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Abstract 

Amid the “big data” revolution, background information on participants is 

becoming ever more available for experimental researchers to predict treatment effect 

heterogeneity, including heterogeneity on some intermediate variable collected post-

treatment. At the same time, the recently developed principal stratification framework 

allows researchers to assess heterogeneity on an intermediate variable in a manner that 

maintains causal interpretations. This paper details the shortcomings of two-stage least 

squares and imputation methods as viable estimators if used to assess treatment effect 

heterogeneity when the intermediate variable is continuous and traditional assumptions 

are not tenable. Results from an alternative estimator that relies on simulation-

extrapolation is evaluated to inform future research.  
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Introduction 

Researchers are increasingly interested in identifying heterogeneity in 

experimental treatment effects, including whether some post-treatment intermediate 

variable 𝐷 moderates a causal relationship. Common applications of intermediate 

moderating variables include compliance status (Angrist, Imbens, & Rubin, 1996), 

censoring due to death (Rubin, 2006), surrogate outcomes (Gilbert & Hudgens, 2008), 

and level of exposure to opportunities that influence downstream outcomes of interest 

(Page, 2012). Because it is unlikely that post-treatment variables can be randomly 

assigned, assessing heterogeneity by conditioning on observed values of 𝐷 results in 

inferences that are subject to self-selection bias. It is for this reason that some view 

assessing post-treatment moderators as a problem more akin to estimating causal effects 

in observational studies than in randomized experiments (Ding and Lu, 2016).  

Principal stratification (PS; Frangakis & Rubin, 2002) applies the Rubin Causal 

Model (Rubin, 1974; Holland, 1986) to clarify causal inference in the presence of an 

intermediate variable. Both the observed values for the outcome of interest, 𝑌, and 

moderating post-treatment variable, 𝐷, are understood to be realizations of potential 

outcomes. Principal causal effects are defined as any comparison of 𝑌’s potential 

outcomes between units that share similar 𝐷 potential outcomes. Unlike the observed 

value of the intermediate variable, randomization ensures that the 𝐷 potential outcomes 
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can be treated as an exogenous covariate. Thus, comparisons remain “apples-to-apples” 

by conditioning on the potential outcomes rather than the endogenous observed values. 

In many applications, treatment and the intermediate variable take on a discrete 

set of values only. This implies that units can be stratified into a finite set of principal 

strata corresponding to the joint distribution of 𝐷’s potential outcomes, and principal 

causal effects are estimated within each stratum. The fundamental challenge of inference 

is that the joint distribution is never fully observed for any unit, making membership into 

principal strata a latent variable because it can only be ascertained indirectly from the 

observed data. Thus, principal strata represent latent classes, and principal causal effects 

within each class are not identified without imposing some combination of: (a) 

simplifying modeling assumptions, such as monotonicity and the exclusion restrictions 

(e.g., Angrist et al., 1996), (b) parametric assumptions, such as including informative a 

priori assumptions (Hirano, Imbens, Rubin, & Zhou, 2000; Conlon, Taylor, & Elliott, 

2017) and finite mixture modelling (Page, 2012), or (c) a rich set of exogenous predictors 

(Ding & Lu, 2017). 

 In other applications, such as the application focused on in this paper, the 

intermediate variable is continuous, resulting in an infinite set of principal strata. To 

simplify this problem, some have chosen to discretize a continuous intermediate variable 

(e.g., Sjölander, 2009; Page, 2012). However, discretization may be sensitive to cutoff 
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point decisions, and aggregation obfuscates heterogeneity (Schwartz, Li, & Mealli, 

2011). 

 To estimate causal effects across an infinite number of strata with finite sample 

sizes, the principal stratification framework with continuous intermediate variables 

requires that the researcher impose greater structure to achieve model identification. At 

most, only one of 𝐷’s potential outcomes can ever be observed, causing the onerous 

statistical file-matching problem in which associational parameters describing the 

relationship between the potential outcomes are not estimable (see, e.g., Little & Rubin, 

2002). Accordingly, the estimator must address the file-matching missing data problem 

directly, and I will show that inferences depend critically on these values. Additionally, 

dimensionality requires that the researcher specify a functional relationship between the 

𝐷 and 𝑌 potential outcomes. Comparisons of the 𝑌 potential outcomes may then be 

modelled by fitting a surface spanning the full joint distribution of the 𝐷 potential 

outcomes. A principal causal effect surface (PCES) refers to a surface that models mean 

differences in the 𝑌 potential outcome. 

Both frequentist and Bayesian PCES estimators that do not rely on unverifiable 

assumptions like monotonicity have been proposed in previous literature, but the 

asymptotic properties of the resulting estimates have not been studied. In the Bayesian 

framework, Schwartz et al. (2011) incorporate infinite mixture models and data 

augmentation (Tanner & Wong, 1987) to address the missing data problem. Yet, results 
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from Bayesian estimators are likely highly sensitive to alternative priors. This is 

especially true in the file-matching missing data case because the data provide no 

information on associational parameters for Bayesian updating of the corresponding 

priors to proceed (see Little & Rubin, 2002, p. 156-161).  

Using copulas, Bartolucci & Grilli (2011) proposed a frequentist PCES estimator. 

However, previous literature conflicts as to whether a copula-based estimator can 

adequately resolve the file-matching problem. Bartolucci & Grilli (2011) do find that a 

value exists for the associational parameter that maximizes the profile log-likelihood in a 

real-world data example. In contrast, others maintain that copulas themselves cannot fix 

the identifiability issue and suggest that researchers include prior beliefs when fitting 

copula models (Conlon, Taylor, & Elliott, 2017). Moreover, even if copulas can identify 

associational parameter estimates in some samples, the consistency properties of the 

associational parameter estimates have not been studied, even though it is well 

established that estimating associational parameters under the file-matching problem is 

known to produce “misleading results” (Little & Rubin, 2002, p. 7). 

 The main contribution of this paper is to propose a simulation-extrapolation 

(SIMEX; Devanarayan & Stefanski, 2002) estimator that leverages ignorability and 

extrapolates to circumvent the file-drawer problem. In the “big data” revolution, 

researchers increasingly have access to information about pre-treatment covariates to 

explain heterogeneity, and machine learning algorithms can make highly accurate 
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predictions. I exploit the fact that the associational parameters—namely residual 

covariances—are zero in the limiting case that the covariates perfectly predict 𝐷’s 

potential outcomes. I use a simulation study to evaluate whether a SIMEX estimator can 

produce consistent estimates in settings where a set of highly predictive covariates (𝑅2 ≈

0.7) exist to extrapolate parameter estimates in the hypothetical situation that 𝑅2 = 1. I 

compare the estimation properties of the SIMEX estimator to two-stage least squares 

(TSLS) and conditional mean imputation.  

I organize this paper as follows: First, I describe the illustrative example that 

motivates the adoption of a PCES estimator. Next, I expand on the PS framework and 

discuss underlying assumptions. Next, I relate PS to instrumental variables and show that 

TSLS produces biased and inconsistent estimates for principal causal effect surfaces. I 

then explain why regression to the mean results in biased estimates using standard 

imputation methods. Subsequently, I propose a simulation-extrapolation method to 

resolve the problems identified for the TSLS and imputation estimators. Finally, I 

conduct a simulation to study alternative estimators for estimating a PCES and discuss 

future directions. 

 

Motivating Example 

 Without loss of generality, I provide an illustrative example to motivate and 

explain the PS framework. The data come from a 15-year experimental evaluation 
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conducted by MDRC of career academies in nine high schools located in cities 

throughout the United States (Kemple & Willner, 2008).  A career academy was 

established within each high school that focused instruction on a vocational theme and 

fostered communication between school staff and employers through partnerships. Before 

enrolling in high school, students were randomly assigned to receive an offer to attend a 

career academy (treatment) instead of attending a traditional school. Kemple & Willner 

(2008) found that that the offer caused positive and significant impacts on wages eight 

years after graduation, even though standard determinants of wages—such as 

performance on standardized tests or postsecondary attainment—remained unaffected.  

Page (2012) explored one mechanism to explain why wages increased with an 

attendance offer, even though indicators of human capital did not show gains. The 

curricula for the career academies afforded opportunities for students to become exposed 

to the work world as measured by a “world-of-work” scale constructed from student 

survey responses (Page, 2012). Indeed, students attending career academies reported 

engaging in more discussions about careers with their teachers, counselors, and parents. 

These students also more frequently engaged in internship and job-shadowing programs. 

Page (2012) proposed that the greater the effect of the offer on a student’s exposure to the 

work world, the stronger the effect of the offer on future wages. Testing this hypothesis 

in a manner that is consistent with PS requires investigating treatment effect 
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heterogeneity on an endogenous intermediate variable, as exposure to the work world is 

strongly related to treatment assignment.  

 

Background and Notation 

I make the stable uniform treatment value assumption (SUTVA; Rubin, 1978) to 

simplify the analysis, in that I assume that there are no hidden forms of treatment and that 

a student’s potential outcomes are independent of others’ potential values. I define 𝑍𝑖 to 

be a binary treatment assignment indicator for student 𝑖 taking on the value 𝑍𝑖 = 1 if 

given an offer to attend a career academy and 𝑍𝑖 =  0 if not given an offer. In addition, I 

assume assignment into treatment is nondeterministic for all students in the study, so that 

each student has a nonzero probability of being granted an attendance offer and a nonzero 

probability of not being granted an attendance offer (i.e., Regular Assignment 

Mechanism; Imbens & Rubin, 2015).  

I denote a student’s score on the world-of-work scale under treatment condition 

𝑍𝑖 = 𝑧 as 𝐷𝑖(𝑧). The SUTVA assumption allows me to denote 𝐷𝑖(1) and 𝐷𝑖(0) as the 

student’s reported world-of-work score if given an offer or not, respectively. The joint 

distribution of potential outcomes for the intermediate variable are defined as all 

(𝐷𝑖(0), 𝐷𝑖(1)) pairs in the population. At most, one of the 𝐷𝑖(𝑧) is ever observed for any 

student, implying that “some of the parameters relating to the association between [𝐷𝑖(0) 

and 𝐷𝑖(1)] are not estimable from the data” (Little & Rubin, 2002, p. 7). This is called 
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the file-matching problem, and I later show that PCES estimates obtained from TSLS 

depend critically on the association between 𝐷𝑖(0) and 𝐷𝑖(1). I denote 𝑑𝑖
𝑜𝑏𝑠 as the 

𝐷 potential outcome that is observed and 𝑑𝑖
𝑚𝑖𝑠𝑠 as the potential outcome that is missing.  

Alternative methods to TSLS, including standard methods for handling missing 

data, do not address the file-matching problem. Multiple-imputation and the Expectation-

Maximization algorithm (EM; Dempster, Laird, & Rubin, 1977) both require that the 

associational values be fixed prior to estimation. Bayesian estimators, on the other hand, 

may include prior “beliefs” about the associational parameter as part of a data 

augmentation step (Tanner & Wong, 1987), but there is no information in the data to 

update these beliefs. Consequently, the posterior and the prior distributions on the 

associational parameters remain unchanged (Little & Rubin, 2002, p. 133-161).  

I denote the potential outcomes representing student 𝑖’s post-graduation wages as 

𝑌𝑖(1) and 𝑌𝑖(0). Following standard practice in the PS framework, I ignore potential 

outcomes of the form 𝑌𝑖(𝑧, 𝐷𝑖(𝑧
′)) because I do not consider the world-of-work score to 

be a quantity that is subject to experimental manipulation. Therefore, I denote the 

principal causal effect surface (PCES) as the estimand:  

PCES𝑖 =  𝔼[Δ𝑖|𝐷𝑖(1), 𝐷𝑖(0)] (1) 

where Δ𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0) represents the individual causal effect of the randomized offer 

on Y. 
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Application to the MDRC Experiment 

Estimating the PCES is directly relevant to testing the hypothesis that students 

with the greatest gains in exposure to the work world by attending a career academy also 

exhibit the greatest gains in wages. To illustrate, consider the hypothetical situation 

where Δ𝑖, 𝐷𝑖(0), and 𝐷𝑖(1) potential values were known for everyone. Figures 1 and 2 

plots the 𝐷𝑖(0) and 𝐷𝑖(1) values for two hypothetical samples. The size of the marker is 

proportional to the individual’s Δ𝑖 value. 

  In Figure 1, the markers are all the same size, indicating that there is no 

heterogeneity in treatment effects on wages. The PCES in this case would therefore be a 

flat three-dimensional surface. On the other hand, in Figure 2, the marker sizes increase 

the greater the difference in 𝐷𝑖(1) and 𝐷𝑖(0), indicating that the more positive the 

individual causal effect on 𝐷, the more positive the individual causal effect on 𝑌. This 

hypothetical situation would be consistent with Page’s (2012) hypothesis. Clearly, the 

PCES in this scenario cannot be modeled by a flat surface for this sample. Instead, the 

three-dimensional best-fit surface would increase in elevation most along the direction 

indicated by the arrow. This example shows that heterogeneity in Δ𝑖 can be identified by 

the shape of the PCES.  

<Insert Figure 1 & 2 about here> 
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Modeling Assumptions 

I now describe the required assumptions to estimate parameters that define a 

principal causal effect surface. Randomization implies that all potential outcomes and all 

pre-treatment covariates, X, are ignorable with respect to treatment assignment. Strong 

ignorability is formalized as: 

Assumption 1: Strong ignorability: 

𝑍𝑖 ⊥ (𝐷𝑖(0), 𝐷𝑖(1), 𝑌𝑖(0), 𝑌𝑖(1), 𝑋𝑖) ∀𝑖 

Because of ignorability, X and the potential outcomes for D and Y are balanced 

across treatment arms. This means that all moments—means, variances, covariance, 

skew, etc.—in the distribution of the covariates are equal across treatment arms in 

expectation. Balance in the means of X is critical for unbiased predictions of missing D 

values (see Imbens & Rubin, 2015, p. 272).  

I further assume that causal effect heterogeneity exists for the intermediate 

variable: the causal effect of treatment on the intermediate variable is not constant across 

all individuals: 

Assumption 2: Heterogeneity in causal effects on D: 

𝐷𝑖(1) − 𝐷𝑖(0) = Γ𝑖, 𝕍[Γ𝑖] ≠ 0 

where Γ𝑖 represents the individual causal effect on D. Assumption 2 is assured if the 

distributions of potential outcomes cannot be reproduced by a simple mean-shifted 



 

16 

 

 

 

 

translation. Therefore, any differences in variances, skew, or higher order moments in the 

observed D values across treatment arms is indicative that heterogeneity is present.1  

For the PCES estimators evaluated in this paper, I assume that the researcher has 

access to observed predictors that explain the heterogeneity: 

Assumption 3: Effectiveness of exogenous predictor𝑠:  

Pr(Γ𝑖|𝑋𝑖) ≠ Pr(Γ𝑖) ∀𝑖 

In words, Assumption 3 states that the individual causal effect on world-of-work scores is 

related to the observed pre-treatment covariates. Thus, the conditional mean in causal 

effects on D is some nontrivial function of the observed covariates. I denote the 

individual causal effect of treatment on 𝑌 as Δ𝑖, so that Δ𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0). I assume 

throughout this paper that there are no other post-treatment intermediate variables that are 

simultaneously correlated with both Γ𝑖 and Δ𝑖. Such variables would be confounders, 

denoted 𝐶𝑖, and the assumption of no confounders is formalized as: 

Assumption 4: Unconfoundedness:  

Pr(Δ𝑖, Γ𝑖|𝑋𝑖, 𝐶𝑖) = Pr(Δ𝑖, Γ𝑖|𝑋𝑖) ∀𝑖 

Assumption 4 is directly akin to the instrumental variable assumption that the 

instrument 𝑍𝑖 is independent of 𝐷 and 𝑌 residuals (Murnane & Willett, 2011; Morgan & 

                                                 
1Ding, Feller, and Miratrix (2016) discuss non-parametric statistical tests for assessing 

causal effect heterogeneity. 
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Winship, 2015). While a PCES estimator can be built to account for confounders by 

modeling the potential outcomes of these variables, that is beyond the scope of this paper.  

Next, I assume that the pre-treatment predictors influence wages only indirectly 

through 𝐷𝑖(1) and 𝐷𝑖(0): 

Assumption 5: No direct effect of X on Δ𝑖: 

Pr(Δ𝑖|𝐷𝑖(0), 𝐷𝑖(1), 𝑋𝑖) = Pr(Δ𝑖|𝐷𝑖(0), 𝐷𝑖(1)) ∀𝑖 

On its face, Assumption 5 resembles the exclusion restriction assumption in 

instrumental variables, but this comparison requires caution. In instrumental variables, 

the instrument—often random assignment to treatment—is said to only induce a causal 

effect through its effect on the intermediate variable. Consequently, the exclusion 

restriction would imply that the causal effect Δ𝑖 = 0 for all units whose Γ𝑖 value is zero. 

This, however, is not what is stated by Assumption 5. Indeed, there may be a nonzero 

causal effect on 𝑌, even for units whose intermediate value is unchanged by treatment 

assignment. 

An important consequence of Assumption 2 and Assumption 5 is that 

heterogeneity in causal effects on 𝐷 translates directly to heterogeneity in causal effects 

on 𝑌. Thus, a non-trivial PCES requires variance in individual causal effects on 𝑌, i.e. 

𝕍(Δ𝑖) ≠ 0. The researcher can test for the existence of treatment effect heterogeneity on 
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this variable by looking for differences in variances, skew, or higher order moments in 

the observed Y values across treatment arms. 

Finally, dimensionality requires the specification of a functional relationship 

relating the 𝐷 potential outcomes to the 𝑌 potential outcomes. I make the rather 

restrictive functional assumption that the 𝑌 potential outcomes are a function of 𝐷𝑖(0) 

and 𝐷𝑖(1) main effects and a 𝐷𝑖(0)-by-𝐷𝑖(1) interaction. This necessarily implies that 

𝑦𝑖
𝑜𝑏𝑠 is a linear function of 𝑑𝑖

𝑜𝑏𝑠 in both treatment arms. Denoting the 𝑖𝑡ℎ observation in a 

design matrix as 𝒗𝑖 = [1  𝐷𝑖(0)  𝐷𝑖(1)  𝐷𝑖(0) × 𝐷𝑖(1)], the linearity assumption is 

formalized as: 

Assumption 6: Linearity: 

𝑌𝑖(𝑧) = 𝑣𝑖
′𝛽𝑧 + 𝜖𝑧,𝑖, 𝔼[𝜖𝑧,𝑖] = 0 

Under Assumption 6, a model for the principal causal effect surface is then given by the 

linear function: 

PCES𝑖(𝜽) = 𝒗𝑖
′𝜽  (2) 

where 𝜽 = 𝜷1 − 𝜷0. 
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Relationship to Instrumental Variables 

Reardon and Raudenbush (2013) show that the IV estimand can be interpreted as 

a compliance-weighted average treatment effect (CWATE) when the intermediate 

variable is continuous:  

CWATE𝑖 = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝐷𝑖(1) − 𝐷𝑖(0) = 1] (3) 

While others have demonstrated that PS is a generalization of the instrumental variables 

(IV) framework when the intermediate variable is discrete (Frangakis & Rubin, 2002), I 

find no literature that generalizes IV to PS when the intermediate variable is continuous. 

In this section, I show that CWATE𝑖 is simply a constrained principal causal effect 

surface and that the Wald IV estimator follows directly from the PS framework.  

 In addition to SUTVA, IV estimators assume that: (a) a linear relationship exists 

between differences in the 𝐷 potential outcomes and the 𝑌 potential outcomes, (b) for all 

units, differences in potential outcomes in 𝑌 result only from differences in potential 

outcomes in 𝐷 (i.e. person-specific exclusion restrictions), and (c) no covariance between 

person-specific effects on D and person-specific effects on 𝑌 (i.e. ℂov(Γ𝑖 , Δ𝑖) = 0) 

(Reardon & Raudenbush, 2013). Note that linearity with respect to the potential outcomes 

rules out the possibility that the PCES is a function of a 𝐷𝑖(0)-by-𝐷𝑖(1) interaction or 

higher order terms. Thus, the linearity assumption implies that the principal causal effect 

surface is a plane in ℝ3, i.e.  

𝑌𝑖(1) − 𝑌𝑖(0) = 𝜃0 + 𝜃1𝐷𝑖(0) + 𝜃2𝐷𝑖(1) + 𝜖𝑖 (4) 
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where 𝔼[𝜖𝑖] = 0. 

In addition, assume that 𝜃2 = −𝜃1 is true for the PCES in the population. Plugging 

into Equation 5 and rearranging implies that the PCES can be written as 

𝑌𝑖(1) − 𝑌𝑖(0) = 𝜃0 + 𝜃2(𝐷𝑖(1) − 𝐷𝑖(0)) + 𝜖𝑖 (6) 

The exclusion restrictions require that the plane goes through the origin, implying that 

𝜃0 = 0. Thus, the PCES can be rewritten as:  

𝑌𝑖(1) − 𝑌𝑖(0) = 𝜃2(𝐷𝑖(1) − 𝐷𝑖(0)) + 𝜖𝑖 (7) 

Note that 𝜃2 represents the expected difference in the potential outcomes for a unit 

difference between 𝐷𝑖(1) − 𝐷𝑖(0). This is equivalent to the CWATE estimand given in 

Equation (7). 

 To arrive at the Wald estimator, first take the expectation of Equation 7 and solve 

for 𝜃2. 

𝜃2 =
𝔼[𝑌𝑖(1)−𝑌𝑖(0)]

𝔼[𝐷𝑖(1)−𝐷𝑖(0)]
=

𝔼[𝑌𝑖(1)]−𝔼[𝑌𝑖(0)]

𝔼[𝐷𝑖(1)]−𝔼[𝐷𝑖(0)]
 (8) 

Substitute the naive estimates for the 𝔼[𝑌𝑖(𝑧)] and 𝔼[𝐷𝑖(𝑧)] term 

𝜃2 =
𝑦̅
{𝑖: 𝑍𝑖=1}
𝑜𝑏𝑠 −𝑦̅

{𝑖: 𝑍𝑖=0}
𝑜𝑏𝑠

𝑑̅
{𝑖: 𝑍𝑖=1}
𝑜𝑏𝑠 −𝑑̅

{𝑖: 𝑍𝑖=0}
𝑜𝑏𝑠  (9) 

where 𝑦̅{𝑖: 𝑍𝑖=𝑧}
𝑜𝑏𝑠  and 𝑑̅{𝑖: 𝑍𝑖=𝑧}

𝑜𝑏𝑠  are the sample means of 𝑦𝑖
𝑜𝑏𝑠 and 𝑑𝑖

𝑜𝑏𝑠 in the 𝑍𝑖 = 𝑧 

treatment arm. Equation 9 is equivalent to the Wald estimator used ubiquitously in the IV 

framework.  
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In summary, the Wald estimator can be derived by assuming that the PCES is a 

plane constrained to pass through the origin. The PCES estimand is defined more 

generally: it is a surface of average causal effects across the joint distribution of the 

intermediate’s potential outcomes. 

 

Bias in TSLS Estimates 

In the previous section, I considered only the case where the researcher had access 

to one instrument (𝑍𝑖), and I discussed the assumptions needed for traditional IV 

estimators to produce unbiased estimates for a highly constrained PCES surface. I now 

consider the possibility that the researcher has access to pre-treatment covariates that 

explain heterogeneity in Γ𝑖, but these covariates have no direct effect on Δ𝑖. I show that 

the TSLS estimates of the PCES are biased in general and that the bias is proportional to 

the unobserved associational parameter that defines the file-matching problem. 

With pre-treatment covariates, a TSLS estimate for a PCES can be obtained by 

conducting separate multivariate regressions of 𝑑𝑖
𝑜𝑏𝑠 and 𝑋𝑖 for both treatment arms to 

obtain 𝐷̂𝑖(0) and 𝐷̂𝑖(1) predictions for all individuals.  Next, the predicted values are 

substituted for 𝐷𝑖(0) and 𝐷𝑖(1) in the design matrices when estimating the 𝜷 parameters 

using the observed outcomes in each treatment arm.  
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Proposition: If (a) Assumptions 1-6 hold, (b) a nonzero covariance exists between the 

𝐷𝑖(0) and 𝐷𝑖(1) residuals (i.e., ℂov(𝐷𝑖(0), 𝐷𝑖(1)|𝑋𝑖) ≠ 0), and (c) the PCES is a 

function of an interaction between the D potential outcomes (i.e., 

Pr(Δ𝑖|𝐷𝑖(0), 𝐷𝑖(1), 𝐷𝑖(0) × 𝐷𝑖(1)) ≠ Pr(Δ𝑖|𝐷𝑖(0), 𝐷𝑖(1)), then the PCES is biased by a 

constant value across the joint distribution of D potential outcomes.  

Proof: Under Assumptions 1-6, the joint distribution of all potential outcomes is 

generated from the following data generating mechanism: 

𝐷𝑖(0) = 𝑋𝑖𝜶0 + 𝜖0,𝑖 (10) 

𝐷𝑖(1) = 𝑋𝑖𝜶1 + 𝜖1,𝑖 (11) 

𝑌𝑖(0) = 𝛽0,0 + 𝛽0,1𝐷𝑖(0) + 𝛽0,2𝐷𝑖(1) + 𝛽0,3(𝐷𝑖(0) × 𝐷𝑖(1)) + 𝜖2,𝑖 (12) 

𝑌𝑖(1) = 𝛽1,0 + 𝛽1,1𝐷𝑖(0) + 𝛽1,2𝐷𝑖(1) + 𝛽1,3(𝐷𝑖(0) × 𝐷𝑖(1)) + 𝜖3,𝑖 (13) 

such ℂov(𝜖0,𝑖, 𝜖1,𝑖) = 𝜎0,1. In general, one would expect that 𝜎0,1 ≠ 0. A TSLS estimator 

would proceed by obtaining the predicted values 𝐷𝑖̂(𝑧) = 𝑋𝑖𝜶𝑧 in the first stage and 

substituting these predicted values in the second stage.  Noting that 𝐷𝑖(𝑧) =  𝐷̂𝑖(𝑧) +

𝜖𝑧,𝑖 , the 𝑌𝑖(𝑧) potential outcome in the second stage can be rewritten as: 

𝑌𝑖(𝑧) = 𝛽𝑧,0 + 𝛽𝑧,1(𝐷̂𝑖(0) + 𝜖0,𝑖 ) + 𝛽𝑧,2(𝐷̂𝑖(1) + 𝜖1,𝑖 ) + 𝛽𝑧,3{(𝐷̂𝑖(0) + 𝜖0,𝑖 ) ×

(𝐷̂𝑖(1) + 𝜖1,𝑖 )} + 𝜖𝑧+2,𝑖  

= 𝛽𝑧,0 + 𝛽𝑧,1𝐷̂𝑖(0) + 𝛽𝑧,2𝐷̂𝑖(1) + 𝛽𝑧,3𝐷𝑖̂(0) × 𝐷𝑖̂(1) + 𝜖𝑧+2,𝑖
∗   (14) 

where 𝜖𝑧+2,𝑖
∗ = 𝜖𝑧+2,𝑖 + (𝛽𝑧,1 + 𝛽𝑧,3𝐷̂𝑖(1)) 𝜖0,𝑖 + (𝛽𝑧,2 + 𝛽𝑧,3𝐷𝑖̂(0)) 𝜖1,𝑖 +

𝛽𝑧,3(𝜖0,𝑖 × 𝜖1,𝑖). OLS is also used as the estimator for the 𝛽 coefficients in the second 
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stage. The corresponding estimand for the OLS estimator is then given by 

𝔼[𝑌𝑖(𝑧)|𝐷𝑖̂(0), 𝐷𝑖̂(1)]. Taking the conditional expectation of Equation 14 and noting that 

randomization guarantees that the estimates for the predicted values are unbiased,  

𝔼[𝑌𝑖(𝑧)|𝐷𝑖̂(0), 𝐷𝑖̂(1), ] = 

𝛽𝑧,0 + 𝛽𝑧,1𝐷̂𝑖(0) + 𝛽𝑧,2𝐷̂𝑖(1) + 𝛽𝑧,3𝐷𝑖̂(0) × 𝐷𝑖̂(1) +

𝔼[𝜖𝑧+2,𝑖
∗ |𝐷𝑖̂(0), 𝐷𝑖̂(1)]  (15) 

Note that 𝔼[𝜖𝑧+2,𝑖
∗ |𝐷𝑖̂(0), 𝐷𝑖̂(1), ] = 𝛽𝑧,3𝔼[𝜖0,𝑖 × 𝜖1,𝑖] = 𝛽𝑧,3𝜎0,1. This implies that the 

multiplication of the residuals results in a constant term, provided that 𝛽𝑧,3 and 𝜎0,1 are 

not zero. Thus, 𝔼[𝑌𝑖(𝑧)|𝐷𝑖̂(0), 𝐷𝑖̂(1)] = 

𝛽𝑧,0
∗ + 𝛽𝑧,1𝐷̂𝑖(0) + 𝛽𝑧,2𝐷̂𝑖(1) + 𝛽𝑧,3(𝐷̂𝑖(0) × 𝐷̂𝑖(1)).  (16) 

where 𝛽𝑧,0
∗ = 𝛽𝑧,0 + 𝛽𝑧,3𝜎0,1. Consistent estimates for 𝛽𝑧,0

∗ , 𝛽𝑧,1, 𝛽𝑧,2, and 𝛽𝑧,3 in the 

second stage require that ℂov(𝐷̂𝑖(0), 𝜖𝑧+2,𝑖
∗ ) = ℂov(𝐷̂𝑖(1), 𝜖𝑧+2,𝑖

∗ ) = ℂov(𝐷̂𝑖(0) ×

𝐷̂𝑖(1), 𝜖𝑧+2,𝑖
∗ ) = 0. Because the predicted values are functions of 𝑋, it can be shown that 

this is only guaranteed if there are no direct effects of 𝑋 on 𝑌 (i.e. Assumption 5). Thus, 

TSLS provides consistent estimates for all 𝛽 terms, except for the coefficient of the 

intercept. In large samples, TSLS estimates will tend towards  𝛽𝑧,0 + 𝛽𝑧,3𝜎0,1, rather than 

𝛽𝑧,0.  

The bias in the intercept coefficients for the 𝑌 models translates directly to bias in 

the coefficients for the PCES estimated with TSLS. By applying properties of 
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expectation, it is straight forward to show that in large samples, TSLS estimates tend 

towards 𝜃3𝜎0,1 over repeated sampling.  

In summary, a TSLS approach produces biased and inconsistent PCES intercept 

estimates if there exists a 𝐷𝑖(0) × 𝐷𝑖(1) interaction. The magnitude of this bias for the 

PCES estimator is proportional to the unobserved residual covariance between the 𝐷 

potential outcomes. It should be noted that I have only considered the situation where the 

PCES is known to have only linear main effects of 𝐷𝑖(0) and 𝐷𝑖(1) and an interaction 

term. It can also be shown that the bias is not dependent of the unobserved associational 

parameter for select terms if the PCES can be well approximated by a polynomial 

function with interaction terms and if the residuals are multivariate normal.  

 

Conditional Mean Imputation: Local Bias and a Correction 

As discussed in the previous section, the TSLS point estimates are highly 

sensitive to the associational parameter, 𝜎0,1. Here, I consider an alternative estimator that 

slightly modifies TSLS. In the second stage, TSLS involves substituting the predicted 

values for both 𝐷𝑖(0) and 𝐷𝑖(1), even though one of these potential outcomes is observed 

directly in the data. An alternative is to not substitute the predicted values for the 

observed value, but instead to use the observed value itself. Such a modification also 

more clearly treats the estimation problem as a missing data problem because it can be 
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understood as imputing the missing 𝐷 potential outcome with the predicted value. 

Specifically, this type of imputation procedure is named conditional mean imputation 

because the missing 𝐷 potential outcome is to be imputed with an estimate of the 

expected 𝐷 value given a unit’s covariate values, 𝑋𝑖 (see Little & Rubin, 2002, p. 62-66). 

One advantage of conducting imputation is that it allows the researcher to work directly 

with complete data in a transparent and intuitive manner.  

Despite being biased in its raw form due to omitted variable bias, I propose that 

conditional mean imputation can be modified in a manner that exploits ignorability to 

transform the problem into the more tractable terrain of estimating in the presence of 

covariates that are measured with error. The key insight is that regression to the mean 

results in imputations that are biased for all 𝑑𝑖
𝑚𝑖𝑠𝑠 except for exactly at the population 

mean value. Therefore, the conditional mean imputation estimate is locally biased. 

Nevertheless, ignorability allows the researcher to correct the local bias using the 

observed data drawn from the opposite treatment arm. The correction ensures that the 

imputed values are unbiased at all 𝑑𝑖
𝑚𝑖𝑠𝑠 values. If the variation in differences of the 

corrected imputation and the true missing value is assumed to be completely random, 

then the imputed value is a fallible indicator of 𝑑𝑖
𝑚𝑖𝑠𝑠. The resulting attenuation bias can 

be solved using existing estimators that address this problem. 
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Conditional Mean Estimator and Omitted Variable Bias 

Without loss of generality, consider the population equation for the 𝑌𝑖(0) 

potential outcome to understand why the conditional mean imputation estimator is 

biased:  

𝑌𝑖(0) = 𝛽0,0 + 𝛽0,1𝐷𝑖(0) + 𝛽0,2𝐷𝑖(1) + 𝛽0,3(𝐷𝑖(0) × 𝐷𝑖(1)) + 𝜖3,𝑖 (17) 

Noting that 𝐷𝑖(1) =  𝐷̂𝑖(1) + 𝜖1,𝑧, the above equation can be rewritten as 

𝑌𝑖(0) = 𝛽0,0 + 𝛽0,1𝐷𝑖(0) + 𝛽0,2𝐷̂𝑖(1) + 𝛽0,2𝜖1,𝑖 + 𝛽0,3 (𝐷𝑖(0) × 𝐷̂𝑖(1)) +

𝛽0,3(𝐷𝑖(0) × 𝜖1,𝑖) + 𝜖3,𝑖 (18) 

The conditional mean estimator proceeds by excluding any term with 𝜖1,𝑖 during 

estimation. Thus, 𝜖1,𝑖 and 𝐷𝑖(0) × 𝜖1,𝑖 are omitted variables. Bias in the 𝜷𝑧 estimate will 

only result from omitting these variables under two conditions: (a) at least one of the 

omitted terms is not independent of 𝑌𝑖(0), and (b) at least one of the omitted terms is 

associated with any of the observed 𝐷𝑖(0), 𝐷̂𝑖(0), or 𝐷𝑖(0) × 𝐷̂𝑖(1) variables. 

Both necessary conditions for omitted variable bias are satisfied. In any practical 

application of a PS estimator, the researcher would hypothesize a non-zero population 

value for 𝜃2, 𝜃3, or both. This implies that at least one of the corresponding omitted terms 

is associated with at least one of the 𝑌 potential outcomes. Moreover, if 𝜎0,1 ≠ 0, then 

there exists a non-zero correlation between 𝐷𝑖(0); also, the unobserved 𝐷𝑖(0) × 𝜖1,𝑖 

interaction term is clearly not independent of the observed main effect 𝐷𝑖(0). This all 

suggests that conditional mean imputation is subject to omitted variable bias because the 
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omitted variables confound the relationship between the missing 𝐷 potential outcome and 

the 𝑌 potential outcomes. 

 

Local Bias in Conditional Mean Imputations 

Although estimates from conditional mean imputation are susceptible to omitted 

variable bias, I propose that randomization makes it possible for the researcher to 

transform this problem into a more tractable latent variable problem. Suppose, for 

example, that one could obtain an imputed value that was only susceptible to the 

measurement error that defines classical test theory. In this hypothetical, let the imputed 

value be the “observed score” and the missing value represent the “true score” so that 

𝑑𝑖
𝑖𝑚𝑝 = 𝑑𝑖

𝑚𝑖𝑠𝑠 + 𝑢𝑖, 𝔼[𝑢𝑖] = 0 & 𝕍ar[𝑢𝑖] = SEM
2 (19) 

where 𝑑𝑖
𝑖𝑚𝑝

 is the imputed value, and the standard error of measurement (SEM) is a 

known and constant value (i.e., homoscedasticity). I note that the assumption that 𝔼[𝑢𝑖] 

implies that the observed imputation is an unbiased estimate of the true missing value for 

all units, i.e. 𝔼[𝑑𝑖
𝑖𝑚𝑝|𝑑𝑖

𝑚𝑖𝑠𝑠] = 𝑑𝑖
𝑚𝑖𝑠𝑠. Supposing that such an imputed value could be 

obtained, then substituting that value for the missing 𝐷 potential outcome when 

estimating the 𝜷 coefficients brings us to the more tractable goal of disattenuating the 

bias induced by the measurement error.  
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A fundamental problem with using the conditional means when imputing is that 

regression to the mean results in unbiased estimates of 𝑑𝑖
𝑚𝑖𝑠𝑠 only for units exactly at the 

population mean. As I now explain, 𝔼[𝑑𝑖
𝑖𝑚𝑝|𝑑𝑖

𝑚𝑖𝑠𝑠] ≠ 𝑑𝑖
𝑚𝑖𝑠𝑠 for all other units. I show, 

however, that the conditional mean imputations can be easily transformed so that the 

corrected values are unconditionally unbiased and homoscedastic. 

To understand how regression to the mean leads to local bias, consider Panel A in 

Figure 3. The bold, grey line represents the condition that the imputed value (y-axis) is 

exactly equal to the true missing value (x-axis). The origin of the Cartesian coordinates is 

centered at the population means. Because the pre-treatment covariates only explain 

about 70% of the variance in the missing 𝐷 potential outcome, there exists random 

variation away from the grey line. Some of the imputed values are greater than the true 

missing value, while other imputed values are smaller than the true mean value. This 

variation is illustrated by contours that represent density in the joint distribution of the 

missing and imputed values. The thin blue line represents the average imputed value for 

a given missing value, i.e. 𝔼[𝑑𝑖
𝑖𝑚𝑝|𝑑𝑖

𝑚𝑖𝑠𝑠]. One can see that the imputed values equal the 

true value on average only at the origin. For missing values greater than the mean, the 

imputed values are on average less than the true missing value. The opposite is true for 

missing values less than the mean. Consequently, random variation leads to local bias for 

any given 𝑑𝑖
𝑚𝑖𝑠𝑠 value away from the origin, with the direction of this bias towards the 
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population mean. Note that it is straightforward to show that this local bias persists even 

if more advanced univariate imputation procedures are used, including rigorous multiple 

imputation procedures that approximate a posterior predictive distribution. 

 

Correcting Local Bias in Conditional Mean Imputations 

Randomization allows the researcher to estimate the expected local bias at each 

𝑑𝑖
𝑚𝑖𝑠𝑠  value by dividing the imputed values by the 𝑅2 obtained from regressing 𝑑𝑖

𝑚𝑖𝑠𝑠 on 

𝑋𝑖. Although a direct estimate of this value cannot be obtained from the observed data, 

randomization guarantees that an unbiased estimate of this quantity can be calculated by 

regressing 𝑑𝑖
𝑜𝑏𝑠 on 𝑋𝑖 in the opposite treatment arm, denoted 𝑅̂𝐷𝑖(𝑧′)

2 . I denote the 

corrected imputations as 𝑑𝑖
𝑖𝑚𝑝∗

. The effect of the correction on the imputed values is 

shown visually in Panel B of Figure 3; after applying the correction, the imputations 

equal the true missing value on average. Furthermore, it can be shown that at each 𝑑𝑖
𝑚𝑖𝑠𝑠 

value, the corrected imputation values are dispersed by an estimated value   

𝕍âr (𝑑𝑖
𝑖𝑚𝑝∗|𝑑𝑖

𝑚𝑖𝑠𝑠) =
𝕍âr(𝑑𝑖

𝑖𝑚𝑝
)

(𝑅̂
𝐷𝑖(𝑧

′)
2 )

2 − 𝑠𝐷(𝑧′)
2  (20) 

where 𝑠𝐷(𝑧′)
2  is the estimated variance of the observed 𝐷 values in the alternative 

treatment arm and 𝑑𝑖
𝑖𝑚𝑝

 is the conditional mean imputation. If deviations from the 
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missing value are independent sources of error, then Equation 20 represents the square of 

the standard error of measurement. 

 

Randomization also implies that local bias can be attenuated using this correction 

procedure even if important pre-treatment predictors of Γ𝑖 are omitted. Certainly, omitting 

predictors will necessarily reduce the amount of variance in 𝑑𝑖
𝑚𝑖𝑠𝑠. Nevertheless, 

ignorability implies that 𝑅̂𝐷𝑖(𝑧′)
2  continues to remain an unbiased estimate of the 𝑅2 

estimate for 𝑑𝑖
𝑚𝑖𝑠𝑠 on 𝑋𝑖.  This is illustrated in Figure 4.  

 

<Insert Figures 3 & 4 about here> 

 

Despite relieving the local bias associated with regression to the mean, the 

random variation of the imputations away from the true 𝑑𝑖
𝑚𝑖𝑠𝑠 complicate estimation 

using the corrected imputation values. Naively estimating the 𝜷 parameters that define 

the PCES by substituting the conditional mean imputation value for 𝑑𝑖
𝑚𝑖𝑠𝑠 assumes that 

the imputation values are perfect measures of the missing value—a condition that would 

only be true if 𝑋𝑖 perfectly predicted 𝑑𝑖
𝑚𝑖𝑠𝑠. Otherwise, the corrected imputation value is a 

fallible indicator of 𝑑𝑖
𝑚𝑖𝑠𝑠, and the resulting 𝜷 parameters would then be subject to the 

attenuation bias. 
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In summary, conditional mean imputation does not lead to “apples-to-apples” 

comparisons with respect to the joint distribution of the 𝐷 potential outcomes because 

regression to the mean leads to local bias. However, a correction factor can be estimated 

using the observed data and applied to generate imputations that are, at best, fallible 

indicators of 𝑑𝑖
𝑚𝑖𝑠𝑠 measured with error. Even so, a PCES estimator that naively 

substitutes the corrected imputation values is subject to attenuation bias provided that the 

deviations from the true missing value are independent sources of error. 

 

SIMEX 

General Background 

It is well established that measurement error in the predictors biases OLS 

coefficient estimates. I have proposed a modification to conditional mean imputation that 

transforms the missing data problem into the more manageable territory of estimating 

regression coefficients when the covariates are measured with error. I assume that these 

departures share the essential qualities of simple measurement error to make use of 

known estimators that ameliorate the resulting attenuation bias, namely independence. 

Popular estimators in the presence of measurement error include: (a) calculating 

regression coefficients by first modifying the observed correlation matrix, (b) latent 

variable models, and (c) SIMEX (Cook & Stefanski, 1994).  I chose SIMEX because 

manually deattenuating a correlation matrix in the presence of interactions and higher-
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order terms is nontrivial. Similarly, it is far more computationally scalable to include 

interaction and higher-order terms in SIMEX than in traditional latent variable models. 

Additionally, SIMEX does not rely on parametric assumptions regarding the underlying 

latent variable, and the approach is highly intuitive for researchers with experience 

conducting sensitivity analyses. On the other hand, the standard error of measurement 

(SEM) must be known, and SIMEX is generally only effective when the measurement 

error is homoscedastic (Devanarayan & Stefanski, 2002; Lockwood & McCaffrey, 2017).  

SIMEX involves a simulation phase and an extrapolation phase, and the results of 

the procedure are illustrated heuristically in Figure 5. First, the researcher identifies a grid 

of 𝑙 = 1,… , 𝐿 non-negative 𝜆 values to conduct independent simulations. 𝜆 is scaled so 

that it represents the amount of measurement error added in SEM units. For example, 𝜆 =

0 represents the case where no simulated measurement error is added, and 𝜆 = −1 

corresponds to the hypothetical situation that the “true scores” of the covariates were 

observed. The procedure requires simulating measurement error 𝑏 = 1,… , 𝐵 times and 

recording coefficient estimates at each 𝜆 value. These parameter estimates are denoted as 

𝛽̂𝑏(𝜆).  

Next, the researcher fits a best-fit function relating the 𝛽̂𝑏(𝜆) estimates to 𝜆.  I 

denote the true best-fit line by ℊ(𝜆). Departures from the predicted ℊ(𝜆) values are 

assumed to be the result of sampling error when simulating measurement to generate 
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individual 𝛽̂𝑏(𝜆) estimates. If ℊ(𝜆) is known, then the researcher can obtain the SIMEX 

estimate by extrapolating away from the observed data and predicting ℊ(−1). This 

extrapolation process is shown visually by the dotted line and circular marker in Figure 5. 

Extrapolation is the “Achilles’ heel” of the SIMEX estimator. Estimates will only 

be unbiased estimates so long as the ℊ(𝜆) is correctly specified. Moreover, predictions 

resulting from extrapolation can be highly inefficient estimates, even if the true form of 

ℊ(𝜆) is known. This is especially true when the standard error of measurement is large 

relative to the variance in the true scores, resulting in extrapolation far from the observed 

data.  

 

<Insert Figure 5 about here> 

 

Application to Estimating a PCES 

As applied to the problem of estimating a PCES, 𝜆 = 0 represents the coefficient 

estimates obtained by substituting the corrected conditional mean imputations for the 

missing 𝐷 potential outcomes. The key insight is that 𝜆 = −1 correponds to the 

hypothetical situation where the imputed value exactly equals 𝑑𝑖
𝑚𝑖𝑠𝑠.  Thus, a SIMEX 

estimator attempts to identify the parameter estimates that would be estimated in the 

hypothetical situation that the missing 𝐷 potential outcome had been observed for all 
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units. Moreover, the only way one could possibly observe the missing 𝐷 potential 

outcome is if the researcher had access to a rich set of predictors that perfectly predict the 

missing value so that there was no unexplained variance in 𝑑𝑖
𝑚𝑖𝑠𝑠. Under such a 

condition, the associational parameter that defines the file-matching problem becomes 

irrelevant.2 In this way, the proposed SIMEX estimator bypasses the file-matching 

problem completely. 

 

Simulation Study Design 

To make the simulation more realistic, I designed the population parameters for 

the simulation study around the data from the MDRC experiment. In this section, I 

discuss the measures in the empirical sample used to assess Page’s (2012) hypothesis: 

students who experienced the greatest boost in world-of-work scores also experienced the 

strongest treatment effects on wages. Next, I describe the specifics of the simulation 

procedure. 

 

                                                 
2 If one of the D potential outcomes is perfectly predicted by the covariates, then the 

corresponding mean-squared error is zero, i.e. 𝜎0,0
2 = 0 or 𝜎1,1

2 = 0. Because 𝜎0,1 =

√𝜎0,0
2 𝜎1,1

2 ℂorr(𝐷𝑖(0)|𝑋𝑖, 𝐷𝑖(1)|𝑋𝑖), it follows that 𝜎0,1 = 0. 



 

35 

 

 

 

 

Measures 

The sample includes N = 403 male participants across seven different school sites. 

Within this sample, 221 students were offered assignment to the career academy 

(treatment). At the end of high school, all students in the sample responded to a survey 

asking about their level of engagement in school-sponsored labor-market activities. For 

each student, a score was calculated from these survey items using the first component of 

a principal components analysis. I verified that individuals with higher scores tended to 

have greater levels of labor-market exposure. Moreover, treatment assignment offer had a 

strong, positive effect on the world-of-work exposure scores (𝐼𝑇̂𝑇 = 1.3 pts, Cohen’s d = 

0.65 sd, p < 0.001).   

The data also provides suggestive evidence in support of the assumption that 

heterogeneity in treatment effects for world-of-work scores exists. The distributions of 

world-of-work scores across treatment conditions is shown in Figure 6, and QQ-plots are 

shown in Figure 7. The world-of-work scores for the control group exhibit right skew, 

while the scores for the treatment group display more symmetry. Thus, 𝐷𝑖(0) and 𝐷𝑖(1) 

differ regarding higher-order moments beyond simply the mean. This provides suggestive 

evidence that an offer to attend a career academy had a larger effect on subsequent 

exposure to the labor market for some students than for others (Ding, Feller, & Miratrix, 

2016).  

 



 

36 

 

 

 

 

<Insert Figures 6 & 7 about here> 

  

To identify predictors that explain heterogeneity on world-of-work scores, I 

applied a commonly used machine learning algorithm. Specifically, I first identified 44 

pre-treatment covariates that showed rank-ordered pairwise correlations greater than 0.2, 

with the world-of-work scores in either the treatment arm or the control arm. Missingness 

on the covariates ran between 0-75%. For the purposes of identifying population values 

for the simulation parameters, I created one imputed data set using the R package 

missForest (Stekhoven & Buehlmann, 2011). I then assessed balance on all 44 pre-

treatment covariates by comparing the means between treatment and control units for 

continuous covariates or conducting 𝜒2 tests of independence for ordinal and nominal 

covariates.  I found that only mother’s education displayed evidence of imbalance (𝜒2 = 

10.0, df = 4, p = 0.03). Although this result may be explained by Type-I error, mother’s 

education is substantively important in these settings, so it is considered a confounder 

requiring adjustment. Inverse propensity score weighting (IPTW) was applied when 

fitting all statistical models to ensure balance on this variable within the sample.  

 Six predictors were formed by developing an ensemble of predictions.3 Ensemble 

forecasting involves two stages and can be thought of as conducting a “poll of polls.” In 

                                                 
3 I refer the reader to Hastie, Efron, and Friedman (2009) for more information on the 

theory of ensemble modeling.  
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the first stage, the researcher collects predictions estimated from competing algorithms. I 

chose RandomForests, ridge regression, and bagged CART as competing estimators to 

form three alternative predictions of 𝐷𝑖(0) and 𝐷𝑖(1) for each individual. In the second 

stage, the researcher creates final predictions by using the first-stage predictions as the 

covariates. I used leave-one-out cross validation to assess out-of-sample prediction error. 

The ensemble method formed strong predictors for both the world-of-work scores in both 

treatment arms (cv-RMSE𝐷(0) = 0.88, cv-𝑅𝐷(0)
2 =0.76, cv-RMSE𝐷(1) = 1.1, cv-

𝑅𝐷(1)
2 =0.70). 

   MDRC collected information on average monthly wages four to eight years after 

high school graduation. Consistent with previous studies that analyzed this data, I find 

that an offer to a career academy had a moderate, positive effect on post-graduation 

wages (𝐼𝑇̂𝑇= $186 USD, Cohen’s d = 0.18 sd, p = 0.06). To ensure compatibility with 

Page (2012), I applied a square-root transformation before modeling wages as the 

outcome of interest.  

If there are no direct effects of the covariates on Δ𝑖 (Assumption 5), the existence 

of a non-trivial PCES surface requires the existence of heterogeneous treatment effects on 

𝑌. The distributions of the observed scaled wage values are shown in Figure 8, a QQ-plot 

is presented in Figure 9 and the descriptive statistics are presented in Table 1. The 

difference in skew (Control: Est = -0.31; Treated: Est = 0.91) and kertosis (Control: Est = 
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-0.42; Treated: Est = 3.69) values across treatment arms suggest that the requisite 

treatment effect heterogeneity may be present.  

 

<Insert Table 1 about here> 

<Insert Figures 8 & 9 about here> 

 

Simulation Setup 

The data generating mechanism for the simulation is the same as that identified in 

Equations 10-13. Table 2 reports the population values for 𝜶0, 𝜶1, 𝜷0,  𝜷1, 𝜽, 𝜎0
2, 𝜎1

2, 𝜎2
2, 

and 𝜎3
2  used in the simulation.  I now discuss how I determined these population values. 

  I used the principal causal effect estimates reported in Page (2012) to identify 

population values for the PCES. Page (2012) first discretized the intermediate variable by 

three equal quantiles across treatment arms. This implied that 𝐷𝑖(𝑧) could only take on 

three ordinal values: low, medium, and high. Latent classes are then defined by the joint 

distribution of potential outcomes for D. By imposing monotonicity for all individuals 

(𝐷𝑖(1) > 𝐷𝑖(0) ∀𝑖), six latent classes are possible. Specifically, (𝐷𝑖(0), 𝐷𝑖(1)) ∈{(low, 

low), (low, medium), (low, high), (medium, medium), (medium, high), (high, high)}.  

Table 3 reports the principal causal effect estimates estimated by Page (2012) for 

each latent class. To generate a continuous surface, these estimates must correspond to 



 

39 

 

 

 

 

some coordinate pair in ℝ2. I identified each element in the coordinate pair by taking the 

midpoint between the largest and smallest observed 𝐷𝑖(𝑧) value for each class. The 

coordinate pairs corresponding to each latent class are also presented in Table 3. Next, I 

identified population 𝜽 values by fitting multiple regression models to these data and 

weighting by the precision of the estimates. I assumed that a student’s wage in the control 

condition only depends on 𝐷𝑖(0). By fitting a simple linear regression model for this 

treatment arm with 𝑦𝑖
𝑜𝑏𝑠 as the outcome and 𝑑𝑖

𝑜𝑏𝑠  as the control, I determined 𝜷0. 

Finally, 𝜷1values were identified using the property 𝜷1 = 𝜽 + 𝜷0.  

I now discuss how I identified 𝜶𝑧, 𝜎0
2,and 𝜎1

2 values for the simulation. Because 

each replication requires sampling new 𝑋𝑖 values from a known multivariate distribution, 

I applied matrix algebra properties to the six ensemble predictors to form a new basis. 

Specifically, I first conducted a principal components analysis to generate an orthogonal 

basis for the predictors in ℝ6, and I calculated all principal scores. After standardizing, I 

applied a linear transformation to the principal scores using a Cholesky decomposition so 

that the transformed predictors were defined to have pairwise correlations of 𝑟 =0.25. I 

then identified 𝜶𝑧 values by fitting multiple regressions using the six transformed 

predictors to the 𝑑𝑖
𝑜𝑏𝑠, separately across treatment arms. The mean squared error 

estimates from the multiple regression models were also taken as the population values  

𝜎0
2 and 𝜎1

2.  
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<Insert Tables 2 & 3 about here> 

 

Sampling Scheme 

Given a specified sample size, N, I first generated correlated covariates by 

sampling 𝑋𝑖 from a multivariate normal distribution, i.e.  

𝑋𝑖~MVN6(𝟎, Σ𝒙) (21) 

such that diagonals of Σ𝒙 are all equal to 1 and the off-diagonal elements all equal 0.25.  

With the covariates known, I then sampled complete data following from the data 

generating mechanism given by Equations 10-13 and the population values in Table 4. 

For all simulations, the correct functional form for the 𝑌𝑖(𝑧) was assumed to be 

known. I then randomly assigned half of the simulated units to treatment (𝑧𝑖 = 1) and 

half to control (𝑧𝑖 = 0) and calculated the observed data used in the simulation from 

𝑑𝑖
𝑜𝑏𝑠 = 𝑧𝑖 × 𝐷𝑖(1) + (1 − 𝑧𝑖) × 𝐷𝑖(0) and 𝑦𝑖

𝑜𝑏𝑠 = 𝑧𝑖 × 𝑌𝑖(1) + (1 − 𝑧𝑖) × 𝑌𝑖(1). 

 

Simulation 1: Evaluating TSLS & Conditional Mean Imputation Estimators 

In the first simulation, I verified that TSLS and conditional mean imputation lead 

to biased and inconsistent estimates of a PCES across a variety of conditions. These 

conditions are reported in Table 2, and I also describe them here.  
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I used probability theory to previously show that TSLS will lead to inconsistent 

estimates of the intercept that will tend towards 𝛽𝑧,0 + 𝛽𝑧,3𝜎0,1, rather than 𝛽𝑧,0 in large 

samples. Thus, the asymptotic bias associated with a TSLS PCES estimator should only 

depend on  𝜃𝑧,3 and 𝜎0,1, and the bias should only affect the intercept value. On the other 

hand, I showed previously that all 𝜽 estimates will be biased due to omitted variable bias. 

To verify this, I conducted simulations across four different specifications for Σ. In 

Condition A, all four residuals—𝜖0,𝑖, 𝜖1,𝑖, 𝜖2,𝑖, and 𝜖3,𝑖—were assumed to be independent 

of one another, and I expect that under large samples, the intercept coefficient will be 

unbiased in this condition. In Condition B, I allow 𝜖0,𝑖 and 𝜖1,𝑖 to freely correlate (𝜌0,1 =

0.5), and I also allow 𝜖2,𝑖 and 𝜖3,𝑖 to correlate (𝜌2,3 = 0.7). Condition C frees the 

correlation between 𝜖0,𝑖 and 𝜖2,𝑖 as well as 𝜖1,𝑖 and 𝜖3,𝑖 (𝜌0,2 = 𝜌1,3 = 0.3). Finally, all 

residuals are correlated in Condition D (𝜌0,3 = 𝜌1,2 = 0.2).  

In addition to assessing the bias properties of TSLS estimates when residuals are 

correlated, I also ensured that the bias of the TSLS 𝜽 estimates do not depend on whether 

pre-treatment covariates were omitted. As discussed in Section 5, pre-treatment 

covariates are not confounders in randomized settings. Consequently, the predicted 

values in the second stage of TSLS should remain unbiased, even as efficiency is lost. To 

study this, all four conditions listed above were evaluated in the scenario where all six 
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predictors were observed and in the scenario where the two strongest predictors were 

omitted.  

Finally, consistency implies that any bias should attenuate as the sample size 

increases. Thus, each simulation condition listed above was evaluated for sample size and 

was set to N = 400, and sample sizes were set to N = 8,000.   

In summary, three conditions were fully crossed to evaluate the consistency 

properties of the TSLS and conditional mean imputation estimators: (1) the correlation 

among the residuals, (2) the number of omitted pre-treatment covariates, and (3) the 

sample size. For all simulation conditions, I conducted 10,000 replications.  

 

Simulation 2: Imbalance Resulting from a Univariate Imputation Estimator 

Simulation 2 examines the imbalance that results from conditional mean 

imputation that assumes all residuals are independent. Earlier I derived an estimate for 

the correction factor that must be applied for 𝔼[𝑑𝑖
𝑖𝑚𝑝|𝑑𝑖

𝑚𝑖𝑠𝑠] = 𝑑𝑖
𝑚𝑖𝑠𝑠. In this simulation, I 

study the bias and consistency properties of this estimate by comparing the difference in 

the estimated multiplier value to the true value that would be needed for 

𝔼[𝑑𝑖
𝑖𝑚𝑝|𝑑𝑖

𝑚𝑖𝑠𝑠] = 𝑑𝑖
𝑚𝑖𝑠𝑠 under Condition D. I also study whether the bias of these 

multiplier estimates is sensitive to predictors being omitted. 
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Simulation 3: TSLS-Assisted SIMEX PCES Estimators 

In the third simulation, I assess bias in the 𝜽 SIMEX estimates when setting the 

residual correlations to Conditions B and D for small (𝑁 = 400) and large (𝑁 = 8,000) 

samples. I constructed 𝜽 SIMEX estimates by subtracting SIMEX estimates of 𝜷0 from  

𝜷1. As I previously discussed, the functional relationship for ℊ(𝜆) must be assumed to 

generate SIMEX estimates of the 𝜷𝑧 parameters. Devanarayan & Stefanski (2002) 

analytically derived the ℊ(𝜆) relationship in the case of multiple regression with an 

interaction term; it follows the form 𝑎 +
𝑏

𝑐+𝜆
, where 𝑎, 𝑏, and 𝑐 are constants. Although 

the true functional form is known in the context of this simulation, I found that estimating 

the constants is highly unstable except in very large samples (𝑁 > 10,000) because of 

the vertical asymptote at 𝜆 = −𝑐. In response, I assume that a quadratic function 

approximates ℊ(𝜆) sufficiently well, i.e. ℊ(𝜆) ≈ 𝑎̃ + 𝑏̃𝜆 + 𝑐̃𝜆2 where 𝑎̃ is necessarily 

equal to the corresponding conditional mean 𝛽 estimate. 

Following the advice given by Devanarayan & Stefanski (2002) and Lockwood & 

McCaffrey (2015), I simulated measurement error along an equally spaced grid spanning 

0 ≤ 𝜆 ≤ 2 with 𝐿 = 20 points along this grid. At each 𝜆 value, I conducted 𝐵 = 30 

independent simulations to complete the simulation phase of the SIMEX procedure. I 

observed that 𝛽̂𝑏(𝜆) estimates were more dispersed for larger 𝜆 values. To account for 
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this heteroskedasticity, I estimated the 𝑏̃ and 𝑐̃ constants by fitting a multiple regression 

model with precision weights.  

 

Simulation Results 

Simulation 1 Results 

The bias of 𝜃0, 𝜃1, 𝜃2, and 𝜃3 TSLS estimates across the simulation conditions are 

listed in Table 2, and the sampling distributions across all replications are shown in 

Figures 10-13, respectively. I also include the bias from a univariate imputation estimator 

to serve as a point of reference. The sampling distribution for the 𝜃1, 𝜃2, and 𝜃3 TSLS 

estimates are all centered near zero across all conditions, suggesting these estimates are 

not biased. Moreover, the decreasing variance of the sampling distributions with 

increasing sample size suggests that residual correlations and omitting predictors does not 

negatively affect the consistency properties of the TSLS estimator.  

In contrast, the TSLS estimates for 𝜃0 are biased whenever a non-zero correlation 

between 𝐷𝑖(0) and 𝐷𝑖(1) exists. This can be seen in Figure 10 whenever the sampling 

distribution of the bias estimates are not centered around zero outside of Condition A. 

Additionally, the dotted verticals in Figure 10 represent the expected bias (i.e. 𝜃3 × 𝜎0,1) 

for Conditions B-D. While the sampling distributions are centered around the expected 

bias value when there are no omitted predictors, the distributions are not centered around 
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this value when important predictors are omitted. I explain the cause of this unexpected 

result in the next section.  

Table 4 reports the magnitude of the bias for 𝜽 on a standardized metric under 

each simulation condition. These include the bias of the standardized coefficients for 𝜃1, 

𝜃2, and 𝜃3, while the standardized metric for the 𝜃0 bias estimate is taken to be the ratio 

with the magnitude of the true ITT value (i.e. 
𝜃̂0−𝜃0

|𝐼𝑇𝑇|
). MANOVA testing suggested that 

the magnitude of the bias for 𝜃0, 𝜃1, 𝜃3 are all zero across all conditions when 𝑁 = 8,000. 

The bias also does not depend on residual correlations other than between 𝐷𝑖(0) and 

𝐷𝑖(1) or on whether any pre-treatment predictors were omitted (𝐹9,479988= 1.15, p = 

0.324). On the other hand, ANOVA testing did suggest that the 𝜃0 estimate differed when 

important predictors were omitted (t = -59.05, df = 159998, p<0.001), but the magnitude 

of the difference did not differ across conditions controlling for sample size (𝐹1,4= 0.689, 

p =0.607).  

In summary, the data for Simulation 1 suggest that TSLS produces consistent 

estimates for 𝜃1, 𝜃2, and 𝜃3, but biased estimates for 𝜃0 whenever 𝜎0,1 is nonzero. I also 

find evidence that the bias approaches 𝜃3 × 𝜎0,1, but only when none of the predictors are 

omitted. I explain in the Discussion that this surprising result is likely because omitting 

predictors induces a larger residual correlation than the population 𝜎0,1 value specified 

when generating the data.  
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Additionally, the magnitude of the bias for the TSLS intercept estimates is quite 

large relative to the ITT, averaging over 40% of the ITT value in large samples with the 

bias increasing in small samples. Despite the large amount of bias in the TSLS estimates, 

conditional mean imputation leads to bias in the estimated intercepts of nearly 80%. This 

large degree of bias exists even though the covariates explained roughly 70% of the 

variance in the 𝐷𝑖(0) and 𝐷𝑖(1).  Because bias in the intercept leads to bias in estimated 

treatments along the full joint distribution of 𝐷𝑖(0) and 𝐷𝑖(1), this implies that the PCES 

estimated with TSLS is highly sensitive to the residuals correlation among the 

intermediate variable. TSLS alone is, therefore, insufficient in addressing the file-

matching problem to be a viable estimator in practice. 

 

<Insert Figures 10-13 about here> 

<Insert Table 4 about here> 

 

Simulation 2 Results 

Figures 14 and 15 display the bias in the estimated multiplier value compared to 

the true multiplier value that would need to be observed to ensure imputed values are 

balanced (i.e., 𝔼[𝑑𝑖
𝑖𝑚𝑝|𝑑𝑖

𝑚𝑖𝑠𝑠] = 𝑑𝑖
𝑚𝑖𝑠𝑠) for the treated and control arm, respectively. The 
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sampling distributions are all centered around zero, providing evidence that the multiplier 

estimates obtained from the observed data are unbiased across alternative conditions. 

 

<Insert Figures 11-12 about here> 

 

Simulation 3 Results 

Figures 16-19 display the sampling distribution of the bias in the 𝜽 estimates for 

small (𝑁 = 400) and large (𝑁 = 8,000) across conditions B and D.  I include the 

corresponding sampling distributions for TSLS and conditional mean imputation 

estimates for reference.  

Consistent with the results from Simulation 1, estimates from a conditional mean 

imputation model display the most bias. SIMEX estimators do attenuate the bias for the 

intercept estimates, but only slightly.  However, the SIMEX estimates display more bias 

than the TSLS estimates in all conditions. I discuss the lackluster performance of the 

SIMEX estimator in the next section. 

 

<Insert Figures 16-19 about here> 
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Discussion and Future Directions 

Through a simulation study, two revealing findings emerged that require further 

explanation. First, the TSLS intercept estimates are even more biased than expected when 

pre-treatment covariates are omitted. Second, the proposed SIMEX did not fully attenuate 

the bias associated with the conditional mean imputation estimator.  

I explain the first result by expounding on how omitted pre-treatment covariates 

induce a residual covariance value that is larger in magnitude than the population 𝜎0,1 

value. To explain this, recall that the 𝐷 potential outcomes were simulated after 

conditioning on all six covariates. When only two are observed, the component of the 

variance explained by the omitted covariates are confounded into the error structure, i.e. 

𝐷𝑖(𝑧) =  𝑋𝑖𝜶𝑧 + 𝜖𝑧,𝑖 = 𝑋𝑖
𝑜𝑏𝑠𝜶𝑧

𝑜𝑏𝑠 + {𝜖𝑧,𝑖 + 𝑋𝑖
𝑜𝑚𝑖𝑡𝜶𝑧

𝑜𝑚𝑖𝑡} = 𝑋𝑖
𝑜𝑏𝑠𝜶𝒛

𝒐𝒃𝒔 + 𝜖𝑧,𝑖
𝑜𝑚𝑖𝑡 (22) 

where 𝜶𝑧
𝑜𝑏𝑠 are the population coefficients corresponding to the vector observed 

covariates, 𝑋𝑖
𝑜𝑏𝑠,  and 𝜶𝒛

𝑜𝑚𝑖𝑡 are the population coefficients corresponding to the vector of 

omitted covariates, 𝑋𝑖
𝑜𝑚𝑖𝑡.  The covariance of the residuals in a model estimated by 

omitting covariates is then given by  

ℂov(𝜖0,𝑖
𝑜𝑚𝑖𝑡, 𝜖1,𝑖

𝑜𝑚𝑖𝑡) = 𝜎0,1 + (𝜶0
𝑜𝑚𝑖𝑡)

′
𝕍ar(𝑋𝑖

𝑜𝑚𝑖𝑡)𝜶0
𝑜𝑚𝑖𝑡 (23) 

where 𝕍ar(𝑋𝑖
𝑜𝑚𝑖𝑡) is the variance-covariance matrix of the omitted pre-treatment 

predictors. Thus, omitting covariates results in residuals that no longer exhibit a 
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covariance exactly equal to 𝜎0,1. Instead, the shared variance from the omitted covariates 

induces an additional residual correlation.  

The simulation study also revealed that the SIMEX estimator does not 

substantially attenuate the bias associated with the conditional mean imputation. There 

are two possible explanations for this finding. First, a quadratic function is a poor 

approximation for the true ℊ(𝜆). Alternatively, and perhaps compounding the first 

explanation, is that deviations in the corrected imputation from the true 𝑑𝑖
𝑚𝑖𝑠𝑠 are not 

independently distributed, and the independence assumption is critical for consistent 

SIMEX estimates.  

To identify the source SIMEX’s bias was due to a poor approximating function, I 

assessed how the SIMEX estimator compares to a simulated situation specified so that 

the missing 𝐷 potential outcome is fully explained by the covariates. Increasing amounts 

of measurement error were added to 𝐷. The data generating mechanism for the 

𝑌(1) potential outcomes followed the form: 

𝑌𝑖(1, 𝜆) = 𝛽𝑧,0 + 𝛽𝑧,1 (𝐷𝑖(0) + λ
1

2 × SEMz × 𝑈𝑖) + 𝛽𝑧,2𝐷𝑖(1) + 𝛽𝑧,3 ((𝐷𝑖(0) +

λ
1

2 × SEMz × 𝑈𝑖) × 𝐷𝑖(1)) + (𝜖𝑧+2,𝑖 +)  (24) 

where 𝑈𝑖~𝑁(0,1) and the residuals set to Condition D.  I calculated 𝜷 estimates from 

data generated using Equation 29 using a large sample (𝑁 = 1 × 105)  for 𝐿 = 30,000 

different 𝜆 values spanning −1 ≤ 𝜆 ≤ 6. The results for the treatment arm are shown in 
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Figure 20 and indicated by the grey dot. The black line indicates the true 𝑔(𝜆) function of 

the form 𝑎 +
𝑏

𝑐+𝜆
, denoted ℊ𝑇𝑅𝑈𝐸(𝜆). Thus, ℊ𝑇𝑅𝑈𝐸(𝜆) represents the true functional 

relationship that would be observed if deviations in the corrected imputation values were 

independent.  

Next, I compared the true function to corresponding results given the data 

generating mechanism and the SIMEX estimation procedure used in Simulation 3 using 

𝑁 = 1 × 105 and 𝐿 = 30,000 different 𝜆 values spanning 0 ≤ 𝜆 ≤ 6 . The corresponding 

𝜷 estimates are shown in blue. A best fit line for 𝑔(𝜆) of the form 𝑎 +
𝑏

𝑐+𝜆
 was fit to the 

data. The best fit line is illustrated by the blue line in Figure 20.  The SIMEX estimate is 

represented by the blue dot, as it is the 𝑔(−1) prediction. Given the discrepancies 

between the 𝑔(−1) prediction and the corresponding prediction using 𝑔𝑇𝑅𝑈𝐸(𝜆), the 

results suggest that the bias of the SIMEX estimator is not the result of a poor 

extrapolation function. Thus, bias would still exist even if 𝑔(𝜆) were correctly specified 

instead of using a quadratic approximation.  

If the lackluster performance of the SIMEX estimator is not the result of using a 

quadratic approximation function, then it must result from a violation of the 

independence assumption. Specifically, in the simulation phase of the SIMEX procedure, 

independent measurement error was simulated and added to the corrected imputation 

value. The underlying assumption here is that the initial discrepancies between the 
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corrected imputations and the true 𝑑𝑖
𝑚𝑖𝑠𝑠 are independent of the joint distribution of all 

potential outcomes (𝐷𝑖(0), 𝐷𝑖(1), 𝑌𝑖(1), 𝑌𝑖(0)).
4 Table 5 reports the pairwise correlation 

of this discrepancy with each potential outcome. Indeed, some of the potential comes 

display high correlations with the discrepancy.  

 

<Insert Table 5 about here> 

 

A promising alternative to SIMEX for future studies may involve modeling the 

full joint distribution (𝐷𝑖(0), 𝐷𝑖(1), 𝑌𝑖(0), 𝑌𝑖(1)) and leveraging the consistency 

properties of TSLS with multiply imputed chained equations (MICE). A MICE procedure 

would proceed iteratively by sampling the marginal distribution for each 𝐷 and 𝑌 

potential outcome given all other potential outcomes until convergence is reached. A 

TSLS-assisted MICE approach would sample from the asymptotic sampling distribution 

of (𝛽̂𝑧,1
𝑇𝑆𝐿𝑆, 𝛽̂𝑧,2

𝑇𝑆𝐿𝑆, 𝛽̂𝑧,3
𝑇𝑆𝐿𝑆) when sampling the marginal distributions  

𝑌𝑖(𝑧)|(𝐷𝑖(0), 𝐷𝑖(1), 𝑌𝑖(𝑧
′)).  

Preliminary results suggest that a TSLS-assisted MICE estimator may 

significantly attenuate bias. Figure 21 shows a single chain of the intercept bias estimates 

                                                 
4 To be completely accurate, the discrepancy should be independent of 𝑋𝑖 as well. Given 

Assumption 5, however, this correlation with the 𝑋𝑖 values should not result in bias given 

that the potential outcomes are observed.  
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using the modified MICE estimator with a large sample. The chain appears to converge 

to a bias value of approximately one-quarter the value of the bias resulting from using 

TSLS alone.  

 

<Insert Figure 21 about here> 
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Appendix: Figures and Tables 

 
Figure 1: Hypothetical example of a “flat” PCES with no 

heterogeneity. Size of markers proportional to estimated treatment 

effect. 
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Figure 2: Hypothetical example of a PCES that would be consistent with 

Page’s (2012) hypothesis. Largest treatment effects are found by those 

students who experienced the greatest gain in work world exposure. Marker 

size is proportional to treatment effect. 
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Figure 3: Heuristic of joint distributions of the true missing value (x-axis) and the 

predicted missing value (y-axis) using OLS with no omitted predictors. The left graph 

shows regression-to-the-mean of the uncorrected predicted values, while the right graph 

shows the restoration of balance.  
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Figure 4: Heuristic of joint distributions of the true missing value (x-axis) and the 

predicted missing value (y-axis) using OLS with omitted predictors. Right graph shows 

that the correction can restore balance even when predictors are omitted.  
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Figure 5: Heuristic of the SIMEX estimator obtained by fitting a function to 

simulated data with various amounts of measurement error, 𝜆, and then 

extrapolating. Note that estimate using the raw data corresponds to 𝜆 = 0; 

the condition that would be observed in the absence of measurement error is 

represented by 𝜆 =  −1. B = 100 simulations plotted at each 𝜆 value. 
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Figure 6: Comparison of world-of-work scores across treatment arms 

(N=403). Difference in skew suggests the presence of treatment effect 

heterogeneity on world-of-work scores. 
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Figure 7: QQ-plots comparing distribution of world-of-work scores across treatment 

arms.  
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Figure 8: Comparison of wage distribution across treatment arms 

(N=403).  
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Figure 9: QQ-plot comparing distribution of wages across treatment arms. The 

difference in the distributions is largest near the tails, suggesting that the kertosis 

differs and that heterogeneity may exist. 

 

  



 

67 

 

 

 

 

 

Figure 10: Sampling distribution of simulation results comparing the bias for 𝜃0 

estimated with TSLS and univariate imputation. Dashed line represents the expected 

bias for the TSLS estimates in conditions 1-3.  
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Figure 15: Sampling distribution showing bias in the estimated multiplier values 

compared to the true value that would be needed to restore balance given. Treated units 

only. 
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Figure 16: Comparison of sampling distributions of bias for 𝜃0 across the proposed 

SIMEX estimators. TSLS and conditional mean imputation included for reference.  
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Figure 17: Comparison of sampling distributions of bias for 𝜃3 across the proposed 

SIMEX estimators. TSLS and conditional mean imputation included for reference.  
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Figure 18: Comparison of sampling distributions of bias for 𝜃3 across the proposed 

SIMEX estimators. TSLS and conditional mean imputation included for reference.  

 

  



 

72 

 

 

 

 

 

Figure 19: Comparison of sampling distributions of bias for 𝜃3 across the proposed 

SIMEX estimators. TSLS and conditional mean imputation included for reference.  
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Figure 20: SIMEX estimates (blue) in versus true parameter estimates 

(black) of 𝜷1in a very large sample (N = 100,000) with L = 30,000, B = 1. 

Residual correlations set to Condition B. 
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Figure 21: Bias in the chain of 𝜃0 estimates from a TSLS-assisted MICE estimator 

given a large sample (N=100,000). Single sample only, no replication. Residual 

correlations set to Condition D. 
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Table 1 

Descriptive statistics for the endogenous variables.1 

 World-of-work Scores (𝑑𝑜𝑏𝑠) Sqrt of Monthly Income (𝑦𝑜𝑏𝑠)  

 Control Treated Control Treated 

N 182 221 182 221 

Mean -0.71 0.58 32.64 35.35 

Std. Dev. 1.77 1.97 12.96 13.00 

Skew 0.96 0.07 -0.31 0.91 

Kertosis 0.57 -0.58 0.42 3.69 

Note: 1All calculated from an unweighted sample. 

 

  



 

76 

 

 

 

 

Table 2 

Parameters and conditions for simulation study 

Parameter(s)  Population Value(s) 

  Fixed 

𝜶0  [−0.669, −0.624, −0.793,0.341,0.506, −0.383, −0.397]′ 

𝜶1  [0.546, −1.256,0.772,0.260, −0.348, −0.483,0.740]′ 

𝜽  [3.409,1.010, −0.919, −1.733]′ 

𝜷0  [33.095,0.643,0,0]′ 

𝜷1  [36.503,1.653, −0.919, −1.733]′ 

𝜎0
2  0.781 

𝜎1
2  1.074 

𝜎2
2  146.710 

𝜎3
2  85.762 

   

  Alternative Conditions 

Sample Size  {400, 8,000} 

   

Number of 

𝑋 observed1  {4, 6} 

Residual 

Correlation 

Matrix, Ρ 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

ΡA = [

1
  0 1
0 0
0 0

1
0 1

] ,

ΡB =

[
 
 
 
1
 𝜌0,1 1

0 0
0 0

1
𝜌2,3 1 ]

 
 
 

,

ΡC =

[
 
 
 

1
 𝜌0,1 1

   𝜌0,2 0

0 𝜌1,3

1
𝜌2,3 1 ]

 
 
 

,

ΡD =

[
 
 
 

1
 𝜌0,1 1

   𝜌0,2 𝜌1,2
   𝜌0,3 𝜌1,3

1
𝜌2,3 1 ]

 
 
 

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

where 𝜌0,1 = 0.5, 𝜌2,3 = 0.7, 𝜌0,2 = 𝜌1,3 = 0.3, 𝜌0,3 = 𝜌1,2 =

0.2 

Note: 1 adj-𝑅𝐷(0)
2 =0.40 and adj-𝑅𝐷(1)

2 =0.22 when only two predictors are 

observed, while adj-𝑅𝐷(0)
2 =0.75 and adj-𝑅𝐷(1)

2 = 0.72 when all six are observed. 
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Table 3 

Data retrieved from Page (2012) to identify population PCES parameters for simulation. 

  Midpoint for 𝐷𝑖(0) Midpoint for 𝐷𝑖(1) 
Principal Causal 

Effect 

Clas

s 
(𝐷𝑖(0), 𝐷𝑖(1)) Est. Est. Est. (S.E.)1 

1 (low, low) -2.69 -1.520 -1.48 (1.29) 

2 (low, medium) -2.69 0.722 3.67 (0.92) 

3 (medium, 

medium) 
-1.09 0.722 4.20 (1.05) 

4 (low, high) -2.69 2.530 10.33 (0.72) 

5 (medium, high) -1.09 2.530 5.65 (1.04) 

6 (high, high) 0.90 2.530 -0.34 (2.01) 

Note: 1Calculated using the information provided by Table 1 in Page (2012) 
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Table 5 

Correlation values between the corrected imputation discrepancy with the true missing 

value 

 Treated 𝑧𝑖 = 0 Control, 𝑧𝑖 = 1 

𝐷𝑖(0) -0.45 0.00 

𝐷𝑖(1) 0.00 -0.45 

𝑌𝑖(0) -1.45 0.00 

𝑌𝑖(1) -0.09 -0.04 

 

 


