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Summary

T his th e s is  c o n s is ts  o f  fo u r s e lf - c o n ta in e d  e ssa y s. They a re ,  however, 

in te r r e l a t e d  in  s e v e ra l  ways. The most b a s ic  connection  i s  th a t  th ey  a re  a l l  

concerned w ith  th e  p ro p e r s to c h a s t ic  s p e c if ic a t io n  o f  a model. More s p e c i­

f i c a l l y ,  we have t r i e d  to  in te g ra te  th e  s to c h a s t ic  s p e c if ic a t io n  w ith  th e  

r e s t  o f  th e  s t r u c tu r e  by reg ard in g  th e  sy s tem a tic  p a r t  o f  th e  r e s id u a ls  as 

a d d it io n a l  ex p lan a to ry  v a r ia b le s  which happen to  be unmeasured. Then we 

must s p e c ify  how th e  observed and unobserved v a r ia b le s  a re  r e la te d  to  each

o th e r .

The m ajor p reced en t fo r  t h i s  approach i s  th e  work by Marshak and Andrews 

(1944), Mundlak (1963), and Mundlak and Hoch (1965) on th e  s p e c if ic a t io n  o f 

m icro p ro d u c tio n  fu n c tio n s . They reg ard ed  th e  re s id u a l  in  th e  p ro d u c tio n  

fu n c tio n  as made up o f  unmeasured in p u ts  such as th e ." e n tr e p e n e u r ia l  capac­

i ty "  o f  th e  f irm . Although th e se  in p u ts  a re  unknown and reg ard ed  as random 

by th e  eco n o m etric ian , th ey  may o r  may n o t be random to  th e  f irm . The an­

swer to  th a t  q u es tio n  determ ines how th e  unobservab le i s  r e la t e d  to  th e  ob­

served  fa c to rs  o f  p ro d u c tio n .

A nother connecting  th re a d  in  th e se  essays i s  an a ttem p t to  id e n t i f y  th e  

s t r u c tu r a l  r e la t io n s h ip  between an in d iv id u a l ’s wages and h is  c h a r a c te r i s t i c s .  

The r e la t io n s h ip  i s

' l i  1 * ’ 25Si  •  V i  * V  i  ■ I , . . . ,  q ,

where i s  th e  log o f  ea rn in g s  in  y ea r one, S i s  years o f  sch o o lin g , f  i s  

th e  sy s tem a tic  p a r t  o f  th e  r e s id u a l ,  r e f l e c t in g  unobserved c h a r a c te r i s t i c s ,

and V3 i s  t r a n s i to r y  income. For th e  moment we w i l l  ig n o re  th e  o th e r  observed
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c h a r a c te r i s t i c s  in  x . To com plete th e  s to c h a s t ic  s p e c if ic a t io n  we need to  

model th e  r e la t io n s h ip  between f  and -S. I t  i s  approxim ated by 

t2) S. -  x . - 6 2 * X2f .  * V2 . .

We su sp ec t th a t  i-s n o n -n e g lig ib le  because although f  i s  random to  th e  ex­

te r n a l  o b se rv e r, i t  i s  known to  th e  in d iv id u a l and forms th e  i n i t i a l  cond i­

t io n s  th a t  he faces  in  d ec id in g  how much sch o o lin g  i s  r ig h t  fo r  him. con­

ta in s  o th e r  c h a r a c te r i s t ic s  th a t  a re  n o t re le v a n t  fo r  wage d e te rm in a tio n .

The observab le  c h a r a c te r i s t i c s  in  x m ight in c lu d e  fam ily  background 

measurements such as f a th e r ’s schoo ling  o r o ccu p atio n . We w i l l  tak e  x to  

be independent o f  f  by c o n s tru c tio n . This means r e in te rp r e t in g  f  as th e  

p a r t  o f  th e  unobserved c h a r a c te r i s t i c s  th a t  i s  n o t p re d ic ta b le  from x . Of 

course t h i s  a f f e c ts  our in te r p r e ta t io n  o f  0. For example, i f  x i s  m o th e r 's  

sch o o lin g  and f  in c lu d es  g e n e tic  a b i l i t y ,  then  th e  r e in te rp r e te d  3 r e f l e c t s  

bo th  th e  re tu rn  to  th e  m o th e r 's  p re -sch o o l investm ent in  th e  c h ild  and th e  

sp u rio u s e f f e c t  o f  m o th e r 's  ed u catio n  as a proxy fo r  th e  i n i t i a l  a b i l i t y  o f  

th e  c h i ld .  Of i f  x i s  f a th e r 's  income, then  even i f  i t  has no d i r e c t  e f f e c t  

on th e  s o n 's  e a rn in g s , our r e in te r p r e te d  6 w i l l  n o t be ze ro .

In o rd e r to  s e p a ra te  th e  s t r u c tu r a l  e f f e c ts  o f  x from th e  proxy e f f e c t s ,  

we would have to  r e l a t e  m o th e r 's  and f a th e r 's  observed c h a r a c te r i s t ic s  to  

t h e i r  unobserved c h a r a c te r i s t i c s ,  f '  and f " .  The we would allow  f '  and f"  

to  be c o r re la te d  bo th  w ith  each o th e r  ( a s s o r ta t iv e  m ating) and w ith  f .  But 

t h i s  more com plicated  model i s  i r r e le v a n t  i f  a l l  we want to  e s tim a te  i s  th e  

re tu rn  to  th e  s o n 's  sch o o lin g . For th e  y 's  a re  n o t a f fe c te d  by th e  way in  

which we d iv id e  up th e  j o i n t  e f f e c t  o f  x and f .
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A g en e ra l s e t t in g  fo r  th e se  models i s  p rov ided  in  C hapter 2. There we 

study  th e  i d e n t i f i c a t io n  o f  system s which a re  t r i a n g u la r  b u t f a i l  to  be r e ­

c u rs iv e  because th e  r e s id u a ls  from th e  d i f f e r e n t  eq u a tio n s c o n ta in  common 

om itted  v a r ia b le s .  The id e n t i f i c a t io n  problem i s  approached as th e  f i r s t  

s te p  in  an e s tim a tio n  problem . We want to  d e sc rib e  a l ik e lih o o d  fu n c tio n , 

f o r  example in  term s o f i t s  mode and some m easures o f  d is p e rs io n . But f i r s t  

we would l ik e  to  know i f  th e  maximum o f  th e  l ik e l ih o o d  corresponds to  a un­

ique v e c to r  o f  s t r u c tu r a l  p a ram ete rs . I f  n o t we have m u ltip le  p eak s, a r id g e  

o r a p le a te a u , and th e  problem i s  to  d e sc rib e  ML reg io n s  fo r  th e  s t r u c tu r a l  

p a ram e te rs .

C le a rly  th e  model in  (1 .2 ) i s  n o t i d e n t i f i e d .  A p la u s ib le  source  o f 

a d d it io n a l  in fo rm atio n  would be an o th er measurement o f  e a rn in g s :

(3) Y_. = x . ’g, + YO.S. + Y _,Y ,. + X .f. + V ..v J 2 i ~ i ~4 '24 l  '34 l i  4 l  4 i

But in  f a c t  th e  model rem ains u n id e n t i f ie d  no m a tte r  how many measurements 

o f  t h i s  k ind  we have. And t h i s  i s  t ru e  even i f  Y34 equals ze ro ; e .g .  i f  

th e re  i s  enough tim e between th e  measurements so th a t  th ey  do n o t have a 

t r a n s i to r y  p ie c e  in  common.

More prom ising would be th e  a v a i l a b i l i t y  o f  an e a r ly  (p re -sch o o l)  t e s t

sco re :

(4) T. = x . %  + X .f . + V .. .k 7 i  ~ i ~1 1 i  l i

I f  T i s  excluded from a l l  o f  th e  o th e r  e q u a tio n s , then  th e  model i s  ( in  gen­

e r a l )  i d e n t i f i e d  p rov ided  th e re  i s  one a d d it io n a l  r e s t r i c t i o n  b e s id e s  th o se  

im p lied  by th e  t r ia n g u la r  s t r u c tu r e .  But i f  th e re  a re  no o th e r  r e s t r i c t i o n s  

( i . e .  /  0 ) ,  then  th e  ML e s tim a te  i s  a re g io n . I t  tu rn s  ou t th a t  we can
, i 2 , 2 ,un iq u ely  so lv e  fo r  th e  o th e r  param eters once we know p = 1 -  a /o ^  , th e
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r e l i a b i l i t y  o f  T. The ML reg io n  fo r  th e  o th e r  param eters i s  g en e ra ted  by 
2

th e  fo llow ing  ML in te r v a l  f o r  p : 0 < p < I C q v  Y— — •
A hard  q u es tio n  in  t h i s  model i s  w hether th e  com bination o f  om itted  

c h a r a c te r i s t ic s  th a t  t i e s  to g e th e r  th e  income and schoo ling  r e s id u a ls  i s  th e  

same com bination th a t  connects th e  sch o o lin g  and t e s t  r e s id u a ls .  There i s  a 

s tra ig h tfo rw a rd  answer under a narrow measurement e r ro r  i n te r p r e ta t io n  o f  f .  

Then v. i s  in te rp r e te d  as a t e s t - r e t e s t  e r ro r  th a t  could in  p r in c ip le  be e l ­

im inated  by r e p l ic a t in g  th e  t e s t .  So i t  i s  reaso n ab le  to  assume th a t  i s  

independent o f  ev e ry th in g  e ls e  and th e re  i s  c le a r ly  ju s t .o n e  f ,  namely th e  

sy s tem a tic  p a r t  o f  th e  t e s t  (th e  " tr u e  sco re") t h a t  i s  n o t cap tu red  by x 'f k .

There i s ,  however, an a l t e r n a t iv e  more g en e ra l in te r p r e ta t io n  o f  f .

I t  i s  th a t  IQ t e s t s  a re  designed  to  p r e d ic t  academic perform ance and need 

no t cap tu re  (o r a p p ro p r ia te ly  w eight) th e  s e t  o f  c h a r a c te r i s t ic s  re le v a n t  

fo r  economic su cc ess . This su g g es ts  having two d i s t i n c t  b u t c o r re la te d  un­

o b se rv ab le s , f  and f2» f j  r e f l e c t s  th e  w eigh ting  o f  th e  om itted  c h a ra c te r ­

i s t i c s  re le v a n t  fo r  p re d ic t in g  economic su ccess and f2 r e f l e c t s  th e  w eig h t­

ing  a p p ro p ria te  fo r  s c h o la s t ic  achievem ent. Then f .  i s  excluded from th e  S 

eq u a tio n , f2 i s  excluded from th e  Y eq u a tio n s , and n e i th e r  i s  excluded from 

th e  T eq u a tio n . Both o f  th e se  in te r p r e ta t io n s  o f  f  are  pursued  in  our em pir 

i c a l  a p p lic a tio n  in  C hapter 4. I t  i s  based on th e  1964 CPS-NORC v e te r a n 's  

d a ta ,  which has p re v io u s ly  been s tu d ie d  by G r i l ic h e s  and Mason (1972) and 

Duncan (1968), among o th e rs .

So one source o f  id e n t i f i c a t i o n  i s  th e  a v a i l a b i l i t y  o f  a d d it io n a l  r e l a ­

t io n s h ip s  which c o n ta in  th e  om itted  c h a r a c te r i s t i c s .  A r e la te d  sou rce  i s  

an a p p ro p ria te  grouping d ev ice . The use o f  grouping methods in  e r r o r s - in -  

v a r ia b le s  co n tex ts  goes back to  Wald (1940) and to  th e  em p iric a l work o f
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Friedman (1957) and E isner (1958). One novelty  o f our approach is  th a t  the

unobservable need no t be constan t w ith in  th e  group. For example, l e t

► .2iJ(5) S. . = x! + A~a 2 :

Yl i j = * i j* 3 * 'f23Si; . + + A,a1 3 :

Y2 ij = ^ 4 * Y24Si;• + Y ,„Y ,. . + A.a1 ’34 l i j  4 :

3 ij
i = i » . • .q 
j = i , . . . p

where th e  su b sc rip ts  r e f e r  to  th e  j t h  in d iv id u a l in  the  i t h  group. This 

grouping w il l  buy us something i f  the  system atic  p a r t  o f th e  re s id u a ls  

(a^ .)  has a group s t ru c tu re  w hile th e  equation  s p e c if ic  e f f e c ts  do

n o t. Regarding the  a^ . as a s e t  o f pq "nuisance" param eters makes i t  c le a r  

th a t  any p r io r  in form ation  we can apply to  them w il l  be very  u s e fu l. I t  

seems reasonab le to  use the  fo llow ing re p re se n ta tio n  fo r  our p r io r  a^.=f^+g^ 

w ith f^ randomly d is t r ib u te d  across groups and th e  g^. randomly d is t r ib u te d  

w ith in  groups. So we are  connecting th e  re s id u a ls  from th e  d i f f e r e n t  equa­

tio n s  v ia  a common system atic  fa c to r  which has a variance components s t r u c ­

tu re  o f the s o r t  used by B a le s tra  and Nerlove (1966).

We could , o f course , regard  each member o f a group as a sep a ra te  equa­

tio n  and re tu rn  to  our e a r l i e r  framework w ith p fa c to rs  wich are  them selves 

c o r re la te d  v ia  th e i r  dependence on one common fa c to r .  But th e  re p lic a t io n  

case i s  s u f f ic ie n t ly  im portant th a t  we have devoted Chapter 3 to  developing 

i t  in  some g e n e ra l i ty .  For example, i t  i s  no longer necessary  to  have an 

equation such as T which con ta ins th e  unobservable bu t excludes S. In f a c t

(5) i s  id e n t i f ie d  provided th e re  i s  one r e s t r i c t io n  in  ad d itio n  to  those 

im plied by th e  t r ia n g u la r  s t ru c tu re .
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This i s  s im ila r  to  th e  id e n t i f i c a t i o n  co n d itio n  fo r  th e  model which 

has an e a r ly  t e s t  sco re  b u t no r e p l i c a t io n .  In  f a c t  a com parison o f  Theorem 

4 in  C hapter 2 w ith  Theorem 1 in  C hapter 3 shows th a t  th e  i d e n t i f i c a t i o n  p ro ­

blems in  th e  two models a re  id e n t i c a l .  So in  th e  u n id e n t i f ie d  case we again
2 2 2.have a sim ple d e s c r ip tio n  o f  th e  ML re g io n . Now A = / ( a ^  + o ) i s  th e

key p aram eter. Given A th e  reduced form can be u n iquely  so lved  fo r  th e  o th e r  

s t r u c tu r a l  p a ram ete rs . Then th e  ML reg io n  i s  g en e ra ted  by th e  fo llo w in g  ML 

in te r v a l  fo r  A : 0 < A < T where T = (ip - —) / ( l  - —) and ip i s  th e  la rg e s t  

squared  can o n ica l c o r r e la t io n  o f th e  endogenous v a r ia b le ?  w ith  a s e t  o f  group 

in d ic a to r  dummy v a r ia b le s  ( I f  th e re  a re  x ’ s th en  th e  endogenous v a r ia b le s  a re

rep laced  by an a p p ro p ria te  s e t  o f  r e s id u a ls ) .  I f  th e re  i s  no group s t r u c tu r e
2 , . then  ip i s  1 /p . T i s  th e  f r a c t io n  o f  th e  unexp lained  v a r ia n c e  which i s  acc­

ounted fo r  by th e  group s t r u c tu r e .

In  our em p iric a l a p p l ic a tio n  o f th e  n o n - re p lic a t io n  models we a re  ab le  

to  reduce some o f  th e  ML problem s to  s tan d a rd  LIML c a lc u la t io n s  o r  to  H annan's 

(1967) ex ten s io n  o f  LIML. In o th e r  v e rs io n s  o f th e  model th e  l ik e lih o o d  func­

t io n  i s  r e l a t i v e ly  in t r a c ta b le  and we have fo llow es Jb reskog and G oldgerger 

(1973) in  adap ting  a num erical m in im iza tion  program by JtJreskog (1970) to  our 

problem s. But we show in  C hapter 3 th a t  co n s id e rab le  a n a ly t ic  c o n c e n tra tio n  

o f  th e  l ik e lih o o d  fu n c tio n  i s  p o s s ib le  in  th e  r e p l ic a t io n  m odels. Some o f 

our a lg o rith m s can be in te rp r e te d  as a can o n ica l c o r r e la t io n  p ro ced u re , o th e rs  

as c o n s tru c tin g  a proxy fo r  th e  unobservab le and in c lu d in g  i t  in  a re g re s s io n . 

We show how our p rocedures g e n e ra liz e  th e  more f a m il ia r  s in g le  eq u a tio n  v a r ­

ian ce  components p o o ling  o f  th e  w ith in  and between group in fo rm a tio n . In 

a d d itio n  we d e sc rib e  th e  com putational and in te r p r e ta t io n a l  d if fe re n c e s  in  

a f ix e d  vs a random e f f e c ts  tre a tm e n t o f  th e  uno b serv ab le .
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In C hapter 5 we p re se n t an a p p lic a tio n  o f  th e se  tech n iq u e s , u sin g  d a ta  

on b ro th e rs  to  c o n tro l  n o t on ly  fo r  between fam ily  p a re n ta l  background d i f f ­

erences b u t a lso  fo r  in d iv id u a l w ith in  fam ily  d if fe re n c e s  which may be c o r r ­

e la te d  w ith  ach ieved  sch o o lin g  le v e ls  l a t e r  on. We a lso  make some a ttem pts 

to  ex p lo re  th e  s e n s i t i v i t y  o f  th e  r e s u l t s  to  th e  one f a c to r  assum ption , ob­

ta in in g  ML reg io n s  in  th e .tw o  f a c to r  c a se .

The common focus o f  our examples and a p p lic a tio n s  on one em p iric a l 

problem has th e  advantage o f  p ro v id in g  th e se  essays w ith some a d d it io n a l  

u n ity . But i t  has th e  d isad v an tag e  o f su g g e s tin g , I b e lie v e  in c o r r e c t ly  

th a t  our approach i s  l im ite d  to  th e  s to c h a s t ic  s p e c if ic a t io n  o f  human cap­

i t a l  m odels. So our concluding ch a p te r , in  a d d it io n  to  making connections 

to  th e  l i t e r a t u r e  and su g g es tin g  e x te n s io n s , w i l l  sk e tch  an a p p l ic a tio n  to  

a combined t im e -s e r ie s  c ro s s - s e c t io n  a n a ly s is  o f  in d iv id u a l firm  p ro d u c tio n  

and f a c to r  demand r e la t io n s .  Thus th e  co n c lu sio n  w il l  l in k  back to  th e  m ajor

p reced en t fo r  our approach.
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Chapter 1

In tro d u c tio n

This th e s is  co n s is ts  o f fou r se lf-c o n ta in e d  essay s. They a re , however, 

in te r r e la te d  in  sev e ra l ways. The most b a s ic  connection i s  th a t  they are 

a l l  concerned w ith the  proper s to c h a s tic  s p e c if ic a t io n  o f a model. More 

s p e c if ic a l ly ,  we have t r ie d  to  in te g ra te  the s to c h a s tic  s p e c if ic a t io n  w ith 

the r e s t  o f the  s tru c tu re  by regarding the  system atic  p a r t  o f the re s id u a ls  

as ad d itio n a l explanatory  v a r ia b le s  which happen to  be unmeasured. Then we 

must sp ec ify  how the  observed and unobserved v a r ia b le s  are  re la te d  to  each 

o th e r .

The major precedent fo r  th is  approach is  th e  work by Marshak and And­

rews (1944), Mundlak (1963), and Mundlak and Hoch (1965) on the s p e c if ic a ­

tio n  o f micro production fu n c tio n s . They regarded the  re s id u a l in  the  pro­

duction  function  as made up o f unmeasured in pu ts  such as the ’’en trep ren eu r­

i a l  cap ac ity ” o f the  firm . Although th ese  in pu ts  a re  unknown and regarded 

as random by the  econom etrician , they may or may no t be random to  the  firm . 

The answer to  th a t  question  determ ines how the  unobservable i s  r e la te d  to  

the  observed fa c to rs  o f p roduction . For example, firm  e f fe c ts  rep resen tin g  

unmeasured fix ed  in p u ts  a re  l ik e ly  to  be taken in to  account by the e n tre ­

preneur in  making h is  fa c to r  demand d ec is io n s . The firm s w ith more o f the 

fixed  in pu ts  (under decreasing  re tu rn s  to  th e  v a r ia b le  fa c to rs )  use more 

o f th e  v a r ia b le  in p u ts , and so p a r t  o f  the  production function  re s id u a l i s  

tran sm itte d  to  the  fa c to r  demand equations.

The general model th a t  we work w ith i s  

(1) y T  + x »B » f  ’A + V , i = l , . . . , q ,

where y. i s  an m x 1 v ec to r o f endogenous v a r ia b le s , x^ i s  an n x 1 vec to r 

o f exogenous v a r ia b le s ,  T i s  an upper tr ia n g u la r  m atrix  o f param eters w ith
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ones on th e  d iag o n a l, B i s  a param eter m a trix , and th e re  a re  q o b se rv a tio n s . 

We have examined th e  id e n t i f i c a t io n  and e s tim a tio n  o f  th i s  model and have 

ap p lied  i t  in  two em p irica l s tu d ie s  o f  th e  s t r u c tu r a l  r e la t io n s h ip  between 

an in d iv id u a l’s wages and h is  c h a r a c te r i s t ic s .

The re s id u a ls  in  (1 .1 ) a re  assumed to  be independent ac ro ss o b serv a tio n s 

I f  they  were a lso  independent ac ro ss  equa tions then  th e  model would be re c u r­

s iv e  and re a d i ly  i d e n t i f i a b le .  C onversely , i f  th e  re s id u a ls  were f r e e ly  

c o r re la te d  ac ro ss  eq u a tio n s then  th e  s tan d ard  Cowles Commission r e s u l t s  would 

apply . Our i n t e r e s t  i s  in  th e  in te rm ed ia te  cases where some b u t n o t a l l  o f 

the  id e n t i f i c a t io n  comes from covariance r e s t r i c t io n s  on th e  r e s id u a ls .  They 

a re  assumed to  have a f a c to r  a n a ly t ic  s t ru c tu r e  where i s  a v e c to r  o f  l a ­

te n t  v a r ia b le s  and A i s  a m atrix  o f c o e f f ic ie n ts  ( f a c to r  lo a d in g s ) . The un­

observab le  f^  a re  d i s t r ib u te d  as a m u ltiv a r ia te  random sam ple, v. i s  a vec­

to r  o f  eq u a tio n  s p e c if ic  e f f e c ts  which a re  d i s t r ib u te d  independen tly  o f  f  as

2 2a random sample w ith  covariance m atrix  U = d iag  {a. . . . . .  a  }.* l m
This model i s  u se fu l in  a wide v a r ie ty  o f  m icro-econom etric a p p lic a tio n s  

Examples in c lu d e  s tu d ie s  o f  s o c ia l  m o b ility  and th e  determ inan ts  o f  so c io ­

economic achievem ent. The t r ia n g u la r  s t r u c tu r e  a r is e s  from making measure­

ments on an in d iv id u a l’s c h a r a c te r i s t ic s  a t  a p a r t i c u la r  tim e. Then the  

measured v a r ia b le  becomes a c h a r a c te r i s t ic  which can determ ine subsequent 

measurements, x and f  a re  a s e t  o f  c h a r a c te r i s t ic s  which p o te n t ia l ly  a f f ­

e c t  a l l  subsequent o b se rv a tio n s . The d i s t in c t io n  between them i s  th a t  f  

i s  unobservab le . The assumed independence o f  x and f  sim ply means th a t  we 

in te r p r e t  f  to  be th e  p a r t  o f  th e  unobservable c h a r a c te r i s t ic s  th a t  i s  no t 

p re d ic ta b le  from x . This o f  course a f f e c ts  our in te r p r e ta t io n  o f  B and 

l im its  th e  r e s t r i c t io n s  we can impose on B. For example, x^ may have no
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e f f e c t  on y, i f  a l l  o th e r  re le v a n t c h a r a c te r i s t ic s  a re  in c lu d ed . But i f  

th e  p a r t i a l  c o r re la t io n  i s  non-zero  ( p a r t ia l l in g  on th e  o th e r  inc luded  x 's ) ,  

then  w ith  our in te r p r e ta t io n  o f  f  we cannot exclude x 1 from th a t  eq u a tio n .

T, however, i s  u n a ffec te d  by th e  way in  which we d iv id e  up th e  j o in t  e f f e c t

o f  x and f .

The id e n t i f i c a t io n  problem in  t h i s  model can be approached from a t  

l e a s t  two p o in ts  o f  view. The t r a d i t io n a l  one i s  to  ask "What a re  th e  lim ­

i t s  o f  o b se rv a tio n a l in fo rm ation?"  I f  th e  reduced form param eters a re  known 

w ith  c e r ta in ty ,  what a sp e c ts  o f  th e  s t r u c tu r e  can we uncover? An a l te r n a ­

t iv e  approach, which I p r e f e r ,  i s  to  t r e a t  th e  id e n t i f i c a t io n  problem as 

one ap sec t o f  in v e s t ig a t in g  a lik e lih o o d  fu n c tio n . We ty p ic a l ly  s t a r t  by 

in v e s t ig a t in g  th e  mode and then  proceed to  examine measures o f  d isp e rs io n . 

But a lo g ic a l ly  p r io r  q u es tio n  i s  w hether th e  maximum o f  th e  l ik e lih o o d  

corresponds to  a unique v e c to r  o f  s t r u c tu r a l  pa ram ete rs . I f  n o t ,  then  we 

have m u ltip le  peaks, a r id g e , o r a p la te a u , and th e  problem i s  to  d esc rib e  

ML reg io n s fo r  th e  s t r u c tu r a l  p aram eters .

The g en e ra l trea tm en t o f  model (1) rem ains an e lu s iv e  g o a l. C hapter 

2 i s  confined  to  th e  one f a c to r  case , b u t even then  a complete i d e n t i f i c a ­

t io n  a n a ly s is  i s  no t a v a ila b le  except fo r  sp e c ia l  c a se s . We do, however, 

have some u se fu l n ecessa ry  c o n d itio n s , and in  a d d itio n  a s e t  o f  s u f f i c ie n t  

co n d itio n s  which p rov ide a c o n s tru c tiv e  method fo r  o b ta in in g  th e  s t r u c tu r a l  

param eters from th e  reduced form.

In th e  one f a c to r  case ( f . 'A = f.A* where A i s  m x 1 ) , i t  i s  c le a r  

th a t  a t  l e a s t  m r e s t r i c t io n s  a re  n ecessary  fo r  i d e n t i f i c a t io n .  For example, 

i f  a l l  o f  th e  m f a c to r  load ings a re  zero  then  th e  model i s  r e c u rs iv e . Our

f i r s t  two Theorems in  C hapter 2 p lace  co n d itio n s  on th e  way in  which zero



4

r e s t r ic t io n s  on B and T must be a llo c a te d , both across the  equations (ver­

t i c a l l y )  and across the  v a r ia b le s  (h o r iz o n ta lly ) . Theorem 1 shows th a t  fo r  

each k <_m th e re  must be a t  le a s t  k r e s t r ic t io n s  on the  l a s t  k equa tions. 

Theorem 2 shows th a t  fo r  each k < m th e re  must be a t  le a s t  k r e s t r ic t io n s ,  

each o f which excludes an x or one o f the  follow ing v a r ia b le s  from an equa­

tio n : y*, . . . ,  y^ .

The b a s ic  id ea  behind our s u f f ic ie n t  cond ition  i s  to  use a proxy fo r  

the  unobservable f  and then so lve th e  re s u lt in g  e r ro rs - in -v a r ia b le s  problem 

by find ing  a s u i ta b le  in strum ent. For consider the follow ing example:

(2j y x -  X jf •  Vj

y2 = X2f  ♦ v2

" W l  * Y23y2 * X3f  * V3 

Y4 Y24y2 * X4f  * v4

We can use y. as a proxy fo r  f  in  the  y_
X3

(3) y3 -  (y13 * ) y3 ♦ Y23y2 ♦

This r e s u lts  in  a s tandard  e r ro rs - in -v a r ia b le s  problem due to  the  "measure­

ment e r ro r"  in  y , .  I t  can be cured by using y^ as an instrum ent fo r y ^  

S im ila rly  y^ can be used as an instrum ent fo r  y^ in  th e  y^ equa tion . But 

com plications a r is e  when more than one v a r ia b le  needs an ex te rn a l in s t ru ­

ment. For then th e  in strum en tal v a r ia b le  (IV) normal equations need not 

have f u l l  rank . Also we must be ca re fu l th a t  our choice o f proxy does not 

contam inate the  c o e f f ic ie n ts  o f in t e r e s t .  For example, in  (1 .3) is  

contam inated by the use o f y. as a proxy. These problems are  d e a lt  w ith 

in  Theorem 3 by g iv ing  a s u f f ic ie n t  con d itio n  fo r  a param eter to  be estim ­

equation :
X3

- T— v.

able from the  IV eq u a tio n s.



5

Our use o f  endogenous v a r ia b le s  as in stru m en ts  i s  s im ila r  to  Hurwicz’s 

(1946) su g g estio n  to  use  lagged values o f  an e r ro r - r id d e n  v a r ia b le  as in ­

strum ents o f  a tim e s e r ie s  co n te x t. Also L iv ia tan  (1963) used p a s t  and fu ­

tu re  v a lu es  o f  consumption and income as in stru m en ts  fo r  measured income.

A s p e c ia l  case fo r  which we do have a g en era l a n a ly s is  s e ts  Y-. = 0 

fo r  k > 1. So y i s  excluded from a l l  o f  th e  o th e r  e q u a tio n s . This case 

i s  o f  s p e c ia l  i n t e r e s t  because i t  allow s us to  make a su b s ta n tiv e  d i s t in c ­

t io n  between th e  concepts o f  "measurement e r ro r"  and "unobservab le", 

y = A f  + \ \  in  (2) i s  a ty p ic a l  measurement e r ro r  eq u a tio n , p a r t ic u la r ly  

i f  we s c a le  f  so th a t  A = 1. Then we can in te r p r e t  f  as th e  "perm anent" 

o r  " sy s te m a tic "  p a r t  o f  y . .  But i f  y^ i t s e l f  appears in  some o th e r  equation  

along w ith  f ,  then  we a re  in c lu d in g  bo th  th e  measured v a r ia b le  and th e  " tru e ' 

v a r ia b le .  Now th e re  a re  cases in  which t h i s  may be re a so n ab le , e .g .  a mea­

su red  t e s t  sco re  may have a c re d e n tia l  o r c e r t i f i c a t i o n  e f f e c t  above and 

beyond th e  " tr u e  s c o re " . But in  g en e ra l i f  A ^  /  0 we w i l l  n o t want to  

reg ard  y^ as m easuring th e  unobservable f  s u b je c t to  e r ro r .

This e r ro r s - in - v a r ia b le s  s p e c ia l iz a t io n  o f  (1) i s  a s p e c ia l  case o f  th e  

G eraci and G oldberger (1971) and G eraci (1974) models in  th a t  T i s  t r ia n g u ­

l a r .  But i t  i s  more g en e ra l in  th a t  p a r t  o f  th e  id e n t i f i c a t io n  i s  coming 

from r e s t r i c t io n s  on th e  re s id u a l  covariance m a trix . G eraci and G oldberger 

assume th a t  th e  measurement e r r o r ,  i s  independent o f  ev e ry th in g  e l s e ,  

b u t they  allow  th e  o th e r  v ’s to  be f r e e ly  c o r re la te d .  So they  a re  confined 

to  using  x ’s as in stru m en ts  whereas I can p o te n t ia l ly  use y ’s as in strum en ts 

T h e ir r e s u l t s  a re  s im ila r  to  mine in  th a t  th e  id e n t i f i c a t io n  o f  th e  d i f f e r ­

e n t eq u a tio n s i s  t i e d  to g e th e r .  Theorem 4 in  ch a p te r  2 shows th a t  th e  en­

t i r e  s t r u c tu r e  i s  id e n t i f ie d  by a s in g le  zero  r e s t r i c t i o n  on T o r B provided



6

a rank cond ition  h o ld s . For then w ith y as a proxy fo r  f ,  th e re  i s  some

equation w ith an excluded v a r ia b le  th a t  can be used as an instrum ent fo r 
2 2y . This amounts to  su b tra c tin g  o f f  a 1 from a , purging y1 o f  the  mea- 

i i  y  i
surement e r ro r .  But then the  purged y^ can be used in  the o th e r equations 

as an exact proxy fo r  f .  The s u f f ic ie n t  rank cond ition  i s  th a t  the  exclu­

sion  occur in  an equation  in  which f  a c tu a lly  appears, and th a t  the  exclu­

ded v a r ia b le  appear (with a non-zero c o e f f ic ie n t)  in  an equation  contain ing  

f  preceding th e  one i t  i s  excluded from.

Another sp e c ia l fe a tu re  o f th i s  e r ro rs - in -v a r ia b le s  sp ec ia l case is  

th a t  we can give a complete answer to  both p a r ts  o f th e  id e n t i f ic a t io n  p ro­

blem. For in  ad d itio n  to  necessary  and s u f f ic ie n t  cond itions fo r  the l ik e ­

lihood function  to  have a unique maximum, we have a sim ple d e sc rip tio n  of

the  ML reg ion  in  the  u n id e n tif ie d  case. We can uniquely so lve fo r  the 
2 2o th e r param eters once we know p = 1 -  a . / a  , the  r e l i a b i l i t y  o f y ... I t  

y l
i s  shown in  Chapter 6 th a t  the  ML reg ion  fo r  the  o th er param eters i s  gener- 

2a ted  by the follow ing ML in te rv a l  fo r  p: 0 < p < R
yl* £» y2**“ *ym

We have put th i s  r e s u l t  under "E xtensions” s in ce  we are ju s t  beginning to  

develope u se fu l bounds o f th i s  s o r t .

I f  the standard  Cowles Commission model w ithout r e s t r ic t io n s  on the 

s t ru c tu ra l  re s id u a l covariance m atrix  i s  no t id e n t i f ie d ,  then ty p ic a l ly  

the ML in te rv a ls  a re  unbounded and do no t con tain  any u sefu l in fo rm ation . 

But in  our model the  use o f "u n id e n tif ie d "  i s  somewhat m islead ing . For 

we do have id e n t i f ic a t io n  in  the  sense o f a n o n - tr iv ia l  bound. The use 

o f bounds in  e r ro rs - in -v a r ia b le s  models goes back to  F risch  (1934) who 

pointed  out th a t  the ap p ro p ria te  weighted re g ress io n  could be bounded by
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th e  elem entary  re g re s s io n s . This s o l id  angle bound was proved very  la b o r­

io u s ly  by R e irso l (1945), more d i r e c t ly  by Dhondt (1960), and re c e n tly  

q u ite  e le g a n tly  by K e lle r  (1973) using  th e  s p e c tr a l  p ro p e r t ie s  o f  p o s i t iv e  

m a tr ic e s . A re la te d  bound, which can a lso  be found in  F r is c h , i s  used by 

H arberger (1953).

So one source o f  id e n t i f i c a t io n  i s  th e  a v a i l a b i l i t y  o f  a d d itio n a l r e l ­

a tio n sh ip s  which co n ta in  th e  unobservab le . A r e la te d  source i s  an appro­

p r ia te  grouping d ev ice . The use o f  grouping methods in  e r ro r s - in -v a r ia b le s  

models can be found in  Wald (1940) and in  th e  em p irica l work o f Friedman 

(1957) and E isn e r (1958). One n o v e lty  o f our approach i s  th a t  th e  unobser­

vab le  need n o t be c o n s tan t w ith in  th e  group. In  C hapter 3 we study  the  

id e n t i f i c a t io n  and e s tim a tio n  o f  th e  fo llow ing  r e p l ic a t io n  model:

(4)

where th e  s u b s c r ip ts  r e f e r  to  th e  j t h  o b se rv a tio n  in  th e  i t h  group. The 

re s id u a ls  a re  assumed to  have a m u ltiv a r ia te  v a ria n ce  components decompo­

s i t io n :  f j  i s  a v e c to r  o f  random group e f f e c ts  and J h . i s  a v e c to r  o f in ­

d iv id u a l e f f e c ts  which a re  d is t r ib u te d  independen tly  o f f .  as a random 

sample over i  and j w ith  covariance m atrix  V. A v a r ie ty  o f cases a re  con­

s id e re d . The most in te r e s t in g  id e n t i f i c a t io n  r e s u l t s  a re  f o r  th e  one fa c ­

t o r  model ( f . ’A = f .X ’ ) w ith  V = tXX* + U where U i s  a d iagonal m atrix  o f~ i ~ i~
eq u a tio n  s p e c if ic  re s id u a l  v a r ia n c e s . This case a r is e s  when we assume th a t

th e re  i s  a common l e f t  ou t v a r ia b le  a . . .  Then we in tro d u ce  a p r io r  fo r  th e  1J
a^j which has th e  fo llow ing  v arian ce  components re p re s e n ta tio n :  a ^ =  f^  +&^j>

y . . ’T + x . . ’B = f . ’A + v . . ,  i = l , . . . , q ;  j = l , . . . ,  p ,

where  th e  f^ a re  d i s t r ib u te d  as a random sample ac ro ss  groups and th e  g^^

are  a random sample w ith in  groups w ith t = a / a ^  .
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So we are tak ing  the variance components sp e c if ic a tio n  s tu d ied  by 

B a les tra  and Nerlove (1966), Wallace and Hussein (1969), Maddala (1971), 

Ncrlove (1971), and Mazodier (1971) and embedding i t  in  a la rg e r  system.

A common complaint lodged ag a in st the  random e f fe c ts  s p e c if ic a tio n  r e la t iv e  

to  a fixed  e f f e c ts  approach is  th a t  the  independence o f the random e f fe c ts  

from the  observable explanatory  v a ria b le s  is  o ften  im p lausib le . For example 

the firm e f fe c ts  in  a production function  are  u n lik e ly  to  be independent of 

the v a r ia b le  in p u ts . But p a r t  o f the variance components s p e c if ic a tio n  is  

q u ite  p la u s ib le . The random sample view o f the f .  amounts to  adding an ex­

changeable p r io r  to  a s e t  o f fixed  e f fe c ts  dummy v a r ia b le s . The p r io r  is  

exchangeable i f  i t s  form i s  unaffec ted  by permuting the  f ' s ,  so th a t  the  i  

su b sc rip t i s  ju s t  a lab e lin g  device w ith no su b stan tiv e  conten t (de F in e t t i ,  

1937). This is  o ften  ap p ro p ria te  a t  the  lev e l o f in d iv id u a ls  , fa m ilie s , or 

homogeneous firm s. S im ila rly  the g „  are  assumed to  be exchangeable w ith in  

the groups. So the  problem is  to  keep the  p ersuasive  m arginal p r io r  d i s t r i ­

bution fo r  the  a^. w ithout making im plausib le  independence assumptions about 

the io in t  d is t r ib u tio n  o f a . . and the observable v a r ia b le s .  We accomplish 

th is  by b u ild in g  in  th e  dependence by embedding a . ,  in  a sim ultaneous system.

Our p r in c ip a l r e s u l t  on the id e n t i f ic a t io n  o f th is  model i s  contained 

in  Theorems 1 and 2 in  Chapter 3. The necessary  and s u f f ic ie n t  condition  

fo r  id e n t i f ic a t io n  from zero r e s t r ic t io n s  on T o r B is  th a t  th e re  must be 

a t  le a s t  one exclusion  which occurs in  an equation th a t  con ta ins f  and fo r 

which the  excluded v a r ia b le  appears in  a preceding equation th a t  contains f .  

This i s  very s im ila r  to  th e  cond ition  in  the  e r ro rs - in -v a r ia b le s  sp ec ia l 

case o f (1) (Yiu = d fo r  k > 1 ). In fa c t  th e  id e n t i f ic a t io n  problems in  

the two models a re  form ally id e n tic a l!  The a v a i la b i l i ty  o f  re p lic a tio n
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co n v e rts  a g e n e ra l u n o b serv ab les  model in to  th e  e r r o r s - in - v a r i a b le s  s p e c ia l

c a se , w ith  i t s  much s im p le r a n a ly s is .  So n o t s u r p r i s in g ly  we a ls o  have a 
2 2 2 .com plete a n a ly s is  o f  th e  " u n id e n ti f ie d "  c a se . Now A = /(a^ + a ) i s

th e  key p a ram ete r. Given A th e  reduced form can be u n iq u e ly  so lv ed  fo r  th e

o th e r  s t r u c t u r a l  p a ram e te rs . Then th e  ML re g io n  in  g en e ra ted  by th e  fo llo w - 
2 2 1 1ing ML in te r v a l  f o r  A: 0 <_ A <_ T where T = OP - —) / ( l  -  —) and ip i s  th e  

la r g e s t  squared  can o n ica l c o r r e la t io n  o f  th e  endogenous v a r ia b le s  w ith  a 

s e t  o f  group in d ic a to r  dummy v a r ia b le s  ( i f  th e se  a re  x ’s th en  th e  endogen­

ous v a r ia b le s  a re  re p la c e d  by an a p p ro p r ia te  s e t  o f  r e s id u a ls ) .  I f  th e re
1 2is  no group s t r u c tu r e  th en  (p i s  — . So T i s  th e  f r a c t io n  o f th e  unexp lained  

v a r ia n c e  th a t  i s  accounted  fo r  by th e  group s t r u c tu r e .  I t  i s  th e  a p p ro p r ia te  

g e n e ra liz e d  R fo r  t h i s  problem .

Our work on e s tim a tio n  has m ostly  been devoted  to  ML a lg o rith m s fo r  th e  

r e p l i c a t io n  model (4 ) . For exam ple, in  th e  one f a c to r  model ( f ^ ’A = fA’ ) 

w ith  T = I (no s im u lta n e ity  problem ) and w ith  V u n r e s t r ic t e d  so t h a t  th e  

eq u a tio n  s p e c i f ic  e f f e c t s  a re  f r e e ly  c o r r e la te d ,  th e  ML e s tim a to r  o f  A con­

d i t io n a l  on B can be o b ta in ed  from a can o n ic a l c o r r e la t io n  a n a ly s is  o f  th e  

r e s id u a ls  and a s e t  o f  group in d ic a to r  dummy v a r ia b le s .  In f a c t ,  i s  i s  th e  

same can o n ic a l c o r r e la t io n  problem  th a t  r e s u l t s  from re g a rd in g  th e  f .  as a 

s e t  o f  f ix e d  e f f e c t s  dummy v a r ia b le s  which a re  s u b je c t  to  p ro p o r t io n a l i ty  

c o n s t r a in ts  a c ro ss  th e  e q u a tio n s . That i s  th e  s o r t  o f  model co n sid ered  by 

H auser and G oldberger (1971). W riting  th e  model in  s t r u c t u r a l  form w ith  

one o f  th e  y ’s as a proxy fo r  f  l e t s  us o b ta in  th e  can o n ica l c o r r e la t io n  

s o lu t io n  as an a p p l ic a t io n  o f  Hannan’s (1967) ex ten s io n  o f  LIML. This 

r a th e r  s u rp r is in g  a lg e b ra ic  i d e n t i ty  betw een th e  ML f ix e d  e f f e c ts  and ra n ­

dom e f f e c t s  e s t im a to rs  has been observed  in  th e  s im p le r  f a c to r  model w ith o u t
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th e  group s t r u c tu r e .  In  th a t  model W h ittle  (1953) found th a t  h is  f ix e d  

e f f e c t s  e s t im a to r  o f  th e  f a c to r  lo ad in g s agreed  w ith  th e  random e f f e c ts  

ML a lg o rith m  d ev ised  by Lawley (1940) (a ls o  see  th e  U ppsala Symposium, 

1953). The e s t im a tio n  o f  B, however, d i f f e r s  in  th e  two m odels. We show 

how th e  random e f f e c t s  p rocedure  g e n e ra l iz e s  th e  more f a m i l ia r  s in g le  equa­

t io n  p o o lin g  o f  w ith in  and between group in fo rm a tio n . The random e f f e c ts  

e s t im a to r  i s ,  in  an a p p ro p r ia te  m e tr ic ,  "betw een" th e  ML f ix e d  e f f e c ts  e s t ­

im ato r and th e  poo led  OLS e s t im a to r .

A nother case  in  which c o n s id e ra b le  a n a ly t ic  p ro g re ss  i s  p o s s ib le  has 

T = I (no s im u lta n e i ty ) ,  B = -r|X’ , and V u n r e s t r ic t e d .  The c o n s t r a in t  on

B a r i s e s  from p o s tu la t in g  an un o b serv ab le  h z , which depends on o b se rv ab les

(x^ J r i )  and on an un o b serv ab le  f^  th a t  i s  c o n s ta n t a c ro ss  th e  group:

h. . = x. . ’n + f . . T his s o r t  o f  model (w ith o u t th e  group s t r u c tu r e )  i s  used i j  ~ i j  ~ i  r

by ( i r i l i c h c s  and Mason (1972) and in  our own e m p ir ic a l work in  C hap ter 4.

I t  i s  a ls o  s im i la r  to  JtJreskog find G o ld b erg er’s (1973) MIMIC m odel. We 

show th a t  c o n d it io n a l  on one p aram ete r (a g e n e ra liz e d  s ig n a l -n o is e  r a t i o ) ,  

th e  ML e s t im a to r  in  t h i s  model can be o b ta in ed  a n a ly t i c a l ly  from an e ig e n ­

v a lu e  problem . So th e  a lg o rith m  reduces to  a s tra ig h tfo rw a rd  one dimen­

s io n a l  num erical m axim ization  problem . We have been more s u c c e s s fu l  than  

JtJreskog and G oldberger because  th e  r e p l i c a t io n  a llow s us to  leav e  th e  equa­

t io n  s p e c i f ic  e f f e c t s  f r e e ly  c o r re la te d  and s t i l l  have a r e s t r i c t i o n  connect 

ing th e  s lo p e s  w ith  th e  r e s id u a l  co v a rian ce  m a tr ix . A more d i r e c t  c o u n te r­

p a r t  to  t h e i r  model would ta k e  V d iag o n a l in  which case  th e  a n a ly t ic  con­

c e n tr a t io n  o f  th e  l ik e l ih o o d  would have to  be c o n d it io n a l  on V. With V un­

r e s t r i c t e d  and a f ix e d  e f f e c t s  i n t e r p r e t a t io n  o f  f ,  we would be back in  th e  

H auser and G oldberger case  and th e  com plete ML s o lu t io n  would f a l l  ou t o f  a

can o n ica l c o r r e la t io n  a n a ly s is .
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C hapters 4 and 5 a re  e m p ir ic a l s tu d ie s  o f  th e  s t r u c t u r a l  r e la t io n s h ip  

between an i n d iv id u a l 's  wages and h is  c h a r a c t e r i s t i c s .  The r e la t io n s h ip  i s

(5) Yl i  ’  i ' h  * W i  * X3f i  * VJ i ’

where i s  th e  log  o f  ea rn in g s  in  y e a r  1, S i s  y ea rs  o f  s c h o o lin g , f  i s  th e  

s y s te m a tic  p a r t  o f  th e  r e s id u a l ,  r e f l e c t i n g  unobserved c h a r a c t e r i s t i c s ,  and 

v ,  i s  t r a n s i t o r y  income. For th e  moment we w i l l  ig n o re  th e  o th e r  observed  

c h a r a c te r i s t i c s  in  x . To com plete th e  s to c h a s t ic  s p e c i f ic a t io n  we need to  

model th e  r e la t io n s h ip  betw een f  and S. I t  i s  approxim ated by

(6) S. -  x . 'g 2 O 2f .  .  v2 i  .

We su sp e c t th a t  X_ i s  n o n -n e g lig ib le  because  a lth o u g h  f  i s  random to  th e  

e x te rn a l  o b se rv e r , i t  i s  known to  th e  in d iv id u a l  and forms th e  i n i t i a l  con­

d i t io n s  th a t  he fa c e s  in  d ec id in g  how much sch o o lin g  i s  r i g h t  fo r  him. 

c o n ta in s  o th e r  c h a r a c te r i s t i c s  th a t  a re  n o t re le v a n t  f o r  wage d e te rm in a tio n .

The o b se rv ab le  c h a r a c te r i s t i c s  in  x m ight in c lu d e  fam ily  background 

m easurem ents such as f a t h e r 's  sch o o lin g  o r  o cc u p a tio n . We w i l l  tak e  x to  

be independen t o f  f  by c o n s tru c tio n .  T his means r e in te r p r e t in g  f  as th e  

p a r t  o f  th e  unobserved  c h a r a c te r i s t i c s  t h a t  i s  n o t p r e d ic ta b le  from x . Of 

cou rse  t h i s  a f f e c t s  ou r i n t e r p r e t a t io n  o f  6. For exam ple, i f  x i s  m o th e r 's  

sch o o lin g  and f  in c lu d e s  g e n e tic  a b i l i t y ,  th en  th e  r e in te r p r e te d  8 r e f l e c t s  

bo th  th e  r e tu r n  to  th e  m o th e r 's  p re -sc h o o l in v estm en t in  th e  c h i ld  and th e  

sp u rio u s  e f f e c t  o f  m o th e r 's  ed u ca tio n  as a proxy fo r  th e  i n i t i a l  a b i l i t y  o f  

th e  c h i ld .  Or i f  x i s  f a t h e r 's  income, th en  even i f  i t  has no d i r e c t  e f f e c t  

on th e  s o n 's  e a rn in g s , ou r r e in te r p r e ta te d  3 w i l l  n o t be ze ro .

In o rd e r  to  s e p a ra te  th e  s t r u c t u r a l  e f f e c t s  o f  x from th e  proxy e f f e c t s , 

we would have to  r e l a t e  m o th e r 's  and f a t h e r 's  observed  c h a r a c te r i s t i c s  to

t h e i r  unobserved c h a r a c t e r i s t i c s ,  f '  and f " .  Then we would allow  f '  and
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f ' to  be c o r r e la te d  both  w ith  each o th e r  ( a s s o r t a t iv e  m ating) and w ith  f .

But t h i s  more com plica ted  model i s  i r r e le v a n t  i f  a l l  we want to  e s tim a te  i s  

th e  re tu rn  to  th e  s o n 's  s c h o o lin g . For th e  y 's  a re  n o t a f f e c te d  by th e  way 

in  which we d iv id e  up th e  j o i n t  e f f e c t  o f  x and f .

C le a r ly  th e  model in  (5 , 6) i s  n o t i d e n t i f i e d .  A p la u s ib le  so u rce  o f  

a d d i t io n a l  in fo rm a tio n  would be an o th e r  measurement on ea rn in g s : 

t 7> V2 i ’  i i ' ? 4  * y 24Si  * W h i  * X4f i  * ■

But in  f a c t  Theorem 2 in  C hapter 2 shows th a t  th e  model rem ains u n id e n t i f ie d  

no m a tte r  how many measurem ents o f  t h i s  k in d  we have . And t h i s  i s  t r u e  even 

i f  eq u a ls  ze ro ; c .g .  i f  th e re  i s  enough tim e between th e  m easurements so 

th a t  they  do n o t have a t r a n s i t o r y  p ie c e  in  common.

More p rom ising  would be th e  a v a i l a b i l i t y  o f  an e a r ly  (p re -sc h o o l)  t e s t

sc o re :

(8) T. = x . + X .f . + V ..
v J i  ~ i 1 1 l  l i
I f  T i s  excluded  from a l l  o f  th e  o th e r  eq u a tio n s  th en  Theorem 4 o f  C hap ter 2

a p p l ie s .  I f  th e  X 's a re  n o n -zero  th en  one a d d i t io n a l  r e s t r i c t i o n  i s  re q u ire d

fo r  i d e n t i f i c a t i o n .  In  th e  absence o f  such a r e s t r i c t i o n  ( e .g .  y ^  /  0 ) ,

th e  ML e s tim a te  i s  a re g io n  g en e ra ted  by th e  fo llo w in g  ML in te r v a l  fo r  th e  

2 , 2  2r e l i a b i l i t y  o f  th e  t e s t  ( p = l - a 1 / a „ ) :  0 < p < R T „ v v 
i  l 1♦ *> 1 *2

A hard  q u e s tio n  in  t h i s  model i s  w hether th e  com bination  o f  o m itted  

c h a r a c te r i s t i c s  th a t  t i e s  to g e th e r  th e  income and sch o o lin g  r e s id u a ls  i s  th e  

same com bination th a t  connects  th e  sch o o lin g  and t e s t  r e s id u a ls .  There i s  a 

s t ra ig h tfo rw a rd  answer under a narrow  measurement e r r o r  i n t e r p r e t a t io n  o f  f .  

Then i s  in te r p r e te d  as a t e s t - r e t e s t  e r r o r  th a t  could  in  p r in c ip le  be e l ­

im in a ted  by r e p l i c a t in g  th e  t e s t .  So i t  i s  re a so n ab le  to  assume th a t  i s  

independen t o f  ev e ry th in g  e l s e  and th e re  i s  c l e a r ly  j u s t  one f ,  namely th e  

s y s te m a tic  p a r t  o f  th e  t e s t  ( th e  " t r u e  s c o re " )  th a t  i s  n o t ca p tu red  by x 'f3 ..
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There is,, however, an a l te r n a t iv e  more g en era l in te rp r e ta t io n  o f f .

I t  i s  th a t  IQ t e s t s  a re  designed  to  p re d ic t  academic perform ance and need 

no t cap tu re  (o r a p p ro p r ia te ly  w eight) th e  s e t  o f c h a r a c te r i s t ic s  re le v a n t 

fo r  economic su ccess . This suggests  having two d i s t i n c t  b u t c o r re la te d  un­

o b se rv ab les , f j  and f£ . f-  ̂ r e f l e c t s  th e  w eighting  o f  th e  om itted  c h a ra c te r­

i s t i c s  re le v a n t fo r  p re d ic tin g  economic success and f2 r e f l e c t s  th e  w eight­

ing ap p ro p ria te  fo r  s c h o la s t ic  achievem ent. Then f.. i s  excluded from the  S 

eq u a tio n , f?  i s  excluded from th e  Y eq u a tio n s , and n e ig h e r i s  excluded from 

th e  T eq u a tio n . Both o f  th e se  in te rp r e ta t io n s  o f  f  a re  pursued in  our em­

p i r i c a l  a p p lic a tio n  in  C hapter 4. I t  i s  based on th e  1964 CPS-NORC v e te r ­

a n ’s d a ta ,  which has p re v io u s ly  been s tu d ie d  by G rilic h e s  and Mason (1972) 

and Duncan (1968), among o th e rs .

Some o f  th e  ML problems in  C hapter 4 reduce to  s tan d ard  LIML c a lc u la ­

t io n s  o r to  Hannan’s (1967) ex ten sio n  o f LIML. In o th e r  v e rs io n s  o f the  

model th e  l ik e lih o o d  fu n c tio n  i s  r e l a t iv e ly  in t r a c ta b le  and we have follow ed 

Jttreskog and G oldberger (1973) in  adap ting  a num berical m in im ization  program 

by JtJreskog (1970, 1973) to  our problem s.

Our C hapter 5 a p p lic a tio n  o f  th e  r e p l ic a t io n  model in  (4) uses Gorse- 

l i n e 's  (1932) d a ta  on b ro th e rs  to  c o n tro l no t only fo r  between fam ily  p a r ­

e n ta l  background d if fe re n c e s  b u t a lso  fo r  in d iv id u a l w ith in  fam ily  d i f f e r ­

ences which may be c o r re la te d  w ith achieved schoo ling  le v e ls  l a t e r  on. The

s o r t  o f  model we use i s
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S. . 
i j

l i j

f2 i j

= . A ,a. 1 i
. + 
1 Vl i j

= y19S . . +12 l  j A„a. 2 a . + 
j V2 i j

= Y-i %S. . + 13 i j
A a. 3 3

+
•1 V3 i j

= f i  + * i j , i = 1> • • • i

(9)

a. . 
i j

where th e  s u b s c r ip ts  r e f e r  to  th e  j t h  in d iv id u a l  in  th e  i t h  fa m ily . This 

grouping  w i l l  buy us som ething i f  th e  sy s te m a tic  p a r t  o f  th e  r e s id u a ls  

(a ^ .)  has a group s t r u c tu r e  w h ile  th e  eq u a tio n  s p e c i f ic  e f f e c t s  do n o t .

T his model i s  i d e n t i f i e d  by th e  e x c lu s io n  o f  Y- from th e  eq u a tio n  

p ro v id ed  A.Ao /  0 (Theorem 1, C hap ter 3 ) .  In f a c t  i t  i s  j u s t  i d e n t i f i e d  

and th e  ML e s tim a te s  o f  th e  s t r u c t u r a l  p a ram ete rs  can be o b ta in ed  from a 

can o n ic a l c o r r e la t io n  a n a ly s is  o f  th e  reduced  form.

In ou r a c tu a l  a p p l ic a t io n  we d id  n o t have an a d d i t io n a l  o b se rv a tio n  

on income b u t we d id  have a crude m easure o f  th e  n o n -p ecu n ia ry  income o f  

th e  in d iv id u a l ’ s o cc u p a tio n . In  e i t h e r  case  an assum ption th a t  m e r its  a 

s e n s i t i v i t y  a n a ly s is  i s  th e  independence o f  and u_. A llowing them to  

be c o r r e la te d  i s  e q u iv a le n t to  l e t t i n g  depend on Y p  i . e .  n o t c o n s tr a in ­

ing y _ = 0 . So th e  s e n s i t i v i t y  a n a ly s is  i s  su p p lie d  by ou r bound th a t
2 2 2 2 A = Of / (O f  + °g ) betw een ze ro  and a g e n e ra liz e d  R based  on th e  la r g ­

e s t  can o n ic a l c o r r e la t io n  between S, Y^, Y£ and a s e t  o f  fam ily  in d ic a to r  

dummy v a r ia b le s .  The r e s u l t in g  bound i s  in  f a c t  v ery  t i g h t .

Our e m p ir ic a l work in  C hap ter 5 a ls o  pu rsu es  a two f a c to r  ex te n s io n  o f

th e  model. A lthough th e  one f a c to r  s t r u c t u r a l  model i s  j u s t  i d e n t i f i e d ,

th e  q u e s tio n  o f  how many f a c to r s  (w ith  fam ily  components) i s  t e s t a b l e ,  and 
2 _amounts to  th e  increm ent in  th e  g e n e ra liz e d  R from adding an o th e r f a c to r .  

We f in d  some ev idence f o r  a second f a c to r  b u t none fo r  a t h i r d .  However, 

even a second f a c to r  makes th e  model h ig h ly  u n id e n t i f ie d .  But a r a th e r
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n a tu ra l  s e t  o f  p r io r  r e s t r i c t io n s  i s  to  have one p u re ly  fam ily f a c to r ,  re ­

f le c t in g  p a re n ta l  background c h a r a c te r i s t ic s  and o th e r  experiences shared  

by th e  b ro th e r s ,  and a second f a c to r  w ith  bo th  a fam ily  and an in d iv id u a l 

component. These p r io r  r e s t r ic t io n s  g ive a bound which i s  in fo rm ativ e  a l ­

though n o t p a r t i c u la r ly  sharp .

As in  our C hapter 4 a p p lic a tio n , th e  hard  q u es tio n  in  th i s  model i s  

j u s t  how much s t ru c tu re  to  g ive th e  r e s id u a ls .  We do have some m ild  p r io r  

b e l ie f s  th a t  some aggreg atio n  i s  p o s s ib le ,  th a t  a few ap p ro p ria te  in d ice s  

w il l  do an adequate job o f  summarizing th e  co u n tle ss  c h a r a c te r i s t ic s  th a t  

could conceivably  be m easured. But in  models o f  th e  s iz e  we have been 

working w ith , i f  "few" i s  more than  "one" we q u ick ly  reach  a p o in t where 

th e  lik e lih o o d  i s  q u ite  d i f fu s e .  The n a tu re  o f th e  problem i s  r e la te d  to  

th e  way in  which we have been using  unobservab les. A good analogy m ight be 

a model w ith  a lagged dependent v a r ia b le  and s e r i a l  c o r r e la t io n .  Our p r i ­

mary i n t e r e s t  has been in  "c lean in g  up" th e  cro ss  equa tion  s e r i a l  c o r re la ­

t io n  so th a t  th e  t r ia n g u la r  s t ru c tu r e  w i l l  y ie ld  a t r u e ly  re c u rs iv e  system . 

Although C hapter 3 developes p ro x ies  fo r  th e  unobservable as an a id  to  th e  

in te r p r e ta t io n  o f  our a lg o rith m s, th e  main focus o f  ou r em p irica l work i s  

no t in  co n s tru c tin g  in d ic e s  o f  " a b i l i t y " .  We j u s t  want to  cap tu re  enough

o f th e  om itted  c h a r a c te r i s t ic s  to  avoid  se r io u s  b ia s  in  th e  c o e f f ic ie n ts  o f

i n t e r e s t .  As w ith s e r i a l  c o r r e la t io n ,  we j u s t  want to  c lean  i t  up as e f f i ­

c ie n t ly  as p o s s ib le ,  w ithou t focusing  on the  om itted  v a r ia b le s  th a t  produce 

i t .  Wc would l ik e  to  leave th e  form o f  th e  s e r i a l  c o r re la t io n  as an em pir­

i c a l  q u e s tio n , and th e  same i s  t ru e  o f  th e  number o f  f a c to r s .  With r ic h e r  

d a ta  s e ts  t h i s  would be p o s s ib le ,  b u t th e  degrees o f  freedom i s  th e  number
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o f  f a c to r s  and so we have had to  impose q u i te  a few p r i o r  r e s t r i c t i o n s .  To 

some e x te n t  we a re  r e ly in g  on a " h a l f  a lo a f"  j u s t i f i c a t i o n ,  hoping th a t  we 

can "sweep o u t"  th e  m ajor co n n ectio n s in  th e  r e s id u a ls .

There i s  a n o th e r r o le  fo r  u n o b serv ab les  in  econom etric  models th a t  i s  

no t touched  upon in  my a p p lie d  work. I t  would make th e  measurement o f  th e  

u nobservab le  th e  p rim ary  o b je c t iv e .  T his i s  c lo s e r  to  th e  s p i r i t  o f  G r i l -  

i c h e s ’ (1973) o b se rv a tio n  th a t  " S u b s ta n tiv e  u n o b s e rv a b le s . . . a r e  v a r ia b le s  

about which we a re  w i l l in g  to  make many more a p r i o r i  assum ptions. They 

a re  th e  c a r r i e r s  o f  some o f  th e  c o n ten t o f  ou r th e o r ie s  and we a re  w i l l in g  

to  s p e c ify  which o th e r  v a r ia b le s  a f f e c t  them and a re  a f f e c te d  by them in

tu rn " .

An example would be an a ttem p t to  c o n s tru c t  a "p u re"  p r ic e  in d ex , purged 

o f  q u a l i ty  change. In h is  re fin em en t o f  C agan 's (1965) use o f  secondhand 

p r ic e s  to  measure q u a l i ty  d i f f e r e n c e s ,  H a ll (1969, 1971) s p e c if ie d  th e  f o l l ­

owing r e la t io n s h ip :

(10) log P ..  = log P . i  + log b . . + log  D. + V ,.v 1 e i tT  6 i t  i ,  t-T  6 it  i t
where i  indexes m odels, t  i s  c a le n d a r  tim e , T i s  ag e , h = t  -  t i s  v in ta g e ,

P i s  a p r ic e  index fo r  new c a p i t a l  goods c o r re c te d  fo r  q u a l i ty  change, 

i s  a d e p re c ia t io n  in d ex , and v i s  a random d is tu rb a n c e . H a ll shows th a t  

th e  v in ta g e  e f f e c t s  can on ly  be e s tim a te d  up to  an a d d i t iv e  c o n s ta n t ,  and 

so on ly  d e p a r tu re s  from an u n id e n t i f ie d  q u a l i ty  t r e n d  a re  e s tim a b le . H all 

rem edies t h i s  by combining th e  secondhand p r ic e s  w ith  th e  hedonic h y p o th e s is , 

r e la t in g  th e  embodied te c h n ic a l  change to  changes in  th e  observed  c h a ra c te r ­

i s t i c s  o f  c a p i t a l  goods:

(11) log bh .  log  xh l  ‘  ♦ n .  log  xt a  .
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Wc would want to  c o n s id e r  in c lu d in g  unmeasured c h a r a c te r i s t i c s  to g e th e r  

w ith  an a p p ro p r ia te  grouping  d ev ice .

A p o s s i b i l i t y ,  in v e s t ig a te d  by Ohta and G r i l ic h e s  (1973), i s  to  group 

o b s e rv a tio n s  by makes o r  b ra n d s , a llo w in g  us to  p ic k  up changes in  o m itted  

c h a r a c te r i s t i c s  th a t  a re  common to  a l l  models o f  a g iven  make. An appro­

p r i a t e  p r io r  fo r  th e  f^ m ight be exchangeable ac ro ss  makes w ith  d i s t r ib u te d  

lag  type sm oothness r e s t r i c t i o n s  ac ro ss  v in ta g e s  ( e .g .  Learner, 1972 o r 

S c h i l l e r ,  1973). But th e  main p o in t  th a t  I want to  em phasize i s  th a t  th e  

p rim ary  focus would be on m easuring th e  u n o b se rv ab le .

Our conclud ing  C hap ter 6 b r i e f l y  examines some ex te n s io n s  and sugges­

t io n s  fo r  f u r th e r  re s e a rc h .  The common focus o f  ou r examples and a p p lic a ­

t io n s  on one e m p ir ic a l problem  has th e  advantage o f  p ro v id in g  th e se  essays 

w itli some a d d i t io n a l  u n i ty .  But i t  has th e  d isad v an tag e  o f  s u g g e s tin g , I 

b e l ie v e  i n c o r r e c t ly ,  t h a t  our approach i s  l im ite d  to  th e  s to c h a s t ic  s p e c i f i  

c a tio n  o f  human c a p i t a l  m odels. So we w i l l  sk e tch  an a p p l ic a t io n  to  a com­

b ined  t im e -s e r ie s  c r o s s - s e c t io n  a n a ly s is  o f  in d iv id u a l  firm  p ro d u c tio n  and 

f a c to r  demand r e l a t i o n s .  Thus th e  co n c lu s io n  w i l l  l in k  back to  th e  m ajor 

p re ced e n t fo r  ou r approach .



C hapter 2

The I d e n t i f i c a t io n  o f  T r ia n g u la r  Systems

1. In tro d u c tio n

The model we c o n s id e r  i s

(1 .1 ) y . T  + x . 'B  = f . 'A  + v . ' , i = l , . . . , q

where y. i s  an m x 1 v e c to r  o f  endogenous v a r ia b le s ,  x^ i s  an n x 1 v e c to r  

o f  exogenous v a r ia b le s ,  T i s  an upper t r i a n g u la r  m a trix  o f  p aram eters  w ith  

ones on th e  d ia g o n a l, B i s  an n x m p aram eter m a tr ix , and th e r e  a re  q o b ser 

v a t io n s .  The r e s id u a ls  a re  assumed to  be independen t a c ro ss  o b s e rv a tio n s . 

I f  th ey  were a ls o  independen t a c ro ss  e q u a tio n s  then  th e  model would be r e ­

c u rs iv e  and r e a d i ly  i d e n t i f i a b l e .  C onverse ly , i f  th e  r e s id u a ls  were f r e e ly  

c o r r e la te d  ac ro ss  eq u a tio n s  th en  th e  s ta n d a rd  Cowles Commission r e s u l t s  

would ap p ly . Our i n t e r e s t  i s  in  th e  in te rm e d ia te  cases  where some b u t n o t 

a l l  o f  th e  i d e n t i f i c a t i o n  comes from co v a rian ce  r e s t r i c t i o n s  on th e  r e s id ­

u a ls .  They a re  assumed to  have a f a c to r  a n a ly t ic  s t r u c tu r e  where f .  i s  an

N x 1 v e c to r  o f  l a t e n t  v a r ia b le s  and A i s  an N x m m a trix  o f  c o e f f ic ie n ts

( f a c to r  lo a d in g s ) .  The un o b serv ab le  f .  a re  d i s t r i b u te d  as a m u l t iv a r ia te

random sample w ith  co v a rian ce  m a trix  $ . V. i s  an m x 1 v e c to r  o f  eq u a tio n

s p e c i f ic  e f f e c t s  which a re  d i s t r ib u te d  in d ep en d en tly  o f  f .  as a random 
2 2sam ple w ith  co v a rian ce  m a trix  U = d iag  {a^ , . . . ,  } .

T his model i s  u s e fu l in  a wide v a r ie ty  o f  m icro -eco n o m etric  a p p l ic a ­

t i o n s .  Examples in c lu d e  s tu d ie s  o f  s o c ia l  m o b ili ty  and th e  d e te rm in an ts  

o f  socio-econom ic ach ievem ent. The t r i a n g u la r  s t r u c tu r e  a r is e s  from mak­

ing m easurem ents on an in d iv id u a l 's  c h a r a c te r i s t i c s  a t  a  p a r t i c u la r  tim e .



19

Then th e  v a r ia b le  becomes a c h a r a c te r i s t i c  which determ ines subsequent

measurem ents, x and f  a re  a s e t  o f  c h a r a c te r i s t ic s  which p o te n t ia l ly

a f f e c t  a l l  subsequent o b se rv a tio n s . The d i s t in c t io n  between them i s  th a t

f  i s  unobservab le . The assumed independence o f  x and f  sim ply means th a t

we in te r p r e t  f  to  be th e  p a r t  o f  th e  unobservable c h a r a c te r i s t ic s  th a t  i s

not p re d ic ta b le  from x . This o f  course a f f e c ts  our in te r p r e ta t io n  o f  B

and l im its  th e  r e s t r i c t io n s  we can impose on B. For example x . may have

no e f f e c t  on y, i f  a l l  o th e r  re le v a n t c h a r a c te r i s t ic s  a re  in c lu d ed . But k
i f  th e  p a r t i a l  c o r re la t io n  i s  non-zero  ( p a r t ia l l in g  on th e  o th e r  included  

x ’s ) ,  then  w ith  our in te rp r e ta t io n  o f  f  we cannot exclude x^ from th a t  

eq u a tio n . T, however, i s  u n a ffec te d  by th e  way in  which we d iv id e  up the  

jo in t  e f f e c t  o f  x and f .

Under n o rm ality  assum ptions (o r l im itin g  o u rse lv es  to  second o rd er 

moments), th e  d i s t r ib u t io n  o f  y c o n d itio n a l on x i s  com pletely c h a ra c te r ­

ized by th e  fo llow ing  reduced form param eters:

(1 .2 ) n = -BI*'1

E = r _1’ (A’4A + U)T_1 .

The id e n t i f i c a t io n  problem i s  to  reco v er T, B, A, $ , and U from th e  reduced 

form.

This problem can be approached from a t  l e a s t  two p o in ts  o f  view. The 

t r a d i t i o n a l  one i s  to  ask "What a re  the  l im its  o f  o b se rv a tio n a l in fo rm ation?"  

I f  th e  reduced from param eters a re  known w ith c e r ta in ty ,  what a sp e c ts  o f  the  

s t ru c tu re  can we uncover? An a l te r n a t iv e  approach, which I p r e f e r ,  i s  to  

t r e a t  th e  id e n t i f ic a t io n  problem as one a sp ec t o f in v e s t ig a t in g  a lik e lih o o d  

fu n c tio n . We ty p ic a l ly  s t a r t  by in v e s t ig a t in g  th e  mode and then  proceed to  

examine measures o f  d is p e rs io n . But a lo g ic a l ly  p r io r  q u es tio n  i s  w hether
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the maximum o f th e  lik e lih o o d  corresponds to  a unique v e c to r o f  s t r u c tu r a l  

p aram eters . I f  n o t,  then  we have m u ltip le  peaks, a r id g e  o r  a p la te a u , and 

th e  problem i s  to  d e sc rib e  ML reg io n s fo r  th e  s t r u c tu r a l  p aram eters .

The g en e ra l trea tm e n t o f  th i s  model rem ains an e lu s iv e  g o a l. I w il l  

examine th e  case in  which r e p l ic a t io n  i s  a v a ila b le  in  C hapter 3. Then i t  

i s  p o s s ib le  to  o b ta in  id e n t i f i c a t io n  co n d itio n s which are  bo th  n ecessary  

and s u f f i c ie n t .  This paper i s  confined  to  th e  one f a c to r  model. Even then  

a complete s o lu tio n  i s  n o t a v a ila b le  except fo r  s p e c ia l  c a se s . We do, how­

e v e r , have some u se fu l n ecessa ry  c o n d itio n s , and in  ad d itio n  a s e t  o f  s u f f ­

i c i e n t  co n d itio n s  which p rov ide a c o n s tru c tiv e  method fo r  o b ta in in g  the  

s t r u c tu r a l  param eters from th e  reduced form.
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I I . I d e n t i f ic a t io n

We w il l  work w ith th e  one f a c to r  v e rs io n  o f  (1 .1 ) .  So N = 1 and 

= X’ where X i s  m x 1. I f  th e re  a re  no r e s t r i c t io n s  on B, then  th e  p ro ­

blem i s  to  uncover T, X, and U from

( I I . 1) E = dd’ + V
i i  i , i i

where V = r ur , d  = r X, and we have sca le d  f  so th a t  <p = 1. Now 

i f  we knew d then  we could use G aussian e lim in a tio n  on Z - dd* to  un iquely  

o b ta in  F~ and U. Since d i s  m x 1 t h i s  c o r re c tly  suggests  th a t  we need 

in r e s t r i c t io n s  on F. The f i r s t  two theorems g ive  n ecessa ry  co n d itio n s  on 

th e  placem ent o f  th e se  r e s t r i c t i o n s .

I I . a  N ecessary C onditions

Theorem 1: I f  B i s  u n re s tr ic te d  and T is  only su b je c t  to  zero r e s t r i c ­

t io n s ,  then  id e n t i f i c a t io n  o f th e  model re q u ire s  (a t  le a s t )  one exc lusion  

in  th e  m1^ eq u a tio n , two ex c lu sio n s in  th e  l a s t  two eq u a tio n s , and in  gen­

e r a l  k ex c lu sio n s in  th e  l a s t  k equa tions fo r  k = 1 , . . . ,  m.

So we are  in s i s t in g  th a t  th e  r e s t r ic t io n s  be sp read  out o r a t  le a s t  

no t c lu s te re d  on th e  e a r l i e r  eq u a tio n s .

P roof: Let C. = F~ . C i s  upper t r i a n g u la r  w ith  ones on th e  d iagonal

and v , , i s  a fu n c tio n  o f  C . . where h < i  < k and h < j < k . Let A = Z - dd'lik i ]  — — ~ ~ ~~
= C'UC. Then by G aussian e lim in a tio n

(n-2) aG22 :::
jwhere A

h , . . .  h 
1 P

k. . . .  k 
1 P ’

i s  th e  minor

k j , . . . , k  o f  A (Gantmacher [1959]

on d . , . . . , d . .  But y, , = 0  can be i ’ 3 'hk

formed from rows h , , . . . , h  and columns 1 p

ch a p te r  I I ) .  Equation ( I I . 2) only depends 

w r i t te n  in  term s o f C . . w ith  j £  k . So
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a r e s t r i c t i o n  on th e  k eq u a tio n  g iv es  a c o n s t r a in t  th a t  on ly  in v o lv es  

d j , . . . , d ^ .  The m r e s t r i c t i o n s  on T g iv e  m such e q u a tio n s  which must be 

so lv ed  f o r  d , , . . .  ,d  . So th e r e  has to  be a t  l e a s t  one r e s t r i c t i o n  on th e  

m  ̂1 e q u a tio n . And th e re  must be a r e s t r i c t i o n  on th e  m ^  o r (m - l)^ 1 equa­

t io n s  in  o rd e r  to  c a tc h  d , .  So th e re  must be a t  l e a s t  two r e s t r i c t i o n sm-1

on th e  l a s t  two e q u a tio n s . C ontinu ing  t h i s  argument com pletes th e  p ro o f .

C o ro l la ry : A n e c e ssa ry  c o n d itio n  fo r  i d e n t i f i c a t i o n  from zero  r e s t r i c ­

t io n s  on B and T i s  th a t  k o f  th e  r e s t r i c t i o n s  must f a l l  on th e  l a s t  k equa­

t io n s  .

P ro o f : We re g a rd  x as having 

ian ce  m a trix  T. There i s  an upper 

d iag o n a l which w i l l  d ia g o n a liz e  T:

re w r i te  our model as

a m u l t iv a r ia te  d i s t r i b u t i o n  w ith  co v ar-

t r i a n g u la r  m a trix  L w ith  ones on th e  

L’TL = d iag  { ip p . . . ,  . So we can

( I I . 3) (x ' y ') L B I = (0 A')  

o r
+ (u* v ’ )

awhere u has

th e  Theorem

d iag o n a l co v a rian ce

In s te a d  o f  d we have

m a trix  and i s  independent 

/ ~ | b u t i t  i s  s t i l l  t r u e

o f  v

th a t

Now apply  

so lv in g  fo r

d^ re q u ire s  a r e s t r i c t i o n  on th e  l a s t  e q u a tio n , so lv in g  f o r  d^ re q u ir e s  a 

r e s t r i c t i o n  on one o f  th e  l a s t  two e q u a tio n s , e t c .

Theorem 1 g iv es

a l lo c a te d  a c ro ss  th e

placem ent c o n d itio n s  on th e  way th e  r e s t r i c t i o n s  a re  

e q u a tio n s . Our second r e s u l t  w i l l  c o n s tra in  th e  p la c e ­

ment o f  r e s t r i c t i o n s  r e l a t i v e  to  th e  v a r ia b le s .
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Theorem 2: I f  B i s  u n r e s t r ic t e d  th en  a n e c e ssa ry  c o n d itio n  fo r  id e n ­

t i f i c a t i o n  from zero  r e s t r i c t i o n s  on T i s  t h a t  f o r  each k < m th e re  must 

be k r e s t r i c t i o n s ,  each o f  which excludes one o f  th e  fo llo w in g  v a r ia b le s  

from an eq u a tio n : f ,  y ^ , . . . ,  y, .

P ro o f: Let G = (g^ . . .  g ^ n  ) where g j = d and g^+j /o ^  th e  i  row

o f  C = T 1. Then £ = GG’ and we have to  re co v e r G from E. We have a lre ad y

seen  th a t  a t  l e a s t  m r e s t r i c t i o n s  a re  needed to  i d e n t i f y  th e  model and so

th e  Theorem i s  t r u e  fo r  k = m. I f  f o r  k < m we were g iven  th e  c o e f f ic ie n ts  
2 2o f  y, , ym j  eq u a tio n  k + 2 th rough  m, and i f  o^+j , . . . ,  were

known, th en  we would know th e  l a s t  m-k columns o f  G; i . e .  w ith  G = (G^ G £), 

we would know G_. Then th e  problem  i s  to  o b ta in  G. from E -  G7G7 ’ . Note 

t h a t  Gj i s  u n r e s t r ic t e d  ex cep t f o r  th e  r e s t r i c t i o n s  im p lied  by th e  t r ia n g u ­

l a r i t y  o f  F. For any Gn such th a t  G1G1’ = G1G1’ , th e r e  i s  a (k + l)x (k + l)  ro ta  

t io n  R such t h a t  Gj = G.R, R’R = 1 . .  So th e r e  must be (k+l) - (K + l)(k+ 2)/2  = 

k (k + l) /2  r e s t r i c t i o n s  on G, in  o rd e r  to  p in  down th e  r o t a t i o n .  The t r ia n g u -  

l a r  s t r u c tu r e  imposes k ( k - l ) /2  r e s t r i c t i o n s  and so  we need an a d d i t io n a l  k 

r e s t r i c t i o n s  on th e  c o e f f ic ie n ts  o f  f ,  y 1, . . . ,  y , .

C o ro l la ry : A n ec essa ry  c o n d itio n  fo r  i d e n t i f i c a t i o n  from ze ro  r e s t r i c ­

t io n s  on B and T i s  th a t  f o r  each k m th e re  must be k r e s t r i c t i o n s ,  each 

o f  which exc ludes one o f  th e  fo llo w in g  v a r ia b le s  from an eq u a tio n : 

f ,  X j, . . . .  xn , y j ............yk .

P ro o f: R ew rite th e  model as in  ( I I . 3) and app ly  th e  Theorem.
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11. b S u f f ic ie n t  C o n d itio n s

The b a s ic  id ea  i s  to  use a proxy fo r  th e  u nobservab le  f  and th en  so lv e

th e  r e s u l t in g

Say we have

e r ro r s in  v a r ia b le s

( I I . 4) y l = xl f  * V1

y2 = X2f  * V2

y3 Y23y2 .  X3f  ♦ v 3

y4 = Y24y2 + X . f  + v .4 4

We can use y^ as a proxy fo r  f  in

( I I . 5) y3 = 3
X1

y l  + Y23y2 + l3 " J .  U1 •

T h is r e s u l t s  in  a s ta n d a rd  e r r o r s  in  v a r ia b le s  problem  due to  th e  ’’m easure­

ment e r ro r "  in  y . .  I t  can be cured  by u s in g  y^ as an in s tru m en t fo r  y^. 

S im ila r ly  y_ can be used  as an in s tru m en t f o r  y^ in  th e  y . e q u a tio n .

C om plica tions a r i s e  when more th an  one v a r ia b le  needs an e x te rn a l  in ­

s tru m en t. Then th e  in s tru m e n ta l  v a r ia b le  (IV) norm al eq u a tio n s  need n o t 

have f u l l  ran k . For c o n s id e r  th e  fo llo w in g  model:

( I I . 6) y l  =

y 2 =

Y13y l

Xl f  + V1 

x2f  + v2 

+ X3f  + V3

y4 = Y14y l  + Y24y2 + Y34y3 + V  + V4

y5 =

y6 =

Y25y2

Y26y2

+ X5f  + V5 

+ X6f  + V6

where we a re  t ry in g  to  id e n t i f y  y 2^ . can use  Xi as a Proxy f o r  f  

th e  y .  eq u a tio n :
X4 X4

+ / l  + Y24y2 + Y34y 3 + V4 -  V1 *( I I . 7) y4 * (Y14



25

Then and a re  c o r re la te d  w ith  v and 

fo r  them . The IV norm al eq u a tio n s  a re

so we use y^ and y ,  as in s tru m en ts

S i °53 °52 *14 ’  A4 " °54 "

* 7

°61 °63 °62 Y34 °64

°21 °23 °22 Y24 °24
*

( I I . 8) P n = p .

The f i r s t  two columns o f  P a re  p ro p o r tio n a l  to d5 l

d6

d2

and so

P i s  s in g u la r .  But th e  t h i r d  column i s

M 2
y’25

dz + °2 Y„z.6 26
d 1I 2 .

and t h i s  i s  n o t in  g e n e ra l p ro p o r tio n a l  to  th e  f i r s t  two. So y i s  an

e s tim a b le  fu n c tio n  and hence i s  i d e n t i f i a b l e .

A v a l id  c r i t i c i s m  o f  t h i s  example i s  t h a t  we could  have used y$

as a proxy fo r  f  in  th e  y^ eq u a tio n . Then on ly  y$  would have needed an 

e x te rn a l  in s tru m e n t, P would have been n o n -s in g u la r ,  and th e  problem  o f 

d e te rm in in g  th e  e s tim a b le  fu n c tio n s  would n o t have a r is e n .  But i t  i s  no t 

always p o s s ib le  to  f in d  a proxy t h a t  w i l l  avo id  th e  problem . For c o n s id e r  

th e  fo llo w in g  example:
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( n . y ) y i  =
V  + v i

y2 =

y3 = Y13y l + Y23y 2 

y4 = Y14y l  + Y24y 2

X2f  + V2

+ X3f  + V3 

+ V  + V4

y5 = Y15y l + Y25y2 + Y35y 3 + Y45y4 + V  + V5

y6 : Y26y2

y8 =

Y27y2

Y28y2

+ Xz £ + v . 6 o

* X7f  * V7

* V  * U8

We want t o  i d e n t i f y  ¥25* The o n ly  f e a s i b l e  p roxy  f o r  f  i s  y ^ ; any o th e r  

c h o ic e  would c o n ta m in a te  th e  y^ c o e f f i c i e n t .  For exam ple u s in g  y^ g iv e s

y5 = (y 15 X
r

5 y lx )y ,  ♦ (y .
x

T
5 Y-77) y-.

xr(y 35 + ) y ,  + Y„cy„ + v c -  _5 Vx. 457 4

and th e  IV e q u a tio n s  can a t  m ost i d e n t i f y  y 

th e  p roxy we have

X

25
Xr , 

Y23
X,

So w ith  y as

X,( I I .  10) y,. = (y 15 ♦ _5 ) y ,  ♦ y 9t.y 9 + y zl.y z + y ^  + v,. -  _5 v
X, 1 257 2 ' 35 ' 3 '45 4 F ? 1

1 4

E x te rn a l  in s tru m e n ts  a r e  needed  f o r  y _ , y ^ , and y ^ . The o n ly  c a n d id a te s  

a re  y  , y_ , y  . A gain we form  th e  IV e q u a tio n s  Pq = p w ith  th e  i , j  

c lem en t o f  P e q u a l to  . f o r  i= 6 , 7 , 8 , 2 and j = l ,  3 , 4 , 2 . As b e fo re  

th e  v a r i a b le s  w hich do n o t r e q u i r e  e x te r n a l  in s tru m e n ts  a r e  p u t l a s t .

Now th e  f i r s t  t h r e e  colum ns o f  P a re
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Y26
r

d6
d7 l d7 2 Y27 , I 2

00
73 ’ d3 P- 00 + Y23 a 2 Y28 ’ 4 d8 + Y24 °2  j

l d2. K . 1L L d2 .

26 
f27 

f28 !

Let r  = “Y23^Y24* Then P2 + r  P3 i s  e i t h e r  0 o r p ro p o r tio n a l  to  th e  f i r s t  

column o f  P. So P i s  s in g u la r  b u t ag a in  y o- i s  in  g e n e ra l e s tim a b le .

These id e a s  a re  s y s te m a tic a l ly  developed in  Theorem 3, b u t f i r s t  we

need some d e f in i t i o n s .

D e f in it io n  1: y^ can be used as a proxy fo r  f  in  th e  eq u a tio n  

p ro v id ed  A, /  0 and = 0.

D e f in it io n  2: L et c.^. be th e  i ,  j elem ent o f  T- . Then y . does n o t 

depend ( e i t h e r  d i r e c t l y  o r  i n d i r e c t ly )  on y^ o f c ^ .  = 0 .

thD e f in it io n  3; With y, as th e  proxy f o r  f ,  we r e w r ite  th e  k eq u a tio n  

in  i t s  proxy form :

(11 .11) yR = x- (|3k - k Bh ) ♦
h-1

E
j  = l

A,E (y .v -  k y „  ) y .  jk  v -  Tj h J ' j  
n

i f  k > h , and

i f  k < h .

k+l
E• u y-i, y- + k y, + v, -  k 3=h 1 jk  ' j  y -  7h k h

yv = X’ <A

A. l i - l  k

Xh

k-1
f y  ♦ 2 (y.

j= l jk

Xk Xk
v — Y-^y- + y^ + -  y — v.xh j=k Jh *h h k V  h

Yi h ’ yi
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thD e f in it io n  4: y . can be used as an in s tru m en t f o r  th e  k eq u a tio n

w ith  as th e  proxy p ro v id ed  y . does n o t depend on y^ o r  y ^ . Any x can

be used as an in s tru m e n t, y . i s  an e x te rn a l  in s tru m en t i f  i t  does n o t 1 ---------------- ----- —

ap p ear in  th e  proxy form o f  th e  k e q u a tio n .

D e f in it io n  5: y .^  i s  con tam inated  by th e  use  o f  y^ as a proxy in  th e

th eq u a tio n  i f  y ^  /  0. 6 .^  i s  con tam inated  i f  i  0 .

D e f in it io n  6: Let J 2 index th e  s e t  o f  v a r ia b le s  in  th e  proxy form 

which can be used as in s tru m e n ts .  The rem ain ing  v a r ia b le s  in  th e  proxy

form a re  indexed  by J ^ .  Let 1^ index th e  e x te rn a l  in s tru m e n ts  and s e t  

I = Then th e  in s tru m e n ta l  v a r ia b le  (IV) eq u a tio n s  a re  Pr) = p where

S 58 (El W  = P P111 ~12

P P~21 ~22

and P j j  = (O |j)  w ith  i  in  I* ,  j  in  J p  P^2 f a . .1 w ith  i  in  I , ,  j  in  J . .  
i j  1 2

e t c .  n c o n ta in s  th e  p aram ete rs  ( s u i ta b ly  o rd e red ) in  th e  proxy form and 

th e  ty p ic a l  elem ent o f  p i s  a .^  w ith  i  in  1^ o r I 2 »

Theorem 3 : Given a proxy y, and a s e t  o f  in s tru m e n ts  f o r  th e  k^*1 equa­

t i o n ,  th en  y.fc i s  i d e n t i f i e d  from th e  IV e q u a tio n s  Pr) = p i f  i t  i s  n o t con­

tam in a ted  and i f  e i t h e r  a) P i s  n o n -s in g u la r  o r  b) y . i s  used  as an i n s t r u
~ J

ment ( i . e .  j  e J „ )  and rank P, + rank P_ = rank  P.v J 2 ~1 ~2
P ro o f: We w i l l  ig n o re  th e  x ’s .  I t  i s  s t ra ig h tfo rw a rd  to  m odify th e

p ro o f  as in  th e  C o ro l la r ie s  to  Theorems 1 and 2 . F i r s t  i t  i s  n e c e ssa ry  to  
-1  ’ -1check t h a t  th e  IV e q u a tio n s  a re  in  f a c t  s a t i s f i e d  by Z = T (XX' + U)T 

2 2 2We w i l l  c o l l e c t  term s in  a ^ , a ^ , . . . ,  a  and examine th e  IV eq u a tio n s  term  
2 thby term . C o lle c tin g  term s in  a_  fo r  th e  i  11 IV eq u a tio n  g iv es
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di XK(dv
k-1 h-1

h Wk - £  V P  -  W h  -  £  V P  •

S ince X = F’d we have X  ̂ = d^
k-1

E Y-, d . and so  th e  c o n d itio n  reduces J k  j
j= l

to  d.X, X, = d.X, X. 1 h k 1 h k

C o lle c tin g  term s in  o t  g iv es  
k-1 h-1

c .  X, ( c ,  - E Y .,c . .) = c . X, (c .,  - E t i  h k tk  ’jk  t y  t i  k k th  j = 1 ' j h  t y

k-1 th  -1  th
c . -  E Y - i V  i s  th e  in n e r  p ro d u c t o f  th e  t  row o f  C = F and th e  ktk  . , jk  t j  ~ ~

J 4 k
column o f  T. T his i s  <$ (= one i f  t=k and zero  o th e rw is e ) .  Thus th e  con-

k hd i t io n  red u ces to  c . X, 6^ = c^.X, 6^t i  h t  t i  k t T his i s  s a t i s f i e d  i f  c. . =c, .=0 k i  h i
so t h a t  th e  in s tru m en t y. does n o t depend on o r  y, .

Thus th e  IV e q u a tio n s  a re  v a l id  r e la t io n s h ip s  co n n ectin g  th e  s t r u c ­

t u r a l  and reduced  form p a ra m e te rs . I f  th e  IV eq u a tio n s  have f u l l  rank 

th en  c le a r ly  n i s  i d e n t i f i e d .  I f ,  how ever, P i s  s in g u la r ,  then  th e  key 

to  f in d in g  th e  e s tim a b le  fu n c tio n s  i s  th e  n o n - s in g u la r i ty  o f  P«2« F°r

I’ „ i s  th e  v a r ia n c e -c o v a r ia n c e  m a trix  o f  th e  y . ’ s w ith  j  e J« . Our rank ~22 J j 2
c o n d itio n  s t a t e s  th a t  P£ = 0 im p lie s  P-Jl. = P9&o = 0 s in c e  th e  in te r s e c -  

t io n  o f  th e  column spaces o f  P^ and P£ only  c o n ta in s  0 . But P2 has f u l l  

column rank  and so  L  a 0 and u n iq u e ly  d e term in ed . This com pletes

our p ro o f .

The rank c o n d itio n  w i l l  c l e a r ly  f a i l  i f  th e re  a re  few er in s tru m en ts  than  

v a r ia b le s  in  th e  proxy form o f  th e  eq u a tio n . I t  w i l l  a ls o  f a i l  i f  one o f  

th e  in s tru m en ts  i s  an exogenous v a r ia b le  which i s  u n c o r re la te d  w ith  any o f 

th e  v a r ia b le s  ap p earin g  in  th e  proxy form. But i t  i s  n o t t r u e  t h a t  an ex­

te r n a l  in s tru m en t must be c o r r e la te d  w ith  a t  l e a s t  one o f  th e  v a r ia b le s

th a t  r e q u ire s  an e x te rn a l  in s tru m e n t. For exam ple, suppose
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(H .1 2 )  Xj = V  + V1

y2 = B12X

y3 =

+ X2f  + V2 

V l  * Y23y2 * X«f  ‘  v ’3 3

and we use y as th e  proxy to  id e n t i f y  Y23’ Then can in strum en t i t s e l f  

bu t we have to  use x to  in strum en t y^. This may seem to  be a problem 

s in c e  x and y are  u n c o rre la te d . But

12 x

X1X2
, 2 2 a12 x

i s  c le a r ly  n o n -s in g u la r as long as y~ i s  c o r re la te d  w ith  x.
thC o ro lla ry : I f  i s  id e n t i f i e d  then  we can re w rite  th e  k equation

(11.13) yk -  (yk - -  x-: a *  E . V i  * V  ♦ uk 
1=J

P =
. 2 2 

* X2 ♦ o

and apply  th e  Theorem to  id e n t i fy  th e  rem aining param ete rs . A s im ila r  r e ­

s u l t  ho lds i f  6 ., i s  id e n t i f i e d .
Jk

Proof: I t  i s  only  n ecessa ry  to  check th a t  th e  IV equa tions a re  v a l id .

But they  a re  th e  same s o r t  o f  IV equa tions th a t  were checked in  th e  Theorem

For an example o f  th e  C o ro lla ry , l e t

(11.14)

y2 =

y3 = Y23y2

y4 =

Xl f  + V1 

'  X2f  + v2

+ X3f  + V3 

y34y3 + X4f  + V4

y5 = Y15yl + Y25y2 + Y35y3 + V  + V£
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and t r y  to  id e n t i f y  Then th e  proxy must be y£ o r w ith y^ as the

e x te rn a l in s tru m en t. But y^ depends on y£ and y^ and cannot se rv e  as an 

in s tru m en t. So f i r s t  we id e n t i fy  735 an^ Y35 by l e t t in g  y^ be th e  proxy 

w ith y . as an e x te rn a l in s tru m en t. Then

( I I . i s )  y5 = y5 - y25y2 - Y3Sy3 -  v 15y1 t  V  .  v5 .

Now l e t  y . be th e  proxy:

(11.16) y5 -  Yj j / j  -  *5 y 34y3 ♦ *S y4 •  » 5 -  *5 »4 .

A4 A4 A4

Then only y^ needs an e x te rn a l in strum en t and we can use y2> Thus i s  

in  g en e ra l i d e n t i f i a b le .

I I . c A G eneral Treatm ent o f  Some S p ecia l Cases

Our f i r s t  sp e c ia l  case has Y,^ = 0 fo r  k > 1. So y^ i s  excluded from

a l l  o f  th e  o th e r  eq u a tio n s .

Theorem 4 : In (1 .1 ) w ith y ^  = 0 fo r  k > 1, a s u f f ic ie n t  co n d itio n

fo r  id e n t i f i c a t io n  i s  th a t  a s in g le  Yg t « 0 , 3 > 1 , provided  th e  fo llow ing  
2 2rank co n d itio n  h o ld s : o . > 0 ,  . . . .  a  > 0  and 

t -1  2 m
(n .K ) xt  £  Ysjx ./Oj2 f  o.

The co n d itio n  i s  a lso  n ecessa ry  i f  we confine  o u rse lv es  to  zero r e s t r i c ­

t io n s  on r.

P roof: Let C = T . Then

and we can p a r t i t i o n  Z and d in to

'a
11 ~12 d,

,~21 -2  .
, 5 -

1
.^ 2 .
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2 2w ith 3L = d„d ' + C 'V„C„ and V„ = diag  {c~ a } . d„ =77 a ol where~2 ~2~2 ~2 ~2~2 ~2 ° 2 ’ ’ m ~2 ~21
2x = 1 /d j , and so

(n.18) £2 ■ to21j 21’ * c/v2c2 .

We have to  reco v er x, T -, and from Y^ and o„i where T i s  upper t r i a n g ­

u la r  w ith ones on th e  d iag o n a l. This id e n t i f i c a t io n  problem i s  id e n t ic a l  

to  th e  one d iscu ssed  in  C hapter 3, Theorem 1. We w il l  sim ply sk e tch  the  

proof used th e re :

(Y. - xo o n "  = r  V F 1l i2  X21221 } 222222

and so given x we can u n iquely  so lve  fo r  T- and by Gaussian e lim in a tio n  

i f  V? i s  p o s i t iv e  d e f in i t e .  The n o ta tio n  i s  s im p lif ie d  i f  we re v e rse  the  

o rd e r o f  th e  eq u a tio n s so th a t  T i s  lower t r ia n g u la r .  Then th e  zero e le ­

ment i s  Yj, where h = m -  s + l , k  = m -  t +  l .  Solving fo r  and s e t t in g  

th e  r e s u l t  to  zero g ives an equation  fo r  x which can be s im p lif ie d  to  the  

fo llow ing  l in e a r  eq u a tio n :

(11.19) ° 2h ’k “ sh 'S _ lsk + KQ = 0

h k -1where * i s  th e  h , k elem ent o f  , S i s  th e  k-1 by k-1 p r in c ip a l  sub-
“ 1 i l  i  k - l  ’ • — 1m atrix  o f  Y^ , s ^  = (a . . .  a.2 ’ ) ,  i= h , k , x = k/ (1  + ko21 Y^ a 2 p  ’

Q = (c 'S _1c) (a2hk - sh 'S -1 sk) + c ^  + CbCc'S-1 ^ )  + c^Cc*^-1^ )

-  c2 '5 ~ 1Sh:)

w ith c = X- * a o1 and c co n ta in s  th e  f i r s t  k-1 elem ents o f c . The rank

co n d itio n  in  th e  Theorem ensures th a t  Q /  0. I f  i t  i s  s a t i s f i e d ,  th e  x is  
2 2 . 2id e n t i f i e d  and hence F? and V„. a.. = G j. - d^ and s c a lin g  0 ^ = 1  g ives

X1 = d l and X2 = d2*
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To in te r p r e t  th e  rank co n d itio n  we w il l  say th a t  th e  equation

i s  n o t connected to  th e  r e s t  o f  th e  s t r u c tu r e  i f  X. = 0. I f  an equation

i s  n o t connected then  i t  f a c to rs  out o f  th e  lik e lih o o d  fu n c tio n  and y i s  s
a c tu a l ly  exogenous. So our co n d itio n  says th a t  th e  ex c lu sio n  must occur 

in  a connected equation  and th a t  e i th e r  th e  excluded v a r ia b le  i s  connected 

o r  i t  appears (w ith a non-zero  c o e f f ic ie n t)  in  a connected equation  p re ­

ceding th e  one i t ' s  excluded from. We should n o te  th a t  even i f  y -X. i  0s j  j
fo r  a t  l e a s t  one j ,  i t  i s  s t i l l  p o s s ib le  fo r  the  sum in  (11.17) to  be zero . 

But th i s  p o s s ib i l i t y  i s  o f  i n t e r e s t  only in  th e  u n lik e ly  event th a t  th e re  

i s  an a p r io r i  r e s t r i c t i o n  o f  th a t  form.

C o ro lla ry  1: In (1 .1 ) w ith y .^  = 0 fo r  k > 1, a s u f f i c ie n t  co n d itio n

fo r  id e n t i f i c a t io n  i s  th a t  a s in g le  6 = 0 p rovided  th e  fo llow ing  rank
2 2co n d itio n  h o ld s : > 0 .  . . . .  a  > 0  and2 ’ * m

t-1
(11.20) X „ o , , 2 , n t  .Z. 6 . X ./o . /  0 .1 = 1 s j  j  j

P roof: Rew rite th e  model as in  ( I I . 3) and apply th e  Theorem. The

rank co n d itio n  does n o t in c lu d e  th e  c o e f f ic ie n ts  in  th e  x eq u a tio n s sin ce

X. = 0 in  th a t  case .
1

The fo rce  o f  th e  rank co n d itio n  i s  th a t  th e  ex c lu s io n  must occur in  

a connected equation  and th a t  xg must appear in  a connected equation  p re ­

ceding th e  one i t  i s  excluded from. So ex c lu sio n s in  y . w i l l  n o t id e n t i f y  

th e  s t r u c tu r e .

Our second sp e c ia l  case i s  based on imposing p ro p o r t io n a l i ty  r e s t r i c ­

t io n s  ac ro ss  th e  c o e f f ic ie n ts  o f  x and f :  B = -qX’ . This case a r is e s  when 

th e  observed and unobserved c h a r a c te r i s t ic s  a re  aggregated  in to  a s in g le

index h. = x ’q + f .  and only  a f f e c t  th e  y ’s v ia  t h e i r  e f f e c t  on h: i  ~i~ i  J 1
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yk ’  V l  * ‘  V l M W  * Xkh * ”k '

An example in  hedonic models o f  wage d e te rm in a tio n  (e .g . C hapter 4 o r  G r i l-  

ich es  and Mason, 1972) would be agg regating  an in d iv id u a l’s background ch a r­

a c t e r i s t i c s  and unobserved i n i t i a l  a b i l i t y  in to  one index o f  e a r ly  human 

c a p i ta l  which i s  then  th e  cau sa l v a r ia b le  in  determ ining  measures o f l a t e r  

achievem ent. A s im ila r  r e s t r i c t i o n  has a lso  been d iscu ssed  by JOreskog and 

G oldberger (1973).

C o ro lla ry  2: In model (1 .1 ) w ith B = -pA’ , a s u f f i c ie n t  co n d itio n

fo r  id e n t i f i c a t io n  i s  th a t  a s in g le  y = 0 p rovided  th e  fo llow ing  rank 
2 2co n d itio n  h o ld s : V = d iag  , . . . ,  O } i s  p o s i t iv e  d e f in i te  and 

t -1  ~ ?
(11.21) Z y .A ./a .  /  0t  . SI 1 1j=s ■> J J

I f  we r e s t r i c t  o u rse lv e s  to  zero  r e s t r i c t io n s  on T then th e  co n d itio n  is

a lso  n ecessa ry .

P roof: n = pd’ l e t s  us so lv e  fo r  d up to  a s ign  n o rm aliza tio n  and 

a s c a le  f a c to r  t : g = d /V r. Then

z = Tgg* + r , "1vr"1

w il l  l e t  us so lv e  fo r  T provided  a s in g le  elem ent o f  T i s  zero and the  

rank co n d itio n  h o ld s . The p ro o f i s  th e  same as in  th e  Theorem. Given 

T we o b ta in  T and V by Gaussian e lim in a tio n  on Z - Tgg’ .

The in te r p r e ta t io n  o f  th e  rank co n d itio n  i s  th e  same as in  th e  Theorem.
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I I I  An Example; The S tru c tu ra l  R e la tio n sh ip  Between Wages and C h a ra c te r is t ic s

Our example i s  based on th e  fo llow ing  se q u e n tia l  income g en e ra tin g  

m odel:

T1 = Xl f  * V1

s  = x2f  + v2

T2 “ Y23S ♦ X3f  + V3

Y1 = Y24S *  V  + V4

Y2 = Y25S + Y45Y1 + V  + V5

where T. i s  a t e s t  sco re  m easuring e a r ly  (p re -sch o o l) a b i l i t y  ( f ) , S is  

y ears  o f  sch o o lin g , T2 i s  a measure o f  p o s t-sch o o l a b i l i t y ,  which r e f l e c t s  

th e  value added o f  th e  sch o o lin g , and Y. and Y2 a re  rep ea ted  o b serv a tio n s 

on ea rn in g s .

P o te n tia l  x ’s fo r  such a model would in c lu d e  a v a r ie ty  o f  background 

v a r ia b le s  such as f a th e r ’s sch o o lin g , income, o r  fam ily  w ealth . I f  th ese  

v a r ia b le s  a re  u n re s tr ic te d  then  they  do n o t a f f e c t  th e  id e n t i f i c a t io n  and 

we w il l  su rp re ss  them. But n o te  th a t  some r e in te r p r e ta t io n  o f  th e  model 

may be n ecessary  in  o rd e r to  make th e se  v a r ia b le s  exogenous. Any n o tio n  

o f  in te rg e n e ra t io n a l  s t a t i o n a r i t y  would suggest th a t  f a th e r 's  schoo ling  

and income a re  su b je c t  to  a s im ila r  s e t  o f  eq u a tio n s , w ith an f '  fo r  

f a th e r 's  " a b i l i t y " .  Presumably f '  and f  a re  c o r re la te d ,  both  fo r  g e n e tic  

and o th e r  re aso n s . So th e  background v a r ia b le s  a re  n o t exogenous u n less  

we r e in te r p r e t  f  to  be th e  p a r t  o f  s o n 's  a b i l i t y  th a t  i s  n o t p re d ic ta b le  

from th e  f a th e r 's  c h a r a c te r i s t i c s .  This w il l  a l t e r  th e  background c o e f f ­

i c ie n ts  bu t w il l  n o t a f f e c t  th e  y 's .
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A d i r e c t  a p p lic a tio n  o f  Theorem 1 shows th a t  w ithou t an e a r ly  t e s t  

sco re  th e  model i s  n o t id e n t i f i e d .  For then  S (« y .) i s  no t excluded 

from any o f th e  o th e r  eq u a tio n s (and we are  im p lic i t ly  assuming th a t  none 

o f  th e  A 's a re  z e ro ) . Although th e  Theorem r e f e r s  to  th e  model as a whole, 

i t s  p ro o f shows th a t  none o f  th e  schoo ling  c o e f f ic ie n ts  a re  in d iv id u a lly  

i d e n t i f i e d ,  s in ce  th e  r o ta t io n  indeterm inancy w il l  confound each w ith 

A  ̂ and th e  p receding  A’s and y ’s .  Note th a t  th e  id e n t i f i c a t io n  co n d itio n  

f a i l s  even i f  excludes (e .g . i f  th e re  i s  enough tim e between th e  

measurements so th a t  they  do no t have a t r a n s i to r y  p iece  in  common). Also 

adding a d d it io n a l  income measurements o f  t h i s  k ind does n o t so lve  th e  p ro ­

blem.

But i f  th e re  i s  an e a r ly  t e s t  sco re  then  Theorem 4 a p p lie s .  The 

ex c lu sio n  o f  T2 from Y  ̂ i s  s u f f i c ie n t  fo r  id e n t i f i c a t io n  p rov ided  n e i th e r  

Ag no r A. i s  ze ro . In th e  absence o f Y£ th e  model i s  j u s t  id e n t i f ie d  and 

given ML es tim a te s  o f  II and £ we o b ta in  th e  ML e s tim a te s  o f  T, V, and B, 

by so lv in g  a s e t  o f  re c u rs iv e  l in e a r  eq u a tio n s . I f  we do have ano ther 

o b se rv a tio n  on ea rn in g s then  th e  model i s  o v e r id e n t if ie d .  C hapter 4 in d i ­

c a te s  how a program by JBreskog (1970, 1973) can be adapted to  impose the

c o n s t r a in t s .

Next assume th a t  th e re  i s  a common measurement e r ro r  in  th e  two t e s t s

so th a t  and a re  c o r re la te d .  This p a r t i c u la r  s o r t  o f  two fa c to r  model, 

w ith  th e  second f a c to r  only connecting a p a i r  o f  th e  eq u a tio n s , can be put 

in to  our one f a c to r  framework by re w rit in g  th e  T2 equa tion  as

T2 = Y13T1 + Y23S + X3 ' f  + V3
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2
w ith y13 = h (v 1v3) / o 1 and independent o f  v_. Note th a t  th e  independ­

ence o f  th e  seond f a c to r  from f  i s  sim ply a r e in te r p r e ta t io n  o f  i t .  To 

th e  e x te n t th a t  th e  second f a c to r  i s  c o r re la te d  w ith  f  i t  i s  no t a f f e c t ­

ing our e s tim a te s  o f  th e  s t r u c tu r a l  y ’s ,  although th e  A’s a re  a f fe c te d  by 

th e  r e in te r p r e ta t io n .

W ithout Y2 th e  model as a whole i s  n o t id e n t i f ie d  (s in ce  w ith y , -  = 0 

i t  i s  j u s t  id e n t i f ie d  by Theorem 4 ) . But Theorem 3 shows th a t  7^3 i s  iden-

t i f i e d . For we can use T^ as a proxy fo r f  in  th e  T2 equation

T =2 (y l3 . S ' ) T1 + W  * V3*
A '

■ •

Now use Yj and S as in stru m en ts . The rank co n d itio n  has

P = ' °14 a 24 '

_°12 °22 .

^ 2 4 X2 + \ P X1 (y24X2 * X4)X2 * y 2Aa 2

V i
, 2 2 
X2 + °2

2 • ’ •This i s  n o n -s in g u la r  i f  A^A^c^ /  0.

Our l a s t  example assumes th a t  and (and perhaps v ) a re  c o r re la te d . 

This second f a c to r  could r e f l e c t  th e  p a r t  o f  s c h o la s t ic  a b i l i t y  o r  " t e s t -  

w iseness" th a t  i s  n o t c o r re la te d  w ith  f .  Then th e  c o r re la t io n  between v . 

and can be cap tu red  by c a l l in g  S th e  f i r s t  equa tion  and re w rit in g  the 

Tj equation  (= y _ ) :
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S = X2f  ♦ v2

T1 = ^12S + Xl ’ £ + V  

2
w ith  y12 = E(v^v2) / a 2 . Now v2 i s  independent o f  v* ' and we see from

Theorem 1 th a t  th e  model i s  n o t id e n t i f ie d  s in ce  S (=y.) i s  never excluded. 

The problem p e r s i s t s  no m a tte r  how many a d d it io n a l  in d ic a to rs  we add, so 

long as they  a l l  in c lu d e  S. Allowing fo r  v to  be c o r re la te d  w ith and 

V- r a is e s  problems w ith  s tay in g  in  a one f a c to r  framework. But c le a r ly

t h i s  only makes th e  model even le s s  id e n t i f ie d .



Chapter 3

Unobservables w ith a Variance 
Components S tru c tu re

1. The General Model

Consider the  follow ing model:

(1 .1 ) y ^ ’ r  + x ^ '  B = f-J  A + , i  -  l , . . . , q  j  = 1 , . . . , P ,

where y^. i s  an m x 1 v ec to r o f  endogenous v a r ia b le s ,  x^. i s  an n x 1 vec­

to r  o f exogenous v a r ia b le s ,  T i s  an upper t r ia n g u la r  m atrix  o f param eters 

w ith ones on the  d iagonal, B is  an n x m param eter m atrix , and the su b sc rip ts  

r e f e r  to  the  j  - observation  in  the i^  group. The novelty  o f the  paper 

l i e s  in  the  s tru c tu re  o f th e  re s id u a ls .  They are  assumed to  have a m u lti­

v a r ia te  variance components decomposition: f .  i s  an N x 1 v ec to r o f group 

e f fe c ts  which are d is tr ib u te d  as a random sample w ith covariance m atrix

A is  an N x m c o e f f ic ie n t  m atrix , and v . . i s  an m x 1 v ec to r o f in d iv id u a l ~ ij
e f fe c ts  which are  d is t r ib u te d  independently  o f f .  as a random sample over 

i  and j w ith covariance m atrix  V.

Then under norm ality  assumptions (or lim itin g  ourselves to  second o rder 

moments), the  d is t r ib u tio n  o f y i s  com pletely ch a rac te rized  by the follow ing 

reduced form param eters:

(1.2) n = - BT-1
0 = (AT-1 ) ’ $ (AT-1) 

e = r_1,vr_1.

The id e n t i f ic a t io n  problem in  th is  model i s  to  recover F, B, A, $ , and V 

from the reduced form. I f  the  re s id u a ls  had no group s tru c tu re  and were

u n co rre la ted  across equations then the model would be recu rs iv e  and re a d ily
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id e n t i f ia b le .  But w ithout any covariance r e s t r ic t io n s  the  model i s  not 

id e n t i f ie d  w ithout r e s t r ic t io n s  on B and T. Our approach considers in t e r ­

mediate cases which combine r e s t r ic t io n s  on B and T w ith fa c to r  a n a ly tic  

r e s t r ic t io n s  on the  covariances. In p a r t ic u la r  we have developed the f o i l  

owing four m odels:

Model 1 ; T = I

Model 2 ; V = diag { v . , . . . , v  }

Model 3 : N = 1, A = X’ where X i s m x l ,  T = I ,  B = -pX’ where

n i s  n x 1.

Model 4 : N = 1, A = X’ , B = -riX’ , V = tXX’ + U where t. i s  a
2 2ip o s it iv e  s c a la r  and U = diag {cr̂  , . . . ,  Om } .

Our in te r e s t  in  th ese  models stems from the work by Chamberlain and

G rilich e s  (1974). They used d a ta  on b ro th ers  to  estim ate  the re tu rn  to

education in  the  presence o f an unobserved a b i l i ty  v a r ia b le . In th e i r

model the group i s  a fam ily and y could include years o f  schoo ling , t e s t

sco re s , income, occupational s ta tu s ,  e t c . ;  x could include age and fam ily

background c h a ra c te r is t ic s  such as f a th e r ’s income and schoo ling . The

re s id u a l covariances a re  generated  by a common om itted ’’a b i l i ty "  v a ria b le

w ith a variance components s tru c tu re :  a^. = f^ + g ^ ..  The r e s t r ic t io n s

on B in  models 3 and 4 a r is e  when th e  background v a ria b le s  are  combined

w ith the  unobservable to  form a "human c a p ita l"  vari-able x! .r) + a. . which ~ ij~  i j
appears w ith c o e f f ic ie n t  X, in  the kt  equation . This s o r t  o f r e s t r ic t io n  

was a lso  used by G rilich e s  and Mason (1972) and by JBreskog and Goldberger 

(1973).
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The p lan  o f  th e  paper i s  as fo llo w s: S ec tio n  I I  p rov ides an i d e n t i ­

f ic a t io n  a n a ly s is  o f  th e se  m odels; S ec tio n  I I I  d e riv e s  maximum lik e lih o o d  

e s tim a to rs  and S ec tio n  IV p rov ides an in te r p r e ta t io n  o f  them. S ec tio n  V 

developes an example based on the  causes and consequences o f  permanent i n ­

come. .

I I . Id e n t i f ic a t io n

Model 1 : Here th e  only problem i s  to  reco v er A and $ from 

0 = A'$A. I f  $ i s  r e s t r i c t e d  to  an id e n t i ty  m atrix  then  th i s  i s  a s tan d ard  

r o ta t io n  problem in  f a c to r  a n a ly s is .  With $ non-d iagonal i t  i s  an id e n t i ­

f i c a t io n  problem w ith  ob liq u e  f a c to r s .  Some r e s u l t s  a re  re p o rte d  in  R e ie rso l 

(1950), Howe (1955), and Anderson and Rubin (1956). For example, in  the 

ob liq u e  case w ith  $ u n re s tr ic te d  except fo r  s c a le  n o rm aliza tio n s  th a t  f ix  

th e  d iagonal e lem ents, i t  i s  s u f f i c ie n t  th a t  each row o f  A have a t  l e a s t

N - 1 f ix e d  elem ents p rovided  th e  fo llow ing  rank co n d itio n  h o ld s . Let A 
s

be any s o lu t io n  s a t i s fy in g  th e  r e s t r i c t io n s  and l e t  A be th e  subm atrix

o f  A c o n s is tin g  o f  th o se  columns th a t  have f ix ed  elem ents in  th e  s fc row.

Then A i s  unique i f  fo r  a l l  s = 1 , . . . ,N  we have rank (A ) equal to  th e

sm a lle s t o f  th e  number m and N, where m i s  th e  number o f  f ix e d  elem ents s s
in  th e  s1* row o f  A.

There i s  an example in  S ectio n  V o f  a m u l t i - f a c to r  model w ith  enough 

r e s t r i c t io n s  to  u n iquely  so lv e  fo r  A and $.

Model 2: I f  V = diag  ( v . , . . . ,vm) has p o s i t iv e  d iagonal elem ents 

then E i s  p o s i t iv e  d e f in i te  and thus has a unique f a c to r iz a t io n  by G aussian 

e lim in a tio n  in to  A’CA where A i s  an upper t r ia n g u la r  m atrix  w ith  ones on 

the  d iagonal and C i s  a d iagonal m atrix  o f  p o s i t iv e  elem ents (e .g .  Gantmacher
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(1959), ch ap te r I I ) .  Then sim ply id e n t i fy  T w ith  A and V w ith  C. Given 

r  we reco v er B from II and T'OT = A'<J>A leaves us w ith  th e  same i d e n t i f i c a ­

t io n  problem as Model 1.

Model 3: S ince th e re  i s  only one fa c to r  we j u s t  need a sc a le  

n o rm a liza tio n . So s e t t in g  $ = 1 we can use 0 = XX’ to  so lve  fo r  X (up to  

a s ig n  n o rm aliza tio n ) and II = -pX’ l e t s  us so lv e  fo r  n .

Model 4 : This p re se n ts  the  most in te r e s t in g  id e n t i f i c a t io n  p ro ­

blem. C lea rly  i f  we knew T (and w ith th e  group e f f e c ts  sca le d  so th a t  

<J> = 1 ), we could reco v er F 1 and U from E -  T0 by G aussian e lim in a tio n .

So we need one a d d itio n a l p iece  o f  in fo rm atio n . F i r s t  we w il l  co n sid er 

zero  r e s t r i c t io n s  on F; y = 0 , w ithou t r e s t r i c t i n g  B.

Theorem 1: In the  one fa c to r  model w ith  V = tXX' + U, a s u f f i ­

c ie n t  co n d itio n  fo r  id e n t i f i c a t io n  i s  th a t  a s in g le  y  = 0 p rovided  the
r 2 2ifo llow ing  rank co n d itio n  h o ld s : U = diag  ’ • • •» %  } i s  p o s i t iv e  d e f­

i n i t e  and

( n . i )  x x / „  2 o.
j» s  J J J

The co n d itio n  i s  a lso  n ecessa ry  i f  we confine o u rse lv e s  to  zero r e s t r i c ­

t io n s  on r.

P roof: Let d = T’- X. Then w ith  th e  group e f f e c ts  sca le d  so 

th a t  $ = 1, we have 0 = dd’ and (E - td d ’ ) = E + kcc' = TU T' 

where k = t/ ( 1  -  td 'E _1d) and c = E_1d. I t  w i l l  s im p lify  th e  n o ta tio n  

to  re v e rse  th e  o rd e r o f  th e  equa tions so t h a t ,  fo r  th i s  p ro o f o n ly , T is  

lower t r i a n g u la r .  So now th e  zero  elem ent i s  y^. where h = m - s + 1, 

k = m - t  + 1. Then l e t  A = E" - kcc' and use G aussian e lim in a tio n  to

so lve  fo r  y , , :hk
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( I I . 2) 4  2 . . .  k-1 h. 1 2 . . .  k-1.hk " A(1 2 . . .  k-1 k^ / A ( 1 2 . . k - r

= 0,

where A(?l ?p) i s  th e  minor formed from rows h , , 
kx . . .  kp 1

k p . . . , k  o f A (Gantmacher (1959), chap ter I I ) .  

Expanding the  bordered determ inant gives

. ,h and columns 
P

A( k-1 h.
k-1 P  ” A 1̂ 2

1 2 . . .  k-1 r-1* k -15 (S k  - 2h’ A

where a^ ' = (a i l \ * . a£ k_^), i  a h ,k , and A is  the  (k-1) by (k-1) p r in c ip a l 

subm atrix o f A. So we must so lve fo r t from

“ilk '  “h ' ? _1Sk = ° ’

Let A = S + kcc* where S i s  the  (k-1) by (k-1) p r in c ip a l subm atrix o f E

th e  f  
i l  „ i ,k - l

and c con ta ins th e  f i r s t  k-1 elements o f c . Then a. = «. + kc. c w ith ~ ~i ~x i~
s . ' = (a ~i ) ,  i  = h , k and we can w rite  the  r e s t r ic t io n  as

-1

( I I . 3) a hk + KC, C, h k

1 2 
1 2

-  (~h + Ch P  * 1-5 1 ^cc’S 1 )/(1  + kc’S ^c)](S jc + k^ c) = 0.

F o rtunate ly  th is  can be S im plified  to  the  follow ing l in e a r  equation

in  k:
Iy V — 1

( I I . 4) 0 - s , 'S  s, + kQ = 0

where

Q = ( ^ s _1c )(a hk - S h '?”1^  + % %  + ch (! ’s~15k) + ck (2 , r 15h)

So t = k/ (1  + Kd'E d) i s  un iquely , g lo b a lly , id e n t i f ia b le  i f f  0 /  9.
hk — 1But i f  Q = 0 then yhk = 0 im plies th a t  a  - s 'S sk = 0. I f  th is  holds 

fo r  Q /  0 then k = t = 0, a p o s s ib i l i ty  we w ill  exclude s in ce  x i s  a v a r i ­

ance r a t i o .  So our rank cond ition  can be w ritte n

- 1 1 2  ( I I . 5) E A(J ‘ k-1 h, , Q 
k-1 kJ r  u ’
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In o rd e r to  w rite  t h i s  in  term s o f th e  s t r u c tu r a l  p a ram ters , we w il l  

apply  th e  Cauchy-Binet form ula (Gantmacher, chap t. 1) to  E = P tAA’ + U) P :

( I I . 6) Z *(- l zl  2 . . .  k-1 h

p. ,q . l

/  0

where 1 £  p . <

1 2 . . .  k-1 V
E { r ( l  2 . . .  k-1 h )} + [J)-1 (P j . . . p k ) j { r ( l  2

P l P2 pk - l  Pk ll ’ ’ ^ k
k-1 k

l l  • ••  qk - l  qk
) )

■ < Pv £  m 1 £  Qj < • • • < £  m« Since T i s  lower

t r ia n g u la r  w ith  ones on th e  d iagonal t h i s  can be s im p lif ie d  to

(H .7 )  h -1 1 2 k-1 iz y Utaa’+ u) 2 ;; J  J)} / o.
3=k J

So our rank co n d itio n  can be w r i t te n  as
( n - 8) \  . I , y ° j 2 '  ° •

k j=k+l J J J

R eordering th e  equa tions so th a t  T i s  upper t r i a n g u la r  g ives th e  co n d itio n  

in  th e  Theorem and com pletes our p ro o f .

To in te r p r e t  th e  rank co n d itio n  we w il l  say th a t  th e  s equation  is  

no t connected to  th e  r e s t  o f  th e  s t r u c tu r e  i f  A = 0 .  I f  an equation  is  

n o t connected then  i t  f a c to rs  ou t o f  th e  l ik e lih o o d  fu n c tio n  and y i s  a c t-  

u a l ly  exogenous. So ou r co n d itio n  says th a t  th e  ex c lu sio n  must appear in  

a connected equa tion  and th a t  e i th e r  th e  excluded v a r ia b le  i s  connected o r 

i t  appears (with a non-zero  c o e f f ic ie n t)  in  a connected eq u a tio n  preceding  

th e  one i t ’s excluded from. In th i s  l a t t e r  case yg i s  exogenous and we a re  

in s i s t in g  th a t  i t  be c o r re la te d  w ith one o f  th e  endogenous v a r ia b le s  th a t  

can appear in  th e  t t  eq u a tio n . This co n d itio n  i s  s im ila r  to  th e  rank con­

d i t io n  in  Theorem 2 fo r  id e n t i f i c a t io n  by excluding exogenous v a r ia b le s .
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We should n o te  th a t  even i f  Y . X. /  0 fo r  a t  l e a s t  one j ,  i t  i s  s t i l l  s j  J
p o ss ib le  fo r  th e  sura in  ( I I . 1) to  be ze ro . But th i s  p o s s ib i l i t y  i s  u n in ­

t e r e s t in g  and extrem ely  u n lik e ly .

C o ro lla ry  1 (Model 4 ) : In th e  one f a c to r  model, w ith  V = tXX' + U 

and B = - pX' ,  th e  n ecessa ry  and s u f f ic ie n t  co n d itio n  fo r  id e n t i f ic a t io n  

(w ith in  th e  c la s s  o f  zero  r e s t r i c t io n s  on T) i s  th e  one given in  Theorem 1.

P ro o f; Let d = F ~ X and s c a le  $ = 1 so th a t  0 = dd’ . Then II -  -p d ’ 

l e t s  us so lv e  fo r  p bu t o therw ise  co n ta in s  no in fo rm atio n  th a t  i s  n o t in  0.

To in te r p r e t  t h i s  r e s u l t  we n o te  th a t  t r e a t in g  th e  f .  as f ix ed  e f f e c ts  

would lead  to  a s e t  o f  group dummy v a r ia b le s  whose c o e f f ic ie n ts  would be 

co n s tra in e d  as in  th e  c o ro lla ry .  So adding more v a r ia b le s  ( i . e .  X) con­

s t r a in e d  in  t h i s  way does n o t a f f e c t  th e  id e n t i f i c a t io n  a n a ly s is .

Co ro l la ry  2 ; I f  th e  p ro p o r t io n a l i ty  c o n s tra in t  o f  c o ro lla ry  1 ho lds 

only ac ro ss a su b se t o f  th e  eq u a tio n s , e .g .  B = (B^ I -pX’) where 

X* = (X. , . . . ,  X ) ,  then  i t  i s  s t i l l  t ru e  th a t  th e  n ecessa ry  and s u f f i ­

c ie n t  co n d itio n  fo r  id e n t i f i c a t io n  i s  th e  one given in  Theorem 1.

P ro o f; We w il l  do th e  case in  which only  th e  f i r s t  equa tion  i s  uncon­

s t ra in e d  and leave th e  ex ten s io n  to  th e  re a d e r . W rite th e  f i r s t  column o f

B as -(X p + 5) so th a t  B = -pX' - (C O ). Then II = - (p d ' + C a') where a*
_1 _i 2

i s  th e  f i r s t  row o f  T . Now th e  f i r s t  row o f  T’ -ur i s  cr̂  a ’ and so

n = -[Pd» + c ( s j ’ - T d ^ ’) / ^ 2]

where S j ’ i s  th e  f i r s t  row o f  E = rdd + T’- UT- .
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Form an m x m n o n -sin g u la r m atrix  T = ( t ,  . . .  t  ) such th a t  t , ' d  = 0, ~1 ~m ~1 ~
tLj ’Sj = 0, and t^  i s  orthogonal to  d and s . fo r  i  = 3, . . .»  m (amendments 

a re  s tra ig h tfo rw ard  in  the  u n lik e ly  event th a t  d « s . ) .  Then the in fo r ­

mation in  H is  equ iv a len t to  the in form ation in

51 * : (n - Tdi  d ( d ’t 2) : o]
° 1 2 '  '  '

2 2So we can so lve fo r  ? /o 1 and fo r  ri - rd 1/ a 1 £. Given any t we can solve 
2fo r  q and a t r ia n g u la r  fa c to r iz a t io n  o f  E - rd d ' w il l  give a and hence £.

Thus th e re  i s  no ad d itio n a l in form ation on t and i t s  id e n t i f ic a t io n  must

come from 0 and E as in  Theorem 1.

A n a tu ra l ex tension  o f the  p ro p o r tio n a li ty  r e s t r ic t io n s  would be to

impose them across some o f the y 's  in  ad d itio n  to  B and A. Consider the 

follow ing example:

( I I . 9) yx = (x 'n  + f)Ax +

y2 = (x 'n  ♦ f)A2 ♦ y12yi + v2 

yv = [(x 'n  + f)A0 + Y12y x] A3/A2 + y9Vy9 + . ..+  y. v, , k = 3 ,.. .,m ,'k - l , k yk - l'2k7 2

where the  \>'s have the model 4 covariance m atrix  V = rXA* + U.

C oro llary  3 : The necessary  and s u f f ic ie n t  cond ition  fo r  id e n t i f ic a t io n  

o f ( I I . 9) is  the  one given in  Theorem 1.

P ro o f: S ta r t  w ith a th ree  equation model. In stead  o f having a y = 0 

we have th e  n o n -lin ea r r e s t r ic t io n  th a t  YX2^y13 = ^2^3*  terms o f

counting r e s t r ic t io n s  and unknowns i t  would appear th a t  we are id e n t i f ie d  

w ithout the zero r e s t r ic t io n  o f T. But w ritin g  the  r e s t r ic t io n  in  terms o f 

reduced form param eters g ives ( a ,2 " Tdjd2) / ( a X3 ~ T<̂ 1^3^ = ^ l^ d3 an^ un^or_ 

tu n a te ly  t cancels o u t. In stead  o f being able to  so lve fo r  t we have the
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reduced form c o n s tra in t  <Jj 2 / cf13 = ^2^^3* Thus th e  number o f  reduced form 

degrees o f  freedom i s  e f f e c t iv e ly  reduced by one. Adding more equa tions 

g ives more r e s t r i c t io n s  o f th e  form Y tj/Y i^  = t r a n s la te

d i r e c t ly  in to  th e  reduced form r e s t r i c t io n s  a i2^a ik  = ^2^^k w-’-t 1̂0Ut l e t t in g  

us so lv e  fo r  t .

Next we w i l l  co n sid e r a r b i t r a r y  l in e a r  r e s t r i c t io n s  on th e  endogenous 
tilv a r ia b le s  in  a given eq u a tio n . Such a r e s t r i c t i o n  on th e  t u equation  can

be w r i t te n  Y . Y , . + ♦ . « +  JL < Y* » . +  £ = 0 where th e  f i r s t'g t  g+1 'g + l , t  t - 1  ’t - l , t  t
non-zero  elem ent in  £ was £^ and we have d iv id ed  through by i t .

C o ro lla ry  4 : The r e s t r i c t i o n  th a t  y + £g+1 Yg + l , t , Y  ̂ , + £ =0t-1  t - l , t  t
i s  s u f f i c ie n t  fo r  id e n t i f i c a t io n  p rovided  th e  fo llow ing  rank co n d itio n  h o ld s: 

1 ~ 2
( I I . 10) A„ E Y • A ./a . /  0

1 i- l 83 3 3

where
£, Y, h ’h , jY • = Y • gj gJ h=g+l

P ro o f: Let P be an upper t r i a n g u la r  m atrix  which only d i f f e r s  from an 

id e n t i ty  m atrix  in  th a t  p^j = £ . ,  j  = g + 1, . . . »  t .  Then we can re w rite  

our model as (y ’P ) (Pf) + X’B = f ’A + v ’ where T = PT i s  s t i l l  upper t r i a n ­

g u la r  w ith  ones on th e  d iag o n a l. Now th e  r e s t r i c t i o n  i s  y  = 0 and we 

apply Theorem 1.
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The rank co n d itio n  re q u ire s  th a t  th e  co n s tra in e d  equa tion  be connected

to  th e  r e s t  o f  th e  s t r u c tu r e .  In ad d itio n  we must have connected o r a 

/  0 fo r  a connected equation  between yg and y^ ( i . e .  g < j < t ) .

v . /  0 re q u ire s  th a t  y . i s  inc luded  in  th e  r e s t r i c t i o n  (£,. 0) o r th a t
gj 3 3

th e  equa tion  in c lu d es  y o r a l a t e r  v a r ia b le  which i s  in c lu d ed  in  the  

r e s t r i c t i o n .

Theorem 2; C onsider th e  one fa c to r  model w ith  V •  xXX’ + U and B 

u n re s tr ic te d  except fo r  zero r e s t r i c t i o n s .  Then th e  n ecessa ry  and s u f f i ­

c ie n t  co n d itio n  fo r  id e n t i f i c a t io n  by excluding  exogenous v a r ia b le s  i s  th a t

a s in g le  8 = 0 to g e th e r  w ith  th e  fo llow ing  rank c o n d itio n : .
2 2

U = diag  (Oj , . . . »  a  } i s  p o s i t iv e  d e f in i te  and

t-1( I I . 11)
X £ y . X ./a . /  0

* J J 3

Y, . and it , i s  th e  ( s .h )  elem ent o f  II. h i sh * •*where Y- = tt , i. .3 E sh h j 
h=l

An im portan t im p lic a tio n  o f  th i s  rank co n d itio n  i s  th a t  Xg must a c t ­

u a l ly  appear in  some eq u a tio n  preceding  th e  one i t  i s  excluded from ,
t

P ro o f: B = —nr and so th e  r e s t r i c t i o n  th a t  3 = 0 im p lie s  £ 11$  ̂ Yj^ = 0
h=l

Now apply c o ra l la ry  4. By lo c a tin g  th e  f i r s t  non-zero  elem ent in  row s o f

we can w rite  ( I I . 11) in  th e  form used in  c o ro lla ry  4 . The co n d itio n  th a t  some 

/  0 fo r  j  < t  i s  n ecessa ry  to  ensure th a t  some /  0 fo r  h < t ,  s in ce  

n = -B f  1 and T i s  upper t r i a n g u la r .  O ther im p lica tio n s  o f  th e  rank con­

i a

d i t io n  follow  from our d isc u ss io n  o f  c o ro lla ry  4. For example th e  ex c lu sio n  

must occur in  a connected eq u a tio n .
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I I I .  E stim ation

We w il l  d e sc rib e  maximum lik e lih o o d  (ML) algo rithm s under n o rm ality  

assum ptions. In most cases i t  i s  n o t p o s s ib le  to  g ive  a complete a n a ly t ic  

s o lu t io n .  Then our aim i s  maximum a n a ly t ic  co n c en tra tio n  o f  th e  l i k e l i ­

hood fu n c tio n  b e fo re  tu rn in g  to  num eriaal tech n iq u es . The d e r iv a tio n s  a re  

given in  an Appendix. I n te rp re ta t io n s  o f  our algo rithm s w i l l  be given in

th e  nex t s e c tio n .

Models 1 and 2: In both models th e  reduced form H, 0, and £ are  un­

co n s tra in e d  except fo r  th e  rank r e s t r i c t i o n  on 0. F i r s t  we w il l  d e riv e  

th e  ML e s tim a to r  o f 0 and £ c o n d itio n a l on H. Arrange th e  o b serv a tio n s  

so th a t  th e  f i r s t  p a re  from group 1, th e  second p a re  from group 2, e tc .

Then l e t y '<11 x» 1 ^11
Y = X =

y*<pqj

(Y i s  pq x m, x i s  pq x n) and form th e  m atrix  o f  reduced form re s id u a ls

E = Y - XII. Let J  = 1^ ® be a s e t  o f  group in d ic a to r  dummy v a r ia b le s

where &} i s  a p x 1 v e c to r  o f  ones. R = E’E/pq i s  th e  sample covariance 
- 2m atrix  o f th e  re s id u a ls  and R = E’J J ’E/qp i s  formed by f i r s t  averaging 

th e  re s id u a ls  over each group and then  forming t h e i r  sample covariance

m atrix .

Then so lv e  th e  eigenvalue problem

( I I I . l )  RG = RGK

where K = d iag  , p^} co n ta in s  th e  N la rg e s t  e igenvalues and G con­

ta in s  th e  e ig en v ec to rs  sca le d  so th a t

G'RG = (PK - I ) ( I  - K)_1 /  p2 .
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© is  co n s tru c te d  from

(11 1 .2) 0 = p2/ p - l  RGK(I - K)G’R

and

(111 .3) E = R - 0 .

The ML e s tim a to r  o f  II given 0 and E i s  g en e ra liz e d  le a s t  square (GLS). 

We arrange th e  columns o f  II in to  a s in g le  stack ed  mn x 1 v e c to r  5 = vec(II). 

The com putations a re  s im p lif ie d  by a n a ly t ic a l ly  in v e r t in g  th e  d is tu rb an ce  

covariance m atrix  to  o b ta in  th e  fo llow ing  form ula fo r  th e  GLS e s tim a to r

o f  6:

(11 1 .4) «* -  (H* ♦ * H8Sb)

where i s  th e  le a s t  squares e s tim a te  j u s t  using  th e  w ith in  fam ily  moments

and j u s t  uses th e  between fam ily  moments:

6 , = WY-1W 
~wk ~x ~xy,

^Bk = 5x ~xyk ’ k *

w ith T = X’X, B = X’J J 'X /p ,  W = T - B~x ~ ~ ~x ~ ~ r ’ ~x ~x ~x

and s im ila r  ex p ressio n s fo r  W and B . H.. and H a re  th e  p re c is io n~xy, ~xy,
z*. z\

m a trice s  fo r  <5̂  and 6^:

(1 1 1 .5) = [E($w -  6) (6W - 6 ) ’ ] " 1 = E"1 ®Wx

5b = (E(?B ’ (~B ’ ^ ’1_1 = 1/p + 1/P ®  5x *

So we pool th e  "w ith in "  and "between" OLS e s tim a to rs ,  w eighting  by th e i r  

p re c is io n  m a tr ic e s .

I f  th e  x ’ s d i f f e r  ac ro ss  equations then  th e  ML e s tim a to r  o f  5 based
X

on ju s t  th e  w ith in  group d e v ia tio n s  i s  n o t b u t r a th e r  (c o n d itio n a l on E) 

th e  Z e lln e r  "seem ingly u n re la te d "  GLS e s tim a to r:
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~GLS r a 11W . . .  .o lraW ]  Z a lk W.
~x l x l

f
~x,x1 m 1 k=l ~x l yk.

ml,, a W o^W
m ,„ mk ,, S a w~x X. m 1 ~x x m m ~x y,I k=l m k

thwhere x, contains the  exogenous v a r ia b le s  a c tu a lly  included  in  the  k equa-
GLSt io n .  There is  a s im ila r  e s tim ato r <Sg (using ju s t  the  between group v a r­

ia t io n )  which rep laces  Z by 1/p (0 + 1/p Z) . The ML estim ato r o f 6 is  

a m atrix  weighted average o f th ese  between and w ith in  group GLS es tim a to rs , 

w eighting by th e i r  p re c is io n  m atrices:

(III.6) „ U r b n  rGLS A „ .GLS . 
*-~W ~B Q*W~W ~B~B

w ith

( I I I . 7) Hw = [H(6^LS - 6 ) (6^LS - 6 ) ’ ] " 1 = Z’ 1 * W

Ho = [E(6^LS - 6) (fiELS - 6 ) ' ] " 1 = 1/p (0 + 1/p Z)"1 * B,

where the k, k ’ block o f W is  W and is  a g en e ra lized  Hadamard pro-
~ ~XkXk ’K R -1 - kk’duct which s e ts  the  k, k* block o f Z * W equal to  o W w ith a sim-

~Xk k '
i l a r  expression fo r  the  k , k* block o f Hg.

The GLS procedure can be s im p lif ie d  by co n cen tra tin g  the in te rc e p ts

out o f the lik e lih o o d  fu n c tio n . This i s  p o ss ib le  s in ce  the  ML estim ates 

o f the hyperplanes corresponding to  each o f  the equations pass through the 

sample means. Thus i f  we p a r t i t io n  6^ in to  th e  in te rc e p t <5^ and the slope 

c o e f f ic ie n ts  t ^en co n d itio n a l on the GLS estim ate  o f <5^ is  OLS:

6lk ~ yk " £ ’~2k’ k =

where y, is  the grand mean o f y^ and x i s  the row v ec to r o f grand means 

fo r  th e  exogenous v a r ia b le s  (o th er than the  in te rc e p t ) .  So the  can be 

concen trated  out o f the lik e lih o o d  function  sim ply by rep lac in g  each v a ria b le  

by i t s  d ev ia tio n  from the o v e ra ll sample mean and proceeding w ithout in te rc e p ts
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Then th e  j o in t  maximum fo r  II, 0 , and E can be o b ta in ed  by i t e r a t i n g  

on th e  ML equations fo r  H [given 0 and E) and th e  ML eq u a tio n s fo r  0 and 

E (given II).

I t  i s  f a i r l y  s tra ig h tfo rw a rd  to  modify th e  a lg o rith m  to  dea l w ith  un­

balanced  sam ples. For example in  th e  one f a c to r  case w ith  © = dd’ we l e t  

a  index th e  d i f f e r e n t  group s iz e s  w ith p in d iv id u a ls  in  each o f q^ groups.

The t o t a l  number o f  groups i s  q = Eq and w ith  p = (E p q ) /q  th e re  a re  a  a  a  a  a
pq o b se rv a tio n s  in  th e  t o t a l  sam ple. In o rd e r to  agg regate  over groups 

o f  d i f f e r e n t  s iz e s  we have to  co n d itio n  on ip = d'E  ^d:

(11 1 .8) R .  £ * Pa W ]?a / Pq

5 " ?a /p q

We o b ta in  0 and E from th e  eigenvalue decom position o f  R in  th e  m e tric  o f  

R. Then th e  co n cen tra ted  l ik e lih o o d  fu n c tio n  which i s  deriv ed  in  the  App­

endix j u s t  depends on ip, leav ing  us w ith  a s tra ig h tfo rw a rd  one-dim ensional 

m axim ization problem .

Model 3: Here th e  s t r u c tu r a l  and reduced forms a re  id e n t i c a l .  I t  

w il l  be convenient to  use th e  reduced form n o ta tio n  w ith  th e  unobservable 

sca le d  so th a t  $ = 1 and 0 = dd‘ . We w il l  d isp la y  e x p l i c i t  ML e s tim a to rs  

fo r  d, E, and q co n d itio n a l on ip = d ’E d. Then th e  l ik e lih o o d  can be con­

c e n tra te d  to  a fu n c tio n  j u s t  o f ip, leav in g  a sim ple s c a la r  m axim ization 

problem .

The ML e s tim a to r  o f  d i s  ob tianed  from th e  fo llow ing  eigenvalue problem

(111 .9) Q_1d = l / p T y-1 d

where 1/p i s  th e  sm a lle s t ro o t and
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2 “ ~Y + l - c  2yx2x SxY 

ip = d 'E _1d, ? = 1 /(1  pip)

Hyx “ ~YX + ?~YX ’ ~xy = % c  

Sx = ~x + s 2x

w ith T„ = Y'Y, By = Y’J J ’Y/p, Wy = Ty -  By, and s im ila r  ex p ressio n s

fo r  * W  ?YX’ -X “ d ?X-

The ML e s tim a to r  o f  E i s

( I I I .  10) ? « L / pq "

where C i s  a sim ple fu n c tio n  o f  ip and p (see A ppendix).

Once we have computed th e  ML estim ato is  o f d and E (c o n d itio n a l on ip),

we form r  = YE” d/ip and o b ta in  th e  fo llow ing  ML e s tim a to r  o f  p:

(1 1 1 .11) n = (Wx +  c /1 -c  Tx ) _1(wx r  + c / i - c  Tx r ) .

Model 4: I f  th e  model i s  j u s t  i d e n t i f i e d ,  e .g .  only a s in g le  y = 0,

then  th e  reduced form E i s  u n co n stra in ed  and th e  model 3 a lgo rithm  can be 
2 2

used . O therw ise we f i r s t  co n d itio n  on T, U = diag  » • • • * %

x and p= X'U X to  o b ta in  ML es tim ato is  o f X and p:

(1 1 1 .12) Q-1 X = 1/p U_1X

where 1 / p i s  th e  sm a lle s t ro o t and

TP___
TP+1

-1,w ith y = X’U X,

I* * i k r [tl - ?)5a * Sax5x' 1Sxa’ } '  w

1 /[1  + p (p / tp  + 1)] and T^, B , a re  defin ed  as in

Q =

( I I I . 9) w ith  A = Yf re p la c in g  Y.
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The ML estim ato r o f r) i s
-1( I I I .  13) n = + C /l-S  Tx) (Wx r ♦ Z /l-Z  Tx r )

where r  = AU- ^X/p . Then the  lik e lih o o d  can be concentrated  to  a function  

2
o f t , y , a, , k = l , . . . , m ,  and maximized num erically , s t i l l  cond ition ing  

on T (see Appendix fo r  d e t a i l s ) .

The ML es tim ato r o f T i s  obtained from th e  GLS formula in  ( I I I . 6) 

where the  seemingly u n re la ted  equations are

yk - i ' 2 Xk '  W l  * " • *  Yk - l ,k yk - l  ’  vk 'k - l , . . . , »

and we rep lace  0 by XX’ and rep lace  E by xXX’ + U (note we are  using

T . . = -Y .. fo r  i / j ) .  Then the  jo in t  maximum fo r  T, q , X, t and U can be i j  i j  J ~ ~ ~
obtained  by i t e r a t in g  on th e  ML equations fo r T (given q, X, x , and U) and 

th e  ML equations fo r  q., X, t , U (given T ). Some o th er methods fo r  dea ling  

with Model 4 (in  p a r t ic u la r  the trea tm ent o f T) a re  d iscussed  in  the Appendix
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IV. Interpretation

First we will review some properties of the single equation 

variance components model. It was introduced into the econometric 

literature by Balestra and Nerlove (1966):

(IV.1) = a + XjjB. + £i + 1

j = 1,... ,p ,

where the f. are a random sample from a distribution with mean 

zero and variance and the • are independently distributed 

across groups (i) and within groups (j) with mean zero and 

variance a2. There is an alternative "fixed effects" model 

(e.g., Kuh (1959)):

(IV.2) y. . = a. + x! .6 + v. •

which allows a separate intercept for each group. The inter­

pretation and relative merits of these two models have given rise 

to some confusion. My preference is to regard (IV.2) as the 

"true" model and arrive at (IV.1) by adding uncertain prior in­

formation. Then the choice between the two models will rest on

the persuasiveness of the prior.

In (IV. 1) the problem is non-spherical disturbances and 

is estimated by generalized least squares (GLS). This can be 

simplified to:
( I V .3) 6* -  (Wx  ♦  CBx ) - 1 (Wxbw + C B ^ B)

(Maddala (1971)), where b = W„ W. . b_ = B B ; W , W , etc.-w —x —xy — B —x —xy —x — xy
are defined in (III.4); and £ = 1/(1 + pip) with ip = o^/o2.
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So 3_* is a matrix weighted average of the within and between 

group least squares estimators. This is the natural way to 

pool two independent estimators; Wx and Bx are proportional to 

the precision matrices.

Using analysis of covariance identities we also have

(IV.4) B* = («x + + 57c W

where bm = T-1T . Note that here b and b_ are attainable

endpoints corresponding to the variance ratio ip = o^/o2 taking 

on its extreme values of infinity and zero. In (IV.3) b_, is 

never reached since 0 £ ?<_ 1; i.e., the between group least

squares estimator does not have a life of its own. It is, 

however, a very useful estimator in the presence of measurement 

error. One of our objectives is to give it an independent role.
The estimator in (IV. 3) and (IV.4) can be obtained from the 

fixed effects model (IV. 2) by adding an exchangeable prior for the 

a.. The prior is exchangeable if its form is unaffected by 

permuting the a's, so that the i subscripts are just a labeling 

device with no substantive content. Then the prior must be a 

mixture of independent and identical distributions (de Finetti 

(1964), Hewitt and Savage (1955)). Assuming normality we have

(IV. 5) a ~ i.i.d. N (a a2) i • a

where a and a2 are called hyperparameters(Good (1965)); their 

prior distribution generates the mixture. With a "flat" prior 

for a and conditional on ip = o2/o2 , the posterior mean for 3
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is the GLS estimator in (IV.3). So \p measures the strength 

of our prior belief that the a . are all equal. As ip varies 

from zero (certainty) to infinity (diffuse), the posterior 

mean goes from bm to b .

The natural proxy for the unobservable group effects is 

the posterior mean for the a . . Conditional on and the variance 

ratio ip , the posterior mean is

* _E)P_ S . +(IV.6) a.i 1+pip i 1+ P*P

whe 1]
16 S i = P <Yii ' -il- " Yi ' -i -

and a = y - x'B = — £ a .. So we take the fixed effects a.
q i=i 1

obtained by forcing the hyperplane through the group means, and 

shrink them towards the pooled OLS estimator a . Note that the 

shrinkage factor approaches zero if there are a large number of 

observations on each group or if there is a strong group structure

Models 1 and 2: We can interpret the eigenvalue problem 

in (III.l) as a canonical correlation analysis of the residuals 

E and the set of group indicator dummy variables J. We find the 

linear combination of residuals from the m equations that is most 

highly correlated with the group structure, subject to the restric 

tion of being uncorrelated with the first index, and so on. The 

eigenvectors are the canonical weights for constructing these 

indices and the squared canonical correlations are the eigenvalues
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Our estimator of 0 can be interpreted as solving a minimum 

norm approximation problem. For it is easy to show that con­

ditional on B the corrected between group moments,

R = — - — R) , give an unbiased estimate of 0:—c p— 1 — p— —

(IV. 7) 0 = e (R ) = E[-2—  (R - A r ) ] .
-c p-1 - p-

So it is reasonable to estimate 0 by finding a matrix of rank N 

such that

(IV. 8) || R c- S  ||Q

is a minimum, where | | I Iq denotes the matrix norm in the metric of 

Q:
|IA|| = tr„QAQA.

A natural choice of metric is R For then the equations with 

poor fit are given less weight in the approximation error (and 

more generally the linear combinations of equations with poor fit 

are given less weight). It is easy to show that the 0 in 

(III. 2) solves this problem.
Another interpretation of our estimator of 0 can be based on 

constructing proxies for the unobservables and using them in a 

regression. For the one factor model the fixed effects analog to 

on in (IV.6) is

(IV. 9) f^ = (y^ - x! II) 2 = Ê cf

where R g = pR g.
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The scale of is arbitrary since it can't be separated from 

the scale of the coefficients. We resolve this by setting qi = 1. 

Then 0 = d d' and ip = d'E^ d is a generalized variance ratio 

analogous to o|/a2. Then the posterior mean proxy corresponding 

to (IV.6) is

(IV.10) f* = f. + fl 1+pip i 1+pip

where
i Q

f - ~ . E. f. . 
q  1 = 1  l

So again the exchangeable prior induces a shrinking towards an 

averaged estimator; the shrinking can be substantial if the num­

ber of observations in each group is small and if the signal-noise 

ratio ip = d ’E. d is not too large.

We can interpret the ML estimator of d as regressing the 

residuals on the proxy f :*

d « E'f* « Rg.

So d satisfies the dual of (III.l).

(IV. 12) Rg = pRg

R -id = i R_1d.
-  -  p “  ~

If we scale so that d ' R d = ~y(p~l/p)/ then dd' gives the 

(one factor) 0 in (III.2).
Note that the regression on f* is proportional to the regres- 

sion on f. provided the residuals sum to zero. If the equations



60

include constant terms, then the GLS estimate of the hyperplane 

corresponding to each of the equations passes through the overall 

sample means. In that case we have the surprising result that 

the estimate of d is unaffected by adding the exchangeable prior 

to the fixed effects model. A similar result has been observed in 

the simpler factor model without the group structure. In that 

model Whittle (1953) found that his fixed effects estimator of the 

factor loadings agreed with the random effects ML algorithm de­

vised by Lawley (1940) (also see the Uppsala Symposium (1953) ) .

In the fixed effects model the problem is to impose pro­

portionality restrictions across the coefficients of the dummies 

in the different equations. The solution as a canonical cor­

relation is given in Hauser and Goldberger (1971). Actually 

their model is a special case of Hannan's (1967) application of 

ML to a subsystem. A set of m equations form a subsystem if 

there are W-I zero restrictions on each equation. Hannan showed 

that limited information maximum likelihood (LIML) applied 

to a subsystem can be reduced to a canonical correlation problem 

of the Hauser-Goldberger type. We can see that the fixed effects 

model fits Hannan's framework by rewriting

yR = XSR + JfdR + £k , k = 1,...,m

(J = I <£>?.)
-  - q  - p

as

(IV.13) - X(6k - 6 ^ )  +

k = 1 9 •  •  •  9 m-1
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y = X6 + Jf + e m — m —  —m

(assuming that d / 0, we normalize so that d_ = 1). There are fli m
m-2 restrictions on each of the first m-l equations since only 

one of the m-l variables y y  , appears in any of these 
equations. Thus they form a subsystem. Furthermore the m t 1̂ 

equation is just identified which implies that LIML is in 

fact FIML.

In the multi-factor version we regress E on JEG to

obtain

(IV. 14) D = RGH

where H is a diagonal scaling matrix. If the columns of D are 

properly scaled then DD1 will give the 0 in (III.2). But the 

decomposition of Q into D$D* is not identified without further 

restrictions, nor are separate proxies for the different factors.

We can only specify the space spanned by the factors (the column 

space of JEG).

The GLS estimator of 5_ « vec (B) is given in (III.4). It is 

a generalization of the single equation variance components pooling 

in (IV.3). Again we are taking a matrix weighted average of the 

within and between group estimators, weighting by their precision 

matrices. The correspondence with the single equation case is 

even closer when we compare the fixed and random effects estimators 

of <̂. In the fixed effects case, we simply form the proxy for f. 

in (IV. 9) and regress on an<  ̂this proxy to obtain 6^, 

k = l,...,m. Some straightforward but tedious algebra will
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demonstrate the following relationship between the fixed and 

random effects estimators:

«  =(IV.15) (W + T ) 1 (W T , k=l
—x l-£ -x —x— fk 1-? —x~Tk ' ,m,

where ip = d'E_ d, £ = 1/(1 + pip) , W and T are defined in (III.4), X “"X
and = T T is the pooled OLS estimator.— ik —x —xy.

If there is only a single variable in X then (IV.15) is a 

simple weighted average and the random effects £* is in between 

the fixed effects estimator and the pooled OLS estimator. But 

with several x's we have a matrix weighted average like (IV.4). In 

fact (IV.15) is identical to the single equation pooling formula 

(IV.4) with the fixed effects estimator replacing the unconstrained 
within group OLS bw> and with = d'£ ^d replacing the single 

equation variance ratio. So we can use to reduce the formula 

for 6_* in (III. 4) from a matrix weighted average that runs over 

equations and variables to one which just runs over the variables 

in X, pooling each equation separately from the others.

Model 3: The ML estimator of n in (III.11) is

J ’ <wx + V ' 1 <5xr +

where C = l/(l+pip) and ip = d*^ ^d. This is identical to the

single equation GLS estimator in (IV.4) if we replace o2/ a 2

by the generalized variance ratio ip = d ’_E ^d and aggregate the y. ’s

into a single index r = YE ^d/ip. Then r . • = x! . n + f . +e. . is 
—  —  —  ij —lj—  i
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treated like a single equation components model with
2 2 - 1  - 1= d'£ d. The weights £ d/ip do not seem to come

from a canonical correlation problem. But as our estimator

reduces to ML for the fixed effects model. There we do a

canonical correlation analysis on Y and (X J) where J = 1^ (x)

is a set of dummy variables. The payoff from the exchangeable

prior on the f. is that unlike the fixed effects estimator, our 

estimator uses some of the between group variation in estimating tj.

As in (IV.11) our estimators of d and E can be interpreted 

as regression statistics in a model based on a proxy for the 

unobservable. Conditional on d, and E_, the posterior mean 

for f . is

1 *<IV-i6> fI ’ i ^ p ' £i + 

where
f. = Y.E_1d/i|> - X.n, £ = - E f..
1 —i— —  —l— q l

This is analogous to (IV.10) except that now we take the canonical 

index of the averaged y's and subtract off the averaged contribution 

X jT) of the observed characteristics. The weights pip/ (1+p^) and l/(l+p^ 
are the same as (IV.10) with more shrinking if the groups are small 

and if the group effects have relatively small variance. Then the 

f . are not very estimable individually and so we do more smoothing 

towards their average f.

Now we can use initial estimates of d and E. to form the 

composite proxy Xq * + f*, and then run the multivariate regression 

of Y on X_n* + f* to obtain new estimates of d and E. Then they

can be used to reform rj_* and f* to repeat the process. This
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iterative scheme is actually a powering method for solving 

the eigenvalue problem in (III.9). Of course much faster tech­

niques are available, but this helps our intuitive appreciation 

of the algorithm. The sequence of regressions will also re­

produce our estimator of £ in (III.10)

Model 4: The ML estimator of y is the same as in Model 3
except that now r = YU A/y and £ = 1/[1 + P(^ ~ T'y) 1 with

y = _A'U A_. To see that y/(l+ry) is the appropriate variance

ratio, we consider the single equation version with
(f. + g..)A, + e. replaced by f. + g. . + e. •. Then y = al/a2 x ^ij k ljk r l ^xj xj H f'

and
oi/a2 oiy _  f  _  f _______

1+ry ~ l+az/a2 ~ az + a'2 
9 9

is the appropriate ratio of between group variance to within group

variance.

The posterior mean proxy for f is

(IV.17) f* = (l-Ofi + Cf

where f. = Y.U ^A/y - X. ri, f = — I f .  and
x -x- — H — x— q i

£ = 1/[1 + P )1• We have already seen that y/(l+ry) is the

appropriate ratio of between to within group variance for this

problem. Note that we do less shrinking if a2 = al(l+T) is

large, but for a given a2 we shrink to the mean more forcefully a
as t = o2/o^ increases. The proxy for the within family

deviations g! = (g.,...g. ) is xx ^xl xp
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(IV-18’ at = niTT - xiai - fttp].

So given the canonical index of the y's, we subtract off the 

effects of the observed characteristics, Xg, and we also subtract 

off the unobserved family effects f*. The shrinkage factor is 

analagous to p^/(l+pip) in (IV.6) because here p=l, only a single 
individual per group, and t =a2/a~ converts p = A_'U from 

a family variance ratio (recall a?. = 1) to an individual variance 

ratio which would be cfg/a2 in the single equation case.
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V. The Causes and Consequences of Permanent Income

An example of Model 1 is a system of Engel curves based 

on components of permanent income. The model develops Friedman's 
observation that the horizon relevant for forming income expectations 

depends on the variability of the income series. Thus self-employed 

businessmen and wage earners form their expectations in different 

ways. This can be formalized by observing that optimal (e.g., 

minimum mean square error) forecasts of a stochastic process de­

pend on the underlying autoregressive structure of the process.

So when we can identify separate income streams for the same 
individual, it is a natural step to treat them separately in forming 

permanent income proxies. Holbrook and Stafford (1971) estimated 

this sort of model from a three year panel of consumers. For the 

time being I will specialize their model by assuming that the 

different components of permanent income are constant over the 

three years.
Then extending the model to several consumption goods gives 

<v -1) citk = h“ nk5i h + u itk

Yith - Yih + v ith ’ i -
t = 1, . .. ,T

We assume that the permanent components of income Y^ (corresponding

to the f^) are independently distributed across individuals as a

multivariate N(0,$). The observed income component Y ^ ^  is

assumed to be an unbiased estimate of the permanent component.

The transitory components of consumption (u...) and income (v. )X tK X tK
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are assumed to be serially uncorrelated but freely contemporaneously 

correlated both within and across consumption and income categories. 

Allowing for non-zero correlation between transitory consumption 

and income is important if we only have independent observations 

on income and savings. For then consumption is generated as a 

residual and errors in income reporting will be transmitted to the 

consumption data and will induce a correlation between the transi­

tory components.

Let L = ke the matrix of marginal propensities (or

elasticities in the logarithmic version). Then we have D' = (l I)

and

= D$D'
L'$L L'$ 
$L $(V.2) 0

Thus L and $

to have rank

(V.3) L

$

U J

can be recovered from 0 and if 0 has been constrained

= N the relationship is uniquely given by

— 22 -21

= — 22 *

Given our interpretation of Q_ as a rank N approximation

to R = (R - —R) ,we can interpret our estimator L = 0 OO0O.c p-1 — p— _ _ zz—zi
as a set of corrected and smoothed between group regressions. 

Simply regressing on time averages would give R22 R21* Our 

estimator differs from this in two ways. First we correct R 

for incomplete averaging of the transitory effects by subtracting 

off R. This correction would be negligible for a long time 

series or if the grouping were done by cities, but it could be
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crucial for a three year panel. Then the corrected R, i.e.,

is approximated (smoothed) by a matrix of lower rank. This

conforms to Friedman's symmetric view of the problem; for once 

we have R we can either regress Y on C or run C on Y and take 

the reciprocal. Imposing the rank constraint guarantees that 

we get the same answer either way.

The adding up property R = 0 + £ that is used to estimate Z 

gives a decomposition of the total variance R into permanent (0) 

and transitory (Z) components.

In the general multi-factor model it is not possible to 

assign separate proxies to the different factors. This corresponds 

to our inability to separate D and $ in 0 = D$D'. But in this 

example there are enough restrictions. The restrictions are that 

the multiple regression of y^ on the proxies y^,...,yN should 

give zero coefficients except for the coefficient of y. which

should be one:

(V.4) b 1 if k=h 
0 otherwise .

This in turn implies that

0 if k h.

(V.5) is a natural condition for an efficient proxy. For if 

the partial correlation were not zero, we could exploit it to 

improve our specification of y. The formula for the proxies is
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-  ~ _  1 /2  (V .6 ) (y x . . .  yN) = JEGO '

In the random effects model we would shrink towards the mean

as in (IV.10).

Holbrook and Stafford relaxed the constancy of permanent 

income by using a set of exogenously given growth rates. They 

grouped people on the basis of observed characteristics (occupation, 

sex, race, education, age) and assigned growth rates from national

averages. In our framework this would be Y.. = aitYi w^ere t îe

ait are growth rates subject to an arbitrary normalization. 

With a-t = 1, we just have to estimate Y^, the individual's

permanent income in year one. 

algorithm is straightforward. 

R, weighting by growth rates.

The generalization of our 

We use weighted averages to form 

The extension is similar to the
unbalanced sample algorithm in that ip = d' ^d affects the 

weighting scheme. So we end up with a concentrated likelihood 

function that just depends on ip. Details are given in the 

Appendix.

Up to this point we have been modeling the consequences of 

permanent income in terms of its effect on observed consumer 

behavior. Now we will construct a Model 3 example by looking 

at the causes of permanent income. A common suggestion is to 

construct a proxy based on individual characteristics such as 

age, education, race, etc. This would extend our model (with 

one type of income) to
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(V.7) Citk ” Ak Yit + u itk

Yit “ Yit + Vit

Yit = *it * + fi

where x is a set of observed characteristics and f . picks

up omitted characteristics that do not vary over the sample 

period. So we are specifying a richer prior for permanent

income.

In the permanent income proxy

Y = x ’_n + f ,

x would include characteristics that are known both to the in­

dividual and to the econometrician. They are causal variables 

used to project future income. But there are additional 

variables known to the individual, e.g., various dimensions of 

ability, which are unobservable to the external observor (witness 

the poor explanatory power of cross sectional income generating 

functions). These make up f . and have to be inferred by observing 

their consequences; i.e., using average consumption (in addition 

to average income) as a proxy for permanent income. Using 

value of home as a proxy has this flavor as does Liviatan's (1963) 

suggestion to use past and future consumption as instruments for 

measured income.

Finally, we take the f.'s in (IV.16) and pull them towards 

their mean. This is like using average community income as an
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indicator of an individual's permanent income and forms the basis 

of Friedman's (1957) reinterpretation of Duesenberry's (1949) 

relative income hypothesis.

A more careful look at our interpretation of jn brings us to 

Models 2 and 4. The problem is that some of the observed 

characteristics, such as schooling (S), may be correlated with the 

unobserved characteristics (f), e.g., "ability." So we have 

the simultaneity problem captured by Models 2 and 4.

To be specific, consider estimating the returns to schooling 

in the presence of an unobserved ability variable:

(V.8) Si =

Y . =1

X. f . + w.1 l l

y S . + f. l l

Y . +  V . .1 it

X_Y. + U . . ,2 l it i = 1,... ,q 
t = 1,... ,T

C and Y are the logs of consumption and income and our interest 

centers on y, the rate of return. This could fit our model 2 

framework except that there is no within group variation on S 

and so V is not positive definite. In fact £_ does not depend on 

y and the identification must be based entirely on 0. So the 

independence of the transitory u and v is irrelevant for the 

identification of y.
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The between group information is

0 = dd' + hh' = DD'

with
1

l+XlY
X2 (1+Xjj)
p.

Of, h = Y
x 2y

For any D such that DD' =

that D = DP pip = 1 . So

r a sinCOS a
p =

-sin a cos a

0 there is a rotation P such

set

and try to obtain a from the restriction that d3/d2 = X2 =

This gives

(V.9) (d3cos a - h^sin a)/(d2cos a - h2sin a) 

(dgSin a + h^cos a)/(d2sin a + h2cos a).

Unfortunately (V.9) reduces to d~/d2 = h3/h2 independently of a 

It results in a reduced form restriction without shedding any 

light on the rotation angle. We should note, however, that X2 

is identified. Just reinterpret f to be that part of "ability" 

that is uncorrelated with S. The problem is that then y looses 

its structural interpretation.

The basic difficulty is that we cannot separate w^ from f..

A solution is to have an indicator that intervenes between

f and S, e.g., an early test score: T^ X.f^ + ei (an a^ult
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score would have the disadvantage of being dependent on S). 

This is a powerful piece of information; now we can identify y 

with just a replicated income series:

(V.10) T i Alfi + ei

s.1 X2fi + "i

Y.l

it Y. + V . . 1 it

Y S . + f .’ 1 1

Assuming that v. and e^ are independent, we have

a2 0 0
0 = dd* +

yaw

Ya y 2a2 ' w

with d' = (A, A. 1 + yX2)af

So d = 12 gives us
'13

rd.

id.
up to scale factor r = 1/d,'

22 23

32 033
J I ? Y2 I

<6

r i Y 1

= rdd' + w

We can solve for r by equating the different estimators of y

(V.ll) (033 - rd3)/(023 - rd2d3) = y

" <e23 ‘ rV 3>/<e22 " r32>
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giving

(V.12) r - (S22e23 - e*3J/(»33^  ♦ e22a* - 2023a2I3>.

Then we estimate y from either of the formulas in (V.ll).
This amounts to taking the between group covariance Q_, sub­

tracting off the effects of the common ability variable (dd *), 

and computing either the regression of Y on S or the reciprocal 
of S on Y.

Our model 4 example is based on the Chamberlain-Griliches 

(1974) reanalysis of Gorseline’s (1934) data on brothers. In 

their model the group is a family and an attempt is made to 

allow not just for omitted family effects but also for variation 

at the individual level. This is accomplished via a prior for 

the unobservable (a^.) which invokes exchangeability at two 

levels, both within and across families:

a. . 13 = f. +l 9ij'

Sij ■ xlaij + w. . 13
Y. . 13 - Y sij + a. . 13
Y. . 13 = Y. • + 13 v. .13
c . . 13 = XOY. . 2 13 + u. . 13

So we are taking another pass at the model in (V.9). We will

be more successful this time because a. • and w .4 have different iJ i3
group structures: a^j has a family component f. but by
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assumption w ^ . does not. So we can separate them by appropriate

grouping without bringing in an intervening indicator between

a . • and S. .. This gives us a more unified model, avoiding the H  13
(V.ll) assumption that an IQ test and measured income are

"parallel" measurements on the same underlying dimension. The

cost of this unification is more stringent assumptions on the

equation specific errors u, v, and w. For in (V.9 - V.13) we

just used the between group J3; but here the within group £

plays a crucial role, requiring independence assumptions for

u . ., v .., and w ...13 13 13
Without the proportionality restriction across S and 

"a" in the C and Y equations we would have

S. . = A,a. . + w. .13 1 13 x3

Y . . = y ,S.. + X_a.. + v . .13 1 13 2 13 ij

C. . = Y-»S. . + A~a. . + u. .13 2 i] 3 13 13

Then by Theorem 1 the exclusion of Y from the C equation is 

sufficient to identify the model provided ^9^3 ® and

(a^, â ., a2) > 0. Corollary 3 shows that the proportionality

restriction “ ̂ 2/^3 does not alter the identification

condition. The (II.4) solution for t = Qg/a| is

(V.14) (a13°12 " °23all)/ (a13dld2 + a12dld3 “a23dl " alld2d3)*

Then given t we take the within family covariance £, subtract
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off the individual effects of the common ability variable 

(rdd'), and then estimate the y's by regressing Y and C 

on S, using these corrected within family moments.
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Appendix A

Maximum Likelihood Estimation of the

Reduced Form

The reduced form of our model is

(A.D Y y *  - ?ij + + ’ijk

= X, . 5. + e. ..'13 'k 13k i = 1,...,p 

j = 1,... ,q 

k = 1,...,r

where i indexes families or groups, 3 runs over individuals 

within a family, and k indexes the equations. We assume that 

the n < r family factors P. — (f.....f. ) are distributed 

independently of v as a random sample (over families) from a 

multivariate N (0 ,$):

((A-2) Efihfi'h’
*hh'-if 1 ■ 1 
0 otherwise

The v ’s are assumed to be a random sample (over individuals) 

from a multivariate N(0,E):

(A . 3) E v . . .  v • =  {13k 1 3 k
kk • if i=i and j*j

0 otherwise
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Since the e’s corresponding to different families are 

independent, it is convenient to group the observations by 

family. Within a family we have the p individual observa­

tions on the first equation followed by p observations on

the second equation, etc.:
(A.4)

y = (ylll',*,'ylpl'yll2'*,,'ylp2 '•••' yqllz * ’ ’ rYqpr) e

Then letting y,, 2C, and denote the ith family blocks:

yi ” • • 
i *
jy. IC M

/*ili

x.~ip/

e. =~iX. = i .

we have

y± = (Ir S> X.)5 + e± , i = l,...,q

(A.5) y = Z6 + e

where
Z(A.6) %  S’
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i s  a  q x l  v e c to r  c o n s i s t i n g  e n t i r e l y  o f  o n e s ; 0  i s  th e  

K h a tr i-R a o  p ro d u c t :

i f  A = and B = th e n  A 0  B

BJ

Rao and M itra  (1 9 7 1 )} .

L e t D « (dT 

e f f e c t s  and l e t

th e  d is tu r b a n c e

V
. . d r ) be th e  c o e f f i c i e n t  m a tr ix  o f  th e  fa m ily  

0 = p $ p ' . Then g iv e n  o u r  o r d e r in g  o f  th e  d a ta  

c o v a r ia n c e  m a tr ix  i s  b lo c k  d ia g o n a l :

(A .7) E e e ' “  J q  ®  #

w ith

(A. 8) ?  = §  ®  ‘‘p ip  + !  ®  i p -

So th e  lo g  l ik e l ih o o d  f u n c t io n  i s  ( a p a r t  from  an  i r r e l e v a n t  

c o n s t a n t ) :

(A .9) L ( y |z , 6 ,0 ,1 )  -

-  5  l n | n | -  I  (y -  Z6) ' ( I  g  n " 1 ) (y -  _Z6).
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The f i r s t  t a s k  i s  t o  s i m p l i f y  ft an d  | f t | .  We l e t  t h e  c o lu m n s 

o f  S = ( s ^ . . . s r ) b e  a  s e t  o f  l i n e a r l y  in d e p e n d e n t  common c o n ­

j u g a t e  a x e s  o f  0 a n d  Z:

(a . i o )  s ’ z s = i ,  s ’ e S =

( b r a c k e t s  d e n o te  a  d i a g o n a l  o r  b lo c k  d i a g o n a l  m a t r i x :

V  O ’ ’
A.
\ o

0

) .
n

0

S i m i l a r l y  we c h o o s e  T = ( t , . . . t  ) s o  t h a t

(A .11) t ' t  = I  , t ' jU * T  = { p , 0 >
-  -  -p  —  -  -  _

( t .  = £ /  / p  ) . Now S &>, T c a n  b e  u s e d  t o  d i a g o n a l i z e  ft an d

f a c t o r  ft :

(A . 12) (S ®  T) ft (S T) =

I r  <£> K  0 } ®  {P '  0 >

ft 1= (S <£> T) { (1 + T ^ p ) " 1 , ! , . . . , (1  + ,1 }  (S <£> T)
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Let mh = 1 - (1 +'Fhp)_1, h=l,...,n so that

(A.13)

Q_1 = (S $  T) (Ir <0 I - Q  } <g) {lr Q } ) ( S  @  T)

= £ ®  _ p  I  {mi r ’ I I  ,mn* 0  ®  ~P~P ’

Then with c, = /h l /p sh and C = (c^...^) we have the

following decomposition of Q

(A. 14) ft-1 * | ®  Ip - CC* (x) £p£p .

The determinant of Q can be obtained from (A. 12):

I . n
| SS TT I | f i |  =  n  (1 + pT. )

h=l

| s s ’ <g) TT* I = |z_1 gj Ip | = |Z|"P

and so
(A. 15)

|n| = M f j i  f1 1

This can be expressed in terms of c  and E by letting
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M = J J , Mx = { / n ^ / p  , . . . ,  )/itin /p }

s o  t h a t

(A. 16) ?  = SM

C*E C = M S  Z S M = { m , / p , . . . ,  m /p }■x. "v “V "V- -*»■ •!> 11

:{ Yx/  ( l+ p y p  r • • • r * n /  (1+P^n ) } .

Then we h av e

nn
(a . 17) |i_  - pc'z c| = n (l - nt ) = n (i + py )

~ n '  '  '  h = l  h h = i  n
- l

and

(A .18) « = E F I -  PC EC'V -̂TI >V-
- 1

I t  w i l l  a l s o  be  u s e f u l  t o  h a v e  an  e x p r e s s io n  f o r  0 i n  

te rm s  o f  C and  E ( th u s  d e m o n s t r a t in g  t h a t  o u r  r e p a r a m e t e r i z a t i o n  

i s  o n e - t o - o n e ) .  F o r  t h i s  we u s e  (A .1 0 ) :

0

?  ® < s - f ^ i , . . .  , ’Fn , Q  }
*v

-  J  ? { » x ...........»n ,  0  } s ' s

E C{
pY. pV

} c ' e,9 •  •  •  9
n
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and  so

(A ,19) © = ?C{1 + pY .,, . . . , 1  + p¥ } c ' s .
x * n  -

The r e p a r a m e te r i z e d  lo g  l i k e l i h o o d  f u n c t i o n  r e d u c e s  t o  
(A .20)

L (y |z ,« 5 ,C ,E )  = -2 3  <n | Z |

t  |  * n | l n -  pC EC|

(£_1 <& I  
- ~ p

c c '  <£ V J t ’ ) )  (y -  Z6) . 
'  ^P~P -  ~~

The p ro b le m  now i s  t o  s i m p l i f y  t h e  e x p o n e n t  te r m .  We l e t  

e  = y -  Z6 be  t h e  v e c t o r  o f  r e d u c e d  fo rm  r e s i d u a l s .  Then 

w i th

an d

\ e .\  ipk>

e . =
i  — 1 , • . . ,  g

k — 1 , .  . . ,  r ,

t h e  f i r s t  te rm  i n  t h e  e x p o n e n t  i s : 
(A .21)

? '< ? q  ®  ( J _1  ®  J p ” e
k ,k  =1
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= pq t r  E- 1 R,
-X-

w h ere  R i s  t h e  c o v a r ia n c e  m a t r ix  o f  t h e  re d u c e d

/ S i x  ? l r \

/ ■ 1 E = . . . .  . , R = ------
pq• •

Y ? q l ®qry

form  r e s i d u a l s

e ' e .

: r e m a in in g  te rm  i n  t h e  e x p o n e n t  i s

22) e '  ( I ,  
-  ~ q

<g> ( c c '
1

£ £ X X- p ~ p ) ) e

n q i 1 1
= £ E e . (c, c. ®  I  £ ) e  •

h = l i = l -h ~ h ^P~P • -v 1

n r q i V
= E 

h = l
* , 

k ,k —1
, Z.  ch k c h k '~ i k  
i = l

I  £ e . ,  ’

n r ?  2= E 
h = l

E , 
k ,k = l

E p 
i = l

C, j C, 'hk hk © . <■ © «.. ti k  i k

2 V
= P q t r  C *  9 ,

w here  R i s  t h e  c o v a r i a n c e  m a t r ix  o f  t h e  a v e ra g e r e s i d u a l s ,

a v e ra g e d  o v e r  e a c h  f a m ily
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and

R = —  E E .

T hus o u r  c a n o n i c a l  fo rm  fo x  t h e  l i k e l i h o o d  f u n c t i o n  i s

(A .23) L ( y |z ,6 , C , Z )  = -E2. l n  | E J

+ j  l n j l n  -  p c 'z c |

-  2 2  t r  Z- 1 R + 2 ^ 2  t r  c ' r c_

Now we a r e  r e a d y  t o  d i f f e r e n t i a t e  L an d  s o l v e  f o r  Z an d  C.
1

S in c e  C EC i s  a  d i a g o n a l  m a t r i x  and

k » < |  -  - ? ? h ? h 5 -

we h a v e

(A .25) 3 i n | l n  -  p c ' s c | / 3 E - 1  = ?  p  E / ( l - p c ^  | M

= pZC<l+pY , . . . ,1+pT }C*Z 
Ml -L n  U u

p© (A. 1 9 ) .



86

So s e t t i n g  9L/9E ) i m p l i e s  t h a t

(A .26) E = R -  0 .

The f i r s t  o r d e r  c o n d i t i o n s  f o r  a r e

(A .27) 9 L /9 c h = -p q E c h / ( l - p c h E C^) + p 2q Rch

~ ( 0 ) f  h —I f • 4 • / H /

and  so

(A. 28) RC = -  E C { l + p t  , . . .  , l+ p ¥  }-v. o  -v -v x n

We c a n  e l i m i n a t e  E from  t h i s  e x p r e s s io n  by u s in g  (A .2 6 ) , (A .1 9 ) ,  

and  (A .1 6 ) :

(A. 29) EC = RC -  0C

= RC -  EC{1 + p Y , , . . . , 1+py }c 'E C

= RC -  E C { ¥ ,, . . . } ,-V- X I*

and  so
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(A. 30) ZC = RC f l / d + W p  ,. . . ,1/(1+^) }.

Then with

(A. 31) Ph = i(l+pfh )/(l + Yh) and A =* {p^,... ,pn>

we substitute (A.30) into (A.28) to obtain

(A.32) RC = RCA,

So the columns of C are eigenvectors of R in the metric of R.

The eigenvectors corresponding to the n largest roots should

be chosen since we will show that L is an increasing function

of the P.. The scale of the c, can be obtained from (A.28) and n -*n
(A.16) :

(A.33) c ' rC =

chRch = Vh/p = (pph - 1)/(1 - Ph ), h = l,...,n

Finally we can use (A.19),(A.30) and (A.31) to derive the M.L.

estimate of 0:
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(A. 34) 0 = ZC{l+p'l'1 ,...,l+p'i'n }C E

= -E- RC {IPjJl-PJ ,...,Pn (l-Pn)}c'R.
p-1 ~ ~

Tests of our model can be obtained by evaluating L at the 

maximizing values of the parameters. So we need to simplify
the following four terms from (A.23): |E|, ? |l - pC Ec|,

3) -1 4);trE R, and ’trC RC.

1} |E, = |R - ©| = |R| |ir - r "1©! .

Let H = C d + p y , ,__,1+p^} C E so that

0 = EH (A.19)

R_10 = R_ 1 (R - Q)H = (I - R"1 0)H.

Note that the (non-zero) roots of H coincide with those of

{1+p^,.. . ,1+p^} c'EC = {Wxr.. .Yn) (A.16) .

Thus H has non-negative roots, I + H is non-singular, and 

r"1© = H d + H ) " 1.
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S in c e  th e  r o o t s  o f  H a r e  t h e  (n o n -z e ro )  r o o t s  o f  R 0

a r e  ^ / ( l + ’F^) = P ( 1_ph ^ ( P " ^  '  and  so

(A .35) |E | =
n

r | n < P ( i - p , ) / ( p - i )  
’  h = l  n

(A. 36)
2)

I  -  pC EC
n
n ( i -  

h = l

(A .37) 3)

^ h  n !
--------- n W  - i ) / ( p - i )
i+ P ’J'h h = l

(A .1 6 ,A .31) 

n
t r E  1R * t r £ _ 1 (E+O) = r  + E (A. 1 0 ) .

~ I  *  M l  h = l

(A .38) 4) trC*RC = -  t r C ' EC{1+pY ,, . . . , 1+pT } (A .28)
-v. -V H P ~ X H

(A. 16) .
n

= -  E Y. 
P h = l h

So t h e  e x p o n e n t  te rm s  c a n c e l  i n  (A .23) and  a p a r t  from  an  

i r r e l e v a n t  c o n s t a n t

n(A .39)
L* = "2 a { A n l R l + £n n P d - P j / t e - D }

h = l

+ 3. £n n ( ~ i  - l ) / ( p - l )  . 
z h = l  ph
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A l ik e l ih o o d  r a t i o  t e s t  f o r  n f a c to r s  v s .  n+1 f a c to r s  
2

can be b ased  on th e  la r g e  sam ple x d i s t r i b u t i o n  o f

” 2 (Ln -  I» +1) . R and R a r e  com puted u s in g  th e  M.L. e s t i ­

m ate o f  5 (see  (A .4 4 )) . To d e te rm in e  th e  d e g re e s  o f  freedom , 

n o te  t h a t  c o n s t r a in in g  6 t o  have ra n k  n l e t s  us deteTtn-ine a l l  

th e  e lem e n ts  o f  0 from  th e  f i r s t  n  co lum ns. S in ce  0 i s  

sym m etric  th e r e  a r e  rn  — f r e e  e lem e n ts  and so  r e s t r i e

t in g .• th e  model t o  n f a c to r s  in s t e a d  o f  n+1 im poses

r  (n+1) -  £ * ! > ’> -  [ rn  -  “ f c i l  ] = r - n
2 2

c o n s t r a i n t s . Thus

(A.40) - 2 ( L * - L * +1) *  X2 ( r - h ) .

The M.L. e s t im a to r  o f  6 (g iv en  fi) i s  th e  GLS e s t im a to r  

6* = [Z* ( Ig z '  ( Ig #  Q_1)y .

I f  th e  same X’s  ap p e a r  i n  each  e q u a tio n  th e n  we have

(A .41) z '  ( Ig fi- 1 )Z = 

q ' . -1
i l " * *  ? i ) (£ J p  "  S  ** ~ p^p ) (? r  <x>? i )

= E_1 # T - pCc' B- -XX -XX



91

= Z-1  Wxx + (Z_1 -  pCC) Bxx

w here

xx
q I i q . ,z x. x., b = — z x. £ £ x.-XX P i = p l ~ p '- p - l

W = T -  B -x x  -XX -XX

and  w e ' l l  b e  u s in g  s i m i l a r  e x p r e s s io n s  f o r  W and B~xyk -x y k

Then u s in g

(z_1- pcc')-1 = z - zc(c'z C -  -  I ) ” 1^~ ~ -  — ~~ -  — -  P — ~ _

t o g e t h e r  w ith

C'Z C = { T i / d + p ^ i )  ^ n / a + p ^ ) }  (A .16)

and

6 = Z C{ •l+p?1 , . . . , " l + p 'F n } C*Z (A .19)

g iv e s
(A. 42) ( Z"1 -  pCC* ) _1 = Z + p 6 .

w
The re m a in in g  te rm  i n  6 i s  

~ g q
z ' (I #  Q- 1 )y  •  Z (Z-1  g ) X /  -  c c '  x !£  £ ' )y .
>  ■  1 i= 1  r  - 1 —  ^ l - p - p ' i i *
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_ 1 1The Z ( Z #X.)y. term can be partitioned into r blocks, each 
i

with as many rows as there are exogenous variables. The 

block is

r kk’ r kk’
Z a T = Z a Tk ’=l ^ k ’ ~XX ~ T k

where 6_, = T T . Thus the whole term can be written-Tk „xx -xyfc
as <Z"X5f Txx) ST with i ; - 1 1

rp j- t • • • T r *

~ -1 <S_, = B B ~Bk -XX ^xY}r 
the identity

(I ®  T ) ~ r -xx

we have

(A. 43) Z* (I_ «

Similarly the second term is p(Cc' 5XX) w i t h  
a , * ’ ' ~

and 6 - ( £Bl , ..., 6Br ). Then using

5t ’  <Ir + <ir *  bxx^ b

o ' h y  = + t'?"1- PS?'’ ®  Sx x '^b

Combining (A.41), (A.42), and (A.43) shows that the GLS 

estimator of 6 pools the "within" and "between" OLS estimators, 

weighting by their precision matrices;

(A.44) 6* - (Hw +

where
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- 1
.'XX

H 1= E(6 - 5) (6 - 5) ' = E #  W.
ww

s 1 = E<?B - ?’ <5b -  “ p *£ + ?£ ’ .

tTiIf the X's differ across equations then the i block 

of Z is no longer I X.but rather the block diagonal matrix 

{Xii»•••/Xir^ where

is the set of exogenous variables appearing

in the k̂ -h equation. Now the k,k block of the E part of 
z '( I q ® n’ b z  i s  not okk but akk’T ^ ,  with T ^ ,  =

= E x\x. This can be written as E * T where the
i_l~ik~ik ~ ~xx

k,k block of T is T , and * id a generalized Hadamard ~xx ~xtxv
product (Rao, 1973). Similarly the "between" term of
z'(Iq @  Q-1)Z is pCC * Bxx . Then using the analysis of

covariance identity T = W + B we have '•XX ''-XX -̂ xx

(A.45) « ’ (I <Sfl_1>Z = E"1 * Wxx + (E_1- pCC*) * Bxx .

The Z (1^ (x n )y term can be partitioned into r 

which the k^“ is

blocks of
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£ I°kk ?x„y • + <okk -  P^kk' ’?x,.y, ' 1 
kJ k v 1V kk =1

where y, ' element of CC . With unequal X ’s

the M.L. estimate of 5 based on just the within group deviations

is not 6 but rather (conditional on Z) the Zellner "seemingly w —
unrelated" GLS estimator:

GLS

11a Wxlxl
crlrW_

xlxr
5 lkTT Z a W 

k=l xlYk

rlo W
xrxl

rra W V TTZ a W 
k=l x y. rJk

w

x x r r

GLSThere is a similar estimator (using just the between
-1group variation) which replaces Z by

0 + i  Z)"1 = z”1 - pCC* (from (A.42)). Thus

(A. 46) z' (I &• Q_1)y = ( Z”1* W) 6 GLS + ! [ ( © +  i B)_1 
~q ~ i ~ ~ ~w p p - B] 6

GLS
B

The M.L. estimate of 6 (given fi) is a matrix weighted average 

of the within and between group GLS estimators, weighting by 

their precision matrices:

(A.47) f  -  <5„ - hb)_1(hw«Sls + hb«=ls)
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with

-1H =[E(6GLS- 6) (6GLS- 6)'1= (Z_1 * W)
— w ~w ~ ~w ~ ~ ~

H =[E(6GLS- 6) (<SGL- 6)1 = [i(0+ )-1* B] .

The joint maximum for 6 and ft is obtained by iterating on 

the M.L. equations for Z and C (given 6) and the M.L. equation 

for 6 (given Z and C).
The GLS procedure can be simplified by concentrating the

intercepts out of the likelihood function. This is possible

since the M.L. estimates of the hyperplanes corresponding to

each of the equations pass through the sample means. For

if g^ is an eigenvector of Z + p0 then A (x) g^ ©  ts an

eigenvector of I So as long as Z + p0 has full rank,q **-
then r of the eigenvectors of I ®  ft span the column space of 

Z (2>Ir <£>£ which spans the r intercept variables. Thus if 

we partition 6^ into the intercept 6^^ and the slppe coefficients 

62^/ then conditional on the GLS estimate of 6^^ is OLS

(e.g., Rao and Mitra (1971), chap. 8):

where y^ is the grand mean of y^ and X is the row vector of 

grand means for the exogenous variables (other than the inter­
cept) in the kfc equation. So the 6.. can be concentrated out
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of the likelihood function simply by replacinq each variable 

by its deviation from the overall sample mean and proceeding 

without intercepts.

We conclude this Appendix by displaying the asymptotic infor­

mation matrices for the one factor version of our models. Stacking
1the parameters into a vector, £, we let 5 = -qplim(— 92L/9£9£’)

— ~ q-*-°° •
Then we can approximate the variance of the M.L. estimate of E 

by V(£) = 5 . It is straightforward but rather tedious to show

that

(A.48) T q plim (H + H )/q as given in(A.47)

~dd'
„-l .= n^E +n2cc’

“act'
= (pq/2)J '[(E”1- cc*kx)(E" 1- c c ') + (p-l)cc' (x j c c ’IJ

r«d» = (0)

?6o’ = (0)

tda' = n3 ^ ’ (£ 1 “ pec')]J

where = p2ql7(i+Y), n2 “ P2q (l-pV)/(1+pW ), h, » pqd+pW) .

The r(r+l)/2 distinct elements from the upper triangle of E are

contained in o' = 'alla12CT22* • ,crlr* ’ *CTrr^ ’ a r

vector obtained by stacking the columns of E: a « vec E. Then

J is the r by r(r+l)/2 matrix with J . . « 1 if a. = a. and J . . = 0 i j ij
otherwise.

Since the M.L. estimate of E is R-dd' we can write the concen 

trated log likelihood L in terms of 6 and d. Then we have
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(A .49) | d d . = -q  P l i » ( |  32L /3 d 3 d ’ ) = q  E_ i  + C2 E’ ^ d 'E -1

w ith  £  = p q ( p -1 )V (l+V )/(1+pT)

= P q r(p 2- P - 4 H 2-  (P2“ 4 p + ll)¥  + ( p - l ) ) / ( l + p n 2.

The in fo rm a tio n  m a tr ix  S i s  b lo c k  d ia g o n a l in  6 and d and so 

(A .50) V(d) «  ( | d d >)-1  “  *  v2 ^ '

w ith  V1 ~ “ V?-i and \>2 ~ ^ 2 ^ ^ 1 + ^ l ^ ^  *

F or th e  s t r u c t u r a l  form  o f  o u r model we r e p la c e  d by y 

and l e t  E -  tyy* + & w here A i s  th e  d ia g o n a l m a tr ix  {a^ # . . . r

a 2 r a 2 }. A lso  l e t  u » y 'E  c = E \ / ( 1 + p y  ) ^  , and 
K „ -  - ~  '

r e i n t e r p r e t  XR to  in c lu d e  yg i f  k £  K. We p a r t i t i o n  = l ak j
\ Bk /

f o r  k £  K w ith  ® ag t and a l s o  s e t  up

Then we have

(A .51) = q p l im f l^  + gB) /q  as in  (A .47)

§ r r '  "  Ki £_1 + k2 ^ '

= TT “  * 3

2
- a a '  = 2^ -  1 * (£ 1 “ 2®®‘ ) + H F - (®®*}*(£®*)
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\5  = K . C

-ya' = k5 ~ c (c * c ) ’

’ to’ “  k7 (5 *S ) ’

“a(Y*Ta’ )~

-6 ( Y 'T a ')  *” y s ~y  (Y* ttf* )

w here {c} i s  th e  d ia g o n a l m a tr ix  w ith  th e  e lem en ts  o f  c on th e  

d ia g o n a l and

* pqy ' ( ( P - D t ^ i + ( t 2+ 2 t + p ) ] / ( l  + py)

<2 = p q tp te -U T ^ y  2 + ( (2p -3 )T 2-2 p x -p 2)y + ( t 2+ 2 t +p ) ] /( l+ p u  ) 

K3 = U2 [ (p - l)y  (py+2) + l ] / ( l + p y ) 2

k 4 “  P<Jy tp (p-1) ty 2 + 2 (p - l )T y ‘ 4- ( t + 1 )  ] / (1+py) ‘̂ 2-

*5 4  P q [ (p - l)T y  + (T+1) ] /( l+ p y  )^ 2

y
k6 “  -p q (T + p ) /( i+ p y )  2

7 = I (p - l)y  (py + 2) + i ] / ( i + p y )
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Appendix B

Unbalanced Groups

We w il l  work w ith a s in g le  unobservable. The g e n e ra l iz a tio n  to  se v e ra l

fa c to rs  i s  n o n - t r iv ia l .  Let a  = 1 , . . . ,  N index th e  d i f f e r e n t  fam ily  s iz e s .

There a re  p in d iv id u a ls  in  each o f q fa m ilie s  o r groups. The t o t a l  number 
N

o f fa m ilie s  i s  q = £ q and pq = £ p q i s  th e  t o t a l  number o f  in d iv id u a ls, Ot ry ct exa= l u 2
in  th e  sample. The observab le  f  i s  sca led  so th a t  <J> = o_ = 1  and 0 = dd’ . 

fo r  fa m ilie s  o f  a given s iz e  th e  o b serv a tio n s  a re  arranged as in  (A.4 ) . Then

th e  fa m ilie s  w ith  p^ members a re  follow ed by th o se  w ith P2 members, e tc .  With 

t h i s  arrangem ent o f  th e  d a ta  th e  covariance m atrix  o f th e  reduced form d i s ­

tu rb an ce  v e c to r e i s  th e  b lock  d iagonal m atrix

(B .l)  Ee e ' = {I ® f t . , . . . ,  I ® ft*,}

ft = dd’ ® I  i. ' + £ © 1  , a  « 1 , . . . , N .~ a  ~p ~p '  ~pr a  r a  r a  1
As in  (A .13) we have th e  fo llow ing  decom position o f ft^ :

(B .2) ft 1 = £_1 © I - ma  ss* ® I  «, '
r a  p r a  r a

where

(B.3) (d d ') s  = 4>£s, s 'Z s  = 1

s = £ "1d /(d » £ "1d ) 1/2 , ip = d '£ -1 d

Pa^
m = —«----- a  = 1 , . . . ,N  .a  . .1 + p <p r a

But now we cannot re s c a le  s to  absorb m /p  . In s tea d  we have to  keep 

ip= d '£  ^d, th e  g en e ra lize d  s ig n a l-n o is e  r a t i o ,  as a se p a ra te  param eter.

As in  (A. 15) we have 
(B.4) |fta | = |Z |P“  (1 + pai«  .
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l-'or fa m ilie s  o f  s iz e  th e  exponent term i s  ev a lu a ted  as in  (A.21) and 

(A.22) to  give

(B.5) -p  Q i. „ - l„— =—  trZ  R +
P Q ra\x m s 'R  s a  -  ~a~

So we d e fin e

(B.6) R =
N
£ p a R a= l r a nap q

1 N
(B.7) R = -----  Z, p q m R-  - cx= 1 eta, a'-a

p q

1 N Pa^
---- Z p q ——— Ra=l r ana  *1+p ip r aP q

and our can o n ica l form fo r  th e  l ik e lih o o d  fu n c tio n  i s  

(B.8) L (y |Z , 6, s ,  Z, ip) =
1 -  7 , , 1 N

- j  pq £ n |z | - y  a =l qa  £n(1 + Pa ^

- t r  Z 1r + 2"̂  s ’Rs

The c o n s tra in t  s ’Zs = 1 i s  imposed by c o n s tru c tin g  th e  Lagrangian 

(B.9) A = L - E3. T s ’Zs

(we should n o te  th a t  in  (A.23) th e re  i s  th e  im p lic i t  c o n s tra in t  th a t  C’ZC 

i s  a d iagonal m a trix ; b u t i t  does n o t have to  be imposed s in ce  th e  uncon­

s t ra in e d  ML s o lu tio n  s a t i s f i e s  th e  c o n s t r a in t ) .  S e tt in g  3A/3Z-  ̂ = (0) 

g ives

(B.10) Z = R - t Z s s '  Z.

The f i r s t  o rd e r co n d itio n  fo r  s i s

(B .l l )  9A/3s = p q R s - p q x Z s  = (0)

Rs = t  Z s .

S ince (B.10) im p lies

(B.12) Zs = Rs - T Z s

Zs = ——  Rs,
1+T
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wc can e lim in a te  Es from (B .11) and (B.12) to  ob ta in

(B.13) Rs = X R s , X = ——
1+T

Thus s i s  an eigenvecto r o f  R in  the  m etric  o f R. We w il l  see th a t  th e  s 

corresponding to  the  la rg e s t  eigenvalue should be chosen. The sca le  o f s 

i s  determ ined from (B.10):

(B.14) s ’Rs = 1 + T = —i—

Then from (B.3) we ob tain
(B.15) d = Es = f f -  R s

So d could be obtained from the dual o f (B .13): 

(B.16) R- I d = y  R_1d .

7- dd' ip ~~

E can be obtained from (B.10) and (B.15):

(B.17) E= R

The above an a ly s is  i s  a l l  co n d itio n a l on th e  s ig n a l-n o ise  r a t io  ip.

The concen tra ted  lik e lih o o d  function  L(ip) i s  formed by ev a lu a tin g  L a t  the

maximizing values o f E and s fo r

eva lua te  1)L(ip). So we have to

(B.18) 1)
E = R - --------s- Rss':A, A_ (1+r)2

-  R(I - ---- SS
(1+T) ~

(B.19) | s |  = l Rl (1 -  —  2 !
( w r

•  1*1 1*7 = 1 Rl ( i  - V

(B.20) 2> -1 1 TE = R + ----- s s ’A- V 1+T
(B.21) trE -1R = r

A, + Y~- s ' Rs 1 + T ---- --

s 'R s)

r  + t .

.-1.

(B.18)
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CB.22) 3)
s 'R s = X(1 + T) = T

So th e  exponent term s cancel and

LOW = -  £n |R| - £3. £n (1 - X)

1 S- Z, q £n (l + p lb)2 a=l na 1 Fo r7

This is  an in c re as in g  func tio n  o f X fo r  X < 1 and so the  la rg e s t  roo t 

sou ld  be chosen in  (B .13).
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Appendix C

ML E stim ation  o f  Model 3

Our s t a r t in g  p o in t i s  equa tion  (A.23 ), s p e c ia liz e d  to  one f a c to r :

( c . i )  L(y |z»  c , E)

= - I? I + 2" ^ n (l - p c ’Ec)

t r  E_1R ♦ E~1 C'RC

where now

R = (Y -  X n d ') '(Y  -  Xnd’ ) /p q  

R = (Y -  X n d ') ’J J '(Y  -  X n d ') /q p 2 

= (Y -  X rjd ')’ (Y -  Xqd’ ) / q

an^ '2 = Iq  ® ~p i s a s e t  group in d ic a to r  dummy v a r ia b le s .  Then 3L/9n = 0 

can be s im p lif ie d  to

( c .2 )  n = (wx  + cbx)_1 (wxy  + cbxy)z_1 d/tp 

where ? = 1 / ( 1  + ptp)

C oncen tra ting  r| out o f  

(C.3) L (y |z ,  c , E)

We w il l  proceed c o n d itio n a l on ip, and so we have th e  c o n s tra in t  th a t  

2 ~~ = 1 /(1  + PVO • This i s  imposed by forming th e  Lagrangian:

(C.4) A = L -  c 'E c  .

Then 3A/3E = 0 g ives

(c - 5> ?  = 4 ?  Tv -  « dd '

and 3A/3c = 0 g ives

(C.6) Qc = q  C E c

“h e re  2  ’  ! y * K c  S n & A y  •

th e  lik e lih o o d  fu n c tio n  g ives 

= -  £n |E | + |  £n ?

* * 3 r  " v y H y '^ v )  5



104

Combining th is  with (C.5) we have

(C.7) Qc a — ■ -Srv T„ c

which can be re w r it te n  as

(C.8) Q_1d = | T y_ 1 d

|  -  i  e / d  * 5 «  .

Exam ination o f  th e  co n cen tra ted  l ik e lih o o d  fu n c tio n  in  (C.10) shows th a t  

th e  sm a lle s t ro o t should be chosen. Then given p we can so lv e  fo r  £ from 

(C.9) 5 = p / (  I  -  1 + ?) .

The s c a le  n o rm aliza tio n  fo r  c fo llow s from (C .6 ): c ’Qc » q £ £ . Equival

c n t ly ,  th e  n o rm aliza tio n  fo r  d i s

(C.10) d ’T _1d = -------- - --------  .
p q (l + £ ip C)

F in a lly ,  we use (C.5) and (C.7) to  w rite  th e  co n cen tra ted  l ik e lih o o d  

fu n c tio n  as a fu n c tio n  j u s t  o f  ip:

(C .l l )  L(ip) = -  EH. £n ( l  _ p + p£) + 3. £n£ .

So our a lgo rithm  reduces to  a one dim ensional m axim ization problem .
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Appendix D

ML E stim ation  o f  Model 4

We can apply (C.2) to  o b ta in  

( o . i )  n = (wx + cbx) _1(wxa + sbxa)

where A = Yr. But now Z i s  co n stra in ed  by £ = tXX’ + U, and so we have 

ip = X’E 1X = p /(x p  + 1 ) , p = X’U_1X , and 

(0 .2 ) Z-1 X/ip = U_1X/p .

S im ila r ly  (C.3) can be s im p lif ie d  to  

(o .3 ) L(y |z»  3 , u , n  = - Ea. £ n |u | - ^n ( i  + t p) + a

trU -1Ty + H ( i  + t p ) c ’Q c /( l - ?)

w ith

Q = —  T. + - i —  [ ( i  _ £ )ba + .
1+xp ~A 1+xp ~A ~AX~X ~XA

c ’Uc i s  f ix ed  c o n d itio n a l on p and x, and so we maximize th e  Lagrangian 

(0 .4 ) A = L - H l -  c'Uc .

9A/3c = 0 g ives

(d. s ) q_1x = | y _1x
p = qC(l - 0 / ( 1  + TP)

where th e  sm a lle s t ro o t should be chosen. The s c a le  o f  X i s  given by 

X’Q_1X = p /p .

Then th e  co n cen tra ted  l ik e lih o o d  fu n c tio n  i s  

(0 .6 ) L(p, x , U, T) = - £ n |u | -  E3, x,n ( l  + tp)

+ |-  £ n (l + t p ) / ( l  + (p + tp ) )  - ~  trU _1TA + | p .

This must be maximized n u m erica lly  as a fu n c tio n  o f  p , t , and U. The grad­

ie n t  and h e ss ia n  o f  L re q u ire  th e  ev a lu a tio n  o f f i r s t  and second o rder 

d e r iv a t iv e s  o f  th e  e igenvalue w ith re sp e c t to  elem ents o f  th e  q u ad ra tic  

forms in  (0 .5 ) .  E xpressions fo r  such d e r iv a t iv e s  a re  given in  W ilkinson 

(1965), Jen n rich  and Robinson (1969), and JOreskog and G oldberger (1973).
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I f  I' = I then th e  above a n a ly s is  reduces th e  ML problem to  th e  lev e l 

o f  d i f f i c u l t y  o f  a f i r s t  o rd e r fa c to r  model. JOreskog (1967), Jen n rich  

and Robinson (1969), and JOreskog and G oldberger (1973) have had co n sid e r­

ab le  success in  th e  num erical m axim ization o f  f i r s t  o rd er f a c to r  model 

lik e lih o o d  fu n c tio n s  s im ila r  to  (D .6). However, i f  T i s  unknown, then p e r­

forming such a m axim ization on th e  re s id u a ls  from each i t e r a t i o n  o f  th e  GLS 

e s tim a to r  o f  F may be q u ite  c o s t ly .  One a l te r n a t iv e  would be to  in c lu d e  T 

in th e  h i l l- c l im b in g  a lg o rith m , so th a t  only one sequence o f  v a r ia b le  m etri 

i t e r a t io n s  would be used on (D .6). Another a l t e r n a t iv e ,  which seems a t t r a c  

t iv c  i f  th e re  is  a la rg e  number o f unknown param eters in  T r e la t iv e  to  X, 

i s  to  co n c en tra te  F and n out o f  th e  lik e lih o o d  fu n c tio n  v ia  GLS, and then 

use some m o d ifica tio n  o f  a g ra d ie n t method to  maximize over X, U, and T. 

This would be s im ila r  to  JO reskog 's (1970, 1973) trea tm en t o f  th e  second

o rd e r fa c to r  model.



Chapter 4

Education, Income, and Ability Revisited 1/

Introduction
This paper reanalyzes the 1964 CPS-NORC veteran’s data.

A description of the sample and the data is contained in Griliches 

and Mason (1972); we have reproduced part of their table 1, 

summarizing some of the major characteristics of the sample. Our 

interest centers on the schooling coefficient in a semi-logarithmic 

income generating function with the log of income (LlNC) as the 

dependent variable. We want to know how much of the observed co­

efficient is due to a selectivity bias, simply reflecting the 

correlation of schooling with ability instead of a value added 

by the schooling itself.

This question was examined in some detail by Griliches and 

Mason. They introduced a variety of background variables and a 

test score (AFQT) in an attempt to control for the individual's 

initial ability. Some of their results are reproduced in table 2.

We will follow them in devoting most of our attention to the 

schooling increment variable (SI). It is the part of total schooling 

(ST) incurred during or after military service. Since the test 

is administered prior to entering the service, it can be regarded 

as a measure of "early" ability relative to the schooling incre­

ment. As shown in section V this is quite crucial to our approach.

We see in table 2 that introducing the background character­

istics and the test score (equation 1 vs. equation 4) produces a



Table 1: Means and Standard Deviations of Variables:
Veteran*s Age 21-34 in 1964 CPS Subsample~
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Variable
Mean or 
Fraction 
in Sample

Symbol in 
Subsequent Group

NameSD Tables
Personal background:

Age (years) 29.0 3.5 Age
Color (white) 0.96 * C
Schooling before 
Service (years) 11.5 2.3 SB

Total schooling 
(years) 12.3 2.5 ST

Schooling incre­
ment (years) 0.8 1.4 SI

AFQT (percentile) 54.6 24.8 AFQT
Length of active 
military service 
(months) 30.7 16.9 AMS

Father’s school­
ing (years) 8.7 3.2 FS

Father's occupa­
tional SES 29.0 20.6 FO 1

Fa. stat.

Grew up in South 0.29 * ROS S

Grew up in large 
city 0.22 ★ POC Reg. bef.

Grew up in suburb 
of large city 0.05 * PO S j

Log current oc­
cupational SES 3.47 0.68 LOSES

Actual income 
(weekly dollars) 122.5 52.4 • • •

Log actual in­
come 4.73 0.40 LINC

NOTE: N = 1,454 for 
Fa. stat. = father's

this and subsequent 
status; reg. bef. =

tables based on the 
region before.

1964 CPS.

*The standard deviation for a dummy variable is equal to f(l-f), where 
f is the fraction in the sample having the requesite characteristic. 
Thus, it is computable from the numbers given in the first column.



Table 2: Regression Equations with Log Income as Dependent Variable

Regression
No.

Coefficient (Standard Error) Of

1 Other Variables R2Color SB SI ST AFQT in Equation

I .2548 .0502 . 0528 Age, AMS 11666
(.0472) (.0042) (.00702)

2 .2225 .0418 .0475 .00154 Age, AMS .1732
(.0479) (.0049) (.0072) (.00045)

3 .1904 .0379 .0496 ... Age1 AMS, fa. stat., reg. bef. .2129
(.0473) (.0045) (.0070)

4 .1714 .0328 .0462 .00105 Age| AMS, fa. stat., reg. bef. .2159
(.0479) (.0050) (.0071) (.00045) h-* Q

5 .2544 • • • .0508 AgeI AMS .1665
(.0471) (.0039)

6 .22245 .0433 .00150 Age, AMS
(.04793) (.0044) (.00045)

7 .1907 .0408 Age1 AMS 1 fa. stat., reg. bef. .2115
(.0473) (.0041)

8 .1732 .0365 .00097 Age, AMS, fa. stat., reg. bef. .2141
(.0479) (.0046) (.00044)

9 .1335 ... • • • • .00252 Age, AMS 1 fa. stat., reg. bef. .1794
(.0487) (.00041)

10 .1742 • • • • • • ... Age1 AMS, fa. stat., reg. bef. . 1578
(.0488)

NOTE: See table 1 for definitions.
*
Variable groups are denoted as follows: fa. stat. = fa. occ. and fa. schooling; 
reg. bef. = ROS, POC, POS.



110

decline in the SI coefficient from .053 to .046, which is only 

12%. Our analysis takes off from equation 4, asking whether 

there are important dimensions of ability, unaccounted for by 

the available variables, which seriously bias the SI coefficient.

Section II trys to obtain identification from the residual 

covariance matrix. An argument very similar to the one in 

Chamberlain and Griliches (1974) can be used, with the availability 

of a test score substituting for the within family replication 

on brothers. It turns out, however, that the results are very 

sensitive to some of the more questionable assumptions of the 

model, and we conclude that by itself this approach is not very 

informative. In section III we structure the background coef­

ficients in the income and test equations by imposing proportion­

ality restrictions derived from an aggregation assumption. This 

analysis, standing by itself, is also inconclusive. But by 

meshing the two approaches we obtain in section IV a plausible 

model which is quite informative about the SI coefficient. Our 

substantive finding is that there is little evidence of bias from 

the omission of important dimensions of initial ability. Section 

V asks whether a similar result holds for total schooling (ST) 

or for schooling before service (SB). Working just with ST 

we find that the AFQT cannot be used as a measure of early ability 

relative to ST. This is because SB does have a value added in

determining the test score. But regarding the test as a

measure of late, post-school ability results in an unidentified

model. So we turn to a more careful examination of the SB-SI
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split, trying to identify the bias in the return to SB.

Our estimate is that it is quite small once we have con­

trolled for the available background variables. There is a 

brief concluding section.
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II. Structuring the Residual Covariance Matrix

We will work with the following model:

(II.1) Y = LlNC = XCj+ SIPX + Hy x + u

0 = LOSES = X£- + SIP2 + Hy + v

SI = X£g + Hy^ + w,

T = AFQT = XC4 + Hy 4 + t

where X includes COLOR, AGE, AMS, and the background charac­

teristics POC, POS, FO, FS, SB, ROS. H is a combination of un­

observed characteristics such as genetic ability and parental 

wealth. Although it is presumably correlated with the observed 

background characteristics, we can transform the model to make 

II and X uncorrelated.

Let b  =  ( x ' x )  ^x 'h and rewrite 
~ H f A •*>. *v «*.

(IX.2) XCk + nvk = X(£k + bH(XYk ) + (H - XbH(X)Yk

= X£k + Hyk , k - 1 .... 4.

Now X is orthogonal to H by construction, and we can treat X as 

exogenous. The point is that to the extent H is correlated with 

X, it does not bias the estimates of and in a regression 

that includes X. So we reinterpret H as that part of initial 

ability (after SB but before SI) that is uncorrelated with X. 

Then we must also reinterpret the £'s to include not only the
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direct effect of X but also the indirect effect via its corr­

elation with the originial H. The possibility of decomposing 

the SB coefficient into its direct and indirect components

will be considered in section V.

Then surpressing the slope coefficients, which are uncon­

strained and hence do not help to identify the 3's, we can sub­

stitute T for H in the Y and 0 equations:

d i . 3) y = siei + t  y x / y 4 + u -  y x/ y 4 t

o  =  s i e 2 +  t  y 2 / y 4 +  v -  y 2 / y 4 t

Now we have an errois in variables problem caused by the measure­

ment error in T. Define pN , the net reliability of T, as the 

fraction of the variance of T which is due to the systematic 
influence of H: pN = Y42oR2 / (Y4 ^h2 + afc2)/ and iet

a. = Y i / Y 4 » Then we have the following bias formulas (e.g. 

Griliches and Ringstad [1974]):

(II. 4) plim a. = a. - (1 - pM ) a / (1 - r. SI
plim 3X = 3X + (1 - PN ) a b

T,SI
/ (1 - rT , gI)

where = bY>T_ SI , Bi = by ,SI. T

and all of the variables have been replaced by their residuals 

from a regression on X. Solving for (3̂  and simplifying gives

(II. 5) 3^ - plim (by,SI ~ ^ ^ PN ^ Y , T  ^ p rSI^ "* ?SI,T^ *

and there is a similar formula for 32 .
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So we can obtain estimates of 3. and 82 conditional on 

P . Whether or not there is a useful prior bound on pN depends 

crucially on our interpretation of H. One interpretation is 

that H (or X L  + y.H) is the "true score". Then the test ad­

equately measures the relevant initial characteristics except 

for an error (t) which could be eliminated by replicating the 

test. In this case itte reasonable to assume that t is uncorr­

elated with everything else. Furthermore, to the extent that

the AFQT test is comparable to civilian IQ tests, we can bound 
2 2the reliability (p - 1 - /oT ) at say p .6. Then using 

2(1 - p) = (1 - Rt x ) (1 - pN ) we have the bounds on 8^ and 82 

given in table 3. We see that over this range of reliabilities 

there is not much bias in the schooling coefficients.

Table 3: Estimates of (II.3) Conditional 
on the Reliability

.60 .45 .042 .108

. 70 .59 .044 .112

. 80 .72 .045 .115

.90 .86 .046 .117

.95 .93 .046 .118

2 , 2 1 ” °t /aT is the reliability of T

= y 4 / <y 4 is the reliability of T net of
x(aH2 = 1).
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An alternative, more general interpretation of H is that 

IQ tests are designed ho predict academic performance and need 

not capture (or appropriately weight) the set of characteristics 

relevant for economic success. Under this interpretation the 

test is only capturing a piece of the relevant initial condi­

tions. Since it is being used outside the context it was de­

signed for, fewer prior restrictions can be imposed. We can­

not restrict the reliability and considerable care is required 

in making independence assumptions about t. For example a low 

reliability means that much of the test distribution is being 

assigned to the residual t. But if the test is a reasonable 

predictor of academic success and if H is not capturing that, 

then t and the schooling residual w will be correlated.

So we will try to estimate the reliability. The reduced

form is

(II.6) Y = Hd, + u + $ jW

O = Hd2 + v + e2w

SI = Hd_ + w

T = Hd. + t4
where

Y1 + Bi Y3

d = y 2 + B2 y 3

y 3

y 4
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The reduced form residual covariance matrix is ft with~N

(II.7) ft = (wij) = dd' + T

= (u..) = a2 + >.2a21 w P., Poa 2 1 2 w L a 2 1 w
a2 + f?2a2 v 2 w e2a2w

a2w

where

u, v,

up to

write

(II.8)

we have scaled H so that a„2 = n
t, and w are independent. So

a scale factor Y-. Then let T 

the upper left 3x3 corner of ft 

ftr = xdjdj' + T~.

and we 
'to.

dT = 14
*24
'34

= 1/Y,

as

have assumed that 

gives us d^ =

= ■l/ ( ^ 44Pn ) and

Pl 
Pl 
Pl

So given t we can solve for

, — 2 (II. 9) a , = toQQ - rd_w JJ J

61 = (“l3 ‘ t3 13 3 ) / ow

®2 ~ *M23 ~ Td2d3’/°w .

But we can also solve for

12 ‘ t313 2^/o w  ‘
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i is determined by making the separate solutions for 8^ and 

agree with the solution for their product. This yields:

(1 1 ,1 0 )  t = (W13W23 "  “ l 2 U3 3 ^ ^ W13d 2d 3 + W23d l d 3 “  W12d 32“ W33d l d 2 )

So i is identified and we can use (II.9) to solve for 6^ and 
2This is equivalent to substituting pN = 1/(<d44t ) into 

the unscrambled errors-in-variables formula (II.5).

An alternative interpretation of this procedure is based 

on instrumental variables. When we use T as a proxy for H in 

the Y equation (II.3); the problem is to find an instrument 

for T. But 0 is uncorrelated with u and t and is correlated 

with T because they both depend on H . Similarly Y can be 

used as a instrument for T in the O equation.

Unfortunately we cannot relax the independence assumptions on 

u, v, t, and w without making the model unidentified. But if u 

consists largely of luck which results in a higher income than 

an individual's schooling and ability would have predicted, then he 
is likely to also have a higher occupational status, implying a 

positive correlation between u and v. On the other hand, if u 

and v reflect the individual's preferences for income vs. status, 

and if, given his schooling and ability, he can trade off one for 

the other, then the correlation could be negative. So we want 

to relax the no correlation assumption and try to obtain identi­

fication in the sense of a non-trivial bound. In the Chamberlain-

Griliches (1974) model the results were not sensitive to this 

assumption and a sharp bound was obtained. We can either allow a
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non-zero correlation between u and v, or alternatively (and 

equivalently) rewrite the Y equation to include 0 and keep the 

E(uv) = 0 assumption;

(11.11) Y = SI&., + OX + Hy, + u.

Then in the reduced form we have a).,o= d,d_ + 3_3_a2 + Xa2 .12 1 2  1 2  w v
As in the Chamberlain-Griliches model, conditioning on X will 

identify the rest of the model and the non-negativity constraints 

on the variances will generate a bound on X .

We will also attempt a sensitivity analysis of the covariance 

between t and w. To do this we structure the residual covariances 

in terms of two distinct but correlated kinds of ability, economic

(H.) and scholastic (H2). Then 'we have

(11.12) Y = SIB. + V l + u

0 = s i b 2 + H1Y2 + V

SI = M 3 + 1w

T = H1K1 + H2k2 + t*.

The test is assumed to measure a combination of both kinds of 

ability. The simultaneity problem results from the correlation 

between and H2 , which we express in terms of a shared set of 

characteristics H:

H1 = «*1 + el 

H2 ™ H^2 + e2'

(II. 13)
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with independent of by construction, and as above H, 

e., and are orthogonal to X by construction. Then we can 

rewrite

(11.14) SI = Hy 3 + w 

T = Hy. + t

where t and w are uncorrelated with H but now t is correlated

with w.

This model is not identified although again there is the 

possibility of useful bounds. The reduced form Q is now

(11.15) Q = dd' + au + M 2 « w 8icrlutw

c2 + 8*a2 v 2 w 82 w 8na.2 tw

tw

So conditioning on a we can choose initial values for 8^ and

83 and take

14 8tl

co.24 ;tw to get d which, as shown above, lets us

34

solve for new values for 8^ and 82 which can be used to repeat 

the process to convergence.
The results of applying these models to the veterans data 

are shown in table .4. We see that the model wxth both X and
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o. constrained to zero gives highly implausible schooling coef­

ficients. So it is not surprising that quite small changes from 

zero in X or a imply very substantial changes in the ft’s. That 

a 10% increase in occupational prestige would be associated with 

either a .6% or a .9% increase in income, for given background, 

schooling and ability, is not implausible. But as X varies over 

this range the schooling coefficient ft̂  varies from .02 to .05. 

There is a bound in that higher values of X than indicated would
imply a 2 < o .  But lower values are not ruled out and so the bound w
is not useful over the controversial range for ft, from zero or .02 

to .05.

Note that the table is quite informative on the test's re- 
2 2 >>liability p= 1 - a /o^ . The low ft's for X = 0 arise because

the test is estimated to be very unreliable and so bv CT v m is

given a large downward adjustment (with a corresponding upward

adjustment to by T .x SI). Even with X / 0 we can bound p at .7

in the sense that higher values would imply restrictions on the

reduced form likelihood that would be testable. Now these low

reliabilities suggest that the common omitted variable we are

picking up is not IQ, at least if the high reliabilities quoted

for standard intelligence tests can be applied to the AFQT. Thus

the two factor model with a. 0 is quite relevant, tw
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a b l e Residual Covariance Estimates of (II.1), (II.11) and (11.12:

g231 p* p * *PN X v- ***tw
-.043 -.089 . 33 .08 .0 .0
.019 .053 . 38 .15 .063 .0
.031 .080 .43 .22 .073 .0
.044 .109 .70 .58 .083 .0
.020 .054 . 32 .06 .0 .133
.031 .081 .31 .05 .0 .164
.042 . 104 . 30 .04 .0 .189
.062 .150 .29 .02 .0 .231
.086 .204 .28 .01 .0 .262

Note: The residual covariances are based on OLS regressions
of LINC, LOSES, AFQT, SI on AGE, AMS, POC, POS, FO,
FS, SB, ROS. All rows of the table are equally likely, 
giving different interpretations of the M.L. reduced
form by making different assumptions about X and c. .tw

2 2*p = 1 - a /o is the reliability of T.
2 2 2**PN = ^4 ^4 + at is r®liability of T net of

X(aH2 = 1).

***rtw is the correlation between t and w in (11.14).
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In that model we find that again rather small departures 

from a = 0 imply substantial changes in the B's. Since any 

t,w correlation between zero and .2 or .25 is not implausible, 

there is little direct information here on the schooling coef­

ficients. There is an upper bound on the 6’s; higher values than 

shown would imply negative values for p .

So our analysis of the residual covariances has not been very

informative. Most important is the negative inference that given

our prior range of plausible values for £5̂ , we cannot accept the

restricted model with A = 0 and cr. = 0 .  But to get more out of tw
these residual covariances we have to put more in. The next 

section looks at imposing more structure on the background coef­

ficients .
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III. Structuring the Background Coefficients

The proportionality restrictions we will use are based 

on aggregating the individual's characteristics into a single 

factor (G), "human capital” or "capacity." Then we can write 

the structural form as

(III.l) Y = X ^  + SIB1 + Grx + ux

t  - ? i h  +

G = Mtt

SI = XxC4 + M?

G + U3

+ U 4

where Xx includes AGE, AMS, POC, POS and M includes the observable 

background characteristics FO, FS, SB, ROS.—  The u's are allowed 

to be freely correlated across the equations and so there are 

no restrictions on the unobservable characteristics.

Then surpressing X^, the reduced form is

(ill.2) Y = Mfir^ + ?3X) + e = M6X + ex

T = M63 + e 3

SI “ + e4 ,

with 6X = <$3rx + <$4Bx . Letting A = (6X<53<$4) and lets us

write the constraint as

(III.3) Ay = (0).
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This will uniquely determine y if and only if rank A = 2. So 

there is a necessary order condition that M contain at least two 

background variables. If there are just two, we simply do OLS 

and solve for and r^ from the unconstrained reduced form, 

i.e., indirect least squares. With more variables in M the re­

strictions can be imposed via limited information single equation
3 /

maximum likelihood (LISE). For we can substitute T for G in the 

Y equation:

(111.4) Y = SIB^ + Tr1 + ,

thereby freeing up the background variables to be used as instru­

ments for SI and T. Applying LISE to this equation is in fact full 

information maximum likelihood (FIML) since the other two equations 

in the system are just identified.

Adding the occupational SES equation gives

(111.5) 0 = SI02 + Gr2 + U2

and the reduced form is

(111.6) 0 = M(jr2 + p 2) + e2 = M62 + e2

with <S2 = S-jr2 + $4^2* So now ~ = su^3ect to two

constraints:

(III.7) A(y± y2) (0)
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wi th ~P1 =
1 '

0 1 H2 =
0

1

"rl ”r2
_"B2 .

The necessary and sufficient condition for identification of the 

subspace spanned by and v? is that rank A = 2. Given that 

subspace we can recover the f31 s and r's by excluding 0 from the

Y equation and vice versa.

The overidentifying restrictions in this model can be im­

posed by a straightforward extension of LISE. For as in (III.4) 

we can rewrite the Y and 0 equations as

(III.8) Y = S I ^  + Tr +

0 = SI82 + Tr„ + \>'2 .

50 these two equations are just identified relative to each other:

Y excludes 0 and 0 excludes Y. Hannan (1967) showed that for such 

a subsystem, limited information maximum likelihood (LIML) can be 

obtained from a canonical correlation analysis which is a straight­

forward extension of the LISE eigenvalue problem. Sinde the T and

51 equations are just identified, LIML is FIML.

Applying the Y-T-SI model to the veterans data gives fL = .063 

with an (asymptotic) standard error of .041. The concentrated 

likelihood function in table 4 confirms the imprecision of this 

point estimate. Adding the 0 equation as in (III.8) gives 8^ = .028 

but again the concentrated likelihood function is quite flat. The 

next section attempts a more informative analysis by combining the 

proportionality restrictions with the residual covariance structure 

of section II.



Table 5:. Concentrated Likelihood Function for g-.

Y - T - SI, (III.l)

Bi ■■ .00 .02 .03 .04 .05 .06 .07

L.R. : .27 .56 .70 . 81 .93 1.00 .93
X2 : 2.59 1.15 .72 .43 .14 .00 .14

Y - 0 - T - SI, (III.l) + (III.5)

el = .00 .02 .03 .04 .05 .06 .07

L.R. : .80 .98 .99 .96 .86 .74 .59
P  :

.45 .04 .01 .09 .30 .61 1.04

Note: L.R. = Likelihood ratio; x2 = -2 Log (L.R.;I is approximate ly distributed
as x2 (1) •

126
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IV. The Jpint Treatment: Meshing the Two Approaches

The basic idea behind our joint treatment of covariance

and slope restrictions is to extend the proportionality assumption 

across both the observed and unobserved characteristics. So G, 

the "human capital" variable, is expanded to

(IV.1) G = Mi + Hy_

where, as in section II, H is the part of initial ability that is 

uncorrelated with the observed background characteristics M. Then 

surpressing the exogenous variables that appear in all of the 

equations (X^) we have

(IV.2) Y = SI6X + Gr, + u 

T = G + t

G = M tt + Hy_

SI = M£ + Hy. + w.

So the coefficient of H in the Y equation is constrained to be

y^ = r y^. This model is similar to the one in section IV of the

Griliches-Mason paper, except they excluded H from the SI equation

We will refer to that model as Yl, and the model without the y . = 4/ 4
constraint as Y2. Both of these models assume that u, v, t,

and w are uncorrelated with each other. Following section II we

will also consider the model Y3 in which a. 0.tw
The interpretation of Y3 needs additional comment. It is a 

hybrid combination of the two factor model of section II and the
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one factor structure for the background coefficients introduced 

in section III. As in tll.12) we specify

(IV. 3) Y = SI61 + Gĵ r-ĵ  + u

T = GlKl + G 2k 2 +

SI = Me' + G2y ' + w ' .

This disaggregates the human capital variable into the bundle of 

characteristics relevant for economic success, G-., and for 

scholastic success, The correlation between G^ and G2 is

represented via their common dependence on a shared set of attri­

butes G:

(IV.4) G1 = Gipx + e;L

G2 = G^2  + e 2 '

where e. and e2 are independent of G and of each other. In 

section II this was a completely general way of specifying the 

correlation, but now the model is completed with a more detailed 

prior for G:

(IV.5) G = M tt’ + Hyi.

Thus M affects Y and T in a constrained way, working only through 

the general ability factor G. Then we can rewrite this model

so that it is identical to (IV.2) except now t and w are correl­

ate d.
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There is, of course, the less constrained model:

(IV.6) Gx = Mtt + H a + ex

G2 = MK2 + H 4, +

But this model is not particularly estimable from our data; 

it essentially takes us back to section II.

Note that the SI equation is not subject to the propor­

tionality restriction. Even if the constraint were reasonable 

for ST, which is unlikely, there is no reason to constrain the 

way ST splits into SB and SI. This point is quite important. 

For if the proportionality restriction did hold across the 

SI equation, then the rank condition for identification would 

fail identically.

As for estimation, the two stage procedure used by Gril-

iches and Mason is quite reasonable for model Yl. They con-

structed a T from a first stage regression of T on M and used 
5/

the fitted values to get 3, = b„ ~ . In model Y2, which 3 1 Y ,SI•T
does not exclude H from SI, there is again a reasonable two 

stage procedure. But now we must include SI as well as M 

in the first stage T regression. For in general all of the 

included exogenous variables must be used in the first stage 

of a two stage least squares procedure (see, e.g., Brundy and 

Jorgenson [1974]). It may seem odd to use SI to construct T 

since the schooling increment is obtained after the test.

But provided y. / 0, SI can serve as a proxy for H. To clar­

ify this we write the system as
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(IV. 7) Y = Slf-k + Tr± + (u - r^t)

y oT = M( tt - ?Yo/Y4) + SIy _/y 4 + (t - w) o * i  Y 4

SI = + Hy. + w.

Then rewrite the T equation so that its residual (t') is

orthogonal to SI:

(IV. 8) T = M(tt - CY3/Y4) + SI[1 - % / ( ff2 + Y^ag) Jy 3/y 4 + t'.

So we regard SI as measuring H subject to error, and thus the SI 
2 2 2 2 2coefficient is proportionately reduced by Y4hjj/(Y4OTT + aw ) * the

ratio of "signal" to "total" variance (net of M ) .

How H and w are independent of t (by construction), and

also of u and t. So again SI factors out of the likelihood

function; i.e., it's exogenous. The T equation in (IV.8).contains 

all of the exogenous variables and its residual is freely cor­

related with the Y residual. So LISE applied to the Y equation

in (IV. 7) is FIML.

In the Y3 model, SI becomes endogenous and must be instru­

mented along with T. For we have

(IV. 9) Y = Slfiĵ  + Trx + u - r^t

T = Mii + Hy „ + t3

SI = M£ + Hy4 + w,

and so SI is correlated with t if a / 0. The residual covariance

matrix E is
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(IV. xq) E
-r, a1 tw

a tw + Y3T4

2(recall a„ = 1). Since this is unconstrained (except for 

inequality constraints) and since the T and SI equations are just 

identified, we can obtain FIML by applying LISE to the Y equation 

with SI and T endogenous. In fact this is just the estimator 

given in section III.

Our estimates for the first two models are shown in table

6. As expected, model Y1 gives a close to the bv _ esti- x i »oi • jyi
mate in table 2. But the test coefficient has increased by 

a factor of 9.4 over T M  SI an^ a ^actor °f 3.2 over

bY,T.SI This reflects the low reliabilities: p = .35 and

PN
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Table 6: Models Y1 and Y2.

Coefficient

SI

(standard error of)

G

Y1 .047 .010
(.007) (.0008)

Y2 .020 .0094
(.008) (.0009)

Table 7• Concentrated Likelihood for 8^ in Model YO3

61 .00 .02 .03 .04 .05 .071

L.R. .01 .10 .23 .42 .66 1.00
x2 8.62 4.53 2.96 1.72 .82 .00

Note: L.R. = Likelihood ratio; x2 = -2L0G(L.R.) is approxi
mately distributed as x2 (1)•
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Table 8: M.L. Estimates for Model Y03

Dependent
Variable

Coefficient of
COLOR SI G H

Y = LINC .237 .071 .0099 • • • a2 = u .121

0 = LOSES .091 . 183 .025 • • • a2 = 
V

.313

T = AFQT 18.00 . . . 1.0 • • • 419.7

SI -.10 • • • ... -.737 aw = 1.209

Note: G = .091FO + .386FS + 4.523SB - 4.346ROS + 5.344H

ruv = .136, rfcw = .429, p = .32

POC, POS, 
enter SI 
of A in

AGE, AMS appear 
unconstrained. 
(II.8) is .083.

in a 
H is

.11 of the equations; FO, FS, SB 
1. The

, ROS 
estimatenormalized so that a2 =

H

Table 9: M.L. Estimates for Model YO3 with "1>1 0 .

Dependent Coefficient of
Variable COLOR SI G H

Y = LINC .234 .049 .0096 • • • Q C 
m II .121

O = LOSES .085 .129 .024 • • • a 2 =  
V

.313

T = AFQT 17.97 • • • 1.0 • • • at = 405.0

SI -.112 • • • .00 a 2 = 1.754w

Note: G = .100FO + .458FS + 4.444SB - 4.256ROS + 6.528H
?uv = -114' *tw = -215 ' P = -34

POC, POS, AGE, AMS appear in all of the equations; FO , FS, SB, ROS 
enter SI unconstrained, H is normalized so that a2 = 1. The estimate 
of A in (II.8) is .071. H
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In model Y2 we have very similar results for r-. but the

3 estimate drops to .020 with a rather small standard error of

.008. So a likelihood ratio (L.R.) test for y^ = 0 gives a

very significant y (1) = 60.6. But the low reliabilities for

T imply that much of the T distribution is being assigned to the

residual t and calls into question the independence of t and w.

Allowing for a a covariance leads to model Y3, which has al- tW A
ready been given in table 5. There we have a rather high 3^ = .062

and the t,w correlation is quite substantial: r. = .32. But

the concentrated likelihood function is quite flat and a L.R.
2 . .test of a = 0  gives an insignificant y (D “  1 . 2 .  D i s c r i m i n a t i n g  

between the two models will require more information.

So we add the status equation:

(IV. ll) Y = SIP ĵ + Trx + u - r^t

O = SIP2 + Tr2 + v - r2t

T = M tt + Hy3 + t

SI = M£ + Hy. + w.

Assuming that t and w are independent gives model YO2 and dropping

that assumption gives YO3. In both models a is left unconstrained uv
If the residual covariance matrix (Z) were unconstrained, then 

FIML for YO2 could be obtained via Hannan's extension of LISE, 

treating SI as included exogenous, M as excluded exogenous, and 

T endogenous. For YO3 we would take T and SI as endogenous,



135

obtaining the estimates given at the end of section III. But in

fact E is constrained:

(IV. 12) 2 — 2ru I t auv + r lr 2°t rlat r iatV7a 2 +

E =
av + " r2a t r~a.2 tw

” t + - < 1 atw + ^3^

CT2 + y 2 w  ' 4

So the upper right hand corner is constrained with

(IV.13) O i3/ a 23 = rx/ r 2 and a14/ o 24 =

and r 2 can be obtained from the slo p e s , as in section III?

thus we have two constraints in model Y03 and with cr , = 0 we tw
have

(IV.14) h l3/ a 23 = r1/ r 2 , a 14 = a24 = 0

for three constraints.

The unrestricted I gives

C 13 a 1 4 “ -3.57 -.013

O ~ _ O~ A -11.20 -.34823 24

with r. = .009, r 2 = .026 and r 1/ r 2 = .359. So ~ ,319

is quite good but a 14/a 2 4 = ,037 seems terrible. In fitting the
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Y-T-SI version (Y3) , however, instead of Cj. = -.013 we ob­

tained -.082, which is much closer to satisfying the constraint.

This instability suggests that tf-.. is not being estimated very 

precisely. To check this we constrained it at different values 

and found we could get to cr..̂ = -.12 with little decline in the 

likelihood and little change in Gj a * no^ surprising that

imposing both of the restrictions in (IV.13) gives an insignifi- 
2cant x (2) = 2.16. These constraints cannot be imposed with simple

analytic techniques, and so we have used a general numerical

minimization procedure adapted for such problems by K. Joreskog.

It is important to have reasonable starting values for the algorithm

fortunately our previous results provide very good ones. Details

are given in the Appendix.

Model YO2 calls for a. = 0 .  But the unconstrained tw
^2^ ~ -r2atw = "■•348, and it is quite stable for different values

of Imposing the restriction, while conditioning on the two
2restrictions in (IV.13), gives X (1) = 4.88 which is very surprising

if a. is really zero. So the non-zero correlation between t and tw
w in YO3 (t.w = .43) is being estimated quite precisely. The con­

centrated likelihood function for in the YO3 model is given in 

table 7. At last we have reasonably strong information over the 

critical range from g^ = .01 to .05. The M.L. estimate is .07

with y^ = -.74. But there is little evidence that y. is in fact
. . 2 * negative; constraining y^ = 0 gives X (1) = .97 and = .049.

Values of as low as .02 or .03, however, are quite strongly 

ruled out. Since model YO2 gives g^ = .021 (similar to Y2), it 

can be rejected.
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There is an additional aggregation possibility, namely 

combining SI and G into a measure of late (post school) human 

capital. This would imply a proportionality restriction across 

SI and G in the Y and 0 equations: ^1/^2 = ri/r2* With Y03 

we get = .38, r^/r2 = .37 and with = 0: ~

r^/r = .40. The decline in likelihood from imposing the re­

striction is barely perceptable with x2 (1) ~ .13 and for Yj 

constrained to zero, x2 (D = . 2 5 . It is shown in the next 

section that such proportionality constraints across late in­

dicators cannot by themselves identify the model; but they do 

indicate the fruitfulness of the aggregation approach we've 

been following.
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V. The Returns to SB and ST

This section examines the return to schooling before service 

(SB) and to total schooling (ST). We are interested in seeing 

whether our results could be obtained without the SB-SI split, in 

order to make comparisons with other samples which do not have this 

information. The approach directly parallel to ours would replace 

SI by ST and remove SB from M, leaving just the other background 

variables B = (FO, FS, ROS). Using the Yl model in this way gives 

essentially 6^ = by s t B' aS we wou-*-̂ expect. But both the Y2 

and Y3 models give significantly negative estimates for the schooling 

coefficient! The reason for this striking conflict with the SI 

results is that we can no longer use T as a measure of "early" 

ability. For in the model

(V.l) Y = ST6j + Gr, + u

T = BQ + HY + t

we must assume that SB does not affect T, given B and H. We did 

obtain estimates of an SB coefficient (n) in the previous section, 

but that was after reinterpreting H to be orthogonal to M = (B,SB). 

Thus, we were estimating ri + y, bT, which could be positive
J  H f  b b  • £5

even if n = 0. But now we have direct evidence that r) / 0; for 

to reconcile the SI results with the peculiar ST results, we must 

assume that SB does have a value added in increasing T, so that T 

cannot be regarded as a measure of preschool ability.

In fact, it is better to regard T as a measure of post­

school ability, although this is not strictly correct since SI

intervenes between T and Y. Then we have
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(V.2) Y = Grx + u

T = G + t

G = BQ + STr) + Hy_

ST = Bp + Hv + W.—  '4

We can estimate r-. by substituting T for G in the Y equation and 

using B and ST as instruments for T. This gives r,=.011, quite close 

to our previous estimates. But n is still not identified and 

neither is 6^ = r^n. We conclude that late indicators alone

cannot identify the model, at least not without replication within 

families.

So our methodology does not generalize to samples which do not

specify the part of schooling received after the test. But we

can still ask whether our conclusions generalize. In particular

we find that b„ OT n is not seriously biased upwards. Is

this also true of by gB B gj,. and hence of the average return

b ?Y,ST.B
We will summarize the selection bias in by gB B gI by adding 

the following equation to our SI models (eg., (IV.2))s

(V.3) SB = Bp + Hy5 + w* .

This equation is also of interest because it suggests we can ob­

tain more efficiency by using SB as an additional indicator for 

H. To check this, we could solve SB out of the T and SI equations 

to obtain a more fully "reduced" form; then allowing for correlation
Vbetween t,w, and w we could try and determine what parameters
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are identified and what, if any, is the efficiency gain. But

there is a much simpler answer. For we have shown that the model

can be transformed so that H is uncorrelated with SB, and hence

SB can be regarded as exogenous. So the H in (V.3) is uncorrelated

with H, and the SB equation factors out of the likelihood function,

without affecting our inferences on the other parameters.

Thus estimating y_ requires more information. If we assume □
that the return to SB is the same as for SI, then given the

section IV estimates of B^ and r,, we can estimate n from B^ = pr^. 

Comparing this estimate with n = n + y_b„ lets us obtainXX J O 1J • fj
yc = bOT, „ _. Using the YO3 model with y. restricted to zero □ o h5 f  H • Jd 4
gives B-̂  = .049,and r^fy = ,043, implying a slight downward bias in 

the return to SB. Corresponding to this we find that normalizing
A

g = 1  implies a negative y_ - -.41, but the point estimate 
is quite imprecise. Allowing for a declining marginal return to 

schooling, i.e., r-̂ n > Bjr would only make y^ more negative, as 

would using the YO3 estimates with y^ unrestricted. We conclude 

that given the measured background variables th a t are available, 
there is little evidence that important unmeasured characteristics 

are producing an upward bias in the SI or SB coefficients.
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VI Summary and E x te n s io n s

This paper has t r i e d  to  assess  the value o f some new methodology by 

applying i t  to  a su b s tan tiv e  em pirical problem: the b ia s  in  income - 

schooling reg ressio n s caused by the  omission o f an ea r ly  ’'ab ility * ' v a r ia b le . 

A s tra ig h tfo rw ard  approach is  to  hold constan t as many observable i n i t i a l  

cond itions as p o ss ib le , and in  our d a ta  th e re  are  s e v e ra l . But th is  can 

be inadequate fo r two reasons: the proxies may be measured w ith e r ro r  and 

they may not include a l l  o f the  re le v an t v a r ia b le s . We have used the t e s t  

score as an example o f each o f these  ca ses . In the f i r s t  case we assume 

th a t  the  t e s t  adequately  measures the i n i t i a l  cond itions except fo r  an e r ­

ro r  which could in  p r in c ip le  be e lim inated  by re p lic a t in g  the  t e s t .  This 

suggests bounds on the r e l i a b i l i t y  o f the t e s t  and w ith in  those bounds we 

fin d  l i t t l e  b ia s  in  the schooling c o e f f ic ie n t .

In th e  second case the  t e s t  i s  only assumed to  cap tu re a p a r t  o f  the 

re le v an t i n i t i a l  co n d itio n s . Then we are try in g  to  estim ate  the r e l i a b i l i t y  

o f the  t e s t  ou tside  the contex t i t  was designed fo r  and so fewer p r io r  r e ­

s t r i c t io n s  can be imposed. For example i f  much o f the t e s t  d is t r ib u tio n  is  

assigned  to  the e r ro r ,  then the independence o f th a t  e r ro r  and the schooling 

re s id u a l i s  im p lausib le . So we have a negative  p r io r  covariance between the 

r e l i a b i l i t y  o f the  t e s t  and th a t  re s id u a l covariance.

In fa c t  a l l  o f our models produce low r e l i a b i l i t i e s  and so we t ry  to  

o b ta in  id e n t i f ic a t io n  w ithout co n stra in in g  the  schooling and t e s t - re s id u a ls  

to  be u n co rre la ted . This i s  accomplished by meshing our covariance s t ru c ­

tu re  w ith the background c o e f f ic ie n t  r e s t r ic t io n s  suggested by G rilich e s  

and Mason. The re s u lt in g  estim ates give f a i r ly  strong  evidence ag a in st a 

s u b s ta n tia l  b ia s  in  the schooling c o e f f ic ie n t .
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The models we use a re  ex ten sio n s o f  th e  work by Z e lln e r  (1970) and 

G oldberger (1972) to  a sim ultaneous equa tions c o n te x t. Our g en era l frame­

work i s  a t r ia n g u la r  s t r u c tu r a l  model w ith  f a c to r  a n a ly t ic  covariance r e ­

s t r i c t i o n s .  Many o f  th e  e s tim a tio n  problems can be handled by s tan d ard  

sim ultaneous eq u a tio n  te ch n iq u e s . However, our favored  model (Y03) Has 

r e s t r i c t i o n s  ac ross  th e  s lo p es  and re s id u a l  covariances which cannot be 

imposed a n a ly t i c a l ly .  The r e s t r i c t i o n s  a re  s im ila r  to  those  in  th e  Jb reskog- 

G oldberger (1974) MIMIC model and th e  Appendix shows how to  f i t  them in to  

Jb resk o g ’ s (1970, 1973) c la s s  o f  covariance s t r u c tu r e s .

A g en e ra l id e n t i f ic a t io n  a n a ly s is  o f  our c la s s  o f  models i s  g iven in  

Chapters 2 and 3. I t  i s  a s p e c ia l iz a t io n  to  t r ia n g u la r  s t r u c tu re s  o f  th e  

work by G erac i-G oldberger (1971) and G eraci (1974), b u t an ex ten sio n  in  th a t  

p a r t  o f  th e  id e n t i f i c a t io n  i s  coming from covariance r e s t r i c t i o n s .  So i t  

in c lu d es  th e  C ham berla in -G riliches (1974) model, which d id  n o t have a t e s t  

sco re  b u t d id  have r e p l i c a t io n  w ith in  f a m ilie s .  The g en e ra l a n a ly s is  shows 

th a t  th e  id e n t i f i c a t io n  problem w ith  th a t  s o r t  o f  r e p l i c a t io n  i s  id e n t ic a l  

to  having an a d d i t io n a l  in d ic a to r  (e .g .  a t e s t )  which i s  connected to  th e  

r e s t  o f  th e  s t r u c tu r e  on ly  v ia  i t s  dependence on th e  unobservab le . Also 

we would l ik e  to  know i f  we can allow  th e  t e s t  and schoo ling  e r ro rs  ( t  and 

w) to  be f r e e ly  c o r r e la te d ,  drop th e  r e s t r i c t i o n s  on th e  background c o e f f i ­

c ie n ts ,  and s t i l l  o b ta in  id e n t i f i c a t io n  by having a d d i t io n a l  in d ic a to rs  

which depend on schoo ling  and th e  unobserved ’’a b i l i t y " .  The answer in  

"no" (C hapter 2, S ec tio n  I I I ) ,  b u t i s  i s  n o t obvious from a bare-hands in ­

sp e c tio n  o f  th e  reduced form.
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Appendix

This appendix gives some computational details on our use 
of Jo'reskog‘s (1970, 1973) program ACOVSM. The general model 
assumes an N by p data matrix Z with N observations on p 
variables and assumes that the rows of Z are independently 
distributed, each having a multivariate normal distribution 
with the same variance-covariance matrix E. It is assumed that

E(Z) = ASP

where A and P are known matrices and 5 is a matrix of parameters 
E has the form

E =  B (A  4 A ’ +  y 2 ) B '  +  © 2 ,

where B, A, the symmetric matrix $ and the diagonal matrices ’F 
and © are parameter matrices. Parameters can be assigned fixed 
values and groups of parameters can be constrained to be equal. 
However, parameters in S cannot be equated to parameters in E , 
a point we will return to below.

We have put our YO models in this form by first writing the 
SI equation as

s i  •  x i  + m s * + Gy* + w

where y* = y /y and S* =  ?  -  iry*. Then set P = I and absorb 
4 4 ,  4 — ~

i - 1/ ...4, Sl3 Slf>2 and MS into AS. This leaves

Y = G n  + u

O = Gr + v 1
T = G + t

SI = Gy* + w 
4

G = Mir + Hy .
—  3

Then following Jo'reskog and Goldberger (1974) we can write this 
as a second order factor model:
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= Af ., i = 1, " 2  1 , N.

This defines B and A, and we set f = ©  = (0) and

$ = E (f . £ ’ .)
~  ~ 2 1  ~ 2 1

-m

0
uv V

tw Jw

where is constrained to equal the sample covariance matrix
of M. For Y02 we constrain a. = 0 ;  for Y03 we leave it free, tw

It may seem odd to include SI in the design matrix A since 
SI is endogenous. But since the model has a triangular struc­
ture there is no Jacobian and the program is maximizing the 
correct likelihood function. However, the information matrix 
approximation is not correct. It is block diagonal in S and £ 
when in fact the ML estimates of the $ ' s and £ are correlated. 
The necessary correction to the information matrix is analagous



145

to the difference between the reduced and structural form informa 
tion matrices in the appendix to Chamberlain and Griliches (1974)

The proportionality constraint across SI and G at the end of 
section IV can be imposed as follows: absorb X£., i = 1, ...4 
and into AH, leaving * 1

Y = (G + SIf3)ri + u

0 = (G + SIfi)r + v 2
T = G + t

G = Mtt + HyA. -V J

SI = Hy + w.

This can be written as the following second order factor model:

Z . -  i

'm '"

Y —
Il»

rx

0  

r x

0 0 r2
T 1 0

,SI_ 0 1/3
i

o

M

G

sip

u

V

t

-

and

f . 1 i

• 1 M

G
-  Q

it' y 3

- 1-1 
M

H

SIg V  0 1
u

u 0 V

V I 3 0 t

t lx wg

= Af .. i = 1, .... N. -~2i ' *
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Then set V = ©  = (0) and

$ = E (f . f' . )~ 2l - 2l

= -m
1

a2u

So by setting 3* = 1/3, a* , = 3cf. , and a*2 - 32cl2, we can write the model uw t w w w in
the (A.2) form. There are two equality constraints on B and $
is constrained to be the sample covariance matrix of M.

Our experience with the program has suggested two modifications.
First is the need for a more accurate matrix inversion routine.
The program could not invert the information matrix at the maximum 
because the triangular factorization routine produced a negative 
diagonal element due to round-off error. But direct inspection 
of the concentrated likelihood function in table 6 shows that at 
least 3, is being estimated quite precisely. So perhaps the pro­
gram should just produce the variance-covariance matrix of the 
(numerically)estimable functions. A related problem is the choice 
of an initial approximation to the inverse of the Hessian matrix.
When the information matrix cannot be inverted at the initial 
parameter values, the program substitutes an identity matrix.
This results in a much costlier problem since the Fletcher-Powell 
iterations have to build up the inverse of the Hessian from scratch.
It would seem preferable to keep as much of the information matrix 
as possible, say by setting negative diagonal elements in the 
triangular factorization to a small positive number.

The second modification would allow constraints across 5 and 
E. This would be useful because the likelihood function is 
maximized analytically with respect to 5 conditional on E. Then 
the numerical problem is to maximize the concentrated likelihood 
function over E. So it is desirable to put as many of the 
parameters as possible into S. Consider, for example, the Joreskog- 
Goldberger MIMIC model:

y = 3 y* + u1 i x

Vm - V* + \
y* = a'x + e
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If 3 / 0 we can scale y* so that 6 = 1  and write the modelm J m
as

= 3 y + u - 3 u i m i l m

ym = 8  y + u - 6 u m-i m~iJm m-i m-i r

ym - '«•;+ e + u .

= 1/Given the trianqular structure we can absorb fS.y . i l m
m - 1 and a x into AS leaving

' y / rI i -8, 1 u-m-1 ft 1
• = )
• • V
• • •

. ̂ m_
i

u
-8_ 1 m-I um-i
1 1

= Af.

with

$ = E (f. f . ) = -l -l

m

and B = I, = Q  = (0) .

Thus a first order factor structure will do, provided we can 
impose equality constraints across A and 5. The advantage in this 
formulation of the problem is that now a can be analytically con­
centrated out of the likelihood function.
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The a n a la g o u s  way o f  w r i t i n g  o u r  YO m odel i s  g iv e n  i n  ( I V .16) 
and  ( I V .1 7 ) .  T h is  i s  t h e  e a s i e s t  way t o  d i s p l a y  th e  n a t u r e  o f  t h e  
c o n s t r a i n t s .  I t  i s  a l s o  a  n a t u r a l  way t o  e s t i m a t e  th e  m o d e l, s i n c e  
S i p . ,  T r • , i  = I ,  2 ,  ir, C, and  L #  i  = I ,  . . . ,  4 , c an  a l l  b e  p u t  i n_L _L -w -*>
5 . Then E c an  b e  m o d e led  a s

Y I  0 - r
i

0 = 0 1 - r 2
T

0
1

S I 0
i -

0

1

-

0
u

V

Y t3
Y, wIt

1H

w ith

So we c an  s e t  B = I ,  ¥ = Q  -  ( 0 ) ,  an d  j u s t  u s e  a  f i r s t  o r d e r  f a c t o r  
s t r u c t u r e .  T h e re  a r e  7  h o w e v e r , e q u a l i t y  c o n s t r a i n t s  a c r o s s  A and  
H. The a d v a n ta g e  i s  t h a t  it i s  a n a l y t i c a l l y  c o n c e n t r a t e d  o u t - o f  th e  
l i k e l i h o o d  f u n c t i o n .
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Footnotes

1 / I am indebted to  Bronwyn H all fo r  com putational a s s is ta n c e  and to  Zvi 

G rilich e s  and Edward Learner fo r  h e lp fu l comments.

2 / Including POC and POS in  the s e t  o f constra ined  background c h a ra c te r­

i s t i c s  has l i t t l e  e f f e c t  on the  r e s u l t s .

3 / Since the t e s t  score i s  a p e rc e n ti le  the  assumption th a t  T i s  norm ally 

d is tr ib u te d  (co n d itio n a l on X) i s  q u estio n ab le . However, re sc a lin g  the 

t e s t  scores to  have a normal d is t r ib u tio n  did  no t a f f e c t  the  r e s u l t s .

4 /  This model has been considered by S. C ardell and M. Hopkins (unpublished 

m anuscrip t, Harvard U n iv e rs ity ) .

5 / This method does n o t, however, fu l ly  u t i l i z e  the sample inform ation in  

Y when co n stru c tin g  T. The reduced form

Y = SIfL + Mur. + Hy^r^ + u 

T = Mu + HYj  + t

makes i t  c le a r  th a t  both T and Y con tain  inform ation on u (provided M con­

ta in s  more than one v a r ia b le ) . We can impose th is  p ro p o r tio n a li ty  r e s t r i c ­

tio n  by doing a one dim ensional search . C onstrain  6. = 8^ and l e t  Y = Y - SI8^ 

Then re w rite  the system as

Y° = Tr. + u - r . t  

T = Mu + HYj + t  

SI = M£ + w.

Note th a t  the  SI equation fa c to rs  out o f the lik e lih o o d  func tion  and th a t  

the Ŷ  and T re s id u a ls  are f r e e ly  c o r re la te d . So LISE on the Y equation 

is  FIML and varying 8. l e t s  us p lo t  a concentrated  lik e lih o o d  func tion  fo r 

*1’

6 / D e ta ils  on w ritin g  the r e s t r ic t io n  in  JtJreskog’s framework are given 

in  the Appendix.



Chapter 5

Returns to Schooling of Brothers and Ability 
As an Unobservable Variance Component*

I . Introduction
In earlier papers Griliches (1970 and 1972) investigated 

the bias in estimates of returns to schooling due to the omis­

sion of an ability measure from the estimating relation. Another 

controversial source of bias is the possible direct influence of 

parental background (economic, social class, and ethnic) on sub­

sequent economic achievement (income and occupation), above and 

beyond its indirect effect via schooling. One way to hold both 

parental background and some of the ability differences constant 

is to analyze the economic experience of brothers. Brothers have 
largely similar family economic and motivational backgrounds 

and also differ less in native ability. It is the purpose 

of this paper to report on a reanalysis of a rather old set 

of such data and to develop a somewhat novel methodology for 

the analysis of this kind of problem.

*
This Chapter was written jointly with Zvi Griliches. An ab­

ridged version appears in Chamberlain and Griliches (1974).
We are indebted to Ruth Helpman for research assistance and 
to NSF Grant No. GS 2762X for financial support.
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The next section of the paper outlines the content and 

source of our data and presents the results of a straightforward 

covariance analysis of them. In the third section we develop a 

more explicit model in which ability (and parental background) is 

a left out variable having a differential within and between 

family (variance-components) structure. We discuss the question 

of identification in such a model and outline a maximum likelihood 

estimation procedure for this model. The final sections of the 

paper present the results of applying this model to our data, 

discuss tests of the model, and suggest some extensions. The 

estimation procedure is presented in greater detail in C o f f e r  3, 

Appendix a .

2. A Reanalysis of the Gorseline Data.

One of the first consistent and detailed analyses of the

"ability bias" issue can be found in Gorseline’s (1932)book, 

written in the late 1920's. He set out to solve the ability- 

schooling conundrum through the collection of data on income, 

schooling, and other characteristics of brothers. He managed 

to collect such data for about 172 sets of brothers or 368 

individuals. Using rather primitive but reasonable methods of 

analysis (comparing the mean income of brothers with more schooling 

to the mean of those with less) he concluded that indeed schooling 

did pay, even holding family background constant. He did not use,



152

however, his data to estimate how much the usual measure of return 

(not holding parental background constant) is biased upward. The 

major facts about his sample are presented in Table 1 .and the 

derivation of the variables is described more fully in Appendix Bt

Since he published almost all of his data, we decided to 

reanalyze them with the above question in mind. The procedure 

used was first to estimate an income-schooling relationship across 

all individuals in the sample ignoring the familial information 

and then compare it with estimates in which each brother's character 

istic (his income, schooling, age, etc.)are measured around his 

own family's mean. This procedure eliminates from the relationship 

both the common influence of parental background and the common 

part of their genetically inherited "abilities". It holds constant, 

as well as it could ever be done, the "parental background" or 

"social class" effects in such relationships. The results of this 

reanalysis,limited in this paper to the sub-sample of 156 

pairs of brothers,are summarized in Table 2. They show clearly 

that at least in 1927, in Indiana, differences in parental 

background were not an important source of bias in the estimated 

returns to (the coefficient of)schooling. This does not 

mean that parental background does not account for a signi­

ficant fraction of the total variance in income. In fact,

Additional analyses of the data using the rate at which 
schooling was completed as a measure of ability and allowing 
for the birth-order of brothers did not change this conclusion 
significantly.
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Table JL: Characteristics of the Gorseline Sample

Brothers Number of sets

2 156
3 9
4 6
5 1

Total in sample 368

Standard Deviations

Variables Means Total Within Families

S - Schooling (Grade 
attained) 11.64 3.47 2.14

YL —  Log Income,
1927 7.53 .688 .386

OL - Log Occupation 
SES 3.63 .699 .500

AGE - 36.45 10.8 3.7
EXP - Experience

(Age-Age stopped 
school)

17.02 12.1 5.0

Source: D.E. Gorseline, The Effect of Schooling Upon Income,
Indiana University, 1932) . 
Duncan's SES scale. N = 368

Occupation scored according to
; sets of brothers = 172.
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T ab le  2 ; G o rs e lin e  D ata  R e g re s s io n s

D ependen t C o e f f i c ie n t s  o f
V a r ia b le

s EXP (EXP)2 Age (A ge)2 OSESL R2 SEE

YL .120 .050 - .0 0 0 6 .260 .603
(.0 1 2 ) (.00-9) (.0 0 0 2 )

.077 .052 - .0 0 0 7 .373 .363 .560
(.0 1 3 ) ( .0 0 9 ) (.0002 ) (.0 5 3 )

.082 .088 - .0 0 0 8 .259 .604
(.0 1 0 ) ( .0 2 1 ) (.0003 )
.044 .083 - .0 0 0 8 .367 .361 .561

T .0 1 1 ) (.0 2 0 ) ;4...0W 3) (.0 5 2 )

YLD

.109 .018 .0001 .277 .317
(.0 1 0 ) ( .0 0 9 ) (.0002 )

.085 .018 .0000 .155 .304 .311
(.0 1 2 ) ( .0 0 9 ) (.0002 ) ( .0 4 5 )

.080 .061 - .0 0 0 4 .326 .306
( .0 0 8 ) (*022) (.0 0 0 3 )

.059 .052 - .0 0 0 3 .155 .353 .300
(.0 1 0 ) (.0 2 1 ) (.0003 ) (.0 4 3 )

OSESL
.104 .005 .250 .608

(.0 1 0 ) ( .0 0 3 )

OSESLD

.135 .011 .352 .400
(.0 1 0 ) ( .0 0 6 )

YL -  Log Incom e, 1927
S -  S c h o o lin g ,  G rade a t t a i n e d
Exp -  (Age-Age s to p p e d  sc h o o l)
OSESL -  Log c u r r e n t  (1928) O ccup. SES
V a r ia b le s  w ith  D s u f f i x  and a l l  th e  v a r i a b l e s  i n  r e g r e s s i o n s  w ith  
YLD o r  OSESLD a s  d ep e n d e n t v a r i a b l e s  a r e  m easured  a ro u n d  fa m ily  
m eans. N *  3 1 2 ;y p a ir s  o f  b r o th e r s  = 156;
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the total variance in the logarithms of income is reduced from 

.47 in the sample at large to .J.5 between brothers-only. This 

reduction, however, is due not only to the elimination of parental 

background, but also to the elimination o f  all other character­

istics, such as rural versus urban location or age, which are 

common to pairs of brothers. In any case, the estimate of the 

marginal effect of schooling does not appear to be biased when 
such effects are ignored. This rather surprising result lead 

us to reconsider whether our expectation that holding family 

background constant should have reduced the estimated schooling 

coefficient is indeed warranted. To do so we have to spell out 

the underlying model in some detail. Let the true income 

relationship be

(1) y. . = SS.. + yA.. + u . .J i j lj i j

where y is the logarithm of income, S is the highest grade of 

schooling attained and A is an unobserved measure of an individuals 

background such as his social class and IQ. The index i stands 

for families, while j runs over individuals within a family; 

u^. is a random variable unrelated to either S or A; and all 

variables are measured around thair total sample means, obviating 

the necessity of writing down constants in the various equations 

of the model.

Now, the reason why there may be a bias arises from the

assumed positive correlation between A and S. Let that correlation
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be summarized by equation 2.

(2) s . . = nA..13 13 + w . . 13

where . is assumed to be distributed independently of A.

To complete the model we specify a variance-components struc­

ture for the "ability" variable:

ij

F^is the common family component and G ^ . is independent 

by construction.

where

of F.1

We could and do add another set of variables, X's to these 

equations, but unless they impose additional constraints on the 

data via additional exclusion restrictions, we just interpret 

S and Y as deviations from regressions including these X's and 

proceed as above, ignoring them for purposes of this analysis.

The basic assumptions up to this point are (a) that the

left-out determinants of schooling, A, have also an additional

direct effect on y (as against w which has only an indirect one)

and (b) that these effects have a family (variance-components)

structure: A . . = F. + G. . .13 x X3
To get explicit and simple formulae for the bias in the 

simple least squares regression coefficient of y on S as an 

estimator of 0, we shall consider large samples both in the i 

and 3 dimension, so that we can identify sample moments with
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2the underlying population parameters. It is also convenient 
to write down the "reduced form" equation for y, by substituting
(3) and (2) into (1):

(4) y = (6n + y) (P + G) + (Sw + u

The least squares coefficient of y on

p lim  b plim Cov yS
V ar S

+ Y Hov AS + y Var S

S i s  g iv e n  by

, . n Var A+ y --------------------
n Var A + Var w

Similarly, consider the deviations based estimator 
family effects taken (swept) out from the data 

Cov G SD „ . ' T]Var G

byDSP' with

p lim  byDSD Var SD n var G + Var w+ Y + Y

Now, define Var G/Var A = 1-X and Var w/n^Var A - ( 1 - r 2 ) / r 2 _ u ^ 

and concentrate attention on the bias = (plim b - 6) of these 
coefficients:

Y 1—X Y 1.....bias byDSD = n i - \  +u = n 1 + u/'fl-A)

v e r s u s

bias b = X . ■yS n 1 + D ♦

Since 0 < X < 1, the absolute bias in the coefficient 
estimated from deviations from family means (D) will be smaller

2 Having a large sample over j implies in our case a large 
number of brothers per family. This is unnecessary but it 
simplifies the notation of this section.
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than in the coefficient based on the whole set of data.

The bias would be nil if Y were zero, i.e. no direct effect 

of ability or family background on income, and need not be 

zero but would remain essentially unchanged by the trans­

formation of the data to deviations form if either X is zero 

(i.e. there is no family structure to the ability variable) 

or U is zero, there is no exogeneous component to the schooling 

variable and hence no distinction can be made between the 

effects of A and S. Both of the latter possibilities are 

unlikely.

While we don't know the absolute size of the bias, the 

expected relative reduction in its size from going to deviations 

is given by

bias b pSD _ (!—X ) (1+U) _ 1+U
bias 1-X + U 1+U77T-X ) •

It depends on both X and U. The larger is X, i.e. the 

larger is the ''family" component in the total variance 
of ability, and the larger is U, the less is the role of 

"ability" in the total variance of schooling, the larger 

will be the reduction in the bias as we move to within 

family data. But for reasonable values of U and X this reduc­

tion is not that large. X is the ratio of the variance of family

components to the total family background and ability variance
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Its maximum value is probably 0.9 and it is unlikely to
3fall much below 0.5. At the same time Ur the relative ratio 

of the independent (of family background and market rewarded 

ability) variance component of schooling is unlikely to exceed 

unity (implying that half of the variance of schooling is 

independent of family and individual ability components) or 

fall much below a third (at least a quarter of the variance 

of schooling is likely to be unrelated to both socio-economic 

background or IQ) . Putting these two ranges together, implies 

a bias ratio between .5 and .8. Considering the a priori 

reasonable values of X = .6 and U = 1, yields a bias ratio 

of about .6. That is, going from byg to byDSD will reduce 

the "ability" bias by only 40 percent. Since the actual coeffi­

cients change in Table 2 only from .120 to .109, (for the version 

with experience and experience squared) the total bias could be 

on the order of .028, or about 23 percent of the originally esti­

mated coefficient, which would be consistent with other studies 

of this subject. Using age instead of experience in the equation 

produces a much smaller estimate of this bias, since the estimated 

schooling coefficients change only from .082 to .080.

3 For any finite set of data, the within variances will not 
equal their population values even approximately, but rather 
(p-l)/p times that value, where p is the number of family 
members per family. In our case, with most of the data being 
on pairs of brothers, p=2, and the estimated within variances 
are too small by a half. But in the formula discussed in the 
text, this cancels out, since taking out the family "mean"
effects affects both the numerator and
equally (alternatively, the estimated a 
same proportion as o£.)

denominator of b ___2 yDSD
is too small by the
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Actually we observe in Table 2, occasionally an increase 

in  the estimated coefficient of schooling as we move to the 
within-families data set (particularly for the occupation 

dependent form, which we haven’t discussed yet) . Since our 

model predicts a decline in the absolute value of the bias, this 

may be an indication that we originally under estimated rather 

than over estimated implying that y is not only small but 

negative (we can always set n = 1 since the units in which A 

is measured are to some extent arbitrary). This may not be 

as surprising as it appears at first sight, it is conceivable 

that family wealth and "learning" ability lead to an over­

investment in schooling and to a negative return to such an 

"ability" when the attained schooling level is held constant.

We shall return to this below.

The results of this section are quite unsatisfactory. 

Limiting ourselves to within-families data resulted in little 

change in our conclusions^and a realization that not much 

could be said, in fact, on the basis of such an analysis. The 

model as written down is not adequately identified. We got 

some qualitative conclusions by adding the prior information 

that A , n , and U are all larger than zero and imposing some 

bounds on the likely values of A and U. But to identify the
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coefficient of interest (6) further and to get explicit esti­

mates of some of the other parameters, we have to expand the 

model and bring in additional variables, relations, and restrictions

3. Ability as Unobservable

While the calculations reported above "take care" o f ’

parental background differences, even though inefficiently 

(they ignore the between families information in the sample), 

they do not correct for possible bias from the individual 

(within family) genetic differences which may be correlated 

with achieved schooling levels later on. To take this 

explicitly into account would require the availability of 

direct measures of such ability, which are not available 

for this set of data. But even in their absence, if the 

missing variable (such as ability) affects more than one 

dependent variable, a bootstrap operation may be possible.

The basic idea for the new approach comes from the realiza­

tion that such a left out variable must cause similar biases 

(proportional to each other) in different equations and that 

taking advantage of that fact may allow one to achieve identi­

fication of most of the coefficients of interest.

A general version of our model is given by:
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SJ, - X ? k+ B),ys + V  + “m

Yg = ?■ “g + + M

a . . = f . + g . .1 13

Where there are K dependent variables (indicators) which all 

depend on schooling (y ), independent variables X. (which 

mav differ~frnm eauation to eauation), and on a left-out
random ability variable (a) which affects both yg and the 

y ’ s , making y endogeneous, and has a peculiar structure 

(a = g + f) which converts this into a variance-components 

problem, observations being available for p members (index j) 

in each of q (index i) families. Without the "a" variable, 

or if = 0, and given our assumptions about the independence 

of û. from w and a, this would just be a simple recursive 

system which could be estimated by applying least squares 

separately to each equation. The simultaneity problem arises 

when we admit the possibility that Yv ¥ 0. In general, if 

there were enough exogeneous variables in the schooling equa­

tion which did not appear again in the y. equations, the endo­

geneity of y problem could be solved using two-stage least
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squares or other standard simultaneous equations estimation 

procedures. In our problem, however, the yg equation will 

in general not contain enough distinct X ’s for the identifica­

tion of the (3' s . Instead, we shall have to rely on restrictions 

that the model imposes on the variance-covariance matrix of the 

residuals from the reduced form equations. These equations can 

be written as follows:

yk = + Pk“s) + 1 (Yk + V s} (f + g) + uk + 6kwl

y = X a + [ v (f + g) + w]s ~ ~s s

where for a particular k, say k = 2, ao and a are vectors s
while a scalar. The bracketed terms are the reduced

form disturbances. More concisely, we can stack the observa­

tions and equations and relable the whole system as one multi­

variate regression:

y = Z6 + g

where y runs over all the dependent variables and families

and family members and Z includes all the X ’s in all the

equations. The variance-covariance matrix of the reduced
form disturbances is Eee-1 = I (5p ft.

Si
It is clear, that the model together with the assumptions 

of no correlation among a's, u^'s and w's imposes a number of 

constraints on the variance-covariance matrix of computed residuals 

from the regressions of y, and y on Z. It can be shown that ft equals
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9 -  ■?<»’ ®  ♦  J  ©  Ip

w h e re , s p e c i a l i z i n g  t o  t h e  c a s e  o f  K = 2 , w i th  y

e q u a l in g  an  in d e x  o f  o c c u p a t i o n a l  a c h ie v e m e n t  ( th e  lo g a r i th m  

o f  D u n c a n 's  SES o c c u p a t i o n a l  s c o r e ) ,  =» lo g  e a r n i n g s ,  and  

y_ ~ ® “  h i g h e s t  g ra d e  o f  s c h o o l in g  a t t a i n e d ,  we h a v e :
9

A ?
i
h i + W { A

d = |d 9
k / = Qf y2 + 62y 3

/

A; =
-  P

d

£ = t dd + v

w h ere  p  i s  t h e  num ber o f  o b s e r v a t i o n s  a c r o s s  in d e x  j  w i t h in  

e a c h  i ,  i . e .  i n  o u r  c a s e  t h e  num ber o f  f a m i ly  m em bers p e r  

f a m i ly ,  an d
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Thus, dd represents the contribution of the family 
component of the unobservable to fi, xdd' the contribution 

of the individual (within family) component of the unobservable, 

while V encompasses the rest of the within-family individual 
effects, the u's and w. It is clear that if we could esti­

mate V directly, we could easily identify the B's since, 
for example, = v13/v33. We cannot do that, but we can 

estimate d and E and it turns out that in the two indicators case 

we can solve uniquely for t  and and The y's however,

can be estimated only up to a scale, factor, since the latter
cannot be separated from the arbitrary scale of the a's themselves 

//'
A model with more than two indicator variables will in general 

be overidentified. Some of these overidentifying restrictions 
could be traded off for relaxing some of the more stringent 

other assumptions, such as the no correlation assumption between 

u^ and U2» We can show that knowing d and £ identifies the 
structural parameters as follows:

For a given value of t we can solve for

2 ,2 
aw °33  ” Td3

P1 * {°13 "  Tdl d 3 )y/<Jw

B2 " <a23 ' Td2a3)/Ow
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But we can also solve for

61B2 " (o12 - Tdld2>/Ow .

t is determined by making the separate solutions for 0^ and 

0_ agree with the solution for their product. This yields:

So T

T “ (<713 °23 " °12 a33)/(°13d2d3 + a23dld3" a12d3

2 2Cg/a£ is identified and hence also 0^ and

a33dld2)

The problem then becomes one of estimating d and £. That 

d and £ are in fact estimable, albeit inefficiently, can be seen 

most quickly by considering estimates based on the "method of 

moments". Let R be the matrix of the variances and covariances 
of the residuals from the reduced form equations estimated by 

ordinary least squares, and let R be the matrix of variances 

and covariances of average residuals, averaged separately over 

each family and variable within family. It is obvious then that

plim R = £ + dd = £ + 0

plim R = — £ + d d ^ = i £  + 0 
-» p ~ p - ~

A

where 0 = dd and p is the number of individuals within each

family. (We are assuming, for simplicity of exposition, that
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>©

it is the same across families). It is obvious, that if p 

where large, R would be a direct estimate of 0. Since in our 

sample p is quite small, mostly p « 2, we get estimates of 

and E as follows:

E = [p/(p-l)]W

? - A  < ? - ? * >

vfoere W = R - R is the "within" families variance-covariance 

matrix of the sample residuals. Thus both 0 

and E are estimable from the sample, < Sut now, when we 
substitute these expressions in the earlier formulae for 

ft , ft , and 6-.39, the formula for t does not simplify as 

easily, but rather leads to a quadratic equation:

t2(013 ®23 " ®12 033) + T ^12 °33 + 033a12 “ 013°23 “ 023a13)

+ a13 a23 “ °12 °33 * ° •

The quadratic term doesn't vanish, since we haven’t imposed 

the condition 0 = dd which implies

013023“ 012033 * dld3d2d3 “ dld2d3 = °’

Rewriting this equation in terms of observables [substituting

P w for E and — (R - —R) for 0] and reparameterizing p-1 ’ * ~ p-1 - p~
it in terms of X = a^/a^ = yyy,
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leads to:

X (R13R23 “ R12R33^ + * R̂12W33 + R33W12 ” R13W23 “ R23W13^

+ w w - w w13 23 12 33 0

and two solutions (roots) for A (or t ). Since 0 < A < EZl 
P

hopefully one of these roots is inside the relevant interval.

We can also show that if the population restrictions on 0

were to hold in the sample, (p-l)/p is a root of this equation. 
2But this implies = 0. Hence we should pick the smaller 

root, if both roots fall into the relevant interval. Given 

our estimate of A , we have immediately an estimate of t and 

can derive an estimate of 8, and of the other parameters of

interest.

The above estimation procedure, while inefficient, was 

outlined to indicate where the basic information for estimation 

was going to come from and how the different parts are related

to each other.

The procedure is inefficient for two reasons:
0 = dd’ is of rank 1. The estimator of 0 used above:

0 (.R - —R) was not constrained, however, to have rank = 1.-v p - 1  ~ p ~

Moreover, R and R have been derived from OLS residuals of y 

on Z. But we know that ft, their variance covariance matrix, 

is not proportional to an identity matrix. Having an estimate 

of ft , we could transform the original variables and get more
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efficient estimates of the reduced form coefficients and hence 

also a better set of residuals and improved estimates of 
d and E.

The problem of estimation is then (a) how best to impose 

the rank 0 = 1 condition on our estimates, (b) how to use the 

estimated d and E to derive GLS. estimates of 6 (the reduced 

form parameters of the various X ’s), and (c) whether and 
how to iterate between the 6’s and associated £ ’s (the reduced 

form residuals) and the estimate of their (the e’s) variance- 

covariance matrix Q.

44. Estimation

Under normality assumptions for f. , g.. and the disturbances
5

ul'u2 an<̂  * the likelihood function is (in terms of the 
stacked model y= Z<5 + e , where y = [y^r...,y^,yg])

JlnL (y J 6 , Q)

= 2. £n IQ"1 1 - i(y - Z6)' (I ®  «)“1 (y - Z6)
'“d •

To simplify estimation we obtain (in the Appendix) a factor­
ization of n” into

a-1 = j ' 1 ® ip - oc' ® »p!i '

4 This section and the associated Appendix is largely due to 
Gary Chamberlain.5 . . . .

Note that this implies a random ability effects interpretation 
of the model. A fixed effects version is discussed in Charter 3,
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where c is related one-to-one to d (c is proportional to
E ^d) and will be provided with an interpretation below. The 

likelihood function is then reparameterized in terms of E g.
The function is further simplified by evaluating | explicitly

We also show that the reduced form residuals enter the L.F. only 

via the sufficient statistics R and R . R is the matrix of the 

sums of squares and cross-products of these residuals divided 

by the total number of observations while R is computed by 

averaging the residuals over each family and then forming the 

matrix of weighted (in the case the p^’s differ) sums of squares 

and cross-products °f these residuals divided by the total
g

number of families. The reparameterized and simplified L.F.

can be written as:

£n L(y|6 >■ E-1ZC) = 2E £n jz”1 ] + | £n (l - pc*Ec)

-i pq tr E_1R + | Pq c 'r  c .

The maximization of this function is based on the following 

iterative algorithm: We start by estimating the reduced form 

slope coefficients 6 consistently by ordinary least squares*
A

Conditional on these 6, we proceed to get M.L. estimates of 

E and d by first calculating the reduced form residuals
Ae = y - Z 6 and arranging them in a pqx(fc+l) matrix

6 When the p.'s differ, the "unbalanced" case, these weights 
depend on the unknown signal-noise ratio d ’E“ld. See Chapeer 3

for an extension of the estimation'procedure to this more 
complex case.
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‘K+l)

Then we find that linear combination of residuals from the 

K+l equations which is most highly correlated with family 

structure; i.e., letting

f = i ®~q -p

be a set of family indicator dummy variables, we choose c and 

f to maximize the correlation T between Ec and Ff. It can be 

seen, then, that c is a set of aaaronija&l weights combining the 

three residual series into one index. For a given c we obtain 

f by regressing Ea on the family indicators. Since F F = pi 
and F**'E = pE where E is the q x (K+l) matrix of residuals averaged 

over the families, we have

T2 = Pc ff'Ea, -. » g"B.
I I  •

c  E  E  c  c  R  C

T2 is maximized by letting c be the eigenvector of R in the 

metric of R corresponding to the largest eigenvalue p:

R 5 = P5 S-

Note that

P
c R C

T2
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is the square of the maximal canonical correlation coefficient 

between E and F. An index of family ability is then formed from 
the fitted values in the regression of Ec on F:

? as ? ®c *

So the family component of ability for the i th family is 
estimated by weighting the averaged residuals for the i th 
family by the canonical weights c. The reduced form ability 
coefficients d are then obtained by regressing the residuals

A.

from each equation on a :

d = a E = c*R.

Thus d can also be characterized by the dual relationship

with the scale of d determined from

«■' 5 _1a - f t  <p - 4

The M.L. estimate of £ satisfies the adding up property

£ = R - dd”.

The M.L. estimate of 6 given £ and d is generalized least 
squares. The computations are simplified by analytically 
inverting the disturbance covariance matrix to obtain

the following formula for the GLS estimator of 6
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6 = (HW + *B> <«W $w + 9b  «B)

where ST-, is the least squares estimate just using the within 

family moments and <$B just uses the between family moments: 

„-l Wxx -x:y.= W:wk

* = B 1 B , k = 1,2, ...K+l
-Bk 'XX ~xy, '

with
T-xx = z x; x.

i=l ~1

1 M • »B = -  Z X. £ £ X.-xx p . , -l -p~p'i

W = T - B 
-X X  ~XX  'X X

with similar expressions for W and B

the precision matrices for

6T1 and <5_: ' W ~ B

?£1= E(«W - $> l«H - «>' = z ® w

H and H_ are -w ~B

-1
xx

-1H = E (6  -  6) (6 -  6) = p ( d d "  + ±  Z) @  B-1
XX

(The GLS procedure when the X's differ across equations is 

described in the appendix).

The joint M.L. estimates of 6,Z, and d can be obtained 

by iterating on these equations. Given an initial consistent

estimate of 6 and the associated reduced form residuals we

obtain d and Z from the canonical correlation analysis out-
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l i n e d  a b o v e . T hen we fo rm  H and  H_, and  o b t a i n  a new e s t im a t e  

o f  6 by p o o l in g  th e  w i t h i n  and b e tw e e n  f a m i ly  e s t i m a t e s .  T h is  

e s t i m a t e  o f  6 h a s  th e  a s y m p to t ic  (q ■* °°) e f f i c i e n c y  p r o p e r t i e s  

a s  do t h e  e s t i m a t e s  o f  d and  Z b a s e d  on i t s  r e s i d u a l s .  F u r t h e r  

i t e r a t i o n  i s ,  h o w e v e r , p r o b a b ly  d e s i r a b l e .



175

5. The Main Results

Tables 3 and 4 present the M.L. estimates for our model 

together with the intermediate calculations. The results are 

quite consistent with the covariance analysis described in 

Section 2. Now the schooling coefficients in both the 

income and occupation equations have increased relative to 

the OLS values indicating that going to the within family de­

viations was only a partial cure. Corresponding to the uni­

formly higher schooling coefficients we obtain negative coef­

ficients for the "ability" variable in both the income and 

occupation equations. However, the relative magnitudes of 

the coefficients indicate that the unobserved variable primarily 

affects income and occupation with only a negligible effect on 

schooling. For a person who is one standard deviation above the 
mean of the distribution of the unobservable would be only .03 

standard deviations above the mean on the schooling distribu­

tion (net of age) but his income would be 41% lower than 

someone with average "ability". Also the contribution of A

to the fit of the equation is much more pronounced for income 
2than for schooling. The signal noise ratio y^a + ^2 \

is 72% for Y but y^o^• < a
u1is only .1%

)
for S. So our prior expectation that A would be an important
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Table 3: Parameter Estimates: Income-Occupation-Schooling Model, 
156 Pairs of Brothers, 1928, Indiana, U.S.A.

Original Data from Gorseline (1932).

Method

Coefficients of the Biased least squares Maximum likelihood
structural equations

Total Within
systems
unre-

estimates
recursive

sample families stricted model

Age in the

income eq. .088 .061 .080 .080
(.021) (.031) (.020) (.020)

occupation eq. ,005 .011 .006 .006
(.003) (.009) (.003) (.003)

schooling eq. -.066 .029 -.067 -.066
(.019) (.049) (.019) (.019)

Age squared in the

income eq. -.001 -.000 -.0007 -.0007
(.0003) (.0004) (.0002) (.0002)

Schooling in the

income eq. (3.. .082 .080 .088 .084
(.010) (.011) (.009) (.009)

occupation eq. . .104 .135 .107 .105
e2 (.010) (.015) (.010) (.010)

"Ability” in the

income eq. y~

occupation eq.
Y2

schooling eq.
Y3

.416
(.038)

.214
(.046)

-.092
(.178)

.417
(.038)

.210
(.046)

.0

The y coefficients are scaled by assuming that cr£ = 1 and y > 0. 
The numbers in parenthesis are the computed stanaard errors. For 
the M.L. estimates they are based on the structural information 
matrix 5 given in (A.51). In the restricted model we delete the 
row and column of 5 corresponding to y^.
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T a b le  4 : G o r s e l in e  (1932) B r o t h e r s :  I n t e r m e d i a t e  D a ta  
and  C a l c u l a t i o n s

U n r e s t r i c t e d  m o d e l: (b a s e d  on  M .L. r e d u c e d  fo rm  r e s i d u a l s )

.4 3 7 .2 3 1 .9 2 8 ' ‘.3 1 3 .1 5 7 .551"

.4 8 8 1 .1 6 8 r II .2 4 3 .5 3 2

1 1 .1 9 3 6 .5 1 2 .

Sam ple s i z e  N = pq  = 312
C a n o n ic a l  w e ig h t s :  c* = (1 .7 6  .3 0 0  - .1 9 1 )
S q u a re d  c a n o n ic a l  c o r r e l a t i o n  c o e f f i c i e n t s :  p1= . 7 5 , . p 2= .6 3 ,  P = .4 5

.4 0 8 ' ’.2 7 0 .1 4 8 .966*

.2 0 4 r

11 .4 4 6 1 .1 8 7

- .0 9 2 ^ 11.184_

a2 = .0 9 8 ,  p2 = .2 9 7 ,  C2= 1 1 .1 8 0
U1 2

4 / ° a = .66

.3 0 2

p l im  R
l r

d d ' + p~

.1 5 8

.2 6 5

.4 4 5

.5 7 5

5 .6 0 0

c o n t
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T a b le  4 (C o n t .)

R e c u r s iv e  m o d e l: (b a s e d  on  M .L. s t r u c t u r a l  fo rm  r e s i d u a l s )

’.3 6 0 .1 3 5 ’.2 6 7 .1 1 2 '
R = r R .«

.3 6 6 .2 0 3

C a n o n ic a l  w e ig h ts  c* = (1 .7 7 6  .2 7 9 ) .

S q u a re d  c a n o n i c a l  c o r r e l a t i o n  c o e f f i c i e n t s :  p ^ = .7 4 6 , P 2= .493

.4 1 7
r A =

.1 8 6 .047*

..2 1 0 . .322 .

o„ = .0 9 3 ,  a 2 = .2 9 8 ,  a 2 = 1 1 .1 9 3

.6 5
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determinant of S, such as IQ or family wealth, (which led us 

to normalize y. > 0), is not born out in the data.

Rather we appear to have a recursive model in Which the 

omitted variable affects only income and occupation, i.e.

= 0. Since this is equivalent to assuming that dg = 0, it 

is a testable restriction on the reduced form equations of our 

more general model. In the restricted model it is more tractable 

to work with the structural form of the likelihood function since

there is now no correlation between the residuals from the 

schooling equation and the other equations of the model and so 

the S equation factors out of the structural likelihood and can 

be estimated by OLS. The structural covariance matrix for the 

y^ indicators (Y and 0) has diagonal blocks of the form

i  iYY @  + A fid III -p~p - ~p

where
2 -

Y1 _ — 1
aU1
0

0

- Y2 .
r A s  ty Y + 2a

u2_

2and we have normalized = 1. So A is unrestricted and

identifying y with d and A with E we can apply our reduced

form M.L. algorithm directly.Then given y and A we can solve 
2 2for x, a , and a . This part of the log likelihood function U1 u2
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evaluated at the maximum (L^ _q ) is given by (A.39) in the Chap­
ter 3 Appendix where n = 1, ]r | equals the generalized variance 

of the structural residuals from the first two equations, and

is the squared canonical correlation between these residuals

and a set of family indicator dummy variables. The second part
*of _q is simply -pq times the standard error of the OLS
3 6

estimated schooling equation.
■jlf *

Comparing _q with L for the unrestricted model gives 
a likelihood ratio (L.R.) of .87 and -21og(L.R.) = .27 ~X^(1) 

which is entirely consistent with a recursive model. The 

structural estimates for the restricted model and the inter­

mediate calculations are in tables 3 and 4. Note that we 

have renormalized so that y^fand hence 73) is positive, 

interpreting A as a joint luck or economic, but not scholastic, 

"ability" variable. The estimate of 8, is .084, almost identical 

to the OLS estimate (.082). Although our estimator was carefully 

designed to detect omitted variables connecting and biasing the 

income and schooling relationships we haven’t found any. But before 
accepting OLS we will take a closer look at the results and 

the assumptions they are based on.

There is also a term - £n 2tt - 23r - i-£n 2ir - 23
= -S+I tn 2n - EHW±i>

which cancels with an identical term in the unrestricted reduced 
form likelihood.
7 The departure results from the joint estimation of the 
Y and 0 equations together with the variance components mixing 
of the total and within family OLS estimates.



181

6. Extensions

The identifiability of our model rests on two key 

assumptions: that U-, and u2 , the disturbances in the income 

and occupation equations, are uncorrelated; and that there 

is a single common unobservable variable connecting all the 

residuals. The first assumption is not too plausible. If 

u^ consists largely of luck which results in a higher income 

than an individual's schooling and "ability" would have 

predicted, then he is likely to also have a higher occupational 

status, implying a positive correlation between u. and u2« But 

if u. and u2 reflect the individual’s preferences for income vs. 

status and if, given his schooling and ability, he can trade off 

one for the other, then the correlation could be negative.

So we expand the model to allow for a correlation between u-̂  

and u2 or alternatively (and equivalently) rewrite the y^ 

equation to include y,:

yx = Xa1 + B1ys + ny2 + Yxa + ux

and keep the E u.U, = 0 assumption.

Expanding the model in this way has no effect on the 

reduced form. For we have not added family factors which 

would break the restrictions on 0. We have only altered E,
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replacing v12 = B ^ a ^  by + na^.

Since Z was unconstrained to begin with, the reduced form

is unchanged and our test for d^ = = 0 remains valid.
2But we can no longer solve for t= a / 2 by making the solutions 

’«
for B. and B2 (f°r a given t ) agree with the solution for their 

o
product; i.e., the structural parameters are not identified.

So we have to introduce additional prior information, e.g. about

n or about X . Experience with other data sets would suggest

n » 0 and on the order of .05 to .15 (see Table 5 in Griliches

and Mason (1972) where n is estimated in the presence of a

direct ability measure). Alternatively we can compute the 
2

B ' s  and n for a given value of the variance ratio X=a_/a2 .
a

A pure genetic heredity model would predict a ratio of 

.5 to .6 (see Jencks (1972), Appendix B). Adding common 

financial wealth to the interpretation of the unobservable 

suggests the range . 5 < X < 1 . 0 .
We had initially planned to use this prior to see 

what the resulting range for the B ' s  would be. But in 

fact the feasible range is not much wider than this.

Although we are not identified in the usual sense we do

o In the restricted (dg=0) model everything is still 
identified except for ri and t .
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have two sources of bounds: 0 £  X < 1 and the Implied correlation:

P12 " / / ^  +
12 u2 /  V ui  u2

between û  + r|u2 and u2 in the semi-reduced form (with y2 but not y

solved out) must be le s s  than one in absolute value. Putting these bounds

together resu lts in bounds on the other parameters of the model as shown

in Table 5 ,  Each row of the table is  equally lik e ly  for they are a l l  based

on the same M.L, reduced form estimates of d and E. They just represent

different ways of allocating O,o between T ■ a / c c  and n. The whole iz g / * f
table has the same status as a point estim ate. To extend the table to 

values of A £  .49 (corresponding to r12 = -1 .0 ) would require restrictions  

on the reduced form likelihood which would be testab le. So we have i d e n t i f i ­

cation in the sense of obtaining a non—tr iv ia l bound. In fact for our case the 

bound is  extremely tig h t. With A •  .66 we have n “ 0 and the other parameters 

take on the previously reported M.L. values. For higher values of A there 

is  a very sligh t decline in 0  ̂ + n02 ( ttie to ta l e ffe c t  of S including i t s  

e ffe c t  via 0 ), and q Increases up to a maximum value of .14; lower values 

of A imply n < 0 and a sligh t increase la  + 1102* T̂ e rati°  °f the

a b ility  coeffic ien ts in the income and schooling equations remains unchanged, 
still reflecting a negligible effect of "ability" on schooling.

So our estimates are very robust against the structural no 

correlation assumption.

There remains the possibility that there may be more than one common 

unobservable(factor). We have lumped both the family's socio-economic
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T a b le  5: C o n d i t io n a l  E s t im a te s  i n , t h e  Expanded M odel

1 I m p l ie d ...................................

C o n d i t io n a l  on
2 2af / ° a e q u a l in g

^ l + n^2 B1 62 n Yl +nY2 Y3 S U2

.5 0 .0 9 0 .107 .1 0 8 - .1 5 9  - .4 1 6 .0 9 2 - .7 1 6

.6 0 .0 8 9 .0 9 4 .1 0 7 - .0 4 8  - .4 1 6 II - .0 9 6

.7 0 .0 8 8 .0 8 5 .1 0 7 .0 2 4  - .4 1 6 II .0 4 0

.7 5 .0 8 7 .0 8 2 .1 0 7 .0 5 2  - .4 1 6 II .0 8 0

.8 0 .0 8 7 .0 7 9 .1 0 6 .0 7 5  - .4 1 6 II .1 1 1

. 85 .0 8 7 .0 7 7 .1 0 6 .0 9 6  - .4 1 6 II .135

.9 0 .0 8 7 .0 7 5 .1 0 6 .1 1 3  - .4 1 6 II .1 5 5

.9 9 .0 8 6 .0 7 1 .1 0 6 .1 3 8  - .4 1 6 II .1 8 4

Expanded m odel:

Y l = ? i ~ i  + ^ 2  + ^1

o r  a l t e r n a t iv e ly  n = 0 b u t Eui u2 0
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status and the children’s native in telligence into one measure A. But 

these two different kinds of "inheritance" may not have the same coef­

f ic ien ts  in the different equations. Moreover there may be more t h an  

one type of " intelligence,"  Including a kind (such as "test-wiseness") 

which may lead to scholastic but not necessarily to material success 

(in addition to i t s  e ffe c t  via schooling). In any case, there i s  some 

s ta t is t ic a l  evidence for the existence of a second factor. The presence 

of such a factor i s  indicated by the squared canonical correlations. In 

the "no factor" model we would expect R to be proportional to R but reduced by

from a v e ra g in g  over fam ilies with p members. Then a l l  the roots of 
— 1R in the metric of R would be —. With data on pairs we would expect

a l l  the squared canonical correlations to be .5 . Actually we get 

p ■ ( .7 5 , .63, .45). So clearly there is  at least one factor in the 

data and in terms of the unexplained variance, i . e . ,  1 .0-.50  ■ .50., 

the f ir s t  factor (.75-.50) accounts for 50% of i t .

To assess a second factor we construct a second index from the Y, 0, 

and S reduced form residuals which is  most highly correlated with a set 

of family indicator dummy variables, subject to the restriction  of being 

uncorrelated with the f ir s t  canonical index. Then p2 gives the squared 

multiple correlation between the index and the family dummy variables. We 

get p2 ■ .63 which is  not very close to .5 and in terms of the unexplained 

variance (net of the f ir s t  pair of canonical variables) the second factor 

accounts for 26% of i t .  An alternative interpretation of these variance

ratios i s  that they are the princip a l  components of 0 in the metric of
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R «0 •+ £. For the components are ik / ( I  + where the are the

roots of 0 relative to j  . It i s  shown in Appendix A, Chapter 3 that

/ ( I  + -  (ppjj -  1) /  (P“l)

-  <% -  |>  A 1- ! ’

i . e . ,  the fraction of the unexplained variance accounted for by factor h. Now w ith  

one fa c to r  0 ■ dd* and “ d* d is  a generalized reduced form

signal noise ratio . Thus ik, / ( l  + t p  gives the fraction of the residual 

variance accounted for by the systematic family factor. With 2 factors 

4»2 i s  the signal—noise ratio net of the f ir s t  factor. The sum of the 

principal components

^1 2̂ 
1 + ^  + 1+^ ’  ,76

is  the total fraction of the residual variance accounted for by systematic 

factors and one third of i t  is  due to the second factor.

A likelihood ratio (L.R.) test for two factors v s .  one fa c to r  i s  d er ived  

in the Appendix. Conditional on the reduced form slope coefficien ts 6 the 

test is

-2 log (L.R.) -  2(L2 -  Lx) -  —pq log p(1 -Cp/ (p-1)
+ qlog (—  -  1)/<P-1) * X2(2). 

P2

This test s ta t is t ic  is  a measure of how far p? is  from i  (or how far 
P
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1
is  from zero). For P2 “ p the likelihood  ratio  i s  one, 

implying no evidence for a second factor, and for P2 " i fc i® zero«

The unconditional te s t  includes a comparison of the generalized variances 

of the GLS reduced form residuals for the one and two factor models and 

also  evaluates the difference ( i f  any) in the estim ates of pj. The 

unconditional te s t  resu lts  in a quite unlikely value of 10.9. Also, we 

see in table g that the approximation of 0 + — Z to R is  considerably 

Improved in the 2 factor model.

So we turn to the question of what structural inferences can be made 

from a two factor reduced form. Now the structural form is :

yk “ 5  ~k + yK + A  + ( f l+8l )y k + ( f 2+g2)nk + "k

k »  1 , . . .K

yK+l “ ~ 3(*1 + ( f l +8P YK+l + + “K+l

In the reduced form we have:

Y1 + P1Y3_ nl  + Bl n3'

* 1 - Y2 + &2Y3 * 2 - "2 + 62n3

Y3 • n3

D -  (dx d2)
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T a b le  6 : Two F a c to r  M odel? R educed  Form C a l c u l a t i o n s

.4 3 7 .2 3 2 .9 3 0 ' .3 1 4 .1 5 7 .5 5 4 '

R = .4 8 8 1 .1 6 8 R = .2 4 3 .5 3 3

• 1 1 .1 9 4 6 .5 2 5

C a n o n ic a l  w e ig h t s :  c} = (1 .7 6 7 . .2 9 7 - .1 9 0 )

c 2 = ( .5 0 6 - .8 8 5 .3 0 8 )

S q u a re d  c a n o n ic a l  c o r r e l a t i o n  c o e f f i c i e n t s :  p-^= .75r P 2 = .6 3 ,P 3 = .4 5

.1 9 1 .0 8 7 .1 9 2 ' ’.2 4 6 .1 4 4 .7 3 7 '

0 = .0 4 2 .0 1 6 - Sb .4 4 6 1 .1 5 2

2 .1 7 0 9 .0 2 5

p l im  p ?T  (5  * ■  §

_E_ (R - 
p -1

.1 9 0  .0 8 2  .1 7 8 '

- .0 0 1  - .1 0 1

1 .8 5 5

p l im  R = 0 + —E = ~ ~ p~

.3 1 4  .1 5 9  .5 6 1

.2 6 5  .5 9 2

6 .6 8 2
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s  -  S i Si

'rfth Ti  ■ " q  / ’ q  ’ t2 

the individual components

and le t t in g  $ be the covariance matrix of the family factor gives

0 = d $d ' .

So, i f  we scale and f2 to have unit variance then:

0 = d1d1 + d2d2 + (dTd2 + d2~ p  rf

where is the correlation between and f2> Similarly

T1 + i - V z  + < S l4  + - W  q  + V

2 2■ O /  O. , and i s  the correlation between
g2 /  f 2

(g1 and g2' of the two unobservables.

C learly, the model i s  highly underidentified. But a substantial s im p l

f i c a t i o n  resu lts from lim itin g  our extension to a second factor which

has only a family component ('T« “ 0 ) . Examples would be family wealth or

measures of family background such as fa th er's occupational status or

fa th er's schooling. Then r  equals zero and the structure of £ i s  identical y
to the one factor case. So i f  we can obtain d̂  up to a scale factor then 

the argument of Section 3 w il l  id en tify  the structural parameters. The 

problem i s  to retrieve d̂  from 0. I f  we knew r ,  we could factor $ = P P*, 

le t  D ■> DP, and obtain the factorization  0 -  D D'. The general solution  

to th is  equation is  D = D T where D is  any solution and T i s  a rotation, 

T'T = I . So we must condition on both r_ and (in our two factor case) a 

rotation angle £. Since £ i s  d if f ic u lt  to interpret we instead specify

and A .̂ However, the relationship  between A- and £ is  neither one-to-one 

nor onto. We have to solve a cubic equation to obtain £ from A- and th is  

can have m ultiple solu tions or no (admissible) solution at a l l .
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Over the range of correlations (r^) considered we cannot obtain 
2 / 2a value for X- -  a /a as high as .75 for any £. We can obtain values 

1 / al
2

as low as zero but they v io la te  the restr ic tio n  that a > 0. In fact
U1

table 7 gives a l l  values o f X- (at .05 in tervals) that sa tis fy  the inequality

re str ic tio n s . When there i s  more than one rotation for a given X̂  then the

one with the lower value of i s  reported. It turns out that for the other

rotation the y 's  are not a l l  p ositive  as we would expect them to be for 
9

an a b ility  variable with a genetic component.

Putting together the restr ic tio n s that 0 <_ X- 1 and . £T> 0 produces

a lower bound on (3̂  of .046 corresponding to r  » .40 and X̂  » .50 . (The

bound a lso  occurs for » .20 and X̂  = .4 6 .) The upper bound is  .26 
2(higher values imply a < 0) and i f  we add the restr ic tio n  y > 0 i t  i s  w

.082 attained a t ] - .  = 0 .0 ,  X. = ,63 (and at p ositive  correlations for 

somewhat higher values of X_). The status of these bounds i s  id en tica l to 

the bounds in the extended one factor model. They are a l l  based on the same 

2 factor M.L. reduced form estim ates and are simply d ifferen t equally lik e ly  

ways of interpreting them. Obtaining estim ates outside the bound would 

require imposing restr ic tio n s  which would reduce the likelihood and be 

testab le . In our case the bound i s  not vacuous but neither is  i t  particu­

la r ly  sharp. The schooling c o e ffic ien t in the income equation could be as 

much as 44Z lower than i t s  OLS value of .082.

Our separability  restr ic tio n  that y^ ■ 0 i s  not testab le  by i t s e l f  in 

the two factor model. Complete separability  requires “ 02 " 0 and rf -  0 

in addition to y 3 ■ 0 and im p lie s  t h a t

We are free to change the signs of a l l  the y ’ s and n 's  simultaneously: 
however, we can't change ju st the y 's  alone without changing the sign of 
the correlation e, which we assume i s  p o s itiv e . There are only two 
rotations that sa tis fy  the constraints a > 0.



191

T a b le  7 ; L ow er B ound o n  8 R o t a t i o n s ?  R e s t r i c t e d  Two F a c t o r  M odel

2

a 2
* 1

s x 62 Y1 Y2 Y3 n l n 2 n 3

r f =0 .5 0 .0 5 6 .1 2 0 .4 0 4 .1 2 7 .5 6 0 - . 1 1 5 - . 2 3 1 1 .3 6 2.0 .6 0 .0 7 6 .1 2 5 .4 1 6 .1 8 2 .1 8 8 - . 0 3 5 - . 1 9 8 1 .4 6 1
.6 5 .0 8 6 .1 3 0 .4 1 4 .2 2 5 - .1 7 0 .0 5 2 - . 1 5 5 1 .4 6 3

.5 0 .0 5 6 .1 1 9 .4 1 2 .1 2 9 .5 7 7 - .1 9 8 - .2 5 7 1 .2 4 4
r £= . 20 .6 0 .0 7 4 .1 2 4 .4 2 4 .1 7 7 .2 5 0 - . 1 3 3 - . 2 3 9 1 .4 0 2X .6 5 .0 8 4 .1 2 9 .4 2 5 .2 2 0 - .0 8 9 - . 0 5 3 - . 2 1 0 1 .4 8 8

.5 0 .0 4 6 .1 1 8 .4 3 7 .1 2 1 .7 1 9 - .3 0 6 - .2 8 6 1 .0 3 0

r f ~ - 40 .6 0
.6 5

.0 6 8

.0 7 7
.1 2 2
.1 2 6

.4 4 9

.4 5 5
.1 7 0
.2 0 5

.4 0 4

.1 5 6
- .2 5 6
- .2 0 6

- . 2 8 4
- .2 7 5

1 .2 6 4
1 .4 0 4

.7 0 .0 9 0 .1 3 3 .4 4 2 .2 6 7 - . 4 0 1 - .0 7 5 - .2 3 4 1 .5 8 7

.5 5 .0 5 2 .1 1 9 .4 6 5 .1 3 8 .7 0 1 - .3 5 5 - .3 0 3 .9 9 1

50 .6 0 .0 6 3 .1 2 1 .4 7 1 .1 6 4 .5 3 6 - .3 3 1 - .3 0 6 1 .1 3 0
r f = - .6 5 .0 7 3 .1 2 4 .4 7 9 .1 9 8 .3 0 6 - .2 9 2 - . 3 0 5 1 .2 9 6

.7 0 .0 8 2 .1 2 9 .4 8 2 .2 3 9 - .0 1 9 - .2 2 7 - .2 9 5 1 .4 8 3

Two f a c t o r  s t r u c t u r a l  m o d e l:

y  = Xa + y  B + ( f ,  + g n )y  + f 9n + p

a? /  a 2 = 1 . 0  r -  = f  
f 2 a 2 f  f l f 2' f l  1

1 .0
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The reduced form is:

V
0 .• -w

r___» n
y  y °

0 0 62
n23

1

___• i
Y Y °

0 0

o2 +6? a2 
1. 1 w 0.6-ct 6, a1 2  w 1 w

a2 +3oaw 
U2 2 w

2aw

So there are 2 restr iction s across 6 and E:

61 ■ °13 '  033 -  °13 '  °33

S2 * 023 033 " °23 °33

In fa c t , we get ©13 /  033 -  .088, a13 /  -  .082 which is  not bad. But

0 ®33 " and °23 °33 " S° aPPears that ^2 0 and a L,R’
2tes t  for both restrictions gives 6.72 ~ X (2 ). Also in table 8 we can see 

that ■ 0 or .2 and a between .60 and .65 resu lt in y^ and 0^ being

essen tia lly  zero whereas not neglig ib le and in fact i s  negative. This

possibly re flec ts  anomalies in the construction of the status scale and we 

hope to return to th is in the future. But even in the two factor model there 

is  some indication of a partia l recursiveness with y^ » 0, r  “ 0 and ■ 0. 

Then 0̂  is  estimable by either the constrained (smoothed) between family
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regression 0̂  /  or by the constrained within family regression

°13 ! °33* 1116 la ter e8timate (°i3  /  a33 * .082) i s  more robust since i t

only requires Y_ " 0. For then the factor with an individual component 

causes no bias (Y- “ 0) and the second factor, being purely family, is  

swept out by using the (constrained) within family moments.
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7. Summary and Discussion

This paper dealt with two topics, the substantive

problem of ’’ability bias" in estimates of returns to

schooling and a somewhat novel econometric approach to esti­

mation in the presence of unobservable variables. From a 

substantive point of view the new econometric methods did 

not produce results which differed greatly from those based 

on simpler methods. This is either satisfying or disappointing, 

depending on one's point of view. An elaborate procedure, 

designed to detect possible sources of bias, yielded little 

evidence of such bias. It is quite likely that important 

unobserved variables have been left-out from our schooling- 

achievement model but they are not of the type one usually 

associates with the notion of intellectual "ability". There 

is a significant positive relationship between disturbances 

in the income and occupation equations but it seems to have 

little to do with the disturbances in the schooling equation. 

There is some indication of a negative relationship between 

family components in the schooling and occupation equations, 

but little evidence of a strong relationship between unob­

servable family components in the schooling and income 

equations, implying little bias in the estimates of schooling 

coefficients which ignore such connections.
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These conclusions are limited to the particular data 
set analyzed and the' range of alternative hypotheses investi­
gated. Since estimates of bias in the schooling coeffi­
cient depend crucially on the relationship between the left- 
out ability variable and the level of schooling in the sample 
studied, there is no reason to expect that they would gener­
alize to different populations with a different ability­
schooling nexus, it does appear, though, that there was 

little relationship, at the beginning of this century in 
Indiana, between the distribution of ‘'ability" and the 
distribution of schooling, particularly if "ability" is 
assumed to have a significant family component. This may 
have changed over time, however, as the schooling system 
developed and became more selective. We do intend, there­
fore, to replicate our analysis on a more recent set of 
brothers taken from the 1966 -1969  National Longitudinal Survey 
of Young Men.

Besides bringing us into amore recent period, the NLS 
data will allow us to overcome several other limitations of 
the Gorseline sample. It will have more background data on 
parental status and wealth allowing for a "cleaner" and 
clearer interpretation of the unobservable, making the various 
no-correlation assumptions more palatable. Moreover, the
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availability of some direct measures of "ability", such as 

IQ test scores will provide an explicit test of such inter­

pretations. Also, given a larger number of indicators we may 

be able to dispense with the use of the rather ambiguous 

measure of "occupation." The whole notion of "occupation" 

deserves more study and the variable itself needs rescaling 

in any case.

From a statistical point of view, our work can be viewed 

as an extension of the error-components literature to the 

simultaneous equations systems context or alternatively 

as an extension and specialization of the resurgent path- 

analysis literature to the error-components case. The con­

nections between our work and these fields are discussed 

at length in Griliches (1973) and will not be reproduced 

here. We should note, however, explicitly the similarity 

of some of our results to those of Hauser and Goldberger 

(1971) and the work of Jo'reskog, especially his "Factoring 

the Multitest-multioccasion correlation matrix" (1970). Our 

results can also be related to the weighted regression 

technique of Frisch and Koopmans, with the weighting scheme 

derived from within families replication.
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Appendix: Data and Variables

The data are taken from D.E. Gorseline, The Effect of 

Schooling Upon Tncottte, Indiana University, 1932, and are 
based on interviews and mail surveys undertaken by Gorseline 

in 1928. The collection procedures and caveats are described 

rather clearly in his book and will not be reproduced here.

He collected "usuable" data on 172 sets of brothers or a total 

of 68 individuals. Limiting ourselves, in this paper, solely 

to pairs of brothers, we have 156 pairs or a total of 312 

individuals.
Schooling in this study is measured by the "probable 

grade of school attained" rather than by the reported years 

of school attained" rather than by the reported years of 

school attended, defined as "the grade in which the man who 

filled out the questionnaire was when he stopped going to 

school". It is taken from Tables LIV-LVII of the book. The 
"probably" enters into the definition because Gorseline often 

adjusted or estimated this number on the basis of other infor­

mation in the sample.
"Income" is net earnings for the calendar year 1927 

plus the imputed value of home consumed food for farmers and 

retail businessmen and the imputed value of housing when
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supplied with the job(e.g., parsonage for ministers).

"Occupation" is as of 1928(tables XCIII-XCVI). It 

was scaled according to Duncan’s SES scale. Since the names 

given did not always correspond to a standard list of occu­

pations, some of the attribution is arbitrary and may be sub­

ject to error. Moreover, it is not clear whether the SES 

scale is the best for our purposes or that it applies without 

further adjustment to the situation as it existed in 1928.

We are currently reviewing our assignment procedures and are 

planning to experiment with alternative occupational scalings 

This may lead to some changes in the results reported above.

The only other variable used in this paper is the age of 

brothers as of 1928, taken from Tables LXXXIX-XCII and the 

age at which they stopped going to school, from tables LXXX-

LXXXV. More information was available on other characteris­

tics of the sample, but in general it was not complete, not 

covering most of the brothers in the sample. Among other 

variables tried but not reported on in this paper was the 

rate at which schooling was completed as a measure of ability 

test-scores for a subsample of brothers, and the birth-order

of brothers.



Chapter 6

Extensions

I . M u lti-F ac to r Models

Much o f the  methodology in  Chapters 2 and 3 was confined to  th e  one 

fa c to r  model. But befo re  try in g  to  develope general r e s u lts  fo r  N fa c to rs  

we w il l  want some guidance on what s o r ts  o f r e s t r ic t io n s  a re  reasonable to  

impose. Our em pirical work in  Chapters 4 and 5 made some beginnings in  th is  

d ire c t io n . Chapter 5 considered a second fa c to r  w ith a pu re ly  fam ily s t ru c ­

tu re  and developed some f a i r ly  u sefu l bounds. Chapter 4 considered an ex­

ten sio n  to  two d i s t in c t  bu t c o r re la te d  kinds o f a b i l i ty ,  s c h o la s tic  ( f . )  

and economic ( f . The su b stan tiv e  c o n s tra in ts  are  th a t  f i s  excluded 

from the  income equation  and f„ i s  excluded from the schooling equation .

The t e s t  i s  assumed to  measure a combination o f both kinds o f a b i l i ty .

This model i s  no t id e n t i f ie d  w ithout p ro p o r tio n a li ty  c o n s tra in ts  on the 

background v a r ia b le s  and S ection I I I  o f Chapter 2 shows th a t  the problem 

cannot be solved by simply adding more in d ic a to rs  i f  they a l l  depend on S.

I would l ik e  to  sketch  a p o ss ib le  a tta c k , most o f which i s  o r soon w ill  

be o p e ra tio n a l using d a ta  from the  N ational Longitudinal Survey (see G r i l i -  

ches (1974) fo r an overview o f th is  d a ta ) . The key i s  th e  a v a i la b i l i ty  of 

two t e s t s  which measure d if f e re n t  combinations o f th e  two unobservables:

T1 = xl £l + 61£2 + V1

S1 = X2£l + V2

T2 = y23S1 * X3f l + 63£2 + V3

S2 = W x + X4f l + V4

Y1 = y4SS2 + 65£2 + V5

E = ^46S2 + 66£2 + V6

Y2 = ^47S2 * Y67E + 67£2 + V7
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Tj i s  th e  score on an IQ t e s t  given p r io r  to  th e  years o f schooling re p re ­

sen ted  by Sj (o r a t  le a s t  p r io r  to  the  p a r t  o f  S th a t  shows s ig n if ic a n t  

v a r ia t io n  in  the  sam ple). T_ i s  the  score on a t e s t  which d i f f e r s  from a 

standard  IQ t e s t  and i s  given a f te r  S_. The knowledge o f the  World o f Work 

(KWW) t e s t  in  th e  NLS d ata  would seem to  f u l f i l l  th ese  requirem ents, w ith 

Sj equal to  years o f schooling completed in  1966, the year the  KWW t e s t  was 

given. and Y2 are the  log o f earnings in  two d if fe re n t  y ea rs , and E is  

a measure o f job experience accumulated between the  two y ea rs . There is  

a lso  a v a r ie ty  o f exogenous v a r ia b le s  bu t we have su rpressed  them in  o rder 

to  see what s o r t  o f  estim ates  can be obtained w ithout the  p ro p o r tio n a li ty  

r e s t r i c t i o n s .

I f  ^ j/^ 3  /  so th a t  the  two kinds o f  a b i l i ty  have d i f f e r e n t ia l

e f fe c ts  on the two t e s t s ,  then we can so lve fo r  f 2 in  terms o f T .,  T2 , and 

S p  Then s u b s t i tu t in g  th i s  proxy in to  the  Y2 equation gives

d .2 )  Y2 = y47S2 + y67E ♦ a 1T1 ♦ a2T2 + - 0 1 ^  - .

This leaves an e r ro rs - in -v a r ia b le s  problem in  T^ and T2 and so we look fo r  

in strum en ts. Ŷ  i s  a candidate since  the  v ’s a re  assumed to  be u n co rre la ted . 

But Yj is  the  only excluded v a r ia b le  in  (1 .2) and two instrum ents are  needed. 

More promising i s  a s im ila r  s u b s t i tu t io n  in  the  Yj equation , s in ce  E and Y2 

can be used as instrum ents to  id e n tify  y45- Then follow ing the C oro llary  

to  Theorem 3, Chapter 2, we can use Yj » Yj - Y45S2 as a proxy fo r  f  in  the 

Y2 equation w ith T^, S^, and T2 as p o ss ib le  in strum en ts. As in  Theorem 3 a 

rank cond ition  i s  needed to  t e l l  us which param eters a re  estim able from the

IV equ a tio n s.
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I I . A Parsim onious Model o f  Cross Equation S e r ia l  C o rre la tio n

A n a tu ra l  way to  th in k  about c ro ss  equa tion  s e r i a l  c o r re la t io n  i s  in

term s o f  a common l e f t  out v a r ia b le :

( I I . l )  y ., = x ’ tt, + e .,k y ' t k  ~ t ~k tk
w ith  e tk  = f t dR + vtk  , t  = 1 , . . . ,  T; k = 1 , . . . ,  m

where th e re  a re  T o b se rv a tio n s , m eq u a tio n s , and th e  v R a re  s e r i a l l y  uncor­

r e la te d .  An a p p ro p ria te  p r io r  fo r  th e  f  could be based on a low o rd e r au to ­

regressive-m oving  average p ro c ess . C onsiderab le a n a ly t ic  s im p li f ic a t io n  o f 

the  l ik e lih o o d  fu n c tio n  would be p o s s ib le ,  along th e  l in e s  o f  th e  C hapter 3 

Appendix.

A more s tan d a rd  approach to  t h i s  problem would be based on a m atrix  gen­

e r a l iz a t io n  o f  an au to regressive-m oving  average p ro cess : A(L)et  = C(L) w 

where A and C a re  m x m low o rd e r m atrix  polynom ials and ŵ_ i s  s e r i a l l y  un­

c o r re la te d .  The advantage o f  our approach i s  th a t  i t  i s  much le s s  param eter 

expensive .

As alw ays, th e  troublesom e q u es tio n  o f  how many fa c to rs  must be faced .

The answer w il l  depend on th e  way in  which th e  unobservable i s  being  used.

I f  i t  i s  " ju s t"  s e r i a l  c o r re la t io n  which i s  to  be swept ou t b u t n o t ex p la in ed ,

e . g . ,  to  avoid  b ia s in g  th e  c o e f f ic ie n t  o f  a lagged dependent v a r ia b le ,  then 

we could t r y  to  e s tim a te  th e  number o f  fa c to rs  by o v e r f i t t in g .  But i t  may 

be th a t  f  i s  a su b s ta n tiv e  unobservable th a t  we want to  m easure. An example 

could be using  d a ta  on th e  term s t ru c tu re  o f  i n t e r e s t  r a te s  along w ith  p r ic e  

d a ta  in  o rd e r to  measure expected in f l a t io n .
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I I I .  ML Regions

In th e  e r r o r s - in -v a r ia b le s  model o f  C hapter 2 (Theorem 4) and in  model 

4 in  C hapter 3 we have a sim ple d e s c r ip tio n  o f  th e  ML reg io n  in  th e  u n id en t­

i f i e d  case . Our p ro o f o f  Theorem 4, C hapter 2 shows th a t  Z- “ Ta2 la 21* 

p o s i t iv e  d e f in i t e .  So x £  min V £ 2£ /(^ -’o21) 2 “ T herefore

i r ~21 Z2 ~21' 11'
th e  n e t r e l i a b i l i t y  pN = l / ( x a 11) > Usin2 1_P = C1~PN) (1-R 2 x )

1

to g e th e r  w ith  1-Ry 1.x ,y 2 . . . y |11 '  «iv es  th e  f o l lo “ -

2 2 2ing bound on th e  r e l i a b i l i t y  p = 1 - a , / a  : 0 < p > R
1 yl  = -  X l- i-  y2 ......... ym

This in te rv a l  fo r  p g en e ra te s  th e  ML reg io n s fo r  th e  o th e r  s t r u c tu r a l  p a ra ­

m eters s in ce  th e  p ro o f o f  Theorem 4 shows th a t  given p (o r x) th e  reduced 

form can be un iq u ely  so lved  fo r  th e  s t r u c tu r a l  param eters .

C orresponding to  th e  form al equ ivalence between th i s  e r ro r s - in -v a r ia b le s

model and th e  r e p l ic a t io n  model, we can apply a s im ila r  argument to  th e  p ro o f

J 2 
g

2 2o f  Theorem 1, C hapter 3. There th e  bound on x = o /o ^  i s  th a t  E - xdd’ i s
-1 2 2 2 ,p o s i t iv e  d e f in i te  and so x < 1 /d ’Z d . S ince X = / ( a ^  + a ) = 1 /(1  + .x ) ,

we have 0 < A > ip/(l + ip) where ip = d ’Z ^d. I t  i s  shown in  th e  C hapter 3

Appendix th a t  th e  ML e s tim a te  o f \p /(l + ip) i s  (p - ~ ) / ( l  -  ~) where p i s  th e

la rg e s t  squared canon ical c o r re la t io n  between y ' - x 'l l  and a s e t  o f  group

in d ic a to r  dummy v a r ia b le s .  In S ection  6 o f  C hapter 5 (p -  —) / ( l  -  i )  i s  in -  

2te rp r e te d  as a g en e ra liz e d  R . The bound on A g en e ra te s  th e  bounds fo r  the  

o th e r  s t r u c tu r a l  pa ram ete rs .
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IV. A Production Function Example

Consider the following Cobb-Douglas production model:

(IV. 1) y . . = E 6 x .. + f. + u., , Jit _ n nit i it' i = 1,... ,g 
t =

where y and the x's are the logs of output and the observable 

inputs, and f is intended to capture the effects of omitted in­

puts which do not vary over the sample period. In an agricultural 

context f could include measures of soil quality or average dif­

ferences in climate. Another possibility is the quality of 

management or entrepreneurial capacity. The variable factors 

are determined by the following factor demand relationships:

(IV.2) p .. + x .. - y.. = v n = 1,...,N

where the p's are the logs of the deflated factor prices.

Note that we are suppressing the intercepts and vzill not be 

exploiting any information they may contain, as in Klein's (1953) 

factor share method. Thus we can allow for (or test) imperfections 

in the product or factor markets in the form of constant demand 

or supply elasticities. Also we will not have to make arithmetic 

vs. geometric mean distinctions in specifying that firm's maximize 

"on average."

Clearly there is no identification problem if we can observe 

exogenous factor price variation. We can simply use the prices 

as instruments with the f. picked up by a set of firm dummy

variables. But to take advantage of an informative prior for the
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f., we have to face a simultaneity problem. For under decreasing

returns (E fj < 1) the firms with more of the fixed factors will n n
use more of the variable factors. So we set up a reduced form and 

try applying our prior there:

(IV.3) yit - -nX Snp l t  + n fi + nu.t  + n I Bnvn i t  
n n

xkit= X  6»pnxt ' Pkit + nfi + nuit + nJ Bnvnit + vkit < 
n n

k = 1,...,N

with n = (1/(1-E BR).
n

Note that the output elasticities can be identified from a

covariance analysis of any one of the reduced form equations.

We can simultaneously exploit all of the equations together 
with some of the between firm variation by applying the GLS 

estimator in (III.7), Chapter 3.

First reparameterize in terms of y and the logarithmic factor 

shares sn = Pn + xn ” Y !

( iv .4) yi t  -  -nX 6npn i t  + n f£ + n»i t  + « x Bnvn i t

snit = vnit' •

This fits our model 1 framework with E unrestricted and 0 = dd'.

There is also the restriction that d^ = 0 for fc >_ 2.

(3 = R  I can be obtained from the GLS estimate of the
'V  ifetl

reduced form slope coefficients:
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(IV. 5) «* = (Hw + '♦ Hb «BLS>

H = £-i* W

Hfi « |(9 + jz)-1 * B.

* GLSThe GLS estimator 6 pools two other GLS estimators, <5
GLS GLSand <5„ . The within firm 6. corresponds to an efficient~ B  ~W

use of Mundlak’s (1963) analysis of covariance approach, recognizing

that each of the reduced form equations is informative about 3.
GLSThe other term, <5 , is new; it reflects the exchangeable prior

bringing in some of the between firm variation. This may be 

quite valuable if most of the sample variation is between firms, 

reflecting location differences, etc. With firm effects h, in 

the factor demand equations we would have the multi-factor version 

of model 1. The GLS estimates would still be given by ( i v . 5 )  

but 0 would be less constrained.

I next want to take up the Marachak-Andrews (1944) case 

in which there is no observable price variation. The estimation 

techniques generated by this extreme case are quite relevant to 

panel data since much of the price variation may reflect permanent 

location differences which are confounded with the firm effects

f.. Also the observed price variation may be mostly quality 

variation. For example, let be hours when in fact the relevant 

quantity variable is X^^^ = Q^X^^ where is a labor augmenting 

qualtiy index reflecting average labor quality in the i firm.

Then the relevant price variable is obtained by dividing the total 

wage bill by the number of "efficiency units" of labor
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?1 - Pixi/51 •

So in logs we have

(IV. 6) xiit = xH t  + <Ji

pn t  - piit - ’i

We have to add 8^q^ to the structural form of the production 

function in (IV.1). But this can be absorbed in f.? The fac­

tor demand relationships don’t have to be altered because 

Pl + x^ = + x ; i.e., the total factor compensation is cor­

rectly measured. Problems arise only in trying to disaggregate the 

wage bill into a price and a quantity. So we need methods which 

do not depend on such a division.

First we will look at Mundlak’s (1963) modification of Hoch's 

(1958) direct least squares approach. Hoch's idea was that if the 

disturbance in the production function is random not only to the 

econometrician but also to the firm, then it will not be "trans­

mitted" to the factor demand decisions. In that case we can re­

write (IV.2) as

p + x - (y - u) = v n 1 n

or

(IV.7) sn = v - u , n=l , . . . , N .

As Mundlak pointed out, this assumption becomes more tenable when 

we have replication on the firms, thereby allowing us to dis­

tinguish the part of the residual that is of a more permanent 

nature. For the firm effects f^, although random to me are
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probably known to the firm and hence transmitted to the factor 

demand system. Under these assumptions 3 can be estimated from 

a covariance analysis of the structural form of the production 

function. But using just the within firm deviations may throw 

out most of the sample information. The cure can be worse than 

the disease.

In order to see what improvements are possible we use the fol 

lowing version of the reduced form:

(IV.8) yit - nfi + uit + nz V n i t

*kit - nfi + “Z Snvnit + vkit,
n

This fits our model 1 framework with 0 = dd' and all 
Zvl\

of d restricted to be equal. Assuming that v =/ . I 

N

of u with E(vv') = V, we have 

(IV.9) Ei ;l • n2 (3’V3) + a2

~12 = ~2i = n2 (3’v3)£; + nB’v

e22 ■ Y + n(AN3'v + V3^) + n2 (P'vp)£N^

Given E we can uniquely solve for 3, V, and a*. For example 

^12 = ^'~22 and so

(IV.10) 3 ~ ^22~21 *

This is just OLS using the constrained within firm moments 

(E = R - dd’). It differs from Mundlak’s estimator in that in­

k = 1,... ,N.

of the elements

is independent
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stead of R - R we only subtract off dd*, a matrix of rank one, 

thereby using more of the between firm variation.

Next we will consider the case in which all of the 

production function disturbance u.̂ _ is transmitted to the factor 

demand equations. We assume as before that v is independent of u 

with an arbitrary covariance structure E(yv') = V. Mundlak argued 

that the independence of u and v is more plausible after removing 

firm effects. Then the logarithmic factor shares can be used as 

instruments for the x ’s in an equation with firm dummies. So 

Mundlak*s suggestion is to apply the Hoch-Thiel instrumental 

variable estimator to the within firm variation.

Our extension is based on assigning the f^ an exchangeable 

prior in the following reduced form:

x. ., = nf. + nu.. + nE 6 v .. + v. .. kit 1 1 it n nit kitn
Nk = 1 t • • • r

We have the same restrictions on d as before but now

( i v . 1 2 )  z x l  =  n Z ( d z +  3 VB)

Note that

-12" E11~N
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and so we can solve for 3:

(IV. 13) 3  =  U 2 2  -  *n £2]? (-21 “ ~NZ11) ’

This is the Hoch-Thiel estimator based on the constrained within 

firm moments. As in . (iv.10) we are using R - dd’ instead of the 

unconstrained R - R.

It is disturbing that the appropriate estimation technique 

depends so critically on whether or not u is transmitted. The 

technique which is consistent for one case is not for the other.

So we want to develop a more robust approach. Also we have 

neglected the possibility of a firm structure in the factor demand 

residuals. One could argue that there "shouldn’t" be persistent 

errors in choosing factor ratios; but in fact firm effects have 

been observed in factor demand relationships (e.g., Ringstad (1971)) 

Also they could reflect demand and supply elasticities differing 

across firms. In any event these firm effects provide another 

potential source of identifying information.

The problem can be formulized by considering a model with

partial transmission (cf. Mundlak and Hoch (1965)). Mundlak (1963)

has shown that this case can arise from aggregation over different

stages of the production process. We decompose u^t into

u,., + u„., and assume that only u... is transmitted. This model lit 2it lit
cannot be identified from the within firm variation E. For before 

there was a one-to-one relationsip between E and the structural 
parameters, leaving no degrees of freedom to determine how a* 

splits into and . But there is some hope if we can modify

the factor share equations to include firm effects:
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/ tv  u h  s . J_ = p . J_ + x . .  -  y . . =  h . + v . . .  n = 1 , . . . , NIJ-V.14; nit -nit nit Jnit m  nit

Then the crucial question is what distributional assumptions 
/hl\

to make for f and h =4 . | . I want to argue that it's reasonable
' ^ N ______

to assume that h is independent of f. This may seem implausible 

since the h's are to some extent profit maximization errors and 

may reflect the same underlying managerial ability that is con­

tained in f. But it's the absolute value of h that reflectsn
how well a first order condition is being satisfied, with allocative 
ability inversely related to |h |. So we need not expect a simple 

linear relationship between f and h^; e.g., |hn | could be an 

exact function of f but so long as the sign of h is independent 

of f there will be no correlation between f and h . Furthermore, 

as Welch (1970) and Nelson (1970) have emphasized, it may be in­

correct to think of f as primarily reflecting entrepreneurial 

skill. For f is the addition to output holding other inputs con­

stant when in fact? the true contribution of entrepreneurial skill 

may be in choosing the proper levels for the other inputs.

Although we cannot recover the output elasticities from E 

we now have a much more interesting between firm 0. For the 

vector of reduced form firm effects is

(IV.15) nfi + nE
n

0 h . n ni

nfi + tie 
• n

6 h . n m + hli

nfi + nE 6 h . n ni + hNi
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which is formally identical to the within firm effects in the 

complete transmission case. So 0 has the same structure as E 

in (IV. 12) and analagous to (IV. 13) we have

(IV. 16) £ = (©22 “ ~N®21^ {®21 ” V l P *

This is the Hoch-Thiel method applied to the between firm variation 

It has some intuitive appeal relative to applying it to the within 

firm E. First, most of the relevant variation may be in 0, 

reflecting permanent location differences that are swept away 

in E. Second, it is easier to specify how much of the residual 

is transmitted. For since the firm effects are relatively con­

stant, it’s reasonable to assume they are not random to the firm 

and hence are fully transmitted.
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