RIM has its own default dynamics, while in RMC, all the
processes interact with each other.

Separate Recurrent Models: EnTNet (Henaff et al., 2016) and IndRNN (Li et al., 2018) can
be viewed as a set of separate recurrent models. In IndRNN, each recurrent unit has completely
independent dynamics, whereas EntNet uses an independent gate for writing to each memory
slot. RIMs use different recurrent models (with separate parameters), but we allow the RIMs to
communicate with each other sparingly using an attention mechanism.

Modularity and Neural Networks: A neural network is composed of several neural modules, where
each module is meant to perform a distinct function, and hence can be seen as a combination of
experts (Jacobs et al., 1991; Bottou & Gallinari, 1991; Ronco et al., 1997; Reed & De Freitas, 2015;
Andreas et al., 2016; Parascandolo et al., 2018; Rosenbaum et al., 2017; Fernando et al., 2017;
Shazeer et al., 2017; Kirsch et al., 2018; Rosenbaum et al., 2019) routing information through a gated
activation of layers. These works generally assume that only a single expert is active at a particular
time step. In the proposed method, multiple RIMs can be active, interact and share information.

Computation on demand: There are various architectures (El Hihi & Bengio, 1996; Koutnik et al.,
2014; Chung et al., 2016; Neil et al., 2016; Jernite et al., 2016; Krueger et al., 2016) where parts of the
LSTM’s hidden state are kept dormant at times. The major differences as compared to the proposed
architecture are that (a) we modularize the dynamics of recurrent cells (using RIMs), and (b) we also
control the inputs of each module (using transformer style attention), while many previous gating
methods did not control the inputs of each module, but only whether they should be executed or not.

4 EXPERIMENTS

Figure 2: Copying Task RIM Activation Pattern for
a model with K = 6 RIMs and KA = 3 active RIMs
per step (the activated RIMs are in black, non-activated
in white). We can see that the RIM activation pattern is
distinct during the dormant part of the sequence.

The main goal of our experiments is to show
that the use of RIMs improves generalization
across changing environments and/or in modu-
lar tasks, and to explore how it does so. Our goal
is not to outperform highly optimized baselines;
rather, we want to show the versatility of our
approach by applying it to a range of diverse
tasks, focusing on tasks that involve a changing
environment. We organize our results by the
capabilities they illustrate: we address general-
ization based on temporal patterns, based on objects, and finally consider settings where both of these
occur together.

4.1 RIMS IMPROVE GENERALIZATION BY SPECIALIZING OVER TEMPORAL PATTERNS

We first show that when RIMs are presented with sequences containing distinct temporal patterns,
they are able to specialize so that different RIMs are activated on different patterns. As a result, RIMs
are able to generalize well when we modify a subset of the patterns (especially those unrelated to the
class label) while most recurrent models fail to generalize well to these variations.

4.1.1 COPYING TASK

First we turn our attention to the task of receiving a short sequence of characters, then receiving blank
inputs for a large number of steps, and then being asked to reproduce the original sequence. We can
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Copying Train(50) Test(200)
kT kA hsize CE CE

RIMs

6 5 600 0.01 3.5
6 4 600 0.00 0.00
6 3 600 0.00 0.00
6 2 600 0.00 0.00
5 3 500 0.00 0.00

LSTM - - 300 0.00 2.28
- - 600 0.00 3.56

NTM - - - 0.00 2.54

RMC - - - 0.00 0.13

Transformers- - - 0.00 0.54

Sequential MNIST 16 x 16 19 x 19 24 x 24
kT kA hsize Accuracy Accuracy Accuracy

RIMs

6 6 600 85.5 56.2 30.9
6 5 600 88.3 43.1 22.1
6 4 600 90.0 73.4 38.1

LSTM - - 300 86.8 42.3 25.2
- - 600 84.5 52.2 21.9

EntNet - - - 89.2 52.4 23.5

RMC - - - 89.58 54.23 27.75

DNC - - - 87.2 44.1 19.8
Transformers- - - 91.2 51.6 22.9

Table 1: Performance on the copying task (left) and sequential MNIST resolution task right). Error (CE on
the last 10 time steps) on the copying task. Note that while all of the methods are able to learn to copy
for the length seen during training, the RIMs model generalizes to sequences longer than those seen during
training whereas the LSTM, RMC, and NTM degrade. Sequential MNIST resolution: Test Accuracy % on the
Sequential MNIST resolution generalization task (see text) after 100 epochs. Both the proposed and the Baseline
model (LSTM) were trained on 14x14 resolution but evaluated at different resolutions; results averaged over 3
different trials.

think of this as consisting of two temporal patterns which are independent: one where the sequence is
received and another “dormant” pattern where no input is provided.

As an example of out-of-distribution generalization, we find that using RIMs, we can extend the length
of this dormant phase from 50 during training to 200 during testing and retain perfect performance
(Table 1), whereas baseline methods including LSTM, NTM, and RMC substantially degrade. In
addition, we find that this result is robust to the number of RIMs used as well as to the number of
RIMs activated per-step. Our ablation results (Appendix C.5) show that all major components of the
RIMs model are necessary to achieve this generalization. We consider this preliminary evidence that
RIMs can specialize over distinct patterns in the data and improve generalization to settings where
these patterns change.

4.1.2 SEQUENTIAL MNIST RESOLUTION TASK

RIMs are motivated by the hypothesis that generalization performance can be improved by having
modules which only activate on relevant parts of the sequence. For further evidence that RIMs can
achieve this out-of-distribuution, we consider the task of classifying MNIST digits as sequences
of pixels (Krueger et al., 2016) and assay generalization to images of resolutions different from
those seen during training. Our intuition is that the RIMs model should have distinct subsets of the
RIMs activated for pixels with the digit and empty pixels. As a result, RIMs should generalize better
to greater resolutions by keeping the RIMs which store pixel information dormant over the empty
regions of the image.

Results: Table 1 shows the result of the proposed model on the Sequential MNIST Resolution Task.
If the train and test sequence lengths agree, both models achieve comparable test set performance.
However, the RIMs model was relatively robust to changing the sequence length (by changing the
image resolution), whereas the LSTM performance degraded more severely. This can be seen as
a more involved analogue of the copying task, as MNIST digits contain large empty regions. It is
essential that the model be able to store information and pass gradients through these regions. The
RIMs outperform strong baselines such as Transformers, EntNet, RMC, as well as the Differentiable
Neural Computer (DNC) (Graves et al., 2016).

4.2 RIMS LEARN TO SPECIALIZE OVER OBJECTS AND GENERALIZE BETWEEN THEM

We have presented evidence that RIMs can specialize over temporal patterns. We now turn our
attention to showing that RIMs can specialize to objects, and show improved generalization to
settings where we add or remove objects at test time.
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4.2.1 BOUNCING BALL ENVIRONMENT

We consider a synthetic “bouncing balls” task in which multiple balls (of different masses and sizes)
move using basic Newtonian physics (Van Steenkiste et al., 2018). What makes this task particularly
suited to RIMs is that the balls move independently most of the time, except when they collide.
During training, we predict the next frame at each time step using teacher forcing (Williams & Zipser,
1989). We can then use this model to generate multi-step rollouts.

As a preliminary experiment, we train on sequences of length 51 (the previous standard), using a
binary cross entropy loss when predicting the next frame. We consider LSTMs as baselines. We then
produce rollouts, finding that RIMs are better able to predict future motion (examples in Figure 3,
Figure 10 in Appendix and quantitative comparisons in Figure 4).

Figure 3: Predicting Movement of Bouncing Balls. The first 15 frames of ground truth are given (last 6 of
those shown) and then the system is rolled out for the next 15 time steps. We find that RIMs perform better than
the LSTMs (predictions are in black, ground truth in blue). Notice the blurring of LSTM predictions.

Figure 4: Handling Novel Out-of-Distribution Variations. Here, we study the performance of our proposed
model compared to an LSTM baseline. The first 15 frames of ground truth are fed in and then the system is
rolled out for the next 10 time steps. During the rollout phase, RIMs perform better than the LSTMs in accurately
predicting the dynamics of the balls as reflected by the lower Cross Entropy (CE) [see blue for RIMs, purple for
LSTM]. Notice the substantially better out-of-distribution generalization of RIMs when testing on a different
number of objects than during training.

We take this further by evaluating RIMs on environments where the setup is different from the
training setup. First we consider training with 4 balls and evaluating on an environment with 6-8
balls. Second, we consider training with 6-8 balls and evaluating with just 4 balls. Robustness in
these settings requires a degree of invariance w.r.t. the number of balls.

In addition, we consider a task where we train on 4 balls and then evaluate on sequences where part of
the visual space is occluded by a “curtain.” This allows us to assess the ability of balls to be tracked
(or remembered) through the occluding region. Our experimental results on these generalization tasks
(Figure 4) show that RIMs substantially improve over an LSTM baseline. We found that increasing
the capacity of the LSTM from 256 to 512 units did not substantially change the performance gap,
suggesting that the improvement from RIMs is not primarily a result of increased capacity.

4.2.2 ENVIRONMENT WITH NOVEL DISTRACTORS

We next consider an object-picking reinforcement learning task from BabyAI (Chevalier-Boisvert
et al., 2018) in which an agent must retrieve a specific object in the presence of distractors. We use a
partially observed formulation of the task, where the agent only sees a small number of squares ahead
of it. These tasks are difficult to solve (Chevalier-Boisvert et al., 2018) with standard RL algorithms,
due to (1) the partial observability of the environment and (2) the sparsity of the reward, given that the
agent receives a reward only after reaching the goal. During evaluation, we introduce new distractors
to the environment which were not observed during training.
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Figure 5: Robustness to Novel Distractors:. Left: performance of the proposed method compared to an LSTM
baseline in solving the object picking task in the presence of distractors. Right: performance of proposed method
and the baseline when novel distractors are added.

Figure 5 shows that RIMs outperform LSTMs on this task (details in appendix). When evaluating
with known distractors, the RIM model achieves perfect performance while the LSTM struggles.
When evaluating in an environment with novel unseen distractors the RIM doesn’t achieve perfect
performance but still outperforms the LSTM. An LSTM with a single memory flow may struggle
to keep the distracting elements separate from elements which are necessary for the task, while
the RIMs model uses attention to control which RIMs receive information at each step as well as
what information they receive (as a function of their hidden state). This "top-down" bias results in
a diminished representation of the distractor, not only enhancing the target visual information, but
also suppressing irrelevant information. The notion that enhancement of the relevant information
necessarily results in suppression of irrelevant information is fundamental to biased competition
theory (Desimone & Duncan, 1995).

4.3 RIMS IMPROVE GENERALIZATION IN COMPLEX ENVIRONMENTS

We have investigated how RIMs use specialization to improve generalization to changing important
factors of variation in the data. While these improvements have often been striking, it raises a
question: what factors of variation should be changed between training and evaluation? One setting
where factors of variation change naturally is in reinforcement learning, as the data received from
an environment changes as the agent learns and improves. We conjecture that when applied to
reinforcement learning, an agent using RIMs may be able to learn faster as its specialization leads to
improved generalization to previously unseen aspects of the environment.

To investigate this we use an RL agent trained using Proximal Policy Optimization (PPO) (Schulman
et al., 2017) with a recurrent network producing the policy. We employ an LSTM as a baseline, and
compare results to the RIMs architecture. This was a simple drop-in replacement and did not require
changing any of the hyperparameters for PPO. We experiment on the whole suite of Atari games and
find that simply replacing the LSTM with RIMs greatly improves performance (Figure 6).

There is also an intriguing connection between the selective activation in RIMs and the concept of
affordances from cognitive psychology (Gibson, 1977; Cisek & Kalaska, 2010). To perform well
in environments with a dynamic combination of risks and opportunities, an agent should be ready
to adapt immediately, releasing into execution actions which are at least partially prepared. This
suggests agents should process sensory information in a contextual manner, building representations
of potential actions that the environment currently affords. For instance, in Demon Attack, one of
the games where RIMs exhibit strong performance gains, the agent must quickly choose between
targeting distant aliens to maximize points and avoiding fire from close-by aliens to avoid destruction
(indeed both types of aliens are always present, but which is relevant depends on the player’s position).
We hypothesize that in cases like this, selective activation of RIMs allows the agent to rapidly adapt
its information processing to the types of actions relevant to the current context.

4.4 ABLATIONS
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Figure 6: RIMs-PPO relative score improvement over LSTM-PPO baseline (Schulman et al., 2017) across all
Atari games averaged over 3 trials per game. In both cases, PPO was used with the exact same settings, and the
only change is the choice of recurrent architecture. More detailed experiments with learning curves as well as
comparisons with external baselines are in Appendix C.

Role of Top-Down Modulation: Removing Input Attention We study the scenario where we
remove the input attention process (Section 2.3) but still allow communication between RIMs
(Section 2.4). We train this agent on 30 ATARI games for 30M time-steps each and compare the
performance of this agent with the normal RIMs-PPO agent. We find that the RIMs agent still
outperform this agent on 11 out of 30 games, while on 1 game (Frostbite) we see the proposed
baseline agent substantially improves the performance. For more details regarding the training curves,
refer to Fig. 25 (in Appendix).

Importance of communication between RIMs: For copying, we performed an ablation where
we remove the communication between RIMs. We also varied the number of RIMs as well as the
number of activated RIMs (Table 5). We found that the communication between RIMs is essential for
good performance. We found similar results for the sequential MNIST resolution task.

Importance of sparsity of activation of the RIMs For the copying task, as well as for the sequen-
tial MNIST changed resolution task, we performed an ablation where we kept all RIMs active for all
time steps (Table 5). We found that we were not able to achieve strong generalization as compared
to the best performing RIMs model. On Atari we found that using kA = 5 slightly improved over
results compared with kA = 4, but both had similar performance across the vast majority of games,
suggesting that the kA hyperparameter is reasonably flexible in practice.

Effect of complexity of individual RIM: Empirically, we found that if the learned mechanisms
are too complex, it is easy for an individual mechanism to dominate (and hence not learn anything
meaningful). If the learned mechanisms do not have enough capacity (i.e., if each RIM consists of
about 100 units), then different RIMs have to work together.

Varying the number of attention heads for communication: Here, we study what happens if
the output of RIMs only has one ’object’ rather than multiple ones (Section 2.2). The intuition is
that RIM processing can be applied to any “head” which matches the query by an individual RIM.
So, having more heads should help, as different heads could be used by different RIMs, rather than
every RIM competing for the same head. We study this in the context of bouncing balls. We found
that using multiple heads improves the performance, thus validating our hypothesis (Sec. 2.2). See
Appendix C.11 for details.

Randomly Dropping Out RIMs: Modular structures are aggregates of mechanisms that can
perform functions without affecting the remainder of the system, and interact as needed. To what
extent are trained RIMs able to model meaningful phenomena when other RIMs are removed?
We performed an experiment on moving MNIST digits where we train normally and “dropout” a
random RIM at test time. We found that in the absence of selective activation (i.e. when kA = kT ,
Section C.13) the performance degraded very badly, but the performance degrades much less with
selective activation. See Appendix C.13 for details.
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5 CONCLUSION

Many systems of interest comprise multiple dynamical processes that operate relatively independently
and only occasionally have meaningful interactions. Despite this, most machine learning models
employ the opposite inductive bias, i.e., that all processes interact. This can lead to poor generalization
(if data is limited) and lack of robustness to changing task distributions. We have proposed a new
architecture, Recurrent Independent Mechanisms (RIMs), in which we learn multiple recurrent
modules that are independent by default, but interact sparingly. Our positive experimental results lend
support to the consciousness prior (Bengio, 2017), i.e., the importance of computational elements
which focus on few mechanisms at a time in order to determine how a high-level state evolves over
time, with many aspects of the state not being affected by this attentive dynamics (i.e., following
default dynamics). For the purposes of this paper, we note that the notion of RIMs is not limited to
the particular architecture employed here. The latter is used as a vehicle to assay and validate our
overall hypothesis (cf. Appendix A), but better architectures for the RIMs model can likely be found.
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A DESIDERATA FOR RECURRENT INDEPENDENT MECHANISMS

We have laid out a case for building models composed of modules which by default operate independently and
can interact in a limited manner. Accordingly, our approach to modelling the dynamics of the world starts by
dividing the overall model into small subsystems (or modules), referred to as Recurrent Independent Mechanisms
(RIMs), with distinct functions learned automatically from data.Our model encourages sparse interaction, i.e., we
want most RIMs to operate independently and follow their default dynamics most of the time, only rarely sharing
information. Below, we lay out desiderata for modules to capture modular dynamics with sparse interactions.

Competitive Mechanisms: Inspired by the observations in the main paper, we propose that RIMs utilize
competition to allocate representational and computational resources. As argued by (Parascandolo et al., 2018),
this tends to produce independence among learned mechanisms if the training data has been generated by
independent physical mechanisms.

Top Down Attention: The points mentioned in Section 2 in principle pertain to synthetic and natural intelli-
gent systems alike. Hence, it is not surprising that they also appear in neuroscience. For instance, suppose we are
looking for a particular object in a large scene, using limited processing capacity. The biased competition theory
of selective attention conceptualizes basic findings of experimental psychology and neuroscience (Desimone
& Duncan, 1995): our capacity of parallel processing of and reasoning with high-level concepts is limited,
and many brain systems representing visual information use competition to allocate resources. Competitive
interactions among multiple objects occur automatically and operate in parallel across the visual field. Second,
the principle of selectivity amounts to the idea that a perceiver has the ability to filter out unwanted information
and selectively process the rest of the information. Third, top-down bias originating from higher brain areas
enables us to selectively devote resources to input information that may be of particular interest or relevance. This
may be accomplished by units matching the internal model of an object or process of interest being pre-activated
and thus gaining an advantage during the competition of brain mechanisms.

Sparse Information Flow: Each RIMs’ dynamics should only be affected by RIMs which are deemed
relevant. The fundamental challenge is centered around establishing sensible communication between RIMs.
In the presence of noisy or distracting information, a large subset of RIMs should stay dormant, and not be
affected by the noise. This way, training an ensemble of these RIMs can be more robust to out-of-distribution or
distractor observations than training one big homogeneous neural network (Schmidhuber, 2018).

Modular Computation Flow and Modular Parameterization: Each RIM should have its own dy-
namics operating by default, in the absence of interaction with other RIMs. The total number of parameters (i.e.
weights) can be reduced since the RIMs can specialize on simple sub-problems, similar to (Parascandolo et al.,
2018). This can speed up computation and improve the generalisation ability of the system (Baum & Haussler,
1989). The individuals RIMs in the ensemble should be simple also to prevent individual RIMs from dominating
and modelling complex, composite mechanisms. We refer to a parameterization as modular if most parameters
are associated to individuals RIMs only. This has the desirable property that a RIM should maintain its own
independent functionality even as other RIMs are changed (due to its behavior being determined by its own
self-contained parameters).

B EXTENDED RELATED WORK

Table 2: A concise comparison of recurrent models with modular memory.

Method / Property Modular
Memory

Sparse
Information Flow

Modular
Computation Flow

Modular
Parameterization

LSTM / RNN 7 7 7 7

Relational RNN (Santoro et al., 2018) 3 7 3 7

NTM (Graves et al., 2014b) 3 3 7 7

SAB(Ke et al., 2018) 7 3 7 7

IndRNN(Li et al., 2018) 3 7 7 3

RIMs 3 3 3 3

The present section provides further details on related work, thus extending Section 3.

Neural Turing Machine (NTM). The NTM (Graves et al., 2014a) has a Turing machine inspired memory with
a sequence of independent memory cells, and uses an attention mechanism to move heads over the cells while
performing targeted read and write operations. This shares a key idea with RIMs: that input information should
only impact a sparse subset of the memory by default, while keeping most of the memory unaltered. The RIM
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model introduces the idea that each RIM has its own independent dynamics, whereas the mechanism for updating
memory cells update is shared.

Relational RNN. The Relational Models paper (Santoro et al., 2018) is based on the idea of using a multi-head
attention mechanism to share information between multiple parts of memory. It is related to our idea but a key
difference is that we encourage the RIMs to remain separate as much as possible, whereas (Santoro et al., 2018)
allows information between the parts to flow on each step (in effect making the part distribution only relevant
to a particular step). Additionally, RIMs has the notion of each RIM having its own independent transition
dynamics which operate by default, whereas the Relational RNN only does computation and updating of the
memory using attention.

Sparse Attentive Backtracking (SAB). The SAB architecture (Ke et al., 2018) explores RNNs with self-
attention across time steps as well as variants where the attention is sparse in the forward pass and where the
gradient is sparse in the backward pass. It shares the motivation of using sparse attention to keep different pieces
of information separated, but differs from the RIMs model in that it considers separation between time steps
rather than separation between RIMs.

Independently Recurrent Neural Network (IndRNN). The IndRNN (Li et al., 2018) replaces the full transi-
tion matrix in a vanilla RNN (between time steps) to a diagonal transition weight matrix. In other words, each
recurrent unit has completely independent dynamics. Intriguingly they show that this gives much finer control
over the gating of information, and allows for such an RNN to learn long-term dependencies without vanishing or
exploding gradients. Analysis of the gradients shows that having smaller recurrent transition matrices mitigates
the vanishing and exploding gradient issue. This may provide further explanation for why RIMs perform well on
long sequences.

Consciousness Prior (Bengio, 2017): This is based on the assumption of a sparse graphical model describing
the interactions between high-level variables, using gating mechanisms to select only a subset of high-level
variables to interact at any particular time. This is closely related to our work in the sense high level abstract
representation is based on the representations of the RIMs, which are activated sparsely and interact sparsely.
Our paper thus helps to validate the consciousness prior idea.

Recurrent Entity Networks: EnTNet (Henaff et al., 2016) can be viewed as a set of separate recurrent models
whose hidden states store the memory slots. These hidden states are either fixed by the gates, or modified
through a simple RNN-style update. Moreover, EntNet uses an independent gate for writing to each memory
slot. Our work is related in the sense that we also have different recurrent models (i.e.,RIMs, though each RIM
has different parameters), but we allow the RIMs to communicate with each other sparingly using an attention
mechanism.

Capsules and Dynamic Routing: EM Capsules (Hinton et al., 2018) and the preceding Dynamic Capsules
(Sabour et al., 2017) use the poses of parts and learned part→ object relationships to vote for the poses of
objects. When multiple parts cast very similar votes, the object is assumed to be present, which is facilitated by
an interactive inference (routing) algorithm.

Relational Graph Based Methods: Recent graph-based architectures have studied combinatorial generalization
in the context of modeling dynamical systems like physics simulation, multi-object scenes, and motion-capture
data, and multiagent systems (Scarselli et al., 2008; Bronstein et al., 2017; Watters et al., 2017; Raposo et al.,
2017; Santoro et al., 2017; Gilmer et al., 2017; Van Steenkiste et al., 2018; Kipf et al., 2018; Battaglia et al.,
2018; Tacchetti et al., 2018). One can also view our proposed model as a relational graph neural network, where
nodes are parameterized as individual RIMs and edges are parameterized by the attention mechanism. Though,
its important to emphasize that the topology of the graph induced in the proposed model is dynamic, while in
most graph neural networks the topology is fixed.

Default Behaviour: Our work is also related to work in behavioural research that deals with two modes of
decision making (Dickinson, 1985; Botvinick & Braver, 2015; Kool & Botvinick, 2018): an automatic systems
that relies on habits and a controlled system that uses some privileged information for making decision making.
The proposed model also has two modes of input processing, RIMs which activate uses some external sensory
information, and hence analogous to controlled system. RIMs which don’t activate, they are synonymous to habit
based system. There is some work done trying in Reinforcement learning, trying to learn default policies, which
have shown to improve transfer and generalization in multi-task RL (Teh et al., 2017; Goyal et al., 2019a). The
proposed method is different in the sense, we are not trying to learn default policies which effect the environment,
instead we want to learn mechanisms, which try to understand the environment. State dependent activation
of different primitive policies was also studied in (Goyal et al., 2019b), and the authors showed that they can
learn different primitives, but they also consider that only a single primitive can be active at a particular time
step. Also, note that primitive policies try to effect the environment, whereas mechanism try to understand the
enviornment.
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C EXPERIMENTAL DETAILS AND HYPERPARAMETERS

C.1 RIMS IMPLEMENTATION

The RIMs model consists of three main components: the input attention, the process for selecting activated RIMs,
and the communication between RIMs. The input attention closely follows the attention mechanism of (Santoro
et al., 2018) but with a significant modification: that all of the weights within the attention mechanism are
separate per-block. Thus we remove the normal linear layers and replace them with a batch matrix multiplication
over the RIMs (as each block has its own weight matrix). Note that the read-key (or query) is a function of the
hidden state of each RIM.

For selecting activated RIMs, we compute the top-k attention weight on the null input over the RIMs. We then
select the activated RIMs by using a mask.

We compute the independent dynamics over all RIMs by using a separate LSTM for each RIM. Following
this, we compute the communication between RIMs as a multihead attention (Santoro et al., 2018), with the
earlier-discussed modification of having separate weight parameters for each block, and also that we added a
skip-connection around the attention mechanism. This attention mechanism used 4 heads and in general used
a key size and value size of 32. We computed the updates for all RIMs but used the activated-block mask to
selectively update only the activated subset of the RIMs.

The use of RIMs introduces two additional hyperparameters over an LSTM/GRU: the number of RIMs and
the number of activated RIMs per step. We also observed that having too few activated RIMs tends to hurt
optimization and having too many activated RIMs attenuates the improvements to generalization. For the future
it would be interesting to explore dynamic ways of controlling how many RIMs to activate.

C.2 DETAILED MODEL HYPERPARAMETERS

Table 3 lists the different hyperparameters.

Table 3: Hyperparameters

Parameter Value

Optimizer Adam(Kingma & Ba, 2014)
learning rate 7 · 10−4

batch size 64
Inp keys 64
Inp Values Size of individual RIM * 4
Inp Heads 4
Inp Dropout 0.1
Comm keys 32
Comm Values 32
Comm heads 4
Comm Dropout 0.1

C.3 FUTURE ARCHITECTURAL CHANGES

We have not conducted systematic optimizations of the proposed architecture. We believe that even principled
hyperparameter tuning may significantly improve performance for many of the tasks we have considered in the
paper. We briefly mention a few architectural changes which we have studied:

• On the output side, we concatenate the representations of the different RIMs, and use the concatenated
representation for learning a policy (in RL experiments) or for predicting the input at the next time
step (for bouncing balls as well as all other experiments). We empirically found that adding another
layer of (multi-headed) key value attention on the output seems to improve the results. We have not
included this change

• In our experiments, we shared the same decoder for all the RIMs, i.e., we concatenate the represen-
tations of different RIMS, and feed the concatenated representations to the decoder. In the future it
would be interesting to think of ways to allow a more “structured” decoder. The reason for this is that
even if the RIMs generalize to new environments, the shared decoder can fail to do so. So changing
the structure of decoder could be helpful.
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• For the RL experiments, we also tried providing the previous actions, rewards, language instruction as
input to decide the activation of RIMs. This is consistent with the idea of efference copies as proposed
by von Helmholtz (1867); von Holst & Mittelstaedt (1950), i.e., using copies of motor signals as
inputs. Preliminary experiments shows that this improves the performance in Atari games.

C.4 LANGUAGE MODELING

Table 4: Wikitext-2 results

Approach Num. Parameters Train PPL Valid PPL Test PPL

LSTM (2-layer) 21.2M 39.78 109.25 102.53
Relational Memory (Santoro et al., 2018) 11M n/a 112.77 107.21
RIMs (2-layer, kT = 6, kA = 6) 23.7M 41.27 103.60 98.66

We investigate the task of word-based language modeling. We ran experiments on the wikitext-2 dataset (Merity
et al., 2016). We ran each experiment for a fixed 100 epochs. These results are in Table 4. Our goal in this
experiment is to demonstrate the breadth of the approach by showing that RIMs performs well even on datasets
which are noisy and drawn from the real-world.

C.5 COPYING TASK

We used a learning rate of 0.001 with the Adam Optimizer and trained each model for 150 epochs (unless the
model was stuck, we found that this was enough to bring the training error close to zero). For the RIMs model
we used 600 units split across 6 RIMs (100 units per block). For the LSTM we used a total of 600 units. We did
not explore this extensively but we qualitatively found that the results on copying were not very sensitive to the
exact number of units.

The sequences to be copied first have 10 random digits (from 0-8), then a span of zeros of some length, followed
by a special indicator “9” in the input which instructs the model to begin outputting the copied sequence.

In our experiments, we trained the models with “zero spans” of length 50 and evaluated on the model with “zero
spans” of length 200. We note that all the ablations were run with the default parameters (i.e number of keys,
values as for RIMs model) for 100 epochs. Tab. 5 shows the effect of two baselines as compared to the RIMs
model (a) When we allow the input attention for activation of different RIMs but we dont allow different RIMs
to communicate. (b) No Input attention, but we allow different RIMs to communicate with each other. Tab. 5
shows that the proposed method is better than both of these baselines. For copy task, we used 1 head in input
attention, and 4 heads for RIMs communication. We note that even with 1 RIM, its not exactly same as a LSTM,
because each RIM can still reference itself.

C.6 SEQUENTIAL MNIST TASK

In this task we considered classifying binary MNIST digits by feeding the pixels to an RNN (in a fixed order
scanning over the image). As the focus of this work is on generalization, we introduced a variant on this task
where the training digits are at a resolution of 14 x 14 (sequence length of 196). We then evaluated on MNIST
digits of different higher resolutions (16 x 16, 19 x 19, and 24 x 24). When re-scaling the images, we used the
nearest-neighbor based down-scaling and performed binarization after re-scaling. We trained with a learning
rate of 0.0001 and the Adam optimizer. For RIMs we used a total of 600 hidden units split across 6 RIMs (100
units per block). For the LSTM we used a total of 600 units.

C.7 IMITATION LEARNING: ROBUSTNESS TO NOISE IN STATE DISTRIBUTION

Here, we consider imitation learning where we have training trajectories generated from an expert (Table 6). We
evaluate our model on continuous control tasks in Mujoco (in our case, Half-Cheetah) (Todorov et al., 2012). We
take the rendered images as input and compared the proposed model with recurrent policy (i.e., LSTM). Since,
using rendered image of the input does not tell anything about the velocity of the Half-Cheetah, it makes the task
partially observable. In order to test how well the proposed model generalizes during test, we add some noise (in
the joints of the half-cheetah body). As one can see, after adding noise LSTM baselines performs poorly. On the
other hand, for the proposed model, there’s also a drop in performance but not as bad as for the LSTM baseline.

We use the convolutional network from (Ha & Schmidhuber, 2018) as our encoder, a GRU (Chung et al., 2015)
with 600 units as deterministic path in the dynamics model, and implement all other functions as two fully
connected layers of size 256 with ReLU activations. Since, here we are using images as input, which makes
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Table 5: Error (CE for last 10 time steps) on the copying task. Note that while all of the methods are able to
learn to copy on the length seen during training, the RIMs model generalizes to sequences longer than those
seen during training whereas the LSTM fails catastrophically.

Approach Train Length 50 Test Length 200

RIMs 0.00 0.00
With input Attention and No Communication

RIMs (kT = 4, kA = 2) 2.3 1.6
RIMs (kT = 4, kA = 3) 1.7 4.3
RIMs (kT = 5, kA = 2) 2.5 4,7
RIMs (kT = 5, kA = 3) 0.4 4.0
RIMs (kT = 5, kA = 4) 0.2 0.7
RIMs (kT = 6, kA = 2) 3.3 2.4
RIMs (kT = 6, kA = 3) 1.2 1.0
RIMs (kT = 6, kA = 4) 0.7 5.0
RIMs (kT = 6, kA = 5) 0.22 0.56

With No input Attention and Full Communication

RIMs (kT = 6, kA = 6, hdim = 600) 0.0 0.7
RIMs (kT = 5, kA = 5, hdim = 500) 0.0 1.7
RIMs (kT = 2, kA = 2, hdim = 256) 0.0 2.9
RIMs (kT = 2, kA = 2, hdim = 512) 0.0 1.8
RIMs (kT = 1, kA = 1, hdim = 512) 0.0 0.2

Table 6: Imitation Learning: Results on the half-cheetah imitation learning task. RIMs outperforms a baseline
LSTM when we evaluate with perturbations not observed during training (left). An example of an input image
fed to the model (right).

Method / Setting Training
Observed Reward

Perturbed States
Observed Reward

LSTM (Recurrent Policy) 5400 ± 100 2500 ± 300
RIMs (kT = 6, kA = 3) 5300 ± 200 3800 ± 200
RIMs (kT = 6, kA = 6) 5500 ± 100 2700 ± 400

the task, partially observable. Hence, we concatenate the past 4 observations, and then feed the concatenated
observations input to GRU (or our model). For our model, we use 6 RIMs, each of size 100, and we set ka = 3.
We follow the same setting as in (Hafner et al., 2018; Sodhani et al., 2019)

C.8 GENERALIZATION TO DISTRACTORS: ALGORITHM IMPLEMENTATION DETAILS

We evaluate the proposed framework using Adavantage Actor-Critic (A2C) to learn a policy πθ(a|s, g) condi-
tioned on the goal. To evaluate the performance of proposed method, we use a range of maze multi-room tasks
from the gym-minigrid framework (Chevalier-Boisvert & Willems, 2018) and the A2C implementation from
(Chevalier-Boisvert & Willems, 2018). For the maze tasks, we used agent’s relative distance to the absolute goal
position as "goal".

For the maze environments, we use A2C with 48 parallel workers. Our actor network and critic networks consist
of two and three fully connected layers respectively, each of which have 128 hidden units. The encoder network
is also parameterized as a neural network, which consists of 1 fully connected layer. We use RMSProp with an
initial learning rate of 0.0007 to train the models. Due to the partially observable nature of the environment, we
further use a LSTM to encode the state and summarize the past observations.

C.9 MINIGRID ENVIRONMENTS FOR OPENAI GYM

The MultiRoom environments used for this research are part of MiniGrid, which is an open source gridworld
package. This package includes a family of reinforcement learning environments compatible with the OpenAI

https://github.com/maximecb/gym-minigrid
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Figure 7: An example of the minigrid task.

Gym framework. Many of these environments are parameterizable so that the difficulty of tasks can be adjusted
(e.g., the size of rooms is often adjustable).

C.9.1 THE WORLD

In MiniGrid, the world is a grid of size NxN. Each tile in the grid contains exactly zero or one object. The
possible object types are wall, door, key, ball, box and goal. Each object has an associated discrete color, which
can be one of red, green, blue, purple, yellow and grey. By default, walls are always grey and goal squares are
always green.

C.9.2 REWARD FUNCTION

Rewards are sparse for all MiniGrid environments. In the MultiRoom environment, episodes are terminated with
a positive reward when the agent reaches the green goal square. Otherwise, episodes are terminated with zero
reward when a time step limit is reached. In the FindObj environment, the agent receives a positive reward if it
reaches the object to be found, otherwise zero reward if the time step limit is reached.

The formula for calculating positive sparse rewards is 1− 0.9 ∗ (step_count/max_steps). That is, rewards
are always between zero and one, and the quicker the agent can successfully complete an episode, the closer to 1
the reward will be. The max_steps parameter is different for each environment, and varies depending on the
size of each environment, with larger environments having a higher time step limit.

C.9.3 ACTION SPACE

There are seven actions in MiniGrid: turn left, turn right, move forward, pick up an object, drop an object, toggle
and done. For the purpose of this paper, the pick up, drop and done actions are irrelevant. The agent can use the
turn left and turn right action to rotate and face one of 4 possible directions (north, south, east, west). The move
forward action makes the agent move from its current tile onto the tile in the direction it is currently facing,
provided there is nothing on that tile, or that the tile contains an open door. The agent can open doors if they are
right in front of it by using the toggle action.

C.9.4 OBSERVATION SPACE

Observations in MiniGrid are partial and egocentric. By default, the agent sees a square of 7x7 tiles in the
direction it is facing. These include the tile the agent is standing on. The agent cannot see through walls or
closed doors. The observations are provided as a tensor of shape 7x7x3. However, note that these are not RGB
images. Each tile is encoded using 3 integer values: one describing the type of object contained in the cell, one
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describing its color, and a flag indicating whether doors are open or closed. This compact encoding was chosen
for space efficiency and to enable faster training. The fully observable RGB image view of the environments
shown in this paper is provided for human viewing.

C.9.5 LEVEL GENERATION

The level generation in this task works as follows: (1) Generate the layout of the map (X number of rooms with
different sizes (at most size Y) and green goal) (2) Add the agent to the map at a random location in the first
room. (3) Add the goal at a random location in the last room. A neural network parameterized as CNN is used to
process the visual observation.

We follow the same architecture as (Chevalier-Boisvert & Willems, 2018) but we replace the LSTM layer with
BlockLSTM.

C.10 BOUNCING BALLS

We use the bouncing-ball dataset from (Van Steenkiste et al., 2018). The dataset consists of 50,000 training
examples and 10,000 test examples showing ∼50 frames of either 4 solid balls bouncing in a confined square
geometry, 6-8 balls bouncing in a confined geometry, or 3 balls bouncing in a confined geometry with a random
occluded region. In all cases, the balls bounce off the wall as well as off one another. We train baselines as well
as proposed model for about 100 epochs using 0.0007 as learning rate and using Adam as optimizer (Kingma &
Ba, 2014). We use the same architecture for encoder as well as decoder as in (Van Steenkiste et al., 2018). We
train the proposed model as well as the baselines for 100 epochs. Below, we highlight a few different results.

C.10.1 DIFFERENT RIMS ATTEND TO DIFFERENT BALLS

Figure 8: Different RIMs attending to Different Balls. For understanding what each RIM is actually doing,
we associate each with a separate encoder, which are spatially masked. Only 4 encoders can be active at any
particular instant and there are four different balls. We did this to check if there would be the expected geometric
activation of RIMs. 1.) Early in training, RIM activations correlated more strongly with the locations of the
four different balls. Later in training, this correlation decreased and the active strips did not correlate as strongly
with the location of balls. As the model got better at predicting the location, it needed to attend less to the actual
objects. The top row shows every 5th frame when the truth is fed in and the bottom shows the results during
rollout. The gray region shows the active block. In the top row, the orange corresponds to the prediction and in
the bottom, green corresponds to the prediction.

In order to visualize what each RIM is doing, we associate each RIM with a different encoder. By performing
spatial masking on the input, we can control the possible spatial input to each RIM. We use six non-overlapping
horizontal strips and allow only 4 RIMs to be active at a time (shown in Fig. 8). The mask is fixed mask of zeros
with a band of ones that is multiplied by the input to each encoder. Therefore, each of the 6 encoders gets 1/6th
of the input. The goal was to see how the RIM activation patterns changed/correlated with the locations of the
balls. We find that early in training, the RIMs’ activations are strongly correlated with the location of the 4 balls.
However, after training has proceeded for some time this correlation deteriorates. This is likely because the
predictable dynamics of the system do not necessitate constant attention.

C.10.2 COMPARISON WITH LSTM BASELINES

In Figures 9, 10, 11, and 12 we highlight different baselines and how these compare to the proposed RIMs model.

C.10.3 OCCLUSION

In Fig. 13, we show the performance of RIMs on the curtain dataset. We find RIMs are able to track balls through
the occlusion without difficulty. Note that the LSTM baseline, is also able to track the ball through the “invisible”
curtain.
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Figure 9: Example of the other LSTM baselines. For the 2 other experiments that we consider, here we show
example outputs of our LSTM baselines. In each row, the top panel represents the ground truth and the bottom
represents the prediction. All shown examples use an LSTM with 250 hidden units, as shown in Fig. 4. Frames
are plotted every 3rd time step. The red line marks 10 rollout frames. This is marked because after this we do
not find BCE to be a reliable measure of dissimilarity.

Figure 10: Comparison of RIMs to LSTM baseline. For 4 different experiments in the text, we compare RIMs
to two different LSTM baselines. In all cases we find that during rollout, RIMs perform better than the LSTMs
at accurately capturing the trajectories of the balls through time. Due to the number of hard collisions, accurate
modeling is very difficult. In all cases, the first 15 frames of ground truth are fed in (last 6 shown) and then the
system is rolled out for the next 15 time steps, computing the binary cross entropy between the prediction and the
true balls at each instant, as in Van Steenkiste et al. (2018). See the Appendix for losses over the entire 35 frame
rollout trajectory. In the predictions, the transparent blue shows the ground truth, overlaid to help guide the eye.

C.10.4 STUDY OF TRANSFER

It is interesting to ask how models trained on a dataset with 6-8 balls perform on a dataset with 4 balls. In Fig. 14
we show predictions during feed-in and rollout phases.

C.11 ABLATIONS

We present one ablation in addition to the ones in Section 4.4. In this experiment, we study the effect on input
attention (i.e top down attention) as well as the use of multi-headed head key-value attention. We compare the
proposed model (with input attention as well as multi-headed key value attention) with 2 baselines: (a) In which
we remove the input attention (and force all the RIMs to communicate with each other (b) We use 1 head for key
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Figure 11: Comparison between RIMs and LSTM baseline. For the 4 ball task and the 6-8 ball extrapolation
task, here we show an example output of from our LSTM baseline and from RIMs. All shown examples use an
LSTM with 250 hidden units, as shown in Fig. 4. Frames are plotted every 3rd time step. The red line marks 10
rollout frames. This is marked because after this we do not find BCE to be a reliable measure of dissimilarity.

Figure 12: Comparison of RIMs to LSTM baseline. For 4 different experiments in the text, we compare RIMs
to two different LSTM baselines. In all cases we find that during rollout, RIMs perform better than the LSTMs
at accurately capturing the trajectories of the balls through time. Due to the number of hard collisions, accurate
modeling is very difficult.

Figure 13: RIMs on dataset with an occlusion. We show two trajectories (top and bottom) of three balls. For
the left frames, at each step the true frame is used as input. On the right, outlined in black, the previous output is
used as input.

value attention as compared to multi-headed key-value attention. Results comparing the proposed model, with
these two baselines is shown in Fig. 15. In Fig. 16, we show the predictions that result from the model with only
one active head.
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Figure 14: RIMs transferred on new data. We train the RIMs model on the 6-8 ball dataset (as shown in the
top row). Then, we apply the model to the 4 ball dataset, as shown in the bottom.

Figure 15: Ablation loss For the normal, a one-head model, and without input attention, we show the loss during
training and the loss for the 4th and 5th frame of rollout. We find that the one-head and without input attention
models perform worse than the normal RIMs model during the rollout phase.

Figure 16: One head and no attention Using one head and no attention models, we show the rollout predictions
in blue. On top we show results on the 4 ball dataset and on the bottom we show results on the curtains dataset.

C.12 ATARI

We used open-source implementation of PPO from (Kostrikov, 2018) with default parameters. We ran the
proposed algorihtm with 6 RIMs, and kept the number of activated RIMs to 4/5. We have not done any
hyper-parameter search for Atari experiments.
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Figure 17: A comparison showing relative improvement of RIMs with kA = 5 over a kA = 4 baseline. Using
kA = 5 performs slightly worse than kA = 4 but still outperforms PPO, and has similar results across the
majority of games.

Figure 18: RIMs-PPO relative score improvement over LSTM-PPO baseline (Schulman et al., 2017) across all
Atari games averaged over 3 trials per game. In both cases PPO was used with the exact same settings with the
only change being the choice of the recurrent architecture (RIMs with kA = 5).

C.12.1 TRANSFER ON ATARI

As a very preliminary result, we investigate feature transfer between randomly selected Atari games. In order to
study this question, we follow the experimental protocol of Rusu et al. (2016).

We start by training RIMs on three source games (Pong, River Raid, and Seaquest) and test if the learned features
transfer to a different subset of randomly selected target games (Alien, Asterix, Boxing, Centipede, Gopher,
Hero, James Bond, Krull, Robotank, Road Runner, Star Gunner, and Wizard of Wor). We observe, that RIMs
result in positive transfer in 9 out of 12 target games, with three cases of negative transfer. On the other hand
progressive networks (Rusu et al., 2016) result in positive transfer in 8 out of 12 target games, and two cases of
negative transfer. We also compare to LSTM baseline, which yields positive transfer in 3 of 12 games.

C.13 BOUNCING MNIST: DROPPING OFF RIMS

We use the Stochastic Moving MNIST (SM-MNIST) (Denton & Fergus, 2018) dataset which consists of
sequences of frames of size 64× 64, containing one or two MNIST digits moving and bouncing off the walls.
Training sequences are generated on the fly by sampling two different MNIST digits from the training set (60k
total digits) and two distinct trajectories.

Here, we show the effect of masking out a particular RIM and study the effect of the masking on the ensemble
of RIMs. Ideally, we would want different RIMs not to co-adapt with each other. So, masking out a particular
RIM should not really effect the dynamics of the entire model. We show qualitative comparisons in Fig. 19, 20,
21, 22, 23. In each of these figures, the model gets the ground truth image as input for first 5 time steps, and
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then asked to simulate the dynamics for next 25 time-steps. We find that sparsity is needed otherwise different
RIMs co-adapt with each other (for ex. see Fig. 20, 22, 23). We tried similar masking experiments for different
models like RMC, Transformers, EntNet (which learns a mixture of experts), LSTMs, but all of them failed to
do anything meaningful (after masking). We suspect this is partly due to learning a homogeneous network.
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Figure 19: 4 RIMs, (top k = 2). Each sub-figure shows the effect of masking a particular RIM and studying the
effect of masking on the other RIMs. For example, the top figure shows the effect of masking the first RIM, the
second figure shows the effect of masking the second RIM etc.
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Figure 20: 4 RIMs, (top k = 3). Each sub-figure shows the effect of masking a particular RIM and studying the
effect of masking on the other RIMs. For example, the top figure shows the effect of masking the first RIM, the
second figure shows the effect of masking the second RIM etc.
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Figure 21: 400dim, 5 RIMs, (top k = 2). Each sub-figure shows the effect of masking a particular RIM and
studying the effect of masking on the other RIMs. For example, the top figure shows the effect of masking the
first RIM, the second figure shows the effect of masking the second RIM etc.
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Figure 22: 400dim, 5 blocks, (top k = 3). Each sub-figure shows the effect of masking a particular RIM and
studying the effect of masking on the other RIMs. For examples, the top figure shows the effect of masking the
first RIM, the second figure shows the effect of masking the second RIM etc.
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Figure 23: 400dim, 5 blocks, (top k = 4). Each sub-figure shows the effect of masking a particular RIM and
studying the effect of masking on the other RIMs. For example, the top figure shows the effect of masking the
first RIM, the second figure shows the effect of masking the second RIM etc.
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C.13.1 ATARI RESULTS: COMPARISON WITH LSTM-PPO

Figure 24: Comparing RIMs-PPO with LSTM-PPO: Learning curves for kA = 4, kA = 5 RIMs-PPO
models and the LSTM-PPO baseline across all Atari games.
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C.13.2 ATARI RESULTS: NO INPUT ATTENTION

Here we compare the proposed method to the baseline, where we dont use input attention, and we force different
RIMs to communicate with each at all the time steps.

Figure 25: Baseline agent with no input attention mechanism: Here we compare the RIMs to the baseline,
where their is no input attention (i.e., top down attention) as well as all the RIMs communicate with each other
at all the time steps. Learning curves for RIMs-PPO models, Baseline Agent, the LSTM-PPO baseline across 30
Atari games.
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5.2 Graph neural networks: Learning graph representations

5.2.1 Background

Graph structureddata is ubiquitous in the sciences, social sciences, andmanyotherfields.

Common examples include, but are not limited to:

1. predicting properties of social networks,

2. clusteringmany different forms of data,

3. predicting properties of physical systems such as drug molecules or crystal struc-

tures,

4. predicting the properties of partially or unobserved nodes.

Convolutional neural networks have had profound effects in image analysis and pro-

cessing.87,144,136 For images, the spatial relationship between input pixels is apparent.

However, for graph structured data the relationship is less clear. Graph (convolutional)

Neural Networks (GNNs) are a very powerful tool that leverages much success from the

image domain.173,165 Developing new tools that leverage specific aspects of graph struc-

tured data and also reshaping tools developed for other domains to graph structured

datasets are active ares of research.

In the twomanuscripts discussed in this chapter, wedevelopnewcomputationalmeth-

ods for graph structured data. In the first, we introduce vGraph, a method to learn node

representations and community membership in a collaborative fashion. We show that
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this method achieves state-of-the-art performance in both tasks across a wide range of

datasets.143

In the secondmanuscript, we introduce InfoGraph, a computational method thatmax-

imizes themutual informationbetween the graph-level representation and the represen-

tations of substructures of different scales.142

5.2.2 Contributions

I discussed ideas with Fan-Yun Sun and wrote code to implement these ideas. We both

workedonextending InfoGraphtonewdatasets. Webothwroteandeditedbothmanuscripts.

5.2.3 Publication: vGraph: AGenerativeModel for JointCommunityDetection

andNode Representation Learning
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Abstract

This paper focuses on two fundamental tasks of graph analysis: community detec-
tion and node representation learning, which capture the global and local structures
of graphs, respectively. In the current literature, these two tasks are usually in-
dependently studied while they are actually highly correlated. We propose a
probabilistic generative model called vGraph to learn community membership and
node representation collaboratively. Specifically, we assume that each node can
be represented as a mixture of communities, and each community is defined as a
multinomial distribution over nodes. Both the mixing coefficients and the commu-
nity distribution are parameterized by the low-dimensional representations of the
nodes and communities. We designed an effective variational inference algorithm
which regularizes the community membership of neighboring nodes to be similar
in the latent space. Experimental results on multiple real-world graphs show that
vGraph is very effective in both community detection and node representation
learning, outperforming many competitive baselines in both tasks. We show that
the framework of vGraph is quite flexible and can be easily extended to detect
hierarchical communities.

1 Introduction

Graphs, or networks, are a general and flexible data structure to encode complex relationships among
objects. Examples of real-world graphs include social networks, airline networks, protein-protein
interaction networks, and traffic networks. Recently, there has been increasing interest from both
academic and industrial communities in analyzing graphical data. Examples span a variety of domains
and applications such as node classification [3, 26] and link prediction [8, 32] in social networks, role
prediction in protein-protein interaction networks [16], and prediction of information diffusion in
social and citation networks [22].

One fundamental task of graph analysis is community detection, which aims to cluster nodes into
multiple groups called communities. Each community is a set of nodes that are more closely
connected to each other than to nodes in different communities. A community level description is
able to capture important information about a graph’s global structure. Such a description is useful
in many real-world applications, such as identifying users with similar interests in social networks
[22] or proteins with similar functionality in biochemical networks [16]. Community detection has
been extensively studied in the literature, and a number of methods have been proposed, including
algorithmic approaches [1, 5] and probabilistic models [10, 20, 36, 37]. A classical approach to
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detect communities is spectral clustering [34], which assumes that neighboring nodes tend to belong
to the same communities and detects communities by finding the eigenvectors of the graph Laplacian.

Another important task of graph analysis is node representation learning, where nodes are described
using low-dimensional features. Node representations effectively capture local graph structure and
are often used as features for many prediction tasks. Modern methods for learning node embeddings
[11, 24, 26] have proved effective on a variety of tasks such as node classification [3, 26], link
prediction [8, 32] and graph visualization [27, 31].

Clustering, which captures the global structure of graphs, and learning node embeddings, which
captures local structure, are typically studied separately. Clustering is often used for exploratory
analysis, while generating node embeddings is often done for predictive analysis. However, these
two tasks are very correlated and it may be beneficial to perform both tasks simultaneously. The
intuition is that (1) node representations can be used as good features for community detection (e.g.,
through K-means) [4, 25, 29], and (2) the node community membership can provide good contexts
for learning node representations [33]. However, how to leverage the relatedness of node clustering
and node embedding in a unified framework for joint community detection and node representation
learning is under-explored.

In this paper, we propose a novel probabilistic generative model called vGraph for joint community
detection and node representation learning. vGraph assumes that each node v can be represented as a
mixture of multiple communities and is described by a multinomial distribution over communities
z, i.e., p(z|v). Meanwhile, each community z is modeled as a distribution over the nodes v, i.e.,
p(v|z). vGraph models the process of generating the neighbors for each node. Given a node u, we
first draw a community assignment z from p(z|u). This indicates which community the node is going
to interact with. Given the community assignment z, we generate an edge (u, v) by drawing another
node v according to the community distribution p(v|z). Both the distributions p(z|v) and p(v|z) are
parameterized by the low-dimensional representations of the nodes and communities. As a result, this
approach allows the node representations and the communities to interact in a mutually beneficial way.
We also design a very effective algorithm for inference with backpropagation. We use variational
inference for maximizing the lower-bound of the data likelihood. The Gumbel-Softmax [13] trick
is leveraged since the community membership variables are discrete. Inspired by existing spectral
clustering methods [6], we added a smoothness regularization term to the objective function of the
variational inference routine to ensure that community membership of neighboring nodes is similar.
The whole framework of vGraph is very flexible and general. We also show that it can be easily
extended to detect hierarchical communities.

In the experiment section, we show results on three tasks: overlapping community detection, non-
overlapping community detection, and node classification– all using various real-world datasets. Our
results show that vGraph is very competitive with existing state-of-the-art approaches for these tasks.
We also present results on hierarchical community detection. Relevant source codes have been made
public 1.

2 Related Work

Community Detection. Many community detection methods are based on matrix factorization
techniques. Typically, these methods try to recover the node-community affiliation matrix by
performing a low-rank decomposition of the graph adjacency matrix or other related matrices
[17, 18, 32, 36]. These methods are not scalable due to the complexity of matrix factorization,
and their performance is restricted by the capacity of the bi-linear models. Many other studies
develop generative models for community detection. Their basic idea is to characterize the generation
process of graphs and cast community detection as an inference problem [37, 38, 39]. However, the
computational complexity of these methods is also high due to complicated inference. Compared with
these approaches, vGraph is more scalable and can be efficiently optimized with backpropagation and
Gumbel-Softmax [13, 19]. Additionally, vGraph is able to learn and leverage the node representations
for community detection.

Node Representation Learning. The goal of node representation learning is to learn distributed
representations of nodes in graphs so that nodes with similar local connectivity tend to have sim-

1https://github.com/fanyun-sun/vGraph
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(a) vGraph (b) Hierarchical vGraph

Figure 1: The diagram on the left represents the graphical model of vGraph and the diagram on the
right represents the graphical model of the hierarchical extension. φn is the embedding of node wn,
ψ denotes the embedding of communities, and ϕ denotes the embeddings of nodes used in p(c|z).
Refer to Eq. 2 and Eq. 3.

ilar representations. Some representative methods include DeepWalk [24], LINE [26], node2vec
[11] and GraphRep [3]. Typically, these methods explore the local connectivity of each node by
conducting random walks with either breadth-first search [24] or depth-first search [26]. Despite
their effectiveness in a variety of applications, these methods mainly focus on preserving the local
structure of graphs, therefore ignoring global community information. In vGraph, we address this
limitation by treating the community label as a latent variable. This way, the community label can
provide additional contextual information which enables the learned node representations to capture
the global community information.

Framework for node representation learning and community detection. There exists previous
work [4, 14, 29, 30, 33] that attempts to solve community detection and node representation learning
jointly. However, their optimization process alternates between community assignment and node
representation learning instead of simultaneously solving both tasks [4, 30]. Compared with these
methods, vGraph is scalable and the optimization is done end-to-end.

Mixture Models. Methodologically, our method is related to mixture models, particularly topic
models (e.g. PSLA [12] and LDA [2]). These methods simulate the generation of words in documents,
in which topics are treated as latent variables, whereas we consider generating neighbors for each
node in a graph, and the community acts as a latent variable. Compared with these methods, vGraph
parameterizes the distributions with node and community embeddings, and all the parameters are
trained with backpropagation.

3 Problem Definition

Graphs are ubiquitous in the real-world. Two fundamental tasks on graphs are community detection
and learning node embeddings, which focus on global and local graph structures respectively and
hence are naturally complementary. In this paper, we study jointly solving these two tasks. Let
G = (V, E) represent a graph, where V = {v1, . . . , vV } is a set of vertices and E = {eij} is the set of
edges. Traditional graph embedding aims to learn a node embedding φi ∈ Rd for each vi ∈ V where
d is predetermined. Community detection aims to extract the community membership F for each
node. Suppose there are K communities on the graph G, we can denote the community assignment
of node vi as F(vi) ⊆ {1, ...,K}. We aim to jointly learn node embeddings φ and community
affiliation of vertices F .

4 Methodology

In this section, we introduce our generative approach vGraph, which aims at collaboratively learning
node representations and detecting node communities. Our approach assumes that each node can
belong to multiple communities representing different social contexts [7]. Each node should generate
different neighbors under different social contexts. vGraph parameterizes the node-community
distributions by introducing node and community embeddings. In this way, the node representations
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can benefit from the detection of node communities. Similarly, the detected community assignment
can in turn improve the node representations. Inspired by existing spectral clustering methods [6], we
add a smoothness regularization term that encourages linked nodes to be in the same communities.

4.1 vGraph

vGraph models the generation of node neighbors. It assumes that each node can belong to multiple
communities. For each node, different neighbors will be generated depending on the community
context. Based on the above intuition, we introduce a prior distribution p(z|w) for each node w and a
node distribution p(c|z) for each community z. The generative process of each edge (w, c) can be
naturally characterized as follows: for node w, we first draw a community assignment z ∼ p(z|w),
representing the social context of w during the generation process. Then, the linked neighbor c is
generated based on the assignment z through c ∼ p(c|z). Formally, this generation process can be
formulated in a probabilistic way:

p(c|w) =
∑
z

p(c|z)p(z|w). (1)

vGraph parameterizes the distributions p(z|w) and p(c|z) by introducing a set of node embeddings
and community embeddings. Note that different sets of node embeddings are used to parametrize
the two distributions. Specifically, let φi denote the embedding of node i used in the distribution
p(z|w), ϕi denote the embedding of node i used in p(c|z), and ψj denote the embedding of the j-th
community. The prior distribution pφ,ψ(z|w) and the node distribution conditioned on a community
pψ,ϕ(c|z) are parameterized by two softmax models:

pφ,ψ(z = j|w) =
exp(φT

wψj)∑K
i=1 exp(φ

T
wψi)

, (2)

pψ,ϕ(c|z = j) =
exp(ψT

j ϕc)∑
c′∈V exp(ψ

T
j ϕc′ )

. (3)

Calculating Eq. 3 can be expensive as it requires summation over all vertices. Thus, for large datasets
we can employ negative sampling as done in LINE [26] using the following objective function:

log σ(ϕT
c ·ψj) +

K∑
i=1

Ev∼Pn(v)[log σ(−ϕ
T
v ·ψj)], (4)

where σ(x) = 1/(1 + exp(−x)), Pn(v) is a noise distribution, and K is the number of negative
samples. This, combined with stochastic optimization, enables our model to be scalable.

To learn the parameters of vGraph, we try to maximize the log-likelihood of the observed edges, i.e.,
log pφ,ϕ,ψ(c|w). Since directly optimizing this objective is intractable for large graphs, we instead
optimize the following evidence lower bound (ELBO) [15]:

L = Ez∼q(z|c,w)[log pψ,ϕ(c|z)]−KL(q(z|c, w)||pφ,ψ(z|w)) (5)

where q(z|c, w) is a variational distribution that approximates the true posterior distribution p(z|c, w),
and KL(·||·) represents the Kullback-Leibler divergence between two distributions.

Specifically, we parametrize the variational distribution q(z|c, w) with a neural network as follows:

qφ,ψ(z = j|w, c) =
exp((φw � φc)

Tψj)∑K
i=1 exp((φw � φc)

Tψi)
. (6)

where � denotes element-wise multiplication. We chose element-wise multiplication because it is
symmetric and it forces the representation of the edge to be dependent on both nodes.

The variational distribution q(z|c, w) represents the community membership of the edge (w, c).
Based on this, we can easily approximate the community membership distribution of each node w,
i.e., p(z|w) by aggregating all its neighbors:

p(z|w) =
∑
c

p(z, c|w) =
∑
c

p(z|w, c)p(c|w) ≈ 1

|N(w)|
∑

c∈N(w)

q(z|w, c), (7)
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where N(w) is the set of neighbors of node w. To infer non-overlapping communities, we can
simply take the argmax of p(z|w). However, when detecting overlapping communities instead of
thresholding p(z|w) as in [14], we use

F(w) = {argmax
k

q(z = k|w, c)}c∈N(w). (8)

That is, we assign each edge to one community and then map the edge communities to node
communities by gathering nodes incident to all edges within each edge community as in [1].

Complexity. Here we show the complexity of vGraph. Sampling an edge takes constant time, thus
calculating Eq. (4) takes O(d(M + 1)) time, where M is the number of negative samples and d is
the dimension of embeddings (the node embeddings and community embeddings have the same
dimension). To calculate Eq. (6), it takes O(dK) time where K is the number of communities.
Thus, an iteration with one sample takes O(max(dM, dK)) time. In practice the number of updates
required is proportional to the number of edges O(|E|), thus the overall time complexity of vGraph is
O(|E|dmax(M,K)).

4.2 Community-smoothness Regularized Optimization

For optimization, we need to optimize the lower bound (5) w.r.t. the parameters in the variational
distribution and the generative parameters. If z is continuous, the reparameterization trick [15] can
be used. However, z is discrete in our case. In principle, we can still estimate the gradient using a
score function estimator [9, 35]. However, the score function estimator suffers from a high variance,
even when used with a control variate. Thus, we use the Gumbel-Softmax reparametrization [13, 19]
to obtain gradients for the evidence lower bound. More specifically, we use the straight-through
Gumbel-Softmax estimator [13].

A community can be defined as a group of nodes that are more similar to each other than to those
outside the group [23]. For a non-attributed graph, two nodes are similar if they are connected and
share similar neighbors. However, vGraph does not explicitly weight local connectivity in this way.
To resolve this, inspired by existing spectral clustering studies [6], we augment our training objective
with a smoothness regularization term that encourages the learned community distributions of linked
nodes to be similar. Formally, the regularization term is given below:

Lreg = λ
∑

(w,c)∈E

αw,c · d(p(z|c), p(z|w)) (9)

where λ is a tunable hyperparameter , αw,c is a regularization weight, and d(·, ·) is the distance
between two distributions (squared difference in our experiments). Motivated by [25], we set αw,c to
be the Jaccard’s coefficient of node w and c, which is given by:

αw,c =
|N(w) ∩N(c)|
|N(w) ∪N(c)|

, (10)

where N(w) denotes the set of neighbors of w. The intuition behind this is that αw,c serves as a
similarity measure of how similar the neighbors are between two nodes. Jaccard’s coefficient is used
for this metric and thus the higher the value of Jaccard’s coefficient, the more the two nodes are
encouraged to have similar distribution over communities.

By combining the evidence lower bound and the smoothness regularization term, the entire loss
function we aim to minimize is given below:

L = −Ez∼qφ,ψ(z|c,w)[log pψ,ϕ(c|z)] + KL(qφ,ψ(z|c, w)||pφ,ψ(z|w)) + Lreg (11)

For large datasets, negative sampling can be used for the first term.

4.3 Hierarchical vGraph

One advantage of vGraph’s framework is that it is very general and can be naturally extended to
detect hierarchical communities. In this case, suppose we are given a d-level tree and each node is
associate with a community, the community assignment can be represented as a d-dimensional path
vector ~z = (z(1), z(2), ..., z(d)), as shown in Fig. 1. Then, the generation process is formulated as
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below: (1) a tree path ~z is sampled from a prior distribution pφ,ψ(~z|w). (2) The context c is decoded
from ~z with pψ,ϕ(c|~z). Under this model, the likelihood of the network is

pφ,ϕ,ψ(c|w) =
∑
~z

pφ,ψ(c|~z)pφ,ψ(~z|w). (12)

At every node of the tree, there is an embedding vector associated with the community. Such a
method is similar to the hierarchical softmax parameterization used in language models [21].

5 Experiments

Table 1: Dataset Statistics. |V |: number
of nodes, |E |: number of edges, K: num-
ber of communities, AS: average size of
communities, AN: average number of
communities that a node belongs to.

Dataset |V | |E | K AS AN
Nonoverlapping
Cornell 195 286 5 39.00 1
Texas 187 298 5 37.40 1
Washington 230 417 5 46.00 1
Wisconsin 265 479 5 53.00 1
Cora 2708 5278 7 386.86 1
Citeseer 3312 4660 6 552.00 1
overlapping
facebook0 333 2519 24 13.54 0.98
facebook107 1034 26749 9 55.67 0.48
facebook1684 786 14024 17 45.71 0.99
facebook1912 747 30025 46 23.15 1.43
facebook3437 534 4813 32 6.00 0.36
facebook348 224 3192 14 40.50 2.53
facebook3980 52 146 17 3.41 1.12
facebook414 150 1693 7 25.43 1.19
facebook686 168 1656 14 34.64 2.89
facebook698 61 270 13 6.54 1.39
Youtube 5346 24121 5 1347.80 1.26
Amazon 794 2109 5 277.20 1.75
Dblp 24493 89063 5 5161.40 1.05
Coauthor-CS 9252 33261 5 2920.60 1.58
Dblp-full 93432 335520 5000 22.45 1.20

As vGraph can detect both overlapping and non-
overlapping communities, we evaluate it on three tasks:
overlapping community detection, non-overlapping com-
munity detection, and vertex classification.

5.1 Datasets

We evaluate vGraph on 20 standard graph datasets. For
non-overlapping community detection and node classi-
fication, we use 6 datasets: Citeseer, Cora, Cornell,
Texas, Washington, and Wisconsin. For overlapping com-
muntiy detection, we use 14 datasets, including Facebook,
Youtube, Amazon, Dblp, Coauthor-CS. For Youtube, Ama-
zon, and Dblp, we consider subgraphs with the 5 largest
ground-truth communities due to the runtime of baseline
methods. To demonstrate the scalability of our method, we
additionally include visualization results on a large dataset
– Dblp-full. Dataset statistics are provided in Table 1. More
details about the datasets is provided in Appendix A.

5.2 Evaluation Metric

For overlapping community detection, we use F1-Score and Jaccard Similarity to measure the
performance of the detected communities as in [37, 18]. For non-overlapping community detection,
we use Normalized Mutual Information (NMI) [28] and Modularity. Note that Modularity does not
utilize ground truth data. For node classification, Micro-F1 and Macro-F1 are used.

5.3 Comparative Methods

For overlapping community detection, we choose four competitive baselines: BigCLAM [36], a
nonnegative matrix factorization approach based on the Bernoulli-Poisson link that only considers
the graph structure; CESNA [37], an extension of BigCLAM, that additionally models the generative
process for node attributes; Circles [20], a generative model of edges w.r.t. attribute similarity to
detect communities; and SVI [10], a Bayesian model for graphs with overlapping communities that
uses a mixed-membership stochastic blockmodel.

To evaluate node embedding and non-overlapping community detection, we compare our method with
the five baselines: MF [32], which represents each vertex with a low-dimensional vector obtained
through factoring the adjacency matrix; DeepWalk [24], a method that adopts truncated random walk
and Skip-Gram to learn vertex embeddings; LINE [26], which aims to preserve the first-order and
second-order proximity among vertices in the graph; Node2vec [11], which adopts biased random
walk and Skip-Gram to learn vertex embeddings; and ComE [4], which uses a Gaussian mixture
model to learn an embedding and clustering jointly using random walk features.

5.4 Experiment Configuration

For all baseline methods, we use the implementations provided by their authors and use the default
parameters. For methods that only output representations of vertices, we apply K-means to the
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Table 2: Evaluation (in terms of F1-Score and Jaccard Similarity) on networks with overlapping
ground-truth communities. NA means the task is not completed in 24 hours. In order to evaluate
the effectiveness of smoothness regularization, we show the result of our model with (vGraph+) and
without the regularization.

F1-score Jaccard
Dataset Bigclam CESNA Circles SVI vGraph vGraph+ Bigclam CESNA Circles SVI vGraph vGraph+

facebook0 0.2948 0.2806 0.2860 0.2810 0.2440 0.2606 0.1846 0.1725 0.1862 0.1760 0.1458 0.1594
facebook107 0.3928 0.3733 0.2467 0.2689 0.2817 0.3178 0.2752 0.2695 0.1547 0.1719 0.1827 0.2170

facebook1684 0.5041 0.5121 0.2894 0.3591 0.4232 0.4379 0.3801 0.3871 0.1871 0.2467 0.2917 0.3272
facebook1912 0.3493 0.3474 0.2617 0.2804 0.2579 0.3750 0.2412 0.2394 0.1672 0.2010 0.1855 0.2796
facebook3437 0.1986 0.2009 0.1009 0.1544 0.2087 0.2267 0.1148 0.1165 0.0545 0.0902 0.1201 0.1328
facebook348 0.4964 0.5375 0.5175 0.4607 0.5539 0.5314 0.3586 0.4001 0.3927 0.3360 0.4099 0.4050

facebook3980 0.3274 0.3574 0.3203 NA 0.4450 0.4150 0.2426 0.2645 0.2097 NA 0.3376 0.2933
facebook414 0.5886 0.6007 0.4843 0.3893 0.6471 0.6693 0.4713 0.4732 0.3418 0.2931 0.5184 0.5587
facebook686 0.3825 0.3900 0.5036 0.4639 0.4775 0.5379 0.2504 0.2534 0.3615 0.3394 0.3272 0.3856
facebook698 0.5423 0.5865 0.3515 0.4031 0.5396 0.5950 0.4192 0.4588 0.2255 0.3002 0.4356 0.4771

Youtube 0.4370 0.3840 0.3600 0.4140 0.5070 0.5220 0.2929 0.2416 0.2207 0.2867 0.3434 0.3480
Amazon 0.4640 0.4680 0.5330 0.4730 0.5330 0.5320 0.3505 0.3502 0.3671 0.3643 0.3689 0.3693

Dblp 0.2360 0.3590 NA NA 0.3930 0.3990 0.1384 0.2226 NA NA 0.2501 0.2505
Coauthor-CS 0.3830 0.4200 NA 0.4070 0.4980 0.5020 0.2409 0.2682 NA 0.2972 0.3517 0.3432

learned embeddings to get non-overlapping communities. Results report are averaged over 5 runs.
No node attributes are used in all our experiments. We generate node attributes using node degree
features for those methods that require node attributes such as CESNA [37] and Circles [20]. It is
hard to compare the quality of community results when the numbers of communities are different for
different methods. Therefore, we set the number of communities to be detected, K, as the number of
ground-truth communities for all methods, as in [18]. For vGraph, we use full-batch training when
the dataset is small enough. Otherwise, we use stochastic training with a batch size of 5000 or 10000
edges. The initial learning rate is set to 0.05 and is decayed by 0.99 after every 100 iterations. We use
the Adam optimizer and we trained for 5000 iterations. When smoothness regularization is used, λ is
set to 100. For community detection, the model with the lowest loss is chosen. For node classification,
we evaluate node embeddings after 1000 iterations of training. The dimension of node embeddings is
set to 128 in all experiments for all methods. For the node classification task, we randomly select
70% of the labels for training and use the rest for testing.

5.5 Results

Table 2 shows the results on overlapping community detection. Some of the methods are not very
scalable and cannot obtain results in 24 hours on some larger datasets. Compared with these studies,
vGraph outperforms all baseline methods in 11 out of 14 datasets in terms of F1-score or Jaccard
Similarity, as it is able to leverage useful representations at node level. Moreover, vGraph is also very
efficient on these datasets, since we use employ variational inference and parameterize the model
with node and community embeddings. By adding the smoothness regularization term (vGraph+),
we see a farther increase performance, which shows that our method can be combined with concepts
from traditional community detection methods.

The results for non-overlapping community detection are presented in Table 3. vGraph outperforms
all conventional node embeddings + K-Means in 4 out of 6 datasets in terms of NMI and outperforms
all 6 in terms of modularity. ComE, another framework that jointly solves node embedding and
community detection, also generally performs better than other node embedding methods + K-Means.
This supports our claim that learning these two tasks collaboratively instead of sequentially can
further enhance performance. Compare to ComE, vGraph performs better in 4 out of 6 datasets
in terms of NMI and 5 out of 6 datasets in terms of modularity. This shows that vGraph can also
outperform frameworks that learn node representations and communities together.

Table 4 shows the result for the node classification task. vGraph significantly outperforms all the
baseline methods in 9 out of 12 datasets. The reason is that most baseline methods only consider
the local graph information without modeling the global semantics. vGraph solves this problem by
representing node embeddings as a mixture of communities to incorporate global context.
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Table 3: Evaluation (in terms of NMI and Modularity) on networks with non-overlapping ground-truth
communities.

NMI Modularity
Dataset MF deepwalk LINE node2vec ComE vGraph MF deepwalk LINE node2vec ComE vGraph
cornell 0.0632 0.0789 0.0697 0.0712 0.0732 0.0803 0.4220 0.4055 0.2372 0.4573 0.5748 0.5792
texas 0.0562 0.0684 0.1289 0.0655 0.0772 0.0809 0.2835 0.3443 0.1921 0.3926 0.4856 0.4636

washington 0.0599 0.0752 0.0910 0.0538 0.0504 0.0649 0.3679 0.1841 0.1655 0.4311 0.4862 0.5169
wisconsin 0.0530 0.0759 0.0680 0.0749 0.0689 0.0852 0.3892 0.3384 0.1651 0.5338 0.5500 0.5706

cora 0.2673 0.3387 0.2202 0.3157 0.3660 0.3445 0.6711 0.6398 0.4832 0.5392 0.7010 0.7358
citeseer 0.0552 0.1190 0.0340 0.1592 0.2499 0.1030 0.6963 0.6819 0.4014 0.4657 0.7324 0.7711

Table 4: Results of node classification on 6 datasets.
Macro-F1 Micro-F1

Datasets MF DeepWalk LINE Node2Vec ComE vGraph MF DeepWalk LINE Node2Vec ComE vGraph
Cornell 13.05 22.69 21.78 20.70 19.86 29.76 15.25 33.05 23.73 24.58 25.42 37.29
Texas 8.74 21.32 16.33 14.95 15.46 26.00 14.03 40.35 27.19 25.44 33.33 47.37

Washington 15.88 18.45 13.99 21.23 15.80 30.36 15.94 34.06 25.36 28.99 33.33 34.78
Wisconsin 14.77 23.44 19.06 18.47 14.63 29.91 18.75 38.75 28.12 25.00 32.50 35.00

Cora 11.29 13.21 11.86 10.52 12.88 16.23 12.79 22.32 14.59 27.74 28.04 24.35
Citeseer 14.59 16.17 15.99 16.68 12.88 17.88 15.79 19.01 16.80 20.82 19.42 20.42

5.6 Visualization

In order to gain more insight, we present visualizations of the facebook107 dataset in Fig. 2(a). To
demonstrate that our model can be applied to large networks, we present results of vGraph on a co-
authorship network with around 100,000 nodes and 330,000 edges in Fig. 2(b). More visualizations
are available in appendix B. We can observe that the community structure, or “social context”, is
reflected in the corresponding node embedding (node positions in both visualizations are determined
by t-SNE of the node embeddings). To demonstrate the hierarchical extension of our model, we
visualize a subset of the co-authorship dataset in Fig. 3. We visualize the first-tier communities
and second-tier communities in panel (a) and (b) respectively. We can observe that the second-tier
communities grouped under the same first-tier communities interact more with themselves than they
do with other second-tier communities.

6 Conclusion

In this paper, we proposed vGraph, a method that performs overlapping (and non-overlapping)
community detection and learns node and community embeddings at the same time. vGraph casts
the generation of edges in a graph as an inference problem. To encourage collaborations between
community detection and node representation learning, we assume that each node can be represented
by a mixture of communities, and each community is defined as a multinomial distribution over
nodes. We also design a smoothness regularizer in the latent space to encourage neighboring nodes to

(a) (b)

Figure 2: In panel (a) we visualize the result on the facebook107 dataset using vGraph. In panel
(b) we visualize the result on Dblp-full dataset using vGraph. The coordinates of the nodes are
determined by t-SNE of the node embeddings.
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(a) (b) (c)

Figure 3: We visualize the result on a subset of Dblp dataset using two-level hierarchical vGraph. The
coordinates of the nodes are determined by t-SNE of the node embeddings. In panel (a) we visualize
the first-tier communities. In panel (b), we visualize the second-tier communities. In panel (c) we
show the corresponding hierarchical tree structure.

be similar. Empirical evaluation on 20 different benchmark datasets demonstrates the effectiveness of
the proposed method on both tasks compared to competitive baselines. Furthermore, our model is
also readily extendable to detect hierarchical communities.
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A Datasets

Citeseer, Cora, Cornell, Texas, Washington, and Wisconsin are available online2. For Youtube,
Amazon, and Dblp, we consider subgraphs with the 5 largest ground-truth communities due to the
runtime of the baseline methods.

Facebook3 is a set of Facebook ego-networks. It contains 10 different ego-networks with identified
circles. Social circles formed by friends are regarded as ground-truth communities.

Youtube4 is a network of social relationships of Youtube users. The vertices represent users; the
edges indicate friendships among the users; the user-defined groups are considered as ground-truth
communities.

Amazon5 is collected by crawling amazon website. The vertices represent products and the edges
indicate products frequently purchased together. The ground-truth communities are defined by the
product categories on Amazon.

Dblp6 is a co-authorship network from Dblp. The vertices represent researchers and the edges
indicate co-author relationships. Authors who have published in a same journal or conference form a
community.

Coauthor-CS7 is a computer science co-authorship network. We chose 21 conferences and group
them into five categories: Machine Learning, Computer Linguistics, Programming language, Data
mining, and Database.

2https://linqs.soe.ucsc.edu
3https://snap.stanfod.edu/data/ego-Facebook.html
4http://snap.stanford.edu/data/com-Youtube.html
5http://snap.stanford.edu/data/com-Amazon.html
6http://snap.stanford.edu/data/com-DBLP.html
7https://aminer.org/aminernetwork
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B Visualization

Figure 4: Visualization of the result of vGraph on the facebook1684 dataset. The coordinates of the
nodes are determined by t-SNE of the node embeddings.

Figure 5: Visualization of the result of vGraph on the facebook107 dataset. The coordinates of the
nodes are determined by t-SNE of the node embeddings.
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Figure 6: Visualization of the result of vGraph on the facebook414 dataset. The coordinates of the
nodes are determined by t-SNE of the node embeddings.

Figure 7: Visualization of the result of vGraph on the Youtube dataset. The coordinates of the nodes
are determined by t-SNE of the node embeddings.

14233



5.2.4 Publication: InfoGraph

234



INFOGRAPH: UNSUPERVISED AND SEMI-SUPERVISED
GRAPH-LEVEL REPRESENTATION LEARNING VIA MUTUAL

INFORMATION MAXIMIZATION

A PREPRINT

Fan-Yun Sun1,2, Jordan Hoffmann2,3, Jian Tang2,4,5

1National Taiwan University,
2Mila-Quebec Institute for Learning Algorithms, Canada

3Harvard University, USA
4HEC Montreal, Canada

5CIFAR AI Research Chair

b04902045@ntu.edu.tw
jhoffmann@g.harvard.edu

jian.tang@hec.ca

ABSTRACT

This paper studies learning the representations of whole graphs in both unsupervised and semi-
supervised scenarios. Graph-level representations are critical in a variety of real-world applications
such as predicting the properties of molecules and community analysis in social networks. Traditional
graph kernel based methods are simple, yet effective for obtaining fixed-length representations for
graphs but they suffer from poor generalization due to hand-crafted designs. There are also some
recent methods based on language models (e.g. graph2vec) but they tend to only consider certain
substructures (e.g. subtrees) as graph representatives. Inspired by recent progress of unsupervised
representation learning, in this paper we proposed a novel method called InfoGraph for learning graph-
level representations. We maximize the mutual information between the graph-level representation
and the representations of substructures of different scales (e.g., nodes, edges, triangles). By doing
so, the graph-level representations encode aspects of the data that are shared across different scales
of substructures. Furthermore, we further propose InfoGraph*, an extension of InfoGraph for semi-
supervised scenarios. InfoGraph* maximizes the mutual information between unsupervised graph
representations learned by InfoGraph and the representations learned by existing supervised methods.
As a result, the supervised encoder learns from unlabeled data while preserving the latent semantic
space favored by the current supervised task. Experimental results on the tasks of graph classification
and molecular property prediction show that InfoGraph is superior to state-of-the-art baselines and
InfoGraph* can achieve performance competitive with state-of-the-art semi-supervised models.

1 Introduction

Graphs have proven to be an effective way to represent very diverse types of data including social networks [38],
biological reaction networks[46], protein-protein interactions [29], the quantum mechanical properties of individual
molecules [59, 20], and many more. Graphs provide explicit information about the coupling between individual units in
a larger part along with a well defined framework for assigning properties to the nodes and the edges connecting them.
There has been a significant amount of previous work done studying many aspects of graphs including link prediction
[13, 57] and node prediction [2]. Due to its flexibility, graph-like data structures can capture rich information which is
critical in many applications.

At the lowest level, much work has been done on learning node representations– low-dimensional vector embeddings
of individual nodes [47, 53, 16]. Another field that has attracted a large amount of attention recently is learning
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representations of entire graphs. Such a problem is critical in a variety of applications such as predicting the properties
of molecular graphs in both drug discovery and material science [7, 6]. There has been some recent progress based on
neural message passing algorithms [15, 59], which learn the representations of entire graphs in a supervised way. These
methods have been shown achieving state-of-the-art results on a variety of different prediction tasks [25, 59, 15, 6].

However, one of the most difficult obstacles for supervised learning on graphs is that it is often very costly or even
impossible to collect annotated labels. For example, in the chemical domain labels are typically produced with a costly
Density Functional Theory (DFT) calculation. One option is to use semi-supervised methods which combine a small
handful of labels with a larger, unlabeled, dataset. In real-world applications, partially labeled datasets are common,
making tools that are able to efficiently utilize the present labels particularly useful.

Coming up with methods that are able to learn unsupervised representations of an entire graph, as opposed to nodes, is
an important step in working with unlabeled or partially labeled graphs [36, 18, 39]. For example, there exists work that
explores pre-training techniques for graphs to improve generalization [18]. Another common approach to unsupervised
representation learning on graphs is through graph kernels [48, 21, 43]. However, many of these methods do not provide
explicit graph embeddings which many machine learning algorithms operate on. Furthermore, the handcrafted features
of graph kernels lead to high dimensional, sparse or non-smooth representations and thus result in poor generalization
performance, especially on large datasets [36].

Unsupervised learning of latent representations is also an important problem in other domains, such as image generation
[24, 22] and natural language processing [32]. A recent work introduced Deep Infomax, a method that maximizes the
mutual information content between the input data and the learned representation [17]. This method outperforms other
methods on many unsupervised learning tasks. Motivated by Deep InfoMax [17], we aim to use mutual information
maximization for unsupervised representation learning on the entire graph. Specifically, our objective is to maximize
the mutual information between the representations of entire graphs and the representations of substructures of different
granularity. We name our model InfoGraph.

We also propose a semi-supervised learning model which we name InfoGraph*. We employ a student-teacher frame-
work similar to Mean-Teacher method [54]. We maximize the mutual information between intermediate representations
of the two models so that the student model learns from the teacher model. The student model is trained on the labeled
data using a supervised objective function while the teacher model is trained on unlabeled data with InfoGraph. Using
InfoGraph*, we achieve performance competitive with state-of-the-art methods on molecular property prediction.

We summarize our contributions as follows:

• We propose InfoGraph, an unsupervised graph representation learning method based on Deep InfoMax
(DIM) [17].

• We show that InfoGraph can be extended to semi-supervised prediction tasks on graphs.

• We empirically show that InfoGraph surpasses state-of-the-art performance on graph classification tasks with
unsupervised learning and obtains performance comparable with state-of-art methods on molecular property
prediction tasks using semi-supervised learning.

2 Related work

Representation learning for graphs has mainly dealt with supervised learning tasks. Recently, however, researchers have
proposed algorithms that learn graph-level representations in an unsupervised manner [36, 1].

Concurrently to this work, information maximizing graph neural networks (IGNN) was introduced which uses mutual
information maximization between edge states and transform parameters to achieve state-of-the-art predictions on
a variety of supervised molecule property prediction tasks [7]. In this work, our focus is on unsupervised and
semi-supervised scenarios.

Graph Kernels. Constructing graph kernels is a common unsupervised task in learning graph representations. These
kernels are typically evaluated on node classification tasks. In graph kernels, a graph G is decomposed into (possibly
different) {Gs} sub-structures. The graph kernel K(G1, G2) is defined based on the frequency of each sub-structure
appearing in G1 and G2 respectively. Namely, K(G1, G2) = 〈fGs1

, fGs2
〉, where fGs

is the vector containing
frequencies of {Gs} sub-structures, and 〈, 〉 is an inner product in an appropriately normalized vector space. Much work
has been devoted to deciding which sub-structures are more suitable than others, popular ones are graphlets [48, 52],
random walk and shortest path kernels [21, 3], and the Weisfeiler-Lehman subtree kernel [51]. Furthermore, deep
graph kernels [63], graph invariant kernels [43], optimal assignment graph kernels [28] and multiscale laplacian graph
kernels [27] have been proposed with the goal to redefine kernel functions to appropriately capture sub-structural

2236



similarity at different levels. Another line of research in this area focuses on efficiently computing these kernels
either through exploiting certain structural dependencies, or via approximations/randomization [11, 9, 37]. Instead of
defining hand crafted similarity measures between substructures, InfoGraph adopts a more principled metric – mutual
information.

Contrastive methods. An important approach for unsupervised representation learning is to train an encoder to be
contrastive between representations that capture statistical dependencies of interest and those that do not. For example,
a contrastive approach may employ a scoring function, training the encoder to increase the score on “real” input (a.k.a,
positive examples) and decrease the score on “fake” input (a.k.a., negative samples).

Contrastive methods are central many popular word-embedding methods [8, 35, 33]. Word2vec [32] is an unsupervised
algorithm which obtains word representations by using the representations to predict context words (the words that
surround it). Doc2vec [31] is an extension of the continuous Skip-gram model that predicts representations of words
from that of a document containing them. Researchers extended many of these unsupervised language models to learn
representations of graph-structured input [1, 36]. For example, graph2vec [36] extends Doc2vec to arbitrary graphs.
Intuitively, for graph2vec a graph and the rooted subgraphs in it correspond to a document and words in a paragraph
vector, respectively. One of the technical contributions of the paper is using the Weisfeiler-Lehman relabelling algorithm
[58, 51] to enumerate all rooted subgraphs up to a specified depth. InfoGraph can be interpreted as an extension of
graph2vec though there are many major differences such as instead of listing all rooted subgraphs explicitly, we make
use of graph neural networks to obtain patch representations of subgraphs.

Deep Graph InfoMax (DGI) [55] also belongs to this category, which aims to train a node encoder that maximizes
mutual information between node representations and the pooled global graph representation. Although we built upon a
similar methodology, our aim is different than theirs as our goal is to obtain embeddings at the whole graph level for
unsupervised and semi-supervised learning whereas DGI only evaluates node level embeddings. In order to differentiate
our method with Deep Graph Infomax ([55]), we term our model InfoGraph.

Semi-supervised Learning. A comprehensive overview of semi-supervised learning (SSL) methods is out of the scope
of this paper. We refer readers to [67, 5, 42]. Here, we discuss 2 state-of-the-art methods applicable for regression
tasks which solely involve adding an additional loss term to the training of a neural network, and otherwise leave the
training and model unchanged from what would be used in the fully-supervised setting. Virtual Adversarial Training
(VAT) [34], a method that approximates a tiny perturbation radv to add to input data which most significantly affect
the output of the prediction function. We did not include VAT in our experiments as small perturbation on molecular
graphs can lead to drastically different results in real world scenarios. Mean Teacher [54] adds a loss term which
encourages the distance between the original network’s output and the teacher’s output to be small. The teacher’s
predictions are made using an exponential moving average of parameters from previous training steps. Inspired by the
“student-teacher” framework in Mean Teacher model, our semi-supervised model (InfoGraph*) deploys two separate
encoders but instead of explicitly encouraging the output of the student model to be similar to the teacher model’s
output, we enable the student model to learn from the teacher model by maximizing mutual information between
intermediate representations learned by two models.

3 Methodology

Most recent work on graphs focus on supervised learning tasks or learning node representations. However, many graph
analytic tasks such as graph classification, regression, and clustering require representing entire graphs as fixed-length
feature vectors. Though graph-level representations can be obtained through the node-level representations implicitly,
explicitly extracting the graph can be more straightforward and optimal for graph-oriented tasks.

Another scenario that is important, yet attracts comparatively less attention in the graph related literature is semi-
supervised learning. One of the biggest challenges in prediction tasks in biology [62, 64] or molecular machine
learning [10, 15, 19] is the extreme scarcity of labeled data. Therefore, semi-supervised learning, in which a large
number of unlabeled samples are incorporated with a small number of labeled samples to enhance accuracy of models,
will play a key role in these areas.

In this section, we first formulate an unsupervised whole graph representation learning problem and a semi-supervised
prediction task on graphs. Then, we present our method to learn graph-level representations. Afterwards we present our
proposed model for the semi-supervised learning scenario.
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Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer δ
(the expected embedding size), our goal is to learn a δ-dimensional distributed representation of every graph Gi ∈ G.
We denote the number of nodes in Gi as |Gi|. We denote the matrix of representations of all graphs as Φ ∈ R|G|×δ .
Semi-supervied Graph Prediction Tasks. Given a set of labeled graphs GL = {G1, · · · , G|GL|} with corresponding
output {o1, · · · , o|GL|}, and a set of unlabeled samples GU = {G|GL|+1, · · · , G|GL|+|GU |}, our goal is to learn a model
that can make predictions for unseen graphs. Note that in most cases |GU | � |GL|.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into a fixed length graph-level representation.

Formally, the k-th layer of a GNN is

h(k)v = COMBINE(k)
(
h(k−1)v ,AGGREGATE(k)

({(
h(k−1)v , h(k−1)u , euv

)
: u ∈ N (v)

}))
, (1)

where h(k)v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i), euv
is the feature vector of the edge between u and v, and N (v) are neighborhoods to node v. h(0)v is often initialized as
node features. READOUT can be a simple permutation invariant function such as averaging or a more sophisticated
graph-level pooling function [65, 66].

We seek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that we are given a set of training samples G := {Gj ∈ G}Nj=1 with empirical probability
distribution P on the input space. Let φ denote the set of parameters of a K-layer graph neural network. After the first k
layers of the graph neural network, the input graph will be encoded into a set of patch representations {h(k)i }Ni=1. Next,
we summarize feature vectors at all depths of the graph neural network into a single feature vector that captures patch
information at different scales centered at every node. Inspired by [61], we use concatenation. That is,

hiφ = CONCAT({h(k)i }
K
k=1) (2)

Hφ(G) = READOUT({hiφ}Ni=1) (3)
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Figure 2: Illustration of the semi-supervised version of InfoGraph (InfoGraph*). There are two separate encoders with
the same architecture, one for the supervised task and the other trained using both labeled and unlabeled data with an
unsupervised objective (eq. (4)). We encourage the mutual information of the two representations learned by the two
encoders to be high by deploying a discriminator that takes a pair of representation as input and determines whether
they are from the same input graph.

where hiφ is the summarized patch representation centered at node i and Hφ(G) is the global representation after
applying READOUT. Note that here we slightly abuse the notation of h.

We define our mutual information (MI) estimator on global/local pairs, maximizing the estimated MI over the given
dataset G := {Gj ∈ G}Nj=1:

φ̂, ψ̂ = arg max
φ,ψ

∑
G∈G

1

|G|
∑
u∈G

Iφ,ψ(~huφ;Hφ(G)). (4)

Iφ,ψ is the mutual information estimator modeled by discriminator Tψ and parameterized by a neural network with
parameters ψ. We use the Jensen-Shannon MI estimator (following the formulation of [41]),

Iφ,ψ(hiφ(G);Hφ(G)) :=

EP[−sp(−Tφ,ψ(~hiφ(x), Hφ(x)))]− EP×P̃[sp(Tφ,ψ(~hiφ(x′), Gφ(x)))] (5)

where x is an input sample, x′ (negative sample) is an input sampled from P̃ = P, a distribution identical to the
empirical probability distribution of the input space, and sp(z) = log(1 + ez) is the softplus function. In practice, we
generate negative samples using all possible combinations of global and local patch representations across all graph
instances in a batch.

Since Hφ(G) is encouraged to have high MI with patches that contain information at all scales, this favours encoding
aspects of the data that are shared across patches and aspects that are shared across scales. The algorithm is illustrated
in Fig. 1.

It should be noted that our model is similar to Deep Graph Infomax (DGI) [55], a model proposed for learning
unsupervised node embeddings. However, there are important design differences due to the different problems that we
are focusing on. First, in DGI they use random sampling to obtain negative samples due to the fact that they are mainly
focusing on learning node embeddings on a graph. However, contrastive methods require a large number of negative
samples to be competitive [17], thus the use of batch-wise generation of negative samples is crucial as we are trying to
learn graph embeddings given many graph instances.Second, the choice of graph convolution encoders is also crucial.
We use GIN [60] while DGI uses GCN [26] as GIN provides a better inductive bias for graph level applications. Graph
neural network designs should be considered carefully so that graph representations can be discriminative towards
other graph instances. For example, we use sum over mean for READOUT and that can provide important information
regarding the size of the graph.
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3.3 Semi-supervised InfoGraph

Based on the previous unsupervised model, a straightforward way to do semi-supervised property prediction on graphs
is to combine the purely supervised loss and the unsupervised objective function which acts as a regularization term.
In doing so, the model is trained to predict properties for the labeled dataset while keeping a rich discriminative
intermediate representation learned from both the labeled and the unlabeled dataset. That is, we try to minimize the
following objective function:

Ltotal =

|GL|∑
i=1

Lsupervised(yφ(Gi), oi) + λ

|GL|+|GU|∑
j=1

Lunsupervised(hφ(Gj); Hφ(Gj)) (6)

where Lsupervised(yφ(Gi), oi) is defined as the loss function of graph Gi that measures the discrepancy between the
classifier output yφ(Gi) and the true output oi. Lunsupervised(hφ(Gj); Hφ(Gj) is the unsupervised InfoGraph loss term as
defined in eq. (4) that can be optimized using both labeled and unlabeled data. The hyper-parameter λ controls the
relative weight between the purely supervised and the unsupervised loss. The intuition behind this is that the model
will benefit from learning a good representation from the large amount of unlabeled data while learning to predict the
corresponding supervised label.

However, supervised tasks and unsupervised tasks may favor different information or a different semantic space. Simply
combining the two loss functions using the same encoder may lead to “negative transfer” 1 [44, 50]. Inspired by the
“student-teacher” framework in many semi-supervised learning methods [30, 54], we derive a simple way to alleviate
this problem. For example, in the Mean Teacher model [54], the teacher model is an exponential moving average of
student model’s parameters from previous training steps and they encourage student model’s output to be similar to
teacher model’s output. Similarly, we deploy two encoder models on labelled data and unlabelled data respectively. We
believe that the supervised encoder (student) can benefit if it incorporates information learned from the unsupervised
encoder (teacher) as it is trained on many more data points. However, encouraging the output of two encoders to be
similar does not make sense as the two encoders are trained with different objectives. Therefore, instead of adding a loss
term that encourages the output of the two networks to be similar, we add a loss term that encourages the representations
learned by the two encoders to have high mutual information. Now, let ϕ denote the set of parameters of another
K-layered graph neural network, identical to the one parameterized by φ, and let λ be a tunable hyper-parameter. The
total loss function can be defined as follows:

Ltotal =

|GL|∑
i=1

Lsupervised(yφ(Gi), oi) +

|GL|+|GU |∑
j=1

Lunsupervised(hϕ(Gj);Hϕ(Gj)) (7)

− λ
|GL|+|GU |∑

j=1

1

|Gj |
∑
u∈Gj

I(~huφ;~huϕ). (8)

In our semi-supervised experiments, we refer to the naive method using the objective function given in eq. (6) as
InfoGraph. We refer to the method that uses two separate encoders and employ the objective function given in eq. (8) as
InfoGraph*. InfoGraph* is fully summarized in Figure 2.

4 Experiments

We evaluate the effectiveness of the graph-level representation learned by InfoGraph on downstream graph classification
tasks and on semi-supervised molecular property prediction tasks.

4.1 Datasets

For graph classification, we conduct experiments on 6 well-known benchmark datasets: MUTAG, PTC, REDDIT-
BINARY, REDDIT-MULTI-5K, IMDB-BINARY, and IMDB-MULTI ([63]).

For semi-supervised learning tasks, we use the publicly available QM9 dataset [49]. All molecules in the dataset consist
of Hydrogen (H), Carbon (C), Oxygen (O), Nitrogen (N), and Flourine (F) atoms and contain up to 9 non Hydrogen
atoms. In all, this results in about 134,000 drug-like organic molecules that span a wide range of chemical compositions
and properties. A total of 12 interesting and fundamental chemical properties are pre-computed for each molecule.

1We slightly abuse this term in this paper as it usually refers to transferring knowledge from a less related source and thus may
hurt the target performance.
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For a more detailed description of these datasets and properties, see the supplementary material.

4.2 Baselines

For graph classification, we used 6 state-of-the-art graph kernels for comparison: Random Walk (RW) [14], Shortest
Path Kernel (SP) [3], Graphlet Kernel (GK) [52], Weisfeiler-Lehman Sub-tree Kernel (WL) [51], Deep Graph Kernels
(DGK) [63], and Multi-Scale Laplacian Kernel (MLG) [27]. Aside from graph kernels, we also compare with 3
unsupervised graph-level representation learning methods: node2vec [16], sub2vec [1], and graph2vec [36]. Node2vec
is a neural embedding framework that learns feature representations of individual nodes in graphs and eventually
aggregates node embeddings to obtain graph embeddings.

For semi-supervised tasks, aside from comparing the results with the fully supervised results, we also compare our
results with a state-of-the-art semi-supervised method: Mean-Teachers [54].

4.3 Experiment Configuration

For graph classification tasks, we adopt the same procedure of previous works [40, 56, 63, 66] to make a fair comparison
and used 10-fold cross validation accuracy to report the classification performance. Experiments are repeated 5 times.
We report results from previous papers with the same experimental setup if available. If results are not previously
reported, we implement them and conduct a hyper-parameter search according to the original paper. For node2vec [16],
we took the result from [36] but we did not run it on all datasets as the implementation details are not clear in the paper.
For Deep Graph Kernels, we report the best result out of Deep WL Kernels, Deep GK Kernels, and Deep RW Kernels.
For sub2vec, we report the best result out of its two variants: sub2vec-N and sub2vec-S. For all methods, the embedding
dimension is set to 512 and parameters of downstream classifiers are independently tuned using cross validation on
training folds of data. The best average classification accuracy is reported for each method. The classification accuracies
are computed using LIBSVM [4], and the C parameter was selected from {10−3, 10−2, . . . , 102, 103}.
The QM9 dataset has 130462 molecules in it. We adopt similar experimental settings as traditional semi-supervised
methods [54, 30, 34]. We randomly chose 5000 samples as labeled samples for training and another 10000 as validation
samples, 10000 samples for testing, and use the rest as unlabeled training samples. Note that we use the exact same split
when running the supervised model and the semi-supervised model. We use the validation set to do model selection and
we report scores on the test set. All targets were normalized to have mean 0 and variance 1. We minimize the mean
squared error between the model output and the target, although we evaluate mean absolute error.

4.4 Model Configuration

For the unsupervised experiments, we use the Graph Isomorphism Network (GIN) [60]. GNN layers are chosen from
{4, 8, 12}. Models are trained using SGD with the Adam optimizer [23] with an initial learning rate chosen from the
set {10−2, 10−3, 10−4}. The number of epochs are chosen from {10, 20, 100}. The batch size is set to 128.

For the semi-supervised experiments, we adopt a similar model configuration as in [15]. The number of set2set
computations is set to 3. Models were trained using SGD with the Adam optimizer[23] with an initial learning rate
0.001. We train for 500 epochs with a batch size 20. As recommended in [42], we use the exact same underlying
model architecture when comparing semi-supervised learning approaches as our goal is not to produce state-of-the-art
results, but instead to provide a rigorous comparative analysis in a common framework. For the supervised case, the
weight decay is chosen from {0, 10−3, 10−4}. For InfoGraph and InfoGraph*, λ is chosen from {10−3, 10−4, 10−5}.
Hyper-parameters are chosen based on the validation error.

The discriminator scores global-patch representation pairs by passing two representations to different non-linear
transformations and then takes the dot product of the two transformed representations. Both non-linear transformations
are parameterized by 3-layered feed-forward neural networks with jumping connections. Following each linear layer is
a ReLU activation function. We use Pytorch [45] and the Pytorch Geometric [12] libraries for all our experiments.

5 Results

The results of evaluating unsupervised graph level representations using downstream graph classification tasks are
presented in Table 1. We show results from six methods including three state-of-the-art graph kernel methods: WL
[51], DGK [63], and MLG [27]. While these kernel methods perform well on individual datasets, none of them are
competitive across all of the datasets. Additionally, MLG suffers from a long run time and take more than 24 hours to
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Dataset MUTAG PTC-MR RDT-B RDT-M5K IMDB-B IMDB-M
(No. Graphs) 188 344 2000 4999 1000 1500

(No. classes) 2 2 2 5 2 3

(Avg. Graph Size) 17.93 14.29 429.63 508.52 19.77 13.00

Graph Kernels

RW [14] 83.72± 1.50 57.85± 1.30 OMR OMR 50.68± 0.26 34.65± 0.19

SP [3] 85.22± 2.43 58.24± 2.44 64.11± 0.14 39.55± 0.22 55.60± 0.22 37.99± 0.30

GK [52] 81.66± 2.11 57.26± 1.41 77.34± 0.18 41.01± 0.17 65.87± 0.98 43.89± 0.38

WL [51] 80.72± 3.00 57.97± 0.49 68.82± 0.41 46.06± 0.21 72.30± 3.44 46.95± 0.46

DGK [63] 87.44± 2.72 60.08± 2.55 78.04± 0.39 41.27± 0.18 66.96± 0.56 44.55± 0.52

MLG [27] 87.94± 1.61 63.26± 1.48 > 1 Day > 1 Day 66.55± 0.25 41.17± 0.03

Other Unsupervised Methods

node2vec [16] 72.63± 10.20 58.58± 8.00 - - - -
sub2vec [1] 61.05± 15.80 59.99± 6.38 71.48± 0.41 36.68± 0.42 55.26± 1.54 36.67± 0.83

graph2vec [36] 83.15± 9.25 60.17± 6.86 75.78± 1.03 47.86± 0.26 71.1± 0.54 50.44± 0.87

InfoGraph 89.01± 1.13 61.65± 1.43 82.50± 1.42 53.46± 1.03 73.03± 0.87 49.69± 0.53

Table 1: Classification accuracy on 6 datasets. The result in bold indicates the best reported classification accuracy. The
top half of the table compares results with various graph kernel approaches while bottom half compares results with
other state-of-the-art unsupervised graph representation learning methods. ‘> 1 day’ represents that the computation
exceeds 24 hours. ‘OMR’ is out of memory error.

Target Mu (0) Alpha (1) HOMO (2) LUMO (3) Gap (4) R2 (5) ZPVE(6) U0 (7) U (8) H (9) G(10) Cv (11)
MAE 0.3201 0.5792 0.0060 0.0062 0.0091 10.0469 0.0007 0.3204 0.2934 0.2722 0.2948 0.2368

Semi-Supervised Error Ratio
Mean-Teachers 1.09 1.00 0.99 1.00 0.97 0.52 0.77 1.16 0.93 0.79 0.86 0.86

InfoGraph 1.02 0.97 1.02 0.99 1.01 0.71 0.96 0.85 0.93 0.93 0.99 1.00
InfoGraph* 0.99 0.94 0.99 0.99 1.00 0.68 0.81 0.71 0.87 0.98 0.85 0.89

Table 2: Results of semi-supervised experiments on QM9 dataset. The result in bold indicates the best performance.
The top half of the table shows the mean absolute error (MAE) of the supervised model. The bottom half shows the
error ratio (with respect to supervised result) of the semi-supervised models using the same underlying model. Lower
scores are better and values less than 1.0 indicate better performance than the supervised baseline.

run on the two larger benchmark datasets. We find that InfoGraph outperforms all of these baselines on 4 out of 6 of the
datasets. In the other 2 datasets, InfoGraph still has very competitive performance.

The results of the semi-supervised learning experiments on the molecular property prediction task are presented in Table
2. We observe that by simply combining the supervised objective with the unsupervised infomax objective (InfoGraph)
obtains better performance compared to the purely supervised models on 7 out of 12 of the targets. However, in 1 out
of 12 targets it does not obtain better performance and in 4 out of 12 targets, it results in poorer performance. This
“negative transfer” effect may be caused by the fact that the supervised objective and the unsupervised objective favor
different information or different latent semantic space. This effect is alleviated with InfoGraph*, our modified version
of InfoGraph for semi-supervised learning. InfoGraph* improves over the supervised model in 11 out of 12 targets and
gets a tie on 1 target. InfoGraph* obtains the best result on 7 targets while the Mean Teacher method obtains the best
results on 6 targets (with one overlap). However, the Mean Teacher model yields worse performance on 2 targets when
compared to the supervised result.

6 Conclusion and Future work

In this paper, we propose InfoGraph to learn unsupervised graph-level representations and InfoGraph* for semi-
supervised learning. We conduct experiments on graph classification and molecular property prediction tasks to
evaluate these two methods. Experimental results show that InfoGraph and InfoGraph* are both very competitive
with state-of-the-art methods. There are many research works on semi-supervised learning on image data, but few of
them focus on semi-supervised learning for graph structured data. In the future, we aim to explore semi-supervised
frameworks designed specifically for graphs.
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A Datasets

A.1 Graph Classification Datasets

MUTAG contains 188 mutagenic aromatic and heteroaromatic nitro compounds with 7 different discrete labels. PTC
is a dataset of 344 different chemical compounds that have been tested for carcinogenicity in male and female rats.
This dataset has 19 discrete labels. IMDB-BINARY and IMDB-MULTI are movie collaboration datasets. Each graph
corresponds to an ego-network for each actor/actress, where nodes correspond to actors/actresses and an edge is drawn
between two actors/actresses if they appear in the same movie. Each graph is derived from a pre-specified genre of
movies, and the task is to classify the genre graph it is derived from. REDDIT-BINARY and REDDIT-MULTI5K are
balanced datasets where each graph corresponds to an online discussion thread and nodes correspond to users. An edge
was drawn between two nodes if at least one of them responded to another’s comment. The task is to classify each
graph to the community or subreddit that it belongs to.

A.2 QM9

For a description of the properties in the QM9 dataset see section 10.2 of [15].
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5.3 Segmentation Code

The level-set method based segmentation code I developed was of interest to a variety

of other researchers at Harvard University. For two of these projects, I worked in collab-

oration with other groups at Harvard to deploymy segmentation code on their datasets.

5.3.1 Segmentation of Compressing Structures

Katia Bertoldi’s groupwas looking at the properties of compressed structures that were

initially composedofagridofdisc-shapedholes. Duringcompression, theholesgainedan

orientation, either parallel or perpendicular to the axis of compression. However, study-

ing the geometric properties of the holes during the compression was not a trivial seg-

mentation task. As the material compressed, the holes would get smaller, at some point

becoming nearly invisible. Additionally, the center of the holeswould come in contact be-

fore either side, resulting in shapes that appeared to be two objects rather than one. The

lighting and the material made it increasingly difficult to use off-the-shelf segmentation

tools. However, by modifying my tool, I was able to create extremely accurate segmen-

tations for nearly the entire duration of the video. By initializing each hole with four dif-

ferent seeds, I performed a level set segmentation up until somemaximum time, T. Then,

using a lookup table, I reassembled the space belonging to each hole. Then, for hole i, I as-

semble a list of all coordinates belonging to that hole, x⃗i = ((x1, y1), (x2, y2), ..., (xn, yn)).

Then, for this list, I perform k-means clustering with four seeds. This method allows me
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to track an object that splits while still calling it a single object.
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It’s a magical world, Hobbes, ol’ buddy… Let’s go ex-

ploring!

BillWatterson

6
Conclusion

The data renaissance in the sciences hasmany exciting possibilities for changing theway

science is done. One often overlooked aspect of the digital age is the ability to unearth

and make available huge collections of old work. For data-driven disciplines, observa-

tional sciences, etc., there is treasurehiddenaway inolder books, papers, anddocuments.

As thesedocuments aremadeavailable on the Internet, I amexcited andoptimistic about

250



how these can be used. Suddenly, papers fromover 200 years ago can be revisited, and in

somecases thedatacanbedirectlyextractedandusedtoanswernewquestions.33,34,75,123

Forexample, inHoffmannetal. (2018)75,weusedresourcesdatingback to the late1800s.

In addition to gathering existing data, new tools havemade the rate of data collection un-

paralleled. For example, biological datasets from bench-top experiments can rapidly ex-

ceed 10 terabytes (see Chapter 1) and astronomical, materials, and high-energy physics

datasets from large collaborations have reached the petabyte regime.88,59

With the influx of new, colossally large datasets there has been an accompanying in-

crease in tools created toprocess them. Manyhigh-level codebaseshavebeendeveloped

to help process these large datasets that have become very commonly used.32,1,169,105

In an academic setting, new computational tools are being developed and released on

a daily basis. Many of them, especially in the biosciences, result from current tools not

workingwell on newor slightly different datasets. For example, the number of image seg-

mentation tools that have been released is impressive. However, recently there has been

growingmomentum to create unified toolkits that are able towork on awide range of im-

age types.137 The creation of more general tools (which often use more domain-specific

knowledge such as encoding symmetries) is something that I think is very exciting, and

something that is becoming increasingly popularwithin themachine learning community.

For the work in Chapter 1, on the development of Gryllus bimaculatus, though the sci-

entific goalwas one in biology,many exciting resultswere only possible through improve-

ments in computation and imaging.113,114 Specifically, one of themain tools was in image
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segmentation.137,27 Any success in this project relied heavily on our ability to segment

andthentrack3-D light sheetdatasets.137,163 It is important to tracknuclei throughmany

frames and through divisions. To get reliable tracks through many frames, even 95% ac-

curacy is not good enough. Numerical post-processing methods, like deconvolution113,

greatly assist in making the data more clear, but these methods are computationally de-

manding and still not perfect. In the coming years, I predict that advances in microscopy

coupled with improvements in post-processing and segmentation of biological datasets

will result in exciting answers to many questions including those of cell fate and nuclear

movement. While advances in optics are coming (relatively) more slowly, tools used to

correct for imaging distortion113 and image segmentation14,119,137,29,93 are rapidly im-

proving. Pushing the tracking between frames closer to 100% accuracy and also more

accurately accounting for divisions allow new classes of questions to be answered, espe-

cially in developmental regimes that are past what we consider. For example, shortly af-

ter the axial expansion process described in Chapter 1 completes, certain nuclei coalesce

into the embryonic rudiment. At this stage, there are over 2000 nuclei that are quite

close together. However, the ability to track nuclei through this stage opens many ex-

citing doors.

Another exciting direction is that relatively little is knownabout how the development

of many insects defers from that ofDrosophila. Work from the Keller Laboratory148,4 on

Drosophila is similar to the work presented in this chapter, but there are notable differ-

ences. While the work on model organisms has lead to many important breakthroughs,
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understanding what aspects we learn from these organisms generalize to other organ-

isms is also an exciting prospect. In the coming years, I think that more general develop-

mental principles will become better understood and I am excited to see a more holistic

picture emerge.

Compared tomany other disciplines of science in this thesis, research in (developmen-

tal) biology is inherently slower and more costly—both in time, but also in terms of re-

sources. I think that mathematical modeling and biology are forming a new symbiosis,

as we are past the “spherical cow” phase, where systems are often heavily simplified to

be analytically and computationally tractable. The ability to, from data, develop models

that are capable of making specific, falsifiable hypothesis is particularly encouraging and

something I think as beneficial for both fields.

Many institutions have undertaken massive efforts to digitize their work, but collect-

ing all of this information can still be a monumental task. One example of success in this

direction is byChurch et al.where they used over 10,000 previously published insect egg

descriptions to uncover scaling relations and show that size and shape of eggs can be bet-

ter understood by considering the environment where those eggs are laid.34

Another exciting direction in this “data renaissance” is the formation of new machine

learning tools. These tools have allowed scientists to revisit previously studied systems

with anewtoolkit. For example, thework inChapter3, on crumpled sheets, built onanex-

istingdataset frompreviouswork.65 In fact, thepublishedproject didnot start by looking

at the geometric relationship between ridges and valleys. Instead, the original goal was
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to predict the regions where new creases form. However, for many reasons this proved

to be amuch harder problem than anticipated. For example, alignment issues and experi-

mental noisemake it difficult todefinitively label newly-formedcreases. Additionally, the

nature of this problem makes the dataset much smaller, since the dataset was originally

collected for a different project and therefore not specifically tailored for the new ques-

tions of interest. In fact, the ideal datasets for these two projects are largely orthogonal

since in the existingdataset, subsequent scans arehighly correlated.65 The fact that each

crumple is very similar to the previous scanmeans that the effective size of the dataset is

much smaller than the total numberof creases. Thismakesmanydata-intensivemethods

less effective.

My collaborators and I looked at the scaling of the mileage in the crease network at

smaller scales and whether we could predict the relative enrichment and depletion of

creases. Future work exploring this direction will be an exciting path forward, especially

if results could be adapted to other materials as well.

I am curious to what extent many disordered systems will be at least partially illumi-

nated in the coming years by recently developed statistical methods. For example, the

work by D. Cubuk et al. leading to the softness parameter is a nice success story in this

line of work.37 Andrea Liu’s group has been extending the idea of using a support vec-

tor machine (SVM)36,126 to quantify the distance to phase-transition boundaries in dif-

ferent systems, including problems in seemingly diverse fields such as geology and biol-

ogy.117,131,171,92 One appealing result of this work was that by constructing specific in-
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put features (radial distribution functions), they were able to compute a distance from a

transition-separating hyperplane. This lends itself to a degree of interpretability that is

very desirable in physics.

I’m optimistic about the symbiotic relationship betweenmachine learning and the nat-

ural sciences in the future. One avenue that I find particularly exciting is learning com-

pressed representations of physical objects that is able to obey constraints imposed by

nature. Exciting prospects for learning compressed, searchable/optimizable representa-

tions such as solar cells and materials for batteries, amongst many others. Early work in

this direction has begun and I am excited to see how it continues.60,103

A concrete avenue for future work relating to the generation of random crystal sub-

jects isunderwaywithin thefieldof randomstructuregeneration.109Manyscientificfields,

such as random structure generation, that rely on ad hoc rules seem to have tremendous

potential for advancement (similar to replacing the value-function in chess engines).133

Generally, I think that there has recently been much exciting work at the intersection of

AI andmaterial science along these directions.130,38,69,77

Introducing physics-inspired biases intomachine learningmethods is a growing trend,

as it provides ways to be more data-efficient and also (hopefully) generalize better to

new tasks.159,35 The inductive bias inmachine learning (specifically of deep learning) has

largely been the antithesis of how scientists think about the natural world.19 Inmany im-

age based learning situations, the entire input frame is considered to be a large state that

asawhole isencoded/otherwiseunderstood. There is rarelyaneffectivebias towards try-
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ing to decompose a single, large, complex system into a series of smaller systems.155,168

Aside from learning different objects that can be moved or interact differently, the dy-

namics governing motion is not treated to be a concept that can be simplified. However,

we know this to be the case in the natural world made explicit by Newton’s laws of mo-

tion.100

I think thatmanydifferent researchers are beginning to push in this direction, develop-

ing tools that aremore in tunewith howweunderstand theworld around us.158,124 Tools

for improved generalization in machine learning and few-shot learning are both active

fields of research.53,12,149,116 I believe that for both these cases, there will be concrete

progress in the near future.

Data representation has proven to be a key problem in the success of machine learn-

ing. Data that canbe represented as a graph is becoming increasingly important formany

tasks, includingpredictingpropertiesof socialnetworks, predictingpropertiesofmolecules

(and theclosely relatedfieldofdrugdiscoveryandprotein interactionnetworks), toname

a few.167,82,8,9,11,13 Many aspects of the natural world can be effectively modeled by a

graph, and this representation affords many desirable properties, such as adding in an

explicit relationship between interacting parts that needs to be learned.158

The data that we have todaywas unimaginable a decade ago andmany of the tools we

use today had not been dreamed up a decade ago. I am excited to seewhat things are like

a decade from now.
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6.1 Final thoughts

Science is inherently collaborative, perhapsmore-so now than ever before. I am lucky to

have been surroundedby an excellent set of collaborators thatmademy timeworking on

these projects very fun. I am still excited about all of the projects discussed in this thesis,

something I hope bodes well for the future.

Pippin: I didn’t think it would end this way.

Gandalf: End? No, the journey doesn’t end here. [Defending] is just another

path, one that we all must take.147

Andwith that, this thesis ends—happily ever after.

257



References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard,M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur,M., Levenberg, J.,Mané, D.,Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., War-
den, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. Software available from ten-
sorflow.org.

[2] Achlioptas, P., Diamanti, O., Mitliagkas, I., & Guibas, L. (2017). Learning represen-
tations and generativemodels for 3D point clouds. arXiv:1707.02392.

[3] AlQuraishi,M. (2019). End-to-enddifferentiable learningofprotein structure. Cell
systems, 8(4), 292–301.

[4] Amat, F., Lemon, W., Mossing, D. P., McDole, K., Wan, Y., Branson, K., Myers, E. W.,
&Keller, P. J. (2014). Fast, accurate reconstructionof cell lineages from large-scale
fluorescencemicroscopy data. Nature methods.

[5] Anderson, D. (1972a). The development of hemimetabolous insects. Developmen-
tal Systems: Insects, 1, 95–163.

[6] Anderson,D. (1972b). Thedevelopmentofholometabolous insects.Developmental
Systems: Insects, 1, 165–242.

[7] Andresen, C. A., Hansen, A., & Schmittbuhl, J. (2007). Ridge network in crumpled
paper. Physical review E, 76(2), 026108.

[8] Anonymous (2020a). Combining graph and sequence information to learn protein
representations. In Submitted to International Conference on Learning Representa-
tions. under review.

[9] Anonymous (2020b). Conditional generation of molecules from disentangled rep-
resentations. In Submitted to International Conference on Learning Representations.
under review.

[10] Anonymous (2020c). Deep learning for symbolic mathematics. In Submitted to
International Conference on Learning Representations. under review.

[11] Anonymous (2020d). Directional message passing for molecular graphs. In Sub-
mitted to International Conference on Learning Representations. under review.

258



[12] Antoniou, A., Edwards, H., & Storkey, A. (2019). How to train yourMAML. In Inter-
national Conference on Learning Representations.

[13] Assouel, R., Ahmed, M., Segler, M. H., Saffari, A., & Bengio, Y. (2018). DE-
Factor: Differentiable edge factorization-based probabilistic graph generation.
arXiv:1811.09766.

[14] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. arXiv:1511.00561.

[15] Baird, H. S. (1992). Document image defect models. In Structured Document Image
Analysis (pp. 546–556). Springer.

[16] Baker, J., Theurkauf, W. E., & Schubiger, G. (1993). Dynamic changes in mi-
crotubule configuration correlate with nuclear migration in the preblastoderm
drosophila embryo. The Journal of Cell Biology, 122(1), 113–121.

[17] Baldi, P., Sadowski, P., &Whiteson, D. (2014). Searching for exotic particles in high-
energy physics with deep learning. Nature Communications, 5(1).

[18] Bar-Sinai, Y., Hoyer, S., Hickey, J., &Brenner,M. P. (2019). Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy
of Sciences, 116(31), 15344–15349.

[19] Bengio, Y. (2017). The consciousness prior. arXiv:1709.08568.

[20] Bernard, F., Lepesant, J.-A., & Guichet, A. (2018). Nucleus positioning within
drosophila egg chamber. In Seminars in Cell & Developmental Biology, volume 82
(pp. 25–33).: Elsevier.

[21] Bhimji, W., Farrell, S. A., Kurth, T., Paganini, M., Prabhat, & Racah, E. (2017). Deep
neural networks for physics analysis on low-level whole-detector data at the LHC.
arXiv:1711.03573.

[22] Blum, L.C.&Reymond, J.-L. (2009). 970milliondruglike smallmolecules for virtual
screening in the chemical universe databaseGDB-13. J. Am. Chem. Soc., 131, 8732.

[23] Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high
fidelity natural image synthesis. arXiv:1809.11096.

[24] Brock,A., Lim, T., Ritchie, J.M., &Weston,N. (2016). Generativeanddiscriminative
voxel modeling with convolutional neural networks. arXiv:1608.04236.

[25] Burgess,C.P.,Higgins, I., Pal, A.,Matthey, L.,Watters,N.,Desjardins,G., &Lerchner,
A. (2018). Understanding disentangling in beta-VAE. arXiv:1804.03599.

[26] Cabi, S., Colmenarejo, S. G., Novikov, A., Konyushkova, K., Reed, S., Jeong, R.,
Żołna, K., Aytar, Y., Budden, D., Vecerik, M., Sushkov, O., Barker, D., Scholz, J., De-
nil, M., de Freitas, N., & Wang, Z. (2019). A framework for data-driven robotics.
arXiv:1909.12200.

259



[27] Çiçek, O., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3D
U-Net: Learning dense volumetric segmentation from sparse annotation. Springer
Lecture Notes in Computer Science, (pp. 424–432).

[28] Chandrasekaran, A., Kamal, D., Batra, R., Kim, C., Chen, L., & Ramprasad, R. (2019).
Solving theelectronic structureproblemwithmachine learning. npj Computational
Materials, 5(1), 22.

[29] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017).
DeepLab: semantic image segmentationwith deep convolutional nets, atrous con-
volution, and fully connected CRFs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4), 834–848.

[30] Chen, R. T. Q., Li, X., Grosse, R., & Duvenaud, D. (2018). Isolating sources of disen-
tanglement in variational autoencoders. Advances in Neural Information Processing
Systems.

[31] Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way,
G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., Xie, W., Rosen, G. L.,
Lengerich, B. J., Israeli, J., Lanchantin, J., Woloszynek, S., Carpenter, A. E., Shriku-
mar, A., Xu, J., Cofer, E. M., Lavender, C. A., Turaga, S. C., Alexandari, A. M., Lu, Z.,
Harris, D. J., DeCaprio, D., Qi, Y., Kundaje, A., Peng, Y., Wiley, L. K., Segler, M. H.,
Boca, S. M., Swamidass, S. J., Huang, A., Gitter, A., & Greene, C. S. (2018). Opportu-
nities and obstacles for deep learning in biology andmedicine. bioRxiv.

[32] Chollet, F. et al. (2015). Keras.

[33] Church, S., Donoughe, S., deMedeiros, B., & Extavour, C. (2018). A database of egg
size and shape from more than 6,000 insect species. Scientific Data, 346(6210),
763–767.

[34] Church, S.H., Donoughe, S., deMedeiros, B. A., & Extavour, C.G. (2019). Insect egg
size and shapeevolvewithecologybutnotdevelopmental rate. Nature, 571(7763),
58.

[35] Cohen, T. S. &Welling, M. (2016). Steerable CNNs. arXiv:1612.08498.

[36] Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),
273–297.

[37] Cubuk, E., Schoenholz, S., Rieser, J., Malone, B., Rottler, J., Durian, D., Kaxiras,
E., & Liu, A. (2015). Identifying structural flow defects in disordered solids using
machine-learningmethods. Physical Review Letters, 114(10).

[38] Cubuk, E. D., Sendek, A. D., & Reed, E. J. (2019a). Screening billions of candidates
for solid lithium-ion conductors: A transfer learning approach for small data. The
Journal of Chemical Physics, 150(21), 214701.

260



[39] Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V. (2019b). Autoaugment:
Learning augmentation strategies from data. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[40] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., & Salakhutdinov, R. (2019).
Transformer-XL: Attentive language models beyond a fixed-length context. Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics.

[41] D’Arcy,W. T. (1917). OnGrowth And Form. Cambridge University Press.

[42] Dawes, R., Dawson, I., Falciani, F., Tear, G., & Akam, M. (1994). Dax, a locust Hox
gene related to fushi-tarazu but showing no pair-rule expression. Development,
120(6), 1561–1572.

[43] De Simone, A., Spahr, A., Busso, C., & Gönczy, P. (2018). Uncovering the balance of
forces driving microtubule aster migration in c. elegans zygotes. Nature Communi-
cations, 9(1), 938.

[44] Deneke, V. E., Puliafito, A., Krueger, D., Narla, A. V., De Simone, A., Primo, L., Ver-
gassola, M., De Renzis, S., & Di Talia, S. (2019). Self-organized nuclear positioning
synchronizes the cell cycle in drosophila embryos. Cell, 177(4), 925–941.

[45] Dieleman, S.,Willett, K.W., &Dambre, J. (2015). Rotation-invariant convolutional
neural networks for galaxy morphology prediction. Monthly Notices of the Royal
Astronomical Society, 450(2), 1441–1459.

[46] Donoughe, S. & Extavour, C. G. (2016). Embryonic development of the cricket gryl-
lus bimaculatus. Developmental Biology, 411(1), 140–156.

[47] Donoughe, S., Kim, C., & Extavour, C. G. (2018). High-throughput live-imaging of
embryos in microwell arrays using a modular specimen mounting system. Biology
Open, 7(7), bio031260.

[48] Dutta, S., Djabrayan, N. J.-V., Torquato, S., Shvartsman, S. Y., & Krajnc, M. (2019).
Self-similar dynamics of nuclear packing in the early drosophila embryo. Biophysi-
cal journal, 117(4), 743–750.

[49] Eastham, L. (1927). A contribution to the embryology of pieris rapae. Quart. J. micr.
Sci, 71, 353–394.

[50] Edgar, B. A., Kiehle, C. P., & Schubiger, G. (1986). Cell cycle control by the nucleo-
cytoplasmic ratio in early drosophila development. Cell, 44(2), 365–372.

[51] Eslami, S. M. A., Jimenez Rezende, D., Besse, F., Viola, F., Morcos, A. S., Garnelo, M.,
Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., We-
ber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N., King, H., Hillier, C., Botvinick,
M.,Wierstra, D., Kavukcuoglu, K., & Hassabis, D. (2018). Neural scene representa-
tion and rendering. Science, 360(6394), 1204–1210.

261



[52] Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Zidek, A., Nelson,
A., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Jones, D.,
Silver, D., Kavukcuoglu, K., Hassabis, D., & Senior, A. (2018). De novo structure
predictionwith deep-learning based scoring. Thirteenth Critical Assessment of Tech-
niques for Protein Structure Prediction.

[53] Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. arXiv:1703.03400.

[54] Fischer, R. (1999). Nuclear movement in filamentous fungi. FEMSMicrobiology Re-
views, 23(1), 39–68.

[55] Foe, V., Odell, G., & Edgar, B. (1993). Mitosis andmorphogenesis in the drosophila
embryo: Point and counterpoint. In The Development of Drosophila melanogaster
chapter 3, (pp. 149–300). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
Press.

[56] Foe, V. E. & Alberts, B. M. (1983). Studies of nuclear and cytoplasmic behaviour
during the five mitotic cycles that precede gastrulation in drosophila embryogen-
esis. Journal of Cell Science, 61(1), 31–70.

[57] Foe, V. E., Field, C.M., &Odell, G.M. (2000). Microtubules andmitotic cycle phase
modulate spatiotemporal distributions of f-actin andmyosin ii in drosophila syncy-
tial blastoderm embryos. Development, 127(9), 1767–1787.

[58] Furtney, J. (2012–2019). scikit-fmm. https://pythonhosted.org/scikit-fmm/.
[59] Gaillard, M. (2017). CERN data centre passes the 200-

petabyte milestone. https://home.cern/news/news/computing/
cern-data-centre-passes-200-petabyte-milestone.

[60] Gebauer, N.W. A., Gastegger,M., & Schütt, K. T. (2019). Symmetry-adapted gener-
ation of 3D point sets for the targeted discovery of molecules. arXiv:1906.00957.

[61] Gomez-Bombarelli, R.,Wei, J. N., Duvenaud,D., Hernandez-Lobato, J.M., Sanchez-
Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., &
Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continu-
ous representation of molecules. American Chemical Society Central Science.

[62] Gönczy, P., Pichler, S., Kirkham, M., & Hyman, A. A. (1999). Cytoplasmic dynein is
required fordistinct aspectsofmtocpositioning, includingcentrosomeseparation,
in the one cell stage caenorhabditis elegans embryo. The Journal of Cell Biology,
147(1), 135–150.

[63] Goodfellow, I.,Warde-Farley, D.,Mirza,M., Courville, A., & Bengio, Y. (2013). Max-
out networks. In S.Dasgupta&D.McAllester (Eds.),Proceedings of the 30th Interna-
tional Conference onMachine Learning, volume28ofProceedings ofMachine Learning
Research (pp. 1319–1327). Atlanta, Georgia, USA: PMLR.

262

https://pythonhosted.org/scikit-fmm/
https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone


[64] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative adversarial networks.
arXiv:1406.2661.

[65] Gottesman, O., Andrejevic, J., Rycroft, C. H., & Rubinstein, S. M. (2018). A state
variable for crumpled thin sheets. Communications Physics, 1(1), 70.

[66] Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., & Schölkopf, B.
(2019). Recurrent independent mechanisms: A new architecture for improving
generalization. arXiv preprint arXiv:1909.10893.

[67] Guest, D., Cranmer, K., &Whiteson, D. (2018). Deep learning and its application to
LHC physics. Annual Review of Nuclear and Particle Science, 68(1), 161–181.

[68] Gundersen, G. G. &Worman, H. J. (2013). Nuclear positioning. Cell, 152(6), 1376–
1389.

[69] Hanakata, P. Z., Cubuk, E. D., Campbell, D. K., & Park, H. S. (2018). Accelerated
search and design of stretchable graphene kirigami usingmachine learning. Physi-
cal Review Letters, 121(25).

[70] Hatanaka, K. & Okada, M. (1991). Retarded nuclear migration in drosophila em-
bryos with aberrant f-actin reorganization caused by maternal mutations and by
cytochalasin treatment. Development, 111(4), 909–920.

[71] Higgins, I.,Matthey, L., Pal,A., Burgess,C.,Glorot,X., Botvinick,M.M.,Mohamed, S.,
& Lerchner, A. (2017). beta-VAE: Learningbasic visual conceptswith a constrained
variational framework. In ICLR.

[72] Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler,
A., & Bengio, Y. (2018). Learning deep representations bymutual information esti-
mation andmaximization. arXiv:1808.06670.

[73] Ho, K., Dunin-Borkowski, O. M., & Akam, M. (1997). Cellularization in locust em-
bryos occurs before blastoderm formation. Development, 124(14), 2761–2768.

[74] Hoffmann, J., Bar-Sinai, Y., Lee, L. M., Andrejevic, J., Mishra, S., Rubinstein, S. M.,
& Rycroft, C. H. (2019a). Machine learning in a data-limited regime: Augmenting
experiments with synthetic data uncovers order in crumpled sheets. Science Ad-
vances, 5(4).

[75] Hoffmann, J., Donoughe, S., Li, K., Salcedo, M. K., & Rycroft, C. H. (2018). A simple
developmental model recapitulates complex insect wing venation patterns. Pro-
ceedings of the National Academy of Sciences, 115(40), 9905–9910.

[76] Hoffmann, J., Maestrati, L., Sawada, Y., Tang, J., Sellier, J. M., & Bengio, Y.
(2019b). Data-driven approach to encoding and decoding 3-D crystal structures.
arXiv:1909.00949.

263



[77] Hoyer, S., Sohl-Dickstein, J., & Greydanus, S. (2019). Neural reparameterization
improves structural optimization. arXiv:1909.04240.

[78] Ingraham, J., Riesselman, A., Sander, C., &Marks, D. (2019). Learning protein struc-
ture with a differentiable simulator. In International Conference on Learning Repre-
sentations.

[79] Ji, J.-Y., Crest, J., & Schubiger, G. (2005). Genetic interactions between cdk1-
cyclinb and the separase complex in drosophila. Development, 132(8), 1875–1884.

[80] Ji, J.-Y., Haghnia, M., Trusty, C., Goldstein, L. S., & Schubiger, G. (2002). A genetic
screen for suppressors and enhancers of the drosophila cdk1-cyclin b identifies
maternal factors that regulate microtubule and microfilament stability. Genetics,
162(3), 1179–1195.

[81] Ji, J.-Y., Squirrell, J. M., & Schubiger, G. (2004). Both cyclin b levels and dna-
replication checkpoint control the early embryonic mitoses in drosophila. Devel-
opment, 131(2), 401–411.

[82] Jin, W., Barzilay, R., & Jaakkola, T. (2018). Junction tree variational autoencoder
for molecular graph generation. Thirty-fifth International Conference on Machine
Learning.

[83] Johannsen,O.A.&Butt, F.H. (1941). Embryology of insects andmyriapods. McGraw-
Hill Book Co.

[84] Kasthuri, N., Hayworth, K. J., Berger, D. R., Schalek, R. L., Conchello, J. A., Knowles-
Barley, S., Lee,D., Vázquez-Reina, A., Kaynig, V., Jones, T. R., et al. (2015). Saturated
reconstruction of a volume of neocortex. Cell, 162(3), 648–661.

[85] Kessel, E. L. (1939). The embryology of fleas. SmithsonianMiscellaneous Collections,
98.

[86] Kim, J. H., Jin, P., Duan, R., & Chen, E. H. (2015). Mechanisms of myoblast fusion
during muscle development. Current Opinion in Genetics & Development, 32, 162–
170.

[87] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. InProceedings of the 25th International Confer-
ence onNeural Information Processing Systems - Volume 1, NIPS’12 (pp. 1097–1105).
USA: Curran Associates Inc.

[88] Laanait, N., Romero, J., Yin, J., Young,M. T., Treichler, S., Starchenko, V., Borisevich,
A., Sergeev,A.,&Matheson,M. (2019). Exascaledeep learning for scientific inverse
problems. arXiv:1909.11150.

[89] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

[90] Li, Q., Lin, D., & Shi, Z. (2005). Task-oriented sparse coding model for pattern clas-
sification. Advances in Natural Computation, (pp. 903–914).

264



[91] Lintott, C., Schawinski, K., Bamford, S., Slosar, A., Land, K., Thomas, D., Edmondson,
E., Masters, K., Nichol, R. C., Raddick, M. J., & et al. (2010). Galaxy zoo 1: data re-
lease ofmorphological classifications for nearly 900,000 galaxies. Monthly Notices
of the Royal Astronomical Society, 410(1), 166–178.

[92] Liu, A. (2019). Machined-learned softness as a structural order parameter for un-
derstanding glassy systems. In APSMeeting Abstracts.

[93] Maier, A., Syben, C., Lasser, T., & Riess, C. (2019). A gentle introduction to deep
learning inmedical image processing. Zeitschrift für Medizinische Physik, 29(2), 86–
101.

[94] Manukyan, L., Montandon, S. A., Fofonjka, A., Smirnov, S., & Milinkovitch, M. C.
(2017). A living mesoscopic cellular automaton made of skin scales. Nature,
544(7649), 173.

[95] Markow, T. A., Beall, S., &Matzkin, L. M. (2009). Egg size, embryonic development
time and ovoviviparity in drosophila species. Journal of evolutionary biology, 22(2),
430–434.

[96] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word
representations in vector space. arXiv:1301.3781.

[97] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., &Dean, J. (2013b). Distributed rep-
resentations of words and phrases and their compositionality. arXiv:1310.4546.

[98] Morris, N. R. (2000). Nuclear migration: from fungi to the mammalian brain. The
Journal of Cell Biology, 148(6), 1097–1102.

[99] Nakamura, T., Yoshizaki, M., Ogawa, S., Okamoto, H., Shinmyo, Y., Bando, T.,
Ohuchi, H., Noji, S., & Mito, T. (2010). Imaging of transgenic cricket embryos re-
veals cell movements consistent with a syncytial patterning mechanism. Current
Biology, 20(18), 1641–1647.

[100] Newton, I. (1999). The Principia: mathematical principles of natural philosophy. Univ
of California Press.

[101] Ng, A. Y. (2004). Feature selection, l1 vs. l2 regularization, and rotational invari-
ance. InProceedings of the Twenty-first International Conference onMachine Learning,
ICML ’04 (pp. 78–). New York, NY, USA: ACM.

[102] Nogueira, K., Fadel, S. G., Dourado, Í. C., de OliveiraWerneck, R., Muñoz, J. A., Pe-
natti, O. A., Calumby, R. T., Li, L., dos Santos, J. A., & da Silva Torres, R. (2017). Data-
driven flood detection using neural networks. InMediaEval.

[103] Nouira, A., Sokolovska, N., & Crivello, J.-C. (2018). CrystalGAN: Learning
to discover crystallographic structures with generative adversarial networks.
arXiv:1810.11203.

265



[104] Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K.,
McDonagh, S., Hammerla, N. Y., Kainz, B., et al. (2018). Attention U-Net: Learning
where to look for the pancreas. arXiv:1804.03999.

[105] Paszke,A., Gross, S., Chintala, S., Chanan,G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. NIPS-W.

[106] Pearson, J. E. (1993). Complex patterns in a simple system. Science, 261(5118),
189–192.

[107] Perez, L. &Wang, J. (2017). The effectiveness of data augmentation in image clas-
sification using deep learning. arXiv:1712.04621.

[108] Pfau, D., Spencer, J. S., de G.Matthews, A. G., & Foulkes,W.M. C. (2019). Ab-initio
solution of the many-electron schrödinger equation with deep neural networks.
arXiv:1909.02487.

[109] Pickard, C. J. & Needs, R. (2011). Ab initio random structure searching. Journal of
Physics: CondensedMatter, 23(5), 053201.

[110] Pietzsch, T., Saalfeld, S., Preibisch, S., & Tomancak, P. (2015). Bigdataviewer: visu-
alization and processing for large image data sets. Nature methods, 12(6), 481.

[111] Płachno, B. J. & Świątek, P. (2011). Syncytia in plants: cell fusion in endosperm—
placental syncytium formation in utricularia (lentibulariaceae). Protoplasma,
248(2), 425–435.

[112] Polishchuk, P. G., Madzhidov, T. I., & Varnek, A. (2013). Estimation of the size of
drug-like chemical space based onGDB-17 data. Journal of computer-aidedmolecu-
lar design, 27(8), 675–679.

[113] Preibisch, S., Amat, F., Stamataki, E., Sarov, M., Singer, R. H., Myers, E., & Toman-
cak, P. (2014). Efficient Bayesian-basedmultiview deconvolution. Nature methods,
11(6), 645.

[114] Preibisch, S., Saalfeld, S., Schindelin, J., & Tomancak, P. (2010). Software for bead-
based registrationof selectiveplane illuminationmicroscopydata.Naturemethods,
7(6), 418.

[115] Reinsch, S. & Gonczy, P. (1998). Mechanisms of nuclear positioning. Journal of Cell
Science, 111(16), 2283–2295.

[116] Requeima, J., Gordon, J., Bronskill, J., Nowozin, S., & Turner, R. E. (2019). Fast
and flexible multi-task classification using conditional neural adaptive processes.
arXiv:1906.07697.

[117] Ridout, S., Rocks, J., & Liu, A. (2019). Machine-learned structure/dynamics relation
in sheared jammed packings. In APSMeeting Abstracts.

266



[118] Roman, W. & Gomes, E. R. (2018). Nuclear positioning in skeletal muscle. In Semi-
nars in Cell & Developmental Biology, volume 82 (pp. 51–56).: Elsevier.

[119] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention (pp. 234–241).: Springer.

[120] Roonwal, M. (1936). Studies on the Embryology of the African Migratory Locust,
Locusta migratoria migratorioides R. and F. I. The Early Development, with a New
Theory of Multi-Phased Gastrulation among Insects. Philosophical Transactions of
the Royal Society of London. Series B, Biological Sciences.

[121] Royou, A., Sullivan, W., & Karess, R. (2002). Cortical recruitment of nonmuscle
myosin ii in early syncytial drosophila embryos: its role in nuclear axial expansion
and its regulation by cdc2 activity. The Journal of Cell Biology, 158(1), 127–137.

[122] Rupp,M., Tkatchenko,A.,Müller, K.-R., &vonLilienfeld,O.A. (2012). Fast andaccu-
rate modeling of molecular atomization energies with machine learning. Physical
Review Letters, 108, 058301.

[123] Salcedo, M. K., Hoffmann, J., Donoughe, S., & Mahadevan, L. (2018). Size, shape
and structure of insect wings. bioRxiv, (pp. 478768).

[124] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., &
Lillicrap, T. (2017). A simple neural network module for relational reasoning. In I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Gar-
nett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 4967–4976).
Curran Associates, Inc.

[125] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
platform for biological-image analysis. Nature methods, 9(7), 676.

[126] Schölkopf, B. (2001). The kernel trick for distances. Advances in Neural Information
Processing Systems 13, (pp. 301–307).

[127] Scholtz, G. & Wolff, C. (2013). Arthropod embryology: cleavage and germ band
development. In Arthropod biology and evolution (pp. 63–89). Springer.

[128] Schütt, K. T., Kindermans, P.-J., Sauceda,H. E., Chmiela, S., Tkatchenko, A., &Müller,
K.-R. (2017). Schnet: A continuous-filter convolutional neural network for model-
ing quantum interactions. arXiv:1706.08566.

[129] Segler, M. H. S., Preuss, M., & Waller, M. P. (2018). Planning chemical syntheses
with deep neural networks and symbolic AI. Nature, 555, 604 EP –.

[130] Sendek, A. D., Cubuk, E. D., Antoniuk, E. R., Cheon, G., Cui, Y., & Reed, E. J. (2019).
Machine learning-assisted discovery of many new solid Li-ion conducting materi-
als. Chemistry of Materials, 31(2), 342–352.

267



[131] Sharp, T. & Liu, A. (2019). Connecting structure and dynamics in amodel of conflu-
ent cell tissues usingmachine learning. In APSMeeting Abstracts.

[132] Shemer, G. & Podbilewicz, B. (2000). Fusomorphogenesis: cell fusion in organ for-
mation. Developmental Dynamics, 218(1), 30–51.

[133] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D.
(2018). A general reinforcement learning algorithm thatmasters chess, shogi, and
go through self-play. Science, 362(6419), 1140–1144.

[134] Simard, P. Y., Steinkraus, D., Platt, J. C., et al. (2003). Best practices for convolu-
tional neural networks applied to visual document analysis. In Icdar, volume 3.

[135] Simons, K. T., Kooperberg, C., Huang, E., & Baker, D. (1997). Assembly of protein
tertiary structures from fragments with similar local sequences using simulated
annealingandbayesian scoring functions. Journal ofmolecular biology, 268(1), 209–
225.

[136] Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv:1409.1556.

[137] Sommer, C., Straehle, C., Koethe, U., & Hamprecht, F. A. (2011). Ilastik: Interac-
tive learning and segmentation toolkit. In 2011 IEEE international symposium on
biomedical imaging: From nano to macro (pp. 230–233).: IEEE.

[138] Sonnenblick, B. (1950). The early embryogenesis of drosophila melanogaster. In
Biology of Drosophila, (pp. 62–163).

[139] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15, 1929–1958.

[140] Stoppard, T. (1993). Arcadia: A play in two acts. Samuel French, Inc.

[141] Strom, N. B. & Bushley, K. E. (2016). Two genomes are better than one: history,
genetics, andbiotechnological applicationsof fungalheterokaryons. FungalBiology
and Biotechnology, 3(1), 4.

[142] Sun, F.-Y., Hoffmann, J., & Tang, J. (2019a). Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximiza-
tion. arXiv:1908.01000.

[143] Sun, F.-Y., Qu, M., Hoffmann, J., Huang, C.-W., & Tang, J. (2019b). vgraph: A gen-
erative model for joint community detection and node representation learning.
arXiv:1906.07159.

[144] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

268



[145] Telley, I. A., Gáspár, I., Ephrussi, A., & Surrey, T. (2012). Astermigration determines
the length scale of nuclear separation in the drosophila syncytial embryo. J Cell
Biol, 197(7), 887–895.

[146] Thompson, D. W. (1942). On growth and form. Cambridge [Eng.] New York: The
University Press; TheMacmillan Company, a new ed. edition.

[147] Tolkein, J. (1994). The Return of the King. HoughtonMifflin Company.

[148] Tomer, R., Khairy, K., Amat, F., & Keller, P. J. (2012). Quantitative high-speed
imaging of entire developing embryoswith simultaneousmultiview light-sheetmi-
croscopy. NatureMethods, 9(7), 755–763.

[149] Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Xu, K., Goroshin, R., Gelada, C.,
Swersky, K., Manzagol, P.-A., & Larochelle, H. (2019). Meta-dataset: A dataset of
datasets for learning to learn from few examples.

[150] Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson,
K. A., Ceder, G., & Jain, A. (2019). Unsupervised word embeddings capture latent
knowledge frommaterials science literature. Nature, 571(7763), 95.

[151] Tu, Z.&Zhu, S.-C. (2002). Image segmentationbydata-drivenmarkov chainmonte
carlo. IEEE Transactions on pattern analysis andmachine intelligence, 24(5), 657–673.

[152] Turing, A.M. (1990). Thechemical basis ofmorphogenesis. Bulletin ofmathematical
biology, 52(1-2), 153–197.

[153] Turner, N., Goodwine, B., & Sen, M. (2016). A review of origami applications in
mechanical engineering. Proceedings of the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science, 230(14), 2345–2362.

[154] Valsesia, D., Fracastoro, G., &Magli, E. (2019). Learning localized generative mod-
els for 3D point clouds via graph convolution. In International Conference on Learn-
ing Representations.

[155] van Steenkiste, S., Chang, M., Greff, K., & Schmidhuber, J. (2018). Relational neu-
ral expectation maximization: Unsupervised discovery of objects and their inter-
actions. In International Conference on Learning Representations.

[156] VonDassow,G.&Schubiger,G. (1994). Howanactinnetworkmightcause fountain
streaming and nuclear migration in the syncytial drosophila embryo. The Journal
of Cell Biology, 127(6), 1637–1653.

[157] Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres
primitifs. Journal für die reine und angewandteMathematik, 134, 198–287.

[158] Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., & Tacchetti, A. (2017).
Visual interaction networks: Learning a physics simulator from video. In I. Guyon,

269



U.V. Luxburg, S.Bengio,H.Wallach, R. Fergus, S.Vishwanathan,&R.Garnett (Eds.),
Advances in Neural Information Processing Systems 30 (pp. 4539–4547). Curran As-
sociates, Inc.

[159] Weiler,M., Geiger,M.,Welling,M., Boomsma,W., &Cohen, T. (2018). 3D steerable
CNNs: Learning rotationally equivariant features in volumetric data. In Proceed-
ings of the 32Nd International Conference on Neural Information Processing Systems,
NIPS’18 (pp. 10402–10413). USA: Curran Associates Inc.

[160] Weininger,D. (1988). Smiles, a chemical languageand information system.1. intro-
duction tomethodology andencoding rules. J. Chem. Inf. Comput. Sci., 28(1), 31–36.

[161] Wolf, R. (1980). Migration and division of cleavage nuclei in the gall midge,
Wachtliella persicariae II. Origin and ultrastructure of themigration cytaster. Wil-
helm Roux’ Archiv für Entwicklungsmechanik der Organismen, 188(1), 65–73.

[162] Wolff, C., Tinevez, J.-Y., Pietzsch, T., Stamataki, E., Harich, B., Guignard, L.,
Preibisch, S., Shorte, S., Keller, P. J., Tomancak, P., et al. (2018). Multi-view light-
sheet imaging and tracking with the mamut software reveals the cell lineage of a
direct developing arthropod limb. Elife, 7, e34410.

[163] Wolff, C., Tinevez, J.-Y., Pietzsch, T., Stamataki, E., Harich, B., Preibisch, S., Shorte, S.,
Keller, P. J., Tomancak, P., & Pavlopoulos, A. (2017). Reconstruction of cell lineages
and behaviors underlying arthropod limb outgrowth with multi-view light-sheet
imaging and tracking. bioRxiv, (pp. 112623).

[164] Wu, J., Zhang, C., Xue, T., Freeman, W. T., & Tenenbaum, J. B. (2016). Learning a
probabilistic latent spaceof object shapes via3Dgenerative-adversarialmodeling.
In Advances in Neural Information Processing Systems (pp. 82–90).

[165] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive
survey on graph neural networks. arXiv:1901.00596.

[166] Wulfmeier, M., Abdolmaleki, A., Hafner, R., Springenberg, J. T., Neunert, M., Her-
tweck, T., Lampe, T., Siegel, N., Heess, N., & Riedmiller, M. (2019). Regularized
hierarchical policies for compositional transfer in robotics. arXiv:1906.11228.

[167] Xie, T. & Grossman, J. C. (2018). Crystal graph convolutional neural networks for
an accurate and interpretable prediction of material properties. Phys. Rev. Lett.,
120, 145301.

[168] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Ben-
gio, Y. (2015). Show, attend and tell: Neural image caption generation with visual
attention. arXiv:1502.03044.

[169] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Confer-

270



ence onHot Topics inCloudComputing, HotCloud’10 (pp. 10–10). Berkeley, CA,USA:
USENIX Association.

[170] Zalokar, M. (1976). Division and migration of nuclei during early embryogenesis
of drosophila melanogaster. J. Microsc. Biol. Cell., 25, 97–106.

[171] Zhang, G., Ridout, S., & Liu, A. (2019). Interplay of softness and rearrangements
during avalanche propagation. In APSMeeting Abstracts.

[172] Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Al-
adinskaya, A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev,
A., Volkov, Y., Zholus, A., Shayakhmetov, R. R., Zhebrak, A., Minaeva, L. I., Zagribel-
nyy, B. A., Lee, L. H., Soll, R., Madge, D., Xing, L., Guo, T., & Aspuru-Guzik, A. (2019).
Deep learning enables rapid identification of potent ddr1 kinase inhibitors. Nature
Biotechnology, 37(9), 1038–1040.

[173] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z.,Wang, L., Li, C., & Sun,M. (2018). Graph
neural networks: A review of methods and applications. arXiv:1812.08434.

[174] Zhu, J.-Y., Zhang, Z., Zhang, C., Wu, J., Torralba, A., Tenenbaum, J., & Freeman, B.
(2018). Visual object networks: image generationwith disentangled 3D represen-
tations. In Advances in Neural Information Processing Systems (pp. 118–129).

271


	Abstract
	Contents
	Dedication
	Introduction
	Background
	Manuscripts Included in the Thesis
	Code from PhD

	Blastoderm formation in the cricket proceeds by local nucleus crowding
	Contributions
	Abstract
	Introduction
	Methods
	Results
	Discussion
	Supplemental Information

	Geometry of Insect Wings
	Background
	Contributions
	Publication

	Machine Learning & Crumpled Sheets
	Background
	Contributions
	Publication
	Supplemental Information

	Generative Model for 3-D Crystal Structures
	Background
	Contributions
	Preprint

	Other Problems
	RIMs model
	Graph neural networks: Learning graph representations
	Segmentation Code

	Conclusion
	Final thoughts

	References

