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Abstract

SARS-CoV-2  mortality  has  been  extensively  studied  in  relation  to  host  susceptibility.  How

sequence  variations  in  the  SARS-CoV-2  genome  affect  pathogenicity  is  poorly  understood.

Association between whole-genome sequencing (WGS) of the virus and death in patients with

SARS-CoV-2 is  one potential  method of  early  identification  of  highly  pathogenic  strains  to

target  for  containment. We  analyzed  7,548  single  stranded  RNA-genomes  of  SARS-CoV-2

patients  in  the  GISAID  database  and  associated  variants  with  mortality  using  a  logistic

regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with
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patient/host mortality, two loci, at 12,053bp and 25,088bp, achieved genome-wide significance

(p-values of 4.09e-09 and 4.41e-23, respectively). Mutations at 25,088bp occur in the S2 subunit

of the SARS-CoV-2 spike protein,  which plays a key role in viral  entry of target host cells.

Additionally, mutations at 12,053bp are within the ORF1ab gene, in a region encoding for the

protein nsp7, which is necessary to form the RNA polymerase complex responsible for viral

replication  and  transcription. Both  mutations  alter  amino  acid  coding  sequences,  potentially

imposing structural changes that could enhance viral infectivity and symptom severity, and may

be important to consider as targets for therapeutic development. Identification of these highly

significant  associations,  unlikely  to  occur  by  chance,  may  assist  with  COVID-19  early

containment of strains that are potentially highly pathogenic.
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1. Introduction

Viral mutations can cause increased virulence/pathogenicity (Long et al., 2020), both in animals

(Geoghegan and Holmes, 2018; Brault et al., 2007), and in humans (Bae et al., 2018; Nogales et

al., 2017). Especially for the SARS-CoV-2 virus, the discovery of potential links between viral

mutations and disease outcome would have important implications for COVID-19 surveillance

and containment (Lo and Jamrozy, 2020), diagnosis, prognosis and treatment development. To

identify potential links between viral mutations and mortality, we utilized the GISAID database

(Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017), which currently contains data on

7,548  COVID-19  patients  from  86  countries  for  whom metadata  is  available,  i.e.  age,  sex,

location and patient status, and whose viral genomes have been sequenced (see Table 1). We

probed each locus of the single stranded RNA of the SARS-CoV-2 virus for direct association

with host/patient  mortality.  The variable  “patient  status” indicates  if the patient  was alive or

deceased at the time the virus sample was submitted to GISAID; we use it as a surrogate for

mortality  in  our analysis.  For the analysis,  we repurposed the methodology of genome-wide

association studies (GWAS) (Manolio, 2010). This approach is widely used in human genetics

and can test thousands of genetic loci for association in datasets such as the one of GISAID.
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To identify  potential  confounding geographic factors  in  the sequencing data,  we first

conducted principal  component  analysis  of  the Jaccard similarity  matrix  (Figure 1) that  was

computed  for  the  7,548 viral  genomes  available  for  our  analysis.  We  utilized  the  Jaccard

similarity matrix because its computation does not require estimates of  the mutation frequency

for each locus in the SARS-CoV-2 genome, in contrast to other similarity matrices such as the

variance/covariance matrix (Prokopenko et al., 2016). We found that the virus genomes clustered

in distinctive branches that  correspond to the geographic regions  from where their  data  was

submitted to GISAID (Forster et al., 2020,  Hahn et al., 2020), see Figure 1. The geographical

clustering of the viral genomes can cause bias in the association analysis if unaccounted for.

Hence,  we generated  additional  eigenvector  plots  to  investigate  the  number  of  eigenvectors

needed to eliminate bias caused by such clustering. Based on visual inspection of these plots, we

selected the first  10 eigenvectors of the Jaccard matrix as covariates for the following logistic

regression analyses.

2. Methods

2.1 Data acquisition

The analysis presented in this article is based on nucleotide sequences with accession numbers

EPI_ISL_403962  to  EPI_ISL_636981,  downloaded  from  the  GISAID  database  (Elbe  and

Buckland-Merrett, 2017; Shu and McCauley, 2017) as a file in "fasta" format on 15 November

2020. Only patients with additional metadata (age, sex, and hospitalization status as plain text

comments) were selected on GISAID, resulting in 8,647 samples.

2.2 Data cleaning

We filtered the 8,647 samples for complete nucleotide sequences, and aligned them to the SARS-

CoV-2 reference sequence (published on GISAID under the accession number EPI_ISL_402124)

using MAFFT (Katoh et al., 2002).

Using the location tag in the fasta file, we grouped all samples according to the WHO

regional offices for Africa (AFRO, N=1517), for the Eastern Mediterranean (EMRO, N=730),

for Europe (EURO, N=1872), for South-East Asia (SEARO, N=1116), for the Western Pacific

(WPRO,  N=808),  as  well  as  the  Pan  American  Health  Organization  (PAHO,  N=1505).  In

particular, the countries included in each group are as follows: (1) AFRO (Algeria, South Africa,
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Gambia,  Nigeria,  Senegal,  as  well  as  Congo,  Madagascar,  Mozambique,  Tunisia,  Ghana,

Rwanda,  Cameroon);  (2)  EMRO (Egypt,  Morocco,  Kuwait,  Lebanon,  Oman,  Saudi  Arabia,

United Arab Emirates, as well as Iran, Iraq, Bahrain); (3) EURO (Austria, Belgium, Bosnia and

Herzegovina,  Bulgaria,  Croatia,  Cyprus,  Czech  Republic,  Denmark,  Faroe  Islands,  France,

Germany, Hungary, Italy, Israel, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden,

Turkey,  Kazakhstan,  as  well  as  Andorra,  Georgia,  Norway,  Ukraine,  Switzerland,  Saint

Barthelemy,  Guadeloupe,  Saint  Martin,  Mongolia,  Greece,  Finland,  Moldova,  Reunion);  (4)

PAHO (Canada, USA, Costa Rica, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru,

Venezuela,  as  well  as  Puerto  Rico,  Uruguay,  Panama,  Dominican  Republic);  (5)  SEARO

(Bangladesh, India, Indonesia, Myanmar, Nepal, Sri Lanka, Thailand); (6) WPRO (Cambodia,

Japan, Malaysia, Vietnam, Australia,  Guam, Hong Kong, China, Singapore, as well as South

Korea, Taiwan, New Zealand, Philippines).

Finally, we matched the samples to the metadata information (age, sex, clinical outcome)

available on GISAID. Filtering for those samples having complete metadata information resulted

in n=7,548 samples.

2.3 Data analysis

After alignment with MAFFT (Katoh et al., 2002), we compared all aligned sequences of length

p=29,891 entrywise to the SARS-CoV-2 reference sequence, and denoted in a matrix X with an

entry Xij=1 that sequence i deviated from the reference sequence at position j. All other entries of

X are zero.

We used the R-package "locStra" (Hahn et al., 2020c,d) to calculate the Jaccard similarity

matrix (Jaccard, 1901; Tan et al., 2005; Prokopenko et al., 2016; Schlauch et al., 2017) for the n

viral genomes based on the matrix X. The Jaccard matrix J(X) has n rows and n columns, and

each entry (i,j) is the Jaccard similarity index between the i'th and j’th SARS-CoV-2 genome in

our dataset. Computation of the first 10 eigenvectors of the Jaccard similarity matrix J(X) allows

us  to  visualize  the  geographic  clustering  of  the  viral  genomes.  We  also  guard  the  logistic

regression analysis  against  confounding by including  the  first  eigenvectors  in  the regression

analysis as covariates.

For the association analysis of the entire viral genome, we defined the response to be a

binary  indicator  for  the  clinical  outcome,  where  we  only  distinguish  between  all  those
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patients/hosts whose hospitalization status tag at enrollment into the GISAID database was listed

as “deceased” (outcome of 1) versus the remaining samples as non-deceased (outcome of 0). At

this point, no other information regarding clinical outcome is available in GISAID.

We performed  a  logistic  regression  of  the  binary  outcome  variable  for  each  of  the

p=29,891 loci on the following covariates: the column vector  X·i encoding the mismatches of

each sample at the i'th location on the SARS-CoV-2 nucleotide sequence, the patient’s age, sex,

location (WHO region), and the first 10 eigenvectors of the Jaccard matrix. The WHO region

was included as we observed in Figure 1 that the viral genomes cluster into distinct branches that

correspond to the geographic regions. The logistic regression was carried out in R using the

default  “glm”  command,  where  the  parameter  "family”  was  set  to

“family=binomial(link="logit")”.  We  tested  the  i'th  locus/location  of  the  viral  genome  for

association with mortality by testing whether the regression coefficient for column X ·i is equal to

zero. We controlled for multiple tests using the Bonferroni correction at an uncorrected threshold

of 0.05, resulting in the corrected threshold of 0.05/29,891=1.67e-06.

Finally, we also perform an analysis with a matched dataset. For this, we match each

sample in GISAID that is deceased at submission to the closest non-deceased one, measured in

Euclidean distance in the eigenvector space of the Jaccard-matrix (Figure 1). When running the

logistic regression on the matched dataset,  we test each of the p=29,891 loci on the column

vector  X·i (encoding the mismatches to the reference genome), as well as the patient’s age and

sex only.

3. Results

After  testing each locus (presence/absence  of mutation)  of the viral  genome individually for

association  with  the  status  indicator  variable  (deceased/non-deceased)  of  the  host/patient  at

submission  to  GISAID,  two  loci  of  the  SARS-CoV-2 genome  achieved  genome-wide

significance: one at position 12,053bp with p-value 4.09e-09, and one at 25,088bp with p-value

4.41e-23 (Table 2).

To investigate the robustness of the highly significant association signals, we examined

the dataset at the individual patient and locus level. Our findings were enabled by two features

specific to the data: 1.) the Brazilian centers enrolled much larger numbers of deceased patients

than the other centers world-wide. At enrollment, 44.7% of the Brazilian patients were deceased
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in contrast to only 9.6% in the entire dataset. 2.) We also noticed that all genomes that carry at

least  one of  the  mutations  either  at  12,053bp or  25,088bp are  located  predominantly  in  the

branch of the eigenvector  plot  (see Figure 1)  that  corresponds to  the PAHO/South America

region.

We conducted two different types of sensitivity analyses to minimize the chances that the

observed associations are caused by confounding/GISAID dataset composition (Table 2): 1. Our

data set was restricted to genomes that were matched based proximity in the eigenvector plots

(see the Methods section for details), called “matching” in Table 2. 2. As further examination of

the deceased indictor variable revealed that all “deceased” carrier genomes came from Brazil,

our second sensitivity analysis was restricted to genomes that were submitted from the PAHO

region  and  Brazil,  respectively.  In  both  analyses,  25,088bp  maintained  significance  at

0.05/29,891=1.67e-06, and 12,053bp stayed borderline significant. For both loci, the effect size

estimates of the mutations showed risk increases for mortality of a factor of 3.5-7 for carriers of a

mutation at 12,053bp, and a factor of 5-16 for carriers of a mutation at 25,088 (Table 2).

To summarize, all results of the secondary analyses (Table 2) support the genome-wide

significant association between the mutation 25,088bp and mortality. The locus at 12,053bp did

not formally achieve genome-wide significance in the secondary analyses (when matching and

restricting the analysis to Brazil only), but nonetheless remains a viable candidate locus. The

large effect estimates for both mutations (Table 2) are substantial in support of the associations.

Since the criteria for selection into the study likely varies by country, and may be related to the

deceased  indicator,  the  odds  ratio  estimate  from  the  Brazil  sample  alone  may  be  most

interpretable. Among the samples from Brazil, 18.2% of the patients whose viral genome did not

carry any mutation at either loci were deceased at enrollment, compared with 82.4% for patients

whose viral  genomes carried the mutation at  25,088bp only, and 82.6% for those carrying a

mutation at both 12,053bp and 25,088bp.

Given the large effect estimates for mutations in all analyses (Table 2), it is difficult to

imagine an unaccounted confounding mechanism that would affect mutations at just two out of

almost thirty-thousand loci and that would be strong enough to cause such profound association

signals, as the ones we observed in our analysis. Table 1 also provides a regional breakdown of

the “deceased-at-enrollment” rates and the mutation frequencies for both loci. The rarity of the
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mutations outside of Brazil means that there is virtually no power to detect any association (if

they exist).

4. Discussion

Single mutations in viruses can confer enhanced virulence associated with patient mortality (Bae

et al.,  2018; Brault  et  al.,  2007).  In our analysis  of SARS-CoV-2, the mutation at  25,088bp

occurs in the spike glycoprotein, which mediates viral attachment and cellular entry. The spike

protein consists of two functional subunits: S1, which contains the receptor-binding domain, and

S2,  which  contains  the  machinery  needed  to  fuse  the  viral  membrane  to  the  host  cellular

membrane. The mutation at 25,088bp is in the S2 subunit, and specifically occurs within the S2’

site, which is cleaved by host proteases to activate membrane fusion (Figure 2). In many viruses,

membrane fusion is activated by proteolytic cleavage, an event which has been closely linked to

infectivity—for instance, a  multibasic cleavage site is a signature of highly pathogenic viruses

including avian influenza (Walls et al., 2020). In coronaviruses, membrane fusion is known to

depend on proteolytic cleavage at multiple sites, including the S1/S2 site, located at the interface

between the S1 and S2 domains, and the S2’ site located within the S2 domain. These cleavage

events can impact infection—in fact, a distinct furin cleavage site present in the SARS-CoV-2

S1/S2 site is not found in SARS-CoV (Vankadari, 2020), and it is thought to increase infectivity

through enhanced membrane fusion activity (Walls  et  al.,  2020; Vankadari,  2020; Xia et  al.,

2020). Consequently, mutations at these sites can alter virulence—for instance, a recent study

reported that mutations disrupting the multibasic nature of the S1/S2 site affect SARS-CoV-2

membrane fusion and entry into human lung cells (Hoffmann et al., 2020). Several studies have

also found that SARS-CoV mutants with an added furin recognition site at S2’ had increased

membrane  fusion  activity  (Belouzard  et  al.,  2009;  Watanabe  et  al.,  2008).  While  enhanced

infectivity does not always cause a higher fatality rate, more infectious viruses can lead to a

higher viral load, which can impact symptom severity and mortality (Pujadas et al., 2020).

All  carriers of a mutation at 25,088bp  exhibit  a G to T missense mutation (Table 3),

which changes the encoded amino acid from valine to phenylalanine. Compared to the branched-

chain structure of valine, phenylalanine has a bulkier aromatic structure. Such a substitution may

impose  local  structural  constraints,  stabilize  particular  secondary  structures  (Makwana  and

Mahalakshmi,  2015),  or  introduce  specific  interactions  which  lead  to  preferential  binding.
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Therefore, a mutation in the S2’ domain which promotes proteolytic cleavage could theoretically

enhance viral  infectivity  (Figure 2)  and consequently,  patient  mortality.  While  many current

therapies primarily target the receptor binding domain within the S1 subunit of the SARS-CoV-2

spike protein, our findings suggest that the S2 domain may be an important additional target for

therapeutic development.

The mutation at 12,053bp occurs within the ORF1ab gene, which expresses a polyprotein

comprised  of  16  nonstructural  proteins  (Yoshimoto,  2020).  Specifically,  12,053bp occurs  in

NSP7, which dimerizes with NSP8 to form a heterodimer that complexes with NSP12, ultimately

forming  the  RNA  polymerase  complex  essential  for  genome  replication  and  transcription.

Mutations  causing  enhanced  viral  polymerase  activity  have  been  linked  to  increased

pathogenicity  of  influenza  viruses.  All  carriers  of  a  mutation  at  12,053bp exhibit  a  C to  T

missense mutation, which causes leucine to be substituted for phenylalanine (Table 3). Such a

mutation  may  confer  structural  rigidity  which  could  potentially  alter  interactions  with  other

components of replication and transcription machinery, but experimental analysis is needed to

test these hypotheses.

Collectively,  these results suggest that genetic variation in the viral  genome sequence

may  contribute  to  the  increased  COVID-19  mortality.  Although  biological  follow-up

experiments are needed for functional validation, early containment of highly pathogenic viral

strains during a pandemic may require early intervention when biostatistical extreme associations

are identified.
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Figure  1:  Geographic  distribution  of  7,548  SARS-CoV-2  genomes.  Genomes  are  depicted

according to their first two eigenvectors of the Jaccard matrix and colored by geographic region.

The  eigenvector  plot  shows  distinct  grouping  of  SARS-CoV-2  genomes  according  to  their

geographic origin.  Furthermore,  genomes that  carry a  mutation  at  12,053bp or 25,088bp are

depicted by triangles. The majority of those are located in a subbranch whose samples come

predominantly from Pan America.
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Figure 2: Proposed model showing how the S2 mutation may enhance proteolytic activation. The

SARS-CoV-2 spike protein is colored by region (blue—S1, green—S2, magenta—S2'). The S2’

site is cleaved by host proteases, facilitating membrane fusion and viral entry into host cells. A

mutation in this region, depicted in yellow, could theoretically increase proteolytic activity and

membrane fusion, thereby causing greater infectivity.
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region #total #females #males deceased / 
non- 
deceased

%deceased mean age Mutation frequency in 
% at the following loci

12,053 25,088

entire 
dataset

7548 3313 4235 722
 / 6826

9.6 47.6 1.2 2.2

Africa 1517 954 563 2 / 1515 0.1 38.8 0.0 0.2

Eastern 
Mediterr
anean

730 180 550 131
 / 599

17.9 45.4 0.0 0.1

Europe 1872 896 976 70
 / 1802

3.7 56.0 0.1 0.0

Pan 
America
n Health 
Organiza
tion

1505 637 868 435
 / 1070

28.9 51.9 5.7 10.6

Brazil 430 223 207 192
/ 238

44.7 55.1 20.0 37.0

South-
East 
Asia

1116 367 749 83
 / 1033

7.4 45.1 0.0 0.1

Western 
Pacific

808 279 529 1 / 807 0.1 41.6 0.0 0.2

Table  1:  Characteristics  of  all  patients  in  the  GISAID  dataset  for  whom  complete  meta-

information and sequenced viral genomes were available. Total number of samples (as well as

males/females),  numbers  of  deceased/non-deceased,  rate  of  deceased  samples  at  enrollment,

mean age, and mutation frequencies for 12,053bp and 25,088bp.
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analysis sample size deceased locus p-value odds ratio

overall 7548 722 12,053 4.09e-09 6.4

25,088 4.41e-23 12.9

Matched 
analysis

1452 722 12,053 5.53e-05 3.5

25,088 4.91e-11 4.8

PAHO 1505 435 12,053 1.22e-09 7.3

25,088 3.10e-24 15.9

Brazil 430 192 12,053 2.27e-04 3.5

25,088 4.90e-13 9.2

Table 2: Sample size, number of deceased samples, as well as p-values and odds ratios from the

logistic regression on the  two  mutations: for the entire dataset, for each WHO region, and for

samples from Brazil only.

18



locus A C G T protein position primary substitution
12,053 0 7453 0 87 nsp7 71 Leu --> Phe
25,088 0 0 7331 166 Spike 1176 Val --> Phe 

Table 3: Number of genomic variants at each locus, affected protein position, and corresponding

amino acid change. Amino acid in the reference sequence in bold.
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