/\0,
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Summary

This thesis consists of four self-contained essays. They are, however,
interrelated in several ways. The most basic connection is that they are all
concerned with the proper stochastic specification of a model. More speci-
fically, we have tried to integrate the stochastic specification with the
rest of the structure by regarding the systematic part of the residuals as
additional explanatory variables which happen to be unmeasured. Then we
must specify how the observed and unobserved variables are related to each
other.

The major precedent for this approach is the work by Marshak and Andrews
(1944), Mundlak (1963), and Mundlak and Hoch (1965) on the specification of
micro production functions. They regarded the residual in the production
function as made up of unmeasured inputs such as the."entrepeneurial capac-
ity" of the firm. Although these inputs are unknown and regarded as random
by the econometrician, they may or may not be random to the firm. The an-
swer to that question determines how the unobservable is related to the ob-
served factors of production.

Another connecting thread in these essays is an attempt to identify the
structural relationship between an individual’s wages and his characteristics.
The relationship is

"1i 1 *¥72581 « V. i *V iml,..., q,

where is the log of earnings in year one, S is years of schooling, f is
the systematic part of the residual, reflecting unobserved characteristics,

and V3 is transitory income. For the moment we will ignore the other observed



characteristics in x. To complete the stochastic specification we need to
model the relationship between f and -S. It is approximated by

t2) S. - X.-62 * X2f. * V2.

We suspect that i-s non-negligible because although f is random to the ex-
ternal observer, it is known to the individual and forms the initial condi-
tions that he faces in deciding how much schooling is right for him. con-
tains other characteristics that are not relevant for wage determination.

The observable characteristics in x might include family background
measurements such as father’s schooling or occupation. We will take x to
be independent of f by construction. This means reinterpreting f as the
part of the unobserved characteristics that is not predictable from x. Of
course this affects our interpretation of 0. For example, if x is mother's
schooling and f includes genetic ability, then the reinterpreted 3 reflects
both the return to the mother's pre-school investment in the child and the
spurious effect of mother's education as a proxy for the initial ability of
the child. Of if x is father's income, then even if it has no direct effect
on the son's earnings, our reinterpreted 6 will not be zero.

In order to separate the structural effects of x from the proxy effects,
we would have to relate mother's and father's observed characteristics to
their unobserved characteristics, f' and f". The we would allow f' and "
to be correlated both with each other (assortative mating) and with f. But
this more complicated model is irrelevant if all we want to estimate is the
return to the son's schooling. For the y's are not affected by the way in

which we divide up the joint effect of x and f.



A general setting for these models is provided in Chapter 2. There we
study the identification of systems which are triangular but fail to be re-
cursive because the residuals from the different equations contain common
omitted variables. The identification problem is approached as the first
step in an estimation problem. We want to describe a likelihood function,
for example in terms of its mode and some measures of dispersion. But first
we would like to know if the maximum of the likelihood corresponds to a un-
ique vector of structural parameters. If not we have multiple peaks, a ridge
or a pleateau, and the problem is to describe ML regions for the structural
parameters.

Clearly the model in (1.2) is not identified. A plausible source of
additional information would be another measurement of earnings:

() Yag T Xp 8T YO T Vigg¥ eyt Xyl T Vy,

But in fact the model remains unidentified no matter how many measurements
of this kind we have. And this is true even if Y34 equals zero; e.g. if
there is enough time between the measurements so that they do not have a
transitory piece in common.

More promising would be the availability of an early (pre-school) test
score:

{(4)] IT. =X NO{() + Xl‘fI + Vl'i

If T is excluded from all of the other equations, then the model is (in gen-
eral) identified provided there is one additional restriction besides those
implied by the triangular structure. But if there are no other restrictions
(i.e. / 0), then the ML estimate is a region. It turns out that we can

uniquely solve for the other parameters once we know p = -4 2/o’AZ, ‘the



reliability of T. The ML region for the other parameters is generated by
the following ML interval for p :0 < p < IZC qv Y

A hard question in this model is whether the combination of omitted
characteristics that ties together the income and schooling residuals is the
same combination that connects the schooling and test residuals. There is a
straightforward answer under a narrow measurement error interpretation of f.
Then v. is interpreted as a test-retest error that could in principle be el-
iminated by replicating the test. So it is reasonable to assume that is
independent of everything else and there is clearly just.one f, namely the
systematic part of the test (the "true score") that is not captured by x'fk.

There is, however, an alternative more general interpretation of f.
It is that IQ tests are designed to predict academic performance and need
not capture (or appropriately weight) the set of characteristics relevant
for economic success. This suggests having two distinct but correlated un-
observables, f and f2» fj reflects the weighting of the omitted character-
istics relevant for predicting economic success and f2 reflects the weight-
ing appropriate for scholastic achievement. Then f. is excluded from the S
equation, f2 is excluded from the Y equations, and neither is excluded from
the T equation. Both of these interpretations of f are pursued in our empir
ical application in Chapter 4. It is based on the 1964 CPS-NORC veteran's
data, which has previously been studied by Griliches and Mason (1972) and
Duncan (1968), among others.

So one source of identification is the availability of additional rela-
tionships which contain the omitted characteristics. A related source is
an appropriate grouping device. The use of grouping methods in errors-in-

variables contexts goes back to Wald (1940) and to the empirical work of



Friedman (1957) and Eisner (1958). One novelty of our approach is that the

unobservable need not be constant within the group. For example, let

= x! + Az
5 S.. x! Aza: > 27
Yiij = *ij*3 * 'f23Si;y + A 3ij
Yaij = 4 vasig Yoy A

where the subscripts refer to the jth individual in the ith group. This
grouping will buy us something if the systematic part of the residuals

(a™.) has a group structure while the equation specific effects do
not. Regarding the a”. as a set of pq "nuisance" parameters makes it clear
that any prior information we can apply to them will be very useful. It
seems reasonable to use the following representation for our prior a*.=f*+g~”
with f* randomly distributed across groups and the g”. randomly distributed
within groups. So we are connecting the residuals from the different equa-
tions via a common systematic factor which has a variance components struc-
ture of the sort used by Balestra and Nerlove (1966).

We could, of course, regard each member of a group as a separate equa-
tion and return to our earlier framework with p factors wich are themselves
correlated via their dependence on one common factor. But the replication
case is sufficiently important that we have devoted Chapter 3 to developing
it in some generality. For example, it is no longer necessary to have an
equation such as T which contains the unobservable but excludes S. In fact
(5)is identified provided there is one restriction in addition to those

implied by the triangular structure.



This is similar to the identification condition for the model which
has an early test score but no replication. In fact a comparison of Theorem
4 in Chapter 2 with Theorem 1 in Chapter 3 shows that the identification pro-
blems in the two models are identical. So in the unidentified case we again
have a simple description of the ML region. Now A = 2/(aA2 + o0 2) is the
key parameter. Given A the reduced form can be uniquely solved for the other
structural parameters. Then the ML region is generated by the following ML
interval for A: 0 < A<T where T = (i - 5/(1l - 5 and ip is the largest
squared canonical correlation of the endogenous variable? with a set of group
indicator dummy variables (If there are x’s then the endogenous variables are
replaced by an appropriate set of residuals). If there is no group structure
then ipis 1/p. T2 is the fraction of the unexplained variance which is acc-
ounted for by the group structure.

In our empirical application of the non-replication models we are able
to reduce some of the ML problems to standard LIML calculations or to Hannan's
(1967) extension of LIML. In other versions of the model the likelihood func-
tion is relatively intractable and we have followes Jbreskog and Goldgerger
(1973) in adapting a numerical minimization program by Jtlreskog (1970) to our
problems. But we show in Chapter 3 that considerable analytic concentration
of the likelihood function is possible in the replication models. Some of
our algorithms can be interpreted as a canonical correlation procedure, others
as constructing a proxy for the unobservable and including it in a regression.
We show how our procedures generalize the more familiar single equation var-
iance components pooling of the within and between group information. In
addition we describe the computational and interpretational differences in

a fixed vs a random effects treatment of the unobservable.



In Chapter 5 we present an application of these techniques, using data
on brothers to control not only for between family parental background diff-
erences but also for individual within family differences which may be corr-
elated with achieved schooling levels later on. We also make some attempts
to explore the sensitivity of the results to the one factor assumption, ob-
taining ML regions in the.two factor case.

The common focus of our examples and applications on one empirical
problem has the advantage of providing these essays with some additional
unity. But it has the disadvantage of suggesting, I believe incorrectly
that our approach is limited to the stochastic specification of human cap-
ital models. So our concluding chapter, in addition to making connections
to the literature and suggesting extensions, will sketch an application to
a combined time-series cross-section analysis of individual firm production
and factor demand relations. Thus the conclusion will link back to the major

precedent for our approach.
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Chapter 1

Introduction

This thesis consists of four self-contained essays. They are, however,
interrelated in several ways. The most basic connection is that they are
all concerned with the proper stochastic specification of a model. More
specifically, we have tried to integrate the stochastic specification with
the rest of the structure by regarding the systematic part of the residuals
as additional explanatory variables which happen to be unmeasured. Then we
must specify how the observed and unobserved variables are related to each
other.

The major precedent for this approach is the work by Marshak and And-
rews (1944), Mundlak (1963), and Mundlak and Hoch (1965) on the specifica-
tion of micro production functions. They regarded the residual in the pro-
duction function as made up of unmeasured inputs such as the entrepreneur-
ial capacity” of the firm. Although these inputs are unknown and regarded
as random by the econometrician, they may or may not be random to the firm.
The answer to that question determines how the unobservable is related to
the observed factors of production. For example, firm effects representing
unmeasured fixed inputs are likely to be taken into account by the entre-
preneur in making his factor demand decisions. The firms with more of the
fixed inputs (under decreasing returns to the variable factors) use more
of the variable inputs, and so part of the production function residual is
transmitted to the factor demand equations.

The general model that we work with is
(D y T +x »B» f ’A+V, i=1,...,q,
where y. is an mx 1 vector of endogenous variables, x* is an n x 1 vector

of exogenous variables, T is an upper triangular matrix of parameters with



ones on the diagonal, B is a parameter matrix, and there are q observations.
We have examined the identification and estimation of this model and have
applied it in two empirical studies of the structural relationship between
an individual’s wages and his characteristics.

The residuals in (1.1) are assumed to be independent across observations
If they were also independent across equations then the model would be recur-
sive and readily identifiable. Conversely, if the residuals were freely
correlated across equations then the standard Cowles Commission results would
apply. Our interest is in the intermediate cases where some but not all of
the identification comes from covariance restrictions on the residuals. They
are assumed to have a factor analytic structure where is a vector of la-
tent variables and A is a matrix of coefficients (factor loadings). The un-
observable f* are distributed as @ multivariate random sample, v. is a vec-
tor of equation specific effects which are distributed independently of f as
a random sample with covariance matrix J = diag {al2 ..... a 1.

This model is useful in a wide variety of micro-econometric applications
Examples include studies of social mobility and the determinants of socio-
economic achievement. The triangular structure arises from making measure-
ments on an individual’s characteristics at a particular time. Then the
measured variable becomes a characteristic which can determine subsequent
measurements, x and f are a set of characteristics which potentially aff-
ect all subsequent observations. The distinction between them is that f
is unobservable. The assumed independence of x and f simply means that we
interpret f to be the part of the unobservable characteristics that is not
predictable from x. This of course affects our interpretation of B and

limits the restrictions we can impose on B. For example, x* may have no



effect on y, if all other relevant characteristics are included. But if
the partial correlation is non-zero (partialling on the other included x's),
then with our interpretation of f we cannot exclude x1 from that equation.
T, however, is unaffected by the way in which we divide up the joint effect
of x and f.

The identification problem in this model can be approached from at
least two points of view. The traditional one is to ask "What are the lim-
its of observational information?" If the reduced form parameters are known
with certainty, what aspects of the structure can we uncover? An alterna-
tive approach, which I prefer, is to treat the identification problem as
one apsect of investigating a likelihood function. We typically start by
investigating the mode and then proceed to examine measures of dispersion.
But a logically prior question is whether the maximum of the likelihood
corresponds to a unique vector of structural parameters. If not, then we
have multiple peaks, a ridge, or a plateau, and the problem is to describe
M. regions for the structural parameters.

The general treatment of model (1) remains an elusive goal. Chapter
2 is confined to the one factor case, but even then a complete identifica-
tion analysis is not available except for special cases. We do, however,
have some useful necessary conditions, and in addition a set of sufficient
conditions which provide a constructive method for obtaining the structural
parameters from the reduced form.

In the one factor case (f.'A = f.A*¥ where Ais mx 1), it is clear
that at least mrestrictions are necessary for identification. For example,
if all of the m factor loadings are zero then the model is recursive. Our

first two Theorems in Chapter 2 place conditions on the way in which zero



restrictions on B and T must be allocated, both across the equations (ver-
tically) and across the variables (horizontally). Theorem 1 shows that for
each k < m there must be at least k restrictions on the last k equations.
Theorem 2 shows that for each k < m there must be at least k restrictions,
each of which excludes an x or one of the following variables from an equa-
tion: y*, ..., y~.

The basic idea behind our sufficient condition is to use a proxy for
the unobservable f and then solve the resulting errors-in-variables problem
by finding a suitable instrument. For consider the following example:

(2j yX - Xjif ¢ Vj
y2 = X2f ¢ v2

"W 1 * Y23y2 * X3f * V3

Y4 Y24y2 * X4f * v4

We can use y. as a proxy for f in the y_ equation:

X3 X3
3) y3 - (y13 * ) y3 ¢ Y23y2 ¢ - T— v

This results in a standard errors-in-variables problem due to the "measure-
ment error" in y,. It can be cured by using y” as an instrument for y”
Similarly y”* can be used as an instrument for y* in the y” equation. But
complications arise when more than one variable needs an external instru-
ment. For then the instrumental variable (IV) normal equations need not
have full rank. Also we must be careful that our choice of proxy does not
contaminate the coefficients of interest. For example, in (1.3) is
contaminated by the use of y. as a proxy. These problems are dealt with

in Theorem 3 by giving a sufficient condition for a parameter to be estim-

able from the IV equations.



Our use of endogenous variables as instruments is similar to Hurwicz’s
(1946) suggestion to use lagged values of an error-ridden variable as in-
struments of a time series context. Also Liviatan (1963) used past and fu-
ture values of consumption and income as instruments for measured income.

A special case for which we do have a general analysis sets Y-. =0
for k > 1. Soy 1is excluded from all of the other equations. This case
is of special interest because it allows us to make a substantive distinc-

tion between the concepts of "measurement error" and "unobservable",

y =Af +\\ in (2) is a typical measurement error equation, particularly
if we scale f so that A = 1. Then we can interpret f as the "permanent"
or "systematic" part of y.. But if y* itself appears in some other equation

along with f, then we are including both the measured variable and the "true'
variable. Now there are cases in which this may be reasonable, e.g. a mea-
sured test score may have a credential or certification effect above and
beyond the "true score". But in general if A~ / 0 we will not want to
regard y* as measuring the unobservable f subject to error.

This errors-in-variables specialization of (1) is a special case of the
Geraci and Goldberger (1971) and Geraci (1974) models in that T is triangu-
lar. But it is more general in that part of the identification is coming
from restrictions on the residual covariance matrix. Geraci and Goldberger
assume that the measurement error, is independent of everything else,
but they allow the other v’s to be freely correlated. So they are confined
to using x’s as instruments whereas I can potentially use y’s as instruments
Their results are similar to mine in that the identification of the differ-
ent equations is tied together. Theorem 4 in chapter 2 shows that the en-

tire structure is identified by a single zero restriction on T or Bprovided



a rank condition holds. For then with y as a proxy for f, there is some
equation with an excluded variable that can be used as an instrument for
yi. This amounts to subtracting off ail2 from EJL/ 2, purging yl of the mea-
i
surement error. But then the purged y* can be used in the other equations
as an exact proxy for f. The sufficient rank condition is that the exclu-
sion occur in an equation in which f actually appears, and that the exclu-
ded variable appear (with a non-zero coefficient) in an equation containing
f preceding the one it is excluded from.

Another special feature of this errors-in-variables special case is
that we can give a complete answer to both parts of the identification pro-
blem. For in addition to necessary and sufficient conditions for the like-
lihood function to have a unique maximum, we have a simple description of
the ML region in the unidentified case. We can uniquely solve for the
other parameters once we know p = 1 - a.2/a 2, the reliability of y... It

yl
is shown in Chapter 6 that the M. region for the other parameters is gener-

ated by the following ML interval for p: 0 <p < R2

yI* £» y2¥*“ *ym
We have put this result under "Extensions” since we are just beginning to
develope useful bounds of this sort.

If the standard Cowles Commission model without restrictions on the
structural residual covariance matrix is not identified, then typically
the ML intervals are unbounded and do not contain any useful information.
But in our model the use of "unidentified" is somewhat misleading. For
we do have identification in the sense of a non-trivial bound. The use

of bounds in errors-in-variables models goes back to Frisch (1934) who

pointed out that the appropriate weighted regression could be bounded by



the elementary regressions. This solid angle bound was proved very labor-
iously by Reirsol (1945), more directly by Dhondt (1960), and recently
quite elegantly by Keller (1973) using the spectral properties of positive
matrices. A related bound, which can also be found in Frisch, is used by
Harberger (1953).

So one source of identification is the availability of additional rel-
ationships which contain the unobservable. A related source is an appro-
priate grouping device. The use of grouping methods in errors-in-variables
models can be found in Wald (1940) and in the empirical work of Friedman
(1957) and Eisner (1958). One novelty of our approach is that the unobser-
vable need not be constant within the group. In Chapter 3 we study the
identification and estimation of the following replication model:

4 y...T+x..’B=f."A+v.., i=1,....q; j=1,...
where the subscripts refer to the jth observation in the ith group. The
residuals are assumed to have a multivariate variance components decompo-
sition: fj is a vector of random group effects and Jh. is a vector of in-
dividual effects which are distributed independently of f. as a random
sample over i and j with covariance matrix V. A variety of cases are con-
sidered. The most interesting identification results are for the one fac-
tor model (fo ‘A= f.i)N(’) with V = TXX* + U where U is a diagonal matrix of
equation specific residual variances. This case arises when we assume that
there is a common left out variable g Then we introduce a prior for the
a”j which has the following variance components representation: a”= {* +&y>
where the f* are distributed as a random sample across groups and the g™

are a random sample within groups with T =a /a"



So we are taking the variance components specification studied by
Balestra and Nerlove (1966), Wallace and Hussein (1969), Maddala (1971),
Ncrlove (1971), and Mazodier (1971) and embedding it in a larger system.

A common complaint lodged against the random effects specification relative
to a fixed effects approach is that the independence of the random effects
from the observable explanatory variables is often implausible. For example
the firm effects in a production function are unlikely to be independent of
the variable inputs. But part of the variance components specification is
quite plausible. The random sample view of the f. amounts to adding an ex-
changeable prior to a set of fixed effects dummy variables. The prior is
exchangeable if its form is unaffected by permuting the f's, so that the i
subscript is just a labeling device with no substantive content (de Finetti,
1937). This is often appropriate at the level of individuals , families, or
homogeneous firms. Similarly the g, are assumed to be exchangeable within
the groups. So the problem is to keep the persuasive marginal prior distri-
bution for the a”. without making implausible independence assumptions about
the ioint distribution of a.. and the observable variables. We accomplish
this by building in the dependence by embedding a., in a simultaneous system.

Our principal result on the identification of this model is contained
in Theorems 1 and 2 in Chapter 3. The necessary and sufficient condition
for identification from zero restrictions on T or Bis that there must be
at least one exclusion which occurs in an equation that contains f and for
which the excluded variable appears in a preceding equation that contains f.
This is very similar to the condition in the errors-in-variables special
case of (1) (Yu =d for k> 1). In fact the identification problems in

the two models are formally identical! The availability of replication



converts a general unobservables model into the errors-in-variables special
case, with its much simpler analysis. So not surprisingly we also have a
complete analysis of the "unidentified" case. Now A = 2/(8./\2 +a 2) ‘is

the key parameter. Given A the reduced form can be uniquely solved for the
other structural parameters. Then the ML region in generated by the follow-
ing ML interval for A: 0 <A <7T2 where T2 = P - i)/(11 - — and p is the
largest squared canonical correlation of the endogenous variables with a

set of group indicator dummy variables (if these are x’s then the endogen-
ous variables are replaced by an appropriate set of residuals). If there

is no group structure then (p is l— %o T is the fraction of the unexplained
variance that is accounted for by the group structure. It is the appropriate
generalized R for this problem.

Our work on estimation has mostly been devoted to ML algorithms for the
replication model (4). For example, in the one factor model (f*"’A = fA’)
with T =1 (no simultaneity problem) and with V unrestricted so that the
equation specific effects are freely correlated, the ML estimator of A con-
ditional on B can be obtained from a canonical correlation analysis of the
residuals and a set of group indicator dummy variables. In fact, is is the
same canonical correlation problem that results from regarding the f. as a
set of fixed effects dummy variables which are subject to proportionality
constraints across the equations. That is the sort of model considered by
Hauser and Goldberger (1971). Writing the model in structural form with
one of the y’s as a proxy for f lets us obtain the canonical correlation
solution as an application of Hannan’s (1967) extension of LIML. This
rather surprising algebraic identity between the ML fixed effects and ran-

dom effects estimators has been observed in the simpler factor model without
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the group structure. In that model Whittle (1953) found that his fixed
effects estimator of the factor loadings agreed with the random effects

ML algorithm devised by Lawley (1940) (also see the Uppsala Symposium,
1953). The estimation of B, however, differs in the two models. We show
how the random effects procedure generalizes the more familiar single equa-
tion pooling of within and between group information. The random effects
estimator is, in an appropriate metric, "between" the ML fixed effects est-
imator and the pooled OLS estimator.

Another case in which considerable analytic progress is possible has
T=1 (no simultaneity), B = -r[X’, and V unrestricted. The constraint on
B arises from postulating an unobservable hz, which depends on observables
(x*Jri) and on an unobservable f* that is constant across the group:
hij' = )i'ij',g + fl.. This sort of model (without the group structure) is used
by (irilichcs and Mason (1972) and in our own empirical work in Chapter 4.
It is also similar to JtJreskog find Goldberger’s (1973) MIMIC model. We
show that conditional on one parameter (a generalized signal-noise ratio),
the ML estimator in this model can be obtained analytically from an eigen-
value problem. So the algorithm reduces to a straightforward one dimen-
sional numerical maximization problem. We have been more successful than
JtJreskog and Goldberger because the replication allows us to leave the equa-
tion specific effects freely correlated and still have a restriction connect
ing the slopes with the residual covariance matrix. A more direct counter-
part to their model would take V diagonal in which case the analytic con-
centration of the likelihood would have to be conditional on V. With V un-
restricted and a fixed effects interpretation of f, we would be back in the

Hauser and Goldberger case and the complete ML solution would fall out of a

canonical correlation analysis.
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Chapters 4 and 5 are empirical studies of the structural relationship
between an individual's wages and his characteristics. The relationship is
(5) Yli > i'h *W i *X3fi * VJi’
where is the log of earnings in year 1, S is years of schooling, f is the
systematic part of the residual, reflecting unobserved characteristics, and
v, is transitory income. For the moment we will ignore the other observed
characteristics in x. To complete the stochastic specification we need to
model the relationship between f and S. It is approximated by
(6) S. - x.'g2 O 2f. . v2i
We suspect that X is non-negligible because although f is random to the
external observer, it is known to the individual and forms the initial con-
ditions that he faces in deciding how much schooling is right for him.
contains other characteristics that are not relevant for wage determination.

The observable characteristics in x might include family background
measurements such as father's schooling or occupation. We will take x to
be independent of f by construction. This means reinterpreting f as the
part of the unobserved characteristics that is not predictable from x. Of
course this affects our interpretation of 6. For example, if x is mother's
schooling and f includes genetic ability, then the reinterpreted 8 reflects
both the return to the mother's pre-school investment in the child and the
spurious effect of mother's education as a proxy for the initial ability of
the child. Or if x is father's income, then even if it has no direct effect
on the son's earnings, our reinterpretated 3 will not be zero.

In order to separate the structural effects of x from the proxy effects,
we would have to relate mother's and father's observed characteristics to

their unobserved characteristics, f' and f" . Then we would allow f' and
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f ' to be correlated both with each other (assortative mating) and with f.
But this more complicated model is irrelevant if all we want to estimate is
the return to the son's schooling. For the y's are not affected by the way
in which we divide up the joint effect of x and f.

Clearly the model in (5, 6) is not identified. A plausible source of
additional information would be another measurement on earnings:
t7> V2i 7 ii'?74 * y24Si * W hi * X4fi * ]
But in fact Theorem 2 in Chapter 2 shows that the model remains unidentified
no matter how many measurements of this kind we have. And this is true even
if equals zero; c.g. if there is enough time between the measurements so
that they do not have a transitory piece in common.

More promising would be the availability of an early (pre-school) test
score:
| + Vl.i
If T is excluded from all of the other equations then Theorem 4 of Chapter 2

(®) T.=x | +Xf

applies. If the X's are non-zero then one additional restriction is required
for identification. In the absence of such a restriction (e.g. y”* / 0),

the ML estimate is a region generated by the following ML interval for the

v N
x> 7 1 %

A hard question in this model is whether the combination of omitted

reliability of the test (p:1-a12/é?1): 0<p<R'i'
1

characteristics that ties together the income and schooling residuals is the
same combination that connects the schooling and test residuals. There is a
straightforward answer under a narrow measurement error interpretation of f.
Then is interpreted as a test-retest error that could in principle be el-
iminated by replicating the test. So it is reasonable to assume that is
independent of everything else and there is clearly just one f, namely the

systematic part of the test (the "true score") that is not captured by x'f3..
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There is,, however, an alternative more general interpretation of f.

It is that IQ tests are designed to predict academic performance and need
not capture (or appropriately weight) the set of characteristics relevant
for economic success. This suggests having two distinct but correlated un-
observables, fj and f£. f* reflects the weighting of the omitted character-
istics relevant for predicting economic success and f2 reflects the weight-
ing appropriate for scholastic achievement. Then f. is excluded from the S
equation, f? is excluded from the Y equations, and neigher is excluded from
the T equation. Both of these interpretations of f are pursued in our em-
pirical application in Chapter 4. It is based on the 1964 CPS-NORC veter-
an’s data, which has previously been studied by Griliches and Mason (1972)
and Duncan (1968), among others.

Some of the ML problems in Chapter 4 reduce to standard LIML calcula-
tions or to Hannan’s (1967) extension of LIML. In other versions of the
model the likelihood function is relatively intractable and we have followed
Jttreskog and Goldberger (1973) in adapting a numberical minimization program
by JtJreskog (1970, 1973) to our problems.

Our Chapter 5 application of the replication model in (4) uses Gorse-
line's (1932) data on brothers to control not only for between family par-
ental background differences but also for individual within family differ-
ences which may be correlated with achieved schooling levels later on. The

sort of model we use is



= .+ ..
9) S'ij' . AIall Vlij

i~ Y138y T A%y vz
2ij = V{3 Ay T vaij
a,. = fi +*ij, i = I>eeej

1]
where the subscripts refer to the jth individual in the ith family. This

grouping will buy us something if the systematic part of the residuals
(a”.) has a group structure while the equation specific effects do not.

This model is identified by the exclusion of Y- from the equation
provided A.Ao / 0 (Theorem 1, Chapter 3). In fact it is just identified
and the ML estimates of the structural parameters can be obtained from a
canonical correlation analysis of the reduced form.

In our actual application we did not have an additional observation
on income but we did have a crude measure of the non-pecuniary income of

the individual’s occupation. In either case an assumption that merits a

sensitivity analysis is the independence of and u_. Allowing them to
be correlated is equivalent to letting depend on Yp i.e. not constrain-
ing y =0. So the sensitivity analysis is supplied by our bound that

A= sz/(Of2 + °g2) between zero and a generalized R2 based on the larg-
est canonical correlation between S, Y*, YE£ and a set of family indicator
dummy variables. The resulting bound is in fact very tight.

Our empirical work in Chapter 5 also pursues a two factor extension of
the model. Although the one factor structural model is just identified,
the question of how many factors (with family components) is testable, and
amounts to the increment in the generalized R2 from adding another factor.
We find some evidence for a second factor but none for a third. However,

even a second factor makes the model highly unidentified. But a rather
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natural set of prior restrictions is to have one purely family factor, re-
flecting parental background characteristics and other experiences shared
by the brothers, and a second factor with both a family and an individual
component. These prior restrictions give a bound which is informative al-
though not particularly sharp.

As in our Chapter 4 application, the hard question in this model is
just how much structure to give the residuals. We do have some mild prior
beliefs that some aggregation is possible, that a few appropriate indices
will do an adequate job of summarizing the countless characteristics that
could conceivably be measured. But in models of the size we have been
working with, if "few" is more than "one" we quickly reach a point where
the likelihood is quite diffuse. The nature of the problem is related to
the way in which we have been using unobservables. A good analogy might be
a model with a lagged dependent variable and serial correlation. Our pri-
mary interest has been in "cleaning up" the cross equation serial correla-
tion so that the triangular structure will yield a truely recursive system.
Although Chapter 3 developes proxies for the unobservable as an aid to the
interpretation of our algorithms, the main focus of our empirical work is
not in constructing indices of "ability". We just want to capture enough
of the omitted characteristics to avoid serious bias in the coefficients of
interest. As with serial correlation, we just want to clean it up as effi-
ciently as possible, without focusing on the omitted variables that produce
it. W would like to leave the form of the serial correlation as an empir-
ical question, and the same is true of the number of factors. With richer

data sets this would be possible, but the degrees of freedom is the number
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of factors and so we have had to impose quite a few prior restrictions. To
some extent we are relying on a "half a loaf" justification, hoping that we
can "sweep out" the major connections in the residuals.

There is another role for unobservables in econometric models that is
not touched upon in my applied work. It would make the measurement of the
unobservable the primary objective. This is closer to the spirit of Gril-
iches’ (1973) observation that "Substantive unobservables...are variables
about which we are willing to make many more a priori assumptions. They
are the carriers of some of the content of our theories and we are willing
to specify which other variables affect them and are affected by them in
turn".

An example would be an attempt to construct a "pure" price index, purged
of quality change. In his refinement of Cagan's (1965) use of secondhand
prices to measure quality differences, Hall (1969, 1971) specified the foll-

owing relationship:

g}lO)I 10% Pi'fT = 10% Pi.%' + log bi, T + 10% DI.T + Vi’t
where i indexes models, t is calendar time, T is age, h =t - T is vintage,
P is a price index for new capital goods corrected for quality change,

is a depreciation index, and v is a random disturbance. Hall shows that
the vintage effects can only be estimated up to an additive constant, and

so only departures from an unidentified quality trend are estimable. Hall
remedies this by combining the secondhand prices with the hedonic hypothesis,
relating the embodied technical change to changes in the observed character-

istics of capital goods:

(11) log bh . log xhl ¢ ¢ n. log xta
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We would want to consider including unmeasured characteristics together
with an appropriate grouping device.

A possibility, investigated by Ohta and Griliches (1973), is to group
observations by makes or brands, allowing us to pick up changes in omitted
characteristics that are common to all models of a given make. An appro-
priate prior for the f* might be exchangeable across makes with distributed
lag type smoothness restrictions across vintages (e.g. Learner, 1972 or
Schiller, 1973). But the main point that I want to emphasize is that the
primary focus would be on measuring the unobservable.

Our concluding Chapter 6 briefly examines some extensions and sugges-
tions for further research. The common focus of our examples and applica-
tions on one empirical problem has the advantage of providing these essays
witli some additional unity. But it has the disadvantage of suggesting, I
believe incorrectly, that our approach is limited to the stochastic specifi
cation of human capital models. So we will sketch an application to a com-
bined time-series cross-section analysis of individual firm production and
factor demand relations. Thus the conclusion will link back to the major

precedent for our approach.



Chapter 2

The Identification of Triangular Systems

1. Introduction

The model we consider is
(1.1) y. T +x.'B =f'A +v.' , i=1,...,q
where y. is an mx 1 vector of endogenous variables, x* is an n x 1 vector
of exogenous variables, T is an upper triangular matrix of parameters with
ones on the diagonal, Bis an n Xx m parameter matrix, and there are q obser
vations. The residuals are assumed to be independent across observations.
If they were also independent across equations then the model would be re-
cursive and readily identifiable. Conversely, if the residuals were freely
correlated across equations then the standard Cowles Commission results
would apply. Our interest is in the intermediate cases where some but not
all of the identification comes from covariance restrictions on the resid-
uals. They are assumed to have a factor analytic structure where f. is an
N x 1 vector of latent variables and A is an N x m matrix of coefficients
(factor loadings). The unobservable f. are distributed as a multivariate
random sample with covariance matrix $. V. is an mx 1 vector of equation
specific effects which are distributed independently of f. as a random
sample with covariance matrix U = diag {aAz,..., 2}

This model is useful in a wide variety of micro-econometric applica-
tions. Examples include studies of social mobility and the determinants
of socio-economic achievement. The triangular structure arises from mak-

ing measurements on an individual's characteristics at a particular time.
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Then the variable becomes a characteristic which determines subsequent
measurements, x and f are a set of characteristics which potentially
affect all subsequent observations. The distinction between them is that
f is unobservable. The assumed independence of x and f simply means that
we interpret f to be the part of the unobservable characteristics that is
not predictable from x. This of course affects our interpretation of B
and limits the restrictions we can impose on B. For example x. may have
no effect on Y if all other relevant characteristics are included. But
if the partial correlation is non-zero (partialling on the other included
x’s), then with our interpretation of f we cannot exclude x* from that
equation. T, however, is unaffected by the way in which we divide up the
joint effect of x and f.

Under normality assumptions (or limiting ourselves to second order
moments), the distribution of y conditional on x is completely character-

ized by the following reduced form parameters:

(1.2) n

-BI*'1

E

r 1°(A4A + U)T_1

The identification problem is to recover T, B, A, $, and U from the reduced
form.

This problem can be approached from at least two points of view. The
traditional one is to ask "What are the limits of observational information?"
If the reduced from parameters are known with certainty, what aspects of the
structure can we uncover? An alternative approach, which I prefer, is to
treat the identification problem as one aspect of investigating a likelihood
function. We typically start by investigating the mode and then proceed to

examine measures of dispersion. But a logically prior question is whether
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the maximum of the likelihood corresponds to a unique vector of structural
parameters. If not, then we have multiple peaks, a ridge or a plateau, and
the problem is to describe ML regions for the structural parameters.

The general treatment of this model remains an elusive goal. I will
examine the case in which replication is available in Chapter 3. Then it
is possible to obtain identification conditions which are both necessary
and sufficient. This paper is confined to the one factor model. Even then
a complete solution is not available except for special cases. We do, how-
ever, have some useful necessary conditions, and in addition a set of suff-
icient conditions which provide a constructive method for obtaining the

structural parameters from the reduced form.
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II. Identification
We will work with the one factor version of (1.1). So N = 1 and
A= X’ where Xis mx 1. If there are no restrictions on B, then the pro-
blem is to uncover T, X, and U from
(IT.1) E=dd” +V

ii i o1
where V=1 ur ,d =1

iX, and we have scaled f so that = 1. Now
if we knew d then we could use Gaussian elimination on Z - dd* to uniquely
obtain F~ and U. Since d is mx 1 this correctly suggests that we need
in restrictions on F. The first two theorems give necessary conditions on
the placement of these restrictions.

IT.a Necessary Conditions

Theorem 1: If B is unrestricted and T is only subject to zero restric-

tions, then identification of the model requires (at least) one exclusion

in the ml® equation, two exclusions in the last two equations, and in gen-

eral k exclusions in the last k equations for k = 1,. m

So we are insisting that the restrictions be spread out or at least

not clustered on the earlier equations.

Proof: Let C=F~ . Cis upper triangular with ones on the diagonal
and ik is a function of Ci]' where h <i <k and h <j <k. Let A=Z- dd

= C'UC. Then by Gaussian elimination

h, ... h,

where Ak1 EJ is the minor formed from rows hf""’hp and columns
1 K,

kj,....,k of A (Gantmacher [1959] chapter II). Equation (II.2) only depends

on di"""d3' But th’( =0 can be written in terms of C.. with j £ k. So
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a restriction on the k equation gives a constraint that only involves
dj,...,d~. The mrestrictions on T give m such equations which must be
solved for d,,... ,d . So there has to be at least one restriction on the

m* 1 equation. And there must be a restriction on the m” or (m-1)"1 equa-

tions in order to catch dm So there must be at least two restrictions

-1
on the last two equations. Continuing this argument completes the proof.

Corollary: A necessary condition for identification from zero restric-
tions on B and T is that k of the restrictions must fall on the last k equa-
tions .

Proof: We regard x as having a multivariate distribution with covar-
iance matrix T. There is an upper triangular matrix L with ones on the
diagonal which will diagonalize T: L’TL = diag {ipp..., . So we can
rewrite our model as
(I1.3) (x"y) L BI= (0 A) + (u* v’

or

where u has a diagonal covariance matrix and is independent of v Now apply

the Theorem  Instead of d we have / ~ [but it is still true (ot solving for

d™ requires a restriction on the last equation, solving for d* requires a

restriction on one of the last two equations, etc.

Theorem 1 gives placement conditions on the way the restrictions are
allocated across the equations. Our second result will constrain the place-

ment of restrictions relative to the variables.
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Theorem 2: If B is unrestricted then a necessary condition for iden-
tification from zero restrictions on T is that for each k < m there must
be k restrictions, each of which excludes one of the following variables
from an equation: f, y*, ..., v,

Proof: Let G= (g" ... g”"n ) where gj = d and g"+j/o" the i row
of C=T 1. Then £ = GG and we have to recover G from E. We have already
seen that at least mrestrictions are needed to identify the model and so
the Theorem is true for k =m. If for k < m we were given the coefficients
of y, , ym j equation k + 2 through m, and if 0z+j,..., 2 were
known, then we would know the last m-k columns of G; i.e. with G = (G" G{),
we would know G . Then the problem is to obtain G. from E - G7G7’. Note
that Gj is unrestricted except for the restrictions implied by the triangu-
larity of F. For any Gn such that GIGl1’ = GIGl’, there is a (k+1)x(k+1) rota
tion R such that Gj = G.R, R°’R =1.. So there must be (k+I) - (K+1)(k+2)/2 =
k(k+1)/2 restrictions on G, in order to pin down the rotation. The triangu-
lar structure imposes k(k-1)/2 restrictions and so we need an additional k
restrictions on the coefficients of f, yl, ..., y,.

Corollary: A necessary condition for identification from zero restric-
tions on B and T is that for each k m there must be k restrictions, each
of which excludes one of the following variables from an equation:

f, Xj, .. XN, V] yk.

Proof: Rewrite the model as in (II.3)and apply the Theorem.



24

11.b Sufficient Conditions
The basic idea is to use a proxy for the unobservable f and then solve
the resulting errors in variables

Say we have

(IT.4) yl = xIf * VI
y2 = xX2f * W2
y3 Y23y2 - X3f ¢ v3

v4 = Y24y2 + X4f + vy

We can use y» as a proxy for f in

(11.5) 3= 3 oyl +ysy2+ 13"I. UL -
X1

This results in a standard errors in variables problem due to the ”measure-
ment error" in y.. It can be cured by using y”" as an instrument for y”.
Similarly y can be used as an instrument for y" in the y. equation.
Complications arise when more than one variable needs an external in-
strument. Then the instrumental variable (IV) normal equations need not

have full rank. For consider the following model:

(I1.6) yl = Xif +Vl
y2 = x2f + v2
Y13yl +X3f + V3
y4 = Yld4yl + Y24y2 + Y34y3 + V.  + V4
y5 = Y25y2 + X5f + V5
y6 = Y26y2 + X6f + V6
where we are trying to identify y2~. can use Xi as a Proxy for f

the y. equation:
X4 X4
(I1.7) y4 * (Y14 + /1 + Y24y2 + Y34y3 + V4 - Vi *
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Then and are correlated with v and so we use y» and y, as instruments

for them. The IV normal equations are

S 1 053 052 *14 C Al 11054 "
*7

°61  °63  °62 Y34 °64

°21 °23 °22 Y24 °24

k

(IT1.8) Pn=p

The first two columns of P are proportional to d51  and so
dé
d2

P is singular. But the third column is

M 2 ¥25
+ o2
dg Yot
19y, !

and this is not in general proportional to the first two. Soy is an
estimable function and hence is identifiable.

A valid criticism of this example is that we could have used »$
as a proxy for f in the y” equation. Then only y$ would have needed an
external instrument, P would have been non-singular, and the problem of
determining the estimable functions would not have arisen. But it is not
always possible to find a proxy that will avoid the problem. For consider

the following example:
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(n.y)  yi - Vo
y2 = Xf + V2
y3 = Y13yl + Y23y2 + X3f + V3
y4 = Yldyl + Y24y2 vV + V4
y5 = Y15yl + Y25y2 + Y35y3 + Y45y4 + V. + V5
yo6 : Y26y2 + Xk vy

Y27y2 * X7f * V7
y8 = Y28y2 *v.oor U8

We want to identify ¥25% The only feasible proxy for f is y”; any other

choice would contaminate the y* coefficient. For example using y” gives

y5 = (Y15 XS yix)y, & (v. xS Y-77) y-.
r T

Xr
(v35 +X ) v, +Y4,§)7,4 +ve - 5V

and the IV equations can at most identify Yos Xr Y23 So with y as

the proxy we have

(I1. 10) y,. = (yl15 ¢ Z% ) y,1 ¢ y3%¥3 + yglsyg + y45A 4 + v, - ;(5? V1

N

External instruments are needed for y_, y”, and y~. The only candidates
are 'y , y , vy . Again we form the IV equations Pq = p with the 1i,]j
clement of P equal to . for i=6, 7, 8, 2 and j=1, 3, 4, 2. As before
the variables which do not require external instruments are put last.

Now the first three columns of P are
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T

Y26 d6 26
7t d7 2 Y27 2 27
ok d3 Ay tY2al oo 4 ogg P Y2 g
1d2. K . L1 Ld2.

Let r = “Y237Y24* Then P2 + r P3 is either O or proportional to the first

column of P. So P is singular but again yo- is in general estimable.

These ideas are systematically developed in Theorem 3, but first we

need some definitions.

Definition 1: y” can be used as a proxy for f in the equation
provided A / 0 and = 0.
Definition 2: Let c.”. be the i, j element of T- . Then y. does not

depend (either directly or indirectly) on y* ofc”. =0.
Definition 3; With y, as the proxy for f, we rewrite the kth equation

in its proxy form:
h-1
(11.11) yR=x- (3k - k Bi) ¢ .El (yj.1¥ . yIj’h} yj
j=
k+1

3'51%5@"};’}}" Tk oy Ty ko

if k > h, and
k-1
yv = X’ <A fy L4 2 (y- Ylh’yl
X, i=1 ik
A il Xk Xk
Yhooj=k YIW" T *hYh T k- WV

if k <h.
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Definition 4: y. can be used as an instrument for the kth equation
with as the proxy provided y. does not depend on y* or y*». Any x can
be used as an instrument, Yq is an external instrument if it does not
appear in the proxy form of the k equation.

Definition 5: y.” is contaminated by the use of y* as a proxy in the

equation if y”~ / 0. 6.” is contaminated if i 0.

Definition 6: Let J2 index the set of variables in the proxy form

which can be used as instruments. The remaining variables in the proxy

form are indexed by J~. Let 1" index the external instruments and set

I = Then the instrumental variable (IV) equations are Pr) = p where
S ELW = P B
B21 222

and Pjj = (Olj) with i in I*, j in Jp P*2  fa..l with i in I, j in J,.

etc. n contains the parameters (suitably ordered) in the proxy form and
the typical element of p is a.” with i in 1* or 12»

Theorem 3: Given a proxy y, and a set of instruments for the k™1 equa-

tion, then y.fc is identified from the IV equations Pr) = p if it is not con-
taminated and if either a) P is non-singular or b) yJ is used as an instru

ment (fi.e. JJ e JQ) and rank P&1+ rank PW2= rank P.

Proof: We will ignore the x’s. It is straightforward to modify the

proof as in the Corollaries to Theorems 1 and 2. First it is necessary to

-1

check that the IV equations are in fact satisfied by Z=T xXxX + U)T_l

We will collect terms in a?‘, ag, e, 32 and examine the IV equations term
by term. Collecting terms in a% for the it}h IV equation gives
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k-1 h-1
diXkWk - £ V P -W h -£ V P o

k-1
Since X = F’d we have X" = d* E g_k dj and so the condition reduces
i=1

to dXp X = dXp X

Collecting terms in ot gives

k-1 h-1
ik - B YkCiy) T i Xk A gn oy
"By iy s the i d £ the ¢ fC=F" and the k"
ik T ,leIYj 1S the 1nner product of the t row of C=F and the

k
column of T. This is € (= one if t=k and zero otherwise). Thus the con-

dition reduces to c,[i.Xh6?k = ¢N.X 6Ah This is satisfied if ¢

ikt =Chi 0

ki "hi
so that the instrument y. does not depend on ory, .

Thus the IV equations are valid relationships connecting the struc-
tural and reduced form parameters. If the IV equations have full rank
then clearly n is identified. If, however, P is singular, then the key
to finding the estimable functions is the non-singularity of P«2« F°r
I~’22 is the variance-covariance matrix of the azj.’s with j e J‘j' Our rank
condition states that P£ = 0 implies P-Jl. = P9& = 0 since the intersec-
tion of the column spaces of P* and P£ only contains 0. But P2 has full

column rank and so L a 0 and uniquely determined. This completes

our proof.

The rank condition will clearly fail if there are fewer instruments than
variables in the proxy form of the equation. It will also fail if one of
the instruments is an exogenous variable which is uncorrelated with any of
the variables appearing in the proxy form. But it is not true that an ex-
ternal instrument must be correlated with at least one of the variables

that requires an external instrument. For example, suppose
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(H.12) X = vV o+ Vi
y2 = BI2X + X2f + W2
y3 = Vol *Y23y2 * X¢f ¢ v3
and we use y as the proxy to identify Y23’ Then can instrument itself

but we have to use x to instrument y”. This may seem to be a problem

since x and y are uncorrelated. But

12 x

2 2, 2 2
XX A X eo

is clearly non-singular as long as y~ is correlated with x.

Corollary: If is identified then we can rewrite the kth equation

(11.13) vk - (yk - - Xa * E.V i *V euk

1=]
and apply the Theorem to identify the remaining parameters. A similar re-
sult holds if 6J’k is identified.

Proof: It is only necessary to check that the IV equations are valid.

But they are the same sort of IV equations that were checked in the Theorem

For an example of the Corollary, let

(11.14) XIf + VI
y2 = ' X2f +v2
y3 _ Y23y2 + X3f + V3
y4 = y34y3 + X4f + V4
y5 = Y15yl + Y25y2 + Y35y3 + V. + V£
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and try to identify Then the proxy must be y£ or with y” as the
external instrument. But y* depends on yf£ and y* and cannot serve as an
instrument. So first we identify 735 an”™ Y35 by letting y” be the proxy
with y. as an external instrument. Then
(IT.is) y5 =y5 - y25y2 - Y3Sy3 - viSyl ¢+ V. . v5 .
Now let y. be the proxy:
(11.16) y5 - YIi/7 - *5 y34y3 & *S y4 e »5 - *5 »4.

M A4 A

Then only y” needs an external instrument and we can use y2> Thus is

in general identifiable.

IT.c A General Treatment of Some Special Cases

Our first special case has Y, =0 for k >1. So y* is excluded from
all of the other equations.

Theorem 4: In (1.1) with y*» =0 for k > 1, a sufficient condition
for identification is that a single Ygt « 0, 3 > 1, provided the following

rank condition holds: 022 >0, .... a 2 >0 and

t- m

(n.K) xt £ Ysx./O2f o.

The condition is also necessary if we confine ourselves to zero restric-
tions on T.

Proof: Let C=T . Then

and we can partition Z and d into

- d

~21 -2
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. _ , , L 2 2 _
with g& = 9292 + 92 ngz and Y2 = diag {c~2 , s ag b 92 =77 ElQl where
2
x = 1/dj , and so
(n.18) £ mTo21121° *c/v22 .
We have to recover x, T-, and from Y* and o,i where T 1is upper triang-

ular with ones on the diagonal. This identification problem is identical
to the one discussed in Chapter 3, Theorem 1. We will simply sketch the

proof used there:

o - %1921 T 5ok !

and so given x we can uniquely solve for 7- and by Gaussian elimination
if V? is positive definite. The notation is simplified if we reverse the
order of the equations so that T is lower triangular. Then the zero ele-
ment is Yj, where h =m- s + 1,k =m- t+ 1. Solving for and setting
the result to zero gives an equation for x which can be simplified to the
following linear equation:

(11.19)  °2h’k “ sh'S Isk + KQ = 0

where h ik is the h, k element of -1 , S is the k-1 by k-1 principal sub-
matrix of ¥* l, sh = (a il a2 ’k_l), i=h, k, x = /(1 + K021 YA._1 a2p’

Q= (c¢'S_1lc) (a2hk - sh'S-1sk) + ¢~ + CbCc'S-1") + ¢ Cc*M-17)
- 2'5~1Sh)

with ¢ = X- * aol and c¢ contains the first k-1 elements of ¢. The rank

condition in the Theorem ensures that Q/ 0. If it is satisfied, the x is

identified and hence F? and V,,. a..2 = Gj. - dA2 and scali'ng20 N=1 gives

Xl =dl and X2 = d2*
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To interpret the rank condition we will say that the equation
is not connected to the rest of the structure if X. = 0. If an equation
is not connected then it factors out of the likelihood function and Y is
actually exogenous. So our condition says that the exclusion must occur
in a connected equation and that either the excluded variable is connected
or it appears (with a non-zero coefficient) in a connected equation pre-
ceding the one it's excluded from. We should note that even if ysj-XJ. i0
for at least one j, it is still possible for the sum in (11.17) to be zero.
But this possibility is of interest only in the unlikely event that there
is an a priori restriction of that form.

Corollary 1: 1In (l1.1) with y.~ =0 for k > 1, a sufficient condition
for identification is that a single 6 = 0 provided the following rank

condition holds: 2 >0, ... . am2 >0 and
(11200 X z & .X7o] r b

Proof: Rewrite the model as in (II1.3) and apply the Theorem. The
rank condition does not include the coefficients in the x equations since

Xl. = 0 in that case.

The force of the rank condition is that the exclusion must occur in
a connected equation and that Xg must appear in a connected equation pre-
ceding the one it is excluded from. So exclusions in y. will not identify
the structure.

Our second special case is based on imposing proportionality restric-
tions across the coefficients of x and f: B = -qX’. This case arises when
the observed and unobserved characteristics are aggregated into a single

index h1 =x/q + fl and onlaz affect the y's via their effect on h:
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yk >V 1 * CVIM W * Xh * 7k '

An example in hedonic models of wage determination (e.g. Chapter 4 or Gril-
iches and Mason, 1972) would be aggregating an individual’s background char-
acteristics and unobserved initial ability into one index of early human
capital which is then the causal variable in determining measures of later
achievement. A similar restriction has also been discussed by JOreskog and
Goldberger (1973).

Corollary 2: In model (1.1) with B= -pA’, a sufficient condition

for identification is that a single y = 0 provided the following rank
condition holds: V = diag 2, ce 02} is positive definite and

t-1  ~ ?
(11.21) Z /0

TSy
If we restrict ourselves to zero restrictions on T then the condition is
also necessary.

Proof: n = pd’ lets us solve for d up to a sign normalization and

a scale factor T: g = d/Vr. Then

z =Tgg* +r,"1lvr"l
will let us solve for T provided a single element of T is zero and the
rank condition holds. The proof is the same as in the Theorem. Given
T we obtain T and V by Gaussian elimination on Z - Tgg’.

The interpretation of the rank condition is the same as in the Theorem.
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IIT  An Example; The Structural Relationship Between Wages and Characteristics

Our example is based on the following sequential income generating

model:
Tl = X f *Vl1
S = x2f +v2
T2 “ Y238 ¢ X3f +V3
Yl =1Y24S * V. +V4

Y2 =Y25S + Y45YLl + V +V5

where T. is a test score measuring early (pre-school) ability (f), S is
years of schooling, T2 is a measure of post-school ability, which reflects
the value added of the schooling, and Y. and Y2 are repeated observations
on earnings.

Potential x’s for such a model would include a variety of background
variables such as father’s schooling, income, or family wealth. If these
variables are unrestricted then they do not affect the identification and
we will surpress them. But note that some reinterpretation of the model
may be necessary in order to make these variables exogenous. Any notion
of intergenerational stationarity would suggest that father's schooling
and income are subject to a similar set of equations, with an f' for
father's "ability". Presumably f' and f are correlated, both for genetic
and other reasons. So the background variables are not exogenous unless
we reinterpret f to be the part of son's ability that is not predictable
from the father's characteristics. This will alter the background coeff-

icients but will not affect the y's.
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A direct application of Theorem 1 shows that without an early test
score the model is not identified. For then S («y.) is not excluded
from any of the other equations (and we are implicitly assuming that none
of the A's are zero). Although the Theorem refers to the model as a whole,
its proof shows that none of the schooling coefficients are individually
identified, since the rotation indeterminancy will confound each with
A™ and the preceding A’s and y’s. Note that the identification condition
fails even if excludes (e.g. if there is enough time between the
measurements so that they do not have a transitory piece in common). Also
adding additional income measurements of this kind does not solve the pro-
blem.

But if there is an early test score then Theorem 4 applies. The
exclusion of T2 from Y" is sufficient for identification provided neither
Ag nor A. is zero. In the absence of Y£ the model is just identified and
given ML estimates of I and £ we obtain the ML estimates of T, V, and B,
by solving a set of recursive linear equations. If we do have another
observation on earnings then the model is overidentified. Chapter 4 indi-
cates how a program by JBreskog (1970, 1973) can be adapted to impose the
constraints.

Next assume that there is a common measurement error in the two tests
so that and are correlated. This particular sort of two factor model,
with the second factor only connecting a pair of the equations, can be put
into our one factor framework by rewriting the T2 equation as

T2 = YI3T1 + 23S + X3B'f + 3
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with Y13 = h(vlv3)/o 12 and independent of v_. Note that the independ-
ence of the seond factor from f is simply a reinterpretation of it. To
the extent that the second factor is correlated with f it is not affect-
ing our estimates of the structural y’s, although the A’s are affected by
the reinterpretation.

Without Y2 the model as a whole is not identified (since with y,- =0
it is just identified by Theorem 4). But Theorem 3 shows that 773 is iden-

tified. For we can use T" as a proxy for f in the T2 equation

=B ) Tiew s, .

Now use Yj and S as instruments. The rank condition has

P = "°14  a24
_°12 e22 .
A24X2 +\P X1 (Y24X2 * X4)X2 * y24a2
2 2
Vi X"+ 2

This is non-singular if AAAACAZ/ 0. ’ )

Our last example assumes that and (and perhaps v ) are correlated.
This second factor could reflect the part of scholastic ability or "test-
wiseness" that is not correlated with f. Then the correlation between v.
and can be captured by calling S the first equation and rewriting the

Tj equation (=y_):



38

S = X2f & v2

Tl

M2S + XIPE+ V

with Y12 = E(VAV2)/a22 . Now v2 is independent of v*' and we see from
Theorem 1 that the model is not identified since S (=y.) is never excluded.
The problem persists no matter how many additional indicators we add, so
long as they all include S. Allowing for v to be correlated with and
V- raises problems with staying in a one factor framework. But clearly

this only makes the model even less identified.



Chapter 3

Unobservables with a Variance
Components Structure

1. The General Model

Consider the following model:

(1.1) y~>r+ x~" B=fJ A+ , 1-1,...,q j =1,...,P,
where y*. is an mx 1 vector of endogenous variables, x”*. is an n x 1 vec-
tor of exogenous variables, T is an upper triangular matrix of parameters
with ones on the diagonal, Bis an n x m parameter matrix, and the subscripts
refer to the j - observation in the i® group. The novelty of the paper
lies in the structure of the residuals. They are assumed to have a multi-
variate variance components decomposition: f. is an Nx 1 vector of group
effects which are distributed as a random sample with covariance matrix
Ais an Nx m coefficient matrix, and ij. is an mx 1 vector of individual
effects which are distributed independently of f. as a random sample over
i and j with covariance matrix V.

Then under normality assumptions (or limiting ourselves to second order
moments), the distribution of y is completely characterized by the following
reduced form parameters:

(12) n=- BEl
(AT-1) $ (AT-1)

E=r1_Lvr 1.
The identification problem in this model is to recover F, B, A, §, and V
from the reduced form. If the residuals had no group structure and were

uncorrelated across equations then the model would be recursive and readily
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identifiable. But without any covariance restrictions the model is not
identified without restrictions on B and T. Our approach considers inter-
mediate cases which combine restrictions on B and T with factor analytic
restrictions on the covariances. In particular we have developed the foil
owing four models:

Model 1; T=1

Model 2; V =diag {v.,...,v }

Model 3: N=1, A= X where X ism x1, T =1, = -pX’ where
nis nx 1.

Model 4: N=1, A=X, B= 1iX’, V=tXX’ + U where T.is a
positive scalar and U = diag {crf\z,..., On2i} .

Our interest in these models stems from the work by Chamberlain and
Griliches (1974). They used data on brothers to estimate the return to
education in the presence of an unobserved ability variable. In their
model the group is a family and y could include years of schooling, test
scores, income, occupational status, etc.; x could include age and family
background characteristics such as father’s income and schooling. The
residual covariances are generated by a common omitted “ability" wvariable
with a variance components structure: a”. = f* + g”~.. The restrictions
on B in models 3 and 4 arise when the background variables are combined
with the unobservable to form a "human capital" vari-able gij{) + aij' which
appears with coefficient X in the kt equation. This sort of restriction
was also used by Griliches and Mason (1972) and by JBreskog and Goldberger

(1973).
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The plan of the paper is as follows: Section II provides an identi-
fication analysis of these models; Section III derives maximum likelihood
estimators and Section IV provides an interpretation of them. Section V
developes an example based on the causes and consequences of permanent in -

come. .

ITI. Identification

Model 1: Here the only problem is to recover A and $ from
0 = A'$A. If $ is restricted to an identity matrix then this is a standard
rotation problem in factor analysis. With $§ non-diagonal it is an identi-
fication problem with oblique factors. Some results are reported in Reiersol
(1950), Howe (1955), and Anderson and Rubin (1956). For example, in the
oblique case with $ unrestricted except for scale normalizations that fix
the diagonal elements, it is sufficient that each row of A have at least
N - 1 fixed elements provided the following rank condition holds. Let A
be any solution satisfying the restrictions and let AS be the submatrix
of A consisting of those columns that have fixed elements in the s row.
Then A is unique if for all s = 1,...,N we have rank (A ) equal to the
smallest of the number m and N, where m is the number of fixed elements
in the slI* row of A

There is an example in Section V of a multi-factor model with enough

restrictions to uniquely solve for A and $.

Model 2: If V= diag (v.,...,vm) has positive diagonal elements
then E is positive definite and thus has a unique factorization by Gaussian
elimination into A’CA where A is an upper triangular matrix with ones on

the diagonal and C is a diagonal matrix of positive elements (e.g. Gantmacher



42

(1959), chapter II). Then simply identify T with A and Vwith C. Given
r we recover B from II and T'OT = A<A leaves us with the same identifica-
tion problem as Model 1.

Model 3: Since there is only one factor we just need a scale
normalization. So setting $ = 1 we can use 0 = XX to solve for X (up to
a sign normalization) and II = -pX’ lets us solve for n.

Model 4: This presents the most interesting identification pro-
blem. Clearly if we knew T (and with the group effects scaled so that
¥ = 1), we could recover F 1 and U from E - TO by Gaussian elimination.
So we need one additional piece of information. First we will consider
zero restrictions on F; y =0, without restricting B.

Theorem 1: In the one factor model with V= tXX' + U, a suffi-

cient condition for identification is that a single y = 0 provided the

r

>

following rank condition holds: U = diag -"»%21} is positive def-

inite and

(n.i) X x /, 2 0.
j»s J J J

The condition is also necessary if we confine ourselves to zero restric-
tions on I.

Proof: Let d = T’- X. Then with the group effects scaled so
that $ = 1, we have 0 = dd” and (E - tdd’) =E +xkcc' =TU T
where K = T/(1 - td'E_1d) and ¢ = E 1d. It will simplify the notation
to reverse the order of the equations so that, for this proof only, T is
lower triangular. So now the zero element is y*. where h =m- s + 1,
k=m-t + 1. Then let A=E" - KcC' and use Gaussian elimination to

solve for Vi -



43

4 2 ... k-1 h, ... k-1,
(1T.2) hk " A(1 2 110 k-1 kKA /A(} 3 lli_lr
=0,
where A(IZ)I( ‘{(g) is the minor formed from rows hf’ "hP and columns

kp...,k of A (Gantmacher (1959), chapter II).

Expanding the bordered determinant gives

12 klh 12 .., k1 -
A5 KT PF v ad 3 (s sk - one K

where a”' = (ail\*.af£ k *), i a h,k, and A is the (k-1) by (k-1) principal
submatrix of A. So we must solve for T from

“ilk " “h' ?_1Sk =°’

Let A= S + kcc* where S is the (k-1) by (k-1) principal submatrix of gl

and ¢ contains the first k-1 elements of c. Then a. =« + KGC with
gi.' = (a11 ”l’k_l), i =h, k and we can write the restriction as
(11.3) 2 "™+ xgq

- (~h + @P *151 ree’S 1)/(1 + KC’S ~¢)](Sje + K* €) = 0.

Fortunately this can be Simplified to the following linear equation
in K:
1'% —1
(IT1.4) 0 -5s,'S s, +KQ=0

where

Q= (s _lc)(ahk - Sh'?2”18  + %% + ch(!’s~15k) + ck(2,r 15h)

SoT=%x/(1 + KdJdE d) is uniquely, globally, identifiable iff 0 / 9.
But if Q=0 then yhk = 0 implies that ahk -8 'S_}sk = 0. If this holds
for Q/ 0 then K =T = 0, a possibility we will exclude since x is a vari-

ance ratio. So our rank condition can be written

(11.5) EAd*
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In order to write this in terms of the structural paramters, we will

apply the Cauchy-Binet formula (Gantmacher, chapt. 1) to E =P TAA + U) P:
-1zl 2 ... k-1 h
(e Z*G 5 Oy
E {r(1 2 ... k-1 h)} +[D-1 Pj ...pk)j{r(l 2 k-1 k
Pp-d: Pl P2 pk-1 Pk 1 ’~k 11 ess gk-1 gk
/0
where 1 £ p. < wm<Pv£Em 1 £ Qj < o0 < £ m« Since T is lower

triangular with ones on the diagonal this can be simplified to
(H.7) -11 .. kgl

]Z y UTAA’+ V) 2 ' J J)} /o
3=k J

So our rank condition can be written as
(n -8) \ A y °©j2 ' ° .

k j=k+1 J J J
Reordering the equations so that T is upper triangular gives the condition

in the Theorem and completes our proof.

To interpret the rank condition we will say that the s equation is
not connected to the rest of the structure if A =0. If an equation is
not connected then it factors out of the likelihood function and y is act-
ually exogenous. So our condition says that the exclusion must appear in
a connected equation and that either the excluded variable is connected or
it appears (with a non-zero coefficient) in a connected equation preceding
the one it’s excluded from. In this latter case yg is exogenous and we are
insisting that it be correlated with one of the endogenous variables that

can appear in the tt equation. This condition is similar to the rank con-

dition in Theorem 2 for identification by excluding exogenous variables.
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We should note that even if Ysj' XJ / 0 for at least one j, it is still
possible for the sura in (II.1) to be zero. But this possibility is unin-
teresting and extremely unlikely.

Corollary 1 (Model 4): 1In the one factor model, with V= 1TXX + U
and B = -pX', the necessary and sufficient condition for identification
(within the class of zero restrictions on T) is the one given in Theorem 1.

Proof; Let d = F ~ X and scale $ =1 so that 0 = dd’. Then II - -pd’

lets us solve for p but otherwise contains no information that is not in 0.

To interpret this result we note that treating the f. as fixed effects
would lead to a set of group dummy variables whose coefficients would be
constrained as in the corollary. So adding more variables (i.e. X) con-
strained in this way does not affect the identification analysis.

Corollary 2; If the proportionality constraint of corollary 1 holds
only across a subset of the equations, e.g. B= (B* I -pX’) where
X=X , ..., X), then it is still true that the necessary and suffi-
cient condition for identification is the one given in Theorem 1.

Proof; We will do the case in which only the first equation is uncon-
strained and leave the extension to the reader. Write the first column of
Bas -(X p + 5) so that B= -pX' - (CO). Then I = -(pd' + Ca'") where a*
is the first row of Tl. Now the first row of T’fi-ur is Cﬂ\za’ and so

n =-[Pd» + c(sj’ - Td"")/" 2]

where Sj’ is the first row of E =rdd + T’- UT-
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Form an m x mnon-singular matrix T = (t~’1 t~rr? such that tN,I'dN =0,
17°Sy = 0, and t* is orthogonal to d and s. for i = 3, ...» m (amendments
are straightforward in the unlikely event that d « s.). Then the infor-

mation in His equivalent to the information in
51 * :(m- Tdi d(d’t2) : o]
ojy 11

So we can solve for ?/012 and for 1 - rdl/al2 £. Given any T we can solve
for q and a triangular factorization of E - rdd' will give a 2 and hence £.
Thus there is no additional information on T and its identification must
come from 0 and E as in Theorem 1.

A natural extension of the proportionality restrictions would be to
impose them across some of the y's in addition to B and A. Consider the

following example:

(IT.9) yx = (x'n + f)Ax +
y2 = (x'n ¢ )A2 ¢ y12yi + v2
yv = [(x'n + f)A0 + YI2yx] A3/A2 + y§¥¥3 SRR kyk-1 Voo k=3,...

where the \>'s have the model 4 covariance matrix V = rXA* + U

Corollary 3: The necessary and sufficient condition for identification
of (II.9) is the one given in Theorem 1.

Proof: Start with a three equation model. Instead of having ay =20
we have the non-linear restriction that YX"yl3 = ~2/3%* terms of
counting restrictions and unknowns it would appear that we are identified
without the zero restriction of T. But writing the restriction in terms of
reduced form parameters gives (a,2 " Tdjd2)/(aX3 ~ I3 = ~17d3 an”™ un”or_

tunately T cancels out. Instead of being able to solve for T we have the
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reduced form constraint <Jj2/cfl3 = 72”3* Thus the number of reduced form
degrees of freedom is effectively reduced by one. Adding more equations
gives more restrictions of the form Ytj/Yi* = translate
directly into the reduced form restrictions ai2”aik = "2k w~™M0Ut letting

us solve for T.

Next we will consider arbitrary linear restrictions on the endogenous
variables in a given equation. Such a restriction on the ttdl equation can

. * _ .
be written Ygt YgJPl',J{ ¢« + Ht‘-1< Yt_i>’t+ £t 0 where the first

g+l

non-zero eclement in £ was £ and we have divided through by it.

Corollary 4: The restriction that y + £g+1 Yg+1,t Y + £ =0

t-r Yt-1,t7 *t
is sufficient for identification provided the following rank condition holds:

(11.10) A, E Y e Adal /0

1-/8333

where
ng' - YgJ' h=g+1 .
Proof: Let P be an upper triangular matrix which only differs from an
identity matrix in that p~j =£., j =g+ 1, ...» t. Then we can rewrite
our model as (y’P )(Pf) + X’B=f’A + v’ where T = PT is still upper trian-

gular with ones on the diagonal. Now the restriction is y = 0 and we

apply Theorem 1.
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The rank condition requires that the constrained equation be connected
to the rest of the structure. In addition we must have connected or a

/ 0 for a connected equation between yg and y" (i.e. g <j <t).
ng. / 0 requires that y3 is included in the restriction (£, 0) or that
the equation includes y or a later variable which is included in the
restriction.

Theorem 2; Consider the one factor model with V+ xXX + U and B
unrestricted except for zero restrictions. Then the necessary and suffi-
cient condition for identification by excluding exogenous variables is that
a single 8 = 0 together with the following rank condition:

U = diag (Oj2, ..» o a 2} is positive definite and
(IT.11) t-1
X £ vy. X./Ja. /O
* J 1 3

where Y§ = E Trsh th,

h=1

and Ty is the (s;h) element of IL

An important implication of this rank condition is that Xg must act-
ually appear in some equation preceding the one it is excluded from ,

t
Proof: B = —ar and so the restriction that 3 = 0 implies £ 11" Y~ =0

Now apply corallary 4. By locating the first non-zero element in row s of «
we can write (II.11) in the form used in corollary 4. The condition that some
/0 for j <t is necessary to ensure that some / 0 for h <t, since
n=-Bf 1and T 1is upper triangular. Other implications of the rank con-
dition follow from our discussion of corollary 4. For example the exclusion

must occur in a connected equation.
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ITI. Estimation

We will describe maximum likelihood (ML) algorithms under normality
assumptions. In most cases it is not possible to give a complete analytic
solution. Then our aim is maximum analytic concentration of the likeli-
hood function before turning to numeriaal techniques. The derivations are
given in an Appendix. Interpretations of our algorithms will be given in
the next section.

Models 1 and 2: In both models the reduced form H, 0, and £ are un-
constrained except for the rank restriction on 0. First we will derive
the ML estimator of 0 and £ conditional on H. Arrange the observations
so that the first p are from group 1, the second p are from group 2, etc.

Then let , 1
¥ 1

¥paj

(Y is pq x m, x is pq x n) and form the matrix of reduced form residuals
E=Y- XI. Let]J =1"® be a set of group indicator dummy variables
where &} is a p x 1 vector of ones. R = E’E/pq is the sample covariance
matrix of the residuals and R = E’JJ’E/qp2 is formed by first averaging
the residuals over each group and then forming their sample covariance
matrix.

Then solve the eigenvalue problem
(III.1) RG = RXK
where K = diag , p*} contains the N largest eigenvalues and G con-

tains the eigenvectors scaled so that

GRG = (PK- I)(I - K) 1/ p2 .
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© is constructed from
(I11.2) 0= p2/p-1 RGK(I - K)G’R
and
(111.3) E=R- 0

The ML estimator of II given 0 and E is generalized least square (GLS).
We arrange the columns of II into a single stacked mn x 1 vector 5 = vec(II).
The computations are simplified by analytically inverting the disturbance

covariance matrix to obtain the following formula for the GLS estimator

of 6:
(111.4) «* - (H* ¢ * H8SB)
where is the least squares estimate just using the within family moments
and just uses the between family moments:
6, = W-1W
~wWk  ~X ~Xy,

"Bk = bx ~xyk '/ k *

with T =X'%, B =XJIX/p, W =T - B

X

and similar expressions for W
NXy,
z 2
matrices for <" and 6”:

(111.5) [E(Sw - 6) (6W- 6)°]"1 = E"l ®Wx

and Bxy . H. and H are the precision

5

58 = (EM° (B> A°11 = 1/p + 1/P ® 5x *

So we pool the "within" and "between" OLS estimators, weighting by their
precision matrices.

If the x’s differ across equations then the ML estimator of 5 based
on just the within group deviations is not X but rather (conditional on E)

the Zellner "seemingly unrelated" GLS estimator:
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~GLS rallw ... .olraW ] Z alk W
~xIx1 XEm 1 k=1 ~xlyk
m
2"y oW 5 2™
le m m 1 k=1 Yk

where x, contains the exogenous variables actually included in the kth equa-
tion. There is a similar estimator &LS (using just the between group var-
iation) which replaces Z by 1/p (0 + 1/p Z) . The ML estimator of 6 is
a matrix weighted average of these between and within group GLS estimators,
weighting by their precision matrices:
(IT1.6) ay” NBrb rbwrgr&s A, .%LS .
w ith
(IIT.7) Hw= [H(6"LS - 6)(6"LS - 6)’1"1 =21 * W
Ho = [E(6”LS - 6) (fiELS - 6)']"1 =1/p (0 + 1/p Z)"1 * B,

where the k, k’ block of Wis W , and is a generalized Hadamard pro-
duct which sets the k, k* bloclegfﬂi 7!« Wequal to oK w L with a sim-
ilar expression for the k, k* block of Hg.

The GLS procedure can be simplified by concentrating the intercepts
out of the likelihood function. This is possible since the M. estimates
of the hyperplanes corresponding to each of the equations pass through the

sample means. Thus if we partition 6" into the intercept <5 and the slope

coefficients t~en conditional on the GLS estimate of <5* is OLS:

6lk ~yk " £°~2k> k =
where y, is the grand mean of y* and x is the row vector of grand means
for the exogenous variables (other than the intercept). So the can be
concentrated out of the likelihood function simply by replacing each variable

by its deviation from the overall sample mean and proceeding without intercepts
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Then the joint maximum for II, 0, and E can be obtained by iterating
on the ML equations for H [given 0 and E) and the ML equations for 0 and
E (given II).

It is fairly straightforward to modify the algorithm to deal with un-
balanced samples. For example in the one factor case with © = dd’ we let
a index the different group sizes with p individuals in each of q" groups.
The total number of groups is q = gqa and with p = (g paqa)/q there are
pq observations in the total sample. In order to aggregate over groups
of different sizes we have to condition on ip=d'E Ad:

(111.8) R . £ * PaW ]?a/Pq

5" ?a/pq
We obtain 0 and E from the eigenvalue decomposition of R in the metric of
R. Then the concentrated likelihood function which is derived in the App-
endix just depends on ip, leaving us with a straightforward one-dimensional
maximization problem.

Model 3: Here the structural and reduced forms are identical. It
will be convenient to use the reduced form notation with the unobservable
scaled so that $§ =1 and 0 = dd*. We will display explicit ML estimators
for d, E, and q conditional on ip = d’E d. Then the likelihood can be con-
centrated to a function just of ip, leaving a simple scalar maximization
problem.

The ML estimator of d is obtianed from the following eigenvalue problem

(111.9) Q1d = 1/pTy-1d

where 1/p is the smallest root and
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2 “ Y + 1-¢ 2yx2X SxY
p=dE 1d, ?=1/(1 pip)

Hyx “ ~YX + ?2~YX *> ~XY = %c¢
Sx = ~x + s2x
with T, =YY, By =Y1JI'Y/p, Wy =Ty - By, and similar expressions

for *W ?2YX* -X “ d 7X-
The ML estimator of E is
(III. 10) ? «L/pq"
where Cis a simple function of ip and p (see Appendix).
Once we have computed the ML estimatois of d and E (conditional on ip),
we form r = YE” d/ip and obtain the following ML estimator of p:
(111.11) n = W+ c¢/l-c Tx)_ l(wxr + c/i-c Txr).
Model 4: If the model is just identified, e.g. only a single y =0,

then the reduced form E is unconstrained and the model 3 algorithm can be

2 2
used. Otherwise we first condition on T, U = diag »eee*0p
x and p= XU X to obtain ML estimatois of X and p:
(111.12)  Q1X=1/p U 1X
where 1/p is the smallest root and
TP * % ' ’ '
Q= g 1T FIKr[tl - 2)% = svex 19wy + W
with y = X’U'l’X, 1/[1 +p(p/tp + 1)] and T*, B, are defined as in

(IT1.9) with A = Yf replacing Y.
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The ML estimator of 1) is

(II1.13) n = + C/I-S Tx)'1 Wkr & Z/I-Z Txr)
where r = AU-"X/p . Then the likelihood can be concentrated to a function
of T, y, a, , k =1,...,m, and maximized numerically, still conditioning

on T (see Appendix for details).
The ML estimator of T is obtained from the GLS formula in (III.6)
where the seemingly unrelated equations are

yk - 12X ' W 1 *"e* Yk-l,kyk-1 > vk'k-1,...,»

and we replace 0 by XX and replace E by xXX* + U (note we are using

Tij' = -YU. for i/j). Then the j]oint maximum for T, g, X, T and U can be
obtained by iterating on the M. equations for T (given q, X, x, and U) and
the ML equations for q, X, T, U (given T). Some other methods for dealing

with Model 4 (in particular the treatment of T) are discussed in the Appendix
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IV. Interpretation

First we will review some properties of the single equation
variance components model. It was introduced into the econometric

literature by Balestra and Nerlove (1966):

(IV.1) = a + XjjB. + £i + 1
j=1,...,p ,
where the f. are a random sample from a distribution with mean
zero and variance and the * are independently distributed
across groups (1) and within groups (j) with mean zero and
variance aZ2. There 1s an alternative "fixed effects" model

(e.g., Kuh (1959)):
(IV.2) y. . = a. + x! .6 + v. e

which allows a separate intercept for each group. The inter-
pretation and relative merits of these two models have given rise
to some confusion. My preference 1is to regard (IV.2) as the
"true" model and arrive at (IV.1l) by adding uncertain prior in-
formation. Then the choice between the two models will rest on
the persuasiveness of the prior.

In (IV.1l) the problem is non-spherical disturbances and
is estimated by generalized least squares (GLS). This can be
simplified to:

(IV.3) 6* - (Wx ¢ CBx)-1(Wxbw + CB”B)

(Maddala (1971)), where Db = W, W. . § = B B W, W , etc.
-W —x"-xy ~B—- —-x%x —xy '—=x' —xy

are defined in (III.4); and £ =1/(1 + pip) with I = o"/02.
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So 3* is a matrix weighted average of the within and between
group least squares estimators. This 1is the natural way to
pool two independent estimators; Wx and Bx are proportional to
the precision matrices.

Using analysis of covariance identities we also have
(IV.4) B* = («x + + 57¢c W

where bm = T-1T . Note that here b and b are attainable

endpoints corresponding to the variance ratio I = o"/02 taking
on its extreme values of infinity and zero. In (IV.3) b, is
never reached since 0 £ ?2< 1; i.e., the between group least
squares estimator does not have a life of its own. It is,
however, a very useful estimator in the presence of measurement
error. One of our objectives is to give it an independent role.
The estimator in (IV. 3) and (IV.4) can be obtained from the
fixed effects model (IV.2) by adding an exchangeable prior for the
a.. The prior is exchangeable if its form is unaffected by
permuting the a's, so that the i subscripts are Jjust a labeling
device with no substantive content. Then the prior must be a
mixture of independent and identical distributions (de Finetti

(1964), Hewitt and Savage (1955)). Assuming normality we have

(Iv.5 a, ~ i.i.d. N (a a?2)
1 ¢ a

where a and a2 are called hyperparameters (Good (1965)); their
prior distribution generates the mixture. With a "flat" prior

for a and conditional on = 02/02, the posterior mean for 3
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is the GLS estimator in (IV.3). So Y measures the strength
of our prior belief that the a . are all equal. As ip varies
from zero (certainty) to infinity (diffuse), the posterior
mean goes from bm to b
The natural proxy for the unobservable group effects is
the posterior mean for the a.. Conditional on and the variance

ratio ip, the posterior mean is

* E)y S. +
(V.6 ay 15571 14 pe

whel6 Si = P <yii ' -il- " vi o' o-i -
1]

and a =y - x'B = - £ a .. So we take the fixed effects a.
g i=1i 1

obtained by forcing the hyperplane through the group means, and
shrink them towards the pooled OLS estimator a . Note that the
shrinkage factor approaches =zero if there are a large number of

observations on each group or if there is a strong group structure

Models 1 and 2: We can interpret the eigenvalue problem
in (III.1l) as a canonical correlation analysis of the residuals
E and the set of group indicator dummy variables J. We find the
linear combination of residuals from the m equations that is most
highly correlated with the group structure, subject to the restric
tion of being uncorrelated with the first index, and so on. The
eigenvectors are the canonical weights for constructing these

indices and the squared canonical correlations are the eigenvalues
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Our estimator of 0 can be interpreted as solving a minimum
norm approximation problem. For it is easy to show that con-
ditional on B the corrected between group moments,

R = — - —R) , give an unbiased estimate of O:
—c p_l — p_ =

(IvV. 7) 0= (R ) =E[-2— (R - ARrR)].
-C p-1 - -

So 1t 1is reasonable to estimate 0 by finding a matrix of rank N

such that
(IV. 8) [l Rc—S |0
is a minimum, where || Il denotes the matrix norm in the metric of
Q:
[IA] | = tr,QARQA.
A natural choice of metric is R For then the equations with

poor fit are given less weight in the approximation error (and
more generally the linear combinations of equations with poor fit
are given less weight) . It is easy to show that the 0 in

(ITI. 2) solves this problem.

Another interpretation of our estimator of 0 can be based on
constructing proxies for the unobservables and using them in a

regression. For the one factor model the fixed effects analog to

on in (IV.6) 1is
(IV. 9) fr = (v - x! ID2 = E°cf

where R g = pR g.
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The scale of is arbitrary since it can't be separated from
the scale of the coefficients. We resolve this by setting gi = 1.
Then 0 = d d' and = d'E® d is a generalized variance ratio
analogous to ol|/a2. Then the posterior mean proxy corresponding

to (IV.6) 1is

(IV.10) £* =
where

i

a I
So again the exchangeable prior induces a shrinking towards an
averaged estimator; the shrinking can be substantial if the num-
ber of observations in each group is small and if the signal-noise
ratio P = d’E d is not too large.

We can interpret the ML estimator of d as regressing the

residuals on the*proxy f

d « E'f* « Rg.

So d satisfies the dual of (ITI.1)

(IV. 12) Rg = pRg

R -id = i R_1d.
- - p “« ~

If we scale so that d'R d = ~y(p~1/p)/ then dd' gives the
(one factor) 0 in (ITII.2).

Note that the regression on f* is proportional to the regres-

sion on f.provided the residuals sum to =zero. If the equations
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include constant terms, then the GLS estimate of the hyperplane
corresponding to each of the equations passes through the overall
sample means. In that case we have the surprising result that

the estimate of d is unaffected by adding the exchangeable prior
to the fixed effects model. A similar result has been observed in
the simpler factor model without the group structure. In that
model Whittle (1953) found that his fixed effects estimator of the
factor loadings agreed with the random effects ML algorithm de-

vised by Lawley (1940) (also see the Uppsala Symposium (1953) ).

In the fixed effects model the problem is to impose pro-
portionality restrictions across the coefficients of the dummies
in the different equations. The solution as a canonical cor-
relation is given in Hauser and Goldberger (1971). Actually
their model 1is a special case of Hannan's (1967) application of
ML to a subsystem. A set of m equations form a subsystem if
there are W-I zero restrictions on each equation. Hannan showed
that limited information maximum likelihood (LIML) applied
to a subsystem can be reduced to a canonical correlation problem
of the Hauser-Goldberger type. We can see that the fixed effects

model fits Hannan's framework by rewriting

yR = XSR + JfdR + £k , k = 1,...,m
(g = I <£>?.)
- -q -p

as

(IV.13) - X(6k - 6 7)) +
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y = X6 + Jf + e
m — m - —m

(assuming that d_. / 0, we normalize so that dm = 1). There are

a5
m-2 restrictions on each of the first m-1 equations since only
one of the m-1 variables vy % , appears 1in any of these
equations. Thus they form a subsystem. Furthermore the mt41
equation 1is Jjust identified which implies that LIML is in
fact FIML.

In the multi-factor version we regress E on JEG to

obtain

(IV. 14) D = RGH

where H is a diagonal scaling matrix. If the columns of D are
properly scaled then DD1 will give the 0 in (III.2). But the
decomposition of Q into D$D* is not identified without further
restrictions, nor are separate proxies for the different factors.
We can only specify the space spanned by the factors (the column
space of JEG) .

The GLS estimator of 5 « vec (B) is given in (III.4). It 1is
a generalization of the single equation variance components pooling
in (IV.3). Again we are taking a matrix weighted average of the
within and between group estimators, weighting by their precision
matrices. The correspondence with the single equation case is
even closer when we compare the fixed and random effects estimators
of <. In the fixed effects case, we simply form the proxy for f£f.
in (IV. 9) and regress on an<® this proxy to obtain 67,

k=1,...,m. Some straightforward but tedious algebra will



62

demonstrate the following relationship between the fixed and

random effects estimators:

_ow o+ T) 1@ T , k=1
(Iv.1s) o« = 1-£ -x —x—fk  1-? —x~Tk ity

where p = d'E d, £ = 1/(1 + pip , W and ER are defined in (III.4),

X

and =T T is the pooled OLS estimator.
—IK —X —XV.

If there 1s only a single variable in X then (IV.15) 1is a
simple weighted average and the random effects £* 1is in between
the fixed effects estimator and the pooled OLS estimator. But
with several x's we have a matrix weighted average 1like (IV.4). In
fact (IV.15) 1is identical to the single equation pooling formula
(IV.4) with the fixed effects estimator replacing the unconstrained
within group OLS bw> and with = d'f ~d replacing the single
equation variance ratio. So we can use to reduce the formula
for 6* in (III. 4) from a matrix weighted average that runs over

equations and variables to one which just runs over the wvariables

in X, pooling each equation separately from the others.

Model 3: The ML estimator of n in (III.11) 1is

J 7 <wx + v ' 1 <bxr +

where C = 1/(l+pip) and = d** ~d. This is identical to the
single equation GLS estimator in (IV.4) 1if we replace o2/a2
by the generalized variance ratio = d’E *“d and aggregate the y. ’s

into a single index r = YE ~d/ip. Then r.+« = x! .n+ f. +e. . is
- - - ij —-13— i
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treated like a single equation components model with

: : = d'£-l d. The weights £4 d/ip do not seem to come

from a canonical correlation problem. But as our estimator
reduces to ML for the fixed effects model. There we do a
canonical correlation analysis on Y and (X J) where J = 1" (¥

is a set of dummy variables. The payoff from the exchangeable
prior on the f. 1is that unlike the fixed effects estimator, our
estimator uses some of the between group variation in estimating TJ.

As in (IV.11l) our estimators of d and E can be interpreted

as regression statistics in a model based on a proxy for the

unobservable. Conditional on d, and E, the posterior mean

for f£. is

<IV-i6> fI ’ i p'f£i +

where

f. = Y.E 1d/i» - X.n, £ = - E f..
1 —i- - —-1- q 1

This is analogous to (IV.10) except that now we take the canonical
index of the averaged y's and subtract off the averaged contribution
XJT) of the observed characteristics. The weights pip/ (1+p”) and 1/ (l+p”
are the same as (IV.10) with more shrinking if the groups are small
and if the group effects have relatively small variance. Then the
f. are not very estimable individually and so we do more smoothing
towards their average f£f.

Now we can use initial estimates of d and E. to form the
composite proxy Xg* + f*, and then run the multivariate regression
of Y on Xn* + f* to obtain new estimates of d and E. Then they

can be used to reform rj* and f* to repeat the process. This



64

iterative scheme 1is actually a powering method for solving

the eigenvalue problem in (III.9). Of course much faster tech-
niques are available, but this helps our intuitive appreciation
of the algorithm. The sequence of regressions will also re-

produce our estimator of £ in (III.10)

Model 4: The ML estimator of y is the same as in Model 3

except that now r = YU A/y and £ = 1/[1 + P("~Ty)1l with

y = A'U A. To see that y/(l+ry) 1is the appropriate variance

ratio, we consider the single equation version with

f. + , W) A + .. 1 d b f. + g. .. + ... Th = 1 2
(x glj)'k eljk reg ace Y 1 ng exj en % af/a
and
y ~ o#/a2 _ of
l+ry ~ l+4+az/a2 ~ az + a?
9 9

is the appropriate ratio of between group variance to within group
variance.

The posterior mean proxy for f is

(IV.17) f* = (1-0f1i + Cft
where f. = Y.U "A/y - X. 4 f=- TIf. and
X -x- — H —X— q i
£ = 1/[1 + P Y1 We have already seen that y/(l+ry) 1is the

appropriate ratio of between to within group variance for this
problem. Note that we do less shrinking if a2 = al(l+T) is

large, but for a given ag we shrink to the mean more forcefully

as T = o2/0” increases. The proxy for the within family
. . A .
deviations gk (ggl...gkp) is
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(IV-18"7 at = niTT - xiai - fttp].

So given the canonical index of the y's, we subtract off the
effects of the observed characteristics, Xg, and we also subtract
off the unobserved family effects f£f*. The shrinkage factor is
analagous to p”/(l+pip) in (IV.6) because here p=1, only a single
individual per group, and T =a2/a~ converts p = A 'U from

a family variance ratio (recall a?. = 1) to an individual wvariance

ratio which would be cfg/a2 in the single equation case.
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V. The Causes and Consequences of Permanent Income

An example of Model 1 is a system of Engel curves based
on components of permanent income. The model develops Friedman's
observation that the horizon relevant for forming income expectations
depends on the variability of the income series. Thus self-employed
businessmen and wage earners form their expectations in different
ways. This can be formalized by observing that optimal (e.g.,
minimum mean square error) forecasts of a stochastic process de-
pend on the underlying autoregressive structure of the process.
So when we can identify separate income streams for the same
individual, it is a natural step to treat them separately in forming
permanent income proxies. Holbrook and Stafford (1971) estimated
this sort of model from a three year panel of consumers. For the
time being I will specialize their model by assuming that the
different components of permanent income are constant over the
three years.

Then extending the model to several consumption goods gives

< -1) citk hY nkS5ih+uitk

Yith - Yih + vith ! i -
t=1,...,T

We assume that the permanent components of income Y* (corresponding
to the £f") are independently distributed across individuals as a
multivariate N(0,$). The observed income component Y*”* is

assumed to be an unbiased estimate of the permanent component.

The transitory components of consumption (uXtK) and income (&tK)
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are assumed to be serially uncorrelated but freely contemporaneously
correlated both within and across consumption and income categories.
Allowing for non-zero correlation between transitory consumption

and income is important if we only have independent observations

on income and savings. For then consumption is generated as a
residual and errors in income reporting will be transmitted to the
consumption data and will induce a correlation between the transi-

tory components.

Let L = ke the matrix of marginal propensities (or
elasticities in the logarithmic version). Then we have D' = (1L I)
and

L'SL L'S
V.2 0 = DS$SD'
wv.2) ¢ 3 5
u J

Thus L and $ can be recovered from 0 and if 0 has been constrained

to have rank = N the relationship is uniquely given by
(V.3) L —9p -91
- —22 x

Given our interpretation of Q as a rank N approximation

to R = R - EB),we can interpret our estimator L = 0 99991

c p-1

as a set of corrected and smoothed between group regressions.
Simply regressing on time averages would give R22 R21* Our
estimator differs from this in two ways. First we correct R

for incomplete averaging of the transitory effects by subtracting
off R. This correction would be negligible for a long time

series or 1if the grouping were done by cities, but it could be
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crucial for a three year panel. Then the corrected R, 1i.e.,
is approximated (smoothed) by a matrix of lower rank. This
conforms to Friedman's symmetric view of the problem; for once

we have R we can either regress Y on C or run C on Y and take
the reciprocal. Imposing the rank constraint guarantees that
we get the same answer either way.

The adding up property R = 0 + £ that is used to estimate Z
gives a decomposition of the total variance R into permanent (0)
and transitory (Z) components.

In the general multi-factor model it is not possible to

assign separate proxies to the different factors. This corresponds
to our inability to separate D and $ in 0 = D$D'. But in this
example there are enough restrictions. The restrictions are that
the multiple regression of y” on the proxies y*,...,yN should

give zero coefficients except for the coefficient of y. which

should be one:

1 if k=h
0 otherwise

(V.4) b

This in turn implies that

0 if k h.

(V.5) 1is a natural condition for an efficient proxy. For if
the partial correlation were not zero, we could exploit it to

improve our specification of y. The formula for the proxies is
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V.6)  (x ... yN) = JEGO!/?
In the random effects model we would shrink towards the mean
as in (IV.10).

Holbrook and Stafford relaxed the constancy of permanent
income by using a set of exogenously given growth rates. They
grouped people on the basis of observed characteristics (occupation,
sex, race, education, age) and assigned growth rates from national
averages. In our framework this would be Y.. = ait¥i wtere t7ie

ait are growth rates subject to an arbitrary normalization.

With a-t = 1, we just have to estimate Y”, the individual's
permanent income in year one. The generalization of our
algorithm is straightforward. We use weighted averages to form
R, weighting by growth rates. The extension is similar to the

unbalanced sample algorithm in that P = d' ~d affects the

weighting scheme. So we end up with a concentrated likelihood
function that just depends on ip. Details are given in the
Appendix.

Up to this point we have been modeling the consequences of
permanent income in terms of its effect on observed consumer
behavior. Now we will construct a Model 3 example by looking
at the causes of permanent income. A common suggestion is to
construct a proxy based on individual characteristics such as
age, education, race, etc. This would extend our model (with

one type of income) to
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(V.7) Citk 7 Ak Yit + uitk
Yit N oyit o+ Vit
Yit = *it * 4+ fi

where x 1is a set of observed characteristics and f . picks
up omitted characteristics that do not vary over the sample
period. So we are specifying a richer prior for permanent
income.

In the permanent income proxy

x would include characteristics that are known both to the in-
dividual and to the econometrician. They are causal variables
used to project future income. But there are additional
variables known to the individual, e.g., various dimensions of
ability, which are unobservable to the external observor (witness
the poor explanatory power of cross sectional income generating
functions). These make up f. and have to be inferred by observing
their consequences; i.e., using average consumption (in addition
to average 1income) as a proxy for permanent income. Using

value of home as a proxy has this flavor as does Liviatan's (1963)
suggestion to use past and future consumption as instruments for
measured income.

Finally, we take the f.'s in (IV.16) and pull them towards

their mean. This 1is like using average community income as an
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indicator of an individual's permanent income and forms the basis
of Friedman's (1957) reinterpretation of Duesenberry's (1949)
relative income hypothesis.

A more careful look at our interpretation of Jn brings us to
Models 2 and 4. The problem is that some of the observed
characteristics, such as schooling (S), may be correlated with the
unobserved characteristics (f), e.g., "ability." So we have
the simultaneity problem captured by Models 2 and 4.

To be specific, consider estimating the returns to schooling

in the presence of an unobserved ability variable:

(v.8) Si = X f. + oWy
Yl. = ySl. + f1
Y1 + Vlt

XY, * Ui = beeea

C and Y are the logs of consumption and income and our interest
centers on y, the rate of return. This could fit our model 2
framework except that there is no within group variation on S
and so V 1is not positive definite. In fact £ does not depend on
y and the identification must be based entirely on 0. So the
independence of the transitory u and v is irrelevant for the

identification of y.
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The between group information is

0 = dd' + hh' = DD'
with
1
1+X1Y of, h = Y
X2 (1+X37) X 2Y
r
For any D such that DD' = (0 there is a rotation P such
that D = DP pip - 1 So set
T cos a sin a
p =
-sin a cos a
and try to obtain a from the restriction that d3/d2 = X2 =
This gives
(V.9) (d3cos a - h”sin a)/(d2cos a - h2sin a)

(dgSin a + h”cos a)/(d2sin a + h2cos a).

Unfortunately (V.9) reduces to d~/d2 = h3/h2 independently of a
It results in a reduced form restriction without shedding any
light on the rotation angle. We should note, however, that X2
is identified. Just reinterpret f to be that part of "ability"
that is uncorrelated with S. The problem is that then y looses
its structural interpretation.

The basic difficulty is that we cannot separate w® from f..
A solution 1is to have an indicator that intervenes between

f and S, e.g., an early test score: T X. £ + ei (@n a”ult
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score would have the disadvantage of being dependent on S) .
This 1s a powerful piece of information; now we can identify

with just a replicated income series:

(V.10) Ti ALfi + ei
S1 X2fi + "i

Yy Y S, ot £y
+ ..
it Yl Vit

Assuming that v. and e” are independent, we have

az 0 0
0 = dda* +
va
2a?2
Ya Y, aw
with d' = (&, A. 1 + yX2)af
<6 > d.
So d = 1 gives us up to scale factor r = 1/4d,"
113 id.
ri Yo
22 23
= rdd' +
32 033 5 12 Y21 v

We can solve for r by equating the different estimators of y

(V.11) (033 - rd3)/(023 - rd2d3) = vy

" <e23 Y rVv 3>/<e22 " r32>
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giving

(V.12) r - (S22e23 - e*3J/(»33" & e22a* - 2023a2I3>.

Then we estimate y from either of the formulas in (V.11).

This amounts to taking the between group covariance Q, sub-
tracting off the effects of the common ability variable (dd¥*),
and computing either the regression of Y on S or the reciprocal
of S on Y.

Our model 4 example is based on the Chamberlain-Griliches
(1974) reanalysis of Gorseline’s (1934) data on brothers. In
their model the group is a family and an attempt is made to
allow not just for omitted family effects but also for variation
at the individual level. This is accomplished via a prior for
the unobservable (a”.) which invokes exchangeability at two

levels, both within and across families:

a.13. fl + 9ij'

Sij M xlaij + w.

13
Y. . - i5 + a. .
13 LS 13
Y. . = Y. o + v. .
13 13 13
c .. = XQY ... t u. .
13 9% 13 13
So we are taking another pass at the model in (V.9). We will

be more successful this time because a,j and w,§ have different
1 i

A

group structures: a”j has a family component f. but by
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assumption w” . does not. So we can separate them by appropriate
grouping without bringing in an intervening indicator between
aﬁ- and Sif' This gives us a more unified model, avoiding the
(V.11) assumption that an IQ test and measured income are
"parallel" measurements on the same underlying dimension. The
cost of this unification 1s more stringent assumptions on the
equation specific errors u, v, and w. For in (V.9 - V.13) we
just used the between group J3; but here the within group £

plays a crucial role, requiring independence assumptions for

4.. V.., and w ...
13 13 13

Without the proportionality restriction across S and

"a" in the C and Y equations we would have

S. . = A,a. . + w. .
13 1713 %3
Y. = y,S.. t+ X + v

i3 1 13 i3 1J
.« . = =-»S. _ .t ~a. .t - .
Ci3 TPyt Azay gt .

Then by Theorem 1 the exclusion of Y from the C equation is

sufficient to identify the model provided 7973 ® and

(a~, a*., a2) > 0. Corollary 3 shows that the proportionality
restriction W ~2/73 does not alter the identification
condition. The (II.4) solution for T = Qg/al| 1is

(V.14) (al3°12 " °23all)/ (al3dld2 + al2dld3 “a23dl " alld2d3)*

Then given T we take the within family covariance £, subtract
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off the individual effects of the common ability variable
(rdd'), and then estimate the y's by regressing Y and C

on S, using these corrected within family moments.
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Appendix A

Maximum Likelihood Estimation of the

Reduced Form

The reduced form of our model is

(A.D  Yy* - 2if + + ik

= le 5k + ey 3% i=1,...,p
3 =1,...,9

k=1,...,r

where 1 indexes families or groups, 3 runs over individuals

within a family, and k indexes the equations. We assume that
the n < r family factors P. — (f..... f. ) are distributed
independently of v as a random sample (over families) from a

multivariate N (0,9$):

*hh'-if 1 ® 1

— . (N | I
(A=2) Efibfi'h ( 0 otherwise

The v'’s are assumed to be a random sample (over individuals)
from a multivariate N(0,E):

Kk * if i=i and 3j*j

Vo.y,V e = {
13k 1 k
3 3 0 otherwise

(A.3) E
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Since the e’s corresponding to different families are
independent, 1t is convenient to group the observations by
family. Within a family we have the p individual observa-
tions on the first equation followed by p observations on

the second equation, etc.:

(A.4)
y = (ylll',*,'ylpl'yll2'*,,'ylp2 'ee' yqllz*'’rYgpr)
Then letting y,, 2C, and denote the ith family blocks:
/*ili
yvi ” I X = 1 gf =
Y. I
&Y Sip/
we have
vy = (Ir S X.)5 + ex, i =1, , a
(A.5) y = Z6 + e
where
Z % S’

(A.6)
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is a qxl vector consisting entirely of ones; 0 is the

Khatri-Rao product:

if A= and B = then A 0 B

Rao and Mitra (1971)}.

Let D « (dT ..dr)v be the coefficient matrix of the family
effects and let 0 = p$p'. Then given our ordering of the data

the disturbance covariance matrix is block diagonal:
(A.7) E ee' “Jq ® #

with

(A.8) ?=§ ® “ip +! ® ip-

So the log likelihood function is (apart from an irrelevant

constant):

(A.9) L(ylz,6,0,1) -

-5 1Inn|-1 (y- 26)'(I g n"l)(y - Z6).
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The first task is to sim plify f and |ft|. We let the columns

of S = (s*...sr) be a set of linearly independent common con-

jugate axes of 0 and Z:
(A.io) s’z s =i, s’e S =

(brackets denote a diagonal or block diagonal matrix:

Similarly we choose T = (t,...t ) so that

(A.11) T'T =1 ,7"U*T = {p, 0>

- - P - _
(t. = £/ /p ). Now S & T can be used to diagonalize ft and
factor ft
(A.12) (S ® T) ft(S T) =

Ir £ K 0 } ® {P' 0>

ft 1= (S < T) {(1 + T p)"1,!,...,(1 + AL (S <= 1)
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Let mh = 1 - (1 +'Fhp) 1, h=1l,...,n so that

(A.13)

Q1 = (s $ T) (Ir <0 I - Q } 9 {1lrQ}) (s @
= £ ® _ p 1 {mir’II mn* 0 ® ~P~P ~°

Then with ¢ = /HL /P sh and C = (c*...") we have the

following decomposition of Q

(A. 14) f=1 * | ® 1Ip - CC* (® £pfp

The determinant of Q can be obtained from (A.12):

I . n
ISS TT 1 |fi] = n (1 + pT. )
h=1
ss’ <9 TI*I= |z1 gj Ipl = I[Z|"P
and so
(A. 15)
In| = Mfji £f11

This can be expressed in terms of ¢ and E by letting
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M= 1 I , M = {/n”/p ,..., )itin/p}

so that

(A.16) ? = SM

CF GMS G M= imp mp)

H4Yx/ (I+pyp reeer*n/ (1+P*n) }.

Then we have

—n(l-nt)=n(+py )"
—hgl( -nh)—hr:li(1 pyn)

Aa.17) |i_ - pc'z ¢

~

and

(A.18) « = EF lq PC EQJ_I

It will also be useful to have an expression for 0 in
terms of C and E (thus demonstrating that our reparameterization

is one-to-one). For this we use (A.10):
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and so

(A,19) ©= ?2C{1 + pY.,,...,1 + E¥ }c's.
X n -

The reparameterized log likelihood function reduces to

(A.20)
L(y|z,«5,C,E) =-23 <n |Z|

t | *nl|ln - pC EC|
(£ 1 & 1 cc' <€ VIt)) (y - Z6).
- ~p ' AP~P - ~~
The problem now is to simplify the exponent term. We let
e =y - Z6 be the vector of reduced form residuals. Then
w ith
1 — 1,
and e. =
k—1,...
\Cipk>

the first term in the exponent is:
(A.21)

2<?2q ® (J. 1 ® Jp” e
k,k =1
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_ tr E-1R,
= Pq x

where R is the covariance matrix of the reduced form residuals

/S ix ?21r\
E = / . , R = ---}-- E'E
. . pPq
Y ?7ql ®qry

: remaining term in the exponent is

1
22) e' (I, < (cc'
- g 5 Epk
E % ! ( : ® £1
= e. (¢ ¢ S
h=1 i=1 h~h Apep AN
n T q 1 V
= E = ,Z. chkchk'~ik I £ e.,~°

h=1 k,k-1 i=1
r 22 . ,
Eop BP0 GG G

=P2qtrC * 9

where R is the covariance matrix of the average residuals,

averaged over each family
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and
R= — EE
Thus our canonical form fox the likelihood function is
(A.23) L(yl|z,6,C,Z) = -E2. In|EJ

+j Injln - pc'zc]
- 22 tr Z-1R + 272 tr C'R C_

Now we are ready to differentiate L and solve for Z and C.

1
Since C EC is a diagonal matrix and

k» <| - -??7h?h5-
we have
(A.25) 3in|ln - pc'sc|/3E-1 = 7 p E/(l-pc™ |M

= pZC<l+pY ,...,1+pT }C*Z
Ml L nUu

PO (A.19).
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So setting O9L/9E ) implies that

(A26) E=TR- 0.

The first order conditions for are

(A.27) O9L/9ch = -pqEch/(l-pch E C*) + p2q Rch

~ (0)r h—f-a4-/H/
and so

(A.28) RC = . EC{l+pt,... ,l+p¥ }

We can eliminate E from this expression by using (A.26),(A.19),

and (A.16):

(A.29) EC = RC - 0C
= RC - EC{l + pY,,...,1+py }c'EC
= RC - Eg{%(,...}l*,

and so
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(A. 30) 7ZC = RCfl/d+Wp ,. ..,1/(1+") }.
Then with
(A. 31) Ph = i(l+pfh)/(1 + Yh) and A = {p",... ,pn>

we substitute (A.30) into (A.28) to obtain

(A.32) RC = RCA,

So the columns of C are eigenvectors of R in the metric of R.
The eigenvectors corresponding to the n largest roots should
be chosen since we will show that L is an increasing function
of the Ph' The scale of the gﬁ>can be obtained from (A.28) and

(A.1lo) :

(A.33) C'RC =

chRch = Vh/p = (pph - 1)/(1 - Ph), h = 1,...,n

Finally we can use (A.19), (A.30) and (A.31) to derive the M.L.

estimate of O0:
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(A. 34) 0 = ZC{l+p'l'l,...,1+p'i'n}C E

= -E- RC {IPjJl1-PJ,...,Pn (1-Pn)}c'R.
p-1 ~ o

Tests of our model can be obtained by evaluating L at the

maximizing values of the parameters. So we need to simplify
the following four terms from (A.23): [El, ? |1 - pC Ec|,
3) 1

;trE "R, and U tre re.

1} |IE, = |R - © = |R]| [ir - r" 10!

Let H = Cd+py,,_ ,1+p”} C E so that

R 10 = R 1(R- QH= (I - R"1 0)H.

Note that the (non-zero) roots of H coincide with those of

{l+p”*, .. ., 1+p"} Cc'EC = {Wxr.. .¥Yn) (A.16)

Thus H has non-negative roots, I + H is non-singular, and

R"1© = HA+H)"1.
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Since the roots of H are the (non-zero) roots of R 0

are ~/(1+ FY) = P(l_ph~(P"”~ "' and so

n

(A.35) |E| = R| n<P(i-p,)/(p-1i)

> h=1 n

2) n A h n |
(A. 36) I - pC EC TV € C—— n W -i)/(p-i)
h=1 i+PTh  h=l
(A.16,A.31)
(A37) 3 wE IR * tr£ 1E+0) =1 + B (A.10).
~ 1 * M 1 h=1
A.38) 4) trC*RC = - trC'EC{1+pY,, ..., l+pT A .28
( ) ) S& T p U { pY, p H} ( )
n
=- EY, (A. 16) .
P h=1 D

So the exponent terms cancel in (A.23) and apart from an

irrelevant constant

(A.39) n ,
L* = "2a{AnlRl + £n n Pd-P j/te-D }

h=1

+ 3. £n n (~1 -1)/(p-1) .
z h=1 ph
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A likelihood ratio test for n factors vs. ntl factors

can be based on the large sample x2 distribution of

”2(Ln - I»+1). R and R are computed using the M.L. esti-
mate of 5 (see (A.44)). To determine the degrees of freedom,
note that constraining 6to have rank n lets us deteTtn-ine all
the elements of 0 from the first n columns. Since 0 is
symmetric there are rn — free elements and so restrie

ting.sthe model to n factors instead of n+l imposes

r (ntl) - £*!>>> - [rn - “fcil ] =r-n
2 2

constraints. Thus

(A.40) S2(L*-L*+1)* X2 (r-h).

The M.L. estimator of 6(given fi) is the GLS estimator

6% = [2* (Ig z' (Ig # Qly.

If the same X’s appear in each equation then we have

(A.41) 2" (g fi-1)Z =

'

-1
s oy @ Tp s o aprp) Or <2 1)

= El# T, -pC By
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= Z-1 Wx + (Z 1 - pCOC) Bxx

where

i

XX % XI'X" Bex — ﬁ%p)f~%'£pxl

Wx = &kx - Kx

and w e'll be using similar expressions for Y\g;yk and Bxyk

Then using

(z 1- pec)-1 =z - ze(c'z ¢ - D712

together with

CZ C= {Ti/d+p"i) "n/atp”)} (A.16)
and

6= 7 C{ l+p?1,....,"1+p'Fn} C*Z (A.19)
gives
(A.42) (Z"1 - pCC*) 1 = Z + pb6.

.. . W
The remaining term in 6 is

2 (0 # Ql)y » 7 Z-T )X/ - cc'  xl£ £)y.
> ] 1 =1 r -1 | i
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1
The Z (727 #X.)y. term can be partitioned into r blocks, each

with as many rows as there are exogenous variables. The
block 1is
kk’ r kk’
L S e

where 6 Thus the whole term can be written

Tk ,T,xx Ixyfc
i - 1 1

as <Z"X5f Txx) ST with ’ .
mpj-t e Tr *

Similarly the second term is p(Cc' 5XX) with

. . A , *x v

<S = B B and 6 - ( £B1 , ., 6Br ). Then using
~Bk -XX AxYir

the identity

1 e 1 ST <Ir + <ir * Bxx" B
~r

—XX

we have

(A. 43) z*x (I « O'hy = + t'?"1- PS?'’ ® Sxx'”"B

Combining (A.41), (A.42), and (A.43) shows that the GLS
estimator of 6 pools the "within" and "between" OLS estimators,
weighting by their precision matrices;

(A.44) 6* - (Hw +

where
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H 1= E(6 - 5 (6 - 5 '=°t  w:{
XX

SI=EB-7<s-  cpuron

) . i

If the X's differ across equations then the i block
of Z is no longer I X.but rather the block diagonal matrix
{Xii»eee/Xir” where

is the set of exogenous variables appearing

in the k"-h equation. Now the k,k Dblock of the E part of

z'(Ig® n’bz is not okk but akk’T ~ , with T ~ , =
= E x\x. This can be written as E * T where the
i 1~ik~ik ~ ~ XX

k,k Dblock of T is T , and * id a generalized Hadamard

~XX ~xtxv
product (Rao, 1973). Similarly the "between" term of
z'(Ig @ 0-1)Z is pCC * Bxx . Then using the analysis of

covariance identity Ty = Wi * Bay, We have

(A.45) «’" (I <sfl 1>Z2 = E"1 * Wxx + (E 1- pCC*) * Bxx

The Z (1» ®kn )y term can be partitioned into r blocks of

which the k™% is
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£ I°kk ?x,y * + <okk - P kk' ’?x,.y, ' 1
kJk V K

where vy, ! element of CC . With unequal X's
the M.L. estimate of 5 based on just the within group deviations
is not 6 Dbut rather (conditional on Z) the Zellner "seemingly

W £

unrelated" GLS estimator:

5 kI
allw clrW » IRG
x1x1 x1lxr k=l x 1Yk
GLS
w
orlw arrw a W
xrxl *r¥r k=1 *r¥x

. L ) GLS . .
There is a similar estimator (using just the between

-1
group variation) which replaces 2 by

0 + i zZ)"l = z”"1 - pCC* (from (A.42)). Thus
(A. 46) z' (I & Q 1)y = (2”71* W) 6 GLS +! [ (©O+ i B) 1 B] 6
~q ~ 1 ~ ~ oW P p -

The M.L. estimate of 6 (given fi) is a matrix weighted average
of the within and between group GLS estimators, weighting by

their precision matrices:

m.an  f - <5 - W) 1(BWES +HxALS)
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with
-1
H =[E(6GLS- 6) (6GLS- 6)'l= (Z 1 * W)
- w ~W ~ o~y ~ ~ ~
H =[E(6GLS- 6) GL- 6)1 = [1i(0+ )—-1* B]

The joint maximum for 6 and f£ is obtained by iterating on
the M.L. equations for Z and C (given 6) and the M.L. equation
for 6 (given Z and C) .

The GLS procedure can be simplified by concentrating the
intercepts out of the likelihood function. This 1is possible

since the M.L. estimates of the hyperplanes corresponding to

each of the equations pass through the sample means. For
if g” 1is an eigenvector of Z + pO then A ® g* © ts an
eigenvector of Iq - So as long as Z + p0 has full rank,

then r of the eigenvectors of I ® f span the column space of

Z (2>Ir <£>£ which spans the r intercept variables. Thus if

we partition 67 into the intercept 67" and the slppe coefficients
62~/ then conditional on the GLS estimate of 67" is OLS

(e.g., Rao and Mitra (1971), chap. 8):

where y” 1is the grand mean of y” and X is the row vector of

grand means for the exogenous variables (other than the inter-

cept) 1in the kft equation. So the 6.. can be concentrated out
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of the likelihood function simply by replacing each variable
by its deviation from the overall sample mean and proceeding
without intercepts.

We conclude this Appendix by displaying the asymptotic infor-
mation matrices for the one factor version of our models. Stacking
the parameters into a vector, £, we let 5 = —qpl%y(; 92L/9£9£ ")

Then we can approximate the variance of the M.L. estimate of E

by V(£) = 5 . It is straightforward but rather tedious to show
that
(A.48) T g plim (H + H )/g as given in (A.47)

= nAE_l+n2cc’

~dd'
— 2 1 Elll_ *k E" — '
o (pa/2)J " [ ( cc*kx) (E" 1- cc )+ (p-l)cc' &acc’IJ
act
= (0
r«d» ©
2607 = (0
tda' = n3 "’ (£ 1 ™ pec')]dJd
where = p2ql7(i+Y), n2 ™ P2q (1-pV)/(1+pW ), h, » pqd+pW)

The r(r+l)/2 distinct elements from the upper triangle of E are

contained in o' = 'allal2CR2* e ,crlr* ' *Ckr”" '/ a r

vector obtained by stacking the columns of E: a « vec E. Then

J is the r by r(r+l)/2 matrix with J.. « 1 if a., = a. and J..= 0
1 J 1]

otherwise.
Since the M.L. estimate of E is R-dd' we can write the concen

trated log likelihood L in terms of 6 and d. Then we have
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(A.49) |dd. = -q Plin(] 32L/3d3d’) = q Ei + @ E~d'E-1

with £ = pq(p-1)VI+V)/(1+pT)
= Pqr(p2-P-4H2- (P2“4p+I1)¥ + (p-1))/(1+pn2.

The information matrix S is block diagonal in 6 and d and so
(A.50) V() « (]dd>)-1 * o2 !
with VI ~ “ V?2-i and B ~ "2/ + A AN *

For the structural form of our model we replace d by y

and let E - TYY* + & where A is the diagonal matrix {a® #...r

a2 r a2}. Also letu » y'E ¢c=E\(l+py )~ , and
K » =~ '
reinterpret XR to include yg if k £ K. We partition = lak j
\Bk /
for k £ K with ® ag ¢ and also set up

Then we have

(A.51) q plim fI* + gB)/q as in (A.47)

§rr' " KE 1 + K2A'

=TT« *3

2
caa' =20 - 1% (£ 1% 2@R) + HF- (RR*}*(£®*)
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-ya' = Kb~ c(c*c)’

"TO “ k7(5*S)’

“a(Y*Ta’ )~

-6(Y'Ta') * vs~y (Y*ttf*)
where {c} is the diagonal matrix with the elements of ¢ on the
diagonal and

*pay "((P-D 1M+ (12+ 27 + p)]/(1 + py)

<2 = pqtpte-UT"y 2 + ((2p-3)T2-2px-p2)y + (12+271+pP)]/(l+pu )

K= W2 [(p-Dy (py+2) + 11/(1+py)2

k4 < PJy tp (p-1) ty2 + 2(p-)Ty‘4 (1+1)]/(l+py) 2

*5

&~

Pq[(p-DTy + (T+D)1/(I+py )*2
) y
k6 “ -pq(T+p)/(i+py) 2

7= I(p-Dy (py + 2) + il/(i+py)
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Appendix B

Unbalanced Groups

We will work with a single unobservable. The generalization to several

factors is non-trivial. Let a = 1,..., Nindex the different family sizes.

There are p individuals in each of q families or groups. The total number

N
of families is q = a£1 49 and pq = {%]pctqe( is the total m;mber of individuals
in the sample. The observable f is scaled so that $=0_ =1 and 0 = dd’.

for families of a given size the observations are arranged as in (A.4). Then
the families with p® members are followed by those with P2 members, etc. With
this arrangement of the data the covariance matrix of the reduced form dis-

turbance vector e is the block diagonal matrix

(B.1) EEe' = {I ®ft, ..., I ® ft*}

fi =dd’® 7 i '+£0 1 ,a « 1,...,N.

a aPa Pa 1
As in (A.13) we have the following decomposition of ft*
(B.2) ft 1=£101 - m ss* ®1 «

ra p ra ra

where
(B.3) (dd")s = 4>£s, s'Zs =1

s = £'1d/(d»£"1d)1/2 , p=d'e-1d

Pa”
m = —(----- a=1,..N
& 1+p9
Pa
But now we cannot rescale s to absorb m/p . Instead we have to keep

ip= d'€ ~d, the generalized signal-noise ratio, as a separate parameter.

As in (A.15) we have
(B.4) Ifta| = |Z|P“ (1 + pai«



100

I'or families of size the exponent term is evaluated as in (A.21) and

(A.22) to give

(B.5) -p Q i
— = trZ’_i’R + Palx m s'R_s
a - ~a~
So we define
N
(B.6) R= aél Pafia R
Pq
B.7 R = 1 IiI 1 N Pan
(B.7) - T & pe&,ma'l-{a T agl Pafla . Ry
Pq P q I4p ip
and our canonical form for the likelihood function is
(B.8) L(ylZ, 6, s, Z, ip) =
1- 7, , 1 N
-j pq £nlz| -y a=1 gqa £n(1 + Pa”
- tr Z IR + 2" s’Rs
The constraint s’Zs = 1 is imposed by constructing the Lagrangian

(B.9) A=L- E3.Ts’Zs

(we should note that in (A.23) there is the implicit constraint that C’ZC
is a diagonal matrix; but it does not have to be imposed since the uncon-
strained ML solution satisfies the constraint). Setting 3A/3Z-" = (0)
gives
(B.10) Z=R-TZss' Z
The first order condition for s is
(B .11) 9A/3s =pqR s-pgxZs = (0)

Rs =t Zs
Since (B.10) implies
(B.12) Zs =Rs - TZs

Zs = — Rs,
1+T
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wc can eliminate Es from (B.11) and (B.12) to obtain

(B.13) Rs=XRs, X= —
HT

Thus s is an eigenvector of R in the metric of R. We will see that the s
corresponding to the largest eigenvalue should be chosen. The scale of s
is determined from (B.10):

(B.14) s’Rs =1 + T=4—

Then from (B.3) we obtain
(B.15) d = Es = ff- Rs

So d could be obtained from the dual of (B.13):
(B.16) R-Id = y R1d .
E can be obtained from (B.10) and (B.15):
(B.17) E= R 7- dd'
p ~~
The above analysis is all conditional on the signal-noise ratio ip.
The concentrated likelihood function L(ip) is formed by evaluating L at the

maximizing values of E and s for

L(ip). So we have to evaluate 1) -1
(B.18) 1)

=R- s- Rss":

g g (1+r)2

- RI - —SS

(14T)  ~
(B.19) [s| = IRI (a1-— 2 §Rs)
(w r

« 1*1 1I*7 = 1Rl (i -V

(B.20) 2> -] . T

R =% + — s s (B.18)

B2 UEARTI Gy SR v 4T
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CB.22) 3)
sRs = X1 +T) =T

So the exponent terms cancel and
LOW = - £n |R] - £3.£&n (1 - X)

1
S 2 azl L LI N
This 1s an increasing function of X for X < 1 and so the largest root

sould be chosen in (B.13).
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Appendix C

M. Estimation of Model 3

Our starting point is equation (A.23), specialized to one factor:
(c.i) L(y|z» c, B)
= - 1?71 + 2'*n(1 - pc’Ec)
tr E 1R ¢ E~1 CRC

where now

R= (Y - Xnd")'(Y - Xnd’)/pq
R= (Y - Xnd")’JJ'(Y - Xnd')/qp2

(Y - Xrjd")’ (Y - Xqd’)/q
an® 2 =1q ® ~p is a set group indicator dummy variables. Then 3L/9n = 0
can be simplified to

(c.2) n = (wx + CGBX)_ 1 (wxy + OBXY)Z_1 ditp

where ? = 1/(1 + ptp)

Concentrating 1 out of the likelihood function gives

(C.3) L(ylz, ¢, E) = -  £n|E| + | £n ?

* *3r "vyHy'"“v) 5

We will proceed conditional on ip, and so we have the constraint that

2 ~~ =1/(1 + PVO+ This is imposed by forming the Lagrangian:
(C4) A=1L- c'Ec
Then 3A/3E = 0 gives

(c-5> ?2 =472 Tv - « dd'

and 3A/3¢c = 0 gives
(C.6) Qc =q CEc

“here 2 > lY*Kc Sn& Ay .
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Combining this with (C.5) we have

(C.7) Qca — m-Swv T, ¢

which can be rewritten as

(C.8) Qld= |Ty_1d

| - i e/d *5«

Examination of the concentrated likelihood function in (C.10) shows that

the smallest root should be chosen. Then given p we can solve for £ from

(C.9) 5=p/(1 - 1+7)

The scale normalization for c¢ follows from (C.6): ¢’Qc » q £ £. Equival

cntly, the normalization for d is

(C.10)  d’T 1d =  -eoemmm o
pq(l + £ ipC)

Finally, we use (C.5) and (C.7) to write the concentrated likelihood

function as a function just of ip:

(C.11) Lp) = - EH £n(l _p + pf) + 3. £nf .

So our algorithm reduces to a one dimensional maximization problem.
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Appendix D

ML Estimation of Model 4

We can apply (C.2) to obtain
(0.1) n = (Wx + CBX)_ 1(WXA + SBXA)
where A = Yr. But now Z is constrained by £ = TXX + U, and so we have
ip=XE IX=p/xp + 1), p=XUIX, and
(0.2) Z-1X/ip = U 1X/p .

Similarly (C.3) can be simplified to
(0.3) L(y|z» 3, u, n = - Ea £n|u| - (i + TP) + a

trU-1Ty + H (i + tp)c’Qc/(1 - ?)

with

Q= — T. + -i— [(i _ £)BA +
I+xp ~A 1+xp ~4  ~AXX ~XA

¢’Uc is fixed conditional on p and x, and so we maximize the Lagrangian
(0.4) A=L- HI1- c'Uc
9A/3¢c = 0 gives
(D.8S) Qlx = |y _IX
p =qCd -0/(1 + TP)
where the smallest root should be chosen. The scale of X is given by
XQ 1X = p/p.
Then the concentrated likelihood function is
(0.6) Lp, x, U, T) = - £nlu] - E3, xn(1 + TP)
+1]- £n(1 +tp)/(1 + (p +tp)) - ~ trU_ITA +|p .
This must be maximized numerically as a function of p, T, and U. The grad-
ient and hessian of L require the evaluation of first and second order
derivatives of the eigenvalue with respect to elements of the quadratic
forms in (0.5). Expressions for such derivatives are given in Wilkinson

(1965), Jennrich and Robinson (1969), and JOreskog and Goldberger (1973).
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If I' =1 then the above analysis reduces the ML problem to the level
of difficulty of a first order factor model. JOreskog (1967), Jennrich
and Robinson (1969), and JOreskog and Goldberger (1973) have had consider-
able success in the numerical maximization of first order factor model
likelihood functions similar to (D.6). However, if T is unknown, then per-
forming such a maximization on the residuals from each iteration of the GLS
estimator of F may be quite costly. One alternative would be to include T
in the hill-climbing algorithm, so that only one sequence of variable metri
iterations would be used on (D.6). Another alternative, which seems attrac
tive if there is a large number of unknown parameters in T relative to X,
is to concentrate F and n out of the likelihood function via GLS, and then
use some modification of a gradient method to maximize over X, U, and T.
This would be similar to JOreskog's (1970, 1973) treatment of the second

order factor model.



Chapter 4

Education, Income, and Ability Revisitedl/

Introduction

This paper reanalyzes the 1964 CPS-NORC veteran’s data.

A description of the sample and the data is contained in Griliches
and Mason (1972); we have reproduced part of their table 1,
summarizing some of the major characteristics of the sample. Our
interest centers on the schooling coefficient in a semi-logarithmic
income generating function with the log of income (LINC) as the
dependent variable. We want to know how much of the observed co-
efficient is due to a selectivity bias, simply reflecting the
correlation of schooling with ability instead of a value added

by the schooling itself.

This question was examined in some detail by Griliches and
Mason. They introduced a variety of background variables and a
test score (AFQT) 1in an attempt to control for the individual's
initial ability. Some of their results are reproduced in table 2.
We will follow them in devoting most of our attention to the
schooling increment variable (SI). It is the part of total schooling
(ST) incurred during or after military service. Since the test
is administered prior to entering the service, it can be regarded
as a measure of "early" ability relative to the schooling incre-
ment. As shown in section V this is quite crucial to our approach.

We see 1in table 2 that introducing the background character-

istics and the test score (equation 1 vs. equation 4) produces a
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*The standard deviation for a dummy variable is equal to

£f(1-f),

Table 1: Means and Standard Deviations of Variables:
Veteran*s Age 21-34 in 1964 CPS Subsample~
Mean or Symbol in
. Fraction Subsequent Group
Variable in Sample SD Tables Name
Personal background:
Age (years) 29.0 3.5 Age
Color (white) 0.96 * C
Schooling before
Service (years) 11.5 2.3 SB
Total schooling
(years) 12.3 2.5 ST
Schooling incre-
ment (years) 0.8 1.4 ST
AFQT (percentile) 54.6 24.8 AFQT
Length of active
military service
(months) 30.7 16.9 AMS
Father’s school-
ing (years) 8.7 3.2 F'S
Father's occupa- Fa. stat.
tional SES 29.0 20.6 FO L
Grew up 1n South 0.29 * ROS S
Grew up in large
city 0.22 * POC Reg. bef.
Grew up in suburb
of large city 0.05 * PO S
Log current oc-
cupational SES 3.47 0.68 LOSES
Actual income
(weekly dollars) 122.5 52.4 LR
Log actual in-
come 4.73 0.40 LINC
NOTE: N = 1,454 for this and subsequent tables based on the 1964 CPS.
Fa. stat. = father's status; reg. bef. = region before.

where

f is the fraction in the sample having the requesite characteristic.

Thus,

it is computable from the numbers given in the first column.



Table 2: Regression Equations with Log Income as Dependent Variable

Coefficient (Standard Error) Of

Regression 10ther Variables R
No. Color SB ST ST AFQT in Equation
I .2548 .0502 .0528 Age, AMS 11666
(.0472) (.0042) (.00702)
2 .2225 .0418 .0475 .00154 Age, AMS -1732
(.0479) (.0049) (.0072) (.00045)
3 .1904 .0379 .0496 Agel AMS, f3. stat., reg. bef. .2129
(.0473) (.0045) (.0070)
4 .1714 .0328 .0462 .00105 Age| AMS, fa. stat., reg. Dbef. .2159
(.0479) (.0050) (.0071) (.00045)
5 .2544 oo .0508 Agel AMS .1665
(.0471) (.0039)
6 .22245 .0433 .00150 Age, AMS
(.04793) (.0044) (.00045)
7 .1907 .0408 Agel AMS 1 ¢35 gstat., reg. bef. .2115
(.0473) (.0041)
8 .1732 .0365 .00097 Age, AMS, fa. stat., reg. bef. .2141
(.0479) (.0046) (.00044)
9 .1335 .00252  Age, AMS1 f5. stat., reg. bef. .1794
(.0487) (.00041)
10 L1742 Agel AMS, f3. stat., reg. bef. .1578
(.0488)
NOTE: See table 1 for definitions.
*
Variable groups are denoted as follows: fa. stat. = fa. occ. and fa. schooling;

reg. bef. = ROS, POC, POS.

et
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decline in the SI coefficient from .053 to .046, which 1is only
12%. Our analysis takes off from equation 4, asking whether
there are important dimensions of ability, unaccounted for by
the available variables, which seriously bias the SI coefficient.
Section II trys to obtain identification from the residual
covariance matrix. An argument very similar to the one in
Chamberlain and Griliches (1974) can be used, with the availability
of a test score substituting for the within family replication
on brothers. It turns out, however, that the results are very
sensitive to some of the more questionable assumptions of the
model, and we conclude that by itself this approach 1is not very
informative. In section III we structure the background coef-
ficients in the income and test equations by imposing proportion-
ality restrictions derived from an aggregation assumption. This
analysis, standing by itself, is also inconclusive. But by
meshing the two approaches we obtain in section IV a plausible
model which is quite informative about the SI coefficient. Our
substantive finding is that there is 1little evidence of bias from
the omission of important dimensions of initial ability. Section
V asks whether a similar result holds for total schooling (ST)
or for schooling before service (SB). Working just with ST
we find that the AFQT cannot be used as a measure of early ability
relative to ST. This 1is because SB does have a value added in
determining the test score. But regarding the test as a
measure of late, post-school ability results in an unidentified

model. So we turn to a more careful examination of the SB-SI
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split, trying to identify the bias in the return to SB.
Our estimate 1is that it is quite small once we have con-

trolled for the available background variables. There 1is a

brief concluding section.
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IT. Structuring the Residual Covariance Matrix

We will work with the following model:

(IT.1) Y = LINC= XCj+ SIPX +Hvyx + u
0 = LOSES = X£-+SIP2 + Hy + v
ST = X£fg + Hy” + w,
T = AFQT = XC4+ Hy4 + t

where X includes COLOR, AGE, AMS, and the background charac-
teristics POC, POS, FO, FS, SB, ROS. H is a combination of un-
observed characteristics such as genetic ability and parental
wealth. Although it is presumably correlated with the observed
background characteristics, we can transform the model to make

T and X uncorrelated.

Let b = (x'x) "X 'H and rewrite
~Hr A - *r &
(IX.2) XCk + nvk = X(£k + bH(XYk) + (H - XbH(X)Yk
= X£k + Hyk , k - 1.... 4.

Now X 1is orthogonal to H by construction, and we can treat X as

exogenous. The point is that to the extent H is correlated with
X, it does not bias the estimates of and in a regression
that includes X. So we reinterpret H as that part of initial

ability (after SB but before SI) that is uncorrelated with X.

Then we must also reinterpret the £'s to include not only the
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direct effect of X but also the indirect effect via 1its corr-
elation with the originial H. The possibility of decomposing
the SB coefficient into its direct and indirect components
will be considered in section V.

Then surpressing the slope coefficients, which are uncon-
strained and hence do not helpto identify the 3's, we can sub-
stitute T for H in the Y and 0 equations:

di. 3) Y = siei +T YX/Y4 tu- YX/ Y4 t

0 = sie2 +T Y2/Y4 +v- Y2/Y4 t

Now we have an errois in variables problem caused by the measure-
ment error in T. Define pN, the net reliability of T, as the

fraction of the variance of T which is due to the systematic

influence of H: pN = Y420R2 / (Y4 "h2 + af2)/ and iet

a. = Y1/Y4» Then we have the following bias formulas (e.g.

Griliches and Ringstad [1974]):

(IT. 4) plim a. = a. - (1 - pM) a / (1 - r. ST
plim 3X = 3X + (L - PN) a b / (L - rT , gI)
T,SI
where = byYy>T SI , Bi = by,SI. T

and all of the wvariables have been replaced by their residuals
from a regression on X. Solving for (3 and simplifying gives
(IT. 5) 3~ - plim (by,SI ~ ~~PN"Y,T “prsSIi~® " 28I, T *

and there is a similar formula for 32.
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So we can obtain estimates of 3. and 82 conditional on

P . Whether or not there 1is a useful prior bound on pN depends
crucially on our interpretation of H. One interpretation is
that H (or XL + y.H) 1is the "true score". Then the test ad-

equately measures the relevant initial characteristics except
for an error (t) which could be eliminated by replicating the
test. In this case itte reasonable to assume that t is uncorr-
elated with everything else. Furthermore, to the extent that

the AFQT test 1s comparable to civilian IQ tests, we can bound

the reliability (@ - 1 - 2/oT2) at say p .6. Then using

2
(1L - p) = (L - RT x) (1 - pN) we have the bounds on 8" and 82
given in table 3. We see that over this range of reliabilities

there is not much bias in the schooling coefficients.

Table 3: Estimates of (II.3) Conditional
on the Reliability

.60 .45 .042 .108
.70 .59 .044 .112
.80 .72 .045 .115
.90 .86 .046 L117
.95 .93 .046 .118
1 °t2 /aT2 is the reliability of T

=vy4 / <4 is the reliability of T net of
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An alternative, more general interpretation of H is that

IQ tests are designed ho predict academic performance and need
not capture (or appropriately weight) the set of characteristics
relevant for economic success. Under this interpretation the
test is only capturing a piece of the relevant initial condi-
tions. Since it is being used outside the context it was de-
signed for, fewer prior restrictions can be imposed. We can-
not restrict the reliability and considerable care 1is required
in making independence assumptions about t. For example a low
reliability means that much of the test distribution is being
assigned to the residual t. But 1f the test is a reasonable
predictor of academic success and if H is not capturing that,
then t and the schooling residual w will be correlated.

So we will try to estimate the reliability. The reduced
form 1is
(IT.6) Y = Hd, + u + $jW

O = Hd2 + v + e2w

SI = Hd + w

T = Hd. + t

where
Y1 + Bi v3

q = Y2 + B2 ¢v3

Y3

Y 4
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The reduced form residual covariance matrix 1is N ft with
(Ir.7) £ = (wij) = dd' + T
= (u..) = a2 + a2 P., Poa 2 La?2
f W 1727w 1 w
a2 + fRaz e2a?
v 2w w
az
W
where we have scaled H so that aﬁ2= and we have assumed that
'to.
u, Vv, t, and w are independent. So dT = éﬁ gives us d* =
'34
up to a scale factor Y-. Then let T = 1/Y, = w/("44PN) and

write the upper left 3x3 corner of f as

(I1.8) fir = xdjdj' + T~.

So given T we can solve for
II. 9 - a2
119 e = g - g
61 = (13 * T3133)/0W
®2 ~ *M23 ~ Td2d3’/°w
But we can also solve for

12 Y 1t3132"~/ow

PLPL R
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i is determined by making the separate solutions for 8”7 and

agree with the solution for their product. This yields:

(11,10) T = (W3W3 " “12U33"~"W3d2d3 + W23d1d3 “ WI2d32“ W33d1d2)

So 1 is identified and we can use (II.9 to solve for 6° and

This 1is equivalent to substituting pN = l/k®44T2) into
the unscrambled errors-in-variables formula (II.5).

An alternative interpretation of this procedure is based
on instrumental variables. When we use T as a proxy for H in
the Y equation (II.3); the problem is to find an instrument
for T. But 0 is uncorrelated with u and t and is correlated
with T because they both depend on H . Similarly Y can be
used as a instrument for T in the O equation.

Unfortunately we cannot relax the independence assumptions on
u, v, t, and w without making the model unidentified. But if u
consists largely of luck which results in a higher income than
an individual's schooling and ability would have predicted, then he
is likely to also have a higher occupational status, implying a
positive correlation between u and v. On the other hand, 1if u
and v reflect the individual's preferences for income vs. status,
and if, given his schooling and ability, he can trade off one for
the other, then the correlation could be negative. So we want
to relax the no correlation assumption and try to obtain identi-
fication in the sense of a non-trivial bound. In the Chamberlain-
Griliches (1974) model the results were not sensitive to this

assumption and a sharp bound was obtained. We can either allow a
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non-zero correlation between u and v, or alternatively (and
equivalently) rewrite the Y equation to include 0 and keep the

E(uv) = 0 assumption;
(11.11) Y = SI&., + OX + Hy, + u.

Then in the reduced form we have mT§= di%ﬁ + 3T%&aﬁ + Xag
As in the Chamberlain-Griliches model, conditioning on X will
identify the rest of the model and the non-negativity constraints
on the variances will generate a bound on X

We will also attempt a sensitivity analysis of the covariance

between t and w. To do this we structure the residual covariances

in terms of two distinct but correlated kinds of ability, economic

(H.) and scholastic (H2). Then Wwe have
(11.12) Y = SIB. + v 1 + u

0 = sIB2 + H1Y2 * Y

ST = M3 t w1

T = H1K1 + H2g2 + B

The test 1is assumed to measure a combination of both kinds of
ability. The simultaneity problem results from the correlation
between and H2, which we express in terms of a shared set of

characteristics H:

(IT. 13) H1 = «*1 + el

H2 ™ H"2 + e2'
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with independent of by construction, and as above H,
e., and are orthogonal to X by construction. Then we can
rewrite

(11.14) SI = HY3 + w

T = Hy. + t

where t and w are uncorrelated with H but now t is correlated

with w.

This model 1is not identified although again there 1is the

possibility of useful bounds. The reduced form Q is now
(11.15) Q = dd' + au + M2 «w 8iCk
c2 + 8*a2
v 2w 82 w 89atw
tw
So conditioning on a we can choose initial wvalues for 8”7 and

83 and take

14 8tl

G§4 stw to get d which, as shown above, lets wus

34

solve for new values for 8" and 82 which can be used to repeat

the process to convergence.
The results of applying these models to the veterans data

are shown in table 4. We see that the model wxth both X and
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o. constrained to zero gives highly implausible schooling coef-
ficients. So it is not surprising that quite small changes from
zero in X or a imply very substantial changes in the ft's. That

a 10% increase 1in occupational prestige would be associated with
either a .6% or a .9% increase in income, for given background,
schooling and ability, is not implausible. But as X varies over
this range the schooling coefficient ft* varies from .02 to .05.
There is a bound in that higher values of X than indicated would
imply aﬁ < o. But lower values are not ruled out and so the bound
is not useful over the controversial range for ff, from zero or .02

to .05.

Note that the table is quite informative on the test's re-
liability p= 1 - a 2/oA2 . The low %ﬂs for X = 0 arise because
the test 1is estimated to be very unreliable and so bv CT v m 1is
given a large downward adjustment (with a corresponding upward
adjustment to by T.x SI). Even with X / 0 we can bound p at .7
in the sense that higher values would imply restrictions on the
reduced form likelihood that would be testable. Now these low
reliabilities suggest that the common omitted variable we are
picking up is not IQ, at least if the high reliabilities quoted
for standard intelligence tests can be applied to the AFQT. Thus

the two factor model with a 0 is quite relevant,

tw
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able Residual Covariance Estimates of (II.1), (II.1l1) and (11.12:
31 g2 p* Byt X v£w***
-.043 -.089 .33 .08 .0 .0
.019 .053 .38 .15 .063 .0
.031 .080 .43 .22 .073 .0
.044 .109 .70 .58 .083 .0
.020 .054 .32 .06 .0 .133
.031 .081 .31 .05 .0 .164
.042 .104 .30 .04 .0 .189
.062 .150 .29 .02 .0 .231
.086 .204 .28 .01 .0 .262
Note: The residual covariances are based on OLS regressions

of LINC, LOSES, AFQT, SI on AGE, AMS, POC, POS, FO,
FS, SB, ROS. All rows of the table are equally likely,
giving different interpretations of the M.L. reduced

form by making different assumptions about X and c.t
w

2 2 , . o
*p =1 - a /o is the reliability of T.

2 2 2
**PN = "4 ~4  + at is r®liability of T net of

X(aH2 = 1).

***rtw is the correlation between t and w in (11.14).
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In that model we find that again rather small departures
from a = 0 imply substantial changes in the B's. Since any
t,w correlation between =zero and .2 or .25 1s not implausible,
there is little direct information here on the schooling coef-
ficients. There 1is an upper bound on the 6’s; higher values than
shown would imply negative values for p

So our analysis of the residual covariances has not been very
informative. Most important 1is the negative inference that given
our prior range of plausible values for £5, we cannot accept the
restricted model with A = 0 and a%w =0. But to get more out of
these residual covariances we have to put more in. The next
section looks at imposing more structure on the background coef-

ficients .
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ITII. Structuring the Background Coefficients

The proportionality restrictions we will use are based

on aggregating the individual's characteristics into a single

factor (G), "human capital” or "capacity." Then we can write

the structural form as

(ITI.1) Yy = X * + SIBl1 + Grx + ux

T - ?21ih + G + U3
G = M1
SI = XxC4 + M? + U4

where Xx includes AGE, AMS, POC, POS and M includes the observable

background characteristics FO, FS, SB, ROS.— The u's are allowed

to be freely correlated across the equations and so there are

no restrictions on the unobservable characteristics.

Then surpressing X*, the reduced form is

(111.2) Y = Mfir® + ?23X) + e = M6X + ex
T = M63 + €3
SR + e4d ,
with 6X = <8Brx + <¥Bx. Letting A = (6X<&8B<#4) and lets us

write the constraint as

(ITI.3) Ay = (0).
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This will uniquely determine y if and only if rank A = 2. So

there 1is a necessary order condition that M contain at least two

background variables. If there are just two, we simply do OLS
and solve for and r® from the unconstrained reduced form,
i.e., indirect least squares. With more variables in M the re-

strictions can be imposed via limited information single equation

3/
maximum likelihood (LISE). For we can substitute T for G in the
Y equation:
(111.4) Y = SIB® + Trl + ,

thereby freeing up the background variables to be used as instru-
ments for SI and T. Applying LISE to this equation is in fact full
information maximum likelihood (FIML) since the other two equations
in the system are Jjust identified.

Adding the occupational SES equation gives

(111.5) 0 = SI02 + Gr2 + U2

and the reduced form is

(111.6) 0 = M(Jr2 + p 2) + €2 = M62 + e2

with <@ = S9r2 + $472+% So now ~ = su”3ect to two

constraints:

(III.7) A(y*x y2) (0)
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1" 0
0 1
"rl //r2
_"B2 .

The necessary and sufficient condition for identification of the
subspace spanned by and v? is that rank A = 2. Given that
subspace we can recover the f3ls and r's by excluding 0 from the
Y equation and vice versa.

The overidentifying restrictions in this model can be im-
posed by a straightforward extension of LISE. For as in (III.4)

we can rewrite the Y and 0 equations as

(III.8) Y sI”~ + Tr +

0 = SI82 + Tr, + W2

50 these two equations are just identified relative to each other:
Y excludes 0 and 0 excludes Y. Hannan (1967) showed that for such
a subsystem, limited information maximum likelihood (LIML) can be
obtained from a canonical correlation analysis which is a straight-
forward extension of the LISE eigenvalue problem. Sinde the T and
51 equations are just identified, LIML is FIML.

Applying the Y-T-SI model to the veterans data gives fL = .063
with an (asymptotic) standard error of .041. The concentrated
likelihood function in table 4 confirms the imprecision of this
point estimate. Adding the 0 equation as in (III.8) gives 8" = .028
but again the concentrated likelihood function is quite flat. The
next section attempts a more informative analysis by combining the
proportionality restrictions with the residual covariance structure

of section II.



Table 5:. Concentrated Likelihood Function for g=

Bi m .00 .02 .03 .04 .05 .06 .07
L.R. : .27 .56 .70 .81 .93 1.00 .93
X2 2.59 1.15 .72 43 14 00 14

Y -0 - T - sI, (ITT.1) + (III.5)

el = .00 .02 .03 .04 .05 .06 .07
L.R. : .80 .98 .99 .96 .86 .74 .59
.45 .04 .01 .09 .30 .61 1.04
Note: L.R. = Likelihood ratio; x2 = -2 Log (L.R.I is approximately distributed

as x2 (1) -
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IV. The Jpint Treatment: Meshing the Two Approaches

The basic idea behind our Jjoint treatment of covariance
and slope restrictions is to extend the proportionality assumption
across both the observed and unobserved characteristics. So G,

the "human capital" variable, 1is expanded to
(Iv.1) G = Mi + Hy_

where, as in section II, H is the part of initial ability that is
uncorrelated with the observed background characteristics M. Then

surpressing the exogenous variables that appear in all of the

equations (X*) we have

(IvV.2) Y = SI6X + Gr, + u
T = G + t
G = M + Hy

SI = M£ + Hy. + w.

So the coefficient of H in the Y equation 1is constrained to be
vyt = r y~. This model 1is similar to the one in section IV of the
Griliches-Mason paper, except they excluded H from the SI equation

We will refer to E?at model as Y1, and the model without the y . =

constraint as Y2. Both of these models assume that u, v, t,
and w are uncorrelated with each other. Following section II we
will also consider the model Y3 in which Aty 0.

The interpretation of Y3 needs additional comment. It is a

hybrid combination of the two factor model of section II and the
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one factor structure for the background coefficients introduced

in section III. As in tl1l1.12) we specify

(IV. 3) Y = SI6el + G~ + u
T = G1lKl1 + G2k2 +
SI = Me' + G2y ' + w'.

This disaggregates the human capital variable into the bundle of
characteristics relevant for economic success, G-., and for
scholastic success, The correlation between G and G2 is

represented via their common dependence on a shared set of attri-

butes G:
(IV.4) Gl = Gipx + &L
G2 = G"2 + e2 !
where e. and e2 are independent of G and of each other. In

section II this was a completely general way of specifying the
correlation, but now the model 1is completed with a more detailed

prior for G:

(IV.5) G = MTr’ + Hyi.

Thus M affects Y and T in a constrained way, working only through
the general ability factor G. Then we can rewrite this model

so that it is identical to (IV.2) except now t and w are correl-

ate d.
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There is, of course, the less constrained model:
(IV.o0) Gx = MmT + Ha + ex

G2 = MK2 + H 4, +

But this model 1is not particularly estimable from our data;
it essentially takes us back to section II.

Note that the SI equation is not subject to the propor-
tionality restriction. Even 1if the constraint were reasonable
for ST, which is unlikely, there 1is no reason to constrain the
way ST splits into SB and SI. This point is quite important.
For if the proportionality restriction did hold across the
SI equation, then the rank condition for identification would
fail identically.

As for estimation, the two stage procedure used by Gril-
iches and Mason 1is quite reasonable for model YI1. They con-
structed a T from a first stage regression of T on M and used

5
the fitted values to %et 3,l = %ﬂSI-Tw ./ In model Y2, which
does not exclude H from SI, there 1is again a reasonable two
stage procedure. But now we must include SI as well as M
in the first stage T regression. For in general all of the
included exogenous variables must be used in the first stage
of a two stage least squares procedure (see, e.g., Brundy and
Jorgenson [19747]). It may seem odd to use SI to construct T
since the schooling increment is obtained after the test.
But provided y. / 0, SI can serve as a proxy for H. To clar-

ify this we write the system as
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(IV. 7) Y = Slf-k + Tr+t + (u - r"t)
yo
T = M(m - ?2Yo/Y4) 4+ SIvy /vy4 + (t - w)
o*i Y4
SI = + Hy. + w.
Then rewrite the T equation so that its residual (t') is
orthogonal to SI:
(IV. 8) T = M(mr - CY3/Y4) + SI[1 - &/ (f2 + Ytag) Jdr3/v4 + t'.

So we regard SI as measuring H subject to error, and thus the SI

2 2
coefficient 1is proportionately reduced by Y%h%}HY%Oﬂ‘+ aw ) * the

ratio of "signal" to "total" wvariance (net of M) .

How H and w are independent of t (by construction), and
also of u and t. So again SI factors out of the likelihood
function; i.e., 1it's exogenous. The T equation in (IV.8) .contains

all of the exogenous variables and its residual is freely cor-

related with the Y residual. So LISE applied to the Y equation

in (IV. 7) is FIML.

In the Y3 model, SI becomes endogenous and must be instru-

mented along with T. For we have
(v. 9) Y = SIfij» + Trx + u - r°t
T = Mi + Hy, + t
3
SI = ML + Hy4 + w,
and so SI is correlated with t if a / 0. The residual covariance

matrix E is
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-r, a
1 W
(Iv. XQ) E
atw + Y3T4
2
(recall a, = 1). Since this 1is unconstrained (except for
inequality constraints) and since the T and SI equations are Jjust

identified, we can obtain FIML by applying LISE to the Y equation
with SI and T endogenous. In fact this is Jjust the estimator

given 1in section III.

Our estimates for the first two models are shown 1in table

0. As expected, model Y1 gives a close to the bv . . esti-
X 1 ))Ol_'jﬂ_
mate 1in table 2. But the test coefficient has increased by
a factor of 9.4 over T M SI an” a ~actor °f 3.2 over
bY T ST This reflects the low reliabilities: p = .35 and
, T
P

N
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Table 6: Models Y1 and Y2.

Coefficient (standard error of)

ST G
Y1l .047 .010
(.007) (.0008)
Y2 .020 .0094
(.008) (.0009)

Table 7 Concentrated Likelihood for 8”7 in Model YO3

61 .00 .02 .03 .04 .05 .071
L.R 01 10 23 42 66 1.00

x2 8.62 4.53 2.96 1.72 .82 .00
Note: L.R. = Likelihood ratio; x2 = -2LOG(L.R.) 1is approxi

mately distributed as x2 (1)



Table 8: M.L. Estimates for Model YO03
Dependent Coefficient of
Variable COLOR ST G H
Y = LINC .237 .071 .0099 az = .121

u

0 = LOSES .091 .183 .025 ag = .313
T = AFQT 18.00 1.0 LRI 419.7
ST -.10 e -.737 aw = 1.209
Note: G = .091FO + .386FS + 4.523SB - 4.346ROS + 5.344H

ruv = .136, rfow = .429, p = .32
POC, POS, AGE, AMS appear in a.ll of the equations; FO, FS, SB, ROS
enter SI unconstrained. H is normalized so that a2 = 1. The estimate
of A in (II.8 is .083. H

Table 9@ M.L. Estimates for Model YO3 with v 3 0.

-
Dependent Coefficient of
Variable COLOR ST G H
Y = LINC .234 .049 .0096 c«j = .121
O = LOSES .085 .129 .024 aé = 313
T = AFQT 17.97 e 1.0 e at = 405.0
SI -.112 .00 a2 = 1.754
w

Note: G = .100FO + .458FS + 4.444SB - 4.256R0S + 6.528H

2uv = -114"' *tw = =215 "' P = -34
POC, POS, AGE, AMS appear in all of the equations; FO , FS, SB, ROS

enter SI unconstrained, H is normalized so that a2 = 1.
(I1.8)

of A in

is
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The estimate

.071. H
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In model Y2 we have very similar results for r. but the
3 estimate drops to .020 with a rather small standard error of
.008. So a likelihood ratio (L.R.) test for y* = 0 gives a
very significant y (1) = 60.6. But the low reliabilities for
T imply that much of the T distribution is being assigned to the
residual t and calls into question the independence of t and w.
Allowing for a 3w covariance leads to model Y3, which has al-
ready been given in table 5. There we have a rather high éA = .062
and the t,w correlation is quite substantial: r. = .32. But
the concentrated likelihood function is quite flat and a L.R.
test of a =0 gives an insignificant y2 (D « 1.2. Discrhnfnatihg
between the two models will require more information.

So we add the status equation:
(Iv. 11) Y = SIP™+ Trx + u - r’°t
O = SIP2 + Tr2 + v - r2t

T = M + Hy3 + t

SI = M£ + Hy. + w.

Assuming that t and w are independent gives model Y02 and dropping
that assumption gives YO3. In both models auv is left unconstrained
If the residual covariance matrix (42) were unconstrained, then
FIML for Y02 could be obtained via Hannan's extension of LISE,
treating SI as included exogenous, M as excluded exogenous, and

T endogenous. For Y03 we would take T and SI as endogenous,
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obtaining the estimates given at the end of section III. But in
fact E 1is constrained:
(IV. 12) ag + rilz auv + rlr2°t rlat riatvy
E =
av + " ~a.
rz2at r2atw
Tt o+ < atw + ~3%
Cl2 + y2
W "4
So the upper right hand corner is constrained with
(IV.13) 01i3/a23 = rx/r2 and ald4/o24 =
and r2 can be obtained from the slopes, as in section III?
thus we have two constraints 1in model Y03 and with c% , = 0 we
W
have
(IV.14) hl3/a23 = rl/r2 , ald = a24 = 0
for three constraints.
The unrestricted I gives
c13 ald™ -3.57 -.013
O ~ ~ -11.20 -.348
>y 93¢
with r. = .009, r2 = .026 and rl1l/r2 = .359. So ~ ,319

is quite good but ald4d/a24 = ,037 seems terrible. In fitting the
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Y-T-SI version (¥Y3) , however, instead of Cj. = -.013 we ob-
tained -.082, which is much closer to satisfying the constraint.

This instability suggests that tf.. is not being estimated very

precisely. To check this we constrained it at different values
and found we could get to a..* = -.12 with little decline in the
likelihood and little change in GJs4 * no” surprising that

imposing both of the restrictions in (IV.13) gives an insignifi-
cant x2 (2) = 2.1e6. These constraints cannot be imposed with simple
analytic techniques, and so we have used a general numerical
minimization procedure adapted for such problems by K. Joreskog.

It is important to have reasonable starting wvalues for the algorithm
fortunately our previous results provide very good ones. Details

are given in the Appendix.

Model YO2 calls for Ay, =0. But the unconstrained
"2 ~ —r2atw = "EM348, and it is quite stable for different values
of Imposing the restriction, while conditioning on the two
restrictions in (IV.13), gives Xz(l) = 4.88 which 1is very surprising
if Ay, is really =zero. So the non-zero correlation between t and
w in YO3 (t.w = .43) 1is being estimated quite precisely. The con-
centrated likelihood function for in the YO3 model is given in
table 7. At last we have reasonably strong information over the
critical range from g* = .01 to .05. The M.L. estimate is .07
with y* = -.74. But there 1is 1little evidence that y. is in fact
negative; constraining y* = 0 gives X2 (1) = .97 and R .049.
Values of as low as .02 or .03, however, are quite strongly
ruled out. Since model Y02 gives g* = .021 (similar to Y2), it

can be rejected.
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There 1is an additional aggregation possibility, namely

combining SI and G into a measure of late (post school) human

capital. This would imply a proportionality restriction across
SI and G in the Y and 0 equations: ~1/"2 = ri/r2* With Y03

we get = .38, r~/r2 = .37 and with = 0: ~

r~/r = .40. The decline in likelihood from imposing the re-

striction is barely perceptable with x2 (1) ~ .13 and for Yj
constrained to zero, x2 (D = . 2 5 . It is shown in the next
section that such proportionality constraints across late in-
dicators cannot by themselves identify the model; but they do
indicate the fruitfulness of the aggregation approach we've

been following.
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V. The Returns to SB and ST

This section examines the return to schooling before service
(SB) and to total schooling (ST). We are interested in seeing
whether our results could be obtained without the SB-SI split, in
order to make comparisons with other samples which do not have this
information. The approach directly parallel to ours would replace
SI by ST and remove SB from M, leaving just the other background
variables B = (FO, FS, ROS). Using the Yl model in this way gives
essentially 6" = by sT B' aS we wou-*" expect. But both the Y2
and Y3 models give significantly negative estimates for the schooling
coefficient! The reason for this striking conflict with the SI
results 1is that we can no longer use T as a measure of "early"

ability. For in the model

(V.1) Y = ST6sg + Gr, + u

T = BQ + HY + t

we must assume that SB does not affect T, given B and H. We did

obtain estimates of an SB coefficient (n) in the previous section,

but that was after reinterpreting H to be orthogonal to M = (B,SB).
Thus, we were estimating # + Yy bg¥bb-ﬁ which could be positive
even if n = 0. But now we have direct evidence that » / 0; for

to reconcile the SI results with the peculiar ST results, we must
assume that SB does have a value added in increasing T, so that T
cannot be regarded as a measure of preschool ability.

In fact, it 1is better to regard T as a measure of post-
school ability, although this is not strictly correct since SI

intervenes between T and Y. Then we have
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(V.2) Y = Grx + u

ST = Bp + Hv,, + W.

We can estimate r. by substituting T for G in the Y equation and

using B and ST as instruments for T. This gives r,=.011, quite close
to our previous estimates. But n is still not identified and
neither is 6% = r”n. We conclude that late indicators alone

cannot identify the model, at least not without replication within

families.

So our methodology does not generalize to samples which do not

specify the part of schooling received after the test. But we
can still ask whether our conclusions generalize. In particular
we find that b, OT n is not seriously biased upwards. Is

this also true of by gB B gj,. and hence of the average return
>}
bY,ST.B'
We will summarize the selection bias in by gB B gI by adding

the following equation to our SI models (eg., (IV.2))s
(V.3) SB =B + Hy5 + w*.

This equation is also of interest because it suggests we can ob-
tain more efficiency by using SB as an additional indicator for

H. To check this, we could solve SB out of the T and SI equations
to obtain a more fully "reduced" form; then allowing for correlation

between t,w, and w we could try and determine what parameters
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are identified and what, if any, 1is the efficiency gain. But
there 1is a much simpler answer. For we have shown that the model
can be transformed so that H is uncorrelated with SB, and hence
SB can be regarded as exogenous. So the H in (V.3) 1is uncorrelated
with H, and the SB equation factors out of the likelihood function,
without affecting our inferences on the other parameters.

Thus estimating Vg requires more information. If we assume
that the return to SB is the same as for SI, then given the

section IV estimates of B" and r,, we can estimate n from B" = pr”.

Comparing this estimate with n = n + y b lets us obtain

Ky 01T+ 1fj
Vg = bg%&H-é' Using the YO3 model with Yy restricted to zero
gives B* = .049,and r*fy= ,043, implying a slight downward bias in
the return to SB. Corresponding to this we find that normalizing
g =1 implies a negative i, - -.41, but the point estimate
is quite imprecise. Allowing for a declining marginal return to
schooling, i.e., r~™n > Bjr would only make y” more negative, as
would using the YO3 estimates with y” unrestricted. We conclude
that given the measured background variables that are available,

there 1is little evidence that important unmeasured characteristics

are producing an upward bias in the SI or SB coefficients.
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VI  Summary and Extensions

This paper has tried to assess the value of some new methodology by
applying it to a substantive empirical problem: the bias in income -
schooling regressions caused by the omission of an early ™ability*' variable.
A straightforward approach is to hold constant as many observable initial
conditions as possible, and in our data there are several. But this can
be inadequate for two reasons: the proxies may be measured with error and
they may not include all of the relevant variables. We have used the test
score as an example of each of these cases. In the first case we assume
that the test adequately measures the initial conditions except for an er-
ror which could in principle be eliminated by replicating the test. This
suggests bounds on the reliability of the test and within those bounds we
find little bias in the schooling coefficient.

In the second case the test is only assumed to capture a part of the
relevant initial conditions. Then we are trying to estimate the reliability
of the test outside the context it was designed for and so fewer prior re-
strictions can be imposed. For example if much of the test distribution is
assigned to the error, then the independence of that error and the schooling
residual is implausible. So we have a negative prior covariance between the
reliability of the test and that residual covariance.

In fact all of our models produce low reliabilities and so we try to
obtain identification without constraining the schooling and test-residuals
to be uncorrelated. This is accomplished by meshing our covariance struc-
ture with the background coefficient restrictions suggested by Griliches
and Mason. The resulting estimates give fairly strong evidence against a

substantial bias in the schooling coefficient.
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The models we use are extensions of the work by Zellner (1970) and
Goldberger (1972) to a simultaneous equations context. Our general frame-
work is a triangular structural model with factor analytic covariance re-
strictions. Many of the estimation problems can be handled by standard
simultaneous equation techniques. However, our favored model (Y03) Has
restrictions across the slopes and residual covariances which cannot be
imposed analytically. The restrictions are similar to those in the Jbreskog-
Goldberger (1974) MIMIC model and the Appendix shows how to fit them into
Jbreskog’s (1970, 1973) class of covariance structures.

A general identification analysis of our class of models is given in
Chapters 2 and 3. It is a specialization to triangular structures of the
work by Geraci-Goldberger (1971) and Geraci (1974), but an extension in that
part of the identification is coming from covariance restrictions. So it
includes the Chamberlain-Griliches (1974) model, which did not have a test
score but did have replication within families. The general analysis shows
that the identification problem with that sort of replication is identical
to having an additional indicator (e.g. a test) which is connected to the
rest of the structure only via its dependence on the unobservable. Also
we would like to know if we can allow the test and schooling errors (t and
w) to be freely correlated, drop the restrictions on the background coeffi-
cients, and still obtain identification by having additional indicators

which depend on schooling and the unobserved ability". The answer in

"no" (Chapter 2, Section III), but is is not obvious from a bare-hands in-

spection of the reduced form.
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Appendix

This appendix gives some computational details on our use
of Jo'reskog's (1970, 1973) program ACOVSM. The general model
assumes an N by p data matrix Z with N observations on p
variables and assumes that the rows of Z are independently
distributed, each having a multivariate normal distribution
with the same variance-covariance matrix E. It is assumed that

E(Z) = ASP

where A and P are known matrices and 5 is a matrix of parameters
E has the form

E=BA4A + y2)B' + ©2,
where B, A, the symmetric matrix $ and the diagonal matrices F
and © are parameter matrices. Parameters can be assigned fixed
values and groups of parameters can be constrained to be equal.
However, parameters in S cannot be equated to parameters in E,

a point we will return to below.

We have put our YO models in this form by first writing the
SI equation as

si ¢ x 1 + Ms* + Gy* + w

where yz = y4/y and S* = ? - iﬂq- Then set P = I and absorb

i -1/ ...4, sS13 S1f>2 and MS into AS. This leaves
Y = Gn + u
O = Gr + v
1
T = G + t

SI = Gy* + w
y4
G = Mir + Hy3.

Then following Jo'reskog and Goldberger (1974) we can write this
as a second order factor model:
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- 1- » 1=
M 3 s 0 M
Y G
u
7. = =
21 0
\
T
t
ST
i w
» .,
= Bf
and
M Tu 0 M
G T H
11i u O u
v A%
t t
L
w w
= ﬁ% i i=1, , N.
This defines B and A, and we set £ =© = (0) and
S =E((f . £
~ ~21 ~21
-m
uv \%
0
tw J
where is constrained to equal the sample covariance matrix
of M. For Y02 we constrain atw =0; for Y03 we leave it free,
It may seem odd to include SI in the design matrix A since
SI is endogenous. But since the model has a triangular struc-
ture there 1is no Jacobian and the program is maximizing the
correct likelihood function. However, the information matrix
approximation 1is not correct. It is block diagonal in S and £

when in fact the ML estimates of the $'s and £ are correlated.
The necessary correction to the information matrix is analagous
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to the difference between the reduced and structural form informa
tion matrices in the appendix to Chamberlain and Griliches (1974)

The proportionality constraint across SI and G at the end of

section IV can be imposed as follows: absorb X£., 1 =1, ...4
and into AH, leaving * 1

Y = (G + SIf3)ri + u

0= (G + SIfi)r2 + v

T = G + t

G = Nm+ Hyg

SI = Hy + w.

This can be written as the following second order factor model:

'M m H>> O M
Z; Y - rx r X G
0 .
0 si
r2 P
T 1 0 u
,SI_ 0 1/3 o \Y
i
t
and
. - 14
M 1 - 0 M
f . G IT' H
14 Y3
ST u
g v 0 .
0 \%
u
t
v I3 0
t K wd
= Af i =1, N
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Then set V =© = (0) and
S = E f . '
(~21 - 21)
= -m
1

az

u
So by setting 3* = 1/3, a* , = 3xf. , and a*2 - 32a2, we can write the

uw tw w A

the (A.2) form. There are two equality constraints on
is constrained to be the sample covariance matrix of M.

B and $

Our experience with the program has suggested two
First 1is the need for a more accurate matrix inversion routine.
The program could not invert the information matrix at the maximum
because the triangular factorization routine produced a negative
diagonal element due to round-off error. But direct inspection
of the concentrated likelihood function in table 6 shows that at
least 3, 1s being estimated quite precisely. So perhaps the pro-
gram should just produce the variance-covariance matrix of the
(numerically)estimable functions. A related problem is the choice
of an initial approximation to the inverse of the Hessian matrix.
When the information matrix cannot be inverted at the initial
parameter values, the program substitutes an identity matrix.
This results in a much costlier problem since the Fletcher-Powell
iterations have to build up the inverse of the Hessian from scratch.
It would seem preferable to keep as much of the information matrix
as possible, say by setting negative diagonal elements in the
triangular factorization to a small positive number.

The second modification would allow constraints across 5 and
E. This would be useful because the likelihood function is
maximized analytically with respect to 5 conditional on E. Then
the numerical problem is to maximize the concentrated likelihood
function over E. So it 1is desirable to put as many of the
parameters as possible into S. Consider, for example, the Joreskog-
Goldberger MIMIC model:

+ u
X

Yl =

V- V4

y* = a'x + e

modifications.

model
in
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If 3m / 0 we can scale ¥* so that 6m =1 and write the model

as

= 3 + u - 3.u
ym I 1l m
ym . =8 Y + u_ . - 6_.u
m-i m~idm m-1i m-i "r
ym - '«e;+ e + u

= 1/

Given the trianqular structure we can absorb ﬂ%ym. i

m - 1 and a x into AS leaving

] r -
v/ I i 8 ' u
m-1 frj 1
. . V
. u . .
m_ _Sm—f’ Un-i
* 1 1
= Af.
with
$ =E (EI—I) =
m
and B = I, =0 = (0

Thus a first order factor structure will do, provided we can
impose equality constraints across A and 5. The advantage in this
formulation of the problem is that now a can be analytically con-
centrated out of the likelihood function.
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The analagous way of writing our YO model is given in (IV.16)
and (IV.17). This is the easiest way to display the nature of the

constraints. It is also a natural way to estimate the model, since
SipL, Try, 1 =1, 2, ir, g,, and L# 1 =1, ., 4, can all be put in
5. Then E can be modeled as
Y I 0 -r ) u
! 0
0 = - A%
0 1 r2
T
0 1 0 Y3 t
SI , ] 0 1 Yy
1H
w ith

So we can set B=1, ¥ =Q - (0), and just use a first order factor
structure. There are7 however, equality constraints across A and

H. The advantage is that IT is analytically concentrated out-of the
likelithood function.
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Footnotes

1/ 1 am indebted to Bronwyn Hall for computational assistance and to Zvi
Griliches and Edward Learner for helpful comments.

2/ Including POC and POS in the set of constrained background character-
istics has little effect on the results.

3/ Since the test score is a percentile the assumption that T is normally
distributed (conditional on X) is questionable. However, rescaling the

test scores to have a normal distribution did not affect the results.

4/ This model has been considered by S. Cardell and M. Hopkins (unpublished

manuscript, Harvard University).
5/ This method does not, however, fully utilize the sample information in
Y when constructing T. The reduced form

Y = SIfL + Mur. + Hy* +u

T = Mu + HYJ +t
makes it clear that both T and Y contain information on u (provided M con-
tains more than one variable). We can impose this proportionality restric-

tion by doing a one dimensional search. Constrain 6. = 8" and let Y =Y -

Then rewrite the system as

Yo =Tr. +u -r.t

T =Mu +HYj +t

SI = Mt + w.
Note that the SI equation factors out of the likelihood function and that
the Y» and T residuals are freely correlated. So LISE on the Y equation
is FIML and varying 8. lets us plot a concentrated likelihood function for
*1°
6/ Details on writing the restriction in JtJreskog’s framework are given

in the Appendix.

SI8»



Chapter 5

Returns to Schooling of Brothers and Ability
As an Unobservable Variance Component*

I. Introduction

In earlier papers Griliches (1970 and 1972) investigated
the bias in estimates of returns to schooling due to the omis-
sion of an ability measure from the estimating relation. Another
controversial source of bias is the possible direct influence of
parental background (economic, social class, and ethnic) on sub-
sequent economic achievement (income and occupation), above and
beyond its indirect effect via schooling. One way to hold both
parental background and some of the ability differences constant
is to analyze the economic experience of brothers. Brothers have
largely similar family economic and motivational backgrounds
and also differ less in native ability. It is the purpose
of this paper to report on a reanalysis of a rather old set
of such data and to develop a somewhat novel methodology for

the analysis of this kind of problem.

*

This Chapter was written jointly with Zvi Griliches. An ab-
ridged version appears in Chamberlain and Griliches (1974).
We are indebted to Ruth Helpman for research assistance and
to NSF Grant No. GS 2762X for financial support.
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The next section of the paper outlines the content and
source of our data and presents the results of a straightforward
covariance analysis of them. In the third section we develop a
more explicit model in which ability (and parental background) is
a left out variable having a differential within and between
family (variance-components) structure. We discuss the question
of identification in such a model and outline a maximum likelihood
estimation procedure for this model. The final sections of the
paper present the results of applying this model to our data,
discuss tests of the model, and suggest some extensions. The
estimation procedure is presented in greater detail in Coffer 3

Appendix a.

2. A Reanalysis of the Gorseline Data.

One of the first consistent and detailed analyses of the
"ability bias"™ issue can be found in Gorseline’s (1932)book,
written in the late 1920's. He set out to solve the ability-
schooling conundrum through the collection of data on income,
schooling, and other characteristics of brothers. He managed
to collect such data for about 172 sets of brothers or 368
individuals. Using rather primitive but reasonable methods of
analysis (comparing the mean income of brothers with more schooling
to the mean of those with less) he concluded that indeed schooling

did pay, even holding family background constant. He did not use,
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however, his data to estimate how much the usual measure of return

(not holding parental background constant) is biased upward. The

major facts about his sample are presented in Table 1 .and the

derivation of the variables is described more fully in Appendix Bt
Since he published almost all of his data, we decided to

reanalyze them with the above gquestion in mind. The procedure

used was first to estimate an income-schooling relationship across

all individuals in the sample ignoring the familial information

and then compare it with estimates in which each brother's character

istic (his income, schooling, age, etc.)are measured around his

own family's mean. This procedure eliminates from the relationship

both the common influence of parental background and the common

part of their genetically inherited "abilities". It holds constant,

as well as 1t could ever be done, the "parental background" or

"social class" effects in such relationships. The results of this

reanalysis,limited in this paper to the sub-sample of 156

pairs of brothers,are summarized in Table 2. They show clearly

that at least in 1927, in Indiana, differences in parental

background were not an important source of bias in the estimated

returns to (the coefficient of)schooling. This does not

mean that parental background does not account for a signi-

ficant fraction of the total variance in income. In fact,

Additional analyses of the data using the rate at which
schooling was completed as a measure of ability and allowing
for the birth-order of brothers did not change this conclusion
significantly.
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Table d: Characteristics of the Gorseline Sample

Brothers Number of sets
2 156
3 9
4 6
5 1

Total in sample 368

Standard Deviations

Variables Means Total Within Families

S - Schooling (Grade

attained) 11.64 3.47 2.14
YL — Log Income,

1927 7.53 .688 .386
OL - Log Occupation

SES 3.63 .699 .500
AGE - 36.45 10.8 3.7
EXP - Experience 17.02 12.1 5.0

(Age-Age stopped

school)
Source: D.E. Gorseline, The Effect of Schooling Upon Income,
Indiana University, 1932) . Occupation scored according to

Duncan's SES scale. N = 368; sets of brothers = 172.



Table 2;

Dependent
Variable

YL .120
(.012)

077
(.013)

082
(.010)

044
T.011)

109
(.010)

085
(.012)
080
(.008)

059
(.010)

OSESL

104
(.010)

OSESLD

135
(.010)

YL - Log Income,

EXP

050
(.00-9)

052
(.009)

018
(.009)

018
(.009)

(EXP)2

-.0006
(.0002)

-.0007
(.0002)

0001
(.0002)

0000
(.0002)

1927

154

Coefficients of

Age

.088
(.021)

083
(.020)

061
(*022)

052
(.021)

005
(.003)

011
(.006)

S - Schooling, Grade attained
Exp - (Age-Age stopped school)

OSESL -

means.

Log current

Gorseline Data Regressions

(Age)2

-.0008
(.0003)

-.0008
4...0W3)

-.0004
(.0003)

-.0003
(.0003)

(1928) Occup. SES

Variables with D suffix and all the variables
YLD or OSESLD as dependent variables
N * 312;ypairs of brothers = 156;

OSESL

373
(.053)

367
(.052)

155
(.045)

155
(.043)

R2

.260

363

259

361

277

304

326

353

250

352

SEE

.603
.560
.604

561

317

311

306

.300

.608

400

in regressions with
are measured around family
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the total variance in the logarithms of income is reduced from

.47 in the sample at large to .J.5 between brothers-only. This
reduction, however, 1is due not only to the elimination of parental
background, but also to the elimination of all other character-
istics, such as rural versus urban location or age, which are
common to pairs of brothers. In any case, the estimate of the

marginal effect of schooling does not appear to be biased when

such effects are ignored. This rather surprising result lead
us to reconsider whether our expectation that holding family
background constant should have reduced the estimated schooling
coefficient is indeed warranted. To do so we have to spell out
the underlying model in some detail. Let the true income

relationship be

(1) gif = SS.. + yﬁj. + %ﬁ'

where y is the logarithm of income, S is the highest grade of
schooling attained and A 1is an unobserved measure of an individuals
background such as his social class and IQ. The index 1 stands

for families, while j runs over individuals within a family;

u”. is a random variable unrelated to either S or A; and all
variables are measured around thair total sample means, obviating
the necessity of writing down constants in the various equations

of the model.

Now, the reason why there may be a bias arises from the

assumed positive correlation between A and S. Let that correlation
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be summarized by equation 2.

2 = .+ ..
@ Sy = nAg o+
where . 1s assumed to be distributed independently of A.

To complete the model we specify a variance-components struc-

ture for the "ability" wvariable:

i3
where F"is the common family component and G”. is independent

of F.l by construction.

We could and do add another set of variables, X's to these
equations, but unless they impose additional constraints on the
data via additional exclusion restrictions, we Jjust interpret
S and Y as deviations from regressions including these X's and
proceed as above, ignoring them for purposes of this analysis.

The basic assumptions up to this point are (a) that the
left-out determinants of schooling, A, have also an additional
direct effect on y (as against w which has only an indirect one)
and (b) that these effects have a family (variance-components)
structure: AI? = F.X + GXE'

To get explicit and simple formulae for the bias in the
simple least squares regression coefficient of y on S as an

estimator of 0, we shall consider large samples both in the 1

and 3 dimension, so that we can identify sample moments with
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2
the underlying population parameters. It is also convenient
to write down the "reduced form" equation for y, by substituting

(3) and (2) into (1):
(4) y = (n +vy) P+ G + S+ u

The least squares coefficient of y on S is given by

. . Cov yS + Y Hov AS 4 y-n Var A
plim b plim v . g + y var S y
n Var A + Var w

Similarly, consider the deviations based estimator byDSP' with

family effects taken (swept) out from the data

plim b v Cov G SD "y 'T]lVar G
+
yDSD Var SD n var G + Var w
Now, define Var G/Var A = 1-X and Var w/n“Var A - (1-rR2)/R2_U"
and concentrate attention on the bias = (plim b - 6) of these

coefficients:

Y  1-X Y 1o....
bias byDSD = n i-\tu = n 1 + u/'fl-3)
versus
bias b = X . |
yS n 1+ D ¢

Since 0 < X < 1, the absolute bias in the coefficient

estimated from deviations from family means (D) will be smaller

2
Having a large sample over j implies in our case a large

number of brothers per family. This is unnecessary but it
simplifies the notation of this section.
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than in the coefficient based on the whole set of data.

The bias would be nil if Y were zero, i.e. no direct effect

of ability or family background on income, and need not be

zero but would remain essentially unchanged by the trans-
formation of the data to deviations form if either X 1is =zero
(i.e. there is no family structure to the ability wvariable)

or U is =zero, there is no exogeneous component to the schooling
variable and hence no distinction can be made between the
effects of A and S. Both of the latter possibilities are
unlikely.

While we don't know the absolute size of the bias, the
expected relative reduction in its size from going to deviations
is given by

bias b pSD _  (!=X) (1+U0) 1+U

bias 1-X + U 1+U77T-X ) =

It depends on both X and U. The larger is X, 1i.e. the
larger is the ''family" component in the total wvariance
of ability, and the larger is U, the less 1is the role of
"ability" in the total variance of schooling, the larger
will be the reduction in the bias as we move to within
family data. But for reasonable values of U and X this reduc-
tion is not that large. X 1is the ratio of the variance of family

components to the total family background and ability wvariance
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Its maximum value 1is probably 0.9 and it is unlikely to

fall much below 0.5.3 At the same time Ur the relative ratio
of the independent (of family background and market rewarded
ability) variance component of schooling is unlikely to exceed
unity (implying that half of the variance of schooling is
independent of family and individual ability components) or

fall much below a third (at least a quarter of the wvariance

of schooling 1is 1likely to be unrelated to both socio-economic

background or IQ) . Putting these two ranges together, implies
a bias ratio between .5 and .8. Considering the a priori
reasonable values of X = .6 and U = 1, yields a bias ratio

of about .6. That is, going from byg to byDSD will reduce
the "ability" bias by only 40 percent. Since the actual coeffi-
cients change in Table 2 only from .120 to .109, (for the version
with experience and experience squared) the total bias could be
on the order of .028, or about 23 percent of the originally esti-
mated coefficient, which would be consistent with other studies
of this subject. Using age instead of experience in the equation
produces a much smaller estimate of this bias, since the estimated
schooling coefficients change only from .082 to .080.

For any finite set of data, the within variances will not

equal their population values even approximately, but rather
(p-1)/p times that value, where p is the number of family

members per family. In our case, with most of the data being
on pairs of brothers, p=2, and the estimated within variances
are too small by a half. But in the formula discussed in the

text, this cancels out, since taking out the family "mean"

effects affects both the numerator and genominator of b s

ybSbH
equally (alternatively, the estimated a is too small by the
same proportion as of.)
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Actually we observe in Table 2, occasionally an increase
IN the estimated coefficient of schooling as we move to the
within-families data set (particularly for the occupation
dependent form, which we haven’t discussed yet) . Since our
model predicts a decline in the absolute value of the bias, this

may be an indication that we originally under estimated rather

than over estimated implying that y is not only small but
negative (we can always set n = 1 since the units in which A
is measured are to some extent arbitrary). This may not be

as surprising as it appears at first sight, 1t is conceivable
that family wealth and "learning" ability lead to an over-
investment in schooling and to a negative return to such an
"ability" when the attained schooling level is held constant.
We shall return to this below.

The results of this section are quite unsatisfactory.
Limiting ourselves to within-families data resulted in 1little
change in our conclusions”and a realization that not much
could be said, in fact, on the basis of such an analysis. The
model as written down is not adequately identified. We got
some qualitative conclusions by adding the prior information
that A, n, and U are all larger than zero and imposing some

bounds on the 1likely wvalues of A and U. But to identify the
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coefficient of interest (6) further and to get explicit esti-
mates of some of the other parameters, we have to expand the

model and bring in additional variables, relations, and restrictions

3. Ability as Unobservable

While the calculations reported above "take care" of’
parental background differences, even though inefficiently
(they ignore the between families information in the sample),
they do not correct for possible bias from the individual
(within family) genetic differences which may be correlated
with achieved schooling levels later on. To take this
explicitly into account would require the availability of
direct measures of such ability, which are not available
for this set of data. But even in their absence, if the
missing variable (such as ability) affects more than one
dependent variable, a bootstrap operation may be possible.
The basic idea for the new approach comes from the realiza-
tion that such a left out variable must cause similar biases
(proportional to each other) 1in different equations and that
taking advantage of that fact may allow one to achieve identi-
fication of most of the coefficients of interest.

A general version of our model is given by:
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S, - X?2k+ B),ys + V + “M
Yg = M“g + + M
a = f. + ..

179103

Where there are K dependent variables (indicators) which all
depend on schooling (y ), 1independent variables X (which

mav differ~fIM eauation to eauation), and on a left-out
random ability wvariable (a) which affects both yg and the

y ’'s, making y endogeneous, and has a peculiar structure

(@ = g + f) which converts this into a variance-components
problem, observations being available for p members (index j)
in each of g (index 1) families. Without the "a" wvariable,
or if = 0, and given our assumptions about the independence

of u. from w and a, this would just be a simple recursive
system which could be estimated by applying least squares
separately to each equation. The simultaneity problem arises
when we admit the possibility that Yv ¥ O. In general, if
there were enough exogeneous variables in the schooling equa-
tion which did not appear again in the y. equations, the endo-

geneity of y problem could be solved using two-stage least
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squares or other standard simultaneous equations estimation
procedures. In our problem, however, the yg equation will

in general not contain enough distinct X’s for the identifica-
tion of the (@s. Instead, we shall have to rely on restrictions
that the model imposes on the variance-covariance matrix of the
residuals from the reduced form equations. These equations can

be written as follows:

vk = + Pk“s) + 1(Yk + V s} (f+ g + uk + 6kwl
y =X a + 0 v (£ + 9) + wl

where for a particular k, say k = 2, ao and a are vectors

s
while a scalar. The bracketed terms are the reduced
form disturbances. More concisely, we can stack the observa-

tions and equations and relable the whole system as one multi-

variate regression:

y = 26 + g
where vy runs over all the dependent variables and families
and family members and Z includes all the X’s in all the
equations. The variance-covariance matrix of the reduced
form disturbances 1is Eee-1 = I& (o f

It is clear, that the model together with the assumptions

of no correlation among a's, u”'s and w's imposes a number of

constraints on the variance-covariance matrix of computed residuals

from the regressions of y, and y on 2Z. It can be shown that ftequals
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where,

equaling an index of occupational achievement

of Duncan's

specializing
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¢ J] © Ip

SES occupational score),

to the case of K= 2, with y

(the logarithm

> log earnings, and

Yo ~ ® “ highest grade of schooling attained, we have:

A?

d =1]d9
k /

£ =

where p is
each 1, i.e.

family, and

= Qf

the number of observations

h i+ W

Y2 + 62Y3

/

Tdd +V

acCross

index j within

in our case the number of family members per
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Thus, dd represents the contribution of the family
component of the unobservable to fi, xdd' the contribution
of the individual (within family) component of the unobservable,
while V encompasses the rest of the within-family individual
effects, the u's and w. It is clear that if we could esti-
mate V directly, we could easily identify the B's since,
for example, = v13/v33. We cannot do that, but we can
estimate d and E and it turns out that in the two indicators case
we can solve uniquely for v and and The y's however,
can be estimated only up to a scale, factor, since the latter
cannot be separated from the arbitrary scale of the a's themselves
A model with more than two indicggor variables will in general
be overidentified. Some of these overidentifying restrictions
could be traded off for relaxing some of the more stringent
other assumptions, such as the no correlation assumption between
u” and U2» We can show that knowing d and £ identifies the

structural parameters as follows:

For a given value of we can solve for
2
aw °33 ”» Td%

Pl * {°13 " Tdld3)y<w

B2 " <a23 ' Td2a3)/Ow



166

But we can also solve for

61B2 " (0l2 - Tdld2>/0Ow

T is determined by making the separate solutions for 07 and

0 agree with the solution for their product. This yields:

T Y KNI3 °23 " °12 a33)/(°13d2d3 + a23d1d3" al2d3 a33d1ld2)

So T C%/ag is identified and hence also 07 and

The problem then becomes one of estimating d and £. That
d and £ are in fact estimable, albeit inefficiently, can be seen
most quickly by considering estimates based on the "method of

moments". Let R be the matrix of the variances and covariances

of the residuals from the reduced form equations estimated by
ordinary least squares, and let R be the matrix of variances

and covariances of average residuals, averaged separately over

each family and variable within family. It is obvious then that
plim R = £ + dd = £ + 0
plim R = — £ + dd~=1£f£ + 0
> o~ p - ~
A
where 0 = dd and p is the number of individuals within each

family. (We are assuming, for simplicity of exposition, that



167

it is the same across families). It is obvious, that if p
where large, R would be a direct estimate of O. Since 1in our
sample p is quite small, mostly p « 2, we get estimates of

Q and E as follows:

E = [p/(p-1)1W

? - A <?=-2*%>
vfoere W = R - R is the "within" families variance-covariance
matrix of the sample residuals. Thus both 0

and E are estimable from the sample, < Sut now, when we

substitute these expressions in the earlier formulae for
£t , £, and 6-.39, the formula for T does not simplify as

easily, but rather leads to a gquadratic equation:

T2(013 @23 " @12 033) + T~12 °33 + 033a12 ™ 013°23 ™ 023a13)

+ al3 a23 “ °12 °33 * ° .

The quadratic term doesn't vanish, since we haven’t imposed

the condition 0 = dd which implies

013023™ 012033 * d1d3d2d3 ™ dld2d3 = °’

Rewriting this equation in terms of observables [substituting
P w for E and — (R - —R) for 0] and reparameterizing
p-1" * ~ p-1 - p~
it in terms of X = a~/a” VYV,
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leads to:

X R13R23 ™ R12R33" + * "R12W33 + R33W1l2 ” R13W23 “ R23W13"

+ -
WisWos = WoW3 O

and two solutions (roots) for A (or T). Since 0 < A < EZ1
P
hopefully one of these roots 1is inside the relevant interval.

We can also show that if the population restrictions on O

were to hold in the sample, (p-1l)/p 1is a root of this equation.
But this implies 2 0. Hence we should pick the smaller
root, 1if both roots fall into the relevant interval. Given

our estimate of A, we have immediately an estimate of T and

can derive an estimate of 8, and of the other parameters of

interest.

The above estimation procedure, while inefficient, was
outlined to indicate where the basic information for estimation
was going to come from and how the different parts are related
to each other.

The procedure is inefficient for two reasons:

0 = dd’ is of rank 1. The estimator of 0 used above:

% p-1 (R - EB) was not constrained, however, to have rank = 1.
Moreover, R and R have been derived from OLS residuals of vy
on Z. But we know that ft, their variance covariance matrix,

is not proportional to an identity matrix. Having an estimate

of £ , we could transform the original variables and get more
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efficient estimates of the reduced form coefficients and hence
also a better set of residuals and improved estimates of
d and E.

The problem of estimation is then (a) how best to impose
the rank 0 = 1 condition on our estimates, (b) how to use the
estimated d and E to derive GLS. estimates of 6 (the reduced
form parameters of the various X '’s), and (c) whether and
how to iterate between the 6’s and associated £’s (the reduced
form residuals) and the estimate of their (the e’s) variance-

covariance matrix Q.

4
4. Estimation
Under normality assumptions for f., g.. and the disturbances
5
ul'u2 an<® * the likelihood function 1is (in terms of the
stacked model y= 5 + e , where y = [y*r...,v",vg9l)
JInL (y J6,Q)

= 2. £nIQ"11- i(y - Z6)' (I ® «)“1 (y - Z6)
ol .

To simplify estimation we obtain (in the Appendix) a factor-

ization of n” into

a-1 =]'1®ip - oc' ® »li'

4 This section and the associated Appendix is largely due to
%ﬁry Chamberlain.

Note that this implies a random ability effects interpretation
of the model. A fixed effects version is discussed in Charter 3,
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where ¢ is related one-to-one to d (¢ is proportional to

E ~d) and will be provided with an interpretation below. The
likelihood function is then reparameterized in terms of E g.
The function is further simplified by evaluating | explicitly

We also show that the reduced form residuals enter the L.F. only
via the sufficient statistics R and R . R is the matrix of the
sums of squares and cross-products of these residuals divided
by the total number of observations while R is computed by
averaging the residuals over each family and then forming the
matrix of weighted (in the case the p”’s differ) sums of squares
and cross-products °f these residuals divided by the total
number of families. The reparameterized and simplified L.F.

can be written as:

fn L(y|6 MWME-12C) = 2E £n Jz”1]1 + | £n (1 - pc*Ec)

-ipg tr E IR + | Pg Cc'R C.

The maximization of this function is based on the following
iterative algorithm: We start by estimating the reduced form

slope coefficients 6 consistently by ordinary least squares*
A
Conditional on these 6, we proceed to get M.L. estimates of

E and d by first calculating the reduced form residuals

A
e =y - Z 6 and arranging them in a pgx(fct+l) matrix

When the p.'s differ, the "unbalanced" case, these weights
depend on the unknown signal-noise ratio d’E“1d. See Chapeer 3

for an extension of the estimation'procedure to this more
complex case.
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K+1)

Then we find that linear combination of residuals from the

K+1 equations which 1s most highly correlated with family

structure; 1i.e., letting

be a set of family indicator dummy variables, we choose c¢ and

f to maximize the correlation T Dbetween Ec and Ff. It can be

seen, then, that c¢c is a set of aaaronija&l weights combining the

three residual series into one index. For a given c we obtain

f by regressing Ea on the family indicators. =

Since F F = pi

and F**'E = pE where E is the g x (K+l1) matrix of residuals averaged

over the families, we have

T2 = Pc ff'Ea, = » g'B.
|
c E E ¢ ¢c R C

T2 is maximized by letting c¢ be the eigenvector of R in the

metric of R corresponding to the largest eigenvalue p:

R 5 = P5 S-

Note that
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is the square of the maximal canonical correlation coefficient
between E and F. An index of family ability is then formed from

the fitted values in the regression of Ec on F:

? 8?7 ® *
So the family component of ability for the i th family is
estimated by weighting the averaged residuals for the i th

family by the canonical weights c¢. The reduced form ability

coefficients d are then obtained by regressing the residuals
A.
from each equation on a:

d =aE = c*R.

Thus d can also be characterized by the dual relationship

with the scale of d determined from
(d5_1a—FT <p - 4

The M.L. estimate of £ satisfies the adding up property

£ =R - dd”.

The M.L. estimate of 6 given £ and d is generalized least
squares. The computations are simplified by analytically
inverting the disturbance covariance matrix to obtain

the following formula for the GLS estimator of 6
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6 = (HW + *B> <«W S\V-k 9B «B)

where ST is the least squares estimate Jjust using the within

family moments and <B Jjust uses the between family moments:

= W'_l
wk XX = Xy
* = B 1 B , k= 1,2, ...K+1
-Bk 'XX ~xy, !

with
T
XX i=1
1 . »
B = - 7 x'££%
p ., -1 =p~p'i
W, = T, -
-XX ~XX ‘%X
with similar expressions for W and B H and H are
W ~B

the precision matrices for

6%_and 5;;
?2£1= E(«W - S$> 1l«H - «>' = V4 () VVI
XX
H'=E®6 - 66 -6 =pdd +=2) @ B;Ql(

(The GLS procedure when the X's differ across equations is
described in the appendix).

The joint M.L. estimates of 6,Z, and d can be obtained
by iterating on these equations. Given an initial consistent
estimate of 6 and the associated reduced form residuals we

obtain d and Z from the canonical correlation analysis out-
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lined above. Then we form H and H, and obtain a new estim ate
of 6 by pooling the within and between family estimates. This
estimate of 6 has the asymptotic (q ® °°) efficiency properties
as do the estimates of d and Z based on its residuals. Further

iteration 1is, however, probably desirable.
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5. The Main Results

Tables 3 and 4 present the M.L. estimates for our model
together with the intermediate calculations. The results are
quite consistent with the covariance analysis described in
Section 2. Now the schooling coefficients in both the
income and occupation equations have increased relative to
the OLS values indicating that going to the within family de-
viations was only a partial cure. Corresponding to the uni-
formly higher schooling coefficients we obtain negative coef-
ficients for the "ability" variable in both the income and
occupation equations. However, the relative magnitudes of
the coefficients indicate that the unobserved variable primarily
affects income and occupation with only a negligible effect on
schooling. For a person who 1is one standard deviation above the
mean of the distribution of the unobservable would be only .03
standard deviations above the mean on the schooling distribu-
tion (net of age) but his income would be 41% lower than
someone with average "ability". Also the contribution of A

to the fit of the equation is much more pronounced for income

2
than for schooling. The signal noise ratio y"a + "2\
s o A A u
is 72% for Y but y"o is only .1% 1

< a

)

for S. So our prior expectation that A would be an important
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Table 3: Parameter Estimates: Income-Occupation-Schooling Model,

156 Pairs of Brothers, 1928, 1Indiana, U.S.A.

Original Data from Gorseline (1932).

Method
Coefficients of the Biased least squares Maximum likelihood
structural equations systems estimates
Total Within unre- recursive
sample families stricted model
Age 1in the
income eq. .088 .061 .080 .080
(.021) (.031) (.020) (.020)
occupation eq. , 005 .011 .006 .006
(.003) (.009) (.003) (.003)
schooling eq. -.066 .029 -.067 -.066
(.019) (.049) (.019) (.019)
Age squared 1in the
income eq. -.001 -.000 -.0007 -.0007
(.0003) (.0004) (.0002) (.0002)
Schooling in the
income eq. @. .082 .080 .088 .084
(.010) (.011) (.009) (.009)
occupation eq. ..104 .135 .107 .105
e2 (.010) (.015) (.010) (.010)
"Ability” in the
income eq. y~ .416 .417
(.038) (.038)
occupation eq. .214 .210
Y2 (.0406) (.046)
schooling eq. -.092 .0
Y3 (.178)
The y coefficients are scaled by assuming that af = 1 and y > O.
The numbers in parenthesis are the computed stanaard errors. For
the M.L. estimates they are based on the structural information
matrix 5 given in (A.51). In the restricted model we delete the

row and column of 5 corresponding to y”.
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Table 4: Gorseline (1932) Brothers: Intermediate Data

and Calculations

Unrestricted model: (based on M.L. reduced form residuals)

437 231 928" 313 157 551
488  1.168 r = 243 532
11.193 6.512.

Sample size N = pq = 312
Canonical weights: ¢* = (1.76 .300 -.191)

Squared canonical correlation coefficients: pl=.75,.p2=.63, P =.45

408" 270 .148 966%*
.204 r = 446 1.187
- 0927 11.184

a2 = 098, p2 = .297, C2= 11.180
Ul 2
4/°a = 46
302 158 445
lr
' 265 575
plim R dd" + p~
5.600

cont
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Table 4 (Cont.)

Recursive model: (based on M.L. structural form residuals)

2360 135 2267 A127

366 ' 203

Canonical weights c* = (1.776 .279) .

Squared canonical correlation coefficients: p”"=.746, P2=.493

417 .186 .047*
r A=
..210. .322.
o, = .093, a2 = .298, a2 = 11.193

.65
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determinant of S, such as IQ or family wealth, (which led us
to normalize y. > 0), 1s not born out in the data.
Rather we appear to have a recursive model in Which the

omitted variable affects only income and occupation, 1i.e.

= 0. Since this 1s equivalent to assuming that dg = 0, it
is a testable restriction on the reduced form equations of our
more general model. In the restricted model it is more tractable
to work with the structural form of the likelihood function since
there is now no correlation between the residuals from the
schooling equation and the other equations of the model and so
the S equation factors out of the structural likelihood and can
be estimated by OLS. The structural covariance matrix for the

A

vy indicators (Y and 0) has diagonal blocks of the form

YYI@ I + A fidI
IT -p~p - ~

where

Y1 a 0

and we have normalized 2 - 1. So A is unrestricted and
identifying y with d and A with E we can apply our reduced
form M.L. algorithm directly.Then given vy and A we can solve

2 2 , , ) .
for x, a 1 and a2 . This part of the log likelihood function
U u
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evaluated at the maximum (L” o) is given by (A.39) in the Chap-

ter 3 Appendix where n = 1, IR | equals the generalized variance

of the structural residuals from the first two equations, and

is the squared canonical correlation between these residuals

and a set of family indicator dummy variables.
*

of 0 1s simply -pg times the standard error of the OLS
3 6
estimated schooling equation.

The second part

*

Comparing 0o with L for the unrestricted model gives

a likelihood ratio (L.R.) of .87 and -2log(L.R.) = .27 ~X"(1)

which 1is entirely consistent with a recursive model. The
structural estimates for the restricted model and the inter-
mediate calculations are in tables 3 and 4. ©Note that we

have renormalized so that y~“fand hence 73) 1is positive,

interpreting A as a joint luck or economic, but not scholastic,
"ability" wvariable. The estimate of 8, 1is .084, almost identical
to the OLS estimate (.082). Although our estimator was carefully
designed to detect omitted variables connecting and biasing the
income and schooling relationships we haven’t found any. But before

accepting OLS we will take a closer look at the results and

the assumptions they are based on.

There is also a term - fn 2m - 23R - i-fn 2ir - 23

= -S+I tn 2n - EHWxi>

which cancels with an identical term in the unrestricted reduced
form likelihood.

The departure results from the joint estimation of the
Y and 0 equations together with the variance components mixing
of the total and within family OLS estimates.
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6. Extensions

The identifiability of our model rests on two key
assumptions: that U, and u2, the disturbances in the income
and occupation equations, are uncorrelated; and that there
is a single common unobservable variable connecting all the

residuals. The first assumption is not too plausible. If

A

u” consists largely of luck which results in a higher income
than an individual's schooling and "ability" would have
predicted, then he is likely to also have a higher occupational
status, implying a positive correlation between u. and u2« But
if u. and u2 reflect the individual’s preferences for income vs.
status and if, given his schooling and ability, he can trade off
one for the other, then the correlation could be negative.

So we expand the model to allow for a correlation between u"

and u2 or alternatively (and equivalently) rewrite the y*

equation to include vy, :

yx = Xal + Blys + ny2 + ¥Yxa + ux

and keep the E u.U, = 0 assumption.
Expanding the model in this way has no effect on the
reduced form. For we have not added family factors which

would break the restrictions on 0. We have only altered E,
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replacing v12 = B"a” by + na”.

Since Z was unconstrained to begin with, the reduced form
is unchanged and our test for d* = = 0 remains valid.

2
But we can no longer solve for T= a / 2 by making the solutions

"«
for B. and B2 (f°r a given T) agree with the solution for their
product; i.e., the structural parameters are not identified.o
So we have to introduce additional prior information, e.g. about
n or about X . Experience with other data sets would suggest
n » 0 and on the order of .05 to .15 (see Table 5 in Griliches
and Mason (1972) where n is estimated in the presence of a
direct ability measure). Alternatively we can compute the
B's and n for a given value of the variance ratio X=a3/a2
a

A pure genetic heredity model would predict a ratio of
.5 to .6 (see Jencks (1972), Appendix B). Adding common
financial wealth to the interpretation of the unobservable
suggests the range .5 < X <1.0.

We had initially planned to use this prior to see
what the resulting range for the B's would be. But in

fact the feasible range is not much wider than this.

Although we are not identified in the usual sense we do

o
In the restricted (dg=0) model everything is still
identified except for d and T.
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have two sources of bounds: 0 £ X< 1 and the Implied correlation:

P12 " I A +
12 u2/ V u u2

between u* + rju2 and u2 in the semi-reduced form (with y2 but not y

solved out) must be less than one in absolute value. Putting these bounds
together results in bounds on the other parameters of the model as shown

in Table 5, Each row of the table is equally likely for they are all based

on the same ML, reduced form estimates of d and E. They just represent
different ways of allocating Oi(z) between T m aq//g;cf and n. The whole

table has the same status as a point estimate. To extend the table to

values of Af .49 (corresponding to r12 = -1.0) would require restrictions

on the reduced form likelihood which would be testable. So we have identifi-
cation in the sense of obtaining a non—trivial bound. In fact for our case the
bound is extremely tight. With A .66 we have n “ 0 and the other parameters
take on the previously reported M.L. values. For higher values of A there

is a very slight decline in 0" + n02 (ttie total effect of S including its
effect via 0), and q Increases up to a maximum value of .14; lower values

of Aimply n <0 and a slight increase la + 1102* Tle rati® °f the

ability coefficients in the income and schooling equations remains unchanged,
still reflecting a negligible effect of "ability" on schooling.

So our estimates are very robust against the structural no
correlation assumption.
There remains the possibility that there may be more than one common

unobservable (factor). We have lumped both the family's socio-economic



Table 5:

Conditional on

a/Z/O% equaling

.50
.60
.70
15
.80
. 85
90

99

Expanded model:

Y1l =

or alternatively

AM+nt2

.090
.089
088
.087
087
.087
087

.086

21~1

Bl

107
.094
.085
082
.079
077
075

071

184

Implied..........

62 n Y1l +nY2
108 -.159 -416
107 -.048 -.416
107 024 -.416
107 052 -.416
106 075 -.416
106 096 -.416
.106 113 -.416
.106 138 -.416
+ /\2 + /\1

n=0 but EuIU2

Conditional Estimates in,the Expanded Model

Y3 S w2

092 -.716
I o096
1 040
I 080
L 111
I 135
1 155
1 184
0
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status and the children’s native intelligence into one measure A. But
these two different kinds of "inheritance" may not have the same coef-
ficients in the different equations. Moreover there may be more than
one type of "intelligence," Including a kind (such as '"test-wiseness'")
which may lead to scholastic but not necessarily to material success

(in addition to its effect via schooling). In any case, there is some
statistical evidence for the existence of a second factor. The presence
of such a factor is indicated by the squared canonical correlations. In
the '"no factor" model we would expect R to be proportional to R but reduced by
from averaging over families with p members. Then all the roots of
Rin the metric of R would be 1— With data on pairs we would expect
all the squared canonical correlations to be .5. Actually we get

p m (.75, .63, .45). So clearly there is at least one factor in the
data and in terms of the unexplained variance, i.e., 1.0-.50 m .50.,

the first factor (.75-.50) accounts for 50% of it.

To assess a second factor we construct a second index from the Y, 0,
and S reduced form residuals which is most highly correlated with a set
of family indicator dunmy variables, subject to the restriction of being
uncorrelated with the first canonical index. Then p2 gives the squared
multiple correlation between the index and the family dummy variables. W
get P2 m .63 which is not very close to .5 and in terms of the unexplained
variance (net of the first pair of canonical variables) the second factor

accounts for 26% of it. An alternative interpretation of these variance

ratios is that they are the princip al components of 0 in the metric of
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R«0 «+ £. For the components are ik /(I + where the are the

roots of 0 relative toj . It is shown in Appendix A, Chapter 3 that

/(1 + - pii - D/ @D

- <%- > Al

i.e., the fraction of the unexplained variance accounted for by factor h. Now with
one factor 0 m dd* and “ dgx d is a generalized reduced form
signal noise ratio. Thus ik /(1 + tp gives the fraction of the residual
variance accounted for by the systematic family factor. With 2 factors
42 is the signal-noise ratio net of the first factor. The sum of the
principal components
| "2
1+~ + 1+~ > 76
is the total fraction of the residual variance accounted for by systematic
factors and one third of it is due to the second factor.
A likelihood ratio (L.R.) test for two factors vs. one factor is derived

in the Appendix. Conditional on the reduced form slope coefficients 6 the

test is

-2 log (L.R)) - 2(L2 - Ix) - —pq log p(1-Cp/ (p-1)

+ qlog (— - 1)/<P-1) * X(2).
P2

This test statistic is a measure of how far p? is from lP (or how far
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is from zero). For P2 “ ; the likelihood ratio is one,

implying no evidence for a second factor, and for P2 " ik i® zero«
The unconditional test includes a comparison of the generalized variances
of the S reduced form residuals for the one and two factor models and
also evaluates the difference (if any) in the estimates of pj. The
unconditional test results in a quite unlikely value of 10.9. Also, we
see in table g that the approximation of 0 + —Z to Ris considerably
Improved in the 2 factor model.

So we turn to the question of what structural inferences can be made

from a two factor reduced form. Now the structural form is:

vk “ 5 ~k + yK+A + (f1+81)y k+ (f2+g2)nk + "k

k» 1,...K
yK+ ¢~ 3(*1 + (f1+8P YKH + + “KH
In the reduced form we have:
Y1 + P1Y3_ nl + Hn3
*1- Y2 + &Y3 *2.- "2 4+ 62n3

Y3 e n3

D- (dx d2)
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Table 6: Two Factor Model? Reduced Form Calculations

437 232 930" 314 157 554"
R = 488 1.168 R = 243 533

. 11.194 6.525
Canonical weights: ¢} = (1.767. .297 -.190)

c2 = (.506 -.885 .308)

Squared canonical correlation coefficients: p-"=.75r P2=.63,P3=.45

191 087 192! 246 144 737!
0 = 042 016 - 446 1.152
2.170 9.025
plim p?T (5 * m §
.190 082 178"
_E_ (R- 001 -.101
-1
P 1.855
314 159 561
plim R =0+ —FE = 265 592

6.682
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and letting $ be the covariance matrix of the family factor gives
0= DS$D'.

So, if we scale and f2 to have unit variance then:

0 = d1dl + d2d2 + (dTd2 + d2~p «rf

where is the correlation between and f2> Similarly

s_SiSiTl+i-Vz+<Sl4+-W q +V

rfth Ti m"q /°q ° T2 g 022// 0?2 , and is the correlation between
g

the individual components (gl and g2' of the two unobservables.

Clearly, the model is highly underidentified. But a substantial simpl
fication results from limiting our extension to a second factor which
has only a family component (T« “ 0). Examples would be family wealth or
measures of family background such as father's occupational status or
father's schooling. Then ry equals zero and the structure of £ is identical
to the one factor case. So if we can obtain d" up to a scale factor then
the argument of Section 3 will identify the structural parameters. The
problem is to retrieve d* from 0. If we knew r, we could factor $§ = P P¥,
let Dw DP, and obtain the factorization 0 - D D'. The general solution
to this equation is D= D T where D is any solution and T is a rotation,
T'T = I. So we must condition on both r_ and (in our two factor case) a
rotation angle £. Since £ is difficult to interpret we instead specify

and A”. However, the relationship between A- and £ is neither one-to-one
nor onto. We have to solve a cubic equation to obtain £ from A- and this

can have multiple solutions or no (admissible) solution at all.
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Over the range of correlations (r*) considered we cannot obtain

a value for X - a2 /a2 as high as .75 for any £. W can obtain values
1/ al

as low as zero but they violate the restriction that a2 > 0. In fact
table 7 gives all values of X- (at .05 intervals) thatUslatisfy the inequality
restrictions. When there is more than one rotation for a given X" then the
one with the lower value of is reported. It turns out that for the other
rotation the y's are not all positive as we would expect them to be for
an ability variable with a genetic component.

Putting together the restrictions that 0 < X- 1 and .£I> 0 produces
a lower bound on (3" of .046 corresponding to r » .40 and X* » .50. (The
bound also occurs for » .20 and X* = .46.) The upper bound is .26
(higher values imply afv< 0) and if we add the restriction y > 0 it is
.082 attained at]-. =0.0, X. = ,63 (and at positive correlations for
somewhat higher values of X ). The status of these bounds is identical to
the bounds in the extended one factor model. They are all based on the same
2 factor MLL. reduced form estimates and are simply different equally likely
ways of interpreting them. Obtaining estimates outside the bound would
require imposing restrictions which would reduce the likelihood and be
testable. In our case the bound is not vacuous but neither is it particu-
larly sharp. The schooling coefficient in the income equation could be as
much as 447 lower than its OLS value of .082.

Our separability restriction that y*» m 0 is not testable by itself in
the two factor model. Complete separability requires “02"0and rf -0

in addition to y3 m 0 and implies that

W are free to change the signs of all the y’s and n's simultaneously:
however, we can't change just the y's alone without changing the sign of
the correlation e, which we assume is positive. There are only two
rotations that satisfy the constraints a > 0.
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Table 7; Lower Bound on 8 Rotations? Restricted Two Factor Model

2
a2 s X 62 Y1 Y2 Y3 nl n2 n3

%1
C£20 .0 50  .056 .120 .404 127 560 -.115 2231 1.362
: 60 076 .125 416 .182 188  -.035 2198 1.461
65 086 .130 .414 225  -.170 052  -.155 1.463
50 .056 .119 412  .129 577  -.198 ~257 1.244
r £=.20 60 .074 124 424 177 250 -.133 -.239 1.402
65 084 129 425 220  -.089 -.053 ~210 1.488
50  .046 118 437 121 719 -.306 _.286 1.030
10 60 068 .122 449 170 404  -256 2284 1.264
rf~- 65 .077 126 .455 205 156  -.206 -275 1.404
70 .090 .133 .442 267  -.401 -.075 -234 1.587
55 .052 119 .465 .138 701 -.355 -.303 991
50 60 063 .121 471 .164 536 -.331 -306 1.130
rf=- 65 073 124 479  .198 306 -.292 ~.305 1.296
70 .082 129 482 239  -019 2227 -295 1.483

Two factor structural model:

y = Xa+y B+ (f, + gn)y + f9n + p

a? / a2 =1.0 r- = f
f2 a2 f f1£f2" fl1 1

1.0
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The reduced form is:

v r__»_m
yy
o & n§
0 o0 62
1
e i +67 ,
_— B 021. 6.1 aVZV 0,6, 642,
2 +3
0 0 R
2
a
w
So there are 2 restrictions across 6 and E:
61 m °13 ' 033 - °13 ' °33
S2 * 023 033 " °23 °33
In fact, we get @3 / 033 - .088, al3 / - .082 which is not bad. But
0 ®33 " and °23 °33 " Se aPPears that /2 0 and a L,R’

test for both restrictions gives 6.72 ~ X2(2). Also in table 8 we can see
that m0or .2 and a  between .60 and .65 result in y* and 0" being
essentially zero whereas not negligible and in fact is negative. This
possibly reflects anomalies in the construction of the status scale and we
hope to return to this in the future. But even in the two factor model there
is some indication of a partial recursiveness with y* » 0, r “ 0 and m 0.

Then 0" is estimable by either the constrained (smoothed) between family
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regression 0" / or by the constrained within family regression

°13 ! °33* 1116 later e8timate (°i3 / a33 * .082) is more robust since it
only requires Y_" 0. For then the factor with an individual component
causes no bias (Y- “ 0) and the second factor, being purely family, is

swept out by using the (constrained) within family moments.
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7. Summary and Discussion

This paper dealt with two topics, the substantive
problem of "ability bias" in estimates of returns to
schooling and a somewhat novel econometric approach to esti-
mation in the presence of unobservable variables. From a
substantive point of view the new econometric methods did
not produce results which differed greatly from those based
on simpler methods. This is either satisfying or disappointing,
depending on one's point of view. An elaborate procedure,
designed to detect possible sources of bias, yielded little
evidence of such bias. It is quite likely that important
unobserved variables have been left-out from our schooling-
achievement model but they are not of the type one usually
associates with the notion of intellectual "ability". There
is a significant positive relationship between disturbances
in the income and occupation equations but it seems to have
little to do with the disturbances in the schooling equation.
There 1is some indication of a negative relationship between
family components in the schooling and occupation equations,
but little evidence of a strong relationship between unob-
servable family components in the schooling and income
equations, implying little bias in the estimates of schooling

coefficients which ignore such connections.
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These conclusions are limited to the particular data
set analyzed and the' range of alternative hypotheses investi-
gated. Since estimates of bias in the schooling coeffi-
cient depend crucially on the relationship between the left-
out ability variable and the level of schooling in the sample
studied, there is no reason to expect that they would gener-
alize to different populations with a different ability-
schooling nexus, it does appear, though, that there was
little relationship, at the beginning of this century in
Indiana, between the distribution of Yability" and the
distribution of schooling, particularly if "ability" is
assumed to have a significant family component. This may
have changed over time, however, as the schooling system
developed and became more selective. We do intend, there-
fore, to replicate our analysis on a more recent set of
brothers taken from the 1966-1969 National Longitudinal Survey
of Young Men.

Besides bringing us into amore recent period, the NLS
data will allow us to overcome several other limitations of
the Gorseline sample. It will have more background data on
parental status and wealth allowing for a "cleaner" and
clearer interpretation of the unobservable, making the wvarious

no-correlation assumptions more palatable. Moreover, the
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availability of some direct measures of "ability", such as

IQ test scores will provide an explicit test of such inter-
pretations. Also, given a larger number of indicators we may
be able to dispense with the use of the rather ambiguous
measure of "occupation." The whole notion of "occupation"
deserves more study and the variable itself needs rescaling
in any case.

From a statistical point of view, our work can be viewed
as an extension of the error-components literature to the
simultaneous equations systems context or alternatively
as an extension and specialization of the resurgent path-
analysis literature to the error-components case. The con-
nections between our work and these fields are discussed
at length in Griliches (1973) and will not be reproduced
here. We should note, however, explicitly the similarity
of some of our results to those of Hauser and Goldberger
(1971) and the work of Jo'reskog, especially his "Factoring
the Multitest-multioccasion correlation matrix" (1970). Our
results can also be related to the weighted regression
technique of Frisch and Koopmans, with the weighting scheme

derived from within families replication.
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Appendix: Data and Variables

The data are taken from D.E. Gorseline, The Effect of
Schooling Upon Tncottte, Indiana University, 1932, and are
based on interviews and mail surveys undertaken by Gorseline
in 1928. The collection procedures and caveats are described
rather clearly in his book and will not be reproduced here.
He collected "usuable" data on 172 sets of brothers or a total
of 68 individuals. Limiting ourselves, in this paper, solely
to pairs of brothers, we have 156 pairs or a total of 312
individuals.

Schooling in this study is measured by the "probable
grade of school attained" rather than by the reported years
of school attained" rather than by the reported years of
school attended, defined as "the grade in which the man who
filled out the gquestionnaire was when he stopped going to
school™". It is taken from Tables LIV-LVII of the book. The
"probably" enters into the definition because Gorseline often
adjusted or estimated this number on the basis of other infor-
mation in the sample.

"Income" 1is net earnings for the calendar year 1927
plus the imputed value of home consumed food for farmers and

retail businessmen and the imputed value of housing when
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supplied with the job(e.g., parsonage for ministers).
"Occupation" 1is as of 1928 (tables XCIII-XCVI). It
was scaled according to Duncan’s SES scale. Since the names
given did not always correspond to a standard list of occu-
pations, some of the attribution is arbitrary and may be sub-
ject to error. Moreover, it 1s not clear whether the SES
scale is the best for our purposes or that it applies without
further adjustment to the situation as it existed in 1928.
We are currently reviewing our assignment procedures and are
planning to experiment with alternative occupational scalings
This may lead to some changes in the results reported above.
The only other variable used in this paper is the age of
brothers as of 1928, taken from Tables LXXXIX-XCII and the
age at which they stopped going to school, from tables LXXX-
LXXXV. More information was available on other characteris-
tics of the sample, but in general it was not complete, not
covering most of the brothers in the sample. Among other
variables tried but not reported on in this paper was the
rate at which schooling was completed as a measure of ability
test-scores for a subsample of brothers, and the birth-order

of brothers.
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Extensions

I. Multi-Factor Models

Much of the methodology in Chapters 2 and 3 was confined to the one
factor model. But before trying to develope general results for N factors
we will want some guidance on what sorts of restrictions are reasonable to
impose. Our empirical work in Chapters 4 and 5 made some beginnings in this
direction. Chapter 5 considered a second factor with a purely family struc-
ture and developed some fairly useful bounds. Chapter 4 considered an ex-
tension to two distinct but correlated kinds of ability, scholastic (f.)
and economic ( f . The substantive constraints are that fis excluded
from the income equation and f,, is excluded from the schooling equation.
The test is assumed to measure a combination of both kinds of ability.
This model is not identified without proportionality constraints on the
background variables and Section III of Chapter 2 shows that the problem
cannot be solved by simply adding more indicators if they all depend on S.

I would like to sketch a possible attack, most of which is or soon will
be operational using data from the National Longitudinal Survey (see Grili-
ches (1974) for an overview of this data). The key is the availability of

two tests which measure different combinations of the two unobservables:

T1 = x1£1 T 61£2 T 1
S| = X2£1 Y
T2 = v23S1 * X311 T 63£2 T3
=W x + X4f1 * v
Y1 = v4SS2 T 65£2 T vs
E = 74682 t66£2 T Ve
Y2 = ~47S2 * Y6TE t 6782 T vy
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Tj is the score on an IQ test given prior to the years of schooling repre-
sented by Sj (or at least prior to the part of S that shows significant
variation in the sample). T_is the score on a test which differs from a
standard IQ test and is given after S . The knowledge of the World of Work
KWW test in the NLS data would seem to fulfill these requirements, with
Sj equal to years of schooling completed in 1966, the year the KWWtest was
given. and Y2 are the log of earnings in two different years, and E is
a measure of job experience accumulated between the two years. There is
also a variety of exogenous variables but we have surpressed them in order
to see what sort of estimates can be obtained without the proportionality
restrictions.

If ~j/~3 / so that the two kinds of ability have differential
effects on the two tests, then we can solve for f2 in terms of T., T2, and
Sp Then substituting this proxy into the Y2 equation gives
d.2) Y2 = v47S2 + Y6TE ¢ alTl ¢ a2T2 + - 01N -

This leaves an errors-in-variables problem in T* and T2 and so we look for
instruments. Y is a candidate since the v’s are assumed to be uncorrelated.
But Yj is the only excluded variable in (1.2) and two instruments are needed.
More promising is a similar substitution in the Yj equation, since E and Y2
can be used as instruments to identify Y45- Then following the Corollary

to Theorem 3, Chapter 2, we can use Yj » Yj - Y45S2 as a proxy for f in the
Y2 equation with T?, S#, and T2 as possible instruments. As in Theorem 3 a
rank condition is needed to tell us which parameters are estimable from the

IV equations.
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IT. A Parsimonious Model of Cross Equation Serial Correlation

A natural way to think about cross equation serial correlation is in

terms of a common left out variable:

(LD M =X T * ey

with etk = ftdR + vtk , t =1,..., T;, k=1,..., m

where there are T observations, m equations, and the v R are serially uncor-
related. An appropriate prior for the f could be based on a low order auto-
regressive-moving average process. Considerable analytic simplification of

the likelihood function would be possible, along the lines of the Chapter 3

Appendix.

A more standard approach to this problem would be based on a matrix gen-
eralization of an autoregressive-moving average process: A(L)et = C(L) w
where A and C are m x m low order matrix polynomials and w* is serially un-
correlated. The advantage of our approach is that it is much less parameter
expensive.

As always, the troublesome question of how many factors must be faced.
The answer will depend on the way in which the unobservable is being used.
If it is "just" serial correlation which is to be swept out but not explained,
e.g., to avoid biasing the coefficient of a lagged dependent variable, then
we could try to estimate the number of factors by overfitting. But it may
be that f is a substantive unobservable that we want to measure. An example
could be using data on the term structure of interest rates along with price

data in order to measure expected inflation.
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ITI. ML Regions
In the errors-in-variables model of Chapter 2 (Theorem 4) and in model
4 in Chapter 3 we have a simple description of the ML region in the unident-

ified case. Our proof of Theorem 4, Chapter 2 shows that Z- “ Ta2la2l*

positive definite. So x £ min V £2£ /(*-’021)2 “ Therefore
the net reliability pN =1/(xall) > Usin2 1 P = CI~PN) (1-R 2 x)
ir ~21 722 ~21' 11 1
together with 1-Ryq x y2. .y’ «ives the follo*“-
. L B 2, 2 2
ing bound on the reliability p=1- a,“/a :0<p>R .
1yl = - Xl-i- y2...... ym

This interval for p generates the ML regions for the other structural para-
meters since the proof of Theorem 4 shows that given p (or x) the reduced
form can be uniquely solved for the structural parameters.

Corresponding to the formal equivalence between this errors-in-variables
model and the replication model, we can apply a similar argument to the proof
of Theorem 1, Chapter 3. There the bound on x = alg%/oA2 is that E - xdd’ is
positive definite and so x < 1/d°Z 1 d. Since X= 2/(ar% +a 2) ="1/(1 +.x),
we have 0 < A > ip/(l + ip) where ip=d’Z ~d. It is shown in the Chapter 3
Appendix that the ML estimate of \p/(I +ip) is (p - ~)/(l - ~) where p is the
largest squared canonical correlation between y' - x'll and a set of group
indicator dummy variables. In Section 6 of Chapter 5 (p - /(1 - i) is in-
terpreted as a generalized R2. The bound on A generates the bounds for the

other structural parameters.
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Iv. A Production Function Example
Consider the following Cobb-Douglas production model:

(Iv.1 Yop = E 6. X pp * Ey * Uspa i=1,...,9
where y and the x's are the logs of output and the observable
inputs, and f is intended to capture the effects of omitted in-
puts which do not vary over the sample period. In an agricultural
context f could include measures of soil quality or average dif-
ferences in climate. Another possibility is the quality of
management or entrepreneurial capacity. The variable factors

are determined by the following factor demand relationships:
(IV.2) P .. t X . - V.. =V n=1,...,N

where the p's are the logs of the deflated factor prices.
Note that we are suppressing the intercepts and wvzill not be
exploiting any information they may contain, as in Klein's (1953)
factor share method. Thus we can allow for (or test) imperfections
in the product or factor markets in the form of constant demand
or supply elasticities. Also we will not have to make arithmetic
vs. geometric mean distinctions in specifying that firm's maximize
"on average."

Clearly there 1is no identification problem if we can observe
exogenous factor price variation. We can simply use the prices
as instruments with the f. picked up by a set of firm dummy

variables. But to take advantage of an informative prior for the



f., we have to face a simultaneity problem. For under decreasing
returns % Eh < 1) the firms with more of the fixed factors will
use more of the variable factors. So we set up a reduced form and

try applying our prior there:

(1V.3) yit - -nX Snp It + nfi + nu.t + n I Bvnit
n n
xkit= X e»pnxt ' Pkit + nfi + nuit + nJ Bnvnit + vkit
n n
k=1, N
with n = (1/(1-E BR).
n

Note that the output elasticities can be identified from a
covariance analysis of any one of the reduced form equations.
We can simultaneously exploit all of the equations together
with some of the between firm variation by applying the GLS
estimator in (III.7), Chapter 3.

First reparameterize in terms of y and the logarithmic factor

shares sn = Pn + xn ” Y!

(iv.4) yit - -nX 6npnit + nff + n»it + « x Bavnit
snit = wvnit' .

This fits our model 1 framework with E unrestricted and 0 = dd'.

There is also the restriction that d* = 0 for fc > 2.

B =R I can be obtained from the GLS estimate of the
' .
\% ifetl

reduced form slope coefficients:
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(IV. 5) «* (Hw + '¢ HB«BLS>

H = £-1* W
HA « [ (9 + Jz)-1 * B.

* GLS
The GLS estimator 6 pools two other GLS estimators, 5

LS . . ) GLS .
and ﬁi . The within firm QN corresponds to an efficient
use of Mundlak’s (1963) analysis of covariance approach, recognizing

that each of the reduced form equations 1is informative about 3.

GLS . . .
The other term, <$ , 1s new; it reflects the exchangeable prior
bringing in some of the between firm variation. This may be

quite valuable if most of the sample variation is between firms,
reflecting location differences, etc. With firm effects h, in
the factor demand equations we would have the multi-factor version
of model 1. The GLS estimates would still be given by (iv.5)
but 0 would be less constrained.

I next want to take up the Marachak-Andrews (1944) case
in which there is no observable price variation. The estimation
techniques generated by this extreme case are quite relevant to
panel data since much of the price variation may reflect permanent
location differences which are confounded with the firm effects
f.. Also the observed price variation may be mostly quality
variation. For example, let be hours when in fact the relevant
quantity variable 1is X*"*" = Q*"X"" where is a labor augmenting
qualtiy index reflecting average labor quality in the i firm.
Then the relevant price variable is obtained by dividing the total

wage bill by the number of "efficiency units" of labor
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?1 - Pixi/51

So in logs we have

(IV. 6) xiit = xHt + <J

pnt - piit - ’1i

We have to add 87g” to the structural form of the production
function in (IV.1). But this can be absorbed in f.? The fac-

tor demand relationships don’t have to be altered because

Pl + x* = + x ; 1.e., the total factor compensation is cor-
rectly measured. Problems arise only in trying to disaggregate the
wage bill into a price and a gquantity. So we need methods which

do not depend on such a division.

First we will look at Mundlak’s (1963) modification of Hoch's
(1958) direct least squares approach. Hoch's idea was that if the
disturbance in the production function is random not only to the

econometrician but also to the firm, then it will not be "trans-

mitted" to the factor demand decisions. In that case we can re-
write (IV.2) as
+ x - - u = v
p n ? ) n
or
(IV.7) sn = v - u , n=1,...,N.

As Mundlak pointed out, this assumption becomes more tenable when
we have replication on the firms, thereby allowing us to dis-
tinguish the part of the residual that is of a more permanent

nature. For the firm effects £f#, although random to me are
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probably known to the firm and hence transmitted to the factor
demand system. Under these assumptions 3 can be estimated from

a covariance analysis of the structural form of the production

function. But using just the within firm deviations may throw

out most of the sample information. The cure can be worse than
the disease.

In order to see what improvements are possible we use the fol

lowing version of the reduced form:

(IV.8) yit - nfi + uit + nz Vnit
*kit - nfi + “Z Snvnit + vkit, k= 1,...,N.
n

This fits our model 1framework with 0 = dd' and all of the elements

7Zv 1\
of d restricted to be equal. Assuming that v =/ . I 1s independent
N
of u with E(vv') = V, we have
(IV.9) E1r » n2 (3'V3) + az2
~12 = ~21 = n2 (3'v3)£; + nB'v

22 B Y + n(AN3'v + V37) + n2 (P'vp)£EN"

Given E we can uniquely solve for 3, V, and a*. For example

~2 = ~"'~22 and so

(Iv.10) 3 ~ "22~21 %

This is Jjust OLS using the constrained within firm moments

(E = R - dd’). It differs from Mundlak’s estimator in that in-
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stead of R - R we only subtract off dd*, a matrix of rank one,
thereby using more of the between firm variation.

Next we will consider the case in which all of the
production function disturbance u.” 1is transmitted to the factor
demand equations. We assume as before that v is independent of u
with an arbitrary covariance structure E(yv') = V. Mundlak argued
that the independence of u and v is more plausible after removing
firm effects. Then the logarithmic factor shares can be used as
instruments for the x’s in an equation with firm dummies. So
Mundlak*s suggestion 1is to apply the Hoch-Thiel instrumental
variable estimator to the within firm variation.

Our extension is based on assigning the £ an exchangeable

prior in the following reduced form:

= k = 1teeerN
kat nfi + nu.i.t + nE 6nvnft + kaﬁ t r

We have the same restrictions on d as before but now

(iv.12) zx1l = nZ(dz + 3 VB)

Note that

-12" E11~N
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and so we can solve for 3:

(IV. 13) 3 = U22 - *N£2]7 (=21 ™ ~Nz11)’

This 1is the Hoch-Thiel estimator based on the constrained within
firm moments. As in .(iv.10) we are using R - dd’ instead of the
unconstrained R - R.

It is disturbing that the appropriate estimation technique
depends so critically on whether or not u is transmitted. The
technique which is consistent for one case 1is not for the other.

So we want to develop a more robust approach. Also we have
neglected the possibility of a firm structure in the factor demand
residuals. One could argue that there "shouldn’t" be persistent
errors in choosing factor ratios; but in fact firm effects have
been observed in factor demand relationships (e.g., Ringstad (1971))
Also they could reflect demand and supply elasticities differing
across firms. In any event these firm effects provide another
potential source of identifying information.

The problem can be formulized by considering a model with
partial transmission (cf. Mundlak and Hoch (1965)). Mundlak (1963)

has shown that this case can arise from aggregation over different

stages of the production process. We decompose u”t into

U,., *+ U,., and assume that only u,.,.. 1is transmitted. This model
1i't 24t 1it

cannot be identified from the within firm variation E. For before

there was a one-to-one relationsip between E and the structural

parameters, leaving no degrees of freedom to determine how a*
splits into and . But there is some hope if we can modify

the factor share equations to include firm effects:
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Yy 44, Spit T Ppsl T Xpir 7 ¥uif P TV aiw n=1,..N

Then the crucial question is what distributional assumptions

/h 1\

to make for f and h =4 . | . I want to argue that it's reasonable
IAN

to assume that h is independent of f£f. This may seem implausible

since the h's are to some extent profit maximization errors and
may reflect the same underlying managerial ability that is con-
tained in f. But it's the absolute value of hn that reflects
how well a first order condition is being satisfied, with allocative
ability inversely related to |h |. So we need not expect a simple
linear relationship between f and h*; e.g., lhn | could be an
exact function of f but so long as the sign of h is independent
of f there will be no correlation between f and h . Furthermore,
as Welch (1970) and Nelson (1970) have emphasized, it may be in-
correct to think of f as primarily reflecting entrepreneurial
skill. For f is the addition to output holding other inputs con-
stant when in fact? the true contribution of entrepreneurial skill
may be in choosing the proper levels for the other inputs.

Although we cannot recover the output elasticities from E
we now have a much more interesting between firm O. For the
vector of reduced form firm effects is

(IV.15) nfi *+ nE 0 _h
n

.+ TIE . i
nfi - 6nhm + hli

- ) )
nfi nE 6nhni + hNi
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which is formally identical to the within firm effects in the

complete transmission case. So 0 has the same structure as E
in (IV. 12) and analagous to (IV. 13) we have
(IV. 16) £ = (022 “ ~N®21" {®21 7 vV 1 P *

This 1is the Hoch-Thiel method applied to the between firm variation
It has some intuitive appeal relative to applying it to the within
firm E. First, most of the relevant variation may be in O,
reflecting permanent location differences that are swept away

in E. Second, 1t 1is easier to specify how much of the residual

is transmitted. For since the firm effects are relatively con-
stant, 1it’s reasonable to assume they are not random to the firm

and hence are fully transmitted.
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