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ABSTRACT

Reliable and robust convergence to the electronic ground state within density functional theory (DFT)

Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. Here, we use an approach

based on transforming the time-dependent DFT equations to imaginary time, followed by imaginary-time

evolution, as a reliable alternative to the self-consistent field (SCF) procedure for determining the KS

ground state. We discuss the theoretical and technical aspects of this approach and show that the KS ground

state should be expected to be the long-imaginary-time output of the evolution, independent of the

exchange-correlation functional or the level of theory used to simulate the system. By maintaining

self-consistency between the single-particle wavefunctions (orbitals) and the electronic density throughout

the determination of the stationary state, our method avoids the typical difficulties encountered in SCF. To

demonstrate dependability of our approach, we apply it to selected systems which struggle to converge with

SCF schemes. In addition, through the van Leeuwen theorem, we affirm the physical meaningfulness of

imaginary time TDDFT, justifying its use in certain topics of statistical mechanics such as in computing

imaginary time path integrals.

The time evolution of dynamical systems is frequently described by ordinary differential equations

(ODEs), which must be solved for given initial conditions. Most standard approaches numerically integrate

the ODEs, producing a solution whose values are computed at discrete times. For every set of initial

conditions and system parameters, the calculation has to be repeated from scratch, adding significant

computational overhead to methods which require varied solutions to the ODE. We extend the Lagaris

method of creating an approximating neural network solution to a set of differential equations, proposing

instead that a neural network be used as a solution bundle, a collection of solutions to an ODE for various

initial states and system parameters. The neural network solution bundle is trained with an unsupervised loss

that does not require any prior knowledge of the sought solutions, and the resulting object is differentiable in

initial conditions and system parameters. The solution bundle exhibits fast, parallelizable evaluation of the

system state, facilitating the use of Bayesian inference for parameter or trajectory estimation in real

dynamical systems.
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1
Density Functional Theory

1.1 INTRODUCTION

Density functional theory, (DFT), is a formally exact approach to the electronic many-body problem. It is

widely used both in industry and in academia for determining the properties of molecules and materials,

ranging from determining molecular structures, estimating mechanical properties, computing activation

barriers, to calculating optical spectra. The general idea is to use the electronic density as the fundamental

mathematical object, instead of the far more intricate many-body wavefunction. Remarkably, despite

appearing like a simplifying approximation, DFT is formally exact, and is a different, equivalent view of the

many-body quantum theory. Note that this view does not allow us to exactly solve the many-body problem

in practice as its intricacies and challenges remain. However, the mathematical structure of DFT is more

amenable to incremental levels of approximation, a boon for practical application. In particular, we

commonly use the Kohn-Sham system of noninteracting quasielectrons as a tractable way to calculate the

electronic density of the true many-body interacting system, which can then be used to compute desired

observables. Time-dependent density functional theory (TDDFT) extends the methods of DFT to dynamical

systems such as those found in optical excitations, electronic transport, spectroscopy, electron-phonon

coupling and more. Like its stationary counterpart, implementations of TDDFT often replace the many-body

electronic wavefunction with a noninteracting Kohn-Sham system that reproduces the same density.

Through the Runge-Gross and van Leeuwen theorems, it is proven that this replacement results in the same

physics for a large class of systems, with more general proofs remaining a current topic of research.

DFT is powerful due to its favorable scaling with system size, a useful trait for the increasingly complex

systems of great interest in material science, chemistry, and biology. Much of the economy of DFT arises

from eliminating the need for the many-body wavefunction, a construction that contains far more

information than one could need or want45. Usually we are only interested in the probability densities of

one or two electronic coordinates, integrating over the rest, so much of the information in the wavefunction
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1.2. Ground-State Density Functional Theory

is discarded anyways. By using the electronic density as the fundamental state describing the system, we

reduce the number of relevant coordinates from ND to just D, where N is the number of electrons, and D is

the dimension of the system.

In this chapter we will examine some of the underpinnings of both the static and time-dependent density

functional theories and provide a few basic examples of calculations that can be performed with these

methods. This sets the stage for the novel contribution to the theory presented in Chapter 2, imaginary-time

time-dependent density functional theory, which enables the connections between quantum and statistical

mechanics afforded by Wick rotations, as well as providing a practical method for solving the Kohn-Sham

equations in static DFT.

1.2 GROUND-STATE DENSITY FUNCTIONAL THEORY

Consider a system of N interacting electrons described by the non-relativistic Schrödinger equation

Ĥ0Ψ j(r1, . . . ,rN) = E jΨ j(r1, . . . ,rN), j = 0,1,2, . . . (1.1)

The jth eigenstate of the Hamiltonian is Ψ j(r1, . . . ,rN), and of particular interest is the ground state,

Ψ0 ≡Ψgs.

The Hamiltonian is given by

Ĥ = T̂ +V̂ +Ŵ , (1.2)

where the kinetic energy and scalar potential operators are

T̂ =
N

∑
j=1
−

∇2
j

2
, V̂ =

N

∑
j=1

v(r j), (1.3)

and the electron-electron interaction operator is

Ŵ =
N

∑
i, j=1, i6= j

w
(∣∣ri− r j

∣∣), (1.4)

where w
(∣∣ri− r j

∣∣) is the interaction between two electrons, usually taken to be the Coulomb interaction,

w
(∣∣ri− r j

∣∣)= 1/
∣∣ri− r j

∣∣. By writing this Hamiltonian, we are implicitly invoking the Born-Oppenheimer

approximation, treating nuclear degrees of freedom classically in the scalar potential v(r).

4



Chapter 1. Density Functional Theory

The core idea of the density functional approach is to extract all physically relevant information from the

system through the electron density, circumventing the need to calculate the full wavefunction. The ground

state density is given by

n0(r) = N
∫

d3r2 . . .
∫

d3rN
∣∣Ψgs(r,r2, . . . ,rN)

∣∣2.
To gain some insight on how knowing the density gives sufficient information to extract all useful

information from a quantum system, first let’s consider a nice example given by Ullrich80. Suppose we have

a one-electron system; it will satisfy the Schrödinger equation (in atomic units)

[
−∇2

2
+ v(r)

]
ϕ j(r) = ε jϕ j(r). (1.5)

Typically, one would solve this equation for a given potential v(r) and determine the ground state

probability density as n0(r) = |ϕ0(r)|2. Suppose we were instead given a density function n0(r) to start, and

were asked to find in which potential v(r) this would be the ground state density. If we assume that the

wavefunction is real so that we can write ϕ0 =
√

n0(r), and we also shift the energy scale so that ε0 = 0, we

can invert the Schrödinger equation, Eq. (1.5) to get

v(r) =
∇2n0(r)
4n0(r)

− |∇n0(r)|2

8n0(r)2 . (1.6)

So, in this simple one-electron system we have reconstructed the potential given the ground-state density

n0(r). This also means that we have reconstructed the Hamiltonian of the system, since we already know the

kinetic energy operator. Then, using the Schrödinger equation we can solve the eigenvalue problem to

obtain all the wavefunctions. The chain is represented as follows:

n0(r)→ v(r)→ Ĥ→
{

ϕ j
}
. (1.7)

Since everything we could want to know about the ground state of the system is stored in the wavefunction,

we see from the above chain that the unique progression from the density means that all the information also

has to be in the density. This was easy to show in a one-electron system, but it is not the case in a general,

interacting, many-electron system. Incredibly, even in this far more complex case, there exists a unique

potential for each well-behaved density function such that it is the ground state density in this potential. This

leads us to the Hohenberg-Kohn theorem.
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1.2. Ground-State Density Functional Theory

1.2.1 HOHENBERG-KOHN THEOREM

The Hohenberg-Kohn theorem24 reveals the surprising amount of information stored in the ground-state

density of a many-body system through a proof of its one-to-one mapping to external potentials and the

eigenfunction spectrum of the system.

Hohenberg-Kohn theorem. In a finite, interacting N-electron system with a given particle-particle

interaction, there exists a one-to-one correspondence between the external potential v(r) and the

ground-state density n0(r). In other words, the external potential is a unique functional of the ground-state

density, v[n0](r), up to an arbitrary additive constant.79

Proof. The proof hinges on a contradiction arising from the application of the Rayleigh-Ritz variational

principle. We consider two potentials v(r) and v′(r) different if they are not related by a constant shift,

v′(r) 6= v(r)+ c.

For the first part of the proof, we show that two different potentials cannot reproduce the same

ground-state wavefunction (i.e. Ψ0 and Ψ′0 must differ more than a trivial phase factor). To prove this,

assume that Ψ0 and Ψ′0 are the same and subtract their respective many-body Schrödinger equations (1.1).

This results in the equality V̂ −V̂ ′ = E0−E ′0, in contradiction with the requirement that the potentials differ

by more than just a constant shift. Thus, the relationship between potentials and wavefunctions is unique.

For the second part of the proof, we need to show that two different ground-state wavefunctions produce

different ground-state densities, i.e. Ψ0 and Ψ′0, differing by more than just a phase factor, cannot both map

to the ground-state density n0(r). Again, we use a proof by contradiction. Suppose that both Ψ0 and Ψ′0

(coming from Schrödinger equations with different potentials v and v′) produce the same density n0(r). The

ground-state energy associated with v′(r) is given by

E ′0 =
〈
Ψ
′
0
∣∣Ĥ ′∣∣Ψ′0〉 . (1.8)

Using the Rayleigh-Ritz variational principle and the fact that Ψ0 and Ψ′0 differ nontrivially, we have the

inequality

E ′0 < 〈Ψ0|Ĥ ′|Ψ0〉= 〈Ψ0|Ĥ +V̂ ′−V̂ |Ψ0〉 (1.9)

= E0 +
∫

d3r
[
v′(r)− v(r)

]
n0(r). (1.10)

Note that we are using a strict inequality; we are assuming that the ground state is not degenerate. The proof

6



Chapter 1. Density Functional Theory

can be extended to degenerate ground states14. Now, we can interchange the primes and unprimes in Eq.

(1.10) to find the other inequality that holds for the ground-state energy of the unprimed system:

E0 <
〈
Ψ
′
0
∣∣Ĥ∣∣Ψ′0〉= 〈Ψ′0∣∣Ĥ ′+V̂ −V̂ ′

∣∣Ψ′0〉 (1.11)

= E ′0 +
∫

d3r
[
v(r)− v′(r)

]
n0(r). (1.12)

Note that we are supposing that both wavefunctions have the same density in the last equality. Adding Eqs.

(1.10) and (1.12) gives

E0 +E ′0 < E0 +E ′0, (1.13)

a contradiction. Hence, we have proven that Ψ0 and Ψ′0 must give different densities n0 and n′0. In the first

part of the proof we have also shown that Ψ0 and Ψ′0 come from different potentials v and v′, so taken

together we have the existence of a unique one-to-one correspondence between the potentials and

ground-state densities:

n0(r)↔ v(r), (1.14)

which is the Hohenberg-Kohn theorem.

Formally, we can write V̂ [n0], i.e. the external potential is a functional of the ground state density. Note

that the kinetic and electron-interaction operators T̂ and Ŵ are fixed, implying that the Hamiltonian Ĥ is a

functional of the ground-state density, and that all eigenstates of the system also become

ground-state-density functionals, Ψ j[n0], in the same logical chain as in the one-electron system considered

earlier, Eq. (1.7),

n0(r)→ V̂ [n0]→ Ĥ[n0]→
{

Ψ j[n0]
}
. (1.15)

This is quite remarkable as it shows that in principle the ground-state density contains all the information

you could want to know about a stationary many-body system. For example, Eq. (1.15) shows that any

observable can be written as a density functional. In particular, we can write the total energy of a system as a

7



1.2. Ground-State Density Functional Theory

density functional:

Ev0 [n] = 〈Ψ[n]|T̂ +V̂0 +Ŵ |Ψ[n]〉 , (1.16)

where n is some N-electron density and Ψ[n] is the ground-state wavefunction which reproduces this

density. The energy functional (1.16) is minimized by the actual ground-state density n0 corresponding to

v0, and then becomes equal to the ground state energy:

Ev0 [n]> E0 for n(r) 6= n0(r),

Ev0 [n] = E0 for n(r) = n0(r). (1.17)

1.2.2 KOHN-SHAM FORMALISM

So, now we have shown that our understanding of a many-body system can be formulated in terms of the

ground state density, which is an enormous computational simplification since the density is only a function

of D variables while the wavefunction was a function of DN variables. However, unless we can find a

shortcut to obtaining the density, we would still be stuck solving the full many-body problem to get the

ground state wavefunction anyways.

This is where the Kohn-Sham formalism comes into play. The essential idea is to create a noninteracting

system with an effective potential which captures the many-body interactions, defined to be the the potential

which reproduces the exact ground-state density of the interacting system. This formalism relies on the

Hohenberg-Kohn theorem, Eq. (1.14), and the Rayleigh-Ritz minimum principle formulated in terms of

densities, Eq. (1.17).

First of all, let us write the total energy functional of the interacting system, Eq. (1.16), a different way:

Ev0 [n] = T [n]+
∫

d3r v0(r)n(r)+W [n]

= Ts[n]+
∫

d3r v0(r)n(r)+(T [n]−Ts[n]+W [n])

≡ Ts[n]+
∫

d3r v0(r)n(r)+EH[n]+Exc. (1.18)

Here, T [n] is the kinetic energy functional of the interacting system, whereas Ts[n] is the kinetic energy

functional of a noninteracting system. We do not know T [n] or Ts[n] as explicit density functionals, but we

will soon see how to deal with them. Furthermore, in the last step of the above equation, Eq. (1.18), we

8
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introduce the Hartree energy,

EH =
1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| , (1.19)

and the so-called exchange-correlation (xc) energy,

Exc = T [n]−Ts[n]+W [n]−EH[n], (1.20)

which collects the remaining energy terms. Note that the Hartree energy is simply the classical electrostatic

energy of the density configuration, while the xc energy is the difference between the kinetic energy

functionals in the noninteracting and interacting systems, plus the electron-electron interactions without the

classical Hartree component.

Now, we know from the Rayleigh-Ritz minimum principle (1.17) that the true ground state density for the

interacting system will be the minimum of the total energy functional (1.18). Let us now introduce a general

form for the density, and then use the Rayleigh-Ritz minimum principle to determine when it becomes equal

to the exact ground state density:

n(r) =
N

∑
j=1

∣∣ϕ j(r)
∣∣2, (1.21)

where yet-to-be-determined single-particle orbitals are normalized to one,

∫
d3r
∣∣ϕ j(r)

∣∣2 = 1. (1.22)

Note that this form for the density is general since the functions ϕ j can certainly reproduce any density n′(r)

that describes N particles,

∫
d3r n′(r) = N, (1.23)

as long as the orbitals are orthonormal. There are many ways that the single-particle orbitals ϕ j can

reproduce an N-particle density, and that is the space we wish to minimize Ev0 [n] over in order to find the

ground-state density.

So, now we wish to minimize Ev0 [n] using the form for n(r) given in Eq. (1.21). We could set the

functional derivative of Ev0 [n] with respect to n(r) equal to zero, and there are proofs of the Kohn-Sham

9



1.2. Ground-State Density Functional Theory

equation that do this, but instead we will use a nice trick that can arguably lead to a cleaner proof.

First let us make a short digression to investigate a trick that is often used but infrequently explained.

Note that despite ϕ j(r) possibly being complex, the energy functional (1.18) always has to be real.

Consider minimizing a function f (z) of a single complex variable z. This is effectively minimizing a real

function of two independent real variables, the real and imaginary parts of z≡ zr + izi. In order to minimize

f (z), we need to compute the two partial derivatives ∂ f (zr ,zi)
∂ zr

|zi
and ∂ f (zr ,zi)

∂ zi
|zr

which are both real since f is

real. We can equivalently think of f as a function of z and z∗, noting that zr = (z+ z∗)/2 and

zi = (z− z∗)/2i. Using the chain rule to differentiate f (z,z∗) with respect to z∗ while treating z as a constant,

∂ f
∂ z∗

∣∣∣∣
z
=

∂ f
∂ zr

∣∣∣∣
zi

∂ zr

∂ z∗

∣∣∣∣
z
+

∂ f
∂ zi

∣∣∣∣
zr

∂ zi

∂ z∗

∣∣∣∣
z

=
1
2

(
∂ f
∂ zr

∣∣∣∣
zi

+ i
∂ f
∂ zi

∣∣∣∣
zr

)
. (1.24)

Notice that the real and imaginary components of ∂ f
∂ z∗ |z give us both derivatives ∂ f (zr ,zi)

∂ zr
|zi

and ∂ f (zr ,zi)
∂ zi

|zr

simultaneously. In particular, in order to minimize over all possible values of z = zr + izi, we need just one

equation:

0 =
∂ f
∂ z∗

∣∣∣∣
z
. (1.25)

Now, returning to our proof, we saw above that minimizing (or, strictly speaking, finding stationary points

of) a real function of a complex variable boils down to setting its derivative with respect to the complex

conjugate z∗ equal to zero, while holding the other variable z fixed. The same holds for functional

derivatives. So, requiring the variation in the energy functional (1.18) with respect to the density to equal

zero amounts to requiring that the variation in energy due to each ϕ∗j equals zero. Additionally, we include

the normality constraint of each orbital ϕ j(r) with the Lagrange multipliers λ j and take the variation:

0 =
δEv0 [n]
δϕ∗j (r)

− δ

δϕ∗j (r)

N

∑
i

λi

∫
ϕ
∗
i
(
r′
)
ϕi(r′)d3r′

=
δTs[n]
δϕ∗j (r)

+ v0(r)ϕ j(r)+
δEH[n]
δϕ∗j (r)

+
δExc[n]
δϕ∗j (r)

−λ jϕ j(r), (1.26)

and now we evaluate each of the functional derivatives. First note that it is straightforward to write down

10
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Ts[n] as an explicit functional of the orbitals,

Ts[n] =−
1
2

∫
d3r

N

∑
j=1

ϕ
∗
i (r)∇

2
ϕi(r), (1.27)

so that its functional derivative with respect to ϕ∗j (r) can be easily evaluated:

δTs[n]
δϕ∗j (r)

=−1
2

∇
2
ϕ j(r). (1.28)

As for the Hartree term,

δEH[n]
δϕ∗j (r)

=
1
2

∫
d3r′ d3r′′

N

∑
i,`=1

δ

δϕ∗j (r)
ϕ∗i (r′)ϕi(r′)ϕ∗` (r

′′)ϕ`(r′′)
|r′− r′′|

=
∫

d3r′
N

∑
i=1

ϕ∗i (r′)ϕi(r′)
|r− r′| ϕ j(r) (1.29)

= vH(r)ϕ j(r), (1.30)

where the Hartree potential is defined as

vH(r) =
∫

d3r′
n(r′)
|r− r′| . (1.31)

Finally, we simply define the exchange-correlation potential to be

vxc[n](r)≡
δExc[n]
δn(r)

, (1.32)

so that

δExc[n]
δϕ∗j (r)

=
δExc[n]
δn(r)

δn(r)
δϕ∗j (r)

= vxc[n](r)ϕ j(r). (1.33)

So, substituting Eqs. (1.28), (1.30), and (1.33) back into our stationary point equation (1.26), we are left

with the Kohn-Sham equation,

[
−∇2

2
+ v0(r)+ vH(r)+ vxc[n](r)

]
ϕ j(r) = λ jϕ j(r),[

−∇2

2
+ vs[n](r)

]
ϕ j(r) = ε jϕ j(r), (1.34)

11



1.2. Ground-State Density Functional Theory

where in the final line we have defined the single-particle effective potential,

vs[n](r)≡ v0(r)+ vH(r)+ vxc[n](r), (1.35)

the density is given in terms of the eigenfunctions

n(r) =
N

∑
j=1

∣∣ϕ j(r)
∣∣2, (1.36)

and we have also identified the Lagrange multipliers λ j as the Kohn-Sham eigenenergies ε j.

Solving the Kohn-Sham equations (1.34) and (1.36) self-consistently, i.e. finding sets of
{

ϕ j
}

such that

both equations simultaneously hold, given that the Kohn-Sham Hamiltonian is dependent on
{

ϕ j
}

through

the density n(r), gives the densities that are stationary points of the total energy functional (1.18). Of these

possible sets of
{

ϕ j
}

, one of them will minimize Ev0 [n], and this set thus produces the ground state density

of the interacting many-body system, n0(r).

In practice, by performing a self-consistency loop on the Kohn-Sham equations, oftentimes aided by

clever density mixing schemes, one usually ends up with the ground state density (as opposed to an excited

state which can also be a stationary state of the total energy functional). This is possibly due to the global

minimum of the energy functional being easier to reach by chance.

1.2.3 DISCUSSION OF KOHN-SHAM FORMALISM

Here we note a few properties of the Kohn-Sham formalism that are also applicable to the TDDFT case we

will eventually discuss. The Kohn-Sham system is noninteracting so its total N-particle wavefunction can be

written as a Slater determinant:

Ψ
KS
gs (r1, . . . ,rN) =

1√
N!

det
{

ϕ j
}
=

1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN(r1)

ϕ1(r2) ϕ2(r2) · · · ϕN(r2)

...
...

. . .
...

ϕ1(rN) ϕ2(rN) · · · ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.37)

It is also important to remember that the Kohn-Sham system is only designed to reproduce the correct

ground state density. It is tenuous to assign physical meaning to the Kohn-Sham eigenstates ϕ j and its

energy eigenvalues ε j. Same goes for the eigenenergy differences εα − ε j, although they are frequently

interpreted as excitation energies when α indexes an unoccupied state. However, in extended systems,
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Chapter 1. Density Functional Theory

Janak’s theorem (Appendix A) gives an approximate interpretation of the single particle energy ε j in relation

to the first vertical ionization energy and electron affinity28. However, ionization energies computed in this

manner are typically quite poor with present-day exchange-correlation functionals22.

As it will be useful later on, we note that the external potential behaves as v0(r)→−N/r and the Hartee

potential as vH(r)→ N/r for r→ ∞. Thus, if an electron is found far away, in the outer regions of the

system, it will still feel a Coulomb potential of the remaining positive ion, so asymptotically the xc potential

has to behave as

vxc(r)∼−
1
r
. (1.38)

Note that this makes sense in the context of a one-electron system. The Hartree and xc potential would

cancel exactly, leaving just the external potential acting on the electron.

Furthermore, it is easy to extend the Kohn-Sham formalism to two spin channels, resulting in a density

for up spin and a density for down spin. This allows for systems that break spin symmetry to be calculated

as well, and for specific molecular magnetization states to be computed.

1.2.4 DFT IN PRACTICE

DFT is in principle exact, but the difficulty lies in the exchange-correlation energy and the corresponding

potential. These are not known exactly, so they must be approximated.

We can write the xc energy of a system in terms of the exchange-correlation energy density,

Exc[n] =
∫

d3r exc[n](r), (1.39)

where the xc energy density exc[n](r) is, in general, nonlocal. We wish to approximate the xc energy density.

A simple approximation that has had much success in a variety of systems is the local density approximation

(LDA). The LDA has the following form:

ELDA
xc [n] =

∫
d3r eh

xc(n(r)). (1.40)

The LDA xc energy density is just the xc energy density of a homogeneous electron liquid of electron

density n̄, evaluated at the local density of the inhomogeneous system, eh
xc(n(r)) = eh

xc(n̄) |n̄=n(r). This

approximation becomes increasingly valid the slower a system varies in space, since it would be

13



1.3. Time-Dependent Density Functional Theory

approaching a true homogeneous electron gas. We need the xc energy density of a homogeneous electron

liquid, which can be split up into an exchange part and a correlation part:

eh
xc(n̄) = eh

x(n̄)+ eh
c(n̄). (1.41)

The exchange energy density can be calculated exactly using Hartree-Fock theory, giving

eh
x(n̄) =−

3
4

(
3
π

)1/3

n̄4/3. (1.42)

The correlation energy density eh
c(n̄) is not exactly known, but very accurate numerical results exist from

quantum Monte Carlo calculations80.

One significant drawback of the LDA approximation is that the xc potential goes to zero exponentially

fast instead of as −1/r, as we saw was required in Eq. (1.38). This indicates the presence of

self-interactions, and generally causes the Kohn-Sham eigenvalues to be too low in magnitude.

The LDA can be improved by considering gradients of the density, leading to the generalized gradient

approximation, (GGA), which has the generic form

EGGA
xc [n] =

∫
d3r exc(n(r),∇n(r)). (1.43)

It still suffers from the wrong asymptotic behavior, so there exist schemes to mix in some exact-exchange

calculated from Hartree-Fock theory, resulting in the so-called hybrid functionals. Another class of hybrid

functionals, the range-separated hybrids, separate the Coulomb interaction into a short-range and

long-range part. As such, one can have the correct long-range xc potential asymptotic behavior.

1.3 TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

In a time-dependent system of N interacting electrons, the total Hamiltonian becomes

Ĥ(t) = T̂ +V̂ (t)+Ŵ , (1.44)

where the only difference with Eq. (1.2) is that the potential operator is now time-dependent,

V̂ (t) =
N

∑
j=1

v(r j, t). (1.45)
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The time evolution of the system is governed by the time-dependent many-body Schrödinger equation,

i
∂

∂ t
Ψ(x1, . . . ,xN , t) = Ĥ(t)Ψ(x1, . . . ,xN , t), (1.46)

which propagates an initial state Ψ(t0)≡Ψ0 to some final time t.

Just like how the foundations of ground state DFT are established by the Hohenberg-Kohn theorem

(1.14), the theoretical basis of TDDFT is currently the Runge-Gross theorem63. It is more difficult in the

time-dependent case because we no longer can make use of the Rayleigh-Ritz minimum principle given that

the system will not be in the ground state. The general idea behind the Runge-Gross theorem, in analogue to

the Hohenberg-Kohn theorem, is that if two N-electron systems start from the same initial state but are

subject to different time-dependent potentials, their respective time-dependent densites will be different.

In this case we consider time-dependent potentials to be different if they differ more than just a

time-dependent constant,

v(r, t)− v′(r, t) 6= c(t), (1.47)

for t > t0. One can easily show that if they did just differ by such a constant, it would only materialize as a

time-dependent phase factor difference for all wavefunctions which would cancel out in the calculation of

observables.

There are some limitations to the Runge-Gross theorem however. It only applies to potentials that can be

expanded in a Taylor-series about the initial time,

v(r, t) =
∞

∑
k=0

vk(r)
k!

(t− t0)
k. (1.48)

But, for such potentials, there exists a unique 1-to-1 correspondence between potential v(r, t) and density

n(r, t), for a fixed initial wavefunction Ψ0.

Note the dependence on the initial state Ψ0, however, which means that the potential will be a functional

of both the density and the initial state wavefunction Ψ0:

v(r, t) = v[n,Ψ0](r, t), (1.49)

and similarly for any observables formed (recall that a one-to-one correspondence between density and

15



1.3. Time-Dependent Density Functional Theory

potential leads to the wavefunctions being density functionals, Eq. (1.15)):

O(t) = 〈Ψ[n,Ψ0](t)|Ô|Ψ[n,Ψ0](t)〉= O[n,Ψ0](t). (1.50)

In the case where our initial state is the ground state of the system, and when the potential is turned on at t0,

v(r, t) = v0(r)+θ(t− t0)v1(r, t), (1.51)

the Hohenberg-Kohn theorem tells us that the initial state Ψgs[n] becomes a functional of the density as well,

making all observables purely density functionals.

Runge-Gross is only an existence theorem. It shows that TDDFT exists in the sense that, in principle, all

one needs to know is the density of a system in order to obtain observables. It does not guarantee that we

can use the same trick as in the Kohn-Sham formalism, calculating the density of the full interacting system

with a much simpler noninteracting system. This is where the van Leeuwen theorem steps in, paving the

way towards the time-dependent Kohn-Sham equations.

1.3.1 RUNGE-GROSS THEOREM

Before we launch into the Runge-Gross theorem63, we need a few equations resulting from continuity and

local conservation laws.

Recall that the density operator of an N-electron system is defined in position space as

n̂(r) =
N

∑
l=1

δ (r− rl), (1.52)

and the (paramagnetic) current-density operator is

ĵ(r) =
1
2i

N

∑
l=1

[∇lδ (r− rl)+δ (r− rl)∇l ]. (1.53)

The expectation values of these operators give their time-dependent counterparts,

n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉

j(r, t) = 〈Ψ(t)| ĵ(r)|Ψ(t)〉 . (1.54)
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Consider the equation of motion of the expectation value of an operator Ô(t):

i
d
dt
〈Ψ(t)|Ô(t)|Ψ(t)〉=

〈
Ψ(t)

∣∣∣∣i ∂

∂ t
Ô(t)+

[
Ô(t), Ĥ(t)

]∣∣∣∣Ψ(t)
〉
. (1.55)

Applying this equation to the density operator gives

i
∂

∂ t
n(r, t) =

〈
Ψ(t)

∣∣[n̂(r), Ĥ(t)
]∣∣Ψ(t)

〉
, (1.56)

by noting that the density operator does not have explicit time-dependence. We can easily work out the

commutator and write the result in terms of the current density:

∂

∂ t
n(r, t) =−∇· j(r, t), (1.57)

recovering the continuity equation.

We can also obtain the equation of motion for the current density,

i
∂

∂ t
j(r, t) =

〈
Ψ(t)

∣∣∣[ĵ, Ĥ(t)
]∣∣∣Ψ(t)

〉
. (1.58)

It is more difficult to work out the commutator, but still straightforward, giving the following result:

∂

∂ t
jµ(r, t) =−n(r, t)

∂

∂ rµ

v(r, t)−Fkin
µ (r, t)−F int

µ (r, t), (1.59)

where µ,ν are Cartesian coordinate indices, and the vectors Fkin
µ and F int

µ correspond to internal force

densities of the many-body system due to kinetic and interaction effects. For the explicit expressions of

these two vectors, refer to Ullrich79, since we will not need them for our purposes.

Now we move on to the Runge-Gross theorem. The time-dependent Schrödinger equation maps from a

potential v(r, t) to a time-dependent density n(r, t), for a given initial state Ψ0. The point of the

Runge-Gross theorem is to show that the reverse mapping is unique, i.e. a given potential generated in a

physical system maps back to a single potential v(r, t). As seen back in the ground state mapping Eq. (1.15),

the existence of such a unique reverse mapping allows any observable of the system to be expressed as a

functional of the density. The existence of the one-to-one relationship between potential and density is the

formal backbone of TDDFT.

The following theorem statement and proof are from Ullrich79, reworded for our purposes, and with some
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contributions from the proof by Marques et al.45.

Runge-Gross Theorem. Two densities n(r, t) and n′(r, t), evolving from a common initial many-body

state Ψ0 under the influence of two different potentials v(r, t) and v′(r, t) 6= v(r, t)+ c(t) (both assumed to be

Taylor-expandable around t0), will start to become different infinitesimally later than t0. Therefore, there is a

one-to-one correspondence between densities and potentials, for any fixed initial many-body state.

Proof. First of all, note that if the two potentials v and v′ only differ by a time-dependent constant, then the

wavefunctions that they correspond to will only differ by a phase which will cancel out in the calculation of

densities. Next, this proof is only formulated for potentials that can be expanded in a Taylor series about the

initial time:

v(r, t) =
∞

∑
k=0

1
k!

vk(r)(t− t0)
k, (1.60)

such potentials are referred to as t-TE. The primed potential must also be t-TE, naturally, with expansion

coefficients v′k(r). With this form established, we can then express the assumption that v and v′ differ by

more than just a function c(t) through the requirement that there exists a smallest integer k ≥ 0 such that

vk(r)− v′k(r) 6= const. (1.61)

We do not make any assumptions about the radius of convergence of the potential series expansions, other

than it being greater than zero. That said, we did not require the initial state of the system Ψ0, to be an

eigenstate of the initial potential v(r, t0), so the case of sudden switching is included in the proof. The

Runge-Gross proof will proceed in two steps. First we will establish the uniqueness of the current densities,

and then proceed with this knowledge to show that the densities differ.

Step 1. Starting with the equation of motion for the current density, (1.58), we subtract the primed

equation from the unprimed to obtain

∂

∂ t

{
j(r, t)− j′(r, t)

}∣∣∣∣
t=t0

=−i
〈

Ψ0

∣∣∣[ĵ, Ĥ(t0)− Ĥ ′(t0)
]∣∣∣Ψ0

〉
=−n(r, t0)∇

{
v(r, t0)− v′(r, t0)

}
, (1.62)

where the second step results from applying the evaluated commutator form of the equation of motion

(1.59), noting that since we are starting from the same initial state, the internal kinetic and interaction forces

in Eq. (1.59) are identical in both systems and cancel out. Now, if the condition (1.61) is satisfied for k = 0,
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we already see that the right-hand side of Eq. (1.62) cannot vanish identically and hence the currents j and j′

will become different infinitesimally later than t = 0. But, it may be that at t = t0 the two potentials are the

same, but only diverge later in time. However, due to the restriction on the form of the potentials, namely

that they are t-TE, this difference must manifest itself in differences in higher time derivatives of the

potential. So, if the smallest integer k for which the condition (1.61) holds is greater than zero, then we use

the general equation of motion (1.55) (k+1) times. That is, as for k = 0 above where we used Ô(t) = ĵ(r) in

Eq. (1.55), for k = 1 we take Ô(t) =−i
[
ĵ(r), Ĥ(t)

]
; for general k,

Ô(t) = (−i)k
[[[

ĵ(r), Ĥ(t)
]
, Ĥ(t)

]
. . . , Ĥ(t)

]
k

meaning there are k nested commutators to take. After some

algebra45:

∂ k+1

∂ tk+1

{
j(r, t)− j′(r, t)

}∣∣∣∣
t=t0

=−n(r, t0)∇
{

vk(r)− v′k(r)
}
, (1.63)

which tells us that j(r, t) 6= j′(r, t) for t > t0.

Step 2. Now, we need to show that having different current densities (i.e. Step 1) means that the densities

themselves will be different. To achieve this, we start with the continuity equation (1.57) and calculate its

(k+1)th time derivative:

∂ k+2

∂ tk+2

{
n(r, t)−n′(r, t)

}∣∣∣∣
t=t0

=−∇· ∂ k+1

∂ tk+1

{
j(r, t)− j′(r, t)

}∣∣∣∣
t=t0

=−∇· (n0(r)∇wk(r)), (1.64)

where we have defined wk(r) = vk(r)− v′k(r) and n0(r) = n(r, t0). We now need to show that the right-hand

side of Eq. (1.64) must be nonzero as long as the condition (1.61) holds, i.e. wk(r) is nonzero. For this,

consider the following relation which follows from the divergence theorem and the product rule for

derivatives (to produce the left-hand side and the first term on the right-hand side):

∫
d3r n0(r)(∇wk(r))2 =−

∫
d3r wk(r)∇· (n0(r)∇wk(r))+

∮
dS · (n0(r)wk(r)∇wk(r)). (1.65)

The surface integral on the right-hand side is crucial to the validity of the Runge-Gross proof. It has to

vanish for all physically realistic potentials in order for the proof to hold. Fortunately, it can be shown that

all potentials which arise from finite normalizable external charge distributions go to zero at least as fast as

1/r so that the surface integral indeed vanishes21. Note that the vanishing of this term also requires that the

system is finite so that the density vanishes at infinity. However, it can be proven to work for periodic
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systems as well, provided the external potential is also periodic.

So, suppose we have gotten rid of the surface integral. The left hand side of Eq. (1.65) does not vanish,

since wk 6= 0, and the integrand is therefore nonnegative everywhere. As a consequence, the first integral on

the right is also nonvanishing, which, taken alongside wk 6= 0, immediately implies that

∇· (n0(r)∇wk(r)) 6= 0. Thus, from Eq. (1.64) we conclude that the densities must differ infinitesimally

later than t0. This concludes the Runge-Gross proof.

1.3.2 THE VAN LEEUWEN THEOREM

The Runge-Gross theorem formally establishes the existence of TDDFT, allowing us to speak of density

functionals in a meaningful way when it comes to the time-dependent problem. However, it would be great

if we could use the same trick as in the ground state theory, namely, have a noninteracting system that can

reproduce the same density as the interacting system. The Runge-Gross theorem does not guarantee that this

is possible, so we need to go further.

Here we provide the statement of the van Leeuwen theorem82 in the words of Ullrich79.

Van Leeuwen Theorem. For a time-dependent density n(r, t) associated with a many-body system with a

given particle-particle interaction w(|r− r′|), external potential v(r, t), and initial state Ψ0, there exists a

different many-body system featuring an interaction w′(|r− r′|) and a unique external potential v′(r, t) [up

to a purely time-dependent C(t)] which reproduces the same time-dependent density. The initial state Ψ′0 in

this system must be chosen such that it correctly yields the given density and its time derivative at the inital

time. Both the external potential and densities have to be t-TE (Taylor expandable around t0) in this proof.

The following proof is from the original van Leeuwen paper82 with minor modifications and commentary.

Proof. Consider the Hamiltonian

Ĥ(t) = T̂ +V̂ (t)+Ŵ (1.66)

of a finite many-particle system, where T̂ is the kinetic energy, V̂ (t) is the external potential, and Ŵ is the
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two-particle interaction. We work in the second quantization formalism where

T̂ =−1
2

∫
d3r ψ̂

†(r)∇2
ψ̂(r), (1.67)

V̂ =
∫

d3r v(rt)ψ̂†(r)ψ̂(r), (1.68)

Ŵ =
∫

d3r d3r′w
(∣∣r− r′

∣∣)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r). (1.69)

The external potential v(rt) is assumed to have the form

v(rt) =
∫

d3r′
Z(r′t)
|r− r′| , (1.70)

where Z(rt) describes a finite but arbitrarily large charge distribution. This form is sufficient to describe the

potential due to general time-dependent ionic configurations, and it can also be used to simulate uniform

external fields in limit configurations with large finite charge disributions. We also assume that v(rt) is an

analytic function of time t. Let us specify an initial state |Ψ0〉 at t = t0 and evolve the wavefunction with the

Hamiltonian Ĥ(t). This gives |Ψ(t)〉, from which the density n(rt) can be calculated. We can write down the

continuity equation

∂tn(rt) =−i〈Ψ(t)|
[
n̂(r), Ĥ(t)

]
|Ψ(t)〉=−∇ · j(rt), (1.71)

where the current operator is given by

ĵ(r) =
1
2i
{

ψ̂
†(r)∇ψ̂(r)−

[
∇ψ̂

†(r)
]
ψ̂(r)

}
(1.72)

and has expectation value

j(rt) = 〈Ψ(t)|ĵ(r)|Ψ(t)〉 . (1.73)

We can further consider a continuity equation for the current itself,

∂t j(rt) =−i〈Ψ(t)|
[
ĵ(r), Ĥ(t)

]
|Ψ(t)〉 . (1.74)
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Working out this equation in terms of the momentum-stress tensor

T̂ik(r) =
1
2

{
∂iψ̂

†(r)∂kψ̂(r)+∂kψ̂
†(r)∂iψ̂(r)− 1

2
∂i∂k

[
ψ̂

†(r)ψ̂(r)
]}

(1.75)

and

Ŵk(r) =
∫

d3r′ ψ̂†(r)ψ̂†(r′)∂kw
(∣∣r− r′

∣∣)ψ̂(r′)ψ̂(r), (1.76)

where the derivatives ∂k are taken with respect to r, we obtain

∂t jk(rt) =−n(rt)∂kv(rt)−∑
i

∂iTik(rt)−Wk(rt). (1.77)

In the above expression the expectation values are defined as

Tik(rt) = 〈Ψ(t)|T̂ik|Ψ(t)〉 , (1.78)

Wk(rt) = 〈Ψ(t)|Ŵk|Ψ(t)〉 . (1.79)

By taking the divergence of Eq. (1.77) and using Eq. (1.71) we find

∂
2
t n(rt) =∇ · [n(rt)∇v(rt)]+q(rt), (1.80)

where

q(rt) = 〈Ψ(t)|q̂(r)|Ψ(t)〉 , (1.81)

with the operator q̂(r) defined as

q̂(r) = ∑
i,k

∂i∂kT̂ik(r)+∑
k

∂kŴk(r). (1.82)

Notice that Eq. (1.80) directly relates external potential v(rt) to n(rt); it will be the central equation of the

proof.

Now we consider a second system with a different two-particle interaction w′(|r− r′|). We will seek an

external potential v′(rt) such that the system produces the same density n(rt) as the original system, subject

to the constraint that v′(rt) vanishes at infinity (which is also satisfied by v(rt) given the form Eq. (1.70)).
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The Hamiltonian of the second (primed) system is

Ĥ ′(t) = T̂ +V̂ ′(t)+Ŵ ′. (1.83)

Let the initial state of the primed system be denoted |Φ0〉 at t = t0, evolving as |Φ(t)〉. It is assumed that

Ŵ ′k(rt) (as in Eq. (1.76)) and its derivatives are finite. Following the same steps as before, we can produce

an equation analogous to Eq. (1.80) from the primed Hamiltonian. We further assume that the primed

system has the same density trajectory, so n′(rt) = n(rt) and thus

∂
2
t n(rt) =∇ ·

[
n(rt)∇v′(rt)

]
+q′(rt), (1.84)

where q′(rt) has the expectation value

q′(rt) = 〈Φ(t)|q̂′(r)|Φ(t)〉 . (1.85)

We can subtract Eqs. (1.80) and (1.84) to obtain

∇ · [n(rt)∇ω(rt)] = ζ (rt), (1.86)

with ω(rt) = v(rt)− v′(rt) and ζ (rt) = q′(rt)−q(rt). We will use Eq. (1.86) to construct the required

v′(rt) to support the density equality between the primed and unprimed systems supposed earlier. As Eq.

(1.86) is a differential equation, to determine a solution for v′(rt) given the rest of the known quantities we

need boundary conditions. The first obvious condition is that the initial states in the two systems must yield

the same starting density in order for the density trajectories to be equal:

〈Φ0|n̂(r)|Φ0〉= 〈Ψ0|n̂(r)|Ψ0〉 . (1.87)

Since the equation relating density and potential, Eq. (1.80), is second-order in time for n(rt), we also need

to match the first-order derivatives for the densities in the two systems, i.e. ∂tn′(rt) = ∂tn(rt) at t = t0. We

can rewrite this with the usual continuity equation, Eq. (1.71), resulting in

〈Φ0|∇ · ĵ(r)|Φ0〉= 〈Ψ0|∇ · ĵ(r)|Ψ0〉 . (1.88)

Given the two initial conditions above, we return to discussing the solution of Eq. (1.86). The equation has
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1.3. Time-Dependent Density Functional Theory

no time derivatives, so the time variable can be treated as a parameter (a useful feature for the discussion in

Section 2.3.1 where we extend this proof to imaginary time.) The equation is also of a well-known

Sturm-Liouville type, with a unique solution for ω(rt) if n(rt) and ζ (rt) are given, and we further specify

the boundary condition that ω(rt) approaches zero at infinity. At t = t0 we have

∇ · [n(rt0)∇ω(rt0)] = ζ (rt0). (1.89)

Since n(rt) is known at all times and ζ (rt0) can be calculated from the initial states |Ψ0〉 and |Φ0〉 there is a

unique solution ω(rt0). This also gives v′(rt0) = v(rt0)−ω(rt0). Now we take the time derivative of Eq.

(1.89) at t = t0 resulting in

∇ ·
[
n(rt0)∇ω

(1)(r)
]
= ζ

(1)(r)−∇ ·
[
n(1)(r)∇ω(rt0)

]
, (1.90)

where we introduced the following notation for the kth time derivative at t = t0:

f (k)(r) = ∂
k
t f (rt)

∣∣∣∣
t=t0

. (1.91)

All the quantities on the right-hand side of Eq. (1.90) are known since n(rt) is known at all times and ω(rt0)

was determined from Eq. (1.89). The final term ζ (1)(r) is calculated from the commutators:

ζ
(1)(r) = ∂tζ (rt)

∣∣∣∣
t=t0

(1.92)

= i〈Ψ0|
[
q̂(r), Ĥ(t0)

]
|Ψ0〉− i〈Φ0|

[
q̂′(r), Ĥ ′(t0)

]
|Φ0〉 , (1.93)

where Ĥ ′(t0) is known from v′(rt0). The new PDE Eq. (1.90) is of the same Sturm-Liouville type as Eq.

(1.89), so we can calculate the unique solution ω(1)(r) and hence ∂tv′(rt) at t = t0. We can take the second

derivative of Eq. (1.89) and repeat the above procedure to determine ∂ 2
t v′(rt) at t = t0.

In general, taking the kth time derivative of Eq. (1.89) gives

∇ ·
[
n(rt0)∇ω

(k)(r)
]
= Q(k)(r), (1.94)
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where the inhomogeneity Q(k)(r) is given by

Q(k)(r) = ζ
(k)(r)−

k−1

∑
l=0

(
k
l

)
∇ ·
[
n(k−l)(r)∇ω

(l)(r)
]
. (1.95)

The term ζ (k) can be computed from multiple commutators of q̂(r) and q̂′(r) with the Hamiltonians Ĥ and

Ĥ ′, respectively, and their time derivatives up to order k−1, sandwiched between the initial states |Ψ0〉 and

|Φ0〉. Notice that the inhomogeneity Q(k)(r) is completely determined by the density n(rt), the potential

v(rt), the initial states |Ψ0〉 and |Φ0〉, and the time derivatives ∂
(l)
t v′(rt) at t = t0 up to order k−1. Eq.

(1.94) therefore allows complete determination of ∂ k
t v′(rt) at t = t0 for arbitrary k. We can use this to

construct v′(rt) from its Taylor series,

v′(rt) =
∞

∑
k=0

1
k!

∂
k
t v′(rt)

∣∣∣∣
t=t0

(t− t0)
k. (1.96)

This expansion determines v′(rt) completely within the convergence radius. If the convergence radius is

nonzero but finite, we can propagate |Φ0〉 to |Φ(t1)〉, where t1 lies within the radius of convergence about t0,

and repeat the whole process above considering |Φ(t1)〉 as the initial state. This is an analytic continuation

along the whole real time axis and a complete determination of v′(rt) at all times. We disregard the

possibility of a convergence radius of zero since that implies nonanalyticity of v′(rt) and hence n(rt) and

v(rt) at t = t0, which we do not consider in this proof. Finally, note that in Eq. (1.94) the determination of

the unique ω(k)(r) depended on the boundary condition that ω(rt) approach zero at infinity. In general, we

could add an arbitrary time-dependent constant C(t) to v′(rt), resulting in ω̃(rt) = ω(rt)−C(t) that would

still satisfy Eq. (1.94) for every k since

∇ω̃
(k)(r) =∇ω

(k)(r)−∇C(k)(t) =∇ω
(k)(r). (1.97)

This additional additive degree of freedom C(t) in v′(rt) is not surprising since adding a uniform constant to

the potential only affects the phase of the wavefunction, which does not affect the density. However, as will

be seen in Section 2.3.1 where we extend this proof to imaginary time, a specific choice of C(t) plays an

important role in maintaining the unit norm of a wavefunction undergoing imaginary time evolution. We can

now make the following statement: We specify a given density n(rt) obtained from a many-particle system

with Hamiltonian Ĥ and initial state |Ψ0〉. If one chooses an initial state |Φ0〉 of a many-particle system with

two-particle interaction Ŵ ′ in such a way that it yields the correct initial density and initial time derivative of
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1.3. Time-Dependent Density Functional Theory

the density, then, for this system, there is a unique external potential v′(rt) [determined up to a purely

time-dependent function C(t)] that reproduces the given density n(rt).

This theorem is rather remarkable. Note that if we are to choose the same particle-particle interaction in

the primed system, i.e. w′ = w, we recover the Runge-Gross theorem (but slightly less general since the

density also has to be t-TE while in the Runge-Gross proof only the potential had to be t-TE). If we are to

choose no particle-particle interactions, w′ = 0, we are then referring to a noninteracting system, and the van

Leeuwen theorem guarantees the existence of some noninteracting system which reproduces the

time-dependent interacting density. This permits the use of a Kohn-Sham system in the time-dependent case.

Despite the success of the van Leeuwen theorem, there is still work to be done in this area. The restriction

to t-TE densities can lead to some issues in real world systems. For example the density can frequently have

cusps in space due to diverging Coulomb potentials, which can result in non-t-TE densities due to the action

of the kinetic energy operator T̂ , a differential operator in space. To clarify the point, though using a

contrived example, consider an electron held in place by a Coulombic nuclear potential. The initial density

has a cusp at the location of the nucleus. If the nucleus were to suddenly disappear, by solving the

time-dependent Schrödinger equation we can show that the cusp immediately becomes rounded, and the

peak starts to dissipate as the electron no longer has a reason to be localized. However, when using a Taylor

expansion in time, the cusp cannot disappear and the wavefunction remains stationary in time, which is the

wrong behavior. A more physical example of a non-t-TE density would be the one associated with a nuclear

fission event, where a single cusp has to break into two.

1.3.3 TIME-DEPENDENT KOHN-SHAM FORMALISM

In light of the van Leeuwen theorem, we can simply propagate our Kohn-Sham system forward in time,

using the proper single-particle potential guaranteed by the van Leeuwen theorem to reproduce the

interacting system’s density and its time dependence.

The exact time-dependent density can be calculated from a noninteracting system with N single-particle

orbitals:

n(r, t) =
N

∑
j=1

∣∣ϕ j(r, t)
∣∣2. (1.98)
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The orbitals ϕ j(r, t) satisfy the time-dependent Kohn-Sham equation:

i
∂

∂ t
ϕ j(r, t) =

[
−∇2

2
+ vs(r, t)

]
ϕ j(r, t), (1.99)

where the time-dependent effective potential is given by

vs[n,Ψ0,Φ0](r, t) = v(r, t)+ vH(r, t)

+ vxc[n,Ψ0,Φ0](r, t). (1.100)

Like in the ground state theory, v(r, t) is the time-dependent external potential, which we assume to have the

form

v(r, t) = v0(r)+θ(t− t0)v1(r, t). (1.101)

The time-dependent Hartree potential,

vH =
∫

d3r′
n(r′, t)
|r− r′| , (1.102)

depends on the instantaneous time-dependent density only (so it is classical and nonrelativistic). The time

dependent xc potential vxc formally has functional dependence on the density, the initial many-body state Ψ0

of the exact interacting system, and the initial state of the Kohn-Sham system Φ0.

1.3.4 TIME-DEPENDENT EXCHANGE-CORRELATION POTENTIAL APPROXIMATIONS

Like the ground state theory, the approximation in the otherwise exact TDDFT comes in through the fact

that we do not know the exchange-correlation potential. Formally, the time-dependent xc potential is a

functional of the time-dependent density as well as the initial states, vxc[n,Ψ0,Φ0](r, t). Usually we are

interested in systems that start off in the ground state, so thankfully we can use the Hohenberg-Kohn

theorem to eliminate the dependence on the initial states Ψ0 and Φ0 which we know to be functionals of the

density. This helps simplify things a bit, and we can write the xc potential as vxc[n](r, t).

However, the complications do not end there. Technically the density dependence of the xc potential is

nonlocal in space and in time: the xc potential at a space-time point (r, t) depends on densities at all other

points in space and at all previous times, n(r′, t ′), where t ′ ≤ t. This is a substantial increase in complexity

over the already challenging nonlocal dependence of the xc potential in ground state DFT.
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Due to the extraordinary complexity of the “memory” feature of the exchange-correlation potential, the

most widely used approximation for the xc potential is the adiabatic approximation:

vA
xc(r, t) = vgs

xc[n0](r)
∣∣∣∣
n0(r)=n(r,t)

, (1.103)

where vgs
xc, the ground-state xc potential defined in Eq. (1.32), is evaluated at the instantaneous

time-dependent density. This approximation becomes exact as the system varies slower and slower in time,

as one would expect since this limit is just taking us to the stationary ground state. Through this adiabatic

approximation, we eliminate all of the memory aspect of the xc potential.

Surprisingly, the adiabatic equation works quite well in many cases. Many time-dependent Kohn-Sham

calculations use the adiabatic LDA (ALDA),

vALDA
xc (r, t) = vLDA

xc (n(r, t)), (1.104)

which is just the adiabatic approximation applied to the local density approximation. Other popular choices

are adiabatic GGA functionals, where the adiabatic approximation is applied to common GGA functionals.

Very few applications to date have been carried out with nonadiabatic, explicitly memory-dependent xc

functionals79.

1.4 LINEAR RESPONSE IN TDDFT

In the previous sections we have seen that it is possible to have a noninteracting system which reproduces

the density of a given interacting system. Through Runge-Gross, we also have that all observables are

functionals of the density, so in principle, we could now calculate anything we want. In practice, however,

computing observables in DFT comes with its own challenges. Some observables that are directly obtained

from the density, such as the dipole moment, are fairly straightforward to extract from the Kohn-Sham

system. Other quantities of interest, such as photoelectron spectra and state-to-state transition probabilities,

are difficult to calculate and call for their own research and levels of approximations.

Often, in many systems of practical interest, we do not have to worry about solving the full

time-dependent Schrödinger or Kohn-Sham systems since we are only subjecting the system to a small

perturbation. In such situations, the system does not deviate strongly from its initial state and it becomes

sufficient to calculate the response to first order in the perturbation. This is referred to as linear response

theory, whose goal is to directly calculate the change in a certain variable or observable to first order without
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having to calculate the change in the wavefunction.

As an example, in most applications of spectroscopy, the response to a weak probe is used to determine

the spectral properties of a system. In these cases, linear response is sufficient to calculate the quantities we

are interested in.

1.4.1 LINEAR RESPONSE REVIEW

Here we briefly review linear response in TDDFT79. Consider a quantum mechanical observable α̂ , whose

ground state expectation value is given by

α0 = 〈Ψ0|α̂|Ψ0〉 , (1.105)

where Ψ0 is the ground state many-body wavefunction associated with the static Hamiltonian Ĥ0. Now,

assume that the system is acted upon by a time-dependent perturbation

Ĥ1(t) = F(t)β̂ , t ≥ t0, (1.106)

where F(t) is an external field that couples to an observable β̂ and which is switched on at a time t0. This

perturbation affects the wavefunction of the system, and thus the expectation value of the observable α ,

which now becomes time-dependent:

α(t) = 〈Ψ(t)|α̂|Ψ(t)〉 , t ≥ t0. (1.107)

The difference between the time-dependent expectation value of α̂ and its initial static value α(t)−α0, is

called the response of α̂ to the perturbation. The response can be expanded in powers of the field F(t):

α(t)−α0 = α1(t)+α2(t)+α3(t)+ . . . , (1.108)

where α1(t) is the linear response, α2(t) is the quadratic response, and so on.

Using the first-order approximation to the time evolution operator and the interaction picture for the

operators α̂ and β̂ , we obtain the linear response as8

α1(t) =−i
∫ t

t0
dt ′F

(
t ′
)〈

Ψ0

∣∣∣[α̂(t), β̂ (t ′)
]∣∣∣Ψ0

〉
. (1.109)
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Since the initial-state Hamiltonian Ĥ0 is time-independent, we can replace the commutator
[
α̂(t), β̂ (t ′)

]
with

[
α̂(t− t ′), β̂

]
. This is shown explicitly in Eq. 5.43 of Bruus and Flensberg8, where the cyclic property

of the trace in the expectation value is used to merge exponentials. We can now define the retarded response

function

χαβ

(
t− t ′

)
=−iθ(t− t ′)

〈
Ψ0

∣∣∣[α̂(t− t ′), β̂
]∣∣∣Ψ0

〉
. (1.110)

The linear response α1(t) is therefore given by

α1(t) =
∫

∞

−∞

dt ′ χαβ

(
t− t ′

)
F(t ′). (1.111)

The response function χαβ (t− t ′) only depends on properties of the system in the absence of the probe. We

now proceed to the most important case in the context of TDDFT, the density-density response. Given that

the electronic density is the most easily accessible observable in density functional theory, the

density-density response is often desired.

1.4.2 THE DENSITY-DENSITY RESPONSE FUNCTION

Suppose we start with a system of interacting particles in the ground state, and at t = 0 a perturbation is

switched on. The total potential is thus given by

v(r, t) = v0(r)+θ(t− t0)v1(r, t). (1.112)

Again like in Eq. (1.108), we expand the response, which in this case is the density:

n(r, t) = n0(r)+n1(r, t)+n2(r, t)+ . . . , (1.113)

where in linear response we are only concerned with the first order term n1(r, t). From Eq. (1.111), we can

formally write the linear density response as

n1(r, t) =
∫

∞

−∞

dt ′
∫

d3r′ χ
(
r,r′, t− t ′

)
v1
(
r′, t ′

)
, (1.114)
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where

χ
(
r,r′, t− t ′

)
=−iθ(t− t ′)

〈
Ψ0
∣∣[n̂(r, t− t ′

)
, n̂
(
r′
)]∣∣Ψ0

〉
. (1.115)

We are typically interested in the frequency-dependent response, which is given by a simple Fourier

transform,

n1(r,ω) =
∫

d3r′ χ
(
r,r′,ω

)
v1
(
r′,ω

)
. (1.116)

Furthermore, by inserting complete set of eigenstates ∑
∞
n=1 |Ψn〉〈Ψn|= 1̂, and Fourier transforming the

response function, we obtain the Lehmann representation for the density-density response function,

χ
(
r,r′,ω

)
=

∞

∑
n=1

{ 〈Ψ0|n̂(r)|Ψn〉 〈Ψn|n̂(r′)|Ψ0〉
ω−Ωn + iη

− 〈Ψ0|n̂(r′)|Ψn〉 〈Ψn|n̂(r)|Ψ0〉
ω +Ωn + iη

}
, (1.117)

where the limit η → 0+ is to be applied to pick the appropriate contour upon integration, and where we

define the energy difference

Ωn = En−E0. (1.118)

Note that in this representation, we see explicitly that the response function has poles at the exact excitation

energies of the system. If we are to apply a perturbation v1(r,ω) with a frequency that matches one of the

excitation energies, we expect to see a very large response.

If we knew the response function χ of the many-body system, calculating the density response would just

be a matter of performing the integral in Eq. (1.116). Then, from the density response we could obtain

spectroscopic observables.

To give an example, consider a monochromatic dipole field along the z direction:

v1(r, t) = Ezsin(ωt). (1.119)

From the density response n1(r,ω) that follows, we can calculate the dynamic dipole polarizability,

α(ω) =− 2
E
∫

d3r zn1(r,ω), (1.120)
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and the photoabsorption cross section σ(ω) is then given by

σ(ω) =
4πω

c
Im [α(ω)]. (1.121)

1.4.3 KOHN-SHAM DENSITY-DENSITY RESPONSE

In general it is very difficult to calculate the response function χ of an interacting system, so it would not be

a very promising approach to try to calculate the linear response directly from an interacting many-body

system. Instead, we will again make use of the Kohn-Sham system.

In TDDFT, the linear response of a general interacting many-body system can be calculated, in principle

exactly, as the response of the noninteracting Kohn-Sham system due to an effective perturbation:

n1(r, t) =
∫

dt ′
∫

d3r′ χs
(
r,r′, t− t ′

)
v1s
(
r′, t ′

)
. (1.122)

Here χs(r,r′, t− t ′) is the density-density response function of the Kohn-Sham system, and v1s(r, t) is the

effective perturbation that we will discuss shortly.

First, note that the density-density response function can be directly obtained from the expression in the

Lehmann representation that we derived earlier, Eq. (1.117):

χs
(
r,r′,ω

)
=

∞

∑
j,k=1

( fk− f j)
ϕ j(r)ϕ∗k (r)ϕ

∗
j (r′)ϕk(r′)

ω−ω jk + iη
, (1.123)

where f j and fk are the occupation numbers referring to the configuration of the Kohn-Sham ground state (1

for occupied, 0 for unoccupied), and ω jk are defined as

ω jk = ε j− εk. (1.124)

At this notice that the Kohn-Sham response function has poles at the excitation energies of the Kohn-Sham

system, which in Section 1.2.3 we had stated have no supported physical meaning. Furthermore, the

numerators, which give the strengths of the poles, are related to the optical absorption intensities of the KS

system and not those of the true system. This is disconcerting, since we are interested in the properties of the

real system. However, this is where the effective perturbation comes into play. Since the Kohn-Sham

interaction contains both components from the actual many-body external potential as well as the effective

single-particle interactions that describe the many-body interactions, correlations, and exchanges, it makes
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sense that we could not simply apply the external perturbation in Eq. (1.122). A variation in the external

potential will affect the electronic configuration, which would then affect the many-body interactions

encoded in the Kohn-Sham single-particle potential vs.

So, expanding the definition of the Kohn-Sham effective single-particle potential, Eq. (1.100), up to first

order in the density response n1(r, t), we obtain the following first-order perturbation of the Kohn-Sham

potential:

vs1(r, t) = v1(r, t)+
∫

d3r′
n1(r′, t)
|r− r′| +

∫
dt ′
∫

d3r′ fxc
(
r, t,r′, t ′

)
n1
(
r′, t ′

)
. (1.125)

Here, fxc is the so-called xc kernel, the functional derivative of the xc potential with respect to the density,

evaluated at the ground state density:

fxc
(
r, t,r′, t ′

)
=

δvxc[n](r, t)
δn(r′, t ′)

∣∣∣∣
n0(r)

. (1.126)

As expected, the effective potential perturbation (1.125) contains a part of the actual potential perturbation,

v1, as well as a term from the Hartree potential variation, as well as the variation in the xc potential.

Plugging in Eq. (1.125) into Eq. (1.122) results in an equation that features n1(r, t) on both sides. Solving

the equation self-consistently for the density response ends up giving the right answer. In some sense, the

self-consistent nature “cancels out” the wrong poles and restores the correct poles of the many-body system.

We can also use these equations to solve for the actual many-body system’s response function in terms of

the KS response function by setting Eq. (1.122), which contains a reference to the KS response function,

equal to Eq. (1.114), which contains the true many-body response function, giving:

χ
(
r, t;r′, t ′

)
= χs

(
r, t;r′, t ′

)
+
∫

dt1 d3r1 dt2 d3r2 χs(r, t;r1, t1)
[

δ (t1− t2)
|r1− r2|

+ fxc(r1, t1;r2, t2)
]

χ
(
r2, t2;r′, t ′

)
.

(1.127)

Notice the resemblence to a Dyson equation,

G = G0 +G0 ∑G, (1.128)

where χs plays the role of G0. This gives more credence to the “correcting” of the poles of the

density-density response function, since we recall that the Dyson equation shifts the poles of the bare

propagator G0 to yield the dressed propagator G.
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There are many approximations to the xc kernel required in Eq. (1.125), the simplest of which is to

simply set the xc kernel to zero:

f RPA
xc
(
r, t;r′, t ′

)
= 0. (1.129)

this seemingly trivial kernel is called the random phase approximation (RPA), which comes from

many-body theory where one sums up all the “bubble”-type diagrams. This makes sense since such a

substitution would only leave the Hartree correction to the effective KS perturbation (1.125). The form

becomes similar to time-dependent Hartree, but one has to remember that TDDFT RPA is fundamentally

different since it is using the Kohn-Sham system instead.

The xc kernel inherits the difficulties of the exchange-correlation potential since it is just its functional

derivative with respect to density. Just like how the vast majority of xc potentials in use are adiabatic, so are

practical xc kernels fxc. Such kernels do not have any explicit time dependence and only depend on the

instantaneous density. The approximation is often carried further by assuming that the kernel is also local in

space. An important example is the ALDA xc kernel,

f A
xc
(
r,r′
)
=

d2eh
xc(n̄)

dn̄2

∣∣∣∣
n̄=n0(r)

δ
(
r− r′

)
. (1.130)

1.5 CONCLUSION

DFT is a powerful formalism for solving many-body quantum problems. By simplifying the task of solving

the full Schrödinger equation to just solving for a density, many complex systems become accessible given

the present limits in computational power. Time-dependent DFT is shaping up to play a crucial role in

biology for studying the links between structure and functionality due to its favorable scaling with system

size, a feature that already allows systems of thousands of atoms to be simulated. Building off of the success

of ground state density functional theory for the study of materials and their optical and electronic properties,

TDDFT enables the investigation of fundamentally time-dependent systems which have been challenging to

study in the past. This class of systems contains the rich world of chemical reactions, photovoltaic processes

of biological materials, optoelectronic devices, nonequilibrium thermodynamics, and much more.

There is much room for improvement, however. Despite being formally exact, any application of TDDFT

still has two major approximations. First, since it is not known how to obtain exact exchange-correlation

energies, potentials, or kernels, simplifying schemes are used, oftentimes rendering the xc potential local in
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space and time. Many interesting systems in physics, such as excitations involving charge separation, do not

yield correct results when the xc potential lacks the proper long-range behavior. Second, TDDFT systems

have to be solved numerically, often with self-consistency loops that may be tricky to converge, or that

sometimes converge to a state that was not desired. That said, TDDFT has already proven successful in

many systems of physical interest, ranging from the study of interactions of molecules with light to the

improvement of catalysts in industrial applications.

In the following chapter, we extend TDDFT to imaginary time, enabling the use of some convenient

computational methods in many-body systems. In particular, imaginary-time TDDFT can be used as a

robust and reliable method for solving the Kohn-Sham equations in ground-state DFT, a task that can prove

challenging in some large systems, or those with metallic character. We also present an extension of the van

Leeuwen theorem in imaginary time, providing theoretical backing for using the Kohn-Sham system for

certain topics in quantum statistical mechanics where a Wick rotation to imaginary time is employed.
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2
Imaginary-Time Time-Dependent Density

Functional Theory

Apart from minor modifications and elaborations, this chapter originally appeared in the following

publication:

Cedric Flamant, Grigory Kolesov, Efstratios Manousakis, and Efthimios Kaxiras.
“Imaginary-Time Time-Dependent Density Functional Theory and Its Application for
Robust Convergence of Electronic States.” J. Chem. Theory Comput. 15, 11, 6036-6045
(2019).

Figure 2.1: Visual abstract submitted to J. Chem. Theory Comput.. The smooth, monotonic convergence of
a Cu13 nanocluster electronic state using imaginary-time time-dependent density functional theory is compared
to the conventional approach, SCF, which does not converge to the desired lowest-energy state. Magnetization
density isosurfaces are depicted for both states.

ABSTRACT

Reliable and robust convergence to the electronic ground state within density functional theory (DFT)

Kohn-Sham (KS) calculations remains a thorny issue in many systems of interest. In such cases, charge

sloshing can delay or completely hinder the convergence. Here, we use an approach based on transforming
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the time-dependent DFT equations to imaginary time, followed by imaginary-time evolution, as a reliable

alternative to the self-consistent field (SCF) procedure for determining the KS ground state. We discuss the

theoretical and technical aspects of this approach and show that the KS ground state should be expected to

be the long-imaginary-time output of the evolution, independent of the exchange-correlation functional or

the level of theory used to simulate the system. By maintaining self-consistency between the single-particle

wavefunctions (orbitals) and the electronic density throughout the determination of the stationary state, our

method avoids the typical difficulties encountered in SCF. To demonstrate dependability of our approach, we

apply it to selected systems which struggle to converge with SCF schemes. In addition, through the van

Leeuwen theorem, we affirm the physical meaningfulness of imaginary time TDDFT, justifying its use in

certain topics of statistical mechanics such as in computing imaginary time path integrals.

2.1 INTRODUCTION

Density functional theory (DFT) is a widely used approach enabling ab initio calculations of electronic and

material properties. Unlike direct approaches to studying quantum systems through the Schrödinger

equation where the wavefunction is the central object, DFT uses the electron density n(r) as the fundamental

physical quantity. In principle, through the Hohenberg-Kohn theorem25, the ground state n(r) of a system

uniquely determines all of its observables. It is standard practice to use the Kohn-Sham (KS) system31 of

non-interacting fermions as a shortcut to obtaining the ground state density, employing specially formulated

potentials9,56 that are functionals of n(r) to approximate the electron-electron interactions.

There are many techniques to find the ground state of the KS equations, including methods which: (a)

aim at direct determination of the minimum of the KS total energy functional71,85,86; and (b) use iterative

methods based on diagonalization of the KS Hamiltonian in conjunction with iterative improvements of the

ground state charge density through mixing. The present work is distinct from both these approaches. We

focus on comparing our method to type (b) approaches.

For a system with N electrons, the lowest N eigenstates to the KS equations determine n(r), which itself

appears in the KS equations through an effective single-particle potential. In general, finding the set of N

eigenstates that satisfy the KS equations involves an iterative process known as self-consistent field (SCF)

iterations that produce successively better approximations to the solution. In its simplest conceptualization

the iterative approach involves solving the eigenvalue problem for an initial density distribution, then using

the resulting eigenstates to produce the next approximation to the density. When this approach is iterated,

except for the simplest systems, it rarely converges to a self-consistent solution. In order to stabilize the SCF
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loops and improve the convergence rate, various mixing schemes are typically employed. These schemes

take advantage of the information contained in multiple previous trial densities to select the next one. A

popular mixing scheme is direct inversion of the iterative subspace (DIIS), also known as Pulay mixing58,59.

When SCF schemes require many iterations to reach an acceptable solution, or fail to converge, the

choices are to change the mixing scheme or its parameters, start with a different density, or fractionally

occupy states49,60 which some methods implement by introducing a fictitious electronic temperature (Fermi

smearing48,84). Other methods like level-shifting66 can also fix oscillating or divergent SCF steps. If these

fail, one can resort to computationally-intensive direct minimization methods71,85,86 to find a solution.

Convergence difficulties for SCF usually arise in systems with large unit cells and in metallic systems2, or

when an excited state is desired. The small differences in eigenenergies of the KS orbitals, as well as the

presence of many states near the Fermi level, can cause very different eigenstates to be occupied from step

to step. This can lead to large variations in the density, causing the phenomenon known as charge sloshing36

where a fluctuating charge density from step to step is observed with insufficient attenuation to reach

convergence.

In the present paper we transform the time-dependent KS (TDKS) equations of time-dependent density

functional theory (TDDFT)57,64,83 to imaginary time33. We use these equations to propagate an initial state

to very long imaginary time, refining it down to the KS state corresponding to its lowest energy component.

The idea of using imaginary-time propagation (ITP) to find eigenstates is well-known, and it is frequently

used to find ground state solutions to the Schrödinger equation describing single-particle systems with a

fixed potential3,40. Imaginary time-steps have also been used to find self-consistent solutions to the

Hartree-Fock equations12 and for nuclear energy density functional calculations65. It has also been

employed in a DFT context as an alternative to the diagonalization step to find the orbitals for a fixed

electronic density1,23. However, imaginary-time evolution has yet to be examined as a stand-alone substitute

to iterative density updating in solving the KS equations. In the present method both the density and

wavefunction evolve together towards the ground state according to the imaginary time TDKS equations,

remaining consistent with each other throughout the calculation. We discuss the theoretical foundation of

the imaginary-time evolution of the KS system, a procedure which is non-unitary, requiring

re-orthonormalization of the states at each imaginary time-step. We show that the proof provided by van

Leeuwen83 for TDDFT can be extended to imaginary-time TDDFT (it-TDDFT), affirming in principle that

the density of a KS system will evolve in imaginary time in the same manner as the true many-body

interacting system. The imaginary-time propagation method in DFT has attractive theoretical and practical

benefits when applied to systems that are challenging to study using standard methods of solving the KS
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equations, as we demonstrate on model systems.

We benchmark our approach by applying it to the benzene molecule and show that it converges to the

same ground state energy as other SCF-based methods. Next, we apply our method to systems with known

difficulties in achieving convergence. We chose to examine a copper nanocluster Cu13 with fixed

magnetization and a spin-unpolarized Ru55 nanocluster. We show that self-consistent solutions are hard to

realize in both systems using the most popular standard approach, SCF with Pulay mixing. In general, we

find that while requiring more computation, our method is more dependable and more autonomous

compared to SCF. It provides a good alternative to existing methodologies when the latter fail to converge in

challenging systems, or if a user wishes to find an unfamiliar system’s ground state with minimal

intervention; this can be particularly useful when computations are carried out in an automated fashion on

large clusters of processors.

2.2 METHODOLOGY

2.2.1 IMAGINARY-TIME PROPAGATION

First, let us take the Hamiltonian Ĥ to be time-independent. Under the substitution t→−iτ , where τ is real,

the time evolution operator transforms from e−itĤ to e−τĤ . When |Φi〉 is an eigenstate of Ĥ,

|Φi(τ)〉= e−τĤ |Φi〉= e−τEi |Φi〉 . (2.1)

For an arbitrary initial wavefunction |Ψ(0)〉, imaginary-time propagation amounts to

|Ψ̃(τ)〉=
∞

∑
i=0

Ai(0)e−τEi |Φi〉 , (2.2)

where Ai(0) is the amplitude of the eigenstate component initially present. As imaginary time goes to

infinity, τ → ∞, the eigenstate
∣∣Φ j
〉

corresponding to the lowest energy eigenvalue with A j(0) 6= 0 will

dominate. We can choose to keep the state |Ψ(τ)〉 normalized by dividing by the norm

Ω(τ)≡
√
〈Ψ̃(τ)|Ψ̃(τ)〉=

√
∑

∞
i=0 |Ai(0)|2e−2τEi ,

|Ψ(τ)〉=
∞

∑
i=0

Ai(0)e−τEi

Ω(τ)
|Φi〉 , (2.3)
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which then yields limτ→∞ |Ψ(τ)〉=
∣∣Φ j
〉
. Since an arbitrary initial state generated by randomizing the

coefficients in some basis is likely to have a nonzero ground state component, ITP is often used to find

ground state wavefunctions and energies. While an initial state with a strong ground state component will

converge earlier than an arbitrary starting state, ITP rapidly eliminates all but the lowest energy components

so the decrease in the total computational time from a well-chosen starting state is modest and not worth

undue effort to attain.

2.2.2 IMPLEMENTATION WITHIN THE KOHN-SHAM FORMALISM

In TDDFT, starting from an initial state, the KS system obeys the equations of motion (in atomic units):

i
∂

∂ t
φ j(r, t) = ĤKS[n(r, t)]φ j(r, t), (2.4a)

ĤKS[n(r, t)]≡
(
−∇2

2
+ vs[n(r, t)]

)
, (2.4b)

with time-dependent effective potential

vs[n(r, t)] = v(r)+ vH[n(r, t)]+ vxc[n(r, t)]. (2.5)

In these expressions, v(r) is the external potential and

vH[n(r, t)] =
∫

dr′
n(r′, t)
|r− r′| , (2.6)

vxc[n(r, t)] =
δExc[n(r, t)]

δn(r, t)
, (2.7)

n(r, t) =
N

∑
j=1

∣∣φ j(r, t)
∣∣2. (2.8)

The Kohn-Sham time-evolution can be reformulated in terms of a time-propagator which acts on orbitals

and is given by

∣∣φ j(t)
〉
= Û(t, t0)

∣∣φ j(t0)
〉
, (2.9)

Û(t, t0) = T̂ exp
(
−i
∫ t

t0
ĤKS[n(r, t ′)]dt ′

)
, (2.10)

40



Chapter 2. Imaginary-Time Time-Dependent Density Functional Theory

where T̂ is the time-ordering operator. In imaginary time, applying the substitution t→−iτ results in

∣∣φ j(τ)
〉
= Û(τ,τ0)

∣∣φ j(τ0)
〉
, (2.11)

Û(τ,τ0) = T̂τ exp
(
−
∫

τ

τ0

ĤKS[n(r,τ ′)]dτ
′
)
, (2.12)

where T̂τ now time-orders in imaginary time. Note that the imaginary-time propagator is not unitary.

Employing the same numerical scheme used for real time propagation of KS states on an atomic basis32,

we evolve in imaginary-time the orbitals using finite time-steps ∆τ and we approximate the instantaneous

imaginary-time propagator with the second-order Magnus expansion:

Û(τ +∆τ,τ)≈ exp
[
−∆τĤKS

(
τ +

∆τ

2

)]
, (2.13)

ĤKS(τ)≡ ĤKS[n(r,τ)]. (2.14)

The Hamiltonian at the midpoint is approximated as the average of the Hamiltonians at τi and τi+1,

ĤKS
(
τi +

∆τ

2

)
≈ 1

2

[
ĤKS(τi)+ ĤKS(τi+1)

]
. Each step is iterated to self-consistency in order to make use of

the Hamiltonian at τi+1. We use the Padé rational polynomial approximation of arbitrary degree to obtain

the general matrix exponential. Further details of the numerical propagation can be found in our earlier

work32, which describes TDAP-2.0, a TDDFT code we used, built on top of SIESTA69, a DFT package

which uses strictly localized basis sets. While the midpoint Hamiltonian greatly aids stability and energy

conservation in real time propagation, in practice we have found that for imaginary-time propagation we can

just use the first step in the iterative procedure, which simply applies the approximation

ĤKS
(
τi +

∆τ

2

)
≈ ĤKS(τi). This explicit propagation is faster since the Hamiltonian only needs to be

evaluated once per propagation step, and the effect on the size of the maximum stable time-step appears

negligible compared to the implicit method using the midpoint Hamiltonian. This is expected since

imaginary-time propagation is inherently more stable than the real-time propagation the TDAP-2.0 code was

originally designed to solve. The most time-consuming process per step in our implementation is the matrix

exponentiation. If the accuracy of the trajectory through imaginary time is not the primary concern of a

calculation, lower-quality approximations to the matrix exponential can be used.

Because the imaginary-time propagator is not unitary, the orbitals lose their normalization and generally

cease to be orthogonal. The simple expression for density in Eq. (2.8) becomes more complicated if the

orbitals φ j are non-orthonormal. It is convenient to reorthonormalize the orbitals at each time step. The

details of how the orthogonalization is achieved do not affect the physics, as we show in Section 2.3.2. We
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use the modified Gram-Schmidt algorithm to orthonormalize the states.

While we employ a localized atomic basis for our calculations, the method we propose is independent of

the basis used to represent the Kohn-Sham orbitals, and can easily be implemented in other popular bases,

like plane waves or Gaussians.

2.3 THEORETICAL CONSIDERATIONS

2.3.1 VAN LEEUWEN THEOREM IN IMAGINARY TIME

The van Leeuwen theorem states that a time-dependent particle density n(r, t) belonging to a many-particle

system with two-particle interaction Ŵ can always be reproduced by a unique (up to an additive purely

time-dependent constant) external potential v′(r, t) in another many-particle system that uses a different

two-particle interaction Ŵ ′, under the mild restriction that the density has to be analytic in time83. If we

choose the two-particle interaction in this other system to be Ŵ ′ = 0, the theorem guarantees the existence of

the effective potential vs(r, t) for a Kohn-Sham system that reproduces the same time-dependent density as

the interacting system of interest. Here we point out the modifications to the original theorem in order to

make it compatible with imaginary-time evolution.

A complex t value does not pose any problems with the operations performed in the original proof, where

t appears in some time derivatives but otherwise is treated as a parameter. We add time-dependent uniform

potentials λ (t) and λ ′(t) to the unprimed and primed Hamiltonians to conserve the norm of the

wavefunctions. The origin of these terms will be discussed in the next section. The Hamiltonian Ĥ of a finite

many-particle system is then given by

Ĥ(t) = T̂ +V̂ (t)+Ŵ +λ (t), (2.15)

expressed in terms of creation and annihilation operators

T̂ =−1
2

∫
d3r ψ̂

†(r)∇2
ψ̂(r), (2.16a)

V̂ (t) =
∫

d3rv(r, t)ψ̂†(r)ψ̂(r), (2.16b)

Ŵ =
∫

d3rd3r′w
(∣∣r− r′

∣∣)ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r). (2.16c)

Since λ (t) commutes with everything, it does not affect any of the commutators involving Ĥ(t) in the

various Heisenberg equations of motion underpinning the proof of the van Leeuwen theorem. There is only
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one detail to note, regarding the freedom to add an arbitrary C(t) to the potential of the primed system,

v′(r, t), in the original proof. From Eq. (2.16b) a time-dependent constant in the potential modifies the

Hamiltonian by an additional term C(t)N̂, where N̂ is the number operator. For the systems of interest, the

number of particles N is fixed so C(t)N is a time-dependent uniform potential like λ ′(t), which means that a

norm-conserving λ ′(t) will cancel any effect from the choice of C(t). Thus, with λ (t) and λ ′(t) chosen to

ensure that the norm of states in both the unprimed and primed systems is held at unity, the van Leeuwen

theorem holds in imaginary time. This is a useful result since it allows us to think about imaginary-time

propagation in the Kohn-Sham system in terms of what it does in the real system, allowing the

Wick-rotation connections from quantum mechanics to statistical mechanics to be employed. For example,

it justifies the use of the Kohn-Sham system as a stand-in for the interacting system in our calculations

performed for imaginary time path integrals33.

2.3.2 MAINTAINING ORTHONORMALIZATION

Orthonormalization of the orbitals is equivalent to adding a purely time-dependent function λ (t) to the

many-body Hamiltonian. This takes care of holding the wavefunction normalized, both in the interacting

and Kohn-Sham systems, as well as accounting for the orthogonalization step we use in the Kohn-Sham

state propagation.

We first consider the interacting system. In real time propagation, the choice of λ (t) does not affect the

dynamics of density since this spatially-constant offset in energy only results in changing the phase of the

wavefunction:

|Ψ(t)〉= Û(t, t0) |Ψ(t0)〉 ,

Û(t, t0) = T̂ exp
(
−i
∫ t

t0
Ĥ(t ′)+λ (t ′)dt ′

)
=Uλ (t, t0) T̂ ÛĤ(t, t0), (2.17a)

Uλ (t, t0)≡ exp
(
−i
∫ t

t0
λ (t ′)dt ′

)
, (2.17b)

ÛĤ(t, t0)≡ exp
(
−i
∫ t

t0
Ĥ(t ′)dt ′

)
. (2.17c)

In imaginary-time propagation, λ (τ) modifies the imaginary-time propagator Û(τ,τ0) by a time dependent
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magnitude,

Û(τ,τ0) = Uλ (τ,τ0) T̂τ ÛĤ(τ,τ0), (2.18a)

Uλ (τ,τ0)≡ exp
(
−
∫

τ

τ0

λ (τ ′)dτ
′
)
, (2.18b)

ÛĤ(τ,τ0)≡ exp
(
−
∫

τ

τ0

Ĥ(τ ′)dτ
′
)
. (2.18c)

If λ (τ) is arbitrary, the norm of the wavefunction will change in time, incorrectly scaling the expectation

values of observables like density and energy. The norm of the wavefunction can be held fixed by choosing

λ (τ) to counteract the norm-altering effect of T̂τ exp
(
−∫ τ

τ0
Ĥ(τ ′)dτ ′

)
when it acts on |Ψ(τ0)〉. Note that

such a λ (τ) will also depend on the starting state. For example, in the time-independent Hamiltonian case

presented in Section 2.2.1, from Eq. (2.3)

Uλ (τ,τ0) = exp
(
−
∫

τ

τ0

λ (τ ′)dτ
′
)
=

[
∞

∑
j=0

∣∣A j(0)
∣∣2e−2τE j

]−1/2

. (2.19)

The equation can be rearranged and differentiated to reveal an interpretation of λ (τ),

∂

∂τ

∫
τ

τ0

λ (τ ′)dτ
′ =

1
2

ln

[
∞

∑
j=0

∣∣A j(0)
∣∣2e−2τE j

]

λ (τ) =
1
2

d
dτ

ln

[
∞

∑
j=0

∣∣A j(0)
∣∣2e−2τE j

]
=−∑

∞
j=0 E j

∣∣A j(0)
∣∣2e−2τE j

∑
∞
j=0
∣∣A j(0)

∣∣2e−2τE j
=−〈E(τ)〉 , (2.20)

that is, to keep the wavefunction normalized, λ (τ) is such that the energies of the Hamiltonian are measured

relative to 〈E(τ)〉. This result holds more generally for time-dependent Hamiltonians as well, which can be

shown by using Û(τ,τ0) from Eq. (2.18a) and differentiating the norm-conserving equation

1 = 〈Ψ(τ)|Ψ(τ)〉= 〈Ψ(τ0)| Û†(τ,τ0)Û(τ,τ0) |Ψ(τ0)〉 to solve for λ (τ):

0 =
∂

∂τ

[
exp
(
−2
∫

τ

τ0

λ (τ ′)dτ
′
)
〈Ψ(τ0)|

(
T̂τ ÛĤ(τ,τ0)

)†(T̂τ ÛĤ(τ,τ0)
)
|Ψ(τ0)〉

]
=−2λ (τ)Uλ (τ,τ0)

〈
Ψ̃(τ)

∣∣Ψ̃(τ)
〉
+Uλ (τ,τ0)〈Ψ(τ0)|2

(
T̂τ ÛĤ(τ,τ0)

)†
Ĥ(τ)

(
T̂τ ÛĤ(τ,τ0)

)
|Ψ(τ0)〉

λ (τ) =−
〈
Ψ̃(τ)

∣∣Ĥ(τ)
∣∣Ψ̃(τ)

〉〈
Ψ̃(τ)

∣∣Ψ̃(τ)
〉 =−〈E(τ)〉 , (2.21)

where we use the unnormalized wavefunction
∣∣Ψ̃(τ)

〉
=
(
T̂τ ÛĤ(τ,τ0)

)
|Ψ(τ0)〉, and the fact that

∂/∂τ
(
T̂τ ÛĤ(τ,τ0)

)
= Ĥ(τ)

(
T̂τ ÛĤ(τ,τ0)

)
since τ is the latest time so Ĥ(τ) can be pulled out in front of the
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time-ordering operator. We will assume that a norm-conserving λ (τ) is used in the interacting system so

that the system always remains normalized.

In the Kohn-Sham system the propagator is given by

Û(τ,τ0) = UλKS
(τ,τ0) T̂τ ÛĤKS

(τ,τ0). (2.22)

where ĤKS acts on the entire Kohn-Sham many-body wavefunction |Φ〉 through its constituent orbitals
∣∣φ j
〉
,

see Eq. (2.4). In general λKS(τ) differs from the constant λ (τ) of the interacting system, and in addition to

normalizing the many-body state, it can account for orthonormalization of the constituent orbitals.

Orthonormalization of the occupied orbitals is an invertible transformation preserving the subspace

spanned by these linearly-independent states. Representing the orthonormalization by matrix S and given a

single-particle Slater determinant wavefunction Φ(r1,r2, . . . ,rN), orthonormalization results in

Φ̃(r1,r2, . . . ,rN) = Φ(r1,r2, . . . ,rN)detS. This can be seen as follows: first we write out the Slater

determinant wavefunction Φ(r1,r2, . . . ,rN),

Φ(r1,r2, . . . ,rN) =
1√
N!

det{A}, A =



φ1(r1) φ2(r1) · · · φN(r1)

φ1(r2) φ2(r2) · · · φN(r2)

...
...

. . .
...

φ1(rN) φ2(rN) · · · φN(rN)


. (2.23)

The new many-body wavefunction Φ̃(r1,r2, . . . ,rN) composed of orbitals {φ̃i} is reached by the invertible

transformation S which transforms the single-particle states according to φ̃i(r) = ∑
N
j=1 φ j(r)S ji. We then

have that Φ̃(r1,r2, . . . ,rN) =
1√
N!

det Ã, where Ãik = φ̃k(ri) = ∑
N
j=1 φ j(ri)S jk = ∑

N
j=1 Ai jS jk = (AS)ik, which

implies Ã = AS. Thus, Φ̃(r1,r2, . . . ,rN) =
1√
N!

det(AS) = 1√
N!

det(A)det(S) = det(S)Φ(r1,r2, . . . ,rN),

meaning that the two wavefunctions differ by at most a complex scalar. The orthonormalization step merely

amounts to changing the phase and rescaling the many-body wavefunction.

At the starting time τ0, we assume the Kohn-Sham wavefunction is properly normalized. Following the

application of the imaginary-time propagator up to a particular time τ , we represent a particular

orthonormalization of the orbitals by an invertible transformation S(τ). In order for λKS(τ) to act like the

orthonormalization procedure, we require that

UλKS
(τ,τ0) = detS(τ). (2.24)
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Note that |detS(τ)| will be continuous since it is the reciprocal of the norm of the unnormalized propagated

wavefunction. The phase of detS(τ) is not important since it changes the phase of the wavefunction, which

will not affect the density. We can therefore use any orthonormalization procedure at each time-step without

concern about the continuity of the phase, and a purely real λKS(τ) satisfying UλKS
(τ,τ0) = |detS(τ)| for all

τ > τ0 is guaranteed to exist.

The above definitions for norm-conserving λ (τ) and λKS(τ) conclude the proof of the imaginary time

extension to the van Leeuwen theorem presented in Section 2.3.1.

2.3.3 MONOTONICALLY DECREASING ENERGY

In the Kohn-Sham system the Hamiltonian depends on the density, and thus will in general have

eigenenergies and eigenvalues that depend on time. In particular, for the density at time τ`, n(r,τ`), we are

considering a quantum system with the Hamiltonian ĤKS[n(r,τ`)]. By propagating the state of interest in

imaginary time using this instantaneous Hamiltonian, we are amplifying the low-energy eigenstates of the

current Hamiltonian ĤKS[n(τ`)], which in general are different than the low-energy eigenstates of the new

Hamiltonian, ĤKS[n(τ`+1)], and the resultant state could have a higher energy than the previous state. A

good example of this is the commonly-observed divergence of SCF loops without a mixing scheme: the

N-lowest eigenstates of the Hamiltonian ĤKS[ni] are directly used to compute the next density ni+1. This

also reveals an interesting limiting case of it-TDDFT. If a KS state is propagated to infinite imaginary time

before the density used in the instantaneous Hamiltonian ĤKS[n(τ`)] is updated, the propagated state will

become the ground state of the present Hamiltonian, which is equivalent to populating the N-lowest

eigenstates of ĤKS[n(τ`)]. In this way basic SCF can be thought of as it-TDDFT with infinitely large

time-steps when using explicit propagation. Indeed, if the time-step in it-TDDFT is taken to be too large, the

total energy will diverge, just like in SCF performed without a mixing scheme.

With a reasonable time-step, usually around 2 atomic units of time or smaller, it-TDDFT monotonically

decreases the total energy of the system. The van Leeuwen theorem, which connects the KS system to the

interacting system, provides the theoretical backbone for this result. While propagation of the Kohn-Sham

system is complicated by the dependence on density, in the true interacting system the evolution in

imaginary time has the simple form given in Eq. (2.3).
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2.3.4 ALTERNATIVE THEORETICAL FOUNDATION FOR STATIONARY STATES IN DFT

The first step in the majority of DFT calculations is to find a density corresponding to a stationary state. A

stationary state is an eigenstate of the Hamiltonian, or equivalently, a state that only changes by a phase

when evolved in real time or by a multiplicative factor when evolved in imaginary time. Only the first

definition is used in KS systems, as it is implicitly assumed by SCF schemes. In systems that are difficult to

converge with SCF, owing to their size or metallic character, the second definition becomes more useful, and

it can be applied through the it-TDDFT method.

The KS equations are set as an eigenvalue problem, and thus use the first definition. Once a density n(r)

is found such that a choice of N of the orbitals φ j(r) reproduces the same density through Eq. (2.8), a

stationary state has been determined. SCF is used to find ground states, where the N lowest-energy

eigenstates are chosen, and ∆SCF35, where a different selection of N orbitals is chosen, is used to find

excited states. For small systems, insulating systems, and systems with low degeneracy of orbitals, after a

few steps of SCF, the eigenstates rarely change order when sorted by energy from one step to the next. This

means that occupied orbitals have similar character to those from the step before, so the density does not

change drastically. In these cases SCF converges well so using the eigenstate definition of stationary states is

sensible. However, in large systems and in metallic systems, or if an excited state is desired, the above

conditions might not hold, leading to charge sloshing. In principle, the KS equations can still be used to

verify a stationary state if the density is perfectly converged. In practice, this definition is inadequate in these

difficult systems since a suitable approximate density could appear to be far from convergence if the wrong

KS eigenstates are occupied, due to the next SCF step returning a very different density from the one given.

In addition, this makes it challenging to determine the quality of a non-converging density. For example, in

Section 2.4 we examine the performance of SCF on a ruthenium nanocluster, where we show that some

non-converged densities give a reasonable energy estimate for the ground state, while others are incorrect.

To address convergence issues, DFT calculations of metallic systems and systems with high

single-particle energy degeneracy are often performed with electronic smearing, where states near the Fermi

level are given fractional occupations to simulate nonzero electronic temperature. This mitigates the

problem by ensuring that states near each other in energy have similar fractional occupation. Smearing adds

an entropic contribution to the energy, so a balance between obtaining an accurate energy and ease of

convergence has to be struck. Electronic smearing is a computational tool and not intended to be an accurate

representation of the effects of temperature, so it should be incrementally reduced until the solution with no

smearing is achieved49, a technique referred to as annealing.60 In fact, cases have been found where even
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small amounts of electronic smearing produce significantly different results from the same calculation

performed with integer occupations, such as a HOMO-LUMO gap energy that differs by one order of

magnitude4. As we show in the ruthenium nanocluster system in Section 2.4, achieving convergence while

applying electronic smearing can still require finesse and guesswork.

In systems where SCF convergence is hard to attain, instead of using the KS equations to define a

stationary state, we can use a state’s invariance under imaginary-time evolution. If a KS wavefunction stays

constant when propagated in imaginary time, then its orbitals span the same subspace as a set of eigenstates

which solve the KS equations. The converse is true as well, namely that a set of N KS eigenstates satisfying

the KS equations self-consistently will be invariant under imaginary-time evolution, ignoring the possibly

changing norm which can be corrected (as discussed in Sec. 2.3.2). Thus, finding a KS many-body state

|Φ(τ0)〉 such that |Φ(τ)〉= Û(τ,τ0) |Φ(τ0)〉= |Φ(τ0)〉, where the Hamiltonian in the propagator Û contains

orthonormality-preserving λ (τ), is equivalent to finding a set of N orbitals that satisfy the KS equations.

This definition has a few advantages. In systems where the orbitals are close in energy, occupation

ambiguities and charge-sloshing issues are eliminated because it-TDDFT follows the occupied orbitals

throughout their evolution. Additionally, it-TDDFT handles systems with degenerate states well since an

initial state will converge to one of the states within the degenerate stationary-state subspace without being

affected by the unoccupied states of identical energy.

2.3.5 PRACTICAL ADVANTAGES OF IT-TDDFT

One convenience afforded by it-TDDFT is that a user only needs to choose a single parameter, the time-step,

when attempting to converge a system. Compare this to the various parameters usually required for SCF

with a mixing scheme: the number of past states to mix, the mixing weight, and the amount of electronic

smearing, to name a few. When encountering a set of nonconvergent parameters, it is often unclear which

direction to change each parameter for a better chance at convergence. In addition, there are systems where

different stationary states can be obtained for slight variations in the mixing parameters, as shown in the case

of a Cu13 cluster in Section 2.4. In contrast, convergence in the it-TDDFT method is not very sensitive to the

choice of time-step, and any choice smaller than a convergent time-step will lead to the same density

trajectory in imaginary time given the same starting state. This property allows us to eliminate this

parameter choice if desired through algorithms that automatically adjust the time-step on the fly. We found

that the simple procedure of increasing the time-step while total energy decreases, and decreasing the

time-step when it does not, can perform nearly as well as using a static convergent time-step that is as large
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as possible.

Another practical advantage of using imaginary-time evolution is that not-yet-converged states still have

physical meaning. The orbitals and the electronic density used in the KS Hamiltonian are self-consistent at

all times, and in principle this density trajectory is equal to the imaginary-time evolving density of the

interacting system by the van Leeuwen theorem. Through this connection, the partially-converged KS state

corresponds to a superposition of a dominant ground state component and a few low-amplitude excited

states. As such, even before the it-TDDFT ground state calculation has converged according to

user-specified energy or density tolerance criteria, approximate ground state observables can be computed,

and a sequence of these calculations along the imaginary-time trajectory will give an indication of their

accuracy as they asymptote to their ground state values. This property allows for preliminary calculations of

band structure, energies, optical properties, or atomic forces while the ground state calculation continues to

be refined. In contrast, there are no guarantees of validity for observables calculated from intermediate states

produced in a SCF loop since they are not self-consistent, not physically related from step to step, and their

distances to the correct KS ground state are difficult to determine.

When an SCF loop ceases to make progress, not much is gained aside from the knowledge that the

particular set of mixing parameters did not lead to convergence. It could take a subtantial amount of

tweaking of these parameters before chancing upon a set that works, consuming time and computational

resources. This highlights another strength of it-TDDFT: the calculation time used will always improve the

quality of the state at hand. It is also straightforward to continue a calculation from the last saved state,

enabling incremental improvement of an approximate stationary state over multiple runs.

In our discussion we have assumed that we are performing DFT with a Kohn-Sham system, which uses a

single Slater determinant. It is possible to apply it-TDDFT for finding stationary states in other approaches

which use linear combinations of Slater determinants, or ensemble DFT, since a DFT model that reproduces

the same density trajectory as the true interacting system will evolve an arbitrary starting state into a

stationary state when propagated in imaginary time.

2.4 EXAMPLE CALCULATIONS

In order to compare two different densities, it is useful to have a measure of distance. We will use half the L1

distance for its intuitive physical meaning:

D[n,n0]≡
1
2

d1(n,n0) =
1
2

∫
|n(r)−n0(r)|d3r , (2.25)
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Figure 2.2: Determining the ground state energy E and density distance D[n,n0] of benzene using it-TDDFT,
relative to SCF results. The time step used was 10.0as. Positive and negative isosurfaces of the density differ-
ence n(r)−n0(r) at fixed values are shown at various points in the propagation.

which can be interpreted as the number of electrons in the wrong place relative to the reference density n0.

This can be seen by using the fact that both densities integrate to the same value, the total number of

electrons. The integral of the absolute value of the density difference over all space adds up the excess

density and the negative of the lacking density, both contributing equally, so the 1/2 factor is needed to

obtain the number of electrons out of place.

As a demonstration of using it-TDDFT to determine a ground state, we apply the method to a benzene

molecule and show that it produces the same density and energy as a standard SCF calculation. We use the

PBE functional and the default double-zeta plus polarization (DZP) basis set generated by SIESTA. We

initialize the KS wavefunction by drawing basis coefficients from a uniform distribution and

orthonormalizing the orbitals. Propagating this initial state in imaginary time, we obtain the same ground

state as that determined by an SCF approach with Pulay mixing. Given the same resources, the SCF

calculation took 36s to complete, 0.7s per step, while it-TDDFT took 1316s at 3.3s per step. The latter

calculation was performed with a constant time-step in order to accurately plot the trajectory through

imaginary time; using the automatically-adjusting time-step described in Section 2.3.5 reduces the total

calculation time to 130s. The Kohn-Sham total energy E and the density distance D[n,n0] of the propagated

state are plotted as a function of imaginary time in Fig. 2.2, both relative to the SCF-determined ground

state. These quantities tend to zero, showing that it-TDDFT indeed produces a Kohn-Sham state that has the

same energy and density as the ground state determined with an SCF approach. As an additional check,

running SCF at the end of the imaginary-time propagation produces SCF convergence after the first step.
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Figure 2.3: Electronic energy of Cu13 with fixed spin polarization +1/2, relative to the lowest energy obtained
with this fixed polarization. Each curve is an energy trajectory produced by propagating a random initial state
in imaginary time, plotted versus the wall time and colored according to the final state obtained. The right
inset plot is the spin magnetization density of one such state with spin up and spin down designated by blue
and red respectively. The left inset plot is a spin down isosurface to illustrate the five-fold symmetry of the
lowest energy states. The horizontal dashed lines show the relative energies of converged states obtained using
SCF and Pulay mixing with different parameters as detailed in Fig. 2.4 and Table 2.1.
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Figure 2.4: Relative total energy of Cu13 cluster with fixed total spin 1/2, obtained by SCF with Pulay mixing
involving n = 5 or 8 previous densities and different mixing weights. The reference value of the energy is that
obtained with imaginary-time propagation. The energies here appear in Fig. 2.3 as horizontal dashed lines.
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As our next example we consider the Cu13 nanocluster. Hoyt et al.27 simulated this system in its ground

state magnetization of m = 5µB and in an excited state with magnetization m = 3µB, commenting that the

m = 1µB excited state was tricky to converge, making it a good candidate for our it-TDDFT method.

Specifics regarding the calculations such as the basis set and functional can be found in the Supporting

Information. The mixing scheme used for the SCF runs is a modified version of Pulay mixing implemented

in SIESTA where the number of past steps to use and a mixing weight can be specified as parameters.37 In

Fig. 2.3 and 2.4, we present the main results of our computations for the self-consistent KS states with

m = 1µB magnetization, which has total spin 1/2. The SCF calculations generally converged in 10 to

100min, taking 2.3s per step, though occasionally the total times were closer to 1000min. The calculations

performed with it-TDDFT converged in around 2000min, taking 8.6s per step. Additional information can

be found in Table 2.1. SCF has trouble finding the minimum energy states in this fixed-spin system, due to

the fact that there are five degenerate states27. Fig. 2.3 shows the energy trajectories in imaginary time of 12

different random starting configurations, and each of these converges to one of five lowest-energy states. To

help identify the equality of final states, for both the it-TDDFT and SCF runs, we also computed the density

distances between each combination of obtained states. States with energies within 10−2 meV and a density

distance of less than (1/100)e of each other were considered equal. The ground state of the system, with

magnetization m = 5µB, contains five degenerate valence electrons which have unpaired spins27. To obtain a

magnetization of m = 1µB, four of the electrons need to pair spins, leaving five possibilities of which

electron remains unpaired. Fig. 2.3 shows the magnetization density, defined as the difference between spin

up and spin down electron density, of one of these five lowest-energy states. There are five equivalent ways

to place such a magnetization density on the icosahedral shape of the copper cluster, explaining the

degeneracy. The visible differences of up to 0.1meV in the energies of these degenerate states are due to the

discretization effects of the real space grid breaking the icosahedral symmetry.

Our approach is better at finding the lowest-energy states compared to SCF, which for different mixing

parameters often converges to other excited states of spin +1/2 (the energies of which are shown as dashed

lines in the figure). In Fig. 2.4, we show the electronic energies of the states obtained using SCF with Pulay

mixing, for various mixing parameter choices. Even small changes in the mixing parameters can result in a

different final state. This happens in metallic systems where the gap between occupied and unoccupied

states is small, causing SCF to find a low-lying excited state.

For our final example of applying our method we consider the Ru55 nanocluster. Montemore et al.52

studied catalysis on the surface of this structure, and found that the spin-unpolarized ground state calculation

was difficult to converge with SCF.
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States Determined by SCF with Pulay Mixing for Cu13, total spin 1/2

n = 5 n = 8
Mixing Energy Time Min. Energy Time Min.
Weight (meV) (min) State (meV) (min) State

0.01 9.2955 2021.7 No 8.8701 787.8 No
0.02 8.8690 2386.0 No 8.8656 750.6 No
0.03 0.1155 18.7 Yes 0.1135 26.8 Yes
0.04 0.1156 51.0 Yes 0.1162 14.9 Yes
0.05 1.4833 30.7 No 0.1164 15.4 Yes
0.06 1.4910 64.1 No 0.1176 13.9 Yes
0.07 8.1505 163.4 No 7.9599 29.3 No
0.08 0.2538 28.0 Yes 8.8722 119.4 No
0.09 8.1506 61.2 No 8.8698 207.5 No
0.10 7.9600 60.3 No 9.2955 137.4 No
0.12 1.5656 22.8 No 0.1159 17.9 Yes
0.14 1.4832 34.3 No 1.4844 15.3 No
0.16 0.1163 7.0 Yes 8.9980 32.0 No
0.18 0.1170 6.8 Yes 0.1162 10.7 Yes
0.20 0.0003 7.4 Yes 8.8015 54.8 No

Table 2.1: Electronic states of spin 1/2 Cu13 obtained from SCF with no electronic smearing. For the Pulay
mixing weight and number of past densities n used in the mixing scheme, we list the relative energy, wall time,
and whether the converged state matches one of the five lowest-energy states determined with it-TDDFT. The
wall times can be compared to those shown in Fig. 2.3.

In Table 2.2, we show the results of using SCF with Pulay mixing to find the ground state of the

spin-unpolarized Ru55 cluster. Specifics regarding the calculations such as the basis set and functional can

be found in the Supporting Information. The number of past densities to mix was kept at n = 5 for all trials

and mixing weights ranging from 0.02 to 0.20 were tested. We used Fermi electronic smearing for half the

trials with T = 300K. For each run, we list the energy of the final step relative to the energy calculated with

it-TDDFT, the density difference ∆ρmax, and whether the run converged or not. The density difference

∆ρmax refers to the maximum elementwise difference in the density matrix between the final and

penultimate step and is typically used to determine convergence. We used the criterion ∆ρmax < 10−6. Only

a few mixing weights result in convergence, namely the smallest ones with T = 300K of smearing. In these

runs, the entropic energy contribution is 78meV relative to the ground state energy. None of the runs

without electronic smearing converge, despite the fact that some parameter configurations obtain energies

similar to the ground state energy. The states resulting from unconverged runs generally should not be

trusted as they may not be acceptable approximations to actual solutions, which have to satisfy the KS

equations self-consistently. For example, in Table 2.2, examining the row with mixing weight 0.10 and
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SCF with Pulay Mixing for Ru55, Spin Unpolarized
T = 0K T = 300K

Weight Energy (meV) ∆ρmax Converged Energy(meV) ∆ρmax Converged

0.02 −0.012 0.086 No 78.388 9.9×10−7 Yes
0.04 −0.004 0.052 No 78.380 9.8×10−7 Yes
0.06 0.069 0.227 No 78.448 5.3×10−7 Yes
0.08 0.395 0.185 No 78.408 9.0×10−7 Yes
0.10 5.538 0.702 No 6.38×103 0.589 No
0.12 73.276 0.730 No 7.15×104 0.699 No
0.14 148.995 1.388 No 1.46×105 1.391 No
0.16 6.385 0.589 No 2.35×105 1.409 No
0.18 295.051 1.441 No 2.95×105 1.446 No
0.20 353.573 1.444 No 3.54×105 1.455 No

Table 2.2: Ground state electronic configurations of a Ru55 nanocluster using SCF with Pulay mixing, with a
n = 5 density history length and mixing weights ranging from 0.02 to 0.2. ∆ρmax is the maximum elementwise
difference in the density matrix between the final and penultimate step, with convergence criterion ∆ρmax <
10−6.

comparing the T = 0K and T = 300K cases, we find that even though ∆ρmax = 0.589 in the latter run is

smaller than ∆ρmax = 0.702 in the former, the energy of the state obtained with T = 300K is more than 6eV

off from the correct ground state energy while the T = 0K run is only about 0.006eV off. Applying our

it-TDDFT method to the Ru55 cluster produces the ground state without issue, as illustrated in Fig. 2.5. The

observed monotonically decreasing energy and density distance D[n,n0] show consistent progress, as we

expect from the theory. In the SCF calculations that did converge, which all required Fermi smearing, the

total computational time was around 10min to reach a state within 78meV of the ground state. While the

it-TDDFT calculation took 300h to reach numerical convergence, as seen in Fig. 2.5 the propagated state

was less than 50meV from the ground state by 10h of wall time.
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Figure 2.5: Electronic energy and density distance D[n,n0] trajectory of a spin unpolarized Ru55 cluster mea-
sured relative to the state it converges to, as obtained by it-TDDFT. Positive and negative isosurfaces of
n(r)−n0(r) are shown at various points in the propagation.

2.5 CONCLUSION

The first step of any Kohn-Sham DFT calculation is the determination of a self-consistent solution to the KS

equations, resulting in a density corresponding to a stationary state of the many-body interacting system.

While the standard method of using the iterative SCF procedure generally produces a solution efficiently,

there are important classes of systems that pose problems for this approach due to their small band gaps or

degenerate single-particle energies. We have proposed the it-TDDFT method as an alternative means for

solving the KS equations in these difficult systems, and shown how it avoids the issues which affect SCF.

We established that the van Leeuwen theorem, a key theoretical foundation for TDDFT methods, can be

extended to imaginary time, thereby ensuring convergence to a stationary state independent of the

exchange-correlation potential and level of theory used in the model system. In addition, we discussed how

it-TDDFT could be used in an alternative but equivalent definition of stationary states in DFT, better suited

for metallic systems and systems with degenerate or nearly-degenerate states and based on the

time-dependent Kohn-Sham equations. The it-TDDFT method also exhibits a number of practical

advantages, such as justifying approximations to observables of interest before the ground state calculation

is fully converged, requiring few input parameters, and allowing easy refinements of the results of previous

runs by continuing from a saved state.

In the copper and ruthenium nanoclusters considered here, we demonstrated how SCF can struggle to find

the electronic ground state, either converging to low-lying excited states or getting stuck in charge-sloshing
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cycles. These systems were readily converged by it-TDDFT, showcasing its robustness through smooth

trajectories with monotonically decreasing energy. For these systems we either ran the calculation as

spin-unpolarized, or with a fixed total spin. This is not an inherent limitation of the method, as one could

simply run the calculation with all possible spin polarizations and select the state with the lowest energy.

The method can be adapted to non-collinear spin systems, since the operating principle depends only on the

Hamiltonian being able to differentiate states by energy. Furthermore, while we used finite systems for our

example calculations, our method can be extended to find ground states of periodic systems by

simultaneously propagating Kohn-Sham states at multiple k-points.

Given an existing TDDFT code which evolves systems in real-time, it should be relatively

straightforward to implement a prototype of the presented it-TDDFT approach, requiring only an imaginary

time substitution in the propagation step and a method to orthonormalize the KS orbitals. For the systems

considered here and others we tested while developing the method, the computation time for finding ground

states with it-TDDFT was 10 to 100 times longer than for convergent SCF runs, depending on the

complexity of the system and precision desired. While more efficient implementations could be examined in

the future, the low barrier to utilizing it-TDDFT could make it an attractive alternative option for those

dealing with particularly vexing systems.

2.6 SUPPORTING INFORMATION

Descriptions of the Cu13 and Ru13 systems specifying the geometry, functional, and basis set can be found

in Appendix B.

2.7 ACKNOWLEDGMENTS

This work was supported by the Army Research Office Multidisciplinary University Research Initiative

(MURI), Award No. W911NF-14-0247. We used computational resources on the Odyssey cluster (FAS

Division of Science, Research Computing Group at Harvard University) and the Extreme Science and

Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575.

56



Part II

Solving Differential Equations with

Unsupervised Neural Networks

57



Page intentionally left blank



3
Introduction to Neural Networks

3.1 INTRODUCTION

Machine learning has become an incredibly popular topic in recent times, with both engineers in industry

and researchers in academia pushing to find new ways to apply the tools of this rapidly developing field.

Generally speaking, learning is the process of converting experience into expertise or knowledge. In the case

of machine learning, the experience input to a learning algorithm comes in the form of a training dataset,

and the output is some developed capability68. Machine learning shines when applied to tasks that are too

complex to program by hand, either because of our own inability to introspectively identify the basic blocks

that compose a complex task that we innately find easy to perform, like facial recognition or speech

understanding, or because the task exceeds our human capabilities, such as in the analysis of very large

datasets or very complex patterns. By developing a formalism for learning tasks in general, we can gain a

deeper understanding across a vast range of disciplines.

Currently, machine learning can be separated into supervised learning, unsupervised learning, and

reinforcement learning72. Supervised learning tasks utilize training data that consists of both inputs and

outputs of the process or function to learn, where the outputs come from a knowledgeable external

“supervisor” who has assigned the correct outputs to each input. For example, in an image classification

problem, the training data would consist of images as inputs and labels that describe what class they belong

in as outputs. In a regression task, training data inputs come from the domain of the underlying function to

be learned, and outputs from the function evaluated at the input plus some irreducible noise. Unsupervised

learning seeks to find structure in data, constructing a model that can describe the internal similarity and

differences of the data in a compact manner. Clustering is an example of this class of learning tasks where

points in a vector space are grouped into disjoint sets by relative proximity to each other. If the data consists

of images, grouping the images by content without explicitly knowing what distinguishes the possible

content classes is also an example of unsupervised learning. In Chapter 4 we will discuss an unsupervised
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approach of training neural networks to approximate the solutions of differential equations, in contrast to a

supervised approach where the solution would have to be known a priori, with inputs and outputs

determined via evaluating the analytic solution if available, or by using conventional numerical methods.

The final category of machine learning is reinforcement learning. This class of problems deal with capturing

the most important aspects of a problem facing a learning agent interacting over time with its environment to

achieve a goal72. Examples of these sorts of tasks are training a computer to drive a car, play a game, or

control a complex industrial operation. In the following chapter we will focus on supervised learning, which

tends to have simpler base concepts which can also be applied to the other two classes of learning.

There are many forms of training datasets which depend on the task we intend to solve. We will focus on

regression tasks where the goal is to construct a function that best approximates an unknown underlying

target function. Suppose that the target function is f :D→ Rm, D ⊂ Rn. In a regression task, training data

comes in the form of a set of pairs of inputs and outputs, {(xi, f(xi)+εi)}, where εi are noise terms that add

aleatoric error, i.e. inherent stochastic error. Regression seeks to construct an approximate function f̂ such

that on arbitrary x ∈ D, the difference between f̂(x) and f(x) is minimize based on a given metric. In

parametric methods, f̂(x;w) depends on a finite number of parameters stored as elements within the vector w

which tune the shape of f̂ according to the training data in order to accomplish the regression task.

The most well-known regression model is linear regression, where the approximating function is assumed

to have a linear relationship to its inputs:

f̂(x) = βᵀx+β0. (3.1)

The assumed linear model only works well if the true underlying function f is suspected to be very nearly

linear, which is often not the case. To account for nonlinearity, the space of the approximating model has to

be expanded, which generally adds more parameters. Polynomial regression is a logical step above linear

regression, allowing for polynomial dependence on the input vector elements in the model. Increasingly

complex models allow for better approximations to arbitrary functions if sufficient data is available.

Neural networks are a highly expressive family of functions that have captured great interest in the past

decade. These artificial neural networks are graphs of connected computations that were first proposed in

1943 by McCulloch and Pitts47, who created a computational model for nervous activity. One of the first

neuro-inspired learning models was the perceptron invented by Rosenblatt in 195862, which intended to

emulate a single neuron. While showing promise for use in a wide variety of learning tasks, the perceptron

was eventually discounted for its mathematically-proven inability to represent certain important classes of
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patterns50. However, it was eventually shown that these problems could be overcome by layering stacks of

perceptrons, i.e. passing the outputs of perceptrons as inputs of later perceptrons, resulting in an object that

could approximate any continuous function, as will be discussed in Section 3.3. In 1975 Werbos proposed

backpropagation87, a practical method to train these layered networks by employing automatic

differentiation and gradient descent, poising this expressive class of functions to become the dominant thrust

in machine learning and artificial intelligence research. Since the 2000s, deep learning, the training of

multilayered perceptrons of more than two layers, has thrived through the advances in computational power

and the cheap parallel computing power afforded by commercially-available graphics processing units

(GPUs).

3.2 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are a general class of functions with significant expressive power, scalable

complexity, and a form amenable to optimization against a desired objective function. In the past decade we

have seen networks that have been trained to describe the content of images29, classify text into predefined

categories90, drive a car78 7, and generate sensible short texts on specified subjects61. Mathematically, a

neural network is described by a directed graph, with nodes corresponding to neurons and edges

corresponding to connections between them. This graph is commonly referred to as the neural network’s

architecture. Starting from the input and proceeding to the output, scalar values flow through the graph

while nodes and edges perform mathematical operations on them. As will be discussed in Section 3.3, even

with a restricted architecture and limited set of simple operations, neural networks can approximate any

continuous function to a specified tolerance using a finite number of neurons, a result called the universal

approximation theorem.

3.2.1 MULTILAYER PERCEPTRON

Multilayer perceptron networks, often referred to as multilayer perceptrons or MLPs, form a common class

of neural networks. MLPs are a subclass of feedforward network structures, the class of neural networks

whose underlying graph does not contain cycles, i.e. a directed acyclic graph. In addition to this acyclic

constraint, MLPs organize neurons into layers such that neurons in each layer only have directed edges

feeding into neurons in the successive layer.

The following mathematical definition of MLPs is based on the textbook Understanding Machine

Learning by Shalev-Shwartz and Ben-David68. An MLP is a directed acyclic graph G = (V,E), with nodes
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V and edges E, and a weight function over the edges, w : E→ R. The graph is further constrained to be

composed of a union of nonempty disjoint subsets, V =
⋃L

`=0 V `, such that every edge in E connects some

node in V `−1 to some node in V `, for some ` ∈ [L]. Each V ` is referred to as a layer, and V 0 is specifically

called the input layer while VL is the output layer. All other layers in between are called hidden layers

because their intermediate outputs are typically not accessed. Such a layered network is referred to as having

depth-L, that is, the total number of layers L without counting the input layer. Let v`i refer to the ith node in

layer `. Each node v`i in the graph is called a neuron, which has an associated scalar function α`
i : R→ R,

called an activation function, which it applies to values passing through it. A few common activation

functions are plotted in Figure 3.1. Each edge in the graph, referred to as a connection, has a weight

associated to it by the mapping w, which is used by neurons to perform a weighted sum of the values arriving

from all incoming connections. In each layer, there are n`+1 neurons, where n` is the dimensionality of the

space following layer V `. The extra neuron v`0 in each layer is a “constant” neuron, which always outputs 1

and has no incoming connection. These constant neurons and their associated weighted connections can be

used to apply a bias, a constant offset, to the weighted sum computed in each neuron in the subsequent layer.

Let o`i (x) be the output of neuron v`i when the network is given input vector x. The input layer V0 simply

outputs each element of the input x, so o0
i (x) = xi, and o0

0 = 1 for the constant neuron. Somewhat

confusingly, the output of a neuron is often called the neuron’s activation, and the distinction between

whether this refers the output or activation function is left to the context. Neurons in subsequent layers have

outputs that depend on the weighted outputs of the layers coming before them via

o`i (x) = α
`
i

 ∑
j:
(

v`−1
j ,v`i

)
∈E

w
((

v`−1
j ,v`i

))
o`−1

j (x)

, ` ∈ [L], (3.2)

o`0(x) = 1, ` ∈ 0, . . . ,L−1. (3.3)

Generally, MLPs consist solely of dense layers where every neuron in a layer connects to every other neuron

(except the constant neuron) in the following layer, and every neuron within a layer uses the same activation.

This allows us to rewrite the above equation as

o`i (x) = α
`

(
n`−1

∑
j=0

w`
i jo

`−1
j (x)

)
, ` ∈ [L], (3.4)

o`0(x) = 1, ` ∈ 0, . . . ,L−1, (3.5)
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Figure 3.1: Some common activation functions.

where w`
i j ≡ w

((
v`−1

j ,v`i
))

. In addition it is conventional to separate out the contributions of the constant

neurons to explicitly express them as bias terms:

o`i (x) = α
`

(
n`−1

∑
j=1

w`
i jo

`−1
j (x)+b`i

)
, ` ∈ [L], (3.6)

where b`i ≡ w`
i0. When expressed in this form, the bias term is associated with each non-input neuron instead

of an incoming connection from a constant neuron, and we no longer include the constant nodes v`0 in

diagrams of the network. Figure 3.2 shows a schematic of a dense MLP, and Figure 3.3 shows the

calculation happening at each non-input neuron.

In addition to dense layers, specialized layer architectures are widely used in the field, serving as modular

bricks with which one can construct complex networks based on intuition and through trial and error based
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Figure 3.2: A diagram of a depth-2 dense multilayer perceptron with input dimension 3, output dimension 1,
and width 5. Each neuron is labeled with the value it outputs according to Eq. (3.6).

on empirical performance. Many of these layers exhibit weight sharing, where the same neuron participates

in multiple parts of the network ensuring that weight updates during training affect all these operations

equally. When this feature is used appropriately it can greatly speed up training and generalization

performance on unseen data. For example, convolutional layers39, typically used for neural networks taking

images as inputs, were inspired by biological processes, with neurons resembling the organization in the

visual cortex18. These layers perform a discrete convolution of a block of weights, called a kernel, and an

image represented as a matrix of pixel values, resulting in a feature map of activations. The feature map can

itself be thought of as an image, but its pixel values correspond to the strength of the feature that the kernel

was trained to pick out, effectively giving a heat map of the parts of the image exhibiting the feature. With
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Figure 3.3: A diagram of neuron v`i and its incoming connections. This is a visual representation of Eq. (3.6).

the aid of additional convolutional layers and possibly pooling layers that downsample the feature map, a

neural network exhibiting translational invariance can be created, where the output of a network is

independent of location of a feature it learns to detect in the image. For example, an appropriately designed

convolutional neural network trained to detect faces could detect faces positioned anywhere in the image,

even if the training data only had faces directly centered in the image. In essence, the translational symmetry

of the task was used to constrain the network architecture, resulting in a model that better understands the

structure of the data. Recurrent neural networks42 are used on sequences of data. After taking in one datum

in a sequence, a recurrent layer feeds portions of its output back as part of its input alongside the next datum

in the sequence, so the weights in the layer can be thought of as being shared “in time” along the length of

the data sequence. This structure makes it well-suited for processing data exhibiting temporal relationships,

like text, measurements from dynamic systems, and speech. A specific class of recurrent neural networks

fall under reservoir computing44, which features recursive connections within a fixed collection of neurons

called a reservoir. In these networks, only a simple readout layer of the reservoir is trained, greatly

simplifying the training process compared to standard recurrent neural networks while still maintaining

many of their advantages. Novel network architectures with general use cases continue to be discovered and

applied in neural network applications.

3.3 UNIVERSAL APPROXIMATION THEOREM

One of the key features contributing to the power of neural networks is that they can approximate any

continuous function, and with greater architecture complexity, refine this approximation to any desired

tolerance. This flexibility is key to their use in machine learning for capturing underlying structure in data.
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Mathematically, this property of neural networks is referred to as the universal approximation theorem.

3.3.1 SHALLOW NETWORKS

The distinction between shallow and deep neural networks is not fully agreed upon, but the general

consensus is that a credit assignment path (CAP), the chain of transformations from input to output, of depth

greater than 2 can be considered deep. For a layered network, a CAP depth of 2 corresponds to an input

layer, a single hidden layer and an output layer, since only the last two layers are parameterized and perform

transformations on their inputs. The universal approximation theorem was first proven for these depth-2

MLPs.

Universal approximation theorem. Let α : R→ R be a nonconstant, bounded, and continuous function

(the activation function). Let Im denote the m-dimensional unit hypercube [0,1]m. The space of real-valued

continuous functions on Im is denoted by C(Im). Then, given any ε > 0 and any function f ∈C(Im), there

exist an integer N, real constants vi,bi ∈ R and real vectors wi ∈ Rm for i = 1, . . . ,N, such that the

approximation

F(x) =
N

∑
i=1

viα
(
wᵀ

i x+bi
)

(3.7)

satisfies

|F(x)− f (x)|< ε (3.8)

for all x ∈ Im.

A version of this result was first introduced by George Cybenko for sigmoidal activations in 198910. It

has since been generalized to arbitrary bounded and nonconstant activation functions by Hornik26,

demonstrating that it is the architecture of the layered feedforward network itself that grants the universal

approximation property and not the sigmoidal shape of the activation. More recently, Sonoda and Murata

have shown that the universal approximation property also holds when employing non-polynomial

unbounded activations like the widely-used rectified linear unit activation, ReLU(x) = max(x,0)70. Note

that Eq. (3.7) has the form of a depth-2 MLP. It consists of a single dense hidden layer with biases and an

activation function which feeds into an output layer containing a single neuron, no biases, and a linear

activation. Complexity is added to the network architecture using additional neurons in the hidden state.

To build some intuition on how a neural network can represent an arbitrary continuous function, now we
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prove a simpler restricted statement of the universal approximation theorem.

A restricted universal approximation theorem. Let f : [−1,1]→R be a ρ-Lipschitz function. For some

ε > 0, a neural network N : [−1,1]→ R with the sigmoid activation function can be constructed such that

for every x ∈ [−1,1] it holds that | f (x)−N(x)|< ε .

Proof. First, consider the following expression for a depth-2 multilayer perceptron with sigmoid activation

σ(t) = 1/(1+ e−t):

N(x) = φ +
n

∑
i=1

ciσ(wix+θi). (3.9)

The network consists of the input layer x, n biases θi, n weights wi, a hidden layer of n neurons with sigmoid

activation, n weights ci, and a final bias φ to produce output N(x). Let the interval [−1,1] be split up into n

equal-size subintervals, with the labeled xi denoting the endpoints of these intervals:

−1 = x0 < x1 < x2 < .. . < xn−1 < xn = 1. (3.10)

Now, let wi = k for all i ∈ [n], and θi = kti−1 where ti = 1
2 (xi + xi+1) are the midpoints of the intervals.

Furthermore, let φ = f (x0) and ci = [ f (xi)− f (xi−1)].

Consider the following:

| f (x)−N(x)|=
∣∣∣∣∣ f (x)− f (x0)−

n

∑
i=1

[ f (xi)− f (xi−1)]σ [k(x− ti−1)]

∣∣∣∣∣ (3.11)

=

∣∣∣∣∣ f (x)− f (x j)+
j

∑
i=1

[ f (xi)− f (xi−1)]+ f (x0)− f (x0)−
n

∑
i=1

[ f (xi)− f (xi−1)]σ [k(x− ti−1)]

∣∣∣∣∣,
(3.12)

where we introduce a telescoping sum and j is such that x j ≤ x < x j+1, or j = n if x = xn = 1. As a

notational convention, summations with starting index greater than ending index are to be treated as an
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empty sum. Continuing,

| f (x)−N(x)|

=

∣∣∣∣∣ f (x)− f (x j)+
j

∑
i=1

[ f (xi)− f (xi−1)][1−σ(k(x− ti−1))]−
n

∑
i= j+1

[ f (xi)− f (xi−1)]σ [k(x− ti−1)]

∣∣∣∣∣
≤
∣∣ f (x)− f (x j)

∣∣+ ∣∣∣∣∣ j

∑
i=1

[ f (xi)− f (xi−1)][1−σ(k(x− ti−1))]

∣∣∣∣∣
+

∣∣∣∣∣ n

∑
i= j+1

[ f (xi)− f (xi−1)]σ [k(x− ti−1)]

∣∣∣∣∣
≤ ρ(x− x j)+

j

∑
i=1

ρ
2
n
[1−σ(k(x− ti−1))]+

n

∑
i= j+1

ρ
2
n

σ(k(x− ti−1)), (3.13)

where to obtain the first term we apply the ρ-Lipschitzness of f , and to obtain the second and third terms we

apply Lipschitzness and use the fact that xi− xi−1 = 2/n. The absolute values have been dropped because

the remaining terms are all positive. Note that x− x j < 2/n by definition of index j, so we might as well

make the inequality strict.

| f (x)−N(x)|< 2ρ

n
+

2ρ

n

j

∑
i=1

[1−σ(k(x− ti−1))]+
2ρ

n

n

∑
i= j+1

σ(k(x− ti−1)) (3.14)

<
2ρ

n
+

2ρ

n

j

∑
i=1

[
1−σ

(
k
n

)]
+

2ρ

n
+

2ρ

n

n

∑
i= j+2

σ

(
− k

n

)
, (3.15)

where to obtain the first sum we use the fact that 1−σ
( k

n

)
is larger than any of the original terms, since we

recall that

x j−1 < t j−1 < x j ≤ x < x j+1, (3.16)

so x is at least half a subinterval away from t j−1, i.e. x− t j−1 ≥ 1/n. To obtain the second sum, we split off

the i = j+1 term since
∣∣x− t j

∣∣≤ 1/n, requiring the use of a general bound σ(k(x− t j))< 1. The remaining

terms are bounded by σ(−k/n) since all ti with i > j are more than 1/n larger than x.

This is a good time to restrict k with k ≥ n log(n−1), which is equivalent to
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1−σ(k/n) = σ(−k/n)≤ 1/n. Using this inequality and bounding the number of terms in the sums by n,

| f (x)−N(x)|< 2ρ

n
+

2ρ

n

(
n · 1

n

)
+

2ρ

n
+

2ρ

n

(
n · 1

n

)
(3.17)

=
8ρ

n
. (3.18)

If we then choose n≥ 8ρ

ε
, we are thus left with

| f (x)−N(x)|< ε. (3.19)

We have shown that for k ≥ n log(n−1) and n≥ 8ρ

ε
, the neural network with remaining weights given by

N(x) = f (x0)+
n

∑
i=1

[ f (xi)− f (xi−1)]σ [k(x− ti−1)] (3.20)

satisfies | f (x)−N(x)|< ε for x ∈ [−1,1].

In Eq. (3.20) the intuition is that as a base the neural network outputs the leftmost value of the function to

be approximated, f (x0) = f (−1). The sum smoothly updates this value to the next reference value at f (x1)

by using the sigmoid function as a weighting of f (x1)− f (x0), allowing for the corresponding update to be

“turned on” from zero, up to a maximum of 1. For values of x more central in the interval [−1,1], enough

updates to increase the network’s output value to the nearest reference value f (xi), where xi ≈ x are enabled

to match f (x), while later updates are still weighted by values near zero.

The network constructed above is certainly not the only network nor the most efficient one to

approximate the desired function f (x), but the proof also serves to demonstrate that neural networks can

indeed be designed “by hand” to accomplish certain tasks through appropriate choices of weights and

biases. Indeed, many proofs of neural network capabilities and asymptotic bounds involve piece-by-piece

assembly of subnetworks that each have specially-crafted characteristics to facilitate analysis.

The universal approximation theorem proves that neural networks have the possibility to approximate

nearly any function of interest. However, there are other classes of functions that demonstrate desirable

convergence properties, like Taylor and Fourier series. Classical harmonic analysis concerns Fourier series

convergence under various criteria and classes of functions, so a natural question that arises is whether

Fourier series would be as suitable for machine learning tasks, if not more suitable, than neural networks.

Consider a depth-2 feedforward neural network with one hidden layer of size n and input dimension d
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and output dimension 1:

N(x) = v0 +
n

∑
k=1

vkα
(
wᵀ

k x+bk
)
, (3.21)

x,wk ∈ Rd , vk,bk ∈ R. Compare this to the form of a d-dimensional Fourier series approximating a function

f (x) integrable on [−π,π]d :

F(x) = ∑
k∈Zd

f̂keikᵀx, (3.22)

where the Fourier coefficients are defined by

f̂k ≡ (2π)−d
∫
[−π,π]d

f (y)e−ikᵀy dy . (3.23)

Comparing Eqs. (3.21) and (3.22), we can see a conceptual similarity: both involve linear combinations of

non-linear transformations of the input. However, the Fourier series requires the function f (x) to form its

approximation, while the neural network learns from samples {xi, f (xi)+ εi}, where εi allows for the

possibility of noise.

Gallant and White pursued this avenue and attempted to gain the properties of Fourier series while

maintaining the trainability of neural networks, producing the first Fourier neural network19. They showed

that using a “cosine squasher” activation,

αGW(x)≡


0, x ∈ (−∞,−π

2 ),

1
2

(
cos
(
x+ 3π

2

)
+1
)
, x ∈

[
−π

2 ,
π

2

]
,

1, x ∈
(

π

2 ,∞
)
,

(3.24)

in Eq. (3.21) and a specific choice of “hardwired” (non-learnable) hidden layer weights wk and bk, a Fourier

series approximation to f (x) is obtained. During training, only the connections linking the hidden state to

the output, v0 and vk, would need to be learned using standard neural network training methods such as

backpropagation. The paper proved that this depth-2 network would be at least as good or better than a

Fourier series approximation.

However, more recently, Zhumekenov et al. have shown that simply using a sigmoid σ(x) = 1/(1+ e−x)

activation in Eq. (3.21) empirically outperforms Gallant and White’s Fourier neural network in minimizing

approximation error of an arbitrary function for a given hidden layer size, suggesting that there may not be
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much to gain from emulating truncated Fourier series approximations in general learning tasks91.

3.3.2 DEEP NETWORKS

So far we have only discussed the representation capabilities of depth-2 networks, which we see can already

approximate any function given a wide enough hidden layer. However, this only scratches the surface of

possible neural network architectures, and it turns out that additional CAP depth adds exponentially more

expressive power. That is, deep neural networks can achieve the same level of performance as shallow

networks while employing exponentially fewer parameters.

Lu et al. showed that the universal approximation theorem holds in width-bounded networks as well43. In

the previous section the classical results have been depth-bounded in the sense that the networks were

restricted to depth-2 while the width of the hidden layer was used to decrease approximation error to the

required tolerance. The result by Lu et al. instead demonstrates that a width-bounded network can

approximate an arbitrary continuous function given a sufficient depth. In particular, they proved that

width-(n+4) ReLU networks, where n is the input dimension, are universal approximators43.

A proof by Eldan and Shamir showed that a simple function expressible by a small 3-layer (2 hidden

layers and one output) network cannot be approximated to better than constant accuracy by any 2-layer

network, for virtually any activation function, unless the number of neurons in its hidden layer is

exponentially more than the neurons per hidden layer in the depth-3 network16. Telgarsky presented a

similar idea regarding deeper networks: for any positive integer k, there exist neural networks with Θ(k3)

layers, Θ(1) nodes per layer, and Θ(1) distinct parameters which can not be approximated by networks with

O(k) layers unless they are exponentially large — they must possess Ω(2k) nodes76. These results, as well

as an overwhelming amount of empirical evidence from neural network applications, suggest that deep

networks confer a substantial expressivity gain per parameter compared to their shallow counterparts.

Considering that the shallow networks discussed in the previous section were already on par with standard

parameterized families of functions like truncated Fourier series expansions, it appears that deep neural

networks are amongst the most expressive known forms.

The intuition for why deep networks can be very effective for learning tasks lies in their ability to learn

high-level abstraction. In a manner similar to how a change of coordinate system can substantially simplify

the expression of the dynamics of a physical system, nonlinear transformations of the inputs to a neural

network, often referred to as features, result in new features that can have a simpler relationship to the target

output. In the past, feature extraction preprocessing was mostly crafted by hand, using intuitive or
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empirically-determined transformations to capture what was expected to be the most essential information.

Deep neural networks learn effective feature representations by optimizing feature extraction and the task

performance simultaneously, with earlier layers serving as the built-in preprocessing step67. For example, in

convolutional neural networks39, an architecture frequently used for image classification and understanding

tasks, the earliest layers learn to detect simple features like edges, colors, and gradients, while deeper layers

detect more complex visual features like faces, wheels, and windows. This is achieved through a hierarchy

of features; complex shapes consist of patterns of basic shapes, which themselves consist of edges, fills and

gradients.

3.4 LEARNING

A neural network learns through an algorithm which processes training data, which in the case of regression

takes the form {(xi,yi)}, and adjusts the weights based on the information contained. Although the goal of

regression is to minimize the true error, which is chosen to be some measure of the difference between the

learned function f̂(x) and true function f(x) across x ∈ D, unlike a Fourier series or Taylor expansion

determination we do not have access to the true function f, just a sampling of it at certain points as specified

in the training set. The dominant approach for using the given information while striving to minimize true

error is to minimize the training error, which is chosen to be a measure of the difference between f̂(xi) and

yi for all the pairs (xi,yi) in the training set. This process is called empirical risk minimization, or ERM for

short68.

There are potential drawbacks to fully minimizing the empirical risk. If the model has sufficient

complexity, it is generally possible for the model to interpolate the data points, passing through them

exactly. As the data points typically have some inherent error, this is generally not a desired outcome,

potentially leading to large generalization error when the model is compared to additional test samples from

f̂(x)+ε. This sort of failure is referred to as overfitting, where the approximating function adapts too much

to the unlearnable stochastic noise of the training data, inevitably leading to worse performance on test

samples due to the extra deviations of f̂ compared to the true function f. Overfitting can be avoided by

reducing the complexity of a model, which typically means choosing a model with fewer tunable

parameters. This smaller family of parameterized approximating functions will be limited in how well they

can minimize the empirical risk, and less of the model’s adaptability will be used to capture the unimportant

fluctuations introduced by the aleatoric error. If the model is made too simple, it may not have the ability to

emulate the features of the true function, like if a linear regression were used on data stemming from a

72



Chapter 3. Introduction to Neural Networks

quadratic process. The choice of constraint on a family of hypothesis functions is referred to as inductive

bias, and as the hypothesis class becomes “richer” in the types of functions it can emulate, the bias is

reduced due to the decreased assumptions on what the true function should look like. Choosing the right

model is a balance of simultaneously minimizing the error introduced by inductive bias and the error due to

overfitting, typically referred to in this context as variance. Variance refers to the sensitivity of the trained

model to the aleatoric errors in the training set. The idea is that if the same points xi were sampled again, the

corresponding outputs yi = f(xi)+εi would have a different error, which would affect the fit. This balancing

of errors is referred to as the bias-variance or bias-complexity tradeoff20 68.

Conventional wisdom dictates that a model should have fewer free parameters than the number of data

points; if this isn’t the case, the model becomes overparameterized and runs the risk of overfitting81. For

example, in polynomial regression, a degree p polynomial can exactly fit p+1 data points using its p+1

free parameters. As seen in Section 3.3, neural networks are very expressive and as such can be susceptible

to overfitting. However, due to the way they are trained, as will be seen in Section 3.4.2, overfitting can be

avoided by early stopping, the termination of the learning algorithm before full convergence on the training

data is complete. In addition, recent studies have shown that, somewhat counterintuitively, both bias and

variance can be decreased by increasing number of neurons in a network, contradicting the bias-variance

tradeoff54. The unexpected high generalization performance of neural networks despite their very complex

hypothesis class, which is often sufficiently parameterized to memorize the training set, is a welcome

surprise, though not well explained by the field’s current understanding of generalization89.

3.4.1 LOSS FUNCTION

To minimize empirical risk, we minimize a loss function, which is either the empirical risk itself or a

surrogate loss function which acts as a proxy for the empirical risk but has nicer properties that aid in

minimization. For example, if the task is classification into two classes, the empirical risk is the one minus

the classification accuracy (classification risk) of the model. It makes intuitive sense that we would want to

train our model to obtain the lowest risk possible on the training data, zero, which is when every input is

correctly classified. However, with a complex model like a neural network, it is not easy to know how to

tune the parameters such that this result is achieved. The most common method to train these models is by

performing gradient descent, which requires derivative information from the function to be minimized. In

the present classification task, it is not possible to perform gradient descent on the risk directly. When in a

region where any small change in the weights does not cause a difference in classification, the gradient is
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zero, and when a small change in weights will cause a training point to be classified differently, the gradient

is undefined due to the discontinuity in the risk function. In addition, there are many regions of weight-space

that can result in perfect classification on the training set (zero empirical risk), but these solutions are not all

equivalent in terms of generalizability. For example, we usually want the network to be most certain about

its classification if an unseen input is very close to one encountered in training. An arbitrary selection of

weights that happens to classify all the training data correctly could potentially classify similar inputs

differently just because a decision boundary lies too close to one of the training points. These issues rule out

using empirical risk directly as our loss function. Instead, we use a surrogate loss function that can be

differentiated, and does favor decision boundaries that maximize the likelihood of the training data. A

commonly-used loss for binary classification is the binary cross-entropy loss:

Lcross-ent(w) =− 1
N

N

∑
n=1

[
yn log ŷ(xn;w)+(1− yn) log(1− ŷ(xn;w))

]
, (3.25)

where the training data is given by {(xn,yn)}, yn = 0,1, and the output of the neural network with weights w

for input xn is a probability ŷ(xn;w) ∈ [0,1]. It is easy to show that this is the expression of the negative

log-likelihood of observing the training data77 given the probability ŷ that the input x is in class 1. As a

result, minimizing the cross-entropy loss gives the maximum likelihood estimate (MLE) for the network

weights given the training data.

For regression tasks, which we focus on in this work, a common loss function is the mean squared error

(MSE) loss,

LMSE(w) =
1
N

N

∑
n=1

[
yn− ŷ(xn;w)

]2
. (3.26)

This loss is differentiable in w provided that the neural network ŷ uses differentiable activation functions.

The process of minimizing the empirical risk, whether doing so directly or through a surrogate loss

function, is called training a neural network.

3.4.1.1 NON-CONVEXITY

In optimization tasks convexity is a very important property as it greatly simplifies the determination of

global optima. Here we will briefly review the definition of convexity, some of its consequences, and its

relevance to loss functions and neural networks.

A subset C of a vector space is convex if for all x and y in C, the line segment connecting x and y is
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included in C. That is, (1− t)x+ ty ∈C for all x,y ∈C and t ∈ [0,1]. Intuitively, the set cannot have any

holes within it, nor any indents of its boundary. All of its boundaries must always be straight or curving

inwards. A convex function is defined on a convex set, f : C→ R, and it satisfies

∀x1,x2 ∈C, ∀t ∈ [0,1] : f
(
tx1− (1− t)x2)≤ t f (x1)+(1− t) f (x2). (3.27)

In the inequality, the right-hand side of the equation describes the secant line passing through the points(
x1, f (x1)

)
and

(
x2, f (x2)

)
, while the left-hand side describes the segment of the curve lying between these

two points. The condition of convexity simply requires that any segment of the function’s curve not rise

above the corresponding secant. This constrains the function to never curve downwards. Without downward

curves, it is not possible for the function to have local minima that are different in value than the global

minimum, and if the global minimum is attained for multiple points, they all form a convex set themselves

(and hence are connected). Convexity is a very convenient property to have in a loss function since it

guarantees the convergence of a gradient descent algorithm to a global minimum.

Unfortunately, loss functions on neural networks are generally non-convex. The universal approximation

property of neural networks allow them to approximate any continuous function, which incidentally allows

for a multitude of locally-optimal solutions in the loss function. Despite this limitation, many training

convergence proofs in machine learning assume convexity68. In practice, it is common to obtain models

with differing performance when weights are randomly initialized, indicating that the global minimum is not

easy to obtain. However, the general consensus in the field that truly “bad” local minima are infrequently

encountered, though they do exist13,73.

The main concern when training neural networks is not the encountering of local minima, but rather the

abundance of saddle points in high-dimensional spaces11,55, the other feature that can appear in non-convex

problems. As discussed in Pascanu et al.55, an easy way to see this is by thinking about the Hessian matrix

of a high-dimensional function. The Hessian, being a symmetric matrix, can always be diagonalized with

real eigenvalues. A critical point is a maximum when all the eigenvalues are negative, a minimum when all

the eigenvalues are positive, and a saddle point if there is a mix of positive and negative eigenvalues. For an

arbitrary Hessian evaluated at a critical point, we expect the probability of an eigenvalue being positive to be

1/2 (Wigner’s semi-circular law88), so for a d dimensional function, the probability of the critical point

being a maximum or a minimum is 2(1/2)d , which becomes vanishingly small as d gets large. In contrast,

the probability that the critical point is a saddle point goes to 1. The large number of weights in neural

networks make them very susceptible to saddle points, which can be problematic for gradient descent
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methods which often crawl to unbearably slow speeds in the vicinity of these loss landscape features. As

discussed in the next section, many modern gradient descent methods have been developed specifically to

deal with the saddle point problem.

3.4.2 STOCHASTIC GRADIENT DESCENT

The most common methods for minimizing loss functions are forms of stochastic gradient descent (SGD).

SGD is closely related to the method of steepest descent except instead of using the gradient of the exact

function to be minimized to take a step, we use a vector whose expectation value equals the gradient. This

extra stochasticity results in a meandering path towards a local minimum, but it can be more practical for

calculations involving a lot of data or very complex networks. In addition, the stochasticity of SGD can

occasionally help it “jump” through barriers in the loss landscape that would otherwise keep the network

from finding a better minimum.

Given a loss function L(w) that depends on the weights w of the neural network, standard gradient

descent (steepest descent) involves updating the weights according to

w(t+1) = w(t)−η∇L
(

w(t)
)
, (3.28)

where w(t) are the weights at training iteration t, and η is a positive number called the learning rate. This

iterative process is typically continued until the decrease in the loss function is below a tolerance, or until

the neural network performs sufficiently well on validation data. Figure 3.4 shows a simple visualization of

gradient descent for a loss function dependent on a single weight.

Stochastic gradient descent is very similar to gradient descent. The update rule instead takes the form:

w(t+1) = w(t)−ηvt , (3.29)

where vt satisfies the condition

E[vt |w(t)] =∇L
(

w(t)
)
. (3.30)

Typically, this vector vt is obtained by computing the gradient of a “partial” loss function on a random

subset of the training data, called a minibatch (or often just batch). To be specific, suppose that the loss

function is the average of loss functions `(w;xi,yi) defined for individual data points, which is often the
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Figure 3.4: A schematic showing the weight updates of a one-dimensional loss function.

case. Then, the total loss function on all of the data {(xi,yi)} is given by

L(w;{(xi,yi)}) =
1
N

N

∑
i=1

`(w;xi,yi). (3.31)

If we were to apply gradient descent directly on this loss function, before a single weight update can be

made, the gradients of all the individual losses on each point would have to be computed. This can be very

slow and it’s not very efficient—perfect knowledge of the gradient at a particular w(t) is not necessary for

every step, especially if the network is still very far from minimizing the loss. Consider a minibatch B which

contains a subset of the total training dataset, B⊂ {(xi,yi)}. It has a corresponding batch loss

L(w;B) =
1
|B| ∑

(xi,yi)∈B
`(w;xi,yi). (3.32)

The batch size |B| can range from 1 (a single data point) and N, the size of the entire training dataset. It is

clear that the gradient of the batch loss satisfies the property

E[∇L(w(t);B)|w(t)] =∇L(w;{(xi,yi)}), (3.33)

since the gradient of the batch loss is simply a sample of the terms in the gradient of the total loss. There is

some stochasticity introduced however, since at each step the batch loss is approximating the total loss

function based on the subset of data in its batch. The batch loss is much faster to compute, especially if all
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the individual contributions to the loss can be computed simultaneously on a parallel computing

architecture, like a GPU.

The learning rate η appearing in the SGD update Eq. (3.29) is important to the training process as it is

closely related to minimizing the loss function. As it controls the step size in the weight updates, when it is

too small the training process takes a very long time, but when it is too large, SGD might diverge or be

unable to descend into a local minimum due to repeatedly overstepping it. The learning rate also does not

have to be a fixed quantity throughout training. It is common to shrink the learning rate as training

progresses to allow the weights to better descend into the well of a minimum. In addition, the learning rate

can be adjusted on the fly depending on how the minimization is going, which is the basis of many modern

variations of the SGD method. The learning rate can also be changed on a per-weight basis depending on the

size of the derivatives with respect to each weight. Adagrad15 and Adam30 use these concepts to allow for

larger steps in flatter directions while taking smaller steps in directions with large derivatives. This can be

very helpful for escaping saddle points in the appropriate direction when some directions are fairly flat while

others form the steep sides of a valley.

3.5 AUTOMATIC DIFFERENTIATION AND BACKPROPAGATION

In order to make use of gradient descent for training neural networks, we will have to differentiate the

network with respect to its weights. Intriguingly, differentiation of neural networks is fairly straightforward

and it does not cost much more to perform than the evaluation of the network for a particular input (called

the forward pass).

Automatic differentiation is the general set of techniques that allow for numerically evaluating the

derivative of a function specified by a computer program. In composing the output of the function, if the

final value is the result of a graph of elementary differentiable operations, then by employing the chain rule

the value of the derivative at the input can be computed. Modern neural network packages like TensorFlow

and PyTorch are built around automatic differentiation, building symbolic computation graphs from the

steps used to construct each variable by default. In the backward pass, the graph of the forward pass can be

used to construct adjoint nodes for each of the original (primal) nodes of the computation graph using the

chain rule, and the output’s derivative with respect to each input node is accumulated into each input node.

The computation of the derivatives of the output is a reversed traversal of the computational graph that was

used to assemble the output, as will be made clear shortly.

Backpropagation87 is a specific case of automatic differentiation when it is applied to computing the
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derivatives of neural networks. To demonstrate the mathematics of backpropagation, we will apply it to

computing the gradient of a multilayer perceptron, which has the form explained in Section 3.2.1,

a`i (x) =
n`−1

∑
j=1

w`
i jo

`−1
j (x)+b`i , ` ∈ [L], (3.34)

o`i (x) = α
`
(

a`i (x)
)
= α

`

(
n`−1

∑
j=1

w`
i jo

`−1
j (x)+b`i

)
, (3.35)

where a`i (x) is the output of neuron i in layer ` before the activation is applied, and a loss given by a function

of the network outputs L(
{

oLi
}
). First we will consider a few derivatives which will help us build up to the

gradient of the loss. Letting ∂α` represent the derivative of the activation function α`(a) and using the chain

rule,

∂o`h
∂w`

i j
=

dα`

da`h

∂a`h
∂w`

i j
=


∂α`o`−1

j h = i

0 h 6= i
, ` ∈ {1, . . . ,L}. (3.36)

We can use this result to iteratively calculate the following derivatives:

∂o`h
∂w`−1

i j
=

dα`

da`h

∂a`h
∂w`−1

i j
= ∂α

`w`
hi

∂o`−1
i

∂w`−1
i j

= ∂α
`w`

hi∂α
`−1o`−2

j ` ∈ {2, . . . ,L}

(3.37)

∂o`h
∂w`−2

i j
=

dα`

da`h

∂a`h
∂w`−2

i j
= ∂α

`
n`−1

∑
k=1

w`
hk

∂o`−1
k

∂w`−2
i j

= ∂α
`

n`−1

∑
k=1

w`
hk∂α

`−1w`−1
ki ∂α

`−2o`−3
j ` ∈ {3, . . . ,L}

(3.38)

∂o`h
∂w`−3

i j
= ∂α

`
n`−1

∑
k=1

w`
hk

∂o`−1
k

∂w`−3
i j

= ∂α
`

n`−1

∑
k=1

w`
hk∂α

`−1
n`−2

∑
m=1

w`−1
km ∂α

`−2w`−2
mi ∂α

`−3o`−4
j ` ∈ {4, . . . ,L},

(3.39)

after which the pattern becomes clear. Similarly, for the derivatives with respect to the biases, we have

∂o`h
∂b`i

=
dα`

da`i

∂a`i
∂b`i

=


∂α` h = i

0 h 6= i
, ` ∈ {1, . . . ,L} (3.40)

(3.41)
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∂o`h
∂b`−1

i
=

dα`

da`h

∂a`h
∂b`−1

i
= ∂α

`w`
hi∂α

`−1 ` ∈ {2, . . . ,L} (3.42)

∂o`h
∂b`−2

i
=

dα`

da`h

∂a`h
∂b`−2

i
= ∂α

`
n`−1

∑
k=1

w`
hk

∂o`−1
k

∂b`−2
i

= ∂α
`

n`−1

∑
k=1

w`
hk∂α

`−1w`−1
ki ∂α

`−2 ` ∈ {3, . . . ,L} (3.43)

∂o`h
∂b`−3

i
= ∂α

`
n`−1

∑
k=1

w`
hk

∂o`−1
k

∂b`−3
i

= ∂α
`

n`−1

∑
k=1

w`
hk∂α

`−1
n`−2

∑
m=1

w`−1
km ∂α

`−2w`−2
mi ∂α

`−3 ` ∈ {4, . . . ,L}. (3.44)

So, to compute the gradient of the loss L, we simply make use of the chain rule again,

∂L
∂w`

i j
=

nL

∑
h=1

∂L
∂oLh

∂oLh
∂w`

i j
, ` ∈ [L], (3.45)

∂L
∂b`i

=
nL

∑
h=1

∂L
∂oLh

∂oLh
∂b`i

, ` ∈ [L]. (3.46)
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Figure 3.5: Backpropagation example: calculation of ∂L
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The above equations can be interpreted graphically, using the same graph that represents the neural

network but with some of the operations modified. As a specific example, consider the network shown in

Figure 3.5 and the calculation of ∂L
∂w1

11
:

∂L(x; w)

∂w1
11

=
∂L
∂o2

1

∂α2(a2
1)

∂a2
1

w2
11

∂α1(a1
1)

∂a1
1

x1 +
∂L
∂o2

2

∂α2(a2
2)

∂a2
2

w2
21

∂α1(a1
1)

∂a1
1

x1, (3.47)

where all the derivatives are evaluated at the present input x and weights w. Each term in the sum represents

a different path along the backward-directed graph shown in Figure 3.5 with each edge contributing a

multiplicative value dictated by the corresponding weight, and each node multiplying its input by the value

of the derivative of its activation function evaluated at the original pre-activation output a`i (x) of the forward

pass. When the paths converge to the leaf node ∂L(x; w)

∂w1
11

, their values are summed. In other words, in this

backward pass graph, the derivatives are accumulated at the leaf nodes, with each leaf corresponding to the

derivative of the loss with respect to the trainable parameter located at the same position in the forward pass

graph.

The training of deep neural networks was made possible by this convenient manner of evaluating the

gradient of the loss without requiring finite difference calculations for every weight. However, automatic

differentiation is not limited to helping with stochastic gradient descent. The same principles can be applied

to any input of the neural network, allowing for exact evaluation of derivatives of the network with respect to

x, a trick we make use of in the next chapter for finding solutions to differential equations.
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Solving Ordinary Differential Equations with

Neural Networks

This chapter is part of a manuscript being prepared for publication:

Cedric Flamant, David Sondak, Pavlos Protopapas. “Solving Ordinary Differential
Equations Using Neural Network Solution Bundles.” in preparation.

ABSTRACT

The time evolution of dynamical systems is frequently described by ordinary differential equations (ODEs),

which must be solved for given initial conditions. Most standard approaches numerically integrate the

ODEs, producing a solution whose values are computed at discrete times. For every set of initial conditions

and system parameters, the calculation has to be repeated from scratch, adding significant computational

overhead to methods which require varied solutions to the ODE. We extend the Lagaris method of creating

an approximating neural network solution to a set of differential equations, proposing that a neural network

be used as a solution bundle, a collection of solutions to an ODE for various initial states and system

parameters. The neural network solution bundle is trained with an unsupervised loss that does not require

any prior knowledge of the sought solutions, and the resulting object is differentiable in initial conditions

and system parameters. The solution bundle exhibits fast, parallelizable evaluation of the system state,

facilitating the use of Bayesian inference for parameter or trajectory estimation in real dynamical systems.

4.1 INTRODUCTION

Many dynamical systems are described by ordinary differential equations (ODEs) which relate the rates and

values of state variables and external driving functions. While some simple ODEs have closed form

solutions to them, like the exponential function for radioactive decay, sines and cosines for harmonic

oscillators, and logistic function for population growth, the vast majority have to be solved approximately
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using discretization of the domain or by optimizing a parameterized trial solution. The former

approximating methods are more common, with Runge-Kutta and multi-step methods as typical examples.

These methods seek to numerically integrate the ODEs, starting from initial conditions and stepping forward

until the desired final time is attained. While these conventional methods are typically efficient for

determining the state of a system for a sequence of times, if we are only interested in the state at a specific

later time, substantial computational effort must still be expended determining all the states at steps leading

up to the state of interest. This causal order also limits parallelizability of the conventional single- and

multi-step methods since the task cannot be parallelized in time—until the preceeding step is known,

processors tasked with finding a segment of the system’s evolution over a time interval cannot start

calculating the correct piece of the trajectory. In addition, these discrete methods do not produce solutions

that are directly differentiable since they return a sequence of points approximating the solution evaluated at

each timeslice that was stepped through in the calculation.

In 1998 Lagaris et al. proposed a method of using neural networks as trial solutions, which could then be

trained via a loss that approaches zero as the trial solution neared satisfaction of the differential equations at

selected collocation points38. This approach is entirely unsupervised, requiring no prior knowledge of the

solution sought. By simply constructing the loss from the differential equation of interest, training a neural

network constrained to satisfy the boundary conditions would result in it becoming an approximation of the

true solution, making use of the universal approximation property of neural networks. With the trained

neural network, the approximate value of the solution at any point within the training range can be computed

in constant time, without having to compute previous states first. This approach also has the ability to

parallelize in time, allowing it to make use of the increasing parallelization of processors, the dominant

direction of improvements in computational power in the present. The Lagaris method does have some

limitations however. For different sets of initial conditions, or for different sets of parameters within a given

differential equation, the network has to be retrained on the new task. This drawback entails a less-favorable

consideration of the resources used during training the network since it has to be directly compared to the

resources used for finding the solution using conventional means.

We propose an extension of the Lagaris method where the neural network is taught a variety of solutions

to a parameterized differential equation. This increases the reusability of the trained network and also can

speed up tasks that require knowing many solutions to a differential equation, such as in the Bayesian

inference of parameters, or for propagating a distribution of uncertainty in a dynamical system. While it is

straightforward to extend our approach to all the situations considered in the Lagaris paper, i.e for problems

containing various types of boundary conditions, for partial differential equations, and higher derivatives,
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here we will focus on initial value problems in first-order ordinary differential equations. We show that our

method has promise when applied to a variety of tasks requiring the knowledge, and quick, parallel

evaluation, of multiple solutions to an ODE, and where it could be useful to be able to differentiate the state

at a particular time with respect to the initial condition or ODE parameters.

With the rapid advances in neural network development, as well as its supporting hardware, employing

this method will become cheaper and more efficient, further extending its applicability in the future.

4.2 SOLUTION BUNDLES

The Lagaris method of solving differential equations results in a single solution. A neural network is trained

with a fixed set of boundary or initial conditions, and the entire capability of the network is used to best

approximate the specific solution satisfying the differential equations. However, when working with a

dynamical system it is common to require multiple solutions corresponding to different initial conditions in

order to procure alternate trajectories. In addition, when an ODE is parameterized, say by a physical

constant whose value has an associated uncertainty, it can be useful to have different solutions for various

values of the parameters. These needs motivate an extension of the Lagaris method where we have the

neural network adapt to a solution bundle where the “length” of the bundle extends in time and the

“cross-section” of the bundle can extend in a subset of initial condition and parameter space, as will be made

clear in the following sections.

4.2.1 METHOD DESCRIPTION

Consider the following general first-order differential equation parameterized by θ:

G
(

x,
dx
dt

, t ; θ

)
= 0, (4.1)

where in a dynamical system x ∈ Rn is a vector of state variables, t is time, and θ ∈ Rp are physical

parameters associated with the dynamics. We assume that the ODE describes a deterministic system where

initial conditions x0 of the state variables uniquely determines a solution. We call the solutions to Eq. (4.1)

over time range [t0, t f ], a subset X0 ⊂ Rn of initial conditions x0, and a set Θ⊂ Rp of parameters θ, which

together define a multivariate function, a solution bundle x(t;x0,θ).
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Let the approximating function to Eq. (4.1) for the solution bundle over (X0,Θ) be given by

x̂(t ; x0,θ) = x0 +a(t)N(t ; x0,θ ; w), (4.2)

where N : Rn+p+1→ Rn is a neural network with weights w, and a : [t0, t f ]→ R satisfies a(t0) = 0. This

form explicitly constrains the trial solution to satisfy the initial condition x(t0) = x0. The choice of a(t) can

affect the ease of training the network. While a(t) = t− t0 is sufficient, Mattheakis et al. demonstrated that

a(t) = 1− e−(t−t0) results in better convergence due to its upper bound fixing the scale for N(t ; x0,θ)
46. We

primarily use multilayer fully-connected neural networks in our experiments, but improvements from minor

deviations in the network structure make it clear that it is worth exploring other architectures in the future.

The unsupervised loss function used in training has the form

L =
1
|B| ∑

(ti,x0i,θi)∈B
b(ti)

∣∣∣∣G(x̂(ti ; x0i,θi),
∂ x̂(ti ; x0i,θi)

∂ t
, ti ; θi

)∣∣∣∣2, (4.3)

where the set B = {(ti,x0i,θi)} constitutes a training batch of size |B|, with ti ∈ [t0, t f ], x0i ∈ X0, and θi ∈Θ

drawn from some distribution over their respective spaces. The function b : [t0, t f ]→ R appearing in Eq.

(4.3) is used to weight data points based on their time, as will be discussed later. We typically use

b(t) = exp(−ε(t− t0)). We found that uniform sampling over the spaces [t0, t f ], X0, and Θ usually works

well in practice, but there are situations where it is helpful to use a different distribution to generate batches.

For example, for the FitzHugh-Nagumo model discussed in Section 4.4.3, a batch-number-dependent

distribution over times [t0, t f ] was used for curriculum learning. In the loss function, the time derivative of

x̂(t) is computed using automatic differentiation, a common feature of deep learning libraries. Employing a

gradient descent method for every batch and exactly computing the gradient of L with respect to the weights

w with backpropagation, the trial function Eq. (4.2) will incrementally improve its approximation of the

solution bundle.

There is no concept of an epoch in the training process of this method since every batch will be a unique

sample of size |B| from the distribution across times, initial conditions, and parameters. As such, the model

cannot overfit as we are effectively operating in a regime of infinite data. The training ends when the

approximation to the solution bundle is deemed acceptable, based on either the history of past losses or on

some other metric, like its difference compared to a few solution curves computed via conventional finite

difference methods. In principle, the training would naturally plateau when a minimum of the loss is

attained which, loosely speaking, is when the capacity of the network is saturated and the majority of
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weights are locally optimal. To obtain incrementally better solution bundles, one could increase the

complexity of the network since the universal approximation theorem (Section 3.3) guarantees the existence

of a better approximating network to the true solution bundle. In principle, arbitrarily high accuracy can be

achieved this way.

At the end of training, the neural network solution bundle x̂(t;x0,θ) can be used to evaluate, in constant

execution time, the approximate value of state x at any time t ∈ [t0, t f ], for any initial condition x0 ∈ X0 given

assumed differential equation parameters θ ∈Θ. This is to be compared with conventional finite-difference

methods which require execution time linearly scaling with the desired t due to the necessary

forward-stepping from the initial condition to time t. So, the evaluation time of the neural network can be

fairly compared to the time it would take a numerical integrator to step from t = 0 to t = t f ; it does not have

to beat the evaluation time of a single step of a Runge-Kutta or multi-step method, which often involves

comparatively few operations. In addition, with the wide availability of parallel computing, more attention is

paid to the degree of concurrency of a method. The neural network solution bundle approach is highly

amenable to parallelization both during the training and inference stages. The Lagaris method of training

these networks is easily parallelized in time38, with processing units handling weight updates due to each

disjoint subset of batch B. The inference stage exhibits trivial parallelization as each state within the solution

bundle can be simultaneously evaluated by separate processors, unlike Runge-Kutta or multi-step

approaches where states at late times cannot be known before the states that come earlier. The constant

execution time and parallelization when evaluating states at different times for different initial conditions

and ODE parameters make this method useful when the behavior of a distribution of solutions is desired,

such as for propagating state uncertainty or for performing Bayesian inference.

The neural network solution bundle also has a closed analytic form and is differentiable in all of its

inputs. This capability, which conventional methods lack, can be used for a variety of useful tasks. For

example, in Bayesian inference, differentiability in the initial conditions and ODE parameters simplifies the

calculation of maximum a posteriori (MAP) estimates of these quantities given observed data as gradient

ascent or derivative-based optimization methods can be performed directly on the log of the posterior

distribution over the possible initial conditions and parameters. The differentiability also simplifies the

application of “shooting methods” where a condition at a later time is known but it is unclear what

parameters and initial conditions are consistent with the constraint. This can be useful for solving nonunique

inverse problems. For example, suppose we are interested in trajectories that result in a particular value of

one of the state variables. Once we find a set of initial conditions and ODE parameters that leads to the

given value at a certain time, which can be accomplished by optimization using the shooting method,
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computing the Hessian with respect to time, initial conditions, and parameters will tell us which direction in

that combined space we can move in order to find additional trajectories consistent with our constraint.

4.2.1.1 DISCUSSION OF THE WEIGHTING FUNCTION.

For the weighting function b(t) in Eq. (4.3), we found that exponential decay weighting

b(t) = exp(−ε(t− t0)) works better empirically than a uniform weighting, and ε can be treated as a

hyperparameter. There are a couple intuitive reasons why this form of b(t) makes sense for initial value

problems: it conveys that earlier times are more important, and it serves to counteract the exponential

dependence of global error on local error.

The exponential decay weighting fixes the relative importance of the local errors

T(ti ; x0i,θi)≡G
(

x̂(ti ; x0i,θi),
∂ x̂(ti ; x0i,θi)

∂ t
, ti ; θi

)
(4.4)

appearing in the loss Eq. (4.3), by their time difference. That is, for any t and t ′,

1 <
b(t)

b(t +∆t)
=

b(t ′)
b(t ′+∆t)

(4.5)

for a fixed time separation ∆t. As we are trying to find solutions starting from initial conditions by local

satisfaction of the differential equation, it is clear that earlier errors impact the absolute error of the states at

later times. Even if the rest of the solution perfectly satisfies the ODE, it will be in the wrong region of state

space compared to the true solution due to the deviation early on. The condition in Eq. (4.5) expresses this

causal relationship well, satisfying the time-translation symmetry of the error dependence.

Another appeal for using a decaying exponential weighting comes from comparison to one-step methods

like Runge-Kutta. Given a differential equation of the form

dx
dt

= f (t,x), (4.6)

a one-step method will have the form

xn+1 = xn +hΦ(tn,xn;h), h = tn+1− tn, (4.7)

where for example the Euler method would have Φ(tn,xn;h) = f (tn,xn). The truncation (local) error is given
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by

Tn =
x(tn+1)− x(tn)

h
−Φ(tn,x(tn);h). (4.8)

The global error in a one-step method, εN = x(tN)− xN , which is due to the accumulated truncation error, is

bounded by75

|εN | ≤
T
LΦ

(
eLΦ(tN−t0)−1

)
(4.9)

where T = max0≤n≤N−1 |Tn| and, Φ is Lipschitz continuous |Φ(t,u;h)−Φ(t,v;h)| ≤ LΦ|u− v|.

We can derive an analogue of this bound on global error for the neural network solution bundle. The local

error of Eq. (4.8) should be compared to Eq. (4.4), which for this differential equation, Eq. (4.6), would give

T (t) =
dx̂(t)

dt
− f (t, x̂). (4.10)

In our approach, it is effectively a truncation error for an infinitesimal timestep. The global error ε(t) is

given by

ε(t) = x̂(t)− x(t), (4.11)

which we can substitute into Eq. (4.10) to obtain

dε

dt
= T (t)− dx

dt
+ f
(
t,x(t)+ ε(t)

)
. (4.12)

Assuming f is a Lipschitz-continuous function,
∣∣∣ f (t,x(t)+ ε(t)

)
− f
(
t,x(t)

)∣∣∣≤ L f |ε(t)|, so the absolute

value of the right-hand side can be written

∣∣∣∣T (t)− dx
dt

+ f
(
t,x(t)+ ε(t)

)∣∣∣∣= ∣∣∣T (t)+ f
(
t,x(t)+ ε(t)

)
− f
(
t,x(t))

∣∣∣ (4.13)

≤ |T (t)|+L f |ε(t)| (4.14)

≤ Tt ′ +L f |ε(t)|, (4.15)

where we have made use of the differential equation dx/dt = f
(
t,x(t)), and Tt ′ = maxt0≤t≤t ′ |T (t)|. Since
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ε(t0) = 0, to find a bound on |ε(t)| we can consider the solution to the ODE for upper bound E(t)≥ 0,

dE
dt

= Tt ′ +L f E(t) (4.16)

where E(t0) = 0, which is E(t) = Tt′
L f

(
exp
[
L f (t− t0)

]
−1
)
. Thus,

|ε(t)| ≤ Tt ′

L f

(
eL f (t−t0)−1

)
, (4.17)

which can be compared to the global error bound of the discrete case, Eq. (4.9). In addition, we can take

t ′ = t to have the tightest bound afforded by this proof since Tt ≤ Tt ′ for t ≤ t ′.

In light of Eq. (4.17), an early local error Eq. (4.10) can have up to an exponential impact on later times.

This can be seen by noting that for time t1 < t2,

|ε(t)| ≤ Tt1
L f

(
eL f (t−t0)−1

)
≤ Tt2

L f

(
eL f (t−t0)−1

)
. (4.18)

That is, the exponential cone of the error bound for times t0 to t1 is typically smaller than the one from t1 to

t2, unless the largest local error over the entire time interval [t0, t2] happened at a time prior to t1, in which

case the bounds are equal. Intuitively, if we must have a large local error, we want it to happen as late as

possible to reduce the global error, which this upper bound shows can be exponential in the worst case and

proportional to that maximum local error up to the time at which we evaluate. This motivates us to assign

exponentially greater importance to earlier local errors with the weighting function b(t). Given that the

approximating function Eq. (4.2) will generally not be able to perfectly satsify the target ODE everywhere,

there will always be some bias error

Bias(w) =
∫

Θ

∫
X0

∫ t f

t0

∣∣∣∣G(x̂(t ; x0,θ ; w),
∂ x̂(t ; x0,θ ; w)

∂ t
, t ; θ

)∣∣∣∣2 dt dx0 dθ0 > 0, (4.19)

regardless of the choice of w. If we do not weight the loss function Eq. (4.3), i.e. b(t) = 1, we do not get to

influence how the local error is distributed across the training region. However, by applying an

exponentially decaying weight

b(t) = e−ε(t−t0) (4.20)

we convey in the loss function the exponentially larger contribution of early-time local errors to our metric
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of interest, the global error. This way, the minimization of the loss function during training will tend to

exponentially suppress local errors at earlier times.

Note that in the above discussion, as well as in the derivation of Eq. (4.17), we assumed scarce

knowledge about the behavior of the ODE of interest, using only its Lipschitz constant. It is evident that

local errors in some regions of phase space are more important than others—relatively uniform, uneventful

regions are unlikely to change the trajectory substantially in the presence of small errors, while others can be

substantially less forgiving. It is likely that better choices for the weighting function b(t) exist when

prudently chosen for a given system.

4.3 PROPAGATING A DISTRIBUTION

A neural network solution bundle provides a mapping from initial conditions to the state at later times. This

can be useful for time-evolving a distribution over initial conditions to obtain a probability distribution over

states at later time t. Given a probability density over initial states ρ0(x0), we note that the solution bundle

x(t ; x0) at time t describes a coordinate transformation from x0, transforming the coordinates x0 to xt . If this

transformation is a diffeomorphism from the subset of initial state space X0 to the final state space Xt , which

is the case in many systems in classical mechanics, we can write out the probability density of later states,

ρt(xt) = ρ0
(
f−1(xt)

)
|Jf−1 |, (4.21)

where f(x0)≡ x(t ; x0), and Jf−1 =
∂x0
∂xt

is the Jacobian of f−1. In the case of a Hamiltonian dynamical

system, Liouville’s theorem guarantees the conservation of phase space density, i.e. |Jf−1 |= 1 and

ρt(xt) = ρ0
(
f−1(xt)

)
, (4.22)

giving the probability density of the state being at xt directly provided that the corresponding initial state x0

has been found.

The opposite task, i.e where a probability distribution over later states ρt(xt) is known and the distribution

over initial states is desired, takes on an even more convenient form where the neural network solution

bundle does not have to be inverted:

ρ0(x0) = ρt(f(x0))|Jf|, (4.23)

90



Chapter 4. Solving Ordinary Differential Equations with Neural Networks

where f(x0)≡ x(t ; x0), and Jf =
∂xt
∂x0

is the Jacobian of f, which can be calculated exactly using automatic

differentiation of the solution bundle. This gives a closed analytic form for the desired probability density.

Note that if the dynamical system is time-reversible, Eq. (4.21) can be converted to the easier form Eq.

(4.23) by simply treating the target space as the input space and training the solution bundle on the

time-reversed equations of motion.

While Eqs. (4.21) and (4.22) can be useful, in practice we can simply sample the initial state space and

construct a histogram of output xt states using the solution bundle. This also removes the diffeomorphic

requirement of xt(x0)≡ x(t ; x0), instead only requiring it to be a single-valued function, i.e. requiring that

the ODE be deterministic. The sampling of initial states can be done according to ρ0(x0) using Markov

chain Monte Carlo (MCMC) methods, or if the dimensionality of the state vector is low enough, by simply

performing a uniform sampling over the initial states and constructing a weighted histogram of xt weighting

each sample by ρ0(x0) for the x0 that generated it.

4.3.1 PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM

The planar circular restricted three-body problem describes a special case of the motion of three masses

under Newton’s law of universal gravitation. This special case describes the motion of the third body, which

is assumed to have negligible mass, in the co-rotating frame of the first two bodies in circular orbits around

their barycenter. All three bodies are also assumed to lie in the same plane (xy plane), with no velocity in the

z direction. For clarity of discussion, let body 1 be the Earth, body 2 be the Moon, and body 3 be an asteroid.

In the co-rotating frame, we can shift the coordinates such that the Earth is located at the origin, and the

Moon is located at x = 1. The coordinates of the Earth and the Moon remain unchanged with time, while the

asteroid has position r(t) = (x(t),y(t))ᵀ and velocity u(t) = (u(t),v(t))ᵀ. We will call the full state vector

q = (rᵀ,uᵀ)ᵀ = (x,y,u,v)ᵀ. The nondimensionalized mass of the Earth is given by m1 = 1−µ , and the mass

of the Moon is m2 = µ , where µ is the ratio of the mass of the the Moon to the total mass of the pair. The
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nondimensionalized equations of motion of the asteroid are given by:



dx
dt

= u ,

dy
dt

= v ,

du
dt

= x−µ +2v−

 µ(x−1)(
(x−1)2 + y2

)3/2 +
(1−µ)x

(x2 + y2)3/2

,
dv
dt

= y−2u−

 µy(
(x−1)2 + y2

)3/2 +
(1−µ)y

(x2 + y2)3/2

.
(4.24)

A derivation can be found in Szebehely’s Theory of Orbits. The Restricted Problem of Three Bodies74.

4.3.1.1 TRAINING THE SOLUTION BUNDLE

For this system, we will use fixed parameters in the ODE, and train the neural network ansatz to

approximate a solution bundle over a space X0 of initial conditions. We will use µ = 0.01, approximately

equal to the true Moon/(Earth+Moon) mass ratio. The network we trained is a fully-connected MLP with 8

hidden layers consisting of 128 neurons each.

We trained uniformly over the x0, y0, u0, v0 initial condition space

X0 = [1.05,1.052]× [0.999,0.101]× [−0.5,−0.4]× [−0.3,−0.2] and times [−0.01,5]. Even though we only

intend to evaluate the solution bundle at times t ∈ [0,5], we found that including times slightly earlier than t0

in training helps improve accuracy. This makes the approximating function satisfy the ODE on both sides of

t0, resulting in a more accurate value of the derivative term in Eq. (4.3) around t = t0. We used batchsize

|B|= 10,000, the Adam optimizer30, and learning rate η = 0.001, which we reduced on plateau. For the

weighting function b(t) in the loss, Eq. (4.3), we chose b(t) = exp(−εt) where ε = 2.

In Figure 4.1 we show the loss versus training batch number, averaged over a moving window of 10,000

batches. Notice the presence of steps in the loss curve; these drops correspond to the moments when the

learning rate was decreased by a factor of 2. This may be related to the weighting function b(t) = exp(−εt)

creating a hierarchy of importance in the loss landscape. The larger starting learning rate finds a large scale

region of optimality in weight-space, and as the learning rate is decreased, smaller divots in the loss

landscape can be better explored, corresponding to parts of the trajectory at later times which have their loss

contribution exponentially suppressed. This can be observed in Figure 4.2, where a few solutions in the

solution bundle are plotted for checkpoint models saved during the course of training. Notice that the
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Figure 4.1: Loss as a function of batch number during training of the Earth-Moon-asteroid system. A moving
average with a window of 10,000 batches is applied to smooth out the curve.

approximate trajectories at early times are the first to line up with the reference trajectories, and the rest of

the trajectory slowly follows. The increase in loss at batch 8×106 is due to raising the learning rate from

10−6 to 10−5 after we noticed that the network became stuck in a local minimum. The local minimum can

actually be seen in Figure 4.2, where at batch 8×106 the end of the trajectory bundle is stuck together and

not fanning out. The increased learning rate allowed the network to jump out of the local minimum, and the

trajectory bundle began to spread as required.

Figure 4.2 also shows the parallelization in time, with the curvature of later parts of the trajectory

adjusting even before the earlier states have settled. This is reminiscent of the current dominant approach for

parallelization in time, Parareal41, which also involves computation of approximate later trajectories before

their earlier paths are precisely known.

4.3.1.2 PROPAGATION OF UNCERTAINTY

With the neural network solution bundle trained, we can now use it to propagate distributions in time.

Suppose we have two measurements of the position of an asteroid at two different times, along with some
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Figure 4.2: Plots of a few trajectories from the neural network solution bundle at various points in the train-
ing. Red trajectories are calculated with fourth-order Runge-Kutta, and the neural network solutions are shown
in blue.

uncertainty:

(t0,x0,y0) = (0.00,1.0510±0.0003,0.1000±0.0003) (4.25a)

(t1,x1,y1) = (0.05,1.0276±0.0003,0.0878±0.0003) (4.25b)
94



Chapter 4. Solving Ordinary Differential Equations with Neural Networks

If the majority of the probability mass of these uncertainty distributions falls within the solution bundle, it is

easy to compute a probability distribution for the future position of the asteroid. Let

ρ
(
r(t) = (x,y)ᵀ | {r1,r0}

)
be the probability density of the position at time t being (x,y)ᵀ given the position

measurements r0 and r1. By marginalizing over the final velocities, we obtain

ρ
(
r(t) = (x,y)ᵀ | {r1,r0}

)
=
∫∫

ρ
(
q(t) = (x,y,u,v)ᵀ | {r1,r0}

)
dudv . (4.26)

To compute the integrand, we can use Bayes’ theorem,

ρ
(
q(t) = (x,y,u,v)ᵀ | {r1,r0}

)
=

ρ
(
{r1,r0} | q(t) = (x,y,u,v)ᵀ

)
ρ
(
q(t) = (x,y,u,v)ᵀ

)
ρ
(
{r1,r0}

)
∝ ρ
(
r1 | q(t) = (x,y,u,v)ᵀ

)
ρ
(
r0 | q(t) = (x,y,u,v)ᵀ

)
, (4.27)

where in the last step we have assumed a uniform prior and that the errors in the two position measurements

r0 and r1 are independent. So, by simply iterating over a uniform grid of initial positions and velocities,

evaluating the solution at time t1 and t, weighting the samples with the probability densities given by Eq.

(4.27), and forming a weighted histogram of positions, we have the approximate distribution of the

asteroid’s location at time t. Figure 4.3 shows the results at various final times t. When uniform sampling

becomes infeasible due to high dimensionality of the inputs, it is straightforward to use MCMC instead.
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Figure 4.3: Probability distribution ρ(x(t) = (x,y)ᵀ) at various times. A few trajectories in the bundle are
shown in white, and the distribution is shown as a heatmap. The full path is shown in Figure 4.2
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4.4 BAYESIAN PARAMETER INFERENCE

Another common task that requires computing many solutions to an ODE is Bayesian parameter inference

in systems described by differential equations. In the physical sciences and other fields employing

mathematical modeling of data, it is often necessary to estimate parameters of a system based on

experimental measurements, as well as to determine their uncertainties or probability distributions. If the

system is described by differential equations, these parameters modify terms in the equations, resulting in

different families of solutions. The probability density of the initial conditions and parameters x0,θ given a

set of observed data {(ti,xi)} and prior ρ(x0,θ), the posterior distribution, can be computed from Bayes’

theorem,

ρ
(
x0,θ | {(ti,xi)}

)
=

ρ
(
{(ti,xi)} | x0,θ

)
ρ(x0,θ)

ρ({(ti,xi)})
∝ ρ
(
{(ti,xi)} | x0,θ

)
ρ(x0,θ). (4.28)

Determination of the likelihood ρ
(
{(ti,xi)} | x0,θ

)
is typically the computationally intensive step as it

requires computing
{(

ti,x(ti ; x0,θ)
)}

for parameters x0,θ to compare to the data {(ti,xi)}. Evaluating

x(ti ; x0,θ) with conventional methods would require forward stepping from the initial conditions all the

way to time ti, and this process would have to be repeated for every different set of initial states and

parameters x0,θ. The greater the desired precision of the posterior distribution for the parameters, the more

often the differential equation has to be solved. However, if a neural network solution bundle has been

trained over X0 and Θ containing the expected range of initial conditions and parameters, x̂(ti ; x0,θ) can be

calculated in constant time for any ti ∈ [t0, t f ], and the entire set of points
{(

ti, x̂(ti ; x0,θ)
)}

can be

computed in parallel. This allows for rapid likelihood evaluation and more efficient Bayesian inference. The

training cost of the solution bundle can be further offset if it is used for many different sets of data, each with

their own underlying parameters. In effect, a carefully-trained neural network solution bundle over a wide

variety of parameters and initial conditions for an often-used ODE in a field could be shared amongst

research groups, cutting back on the number of redundant calculations performed globally. As mentioned in

Lagaris’s original paper38, neural networks can compactly represent high-dimensional functions such as

these solution bundles, contributing to the feasibility of this use case.
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4.4. Bayesian Parameter Inference

4.4.1 SIMPLE HARMONIC OSCILLATOR

One of the simplest dynamical systems is the simple harmonic oscillator, which can describe the motion of a

mass on a spring. The equations of motion are given by

dx
dt

= v (4.29a)

dv
dt

=− k
m

x, (4.29b)

and we use state vector x = (x,v)ᵀ. We choose m = 1 for simplicity, so the parameter in this system is θ = k,

the Hooke spring constant. We generate position data based on a selected ground truth trajectory and add

Gaussian noise with standard deviation σ = 0.1, and assume that we do not have any velocity data.

To compute the posterior distribution, we take the logarithm of the Bayes formula Eq. (4.28) and make

use of the independence of the data points:

logρ
(
x0,k | {(ti,xi)}

)
= ∑

i
logρ

(
(ti,xi) | x0,k

)
+ logρ(x0,k)−C, (4.30)

where C = logρ({(ti,xi)}) is the log of the evidence, which is not important to know because it can be

recovered by ensuring the unit norm of the posterior distribution. The terms in the likelihood can be

computed using

ρ
(
(ti,xi) | x0,k

)
=

1
σ
√

2π
exp

[
−1

2

(
xi− x̂(ti ; x0,k)

σ

)2
]

(4.31)

logρ
(
(ti,xi) | x0,k

)
=−1

2

(
xi− x̂(ti ; x0,k)

σ

)2

+ c, (4.32)

where the resulting constants c for each likelihood term can be combined with the normalizing factor C in

Eq. (4.30). In addition, since we assume a uniform prior we can put the log-prior into C as well. The

log-posterior can be computed over a grid of x0, v0, and k in this case, since the low dimensionality of the

space permits it.

We trained a solution bundle over X0 = [−1,1]× [−1,1] and Θ = [0.5,2], for times [−0.01,2π]. The

neural network in the ansatz Eq. (4.2) consisted of an input layer of size 4, 4 hidden layers of size 128, and

an output layer of size 2. All activations were hyperbolic tangents except for a linear activation on the output

layer. The fit of the data using the initial conditions and paramaters that maximize the posterior, the

maximum a posteriori (MAP) estimate, is shown in Figure 4.4, and the marginal posterior distributions are
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Chapter 4. Solving Ordinary Differential Equations with Neural Networks

shown in Figure 4.5.
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Figure 4.4: Simple harmonic oscillator fit corresponding to maximum a posteriori estimate, given the data and
uniform prior.
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Figure 4.5: Simple harmonic oscillator initial conditions and spring constant k marginal distributions given the
data shown in Figure 4.4.

In Figure 4.4, a reference solution computed with standard methods for the MAP estimate initial

conditions and parameters is plotted to confirm that the best fitting trajectory from the neural network

solution bundle is sufficiently converged.

A harmonic oscillator has a closed analytic solution, namely, all of the possible solutions to Eq. (4.29b)
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4.4. Bayesian Parameter Inference

are linear combinations of sine and cosine with frequency
√

k/m, so in this simple case there is not much

benefit to using the neural network solution bundle. However, for the next two systems, an exact

closed-form solution is not known, but the approximating solution bundle can grant the same advantages as

an analytic solution.

4.4.2 REBOUND PENDULUM

✓
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Figure 4.6: Diagram of a rebound pendulum. A pendulum with mass m swings under the influence of gravity
and can rebound off a spring with Hooke constant k and damping coefficient c.

As a harder system, consider the rebound pendulum which consists of a simple pendulum that can collide

with a damped spring at the bottom of its swing. A diagram of the setup is shown in Figure 4.6. Various

forms of rebound pendula are used in the rubber industry for measuring rebound resilience, the ratio of the

energy returned to the energy applied to a test piece of rubber as the result of a single impact of a striker. In

conjunction with a contact time measurement, rebound pendula can also be used to measure the dynamic

modulus of rubber5. The rubber pad is treated as a Kelvin-Voigt material, represented by a purely viscous

damper and a purely elastic spring connected in parallel. The equations of motion for the state vector

x = (θ ,ω)ᵀ of the pendulum are given by

dθ

dt
= ω (4.33a)

dω

dt
=−g

`
sinθ +H(−θ)ReLU

(
− k

m
θ − cω

)
, (4.33b)

where ReLU(x) = max(x,0), H(x) is the Heaviside step function, g is the gravitational acceleration, ` is the
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Figure 4.7: A selection of solutions within the rebound pendulum solution bundle. The initial state (θ0,ω0) =
(0.6,0) is fixed while the solutions corresponding to different combinations of spring constant k and damping
coefficient c are plotted. The red reference curves are computed with fourth-order Runge-Kutta and the trajec-
tories from the solution bundle are overlayed in blue.

length of the pendulum, k is the spring constant, and c is the damping coefficient. The second term of Eq.

(4.33b) describes how the pendulum interacts with the spring: the spring can only interact with the

pendulum for negative angles, hence the step function, and the spring can only push the pendulum away, not

“stick” to it and slow it down, hence the rectifier.

We trained a fully-connected network with 8 hidden layers of size 128 and hyperbolic tangent activation

over X0 = [0,1]× [−0.2,0.2], Θ = [2,5]× [0,2] and times [−0.01,10]. We used ε = 0.5 in the weighting

function b(t), and a batch size of 10,000. A few example solutions are shown in Figure 4.7, where the

convergence of the approximation can be compared to reference solutions computed with Runge-Kutta.

Small deviations become apparent at later times, which can be reduced in part by longer training and further
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Figure 4.8: Rebound pendulum fit corresponding to maximum a posteriori estimate, given the data and uni-
form prior.

by increasing network complexity.

Using the trained solution bundle, we can fit simulated angle θ measurements which have Gaussian error

with σ = 0.1. The result of Bayesian inference of the initial conditions and parameters are shown in Figure

4.8 and 4.9.

4.4.3 FITZHUGH-NAGUMO MODEL

The FitzHugh-Nagumo model17,53 is a relaxation oscillator which can be used as a simple model of a

biological neuron. Its state is described by a membrane voltage v, and a recovery variable w, and the ODE

has parameters a, b, τ , and I. Certain combinations of the parameters can result in a single spike, where the

voltage quickly rises and falls, subsequently relaxing to a constant value, while other combinations can lead

to “spike trains” where the voltage continues to spike at periodic intervals. If the system is to model a

biological neuron, it is useful to fit the system parameters to measured data, which we will simulate in this

section. The FitzHugh-Nagumo model can be coupled with many copies of itself to simulate a biological

neural network51. This suggests another possible use for neural network solution bundles: a solution bundle

can be trained to capture the dynamics of a single base unit, making simulations of connected networks of

these units cheaper to simulate. This is again leveraging the benefits of avoiding redundant “on-demand”
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Figure 4.9: Rebound pendulum initial conditions, spring constant k, and damping coefficient c marginal distri-
butions given the data shown in Figure 4.8.

solving of the ODE for a particular set of initial conditions and parameters through pre-training.

The differential equation for the FitzHugh-Nagumo model is given by

dv
dt

= v− v3

3
−w+ I, (4.34a)

dw
dt

=
1
τ
(v+a−bw). (4.34b)

A typical spike train trajectory is plotted in red in Figure 4.10, forming a closed loop as the voltage

continuously spikes and resets. The nullclines of Eqs. (4.34a) and (4.34b), i.e. where dv/dt = 0 and

dw/dt = 0, help with understanding the dynamics of the FitzHugh-Nagumo model. The nullclines are given

by the equations

w = v− v3

3
+ I, ⇒ dv

dt
= 0 (4.35a)

w =
v+a

b
, ⇒ dw

dt
= 0 (4.35b)
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Figure 4.10: A phase space trajectory of the FitzHugh-Nagumo model shown in red. The black curves are
nullclines, with the cubic nullcline indicating where dv/dt = 0, and the linear nullcline indicating where dw/dt =
0.

The nullclines are plotted in black in Figure 4.10. As the nullclines indicate zero crossings of the derivatives,

they show where a trajectory will reverse in one of its coordinates. The parameters a, b, and I control the

shapes of these nullclines while τ controls how quickly the system moves across trajectories in vw-space.

For the FitzHugh-Nagumo system, we found that it could be tricky to train the neural network solution

bundle. During training, if for each batch we simply sampled times uniformly from the time interval [t0, t f ],

we found that the solution bundle could get “stuck” to the nullclines, as seen in Figure 4.11.

This seems to happen because while the approximate solution bundle is dragged around phase space

during early training, the tail end can encounter a nullcline by chance, where it is easier to satisfy the ODE.

In the loss function Eq. (4.3), even though an error at an earlier time has to be made in the solution bundle

for the tail to be on the nullcline as seen in Figure 4.11, if the later times have very low error due to the ease

of simply predicting the same constant value whilst on the nullcline, the network weights can become stuck

in this local minimum.

This pitfall can be avoided by applying curriculum learning6 to the training process. If we want to avoid

the influence of later times pinning the solution bundle before the earlier times are sufficiently converged,

we can simply change how we sample the training set [t0, t f ] when we form the batches B in Eq. (4.3). In

particular, when training starts, we can restrict the time samples to come from [t0, tm], where tm < t f and m is

the batch number. As training progresses and the batch number m is increased, we can make the task a bit

more difficult by increasing tm, requiring the network to learn a greater portion of the solution bundle.
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Figure 4.11: A few reference trajectories with three values of I are shown in red, the corresponding nullclines
for those values are shown in black, and the approximate solution bundle at various points in training is shown
in blue. Notice that the approximation gets stuck on the cubic nullcline.

The result of curriculum learning is shown in Figure 4.12. The entire solution bundle is plotted in each

frame, but in the loss calculation only times up to tm are sampled so the tail that flops around no longer has

influence on the convergence of the network, and hence it no longer gets stuck on nullclines.

For this run we used a feedforward network with fully-connected layers and some additional connections

from the input layer to each hidden layer. Specifically, in addition to the standard all-to-all connections in

subsequent layers, each hidden layer also had incoming connections from each of the input neurons. We
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found that these residual connections which remind the hidden layers what the input time, initial conditions,

and parameters helped with the curriculum learning, possibly due to later hidden layers being able to start

adapting earlier to the increasing time domain without having to wait for the activation distribution from

preceeding layers to adjust to the new distribution of time inputs.

The network consisted of an input layer of size 7 (time, 2 initial conditions, 4 parameters), 8 hidden

layers with 121 neurons each, and an output layer of size 2. Each hidden layer had incoming connections

from the input layer. We used hyperbolic tangent activations on all neurons except the output neurons which

had linear activations. Initial conditions v0,w0 came from the set X0 = [−0.1,0.1]× [−0.1,0.1] and

parameters a,b,τ, I from Θ = [0.6,0.8]× [0.5,0.7]× [11,14]× [0.7,0.9]. The target time interval was

[−0.1,100], which was worked up to using curriculum learning. During training, the times were drawn from

batch-number-dependent [−0.1, tm] with

tm =
100

log(11)
log
(

11m
M

+1
)
, (4.36)

where m is the batch number and M is the total number of batches. This logarithmic function allows for the

maximum time tm to increase at a slower rate as the training progresses so the solution bundle has more

training iterations to adjust to a larger time interval [−0.1, tm]. In addition, we adjusted the weighting

function as the training progressed, with

bm(t) = exp(−εmt), εm =
4

tm +5
. (4.37)

Once the curriculum learning was done and the neural network had been exposed to the full training interval

[t0, t f ] = [−0.1, tm], we continued the training with the full interval and a fixed weighting function

b(t) = exp
(
− 4

100
t
)

(4.38)

to allow the network to settle in to the final task.

Figure 4.13 shows a sample of trajectories in v and w for fixed initial conditions (v0,w0) = (0,0) and

various combinations of the ODE parameters. The red reference curves are computed with Runge-Kutta and

the blue curves show the selected solutions from the training bundle. The agreement is decent overall,

though the results could be improved with a greater network complexity or perhaps longer training. For the

amount of training we have performed, the agreement is excellent up until t = 60, which is the maximum

value we will use for the Bayesian inference task on simulated data.
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Simulated (ti,vi,wi) data is generated with Gaussian noise of σ = 0.5 in both coordinates v and w. We

perform Bayesian inference using the trained neural network bundle, and the resulting MAP fit is shown in

Figure 4.14. Figure 4.15 shows the marginal posterior distributions of the parameters. For simplicity the

initial condition (v0,w0) = (0,0.0294) is assumed to be known exactly in this case.
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4.4. Bayesian Parameter Inference

Figure 4.12: The same setup as in Figure 4.11, but we apply curriculum learning during training: only times
up to an progressively increasing cutoff tm are used in computing the loss for batch number m. The solution
bundle traces out the correct trajectory as training progresses.
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Figure 4.13: A plot showing the accuracy of the neural network solution bundle at the end of training. The
red reference curves are plotted with fourth-order Runge-Kutta, and the solution bundle’s trajectories are in
blue.
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Figure 4.14: FitzHugh-Nagumo model fit corresponding to maximum a posteriori estimate, given the data and
uniform prior.
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4.5. Conclusion

4.5 CONCLUSION

Backpropagation and the universal approximation theorem grants neural networks a unique ability to adapt

and become any function that they need to be. Lagaris proposed an unsupervised method of training neural

networks to approximate the solution to a set of differential equations for given boundary conditions,

resulting in a memory-efficient representation of the solution with closed analytic form that is differentiable

and parallelizable. We extend this method by introducing the concept of a neural network solution bundle, a

group of solutions over a range of initial conditions and parameters. This allows for greater reuse of the

trained network since it learns a variety of solutions. In addition, the solution bundle is differentiable in

initial conditions and parameters, which can be useful for optimization tasks dependent on the value of the

solution at given times. Other tasks that would require solving the differential equations repeatedly are also

simplified, such as the propagation of uncertainty distributions across initial states, and for Bayesian

inference in dynamical systems. In addition, this method may find some use in the study of chaotic systems

where bundles of trajectories are often considered.

While the number of calculations involved in the training of neural network solution bundles is

substantially higher than for computing a single solution using conventional methods, the cost can

eventually be recouped if enough individual solutions are required, especially if the trained network is

shared with other users. In addition, future advances in neural network training and evaluation, fueled by the

general interest in these approaches across a wide range of disciplines, will directly benefit this method.

While we have investigated a few architectures, weighting functions, losses, and training approaches, the

method still has ample room to grow. Specially tailored network architectures and losses are a clear way

forward for improving the efficiency and performance of neural network solution bundles.
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A
Janak’s Theorem

We want to determine the meaning of the quantity εi in the Density-Functional Theory single-particle

equations Eq. (1.34). To do this, we express the density as:

n(r) = ∑
i

fi|φi(r)|2

where the fi are real numbers between 0 and 1, called the “filling factors”. By taking the partial derivative of

the total energy with respect to fi, we can find a relationship to εi.

The partial derivative is to be taken with the understanding that the orbitals relax under the influence of

the change in the filling factor. In other words, the Kohn-Sham single-particle equations are to maintain

self-consistency in the presence of the variation. This means that partial derivatives of the single-particle

wavefunctions themselves have to be considered. Furthermore, since the density depends on the filling factor

as well, we will have to apply the chain rule to the functionals too, given that they depend on the density.

The following proof is based on the paper by J. F. Janak, “Proof that ∂E/∂ni = εi in density-functional

theory”28. The resulting physical interpretation is generally referred to as “Janak’s theorem” in the

literature, and is a close analogue of Koopman’s theorem34 from Hartree-Fock theory.

First, the total energy in DFT can be written as

ẼKS[n] = ∑
i

fiti +Eext[n]+EH[n]+EXC[n], (A.1)

where

ti ≡ 〈φi|−
h̄2

∇2

2m
|φi〉

is defined to be the single particle kinetic energy, V(r) is the external potential, EH[n] is the Hartree
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contribution,

EH[n]≡ e2

2

∫
dr
∫

dr′
n(r)n(r′)
|r− r′| ,

Eext is the energy due to the density interacting with the external potential,

Eext[n]≡
∫
V(r)n(r)dr ,

and EXC[n] is the exchange-correlation energy. Notice that we put a tilde on top of ẼKS since it is a

generalization of the Hohenberg-Kohn total energy EKS which is only defined for integral total number of

electrons. This generalization allows for a continuous connection between the ground state energies af N

and N +1 particle systems.

Let us begin by deriving a few expressions that will prove useful to us. First, we find that the functional

derivative of the Hartree contribution to the energy with respect to the density is the Hartree potential:

δEH[n]
δn(x)

=
e2

2

∫
dr
∫

dr′
δ

δn(x)

[
n(r)n(r′)
|r− r′|

]
=

e2

2

∫
dr
∫

dr′
1

|r− r′|

[
δn(r)
δn(x)

n
(
r′
)
+n(r)

δn(r′)
δn(x)

]
=

e2

2

∫
dr
∫

dr′
1

|r− r′|
[
δ (r−x)n

(
r′
)
+n(r)δ

(
r′−x

)]
=

e2

2

∫
dr′

n(r′)
|x− r′| +

e2

2

∫
dr

n(r)
|r−x|

= e2
∫ n(r′)
|x− r′|

≡ VH[n](x). (A.2)

Similarly,

δEext[n]
δn(r)

=
δ

δn(r)

[∫
V
(
r′
)
n
(
r′
)

dr′
]
=
∫
V
(
r′
)δn(r′)

δn(r)
dr′ =

∫
V
(
r′
)
δ
(
r′− r

)
dr = V(r). (A.3)

Recall as well that the functional derivative of the exchange-correlation energy is defined to be the exchange

correlation potential,

δEXC

δn(r)
≡ VXC[n](r). (A.4)
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Appendix A. Janak’s Theorem

We can set the variation of total energy to zero while constraining the single-particle functions to be

normalized in order to obtain the Kohn-Sham equations:

δ

[
ẼKS−∑

j
f jε j
(〈

φ j
∣∣φ j
〉
−1
)]

= 0

∑
i

∫
δ

δφ ∗i (r)

[
ẼKS−∑

j
f jε j
(〈

φ j
∣∣φ j
〉
−1
)]

δφ
∗
i (r)dr = 0,

where we have preemptively chosen our set of Lagrange multipliers to be
{

f jε j
}

in order to obtain

generalized Kohn-Sham equations that agree with the standard approach when f j are integral. Since the

above variation has to hold for arbitrary δφ ∗i (r), we have that every one of these functional derivatives

vanishes,

0 =
δ

δφ ∗i (r)

[
ẼKS−∑

j
f jε j
(〈

φ j
∣∣φ j
〉
−1
)]

0 = ∑
j

f j
δ

δφ ∗i (r)

∫
φ
∗
j
(
r′
)−h̄2

∇2

2m
φ j
(
r′
)

dr′+
∫ [

δEext

δn(r′)
+

δEH

δn(r′)
+

δEXC

δn(r′)

]
δn(r′)
δφ ∗i

dr′

−∑
j

f jε j
δ

δφ ∗i (r)

[∫
φ
∗
j
(
r′
)
φ j
(
r′
)
−1
]

0 = ∑
j

f j

∫
δi jδ

(
r′− r

)−h̄2
∇2

2m
φ j
(
r′
)

dr′+
∫ [
V
(
r′
)
+VH(r′)+VXC(r′)] δ

δφ ∗i (r)

[
∑

j
f jφ
∗
j
(
r′
)
φ
∗
j
(
r′
)]

dr′

−∑
j

f jε j

∫
δi jδ

(
r′− r

)
φ j
(
r′
)

0 = fi
−h̄2

∇2

2m
φi(r)+ fi

[
V(r)+VH(r)+VXC(r)

]
φi(r)− fiεiφi(r),

giving us the Kohn-Sham equations, which we note are completely identical to the original case with

integral filling factors:

[−h̄2
∇2

2m
+Veff(r)

]
φi(r) = εiφi(r), (A.5)

where we define the single-particle effective potential as Veff(r) = V(r)+VH(r)+VXC(r).
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Now, differentiating equation A.1 with respect to fi, we find,

∂ ẼKS

∂ fi
= ti +∑

j
f j

∂ t j

∂ fi
+
∫ [

δEext

δn(r′)
+

δEH

δn(r′)
+

δEXC

δn(r′)

]
∂n(r′)

∂ fi
dr′

= ti +∑
j

f j
∂ t j

∂ fi
+
∫
Veff(r′)[∣∣φi

(
r′
)∣∣2 +∑

j
f j

∂
∣∣φ j(r′)

∣∣2
∂ fi

]
dr′ .

Note that by multiplying by φ ∗i (r) and integrating the Kohn-Sham equation A.5, we obtain the relation

ti = εi− 〈φi|Veff|φi〉 ,

which we can plug in to our above expression,

∂ ẼKS

∂ fi
= εi− 〈φi|Veff|φi〉+∑

j
f j

∂ t j

∂ fi
+ 〈φi|Veff|φi〉+∑

j
f j

∫
Veff(r′)∂

∣∣φ j(r′)
∣∣2

∂ fi
dr′

= εi +∑
j

f j
∂

∂ fi

[∫
φ
∗
j
(
r′
)−h̄2

∇2

2m
φ j
(
r′
)

dr′
]
+∑

j
f j

∫
Veff(r′)∂

∣∣φ j(r′)
∣∣2

∂ fi
dr′

= εi +∑
j

f j

∫
dr′
[

∂φ ∗j (r′)
∂ fi

−h̄2
∇2

2m
φ j
(
r′
)
+

∂φ ∗j (r′)
∂ fi

Veff(r′)φ j
(
r′
)

+φ
∗
j
(
r′
)−h̄2

∇2

2m
∂φ j(r′)

∂ fi
+φ

∗
j
(
r′
)
Veff(r′)∂φ j(r′)

∂ fi

]
.

Consider the last two terms in the integral. Recall that 〈φ |M|ψ〉∗ = 〈ψ|M†|φ〉, but if M is an observable, it’s

Hermitian and hence M = M†. So, regarding those terms, we see that

〈
φ j

∣∣∣∣[−h̄2
∇2

2m
+Veff(r′)]∣∣∣∣∂φ j

∂ fi

〉
=

〈
∂φ j

∂ fi

∣∣∣∣[−h̄2
∇2

2m
+Veff(r′)]∣∣∣∣φ j

〉∗
.

This can also be shown without appealing to the fact that the operator is an observable by swapping which

wavefunction the Laplacian operates on by using integration by parts twice. The resulting surface integrals

vanish since the wavefunctions and their derivatives go to zero at infinity, and we again recover the above
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equality. So, in our expression we now have

∂ ẼKS

∂ fi
= εi +∑

j
f j

∫
dr′
[

∂φ ∗j (r′)
∂ fi

(−h̄2
∇2

2m
+Veff(r′))φ j

(
r′
)
+ c.c.

]

= εi +∑
j

f j

∫
dr′
[

∂φ ∗j (r′)
∂ fi

ε jφ j
(
r′
)
+ c.c.

]

= εi +∑
j

f jε j

∫
dr′
[

∂φ ∗j (r′)
∂ fi

φ j
(
r′
)
+φ

∗
j
(
r′
)∂φ j(r′)

∂ fi

]

= εi +∑
j

f jε j
∂

∂ fi

∫ ∣∣φ j
(
r′
)∣∣2 dr′

= εi,

where to get the second equality we have used the Kohn-Sham equations (eq. A.5), and in the last equation

we have noticed that the derivative term vanishes since the normalization of the single-particle orbitals is

held constant in the variation. This result is called Janak’s theorem.

In principle, εi( fi) will depend on fi. Integrating the derived relationship from fi = 0 to fi = 1, we obtain

EKS∣∣
fi=1−EKS∣∣

fi=0 =
∫ 1

0

∂ ẼKS

∂ fi
d fi =

∫ 1

0
εi( fi)d fi , (A.6)

that is, this integral gives you the difference in energy between the system with this ith particle and without

it. In an extended system with many electrons, we can assume that εi is weakly dependent on the presence of

this one electron, and hence

EKS∣∣
fi=1−EKS∣∣

fi=0 ≈
∫ 1

0
εi d fi = εi.

So, we can see that this theorem is the DFT analogue of Koopman’s theorem from Hartree-Fock.

ALTERNATIVE DERIVATION

Instead of applying the chain rule to everything, Janak’s theorem can be proven in a different way that is a

bit shorter. First, think of the Kohn-Sham total energy as an explicit function of fi, and a functional of
{

φ j
}

,

the set of single-particle wavefunctions, which implicitly depend on fi through the density, through

maintaining the self-consistency of the Kohn-Sham equations.
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Then, when computing the partial derivative with respect to fi,

∂ ẼKS

∂ fi
=

∂ ẼKS

∂ fi

∣∣∣∣{φ j}
+∑

j

∫
δ ẼKS

δφ ∗j (r)
∂φ ∗j (r)

∂ fi
dr+∑

j

∫
δ ẼKS

δφ j(r)
∂φ j(r)

∂ fi
dr ,

where the first term is a partial derivative taken with all φ j held fixed (treated as constants) and the last two

terms arise from the change in the single-particle wavefunctions due to the variation of fi. However, recall

that we are allowing the system to “relax” in the presence of the variation in fi, i.e. self-consistency of the

Kohn-Sham equations is always maintained. This implies that

δ ẼKS

δφ ∗j (r)
= 0,

recalling that this condition is equivalent to the Kohn-Sham equations, and was used in their derivation.

Same goes for the complex conjugate of this equation. Thus, the last two terms vanish, and we can just

consider the first derivative.

∂ ẼKS

∂ fi
=

∂ ẼKS

∂ fi

∣∣∣∣{φ j}
= ti +

∫ [
δEext

δn(r′)
+

δEH

δn(r′)
+

δEXC

δn(r′)

]
∂n(r′)

∂ fi

∣∣∣∣{φ j}
dr′

= ti +
∫
Veff(r′) ∂

∂ fi

∣∣∣∣{φ j}

[
∑

j
f j
∣∣φ j
(
r′
)∣∣2]dr′

= ti +
∫
Veff(r′)∣∣φi

(
r′
)∣∣2 dr′

= 〈φi|
−h̄2

∇2

2m
+Veff|φi〉

= εi.
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B
Supporting Information for Chapter 2

This appendix is part of the supporting information accompanying the publication

Cedric Flamant, Grigory Kolesov, Efstratios Manousakis, and Efthimios Kaxiras.
“Imaginary-Time Time-Dependent Density Functional Theory and Its Application for
Robust Convergence of Electronic States.” J. Chem. Theory Comput. 15, 11, 6036-6045
(2019).

B.1 CU13 EXAMPLE CALCULATION DETAILS

The Cu13 cluster we considered has an icosahedral geometry. We used the PBE functional and the basis set

optimized in Hoyt et al.27. The calculations were performed in TDAP 2.032, built on SIESTA. A portion of

the FDF file specifying information about the geometry, functional, and basis set is included below:

MeshCutoff 250 Ry

SpinPolarized .true.
ElectronicTemperature 0 K
FixSpin .true.
TotalSpin 1.0

NumberOfSpecies 1
XC.Functional GGA
XC.Authors PBE
%block ChemicalSpeciesLabel

1 29 Cu
%endblock ChemicalSpeciesLabel

LatticeConstant 14 Ang
%block LatticeVectors
1 0 0
0 1 0
0 0 1

%endblock LatticeVectors

%block PAO.Basis
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B.2. Ru55 Example Calculation Details

Cu 3 .2418041
n=4 0 2 E 18.7173392 8.5020294

6.5921851 -.3403688
1.000 1.000

n=3 2 2 E 11.0301035 4.9740702
5.9448110 -.5297646
1.000 1.000

n=4 1 1 E 24.8348938 10.3126965
7.0470756
1.00

%endblock PAO.Basis

NumberOfAtoms 13
AtomicCoordinatesFormat Fractional
%block AtomicCoordinatesAndATomicSpecies
0.500007106 0.499993714 0.500000377 1 # 1 Cu
0.498453720 0.499899399 0.672486528 1 # 2 Cu
0.546961887 0.353314971 0.577419774 1 # 3 Cu
0.374562040 0.409424763 0.575952213 1 # 4 Cu
0.374556508 0.590479864 0.576064955 1 # 5 Cu
0.546978482 0.646579577 0.577605062 1 # 6 Cu
0.653471782 0.499932033 0.578578947 1 # 7 Cu
0.453002558 0.353433152 0.422382514 1 # 8 Cu
0.346550672 0.500082456 0.421392974 1 # 9 Cu
0.453069420 0.646698210 0.422586236 1 # 10 Cu
0.625465641 0.590554051 0.424049472 1 # 11 Cu
0.625422636 0.409477775 0.423927127 1 # 12 Cu
0.501585326 0.500116633 0.327506892 1 # 13 Cu

%endblock AtomicCoordinatesAndATomicSpecies

B.2 RU55 EXAMPLE CALCULATION DETAILS

The Ru55 cluster we considered has an icosahedral geometry. The PBE functional and an optimized

double-ζ with polarization (DZP) basis set were used, with a different basis set for the surface and interior

atoms. The geometry and optimization was performed in Montemore et al.52. A portion of the FDF file

specifying information about the geometry, functional, and basis set is included below:

NumberOfSpecies 2
NumberOfAtoms 55
%block Chemical_Species_Label
1 44 Ru_surf
2 44 Ru_bulk

%endblock Chemical_Species_Label
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SpinPolarized .false.

xc.authors PBE
xc.functional GGA

%block PAO.Basis
Ru_surf 3
n=5 0 2 E 5.1969765 6.4102033

4.8150212 -.5408860
1.000 1.000

n=4 2 2 E 16.9399325 6.4404240
5.2358603 -.0750774
1.000 1.000

n=5 1 2 E 16.7403551 6.7658275
10 7.4372332
1.00 1.00

Ru_bulk 3
n=5 0 2 E 5.1276155 6.2372922

4.6336805 -.5019498
1.000 1.000

n=4 2 2 E 16.8979148 6.7782168
5.0620075 -.0825330
1.000 1.000

n=5 1 1 E 16.5510519 8.0000000
5.2883443
1.00

%endblock PAO.Basis

MeshCutoff 100 Ry

AtomicCoordinatesFormat ScaledByLatticeVectors
AtomicCoorFormatOut Ang

LatticeConstant 1 Ang

%block LatticeVectors
20.0 0. 0.
0. 20.0 0.
0. 0. 20.0

%endblock LatticeVectors

%block AtomicCoordinatesAndAtomicSpecies
0.494804 0.500007 0.754716 1 #1
0.531818 0.387295 0.687004 1 #2
0.410028 0.424973 0.686811 1 #3
0.410017 0.575087 0.686814 1 #4
0.531834 0.612736 0.687130 1 #5
0.618857 0.499567 0.692272 1 #6
0.652489 0.388034 0.610319 1 #7
0.570147 0.286443 0.615078 1 #8
0.440980 0.318366 0.612740 1 #9
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B.2. Ru55 Example Calculation Details

0.317355 0.369750 0.615482 1 #10
0.311707 0.499994 0.612505 1 #11
0.317313 0.630272 0.615475 1 #12
0.440962 0.681649 0.612854 1 #13
0.570131 0.713687 0.615145 1 #14
0.652220 0.611898 0.610677 1 #15
0.723708 0.500056 0.614382 1 #16
0.629303 0.320015 0.499170 1 #17
0.500627 0.281215 0.499393 1 #18
0.370644 0.321716 0.500795 1 #19
0.290064 0.433509 0.501231 1 #20
0.290010 0.566327 0.501383 1 #21
0.370653 0.678355 0.500837 1 #22
0.500601 0.718849 0.499401 1 #23
0.629188 0.680249 0.499604 1 #24
0.708311 0.570130 0.501427 1 #25
0.708412 0.430056 0.501389 1 #26
0.558355 0.323353 0.385439 1 #27
0.431148 0.287819 0.385868 1 #28
0.349136 0.392022 0.382369 1 #29
0.273526 0.500057 0.388859 1 #30
0.349114 0.607907 0.382214 1 #31
0.430962 0.712244 0.385913 1 #32
0.558311 0.676863 0.385428 1 #33
0.682410 0.630778 0.384892 1 #34
0.686205 0.500505 0.382166 1 #35
0.682472 0.369486 0.384932 1 #36
0.460825 0.392201 0.312008 1 #37
0.384054 0.499990 0.310737 1 #38
0.460723 0.607863 0.312029 1 #39
0.595084 0.565565 0.312618 1 #40
0.595145 0.434669 0.312557 1 #41
0.502608 0.500116 0.246900 1 #42
0.499994 0.500063 0.500858 2 #43
0.501694 0.500126 0.630767 2 #44
0.535385 0.390702 0.558326 2 #45
0.407489 0.431573 0.557917 2 #46
0.407472 0.568482 0.557922 2 #47
0.535333 0.609418 0.558390 2 #48
0.614486 0.500035 0.557437 2 #49
0.463687 0.391452 0.442669 2 #50
0.385160 0.500018 0.442307 2 #51
0.463633 0.608608 0.442664 2 #52
0.593374 0.568167 0.443528 2 #53
0.593500 0.432368 0.443422 2 #54
0.499439 0.500041 0.371322 2 #55

%endblock AtomicCoordinatesAndAtomicSpecies
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