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1 Introduction

In this document we systematically discuss each of the various methods for estimating the
ATE we consider for multi-site experiments. We in particular discuss how to calculate
standard errors, along with possible pitfalls in doing so. We also unpack some of the intuition
behind some of the estimators, such as how the weights in the weighted approaches give
unbiased estimators. We also discuss connections between the estimators, such as how
inverse weighting will give identical estimates to the design-based estimator and the fully
interacted linear model.

When randomization of individuals occurs within multiple blocks within site (e.g., if there
are multiple cohorts that were each randomized independently), there can be additional
complications. For example, the definition of a site averaged effect is now implicitly an
average over multiple blocks. For clarity we, in this section, assume that there is only one
randomization block per site and refer to each group of units randomized to treatment and
control as a site. See our separate discussion in Section 7.2 for further discussion of the
complications of randomization blocks. We also assume that each site has multiple (at least
two) treatment and control units, allowing for variance estimates for each treatment arm for
each site. In the case where some sites have singleton units in the treatment or control arm,
one has to take alternative steps; see ? for further discussion and overview of the literature.

For notation, we follow the main text. In particular, we use the following notation
throughout:

• β - The estimands, which are all average treatment effects (ATEs). They are sub-
scripted such as βSP−Persons or βFP−Sites.
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• Bj and pj - The ATE and the proportion treated in site j. We have J total sites, and
index them with j.

• N1j and N0j - The total numbers of units receiving treatment and control in site j.

• Tij - The treatment indicator for unit i in site j.

• N , N1, N0, and p - The Ns are the total number of units, total number of treated units,
and total number of control units across all sites, and p = N1/N is the proportion of
the entire sample treated.

• brj, nrj, prj - The ATE, total number of units, and proportion of units treated for
randomization block r in site j, when we are considering multiple randomization blocks
nested within site.

• For superpopulation totals, we add a star such as N∗j for total number of individuals
in the full population of site j.

Before discussing the estimators themselves, we first further discuss finite sample versus
super population inference. We then discuss the estimators in four major parts: design
based, linear regression, linear regression with treatment by site interactions, and multilevel
modeling. We finally discuss the further issues of estimation.

2 The relationship of finite-sample vs. superpopula-

tion inference

In this section we discuss two fundamental observations. First, in terms of the estimates
themselves, any estimator can be thought of as either a finite-sample or superpopulation
estimate. Second, the true uncertainty of an estimate, when taking it as a superpopulation
estimate, is the combination of the finite-sample uncertainty coupled with the variability of
the entire experimental sample with respect to the superpopulation. This means it is only
the uncertainty quantification, not the choice of point estimate, that needs to be explicitly
tailored towards a finite-sample or superpopulation estimand.

To illustrate this, we first argue that the best estimate of a super population parameter
is the corresponding finite sample parameter (which of course is not directly observed),
assuming there is no extra population information under consideration. This immediately
gives that result that the best obtainable estimator for the super population will be the best
estimator we have for the finite population, and vice-versa. We then use this observation to
explain why estimating the finite sample parameter will generally be more precise than the
corresponding superpopulation parameter.
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To begin, recall that our superpopulation framework assumes the sites are a simple
random sample of the sites in the superpopulation. If the sample is a simple draw from the
superpopulation, the sample of sites is representative and we have

E [βS] = β

i.e., the expected value of our finite-sample estimand will be the superpopulation estimand.
As a consequence, for any finite-sample unbiased estimator we have, using the tower property
of expectations,

E
[
β̂
]

= E
[
E
[
β̂|S
]]

= E [βS] = β

where the “E [·|S]” indicates conditioning our expectation on a given (random) sample. We
also have

var
[
β̂
]

= E
[
var
[
β̂|S
]]

+ var
[
E
[
β̂|S
]]

= E
[
SE2

[
β̂|S
]]

+ var[βS]

where SE2
[
β̂|S
]
, the finite sample uncertainty, is the true finite-sample standard error of our

estimator across the assigment of treatment, given a specific sample S. The above derivation
shows several things.

First, it shows that the best unbiased estimator for β is βS. This comes from the variance
term: if we somehow had βS as an estimator (i.e., β̂ = βS) then the first term in the variance
will drop out. The second term is independent of estimator, and thus we have the smallest
variance.

This also shows that any unbiased estimator for the finite sample βS is an unbiased esti-
mator for the superpopulation β. Similarly, any unbiased estimator for the superpopulation
estimand will be unbiased, across samples and randomization, for the finite.

The above also shows how the performance (in terms of the Standard Error or RMSE) of
an estimator can differ depending on whether we view our estimate as estimating the finite
sample estimand or superpopulation estimand. The variance decomposition, above, makes
this more precise: the superpopulation uncertainty is a combination of the uncertainty of
estimating the parameter in the finite sample and the uncertainty of the finite sample as
representative of a larger population.

Valid estimates of superpopulation uncertainty should be close to var
[
β̂
]
, which includes

the var[βS] term. Standard errors for finite sample inference, on the other hand, will hover,

across different samples drawn from the superpopulation, around the E
[
var
[
β̂|S
]]

term,

which will tend to be smaller. Furthermore, if there is no cross-site heterogeneity, i.e.,
var[βS] = 0, then our finite population and superpopulation variances are the same: we only
need to worry about uncertainty in generalizing if it is possible for a sample to have a different
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ATE than the population. In this case, any finite sample is, by definition, representative of
the superpopulation, in terms of average impact.

As a thought experiment to illustrate, consider the case of three sites. If the sites were
suitably large, we may have nearly perfect knowledge of the average impact for each site and
therefore for our sample as well. However, especially if the three site average impacts were
quite different, we may have little knowledge of the average impact in the super population
as we, in effect, have a sample of size 3. We would thus want our stated uncertainty to be
quite different depending on which estimand we are targeting. This is why it is important
to identify whether a given analysis is focused on the finite sample or infinite population: it
is due to uncertainty estimation.

Importantly, there are actually several potential super populations we might appeal to.
Borrowing from the categories in ? and ? we have the following:

1. Sites are fixed for the study, but individuals are randomly sampled within the sites
from site-specific super populations.

2. Individuals with attached site membership are randomly sampled from a larger popu-
lation, with site as a categorical covariate akin to race or gender.

3. Sites are randomly sampled from a super population of sites, but the individuals are
fixed within site.

4. Sites are randomly sampled, and individuals within sites also randomly sampled within
site.

The third is what we generally assume in our main text. The first two are actually more
“finite population” as they do not allow for a broader concept of site variation: our sample
gives a full representation of all the sites and we thus do not need to infer about a larger
population of sites. The second of the above is what primarily motivates heteroskedastic
robust standard errors. The super population targeting estimation strategies can differ in
terms of which model they are assuming. Cluster robust standard errors assume the fourth,
and multilevel models most closely adhere to the fifth.

3 Design Based Estimators

The design based estimators we consider are discussed extensively in ?. They all work with
the estimated impacts within each site of

B̂j = Ŷj(1)− Ŷj(0) (1)

=
1

N1j

Nj∑
i=1

TijYij(1)− 1

N0j

Nj∑
i=1

(1− Tij)Yij(0) (2)
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The site vs. individual estimators just reweight these site-level estimates differently.

The individual estimator is the simplest estimator where we take the weighted average
of the estimated average impacts of the sites:

β̂DB−persons =
J∑
j=1

Nj

N
B̂j. (3)

This is the estimator classically used for blocked experiments or post-stratified experiments.
See ? and ?.

To get our site average impact, simply average the individual site average impact esti-
mates:

β̂DB−site =
J∑
j=1

1

J
B̂j (4)

The standard errors differ by finite population and superpopulation. We describe the
two versions of standard error estimation next.

3.1 Design based finite population standard errors

The uncertainty estimates for finite sample design based estimators are all of the same
structure, which is a weighted sum of site-level uncertainty estimates. Let wj be a vector
of weights across sites (e.g., either Nj/N for individual weighting or 1/J for site weighting).
Then

ŜE
[
β̂DB−w−finite

]
=

[
J∑
j=1

w2
j

W 2
ŜE

2
[
B̂j

]]1/2
with W =

∑
j

wj (5)

with

ŜE
2
[
B̂j

]
=

1

N1j

s21j +
1

N0j

s20j.

The s2zj are the sample variances of the individuals assigned to treatment z in site j. Note the
W is a normalizing constant; if the weights are Nj/N or 1/J , then W = 1; this normalizing
constant is why we could instead give the weights as simply wj = Nj for person-weighting
or wj = 1 for site-weighting. These uncertainty estimates are known to be conservative
due to the correlation of potential outcomes problem. ? proposes a slightly tighter bound,
subtracting (s1j − s0j)2/Nj from the expression.

When the estimand is the effect for the average site in a finite population, the 1/J weights
allow for an algebraic simplification, giving

ŜE
[
β̂DB−site−finite

]
=

[
1

J2

J∑
j=1

ŜE
2
[
B̂j

]]1/2
Importantly, any specified weighting of sites wj can be used. In particular, if we have

randomization blocks within site, these formula can be directly applied to the randomization
blocks with weights tuned to target average site impacts. See Section 7.2, below.
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3.2 Design based superpopulation standard errors

Finite-sample design based estimators traditionally focus on the assignment mechanism, but
for superpopulation estimators we also have to account for the additional uncertainty of the
sampling of the sites. This can depend on which specific sampling framework is used; see ?
for a discussion of the different superpopulation models possible under a blocking view.

In brief, for superpopulation design-based estimators, the treatment effect estimators
themselves are the same as for the finite sample case. It is the uncertainty estimates that
are now different. In the revised version of the RCT-Yes software we have the following:

ŜE
2
[
β̂DB−w−super

]
=

1

(J − 1)Jw̄2

J∑
j=1

w2
j

(
B̂j − β̂

)2
. (6)

The above measures the dispersion of the site-average impacts across sites. These B̂j

will vary for two reasons: the within-site uncertainty due to the random assignment and
the between-site uncertainty due to whether the sampled sites are representative of the
superpopulation. Because these sources of error are independent, the uncertainty directly
adds. To see the connection, take the simplest case of the site-average. Here we estimate
β̂ with the average of the B̂j, and the variance in this estimation is simply the estimated
variance of the point estimates, divided by the sample size of the number of sites; this is the
classic standard error for estimating a mean from a simple random sample:

ŜE
2
[
β̂DB−site−super

]
=

1

(J − 1)J

J∑
j=1

(
B̂j − β̂

)2
=

1

J
v̂ar(B̂j). (7)

To further motivate this overall uncertainty estimate, consider that for a single, randomly
chosen site we would have

varB̂j = E
[
varB̂j|Bj

]
+ varE

[
B̂j|Bj

]
= E

[
ŜE

2
B̂j

]
+ σ2

β.

The first term is simply the expected within-site standard error across sites, the second is the
cross-site variation. The cross-site variation turns into additional uncertainty in estimating
the overall average effect.

Remark. The attentive reader will note that Schochet’s original theory for the RCT-YES
software proposes the estimate of the asymptotic variance of

ŜE
2
[
β̂DB−w−super

]
=

1

(J − 1)Jw̄2

J∑
j=1

(
wjB̂j − w̄β̂

)2
,
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where we use individual weights (wj = Nj/N) or site weights (wj = 1/J). The w̄ is the
average site weight of w̄ = W/J .

The weights inside the square term can give very unstable and large variance estimates,
however. Equation 6 stabelizes this by moving the weights outside of the sum (this improve-
ment was originally suggested by Schochet in personal correspondence, April 11, 2018, and
has since been incorporated into the RCT-Yes software).

3.3 Adjusting for covariates

To adjust for covariates, we use the approach presented in ?. Getting covariate-adjusted
impact estimates and SEs involves a series of steps that we here present. In both cases the
covariate adjustment approach for obtaining SEs is parallel to the original approach, once
we have our adjusted estimates.

Obtaining adjusted impact estimates. Consider that we have P individual-level co-
variates that we wish to adjust for. We cannot adjust for site-level covariates (as their impact
would simply get differenced out).

1. Center the covariate X variables around their grand means.

2. Fit a fixed effect linear regression of

Yij = αj +BjTij +
P∑
p=1

γpXpij + εij

This regression gives individual adjusted block impact estimates of B̂j.

3. Calculate the adjusted overall impact estimate by taking the person-weighted or site-
weighted average of the individual B̂j (see Equation 3 and Equation 4) using our

adjusted B̂j.

Finite population adjusted SEs. To obtain finite-population standard errors, do the
following:
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1. Calculate the MSE of the predictions within each block in the treatment and control
groups. The more predictive our initial model is, the smaller our residuals will be
which will lead to smaller standard errors.

The estimated MSE is (for the treatment side):

MSE1j =
1

N−P
N

N1j − 1

Nj∑
i=1

(Yij − Ŷij)2.

The control side is analogous. Note the adjustment for the number of covariates P
with the scaling factor of (N − P )/N to the sample size of N1j. Without covariate
adjustment we would have N1j − 1.

2. Calculate the standard error of the individual block estimates as

ŜE
2
[
B̂j

]
=
MSE1j

N1

+
MSE0j

N0

.

This is simply Neyman’s formula on the residuals. There can be a correction term here
to handle the correlation of potential outcomes to get a slightly tighter bound. We do
not do this here.

3. Calculate the final overall variance as a weighted average (with weights w2
j (see Equa-

tion 5) of the estimated standard errors, using the ŜE[B̂j] from the prior step.

Superpopulation adjusted SEs. For superpopulation standard errors, we have to look
at how variable our adjusted impact estimates are, as before.

We could simply plug our B̂j into Equation 6, or we can do a further adjustment as
follows:

1. Calculate the mean value of the covariates within each block. This gives X̄1j, X̄2j, etc.

2. Calculate the overall weighted mean of means, where, for covariate p, we weight the
X̄pj by our site weights (determined by the individual vs. site averaging choice above).
I.e., calculate

X̄p =
1

W

J∑
j=1

wjX̄pj

with W =
∑
wj.

3. Center all of our site-averaged covariates by these mean-of-means, i.e., calculate X̃pj =
X̄pj − X̄j.
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4. Regress our individual, adjusted, site level impacts onto an intercept and these centered
covariates, weighting by our site weights. This gives our working model of

B̂j = γ0 +
P∑
1

γpX̃pj + ξj

The γ0 will be the same as our estimated ATE from above since we have carefully
centered everything while taking account of the weights.

5. Finally take the predicted values from the above model to get adjusted-adjusted site
specific impact estimates

B̃j = γ̂0 +
P∑
1

γ̂pX̃pj

6. Plug these doubly adjusted values into a modified version of Equation 6 to get the final
SE. The modification is a degrees of freedom correction, which gives the following:

ŜE
2
[
β̂DB−w−super

]
=

1

(J − P − 1)Jw̄2

J∑
j=1

w2
j

(
B̂j − β̂

)2
,

4 Regression (Fixed effect, no interactions)

The regression estimators without interaction terms have a variety of special considerations
which we unpack in the following.

4.1 Simple fixed effects with no interactions

This is the most basic ordinary least squares (OLS) method we consider. We give some
notation to connect to other regression estimators discussed below. Index individuals with
ij, with j = 1, . . . , J indexing the site of the individual and i = 1, . . . , Nj indexing the
individual within site. Define J site dummies Sk,ij, k = 1, . . . , J with Sk,ij = 1 if individual
ij is in site k; in other words, Sk,ij = 1{j=k}. In the case of multiple randomization blocks in
a site, we would consider the blocks as our “sites” and have a dummy for each block. Fixed
effect regression is then the following model with J + 1 coefficients:

Yij =
J∑
k=1

αkSk,ij + βTij + εij. (8)

We exclude an overall intercept to have individual fixed effects for each site and no reference
site. One advantage of the fixed effects model compared to design-based is the single impact
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parameter reduces the degrees of freedom used by the model, which could improve asymptotic
inference in smaller studies.

We discuss estimation using the matrix formulation of OLS. Let X be the N × (J + 1)
matrix of J columns of the J site dummy variables and a last column of the treatment
assignment vector Z across the N =

∑
j Nj individuals. To be explicit, X is effectively J

matrices, one for each site, stacked together. Each row of X can be indexed by ij. Each row
of X, Xij is a vector in RJ+1 with J site dummies, with site dummy k = j set to 1 and the
rest set to 0, followed by a single indicator for treatment.

The classic fixed effects regression gives J + 1 regression coefficients, with the J + 1st

coefficient being our ATE estimate. The full vector of estimates is

θ̂ = (X ′X)−1X ′Y.

Then β̂FE = θ̂J+1. Traditional OLS then assumes homoskedasticity and gives a variance-
covariance matrix on our coefficients of

Σ̂ = (X ′X)−1σ̂2

where the σ̂2 is the estimated residual variance (essentially the average of the squared resid-
uals, adjusted for degrees of freedom):

σ̂2 =
1

N − J − 1

J∑
j=1

Nj∑
i=1

û2ij,

with residuals ûij = Yij − Ŷij.

Our standard error for the ATE is the bottom right corner element of our Σ̂:

ŜE
[
β̂FE

]
=

√
Σ̂J+1,J+1

If all sites treat the same proportion of units, this will reduce to σ̂2/ (Np(1− p)).

4.2 Why fixed effects is precision weighted

To see that the fixed effect regression is precision weighted, we can directly solve the least
squares optimization. Using Equation 8, we have the loss function of

`(β) =
J∑
j=1

nj∑
i=1

(Yij − αj − τTij)2 .

Our estimates will be the minimizer of this loss.
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To find the minimum, we take the derivative with respect to an αj, getting

d

dαj
`(β) = −2

nj∑
i=1

(Yij − αj − τTij)

If we set this to 0 and solve for αj we get

αj = Ȳj − pjτ.

Now take the derivative with respect to τ . We will be left with only those terms with
Zij = 1:

d

dτ
`(β) = −2

J∑
j=1

nj∑
i=1

Zij (Yij − αj − τ)

−2
J∑
j=1

n1j

(
Ȳ1j − αj − τ

)
If we set the above to 0, and then plug in our expressions for the αj, we get

0 =
J∑
j=1

n1j

(
Ȳ1j − αj − τ

)
=

J∑
j=1

n1j

(
Ȳ1j − Ȳj + pjτ − τ

)
=

J∑
j=1

n1j

(
Ȳ1j − Ȳj

)
+ τ

J∑
j=1

n1j (pj − 1)

=
J∑
j=1

n1j(1− pj)
(
Ȳ1j − Ȳ0j

)
− τ

J∑
j=1

n1j (1− pj) .

The last expression comes from Ȳj = pjȲ1j+(1−pj)Ȳ0j and then grouping. The final step is to
move the expression with τ to the other side and divide by the normalizing constant. But we
see our estimate is the weighted difference in means, with weights of n1j(1−pj) = njpj(1−pj).

4.3 Fixed effects, Huber-White SE

The ATE estimate is the same as OLS, above. The standard error differs, however. Huber-
White standard errors seek to avoid the homoskedasticity assumption, giving the classic
sandwich formula of

ŜEHW

[
β̂OLS

]
=

1

N

(
1

N
X ′X

)−1
M̂

(
1

N
X ′X

)−1
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with a (J + 1)× (J + 1) “meat” matrix of

M̂ =
1

N

J∑
j=1

Nj∑
i=1

XijX
′
ijû

2
ij

where the ûij are again the residuals from the regression.

Note how if we could assume the û2ij were all independent of the Xij we can (under an
expectation of random variables argument) in effect separate the sum, getting

1

N

∑
i,j

XijX
′
ijû

2
ij =

1

N

(∑
i,j

XijX
′
ij

)(∑
i,j

û2ij

)
=

1

N
(X ′X)

∑
i,j

û2ij

which cancels one of the (X ′X)−1 terms, giving our homoskedastic formula above, up to
the dividing by N rather than N − J − 1 to correct for degrees of freedom. This suggests
we should not have the 1/N factor at the front, but something other. And indeed this
shrinkage is often corrected via further adjustments which give the “HC1,” “HC2,” etc.,
versions of heteroskedastic robust standard error estimators. See classic texts or standard
documentation for statistical software for further explanation of these corrected and adjusted
heteroskedastic robust estimators.

4.4 Fixed effects, Cluster Robust SE

Cluster Robust standard errors come from a sandwich estimator with different “meat.” We
will obtain the final estimated SE by extracting the bottom-right entry from this matrix, as
before. The difference is in how the meat is calculated.

In this case, our meat will be an average over our sites, not individuals. We first obtain
vectors ûj = (ûj1, . . . , ûjNj

) ∈ RNj of the individual residuals for each site. We use these to

estimate site-specific covariance matrices which are then averaged to get our overall Σ̂ as we
did with the Huber-White case above:

M̂cluster =
1

N

J∑
j=1

X ′jûjû
′
jXj.

As a check, note the Xj are Nj × (J + 1) matrices, the ûjû
′
j a Nj × Nj matrix, and thus

the terms in the sum all end up being (J + 1) × (J + 1) matrices, which we are summing.
We divide by N since each inner matrix is collapsing over Nj observations (setting aside
correlation issues). To see this, imagine we replaced ûjû

′
j with diag(û2j1, . . . , û

2
jNj

). This
would give our Huber-White formula above.

These clustered standard errors capture how residuals are correlated within site, aver-
aged across the number of sites. Thus, if there is a large degree of cross-site variation, the
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residuals of the treated units will tend to be more correlated, and the overall average stan-
dard errors will increase. For a technical discussion of this approach within the framework
of experimental design, see ?. This discussion explains why this estimator is targeting the
superpopulation estimand; it is taking the clusters (here sites) themselves as a sample from
a larger population.

Just as with Huber-White standard errors, there are again degree of freedom issues to
correct for, especially when there are few sites. These issues are particularly important
here as they are driven by the number of sites, not individuals. Just as with Huber-White,
there are several methods for correcting the estimated standard errors to account for these
concerns. In particular, the usual CR0 clustered variance estimator uses 1/J to estimate
the variance, CR1 uses 1/(J − 1), and the bias-reduced linearization estimator (CR2) uses
an unbiased estimator for a weighted sample variance, which reduces to CR1 when the sites
are equally weighted.

When J is small (which is frequently the case) these standard errors still tend to be
downward biased due to not correcting for the degrees of freedom lost in the estimation
process. To specifically target these small-sample concerns, ? propose an extension of the
bias-reduced linearization correction to cluster robust standard errors (?) that allows for
fixed effects. This approach is implemented in the clubSandwich R package; for multisite
trials, it can be directly implemented as described in the blog post cited in the footnote.1

One can also use a variant of the so-called “wild bootstrap” to get improved inference (?).
All of this being said, the real improvement of the more recent cluster robust methods are in
their improved degrees of freedom calculations. In particular, the Satterthwaite estimated
degrees of freedom gives a better value for generating appropriately long confidence intervals
and reference distributions for the observed t statistics.

4.5 Fixed effects with weighting

The idea behind using weighted fixed effects regression is to undo the bias from the classic
fixed effect regression by weighting the individual units so the target estimand corresponds
to either the person-average or site-average impact. In particular, with weighted fixed effect
regression we regress outcome onto a treatment indicator and the J site dummies, as with
the simple fixed effect OLS above, but now we weight each observation by ωij, where

ωij = Tij
p

pj
+ (1− Tij)

1− p
1− pj

.

All units in a site with the same treatment have the same weight. Given this we can, for a
unit with treatment z in site j give the weight of

ωzj =
Nz

N

Nj

Njz

.

1See https://www.jepusto.com/handmade-clubsandwich/.
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Under these weights, for each site j we have a total weight, using the above weights, of

Ωj = Nj1
N1Nj

NNj1

+Nj0
N0Nj

Nj0

=
1

N
(N1Nj +N0Nj) =

Nj

N
(N1 +N0) = Nj

i.e., the original total number of units.

The proportion of weighted units that are treated in site j, however, is now

pj =
mass of treated units

total mass of units
= Nj1

N1Nj

NNj1

/Nj =
N1

N

the overall proportion of units treated.

When we weight units by these weights when determining our best fit line, we are mimick-
ing having the same proportion of treated units in each site, while preserving the original sites
sizes. This means our overall treatment impact estimate is going to be a site-size weighted
average of the site-average estimated treatment impacts, as desired. We will therefore ex-
actly match the person-weighted design based estimator. In particular, when running our
weighted FE regression, the weights modify our “precision weighted average” of pj(1−pj)Nj

to all share the same p(1− p). This means all of our precisions are proportional to site size,
and we obtain our unbiased result.

Standard Errors for the weighted regression. While the weighted FE regression will
give the same point estimates as corresponding design-based estimators, the method for
calculating the standard errors will be different. Unfortunately when it comes to standard
errors, the “weighted” for weighted linear regression is not quite fully specified. In particular,
there are two distinct views of what the weights are. These views are most easily understood
from the classic modeling perspective where a unit has an expected value (from the regres-
sion) and a residual that is an additional random component (such as from measurement
error). The first view assumes the weights index heteroskedsaticity directly. In particular,
a unit with a larger weight is more precisely estimated than a unit with a low weight; the
implicit assumption is that the variance of the residual εij for unit ij is inversely propor-
tional to weight ωij. The second view takes the weights as a representation of what share
of the superpopulation the unit represents; this view weights different units more heavily in
estimation, but does not assume that this means we have a more precise sense of the “true
value” of any given unit. In other words, in the first sense a unit with weight 2 and an
outcome of 5 tells us with “twice the certainty” that the true value of that unit is about
5. In the second sense, the unit is standing in for two units, but we are not relatively more
certain as to what its outcome is, as compared to other units.

Traditional homoskedastic OLS standard errors that you get from incorporating weights
give the uncertainty associated with the first view. We, however, are in the second: the
weights are incorporated in order to change the average estimate but do not reflect differing
levels of precision across our units. Therefore, for estimation we cannot use traditional
OLS but instead need to use the methods from, e.g., survey sampling, which views the
weights as sampling weights (which they are). Alternatively, one can use cluster robust or
heteroskedastic robust standard errors, which weights the residuals in their aggregation step;
this is akin to the second view.
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Estimation with weights. As discussed above, you need to use a survey regression pack-
age or use robust standard errors. In particular, for SAS, use PROC SURVEYREG. In R, use
the srvglm package (and do not simply pass weights to the lm() command). One can also
simply pass the weights to a robust standard error calculation.

Site weighting. If we want the average ATE across sites, not individuals, we can tweak
the unit weights to produce impacts averaged across sites. We can do this by scaling the
original person weights by the ratio of the average site size to the individual site size of each
person’s site:

ωsiteij = ωij ·
[
N̄

Nj

]
,

where N̄ is the average site size of 1
J

∑J
j=1Nj = N/J .

Our total weight for each site is now

Ωj = Nj ·
N̄

Nj

=
N

J

so each site receives the same weight (of the average number of units in the experiment).
The proportion of weighted units in each site is still going to be N1/N since all the units in
each site have the same site rescaling of weights.

This gives final weights of

ωsiteij =

[
Tij

(
p

pj

)
+ (1− Tij)

(
1− p
1− pj

)][ N
J

Nj

]

If site sizes vary a lot, then this weighting can hurt precision. However, the expected
value of the treatment effect estimate is the site average effect. Just like the individual-
weight weighted estimator, this weighting approach forces the weighted proportion assigned
to treatment to be the same at each site and equal to the overall proportion assigned to
treatment. However, now the weighted total size of each site is equal to the average site size
(i.e., Nω−site

j = N
J

). Due to this, the overall average impact estimate, β̂FE−weight−Site, will be
an equally weighted average of the individual site impacts.

Connections to the design-based estimator. Inverse weighting, in terms of the point
estimate, is identical to the design-based estimator. We next show this connection mathe-
matically. Consider the following expansion of the classic randomized block trial estimate of
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the ATE:

β̂DB−Persons =
J∑
j=1

Nj

N
B̂j

=
J∑
j=1

Nj

N

 1

Nj1

Nj∑
i=1

TijYij −
1

Nj0

Nj∑
i=1

(1− Tij)Yij


=

J∑
j=1

Nj∑
i=1

Nj

N

1

Nj1

TijYij −
J∑
j=1

Nj∑
i=1

Nj

N

1

Nj0

(1− Tij)Yij

=
1

N

J∑
j=1

Nj∑
i=1

1

pj
TijYij −

1

N

J∑
j=1

Nj∑
i=1

1

1− pj
(1− Tij)Yij (9)

=
1

N1

J∑
j=1

Nj∑
i=1

p

pj
TijYij −

1

N0

J∑
j=1

Nj∑
i=1

1− p
1− pj

(1− Tij)Yij (10)

Equation 9 is the standard IPW weighting formula. Now use p = N1/N to get Equa-
tion 10, which contains the IPW weights discussed above. In particular, the above shows
that we have

β̂DB−Persons =
1

N1

∑
i,j

TijωijYij −
1

N0

∑
i,j

(1− Tij)ωijYij.

An incorrect weighting approach. Some natural weighting schemes can actually lead
to poor inference when using survey sampling or weighted classic regression. In particular,
one might propose the seemingly simpler weights of

ωij = Tij
1

pj
+ (1− Tij)

1

1− pj
i.e., weights without incorporating the overall proportions of treated or control. These
weights can be expressed as

ωzj =
Nj

Njz

.

Our weight for each site is now

Ωj = Nj1
Nj

Nj1

+Nj0
Nj

Nj0

= 2Nj.

The total weight in each site is now twice the original weight.

The proportion of weighted treated units in each site is

pj =
mass of treated units

total mass of units
= Nj1

Nj

Nj1

/2Nj =
Nj

2Nj

=
1

2
.
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This means that we will have a precision-weighted average of each site proportional to the
site size, recovering our post-stratified estimate as before. However, the proportion treated
in each site is now 1/2, not p, meaning the standard errors will be a different average of the
residuals in the treatment and control groups. In particular, if the treated group is a small
proportion of units and the treatment outcomes have a different variance, this would not take
such imbalance into account when calculating the overall uncertainty. When passing these
weights to classic regression or survey regression packages, this rescaling can undermine the
inference, giving systematically wrong standard errors.

5 Regression (Fixed effect with interactions)

For this approach, fit a model with all site by treatment interactions. Extending the fixed
effect model above, this gives the following model with 2J coefficients:

Yij =
J∑
k=1

αkSk,ij +
J∑
k=1

βkTijSk,ij + εij

We do not have either an overall intercept or an overall treatment term in the above.

Using the usual OLS regression framework we can get an estimated covariance matrix
Σ̂ for the (α, β) vector. The diagonal of this matrix are the individual squared standard
errors for the vector of parameters. To get point estimates and uncertainty on aggregate
parameters, we define contrasts c, with c ∈ R2J , which define how we add up the component
pieces. These give estimates of β̂c = c′(α̂, β̂), with associated standard errors of

ŜE
2
[
β̂OLS−c

]
= c′Σ̂c. (11)

Because the site dummies are, by design, independent from each other, the only non-zero
diagonal terms of X ′X and X ′X−1 will be at (j, J + j) and (J + j, j) for j = 1, . . . , J . As

Σ̂ = (X ′X)−1σ̂2, Σ̂ will be diagonal in the lower right quarter, giving a simple expression for
the standard error of

ŜE
2
[
β̂OLS−c

]
=

J∑
j=1

c2J+jΣ̂J+j,J+j. (12)

for any c with the initial J terms equaling zero.

This can be further simplified. The inversion of X ′X can be directly solved, giving, for
J = 1, . . . , J :

(X ′X)−1j,j =
1

Nj −N1j

(X ′X)−1J+j,J+j =
N

N1j (Nj −N1j)
=

1

pj (1− pj)Nj

(X ′X)−1j,J+j = (X ′X)−1J+j,j = − 1

Nj −N1j
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All other terms are 0. To see this, consider that if the columns and rows of X ′X are reordered
to keep each site as pairs, one would get a block diagonal matrix of 2 × 2 matrices. Each
matrix will have Nj in the top-left, and the total number of treated, Nj1 in the other three
spots. The above shows that, for any c with the initial J terms equaling zero, we have

ŜE
2
[
β̂OLS−c

]
= σ̂2

J∑
j=1

c2J+j
1

pj (1− pj)Nj

. (13)

Using Huber-White one could get alternate estimates of the Σ̂ and then use Equation 11
to get the standard error. We do not further explore these issues here.

Interaction models with individual weighting. To calculate the overall ATE let c =
(0, . . . , 0, N1, . . . , NJ)/N (with J leading zeros) which gives

β̂FE−inter−person = c′(α̂, β̂) =
J∑
j=1

Nj

N
β̂j

Use Equation 12 to get the corresponding standard error estimate,

ŜE
2
[
β̂OLS−int−persons

]
=

J∑
j=1

N2
j

N2
ŜE

2
[
β̂j

]
.

This is the equation easiest to use with the OLS output one would get from a statistical
program. That being said, this could in turn be simplified to

ŜE
2
[
β̂OLS−int−persons

]
=

J∑
j=1

N2
j

N2

1

pj (1− pj)Nj

σ̂2 =
J∑
j=1

Nj

N2pj (1− pj)
σ̂2

Interaction models with site weighting. Let c = (0, . . . , 0, 1/J, . . . , 1/J and use the
above. This gives

ŜE
2
[
β̂OLS−int−sites

]
=

J∑
j=1

1

J2
ŜE

2
[
β̂j

]
which does not really simplify, but can be written as

ŜE
2
[
β̂OLS−int−sites

]
=

J∑
j=1

1

J2

1

pj (1− pj)Nj

σ̂2.
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6 Random effects (multilevel modeling)

Multilevel modeling allows for having a random treatment impact for each site, but tying
these impacts together with a common distribution (this is known as partial pooling). The
point estimates and standard errors from a multilevel model come from maximum likelihood
estimation (or restricted maximum likelihood). That being said, ? discuss the adaptive
nature of these estimators by exploring what the point estimate of the ATE would be under
known cross-site treatment heterogeneity. They focus on the FIRC. We first give the model
for the classic RIRC and then turn to FIRC. We finally briefly discuss another multilevel
model, the Random Intercept, Constant Coefficient (RICC) model, which does not allow
for treatment variation and is thus actually a variant of the fixed effect regression discussed
above, despite its multilevel modeling aspects.

Regardless, the usual estimates of the standard errors come from the (potentially re-
stricted) maximum likelihood estimates. In particular, maximum likelihood estimates are
asymptotically normal with variance defined by the Fisher information. This gets empirically
estimated and plugged in as part of the model fitting process.

6.1 Random Intercept, Random Treatment Coefficient (RIRC)

The RIRC model is
Yij = αj +BjTij + εij

with (
αj
βj

)
∼ N

[(
α
β

)
,

(
σ2
α ρσατ

τ 2

)]
and εij ∼ N(0, σ2). Here α is the overall average control outcome across sites and β is the
average treatment effect across sites.

As discussed in the main paper, this model heavily suggests an infinite superpopulation
model, but one can also interpret this approach from a Bayesian perspective where we
are “borrowing strength” or “partially pooling” coefficients across sites. In particular, the
fully interacted OLS model has each site’s impact estimate dependent only on that site’s
data. This is the unpooled estimate. The OLS method without interactions, by comparison,
fully pools the treatment impact coefficient, assuming it is constant across sites. Multilevel
modeling is in the middle; it partially pools, shrinking each site estimate towards the overall
mean. This can give superior properties when looking at individual site impacts. It also
could arguably stabilize the overall treatment estimate. See ? for further discussion in
textbook form.

Uncertainty estimates from this approach are superpopulation uncertainty estimates.
This means that even if the actual finite population properties of this estimator are strong,
we might not be able to measure the benefit from them without any corresponding finite
population estimates of the uncertainty. The superpopulation estimates will be overly con-
servative. Developing finite population uncertainty measures for these models is an area for
future work.
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6.2 Fixed Intercept, Random Treatment coefficient (FIRC)

The FIRC model lets αj be a fixed effect (so we do not put a model on it). This is equivalent
to forcing the σ2

α term from the RIRC model to ∞ (when viewing it as a prior). This model
has the same structural form as the RIRC model, but only has a random effect for the Bj:

Bj ∼ N(β, τ 2)

where σ2
β is the cross-site treatment effect variation.

? show that, if σ2
β were known and the residual variances in each site were known, then

the estimate β̂ is a weighted average of the site average impacts (see Equation 2) with weights
of

wj =
(
σ2
β + Vj

)−1
=

[
τ 2 +

σ2

Njpj(1− pj)

]−1
The second equality comes from the homoskedasticity assumption in the residuals across
site. This equation shows the adaptability of FIRC: as cross-site treatment effect variation
increases, it will dominate the weight, making all site weights converge to 1/σ2

β, which will
equally weight sites. If, however, there is no site variation, we end up recovering the precision-
weighting of fixed effect OLS. In practice σ2

β is not known, and FIRC essentially plugs in an

estimate to get the overall β̂.

If we assume a constant site size and constant proportion of units treated within each
site, the standard error of this estimator can be expressed as

SE
[
β̂
]

=

[
1

J
τ 2 +

σ2

Np(1− p)

]1/2
For discussion see ?, where the present the above for the purposes of calculating minimum
detectable effect sizes. For varying site size and proportion treated, this can be viewed as
an approximation.

6.3 Random Intercept, Constant Coefficient (RICC)

This model has only a random intercept term and a constant treatment parameter shared
across all sites. This makes it analogous to the classic fixed effect regression discussed above.
In particular, the treatment impact will essentially be a precision weighted estimate; partially
pooling the fixed effects only has a modest impact on the treatment estimate, as compared
to the fixed effects regression approach.

Even given the random intercept, uncertainty estimates from this approach are surpris-
ingly finite-sample; one way to think about this is the treatment estimate does not involve
any of the random effects, so the hypothetical sampling of site intercepts has no impact on
the point estimate. Under the assumption that the treatment is constant, the associated
standard errors have no ability to incorporate the sampling uncertainty of any potential
cross site variation.
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7 Further considerations in estimation

There are several considerations that cut across the different estimation strategies that we
now discuss. First, all modeling strategies have a residual variance component that itself is
a model for how individual units vary around their expected site means within a site. There
are several choices about how to model this residual variance that are related. Second, in
many designs there may be multiple randomization blocks within any given site; for example,
if there are multiple cohorts across a series of years in a school-lottery analysis, the site would
be the school and the randomization blocks would be the cohorts. This introduces further
complications in interpreting both the estimands and implementing the estimators. It also
makes the superpopulation sampling assumption less clear.

7.1 The Residual Variance Model

For linear regression (without robust standard errors) and multilevel modeling approaches,
uncertainty estimation is tied to what kind of structure one is willing to place on the residual
variation, that is the variation of individual units around their site or overall means. Classic
linear regression, for example, assumes homoscedasticity, i.e., that the amount of variation
is the same within treatment arms and across sites. Especially when one believes there is
treatment effect variation, this can be overly restrictive (consider, for example, that a simple
additive model of heterogenous treatment would generally induce greater variation in the
treatment group than control). We might also expect variation within each site to potentially
be different than other sites.

The most extreme is to allow each site and treatment arm to have its own residual vari-
ance. Unfortunately this could result in a large number of very unstable variance estimates
(two per site), especially if some sites are small. In the fully interacted linear model case,
these uncertainty estimates will then be averaged together to form the standard error for the
ATE. Even without interaction terms, the individual residual uncertainties will still all play
a role in the overall estimated standard errors. The finite-sample design-based procedures
explicitly work this way; the robust standard error procedures put no model on the residuals
other than independence assumptions, and so are in effect working this way as well.

For the FIRC model, these plethora of individual variance terms can create serious prob-
lems for estimating the amount of cross site variation, as discussed in ?. A compromise
approach, also presented in ?, is to allow a different residual variance term for the treated
units and control units. In particular, the model would be, extending the fixed effect model
of Equation 8,

εij ∼ N
(

0, σ2
Tij

)
with σ2

0 and σ2
1 being two distinct residual variance parameters.
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Regardless, the structure put on the residuals is a separate choice from the form of the
least squares model. Even the fully interacted model with different treatment impacts per
site could be fit under the classic homoscedasticity assumption. In this case while you will
get unbiased estimates for the treatment effect for each site, the overall uncertainty estimate
will depend on, in part, this homoscedasticity assumption.

Finally, one can avoid explicit modeling by using heteroskedastic robust standard errors.
These model covariances using the residuals of a fit model in a non-parameterized way.
Cluster robust standard errors go a step further, allowing for the units within a site to be
arbitrarily correlated; these fundamentally take the sites themselves as the units of analysis.

7.2 Randomization blocks within sites

In most of the real-world experiments we examined in our empirical studies, randomization
of individuals occurred within blocks, not sites. In particular, each site (e.g., a school), would
contain more than one block if randomization was done on features such as cohort or grade.
Here, we discuss the nuances of dealing with this complication.

When there are multiple randomization blocks within the site, there are two general
approaches one might take. The first is to simply consider the individual randomization
blocks as sites in their own right, and proceed. The second is to aggregate or restrict the
block estimates to account for their nesting within site; this is the approach we took in this
work. We next discuss how randomization blocks within sites can impact the three modeling
approaches below.

Design based approaches. Handling randomization blocks for the design based ap-
proaches is relatively straightforward in the finite-population context. For person-weighting,
simply treat the randomization blocks as sites, and weight by their size as before. For site-
weighting, one would weight the individual randomization blocks by their fractional size of
the corresponding site, so the weights would add up to one within each site. This corre-
sponds to a three-step process of first obtaining the individual block level estimates, then
taking a weighted average of the individual block effects within each site to obtain the site
level estimates, and then finally averaging the sites to obtain the overall estimate.

We need to add an index to make this more precise. Let r index the randomization block
and, as before, j index the site. Then, if we have randomization block estimates of b̂rj, and
nrj units in randomization block r of site j we can write our site-level estimates of ATE as
(letting Rj denote the number of blocks in site j):

B̂j =

Rj∑
r=1

nrj
Nj

b̂rj.
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Our overall site-average estimate is then

β̂ =
1

J

J∑
j=1

B̂j =
J∑
j=1

Rj∑
r=1

1

J

nrj
Nrj

b̂r.

The above shows that we are weighting the randomization blocks by nrj/(JNrj). Our finite-
sample design-based estimators can simply use these weights in the impact and standard
error estimator formulae.

For the standard errors for superpopulation inference, things are not quite as straightfor-
ward because the posited sampling scheme is no longer clear (in particular, we cannot think
of the blocks as being a random sample of a superpopulation of blocks, and the design based
estimators do not account for varying chances of being treated for different blocks within
a site). To generate standard errors we therefore consider the blocks within site as fixed,
and do the following: first aggregate the block estimates b̂rj by site to get estimated site

impacts B̂j, as described above. Second, plug the site estimates into the superpopulation
formula that looks at cross site variation to assess overall variation. This approach assumes
that the sites are sampled from a superpopulation of sites, but that each site comes with its
blocks and treatment proportions across blocks all predefined and fixed. In other words, we
are sampling a series of small, finite-sample blocked experiments. We leave a more technical
treatment of this approach to future work.

Regression approaches. For the linear regression approaches, the precision-weighted av-
erage from the simple fixed effect model, if using block fixed effects, will be a precision-
weighted average of the blocks, not sites. Researchers should take that into account when
interpreting their resulting impact estimate, but essentially the story is the same: the esti-
mator is a biased person-weighted estimator, but the bias is likely not too large. If using
some form of cluster robust standard errors, the clustering needs to be at the site level, not
block, to allow for dependencies across the blocks due to shared site characteristics.

To implement inverse weighting approach for person-average estimates, rescale at the
block level instead of site:

ωzrj =
Nz

N

nrj
nzrj

.

If one is targeting the average impact across sites by including extra weights, a modicum of
care is needed for handling the randomization blocks. In this case, the weights need to be
fractional, as discussed in the design based case above. In the simple case of no randomization
blocks, recall how the initial site-weighting is simply to rescale the individual weights by the
relative size of the average randomization block to the specific randomization block (N̄/Nj).
Now we want to scale each randomization block to the portion of the average site that it
represents. This entails scaling the individual weights from above by N̄/Nrj where the N̄
and Nrj are the average size of the sites and the size of the site holding the randomization
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block in question. I.e., for individual i who has treatment z in randomization block r in site
j we have the following weight

ωsitezrj =

(
Nz

N

nrj
nzrj

)
·
[
N̄

Nrj

]
.

The nrj terms get cancel, in effect, giving the original scaling.

For the interacted modeling approach, the coefficients are estimated at the randomization
block level as described above. Now, however, we need to use a different vector of weights
c to target the site averaged impact. In particular, we have cr = nrj/(JNj), as with the
site-averaged design-based estimator above. We then plug that in, and thus our standard
error estimate is then a sum across randomization blocks:

ŜE
2
[
β̂OLS−int−site

]
=

R∑
r=1

1

J2

n2
rj

N2
j

ŜE
2
[
β̂r

]
.

Multilevel modeling approaches. For the multilevel modeling approaches some con-
sideration needs to be made to the independence assumptions required for inference. In
particular, the multiple blocks within a site are likely to be correlated, and in particular
both the baseline block means and the impacts themselves could be coupled within site.
Again following ?, we advocate having a fixed effect for the randomization block, and mak-
ing an assumption of homogenous impacts across the randomization blocks within site. This
is easy to do with the FIRC model and translates to a random effect for the impact for the
entire site that is shared by all randomization blocks within the site, and a fixed effect for
each randomization block. This gives the following model:

Yij = αbj +BjTij + εij

with
Bj ∼ N(β, τ 2),

as before.

For the RIRC model, one could have a shared random intercept as well as random impact
for each site, across randomization blocks, but this will not be correct if the proportion of
units treated varies across blocks within a site. In this case, one could try an unwieldy
three-level model with individuals nested within blocks, and blocks nested within sites. The
issue with random effects only at the block level is the dependence between blocks within site
will not be accounted for, resulting in potentially overly optimistic standard error estimates.
This is why we did not fit the RIRC model to the data in our emperical examples.
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