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Researchers face many choices when conducting large-scale multisite individually 
randomized control trials. One of the most common quantities of interest in multisite 
RCTs is the overall average effect. Even this quantity is non-trivial to define and 
estimate. The researcher can target the average effect across individuals or sites. 
Furthermore, the researcher can target the effect for the experimental sample or a 
larger population. If treatment effects vary across sites, these estimands can differ. 
Once an estimand is selected, an estimator must be chosen. Standard estimators, 
such as fixed-effects regression, can be biased. We describe 15 estimators, consider 
which estimands they are appropriate for, and discuss their properties in the face of 
cross-site effect heterogeneity. Using data from 12 large multisite RCTs, we estimate 
the effect (and standard error) using each estimator and compare the results. We 
assess the extent that these decisions matter in practice and provide guidance for 
applied researchers. 
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Introduction 

A postsecondary “Learning Community” is a semester-long program where students are 

grouped into cohorts that co-enroll in two or more courses to help them succeed. But do learning 

communities work? To find out, researchers randomized students into receiving this intervention 

or not, at 11 different- college campuses. Such multisite experiments can help us learn about a 

program or policy’s effectiveness. Researchers typically characterize such effectiveness with 

estimates of, for example, the average treatment effect (ATE) for a specified population of 

people. There are a variety of such summary quantities, called estimands, that one might wish to 

estimate, with ATEs being the most common (see, for example Raudenbush and Bloom, 2015; 

Schochet, 2016, or Raudenbush and Schwartz, 2020).  

But even the simple concept of an ATE has important nuances when faced with a 

multisite experiment. For example, do we care about the impact of learning communities for the 

average college student or the average college? These nuances, which can have important 

implications for the estimation and presentation of study results, is what we examine in this 

work. In particular, we examine four different estimands that are all versions of the ATE, and 

which vary along two dimensions: 

1. Estimating for individuals vs. sites: Whether the target of inference is the effect for the 

average individual or the average effect for the average site. 

2. Making inference to a finite vs. super population: Whether the target of inference is the 

average effect for the individuals and sites in the evaluation sample (i.e., those in the 

study itself) or the average effect for individuals and sites from a larger population. 
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Combined, the above gives four possible estimands—finite population individual, finite 

population site, super population individual, and super population site.1 All four of these are 

ATEs. They differ in how the averaging is done and how uncertainty is assessed. 

To make matters more complicated, there are also many different estimators, the methods 

used to calculate an intervention effect estimate, used in practice. Confusingly, some estimators 

do not obviously connect to an individual average or site average effect. It can even be unclear 

whether an estimator is finite sample or super population targeting. If treatment effects vary 

across sites, then these various estimators could yield different overall ATE estimates and 

estimated standard errors, potentially changing the interpretation of a study’s findings. This 

concern may be more than theoretical—applied research demonstrates that in some instances 

there is substantial cross-site variation in treatment effects (Weiss et al., 2017). 

Some estimators have a potential bias-precision tradeoff in the face of cross-site variation 

in treatment effects. For example, fixed effect regression (a commonly used approach) is best 

understood as a biased estimator targeting a person-weighted estimand, where the bias is in 

exchange for smaller standard errors. For multilevel modeling (aka, random effects or mixed 

modeling), Raudenbush and Bloom (2015) explore their theoretical properties, showing that, in 

the face of cross-site variation in treatment effects, these estimators can be biased. Here again the 

bias comes from a tradeoff to ideally achieve precision gains. Given this tension, researchers 

must decide if they are willing to risk possible bias for improved precision in their estimator 

selection. 

 
 

1 There are actually multiple possible super population models; to streamline our discussion, we refer to them as a 
general class and note salient differences when they arise. Furthermore, as we will see, there can be additional 
variation within each of the four classes due to concerns such as nonresponse or nonrandom sampling. 
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The main motivations behind this paper are to unpack the above themes and tensions and to 

explore their implications in practice. We clarify that researchers conducting multisite trials must 

make two key decisions: the choice of estimand and the choice of estimator. To help ensure these 

decisions are made intentionally, rather than implicitly and perhaps inadvertently, we explicitly 

connect estimators to their appropriate estimands. To achieve this, we first unpack our two axes 

for defining an ATE estimand, emphasizing the importance of defining an evaluation’s 

estimand(s) and discussing reasons researchers might choose each one. We then identify, for a 

series of estimators advocated for in the literature and/or commonly used in practice, which 

estimand is the most logical inferential target, what conditions could lead to bias, and what 

factors impact precision. We finally provide empirical evidence on the extent that these decisions 

matter in practice so that appropriate time and energy can be focused on consequential decisions.  

To keep the foundational themes of our investigation maximally salient, we focus on 

Intent to Treat (ITT) effects and follow the classic superpopulation sampling frames implied by 

the empirical methods most commonly used in practice. These frames do bring several strong 

assumptions, such as individuals within sites being representative of their sites, and the sites 

being representative of their superpopulation.  Attrition or, most importantly, the convenience 

sampling of sites, can easily undermine such claims. To address such concerns one would need 

to use methods from, e.g., the generalizability literature. While we do not engage with these tools 

in this work, we do discuss these connections further in the Section titled Further Perils of the 

Superpopulation Frameworks, below. 

To inspect how relevant the choice of estimand and estimator are in practice, we turn to a 

collection of 12 large multisite RCTs. For each trial we estimate the average effect, 𝛽, and its 

associated standard error, 𝑆𝐸(𝛽), using 15 different estimators. We then compare the resulting 
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effect estimates along with their estimated standard errors. The goal is to inform researchers 

regarding the extent that the choice of estimand and estimator “matter.” In particular, we seek to 

address the following research questions: 

(1) To what extent can the choice of estimator of the overall average treatment effect (𝛽) result 

in a different impact estimate? 

a. To what extent do effect estimates vary across all estimators? 

b. For a given estimand, to what extent do effect estimates vary across reasonable 

estimators? 

(2) To what extent can the choice of estimator of the standard error of the overall average 

treatment effect (𝑆𝐸&(𝛽)) result in a different estimated standard error? 

a. To what extent does the estimated standard error (SE) vary across all estimators? 

b. For a given estimand, to what extent does the estimated standard error (SE) vary 

across reasonable estimators? 

c. To what extent are differences in standard error estimates due to estimation error of 

the standard error or due to the estimators actually being differently precise? 

Finally, estimators that plausibly target the same estimand may still yield differing estimates 

because some estimators are potentially biased to increase precision. This motivates our third 

question: 

(3) How do the theoretically possible bias-precision tradeoffs play out in real data? 

This work offers several important contributions to the literature. First, in a single 

document, we provide an overview of the estimands and estimators commonly used in multisite 

randomized controlled trials. Next, we apply these estimators to a series of large-scale multisite 

trials so that researchers can appreciate whether and how much the choice of estimand and 
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estimator does (or does not) matter. We supplement this empirical evaluation with two 

substantial supplementary documents: a technical appendix (Online Appendix A) that gives more 

detail for the different estimators, and an extensive multifactor simulation study (Online 

Appendix B) that further illustrates and verifies the trends in the empirical findings. We have 

also posted the complete code for this simulation. Understanding the practical implications of 

these decisions can help inform researchers as they plan studies, analyze data, and interpret 

results from large scale multisite trials. 

Overall, we find that estimand selection indeed matters. Interest in a super population 

inference or site averaged effect often comes with substantial cost in terms of precision. 

Appreciating this from the outset may help ensure studies that target these estimands are 

adequately powered. We also find that site- and person-average estimators occasionally give 

different effect estimates, although usually not by a lot. 

With one exception, once an estimand is selected, choice of estimator, among estimators 

that align with the estimand, tends to be inconsequential (see remarks throughout this manuscript 

for caveats). The exception is the super population site estimand. Here, the two primary 

estimators can yield different treatment effect estimates and frequently result in different 

estimated standard errors as well; this is partially driven by the bias-precision tradeoff. 

The Estimands 

Within an evaluation sample, consider people nested within site, with person 𝑖 in site 𝑗. 

Throughout this paper we use the potential outcomes framework (for an overview see Imbens 

and Rubin, 2015 or Rosenbaum, 2010), which allows for precise description and discussion of 

the various estimands of interest. Under this framework each unit (e.g., person) has two potential 

outcomes, 𝑌!"(1) for if it gets treated, and 𝑌!"(0) for if it does not. If we treat, we observe 𝑌!"(1) 
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and if we do not treat, we observe 𝑌!"(0). The individual intention-to-treat (ITT) effect2 for 

person 𝑖 at site 𝑗 is then 𝐵!" = 𝑌!"(1) − 𝑌!"(0).3  It follows that 𝐵" is the average of the individual 

effects for all persons in the study at site 𝑗: 

𝐵" =
#
$!
∑ 𝐵!"
$!
!%# ,         (1) 

where 𝑁" is the number of persons in the study at site 𝑗. Each site has its own 𝐵", and they can 

differ. We are interested in summary measures of these 𝐵" across sites. 

Individual vs. Site Average Estimands 

We start by focusing on the individuals and sites in the evaluation sample only, extending 

to a super population afterwards. Given a collection of sites with different sizes, we might ask 

what the person-average effect is (i.e., weighting each person equally), or what is the site-

average effect (i.e., weighting each site equally, regardless of its size). These quantities can be 

different. For example, if larger sites have larger treatment effects, then the person-average effect 

will be larger than the site-average effect. 

We therefore have two estimands, one for the average effect across individuals, and one 

for the average of the site-average effects. The average effect across individuals in the evaluation 

sample is defined as: 

β&'(')*+,-+ =
#
$
∑ ∑ 𝐵!"

$!
!%#

.
"%# = ∑ $!

$
.
"%# 𝐵"  with 𝑁 = ∑ 𝑁"

.
"%#    (2) 

 
 

2 In this paper we focus on the intention-to-treat effect. For ease of exposition we refer to units as “treated” or “not 
treated” rather than “offered a treatment” or “not offered a treatment.” 
3 For this model to be sensible, we must assume no spillover, and a well-defined treatment. I.e., we cannot have the 
outcome of person 𝑖 changing if person 𝑘 gets a different treatment. This is often called the Stable Unit Treatment 
Value Assumption, or SUTVA. See Rosenbaum (2010) for further discussion and a good overview. 
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where	𝐽 is the total number of sites in the evaluation sample. This is the average of the individual 

casual effects across all individuals in the sample.  

The average effect across sites in the evaluation sample is defined as: 

β&'(/!0)+ =
#
.
∑ 𝐵"
.
"%#  .        (3) 

In order for 𝛽&'(')*+,-+ and 𝛽&'(/!0)+ to differ, the 𝑁" and 𝐵" must both vary and be related. 

Finite vs. Super population Estimands 

A second consideration is whether to target the average effect for the units in the 

experimental sample, as we did above, or to view the experimental units as a sample from a 

larger population and target the average effect in that larger population. These do not have to be 

the same quantity. The estimands in the prior section are finite-population (FP) estimands, 

residing in the finite population framework. 

Under the super population (SP) framework, by contrast, we assume that the study sites 

are a random sample of a much larger population of sites. We discuss alternate superpopulation 

models below, but what follows generally holds in substance. Index our sites in the super 

population with 1,2, … , 𝐽∗ with 𝐽∗ being the total number of sites in the super population.  𝐽∗ is 

assumed to be very large, 𝐽∗ ≫ 𝐽. We assume that when we sample a site we sample all units at 

that site. Under this regime we have two estimands analogous to those for the finite-population. 

First, there is the average effect across all individuals in the super population: 

𝛽/'(2)*+,-+ = ∑ $!
$∗
𝐵"

.∗
"%#  with 𝑁∗ = ∑ 𝑁"

.∗
"%# .     (4) 

The average effect across sites in the super population, similarly, is: 

β/'(+!0)+ =
#
.∗
∑ 𝐵"
.∗
"%# .        (5)  
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When there is cross-site treatment effect variation, a given random sample of sites may 

have a different average treatment effect than the population. In this case the finite and 

superpopulation estimands will not be the same. For more on how they are connected, please see 

Appendix A.  

A technical (ignorable) remark on superpopulation frameworks. There are actually many 

super population frameworks that are possible, and the different frameworks tie to different 

standard error estimates, as we will see below. First, researchers often assume some hypothetical 

infinite superpopulation, where the sites are sampled i.i.d. from some distribution. We instead 

use a large but finite superpopulation to avoid the use of integrals in the definition of the 

estimands, and assume 𝐽∗ is substantially larger than  𝐽 so that any finite population correction 

would be negligible. For more on finite population corrections, as well as the tensions between 

superpopulation and finite population estimation, and the different formulations of 

superpopulations, see, e.g., Lohr (2019), Sarndal et al. (2003), or Cochran (1977). 

Second, we generally consider that all relevant individuals within each site are sampled 

when we sample the site. For example, for a school-level tutoring intervention targeting low-

achieving students, we would take the students in the evaluation sample at that school as the 

population of students targeted. An alternate super population model would have the observed 

sample of individuals within a site coming from a second sampling step of individuals from a 

super populations of individuals at that site. To directly extend to this context, we would need to 

assume unbiased sampling of individual within site. For the person-weighted results, we would 

generally also need to assume that the sample size at each site is proportional to the site size.4 

 
 

4 This is necessary to prevent, e.g., a case where sites with generally low impacts have more people sampled, leading 
to a higher proportion of low-impact units in the overall sample than in the population. Site population numbers 
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Alternatively, we can assume individuals are randomly sampled across a fixed collection of sites, 

with site as a categorical covariate of these individuals; this is a classic econometric view, and 

aligns more with finite population estimation.  See both Schochet (2016) and Pashley and 

Miratrix (2020) for further discussion of sampling regimes with regards to the blocked or 

multisite experiments perspective. Pashley and Miratrix (2020) specifically compares finite vs. 

superpopulation settings.  

Estimand Selection 

Taking the individual vs. site-average and finite- vs. super-population as two dimensions, 

we are left with four common estimands of interest, laid out in Figure 1.  When faced with these 

four estimands, the question naturally arises of which one to select for a given evaluation. 

Ideally, we would like to know the true effects for all individuals in an evaluation, 𝐵!", or the 

true site average effects, 𝐵", rendering such a decision unnecessary. In practice, however, there is 

typically no way to obtain these quantities with any degree of accuracy, and thus we turn to 

summary measures. We generally advocate selecting based on context and the goal of the study, 

acknowledging that the practical limitations of a real-world evaluation may also play into 

decision-making. 

 
 

could instead be included as weights, rather than site sample size numbers, to correct for this. Considering such 
situation is beyond the scope of this paper. 
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Figure 1. The Four Common Estimands. 
  Target Population 

  Finite Super 

Site-
weighting 

Person 𝛽&'(2)*+,-+ =8
𝑁"
𝑁 𝐵"

.

"%#

 𝛽/'(2)*+,-+ =8
𝑁"
𝑁∗ 𝐵"

.∗

"%#

 

Site 𝛽&'(+!0)+ =8
1
𝐽 𝐵"

.

"%#

 𝛽/'(+!0)+ =8
1
𝐽∗ 𝐵"

.∗

"%#

 

 
Person or Site. From a utilitarian perspective, e.g., where the benefit of policy is thought 

of in terms of total individual impact, the estimands that target the effect for the average person 

make the most sense since they consider the impact of all persons equally. From this perspective, 

in an evaluation with one or a few sites that are exceptionally large, these outlier sites should 

drive the overall findings since they represent a large proportion of persons in the population. 

In contrast, a site-level decision-maker (e.g., a school principal or district superintendent) 

may be most interested in the effect for the average site. In the absence of better information, this 

decision-maker may find it most useful to know how effective a program was at the average site, 

so that sites are given equal weight regardless of their size. (A site-level decision-maker often 

would prefer to know the effect of an intervention in those sites that are most like theirs. While 

such site-level subgroup analyses are in principle more informative; such analyses are frequently 

underpowered, which can bring us back to the effect for the average site.) This is especially true 

if it were thought that site impacts were especially variable due to, for example, variation in 

implementation. 

It is noteworthy that when intervention effects vary (across individuals and/or sites), an 

overall average impact, whether person or site, could be misleading. In this case, studying the 
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distribution of treatment effects defined over sites could be quite valuable, and can be done for 

large-scale multisite trials. Here the overall site ATE would be important as an indicator of the 

center of that distribution (Raudenbush and Bloom, 2015).  

Finite or Super population? There are many reasons researchers design studies with the 

goal of making a finite population inference – that is, focusing on the experimental units at hand. 

For example, in efficacy trials we are often interested in knowing whether an intervention can 

work in a site or set of sites, as a proof of potential. Relatedly, we may be interested in an 

intervention’s effects in less than ideal circumstances, to assess its resilience in a worst-case test. 

We may study an intervention’s effects in a sample of sites that is purposefully selected to 

include the most plausible moderators. Testing for theorized moderation in this way may 

facilitate causal generalization, even if it is not “backed by a statistical logic that justifies formal 

generalizations” (Shadish, Cook, Campbell, 2002, p. 24).  

In some instances, the sample at hand may even be the immediate and only inferential 

target. For example, for a social impact bond evaluation5 (e.g., Parsons et al., 2016) where an 

investor will be paid based on the impact a program had on service recipients, the finite inference 

approach seems most appropriate. Similarly, if an organization is evaluating itself and includes 

nearly all its sites in their evaluation, there may be little interest beyond the people and sites in 

the study. 

On the other hand, the super population framework, i.e., considering the evaluation 

sample of sites a representation of a larger whole, is often the preferred target of inference. Given 

 
 

5 From Parsons et al. (2016): “A social impact bond is an innovative form of pay-for-success contracting that 
leverages private funding to finance public services. In a social impact bond, private investors fund an intervention 
through an intermediary organization—and the government repays the funder only if the program achieves certain 
goals, which are specified at the outset of the initiative and assessed by an independent evaluator.”  



MULTISITE RCTS: ESTIMANDS, ESTIMATORS & ESTIMATES 

12 

the time and expense associated with conducting most large-scale multisite trials, it is rare that 

the true goal of a study is to estimate the average effects of a program for a specific set of people 

and sites at a point in time.  Rather, generalizing beyond is inherent to the process of policy 

formulation. Such generalization typically involves an argument that the results of the study 

carry information about what would plausibly happen if this intervention were tried elsewhere. 

The theoretical justification is often that the settings, participants, and historical period of the 

study represent conditions that are plausibly of broad interest. Under these conditions, we want 

our standard errors to be big enough to reflect some uncertainty about the proposition regarding 

how the results would apply (on average) elsewhere. 

That said, multisite trials are rarely conducted on a random sample of sites (or 

individuals) from a larger population (Olsen, Orr, Bell, & Stuart, 2013). (There are exceptions, 

such as the National Growth Mindset evaluation (Yeager et al., 2017), explicitly designed to be 

representative although even here nonresponse makes this connection less immediate.) When the 

sampling process is not probabilistic, classic super population inference involves generalizing to 

a more vaguely defined set of units from which the study sample could reasonably have been 

randomly drawn, rather than to a super population that can be enumerated and described with 

well-defined characteristics. (We discuss repairing this using tools from the generalization 

literature below).) 

The question of finite or super population can therefore come down to a preference for 

using logical arguments, with little assessment of uncertainty, to generalize beyond a study 

sample (as would be required under the finite sample) vs. using statistical inferences to 

acknowledge, even if imperfectly, some of the uncertainty when generalizing to a difficult to 

define population. 
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Pragmatically, there are trade-offs in the precision of the estimators of the four estimands 

we have discussed. If sites are radically different sizes, then the estimated effect for the average 

site will be much less stable than the estimated effect for the average person.6 Additionally, if 

intervention effects vary across sites, then finite sample inference will be more precise, at the 

cost of any ability to generalize statistically. This tension is particularly of concern in trials with 

few sites; in these trials our sample of sites may easily not be representative of the super 

population (if site average impacts varied substantially) due to an unlucky draw, and this 

uncertainty would have to be included in the overall uncertainty estimate of a superpopulation 

average impact. In fact, for very few sites it may not be feasible to generalize what may already 

be a low-powered experiment due to this additional uncertainty. Assessing the relative costs of 

these decisions is one purpose of our empirical investigation. 

Further Perils of the Superpopulation Frameworks 

As discussed above, in current impact evaluation practice the superpopulation framework is 

usually left implicitly defined and there is no effort to adjust for the impact of attrition on 

treatment variation or nonrandom selection of sites. But what does one do when the sites are not 

sampled at random, such as with convenience sampling? Or what if there is attrition related to 

responsiveness to treatment?  In this section (entirely optional reading for those interested) we 

discuss how these concerns tie in with the above themes, and also a bit on how they could be 

addressed. 

First, if the treatment effect in the sample of sites is systematically different than the 

treatment effect in the target population, then the evaluation sample, without adjustment, does 

 
 

6 Recall we assume each site’s evaluation sample constitutes the entire site. 
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not represent the larger population. This context directly links to the generalizability literature, 

which proposes estimating the sampling mechanism of how sites came to be evaluated based on 

observed covariates in order to reweight the sample to match baseline characteristics of a 

specified target population to make the sample representative of a larger whole, in terms of 

observed characteristics. For two overviews of the generalization approach see Tipton & Olson 

(2018) or Kern et al. (2016). To generalize, one typically fits a propensity score model of being 

in the sample vs. not as a first step. Then one reweights the sample in an attempt to make it 

represent the target population; by contrast, the methods we examine in this work implicitly 

assume the representativeness of the sample.  

Unfortunately, when weights are included in the subsequent inference, they tend to 

increase uncertainty even beyond what would naturally occur with simple random sampling. See 

Miratrix et al. (2018) for an examination of this, and specific discussion of sampling weights, in 

the case of a single site. We therefore view the differences between the estimation approaches we 

investigate in this work as, roughly speaking, providing a lower bound on how much uncertainty 

estimates can change moving from a finite to superpopulation framing. We do not focus on any 

bias due to systematic sample nonrepresentativeness. 

Multisite trials have further complications: within sites, the number and characteristics of 

a site’s evaluation sample (i.e., those units used in estimation) may not correspond to the number 

or characteristics of the site’s inferential target population. Within-site nonrepresentativeness 

could be due to the sampling procedures used to select individuals for a study (e.g., if they are 

not probabilistic) or attrition (differential or otherwise) due to, e.g., survey nonresponse. If the 

evaluation sample at a site has a different response to treatment than the full population of 

interest at the site, then the true average impact for the evaluation sample may not be 
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representative of the true average impact for the target population at that site. In this case 

individuals within each site would require associated sampling weights that would have to be 

propagated throughout the estimation process. 

In the case of differences only in relative numbers of individuals, site-specific estimands 

and estimates could be reweighted to correspond to the target site size rather than the realized 

size of the evaluation sample for the person-weighted estimands. This repair is most directly seen 

with design-based estimators, where weights are explicitly calculated and used in the estimation 

process. See Schochet (2016) for more on using general weights in estimation. 

The Estimators of 𝜷 

Once an estimand is identified, a researcher must decide how to estimate it, given the 

observed data, and obtain uncertainty estimates (standard errors) for those estimates. We call the 

estimators “effect estimators” and the uncertainty estimators “standard error estimators.”  In this 

section, we systematically go through three general classes of effect estimators, discussing 

variants of implementing each. We attempt to identify what weighting each estimator appears to 

be targeting (i.e., site vs. individual effects), and how we might interpret them in a finite- or 

super- population context.7 To simplify exposition and formulas, we do not include covariates 

(e.g., pretests and the demographic covariates) in our discussion or analyses, but the overall 

intuition carries over. 

Our estimators are all built on unadjusted ITT effect estimates for the individual sites: 

𝐵:" = 𝑌:"(1) − 𝑌:"(0)          (7) 

 
 

7 In our technical appendix we elaborate on these estimtaors more fully, providing reference to the core ideas and 
concepts tied to each estimator.  
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In words, an unadjusted estimate of the average ITT effect at site j, 𝐵:", can be calculated as the 

difference in the average observed outcomes of all treatment group members at site j, 𝑌:"(1), and 

the average observed outcomes of all control group members at site 𝑗, 𝑌:"(0).  

Common estimators of the overall ATE can then be described as a weighted average of 

the 𝐵:": 

 𝛽< = ∑ 𝑤"𝐵:"
.
"%#  with ∑ 𝑤"

.
"%# = 1      (8) 

The 𝑤" are determined by which estimator is used. We discuss the different implied weights as 

we discuss the estimators, below. With covariate adjustment, the individually estimated 𝐵:" would 

be adjusted, and the weighting less clear, but the above holds in substance. 

Along with impact estimates, we need uncertainty estimates. This is where the finite-

sample vs. superpopulation tension is really critical. In particular, when we are estimating a 

superpopulation parameter, we need to account for two sources of uncertainty: the uncertainty in 

estimating the impact on our sample, and the uncertainty of how representative our sample is 

with respect to the population it came from. For finite-sample inference, by contrast, we only 

need to focus on the first source of uncertainty. An important point here is the sampling 

uncertainty is due to how much treatment effects vary across sites. If effects vary across sites, 

then finite-sample standard error estimators will grossly underestimate the true super-population 

uncertainty. If effects do not vary across sites, then they will not.  Our technical appendix, 

section 2, gives further discussion of this point. 

The different standard error estimates differ for two reasons: they focus on different kinds 

of variation, and they rely on different types of assumptions. In particular we can estimate 

variation in our sample by looking at how individuals vary within site, or by looking at how site-

level estimates vary across site.  Generally, for example, finite-population approaches estimate 
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uncertainty within site and then average this uncertainty across sites to get overall uncertainty 

estimates. We can impose assumptions such as homoskedasticity of residuals across site or 

across treatment arm to stabilize this process. Super-population uncertainty estimators, by 

contrast, tend to rely on how the individual site-level impact estimates vary among sites to 

capture both any within-site estimation error along with the uncertainty associated with sampling 

sites from a larger population. Modeling assumptions, such as homoskedasticity, can stabilize 

this just as with the finite population approaches. We highlight these themes as we discuss the 

estimators. 
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Table 1. Estimator names, notation, and target estimands 
Estimator Name Notation Estimand 

Design Based 

(1) Finite Population, person weighted 𝛽<34(&'(2)*+,- 𝛽&'(2)*+,- 

(2) Finite Population, site weighted 𝛽<34(&'(+!0) 𝛽&'(+!0) 

(3) Super Population, person weighted 𝛽<34(/'(2)*+,- 𝛽/'(2)*+,- 

(4) Super Population, site weighted 𝛽<34(/'(+!0) 𝛽/'(+!0) 

Linear Regression 

(5) Fixed effects 𝛽<&5 𝛽&'(2)*+,- 

(6) Fixed effects, heteroscedasticity robust SEs 𝛽<&5(6)0 𝛽&'(2)*+,- 

(7) Fixed effects, cluster robust SEs 𝛽<&5(78 𝛽/'(2)*+,- 

(8) Fixed effects, ClubSandwich SEs 𝛽<&5(79:;  𝛽/'(2)*+,- 

(9) Fixed effects, weighted – person 𝛽<&5(<)!=>0(2)*+,- 𝛽&'(2)*+,- 

(10) Fixed effects, weighted – site 𝛽<&5(<)!=>0(+!0) 𝛽&'(+!0) 

(11) Fixed effects w/ interactions, person weighted 𝛽<&5(!-0)*(2)*+,- 𝛽&'(2)*+,- 

(12) Fixed effects w/ interactions, site weighted 𝛽<&5(!-0)*(+!0) 𝛽&'(+!0) 

Multi-level Modeling 

(13) Random Intercept, Constant Treatment Coefficient 𝛽<?@(8A77  𝛽&'(2)*+,- 

(14) Random Intercept, Random Treatment Coefficient 𝛽<?@(8A87  𝛽/'(+!0) 

(15) Fixed Intercept, Random Treatment Coefficient 𝛽<?@(&A87  𝛽/'(+!0) 

 
We now investigate three common classes of estimators: design-based estimators, linear 

regression approaches, and multi-level modeling. As we discuss the estimators, we also discuss 

how standard errors are typically generated, and the choices available there. Table 1 (above) lists 

all 15 estimators we consider. For each estimator, we note the estimand that we believe is the 

most logical target of inference. 
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Design-Based Estimators  

We begin with design-based estimators. Although their use may not be currently as 

common as linear regression or multi-level modeling, the effect estimators are easier to describe 

and understand, and seem to be gaining traction (Schochet, 2016). Design-based estimators, in 

contrast to several of the estimators below, are explicitly designed to target the four estimands. 

Design-based estimators focus on the random assignment mechanisms and the sampling 

mechanism as the primary sources of uncertainty, rather than specifying a linear model with a 

random residual component. They are therefore generally considered to rely on weaker 

assumptions than other approaches. 

For multisite trials, design-based estimators generally use the difference in means 

estimator within each site (see equation (7)) to obtain site-level effect estimates. They then take a 

weighted average of these site-level effect estimates to obtain either the individual-weighted 

average (if one weights by site size) or site-weighted average (if one takes the average of the site 

level estimates) effect.  

When the target of inference is the effect for the average person (𝛽&'(2)*+,- or 

𝛽/'(2)*+,-), the design based estimator of 𝛽 sets 𝑤" =
$!
$

, yielding: 

𝛽<34(2)*+,- = ∑ $!
$
𝐵:"

.
"%# .        (9) 

This estimator is unbiased with respect to 𝛽&'(2)*+,- and 𝛽/'(2)*+,- and will generally be 

precise relative to reasonable alternatives. However, if the proportion assigned to treatment (𝑝") 

vary dramatically across site, this estimator can be less precise than some precision-weighted 

estimators discussed below, especially if some very large sites have very lopsided treatment 

proportions. In this case, these large sites will have proportionally greater uncertainty despite 

their large size, and this uncertainty gets propagated to the overall estimate. 
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When the target of inference is the effect for the average site (𝛽&'(+!0) or 𝛽/'(+!0)), the 

design-based estimator of 𝛽 sets 𝑤" =
#
.
, yielding: 

𝛽<34(+!0) = ∑ #
.
𝐵:"

.
"%# .         (10) 

This estimator is unbiased with respect to 𝛽&'(+!0) and 𝛽/'(+!0). While unbiased, site weighting 

can increase uncertainty: with this estimator, a small site (where effects are estimated 

imprecisely) will have the same influence on the overall average effect estimate as a large site 

(where effects are estimated precisely). 

Standard error estimators for 𝛽<34(2)*+,- and 𝛽<34(+!0) can be calculated for either the 

finite or super-population estimand. In the finite case, design-based estimators traditionally build 

an overall variance estimate by first estimating uncertainty of the site-specific estimates, and then 

averaging them across the sites, with weights dictated by the target estimand. This gives a 

weighted average of the site-level uncertainties of  

𝑉𝑎𝑟& B𝛽<34(<(B!-!0)C = ∑ 𝑤"C
.
"%# 𝑉𝑎𝑟DBDF GH 	    (11) 

where the weight wj are either nj/n (person weighted) or 1/J (site weighted), and where the 

𝑉𝑎𝑟DBDF GH 	 can be estimated using Neyman’s classic formula: 

 𝑉𝑎𝑟DBDF GH = #
E#F#

sGHC +
#

I#(E#JF#
sGKC = #

F#$
sGHC +

#
F#%

sGKC   .    (12)  

Here 𝑝" is the proportion of units treated in site j (allowed to vary across site), 𝑁"L is the number 

of treatment group members at site 𝑗, 𝑠"LC  is the variance of the outcome across treatment group 

members at site j, and 𝑁"7  and 𝑠"7C  are the corresponding values for the control group.  Under a 

finite population framework this expression is conservative due to the unidentifiable correlation 

of potential outcomes across individuals. There are some corrections, although their impact is 

typically small. See, e.g., Aronow, Green, and Lee (2014) or Schochet (2016).  
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For super-population inference, design-based uncertainty estimates of 𝛽/' rely on the 

variation in the site-level impact estimates, 𝐵:", to incorporate in the additional uncertainty due to 

site sampling. In particular, the individual site effect estimates are dispersed around the overall 

average effect estimate both due to site variation in average impact as well as within-site 

estimation error of site-level average impact. We can thus leverage this dispersion to get our 

overall uncertainty estimates. The formula for standard error estimation, with some additional 

discussion, are included in Appendix A. For detailed discussion of these estimators and their 

associated standard error estimators, see Schochet (2016). 

Linear Regression Approaches 

Linear regression is probably the most common tool for analyzing data from randomized 

experiments. We consider three common versions of regression modeling that are used in multi-

site contexts: fixed effect models, fixed effect models with individual unit weights, and fixed 

effect models with treatment by site interaction terms. In the third case the site-level impact 

estimates are then combined in a second step to estimate the overall ATE. We first discuss these 

three different variants of linear regression, and then discuss uncertainty estimation at the end. 

Fixed Effects with a constant treatment (FE). With fixed effects, the researcher fits a 

linear regression with site fixed effects and a single parameter for the overall ATE. The 

traditional model is,  

𝑌!" = ∑ αM𝑆𝑖𝑡𝑒M,!"
.
M%# + β𝑇!" + 𝑒!",       (13) 

with 𝑆𝑖𝑡𝑒M,!" an indicator variable for unit ij being in site k (out of 𝐽 sites), and the eOG classically 

considered to be independent, identically distributed (iid) draws from some normal distribution 

with 0 mean and unknown variance. Taken literally, the model assumes a constant treatment 
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effect with no variation in effects across sites. For estimation, we find parameters values that 

minimize the sum of squared residuals and use β: as our estimate of average impact. 

This overall estimator is not, however, generally unbiased for either an individual or site 

average effect when there actually is cross site effect variability, depending on how this 

variability is associated with site size and treatment rates. Given the single impact parameter, the 

least squares process gives a precision weighted estimate of average impact, weighing each site 

average impact (𝐵:") proportionally to the estimated overall precision in being able to estimate 

that site-average impact (Raudenbush & Bloom, 2015): 

𝛽<&5 = ∑ $!2!I#(2!J
P

𝐵:"
.
"%# ,        (14) 

with normalizing constant 𝑍 = ∑ 𝑁"𝑝"D1 − 𝑝"G
.
"%# . The precision weights 𝑤" = 𝑁"𝑝"D1 − 𝑝"G/𝑍 

are the (normalized) inverses of 𝑉𝑎𝑟B𝐵:"C under assumed homoskedasticty with 

VarB𝐵:"C = V #
$!2!

+ #
$!I#(2!J

W𝜎C = Q&

$!2!I#(2!J
.     (15) 

The 𝜎C is the standard deviation of the residuals across sites and experimental conditions 

(assumed to be constant). This expression comes directly from the more general Neyman 

formulation above, if we assume the variances are equal, and ignore the possible correlation of 

potential outcomes (this term will naturally drop out under some assumed sampling models; see, 

e.g., the discussion of superpopulation inference of Miratrix et al. (2013)).  

As Equation 14 shows, precision weighting weights larger sites and sites where the 

proportion assigned to treatment is closest to 0.50 more heavily. Precision weighting yields a 

standard error 𝑆𝐸B𝛽<&5C that will generally be smaller than any of the alternative standard errors. 

This is by design: fixed effect regression estimates the estimand that is, in principle, the most 
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easy to estimate.8 While an attractive feature, it comes at a price – the fixed effects estimator is 

potentially biased with respect to all four of our estimands. This is a bias-precision tradeoff.  

To illustrate the potential bias, consider this estimator’s potential bias with respect to the 

person-weighted mean estimands (𝛽2)*+,-). If 𝐵" is related to 𝑝"D1 − 𝑝"G, this estimator will be 

biased. This situation may be plausible if, for example, 𝑝" is an indication of demand for 

program services and more effective sites experience greater demand. This could be true for an 

evaluation of charter schools that relies on natural lotteries to identify the effects of each school. 

Nonetheless, since 𝑁" plays a major role in the implied weighting of the fixed-effect regression, 

we believe the most reasonably implied estimand for this estimator is 𝛽&'(2)*+,-. Indeed, if the 

proportion treated does not vary across sites (or 𝑝"D1 − 𝑝"G is not correlated with 𝐵"), then this 

estimator targets the individual average impact without bias. 

With respect to the site-weighted mean estimands (𝛽+!0)), this estimator will be biased if 

𝐵" is related to 𝑁"𝑝"D1 − 𝑝"G. In addition to the potential relationship between 𝐵" and 𝑝", it will 

often be plausible that site size (𝑁") is related to site ATE (𝐵") – larger and smaller sites often 

serve different clientele, implement programs differently, are situated in different contexts, and 

offer different counterfactual services – each of which could cause treatment effects to 

systematically vary with size. For example, in the Encouraging Additional Summer Enrollment 

Study at 10 community colleges, site size, which varied substantially, was related to the number 

 
 

8 The “in principle” refers to the assumption of homoskedasticity that gives these precision weights. If different sites 
have different degrees of variation, then the precision weights may not correspond to the actual precisions of the 
sites and this estimand may not in fact be the easiest estimand to estimate. The fixed effect estimator would no 
longer be truly optimal in this case. 
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of summer course offerings, a factor that could moderate the intervention’s effectiveness at 

increasing summer enrollment rates. 

The estimand for which the fixed effects estimator is unbiased is one that weights each 

site average impact by 𝑁"𝑝"D1 − 𝑝"G. This estimand does not lend itself to a natural or policy-

relevant description. Its definition is an artifact of a statistical property. If it is believed there is 

little to no cross-site effect variation, then this estimator may be entirely appropriate, owing to its 

improved precision. Otherwise, users of this estimator should be making an intentional decision 

regarding the potential bias precision tradeoff. 

Fixed effects with a constant treatment and weighted units (FE-weight). The bias of the 

general fixed effect model, above, can easily be corrected by weighting individuals proportional 

to their inverse chance of treatment, as done in Edmunds et al. (2017). Such inverse probability 

of treatment weights can be calculated as: 

𝜔!"
2)*+,- = 𝑇!" V

2
2!
W + D1 − 𝑇!"G V

#(2
#(2!

W,       (16) 

where 𝑝 is the proportion of the evaluation sample assigned to treatment. While this weighting 

can hurt precision relative to the fixed effects estimator (𝛽<&5), one can show that the expected 

value of the treatment effect estimate is the individual average effect (see derivation in Appendix 

A). Consequently, this estimator is unbiased with respect to the person-weighted average effect. 

This weighting approach forces the weighted proportion assigned to treatment to be the 

same at each site and equal to the overall proportion assigned to treatment, while keeping each 
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site’s weighted size equal to its unweighted size. Due to this, the overall average impact estimate, 

𝛽<&5(<)!=>0(2)*+,-, will be a site-size weighted average of the site impacts (see equation 9).9 

A related weighting approach can be used to create an unbiased estimator of the effect for 

the average site (𝛽+!0)). (See Mayer, Patel, Rudd, and Ratledge (2015) for an example that is very 

similar to this approach). This approach uses inverse probability of treatment weights in 

combination with forcing each site to contribute equally to the overall average effect estimates, 

resulting in the same impact estimate as the design-based estimator in Equation 10. See the 

technical appendix for the expression for these weights, with further discussion.  

These weighting methods have strong ties to the design-based estimators. In fact, the 

effect estimates will be identical, although the methods for estimating uncertainty differs.  

Fixed Effects with Interactions (FE-inter). One regression option that explicitly models 

cross site variation is the “fully interacted” model – that is, a model that includes both site 

indicators and site by treatment interaction terms. This model produces an ATE estimate for each 

site (𝐵:"&5(!-0)*) along with associated standard errors. The overall model can be written as  

𝑌!" = ∑ αM𝑆𝑖𝑡𝑒M,!"
.
"%M + ∑ 𝐵M𝑆𝑖𝑡𝑒M,!"

.
M%# 𝑇!" + 𝑒!".      (17) 

The residual structure is usually the same as with the usual fixed effect model above. The lack of 

intercept makes 𝛼" the control mean at site 𝑗, and 𝐵" the effect at site 𝑗. 

Fitting this model gives effect estimates for each site. These J site effect estimates 

(𝐵:"&5(!-0)*) are then averaged in either of two ways. The first is to weight each site effect 

 
 

9 Interestingly, the weights make the site fixed effects not strictly necessary for estimation. The regression of 
outcome onto treatment, with these weights and without further covariates such as site fixed effect indicators, will 
give an unbiased estimate of the individual average impact. The site fixed effects, however, can absorb outcome 
variation across sites to increase precision. 
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estimate by the site size to obtain the individual average impact estimate, as in Equation 9. The 

second is to average across sites (see, for example Clark, Gleason, Tuttle, and Silverberg 

(2011)); this estimates the site level average impacts and is equivalent to Equation 10. These 

estimates will give identical values to the corresponding design-based estimators. Standard 

errors, if using the classic regression framework, are calculated by taking a weighted average of 

the standard errors associated with the 𝐵:"&5(!-0)* from the model described by Equation 17, 

which will give different measures of uncertainty as compared to design-based approaches. The 

regression approach, however, naturally allows for including covariate for adjustment (covariate-

adjusted design-based approaches generally fit this model, in fact). 

Uncertainty Estimation for linear models. There are three general approaches for getting 

standard errors for these linear regression models. The first is to specify a residual variance 

structure, i.e., how the individual units vary around the values predicted by the model. This is the 

classic Linear Regression approach. This approach usually makes assumptions about how the 

sites are similar, e.g., by assuming the residual variances are the same across sites. Two 

alternatives to imposing a residual model are heteroscedasticity robust (Huber-White) standard 

errors (for an example used in a multisite trial, see Weiss, Ratledge, Sommo, and Gupta, 2019) 

and cluster robust standard errors (for an example used in a trial, see Richburg-Hayes, Visher, 

and Bloom (2008)). These choices correspond to finite vs. super population estimation. The 

model-based standard errors are finite sample. Of the two types of “robust” standard error 

estimators – heteroskedastic and cluster robust – the former is appropriate for finite population 

inference and the latter for super population. We next make this reasoning more explicit.  

Traditional presentations of the regression framework consider the covariates fixed and 

the residuals random. For a fixed effect regression, therefore, the sites are all considered fixed 
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and the only uncertainty is the i.i.d. residuals for the individual outcomes. This implies finite 

sample inference and associated uncertainty estimates. For the models without interactions, any 

treatment effect variation leads to heteroskedastic residuals, a violation of the modeling 

assumptions. 

Huber-White errors are primarily viewed as allowing for heteroscedasticity in the 

residual structure.10 That being said, traditional theory typically assumes a sampling framework 

where individual observations (with an observation being the triplet of outcome, treatment 

assignment, and site) are sampled i.i.d. from some larger population. Critically, in this case the 

sites are considered to be fixed categories for an individual-level covariate akin to the categories 

of gender or race. This aspect of sites being fixed is what makes these standard errors still finite-

sample targeting: we are estimating an impact while adjusting for the covariate of site 

membership. We are not allowing for variation due to our sites being a random draw of a broader 

population of sites.  

Lin (2013) connects Huber-White standard errors to finite-sample, design-based 

inference. In this work, Huber-White standard errors are shown to be an appropriate (albeit 

conservative) choice for estimating finite-sample uncertainty in the context of individually 

randomized trials adjusted by covariates. Also see Schochet (2016) for related discussion and 

derivations.  

Cluster robust standard errors, by contrast, assume entire clusters (sites) are sampled i.i.d. 

from a super population, and therefore treat the sites as integral clusters and give super-

 
 

10 There are several variants of Huber-White, all of which differently adjust for concerns such as degrees of freedom 
issues; we use “HC1.” HC1 is the default of STATA’s “robust” option and is commonly used in the literature. All 
these variants are generally quite similar for large experiments.  
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population estimates of uncertainty. The potential correlation of individuals within site, as well 

as heteroskedasticity, is all accounted for by aggregating the site-specific patterns of residuals 

within site. These site-level aggregates are then averaged in a way that mimics sampling sites 

from a super population of sites. Here cross-site impact variation causes the within-site residuals 

to generally be correlated, giving larger aggregated amounts and larger standard errors; this is 

similar to design-based approaches that look at the dispersion of individual site effect estimates 

that directly incorporate cross-site impact variation. If applied to weighted regression, the 

weights will impact standard errors by effectively weighting the sites differently in the 

aggregation step. 

For few sites, classic cluster-robust SEs are known to be unstable and biased 

downward.11 There are refinements such as the “club sandwich” (Pustejovsky & Tipton, 2018) or 

bootstrapping (Cameron, Gelbach, & Miller, 2008). Also see Abadie, Athey, Imbens, & 

Wooldridge (2017) for further discussion of using cluster-robust vs. Huber-White standard errors 

in practice. 

Multilevel Modeling 

Multilevel modeling is another common approach for evaluating multisite trials in the 

social sciences. The traditional presentation of this framework posits a super population of sites, 

with the ATE of each site being a draw from a random effects distribution. The individual 

outcomes within each site are then thought of as extra residuals added on top of the site effects. 

This view strongly suggests multilevel modeling as targeting the super-population site average 

impact. MLM can also be viewed from a Bayesian perspective (see, e.g., Gelman & Hill, 2006); 

 
 

11 Similar to Huber-White's HC0, HC1, and so forth, there are several different proposed degrees-of-freedom 
corrections to account for this. 
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we do not investigate that here.  Also see Hodges & Clayton (2011) for reflections on MLMs as 

a smoothing approach. 

There are several proposed multilevel modeling strategies currently in the field, some 

which have been recently developed with cross-site impact variation in mind. We focus on one 

of these, the fixed intercept, random (treatment) coefficient (FIRC) estimator as described in 

Raudenbush and Bloom (2015) and Bloom, Raudenbush, Weiss, and Porter (2017). We do not 

examine Bayesian approaches in this work but use maximum likelihood estimation as is 

currently standard. The FIRC model has an indicator variable for each site, analogous to classic 

fixed effect estimator above, and a random effect for the average treatment across sites. 

Level 1: 
𝑌!" = ∑ 𝛼M

.
M%# 𝑆𝑖𝑡𝑒M,!" + 𝐵"𝑇!" + 𝑒!"       (18) 

Level 2: 
𝐵" = 𝛽 + 𝑏" 

Here the 𝑒!" are independent normal with some variance structure, as with fixed effect 

regression. The 𝑏" are typically modeled as i.i.d. normal, one draw per site, with an unknown 

variance, 𝜏C, which represents the variance of the distribution of site-level impacts. The 𝛽 is the 

average site impact and is usually taken as the estimated ATE when reporting results. 

Even though the parameter is clearly a site-average impact, this estimator is not, in 

general, unbiased for either an individual or site average effect. Instead it is adaptive. Similar to 

the fixed effects estimator, this estimator weights each site average impact (𝐵:") proportionally to 

the precision in being able to estimate that site average impact (i.e. 𝑆𝐸&B𝐵:"C; see Raudenbush and 

Bloom (2015)). Importantly, this includes (estimated) uncertainty due to cross-site effect 

variation. The less cross-site effect variation is detected, the more similar this estimator is to the 
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FE, precision weighted one. In the face of greater cross-site effect variation this estimator adapts 

and comes closer to taking an unweighted average of the individual site estimates to avoid bias. 

That is, weights are not only a function of the proportion of units treated and the size of 

the sample at that site, but they also depend on how much treatment effects are estimated to vary 

across sites. These weights, if the cross-site treatment effect variation (𝜏C) were known, would 

yield the multi-level model fixed-intercept random treatment coefficient estimator: 

𝛽<?@(&A87∗ = ∑ #
P
V Q&

$!2!I#(2!J
+ 𝜏CW

(#
𝐵:"

.
"%#   with  Z = ∑ V Q&

$!2!I#(2!J
+ 𝜏CW

(#
.
"%# .  (19) 

Notice how as the cross-site treatment effect variation diminishes, this estimator converges to the 

fixed effects estimator (𝛽<&5). As 𝜏C increases, this estimator moves toward weighting the sites 

more and more equally. This is the adaptive aspect of this approach. The actual 𝛽<?@(&A87 , 

roughly speaking, uses an estimated 𝜏C, but the logic is similar. 

The two other common multilevel model specifications are the random-intercept, 

random-coefficient (RIRC) model and a random intercept model with a single (constant) 

treatment coefficient (RICC, analogous to fixed effect regression, above). Formally, RIRC can 

be written as 

Level 1: 
𝑌!" = 𝐴" + 𝐵"𝑇!" + 𝑒!"         (20) 

Level 2: 
𝐴" = 𝛼 + 𝑎" 
𝐵" = 𝛽 + 𝑏". 

The 𝑒!" are again independent normal with some variance structure. The 𝑎" and 𝑏" are modeled as 

i.i.d. from a joint normal distribution, with unknown variances 𝜏RC, 𝜏;C and an unknown 

covariance 𝜏R;. The 𝜏RC represents the variance of the distribution of site-level control group 



MULTISITE RCTS: ESTIMANDS, ESTIMATORS & ESTIMATES 

31 

average outcome levels, 𝜏;C the variance of the distribution of site-level average impacts, and 𝜏R; 

their covariance. 

Finally, RICC can be written as 

Level 1 
𝑌!" = 𝐴" + 𝐵𝑇!" + 𝑒!"         (21) 

Level 2 
𝐴" = 𝛼 + 𝑎" 

The 𝑎" are typically modeled as i.i.d. normal, one draw per site, with an unknown variance, 𝜏C, 

which, assuming a true constant treatment impact, represents the variance of the distribution of 

site average control-side outcome levels. Interestingly, because the RICC model does not allow 

treatment effects to vary by site, it is essentially the precision-weighted FE model from linear 

regression, and we thus we do not consider it as targeting a site average effect and instead 

consider it to be targeting the finite population person average effect.  

For estimating uncertainty, multilevel modeling traditionally uses maximum likelihood 

estimation theory (or restricted maximum likelihood), which requires a complete model for both 

the random effects and the residual variances. 

Multilevel modeling could potentially be made to explicitly target the average individual 

impact rather than site-average by weighting the regression as with the weighted fixed effect 

regression approaches discussed above. We do not investigate this approach in this work. See  

Raudenbush and Schwartz (2020). 

A Unified Representation of the Effect Estimators 

The effect estimators across the three general classes described above can be all viewed 

as different weighted averages of the site-specific effect estimates (𝐵:"), as described in Equation 

(8). Under this view, for the average effect estimates the different estimators differ only in how 
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they weight the site-specific effect estimates. Table 2 (below) summarizes the four weighting 

schemes, borrowing from Raudenbush and Bloom (2015).  

Table 2. Summary of implied weights of common effect estimators: 
Weight name Weight Estimators using this weight 

Unbiased person-
weighting 𝑤" ∝ 𝑁" 

𝛽<34(&'(2)*+,-  
𝛽<34(/'(2)*+,-  
𝛽<&5(<)!=>0(2)*+,-  
𝛽<&5(!-0)*(2)*+,- 

Fixed-effect precision 
weighting 

𝑤" ∝ 𝑁"𝑝"D1 − 𝑝"G 

𝛽<&5  
𝛽<&5(6S 
𝛽<&5(78 
𝛽<&5(79:; 
𝛽<?@(8A77 	(approximately)	

Random-effect 
precision weighting 𝑤" ∝ _𝜏̂C +	

σC

𝑁"𝑝"D1 − 𝑝"G
b
(#

 

(approximately) 

𝛽<?@(&A87  
𝛽<?@(8A87  (approximately) 

Unbiased site-
weighting 

𝑤" ∝ 1 

𝛽<34(&'(+!0)  
𝛽<34(/'(+!0)  
𝛽<&5(<)!=>0(+!0)  
𝛽<&5(!-0)*(+!0) 

Notes: We have not derived a closed form expression for the implied weight for 𝛽$'()*+*,, but include it under 
random effect precision weighting for completeness (it differs slightly from FIRC in practice). While we have no 
closed form expression for the implied weight for 𝛽$'()*+,,, empirical and simulation results find it to be extremely 
similar to fixed effect precision weighting. 

 

Table 2 illustrates several things. First, if the weights are independent of the site average 

effects, or if the impacts do not vary, then all the estimators will coincide, up to estimation error, 

although they may differ in terms of their actual and estimated precision. Second, by examining 

the formula we can see how different estimators up- or down-weight sites based on site-level 

characteristics (sample size and proportion of units treated) which aids in determining what 

quantities the different estimators are targeting. Subsequently, we will refer to the weighting 
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itself as an effect estimator, e.g., “the unbiased person-weighted effect estimator” denotes all 

four of DB-FP-person, DB-SP-person, FE-weight-person, and FE-inter-person. 

Remark. In practice, there are two further concerns with these estimators, especially those 

that are variants of regression (fixed effects or multilevel modeling). First, treatment is often 

assigned within randomization subblocks (e.g., cohorts) within a site. These subblocks are not 

independent and need to be aggregated to get site ATEs. Second, if there is believed to be 

variation in treatment effect within site, then the usual homoscedasticity assumption for the 

residuals can be viewed as implausible, for the parameteric models (the multilevel models in 

particular). The most flexible option would be to therefore allow for different variances for each 

treatment arm for each site, but this can introduce instability in estimation, so something between 

complete homoskedasticity and this extreme may be preferred. Following Bloom, Raudenbush, 

Weiss, and Porter (2017), we advocate for two variance parameters, one for the control side and 

one for the treatment side, each pooled across site. This is discussed further in Supplementary 

Appendix A. 

A Taxonomy of the Standard Error Estimators 

The effect estimators can all be expressed as weighted sums of the individual site-level 

effect estimates, as discussed above. The standard error estimators can also be roughly grouped 

into families. The design-based approach is to use the known random assignment (and assumed 

known sampling of sites, in the case of super population inference) to generate standard errors 

that do not depend on parametric modeling assumptions. The modeling-based approach posits a 

model for how outcomes deviate from a structural form (along with, for super population 

estimators, a parameterized sampling framework such as normally distributed site level random 



MULTISITE RCTS: ESTIMANDS, ESTIMATORS & ESTIMATES 

34 

effects), and uncertainty estimation is based on that. Importantly, the robust estimators (Huber-

White and Cluster Robust methods) lie in the former, design-based camp.12  

The modeling vs. design-based tension raises questions of the benefits and costs of the 

modeling assumptions. On one hand, we might expect the models to provide more precisely 

estimated standard errors, and on the other we might get biased estimates of the standard errors 

under misspecification. This is another bias-precision tradeoff, but now for estimating 

uncertainty rather than the estimand itself. In our simulation study we examine the gains of 

modeling under correct model specification, but leave the consequence of misspecification to 

future work. We also see how model-based vs. design-based approaches work empirically as 

well. 

Empirical Examples 

We examine how the above estimators perform across a convenience sample of 12 

multisite field trials, all but two of which were also used in Weiss et al. (2017). These trials were 

selected based on several criteria. The most important criterion was that each study could 

provide internally valid estimates of average ITT effects by site. Datasets were restricted to 

multisite studies that randomly assigned individuals within sites, for as many sites as possible, 

with as many individuals per site as possible.  The total number of individual sample members 

ranges across studies from roughly 1,400 to 69,000, and the total number of sites ranges from 9 

to over 300.  Consequently, our findings are most applicable to large scale RCTs. Our findings 

could be quite different in smaller scale studies. To facilitate implementation of our analyses, we 

 
 

12 This classification coupled with the biased impact estimators gives even more estimation approaches. For 
example, one could use cluster robust standard errors on top of multilevel modeling (this is what the HLM7 software 
and the “robust” option in STATA does) to keep a sampling framework of sites from a superpopulation while also 
allowing for complex, unknown correlation structures of individuals’ residuals within site. 
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restricted data sets to those that were readily available to our team. The selected studies represent 

a broad spectrum of educational levels, ranging from preschool through primary and secondary 

school to postsecondary education, along with one welfare to work program. The outcomes 

include test scores, measures of progress toward and completion of higher school and college, 

and earnings. Interventions vary substantially, including, for example, two elementary school 

after school programs, a supplemental reading course for high school students and financial 

incentives for community college students. 

For each empirical example, we estimate average effects and associated standard errors 

using all the methods (save one) described above and listed on Table 1. All of our examples are 

multisite trials but in most cases treatment was assigned within random assignment block within 

site, which creates technical issues discussed in online Appendix A.13  Most of these examples 

have multiple outcomes, and we estimate impacts for all outcomes. For comparability and 

simplicity, we standardized all estimates and report results in effect size units; for a more 

nuanced discussion of how standardization works (and other options), see Weiss et al. (2017).  

Here, we use estimators without covariates; as a sensitivity check, we also conducted all analyses 

including relevant covariates and found that our substantive results hold (see Online Appendix D 

for discussion and covariate adjusted results). 

Online Appendix C summarizes the 12 studies, describing the program and target 

population examined, the research design used, and the primary outcomes measured. Citations 

are included to help readers learn more about each study. Table 3 provides statistics about each 

study, including information about the site-level distribution of sample sizes and proportions 

 
 

13 Due to these concerns, we excluded 𝛽$'()*+*,. The other estimators have reasonable adjustments; with 𝛽$'()*+*, 
the alternatives did not seem sensible. 
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assigned to treatment, as well as an estimate of how much effects varied across sites.  See Table 

4 for all estimated effects and estimated standard errors using our final set of 14 estimators. 

Results 

To what extent can the choice of estimator of the overall average treatment effect (𝛽) 

result in a different impact estimate? 

To assess the greatest degree that estimator (or estimand) can matter, for each outcome 

we first consider the range of effect estimates across all our estimators (i.e., 𝑚𝑎𝑥D𝛽<G − 𝑚𝑖𝑛D𝛽<G). 

Take, for example, the study of Learning Communities for community college students and the 

outcome of total cumulative credits earned through three semesters. For this specific outcome 

and study, the minimum effect estimate is -0.001𝜎 (from the unbiased site weighted estimator) 

and maximum effect estimate is 0.031𝜎 (from the fixed effect estimators and FIRC), for a range 

of 0.032𝜎. In most studies where a decent sized effect is required to deem a program a success, a 

0.032𝜎 difference would be considered small (substantively), suggesting that in this instance the 

choice of estimator does not matter much. The range of effect estimates for each of the 34 

outcomes is on Figure 2 (below). 

Figure 2: The Range (across all implemented estimators) of Estimates of 𝛽 from 12 Studies (34 
outcomes) 

 
Notes: Each dot represents a single outcome for a single study. The x-axis is the range of effect estimates 
(𝑚𝑎𝑥(𝛽$) − 𝑚𝑖𝑛(𝛽$)) across the final 14 estimators, in effect size units. 
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We see that on occasion, the choice of estimator can result in non-negligible differences 

in estimates of the overall ATE. The range of estimates is less than 0.02𝜎 in about half the cases, 

which is small by most standards. In the three most extreme cases, the range is 0.10𝜎, 0.08𝜎, and 

0.07𝜎. The extent that such differences are practically meaningful likely depends on the study 

and outcome. For a very low-cost intervention where an effect of size 0.05𝜎 might be deemed 

“worth it,” differences of this magnitude could be considered substantial. In contexts where the 

target is an effect of 0.25𝜎 or above, only these most extreme differences may be considered 

clinically meaningful. 

There are two theoretical reasons the estimators could produce different effect estimates 

for a given outcome. The first is if the person and site average estimands differ; in this case the 

estimators targeting the person average effects would systematically differ with the estimators 

targeting the site average effects. The second is that the estimators themselves could differ due to 

random variation or, for some, the bias-precision trade-off. 

To investigate these reasons, for each outcome we calculate the range of effect estimates 

among the estimators targeting site estimands and person estimands. Results are shown in Figure 

3; we do not further subdivide by finite vs. superpopulation as any effect estimator could in 

principle be used for either population framework. 
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Figure 3: The Range of Estimates of 𝛽 for all estimators targeting a given estimand from 12 
Studies (34 outcomes) 

 
Notes: Each dot represents a single outcome for a single study. The x-axis is the range of effect estimates 
(𝑚𝑎𝑥(𝛽$) − 𝑚𝑖𝑛(𝛽$)) across the estimators listed in the legend, in effect size units. 
 

First, if a person-weighted estimand is chosen (left hand side), then the choice of 𝜷 

estimator generally does not matter. For these estimands, there are essentially two main effect 

estimators possible – the unbiased person-weighted estimators and the precision-weighted fixed 

effect estimators. The largest range among these estimators is 0.007𝜎, with an average range of 

0.001𝜎. This implies that the potential bias in the bias-precision trade-off of the fixed effect 

estimators is negligible in practice. In many of these studies the proportion assigned to treatment 

do not vary substantially across sites (see Table 3), so this finding may be unsurprising. 

Second, if a site-weighted estimand is chosen (right hand side), then the choice of 𝜷 

estimator can matter. For this estimand, there are two different effect estimators considered – 

the unbiased site-weighted estimator and FIRC. The largest range in estimates is 0.062𝜎, with an 

average range of 0.020𝜎. In 15 cases (44 percent) the range of estimates is greater than 0.02𝜎, 

although there’s only three instances where the range is greater than 0.05𝜎. Thus, even after 

identifying the site-average impact as one’s target, the choice of estimator, within this class, can 

still matter. This appears to be due, in large part, to the adaptive nature of FIRC: when it does not 

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●

●●
●●
●●
●●

●●
●●
●●

●●
●

●●
●●

●●
●●
●

●●
●

● ●●
●

●

Person Site

0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100

Range of estimates

N
um

be
r o

f o
ut

co
m

es

𝛽"!"#$%#&'()*+)  
𝛽"$, 
𝛽"$,#-'. 
𝛽"$,#/'012.#&'()*+)  
𝛽"$,#3+.'(#&'()*+)  
𝛽"45#6377 
𝛽"!"#8%#&'()*+) 
𝛽"$,#76 
𝛽"$,#79:; 
 

𝛽"!"#8%#)0.') 
𝛽"45#$367 
𝛽"!"#$%#)0.') 
𝛽"$,#/'012.#)0.') 
𝛽"$,#0+.'(#)0.') 
 



MULTISITE RCTS: ESTIMANDS, ESTIMATORS & ESTIMATES 

39 

estimate substantial variation in site-average effects, it aligns more with the person-weighted 

estimators, while the unbiased site-weighted estimator does not. 

Finally, with respect to estimating 𝜷, the choice of estimand can matter. The choice 

to target the effect for the average person vs. the effect for the average site can influence the 

estimated effect. In fact, the average difference in estimated effects between the unbiased person- 

and site-weighted estimators is 0.026𝜎. The average range of estimated effects among all distinct 

estimators is 0.028𝜎, only 9 percent larger. The difference between these two unbiased 

estimators explains 99 percent of the variation in the range across all estimators. The empirically 

observed differences in effect estimates do not necessarily mean the underlying estimands are 

different (the differences could all be dictated by estimation error). This does, however, illustrate 

that the driver behind any substantial differences in estimated effects across estimators is the 

correlation between 𝛽<" and 𝑁". 

To reinforce these points, consider Figure 4, which shows the relative similarity of the 

different estimators across all 34 outcomes. The x-axis is the magnitude of the difference in 

effect estimates using various estimators. The grey bars present the difference in estimated 

effects between the unbiased person- and site-weighted estimators. We orient each estimator so 

the person-weighted estimate is always at zero and site weighted is always positive.14 The fixed 

effect and FIRC estimators are then plotted as colored dots on these lines. 

 
 

14 We flip the sign of the outcome as needed to make the site-weighted estimate larger, just for this visualization. 



MULTISITE RCTS: ESTIMANDS, ESTIMATORS & ESTIMATES 

40 

Figure 4. Comparing Effect Estimates using Various Estimators 

 
Notes: Gray bars represent the range of unbiased person weighted and unbiased site weighted effect estimates. Fixed 
effects estimates are circles and FIRC estimates are triangles. All bars centered so 0 corresponds to the unbiased 
person-weighted effect estimate. 
 

First, notice that the fixed effect precision weighted estimator (red dots) are always near 

zero: it is strikingly similar to the person-weighted estimator. This shows that a correlation 

between 𝛽<" and 𝑝"D1 − 𝑝"G is not the reason behind differences in estimated effects across 

estimators. 

Second, notice that the range of estimates across all estimators is rarely meaningfully 

larger than the range between the person- and site-weighted estimates alone (the gray bars). The 

FE and, to some extent, the FIRC deviations from the person weighted estimate are generally 

small in comparison to the grey bar magnitude. The range between the person- and site-weighted 

estimates is the primary driver of the variation in effect estimates.  The weighting formula show 

that these differences stem from an empirical correlation between 𝛽<" and 𝑁". 

Finally, the FIRC effect estimates tend to lie between the person- and site-weighted 

estimates. This is the bias-precision tradeoff. In our examples, the FIRC estimates generally 

tended more toward the person-weighted estimates than the site-weighted estimates. This 
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explains why, when the super-population site estimand is selected, the choice between FIRC and 

DB-Sites can matter. The source of difference is again the correlation between 𝛽<" and 𝑁".  

To what extent can the choice of estimator of the standard error of the overall average 

treatment effect (𝑆𝐸(𝛽)) result in a different estimated standard error? 

For each outcome, we consider the ratio of the largest estimated standard error to the 

smallest estimated standard error (i.e., the 𝑚𝑎𝑥B𝑆𝐸&D𝛽<GC 𝑚𝑖𝑛B𝑆𝐸&D𝛽<GCh ) across all estimates of the 

ITT effect. This provides an indicator of the greatest extent that the choice of estimator (or 

estimand) can matter when estimating precision. Take, for example, the Communities in Schools 

study of for high school students and the chronic absenteeism outcome. The minimum 𝑆𝐸&D𝛽<G is 

0.046𝜎 and the maximum 𝑆𝐸&D𝛽<G is 0.080𝜎, an increase of 173 percent. In this instance, the 

choice of estimator with respect to 𝑆𝐸&D𝛽<G can matter a lot. 

Figure 5 (below) plots the ratio of the largest estimated standard error to the smallest 

estimated standard error for each outcome. As shown, the ratio from the Communities in Schools 

example is not unusual. For half of the outcomes, the ratio of the largest to smallest standard 

error estimate is greater than 150%, large by most standards. For some studies, the largest 

estimated standard error is more than three times the smallest estimated standard error. With 

respect to the estimated standard error of the overall ATE, choice of estimator can matter a lot in 

practice. 
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Figure 5: The Ratio of the Largest to Smallest Estimates of 𝑆𝐸(𝛽) across our final 14 estimators 
from 12 Studies (34 outcomes) 

 
Notes: Each dot represents a single outcome for a single study. The x-axis is the ratio of largest estimated standard 
error to smallest estimated standard error (𝑚𝑎𝑥(𝑆𝐸./𝛽$0) 𝑚𝑖𝑛(𝑆𝐸./𝛽$0)1  across all estimators, in effect size units. 
 

Precision is meaningfully worse when we move from finite- to super-population 

estimators or from person- to site-average estimators. SE estimates from the finite-population 

site-average estimators are 29% larger than their finite-population person-average counterparts 

(averaged across outcomes). Compared with the finite-population person-average SEs, the super-

population person-averaged SEs are 25% larger and the super-population site-averaged SEs are 

30% larger (although there was much instability here, see below). Choosing to generalize to a 

super population, to estimate the effect for the average site, or to do both generally results in less 

precise estimated effects, compared to finite-population person-weighted. 

Next, we examine whether the choice of standard error estimator matters once an 

estimand has been selected. To do so we calculate the ratio of the largest to smallest estimated 

standard error among the estimators that target a specific estimand, for each outcome. Results are 

on Figure 6, below. For example, the top left corner of Figure 6 plots the 34 ratios of the largest 

to smallest estimated standard error for each of the six estimators that target the finite population 

person estimand.  
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Figure 6. Ratio of Largest to Smallest Estimate of 𝑆𝐸(𝛽) Among all Estimators Targeting a 
Given Estimand from 12 Studies (34 outcomes) 

 

First, if a finite-population person, finite-population site, or super-population 

person estimand is chosen, then the choice of 𝑺𝑬(𝜷) estimator generally does not matter. 

For these estimands, the average ratio of the maximum to minimum estimated standard error are 

102%, 105%, and 104%, respectively. For the finite-population person estimand, these results 

have several interesting implications. First, the potential precision gains in the fixed effects 

estimator’s bias-precision trade-off are small in practice. In addition, correcting for 

heteroskedasticity when using a fixed effects estimator is generally inconsequential in these 

trials. Finally, results confirm that the multilevel model with random intercept and fixed 

treatment coefficient (RICC) should not be considered an estimator that allows for a super 

population inference. Rather, the estimated standard error is finite population and nearly identical 

to the classic fixed effect estimator. 
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The second broad finding from Figure 6 is that if the super-population site estimand 

is chosen (bottom right quadrant), then the choice of 𝑺𝑬(𝜷) estimator can matter a lot. 

Here, the comparison is between the design-based estimator and the multi-level model FIRC. 

The largest ratio of the maximum estimated standard error to the minimum estimated standard 

error is 236% (an outlier), with an average ratio of 123%. In 59% of cases, the estimated 

standard errors differ by more than 10% across the two options. Compared with the design-based 

super population site estimator, we generally expected FIRC to result in smaller standard error 

estimates since the multi-level model estimator will give more weight to larger sites in most 

instances. This held true for the most part; however, 32 percent of the time the design-based 

estimator had a smaller estimated standard error than FIRC. Estimated standard errors can differ 

due to difficulties with estimation or fundamental differences in the true uncertainty of the 

estimators. We examine this next. 

Are the wide-ranging standard error estimates due to instability in estimation? 

Surprisingly, sometimes the super population estimators give smaller estimated standard 

errors than the finite population estimators. This appears to be driven by instability in estimating 

the super population targeted standard errors. Furthermore, FIRC and the design-based site 

superpopulation standard errors frequently differed substantially, with the FIRC standard errors 

ranging from 58% smaller to 62% larger than the design-based site superpopulation standard 

errors. To understand where these instabilities were occurring, we turn to our simulation study, 

details and results of which are more fully discussed in online Appendix B. 

In our simulation we generated multisite data with a variety of structures mimicking our 

empirical studies under a correctly specified multilevel data generating process. We then 

compared several measures: (1) the true standard errors of the different estimators, (2) the overall 
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accuracy of the estimated standard errors, and (3) the variability of the estimated standard errors. 

We generally found that, across our scenarios, the super population estimators have more 

difficulty estimating standard errors. Superpopulation standard error estimates tend to be around 

14-19 percent off the truth, with many scenarios tending towards 30 percent or more. In contrast, 

the site-averaged, finite-population standard errors tend to be estimated to within 6 percentage 

points of accuracy, and the person-averaged finite population even better than that. This means 

that super population standard error estimators can frequently return erroneously small values, 

smaller even than the finite-sample counterparts. In fact, for many of our scenarios with a cross-

site variation (𝜏) of 0.10𝜎, 𝛽<34(/'(+!0)+ gave estimated SEs smaller than its finite-sample 

counterpart more than 30 percent of the time, and 𝛽<?@(&A87  did so 15-20 percent of the time. 

Comparing the two site-average superpopulation estimators, we found the design-based 

super-population estimator is more variable than FIRC, with 17% larger true SEs, averaged 

across the scenarios. It also has more difficulty estimating those standard errors: the average 

standard deviation of the SE estimates, relative to the true SEs, was 34% larger on average for 

the design based. In other words, the design-based estimator is not only generally more variable 

in truth, it is more unstable in its SE estimates. This estimator appears to be paying a heavy price 

for unbiasedness and less model dependence, while the adaptive FIRC will tend towards 

precision-weighted, which gives it greater stability. On the other hand, in those scenarios with 

substantial bias, the FIRC’s lower SEs coupled with the biased point estimate undermines 

coverage; we explore that below. 

Our simulations are conducted under correct model specification; it could be that that the 

greater instability of some of the estimators is a function of the reliance on fewer assumptions. 

Under misspecification, models such as FIRC could conceivably break down, resulting in poorly 
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estimated SEs and even greater bias in point estimates. Regardless, the instability is a concern. 

We leave exploring how misspecification plays a role to future work. 

How do the theoretically possible bias-precision tradeoffs play out in real data? 

There are two types of biased estimator we consider: the fixed effect estimator for 

estimating person-weighted impacts, and the multilevel modeling estimators for estimating site 

average impacts. We investigate whether there are gains in using these estimators above and 

beyond the costs due to the potential bias. 

For the fixed effect estimator, the bias (with respect to the person-average effect 

estimand) tends to be quite small. We saw little to no difference between the fixed effect 

(precision weighted) effect estimates and the unbiased effect estimates. The standard errors also 

tended to be the same, correlating at above 0.99 across the studies. The fixed effect standard 

errors were about 99% of the design based standard errors, on average. The two outcomes with 

the greatest estimated standard error reduction showed fixed effects standard errors around 6 and 

11% smaller than the design based. Overall, in our considered studies, the fixed effect estimators 

do not appear to give much improved precision over the design-based estimators. They do not, 

however, appear to be heavily biased either. 

On the other hand, FIRC often differs from the design-based super population site 

estimator. This can be driven by bias in the multilevel models and/or instability in either of the 

estimators. Disentangling these two factors requires knowing the truth, which we do not know in 

the empirical examples. We therefore turn to our simulations. Here we find that with variable site 

size but no variation in impacts across sites, the multilevel model was, under correct model 

specification, more stable, resulting in a substantially lower root mean squared error (RMSE) 

than the site-average design-based estimator. As cross-site impact variation increased, however, 
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if that cross-site variation was correlated with site size, the tendency of FIRC towards the person-

weighted estimates cost in an increasingly large bias. That said, less than 2% of our considered 

scenarios had the FIRC fair worse, in terms of RMSE; FIRC was slightly worse when there were 

many (80) large sites that varied in size, and site size correlated with site impact. In these 

scenarios the nominal coverage of FIRC was also worse (occasionally dropping to 85%) due to 

this bias; see the final section of Supplement B for a detailed comparison of FIRC to DB-SP-

Sites. 

Remark. All of the estimators need to be used with care, and many have specific 

implementation details or aspects that can be easily missed, and which can lead to error. For 

example, the reweighted estimators rely on weighted regression methods taken from survey 

sampling, not precision-weighting from classic generalized least squares; if the incorrect 

statistical methods are used, these methods can give smaller estimated standard errors than the 

true variability. This issue, and others, are discussed in greater detail in our supplementary 

material. In particular, in our technical supplement (Appendix A) we discuss each of the methods 

in turn and attempt to highlight the intuitions driving these estimators along with the common 

pitfalls one might come across in their use. 

Conclusion 

Defining an estimand is critical to the design, analysis, and interpretation of a multisite 

RCT. Even when one is interested in estimating an ATE, careful consideration must be given to 

defining the target of inference. For example, the choice of estimand influences what formula is 

appropriate when conducting power calculations – yet many write-ups of power calculation are 

ambiguous or silent with regards to the estimand chosen. Relatedly, registering studies and 

creating analysis plans are becoming the norm when conducting RCTs, yet even newly created 
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registries, such as this society’s Registry of Educational Effectiveness Studies (REES: 

https://sreereg.icpsr.umich.edu/pages/checklist.php#rt) do not require an estimand be defined. 

Consequently, readers of an analysis plan are left to assume an implied estimand based on the 

power calculation formula used and/or estimator selected. Similarly, many scholarly articles and 

reports do not state a target of inference, making it difficult to assess whether the chosen 

estimator is appropriate and obscuring the goal of the research. We recommend defining the 

estimand(s) early in the research process and clearly stating them in important products. 

We find that the choice of estimand can matter in field trials. In a series of empirical 

examples, we find that the decision occasionally influences effect estimates and frequently 

influences the estimated standard error. Most notably, interest in super population or site 

averaged effects often comes with substantial cost in terms of precision. Appreciating this may 

help ensure that studies targeting these estimands are adequately powered. 

For three of the estimands considered, once an estimand is selected, the choice of 

estimator does not matter – estimated effects and standard errors are very similar across 

estimation approach. Researchers, proposal reviewers, journal article reviewers, technical 

working groups advisors, etc. ought not fret over whether, for example, a fixed effects estimator 

did or did not use heteroskedastic robust standard errors. It is interesting to note that, at least in 

the studies considered, choosing estimators that rely on modeling assumptions (which we might 

believe to be more precise and more sensitive to model misspecification) do not, in the end, 

appear to differ substantively from their design-based or robust counterparts. It would be 

interesting to extend our simulation framework to delineate what circumstances these estimators 

would diverge. 
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Where estimator choice may matter is when the estimand is 𝛽/'(+!0). Here, the multilevel 

FIRC model can result in different treatment effect estimates than its unbiased design-based 

counterpart and frequently results in different estimated standard errors as well. This is a result of 

both the bias-precision trade-off and the instability of all the super population standard error 

estimators. In our simulation studies we found that (under correct model specification) FIRC was 

almost always superior in terms of RMSE, compared to DB-SP-Sites. This is true even in those 

scenarios where FIRC was biased due to tending towards person weighted impacts.  Moreover, 

the latter had, much more than the former, demonstrable and serious instability in most contexts 

considered. Coverage, on the other hand, showed the design-based being somewhat more reliable 

in the face of cross-site impact variation. This is especially true when there were many variable-

sized sites with site size correlated with site impact. Regardless of estimator, standard error 

estimation for the super population site-average impact, even under correct model specification, 

is difficult. To be clear – super population standard errors ought to be appropriately larger than 

their finite population counterparts. However, the challenge is that we cannot be certain that the 

estimated standard error is an accurate reflection of true uncertainty. The differences of FIRC 

and DB-SP-Sites may be the consequence of the choice between modeling and making fewer 

assumptions: our simulations show that when data are approximately normal, the design-based 

approaches can be costly. We leave exploring how the assumptions behind FIRC could 

undermine good inference under model misspecification to future work. 

Given these findings, researchers may naturally ask what they should do. The starting 

point is selecting an estimand based on the study goal and designing a study with a realistic 

chance of achieving that goal. Pragmatically, this can mean acknowledging that the ideal goal is 

unachievable (e.g., the budget does not align with the sample size needs for adequate precision).  
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The result may be a compromise: conducting a study acknowledging limited precision with 

respect to a site and/or super population estimand or selecting an estimand that is not the top 

choice, but still a meaningful quantity to estimate. In some cases, these practical considerations 

may yield the conclusion that the study that could be achieved is not worth doing. 

When it comes to analyses, we generally suggest starting simple. It is difficult to go 

wrong starting a presentation of findings with the finite-sample person estimand. Even if the 

ultimate goal is understanding a program’s effects in a super population, it is difficult to imagine 

situations where it is of no interest to know the extent that a program was effective for the study 

participants at the study sites. 

After estimating effects for the individuals and sites in the evaluation, next consider how 

estimated uncertainty increases as the inference extends to a super population. For ease of 

exposition, we have occasionally presented a false choice between finite- and super-population 

estimands. However, it may be prudent to consider both in this way. As an example, consider the 

Head Start Impact Study and the program’s average estimated effect on the WJ-III LW early 

reading outcome for the person finite- and person super population estimands.  Across the 

reasonable estimators of these estimands, the average effect estimate is consistently 0.232𝜎. 

However, the estimated standard error for the person finite sample estimators are all 0.035, 

whereas they are 0.041 and 0.042 for the person super population estimators.  The 17 percent 

increase in the estimated standard error reflects the increased uncertainty that comes with the 

generalization implied by the super population inference. In this study, the data provide clear 

evidence that Head Start had a positive effect on early reading for the children attending the 253 

Head Start Centers included in the analyses and for children attending a super population of 

centers from which these 253 Centers could reasonably have been randomly drawn.   
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In the above instance we can be confident of positive effects on the students in the study 

and in a larger super population. However, one can conceive of cases where we are confident 

that an intervention positively affected the people in the study, but we are far less certain whether 

the intervention would positively affect people on average in the super population. In an efficacy 

study with a finite population estimand, this situation may be grounds for a large-scale 

effectiveness trial. In an effectiveness trial with a super population estimand, this may 

complicate the interpretation of the findings in a way that is important to acknowledge and 

appreciate. 

We have seen for super population goals, estimates of uncertainty are generally larger 

and estimators are more unstable than their finite population counterparts. In some ways the 

instability is unsurprising – estimating uncertainty when targeting a super population requires 

knowing how much treatment effects vary across sites. Recent theoretical work by Bloom and 

Spybrook (2017) and empirical work by Weiss et al. (2017) demonstrate that under many real-

world circumstances this cross-site impact variation is itself estimated with considerable 

uncertainty. This uncertainty is likely the cause of the instability of the super population standard 

error estimators. Gaining a deeper understanding of the conditions (e.g., number of sites, number 

of people per site, etc.) that allow for acceptably reliable standard error estimation for standard 

errors of this type is an area ripe for future simulation and theoretical research.  

While work presented in this paper is broad, with many studies and many estimation 

approaches, there are several limitations of note. First, our findings apply to multisite trials. How 

different estimation strategies compare in other contexts, such as cluster randomized trials, is an 

important area for future work. There are also many other estimators we might consider such as 

hybrid approaches such as cluster-robust standard errors on top of a multilevel models. We have 
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also not investigated how decisions regarding missing data or handling of attrition could move 

estimates, and whether the sensitivity to those decisions is on par with, smaller than, or larger 

than the decisions regarding estimand and estimator selection. It would also be interesting to see 

if different estimation strategies were more or less robust to such decisions. We also 

acknowledge that our simulations only show relative estimator performance when the multilevel 

models are correctly specified; seeing if misspecification changed the story is an important area 

of future work. And of course any investigation of a collection of studies suffers from the 

questions of whether the studies are representative. Although the simulations suggest that only in 

fairly extreme circumstances would the story change, we should seek to verify this with real 

data. Only with continued comparisons such as our empirical investigation can we accumulate 

best practices and rule-of-thumb guidelines. 

Finally, it is again worth noting that when intervention effects vary, a one-number 

summary of the overall average effect masks important information. For example, if effects vary 

across sites, an estimate of the overall average effect from a multisite trial may not accurately 

predict the effect at any individual site, limiting the value of a one-number summary for local 

decision-makers (Orr et al., 2019). At a minimum, it is important to attempt to understand the 

distribution of site ATEs and the sources of this heterogeneity (Raudenbush and Bloom, 2015; 

Bloom et al., 2017; Weiss, Bloom, and Brock, 2014), as well as the average impact, however it 

may be defined.  
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Table 3. Statistics from 12 Multi-site RCTs. 

  

Project/Outcome N
#

Sites
10th

Percentile Mean
90th

Percentile
SD over 

Mean
10th 

Percentile Mean
90th 

Percentile 
Early childhood-Elementary school
Head Start Impact Study (HSIS)

External i zing behavior problems 3,404   257 3 13 22           0.67 0.50 0.61 0.73 0.10
PPVT-III  receptive vocabulary 3,360   251 3 13 22           0.66 0.50 0.61 0.75 0.07
Sel f-regulation ski l l s 3,404   254 3 13 22           0.67 0.50 0.61 0.75 0.18
WJ-III  AP early numeracy 3,353   253 3 13 22           0.67 0.50 0.61 0.75 0.09
WJ-III  LW early reading 3,377   253 3 13 22           0.66 0.50 0.62 0.75 0.29
WJ-III  OC ora l  comprehens ion 3,288   247 3 13 22           0.66 0.50 0.62 0.75 0.12

After School  Reading
SAT-10 tota l  reading 1,904   25 57 76 94           0.17 0.51 0.58 0.65 0.05

After School  Math
SAT-10 tota l  math 1,984   25 58 79 101         0.26 0.49 0.56 0.65 0.11

Tennessee Star
SAT-7 tota l  reading 9,171   80 77 115 189         0.44 0.20 0.28 0.36 0.23
SAT-7 tota l  math 9,348   80 77 117 189         0.43 0.20 0.28 0.36 0.27

High school
Enhanced Reading Opportunities

GRADE reading comprehens ion 4,584   34 92 135 169         0.22 0.56 0.59 0.63 0.00
GRADE reading vocabulary 4,584   34 92 135 169         0.22 0.56 0.59 0.63 0.00
% of required credits  earned, yr 1 5,225   34 92 154 192         0.25 0.53 0.57 0.63 0.00
% of required credits  earned, yr 2 4,554   34 80 134 167         0.25 0.53 0.58 0.63 0.00

Communities  in Schools
Chronic absenteeism 1,816   28 26 65 130         0.70 0.43 0.52 0.65 0.14
Fai led at least one course 2,123   28 30 76 166         0.73 0.45 0.52 0.67 0.00

Early Col lege High Schools
On track in ninth grade 3,793   19 56 200 466         0.67 0.44 0.59 0.84 0.28
Earned a  high school  diploma 2,792   19 52 147 353         0.75 0.42 0.60 0.84 0.00

Career Academies
Earned HS diploma/GED, yr 5 1,533   9 54 170 259         0.44 0.52 0.56 0.59 0.00
Enrol led in postsecondary 1,482   9 50 165 252         0.45 0.52 0.56 0.58 0.08
Avg. annual  earnings , yrs  1-4 1,458   9 52 162 255         0.43 0.53 0.55 0.58 0.00
Avg. annual  earnings , yrs  5-8 1,405   9 46 156 235         0.44 0.53 0.55 0.58 0.00
Avg. months  worked annual ly, yrs  1-4 1,458   9 52 162 255         0.43 0.53 0.55 0.58 0.00
Avg. months  worked annual ly, yrs  5-8 1,405   9 46 156 235         0.44 0.53 0.55 0.58 0.00

Postsecondary education
Learning Communities

Targeted credits  earned, 1 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.17
Cumulative targeted credits  earned, 3 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.10
Tota l  credits  earned, 1 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.05
Cumulative tota l  credits  earned, 3 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.00

Performance-Based Scholarships
Cumulative tota l  credits  earned, yr 1 6,935   15 63 462 1,081      0.78 0.50 0.58 0.62 0.00
Cumulative tota l  credits  earned, yr 3 6,935   15 63 462 1,081      0.78 0.50 0.58 0.62 0.00
Earned a  degree, yr 3 6,968   15 63 465 1,081      0.78 0.50 0.58 0.62 0.00

Encouraging Summer Enrol lment 1
Enrol led in summer 7,118   10 90 712 2,317      1.30 0.49 0.50 0.51 0.00
Credits  earned 7,118   10 90 712 2,317      1.30 0.49 0.50 0.51 0.00

Encouraging Summer Enrol lment 2
Enrol led in summer 7,103   10 88 710 2,310      1.30 0.49 0.50 0.50 0.06
Credits  earned 7,103   10 88 710 2,310      1.30 0.49 0.50 0.50 0.07

Labor/Workforce
Welfare-to-Work Program

Ave. annual  earnings , quarter 1-8 69,399 59 322 1,176 3,011      0.95 0.50 0.66 0.84 0.09

Site Size Proportion Treated Est. SD of 
Site-ave. 

Effects*

*The last colum (SD of Dis t. of Si te-ave. Effects ) i s  estimated from the FIRC model .
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#

Sites
10th

Percentile Mean
90th

Percentile
SD over 

Mean
10th 

Percentile Mean
90th 

Percentile 
Early childhood-Elementary school
Head Start Impact Study (HSIS)

External i zing behavior problems 3,404   257 3 13 22           0.67 0.50 0.61 0.73 0.10
PPVT-III  receptive vocabulary 3,360   251 3 13 22           0.66 0.50 0.61 0.75 0.07
Sel f-regulation ski l l s 3,404   254 3 13 22           0.67 0.50 0.61 0.75 0.18
WJ-III  AP early numeracy 3,353   253 3 13 22           0.67 0.50 0.61 0.75 0.09
WJ-III  LW early reading 3,377   253 3 13 22           0.66 0.50 0.62 0.75 0.29
WJ-III  OC ora l  comprehens ion 3,288   247 3 13 22           0.66 0.50 0.62 0.75 0.12

After School  Reading
SAT-10 tota l  reading 1,904   25 57 76 94           0.17 0.51 0.58 0.65 0.05

After School  Math
SAT-10 tota l  math 1,984   25 58 79 101         0.26 0.49 0.56 0.65 0.11

Tennessee Star
SAT-7 tota l  reading 9,171   80 77 115 189         0.44 0.20 0.28 0.36 0.23
SAT-7 tota l  math 9,348   80 77 117 189         0.43 0.20 0.28 0.36 0.27

High school
Enhanced Reading Opportunities

GRADE reading comprehens ion 4,584   34 92 135 169         0.22 0.56 0.59 0.63 0.00
GRADE reading vocabulary 4,584   34 92 135 169         0.22 0.56 0.59 0.63 0.00
% of required credits  earned, yr 1 5,225   34 92 154 192         0.25 0.53 0.57 0.63 0.00
% of required credits  earned, yr 2 4,554   34 80 134 167         0.25 0.53 0.58 0.63 0.00

Communities  in Schools
Chronic absenteeism 1,816   28 26 65 130         0.70 0.43 0.52 0.65 0.14
Fai led at least one course 2,123   28 30 76 166         0.73 0.45 0.52 0.67 0.00

Early Col lege High Schools
On track in ninth grade 3,793   19 56 200 466         0.67 0.44 0.59 0.84 0.28
Earned a  high school  diploma 2,792   19 52 147 353         0.75 0.42 0.60 0.84 0.00

Career Academies
Earned HS diploma/GED, yr 5 1,533   9 54 170 259         0.44 0.52 0.56 0.59 0.00
Enrol led in postsecondary 1,482   9 50 165 252         0.45 0.52 0.56 0.58 0.08
Avg. annual  earnings , yrs  1-4 1,458   9 52 162 255         0.43 0.53 0.55 0.58 0.00
Avg. annual  earnings , yrs  5-8 1,405   9 46 156 235         0.44 0.53 0.55 0.58 0.00
Avg. months  worked annual ly, yrs  1-4 1,458   9 52 162 255         0.43 0.53 0.55 0.58 0.00
Avg. months  worked annual ly, yrs  5-8 1,405   9 46 156 235         0.44 0.53 0.55 0.58 0.00

Postsecondary education
Learning Communities

Targeted credits  earned, 1 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.17
Cumulative targeted credits  earned, 3 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.10
Tota l  credits  earned, 1 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.05
Cumulative tota l  credits  earned, 3 sem 6,974   11 198 634 1,089      0.67 0.50 0.60 0.67 0.00

Performance-Based Scholarships
Cumulative tota l  credits  earned, yr 1 6,935   15 63 462 1,081      0.78 0.50 0.58 0.62 0.00
Cumulative tota l  credits  earned, yr 3 6,935   15 63 462 1,081      0.78 0.50 0.58 0.62 0.00
Earned a  degree, yr 3 6,968   15 63 465 1,081      0.78 0.50 0.58 0.62 0.00

Encouraging Summer Enrol lment 1
Enrol led in summer 7,118   10 90 712 2,317      1.30 0.49 0.50 0.51 0.00
Credits  earned 7,118   10 90 712 2,317      1.30 0.49 0.50 0.51 0.00

Encouraging Summer Enrol lment 2
Enrol led in summer 7,103   10 88 710 2,310      1.30 0.49 0.50 0.50 0.06
Credits  earned 7,103   10 88 710 2,310      1.30 0.49 0.50 0.50 0.07

Labor/Workforce
Welfare-to-Work Program

Ave. annual  earnings , quarter 1-8 69,399 59 322 1,176 3,011      0.95 0.50 0.66 0.84 0.09

Site Size Proportion Treated Est. SD of 
Site-ave. 

Effects*

*The last colum (SD of Dis t. of Si te-ave. Effects ) i s  estimated from the FIRC model .
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Table 4. Estimates of the ITT effect (𝛽#) and its standard error (𝑆𝐸&D𝛽<G) from 12 Multi-site RCTs. 
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