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Abstract 
  

Elucidating the biological relevance of risk factors of chronic multifactorial disease is 

indispensable for identifying new putative intervention targets for disease prevention and 

therapeutic development. However, discovering novel associations in chronic disease and 

inferring causality is a challenge. There remains an unmet need for identifying 

associations between modifiable factors and phenotypes to uncover biological relevance 

in presence of confounding or reverse causality. One such tool is family history of 

disease, which reflects the effects of genetics and modifiable factors, including 

environment, and behavioral factors, and is a major risk factor for chronic disease, 

including type 2 diabetes and cardiovascular disease. Another tool is Mendelian 

randomization (MR), a statistical technique that leverages genetic variation for 

uncovering causal relationships between potentially modifiable exposures and outcomes. 

We propose to leverage family history of disease and MR to prioritize observational 

associations in chronic disease, thereby identifying potentially novel associations that 

may help elucidate the underlying biological (genetic and/or environmental) mechanisms 

by which risk factors cause disease. 
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Introduction 
 

 
Family health history provides a gateway to investigating the complex interplay of 

genetic influences, shared environment, lifestyle, and behavioral factors known to 

increase risk for many common chronic diseases [1,2]. Evaluating how family history 

contributes to increased disease risk is undoubtedly vital for establishing the effectiveness 

of family history information in the practice of preventive medicine and for developing 

public health strategies.  

 

The first three chapters of my thesis present methods for comprehensively and 

systematically assessing phenotypes associated with family health history. In Chapter 1, 

in a study termed “Family History-Wide Association Study” (FamWAS), we investigate 

how specific environmental factors (e.g., smoking pollutant exposure) and clinical 
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phenotypes (body mass index, creatinine) contribute to family history and performed a 

comprehensive search for candidate phenotypes and environmental exposures associated 

with a family history of diabetes, asthma, and coronary heart disease from 457 clinical 

and environmental quantitative traits, including anthropometric and laboratory (e.g. urine 

and blood analysis) measures. In a similar methodology to Genome-Wide Association 

Studies (GWAS) where associations between genetic variants and disease phenotypes are 

evaluated across the entire genome, FamWAS evaluates traits associated with a family 

history across a broad scale of clinical and environmental quantitative traits and shines 

light on factors that have not previously been studied in family risk for disease. By 

conducting a systematic search across three different disease phenotypes, we allow for 

discovery of traits associated with multiple disease family history indicators, enhancing 

our understanding of disease similarity.  

 

In Chapter 2, in a joint collaboration with Dr. Muin Khoury from the Centers for Disease 

Control and Prevention (CDC), we perform a population-based investigation assessing 

the combined influence of family history of CVD and diabetes on the prevalence of these 

diseases and on cardiovascular risk factors. In Chapter 3, in a study termed “XY-

FamWAS”, we perform 132 cross disease-family history associations for every disease X 

and family history of a different disease Y in order to gain potential insight into shared 

familial influences between 12 complex human diseases. We extend our study to 

deconvolve the genetic and environmental components of cross disease-family history 

associations, uncovering overlap of shared genetic architecture and environmental 

components by which unexpected diseases are related. Our studies in Chapters 1, 2, and 
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3 highlight the clinical utility and public health importance of family history information 

in assessing disease risk for early detection and potential intervention.  

 

While observational studies have been instrumental in identifying risk factors in health 

and have paved the way to identifying appropriate interventions and therapeutics, 

determining biological relevance in the presence of confounding factors remains a 

challenge. Mendelian randomization, for which we present a protocol in Chapter 4, is a 

promising statistical method that can shed light on causal relationships by using genetic 

variants as instrumental variables (IV) for an exposure of interest.  

 

In Chapter 5, we leverage Mendelian randomization to assess causality of associations 

identified in a data-driven observational study. Our two-pronged approach demonstrates a 

novel framework for studying the bidirectional link of diabetes and infectious diseases in 

large claims data and leverages genetic variation to examine putative causal relationships 

between infection and diabetes. In this study,  we first conduct a data-driven systematic 

search, termed “Infection-Wide Association Study” (IWAS), for performing a 

comprehensive and systematic analysis for infectious disease in association with type 2 

diabetes both before and after diagnosis from a nationally representative dataset of 44.9M 

members from large health insurance claims in the United States. Our approach allows 

for discovery of infectious diseases that may be possible risk factors of type 2 diabetes 

and/or complications, enhancing our understanding of the bidirectional link between type 

2 diabetes and infectious diseases and prioritizing infectious diseases associated with type 

2 diabetes warranted of further study. Second, we link infectious disease susceptibility 



 4 

genotypes with type 2 diabetes using Mendelian Randomization. Our method advances 

our understanding of a genetic predisposition for infectious disease in increasing 

susceptibility for type 2 diabetes for infections identified from a broad spectrum of over 

250 infectious diseases presented in type 2 diabetes, assessing the potential etiological 

role of infections in type 2 diabetes and providing robust evidence on the characterization 

of infection and type 2 diabetes that can help develop better clinical guidelines in type 2 

diabetes management.  

 

Figure 1.1. Schematic of specific aims and datasets. 

 

The studies presented in this thesis suggest how harnessing family history information 

and the Mendelian randomization technique can be effective strategies for evaluating 

health risks in the practice of preventive medicine and public health. 
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1 
Family History-Wide Association Study 

(FamWAS) for Type 2 Diabetes, Asthma, 
and Coronary Heart Disease 

 
 

Family History–Wide Association Study to Identify Clinical and Environmental 
Risk Factors for Common Chronic Diseases [3] 

 
Collaborators/co-authors: John PA Ioannidis, Muin J Khoury, Chirag J Patel 

Manuscript published in American Journal of Epidemiology in August 2019  
 
ABSTRACT 
 
Family history is a strong risk factor for many common chronic diseases and summarizes 

shared environmental and genetic risk, but how this increased risk is mediated is 

unknown. We developed a “family history–wide association study” (FamWAS) to 

systematically and comprehensively test clinical and environmental quantitative traits 

(CEQTs) for their association with family history of disease. We implemented our 

method on 457 CEQTs for association with family history of diabetes, asthma, and 
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coronary heart disease (CHD) in 42,940 adults spanning 8 waves of the 1999–2014 US 

National Health and Nutrition Examination Survey. We conducted pooled analyses of the 

8 survey waves and analyzed trait associations using survey-weighted logistic regression. 

We identified 172 (37.6% of total), 32 (7.0%), and 78 (17.1%) CEQTs associated with 

family history of diabetes, asthma, and CHD, respectively, in sub cohorts of individuals 

without the respective disease. Twenty associated CEQTs were shared across family 

history of diabetes, asthma, and CHD, far more than expected by chance. FamWAS can 

examine traits not previously studied in association with family history and uncover trait 

overlap, highlighting a putative shared mechanism by which family history influences 

disease risk. 

 
Introduction 
  
Family history is a strong risk factor for many common chronic diseases and summarizes 

shared environmental and genetic risk, but how this increased risk is mediated is 

unknown. We developed a “Family History-Wide Association Study” (FamWAS) to 

systematically and comprehensively test Clinical and Environmental Quantitative Traits 

(CEQTs) for their association with family history of disease. We implemented our 

method on 457 CEQTs for association with family history of diabetes, asthma, and 

coronary heart disease (CHD) in 42,940 adults spanning 8 waves of the 1999-2014 

National Health and Nutrition Examination Survey (NHANES). We conducted pooled 

analyses of the 8 survey waves and analyzed trait associations using survey-weighted 

logistic regression. We identified 172 (37.6% of total), 32 (7.0%), and 78 (17.1%) 

CEQTs associated with family history of diabetes, asthma, and CHD, respectively, in 

sub-cohorts of individuals without the respective disease. 20 associated CEQTs were 
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shared across family history of diabetes, asthma, and CHD, far more than expected by 

chance. FamWAS can examine traits not previously studied in association with family 

history and uncover trait overlap, highlighting a putative shared mechanism by which 

family history influences disease risk. 

 
Family history is a well-known risk factor for developing many common chronic diseases 

such as diabetes, asthma, and coronary heart disease (CHD) and reflects inherited genetic 

and shared environmental contribution in disease. Methods to delineate the mechanisms 

by which family history of disease influences inherited traits and environmental variables 

can be valuable in identifying how disease risk is conferred and distinguishing possible 

target areas amenable to intervention. 

  

While previous efforts have studied the association between several specific candidate 

factors of disease and a family history, there may be as yet many undiscovered traits 

associated with a positive family history. We present here a “Family History-Wide 

Association Study” (FamWAS) to comprehensively identify Clinical and Environmental 

Quantitative Traits (referred herethereafter as ‘CEQT’) associated with family histories of 

chronic disease, focusing here on diabetes, asthma, and CHD. FamWAS extends previous 

studies that assess a few traits at a time with a single family history by systematically 

evaluating 457 CEQTs, including anthropometric and laboratory measurements as well as 

environmental pollutants, nutrients, and organic substances in association with three 

family histories in participants in the Continuous National Health and Nutrition 

Examination Survey (NHANES). Complementary to Genome-wide Association Studies 

(GWASs) or Phenome-wide Association Studies (PheWAS) methodologies[4,5], 
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FamWAS scans for traits associated with a family history in an unbiased approach on a 

broad scale while controlling for multiple testing, potentially uncovering novel 

associations that could enhance our understanding of the influence of family history. 

Some of the associated factors may be the ones that eventually mediate the increase in 

disease risk that family history is known to confer. 

  

  

METHODS 

  

NHANES cohort construction 

We derived the cross-sectional study cohort from questionnaire and laboratory 

examinations of 8 independent waves of the 1999-2014 NHANES. Individuals selected to 

participate in NHANES were identified via a random sampling method and conducted 

questionnaires on health status, as well as clinical phenotypic measurements (e.g. body 

mass index) and laboratory tests (e.g. blood and urine analyses)[6]. 

  

For each respondent, we obtained demographic information, including age, sex, and race 

(collectively “covariates”), family history information and current disease status for 

diabetes, asthma, and CHD (Figure 1.1, continued). These conditions were chosen 

because of the availability of questionnaire family history data in all 8 waves of the 

NHANES. Family history of each disease was ascertained from the Medical Conditions 

Questionnaire (MCQ) with an affirmative response to the question “were any of your 

biological that is, blood relatives including grandparents, parents, brothers, sisters ever 

told by a health professional that they had” for diabetes, asthma, and heart attack or 
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angina (referred herethereafter as “coronary heart disease [CHD]”). Current diabetes 

status was ascertained in two ways: (1) individuals diagnosed with diabetes were 

ascertained using an affirmative response to the question “have you ever been told by a 

doctor or health professional that you have diabetes or sugar diabetes”, and (2) 

individuals with undiagnosed diabetes were ascertained from fasting glucose levels 

greater than 7.0 mmol/L (126 mg/dL) following at least a 6-hour fast or glycated 

hemoglobin greater than 6.5%, in accordance with the American Diabetes Association 

guidelines [7]. Current status for asthma was ascertained using an affirmative response to 

“has a doctor or other health professional ever told you that you have asthma”, or a 

forced expiratory volume in one second to forced vital capacity (FEV1/FVC) ratio less 

than 0.70, indicative of airflow obstruction[8]. We identified individuals diagnosed for 

the condition CHD by an affirmative response to diagnosis of congestive heart failure 

(CHF), CHD, angina, or heart attack. To ensure consistent reporting of family history and 

disease status, individuals with no information on family history or current disease status 

(a response of “Refused” or “Don’t know”) were removed from further analysis. 

Pregnant women and participants under 18 were also removed. 
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Figure 1.1. Method overview for pooled analysis. (A) We ascertained a diabetic 
disease status by a self-reported diagnosis or by a fasting glucose value 126 mg/dL) or 
glycated hemoglobin HbA1c value greater 6.5% in the laboratory testing panels for 
participants who did not self-report a diabetes diagnosis in 1999-2014 National Health 
and Nutrition Examination Survey (NHANES). (B) We pooled data across 8 independent 
waves of the NHANES spanning 1999-2014. (C) We systematically tested 457 clinical 
and environmental quantitative traits (CEQTs) for association with family history of 
diabetes, adjusting for age, sex, and race, in non-diabetic individuals using a survey-
weighted logistic regression model. We identified traits that met an FDR threshold of 5%. 
We repeated this workflow [A-C] for family history of asthma and coronary heart 
disease, where disease status for asthma was ascertained by self-reported diagnosis or 
FEV1/FVC ratio less than 0.70 and coronary heart disease was ascertained by self-
reported diagnosis of congestive heart failure, coronary heart disease, angina/angina 
pectoris, or heart attack.  

     

Clinical and environmental quantitative traits selection 

We collected a total of 457 CEQTs that represented a range of anthropometric, 

laboratory, and environmental attributes from the categories in Table 1.1 (Continued). 

We removed non-continuous traits (e.g. languages spoken at home), and for 

measurements represented multiple times in different units (e.g. triglycerides measured in 
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mmol/L and mg/dL), we removed all but one measurement. To increase statistical power, 

traits with measurements present in less than 5% of the total population were also 

removed (e.g. osteoporosis-related measures). We investigated the summary statistics for 

each CEQT and plotted distributions using the raw values for each CEQT, and 

additionally scaled and log (base 10) transformations of each CEQT. We then fit 

transformations on a case-by-case basis appropriate for the distributions of each trait. 

CEQTs with approximate normal distributions were scaled and centered in analyses 

(mean-subtracted and divided by the standard deviation) to allow comparison of 

association sizes, which reflect a change per 1 standard deviation of the CEQT. CEQTs 

with right-skewed distributions were additionally log (base 10) transformed and scaled. 
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Table 1.1. Clinical and environmental categories for selection of 457 CEQTs 

Clinical Traits Category No. of traits 

 Bacterial infection 
Biochemistry 
Blood 
Blood pressure 
Body measures 
Cognitive functioning 
Cotinine 
Hormone 
Nutrients 
Physical fitness 
Phytoestrogens 
Spirometry 
Viral infection 

9 
42 
14 
3 
63 
1 
2 
13 
29 
2 
6 
10 
10 

 Total no. of clinical traits 204 

Environmental 
traits 

Dialkyl 
Dioxins 
Furans 
Heavy metals 
Hydrocarbons 
PCBs 
Perchlorate 
Perfluorochemicals 
Pesticides 
Phenols 
Phthalates 
Volatile compounds 

7 
7 
10 
36 
21 
35 
3 
12 
64 
8 
15 
35 

 Total no. of environmental traits 253 

  
  
Statistical analyses 

To test for association between family history of disease and prevalent disease, we used 

survey-weighted logistic regression, adjusting for covariates. To account for the stratified 

and weighted design of NHANES, all regression models were fit using the svyglm 

function from the survey package in R[9]. 
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For our main analyses, we tested each of the 457 CEQTs for association with family 

history of diabetes, asthma, and CHD in the pooled NHANES survey data using survey-

weighted linear regression (Figure 1.1B and C). We constructed weights appropriate for 

combining 16 years of data that include 1999 through 2014. Notably, in the main 

analysis, we evaluated family-history-CEQT associations in individuals who were not 

diagnosed with the disease (removing also undiagnosed individuals with disease, as 

ascertained above). The reason is that we wanted to avoid the situation where disease 

may have affected some of these CEQTs. We wanted to use the FamWAS approach to 

reveal correlates of family history, some of which may then act also as risk factors for 

developing disease, rather than vice versa (disease being a risk factor for these 

correlates). Following the regression analyses, we used the false discovery rate method to 

correct for multiple testing [10]. We also evaluated for comparison family-history-CEQT 

associations on the entire cohort of individuals, regardless of participant disease status. 

We computed the number of identified traits shared between the three family histories 

and compared to the number of expected traits. The expectation was derived by taking 

the product of the three proportions of CEQTs identified for each disease, such that each 

event is assumed to be independent of the other two events, and calculating the product of 

that probability and the total number of CEQTs. 

  

In addition to the pooled analysis, we conducted a meta-analysis of trait associations 

across survey years in order to ascertain heterogeneity of CEQTs across the different 

survey years due to potential year-by-year variation in disease prevalence. We tested each 

of the 457 CEQTs for association with family history of diabetes, asthma, and CHD in 

each wave of the NHANES survey using survey-weighted logistic regression, and then 
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meta-analyzed the associations for each trait and family history of disease across all 

survey years. All meta-analyses were conducted using the metafor package in R using a 

random effects meta-analysis [11]. We conducted a statistical test of heterogeneity to 

determine the variation among the association sizes observed for each trait across survey 

years. 

 

RESULTS 

  

Participant demographics 

The initial cohort size was 82,091 participants. We excluded individuals who were under 

age 18 (34,735 individuals) or pregnant (another 1,182 individuals). To obtain the size for 

each disease cohort, we excluded participants with missing information on current 

disease status of diabetes, asthma, and CHD (32 adults for diabetes, 44 for asthma, and 

3,916 for CHD), and family history (another 4401, 3190, and 1234 adults, respectively), 

which resulted in final cohort sizes for study of 41,741 eligible participants for diabetes, 

42,940 for asthma, and 41,024 for CHD (Table 1.2, Continued). Participants who 

responded “don’t know” or “refused” are counted as missing information on family 

history and current disease status. The weight- and stratification-adjusted demographics 

and characteristics of each cohort are shown in Table 1.2 (Continued). 
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Table 1.2. Demographic breakdown of diabetes, asthma, and CHD cohorts 
presented as weighted percentages, National Health and Nutrition Examination 
Survey, 1999-2014.  

 

Family history as a risk factor for diabetes, asthma, and CHD 

Family history is a well known risk factor for diabetes, asthma, and CHD[12–14]; as 

expected, we observed a substantially increased risk of disease associated with a self-

reported family history that was consistent across all survey years (Figure 1.3, 

Continued). The odds ratio (95% CI) for disease in association with a family history was 

3.60 (3.28-3.96), 2.50 (2.33-2.67), and 2.68 (2.37-3.02) for diabetes, asthma, and CHD, 

respectively. The proportion of individuals with family history was 42.2%, 21.3%, and 

13.8% in the diabetes, asthma, and CHD cohorts, respectively (Table 1.2). 
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Figure 1.3. The trend for odds ratio for disease outcome (asthma in red, coronary heart 
disease in green, and diabetes in blue) in association with self-reported family history for 
each respective disease is shown in 8 waves of the NHANES (1999-2014). 
 
Comprehensive search of CEQTs associated with a family history 

We examined the summary statistics and distributions of each CEQT and applied case-

by-case statistical transformations of each CEQT. Figure 1.4 (Continued) shows 

volcano plots illustrating the distribution of the CEQTs regression coefficients for family 

history of diabetes (Figure 1.4A, Continued), asthma (Figure 1.4B, Continued), and 

CHD (Figure 1.4C, Continued) in individuals without the respective disease. The traits 

at an FDR less than 5% are annotated on the plots. In the pooled analysis, of 457 tested 

CEQTs, 172 (37.6% of total), 32 (7.0%), and 78 (17.1%) CEQTs achieved an FDR of 5% 

for association with family history of diabetes, asthma, and CHD, respectively. The 

majority of the CEQTs exhibited little variation in study outcomes between NHANES 
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waves, with 38.3%, 40.6%, and 33.3% of the total number of traits at FDR of 5% having 

an I2 estimate greater than 25% for diabetes, asthma, and CHD, respectively (Figure 1.5, 

Continued). The meta-analysis of CEQT-family history associations across survey years 

indicated relatively little heterogeneity (Supplementary Figures 1.1-1.3). 

 

 

Figure 1.4A. Volcano plot results for pooled analysis in individuals without the 
respective disease. 457 CEQT association sizes versus -log10(p-value) for family history 
of diabetes (Figure 1.4A), asthma  (Figure 1.4B), and coronary heart disease (Figure 
1.4C) in individuals without the respective disease, adjusting for age, sex, and race, in 
1999-2014 National Health and Nutrition Examination Survey (NHANES). Green, 
orange, and red points represent traits that met an FDR threshold of 5%. Orange and red 
points represent traits with an absolute value of association size greater than or equal to 
0.10 and 0.20, respectively. All labeled points are traits that met an FDR of 5% and have 
an absolute value of association size greater than or equal to 0.15 in Figure 1.4A, 0.02 in 
1.4B, and 0.08 in 1.4C. 
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Figure 1.4B (top) and 1.4C (bottom). Volcano plot results for pooled analysis in 
individuals without the respective disease. 457 CEQT association sizes versus -
log10(p-value) for family history of asthma  (Figure 1.4B) and and coronary heart disease 
(Figure 1.4C). All labeled points are traits that met an FDR of 5% and have an absolute 
value of association size greater than or equal to 0.02 in 1.4B and 0.08 in 1.4C. 
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Figure 1.5. Heterogeneity estimates for CEQTs. I2 estimate of associations between 

survey waves displayed for CEQTs that met an FDR threshold of 5% for diabetes (left), 

asthma (middle), and coronary heart disease (right) in individuals without the respective 

disease. 

 

HDL-cholesterol and adiposity-related traits such as body mass index and waist 

circumference achieved the highest magnitude of association size for a family history of 

diabetes and CHD (Figures 1.4A and 1.4C). Cotinine (0.11 [0.09, 0.13]; P = 2.6e-7), 

urinary thiocyanate (association size 0.13 95%CI [0.11, 0.16]; P = 9.0e-6), and 4-

(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (0.13 [0.11, 0.16]; P = 1.2e-5), 

biomarkers of smoking, were identified in the asthma analyses, indicating that individuals 

not diagnosed with asthma or with airway obstruction but with a family history of asthma 

exhibited higher levels of tobacco smoke biomarkers (Figure 1.4B). Respiratory 
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measurements including baseline FEV from 0.5 seconds (-0.071 [-0.089, -0.053]; P = 

2.7e-4) to 6 seconds (-0.061 [-0.077, -0.044]; P = 6.1e-4) and baseline FVC  (-0.062 [-

0.078, -0.045]; P = 5.7e-4) were also associated with a family history of asthma (Figure 

1.4B). 

  

We have identified an inverse association between pyridoxal 5’- phosphate (-0.144 [-

0.166, -0.121]; P = 1.6e-7), the active form of vitamin B6, and a positive association 

between 2-fluorene (0.151 [0.120, 0.181]; P = 3.1e-6), a polycyclic aromatic 

hydrocarbon, with a family history of diabetes (in individuals without diabetes) (Figure 

1.4A). We have also identified combined lutein/zeaxanthin associated with a family 

history of diabetes (-0.122 [-0.14, -0.099]; P = 4.1e-6) and CHD (-0.132 [-0.164, -0.100]; 

P = 1.9e-4) in individuals without the respective disease (Figure 1.4A and 1.4C). We 

found the volatile compounds blood tetrachloroethene (-0.151 [-0.192, -0.101]; P = 5.8e-

4) and blood trichloroethene (-0.093 [-0.122, -0.063]; P = 2.5e-3) negatively associated 

with a family history of asthma in individuals without asthma (Figure 1.4B). We found 

cadmium (0.092 [0.062, 0.123]; P = 2.9e-3), a heavy metal, positively associated with a 

family history of asthma in individuals without asthma, as well as white blood cell count, 

measured by eosinophil number (0.075 [0.055, 0.096]; P = 4.0e-4), and monocyte 

number (0.067 [0.046, 0.087]; P = 1.4e-3), (Figure 1.4B). Body mass index, cotinine, 

and HDL-cholesterol were identified as the traits with the lowest FDR in association with 

a family history of diabetes, asthma, and CHD, respectively (Figure 1.4). 

  

Shared and distinct family-history associated traits between a cohort of individuals 

without the respective disease and the entire cohort 



 21 

  

We examined the overlap of family history-associated traits in individuals without the 

respective disease (including diagnosed and undiagnosed individuals) and the entire 

cohort (individuals with and without disease). Supplementary Figure 1.4 shows volcano 

plots for CEQT associations in the entire cohort. A majority of the traits identified in the 

cohort of individuals without disease overlapped with the traits identified in the entire 

cohort, with 161 of 172 (93.6%) traits overlapping in the diabetes analyses, 30 of 32 

(93.8%) in asthma, and 74 of 78 (94.9%) in CHD. Notably, we noticed many of the traits 

exhibited a strong positive linear relationship, and this was consistent among all three 

family histories, as well as among all 457 traits. We identified 46, 23, and 12 traits that 

demonstrated discordance of results for the cohort of individuals without the respective 

disease and the entire cohort analyses for diabetes, asthma, and CHD, respectively. 

  

Shared traits among family histories of diabetes, asthma, and CHD 

We examined traits shared between the family histories as well as traits that were 

associated with one family history (FDR of 5%) and not with the others (Supplementary 

Figures 1.5-1.6). Figure 1.6 (Continued) shows the 20 shared CEQTs associated with 

family histories of diabetes, asthma, and CHD. Of the 20 shared traits, 13 traits were not 

highly correlated (Pearson correlation coefficient (ρ) < 0.50) with each other, which is 

more than the expected 1.2 non-correlated traits shared across all 3 diseases. For all 20 

shared traits, each trait exhibited either a positive association or a negative association 

consistent among all three family histories (Figure 1.6, Continued). Of the shared traits 

that exhibited a positive association, 5 were adiposity-related measures (e.g. arm 

circumference, trunk fat, sagittal abdominal diameter), indicating a shared relationship 
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between the three family histories and obesity. Smoking biomarkers (e.g. cotinine and 

urinary thiocyanate), vitamin-related compounds (e.g. γ-tocopherol), and liver-related 

compounds (C-reactive protein and bilirubin), were also shared in association with the 

three family histories. The association sizes were almost always larger for diabetes and 

CHD than for asthma. 

  

 

Figure 1.6. Shared CEQTs from pooled analysis. Shared CEQTs associated with 
family histories of diabetes (shown in blue), asthma (red), and coronary heart disease 
(green) in individuals without the respective disease in 1999-2014 National Health and 
Nutrition Examination Survey (NHANES). All CEQTs displayed achieved an FDR 
threshold of 5%. All models are adjusted for age, sex, and race. The FDR-adjusted p-
value for each point is displayed to the right (in red for asthma, blue for diabetes, and 
green for coronary heart disease). 
 
DISCUSSION 

In this study, using a FamWAS approach, we comprehensively scanned 457 clinical and 

environmental quantitative traits for their association with family history of diabetes, 
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asthma, and CHD. By conducting a systematic search, we studied many phenotypes that 

have not been previously studied for their association to a family history, allowing for 

discovery of candidate phenotypes or environmental biomarkers. For example, we 

identified a novel association between decreased levels of pyridoxal 5’- phosphate, the 

biologically active form of vitamin B6, and family history of diabetes in individuals 

without diabetes, implicating that even in individuals with controlled levels of blood 

glucose and hemoglobin A1C, a positive family history can contribute to decreased levels 

of vitamin B6. We also identified a novel inverse association between lutein and 

zeaxanthin, carotenoids with antioxidant properties commonly found in egg yolks and 

green leafy vegetables, and a family history of diabetes and CHD in individuals without 

the respective disease. We further show that our method can lead to identification of traits 

associated among multiple disease family history indicators (e.g., family history 

associations shared between asthma, diabetes, and CHD), providing possible insight into 

the underlying biological similarities shared in the diseases [15]. 

  

While we have demonstrated the feasibility of a comprehensive search for traits 

associated with a family history of disease, we acknowledge that there are some 

limitations to our methodology. First, current disease diagnosis and family history of 

disease were ascertained using surveys, and self-reported measurements can be prone to 

measurement errors and recall biases. For example, participants may be underreporting 

family history of disease status, which may affect the estimates of CEQT-family history 

associations. Second, the NHANES family history questions pose several limitations. The 

blood relatives stated in the wording of the question groups together first-degree relatives 

(i.e., parent, sibling) as well as second-degree relatives (i.e., grandparents); however, 
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does not list all possible second-degree relatives, such as uncles, aunts, nephews, nieces, 

and grandchildren. This can result in a smaller population of individuals who reported a 

positive family history, and potentially an underestimation of CEQT-family history 

associations. Furthermore, the number of available family members and thus also the 

number of potentially affected family members will vary across participants and is not 

captured by the survey question. 

 

Also, participants may have partial knowledge of their family history. Third, we excluded 

a number of participants due to missing information about family history and current 

disease status. However, even with the exclusion of participants, we obtained a large 

sample size of 42,940 eligible participants and the and the specificity of self-reported 

diabetes, asthma, myocardial infarction, and CHD ranged from 95% to 99%, while the 

sensitivity was 96% for diabetes, 91% for asthma, 90% for myocardial infarction, and 

78% for CHD [16,17]. Furthermore, we estimated associations in individuals who were 

not, to the best of our knowledge, diagnosed with disease. For diabetes, we accounted for 

undiagnosed diabetes and mistaken reporting by marking participants without a reported 

diagnosis, but who fit ADA diagnostic criteria for diabetes, as individuals with diabetes 

for the purposes of all analyses. For asthma, we accounted for individuals with abnormal 

airway obstruction by marking participants with a FEV1/FVC ratio less than 0.70. For 

CHD, we marked participants who self-reported any of four cardiovascular events (CHF, 

CHD, angina, or heart attack) in order to ensure we marked individuals who had a 

condition with a symptomatic result of angina. 14.8% of the participants marked with a 

cardiovascular event had CHF and did not have any of the other three conditions. While 

CHF is not necessarily always due to CHD, we included these individuals because CHF 
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is often caused by coronary artery disease, heart attack, and other conditions that damage 

the heart muscle. In studies examining the accuracy of reported family history, a self-

reported family history of diabetes when compared to physician-assessed diabetes status 

of close relatives had a sensitivity of 78.5% and specificity of 94.9%, a self-reported 

family history of CHD compared to status reported by parents had 85% sensitivity and 

93% specificity, and a self-reported family history of asthma had 53% sensitivity and 

99% specificity [18,19]. 

  

Another limitation includes a segment of the surveyed population that had missing data 

on family history. However, only 2.9-9.5% of individuals across the three cohorts met 

our selection criteria yet had missing data on family history. We speculate since most of 

the missing segment of the sample was of younger age, that the magnitude of the CEQT 

associations might be attenuated. Moreover, missingness was substantial for many traits, 

and in particular, for environmental variables, which can bias CEQT-family history 

associations and create larger uncertainty about these associations. 

  

Family history may have several advantages over other analytic methods to find risk 

factors prior to disease onset because it reflects the complex interaction of shared genetic,  

environmental, lifestyle, and behavioral factors[2,13]. First, family history information is 

easy to capture and is commonly collected in population-based studies. A recent 

approach termed genome-wide association study by (GWAX) leveraged family history of 

disease information along with the genotypes of undiagnosed relatives to identify 

common genotypes in 12 common diseases, reconfirming known and identifying novel 

risk loci[20]. Their findings demonstrate the utility of family history to conduct 
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association mapping without direct case genotyping. Similarly, we leverage family 

history information in FamWAS to identify modifiable risk factors in addition to genetic 

risk factors prior to disease onset. A major strength reflected in FamWAS is in cases 

where a disease endpoint is unknown, family history information can be leveraged as a 

substitute in identifying modifiable risk factors shared in households. Our approach adds 

to the data-driven tools to identify phenotypes and exposures associated with family 

history. We show feasibility of our method by re-identifying previously known traits 

associated with a family history of the three prevalent chronic diseases. 

  

Future directions include incorporating genotype information to partition DNA-

transmitted genetic versus environmental variance in phenotype in family history to 

decompose the various components of risk influenced by familial disease, as we present 

in Chapter 3 using data on up to 500,000 individuals from the UK Biobank. Further, we 

show feasibility in a cross-sectional dataset; FamWAS can be executed also on 

longitudinal cohorts including information on time of disease diagnosis for each 

participant in order to identify potential CEQTs that may mediate the association between 

family history and risk of disease. This may identify novel traits that can explain some of 

the remainder of the family history-associated disease risk, of which, for example, in 

diabetes, the known anthropometric and genetic risk factors currently explain a marginal 

~20% of the association between family history and diabetes risk[21,22].Comparison of 

FamWAS results also across multiple datasets and cohorts with different settings and 

background could also further help understand the consistency of these associations.  
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ABSTRACT 

Background. Family history is an established risk factor for both cardiovascular disease 

(CVD) and diabetes; however, to our knowledge, no study has presented population-

based prevalence estimates of family histories of both CVD and diabetes and their joint 

impact on population prevalence of diabetes, heart disease and their risk factors. 
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Methods. We analyzed data from 29,440 participants aged 20 and over from six 2-year 

cycles of the National Health and Nutrition Examination Survey (NHANES 2007-2018) 

and assessed self-reported first-degree family history of diabetes and CVD (premature 

heart disease before age 50) as well as meeting criteria and/or having risk factors for 

CVD and diabetes. We performed survey-adjusted logistic regression to examine the 

association between family history of CVD and/or diabetes and a diagnosis of CVD 

and/or diabetes and CVD/diabetes risk factors. 

Results. 44.4% of the US adult population have a family history of CVD and/or diabetes. 

Overall, 5.5%, 31.6%, and 7.3% of US adults have a family history of CVD without 

family history of diabetes, family history of diabetes without family history of CVD, and 

family histories of both conditions, respectively. Compared to those with no family 

history, having both diabetes and CVD family histories was associated with a prevalence 

ratio of 2.9, 2.6, and 5.3 for CVD, diabetes, and both diseases concurrently. Participants 

with both family histories of CVD and diabetes are diagnosed with diabetes 6.6 years 

earlier than individuals without family history of either disease or are at 6.5 greater odds 

for having both diseases in their lifetime. 

Conclusion. A large proportion of individuals in the US have family history of both or 

any family history of CVD and diabetes that is comparable in risk to common 

cardiometabolic risk factors. This wide presence of high-risk family history and its 

simplicity of ascertainment suggests that clinical and public health efforts should harness 

family history information across CVD and diabetes to improve population efforts in the 

early detection and prevention of these common chronic diseases. 
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INTRODUCTION 
  

We showed in Chapter 1 that family history contributes to a slew of environmental and 

phenotypic risk factors for disease jointly. But how does combined family history play a 

role in multiple diseases? We explore this phenomenon in this and the following chapter, 

documenting new methods to exploit how a humble and easy-to-ascertain variable, 

family history, plays a role in diverse and multiple disease outcomes simultaneously, 

laying groundwork to study the complex etiology between genetics, shared environment, 

phenotype, and diseases.  

 

Type 2 diabetes is a major risk factor for cardiovascular disease[23,24]. Further, the 

genetic and environmental antecedents shared by type 2 diabetes and cardiovascular 

disease (CVD) have led to the hypothesis that both arise from a “common soil”[25]. 

Family history, which reflects genetic susceptibility and shared environmental, 

behavioral, and lifestyle factors, can be used to investigate the cardiovascular disease 

continuum[26]. Previous studies have shown a family history of diabetes is associated 

with endothelial dysfunction and increased cardiovascular risk[27], and conversely, a 

higher familial risk of coronary heart disease is associated with incident type 2 diabetes 

among individuals with a positive family history for diabetes, while the association 

remains weak among individuals without a family history of diabetes[28]. A family 

history of premature heart or vascular disease is a known risk factor for cardiovascular 

events [29]. We have previously found that a family history of diabetes and coronary 

heart disease is associated with a broad array of risk factors[3,30]. However, the 
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combined role of family history of both CVD and diabetes on disease risk and 

cardiovascular health indicators is unclear. To our knowledge, no population-based 

investigation has assessed the combined influence of family history of premature CVD 

(under age 50) and diabetes on the prevalence of CVD and diabetes and their risk factors. 

In this study, we analyzed a representative survey of the US population, National Health 

and Nutrition Examination Survey (NHANES) 2007-2018, to characterize the prevalence 

of family history of premature CVD (referred to hereafter as “family history of CVD”) 

and diabetes. We further examined the association between family history of CVD and 

diabetes and prevalence of diagnosed CVD and diabetes, and CVD/diabetes risk factors 

based on criteria from the American Heart Association[31]. 

METHODS 

Data source 

The NHANES is conducted by the Centers for Disease Control and Prevention’s National 

Center for Health Statistics (CDC/NCHS) and consists of cross-sectional studies designed 

to assess the health and nutritional status of noninstitutionalized, civilian residents from 

the US population with data released every other year in 2-year cycles[32]. The 

NHANES uses a questionnaire on medical conditions that includes information on 

demographic characteristics and family history of disease. In addition, physical 

examination and laboratory testing are administered by medical personnel in mobile 

examination center (MEC). The survey uses a complex sampling design to attain a 

sample that is representative of the non-institutionalized civilian population of the United 

States. We analyzed data for 29,440 males and non-pregnant females aged 20 and over 
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from six 2-year cycles of the 2007-2018 NHANES with available information on current 

disease status, first-degree family history of diabetes and coronary heart disease, and 

cardiovascular health risk factor measurements (Figure 2.1). 

 

 

Figure 2.1. Flowchart for inclusion and exclusion criteria for study sample 
derivation, NHANES 2007-2018 
  

Identification of participants with diabetes and CVD 

We identified survey participants with diabetes using: (a) self-reported diagnosis of 

diabetes or (b) undiagnosed diabetes, identified in participants who do not self-report a 

diagnosis of diabetes but who meet a fasting glucose or hemoglobin A1C concentration 

level in accordance with the guidelines of the American Diabetes Association 

(ADA)[33]. Specifically, participants with diabetes met at least one of three criteria: (1) 

self-reported a physician diagnosis by an affirmative response to the question “have you 

ever been told by a doctor or health professional that you have diabetes or sugar 
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diabetes”; (2) a negative response to the question and fasting glucose level 7.00 mmol/L 

(126 mg/dL) or greater following at least an 8-hour fast, OR hemoglobin A1C 

concentration 6.5% or greater[33]. Since laboratory equipment for measuring glucose 

levels changed during the NHANES 2007-2018 period, we applied glucose regression 

equations as advised by the NCHS for consistency among estimates[34]. We identified 

participants diagnosed with CVD by an affirmative response to questions about the 

diagnosis of coronary heart disease, angina, heart attack, or stroke. Participants who 

reported “refused” or “don’t know” to the current disease status questions, or with 

missing glucose laboratory measures were removed from analyses (n=255, 0.83%). 

Identification of participants with family history of heart disease or diabetes 

We identified individuals who reported a positive family history as those who had a first-

degree affected relative (parent and/or sibling). NHANES ascertained family history of 

diabetes with an affirmative response to “Including living and deceased, were any of your 

close biological, that is, blood relatives including father, mother, sisters, or brothers, ever 

told by a health professional that they had diabetes” in the Medical Conditions 

Questionnaire. NHANES ascertained family history of CVD by an affirmative response 

to the question “Including living and deceased, were any of your close biological, that is, 

blood relatives including father, mother, sisters, or brothers, ever told by a health 

professional that they had a heart attack or angina before the age of 50.” Participants who 

lacked knowledge or refused to respond to either question were removed from further 

analyses (n=1027, 3.34%). We classified participants according to four family history 

categories: (1) no family history of diabetes or CVD, (2) family history of CVD and no 
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family history of diabetes, (3) family history of diabetes and no family history of CVD, 

and (4) family history of both diabetes and CVD. 

Demographic, behavioral, and clinical risk factors for CVD and diabetes 

We estimated associations between family history of CVD and diabetes with risk factors, 

including demographic characteristics (age group [20-39, 40-59, 60+], sex, and race and 

Hispanic ethnicity [non-Hispanic white, Mexican-American, non-Hispanic black, and 

other Hispanic]), as well as measures of socioeconomic status, including poverty-income-

ratio, computed as the ratio of family income to poverty threshold[35] and educational 

status of the participants (less than high school completion, or high school completion or 

greater). 

  

We additionally estimated associations between family history and CVD/diabetes risk 

factors based on criteria from the American Heart Association, including body mass 

index (BMI) (<25, 25-29.9, 30 kg/m2), smoking status, physical activity, total cholesterol, 

and blood pressure[31]. We defined participants as current smokers if the participant 

responded to the question “Do you now smoke cigarettes?” with “every day” or “some 

days” and as a non-smoker if the participant responded to the question with “Not at all.” 

We defined participants as physically active if the participant reported at least 150 

minutes a week of moderate-intensity or 75 minutes a week of vigorous intensity aerobic 

physical activity[36]. 

  

We also estimated associations between family history and high-density lipoprotein 

(HDL) and low-density lipoprotein (LDL) levels. In accordance with classifications set 
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by the National Cholesterol Education Program Expert Panel on Detection, Evaluation, 

and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)[37], we 

categorized participants with a total cholesterol of <200, 200-239, and 240 as 

low/desirable, borderline high, and high, LDL cholesterol levels of <100, 100-159, 160 as 

low/desirable, borderline high, and high, and HDL cholesterol levels of <40, 40-60, 60 as 

low, borderline high, and high/desirable, respectively. We classified participants as 

having a normal blood pressure by a systolic blood pressure  and a diastolic blood 

pressure , and as having hypertension by a systolic blood pressure  and/or a diastolic 

blood pressure , or if they have controlled hypertension, defined as having a normal blood 

pressure but self-reporting that a doctor or health professional has diagnosed them with a 

high blood pressure[38]. We additionally accounted for C-reactive protein (CRP), a 

marker of systemic inflammation known to be associated with glycemic control and 

increased risk of diabetes, and identified participants with normal serum CRP level (less 

than 3 mg/L) and high CRP levels (more than 3 mg/L)[39–41]. 

  

Statistical analyses 

We calculated the crude prevalence of family history of CVD, diabetes, and both 

according to various demographic characteristics and risk factors and estimated the total 

number of participants in each category. 

  

We used logistic regression to quantify the associations between family history and 

prevalent disease, adjusting by age, sex, and race and ethnic origin. We estimated 

prevalence ratio (PR) for CVD and diabetes, which is inclusive of undiagnosed diabetes 
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and self-reported diagnosis of diabetes, given a family history, where findings are 

interpreted as the proportion of people with diagnosed CVD and diabetes given a family 

history over the proportion of individuals with no family history of CVD and diabetes. 

One model was constructed for each of four outcomes: prevalence of diabetes, CVD, 

both, and either/or. We additionally evaluated the association of family history with 

demographic characteristics and risk factors in participants who were not diagnosed with 

diabetes or CVD and who did not meet a fasting glucose or hemoglobin A1C level 

indicative of diabetes. In accordance with the NHANES analytic and reporting 

guidelines, all analyses accounted for the complex sample design by using design 

variables, and adjusting for MEC exam sample weights corresponding to pooling six 2-

year survey cycles of the continuous 2007-2018 NHANES. To correct for multiple 

hypothesis testing for regression analyses, we calculated the false discovery rate (FDR) 

and denoted significance by an FDR threshold of 5%[10]. We conducted all statistical 

analyses using R software[42]. 

  

RESULTS 

Prevalence of family history of CVD and diabetes 

Our study included 30,722 participants who met the inclusion criteria of having MEC 

data items and not being pregnant at the time of examination. Of this study cohort, 255 

(0.83%) participants were excluded due to no reported information on current diabetes or 

CVD status and a further 1027 (3.34%) participants were excluded due to no reported 

information on diabetes and CVD family history. The examination response rate for adult 

participants in these survey cycles was: 70.6, 72.2, 64.5, 63.7, 58.1, and 45.3[43]. The 
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prevalence of self-reported first-degree family history of CVD and no family history of 

diabetes, diabetes and no family history of CVD, and family histories of both CVD and 

diabetes was 5.5% (95% CI, 5.1-5.9%), 31.6% (95% CI, 30.8-32.5%), and 7.3% (95% 

CI, 6.8-7.8%), respectively (Table 2.1, Continued). Trends in prevalence of family 

history during the period of 2007-2008 to 2017-2018 exhibited relative stability. Across 

all three positive family history categories, the prevalence of family history was higher in 

females than in males, and the prevalence of a family history of diabetes only or both 

CVD and diabetes was higher in populations with BMI greater than 30. 
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Table 2.1. Crude prevalence of reported family history of CVD and diabetes by 
selected demographic characteristics, NHANES 2007-2018. 

 

Prevalence of CVD and diabetes, by family history status 

Further, participants with a family history of either CVD or diabetes were more likely to 

have the other condition. Specifically, there was a 2.36-fold (95% CI, 2.12-2.63) increase 

of having a family history of CVD among individuals with a family history of diabetes, 

adjusted by age, sex, and race/ethnicity (data not shown). Participants with a family 

history of CVD, diabetes or both had increased prevalence of having CVD, diabetes, both 
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conditions, or either condition compared to participants without a family history of either 

condition (Table 2.2, Continued).  Compared to participants without a family history of 

CVD or diabetes, participants with a family history of CVD had a PR of 2.23 (95% CI, 

1.90-2.61), 1.12 (95% CI, 0.91-1.37), 1.94 (95% CI, 1.33-2.82), and 1.53(95%CI, 1.35-

1.74) for having CVD, diabetes, both, and either/or diabetes/CVD (Table 2.2, 

Continued). The PRs for participants with a family history of diabetes and not CVD 

were 1.38 (95% CI, 1.25-1.52), 2.35 (95% CI, 2.14-2.59), 2.76 (95% CI, 2.29-3.32), and 

1.75 (95%CI, 1.62-1.90) for having CVD, diabetes, both CVD and diabetes, and either/or 

CVD and diabetes (Table 2.2, Continued). We found higher PRs of 2.85 (95% CI, 2.44-

3.34), 2.60 (95% CI, 2.29-2.94), 5.27 (95% CI, 4.24-6.54), and 2.11 (1.90-2.35) for 

having CVD, diabetes, both, and either/or respectively, for participants with family 

histories of both CVD and diabetes. 
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Table 2.2. Prevalence (%) of CVD and diabetes among those in each family history 
category and prevalence ratios (95% CI) according to family history, adjusted by age, 
sex, race/ethnicity, BMI, education, and poverty-income-ratio, NHANES 2007-2018. 
 

 

 Risk factors for CVD and diabetes, by family history status 

Supplementary Table 2.1 presents the adjusted odds ratios (aOR) for CVD and diabetes 

risk factors, including family history, age, sex, race and ethnic origin, BMI, income-to-

poverty-ratio, and education.  The left three columns present associations between risk 

factors with a diagnosis of CVD by family history status and the right three columns 

present the association between risk factors and having diabetes by family history status. 

The aOR for having a diagnosis of CVD, given a family history of CVD and not diabetes 

was 3.04 (95% CI, 2.65-3.50), and 3.37 (95% CI, 2.74-4.14) given a family history of 

both CVD and diabetes.  The aOR of having CVD or diabetes given a family history of 

both CVD and diabetes was higher among males than females (1.79; 95% CI, 1.54- 2.09 
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for a diagnosis of CVD, and 1.52; 95%CI 1.33-1.73 for a diagnosis of diabetes) 

(Supplementary Table 2.1). Figure 2.2, rather than present aOR for risk factors, shows 

aORs for having CVD, diabetes, and both CVD and diabetes by family history status 

controlling for all risk factors shown in Supplementary Table 2.1. The aOR for having 

both CVD and diabetes was 3.08 (95% CI, 2.50-3.79), 2.06 (95% CI, 1.35-3.14), and 

6.45 (95% CI, 5.01-8.30) in association with a family history of diabetes only, CVD only, 

and both CVD and diabetes, respectively (Figure 2.2). 

 

Figure 2.2. Estimates of adjusted odds ratios (95% CI) for CVD, diabetes, and both CVD 
and diabetes according to family history of CVD, diabetes, both CVD and diabetes, and 
either CVD or diabetes, adjusted by age, sex, race/ethnicity, BMI, poverty-income-ratio, 
and education, NHANES 2007-2018. 
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Family-history associated prevalence and prevalence ratios for CVD and diabetes 

differ by risk factors, but remain similar across certain desirable and high 

categories for LDL-c, total cholesterol, and blood pressure for certain family history 

groups 

 

The prevalence and PR for CVD and diabetes given the family history categories differed 

by levels of established risk factors for CVD and diabetes (Figure 2.3, Figure 2.4, 

continued). Surprisingly, we found that the prevalence and PRs for CVD according to a 

family history of CVD was similar across low/desirable, borderline high, and high LDL 

cholesterol levels (Figure 2.3a; Figure 2.4a, continued). Further, we also found that the 

PR for CVD according to a family history of diabetes was also similar across 

low/desirable, borderline high, and high total cholesterol levels (Figure 2.4a, continued). 

The PR for CVD according to family histories of both CVD and diabetes remained 

similar across hypertensive and normal blood pressure levels (Figure 2.4a, continued). 

For family histories of both CVD and diabetes, the prevalence for CVD for all three BMI 

categories remained similar (Figure 2.3a, continued), while the same pattern was not 

noticed for the prevalence of diabetes (Figure 2.3b, continued). Further, for smoking 

status, for family histories of both CVD and diabetes, we identified that the prevalence of 

diabetes was similar for non-smokers and smokers (Figure 2.3b, continued), while the 

prevalence of CVD was higher among smokers than non-smokers (Figure 2.3b, 

continued). 
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Figure 2.3a. Survey-adjusted prevalence of CVD within cohorts of individuals by 
selected risk factors and family history of neither CVD nor diabetes, diabetes only, 
CVD only, and both CVD and diabetes, NHANES 2007-2018. Note: y-axes for 
multiple panels have different ranges. 
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Figure 2.3b. Survey-adjusted prevalence of diabetes within cohorts of individuals by 
selected risk factors and family history of neither CVD nor diabetes, diabetes only, 
CVD only, and both CVD and diabetes, NHANES 2007-2018. Note: y-axes for 
multiple panels have different ranges. 
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Supplementary Figure 2.4a. Prevalence ratio for CVD according to family history of 
diabetes, CVD, and both, adjusted by age, sex, and race/ethnicity, in sub-cohorts of 
individuals with selected demographic characteristics and CVD/diabetes risk 
factors. Reference group is cohort of individuals with no family history of CVD and 
diabetes. 
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Supplementary Figure 2.4b. Prevalence ratio for CVD according to family history of 
diabetes, CVD, and both, adjusted by age, sex, and race/ethnicity, in sub-cohorts of 
individuals with selected demographic characteristics and CVD/diabetes risk 
factors. Reference group is cohort of individuals with no family history of CVD and 
diabetes 
 

Family history associated with increased prevalence of CVD/diabetes risk factors in 

participants not reporting diabetes or heart disease 

Among participants without prevalent CVD or diabetes and who did not have abnormal 

glucose or hemoglobin A1C levels, a positive family history of CVD and/or diabetes was 

significantly associated with CVD and diabetes risk factors. A positive family history of 

both CVD and diabetes was significantly associated with a BMI greater than 30 (aOR 

1.70; 95% CI, 1.48-1.94), a poverty-income-ratio less than 1.3 (aOR of 1.51; 95% CI, 
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1.31-1.73), smoking (aOR 2.15; 95% CI, 1.81-1.56), and low HDL levels (aOR 1.36; 

95% CI, 1.20-1.54) (Table 2.3). 

 

Table 2.3. Adjusted odds ratios (95% CI) for CVD/diabetes risk factors according to 
family history, adjusted by age, sex, and race/ethnicity, in individuals without 
diabetes and CVD, NHANES 2007-2018. 
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Earlier age of diabetes diagnosis for participants with family histories of both CVD 

and diabetes 

For participants diagnosed with diabetes, the weighted mean age of diabetes diagnosis for 

participants with family histories of both CVD and diabetes was 44.07 years, or on 

average, 6.62 years earlier (P < 0.0001) than participants with no family history of CVD 

and diabetes. Furthermore, for participants diagnosed with diabetes, participants with a 

family history of diabetes and no family history of CVD were diagnosed with diabetes, 

on average, at 48.16 years, or 2.53 years earlier (P < 0.0001) than participants with no 

family history of CVD or diabetes and participants with a family history of CVD and no 

family history of diabetes were diagnosed with diabetes, on average, at 51.31 years, or 

0.62 years later (P < 0.0001) than participants with no family history of CVD or diabetes 

(data not shown). 

  

DISCUSSION 

Using a large population-based survey, we document the combined impact of family 

history of CVD and diabetes on the population prevalence of CVD, diabetes, and CVD 

and diabetes risk factors. First, we show that over the period 2007-2018, an average 

44.4% of the US adult population has a family history of CVD or diabetes and that 

having one is associated with the other. Specifically, 5.5%, 31.6%, and 7.3% of the US 

adult population aged 20 years and older has a family history of CVD only, diabetes only, 

or family histories of both, respectively. Second, our findings suggest that prevalence of 

diagnosed CVD and/or diabetes among a population with a positive family history is 

greater than that of a population with no family history, independent of established risk 

factors, such as BMI, age, and sex. Specifically, for participants with no family history, 
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the prevalence of CVD, diabetes, and both CVD and diabetes is 5.4%, 7.1%, and 1.3%, 

while for participants with both family histories of CVD and diabetes, the prevalence 

increases to 16.0%, 24.3%, and 7.4%, respectively. Third, we show how family history 

associated prevalence and PRs for CVD and diabetes remain similar across low/desirable 

and high levels of certain CVD/diabetes risk factors, such as LDL cholesterol, total 

cholesterol, and blood pressure as shown in Figure 2 and Supplementary Figure 3. 

Further, we find that participants with family histories of both CVD and diabetes are 

diagnosed with diabetes, on average, 6.6 years earlier than participants without either 

family history, indicating the potential utility of collecting family history information for 

early detection[44,45]. 

  

Epidemiological studies have attempted to disentangle the complex relationship between 

CVD and diabetes, in search of common pathophysiological pathways and potential 

mechanistic roles linking the two diseases[46]. Many factors are shared between both 

diseases, including adiposity and dyslipidemia, cardiometabolic markers and 

inflammatory profiles[47,48]. While epidemiological studies have established a higher 

cardiovascular and atherosclerotic burden in participants with diabetes, there is also 

evidence for vascular abnormalities being present prior to diabetes onset, leading to the 

“common soil” hypothesis that both arise from a shared antecedent[25,49–51]. Studies 

examining the shared genetic architecture of CVD and diabetes have uncovered 

overlapping genetic loci from large genome-wide association studies (GWAS)[52,53]. 

Our study builds on these findings by leveraging family history information, which is 

reflective of both total shared genetic variations (e.g. GWAS single nucleotide 
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polymorphisms (SNPs) and other sources of genetic variation) at multiple loci as well as 

shared environmental, behavioral and lifestyle factors. By demonstrating the high 

prevalence of CVD and diabetes associated with family history, we highlight the 

importance of collecting family history information for early detection and prevention of 

these two chronic conditions. 

  
This study has several limitations. First, NHANES is a cross-sectional survey and 

therefore cannot be used to establish causal relationships between family history, risk 

factors, and diagnosis of CVD and diabetes. Second, we used self-reported family history 

and disease diagnosis information, which is prone to recall biases that may contribute to 

measurement error. Although the NHANES family history questionnaire specifically 

mentioned parents and siblings as first-degree relatives, we cannot rule out the possibility 

that participants included second-degree and surrogate relatives in their reporting of 

family history. However, previous studies examining the accuracy of reported family 

history to that of physician-assessed status of close relatives or status reported by parents 

have found a sensitivity and specificity of 78.5% and 94.9% for family history of diabetes 

and 85% and 93% for family history of coronary heart disease, which may attenuate the 

magnitude of our associations[18,19]. Furthermore, studies have found the sensitivity of 

self-reported diabetes and heart disease were 96% and 78%, respectively, and specificity 

ranged from 95% to 99%[16,17]. Although we were not comprehensive in our definition 

of CVD due to NHANES self-report instrument limitations, we included participants with 

coronary heart disease, angina, heart attack, and stroke to ensure we identified 

participants with symptomatic indicators of cardiovascular disease. A third limitation is 

our inability to discriminate between type 1 and type 2 diabetes because the NHANES 
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questionnaire does not ask participants to specify. However, approximately 95% of 

diagnosed diabetes cases in adults are type 2 diabetes[54]. 

  

Public health efforts in the prevention of common chronic diseases tend to be disease-

oriented. For example, the identification of individuals at high risk of diabetes typically 

starts with asking about family history of diabetes[55]. On the other hand, efforts to 

reduce the burden of heart disease have used family history of heart disease[30]. Clinical 

guidelines for standards of medical care published by the American Diabetes Association 

screen for a family history of type 2 diabetes in first and second-degree relatives; 

however, given our findings on the increased risk individuals with both family histories 

of CVD and diabetes have, we suggest that information on both family histories be used 

as a screening tool for identifying high risk individuals. 

Family health history as a risk factor cuts across multiple chronic diseases and is 

important for evaluating health risks of many diseases. Millions of people in the United 

States have a family history of CVD and/or diabetes, putting them at increased risk for 

one or both of these conditions. The strong association between family history and 

prevalence of CVD and/or diabetes revealed by our study warrants further investigation 

into the genetic and environmental factors that compose family history, beyond the 

common risk factors considered here. Through public educational offerings, the CDC 

hosts the Surgeon General’s My Family Health Portrait, an online tool for collecting 

family health history for multiple disease conditions, with a focus on heart disease, 

diabetes, and cancer[56]. Our findings underscore the public health impact and utility of 
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family history as a tool for screening and identifying high-risk populations across chronic 

diseases. 

We extend this work in Chapter 3, where we scale up this technique to examine all 

pairwise family history of disease in multiple clinical outcomes, revealing undiscovered 

shared genetic architecture and environmental influences of seemingly unrelated diseases. 
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3 
Genetic and Environmental Components 

of Cross-Disease Familial Risk  
(XY-FamWAS) 

 
 
 
 Estimates of cross-disease genetic and environmental components of familial risk in UK 
Biobank (“XY-FamWAS”): Is disease X associated with a family history of a different 

disease Y? 
 

Collaborators: Yixuan He, Chirag Lakhani, Arjun Manrai, Chirag J Patel 
 
ABSTRACT 

Background. Most common chronic diseases, such as type 2 diabetes and cancer, result 

from the complex interplay between genetic factors and shared environmental exposures, 

reflected in family history of disease. While the increased odds for a disease due to a 

family history has been documented for many chronic conditions, the increased odds of a 

disease X associated with a family history of a different disease Y has not been 
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established, and could implicate shared genetic and environmental etiologies between 

diseases.  

 

Methods. We investigated 132 cross disease-family history associations for 12 complex 

human diseases in up to 500,000 participants from the UK Biobank. Next, we performed 

a range of analyses to assess the components of familial risk attributed to genetic or 

environmental factors. First, we identify shared genetic architecture of cross disease-

family history by estimating genetic correlation using linkage disequilibrium score 

regression. Second, we decompose the shared environment by comparing cross disease-

family history associations in a cohort of 6,347 adopted individuals (that share zero 

genetics) to those of non-adopted individuals. Third, we dissect the influence of 

genotypic factors through a genetic risk score incorporated for disease Y in investigating 

the association between disease ! associated with a family history of a different disease 

!. 

 

Results. In our main findings, we recapitulate the observational associations between the 

same family history and disease pairs (e.g., family history of diabetes and diabetes: 

OR=3.49). We broadened our search to 132 non-same pairs of family history and disease, 

scaling up the search to 12 possible diseases. In this search, we found unexpected 

associations, including between family history of emphysema/chronic bronchitis and 

depression (OR 1.30; 95%CI 1.23-1.37, FDR < 0.05), which was driven more by 

maternal than paternal history (OR 1.36 vs OR 1.20 versus no family history). The 

association exhibited a weak genetic correlation (rg = 0.15 SE = 0.24) and a stronger 
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magnitude of association in an adopted cohort (OR 1.4; 95%CI 1.11-1.78), reflecting the 

contribution of shared environmental factors for depression in families with 

emphysema/chronic bronchitis. 

 

Conclusion. Our atlas of disease and family history associations demonstrate the shared 

genetic architecture and environmental factors underlying many seemingly dissimilar 

complex diseases. 

 

INTRODUCTION 

 

Many common complex conditions such as coronary heart disease, diabetes, and cancer, 

share genetic risk variants and environmental exposure risk factors. As we have shown in 

the previous chapters, family history of disease captures genetic susceptibility as well as 

the environmental, lifestyle, and behavioral habits shared within families whereby an 

individual may be predisposed to be at higher risk for disease. Leveraging data on 

phenotyped relatives with missing genotypes can reveal undiscovered genetic factors or 

environmental influences associated with disease [57]. Discovering shared risk factors is 

of clinical importance because it can provide insight into potential shared genetic 

architecture among diseases, highlight shared disease mechanisms, and pinpoint potential 

areas for prevention or therapeutic intervention. In this study, we leverage family history 

to discover potential shared familial influences between 12 complex human diseases. 

 

Further, knowledge of whether family history associated disease risk is driven by shared 

genetic variation or environmental and behavioral factors can improve early detection 
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and prevention strategies. A classical genetics tool for disentangling genetic influences 

from environmental factors is an adoption study, where the outcome of an adopted 

individual (who shares zero genetics with relatives) is compared to that of a non-adopted 

individual. Recent genetic methods such as estimation of genetic correlation via linkage 

disequilibrium (LD) score regression or polygenic risk score (PRS) analysis take into 

account the associations between multiple SNPs within the genome and can provide a 

more comprehensive analysis of shared genetic architecture of complex diseases and 

genetically characterized clinical risk. For example, while observational studies have 

shown an association between Alzheimer’s Disease (AD) and an increased risk in 

ischaemic stroke, genome-wide association studies have been unsuccessful in identifying 

genome-wide significant SNPs shared among both diseases, indicative of a shared non-

genetic etiology or study bias. Complex diseases such as AD and stroke, can, however, be 

driven by joint interactions of many associated genes that fall below genome-wide 

significance threshold or share non-genetic, but familially transmitted factors [58]. 

Applying these methods to examine “cross” disease-family history associations can 

illuminate shared genetic and non-genetic (environmental) familial effects across 

seemingly different diseases and conditions. Dissecting the genetic and shared 

environmental components of disease can group diseases based on genetic-only and 

environmental-only classifications and reconstruct complete phenotypic classifications 

[59].  

 

In the first part of our study, we perform 132 cross disease-family history associations for 

every disease ! and family history of disease !(‘XY-FamWAS’) in up to 500,000 
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participants of the UK Biobank, a large population-based cohort in the United Kingdom. 

In the second part of our study, we attempt to deconvolve the genetic and environmental 

components of cross disease-family history associations using three different methods. 

First, we examine pairwise disease-family history associations in an adopted cohort to 

isolate non-genetic phenomena.  Second, we perform genetic correlation analyses 

between disease and family history to uncover their shared genetic architecture, if at all. 

Third, in order to examine how much of the association can be explained by PRS-defined 

genetics, we incorporate a PRS for disease ! in investigating the association between 

disease ! and family history of a different disease !. Our findings discover novel 

disease-family history associations, thereby uncovering putative overlap of shared genetic 

architecture and environmental influences by which seemingly different diseases are 

related. 

 

METHODS 

Study Population 

The UK Biobank (UKB) is a national health resource consisting of 502,628 participants 

(aged 40-69 years) recruited between 2006 and 2010 from the general population of the 

United Kingdom, spanning England, Wales, and Scotland [60]. The resource has 

collected detailed data on indicators of the health status of its participants through 

extensive questionnaire assessments including demographic and medical information, 

physical measurements, genome-wide genotyping, and quantification of environmental 

exposures through blood and urine samples [61].  
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Family history assessment 

Participants were asked on a touchscreen questionnaire whether any first degree 

biological and adopted relatives (father, mother, and siblings) had any common serious 

illnesses. Specifically, biological family history was ascertained with the following 

questions: “Has/did your father ever suffer from?”, “Has/did your mother ever suffer 

from?”, and “Have any of your brothers or sisters suffered from any of the following 

diseases?”. Adopted family history was ascertained with the following questions: 

“Has/did your adopted father ever suffer from?” and “Has/did your adopted mother ever 

suffer from?”. The sets of illnesses that participants were asked to answer included: heart 

disease, stroke, high blood pressure, chronic bronchitis/emphysema, Alzheimer’s 

disease/dementia, diabetes, Parkinson’s disease, severe depression, lung cancer, bowel 

cancer, prostate cancer, and breast cancer.  

 

Disease Phenotypes 

We ascertained participant current disease status for every family history phenotype. The 

data-fields used to ascertain current disease status are presented in Supplementary Table 

3.1.  Specifically, we ascertained self-reported vascular and heart problems by the 

following self-reported question: “Has a doctor ever told you have any of the following 

conditions?”. The possible touchscreen responses were: heart attack, angina, stroke, high 

blood pressure, none of the above, and prefer not to answer, where participants were 

asked in an initial assessment visit (2006-2010), a repeat visit (2012-2013), and an 

imaging visit (2014+). We ascertained participants with diabetes by an affirmative 

response to the question, “Has a doctor ever told you that you have diabetes?”. We 
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ascertained participants with a non-cancer illness, including depression, Parkinson’s 

disease, Alzheimer’s disease, emphysema/chronic bronchitis, and stroke, and a self-

reported cancer diagnosis, including prostate cancer, breast cancer, bowel cancer, and 

lung cancer, by an affirmative response to a diagnosis. To maintain accuracy of data 

collection, all affirmative medical conditions questionnaire responses on the UK Biobank 

touchscreen were then asked directly to the participant by a study nurse.  

 

Statistical analyses for observational associations 

We used logistic regression to test the association between every pair of family history of 

disease and prevalent disease, adjusting by age, sex, and 15 genetic principal components 

(PCs) derived from genotype data. We defined family history as a binary variable (coded 

as “0” or “1”) for any first-degree relative (father, mother, sibling) with disease. We 

conducted separate cross disease-family history analyses in adopted (n = 6347) versus 

non-adopted adults to disentangle genetic effects from environmental influences. We 

additionally conducted separate analyses to test the association between paternal, 

maternal, and sibling history with prevalent disease in order to detect differences in 

association for different types of first-degree relatives (mother, father, sibling). We 

corrected for multiple testing across all pairs of tests using the false discovery rate (FDR) 

method [10]. We report findings that are deemed to be significant at a P-value less than 

0.05 and at a more stringent threshold of FDR of 5%. 

 

To determine the predictive capability of family histories of different diseases ! 

associated with a disease !, we constructed logistic regression models by regressing each 
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predictor set on current disease status. Predictor sets consisted of combinations of: age 

and sex (covariates),  family history of disease !, and family histories of diseases ! 

identified to be significantly associated at an FDR threshold of 5% with disease ! and 

exclusive of family history of disease ! itself. We calculated the area under the receiver 

operating characteristic curve (AUROC, a common measure of predictive power, see 

[62]) with the pROC package in R, with AUROC 95% confidence intervals computed 

across all bootstraps [63]. Individuals with missing values were removed in order to 

perform predictions from a fitted generalized linear model (GLM). 

 

Genome-Wide Association Study and Linkage Disequilibrium Score regression 

Next, we sought to describe the shared genetic architecture between complex disease and 

family history. We conducted GWAS analyses on family history phenotypes using 

PLINK, where the regression models for family history were adjusted for age, sex, and 

15 genetic principal components. We conducted quality control steps, including removing 

individuals of non-British ancestry. Due to limited sample sizes, we were only able to 

perform a GWAS on 7 of the 12 family history phenotypes, including: breast cancer, 

bowel cancer, diabetes, emphysema/chronic bronchitis, Parkinson’s Disease, prostate 

cancer, and stroke; and 9 of the 12 disease phenotypes, including: Alzheimer’s Disease, 

breast cancer, bowel cancer, depression, diabetes, emphysema/chronic bronchitis, heart 

disease, prostate cancer, and stroke. We then applied Linkage Disequilibrium Score 

(LDSC) regression to estimate the genetic correlation between family history and disease 

by regressing association test statistics for SNPs on their LD scores. We used the LDSC 

tool by Bulik-Sullivan et al. for performing these analyses [15,64].  
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Polygenic Risk Score for breast cancer, type 2 diabetes, and coronary artery disease 

Polygenic risk scores (PRS) provide a quantitative measure summarizing the cumulative 

effects of a number of risk alleles based on an individual’s genotype. We leveraged PRS 

in order to identify how much of the association between disease ! and family history 

! can be explained by a genetic risk profile for disease !. We performed PRS analyses 

using scores derived by Khera et al. [65] for breast cancer, type 2 diabetes, and coronary 

artery disease. To compute each individual’s PRS score, we computed the sum of the 

product of the number of risk alleles each individual carries by the weight assigned to the 

genetic variant representing the strength of the association of the variant with disease risk 

(i.e., log of the odds ratio of the allele), across all identified SNPs. For each of these three 

disease phenotypes, we used logistic regression analyses to measure the association of 

disease ! (coded as binary ‘0’ or ‘1’) with family history of disease !, adjusting for the 

PRS for disease !, age, sex, and 15 principal components. We report findings that are 

deemed to be significant at a P-value less than 0.05. 

 

RESULTS 

 

Participant characteristics  

Demographic information for the study cohorts are provided (Supplementary Table 

3.2). The average age of participants was 56.5 and 56.2 for the non-adopted and adopted 

cohorts, respectively. The breakdown and prevalence of self-reported disease and family 

history of disease for each cohort is provided in Supplementary Table 3.3. High blood 
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pressure (27.58% of participants), depression (5.96%), and diabetes (5.39%) were the 

most prevalent diseases among the non-adopted cohort, as well as in the adopted cohort 

(29.52%, 7.56%, 7.96%, respectively). Family history of cardiometabolic traits were the 

most prevalent of all family histories in the non-adopted cohort, including family history 

of high blood pressure (48.27%), heart disease (43.45%), stroke (26.64%), and diabetes 

(21.90%), as well as in the adopted cohort (31.72%, 34.09%, 20.39%, 13.80%). The 

cohort breakdown and prevalence of maternal, paternal, and sibling family history is 

shown in Supplementary Table 3.4.  

 

Family history ! as a risk factor for another disease ! 

Figure 3.1 presents all 144 pairwise associations between 12 complex human diseases 

and their family histories.  For each association, individuals with a positive family history 

and who had the disease of the family history were removed from analyses. The estimates 

of family history associations with disease for same disease pairs are consistent [2], 

including diabetes (OR 3.49, 95%CI 3.40-3.58; FDR-adjusted p-value [FDR] < 0.001), 

prostate cancer (OR 3.03, 95%CI 2.79-3.29; FDR < 0.001), breast cancer (OR 1.95, 

95%CI 1.86-2.05; FDR < 0.001), stroke (OR 1.44, 95%CI 1.37-1.51; FDR < 0.001), and 

heart disease (OR 2.55, 95%CI 2.47-2.64; FDR < 0.001) (Supplementary Figure 3.1a).  

In other words, for example, individuals with a family history of diabetes had a 3.5 fold 

increased odds for having prevalent diabetes (Supplementary Figure 1a), of which less 

than 2% of the association could be attributed to PCs (Supplementary Figure 3.1b, 2, 

3). Overall, we identified a higher magnitude of association for same disease-family 
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history pairs (!"!"# =  2.45) versus different disease-family history pairs (!"!"# =

 1.11), for findings significant at a P-value <  0.05. 

 
Figure 3.1. All 144 pairwise associations between 12 complex human diseases and 
their family histories. For each association, individuals with a positive family history 
and who had the disease of the family history were removed from analyses. Odds ratios 
are printed inside tiles where the association between family history (presented on x-axis) 
and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 principal components. 
 
 
A family history of the cardiometabolic diseases (stroke, diabetes, heart disease) was 

positively associated with other cardiometabolic conditions  (OR 1.09-1.32; FDR < 0.05) 

(stroke, diabetes, high blood pressure, heart disease). For example, we identified a 
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positive association between prostate cancer and family history of breast cancer (OR 

1.27, 95%CI 1.06-1.51; FDR < 0.05) as well as breast cancer and family history of 

prostate cancer (OR 1.18, 95%CI 1.04-1.33; FDR < 0.05). We also identified a strong 

association between emphysema/chronic bronchitis and a family history of lung cancer 

(OR 1.60; 95%CI 1.46-1.76; FDR < 0.001), and with a family history of heart disease 

(OR 1.11, 95%CI 1.02-1.21; FDR < 0.05) (Figure 3.1). 

 

We also found some associations that are, to the best of our knowledge, not previously 

reported in epidemiological or genetic studies, or remain controversial. First, we found a 

protective effect (negative association) of family history of prostate cancer on heart 

disease (OR 0.77, 95%CI 0.69-0.87; FDR < 0.001), high blood pressure (OR 0.88, 

95%CI 0.84-0.92; FDR < 0.001), and diabetes (OR 0.88, 95%CI 0.80-0.96; FDR < 0.05) 

(Figure 3.1). Second, we identified positive associations with the condition of  

depression, including family history of bowel cancer, high blood pressure, Alzheimer’s 

disease, Parkinson’s disease, prostate cancer, lung cancer, diabetes, heart disease, and 

emphysema/chronic bronchitis (Figure 3.1). Third, we identified an association between 

the prostate cancer condition and a family history of depression (OR 1.23, 95%CI 1.01-

1.49; p < 0.05). We identified minimal differences in comparing disease-family history 

associations for male versus female participants (Supplementary Figure 3.4). 

 

Further, a prediction model for emphysema/chronic bronchitis that included family 

histories of diabetes, depression, emphysema, heart disease, lung cancer, and covariates, 

and not family history of emphysema/chronic bronchitis itself, achieved the same area 
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under the receiver operating characteristic (ROC) curve (AUC) than that achieved by a 

family history of emphysema/chronic bronchitis (AUC 0.70 vs 0.69) (Supplementary 

Figure 3.5).  

 

Maternal history more strongly associated with disease outcome than a paternal 

history, and sibling history is more strongly associated than maternal history 

We documented the maternal, paternal, and sibling components of family history 

(Supplementary Figure 6). For clarity of presentation, and in order to compare maternal 

to paternal history contribution to family history associated risk, we plotted only 

associations that we had evidence were non-zero (before multiple comparisons) by 

choosing associations that were significant at a p-value less than 0.05 in both parental 

associations (Figure 3.2, Continued). Overall, we identified a higher magnitude of 

association for maternal (!"!"# =  1.27) versus paternal history (!"!"# =  1.19), for 

findings significant at a P-value <  0.05(Figure 3.2a, Continued). Compared to an 

overall magnitude of association of 1.4 for any (maternal, paternal, or sibling) family 

history, we identified an average magnitude of association of 1.29 and 1.55 for maternal-

only and sibling-only history, respectively (Figure 3.2b and c, Continued). 
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Figure 3.2. (A) Maternal versus paternal family history. Disease-family history 
associations for maternal history (x-axis) are presented against associations for paternal 
history (y-axis). Horizontal and vertical error bars represent 95% confidence intervals. 
All points represented are significant at P-value < 0.05 in both maternal and paternal 
analyses. Each association is annotated with a label listing the disease followed by family 
history (FH) and a numeric label in parentheses listing the odds ratios for maternal and 
paternal history. 
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Figure 3.2. (B) Overall family history versus maternal-only family history. (C) Overall 
family history versus sibling-only family history. 
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The largest and smallest magnitude of maternal association was diabetes and a family 

history of diabetes (OR = 2.71), and stroke and a family history of Parkinson’s Disease 

(OR = 0.796) and the largest and smallest magnitude of paternal association was heart 

disease and family history of Alzheimer’s Disease (OR = 0.745) and prostate cancer and 

family history of prostate cancer (OR = 2.65) (Supplementary Figure 3.6a). 

 

The paternal magnitude of association for diabetes and a family history of diabetes was 

less than the maternal (OR = 2.11), and for emphysema/chronic bronchitis and a family 

history of lung cancer (OR = 1.21) (Supplementary Figure 3.6b). Further, we identified 

a positive maternal association and a negative paternal association with diabetes and a 

family history of lung cancer (OR 1.09 vs. 0.94) and emphysema/chronic bronchitis and 

family history of heart disease (OR 1.18 vs. 0.91). 

 

Sibling history, on the other hand, achieved a higher magnitude of association than both 

maternal and paternal history (!"!"# =  1.58), where we identified the largest and 

smallest magnitude of association for Parkinson’s Disease and a sibling history of 

Parkinson’s Disease (OR =  5.78), and high blood pressure associated with lung cancer 

(OR =  1.05) (Supplementary Figure 3.6c). 

 

Family history of adopted participants highlights the role of shared environment for 

high blood pressure, emphysema/chronic bronchitis, and depression 

To disentangle potential environmental contributions from genetic influences, we 

compared disease-family history associations in the adopted cohort to those found in the 
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non-adopted cohort (Figure 3.3 [continued], Supplementary Figure 3.7). The overall 

magnitude of association in the adopted cohort was 1.63, compared to OR 1.92 in the 

non-adopted cohort, for findings significant at a P-value < 0.05 (Figure 3.3, continued). 

We identified a greater magnitude of association in the adopted versus non-adopted 

cohort for depression and family history of stroke (OR 1.4 vs 1.1) and emphysema and 

family history of lung cancer (OR 1.9 vs. 1.5). We noticed that for same disease-family 

history pairs, the effects were consistently larger in the non-adopted cohort for 

depression, heart disease, emphysema, diabetes, and high blood pressure, informing on 

the genetic influence of familial risk for these cardiometabolic traits. Further, in order to 

determine how much of the disease-family history association can be explained by shared 

non-genetic or environmental factors, we additionally adjusted our models by current 

smoking status and income. Family history remained a significant independent risk 

factor. We found that all (n=12) but 1 association (emphysema and family history of lung 

cancer, p-value = 0.09, B1 = 0.62, B1adj = 0.45) remained significant after adjusting for 

these shared non-genetic or environmental factors. We found that, on average, smoking 

and income represented 0.07% of the disease-family history associations, where the 

highest percent difference was for the association between heart disease and adopted 

family history of heart disease (16%).  
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Figure 3.3. Non-adopted compared to adopted family history. Disease-family history 
associations for non-adopted (biological) family history (x-axis) are presented against 
associations for adopted family history (y-axis). Horizontal and vertical error bars 
represent 95% confidence intervals. All points represented are significant at p-value < 
0.05 in both non-adopted and adopted analyses. Each association is annotated with a label 
listing the disease followed by family history (FH) and a numeric label in parentheses 
listing the odds ratios for non-adopted (biological) and adopted history. 
 
 

Next, we attempted to separate maternal and paternal adopted family history influences 

(Supplementary Figure 3.8, 3.9). We identified, for example,  greater magnitudes of 

association for depression given adopted maternal history of high blood pressure, stroke, 

and heart disease compared to non-adopted maternal history (Supplementary Figure 

3.8, 3.9).  
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Further, we noticed the clustering of disease and family history of disease phenotypes 

based on magnitudes of association were different in the adopted analysis 

(Supplementary Figure 3.7) to that of the non-adopted (Figure 3.1), including the 

clustering of family history of emphysema/chronic bronchitis, breast cancer, and prostate 

cancer in the adopted cohort. We identified emphysema/chronic bronchitis clustered 

among the cardiometabolic traits in the adopted cohort, as well as a family history of 

Alzheimer's disease and diabetes and a family history of lung cancer and breast cancer, 

which was not the case for the non-adopted cohort (Supplementary Figure 3.7). 

 

Common variants and genetic predisposition for BC, CAD, and T2D 

To further tease apart the contribution of additive and common genetic variants in 

disease, we estimated the associations between family history of disease and disease 

adjusted by a polygenic risk score. The association of family history with disease, 

adjusting for polygenic risk score, as well as age, sex, and principal components 

(covariates) for breast cancer, diabetes, and heart disease are presented in Table 3.1. 

First, among the same disease-family history pairs, we found the disease associated with 

a family history of the disease, even after adjusted for PRS (!!" < 2e-16 and !!"# < 2e-

16 for BC, CAD, and T2D). We found PRS represented 7.02%, 7.02%, and 12.78% of 

the same pair disease-family history associations for diabetes, heart disease, and breast 

cancer, respectively (Table 3.1, continued).  
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Table 3.1. Common variants and genetic predisposition for breast cancer, heart 
disease, and type 2 diabetes explain a small proportion of disease-family history 
associations. 

 

Second, among non-same disease-family history pairs, for diabetes and heart disease, we 

found  heart disease associated with a family history of T2D, even after adjusting for T2D 

PRS (!!" < 2e-16 and !!"# < 2e-16), and the same held for diabetes and family history 

of heart disease (!!" < 2e-16 and !!"# < 2e-16). We found family history of T2D was 

strongly associated with prevalent CAD (OR 1.29), adjusting for T2D PRS and 

covariates, where 11.53% of the association was explained by a T2D PRS, indicating that 

the remaining 88.5% is due to genetics not captured by a polygenic risk score and/or 

environmental factors. Further, we found diabetes associated with a family history of 

CAD (OR 1.28), even after adjusting for CAD PRS (!!" < 2e-16 and !!"# < 2e-16), 

which explained 7.06% of the association. The association of diabetes or heart disease 
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with a family history of breast cancer, adjusting for a BC PRS, was not significant (Table 

3.1).   

 

Genetic correlation provides insight into the shared genetic architecture of pairwise 

disease-family history 

We examined the shared genetic architecture between all pairs of conditions and family 

history. The genetic correlation estimates for 63 pairwise combinations of disease and 

family histories of disease are shown in Supplementary Figure 3.10. We further 

examined the genetic correlation of disease with maternal, paternal, and sibling family 

history (Supplementary Figure 3.11). First, among significant (! <  0.05) same 

disease-family history pairs, we identified a strong positive genetic correlation (!! =

 0.88), where diabetes had the largest significant genetic correlation coefficient 

(!! =  0.98), and prostate cancer had the smallest (!! =  0.75).  

 

Second, among non-same disease-family history pairs with a positive significant 

(! <  0.05) genetic correlation, we identified a moderately strong genetic correlation 

(!! =  0.31), where the smallest and largest positive genetic correlation coefficients were 

diabetes and family history of stroke  (!! =  0.13) and depression and family history of 

prostate cancer (!! =  0.51). Among non-same disease family history pairs with a 

negative (inverse) significant genetic correlation, we also identified a  moderately strong 

negative genetic correlation (!! =  −0.30), where the smallest and largest negative 

genetic correlation coefficients were diabetes and family history of prostate cancer  

(!! =  −0.13) and emphysema/chronic bronchitis and family history of Parkinson’s 
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Disease (!! =  −0.50). We identified an inverse genetic correlation between a family 

history of prostate cancer and several cardiometabolic traits, including heart disease (!! = 

-0.30; p < 0.001), diabetes (!! = -0.13), and stroke (!! = -0.36), which is consistent with 

the protective effect we identified in our observational associations.  

 

DISCUSSION 

We present here an atlas of 132 non-same pairs of disease-family history associations for 

12 complex human diseases and perform a range of analyses to assess the shared genetic 

architecture and environmental influences between a disease ! and a family history of a 

different disease !. Our findings are novel for several reasons. First, we demonstrate 

disease similarity for seemingly disparate disease conditions. Second, we identified novel 

associations, such as the protective effect of family history of prostate cancer and heart 

disease, a strong association between family history of emphysema/chronic bronchitis 

and depression, and an association between the prostate cancer condition and a family 

history of depression. These findings have not been reported to date and highlight a 

potential similarity between these two distinct phenotypes. Third, we extend our 

observational associations to investigate the effects of maternal and paternal history on 

cross-disease risk. For example, our findings suggest that maternal history of 

emphysema/chronic bronchitis exerts greater influence on depression than paternal 

history. Fourth, we disentangle genetic factors from environmental influences using a 

range of methods. For example, we find that the increased association between 

depression and family history of emphysema/chronic bronchitis in the adopted cohort 

compared to that of the non-adopted cohort may arise from shared environmental factors. 
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We also identified a greater magnitude of association in the adopted versus non-adopted 

cohort for depression and family history of stroke and emphysema and family history of 

lung cancer, supportive of stronger environmental influences contributing to risk in 

families with stroke and lung cancer. 

 

We have also recapitulated several previously reported findings. For example, the 

positive associations between prostate cancer and family history of breast cancer as well 

as breast cancer and family history of prostate cancer is consistent with previous 

epidemiological findings [66,67]. We identified a strong association between family 

history of lung cancer and emphysema/chronic bronchitis, and additionally, with heart 

disease, high blood pressure, and diabetes, for which, we hypothesize is driven by 

smoking, a major risk factor for lung cancer, insulin resistance, and diabetes.  

 

The findings of our study should be seen in light of several limitations. First, the same 

size of disease and family history for certain diseases are small (i.e., 137 individuals in 

the non-adopted cohort report Alzheimer’s disease, only 4 individuals in the adopted 

cohort cohort report Alzheimer’s disease, and 633 individuals in the adopted cohort 

report a family history of Alzheimer’s disease), which could bias our observational 

associations and mean that our GWAS for family history is underpowered. Second, 

disease status and family history of disease were ascertained using self-reported 

questionnaires which are prone to measurement error and recall bias. Third, we assessed 

positive and negative family history by first-degree family history only (paternal, 

maternal, or sibling) and did not assess second or third-degree family history because this 
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information was not reported in the UK Biobank. Fourth, an adoption study makes an 

assumption that the adoptees are unrelated to their adoptive family. 

 

XY-FamWAS broadens the search of family history as a risk factor for disease to 12 

complex human diseases within a large cohort from the UK population. We demonstrate 

the clinical utility of family history for assessing disease risk, which can perform as well 

as PRS, but is also inexpensive and can be easily collected. We also perform a range of 

analyses that leverage genotypic information and an adoption study design for 

disentangling genetic effects from environmental influences of disease-family history 

associations, shedding light on biological mechanisms shared among seemingly different 

diseases. Our findings investigate shared genetic architecture and environmental 

influences among complex disease, pinpointing potential areas for early detection, 

prevention, or therapeutic intervention. 
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4 
Mendelian Randomization Protocol 

 

 

 

Conducting a Reproducible Mendelian Randomization Analysis using 
the R analytic toolkit [68] 
 
Toolkit for performing a Mendelian randomization analysis in R using published 
summarized genetic data 
 
Collaborator/co-author: Chirag J Patel 
Manuscript published in Current Protocols in Human Genetics in January 2019 
 
Significance Statement  
 
Conventional observational epidemiological studies such as those presented in the 

previous chapters aimed at assessing the effect of an exposure on a disease phenotype can 

be subject to confounding such as reverse causation, where the disease precedes the 
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exposure[69]. A technique termed ‘Mendelian randomization’ (MR) can overcome this 

limitation by leveraging genetic variants such as single-nucleotide polymorphisms 

(SNPs) as instrumental variables to estimate exposure-outcome associations [70]. 

Summary statistics from genome-wide association studies (GWAS) facilitate conducting 

an MR analysis without the need for costly direct genotyping or obtaining individual-

level data [71]. We describe here a protocol for assessing exposure-outcome associations 

in an MR framework using published GWAS summary statistics. 

 

 

ABSTRACT 

Mendelian randomization (MR) is defined as the utilization of genetic variants as 

instrumental variables to assess the causal relationship between an exposure and an 

outcome (Davey Smith & Ebrahim, 2003). By leveraging genetic polymorphisms as 

proxy for an exposure, the causal effect of an exposure on an outcome can be assessed 

while addressing susceptibility to biases prone to conventional observational studies, 

including confounding and reverse causation, where the outcome causes the exposure 

(Davey Smith & Ebrahim, 2007). Analogous to a randomized controlled trial where 

patients are randomly assigned to subgroups based on different treatments, in an MR 

analysis, the random allocation of alleles during meiosis from parent to offspring assigns 

individuals to different subgroups based on genetic variants (Davey Smith & Ebrahim, 

2007). Recent methods use summary statistics from genome-wide association studies to 

perform MR, bypassing the need for individual-level data (Burgess et al., 2015). Here, we 

provide a straightforward protocol for using summary-level data to perform MR and 

provide guidance for utilizing available software. 
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INTRODUCTION 

The aim of many, if not all, observational studies is to associate an exposure and a 

disease or phenotype to eventually collect evidence to discern a causal relationship. 

However, observational associations are influenced by biases such as measured and 

unmeasured confounding and reverse causality and therefore can lack ability to establish 

a directional effect[72]. The principle underlying Mendelian randomization (MR) 

methodology is that such biases can be circumvented by leveraging genetic variants 

associated with an exposure as an “instrumental variable” (IV) to estimate the effect of 

genetic variation within an exposure on an outcome[73]. An IV is defined as an external 

variable ! that is associated with the exposure ! and independent of outcome ! as well as 

any factors associated with outcome !, other than via ! [74]. Genetic variants can be 

utilized as “IVs”, thereby serving the role of randomizing “exposure”.  

 

To utilize a genetic variant as an IV, three assumptions must be satisfied[75] (see Figure 

4.1): (i) the genetic variant must be associated with the exposure, (ii) the genetic variant 

must be independent of any confounder of the exposure-outcome, and (iii) the genetic 

variant must be independent of the outcome, except via a possible association with the 

exposure. 
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Figure 4.1. Directed acyclic graph depicting the IV assumptions for conducting Mendelian 
randomization. G, the genetic variant, must be (i) associated with exposure X, (ii) independent of 
any confounder U, and (iii) independent of outcome Y. 
 

In the simplest MR technique (for one genetic variant), the presence of an association 

between a genetic variant and an exposure and the genetic variant and an outcome may 

imply causal effect of the exposure on the outcome[76]. MR can be performed with 

individual-level participant data, obtained from the genetic data for each participant, or 

with summary-level data, which usually contains per-allele regression coefficients and 

standard errors analyzed over all individuals within a study[77,78]. The causal effect of 

the exposure on the outcome can be calculated by a “2-stage least-squares” (2SLS) 

regression, where the exposure is regressed on the genetic instrument, and the outcome is 

regressed over the exposure values (where linear or logistic regression is used for 

continuous or binary outcome variables, respectively)[78]. In summary data MR, 

summary-level data can either be obtained from publicly available summary level data or 

by consortia of genome-wide association studies (GWAS), or can be calculated from 

individual-level participant information[71]. Here, we present a protocol to perform MR 

using summary-level data and we provide an RStudio markdown file to demonstrate how 

to use the TwoSampleMR package in R. The code and implementation of MR in the 
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protocols below are inspired by and utilize resources provided by the MRC Integrative 

Epidemiology Unit and the MR-Base Collaboration[79,80]. 

 

Performing a Mendelian randomization analysis in R using summarized genetic 

data 

Introductory paragraph  

In this protocol, we show how to perform MR using summary statistics, which can be applied to 

the one-sample or two-sample method. One-sample MR is performed when the data on the 

exposure and the outcome are derived from a single dataset[81]. Two-sample MR is performed 

when the data on the exposure and the outcome are derived from two non-overlapping and 

independent datasets, allowing one dataset to be used for performing the summary-level 

instrument-exposure analysis and the other dataset for performing the instrument-outcome 

association analysis[81,82].  

 

In the inverse variance weighted (IVW) method, the causal effect of the exposure on the outcome 

for a single genetic variant can be estimated as a ratio of the association estimate for the outcome 

and the exposure [83,84]. For multiple independent genetic variants, the ratio estimates from each 

genetic variant can be meta-analyzed to form the overall causal estimate [83,84]. MR-Egger can 

be used when the IV assumptions do not hold or weakly hold, and entails a modification to the 

IVW estimate calculation where the intercept term is calculated as part of the MR-Egger estimate, 

instead of setting the intercept term of the regression to zero [85]. In MR-Egger, the intercept 

serves as a test for directional pleiotropy (meaning the genetic variants exert pleiotropic effects on 

the outcome)[83]. In the protocol below, we describe how to conduct an MR analysis using these 

methods and provide guidance for utilizing MR software in R in order to perform, interpret, and 

visualize results of MR analyses. 
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Protocol steps —Step annotations 
1. Obtain GWAS summary statistics for your exposure (Figure 4.1, X) and outcome (Figure 4.1, 
Y) of interest. Resources such as the NHGRI-EBI Catalog[86] can be leveraged to search for and 
download publicly-available GWAS summary statistics. 
 
2. Determine usability of GWAS summary statistics from Step 1 by ensuring that the instrument-
exposure data and the instrument-outcome data have listed the effect allele, allele frequency, beta, 
standard error, p-value, and sample size (as shown in Figure 4.2).  
 

 
 
Figure 4.2. Shown are the first few rows of the body mass index GWAS summary statistics 
published from the UK Biobank and The Genetic Investigation of ANthropometric Traits 
(GIANT) Consortium meta-analysis[87]. 
 
3. Determine if the IV assumptions hold for conducting an MR analysis. The first assumption can 
be evaluated by linear regression of the exposure on the instrument and calculating the F-statistic 

for your instrument [88,89]. This can be calculated as,! =  !!!!1! ∗ !2

1!!2, for ! sample size, 

! number of genetic variants, and !2the proportion of the variance of the exposure explained by 
the IV [90]. An F statistic less than 10 denotes a weak instrument [88]. 
 
The second and third assumptions are more challenging to formally validate due to the possibility 
of unknown effects[88,89]. In assessing the second assumption, consider any potential 
confounding variables (Figure 4.1, U) that may play a role in the association between your 
exposure and outcome, and in assessing the third assumption, consider potential issues such as 
pleiotropy or population substructure that may serve as a violation [88,89]. 
 
4. Input exposure and outcome GWAS summary statistic data, using the read.table function. 
 
exposure_data<-read.table("exposure_filename.txt", head=T, sep="\t") outcome_data<-
read.table("outcome_filename.txt", head=T, sep="\t") 
 
5. Identify instruments. Find independent SNPs that are GWAS significant (P < 5.0 × 10−8) for 
the exposure and identify the effects for these instrument SNPs from the outcome GWAS.  
 
6. Harmonize the exposure and outcome datasets. Ensure that the effect alleles from both files are 
the same. If not, then flip the log odds ratio of the effect allele of one of the datasets (multiply by 
-1). Ensure that the effect in the exposure file reflects the trait-increasing allele.  
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Ratio of coefficients (or Wald) method 
7. Calculate the ratio of coefficients, or the Wald ratio. This is the simplest method for estimating 
the causal effect of the exposure on the outcome, and is the coefficient of the genetic variant in 
the regression of the outcome (represented here as outcome_data$beta) divided by the coefficient 
of the genetic variant in the regression of the exposure (represented here as 
exposure_data$beta)[91]. 
 
 wald_ratio <- outcome_data$beta/exposure_data$beta 
 wald_ratio_standard_error <- outcome_data$SE/exposure_data$beta 
 z_statistic <- wald_ratio/wald_ratio_standard_error 
 p_value <- 2*pnorm(abs(z_statistic) ,lower.tail=F) 

  
Note that the Wald ratio corresponds to the log odds ratio for the outcome per unit change of the 
exposure. 
 
8. Perform a fixed-effects meta-analysis using the Wald ratio.  
 
effect <- sum(wald_ratio*wald_ratio_standard_error^-2)/ (sum(wald_ratio_standard_error^-2))  
standard_error <-  sqrt(1/sum(wald_ratio_standard_error^-2)) 
Z_statistic <- effect/standard_error  
p_value <- 2*pnorm(abs(Z_statistic) ,lower.tail=F) 
 
Inverse-variance weighted (IVW) method 
9.Perform an inverse-variance weighted (IVW) linear regression to estimate the effect of the 
exposure on the outcome. 
IVW_weights <- outcome_data$SE^-2 
inverse_weighted_LR <- lm(outcome_data$beta ~ exposure_data$beta - 1 
,weights=IVW_weights) 
 
The command summary(inverse_weighted_LR) displays the effect, standard error, and p-value of 
the exposure on the outcome. 
 
Note that the intercept term here is zero in order to calculate the IVW estimate [83]. In the case 
that a single genetic variant satisfies the IV assumptions, the effect of the exposure on the 
outcome can be estimated as a ratio of the estimated coefficient for the outcome to the estimated 
coefficient for the exposure for the genetic variant [83]. 
 
MR-Egger Regression 
10. Perform an MR-Egger regression to estimate the effect of the exposure on the outcome. 
 
MR_egger_regression <- lm(outcome_data$beta ~ exposure_data$beta, 
weights=1/IVW_weights) 
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The command summary(MR_egger_regression) displays the effect, standard error, and p-value of 
the exposure on the outcome. Note that the intercept term here is calculated in the MR-Egger 
analysis [83,85].  
  
 
Performing Mendelian randomization using the TwoSampleMR package in R. 
 
The TwoSampleMR package in R facilitates conducting two-sample MR analyses by offering 
access to the large MR-Base repository of GWAS summary statistics and providing easy-to-use 
software for proper harmonization of datasets, estimating the causal effect using a range of MR 
methods, conducting sensitivity analyses, and visualizing results [79,80]. 
 
This protocol and code below was inspired by the TwoSampleMR documentation provided by the 
MRC Integrative Epidemiology Unit and the MR-Base Collaboration, which can be found on 
https://mrcieu.github.io/TwoSampleMR/[79,80]. 
 
Necessary Resources 
Software 
         R package version >= 3.1.0 [42] with the following libraries installed: devtools[92], 
TwoSampleMR[79,80], MRInstruments[93],and tidyverse[94]. 
 
Files 

GWAS summary statistics (including SNP, major allele, minor allele, allele frequency, 
effect size, standard error, p-value, and sample size) for the exposure and outcome of interest OR 
these files can be obtained by browsing through existing catalogues from the MR Base databases 
accessible through the MRInstruments package[93]. Note that some information that may be 
missing from your summary statistics file, may be present in the paper referencing the GWAS or 
may be calculated using the information in the file. Further note that your data can be formatted 
in the correct manner for use in the TwoSampleMR package by using the function format_data 
(as described in step #2 of the protocol below)[79,80]. 

 
The .Rmd file “TwoSampleMR_protocol.Rmd” included in this manuscript will serve as 

a guide through the protocol below.  
 

Protocol steps—Step annotations 
1. Load the TwoSampleMR package in R [79,80]. You can install the devtools package from 
CRAN-like repositories with the install.packages("devtools") command in order to utilize the 
install_github function[92]. 
install.packages("devtools") 
library(devtools) 
install_github(“MRCIEU/TwoSampleMR”) 
library(TwoSampleMR) 
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2. Identify and obtain GWAS summary statistics. You can either obtain your own summary 
statistics or browse through the MR Base GWAS database[79] (available_outcomes() can show 
the list of available GWASs).  
 
External summary statistics can be read in and converted to the correct format using format_data. 
For example, the body mass index (BMI) GWAS summary statistics as shown in Figure 4.2 can 
be converted as follows:  
 
exposure_converted_dataframe <- format_data(exposure_dataset, type = "exposure", snp_col = 
"SNP", beta_col = "BETA", se_col = "SE", effect_allele_col = "Tested_Allele", other_allele_col 
= "Other_Allele", eaf_col = "Freq_Tested_Allele_in_HRS", pval_col = "P", samplesize_col = 
"N") 
 
The R package MRInstruments contains data sources to search for genetic instruments that can be 
used for your MR analysis[93]. In this demonstration, we use data from the gwas_catalog to 
search for the instruments from the 2010 GWAS on BMI published in Nature Genetics by 
Speliotes et al [95]. 
 
devtools::install_github("MRCIEU/MRInstruments") 
library(MRInstruments) 
data(gwas_catalog) 
exposure_data <- subset(gwas_catalog, PubmedID == "20935630") 
 
3. Ensure that your data is presented in the correct input format and perform linkage 
disequilibrium (LD) clumping to remove any non-independent SNPs. 
exposure_data <- format_data(exposure_data) 
exposure_data <- clump_data(exposure_data) 
 
4. Extract the instrumental SNPs for your outcome of interest. In this example, we are using the 
2014 GWAS summary statistics for type 2 diabetes susceptibility as published in Nature Genetics 
by the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium [96]. 
 
outcome_data <- extract_outcome_data( 
    snps = exposure_data$SNP, 
    outcomes = 23 
)  
 
5. Harmonize exposure and outcome datasets to ensure the reference alleles from both datasets 
match. Prune your harmonized dataset. Here, the exposure and outcome datasets are harmonized 
(shown in Figure 4.3) and renamed as dat. 
 
dat <- harmonise_data( 
    exposure_dat = exposure_data,  
    outcome_dat = outcome_data 
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) 
 
dat <- power.prune(dat) 
 

 
Figure 4.3. Shown are the first few rows of the harmonized dataset.  
 
6. Perform an MR analysis (results shown in Figure 4.4) and specify the types of method in 
method_list() of the mr()function. 
 
results <- mr(dat) 
 

 
Figure 4.4. The causal effects, standard errors, and p-values obtained from the MR analysis 
using the default methods of MR Egger, weighted median, inverse variance weighted, simple 
mode, and weighted mode, are shown. 
 
The full list of available MR methods can be identified from mr_method_list(). 
 
7. Conduct sensitivity analyses. Check for heterogeneity and test for directional horizontal 
pleiotropy.  
 
mr_heterogeneity(dat) 
mr_pleiotropy_test(dat) 
 
8. Perform a leave-one-out sensitivity analysis (by sequentially removing each SNP from the MR 
analysis and running MR) and visualize results from this sensitivity analysis (shown in Figure 
4.5). 
 
results_leaveoneout <- mr_leaveoneout(dat).  
mr_leaveoneout_plot(results_leaveoneout) 
plot_leaveonout[[1]] 
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Figure 4.5. The results from the leave-one-out sensitivity analyses are shown on the 
scatterplot. The estimated causal effect is shown for each excluded SNP and the overall 
estimate using all the SNPs is shown in red. The error bars represent the 95% confidence 
intervals. 
 
9. Visualize MR results. 
scatter_plot <- mr_scatter_plot(results, dat) 
scatter_plot[[1]] 
 
The command mr_scatter_plot(results, dat) creates a scatterplot for each exposure-outcome 
association (shown in Figure 4.6). A specification of the method in method_list() visualizes the 
estimated causal effect according to the specified MR method.  
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Figure 4.6. The scatterplot suggests a positive causal relationship of the SNP effects on BMI 
against the SNP effects on type 2 diabetes. Each point displayed on the graph represents a 
single genetic variant. The horizontal and vertical lines extending from each point represent 
the 95% confidence interval for the genetic associations. The horizontal axis of the graph 
displays the estimated genetic associations with the exposure (BMI), and the vertical axis 
displays the estimated genetic associations with the outcome (type 2 diabetes). The color of 
the lines indicate the type of MR test used (light blue for inverse variance weighted, dark 
blue for MR Egger, light green for simple mode, dark green for weighted median, and red for 
weighted mode). 
 
 
Additionally, a forest plot can be made to compare the MR estimates derived from the different 
MR methods (shown in Figure 4.7). 
 
single_snp_analysis <- mr_singlesnp(dat) 
forest_plot <- mr_forest_plot(single_snp_analysis) 
forest_plot[1] 

 
 
Figure 4.7. The forest plot shows the causal estimate using each SNP alone as well as the 
overall causal estimate using all the SNPs with MR-Egger and IVW. The error bars represent 
the 95% confidence intervals. 
  
 
GUIDELINES FOR UNDERSTANDING RESULTS 
 

By leveraging a genetic approach as demonstrated in our example above, we were able to 

provide evidence in support of a positive causal effect of BMI on type 2 diabetes, which 
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was consistent across all MR methods. We obtained effect sizes of 0.25, 0.18, and 0.19 

for MR Egger, weighted median, and inverse variance weighted, respectively, which 

correspond to the estimated causal effect on type 2 diabetes per unit increase in BMI 

(!"/!2). In a “leave-one-out” sensitivity analysis, where we sequentially excluded a 

SNP and performed MR, we observe that the causal estimate remains robust. The forest 

plot compares the estimated causal effects for all the SNPs as determined by MR-Egger 

and IVW to the estimated causal effect as determined per each SNP. While the MR-

Egger and IVW estimates agree in our demonstrated example, the IVW estimate can 

substantially differ from the MR-Egger estimate, suggesting the possibility of directional 

pleiotropy [83]. In summary, we highlight the utility of MR in assessing causal 

relationships, while accounting for limitations prone to many conventional observational 

epidemiological studies. 

 
COMMENTARY 

Background Information 

The concept of utilizing IVs to examine causal effects was first introduced in 

econometrics 90 years ago, and applied to disease outcomes in 1986 by Martijn Katan 

[97]. In assessing the causal role of low serum cholesterol levels and cancer, Katan 

explained that the relationship was likely not affected by diet or other confounding factor, 

but that the relationship can be elucidated by observation of the number of cancer patients 

who carry the E-2 isoform of the apolipoprotein (ApoE) gene, which is associated with 

lower serum density lipoprotein than major isoforms E-3 and E-4 [98]. Since then, there 

have been many studies that have assessed causal relationships using MR for a range of 

exposures and outcomes, including biomarkers (i.e. C reactive protein[99]), clinical traits 
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(i.e. BMI [100]), disease phenotypes (i.e. coronary heart disease [101]), socioeconomics 

(i.e. educational attainment [102]), behavioral characteristics (i.e., alcohol consumption 

[103]), and intrauterine effects[104] (i.e., maternal homocysteine levels[105]). 

 

For example, an MR study demonstrated that genetic variants in the gene encoding the 

target of statin therapy, HMG-CoA reductase or HMGCR, is associated with increased 

risk for type 2 diabetes and related traits such as higher body weight and waist 

circumference, highlighting a pharmacological application of MR[106]. In another 

example, MR was used to determine that tobacco smoking may cause a reduced BMI and 

a higher resting heart rate, but did not find a strong causal association between smoking 

and adverse blood pressure, serum lipids, and glucose levels[107]. MR promises to be a 

valuable method for identifying disease risk factors and areas for intervention and can be 

leveraged to inform public health policy. 

 

Critical Parameters 

There are a number of statistical and methodological challenges and limitations to MR 

that have been discussed at length in other articles [78,108,109]. Possible limitations 

include linkage disequilibrium (i.e., when different loci within a population have 

correlated allelic states[76]), population stratification (i.e., when a population can be 

broken into subpopulations that exhibit different frequencies of genetic variants or 

disease[76]), or pleiotropy (i.e., when a genetic variant is associated with more than one 

phenotype[76]). Challenges may arise from utilizing a weak instrument (F statistic less 

than 10), or from situations where the core assumptions are violated or weakly satisfied, 
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and even from cases where the core assumptions are satisfied, but an external factor is at 

play (i.e., canalization) [110]. In fact, the development of novel MR approaches and 

extensions to the conventional methodology to account for these limitations is a rapidly 

growing field [111–115].  

 

For a description of potential limitations that may affect interpretation of MR findings 

and recommended practices in those situations, we recommend referring to Table 2 from 

a review article by Zheng [110] and Table II from Lawlor [76]. We also recommend 

referring to Table 2 from the review article by Burgess for descriptions of various 

sensitivity analyses and situations where they would be of relevance [116]. 
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5 
Infection-Wide Association Study (IWAS) 

for Type 2 Diabetes 
 

Magnitude and robustness over time of infectious risks in patients with documented 
type 2 diabetes: an infection-wide association study (“IWAS”) and Mendelian 

randomization assessment 
 

Collaborators/co-authors: Arjun K Manrai, John PA Ioannidis, Chirag J Patel 
 

  
ABSTRACT 

Background. Some infectious diseases are speculated to predispose individuals to 

develop type 2 diabetes (T2D) and T2D increases the risk of many infections. However, 

these studies lack comprehensive testing of the full spectrum of all infectious disease 

diagnoses. 
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Methods. We performed an observational investigation, “Infection-Wide Association 

Study” (IWAS), examining 252 and 274 diagnostic codes for infectious diseases recorded 

before (“IWAS-b”) and after (“IWAS-a”) the first date of documented T2D in 172,172 

individuals with T2D versus matched controls from 44·9M members from large health 

insurance claims. We provide a comprehensive picture of the magnitude of infectious 

disease associations with T2D over six years surrounding the time of T2D diagnosis and 

link infectious disease susceptibility genotypes with T2D using Mendelian randomization 

(MR). 

  

Findings. We identified 31 (12% of total) and 28 (10%) diagnostic codes associated with 

T2D in IWAS-b and IWAS-a, respectively, of which 23 infections were identified in 

both. In IWAS-b, we identified increased odds of candidiasis, Hepatitis C, 

Staphylococcus aureus, Streptococcus, and Helicobacter pylori, which increased in 

magnitude of odds following T2D diagnosis. The MR analyses showed no significant 

signals, except for a suggestive signal for Hepatitis B (P = 0.008). 

  

Interpretation. In patients with T2D, many infections show early signals of increased 

risk and the risk escalates substantially once the diagnosis of T2D is formally recorded. 

These infections create a high burden of complications but even though they can occur 

early in the T2D disease process they do not appear etiologically related as risk factors 

with T2D. 

  

Research in context 
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Evidence before this study: We searched PubMed for articles that have assessed the 

relationship of infectious diseases with type 2 diabetes published up to October 15, 2019 

using a combination of search terms that included synonyms of “infectious diseases”, 

“type 2 diabetes”, “bacterial infections”, and “viral infections”. Our search identified 

reports from observational epidemiological studies where one or a few infectious diseases 

were studied in association with type 2 diabetes. These studies lacked comprehensive 

assessment of the full spectrum of all infectious disease diagnoses studied as potential 

risk factors and complications of type 2 diabetes. Further, evidence from conventional 

observational studies cannot establish direction of association. 

 

Added value of this study: In our observational investigation, termed “Infection-Wide 

Association Study” (IWAS), we comprehensively and systematically assessed over 250 

diagnostic codes for infectious diseases recorded before and after the first date of 

documented type 2 diabetes (T2D) in over 170,000 patients and controls in a cohort 

assembled from health insurance claims data. We catalogue a comprehensive list of 

infections, including viral, bacterial, fungal, and parasitic diseases, presented at point-of-

care in T2D patients over a period of three years before and after the date of documented 

T2D and provide a granular picture of the magnitude of associations of infectious 

diseases with T2D over one-year time increments during this six-year period. Our method 

allows for discovery of infectious diseases that may be possible risk factors of T2D 

and/or complications. We integrated our analyses with the Mendelian randomization 

approach to assess causality in associations observed from IWAS, enhancing our 
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understanding of the bidirectional link between T2D and infectious diseases and allowing 

us to prioritize infectious diseases associated with T2D. 

 

Implications of all the available evidence: Our study presents a data-driven map of 

infectious diseases evaluated in association with T2D as risk factors and/or complications 

across the broad scale presented in large claims, and provides a genetic assessment of the 

causal relationship of prioritized infectious diseases and T2D. Our findings show 

individuals with T2D are at risk for a high burden of infectious disease complications that 

occur early in the T2D disease process, but do not appear to be etiologically related as 

risk factors with T2D. 

  

INTRODUCTION 

The pathogenesis of type 2 diabetes mellitus (T2D), a metabolic disorder characterized 

by β-cell dysfunction in insulin secretion, involves many components[117]. Heritability 

estimates for T2D derived from family and twin studies have varied from 20-80%, 

indicating a potential contribution in the development of abnormal glucose tolerance 

explained by environmental factors[12,118]. It is unclear to what extent infectious agents 

could play a role. 

 

Previous studies have implicated a number of infections that can potentially play a role in 

T2D, but disentangling the mechanisms for the abrupt metabolic change remains at large 

[119,120]. These studies are limited to addressing one type of infection or infectious 

agent at a time and lack comprehensive assessment of the full spectrum of infectious 



 95 

agents. Assessing these factors in a non-systematic and non-standardized fashion can lead 

to spurious findings and a fragmented literature of associations[121–123]. Furthermore, 

the role of infectious agents may be complex in T2D. Some infections may act as a risk 

factor for insulin resistance or beta-cell function before disease onset. 

  

While the role of infectious risk factors is controversial, individuals with T2D may have 

risk for infection as complications due to high glucose levels. There is literature on 

assessing the risks of each one of them one at a time[124,125], but we lack a 

comprehensive analysis to-date that examines comparatively the magnitude of the risk for 

all infections after T2D has been diagnosed. Some infections may also occur both before 

and after T2D onset. The exact timing of the T2D process may be difficult to discern and 

may cause difficulties to specify whether an infection preceded or followed the onset of 

that process.  

  

To enhance our understanding of the associations of infectious disease factors both before 

T2D documentation, we performed an “Infection-Wide Association Study” (IWAS) in 

cohorts assembled from health insurance claims data. We comprehensively and 

systematically evaluate the associations of 252 and 274 infectious diseases that occurred 

within a 24-month window before (“IWAS-b) and after (“IWAS-a”) the date of 

documented T2D in a study population of 172,172 patients with T2D and matched 

controls. Our approach is conceptually similar to that of genome-wide association studies 

(GWAS) and exposure-wide associations (EWAS)[126]. Specifically, we take an 

agnostic approach and scan across the broad spectrum of infectious diseases for 
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association with T2D while correcting for multiple testing. We further investigated 

associations at varying time intervals within a three-year period before and after the 

documented date of diagnosis to probe the robustness of the results to different time-of-

disease onset assumptions. 

  

Observational investigations can be prone to biases including measured and unmeasured 

confounders and T2D onset may precede the recording of a T2D diagnosis in medical 

care-related databases. Therefore, we coupled our findings with Mendelian 

randomization (MR) analyses in order to assess the potentially causal effect of our top 

findings (lowest false discovery rate [FDR]) on T2D. Our study is the first to combine 

IWAS and MR to provide a comprehensive picture of the magnitude of increased 

infectious risks before and after a documented diagnosis of T2D, and to examine whether 

infections are not only complications but even risk factors per se for T2D. 

  

METHODS 

  

Study population 

We used de-identified medical and pharmacy claims data from Aetna Inc., a large 

national insurance company in the United States. The retrospective dataset contained 

44·9 million members with billed medical services from January 2008 to February 2016 

across 50 states and territories. Information about the members of the insurance plan 

included member’s age, sex, enrollment period, as well as diagnoses, prescription history, 

and laboratory test results collected in the medical billing claims processes. For each 
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member included in our study, we searched for T2D billing codes and we identified 

infectious disease claims during a 24-month surveillance window before and the 

documented date of T2D diagnosis and a 24-month surveillance window after that date 

(Figure 5.1A, Continued). We selected a 24-month surveillance window because 

glycemic measurements appear to rapidly change 2-3 years prior to the onset of 

diabetes[127]. 
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Figure 5.1. Diagram of IWAS case-control ascertainment and method of analysis. A) 
We ascertained our cases by identifying patients with an ICD-9 diagnostic billing code 
for type 2 diabetes (T2D), where the “date of T2D diagnosis” was defined as the earliest 
date this code was entered such that patients did not have a prescribed T2D medication or 
blood glucose or hemoglobin A1C test result indicative of T2D prior to this documented 
date. We identified 86,086 cases that met our selection criteria and 86,086 propensity 
score matched controls based on age, gender, census region, and overweight/obesity. We 
identified all infectious disease ICD-9 diagnostic codes that the cases had in the 24-
month window before and after the date of T2D diagnosis for our IWAS-b and IWAS-a 
analyses, respectively, and that the controls had within the same 24-month window of 
surveillance as the matched cases. B) We randomly allocated half of the cases and half of 
the controls to a training and validation set. We then systematically tested 252 and 274 
infectious disease diagnostic codes for their association with T2D for IWAS-b and 
IWAS-a, respectively. We report infectious disease diagnostic codes that met an FDR 
significance threshold of 5% in both the training and validation sets for IWAS-b, and 
separately for IWAS-a. C) We examined the potential causal association of each 
identified infectious disease from IWAS-b with T2D in a Mendelian randomization 
framework.  
 
 



 99 

 
 
Ascertainment of T2D diagnosis 

We ascertained documented diabetic status by the presence of an International 

Classification of Diseases, Ninth Revision (ICD-9) diagnostic billing code in the range 

250-250·92 during any hospital visit including outpatient and inpatient (Supplementary 

Table 5.1). We excluded codes in the range that were specified for type 1 diabetes and 

removed patients under age 18 to further ensure exclusion of type 1 diabetes cases. For 

every patient, we determined the date of T2D diagnosis by identifying the earliest 

documented date a patient received an ICD-9 code for T2D (referred here as “date of 

T2D diagnosis”). We excluded patients with a minimum enrollment period less than 24 

months prior to the date of T2D diagnosis, resulting in a sample population of 296,497 

patients (Supplementary Figure 5.1). We further excluded 145,628 patients without any 

prescription history, which can be suggestive of incomplete records, and another 17,912 

patients with a blood glucose or hemoglobin A1C test result prior to the date of T2D 

diagnosis that may be indicative of T2D in accordance with guidelines set by the 

American Diabetes Association[33]. Specifically, this included: (1) fasting glucose level 

greater than 7·00 mmol/L (126 mg/dL); (2) non-fasting glucose level greater than 11·1 

mmol/L (200 mg/dL); and (3) hemoglobin A1C concentration greater than 6·5%[33]. We 

identified laboratory test results by entries for LOINC (Logical Observation Identifiers 

Names and Codes) 1558-6, 2345-7, and 4548-4 for fasting glucose, non-fasting glucose, 

and hemoglobin A1C, respectively. To ensure we determined the date of T2D diagnosis 

and that the patients did not have T2D prior to enrolling in the insurance plan, we 

excluded 13,725 patients who were prescribed a T2D medication prior to the recorded 
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date of T2D diagnosis (Supplementary Table 5.2). We identified medications prescribed 

during the study period using the National Drug Code (NDC) description[128]. 

  

For every patient, we identified age at time of T2D diagnosis, gender, and census region 

(Northeast, Midwest, South, and West). We also identified body mass index for each 

patient by searching for an ICD-9 code (see Supplementary Table 5.3 for list of codes) 

within two years prior to the date of T2D diagnosis. We excluded 33,146 patients with 

inconsistent patient identification numbers or demographic information, resulting in a 

final case population of 86,086 patients (Figure 5.2). 

 

 
Figure 5.2. Flowchart depicting inclusion and exclusion criteria for study case selection. 
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Matched controls by propensity score 

We randomly selected 410,000 individuals who did not have any ICD-9 billing code for 

T2D and who were not prescribed any T2D medications or insulin therapy nor have had a 

blood glucose or hemoglobin A1C laboratory test with a result indicative of T2D at any 

point in the insurance claims dataset. Consistent with our ascertainment of cases, we 

ensured patients were not without a prescription history, and were over age 18. For each 

control, we identified date of birth, gender, census region, and body mass index. 

  

We implemented “nearest-neighbor” propensity score matching to match controls in a 1-

to-1 ratio to cases based on age, gender, census region, and overweight/obesity status. 

Consistent with cases, we defined overweight/obesity status in controls by the presence 

of a corresponding body mass index billing code within two years prior to the age of 

matching. We clustered diabetic cases by year of T2D billing code, which ranged from 

2010 to 2015, and for each cluster, we performed greedy nearest neighbor matching 

without replacement. For every selected case, we matched a control subject based on 

distance of their logistic regression-derived propensity score. We then identified 

infectious disease ICD-9 codes that occurred within the same 24-month infection window 

as their matched cases, which was a 24-month window before the date of matching for 

IWAS-b, and 24-months after the date of matching for IWAS-a. For the controls, we 

calculated their age at the year the control was binned in (i.e., if a control was matched to 

a case whose date of T2D was in 2010, then the age of the control was taken in 2010, in 

accordance with the age of the matched case). All propensity score matching was 

performed using the program MatchIt in the R statistical computing environment[129]. 
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Systematic identification of infections before and after type 2 diabetes 

We performed an observational investigation, termed “Infection-Wide Association 

Study” (IWAS), on the case and control groups to identify infectious diseases that 

potentially increase an individual’s likelihood of developing T2D (termed “IWAS for 

infections before the date of T2D” or IWAS-b) or that would follow as complications of 

T2D (termed “IWAS for infection complications after the date of T2D” or IWAS-a). 

Following the construction of the case and control groups, we extracted patient-level 

ICD-9 codes for infectious diseases discerned by an ICD-9 code in the range of 0 to 139 

during the 24-month period prior to the date of T2D for our IWAS-b analyses. We 

additionally conducted this analysis using the 24-month period after the date of T2D as 

our infection surveillance window for our IWAS-a analyses. We removed 130 and 109 

infections from IWAS-b and IWAS-a, respectively, that occurred in fewer than 5 patients 

(or with a prevalence less than 0·00006%) of the case and control groups combined. We 

examined 252 and 274 unique codes for infectious disease in IWAS-b and IWAS-a, 

respectively, where 225 unique codes overlapped between IWAS-b and IWAS-a. The 

difference between the number of infections examined in IWAS-b and IWAS-a is largely 

due to the prevalence inclusion threshold. We studied infectious diseases across a wide 

range of categories, with 75% of the examined infectious diseases represented as viral, 

bacterial, fungal, and parasitic diseases (displayed in Supplementary Table 5.4). 

  

For every patient in the study, we marked with a binary variable (0 or 1) whether the 

patient had a billing code for an infectious disease at any point during the 24-month 
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window of surveillance. We did not take repeated incidences of infectious disease codes 

for the same patient into account because this could occur due to billing processes across 

clinics and may not necessarily represent cases of unique infection.  Of the patients in the 

study, half were randomly assigned for infectious disease identification, and the other 

half was used for internal replication. We modeled the relationship between each 

infection and T2D using logistic regression, adjusting by age, sex, census region, and 

body mass index as a continuous variable (Figure 5.1B). We corrected regression 

coefficient significance levels for multiple testing using the FDR method[130]. 

  

Time-Varying IWAS Analyses 

The documented date of new-onset T2D is a terminus ante quem for when T2D occurred. 

The diabetic process or even frank T2D may have started earlier than that date but not be 

documented because no testing was done promptly, because testing cannot identify early 

phases of the diabetic process, or because it is not captured in the patient’s insurance 

claims record. In order to gain a more granular time-varying view beyond our primary 

24-month pre- and post- date of documented T2D analyses, we extended our study to 

evaluate associations at varying time intervals within a three year period before and after 

the date of documented T2D. The varying time windows examine the stability of 

associations with different temporality assumptions for IWAS-b. Similarly, the varying 

time windows allow assessing time variability after the documented onset of T2D in the 

IWAS-a associations and their strength. 

  



 104 

More specifically, we identified infectious disease ICD-9 billing codes that occurred 

within 0-12, 12-24, and 24-36 months before and after the date of documented T2D. If a 

patient had multiple incidences of an infectious disease (i.e., an infection 18 months prior 

to the date of T2D, and again 6 months prior), then we marked the patient as having the 

disease within multiple surveillance windows (i.e., both the “0-12” and “12-24” month 

surveillance windows). We then systematically tested each infection for association with 

T2D for each of the three time intervals before and after the date of documented T2D 

using logistic regression, adjusting by age, sex, census region, and body mass index. 

 

Mendelian randomization analyses 

In order to evaluate the potential causal effect of infection on T2D, we performed two-

sample Mendelian randomization (MR) on infectious diseases that met an FDR threshold 

of 5% in the training and validation sets of IWAS-b (Figure 5.1C). We identified genetic 

variants associated with the infectious phenotype of interest that met a genome-wide 

significance threshold in published genome-wide association studies (GWAS) by 

searching for publicly available summary statistics in the NHGRI GWAS Catalog[131] 

and the MR-Base repository[79,132] and used these genetic variants as proxy for the 

infectious exposure. 

  

We examined T2D, hemoglobin A1C, levels, and fasting insulin levels as outcomes in 

our MR analyses. For T2D, we used data from the DIAbetes Genetics Replication and 

Meta-analysis (DIAGRAM) consortium, which was a meta-analysis on 26,488 cases and 

83,964 controls of European, East Asian, South Asian, Mexican, and Mexican American 
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ancestry[96]. For hemoglobin A1C levels, we used data from a meta-analysis of 23 

GWAS in 46,368 nondiabetic individuals of European ancestry, and for fasting insulin, 

we used data from a meta-analysis of 21 GWAS in 46,186 nondiabetic participants from 

the Meta-Analyses of Glucose and Insulin-Related Traits Consortium 

(MAGIC)[133,134]. 

  

For Helicobacter pylori, we obtained summary statistics from a GWAS on 

seroprevalence in 6160 individuals of European descent who were seropositive for H. 

pylori[135]. We identified 2 instrument SNPs, rs10004195 (P = 1·4e-18) and rs368433 

(P = 2·1e-8), and that were not in linkage disequilibrium[135]. We identified two genetic 

instruments, rs225126 (P = 3·0e-10) and rs7161578 (P = 4·0e-8), for yeast infection from 

a GWAS study with data from 52,218 research participants of European ancestry from 

23andMe[136]. For human immunodeficiency virus (HIV), we leveraged one genetic 

instrument, rs4878712, associated with HIV-1 susceptibility[137]. For hepatitis B, we 

used a GWAS on 1425 cases of European descent with hepatitis B and 218,180 European 

ancestry controls, where an association was found for rs9268652 (P = 3·1e-9)[136]. For 

hepatitis C, we used one genetic instrument, rs8099917 (P = 6·0e-9), associated with 

chronic hepatitis C in 1015 cases of European descent[138]. 

  

We also performed a two-sample MR on antibody level in response to infection and T2D. 

We identified a genome-wide significant genetic variant for antibody level in response to 

infection from a GWAS study on 1300 Mexican Americans who were measured for IgG 

antibody level against 12 common infections, including Chlamydia pneumoniae, H. 
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pylori, Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II 

virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster 

virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus[139]. 

  

We performed all two-sample Mendelian randomization analyses using the 

TwoSampleMR package in R[79,80] and derived estimates using the Wald ratio and 

inverse-variance weighted methods. 

 

RESULTS 

Characteristics of study population 

Table 5.1 (continued) shows the demographic characteristics for the IWAS-b and 

IWAS-a study populations, respectively, displayed separately for the training and testing 

sets, as well as for the cases and controls. There were 172,172 total patients in IWAS-b 

and IWAS-a study populations, respectively. The average age across both of these 

populations was 54 and 50% were female, with 18% of the population classified as 

overweight or obese (Table 5.1). Of the patients with ICD-9 diagnostic codes for body 

mass index (BMI), the average BMI was 32. Patients were distributed across the four 

Census Bureau-designated regions, with 32% from the Northeast, 12% from the Midwest, 

38% from the South, and 18% from the West. 
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Table 5.1. Demographic characteristics of case and control groups in IWAS-b and 
IWAS-a.  

 

 

We identified 252 and 274 eligible ICD-9 diagnostic codes from the IWAS-b and IWAS-

a study populations, respectively, that represented a range of infectious diseases 

(Supplementary Table 5.4). Over 70% of the ICD-9 diagnostic codes represented viral, 

bacterial, fungal, and parasitic diseases. 

  

 

Infection associations with T2D before documented date of T2D 

Figure 5.2 (continued) displays a “Manhattan plot” style figure for findings from the 

infection-wide association study of infections that occurred before the documented date 

of T2D diagnosis (IWAS-b). The negative logarithm of the association P-value is 

displayed on the y-axis, where the height corresponds to the strength of the association to 

T2D, displayed for each infection ICD-9 code (displayed along the x-axis). We identified 
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31 of 252 (12·3%) infection ICD-9 diagnostic codes associated with T2D, at an FDR 

threshold of 5% in both the training and validation sets (Figure 5.2, continued). The 

most significant (lowest FDR) findings included: dermatophytosis of foot (OR 4·11, P = 

2·4E-21) and nail (OR 3·58, P = 5·3e-22), unspecified septicemia (OR ·4e-21), viral 

warts (OR 2·41, P = 9·5E-18), and H. pylori (OR 3·03, P = 6·1E-13) (Supplementary 

Figure 5.1a). 

 

 

Figure 5.2. Manhattan plot style figure for the infection-wide association study of 
infectious disease diagnostic codes associated with type 2 diabetes in IWAS-b, or 
before the documented date of T2D diagnosis. The plot symbols represent the training 
(circles) and validation (triangles) sets. Each point represents an infectious disease ICD-9 
diagnostic code and is labeled with the odds ratio presented in parentheses. The colors 
represent the different categories of infection represented in our study. The x-axis 
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indicates the ICD-9 diagnostic code arranged left to right in numeric order (0 to 139) and 
the y-axis indicates the -log10(p-value) of the adjusted logistic regression coefficient per 
infectious disease. 
 

Infection complications of T2D 

Figure 5.3 displays the distribution of p-values of association between each infection 

ICD-9 code and T2D for infections that occurred after the documented date of T2D 

diagnosis (IWAS-a). We identified 28 of 274 (11%) infections that met an FDR threshold 

of 5% in the training and validation sets in IWAS-a. The most significant (lowest FDR) 

results in IWAS-a were consistent with those of IWAS-b, except greater in magnitude of 

odds ratio: dermatophytosis of nail (OR 4·07, P = 5·4e-51) and foot (OR 4·65, P = 2·6E-

37), unspecified septicemia (OR 11·15, P = 3·3e-18), candidiasis of mouth (OR 3·69, P = 

8·2e-13) and skin and nails (OR 3·72, P = 4·5E-10) and vulva and vagina (OR 3·31, P = 

4·0E-9), and H. pylori (OR 3·05, P = 4.7E-16) (Supplementary Figure 5.2b). 
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Figure 5.3. Manhattan plot style figure for the infection-wide association study of 
infectious disease diagnostic codes associated with type 2 diabetes in IWAS-a, or 
after the documented date of T2D diagnosis. The plot symbols represent the training 
(circles) and validation (triangles) sets. Each point represents an infectious disease ICD-9 
diagnostic code and is labeled with the odds ratio presented in parentheses. The colors 
represent the different categories of infection represented in our study. The x-axis 
indicates the ICD-9 diagnostic code arranged left to right in numeric order (0 to 139), and 
the y-axis indicates the -log10(p-value) of the adjusted logistic regression coefficient per 
infectious disease. 
 
The mean prevalence of the ICD-9 codes examined in the total population was low, at 

0·09% (Supplementary Figure 5.3, Supplementary Table 5.5). For the majority of 

identified ICD-9 codes, the odds ratio in IWAS-a was greater than that of IWAS-b, 

indicating a greater odds of developing the infection as a diabetic after than prior to the 

date of documented T2D (Figure 5.4 [continued], Supplementary Table 5.6, 

Supplementary Figure 5.4). Of the 28 infections identified in IWAS-a, 23 (82%) 
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infections overlapped with the results for IWAS-b. The infections that were identified in 

IWAS-a and not identified in IWAS-b included intestinal infection due to Clostridium 

difficile (OR 4·98, P = 4·6e-5) and Lyme disease (OR 2·82, P = 4·9e-8). Conversely, the 

infections that were identified in IWAS-b and not included in IWAS-a included: 

methicillin susceptible staphylococcus aureus (OR 7·02, P = 7·0E-6), HIV (OR 5·24, P = 

2·6e-5) and genital herpes (OR 3·5, P = 1·1e-6). 
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Figure 5.4. Plot of odds ratio (OR) in IWAS-a VS. OR in IWAS-b. Each point 
represents an ICD-9 diagnosis code and is labeled accordingly. Certain ICD-9 diagnostic 
codes are labeled with the corresponding name of the infectious disease; the full list of 
infectious disease names corresponding to the labeled ICD-9 codes are presented in 
Supplementary Table 5.6. 
 

In the granular 1-year time interval results, there was a greater odds of association with 

T2D within the period of one-to-two years prior the date of documented T2D for viral 

warts, herpes simplex, and Helicobacter pylori (Supplementary Figure 5.5). For 

methicillin resistant Staphylococcus aureus and candidiasis, there is a greater odds of 

association to T2D in proportion to decreased time from infection to the date of 

documented diagnosis, which increases in odds ratio magnitude for 1 year after the date 

of T2D diagnosis, and then declines for the two years that follow (Supplementary 

Figure 5.5). 
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Mendelian randomization assessment of infectious agents and T2D 

Table 5.2 shows the results of MR analyses. As shown, all these analyses yielded results 

that were not even nominally statistically significant, with one exception. For Hepatitis B, 

we identified a suggestive estimate of 0·1413 (SE = 0·053, P = 0·008) for association 

with T2D. 

 

Table 5.2. Summary of Mendelian randomization derived estimates.  
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DISCUSSION 

Our study extends the current state of knowledge on the associations between infection 

and T2D, through the lens of infection as a candidate risk factor and as a complication for 

T2D. First, we document 252 and 274 infectious diseases that occur in a large cohort of 

172,000 patients with T2D and matched controls before and after documented diagnosis 

of T2D. Second, we comprehensively and systematically assess each infectious disease in 

association with T2D. In doing so, we have corroborated previously reported associations 

such as a predisposition to fungal infections including Candida and Herpes simplex 

virus[120,140] and T2D incidence in HIV-infected patients[141], and identified 

tentatively novel associations (to our knowledge), including  methicillin-susceptible 

Staphylococcus aureus and acariasis associated with T2D risk and Lyme disease 

associated with T2D as a complication. Previously reported findings on the relationship 

between Helicobacter pylori and T2D are conflicting[142,143]. In our investigation, 

IWAS-b identified an OR of 3·1, in concordance with a previously reported finding that 

individuals seropositive for the infection were 2·7 times more likely to develop diabetes 

than seronegative individuals[144]. 

Third, we extend our observational analysis with time-varying granularity by examining 

infection-T2D associations in 12-month intervals covering a time period of three years 

before and after documented diagnosis of T2D. We found that 23 (or 74% of the IWAS-

b) infections were also found in associations after date of diagnosis (IWAS-a). 

Furthermore, we identified that for most of the infections found in both IWAS-a and 

IWAS-b, the magnitude of odds ratio was greater in IWAS-a, indicating an increased 

odds of infection after the T2D diagnosis was formally recorded. As in other 
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observational investigations, our study is susceptible to reverse causality. By examining 

infection both before and after disease onset, we describe the extent of the lack of clarity 

between the direction of association between infection and T2D. Fourth, we assess 

findings from our observational investigation in a MR framework in order to test for risk 

of infection on T2D and glycemic traits. 

Since many of the infections had increased risks both before and after T2D diagnosis, this 

could implicate that some infections may be both risk factors for and complications of 

T2D. Alternatively, it may be indicative that a diagnosis code for T2D appears up to 

many years after the disease onset. Future studies that use convenience samples from 

administrative data should recognize the challenges of identifying incident cases in their 

analyses (“incident” cases may be prevalent cases).  With MR, we investigated the 

potential directional effect between infection and T2D, assuming that some individuals 

harbor genetic variants that increase their susceptibility to infection. MR provides limited 

evidence for a causal association between infection and documented T2D, supporting the 

hypothesis that infection may play a far greater role as a complication of T2D rather than 

a risk factor. 

A limitation of our study is potential misclassification of documented date of diagnosis. 

However, we tried to mitigate this limitation by requiring all cases to have a T2D specific 

ICD-9 code, without anti-T2D medication, and without a laboratory test result for fasting 

glucose, non-fasting glucose, or HbA1C that may be indicative of T2D prior to the first 

documented T2D ICD-9 code. Another limitation includes the low prevalence of 

recorded infection, which could affect our statistical power to detect associations. It is 

possible that many infections are not reported in these insurance data. We cannot also 
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exclude the possibility that infections are more likely to be diagnosed and reported in 

these claims data for patients who have already an established diagnosis of T2D, while 

clinicians may not pursue as rigorously some infectious disease diagnoses if patients are 

not known to be diabetic. Lastly, for the infections we identified in IWAS-b, most (n=26) 

did not have available publicly available GWAS summary statistics to assess the risk of 

infection using MR, and for the infections that did, there were a low number of genetic 

instruments (or variants) that could be used as a proxy for the infection. Therefore, even 

though the current MR analyses are largely “negative”, the entire space of infections that 

emerged in IWAS-b (n=31) is yet to be explored and should not be ruled out. 

In conclusion, our study documents the magnitude of associations between the full 

spectrum of infectious diseases and T2D over a six-year time period and uses MR to 

detect potential causal effects. Future investigation is warranted to study why individuals 

with T2D are more susceptible to particular infections, both as a risk factor and as a 

complication of the disease, and to identify patient populations who may have greater 

susceptibility to infection in order to improve preventative care. 

 

 

 

 

 

 

 

 



 117 

 

 

 

 

 

 

 

 

6 
Conclusion 

 
 

In conclusion, we demonstrate high-throughput informatics frameworks for studying 

familial influences in disease risk without costly direct case genotyping and leverage 

genetic variation to examine putative causal relationships from our observational studies. 

First, our family history-based approaches advance our understanding of how family 

history affects inherited traits and environmental factors, demonstrates the combined 

impact of multiple family histories on disease risk and risk factors, and disentangles 

potential environmental contributions from genetic influences of familial risk. Second, 

we demonstrate the integration of Mendelian randomization to assess causality in 

associations from findings in an observational investigation, presenting a data-driven map 

of risk factors and/or complications of type 2 diabetes. Our findings underscore the public 

health impact and utility of family history and Mendelian randomization as tools for 
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distinguishing potential areas for early detection, prevention, or therapeutic intervention 

of chronic disease. 

 

We illustrate in our studies methods for driving discovery and for extracting insight on 

mechanisms underlying associations with disease by analyzing troves of clinical and 

genomics data contained within large-scale resources such as the UK Biobank, 

NHANES, and health insurance claims datasets. The scale and breadth of these resources, 

coupled with machine learning approaches, can yield new insights for enhancing our 

understanding of biomedicine, informing on public health approaches, and assisting in 

therapeutic discovery. In light of the potential, however, data science and machine 

learning techniques are prone to a multitude of challenges and limitations, such as those 

that have been mentioned in this thesis. Future research that I aspire to work on include 

development of machine learning methods for causal learning incorporated with genetics-

based Mendelian randomization analyses for characterizing large-scale health and omics 

datasets. Findings from such methodology can, potentially, pave the way for new insights 

on disease aetiology. 
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Appendix 
 

 
Supplementary Figure 1.1a. Volcano plot results for meta-analysis in individuals 
without the respective disease. 457 CEQT association sizes versus -log10(p-value) for 
family history of diabetes (Supplementary Figure 1.1a), asthma (Supplementary 
Figure 1.1b), and coronary heart disease (Supplementary Figure 1.1C) in individuals 
without the respective disease, adjusting for age, sex, and race, in 1999-2014 National 
Health and Nutrition Examination Survey (NHANES). Green, orange, and red points 
represent traits that met an FDR threshold of 5%. Orange and red points represent traits 
with an absolute value of association size greater than or equal to 0.10 and 0.20, 
respectively. All labeled points are traits that met an FDR of 5% and have an absolute 
value of association size greater than or equal to 0.12 in A, 0.02 in B, and 0.08 in C. 
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Supplementary Figure 1.1b for asthma (top) and Supplementary Figure 1.1c for 
coronary heart disease (bottom). 457 CEQT association sizes versus -log10(p-value) 
for family history of diabetes (Supplementary Figure 1.1a), asthma (Supplementary 
Figure 1.1b), and coronary heart disease (Supplementary Figure 1.1C) in individuals 
without the respective disease, adjusting for age, sex, and race, in 1999-2014 National 
Health and Nutrition Examination Survey (NHANES). 
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Supplementary Figures 1.2a and b. Volcano plot results for meta-analysis in all 
individuals. 457 CEQT association sizes versus -log10(p-value) for family history of 
diabetes (top) and asthma (bottom) in all individuals (with and without respective 
disease), adjusting for age, sex, and race, in 1999-2014 National Health and Nutrition 
Examination Survey (NHANES). Green, orange, and red points represent traits that met 
an FDR threshold of 5%. Orange and red points represent traits with an absolute value of 
association size greater than or equal to 0.10 and 0.20, respectively. All labeled points are 
traits that met an FDR of 5% and have an absolute value of association size greater than 
or equal to 0.15 in A and 0.02 in B. 
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Supplementary Figures 1.2c. Volcano plot results for meta-analysis in all 
individuals. 457 CEQT association sizes versus -log10(p-value) for coronary heart 
disease in all individuals (with and without respective disease), adjusting for age, sex, and 
race, in 1999-2014 National Health and Nutrition Examination Survey (NHANES). 
Green, orange, and red points represent traits that met an FDR threshold of 5%. Orange 
and red points represent traits with an absolute value of association size greater than or 
equal to 0.10 and 0.20, respectively. All labeled points are traits that met an FDR of 5% 
and have an absolute value of association size greater than or equal to 0.08. 
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Supplementary Figure 1.3. Shared CEQTs from meta-analysis. From the meta-
analysis, shared CEQTs associated with family histories of diabetes (shown in blue), 
asthma (red), and coronary heart disease (green) in individuals without the respective 
disease in 1999-2014 National Health and Nutrition Examination Survey (NHANES). All 
CEQTs displayed achieved an FDR threshold of 5%. All models are adjusted for age, 
sex, and race. The FDR-adjusted p-value for each point is displayed to the right (in red 
for asthma, blue for diabetes, and green for coronary heart disease). 
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Supplementary Figure 1.4a and b. Volcano plot results for pooled analysis in all 
individuals. 457 CEQT association sizes versus -log10(p-value) for family history of 
diabetes (top) and asthma (bottom) in all individuals (with and without respective 
disease), adjusting for age, sex, and race, in 1999-2014 National Health and Nutrition 
Examination Survey (NHANES). Green, orange, and red points represent traits that met 
an FDR threshold of 5%. Orange and red points represent traits with an absolute value of 
association size greater than or equal to 0.10 and 0.20, respectively. All labeled points are 
traits that met an FDR of 5% and have an absolute value of association size greater than 
or equal to 0.17 in A and 0.02 in B. 
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Supplementary Figure 1.4c. Volcano plot results for pooled analysis in all 
individuals. 457 CEQT association sizes versus -log10(p-value) for family history of 
coronary heart disease (continued) in all individuals (with and without respective 
disease), adjusting for age, sex, and race, in 1999-2014 National Health and Nutrition 
Examination Survey (NHANES). All labeled points are traits that met an FDR of 5% and 
have an absolute value of association size greater than or equal to 0.08 in Supplementary 
Figure 1.4C. 
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Supplementary Figure 1.5a and b. Shared CEQTs associated with family histories of 
diabetes, asthma, and coronary heart disease is shown in individuals without respective 
disease, adjusted by age, sex, and race. All CEQTs displayed achieved FDR of 5%. We 
identified 60 CEQTs shared between family histories of coronary heart disease and 
diabetes (top, Supplementary Figure 1.5A), 23 between family histories of asthma and 
diabetes (bottom, Supplementary Figure 1.5B), and 24 between family histories of 
asthma and coronary heart disease (Supplementary Figure 1.5C, Continued). 
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Supplementary Figure 1.5c. Shared CEQTs associated with family histories of asthma 
and coronary heart disease is shown in individuals without respective disease, adjusted by 
age, sex, and race. We found 24 between family histories of asthma and coronary heart 
disease (Supplementary Figure 1.5C, Continued). 
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Supplementary Figure 1.6a and b. Unique CEQTs associated (FDR of 5%) with one 
family history, and not with the other two family histories is shown in individuals without 
respective disease, adjusted by age, sex, and race. We identified 109 CEQTs associated 
with a family history of diabetes and not with family histories of asthma or CHD (top, 
Supplementary Figure 1.6A), 5 CEQTs associated with a family history of asthma and 
not with family histories of diabetes or CHD (bottom, Supplementary Figure 1.6B), 
and 14 CEQTs associated with a family history of CHD and not with diabetes or asthma 
(Supplementary Figure 1.6C, Continued). 
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Supplementary Figure 1.6c. Unique CEQTs associated (FDR of 5%) with one family 
history, and not with the other two family histories is shown in individuals without 
respective disease, adjusted by age, sex, and race. We identified 14 CEQTs associated 
with a family history of CHD and not with diabetes or asthma. 
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Supplementary Table 2.1. Estimates of adjusted odds ratios (95% CI) for CVD and 
diabetes according to family history, NHANES 2007-2018. All models are adjusted by 
the factors listed below (family history, age, gender, race/ethnicity, BMI, income-to-
poverty-ratio, and education). 
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Supplementary Table 3.1. Fields used to ascertain current disease status.  
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Supplementary Table 3.2. Demographic breakdown of non-adopted and adopted 
cohorts in the UK Biobank.  
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Supplementary Table 3.3. Disease and family history of disease breakdown of UK 
Biobank adopted and biological cohorts.  
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Supplementary Table 3.4. Parental and sibling family history of disease breakdown 
of UK Biobank adopted and biological cohorts. 
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Supplementary Figure 3.1a. All 144 pairwise associations between 12 complex 
human diseases and their family histories in all individuals, adjusted by age, sex, 
and 15 principal components. Odds ratios are printed inside tiles where the association 
between family history (presented on x-axis) and disease (y-axis) is significant at a 
!value less than 0.05. Tiles marked with an asterisk are significant at a false discovery 
rate (FDR) threshold of 5%. Blue, odds ratio greater than 1; yellow, odds ratio less than 
1. All associations are adjusted by age, sex, and 15 principal components. 
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Supplementary Figure 3.1b. All 144 pairwise associations between 12 complex 
human diseases and their family histories in all individuals, adjusted by age and sex. 
Odds ratios are printed inside tiles where the association between family history 
(presented on x-axis) and disease (y-axis) is significant at a !value less than 0.05. Tiles 
marked with an asterisk are significant at a false discovery rate (FDR) threshold of 5%. 
Blue, odds ratio greater than 1; yellow, odds ratio less than 1. All associations are 
adjusted by age and sex. 
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Supplementary Figure 3.2. All 144 pairwise associations between 12 complex human 
diseases and their family histories for individuals without disease, adjusted by age 
and sex. Individuals with a positive family history and who had the disease of the 
family history were removed from analyses. Odds ratios are printed inside tiles where 
the association between family history (presented on x-axis) and disease (y-axis) is 
significant at a !value less than 0.05. Tiles marked with an asterisk are significant at a 
false discovery rate (FDR) threshold of 5%. Blue, odds ratio greater than 1; yellow, odds 
ratio less than 1. All associations are adjusted by age and sex. 
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Supplementary Figure 3.3a. Plot of the odds ratio derived from pairwise association 
between disease and family history. We adjusted by age and sex (x-axis) versus odds ratio 
derived from pairwise association between disease and family history, adjusted by age, sex, and 
15 principal components (y-axis), in all individuals.  
 

 
Supplementary Figure 3.3b. Plot of the odds ratio derived from pairwise association 
between disease and family history. We adjusted by age and sex (x-axis) versus odds ratio 
derived from pairwise association between disease and family history, adjusted by age, sex, and 
15 principal components (y-axis), in individuals without disease.  
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Supplementary Figure 3.4. Comparison of disease-family history associations for 
female versus male offspring. Disease-family history associations for females (x-axis) 
are presented against associations for males (y-axis). Horizontal and vertical error bars 
represent 95% confidence intervals. All points represented are significant at p-value < 
0.05 in both analyses.  
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Supplementary Figure 3.5. Comparison of area-under-the-curve (AUC) of 4 
different prediction models for the diagnosis of 7 conditions. Model A included age 
and sex, model B additionally included all family histories identified to be significantly 
associated at an FDR threshold of 5% with diagnosis of the condition exclusive of the 
family history of the condition itself, and model D additionally included the family 
history of the condition itself. Model C included age, sex and family history of the 
condition only. 
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Supplementary Figure 3.6a. Maternal (non-adopted) family history. Odds ratios are 
printed inside tiles where the association between family history (presented on x-axis) 
and disease (y-axis) is significant at a !value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 PCs. 
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Supplementary Figure 3.6b. Paternal (non-adopted) family history. Odds ratios are 
printed inside tiles where the association between family history (presented on x-axis) 
and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 PCs. 
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Supplementary Figure 6c. Sibling (non-adopted) family history. Odds ratios are 
printed inside tiles where the association between family history (presented on x-axis) 
and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 PCs. 
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Supplementary Figure 3.7. Adopted cohort findings spanning 144 pairwise 
associations between 12 complex human diseases and their family histories. Odds 
ratios are printed inside tiles where the association between family history (presented on 
x-axis) and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 principal components. 
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Supplementary Figure 3.8a. Adopted cohort, paternal family history. Odds ratios are 
printed inside tiles where the association between family history (presented on x-axis) 
and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 principal components. 
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Supplementary Figure 8b. Adopted cohort, maternal family history. Odds ratios are 
printed inside tiles where the association between family history (presented on x-axis) 
and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, odds ratio 
greater than 1; yellow, odds ratio less than 1. All associations are adjusted by age, sex, 
and 15 principal components. 
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Supplementary Figure 3.9a. Non- adopted maternal compared to adopted maternal 
family history. Disease-family history associations for non-adopted maternal history (x-
axis) are presented against associations for adopted maternal (y-axis). Horizontal and 
vertical error bars represent 95% confidence intervals. All points represented are 
significant at p-value < 0.05 in both analyses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 148 

 

 
Supplementary Figure 3.9b. Non-adopted paternal compared to adopted paternal 
history. Disease-family history associations for non-adopted paternal history (x-axis) are 
presented against associations for adopted paternal (y-axis). Horizontal and vertical error 
bars represent 95% confidence intervals. All points represented are significant at p-value 
< 0.05 in both analyses.  
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Supplementary Figure 3.10. Genetic correlations between family history of disease 
and disease in individuals without disease, derived using LD Score Regression. 
Genetic correlation coefficient (!") are printed inside tiles where the correlation between 
family history (presented on x-axis) and disease (y-axis) is significant at a ! value less 
than 0.05. Tiles marked with an asterisk are significant at a false discovery rate (FDR) 
threshold of 5%. Blue, positive genetic correlation coefficient; yellow, negative genetic 
correlation coefficient. 
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Supplementary Figure 3.11a. Genetic correlations between paternal history and 
self-reported disease, derived using LD Score Regression. Genetic correlation 
coefficient are printed inside tiles where the correlation between family history 
(presented on x-axis) and disease (y-axis) is significant at a ! value less than 0.05. Tiles 
marked with an asterisk are significant at a false discovery rate (FDR) threshold of 5%. 
Blue, positive genetic correlation coefficient; yellow, negative genetic correlation 
coefficient. 
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Supplementary Figure 3.11b. Genetic correlations between maternal history and 
self-reported disease, derived using LD Score Regression. Genetic correlation 
coefficient are printed inside tiles where the correlation between family history 
(presented on x-axis) and disease (y-axis) is significant at a ! value less than 0.05. Tiles 
marked with an asterisk are significant at a false discovery rate (FDR) threshold of 5%. 
Blue, positive genetic correlation coefficient; yellow, negative genetic correlation 
coefficient. 
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Supplementary Figure 3.11c. Genetic correlations between sibling history and self-
reported disease, derived using LD Score Regression. Genetic correlation coefficient 
are printed inside tiles where the correlation between family history (presented on x-axis) 
and disease (y-axis) is significant at a ! value less than 0.05. Tiles marked with an 
asterisk are significant at a false discovery rate (FDR) threshold of 5%. Blue, positive 
genetic correlation coefficient; yellow, negative genetic correlation coefficient. 
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Supplementary Table 5.1. ICD-9 diagnosis codes used for ascertaining individuals 
with T2D. 
 

ICD-9 Codes Description 

250.0 Diabetes mellitus without mention of complication 

250.00 Diabetes mellitus without mention of complication, type II or unspecified type, not 
stated as uncontrolled 

250.02 Diabetes mellitus without mention of complication, type II or unspecified type, 
uncontrolled 

250.1 Diabetes with ketoacidosis 

250.10 Diabetes with ketoacidosis, type II or unspecified type, not stated as uncontrolled 

250.12 Diabetes with ketoacidosis, type II or unspecified type, uncontrolled 

250.2 Diabetes with hyperosmolarity 

250.20 Diabetes with hyperosmolarity, type II or unspecified type, not stated as 
uncontrolled 

250.22 Diabetes with hyperosmolarity, type II or unspecified type, uncontrolled 

250.3 Diabetes with other coma 

250.30 Diabetes with other coma, type II or unspecified type, not stated as uncontrolled 

250.32 Diabetes with other coma, type II or unspecified type, uncontrolled 

250.4 Diabetes with renal manifestations 

250.40 Diabetes with renal manifestations, type II or unspecified type, not stated as 
uncontrolled 

250.42 Diabetes with renal manifestations, type II or unspecified type, uncontrolled 

250.5 Diabetes with ophthalmic manifestations 

250.50 Diabetes with ophthalmic manifestations, type II or unspecified type, not stated as 
uncontrolled 

250.52 Diabetes with ophthalmic manifestations, type II or unspecified type, uncontrolled 

250.6 Diabetes with neurological manifestations 

250.60 Diabetes with neurological manifestations, type II or unspecified type, not stated as 
uncontrolled 
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250.62 Diabetes with neurological manifestations, type II or unspecified type, uncontrolled 

250.7 Diabetes with peripheral circulatory disorders 

250.70 Diabetes with peripheral circulatory disorders manifestations, type II or unspecified 
type, not stated as uncontrolled 

250.72 Diabetes with peripheral circulatory disorders manifestations, type II or unspecified 
type, uncontrolled 

250.8 Diabetes with other specified manifestations 

250.80 Diabetes with other specified manifestations, type II or unspecified type, not stated 
as uncontrolled 

250.82 Diabetes with other specified manifestations, type II or unspecified type, 
uncontrolled 

250.9 Diabetes with unspecified complication 

250.90 Diabetes with unspecified complication, type II or unspecified type, not stated as 
uncontrolled 

250.92 Diabetes with unspecified complication, type II or unspecified type, uncontrolled 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 155 

Supplementary Table 5.2. The list below of T2D medications and insulin therapy by 
drug name and brand names was used in our filtration criteria.  
 

Drug name Brand name  Drug name Brand name 

Metformin/ 
Biguanides 

Glucophage 
Glumetza 

 Liraglutide Victoza 

Glyburide Diabeta, Glycron, Glynase, 
Micronase 

 Canagliflozin Invokana 

Glipizide Glucotrol, Glucotrol XL  Dapagliflozin Farxiga 

Glimepiride Amaryl  Insulin glulisine Apidra 

Repaglinide 
(Meglitinides) 

Prandin  Insulin lispro Humalog 

Nateglinide Starlix  Insulin aspart Novolog 

Rosiglitazone,  
Pioglitazone 
(Thiazolidinedione
s) 

Avandia, Actos  Insulin glargine Lantus 

Sitagliptin Januvia  Insulin detemir Levemir 

Saxagliptin Onglyza  Insulin 
isophane 

Humulin N 
Novolin N 

Linagliptin Tradjenta  DPP 4 
inhibitors 

Galvus 
(Vildagliptin) 

Dapagliflozin Farxiga  Exenatide Byetta 
Bydureon 

Alpha-glucosidase 
inhibitors 

Acarbose (Precose) 
Miglitol (Glycet) 

 Sulfonylureas Diabinese, 
Tolinase (Tolazamide) 
Tolbutamide 
(Orinase) 
Acetohexamide 
(Dymelor) 
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Supplementary Table 5.3. ICD-9 diagnosis codes used for ascertaining individuals 
who are overweight/obese. 
 
ICD-9 Codes Description 

278 Overweight, obesity, and other hyperalimentation 

278.0 Overweight and obesity 

278.00 Obesity, unspecified 

278.01 Morbid obesity 

278.02 Overweight 

278.03 Obesity hypoventilation syndrome 

V85.2 Body Mass Index between 25-29, adult 

V85.21 Body Mass Index 25.0-25.9, adult 

V85.22 Body Mass Index 26.0-26.9, adult 

V85.23 Body Mass Index 27.0-27.9, adult 

V85.24 Body Mass Index 28.0-28.9, adult 

V85.25 Body Mass Index 29.0-29.9, adult 

V85.30 Body Mass Index between 30-39, adult 

V85.31 Body Mass Index 30.0-30.9, adult 

V85.32 Body Mass Index 31.0-31.9, adult 

V85.33 Body Mass Index 32.0-32.9, adult 

V85.34 Body Mass Index 33.0-33.9, adult 

V85.35 Body Mass Index 34.0-34.9, adult 

V85.36 Body Mass Index 35.0-35.9, adult 

V85.37 Body Mass Index 36.0-36.9, adult 

V85.38 Body Mass Index 37.0-37.9, adult 

V85.39 Body Mass Index 38.0-38.9, adult 
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V85.4 Body Mass Index 40 and over, adult 

Supplementary Table 5.4. Summary of the categories of infectious diseases, the 
range of ICD-9 codes classified for each category, and the number of ICD-9 codes 
included in our study from each category in IWAS-b and IWAS-a, respectively. 
 

Category  ICD-9 range 
of category 

Number of 
ICD-9 codes in 
IWAS-b 

Number of 
ICD-9 codes 
in IWAS-a 

Intestinal infectious diseases 001-009 20 24 

Tuberculosis 010-018 3 2 

Zoonotic bacterial diseases 020-027 1 0 

Other bacterial diseases 030-041 47 57 

Human immunodeficiency virus (HIV) infection 042-044 1 1 

Poliomyelitis and other non-arthropod-borne 
viral diseases of the central nervous system 

045-049 4 4 

Viral diseases accompanied by exanthem 050-059 37 38 

Arthropod-borne viral diseases 060-069 3 4 

Other diseases due to viruses and chlamydiae 070-079 46 47 

Rickettsioses and other arthropod-borne diseases 080-089 9 11 

Syphilis and other venereal diseases 090-099 21 21 

Other spirochetal diseases 100-104 3 3 

Mycoses 110-118 33 36 

Helminthiases 120-129 7 9 

Other infectious and parasitic diseases 130-136 15 15 

Late effects of infectious and parasitic diseases 137-139 2 2 

Total Number of ICDs  252 274 
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Supplementary Figure 5.2a. Plot of ICD-9 diagnostic codes and corresponding odds 
ratio identified from IWAS-b. All displayed points achieved significance at an FDR 
threshold of 5% in both the training and validation sets. 
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Supplementary Figure 5.2b. Plot of ICD-9 diagnostic codes and corresponding odds 
ratio identified from IWAS-a. All displayed points achieved significance at an FDR 
threshold of 5% in both the training and validation sets. 
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Supplementary Figure 5.3A. Plot of odds ratio for each ICD-9 diagnostic code from 
IWAS-b analysis versus prevalence of the ICD-9 diagnostic code within IWAS-b case 
and control groups. Prevalence is calculated as the total number of patients with the ICD-
9 diagnostic code in the  24-month infection window before T2D diagnosis divided by 
the total number of individuals in the IWAS-b case and control groups. Each point is 
labeled with the ICD-9 diagnostic code. 
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Supplementary Figure 5.3B. Plot of odds ratio for each ICD-9 diagnostic code from 
IWAS-a analysis versus prevalence of the ICD-9 diagnostic code within IWAS-a case 
and control groups. Prevalence is calculated as the total number of patients with the ICD-
9 diagnostic code in the 24-month infection window after T2D diagnosis divided by the 
total number of individuals in our IWAS-a case and control groups. Each point is labeled 
with the ICD-9 diagnostic code. 
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Supplementary Figure 5.4. CDF plot of distribution of effect sizes (top) in IWAS-b and 
IWAS-a. 
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Supplementary Figure 5.5. Odds ratios for infections identified at varying 1-year time 
intervals within a three-year period before and after the date of documented T2D. Figure 
continues on pages following. 
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