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Understanding the Cellular Ecology of Mtb Granulomas Using Single-cell Sequencing 

 

Abstract 

 

Infection with Mycobacterium tuberculosis (Mtb) results in the formation of pulmonary 

granulomas, which are complex structures comprised of variable mixtures of stromal, 

parenchymal and immune cells. While Mtb granulomas within an individual have variable ability 

to control bacterial infection, we lack a complete understanding of the immunologic basis for 

bacterial control. Here, we develop and apply novel methods for high-throughput single-cell 

mRNA Sequencing (scRNA-Seq) to explore the relationship between the cellular composition of 

Mtb granulomas and their ability to control bacterial replication. 

We initially report the development, optimization and application of Seq-Well, a portable, 

low-cost platform for high-throughput single-cell mRNA sequencing designed for use in BSL3 

facilities. We further developed an optimized protocol that significantly improves the per-cell 

information content of scRNA-Seq data generated with Seq-Well. Using this improved technique, 

we went on to construct an atlas of multiple inflammatory skin conditions including acne, alopecia, 

granuloma annulare, leprosy, and psoriasis.  

We next used Seq-Well to understand the relationship between the cellular and molecular 

features of Mtb granulomas and bacterial control and performed scRNA-Seq on a total of 26 non-

human primate granulomas from 4 cynomolgus macaques. In low-burden lesions, we observe an 

overall expansion of T cells, particularly a group of T1-T17 T cells, while in high-burden lesions, 

there is an expansion of mast and plasma cells. Using longitudinal PET-CT imaging to track the 

development of granulomas throughout the course of infection, we observe that lesions that form 

later in infection are better able to control bacterial infection following the onset of adaptive 

immunity. Collectively, these data reveal a nuanced relationship between cellular composition, 

timing of granuloma formation and bacterial control.  
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Finally, we profile bronchoalveolar lavage of rhesus macaques following intravenous-BCG 

vaccination (IV-BCG), which results in robust protection against subsequent Mtb challenge. Here, 

we find a correlated expression program that includes genes associated with Th1 and Th17 

effector function following IV-BCG vaccination.  

In summary, we have developed and deployed a novel technique or scRNA-Seq to explore 

immunologic control in Mtb infection. Our data reveal a high-resolution image of T-cell mediated 

control in the setting of Mtb infection and protective vaccination.  
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1.1 Overview of Single Cell Sequencing  

In recent years, single-cell genomics has fundamentally altered the resolution and 

perspective of biological inquiry [1-10]. Unlike traditional methods that rely on genomic material 

obtained from thousands of cells (e.g. DNA/RNA sequencing, microarray, etc.), single-cell 

genomics functions through the separate isolation and analysis of individual cells. Single-

genomics has been used to interrogate numerous cellular analytes including surface protein 

expression, post-translational modification [11], genetic mutations [12, 13], and DNA methylation 

[14], but the most widely analyzed molecular species is messenger RNA (mRNA). Critically, 

single-cell mRNA sequencing (scRNA-Seq) provides a new perspective to biologic inquiry by 

enabling (1) broad interrogation of cellular identities and their relative proportions in complex 

tissue samples, (2) profiling of novel cell-types and phenotypic states, (3) ecosystems-level 

understanding of interactions between cell types.  

In healthy tissues, single-cell mRNA sequencing has been used to construct single cell 

“atlases” that enumerate constituent cell-types of complex tissues [2, 15-22].  Importantly, these 

efforts have uncovered novel cell types (e.g. pulmonary ionocyte) [23, 24], immune diversity 

across tissues, and cell-cell interactions between diverse cell types [18]. Reference atlases have 

now been constructed for multiple tissues from model organisms [21, 22, 25], and the Human Cell 

Atlas [26], an international collaborative effort to generate single-cell references for all human 

tissues, is currently underway [27].  

Numerous studies have applied high-throughput scRNA-Seq to explore the cellular and 

molecular basis of human disease and immune responses in complex tissues [2, 12, 19, 20, 27, 

28]. In atlases of healthy tissues, enumeration of cell-types relies on major differences in gene 

expression, while subtle differences in cellular phenotypes likely underlie biology of interest in 

disease biopsies. In the next section, we will explore common techniques for scRNA-Seq and the 

limitations presented by these approaches in understanding gene expression differences in 

human disease.  
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1.2 Methods for Single-cell Sequencing 

Collectively, technologies for single-cell mRNA function by isolating individual cells so that 

cellular contents can be separately labeled and later combined for downstream processing [6]. 

Containment of individual cells with reverse transcription primers or mRNA capture beads has 

been achieved through a number of approaches including sorting single-cells into 96- or 384-well 

plates and reverse-emulsion droplets generated using microfluidics.  

 

Plate-based Methods for Single-cell Sequencing 

In plate-based methods for scRNA-Seq, isolation of cells is achieved by FACS sorting 

individual cells into 96-well or 384-well plates [3-5, 29-31]. In these methods, cells are sorted 

directly into a small volume of lysis buffer contained in a  and are rapidly placed on dry ice for 

storage until later processing. Plate-based methods afford the highest sensitivity of transcript 

detection since all reactions are performed in solution phase, but this added sensitivity comes at 

the expense of scale. 
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Reverse transcription is performed using a 

primer containing a poly-T repeat sequence 

and PCR priming sequence. In some 

protocols, reverse transcription primers 

incorporate a unique molecular identifier 

(UMI) for unique labeling of individual mRNA 

molecules. Other methods rely on “spike-in” of 

known standardized mRNA transcripts of 

known size at a known concentration as a 

standardized estimate of mRNA capture [32]. 

During reverse transcription, many methods 

use “template switching” to append a second 

PCR priming sequence to the end of new 

synthesized cDNA molecules (Figure 1.1). 

Specifically, these methods rely on the 

terminal transferase activity of reverse 

transcriptase enzymes that add a terminal 3-

base (CCC) overhang that can be used a 

priming site for additional extension. 

Incorporation of a template switching oligo 

(TSO) during reverse transcription in 

combination with the poly-T containing reverse 

transcription primer enables addition of 

complimentary primer sequences on both ends 

of cDNA molecules [33, 34]. Importantly, this 

enables integrated amplification of cDNA molecules using a single PCR primer, while suppressing 

Figure 1.1 | Overview of Smart-Seq2 Pipeline. 
Adapted from Trombetta et. al. [3], cells are first 
lysed and mRNA transcripts captured with 
biotinylated poly-T SMART primers for reverse 
transcription (RT). Importantly, the RT enzyme 
deposits three ribosomal cytosines which are 
exploited to attach the TSO, generation full-
length transcripts. Following complementary 
DNA (cDNA) generation, the product is amplified 
through PCR, tagmented by transposase 
(Illumina, Nextera) which deposits i7 and i5 
adapters that serve as priming sights for the P7 
and P5 primers. The quality of the library is 
validated using a BioAnalyzer (or Tape Station) 
and KAPA Quant. Once confirmed the library 
meets the necessary quality, it can be sequenced 
on an Illumina instrument.  
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amplification of small fragments through self-dimerization. Following amplification, sequencing 

libraries are generated using tagmentation and low-round PCR amplification using  indexed 

primers that append P5 and P7 sequences, which are compatible with Illumina sequencing 

(Figure 1.1).  

 

High-throughput single-cell mRNA Sequencing 

In recent years, there has been a significant increase in the scale of scRNA-Seq 

experiments [9, 10]. This increase in the scale of experimental processing has been realized 

through a fundamental advance: early bead-based mRNA capture and barcoding (Figure 1.2). 

Collectively, these techniques utilize microparticles (e.g. polymer microspheres or polyacrylamide 

hydrogels) decorated with barcoded, mRNA capture oligos to hybridize cellular mRNA. These 

mRNA captures sequences are covalently attached to solid support and contain key elements 

including (1) a PCR priming site or T7 promoter, (2) a cell barcode whose sequence is conserved 

within a microparticle but distinct from others within a single experiment, (3) a unique molecular 

identifier (UMI) that enables molecule-level enumeration of transcript counts, and (4) a poly-T 

capture sequence to hybridize poly-adenylated mRNA species (Figure 1.2A). Combinatorial 

diversity among cell barcode sequences is generated through the use of split-pool synthesis in 

which populations of beads are randomly split into 4 populations, a single base (either A,C,T or 

G) is synthesized, and beads are recombined. This process is repeated sequentially to obtain the 

desired number of combinatorial barcodes to avoid barcode collisions (Figure 1.2B). UMI 

sequences are generated through random synthesis of 8 bases so that each molecule on a given 

bead contains a random sequence that can be used to count individual transcripts within a given 

gene (Figure 1.2C). Using uniquely barcoded mRNA capture beads, single cells can be confined 

with a single mRNA capture bead to enable priming and reverse transcription of single cell 

transcriptomes. 
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Figure 1.2 | Base-based Barcoding. Figure is adapted from Macosko et al. Cell 2015 [9]. (A) Structure of 
bead-bound oligonucleotide sequences including a PCR handle, 12 base-pair cell barcode, and 8 base-
pair UMI. (B) Graphical overview of split-pool synthesis approach by which cell barcodes are constructed 
to yield a total of 16,777,216 combinatorial barcodes. (C) Graphical overview of the random synthesis of 
unique molecular identifier (UMI) sequences.   
 

Multiple methods have been developed for high-throughput scRNA-Seq using early bead-

based barcoding in combination with droplet-microfluidics (Figure 1.3) [9, 10, 35]. Here, individual 

cells are confined with barcoded mRNA capture beads or hydrogels containing mRNA capture 

sequences in reverse emulsion oil droplets. In these techniques, oil droplets are formed around 

an aqueous phase containing lysis buffer, cellular contents along with a single mRNA capture 

bead or hydrogel. Capture of mRNA molecules based on complementarity to a poly-dT capture 

sequence takes place within the confines of droplets, eliminating cross-contamination between 

droplets. After all input cells have been co-encapsulated in reverse emulsion droplets, oil droplets 

are broken and beads/hydrogels now decorated in DNA-RNA hybrid molecules are collected and 

reverse transcription is performed en masse. Following reverse transcription, cDNA libraries are 

amplified through either PCR or in vitro transcription. Finally, sequencing libraries are generated 

using whole-transcriptome amplification (WTA) products for sequencing using Illumina short-read 

sequencing.  
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Figure 1.3 | Droplet-based single-cell mRNA sequencing. Figure is adapted from Prakadan et al. [1]. 
Droplet-based strategies for scRNA-Seq rely on flowing single cells in aqueous medium into  a co-flowed 
oil phase. Small aqueous droplets containing cells are formed through encapsulation with oil. Individual 
droplets serve to physically segregate cellular material from adjacent droplets, enabling capture of an 
individual cell mRNA by a single, uniquely-barcoded capture bead.  

 

1.4 Seq-Well: Designing Single-cell technologies to study Mtb Infection 

Initially, we sought to adapt available scRNA-Seq technologies to profile Mtb granulomas. 

However, we quickly realized that existing technologies were limited in key ways. Specifically, 

plate-based scRNA-Seq methods (e.g. Smart-Seq2) are limited by the number of cells and cell-

types that can be simultaneously profiled. Here, the small number of cells obtained from individual 

Mtb granulomas (100,000 – 500,000 total cells) severely limits the ability to accurately collect and 

profile rare populations across lesions. Further, the requirement to select marker panels prior to 

sorting would limit our ability to profile unanticipated cell populations. Finally, FACS sorting within 

BSL3 facilities presents numerous logistical issues, particularly in low-resource setting.  

Droplet-based scRNA-Seq methods (e.g. Drop-Seq, InDrops, and 10x genomics), while 

not limited by the need for initial FACS sorting, present their own challenges. First, in droplet-

based technologies, cells obtained from individual sample are processed in series rather than in 

parallel, leading to phenotypic changes between the first and last cells processed.  Moreover, in 

many droplet microfluidic approaches, samples must be processed sequentially using separate 

microfluidic channels, which can lead to lengthy experiments and loss of sample viability over 

time. In experiments involving granulomas, time is a particularly important variable as cellular 
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viability and tissue necrosis are already present at baseline. Second, gentle lysis conditions are 

used in droplet microfluidic systems to maintain integrity of reverse-emulsion oil droplets. Harsh 

lysis buffers suitable for inactivation of pathogens like Mtb (e.g. 5M guanidine thiocyanate) are 

incompatible with the physical integrity of reverse emulsion droplets. The inability to inactivate the 

pathogen during sample processing would require downstream processing to occur within BSL3 

facilities, where additional equipment may not be available. 

Based on the aforementioned limitations of existing scRNA-Seq technologies, we set out 

to design a scRNA-Seq platform with the following objectives:  

(1) Minimal Sample Processing – Methods that rely on pre-enrichment (e.g. FACS sorting or 

magnetic bead separation) would lead to loss of already limited cellular input (~100,000-

1,000,000 cells/ granuloma).  

(2) Pathogen Inactivation – The technique should be compatible with harsh lysis buffers capable 

of inactivation of Mtb and other pathogens.  

(3) Portability and Affordability – A technology needs to perform equally well in high and low-

resource setting. Whether in a BSL3 facility in the United States or South Africa, bulky and 

expensive peripheral equipment needed to be minimized.  

Based on these design objectives, I worked to co-develop Seq-Well [36], portable, low-

cost platform for high-throughput scRNA-Seq (Chapter 2). In the Seq-Well platform, mRNA 

capture beads developed for the Drop-Seq protocol are loaded into a PDMS microwell device that 

contains 85,000 wells that are sized to accommodate only a single bead (Figure 1.4). Following 

bead loading, a single-cell suspension at a limiting dilution (10,000 – 20,000 cells) is applied to 

the surface of the device and cells fall into wells by gravity.  After cell loading, the device is 

reversibly sealed with a semi-permeable polycarbonate membrane and cells are lysed using 5M 

guanidine thiocyante. Following hybridization of cellular mRNA within wells, beads are removed 

and reverse transcription is performed en masse. PCR is then performed using the beads as a 

template to amplify cDNA libraries from which sequencing libraries can then be prepared.  
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Figure 1.4 | Overview of Seq-Well Pipeline. Adapted from Gierahn et. al. [36], Following tissue 
dissociation and generation of a single cell suspension, uniquely-barcoded mRNA capture beads and single 
cells are loaded onto a functionalized Polydimethylsiloxane (PDMS) array. Critically, after beads and cells 
settle into wells, the array is sealed with a semi-permeable polycarbonate membrane that facilitates buffer 
exchange will keeping biological macromolecules (e.g. mRNA molecules) confined to their wells, preventing 
cross contamination. The mRNA molecules then hybridize to bead oligos, which are then recovered from 
the PDMS array and pooled for reverse transcription (RT). Following cDNA generation, the STAMPs 
(single-cell transcriptomes attached to microparticles) undergo subsequent processing (i.e. whole 
transcriptome amplification (WTA) and library preparation to generate sequencing libraries. Once libraries 
pass the necessary quality controls metrics, libraries are then sequenced on an Illumina instrument. 

 
Unlike droplet microfluidic systems that require extensive equipment, loading of beads 

and cells is achieved through gravity and can be performed using only a pipette and standard lab 

equipment (e.g., incubators and shakers). Importantly, Seq-Well is compatible with harsh lysis 

conditions, which are capable of neutralizing Mtb.  After optimizing this technology platform, we 

went on to demonstrate its ability to profile Mtb-infected macrophages in a BSL3 facility [36], and 

Seq-Well has since been used to profile numerous states of health and disease around the world.  
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1.5 Principles of Granulomatous Inflammation 

Mtb Granuloma Structure and Function 

Tuberculosis remains the largest cause of death due to infectious disease with an 

estimated 1.5 million deaths annually, while an estimated 1/3 of the world’s population is latently 

infected [37]. Tuberculosis is transmitted through respiratory aerosol droplets, and upon infection, 

Mtb is sequestered in immune aggregates composed of activated macrophages and lymphocytes 

called granulomas [38]. Activation of alveolar macrophages represents the earliest event in 

granuloma formation, after which macrophages recruit additional cell types to the granuloma 

microenvironment. These additional cell types include T cells, B cells, plasma cells, dendritic cells, 

mast cells, eosinophils and fibroblasts (Figure 1.5).  

  

Figure 1.5 | Cellular Composition of Mtb Granulomas. Figure adapted from Pagan et al. [39]. 
Granulomas have a stereotyped spatial architecture. In caseating/necrotic granulomas, the center of 
lesions is made up of lipid-laden debris and necrotic material containing extracellular Mtb. Epithelioid 
macrophages are typically found in the center of lesions adjacent to the necrotic core. There is a 
lymphocytic cuff composed on T and B cells around the edge of lesions. Scattered dendritic cells can also 
be found within the lymphocytic region on the periphery of lesions. Finally, fibroblasts form around the 
edges of granulomas where they elaborate collagen fibers.  

Canonically, Mtb granulomas display a stereotyped spatial architecture in which the center 

of lesions contains necrotic debris, often referred to as caseum due to its cheese-like histologic 

appearance. This necrotic core is surrounded by activated macrophages that adopt a unique, 
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epithelioid morphology in the granuloma microenvironment [40]. On the periphery of Mtb 

granulomas there is a pronounced lymphocytic cuff, which is composed primarily of T and B cells. 

The spatial organization of cells within granulomas is further reinforced by spatial localization of 

Inflammatory signaling [41, 42]. Mass spectroscopy of human Mtb granulomas localization of pro-

inflammatory mediators areas of central necrosis surrounded by anti-inflammatory signals [41]. 

Targeted spatial sequencing of Mtb infection in C3HeB/FeJ mice further reveals elevated 

expression of Treg associated transripts (e.g. Il-10 and Foxp3) near the center of encapsulated 

granulomas [42].  

Pathological examination reveals multiple states of Mtb granulomas including solid, 

caseous, cavitary, calcific lesions, which generally reflect different stages in the life-cycle of a 

granuloma. Solid lesions typically occur in earlier stages of disease when lesions are smaller in 

size. Granulomas with caseous necrosis form as lesions grow in size and death of macrophages 

and Mtb results in the central accumulation of necrotic debris. Cavitary lesions result from the 

growth of granulomas to a point of collision with an adjacent conducting airway. In this case, 

cavitary lesions lead to the spread of disease as the contents of granulomas containing bacteria 

are exposed to airways and spread upon coughing. Finally, calcific lesions are typically observed 

in later stages of disease and represent “healed” lesions. These lesions, however, can cause 

significant fibrosis and deformation of lung parenchyma leading to reduced pulmonary function. 

 

Innate Immune Responses in Mtb Infection 

In the early stages of Mtb infection, macrophages are the primary cell type that responds 

to infection [43, 44]. Intracellular infection of macrophages is the key feature of established Mtb 

infection, so understanding the factors that contribute to cell-autonomous elimination or tolerance 

of Mtb infection by macrophages is critical. Canonically, macrophages are known to be activated 

in 2 primary modes: (1) classical activation (M1) and (2) alternative activation (M2). Classical 

activation of macrophages occurs following exposure to instructive cytokines IFN-g, while 
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alternative activation occurs in response to IL-4 or IL-13 [45]. While the M1/M2 framework has 

proved useful, this represents a vast over-simplification of possible macrophage states [28, 46]. 

Further, incomplete or frustrated phagocytosis is a central feature of granulomatous inflammation. 

Here, the inability of individual macrophages to completely engulf foreign material results in the 

formation of epithelioid macrophage and multi-nucleated giant cells – a cellular hallmark of 

granulomas [40]. In Mtb infection, multi-nucleated giant cells have been proposed to emerge 

through cell-cell fusion events [47, 48] or through mitotic defects in cytokinesis [49].   

Recent studies have revealed a role for trained innate immunity in response to infection. 

Collectively, these studies suggest that the immunologic ground state of myeloid cells is not 

uniform. [50-52].  Inflammatory signals (e.g. IL-6, TNF) act to alter the trajectory of myeloid 

lineages during hematopoiesis [52] and reprogramming tissue-resident macrophages in situ [53]. 

For example, recent infection can result in in situ reprogramming of alveolar macrophages based 

on prior IFN-g exposure [53]. Granulomas that are formed from trained myeloid cells are likely 

better equipped to control intracellular infection. Metabolic reprogramming is central feature of 

both innate immune training and control of intracellular infection [50]. Specifically, fatty acid 

oxidation (FAO) results in reduced ability of macrophages to eliminate bacteria, while increases 

in oxidative phosphorylation lead to improved control of Mtb [54-56]. 

 

Adaptive Immune Responses in Mtb Infection 

Adaptive immunity is an essential feature of immune control in Mtb infection. In the 

absence of T cell and associated signaling molecules, control of Mtb infection is significantly 

impaired. Specifically, depletion of CD4+ T cells exacerbates early Mtb infection and can lead to 

re-activation of latent disease [57]. While antigen-specific T cells play a critical role in the control 

of tuberculosis infection, an appropriate balance of T cell phenotypes is critical [58]. Expression 

of Th1 cytokines (e.g. IFN-g) is critically important for macrophage bacterial control of Mtb [59], 
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while type 2 cytokines (IL-4 and IL-13) inhibit control of vacuolar MTB [60]. Further, the presence 

of regulatory T cells can serve to limit protective, Mtb-specific T cell responses [61, 62]. 

Th1 cells are thought to play a major role in the control of Mtb infection. Th1 cells are 

marked by expression of key effector cytokines (e.g IFN-g and TNF-a) involved in improved Mtb 

clearance in macrophages [63, 64]. Enhanced Th1 responses are associated with reduced Mtb 

burden in IL-10 deficient mice [65]. However, the appropriate distribution of Th1 cells is critical, 

as intravascular accumulation of Th1 effector cells impairs their ability to protect against Mtb within 

the lung parenchyma [66]. Intravital imaging of Mtb granulomas has revealed TNF-a mediated 

recruitment and retention of T cells in the granuloma microenvironment [67]. However, adoptive 

transfer and intravital imagine of antigen-specific T cells reveals a limited role for antigen 

presentation in the retention of T cells within the granuloma  [68, 69].  

Expression of TNF-a is a hallmark of TB-specific immune responses. Patients with active 

tuberculosis have a higher frequency of TNF-a positive CD4+ T cells than those with latent 

disease [70]. Neutralization of TNF-a results in disseminated Mtb infection in non-human primates 

[71]. Further, adoptive transfer of T cells from TNF +/+ mice are able to delay but not prevent 

overwhelming Mtb infection in RAG -/-, TNF -/- mice. [72]. Finally, TNF-a is essential to maintain 

granuloma integrity and TNF-inhibition is associated with reactivation of latent Mtb infection [73, 

74].  

While Th1 responses have canonically been thought to underlie protective immunity, there 

is accumulating evidence that Type 17 inflammation also plays a critical role in Mtb infection and 

response to Mtb vaccination [75, 76]. Th17 cells are capable of providing IFN-g independent 

control of M. bovis infection, as adoptive transfer of IFN-g -/- Th17 cells prolonged survival relative 

to naïve IFN-g -/- T cells [77]. In the absence of IL-12 signaling, IL-23-mediated responses are 

sufficient to induce Mtb-protective Th1 and Th17 cells [78]. Further, group 3 innate lymphoid cells 

(ILC3s) rapidly accumulate in the lung following Mtb infection, and early expansion of ILC3s is 
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associated with immune protection in mice [79]. Taken together, with their role in other pulmonary 

infections, Th17 cells are likely a critical component of a protective, Mtb-specific immune 

response. 

 

Other Infectious Granulomas 

Cutaneous infection with Mycobacterium leprae (M. leprae), the causative agent of human 

leprosy infection, results in formation of dermal granulomas. In leprosy, bacteria infect dermal 

macrophages leading to recruitment of T cells. Importantly, leprosy infection underscores the 

importance of T cells in determining the outcome of infection. Canonically, there are 2 primary 

clinical forms of leprosy that can be distinguished by T cell phenotypes: (1) Tuberculoid leprosy 

is characterized by expansion of Th1-polarized T cells and improved bacterial control and (2) 

lepromatous leprosy is marked by Th2-polarization and poor control of bacteria [80]. Beyond the 

Th1-Th2 paradigm, the expression of granulysin by cytotoxic T cell is important for bacterial 

control [81], and Th17 cells have recently been implicated in control of leprosy infection [82, 83].  

Granulomas that form around Schistosoma mansoni (S. mansoni)  eggs display a strongly 

Th2-polarized immune response [84]. In contrast, Th1 dominant granulomatous inflammation is 

frequently observed in the setting of visceral leishmaniasis infection [85]. In granulomas that form 

in Salmonella infection, M2-like macrophages are less restrictive of Salmonella, while exposure 

to TNF limits replication of Salmonella [86]. While rarely observed clinically in the age of penicillin, 

secondary and tertiary syphilis infection can present as disseminated granulomatous disease [87]. 

Here, dermal syphilitic granulomas are composed of numerous plasma cells and histiocytes [88].  

 

Sterile Granulomas 

Granulomas can arise in response to numerous non-infectious stimuli including drug 

reactions and foreign material (e.g. surgical suture or biologic implants) [39]. Here, a broader 

understanding of granulomatous inflammation is instructive for a fuller exploration of the Mtb 
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granuloma. In the skin, foreign-body granuloma reactions can arise from dermal macrophage 

activation in response to surgical suture, tattoo ink, or polymer microparticles [89-91]. Granulomas 

also arise in setting of autoimmune inflammation in sarcoidosis [92, 93], Crohn’s disease [94], 

large and medium vessel vasculitidies [95, 96], and atherosclerosis [97].  

In sarcoidosis, granulomas are observed primarily in the lungs, lymph nodes and skin [98]. 

In contrast to tuberculous granulomas, sarcoid lesions less frequently exhibit extensive necrosis 

despite being driven by signaling pathways [99]. While Th1 cells are thought to predominate in 

sarcoid lesions, accumulation of IFN-g Th17 cells has been observed in sarcoid granulomas [100, 

101]. In large-vessel vasculitis (e.g. giant cell arteritis and Takayasu arteritis), it is thought that 

endothelial self-peptides lead to immune activation that culminates in the formation of vaso-

occlusive granulomas [102]. Finally, atherosclerotic plaques share many of the primary features 

seen in Mtb granulomas including the accumulation of activated, foamy macrophages, formation 

of a fibrotic cap, and the presence of diverse effector T cells. Further, inflammatory macrophage 

activation [103] and the induction of lesional Th17 cells are associated with progression of 

atherosclerotic plaques [104, 105].  

 

Gene Expression Profiling in Mtb Infection  

Numerous studies have performed transcriptional profiling in blood and granulomas in M. 

tuberculosis infection in non-human primates and humans[106-111].  Expression of interferon-

regulated gene pathways in peripheral blood prior to infection was associated with development 

of active disease in non-human primates [108]. Further, bulk transcriptional profiling of 

granulomas from rhesus macaques revealed elevation of inflammatory cytokines and chemokines 

among early granulomas, and a gradual loss of inflammation among older lesions [112]. 

 Signatures from peripheral blood in humans have revealed a pattern of interferon 

expression that correlates with disease activity [109, 110]. Specifically, elevation of a neutrophil-

driven pattern of Type I interferon responsive genes is observed in peripheral blood; although, it 
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is difficult to distinguish between changes in peripheral cell-type composition and intrinsic 

changes in gene expression [109]. Deconvolution of peripheral blood expression signatures along 

with Cytof profiling has revealed significant expansion of natural killer (NK) cell populations in 

successfully treated individuals [113]. Further, increased abundance of NK cells is associated 

with latency, while diminished pulmonary NK cells are associated with Mtb reactivation [113]. 

 

1.7 The non-human primate model of Mtb Infection  

Mtb infection in the cynomolgus macaque most closely recapitulates the primary features 

of human tuberculosis [114, 115]. In this model, low-dose, bronchoscopic infection results in a 

spectrum of disease across animals in which 40% of animals develop active disease, 60% 

develop latent disease [116]. By 4-weeks post-infection multiple lesions can be detected through 

PET-CT imaging [116]. Necropsy of animals at 4-weeks post-infection has revealed that this time-

point represents peak bacteremia. After 4 weeks, granuloma-level bacterial burdens begin to 

decline, presumably following activity of cytotoxic T cells and the onset of adaptive immunity 

(Figure 1.6A-B). Studies performed at 10 weeks post-infection reveal that animals harbor both 

sterile and non-sterile lesions irrespective of overall disease status (i.e. active or latent) [117].  

While animals with active disease have higher cumulative bacterial burden than latent 

animals, granulomas within animals with active or latent disease display a similar range of 

bacterial burdens [117, 118]. However, animals with clinically latent disease have a higher 

percentage of sterilizing lesions compared to those with active disease (Figure 1.6C).  
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Figure 1.6 | Spectrum of Bacterial Burden in NHP Granulomas. Figure adapted from Lin*, Ford* et 
al.,[117]. A. CFU in lesions from monkeys at 4 weeks (4 animals, 68 lesions) is significantly higher than at 
11 weeks (3 animals, 98 lesions), in active disease (13 animals, 222 lesions) and in clinically latent infection 
(11 animals, 145 lesions) (p < 0.001). B. Individual monkeys necropsied at 4 weeks and 11 weeks are 
shown. By 11 weeks there are significant differences between animals (P < 0.05). C. The percentage of 
sterile lesions in monkeys with latent infection (n=11) is significantly higher than in monkeys with active 
disease (n=13, P < 0.05).  
 

Interestingly, non-human primates with established primary Mtb infection are resistant to 

acquisition of tuberculosis upon secondary challenge [119]. Here, non-human primates infected 

with orthogonally barcoded, but otherwise identical, strains of Mtb reveal significant resistance to 

secondary infection. In this case, granulomas form upon secondary challenge, but the majority of 

these lesions are either sterilizing or have low bacterial burdens. Temporal evolution is an 

essential feature of immune responses, but the exact nature of dynamic changes that underlie 

sterilization in secondary granulomas is not fully understood. Understanding alterations in the 

immunologic environment that supports granuloma formation is a key question that will be 

addressed in this dissertation.  

 

1.8 Overview of Dissertation 

 This dissertation focuses on a central theme: how does cellular composition of MTB 

granulomas influence their ability to control bacterial replication? Here, we develop, optimize and 
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apply novel techniques for high-throughput single-cell mRNA sequencing to systematically 

address these questions. 

In Chapters 2 and 3, we develop, optimize and apply Seq-Well [36, 120], a portable, low-

cost platform for high-throughput single-cell mRNA sequencing. In chapter 2, we report the 

development of Seq-Well [36] and a series of validation experiments to demonstrate the 

effectiveness of the platform. Validation experiments include species mixing controls using mouse 

(NIH-3T3) and human (HEK293) cell lines, primary human cells (PBMCs), and the ability to work 

in challenging environments (e.g. BSL3 facilities). In Chapter 3, we develop a protocol that 

significantly improves the per-cell information content of scRNA-Seq data generated with Seq-

Well [120]. Here, we developed a protocol (Seq-Well S^3) that improves recovery of cDNA 

molecules through the use of randomly-primed second strand synthesis. The improved sensitivity 

of Seq-Well S^3 results in enhanced detection of biologically informative molecules (e.g. 

transcription factors, cytokines, and cytokine receptors) that were previously under-sampled. 

Finally, we go on to construct an atlas of multiple inflammatory skin conditions using this improved 

technique.  

In Chapter 4, we use Seq-Well to understand the relationship between the cellular and 

molecular features of Mtb granulomas and bacterial control in a non-human primate model of Mtb 

infection. Here, we performed Seq-Well on a total of 26 non-human primate granulomas from 4 

cynomolgus macaques and obtained single-cell profiles for a total of 109,584 cells. We observe 

T cells to have the strongest relationship with reduced bacterial burden across animals, while we 

observe expansion of mast and plasma cells in high-burden lesions. Further, we observe a 

population of T1-T17 cells that are more frequent in low-burden lesions. Using longitudinal PET-

CT imaging to track the development of granulomas throughout the course of infection, we 

observe a striking relationship between the timing of granuloma formation, bacterial burden and 

cellular composition. Collectively, our data reveal a nuanced relationship between cellular 

composition, 
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Finally, in Chapter 5, we provide a summary of previous work and provide an overview of 

ongoing and future work to control Mtb infection. Specifically, we discuss recent work aimed at 

understanding mechanisms of Bacillus Calmette-Guerin (BCG)-mediated protection in a multi-

route vaccination in rhesus macaques [121]. Here, it was observed that intravenous 

administration of the BCG vaccine results in robust protection against subsequent Mtb challenge. 

Intravenous BCG vaccination proved more effective than aerosol and intradermal (high and low 

dose) vaccination. Notably, IV-vaccination was observed to induce a marked increase in the 

proportion of T cells in bronchoalveolar lavage (BAL). In collaboration with the NIH-VRC, we 

characterized cells from BAL at 13 and 25 weeks post-vaccination to understand the phenotypic 

state of immune cells induced across BCG vaccine routes.  
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Introduction 

The emergence of single-cell genomics has enabled new strategies for identifying the 

cellular and molecular drivers of biological phenomena [1-19]. Patterns in genome-wide mRNA 

expression measured by single-cell RNA-seq (scRNA-seq) can be leveraged to uncover distinct 

cell types, states and circuits within cell populations and tissues [1-5, 9-13]. To inform our 

understanding of healthy and diseased behaviors and eventually guide precision diagnostics and 

therapeutics, we need broadly applicable scRNA-seq methods that are easy to use and enable 

high-throughput studies of cellular phenotypes, particularly for low-input (≤104 cells) samples 

such as clinical specimens. 

Typically, scRNA-seq involves isolating and lysing individual cells, then independently 

reverse transcribing and amplifying their mRNAs before generating barcoded libraries that are 

pooled for sequencing. Although manual picking [2, 5, 8], FACS sorting [1, 3, 4] or integrated 

microfluidic circuits [7, 9, 10] can isolate single cells, these approaches are constrained in scale 

by cost, time and labor. Recently developed massively parallel methods assign unique bar-codes 

to each cell’s mRNAs during reverse transcription, enabling ensemble processing while retaining 

single-cell resolution. These techniques typically yield single-cell libraries of lower complexity, but 

higher throughput reduces the impact of the technical and intrinsic noise associated with each 

cell in analyses [11, 12]. The most commonly used approach relies on microfluidic devices to 

generate reverse-emulsion droplets that couple single cells with uniquely barcoded mRNA 

capture beads [11, 12]. Droplet-based techniques, however, can have inefficiencies in 



 30 

encapsulation, introduce technical noise through differences in cell lysis time and require 

specialized equipment—limiting where, when and at what scale scRNA-seq can be performed. 

One alternative to droplets is to use arrays of subnanoliter wells loaded by gravity, which 

reduces the need for peripheral equipment, decreases dead volumes and facilitates 

parallelization. As a proof of principle, cells and beads have been co-confined in nanowell arrays 

to perform targeted single-cell transcriptional profiling [13], yet the absence of a seal significantly 

impairs capture efficiency and increases cross-contamination (Figure A1.1). Nanowells have also 

been combined with microfluidic channels that facilitate oil-based single-cell isolation via fluid 

exchange [14]. Nevertheless, this design limits buffer exchange and necessitates integrated 

temperature and pressure controllers, impacting ease of use and portability [15]. Semiporous-

membrane-covered nanowells have been used to link pairs of specific transcripts from single cells 

[16]; however, this approach used many beads per well, precluding the creation of unique single-

cell libraries, and transcript capture and sealing efficiency were not addressed.  

 

Results 

To overcome these challenges, we developed Seq-Well, a simple, portable platform for 

massively parallel scRNA-seq (Figure A1.2). Seq-Well confines single cells and bar-coded 

poly(dT) mRNA capture beads in a PDMS array of ~86,000 subnanoliter wells. Wells 

accommodate only one bead, enabling single-bead loading efficiencies of ~95% (Figure 2.1 and 

Figure A1.3A). A simplified cell-loading scheme in turn permits capture efficiencies of around 

80% (Methods, Figure A1.3C), with a dual occupancy rate that can be tuned by adjusting the 

number of cells loaded and visualized before processing (Figure A1.3C). 
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Figure 2.1 | Seq-Well: a portable, low-cost platform for high-throughput single-cell RNA-seq of low-
input samples. (a) Equipment and array used to capture and lyse cells, respectively. Scale bar, 100 μm. 
(b) Sequencing a mix of human (HEK293) and mouse (NIH/3T3) cells reveals distinct transcript mapping 
and single-cell resolution. Cells with >2,000 human and <1,000 mouse transcripts are labeled as human, 
and cells with >2,000 mouse and <1,000 human transcripts are labeled as mouse. Of the 254 cells 
identified, 4 (1.6%) had a mixed phenotype. (c,d) Number of transcripts (c) and genes (d) detected in single-
cell libraries generated by Seq-Well or Drop-seq (ref. 12; center-line: median; limits, first and third quartile; 
whiskers, ±1.5 IQR; points; values, >1.5 IQR). Using Seq-Well (Drop-seq), an average of 37,878 (48,543) 
transcripts or 6,927 (7,175) genes were detected among human HEK cells (n = 159 for Seq-Well; n = 48 
for Drop-seq); and an average of 33,586 (26,700) transcripts or 6,113 (5,753) genes were detected among 
mouse 3T3 cells (n = 172 for Seq-Well; n = 27 for Drop-seq) at an average depth of 164,238 (797,915) 
reads per HEK cell and 152,488 (345,117) reads per 3T3 cell. 
 

A key unique feature of Seq-Well is the use of selective chemical functionalization to 

facilitate reversible attachment of a semipermeable polycarbonate membrane (10-nm pore size) 

in physiologic buffers. This enables rapid solution exchange for efficient cell lysis but traps 

biological macromolecules for improved transcript capture and reduced cross-contamination 

(Figure A1.4A). The array’s three-layer surface functionalization comprises an aminosilane base 

[20] crosslinked to a bifunctional poly(glutamate)–chitosan top via a p-phenylene diisothiocyante 

intermediate (Figure A1.4; Methods). In the outer layer, poly(glutamate) at the inner nanowell 

surfaces prevents nonspecific binding of mRNAs, while chitosan on the array’s top sur-face 

encourages efficient sealing to the membrane (Figure A1.4B-C; Methods). To test sealing and 

buffer exchange, we monitored the fluorescence of dye-labeled, cell-bound antibodies before and 

after adding a guanidinium-based lysis buffer. We observed rapid diffusion of the antibodies 

throughout the wells within 5 minutes of buffer addition and—unlike in unsealed or previously 

described, membrane-covered BSA-blocked arrays [16]— we observed little change in 
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fluorescent signal over 30 min, suggesting robust retention of biological macromolecules despite 

the use of a strong chaotrope (Figure A1.5; Methods). 

After lysis, cellular mRNAs are captured by bead-bound poly(dT) oligonucleotides that 

also contain a universal primer sequence, a cell barcode and a unique molecular identifier (UMI) 

(Methods). Next, the membrane is peeled off, and the beads are removed for subsequent bulk 

reverse transcription, amplification, library preparation and paired-end sequencing, as previously 

described [12] (Methods). Critically, beyond a disposable array and membrane, Seq-Well only 

requires a pipette, a manual clamp, an oven and a tube rotator to achieve stable, barcoded single-

cell cDNAs (Figure 2.1a), so it can be performed almost anywhere.  

To assess transcript capture efficiency and single-cell resolution, we profiled a mixture of 

5 × 103 human (HEK293) and 5 × 103 mouse (3T3) cells using Seq-Well. The average fraction 

of reads mapping to exonic regions was 77.5% (Figure A1.6), demonstrating high-quality 

libraries. Shallow sequencing from a fraction of an array revealed highly organism-specific 

libraries, suggesting single-cell resolution and minimal cross-contamination (Figure 2.1B and 

Figure A1.7A-C). In the absence of membrane sealing, by comparison, we obtained poor 

transcript and gene detection as well as substantial cross-contamination (Figure A1.1). From 

deeper sequencing of a fraction of a second array, we detected an average of 37,878 mRNA 

transcripts from 6,927 genes in HEK cells and 33,586 mRNA transcripts from 6,113 genes in 3T3 

cells, comparable to a droplet-based approach using the same mRNA capture beads (Drop-seq) 

[12] (Figures 2.1C-D, A1.7 and A1.8). Upon downsampling to match read depths, we also 

observed levels of transcript and gene detection consistent with those of other massively parallel 

bead-based scRNA-seq methods (Figure A1.7D-G; Methods). Moreover, bulk RNA-seq data 

were strongly correlated with populations constructed in silico from individual HEK cells (R = 0.751 

± 0.073 to R = 0.983 ± 0.0001 for populations of 1–1,000 single cells, respectively), suggesting 

representative cell and transcript sampling (Figure A1.9; Methods). To examine Seq-Well’s 

ability to resolve populations of cells in complex primary samples, we loaded human peripheral 
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blood mononuclear cells (PBMCs) into arrays in triplicate before beads, allowing us to perform 

on-array multicolor imaging cytometry (Figure 2.2A-B; Methods). 

Sequencing one-third of the beads recovered from each array yielded 3,694 high-quality 

single-cell libraries (Methods). Unsupervised graph-based clustering revealed unique 

subpopulations corresponding to major PBMC types (Figures 2.2B, A1.10, A1.11 and A1.12; 

Methods). Each array yielded similar subpopulation frequencies (Figure 2.2C), with detection 

efficiencies comparable to those of other massively parallel technologies (Figure A1.13). The 

proportion of each subpopulation determined by sequencing also matched on-array 

immunophenotyping results (Figure 2.2A-B). 

 

Figure 2.2 | Combined image cytometry and scRNA-seq of human PBMCs. (a) Hierarchical gating 
scheme used to analyze PBMCs labeled with a panel of fluorescent antibodies, loaded onto three replicate 
arrays and imaged before bead loading (see Online Methods). Myeloid cells (green) were identified as the 
population of hCD3(−) HLA-DR(+) CD19(−) cells; B cells (orange) as the subset of hCD3(−) HLA-DR(+) 
CD19 (+) cells; CD4 T cells (blue) as the subset of CD3(+) CD4(+) cells; CD8 T cells (yellow) as the CD3(+) 
CD8(+) subset of cells; and NK cells (red) as the subset of CD3(−) HLA-DR(−) CD56(+) CD16(+) cells. (b) 
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t-SNE visualization of clusters identified among 3,694 human Seq-Well PBMCs single-cell transcriptomes 
recovered from the imaged array and the two additional arrays (see Online Methods). Clusters 
(subpopulations) are labeled based on annotated marker gene (supplementary fig. 0). (c) Distribution of 
transcriptomes captured on each of the biological replicate arrays, run on separate fractions of the same 
set of PBMCs. No shifts are statistically significant (n.s. = not significant; see Online Methods) except for 
a slightly elevated fraction of CD8 T cells in array 1 (*, P = 1.0 × 10−11; Chi-square test, Bonferroni 
corrected). (d) Relative expression level of a set of inflammatory and antiviral genes among cells identified 
as monocytes. Inflamm., inflammatory. 
 

Critically, sequencing provided additional information; in addition to resolving dendritic 

cells from monocytes (Figure 2.2B), we found significant variation among the monocytes 

(captured in PC3) due to differential expression of inflammatory and antiviral gene programs 

(Figure 2.2D) [1, 3]. Our results show that characterizing a sample in two ways using a single 

platform increases the amount of information that can be extracted from a precious specimen, 

while allowing analysis of one measurement to be interpreted in the context of the other.  

Finally, to test the portability of Seq-Well, we profiled primary human macrophages 

exposed to Mycobacterium tuberculosis (H37Rv) in a BSL3 facility (Methods). In total, we 

recovered 14,218 macrophages (from a total of 40,000 loaded across experiments) with greater 

than 1,000 mapped transcripts from an M. tuberculosis-exposed and an unexposed array. 

Unsupervised analysis of 4,638 cells with greater than 5,000 transcripts per cell revealed five 

distinct clusters (Figures 2.3A-B and A1.14A-B). Two clusters had lower transcript capture and 

high mitochondrial gene expression (suggestive of low-quality libraries)17 and were removed; the 

remaining three (2,560 cells) were identified in both the exposed and unexposed samples 

(Figures 2.3A, A1.14C-D and A1.15), and they likely represent distinct sub-phenotypes present 

in the initial culture.  

We next examined common and cluster-specific gene enrichments (Methods). Although 

clusters 1 and 3 did not present strong stimulation-independent enrichments, cluster 2 uniquely 

expressed several genes associated with metabolism. Intriguingly, within each cluster we 

observed pronounced shifts in gene expression in response to M. tuberculosis (Figure 2.3C; 

Methods), with common enrichments for gene sets previously observed in response to 
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intracellular infection, LPS stimulation and activation of TLR7/8 receptor. Cluster 1 uniquely 

displayed stimulation-induced shift in several genes associated with cell growth, cluster 3 in 

transcripts associated with hypoxia, and cluster 2 (again) in genes linked to metabolism. Overall, 

these data suggest that basal cellular heterogeneity may influence ensemble M. tuberculosis 

responses. Equally important, they demonstrate Seq-Well’s ability to acquire large numbers of 

single-cell transcriptomes in challenging experimental environments. 

 

Figure 2.3 | Sequencing of TB-exposed macrophages in a BSL3 facility using Seq-Well. (a) t-SNE 
visualization of single-cell clusters identified among 2,560 macrophages (1,686 exposed, solid circles; 874 
unexposed, open circles) generated using five principal components across 377 variable genes (see Online 
Methods). (b) Marker genes for the three phenotypic clusters of macrophages highlighted in a. (c) 
Differential expression between exposed and unexposed macrophages within each cluster showing genes 
enriched in cells exposed to M. tuberculosis. Cyan, genes with P values less than 5.0 × 10−6 (threshold for 
statistical significance, determined by a likelihood ratio test) and absolute log2 fold changes greater than 
0.4 (threshold used for differential expression). Magenta, genes with P values less than 5.0 × 10−6 but 
absolute log2 fold changes less than 0.4. Black, remaining genes. 
 

Conclusions 
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In conclusion, Seq-Well is a robust platform for scalable, single-cell transcriptomics applicable to 

almost any cellular suspension for which a reference genome or transcriptome exists. The 

technique is inexpensive, user friendly, portable, and efficient; it enables scRNA-seq to accelerate 

scientific and clinical discovery even when working with limited samples. Furthermore, the ability 

to measure protein secretion and cell-surface expression on the same platform [18, 19] 

foreshadows multi-omic single-cell measurements at scale. 

 

Methods and Materials 
 
PDMS Surface Functionalization 

The PDMS arrays were functionalized as follows (Figure A1.2):  

1. They were treated with air plasma (Harrick Plasma, PDC-32G) at maximum power for 5 

minutes under mild vacuum (~ 10 mTorr). 

2. They were then submerged for 10 minutes in 0.05% (3-Aminopropyl)triethoxysilane (APTES) 

in 95% ethanol for silanization. 

3.  The silanized arrays were spun dry at 500 rpm for 1 minute and baked at 90°C for 30 minutes. 

4.  Once dry, the arrays were brought to room temperature and submerged in acetone for 5 

minutes to solvate the microwells. 

5.  The arrays were then moved to a solution of 0.2% p-Phenylene diisothiocyante (PDITC) in a 

10% Pyridine and 90% Dimethylformamide (DMF) mixture and rocked at room temperature 

for 2 hours to activate the surface with amine-reactive isothiocyanate groups. 

6.  The arrays were briefly washed twice with DMF to remove residual PDITC, and twice with 

acetone.  

7.  The arrays were rocked for 20 minutes in second acetone wash at room temperature, and 

baked at 90°C for 2 hours.  
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8.  After baking, the arrays were removed from the oven, brought to room temperature, 

submerged in a solution of 0.2% chitosan in 100 mM sodium acetate solution (pH 6.5) and 

incubated at 37°C for 2 hours to facilitate reaction of chitosan with the PDITC top surface.  

9.  The arrays were then washed four times with distilled water to remove excess chitosan. 

10. The arrays were next submerged in 10 ug/mL poly-glutamic acid in a 100 mM sodium 

carbonate buffer (pH 10.0), placed in a vacuum chamber under mild (house) vacuum, and 

rocked overnight to facilitate solvation of the wells and reaction of the poly(glutamic) acid to 

the PDITC on the inner well surfaces.  

11. The following morning, arrays were quenched through the addition of 0.01 volumes of 1M Tris 

pH 8.5 followed by rocking for 3 hours at room temperature.  

12. Afterwards, the arrays were incubated at 4°C for 24 hours before use.  

 

Bead synthesis 

Barcoded oligo-dT beads (as described in Macosko et al. [12]) were purchased from 

Chemgenes (Wilmington, Massachusetts, USA; cat. no. MACOSKO-2011-10) at 10 umol scale 

(∼100 arrays). Bead functionalization and reverse phosphoramidite synthesis was performed by 

Chemgenes Corporation using Toyopearl HW-65S resin (30 micron mean particle diameter) 

obtained from Tosoh Biosciences (cat. no. 19815). Surface hydroxyls were reacted with a PEG 

derivative to obtain an 18-carbon linker to serve as a support for oligo synthesis. Reverse-

direction phosphoramidite synthesis was performed using an Expedite 8909 DNA/RNA 

synthesizer at 10 micromole scale with a coupling time of 3 min. Initially, a conserved PCR handle 

was synthesized followed by 12 rounds of split and pool synthesis to generate 16,777,216 unique 

barcode sequences. Addition of an 8-mer random sequence was performed to generate unique 

molecular identifiers (UMIs) on each capture oligo. Finally, a 30-mer poly-dT capture sequence 

was synthesized to enable capture of polyadenylated mRNA species. 
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Imaging differential surface functionalization 

Differential labeling of the top and inner well surfaces was visualized by substituting 1 

ug/mL PE–streptavidin for chitosan and 1 ug/mL AlexaFluor488-Streptavidin for the 

polyglutamate in the standard functionalization protocol (Figure A1.3). Carboxylation of the inner 

well surfaces was visualized by treating the functionalized array with 100 μg/mL EDC/10 μg/mL 

NHS MES (pH 6.0) solution for 10 min, washing twice with MES buffer, once with sodium borate 

buffer (pH 8.5), and incubating overnight with 1 μg/mL Alexa-Fluor 568-labeled antibody. Arrays 

were washed three times with phosphate-buffered saline (PBS) and imaged using Alexa Fluor 

568 channel. 

Visualizing lysate retention (imaging) 

PBMCs were labeled with αCD45–AF647 (BioLegend 304020, diluted 1:20). Cells were 

washed and loaded onto two arrays previously blocked with 1% BSA solution for 30 min and one 

array functionalized with chitosan as described above. A polycarbonate membrane was attached 

to the chitosan-functionalized array as described above. The array was submerged in PBS and 

imaged for AF647 fluorescence to identify wells containing cells. The BSA-blocked arrays were 

imaged before membrane attachment because the membrane would detach when submerged in 

media. After imaging, a plasma-treated polycarbonate membrane was attached to one of the 

BSA-blocked arrays as described [16]. Briefly, the membrane was placed on the array with 

forceps, and all excess media were aspirated from the array. The open BSA-blocked array and 

the chitosan array were submerged in 5 mL of 5 M GCTN lysis buffer. 500 μL of lysis buffer was 

placed on the top of membrane attached to the BSA-blocked array as described [16]. 5 and 30 

minutes later, 100 block positions were imaged on each array, encompassing 12,100 individual 

wells. Automated image analysis software was used to background subtract each image, identify 

cell and well locations and extract AF647 signal intensity of the cells and the well volumes (Figure 

S4). 
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Membrane Attachment 

Once the arrays were loaded, the membrane is attached to seal the microwells. All excess 

media was aspirated from the array surface. Quickly, the glass slide underneath the membrane 

was used to lift the membrane out of the PBS. Excess PBS was blotted off and the glass slide 

was flipped over with the membrane sticking to the bottom of the glass slide. Forceps were used 

to slide the membrane so a small section was hanging off the glass slide. This part of the 

membrane was then touched to the array surface. A second glass slide was used to hold the 

membrane in place while the first slide was slid across the array surface, depositing the 

membrane onto the array. After the whole membrane was deposited, a glass slide was placed on 

top of the membrane and the array sandwich was placed in a manual hybridization clamp 

(Agilent). The clamp was incubated at 37C for 30 min to complete membrane binding. After 30 

minutes, the array was transferred to a 4-well dish and submerged in 5 mL 5 M guanidine 

thiocyanate (GCTN). The top slide released in 1-2 minutes, leaving the open array sealed with 

the permeable membrane. 

 

Cell Lysis And mRNA Hybridization 

After cover slide removal, the arrays were transferred to 5 mL of lysis buffer (5M GTCN, 

1% 2-mercaptoethanol, 1mM EDTA, and 0.1% Sarkosyl in 1X PBS, pH 6.0) and allowed to rock 

at room temperature for 20 minutes. The lysis buffer was then aspirated and arrays were washed 

once with 5 mL of hybridization buffer (2M NaCl, 1x PBS, 0.5% Tween20 (pH 7.5)). The 

hybridization buffer was aspirated and replaced with another 5 mL, followed by rocking for 40 

minutes at room temperature. 

 

Removal Of Beads 

Following hybridization of mRNA transcripts to the beads, the arrays were washed once 

in Wash 1 solution (2 M NaCl, 3 mM MgCl2, 20 mM Tris, 0.5% Tween20 (pH 8.0), RNAse 
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Inhibitor). This solution was aspirated and replaced with another 5 mL of wash 1 buffer. The 

membrane was then peeled from the surface of the array using forceps. Beads were removed 

from microwell arrays by either centrifugation in a 50mL conical tube containing Wash 1 (3000 x 

g, 5 min), or by scraping the array with a microscope slide.  

 

Reverse Transcription 

Recovered beads were transferred to a 1.5 mL tube, pelleted and washed with 250 uL of 

5X Maxima buffer (Life Technologies). After centrifugation and aspiration of the supernatant, the 

beads were resuspended in 200 uL of RT mix consisting of 80 uL of RNAse-free water, 40 uL of 

Maxima 5X RT Buffer, 40 uL of 20% Ficoll PM-400, 20 uL of 10mM dNTPs, 5 uL of RNase 

Inhibitor, 5 ul of 100 uM Template Switch Oligo, and 10 uL of 200U/uL Maxima H-RT. The beads 

were then incubated at room temperature for 30 minutes with end-over-end rotation, followed by 

90 minutes at 50°C with rotation.  

 

ExoI Digestion  

Following reverse transcription, the beads were washed once with 1 mL of Tris-EDTA (TE) 

buffer (pH 8.0) + 0.5% SDS (Sigma) and twice with TE (pH 8.0) + 0.01% Tween20 (Sigma). The 

beads were washed with 1 mL of 10mM Tris-HCl (pH 8.0) and resuspended in 200 uL of ExoI 

solution, which contained 170 uL water, 20 uL of 10X ExoI buffer, and 10 uL of 20,000 U/mL ExoI 

(NEB Cat no. M0293). Reaction was incubated at 37°C for 45 minutes with end-over-end rotation.  

 

PCR Amplification  

The beads were washed once with TE (pH 8.0) + 0.5% SDS, twice with TE (pH 8.0) + 

0.01% Tween20, once with 1 mL of water, and finally resuspended in 500 uL of water. A 10 L 

aliquot of beads was resuspended in 20% PEG/NaCl solution and counted using a 

hemocytometer. For each PCR reaction, 1,500-2,000 beads were combined with 25 uL of KAPA 
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HiFi PCR Mastermix, 0.4 uL of 100uM ISPCR Primer, and 24.6 ul of water. PCR amplification of 

single-cell libraries was performed as follows: 95°C for 3 minutes; then 4 cycles of: 98°C for 20 

seconds, 65°C for 45 seconds, 72C for 3 minutes; 9 cycles of: 98C for 20 seconds 67 C for 20 

seconds and 72°C for 3 minutes; then a final extension at 72°C for 5 minutes. Following 

amplification, 5 uL from each PCR product were combined. The pooled PCR library was purified 

using Agencourt AMPure XP beads (Beckman Coulter Cat no. A63881) at a 0.6X volumetric ratio 

and quantified using Qubit Fluorometric Quantitation (Thermo Fisher).  

 

Library Preparation And Sequencing 

Tagmentation was performed on a total of 800 pg of pooled cDNA library combined with 

5 uL of Amplicon Tagment enzyme and 10 uL of Nextera Tagmentation DNA (TD) Buffer and 

incubated at 55C for 5 minutes. Then, 5 uL of Neutralization Buffer NT were added, mixed by 

pipetting, and incubated at room temperature for 5 minutes. Amplification of tagmented fragments 

was performed by adding 15 uL of Nextera PCR Mix (Buffer NPM), 8 uL of H2O, 1 uL of 10 uM 

P5-SMART PCR Hybrid Oligo, and 1 uL of 10 uM Nextera N7XX oligo, where N7XX is a standard 

Nextera N700 adapter sequence capable of adding i7/p7 sequences. Amplification was then 

performed as follows: 95°C for 30 seconds and 12 cycles of: 95°C for 10 seconds, 55°C for 30 

seconds, 72°C for 30 seconds; and a final extension at 72°C for 5 minutes. Tagmented and 

amplified sequences were purified using Agencourt AMPure XP beads at a 0.6x volumetric ratio 

and quantified using Qubit Fluorometric Quantitation. The size distribution of purified sequencing 

libraries was determined using the Agilent D1000 Screen Tape System (Agilent Genomics). The 

average fragment size of sequenced libraries was between 400 and 700 base pairs in length. 

Seq-Well libraries were all sequenced on an Illumina NextSeq500 at a final concentration of 2.4 

pM. 20 bases were allocated (12 bp cell barcode and 8 bp UMI) for Read 1, which was primed 

using Custom Read 1 Primer [21].  
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Calculating bead loading efficiency 

Bead loading efficiencies were determined by loading two functionalized arrays with beads 

as outlined above (Figure A1.1). Arrays were imaged in transmitted light and AF488 channel to 

capture bead autofluorescence. Automated image analysis was used to identify well locations 

and extract the 75th percentile fluorescence intensity in each well. Histogram analysis of 

fluorescence intensities was used to identify empty wells and wells containing beads. Finally, 

manual review of 50 randomly selected image positions, each containing 121 nanowells, of a total 

of 690 positions was used to calculate the frequency of wells containing two beads. 

 

Calculating cell loading efficiency 

To calculate cell loading efficiencies and well occupancy distributions (Figure A1.3), 

HEK293 and 3T3 cells were labeled with Calcein AM (Life Technologies) and Calcein Violet (Life 

Technologies), respectively, per the manufacturer's recommendations. 200 μL of serial dilutions 

of a 1:1 mix of the cells at an estimated concentration of 1,000, 10,000 and 100,000 cells/mL were 

loaded in functionalized arrays in triplicate using the standard protocol. To determine the 

distribution of cells present in 200 μL of these solutions, the same volume of each solution was 

added to 12 wells of a 96-well plate. 690 array positions on each array were imaged in the 

transmitted light, AF488 and AF405 spectral channels. Overlapping images of each well of the 

96-well plate were acquired in the same channels. Automated image analysis was used to identify 

well and cell locations in the array images. The overlapping images of the 96-well plate were 

stitched together based on x–y location of each image and analyzed in a similar manner to identify 

cell locations. All three dilutions were used to determine the distribution of well occupancy as a 

function of the number of cells loaded. The 10,000 cells/mL dilution were used to calculate cell 

loading efficiency. 

 

Species-mixing experiments 
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Murine NIH/3T3 cells (ATCC, CRL-1658) were cultured in Dulbelcco's modified Eagle's 

medium (DMEM) with glutamate and supplemented with 10% fetal bovine serum (FBS) at 37 °C 

and 5% CO2. Human 293T cells (ATCC, CRL-11268) were cultured at 37 °C and 5% CO2 in 

DMEM with glutamate supplemented with 10% FBS. The media were removed from the culture 

flasks, which were then rinsed with 5 mL of 1× PBS. Cells were detached from the surface of the 

culture flasks by applying 3.5 mL of Trypsin-LE (Life Technologies) and incubating at room 

temperature for 5 min. Once cells had de-adhered, 10 mL of complete media was added, and 

cells were pelleted by spinning at 500× g for 10 min. Cell pellets were resuspended in 1 mL of 

media, and a 10 μL aliquot was used to count cells. A total of 100,000 HEK and 3T3 cells were 

again pelleted and resuspended in 1 mL of media. For species-mixing experiments, a total of 200 

μL of a single-cell suspension containing 5,000 HEK and 5,000 NIH/3T3 cells was applied to the 

surface of two nanowell devices loaded with beads. In the first experiment, of the 60,000 beads 

collected from the array, 9,600 beads were pooled for subsequent processing and sequencing, 

from which we identified 254 high-quality cells with greater than 2,000 transcripts. In the second 

experiment, of the 25,000 beads collected from the array, 15,000 beads were pooled for 

subsequent processing and sequencing, from which we identified 331 high-quality cells with 

greater than 10,000 transcripts, greater than 2,000 genes, and greater than 90% transcript purity 

(i.e. >90% of transcripts from the same species). Also, as in Drop-Seq, we attempted to validate 

capture efficiency using ERCC spike-ins; however, this required us to load ERCCs onto the 

nanowell array by pipetting, which proved inefficient to properly assess capture efficiency since 

we could not evenly distribute ERCCs to nanowells. 

 

HEK population experiments 

HEK293 cells were cultured in RPMI supplemented with 10% FBS. A total of 10,000 

HEK293 cells were applied to a Seq-Well device and scRNA-seq libraries were generated from 

24,000 beads and sequenced on a NextSeq 500. For the bulk RNA-seq sample, cellular lysate 
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from 40,000 HEK293 cells in 200 μL of lysis buffer (5 M GTCN, 1% 2-mercaptoethanol, 1 mM 

EDTA, and 0.1% Sarkosyl in 1× PBS, pH 6.0) was combined with 40,000 mRNA capture beads 

in a PCR tube and rotated end over end for 1 h. Afterward, the beads were washed, and a 

population sequencing library was constructed in an identical manner to that of the single-cell 

Seq-Well libraries but with reads from the different bead barcodes combined into one 

population. In silico populations were created by randomly sampling 1, 10, 100 or 1,000 HEK cells 

from a total of 1,453 cells with greater than 3,000 transcripts obtained from a Seq-Well array. 

Average Pearson correlation coefficients and their s.d. were calculated between 100 randomly 

generated in silico populations for each number of cells and the bead population (Figure A1.9).  

 

Human PBMC experiments 

Leukocytes isolated from a leukocyte reduction filter used during platelet aphoresis were 

purchased from Key Biologics (Memphis, Tennessee). The cells were shipped overnight at room 

temperature. PBMCs were isolated from the sample using a Ficoll–Hypaque (GE) gradient, 

washed two times with HBSS buffer, and frozen in 90% FBS/10%DMSO in aliquots of 107 cells. 

The day before the experiment, an aliquot was thawed and rested overnight in RPMI-1640 

supplemented with 10% FBS, Pen–Strep, nonessential amino acids, sodium pyruvate, and 

HEPES buffer (RP10) at 106 cells/mL in a 50 mL conical tube. Cells were counted the next day, 

and 5 × 105 cells were pelleted, resuspended in 1 mL of CellCover solution, and processed as 

described above. 

 

Array loading for imaging (PBMCs) 

To quantify cell surface marker protein expression levels on array (Figure 2.2A), PBMCs 

were loaded first and imaged before bead addition to avoid potential detection issues associated 

with bead autofluorescence. Here, cells were resuspended in cold CellCover (Anacyte), an RNA 

stabilization reagent, and placed at 4 °C for 1 h. Cells were spun down and resuspended in a 
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cocktail containing αCD45-AF647 (BioLegend; HI30), αCD3-PerCP (BioLegend; UCHT1), αCD4-

PECy5.5(eBioscience; SK3), αCD56-PECy5(BD Biosciences; B159), αCD8-APCCy7 

(BioLegend; RPA-T8), αHLA-DR-PECy7 (BD Biosciences; L243), and αCD19-PE (BioLegend; 

HIB19) with all antibodies diluted 1:20 in RP10 media and were incubated at 4 °C for 30 min. 

Cells were washed twice with PBS and resuspended in CellCover10 buffer (CellCover 

supplemented with 10% FBS and 100 mM sodium carbonate (pH 10) buffer). Functionalized 

arrays were washed with 5 mL of CellCover10 buffer. 2.0 × 104 cells were loaded onto the array 

and washed twice with CellCover10 buffer, and finally the array was placed in 5 mL CellCover. 

Arrays were imaged with a Zeiss AxioVision microscope with Lumencor light source and EMCCD 

camera. Automated imaging software was used to identify cell locations within the images and 

extract signal intensities in each spectral channel. To generate spillover coefficients for each 

fluorophore, α−mouse beads (Bangs Labs) were stained individually with each antibody using the 

same protocol as the cells. Images of the singly stained beads were used to generate spillover 

coefficients for each fluorophore that were then used to calculate the amount of each fluorophore 

on each cell as previously described [22]. After imaging, arrays were washed with 5 mL 

CellCover10 media. Barcoded beads suspended in CellCover10 media were loaded into the array 

through gentle agitation. Arrays were washed 3x with CellCover10 without FBS and finally washed 

with CellCover. Arrays were then moved on to membrane attachment. 

 

Human monocyte isolation 

Primary human monocytes were isolated from deidentified human buffy coats obtained 

from the Massachusetts General Hospital Blood Bank using a standard Ficoll gradient and 

subsequent CD14 positive selection (Stemcell Technologies). Enriched monocytes were cultured 

in low-adherence flasks (Corning) for 9 d with RPMI media (Invitrogen) supplemented with 10% 

heat-inactivated FCS (Sigma-Aldrich). 
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Mycobacterium tuberculosis culture 

Mycobacterium tuberculosis (Mtb) H37Rv expressing the E2-Crimson fluorescent protein 

was grown in Difco Middlebrook 7H9 media supplemented with 10% OADC, 0.2% glycerol, 0.05% 

Tween-80 and Hygromycin B (50 ug/mL). 

 

Macrophage infection and flow cytometry 

The Mtb culture was pelleted by centrifugation and washed once with RPMI + 10% FCS, 

sonicated briefly, and filtered through a 5 μm syringe filter. Monocyte-derived macrophages 

(MDM) were infected at an MOI of 10 for 4 h and then washed 3× with RPMI + 10% FCS. 24 h 

after infection, cells were washed briefly with 1× PBS. 10× Trypsin (Life Technologies) was added, 

and cells were incubated briefly at 37 °C to allow for cell detachment. Detached cells were spun 

down and resuspended in 1× PBS supplemented with 2% FCS and 1 mM EDTA and then passed 

through a mesh filter to eliminate clumps. Uninfected and infected cells were sorted by flow 

cytometry on an Aria IIu flow cytometer. Mtb-infected cells were identified by the presence of an 

E2-Crimson signal above the background autofluorescence of uninfected cells. 

 

Transcriptome alignment and barcode collapsing 

Read alignment was performed as in Macosko et al. [12]. Briefly, for each NextSeq 

sequencing run, raw sequencing data was converted to FASTQ files using bcl2fastq2 that were 

demultiplexed by Nextera N700 indices corresponding to individual samples. Reads were first 

aligned to both HgRC19 and mm10, and individual reads were tagged according to the 12-bp 

barcode sequence and the 8-bp UMI contained in read 1 of each fragment. Following alignment, 

reads were binned and collapsed onto 12-bp cell barcodes that corresponded to individual beads 

using Drop-seq tools (http://mccarrolllab.com/dropseq). Barcodes were collapsed with a single-

base error tolerance (Hamming distance = 1), with additional provisions for single insertions or 

deletions. An identical collapsing scheme (Hamming distance = 1) was then applied to UMIs to 
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obtain quantitative counts of individual mRNA molecules. Quality metrics are presented in 

(Figures A1.5 and A1.8). 

 

Data normalization 

Digital gene expression matrices were obtained by collapsing filtered and mapped reads 

for each gene by 8-bp UMI sequences within each cell barcode. For each cell, we performed 

library-size normalization. UMI-collapsed gene expression values for each cell barcode were 

scaled by the total number of transcripts and multiplied by 10,000. Scaled expression data were 

then natural-log transformed before analysis using Seurat [23]. 

 

Analyzing species-mixing experiments 

In the first experiment, HEK cells were identified as those barcodes with greater than 2,000 

human transcripts and less than 1,000 mouse transcripts, while barcodes with greater than 2,000 

mouse transcripts and less than 1,000 human transcripts were identified as 3T3 cells. Cells with 

fewer than 2,000 total transcripts were considered indeterminate, while any cell with greater than 

5,000 total transcripts and more than 1,000 nonmouse or nonhuman transcripts was considered 

a multiplet (Figure 2.1D). In the second experiment, HEK cells were identified as those barcodes 

with greater than 10,000 human transcripts, greater than 2,000 human genes, and greater than 

90% human transcript alignment; while barcodes with greater than 10,000 mouse transcripts, 

greater than 2,000 mouse genes, and greater than 90% mouse transcript alignment were 

identified as 3T3 cells. Cells with fewer than 10,000 total transcripts were considered 

indeterminate, while any cells with greater than 10,000 total transcripts and more than 1,000 

nonmouse or nonhuman transcripts were considered multiples (Figure 2.1C and A1.8).  
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PBMC analysis 

We reduced the dimensionality of our data to 11 principle components that account for the 

majority of the variation (51.6% cumulative variance) among variable genes to achieve optimal 

discrimination of cell types identified through image cytometry. We identified seven distinct 

clusters of cells using the FindClusters function in Seurat with k.param = 50 (a measure of 

neighborhood size) and resolution = 0.75 (see below; Figure A1.11). Clusters corresponding to 

CD4+ T cells, CD8+ T cells, B cells, NK cells, monocytes, and dendritic cells were all identified 

on the basis of significant enrichment using an ROC test implemented in Seurat (Figures A1.10 

and A1.11). We removed 602 cells that comprised a distinct cluster enriched for expression of 

mitochondrial genes (Figure A1.11) and a lower mapping rate of new transcripts and genes per 

sequencing read (Figure A1.12), which likely represented single-cell libraries of low complexity. 

We then applied t-distributed stochastic neighbor embedding (t-SNE) using the cell loadings for 

the previously chosen 11 principle components to visualize the cells in two dimensions. Following 

sequence alignment, we analyzed a total of 4,296 cells in which at least 10,000 reads, 1,000 

transcripts and 500 genes were detected with mRNA alignment rate greater than 65% (Figure 

2.2B-D), which resulted in filtering of 1,670 cells with greater than 1,000 transcripts. We analyzed 

a total of 6,713 genes that were detected in at least 2.5% of filtered cells across six sequencing 

runs from three separate arrays. We identified 687 variable genes with log-mean expression 

values greater than 0.5 and dispersion (variance/mean) greater than 0.5. We observed optimal 

discrimination of cell types identified through image cytometry using 11 principal components that 

account for the majority of the variation (51.6% cumulative variance) among variable genes and 

visualized using the t-distributed stochastic neighbor embedding (t-SNE) algorithm. We 

performed 1,000 iterations of the Barnes–Hut implementation of the t-SNE algorithm using a 

'perplexity' value of 40. We identified seven distinct clusters of cells using the FindClusters 

function in Seurat with k.param = 50 (a measure of neighborhood size) and resolution = 0.75 (see 

below; Figure A1.11). Clusters corresponding to CD4+ T cells, CD8+ T cells, B cells, NK cells, 
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monocytes and dendritic Cells were all identified on the basis of significant enrichment using an 

ROC test implemented in Seurat (Figures A1.10 and A1.11). We removed 602 cells that 

comprised a distinct cluster enriched for expression of mitochondrial genes (Figure A1.11) and a 

lower mapping rate of new transcripts and genes per sequencing read (Figure A1.12), which 

likely represented single-cell libraries of low complexity. We examined proportions of various cell 

types across arrays and sequencing runs among 3,694 cells that passed the aforementioned 

filtering criteria. Statistical significance of differences in the proportion of clusters between 

separate arrays and sequencing runs was performed using a Chi-square test (Figure 2.2C). We 

further examined phenotypic variation within myeloid cells among identified principal components 

(Figure 2.2D) by ranking cells on the basis of their PC score among genes with highest loadings 

for each principal component. 

 

Comparison of Seq-Well PBMCs to 10× genomics data 

We performed comparisons of gene detection and transcript capture among PBMC cell 

types conserved between 3,590 PBMCs (excluding dendritic cells) obtained using Seq-Well and 

2,700 PBMCs from the 10x Genomics platform (http://support.10xgenomics.com/single-

cell/datasets/pbmc3k). To classify PBMC cell types within the 10x Genomics data, we first 

identified 446 variable genes with log-mean expression values greater than 0.5 and dispersion 

(variance/mean) greater than 0.5. We then performed graph-based clustering using 13 principal 

components, k.param of 50 and resolution of 0.75. Cell type identity of each cluster was 

established on the basis of gene enrichments. Comparisons of genes and transcripts were initially 

performed between B cells, CD4 T cells, CD8 T cells, monocytes and NK cells using raw data 

matrices. We refined these comparisons by separately downsampling genes and transcripts 

within each cell type in Seq-Well data to an average read depth of 69,000 reads per cell to match 

the reported sequencing depth using in publicly available 10x Genomics data. 

 



 50 

Mycobacterium tuberculosis analysis 

Following sequence alignment, we identified a total of 14,218 cells with greater than 1,000 

mapped transcripts. Initially, we analyzed a subset of 4,638 macrophages with greater than 5,000 

detected transcripts (Figure A1.14A) and a total of 9,381 genes expressed in at least 5% of 

filtered cells. Principal components analysis was performed among a set of 377 variables genes, 

defined by genes with log-mean expression greater than 0.5 and dispersion (variance/mean) 

greater than 0.5. We performed graph-based clustering, as described below, using the first five 

principal components since we observed that they captured the majority of the biological variation 

in our data set (63% cumulative variance), and that each additional principal component 

contributed less than 1% to the total variance. We performed 1,000 iterations of the t-SNE 

algorithm (Barnes–Hut implementation) using a 'perplexity' value of 30. We identified five distinct 

clusters of cells in the t-SNE plot using the FindClusters function in Seurat with k.param = 40 and 

resolution = 0.25 (Figure A1.14). We removed two clusters comprised of cells with reduced gene 

detection, transcript capture and enrichment for expression of mitochondrial genes. Following 

removal of low-quality cells, we analyzed three distinct clusters with total of 2,560 high-quality 

cells (Figure 2.3A and A1.14). Differential expression analysis was performed between clusters, 

and cells exposed and unexposed to TB within each t-SNE cluster using a likelihood ratio test in 

Seurat (Figure 2.3). We performed gene set enrichment analysis to examine association of 

expression differences observed between control macrophages exposed and unexposed to M. 

tuberculosis with previously published gene sets using GSEA. For each cluster, expression 

patterns between exposed and unexposed cells were made to complete GSEA databases.  

 

Regressing out latent technical effects 

Technical parameters governing sequencing data, such as the number of genes detected 

or the transcriptomics alignment rate, often vary significantly across single cells. We sought to 

conservatively remove these technical effects using a 'latent-variable' approach similar to that of 
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Buettner et al. [24]. Briefly, we fit a linear model to predict the expression value of each gene 

based on a set of technical metrics, as well as the total number of unique genes detected in that 

cell. In our analyses, we constructed models to adjust gene expression values for alignment rate 

of each cell. We considered the residual expression from this model as a 'corrected' gene 

expression value, and we used these values as input to the downstream clustering analyses. 

 

Graph-based clustering of single-cell transcriptomes 

For all single-cell clustering analyses, we used an approach similar to that of our recently 

proposed clustering strategy for Drop-seq data. Briefly, as in Macosko et al. [12] we first identified 

the set of genes that was most variable across our data set after controlling for the relationship in 

single-cell RNA-seq data that inherently exist between mean expression and variability by binning 

genes into 20 bins based on their average expression level and z-scoring dispersion 

(mean/variance) estimates within a bin. We excluded all genes which were detected in less than 

2.5% of PBMCs (5% of monocytes for the Mtb experiments) and used a dispersion cutoff of 0.5 

to select variable genes, resulting in the selection of 687 variable genes across 4,296 PBMCs 

and 377 variable genes across 4,638 macrophages. 

We next reduced the dimensionality of our data set, using principal components analysis. 

As previously described in Macosko et al. [12] we ran PCA using the prcomp function in R. We 

then selected PCs for further downstream analysis (11 PCs in PBMC analysis and 5 PCs in TB 

analysis). As expected, markers for distinct cell types were highly represented among the genes 

with the largest scores along these PCs. We then applied t-distributed stochastic neighbor 

embedding (t-SNE) using cell loadings for the significant principal components as input to 

visualize the structure of our data in two dimensions. 

Here we used graph-based clustering methods, similar to those that have been recently 

proposed for both single-cell RNA-seq and mass cytometry data [25, 26].  We first construct a 

Euclidean distance matrix on the loadings for the significant principal components as described 
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above and use this to construct a K-nearest neighbor graph (KNN, k = 50 in PBMC analysis; k 

= 40 in TB analysis). Our goal was to identify 'quasi-cliques' [26] or 'communities' [25] of cells that 

were highly interconnected across this graph. Therefore, we first converted the KNN graph into a 

weighted shared nearest neighbor (SNN) graph, where the weight between any two cells was 

represented by the percent overlap in their respective K-nearest neighborhoods (Jaccard 

distance), and we pruned low-quality edges with a Jaccard distance of <0.1 (less than 10% 

overlap in local neighborhoods). Finally, to group the cells into clusters, we used a recently 

developed method for modularity optimization, which aims to optimize a function describing the 

density of connections within a cluster versus connections between clusters, essentially to identify 

highly interconnected nodes within the SNN graph. Here, we applied the smart local moving 

algorithm, which is similar to the widely used 'Louvain' algorithm for community detection but 

implements a local moving heuristic that enables communities to be split up and iteratively 

reorganized in an attempt to improve the overall partition modularity. This grants the SLM 

algorithm additional freedom in identifying an optimal clustering solution, and we empirically 

observed increased sensitivity and consistency applying this approach to single-cell data. 
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Introduction 

Although a nascent technology, single-cell RNA-sequencing (scRNA-Seq) has already 

helped define, at unprecedented resolution, the cellular composition of many healthy and 

diseased tissues [1-6]. The development of high-throughput methodologies has been crucial to 

this process, empowering the characterization of increasingly complex cellular samples. 

Unfortunately, current scRNA-Seq platforms typically demonstrate an inverse relationship 

between the number of cells that can be profiled at once and the amount of biological information 

that can be recovered from each cell. As a result, one must choose between quantity and quality 

– and thus comprehensiveness and fidelity – or alternatively employ two distinct approaches in 

parallel [7]. Indeed, inefficiencies in transcript capture among massively-parallel methods have 

limited our ability to resolve the distinct cell states that comprise broad cell types [8], as well as 

their essential molecular attributes and often lowly-expressed molecular features, such as 

transcription factors, affinity receptors, and signaling molecules.  

Improving the fidelity of these methodologies is particularly important for resolving 

differences within heterogeneous populations of immune cells like lymphocytes and myeloid cells 

[9, 10]. Here, subtle differences in surface receptor, transcription factor and/or cytokine 

expression can profoundly impact cellular function, particularly in the setting of human pathology 

[11]. Enhancing data quality in high-throughput scRNA-Seq would facilitate a greater appreciation 

of the underlying molecular features that describe such cellular variation. Similarly, it would ease 
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integration with legacy datasets that often utilize lowly-expressed biomarkers, such as 

transcription factors, that are false-negative prone to discriminate subsets of cells. 

Most high-throughput scRNA-Seq methods currently rely on early barcoding of cellular 

contents to achieve scale. Typically, these techniques recover single-cell transcriptomes for 

thousands of cells at once by leveraging reverse-emulsion droplets or microwells to isolate 

individual cells with uniquely barcoded poly-dT oligonucleotides which can then capture and tag 

cellular mRNAs during reverse transcription [12]. Afterward, an additional priming site is typically 

added to the 3’ end of the synthesized cDNA to enable PCR-based amplification of all transcripts 

using a single primer (whole transcriptome amplification, WTA). A number of techniques have 

been described to add this second priming site [13, 14]. The most common uses the terminal 

transferase activity of certain reverse transcription enzymes to facilitate a “template-switch” from 

the original mRNA to a second defined oligonucleotide handle [15]. While simple to implement, 

this process has the potential to be highly inefficient, leading to the loss of molecules that have 

been captured and converted to cDNA but not successfully tagged with a secondary PCR priming 

site [16-18].  

To overcome these limitations, we have developed a new, massively-parallel scRNA-Seq 

protocol we call Seq-Well S^3 (for “Second-Strand Synthesis”). Of the modifications incorporated 

into the Seq-Well S^3 workflow, one of the most significant is the use of a randomly-primed 

second-strand synthesis after reverse transcription to append the second PCR handle addition. 

Working with cell lines and peripheral blood mononuclear cells (PBMCs), we demonstrate that 

Seq-Well S^3 enables significant improvements in transcript and gene capture across sample 

types, facilitating studies of complex immune tissues at enhanced resolution. 

To illustrate the utility of S^3, we apply it to generate a resource of single-cell 

transcriptional states spanning multiple inflammatory skin conditions. Skin represents the largest 

barrier tissue in the human body and is comprised of numerous specialized cell-types that help 
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maintain both immunological and physical boundaries between our inner and outer worlds [19]. 

The dermis and epidermis – the two primary compartments of human skin – play complementary 

roles in tissue structure and function [19] . The epidermis consists primarily of keratinized 

epithelial cells, which provide a physical barrier to the outside world; the dermis, meanwhile, 

provides structural support for the skin, with fibroblasts producing collagen and elastin fibrils, 

along with the other components of the extracellular matrix. Crucially, within the cellular 

ecosystem of human skin, there are numerous tissue-resident immune and parenchymal cells 

that are essential to homeostatic barrier function.  

To date, single-cell analysis of human skin has revealed heterogeneity in immune and 

parenchymal cell types in health and disease [20-23]. Using Seq-Well S^3, we examine the 

cellular composition of normal skin and altered cellular phenotypes across multiple inflammatory 

skin conditions, specifically acne, alopecia areata, granuloma annulare, leprosy and psoriasis. 

With conditions that span autoimmune inflammation driven by adaptive immunity (alopecia), 

combined autoimmune and autoinflammatory (i.e. both adaptive and innate processes; psoriasis), 

reactive (acne), and granulomatous (granuloma annulare and leprosy) inflammation, we uncover 

a diverse spectrum of immune and parenchymal cellular phenotypes, as well as their molecular 

features, across multiple inflammatory skin conditions. Overall, our work presents an essential 

methodological advance, as well as a critical resource for understanding how diverse 

inflammatory responses can impact a single tissue, and the range of cellular phenotypes that are 

possible upon perturbation. 

RESULTS 

Second-Strand Synthesis (S^3) Leads to Improved Transcript Capture and Gene Detection 

We hypothesized that use of “template-switching” to append a second PCR handle during 

reverse transcription might limit the overall recovery of unique transcripts and genes from 

individual cells in some massively-parallel scRNA-Seq methods such as Seq-Well and Drop-Seq 
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[2, 24]. Thus, we incorporated a randomly primed second-strand synthesis following first-strand 

cDNA construction (Figures 3.1A and A2.1A). Briefly, after reverse transcription, barcoded 

mRNA capture beads are washed with 0.1 molar sodium hydroxide to remove attached RNA 

template strands, and then a random second-strand synthesis is performed to generate double-

stranded cDNA that is labeled on one end with the SMART sequence and reverse complement 

on the other (Figure 3.1A and A2.1A; Methods) [15, 25]. 
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Figure 3.1 | Overview of Second Strand Synthesis (S^3). A. Conceptual illustration of the molecular 
features that define immune phenotypes – including transcription factors, cytokines and receptors – as well 
as the Seq-Well second-strand synthesis method (Seq-Well S^3) and how it improves detection of key 
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genes and transcripts. B. Scatterplot showing differences in per-cell transcript capture (y-axis) as a function 
of aligned reads per cell (x-axis) between 10x Genomics v2 (10x v2, grey) and Seq-Well S^3 (black). Red 
line indicates uniform line where transcripts per cell and aligned reads would be equivalent. C. Scatterplot 
shows the differences in per-cell gene detection (y-axis) as a function of aligned reads per cell (x-axis) 
between 10x v2 (grey) and Seq-Well S^3 (black). D. Scatterplot comparing gene detection rates in CD4+ T 
cells between 10x v2 (x-axis) and Seq-Well S^3 (y-axis). Black line indicates point of equivalence in gene 
detection frequency between methods. Colors correspond to classes of genes including transcription 
factors (blue), cytokines (red), and receptors (green). E. Scatterplot comparing gene detection frequency 
(y-axis) between Seq-Well S^3 (positive values) and 10x v2 (negative values) as a function of the aggregate 
expression levels (log(scaled UMI + 1)) of an individual gene (x-axis). Black line indicates point of 
equivalence in gene detection frequency between methods. Colors correspond to classes of genes 
including transcription factors (blue), cytokines (red), and receptors (green). F. Violin plot (boxplots median 
+- quartiles) showing the distribution of per-cell transcript capture for Seq-well S^3 (blue; n = 1,485), 10x 
v2 (red; n = 2995), and Smart-Seq2 (black, n = 382). *** P-values < 1.0 x10-10. G. Violin plots showing the 
distribution of normalized expression values for select transcription factors, cytokines and cytokine 
receptors between Seq-Well S^3 and 10x v2. *** P-values < 1.0 x10-10. H. Scatterplot showing the 
relationship between aligned reads and genes detected per cell between Seq-Well S^3 (blue), 10x v2 (red) 
and Smart-Seq2 (black) in sorted PBMC CD4+ T cells. 
 

To examine the effectiveness of Seq-Well S^3 and optimize its performance, we first 

tested a number of conditions using cell lines (i.e., HEK293) and human PBMCs (Figure A2.1B; 

Methods). In these experiments, we observed that S^3 led to marked improvements in library 

complexity (i.e., the number of unique transcripts detected per aligned read; Seq-Well V1: 0.22 

transcripts/aligned read; Seq-Well S^3: 0.68 transcripts/aligned read) at matched sequencing 

depth below saturation (N.B. higher library complexity implies that a greater amount of information 

remains to be detected through further sequencing). Seq-Well S^3 was further able to function in 

the absence of a template switching oligo (TSO); Seq-Well V1, meanwhile, failed to generate 

appreciable product without a TSO (Figure A2.1B-E). In species-mixing experiments using 

HEK293 (human) and NIH-3T3 (mouse) cell lines, the use of the S^3 protocol not only achieved 

significant increases in the numbers of unique transcripts captured and genes detected per cell 

compared to our original protocol for Seq-Well (P < 0.05, Mann-Whitney U Test; Figure A2.1D; 

Methods), but also comparable single-cell resolution (i.e., transcript purity) to Seq-Well V1 

(Figure A2.1F-G).  

To fully understand how S^3 would perform on more challenging primary cells, we applied 

it to human PBMCs (Figure A2.1E and A2.2; Methods), benchmarking against our original Seq-
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Well protocol as well as commercial technology (10x genomics, v2 3’ chemistry; hereafter 10x 

v2). For these comparisons, we down-sampled all resulting data to an average of 38,000 reads 

per cell to account for differences in sequencing depth across technologies. Critically, Seq-Well 

S^3 resulted in significant improvements in the complexity of our sequencing libraries compared 

to 10x v2 as determined by the number of transcripts and genes detected at matched read depth 

(P < 0.05, Mann-Whitney U Test & Linear Regression; Figure 3.1B-C; Methods). To confirm that 

these overall improvements were not driven by changes in the relative frequencies of different 

cell types captured by each technology, we also examined each subset independently (Figure 

A2.2A-B). For each cell type, we observed significant increases in the numbers of transcripts 

captured and genes detected using S^3 in pairwise comparisons between techniques (P < 0.05, 

Mann-Whitney U Test; CD4+ T cells, Seq-Well V1: 1,044 ± 62.3  UMIs/cell; 10x v2: 7,671 ± 103.9 

UMIs/cell; Seq-Well S^3: 13,390 ± 253.4 UMIs/cell; Mean ± Standard Error of the Median (SEM)); 

Figure A2.2C, Methods). Both Seq-Well S^3 and 10x v2 displayed increased sensitivity for 

transcripts and genes relative to Seq-Well v1 (Seq-Well S^3: 6-fold gene detection, 10-fold UMI 

detection), but Seq-Well S^3 showed the greatest efficiency (defined as genes recovered at 

matched read depth) to detect genes for each cell type (Figure 3.1C; Figure A2.2).  

We sought to further understand whether these improvements resulted in enhanced 

detection of biologically relevant genes typically under-represented in high-throughput single-cell 

sequencing libraries [7]. Importantly, genes that were differentially detected (i.e., higher in S^3) 

within each cell type include numerous transcription factors, cytokines and cell-surface receptors 

(Figure 3.1D-E, A2.2D-E). For example, among CD4+ T cells, we observe significantly increased 

detection of transcription factors (e.g., STAT6, and IRF4), cytokine receptors (e.g., CCR4 and 

TGFBR2) and cytokines (e.g., TGFB1 and TNF; P< 0.05, Chi-Square Test, Figure 3.1F and 

A2.2). 
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We performed an additional comparison of enriched human CD4+ T cells profiled using 

Seq-Well S^3, 10X v2, and Smart-Seq2, a commonly implemented microtiter plate-based 

approach (Figure 3.1G-H; Methods) [15]. Integrated analysis of aggregate gene detection 

revealed that Seq-Well S^3 detects more genes per cell than 10x v2 and nearly as many genes 

per cell as Smart-Seq2 in pairwise comparison of techniques (10x v2: 2,057 ± 18.7 genes/cell , 

Seq-Well S^3: 3,514 ± 36.2 genes/cell , SS2: 3,975 ± 74.0 genes/cell; mean ± SEM; P < 0.05, 

Mann-Whitney Test; Figure 3.1G; Methods). Further, comparing the frequency of gene detection 

between methods revealed crucial differences for transcription factors, cytokines and 

receptors/ligands (Methods). Surprisingly, we observe similar rates of gene detection between 

S^3 and Smart-Seq2 for a large number of biologically informative genes (Figure A2.2F). 

Critically, while comparable numbers of genes were detected across methods, Seq-Well S^3 

detected more genes per aligned read than either 10x v2 or SS2 in pairwise comparisons (P<0.05, 

Mann-Whitney U Test; Figure 3.1H; Methods).  

Finally, we performed additional comparisons between Seq-Well S^3 and the most recent 

version of the 10x genomics chemistry (10x v3 3’ chemistry) (Figure A2.3). Here, we observe 

that Seq-Well S^3 detected similar levels of genes and transcripts as 10x V3 at comparable 

sequencing depth (Figure A2.3 A-C). For example, among CD4 T cells, we observe similar levels 

of gene detection and transcript capture per-cell between Seq-Well S^3 (Figure A2.3C). We note 

that we once again observe increased detection frequencies among biologically informative 

transcripts using Seq-Well S^3 (Figure A2.3D-E; Methods). 

 

A Resource of Cellular States Across Healthy and Inflamed Skin  

To demonstrate the utility of Seq-Well S^3 to comprehensively describe cellular states 

across human pathology at unprecedented resolution, we applied it to profile human skin samples 

spanning multiple, complex inflammatory skin conditions (Figure 3.2). We studied acne, alopecia 
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areata, granuloma annulare, leprosy, and psoriasis, as well as normal skin (Figure 3.2A-C and 

A2.4A-C; Methods). In total, we processed 19 skin biopsies (Acne, n=4; Alopecia, n = 1; 

granuloma annulare, n=2; leprosy, n=4;  psoriasis, n=5; normal skin, n=3) by S^3 and, after data 

quality filtering, retained 38,274 high-quality single-cell transcriptomes (Figure 3.2A-C; 

Methods).  

 

Figure 3.2 | Cell Types Recovered across Inflammatory Skin Conditions. A. (Top-Left) Diagram 
illustrating the anatomic organization and major features of human skin. (Top-Right) Cell-type composition 
of the epidermis and dermis. (Bottom) Sample processing pipeline used to generate a collection cellular 
states across skin inflammation. B. (Left) UMAP plot for 38,274 cells colored by cell-type cluster. (Right) 
Stacked barplot showing the cell-type composition for each of the 19 skin biopsies. C. (Left) UMAP plot for 
38,274 cells colored by inflammatory skin condition. (Right) Stacked barplot showing the proportion of cells 
from each skin condition within phenotypic clusters. 



 65 

To examine similarities and differences among these cells across the high-dimensional 

gene expression space, we selected variable genes, performed UMAP dimensionality reduction, 

and identified 35 clusters through Louvain clustering in Scanpy [26]  (Figure 3.2 and A2.4A-C; 

Methods). To collapse clusters to cell-types, we performed enrichment analyses to identify 

cluster-defining genes and then manually assigned cell-type identities based on the expression 

of known lineage markers (Figure 3.2B and Figure A2.4A,D; Methods). We further classified 

cells using SingleR [27] and observed close concordance between manually identified cell 

populations and automated classification where appropriate reference signatures existed (Figure 

A2.4B; Methods). To further support our annotations and groupings, we generated aggregate 

gene expression profiles and performed hierarchical clustering using a combined list of the top 50 

cluster-defining genes for each cluster (Figure A2.4C; Methods). Ultimately, we recovered a total 

of 16 primary cell-types, within which there was considerable heterogeneity. The identified cell 

types include: B cells (marked by expression of MS4A1 and CD79A), fibroblasts (DCN and 

COL6A2), hair follicles (SOX9), keratinocytes (KRT5 and KRT1), Langerhans cells (CD207), 

lymphatic endothelial cells (LYVE1), mast cells (CPA3 and IL1RL1), melanocytes (MLANA), 

myeloid cells (CD68 and CTSS), plasma cells (IGHG1), Schwann cells (SCN7A), sebocytes 

(DCD), T cells (CD3D and TRBC2), venules cells (SELE and CD93), and vascular smooth muscle 

cells (VSMCs; TAGLN) (Figure 3.2 and A2.4A-E). As a final quality measure, we examined the 

distribution of reads, transcripts and genes within each major cell population and observed 

consistent coverage across recovered cell types (Figure A2.4F). We next sought to define 

nuanced cell states within these immune, stromal and parenchymal populations – including T 

cells, myeloid cells, endothelial cells, dermal fibroblasts, and keratinocytes – across the spectrum 

of skin inflammation.  

 

Seq-Well S^3 describes T cell states across inflammatory skin conditions 
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To determine the range of biological features that can be captured using Seq-Well S^3, 

we first focused on further characterizing T cells across the inflammatory skin conditions 

examined since each is known to significantly skew T cell phenotypes (Figure 3.3) [28, 29]. We 

performed dimensionality reduction and sub-clustering across T cells alone (Figure 3.3A-B; 

Methods). Our analysis revealed nine sub-clusters that closely correspond to NK cells and CD8+ 

T cells, as well as several known CD4+ T-helper cell (Th) subsets. As before, we used the 

enhanced sensitivity of S^3 for lineage defining transcripts to help annotate the identity of each 

sub-cluster; for example, in regulatory T cells and Th-17 cells we detected distinct expression of 

canonical transcription factors (e.g., FOXP3 and RORC, respectively) and immune receptors (e.g. 

TIGIT/CTLA4/IL2RA and CXCR6, respectively) (Figure 3.3C-D and A2.5). Additionally, we cross-

referenced each sub-cluster’s marker genes against a series of curated signatures in the Savant 

database [30] to confirm our assignments, which highlighted similarity to previously characterized 

T cell and NK cell populations [31, 32] (Figure A2.5A; Methods).  
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Figure 3.3 | Identification of Inflammatory T cell States using Seq-Well S^3. A. (Left) Force-directed 
graph of 4,943 T cells colored by the nine phenotypic sub-clusters identified by Louvain clustering. (Right) 
Stacked barplots showing the distribution of these T cell sub-clusters within each skin biopsy. B. (Left) 
Force-directed graph of 4,943 T cells colored by inflammatory skin condition. (Right) Stacked barplots 
showing the contribution of each inflammatory skin condition to the T cell sub-clusters. C. T cell force-
directed graphs displaying normalized expression (log(scaled UMI + 1)) of a curated group of sub-cluster-
defining gene. Higher expression values are shown in black. D. Heatmap showing normalized gene 
expression values (log(scaled UMI + 1)) for a curated list of sub-cluster-defining genes across nine T cell 
sub-clusters. E. Plot showing rates of detection of TCR genes from human skin T cells across a range of 
sequencing depths. F. Heatmaps showing the distribution of TRAV (left) and TRBV (right) gene expression 
among T cells within each sample. Within each sample (rows), the color represents the percent of T cells 
expressing a given TRAV or TRBV gene (columns). The sidebar shows (red) the gini coefficient (blue) the 
Shannon Divergence, and (green) the percent of T cells within each sample with non-zero expression of 
either TRAV or TRBV genes. 
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We next examined T cell phenotypes across inflammatory skin conditions to explore 

variability in T cell subset composition by skin pathology (Figure 3.3A-B). This analysis revealed 

potentially varied contributions to different classes of cutaneous inflammation. For example, we 

observe a population enriched for expression of canonical Th-17 genes including RORC, which 

encodes the Th-17 lineage-defining transcription factor ROR𝛾t [33] and is observed within 2 

leprosy biopsies (Figure 3.3A-B), consistent with  a role for Th-17 cells in controlling disease [34, 

35].  

We further found that a sub-cluster of T cells, which express NR4A1, a transcription factor 

that is a marker of dysfunctional T cells [36], and are enriched for genes involved in nuclear 

organization (NEAT and ANKRD36), was over-represented in psoriasis samples (Figure 3.3B-

C). We also observe an expansion of regulatory T cells in 3 of 5 patients with psoriasis in addition 

to a population of T cells characterized by expression of SESN3, a marker of T cell senescence 

[37], SATB1, and  FURIN (Figure 3.3A-D).   

Directed analysis within CD8+ T cells revealed a sub-grouping of activated CD8+ T cells 

that express elevated levels of several inflammatory cytokines (TNF, CCL4, and XCL1), as well 

as specific affinity receptors (FASLG and TNFRSF9) and transcription factors (KLF9 and EGR2); 

this phenotypic skewing was observed primarily in a patient with granuloma annulare (Figure 

A2.5B - Top; Methods). We also uncovered considerable variation within the cluster containing 

cytotoxic T cells and NK cells (Cytotoxic), where we found the highest degree of cytotoxic gene 

expression (GNLY, GZMB, and PRF1). Indeed, sub-clustering analysis of the cytotoxic cluster 

revealed 3 distinct sub-groups (Figure A2.5B): 1. a sub-group of NK cells (Cytotoxic-1) enriched 

for expression of c-KIT, RANKL (TNFSF11) and GITR (TNFSFR18); 2. sub-group of CD16+ cells 

(Cytotoxic-2) expressing cytotoxic effector molecules (GNLY, PRF1, GZMB) and NK surface 

receptors, consistent with either NK cell or tri-cytotoxic CTL [38]; and, 3. a sub-group of CD8+ T 

cells (Cytotoxic-3, TNFSF8, SLAMF1, CLEC2D, CD5) that express both TCR ab and gd constant 
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genes (Figure A2.5B - Bottom) [39]. Collectively, these data suggest that the cytotoxic cluster 

actually contains NK cells, gd T cells, and activated cytotoxic T cells.  

Profiling of T cell receptor expression is critical to understand T cell antigen specificity [40] 

(Zhang et al., 2018). Importantly, among CD4+ T cells obtained from peripheral blood, we 

recovered TCR-V and TCR-J genes at a higher frequency on a per-gene basis using Seq-Well 

S^3 as compared to 10x v2 (P< 0.05, Chi-square Test; Figure A2.5C; Methods). Among CD4+ 

T cells from peripheral blood, we observed paired detection of TRAC and TRBC in 1,293 of 1,485 

CD4+ T cells (87.1% Paired Detection Rate, Figure A2.5C). In the setting of skin inflammation, 

we explored TCR detection rates across a range of sequencing read depths. Overall, we detected 

TRAC in 53.5%, TRBC in 76.7% (Figure 3.3E), and paired detection in 45.1% of T cells. Among 

T cells with at least 25,000 aligned reads, we recovered paired a and b chains in 68.6%. Among 

cytotoxic cells, we observe expression of g and d constant genes (TRGC and TRDC), while the 

remaining T cell clusters exclusively express a and b TCR constant genes. These data further 

suggest that the cytotoxic cluster represents a diverse population of gd, NK, and cytotoxic CD8+ 

T cells that share common gene expression features and, potentially, roles in inflammation.  

Finally, we examined the distribution of TCR V gene expression across inflammatory skin 

biopsies to identify clonally expanded T cells (Figure 3.3F; Methods). Here, we observe biased 

distributions of TRAV and TRBV genes (e.g. elevated Gini coefficients and low Shannon 

Divergence) within multiple biopsies including biopsies from leprosy and acne (Leprosy 2 and 

Acne 2, TRAV and TRBV Gini Coefficient > 0.85; Figure 3.3F).  

 

Spectrum of Myeloid Cell States in Skin Inflammation 

In the setting of cutaneous inflammation, myeloid cells play a key role in maintaining tissue 

homeostasis, wound healing and response to pathogens [41]. Using Seq-Well S^3, we were able 
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to identify numerous myeloid cell subpopulations defined by a combinations of surface markers, 

cytokines and lineage-defining transcription factors. Specifically, we independently analyzed 

5,010 myeloid cells and identified 10 sub-clusters representing 4 primary myeloid cell types based 

on expression of canonical lineage markers and comparison to cell-type signatures in the Savant 

database: dendritic cells (CLEC9A and CLEC10A), Langerhans cells (CD207 and CD1A), 

macrophages (CD68 and CD163), and mast cells (CPA3 and TPSAB1) (Figure 3.4A and A2.5D-

E; Methods) [30].  
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Figure 3.4 | Diverse Myeloid Cell States Uncovered using Seq-Well S^3. A. (Left) Force-directed graph 
of 5,010 myeloid cells colored by five phenotypic sub-clusters (NB, Langerhans cells were enriched from 
leprosy and normal skin). (Right) Stacked barplots showing the distribution of myeloid sub-clusters within 
each skin biopsy. B. (Left) Force-directed graph of 5,010 myeloid cells colored by inflammatory skin 
condition. (Right) Stacked barplots showing the contribution of each inflammatory skin condition to each 
myeloid sub-cluster. C. Force-directed graphs of 5,010 myeloid cells that highlighting expression of a 
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curated group of sub-cluster defining genes (log(scaled UMI + 1)). D. Heatmap showing the normalized 
expression (log(scaled UMI + 1)) of a curated list of myeloid cell-type cluster-defining genes. E. Volcano 
plot showing genes differentially expressed in Langerhans cells between leprosy (ncells = 67) and normal 
skin (ncells = 171). Log10-fold change values are shown on the x-axis and -log10 adjusted p-values are 
shown on the y-axis. F. (Left) UMAP plot for 951 dendritic cells from human skin colored by inflammatory 
skin condition. (Right) Stacked barplot showing the distribution dendritic cell sub-grouping within 19 skin 
biopsies.  G. Heatmap showing the distribution of normalized gene expression levels (log(scaled UMI + 1)) 
for cluster-defining genes across dermal DC subpopulations.   
Among the macrophages, our data reveal two distinct sub-clusters (Figure 3.4A-B). One 

macrophage sub-cluster spans normal skin as well as multiple types of skin inflammation and is 

characterized by elevated expression of previously characterized markers of dermal 

macrophages (CD163, STAB1, and CEPP) [42]. The second sub-cluster, meanwhile, is observed 

primarily in a single leprosy patient and is defined by genes involved in extracellular proteolysis 

(LYZ, CHIT1, and CHI3L1) [43]. 

Skin functions as both a physical and immunologic barrier, and is the primary site of 

exposure to environmental antigens. As such, multiple types of antigen-presenting cells (APCs) 

are distributed in both the dermis and epidermis. In the epidermis, there is a specialized population 

of antigen-presenting cells known as Langerhans cells. We initially identified Langerhans cells on 

the basis of expression of canonical markers (CD207, CD1A; Figure 3.4C-D) [44]. For two 

biopsies obtained from normal skin and leprosy (Normal skin 1 and Leprosy 1), we performed 

MACS enrichments from the epidermal section and loaded Langerhans cells as 5% of the total 

amount to increase recovery (Methods). When we directly compared Langerhans cells from 

leprosy and normal skin, we observed elevated expression of IDO1, STAT1, HCAR3 and MHC 

class I molecules (HLA-A, HLA-B and HLA-F) in Langerhans cells in leprosy infection.  (Figure 

3.4E) [45, 46]. We further performed gene-ontology analysis among genes up-regulated in 

Langerhans cells from leprosy and observe enrichment of genes related to IFN-g response.  

Sub-analysis of the -dendritic cell cluster revealed multiple sub-groups, including 

conventional and dermal dendritic cells (Figure 3.4F). Consistent with previous observations from 

peripheral blood, we saw a sub-group of dendritic cells that corresponds to cDC1 (CLEC9A, IRF8, 
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and WDFY4) [9] (P<0.05, Permutation Test, Figure A2.5F, Methods). In comparison to another 

set of DC signatures [10], we observe close correspondence to cDC1 cells  (Figure S5G, 

Methods). We further report another DC sub-group representing cDC2 cells (IRF4, SOCS2, 

SLCO5A1, CD1B, CD1E) that is observed across all biopsies from patients with psoriasis (Figure 

3.4F, Figure A2.5H; Methods) [47]. Importantly, we detect expression of IL12B, a subunit of the 

IL-23 cytokine, within the sub-group of IRF4+ cDC2 cells (Figure A2.5I), which has previously 

been shown to promote mucosal type 17 inflammation via secretion of IL-23 [48]. Further, this 

sub-grouping of cDC2 cells expresses high levels of CCL17 and CCL22, chemokines involved in 

T cell chemotaxis (Figure 3.4G) [49].  

Among the dermal dendritic cells, we identified 3 subgroups that are broadly distinguished 

from the conventional dendritic cell clusters by expression of CLEC10A (Figure A2.5I), which has 

been shown to influence T cell cytokine responses in skin [50, 51]. Cells from dermal DC sub-

group 1 show elevated expression of IL1R1, IL1R2, CCR7 and Fc-receptor including FCER1A, 

FCGR2A, and FCGR2B, which are important for interfacing with humoral immunity (Figure A2.5I) 

[52]. We observe a second population of dermal DCs (Dermal DC sub-group 2), with elevated 

expression of cathepsins (CTSL and CTSB), and surface receptors (CD300E and SLC11A1), 

which collectively represent markers of DC activation (Figure A2.5I) [53]. Finally, a third sub-

grouping of dermal DCs (Dermal DC sub-group 3) was distinguished elevated expression of pro-

inflammatory chemokines up-regulated during DC maturation (CCL3, CCL4, and CCL5) [54] and 

soluble mediators (EREG and INHBA).  

 
Detection of Endothelial Heterogeneity and Vascular Addressin Expression 

Multiple types of endothelial cells exist within the dermis of the skin. As in most tissues, 

arterioles shuttle oxygenated blood to tissues terminating in a capillary bed that gives rise to post-

capillary venules. Importantly, DARC+ post-capillary venules are the primary site of egress of 
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immune cells from circulation into tissues [55]. Using the improved sensitivity of Seq-Well S^3, 

we sought to understand the spectrum of endothelial cell diversity and vascular addressin 

expression across multiple instances of skin inflammation [56]. We performed sub-clustering and 

dimensionality reduction across 8,571 endothelial cells (Figure 3.5A-B and Methods) and 

identified three primary sub-clusters of dermal endothelial cells defined by distinct expression 

patterns: vascular smooth muscle cells (VSMCs; TAGLN), endothelial cells (CD93) and lymphatic 

endothelial cells (LYVE1) (Figure 3.5C). Importantly, we found multiple sub-clusters of CD93+ 

endothelial across normal and inflamed skin biopsies (Figure 3.5A-B). For example, we observe 

a cluster of DARC-, CD93+ endothelial cells (Venule sub-cluster 3) that displays elevated 

expression of SLC9A3R2, which is involved in endothelial homeostasis [57], and another that is 

proliferating (Venule sub-cluster 6) (Figure 3.5D).  
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Figure 3.5 | A. Force-directed plots for 8,571 endothelial cells colored by phenotypic sub-cluster (left) and 
stacked barplot showing the distribution of endothelial phenotypic sub-clusters across samples (right). B. 
Force-directed plots for 8,571 endothelial colored by inflammatory skin condition (left) and stacked barplot 
showing the contribution of each inflammatory skin condition to endothelial phenotypic sub-clusters (right).  
C. Forced-directed plot colored by normalized expression level of genes that mark endothelial cell types: 
(Left) CD93, venules, (Middle) TAGLN, arterioles, (Right) LYVE1, lymphatics.  D. Heatmap showing 
patterns of normalized gene expression levels (log(scaled UMI + 1)) across 9 clusters of endothelial cells. 
E. Heatmap showing row-normalized expression levels of vascular addressins across phenotypic sub-
clusters of endothelial cells.  

Further, we sought to understand the distribution of vascular addressins expressed by 

DARC+ endothelial sub-populations (Figure 3.5E) [58]. Notably, across sub-populations of CD93+ 

endothelial cells (Venule sub-clusters 1-6), we observe variation in expression of vascular 

addressins (Figure 3.6E). Among post-capillary venules, we observe broadly elevated expression 

of ITGA5, ITGA6, ICAM2, and ITGA2, while VSMCs express higher levels of ITGA7, ITGA8, and 

ITGB5. Further, we observe the highest expression of ITGB4, ITGB8, and ITGA9, among 

lymphatic endothelial cells (Figure 3.5E). 

 

Altered Dermal Fibroblast Identities in Skin Inflammation  

Dermal fibroblasts provide structural support and are the primary source of extracellular 

matrix components within the skin. Previous studies have demonstrated significant variation 

among dermal fibroblasts based on their relationship to anatomic features of the skin [59, 60]. To 

deeply catalogue diverse fibroblast cell states across inflamed skin, we performed dimensionality 

reduction and sub-clustering within the 7,237 fibroblasts identified across all samples and 

conditions (Figure 3.6A-B; Methods). In comparison to inflamed biopsies, fibroblasts from 

normal skin display enrichments in LTBP4, IGFBP5, and TCF4 (Fibroblast Clusters 2 and 8). 

Consistent with previous single-cell studies of dermal fibroblasts, we observe a sub-population of 

fibroblasts (Fibroblast Cluster 3) that express COL11A1, DPEP1 and RBP4, where these cells 

were suggested to have a role in connective tissue differentiation (Figure 3.6C) [20].  
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In granuloma annulare (GA), we observe two distinct fibroblast populations. Specifically, 

fibroblasts from GA patient 1 (sub-cluster 0) display elevated expression of protease inhibitor 16 

(PI16), which inhibits the function of MMP2 [61], and ITIH5, a protease inhibitor important for 

maintenance of dermal hyaluronic acid that is overexpressed in skin inflammation (Figure 3.6C-

D) [62]. Fibroblasts from GA patient 2 (sub-cluster 7), meanwhile, express elevated levels of 

SPOCK1 (Avg-Log FC: 0.99), CRLF1 (Avg-Log FC: 1.38), and COMP (Avg-Log FC: 1.35), a 

cartilage protein that is upregulated in matrix-producing fibroblasts following myocardial infarction 

[63] (Figure 3.6C-D).  

We also observe distinct fibroblast phenotypes in leprosy infection. Specifically, we find a 

population of fibroblasts (Fibroblast Cluster 1) marked by combined expression of and POSTN 

(Periostin) and MMP11, a marker of fibroblasts in basal cell carcinoma [64] (Figure 3.6D). In 

another leprosy biopsy, we observe a population of pro-inflammatory fibroblasts (Fibroblast 

Cluster 5) that express elevated levels of SFRP2, PRSS23 and IL6 (Figure 3.6D). Finally, among 

all 5 psoriasis biopsies, we observe a population of pro-inflammatory fibroblasts (Fibroblast 

Cluster 4) marked by elevated expression of CCL19, TNFSF13B (BAFF), and CXCL12 (Figure 

3.6C-D). Notably, expression of CCL19 and BAFF by synovial fibroblasts have been implicated 

in the progression of rheumatoid arthritis [65, 66]. 
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Figure 3.6 | A. Force-directed plots for 7,237 fibroblasts colored by phenotypic sub-cluster (left) and 
stacked barplot showing the distribution of fibroblast phenotypic sub-clusters across samples (right). B. 
Force-directed plots for 7,237 fibroblasts colored by inflammatory skin condition (left) and stacked barplot 
showing the contribution of each inflammatory skin condition to fibroblast phenotypic sub-clusters (right). 
C. Force-directed graphs highlighting fibroblast cluster defining genes. D. Heatmap showing the normalized 
gene expression levels (log(scaled UMI + 1)) of fibroblast cluster-defining genes.  
 

Keratinocyte Differentiation Trajectories 

Within the epidermis, keratinocytes undergo a stereotyped differentiation process in which 

cells acquire altered morphology and phenotype as they mature (Figure 3.7A) [67]. Under 

physiologic conditions, basal keratinocytes continuously divide to give rise to the remaining cells 

of the epidermis [68]. Using keratinocytes from normal skin, we performed pseudo-temporal 

analysis to reconstruct the differentiation process of normal epidermal keratinocytes (Figure 3.7B; 

Methods) [69]. More specifically, in normal skin, we first identified a population of keratinocytes 

enriched for expression of KRT14, a marker of basal keratinocytes (Figure 3.7C) [70]. We then 

used known patterns of cytokeratin expression to infer localization of keratinocytes along a 
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supervised differentiation trajectory (Figure 3.7C and A2.6A) [4]. Our trajectory analysis revealed 

patterns of transcription factor and cytokeratin expression that closely correspond to previously 

established signatures of keratinocyte maturation in both normal skin samples for which we 

performed trajectory analysis (Methods; Figure A2.6A-B) [21]. Consistent with 

immunohistochemical staining from the Human Protein Atlas (Figure 3.7C) [71], we observed 

enriched expression of filaggrin (FLG), a protein in the outer layers of the epidermis [72], among 

keratinocytes that lie at the terminal points in the pseudo-temporal ordering (Figure 3.7C and 

Figure A2.6B).  

Figure 3.7 | Keratinocyte Differentiation Trajectories. A. Diagram showing the layers of the epidermis 
and morphologic changes associated with keratinocyte differentiation. B. t-SNE plot showing differentiation 
trajectory of keratinocytes from normal skin from basal cells (yellow) through differentiating cells (aqua) and 
terminal keratinocytes (purple). C. (Top-left) tSNE plot of normal keratinocytes with normalized KRT14 
expression values overlayed. (Top-right) Immunohistochemistry staining showing the expression of KRT14 
from the human protein atlas (Uhlén et al., 2015). (Bottom-left) tSNE plot of normal keratinocytes with 
normalized FLG expression values overlayed. (Bottom-right) Immunohistochemistry staining of FLG from 
the human protein atlas(Uhlén et al., 2015). Scale bars = 50 microns. D. Diffusion map of 10,777 
keratinocytes colored by inflammatory skin condition. Axes correspond to diffusion components 1,2, and 3. 
E. Diffusion map of keratinocytes colored by signatures of hair follicle-specific gene expression (Left: Outer 
Bulge, Inner Bulge and Upper Hair Follicle) and genes that distinguish basal (COL17A1), normal (KRT77) 
and inflamed (S100A9) keratinocytes. F. Volcano plot showing genes differentially expressed between 
psoriatic and normal keratinocytes. G. Heatmap showing gene-specific Pearson correlation values between 
diffusion pseudotime and gene expression for 2 normal skin biopsies and 5 psoriatic biopsies.  H. (Top) 
Immunofluorescence staining in normal (above) and psoriatic (below) for FOSL, IL36G, TNFAIP3, and 
APOBEC3. All images stained for nuclei (DAPI) and gene of interest (Red Fluorescence). Scale bar = 100 
microns. I. Immunofluorescence staining for IL-17R expression (green) in normal (left), uninvolved (middle), 
and psoriatic skin (right). Scale bar = 100 microns.  

 Continued 
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Having established a trajectory for normal keratinocyte differentiation, we next examined 

patterns of keratinocyte differentiation across pathologic conditions. To identify conserved and 

unique patterns across conditions, we constructed a combined diffusion map among the 10,777 

keratinocytes of the epidermis and hair follicle recovered across all 19 skin biopsies (Figure 3.7D-

E; Methods). While keratinocytes from most conditions closely align with normal differentiation, 

we observe marked deviation in the differentiation trajectory of psoriatic keratinocytes (Figure 

3.7D). We further observe distinct trajectories for basal keratinocytes (COL17A1) and cells of the 

hair follicle, where we see enrichment of published hair follicle signatures (Figure 3.7E) [73]. 

Consistent with previous observations, differential expression analysis reveals significant up-

regulation of antimicrobial peptides (S100A7, S100A8, S100A9) and pro-inflammatory cytokines 

(IL36G, IL36RN) in psoriatic keratinocytes (Figure 3.7E-F) [74].  

Based on increased sensitivity of Seq-Well S^3 to detect transcription factors observed in 

peripheral lymphocytes, we hypothesized that our data might enable identification of novel 

transcriptional regulators of psoriatic keratinocytes. To identify potential drivers of the psoriatic 

disease process within the epidermis, we performed differential pseudo-time correlation analysis 

between psoriatic and normal keratinocytes (Methods). Specifically, we separately constructed 

pseudo-time trajectories for normal (n=2) and psoriatic keratinocytes (n=5), calculated correlation 

values between diffusion pseudo-time and gene expression levels, and examined the difference 

in correlation values between psoriatic and normal keratinocytes (Figure 3.7G and A2.6A-B). 

Notably, we observed positive correlation of FOSL1, an AP-1 transcription factor, with diffusion 

pseudo-time in psoriatic keratinocytes, implying that FOSL1 is aberrantly expressed along the 

differentiation trajectory of psoriatic keratinocytes. To validate this observation, we performed 

immunofluorescence staining for FOSL1 protein, and measured increased levels of FOSL1 in 

psoriatic skin (Figure 3.7H; Methods). We validated the distribution of additional genes 

overexpressed or differentially correlated with diffusion pseudo-time in psoriatic keratinocytes 
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(including TNFAIP3, IL36G, and APOBEC3) at the protein level (Figure 3.7H and A2.6A; 

Methods). Finally, we examined the relationship between differential expression and difference 

in pseudotime correlation (Figure A2.6C). Here, we observe no overall relationship between 

differential expression and differential pseudotime, suggesting a more complicated picture of 

dysregulated gene expression in psoriatic keratinocytes.  

To further define differences in gene expression patterns between normal and psoriatic 

keratinocytes, we scored the expression levels of known cytokine response signatures using a 

series of reference signatures gene lists derived from population RNA-Seq of cultured 

keratinocytes exposed to multiple cytokines including IL-17A, IL-4, IL-13, TNFa, INFa and IFNg 

(Figure A2.6D, Methods) [75]. While IL-17 has been previously implicated in the pathogenesis 

of psoriasis, here we infer the identity of cells that dominate the IL-17 response, localizing the 

expression of IL-17 responsive genes to spinous keratinocytes [76]. To validate this observation, 

we performed immunofluorescent staining for IL-17R protein and measured the highest staining 

within spinous keratinocytes exclusively within psoriatic skin (Figure 3.7I; Methods). Collectively, 

these data provide novel insights into the localization IL-17 response in psoriatic keratinocytes.  

Discussion 

Here, we present an enhanced technique for high-throughput scRNA-Seq – Seq-Well S^3 

– that affords improved sensitivity for transcript capture and gene detection. Through use of a 

templated second-strand synthesis, S^3 recovers information typically lost in bead-based high-

throughput scRNA-Seq protocol such as Seq-Well or Drop-Seq. Specifically, S^3 reclaims mRNA 

molecules that are successfully captured and reverse transcribed but not labeled with a second 

primer sequence through template switching (Figure 3.1 and A2.1). Using Seq-Well S^3, we 

obtain a 5-10 fold increase in the number of unique molecules captured from cells at similar 

sequencing depth relative Seq-Well v1 (Figures 3.1, A2.1 and A2.2) [24]. Beyond aggregate 

increases in the number of transcripts recovered per-cell, the improvements in sensitivity made 
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possible by Seq-Well S^3 enable enhanced detection, and thus deeper examination, of lineage-

defining factors in immune and parenchymal cells – such as transcription factors, cytokines, and 

cytokine receptors among lymphocytes (Figure 3.1 and A2.2) – which are often transiently or 

lowly expressed [77]. Among CD4+ T cells isolated from PBMCs, for example, we observed rates 

of gene detection similar to those observed in Smart-Seq2, a best-in-class microtiter plate-based 

method (Figure 3.1F-G and A2.2F).  

Similarly, using Seq-Well S^3, we report improved paired detection of a and b TCR 

sequences from T cells in peripheral blood and tissue biopsies (Figures 3.3G and A2.5C). Among 

CD4+ T cells from PBMCs, we recover paired TCR a and b constant genes in 87.1% of cells. 

Together with targeted enrichment, amplification and sequencing, we anticipate that Seq-Well 

S^3 will enable improvements in TCR reconstruction and deep characterizations of clonotype-

phenotype relationships at scale [78]. Collectively, our validation experiments show that Seq-Well 

S^3 significantly augments the amount of information that can be recovered in massively-parallel 

scRNA-seq experiments, enabling high-resolution profiling of low-input biopsy samples at scale. 

With this enhanced method, here, we move towards a draft atlas of human skin 

inflammation by creating a compendium of cell-types and states for the broader research 

community [79]. Through use of Seq-Well S^3, we survey, at unprecedented resolution, the 

diversity of cell-types and states – e.g., among tissue resident T cells and myeloid cells – present 

across multiple types of skin inflammation. For example, GA and leprosy are two granulomatous 

diseases characterized by aggregates of lymphocytes and macrophages within the dermis, which 

are thought to arise from a delayed-type hypersensitivity response to  M. leprae infection (leprosy) 

or an unknown agent (GA) [80, 81]. Here, we find that both are characterized by the presence of 

Immature CD8+ CTLs and a cluster of cytotoxic cells containing CD8+ T-CTL, gd and NK cells; 

Figure 3.3). Although all conditions contain CD163+ dermal macrophages and various DC 

subpopulations, we observe a unique macrophage population in leprosy defined by expression of 
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extracellular proteases [82, 83] (Fulco et al., 2014; Verreck et al., 2004).  Moreover, GA uniquely 

contained specific populations of fibroblasts expressing SPOCK1, CRLF1, and COMP (Figure 

3.6), which likely reflect remodeling of the dermis with mucin deposition and alternation of elastin 

fibers [84, 85].  

Acne, meanwhile, is an inflammatory disease thought to arise in response to infection with 

P. acnes, resulting in the formation of lesions that resemble a wound following eruption of the hair 

follicle into the dermis [86]. Here, we observe 2 clusters of endothelial cells marked by expression 

of SLC9A3R2, a marker of endothelial homeostasis, and a signature of proliferation (Venule 

clusters 3 and 4, Figure 3.5) [57].  This increased angiogenesis and endothelial proliferation is 

most consistent with the proliferative phase of wound healing in acne [87].  

In psoriasis, T cells are thought to be a primary driver of inflammation, with dendritic cells 

playing a central role in the recruitment and polarization of T cells that contribute to the 

hyperproliferation of keratinocytes in the disease [29]. Across 5 patients with psoriasis, we report 

a sub-cluster of DCs (IRF4+ cDC2) that displays elevated expression of CCL17, CCL22 and IL12B 

(Figure 3.4G and Figure A2.5I). Importantly, a similar population of dermal cDC2 cells has 

recently been shown to drive psoriatic inflammation in mice and humans through the recruitment 

of inflammatory T cells [88, 89]. Although we detected a diversity in T cell subtypes in psoriatic 

lesions, we note few Th-17-like cells [90]. We further report a conserved population of fibroblasts 

in psoriasis that express pro-inflammatory cytokines and chemokines including CCL19 and BAFF, 

which have been implicated in Rheumatoid Arthritis and systemic sclerosis [65, 91].  

Leveraging the increased sensitivity of Seq-Well S^3, we performed pseudo-time 

correlation analysis to uncover an altered differentiation trajectory of keratinocytes compared to 

normal skin (Figure 3.7 and A2.6). From our pseudo-time correlation analysis, we detected 

dysregulated expression of FOSL1 in biopsies from 5 patients with psoriasis as a putative 

transcription factor involved in psoriatic differentiation, a finding which we validated through 
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immunofluorescent staining of healthy and psoriatic skin (Figure 3.7G).  Further, previous studies 

using in vitro keratinocyte based systems have suggested that more differentiated keratinocytes 

were the main responders to IL-17A, given larger effect sizes in differentiated compared to 

monolayer keratinocyte [76]. Using data generated with Seq-Well S^3 cross-analyzed against an 

IL-17 response signature in keratinocytes, we show that IL-17 responses are observed in 

keratinocytes from all layers of the epidermis, but that these responses are stronger in 

keratinocytes derived from more differentiated layers of the psoriatic epidermis (Figure S7D). 

This observation is corroborated by co-localization of the IL-17 receptor subunits (IL-17RA/IL-

17RC) in the upper layers of psoriatic epidermis (Figure 3.7I). 

Cost is a key factor in the selection of a scRNA-Seq method.  Prior to sequencing, the 

cost of the Seq-Well S^3 protocol is significantly less than those of commercial scRNA-Seq 

platforms. Specifically, the pre-sequencing cost of a single Seq-Well array is $343, while the pre-

sequencing costs for 10x genomics V2/V3 are $2,100 (Methods). Sequencing data for Seq-Well 

S^3 libraries are generated using Illumina NextSeq500/550 75-cycle kits ($1,570/kit), while 

Illumina NextSeq500/550 150-cycle kits are needed for 10x Genomics V2/V3 ($3,010 /kit). When 

comparing alignment rates between Seq-Well S^3 and 10x Genomics v3, we observe lower 

alignment rates for Seq-Well S^3 (52.3% alignment rate) as compared to 10x Genomics V3 

(89.5% alignment rate), which may be due, in part, to differences in read length. However, when 

considering both differences in efficiency and the costs of the two sequencing kits, both methods 

require approximately the same amount of money to obtain 50k aligned reads ($0.30 per cell for 

Seq-Well S^3 versus $0.33 for 10x v3). Finally, in either technology, the cost of processing per 

sample can be further reduced through sample multiplexing [92, 93].  

In conclusion, we describe a powerful massively-parallel scRNA-Seq protocol that enables 

improved transcript capture and gene detection from low-input clinical samples. Seq-Well S^3 

provides a competitive alternative for high-throughput scRNA-Seq that is compatible with clinical 
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study designs due to flexible stopping points (post-reverse transcription), has a high degree of 

technical reproducibility, and is compatible with targeted enrichment of molecules of interest [78, 

94]. Here, Seq-Well S^3 provides novel insights into putative mechanisms and the cellular 

localization of previously appreciated and unknown responses to specific inflammatory mediators 

in immunologic skin conditions in a fashion not previously achievable. Increases in the sensitivity 

of gene and transcript detection are increasingly important as single-cell atlasing efforts shift from 

detection of large differences between cell types within normal tissue to identification of subtle 

differences in cell state across cell types within diseased tissues. The increased sensitivity of 

gene detection and transcript capture afforded by S^3 enhances the strength of inferences that 

can be drawn from these types of single-cell data, as evidenced by the range of immune, stromal 

and parenchymal cell states uncovered in human skin inflammation. The S^3 protocol 

(Supplementary Seq-Well S^3 Protocol - Appendix 3) is easy to integrate into current bead-

based RNA-Seq platforms, such as Drop-Seq, making it broadly useful for the single-cell 

community, particularly in the setting of human disease. Importantly, S^3’s increases in library 

complexity and sequencing efficiency reduce costs relative to plate-based protocols, and 

providing researchers with a powerful and cost-effective alternative to commercial solutions in a 

format that can be deployed almost anywhere.  
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Materials and Methods 

Single-Cell Processing Pipeline 

We utilized Seq-Well, a massively-parallel, low-input scRNA-Seq platform for clinical 

samples, to capture the transcriptome of single cells. A complete, updated protocol for Seq-Well 

S^3 is included as a Supplementary Protocol (Appendix 3) and is hosted on the Shalek Lab 

website (www.shaleklab.com). Briefly, 10-15,000 cells were loaded onto a functionalized-

polydimethylsiloxane (PDMS) array preloaded with uniquely-barcoded mRNA capture beads 

(Chemgenes; MACOSKO-2011-10). After cells had settled into wells, the array was then sealed 

with a hydroxylated polycarbonate membrane with pore sizes of 10 nm, facilitating buffer 

exchange while confining biological molecules within each well. Following membrane-sealing, 

subsequent buffer exchange permits cell lysis, mRNA transcript hybridization to beads, and bead 

removal before proceeding with reverse transcription. The obtained bead-bound cDNA product 

then underwent Exonuclease I treatment (New England Biolabs; M0293M) to remove excess 

primer before proceeding with second strand synthesis. 

Templated Second Strand Synthesis 

Following Exonuclease I treatment, beads were washed once with 500uL of a TE-SDS 

(0.5% SDS) solution, and twice in 500uL of a TE-Tween (0.01% Tween) solution. After the second 

TE-TW wash the beads were solvated with 500uL of 0.1M NaOH and mixed for 5 minutes at room 

temperature using an end-over-end rotator with intermittent agitation to denature the mRNA-

cDNA hybrid product on the bead. Following denaturing, the NaOH was removed and beads were 

washed once with 1M TE, and then combined with a mastermix consisting of 40uL 5x maxima RT 

buffer, 80uL 30% PEG8000 solution, 20uL 10mM dNTPs, 2uL 1mM dn-SMART oligo, 5uL Klenow 

Exo-, and 53ul of DI ultrapure water. Second strand synthesis was carried out by incubating the 

beads for 1 hour at 37°C with end-over-end rotation and intermittent agitation. Following 

incubation, beads were sequentially washed twice with 0.5 mL of TE buffer with 0.01% Tween 
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20, and once with 0.5 mL of TE. Immediately prior to PCR amplification, beads were washed once 

with 0.5 mL of water and resuspended in 0.5 mL of water.  

PCR Amplification 

After second strand synthesis, PCR amplification was performed using KAPA HiFi PCR 

Mix (Kapa Biosystems KK2602). Specifically, a 40uL PCR Mastermix consisting of 25 uL of KAPA 

5X Mastermix, 0.4 uL of 100 uM ISPCR oligo, and 14.6 uL of nuclease-free water was combined 

with 2,000 beads per reaction. For each sample, the total number of PCR reactions performed 

varied based on the number of beads recovered following second strand synthesis. PCR 

amplification was performed using the following cycling conditions: an initial denaturation at 95°C 

for 3 minutes, then 4 cycles of 98°C for 20 seconds, 65°C for 45 seconds, and 72°C for 3 minutes, 

followed by 9-12 cycles of 98°C or 20 seconds, 67°C or 20 second, and 72°C for 3 minutes, and 

then a final extension of 72°C for 5 minutes. Following PCR amplification, WTA products were 

isolated through two rounds of SPRI purification using Ampure Spri beads (Beckman Coulter, 

Inc.) at both 0.6X and 0.8x volumetric ratio and quantified using a Qubit. 

Optimization of Second Strand Synthesis 

We performed a series of experiments to validate the performance of the second-strand 

synthesis protocol relative other techniques. For the comparison of the Seq-Well protocol with 

and without second-strand synthesis, we performed species-mixing experiments and PBMC 

comparisons. For species-mixing experiments, we applied a mixture of 5,000 HEK293 and 5,000 

NIH-3T3 cells to a loaded Seq-Well device, while for PBMC comparisons, we loaded a total of 

10,000 PBMCs. In optimization experiments, PBMCs were thawed and immediately loaded 

directly onto Seq-Well devices without stimulation. Following bead removal, beads were split into 

separate reverse transcription reactions with and without the template-switching oligo. After 

reverse transcription and ExoI treatment, beads for each comparison were processed separately 

with and without the second-strand synthesis protocol.  
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Specifically, we performed a series of optimization experiments to validate the 

effectiveness of Seq-Well S^3. Specifically, we performed a series of control experiments using 

beads from a single Seq-Well array loaded with 10,000 PBMCs. For each array we split the beads 

into six equal fractions and performed the following controls: (1) we performed PCR amplification 

without the use of second-strand synthesis. (2) we performed random second-strand synthesis 

followed by PCR amplification. (3) we omitted the template switching oligo without the use of 

second-strand synthesis. (4) we omitted the template switching oligo but subsequently performed 

random second-strand synthesis. (5) we examined the effect of heat inactivation of the reverse 

transcription reagent without the use of second strand synthesis. (6) we examined the effect of 

heat inactivation of the reverse transcription reagent followed by random second strand synthesis 

(Figure A2.1B-C). Following PCR amplification, products were obtained from all conditions with 

the exception of Condition 3 (Seq-Well V1/ No TSO), which did not yield appreciable WTA 

product.  

Comparison of 10X Genomics (V2 Chemistry) and Seq-Well S^3 

Human PBMC were thawed and rested overnight. Cells were stimulated for 18 hours by 

adding aCD3 (UCHT1) and aCD28 (CD28.2) antibodies to the bulk PBMC culture at a 

concentration of 1mg/mL and 5 mg/mL, respectively, and CD4+ T cells were enriched following 

stimulation using magnetic negative selection (Stemcell Technologies). Following isolation, T 

cells were stained with calcein violet live stain (Thermo), Sytox dead stain (Thermo), and aCD45-

AF647 (HI30) antibody at 4C for 30 minutes. After two washes, aliquots of the cells were placed 

on ice and sorted directly into RLT buffer using a Sony SH800S Sorter for Smart-Seq2 processing 

and another unstained sample for 10X Chromium analysis. Once the cells were delivered, a third 

aliquot was loaded onto a Seq-Well array. Single-cell libraries were generated using the Smart-

Seq 2, 10X V2, and Seq-Well S^3 protocols.  

Sequencing Library Preparation 
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A total of 1ng of WTA product at a concentration of 0.2 ng/uL was combined with 10 uL of 

Buffer TD and 5 ul of Buffer ATM and incubated at 55°C for 5 minutes. Following tagmentation, 5 

uL of Buffer NT was added and incubated at room temperature for 5 minutes to neutralize the 

reaction. A total of 8 uL of nuclease-free water, 15uL of buffer NPM, 1 uL of Custom P5 hybrid 

Oligo, and 1 uL of N700 Index oligo were combined and PCR amplification was performed using 

the following cycling conditions: an initial denaturation of 95°C for 30 seconds, then 12 cycles of 

95°C for 10 seconds, 55°C for 30 seconds, and 72°C for 30 seconds, followed by a final extension 

of 72°C for 5 minutes. PCR products were isolated through two rounds of SPRI purification (0.6x 

and 0.8x volumetric ratios) and quantified using a Qubit. Library size distributions were 

determined using an Agilent Bioanalyzer D1000 High Sensitivity Screen tape.  

 

DATA ANALYSIS OF COMPARISON EXPERIMENTS 

DNA Sequencing and Alignment of PBMC Optimization samples and Downsampling  

PBMC optimization experiments were all sequenced on NextSeq500 75 cycle kits. 

Sequencing read alignment was performed using version 1 of the Drop-Seq pipeline (Macosko et 

al., 2015). NextSeq runs were loaded at a final concentration of 2.2pM using NextSeq 550 v2 

sequencing kits at the Ragon Institute. Briefly, for each sequencing run, raw sequencing reads 

were converted from bcl files to FASTQs using bcl2fastq and demultiplexed using Nextera N700 

indices that corresponded to individual samples. Demultiplexed FASTQs were then aligned using 

an implementation of DropSeqTools v1.0 maintained by the Broad Institute for data analysis, and 

aligned to the Hg19 genome using standard parameters. Individual reads were tagged with a 12-

bp barcode and 8-bp unique molecular identifier (UMI) contained in Read 1 of each sequencing 

fragment. Following alignment, aligned read 2 sequences were grouped by the 12-bp cell 

barcodes and subsequently collapsed by the 8-bp UMI for digital gene expression (DGE) matrix 

extraction and generation. 
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PBMC Comparison Experiments 

We generated data matrices for PBMC data from 10x genomics and Seq-Well S^3. 

Initially, we performed downsampling to an average sequencing depth of 42,000 reads per cell. 

Specifically, downsampling was performed on Seq-Well S^3 to match the sequencing depth of 

10x Genomics v2. For each data set, we performed variable gene identification and selected 

variable genes for downstream analysis (Seq-Well S^3, 856 variable genes and 10x Genomics 

v2, 516 genes). We performed principal components analysis and selected the first 20 principal 

components to perform a t-SNE dimensionality reduction. We then performed cluster identification 

and discovered clusters representing CD4+ T cells, CD8+/NK cells, and B cells for each of the 

technology platforms (Figure A2.2A). We examined the proportion of cell types recovered 

between Seq-well S^3 and 10x Genomics v2 and performed a Chi-Square test to examine 

differences in the proportion of recovered cell types (P = 0.971).  

Within each cell type identified between Seq-Well S^3 and 10x Genomics V2, we 

examined differences in aggregate gene detection and transcript capture (Figure A2.2C). We 

initially performed a Lilliefors test to assess normality of the distribution of genes and UMIs for 

each technique. Based on these results, we determined to use a Mann-Whitney U Test to 

determine difference in aggregate gene and transcript detection between techniques (Figures 

3.1, A2.1, and A2.2). As a measure of library complexity, we examined the linear relationship 

between the number of UMIs captured and aligned sequencing reads. Specifically, across cell 

types for each technique, we plotted the number of UMIs against the number of aligned reads 

and calculated the slope of the regression line for each condition (Figure 3.1B-C). For 

comparisons of library complexity, we constructed a multivariable linear regression model in which 

the number of transcripts per cell was modeled follows: nUMI ~ Intercept + B1*nReads + 

B2*Technique + B3*nReads*Technique. From these models, we determined statistical 

significance of the difference in slope (i.e. library complexity) based on p-values for the interaction 
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term B3*nReads*Technique, the magnitude and significance of which correspond to a difference 

in slope (i.e. library complexity or the number of UMIs per aligned read) (Figure 3.1B and A2.1B-

C). For example, in a library of low-complexity application of additional sequencing reads might 

result in detection of a new transcript in every 20th aligned read (i.e. slope = 0.05). Conversely, a 

library of high complexity, might result in detection of a new transcript with every 4 aligned reads 

(i.e. slope = 0.25). Critically, these comparisons should be performed on libraries that have been 

sequenced or down-sampled to similar depths as over-sequencing can augment the relative 

perception of differences in library complexity. Specifically, libraries that have been “over-

sequenced” will appear to have lower complexity because unique molecular identifiers will 

eventually accumulate additional reads upon saturation.  

Comparison of Gene Detection Rates  

For each cell-type cluster, we calculated the rate of detection for each gene as the 

proportion of cells with a non-zero expression value. Gene detection rates were separately 

calculated across CD4+ T cells, B cells, CD8+/NK cells, and monocytes for both Seq-Well S^3 and 

10x Genomics v2. We further examined differences in gene detection rates among transcription 

factors, cytokines and surface receptors. For comparisons of relationship between gene-detection 

rates and overall expression levels, we calculated the expression level of individual genes as the 

average normalized expression value within each cell type for all cells identified in both Seq-Well 

S^3 and 10x v2 data (Figure 3.1 and A2.2). To test the statistical significance of differences in 

gene detection frequencies, we performed a chi-square test using the number of cells in which a 

given gene had a non-zero expression values for each technique. We further performed 

comparisons between Seq-Well S^3 and 10x Genomics v3 (Figure A2.3). 

 

PROFILING CELL STATES IN HUMAN SKIN INFLAMMATION 

IRB Statement 
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Informed written consent was obtained from human subjects under a protocol approved by the 

institutional review boards of the University of Michigan and University of California Los Angeles 

(UCLA). This study was conducted according to the Declaration of Helsinki Principles.      

Processing of Human Skin 

Skin biopsies were obtained from a total of 9 patients at the University of California, Los 

Angeles and University of Southern California Hansen’s Clinic. For each sample, a 4-mm punch 

biopsy was obtained following local anesthesia and was placed immediately into 10 mL of RPMI 

on ice. Initially, skin biopsies were incubated in 5mL of a 0.4% Dispase II solution (Roche Inc.) at 

37°C for 1 hour with vigorous shaking. The dermis and epidermis were then carefully separated 

using forceps and transferred to separate tubes for additional processing. Epidermal samples 

were placed in 3mL of 0.25% Trypsin and 10U/mL DNAse for 30 minutes at 37°C. Trypsin was 

neutralized with 3mL of fetal calf serum (FCS), and the tissue was passed through a 70-micron 

nylon cell strainer which was washed with 5mL of RPMI. Epidermal cells were then pelleted at 

300xg for 10 minutes and counted. Dermal samples were minced with a scalpel and incubated in 

a solution of 0.4% collagenase 2 and 10 U/mL DNAse for 2 hours at 37°C with agitation. The cell 

suspension was passed through a 70-micron cell strainer and washed with 5mL of RPMI. Cells 

were pelleted at 300xg for 10 minutes, resuspended in 1mL of RPMI and counted. MACS 

enrichment for CD207+ cells was performed for epidermal fractions from biopsies from normal 

skin 1 and leprosy 1.  

Sequencing and Alignment of Skin Samples 

Sequencing read alignment was performed using version 2 of the Drop-seq pipeline 

previously described in Macosko et al. Briefly, for each Nova-Seq sequencing run, raw 

sequencing reads were converted from bcl files to FASTQs using bcl2fastq based on Nextera 

N700 indices that corresponded to individual samples. Demultiplexed FASTQs were then aligned 

to the Hg19 genome using STAR and the DropSeq Pipeline on a cloud-computing platform 
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maintained by the Broad Institute. Individual reads were tagged with a 12-bp barcode and 8-bp 

unique molecular identifier (UMI) contained in Read 1 of each sequencing fragment. Following 

alignment, reads were grouped by the 12-bp cell barcodes and subsequently collapsed by the 8-

bp UMI for digital gene expression (DGE) matrix extraction and generation.  

Tissue Immunofluorescence Staining 

Formalin fixed, paraffin-embedded tissue slides obtained from psoriasis patients and 

normal controls were heated for 30 min at 60°C, rehydrated, and epitope retrieved with Tris-

EDTA, pH 6. Slides were blocked, incubated with primary antibody APOBEC3 (LS-C98892-400; 

Lifespan bioscience), FOSL (A03927; Boster), IL-36G (sc-80056; Santa Cruz Biotechnology), 

TNFAIP3 (ab74037, Abcam), IL-17RC (LS-C400522, Lifespan bioscience), and IL-17RA (LS-

C359381, Lifespan bioscience) overnight at 4 °C. Slides were then washed and incubated with 

Donkey anti-Rabbit IgG 594, Donkey anti-Mouse IgG 488, or Donkey anti-Rat IgG 594 (all from 

Invitrogen) for 1 h at room temperature. Slides were washed and prepared in mounting medium 

with 4',6-diamidino-2-phenylindole (DAPI) (VECTASHIELD Antifade Mounting Medium with DAPI, 

H-1200, VECTOR). Images were acquired using Zeiss Axioskop 2 microscope and analyzed by 

SPOT software 5.1. Images presented are representative of at least three experiments from 

separate donors. 

 

DATA ANALYSIS OF SKIN SAMPLES 

Cell Quality Filtering  

Cells were initially filtered on the basis of gene detection (> 500 genes per cell) and 

transcript detection (> 700 umis per cell) for inclusion in downstream analysis. Further, cells with 

fractional representation of mitochondrial genes greater than 40% were excluded. To account for 

potential transcript spreading, we removed any duplicated or hamming=1 barcodes among 
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samples sequenced on the same Nova-Seq runs. For each sample, we performed variable gene 

identification and calculated 30 principal components. Within each sample, we performed 

jackstraw simulations to identify significant principal components that were then used to perform 

t-SNE dimensionality reduction and clustering for each sample using only significant principal 

components. Within each sample, clusters defined exclusively by mitochondrial gene expression, 

indicative of low-quality cells, were removed from downstream analysis.  

Removal of Ambient RNA Contamination 

 Within each sample, we removed ambient RNA contamination using SoupX (Young and 

Behjati, 2018). Initially, we determined appropriate UMI thresholds to estimate background 

contamination using EmptyDrops (Lun et al., 2019). Specifically, we examined the distribution of 

P-values UMI thresholds between 30 and 100 and selected the UMI threshold in which the 

distribution most closely approximated a uniform distribution. For each sample, we calculated an 

array-specific ‘soup’ profile among barcodes below the UMI threshold. To calculate estimated per-

cell contamination fractions, we manually selected genes observed to be bimodally expressed 

across cells, which suggest that these genes are predominantly expressed in a single-cell type, 

but are observed at low-levels in other cell types for which endogenous expression would not be 

expected. For each array, we removed individual transcripts most likely to be contamination from 

each single-cell based on the estimated contamination fraction. Specifically, individual transcripts 

were sequentially removed from each single-cell transcriptome until the probability of subsequent 

transcripts being soup-derived was less than 0.5 to generate a background-corrected UMI matrix 

for each Seq-Well S^3 array. 

Doublet Removal 

We performed doublet removal for each sample individually using DoubletFinder 

(McGinnis et al., 2018). For each sample, we calculated the expected doublet rate based on the 

cell loading density. For each sample, a total of 20,000 cells were loaded to a loaded Seq-Well 
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device containing 85,000 wells (lambda = 20,000). For each array, we calculated an expected 

doublet rate of 2.37%. For each array, we generated pseudo-doublets using the following 

parameter values in DoubletFinder: proportion.artificial = 0.25 and proportion.NN = 0.01. Cells 

were identified as doublets based on their rank order in the distribution of the proportion of artificial 

nearest neighbors (pANN). Specifically, we identified the pANN value for the cell at the expected 

doublet percentile and used the corresponding pANN value as a threshold to remove additional 

cells with pANN greater than or equal to this value.  

Analysis of Combined Skin Dataset 

After background and doublet correction, we performed integrated analysis on a combined 

dataset of 49,373  cells. We performed variable gene identification and dimensionality reduction 

to identify 38 cell type clusters using Louvain clustering (Resolution = 1.75). We identified genes 

enriched across clusters to identify generic cell types. We performed an initial round of 

dimensionality reduction and cluster identification among cell types used in subsequent analysis 

(i.e. T cells, myeloid cells, B and plasma cells, endothelial cells, fibroblasts, and keratinocytes). 

Based on the initial sub-clustering results for each cell type, we removed sub-clusters defined by 

residual contamination not corrected for by SoupX background correction and doublet filtering. In 

total, we filtered 11,099 cells from sub-clusters defined by residual contamination: 1,471 from the 

T cell sub-analysis, 497 from the myeloid sub-analysis, 2,444 from the endothelial sub-analysis, 

2,512 from the fibroblast sub-analysis, and 4,175 from the keratinocyte sub-analysis.  

After this stringent quality control filtering step, a total of 38,274 cells were included in 

downstream analysis of the atlas of skin inflammation. We first performed variable gene 

identification and identified 5,897 genes as variably expressed. We performed UMAP 

dimensionality reduction to generate a 2-dimensional representation of gene expression data, 

and we identified a total of 35 cell type clusters using Louvain clustering (Resolution = 1.5) in 

Scanpy (Wolf et al., 2018). To understand similarity of identified clusters, we performed 
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hierarchical clustering of identified cell type clusters (Figure A2.2C). Specifically, across clusters 

we generated a list composed of the top 25 cluster-defining genes from each cluster. Average 

gene expression values within each across the 511 unique cluster-defining genes was used to 

perform hierarchical clustering. A dendrogram was generated to display the similarity of clusters, 

and the observed relationships were used to inform rational combination of related cell type 

clusters for combined analysis (Figure A2.2C). Cell type assignments were assigned through a 

combination of literature-based assessment of expression signatures and manual curation. In 

total, we identified clusters representing 15 major cell types including B cells, dendritic cells, 

fibroblasts, hair follicle, keratinocytes, Langerhans cells, lymphatics, mast cells, macrophages, 

neurons, plasma cells, sweat gland, T cells, vascular smooth muscle cells (VSMCs) and venules.  

Cell-type Identification Using SingleR 

To validate cell-type identification based on the combination of literature and manual 

curation, we performed automated cell-type identification using SingleR (Aran et al., 2019). Here, 

we classified 38,274 using the blueprint encode reference dataset. Cell types assigned by SingleR 

were compared to the manually assigned cell-type classifications (Figure A2.4B). Where suitable 

reference populations exist in the blueprint encode dataset, we observe close correspondence 

between manual classification and automated classification in SingleR.  

Identification of T cell Sub-Clusters 

We performed sub-analysis for numerous cell-types to examine additional variation within 

major cell types. Among the 4,943 T cells identified in the total dataset, we identified 5,574 

variable genes that were used to construct a force-directed graph. We further used this set of 

variable genes to perform Louvain clustering (Resolution = 0.8) and identified a total of nine T cell 

sub-clusters. Cell-type identities were established by examining the expression of known marker 

genes corresponding to CD4+ T helper and CD8+ T cell subsets. We performed comparison of 

identified T cell signatures to previously identified signatures in Savant (Lopez et al., 2017) 
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(Figure A2.5A). To further define variation among both CD8 T cells and NK-Cytotoxic cells, we 

performed additional sub-grouping analyses. In both cases, we performed sub-analyses in which 

UMAP dimensionality reduction was performed using a total of 5 principal components calculated 

across variable genes using Seurat. For CD8+ T cells, we identified sub-groupings in Seurat using 

a resolution of 0.3, while a resolution of 0.6 was used for sub-grouping analysis for NK-Cytotoxic 

T cells (Figure A2.5B).  

T cell Receptor Detection and Clonal Expansion 

 Initially, we examined the detection rates for TCR a and b (Constant, V and J genes) 

among CD4+ T cells from experiments performed on PBMCs using the Seq-Well V1, Seq-Well 

S^3 protocol and 10x v2 (Figure A2.5C). Specifically, detection of constant genes was 

determined by non-zero values for either TRAC or TRBC2 genes for a and b constant genes, 

respectively. Similarly, detection of TRAV and TRBV sequences was determined on the basis of 

a non-zero value for any TRAV or TRBV gene, We further examined the rate of TCR detection 

across 2,908 T cells obtained from human skin biopsies. Specifically, we examine detection rates 

across multiple sequencing depths: <5,000, 5,000-25,000, 25-000-100,000, and > 100,000 

aligned reads per cell. (Figure 3.3E).  

 We further examined the extent of conservation of V gene usage as a proxy for clonal 

expansion. Specifically, for skin sample, we examined the extent of conserved V gene expression 

(Figure 3.3F). We examined the distribution of TRAV and TRBV gene expression and identified 

the V-gene (TRAV or TRBV) with the highest expression level for each T cell. We examined the 

distribution of TRAV and TRBV genes within each sample to identify potential clonal expansions. 

To understand the divergence from uniform distribution, we calculated the gini coefficient and the 

Shannon divergence for TRAV and TRBV sequences within each sample (Figure 3.3F). 

Identification of Myeloid Heterogeneity  
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We performed sub-analysis of myeloid populations observed in skin, which include 

Dendritic cells, Macrophages, Mast cells, and Langerhans cells identified in global analysis of 

38,274 total cells. Using a combined dataset of 5,010 myeloid cells, we performed variable gene 

identification and dimensionality reduction in Scanpy. Specifically, we constructed a force-

directed graph across 6,599 variable genes and performed Louvain clustering (resolution = 0.80), 

and we obtained 10 sub-clusters of myeloid cells (Figure A2.5D).  

 To understand differences in Langerhans cells in normal skin, we performed differential 

expression analysis within each cluster of Langerhans cells (Figure A2.5D). Results presented 

in Figure 3.4E represent differential expression results between Langerhans cells from Myeloid 

cluster 8 between normal and leprosy skin biopsies. We further performed gene-set enrichment 

analysis among genes upregulated in Langerhan’s cells from leprosy samples by comparing to 

signatures contained in the MSigDb database.  

 We performed additional sub-grouping among 951 dendritic cells and performed UMAP 

dimensionality reduction and Louvain clustering (resolution =0.45). We identified 5 sub-groupings 

of dendritic cells, and identified genes enriched within each cluster by performing a wilcox test in 

Seurat. To understand how dendritic cells related to previous findings, we performed comparisons 

to published signatures of dendritic cell phenotypes [9, 10]. Specifically, we generated expression 

scores using the top 10 genes using the AddModuleScore function in Seurat and examined the 

distribution of signature scores (Figure A2.5F-G). We determined significance of cluster 

enrichment by performing 1,000 permutations in which cell and signature score identifiers were 

randomly re-assigned. Upon permutation testing, we observed significant enrichment among DC 

sub-group 4 (cDC1) for a signature corresponding to CLEC9A+ cDC1 cells (P<0.05, Permutation 

Test; Figure A2.5F). 

Identification of Endothelial Heterogeneity  
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We performed variable gene identification across 8,571 endothelial cells identified in the 

global analysis across 19 skin biopsies. We generated a force-directed graph and performed 

Louvain clustering (resolution = 0.6) among 5,082 variable genes, which revealed 9 sub-clusters 

of endothelial cells used in downstream analysis. To identify genes enriched in each endothelial 

sub-cluster, we performed a wilcox test in Seurat. We further examined the distribution of 

addressin expression across endothelial subsets using the set of addressins detected in 

endothelial cells (Figure 3.5E).  

Identification of Fibroblast Heterogeneity 

 We performed variable gene identification across 7,237 fibroblasts identified in global 

analysis. We performed dimensionality reduction across 4,825 variable genes and performed 

Louvain clustering (Resolution = 0.6), revealing 10 sub-clusters of fibroblasts. For each fibroblast 

sub-cluster, we examined the relative contribution of cells from each sample and condition. 

Further, we examined the distribution of fibroblast sub-clusters within each sample. For each sub-

cluster, we performed enrichment analysis to identify cluster-defining genes.  

Pseudo-temporal Reconstruction of Epidermal Keratinocytes 

Initially, we performed diffusion analysis across all keratinocytes and hair follicle cells 

using the Diffmap function in Scanpy [26], which implements a method for diffusion pseudotime 

reconstruction (Haghverdi et al., 2015). Within normal and psoriatic keratinocytes, a population of 

basal keratinocytes was identified on the basis of expression of  KRT14 (Figure 3.7C). Initially, 

we performed pseudo-temporal analysis within normal keratinocyte separately, using the basal 

keratinocyte population as the origin of the pseudo-temporal ordering. After observing distinct 

developmental trajectories among psoriatic keratinocytes (Figure 3.7D), we performed differential 

expression analysis between normal and psoriatic keratinocytes in Seurat using a wilcox rank-

sum test across total keratinocytes and among basal, differentiating, and terminal keratinocytes.  
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Differentiation trajectories for individual samples were constructed using dyno 

(https://rdrr.io/github/dynverse/dyno/man/dyno.html) [69]. Specifically, we used Scorpius to 

generate diffusion pseudo-time reconstructions of normal and psoriatic keratinocytes (Figure 

A2.6). We examined gene expression patterns correlated with pseudo-temporal order across 

normal keratinocyte populations. We performed differential pseudo-time correlation analysis  

between normal and psoriatic keratinocytes for 2 normal skin samples and 5 psoriasis samples. 

Here, for each pseudo-temporal reconstruction, we performed linear regression between pseudo-

time values and gene expression values for normal and psoriatic keratinocytes. We then 

calculated the difference in pseudo-time correlation between psoriatic and normal keratinocytes 

to identify genes that are uniquely involved in the development of psoriatic keratinocytes (Figure 

3.7G).  

Keratinocyte Cytokine-Response Profiles  

Among both normal and psoriatic keratinocytes, we generated cytokine response scores 

using a series of reference datasets. Specifically, bulk RNA-sequencing references were 

previously generated from in vitro experiments in which cultured keratinocytes were stimulated 

with cytokines, individually or in combination. We used expression signatures generated by 

exposing keratinocytes to IL-17A, IL17-A + TNF-a, TNF-a, IFN-a, IL-4, IL-13, and IFN-g. 

Expression signature were generated relative an unstimulated control population of keratinocytes. 

For each cytokine condition, we used the top 100 differentially expressed genes to generate a 

cytokine response score across both psoriatic and normal keratinocytes. We then examined the 

extent of cytokine response across basal, differentiating and terminal keratinocytes between 

normal and psoriatic keratinocytes.  
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Introduction 

Mycobacterium tuberculosis (Mtb) remains a major threat to global health. The latest 

World Health Organization analysis of the global burden of tuberculosis (TB) estimates 10 million 

new cases and 1.5 million deaths per year in 2018 [1]. While ~90% of those infected individuals 

remain asymptomatic, the features of protective immunity are still largely unknown.  

Mtb infection is characterized by the formation of granulomas, primarily in the lungs and 

thoracic lymph nodes [2, 3]. The TB granuloma is an organized structure of immune, parenchymal 

and stromal cells that forms in response to persistent Mtb infection, and consists of macrophages, 

neutrophils, and lymphocytes [4-7]. Granulomas function both as the niche in which the bacillus 

can grow or persist and an immunological microenvironment in which host cells interact to control 

or kill Mtb and prevent dissemination. The mere presence of a granuloma is insufficient to control 

infection; instead, proper functioning of all granulomas in a host determines the ultimate outcome 

of infection [5-9]. T cells, macrophages and neutrophils in granulomas are generally considered 

critical to the control of initial and persistent Mtb infection, mediating the inflammatory balance 

[10]. Recent studies in non-human primates (NHPs) have shown that granulomas have 

independent trajectories within a host with respect to inflammation (measured as FDG avidity by 

PET-CT imaging), size, number and types of cells, bacterial burden, dissemination risk and ability 

to kill Mtb [3, 8, 11-14].  

Bacterial burden in individual granulomas is highest at 4-6 weeks post-infection and 

decreases over time even in animals with active disease, while the number of Mtb chromosomal 
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equivalents (CEQ), a measure of cumulative burden, is similar in granulomas at different times 

[13, 15]. In a study of 38 animals, the onset of a significant decrease in the bacterial burden occurs 

at 10 weeks post infection, where animals have both restrictive and permissive granulomas. In 

the present study, we chose selected this time point (10-weeks post-infection) to interrogate 

granuloma-level immune profiles that contribute to bacterial control.   

 Comprehensive study of the cellular composition of Mtb granulomas using standard 

methods (e.g. flow cytometry or mass cytometry) has been limited by the small number of cells 

that can be obtained from individual lesions. Single-cell sequencing (scRNA-Seq) enables 

unbiased profiling of immune, parenchymal and stromal responses in complex tissues. In the 

present study, we performed high-throughput scRNA-Seq using the Seq-Well platform [16] to 

understand the cellular and molecular correlates of Mtb control at the level of individual 

granulomas.  

 

Results 

Study population 

Four cynomolgus macaques were infected with a low dose of Mtb (Erdman strain) for 10 

weeks and included in this study (Figure 4.1A). Progression of Mtb infection and granuloma 

formation was monitored with PET-CT scans at 4, 8, and 10 weeks following Mtb infection. At 

necropsy, granulomas were harvested and bacterial burden was interrogated using (1) serial CFU 

assays to obtain an estimate of viable bacterial load and (2) sequencing to determine the number 

of Mtb chromosomal equivalents as a measure of cumulative bacterial   burden (Figure 4.1A). 

For each animal, we recorded total lung flurodeoxyglucose (FDG) activity by PET-CT and 

observed that overall level of lung inflammation ranged from low to high FDG activity at 4 weeks 

post-infection (Figure 4.1B). Over the 10-week course of infection, each animal followed a 

different trajectory in total lung FDG (Figure 4.1B). We also monitored granuloma-level dynamics 

throughout the course of infection, measuring PET intensity (i.e. FDG uptake) (Figure 4.1C).  
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At necropsy, individual granulomas were excised from the lung of the infected animals. 

We randomly selected a total of 26 granulomas from 4 animals that were identified by pre-

necropsy PET-CT scans for scRNA-seq analysis. Granulomas were isolated during necropsy and 

mechanically and enzymatically dissociated to generate a single-cell suspension (Methods). 

Approximately 15,000-20,000 cells from each granuloma were applied to Seq-Well devices 

loaded with  barcoded mRNA capture beads. A portion of the single-cell suspension was further 

used for enumeration of bacterial burden (CFU) and cumulative bacterial load (CEQ) for each 

granuloma (Methods). 

 

Figure 4.1 | Dynamics of M. tuberculosis infection in non-human primates. (A) Illustration of the study 
design. 4 cynomolgus macaques were bronchoscopically infected with a low-dose inoculum of Mtb (Erdman 
strain). Serial PET-CT was performed at 4, 8, and 10-weeks post-infection. 26 granulomas were randomly 
selected at necropsy. End-point bacterial burden was determined through serial CFU assays, while 
cumulative bacterial burden was determined by sequencing of Mtb chromosomal equivalents (Methods). 
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(B) Scatterplot showing total lung FDG (log10 – FDG) for each animal at 4, 8 and 10-week PET-CT scans. 
(C) Boxlplots showing the distribution of granuloma-level CFU in 4 cynomolgus macaques. (D) Boxplots 
showing granuloma-level CFU organized by tertiles. Colors correspond to CFU tertiles (Green: 0-500 CFU, 
Yellow: 500-5000 CFU, and Red: >5000 CFU). (E) Boxplots showing granuloma-level CEQ organized by 
CFU tertiles. Colors correspond to CFU tertiles (Green: 0-500 CFU, Yellow: 500-5000 CFU, and Red: >5000 
CFU). (F) Boxplots showing the ratio between CFU (viable bacterial at end-point) and CEQ (cumulative 
bacterial burden). Higher log10(CFU/CEQ) ratios correspond to increased Mtb survival.  
 

Among these 26 granulomas, we observe a broad range of granuloma-level bacterial 

burden with CFU values ranging from no bacterial growth to 4.56 log10 CFU/granuloma, which 

enables interrogation of the relationship between granuloma composition and bacterial control  

(Figure 4.1C-D). We evaluated the bacterial burden by tertiles (low: 0-500 CFU, mid: 500-5,000 

CFU, and high: >5,000 CFU) to identify trends in cellular composition across the range of bacterial 

burden (Figure 4.1D). Importantly, we observed a significant difference in bacterial burden 

between granulomas with low CFU (median: 1.78 log10 CFU/granuloma) and high CFU (median: 

4 log10 CFU/granuloma) (Figure 4.1D; P <0.0001).  

We next sought to understand whether low CFU values merely reflect absence of bacterial 

growth or the presence of immune control. Here, we initially examined the CEQ values across 

CFU tertiles and observed similar cumulative bacterial loads between granulomas with low 

(median 4.31 log10 CEQ/granuloma), mid (4.88 log10 CEQ/granuloma) or high CFU values (4.37 

log10 CEQ/granuloma) (Figure 4.1E), suggesting that all granulomas supported similar cumulative 

growth of Mtb over the course of infection. In order to quantify the extent of killing, we calculated 

a ratio between CFU (i.e. end-point bacterial burden) and CEQ (i.e. cumulative bacterial burden) 

(Figure 4.1F; Methods). We found that that granulomas with the lowest bacterial burdens had 

significantly higher killing (2.3 -log10 CFU/CEQ per granuloma) than lesions with the highest 

bacterial burden (0.62 -log10 CFU/CEQ per granuloma, P=0.0006, Kruskal-Wallis test; Figure 

4.1F), indicating that the immune composition of these granulomas could play a greater role in 

Mtb-killing and restricting bacterial growth.  

 

Single-cell Sequencing of Mtb Pulmonary Granulomas 
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In order to perform an unbiased evaluation of the cellular composition of TB lung 

granulomas,  we performed high-throughput scRNA-seq on 26 granulomas from 4 animals using 

the Seq-Well platform (Figure 4.2A) [16]. A single-cell suspension of individual granulomas was 

applied to the Seq-Well device and processed as previously described (Methods) [16]. After 

robust technical correction, we performed downstream analysis on 109,584 high-quality single-

cell transcriptomes (Methods). Single-cell transcriptional profiles separated into 24 gross clusters 

which were assigned a generic cell type identity using a combination of computational 

classification and manual curation (Methods).  

 In total, we identified 13 generic cell types, with numerous sub-clusters, particularly among 

T cells and macrophages. Specifically, we found B cells (CD79A and BANK1), conventional 

dendritic cells (cDCs, CLEC9A), plasmacytoid dendritic cells (pDCs, LILRA4), endothelial cells 

(CD93), erythrocytes (HBB), fibroblasts (COL1A1), macrophages (LYZ), mast cells (CPA3), 

neutrophils (CSF3R and PLEK), plasma cells (JCHAIN), T cells (CD3D and IL7R), Type 1 

Pneumocytes (AGER) and Type 2 Pneumocytes (SFTPB and SFTPC) (Figure 4.2B-C). For each 

generic cell type, we observed exclusive enrichment of a specific cell-type gene expression 

signature for each cluster. We furthered performed extensive validation of cell-type assignments 

through comparison to reference expression signatures from multiple sources including the 

Tabula muris [17], Mouse Cell Atlas [18], and Savant database (Methods) [19].  
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Figure 4.2 | Single-cell sequencing of MTB granulomas. (A) Overview of single-cell workflow and 
analytic pipeline. 26 granulomas were collected at necropsy and dissociated. We performed scRNA-Seq 
on 15,000 – 20,000 cells using the Seq-Well platform including targeted enrichment and sequencing of ab 
TCR sequences. (B) UMAP plot of 109,584 cells from 26 granulomas colored by 13 generic cell types.  (C) 
Dot-plot showing expression levels of genes enriched across 13 generic cell types. Color intensity 
corresponds to the level of gene expression, while the size of dots represents the percent of cells with non-
zero expression in each cluster. (D) Boxplots showing the relationship between proportional composition 
of generic cell types and CFU tertiles. Significance of associations between cell-type composition and CFU 
are shown below.  
 
Relationship of Cell-Type Composition to Bacterial Burden 

To establish the cellular composition of each granuloma, we calculated the fractional 

composition for each generic cell type as the percentage of assigned cells within each granuloma 

(Methods). Across granulomas, we observed T cells (Median +/- S.D. : 45.1%, +/- 21.2.) and 
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macrophages (23.4% +/- 11.4) to be the most abundant cell types, followed by mast cells (5.74% 

+/- 4.1), B cells (4.1% +/- 6.1) and neutrophils (2.48% +/- 3.1).  

To understand how the cellular composition of each granuloma associated with 

granuloma-level bacterial control, we examined potential links between bacterial burden and the 

frequency of each cell type across granulomas. For each granuloma, we examined the 

relationship between proportional composition of identified cell types (n of cells/ Total cells in each 

granuloma) and granuloma-level bacterial burden. Overall, we observed a negative correlation 

with bacterial burden and T cell proportion (Spearman’s rho: -0.5156, p = 0.007), suggesting that 

T cells may play a major role in bacterial control (Figure 4.2D). Interestingly, our analysis revealed 

a strong, positive correlation with bacterial burden for plasma cells (Spearman’s Rho = 0.7391, p 

< 0.0001), endothelial cells (Spearman’s rho = 0.584, p= 0.0013), and mast cells (Spearman’s 

rho = 0.5482, p = 0.0037). Further, we observed an association between fibroblasts and Type 1 

pneumocytes and increased bacterial burden.  

 

T cell population Diversity  

To identify granular correlates of immune protection in Mtb granulomas, we performed 

sub-clustering analysis among T cells, which were most strongly associated with bacterial 

clearance. Initially, we identified and removed a single cluster of 3,144 T and NK cells marked by 

residual expression of genes derived from macrophages and mast cells (Methods). Following 

removal of this cluster, we performed a separate dimensionality reduction among 41,622 T cells 

and identified 12 sub-clusters of T and NK cells across 26 granulomas (Figure 4.3A; Methods). 

For each T cell sub-population, we contextualized gene expression patterns through by 

comparison to literature-derived expression signatures (bulk and single-RNA sequencing) and 

manual curation (Methods) [19, 20].  
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Figure. 4.3 | Relationship of T cell phenotype to granuloma-level bacterial burden (A) UMAP plot of  
41,222 T cells colored by T cell sub-type. (B) (Top) UMAP plots of 41,222 T cells colored by the normalized 
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gene expression for CD4, CD8A, and CD8B. (Bottom) Dotplot showing expression of CD4, CD8A and 
CD8B across 12 T cell sub-clusters. Color intensity corresponds to the level of gene expression, while the 
size of dots represents the percent of cells with non-zero expression in each cluster. (C) (Top) Stacked 
barplot showing the rates of detection of TRAC, TRBC1 and TRBC2 (TRDC?) within 12 T cell clusters. 
(Bottom) Stacked barplot showing the rates of alpha and beta TCR recovery across 12 T cell clusters.  (D) 
(Top) UMAP plot of 41,222 T cells colored by recovery of TCR a CDR3 sequences. (Bottom) UMAP plot of 
41,222 T cells colored by recovery of TCR b CDR3 sequences. (E) UMAP plots colored by normalized 
expression levels for select T cell cluster-defining genes.  (F) Dotplot showing the expression of T cell 
cluster-defining genes. Color intensity corresponds to the level of gene expression, while the size of dots 
represents the percent of cells with non-zero expression in each cluster. (G) Heatmap showing the 
distribution of T cell functional programs across T cell sub-clusters. Values shown in heatmap are row-
normalized expression values. (H) Boxplots showing the relationship between T cell sub-clusters and 
granuloma-level CFU. Cell-types are ordered by overall abundance and colors correspond to CFU Tertiles 
(Green: 0-500 CFU, Yellow: 500-5000 CFU, and Red: >5000 CFU). 
 

To assign functional identities to T cell clusters, we initially examined the expression of 

CD4, CD8A and CD8B and the recovery of ab and gd TCR sequences across clusters (Figure 

4.3B-D). We initially identified 5 populations with elevated expression of either CD8A and CD8B 

and elevated expression of cytotoxic gene expression (e.g. granulysin, granzymes and NK-

receptors) (Figure 4.3E). Among cytotoxic cells, we discovered 2 populations of innate cytotoxic 

cells:  one population that is consistent with NK and cytotoxic T cells, and is distinguished by the 

highest expression of cytotoxic effector molecules (GZMA, GZMB, GNLY, and PRF1) and lowest= 

rates of TCR recovery (TRA Recovery: 8.2%, TRB Recovery: 11.1%) (Figure 4.3D). We further 

identified a population expressing gamma-delta T cell receptors (TRGC and TRDC), surface 

receptor CD69 and cytokines (XCL1). Additional sub-clustering of the gamma-delta expressing 

population revealed 2 distinct sub-populations: a subpopulation of gd-T cells and another of 

XCL1+ NK cells, which have recently been shown to potentiate anti-tumor immune responses 

[21] (Figure 4.3F; Methods).  

We further identified 3 subpopulations of adaptive cytotoxic cells that express both CD8A 

and CD8B along with increased recovery of ab TCR sequences (Figure 4.3D). Among adaptive 

cytotoxic cells, we found a population of effector CD8 T cells (CX3CR1, GZMB, and ZEB2) and a 

population of GZMK+ CD8 T cells (GZMK, CCL5, and CXCR4). We also observed a third, low-

abundance population of cytotoxic cells defined by relative expression of GZMK (Figure 4.3F).  
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 We identified 3 populations of CD4+ T cells including a population of T cells expressing 

genes associated with a naïve phenotype (CCR7, LEF1, and SELL), regulatory T cells (FOXP3, 

IKZF2, and IL1RL1), and interferon-responsive T cells (OAS2, MX1, and ISG15) (Figure 4.3E-

F). Consistent with published annotations, the population of naïve-like T cells is characterized by 

elevated expression of CCR7, LEF1, SELL, and TCF7 (Figure 4.3E-G). Consistent with tissue-

Tregs, we observe elevated expression of  the IL-33 receptor ST2 (IL1RL1) in addition to 

canonical Treg markers (FOXP3 and TIGIT) (Figure 4.3F) [22].  

We further identified 2 populations of T cells that consist of both CD4+ and CD8+ T cells: 

one population of proliferating T cells (MKI67 and TOP2A) and another population of T1-T17 cells 

defined by a unique pattern of transcription factors (RORA, RORC, BHLHE40, HIF1A, and RBPJ), 

surface receptors (CCR6, CXCR3 and IL23R), and cytokines (IFNG and TNF) (Figure 4.3E-F). 

Finally, we observe two low-abundance populations characterized by expression of genes 

encoding multiple metallothioneins and another cluster distinguished by expression of SRRM2, 

an RNA splicing factor [23].  

 

T cell phenotypic diversity is associated with granuloma-level bacterial control 

  Based on the observation that T cells most strongly correlate with protection in aggregate, 

we sought to understand how the phenotypic composition of T cells across granulomas relates to 

bacterial burden. Specifically, we observe that the abundance of naïve T cells (P = 0.03), effector 

CD8 T cells (P = 0.02), proliferating T cells (P=0.032) and T1-T17 cells (P = 0.0013) significantly 

correlate with reduced granuloma-level bacterial burden (Figure 4.3H). 

Notably, we observe the most pronounced expansion of T1-T17 cells in granulomas with 

the lowest bacterial burdens. Th1 and Th17 cells have previously been observed to correlate with 

protective MTB vaccine responses and in clearance of pulmonary infection [24-27]. Among T1-

T17 cells from granulomas, we observe enrichment of genes associated with neuro-pathogenic 

Th17 function (RORC, BHLHE40, SATB1 and RBPJ) [28-32] in addition to Th1 effector function 
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including IFNG and TNF (Figure 4.4A). The population of T1T17 cells is further enriched for 

expression of CCR6 and CXCR3, markers of Th1* cells that have been implicated in TB-protective 

immune responses [33]. Notably, this population is reminiscent of a recently described population 

of lung-resident ‘ex-Th17’ cells, which have been observed to express IL-23R, RBPJ and BHLE40 

following exposure to killed Klebsiella [34].  

Based on the expression of both CD4 and CD8 T cells within this cluster, we performed 

additional sub-clustering analysis within the population of T1-T17 cells and identified 4 sub-groups 

(Figure 4.4B). Specifically, T1-T17 cluster 1 is characterized by expression of CD4, IL7R, and 

TXNIP; sub-cluster 2 is characterized by increased relative expression of cytotoxic effector 

molecules including GZMA, GZMB, GZMH, GZMK, GNLY, and PRF1; sub-cluster 3 displays 

elevated expression of IFNG, TNF, and LTA, while sub-cluster 4 expresses increased levels of 

heat-shock and DNA-damage associated genes (Figure 4.4C-D). We observe a significant 

association with T1T17 sub-populations and reduced bacterial burden with the exception of sub-

cluster 3, which is defined by expression of IFNG and TNF and did not reach statistical 

significance (Figure 4.4E). 

 



 120 

 

Figure 4.4 | Phenotypic Diversity in T1-T17 cells. (A) UMAP plot of 41,222 T cells colored by normalized 
expression values for T1-T17 cluster-defining genes. (B) UMAP plot of 9,234 T1-T17 cells colored by T1-
T17 phenotypic sub-cluster. (C) Heatmap showing the distribution of T1-T17 phenotype-defining gene 
expression. (D) UMAP plots of 9,324 T1-T17 cells colored by normalized gene expression values for 
selected sub-population defining genes. (E) Boxplots showing the relationship between the proportional 
abundance of T1-T17 sub-clustering and granuloma-level bacterial burden.  
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Relationship of T cell population to enhanced Mtb killing 

We further examined differences in cell-type composition between lesions with the highest 

levels of bacterial killing (low CFU/CEQ, viable/cumulative Mtb ratio) and those with the lowest 

killing (Methods). In this analysis, T cells ( P=0.002) are the most highly associated with elevated 

bacterial killing, while mast cells (P=0.001), endothelial cells (P = 0.016), and macrophages 

(P=0.038) are associated with reduced bacterial killing (Figure 4.5A). Among T cell sub-

population, we observe the strongest relationships with increased bacterial killing among effector 

CD8 cells (P=0.008), naïve-like T cells (P=0.008), and T1-T17 cells (P=0.018).  

 

Figure 4.5 | Relationship between Cell-type Composition and Mtb Killing. (A) Boxplots showing the 
relationship between the level of bacterial killing and cell-type composition among 13 generic cell types. 
Lesions with reduced Mtb killing are shown in purple while lesions with elevated Mtb killing are in teal. (B) 
Boxplots showing the relationship between the level of bacterial killing and the relative abundance of T cell 
sub-populations.  
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Clonotype-phenotype relationships in MTB granulomas 

We hypothesized that differences in antigen specificity might contribute to differences in 

bacterial burden between high and low burden lesions. To understand the extent of T cell clonality 

and its relationship to Mtb-restrictive T cell phenotypes, we performed enrichment of ab TCR 

sequences from whole-transcriptome amplification libraries and recovered CDR3 sequences from 

granuloma T cells (TCR-a: 22.5%, TCR-b: 27.3%, paired-ab: 11.0%) through targeted 

sequencing (Methods) [35]. Further, we examined the extent of clonal expansion among both 

TCR-a and TCR-b sequences across lesions (Figure 4.6A). Here, we observed extensive sharing 

of expanded clones (i.e. CDR3 alpha or beta sequences with n >= 2) between granulomas within 

each animal, but we fail to observe public clones between animals. Based on this observation, 

we focused our analysis of clonotype sharing between high and low burden lesions on Animal 

4017, the animal with the broadest distribution of bacterial burdens, and observed significant 

sharing of expanded TCRb CDR3 sequences between high and low burden granulomas (Figure 

4.6B).  



 123 

 

Figure 4.6 | Relationship of T cell clonality to restrictive T cell phenotypes. (A) UMAP plots of 41,222 
T cells showing expanded CDR3 alpha (left) and CDR3 beta sequences (right). Cells colored in blue have 
CDR3 sequences that occur at least twice. (B) Heatmap displaying the number of shared CDR3 sequences 
between granulomas in animal 4017. (C) Top: Heatmaps showing the distribution of expanded clones 
between high (n=4) and low burden (n=4) lesions in animal 4017.  Bottom: Heatmap showing the distribution 
of T cell phenotypic clusters (row) within each expanded clones (columns) in animal 4017. Heatmap colors 
within each column show the proportion of each phenotype within a clone, while the size of each clone is 
shown in green below. Column clustering represents similarity in the distribution of phenotypes within 
clones, while row clustering represents similarity of T cell sub-clusters.  
 
 We next sought to understand the relationship between TCR clonality and T cell 

phenotype. Within animal 4017, we observed the highest extent of clonal expansion among 

GZMK+ CD8 T cells, effector CD8 T cells, Th1-Th17 cells and proliferating T cells (Figure 4.6A). 

We examined the phenotypic distribution of individual TCR clones and observed that individual 

clones are largely restricted to a single T cell phenotype (Figure 4.6C). We further examined the 

extent to which expanded clones adopt different phenotypes between high and low burden 

granulomas. Here, we observed similar distributions of T cell phenotypes between high and low-

burden lesions within expanded TCR clones (Figure 4.6C).  
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Donor-unrestricted T cell represent a heterogeneous class of invariant T cells that 

recognize non-canonical T cell antigens [36]. We used recovered TCR sequences to identify rare 

populations of donor-unrestricted T cells including MAIT cells, iNKTs and GEMs (Methods). 

Among DURT cells, we observe the highest frequency of T cells with the TRAV1-2/TRAJ33 MAIT-

associated TCR combination (240/41,222; 0.6%). We further observe a population of iNKT cells 

(TRAV10-1/TRAJ18) TCR sequences (20/41,222, 0.05%) and GEM cells (TRAV1-2/TRAJ9). 

While we are able to identify these populations, their low frequency precludes our ability to 

accurately assess their relationship to granuloma-level bacterial burden.  

 

Macrophage Population Diversity 

We performed sub-clustering analysis among 27,670 macrophages and identified 10 sub-

clusters of macrophages (Figure 4.7A-C; Methods). To classify granuloma macrophage 

populations, we initially performed comparisons to literature-derived myeloid signatures [37]. 

Specifically, we observe multiple populations of macrophages defined by expression of FUCA1 

and LGMN (Figure 4.7D). We further observe a population of macrophages enriched for 

expression of lipid-response genes including FABP4, PPARG, and MRC1 and another population 

of inflammatory macrophages enriched for expression of CXCL9, CXCL10, and CXCL11. We 

identify 2 primary populations of monocytes: (1) a population of inflammatory monocytes (VCAN, 

S100A6, and THBS1) and (2) a population of CD16+ monocytes (FCGR3A and CX3CR1). Finally, 

we observed a population of macrophages that was distinguished by persistent expression of 

soup-defining and non-macrophage, lineage-defining gene expression (Methods), which possibly 

represents an efferocytotic macrophage population.  

For each macrophage sub-population, we examined the relationship with granuloma-level 

bacterial burden. Here, we observe a significant relationship between PPARG-high, alveolar 

macrophages and elevated bacterial burden (P=0.0023) (Figure 4.7E). Gene expression patterns 
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in this cluster are consistent with alveolar macrophages that also express a number of genes 

associated with alternative activation including MRC1 and MCEMP1.  

 

Figure 4.7 | Identification of Macrophage sub-clusters. (A) Waterfall plot showing stability of 
macrophage clustering to multiple clustering resolutions. (B) UMAP plot of 27,670 macrophages from 26 
granulomas colored by macrophage sub-clusters. (C) Heatmap showing the distribution of cluster-defining 
gene expression across macrophage subsets.  (D) UMAP plots of 27,670 macrophages colored by log-
normalized expression values for select cluster-defining genes. (E) Boxplots showing relationship between 
the proportion of macrophage sub-populations and granuloma-level bacteria burden (Green: 0-500 CFU), 
Orange: 500-5000 CFU, Red: > 5000 CFU).  
 
Relationship between timing of granuloma formation and granuloma composition 
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We hypothesized that timing of granuloma formation might influence the relationship 

between cell type composition and bacterial control. Examination of granuloma trajectories during 

the course of infection reveals a subset of lesions (n= 11) only observed on pre-necropsy (10-

week) PET-CT scans (Figure 4.8A). Notably, we observe a striking relationship between the 

timing of granuloma formation and granuloma-level bacterial burden, where “late-blooming” 

lesions have significantly lower CFU values (Original Lesions: Avg-CFU= 9,112 CFU, Late-

blooming lesions: Avg-CFU = 159 CFU, P= 0.0035)  (Figure 4.8A). We next examined differences 

in cumulative bacterial load to understand whether low CFU among late-blooming lesions was 

attributable to reduced bacterial growth. Here, we observed similar levels of cumulative growth 

between original and late-blooming lesions (Figure 4.8C; Avg-log10CEQ Original: 4.73, Avg- 

CEQ Late-blooming: 4.29, P = 0.204), suggesting that low bacterial-burden in late-blooming 

lesions is likely the result of improved immunologic control. Further, we also observed that late-

blooming lesions developed to a median size similar to that of the original granulomas (Original: 

2.7 mm, Late-blooming: 2.1 mm ) (Figure 4.8D). 
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Figure 4.8 | Granuloma Composition Associated with Timing of Granuloma Formation. (A) Scatterplot 
showing granuloma-level FDG values for 26 granulomas at 4, 8, 10 weeks post-infection. (B) Boxplots 
showing log10-CFU values for granulomas grouped by time of initial observation on PET-CT imaging. (C)  
Boxplots showing log10-CEQ values for granulomas grouped by time of initial observation on PET-CT 
imaging. (D) Boxplots showing granuloma size (mm) for granulomas grouped by time of initial obsesrvation 
on PET-CT imaging. (E) Boxplots showing the relationship between timing of granuloma formation and 
abundance of generic cell types. (F) Boxplots showing the relationship between timing of granuloma 
formation and abundance of T cell sub-populations.  
 

We examined differences in granuloma composition between original lesions (i.e. those 

observed on all PET-CT scans) and late-forming lesions (i.e. those observed only at pre-necropsy 

scans). Here, the associations observed in these comparisons strongly mirror those observed 
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between high and low-burden comparisons. Specifically, we observe strong associations between 

mast cells and plasma cells with earlier granuloma formation, while we observe increased 

proportion of naïve, effector CD8, and T1T17 T cells in late-blooming granulomas (Figure 4.8F).  

To further investigate the relationship between granuloma cell-type composition and 

bacterial burden while adjusting for lesional age, we performed comparisons between original 

lesions with the highest CFU (n= 6, avg. CFU = 18,375) and lowest CFU (n = 6, avg. CFU =2,305; 

Figure 4.9A). Here, we observe previously unappreciated associations between lower bacterial 

burden and innate lymphoid populations, including the cluster enriched for NK cells (P= 0.036) 

and gamma-delta T cells (0.0002). Notably, the association of innate cytotoxic populations with 

lower bacterial burden in early-forming lesions reiterates a role for these populations in early 

control of MTB infection, while the lower overall proportion of T1-T17 cells and a lack of significant 

association (P = 0.11) with bacterial control in original lesions suggests that these cells 

accumulate primarily in late-blooming lesions following the onset of adaptive immunity (Figure 

4.9B). 

 

Figure 4.9 | Cellular correlates of bacterial control in original lesions. (A) Boxplot showing differences 
in granuloma-level bacterial burden between original granulomas with the lowest bacterial burden and 
original granulomas with the highest bacterial burden. (B) Boxplots showing differences in cell-type 
composition between original granulomas with the highest (n=6) and lowest (n=6) bacterial burdens.  
 
In situ validation of mast cell association with granuloma-level bacterial burden 

To validate the observed relationship between mast cells and granuloma-level bacterial 

burden, we performed staining on a distinct set of 10-week NHP granulomas (n=10) (Figure 4.10). 
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Here, we used performed immunohistochemistry and staining for tryptase to validate the presence 

of mast cells in NHP granulomas (Figure 4.10A). Moreover, examination of the relationship 

between the number of tryptase-positive cell counts per granulomas reveals a positive 

relationship between the frequency of mast cells and granuloma-level bacterial burden (Figure 

4.10B). Upon enumeration of cKIT+ (CD117) cells, we observe an attenuated relationship 

between burden (Figure 4.10B); however, cKIT (CD117) is a less specific marker of mast cells 

than tryptase.  

 

Figure 4.10 | In-situ validation of Granuloma Mast Cells. (A) Left: H&E staining of a necrotic NHP 
granulomas at 10-weeks post-infection. Right: Fluorescent image showing Tryptase express within the 
lymphocytic region. (B) Quantification of the number of  tryptase + cells (left), the number of cKIT+ cells 
(middle), and the percentage of cKIT+ cells from a representative sample of 10-week lesions with varying 
bacterial burden.  
 
Cell-Cell Interactions Correlate with Granuloma-level Bacterial Burden 
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To understand which cell populations co-occur in Mtb granulomas, we calculated pairwise 

Pearson correlation values between cell types across 26 granulomas (Figure 4.11A). Here, we 

defined 3 primary groups of cells whose abundance is correlated across granulomas using 

hierarchical clustering (Figure 4.11A). We next sought to understand how the cumulative 

abundance of correlated cell-type groupings varied with granuloma-level bacterial burden. Here, 

we found that group 1 (green), which consists primarily of T cell sub-populations, is expanded in 

low-burden lesions, while it is diminished in high-burden lesions. Further, we observed that group 

3 (red), which includes mast cells, plasma cells and stromal populations, is broadly expanded in 

high-burden lesions (Figure 4.11B). While these findings largely re-iterate associations of 

individual cell populations and bacterial burden, correlation of among cell populations suggests 

that these populations might reflect increased communication between these populations.  
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Figure. 4.11 | Cell-Cell Interactions. (A) Heatmap showing pairwise Pearson correlation values among 
specific cell-type proportions across 26 granulomas. (B) Stacked barplots showing the relationship between 
the distribution of correlated cell-types between high and low burden lesions (left), and across all lesions 
ordered from lowest burden (left) to highest burden (right). (C) Network graph showing cell-cell interaction 
map of receptor-ligand edge weights over-represented in high burden lesions. (D) Circos plot showing 
receptor-ligand interactions involving mast cell IL-13 signaling increased in high burden lesions.  
 

To explore potential differences in cell-cell signaling between high and low burden lesions, 

we constructed edge weights for receptor-ligand pairs within each granuloma. Specifically, for 

each potential interacting cell-type pair we adjusted receptor-ligand edge weights to account for 

differences in the abundance of the sender cell type, relative receptor expression, and the percent 

of receptor positive cells (Methods). We performed comparisons within cell-cell interaction 

networks to identify receptor-ligand edge weights over-represented in high or low burden lesions. 

Initially, we examined interacting cell partners over-represented in high burden lesions by 

summarizing receptor-ligand edge weights (Figure 4.11C). In high burden lesions, we broadly 

observe increased communication between stromal and immune populations including increased 

interactions between Type 2 pneumocytes, endothelial cells, and alveolar macrophages (Figure 

4.11C). Further, in high-burden lesions we observe significant increases in receptor-ligand edge 

weights involving mast cell IL-13 signaling. Specifically, we observe that IL-13 broadly acts on T 

cells and macrophage subsets (Figure 4.11D), suggesting that mast cells might serve to alter the 

balance of inflammation within high burden lesions.  

 

Discussion 

We have performed high-throughput single-cell profiling of 26 granulomas that span a 

wide range of bacterial burdens in a non-human primate model of Mtb infection that most closely 

recapitulates the essential features of human tuberculosis. Critically, by collecting lesions at 10 

weeks post-infection, we are able to profile lesions where differences in instantaneous bacterial 

burden are most likely to result from immune activity. This study design affords a unique window 

into immune factors that mediate resistance to Mtb infection at the level of individual granulomas. 
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While we observe broad similarity in the spectrum of immune cell states across high and low 

burden granulomas, the composition of immune populations varies significantly. 

We observe an inverse relationship between the abundance of T cells and the level of 

granuloma-level bacterial burden. Further, we identify multiple sub-populations of T and NK cells 

that show varied association with bacterial burden. Most notably, we observe significant increase 

in the proportion of T1-T17 cells in low-burden granulomas (Figure 4.3H). Emergence of a Th1-

Th17 population in the lung plays a central role in protective vaccination and natural immunity 

against numerous pathogens including B. pertussis [38-42], C. albicans [43, 44], H. influenzae 

[45], P. aeruginosa [46, 47], S. pneumoniae [48-50],  Leishmaniasis [51], and C. neoformans [52-

54]. Further, Th17 cells play an important role in M. tuberculosis infection and vaccine response 

[24-27, 55-57].  

We observe a significant relationship between when granulomas are first observed on 

PET-CT and bacterial burden (Figure 4.8B). Here, granulomas that are observed only at 10-week 

scans have consistently lower bacterial burdens, despite having similar cumulative bacterial 

burden. Granulomas that form at the later stages of infection do so in the presence of a robust 

adaptive immune response, whereas tissue-level and innate immune responses appear to 

dominate the early response to Mtb infection. During the early stages of infection, dendritic cells 

migrate to draining lymph nodes, where they preferentially induce differentiation of effector T cells. 

The emergence of clonally expanded Th1-Th17 cells shapes the ability of newly formed 

granulomas to control bacteria by altering ecologic balance from immune tolerance to bacterial 

control.  

Collectively, our data suggest a model of granuloma development in which tissue-

mediated cytokine signaling likely leads to early expansion of ST2+ immune populations (e.g. 

mast cells and tissue Tregs) that generate a tolerogenic immune environment, primarily directed 

at mitigation of tissue damage and maintenance of tissue function [58]. Notably, we observe 
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proportional expansion of mast cells, elevated mast cell expression of IL-13, and increased IL-13 

receptor-ligand edge weights in high burden granulomas. 

In future experiments, we will more fully explore the temporal evolution of immune 

responses in Mtb granulomas by analyzing a set of granulomas at 4-weeks post-infection. Further, 

we will examine the effects of depletion of CD8 T cells on bacterial control. Secondary challenge 

of animals with existing Mtb infection results in formation of granulomas with remarkable capacity 

to control bacteria. We will further investigate the relationship between cell-type composition, T 

cell clonality and bacterial control in the setting of re-infection to determine if a similar mechanism 

of T1-T17 immunity operates in this context. Finally, we will explore whether Mtb-protective 

immune responses elicited following intravenous BCG vaccination are similar to those observed 

in the present study.  

 

Materials and Methods 

Ethics Statement 

All experimental manipulations, protocols, and care of the animals were approved by the 

University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee 

(IACUC). The protocol assurance number for our IACUC is D16-00118. Our specific protocol 

approval numbers for this project are 18124275 and IM-18124275-1. The IACUC adheres to 

national guidelines established in the Animal Welfare Act (7 U.S.C. Sections 2131 - 2159) and 

the Guide for the Care and Use of Laboratory Animals (8th Edition) as mandated by the U.S. Public 

Health Service Policy. 

All macaques used in this study were housed at the University of Pittsburgh in rooms with 

autonomously controlled temperature, humidity, and lighting. Animals were singly housed in 

caging at least 2 square meters apart that allowed visual and tactile contact with neighboring 

conspecifics. The macaques were fed twice daily with biscuits formulated for nonhuman primates, 

supplemented at least 4 days/week with large pieces of fresh fruits or vegetables. Animals had 
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access to water ad libitem. Because our macaques were singly housed due to the infectious 

nature of these studies, an enhanced enrichment plan was designed and overseen by our 

nonhuman primate enrichment specialist. This plan has three components. First, species-specific 

behaviors are encouraged. All animals have access to toys and other manipulata, some of which 

will be filled with food treats (e.g. frozen fruit, peanut butter, etc.). These are rotated on a regular 

basis. Puzzle feeders foraging boards, and cardboard tubes containing small food items also are 

placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the animals 

stimulate interaction between animals. Second, routine interaction between humans and 

macaques are encouraged. These interactions occur daily and consist mainly of small food 

objects offered as enrichment and adhere to established safety protocols. Animal caretakers are 

encouraged to interact with the animals (by talking or with facial expressions) while performing 

tasks in the housing area. Routine procedures (e.g. feeding, cage cleaning, etc) are done on a 

strict schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques 

are provided with a variety of visual and auditory stimulation. Housing areas contain either radios 

or TV/video equipment that play cartoons or other formats designed for children for at least 3 

hours each day. The videos and radios are rotated between animal rooms so that the same 

enrichment is not played repetitively for the same group of animals. 

All animals are checked at least twice daily to assess appetite, attitude, activity level, 

hydration status, etc. Following M. tuberculosis infection, the animals are monitored closely for 

evidence of disease (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams, 

including weights, are performed on a regular basis. Animals are sedated prior to all veterinary 

procedures (e.g. blood draws, etc.) using ketamine or other approved drugs. Regular PET/CT 

imaging is conducted on most of our macaques following infection and has proved very useful for 

monitoring disease progression. Our veterinary technicians monitor animals especially closely for 

any signs of pain or distress.  If any are noted, appropriate supportive care (e.g. dietary 

supplementation, rehydration) and clinical treatments (analgesics) are given. Any animal 
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considered to have advanced disease or intractable pain or distress from any cause is sedated 

with ketamine and then humanely euthanatized using sodium pentobarbital. 

 

Research Animals 

Four Cynomolgus macaques (Macaca fascicularis), >4 years of age, (Valley Biosystems, 

Sacramento, CA) were housed within a Biosafety Level 3 (BSL-3) primate facility as previously 

described and as above. Animals were infected with low dose M tuberculosis (Erdman strain) via 

bronchoscopic instillation of 7-12 colony-forming units (CFUs)/ monkey to the lower lung lobe. 

Animals were infected for a period of 10 weeks and Infection was confirmed by tuberculin skin 

test conversion. Serial clinical, microbiologic, immunologic, and radiographic examinations were 

performed, as previously described. 

 

Serial PET-CT Imaging 

Animals underwent PET-CT scans after Mtb infection at 4weeks, 8 weeks and pre 

necropsy (i.e. 10 weeks post-infection). Animals were sedated, intubated and imaged by 2-deoxy-

2-18F-D-deoxyglucose (FDG) PET imaging (microPET Focus 220 preclinical PET scanner, 

Seimens Molecular Solutions) and CT scanner (Neurologica Corp) within our biosafety level 3 

facility. The total lung FDG avidity was analyzed using Osirix viewer, an open-source PACS 

workstation and DICOM viewer. The whole lung was segmented on CT by using the Growing 

region algorithm on the Osirix viewer to create a ROI of normal lung (Hounsfield units < 200). The 

closing tool was used to include individual nodules and other pulmonary disease. The ROI was 

transferred to the co-registered PET scan and manually edited to ensure all pulmonary disease 

was included. Voxels outside the ROI were set to zero and voxels with an SUV greater than or 

equal to normal lung (SUV > 2.3) were isolated. Finally, the “Expert ROIs” plug-in was then used 

to export the data from these isolated ROIs to a spreadsheet where the total SUV per voxel were 

summed to represent the total lung FDG avidity. 
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Necropsy 

Necropsy was performed as previously described [ref]. Briefly, an 18F-FDG PET-CT scan 

was performed on every animal 1-3 days prior to necropsy to measure disease progression and 

identify individual granulomas. At necropsy, monkeys were maximally bled and humanely 

sacrificed using pentobarbital and phenytoin (Beuthanasia; Schering-Plough, Kenilworth, NJ). 

Individual lesions previously identified by PET-CT and those that were not seen on imaging from 

lung and mediastinal lymph nodes were obtained for histological analysis, bacterial burden, and 

immunological studies [ref]. A veterinary pathologist described gross pathologic findings. To 

quantify gross pathologic disease (disease burden), a necropsy score was developed in which 

points were given for TB disease: number, size, and pattern of granulomas distributed in each 

lung lobe and mediastinal lymph node and in other organs each lung lobe, lymph node, and 

visceral organ were included and enumerated, and used to establish an overall pathology overall 

score. The size of each granuloma was measured at necropsy and by pre necropsy scans and 

representative sections of each tissue were homogenized into single-cell suspensions for 

immunologic studies, flow cytometric analysis, and bacterial burden.  

 

Bacterial burden 

200ul of each granuloma homogenate were plated in serial dilutions onto 7H11 medium, 

and the CFU of M. tuberculosis growth were enumerated 21 days later to determine the number 

of bacilli in each granuloma [ref]. As a quantitative measure of overall bacterial burden, a CFU 

score was derived from the summation of the log-transformed CFU/gram of each sample at the 

time of necropsy. 

 

Single-cell mRNA Sequencing 
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We performed high-throughput single-cell mRNA sequencing (scRNA-Seq) using the Seq-

Well platform [16]. Initially, a single-cell suspension was obtained from granulomas isolated at 

necropsy. Intact granulomas were isolated via manual dissection and carefully separated from 

surrounding parenchyma. Isolated granulomas were cut into smaller pieces using a razor blade, 

before being digested with DNAse and Collagenase I and mechanically dissociated using a 

GentleMacs. For each granuloma, a single-cell suspension was obtained and applied to the 

surface of a loaded Seq-Well device. Following cell loading, Seq-Well devices were reversibly 

sealed with a polycarbonate membrane and incubated at 37C for 30 minutes. After membrane 

sealing, Seq-Well devices were submerged in lysis buffer (5M guanidine thiocyanate, 10mM 

EDTA, 0.1% Beta-mercaptoethanol, 0.1% Sarkosyl) and rocked for 20 minutes. Following cell 

lysis, arrays were rocked for 40 minutes in 2M NaCl to promote hybrdization of mRNA to bead-

bound capture oligos. 

 

Reverse Transcription and PCR Amplification 

Beads were removed from arrays by centrifugation and reverse transcription was 

performed at 52C for 2 hours. Following reverse transcription arrays were washed with TE-SDS 

(TE Buffer + 0.1% SDS) and twice with TE-Tween (TE Buffer + 0.01% Tween20). Following ExoI 

digestion, PCR amplification was performed to generate whole-transcriptome amplification (WTA) 

libraries. Specifically, a total of 2,000 beads were amplified in each PCR reaction using 16 cycles 

as previously described 10. Following PCR amplification, SPRI purification was performed at 0.6x 

and 0.8x volumetric ratios and eluted samples were quantified using a Qubit. Sequencing libraries 

were prepared by tagmentation of 800 pg of cDNA input using Illumina Nextera XT reagents. 

Tagmented libraries were purified using 0.6x and 0.8x volumetric SPRI ratios and final library 

concentrations were determined using a Qubit. Library size distributions were established using 

an Agilent TapeStation with D1000 High Sensitivity ScreenTapes (Agilent, Inc., USA). 
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Sequencing and Alignment 

Libraries for each sample were sequenced on a NextSeq550 75 Cycle High Output 

sequencing kit (Illumina Inc., Sunnyvale, CA, USA). For each library, 20 bases were sequenced 

in read 1, which contains information for cell barcode (12 bp) and unique molecular identifier (UMI, 

8bp), while 50 bases were obtained for each read 2 sequence. Cell barcode and UMI tagging of 

transcript reads was performed using DropSeqTools v1.12 [59]. Barcode and UMI-tagged 

sequencing reads were aligned to the Macaca fascicularis v5 genome 

(https://useast.ensembl.org/Macaca_fascicularis/Info/Index) using the STAR aligner. Aligned 

reads were then collapsed by barcode and UMI sequences to generate digital gene expression 

matrices with 10,000 barcodes for each array. 

 

Single-cell TCR Reconstruction 

We performed single-cell TCR reconstruction across all 28 granulomas. Initially, we 

performed targeted enrichment of TCR constant genes using biotinylated probes as in Tu et al. 

(Nature Immunology 2019). In short, DNA was denatured with a 15 minute incubation at 95C, 80-

mer hybridization probes (5’ biotin) specific to alpha and beta TCR constant chain were added 

along with a blocking oligo (SMART universal PCR primer) to prevent re-annealing of denatured 

cDNA molecules. Hybrdization was accomplished through a 60 minute incubation at 65C. 

Hybridized products were enriched using streptavidin coated magentic beads (M-270 

Dynabeads). Magnetic beads were sequentially washed with buffers contained in the IDT xGen®  

hybridization kit (e.g. Wash Buffer 1, Stringent Wash Buffer, Wash Buffer 2, and Wash Buffer 3; 

Cat # 1080584 IDT DNA, Inc.). After washing beads, PCR was performed to amplify enriched 

cDNA molecules. Amplified TCR products were purified using custom SeraPure Beads at a 0.64x 

ratio. Following an initial primer extension, additional PCR amplification was performed using a 

series of V-specific primer sequences. Sequencing was performed by combining alpha and beta 

TCR libraries at equimolar ratios.  
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Data Processing and Quality Control 

Initially, we generated a combined dataset of 202,386 barcodes after applying thresholds 

of 500 genes and 750 transcripts (UMIs), after examining a range of cell inclusion thresholds. For 

each array, we initially visualized cells from each array using t-SNE and performed Louvain 

clustering in Seurat. For many arrays, we observed large clusters of cell barcodes that were not 

marked by distinct cell-type defining gene expression. Instead, these cells were marked by 

distributed, low-level expression of genes presumed to originate from other cell types (e.g. HBB 

from erythrocytes, JCHAIN from plasma cells, and CPA3 from mast cells). To understand the 

identity of these barcodes more fully, we initially examined sequencing quality metrics. Notably, 

these non-descript clusters did not significantly differ in the total number of aligned reads, 

detected genes, UMIs/cell, or mitochondrial percentage.  

 

To more fully understand the identity of these clusters, we attempted multiple modeling 

approaches:  

1. We attempted to model these clusters as array-specific doublets. Here, we constructed 

models in which pseudo-doublets/multiplets (n=2, 5, 10, 15, or 20 cells) were created from 

random sampling of the remaining cell-type clusters. However, in these models, we failed to 

observe significant overlap between generated pseudo-multiplets and the clusters with non-

distinct gene expression patterns.  

2. We attempted to create random cells by binomial sampling a pseudo-population average 

expression vector generated by summation across well-defined cell populations. In these 

models, we failed to observe direct overlap between the simulated mixed population and those 

clusters with non-distinct gene expression patterns.  

3. Finally, we examined whether these clusters might represent deep sampling of ambient 

contamination or cellular debris by generating a “contamination” scoring scheme. First, to 
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identify the clusters within each array, we calculated 30 principal components (this was 

observed to consistently capture the majority of variation in each array), and performed 

Louvain clustering (resolution = 1.25) using all significant principal components (JackStraw 

Empirical P-value < 0.05). Next, within each array, we generated cluster-specific 

“contamination” scores that consisted of 3 components:  

a. A measure of array-specific background contamination by cluster (“soup 

expression”). For each array, we generated a background expression profile based 

on low-UMI barcodes (See Correction for Residual Background Contamination 

below for full details). We identified a set of “soup”-defining genes at a range of 

thresholds for soup-defining gene expression (0.01, 0.005, 0.001, and 0.0005; based 

on the proportional contribution of each gene to the cumulative soup expression profile 

for each array). We then generated a series of array-specific, background-

contamination scores for the set of soup-defining transcripts using the 

AddModuleScore function in Seurat. We observed that clusters with 

ambiguous/overlapping expression of lineage-defining gene expression signatures 

(Erythrocytes: HBB, Plasma cells: JCHAIN, Mast cells: CPA3, etc.) were significantly 

enriched for soup-defining gene expression. Finally, to calculate “contamination’ 

scores, we used expression scores for soup genes at a threshold of 0.001, and 

calculated the average soup-profile score both unadjusted and scaled values across 

average soup-signature scores for each cluster within each array.  

b. An estimate of biological signal (“biological signal”). Here, we examined the 

average log-fold change for the top 5 genes enriched within each cluster. For clusters 

dominated by ambient RNA, we broadly observed lower fold changes for their 

biological signature genes compared to clusters characterized by expression of 

canonical cluster-defining genes. In cases where the highest average log-fold change 
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values within a cluster were below the “return threshold” in Seurat, we set the value to 

the default return threshold of 0.2.  

c. A measure of co-expression of lineage-defining genes (“soup linage 

coexpression”). We manually selected 5 genes that were recurrently over-

represented in clusters suspected to arise from ambient contamination and cellular 

debris. Specifically, we selected the following genes: HBB (An erythrocyte-defining 

gene), JCHAIN (A plasma cell defining gene), COL3A1 (A fibroblast defining gene), 

SFTPC (A type 2 pneumocyte defining genes), and CPA3 (A mast cell defining gene). 

For each cell barcode, we calculated the number of these five genes with non-zero 

expression. Within each cluster, we then calculated the average co-expression of 

these genes and subtracted one from this average to allow for endogenous expression 

of 1 lineage-defining gene. This parameter was specifically added to avoid exclusion 

of bona fide cell clusters with high-background contamination (presumably due to low 

endogenous RNA content) and low biological signal (e.g., naïve T cells). Here, we 

specifically observed that cell populations which scored high for markers of a single 

lineage yet had higher soup-expression scores presented with lower rates of co-

expression of these soup and lineage defining transcripts relative to clusters which did 

not, likely representing ambient RNA and debris. 

 

Using these three values, we then calculated cluster-specific background “contamination” scores 

for each array in 2 ways:  

 

𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒	1 =
(𝑆𝑜𝑢𝑝	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)	𝑥	(𝑆𝑜𝑢𝑝	𝐿𝑖𝑛𝑒𝑎𝑔𝑒	𝐶𝑜𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑆𝑖𝑔𝑛𝑎𝑙
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				𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒	2 =
(𝑆𝑐𝑎𝑙𝑒𝑑 − 𝑆𝑜𝑢𝑝	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)	𝑥	(𝑆𝑜𝑢𝑝	𝐿𝑖𝑛𝑒𝑎𝑔𝑒	𝐶𝑜𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙	𝑆𝑖𝑔𝑛𝑎𝑙
 

 

These two “contamination” scores quantify both the (1) absolute and (2) relative soup-profile 

contamination in downstream cluster classification.  

Next, for each array, we performed clustering to identify clusters with array-specific 

ambient contamination and debris. More specifically, we performed hierarchical clustering using 

a total of 7 variables: the 2 contamination scores (shown above),three scaled soup scores (soup 

gene thresholds: 0.01, 0.05 and 0.001), the average log-fold change for the top 5 cluster genes, 

and soup/lineage gene co-expression to identify clusters defined by ambient contamination. For 

each array, we cut the hierarchical clustering tree at the first branch point to identify clusters with 

a signature of ambient contamination. In total, we identified 41 array-specific clusters comprising 

56,590 barcodes from 21 out of 32 total arrays, as characterized by ambient RNA contamination 

and cellular debris and removed them in all subsequent analyses. 

 

Correction for Residual Background Contamination 

After removal of cell barcodes that were derived from background contamination and 

extracellular debris, we performed additional correction for ambient RNA contamination among 

remaining cell barcodes on an array-by-array basis. Among filtered cell barcodes, we observed 

array-specific, ambient RNA contamination marked by ectopic expression of cell-type defining 

genes (e.g. widespread expression of JCHAIN, HBB, and CPA3 etc.). Specifically, we observed 

this contamination to vary in relation to the overall distribution of cell-types recovered from each 

array. To correct for residual ambient contamination within each array, we used SoupX [60] to: 

(1) generate array-specific profiles of background contamination and (2) estimate per-cell 

contamination fractions, and (3) generate corrected background-corrected UMI counts matrices. 

To generate background expression profiles, we first generated counts matrices containing up to 
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50,000 barcodes to assemble a collection of low-UMI cell barcodes that presumably represent 

extracellular mRNA. For each array, a UMI threshold for background expression was determined 

using EmptyDrops [61] to estimate the likelihood distribution of low-UMI barcodes having optimal 

cellular identity. Using an array-specific UMI-threshold (Range: 20-100 UMIs), we separately 

generated composite background profiles for each array. To estimate per-cell contamination 

fraction, we first identified a set of lineage-defining genes with bimodal expression patterns across 

cells (i.e., lineage defining genes with leaky expression).  Finally, the composite soup profile was 

subtracted from each the transcriptional profile of each cell based on the estimated contamination 

fraction. For each array, we removed individual transcripts most likely to be contamination from 

each single-cell based on the estimated contamination fraction. Specifically, individual transcripts 

were sequentially removed from each single-cell transcriptome until the probability of subsequent 

transcripts being soup-derived was less than 0.5 to generate a background-corrected counts 

matrix for each array. 

 

Separation of Doublets 

Within each array, we also performed doublet identification and separation using 

DoubletFinder. To account for differences in cell loading densities and expected cell doublet 

frequencies, we generated array-specific estimates of the expected number of doublets.  For 

example, a total of 20,000 cells applied to a Seq-Well device containing 85,000 wells (lambda = 

20,000), we would calculate an expected doublet rate of >2.37% (since not all of the array’s 

surface area contains wells). For each array, we generated pseudo-doublets using DoubletFinder 

[62]. Here, we optimized the pK parameter estimates for each array separately by performing a 

parameter sweep in which we selected the pK value with the maximum bimodality coefficient, 

while we maintained pN = 0.25 across all arrays based on published recommendations [62]. Cells 

were identified as doublets based on their rank order in the distribution of the proportion of artificial 

nearest neighbors (pANN). Specifically, we identified the pANN value for the cell at the expected 
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doublet percentile and used the corresponding pANN value as a threshold to remove additional 

cells in the event of ties. In total, we excluded 3,852 cells as doublets.   

 

Integrated Cell Type Classification 

Following the aforementioned quality filtering, we obtained a combined dataset of 109,584 

cells. We performed an initial dimensionality reduction on these cells by selecting variable genes, 

principal component analysis (PCA), UMAP dimensionality reduction and Louvain clustering 

using Scanpy [63]. To identify broad cell-types, we examined cluster assignments at multiple 

levels of clustering resolution (Resolutions: 0.5 to 2.25). We selected a cluster resolution of 1.00 

because this was the resolution beyond which branching did not result in discovery of clusters 

that represent distinct cell lineages (e.g., division of Type 1 and Type 2 pneumocytes). To define 

these major cell-populations, we first performed extensive comparisons to existing signatures of 

lung parenchyma and immune cell populations in the Tabula Muris [17] and Mouse Cell Atlas [18] 

studies. Specifically, we collected lung single-cell sequencing data from both studies and 

calculated enriched gene expression signatures for each lung cell-type cluster using a Wilcox 

rank-sum test. For each cluster, we selected the top 20 genes as a cluster-specific expression 

signature and then used them to score all cells in the granuloma dataset. We calculated the 

average signature score within each cluster and examined the distribution of signature score 

within each granuloma cell-type and determined significance via permutation testing.  

We further performed extensive literature-based curation of gene expression signatures 

in support of identified cell type classifications. Through these approaches, we identified multiple 

uniform populations that were consistently detected irrespective of cluster resolution. These 

populations include conventional DCs, plasmacytoid DCs, pneumocytes (Type 1 and 2), 

endothelial cells, fibroblasts, erythrocytes, regulatory T cells, and proliferating cells. At this point 

in our analysis, we had already observed significant sub-variation among T cell and macrophage 

clusters; however, we generated broad grouping of T cells and macrophages and then proceeed 
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to sub-cluster those separately using variable genes specific to each (See Sub-clustering of 

Granuloma T cells and Macrophages). 

 

Cell Type Assignment of Proliferating Cells 

Among our top-level clusters was one defined by markers of cellular proliferation (MKI67, 

TOP2A, and CDK1). To identify the underlying cell type identity for these cells, we executed a 

separate dimensionality reduction and clustering among 3,123 cells defined by this proliferation 

signature. We performed UMAP dimensionality reduction and Louvain clustering at multiple 

clustering resolutions (0.4-0.8), and selected a resolution of 0.70. For each of the major cell-type 

identified in the global clustering analysis, we generated a gene signature using the top 20 

enriched genes and scored the proliferating cells clusters using the AddModuleScore function in 

Seurat. We then examined the distribution of cell-type signature scores across each of the sub-

clusters of proliferating cells and re-assigned clusters based on enrichment of lineage-specific 

gene expression. Here, we assessed the significance of the cluster scores using a permutation 

test. More specifically, we performed 1,000 permutations in which we first down-sampled the 

proliferating clusters to have the same number of cells. We then randomized the cluster 

assignments of the cells and calculated the average generic cell-type signature score for each 

randomized cluster. The significance of a cell-type score for each proliferating cluster was 

determined by comparing the observed average signature score to the random null distribution). 

Through this approach, we identified and re-assigned distinct clusters of proliferating B cells, 

macrophages, neutrophils, plasma cells, and T cells to their respective cell types.  

 

Filtering of Soup-Defining Transcripts 

To avoid artifacts from ambient RNA contamination and cellular debris in sub-clustering 

of T cells and macrophages, we excluded genes that were observed to be soup-defining for any 

array. Specifically, we identified a set of 210 soup defining genes that comprised 0.001 of total 
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soup expression in any array. The threshold of 0.001 was selected to maximize the cumulative 

fraction of soup expression with the least number of genes to avoid removing underlying biology. 

In a further effort to avoid removing cell-type specific biology, we retained any genes with average 

log-fold changes greater than 1.00 in T cells and macrophages compared to all other generic cell 

types. In total, we removed 204 and 180 genes prior to sub-clustering analysis of T cells and 

macrophages, respectively.  

 

Sub-clustering of Granuloma T cells 

Across the complete set of 44,766 T and NK cells, we initially performed Louvain clustering 

at a range of resolution of values (0.30 – 0.75) and examined the relationships between cluster 

membership. In this analysis, we consistently observed a cluster defined by persistent expression 

of contaminating transcripts derived from macrophage and mast cells (Cluster 4 - Louvain 

Resolution 0.60). To confirm that these cells did not represent persistent doublets, we scored all 

T cells by expression of the top 20 cluster defining T cells and observed similar signature scores 

between the contaminated cell population. To understand whether residual contamination 

obscured additional T cell biology, we performed sub-clustering within the “contaminated” T cell 

cluster.  In this analysis, we failed to observe T cell clusters not identified among the remaining 

non-contaminated populations. Since this contamination cluster was not observed to obscure a 

novel T cell phenotype, we decided to exclude this population from downstream analysis. 

Following removal of the cluster of T cells defined by residual contamination, we performed 

dimensionality reduction and clustering at multiple clustering resolutions (Louvain resolution: 0.25 

– 0.75). In this final analysis, we identified 12 T cell populations at a clustering resolution of 0.75.  

 

Classification of T cells Populations 

We then classified T cell populations using a combination of manual curation and 

comparison to literature-derived sequences. We compared granuloma T cell populations to 
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publicly available T cell population and single-cell mRNA-Seq signatures. Specifically, we 

performed comparisons in the following ways:  

 

1. For each T cell cluster, we compared its cluster-defining gene to publicly available databases 

of immune signatures, including MSigDb [64] and Savant [19]. Specifically, we performed 

gene-set enrichment for the top 20 cluster-defining genes in Piano using a hypergeometric 

test with correction for multiple hypothesis testing using the Benjamini-Hochberg method for 

false discovery. 

2. We compared each T cell cluster to literature-derived signatures of T cells from another 

scRNA-Seq study. Here, we generated cell signature scores in Seurat using the 

AddModuleScore function using gene expression signatures obtained from human lung 

cancer [20]. To determine the significance of these score, we performed 1,000 permutations 

in which T cell cluster identity was randomly re-assigned to generate a null distribution of 

module scores.  

3. Finally, we performed extensive manual curation based on literature evidence. For each cell 

population, we carefully examined patterns of enrichment and performed extensive literature 

search to support classification of T cell sub-populations. For example, we identified 

regulatory T cells on the basis of expression of known regulatory T cell markers (FOXP3, 

IKZF1, and TNFSF18/GITR). However, in many cases, surface markers used to define 

canonical T cell populations do not directly correspond to single-cell mRNA sequencing data. 

 

Initially, we distinguished T cells from NK cells based on express recovery of  ab-TCR 

sequences. We identified NK/cytotoxic cells based on reduced recovery of ab-TCR sequences 

and similarity to NK gene signatures (GZMH, GZMB, GNLY, and PRF1). We identified an 

additional population of T cells defined by expression of gd TCR constant genes. Upon sub-
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clustering this population of cells  (See Sub-clustering of Gamma-Delta T cell Cluster), we 

identified a second NK population characterized by elevated expression of XCL1.  

Next, we defined T cell clusters based on the expression of CD4 and CD8A and CD8B. 

Specifically, we identified 3 T cell clusters with elevated expression of CD4, 2 T cell clusters with 

elevated expression of CD8A/B, and 2 clusters with mixed expression. We identified multiple 

CD4+ T cell populations, including naïve T cells (LEF1, TCF7, SELL, and CCR7), regulatory T 

cells (FOXP3, IKZF1, and IL1R1), and a population of interferon-responsive CD4+ T cells (MX1 

and ISG15). Among CD8+ T cells, we identified a population of CD8 T cells characterized by 

expression of GZMK and a population of effector CD8 T cells (GZMB, CX3CR1, and TGFBR3) 

(Fig. SX and Table SX). Finally, we observed 2 populations of T cells expressing both CD4 and 

CD8 including proliferating T cells (MKI67 and TOP2A) and a population of T1/T17 cells (RORA, 

RBPJ, and BHLHE40). We performed additional sub-clustering and observed multiple clusters 

that segregate closely with expression of CD4 and CD8 (See Sub-clustering of T1-T17 Cells).  

 

Sub-clustering of Gamma-Delta and Cytotoxic Cluster 

We performed additional sub-clustering with within the population of 2,377 gd and cytotoxic 

T cells. Specifically, we performed dimensionality reduction and clustering at multiple resolutions 

(0.30 – 0.75). Here, we observed 2 primary populations of cells: (1) a population of gd T cells and 

(2) a population of XCL1+ NK cells. We performed differential expression analysis to determine 

differences in gene expression between these clusters upon which we based the classification of 

these cells.  

 

Sub-clustering of T1-T17 Cells 

Based on the observation that both CD4+ and CD8+ T cells comprise the Th1/Th17 

cluster, we performed sub-clustering analysis within this population. We performed variable gene 
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identification, dimensionality reduction and Louvain clustering (Resolution = 0.55) and identified 

4 distinct sub-population. 3 of 4 sub-clusters within the T1T17 population correspond closely to 

CD4 (Cluster 1) and CD8 T cells (Cluster 2 and 3). Within the T1T17 population, we observed a 

fourth population defined by expression of heat-shock and DNA-damage response proteins.  

 

T cell Functional Analysis  

To identify functional gene expression signatures of bacterial control, we performed 

differential expression  within each T cell subset between T cells recovered from high and low 

burden lesions using a Wilcox test. Within each T cell subset, we further performed correction for 

multiple testing using false-discovery rate correction (Benjamini-Hochberg).  We specifically 

performed directed analysis to examine signatures of T cell exhaustion and cytotoxic effector 

function among CD8 T cell sub-populations. In each case, we examined the expression of 

individual genes in addition to combined metrics of gene expression across multiple genes. To 

calculate gene expression signature scores from multiple genes, we used the AddModuleScore 

function in Seurat. We examined the distribution of functional gene programs within and between 

T cell sub-populations.  

 

Analysis of TCR Data  

We initially examined the rates of TCR recovery for both alpha and beta CDR3 sequences 

across T cell clusters.  Specifically, we recovered aCDR3 sequences in 22.5%, b-CDR3 in 27.3% 

and paired ab-CDR3 sequences in 11% of T cells. We examined the extent of clonal expansion 

among CDR3 sequences based on sharing of alpha and beta CDR3 sequences. Here, expanded 

clones were identified as CDR3 alpha or beta sequences observed at least twice. We examined 

the distribution of alpha and beta CDR3 sequences across granulomas.  
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Having observed few public clones, we sought to understand the relationship between 

clonality and phenotype among expanded clones within individual animals. For each clone, we 

calculated the distribution of T cell phenotypes with expanded clones for both a and b CDR3 

sequences. In particular, we primarily focused our analysis to animal 4017, where we sampled 

lesions with a clear bifurcation in bacterial burden, For each expanded clone, we examined the 

distribution of phenotypes between high and low-burden lesions.  

 

Sub-clustering of Granuloma Macrophages 

Across 27,670 macrophages, we initially performed Louvain clustering and dimensionality 

reduction at multiple clustering resolutions. In our initial clustering, we identified a cluster defined 

by contaminating transcripts derived from other cell types including mast cells (KIT and CLU), T 

cells (CD3D and ), and plasma cells (JCHAIN) and soup-defining gene expression. We compared 

the distribution of macrophage-defining gene expression in this cluster to other clusters and 

observed this cluster to have enriched signature scores relative other clusters. We then performed 

a sub-clustering analysis in which we used the top 20 cluster-defining genes from non-

contaminated macrophage clusters as variable genes.  

We examined the enrichment of macrophage expression signatures and determined that 

the population of macrophages that have a core macrophage expression program. While we 

observe a population of macrophages that is primarily soup-defining gene expression, we did not 

exclude this cluster due to the possibility that this represents an efferocytotic macrophage 

population.  

 

Classification of Macrophage Populations 

We established the identities of the macrophage clusters through a combination of manual 

curation and comparison to published gene expression signatures from both population and 

single-cell mRNA sequencing studies. More specifically: 
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1. For each macrophage cluster, we performed similar comparison to databases of immune 

signatures including MSigDb and Savant (See Identification of T cell Populations).  

2. We generated gene expression signatures from published scRNA-Seq studies of macrophage 

states. For example, we used a recently published atlas of myeloid states in lung [37] to score 

granuloma macrophages. Further, we generated a list of myeloid expression signatures using 

lung myeloid cells from the mouse cell atlas. For each study, we generated signatures for the 

top 20 cluster-defining genes to generate gene expression signatures. Signature scores were 

generated for each cell using the AddModuleScore function in Seurat.  

3. Finally, in cases where we failed to discover existing description of a macrophage population, 

we performed extensive literature searches to contextualize possible identity of macrophage 

populations.  

 

Comparison to signatures from Zillonis et al., reveals a high degree of similarity to multiple 

clusters. Specifically, we observe multiple populations of macrophages defined by expression of 

APOE and APOC1. We identified a consistent population characterized by expression of FABP4, 

MRC1, and PPARG. We observe another population of inflammatory macrophages enriched for 

expression of CXCL9, CXCL10, and CXCL11. We identify 2 primary populations of monocytes: 

(1) a population of inflammatory monocytes (VCAN, S100A6, and THBS1) and (2) a population 

of CD16+ monocytes (FCGR3A and CX3CR1). 

 

Granuloma-level Correlates of Bacterial Burden  

Initially, we calculated the proportion of cell type clusters observed in each granuloma with 

the numerator as the number of cells of a specific phenotype and the denominator as the total 

number of cells in a given granuloma. 
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 We then examined cellular and molecular correlates of granuloma-level bacterial burden 

in two ways:  

1. We performed correlation analysis of cell-type proportions and end-point CFU level across all 

granulomas using a Spearman-rank correlation test. All Spearman rank correlation tests were 

adjusted for animal-specific effects and corrected for multiple testing using Benjamini-

Hochberg False-Discovery correction.  

2. We performed a T-test for each cell-type between high and low-burden lesions, correcting for 

multiple testing using Benjamini-Hochberg False-discovery correction.  

 

Relationship between bacterial killing and cell type composition 

We performed targeted sequencing (CEQ Values) from granuloma lysates to determine 

the number of chromosomal equivalents from each lesion. This metric provides a measure of 

cumulative bacterial burden. As a measure of granuloma-level bacteria killing, we used the ratio 

of CEQ (cumulative bacterial burden) and CFU (CFU: viable bacterial load). For the CEQ:CFU 

ratio, higher values correspond to elevated bacterial killing and lower values correspond to lower 

bacterial killing. To understand the relationship between cell-type composition and CEQ:CFU 

ratio, we examined the continuous relationship between CFU:CEQ ratios and proportional cell 

type composition using a spearman rank-correlation test. We also divided lesions into 2 groups 

based on CEQ:CFU ratio and performed a T-test, correcting for multiple testing using Benjamini-

Hochberg False-discovery correction. 

 

Relationship between cell-type composition and timing of granuloma formation 

Based on serial PET-CT imaging, we identified lesions that formed at different points in 

infection. Specifically, there was a group of lesions that were observed starting at 4-weeks post-

infection that we classified as ‘original’ lesions and a distinct group of lesions that were observed 

only at 10-week scans (i.e. pre-necropsy scans) that we classified as ‘late-blooming’.  
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We examined the relationship between the timing of granuloma formation and granuloma-

level cell-type composition. Specifically, we divided lesions into 2 groups based on the scan on 

which they were first observed. Lesions observed on PET-CT scans at 4, 8 and 10 week scans 

were classified as “original” lesions (n = 15), while those lesions observed only at 10-week scans 

were classified as “late-blooming” lesions. We calculated cell-type proportions within each 

granuloma as the number of cells of each type divided by the total of number cells in each 

granuloma. We examined differences in the abundance of cell-types between original and late-

blooming lesions using a T-test and significance of association was determined through 

Benjamini-Hochberg FDR correction.  

Since we observe a strong association between bacterial burden and timing of granuloma 

formation, we performed additional analysis restricted to original lesions. Here, we selected 

original lesions with the highest (n=6, Avg. CFU = 18,375) and lowest (n=6 Avg. CFU = 2,305). 

Here, we performed a T-test to examine differences in the cell type composition between original 

lesions with the highest bacterial burden and original lesions with the lowest bacterial burden, 

correcting for multiple testing using Benjamini-Hochberg False-discovery correction.  

 

Co-variation in Granuloma Composition 

We calculated correlations in cell-type proportions to identify underlying structure in the 

co-occurrence of cell types across all granulomas. Specifically, we calculated Pearson correlation 

coefficients for all pair-wise cell-type combinations. We also examined the robustness of 

granuloma composition analysis to spearman correlations. Further, we performed hierarchical 

clustering to identify clusters of correlated cell-types across granulomas, and calculated the 

proportional composition of correlated cell-type clusters within each lesion. To understand the 

relationship between identified cell-type clusters and granuloma-level bacterial burden, we 

examined the abundance of correlated cell types by grouping lesions by bacterial burden (CFU 

ranges: 0-500, 500-5,000, and >5,000).  
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Cell-Communication Analysis 

To examine cell-cell interactions, we first generated a curated list of receptor-ligand pairs 

through a combination of publicly-available databases and literature review [65]. Within each 

granuloma, we generated edge weights between cell types for a given receptor ligand pair by 

multiplying the average receptor expression in Cell Type 1 by the average ligand expression in 

Cell Type 2. Edge weights were constructed for all receptor-ligand pairs and pairwise-cell type 

combinations within granulomas individually. Within each granuloma, we performed a total of 

1000 permutations for each receptor-ligand pair in which cell-type identifiers were randomly 

resorted and the resulting edge weight was recorded. For each receptor-ligand pair, the 

significance of the observed value was calculated from a z-score comparison of the observed 

value relative the permuted values.  

We further performed adjustment of receptor-ligand edge weights at multiple levels. (1) 

We examined differences in unweighted receptor ligand edge weights Comparisons of receptor-

ligand edge weights on the basis of bacterial burden (granuloma-level CFU) and timing of 

granuloma formation (time of first PET-CT observation). (2) To account for differences in the 

relative abundance of ‘sender’ cell types, we multiplied receptor-ligand edge weights by the 

proportion of ‘sender’ cell types. In effect, this generates a pool of ‘sender’ cell derived ligand that 

is available to act upon cell types bearing appropriate receptors. (3) To account for variability in 

the expression of receptor expression across cell population, we weighted receptor-ligand edge-

weights by the proportion of total receptor expression within the receiving cell type cluster relative 

the aggregate receptor expression. In this scheme, receptors with more uniform expression 

across cell type clusters will be down-weighted to reflect non-autonomous sinks of extracellular 

ligands, while receptors predominantly expressed by a single cell type will be up-weighted. (4) 

Finally, we adjusted receptor-ligand edge weights to account for the percent of cells within the 

receiver population expressing a given receptor.  
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To identify axes of intercellular communication with differential weights across 

granulomas, we performed t-tests of receptor-ligand edge weights between (1) high-burden and 

low-burden lesions, (2) original and late-blooming lesions. We filtered results based on the 

following criteria: (1) average permutation p-values within high or low-burden lesions < 0.05, (2) 

p-value from student’s t-test < 0.05, (3) fold-change > 0, and (4) receptor-ligand edge weights 

were ranked by receptor-ligand edge weights. We created a Shiny app to facilitate exploration 

and interpretation of cell-cell interaction data (https://tkhughes2.shinyapps.io/Shiny/).  
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5.1 Summary and Discussion of Main Findings 
 

We have worked to develop and deploy a novel technology platform to understand the 

relationship between cellular composition and bacterial burden in Mtb granulomas. Development 

of the Seq-Well platform has uniquely enabled high-throughput single-cell mRNA sequencing to 

study M. tuberculosis granulomas in BSL3 facilities (Chapter 2). The use of a portable, low-cost 

device enables the technique to be performed in virtually any lab environment around the world. 

Further, improvements in the sensitivity of transcript capture have enabled increased per-cell 

information content (Chapter 3). These improvements have enabled increased capture efficiency 

of biologically informative lowly expressed transcripts including cytokines, receptors, and 

transcription factors. Finally, using Seq-Well, we have performed high-throughput scRNA-seq to 

explore the cellular and molecular features of bacterial control in MTB granulomas (Chapter 4).  

In Chapter 2, we report the development of Seq-Well, a portable, low-cost platform for 

high-throughput single-cell mRNA sequencing. Here, uniquely barcoded mRNA capture beads 

are confined in a portable PDMS device that contains approximately 85,000 individual microwells. 

Following loading of beads, cells are loaded and microwell arrays are reversibly sealed using a 

semipermeable membrane. Following lysis, mRNA is captured and reverse transcription is 
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performed to generate cDNA. Following PCR amplification and Illumina library preparation, high-

throughput sequencing is performed to generate single-cell sequencing data (Figure 2.1 and 2.2). 

Critically, membrane sealing of Seq-Well devices enables increased capture efficiency of cellular 

mRNAs while minimizing transcript loss and cross-talk between adjacent wells. To validate the 

performance of Seq-Well in challenging environments and demonstrate its compatibility with 

select pathogen research, we performed single-cell sequencing on macrophages exposed to Mtb 

in a BSL3 facility. Here, we observed multiple macrophage populations that display altered 

expression patterns following exposure to Mtb (Figure 2.3).  

In Chapter 3, we developed an improved version of the Seq-Well protocol (Seq-Well S^3) 

that results in significant increases in per-cell gene detection and transcript capture. Specifically, 

Seq-Well S^3 increases per-cell information content by random second strand synthesis that 

more efficiently appends a second primer sequence to cDNA molecules following reverse 

transcription (Figure 3.1). In the original version of the Seq-Well protocol, the use of template 

switching results in loss of molecules that were successfully captured and reversed transcribed, 

but without successful template switching, are not efficiently amplified during PCR amplification. 

The second-strand synthesis technique enables recovery of those molecules that are otherwise 

lost in transcription by random hybridization to first strand cDNA molecules on mRNA capture 

beads. We validated the performance of the Seq-Well S^3 technique in cell lines and primary cells 

and show that the performance of the technique is on par with best in class commercial 

alternatives (e.g. 10x Genomics v2 and v3) (Figure A2.1-3). We further use the improved Seq-

Well S^3 to generate an atlas of inflammatory skin conditions. Specifically, we sequenced a total 

of 38,274 cells from 19 skin biopsies across multiple inflammatory skin conditions including acne, 

alopecia areata, granuloma annulare, leprosy, psoriasis and normal human skin (Figures 3.2-

3.6). In this work we simultaneously demonstrate the utility of Seq-Well S^3 to uncover disease 

relevant biology by identifying multiple disease-specific immune and stromal phenotypes.  
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 In Chapter 4, we used Seq-Well to explore the relationship between Mtb granuloma cell-

type composition and granuloma-level bacterial burden. Here, cynomolgous macaques (n=4) 

were bronchoscopically infected with a low-dose inoculum of Mtb (7-11 bacilli) and serial PET-CT 

was performed to track the development of granulomas at 4, 8 and 10 weeks post-infection. In 

total, we performed Seq-Well on 26 granulomas from 4 animals and obtained 109,584 single cells. 

Across lesions, we examined the relationship between cell-type composition and granuloma-level 

bacterial burden. Here, we discovered the strongest link between abundance of T cells and 

reduced bacterial burden, while we found an unexpected link between mast and plasma cell with 

increased bacterial burden. Further, we observed elevated proportions of specific T cell subsets 

with reduced bacterial burden including Naïve T cells, effector CD8 T cells, and a population of 

T1T17 cells (Figure 4.3). We further performed high-throughput immune receptor profiling for 

granuloma T cells, and observe close relationship between T cell clonality and phenotype (Figure 

4.6). We further report a nuanced relationship between timing of granuloma formation, cell-type 

composition, and bacterial burden (Figure 4.8). Specifically, in early-forming lesions we observe 

expansion of mast and plasma cells, while late-blooming, low-burden lesions are enriched for a 

population of T1-T17 cells following the onset of adaptive immunity. Finally, we examined 

expression of ligand-receptor pairs across lesions and observed increased mast cell expression 

of IL-13 in high burden lesions acting on multiple T cell and macrophage populations (Figure 

4.11).  

 

5.2 Strengths and Weaknesses of Approaches 

Strengths 

Single-cell mRNA sequencing enables unbiased characterization of complex populations 

of immune and non-immune cells the comprise TB granuloma and other complex tissue-immune 

ecosystems. Previous methods for single-cell profiling (e.g. flow cytometry or mass cytometry) 

are critically limited in the number of cellular features that can be simultaneously analyzed, which 
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limits the potential for novel discovery. Further, these methods generally require higher numbers 

of cells than can be obtained from most granulomas. Among methods for single-cell mRNA 

sequencing, Seq-Well [1] uniquely enables single-cell analysis of individual Mtb granulomas. 

Through single-cell sequencing, we have been able to identify the presence of previously 

unappreciated cells populations in Mtb granulomas like mast cells. Using recently developed 

methods, we have also been able to reconstruct TCR immune repertoires from TB granulomas 

[2]. Importantly, our data reveal an important role for T1-T17 cells in the control of Mtb infection 

within granulomas. 

 

Impact 

The impact of the techniques that I have worked to develop, optimize and apply has 

extended far beyond my own work. Since the publication of Seq-Well, I have worked to train over 

100 scientists from around the world to perform the technique, and I have personally performed 

experiments on every continent minus Antarctica. Through numerous collaborations, I have 

worked to optimize experiments in the setting of Ebola infection (Collaboration with Pardis Sabeti 

and NIH-IRF), Malaria Infection (Mahidol Tropical Research Institute, Bangkok, Thailand), Zika 

infection (Gehrke lab – MIT), human Mtb infection (Leslie – AHRI, Durban, South Africa), leprosy 

infection (Modlin Lab, UCLA and Sarno Lab, Fiocruz), environmental enteric dysfunction (Gartner 

Lab, UCSF and Kelley Lab, Zambia), multi-route BCG vaccination (Seder and Roederer Labs, 

NIAID-VRC), variant detection in acute myeloid leukemia [3] (Berstein Lab, MGH), and many 

others.  In addition to academic collaborations, this work has resulted in multiple patent 

applications which have led to the founding of Honeycomb, a company working to develop a 

commercial version of the Seq-Well platform.   

 

Weaknesses 
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While Seq-Well enables high-throughput characterization of complex tissue samples and 

immune responses, the need for tissue dissociation prior to cell isolation eradicates the spatial 

architecture of MTB granulomas. Further, as currently implemented, accurate and comprehensive 

discovery of infection status of macrophages is currently not possible. In the initial study of MTB 

granulomas described in Chapter 4, single-cell sequencing was performed using the original 

version of the Seq-Well protocol, which has reduced gene detection and transcript recovery 

relative the Seq-Well S^3 protocol (Chapter 3).  

In the experiments outlined in chapter 4, there are a limited number of animals (n=4) used 

for infection and sequencing. While we have made efforts to ensure that associations are not 

driven by animal-specific features of disease, additional animal would provide increased 

confidence in the strength of our findings. To this end, we have performed infections in an 

additional 4 cynomolgus macaques (42 granulomas). Granulomas were obtained at 10-weeks 

post-infection; however, this set of granulomas is composed exclusively of “original” lesions (i.e. 

those observed on PET-CT at 4, 8, and 10-week scans), which has led to a significant reduction 

in the range of granuloma-level bacterial burdens observed. Despite the reduced range of 

bacterial burden, we are able to observe elevated proportions of mast cells, consistent with 

original, high-burden lesions to the set of 26 granulomas described in Chapter 4.  

In work described in this dissertation, we have not performed interventional studies in 

mouse or NHP to validate findings associated with improved bacterial control. To this end, we 

have since begun to perform studies in which antibody depletion of CD8 T cells is performed prior 

to infection. We have also performed scRNA-Seq in the context of Mtb bre-infection, where 

lesions that form upon secondary challenge show remarkable ability to contain bacteria [4]. 

Finally, in an attempt to understand early events in granuloma formation, we have performed 

scRNA-Seq in lesions at 4-weeks post-infection.  

 

5.3 Alternative approaches:  
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Spatially-resolved Profiling of Mtb Granulomas 

Mtb granulomas have a stereotyped spatial architecture that undoubtedly influences cell-

cell interactions and their influence on the structure and function of granulomas. Unfortunately, 

mechanical and enzymatic dissociation of granulomas prior to application to Seq-Well devices 

eradicate valuable information about the spatial relationships among granuloma cell-types.  

Fortunately, multiple methods for high-throughput spatial profiling are available. Protein-

based methods for highly multiplexed imaging enable spatial profiling of primary samples. 

Multiplexed ion-beam imaging (MIBI) utilizes antibodies labeled with isotopically pure heavy 

metals and can simultaneously profile up to 100 targets [5]. Notably, there is ongoing work to 

explore phenotypic findings generated in the context of  Mtb granulomas using MIBI in a Gates 

collaboration with Mike Angelo at Stanford.  

In combination with existing data, techniques for spatially-resolved sequencing would 

provide a complimentary view of granulomatous inflammation. Methods for spatial transcriptomics 

are rapidly maturing, and offer exciting opportunities for biological discovery. First, there are a 

number of techniques that provide sub-cellular resolution using either multiplexed variations of 

fluorescent in situ hybridization (FISH)  or in situ amplification and sequencing [6-9]. These 

methods, however, have significant technical and analytic requirements. Another set of 

techniques capture mRNA from frozen tissue sections using barcoded oligos covalently linked to 

a glass slide or spatially patterned arrays of mRNA capture beads. For example, Slide-Seq 

enables spatial sequencing with ~10 micron resolution and is compatible with frozen tissue 

sections [10]. These techniques provide the benefit of unbiased transcriptional profiling while 

retaining spatial information and offer exciting possibilities to study granuloma biology.  

 

Targeted Host-Pathogen Profiling 

While current forms of mRNA capture beads rely on capture of poly-adenylated mRNA 

species, terminal modification of mRNA capture beads with capture sequences complimentary to 
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mRNA target sequences would enable directed hybridization and capture of non-poly-adenylated 

RNA species. Specifically, modification of bead synthesis strategies to incorporate a universal 

adapter sequence would enable stoichiometric addition of customized capture sequences using 

a single hybridization and extension prior to a given experiment [11]. In this framework, target 

sequences could be complimentary to user-defined genetic constructs (e.g. CRISPR screens), 

pathogen transcripts, or host mRNAs (e.g. Immune receptors or recurrently mutated proteins). In 

combination with methods for targeted enrichment and sequential library construction that retain 

cell barcode and UMI, bead modification could result in significant improvements to single-cell 

pathogen detection, mutation calling [3, 12]  and immune receptor sequencing [2, 11]. 

 

Multi-omic profiling of Mtb Granulomas 

The field of single-cell genomics has made great progress over the course of my PhD 

training. Improvements in single-cell sequencing technologies have enabled new levels of 

biological inquiry and can now be performed in virtually any lab around the world. While methods 

for generation of high-throughput single-cell mRNA sequencing libraries have largely come of 

age, new methods for single-cell multi-omics offer exciting possibilities. Numerous methods have 

been developed that incorporate additional axes of single-cellular information including CRISPR 

perturbation [13], variant detection [3, 12], immune receptor reconstruction [2], chromatin 

accessibility and lineage tracing.  

Recently developed methods enable simultaneously interrogation of gene expression and 

chromatin accessibility at single-cell resolution [14]. In particular, these methods would enable 

interrogation of epigenetic changes in granuloma immune populations that correlate with bacterial 

burden and the temporal evolution of immune states during infection. In granuloma macrophage 

populations, this would enable understanding of epigenetic reprogramming of macrophages in 

sterilizing granulomas. Here, experiments could be designed to understand the epigenetic and 
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transcriptional basis of trained innate immunity in the context of re-infection and IV-BCG 

vaccination. 

 

In vitro models of granuloma formation 

Finally, there are multiple in vitro models of Mtb granuloma formation that could be used 

to validate our findings and screen candidate molecules for host-directed therapy. In one of the 

earliest in vitro models of granuloma formation (c. 1925), Mtb can be combined with blood in 

hanging droplets, which results in the formation of epithelioid macrophages and multi-nucleated 

giant cells [15]. More recently, Mtb granuloma formation in vitro has been achieved through co-

culture of immune cells and Mtb in alginate microspheres [16]. Importantly, this model would 

enable formation of hundreds or thousands of granulomas using immune cells with user-defined 

input composition. In combination with live-dead reporter strains, this could provide a scalable 

system to track the effects of cellular composition, host-directed and anti-bacterial therapies on 

granuloma-level bacterial burden. Finally, lung-on-chip models offer the possibility of studying 

early dynamics of Mtb infection at the level of the lung epithelium [17]. 

 

5.4 Leveraging Single-Cell sequencing results for MTB vaccine design  

Rational design of an effective MTB vaccine remains an elusive goal in the prevention of 

tuberculosis infection. In addition to understanding protective immune responses in the context of 

natural infection (Chapter 4), we have explored the landscape of mucosal immune cells in the 

setting of BCG (Bacillus Calmette-Guerin) vaccination. Currently, BCG, the only available TB 

vaccine, is administered intradermally and prevents disseminated TB infection in infants but has 

variable efficacy in adolescents and adults [18, 19]. Here, we collaborated with Drs. Robert Seder, 

Mario Roederer and Patricia Darrah at the NIH-NIAID Vaccine Research Institute to understand 

immune responses associated with multi-route BCG administration.  
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The central aim of this study was to assess how the route and dose of BCG vaccination 

influence systemic and tissue-resident T cell immunity, and protection after Mtb challenge [20]. In 

this study, Rhesus macaques were vaccinated with 5 × 107 colony-forming units (CFUs) of BCG 

by intradermal (high dose and low dose), aerosol or IV routes, or with a combination of both AE 

(5 × 107 CFUs) and ID (5 × 105 CFUs; AE/ID). Importantly, IV administration of BCG resulted in 

significant protection where nine out of ten IV-BCG-immunized NHPs had no lung FDG activity 

throughout the challenge phase (Fisher’s exact test, P< 0.001) with six out of ten NHPs having 

no granulomas throughout the course of infection.   

IV BCG vaccination resulted in significant changes in BAL cell numbers with a 5-10- fold 

increase in total cells made up primarily of conventional T cells. Notably, the altered cellular 

composition of BAL was sustained up to six months after IV BCG vaccination. To understand the 

phenotypic identity of BAL T cell responses, we performed single-cell mRNA sequencing with 

Seq-Well to comprehensively assess transcriptional states among T cells that might underlie 

protective vaccine responses (Figure 5.1). 

 Single-cell mRNA sequencing was performed in a total of 15 animals across 5 vaccine 

routes with 3 animals in each group which include unvaccinated controls, low-dose intradermal, 

high-dose intradermal, aerosol, and intravenous routes of administration. Sequencing was 

performed on cell obtained from BAL at 2 time points (13 weeks and 25 weeks post-vaccination). 

In total, we recovered 160,000 cells that include B cells, eosinophils, epithelial cells, 

macrophages, mast cells, neutrophils, proliferating cells, and T cells (Figure 5.1A). Consistent 

with observations from flow cytometry, we observe increases in the proportion of BAL T cells in 

the IV-BCG vaccine group (Figure 5.1B). Further, we observed persistence of this proportional 

increase in T cells from week 13 to week 25 post-immunization among animals receiving 

intravenous vaccine.  
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Figure 5.1 | Seq-Well of ~160,000 cells from a multi-route NHP BCG vaccination study. Adapted from 
Darrah et al. Nature 2020. (A) UMAPs of cells recovered from Week 13 (top) and Week 25 (bottom). (B) 
Proportion of cell types (colored as in A) recovered from BALs by route and by animal at Week 13 (top) and 
Week 25 (bottom). 
 
 

We examined correlated patterns of gene expression within unstimulated and PPD-

stimulated T cells from BAL to identify groups of genes whose coordinated activity differed by 

vaccine route (Figure 5.2A-C). A total of seven significant T cell modules were identified among 

in vitro-stimulated T cells 13 weeks after immunization and used to generate expression scores 

across all T cells at weeks 13 and 25. Among these, we identified a stimulation-inducible module 

of gene expression, module 2, enriched for memory T cell functionality (Figure 5.2C), primarily 

expressed in a population of BAL CD4 T cells from IV-BCG-immunized NHPs at week 13, and 

maintained until week 25 (Figure 5.2B). Differential gene expression analysis, comparing T cells 

positive and negative for module 2, showed enrichment of genes previously associated with 

protection against TB including IFNG, TBX21, RORC, TNFSF825 and IL21R (Figure 5.2C) [21]. 
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Figure 5.2 | A non-canonical Th1/Th17 hybrid T cell is enriched in IV-BCG NHPs. (A) Z-scored heat 
maps of the average cellular score for modules identified in week 13 PPD-stimulated T cells at weeks 13 
and 25 after BCG vaccination. Red P values indicate modules uniquely elevated in the IV BCG group (one-
way ANOVA) (B) Distributions of module 2 expression in unstimulated and stimulated T cells at weeks 13 
and 25 for each group. Percentage module 2-positive is shown; positivity (dashed line) defined as 2 s.d. 
above the mean score of the unvaccinated (Naive) NHPs (C) Volcano plot showing differentially expressed 
genes between T cells positive and negative for module 2 at week 13 (P values calculated using the 
likelihood ratio test with Bonferroni correction). 
 

Collectively, findings from natural infection and protective vaccination provide an emerging 

picture of Mtb-protective immune responses. In the setting of Mtb granulomas, we observe 

bacterial control to most strongly associate with a population of T1-T17 cells. In the setting of 

intravenous BCG vaccination, we observe a unique module of correlated gene expression that is 

enriched for genes associated with Th1 and Th17 effector function. In each case, it appears that 

in sufficient numbers, T cells that with some combination of Type 1 and Type 17 effector function 

are capable of providing protection against subsequent mycobacterial challenge. In natural 

infection, this is best illustrated by observations that late-blooming lesions have significantly lower 

bacterial burdens presumably since they arise following the onset of adaptive immunity. In the 

following section, we will discuss the role of Type 1 and Type 17 inflammation in Mtb immunity.  

 

5.5 – The role of Type 1 and Type 17 Inflammation in Mtb Protective Immune Responses 

The role of T cells in immune control of Mtb infection has long been appreciated, but the 

identity and balance of T cell phenotypes that lead to control remains poorly understood. Based 
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on evidence in the literature and presented in this dissertation, it is most likely that Mtb-protective 

T cells reside along a spectrum of Type 1 and Type 17 inflammation. While there is a notable lack 

of consistent nomenclature regarding these hybrid T cell responses in the literature, where 

descriptions range from Th1, Th17, Th1* [22], non-classical Th1 [23], Th1-Th17, Tc17 [24, 25], 

ex-Th17 [26], ILC3s [27], or T1-T17 cells as in Chapter 4, these all share many consistent features 

[28].  

For example, a population of Mtb-specific Th1 cells (Th1*) characterized by expression of 

CCR6 and CXCR3 has been described to co-express IFN-g and TBET in addition RORgt [22].  

Notably, Th1* cells do not produce IL-17 and are increased in patients with latent Mtb infection 

[29, 30]. Th1-Th17 cells have further been described to result in protective immunity in the setting 

of both natural infection and vaccination. Emergence of a Th1-Th17 population in the lung plays 

a central role in protective vaccination and natural immunity against numerous pathogens 

including B. pertussis [31-35], C. albicans [36, 37], H. influenzae [38], P. aeruginosa [39, 40], S. 

pneumoniae [41-43],  Leishmaniasis [44], and C. neoformans [45-47]. Further, Th17 cells have 

been previously shown to play an important role in M. tuberculosis infection and vaccine response 

[48-54].  

Recent evidence suggests that a population of ex-Th17 cells are induced following 

exposure to killed Klebsiella and are capable of inducing protective immune responses upon 

infectious challenge [26]. Here, ex-Th17 cells were observed to lose expression of Ror-gT and IL-

17 and upregulate expression of RBPJ, BHLHE40, IL-23R and IL-7R. Notably, this pattern bears 

striking resemblance to that observed among the protective T1-T17 population identified in MTB 

granulomas described in Chapter 4 (Figure 4.3 and 4.4). Collectively, the evidence described in 

this dissertation and throughout the literature suggests that a combination of Th1 and Th17 

effector function consistent with Th1* or ex-Th17 cells is an essential feature of TB-protective 

immunity.  
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5.6 – A Balancing Act: Tolerance and Immunity in MTB granulomas  
 

Tissues have evolved tolerance mechanisms to maintain homeostatic function in the face 

of noxious environmental stimuli, commensal microbiota, and tissue damage [55-58]. These 

mechanisms serve to limit inflammation and tissue damage and re-direct the host immune system 

to support organ function and repair. In the context of infection, the evolutionary impulse for 

organs to safeguard homeostatic function creates an inertia that must be overcome to incite a 

sterilizing immune response. At the same time, the innate immune system has evolved to display 

a broad number of pattern recognition receptors specific to components of pathogens (e.g. Toll-

like receptors and nucleic acid sensors). Compared to other organisms that cause pulmonary 

infections, MTB is relatively devoid of molecular patterns that trigger a robust innate immune 

response (e.g. LPS) and the initial infectious dose of Mtb is generally very low. Moreover, virulent 

strains of MTB are able to directly suppress TLR signaling [59]. In the view, MTB is the most 

successful pathogen due in part to its initial immunologic insignificance.  

Sequestration of persistent antigens and limiting surrounding tissue damage are central 

functions of granuloma formation. In this view, granulomas represent an evolutionary détente in 

which persistent antigens are tolerated but sequestered to prevent end-organ failure due to an 

overexuberant host immune response. For example, Type 2 polarized granulomatous 

inflammation in S. mansoni infection highlights a key evolutionary function to limit inflammation, 

sequester parasite eggs and ultimately preserve tissue function [60]. Notably, with impaired Type 

2 immunity, unchecked immunity activation leads to increased immunopathology and mortality. 

Specifically, in S. mansoni infection, deletion of IL-13RA2 results in an overall reduction in the 

number of viable pathogen eggs, but improved pathogen control is accompanied by increased 

immunopathology and reduced overall survival [61].  

In the earliest stages of infection (0-4 weeks post-infection), I propose that MTB “exploits” 

tissue-level signals (i.e. the “keep-breathing” instinct of the lung) to initiate granulomatous 

environments that are tolerant to persistent bacterial replication. In the absence of over-riding 
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alarm bells that accompany canonical pulmonary pathogens, Mtb is able to infect macrophages 

and initiate granuloma formation. However, in the absence of strong over-riding, PAMP signaling, 

tissue-level signals designed to maintain tissue function predominate, and early polarization 

towards wound-healing and pro-fibrotic signaling enable the generation of immune-privileged 

environments amenable to long-term pathogen viability. Largely secluded from the “outside 

world”, these granulomas allow the slowly growing pathogen a safe haven to outlast the robust 

immune response that ensues, enabling resurgence of infection upon eventual changes in host 

fitness.  

During later stages of infection (4-8 weeks post-infection), granulomas form in a distinct 

immune environment. While it is possible that alveolar macrophages and bone-marrow derived 

monocytes have adopted a more responsive phenotype following exposure to acute products of 

inflammation. The largest difference, however, is the emergence of an adaptive immune 

response. In the single-cell sequencing data from natural infection (Chapter 4), there are hints 

that such a mechanism might explain differences in granuloma-level bacterial control. In late-

blooming, low-burden lesions, we observe increases in the number of relative composition of T 

cells (Figure 4.8). Specifically, we observe expansion of a population of T1-T17 cells that is highly 

associated with bacterial control. Further, in early-forming lesions alone, we observe lower 

numbers of this population and do not detect a significant relationship between bacterial burden 

(Figure 4.9).  

 

5.7 Future Investigation 

Designing Effective Host-directed Therapies in Established MTB infection 

Based on observation from studies of natural infection (Chapter 4) and protective 

vaccination (Chapter 5), robust T-cell responses are capable of providing sterilizing immunity 

against Mtb. Intravenous BCG vaccination results in widespread dissemination of BCG 

throughout lymphoid (e.g. lymph nodes and spleen) and non-lymphoid tissues leading. Studies in 
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non-human primates reveal that local immune control is possible at the level of granulomas, even 

in the context of global loss of control [62]. For example, a single animal reveals robust elimination 

of bacteria among late-blooming lesions despite global loss of bacterial control, as evidence by 

elevated total lung FDG (Figure 4.1). While these data hold promise for vaccine development to 

prevent the acquisition of Mtb infection in unexposed individuals, the larger challenge is 

immunologic reprogramming within established granulomas that support persistent bacterial 

replication using host-directed therapy [63].  

Unless eliminated, bacteria within persistent lesions can lie dormant for a period of 

months, years, or decades until changes in host fitness enable reactivation of latent infection. It 

is likely that protective, antigen-specific T cells are present throughout the lung following the onset 

of adaptive immunity, but are not able to eliminate Mtb from persistently high-burden lesions, 

which may critically limit the efficacy of T-cell targeted host-directed therapy. From an ecologic 

perspective, there is likely a carrying capacity for the number of T cells that can reside in 

granulomas, where the accumulation of immunologically ineffective T cells likely prevents the 

subsequent recruitment of protective antigen-specific T cells in early-forming lesions [64, 65]. 

Further, fibrosis represents a physical barrier that might limit access of protective T cells to the 

granuloma microenvironment among early forming lesions.  

Importantly, IL-13 represents a key cytokine associated with fibrotic changes in multiple 

tissues [66-69]. Blockade of IL-13 is associated with reduction in hepatic fibrosis in the context of 

S. mansoni infection [70] and reduction in pulmonary fibrosis [71]. Further, lung injury results in 

IL-33 dependent expansion of ST2+ Tregs that in turn produce IL-13 leading to alternative 

activation of macrophages and tissue repair [72]. IL-13 also signaling represents a promising 

target for host-directed therapy based on scRNA-seq data from MTB granulomas. In the context 

of 10-week NHP granulomas, we observe increased mast cell IL-13 expression in high burden 

lesions with increased receptor-ligand potentials acting on multiple T cell populations in high-

burden, early-forming lesions (Figure 4.11D). Moreover, IL-13 is a type 2 cytokine that limits the 
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ability of macrophages to control intracellular Mtb infection [73]. Importantly, IL-13 targeting 

antibodies are already used clinically to treat a range of Type 2 inflammatory conditions including 

atopic dermatitis and chronic rhinosinusitis [74-76]. Collectively, these observations make IL-13 

a promising target for host-directed therapy in established Mtb infection.  

 

Understanding the role of tissue-level sensitization in determining MTB infection outcome 

Individuals exposed to MTB have highly divergent responses: some individuals develop 

fulminant disease while others are able to control and even eliminate infection [77]. While we have 

begun to define the features of protective immune responses at the level of individual granulomas, 

we still lack a comprehensive understanding of the factors that predict host-level control of Mtb 

infection between individuals.  

Epidemiologic studies of Mtb infection have uncovered groups of individuals who are able 

to persistently resist infection despite prolonged exposure to Mtb [78, 79]. The first evidence that 

some individuals are able to avoid infection despite prolonged exposure emerged from the study 

of nurses at Boston City Hospital [80] and a study of 1,175 sailors aboard a ship in close quarters 

with an index TB patient  [81]. More recent cohort studies include household contacts of Mtb index 

cases in Kampala, Uganda and a cohort of South African gold miners with estimated annual risk 

of Mtb infection of 20% [78]. These studies have reveled subsets of individuals termed “resisters” 

who remain persistently IGRA-negative, meaning they lack peripheral T cells that produce IFN-g 

in response to Mtb antigens, despite high levels of Mtb exposure. Recent evidence suggests that 

resisters (IGRA-negative, exposed individuals) have distinct patterns of adaptive immune 

responses characterized by elevated T cell expression of CD40LG, increased antibody avidity 

and unique patterns of Fc glycosylation [82].  

 Genome-wide association studies (GWAS) have been performed to identify genetic risk 

factors associated with the risk of Mtb acquisition [83-87]. While these studies have identified 

multiple genetic susceptibility loci including 18q11.2, JAG1, CCL17, and ASAP1, there has often 
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been limited replication across multi-ethnic cohorts [88]. The lack of coherent genetic 

predisposition highlights the importance of understanding how variation in host-levels factors 

influences response to Mtb infection. Here, key unanswered questions include how allergic 

sensitization, prior/co-incident infection, and nutritional status influence subsequent host-

response to Mtb infection.  

Allergy is associated with Type 2 polarized immune responses and can lead to tissue 

remodeling within respiratory epithelium [89, 90] that might alter the balance of Mtb tolerance and 

immunity in individuals with pre-existing allergic conditions. Epidemiologic studies have shown an 

inverse relationship between tuberculosis infection and development of asthma, where individuals 

with positive PPDs develop asthma less frequently [91, 92]. Further, some studies report that TB 

infection protects against atopic rhinitis, while others observe no association  [93, 94]. Adding to 

this complexity, childhood BCG vaccination represents a potential confounding variable as it may 

reduce the likelihood of atopy [95]. However, a recent study of Mtb and allergy in children, 

revealed a lack of association between BCG vaccination and reduction of allergy along with a 

strong, positive association between allergic symptoms (eczema and asthma) and Mtb infection 

[96]. Epidemiologic studies require careful interpretation, particularly cross-sectional studies, as 

the temporal relationship between allergy and infection is difficult to establish. Ultimately, 

interventional studies are needed to address the causal nature of allergy in host response to Mtb. 

Interestingly, evidence from mice suggests that exposure to dust mite allergen prior to infection 

impairs host immunity to Mtb [97], but further studies are necessary to more fully elucidate the 

role of allergic sensitization in Mtb risk.  

Helminth infection is associated with increased expression of type 2 cytokines including 

IL-4, IL-5 IL-9, IL-10, and IL-13 and mucosal expansion of mast cells, eosinophils and basophils 

[98]. There is widespread helminth infection throughout TB-endemic regions of the world, and it 

is possible that pre-existing helminth infection could modulate host-response to Mtb infection. In 

mice, prior infection with N. brasiliensis results in impaired control of Mtb infection in an IL-4 



 179 

dependent manner [99]. Further, infection with S. mansoni attenuates protection from BCG 

vaccination in mice [100]. In humans, helminth co-infection modulates immune control of Mtb 

infection and response to anti-mycobacterial therapy [101, 102].  

Finally, impaired host nutrition and low body mass index (LBMI) are risk factors for 

acquisition and reactivation of Mtb infection [103]. Protein calorie restriction results in rapid decline 

of Mtb-infected mice [104]. Interestingly, malnourished individuals with latent Mtb infection (LTBI) 

show elevated levels of IL-5 and IL-13 and reductions in numerous pro-inflammatory cytokines 

including IFN-gamma, TNF-alpha, IL-1beta, and IL-22 relative individuals with LTBI and normal 

BMIs [105]. Collectively, an improved understanding of potentially modifiable host factors that 

influence response to Mtb infection will be a critical factor in determining the effectiveness of 

prophylactic and therapeutic interventions to prevent and treat Mtb infection in humans.  
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Corresponds to Chapter 2. 
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Figure A1.1. (A) An open array format results in decreased gene and transcript capture, and increased 
cross-contamination, relative to the membrane sealing implemented in Seq-Well. (B) Species mixing 
experiments with reversible membrane sealing using Seq-Well provides increased gene/transcript capture 
and improved single-cell resolution.  
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Figure A1.2. Cells are obtained from complex tissues or clinical biopsies, and digested to form a single-
cell suspension. Barcoded mRNA capture beads are added to the surface of the microwell device, settling 
into wells by gravity, and then a single-cell suspension is applied. The device is sealed using a semi-
permeable membrane that, upon addition of a chemical lysis buffer, confines cellular mRNAs within wells 
while allowing efficient buffer exchange. Liberated cellular transcripts hybridize to the bead-bound barcoded 
poly(dT) primers that contain a cell barcode (shared by all probes on the same bead but different between 
beads) and a unique molecular identifier (UMI) for each transcript molecule. After hybridization, the beads 
are removed from the array and bulk reverse transcription is performed to generate single-cell cDNAs 
attached to beads. Libraries are then made by a combination of PCR and tagmentation, and sequenced. 
After, Single-cell transcriptomes are assembled in silico using cell barcodes and UMIs. 
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Figure A1.3. (A) Two arrays were loaded with barcoded beads through intermittent rocking. After washing, 
arrays were imaged in transmitted light and AF488 channel to capture bead autofluorescence. A plot of the 
frequency of the 75th percentile AF488 well intensity across the array (Panel 1) and the frequency of wells 
containing zero, one and multiple beads is displayed (Panel 2). (B) 200 L of a 1:1 mix of fluorescently 
labeled human (HEK 293) and mouse (3T3) cell solution was loaded into 3 arrays and 12 wells of a 96 well 
plate. The number of cells loaded into each array and well as enumerated by fluorescent imaging is plotted, 
normalized to the average number of cells/well in the 96 well plate. Mean and standard error are denoted 
by line and error bars respectively. (C) 2x102, 2x103, and 2x104 total cells of a 1:1 mix of fluorescently 
labeled HEK 293T and 3T3 cells were loaded onto three functionalized arrays each. All arrays were 
fluorescently imaged to enumerate the number of each cell line in each array microwell. The mean ± 
standard deviation of the number of empty, single and multiple occupancy wells across the three replicate 
arrays for each loading density is displayed along with the mean ± standard deviation of the percentage of 
occupied wells containing a cell from each species. 
  



 192 

 

Figure A1.4. (A) The surface of the PDMS device is initially treated with an air plasma under mild vacuum, 
terminating the surface in hydroxyls. This PDMS surface is aminated using (3-Aminopropyl)triethoxysilane 
(APTES). The amine surface is then activated with PDITC to create an isothiocyanate surface. The 
isothiocyanate on the top surface of the array (negative space) is covalently linked to chitosan polymers 
through their amine group. The hydrophobicity of the isothiocyanate surface prevents solvation of the 
microwells with the aqueous chitosan solution, preventing chitosan from reacting with the inner well 
surfaces (positive space). These surfaces are subsequently reacted with the free amine of poly(glutamic) 
acid polymers under vacuum to drive the solvation of the wells. (B) The top surface of a PDITC-activated 
array was coated with streptavidin-PE (red) and the inner well surfaces were coated with streptavidin-AF488 
(green) using same method used to functionalize with chitosan and poly(glutamate). (C) Two 
chitosan/poly(glutamate) bi-functionalized arrays were submerged in MES buffer without (Panel 1) or with 
(Panel 2) 100 µg/mL EDC and 10 µg/mL NHS for 10 minutes. The arrays were washed and then submerged 
in PBS solution containing 1 µg/mL AF568-labeled antibody overnight. After washing, arrays were imaged 
for AF568 fluorescence. 
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Figure A1.5. PBMCs labeled with CD45-AF647 were loaded into two BSA-blocked arrays and one array 
functionalized with chitosan and poly(glutamate). A semipermeable membrane was attached to one of the 
BSA-blocked arrays and the chitosan:polyglutamate functionalized array prior to addition of lysis buffer. (A) 
Example images of transmitted light and AF647 fluorescence of the arrays before and 5 and 30 minutes 
after addition of lysis buffer are displayed for each array. (B) The total fluorescence intensity (FI) of all pixels 
associated with cells within a well is plotted against the median fluorescent intensity (MFI) of the volume of 
the same well 5 minutes after lysis for 12,100 wells from each array.  (C) The MFI of the well volume 5 
minutes after lysis is plotted against the MFI of the volume of the same well 30 minutes after lysis for the 
same 12,100 wells from each array. 
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Figure A1.6. Read mapping quality matrices were generated for each sample for human (blue) and mouse 
(red) cells, aligned to hg19 and mm10, respectively. High quality samples had relatively higher percentages 
of annotated genomic (genic) and exonic transcripts and low percentages of annotated intergenic and 
ribosomal transcripts (Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/- 1.5 IQR; Points:  
Values > 1.5 IQR). 
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Figure A1.7 Histograms of the percent cross-species contamination in (A) Seq-Well, (B) Drop-Seq (Ref. 
12), and (C) Yuan and Sims. In each plot, cells with greater than 90% of human transcripts are displayed 
in blue and cells with less than 10% human transcripts are displayed in red. (D) Transcript capture in human 
(blue) and mouse (red) cell lines across three massively-parallel, bead-based single-cell sequencing 
platforms (Seq-Well, Drop-Seq, and 10X Genomics, with downsampling to an average read-depth of 80,000 
reads per cell, consistent with 10X genomics data (Center-line: Median; Limits: 1st and 3rd Quartile; 
Whiskers: +/- 1.5 IQR; Points:  Values > 1.5 IQR). We detect an average of 32,841 human transcripts and 
29,806 mouse transcripts using Seq-Well compared to an average of 39,400 human transcripts and 24,384 
mouse transcripts using Drop-Seq, an average of 24,751 human transcripts and 22,971 mouse transcripts 
using 10X Genomics (available from ).  (E) Gene detection across human and mouse cell lines across the 
same three single-cell sequencing platforms with down-sampling to the average read-depth of 80,000 reads 
per cell, consistent with 10X genomics (Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/- 1.5 
IQR; Points:  Values > 1.5 IQR). We detect an average of 6,174 human genes and 5,528 mouse genes 
using Seq-Well, an average of 5,561 human genes and 4,903 mouse genes using Drop-Seq and an 
average of 4,655 human genes and 3,950 mouse genes using 10X Genomics. (F) Downsampling to an 
average of 42,000 reads per cell consistent with data published in Yuan and Sims 2016, results in average 
detection of 23,061 mouse transcripts using Seq-Well compared to an average of 24,761 mouse transcripts 
using the Yuan and Sims platform (Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/- 1.5 IQR; 
Points:  Values > 1.5 IQR). (G) Downsampling to an average of 42,000 reads per cell results in average 
detection of 4,827 mouse genes using Seq-Well compared to an average of 4,569 mouse genes using the 
Yuan and Sims platform (Center-line: Median; Limits: 1st and 3rd Quartile; Whiskers: +/- 1.5 IQR; Points:  
Values > 1.5 IQR). 
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Figure A1.8. We sequenced two arrays (A-B) to confirm single-cell resolution and minimal cross-
contamination between mouse and human cells. We called cells by plotting the cumulative distribution of 
transcripts and making a cutoff at the elbow in the curve. In the first experiment (A), which was used to 
validate our single-cell resolution, we shallowly sequenced the array and made the cutoff at 2,000 
transcripts. In the second experiment (B), where we sequenced the array deeply to allow a competitive 
comparison to Drop-Seq, we made our cutoff at 10,000 transcripts. 
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Figure A1.9. Scatterplots showing the correlation between gene expression estimates from bulk 
populations (40,000 HEK cells and 40,000 mRNA capture) and populations generated in-silico from 1, 10, 
100, and 1,000 randomly-sampled single HEK293 cells (1 Cell: R = 0.751  ± 0.0726; 10 Cells: R = 0.952 ± 
0.008; 100 Cells: R = 0.980 ± 0.0006; 1000 Cells: R = 0.983 ± 0.0001). 
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Figure A1.10. (A) Clusters identified through graph-based clustering (Methods) correspond to major 
immune cell populations. (B,E) CD4 T cells are characterized by expression of CD3D and T-cell receptor 
expression without pronounced expression of cytoxic genes NKG7 and PRF1. (C,F) CD8 T cells are defined 
by expression of NKG7 and PRF1. (D,G) Monocytes are defined by expression of cathepsin B (CTSB) and 
SOD2. (E) Natural killer cells are characterized by expression of cytotoxic genes in the absence of T cell 
receptor expression. (H) B cells are marked by elevated expression of MS4A1 (CD20) transcripts. (I) 
Dendritic cells are enriched for expression of BIRC3. 
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Figure A1.11. (A) Genes enriched in each cluster were identified using an “ROC” test in Seurat, comparing 
cells assigned to each cluster to all other cells. A heatmap was constructed using enriched genes found to 
define each cluster. One cluster of 602 cells that demonstrated exclusive enrichment of mitochondrial genes 
was removed as these likely represent low-quality or dying cells. (B) We generated a t-SNE projection of 
4,296 cells with greater than 10,000 reads, 1,000 transcripts, 500 genes, and 65% transcript mapping. We 
removed a total of 602 cells from the final analysis found to be strongly enriched for expression of 
mitochondrial genes. The remaining 3,694 cells form distinct clusters enriched for lineage-defining that 
distinguish cells types from one another. 
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Figure A1.13. (A) Comparison of transcript capture (top) and gene detection (bottom) between Seq-Well 
and 10X Genomics within PBMC cell types prior to downsampling (colored as in Figure 2; Center-line: 
Median; Limits: 1st and 3rd Quartile; Whiskers: +/- 1.5 IQR; Points:  Values > 1.5 IQR). Among B cells 
(orange), an average of 1,315 genes and 3,632 transcripts were detected using Seq-Well and an average 
of 710 genes and 1,910 transcripts were detected in 10X Genomics data. Among CD4 T cells (blue), an 
average of 861 genes and 2,444 transcripts were detected using Seq-Well and an average of 815 genes 
and 2,370 transcripts were detected in 10X Genomics data. Among CD8 T cells (yellow), an average of 
885 genes and 2,574 transcripts were detected using Seq-Well and an average of 809 genes and 2,029 
transcripts were detected in 10X Genomics data. Among Monocytes (green), an average of 1,288 genes 
and 3,568 transcripts were detected using Seq-Well and an average of 974 genes and 2,835 transcripts 
were detected in 10X Genomics data.  Among NK cells (red), an average of 902 genes and 2,338 transcripts 
were detected using Seq-Well and an average of 907 genes and 1,943 transcripts were detected in 10X 
Genomics data. (B) Transcript capture (top) and gene detection (bottom) upon downsampling of Seq-Well 
data to an average read depth 69,000 reads per cell (Center-line: Median; Limits: 1st and 3rd Quartile; 
Whiskers: +/- 1.5 IQR; Points:  Values > 1.5 IQR). Upon downsampling, in Seq-Well, an average of 1,048 
genes and 3103 transcripts were detected among B cells, 735 genes and 2,221 transcripts among CD4 T 
cells, 763 genes and 2,353 transcripts among CD8 T cells, 1,052 genes and 3,105 transcripts among 
monocytes, and 789 genes and 2,041 transcripts among NK cells. 
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Figure A1.14. (A) Using a threshold of 5,000 detected transcripts, we identified 4,638 macrophages. (B) 
Among these 4,638 cells, we identified 5 distinct clusters of macrophages by performing graph-based 
clustering over 5 principal components (377 variable genes). (C) Clusters 1-3 are defined by unique gene 
expression signatures, while Clusters 4 and 5 are defined by expression of mitochondrial genes, suggesting 
low-quality cells. (D) Following removal of cells within Clusters 4 and 5, there remain a total of 2,560 cells 
in Clusters 1-3. 
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Figure A1.15.  (A-C) Violin plots depicting reads (A), transcripts (B), and genes (C) per cell, separated by 
cluster. (D) Percent mRNA bases per cell, separated by cluster. 



Appendix 2 
 
Corresponds to Chapter 3.  
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Figure A2.1. (A) Illustration of the second strand synthesis procedure: (1) mRNA is captured via 
poly-T priming of poly-adenylated mRNA; (2) First strand synthesis is performed to generate 
single-stranded cDNA template on bead-bound sequences; (3) Successful template switching: 
The use of enzymes with terminal transferase activity generates a 3’ overhang of 3 cytosines. 
Template switching utilizes this overhang to append the SMART sequence to both ends of the 
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cDNA molecule during first strand synthesis. Failed Template Switching: If template switching 
fails, this results in loss of previously primed and reverse transcribed mRNA molecules; (4) mRNA 
template is chemically denatured using 0.1M NaOH; (5) Second strand synthesis is performed 
using a random-octamer with the SMART sequence in the 5’ orientation; and, (6) Following 
second strand synthesis, PCR amplification, library preparation and sequencing are performed to 
generate data. (B) Scatterplots show the relationship between transcript detection (y-axis) and 
number of aligned reads per cell (x-axis) for a series of optimization experiments using HEK293 
and NIH-3T3 cell lines. (C) Scatterplots show the relationship between transcript detection (y-
axis) and the number of aligned reads per cell (x-axis) for a series of optimization experiments 
using PBMCs. (D) Scatterplots that illustrate the relationship between number of transcripts 
detected (y-axis) and number of aligned reads per cell (x-axis) between Seq-Well V1 and Seq-
Well S^3 in species mixing experiments using HEK293 and NIH-3T3 cells. (E) Scatterplots that 
illustrate the relationship between number of transcripts detected (y-axis) and number of aligned 
reads per cell (x-axis) between Seq-Well V1 and Seq-Well S^3 in a series of optimization 
experiment using human PBMCs. (F) Histograms that show the fraction of transcripts uniquely 
mapped to the human genome for each cell for Seq-Well V1. Colors indicate species classification 
for cells with at least 90% purity of human (blue) or mouse (red) mapping. (G) Histograms that 
show the fraction of transcripts uniquely mapped to the human genome for each cell for Seq-Well 
S^3. Colors indicate species classification for cells with at least 90% purity of human (blue) or 
mouse (red) mapping.  
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Figure A2.2. (A) UMAP plots showing detected cell-types among PBMCs using 10X v2 (left) and 
Seq-Well S^3 (right). (B) Stacked barplots show the proportion of cell types recovered using Seq-
Well S^3 (left) and 10X v2 (right). (C) Top: Boxplots (median +- quartiles) showing the distribution 
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of per cell gene detection from 10X v2 (left)  and Seq-Well S^3 (right). Bottom: Boxplots (median 
+/- quartiles) showing the distribution of per cell- transcript capture from 10X v2 (left) and Seq-
Well S^3 (right). (D) Scatterplots showing a comparison of gene detection frequencies between 
Seq-Well S^3 (y-axis) and 10x v2 (x-axis) for each cell type. (E) Scatterplots showing the 
difference in gene detection between Seq-Well S^3 and 10X v2 (y-axis) as a function of average 
normalized expression (log(scaled UMI + 1)) (x-axis). (F) Scatterplots showing a comparison of 
gene detection frequencies among sorted CD4+ T cells between (Left) Seq-well S^3 (y-axis) and 
10x v2 (x-axis), (Middle) Seq-Well S^3 (y-axis) and Smart-Seq2 (x-axis), and (Right) 10x v2 (y-
axis) and Smart-Seq2 (x-axis).  
  



 208 

 

Figure A2.3. (A) UMAP plots for 7,891 PBMCs from 10x Genomics V3 (left) and 2,682 PBMCs 
from Seq-Well S^3 (right). (B) Stacked barplots showing the distribution of recovered cell types 
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between 10x Genomics V3 and Seq-Well S^3. (C) Top: Boxplots (median +- quartiles) showing 
the distribution of per cell gene detection from 10X v2 (left)  and Seq-Well S^3 (right). Bottom: 
Boxplots (median +/- quartiles) showing the distribution of per cell-gene detection from 10X v2 
(left) and Seq-Well S^3 (right). (D) Scatterplots showing a comparison of gene detection 
frequencies between Seq-Well S^3 (y-axis) and 10x v3 (x-axis) for each cell type. (E) Scatterplots 
showing the difference in gene detection between Seq-Well S^3 and 10X v3 (y-axis) as a function 
of average normalized expression (log(scaled UMI + 1)) (x-axis).  
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Figure A2.4. (A) UMAP plot for 38,274 cells colored by 35 cell type clusters. (B) Comparison of 
cell-type classification to results obtained using SingleR. Color corresponds to the percentage of 
manually classified cells types (columns) assigned to cell-type references contained in the 
Blueprint Encode dataset (rows). (C) Dendrogram of hierarchical clustering shows similarity of 
cell type clusters among top 25 cluster-defining genes. (D) Heatmap showing the relative 
expression of cell-type defining gene signatures across 38,274 cells (Table S4). (E) t-SNE plots 
for each of the nine skin biopsies colored by generic cell type. (F) Violin plots show the distribution 
of per-cell quality metrics displayed in UMAP embedding of 38,274 cells colored by colored 
generic cell-type classification (Figure 3.2B).   
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Figure A2.5. (A) (Top) Force-directed graph of 4,943 T cells colored by T cell sub-cluster. 
(Bottom)  Heatmap of gene-set enrichment scores based on comparison of T cell phenotypic sub-
clusters to a curated list of reference signatures in the Savant database. (B) Sub-grouping results 
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for CD8 T cells (top) (Table S7) and cytotoxic cells (bottom) (Table S8). For each analysis, t-SNE 
plots colored by inflammatory skin condition (top-left) and sub-cluster (bottom-left) are shown. For 
each clusters, heatmaps show gene expression patterns across T and NK cells sub-types (right). 
(C) (Top) Detection rates for TCR genes for PBMCs in Seq-Well v1, 10x v2. and Seq-Well S^3. 
(Bottm) Detection frequency of TCR V-J (e.g. TRAV/J and TRBV/J) genes in CD4+ T cells from 
peripheral blood between Seq-Well S^3 (y-axis) and 10x v2 (x-axis). Colors correspond to TRAJ 
(red), TRAV (green), TRBJ (blue), and TRBV (purple) genes. (D) (Left) Force-directed graph of 
5,010 myeloid cells colored by myeloid sub-clusters (Louvain resolution = 0.6). (Right) Force-
directed graph of 5,010 myeloid cells colored by myeloid phenotypes. (E) Heatmap of gene-set 
enrichment scores based on comparison of myeloid phenotypic sub-clusters to a curated list of 
reference signatures in the Savant database. (F) Heatmap showing average signature score 
across 5 dermal DC populations based on dendritic cell signatures from Villani et al. Science 
2017. (G) Heatmap showing average signature score across 5 dermal DC populations based on 
signatures from  et al. Immunity 2019. (H) (Left) UMAP plot for 951 dendritic cells from human 
skin colored by inflammatory skin condition. (Right) Stacked barplot showing composition of 
dendritic cells within each of nine skin biopsies by DC sub-cluster. (I) UMAP plots colored by 
normalized expression levels for DC sub-grouping-defining genes.  
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Figure A2.6. (A) Heatmaps showing enrichment of genes along pseudo-temporal trajectories for 
keratinocytes from 2 normal skin biopsies and 5 psoriatic keratinocyte biopsies. (B) Plots showing 
the expression of trajectory-defining genes for 2 normal and 5 psoriatic biopsies. (C) Scatterplot 
showing the relationship between differential expression between psoriatic and normal 
keratinocyte (y-axis) and differential pseudotime correlation (x-axis). Genes highlighted in red 
have differential correlation values greater than 0.4 or less than -0.4. (D) Violin plots showing 
localization of cytokine response signatures in basal, differentiating and terminal keratinocytes 
across 2 normal and 5 psoriatic biopsies. P-values from T-tests showing differences in cytokine 
signature scores for basal, differentiating and terminal keratinocytes between normal and psoriatic 
keratinocytes. 



Appendix 3  
 
Seq-Well Protocol 
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Membrane Preparation 
1.  Carefully place a pre-cut (22 x 66 mm) polycarbonate membrane onto a glass slide using 

a gloved finger and tweezers to separate the membrane and paper. 

Note 1: Make certain the shiny side of the polycarbonate membrane is facing up to be in 
contact with the oxygen plasma and eventually the surface of the array. 

Note 2: Discard any membranes that have creases or other large-scale imperfections. 

  
2.  Place membranes onto a shelf in the plasma cleaner. 

         Note 1: Shelves are not provided, but any piece of glass will do. 
Note 2 (optional): If you have two shelves, place membranes on the bottom shelf to 
reduce risk of them flying after vacuum is removed. 

  
 

  

3. Close the plasma cleaner door, then turn on the main power and pump switch. To 
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form a vacuum, ensure that the 3-way valve lever is at the 9:00 position as shown below 

and that the door is completely shut. 

  
4.      Allow vacuum to form for 2-3 minutes. Once the vacuum has formed, simultaneously turn 

the valve to 12:00 while turning the power to the Hi setting (shown below). 

Note: The plasma should be a bright pink. If not, adjust the air valve to increase or 
decrease the amount of oxygen entering the chamber. 

  
5.      Treat membranes with plasma for 5-7 minutes. 

Note: We treat membranes for 7 minutes, but treatment times can vary. 
Experiment Notes 
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6.      Critical – After treatment, in the following order: (1) turn the RF level valve from HIGH to 

OFF, (2) turn the air valve from the 12:00 position to the 9:00 position, and (3) then turn 
off the power followed by turning off the vacuum.  Then slowly open the valve until air can 

be heard entering the chamber (approximate valve position shown below).  Leave until 

door opens (~5 min). 

  
7.      Remove slides (with membranes) from the oven and transfer to a 4-well dish. 

Note 1: If membranes have slightly folded over, slowly flip the membrane back using 
needle nose tweezers. 

Note 2: If membranes have blown off the slide entirely, repeat above procedure to 
ensure you know which side was exposed to plasma. 
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8.      Using a P1000 pipette, gently hydrate one end of the membrane with a single drop of 

1xPBS so that it adheres to the slide before dispensing the entire volume. Once the 

membrane is hydrated, continuing add 1xPBS until you reach 5 mL (use either a 

serological pipette or P1000 pipette to complete hydration). 

  
9.      Remove any air bubbles underneath the membrane using wafer forceps or a pipette tip. 

10.    Membranes are now functionalized and ready for use. 

Note 1: Membranes solvated with 1xPBS should be used within 48 hours. 
Note 2: If transporting solvated membranes (e.g. between buildings), remove all but ~1 
mL of 1xPBS to prevent membranes from flipping within the dish. 

Note 3: Alternatively, membranes initially solvated in 1xPBS can be dried and stored for 
4 weeks at room temperature. To dry them out, carefully remove membranes, keeping 

them on their glass slides, from the 1xPBS solution, transfer the membranes to the 

benchtop, cover them with a tip box, and let them dry for 15-20 minutes. As the 

membranes dry they’ll become opaque which is normal. 

Note 4: Before use the membranes should be rehydrated with 5 mL of 1xPBS. Drying out 
membranes is helpful when traveling or when running seq-well in a laboratory without 

access to a plasma cleaner. 

 Experiment Notes 
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Bead Loading 
1.     Aspirate storage solution and solvate each array with 5 mL of bead loading buffer (BLB; 

See Sub-Appendix D: Buffers Guide). 
2.      Place array(s) under vacuum with rotation (50 RPM) for 10 minutes to remove air 

bubbles in wells. Note: Rotation is optional 

  
3.      Aliquot ~110,000 beads from stock into a 1.5 mL tube and spin on a tabletop centrifuge 

for 15 seconds to form a pellet. 

4.      Aspirate storage buffer and wash beads twice in 500 uL of BLB. 

5.      Pellet beads, aspirate BLB, and resuspend beads in 200 uL of BLB. 

Note: For each array, it’s recommended to load ~110,000 beads. 
6.      Before loading beads, thoroughly aspirate BLB from the dish containing the array(s), being 

careful not to aspirate or dry the PDMS surface of the array(s). 

7.      Using a P200 pipette, apply 200 uL containing 110,000 beads, in a drop-wise fashion, to 

the surface of each array (see image below and Bead Loading Diagram on page 10). 
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8.      Allow the arrays to sit for 5 minutes, rocking them intermittently in the x & y direction. 

Pro-Tip: This step can be extended to 10 minutes to allow the beads more time to settle. 
However, make sure to monitor the surface of the array so that it doesn’t dry out. 

9.     Thoroughly wash array(s) to remove excess beads from the surface. For each wash: 

1. Position each array so that it sits in the center of the 4-well dish. 

2. Dispense 500 uL of BLB in the upper right corner of each array and 500 uL in the 

bottom right corner of each array. Be careful not to directly pipette onto the 

microwells, as it can dislodge beads. 

3. Using wafer forceps or a pipette tip, push each array against the left side of the 4-

well dish to create a capillary flow; this will help remove beads from the surface. 

4. Aspirate the liquid, reposition each array, and repeat on the other side. 

  
10.    Repeat step 9 as necessary. Periodically examine the array(s) under microscope to 

confirm that no loose beads are present on the surface, as this will interfere with 
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membrane attachment. Usually it takes 4 washes/side to thoroughly remove excess beads 

(this depends on your original loading density). 

11.    Once excess beads have been removed from the surface, solvate each array with 5 mL 

of BLB and proceed to cell loading. 

         Notes: 
1. If continuing to cell loading immediately (i.e., within 6 hours), loaded arrays  

should be stored in 5 mL of BLB. 

2. If you are not going to use the arrays on the day they’re loaded, remove the BLB 

buffer, rinse the arrays once with 5 mL of 1xPBS, and then solvate the arrays with 

5 mL of quenching buffer. Arrays can be stored in quenching buffer for 10 days 

(See Sub-Appendix D: Buffers Guide). 
Experiment Notes 
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Bead Loading Diagrams 
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Cell Loading  
1.      At this point, your array should be loaded with beads and sitting in 5 mL of BLB. 

2.      Obtain the cell or tissue sample and prepare a single cell suspension using an optimized 

protocol for tissue dissociation.  

3.      While preparing your single-cell suspension, aspirate the BLB from each array (or 

quenching buffer) and rinse the array twice in 5 mL of 1xPBS to bring the solution in the 

four-well dish to physiological pH. 

4.      After the second wash, aspirate the 1xPBS and soak the loaded array in 5 mL of RPMI 

+10% (RP-10) FBS for 5 minutes. 

Note 1: This step is performed to mitigate non-specific adhesion of cells to primary amines 
on the top surface of the array. 

Note 2: Any supplemented media can be used in place of RP-10. 
5.      After obtaining a single-cell suspension, count cells using a hemocytometer and make a 

new solution of 10,000-15,000 cells in 200 uL of RP-10. 

Note 1: You can use your preferred media for prepping the cell loading solution. 
Note 2: Be sure to not use automated cell counters, particularly following tissue 
dissociation. This can provide an inaccurate cell count, compromising the experiment. 

6.      Thoroughly aspirate the RP-10/supplemented media (to ensure the array will not move 

during cell loading). 

7.  Center your array in the well and then apply the cell loading solution onto the surface in a 

dropwise fashion (similar to how beads were applied in the previous section). 

8.      Allow cells to settle for 10 minutes, intermittently rock the array in the x & y direction. 

9.      Wash array 4x with 5 mL of 1xPBS to remove the serum. For each wash, gently rock the 

array in the x & y direction, and then aspirate the 1xPBS. Once you have aspirated the 

1xPBS out of the dish, gently tilt the 4-well dish toward you and aspirate directly off the 

bottom border of the array; this will help to completely remove the excess serum on the 

surface of the array 

Note:  These washes are critical to remove excess serum which can interfere with
 successful membrane attachment. 

10.      Aspirate the final 1xPBS wash and replace with 5 mL of RPMI media without FBS. 
         Note: You can use any media here as long as it does not contain serum. 
Experiment Notes 
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Membrane Sealing 
 1.     Gather the following materials before sealing the array(s): 

  
●      Array loaded with beads and cells (See Bead/Cell Loading) 

●      Pre-treated membrane (See Membrane Preparation) 

●      Wafer forceps (or P1000 pipette tip) 

●      Paper towels 

●      Agilent clamp 

●      Clean microscope slides 

 

2.      Use the wafer forceps to transfer the array from media to the lid of a 4-well dish, being 

careful to ensure that the array is not tilted. 
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3.  Once the array is positioned on the lid of a 4-well dish, carefully aspirate excess liquid 

from around the edge of the array and the exposed surface of the glass slide. (Note: Be 
careful not to aspirate directly from the PDMS surface). 

4.      Using wafer forceps or a pipette tip, remove a pre-treated membrane from the 4-well dish. 

5.      Gently dab away moisture from the glass slide on the paper towel until the membrane 

does not spontaneously change position on the glass slide. 

6.      Carefully position the membrane on the center of the microscope slide, leaving a small 

membrane overhang (2-3 mm) beyond the edge of slide. 

  
7.      Holding the membrane in your left hand, invert the microscope slide so that the 

treated surface of the membrane is facing down. 

  
Experiment Notes 
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8.      Place the overhang of the membrane in contact with the PDMS surface of the array just 

beyond the boundary of the microwells. 

  
9.      Using a clean slide held in your right hand, firmly hold down the overhang of the 

membrane against the PDMS surface of the array.  

10.      Critical Step: While maintaining pressure with your right hand to hold the membrane in 
place, gently apply the membrane. 

Note 1: For optimal results, use only the weight of the slide to apply the membrane with 
the left hand. 

Note 2: Attempts to manually seal the microwell device using excess pressure result in a 
‘squeegee’ effect, effectively removing moisture from the membrane while fixing 

membrane creases in place. 

Note 3: As you apply the membrane you should see a fluid interface form and expand as 
direct, uniform contact between the slide and the array will naturally remove some of the 

media as the membrane is applied. 

Note 4: You can use either your left or right hand for membrane-sealing (most people use 
their dominant hand to apply the membrane). Please practice this step before the actual 

experiment to figure out which hand you’re most comfortable with. 

11.    After applying the membrane, carefully pry the array and membrane from the surface of 

the lid and transfer to an Agilent clamp.  

12.    After transferring the sealed array to the clamp, place a glass slide on top of the sealed 

array. 
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13.    Close the clamp and tighten to the point of resistance, then place it in a 37C incubator 

for 30-40 minutes. 

Note: This time is flexible and depends on the incubator. If you want to decrease this 
incubation time, please optimize on cell lines before proceeding with precious samples. 

14. Repeat membrane-sealing protocol procedure if running multiple arrays. 
Experiment Notes  
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Cell Lysis & Hybridization 
1.      Remove the clamp from the incubator, and then remove the array from the Agilent 

clamp. (Note: At this point, the glass slide will be attached to the array and membrane).  

2.      Submerge the array, with top slide still attached, in 5 mL of complete lysis buffer (See 
Sub-Appendix D: Buffers Guide).  

3.      Gently rock the array in lysis buffer until the top glass slide spontaneously detaches. 

Note 1: Do not pry the top slide off as this can reverse membrane sealing. The time 
necessary for detachment of the top slide varies (10 seconds – 10 minutes). 

Note 2: If the top slide does not release after 10 minutes, gently pry the top slide off using 
wafer forceps or a pipette tip. Just be careful. 

4.      Once the top slide has detached, place the arrays on a horizontal rotator for 20 minutes 

at 50-60 rpm. 

5.      After 20 minutes, remove the lysis buffer and wash each array with 5 mL of hybridization 

Buffer (See Sub-Appendix C: Buffers Guide). 
Note 1: Use a separate waste container for lysis buffer because guanidine 
thiocyanate can react with bleach in TC traps to create cyanide gas. 
Note 2: The hybridization buffer used to wash the array post-lysis may contain trace 
amounts of guanidine thiocyanate and should, therefore, be disposed of in the lysis 
buffer waste container.  

6.      Aspirate hybridization buffer and add another 5 mL of hybridization buffer to each array 

and rotate for 40 minutes at 50-60 rpm. 

7.      While the arrays are rocking in hybridization buffer, prepare RT master mix. (See Reverse 
Transcription & Exonuclease Digestion) 

Experiment Notes 
 

  
  



 231 

Bead Removal Method 1 
1.      After the arrays have rocked in hybridization buffer for 40 minutes, carefully peel back 

each membrane using fine-tipped tweezers. 

2.      Place array into a 50 mL conical containing 30-40 mL of Wash 1 solution. 

3.      Holding the array above the 50mL conical (shown below), repeatedly dispense 

approximately 1 mL of Wash 1 solution from the conical across the surface of the array to 

dislodge beads (See Sub-Appendix D: Buffers Guide). 
Note: Vigorously dispense Wash 1 buffer to remove beads. 

4.      Repeat these 10 times, periodically checking to see if beads are dislodging. 

          
5.      After repeatedly rinsing the array from top to bottom, use a clean glass slide to gently 

scrape the array to remove any beads that remain in the array. 
Note: At this point it is possible to visually inspect the array to assess bead removal. 

6.      Once you are satisfied with bead removal, place the empty array back in the 4-well disk, 

cap the 50 mL conical, and pellet beads for 5 minutes at 1000xg. 

Note 1: You can visually inspect the success of your bead removal by looking at the arrays 
under a light microscope. (continues on the next page) 

Note 2: Where possible, use a swinging bucket centrifuge to collect beads. The use of a 
fixed-rotor centrifuge can lead to the formation of a bead pellet on the elbow rather than 

the bottom of the conical tube, which can lead to inefficient recovery. 
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7.      After centrifugation, aspirate all but ~1 mL of excess Wash Buffer, collect the beads using 

a P1000 pipette, and transfer beads suspended in wash buffer to a separate 1.5 mL 

eppendorf tube for each array. 

 
Reverse Transcription & Exonuclease Digestion 
Reverse Transcription (RT) 

1.      Prepare the following RT mastermix during the hybridization step: 

      40 uL            H2O 

      40 uL        Maxima 5X RT Buffer 

      80 uL        30% PEG8K 

      20 uL        10 mM dNTPs (Clontech) 

        5 uL  RNase Inhibitor (Lucigen) 

        5 uL          100 uM Template Switch Oligo 

      10 uL        Maxima H-RT 

Note: Add the Maxima H-RT enzyme to the mastermix immediately before adding to 
beads. 

2.      Centrifuge eppendorf tubes containing collected beads for 1 minute at 1000xg. 

3.      Remove supernatant and resuspend in 250 uL of 1X Maxima RT Buffer and centrifuge 

beads for 1 minute at 1000xg. 

4.      Aspirate 1X Maxima RT Buffer and resuspend beads in 200 uL of the RT mastermix. 

5.      Incubate at room temperature for 30 minutes with end-over-end rotation. After 30 minutes, 

incubate at 52C for 90 minutes with end-over-end rotation. 

Note: The reverse transcription reaction can proceed overnight, if necessary. 
7.      Following the RT reaction, wash beads once with 500 uL of TE-SDS, and twice with 500 

uL of TE-Tween (TE-TW). Following Reverse Transcription, beads can be stored at 
4C in TE-TW. 
 

Exonuclease I Treatment 

1.      Prepare the following Exonuclease I Mix: 

          20 uL            10x ExoI Buffer 

      170 uL          H2O 

      10 uL            ExoI 

2.      Centrifuge beads for 1 minute at 1000xg and aspirate the TE-TW solution. 
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3.      Resuspend in 500 uL of 10 mM Tris-HCl pH 8.0. 

4.      Centrifuge beads again, remove supernatant and resuspend beads in 200 uL of 

exonuclease I mix. 

5.      Incubate at 37C for 50 minutes with end-over-end rotation. 

6.      Wash the beads once with 500 uL of TE-SDS, twice with 500 uL TE-TW.  

Beads can be stored at 4C in TE-TW. 
 

Second Strand Synthesis & PCR 
Second Strand Synthesis  

(Beginning after 2nd wash of TE-TW after Exo treatment) 

1.      Prepare the following 2nd strand synthesis mix: 

      40 uL            Maxima 5X RT Buffer 

      80 uL            30% PEG8000 

      20 uL            10 mM dNTPs (Clontech) 

      2 uL              1 mM dN-SMRT oligo 

      5 uL              Klenow Enzyme 

      53 uL            H2O 

         Note: Add the Klenow enzyme immediately before adding to beads. 
2.      After aspiration of 2nd TE-TW wash, resuspend beads in 500 uL 0.1 M NaOH. 

Note: Make the 0.1 M NaOH solution fresh for each experiment. 
3.      Rotate tube for 5 min at room temp, then spin (800xg for 1 minute) and aspirate 

supernatant. 

4.      Wash once with 500 uL of TE-TW, and once with 500 uL 1xTE 

5.      Resuspend beads in 200 uL 2nd strand synthesis reaction and rotate end-over-end at 37C 

for 1 hr. 

6.      Wash beads twice with 500 uL TE-Tween and once with 500 uL TE 

7.      Proceed directly with the PCR protocol.  

 
PCR (Whole Transcriptome Amplification (WTA)) 

1.      Prepare the following PCR mastermix: 

      25 uL            2X KAPA HiFi Hotstart Readymix 

      14.6 uL     H2O 

      0.4 uL       100 uM SMART PCR Primer 

      40 uL        per reaction 
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2.      Wash beads once with 500 uL of water, pellet beads, remove supernatant and 

resuspend in 500 uL of water. 

Note 1: If you do not want to count the beads then after the 500 uL water wash in step 2, 
resuspend the beads in 240 uL of water and proceed to step 6.  

Note 2: If you choose this path, prepare mastermix for 24 PCR reactions for each array 
being processed. 

3.      Mix well (do not vortex) to evenly resuspend beads and transfer 20 uL of beads to a 

separate 1.5 mL tube to count the beads. 

Note: Don’t vortex beads as this can result in bead fragmentation. 
4.      Pellet the small aliquot of beads, aspirate the supernatant, and resuspend in 20 uL of bead 

counting solution (10% PEG, 2.5 M NaCl). 

Note: The bead counting solution aids in even dispersion of beads across a 
hemocytometer. 

5.      Count the beads using a hemocytometer. 

6.      Add 40 uL of PCR mastermix per reaction to 96-well plate. 

7.      Add 1,500 – 2,000 beads per reaction in 10 uL of water for a total volume of 50 uL per 

PCR reaction, making certain to PCR the entire array. 

8.      Use the following cycling conditions to perform whole-transcriptome amplification:  

Start: 
95C           3 minutes 

4 Cycles: 
98C           20 seconds 

65C           45 seconds 

72C           3 minutes 

9-12 Cycles: 
98C           20 seconds 

67C           20 seconds 

72C           3 minutes 

Final Extension: 
72C          5 minutes 

4 C            Infinite hold 

Note: The total number of PCR cycles necessary for amplification depends on the cell 
type used. 

●      13 cycles are optimal for cell lines or larger cells (e.g. macrophages) 
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●      16 cycles are optimal for primary cellsPurification of PCR products and analysis 
on the BioAnalyzer or Agilent TapeStation 

1.      Pool PCR products from between 6 and 8 PCR reactions in a 1.5 mL microcentrifuge tube 

so that you have 10-12,000 beads/1.5 mL microcentrifuge tube. 

2.      Purify PCR products using Ampure SPRI beads and the following protocol: 

         Note: Please refer to the Ampure SPRI bead official protocol for more details. 
A.    Spri at 0.6x volumetric ratio. 

B. Allow the tubes to sit on the tube-rack off the magnet for 5 minutes, and then place  

the rack on the magnet for 5 minutes. 

C. Perform 3 washes with 80% ethanol (Note: At each wash step rotate each tube 
180 degrees 6 times to allow beads)  

to pass through the ethanol solution to the opposite side of the tube. 

D. After the third wash, remove the 80% ethanol wash solution. Further, use a P200 

with fresh tips to remove any residual ethanol and allow beads to dry for 10-15 

minutes. (Note: Beads will have a cracked appearance once dry). Remove the 
rack from the magnet, elute dried beads in 100 uL, place the rack on the magnet 

and then transfer the 100 uL supernatant which contains eluted DNA to a new 1.5 

mL microcentrifuge tube or 96-well plate. 

E. Spri the 100 uL at 1.0x volumetric ratio and repeat steps b and c 

F. After the third wash, allow the beads to dry for 15 minutes, remove the rack from 

the magnetic, elute the beads in 15 uL, place the rack back on the magnet and 

then transfer the 15 uL to a new 1.5 mL microcentrifuge tube or 96-well plate. 

3.      Run a BioAnalyzer High Sensitivity Chip or Agilent D5000 High Sensitivity Screentape 

according to the manufacturer’s instructions. Use 2 uL of the purified cDNA sample as 

input (Note: Your WTA library should be fairly smooth, with an average bp size of 0.7-2 
kbps). 

4.      Proceed to library preparation or store the WTA product at 4C (short-term) or -20C 

(long-term).  
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Library Preparation 
Tagmentation of cDNA with Nextera XT    

1.      Ensure your thermocyclers are setup for Tagmentation (step 5) & PCR (step 9). 

2.      For each sample, combine 1000 pg of purified cDNA with water in a total volume of 5 uL. 

It’s ideal to dilute your PCR product in a separate tube/plate so that you can add 5 uL of 

that for tagmentation. 

Example: For 1000 pg reactions, dilute PCR product, in a new plate, to 200 pg/uL, then 
you can add 5 uL of this to a reaction tube for a 1000 pg reaction. 

Note 1: We typically perform Nextera reactions in duplicate for WTA product from each 
pool of 6-8 PCR reactions. For example, if you recover 3 pools/array, you would run a 

total of 6 nextera reactions. 

Note 2: These volumes can be reduced by half to reduce reagent costs, if desired. 
3.      To each tube, add 11 uL of Nextera TD buffer, then 4 uL of ATM buffer (the total 

volume of the reaction is now 20 uL). 

4.      Mix by pipetting ~5 times. Centrifuge plate at 1000x g for 10-15 seconds. 

5.      Incubate at 55C for 5 minutes. 

6.      Add 5 uL of Neutralization Buffer. Mix by pipetting ~5 times.  Note: Bubbles are normal. 
7.      Incubate at room temperature for 5 minutes.   

8.      Add to each PCR tube: 

15 uL  Nextera PCR mix  

  8 uL  H2O 

  1 uL  10 uM New-P5-SMART PCR hybrid oligo 

  1 uL  10uM Nextera N7XX oligo   

 
(continues on the next page)  
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9.      After sealing and centrifuging (1 minute at 1000xg) the PCR plate, run the   

following PCR program: 

Start: 
72C  3 minutes 

95C  30 seconds 

12 cycles: 
95C  10 seconds 

55C  30 seconds 

72C  30 seconds 

         Final Extension: 
         72C              5 minutes 

         4C  Infinite hold   

 

Purification of PCR products and analysis on the BioAnalyzer or Agilent TapeStation 

1.      If you performed Nextera reactions in duplicates, please pool duplicates before proceeding 

with step 2. If you ran a single Nextera reaction for each pooled WTA, proceed directly to 

step 2. 

2.      Purify PCR products using Ampure SPRI beads and the following protocol: 

         Note: Please refer to the Ampure SPRI bead official protocol for more details. 
A.    Spri at 0.6x volumetric ratio. 

B. Allow the tubes to sit on the tube-rack off the magnet for 5 minutes, and then place 

the rack on the magnet for 5 minutes. 

C. Perform 3 washes with 80% ethanol (Note: At each wash step rotate each tube 
180 degrees 6 times to allow beads). 

to pass through the ethanol solution to the opposite side of the tube. 

D. After the third wash, remove the 80% ethanol wash solution. Further, use a P200 

with fresh tips to remove any residual ethanol and allow beads to dry for 10-15 

minutes. (Note: Beads will have a cracked appearance once dry).  
 (continues on the next page) 

Remove the rack from the magnet, elute dried beads in 100 uL, place the rack on 

the magnet and then transfer the 100 uL supernatant which contains eluted DNA 

to a new 1.5 mL microcentrifuge tube or 96-well plate. 

E. Spri the 100 uL at 1.0x volumetric ratio and repeat steps b and c 
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F. After the third wash, allow the beads to dry for 15 minutes, remove the rack from 

the magnetic, elute the beads in 15 uL, place the rack back on the magnet and 

then transfer the 15 uL to a new 1.5 mL microcentrifuge tube or 96-well plate. 

3.      Run a BioAnalyzer High Sensitivity Chip or Agilent D1000 High Sensitivity Screentape 

according to the manufacturer’s instructions. 

• Use 1 uL of the purified cDNA sample as input.   

• Your tagmented library should be fairly smooth, with an average bp size of 400-800 

bp. 

• Smaller-sized libraries might have more polyA reads 

• Larger libraries may have lower sequence cluster density and cluster quality. 

Note: We have successfully sequenced libraries from 400-800bp. 
5.      Proceed to sequencing. 

 
Sequencing 

Once your sequencing library has passed the proper quality controls, you’re ready to proceed to 

sequencing. For a detailed loading protocol, please consult the Illumina website for a step-by-

step manual. (https://support.illumina.com/downloads.html) 

  

NextSeq500 – Shalek Lab protocol 
1.      Make a 5 uL library pool at 4 nM as input for denaturation. 

2.      To this 5 uL library, add 5 uL of 0.2 N NaOH (make this solution fresh). 

3.      Flick to mix, then spin down and let tube sit for 5 minutes at room temperature. 

4.      After 5 minutes, add 5 uL of 0.2 M Tris-HCl pH 7.5. 

5.      Add 985 uL of HT1 Buffer to make a 1 mL, 20 pM library (solution 1). 

6.      In a new tube (solution 2), add 165 uL of solution 1 and dilute to 1.5 mL with HT1 buffer 

to make a 2.2 pM solution – this is the recommended loading concentration. 

Note: Optimal loading concentration is 1.8-2.5 pM 
7.      Follow Illumina’s guide for loading a NextSeq500 Kit 

 

 Sequencing specifications for the MiSeq or NextSeq: 
      Read 1: 20 bp * 

     Read 2: 50 bp  

     Read 1 Index: 8 bp ← only necessary if you are multiplexing samples 
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         Custom Read 1 primer 

          

 Sequencing specifications for the Nova-Seq: 
      Read 1: 20 bp * 

     Read 2: 50-80 bp  

     Read 1 Index: 8 bp 
         Read 2 Index: 8 bp (optional, but recommended) 

Custom Read 1 primer 
 
Note 1: If you’re loading on a Nova-Seq you’ll want to use dual-indexing to mitigate 
index switching. 

Note 2: Read 1 can sometimes be 21 base pairs; this depends on the company and 
bead lot you are ordering from. Please consult with your bead provider to determine which read 

length to use. 

  

NextSeq 500: 

(http://support.illumina.com/content/dam/illumina-

support/documents/documentation/system_documentation/nextseq/nextseq-custom-primers-

guide-15057456-01.pdf) 

(Follow Illumina’s guide for custom primers) 

MiSeq: 

(http://support.illumina.com/content/dam/illumina-

support/documents/documentation/system_documentation/miseq/miseq-system-custom-

primers-guide-15041638-01.pdf) 

  
 

  
  

  



 240 

Array Synthesis 
 
Synthesis Day 0: Pouring PDMS Arrays 

 
1.      Combine Sylgard crosslinker with Sylgard base at a 1:10 ratio and mix vigorously for 5 

minutes to create a PDMS master mix. 

2.      Once mixing is complete, put your PDMS master mix under vacuum for 20 minutes to 

remove any air bubbles. 

3.      Use a 10 mL syringe to inject 6-10 mL of PDMS master mix into molds with mounted 

PDMS masters. 

4.      Incubate at 70C for 2.5 hours. 

 
Synthesis Day 1: Array Functionalization Part 1 

 

Note: For this section, make all solutions fresh! 
1.      Remove excess PDMS from edges of the glass slide. 

  
  

2.      Use scotch tape to remove excess PDMS from the surface of the array and the glass slide. 

3.      Place clean arrays into a metal slide basket 

 

(continues on the next page) 
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4.      Rinse arrays in 100% ethanol for 5 minutes, then let dry at room temperature (RT) for 15 

minutes. 

  
5.      Plasma treat arrays on high for 5-7 minutes. 

         Note 1: Adjust the air valve so that the plasma is pink. 
6.      Following plasma treatment, immediately submerge arrays in 350 mL of 0.05% APTES in 

95% ethanol for 15 minutes. 

7.      Spin dry arrays (500 RPM for 1 minute). 
Note: Our rotor model is TX-10000 75003017 (Thermo) with a rotor radius of 209 mm. 
500 RPM on this instrument is ~ 60xg. 

8.      Incubate at room temperature for 10 minutes. 

9.      Submerge in 300 mL of acetone and rock until all bubbles are out of the wells; this 
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typically takes approximately 5 minutes. 

10.    Place in 350 mL of 0.2% PDITC/10% pyridine/90% DMF solution in a glass chamber (or 

polypropylene tip box) for 2 hours at room temperature. 

Note: While this is rocking, prepare your chitosan solution (See Sub-Appendix D) 

  
11.    After the PDITC soak, wash arrays briefly in two boxes of 300 mL DMF. 

Note: For each brief wash, simply dunk the arrays in the solution 5-10 times and then 
transfer to the new solution.  

12.    Dunk and wash the arrays in 300 mL of acetone. 

13.    Move to a fresh 350 mL of acetone and rock for 20 minutes.  

14.    Spin dry arrays (500 RPM for 1 minute). 
15.    Place arrays at 70C for 2 hours. 

16.    Remove from oven and let sit at room temperature for 20 minutes. 

17.    Submerge arrays in 350 mL of 0.2% chitosan solution (pH 6.0-6.1; See Sub-Appendix D) 
and incubate at 37C for 1.5 hours. 

18.    Wash arrays 4x in separate 300 mL distilled water baths. 

19.    Submerge in 350 mL of 20 ug/mL aspartic acid, 2 M NaCl, and 100 mM sodium 

carbonate solution (pH 10.0). 

20.    Place in vacuum chamber and apply house vacuum. 
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Note: You should see bubbles form indicating the solvation of wells. 
21.    Place vacuum chamber (still connected to house vacuum) on a rocker and rock (50-70 

RPM) overnight at room temperature. 

 
Synthesis Day 2: Array Functionalization – Part 2 

1.      The following morning, remove arrays from vacuum and rotate at 50-60 RPM for 3 hours 

at room temperature. 

2.      Place arrays at 4C and soak 24 hours before use. 

Note: Arrays can be stored in the aspartic acid solution for 3 months at 4C. 
  

  

Master Mounting Protocol  
1.      Mix and degas PDMS in normal 1:10 ratio 

2.      While PDMS degases, use sandpaper to gently score back of silicon master and base 

plate to improve adhesion.  Careful – silicon masters are brittle. 

3.      Wash back of master and base plate with 95% ethanol until no more dust is removed when 

wiping surface clean with paper towel. 

4.      Use gloved finger to spread vacuum grease on bottom of BasePlate2 around square holes 

where the nanowell arrays will be cast.  You want a relatively thick layer, even on skinny 

parts between array holes, to make sure there is a seal between master and plate. 

5.      Carefully lower BasePlate2 onto the array side of the master making sure to not touch the 

array area with any of the greased surface.  4 array masters should fit into the 4 square 

holes.  Gently slide plate against master to center the arrays. 

6.      Place Base Plate 1 on paper towels to catch PDMS running off plate. 

7.      Pour ~30 mL of mixed PDMS in center of Base Plate 1. 

8.      Place master/BasePlate2 sandwich on top of the PDMS. 

9.      Gently apply pressure in the center of the master while making circular motions to push 

PDMS out from between layers.  You want to see PDMS coming out of all sides to ensure 

a complete coat. 

10.    Screw 6/32 screws into respective holes on base plate very gently.  Too much pressure 

too fast may crack master.  Do not fully tighten.  Do your best to make screws even – look 

at width of crack between base plates on all sides and make equal. 

11.    Place both top plates on top. 
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12.    Screw 10/24 screws into their holes just enough such that they catch.  Again, do not fully 

tighten. 

13.    Place in 90C oven for 3 hours. 

14.    May need to do one dummy round of arrays to remove any PDMS or grease that got onto 

the nanowell features. 
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Buffers Guide 
CellCover10 
Reagents 

●      CellCover (Anacyte Art. No. 800-125) 

●      FBS (Thermo Fisher Scientific Cat. No. 10437028) 

●      Sodium Carbonate (Sigma Cat. No. 223530-500G) 

Working Concentrations 

●      10% FBS 

●      100 mM Sodium Carbonate 

 
Bead Loading Buffer 
Reagents 

●      Sodium Carbonate (Sigma Cat No. 223530-500G) 

●      BSA (Sigma Cat No. A9418-100G) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

Quick Preparation Guide (50 mL) 

1. 2.5 mL 2 M Sodium Carbonate 

2. 42.5 mL H2O 

3. Add 5 mL BSA (100 mg/mL) 

4. Titrate with glacial acetic acid to achieve a pH of 10.0 

Working Concentrations 

●      100 mM Sodium Carbonate 

●      10% BSA 

 
Complete Lysis Buffer 
Reagents 

●      Pre-lysis buffer 

●      10% Sarkosyl (Sigma Cat No. L7414) 

●      100% 2-Mercaptoethanol (Sigma Cat No. M3148-25ML) 
(continues on the next page)  
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Quick Preparation Guide (50 mL) 

1. 47.25 mL Pre-Lysis Buffer 

2. 250 uL 10% Sarkosyl 

3. 500 uL BME 

Working Concentrations 

●      5 M Guanidine Thiocyanate 

●      1 mM EDTA 

●      0.50% Sarkosyl 

●      1.0% BME 

 
Hybridization Buffer 
Reagents 

●      5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

●      1x PBS (Thermo Fisher Scientific Cat No. 10010023) 

●      8% (v/v) PEG8000 (Sigma Cat No. 83271-500ML-F) 

Quick Preparation Guide (50 mL) 

1. 20 mL 5 M NaCl 

2. 26 mL of PBS 

3. 4 mL PEG8000 

Working Concentrations 

●      2 M NaCl 

 
Wash Buffer 
Reagents 

●      5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

●      1 M MgCl2 (Sigma Cat No.63069-100ML) 

●      1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

●      8% (v/v) PEG8000 (Sigma Cat No. 83271-500ML-F) 
(continues on the next page)  
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Quick Preparation Guide (50 mL) 

1. 20 mL 5 M NaCl 

2. 150 uL 1 M MgCl2 

3. 1 mL 1 M Tris-HCl pH 8.0 

4. 24.85 mL H2O 

5. 4 mL PEG8000 

Working Concentrations 

●      2 M NaCl 

●      3 mM MgCl2 
●      20 mM Tris-HCl pH 8.0 

  

Array Quenching Buffers 
Reagents 

●      Sodium Carbonate (Sigma Cat No. 223530-500G) 

●      1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 

Quick Preparation Guide (50 mL) 

1. 2.5 mL 2 M Sodium Carbonate 

2. 500 uL 1 M Tris-HCl pH 8.0 

3. 47 mL H2O 

Working Concentrations 

●      100 mM Sodium Carbonate 

●      10 mM Tris-HCl pH 8.0 

 

  
0.2% Chitosan Solution 
Reagents 

●      Chitosan (Sigma Cat No. C3646-100G) 

●      Water (Thermo Fisher Scientific Cat No. 10977023) 
(continues on the next page)  
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Quick Preparation Guide 

1. Add 1 gram of chitosan to 500 mL of DI water 

2. Autoclave solution (40 minutes sterilization, 20 minutes dry) 

3. Allow chitosan solution to come to room temperature, and then add 2-3 mL of glacial acetic 

acid. 

Note: The chitosan will not start dissolving until the pH is acidic, and even then it will not fully 
dissolve. This is ok. 

4.   Add 50 mL 5 M NaCl, then titrate the chitosan solution with NaOH to bring the pH to 6.2. 

  

TE - Tween Storage Solution 
●      10 mM Tris pH 8.0 + 1 mM EDTA 

●      0.01% Tween-20 

Quick Preparation Guide (50 mL) 

1. 49.95 mL H2O 

2. 5 uL Tween-20 

  

TE - SDS Solution 
●      10 mM Tris pH 8.0 + 1 mM EDTA 

●      0.5% SDS 

 Quick Preparation Guide (50 mL) 
1. 49.75 mL H2O 

2. 250 uL SDS 
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Bead Removal Method 2 (“Spin-Out”)  
1.      Remove membrane and place array into an empty 50 mL conical tube. 

2.      Ensure that the array is angled within the tube as shown below. 

Note: The array might move around at this point, which isn’t something to worry about.  
3.      Add 48-50 mL of Wash 1 solution (See Buffers Guide) 

4.      Place the insert so the array is secured angled as shown in the image below. 

5.     Secure the lid and seal with parafilm, if necessary. 

6.      Put the sealed conical in a centrifuge, making certain the PDMS surface of the array is 

facing away from the rotor arm (See Diagram Below).  

7.      Centrifuge at 2000 x g for 5 minutes to remove the beads. 

8.      At this point you should see a small, but visible, pellet of beads at the bottom of the tube. 

9.      Aspirate 5 - 10 mL of Wash 1 solution to enable easier removal of the array. 

10.    Remove the array and carefully position it over the top of the 50 mL tube. 

11.    Repeatedly wash any remaining beads from the surface of the array over the surface of 

the 50 mL falcon tube using 1 mL of Wash 1 remaining in the tube. 

12.    Spin again at 2000 x g for 5 minutes to pellet beads. 

13.    Aspirate all wash 1 solution except for ~ 1mL. 

Note: Be careful to not disturb the pellet of beads.  
14.    Transfer beads to a 1.5 mL centrifuge tube and proceed to reverse transcription.  
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Shopping List 
Device Manufacturing 

• Dow Corning Sylgard 184 Silicone Encapsulant Clear 0.5 kg kit (Part No. 184 SIL 

ELAST KIT 0.5 PG) 

• Protolabs Custom Array Molding Plates (Please refer to www.shaleklab.com/seq-well 

o Make out of aluminum and make sure to tap holes only on base plateBasePlate1 

v3.1 (Bottom plate you mount the wafer to) 

•  BasePlate2 v3.1 (Divider for arrays) 

• TopPlate1 v3.1 (Plate that holds the glass slides) 

• TopPlate2 v3.1 (Top plate) 

• 45 micron Silicon Master Wafer Size (Please refer to www.shaleklab.com/seq-well) 

• Master, pre-silanized – (FlowJem, Inc. Toronto, Canada) 

• Corning 72x25 Microscope Slides (Corning Life Sciences Cat. No. 2947) 

• 6/32 ¼” Hex Screws 

• 5/8” Hex 10/24 Screws 

• Hex Screwdriver 

• Vacuum grease 

• 80 grit sandpaper 

• 95% ethanol in spray bottle 

 
Array Functionalization 
Equipment 

• Plasma Oven (Harrick Plasma PDC-001-HP) 

• 2x 30-slide rack slotted (VWR Cat No. 25461-014) 

• 16x20 cm staining dish (VWR Cat No. 25461-018) 

• Vacuum Desiccator (VWR Cat No. 24988-164) 

• Sterile 4-well dishes (Thermo Fisher Scientific Cat No. 267061) 

(continues on the next page)  
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Reagents 

• 200 proof ethanol (VWR Cat No. 89125-188) 

•  (3-Aminopropyl)triethoxysilane (Sigma Cat No. A3648) 

• Acetone (Avantor Product No. 2440-10) 

• p-Phenylene Diisothiocyanate (PDITC) (Sigma Cat No. 258555-5G) 

• Pyridine (Sigma 270970-1L) 

• Dimethylformamide (DMF) (Sigma Cat No. 227056-1L) 

• Chitosan (Sigma Cat No. C3646-100G) 

• Poly(L-glutamic) acid sodium solution (Sigma Cat No. P4761-100MG) 

• 5M NaCl (Sigma Cat No. S6546-1L) 

• Sodium Carbonate (Sigma Cat No. S2127-500G) 

 
Buffer Reagents 
Bead Loading Buffer 

• Sodium Carbonate (Sigma Cat No. 223530-500G) 

• BSA (Sigma Cat No. A9418-100G) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

Complete Lysis 

• Guanidine Thiocyanate, (Sigma Cat No. AM9422) 

• 0.5 M EDTA (Thermo Fisher Scientific Cat No. 15575020) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

• 10% Sarkosyl (Sigma Cat No. L7414) 

• 100% 2-Mercaptoethanol (Sigma Cat No. M3148-25ML) 

Hybridization Buffer 

• 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

• 1x PBS (Thermo Fisher Scientific Cat No. 10010023) 

• PEG-8K (50%) (Fisher Scientific Cat No. BP337-100ML) 

(continues on the next page)  
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Wash Buffer 

• 5 M NaCl (Thermo Fisher Scientific Cat No. 24740011) 

• 1 M MgCl2 (Sigma Cat No.63069-100ML) 

• 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

Array Quenching Buffer 

• Sodium Carbonate (Sigma Cat No. 223530-500G) 

• 1 M Tris-HCl pH 8.0 (Thermo Fisher Scientific Cat No. 15568025) 

• Water (Thermo Fisher Scientific Cat No. 10977023) 

 
RT Reagents 

• UltraPure Distilled Water (Thermo Fisher Scientific Cat No. 10977023) 

• Maxima 5x RT Buffer/Maxima H-RT (Thermo Fisher Scientific Cat No. EPO0753) 

• 20% Ficoll PM-400 (Sigma Cat No. F5415-50mL) 

• 10 mM dNTPs (New England BioLabs Cat No. N0447L) 

• RNAse Inhibitor (Thermo Fisher Scientific Cat No. AM2696) 

• Template Switching Oligo (Order from IDT) 

 
Exonuclease Reagents 

• Exonuclease I (E. coli) (New England Biolabs Cat No. M0293S) 

 
Second Strand Synthesis Reagents 

• Maxima 5x RT Buffer/Maxima H-RT (Thermo Fisher Scientific Cat No. EPO0753) 

• 10 mM dNTPs (New England BioLabs Cat No. N0447L) 

• dN-SMART Oligo (Order from IDT) 

• UltraPure Distilled Water (Thermo Fisher Scientific Cat No. 10977023) 

• Klenow Exo- (New England BioLabs Cat No. M0212S) 

• 30% PEG8000 (Sigma-Aldrich 89510-1KG-F) 
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PCR Reagents 
• IS PCR Primer (Order from IDT) 

• KAPA HiFi Hotstart Readymix PCR Kit (Kapa Biosystems Cat No. KK-2602) 

  
Nextera Reagents 

• Nextera XT DNA Library Preparation Kit (96 samples) (Illumina FC-131-1096) 

• New-P5-SMART PCR Hybrid Oligo (Order from IDT) 

• Nextera N70X Oligo (Order from Illumina) 

  

Operating Equipment 
• Polycarbonate (PCTE) 0.01 micron 62x22 mm precut membranes, 100 count (Sterlitech 

Custom Order) 

• mRNA Capture Beads (Chemgenes Cat No. MACOSKO-2011-10) 

• Lifter Slips, 25x60mm (Electron Microscopy Science Cat No. 72186-60) 

• Agilent Clamps (Agilent Technologies Cat No. G2534A) 

  
Sequences 
Barcoded Bead SeqB: 

5’–Bead–Linker--TTTTTTTAAGCAGTGGTATCAACGCAGAGTAC- 
JJJJJJJJJJJJNNNNNNNNTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT--3’ 
 
Template Switching Oligo (TSO): 
AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG  
 
dN-Smart Randomer (dN-SMRT): 
AAGCAGTGGTATCAACGCAGAGTGANNNGGNNNB 
 
Smart PCR Primer (TSO_PCR): 
AAGCAGTGGTATCAACGCAGAGT 
 
New-P5-SMART PCR Hybrid Oligo (P5-TSO_Hybrid):  
 
AATGATACGGCGACCACCGAGATCTACACGCCTGTC- 
CGCGGAAGCAGTGGTATCAACGCAGAGT*A*C 
  
Custom Read 1 Primer (Read_1_Custom_SeqB):          
GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC 
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