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Chapter 0
Introduction

Es gibt nach des Verf. Erfarhrung kein besseres Mittel, Geometrie zu lernen, als das Studium des
Schubertschen Kalküls der abzählenden Geometrie.

(There is, in the author’s experience, no better means of learning geometry than the study of
Schubert’s Calculus of Enumerative Geometry.)

–B. L. van der Waerden (in a Zentralblatt review of An Introduction to Enumerative Geometry by
Hendrik de Vries).

Why you want to read this book
Algebraic geometry is one of the central subjects of mathematics. All but the most

analytic of number theorists speak our language, as do mathematical physicists, complex
analysts, homotopy theorists, symplectic geometers, representation theorists. . . . How
else could you get between such apparently disparate fields as topology and number
theory in one hop, except via algebraic geometry?

And intersection theory is at the heart of algebraic geometry. From the very begin-
nings of the subject, the fact that the number of solutions to a system of polynomial
equations is, in many circumstances, constant as we vary the coefficients of those poly-
nomials has fascinated algebraic geometers. The distant extensions of this idea still drive
the field forward.

At the outset of the 19th century, it was to extend this “preservation of number” that
algebraic geometers made two important choices: to work over the complex numbers
rather than the real numbers, and to work in projective space rather than affine space.
(With these choices the two points of intersection of a line and an ellipse have somewhere
to go as the ellipse moves away from the real points of the line, and the same for the point
of intersection of two lines as the lines become parallel.) Over the course of the century,
geometers refined the art of counting solutions to geometric problems — introducing the
central notion of a parameter space, proposing the notions of an equivalence relation
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on cycles and a product on the equivalence classes and using these in many subtle
calculations. These constructions were fundamental to the developing study of algebraic
curves and surfaces.

In a different field, it was the search for a mathematically precise way of describing
intersections that underlay Poincaré’s study of what became algebraic topology. We
owe Poincaré duality and a great deal more in algebraic topology directly to this search.
The difficulties Poincaré encountered in working with continuous spaces (now called
manifolds) led him to develop the idea of a simplicial complex as well.

Despite a lack of precise foundations, 19th century enumerative geometry rose to
impressive heights: for example, Schubert, whose Kalkül der abzählenden Geometrie
(originally published in 1879, and reprinted 100 years later in [1979]) represents the
summit of intersection theory in the late 19th century, calculated the number of twisted
cubics tangent to 12 quadrics — and got the right answer (5,819,539,783,680). Imagine
landing a jumbo jet blindfolded!

At the outset of the 20th century, Hilbert made finding rigorous foundations for
Schubert calculus one of his celebrated problems, and the quest to put intersection theory
on a sound footing drove much of algebraic geometry for the following century; the
search for a definition of multiplicity fueled the subject of commutative algebra in work of
van der Waerden, Zariski, Samuel, Weil and Serre. This progress culminated, towards the
end of the century, in the work of Fulton and MacPherson and then in Fulton’s landmark
book Intersection theory [1984], which both greatly extended the range of intersection
theory and for the first time put the subject on a precise and rigorous foundation.

The development of intersection theory is far from finished. Today the focus includes
virtual fundamental cycles, quantum intersection rings, Gromov–Witten theory and the
extension of intersection theory from schemes to stacks. In a different direction, there
are computer systems that can do many of the computations in this book and many more;
see for example the package Schubert2 in Macaulay2 (Grayson and Stillman [2015])
and the library Schubert in SINGULAR (Decker et al. [2015]).

A central part of a central subject of mathematics — of course you would want to
read this book!

Why we wrote this book
Given the centrality of the subject, it is not surprising how much of algebraic geome-

try one encounters in learning enumerative geometry. And that is how this book came to
be written, and why: Like van der Waerden, we found that intersection theory makes for
a great “second course” in algebraic geometry, weaving together threads from all over the
subject. Moreover, the new ideas encountered in this setting are not merely more abstract
definitions for the student to memorize, but tools that help answer concrete questions.
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This is reflected in the organization of the contents. A good example of this is Chap-
ter 6 (“Lines on hypersurfaces”). The stated goal of the chapter is to describe the class, in
the Grassmannian G.1; n/ of lines in Pn, of the scheme F1.X/ � G.1; n/ of lines lying
on a given hypersurfaceX � Pn, as an application of the new technique of Chern classes.
But this raises a question: how can we characterize the scheme structure on F1.X/, and
what can we say about the geometry of this scheme? In short, this is an ideal time to intro-
duce the notion of a Hilbert scheme, which gives a general framework for these questions;
in the present setting, we can explicitly write down the equations defining F1.X/, and
prove theorems about its local geometry. In the end, a large part of the chapter is devoted
to this discussion, which is as it should be: A reader may or may not have any use for the
knowledge that a general quintic hypersurface X � P4 contains exactly 2875 lines, but a
functional understanding of Hilbert schemes is a fundamental tool in algebraic geometry.

What’s with the title?
The number in the title of this book is a reference to the solution of a classic problem

in enumerative geometry: the determination, by Chasles, of the number of smooth conic
plane curves tangent to five given general conics. The problem is emblematic of the
dual nature of the subject. On the one hand, the number itself is of little significance:
life would not be materially different if there were more or fewer. But the fact that the
problem is well-posed — that there is a Zariski open subset of the space of 5-tuples
.C1; : : : ; C5/ of conics for which the number of conics tangent to all five is constant,
and that we can in fact determine that number — is at the heart of algebraic geometry.
And the insights developed in the pursuit of a rigorous derivation of the number — the
recognition of the need for, and the introduction of, a new parameter space for plane
conics, and the understanding of why intersection products are well-defined for this
space — are landmarks in the development of algebraic geometry.

The rest of the title is from “1066 & All That” by W. C. Sellar and R. J. Yeatman, a
parody of English history textbooks; in many ways the number 3264 of conics tangent
to five general conics is as emblematic of enumerative geometry as the date 1066 of the
Battle of Hastings is of English history.

What is in this book
We are dealing here with a fundamental and almost paradoxical difficulty. Stated briefly, it is that
learning is sequential but knowledge is not. A branch of mathematics [. . . ] consists of an intricate
network of interrelated facts, each of which contributes to the understanding of those around
it. When confronted with this network for the first time, we are forced to follow a particular path,
which involves a somewhat arbitrary ordering of the facts.

–Robert Osserman.
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Where to begin? To start with the technical underpinnings of a subject risks losing
the reader before the point of all the preliminary work is made clear, but to defer the
logical foundations carries its own dangers — as the unproved assertions mount up, the
reader may well feel adrift.

Intersection theory poses a particular challenge in this regard, since the development
of its foundations is so demanding. It is possible, however, to state fairly simply and
precisely the main foundational results of the subject, at least in the limited context of
intersections on smooth projective varieties. The reader who is willing to take these
results on faith for a little while, and accept this restriction, can then be shown what the
subject is good for, in the form of examples and applications. This is the path we have
chosen in this book, as we will now describe.

Overture

The first two chapters may be thought of as an overture to the subject, introducing
the central themes that will play out in the remainder of the book. In the first chapter,
we introduce rational equivalence, the Chow ring, the pullback and pushforward maps —
the “dogma” of the subject. (In regard to the existence of an intersection product and
pullback maps, we do not give proofs; instead, we refer the reader to Fulton [1984].) We
follow this in the second chapter with a range of simple examples to give the reader a
sense of the themes to come: the computation of Chow rings of affine and projective
spaces, their products and (some) blow-ups. To illustrate how intersection theory is
used in algebraic geometry, we examine loci of various types of singular cubic plane
curves, thought of as subvarieties of the projective space P9 parametrizing plane cubics.
Finally, we briefly discuss intersection products of curves on surfaces, an important early
example of the subject.

Grassmannians

The intersection rings of the Grassmannians are archetypal examples of intersection
theory. Chapters 3 and 4 are devoted to them and their underlying geometry. Here we
introduce Schubert cycles, whose classes form a basis for the Chow ring, and use them
to solve a number of geometric problems, illustrating again how intersection theory is
used to solve enumerative problems.

Chern classes

We then come to a watershed in the subject. Chapter 5 takes up in earnest a notion
at the center of modern intersection theory, and indeed of modern algebraic geometry:
Chern classes. As with the development of intersection theory, we focus on the classical
characterization of Chern classes as degeneracy loci of collections of sections. This
interpretation provides useful intuition and is basic to many applications of the theory.
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Applications, I: Using the tools

We illustrate the use of Chern classes by taking up two classical problems: Chapter 6
deals with the question of how many lines lie on a hypersurface (for example, the
fact that there are exactly 27 lines on each smooth cubic surface and 2875 lines on
a general quintic threefold), and Chapter 7 looks at the singular hypersurfaces in a
one-dimensional family (for example, the fact that a general pencil of plane curves of
degree d has 3.d � 1/2 singular elements). Using the basic technique of linearization,
these problems can be translated into problems of computing Chern classes. These and
the next few chapters are organized around geometric problems involving constructions
of useful vector bundles and the calculation of their Chern classes.

Parameter spaces

Chapter 8 concerns an area in which intersection theory has had a profound influence
on modern algebraic geometry: parameter spaces and their compactifications. This is
illustrated with the five conic problem; there is also a discussion of the modern example
of Kontsevich spaces, and an application of these.

Applications, II: Further developments

The remainder of the book introduces a series of increasingly advanced topics.
Chapters 9, 10 and 11 deal with a situation ubiquitous in the subject, the intersection
theory of projective bundles, and its applications to subjects such as projective duality
and the enumerative geometry of contact conditions.

Chern classes are defined in terms of the loci where collections of sections of a
vector bundle become dependent. These can be interpreted as loci where maps from
trivial vector bundles drop rank. The Porteous formula, proved and applied in Chapter 12,
generalizes this, expressing the classes of the loci where a map between two general
vector bundles has a given rank or less in terms of the Chern classes of the two bundles
involved.

Advanced topics

Next, we come to some of the developments of the modern theory of intersections. In
Chapter 13, we introduce the notion of “excess” intersections and the excess intersection
formula, one of the subjects that was particularly mysterious in the 19th century but
elucidated by Fulton and MacPherson. This theory makes it possible to describe the
intersection class of two cycles, even if the dimension of their intersection is “too
large.” Central to this development is the idea of specialization to the normal cone, a
construction fundamental to the work of Fulton and MacPherson; we use this to prove
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the famous “key formula” comparing intersections of cycles in a subvariety Z � X to
the intersections of those cycles in X , and use this in turn to give a description of the
Chow ring of a blow-up.

Chapter 14 contains an account of Riemann–Roch formulas, leading up to a descrip-
tion of Grothendieck’s version. The chapter concludes with a number of examples and
applications showing how Grothendieck’s formula can be used.

Appendices

The moving lemma
The literature contains a number of papers proving various parts of the moving

lemma (see below for a statement). We give a careful proof of the first half of the lemma
in Appendix A.

Cohomology and base change
Many results in this book will be proved by constructing an appropriate vector

bundle and computing its Chern classes. The theorem on cohomology and base change
(Theorem B.5) is a key tool in these constructions: We use it to show that, under
appropriate hypotheses, the direct image of a sheaf is a vector bundle. We present a
complete discussion of this important result in Appendix B.

Topology of algebraic varieties
When we treat algebraic varieties over an arbitrary field we use the Zariski topology,

where an open set is defined as the locus where a polynomial function takes nonzero
values. But if the ground field is the complex numbers, we can also use the “classical”
topology: With this topology, a smooth projective variety over C is a compact, complex
manifold, and tools like singular homology can help us study its geometry. Appendix C
explains some of what is known in this direction, and also compares some of the possible
substitutes for the Chow ring.

The Brill–Noether theorem
Appendix D explains an application of enumerative geometry to a problem that is

central in the study of algebraic curves and their moduli spaces: the existence of special
linear series on curves. We give the Kempf/Kleiman–Laksov proof of this theorem,
which draws upon many of the ideas and techniques of the book, plus a new one: the use
of topological cohomology in the context of intersection theory. This is also a wonderful
illustration of the way in which enumerative geometry can be the essential ingredient in
the proof of a purely qualitative result.
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Relation of this book to Intersection theory

Fulton’s book Intersection theory [1984] is a great work. It sets up for the first time
a rigorous framework for intersection theory, and does so in a generality significantly
extending and refining what was known before and laying out an enormous number of
applications. It stands as an encyclopedic reference for the subject.

By contrast, the present volume is intended as a textbook in algebraic geometry, a
second course, in which the classical side of intersection theory is a starting point for
exploring many topics in geometry. We describe the intersection product at the outset,
but do not attempt to give a rigorous proof of its existence, focusing instead on basic
examples. We use concrete problems to motivate the introduction of new tools from all
over algebraic geometry. Our book is not a substitute for Fulton’s; it has a different aim.
We do hope that it will provide the reader with intuition and motivation that will make
reading Fulton’s book easier.

Existence of the intersection product
The moving lemma was for most of a century the foundation on which intersection

theory was supposed to rest. It has two parts:

(a) Given classes ˛; ˇ 2 A.X/ in the Chow group of a smooth, projective variety X ,
we can find representative cycles A and B intersecting generically transversely.

(b) The class of the intersection of these cycles is independent of the choice of A and B .

Using these assertions it is easy to define the intersection product on the Chow
groups of a smooth variety: ˛ˇ is defined to be the class of A \ B , where A and B are
cycles representing the classes ˛ and ˇ and intersecting generically transversely, and
this is how intersection products were defined. The problem is that, while the first part
can be and was proved rigorously, as far as we know there was prior to the publication
of Fulton’s book in 1984 no complete proof of the second part. Of course, part (b)
is an immediate consequence of the existence of a well-defined intersection product
(Fulton [1984, Section 8.3]), and so we refer the reader to Fulton’s book for this key
existence result.

Nonetheless, we feel that part (a) of the moving lemma is useful in shaping one’s
intuition about intersection products. Moreover, given the existence statement, part (a)
of the moving lemma allows simpler and more intuitive proofs of a number of the basic
assertions of the theory, and we will use it in that way. We therefore give a proof of part
(a) in Appendix A, following Severi’s ideas.

Keynote problems

To highlight the sort of problems we will learn to solve, and to motivate the material
we present, we will begin each chapter with some keynote questions.
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Exercises

One of the wonderful things about the subject of enumerative geometry is the
abundance of illuminating examples that are accessible to explicit computation. We
have included many of these as exercises. We have been greatly aided by Francesco
Cavazzani; in particular, he has prepared solutions, which appear on a web site associated
to this book.

Prerequisites, notation and conventions

What you need to know before starting

When it comes to prerequisites, there are two distinct questions: what you should
know to start reading this book; and what you should be prepared to learn along the way.

Of these, the second is by far the more important. In the course of developing and
applying intersection theory, we introduce many key techniques of algebraic geome-
try, such as deformation theory, specialization methods, characteristic classes, Hilbert
schemes, commutative and homological algebra and topological methods. That is not to
say that you need to know these things going in. Just the opposite, in fact: Reading this
book is an occasion to learn them.

So what do you need before starting?

(a) An undergraduate course in classical algebraic geometry or its equivalent, compris-
ing the elementary theory of affine and projective varieties. An invitation to algebraic
geometry (Smith et al. [2000]) contains almost everything required. Other books
that cover this material include Undergraduate algebraic geometry (Reid [1988]),
Introduction to algebraic geometry (Hassett [2007]), Elementary algebraic geom-
etry (Hulek [2012]) and, at a somewhat more advanced level, Algebraic geometry,
I: Complex projective varieties (Mumford [1976]), Basic algebraic geometry, I
(Shafarevich [1994]) and Algebraic geometry: a first course (Harris [1995]). The
last three include much more than we will use here.

(b) An acquaintance with the language of schemes. This would be amply covered by
the first three chapters of The geometry of schemes (Eisenbud and Harris [2000]).

(c) An acquaintance with coherent sheaves and their cohomology. For this, Faisceax
algébriques cohérents (Serre [1955]) remains an excellent source (it is written in
the language of varieties, but applies nearly word-for-word to projective schemes
over a field, the context in which this book is written).

In particular, Algebraic geometry (Hartshorne [1977]) contains much more than you
need to know to get started.
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Language

Throughout this book, a scheme X will be a separated scheme of finite type over
an algebraically closed field k of characteristic 0. (We will occasionally point out the
ways in which the characteristic p situation differs from that of characteristic 0, and
how we might modify our statements and proofs in that setting.) In practice, all the
schemes considered will be quasi-projective. We use the term integral to mean reduced
and irreducible; by a variety we will mean an integral scheme. (The terms “curve” and
“surface,” however, refer to one-dimensional and two-dimensional schemes; in particular,
they are not presumed to be integral.) A subvariety Y � X will be presumed closed
unless otherwise specified. If X is a variety we write k.X/ for the field of rational
functions on X . A sheaf on X will be a coherent sheaf unless otherwise noted.

By a point we mean a closed point. Recall that a locally closed subscheme U of a
scheme X is a scheme that is an open subset of a closed subscheme of X . We use the
term “subscheme” (without any modifier) to mean a closed subscheme, and similarly
for “subvariety.”

A consequence of the finite-type hypothesis is that any subscheme Y of X has a
primary decomposition: locally, we can write the ideal of Y as an irredundant intersection
of primary ideals with distinct associated primes. We can correspondingly write Y
globally as an irredundant union of closed subschemes Yi whose supports are distinct
subvarieties of X . In this expression, the subschemes Yi whose supports are maximal —
corresponding to the minimal primes in the primary decomposition — are uniquely
determined by Y ; they are called the irreducible components of Y . The remaining
subschemes are called embedded components; they are not determined by Y , though
their supports are.

If a family of objects is parametrized by a scheme B , we will say that a “general”
member of the family has a given property P if the set U.P / � B of members of the
family with that property contains an open dense subset of B . When we say that a “very
general” member has this property we will mean that U.P / contains the complement of
a countable union of proper subvarieties of B .

By the projectivization of a vector space V , denoted PV , we will mean the scheme
Proj.SymV �/ (where by SymV we mean the symmetric algebra of V ); this is the space
whose closed points correspond to one-dimensional subspaces of V . This is opposite
to the usage in, for example, Grothendieck and Hartshorne, where the points of PV
correspond to one-dimensional quotients of V (that is, their PV is our PV �), but is in
agreement with Fulton.

IfX and Y � Pn are subvarieties of projective space, we define the join ofX and Y ,
denoted X; Y , to be the closure of the union of lines meeting X and Y at distinct points.
If X D � � Pn is a linear space, this is just the cone over Y with vertex �; if X and Y
are both linear subspaces, this is simply their span.
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There is a one-to-one correspondence between vector bundles on a scheme X and
locally free sheaves on X . We will use the terms interchangeably, generally preferring
“line bundle” and “vector bundle” to “invertible sheaf” and “locally free sheaf.” When
we speak of the fiber of a vector bundle F on X at a point p 2 X , we will mean the
(finite-dimensional) vector space F ˝ �.p/, where �.p/ is the residue field at p.

By a linear system, or linear series, on a schemeX , we will mean a pair D D .L; V /,
where L is a line bundle on X and V � H 0.L/ a vector space of sections. Associating
to a section � 2 V � H 0.L/ its zero locus V.�/, we can also think of a linear system
as a family fV.�/ j � 2 V g of divisors D � X parametrized by the projective space
PV ; in this setting, we will sometimes abuse notation slightly and write D 2 D. By
the dimension of the linear series we mean the dimension of the projective space PV
parametrizing it, that is, dimV � 1. Specifically, a one-dimensional linear system is
called a pencil, a two-dimensional system is called a net and a three-dimensional linear
system is called a web.

We write OX;Y for the local ring of X along Y , and, more generally, if F is a sheaf
of OX -modules we write FY for the corresponding OX;Y -module.

We can identify the Zariski tangent space to the affine space An with An itself. If
X � An is a subscheme, by the affine tangent space to X at a point p we will mean the
affine linear subspace p C TpX � An. If X � Pn is a subscheme, by the projective
tangent space toX at p 2 X , denoted TpX � Pn, we will mean the closure in Pn of the
affine tangent space to X \ An for any open subset An � Pn containing p. Concretely,
if X is the zero locus of polynomials F˛ (that is, X D V.I / � Pn is the subscheme
defined by the ideal I D .fF˛g/ � kŒZ0; : : : ; Zn�), the projective tangent space is the
common zero locus of the linear forms

L˛.Z/ D
@F˛

@Z0
.p/Z0 C � � � C

@F˛

@Zn
.p/Zn:

By a one-parameter family we will always mean a family X ! B with B smooth
and one-dimensional (an open subset of a smooth curve, or spec of a DVR or power
series ring in one variable), with marked point 0 2 B . In this context, “with parameter t”
means t is a local coordinate on the curve, or a generator of the maximal ideal of the
DVR or power series ring.

Basic results on dimension and smoothness

There are a number of theorems in algebraic geometry that we will use repeatedly;
we give the statements and references here. When X is a scheme, by the dimension of X
we mean the Krull dimension, denoted dimX . If X is an irreducible variety and Y � X
is a subvariety, then the codimension of Y in X , written codimX Y (or simply codimY

when X is clear from context), is dimX � dimY ; more generally, if X is any scheme
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and Y is a subvariety, then codimX Y denotes the minimum of

fcodimX 0 Y jX 0 is a reduced irreducible component of Xg:

More on dimension and codimension can be found in Eisenbud [1995].
We will often use the following basic result of commutative algebra:

Theorem 0.1 (Krull’s principal ideal theorem). An ideal generated by n elements in a
Noetherian ring has codimension � n.

See Eisenbud [1995, Theorem 10.2] for a discussion and proof. We will also use the
following important extension of the principal ideal theorem:

Theorem 0.2 (Generalized principal ideal theorem). If f W Y ! X is a morphism of
varieties and X is smooth, then, for any subvariety A � X ,

codimf �1A � codimA:

In particular, if A;B are subvarieties of X , and C is an irreducible component of A\B ,
then codimC � codimAC codimB .

The proof of this result can be reduced to the case of an intersection of two subvari-
eties, one of which is locally a complete intersection, by expressing the inverse image
f �1A as an intersection with the graph �f � X � Y of f . In this form it follows from
Krull’s theorem. The result holds in greater generality; see Serre [2000, Theorem V.3].
Smoothness is necessary for this (Example 2.22).

A module M is said to be of finite length if it has a finite maximal sequence of
submodules. Such a sequence is called a composition series, and we will call the length
of the sequence the length of the module. The following theorem shows this length is
well-defined:

Theorem 0.3 (Jordan–Hölder theorem). A moduleM of finite length over a commutative
local ring R has a maximal sequence of submodules M © M1 © � � � © Mk D 0

Moreover, any two such maximal sequences are isomorphic; that is, they have the same
length and composition factors (up to isomorphism).

Theorem 0.4 (Chinese remainder theorem). A module of finite length over a commutative
ring is the direct sum of its localizations at finitely many maximal ideals.

For discussion and proof see Eisenbud [1995, Chapter 2], especially Theorem 2.13.

Theorem 0.5 (Bertini). If D is a linear system on a variety X in characteristic 0, the
general member of D is smooth outside the base locus of D and the singular locus of X .

Note that applying Bertini repeatedly, we see as well that if D1; : : : ;Dk are general
members of the linear system D then the intersection

T
Di is smooth of dimension

dimX � k away from the base locus of D and the singular locus of X .
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This is the form in which we will usually apply Bertini. But there is another version
that is equivalent in characteristic 0 but allows for an extension to positive characteristic:

Theorem 0.6 (Bertini). If f W X ! Pn is any generically separated morphism from a
smooth, quasi-projective variety X to projective space, then the preimage f �1.H/ of a
general hyperplane H � Pn is smooth.



Chapter 1
Introducing the Chow ring

Keynote Questions
As we indicated in the introduction, we will preface each chapter of this book with

a series of “keynote questions:” examples of the sort of concrete problems that can be
solved using the ideas and techniques introduced in that chapter. In general, the answers
to these questions will be found in the same chapter. In the present case, we will not
develop our roster of examples sufficiently to answer the keynote questions below until
the second chapter; we include them here so that the reader can have some idea of “what
the subject is good for” in advance.

(1) Let F0; F1 and F2 2 kŒX; Y;Z� be three general homogeneous cubic polynomials
in three variables. Up to scalars, how many linear combinations t0F0C t1F1C t2F2
factor as a product of a linear and a quadratic polynomial? (Answer on page 65.)

(2) Let F0; F1; F2 and F3 2 kŒX; Y;Z� be four general homogeneous cubic polynomi-
als in three variables. How many linear combinations t0F0 C t1F1 C t2F2 C t3F3
factor as a product of three linear polynomials? (Answer on page 65.)

(3) If A;B;C are general homogeneous quadratic polynomials in three variables, for
how many triples t D .t0; t1; t2/ do we have

.A.t/; B.t/; C.t// D .t0; t1; t2/‹

(Answer on page 55.)

(4) Let S � P3 be a smooth cubic surface and L � P3 a general line. How many planes
containing L are tangent to S? (Answer on page 50.)

(5) Let L � P3 be a line, and let S and T � P3 be surfaces of degrees s and t
containing L. Suppose that the intersection S \ T is the union of L and a smooth
curve C . What are the degree and genus of C ? (Answer on page 71.)
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1.1 The goal of intersection theory
Though intersection theory has many and surprising applications, in its most basic

form it gives information about the intersection of two subvarieties of a given variety.
An early incarnation, and in some sense the model for all of intersection theory, is the
theorem of Bézout: If plane curves A;B � P2 intersect transversely, then they intersect
in .degA/.degB/ points (see Figure 1.3 on page 18).

If A is a line, this is a special case of Gauss’ fundamental theorem of algebra:
A polynomial f .x/ in one complex variable has degf roots, if the roots are counted
with multiplicity. Late in the 19th century it was understood how to attribute multiplicities
to the intersections of any two plane curves without common components (we shall
describe this in Section 1.3.7 below), so Bézout’s theorem could be extended: The
intersection of two plane curves without common components consists a collection of
points with multiplicities adding up to .degA/.degB/.

In modern geometry we need to understand intersections of subvarieties in much
greater generality. In this book we will mostly consider intersections of arbitrary sub-
varieties in a smooth ambient variety X . The goal of this chapter is to introduce a ring
A.X/, called the Chow ring of X , and to associate to every subscheme A � X a class
ŒA� in A.X/ generalizing the degree of a curve in P2. In Section 1.3.7 we will explain a
far-reaching extension of Bézout’s theorem:

Theorem 1.1 (Bézout’s theorem for dimensionally transverse intersections). If A;B �
X are subvarieties of a smooth variety X and codim.A \ B/ D codimAC codimB ,
then we can associate to each irreducible component Ci of A \ B a positive integer
mCi .A;B/ in such a way that

ŒA�ŒB� D
X

mCi .A;B/ � ŒCi �:

The integer mCi .A;B/ is called the intersection multiplicity of A and B along Ci ;
giving a correct definition in this generality occupied algebraic geometers for most of
the first half of the 20th century.

Though Theorem 1.1 is restricted to the case where the subvarieties A;B meet only
in codimension codimA C codimB (the case of dimensionally proper intersection),
there is a very useful extension to the case where the codimensions of the components of
the intersection are arbitrary; this will be discussed in Chapter 13.

Many important applications involve subvarieties defined as zero loci of sections
of a vector bundle E on a variety X , and this idea has potent generalizations. It turns
out that there is a way of defining classes ci .E/ 2 A.X/, called the Chern classes of
E , and the theory of Chern classes is a pillar of intersection theory. The third and final
section of this chapter takes up a special case of the general theory that is of particular
importance and relatively easy to describe: the first Chern class of a line bundle. This
allows us to introduce the canonical class, a distinguished element of the Chow ring of
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any smooth variety, and show how to calculate it in simple cases. The general theory of
Chern classes will be taken up in Chapter 5.

1.2 The Chow ring
We now turn to the definition and basic properties of the Chow ring. Then we

introduce excision and Mayer–Vietoris theorems that allow us to calculate the Chow
rings of many varieties. Most importantly we describe the functoriality of the Chow ring:
the existence, under suitable circumstances, of pushforward and pullback maps.

Chow groups form a sort of homology theory for quasi-projective varieties; that is,
they are abelian groups associated to a geometric object that are described as a group of
cycles modulo an equivalence relation. In the case of a smooth variety, the intersection
product makes the Chow groups into a graded ring, the Chow ring. This is analogous to
the ring structure on the homology of smooth compact manifolds that can be imported,
using Poincaré duality, from the natural ring structure on cohomology.

Throughout this book we will work over an algebraically closed ground field k of
characteristic 0. Virtually everything we do could be formulated over arbitrary fields
(though not every statement remains true in characteristic p), and occasionally we
comment on how one would do this.

1.2.1 Cycles

Let X be any algebraic variety (or, more generally, scheme). The group of cycles on
X , denoted Z.X/, is the free abelian group generated by the set of subvarieties (reduced
irreducible subschemes) ofX . The groupZ.X/ is graded by dimension: we writeZk.X/
for the group of cycles that are formal linear combinations of subvarieties of dimension k
(these are called k-cycles), so that Z.X/ D

L
k Zk.X/. A cycle Z D

P
niYi , where

the Yi are subvarieties, is effective if the coefficients ni are all nonnegative. A divisor
(sometimes called a Weil divisor) is an .n � 1/-cycle on a pure n-dimensional scheme.
It follows from the definition that Z.X/ D Z.Xred/; that is, Z.X/ is insensitive to
whatever nonreduced structure X may have.

To any closed subscheme Y � X we associate an effective cycle hY i: If Y � X is
a subscheme, and Y1; : : : ; Ys are the irreducible components of the reduced scheme Yred,
then, because our schemes are Noetherian, each local ring OY;Yi has a finite composition
series. Writing li for its length, which is well-defined by the Jordan–Hölder theorem
(Theorem 0.3), we define the cycle hY i to be the formal combination

P
liYi . (The

coefficient li is called the multiplicity of the scheme Y along the irreducible component
Yi , and written multYi .Y /; we will discuss this notion, and its relation to the notion of
intersection multiplicity, in Section 1.3.8.)

In this sense cycles may be viewed as coarse approximations to subschemes.
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X

!0

!1

!0

!1

P10 1

Figure 1.1 Rational equivalence between two cycles !0 and !1 on X .

1.2.2 Rational equivalence and the Chow group

The Chow group of X is the group of cycles of X modulo rational equivalence.
Informally, two cycles A0; A1 2 Z.X/ are rationally equivalent if there is a rationally
parametrized family of cycles interpolating between them — that is, a cycle on P1 �X
whose restrictions to two fibers ft0g � X and ft1g � X are A0 and A1. Here is the
formal definition:

Definition 1.2. Let Rat.X/ � Z.X/ be the subgroup generated by differences of
the form

hˆ \ .ft0g �X/i � hˆ \ .ft1g �X/i;

where t0; t1 2 P1 and ˆ is a subvariety of P1 � X not contained in any fiber ftg � X .
We say that two cycles are rationally equivalent if their difference is in Rat.X/, and we
say that two subschemes are rationally equivalent if their associated cycles are rationally
equivalent — see Figures 1.1 and 1.2.

Definition 1.3. The Chow group of X is the quotient

A.X/ D Z.X/=Rat.X/;

the group of rational equivalence classes of cycles on X . If Y 2 Z.X/ is a cycle, we
write ŒY � 2 A.X/ for its equivalence class; if Y � X is a subscheme, we abuse notation
slightly and denote simply by ŒY � the class of the cycle hY i associated to Y .

It follows from the principal ideal theorem (Theorem 0.1) that the Chow group is
graded by dimension:
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ˆ
X � t0 X � t1

Figure 1.2 Rational equivalence between a hyperbola and the union of two lines in P2.

Proposition 1.4. If X is a scheme then the Chow group of X is graded by dimension;
that is,

A.X/ D
M

Ak.X/;

with Ak.X/ the group of rational equivalence classes of k-cycles.

Proof: If ˆ � P1 � X is an irreducible variety not contained in a fiber over X then,
in an appropriate affine open set ˆ \ .A1 � X/ � ˆ, the scheme ˆ \ .ft0g � X/
is defined by the vanishing of the single nonzerodivisor t � t0. It follows that the
components of this intersection are all of codimension exactly 1 in ˆ, and similarly for
ˆ \ .ft1g �X/. Thus all the varieties involved in the rational equivalence defined by ˆ
have the same dimension.

When X is equidimensional we may define the codimension of a subvariety Y � X
as dimX�dimY , and it follows that we may also grade the Chow group by codimension.
When X is also smooth, we will write Ac.X/ for the group AdimX�c , and think of it as
the group of codimension-c cycles, modulo rational equivalence. (It would occasionally
be convenient to adopt the same notation when X is singular, but this would conflict
with established convention — see the discussion in Section 2.5 below.)

1.2.3 Transversality and the Chow ring

We said at the outset that much of what we hope to do in intersection theory is
modeled on the classical Bézout theorem: that if plane curves A;B � P2 of degrees
d and e intersect transversely then they intersect in de points. Two things about this
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A B A B

Figure 1.3 Two conics meet in four points.

result are striking. First, the cardinality of the intersection does not depend on the choice
of curves, beyond knowing their degrees and that they meet transversely. Given this
invariance, the theorem follows from the obvious fact that a union of d general lines
meets a union of e general lines in de points (Figure 1.3).

Second, the answer, de, is a product, suggesting that some sort of ring structure is
present. A great deal of the development of algebraic geometry over the past 200 years
is bound up in the attempt to understand, generalize and apply these ideas, leading to
precise notions of the sense in which intersection of subvarieties resembles multiplication.
What makes the Chow groups useful is that, under good circumstances, the rational
equivalence class of the intersection of two subvarieties A;B depends only on the
rational equivalence classes of A and B , and this gives a product structure on the Chow
groups of a smooth variety.

To make this statement precise we need some definitions. We say that subvarieties
A;B of a variety X intersect transversely at a point p if A;B and X are all smooth at p
and the tangent spaces to A and B at p together span the tangent space to X ; that is,

TpAC TpB D TpX;

or equivalently

codim.TpA \ TpB/ D codimTpAC codimTpB:

We will say that subvarieties A;B � X are generically transverse, or that they
intersect generically transversely, if they meet transversely at a general point of each
component C of A \ B . The terminology is justified by the fact that the set of points of
A \ B at which A and B are transverse is open. We extend the terminology to cycles
by saying that two cycles A D

P
niAi and B D

P
mjBj are generically transverse if

each Ai is generically transverse to each Bj .
More generally, we will say subvarieties Ai � X intersect transversely at a smooth

point p 2 X if p is a smooth point on each Ai and codim
�T

TpAi
�
D
P

codimTpAi ,
and we say that they intersect generically transversely if there is a dense set of points in
the intersection at which they are transverse.

As an example, if A and B have complementary dimensions in X (that is, if
dimAC dimB D dimX), then A and B are generically transverse if and only if they
are transverse everywhere; that is, their intersection consists of finitely many points and
they intersect transversely at each of them. (In this case we will accordingly drop the
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modifier “generically.”) If codimAC codimB > dimX , then A and B are generically
transverse if and only if they are disjoint.

Theorem–Definition 1.5. If X is a smooth quasi-projective variety, then there is a
unique product structure on A.X/ satisfying the condition:

(�) If two subvarieties A;B of X are generically transverse, then

ŒA�ŒB� D ŒA \ B�:

This structure makes

A.X/ D

dimXM
cD0

Ac.X/

into an associative, commutative ring, graded by codimension, called the Chow ring
of X .

Fulton [1984] gave a direct construction of the product of cycles on any smooth
variety over any field, and proved that the products of rationally equivalent cycles are
rationally equivalent. In a setting where the first half of the moving lemma (Theorem 1.6
below) holds, such as a smooth, quasi-projective variety over an algebraically closed
field, this product is characterized by the condition .�/ of Theorem–Definition 1.5.

Even if X is smooth and A;B are subvarieties such that every component of A \ B
has the expected codimension codimAC codimB , we cannot define ŒA�ŒB� 2 A.X/ to
be ŒA \ B�, because the class ŒA \ B� depends on more than the rational equivalence
classes of A and B . This problem can be solved by assigning intersection multiplicities
to the components; see Section 1.3.7.

1.2.4 The moving lemma

Historically, the proof of Theorem–Definition 1.5 was based on the moving lemma.
This has two parts:

Theorem 1.6 (Moving lemma). Let X be a smooth quasi-projective variety.

(a) For every ˛; ˇ 2 A.X/ there are generically transverse cycles A;B 2 Z.X/ with
ŒA� D ˛ and ŒB� D ˇ.

(b) The class ŒA \ B� is independent of the choice of such cycles A and B .

A proof of the first part is given in Appendix A; this is sufficient to establish
the uniqueness of a ring structure on A.X/ satisfying the condition (�) of Theorem–
Definition 1.5.

The second part, which historically was used to prove the existence portion of
Theorem–Definition 1.5, is more problematic; as far as we know, no complete proof
existed prior to the publication of Fulton [1984].
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L0L

C

1

P2

Figure 1.4 The cycle L0 can be “moved” to the rationally equivalent cycle L1, which
is transverse to the given subvariety C .

The first half of the moving lemma is useful in shaping our understanding of
intersection products and occasionally as a tool in the proof of assertions about them,
and we will refer to it when relevant.

On a singular variety the moving lemma may fail: For example, if X � P3 is a
quadric cone then any two cycles representing the class of a line of X meet at the origin,
a singular point of X , and thus cannot be generically transverse (see Exercise 1.36).
Further, the hypothesis of smoothness in Theorem 1.5 cannot be avoided: We will also
see in Section 2.5 examples of varieties X where no intersection product satisfying the
basic condition (�) of Theorem 1.5 can be defined. The news is not uniformly negative:
Intersection products can be defined on singular varieties if we impose some restrictions
on the classes involved, as we will see in Proposition 1.31.

Kleiman’s transversality theorem
There is one circumstance in which the first half of the moving lemma is relatively

easy: when a sufficiently large group of automorphisms acts on X , we can use automor-
phisms to move cycles to make them transverse. Here is a special case of a result of
Kleiman:

Theorem 1.7 (Kleiman’s theorem in characteristic 0). Suppose that an algebraic group
G acts transitively on a variety X over an algebraically closed field of characteristic 0,
and that A � X is a subvariety.

(a) If B � X is another subvariety, then there is an open dense set of g 2 G such that
gA is generically transverse to B .

(b) More generally, if ' W Y ! X is a morphism of varieties, then for general g 2 G
the preimage '�1.gA/ is generically reduced and of the same codimension as A.

(c) If G is affine, then ŒgA� D ŒA� 2 A.X/ for any g 2 G.

Proof: (a) This is the special case Y D B of (b).

(b) Let the dimensions of X , A, Y and G be n, a, b and m respectively. If x 2 X , then
the map G ! X W g 7! gx is surjective and its fibers are the cosets of the stabilizer of x
in G. Since all these fibers have the same dimension, this dimension must be m � n. Set

� D f.x; y; g/ 2 A � Y �G jgx D '.y/g:
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Because G acts transitively on X , the projection � W � ! A � Y is surjective. Its fibers
are the cosets of stabilizers of points in X , and hence have dimension m � n. It follows
that � has dimension

dim� D aC b Cm � n:

On the other hand, the fiber over g of the projection � ! G is isomorphic to '�1.gA/.
Thus either this intersection is empty for general g, or else it has dimension aC b � n,
as required.

Since X is a variety it is smooth at a general point. Since G acts transitively, all
points of X look alike, so X is smooth. Since any algebraic group in characteristic 0 is
smooth (see for example Lecture 25 of Mumford [1966]), the fibers of the projection to
A � Y are also smooth, so � itself is smooth over Asm � Ysm. Since field extensions in
characteristic 0 are separable, the projection .� n�sing/! G is smooth over a nonempty
open set of G, where �sing is the singular locus of � . That is, the general fiber of the pro-
jection of � to G is smooth outside �sing. If the projection of �sing to G is not dominant,
then '�1.gA/ is smooth for general g.

To complete the proof of generic transversality, we may assume that the projection
�sing ! G is dominant. Since G is smooth, the principal ideal theorem shows that
every component of every fiber of � ! G has codimension � dimG, and thus every
component of the general fiber has codimension exactly dimG in � . Since �sing ! G

is dominant, its general fiber has dimension dim�sing � dimG < dim� � dimG, so
no component of a general fiber can be contained in �sing. Thus '�1.gA/ is generically
reduced for general g 2 G.

(c) We will prove this part only for the case where G is a product of copies of GLn,
as this is the only case we will use. For the general result, see Theorem 18.2 of Borel
[1991].

In this case G is an open set in a product M of vector spaces of matrices. Let L be
the line joining 1 to g in M . The subvariety

Z D f.g; x/ 2 .G \ L/ �X jg�1x 2 Ag

gives a rational equivalence between A and gA.

The conclusion fails in positive characteristic, even for Grassmannians; examples
can be found in Kleiman [1974] and Roberts [1972b]. However, Kleiman showed that
the conclusion holds in general under the stronger hypothesis that G acts transitively
on nonzero tangent vectors to X (each tangent space to the Grassmannian is naturally
identified with a space of homomorphisms — see Section 3.2.4 — and the automor-
phisms preserve the ranks of these homomorphisms, so they do not act transitively on
tangent vectors).
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A A
gA

a

b

c

d

ŒA�2 D ŒA� ŒgA� D ŒaC b C c C d�

Figure 1.5 The cycle A meets a general translate of itself generically transversely.

1.3 Some techniques for computing the
Chow ring

1.3.1 The fundamental class

If X is a scheme, then the fundamental class of X is ŒX� 2 A.X/. It is always
nonzero. We can immediately prove this and a little more, and these first results suffice
to compute the Chow ring of a zero-dimensional scheme:

Proposition 1.8. Let X be a scheme.

(a) A.X/ D A.Xred/.
(b) If X is irreducible of dimension k, then Ak.X/ Š Z and is generated by the

fundamental class of X . More generally, if the irreducible components of X are
X1; : : : ; Xm, then the classes ŒXi � generate a free abelian subgroup of rank m
in A.X/.

Proof: (a) Since both cycles and rational equivalences are generated by varieties we
have Z.X/ D Z.Xred/ and Rat.X/ D Rat.Xred/.

(b) By definition the ŒXi � are among the generators ofA.X/. Further, Rat.X/ is generated
by varieties in P1 �X , each of which is contained in some P1 �Xi .

Example 1.9 (Zero-dimensional schemes). From Proposition 1.8 it follows that the
Chow group of a zero-dimensional scheme is the free abelian group on the components.

1.3.2 Rational equivalence via divisors

The next simplest case is that of curves, and it is not hard to see that the Chow group
of 0-cycles on a curve is the divisor class group.
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z D
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0
�! 1

x

z

Div.y=x/ D h1i � h0i

Figure 1.6 Graph of the rational function z D y=x on the open set y D 1 in P1,
showing that ŒV .y/� � ŒV .x/� D 0 in A.P1/.

More generally, for any variety X we can express the group Rat.X/ of cycles
rationally equivalent to 0 in terms of divisor classes: First, suppose that X is an affine
variety. If f 2 OX is a function on X other than 0, then by Krull’s principal ideal
theorem (Theorem 0.1) the irreducible components of the subscheme defined by f are
all of codimension 1, so the cycle defined by this subscheme is a divisor; we call it the
divisor of f , denoted Div.f /. If Y is any irreducible codimension-1 subscheme of X ,
we write ordY .f / for the order of vanishing of f along Y , so we have

Div.f / D
X

Y�X irreducible

ordY .f /hY i:

If f; g are functions on X and ˛ D f=g, then we define the divisor Div.˛/ D Div.f =g/
to be Div.f / � Div.g/; see Figure 1.6. This is well-defined because ordY .ab/ D
ordY .a/ C ordY .b/ for any functions defined on an open set. We denote by Div0.˛/
and Div1.˛/ the positive and negative parts of Div.˛/— in other words, the divisor of
zeros of ˛ and the divisor of poles of ˛, respectively.

We extend the definition of the divisor associated to a rational function to varieties
X that are not affine as follows. The field of rational functions on X is the same as the
field of rational functions on any open affine subset U of X , so if ˛ is a rational function
onX then we get a divisor Div.˛jU / on each open subset U � X by restricting ˛. These
agree on overlaps, and thus define a divisor Div.˛/ on X itself. We will see that the
association ˛ 7! Div.˛/ is a homomorphism from the multiplicative group of nonzero
rational functions to the additive group of divisors on X .

Proposition 1.10. If X is any scheme, then the group Rat.X/ � Z.X/ is generated by
all divisors of rational functions on all subvarieties ofX . In particular, ifX is irreducible
of dimension n, then An�1.X/ is equal to the divisor class group of X .

See Fulton [1984, Proposition 1.6] for the proof.
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Example 1.11. It follows from Proposition 1.10 that two 0-cycles on a curve C (by
which we mean here a one-dimensional variety) are rationally equivalent if and only
if they differ by the divisor of a rational function. In particular, the cycles associated
to two points on C are rationally equivalent if and only if C is birational to P1, the
isomorphism being given by a rational function that defines the rational equivalence.

Example 1.12. If X is an affine variety whose coordinate ring R does not have unique
factorization, then there may not be a “best” way of choosing an expression of a rational
function ˛ on X as a fraction, and Div0.˛/ need not be the same thing as Div.f / for any
one representation ˛ D f=g of ˛. For example, on the cone Q D V.XZ � Y 2/ � A3,
the rational function ˛ D X=Y has divisor L �M , where L is the line X D Y D 0

and M the line Y D Z D 0; but, as the reader can check, ˛ cannot be written in any
neighborhood of the vertex .0; 0; 0/ of Q as a ratio ˛ D f=g with Div.f / D L and
Div.g/ DM .

1.3.3 Affine space

Affine spaces are basic building blocks for many rational varieties, such as projective
spaces and Grassmannians, and it is easy to compute their Chow groups directly:

Proposition 1.13. A.An/ D Z � ŒAn�.

Proof: Let Y � An be a proper subvariety, and choose coordinates z D z1; : : : ; zn on
An so that the origin does not lie in Y . We let

W ı D f.t; tz/ � .A1 n f0g/ � An j z 2 Y g D V.ff .z=t/ jf .z/ vanishes on Y g/:

The fiber of W ı over a point t 2 A1 n f0g is tY , that is, the image of Y under the
automorphism of An given by multiplication by t . Let W � P1 � An be the closure
of W ı in P1 � An. Note that W ı, being the image of .A1 n 0/ � Y , is irreducible, and
hence so is W .

The fiber of W over the point t D 1 is just Y . On the other hand, since the origin
in An does not lie in Y there is some polynomial g.z/ that vanishes on Y and has a
nonzero constant term c. The function G.t; z/ D g.z=t/ on .A1 n 0/�An then extends
to a regular function on .P1 n 0/ � An with constant value c on the fiber 1 � An.
Thus the fiber of W over t D 1 2 P1 is empty, establishing the equivalence Y � 0
(see Figure 1.7).

See Section 3.5.2 for a more systematic treatment of this idea. If you are curious
about the fiber of W over t D 0, see Exercise 1.34.

1.3.4 Mayer–Vietoris and excision

We will use the next proposition in conjunction with Proposition 1.13 to find
generators for the Chow groups of projective spaces and Grassmannians.
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Figure 1.7 Scalar multiplication gives a rational equivalence between an affine variety
not containing the origin and the empty set.

Proposition 1.10 makes it obvious that, if Y � X is a closed subscheme, then the
identification of the cycles on P1 � Y as cycles on P1 � X induces a map Rat.Y /!
Rat.X/, and thus a map A.Y /! A.X/ (this is a special case of “proper pushforward;”
see Section 1.3.6). Further, the intersection of a subvariety of X with the open set
U D X nY is a subvariety ofU (possibly empty), so there is a restriction homomorphism
Z.X/! Z.U /. The rational equivalences restrict too, so we get a homomorphism of
Chow groups A.X/! A.U / (this is a special case of “flat pullback;” see Section 1.3.6.)

Proposition 1.14. Let X be a scheme.

(a) (Mayer–Vietoris) If X1; X2 are closed subschemes of X , then there is a right exact
sequence

A.X1 \X2/ �! A.X1/˚ A.X2/ �! A.X1 [X2/ �! 0:

(b) (Excision) If Y � X is a closed subscheme and U D X n Y is its complement, then
the inclusion and restriction maps of cycles give a right exact sequence

A.Y / �! A.X/ �! A.U / �! 0:

If X is smooth, then the map A.X/! A.U / is a ring homomorphism.

Before starting the proof, we note that we can restate the definition of the Chow
group by saying that there is a right exact sequence

Z.P1 �X/ �! Z.X/ �! A.X/ �! 0;

where the left-hand map takes the any subvariety ˆ � P1 �X to 0 if ˆ is contained in
a fiber, and otherwise to

hˆ \ .ft0g �X/i � hˆ \ .ft1g �X/i:
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Proof of Proposition 1.14: (b) There is a commutative diagram

0 - Z.Y � P1/ - Z.X � P1/ - Z.U � P1/ - 0

0 - Z.Y /

@Y
?

- Z.X/

@X
?

- Z.U /

@U
?

- 0

A.Y /
?

- A.X/
?

- A.U /
?

0
?

0
?

0
?

where the map Z.Y /! Z.X/ takes the class ŒA� 2 Z.Y /, where A is a subvariety of
Y , to ŒA� itself, considered as a class in X , and similarly for Z.Y � P1/! Z.X � P1/.
The map Z.X/ ! Z.U / takes each free generator ŒA� to the generator ŒA \ U �, and
similarly for Z.X � P1/ ! Z.U � P1/. The two middle rows and all three columns
are evidently exact. A diagram chase shows that the map A.X/! A.U / is surjective,
and the bottom row of the diagram above is right exact, yielding part (b).

(a) Let Y D X1 \ X2. We may assume X D X1 [ X2. We may argue exactly as in
part (b) from the diagram

0 - Z.Y � P1/ - Z.X1 � P1/˚Z.X2 � P1/ - Z.X � P1/ - 0

0 - Z.Y /

@
?

- Z.X1/˚Z.X2/

@˚ @
?

- Z.X/

@
?

- 0

A.Y /
?

- A.X1/˚ A.X2/
?

- A.X/
?

- 0

where, for example, the map Z.Y /! Z.X1/˚Z.X2/ takes a generator ŒA� 2 Z.Y / to
.ŒA�;�ŒA�/ 2 Z.X1/˚Z.X2/ and the map Z.X1/˚Z.X2/! Z.X/ is addition.

The map A.Y /! A.X/ of part (b) sends the class ŒZ� 2 A.Y / of a subvarietyZ of
Y to the class ŒZ� 2 A.X/ of the same subvariety, now viewed as a subvariety of X . As
we will see in Section 1.3.6, this is a special case of the pushforward map f� W A.Y /!
A.X/ associated to any proper map f W Y ! X . The map A.X/! A.U /, sending the
class ŒZ� 2 A.X/ of a subvariety of X to the class ŒZ \ U � 2 A.U / of its intersection
with U , is a special case of a pullback map, also described in Section 1.3.6.

Corollary 1.15. If U � An is a nonempty open set, then A.U / D An.U / D Z � ŒU �.

1.3.5 Affine stratifications

In general we will work with very partial knowledge of the Chow groups of a variety,
but when X admits an affine stratification — a special kind of decomposition into a
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union of affine spaces — we can know them completely. This will help us compute the
Chow groups of projective space, Grassmannians, and many other interesting rational
varieties.

We say that a scheme X is stratified by a finite collection of irreducible, locally
closed subschemes Ui if X is a disjoint union of the Ui and, in addition, the closure of
any Ui is a union of Uj — in other words, if Ui meets Uj , then Ui contains Uj . The sets
Ui are called the strata of the stratification, while the closures Yi WD Ui are called the
closed strata. (If we want to emphasize the distinction, we will sometimes refer to the
strata Ui as the open strata of the stratification, even though they are not open in X .)
The stratification can be recovered from the closed strata Yi : we have

Ui D Yi n
[
Yj¨Yi

Yj :

Definition 1.16. We say that a stratification of X with strata Ui is:

� affine if each open stratum is isomorphic to some Ak; and
� quasi-affine if each Ui is isomorphic to an open subset of some Ak .

For example, a complete flag of subspaces P0 � P1 � � � � � Pn gives an affine
stratification of projective space; the closed strata are just the Pi and the open strata are
affine spaces Ui D Pi n Pi�1 Š Ai .

Proposition 1.17. If a schemeX has a quasi-affine stratification, thenA.X/ is generated
by the classes of the closed strata.

Proof of Proposition 1.17: We will induct on the number of strata Ui . If this number
is 1 then the assertion is Corollary 1.15.

Let U0 be a minimal stratum. Since the closure of U0 is a union of strata, U0 must
already be closed. It follows that U WD X n U0 is stratified by the strata other than U0.
By induction, A.U / is generated by the classes of the closures of these strata, and, by
Corollary 1.15, A.U0/ is generated by ŒU0�. By excision (part (b) of Proposition 1.14)
the sequence

Z � ŒU0� D A.U0/ �! A.X/ �! A.X n U0/ �! 0

is right exact. Since the classes in A.U / of the closed strata in U come from the classes
of (the same) closed strata in X , it follows that A.X/ is generated by the classes of the
closed strata.

In general, the classes of the strata in a quasi-affine stratification of a scheme X may
be zero in A.X/; for example, the affine line, with A.A1/ D Z, also has a quasi-affine
stratification consisting of a single point and its complement, and we have already seen
that the class of a point is 0. But in the case of an affine stratification, the classes are not
only nonzero, they are independent:



28 Chapter 1 Introducing the Chow ring

Theorem 1.18 (Totaro [2014]). The classes of the strata in an affine stratification of a
scheme X form a basis of A.X/.

We will often use results that are consequences of this deep theorem, although in
our cases much more elementary proofs are available, as we shall see.

1.3.6 Functoriality

A key to working with Chow groups is to understand how they behave with respect
to morphisms between varieties. To know what to expect, think of the analogous situation
with homology and cohomology. A smooth complex projective variety of (complex)
dimension n is a compact oriented 2n-manifold, so H2m.X;Z/ can be identified canoni-
cally with H 2n�2m.X;Z/ (singular homology and cohomology). If we think of A.X/
as being analogous toH�.X;Z/, then we should expect Am.X/ to be a covariant functor
from smooth projective varieties to groups, via some sort of pushforward maps preserv-
ing dimension. If we think of A.X/ as analogous to H�.X;Z/, then we should expect
A.X/ to be a contravariant functor from smooth projective varieties to rings, via some
sort of pullback maps preserving codimension. Both these expectations are realized.

Proper pushforward
If f W Y ! X is a proper map of schemes, then the image of a subvariety A � Y is

a subvariety f .A/ � X . One might at first guess that the pushforward could be defined
by sending the class of A to the class of f .A/, and this would not be far off the mark.
But this would not preserve rational equivalence (an example is pictured in Figure 1.8).
Rather, we must take multiplicities into account.

If A � Y is a subvariety and dimA D dimf .A/, then f jA W A ! f .A/ is
generically finite, in the sense that the field of rational functions k.A/ is a finite extension
of the field k.f .A// (this follows because they are both finitely generated fields, of the
same transcendence degree dimA over the ground field). Geometrically the condition can
be expressed by saying that, for a general point x 2 f .A/, the preimage y WD f j�1A .x/

in A is a finite scheme. In this case the degree n WD Œk.A/ W k.f .A//� of the extension
of rational function fields is equal to the degree of y over x for a dense open subset of
x 2 f .A/, and this common value n is called the degree of the covering of f .A/ by A.
We must count f .A/ with multiplicity n in the pushforward cycle:

Definition 1.19 (Pushforward for cycles). Let f W Y ! X be a proper map of schemes,
and let A � Y be a subvariety.

(a) If f .A/ has strictly lower dimension than A, then we set f�hAi D 0.
(b) If dimf .A/ D dimA and f jA has degree n, then we set f�hAi D n � hf .A/i.
(c) We extend f� to all cycles on Y by linearity; that is, for any collection of subvarieties

Ai � Y , we set f�
�P

mi hAi i
�
D
P
mif�hAi i.
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X 0

a0 C b0 C c0 � 3d 0 � 2g0 C h0

Figure 1.8 Pushforwards of equivalent cycles are equivalent.

With this definition, the pushforward of cycles preserves rational equivalence:

Theorem 1.20. If f W Y ! X is a proper map of schemes, then the map f� W Z.Y /!
Z.X/ defined above induces a map of groups f� W Ak.Y /! Ak.X/ for each k.

For a proof see Fulton [1984, Section 1.4].

It is often hard to prove that a given class in A.X/ is nonzero, but the fact that the
pushforward map is well-defined gives us a start:

Proposition 1.21. If X is proper over Spec k, then there is a unique map deg W A.X/!
Z taking the class Œp� of each closed point p 2 X to 1 and vanishing on the class of any
cycle of pure dimension > 0.

As stated, Proposition 1.21 uses our standing hypothesis that the ground field is
algebraically closed. Without this restriction we would have to count each (closed) point
by the degree of its residue field extension over the ground field.

We will typically use this proposition together with the intersection product: If A is
a k-dimensional subvariety of a smooth projective variety X and B is a k-codimensional
subvariety of X such that A \ B is finite and nonempty, then the map

Ak.X/! Z W ŒZ� 7! deg.ŒZ�ŒB�/

sends ŒA� to a nonzero integer. Thus no integer multiple mŒA� of the class A could be 0.

Pullback
We next turn to the pullback. Let f W Y ! X be a morphism and A � X a

subvariety of codimension c. A good pullback map f � W Z.X/ ! Z.Y / on cycles
should preserve rational equivalence, and, in the nicest case, for example when f �1.A/
is generically reduced of codimension c, it should be geometric, in the sense that
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C

ŒP � D f �ŒL1�

f

L2

L1
p

f�ŒC � D 2ŒL2�

Figure 1.9 2Œp� D f�.ŒP �ŒC �/ D f�.Œf
�L1�ŒC �/ D ŒL1�f�ŒC � D ŒL1�Œ2L2�.

f �hAi D hf �1.A/i. This equality does not hold for all cycles, but does hold when A
is a Cohen–Macaulay variety. (Recall that a scheme is said to be Cohen–Macaulay if
all its local rings are Cohen–Macaulay. For a treatment of Cohen–Macaulay rings see
Eisenbud [1995, Chapter 18].)

We start with a definition:

Definition 1.22. Let f W Y ! X be a morphism of smooth varieties. We say a subvariety
A � X is generically transverse to f if the preimage f �1.A/ is generically reduced
and codimY .f �1.A// D codimX .A/.

With that said, we have the following fundamental theorem:

Theorem 1.23. Let f W Y ! X be a map of smooth quasi-projective varieties.

(a) There is a unique map of groups f � W Ac.X/! Ac.Y / such that whenever A � X
is a subvariety generically transverse to f we have

f �.ŒA�/ D Œf �1.A/�:

This equality is also true without the hypothesis of generic transversality as long
as codimY .f �1.A// D codimX .A/ and A is Cohen–Macaulay. The map f � is a
ring homomorphism, and makes A into a contravariant functor from the category of
smooth projective varieties to the category of graded rings.

(b) (Push-pull formula) The map f� W A.Y /! A.X/ is a map of graded modules over
the graded ring A.X/. More explicitly, if ˛ 2 Ak.X/ and ˇ 2 Al.Y /, then

f�.f
�˛ � ˇ/ D ˛ � f�ˇ 2 Al�k.X/:

The last statement of this theorem is the result of applying appropriate multiplicities
to the set-theoretic equality f .f �1.A/ \ B/ D A \ f .B/; see Figure 1.9.
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One simple case of a projective morphism is the inclusion map from a closed
subvariety i W Y � X . When X and Y are smooth, our definitions of intersections and
pullbacks make it clear that, if A is any subvariety of X , then ŒA�ŒY � is represented
by the same cycle as i�.ŒA�/— except that these are considered as classes in different
varieties. More precisely, we can write

ŒA�ŒY � D i�.i
�ŒA�/:

In this case the extra content of Theorem 1.23 is that this cycle is well-defined as a
cycle on Y , not only as a cycle on X . Fulton [1984, Section 8.1] showed that it is even
well-defined as a class on X \ Y , and, more generally, he proved the existence of such a
refined version of the pullback under a proper, locally complete intersection morphism
(of which a map of smooth projective varieties is an example).

The uniqueness statement in Theorem 1.23 follows at once upon combining the
moving lemma with the following:

Theorem 1.24. If f W Y ! X is a morphism of smooth quasi-projective varieties, then
there is a finite collection of subvarieties Xi � X such that if a subvariety A � X is
generically transverse to each Xi then A is generically transverse to f .

(See Theorem A.6.) Note that this result depends on characteristic 0; it fails when f
is not generically separable.

Pullback in the flat case
The flat case is simpler than the projective case for two reasons: first, the preimage

of a subvariety of codimension k is always of codimension k; second, rational functions
on the target pull back to rational functions on the source. We will use the flat case to
analyze maps of affine space bundles.

Theorem 1.25. Let f W Y ! X be a flat map of schemes. The map f � W A.X/! A.Y /

defined on cycles by

f �.hAi/ WD hf �1.A/i for every subvariety A � X

preserves rational equivalence, and thus induces a map of Chow groups preserving the
grading by codimension.

When X and Y are smooth and f is flat, the two pullback maps agree, as one sees
at once from the uniqueness statement in Theorem 1.23.

1.3.7 Dimensional transversality and multiplicities

When two subvarieties A;B of a smooth variety X meet generically transversely,
then we have

ŒA�ŒB� D ŒA \ B� 2 A.X/: (�)
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Does this formula hold more generally? Clearly it cannot hold unless the intersection
A \ B has the expected dimension.

Theorem 1.26. Let A;B � X be subvarieties of a smooth variety X such that every
irreducible component C of the intersection A \ B has codimension codimC D

codimAC codimB . For each such component C there is a positive integer mC .A;B/,
called the intersection multiplicity of A and B along C , such that:

(a) ŒA�ŒB� D
X

mC .A;B/ŒC � 2 A.X/:

(b) mC .A;B/ D 1 if and only if A and B intersect transversely at a general point of C .
(c) In case A and B are Cohen–Macaulay at a general point of C , then mC .A;B/ is

the multiplicity of the component of the scheme A\B supported on C . In particular,
if A and B are everywhere Cohen–Macaulay, then

ŒA�ŒB� D ŒA \ B�:

(d) mC .A;B/ depends only on the local structure of A and B at a general point of C .

For further discussion of this result see Hartshorne [1977, Appendix A], and for
a full treatment see Fulton [1984, Chapter 7]. In view of Theorem 1.26, we make a
definition:

Definition 1.27. Two subschemes A and B of a variety X are dimensionally transverse
if for every irreducible component C of A\B we have codimC D codimACcodimB .

The reader should be aware that what we call “dimensionally transverse” is often
called “proper” in the literature. We prefer “dimensionally transverse” since it suggests
the meaning (and “proper” means so many different things!).

Recall that if X is smooth and C is a component of A \ B , then by Theorem 0.2
we have codimC � codimAC codimB , so in this case the condition of dimensional
transversality is that A and B intersect in the smallest possible dimension. (But note that
A \ B may also be empty. In this case too, A and B are transverse.)

The Cohen–Macaulay hypothesis in part (c) is necessary: in Example 2.6 we will
see a case where the intersection multiplicity is not given by the multiplicities of the
components of the intersection scheme.

Given that we sometimes have ŒA\B� ¤ ŒA�ŒB�, it is natural to look for a correction
term. This was found by Jean-Pierre Serre; we will describe it in Theorem 2.7, following
Example 2.6.

Remarkably, it is often possible to describe the intersection product ŒA�ŒB� of the
classes of subvarieties A;B � X geometrically even when they are not dimensionally
transverse. See Chapter 13.

Just as we say that cycles A D
P
miAi and B D

P
njBj are generically trans-

verse if Ai and Bj are generically transverse for all i; j , we say that A and B are
dimensionally transverse if Ai and Bj are dimensionally transverse for every i; j .
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The following explains the amount by which generic transversality is stronger than
dimensional transversality.

Proposition 1.28. Subschemes A and B of a variety X are generically transverse if
and only if they are dimensionally transverse and each irreducible component of A \ B
contains a point where X is smooth and A \ B is reduced.

In particular, the proposition shows that, if X is smooth and A;B are dimensionally
transverse subschemes that meet in a subvariety C , then A and B are generically
transverse along C . The hypothesis that X is smooth cannot be dropped: For example,
in the coordinate ring kŒs2; st; t2� the ideal .s2/ defines a double line through the vertex
that meets the reduced line defined by .st; t2/ in a reduced point.

Proof: If A and B are generically transverse, then each irreducible component C of
A \ B contains a smooth point p 2 X such that A and B are smooth and transverse
at p. It follows that C is smooth at p, and thus, in particular, C is reduced at p.

To prove the converse, let C be an irreducible component of A\B . Since the set of
smooth points of X is open, and since by hypothesis C contains one, the smooth points
of X that are contained in C form an open dense subset of C . Since A\B is generically
reduced, the open set where C is reduced is also dense, and it follows that the same is
true for the smooth locus of C . Thus there is a point p 2 C that is smooth on both C
and X . We must show that A and B are smooth at p.

The Zariski tangent space to C at p is the intersection of the Zariski tangent spaces
TpA and TpB in TpX . Since C and X are smooth at p,

dimC D dimTpC D dimTpAC dimTpB � dimTpX

D dimTpAC dimTpB � dimX:

By hypothesis,

dimC D dimAC dimB � dimX:

Since dimTpA � dimA and dimTpB � dimB , we must have dimTpA D dimA and
dimTpB D dimB , proving that A and B are smooth at p as well. Since the tangent
spaces of A;B;X at p are equal to the corresponding Zariski tangent spaces, the equality

dimTpC D dimTpAC dimTpB � dimTpX

above completes the proof.

1.3.8 The multiplicity of a scheme at a point

In connection with the discussion of intersection multiplicities above, we collect
here the basic facts about the multiplicity of a scheme at a point; for details, see Eisenbud
[1995, Chapter 12]. We will also indicate, at least in some cases, how intersection
multiplicities are related to multiplicities of schemes.
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P1 P2 P3 P4

Figure 1.10 Ordinary double points of hypersurfaces of dimension 0; 1; 2 and 3.

Any discussion of the multiplicity of a scheme at a point begins with the case of a
hypersurface in a smooth n-dimensional variety Z. In this case, we can be very explicit:
If p 2 Z and X � Z is a hypersurface given locally around p as the zero locus of
a regular function f , we can choose local coordinates z D .z1; : : : ; zn/ on Z in a
neighborhood of p and expand f around p, writing

f .z/ D f0 C f1.z/C f2.z/C � � �

with fk.z/ homogeneous of degree k. The hypersurfaceX contains p if f0 D f .p/ D 0,
and is then singular at p if f1 D 0. In general, we say that X has multiplicity m at p if
f0 D � � � D fm�1 D 0 and fm ¤ 0; we write multp.X/ for the multiplicity of X at p.
(If m D 2 we say that p is a double point of X ; if m D 3 we say p is a triple point, and
so on.) We define the tangent cone TCpX of X at p to be the zero locus of fm in the
affine space An with coordinates .z1; : : : ; zn/, and similarly we define the projectivized
tangent cone TCpX of X at p to be the scheme in Pn�1 defined by fm.

We can say this purely in terms of the local ring OZ;p, without the need to invoke
local coordinates: If m � OZ;p is the maximal ideal, the multiplicity of X at p is the
largest m such that f 2 mm. We can then take fm to be the image of f in the quotient
mm=mmC1. Note that since

mm=mmC1 D Symm.m=m2/ D Symm T �p Z;

the vector space of homogeneous polynomials of degree m on the Zariski tangent space
TpZ, we can view the projectivized tangent cone as a subscheme of PTpZ. (Note that
the projectivized tangent cone may be nonreduced even thoughX itself is reduced at p, as
in the case of a cusp, given locally as the zero locus of y2�x3.) The multiplicity can also
be characterized in these terms simply as the degree of the projectivized tangent cone.

For example, the simplest possible singularity of a hypersurface X , generalizing
the case of a node of a plane curve, is called an ordinary double point. This is a point
p 2 X such that the equation of X can be written in local coordinates with p D 0

as above with f0 D f1 D 0 and where f2 is a nondegenerate quadratic form — that
is, the projectivized tangent cone to X at p is a smooth quadric. Indeed, examples
are the cones over smooth quadrics — see Figure 1.10. (Here it is important that the
characteristic is not 2: A quadric in Pn�1 is smooth if the generator f2 of its ideal,
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together with the derivatives of f2, is an irrelevant ideal; when the characteristic is not 2,
Euler’s formula 2f2 D

P
zi@f2=@zi shows that it is equivalent to assume that the partial

derivatives of f2 are linearly independent, and this is the property we will often use.
In characteristic 2 — where a symmetric bilinear form is also skew-symmetric — no
quadratic form in an odd number of variables has this property.)

How do we extend this definition to arbitrary schemes X? The answer is to start
by defining the tangent cones. We can do this explicitly in terms of local coordinates
z D .z1; : : : ; zn) on a smooth ambient variety Z containing X : We define the tangent
cone to be the subscheme of An defined by the leading terms of all elements of the
ideal I � OZ;p of X at p, and the projectivized tangent cone to be the corresponding
subscheme of Pn�1.

As before, this can be said without recourse to local coordinates (or, for that matter,
any ambient variety Z). To start, we filter the local ring OX;p by powers of its maximal
ideal m:

OX;p � m � m2 � m3 � � � � :

We then form the associated graded ring

A D k˚m=m2 ˚m2=m3 ˚ � � � ;

and define the tangent cone and projectivized tangent cone to be SpecA and ProjA
respectively. Note that since the ring A is generated in degree 1, we have a surjection

Sym.m=m2/ D Sym.T �p X/! A;

so that these can be viewed naturally as subschemes of the Zariski tangent space TpX
and its projectivization, respectively. As we will see shortly, one important feature of
these constructions is that we always have

dimTCpX D dimX and dimTCpX D dimX � 1;

even though the dimension of the Zariski tangent space may be larger.
We now define the multiplicity multp.X/ of X at p to be the degree of the projec-

tivized tangent cone TCpX , viewed as a subscheme of the projective space PTpX . In
purely algebraic terms, we can express this directly in terms of the Hilbert polynomial
of the graded ring A: If we set

hA.m/ D dimkAm;

then for m � 0 the function hA will be equal to a polynomial pA.m/ of degree
dimX � 1, called the Hilbert polynomial of A. The multiplicity multp.X/ is then equal
to .dimX � 1/Š times the leading coefficient of the Hilbert polynomial pA.m/.
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It follows from the theory that the multiplicity multYi .Y / of a scheme Y along an
irreducible component Yi of Y , as introduced in Section 1.2.1 in connection with the
definition of the cycle associated to a scheme, is equal to the multiplicity of Y at a
general point of Yi .

Tangent cones and blow-ups
There is another characterization of the projectivized tangent cone that will be very

useful to us in what follows.
We start by recalling some basic facts about blow-ups. Blowing-up is an operation

that associates to any scheme Z and subscheme Y a morphism � W B D BlY .Z/! Z.
The general operation is described and characterized in Chapter 4 of Eisenbud and Harris
[2000]; in the present circumstances, we will be concerned with the case where Y is a
smooth point p 2 Z.

The exceptional divisor E � B is defined to be ��1.Y /, the preimage of Y in B . If
X � Z is any subscheme, we define its strict transform zX � B to be the closure in B
of the preimage ��1.X n Y \X/ of X away from Y .

Suppose that X is embedded in a smooth ambient variety Z of dimension n, and
consider the blow-up of Z at p. In this case the exceptional divisor E is isomorphic to
Pn�1. Unwinding the definitions, we can see that the projectivized tangent cone TCpX
to X at p is the intersection of zX with E Š Pn�1. This gives us immediately that
dimTCpX D dimX � 1.

Again, we can say this without having to choose an embedding of X in a smooth Z:
Since blow-ups behave well with respect to pullbacks (see Proposition IV-21 of Eisenbud
and Harris [2000]), we could simply say that TCpX is the exceptional divisor in the
blow-up Blp.X/.

Multiplicities and intersection multiplicities
The notions of multiplicity (of a scheme at a point) and intersection multiplicities

(of two subschemes meeting dimensionally transversely in a smooth ambient variety)
are closely linked: If p 2 X � Pn is a point on a subscheme of pure dimension k
and ƒ Š Pn�k � Pn is a general .n � k/-plane containing p, then the intersection
multiplicity mp.X;ƒ/ is equal to multp.X/.

This statement can be generalized substantially:

Proposition 1.29. Let X and Y be two subschemes of complementary dimension inter-
secting dimensionally properly in a smooth variety Z, and p 2 X \ Y any point of
intersection. If the projectivized tangent cones TCpX and TCpY are disjoint in PTpZ,
then

mp.X; Y / D multp.X/ �multp.Y /:

This proposition is proved in Section 2.1.10. In general, there is only the inequality
mp.X; Y / � multp.X/ �multp.Y /I see Fulton [1984, Chapter 12].
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1.4 The first Chern class of a line bundle
Many of the most interesting and useful classes in the Chow groups come from

vector bundles via the theory of Chern classes. The simplest case is that of the first Chern
class of a line bundle, which we will now describe. We will introduce the theory in more
generality in Chapter 5.

If L is a line bundle on a variety X and � is a rational section, then on an open affine
set U of a covering of X we may write � in the form fU =gU and define Div.�/jU D
Div.f / � Div.g/. This definition agrees where two affine open sets overlap, and thus
defines a divisor on X , which is a Cartier divisor (see Hartshorne [1977, Section II.6]).
Moreover, if � is another rational section of L then ˛ D �=� is a well-defined rational
function, so

Div.�/ � Div.�/ D Div.˛/ � 0 mod Rat.X/:

Thus for any line bundle L on a quasi-projective schemeX we may define the first Chern
class

c1.L/ 2 A.X/

to be the rational equivalence class of the divisor � for any nonzero rational section � . (If
we were working over an arbitrary scheme, we would have to insist that the numerator
and denominator of our section were locally nonzerodivisors.) Note that there is no
distinguished cycle in the equivalence class. As a first example, we see that c1.OPn.d//

is the class of any hypersurface of degree d ; in the notation of Section 2.1 it is d�, where
� is the class of a hyperplane.

Recall that the Picard group Pic.X/ is by definition the group of isomorphism
classes of line bundles L on X , with addition law ŒL�C ŒL0� D ŒL˝ L0�.

Proposition 1.30. If X is a variety of dimension n, then c1 is a group homomorphism

c1 W Pic.X/! An�1.X/:

If X is smooth, then c1 is an isomorphism.

If Y � X is a divisor in a smooth variety X , then the ideal sheaf of Y is a line
bundle denoted OX .�Y /, and its inverse in the Picard group is denoted OX .Y /. The
inverse of the map c1 above takes ŒY � to OX .Y /.

Proof of Proposition 1.30: To see that c1 is a group homomorphism, suppose that L
and L0 are line bundles on X . If � and � 0 are rational sections of L and L0 respectively,
then � ˝ � 0 is a rational section of L˝ L0 whose divisor is Div.�/C Div.� 0/.

Now assume that X is smooth and projective. Since the local rings of X are unique
factorization domains, every codimension-1 subvariety is a Cartier divisor, so to any
divisor we can associate a unique line bundle and a rational section. Forgetting the
section, we get a line bundle, and thus a map from the group of divisors to Pic.X/. By
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Proposition 1.10, rationally equivalent divisors differ by the divisor of a rational function,
and thus correspond to different rational sections of the same bundle. It follows that the
map on divisors induces a map on An�1.X/, inverse to the map c1.

If X is singular, the map c1 W Pic.X/ ! An�1.X/ is in general neither injec-
tive or surjective. For example, if X is an irreducible plane cubic with a node, then
c1 W Pic.X/ ! A1.X/ is not a monomorphism (Exercise 1.35). On the other hand, if
X � P3 is a quadric cone with vertex p, then A1.X/ D Z and is generated by the class
of a line, and the image of c1 W Pic.X/! A1.X/ is 2Z (Exercise 1.36).

Another case when the moving lemma is easy is when the class of the cycle to be
moved has the form c1.L/ for some line bundle L. We also get a useful formula for the
product of any class with c1.L/:

Proposition 1.31. Suppose that X is a smooth quasi-projective variety and L is a line
bundle on X . If Y1; : : : ; Yn are any subvarieties of X , then there is a cycle in the class
of c1.L/ that is generically transverse to each Yi . If X is smooth and Y � X is any
subvariety, then

c1.L/ � ŒY � D c1.LjY /:

The class c1.LjY / on the right-hand side of the formula is actually a class in A.Y /,
so to be precise we should have written i�.c1.LjY //, where i W Y ,! X is the inclusion
and i� the pushforward map, first encountered in Proposition 1.14 and defined in general
in Section 1.3.6. This imprecision points to an important theoretical fact: Even on a
singular variety (or scheme) X one can form the intersection product of any class with
the first Chern class of a line bundle, defined (when the class is the class of a subscheme)
via the prescription c1.L/ � ŒY � D c1.LjY / above.

This intersection is actually defined by the formula as a class on Y , not just a class
on X . This is the beginning of the theory of “refined intersection products” defined in
Fulton [1984]. When we define other Chern classes of vector bundles we shall see that
the same construction works in that more general case.

We imposed the hypothesis of smoothness in Proposition 1.31 because we have only
discussed products in this context. In fact, the formula could be used to define an action
of a class of the form c1.L/ on A.X/ much more generally. This is the point of view
taken by Fulton.

Sketch of proof of Proposition 1.31: Since X is quasi-projective, there is an ample
bundle L0 on X . For a sufficiently large integer n both the line bundles L0˝n and
L0˝n˝L are very ample, so by Bertini’s theorem there are sections � 2 H 0.L0˝n/ and
� 2 H 0.L0˝n ˝ L/ whose zero loci Div.�/ and Div.�/ are generically transverse to
each Yi . The class c1.L/ is rationally equivalent to the cycle Div.�/ � Div.�/, proving
the first assertion. Moreover, c1.L/ŒYi � D ŒDiv.�/ \ Yi � � ŒDiv.�/ \ Yi � by Theorem–
Definition 1.5. Since Div.�/ \ Yi D Div.� jYi /, and similarly for � , we are done.
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genus deg.KX / topology curvature dim Aut.X/ cover points

0 < 0 � > 0 > 0 3 CP1 infinite
1 0 � D 0 0 1 C infinite
� 2 > 0 � < 0 < 0 finite � finite

Table 1.1 Behavior of curves for deg.KX / < 0, deg.KX / D 0 and deg.KX / > 0.

1.4.1 The canonical class

Perhaps the most fundamental example of the first Chern class of a line bundle is
the canonical class, which we will define here; in the following section, we will describe
the adjunction formula, which gives us a way to calculate it in many cases.

Let X be a smooth n-dimensional variety. By the canonical bundle !X of X we
mean the top exterior power

Vn�X of the cotangent bundle �X of X ; this is the
line bundle whose sections are regular n-forms. By the canonical class we mean the
first Chern class c1.!X / 2 A1.X/ of this line bundle. Perhaps reflecting the German
language history of the subject, this class is commonly denoted by KX .

The canonical class is probably the single most important indicator of the behavior
of X , geometrically, topologically and arithmetically. For example, the only topological
invariant of a smooth projective curveX over the complex field C is its genus g D g.X/,
and we have

deg.KX / D 2g � 2:

Virtually every aspect of the geometry over C and the arithmetic over Q of X are
fundamentally different depending on whether degKX is negative, zero or positive,
corresponding to g D 0; 1 or g � 2, as can be seen in Table 1.1. (Here the topology
is represented by the topological Euler characteristic, the differential geometry by the
curvature of a metric with constant curvature, the complex analysis by the isomorphism
class as a complex manifold of the universal cover and the arithmetic by the number of
rational points over a suitably large finite extension of Q.)

Example 1.32 (Projective space). We can easily determine the canonical class of a
projective space. To do this, we have only to write down a rational n-form ! on Pn and
determine its divisors of zeros and poles. For example, if X0; : : : ; Xn are homogeneous
coordinates on Pn and

xi D
Xi

X0
; i D 1; : : : ; n;

are affine coordinates on the open set U Š An � Pn given by X0 ¤ 0, we may take !
to be the rational n-form given in U by

! D dx1 ^ � � � ^ dxn:
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The form ! is regular and nonzero in U , so we have only to determine its order of zero
or pole along the hyperplane H D V.X0/ at infinity. To this end, let U 0 � Pn be the
open set Xn ¤ 0, and take affine coordinates y0; : : : ; yn�1 on U 0 with yi D Xi=Xn.
We have

xi D

�
yi=y0 for i D 1; : : : ; n � 1;
1=y0 for i D n;

so that

dxi D

�
.1=y0/dyi � .yi=y

2
0/dy0 for i D 1; : : : ; n � 1;

�.1=y20/dy0 for i D n:

Taking wedge products, we see that

! D dx1 ^ � � � ^ dxn D
.�1/n

ynC10

dy0 ^ � � � ^ dyn�1;

whence

Div.!/ D �.nC 1/H;

so

KPn D �.nC 1/�;

where � 2 A1.Pn/ is the class of a hyperplane.

1.4.2 The adjunction formula

Let X again be a smooth variety of dimension n, and suppose that Y � X is a
smooth .n � 1/-dimensional subvariety. There is a natural way to relate the canonical
class of Y to that of X : If we compare the tangent bundle TY of Y with the restriction
TX jY to Y of the tangent bundle TX of X , we get an exact sequence

0 �! TY �! TX jY �! NY=X �! 0;

where the right-hand term NY=X is called the normal bundle of Y in X . Taking exterior
powers, this gives an equality of line bundles

.
VnTX /jY Š Vn�1TY ˝NY=X ;

so that Vn�1TY Š .VnTX /jY ˝N �Y=X ;
and dualizing we have

!Y Š !X jY ˝NY=X :

Moreover, we can compute NY=X in another way. There is an exact sequence

0 �! IY=X=I2Y=X
ı
��! �X jY �! �Y �! 0;
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where the map ı sends the germ of a function to the germ of its differential (see, for
example, Eisenbud [1995, Proposition 16.3]). This identifies N �

Y=X
with the locally

free sheaf IY=X=I2Y=X . When Y is a Cartier divisor in X , the case of primary interest
for us, the ideal sheaf IY=X of Y in X is the line bundle OX .�Y /, and the sheaf
IY=X=I

2
Y=X
D OY ˝ IY=X is its restriction to Y , denoted OY .�Y /; thus

NY=X Š OX .Y /jY :

Combining this with the previous expression, we have what is commonly called the
adjunction formula:

Proposition 1.33 (Adjunction formula). If Y � X is a smooth .n � 1/-dimensional
subvariety of a smooth n-dimensional variety, then

!Y D !X jY ˝OX .Y /jY ;

which we usually write as !X .Y /jY . In particular, if Y is a smooth curve in a smooth
complete surface X , then the degree of KY is given by an intersection product:

degKY D deg
�
.KX C ŒY �/ŒY �

�
:

1.4.3 Canonical classes of hypersurfaces and com-
plete intersections

We can combine the adjunction formula with the calculation in Example 1.32
to calculate the canonical classes of hypersurfaces, and more generally of complete
intersections, in projective space. To start, let X � Pn be a smooth hypersurface of
degree d . We have

!X D !Pn.X/jX D OX .d � n � 1/:
Thus

KX D .d � n � 1/�;

where � D c1.OX .1// 2 A1.X/ is the class of a hyperplane section of X .
More generally, suppose

X D Z1 \ � � � \Zk

is a smooth complete intersection of hypersurfaces Z1; : : : ; Zk of degrees d1; : : : ; dk .
Applying adjunction repeatedly to the partial intersections Z1 \ � � � \Zi , we see that

!X D OX
�
�n � 1C

X
di

�
and so

KX D
�
�n � 1C

X
di

�
�:
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This argument is not complete, because even thoughX is assumed smooth the partial
intersectionsZ1\� � �\Zi may not be. One way to complete it is to extend the definition
of the canonical bundle to possibly singular complete intersections — the adjunction
formula is true in this greater generality. Alternatively, if we order the hypersurfaces
Zi D V.Fi / so that d1 � � � � � dk and replace Fi by a linear combination

F 0i D Fi C

kX
jDiC1

GjFj ;

with Gj general of degree di �dj , the hypersurfaces Z0i D V.F
0
i / will have intersection

X , and by Bertini’s theorem the partial intersections will be smooth.

1.5 Exercises
Exercise 1.34. Let Y � An be a subvariety not containing the origin, and let W �
P1 � An be the closure of the locus

W ı D f.t; z/ j z 2 t � Y g;

as in the proof of Proposition 1.13. Show that the fiber of W over t D 0 is the cone with
vertex the origin 0 2 An over the intersection Y \H1, where Y � Pn is the closure of
Y in Pn and H1 D Pn n An is the hyperplane at infinity.

Exercise 1.35. Show that if X is an irreducible plane cubic with a node, then c1 W
Pic.X/! A1.X/ is not a monomorphism, as follows: Show that there is no biregular
map from X to P1. Use this to show that if p ¤ q 2 X are smooth points, then the
line bundles OX .p/ and OX .q/ are nonisomorphic. Show, however, that the zero loci of
their unique sections, the points p and q, are rationally equivalent.

Exercise 1.36. Show that if X � P3 is a quadric cone with vertex p then A1.X/ D Z
and is generated by the class of a line, and show that the image of c1 W Pic.X/! A1.X/

is 2Z by showing that the image consists of the subgroup of classes of curves lying on
X that have even degree as curves in P3. In particular, the class of a line on X is not in
the image.
Hint: Do this by showing that no curve C � X of odd degree can be a Cartier divisor
on X : If such a curve meets the general line of the ruling of X at ı points away from
p and has multiplicity m at p, then intersecting C with a general plane through p we
see that deg.C / D 2ı Cm; it follows that m is odd, and hence that C cannot be Cartier
at p. Thus, the class ŒM � of a line of the ruling cannot be c1.L/ for any line bundle L.
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Keynote Questions

(a) Let F0; F1; F2 2 kŒX; Y;Z� be three general homogeneous cubic polynomials in
three variables. Up to scalars, how many linear combinations t0F0 C t1F1 C t2F2
factor as a product of a linear and a quadratic polynomial? (Answer on page 65.)

(b) Let F0; F1; F2; F3 2 kŒX; Y;Z� be four general homogeneous cubic polynomials in
three variables. How many linear combinations t0F0 C t1F1 C t2F2 C t3F3 factor
as a product of three linear polynomials? (Answer on page 65.)

(c) Let A;B;C be general homogeneous polynomials of degree d in three variables.
Up to scalars, for how many triples t D .t0; t1; t2/ ¤ .0; 0; 0/ is .A.t/; B.t/; C.t//
a scalar multiple of .t0; t1; t2/? (Answer on page 55.)

(d) Let Sd denote the space of homogeneous polynomials of degree d in two variables.
If V � Sd and W � Se are general linear spaces of dimensions a and b with
aC b D d C 2, how many pairs .f; g/ 2 V �W are there (up to multiplication of
each of f and g by scalars) such that f jg? (Answer on page 56.)

(e) Let S � P3 be a smooth cubic surface and L � P3 a general line. How many planes
containing L are tangent to S? (Answer on page 50.)

(f) Let L � P3 be a line, and let S and T � P3 be surfaces of degrees s and t
containing L. Suppose that the intersection S \ T is the union of L and a smooth
curve C . What are the degree and genus of C ? (Answer on page 71.)

In this chapter we illustrate the general theory introduced in the preceding chapter
with a series of examples and applications.

The first section is a series of progressively more interesting computations of Chow
rings of familiar varieties, with easy applications. Following this, in Section 2.2 we
see an example of a different kind: We use facts about the Chow ring to describe some
geometrically interesting loci in the projective space of cubic plane curves.



44 Chapter 2 First examples

Finally, in Section 2.4 we briefly describe intersection theory on surfaces, a setting
in which the theory takes a particularly simple and useful form. As one application, we
describe in Section 2.4.3 the notion of linkage, a tool used classically to understand the
geometry of curves in P3.

2.1 The Chow rings of Pn and some related
varieties

So far we have not seen any concrete examples of the intersection product or
pullback. The first interesting case where this occurs is projective space.

Theorem 2.1. The Chow ring of Pn is

A.Pn/ D ZŒ��=.�nC1/;

where � 2 A1.Pn/ is the rational equivalence class of a hyperplane; more generally, the
class of a variety of codimension k and degree d is d�k .

In particular, the theorem implies thatAm.Pn/ Š Z for 0 � m � n, generated by the
class of an .n �m/-plane. The natural proof, given below, uses the intersection product.

Proof: Let fpg � P1 � � � � � Pn be a complete flag of subspaces. Applying Propo-
sition 1.17 to the affine stratification with strata Ui D Pi n Pi�1, we see that Ak.Pn/
is generated by the class of Pn�k , and thus by the class of any .n � k/-plane L � Pn.
Using Proposition 1.21, we get An.Pn/ D Z. Since a general .n� k/-plane L intersects
a general k-planeM transversely in one point, multiplication by ŒM � induces a surjective
map Ak.Pn/! An.Pn/ D Z, so Ak.Pn/ D Z for all k.

An .n � k/-plane L � Pn is the transverse intersection of k hyperplanes, so

ŒL� D �k;

where � 2 A1.Pn/ is the class of a hyperplane. Finally, since a subvariety X � Pn of
dimension n � k and degree d intersects a general k-plane transversely in d points, we
have deg.ŒX��n�k/ D d . Since deg.�n/ D 1, we conclude that ŒX� D d�k .

Here are two interesting qualitative results that follow from Theorem 2.1:

Corollary 2.2. A morphism from Pn to a quasi-projective variety of dimension strictly
less than n is constant.

Proof: Let ' W Pn ! X � Pm be the map, which we may assume is surjective onto X .
The preimage of a general hyperplane section of X is disjoint from the preimage of a
general point of X . But if 0 < dimX < n then the preimage of a hyperplane section of
X has dimension n � 1 and the preimage of a point has dimension > 0. Since any two
such subvarieties of Pn must meet, this is a contradiction.
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Corollary 2.3. IfX � Pn is a variety of dimensionm and degree d thenAm.PnnX/ Š
Z=.d/, while if m < m0 � n then Am0.Pn n X/ D Z. In particular, m and d are
determined by the isomorphism class of Pn nX .

Proof: Part (b) of Proposition 1.14 shows that there are exact sequences Ai .X/ !
Ai .Pn/! Ai .Pn nX/! 0. Furthermore Am.X/ D Z by part (b) of Proposition 1.8,
while Am0.X/ D 0 for m < m0 � n. By Theorem 2.1, we have Ai .Pn/ D Z for
0 � i � n, and the image of the generator of Am.X/ in Am.Pn/ is d times the generator
of Ai .Pn/. The results of the corollary follow.

Theorem 2.1 implies the analog of Poincaré duality for A.Pn/: Ak.Pn/ is dual to
Ak.Pn/ via the intersection product. The reader should be aware that in cases where the
Chow groups and the homology groups are different, Poincaré duality generally does not
hold for the Chow ring; for example, when X is a variety, AdimX .X/ Š Z, but A0.X/
need not even be finitely generated.

One aspect of Theorem 2.1 may, upon reflection, seem strange: why is it that only
the dimension and degree of a variety X � Pn are preserved under rational equivalence,
and not other quantities such as (in the case of X a curve) the arithmetic genus?

First of all, to understand why this may appear curious, we recall from Eisenbud
and Harris [2000, Proposition III-56] (see also Corollary B.12) that, if B is reduced
and connected, then a closed subscheme Y � B � Pn is flat over B if and only if the
fibers all have the same Hilbert polynomial. Thus, for example, if Z � P1 � Pn is an
irreducible surface dominating P1, then the fibers Z0 and Z1 will be one-dimensional
subschemes of Pn having not only the same degree, but also the same arithmetic genus.
Why does this not contradict the assertion of Theorem 2.1 that curves C and C 0 � P3

of the same degree d but different genera are rationally equivalent?
The explanation is that both can be deformed, in families parametrized by P1,

to schemes C0, C 00 supported on a line L � P3 and having multiplicity d , so that
hC i � hC0i D d hLi as cycles, and likewise for C 0. The difference in the genera
of C and C 0 will be reflected in two things: the scheme structure along the line in
the flat limits C0 and C 00, and the presence and multiplicity of embedded points in
these limits.

For an example of the former, note that the schemes C0 D V..x; y/2/ and C 00 D
V.x; y3/ are both supported on the line L D V.x; y/, and both have multiplicity 3, but
the arithmetic genus of C0 is 0, while that of C 00 is 1 (after all, it is a plane cubic!). But
the mechanism by which we associate a cycle to a scheme does not see the difference in
the scheme structure; we have hC0i D hC 00i D 3hLi. Similarly, a twisted cubic curve
C � P3 can be deformed to a scheme generically isomorphic to either C0 or C 00; the
difference in the arithmetic genus is accounted for by the fact that in the latter case the
limiting scheme will necessarily have an embedded point. But again, rational equivalence
does not “see” the embedded point; we have ŒC � D 3ŒL� regardless.
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2.1.1 Bézout’s theorem

As an immediate consequence of Theorem 2.1, we get a general form of Bézout’s
theorem:

Corollary 2.4 (Bézout’s theorem). If X1; : : : ; Xk � Pn are subvarieties of codimen-
sions c1; : : : ; ck , with

P
ci � n, and the Xi intersect generically transversely, then

deg.X1 \ � � � \Xk/ D
Y

deg.Xi /:

In particular, two subvarieties X; Y � Pn having complementary dimension and inter-
secting transversely will intersect in exactly deg.X/ � deg.Y / points.

Using multiplicities we can extend this formula to the more general case where we
assume only that the varieties intersect dimensionally transversely (that is, all components
of the intersection Z D

T
Xi have codimension equal to

P
ci ), as long as the Xi are

generically Cohen–Macaulay along each component of their intersection. In this case,
the intersection multiplicity mZ˛ .X1; : : : ; Xk/ of the Xi along a component Z˛ of their
intersection, as described in Section 1.3.7, is equal to the multiplicity of the scheme Z at
a general point of Z˛.

Corollary 2.5. Suppose X1; : : : ; Xk � Pn are subvarieties of codimensions c1; : : : ; ck
whose intersection is a scheme Z of pure dimension n �

P
ci , with irreducible com-

ponents Z1; : : : ; Zt . If the Xi are Cohen–Macaulay at a general point of each Z˛,
then

ŒZ� D
X

ŒZj � D
Y
ŒXi �I

equivalently,

degZ D
X

degZj D
Y

degXi :

Note that by the degree of a subscheme Z � Pn of dimension m we mean mŠ times
the leading coefficient of the Hilbert polynomial; in case Z is irreducible this will be
equal to the degree of the reduced scheme Zred times the multiplicity of the scheme, and
more generally it will be given by

deg.Z/ D
X

multZi .Z/ deg.Zred/;

where the Zi are the irreducible components of Z of maximal dimension m.
The Cohen–Macaulay hypothesis is satisfied if, for example, the Xi are all hyper-

surfaces; thus the classical case of two curves intersecting in P2 is covered.
There is a standard example that shows that the Cohen–Macaulay hypothesis is

necessary:
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V2

B

p
V1

Figure 2.1 Let A D V1 [ V2 � P4, where the Vi are general 2-planes, and let B be a
2-plane passing through the point V1 \ V2. The degree of the product ŒB�ŒA� in A.P4/
is 2, as one sees by moving B to a plane B 0 transverse to A, but the length of the local
ring of B \ A is 3.

Example 2.6. Let X D P4, let V1; V2 � P4 be general 2-planes and let A D V1 [ V2.
Since V1 and V2 are general, they meet in a single point p. Let B be a 2-plane that

passes through p and does not meet A anywhere else, and let B 0 be a 2-plane that does
not pass through p and meets each of V1; V2 in a single (necessarily reduced) point. The
cycles hBi and hB 0i are rationally equivalent in P4. The intersection B 0 \ A consists of
two reduced points, so deg.B 0 \ A/ D 2 (see Figure 2.1).

However, the degree of the scheme B \A is strictly greater than 2: Since the Zariski
tangent space to the scheme A D V1 [ V2 at the point p is all of Tp .P4/, the tangent
space to the intersection B \ A at p must be all of Tp .B/. In other words, B \ A must
contain the “fat point” at p in the plane B (that is, the scheme defined by the square of
the ideal of p in B), and so must have degree at least 3.

In fact, we can see that the degree of the scheme B \ A is equal to 3 by a local
calculation, as follows. Since B meets A only at the point p, we have to show that the
length of the Artinian ring OP4;p=.I.B/ C I.A//OP4;p is 3. Let S D kŒx0; : : : ; x4�
be the homogeneous coordinate ring of P4. We may choose V1; V2 and B to have
homogeneous ideals

I.A/ D .x0; x1/ \ .x2; x3/ D .x0x2; x0x3; x1x2; x1x3/;

I.B/ D .x0 � x2; x1 � x3/:

Modulo I.B/, we can eliminate the variables x2 and x3 and the ideal I.A/ becomes
.x20 ; x0x1; x

2
1/. Passing to the affine open subset where x4 ¤ 0, this is the square of the

maximal ideal corresponding to the origin in B . Therefore OP4;p=.I.B/C I.A//OP4;p
has basis f1; x0=x4; x1=x4g, and hence its length is 3.

Given that we sometimes have ŒA\B� ¤ ŒA�ŒB�, it is natural to look for a correction
term. In the example above, the set-theoretic intersection is a point, so this comes down to
looking for a formula that will predict the difference in multiplicities 3�2 D 1. Of course
the correction term should reflect nontransversality, and one measure of nontransversality
is the quotient I.A/\I.B/=.I.A/�I.B//. In the case above one can compute this, finding
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that the quotient is a finite-dimensional vector space of length 1 — just the correction
term we need. Now for any pair of ideals I; J in any ring R, the quotient .I \J /=.I �J /
is isomorphic to TorR1 .R=I;R=J / (see Eisenbud [1995, Exercise A3.17]). With this
information, knowing a special case proven earlier by Auslander and Buchsbaum, Serre
[2000] produced a general formula (originally published in 1957):

Theorem 2.7 (Serre’s formula). Suppose that A;B � X are dimensionally transverse
subschemes of a smooth scheme X and Z is an irreducible component of A \ B . The
intersection multiplicity of A and B along Z is

mZ.A;B/ D

dimXX
iD0

.�1/i lengthOA\B;Z
�
TorOX;Zi .OA;Z ;OB;Z/

�
:

The first term of the alternating sum in Serre’s formula is

lengthOA\B;Z TorOX;Z0 .OA;Z ;OB;Z/ D lengthOA\B;ZOX;Z=.IA C IB/;

which is precisely the multiplicity of Z in the subscheme A \ B; the remaining terms,
involving higher Tors, are zero in the Cohen–Macaulay case and may be viewed as
correction terms. We note that this formula is used relatively rarely in practice, since
there are many alternatives, such as the one given by Fulton [1984, Chapter 7].

2.1.2 Degrees of Veronese varieties

Let

� D �n;d W Pn ! PN ; with N D
�nCd

n

�
� 1;

be the Veronese map

ŒZ0; : : : ; Zn� 7! Œ : : : ; ZI ; : : : �;

where ZI ranges over all monomials of degree d in nC 1 variables. The image ˆ D
ˆn;d � PN of the Veronese map � D �n;d is called the d -th Veronese variety of Pn, as
is any subvariety of PN projectively equivalent to it. This variety may be characterized,
up to automorphisms of the target PN , as the image of the map associated to the
complete linear system jOPn.d/j; in other words, by the property that the preimages
��1.H/ � Pn of hyperplanes H � PN comprise all hypersurfaces of degree d in Pn.

There is another attractive description, at least in characteristic 0: writing Pn D PV ,
where V is an .nC 1/-dimensional vector space, �n;d is projectively equivalent to the
map taking PV ! P Symd V by Œv� 7! Œvd �; for if the coordinates of v are v0; : : : ; vn
then the coordinates of vd are

dŠQ
i di Š

.v
d0
0 � � � v

dn
n /:
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If the characteristic is 0 then the coefficients are nonzero, so we may rescale by an
automorphism of PN to get the standard Veronese map above.

We can use Corollary 2.4 to compute the degrees of Veronese varieties:

Proposition 2.8. The degree of ˆn;d is dn.

Proof: The degree of ˆ is the cardinality of its intersection with n general hyperplanes
H1; : : : ;Hn � PN ; since the map � is one-to-one, this is in turn the cardinality of the
intersection f �1.H1/ \ � � � \ f �1.Hn/ � Pn. The preimages of the hyperplanes Hi
are n general hypersurfaces of degree d in Pn. By Bézout’s theorem, the cardinality of
their intersection is dn.

2.1.3 Degree of the dual of a hypersurface

The same idea allows us to compute the degree of the dual variety of a smooth
hypersurface X � Pn of degree d , that is, the set of points X� � Pn� corresponding
to hyperplanes of Pn that are tangent to X . (In Chapter 10 we will generalize this
notion substantially, discussing the duals of varieties of higher codimension and singular
varieties as well.)

The set X� is a variety because it is the image of X under the Gauss map GX W
X ! Pn�, a morphism that sends a point p 2 X to its tangent hyperplane TpX ; in
coordinates, if X is the zero locus of the homogeneous polynomial F.Z0; : : : ; Zn/, then
GX is given by the formula

GX W p 7!
�
@F

@Z0
.p/; : : : ;

@F

@Zn
.p/

�
:

To see that this map is well-defined, note first that, since X is smooth, the partials of
F have no common zeros on X (and this implies, by Euler’s relation, that they do not
have any common zeros in Pn). Thus GX defines a morphism Pn ! Pn�. When p 2 X ,
Euler’s relation shows that the vector GX .p/ is orthogonal to the vector Qp representing
the point p; thus the linear functional represented by GX .p/ induces a functional on
the tangent space to Pn, and the zero locus of this functional is the tangent space to
X at p.

If d D 1, the map GX is constant and X� is a point. But if d > 1, then the fact
that the partials of F have no common zeros says that the map GX is finite: If GX were
constant on a complete curve C � X , the restrictions to C of the partials of F would be
scalar multiples of each other, and so would have a common zero.

In particular, if X � Pn is a smooth hypersurface of degree d � 2, the dual
variety X� � Pn� is again a hypersurface, though not usually smooth. The smoothness
hypothesis is necessary here; for example, the dual Q� of the quadric cone Q D
V.XZ � Y 2/ � P3 is a conic curve in P3�.
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Figure 2.2 Six of the lines through a general point are tangent to a smooth plane cubic
(but often not all the lines are defined over R).

We will see in Corollary 10.21 that when X is a smooth hypersurface the map GX is
birational onto its image as well as finite. (This requires the hypothesis of characteristic 0;
strangely enough, it may be false in characteristic p, where for example a general tangent
line to a smooth plane curve may be bitangent!) We will use this now to deduce the
degree of the dual hypersurface:

Proposition 2.9. If X � Pn is a smooth hypersurface of degree d > 1, then the dual of
X is a hypersurface of degree d.d � 1/n�1.

Proof: The degree of the dual variety X� � Pn� is the number of points of intersection
of X� and n � 1 general hyperplanes Hi � Pn�. Since by Corollary 10.21 the map
GX W X ! X� � Pn� is birational, this is the same as the number of points of
intersection of the preimages G�1X .Hi /. Since GX is given by the partial derivatives of
the defining equation F of X , the preimages of these hyperplanes are the intersections
of X with the hypersurfaces Zi � Pn of degree d � 1 in Pn given by general linear
combinations of these partial derivatives. Inasmuch as the partials of F have no common
zeros, Bertini’s theorem (Theorem 0.5) tells us that the hypersurfaces given by n � 1
general linear combinations will intersect transversely with X . By Bézout’s theorem the
number of these points of intersection is the product of the degrees of the hypersurfaces,
that is, d.d � 1/n�1.

For example, suppose that X is a smooth cubic curve in P2. By the above formula,
the degree of X� is 6. Since a general line in P2� corresponds to the set of lines through
a general point p 2 P2, there will be exactly six lines in P2 through p tangent to X , as
shown in Figure 2.2.

Proposition 2.9 gives us the answer to Keynote Question (e): Since the planes
containing the line L form a general line in the dual projective space P3�, the number of
such planes tangent to a smooth cubic surface S � P3 is 3 � 22 D 12.
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2.1.4 Products of projective spaces

Though the Chow ring of a smooth variety behaves like cohomology in many ways,
there are important differences. For example the cohomology ring of the product of two
spaces is given modulo torsion by the Künneth formulaH�.X�Y / D H�.X/˝H�.Y /,
but in general there is no analogous Künneth formula for the Chow rings of products of
varieties. Even for a product of two smooth curves C and D of genera g; h � 1 we have
no algorithm for calculating A1.C �D/, and no idea at all what A2.C �D/ looks like,
beyond the fact that it cannot be in any sense finite-dimensional (Mumford [1962]).

However the Chow ring of the product of a variety with a projective space does
obey the Künneth formula, as we will prove in a more general context in Theorem 9.6
(Totaro [2014] proved it for products of any two varieties with affine stratifications).
For the moment we will content ourselves with the special case where both factors are
projective spaces:

Theorem 2.10. The Chow ring of Pr � Ps is given by the formula

A.Pr � Ps/ Š A.Pr/˝ A.Ps/:

Equivalently, if ˛; ˇ 2 A1.Pr � Ps/ denote the pullbacks, via the projection maps, of
the hyperplane classes on Pr and Ps respectively, then

A.Pr � Ps/ Š ZŒ˛; ˇ�=.˛rC1; ˇsC1/:

Moreover, the class of the hypersurface defined by a bihomogeneous form of bidegree
.d; e/ on Pr � Ps is d˛ C eˇ.

Proof: We proceed exactly as in Theorem 2.1. We may construct an affine stratification
of Pr � Ps by choosing flags of subspaces

ƒ0 � ƒ1 � � � � � ƒr�1 � ƒr D Pr and �0 � �1 � � � � � �s�1 � �s D Ps;

with dimƒi D i D dim�i , and taking the closed strata to be

„a;b D ƒr�a � �s�b � Pr � Ps:

The open strata

z„a;b WD „a;b n .„a�1;b [„a;b�1/

of this stratification are affine spaces. Invoking Proposition 1.17, we conclude that the
Chow groups of Pr � Ps are generated by the classes 'a;b D Œ„a;b� 2 AaCb.Pr � Ps/.
Since „a;b is the transverse intersection of the pullbacks of a hyperplanes in Pr and b
hyperplanes in Ps , we have

'a;b D ˛
aˇb;
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and in particular ˛rC1 D ˇsC1 D 0. This shows that A.Pr � Ps/ is a homomorphic
image of

ZŒ˛; ˇ�=.˛rC1; ˇsC1/ D ZŒ˛�=.˛rC1/˝Z ZŒˇ�=.ˇsC1/:

On the other hand, „r;s is a single point, so deg'r;s D 1. The pairing

ApCq.Pr � Ps/ � ArCs�p�q.Pr � Ps/! Z; .ŒX�; ŒY �/! deg.ŒX�ŒY �/

sends .˛pˇq; ˛mˇn/ to 1 if p C m D r and q C n D s, because in this case the
intersection is transverse and consists of one point, and to 0 otherwise, since then the
intersection is empty. This shows that the monomials of bidegree .p; q/, for 0 � p � r
and 0 � q � s, are linearly independent over Z, proving the first statement.

If F.X; Y / is a bihomogeneous polynomial with bidegree .d; e/, then, because
F.X; Y /=Xd0 Y

e
0 is a rational function on Pr � Ps , the class of the hypersurface X

defined by F D 0 is d times the class of the hypersurface X0 D 0 plus e times the class
of the hypersurface Y0 D 0; that is, ŒX� D d˛ C eˇ.

2.1.5 Degrees of Segre varieties

The Segre variety†r;s is by definition the image of Pr �Ps in P.rC1/.sC1/�1 under
the map

�r;s W
�
ŒX0; : : : ; Xr �; ŒY0; : : : ; Ys�

�
7! Œ : : : ; XiYj ; : : : �:

The map �r;s is an embedding because on each open set where one of the Xi and one of
the Yj are nonzero the rest of the coordinates can be recovered from the products.

If V and W are vector spaces of dimensions r C 1 and s C 1, we may express �r;s
without choosing bases by the formula

�r;s W PV � PW ! P.V ˝W /;
.v; w/ 7! v ˝ w:

For example, the map �1;1 is defined by the four forms a D X0Y0, b D X0Y1,
c D X1Y0, d D X1Y1, and these satisfy the equation ac � bd D 0; thus the Segre
variety †1;1 is the nonsingular quadric in P3.

Proposition 2.11. The degree of the Segre embedding of Pr � Ps is

deg†r;s D
�rCs
r

�
:

Proof: The degree of †r;s is the number of points in which it meets the intersection of
rC s hypersurfaces in P.rC1/.sC1/�1. Since �r;s is an embedding, we may compute this
number by pulling back these hypersurfaces to Pr � Ps and computing in the Chow ring
of Pr � Ps . Thus deg†r;s D deg.˛ C ˇ/rCs , which gives the desired formula because
.˛ C ˇ/rCs D

�
rCs
r

�
˛rˇs .
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Figure 2.3 A tangent plane to a quadric in P3 meets the quadric in two lines, one from
each ruling.

For instance, the Segre variety P1 � Pr � P2rC1 has degree r C 1. These varieties
are among those called rational normal scrolls (see Section 9.1.1). The simplest of
these is the smooth quadric surface Q � P3, which is the Segre image of P1 � P1; the
pullbacks ˛ and ˇ of the point classes via the two projections are the classes of the lines
of the two rulings of Q, and we have � D ˛ C ˇ, where � is the hyperplane class on
P3 restricted to Q— a fact that is apparent if we look at the intersection of Q with any
tangent plane, as in Figure 2.3.

This discussion can be generalized to arbitrary products of projective spaces (see
Exercise 2.30).

2.1.6 The class of the diagonal

Next we will find the class ı of the diagonal � � Pr � Pr in the Chow group
Ar.Pr�Pr/, and more generally the class f of the graph of a map f W Pr ! Ps . Apart
from the applications of such a formula, this will introduce the method of undetermined
coefficients, which we will use many times in the course of this book. (Another approach
to this problem, via specialization, is given in Exercise 2.31.)

By Theorem 2.10, we have

A.Pr � Pr/ D ZŒ˛; ˇ�=.˛rC1; ˇrC1/;

where ˛; ˇ 2 A1.Pr � Pr/ are the pullbacks, via the two projection maps, of the
hyperplane class in A1.Pr/. The class ı D Œ�� of the diagonal is expressible as a
linear combination

ı D c0˛
r
C c1˛

r�1ˇ C c2˛
r�2ˇ2 C � � � C crˇ

r

for some c0; : : : ; cr 2 Z. We can determine the coefficients ci by taking the product
of both sides of this expression with various classes of complementary codimension:
Specifically, if we intersect both sides with the class ˛iˇr�i and take degrees, we have

ci D deg.ı � ˛iˇr�i /:



54 Chapter 2 First examples

L � f1g
L ŠM Š P1

P1 � P1

�

p

L � f0g
L � f0g

f0g �M

L

Figure 2.4 Œ��ŒL� f0g� D 1 D Œ��Œf0g �M�, so Œ�� D Œf0g �M�C ŒL� f0g�, as one
also sees from the degeneration in the figure.

We can evaluate the product ı � ˛iˇr�i directly: If ƒ and � are general linear
subspaces of codimension i and r � i , respectively, then Œƒ � �� D ˛iˇr�i . Moreover,

.ƒ � �/ \� Š ƒ \ �

is a reduced point, so

ci D deg.ı � ˛iˇr�i / D #.� \ .ƒ � �// D #.ƒ \ �/ D 1:

Thus

ı D ˛r C ˛r�1ˇ C � � � C ˛ˇr�1 C ˇr :

See Figure 2.4. (This formula and its derivation will be familiar to anyone who has had a
course in algebraic topology. As partisans we cannot resist pointing out that algebraic
geometry had it first!)

2.1.7 The class of a graph

Let f W Pr ! Ps be the morphism given by .s C 1/ homogeneous polynomials Fi
of degree d that have no common zeros:

f W ŒX0; : : : ; Xr � 7! ŒF0.X/; F1.X/; : : : ; Fs.X/�:

By Corollary 2.2, we must have s � r . Let �f � Pr � Ps be the graph of f . What is
its class f D Œ�f � 2 As.Pr � Ps/?

As before, we can write

f D c0˛
rˇs�r C c1˛

r�1ˇs�rC1 C c2˛
r�2ˇs�rC2 C � � � C crˇ

s

for some c0; : : : ; cr 2 Z, and as before we can determine the coefficients ci in this
expression by intersecting both sides with a cycle of complementary dimension:

ci D deg.f � ˛
iˇr�i / D #.�f \ .ƒ �ˆ//
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for general linear subspaces ƒ Š Pr�i and ˆ Š Ps�rCi � Ps . By Theorem 1.7 the
intersection �f \ .ƒ �ˆ/ is generically transverse.

Finally, �f \ .ƒ �ˆ/ is the zero locus in ƒ of r � i general linear combinations
of the polynomials F0; : : : ; Fs . By Bertini’s theorem, the corresponding hypersurfaces
will intersect transversely, and by Bézout’s theorem the intersection will consist of d r�i

points. Thus we arrive at the formula:

Proposition 2.12. If f W Pr ! Ps is a regular map given by polynomials of degree d
on Pr , the class f of the graph of f is given by

f D

rX
iD0

d i˛iˇs�i 2 As.Pr � Ps/:

Using this formula, we can answer a general form of Keynote Question (c). A
sequence F0; : : : ; Fr of general homogeneous polynomials of degree d in rC1 variables
defines a map f W Pr ! Pr , and we can count the fixed points

ft D Œt0; : : : ; tr � 2 Pr jf .t/ D tg:

Since the Fi are general, we can take them to be general translates under GLrC1�GLrC1
of arbitrary polynomials, so the cardinality of this set is the degree of the intersection of
the graph f of f with the diagonal � � Pr � Pr . This is

deg.ı � f / D deg
�
.˛r C ˛r�1ˇ C � � � C ˇr/ � .d r˛r C d r�1˛r�1ˇ C � � � C ˇr/

�
D d r C d r�1 C � � � C d C 1I

in particular, if A;B;C are general forms of degree d in three variables then there are
exactly d2Cd C 1 points t D Œt0; t1; t2� 2 P2 such that ŒA.t/; B.t/; C.t/� D Œt0; t1; t2�,
and this is the answer to Keynote Question (c).

Note that in the case d D 1 and s D r , Proposition 2.12 implies that a general
.r C 1/ � .r C 1/ matrix has r C 1 eigenvalues. It also follows that an arbitrary matrix
has at least one eigenvalue.

2.1.8 Nested pairs of divisors on P1

We consider here one more example of an intersection theory problem involving
products of projective spaces; this one will allow us to answer Keynote Question (d). To
set this up, let Pd D PH 0.OP1.d// be the projectivization of the space of homogeneous
polynomials of degree d on P1 (equivalently, the space of effective divisors of degree d
on P1). For any pair of natural numbers d and e with e � d , we consider the locus

ˆ D f.f; g/ 2 Pd � Pe j f jgg:
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Alternatively, if we think of Pd as parametrizing divisors of degree d on P1, we can
write this as

ˆ D f.D;E/ 2 Pd � Pe jE � Dg:

Since the projection map � W ˆ! Pd has fibers isomorphic to Pe�d , we see that ˆ is
irreducible of dimension e, or codimension d , in Pd � Pe . We ask: What is the class of
ˆ in Ad .Pd � Pe/?

Let �; � 2 A1.Pd � Pe/ be the pullbacks of the hyperplane classes in Pd and Pe,
respectively. A priori, we can write

Œˆ� D
X

ci�
i�d�i ;

where each coefficient ci is given by the degree of the product Œˆ� � �d�i�e�dCi ; that is,
the number of points of intersection ofˆ with the productƒ�� of general linear spaces
ƒ Š Pi � Pd and � Š Pd�i � Pe. This is exactly the number asked for in Keynote
Question (d), but it may not be clear at first glance how to evaluate it.

The key to doing this is the observation is that, abstractly, the varietyˆ is isomorphic
to a product Pd � Pe�d : Specifically, it is the image of Pd � Pe�d under the map

˛ W Pd � Pe�d ! Pd � Pe;
.D;D0/ 7! .D;D CD0/:

Furthermore, the pullback map ˛� W A.Pd �Pe/! A.Pd �Pe�d / is readily described.
Let �; � 2 A1.Pd�Pe�d / be the pullbacks of the hyperplane classes from Pd and Pe�d ,
respectively. Since ˛ commutes with the projection on the first factor, we see that
˛�.�/ D � ; since the composition Pd � Pe�d ! Pd � Pe ! Pe is given by bilinear
forms on Pd � Pe�d , we have ˛�.�/ D � C �. To evaluate the coefficient ci , we write

deg.Œˆ� � �d�i�e�dCi / D deg.˛�.�d�i�e�dCi //

D deg.�d�i .� C �/e�dCi /

D

�e�dCi
i

�
I

thus

Œˆ� D
X�e�dCi

i

�
� i�d�i ;

and correspondingly the answer to Keynote Question (d) is
�e�dCa�1

a�1

�
.

2.1.9 The blow-up of Pn at a point

We will see in Chapter 13 how to describe the Chow ring of a blow-up in general. In
this chapter, both to illustrate some of the techniques introduced so far and because the
formulas derived will be useful in the interim, we will discuss two special cases: here the
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E

ƒ

zL

p L

ƒ0

E

ƒ
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Figure 2.5 Blow-up of P2.

blow-up of Pn at a point for any n � 2 and in Section 2.4.4 the blow-up of any smooth
surface at a point.

Recall that the blow-up of Pn at a point p is the morphism � W B ! Pn, where
B � Pn � Pn�1 is the closure of the graph of the projection �p W Pn n fpg ! Pn�1

from p, and � is the projection on the first factor:

B

Pn .........................................
�p

-
�

�

Pn�1

˛

-

Since the graph of the projection is isomorphic to the source Pn n fpg, B is irreducible.
It is not hard to write explicit equations for B and to show that it is smooth as well; see,
for example, Section IV.2 of Eisenbud and Harris [2000].

The exceptional divisor E � B is defined to be ��1.p/, the preimage of p in B ,
which, as a subset of Pn � Pn�1, is fpg � Pn�1. Some other obvious divisors on B are
the preimages of the hyperplanes of Pn. If the hyperplane H � Pn contains p, then its
preimage is the sum of two irreducible divisors, E and zH ; the latter is called the strict
transform, or proper transform, of H . More generally, if Z � Pn is any subvariety, we
define the strict transform of Z to be the closure in B of the preimage ��1.Z n fpg/.
See Figure 2.5.

To compute the Chow ring of B , we start from a stratification of B , using the
geometry of the projection map ˛ W B ! Pn�1 to the second factor. We do this by first
choosing a stratification of the target Pn�1, and taking the preimages in B of these strata.
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�1

�0

˛

� 00

ƒ D ƒ1

P1 D � 01

E

Figure 2.6 Blow-up of P2 as P1-bundle.

Then we choose a divisor ƒ � B that maps isomorphically by ˛ to Pn�1 — a section
of ˛— and take, as additional strata, the intersections of these preimages with ƒ.

We will choose as our section the preimage ƒ D ��1.ƒ0/ of a hyperplane ƒ0 Š
Pn�1 � Pn not containing the point p. (There are other possible choices of a section,
such as the exceptional divisor E � B; see Exercise 2.37.)

To carry this out, let

� 00 � �
0
1 � � � � � �

0
n�2 � �

0
n�1 D Pn�1

be a flag of linear subspaces and, for k D 1; 2; : : : ; n, let

�k D ˛
�1.� 0k�1/ � B:

Since the fibers of ˛ W B ! Pn�1 are projective lines, the dimension of �k is k. Next,
for k D 0; 1; : : : ; n � 1, we set

ƒk D �kC1 \ƒ;

so that ƒk is the preimage of � 0
k

under the isomorphism ˛jƒ W ƒ! Pn�1.
The subvarieties �1; : : : ; �n; ƒ0; : : : ; ƒn�1 are the closed strata of a stratification

of B , with inclusion relations

ƒ0 ƒ1 � � � ƒn�2 ƒn�1

�1 �2 � � � �n�1 �n D B

As we will soon see, this is an affine stratification, so that the classes of the closed
strata generate the Chow group A.B/. (In fact, the open strata are isomorphic to affine
spaces, and it follows from Totaro [2014] that they generate A.B/ freely; we will verify
this independently when we determine the intersection products.)

To visualize this, we think of the blow-up B as the total space of a P1-bundle over
Pn�1 via the projection map ˛; for example, this is the picture that arises if we take the
standard picture of the blow-up of P2 at a point (shown in Figure 2.5) and “unwind” it
as in Figure 2.6.
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Proposition 2.13. Let B be the blow-up of Pn at a point, with n � 2. With notation
as above, the Chow ring A.B/ is the free abelian group on the generators Œƒk� D
Œƒn�1�

n�k for k D 0; : : : ; n � 1 and Œ�k� D Œ�n�1�n�k for k D 1; : : : ; n. The class of
the exceptional divisor E is Œƒn�1� � Œ�n�1�. If we set � D Œƒn�1� and e D ŒE�, then

A.B/ Š
ZŒ�; e�

.�e; �n C .�1/nen/

as rings.

Proof: We start by verifying that the open strata �ı1 ; : : : ; �
ı
n; ƒ

ı
0; : : : ; ƒ

ı
n�1 of the

stratification of B with closed strata �k; ƒk are isomorphic to affine spaces. This is
immediate for the strata ƒı

k
. For the strata �ı

k
, we choose coordinates .x0; : : : ; xn/ on

Pn so that p D .1; 0; : : : ; 0/ and ƒ0 � Pn is the hyperplane x0 D 0. By definition,

B D
˚
..x0; : : : ; xn/; .y1; : : : ; yn// 2 Pn � Pn�1 j xiyj D xjyi for all i; j � 1

	
:

Say the .k � 1/-plane � 0
k�1
� Pn�1 is given by y1 D � � � D yn�k D 0. We can write

the open stratum �ı
k
D ˛�1

�
� 0
k�1
n � 0

k�2

�
\ .B nƒ/ as

�ık D
˚
..1; 0; : : : ; 0; �; �yn�kC2; : : : ; �yn/; .0; : : : ; 0; 1; yn�kC2; : : : ; yn//

	
:

The functions �; yn�kC2; : : : ; yn give an isomorphism of �ı
k

with Ak .
It follows that the classes

�k D Œƒk� and k D Œ�k� in Ak.B/

generate the Chow groups of B .
We next compute the intersection products. Sinceƒk is the preimage of a k-plane in

Pn not containing p, and any two such planes are linearly equivalent in Pn, the classes
of their pullbacks are all equal to �k . Similarly, the class of the proper transform of any
k-plane in Pn containing p is k . Having these representative cycles for the classes �k
and k makes it easy to determine their intersection products.

For example, a general k-plane in Pn intersects a general l-plane transversely in a
general .k C l � n/-plane; thus

�k�l D �kCl�n for all k C l � n:

Similarly, the intersection of a general k-plane in Pn containing p with a general l-plane
not containing p is a general .k C l � n/-plane not containing p, so that

k�l D �kCl�n for all k C l � n;

and likewise

kl D kCl�n for all k C l � nC 1:
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Note the restriction k C l � nC 1 on the last set of products: In the case k C l D n,
the proper transforms of a general k-plane through p and a general l-plane through p
are disjoint.

This determines the Chow ring ofB . The pairingAk.B/�An�k.B/! A0.B/ Š Z
is given by

�k�n�k D �kn�k D k�n�k D 1 and kn�k D 0:

This is nondegenerate, so the classes �0; : : : ; �n�1 and 1; : : : ; n freely generate A.B/.
It follows that we can express the class of the exceptional divisor E in terms of

the generators ƒn�1 and �n�1 of An�1.B/. The most geometric way to do this is to
observe that ƒ0n�1 is linearly equivalent in Pn to a hyperplane † � Pn containing p, so
the pullback of † is linearly equivalent to the union of the exceptional divisor E and
a divisor D. Since D projects to a hyperplane of Pn�1, it is contained in the preimage
� of such a hyperplane. Since � is a P1-bundle over its image, it is irreducible. We
see upon comparing dimensions that D D � . Since any two hyperplanes in Pn�1 are
rationally equivalent, so are their preimages in B; thus ƒn�1 � D CE � �n�1 CE,
or ŒE� D �n�1 � n�1.

We now turn to the ring structure ofA.B/. Let � D Œƒn�1� and e D ŒE� D ��n�1.
Since ƒn�1 \E D ¿, we have

�e D 0:

Also,

�k D �
n�k for k D 0; : : : ; n � 1;

and, since n�1 D � � e,

k D 
n�k
n�1 D .� � e/

n�k
D �n�k C .�1/n�ken�k for k D 1; : : : ; n:

It follows that � and e generate A.B/ as a ring. In addition to the relation �e D 0, they
satisfy the relation

0 D nn�1 D .� � e/
n
D �n C .�1/nen:

Thus the Chow ring is a homomorphic image of the ring

A0 WD ZŒ�; e�=.�e; �n C .�1/nen/:

For m D 1; : : : ; n� 1, it is clear that every homogeneous element of degree m in A0 is a
Z-linear combination of em and �m. Since for 0 < m < n the group Am.B/ is a free
Z-module of rank 2, this implies that the map A0� A is an isomorphism.

We have computed the intersection products of the ƒk and �k by taking represen-
tatives that meet transversely (indeed, the possibility of doing so motivated our choice
of ƒ as a cross section of ˛ above). Since E is the only irreducible variety in the
class ŒE� we cannot give a representative for e2 quite as easily. But as we have seen,
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ŒE� D Œƒn�1� � Œ�n�1� and both ƒn�1 and �n�1 are transverse to E (this illustrates
the conclusion of the moving lemma!). It follows that

e2 D ŒE \ .ƒ � �/� D �ŒE \ �n�1�:

Since E projects isomorphically to Pn�1 and � projects to a hyperplane in Pn�1, we
see that E \ �n�1 is a hyperplane in E; that is, ŒE�2 is the negative of the class of a
hyperplane in E.

The Chow ring of the blow-up of P3 along a line is worked out in Exercises 2.38–
2.40. More generally, we will see how to describe the Chow ring of a general projective
bundle in Chapter 9, and the Chow ring of a more general blow-up in Chapter 13.

2.1.10 Intersection multiplicities via blow-ups

We can use the description of the Chow ring of the blow-up B of Pn at a point
to prove Proposition 1.29, relating the intersection multiplicity of two subvarieties
X; Y � Pn of complementary dimension at a point to the multiplicities of X and Y
at p. (The same argument will apply to subvarieties of an arbitrary smooth variety
once we have described the Chow ring of a general blow-up in Section 13.6.) The idea
is to compare the intersection X \ Y � Pn of X and Y in Pn with the intersection
zX \ zY � B of their proper transforms in the blow-up.

We start by finding the class of the proper transforms:

Proposition 2.14. Let X � Pn be a k-dimensional variety and zX � B its proper
transform in the blow-up B of Pn at a point p. If X has degree d and multiplicity
m D multp.X/ at p, then the class of the proper transform is

Œ zX� D .d �m/�k Cmk 2 A.B/:

Proof: This follows from two things: the definition of the multiplicity of X at p as the
degree of the projectivized tangent cone TCpX (Section 1.3.8), and the identification
of the projectivized tangent cone TCpX to X at p with the intersection of the proper
transform zX with the exceptional divisor E Š Pn�1 � B (on page 36).

Given these, the proposition follows from the observation that if i W E ,! B is the
inclusion, then i�.�k/ D 0 (�k is represented by the cycleƒk , which is disjoint fromE)
and i�.k/ is the class of a .k � 1/-plane in E Š Pn�1 (k is represented by the cycle
�k , which intersects E transversely in a .k � 1/-plane). This says that the coefficient
of k in the expression above for Œ zX� must be the multiplicity m D multp.X/; the
coefficient of �k similarly follows by restricting to a hyperplane not containing p.

Now suppose we are in the setting of Proposition 1.29:X; Y � Pn are dimensionally
transverse subvarieties of complementary dimensions k and n � k, having multiplicities
m and m0 respectively at p. If, as we supposed in the statement of the proposition, the
projectivized tangent cones to X and Y at p are disjoint (that is, zX \ zY \E D ¿), then
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the intersection multiplicitymp.X; Y / of X and Y at p is simply the difference between
the intersection number deg.ŒX�ŒY �/ of X and Y in Pn and the intersection number
deg.Œ zX�Œ zY �/ of their proper transforms in B; by Proposition 2.14 and our description of
the Chow ring A.B/, this is just mm0.

2.2 Loci of singular plane cubics
This section represents an important shift in viewpoint, from studying the Chow rings

of common and useful algebraic varieties to studying Chow rings of parameter spaces. It
is a hallmark of algebraic geometry that the set of varieties (and more generally, schemes,
morphisms, bundles and other geometric objects) with specified numerical invariants
may often be given the structure of a scheme itself, sometimes called a parameter space.
Applying intersection theory to the study of such a parameter space, we learn something
about the geometry of the objects parametrized, and about geometrically characterized
classes of these objects. This gets us into the subject of enumerative geometry, and
was one of the principal motivations for the development of intersection theory in the
19th century.

By way of illustration, we will focus on the family of curves of degree 3 in P2:
plane cubics. Plane cubics are parametrized by the set of homogeneous cubic polynomials
F.X; Y;Z/ in three variables, modulo scalars, that is, by P9.

There is a continuous family of isomorphism classes of smooth plane cubics,
parametrized naturally by the affine line (see Hartshorne [1977]), but there are only a
finite number of isomorphism classes of singular plane cubics:

� irreducible plane cubics with a node;
� irreducible plane cubics with a cusp;
� plane cubics consisting of a smooth conic and a line meeting it transversely;
� plane cubics consisting of a smooth conic and a line tangent to it;
� plane cubics consisting of three nonconcurrent lines (“triangles”);
� plane cubics consisting of three concurrent lines (“asterisks”);
� cubics consisting of a double line and a line; and finally
� cubics consisting of a triple line.

These are illustrated in Figures 2.7–2.9, where the arrows represent specialization,
as explained below.

The locus in P9 of points corresponding to singular curves of each type is an orbit
of PGL3 and a locally closed subset of P9. These loci, together with the open subset
U � P9 of smooth cubics, give a stratification of P9. We may ask: What are the closed
strata of this stratification like? What are their dimensions? What containment relations
hold among them? Where is each one smooth and singular? What are their tangent
spaces and tangent cones? What are their degrees as subvarieties of P9?
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Œ2� Œ3�

Dimension: 9 8 7 6 5 4 2

Figure 2.7 Hierarchy of singular plane cubic curves.

Figure 2.8 Nodal cubic about to become the union of a conic and a transverse line:
y2 � x2.x C 1/C 100.x � y/

��
x � 1

2

�2
C
�
y � 1

2

�2
�
1
2

�
.

Some of these questions are easy to answer. For example, the dimensions are given in
Figure 2.7, and the reader can verify them as an exercise. The specialization relationships
(when one orbit is contained in the closure of another, as indicated by arrows in the
chart) are also easy, because to establish that one orbit lies in the closure of another it
suffices to exhibit a one-parameter family fCt � P2g of plane cubics with an open set of
parameter values t corresponding to one type and a point corresponding to the other. The
noninclusion relations are subtler — why, for example, is a triangle not a specialization of
a cuspidal cubic? — but can also be proven by focusing on the singularities of the curves.

Figure 2.9 Cuspidal cubic about to become the union of a conic and a tangent line:
y2 � x3 C 7y.x2 C .y � 1/2 � 1/.



64 Chapter 2 First examples

The tangent spaces require more work; we will give some examples in Exercises 2.42–
2.43, in the context of establishing a transversality statement, and we will see more of
these, as well as some tangent cones, in Section 7.7.3.

In the rest of this section we will focus on the question of the degrees of these loci;
we will find the answer in the case of the loci of reducible cubics, triangles and asterisks.
In the exercises we indicate how to compute the degrees of the other loci of plane cubics,
except for the loci of irreducible cubics with a node and of irreducible cubics with a
cusp; these will be computed in Section 7.3.2 and Section 11.4 respectively.

The calculations here barely scratch the surface of the subject; see for example Aluffi
[1990; 1991] for a beautiful and extensive treatment of the enumerative geometry of
plane cubics. Moreover, the answers to analogous questions for higher-degree curves or
hypersurfaces of higher dimension — for example, about the stratification by singularity
type — remain mysterious. Even questions about the dimension and irreducibility of
these loci are mostly open; they are a topic of active research. See Greuel et al. [2007]
for an introduction to this area.

For example, it is known that for 0 � ı �
�
d
2

�
the locus of plane curves of degree d

having exactly ı nodes is irreducible of codimension ı in the projective space PN of all
plane curves of degree d (see, for example, Harris and Morrison [1998]), and its degree
has also been determined (Caporaso and Harris [1998]). But we do not know the answers
to the analogous questions for plane curves with ı nodes and � cusps, and when it comes
to more complicated singularities even existence questions are open. For example, for
d > 6 it is not known whether there exists a rational plane curve C � P2 of degree d
whose singularities consist of just one double point.

2.2.1 Reducible cubics

Let � � P9 be the closure of the locus of cubics consisting of a conic and a
transverse line (equivalently, the locus of reducible and/or nonreduced cubics). We can
describe � as the image of the map

� W P2 � P5 ! P9

from the product of the space P2 of homogeneous linear forms and the space P5 of
homogeneous quadratic polynomials to P9, given simply by multiplication: .F;G/ 7!
FG. Inasmuch as the coefficients of the product FG are bilinear in the coefficients of F
and G, the pullback ��.�/ of the hyperplane class � 2 A1.P9/ is the sum

��.�/ D ˛ C ˇ;

where ˛ and ˇ are the pullbacks to P2 � P5 of the hyperplane classes on P2 and P5.
By unique factorization of polynomials, the map � is birational onto its image; it

follows that the degree of � is given by

deg.�/ D deg.��.�/7/ D deg..˛ C ˇ/7/ D 21;
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and this is the answer to Keynote Question (a).
Another way to calculate the degree of � is described in Exercises 2.42–2.44.

2.2.2 Triangles

A similar analysis gives the answer to Keynote Question (b) — how many cubics in
a three-dimensional linear system factor completely, as a product of three linear forms.
Here, the key object is the closure † � P9 of the locus of such totally reducible cubics,
which we may call triangles; the keynote question asks us for the number of points of
intersection of † with a general 3-plane. By Bertini’s theorem this is the degree of †.

Since † is the image of the map

� W P2 � P2 � P2 ! P9;
.ŒL1�; ŒL2�; ŒL3�/ 7! ŒL1L2L3�;

we can proceed as before, with the one difference that the map is now no longer birational,
but rather is generically six-to-one. Thus if ˛1, ˛2, ˛3 2 A1.P2 � P2 � P2/ are the
pullbacks of the hyperplane classes in the factors P2 via the three projections, so that

��.�/ D ˛1 C ˛2 C ˛3;

we get

deg.†/ D 1
6

deg .˛1 C ˛2 C ˛3/6D 1
6

� 6

2; 2; 2

�
D 15:

This is the answer to Keynote Question (b): In a general three-dimensional linear system
of cubics, there will be exactly 15 triangles.

2.2.3 Asterisks

By an asterisk, we mean a cubic consisting of the sum of three concurrent lines. To
see that the closure of this locus is indeed a subvariety of P9 and to calculate its degree, let

� W P2 � P2 � P2 ! P9

be as in Section 2.2.2, and consider the subset

ˆ D f.L1; L2; L3/ 2 P2 � P2 � P2 jL1 \ L2 \ L3 ¤ ¿gI

the locus A � P9 of asterisks is then the image �.ˆ/ of ˆ under the map �. If we write
the line Li as the zero locus of the linear form

ai;1X C ai;2Y C ai;3Z;

then the condition that L1 \ L2 \ L3 ¤ ¿ is equivalent to the equalityˇ̌̌̌
ˇ̌a1;1 a1;2 a1;3

a2;1 a2;2 a2;3

a3;1 a3;2 a3;3

ˇ̌̌̌
ˇ̌ D 0:
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The left-hand side of this equation is a homogeneous trilinear form on P2 � P2 � P2,
from which we see that ˆ is a closed subset of P2 � P2 � P2 and A is a closed subset
of P9. Moreover, we see that the class of ˆ is

Œˆ� D ˛1 C ˛2 C ˛3 2 A
1.P2 � P2 � P2/;

so that the pullback via � of five general hyperplanes in P9 will intersect ˆ in

deg.Œˆ�.˛1 C ˛2 C ˛3/5/ D deg.˛1 C ˛2 C ˛3/6 D
� 6

2; 2; 2

�
D 90

points. Since the map �jˆ W ˆ! A has degree 6, it follows that the degree of the locus
A � P9 of asterisks is 15.

2.3 The circles of Apollonius
Apollonius posed the problem of constructing the circles tangent to three given

circles. Using Bézout’s theorem we can count them.

Theorem 2.15. If D1;D2 and D3 are three general circles, there are exactly eight
circles tangent to all three.

2.3.1 What is a circle?

We first need to say what we mean by a circle in complex projective space. While
circles are usually characterized in terms of a metric, in fact they have a purely algebro-
geometric definition. Starting from the affine equation

.x � a/2 C .y � b/2 D r2 (2.1)

of a circle of radius r centered at a point .a; b/ in A2, and homogenizing with respect to
a new variable z, we get .x � az/2 C .y � bz/2 D r2z2: We think of the line z D 0 as
the “line at infinity,” and we see that the circle passes through the two points

ıC D .1; i; 0/ and ı� WD .1;�i; 0/

on the line at infinity; these are called the circular points. Conversely, it is an easy
exercise to see that the equation of any smooth conic passing through the two circular
points can be put into put into the form (2.1).

We thus define a circle to be a conic in P2 with coordinates x; y; z passing through
the two circular points on the line at infinity z D 0; equivalently, a circle is a conic
C D V.f / � P2 whose defining equation f lies in the ideal .z; x2 C y2/. (This
formulation makes sense over any field of characteristic¤ 2.) We see from this that the
set of circles is a three-dimensional linear subspace in the space P5 of all conics in P2.



The circles of Apollonius Section 2.3 67

Much geometry can be done in this context. For example, a direct calculation shows
that the center of the circle is the point of intersection of the tangent lines to the circle at
the circular points; in particular, the coordinates of the center are rational functions of
the coefficients of its defining equation.

Note that when we characterize circles as conics containing the circular points p; q
at infinity, we are including singular conics that pass through these points, and we see
that there are two kinds of singular circles: unions of the line at infinity ıC; ı� with
another line in P2, and unions L [M of lines with ıC 2 L and ı� 2M . It is easy to
see from the equations that these are the limits of smooth circles of radius r as r !1
and r ! 0, respectively. (When the radius of a circle goes to 0, we may think the circle
shrinks to a point, but that is because we are seeing only points in R2: over C, the conic
x2 C y2 D 0 consists of the two lines x D ˙iy.)

2.3.2 Circles tangent to a given circle

Next, we have to define what we mean when we say two circles are tangent. Let
D � P2 be a smooth circle. If C is any other circle, we can write the intersection C \D,
viewed as a divisor on D, as the sum

C \D D ıC C ı� C p C q:

In these terms, we make the following definition:

Definition 2.16. We say that the circle C is tangent to the circle D if p D q.

In other words, C and D are tangent if they have two coincident intersections in
addition to their intersection at the circular points; this includes the case where C;D
have intersection multiplicity 3 at p or q. Let ZD be the variety of circles tangent to a
given smooth circle D. We will show that ZD is a quadric cone in the P3 of circles.

It is visually obvious that the family of circles in R2 tangent to a given circle is
two-dimensional. To prove this algebraically we consider the incidence correspondence

ˆ D f.r; C / 2 D � P3 jC is tangent to D at rg;

where when r is a circular point the condition should be interpreted as saying the
intersection multiplicitymr.C;D/ is� 3. The condition that a curve f D 0meet a curve
D with multiplicity m at a smooth point r 2 D means that the function f jD vanishes
to order m at r ; it is thus m linear conditions on the coefficients of the equation f . This
shows that, for each point r 2 D, the fiber of ˆ over r is a P1, cut out by two linear
equations in the space of circles. It follows that ˆ is irreducible of dimension 2. Since
almost all circles tangent to D are tangent at a single point, the map ˆ! P3 sending
.r; C / to C is birational. Thus the image ZD of ˆ in P3 also two-dimensional.

To show that ZD � P3 is a quadric, let L � P3 be a general line, corresponding to
a pencil of circles fCtgt2P1 . If f and g are the defining equations of C0 and C1, the
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rational function f=g has two zeros (where C0 meets D, aside from the circular points)
and two poles (where C1 meets D, aside from the circular points), so f=g gives a map
D ! P1 of degree 2.

The circles Ct tangent to D correspond to the branch points of this map; by the
classical Riemann–Hurwitz formula, there will be two such points. Thus the degree of
L \ ZD is 2, and we see that ZD is a quadric surface. On the other hand, if C ¤ D

is tangent to D at r 2 D, then every member of the linear space of circles jointing C
to D satisfies the linear condition for tangency at r , so ZD � P3 is a cone with vertex
corresponding to D, as claimed.

2.3.3 Conclusion of the argument

Now letD1;D2;D3 be three circles. If the intersection A WD ZD1 \ZD2 \ZD3 is
finite, then Bézout’s theorem implies that degA D 23 D 8. To prove that the intersection
is finite for nearly all triples of circles Di , we consider the incidence correspondence

‰ WD f.D1;D2;D3; C / 2 .P3/4 jC is tangent to each of the Dig:

If we project onto the last factor, the fiber isZ3C , and thus has dimension 6, so dim‰ D 9.
Thus the projection to the nine-dimensional space consisting of all triples .D1;D2;D3/
cannot have generic fiber of positive dimension.

We have now shown that, counting with multiplicity, there are eight circles tangent
to three general circles D1;D2;D3. To prove that there are really eight distinct circles,
we would need to prove that the intersection ZD1 \ ZD2 \ ZD3 is transverse. In
Section 8.2.3 we will see how to do this directly, by identifying explicitly the tangent
spaces to the loci ZD . For now we will be content to give an example of the situation
where the eight circles are distinct: it is shown on the cover of this book!

Another approach to the circles of Apollonius, via the notion of theta-characteristics,
is given in Harris [1982]. There is also an analogous notion of a sphere in P3; see for
example Exercise 13.32.

2.4 Curves on surfaces
Aside from enumerative problems, intersection products appeared in algebraic

geometry as a central tool in the theory of surfaces, developed mostly by the Italians in
the late 19th and early 20th centuries. In this section we describe some of the basic ideas.
This will serve to illustrate the use of intersection products in a simple setting, and also
provide us with formulas that will be useful throughout the book. A different treatment
of some of this material is in the last chapter of Hartshorne [1977]; and much more can
be found, for example, in Beauville’s beautiful book on algebraic surfaces [1996].



Curves on surfaces Section 2.4 69

Throughout this section we will use some classical notation: If S is a smooth
projective surface and ˛; ˇ 2 A1.S/, we will write ˛ � ˇ for the degree deg.˛ˇ/ of
their product ˛ˇ 2 A2.S/, and we refer to this as the intersection number of the two
classes. Further, if C � S is a curve we will abuse notation and write C for the class
ŒC � 2 A1.S/. Thus, for example, if C;D � S are two curves, we will write C �D in
place of deg.ŒC � � ŒD�/ and we will write C 2 for deg.ŒC �2/. The reader should not be
misled by this notation into thinking that A2.S/ D Z — as we have already remarked,
the group A2.S/ need not even be finite-dimensional in any reasonable sense.

2.4.1 The genus formula

One of the first formulas in which intersection products appeared was the genus
formula, a straightforward rearrangement of the adjunction formula that describes the
genus of a smooth curve on a smooth projective surface (we will generalize it to some
singular curves in Section 2.4.6). If C � S is a smooth curve of genus g on a smooth
surface, then

KC D .KS C C/jC I

since the degree of the canonical class of C is 2g � 2, this yields

g D
C 2 CKS � C

2
C 1: (2.2)

Example 2.17 (Plane curves). By way of examples, consider first a smooth curve
C � P2 of degree d . If we let � 2 A1.P2/ be the class of a line, we have ŒC � D d� and
KP2 D �3�, so the genus of C is

g D
�3d C d2

2
C 1 D

.d � 1/.d � 2/

2
:

Thus we recover, for example, the well-known fact that lines and smooth conics have
genus 0 while smooth cubics have genus 1.

Example 2.18 (Curves on a quadric). Now suppose that Q � P3 is a smooth quadric
surface, and that C � Q is a smooth curve of bidegree .d; e/— that is, a curve linearly
equivalent to d times a line of one ruling plus e times a line of the other (equivalently, in
terms of the isomorphism Q Š P1 � P1, the zero locus of a bihomogeneous polynomial
of bidegree .d; e/). Let ˛ and ˇ 2 A1.Q/ be the classes of the lines of the two rulings
of Q, as in the discussion in Section 2.1.5 above, and let � D ˛ C ˇ be the class of a
plane section of Q. Applying adjunction to Q � P3, we have

KQ D .KP3 CQ/jQ D �2� D �2˛ � 2ˇ:
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Thus, by the genus formula,

g D
.d˛ C eˇ/2 � 2.˛ C ˇ/.d˛ C eˇ/

2
C 1

D
2de � 2d � 2e

2
C 1

D .d � 1/.e � 1/:

2.4.2 The self-intersection of a curve on a surface

We can sometimes use the genus formula to determine the self-intersection of a
curve on a surface. For example, suppose that S � P3 is a smooth surface of degree d
and L � S is a line. Letting � 2 A1.S/ denote the plane class and applying adjunction
to S � P3, we have KS D .d � 4/�, so that L �KS D d � 4; since the genus of L is 0,
the genus formula yields

0 D
L2 C d � 4

2
C 1;

or

L2 D 2 � d:

The cases d D 1 (a line on a plane) and d D 2 are probably familiar already; in the case
d � 3, the formula implies the qualitative statement that a smooth surface S � P3 of
degree 3 or more can contain only finitely many lines. (See Exercise 2.60 below for a
sketch of a proof, and Exercise 2.59 for an alternative derivation of L2 D 2 � d .)

We note in passing that we could similarly ask for the degree of the self-intersection
of a 2-plane ƒ Š P2 � X on a smooth hypersurface X � P5. This is far harder (as the
reader may verify, neither of the techniques suggested in this chapter for calculating the
self-intersection of a line on a smooth surface S � P3 will work); the answer is given in
Exercise 13.22.

2.4.3 Linked curves in P3

Another application of the genus formula yields a classical relation between what
are called linked curves in P3.

Let S; T � P3 be smooth surfaces of degrees s and t , and suppose that the scheme-
theoretic intersection S \ T consists of the union of two smooth curves C and D with
no common components. Let the degrees of C and D be c and d , and let their genera be
g and h respectively. By Bézout’s theorem, we have

c C d D st;

so that the degree of C determines the degree of D. What is much less obvious is that
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the degree and genus of C determine the degree and genus of D. Here is one way to
derive the formula.

To start, we use the genus formula (2.2) to determine the self-intersection of C on
S : Since KS D .s � 4/�, we have

g D
C 2 CKS � C

2
C 1 D

C 2 C .s � 4/c

2
C 1;

and hence

C 2 D 2g � 2 � .s � 4/c

(generalizing our formula in Section 2.4.2 for the self-intersection of a line). Next, since
ŒC �C ŒD� D t� 2 A1.S/, we can write the intersection number of C and D on S as

C �D D C.t� � C/ D tc � .2g � 2 � .s � 4/c/ D .s C t � 4/c � .2g � 2/:

This in turn allows us to determine the self-intersection of D on S :

D2 D D.t� � C/ D td � ..s C t � 4/c � .2g � 2//:

Applying the genus formula to D, we obtain

h D
D2 CKS �D

2
C 1

D
td � ..s C t � 4/c � .2g � 2//C .s � 4/d

2
C 1:

Simplifying, we get

h � g D
s C t � 4

2
.d � c/I (2.3)

in English, the difference in the genera of C and D is proportional to the difference in
their degrees, with ratio .s C t � 4/=2.

The answer to Keynote Question (f) is a special case of this: If L � P3 is a line, and
S and T general surfaces of degrees s and t containing L, then, writing S \T D L[C ,
we see that C is a curve of degree st � 1 and genus

h D
.s C t � 4/.st � 2/

2
:

As is often the case with enumerative formulas, this is just the beginning of a much
larger picture. The theory of liaison describes the relationship between the geometry
of linked curves such as C and D above. The theory in general is far more broadly
applicable (the curves C and D need only be Cohen–Macaulay, and we need no hy-
potheses at all on the surfaces S and T ), and ultimately provides a complete answer
to the question of when two given curves C;D � P3 can be connected by a series of
curves C D C0; C1; : : : ; Cn�1; Cn D D with Ci and CiC1 linked as above. We will see
a typical application of the notion of linkage in Exercise 2.62 below; for the general
theory, see Peskine and Szpiro [1974].
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2.4.4 The blow-up of a surface

The blow-up of a point on a surface plays an important role in the theory of surfaces,
and we will now explain a little of this theory. Locally (in the analytic or étale topology),
such blow-ups look like the blow-up of P2 at a point, which was treated in Section 2.1.9.

To fix notation, we let p 2 S be a point in a smooth projective surface and write
� W zS ! S for the blow-up of S at p. We writeE D ��1.p/ � zS for the preimage of p,
called the exceptional divisor, and e 2 A1. zS/ for its class. We will use the following
definitions and facts:

� � W zS ! S is birational, and if q 2 E � zS is any point of the exceptional divisor,
then there are generators z; w for the maximal ideal of O zS;q and generators x; y
for the maximal ideal of OS;p such that ��x D zw; ��y D w, and E is defined
locally by the equation w D 0. In particular, zS is smooth and E is a Cartier divisor.

� If C is a smooth curve through p, then the proper transform zC of C , which is by
definition the closure in zS of ��1.C n fpg/, meets E transversely in one point.

� More generally, if C has an ordinarym-fold point at p, then zC meetsE transversely
in m distinct points. Here we say that C has an ordinary m-fold point at p if the
completion of the local ring of C at p has the form

yOC;p Š kŒŒx; y��
ı � mY

iD1

.x � �iy/

�
for some distinct �1; : : : ; �m 2 k; geometrically, this says that, near p, C consists
of the union of m smooth branches meeting pairwise transversely at p.

We can completely describe A. zS/ in terms of A.S/:

Proposition 2.19. Let S be a smooth projective surface and � W zS ! S the blow-up of
S at a point p; let e 2 A1. zS/ be the class of the exceptional divisor.

(a) A. zS/ D A.S/˚ Ze as abelian groups.

(b) ��˛ � ��ˇ D ��.˛ˇ/ for any ˛; ˇ 2 A1.S/.

(c) e � ��˛ D 0 for any ˛ 2 A1.S/.

(d) e2 D �Œq� for any point q 2 E (in particular, deg.e2/ D �1).

Proof: We first show that �� and �� are inverse isomorphisms between A2.S/ and
A2. zS/. By the moving lemma, if ˛ 2 A0.S/ is any class, we can write ˛ D ŒA� for some
A 2 Z0.S/ with support disjoint from p; thus ����˛ D ˛. Likewise, if ˛ 2 A0. zS/ is
any class, we can write ˛ D ŒA� for some A 2 Z0.S/ with support disjoint from E; thus
����˛ D ˛.
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We next turn to A1. If ˛ 2 A1.S/ is any class, we can write ˛ D ŒA� for some
A 2 Z1.S/ with support disjoint from p; thus ����˛ D ˛. On the other hand, the
kernel of the pushforward map �� W Z1. zS/ ! Z1.S/ is just the subgroup generated
by e, the class of E. Thus we have an exact sequence

0 �! hei �! A1. zS/ �! A1.S/ �! 0;

with �� W A1.S/! A1. zS/ splitting the sequence.
It remains to show that the class e is not torsion in A1. zS/. This follows from the

formula deg e2 D �1, which we will prove independently below.
Part (b) of the proposition simply recalls the fact that �� is a ring homomorphism.

For part (c) we use the push-pull formula:

��.e � �
�˛/ D ��e � ˛ D 0:

For part (d), let C � S be any curve smooth at p, so that the proper transform
zC � zS of C will intersect E transversely at one point q. We have then

��ŒC � D Œ zC �C e;

and intersecting both sides with the class e yields

0 D Œq�C e2;

so the self-intersection number of e is deg e2 D �1.

2.4.5 Canonical class of a blow-up

We can express the canonical class of zS in terms of the canonical class of S
as follows:

Proposition 2.20. With notation as above,

K zS D �
�KS C e:

Proof: We must show that if ! is a rational 2-form on S , regular and nonzero at p, then
the pullback ��! vanishes simply along E. Let q 2 E � zS , and let .z; w/ be generators
of the maximal ideal of O zS;q such that there are generators .x; y/ for the maximal ideal
of OS;p with

��x D zw and ��y D w:

It follows that

��dx D z dw C w dz and ��dy D dw:

Thus

��.dx ^ dy/ D w.dz ^ dw/:



74 Chapter 2 First examples

Since the local equation of E at q is w D 0, this shows that ��dx vanishes simply along
E, as required.

2.4.6 The genus formula with singularities

It will be useful in a number of situations to have a version of the genus formula
(2.2) that gives the geometric genus of a possibly singular curve C � S . (The geometric
genus of a reduced curve is the genus of its normalization.) To start with the simplest
case, suppose that C � S is a curve smooth away from a point p 2 C of multiplicity m.
Assume moreover that p is an ordinary m-fold point, so that in particular the proper
transform zC is smooth. We can invoke the genus formula on zS to give a formula for the
genus g of zC in terms of intersection numbers on S .

As divisors,

��C D zC CmE;

so that

Œ zC � D ��ŒC � �me:

From Proposition 2.20, we have

K zS D �
�KS C e;

and, putting this together with the genus formula for zC � zS and Proposition 2.19,
we have

g D
zC 2 CK zS �

zC

2
C 1

D
.��C �me/2 C .��KS C e/.�

�C �me/

2
C 1

D
C 2 CKS � C

2
C 1 �

�m
2

�
:

More generally, ifC � S has singular points p1; : : : ; pı of multiplicitym1; : : : ; mı ,
and the proper transform zC of C in the blow-up Blfp1;:::;pıg of S at the points pi is
smooth (as will, in particular, be the case if the pi are ordinary mi -fold points of C ),
we have

g D
C 2 CKS � C

2
C 1 �

X�mi
2

�
:

One can extend this further, to general singular curvesC � S , by using iterated blow-
ups, or by generalizing the adjunction formula, using the fact that any curve on a smooth
surface has a canonical bundle (see for example Hartshorne [1977, Theorem III.7.11]).



Intersections on singular varieties Section 2.4 75

p

L L0

Figure 2.10 The degree of intersection of two lines on a quadric cone is 1
2

.

2.5 Intersections on singular varieties
In this section we discuss the problems of defining intersection products on singular

varieties. To begin with, the moving lemma may fail if X is even mildly singular:

Example 2.21 (Figure 2.10). Let C � P2 � P3 be a smooth conic andX D p;C � P3

the cone with vertex p … P2. Let L � X be a line (which necessarily contains p). We
claim that every cycle on X that is rationally equivalent to L has support containing p,
and thus the conclusion of part (a) of the moving lemma does not hold for X .

To show this, we first remark that the degrees of any two rationally equivalent curves
on X are the same; that is, there is a function deg W A1.X/! Z taking each irreducible
curve to its degree. For, if i W X ! P3 is the inclusion, then for any curve D on X
we have

degD D deg.� � i�.ŒD�//;

where � is the class of a hyperplane in P3. In particular degL D 1 is odd.
Now let D � X be any curve not containing p. We claim that the degree of D

must be even. To see this, observe that the projection map �p W D ! C is a finite map
whose fibers are the intersections of D with the lines of X ; it follows that a general line
in X will intersect D transversely in deg.�p/ points. Now let H � P3 be a general
plane through p. H intersects X in the union of two general lines L;L0 � X , and so
meets D transversely in 2 deg.�p/ points, so degD is even. It follows that any cycle of
dimension 1 on X , effective or not, whose support does not contain p has even degree,
and hence cannot be rationally equivalent to L.

Retaining the notation of Example 2.21, one might hope to define an intersection
product on A.X/ even without the moving lemma. It seems natural to think that since
two distinct lines L;L0 � X through p meet in the reduced point p, we would have
ŒL�ŒL0� D Œp�. However, if � is the class of a general plane sectionH\X ofX through p,
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p

�t ƒt

Mt Nt

Q

Figure 2.11 The intersection product of Œƒt � and the class of a line cannot be defined.

then (since such a hyperplane meets each L transversely in one point) we might also
expect �ŒL� D Œp�. But � is rationally equivalent to the union of two lines through p.
Thus, if both expectations were satisfied, we would have

Œp� D �ŒL0� D 2ŒL�ŒL0� D 2Œp�:

Applying the degree map, we would get the contradiction 1 D 2.
There is a way around the difficulty, if we work in the ring A.X/˝Q: We can take

the product of the classes of two lines to be one-half the class of the point p, and our
contradiction is resolved. As Mumford has pointed out, something similar can be done
for all normal surfaces (see Example 8.3.11 of Fulton [1984]). But in higher dimensions
there are more difficult problems, as the following example shows:

Example 2.22. Let Q � P3 � P4 be a smooth quadric surface, and let X D p;Q be
the cone in P4 with vertex p … P3. The quadric Q contains two families of lines fMtg

and fNtg, and the cone X is correspondingly swept out by the two families of 2-planes
fƒt D p;Mtg and f�t D p;Ntg; see Figure 2.11.

Now, any line L � X not passing through the vertex p maps, under projection
from p, to a line ofQ; that is, it must lie either in a planeƒt or in a plane �t ; lines on X
that do pass through p lie on one plane of each type. Note that since lines Mt ;Mt 0 � Q

of the same ruling are disjoint for t ¤ t 0, while linesMt andNt 0 of opposite rulings meet
in a point, a general line M � X lying in a plane ƒt is disjoint from ƒt 0 for t ¤ t 0 and
meets each plane �s transversely in a point. Thus, if there were any intersection product
on A.X/ satisfying the fundamental condition (�) of Theorem 1.5, we would have

ŒM �Œƒt � D 0 and ŒM �Œ�t � D Œq�
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for some point q 2 X . Likewise, for a general line N � X lying in a plane �t , the
opposite would be true; that is, we would have

ŒN �Œƒt � D Œr� and ŒN �Œ�t � D 0:

But the lines M and N — indeed, any two lines on X — are rationally equivalent!
Since any two lines in ƒt are rationally equivalent, the line M is rationally equivalent to
the line of intersection ƒt \ �s . Since any two lines in �s are rationally equivalent, the
line of intersection (and thus also M ) is rationally equivalent to an arbitrary line in �s .
Since a point cannot be rationally equivalent to 0 on X , we have a contradiction. Thus
products such as ŒM �Œƒt � cannot be defined in A.X/.

Despite this trouble, one can still define f �M Œƒt � and f �N Œƒt � using methods of
Fulton [1984]. In fact, one can define the pullback f � for an inclusion morphism
f W B ,! X that is a “regular embedding” (which means that B is locally a complete
intersection in X ), or for the composition of such a morphism with a flat map.

Example 2.22 also shows that, even though fM� is well-defined, pullbacks cannot
be defined, at least in a way that makes the push-pull formula valid. If X were smooth,
then by the push-pull formula ŒM �Œƒt � would be equal to fM�.ŒM �f �M Œƒt �/, where
the product ŒM �f �M Œƒt � should be interpreted as being in A.M/. This product is well-
defined, as are the pullback and pushforward. But they do not allow us to compute the
product ŒM �Œƒt �I since ŒM � D ŒN � in A.X/, we would arrive at the contradiction

0 D fM�.f
�
M Œƒt �/ D ŒM �Œƒt � D ŒN �Œƒt � D fN�.f

�
N Œƒt �/ D Œr�:

There are, however, certain cycles (such as those represented by Chern classes of
bundles) with which one can intersect, and this leads to a notion of “Chow cohomology”
groups A�.X/, which play a role relative to the Chow groups analogous to the role of co-
homology relative to homology in the topological context: we have intersection products

Ac.X/˝ Ad .X/! AcCd .X/vspace�5pt

and

Ac.X/˝ Ak.X/! Ak�c.X/

analogous to cup and cap products in topology. In the present volume we will avoid
all of this by sticking for the most part to the case of intersections on smooth varieties,
where we can simply equate Ac.X/ D AdimX�c.X/; for the full treatment, see Fulton
[1984, Chapters 6, 8 and 17], and, for a visionary account of what might be possible,
Srinivas [2010].
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2.6 Exercises
Exercise 2.23. Let � D �2;2 W P2 ! P5 be the quadratic Veronese map. If C � P2 is a
plane curve of degree d , show that the image �.C / has degree 2d . (In particular, this
means that the Veronese surface S � P5 contains only curves of even degree!) More
generally, if � D �n;d W Pn ! PN is the degree-d Veronese map and X � Pn is a
variety of dimension k and degree e, show that the image �.X/ has degree dke.

Exercise 2.24. Let � D �r;s W Pr � Ps ! P.rC1/.sC1/�1 be the Segre map, and let
X � Pr � Ps be a subvariety of codimension k. Let the class ŒX� 2 Ak.Pr � Ps/ be
given by

ŒX� D c0˛
k
C c1˛

k�1ˇ C � � � C ckˇ
k

(where ˛; ˇ 2 A1.Pr � Ps/ are the pullbacks of the hyperplane classes, and we take
ci D 0 if i > s or k � i > r).

(a) Show that all ci � 0.
(b) Calculate the degree of the image �.X/ � P.rC1/.sC1/�1.
(c) Using (a) and (b), show that any linear space ƒ � †r;s � P.rC1/.sC1/�1 contained

in the Segre variety lies in a fiber of either the map †r;s Š Pr � Ps ! Pr or the
corresponding map to Ps .

Exercise 2.25. Let ' W P2 ! P2 be the rational map given by

' W .x0; x1; x2/ -

�
1

x0
;
1

x1
;
1

x2

�
;

or, equivalently,

' W .x0; x1; x2/ 7! .x1x2; x0x2; x0x1/;

and let �' � P2 � P2 be the graph of '. Find the class

Œ�' � 2 A
2.P2 � P2/:

Exercise 2.26. Let � W P2 � P2 ! P8 be the Segre map. Find the class of the graph of
� in A.P2 � P2 � P8/.

Exercise 2.27. Let s W P2�P2 - P2� be the rational map sending .p; q/ 2 P2�P2

to the line p; q. Find the class of the graph of s in A.P2 � P2 � P2�/.

Exercise 2.28. Let X � Pn be a hypersurface of degree d . Suppose that X has an
ordinary double point (that is, a point p 2 X such that the projective tangent cone
TCpX is a smooth quadric), and is otherwise smooth. What is the degree of the dual
hypersurface X� � Pn�?
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Exercise 2.29. Let p 2 X � Pn be a variety of degree d and dimension k, and suppose
that p 2 X is a point of multiplicity m (see Section 1.3.8 for the definition). Assuming
that the projection map �p W X ! Pn�1 is birational onto its image, what is the degree
of �p.X/?
Hint: Use Proposition 2.14.

Exercise 2.30. Show that the Chow ring of a product of projective spaces Pr1�� � ��Prk is

A.Pr1 � � � � � Prk / D
O

A.Pri /

D ZŒ˛1; : : : ; ˛k�=.˛
r1C1
1 ; : : : ; ˛

rkC1
k

/;

where ˛1; : : : ; ˛k are the pullbacks of the hyperplane classes from the factors. Use this
to calculate the degree of the image of the Segre embedding

� W Pr1 � � � � � Prk ,! P.r1C1/���.rkC1/�1

corresponding to the multilinear map V1 � � � � � Vk ! V1 ˝ � � � ˝ Vk .

Exercise 2.31. For t ¤ 0, let At W Pr ! Pr be the automorphism

ŒX0; X1; X2; : : : ; Xr � 7! ŒX0; tX1; t
2X2; : : : ; t

rXr �:

Let ˆ � A1 � Pr � Pr be the closure of the locus

ˆı D f.t; p; q/ j t ¤ 0 and q D At .p/g:

Describe the fiber of ˆ over the point t D 0, and deduce once again the formula of
Section 2.1.6 for the class of the diagonal in Pr � Pr .

In the simplest case, this construction is a rational equivalence between a smooth
plane section of a quadric Q Š P1 � P1 � P3 (the diagonal, in terms of suitable
identifications of the factors with P1) and a singular one (the sum of a line from each
ruling), as in Figure 2.12.

Exercise 2.32. Let

‰ D f.p; q; r/ 2 Pn � Pn � Pn jp; q and r are collinear in Png:

(Note that this includes all diagonals.)

(a) Show that this is a closed subvariety of codimension n � 1 in Pn � Pn � Pn.
(b) Use the method of undetermined coefficients to find the class

 D Œ‰� 2 An�1.Pn � Pn � Pn/:

(We will see a way to calculate the class Œ � using Porteous’ formula in Exercise 12.9.)
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Figure 2.12 The diagonal in P1 � P1 is equivalent to a sum of fibers.

Exercise 2.33. Suppose that .F0; : : : ; Fr/ and .G0; : : : ; Gr/ are general .r C 1/-tuples
of homogeneous polynomials in r C 1 variables, of degrees d and e respectively, so that
in particular the maps f W Pr ! Pr and g W Pr ! Pr sending x to .F0.x/; : : : ; Fr.x//
and .G0.x/; : : : ; Gr.x// are regular. For how many points x D .x0; : : : ; xr/ 2 Pr do
we have f .x/ D g.x/?

The next two exercises set up Exercise 2.36, which considers when a point p 2 P2

will be collinear with its images under several maps:

Exercise 2.34. Consider the locus ˆ � .P2/4 of 4-tuples of collinear points. Find the
class ' D Œˆ� 2 A2..P2/4/ of ˆ by the method of undetermined coefficients, that is, by
intersecting with cycles of complementary dimension.

Exercise 2.35. Withˆ � .P2/4 as in the preceding problem, calculate the class ' D Œˆ�
by using the result of Exercise 2.32 on the locus ‰ � .P2/3 of triples of collinear points
and considering the intersection of the loci‰1;2;3 and‰1;2;4 of 4-tuples .p1; p2; p3; p4/
with .p1; p2; p3/ and .p1; p2; p4/ each collinear.

Exercise 2.36. Let A;B and C W P2 ! P2 be three general automorphisms. For how
many points p 2 P2 are the points p;A.p/; B.p/ and C.p/ collinear?

Exercise 2.37. Let B be the blow-up of Pn at a point p, with exceptional divisor E as
in Section 2.1.9. With notation as in that section, show that there is an affine stratification
with closed strata �k for k D 1; : : : ; n and Ek WD �k \E for k D 0; : : : ; n � 1. Let ek
be the class of Ek . Show that en�1 D �n�1 � n�1 to describe the classes k in terms
of �k and ek and vice versa. Conclude that the classes k D Œ�k� and ek form a basis
for the Chow group A.B/.
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Exercises 2.38–2.40 deal with the blow-up of P3 along a line. To fix notation, let
� W X ! P3 be the blow-up of P3 along a line L � P3, that is, the graph X � P3 � P1

of the rational map �L W P3 - P1 given by projection from L. Let ˛ W X ! P1 be
projection on the second factor.

Exercise 2.38. Let H � P3 be a plane containing L and zH � X its proper transform.
Let J � P3 be a plane transverse to L, zJ � X its proper transform (which is equal to
its preimage in X ) and M � J a line not meeting L. Show that the subvarieties

X; zH; zJ ; zJ \ zH; M; M \ zH

are the closed strata of an affine stratification of X , with open strata isomorphic to affine
spaces. In particular, since only one (the subvariety M \ zH ) is a point, deduce that
A3.X/ Š Z.

Exercise 2.39. Let h D Œ zH�, j D Œ zJ � 2 A1.X/ and m D ŒM � 2 A2.X/ be the classes
of the corresponding strata. Show that

h2 D 0; j 2 D m and deg.jm/ D deg.hm/ D 1:

Conclude that

A.X/ D ZŒh; j �=.h2; j 3 � hj 2/:

Exercise 2.40. Now let E � X be the exceptional divisor of the blow-up, and e D
ŒE� 2 A1.X/ its class. What is the class e2?

Exercise 2.41. Let P5 be the space of conic curves in P2.

(a) Find the dimension and degree of the locus of double lines (in characteristic¤ 2).
(b) Find the dimension and degree of the locus � � P5 of singular conics (that is, line

pairs and double lines).

Exercises 2.42–2.54 deal with some of the loci in the space P9 of plane cubics
described in Section 2.2.

Exercise 2.42. Let P9 be the space of plane cubics and � � P9 the locus of reducible
cubics. Let L;C � P2 be a line and a smooth conic intersecting transversely at two
points p; q 2 P2; let LC C be the corresponding point of � . Show that � is smooth at
LC C , with tangent space

TLCC� D Pfhomogeneous cubic polynomials F jF.p/ D F.q/ D 0g:

Exercise 2.43. Using the preceding exercise, show that, if p1; : : : ; p7 2 P2 are general
points and Hi � P9 is the hyperplane of cubics containing pi , then the hyperplanes
H1; : : : ;H7 intersect � transversely — that is, the degree of � is the number of reducible
cubics through p1; : : : ; p7.
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Exercise 2.44. Calculate the number of reducible plane cubics passing through seven
general points p1; : : : ; p7 2 P2, and hence, by the preceding exercise, the degree of � .

Exercise 2.45. We can also calculate the degree of the locus † � P9 of triangles
(that is, totally reducible cubics) directly, as in Exercises 2.42–2.44. To start, show
that if C D L1 C L2 C L3 is a triangle with three distinct vertices — that is, points
pi;j D Li \ Lj of pairwise intersection — then † is smooth at C with tangent space

TLCC† D Pfhomogeneous cubic polynomials F jF.pi;j / D 0 for all i; j g:

Exercise 2.46. Using the preceding exercise,

(a) show that if p1; : : : ; p6 2 P2 are general points, then the degree of † is the number
of triangles containing p1; : : : ; p6; and

(b) calculate this number directly.

Exercise 2.47. Consider a general asterisk — that is, the sum C D L1 C L2 C L3

of three distinct lines all passing through a point p. Show that the variety † � P9 of
triangles is smooth at C , with tangent space the space of cubics double at p. Deduce
that the space A � P9 of asterisks is also smooth at C .

Exercise 2.48. Let p1; : : : ; p5 2 P2 be general points. Show that any asterisk containing
fp1; : : : ; p5g consists, possibly after relabeling the points, of the sum of the line L1 D
p1; p2, the line L2 D p3; p4 and the line L3 D p5; .L1 \ L2/.

Exercise 2.49. Using the preceding two exercises, show that, if p1; : : : ; p5 2 P2 are
general points, then the hyperplanes Hpi intersect the locus A � P9 of asterisks
transversely, and calculate the degree of A accordingly.

Exercise 2.50. Show that (in characteristic ¤ 3) the locus Z � P9 of triple lines is a
cubic Veronese surface, and deduce that its degree is 9.

Exercise 2.51. Let X � P9 be the locus of cubics of the form 2LCM for L and M
lines in P2.

(a) Show that X is the image of P2 � P2 under a regular map such that the pullback of
a general hyperplane in P9 is a hypersurface of bidegree .2; 1/.

(b) Use this to find the degree of X .

Exercise 2.52. If you try to find the degree of the locus X of the preceding problem by
intersecting X with hyperplanes Hp1 ; : : : ;Hp4 , where

Hp D fC 2 P9 jp 2 C g;

you get the wrong answer (according to the preceding problem). Why? Can you account
for the discrepancy?



Exercises Section 2.6 83

Exercise 2.53. Let P2 denote the space of lines in the plane and P5 the space of plane
conics. Let ˆ � P2 � P5 be the closure of the locus of pairs

f.L; C / jC is smooth and L is tangent to C g:

Show that ˆ is a hypersurface, and, assuming characteristic 0, find its class Œˆ� 2
A1.P2 � P5/.

Exercise 2.54. Let Y � P9 be the closure of the locus of reducible cubics consisting
of a smooth conic and a tangent line. Use the result of Exercise 2.53 to determine the
degree of Y .

Exercise 2.55. Let P14 be the space of quartic curves in P2, and let † � P14 be the
closure of the space of reducible quartics. What are the irreducible components of †,
and what are their dimensions and degrees?

Exercise 2.56. Find the dimension and degree of the locus� � P14 of totally reducible
quartics (that is, quartic polynomials that factor as a product of four linear forms).

Exercise 2.57. Again let P14 be the space of plane quartic curves, and let ‚ � P14 be
the locus of sums of four concurrent lines. Using the result of Exercise 2.34, find the
degree of ‚.

Exercise 2.58. Find the degree of the locus A � P14 of the preceding problem, this
time by calculating the number of sums of four concurrent lines containing six general
points p1; : : : ; p6 2 P2, assuming transversality.

A natural generalization of the locus of asterisks, or of sums of four concurrent lines,
would be the locus, in the space PN of hypersurfaces of degree d in Pn, of cones. We
will indeed be able to calculate the degree of this locus in general, but it will require more
advanced techniques than we have at our disposal here; see Section 7.3.4 for the answer.

Exercise 2.59. Let S � P3 be a smooth surface of degree d andL � S a line. Calculate
the degree of the self-intersection of the class � D ŒL� 2 A1.S/ by considering the
intersection of S with a general plane H � P3 containing L.

Exercise 2.60. Let S be a smooth surface. Show that if C � S is any irreducible
curve such that the corresponding point in the Hilbert scheme H of curves on S (see
Section 6.3) lies on a positive-dimensional irreducible component of H, then the degree
deg.2/ of the self-intersection of the class  D ŒC � 2 A1.S/ is nonnegative. Using
this and the preceding exercise, prove the statement made in Section 2.4.2 that a smooth
surface S � P3 of degree 3 or more can contain only finitely many lines.

Exercise 2.61. Let C � P3 be a smooth quintic curve. Show that

(a) if C has genus 2, it must lie on a quadric surface;
(b) if C has genus 1, it cannot lie on a quadric surface; and
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(c) if C has genus 0, it may or may not lie on a quadric surface (that is, some rational
quintic curves do lie on quadrics and some do not).

Exercise 2.62. Let C � P3 be a smooth quintic curve of genus 2. Show that C lies on
a quadric surface Q and a cubic surface S with intersection Q \ S consisting of the
union of C and a line.

Exercise 2.63. Use the result of Exercise 2.62 — showing that a smooth quintic curve
of genus 2 is linked to a line in the complete intersection of a quadric and a cubic — to
find the dimension of the subset of the Hilbert scheme corresponding to smooth curves
of degree 5 and genus 2.



Chapter 3
Introduction to
Grassmannians and lines
in P3

Keynote Questions

(a) Given four general lines L1; : : : ; L4 � P3, how many lines L � P3 will meet all
four? (Answer on page 110.)

(b) Given four curves C1; : : : ; C4 � P3 of degrees d1; : : : ; d4, how many lines will
meet general translates of all four? (Answer on page 112.)

(c) If C;C 0 � P3 are two general twisted cubic curves, how many chords do they have
in common? That is, how many lines will meet each twice? (Answer on page 115.)

(d) If Q1; : : : ;Q4 � P3 are four general quadric surfaces, how many lines are tangent
to all four? (Answer on page 125.)

3.1 Enumerative formulas
In this chapter we introduce Grassmannian varieties through enumerative problems,

of which the keynote questions above are examples. To clarify this context we begin by
discussing enumerative problems in general and their relation to the intersection theory
described in the preceding chapters.

In Section 3.2 we lay out the basic facts about Grassmannians in general. (Sections
3.2.5 and 3.2.6 may be omitted on the first reading, but will be important in later
chapters.)
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Starting in Section 3.3 we focus on the Grassmannian of lines in P3. We calculate
the Chow ring and then, in Sections 3.4 and 3.6, use this to solve some enumerative
problems involving lines, curves and surfaces in P3. In Section 3.5 we introduce the key
technique of specialization, using it to re-derive some of these formulas.

3.1.1 What are enumerative problems, and how do we
solve them?

Enumerative problems in algebraic geometry ask us to describe the set ˆ of objects
of a certain type satisfying a number of conditions — for example, the set of lines
in P3 meeting each of four given lines, as in Keynote Question (a), or meeting each
of four given curves Ci � P3, as in Keynote Question (b). In the most common
situation, we expect ˆ to be finite and we ask for its cardinality, whence the name
enumerative geometry. Enumerative problems are interesting in their own right, but — as
van der Waerden is quoted as saying in the introduction — they are also a wonderful way
to learn some of the more advanced ideas and techniques of algebraic geometry, which
is why they play such a central role in this text.

There are a number of steps common to most enumerative problems, all of which
will be illustrated in the examples of this chapter. If we are asked to describe the set ˆ
of objects of a certain type that satisfy a number of conditions, we typically carry out the
following five steps:

� Find or construct a suitable parameter space H for the objects we seek. Suitable, for us,
will mean that H should be projective and smooth, so that we can carry out calculations
in the Chow ring A.H/. Most importantly, though, for each condition imposed, the locus
Zi � H of objects satisfying that condition should be a closed subscheme (which means
in turn that the set ˆ D

T
Zi of solutions to our geometric problem will likewise have

the structure of a subscheme of H).
In our examples, the natural choice of parameter space H is the Grassmannian G D

G.1; 3/ parametrizing lines in P3, which we will construct and describe in Sections 3.2.1
and 3.2.2 below; as we will see, it is indeed smooth and projective of dimension 4. As
we will see in Sections 3.3.1 and 3.4.2, moreover, the locus †C � G of lines ƒ � P3

meeting a given curve C � P3 will indeed be a closed subscheme of codimension 1.

� Describe the Chow ring A.H/ of H. This is what we will undertake in Section 3.3
below; in the case of the Grassmannian G.1; 3/, we will be able to give a complete
description of its Chow ring. (In some circumstances, we may have to work with the
cohomology ring rather than the Chow ring, as in Appendix D, or with a subring of
A.H/ including the classes of the subschemes Zi , as in Chapter 8.)

� Find the classes ŒZi � 2 A.H/ of the loci of objects satisfying the conditions imposed.
Thus, in the case of Keynote Question (b), we have to determine the class in A.G/ of
the locus Zi � G of lines meeting the curve Ci ; the answer is given in Section 3.4.2.
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� Calculate the product of the classes found in the preceding step. If we have done
everything correctly up to this point, this should be a straightforward combination of the
two preceding steps.

At this point, we have what is known as an enumerative formula: It describes the
class, in A.H/, of the scheme ˆ � H of solutions to our geometric problem, under the
assumption that this locus has the expected dimension and is generically reduced — that
is, the cycles Zi � H intersect generically transversely. (If the cycles Zi are all locally
Cohen–Macaulay, then by Section 1.3.7 the enumerative formula describes the class of
the subscheme ˆ � H under the weaker hypothesis that ˆ has the expected dimension;
that is, the cycles Zi are dimensionally transverse.)

� Verify that the set of solutions, viewed as a subscheme of H, indeed has the expected
dimension, and investigate its geometry. We will discuss, in the following section, what
exactly we have proven if we simply stop at the conclusion of the last step. But ideally
we would like to complete the analysis and say when the cycles Zi � H do in fact meet
generically transversely or dimensionally transversely. In particular, if the geometric
problem posed depends on choices — the number of lines meeting each of four curves
Ci , for example, depends on the Ci — we would like to be able to say that for general
choices the corresponding scheme ˆ is indeed generically reduced.

Thus, for example, in the case of Keynote Question (b), the analysis described
above and carried out in Section 3.4.2 will tell us that if the subscheme ˆ � G of lines
meeting each of four curves Ci � P3 is zero-dimensional then it has degree 2

Q
deg.Ci /.

But it does not tell us that the actual number of lines meeting each of the four curves
is in fact 2

Q
deg.Ci / for general Ci , or for that matter for any. That is addressed in

Section 3.4.2 in characteristic 0; we will also see another approach to this question in
Exercises 3.30–3.33 that also works in positive characteristic.

One reason this last step is sometimes given short shrift is that it is often the
hardest. For example, it typically involves knowledge of the local geometry of the
subschemes Zi � H— their smoothness or singularity, and their tangent spaces or
tangent cones accordingly — and this is usually finer information than their dimensions
and classes. But it is necessary, if the result of the first four steps is to give a description
of the actual set of solutions, and it is also a great occasion to learn some of the
relevant geometry.

3.1.2 The content of an enumerative formula

Because the last step in the process described above is sometimes beyond our reach,
it is worth saying exactly what has been proved when we carry out just the first four
steps in the process.

In general, the computation of the product ˛ D
Q
ŒZi � 2 A.H/ of the classes of

some effective cycles Zi in a space H tells us the following:
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(a) If ˛ ¤ 0 (for example, if ˛ 2 A0.H/ and deg.˛/ ¤ 0), we can conclude that the
intersection

T
Zi is nonempty. This is the source of many applications of enumerative

geometry; for example, it is the basis of the Kempf/Kleiman–Laksov proof of the
existence half of the Brill–Noether theorem, described in Appendix D.

(b) If the cycles Zi intersect in the expected dimension, then the class ˛ is a positive
linear combination of the classes of the components of the intersection

T
Zi . In particu-

lar, if ˛ 2 A0.H/ has dimension 0, then the number of points of
T
Zi is at most deg.˛/.

This in turn implies:

(i) If ˛ 2 A0.H/ and deg.˛/ < 0, we may conclude that the intersection
T
Zi is

infinite rather than finite. More generally, if ˛ is not the class of an effective cycle,
we can conclude that

T
Zi has dimension greater than the expected dimension.

(ii) If ˛ 2 A0.H/ and deg.˛/ D 0, then the intersection
T
Zi must either be empty or

infinite. (In general, if ˛ D 0 we can conclude that either
T
Zi D ¿ or

T
Zi has

dimension greater than the expected dimension.)

So, suppose we have carried out the first four steps in the process of the preceding
section in the case of Keynote Question (a): We have described the Grassmannian
G D G.1; 3/ and its Chow ring, found the class �1 D ŒZ� of the cycle Z of lines
meeting a given line L � P3, and calculated that deg.�41 / D 2. What does this tell us?

Without a verification of transversality, the formula deg �41 D 2 really only tells us
that the number of intersections is either infinite or 1 or 2. Beyond this, it says that if
the number of “solutions to the problem” — in this case, lines in P3 that meet the four
given lines — is finite, then there are two counted with multiplicity — that is, either two
solutions with multiplicity 1, or one solution with multiplicity 2. In order to say more, we
need to be able to say when the intersection

T
Zi has the expected dimension; we need

to be able to detect transversality and, ideally, to calculate the multiplicity of a given
solution. (The third of these is often the hardest. For example, in the calculation of the
number of lines meeting four given curves Ci � P3, we see in Exercises 3.30–3.33 how
to check the condition of transversality, but there is no simple formula for the multiplicity
when the intersection is not transverse.)

A common aspect of enumerative problems is that they themselves may vary with
parameters: If we ask how many lines meet each of four curves Ci , the problem varies
with the choice of curves Ci . In these situations, a good benchmark of our understanding
is whether we can count the actual number of solutions for a general such problem: for
example, whether we can prove that if C1; : : : ; C4 are general conics, then there are
exactly 32 lines meeting all four. Thus, in most of the examples of enumerative geometry
we will encounter in this book, there are two aspects to the problem. The first is to find
the “expected” number of solutions by carrying out the first four steps of the preceding
section to arrive at an enumerative formula. The second is to verify transversality — in
other words, that the actual cardinality of the set of solutions is indeed this expected
number — when the problem is suitably general.
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3.2 Introduction to Grassmannians
A Grassmann variety, or Grassmannian, is a projective variety whose closed points

correspond to the vector subspaces of a certain dimension in a given vector space.
Projective spaces, which parametrize one-dimensional subspaces, are the most familiar
examples. In this chapter we will begin the study of Grassmannians in general, and then
focus on the geometry and Chow ring of the Grassmannian of lines in P3, the first and
most intuitively accessible example beyond projective spaces.

Our goal in doing this is to introduce the reader to some ideas that will be developed
in much greater generality (and complexity) in later chapters: the Grassmannian (as an
example of parameter spaces), the methods of undetermined coefficients and special-
ization for computing intersection products more complicated than those mentioned in
Chapter 2, and questions of transversality, treated via the tangent spaces to parameter
spaces. For more information about Grassmannians, the reader may consult the books
of Harris [1995] for basic geometry of the Grassmannian, Griffiths and Harris [1994]
for the basics of the Schubert calculus and Fulton [1997] for combinatorial formulas, as
well as the classic treatment in the second volume of Hodge and Pedoe [1952].

As a set, we take the Grassmannian G D G.k; V / to be the set of k-dimensional
vector subspaces of the vector space V . We give this set the structure of a projective
variety by giving an inclusion in a projective space, called the Plücker embedding,
and showing that the image is the zero locus of a certain collection of homogeneous
polynomials.

A k-dimensional vector subspace of an n-dimensional vector space V is the same
as a .k � 1/-dimensional linear subspace of PV Š Pn�1, so the Grassmannian G.k; V /
could also be thought of as parametrizing .k � 1/-dimensional subspaces of PV . We
will write the Grassmannian G.k; V / as G.k � 1;PV / when we wish to think of it
this way. When there is no need to specify the vector space V but only its dimension,
say n, we will write simply G.k; n/ or G.k � 1; n � 1/. Note also that there is a natural
identification

G.k; V / D G.n � k; V �/

sending a k-dimensional subspace ƒ � V to its annihilator ƒ? � V �.
There are two points of potential confusion in the notation. First, if ƒ � V is a

k-dimensional vector subspace of an n-dimensional vector space V , we will often use
the same symbol ƒ to denote the corresponding point in G D G.k; V /. When we need
to make the distinction explicit, we will write Œƒ� 2 G for the point corresponding
to the plane ƒ � V . Second, when we consider the Grassmannian G D G.k;PV /
we will sometimes need to work with the corresponding vector subspaces of V . In
these circumstances, if ƒ � PV is a k-plane, we will write zƒ for the corresponding
.k C 1/-dimensional vector subspace of V .
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3.2.1 The Plücker embedding

To embed the set of k-dimensional vector subspaces of a given vector space V in a
projective space, we associate to a k-dimensional subspace ƒ � V the one-dimensional
subspace Vkƒ � VkV I
that is, if ƒ has basis v1; : : : ; vk , we associate to it the point of P.

VkV / corresponding
to the line spanned by v1 ^ � � � ^ vk . This gives us a map of sets

G.k; V /! P.
VkV / Š P.

n
k/�1;

called the Plücker embedding. To see that this map is one-to-one, observe that if
v1; : : : ; vk are a basis of ƒ � V , then a vector v annihilates � D v1 ^ � � � ^ vk in
the exterior algebra if and only if v is in the span ƒ of v1; : : : ; vk; thus � determines ƒ.

Concretely, if we choose a basis fe1; : : : ; eng for V , and so identify V with kn, we
may represent ƒ as the row space of a k � n matrix

A D

0BBB@
a1;1 a1;2 � � � a1;n

a2;1 a2;2 � � � a2;n
:::

:::
: : :

:::

ak;1 ak;2 � � � ak;n

1CCCA :
In these terms, a basis for

VkV is given by the set of products

fei1 ^ � � � ^ eikg1�i1<���<ik�n;

and if v1; : : : ; vk is a basis for ƒ then we may write a nonzero element of
Vkƒ in

the form

v1 ^ � � � ^ vk D
X

1�i1<���<ik�n

pi1;:::;ikei1 ^ � � � ^ eik :

Here the scalar pi1;:::;ik is the determinant of the submatrix (that is, minor) of A made
from the columns i1; : : : ; ik . These pi1;:::;ik are called the Plücker coordinates of ƒ.

The matrix A is not unique, since we can multiply on the left by any invertible
k � k matrix � without changing the row space, but the collection of k � k minors of A,
viewed as a vector in k.

n
k/, is well-defined up to scalars: Multiplying by � multiplies

each such minor by det.�/. (Conversely, if another matrix A0 has the same row space,
then we can write A0 D �A for some invertible k � k matrix �.)

A quick-and-dirty way to see that the image G ,! P.
VkV / of the Plücker embed-

ding — the locus of vectors � 2
VkV that are expressible as a wedge product v1^� � �^vk

of k vectors vi 2 V — is a closed algebraic set is to use the ring structure of the exterior
algebra

V
V . Writing out an element � 2

VkV in coordinates as above, we see that
ei ^ � D 0 if and only if � can be written as ei ^ �0 for some �0 2

Vk�1V . Since there
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is nothing special about the vector ei 2 V we could replace it by any nonzero element
v 2 V . Repeating this idea, we see that a nonzero element � 2

VkV can be written in
the form v1 ^ � � � ^ vk for some (necessarily independent) v1; : : : ; vk 2 V if and only if
the kernel of the multiplication map

V
^�
���!

VkC1V
has dimension at least k. That is, the image of the Plücker embedding is

G D
˚
� 2

VkV j rank.V
^�
���!

VkC1V / � n � k	;
and this is the zero locus of the homogeneous polynomials of degree n�kC1 on

VkV that
are the .n�kC1/-st-order minors of the map ^� W V !

VkC1V written out as a matrix.
Once we know that G is an algebraic set, it follows that G is a variety: Its ideal is

the kernel of the map of polynomial rings

kŒpi1;:::;ik �1�i1<���<ik�n ! kŒxi;j �1�i�k
1�j�n

sending pi1;:::;ik to the corresponding Plücker coordinate of the generic matrix .xi;j /,
and is thus prime.

Though the equations for G just given have degree n � k C 1, the generators of
the ideal of homogeneous forms vanishing on G � P.

VkV / are actually quadratic
polynomials, known as the Plücker relations. We will be able to describe these quadratic
polynomials explicitly following Proposition 3.2; for fuller accounts (including a proof
that they do indeed generate the homogeneous ideal of G � P.

VkV /) and some of
their beautiful combinatorial structure, we refer the reader to De Concini et al. [1980,
Section 2] or Fulton [1997, Section 9.1].

From here on, we will view G.k; V / as being endowed with the structure of a
projective variety via the Plücker embedding. As will follow from the description of its
covering by affine spaces in the following subsection, it is a smooth variety of dimension
k.n � k/. The smoothness statement follows in any case from the fact that GL.V / acts
transitively on it by linear transformations of the projective space P.

VkV /.
Example 3.1. The first example of a Grassmannian other than projective space is
the Grassmannian G.2; 4/ D G.1; 3/. Let V be a four-dimensional vector space, and
consider the Plücker embedding of G.2; V / D G.1;PV / in P.

V2V / Š P5. Since (as
we will see shortly) dimG.2; 4/ D 4, this will be a hypersurface. From the discussion
above, we know that the equation of G.2; 4/ in this embedding is a polynomial relation
among the minors pi;j of a generic 2 � 4 matrix�

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

�
:
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One way to obtain this relation is to note that the determinant of the 4 � 4 matrix with
repeated rows 0BBB@

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

a1;1 a1;2 a1;3 a1;4

a2;1 a2;2 a2;3 a2;4

1CCCA
must be 0. Expanding this determinant as a sum of products of minors of the first two
rows and of the last two rows, all of which are Plücker coordinates, we obtain

p1;2p3;4 � p1;3p2;4 C p1;4p2;3 D 0: (3.1)

As this is an irreducible polynomial (and dimG.2; 4/ D 4), it generates the homogeneous
ideal of G.2; 4/ � P5, which is thus a smooth quadric.

In fact, for any n, the ideal of the Grassmannian of 2-planes G.2; n/ is cut out by
quadratic polynomials in the Plücker coordinates similar to the polynomial (3.1) above.
More precisely, if e1; : : : ; en is a basis of V and � D

P
pa;bea ^ eb 2

V2V , then the
polynomials˚

ga;b;c;d WD pa;bpc;d � pa;cpb;d C pa;dpb;c D 0 j 1 � a < b < c < d � n
	

minimally generate the ideal of the Grassmannian. These are the Plücker relations in
the special case of the Grassmannian G.2; n/. We will describe the Plücker relations in
general following Proposition 3.2.

Another way to characterize the collection of polynomials fga;b;c;d g defining
G.1; n/, in characteristic not equal to 2, is that they are the coefficients of the element
�2 D 0 2

V4V — in other words, an element � 2
V2V is decomposable if and only if

� ^ � D 0. These coefficients may be characterized (up to a factor of 2) as the Pfaffians
of a skew-symmetric matrix.

Exercises 3.17–3.22 describe a number of aspects of the projective geometry of the
Grassmannian in the Plücker embedding.

3.2.2 Covering by affine spaces; local coordinates

Like a projective space, a Grassmannian G D G.k; V / can be covered by Zariski
open subsets isomorphic to affine space. To see this, fix an .n�k/-dimensional subspace
� � V , and let U� be the subset of k-planes that do not meet �:

U� D fƒ 2 G jƒ \ � D 0g:

This is a Zariski open subset of G: In fact, if we take w1; : : : ; wn�k to be any basis for
� and set � D w1 ^ � � � ^ wn�k , then we have

U� D fŒ!� 2 G � P.
VkV / j! ^ � ¤ 0g;
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from which we see that U� is the complement of the hyperplane section of G corre-
sponding to the vanishing of a Plücker coordinate (though not all hyperplane sections of
G in the Plücker embedding have this form).

We claim now that the open set U� � G.k; n/ is isomorphic to affine space Ak.n�k/.
To see this, we first choose an arbitrary point Œ�� 2 U� that will play the role of the
origin; that is, fix a k-plane � � V complementary to � , so that we have a direct-sum
decomposition V D � ˚ � . Any k-dimensional subspace ƒ � V complementary
to � projects to � modulo �— call this map �� — and projects isomorphically to �
modulo � — call this map ��. Thus ƒ is the graph of the linear map

' W �
��1�
���! ƒ � V D �˚ �

��
���! �:

Conversely, the graph of any map ' W � ! � is a subspace ƒ � � ˚ � D V

complementary to � . These two correspondences establish a bijection

U� Š Hom.�; �/ Š Ak.n�k/:

To make this explicit, suppose we choose a basis for V consisting of a basis e1; : : : ; ek
for� followed by a basis ekC1; : : : ; en for � . Ifƒ 2 U� is a k-plane then the preimages
��1� e1; : : : ; �

�1
� ek 2 ƒ form a basis for ƒ. Thus ƒ is the row space of the matrix

B D

0BBB@
1 0 : : : 0 a1;1 a1;2 : : : a1;n�k
0 1 : : : 0 a2;1 a2;2 : : : a2;n�k
:::

:::
: : : 0

:::
:::

: : :
:::

0 0 : : : 1 ak;1 ak;2 : : : ak;n�k

1CCCA ;
where A D .ai;j / is the matrix representing the linear transformation ' W �! � in the
given bases. Since there is a unique vector in ƒ projecting (mod �) to each ei 2 �, this
matrix representation is unique. The bijection defined above sends ƒ 2 U� to the linear
transformation �! � given by the transpose of the matrix A D .ai;j /.

If we start with any representation of ƒ as the span of the rows of a k � n matrix
B 0 with respect to the given basis of V , then the Plücker coordinate p1;2;:::;k , which
is the determinant of the submatrix consisting of the first k columns of B 0, is nonzero.
Multiplying B 0 on the left by the inverse of this submatrix gives us back the matrix B
above, and thus the k � k minors of B are the k � k minors of B 0 multiplied by the
inverse of the determinant of the first k � k minor of B 0.

On the other hand, we can realize the entry ai;j of A, up to sign, as a k � k minor of
B: It is (up to sign) the determinant of the k�k submatrix in which we take all the first k
columns except for the i -th, and put in instead the .kCj /-th column. Thus we may write

˙ai;j D
p
1;:::;i�1;Oi ;iC1;:::;k;kCj

.ƒ/

p1;:::;k.ƒ/
;
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and this expression shows that ai;j is a regular function on U� . Thus the bijection
U� Š Ak.n�k/ is a biregular isomorphism.

More generally, it turns out that the ratios pa1;:::;ak .ƒ/=p1;2;:::;k.ƒ/ of Plücker
coordinates are, up to sign, precisely the determinants of submatrices (of all sizes) of A.
To express the result, suppose that I and J are sets of indices. Write AJI for the minor of
the matrix A involving rows with indices in I and columns with indices in J . Write I 0

for the complement (in the set of row indices f1; : : : ; kg) of I , and, if J D fj1; : : : ; jtg,
write J C k for the “translated” set of indices fj1 C k; : : : ; jt C kg. With this notation,
the t � t minor AJI of A is equal, up to sign, to the k � k minor of B involving the
columns I 0 [ J . To see this as a regular function on U� we need only divide by the
minor involving columns 1; : : : ; k:

Proposition 3.2. With notation as above, suppose that I D fi1; : : : ; ik�tg are row
indices and J D fj1; : : : ; jtg are column indices with each ji > k. We have

˙ detAJI D
pI 0[.JCk/.ƒ/

p1;:::;k.ƒ/
:

For example, the 3 � 3 minor of the matrix

B D

0@
1 2 3 4 5 6 7

1 0 0 a1;1 a1;2 a1;3 a1;4

0 1 0 a2;1 a2;2 a2;3 a2;4

0 0 1 a3;1 a3;2 a3;3 a3;4;

1A
involving columns 1, 5 and 6, is, up to sign, the 2 � 2 minor

det
�
a2;2 a2;3
a3;2 a3;3

�
of the matrix .ai;j /.

Proof: The expression in Plücker coordinates on the right is independent of the matrix
representation chosen for ƒ, so we may compute the two Plücker coordinates in terms
of the matrix B in the form given above, so p1;:::;k.ƒ/ D 1 and pI 0[.JCk/.ƒ/ is the
minor of B involving the columns I 0 [ .J C k/. Expanding this minor in terms of the
.k � t / � .k � t / minors involving the rows of I 0, we see that all but the term˙1 � AJI
are zero.

Having established Proposition 3.2, it is easy to describe the Plücker relations, the
quadratic polynomials in the Plücker coordinates that generate the homogeneous ideal of
G.k; V / � P.

VkV /. With notation as above, consider the expansion of any t � t minor
of A along one of its rows or columns. Replacing each factor of each term that appears
by the ratio of two Plücker coordinates, with denominator p1;:::;k.ƒ/, and multiplying
through by p1;:::;k.ƒ/2, we get a homogeneous quadratic polynomial in the pI satisfied
identically in U� and hence in all of G.k; V /. For more information we refer the reader
to De Concini et al. [1980, Section 2] or Fulton [1997, Section 9.1].
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3.2.3 Universal sub and quotient bundles

In this section and the following, we will introduce the universal bundles on the
Grassmannian G.k; n/ and show how to describe the tangent bundle to G.k; n/ in
terms of them. These constructions are of fundamental importance in understanding the
geometry of Grassmannians.

Let V be an n-dimensional vector space, G D G.k; V / the Grassmannian of k-
planes in V , and let V WD G � V be the trivial vector bundle of rank n on G whose fiber
at every point is the vector space V (here we are thinking of a vector bundle as a variety,
rather than as a locally free sheaf). We write S for the rank-k subbundle of V whose
fiber at a point Œƒ� 2 G is the subspace ƒ itself; that is,

SŒƒ� D ƒ � V D VŒƒ�:

S is called the universal subbundle on G; the quotient Q D V=S is called the universal
quotient bundle. In the case k D 1— that is, G D PV Š Pn�1 — the universal
subbundle S is the line bundle OPV .�1/; similarly, in the case k D n�1 (soG D PV �)
the universal quotient bundle Q is the line bundle OPV �.1/.

We have said “the rank-k subbundle of V whose fiber at a point Œƒ� 2 G is the
subspace ƒ itself,” and this certainly describes at most one bundle, since we have
unambiguously defined a subset of V D G � V . Who would doubt that it is an algebraic
subbundle of V? To prove this, however, something more is necessary. Most primitively,
we must check that it is trivial on an affine open cover, and that the transition functions are
regular on the overlap of any two open sets of the cover. Alternatively, and equivalently,
we may show that the subset S is an algebraic subset, and that over an open cover it is
isomorphic, as an algebraic variety, to a trivial bundle. Here is a proof:

Proposition 3.3. The subset S of V whose fiber over a point Œƒ� 2 G D G.k; V / is the
subspace ƒ � V is a vector bundle over G.

Of course, it follows that Q D V=S is also a vector bundle.

Proof: Let S be the incidence correspondence

S D f.ƒ; v/ 2 G � V j v 2 ƒg:

The set S is an algebraic subset of G � V , since if we represent ƒ by a vector � 2Vkƒ � VkV , it is given by the equation �^v D 0 2
VkC1V . Explicitly, ifƒ is the row

space of the matrix A, as in Section 3.2.2, then the condition v 2 ƒ is equivalent to the
vanishing of the .k C 1/-st-order minors of the matrix obtained from A0 by adjoining v
as the .k C 1/-st row. These minors can be expressed (by expanding along the new row
of A0) as bilinear functions in the coordinates of v and the Plücker coordinates, proving
that S is an algebraic subset.
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Now pick a subspace � � V of dimension n � k and consider the preimage
of U� � G. Choosing a complement � to � as before, we can identify U� with
Hom.�; �/. Moreover, if ƒ 2 U� then the projection ˇ�;� W V ! � with kernel �
takes SŒƒ� D ƒ � V isomorphically to �. In other words, this projection gives an
isomorphism SU� to the trivial bundle � � U� . This proves that S is actually a vector
bundle, which we identify as S.

The following result is the reason that we refer to S as the universal subbundle. A
proof may be found in Eisenbud and Harris [2000].

Theorem 3.4. If X is any scheme then the morphisms ' W X ! G are in a one-to-one
correspondence with rank-k subbundles F � V ˝OX such that ' corresponds to the
bundle F D '�S .

There is also a projective analog of the vector bundle S . ViewingG as G.k�1;PV /
(that is, as parametrizing .k � 1/-planes in PV ), we set

ˆ D f.ƒ; p/ 2 G � PV j p 2 ƒg:

The space ˆ can also be realized as the projectivization of the universal subbundle S,
where by the projectivization of a vector bundle E on a scheme X we mean PE WD
Proj.Sym E�/— a locally trivial fiber bundle over X whose fiber over a point p 2 X is
P.Ep/. (We will see more of the space ˆ in Section 4.8.1, where we will discuss flag
manifolds in general and ˆ in particular; we will deal with projective bundles in general
in Chapter 9.) ˆ D PS is called the universal k-plane over G.

Theorem 3.4 may be interpreted as saying that the Grassmannian represents the
functor of families of k-dimensional subspaces of V , in the sense that the contravariant
functor from schemes to sets given on objects by X 7! Mor.X;G.k; V // is naturally
isomorphic to the functor given by X 7! frank-k subbundles of V ˝OXg. Again, in
the language that we will develop in Section 6.3, this says that the Grassmannian
G.k � 1;PV / is the Hilbert scheme of .k � 1/-planes in PV . See Eisenbud and Harris
[2000, Chapter 6] for an introduction to these ideas and a proof of this statement.

3.2.4 The tangent bundle of the Grassmannian

Knowledge of the tangent bundle of the Grassmannian is the key to its geometry.
It turns out that the tangent bundle can be expressed in terms of the universal bundles
S and Q:

Theorem 3.5. The tangent bundle TG to the Grassmannian G D G.k; V / is isomorphic
to HomG.S;Q/, where S and Q are the universal sub and quotient bundles.

Proof: Consider the open affine set

U� D fƒ 2 G jƒ \ � D 0g
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described in Section 3.2.2, where � is a subspace of V of dimension n � k. Fixing a
point Œ�� 2 U� and decomposing V as �˚ � , we get an identification of U� with the
vector space Hom.�; �/ under which the point Œ�� goes to the linear transformation 0.
In particular, the tangent bundle TG restricted to U� is the trivial bundle and the fiber
over Œ�� is Hom.�; �/.

The bundle SjU� is isomorphic to the trivial bundle � � U� by the composite map

SjU� ! V � U� ! V=� � U� D � � U� ;

and the bundle QjU� is isomorphic to the trivial bundle � � U� via the tautological
projection V ˝OG ! Q. This gives an identification of fibers, depending on �:

.TG/� D Hom.�; �/ D Hom.S�;Q�/:

To prove that these identifications extend to an isomorphism TG Š HomG.S;Q/,
we must check that the gluing map for TG and that for HomG.S;Q/ on an intersection
U D U� \ U� 0 containing the point Œ�� agree on the fiber over Œ�� (and thus agree
as maps of bundles). We may regard U � U� D Hom.�; �/ as the set of linear
transformations whose graphs do not meet � 0, and this representation is related to the
representation of U � U� 0 by the isomorphisms � ��!

˛
V=� ��

ˇ
� 0. The gluing

d' W .TG jU� /jU�0 �!� .TG jU�0 /jU�

along this set is by the differential of the composite linear transformation

' W Hom.�; �/
˛
��! Hom.�; V=�/

ˇ�1

���! Hom.�; � 0/

induced by these isomorphisms. Of course, the differential of a linear transformation is
the same linear transformation. The same isomorphisms give the gluing of the bundle
HomG.S;Q/.

From the identification of tangent vectors to G D G.k; V / at ƒ with the space
Hom.ƒ; V=ƒ/, we can see that not all tangent vectors at a given point are alike: We can
associate to any tangent vector its rank, and this will be preserved under automorphisms
of G (see Exercise 3.24 and, for a nice application, Exercise 3.23). In particular, this
means that when 1 < k < dimV � 1 the automorphism group of G.k; V / does not act
transitively on nonzero tangent vectors, and hence Kleiman’s theorem (Theorem 1.7)
does not apply in positive characteristic. Nevertheless, the conclusions it gives for
intersections of Schubert cycles are correct in all characteristics (and may be proven by
a different method).

The Euler sequence on Pn

The isomorphism of Theorem 3.5 is already useful in the case of projective space
Pn D G.0; n/. In this setting Theorem 3.5 gives rise to the Euler sequence.
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V

v1

v2

v3

v

P1

Figure 3.1 The tangent vectors v1; v2; v3 to A2 all map to the tangent vector v to P1.

Let V be an .nC 1/-dimensional vector space and Pn D PV its projectivization.
We consider the quotient map

q W U D V n f0g ! Pn

sending a nonzero vector v 2 V to the corresponding point p D Œv� 2 Pn. The tangent
space to U at v is the same as the tangent space to V at v, which is to say the vector
space V itself, and the kernel of the differential

dqv W TvU ! Tp Pn

is the one-dimensional subspace Qp D hvi � V spanned by v. Thus dqv induces an
isomorphism

V= Qp �!� Tp Pn;
as illustrated in Figure 3.1.

This isomorphism does not, however, give a natural identification of the vector
spaces V= Qp and Tp Pn. Even though both these vector spaces depend only on the point
p 2 Pn, the isomorphism dqv between them depends on the choice of the vector v.
Indeed, if � is any nonzero scalar, the differential dq�v is equal to dqv divided by �.
But, by the same token, if l W hvi ! k is any linear functional, then the map l.v/ � dqv
is independent of the choice of v, and so we have a natural identification

hvi� ˝ V=hvi �!� TŒv�Pn:
This is the identification

TPn Š OPn.1/˝Q D Hom.OPn.�1/;Q/ D Hom.S;Q/

asserted (more generally) in Theorem 3.5.
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To put it another way, in terms of coordinates x0; : : : ; xn on V , a constant vector
field @=@xi on V does not give rise to a vector field on PV , but the vector field

w.x/ D xj
@

@xi
on V does. This gives us a map

OPn.1/˝ V ! TPV ;

whose kernel is the Euler vector field

e.x/ D
X

xi
@

@xi
:

The resulting exact sequence

0 �! OPV
17!e
�����! OPn.1/˝ V �! TPV �! 0

is called the Euler sequence. To relate this to the identification of the tangent bundle
above, start with the universal sequence on PV :

0 �! S �! OPV ˝ V �! Q �! 0:

Now tensor with the line bundle S� D OPV .1/; since S ˝ S� Š OPV , we arrive at the
sequence

0 �! OPV �! OPn.1/˝ V �! S� ˝Q �! 0:

By Theorem 3.5 the term on the right is TPn , and we obtain the Euler sequence again.

3.2.5 The differential of a morphism to the Grass-
mannian

Suppose that the morphism ' W X ! G.k; n/ corresponds via the universal property
to a subbundle E � OnX , so that E is the pullback of the universal subbundle S onG.k; n/.
Set F D On=E , so that F is the pullback of the universal quotient bundle Q on G.k; n/.

The differential of ' is by definition a homomorphism of vector bundles

d' W TX ! '�TG.k;n/ D '�HomG.k;n/.S;Q/ D HomX .E ;F/:

The local description of the Grassmannian above makes it easy to identify this homo-
morphism locally.

A global section of the TX is called a vector field. Recall that a vector field may be
identified with a derivation @ W OX ! OX (Eisenbud [1995, Chapter 16]). This works
even if X is singular: In that case we define TX to be the dual of the sheaf of differential
forms; of course then TX is a coherent sheaf, not necessarily a vector bundle. (A famous
question posed by Zariski (see Lipman [1965]) asks whether, with this definition — and
always assuming that the characteristic is 0 — TX is a vector bundle if and only if X is
smooth. See Hochster [1977] for some partial results.)
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Proposition 3.6. Let X be a variety and ' W X ! G.k; n/ the morphism corresponding
to a subbundle i W E ! OnX ; set F D OnX=E and let � W OnX ! F be the projection. Let
U � X be an open subset over which E is trivial and  W OkU Š EU a trivialization of E
overU . If @ is a vector field onU , then inU the homomorphism .d'/.@/ 2 HomU .E ;F/
is the composition � ı @.˛/, where @.˛/ is the derivative with respect to @ of the
composite map

˛ D i ı ' W OkU
 
��! EU

i
��! OnU I

that is, .d'/.@/ is the map obtained by applying @ to each entry of a matrix representing
˛ and composing the result with the projection � W OnU ! FU .

Note that the map .d'/.@/ described above depends only on the subbundle E , and
not on the trivialization OkX Š E chosen: If ˇ W OkX ! OkX is an invertible matrix over
OX , then

@.˛ˇ/ D .@˛/ˇ C ˛.@ˇ/;

and the second term vanishes when we project to F .

Proof: The desired result follows at once from the description of the affine spaces
covering the Grassmannian: We can change bases in OnU so that ˛ is given by the
k � n matrix 0BBB@

1 0 � � � 0 ˛1;1 ˛1;2 � � � ˛1;n�k
0 1 � � � 0 ˛2;1 ˛2;2 � � � ˛2;n�k
:::

:::
: : :

:::
:::

:::
: : :

:::

0 0 0 1 ˛k;1 ˛k;2 � � � ˛k;n�k

1CCCA ;
where the ˛i;j are functions on U , and give the morphism ' in local coordinates. The
derivative of ', applied to @, is then by definition obtained by applying @ to each of the
coordinate functions ˛i;j .

3.2.6 Tangent spaces via the universal property

There is another way to approach the tangent space, which depends on a pretty and
well-known bit of algebra. Let O be a local ring with maximal ideal m, and suppose for
simplicity that O contains a copy of its residue field k.

Proposition–Definition 3.7. There are natural one-to-one correspondences between
the following sets:

(a) Homk.m=m
2; k/ (homomorphisms of k-vector spaces).

(b) Derk.O; k/ (k-linear derivations; that is, k-vector space homomorphisms d WO! k
that satisfy Leibniz’ rule d.fg/ D fd.g/C gd.f /).

(c) Homk-algebras.O; kŒ��=.�2// (homomorphisms of k-algebras).
(d) Mor.D;SpecO/, where D D Spec kŒ��=.�2/ (morphisms of schemes).
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The first two of these are naturally k-vector spaces, and the correspondence preserves
this structure; we regard the other two as equipped with this structure as well. Any
of these spaces, with its vector space structure, is called the Zariski tangent space of
SpecO at its closed point.

When O is the local ring OX;x of a variety (or scheme) at a closed point x, we think
of the Zariski tangent space of O as the Zariski tangent space of X at x, and of course
the set in (d) is the same as the set of morphisms of k-schemes carrying the (unique)
point of D— which we will call 0 — to x.

Proof: The sets in (c) and (d) are the same by definition. If ' is as in (c), then 'jm
annihilates m2 and induces a vector space homomorphism ' W m=m2 ! .�/=.�2/ Š k
as in (a). Similarly, a derivation d as in (b) induces a k-linear map d jm W m=m2 ! k.
We leave to the reader the construction of the inverse correspondences.

Consider the case X D G.k; V /. The tangent space at x D Œƒ� is, by the argument
above, the collection of maps D ! G.k; V / sending 0 to Œƒ�. By Theorem 3.4, giving a
map D ! G.k; V / is the same as the giving a rank-k subbundle W of V �D; the map
takes 0 2 D to Œƒ� 2 G.k; V / if and only if the fiber W0 is equal to ƒ.

We can understand the identification of the tangent space TƒG.k; V / to the Grass-
mannian with the space Hom.ƒ; V=ƒ/ using this description together with the universal
property of the Grassmannian described in Theorem 3.4.

Since D is affine, a vector bundle over D is the same as a locally free module
over kŒ��=.�2/. Since this ring is local, Nakayama’s lemma shows that such a module
is free (see for example Eisenbud [1995, Exercise 4.11]). Thus only the inclusion
ƒ �D ! V �D varies.

Putting this together, we get a new way to look at the identification of the tangent
spaces to the Grassmannian:

Proposition 3.8. Let ƒ � V be a k-dimensional subspace, and let ' W ƒ! V=ƒ be a
homomorphism. As an element of the tangent space to the Grassmannian G.k; V / at the
point Œƒ�, ' corresponds to the free submodule

ƒ˝ kŒ��=.�2/! V ˝ kŒ��=.�2/; v ˝ 1 7! v ˝ 1C '0.v/˝ �;

where '0 W ƒ ! V is any map that when composed with the projection V ! V=ƒ

gives '.

Proof: Any map ƒ � D ! V � D that reduces to the inclusion modulo � has the
form v ˝ 1 7! v ˝ 1 C '0.v/ ˝ � for some '0. If we work in the affine coordinates
corresponding to a subspace � complementary to ƒ and use the splitting V D ƒ˚�,
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then the point ƒ � V corresponds to the matrix

B D

0BBB@
1 0 � � � 0 0 � � � 0

0 1 � � � 0 0 � � � 0
:::

:::
: : : 0 0 � � � 0

0 0 � � � 1 0 � � � 0

1CCCA :
In this matrix representation ' is represented by the last n�k columns of '0, and taking a
different lifting of ' corresponds to making a different choice of the first k�k block of '0.

We can do row operations to clear all the � terms from the first k � k block, adding
a multiple of � times certain rows to other rows. This corresponds to composing with
an automorphism of ƒ �D, and thus does not change the image of ƒ �D ! V �D.
Since we add after multiplying by �, this does not change the block representing '. Thus
we may assume that the first k � k block of '0 is 0; equivalently, the first k � k block
corresponding to the map ƒ �D ! V �D is the identity.

3.3 The Chow ring of G.1; 3/
Before launching into the geometry of general Grassmannians in the next chapter,

we will spend the remainder of this chapter studying the geometry of G.1; 3/, the
Grassmannian of lines in P3. This is the simplest case beyond the projective spaces. The
general results are in many ways similar, but more combinatorics is involved, and in the
case of lines in P3 it is possible to visualize more of what is going on. Once the reader
has absorbed the case of G.1; 3/ the general results will seem more natural.

3.3.1 Schubert cycles in G.1; 3/

To start, we fix a complete flag V on P3; that is, a choice of a point p 2 P3, a line
L � P3 containing p, and a plane H � P3 containing L (Figure 3.2).

We can give a stratification of G.1; 3/ by considering the loci of lines ƒ 2 G.1; 3/
having specified dimension of intersection with each of the subspaces p, L and H .
These are called Schubert cells and their closures, which are irreducible subvarieties,
are called Schubert cycles (or sometimes Schubert varieties); the classes of these cycles
are the Schubert classes. As we shall see, the Schubert cells form an affine stratification
of G.1; 3/, and it will follow from Proposition 1.17 that the Schubert classes generate
the Chow group A.G.1; 3//. Using intersection theory, we will be able to show that in
fact A.G.1; 3// is a free Z-module having the Schubert classes as free generators. In the
next chapter, we will see that the same situation is repeated for all Grassmannians.



The Chow ring of G.1; 3/ Section 3.3 103

P3

L
p

H

Figure 3.2 A complete flag p � L � H in P3.

More formally, we begin not with the Schubert cells but with the Schubert cycles:

†0;0 D G.1; 3/;
†1;0 D fƒ jƒ \ L ¤ ¿g;
†2;0 D fƒ jp 2 ƒg;

†1;1 D fƒ jƒ � H g;

†2;1 D fƒ jp 2 ƒ � H g;

†2;2 D fƒ jƒ D Lg:

The four nontrivial ones are illustrated in Figure 3.3. In each case we take the reduced
scheme structure. To show, for example, that †1;0 is an irreducible variety, we note first
that †1;0 is the image of the incidence correspondence

� D f.L0; p/ 2 G.1; 3/ � L jp 2 L0g:

The fiber of � under projection to L, the set of lines through a given point p 2 L, is
isomorphic to P2; since all fibers are irreducible and of the same dimension and the
projection is proper, it follows that � , and with it †1;0, are irreducible. The proof that
the other Schubert cycles are irreducible follows in exactly the same way.

Thus †a;b denotes the set of lines meeting the .2 � a/-dimensional plane of V in a
point and the .3�b/-dimensional plane of V in a line. This system of indexing may seem
peculiar at first; the reasons for it will be clearer when we discuss Schubert cycles in
general in the following chapter. For now, we will mention that the codimension of †a;b
is aC b, as will be clear in examples and as we will prove in general in Theorem 4.1.

We often drop the second index when it is 0, writing for example †1 instead of
†1;0. When the choice of flag is relevant, we will sometimes indicate the dependence by
writing †.V/, or simply note the dependence on the relevant flag elements by writing,
for example, †1.L/ for the cycle of lines ƒ meeting L.
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p p

L

H

H

†1.L/ †1;1.H/

†2.p/ †2;1.p;H/

Figure 3.3 Schubert cycles in G.1; 3/.

It is easy to see that there are inclusions

†2

fLg D †2;2 †2;1 †1 G.1; 3/:

†1;1

For each index .a; b/ we define the Schubert cell †ı
a;b

to be the complement in †a;b of
the union of all the other Schubert cycles properly contained in †a;b . To show that the
†a;b form an affine stratification, it suffices to show that each †ı

a;b
is isomorphic to an

affine space. We will do the most complicated case, leaving the others for the reader (the
general case of a Schubert cell in G.k; n/ is done in Theorem 4.1).

Example 3.9. We will show that the set

†ı1 D †1 n .†2 [†1;1/ D fƒ jƒ \ L ¤ ¿ but p … ƒ and ƒ 6� H g

is isomorphic to A3. Let H 0 be a general plane containing the point p but not containing
the line L. Any line meeting L but not passing through p and not contained in H meets
H 0 in a unique point contained in H 0 n .H 0 \H/ (Figure 3.4). Thus we have maps

†ı1 ! .L n fpg/ Š A1 and †ı1 ! .H 0 n .H \H 0// Š A2

sending ƒ to ƒ \ L and ƒ \ H 0 respectively. The product of these maps gives us
an isomorphism

†ı1 Š A1 � A2 D A3:
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H

H 0

L

p

ƒ

Figure 3.4 The map ƒ 7! .ƒ \ L;ƒ \ H 0/ defines an isomorphism †ı1 !

.L n fpg/ � .H nH \H 0/ Š A1 � A2 Š A3.

By Theorem 1.7, the class Œ†a;b� 2 AaCb.G.1; 3// does not depend on the choice
of flag, since any two flags differ by a transformation in GL4; we will denote the class
of †a;b by

�a;b D Œ†a;b� 2 A
aCb.G.1; 3//:

By Proposition 1.8, the group A0.G.1; 3// is isomorphic to Z and is generated by the
fundamental class �0;0 D ŒG.1; 3/�; by Theorem 1.7, the group A4.G.1; 3// is also
isomorphic to Z and is generated by the class �2;2 of a point in G.1; 3/. (In particular
any two points in G.1; 3/ are rationally equivalent.)

3.3.2 Ring structure

We can now determine the structure of the Chow ring of G.1; 3/ completely:

Theorem 3.10. The six Schubert classes �a;b 2 AaCb.G.1; 3//, 0 � b � a � 2, freely
generate A.G.1; 3// as a graded abelian group, and satisfy the multiplicative relations

�21 D �1;1 C �2 .A1 � A1 ! A2/I

�1�1;1 D �1�2 D �2;1 .A1 � A2 ! A3/I

�1�2;1 D �2;2 .A1 � A3 ! A4/I

�21;1 D �
2
2 D �2;2; �1;1�2 D 0 .A2 � A2 ! A4/:

From these formulas we deduce that �31 D 2�2;1; �
4
1 D 2�2;2, and �21�1;1 D

�21�2 D �2;2. Since dim.G.1; 3// D 4, any product that would have degree > 4, such
as �2�2;1, is 0.
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Proof of Theorem 3.10: As we said, we know by Proposition 1.17 that the Schubert
classes �a;b generate A.G.1; 3//. That they are free generators follows for A4.G.1; 3//
from Proposition 1.21, and will follow for the remaining Chow groups from the intersec-
tions products above: For example, the formulas show that the matrix of the intersection
pairing on �1;1 and �2 is nonsingular, so A2.G.1; 3// is freely generated by these
two classes.

It remains to prove the formulas. We will consider the intersections of pairs of cycles,
taking these with respect to generically situated flags V;V 0. To simplify notation we will
henceforth write †a;b and †0

a;b
for †a;b.V/ and †a;b.V 0/, respectively.

We begin with the case of cycles of complementary dimension, starting with the
intersection number of �2 with itself. By Kleiman transversality we have

�22 D #.†2 \†02/ � �2;2;

and since the intersection

†2 \†
0
2 D fƒ jp 2 ƒ and p0 2 ƒg

consists of one point (corresponding to the unique line ƒ D p; p0 through p and p0),
we conclude that

�22 D �2;2:

Similarly,

�21;1 D #.†1;1 \†01;1/ � �2;2I

since

†1;1 \†
0
1;1 D fƒ jƒ � H and ƒ � H 0g

consists of the unique line ƒ D H \H 0, we conclude that

�21;1 D �2;2

as well. On the other hand, †2 D fƒ jp 2 ƒg and †01;1 D fƒ jƒ � H
0g are disjoint,

since p … H 0, so that

�2�1;1 D 0:

Finally,

†1 \†
0
2;1 D fƒ jƒ \ L ¤ ¿ and p0 2 ƒ � H 0g:

SinceLwill intersectH 0 in one point q, and any lineƒ satisfying all the above conditions
can only be the line p0; q (Figure 3.5), this intersection is again a single point. Thus

�1�2;1 D �2;2

as well.
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H 0

p0
q

L

Figure 3.5 †1.L/ \†
0
2;1.p

0;H 0/ D fp0; qg.

We now turn to the intersections of cycles whose codimensions sum to less than 4.
First, the intersection †1 \ †02 is the locus of lines ƒ meeting L and containing the
point p0, which is to say the Schubert cycle †2;1 with respect to a flag containing the
point p0 and the plane p0; L, so we have

�1�2 D �2;1:

In a similar fashion, the intersection of †1 and †01;1 is a cycle of the form †2;1 with
respect to a certain flag; specifically, it is the locus of lines containing the point L \H 0

and lying in H 0, so that

�1�1;1 D �2;1:

The last and most interesting computation to be made is the product �21 . (This is
such a crucial case that we will prove it twice: here and in Section 3.5.1!) The difference
between this case and the preceding ones is that the locus†1\†01 of lines meeting each
of the two general lines L and L0 is not a Schubert cycle.

We will use the method of undetermined coefficients, first introduced in Section 2.1.6.
We have by now established that A2.G.1; 3// is freely generated by the classes �1;1 and
�2, so that we may write

�21 D ˛�2 C ˇ�1;1 (3.2)

for some (unique) ˛ and ˇ 2 Z. We can then determine the coefficients ˛ and ˇ by
taking the product of both sides of (3.2) with classes of complementary dimension.

One way to do this is by invoking the associativity of A.G.1; 3// and the previous
calculations: We have

.˛�2 C ˇ�1;1/�2 D �
2
1 � �2 D �1.�1�2/ D �1�2;1 D �2;2;

and since �22 D �2;2 and �1;1�2 D 0 we get ˛ D 1. Similarly, from

.˛�2 C ˇ�1;1/�1;1 D �
2
1 � �1;1 D �1.�1�1;1/ D �1�2;1 D �2;2

and �21;1 D �2;2 we see that ˇ D 1. In sum, we have

�21 D �2 C �1;1;

and this completes our description of the Chow ring A.G.1; 3//.
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L

M
M 0

p00

H 00

L

M
M 0

Figure 3.6 †2.p
00/\†1.M/\†1.M

0/ D fLg; †1;1.H 00/\†1.M/\†1.M
0/ D fLg.

It is instructive to compute �21�2 and �21�1;1 geometrically, without invoking asso-
ciativity as in the proof above. To determine ˛, we used

�21 � �2 D .˛�2 C ˇ�1;1/ � �2 D ˛�2;2:

By Kleiman transversality, we have

˛ D #

8̂<̂
:ƒ

ˇ̌̌ ƒ \ L ¤ ¿;
ƒ \ L0 ¤ ¿ and

p00 2 ƒ

9>=>;
for L and L0 general lines and p00 a general point in P3. Any line ƒ satisfying the
three conditions must lie in each of the planes p00; L and p00; L0, and so must be their
intersection; thus ˛ D 1.

Similarly, to determine ˇ we used

�21 � �1;1 D .˛�2 C ˇ�1;1/ � �1;1 D ˇ�2;2:

Again, by generic transversality, we get:

ˇ D #

8̂<̂
:ƒ

ˇ̌̌ ƒ \ L ¤ ¿;
ƒ \ L0 ¤ ¿ and

ƒ � H 00

9>=>;
for L and L0 general lines and H 00 a general plane in P3. The only line ƒ satisfying
these conditions is the line joining the points L \H 00 and L0 \H 00, so again ˇ D 1

(Figure 3.6).

Tangent spaces to Schubert cycles
The generic transversality of the cycles †a;b and †a0;b0 , guaranteed by Kleiman’s

theorem in characteristic 0, played an essential role in the computation above. By
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describing the tangent spaces to the Schubert cycles, we can prove this transversality
directly and hence extend the results to characteristic p.

We will carry this out here for the intersection †2 \†02. Tangent spaces to other
Schubert cycles in G.1; 3/ are described in Exercises 3.26 and 3.27; they will be
treated in general in Theorem 4.1. The key identification is given in the following
result:

Proposition 3.11. Let † D †2.p/ be the Schubert cycle of lines in P3 D PV that
contain p, and suppose that L 2 †2.p/. Writing zL � V for the two-dimensional
subspace corresponding to L, and identifying TLG.1; 3/ with Hom.zL; V=zL/, we have

TL† D f' j'. Qp/ D 0g:

Given Proposition 3.11, it follows immediately that for general p; p0 2 P3 the cycles
†2.p/ and †2.p0/ meet transversely: If p ¤ p0, then at the unique point L D p; p0 of
intersection of the Schubert cycles † D †2.p/ and †0 D †2.p0/, we have

TŒL�† \ TŒL�†
0
D f' j'. Qp/ D '. Qp0/ D 0g D f0g;

since Qp and Qp0 span zL.

Proof of Proposition 3.11: We choose a subspace � � V complementary to zL and
identify the open subset

U� D fƒ 2 G.1; 3/ jƒ \ � D 0g

with the vector space Hom.zL;�/ by thinking of a 2-plane ƒ 2 U� as the graph of
a linear map from zL to � , just as in the beginning of the proof of Theorem 3.5. It
is immediate from the identification that U� \ †2 is the linear space in Hom.zL;�/
consisting of maps ' such that Qp � Ker.'/. Thus its tangent space at a point ŒL� has the
same description.

As a consequence of Theorem 3.10, we have the following description of the Chow
ring of G.1; 3/:

Corollary 3.12. A.G.1; 3// D
ZŒ�1; �2�

.�31 � 2�1�2; �
2
1�2 � �

2
2 /
:

We will generalize this to the Chow ring of any Grassmannian, and prove it by
applying the theory of Chern classes, in Chapter 5. A point to note is that the given
presentation of the Chow ring has the same number of generators as relations — that is,
given that the Chow ring A.G.1; 3// has Krull dimension 0, it is a complete intersection.
The analogous statement is true for all Grassmannians.
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L1

L2 L
M

x

x
3

Figure 3.7 An apparent double point: when viewed from x, the linesL2 andL3 appear
to cross at a point in the direction Mx , and therefore there is a unique line through x
meeting L2 and L3.

3.4 Lines and curves in P3

In this section and the next we present several applications of the computations above.

3.4.1 How many lines meet four general lines?

This is Keynote Question (a). Since �1 is the class of the locus †1.L/ of lines
meeting a given line L, and generic translates of †1.L/ are generically transverse, the
number is

deg �41 D 2:

We can see the geometry behind this computation — and answer more refined
questions about the situation — as follows. Suppose that the lines are L1; : : : ; L4, and
consider first the lines that meet just the first three. To begin with, we claim that if
x 2 L1 is any point, there is a unique line Mx � P3 passing through x and meeting
L2 and L3, as in Figure 3.7. To see this, note that if we project L2 and L3 from x to a
plane H , we get two general lines in H , and these lines meet in a unique point y. The
line Mx WD x; y is then the unique line in P3 containing x and meeting L2 and L3.
(Informally: If we look at L2 and L3, sighting from the point x, we see an “apparent
crossing” in the direction of the lineMx — see Figure 3.7.) Moreover, if x ¤ x0 then the
lines Mx;Mx0 are disjoint: If they had a common point, they would lie in a plane, and
all three of L1; L2; L3 would be coplanar, contradicting our hypothesis of generality.
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L1
L2

L3

L4

p
q

Q

Figure 3.8 Two lines that meet each of L1; : : : ; L4.

The union of the lines Mx is a surface that we can easily identify. There is a three-
dimensional family of quadratic polynomials on each Li Š P1. Each restriction map
H 0

�
OP3.2/

�
! H 0

�
OLi .2/

�
is linear, so its kernel has codimension� 3. Since there is

a 10-dimensional vector space of quadratic polynomials on P3, there is thus at least one
quadric surface Q containing L1; L2 and L3. By Bézout’s theorem, any line meeting
each of L1; L2; L3, and thus meeting Q at least three times, must be contained in Q.
Since the union of the linesMx is a nondegenerate surface (the lines are pairwise disjoint,
and so cannot lie in a plane), it follows thatQ is unique, and is equal to the disjoint uniona

x2L1

Mx D Q:

Since the degree of Q is 2, and L4 is general, L4 meets Q in two distinct points p
and q; the two lines Mp and Mq passing through p and q are the unique lines meeting
all of L1; : : : ; L4 (Figure 3.8). Thus we see again that the answer to our question is 2.

For which sets of four lines are there more or fewer than two distinct lines meeting
all four? The geometric construction above will enable the reader to answer this question;
see Exercise 3.29.

3.4.2 Lines meeting a curve of degree d

We do not know a geometric argument such as the above one for four lines that would
enable us to answer the corresponding question for four curves, Keynote Question (b).
In this case, intersection theory is essential. The basic computation is the following:

Proposition 3.13. Let C � P3 be a curve of degree d . If

�C WD fL 2 G.1; 3/ jL \ C ¤ ¿g

is the locus of lines meeting C , then the class of �C is

Œ�C � D d � �1 2 A
1.G.1; 3//:
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Proof: To see that �C is a divisor, consider the incidence correspondence

† D f.p;L/ 2 C �G.1; 3/ jp 2 Lg;

whose image in G.1; 3/ is �C . The fibers of† under the projection toC are all projective
planes, so† has pure dimension 3. On the other hand, the projection to �C is generically
one-to-one, so �C also has pure dimension 3. (See Exercise 3.20 for a generalization.)

Now let C be the class of �C in A1.G.1; 3//, and write

C D ˛ � �1

for some ˛ 2 Z. To determine ˛, we intersect both sides with the class �2;1 and get

deg C � �2;1 D ˛ deg.�1 � �2;1/ D ˛:

If .p;H/ is a general pair consisting of a point p 2 P3 and a planeH � P3 containing p,
the Schubert cycle

†2;1.p;H/ D fL jp 2 L � H g

will intersect the cycle �C transversely. (This follows from Kleiman’s theorem in
characteristic 0, and can be proven in all characteristics by using the description of
the tangent spaces to †1.p;H/ in Exercise 3.27 and of the tangent spaces to �C in
Exercise 3.30.) Therefore

˛ D #.�C \†2;1.p;H// D #fL jp 2 L � H and L \ C ¤ ¿g:

To evaluate this number, note that H (being general) will intersect C transversely in d
points fq1; : : : ; qd g; since p 2 H is general, no two of the points qi will be collinear
with p. Thus the intersection �C \†2;1.p;H/ will consist of the d lines p; qi , as in
Figure 3.9. It follows that ˛ D d , so

C D d � �1:

We will revisit Proposition 3.13 in Section 3.5.3, where we will see how to calculate
C by the method of specialization.

Proposition 3.13 makes it easy to answer Keynote Question (b): If C1; : : : ; C4 � P3

are general translates of curves of degrees d1; : : : ; d4, then the cycles �Ci are generically
transverse by Kleiman transversality, so the number of lines meeting all four is

deg
4Y
iD1

Œ�Ci � D deg
4Y
iD1

.di�1/ D 2

4Y
iD1

di :

One can verify the necessary transversality by using our description of the tangent
spaces, too; as a bonus, we can see exactly when transversality fails. This is the content
of Exercises 3.30–3.33.



Lines and curves in P3 Section 3.4 113

p

q3

q2

q1

C

H

Figure 3.9 The intersection of �C with †2;1.p;H/.

3.4.3 Chords to a space curve

Consider now a smooth, nondegenerate space curve C � Pn of degree d and
genus g. We define the locus ‰2.C / � G.1; n/ of chords, or secant lines to C , to be
the closure in G.1; n/ of the locus of lines of the form p; q with p and q distinct points
of C . Inasmuch as ‰2.C / is the image of the rational map � W C � C - G.1; n/
sending .p; q/ to p; q, we see that ‰2.C / will have dimension 2.

Note that we could also characterize ‰2.C / as the locus of lines L � Pn such
that the scheme-theoretic intersection L \ C has degree at least 2. As we will see in
Exercise 3.38, this characterization differs from the definition given when we consider
singular curves, or (as we will see in Exercise 3.39) higher-dimensional secant planes to
curves; but for smooth curves in Pn we will show in Exercise 3.37 they agree, and we
can adopt either one. (For much more about secant planes to curves in general, see the
discussion in Section 10.3.)

Let us now restrict ourselves to the case n D 3 of smooth, nondegenerate space
curves C � P3, and ask: What is the class, in A2.G.1; 3//, of the locus ‰2.C / of
secant lines to C ? We can answer this question by intersecting with Schubert cycles of
complementary codimension (in this case, codimension 2). We know that

Œ‰2.C /� D ˛�2 C ˇ�1;1

for some integers ˛ and ˇ. To find the coefficient ˇ we take a general plane H � P3,
and consider the Schubert cycle

†1;1.H/ D fL 2 G.1; 3/ jL � H g:
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CH

Figure 3.10 †1;1.H/ \‰2.C / consists of
�degC
2

�
lines.

By our calculation of A.G.1; 3// and Kleiman transversality, we have

ˇ D deg
�
�1;1 � Œ‰2.C /�

�
D #.†1;1.H/ \‰2.C //:

The cardinality of this intersection is easy to determine: The plane H will intersect C
in d points p1; : : : ; pd , no three of which will be collinear (Arbarello et al. [1985, Sec-
tion 3.1]), so that there will be exactly

�
d
2

�
lines pi ; pj joining these points pairwise; thus

ˇ D
�d
2

�
(see Figure 3.10).

Similarly, to find ˛ we let p 2 P3 be a general point and

†2.p/ D fL 2 G.1; 3/ jp 2 LgI
we have as before

˛ D deg
�
�2 � Œ‰2.C /�

�
D #.†2.p/ \‰2.C //:

To count this intersection — that is, the number of chords to C through the point p—
consider the projection �p W C ! P2. This map is birational onto its image C � P2,
which will be a curve having only nodes as singularities (see Exercise 3.34), and these
nodes correspond exactly to the chords to C through p. (These chords were classically
called the apparent nodes of C (Figure 3.11): If you were looking at C with your eye
at the point p, and had no depth perception, they are the nodes you would see.) By the
genus formula for singular curves (Section 2.4.6), this number is

˛ D
�d�1
2

�
� g:

Thus we have proven:

Proposition 3.14. If C � P3C is a smooth nondegenerate curve of degree d and genus g,
then the class of the locus of chords to C is

Œ‰2.C /� D
��d�1

2

�
� g

�
�2 C

�d
2

�
�1;1 2 A

2.G.1; 3//:
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p

q

r

C

�p.C /

Figure 3.11 Another apparent node.

We can use this to answer the third of the keynote questions of this chapter: If C
and C 0 are general twisted cubic curves, by Kleiman’s theorem the cycles S D ‰2.C /
and S 0 D ‰2.C 0/ intersect transversely; since the class of each is �2 C 3�1;1, we have

#.S \ S 0/ D deg.�2 C 3�1;1/2 D 10:

Exercises 3.40 and 3.41 explain how to use the tangent space to the Grassmannian
to prove generic transversality, and thus verify this result, in all characteristics.

3.5 Specialization
There is a another powerful approach to evaluating the intersection products of inter-

esting subvarieties: specialization. In this section we will discuss some of its variations.

3.5.1 Schubert calculus by static specialization

As a first illustration we show how to compute the class �21 2 A.G.1; 3// by
specialization. The reader will find a far-reaching generalization to the Chow rings of
Grassmannians and even to more general flag varieties in the algorithms of Vakil [2006a]
and Coşkun [2009].

The idea is that instead of intersecting two general cycles †1.L/ and †1.L0/
representing �1, we choose a special pair of lines L;L0. The goal is to choose L and L0

special enough that the class of the intersection †1.L/ \†1.L0/ is readily identifiable,
but at the same time not so special that the intersection fails to be generically transverse.
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We do this by choosing L and L0 to be distinct but incident. The intersection
†1.L/ \†1.L

0/ is easy to describe: If p D L \ L0 is the point of intersection of the
lines and H D L;L0 the plane they span, then a line ƒ meeting L and L0 either passes
through p or lies in H (since it then meets L and L0 in distinct points). Thus, as sets,
we have

†1.L/ \†1.L
0/ D fƒ jƒ \ L ¤ ¿ and ƒ \ L0 ¤ ¿g
D fƒ jp 2 ƒ or ƒ � H g

D †2.p/ [†1;1.H/:

If we now show that the intersection is generically transverse, we get the desired
formula �21 D �2 C �1;1. To check this transversality, we can use the description of
the tangent spaces to †1.L/ and †1.L0/ given in Exercise 3.26. First, suppose ƒ is
a general point of the component †2.p/ of †1.L/ \ †1.L0/, that is, a general line
through p; we will let K D ƒ;L and K 0 D ƒ;L0 be the planes spanned by ƒ together
with L and L0. Viewing the tangent space Tƒ.G.1; 3// as the vector space of linear
maps ' W zƒ! V=zƒ, we have

Tƒ.†1.L// D
˚
' j'. Qp/ � zK=zƒ

	
and Tƒ.†1.L

0// D
˚
' j'. Qp/ � zK 0=zƒ

	
:

Since K and K 0 are distinct, they intersect in ƒ, so that the intersection is

Tƒ.†1.L// \ Tƒ.†1.L
0// D f' j'. Qp/ D 0g

Since this is two-dimensional, the intersection †1.L/ \†1.L0/ is transverse at Œƒ�.
Similarly, if ƒ is a general point of the component †1;1.H/ of †1.L/ \†1.L0/,

so that ƒ meets L and L0 in distinct points q and q0, we have

Tƒ.†1.L// D
˚
' j'. Qq/ � zH=zƒ

	
and Tƒ.†1.L

0// D
˚
' j'. Qq0/ � zH=zƒ

	
;

so

Tƒ.†1.L// \ Tƒ.†1.L
0// D

˚
' j'.zƒ/ � zH

	
:

Again this is two-dimensional and we conclude that†1.L/\†1.L0/ is transverse at Œƒ�.
Before going on, we mention that the computation of �21 given here is an example

of the simplest kind of specialization argument, what we may call static specialization:
We are able to find cycles representing the two given classes that are special enough
that the class of the intersection is readily identifiable, but general enough that they still
intersect properly.

In general, we may not be able to find such cycles. Such situations call for a more
powerful and broadly applicable technique, called dynamic specialization. There, we
consider a one-parameter family of pairs of cycles .At ; Bt / specializing from a “general”
pair to a special pair .A0; B0/, which may not intersect dimensionally transversely
at all! The key idea is to ask not for the intersection A0 \ B0 of the limiting cycles,
but rather for the limit limt!0.At \ Bt / of their intersections. For an example of
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dynamic specialization, see Section 4.4 of the following chapter, where we consider
in the Grassmannian G.1; 4/ of lines in P4 the self-intersection of the cycle of lines
meeting a given line in P4.

3.5.2 Dynamic projection

Problems situated in projective space tend to be especially amenable to specialization
techniques: We can use the large automorphism group of Pn to morph the objects we
are dealing with into potentially simpler, more tractable ones. One fundamental example
of this is the technique of dynamic projection, which we will describe here and use in
the following section to re-derive the formulas for the class of the locus of lines incident
to a curve.

Fix two disjoint planes A (the “attractor”) and R (the “repellor”) that span Pn.
Choose coordinates x0; : : : ; xr ; y0; : : : ; ya on Pn so that the equations ofA are fxi D 0g
and the equations of R are fyi D 0g, and consider the action ‰ of the multiplicative
group Gm on Pn given by

 t W .x0; : : : ; xr ; y0; : : : ; ya/ 7! .tx0; : : : ; txr ; y0; : : : ; ya/

D .x0; : : : ; xr ; t
�1y0; : : : ; t

�1ya/:

(In what follows, we will abbreviate .x0; : : : ; xr ; y0; : : : ; ya/ to .x; y/; for example, we
will write  t .x; y/ D .tx; y/.) It is clear that the points of A and R remain fixed under
the action of Gm. On the other hand, we can say intuitively that a point not in A or R
will “flow toward A” as t approaches zero, and will “flow toward R” as t approaches
1. More precisely, note that any point p … A [R lies on a unique line that meets both
A and R. (The span p;A, being an .a C 1/-plane, must meet R. Since A and R are
disjoint, p;A can meet R only in a point q 2 R; the line p; q is then the unique line
containing p and meeting A and R.) This line is the closure of the orbit of p under the
given action of Gm. In particular, any point in Pn nR has a well-defined limit in A as
t approaches zero.

Now suppose X � Pn is any variety. We consider the images of X under the
automorphisms  t , and in particular their flat limit as t ! 0. In other words, we set

Zı D f.t; p/ 2 A1 � Pn j t ¤ 0 and p 2  t .X/gI

we let Z � A1 � Pn be the closure of Zı, and look at the fiber X0 of Z over t D 0.
(Note that even if X is a variety, X0 may well be nonreduced.) We think of X0 as the
limit of the varieties  t .X/ as t approaches 0 (see Figure 3.12 for an illustration; see
also Eisenbud and Harris [2000, Chapter 2] for a discussion of flat limits in general).

The following properties of the limit X0 make it easy to analyze some interesting
cases:
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a

A

R C

x

y

R; x D R; y D R; z

Figure 3.12 Dynamic projection of a conic in P3 from a line R to a line A.

Proposition 3.15. With notation as above:

(a) X0 � Pn is stable under the action of Gm.
(b) X0 \R D X \R.
(c) .X0/red is contained in the cone over X0 \ R with base A (in case X0 \ R D ¿,

we take this to mean .X0/red � A).

In addition, we know (as for any rational equivalence) thatX0 is equidimensional and
dimX0 D dimX , and, by Eisenbud [1995, Exercise 6.11], that the Hilbert polynomial
of X0 is the same as the Hilbert polynomial of X .

Proof: For the first part, consider the action of Gm on the product A1 � Pn given as the
product of the standard action of Gm on A1 and the action ‰ above of Gm on Pn; that is,

't W .s; p/! .ts;  t .p//:

This carries Z to itself and the fiber f0g � Pn to itself, so it carries X0 to itself. But it
acts on the fiber f0g � Pn via the action ‰ above; thus X0 is invariant under ‰.

The second point is more subtle. (In particular, it is asymmetric: The same statement,
with R replaced by A, would be false.) It is not, however, intuitively unreasonable: Since
points in Pn nR flow away from R as t ! 0, the only way a point p 2 R can be a limit
of points  t .pt / is if it is there all along, that is, if p 2 X \R.

In any case, note first that one inclusion is immediate: Since R is fixed pointwise
by the automorphisms  t , we have

P1 � .X \R/ � Z

and hence X \R � X0 \R. To see the other inclusion, we want to show that the ideal
I.X \R/ is contained in I.X0 \R/. Let f .x/ 2 I.X \R/. We can then write

f .x/ D g.x; 0/ for some g.x; y/ 2 I.X/:
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Figure 3.13 A space curve C specializes to a union of lines.

Now observe that

I.Z/ � ff .x; ty/ jf 2 I.X/g;

so h.t; x; y/ D g.x; ty/ 2 I.Z/. Setting t D 0, we see that g.x; 0/ 2 I.X0/, and hence
f 2 I.X0 \R/.

To prove the third assertion, note that the Gm-orbit of any point not contained in
R [ A is a straight line joining a point of R to a point of A. Since X0 is stable under
Gm, it is the union of such lines, together with any points of A [R it contains.

We sometimes call this construction dynamic projection: We are realizing the
projection map

�R W Pn nR! A;

.x; y/ 7! .0; y/;

as the limit of a family of automorphisms  t of Pn. As we will see, though, considering
the limit of the images  t .X/ yields more information than simply taking the projection
�R.X/. See Figures 3.12 and 3.13 for examples.

Example 3.16. Let X � Pn be a subvariety of dimension m and degree d . We will ex-
hibit a dynamic projection ofX whose limit is a d -foldm-plane (that is, a scheme whose
support is an m-plane and that has multiplicity d at the general point of that plane), and
another whose limit is the generically reduced union of d distinct m-planes containing a
fixed .m � 1/-plane.

To make the first construction, let A � Pn be any m-dimensional subspace, and
choose R to be an .n � m � 1/-plane R � Pn disjoint from X and from A. Since
X \ R D ¿, we see that X0 \ R D ¿ as well, and it follows that .X0/red � A. Since
dimX0 D dimX D dimA, we see that the support of X0 is exactly A, and computing
the degree we have hX0i D d hAi, as claimed.
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To make the second construction, choose the repellor subspace R to be a general
plane of dimension n�m, so that R\X consists of degX distinct points, and take A to
be an .m� 1/-plane disjoint from R. We see that .X0/red is contained in the union of the
m-planes that are the cones over the degX points of X \R D X0 \R. Also, X0 must
contain all these points. Since X0 is equidimensional and has degree equal to degX , it
follows that X0 is the generically reduced union of these distinct planes, as required.

Note that while the multiplicities of X0 are determined in both cases, the actual
scheme structure of X0 will depend very much on the geometry of X .

3.5.3 Lines meeting a curve by specialization

As an example of how dynamic projection can be used in specialization arguments,
we revisit the computation of the class C of the locus �C � G.1; 3/ of lines meeting a
curve C � P3 from Proposition 3.13.

Let C � P3 be a curve of degree d . Choose a plane H � P3 intersecting C
transversely in points p1; : : : ; pd , and q 2 P3 any point not lying on H . Consider the
one-parameter group fAtg � PGL4 with repellor planeH and attractor q; that is, choose
coordinates ŒZ0; : : : ; Z3� on P3 such that q D Œ1; 0; 0; 0� and H is given by Z0 D 0,
and consider for t ¤ 0 the automorphisms of P3 given by

At D

0BBB@
1 0 0 0

0 t 0 0

0 0 t 0

0 0 0 t

1CCCA :
Let Ct D At .C /, and let ˆ � A1 � P3 be the closure of the locus

ˆı D f.t; p/ 2 A1 � P3 j t ¤ 0 and p 2 Ctg:

As we saw in the preceding section, the limit of the curves Ct as t ! 0 (that is, the fiber
of ˆ over t D 0) is supported on the union of the d lines pi ; q, and has multiplicity 1 at
a general point of each, as shown in Figure 3.13.

We can use this construction to give a rational equivalence between the cycle �C and
the sum of the Schubert cycles †1.pi ; q / in G.1; 3/. Explicitly, take ‰ � A1 �G.1; 3/
to be the closure of the locus

f.t; ƒ/ 2 A1 �G.1; 3/ j t ¤ 0 and ƒ \ Ct ¤ ¿g:

As we will verify in Exercises 3.35 and 3.36, the fiber‰0 of‰ over t D 0 is supported on
the union of the Schubert cycles†1.pi ; q / and has multiplicity 1 along each, establishing
the rational equivalence C D d � �1.
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The fiber of ˆ over t D 0 (that is, the flat limit limt!0 Ct of the curves Ct ) is not
necessarily equal to the union of the d lines pi ; q: it may have an embedded point at the
point q. Nonetheless, the fiber ‰0, being a divisor in G.1; 3/, will not have embedded
components.

3.5.4 Chords via specialization: multiplicity problems

One of the main difficulties in using specialization is the appearance of multiplicities.
We will now illustrate this problem by trying to compute, via specialization, the class of
the chords to a smooth curve in P3.

Consider again the family of curves Ct WD At .C / described in the previous section.
What is the limit as t ! 0 of the cycles ‰2.Ct / � G.1; 3/ of chords to Ct? To interpret
this question, let … � A1 �G.1; 3/ be the closure of the locus

…ı D f.t; ƒ/ 2 A1 �G.1; 3/ j t ¤ 0 and ƒ 2 ‰2.Ct /g:

What is the fiber …0 of this family?
The support of …0 is easy to identify. It is contained in the locus of lines whose

intersection with the flat limit C0 D limt!0 Ct contains a scheme of degree at least 2,
which is to say the union of the Schubert cycles †1;1.pi ; pj ; q / of lines lying in a plane
spanned by a pair of the lines pi ; q, and the Schubert cycle†2.q/ of lines containing the
point q. Moreover one can show that the Schubert cycles†1;1.pi ; pj ; q / all appear with
multiplicity 1 in the limiting cycle …0, from which we can deduce that the coefficient of
�1;1 in the class of ‰2.C / is

�
d
2

�
.

The hard part is determining the multiplicity with which the cycle †2.q/ appears
in …0: This will depend in part on the multiplicity of the embedded point of C0 at q,
which will in turn depend on the genus g of C (see for example Exercises 3.43 and 3.44).
Note the contrast with the calculation in Section 3.5.3 of the class of the locus �C of
incident lines via specialization: There, the embedded component of the limit scheme
limt!0 �Ct also depended on the genus of C , but did not affect the limiting cycle.

An alternative approach to this problem would be to use a different specialization to
capture the coefficient of �2: Specifically, we could take the one-parameter subgroup
with repellor a general point q and attractor a general plane H � P3. The limiting
scheme C0 D limt!0 Ct will be a plane curve of degree d with ı D

�
d�1
2

�
� g nodes

r1; : : : ; rı , with a spatial embedded point of multiplicity 1 at each node. The limit of
the corresponding cycles ‰2.Ct / � G.1; 3/ will correspondingly be supported on the
union of the Schubert cycle †1;1.H/ and the ı Schubert cycles †2.ri /. In this case
the coefficient of the Schubert cycle †1;1.H/ is the mysterious one (though calculable:
given that a general line ƒ � H meets C0 in d points, we can show that it is the limit of�
d
2

�
chords to Ct as t ! 0). On the other hand, one can show that the Schubert cycles

†2.ri / all appear with multiplicity 1 in the limit of the cycles ‰2.Ct /, from which we
can read off the coefficient ı of �2 in the class of ‰2.C /.
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We will fill in some of the details involved in this calculation in Exercise 3.45.

3.5.5 Common chords to twisted cubics via special-
ization

To illustrate the artfulness possible in specialization arguments, we give a different
specialization approach to counting the common chords of two twisted cubics: We will
not degenerate the twisted cubics; we will just specialize them to a general pair of twisted
cubic curves C;C 0 lying on the same smooth quadric surface Q, of types .1; 2/ and
.2; 1/ respectively.

The point is, no line of either ruling of Q will be a chord of both C and C 0 (the
lines of one ruling are chords of C but not of C 0, and vice versa for lines of the other
ruling). But since C [ C 0 � Q, any line meeting C [ C 0 in three or more distinct
points must lie in Q. It follows that the only common chords to C and C 0 will be the
lines joining the points of intersection C \ C 0 pairwise; since the number of such points
is #.C \ C 0/ D deg.ŒC �ŒC 0�/ D 5, the number of common chords will be

�
5
2

�
D 10.

Of course, to deduce the general formula from this analysis, we have to check that the
intersection ‰2.C / \‰2.C 0/ is transverse; we will leave this as Exercise 3.46.

What would happen if we specialized C and C 0 to twisted cubics lying on Q, both
having type .1; 2/? Now there would only be four points of C\C 0, giving rise to

�
4
2

�
D 6

common chords. But now the lines of one ruling of Q would all be common chords to
both. Thus ‰2.C / \‰2.C 0/ would have a positive-dimensional component: Explicitly,
‰2.C /\‰2.C

0/ would consist of six isolated points and one copy of P1. It might seem
that in these circumstances we could not deduce anything about the intersection number
deg.Œ‰2.C /� � Œ‰2.C 0/�/ from the actual intersection, but in fact the excess intersection
formula of Chapter 13 can be used in this case to determine deg.Œ‰2.C /� � Œ‰2.C 0/�/;
see Exercise 13.35.

3.6 Lines and surfaces in P3

3.6.1 Lines lying on a quadric

Let Q � P3 be a smooth quadric surface and F D F1.Q/ � G.1; 3/ the locus of
lines contained in Q. In this section we will determine the class ŒF � 2 A.G.1; 3//. (F is
an example of a Fano scheme, a construction that will be treated extensively in Chapter 6.)

Via the isomorphism Q Š P1 � P1, the lines on Q are fibers of the two projections
maps Q! P1; in particular, we see that dimF D 1. Since A3.G.1; 3// is generated by
�2;1, we must have

ŒF � D ˛ � �2;1
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Figure 3.14 The rulings of a quadric surface Q � P3 correspond to conic curves
Ci � G.1; 3/ � P5; thus ŒF1.Q/� D 4�2;1.

for some integer ˛. If L � P3 is a general line and †1.L/ � G.1; 3/ the Schubert cycle
of lines meeting L, then by Kleiman transversality we have

˛ D deg.ŒF � � �1/

D #.†1.L/ \ F /

D #fM 2 G.1; 3/ jM � Q and M \ L ¤ ¿g:

Now L, being general, will intersect Q in two points, and through each of these points
there will be two lines contained in Q; thus we have ˛ D 4 and

ŒF � D 4�2;1:

We will see how to calculate the class of the locus of linear spaces on a quadric hyper-
surface more generally in Section 4.6.

The variety F is actually the union C1 [ C2 of two disjoint curves in the Grass-
mannian, corresponding to the two rulings of Q; each of these curves has class 2�2;1,
and thus has degree 2 as a curve in the Plücker embedding in P5 (see Figure 3.14). For
details see Eisenbud and Harris [2000].

3.6.2 Tangent lines to a surface

Next, let S � P3 be any smooth surface of degree d , and consider the locus
T1.S/ � G.1; 3/ of lines tangent to S . Let ˆ be the incidence correspondence

ˆ D f.q; L/ 2 S �G.1; 3/ j q 2 L � TqSg;

where TqS denotes the projective plane tangent to S at q. The projection ˆ! S on the
first factor expresses ˆ as a P1-bundle over S , from which we deduce that ˆ, and hence
its image T1.S/ in G.1; 3/, is irreducible of dimension 3.
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H

p

C D H \ S

S

Figure 3.15 deg.†2;1.p;H/ \ T1.S// D 2.

To find the class of T1.S/, we write

ŒT1.S/� D ˛ � �1;

and choose a general plane H � P3 and a general point p 2 H . By Kleiman
transversality,

˛ D ŒT1.S/� � �2;1

D #.†2;1.p;H/ \ T1.S//

D #fM 2 G.1; 3/ j q 2M � TqS for some q 2 S and p 2M � H g:

Now H , being general, will intersect S in a smooth plane curve C � H Š P2 of
degree d , and, p being general in H , the line p� � P2� dual to p will intersect the dual
curve C � � P2� transversely in deg.C �/ points. By Proposition 2.9, we have

deg.C �/ D d.d � 1/

and hence
ŒT1.S/� D d.d � 1/�1

(see Figure 3.15).
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This gives the answer to the last keynote question of this chapter: How many lines
are tangent to each of four general quadric surfaces Qi? Once more, Kleiman’s theorem
assures us that the cycles T1.Qi / intersect transversely, a fact we can verify in all
characteristics by explicit calculation. The answer is thus

deg
Y
ŒT1.Qi /� D deg.2�1/4 D 32:

3.7 Exercises
Exercise 3.17. Let ƒ;� 2 G be two points in the Grassmannian G D G.k; V /. Show
that the lineƒ;� � P.

VkV / is contained inG if and only if the intersectionƒ\� � V
of the corresponding subspaces of V has dimension k � 1.

Exercise 3.18. Using the fact that the Grassmannian

G D G.k; V / � P.
VkV /

is cut out by quadratic equations, show that if Œƒ� 2 G is the point corresponding to a
k-plane ƒ then the tangent plane TŒƒ�G � P.

VkV / intersects G in the locus

G \ TŒƒ�G D f� j dim.� \ƒ/ � k � 1gI

that is, the locus of k-planes meeting ƒ in codimension 1.

Exercise 3.19. Let V be an .nC1/-dimensional vector space, and consider the universal
k-plane over G D G.k;PV / introduced in Section 3.2.3:

ˆ D f.ƒ; p/ 2 G � PV jp 2 ƒg:

Show that this is a closed subvariety of G � PV of dimension k C .k C 1/.n � k/, and
that it is cut out on G � PV by bilinear forms on P.

VkC1V / � PV .

Exercise 3.20. Use the preceding exercise to show that, if X � Pn is any subvariety of
dimension l < n � k, then the locus

�X D fƒ 2 G.k; n/ jX \ƒ ¤ ¿g

of k-planes meeting X is a closed subvariety of G.k; n/ of codimension n � k � l .

Exercise 3.21. Let l < k < n, and consider the locus of nested pairs of linear subspaces
of Pn of dimensions l and k:

F.l; kIn/ D f.�;ƒ/ 2 G.l; n/ �G.k; n/ j� � ƒg:

Show that this is a closed subvariety of G.l; n/ �G.k; n/, and calculate its dimension.
(These are examples of a further generalization of Grassmannians called flag manifolds,
which we will explore further in Section 4.8.1.)
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Exercise 3.22. Again let l < k < n, and for any m � l consider the locus of pairs of
linear subspaces of Pn of dimensions l and k intersecting in dimension at least m:

F.l; kImIn/ D f.�;ƒ/ 2 G.l; n/ �G.k; n/ j dim.� \ƒ/ � mg:

Show that this is a closed subvariety of G.l; n/ �G.k; n/ and calculate its dimension.

Exercise 3.23. Let B � G.1; n/ be a curve in the Grassmannian of lines in Pn, with
the property that all nonzero tangent vectors to B have rank 1. Show that the lines in Pn

parametrized by B either

(a) all lie in a fixed 2-plane;
(b) all pass through a fixed point; or
(c) are all tangent to a fixed curve C � Pn.

(Note that the last possibility actually subsumes the first.)

Exercise 3.24. Show that an automorphism of G.k; n/ carries tangent vectors to tangent
vectors of the same rank (in the sense of Section 3.2.4), and hence for 1 < k < n the
group of automorphisms of G.k; n/ cannot act transitively on nonzero tangent vectors.
Show, on the other hand, that the group of automorphisms ofG.k; n/ does act transitively
on tangent vectors of a given rank.

Exercise 3.25. In Example 3.9, we demonstrated that the open Schubert cell †ı1 D
†1 n .†2 [ †1;1/ is isomorphic to the affine space A3. For each of the remaining
Schubert indices a; b, show that the Schubert cell †ı

a;b
� G.1; 3/ is isomorphic to the

affine space of dimension 4 � a � b.

Exercise 3.26. Consider the Schubert cycle

†1 D fƒ 2 G.1; 3/ jƒ \ L ¤ ¿g:

Suppose that ƒ 2 †1 and ƒ ¤ L, so that ƒ \ L is a point q and the span ƒ;L a
plane K. Show that ƒ is a smooth point of †1, and that its tangent space is

Tƒ.†1/ D
˚
' 2 Hom.zƒ;V=zƒ/ j '. Qq/ � zK=zƒ

	
:

Exercise 3.27. Consider the Schubert cycle

†2;1 D †2;1.p;H/ D fƒ 2 G.1; 3/ jp 2 ƒ � H g:

Show that †2;1 is smooth, and that its tangent space at a point ƒ is

Tƒ.†2:1/ D
˚
' 2 Hom.zƒ;V=zƒ/ j '. Qp/ D 0 and Im.'/ � zH=zƒ

	
:

Exercise 3.28. Use the preceding two exercises to show in arbitrary characteristic that
general Schubert cycles †1; †2;1 � G.1; 3/ intersect transversely, and deduce the
equality deg.�1 � �2;1/ D 1.
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C
L

Figure 3.16 Deformation of a line L preserving incidence with a curve C .

Exercise 3.29. Let L1; : : : ; L4 � P3 be four pairwise skew lines and ƒ � P3 a line
meeting all four; set

pi D ƒ \ Li and Hi D ƒ;Li :

Show that Œƒ� 2 G fails to be a transverse point of intersection of the Schubert cycles
†1.Li / exactly when the cross-ratio of the four points p1; : : : ; p4 2 ƒ equals the
cross-ratio of the four planes H1; : : : ;H4 in the pencil of planes containing ƒ.

Exercises 3.30–3.33 deal with a question raised in Section 3.4.2: IfC1; : : : ; C4 � P3

are general translates of four curves in P3, do the corresponding cycles �Ci � G.1; 3/
of lines meeting the Ci intersect transversely?

To start with, we have to identify the smooth locus of the cycle �C � G.1; 3/ of
lines meeting a given curve C , and its tangent spaces at these points; this is the content
of the next exercise, which is a direct generalization of Exercise 3.26 above.

Exercise 3.30. Let C � P3 be any curve, and L � P3 a line meeting C at one smooth
point p of C and not tangent to C . Show that the cycle �C � G.1; 3/ of lines meeting
C is smooth at the point ŒL�, and that its tangent space at ŒL� is the space of linear
maps zL! k4=zL carrying the one-dimensional subspace Qp � zL to the one-dimensional
subspace .zTpC C zL/=zL of k4=zL (see Figure 3.16).

Next, we have to verify that, for general translates Ci of any four curves, the
corresponding cycles �Ci are smooth at each of the points of their intersection. A key
fact will be the irreducibility of the relevant incidence correspondence:

Exercise 3.31. Let B1; : : : ; B4 � P3 be four irreducible curves and let '1; : : : ; '4 2
PGL4 be four general automorphisms of P3; let Ci D 'i .Bi /. Show that the incidence
correspondence

ˆ D f.'1; : : : ; '4; L/ 2 .PGL4/4 �G.1; 3/ j L \ 'i .Bi / ¤ ¿ for all ig

is irreducible.
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Using this, we can prove the following exercise — asserting that for general trans-
lates Ci of four given curves and any lineLmeeting all four, the cycles �Ci are smooth at
ŒL�— simply by exhibiting a single collection .'1; : : : ; '4; L/ satisfying the conditions
in question:

Exercise 3.32. Let B1; : : : ; B4 � P3 be four curves and '1; : : : ; '4 � PGL4 four
general automorphisms of P3; let Ci D 'i .Bi /. Show that the set of lines L � P3

meeting C1, C2, C3 and C4 is finite, and that, for any such L,

(a) L meets each Ci at only one point pi ;
(b) pi is a smooth point of Ci ; and
(c) L is not tangent to Ci for any i .

Exercise 3.33. Let C1; : : : ; C4 � P3 be any four curves, and L � P3 a line meeting all
four and satisfying the conclusions of Exercise 3.32. Use the result of Exercise 3.30 to
give a necessary and sufficient condition for the four cycles �Ci � G.1; 3/ to intersect
transversely at ŒL�, and show directly that this condition is satisfied for all lines meeting
C1; : : : ; C4 when the Ci are general translates of given curves.

Exercise 3.34. Let C � P3 be a smooth curve and p 2 P3 a general point. Show that

(a) p does not lie on any tangent line to C ;
(b) p does not lie on any trisecant line to C ; and
(c) p does not lie on any stationary secant to C (that is, a secant line q; r to C such

that the tangent lines TqC and TrC meet).

Deduce from these facts that the projection �p W C ! P2 is birational onto a plane
curve C0 � P2 having only nodes as singularities. (Note that as a consequence the same
is true for the projection of a smooth curve C � Pn from a general .n� 3/-plane to P2.)

Exercises 3.35 and 3.36 deal with the approach, described in Section 3.5.3, to
calculating the class of the variety †C � G.1; 3/ of lines incident to a space curve
C � P3 by specialization. Recall from that section that we choose a general plane
H � P3 meeting C at d points pi and a general point q 2 P3, and let fAtg be the
one-parameter subgroup of PGL4 with attractor q and repellor H ; we let Ct D At .C /
and take ‰ � A1 �G.1; 3/ to be the closure of the locus

‰ı D f.t; ƒ/ 2 A1 �G.1; 3/ j t ¤ 0 and ƒ \ Ct ¤ ¿g:

Exercise 3.35. Show that the support of the fiber‰0 is exactly the union of the Schubert
cycles †1.pi ; q /.

Exercise 3.36. Show that ‰0 has multiplicity 1 at a general point of each Schubert
cycle †1.pi ; q /.
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Exercise 3.37. Let C � Pr be a smooth curve. Show that the rational map ' W
C 2 - G.1; r/ sending .p; q/ to the line p; q when p ¤ q actually extends to a
regular map on all of C 2 sending .p; p/ to the projective tangent line TpC . Use this
to show that the image of ' coincides with the locus of lines L � Pr such that the
scheme-theoretic intersection L \ C has degree at least 2.

Exercise 3.38. Show by example that the conclusion of the preceding exercise is false
in general if we do not assume C � Pr to be smooth. Is it still true if we allow C to
have mild singularities, such as nodes?

Exercise 3.39. Similarly, show by example that the conclusion of Exercise 3.37 is
false if we consider higher-dimensional secant planes: For example, the image of the
rational map

' W C 3 - G.2; r/;
.p; q; r/ 7! p; q; r;

need not coincide with the locus of 2-planesƒ � Pr whose scheme-theoretic intersection
with C has degree at least 3.

Exercise 3.40. Show that the smooth locus of S D ‰2.C / contains the locus of lines
L � P3 such that the scheme-theoretic intersection L \ C consists of two reduced
points, and for such a line L identify the tangent plane TLS as a subspace of TLG.
(When is a tangent line to C a smooth point of ‰2.C /?)

Exercise 3.41. Use the result of the preceding exercise to show that if C;C 0 � P3 are
two general twisted cubic curves, then the varieties ‰2.C /;‰2.C 0/ � G.1; 3/ of chords
to C and C 0 intersect transversely.

Exercise 3.42. Let C � P3 be a smooth, nondegenerate curve of degree d and genus g,
and let L;M � P3 be general lines.

(a) Find the number of chords to C meeting bothL andM by applying Proposition 3.14.
(b) Verify this count by considering the product morphism

�L � �M W C ! P1 � P1

(where �L; �M W C ! P1 are the projections from L and M ) and comparing the
arithmetic and geometric genera of the image curve.

Exercise 3.43. Let C � P3 be a smooth, irreducible nondegenerate curve of degree d ,
and let ˆ � A1 � P3 be the family of curves specializing C to a scheme supported
on the union of lines joining a point p 2 P3 to the points of a plane section of C , as
constructed in Section 3.5.3. Show that C0 may have an embedded point at p, and that
the multiplicity of this embedded point may depend on the genus of the curve C , by
considering the examples of curves of degrees 4 and 5.
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Exercise 3.44. In the situation of the preceding problem, let ‰2.Ct / � G.1; 3/ be
the locus of chords to Ct for t ¤ 0. Suppose that the degree of C is 4. Show that the
component †2.p/ will be in the flat limit with multiplicity depending on the genus of C .

Exercise 3.45. Again, suppose C � P3 is any curve of degree d ; choose a general
plane H � P3 and point p 2 P3, and consider the one-parameter group fAtg � PGL4
with repellor point p and attractor plane H — that is, choose coordinates ŒZ0; : : : ; Z3�
on P3 such that p D Œ0; 0; 0; 1� and H is given by Z3 D 0, and consider for t ¤ 0 the
automorphisms of P3 given by

At D

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 t

1CCCA :
Let Ct D At .C /, and for t ¤ 0 let ‰2.Ct / � G.1; 3/ be the locus of chords to Ct .
Show that the Schubert cycle †1;1.H/ appears as a component of multiplicity

�
d
2

�
in

the limiting scheme limt!0‰2.Ct /.
Hint: Let ‰ � A1 �G.1; 3/ be the closure of the family

‰ı D f.t; L/ j t ¤ 0 and L 2 ‰2.Ct /g;

and show that if L � H is a general line then in a neighborhood of the point .0; L/ 2
A1 �G the family ‰ consists of the union of

�
d
2

�
smooth sheets, each intersecting the

fiber f0g �G.1; 3/ transversely in the Schubert cycle †1;1.H/.

Exercise 3.46. Let C;C 0 � Q � P3 be general twisted cubic curves lying on a smooth
quadric surface Q, of types .1; 2/ and .2; 1/ respectively. Show that the intersection
‰2.C / \‰2.C

0/ of the corresponding cycles of chords is transverse.

Exercise 3.47. Let C � P3 be a smooth curve of degree d and genus g, and let
T .C / � G.1; 3/ be the locus of its tangent lines. Find the class ŒT .C /� 2 A3.G.1; 3//
of T .C / in the Grassmannian G.1; 3/.

Exercise 3.48. Let C � P3 be a smooth curve of degree d and genus g, and let S � P3

be a general surface of degree e. How many tangent lines to C are tangent to S?
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Keynote Questions

(a) If V1; : : : ; V4 Š Pn� P2nC1 are four general n-planes, how many linesL� P2nC1

meet all four? (Answer on page 150.)

(b) Let C � G.1; 3/ � P5 be a twisted cubic curve contained in the Grassmannian
G.1; 3/ � P5 of lines in P3, and let

S D
[
Œƒ�2C

ƒ � P3

be the surface swept out by the lines corresponding to points of C . What is the
degree of S? How can we describe the geometry of S? (Answer on page 145.)

(c) If Q1;Q2 � P4 are general quadric hypersurfaces and S D Q1 \Q2 their surface
of intersection, how many lines does S contain? More generally, if Q1 and Q2 are
general quadric hypersurfaces in P2n and X D Q1\Q2, how many .n� 1/-planes
does X contain? (Answer on page 157.)

(d) What is the degree of the Grassmannian G.1; n/ of lines in Pn, embedded in
projective space via the Plücker embedding? (Answer on page 150.)

In this chapter, we will extend the ideas developed in Chapter 3 by introducing
Schubert cycles and classes on G.k; n/, the Grassmannian of k-dimensional subspaces
in an n-dimensional vector space V , and analyzing their intersections, a subject that
goes by the name of the Schubert calculus. Of course we may also consider G.k; n/ in
its projective guise as G.k � 1; n� 1/, the Grassmannian of projective .k � 1/-planes in
Pn�1, and in places where projective geometry is more natural (such as Sections 4.2.3
and 4.4) we will switch to the projective notation.
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4.1 Schubert cells and Schubert cycles
Let G D G.k; V / be the Grassmannian of k-dimensional subspaces of an n-

dimensional vector space V . Generalizing the example of G.1; 3/ D G.2; 4/, the center
of our study will be a collection of subvarieties of G.k; n/ called Schubert varieties or
Schubert cycles, defined in terms of a chosen complete flag V in V , that is, a nested
sequence of subspaces

0 � V1 � � � � � Vn�1 � Vn D V

with dimVi D i .
The Schubert cycles are indexed, in a way that will be motivated below, by sequences

a D .a1; : : : ; ak/ of integers with

n � k � a1 � a2 � � � � � ak � 0:

(Such sequences are often described by Young diagrams — see Section 4.5.) For such a
sequence a, we define the Schubert cycle †a.V/ � G to be the closed subset

†a.V/ D fƒ 2 G j dim.Vn�kCi�ai \ƒ/ � i for all ig:

Theorem 1.7 shows that the class Œ†a.V/� 2 A.G/ does not depend on the choice of
flag, since any two flags differ by an element of GLn. In general, when dealing with a
property independent of the choice of V , we will shorten the name to †a, and we define

�a WD Œ†a� 2 A.G/I

these, naturally, are called Schubert classes. We shall see (in Corollary 4.7) that A.G/ is
a free abelian group and that the classes �a form a basis.

To simplify notation, we generally suppress trailing zeros in the indices, writing
†a1;:::;as in place of †a1;:::;as ;0;:::;0. Also, we use the shorthand †pr to denote †p;:::;p ,
with r indices equal to p.

To elucidate the rather awkward-looking definition of †a.V/, suppose that ƒ � V
is a k-plane. Ifƒ is general, then Vi \ƒ D 0 for i � n�k, while dimVn�kCi \ƒ D i

for i > n � k. Thus we may describe †a as the set of ƒ such that dimVj \ ƒ � i

occurs for a value of j that is ai steps sooner than expected.
Equivalently, we may consider the sequence of subspaces of ƒ

0 � .V1 \ƒ/ � .V2 \ƒ/ � � � � � .Vn�1 \ƒ/ � .Vn \ƒ/ D ƒ: (4.1)

Each subspace in this sequence is either equal to the one before it or of dimension one
greater, and the latter phenomenon occurs exactly k times. The Schubert cycle †a.V/ is
the locus of planes ƒ for which “the i-th jump in the sequence (4.1) occurs at least ai
steps early.”

Here are two common special cases to bear in mind:
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� The cycle of k-subspaces ƒ meeting a given space of dimension l nontrivially is
the Schubert cycle

†n�kC1�l.V/ D fƒ jƒ \ Vl ¤ 0g:

In particular, the Schubert cycle of k-dimensional subspaces meeting a given .n�k/-
dimensional subspace nontrivially is

†1.V/ D fƒ jƒ \ Vn�k ¤ 0g:

This is a hyperplane section of G in the Plücker embedding. (But not every hyper-
plane section of G is of this form. This follows by a dimension count: the family of
.n�k/-planes — the GrassmannianG.n�k; n/— has dimension k.n�k/, whereas
the space of linear forms in the Plücker coordinates has dimension

�
n
k

�
� 1.)

� The sub-Grassmannian of k-subspaces contained in a given l-subspace is the
Schubert cycle

†.n�l/k .V/ D fƒ jƒ � Vlg:

Similarly, the sub-Grassmannian of planes containing a given r-plane is the Schubert
cycle

†.n�k/r .V/ D fƒ jVr � ƒg:

The cycles†i , defined for 0 � i � n�k, and the cycles†1i , defined for 0 � i � k,
are called special Schubert cycles. As we shall see in Section 5.8, their classes are
intimately connected with the tautological sub and quotient bundles onG, and each of the
corresponding sequences of classes forms a minimal generating set for the algebra A.G/.

Our indexing of the Schubert cycles is by no means the only one in use, but it has
several good properties:

� It reflects the partial order of the Schubert cycles defined with respect to a given
flag V by inclusion: if we order the indices termwise, that is, .a1; : : : ; ak/ �
.a01; : : : ; a

0
k
/ if and only if ai � a0i for 1 � i � k (writing a < a0 when a � a0 and

a ¤ a0; that is, ai < a0i for some i ), then

†a � †b ” a � b:

This follows immediately from the definition.
� It makes the codimension of a Schubert cycle apparent: By Theorem 4.1 below,

codim.†a � G/ D
X

ai ;

so that jaj WD
P
ai is the degree of �a in A.G/.

� It is preserved under pullback via the natural inclusions

i W G.k; n/ ,! G.k C 1; nC 1/
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(whose image is the set of .k C 1/-subspaces containing V1) and

j W G.k; n/ ,! G.k; nC 1/

(whose image is the set of k-subspaces contained in Vn); that is,

i�.�a/ D �a and j �.�a/ D �a:

Here we adopt the convention that when a1 > n � k, or when akC1 > 0, we
take �a D 0 as a class in A.G.k; n//. (This convention is consistent with the
restriction to sub-Grassmannians. For example, †n�kC1 � G.k; n C 1/ is the
subset of the k-planes containing a fixed general one-dimensional subspace, and
thus the intersection of †n�kC1 with the G.k; n/ of subspaces contained in a fixed
codimension-1 subspace is empty, so that j ��n�kC1 D 0 2 A.G.k; n//.) It follows
that if we establish a formula

�a�b D
X

a;bIc �c

in the Chow ring of G.k; n/, the same formula holds true in all G.k0; n0/ with
k0 � k and n0 � k0 � n � k. Whenever it happens that i� or j � is an isomorphism
on AjajCjbj, the formula will also hold in A.G.k; nC 1// or A.G.k C 1; nC 1//,
respectively. Conditions for this are given in Exercise 4.32.

There is a natural isomorphism G.k; V / Š G.n � k; V �/ obtained by associating
to a k-dimensional subspace ƒ � V the .n � k/-dimensional subspace ƒ? � V �

consisting of all those linear functionals on V that annihilate ƒ. This duality carries
each Schubert cycle to another Schubert cycle. For example, one checks immediately
that †i .W /, which is the set of k-planes ƒ meeting a fixed .n � k C 1 � i/-plane
W nontrivially, is carried into the Schubert cycle †1i of .n � k/-planes ƒ0 such that
dim.ƒ0\W ?/ � i , that is, such thatƒ0CW ? ¨ V . See Section 4.5 for the general case.

4.1.1 Schubert classes and Chern classes

Schubert classes provide fundamental invariants of vector bundles. Recall from
Theorem 3.4 that, if E is a vector bundle of rank r generated by a space W Š kn of
global sections on a variety X , then there is a map X ! G.n � r;W / sending a point
x 2 X to the subspace in W consisting of the sections vanishing at x. The pullbacks
of the Schubert classes �a give a fundamental set of invariants of E called the Chern
classes of E — see Section 5.6.2. We will see that every Schubert class is a polynomial
in the special Schubert classes (see Section 4.7).
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4.1.2 The affine stratification by Schubert cells

As in the case of G.1; 3/ D G.2; 4/, the Grassmannian G.k; n/ has an affine
stratification. To see this, set

†ıa D †a
� �[

b>a

†b

�
:

The †ıa are called Schubert cells.

Theorem 4.1. The locally closed subset †ıa � G is isomorphic to the affine space
Ak.n�k/�jaj; in particular †ıa is smooth and irreducible, and the Schubert variety †a is
irreducible and of codimension jaj in G.k; n/. The tangent space to †ıa at a point Œƒ� is
the subspace of TŒƒ�G D Hom.ƒ; V=ƒ/ consisting of those elements ' that send

Vn�kCi�ai \ƒ � ƒ

into
Vn�kCi�ai Cƒ

ƒ
� V=ƒ

for i D 1; : : : ; k.

Proof: Choose a basis .e1; : : : ; en/ for V so that

Vi D he1; : : : ; ei i:

Suppose Œƒ� 2 †a, and consider the sequence (4.1) of subspaces ofƒ. By definition, the
first nonzero subspace in the sequence will be Vn�kC1�a1 \ƒ, the first of dimension 2
will be Vn�kC2�a2 \ ƒ, and so on. Thus we may choose a basis .v1; : : : ; vk/ for ƒ
with v1 2 Vn�kC1�a1 , v2 2 Vn�kC2�a2 , and so on. In terms of this basis, and the basis
.e1; : : : ; en/ for V , the matrix representative of ƒ has the form0BBB@

� � � 0 0 0 0 0 0

� � � � � 0 0 0 0

� � � � � � 0 0 0

� � � � � � � � 0

1CCCA :
(This particular matrix corresponds to the case k D 4, n D 9 and a D .3; 2; 2; 1/.) If
ƒ were general in G, and we chose a basis for ƒ in this way, the corresponding matrix
would look like 0BBB@

� � � � � � 0 0 0

� � � � � � � 0 0

� � � � � � � � 0

� � � � � � � � �

1CCCA :
Thus the Schubert index ai is the number of “extra zeros” in row i .
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Now suppose thatƒ 2 †ıa; that is,ƒ 2 †a but not in any of the smaller varieties†a0
for a0 > a. In this case vi … Vn�kCi�ai�1, so, for each i , the coefficient of en�kCi�ai
in the expression of vi as a linear combination of the e˛ is nonzero, and this condition
characterizes elements of †ıa among elements of †a. (It follows in particular that †a
is the closure of †ıa.) Given that the coefficient of en�kCi�ai in vi is nonzero, we can
multiply vi by a scalar to make the coefficient 1, obtaining a basis for ƒ represented by
the rows of a matrix of the form0BBB@

� � 1 0 0 0 0 0 0

� � � � 1 0 0 0 0

� � � � � 1 0 0 0

� � � � � � � 1 0

1CCCA ;
where the 1 in the i -th row appears in the .n � k C i � ai /-th column for i D 1; : : : ; k.

Finally, we can subtract a linear combination of v1; : : : ; vi�1 from vi to kill the
coefficients of en�kCj�aj in the expression of vi as a linear combination of the e˛ for
j < i , to arrive at a basis of ƒ given by the row vectors of the matrix

A D

0BBB@
� � 1 0 0 0 0 0 0

� � 0 � 1 0 0 0 0

� � 0 � 0 1 0 0 0

� � 0 � 0 0 � 1 0

1CCCA :
Setting b D fn � k C 1 � a1; : : : ; n � akg, we may describe this by saying that the
b-th submatrix Ab of A (that is, the submatrix involving columns from b) is the identity
matrix. We claim that ƒ has a unique basis of this form. Indeed, any other basis of ƒ
has a matrix obtained from this one by left multiplication by a unique invertible k � k
matrix g, and thus has submatrix Ab D g.

It follows that †ıa is contained in the open subset U � G consisting of planes ƒ
complementary to the span of the n � k basis vectors whose indices are not in b. By the
same argument, any element of U D †ı0 has a unique basis given by the rows of a k � n
matrix with submatrix Ab D I , that is, of the form

A D

0BBB@
� � 1 � 0 0 � 0 �

� � 0 � 1 0 � 0 �

� � 0 � 0 1 � 0 �

� � 0 � 0 0 � 1 �

1CCCA :
Thus †ıa is a coordinate subspace of U Š Ak.n�k/ defined by the vanishing of jaj
coordinates, and it follows that †ıa is smooth and irreducible, and of codimension jaj,
as claimed. Since †a is the closure of †ıa, it is also irreducible and of codimension jaj
in G.k; n/ (but it may be singular; for example, one sees from the Plücker relation
(Example 3.1) that †1 � G.2; 4/ is the cone in P4 over a smooth quadric in P3).
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The statement about tangent spaces follows from the explicit coordinate description
of †a above. We identify the open set U Š Ak.n�k/ with the set of k � n matrices
having an identity matrix in positions from b. Since the tangent space to an affine space
may be identified with the corresponding vector space, the tangent space Hom.ƒ; V=ƒ/
to G.k; n/ at ƒ is given by the set of matrices in the positions from b0 complementary
to those in b, or more properly by the transposes of these matrices. Given such a tangent
vector, we may complete it uniquely to a k � n matrix with submatrix Ab D I , and
this (or rather its transpose) corresponds to the lifting ƒ! V D V=ƒ˚ƒ inducing
the identity map ƒ! ƒ. Thus the set of tangent directions at ƒ to the affine subspace
†ıa is identified with the set of matrices in that subspace, and this corresponds precisely
to the set of maps in Hom.ƒ; V=ƒ/ whose lifting as above sends Vn�kCi�ai into
Vn�kCi�ai Cƒ, as claimed.

From Proposition 1.17 we see that A.G/ is at least generated as an abelian group
by the classes �a, and the existence of the degree homomorphism deg W Ak.n�k/ ! Z
that counts points shows that Ak.n�k/.G/ is actually free on the class of a point, which
is the generator �.n�k/k . In Corollary 4.7 we will prove that all the Ai .G/ are free, by
intersection theory and results on transversality.

The description of the tangent spaces in Theorem 4.1 can be used to prove this
transversality. Here is an example:

Corollary 4.2. Let G D G.k; n/. Then

.�n�k/
k
D .�1k /

n�k
D �.n�k/k 2 A

k.n�k/.G/I

that is, .�n�k/k and .�1k /
n�k are both equal to the class of a point in the Chow ring

of G.

Proof: We know that A0.G/ is generated by the class �.n�k/k of a point, so it suffices
to show that both .�n�k/k and .�1k /

.n�k/ are of degree 1.
We regard G as the variety of k-dimensional subspaces ƒ of the n-dimensional

vector space V . If H � V is a codimension-1 subspace, then

†1k .H/ D fƒ � V jƒ � H g;

and the tangent space to †1k .H/ at the point corresponding to ƒ is

TŒƒ�.†1k .H// D f' 2 Hom.ƒ; V=ƒ/g j'.ƒ/ � H g:

IfH1; : : : ;Hn�k are general codimension-1 subspaces, then there is a unique k-planeƒ
in
Tk
iD1†1k .Hi /, namely, the intersection ƒ D

Tk
iD1Hi . Further, the tangent spaces

intersect only in the zero homomorphism, so the intersection is transverse. This proves
that .�1k /

.n�k/ is the class of a point.
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To prove the corresponding statement for .�n�k/k , we can make an analogous
argument, or we can simply use duality: the isomorphism G.k; n/ Š G.n � k; n/

introduced above carries �1k to �k , as we have already remarked, and preserves the
degree of 0-cycles.

4.1.3 Equations of the Schubert cycles

It is a remarkable fact that under the Plücker embedding G D G.k; n/ ,! PN every
Schubert cycle †a.V/ � G defined relative to the standard flag Vi D he1; : : : ; ei i is the
intersection of G with a coordinate subspace of PN , that is, a subspace defined by the
vanishing of an easily described subset of the Plücker coordinates. This is true even at
the level of homogeneous ideals:

Theorem 4.3. Let †a � G.k; n/ � PN be a Schubert cycle, and let b be the strictly
increasing k-tuple b D .n � k C 1 � a1; : : : ; n � k C 2 � a2; : : : /. The homogeneous
ideal of the †a in PN is generated by the homogeneous ideal of the Grassmannian
(the Plücker relations, page 94) together with those Plücker coordinates pb0 such that
b0 6� b in the termwise partial order.

The equations of the †a were studied in Hodge [1943], and this work led to the
notions of a straightening law (Doubilet et al. [1974]) and Hodge algebra (De Concini
et al. [1982]). A proof of Theorem 4.3 in terms of Hodge algebras may be found in the
latter publication, along with a proof that the homogeneous coordinate ring of †a is
Cohen–Macaulay. The ideas have also been extended to homogeneous varieties for other
reductive groups by Lakshmibai, Musili, Seshadri and their coauthors (see for example
Seshadri [2007]). Avoiding this theory, we will prove Theorem 4.3 only in the easy case
G.2; 4/ D G.1; 3/ � P5. In Exercise 4.17 we invite the reader to give the easier proof
of the set-theoretic version of Theorem 4.3.

Proof of Theorem 4.3 for G.2; 4/: In G.2; 4/, the Schubert cycle †a;b consists of
those two-dimensional subspaces that meet V3�a nontrivially and are contained in
V4�b . We must show that the homogeneous ideal of

†a;b � G.2; 4/ � P5

is generated by the Plücker relation g WD p1;2p3;4 � p1;3p2;4C p1;4p2;3 together with
the Plücker coordinates

fpi;j j .i; j / — .3 � a; 4 � b/g

(note that the condition .i; j / — .3 � a; 4 � b/ means i > 3 � a or j > 4 � b).
Specifically:

� †1 is the hyperplane section p3;4 D 0 �G; that is, it is the cone over the nonsingular
quadric g D �p1;3p2;4 C p14p2;3 in P3.
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� †2 is the plane p2;3 D p2;4 D p3;4 D 0.
� †1;1 is the plane p1;4 D p2;4 D p3;4 D 0.
� †2;1 is the line p1;4 D p2;3 D p2;4 D p3;4 D 0.
� †2;2 is the point p1;3 D p1;4 D p2;3 D p2;4 D p3;4 D 0.

A subspace L 2 †a;b has a basis whose first vector is in V3�a, and therefore has its
last aC 1 coordinates equal to 0, and whose second vector is in V4�b , and thus has its
last b coordinates equal to 0. If B is the matrix whose rows are the coordinates of these
two vectors, then pi;j is (up to sign) the determinant of the submatrix of B involving
the columns i and j . It follows that if i > 3 � a or j > 4 � b, then pi;j .L/ D 0, so the
given subsets of Plücker coordinates do vanish on the Schubert cycles as claimed.

To show that the ideals of the Schubert cycles are generated by the relation g
and the given subsets, observe that each of the subsets is the ideal of the irreducible
subvariety described above, and these have the same dimensions as the Schubert cycles.
For example, we know that dim†1;1 D 2, and the ideal

.g; p1;4; p2;4; p3;4/ D .p1;4; p2;4; p3;4/ � kŒp1;2; : : : ; p3;4�

is the entire ideal of a plane.

4.2 Intersection products

4.2.1 Transverse flags

Throughout, we let G D G.k; V / be the Grassmannian of k-dimensional linear
subspaces of an n-dimensional vector space V . We start with one useful definition. As
we said, Kleiman’s theorem assures us (in characteristic 0) that, for a general pair of
flags V and W on V , the Schubert cycles †a.V/; †b.W/ � G intersect generically
transversely. In this case, we can actually say explicitly what “general” means:

Definition 4.4. We say that a pair of flags V and W on V are transverse if any of the
following equivalent conditions hold:

(a) Vi \Wn�i D 0 for all i .
(b) dim.Vi \Wj / D min.0; i C j � n/ for all i; j .
(c) There exists a basis e1; : : : ; en for V in terms of which

Vi D he1; : : : ; ei i and Wj D henC1�j ; : : : ; eni:

Note that any two transverse pairs can be carried into one another by a linear
automorphism of V . Moreover, transverse pairs form a dense open subset in the space of
all pairs of flags, so any statement proved for a general pair of flags (such as the generic
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transversality of the intersection †a.V/ \†b.W/ � G) holds for any transverse pair,
and vice versa.

Here is a lemma that will prove useful in intersecting Schubert cycles, though we
will not use its full strength until the proof of Pieri’s formula (Proposition 4.9):

Lemma 4.5. Let †a.V/; †b.W/ � G be Schubert cycles defined relative to transverse
flags V and W on V . If ƒ 2 †a.V/ \ †b.W/ is a general point of their intersection,
then:

(a) ƒ does not lie in any strictly smaller Schubert cycle †a0.V/ ¨ †a.V/.
(b) The flags induced by V and W on ƒ (that is, consisting of intersections with ƒ with

flag elements V˛ and Wˇ ) are transverse.

Note that, by the first part, the flags ƒV and ƒW on ƒ induced by V and W are,
explicitly,

ƒV
i D ƒ \ Vn�kCi�ai and ƒW

i D ƒ \Wn�kCi�bi ; i D 1; : : : ; k:

Proof of Lemma 4.5: The first part of the statement is immediate for dimension rea-
sons: the flags V and W being transverse, the intersection †a0.V/ \†b.W/ will have
dimension strictly less than †a.V/ \†b.W/.

As for the second part, we have to show that the subspaces ƒV
i and ƒW

k�i
are

complementary, that is, that

ƒ \ Vn�kCi�ai \Wn�i�bk�i D 0:

We do this by a dimension count: consider the incidence correspondence

ˆ D
˚
.ƒ; Œv�/ 2 .†a.V/ \†b.W// � P.Vn�kCi�ai \Wn�i�bk�i / j v 2 ƒ

	
:

We will show that dimˆ < dim.†a.V/ \ †b.W//, and thus the projection ˆ !
†a.V/ \†b.W/ cannot be dominant, proving the lemma. Note that by the first part of
the lemma we can replace ˆ by the preimage of the complement U of

P.Vn�kCi�ai�1 \Wn�i�bk�i / and P.Vn�kCi�ai \Wn�i�bk�i�1/

in P.Vn�kCi�ai \Wn�i�bk�i /.
Since the flags V and W are transverse, we have

dimP.Vn�kCi�ai \Wn�i�bk�i / D n � k � ai � bk�i � 1:

(If ai C bk�i � n � k, then the intersection Vn�kCi�ai \ Wn�i�bk�i is 0 and ˆ is
correspondingly empty, so we are done in that case.) Next, suppose that Œv� 2 U �
P.Vn�kCi�ai\Wn�i�bk�i /. To describe the fiber ofˆ over Œv�, we consider the quotient
space V 0 D V=hvi, and the flags V 0 and W 0 on V 0 comprised of images of subspaces Vi
and Wi under the projection V ! V 0; that is,

V 0j D

�
.Vj C hvi/=hvi if j < n � k C i � ai ;
VjC1=hvi if j C 1 � n � k C i � ai ;
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and similarly

W 0j D

�
.Wj C hvi/=hvi if j < n � i � bk�i ;
WjC1=hvi if j C 1 � n � i � bk�i :

Now we just observe that, if .ƒ; Œv�/ 2 ˆ, then the planeƒ0 D ƒ=hvi � V 0 belongs
to the Schubert cycles

†a1;:::; yai ;:::;ak .V
0/ and †

b1;:::;bbk�i ;:::;bk .W
0/ � G.k � 1; V 0/:

Thus the fibers of ˆ over P.Vn�kCi�ai \Wn�i�bk�i / have dimension

.k � 1/.n � k/ �
X
j¤i

aj �
X
j¤k�i

bj D .k � 1/.n � k/ � .jaj � ai / � .jbj � bk�i /;

and altogether we have

dimˆ D .n � k � ai � bk�i � 1/C
�
.k � 1/.n � k/ � .jaj � ai / � .jbj � bk�i /

�
D k.n � k/ � jaj � jbj � 1

< dim.†a.V/ \†b.W//;

as desired.

4.2.2 Intersections in complementary dimension

As in the case of the Grassmannian G.1; 3/, we start our description of the Chow
ring of G by evaluating intersections of Schubert cycles in complementary codimension.
Here as before we use the fact that Schubert cycles †a.V/ and †b.W/ defined in
terms of general flags V;W always intersect generically transversely; this follows from
Kleiman’s theorem, or, in arbitrary characteristic, from Theorem 4.1.

Proposition 4.6. If V and W are transverse flags in V and†a.V/; †b.W/ are Schubert
cycles with jaj C jbj D k.n � k/, then †a.V/ and †b.W/ intersect transversely in a
unique point if ai C bkC1�i D n � k for each i D 1; : : : ; k, and are disjoint otherwise.
Thus

deg �a�b D
�
1 if ai C bk�iC1 D n � k for all i ,
0 otherwise:

Proof: As observed, since the two flags V and W are transverse, the Schubert cycles
will meet generically transversely, and hence (since the intersection is zero-dimensional)
transversely. Thus

deg �a�b D #.†a.V/ \†b.W//

D #
�
ƒ
ˇ̌̌ dim.Vn�kCi�ai \ƒ/ � i;

dim.Wn�kCi�bi\ƒ/ � i;
for all i

�
:
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To evaluate the cardinality of this set, consider the conditions in pairs; that is, for each i ,
consider the i -th condition associated to the Schubert cycle †a.V/:

dim.Vn�kCi�ai \ƒ/ � i

in combination with the .k � i C 1/-st condition associated to †b.W/:

dim.Wn�iC1�bk�iC1 \ƒ/ � k � i C 1:

If these conditions are both satisfied, then the subspaces

Vn�kCi�ai \ƒ and Wn�iC1�bk�iC1 \ƒ;

having greater than complementary dimension in ƒ, must have nonzero intersection; in
particular, we must have

Vn�kCi�ai \Wn�iC1�bk�iC1 ¤ 0;

and, since the flags V and W are general, this in turn says we must have

n � k C i � ai C n � i C 1 � bk�iC1 � nC 1;

or, in other words,

ai C bk�iC1 � n � k:

If equality holds in this last inequality, the subspaces Vn�kCi�ai and Wn�iC1�bk�iC1
will meet in a one-dimensional vector space �i , necessarily contained in ƒ. (In the
notation of Definition 4.4, �i D hen�kCi�ai i.)

We have thus seen that †a.V/ and †b.W/ will be disjoint unless ai C bk�iC1 �
n � k for all i . But from the equality

jaj C jbj D

kX
iD1

.ai C bk�iC1/ D k.n � k/;

we see that if ai C bk�iC1 � n � k for all i , then we must have ai C bk�iC1 D n � k
for all i . Moreover, in this case any ƒ in the intersection †a.V/ \†b.W/ must contain
each of the k subspaces �i , so there is a unique such ƒ, equal to the span of these
one-dimensional spaces, as required.

Corollary 4.7. The Schubert classes form a free basis for A.G/, and the intersection
forms Am.G/ � AdimG�m.G/! Z have the Schubert classes as dual bases.

In view of the explicit duality between Am.G/ and Ak.n�k/�m.G/ given by Propo-
sition 4.6, it makes sense to introduce one more bit of notation: for any Schubert
index a D .a1; : : : ; ak/, we will define the dual index to be the Schubert index a� D
.n � k � ak; : : : ; n � k � a1/. In these terms, Proposition 4.6 says that deg.�a�b/ D 1
if b D a� and is 0 otherwise.
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Corollary 4.7 suggests a general approach to determining the coefficients in the
expression of the class of a cycle as a linear combination of Schubert classes: If � � G
is any cycle of pure codimension m, we can write

Œ�� D
X
jajDm

a�a:

To find the coefficient a, we intersect both sides with the Schubert cycle †a�.V/ D
†n�k�ak ;:::;n�k�a1.V/ for a general flag V; we then have

a D deg.Œ�� � �a�/ D #.� \†a�.V//:

We have used exactly this approach — called the method of undetermined coeffi-
cients — in calculating classes of various cycles in G.1; 3/ in the preceding chapter;
Proposition 4.6 and Corollary 4.7 say that it is more generally applicable in any Grass-
mannian. Explicitly, we have:

Corollary 4.8. If ˛ 2 Am.G/ is any class, then

˛ D
X
jajDm

deg.˛�a�/ � �a:

In particular, if �a and �b 2 A.G/ are any Schubert classes on G D G.k; n/, then
the product �a�b is equal to X

jcjDjajCjbj

a;bIc�c ;

where

a;bIc D deg.�a�b�c�/:

Since for general flags U , V and W the Schubert cycles†a.U/; †b.V/ and†c�.W/

are generically transverse by Kleiman’s theorem, the coefficients a;bIc D deg.�a�b�c�/
are nonnegative integers. They are called Littlewood–Richardson coefficients, and they
appear in many combinatorial and representation-theoretic contexts. If we adopt the
convention that �a D 0 2 Ajaj.G.k; n// if a fails to satisfy the conditions

n � k � a1 � � � � � ak � 0 and al D 0 for all l > k;

then the Littlewood–Richardson coefficients a;bIc depend only on the indices a, b and c,
and not on k and n.

Corollary 4.8 shows that knowing the Littlewood–Richardson coefficients suffices
to determine the products of all Schubert classes. In the case of the Grassmannians
G.2; n/ they are either 0 or 1 (see Section 4.3), but a Littlewood–Richardson coefficient
a;bIc > 1 appears already in G.3; 6/ (Exercise 4.35).
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C

G.1; n/ Pn

X

Figure 4.1 The surface X � Pn swept out by a one-parameter family C � G.1; n/ of
lines.

There exist beautiful algorithms for calculating the a;bIc . We will give one in
Section 4.7, and much more effective methods are given for example in Coşkun [2009]
and Vakil [2006a]. But even simple questions such as, “when is a;bIc ¤ 0?” and
“when is a;bIc > 1?” do not seem to admit simple answers in general.

We will return to Schubert calculus shortly, but we take a moment here to use what
we have already learned to answer Keynote Question (b).

4.2.3 Varieties swept out by linear spaces

Let C � G.k; n/ be an irreducible curve, and consider the variety X � Pn swept
out by the linear spaces corresponding to points of C ; that is,

X D
[
Œƒ�2C

ƒ � Pn

(See Figure 4.1). We would like to relate the geometry of X to that of C ; in particular,
Keynote Question (b) asks us to find the degree of X when C � G.1; 3/ � P5 is a
twisted cubic curve.

To begin with, observe that X is indeed a closed subvariety of Pn: If

ˆ D f.ƒ; p/ 2 G.k; n/ � Pn jp 2 ƒg

is the universal k-plane over G.k; n/, as described in Section 3.2.3, and ˛ W ˆ! G.k; n/
and ˇ W ˆ! Pn are the projections, then we can write

X D ˇ.˛�1.C //:

Now, suppose that a general point x 2 X lies on a unique k-plane ƒ 2 C — that is, the
map ˇ W ˛�1.C /! X � Pn is birational, so that in particular dim.X/ D k C 1. The
degree of X is the number of points of intersection of X with a general .n�k�1/-plane
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� � Pn; since each of these points is a general point of X , and so lies on a unique
k-planeƒ, the number is the number of k-planesƒ that meet � . In other words, we have

deg.X/ D #.X \ �/

D #.C \†1.�//

D deg.ŒC � � �1/ (by Kleiman’s theorem)

D deg.C /;

where by the degree of C we mean the degree under the Plücker embedding of G.k; n/.
These ideas allow us to answer Keynote Question (b): The surface X � P3 swept

out by the lines corresponding to a twisted cubic C � G.1; 3/ � P5, times the degree
of the map ˇ defined above, is equal to 3. Thus the surface X itself has degree 3 or 1. In
the latter case, the curve C would be contained in a Schubert cycle †1;1, and as we have
seen in the description on page 138, this Schubert cycle is contained in the 2-plane in
P5 defined by the vanishing of three Plücker coordinates. Since a twisted cubic is not
contained in a 2-plane, this shows that the surface X has degree 3. More of the geometry
of X is described in Exercises 4.23-4.25.

If Z � G.k; n/ is a variety of any dimension m, we can form the variety X � Pn

swept out by the planes of Z. Its degree — assuming it has the expected dimension
k C dimZ and that a general point of X lies on only one plane ƒ 2 Z— is expressible
in terms of the Schubert coefficients of the class ŒZ� 2 Am.G.k; n//, though it is not in
general equal to the degree of Z. This is the content of Exercise 4.22; we will return to
this question in Section 10.2, where we will see how to express the answer in terms of
Chern and Segre classes.

4.2.4 Pieri’s formula

One situation in which we can give a simple formula for the product of Schubert
classes is when one of the classes has the special form �b D �b;0;:::;0. Such classes are
called special Schubert classes.

Proposition 4.9 (Pieri’s formula). For any Schubert class �a 2 A.G/ and any integer b,

.�b � �a/ D
X

jcjDjajCb
ai�ci�ai�18i

�c

Proof:1 By Corollary 4.8, Pieri’s formula is equivalent to the assertion that, for any
Schubert index c with jcj D jaj C b,

deg.�a�b�c�/ D
�
1 if ai � ci � ai�1 for all i;
0 otherwise:

1 This proof was shown to us by Izzet Coşkun
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To prove this, we will look at the corresponding Schubert cycles †a.V/; †b.U/ and
†c�.W/, defined with respect to general flags V , U and W; we will show that their
intersection is empty if ci violates the condition ai � ci � ai�1 for any i , and consists of
a single point if these inequalities are all satisfied. By Kleiman’s theorem, the intersection
multiplicity will be 1 in the latter case.

By definition,

†a.V/ D fƒ j dim.ƒ \ Vn�kCi�ai / � i for all ig

and

†c�.W/ D fƒ j dim.ƒ \WiCckC1�i / � i for all ig:

Set

Ai D Vn�kCi�ai \WkC1�iCci ;

so that either Ai D 0 or dimAi D ci � ai C 1. Combining the i-th condition in the
first definition and the .k C 1 � i/-th condition in the second, we see that for any
ƒ 2 †a.V/ \†c�.W/ we have

ƒ \ Ai ¤ 0:

If ci < ai for some i thenAi D 0, so that†a.V/\†c�.W/ D ¿, and deg �a�b�c� D 0,
as required. Thus we may assume that ci � ai for every i .

We claim that the Ai are linearly independent if and only if ci � ai�1 for all i .
To see this, choose a basis ei as in Section 4.2.2, so that Vi D he1; : : : ; ei i and Wj D
hen�jC1; : : : ; eni. With this notation

Ai D hen�kCi�ci ; : : : ; en�kCi�ai i;

and the condition ci � ai�1 amounts to the condition that the two successive ranges of
indices n�kCi�1�ci�1; : : : ; n�kCi�1�ai�1 and n�kCi�ci ; : : : ; n�kCi�ai
do not overlap. In other words, if we let

A D hA1; : : : ; Aki

be the span of the spaces Ai , then we have

dimA �
X

ci � ai C 1 D k C b;

with equality holding if and only if ci � ai�1 for all i . Note that by Lemma 4.5 the
plane ƒ is spanned by its intersections with the Ai ; that is, ƒ � A.

Now we introduce the conditions associated with the special Schubert cycle †b.U/.
This is the set of k-planes that have nonzero intersection with a general linear sub-
space U D Un�kC1�b � V of dimension n � k C 1 � b. For there to be any
ƒ 2 †a.V/ \ †c�.W/ satisfying this condition requires that A \ U ¤ 0, and hence,
since U is general, that dimA � k C b. Thus, if ci > ai�1 for any i , then we will have
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†a.V/ \†c�.W/ \†b.U/ D ¿. We can accordingly assume ci � ai�1 for all i , and
hence dimA D k C b.

Finally, since U � V is a general subspace of codimension kCb�1, it will meet A
in a one-dimensional subspace. Choose v any nonzero vector in this intersection. Since
A D

L
Ai , we can write v uniquely as a sum

v D v1 C � � � C vk with vi 2 Ai :

Suppose now that ƒ 2 †a.V/ \†b.U/ \†c�.W/ satisfies all the Schubert conditions
above. Since ƒ � A and ƒ \ U ¤ 0, ƒ must contain the vector v, and, since ƒ is
spanned by its intersections with the Ai , it follows that ƒ must contain the vectors vi
as well. Thus, we see that the intersection †a.V/ \†b.U/ \†c�.W/ will consist of
the single point corresponding to the plane ƒ D hv1; : : : ; vki spanned by the vi , and
we are done.

As a corollary of the Pieri formula, we can prove a relation among the special
Schubert classes that is an important special case of a theorem of Whitney used for
computing Chern classes (Theorem 5.3):

Corollary 4.10. In A.G.k; n//, we have

.1C �1 C �2 C � � � C �n�k/.1 � �1 C �1;1 � �1;1;1 C � � � C .�1/
k�1k / D 1:

Proof: We can use Pieri to calculate the individual products appearing in this expression.
To start, Pieri tells us that

�l�1m D �l;1m C �lC1;1m�1 :

When we write out the terms of degree d in the product on the left, then, the sum
telescopes: For d > 0,

dX
iD0

.�1/i�d�i�1i D �d � .�d C �d�1;1/C .�d�1;1 C �d�2;1;1/

� � � � C .�1/d�1.�2;1d�2 C �1d /C .�1/
d�1d

D 0:

4.3 Grassmannians of lines
LetG D G.2; V / be the Grassmannian of two-dimensional subspaces of an .nC1/-

dimensional vector space V , or, equivalently, lines in the projective space PV Š Pn.
The Schubert cycles on G with respect to a flag V are of the form

†a1;a2.V/ D fƒ jƒ \ Vn�a1 ¤ 0 and ƒ � VnC1�a2g:
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In this case, Pieri’s formula (Proposition 4.9) allows us to give a closed-form expression
for the product of any two Schubert classes:

Proposition 4.11. Assuming that a1 � a2 � b1 � b2,

�a1;a2�b1;b2 D �a1Cb1;a2Cb2 C �a1Cb1�1;a2Cb2C1 C � � � C �a1Cb2;b1Ca2

D

X
jcjDjajCjbj

a1Cb1�c1�a1Cb2

�c1;c2 :

Proof: We will start with the simplest cases, where the intersection of general Schubert
cycles is again a Schubert cycle: If b1 D b2 D b, then the Schubert cycle †b;b.W/ is
equal to

fƒ jƒ � Wn�bg;

so that for any a1; a2 we have

†a1;a2.V/ \†b;b.W/ D

8̂̂<̂
:̂ƒ

ˇ̌̌̌ ƒ \ Vn�1�a1 ¤ 0;
ƒ � Vn�a2 ;

ƒ � Wn�b

9>>=>>;
D

(
ƒ
ˇ̌̌ ƒ \ .Vn�1�a1 \Wn�b/ ¤ 0;

ƒ � .Vn�a2 \Wn�b/

)
D †a1Cb;a2Cb.Vn�1�a1 \Wn�b; Vn�a2 \Wn�b/:

Thus by Kleiman’s theorem we have

�a1;a2�b;b D �a1Cb;a2Cb: (4.2)

Now, suppose we want to intersect an arbitrary pair of Schubert classes �a1;a2 and
�b1;b2 . We can write

�a1;a2�b1;b2 D .�a1�a2;0�a2;a2/.�b1�b2;0�b2;b2/

D �a1�a2;0 �b1�b2;0 �a2Cb2;a2Cb2 ;

and if we can evaluate the product of the first two terms in the last expression, we can
use (4.2) to finish the calculation.

But this is exactly what Pieri gives us: if a � b, Pieri says that

�a;0�b;0 D �aCb;0 C �aCb�1;1 C � � � C �a;b;

and the general statement follows.



Grassmannians of lines Section 4.3 149

We can use this description of the Chow ring of G.1; n/ (and a little combinatorics)
to answer Keynote Question (d): What is the degree of the Grassmannian G.1; n/ D
G.2; nC 1/ under the Plücker embedding? We observe first that, since the hyperplane
class on P.

V2 knC1/ pulls back to the class �1 2 A1.G.2; nC 1//, we have

deg.G.2; nC 1// D deg.�2n�21 /:

To evaluate this product, we make a directed graph with the Schubert classes �a in
G.2; nC1/ as vertices and with the inclusions among the corresponding Schubert cycles
†a.V/ indicated by arrows (the graph shown is the case n D 5):

�0

�1

6

�2

6

�1;1

�

�3

6

�2;1

6
�

�4

6

�3;1

6
�

�2;2

�

�4;1

6
�

�3;2

6
�

�4;2

6
�

�3;3

�

�4;3

6
�

�4;4

�

In terms of this graph, the rule expressed in Proposition 4.11 for multiplication
by �1 is simple: The product of any Schubert class �a;b with �1 is the sum of all
immediate predecessors of �a;b — that is, the Schubert classes in the row below �a;b
that are connected to �a;b by an arrow. In particular, the degree deg..�1/2n�2/ of
the Grassmannian is the number of paths upward through this diagram starting with
�n�1;n�1 and ending with �0;0. If we designate such a path by a sequence of n � 1 “1”s
and n � 1 “2”s, corresponding to whether the first or second indices change (these are
the vertical and diagonal arrows in the graph shown) reading from left to right, there are
never more “2”s than “1”s. Equivalently, if we associate to a “1” a left parenthesis and to
a “2” a right parenthesis, this is the number of ways in which n � 1 pairs of parentheses
can appear in a grammatically correct sentence. This is called the .n � 1/-st Catalan
number; a standard combinatorial argument (see, for example, Stanley [1999]) gives

cn�1 D
.2n � 2/Š

nŠ.n � 1/Š
:
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In sum, we have:

Proposition 4.12. The degree of the Grassmannian G.2; nC 1/ � P.
V2 knC1/ is

degG.2; nC 1/ D
.2n � 2/Š

nŠ.n � 1/Š
:

This number also represents the answer to the enumerative problem of how many
lines in Pn meet each of 2n � 2 general .n � 2/-planes V1; : : : ; V2n�2 � Pn.

Pieri’s formula (Proposition 4.9) gives us the means to answer the generalization
of Keynote Question (d) to all Grassmannians: Since �1 is the class of the hyperplane
section of the Grassmannian in its Plücker embedding, the degree of the Grassmannian
in that embedding is the degree of �k.n�k/1 . This will be worked out (with the aid of the
hook formula from combinatorics) in Exercise 4.38; the answer is that

deg.G.k; n// D .k.n � k//Š
k�1Y
iD0

i Š

.n � k C i/Š
:

We can also use the description of A.G.1; n// given in Proposition 4.11 to answer
Keynote Question (a): If V1; : : : ; V4 � P2nC1 are four general n-planes, how many
lines L � P2nC1 meet all four? The answer is the cardinality of the intersectionT
†n.Vi / � G.1; 2nC 1/; given transversality — a consequence of Kleiman’s theorem

in characteristic 0, and checked directly in arbitrary characteristic via the description
of tangent spaces to Schubert cycles in Theorem 4.1 — this is the degree of the product
�4n 2 A.G.1; 2nC 1//. Applying Proposition 4.11, we have

�2n D �2n C �2n�1;1 C � � � C �nC1;n�1 C �n;nI

since each term squares to the class of a point and all pairwise products are zero, we have

deg.�4n/ D nC 1;

and this is the answer to our question.
We will see in Exercise 4.26 another way to arrive at this number, in a manner

analogous to the alternative solution to the four-line problem given in Section 3.4.1;
Exercise 4.27 gives a nice geometric consequence.

4.4 Dynamic specialization
In Section 3.5.1, we started to discuss the method of specialization, and used it to

determine the products of some Schubert classes. We can compute intersection numbers
in other cases only by using a stronger and more broadly applicable version of this
technique, called dynamic specialization.
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Recall that in Section 3.5.1 we described an alternative approach to establishing the
relation �21 D �11C�2 in the Chow ring of the Grassmannian G.1; 3/. Instead of taking
two general translates of the Schubert cycle†1.L/ � G.1; 3/— whose intersection was
necessarily generically transverse, but whose intersection class required additional work
to calculate — we considered the intersection †1.L/\†1.L0/, where L;L0 � P3 were
not general, but incident lines. The benefit here is that now the intersection is visibly a
union of Schubert cycles: Specifically, if p D L \ L0 is their point of intersection and
H D L;L0 their span, we have

†1.L/ \†1.L
0/ D †2.p/ [†1;1.H/:

The trade-off is that we cannot just invoke Kleiman to see that the intersection is indeed
generically transverse; this can however be established directly by using the description
of the tangent spaces to the two cycles given in Theorem 4.1.

Suppose now we are dealing with the Grassmannian G D G.1; 4/ of lines in P4

and we try to use an analogous method to determine the product �22 2 A
4.G/— that is,

the class of the locus of lines meeting each of two given lines. We would try to find a
pair of lines L;M � P4 such that the two cycles

†2.L/ D fƒ jƒ \ L ¤ ¿g and †2.M/ D fƒ jƒ \M ¤ ¿g

representing the class �2 are special enough that the class of the intersection is clear, but
still sufficiently general that they intersect generically transversely.

However, there are no such pairs of lines. If the lines L and M are disjoint, they
are effectively a general pair, and the intersection is not a union of Schubert cycles. On
the other hand, if L meets M at a point p, then the locus of lines through p forms a
three-dimensional component of the intersection †2.L/\†2.M/, so the intersection is
not even dimensionally transverse.

We can nevertheless consider a family of lines fMtg in P4, parametrized by t 2 A1,
with Mt disjoint from L for t ¤ 0 and with M0 meeting L at a point p. This gives
a family of intersection cycles †2.L/ \ †2.Mt /. To make this precise, we consider
the subvariety

ˆı D f.t; ƒ/ 2 A1 �G j t ¤ 0 and ƒ 2 †2.L/ \†2.Mt /g

and its closure ˆ � A1 � G. Since Mt is disjoint from L for t ¤ 0, the fiber ˆt D
†2.L/ \†2.Mt / of ˆ over t ¤ 0 represents the class �22 , and it follows that ˆ0 does
as well. The key point is that when we look at the fiber ˆ0 we are looking not at the
intersection †2.L/ \ †2.M0/ of the limiting cycles, but rather at the flat limit of the
intersection cycles †2.L/ \†2.Mt /, which is necessarily of the expected dimension.

The fiber ˆ0 is contained in the intersection †2.L/ \ †2.M0/, but has smaller
dimension. Thus a line ƒ arising as the limit of lines ƒt meeting both L and Mt must
satisfy some additional condition beyond meeting both L and M0, and to characterize
ˆ0 we need to say what that condition is.
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For t ¤ 0, the lines L andMt together span a hyperplaneHt D L;Mt Š P3 � P4.
Let H0 be the hyperplane that is the limit of the Ht as t goes to 0. If fƒtg is a family
of lines with ƒt meeting both L and Mt for t ¤ 0, then the limiting line ƒ0 must be
contained in H0.

Of course, if ƒ0 does not pass through the point p D L \M0, then it must be
contained in the 2-plane P D L;M0, so the new condition ƒ0 � H0 is redundant. In
sum, we conclude that the support of ˆ0 must be contained in the union of the two
two-dimensional Schubert cycles

ˆ0 � fƒ jƒ � P g [ fƒ jp0 2 ƒ � H0gD †2;2.P / [†3;1.p0;H0/:

We will see in Exercise 4.28 that the support ofˆ0 is all of†2;2.P /[†3;1.p0;H0/,
and in Exercise 4.29 that ˆ0 is generically reduced. Thus, the cycle associated to
the scheme ˆ0 is exactly the sum †2;2.P / C †3;1.p0;H0/, and we can deduce the
formula

�22 D �3;1 C �2;2 2 A
4.G.1; 4//:

This is a good example of the method of dynamic specialization, in which we
consider not a special pair of cycles representing given Chow classes and intersecting
generically transversely, but a family of representative pairs specializing from pairs that
do intersect transversely to a pair that may not. We then must describe the limit of the
intersections (not the intersection of the limits). This technique is a starting point for
the general algorithms of Coşkun [2009] and Vakil [2006a]. For another example of its
application, see Griffiths and Harris [1980].

Often, as in the examples cited above, to carry out the calculation of an intersection
of Schubert cycles we may have to specialize in stages; see Exercise 4.30 for an example.

To see this idea carried out in a much broader context, see Fulton [1984, Chapter 11].

4.5 Young diagrams
For many purposes, it is convenient to represent the Schubert class �a1;:::;ak by a

Young diagram; that is, as a collection of left-justified rows of boxes with the i -th row of
length ai . For example, �4;3;3;1;1 would be represented by

�4;3;3;1;1  ! :
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(Warning: there are many different conventions in use for interpreting the correspondence
between Schubert classes and Young diagrams!) The condition that n�k � a1 � ak � 0
means that the Young diagram fits into a box with k rows and n � k columns, and the
rows of the diagram are weakly decreasing in length from top to bottom. As another
example, the relation between a Schubert class �a and the dual Schubert class �a� ,
described in Proposition 4.6, could be described by saying that the Young diagrams of
� D �a and � D �a� , after rotating the latter 180ı, are complementary in the k� .n�k/
box; if � D �4;3;3;1;1 2 A.G.5; 10//, for example, then � is as shown in the following:

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

I

that is,

�  ! :

As a first application of this correspondence, we can count the Schubert classes
as follows:

Corollary 4.13. A.G.k; n// Š Z.
n
k/ as abelian groups.

Proof: The number of Schubert classes is the same as the number of Young diagrams that
fit into a k�.n�k/ box of squaresB . To count these, we associate to each Young diagram
Y in B its “right boundary” L: this is the path consisting of horizontal and vertical
segments of unit length which starts from the upper-right corner of the k � .n � k/ box
and ends at the lower-left corner of the box, such that the squares in Y are those to the left
of L. (For example, in the case of the Young diagram associated to �4;3;3;1;1 � G.5; 10/,
illustrated above, we may describe L by the sequence h; v; h; v; v; h; h; v; v where h
and v denote horizontal and vertical segments, respectively, and we start from the
upper-right corner.)

Of course the number of h terms in any such boundary must be n � k, the width of
the box, and the number of v terms must be k, the height of the box. Thus the length
of the boundary is n, and giving the boundary is equivalent to specifying which k steps
will be vertical; that is, the number of Young diagrams in B is

�
n
k

�
, as required.

The correspondence between Schubert classes and Young diagrams behaves well
with respect to many basic operations on Grassmannians. For example, under the duality
G.k; n/ Š G.n � k; n/, the Schubert cycle corresponding to the Young diagram Y is
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taken to the Schubert cycle corresponding to the Young diagram Z that is the trans-
pose of Y , that is, the diagram obtained by flipping Y around a 45ı line running
northwest-to-southeast. For example, if

�3;2;1;1 2 A.G.4; 7//  ! ;

then the corresponding Schubert cycle in G.3; 7/ is

�4;2;1 2 A.G.3; 7//  ! :

This is reasonably straightforward to verify, and is the subject of Exercise 4.31.
Pieri’s formula can also be described in terms of Young diagrams: It says that for any

Schubert class �b and any special Schubert class �a D �a;0;:::;0, the Schubert classes
appearing in the product �a�b (all with coefficient 1) correspond to Young diagrams
obtained from the Young diagram of �b by adding a total of a boxes, with at most one
box added to each column, as long as the result is still a Young diagram: for example, if
we want to multiply the Schubert class

�4;2;1;1 2 A.G.4; 8//  !

by the Schubert class �1, we can add a box in either the first, second, third or fifth row,
to obtain the expression

�1�4;2;1;1 D �5;2;1;1 C �4;3;1;1 C �4;2;2;1 C �4;2;1;1;1:

The combinatorics of Young diagrams is an extremely rich subject with many
applications. For an introduction, see for example Fulton [1997].

4.5.1 Pieri’s formula for the other special Schubert
classes

Let V be an n-dimensional vector space and V D V1 � � � � � Vn�1 � Vn D V

a flag in V . As we observed in Section 4.1, for any integer a with 1 � a � n � k the
isomorphism G.k; V / Š G.n � k; V �/ carries the special Schubert cycle

†a D fƒ 2 G.k; V / jƒ \ Vn�kC1�a ¤ 0g
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defined relative to the flag V to the Schubert cycle

†1;:::;1.V?/ D fƒ 2 G.n � k; V �/ j dim.ƒ \ Vn�kCa�1/ � ag

defined relative to the flag V? formed by the annihilators of the Vi . The Schubert classes
�1;:::;1 (often written �1a )

�15  !

are also referred to as special Schubert classes. The correspondence between Schubert
classes and Young diagrams makes it easy to translate Pieri’s formula into a formula for
multiplication by �1a : The Schubert classes appearing in the product �1a�b (all with
coefficient 1) correspond to Young diagrams obtained from the Young diagram of �b by
adding a total of a boxes, with at most one box added to each row, as long as the result
is still a Young diagram:

Theorem 4.14 (Pieri’s formula, part II). For any Schubert class �b D �b1;:::;bk 2

A.G.k; n// and any integer a with 1 � a � n � k,

�1a�b D
X

jcjDaCjbj
bi�ci�biC18i

�c

4.6 Linear spaces on quadrics
We can generalize the calculation in Section 3.6 of the class of the locus of lines on

a quadric surface to a description of the class of the locus of planes of any dimension on
a smooth quadric hypersurface of any dimension.

To begin with, since our field k has characteristic ¤ 2, a nonsingular form Q.x/

of degree 2 on PV can be written in the form Q.x/ D q.x; x/, where q.x; y/ is a
nonsingular symmetric bilinear form V � V ! k. A linear subspace PW � PV lies on
the quadric Q.x/ D 0 if and only if W is isotropic for q, that is, q.W;W / D 0. Thus,
we want to find the class of the locus ˆ � G D G.k; V / of isotropic k-planes for q.

To start, we want to find the dimension of ˆ. There are a number of ways to do this;
probably the most elementary is to count bases for isotropic subspaces. To find a basis for
an isotropic subspace, we can start with any vector v1 with q.v1; v1/ D 0, then choose
v2 2 hv1i

?nhv1i with q.v2; v2/ D 0, v3 2 hv1; v2i?nhv1; v2i with q.v3; v3/ D 0, and
so on. Since hv1; : : : ; vi i � hv1; : : : ; vi i?, this necessarily terminates when i � n=2;
in other words, a nondegenerate quadratic form will have no isotropic subspaces of
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dimension strictly greater than half the dimension of the ambient space. (We could also
see this by observing that q defines an isomorphism of V with its dual V � carrying any
isotropic subspace ƒ � V into its annihilator ƒ? � V �.)

In this process, the allowable choices for v1 correspond to points on the quadric
Q.x/ D 0; those for v2 correspond to the points on the quadric Qjv?1 , and so forth. In
general, the vi form a locally closed subset of V of dimension n � i . Thus the space of
all bases for isotropic k-planes has dimension

.n � 1/C � � � C .n � k/ D k.n � k/C
�k
2

�
:

Since there is a k2-dimensional family of bases for a given isotropic k-plane, the space
of such planes has dimension

k.n � k/C
�k
2

�
� k2 D k.n � k/ �

�kC1
2

�
;

or in other words the cycle ˆ has codimension
�
kC1
2

�
in G.k; V / when k � n=2, and is

empty otherwise.
Having determined the dimension of ˆ, we ask now for its class in A.G.k; V //.

Following the method of undetermined coefficients, we write

Œˆ� D
X

jajD.kC12 /

a�a;

with

a D #.ˆ \†n�k�ak ;:::;n�k�a1.V//
D #fƒ j qjƒ � 0 and dim.ƒ \ ViCai / � i for all ig:

To evaluate a, suppose that ƒ � V is a k-plane in this intersection. The subspace
VaiCi � V being general, the restriction qjVaiCi of q to it will again be nondegenerate.
Since qjVaiCi has an isotropic i -plane, we must have ai C i � 2i , or in other words

ai � i for all i:

But by hypothesis
P
ai D

�
kC1
2

�
, so we must have equality in each of these inequalities.

In other words, a D 0 for all a except the index a D .k; k � 1; : : : ; 2; 1/.
It remains to evaluate the coefficient

k;k�1;:::;2;1 D #fƒ j q.ƒ;ƒ/ D 0 and dim.ƒ \ V2i / � i for all ig; (4.3)

where the equality holds by Kleiman’s theorem. We claim that this number is 2k .
We prove this inductively. To start, note that the restriction qjV2 of q to the two-

dimensional space V2 has two one-dimensional isotropic spaces, and ƒ will necessarily
contain exactly one of them: it cannot contain both, sinceˆ is disjoint from any Schubert
cycle †b.V/ with jbj > k.n � k/ �

�
kC1
2

�
.
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We may thus suppose that ƒ contains the isotropic subspace W � V2, so that ƒ is
contained in W ?. Now, since q.W;W / � 0, q induces a nondegenerate quadratic form
q0 on the .n � 2/-dimensional quotient W 0 D W ?=W , and the quotient space

ƒ0 D ƒ=W � W ?=W

is a .k � 1/-dimensional isotropic subspace for q0. Moreover, since the spaces V2i are
general subspaces of V containing V2, the subspaces

V 02i�2 D .V2i \W
?/=W � W ?=W

form a general flag in W 0 D W ?=W , and we have

dim.ƒ0 \ V 02i�2/ � i � 1 for all i:

Inductively, there are 2k�1 isotropic .k�1/-planesƒ0 � W 0 satisfying these conditions,
and so there are 2k planes ƒ � W satisfying the conditions of (4.3). We have proven:

Proposition 4.15. Let q be a nondegenerate quadratic form on the n-dimensional vector
space V and ˆ � G.k; V / the variety of isotropic k-planes for q. Assuming k � n=2,
the class of the cycle ˆ is

Œˆ� D 2k�k;k�1;:::;2;1:

As an immediate application of this result, we can answer Keynote Question (c). To
begin with, we asked how many lines lie on the intersection of two quadrics in P4. To
answer this, let Q;Q0 � P4 be two general quadric hypersurfaces and X D Q1 \Q2.
The set of lines on X is the intersection ˆ\ˆ0 of the cycles of lines lying on Q and Q0;
by Kleiman’s theorem these are transverse, and so we have

#.ˆ \ˆ0/ D deg.4�2;1/2 D 16:

More generally, ifQ andQ0 � P2n are general quadrics, we ask how many .n� 1/-
planes are contained in their intersection; again, this is the intersection number

#.ˆ \ˆ0/ D deg.2n�n;n�1;:::;1/2 D 4n:

4.7 Giambelli’s formula
Pieri’s formula tells us how to intersect an arbitrary Schubert class with one of

the special Schubert classes �b D �b;0;:::;0. Giambelli’s formula is complementary, in
that it tells us how to express an arbitrary Schubert class in terms of special ones; the
two together give us (in principle) a way of calculating the product of two arbitrary
Schubert classes.

We will state Giambelli’s formula and indicate one method of proof; see Chapter 12
for some special cases and Fulton [1997] for a proof in general.
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Proposition 4.16 (Giambelli’s formula).

�a1;a2;:::;ak D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

�a1 �a1C1 �a1C2 � � � �a1Ck�1
�a2�1 �a2 �a2C1 � � � �a2Ck�2
�a3�2 �a3�1 �a3 � � � �a3Ck�3
:::

:::
:::

: : :
:::

�ak�kC1 �ak�kC2 �ak�kC3 � � � �ak

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ :

Thus, for example, we have

�2;1 D

ˇ̌̌̌
�2 �3

�0 �1

ˇ̌̌̌
D �2�1 � �3;

which we can then use together with Pieri to evaluate �22;1, for example. Giambelli’s
formula also reproduces some formulas we have derived already by other means: For
example, when a1 D a2 D 1 it gives

�1;1 D

ˇ̌̌̌
�1 �2

�0 �1

ˇ̌̌̌
D �21 � �2;

or in other words �21 D �2 C �1;1.
As the last two examples suggest, we could deduce Giambelli’s formula from Pieri’s

formula. For example, in the 2� 2 case, we can expand the determinant and apply Pieri’s
formula to obtainˇ̌̌̌

�a �aC1

�b�1 �b

ˇ̌̌̌
D �a�b � �aC1�b�1

D .�a;b C �aC1;b�1 C � � � C �aCb/ � .�aC1;b�1 C � � � C �aCb/

D �a;b:

More generally, we could prove Giambelli’s formula inductively by expanding the
determinant in Proposition 4.16 by cofactors along the right-hand column; Exercise 4.39
asks the reader to do this in the 3 � 3 case.

Giambelli’s formula implies that the Chow ring A.G/ of a Grassmannian G is
generated as a ring by the special Schubert classes, and we can ask about the polynomial
relations among these classes. There is a surprisingly simple and elegant description of
these relations, which we will derive in Section 5.8, from the fact that the special Schubert
classes are exactly the Chern classes of the universal bundles on the Grassmannian.

Giambelli’s formula and Pieri’s formula together give an algorithm for calculating
the product of any two Schubert classes: Use Giambelli to express either as a poly-
nomial in the special Schubert classes, and then use Pieri to evaluate the product of
this polynomial with the other. But this is a terrible idea for computation except in
low-dimensional examples: Because Giambelli’s formula is determinantal, the number
of products involved increases rapidly with k and n. Nor is it easy to use Giambelli’s
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formula to prove qualitative results about products of Schubert classes; it is not even clear
from this approach that such a product is necessarily a nonnegative linear combination
of Schubert classes. The algorithms of Coşkun and Vakil referred to earlier (Coşkun
[2009] and Vakil [2006a]) are far better in these regards.

4.8 Generalizations
Much of the analysis we have given here of the Chow rings of Grassmannians

applies more generally to any compact homogeneous space for a semisimple algebraic
group. In this section, we will describe some of these spaces, and indicate how the
analysis goes in some of the simplest non-Grassmannian cases.

4.8.1 Flag manifolds

Let V be a vector space of dimension n and .k1; : : : ; km/ any sequence of integers
with 0 < k1 < � � � < km < n. We define the flag manifold F.k1; : : : ; kmIV / to be the
space of nested sequences of subspaces of V of dimensions k1; : : : ; km; that is,

F.k1; : : : ; kmIV / D
n
.ƒ1; : : : ; ƒm/ 2

Y
G.ki ; V /

ˇ̌
ƒ1 � � � � � ƒm

o
:

As in the case of the Grassmannian, when only the dimension of V matters we also use
the symbol F.k1; : : : ; kmIn/; also as in the case of Grassmannians, we will sometimes
use the projective notation

F.k1; : : : ; kmIPV / D
n
.ƒ1; : : : ; ƒm/ 2

Y
G.ki ;PV /

ˇ̌
ƒ1 � � � � � ƒm

o
for 0 � k1 < � � � < km < dimPV . We leave as an exercise the verification that the
condition ƒ1 � � � � � ƒm defines a closed subscheme of the product

Q
G.ki ; V /.

(This follows immediately from the case m D 2, which is the content of Exercise 3.21.)
In particular, F.k1; : : : ; kmIV / is a projective variety.

At one extreme we have the casem D n�1, that is, .k1; : : : ; km/ D .1; 2; : : : ; n�1/;
the variety

F.1; 2; : : : ; n � 1IV / �

n�1Y
kD1

G.k; V /

is called the full flag manifold, and maps to all the other flag manifolds F.k1; : : : ; kmIV /
via projections to subproducts of Grassmannians. At the other, the cases with m D 1

are just the ordinary Grassmannians, and the cases with m D 2 are called two-step flag
manifolds. We have already encountered some of these: the variety

F.0; kIV / D f.p;ƒ/ 2 PV �G.k;PV / jp 2 ƒg

is often called the universal k-plane in PV .
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Many of the aspects of the geometry of Grassmannians we have explored in the last
two chapters hold more generally for flag manifolds. In particular, a flag manifold F
admits an affine stratification, the classes of whose closed strata (again called Schubert
classes) freely generate the Chow ring A.F/ as a group. It is possible to describe the
ring structure on A.F/ in terms of these generators (see Coşkun [2009]), but there is
an alternative: as we will see in Chapter 9 it is possible (and easier in some settings) to
determine the ring A.F/ by realizing the flag manifold as a series of projective bundles.

4.8.2 Lagrangian Grassmannians and beyond

There are important generalizations of flag manifolds that are homogeneous spaces
for semisimple algebraic groups other than GLn. For example:

(a) Lagrangian Grassmannians: If V is a vector space of dimension 2nwith a nondegen-
erate skew-symmetric bilinear formQ W V �V ! k, the Lagrangian Grassmannians
LG.k; V / parametrize k-dimensional subspaces ƒ � V that are isotropic for Q;
that is, such thatQ.ƒ;ƒ/ D 0. More generally, we have Lagrangian flag manifolds,
parametrizing flags of such subspaces.

(b) Orthogonal Grassmannians: As in the previous case, we consider a vector space
V with nondegenerate bilinear form Q, but now Q is symmetric. The orthogonal
Grassmannian parametrizes isotropic subspaces, and likewise the orthogonal flag
manifolds parametrize flags of isotropic subspaces. (In case dimV is even, we have
to allow for the fact that the space of maximal isotropic planes has two connected
components.)

The subgroup of GLn that fixes a full flag in kn is the group B of upper-triangular
matrices. This is called a Borel subgroup of GLn. Since GLn acts transitively on flags,
the set of all such flags is GLn =B; it can be given the structure of an algebraic variety by
taking the regular functions on the quotient to be B-invariant functions on GLn. (With
this structure, it is isomorphic to the flag manifold as we have defined it.) More generally,
one could look at partial flags (for example, a single k-dimensional subspace); these are
fixed by groups of block upper-triangular matrices, called parabolic subgroups. Thus
for example the ordinary Grassmannian G.k; n/ has the form GLn =P , where P is a
parabolic subgroup.

It turns out that there is a natural way of defining Borel subgroups and parabolic
subgroups in any semisimple group, and the Lagrangian and orthogonal Grassmannians
may similarly be defined as quotients of the groups SOn and Spn. The theory of general
flag manifolds to which this leads is an extremely rich branch of mathematics. See for
example Fulton and Harris [1991].
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4.9 Exercises
Exercise 4.17. Use the description of the points of the Schubert cells given in Theorem
4.1 to show that Theorem 4.3 holds at least set-theoretically.

Exercise 4.18. Let X � G.2; 4/ be an irreducible surface, and suppose that

ŒX� D 2�2 C 1;1�1;1 2 A
2.G.2; 4//:

Show that 2 and 1;1 are nonnegative, and that if 2 D 0 then 1;1 D 1. (In general, it
is not known what pairs .2; 1;1/ occur!)

Exercise 4.19. Let S � P4 be a surface of degree d , and �S � G.1; 4/ the variety of
lines meeting S .

(a) Find the class S D Œ�S � 2 A1.G.1; 4//.
(b) Use this to answer the question: if S1; : : : ; S6 � P4 are general translates (under

GL5) of surfaces of degrees d1; : : : ; d6, how many lines in P4 will meet all six?

Exercise 4.20. Let C � P4 be a curve of degree d , and �C � G.1; 4/ the variety of
lines meeting C .

(a) Find the class C D Œ�C � 2 A2.G.1; 4//.
(b) Use this to answer the question: if C1; C2 and C3 � P4 are general translates of

curves of degrees d1; d2 and d3, how many lines in P4 will meet all three?

The following exercise is the first of a series regarding the variety T1.S/ of lines
tangent to a surface S in Pn. More will follow in Exercises 7.30, 10.39 and 12.20.

Exercise 4.21. Let S � Pn be a smooth surface of degree d whose general hyperplane
section is a curve of genus g, and T1.S/ � G.1; n/ the variety of lines tangent to S .
To find the class of the cycle T1.S/, we need the intersection numbers ŒT1.S/� � �3
and ŒT1.S/� � �2;1. Find the latter.

Exercise 4.22. Let Z � G.k; n/ be a variety of dimension m, and consider the variety
X � Pn swept out by the linear spaces corresponding to points of Z; that is,

X D
[
Œƒ�2Z

ƒ � Pn:

For simplicity, assume that a general point x 2 X lies on a unique k-plane ƒ 2 Z.

(a) Show that X has dimension k C m and degree equal to the intersection number
deg.�m � ŒZ�/.

(b) Show that this is not in general the degree of Z.
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Exercises 4.23-4.25 deal with the geometry of the surface described in Keynote
Question (b): the surface X � P3 swept out by the lines corresponding to a general
twisted cubic C � G.1; 3/, whose degree we worked out in Section 4.2.3. To make life
easier, we will assume that C is general, and in particular that it lies in a general 3-plane
section of G.1; 3/. See also Section 9.1.1.

Exercise 4.23. To start, use the fact that the dual of G.1; 3/ � P5 has degree 2 to show
that a general twisted cubic C � G.1; 3/ lies on the Schubert cycles †1.L/ and †1.M/

for some pair of skew lines L;M � P3.

Exercise 4.24. Show that for skew lines L;M � P3, the intersection †1.L/ \†1.M/

is isomorphic to L �M via the map sending a point Œƒ� 2 †1.L/ \†1.M/ to the pair
.ƒ\L;ƒ\M/ 2 L�M , and that it is the intersection of G.1; 3/ with the intersection
of the hyperplanes spanned by †1.L/ and †1.M/.

Exercise 4.25. Using the fact that C � †1.L/ \ †1.M/ has bidegree .2; 1/ in
†1.L/ \ †1.M/ Š L � M Š P1 � P1 (possibly after switching factors), show
that for some degree-2 map ' W L!M the family of lines corresponding to C may be
realized as the locus

C D
˚
p; '.p/ jp 2 L

	
:

Show correspondingly that the surface

X D
[
Œƒ�2C

ƒ � P3

swept out by the lines of C is a cubic surface double along a line, and that it is the
projection of a rational normal surface scroll S.1; 2/ � P4.

In Section 4.3 we calculated the number of lines meeting four general n-planes in
P2nC1. In the following two exercises, we will see another way to do this (analogous to
the alternative count of lines meeting four lines in P3 given in Section 3.4.1), and a nice
geometric sidelight.

Exercise 4.26. Let ƒ1; : : : ; ƒ4 Š Pn � P2nC1 be four general n-planes. Calculate
the number of lines meeting all four by showing that the union of the lines meeting
ƒ1; ƒ2 and ƒ3 is a Segre variety S1;n D P1 � Pn � P2nC1 and using the calculation
in Section 2.1.5 of the degree of S1;n.

Exercise 4.27. By the preceding exercise, we can associate to a general configuration
ƒ1; : : : ; ƒ4 of k-planes in P2kC1 an unordered set of k C 1 cross-ratios. Show that
two such configurations fƒig and fƒ0ig are projectively equivalent if and only if the
corresponding sets of cross-ratios coincide.

The next two exercises deal with the example of dynamic specialization given in
Section 4.4, and specifically with the family ˆ of cycles described there.
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Exercise 4.28. Show that the support of ˆ0 is all of †2;2.P / [†3;1.p0;H0/.

Exercise 4.29. Verify the last assertion made in the calculation of �22 ; that is, show that
ˆ0 has multiplicity 1 along each component.
Hint: Argue that by applying a family of automorphisms of P4 we can assume that the
plane Ht is constant, and use the calculation of the preceding chapter.

Exercise 4.30. A further wrinkle in the technique of dynamic specialization is that to
carry out the calculation of an intersection of Schubert cycles we may have to specialize in
stages. To see an example of this, use dynamic specialization to calculate the intersection
�22 in the Grassmannian G.1; 5/.
Hint: You have to let the two 2-planes specialize first to a pair intersecting in a point,
then to a pair intersecting in a line.

Exercise 4.31. Suppose that the Schubert class �a 2 A.G.k; n// corresponds to the
Young diagram Y in a k � .n � k/ box B . Show that under the duality G.k; n/ Š
G.n � k; n/ the class �a is taken to the Schubert class �b corresponding to the Young
diagram Z that is the transpose of Y , that is, the diagram obtained by flipping Y around
a 45ı line running northwest-to-southeast. For example, if

�3;2;1;1 2 A.G.4; 7//  ! ;

then the corresponding Schubert class in G.3; 7/ is

�4;2;1 2 A.G.3; 7//  ! :

Exercise 4.32. Let i W G.k; n/! G.kC1; nC1/ and j W G.k; n/! G.k; nC1/ be the
inclusions obtained by sending ƒ � kn to the span of ƒ and enC1 and to ƒ respectively.
Show that the map i� W Ad .G.kC1; nC1//! Ad .G.k; n// is a monomorphism if and
only if n � k � d , and that j � W Ad .G.k; nC 1//! Ad .G.k; n// is a monomorphism
if and only if k � d . (Thus, for example, the formula

�21 D �2 C �11;

which we established in A.G.1; 3//, holds true in every Grassmannian.)

Exercise 4.33. Let C � Pr be a smooth, irreducible, nondegenerate curve of degree d
and genus g, and let S1.C / � G.1; r/ be the variety of chords to C , as defined in
Section 3.4.3 above. Find the class ŒS1.C /� 2 A2.G.1; r//.
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Exercise 4.34. LetQ � Pn be a smooth quadric hypersurface, and let Tk.Q/ � G.k; n/
be the locus of planes ƒ � Pn such that ƒ \Q is singular. Show that

ŒTk.Q/� D 2�1:

Exercise 4.35. Find the expression of �22;1 as a linear combination of Schubert classes in
A.G.3; 6//. This is the first example of a product of two Schubert classes where another
Schubert class appears with coefficient > 1.

Exercise 4.36. Using Pieri’s formula, determine all products of Schubert classes in the
Chow ring of the Grassmannian G.2; 5/.

Exercise 4.37. Let Q, Q0 and Q00 be three general quadrics in P8. How many 2-planes
lie on all three? (Try first to do this without the tools introduced in Section 4.2.4.)

Exercise 4.38. Use Pieri to identify the degree of �k.n�k/1 with the number of standard
tableaux, that is, ways of filling in a k�.n�k/matrix with the integers 1; : : : ; k.n�k/ in
such a way that every row and column is strictly increasing. Then use the “hook formula”
(see, for example, Fulton [1997]) to show that this number is

.k.n � k//Š

k�1Y
iD0

i Š

.n � k C i/Š
:

Exercise 4.39. Deduce Giambelli’s formula in the 3 � 3 case (that is, the relationˇ̌̌̌
ˇ̌ �a �aC1 �aC2

�b�1 �b �bC1
�c�2 �c�1 �c

ˇ̌̌̌
ˇ̌ D �a;b;c

for any a � b � c) by assuming Giambelli in the 2 � 2 case, expanding the determinant
by cofactors along the last column and applying Pieri.
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Chern classes

Keynote Questions

(a) Let S � P3 be a smooth cubic surface. How many lines L � P3 are contained
in S? (Answer on page 253.)

(b) Let F and G be general homogeneous polynomials of degree 4 in four variables,
and consider the corresponding family fSt D V.t0F C t1G/ � P3gt2P1 of quartic
surfaces in P3. How many members St of the family contain a line? (Answer on
page 233.)

(c) Let F and G be general homogeneous polynomials of degree d in three variables,
and let fCt D V.t0F C t1G/ � P2gt2P1 be the corresponding family of plane
curves of degree d . How many of the curves Ct will be singular? (Answer on
page 268.)

In this chapter we will introduce the machinery for answering these questions; the
answers themselves will be found in Chapters 6 and 7.

5.1 Introduction: Chern classes and the
lines on a cubic surface

Cartier divisors — defined through the vanishing loci of sections of line bundles —
are of enormous importance in algebraic geometry. More generally, it turns out that
many interesting varieties of higher codimension may be described as the loci where
sections of vector bundles vanish, or where collections of sections become dependent;
this reduces some difficult problems about varieties to easier, linear problems.
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Chern classes provide a systematic way of treating the classes of such loci, and are a
central topic in intersection theory. They will play a major role in the rest of this book. We
begin with an example of how they are used, and then proceed to a systematic discussion.

To illustrate, we explain the Chern class approach to a famous classical result:

Theorem 5.1. Each smooth cubic surface in P3 contains exactly 27 distinct lines.

Sketch: Given a smooth cubic surface X � P3 determined by the vanishing of a cubic
form F in four variables, we wish to determine the degree of the locus in G.1; 3/ of
lines contained in X .

We linearize the problem using the observation that, if we fix a particular line L
in P3, then the condition that L lie on X can be expressed as four linear conditions on
the coefficients of F . To see this, note that the restriction map from the 20-dimensional
vector space of cubic forms on P3 to the four-dimension vector space VL D H 0.OL.3//
of cubic forms on a line L Š P1 � P3 is a linear surjection, and the condition for the
inclusion L � X is that F maps to 0 in VL.

As the line L varies over G.1; 3/, the four-dimensional spaces VL of cubic forms on
the varying lines L fit together to form a vector bundle V of rank 4 on G.1; 3/. A cubic
form F on P3, through its restriction to each VL, defines an algebraic global section
�F of this vector bundle. Thus the locus of lines contained in the cubic surface X is
the zero locus of the section �F . Assuming for the moment that this zero locus is zero-
dimensional, we call its class in A.G.1; 3// the fourth Chern class of V , denoted c4.V/.

At this point all we have done is to give our ignorance a fancy name. But there
are powerful tools for computing Chern classes of vector bundles, especially when
those bundles can be built up from simpler bundles by linear-algebraic constructions.
In the present situation, the spaces H 0.OL.1// fit together to form the dual S� of the
tautological subbundle of rank 2 on G.1; 3/, and the bundle V is the symmetric cube
Sym3 S� of S�, which allows us to express the Chern classes of V in terms of those of
S�, as in Example 5.16. At the same time, it is not hard to calculate the Chern classes
ci .S�/ directly; we do this in Section 5.6.2. Putting these things together, we will show
in Chapter 6 that

deg c4.V/ D 27:

Of course, to prove Theorem 5.1 one still has to show that the number of lines on any
smooth cubic surface is finite, and that the zeros of �F all occur with multiplicity 1; this
will also be carried out in Chapter 6.

There are proofs of Theorem 5.1 that do not involve vector bundles and Chern
classes. For example, one can show that any smooth cubic surface X can be realized
as the blow-up of P2 in six suitably general points, and using this one can analyze
the geometry of X in detail (see for example Manin [1986] or Reid [1988]). But the
Chern class approach applies equally to results where no such analysis is available.
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For example, we will see in Chapter 6 how to use the Chern class method to show that a
general quintic threefold in P4 contains exactly 2875 lines (a computation that played an
important role in the discovery of mirror symmetry; see for example Morrison [1993]),
and that a general hypersurface of degree 37 in P20 contains exactly

4798492409653834563672780605191070760393640761817269985515

lines, a fact of no larger significance whatsoever.

5.2 Characterizing Chern classes
Let E be a vector bundle on a variety X of dimension n. We will introduce Chern

classes ci .E/ 2 An�i .X/, extending the definition of c1.L/ for a line bundle L in
Section 1.4. As with our treatment of the intersection product, we will give an appealingly
intuitive characterization rather than a proof of existence.

Recall that we defined the first Chern class c1.L/ of a line bundle L on a variety X
to be

c1.L/ D ŒDiv.�/� 2 An�1.X/

for any rational section � of L. We define ci .L/ D 0 for all i � 2. In this section we will
characterize Chern classes ci .E/ for any vector bundle E and any integer i � 0.

We first sketch the situation in the case of a bundle E generated by its global sections
(this circumstance is in fact the case in most of our applications, and in particular in the
example of the 27 lines given above). Let r D rank E .

In the case r D 1 already treated, the class c1.L/ may be regarded as a measure of
nontriviality: if c1.L/ D 0, then L has a nowhere-vanishing section, whence L Š OX .
We extend this idea of measuring nontriviality using the idea of the “degeneracy locus”
of a collection of sections — roughly, this is the locus where the sections become linearly
dependent in the fibers of E . To make the meaning precise, we use multilinear algebra.

The bundle E is trivial if and only if it has r everywhere-independent global sections
�0; : : : ; �r�1; in this case, any set of r general sections will do. Thus a first measure
of nontriviality is the locus where r general sections �0; : : : ; �r�1 are dependent. If we
write � W OrX ! E for the map sending the i-th basis vector to �i , then this is the locus
where � fails to be a surjection, or, equivalently, where the determinant of � is zero. We
can interpret this as the vanishing of a special section of an exterior power of E : It is the
zero scheme of the section

�0 ^ � � � ^ �r�1 2
VrE :

Since rank E D r , the bundle
VrE has rank 1 and the class of the zero locus is by

definition c1.
VrE/; this is a class in AdimX�1.X/ depending only on the isomorphism

class of E . We call it the first Chern class of E , written c1.E/.
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More generally, we can consider for any i the scheme where r � i general sections
of E fail to be independent, defined by the vanishing of

�0 ^ � � � ^ �r�i 2
Vr�iC1E :

This is called the degeneracy locus of the sections �0; : : : ; �r�i . Since these degeneracy
loci are central to our understanding of (and applications of) Chern classes, we should
first say what we expect them to look like.

To see how this should go, consider first the “degeneracy locus of one section.” A
section � of E is locally given by r functions f1; : : : ; fr , so that by the principal ideal
theorem the codimension of each component of V.�/ is at most r . Moreover, if E is
generated by global sections and � is a general section, then the function fiC1 will
not vanish identically on any component of the locus where f1; : : : ; fi vanish, and it
follows that every component of V.�/ has codimension exactly r . Under our standing
assumption of characteristic 0, a version of Bertini’s theorem tells us that V.�/ is reduced
as well. (This may fail in characteristic p, for example in the case of a line bundle whose
complete linear system defines an inseparable morphism.) It turns out that this is typical.

Lemma 5.2. Suppose that E is a vector bundle of rank r on a variety X , and let i
be an integer with 1 � i � r . Let �0; : : : ; �r�i be global sections of E , and let D D
V.�0 ^ � � � ^ �r�i / be the degeneracy locus where they are dependent.

(a) No component of D has codimension > i .

(b) If the �i are general elements of a vector space W � H 0.E/ of global sections
generating E , then D is generically reduced and has codimension i in X .

Proof: (a) This is Macaulay’s “generalized unmixedness theorem.” He proved it for the
case of polynomial rings, and the general case was proved by Eagon and Northcott —
see for example Eisenbud [1995, Exercise 10.9].

(b) Let W be an m-dimensional vector space of global sections of E that generate E , and
let ' W X ! G.m � r;W / be the associated morphism sending p 2 X to the kernel of
the evaluation map W ! Ep . If U � W is a subspace of dimension r � i C 1 spanned
by �0; : : : ; �r�i , then the locus V.�0 ^ � � � ^ �r�i / � X is the preimage '�1.†/ of the
Schubert cycle

†i .U / D fƒ 2 G.m � r;W / jƒ \ U ¤ 0g

of .m � r/-planes in W meeting U nontrivially. By Kleiman’s theorem (Theorem 1.7),
if U � W is general this locus is generically reduced of codimension i .

We can now characterize the Chern classes ci .E/ 2 Ai .X/ for vector bundles E on
smooth varieties X and integers i � 0:
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Theorem 5.3. There is a unique way of assigning to each vector bundle E on a smooth
quasi-projective variety X a class c.E/ D 1C c1.E/C c2.E/C � � � 2 A.X/ in such a
way that:

(a) (Line bundles) If L is a line bundle on X then the Chern class of L is 1C c1.L/,
where c1.L/ 2 A1.X/ is the class of the divisor of zeros minus the divisor of poles
of any rational section of L.

(b) (Bundles with enough sections) If �0; : : : ; �r�i are global sections of E , and the
degeneracy locus D where they are dependent has codimension i , then ci .E/ D
ŒD� 2 Ai .X/.

(c) (Whitney’s formula) If

0 �! E �! F �! G �! 0

is a short exact sequence of vector bundles on X then

c.F/ D c.E/c.G/ 2 A.X/:

(d) (Functoriality) If ' W Y ! X is a morphism of smooth varieties, then

'�.c.E// D c.'�.E//:

Although we will not prove Theorem 5.3 completely, we will explain some parts
of the proof in Section 5.9 below. We will see below that these properties make many
Chern class computations easy. Here are two tastes:

Corollary 5.4 (Sums of line bundles). If E is the direct sum of line bundles Li , or more
generally has a filtration whose quotients are line bundles Li , then

c.E/ D
Y

c.Li / D
Y
.1C c1.Li //I

that is, ci .E/ is the result of applying the i-th elementary symmetric function to the
classes c1.Li /.

Proof: This follows from a repeated application of Whitney’s formula.

Corollary 5.5. If E is a vector bundle on X of rank > dimX , and E is generated by its
global sections, then E has a nowhere-vanishing global section.

Proof: By part (b), the degeneracy locus (vanishing locus) of one generic section has
codimension > dimX .

The strong Bertini theorem
Corollary 5.5 has an interesting geometric consequence in the following strengthen-

ing of Bertini’s theorem:
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Proposition 5.6 (Strong Bertini). Let X be a smooth, n-dimensional quasi-projective
variety, and D the linear system of divisors on X corresponding to the subspace
W � H 0.L/ of sections of a line bundle L. If the base locus of D — that is, the
scheme-theoretic intersection

Z D
\
D2D

D

— is a smooth k-dimensional subscheme ofX , and k < n=2, then the general member of
the linear system D is smooth everywhere.

The inequality k < n=2 is sharp. For example, takeX D P4 and D the linear system
of all hypersurfaces of degree d � 2 containing a fixed 2-plane Z. If Y D V.F / � P4

is any hypersurface of degree d > 1 containing Z, then the three partial derivatives of F
corresponding to the coordinates on Z are identically zero and the two remaining partial
derivatives of F must have a common zero somewhere along Z; thus Y is singular at
some point of Z. For an extension of this example, see Exercise 5.45.

Proof of Proposition 5.6: To begin with, the classical Bertini theorem tells us that the
general member D of the linear system D is smooth away from Z.

To see that it is also smooth along Z, suppose that D is the zero locus of a general
section � 2 W � H 0.L/. Since � vanishes on Z, it gives rise to a section d� of the
tensor product N �

Z=X
˝ L of the conormal bundle N �

Z=X
D IZ=X=I2Z=X with the line

bundle L; we can think of d� as the differential of � along Z. The hypothesis that the
sections � 2 W generate the sheaf IZ=X ˝ L, together with Lemma 5.2 and the fact
that dimZ D k < n � k D rank.N �

Z=X
/, shows that d� is nowhere zero.

5.3 Constructing Chern classes
A construction of Chern classes for a bundle of rank r that is generated by global

sections is implicit in Theorem 5.3 (b): ci .E/ is the degeneracy locus of r � iC1 general
global sections. An alternative way of stating the same thing is often useful. We have
already proved this in Lemma 5.2, but it is worth stating it here explicitly:

Proposition 5.7. Let E be a vector bundle of rank r on the smooth, quasi-projective
varietyX , and letW � H 0.E/ be anm-dimensional vector space of sections generating
E . If ' W X ! G.m � r;W / denotes the associated morphism sending p 2 X to the
kernel of the evaluation map W ! Ep, then the i -th Chern class ci .E/ is the pullback

ci .E/ D '�.�i /

of the Schubert class �i 2 Ai .G.m � r;W //.
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This allows us to construct Chern classes for globally generated bundles, and we
will see in Section 5.9.1 how to prove basic facts about Chern classes, such as Whitney’s
formula, from this construction. To construct Chern classes for arbitrary bundles we use
a different technique, the projectivization of a vector bundle. We will have much more to
say about this construction in Chapter 9; for now we will simply state what is necessary
to construct the Chern classes and to make use of a fundamental tool for computing with
Chern classes, introduced in Section 5.4: the “splitting principle.”

Definition 5.8. Let X be a scheme, and let E be a vector bundle of rank r C 1 on X . By
the projectivization of E we will mean the natural morphism

�E W PE WD Proj.Sym E�/! X:

By a projective bundle over X we mean a morphism � W Y ! X that can be realized as
�E for some vector bundle E over X .

Thus the closed points of PE correspond to pairs .x; �/ with x 2 X and � a one-
dimensional subspace � � Ex of the fiber Ex of E . Ordinary projective space is of course
the special case in which X is a point and E is a vector space.

The bundle � W PE ! X comes equipped with a tautological line bundle

SE WD OPE.�1/ � �
�E ;

constructed as the sheafification of the graded Sym E�-module obtained by shifting the
grading by �1, just as in the case of ordinary projective space.

Here is the result about projectivized vector bundles that serves to define the Chern
classes in general:

Theorem 5.9. Let E be a vector bundle of rank r on a smooth variety X , and let
� W PE ! X be the projectivized vector bundle. Let � be the first Chern class of the
dual S�E of the tautological bundle SE on PE .

(a) The flat pullback map �� W A.X/! A.PE/ is injective.
(b) The element � 2 A.PE/ satisfies a unique monic polynomial f .�/ of degree r with

coefficients in ��.A.X//.

Definition 5.10. Let E be a vector bundle of rank r on a smooth variety X . The Chern
classes ci .E/ are the unique elements of A.X/ such that

f .�/ D �r C ��c1.E/�r�1 C � � � C ��cr.E/I
that is,

A.PE/ D A.X/Œ��=.f .�//:

In fact, this definition of Chern classes may be extended to singular varieties, as
in Fulton [1984, Chapter 3], and this is a crucial element of the intersection theory of
singular varieties: as we have seen (Example 2.22), it is simply not possible to define
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products of arbitrary classes on singular varieties in general, but it is possible to define
products with Chern classes of a vector bundle by restricting the vector bundle. For a
proof of Theorem 5.9 in the smooth case, see Theorem 9.6; for the proof in general, see
Fulton [1984, Chapter 3].

5.4 The splitting principle
For more complicated examples, we will use Whitney’s formula in conjunction with

a result called the splitting principle, which may be stated as:

Theorem 5.11 (Splitting principle). Any identity among Chern classes of bundles that
is true for bundles that are direct sums of line bundles is true in general.

This remarkable result is really a corollary of the construction of projectivized vector
bundles, applied via the next result:

Lemma 5.12 (Splitting construction). Let X be any smooth variety and E a vector
bundle of rank r on X . There exists a smooth variety Y and a morphism ' W Y ! X

with the following two properties:

(a) The pullback map '� W A.X/! A.Y / is injective.
(b) The pullback bundle '�E on Y admits a filtration

0 D E0 � E1 � � � � � Er�1 � Er D '�E

by vector subbundles Ei � '�E with successive quotients Ei=Ei�1 locally free of
rank 1.

Proof: We may construct ' W Y ! X by iterating the projectivized vector bundle
construction: First, on Y1 WD PE we have a tautological subbundle S1 � ��E .E/:Writing
Q1 for the quotient, we next construct Y2 WD PQ1. On Y2 we have exact sequences

0 �! ��Q1.S1/ � �
�
Q1�

�
E E �! ��Q1Q1 �! 0

and

0 �! S2 �! ��Q1Q1 �! Q2 �! 0:

Continuing this way for r � 1 steps we get a space Y WD Yr such that the pullback of E
to Y admits a filtration whose successive quotients are line bundles.

Finally, by Theorem 5.9, there is a class � 2 A1.PE/ in the Chow ring of any
projective bundle � W PE ! X that restricts to the hyperplane class on each fiber. By
the push-pull formula, if E has rank r then for any class ˛ 2 A.X/ we have

��.�
r�1��˛/ D ˛;

from which we see that the pullback map �� W A.X/! A.PE/ is injective.
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We will study projective bundles much more extensively in Chapter 9; in particular,
we give a more fleshed out version of this argument in the proof of Lemma 9.7.

Proof of Theorem 5.11: With notation as in the theorem, we can use Whitney’s formula
(part (c) of Theorem 5.3) and our a priori definition of the Chern class of a line bundle to
describe the Chern class of the pullback:

c.'�E/ D
rY
iD1

c.Ei=Ei�1/I

by the first part of the lemma, this determines the Chern classes of E .

5.5 Using Whitney’s formula with the
splitting principle

We will now illustrate the use of Whitney’s formula with the splitting principle.
A first consequence is that the Chern classes of a bundle vanish above the rank,

something we saw already in the case of bundles with enough sections.

Example 5.13 (Vanishing). If E is a vector bundle of rank r , then ci .E/ D 0 for i > r .
Reason: If E split as

Lr
iD1 Li for line bundles Li then, since c.Li / D 1 C c1.Li /,

Whitney’s formula would imply that

c.E/ D
rY
iD1

.1C c1.Li //;

which has no terms of degree > r .

Example 5.14 (Duals). If E D
L

Li , then

c.E�/ D
Y
.1C c1.L�i // D

Y
.1 � c1.Li //;

since c1.L�/ D �c1.L/ when L is a line bundle. Given this, Whitney’s formula gives
us the basic identity

ci .E�/ D .�1/ici .E/:

By the splitting principle, this identity holds for any bundle.

Example 5.15 (Determinant of a bundle). By the determinant det E of a bundle E we
mean the line bundle that is the highest exterior power det E WD

VrankEE . We have
already observed that if E is globally generated, then c1.det E/ D c1.E/; this was one
of our motivating examples. The splitting principle and Whitney’s formula allow us to



174 Chapter 5 Chern classes

deduce this for arbitrary bundles: If we assume that E D
L

Li , then det E D
N

Li and
hence

c1.det E/ D
X

c1.Li / D c1.E/I

the splitting principle tells us this identity holds in general.

Example 5.16 (Symmetric squares). Suppose that E is a bundle of rank 2. If E splits as
a direct sum E D L˚M of line bundles L and M with Chern classes c1.L/ D ˛ and
c1.M/ D ˇ then, by Whitney’s formula, c.E/ D .1C ˛/.1C ˇ/, whence

c1.E/ D ˛ C ˇ and c2.E/ D ˛ˇ:

Further, we would have

Sym2 E D L˝2 ˚ .L˝M/˚M˝2;

from which we would deduce

c.Sym2 E/ D .1C 2˛/.1C ˛ C ˇ/.1C 2ˇ/
D 1C 2.˛ C ˇ/C .2˛2 C 8˛ˇ C 2ˇ2/C 4˛ˇ.˛ C ˇ/:

This expression may be rewritten in a way that involves only the Chern classes of E : As
the reader may immediately check, it is equal to

1C 2c1.E/C
�
2c1.E/2 C 4c2.E/

�
C 4c1.E/c2.E/:

By the splitting principle, this is a valid expression for c.Sym2 E/ whether or not E
actually splits.

We could use the same method to give formulas for the Chern classes of any
symmetric or exterior power — or of any multilinear functor — applied to vector bundles
whose Chern classes we know.

Together, the splitting principle and Whitney’s formula give a powerful tool for
calculating Chern classes, as we will see over and over in the remainder of this text; see
Exercises 5.30–5.35 for more examples.

5.5.1 Tensor products with line bundles

As an application of the splitting principle, we will derive the relation between the
Chern classes of a vector bundle E of rank r on a variety X and the Chern classes of the
tensor product of E with a line bundle L.

To do this, we start by assuming that E splits as a direct sum of line bundles

E D
rM
iD1

Mi I
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let ˛i D c1.Mi / 2 A
1.X/ be the first Chern class of Mi , so that

c.E/ D
rY
iD1

.1C ˛i /:

In other words, the elementary symmetric polynomials in the ˛i are the Chern classes
of E :

˛1 C ˛2 C � � � C ˛r D c1.E/;X
1�i<j�r

˛i˛j D c2.E/;

:::

˛1˛2 : : : ˛r D cr.E/:

Now let ˇ D c1.L/ be the first Chern class of L. Since

E ˝ L D
rM
iD1

Mi ˝ L;

we have, by Whitney’s formula,

c.E ˝ L/ D
rY
iD1

.1C ˛i C ˇ/: (5.1)

Now, we can express the product on the right as a polynomial in ˇ and the elementary
symmetric polynomials in the ˛i : For example, we have

c1.E ˝ L/ D
rX
iD1

.˛i C ˇ/ D c1.E/C rc1.L/;

and likewise

c2.E ˝ L/ D
X

1�i<j�r

.˛i C ˇ/.˛j C ˇ/

D

X
1�i<j�r

˛i˛j C .r � 1/ˇ

rX
iD1

˛i C
�r
2

�
ˇ2

D c2.E/C .r � 1/c1.E/c1.L/C
�r
2

�
c1.L/2;

and so on. In general, we have:

Proposition 5.17. If E is a vector bundle of rank r and L is a line bundle, then

ck.E ˝ L/ D
kX
lD0

� r�l
k�l

�
c1.L/k�lcl.E/

D

kX
iD0

�r�kCi
i

�
c1.L/ick�i .E/:
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Proof: This is just a matter of collecting the terms of degree l in the ˛i and degree k� l
in ˇ in the expression (5.1): we write

rY
iD1

.1C ˛i C ˇ/ D
X

1�i1<���<il�r

.1C ˇ/r�l˛i1 � � �˛il

D

X
l

cl.E/.1C ˇ/r�l ;

and the proposition follows.

5.5.2 Tensor product of two bundles

Whitney’s formula and the splitting principle yield a formula for the Chern class
of the tensor product of two bundles of any rank. But, as we will see in Exercises 5.35–
5.36, the formula in general is quite complicated. Special cases, however, are amenable
to explicit calculation; for example, we can handle the case of the first Chern class
c1.E ˝ F/:

Proposition 5.18. If E ;F are vector bundles of ranks e and f respectively, then

c1.E ˝ F/ D f � c1.E/C e � c1.F/:

Proof: Suppose E D
L

Li and F D
L

Mi are direct sums of line bundles, so that we
can write

c.E/ D
eY
iD1

.1C ˛i / and c.F/ D
fY
jD1

.1C ˇj /

with c1.Li / D ˛i and c1.Mj / D ˇj ; note that c1.E/ D ˛1 C � � � C ˛e and c1.F/ D
ˇ1 C � � � C ˇf . We have then

E ˝ F D
e;fM

i;jD1;1

Li ˝Mj ;

and correspondingly

c.E ˝ F/ D
e;fY

i;jD1;1

.1C ˛i C ˇj /:

In particular, this gives

c1.E ˝ F/ D
e;fX

i;jD1;1

.˛i C ˇj /

D f

eX
iD1

˛i C e

fX
jD1

ˇj

D fc1.E/C ec1.F/: �
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There is one other case in which we can give a closed-form expression for a Chern
class of a general tensor product: We will see, in Chapter 12, a formula for the top Chern
class cef .E ˝ F/ of a tensor product of bundles of ranks e and f .

There is also a different approach that allows us to express the characteristic classes
of a general tensor product more comprehensibly: The Chern character Ch.E/ of a
vector bundle E is a certain formal power series in the Chern classes of E , with rational
coefficients, that satisfies the attractive formulas

Ch.E ˚ F/ D Ch.E/C Ch.F/;
Ch.E ˝ F/ D Ch.E/ � Ch.F/:

See Section 14.2.1 for more information.

5.6 Tautological bundles
We have seen how the splitting principle, in conjunction with Whitney’s formula,

allows us to express the Chern classes of bundles in terms of simpler ones. To apply this,
of course, we need to have a roster of basic bundles whose Chern classes we know; in
this section we will calculate the Chern classes of some of these.

5.6.1 Projective spaces

We start with the most basic of all bundles: the bundle OPr .1/ on projective space
Pr . We have

c1.OPr .1// D � 2 A
1.Pr/;

where � is the hyperplane class; similarly,

c1.OPr .n// D n � � 2 A
1.Pr/

for any n 2 Z.
This in turn allows us to compute the Chern class of the universal quotient bundle

Q on Pr : If Pr D PV , from the exact sequence

0 �! S D OPr .�1/ �! V ˝OPr �! Q �! 0;

we have

c.Q/ D
1

c.OPr .�1//
D

1

1 � �
D 1C � C �2 C � � � C �r :

Note that we could also arrive at this directly from the description of Chern classes
as degeneracy loci of sections: An element v 2 V gives rise to a global section � of
the bundle Q; given k elements v1; : : : ; vk 2 V , the corresponding sections �1; : : : ; �k
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of Q will be linearly dependent at a point x 2 Pr exactly when x lies in the Pk�1

corresponding to the subspace W D hv1; : : : ; vki � V spanned by the vi . Thus

cr�kC1.Q/ D ŒPk�1� D �r�kC1 2 Ar�kC1.Pr/:

5.6.2 Grassmannians

Let us consider next the case of the Grassmannian G D G.k; n/ of k-planes in an
n-dimensional vector space V , and its universal sub and quotient bundles S and Q.

We will start with Q, since this bundle is globally generated, so that we can determine
its Chern classes directly as degeneracy loci. Specifically, elements v 2 V give rise
to sections � of Q simply by taking their images in each quotient of V ; that is, for a
k-plane ƒ � V , we set

�.ƒ/ D v 2 V=ƒ:

Now, given a collection v1; : : : ; vm 2 V , the corresponding sections will fail to be
independent at a point ƒ 2 G exactly when the corresponding vi 2 V=ƒ are dependent,
which is to say when ƒ intersects the span W D hv1; : : : ; vmi � V in a nonzero
subspace — that is, when

Pƒ \ PW ¤ ¿:

We may recognize this locus as the Schubert cycle †n�k�mC1.W /, from which we
conclude that the Chern class of Q is the sum

c.Q/ D 1C �1 C �2 C � � � C �n�k :

Unlike Q, the universal subbundle S does not have nonzero global sections, so we
cannot use the characterization of Chern classes as degeneracy loci. But the dual bundle
S� does: If l 2 V � is a linear form, we can define a section � of S� by restricting l to
each k-plane ƒ � V in turn; in other words, we set

�.ƒ/ D l jƒ:

Now, if we havem independent linear forms l1; : : : ; lm 2 V �, the corresponding sections
of S� will fail to be independent at the point ƒ 2 G— that is, some linear combination
of the li will vanish identically on ƒ— exactly when ƒ fails to intersect the common
zero locus U of the li properly, that is, when

dim.Pƒ \ PU/ � k �m:

Again, this locus is a Schubert cycle in G, specifically the cycle †1;1;:::;1.U /, and we
conclude that

c.S�/ D 1C �1 C �1;1 C � � � C �1;1;:::;1I
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from this we can deduce in turn that

c.S/ D 1 � �1 C �1;1 C � � � C .�1/k�1;1;:::;1:

Note that this description of c.S/ can also be deduced from our knowledge of c.Q/
and Corollary 4.10.

5.7 Chern classes of varieties
The most important vector bundles on a smooth variety X are its tangent bundle TX

and its dual, the cotangent bundle �X . Their Chern classes are so important in geometry
that the Chern class of the tangent bundle is usually just called the Chern class of X .

For example, if X is a smooth curve then its tangent bundle is a line bundle, so its
Chern class has the form 1Cc1.TX /. Here c1.TX / D �c1.�X / is the anticanonical class,
whose degree is 2� 2g, where g is the genus of X . In general, if X is a smooth complex
projective manifold of dimension n then Theorem 5.21 below says that deg cn.TX / is
the topological Euler characteristic of X .

5.7.1 Tangent bundles of projective spaces

We start by calculating the Chern classes of the tangent bundle TPn of projective
space. This is straightforward, given the Euler sequence of Section 3.2.4: We have

0 �! OPn �! OPn.1/
nC1
�! TPn �! 0

and hence

c.TPn/ D .1C �/nC1;

where � 2 A1.Pn/ is the hyperplane class.
We could also derive this from the identification T D Hom.S;Q/ D S� ˝ Q,

where S D OPn.�1/ and Q are the universal sub and quotient bundles, by applying
Proposition 5.17.

Note that this calculation implies the algebraic/projective version of the “hairy
coconut” theorem: Since cn.TPn/ D .nC 1/�n ¤ 0, there does not exist a nowhere-zero
vector field on Pn.

5.7.2 Tangent bundles to hypersurfaces

We can combine the formula above for the Chern classes of the tangent bundle to
projective space Pr and Whitney’s formula to calculate the Chern classes of the tangent
bundle to a smooth hypersurface X � Pn of degree d .
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To do this, we use the standard normal bundle sequence

0 �! TX �! TPn jX �! NX=Pn �! 0

and the identification

NX=Pn D OPn.X/jX D OX .d/

established in Section 1.4.2. Letting �X denote the restriction to X of the hyperplane
class on Pn, we can write

c.TX / D
c.TPn jX /
NX=Pn

D
.1C �X /

nC1

1C d�X

D

�
1C .nC 1/�X C

�nC1
2

�
�2X C � � �

�
.1 � d�X C d

2�2X C � � � /:

We can generalize this calculation to complete intersections:

Example 5.19 (Chern classes of complete intersections). Suppose that

X D Z1 \ � � � \Zk � Pn

is the complete intersection of k hypersurfaces of degrees d1; : : : ; dk defined by forms
Fi of degrees di . The relations among the Fi are generated by the Koszul relations
FjFi � FiFj D 0. This means that if we restrict to Y , where the Fi vanish, we get

IY=X=I2Y=X D IY=X jY D
M
i

OY .�di /;

so the normal bundle N D NX=Pn of X in Pn is a direct sum N D
L

OX .di /.
Applying Whitney’s formula, we get

c.TX / D
.1C �X /

nC1Q
.1C di�X /

:

5.7.3 The topological Euler characteristic

Recall that the topological Euler characteristic of a manifold M is by definition
�top.M/ WD

P
.�1/i dimQH

i .M IQ/, where H i .M IQ/ is the singular cohomology
group. When M is a smooth projective variety over C, it may be regarded as a manifold
with respect to the classical, or analytic, topology, so �top.M/ makes sense in this case.
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Theorem 5.20 (Poincaré–Hopf theorem). IfM is a smooth compact orientable manifold
and � is a vector field with isolated zeros, then

�top.M/ D
X

fx j�.x/D0g

indexx.�/:

A beautiful account of this classic result can be found in Milnor [1997]. Now
suppose that M is a smooth complex projective variety. If the tangent bundle TX is
generated by global sections, then it has a section � that vanishes at only finitely many
points, and vanishes simply there. Since this section is represented locally by complex
analytic functions, its index at each of its zeros will be 1, and we may replace the sum
in the Poincaré–Hopf theorem by the number of its zeros — in other words, the degree
of the top Chern class of TX . An elementary topological argument (see, for example,
Chapter 3 of Griffiths and Harris [1994]) shows that this is true more generally:

Theorem 5.21. If X is a smooth n-dimensional projective variety, then

�top.X/ D deg cn.TX /:

Example 5.22 (Euler characteristic of Pn). Since c.TPn/ D .1 C �/nC1, where � D
c1.OPn.1// is the class of a hyperplane, we deduce that

�top.Pn/ D deg.cn.TPn// D nC 1:

Of course this is immediate from the fact that H 2i .Pn;Q/ D Q for i D 0; : : : ; n while
H 2iC1.Pn;Q/ D 0 for all i .

Example 5.23 (Blow-up of a surface). Sometimes one can use Theorem 5.21 to compute
a Chern class. For example, the blow-up Y of a complex surface X at a point p can
be described topologically as the union of X nD with a tubular neighborhood of the
exceptional curve, which is a copy of P1. Thus

�top.X/ D �top.X/ � �top.p/C �top.P1/ D �top.X/ � 1C 2 D �top.X/C 1;

and we deduce that deg c2.TY / D deg c2.TX / C 1. (One can generalize this formula
algebraically, and identify the class c.TY /, by using the Chern classes of coherent sheaves
that are not vector bundles; see for example Section 14.2.1, and, for the computation,
Fulton [1984, Section 15.4].)

Example 5.24 (Euler characteristic of a hypersurface). Now let X be a smooth hyper-
surface of degree d in Pn. From the normal bundle sequence

0 �! TX �! TPn jX �! NX=Pn �! 0

and the fact that NX=Pn Š OX .d/, we have

c.TX / D
.1C �X /

nC1

.1C d�X /
D ..1C �X /

nC1/.1 � d�X C d
2.�X /

2
C � � � /:
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Taking the component of degree dimX D n � 1, we get

cn�1.TX / D
n�1X
iD0

.�1/i
� nC1

n�1�i

�
d i�n�1X :

Since the degree of �n�1X is the number of points of intersection of n � 1 general
hyperplanes on the .n � 1/-dimensional variety X , we have �n�1X D d . Thus, finally,

�top.X/ D deg.cn�1.TX // D
n�1X
iD0

.�1/i
� nC1

n�1�i

�
d iC1:

We can get still more from this formula: The Lefschetz hyperplane theorem (see
Section C.4) tells us that the integral cohomology groups of X are all equal to the corre-
sponding cohomology groups of projective space, except for the middle one Hn�1.X/;
that is, the Betti numbers bi D dimQH

i .M IQ/ other than bn�1 are 1 in even dimen-
sions and 0 in odd. (In fact, the analogous statement is true for any smooth complete
intersection: All the cohomology groups except the middle are equal to those of projec-
tive space.) Thus the Euler characteristic determines the middle Betti number bn�1. In
Table 5.1, we give the results of this calculation in a few of the cases where it is most
frequently used.

hypersurface � bn�1

quadric surface 4 2
cubic surface 9 7
quartic surface 24 22
quintic surface 55 53
quadric threefold 4 0
cubic threefold �6 10
quartic threefold �56 60
quintic threefold �200 204
quadric fourfold 6 2
cubic fourfold 27 23

Table 5.1 Euler characteristics of favorite hypersurfaces.

It is interesting to compare this computation with what we already knew: A smooth
quadric surface in P3 is isomorphic to P1 � P1, from which we can see directly both
the Euler characteristic and the second Betti number; a smooth cubic surface in P3 is
the blow-up of P2 at six points, so the Euler characteristic is 3C 6; the quadric fourfold
may also be viewed as the Plücker embedding of the Grassmannian G.1; 3/, whose
cohomology has as basis its six Schubert cycles, and whose middle cohomology in
particular has basis given by the two Schubert cycles �1;1 and �2.
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5.7.4 First Chern class of the Grassmannian

In theory, we should be able to use the identification of the Chern classes c.S/
and c.Q/ to derive the Chern class of the tangent bundle TG , which by Theorem 3.5 is
isomorphic to Hom.S;Q/ D S�˝Q. In general, unfortunately, this knowledge remains
theoretical: As we indicated in Section 5.5.2, the formula for the Chern class of the
tensor product of two bundles of higher rank is complicated. But we can at least use
Proposition 5.18 to give the first Chern class c1.TG/; since c1.S�/ D c1.Q/ D �1,
we have:

Proposition 5.25. The first Chern class of the tangent bundle of the Grassmannian
G D G.k; n/ is

c1.TG/ D n � �1:

We see from this also that the canonical class KG of G is �n�1. Note that this
agrees with our prior calculations in the case k D 1 of projective space Pn�1, and in the
case k D 2 and n D 4, where the Grassmannian G.2; 4/ may be realized as a quadric
hypersurface in P5 and we can apply the results of Section 5.7.2.

5.8 Generators and relations for A.G.k; n//
We have seen in Corollary 4.7 that the Chow ring of the Grassmannian is a free

abelian group generated by the Schubert cycles. It follows moreover from Giambelli’s
formula (Proposition 4.16) that it is generated multiplicatively by just the special Schu-
bert cycles, which are the Chern classes of the universal subbundle. We will now see that
Whitney’s formula and the fact that the Chern classes of a bundle vanish above the rank
of the bundle provide a complete description of the relations among the special Schubert
cycles, and that these form a complete intersection.

Theorem 5.26. The Chow ring of the Grassmannian G.k; n/ has the form

A.G.k; n// D ZŒc1; : : : ; ck�=I;

where ci 2 Ai .G.k; n// is the i-th Chern class of the universal subbundle S and the
ideal I is generated by the terms of total degree n � k C 1; : : : ; n in the power series
expansion

1

1C c1 C � � � C ck
D 1 � .c1 C � � � C ck/C .c1 C � � � C ck/

2
� � � � 2 ZŒŒc1; : : : ; ck��:

Moreover, I is a complete intersection.
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For example, the Chow ring of G.3; 7/ is ZŒc1; c2; c3�=I , where I is generated by
the elements

c51 C 4c
3
1c2 C 3c1c

2
2 C 3c

2
1c3 C 2c2c3;

c61 C 5c
4
1c2 C 6c

2
1c
2
2 C c

3
2 C 4c

3
1c3 C 6c1c2c3 C c

2
3 ;

c71 C 6c
5
1c2 C 10c

3
1c
2
2 C 4c1c

3
2 C 5c

4
1c3 C 12c

2
1c2c3 C 3c

2
2c3 C 3c1c

2
3 ;

and these elements form a regular sequence.
The proof of Theorem 5.26 uses two results from commutative algebra, Proposi-

tion 5.27 and Lemma 5.28, which are variations on some frequently used results; readers
may wish to familiarize themselves with them before reading the proof of Theorem 5.26.
Recall that the socle of a finite-dimensional graded algebra T is the submodule of el-
ements annihilated by all elements of positive degree. In particular, if d is the largest
degree such that Td ¤ 0, then the socle of T contains Td . For a somewhat different
proof, and the generalization to flag bundles of arbitrary vector bundles, see Grayson
et al. [2012].

Proof: Set A D A.G.k; n// and write ti for the degree-i part of the power series
expansion of 1=.1 C c1 C � � � C ck/, so that t0 D 1; t1 D �c1; t2 D c21 � c2; : : : .
Let J D .tn�kC1; : : : ; tn/, and let R D ZŒc1; : : : ; ck�=J .

Corollary 4.10, which is the special case of Whitney’s formula (Theorem 5.3,
part (c)) applied to the tautological sequence of vector bundles

0 �! S �! OnG.k;n/ �! Q �! 0

on G.k; n/, shows that c.Q/ D 1=c.S/. Since Q has rank n � k, the classes ci .Q/
vanish for all i > n � k, and it follows that there is a ring homomorphism

' W R! A; ti 7! ci .Q/:

Under this homomorphism, the class ci goes to the Schubert cycle ci .S/ D .�1/i�1i
(where the subscript denotes a sequence of 1 repeated i times). Recall from Corollary 4.2
that �n�k

1k
is the class of a point.

We will show that for any field F the sequence tn�kC1; : : : ; tn is a regular sequence
in R˝Z F , and the induced map

R0 WD R˝Z F
'0WD'˝ZF
���������! A0 WD A˝Z F

is an isomorphism. Since A is a finitely generated abelian group, the surjectivity of '
follows from this result using Nakayama’s lemma and the two cases F D Z=.p/ and
F D Q. On the other hand, by Corollary 4.7, A is a free abelian group so, as an abelian
group, '.R/ is free. Thus the kernel of ' is a summand of R, so the injectivity of '
follows from the injectivity, for every choice of F , of '0. Using Lemma 5.28 inductively,
this also follows that tn�kC1; : : : ; tn is a regular sequence, proving the theorem.
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To show that tn�kC1; : : : ; tn is a regular sequence in R0 it suffices, since the ti have
positive degree, to show that

F Œc1; : : : ; ck�=J

has Krull dimension zero. Since F was arbitrary it suffices, by the Nullstellensatz, to
show that, if fi 2 F are substituted for the ci in such a way that tn�kC1 D � � � D tn D 0,
then all the fi are zero.

Indeed, after such a substitution we see that 1=.1C f1x C f2x2 C � � � C fkxk/ D
p.x/ C q.x/, where p.x/ is a polynomial of degree � n � k and q.x/ is a rational
function vanishing to order at least nC 1 at 0. We may rewrite this as

1 � p.x/.1C f1x C f2x
2 C � � � C fkx

k/

1C f1x C � � � C fkx
k

D q.x/:

However, the denominator of the left-hand side is nonzero at the origin, and the numerator
has degree at most n. Since q.x/ vanishes to order at least nC 1 at the origin, both sides
must be identically zero; that is p.x/ D 1; q.x/ D 0, and thus each fi D 0, as required.

Combining this information with Proposition 5.27, we get:

� The dimension of R0 (as a vector space over F ) is
�
n
k

�
.

� The highest degree d such that R0
d
¤ 0 is k.n � k/.

� Since a complete intersection is Gorenstein (Eisenbud [1995, Corollary 21.19]),
every nonzero ideal of R0 contains R0

k.n�k/
.

We now return to the map '0. By Corollary 4.13, the rank of A.G.k; n// is also
�
n
k

�
;

thus to show that '0 is an isomorphism, it suffices to show that its kernel is zero. We
know that .�1k /

n�k is in the image of '0, so Ker'0 does not contain Rk.n�k/. Since
R0
k.n�k/

is the socle of R0, the kernel of '0 must be zero.

We have used the following two results from commutative algebra:

Proposition 5.27. Suppose that F is a field and that

T D F Œx1; : : : ; xk�=.g1; : : : ; gk/

is a zero-dimensional graded complete intersection with deg xi D ıi > 0 and deggi D
�i > 0. The Hilbert series of T is

HT .d/ WD

1X
uD0

dimF Tudu D
Qk
iD1.1 � d

�i /Qk
iD1.1 � d

ıi /
:

The degree of the socle of T is
Pk
iD0 �i �

Pk
iD0 ıi , and the dimension of T is

dimF T D
Qk
iD1.�i � 1/Qk
iD1.ıi � 1/

:
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Proof: We begin with the Hilbert series. The polynomial ring F Œx1; : : : ; xk� is the
tensor product of the one-variable polynomial rings F Œxi �, so

HF Œx1;:::;xk�.d/ WD
1Qk

iD1.1 � d
ı
i /
:

We can put in the relations one-by-one using the exact sequences

0 �! F Œx1; : : : ; xk�=.g1; : : : ; gi /.��i /
giC1
�����! F Œx1; : : : ; xk�=.g1; : : : ; gi /

�! F Œx1; : : : ; xk�=.g1; : : : ; giC1/ �! 0;

and using induction we see that

HT .d/ D HF Œx1;:::;xk�=.g1;:::;gk/.d/ D

Qk
iD1.1 � d

�i /Qk
iD1.1 � d

ıi /
:

A priori this is a rational function of degree s WD
Pk
iD1 �i �

Pk
iD1 ıi . Since we know

from the computation above that T is a finite-dimensional vector space over F , the
Hilbert series must be a polynomial. Thus it is a polynomial of degree s, so the largest
degree in which T is nonzero is s.

The dimension of T is the value ofHT .d/ at d D 1. The product .1�d/k obviously
divides both the numerator and the denominator of the expression for the Hilbert series
above. After dividing, we get

HT .d/ D

Qk
iD1

P�i�1
jD0 d

jQk
iD1

Pıi�1
jD0 d

j
:

Setting d D 1 in this expression gives us the desired result.

The other result from commutative algebra that we used is a version of the fact that
regular sequences in a local ring can be permuted (Eisenbud [1995, Corollary 17.2]).
The same result holds in the local case when every element of the regular sequence
has positive degree, but the case we need is slightly different, since one element of the
regular sequence is an integer. The result may also be viewed as a variation on the local
criterion of flatness (Eisenbud [1995, Section 6.4]).

Lemma 5.28. Suppose thatR is a finitely generated graded algebra over Z, with algebra
generators in positive degrees, and that f 2 R is a homogeneous element. If R is free
as a Z-module and f ˝Z Z=.p/ is a monomorphism for every prime p, then f is a
monomorphism and R=.f / is free as a Z-module as well.

Proof: Since R is free, so is every submodule; in particular fR is free, and the kernel
K of multiplication by f is a free summand of R. It follows that K ˝Z Z=.p/ �
R˝Z Z=.p/. Since this ideal is obviously contained in the kernel of multiplication by f
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on R˝ Z=.p/, we see that K ˝Z Z=.p/ D 0. Since K is free, this implies that K D 0
as well; that is, f is a nonzerodivisor on R, and the diagram

0 - R.�1/
f - R - R=fR - 0

0 - R.�1/

p
? f - R

p
?

- R=fR

p
?

- 0

has exact rows. A diagram chase (the snake lemma) shows that p is a nonzerodivisor on
R=fR. Since p was an arbitrary prime, R=fR is a torsion-free abelian group. Since R
is finitely generated and f is homogeneous, R=fR is a direct sum of finitely generated
abelian groups, and torsion-freeness implies freeness.

5.9 Steps in the proofs of Theorem 5.3
Though the locus D in item (b) of Theorem 5.3 depends very much on the sections

�i chosen, Theorem 5.3 asserts that the class ŒD� does not, so long as it has the “expected”
codimension. This point is worth understanding directly: We start with the case k D r of
the top Chern class. If � and � 0 are two sections of E whose zero loci are of codimension r ,
then we can interpolate between V.�/ and V.� 0/ with the family

ˆ D f.Œs; t �; p/ 2 P1 �X j s�.p/C t� 0.p/ D 0g:

This gives a rational equivalence between V.�/ and V.� 0/: Since ˆ has codimension
at most r everywhere, components of ˆ intersecting the fibers over 0 or1 2 P1 must
dominate P1, and taking the union of these components we get a rational equivalence
between the class of the zero locus of � and that of � 0.

The same argument works in the general case: If both �0; : : : ; �r�i and � 00; : : : ; �
0
r�i

are collections of sections with degeneracy loci of codimension i , we set

ˆ D
˚
.Œs; t �; p/ 2 P1 �X jp 2 V.s�0 C t� 00 ^ � � � ^ s�r�i C t�

0
r�i /

	
:

Using Lemma 5.2, one can show that the components ofˆ dominating P1 give a rational
equivalence between V.�0 ^ � � � ^ �r�i / and V.� 00 ^ � � � ^ �

0
r�i /.

5.9.1 Whitney’s formula for globally generated
bundles

Though we will not prove the existence of Chern classes satisfying the properties of
Theorem 5.3, it is instructive to see how Whitney’s formula (property (c) in Theorem 5.3)
follows in the case of a globally generated bundle from facts about the Grassmannian.
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Suppose that E and F are globally generated bundles on a variety X . Denote the
ranks of E and F by e and f respectively. We will show that

c.E ˚ F/ D c.E/c.F/ 2 A.X/;

or equivalently

ci .E ˚ F/ D
X

iDjCk

cj .E/ck.F/

for i � 0.
In the extreme cases i D 1 and i D e C f we can see this at once: In the first of

these cases, Whitney’s formula says that

c1.E ˚ F/ D c1.E/C c1.F/:

If �1; : : : ; �e 2 H 0.E/ and �1; : : : ; �f 2 H 0.F/ are general sections, then the degener-
acy locus of the e C f sections

.�1; 0/; : : : ; .�e; 0/; .0; �1/; : : : ; .0; �f / 2 H
0.E ˚ F/

is the sum, as divisors, of the degeneracy loci V.�1 ^ � � � ^ �e/ and V.�1 ^ � � � ^ �f /.
Here we are using the identificationVeCf .E ˚ F/ D

Ve E ˝Vf F :
In the second case, Whitney’s formula says that

ceCf .E ˚ F/ D ce.E/cf .F/:

To see this, let � and � be general sections of E and F respectively. The zero locus
V..�; �// of the section .�; �/ 2 H 0.E ˚ F/ is then the intersection of the zero loci
V.�/ and V.�/; by Lemma 5.2 applied to F jV.�/, it will have the expected codimension
e C f and the equality above follows.

For the general case we adopt the alternative characterization of Chern classes
of Proposition 5.7: If V � H 0.E/ is an n-dimensional subspace generating E , we
have a map 'V W X ! G.n � e; V / sending p to the subspace Vp � V of sections
vanishing at p; the k-th Chern class of E is then the pullback '�V �k of the Schubert class
�k 2 A

k.G.n � e; V //.
Let V � H 0.E/ andW � H 0.F/ be generating subspaces, of dimensions n andm;

let 'V and 'W be the corresponding maps. The subspace V ˚ W � H 0.E ˚ F/ is
again generating, and gives a map

'V˚W W X ! G.nCm � e � f; V ˚W /:

Let

'V � 'W W X ! G.n � e; V / �G.m � f;W /
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be the product map. We have

'V˚W D � ı .'V � 'W /;

where � W G.n� e; V /�G.m�f;W /! G.nCm� e�f; V ˚W / is the map sending
a pair of subspaces of V and W to their direct sum.

Lemma 5.29. Let V andW be vector spaces of dimensions n andm. For any s and t , let

� W G.s; V / �G.t;W /! G.s C t; V ˚W /

be the map sending a pair .ƒ; �/ to ƒ ˚ � . If ˛ and ˇ are the projection maps on
G.s; V / �G.t;W /, then, for any k,

��.�k/ D
X

iCjDk

˛��i � ˇ
��j :

Given Lemma 5.29, Whitney’s formula (in our special case) follows: with 'V , 'W
and 'V˚W as above, we have

ck.E ˚ F/ D '�V˚W .�k/ D
X

iCjDk

'�V .�i /'
�
V .�j / D

X
iCjDk

ci .E/cj .F/:

Note that Lemma 5.29 is a direct (and substantial) generalization of the calculation
in Section 2.1.4 of the class of the diagonal � � Pr � Pr . Specifically, if V D W ,
m D n D r C 1 and s D t D 1, then the diagonal � � Pr � Pr is the preimage
under the map � W PV � PV ! G.2; V ˚ V / of the Schubert cycle †n.V / of 2-planes
intersecting the diagonal V � V ˚ V . Thus Lemma 5.29 in this case yields the formula
of Section 2.1.4.

Proof: As in the earlier calculation of the class of the diagonal in Pr � Pr , we will use
the method of undetermined coefficients. Note that the productG.s; V /�G.t;W / can be
stratified by products of Schubert cells; thus, by Proposition 1.17 the products ˛��a�ˇ��b
span A.G.s; V / � G.t;W //. (In particular, we have A0.G.s; V / � G.t;W // D Z.)
Moreover, intersection products in complementary dimensions between classes of this
type again have a simple form: We have

deg
�
.˛��aˇ

��b/.˛
��cˇ

��d /
�
D

8<:
1 if ai C cs�iC1 D n � s for all i and

bj C dm�jC1 D m � t for all j ;
0 otherwise:

From this, we see that A.G.s; V / � G.t;W // is freely generated by the classes
˛��aˇ

��b , and that the intersection pairing in complementary dimensions is nondegen-
erate. Thus, to prove the equality of Lemma 5.29 it will be enough to show that both sides
have the same product with any class ˛��a �ˇ��b . Specifically, we need to show that for
products ˛��a �ˇ��b of dimension k (that is, with jajC jbj D s.n� s/C t .m� t /� k )
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we have

deg.���k � ˛
��a � ˇ

��b/ D

8̂̂<̂
:̂
1 if a D .n � s; : : : ; n � s; n � s � i/ and

b D .m � t; : : : ; m � t; m � t � j /

for some i C j D k;
0 otherwise:

We start with the “otherwise” half. Note that, by the dimension condition jajCjbj D
s.n � s/ C t .m � t / � k, the condition a D .n � s; : : : ; n � s; n � s � i/ and b D
.m � t; : : : ; m � t; m � t � j / for some i C j D k is equivalent to saying that the sum
of the last two indices as and bt is as C bt D n � s Cm � t � k; in all other cases it
will be strictly greater.

Start by choosing general flags V1 � � � � � Vn D V , W1 � � � � � Wm D W and
U1 � � � � � UnCm D V ˚W . Then

†a.V/ � fƒ � V jƒ � Vn�asg
and

†b.W/ � f� � W jƒ � Wm�at g;

so

�.˛�1†a \ ˇ
�1†b/ � f� � V ˚W j� � Vn�as ˚Wm�at g:

But

†k.U/ D f� � V ˚W j� \ Un�sCm�t�kC1 ¤ 0g;

and, if as C bt > n � s Cm � t � k, then .Vn�as ˚Wm�at / \ Un�sCm�t�kC1 D 0;
thus

��1†k \ ˛
�1†a \ ˇ

�1†b D ¿

and the product of the corresponding classes is zero.
Similarly, in case a D .n�s; : : : ; n�s; n�s�i/ and b D .m�t; : : : ; m�t; m�t�j /

for some i C j D k, the intersection U D .Vn�as ˚Wm�at / \ Un�sCm�t�kC1 will
be one-dimensional. Since

†a.V/ D
�
ƒ � V

ˇ̌̌ Vs�1 � ƒ and

ƒ � Vn�as

�
and

†b.W/ D

�
� � W

ˇ̌̌ Wt�1 � ƒ and

ƒ � Wm�at

�
;

we see that the intersection ��1†k \ ˛�1†a \ ˇ�1†b will consist of the single point
.ƒ; �/, whereƒ � V is the span of Vs�1 and the projection �1.U / and likewise � � W
is the span of Wt�1 and the image �2.U /. That the intersection is transverse follows
from Kleiman’s theorem in characteristic 0, and from direct examination of the tangent
spaces in general.
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5.10 Exercises
Many of the following exercises give applications of Whitney’s formula and the

splitting principle. We will be assuming the basic facts that if

E D
eM
iD1

Li and F D
fM
iD1

Mi

are direct sums of line bundles, then

Symk E D
M

1�i1�����ik�r

Li1 ˝ � � � ˝ Lik ;

VkE D M
1�i1<���<ik�r

Li1 ˝ � � � ˝ Lik ;

E ˝ F D
e;fM

i;jD1;1

Li ˝Mj :

Exercise 5.30. Let E be a vector bundle of rank 3. Express the Chern classes of
V2E in

terms of those of E by invoking the splitting principle and Whitney’s formula

Exercise 5.31. Verify your answer to the preceding exercise by observing that the wedge
product map

E ˝
V2E ! V3E D det.E/

yields an identification
V2E D E�˝det.E/ and applying the formula for a tensor product

with a line bundle.

Exercise 5.32. Let E be a vector bundle of rank 4. Express the Chern classes of
V2E in

terms of those of E .

Exercise 5.33. Let E be a vector bundle of rank 3. Express the Chern classes of Sym2 E
in terms of those of E .

Exercise 5.34. Let E be a vector bundle of rank 2. Express the Chern classes of Sym3 E
in terms of those of E .

Exercise 5.35. Let E and F be vector bundles of rank 2. Express the Chern classes of
the tensor product E ˝ F in terms of those of E and F .

Exercise 5.36. Just to get a sense of how rapidly this gets complicated: Do the preceding
exercise for a pair of vector bundles E and F of ranks 2 and 3.

Exercise 5.37. Apply Exercise 5.35 to find all the Chern classes of the tangent bundle
TG of the Grassmannian G D G.2; 4/.
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Exercise 5.38. Find all the Chern classes of the tangent bundle TQ of a quadric hyper-
surface Q � P5. Check that your answer agrees with your answer to the last exercise!

Exercise 5.39. Calculate the Chern classes of the tangent bundle of a product Pn � Pm

of projective spaces

Exercise 5.40. Find the Euler characteristic of a smooth hypersurface of bidegree .a; b/
in Pm � Pn.

Exercise 5.41. Using Whitney’s formula, show that for n � 2 the tangent bundle TPn
of projective space is not a direct sum of line bundles.

Exercise 5.42. Find the Betti numbers of the smooth intersection of a quadric and a
cubic hypersurface in P4, and of the intersection of three quadrics in P5. (Both of these
are examples of K3 surfaces, which are diffeomorphic to a smooth quartic surface in P3.)

Exercise 5.43. Find the Betti numbers of the smooth intersection of two quadrics in P5.
This is the famous quadric line complex, about which you can read more in Griffiths and
Harris [1994, Chapter 6].

Exercise 5.44. Show that the cohomology groups of a smooth quadric threefoldQ � P4

are isomorphic to those of P3 (Z in even dimensions, 0 in odd), but its cohomology
ring is different (the square of the generator of H 2.Q;Z/ is twice the generator of
H 4.Q;Z/). (This is a useful example of the fact that two compact, oriented manifolds
can have the same cohomology groups but different cohomology rings, if you are ever
teaching a course in algebraic topology.)

Exercise 5.45. Let S � P4 be a smooth complete intersection of hypersurfaces of
degrees d and e, and let Y � P4 be any hypersurface of degree f containing S . Show
that if f is not equal to either d or e, then Y is necessarily singular.
Hint: Assume Y is smooth, and apply Whitney’s formula to the sequence

0 �! NS=Y �! NS=P4 �! NY=P4 jS �! 0

to arrive at a contradiction.
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Lines on hypersurfaces

Keynote Questions

(a) Let X � P4 be a general quintic hypersurface. How many lines L � P4 does X
contain? (Answer on page 228.)

(b) Let fXt � P3gt2P1 be a general pencil of quartic surfaces. How many of the
surfaces Xt contain a line? (Answer on page 233.)

(c) Let fXt � P3gt2P1 be a general pencil of cubic surfaces, and consider the locus
C � G.1; 3/ of all lines L � P3 that are contained in some member of this family.
What is the genus of C ? What is the degree of the surface S � P3 swept out by
these lines? (Answers on pages 233 and 233.)

(d) Can a smooth quartic hypersurface in P4 contain a two-parameter family of lines?
(Answer on page 238.)

In this chapter we will study the schemes parametrizing lines (and planes of higher
dimension) on a hypersurface. These are called Fano schemes. There are two phases to
the treatment. It turns out that the enumerative content of the keynote questions above,
and many others, can be answered through a single type of Chern class computation.
But there is another side of the story, involving beautiful and important techniques
for working with the tangent spaces of Hilbert schemes, of which Fano schemes are
examples. These ideas will allow us to verify that the “numbers” we compute really
correspond to the geometry that they are meant to reflect. We will go even beyond
these techniques and explore a little of the local structure of the Fano scheme. There
are many open questions in this area, and the chapter ends with an exploration of one
of them.
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6.1 What to expect
For what n and d should we expect a general hypersurface X � Pn of degree d

to contain lines? What is the dimension of the family of lines we would expect it to
contain? When the dimension is zero, how many lines will there be?

To answer these questions, we introduce in this chapter a fundamental object,
the Fano scheme Fk.X/ � G.k; n/ parametrizing k-planes on X , and then study
its geometry.

We will defer for a moment a discussion of the scheme structure on Fk.X/, and
start by answering the first two of the questions above, since these have to do only with
the underlying set Fk.X/ � G.k; n/. Even so, the answers may not be apparent at first,
since (as we shall see) the equations on the Grassmannian of lines that describe the
locus of lines L contained in a given hypersurface X � Pn may be complicated. But
if we reverse the roles of L and X — that is, ask for the locus, in the space PN of all
hypersurfaces of degree d in Pn, of the hypersurfaces X that contain a given line L—
the equations are much simpler; in fact, given L, the locus of X that contain L is simply
a linear subspace of PN .

To capitalize on this, we use an incidence correspondence: We set N D
�
nCd
d

�
� 1

and let PN be the projective space parametrizing all hypersurfaces of degree d , and
consider the variety ˆ D ˆ.n; d; k/ given by the formula

ˆ D f.X;L/ 2 PN �G.k; n/ jL � Xg:

(As the title of this chapter suggests, our primary focus will be on the case k D 1

of lines, but many of the constructions we make can be carried out just as readily for
arbitrary-dimensional linear spaces, as here.)

That ˆ � PN �G.k; n/ is a closed subset may be seen by a number of elementary
arguments (see for example Harris [1995, Chapter 6]); in any event, we will give explicit
equations of ˆ in the next section. The variety ˆ will be quite useful in many ways; we
call it the universal Fano scheme of k-planes on hypersurfaces of degree d in Pn, since
the fiber over any point X 2 PN is the Fano scheme Fk.X/ � G.k; n/ of k-planes
on X . To start, we have:

Proposition 6.1. Let N D
�
nCd
d

�
� 1. The universal Fano scheme ˆ D ˆ.n; d; k/ �

PN �G.k;Pn/ is a smooth irreducible variety of dimension

dimˆ.n; d; k/ D N C .k C 1/.n � k/ �
�kCd

k

�
:

Proof: As we said, the fibers of ˆ over G.k; n/ are readily described: For any plane
ƒ Š Pk � Pn, the restriction map

H 0.OPn.d//! H 0.Oƒ.d//
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is a surjection, and the fiber of ˆ over the point ƒ 2 G.k; n/ is simply the projectiviza-
tion of the kernel, that is, a projective space PN�.

kCd
k /.

Proposition 6.1 gives us an “expected” answer to the questions raised at the begin-
ning of this section, and also allows us to deduce the answer in some cases: We would ex-
pect the family of k-planes on a general hypersurface X � Pn of degree d — that is, the
fiber ofˆ over a general point ŒX� 2 PN — to have dimension '.n; d; k/ WD dimˆ�N ,
and that in the case ' < 0 a general X will contain no k-planes. In fact, Proposition 6.1
immediately implies the second statement, and while it does not imply the first, it does
imply a lower bound on the dimension of the family of such planes, should there be any.
We collect these consequences in the following corollary:

Corollary 6.2. (a) The dimension of any component of the family of k-planes on any
hypersurface of degree d in Pn is at least

'.n; d; k/ WD .k C 1/.n � k/ �
�kCd

k

�
:

(b) If '.n; d; k/ < 0, then the general hypersurface of degree d in Pn contains no
k-planes.

(c) If '.n; d; k/ � 0 and the general hypersurface of degree d contains any k-planes,
then every hypersurface of degree d contains k-planes, and every component of the
family of k-planes on a general hypersurface of degree d has dimension exactly
'.n; d; k/.

Proof: Part (b) is immediate: If dimˆ < N , then ˆ cannot dominate PN . For part (a),
we observe that since a fiber of ˆ.n; d; k/ over PN is cut out by N equations, the
principal ideal theorem (Theorem 0.1) gives the desired lower bound. As for part (c),
if the general hypersurface of degree d contains a k-plane, then ˆ.n; d; k/ dominates
PN , and, since ˆ.n; d; k/ is projective, the map to PN is surjective with general fiber
of dimension dimˆ �N D '.

We shall eventually show (Corollary 6.32 and Theorem 6.28) that if '.n; d; k/ � 0
then, except in some cases where k > 1 and d D 2, the general hypersurface actually
does contain k-planes, so the results above apply. For example, if d � 2n � 3, every
hypersurface of degree d in Pn contains lines, and the family of lines on the general
such hypersurface has dimension '.n; d; 1/ D 2n � 3 � d .

Corollary 6.2 shows that the general surface in P3 of degree d � 4 contains no
lines. But we can say more, using the same sort of incidence correspondence argument
made above. For example, we will see in Exercise 6.64 that a general surface S � P3 of
degree d � 4 containing a line contains only one. This implies that the locus † � PN

of surfaces that do contain a line has codimension d � 3.
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6.1.1 Definition of the Fano scheme

We begin by giving a direct definition of the Fano scheme Fk.X/ of k-planes on
a scheme X � Pn that is local on G.k; n/. We will return to the definition twice later
in this chapter to give a global description and a universal property that justifies the
idea that we are taking the “right” scheme structure. Note that it will suffice to give the
definition of the Fano scheme Fk.X/ when X is a hypersurface in Pn; for an arbitrary
scheme Y � Pn we define

Fk.Y / D
\

Y�X�Pn
X is a hypersurface

Fk.X/:

To define Fk.X/ for a hypersurface X of degree d given by an equation g D 0, we
use the idea that a plane L lies on X if and only if the restriction of g to L is zero. If we
have a parametrization ˛ W Pk ! L of L, then we can pull back g via ˛; the condition
L � X is given by the vanishing of the coefficients of ˛�.g/.

In fact, we can give such parametrizations simultaneously for all planesL 2 G.k; n/
lying in an open set U of the open cover of G.k;Pn/ described in Section 3.2.2. Recall
that such an open set U is defined as the set of all k-planes not meeting a fixed .n�k�1/-
plane. If the latter is given by the vanishing of the first kC 1 coordinates, then U may be
identified with the affine space of .k C 1/ � .n� k/ matrices: Any k-plane L belonging
to U is the row space of a unique matrix of the form

A D

0BBB@
1 0 � � � 0 a0;kC1 � � � a0;nC1

0 1 � � � 0 a1;kC1 � � � a1;nC1
:::

:::
: : :

:::
:::

: : :
:::

0 0 � � � 1 ak;kC1 � � � ak;nC1

1CCCA :
We can thus give a parametrization of L of the form

Pk 3 .s0; : : : ; sk/
˛
��! .s0 � � � sk/A D

�
s0; : : : ; sk;

X
i
ai;kC1si ; : : : ;

X
i
ai;nC1si

�
;

where the ai;j are coordinates on U Š A.kC1/.n�k/ and the si are homogeneous
coordinates on our fixed source Pk .

Now suppose that X � Pn is the hypersurface V.g/ given by the polynomial

g.z0; : : : ; zn/ D
X
jıjDd

cız
ı :

We substitute the nC 1 coordinates of the parametrization ˛ for the variables z0; : : : ; zn
of g, and arrive at a homogeneous polynomial of degree d in s0; : : : ; sk:

˛�.g/ D
X
jıjDd

eıs
ı :
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The coefficients feıg of this polynomial are polynomials in the coordinates fai;j g on
U � G.k; n/, which we take as defining equations for Fk.X/.

We should check, of course, that the scheme structure defined in this way agrees on
the overlap U \ V of two such open sets. This is straightforward, but we will skip it: In
what follows we will see a remarkable intrinsic characterization of the Fano scheme that
will imply it.

Finally, we return to the universal Fano scheme ˆ � PN �G.k; n/ discussed in the
preceding section. We promised to give equations forˆ, and we have: The coefficients eı
of the polynomial ˛�.g/ above may be viewed as polynomials in both sets of variables
fai;j g and fcıg, and we take ˆ � PN �G.k; n/ to be the subscheme defined locally by
these polynomials. Note that for any hypersurface X � Pn the Fano scheme Fk.X/ is
the scheme-theoretic fiber of ˆ over the point X 2 PN .

In fact, there is a simpler way to characterize the scheme structure ofˆ: it is reduced.
This follows from the fact that the scheme-theoretic fibers of the projectionˆ! G.k; n/
are projective spaces (the eı are homogeneous linear in the variables cı ). For the same
reason, ˆ is smooth.

This is very much not to say that the Fano scheme Fk.X/ is either smooth or reduced
for a givenX . It does imply that Fk.X/ is smooth and reduced for a general hypersurface
X � Pn, but we will see many examples of nonreduced and/or singular Fano schemes;
part of the challenge of the subject is to figure out under what circumstances this may
happen. As a first example, you may wish to consider the Fano scheme F1.Q/ of lines
on a quadric surface Q � P3; as you can see from the equations, F1.Q/ is smooth if Q
is smooth, but everywhere nonreduced if Q is singular. Apart from this being the first
nontrivial example of such phenomena, what makes this interesting is that we will also be
able to see this from two other viewpoints, without coordinates: once when we describe
the class ŒF1.Q/� 2 A.G.1; 3// in Section 6.2, and again at the end of Section 6.4.2
when we introduce the notion of first-order deformations.

Of course special hypersurfaces may well contain families of planes of dimension
greater than '.n; d; k/. We can easily give an upper bound on the possible dimension:

Proposition 6.3. If X � Pn is an m-dimensional variety, then

dimFk.X/ � .m � k/.k C 1/ D dimG.k;m/;

with equality if and only if X is an m-plane.

Proof: We may assume without loss of generality that X is nondegenerate. Let U �
XkC1 be the open set consisting of .kC 1/-tuples of linearly independent points, and let

� D f..p0; : : : ; pk/; L/ 2 U � Fk.X/ jpi 2 L for all ig:

Via the projection � ! U , we see that dim� � m.k C 1/. Since the fibers of the
projection � ! Fk.X/ have dimension k.k C 1/, we conclude that dimFk.X/ �

m.k C 1/ � k.k C 1/ D .m � k/.k C 1/, as required.
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Equality of dimensions can hold only if the projection � ! U is dominant, that is,
if X contains the plane spanned by any k C 1 general points of X , and this can happen
only if X is a linear space.

In Section 6.8 we will discuss some open questions about these dimensions.

6.2 Fano schemes and Chern classes
To get global information about the Fano scheme of a hypersurface, we will express

it as the zero locus of a section of a vector bundle on the Grassmannian. To understand the
idea, suppose that X � Pn is the hypersurface g D 0, where g is a homogeneous form
of degree d . As we have seen, the condition that X contain a particular k-dimensional
linear space L is that g is sent to 0 by the restriction map

H 0.OPn.d//! H 0.OL.d//:

To describe the scheme Fk.X/ � G.k; n/ of k-planes on X , we will realize the family
of vector spaces H 0.OL.d// (with varying k-planes L) as the fibers of a vector bundle
in such a way that the images of g in these vector spaces are the values of a section �g
of the bundle:

Proposition 6.4. Let V be an .nC 1/-dimensional vector space, and let S � V ˝OG
be the tautological rank-.k C 1/ subbundle on the Grassmannian G D G.k;PV / of
k-planes in PV Š Pn. A form g of degree d on PV gives rise to a global section �g of
Symd S� whose zero locus is Fk.X/, where X is the hypersurface g D 0.

Thus, when Fk.X/ has expected codimension
�
kCd
k

�
D rank.Symd S�/ in G,

we have

ŒFk.X/� D c.kCdk /
.Symd S�/ 2 A.G/:

Proof: The fiber of S over the point ŒL� 2 G.k;PV / representing the subspace L Š
Pk � PV is the corresponding .k C 1/-dimensional subspace of V . The fiber of the
dual bundle S� at ŒL� is thus the space of linear forms on L, that is to say H 0.OPL.1//,
and the dual map V � ˝OG ! S� evaluated at a point ŒL� takes a linear form ' 2 V �,
thought of as a constant section of the trivial bundle V � ˝OG , to the restriction of '
to L. The vector space of forms of degree d on PV is Symd V � D H 0.OPV .d//, and
the induced map on symmetric powers

Symd V � ! Symd S�

evaluated at L takes a form g of degree d to its restriction to L, as required.
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Let �g 2 H 0.Symd S�/ be the global section of Symd S� that is the image of g.
We claim that Fk.X/ � G.k;PV / is the zero locus of this section. It is enough to check
this locally on an open covering of G.k;PV /, and we use the open covering by basic
affine sets U described in Section 3.2.2. On such an open set, the bundle S is trivial,
with the inclusion

SjU D OkC1U ! V ˝OU

given by the transpose of the matrix A. It follows that the dual map

A� W H 0.OPn.1//˝OU D V � ˝OU ! S�jU

is the restriction of linear forms from PV , and its d -th symmetric power is the restriction
of forms of degree d . Thus the value of �g at the point of U corresponding to a plane
L is the restriction of g to L, or in other words the result of the substitution given in
Section 6.1.1, as required.

The fact that the class ŒFk.X/� depends only on d and n (assuming it has the
expected dimension) has consequences by itself, even without calculating the actual
class. For example, consider the lines on a quadric surface Q � P3. As we saw in
Section 3.6.1, when Q is smooth the Fano scheme F1.Q/ consists of two disjoint
smooth conic curves in the Grassmannian G.1; 3/ � P5. But what happens when Q
is a cone over a smooth conic curve? Here the support of F1.Q/ is a single conic
curve in G.1; 3/, and we may deduce from this and Proposition 6.4 that F1.Q/ is
everywhere nonreduced.

6.2.1 Counting lines on cubics

We want to see how this works for the case of lines on a cubic surface X � P3.
In the language above, we want to compute the class of the Fano scheme F1.X/ in the
Grassmannian G D G.1; 3/. We saw in Section 5.6.2 that the Chern class of S� is

c.S�/ D 1C �1 C �1;1:

Since S has rank 2, the rank of Sym3 S� is 4, so we want to compute c4.Sym3 S�/. To
do this, we will apply the splitting principle (Section 5.4), which implies that to compute
the Chern class we may pretend that S� splits into a direct sum of two line bundles L
and M. Suppose that

c.L/ D 1C ˛ and c.M/ D 1C ˇ:

By the Whitney formula,

c.S�/ D .1C ˛/.1C ˇ/;
so that

˛ C ˇ D �1 and ˛ � ˇ D �1;1:
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If S� were to split as above, then the bundle Sym3 S� would split as well:

Sym3 S� D L3 ˚ .L2 ˝M/˚ .L˝M2/˚M3;

so that we would have

c.Sym3 S�/ D .1C 3˛/.1C 2˛ C ˇ/.1C ˛ C 2ˇ/.1C 3ˇ/:

In particular, the top Chern class could be written

c4.Sym3 S�/ D 3˛.2˛ C ˇ/.˛ C 2ˇ/3ˇ
D 9˛ˇ.2˛2 C 5˛ˇ C 2ˇ2/

D 9˛ˇ.2.˛ C ˇ/2 C ˛ˇ/:

Re-expressing this in terms of the Chern classes of S� itself, we get

c4.Sym3 S�/ D 9�1;1.2�21 C �1;1/
D 27�2;2;

so

deg
�
c4..Sym3 S�//

�
D 27I

by the splitting principle, these formulas hold even though S does not in fact split.
The whole Chern class of Sym3 S� can also be computed by hand in this way, or

with the following commands in Macaulay2:

loadPackage "Schubert2"
G = flagBundle({2,2}, VariableNames=>{s,q})
-- sets G to be the Grassmannian of 2-planes in 4-space,
-- and gives the names $s_i$ and $q_i$ to the Chern classes
-- of the sub and quotient bundles, respectively.
(S,Q)=G.Bundles
-- names the sub and quotient bundles on G
chern symmetricPower(3,dual S)

which returns the output

2 2
o4 = 1 + 6q + (21q - 10q ) + 42q q + 27q

1 1 2 1 2 2

QQ[][s , s , q , q ]
1 2 1 2

o4 : --------------------------------------------
(s + q , s + s q + q , s q + s q , s q )
1 1 2 1 1 2 2 1 1 2 2 2

The answer on the first output line “o4” is written in terms of the Chern classes qi WD
ci .Q/, which generate the (rational) Chow ring of the Grassmannian, described on the
second output line “o4.”
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Since the class c4.Sym3 S�/ is nonzero, we deduce that every cubic surface must
contain lines, and thus that a general cubic surface contains only finitely many. Moreover,
if a particular cubic surface X � P3 contains only finitely many lines, then the number
of these lines, counted with the appropriate multiplicity (that is, the degree of the
corresponding component of the zero scheme of �g ), is 27. As we will soon see, the
Fano scheme F1.X/ of a smooth cubic surface X is necessarily of dimension zero and
reduced, so the actual number of lines is always 27. In the next section we will develop a
general technique that will allow us to prove this statement, and much more. We will
also see, in Section 6.7, how to count lines in cases where X is singular.

6.3 Definition and existence of Hilbert
schemes

It was Grothendieck’s brilliant observation that the Grassmannian and the Fano
scheme are special cases of a very general construction, the Hilbert scheme. Hilbert
schemes are defined by a universal property that we will explain in this section, after
making the property explicit for the Grassmannian and Fano schemes.

One of the useful properties of Hilbert schemes is a general formula for tangent
spaces, which we will explain in the next section. For more remarks about Hilbert
schemes in general, see Section 8.4.1.

6.3.1 A universal property of the Grassmannian

Recall from Theorem 3.4 that the Grassmannian G D G.kC 1; V / D G.k;PV / of
.kC1/-planes in an .nC1/-dimensional vector space V , with its tautological subbundle
S � V ˝ OG , has the following universal property: Given any scheme B and any
rank-.k C 1/ subbundle F of the trivial bundle V ˝OB , there is a unique morphism
' W B ! G such that F D '�S . We could, of course, just as well express this in terms of
a universal property of the quotient bundle Q D V ˝OB=S , or of the .n�k/-subbundle
Q� � V � ˝OB , which is the most convenient for what we will do in this section.

Similarly, the universal k-plane

ˆ D f.ƒ; p/ 2 G � PV jp 2 ƒg

is a universal family of k-planes in PV in the following sense: For any scheme B , we
will say that a subscheme L � B�PV is a flat family of k-planes in PV if the restriction
� W L! B of the projection �1 W B � PV ! B is flat, and the fibers over closed points
of B are linearly embedded k-planes in PV . We have then:
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Proposition 6.5. If � W L � B �PV ! B is a flat family of k-planes in PV , then there
is a unique map ˛ W B ! G such that L is equal, as a subscheme of B � PV , to the
pullback of the family L via ˛:

L D B �G ˆ - ˆ

B
?

˛
-

� -

G

�
?

Proof: We will prove the proposition by showing that the desired property can be
reduced to the universal property of Theorem 3.4. Though the reduction may appear
technical, it is really just an application of Theorem B.5, together with the remark that
the ideal of any k-plane in PV is generated by n � k independent linear forms.

To simplify the notation we denote the ideal sheaves of ˆ � G � PV and L �
B � PV by I and J respectively, and we write J .1/ for J ˝ ��OPV .1/, where �
denotes the projection onto PV . We define I.1/ similarly. For any scheme B , we denote
the trivial bundle with fiber V � and base B by OB ˝ V �.

The proof consists of the following steps: We will begin by showing that ��J .1/
is a subbundle of OB ˝ V �. Since ˆ satisfies the same hypotheses as L, the same
reasoning will show that the sheaf ��I.1/ is a subbundle of OG ˝ V �. We will see
that this subbundle is equal to the subbundle Q�. It follows that there is a unique map
˛ W B ! G such that

˛�.��I.1// D ��J .1/:

Finally, we will show that this last equation is equivalent to the equality

L D B �˛ ˆ

as families of k-planes in PV , where B �˛ L denotes the pullback B �G L defined
using the map ˛.

The fact that ��.J .1// is a bundle follows from Theorem B.5 and the remark
that the restriction of ��.J .1// to a fiber b is the .n � k/-dimensional linear space of
forms vanishing on the k-plane L0

b
� fbg � PV Š PV . The natural map ��J .1/ !

��OB�PV .1/ D OB ˝ V � is an inclusion on fibers, so ��J .1/ is a subbundle,
as claimed.

To identify ��I.1/ with Q�, we remark that both are subbundles of OB ˝ V �, and
at each point b 2 B their fibers are the same subspace — namely, the space of linear
forms vanishing on Lb . It now follows from the universal property of Theorem 3.4 that
there is a unique morphism ˛ W B ! G such that ˛���I.1/ D ��J .1/ as subbundles
of OB ˝ V �.

We claim that this property of ˛ implies the equality L D B �˛ ˆ. To prove this,
it suffices to show that J D .˛ � 1/�I, or equivalently J .1/ D .˛ � 1/�I.1/. If we
restrict L to the fiber over b 2 B , we get a subspace of PV whose ideal is generated by



Definition and existence of Hilbert schemes Section 6.3 203

the linear forms it contains. For b 2 B , Theorem B.5 identifies this space of linear forms
with the fiber of ��J .1/ at b. Thus there is a surjection

����J .1/! J .1/:

Similar remarks hold for I. Thus the commutative diagram

����J .1/D ��˛���I.1/D .˛ � 1/�����I.1/

OB�PV
�

-

shows that the ideal sheaves of L and B �˛ ˆ are equal.
Finally, we prove the uniqueness of ˛. Suppose that L D B �˛0 ˆ for some

morphism ˛0. We will show that ˛0 D ˛ by showing that ��J .1/ D ˛0���I.1/. But the
hypothesis implies that J .1/ D .˛0 � 1/�I.1/. From the definition of the pushforward,
we get a natural map

˛0���I.1/! ��.˛
0
� 1/�I.1/ D ��J .1/

that is an isomorphism fiber-by-fiber, so we are done.

6.3.2 A universal property of the Fano scheme

We realized the Fano scheme of a projective variety X as the subscheme of the
Grassmannian consisting of planes lying inX , and as such it inherits a universal property:

Proposition 6.6. If X � Pn is a subscheme, then the scheme Fk.X/ represents the
functor of k-planes on X , in the sense that the correspondence above induces a one-
to-one correspondence between morphisms of schemes B ! Fk.X/ � G.k; n/ and
families of k-planes L � B �X � B � Pn that are flat over B .

Proof: This is a corollary of the statement for the Grassmannian: Suppose that Pn D PV
and X is defined by some homogeneous forms gi 2 Symdi V �. Let S be the universal
subbundle on G.k; n/, so that the fiber of S� at a point ŒL� 2 G.k; n/ is the space of
linear forms on the corresponding k-plane L � PV . Writing ıgi for the section of
Symdi S� that is the image of the form gi , we see that gi vanishes on L if and only if
the sections �gi vanish at the point ŒL�.

6.3.3 The Hilbert scheme and its universal property

Grothendieck’s idea was to ask, more generally: given any projective scheme X and
a subscheme Y , “How Y can move within X?” More precisely and ambitiously: Can we
describe all flat families B �X � Y ! B including Y as a fiber? Is there a universal
such family?
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When B is reduced, a family Y as above is flat if and only if the fibers all have the
same Hilbert polynomial; in particular, any family over a reduced base whose fibers
are all k-planes is automatically flat. (See for example Eisenbud and Harris [2000,
Proposition III-56].) Grothendieck’s idea was to define “the family of all subschemes”
of X with Hilbert polynomial equal to PY .d/, the Hilbert polynomial of Y .

We might worry that this goes too far to be a generalization of the Fano scheme —
could there be a subscheme of X that is not a k-plane but whose Hilbert polynomial is
equal to that of a k-plane? The following result shows that all is well:

Proposition 6.7. A subscheme Y � Pn is a linearly embedded k-plane Pk if and only
if the Hilbert polynomial of Y is

P.d/ D
�dCk

k

�
D
.d C k/.d C k � 1/ � � � .d C 1/

k.k � 1/ � � � 1
:

Proof: Since the dimension of the d -th graded component of a polynomial ring on kC1
variables is

�
dCk
k

�
, the Hilbert polynomial of a linearly embedded k-plane is P.d/.

Conversely, suppose that Y has Hilbert polynomial P . From the degree and lead-
ing coefficient of P we see that Y is a scheme of dimension k and degree 1. Thus
L WD Yred � Y is a linearly embedded k-plane. This inclusion induces a surjection of
homogeneous coordinate rings SY ! SL, and the equality of Hilbert polynomials shows
that it is an isomorphism in high degrees. Since the inclusions L � Y � Pn can be
recovered as Proj.SL/ � Proj.SY / � Proj.S/, where S is the homogeneous coordinate
ring of Pn, and since Proj.SY / depends only on the high degree part of SY , this shows
L � Y is actually an equality.

Here is the general definition and existence theorem for Hilbert schemes, showing
that there is a unique “most natural” scheme structure:

Proposition–Definition 6.8. Let X � Pn be a closed subscheme, and let P.d/ be a
polynomial. There exists a unique scheme HP .X/, called the Hilbert scheme of X for
the Hilbert polynomial P , with a flat family

HP .X/ �X � Y �
��! HP .X/

of subschemes of X , called the universal family of subschemes of X with Hilbert
polynomial P , having the following properties:

� The fibers of � all have Hilbert polynomial equal to P.d/.

� For any flat family

B �X � Y 0 �
��! B
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whose fibers have Hilbert polynomial P.d/, there is a unique morphism ˛ W B !

HP .X/ such that Y 0 is equal to the pullback of Y:

Y 0 D B �HP .X/ Y - Y

B
?

˛
-

� -
HP .X/

�
?

A compact way of stating the existence of the family HP .X/ �X � Y ! HP .X/
and its universal property is to use the language of representable functors. Consider the
contravariant functor from schemes to sets that is defined on objects by

FX;P W B 7!
˚
flat families X � B � Y 0 ! B of subschemes of X � Pn

whose fibers over closed points all have Hilbert polynomial P
	

and that takes a map B 0 ! B to the map of sets taking a flat family over B to its
pullback to a family over B 0. In this language, the existence theorem says that FX;P is
representable by the scheme HP .X/, in the sense that

FX;P Š Mor.� ;HP .X//

as functors. The universal family in FX;P .HP .X// then corresponds to the identity map
in Mor.HP .X/;HP .X//: See for example Eisenbud and Harris [2000, Chapter VI] for
more about this idea.

Proof of uniqueness in Proposition 6.8: As with any object with a universal property,
the uniqueness of a map � W Y ! HP .X/ with the given properties is easy: Given
another such map � 0 W Y 0 ! B , the universal properties of the two produce maps B !
HP .X/ and HP .X/! B whose composition HP .X/! B ! HP .X/ is the unique
map guaranteed by the definition that corresponds to the family � W Y ! HP .X/ itself —
that is, the identity map — and similarly for the composite B ! HP .X/! B .

6.3.4 Sketch of the construction of the Hilbert scheme

The construction of HP .X/ and the universal family is also relatively easy to de-
scribe, though the proofs of the necessary facts are deeper. There are several approaches,
all along the lines of Grothendieck’s original idea (see Grothendieck [1966b]), but the
following (from Bayer [1982]) is perhaps the most explicit.

We first treat the case when X D Pn, since (as in the case of the Fano schemes) we
shall see that the general case reduces to this. Let S D kŒx0; : : : ; xn� be the homogeneous
coordinate ring of Pn. The Hilbert scheme HP .X/ is constructed as a subscheme of
the Grassmannian of P.d/-dimensional subspaces of Sd , the space of homogeneous
forms of degree d , for suitably large d . The possibility of doing so is provided by the
following basic result from commutative algebra, which combines ideas of Macaulay
and Gotzmann (see Green [1989] for a coherent account).
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Theorem 6.9. With notation as above, there is an integer d0.P / (explicitly computable
from the coefficients of P ) such that if d � d0.P / then the saturated homogeneous ideal
I of any subscheme of X with Hilbert polynomial P is generated in degrees � d and
dim.Sd=Id / D P.d/. Further, a subspace U � Sd of dimension P.d/ generates an
ideal with Hilbert polynomial P.d/ if and only if

dim.SdC1=S1U/ � P.d C 1/;

in which case

dim.SdC1=S1U/ D P.d C 1/:

Example 6.10. If X is any hypersurface of degree s in Pn, then the Hilbert function
of SX is

dim.SX /d D
�nCd

n

�
�

�nCd�s
n

�
;

which is equal to a polynomial P.d/ of degree n�1 for all d such that d � s, as one can
check immediately. Conversely, given any scheme X � Pn with this Hilbert polynomial,
we see that dimX D n � 1, so X is a hypersurface, and the leading coefficient of
the Hilbert polynomial tells us that degX D s. It follows that the saturated ideal of
X is generated by a single form of degree s. In this case, every subspace U � Sd
generates an ideal with this Hilbert polynomial; the growth condition of the theorem is
automatically satisfied.

Given Theorem 6.9, we choose d � d0.P /, and take HP .Pn/ to be the closed
subscheme of the Grassmannian G WD G.dimSd �P.d/; Sd / defined by determinantal
equations saying that HP .Pn/ consists of those U 2 G such that the vector space S1U
has the smallest possible dimension, which is dimSdC1 � P.d C 1/. Writing S for
the universal subbundle of the trivial vector bundle Sd ˝ OG on G, HP .Pn/ is the
subscheme defined by the condition that the composite map

S1 ˝ S ! S1 ˝ Sd ˝OG ! SdC1 ˝OG

has corank � P.d C 1/.
Further, we can construct the universal family Y � Pn �HP .Pn/ as follows. Let

Pn
�1
 ��� Pn �G

�2
���! G

be the projection maps. There is a natural map Sd ˝ ��1OPn.�d/ ! OPn�G , and
composing this with the inclusion we get a map of sheaves

��2U ˝OPn.�d/! OPn�G :
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Let zY be the subscheme of Pn � G defined by the image of this map, and let Y !
HP .Pn/ be the restriction to HP .X/ � G of the (non-)flat family given by the
composite

zY � Pn �G
�2
���! G:

The universal property (which we will not prove) shows that these construction are
independent of the choice of d � d0 (up to canonical isomorphism).

So far we have only defined HP .Pn/, but we can use this to construct HP .X/
for any X � Pn. Let I D I.X/ � S be the ideal corresponding to X , and suppose
that I is generated in degrees � e. Given the Hilbert polynomial P , we choose d �
maxfd0.P /; eg. Then to define HP .X/ we simply add equations to HP .Pn/ implying
that Id ˝ ��1OPn.�d/ is contained in U ˝ ��1OPn.�d/. This can be translated into a
rank condition on a map of vector bundles, as before.

Example 6.11 (Example 6.10, continued). The argument above shows that the Hilbert
scheme of hypersurfaces of degree s in Pn is the projective space PN of all homogeneous
forms of degree s, and the universal family is the universal hypersurface

X D f.x;X/ 2 Pn � PN j x 2 Xg;

as one would hope.

Here is one way to understand the integer d0.P / that plays a central role in the
construction. Recall that the set of monomials of given degree d can be ordered lexico-
graphically, where

xe WD x
e0
0 � � � x

en
n < x

f0
0 � � � x

fn
n DW x

f

if ei > fi for the smallest i such that ei ¤ fi — informally put, if xe involves more of
the lowest-index variables than xf . A monomial ideal I � S is called lexicographic if,
whenever xe < xf are monomials of degree d and xf 2 I , then xe 2 I too. It follows
easily that the saturation of a lexicographic ideal is lexicographic.

Proposition 6.12. Let S D kŒx0; : : : ; xn�.

(a) If I is any homogeneous ideal of S , then there is a lexicographic ideal J such that
the Hilbert function of S=J is the same as that of S=I .

(b) If P D PI is the Hilbert polynomial S=I , then there is a unique saturated lexico-
graphic ideal JP with Hilbert polynomial P .

The integer d0.P / may be taken to be the maximal degree of a generator of JP .

For example, if I is the principal ideal generated by a form of degree s as in the
example above, this proposition gives d0 D s. See Green [1989] for further information.
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6.4 Tangent spaces to Fano and Hilbert
schemes

In order to use the Chern class calculation of Section 6.2.1 to count the number of
distinct lines on a cubic surface, we need to know when the Fano scheme is reduced. In
the zero-dimensional case, this is the same as being smooth, and the question can thus
be approached through a computation of Zariski tangent spaces. Happily, we can give a
simple description of the Zariski tangent spaces of any Hilbert scheme.

We first state the main assertions for Fano schemes. They will allow us to deduce
the exact number of lines on a general hypersurface X � Pn of degree d D 2n � 3,
along with other geometric facts. We will then compute the tangent spaces in the general
setting of Hilbert schemes (Theorem 6.21). In Section 6.7 below, we will show how to
calculate the multiplicity of F1.X/ at L by writing down explicit local equations for
F1.X/ � G.1; n/.

6.4.1 Normal bundles and the smoothness of the
Fano scheme

We will make use of the universal property of Fano schemes to give a geometric
condition for the smoothness of Fk.X/ at a given point. Recall that if Y � X is a
smooth subvariety of the smooth variety X , then the normal bundle NY=X of Y in X
is the cokernel of the map of tangent bundles NY=X D coker.TY ! TX jY / induced by
the inclusion of Y � X . Recall also that the Zariski tangent space of a scheme F at a
point p is by definition HomOp .mp=m

2
p;Op=mp/, where mp is the maximal ideal of

the local ring Op of F at p.
The following theorem is a special case of a general result on Hilbert schemes,

Theorem 6.21, which we will prove in the next section:

Theorem 6.13. Suppose that L � X is a k-plane in a smooth variety X � Pn, and let
ŒL� 2 Fk.X/ be the corresponding point. The Zariski tangent space of Fk.X/ at ŒL� is
H 0.NL=X /.

The result is intuitively plausible if we think of a section of NL=X as providing a
normal vector at each point in X , with a corresponding infinitesimal motion of X .

For a case that is easy to understand, take k D 0. The Hilbert scheme of points on
a variety X is X itself, as one checks from the definition. The tangent space at a point
x 2 X is thus the Zariski tangent space to X at x, and this is — identifying sheaves
on the space fxg with vector spaces — equal to HomOX .mX;x=m

2
X;x;Ox/ D Nx=X .

Before introducing the general machinery of the proof, we explain how the result can
be used.
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X

L

Figure 6.1 A tangent vector to the Fano scheme F1.X/ at ŒL� corresponds to a normal
vector field along L in X .

Corollary 6.14. Suppose that L � X is a k-plane in a smooth variety X � Pn, and
let ŒL� 2 Fk.X/ be the corresponding point. The dimension of Fk.X/ at ŒL� is at most
dimH 0.NL=X /. Moreover, Fk.X/ is smooth at ŒL� if and only if equality holds.

Proof of Corollary 6.14: By the principal ideal theorem, the dimension of the Zariski
tangent space of a local ring is always at least the dimension of the ring, and equality
holds if and only if the ring is regular. See Eisenbud [1995].

To apply Corollary 6.14, we need to be able to compute normal bundles, and this is
often easy. For example, we have:

Proposition–Definition 6.15. Suppose that Y � X are schemes.

(a) IfX and Y are smooth varieties then NY=X D HomOY .IY =I2Y ;OY /: For arbitrary
schemes Y � X , we define NY=X by this formula.

(b) If Y � X � W are schemes, and X is locally a complete intersection in W , then
there is a left exact sequence of normal bundles

0 �! NY=X �! NY=W
˛
��! NX=W jY :

If all three schemes are smooth, then ˛ is an epimorphism.
(c) If Y is a Cartier divisor onX then NY=X D OX .Y /. More generally, if Y is the zero

locus of a section of a bundle E of rank e on X , and Y has codimension e in X , then

NY=X D E jY :

Proof: (a) For any inclusion of subschemes Y � X , there is a right exact sequence
involving the cotangent sheaves of X and Y :

IY=X=I2Y=X
d
��! �X jY �! �Y �! 0;

where d is the map taking the class of a (locally defined) function f 2 IY=X to its
differential df 2 �X jY ; see for example Eisenbud [1995, Proposition 16.12]. Since
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X and Y are smooth, Y is locally a complete intersection in X , so IY=X=I2Y=X is a
locally free sheaf on Y of rank equal to dimX � dimY D rank�X jY � rank�Y . If
the left-hand map d were not a monomorphism of sheaves, then the image of d would
have strictly smaller rank, so the sequence could not be exact at �X jY . Thus d is a
monomorphism, and we have an exact sequence

0 �! IY=X=I2Y=X
d
��! �X jY �! �Y �! 0

of bundles. Since Y is smooth, �Y is locally free, so dualizing preserves exactness, and
we get an exact sequence

0 � HomOY .IY=X=I2Y=X ;OY / � TX jY  � TY  � 0;

where the right-hand map is the differential of the inclusion Y � X , proving that
NY=X D HomOY .IY =I2Y ;OY /.
(b) From the inclusions Y � X � W , we derive an exact sequence of ideal sheaves

0 �! IX=W �! IY=W �! IY=X �! 0:

Applying the functor HomOW .� ;OY / gives a left exact sequence

0 �! NY=X �! NY=W �! Hom.IY=X ;OY /:

Since Hom.IY=X ;OY / Š Hom.IY=X ˝ OY ;OY / and IY=X ˝ OY Š IY=X=I2Y=X ,
we get the desired sequence.

In the smooth case, we start with the exact sequence

0 �! TX �! TW jX �! NX=W �! 0

that defines NX=W . We restrict to Y and factor out the subbundle TY from both TX and
TW jX to get the required exact sequence

0 �! NY=X �! NY=W �! NX=W jY �! 0:

(c) The first formula follows at once from part (a), since in that case IY=X D OX .�Y /,
and taking the dual of a bundle commutes with restriction.

For the second statement of part (c) we first give a geometric argument that works
in the smooth case, and then a proof in general. Let Z be the total space of the bundle E .
The tangent bundle to Z restricted to the zero section X � Z is TX ˚ E .

Along the zero locus Y of � , the derivative D� of � is thus a map TX jY !
TX jY ˚ EY . Since the component of D� that maps TX jY to EY is zero along Y ,
the composite

TY �! TX jY
D�
����! TX jY ˚ EY �! EY

is zero. Locally at each point y 2 Y , the image of .TX /y in .TX /y ˚ Ey is the tangent
space to �.X/ � Z. Since Y is smooth of codimension equal to the rank of E , the
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vector in E

Z0 D zero section

tangent vector to Z0 Š X

Z

X

Figure 6.2 The tangent bundle to Z restricted to Z0 Š X is TX ˚ E .

manifold �.X/ meets the zero locus X � Z transversely. This means that .TX /y
projects onto Ey , and tells us that the composite map of bundles

TX jY
D�
����! TX jY ˚ EY �! EY

is surjective. Considering the ranks, it follows that the sequence

0 �! TY �! TX jY �! EY �! 0

is exact; that is, NY=X D EY .
With a more algebraic approach, we can avoid the hypothesis that X or Y is smooth.

We may think of � as defining the map OX ! E that sends 1 2 OX to � 2 E . Dualizing,
the statement that Y is the zero locus of � means that the ideal sheaf IY=X is the image
of the map �� W E� ! OX . Since the codimension of Y is e, we see that Y is locally a
complete intersection. Thus the kernel of �� is generated by the Koszul relations; that is,
the sequence

� � � �!
V2E� �

��! E� �! IY=X �! 0

is exact, where �.e^f / D ��.e/f � ��.f /e. Because the coefficients in the map � lie
in IY=X , they become zero on tensoring with OY D OX=IY , so we get the right exact
sequence

� � � �!
V2E�jY 0

��! E�jY �! IY=X=I2Y=X �! 0:

This shows that E�jY Š IY=X=I2Y=X , whence E jY D E��jY D NY=X .

In the special case where Y is a complete intersection of X with divisors on Pn

of degrees di , the normal bundle is NY=X D
L

OX .di /, so the last statement of
Proposition 6.15 takes a particularly simple form. We can make it even more explicit
when both X and Y are complete intersections:
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Corollary 6.16. Suppose that Y � X � Pn are (not necessarily smooth) complete
intersections of hypersurfaces with homogeneous ideals

IX D .g1; : : : ; gs/ � IY D .f1; : : : ; ft /; gi D
X
j

ai;jfj :

If degfi D 'i and deggi D i , then

NY=Pn D
tM
iD1

OY .'i /; NX=Pn D
sM
iD1

OX .i /

and NY=X is the kernel of the induced map ˛ W NY=Pn ! NX=Pn jY given by the matrix
.aj;i /, where aj;i denotes the restriction of aj;i to Y .

Proof: The complete intersection X is the zero locus of the section .g1; : : : ; gs/ of the
bundle OPn.1/˚ � � � ˚ OPn.s/, and similarly for Y . Using the formula of part (c),
we see that

NX=Pn D
sM
iD1

OX .i /;

and similarly for Y . The identification of ˛ follows at once from part (a).

As an immediate application, we can finally show that there are exactly 27 distinct
lines on every smooth cubic surface (pending, of course, the proof of Theorem 6.13):

Corollary 6.17. Let X � P3 be a smooth surface of degree d � 3. If F1.X/ ¤ ¿, then
F1.X/ is smooth and zero-dimensional. In particular, X contains at most finitely many
lines, and if d D 3 then X contains exactly 27 distinct lines.

See Corollary 6.27 for a strengthening.

Proof: Suppose L � X is a line. As we saw in Section 2.4.2, the self-intersection
number of L on X is negative, so the normal bundle NL=X is a line bundle of negative
degree. It follows that dimH 0.NL=X / D 0, and Corollary 6.14 now implies that L is
isolated and F1.X/ is smooth at ŒL�.

In particular, in the case of the cubic surface the fact that the class of the Fano
scheme is 27 points implies, with this result, that the Fano scheme actually consists of
27 reduced points.

We will also be able to see Corollary 6.17 geometrically once we have introduced
the notion of first-order deformation in Section 6.4.2

6.4.2 First-order deformations as tangents to the
Hilbert scheme

The proof of Theorem 6.13 and its generalization involves the idea of a first-order
deformation of a subscheme, which is the main content of this section. Suppose that
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Y is a closed subscheme of a scheme X , defined over the field k. By a deformation of
Y � X over a scheme T with distinguished point Spec k 2 T we mean a subscheme
Y � T �X , flat over T , whose fiber over the distinguished point Spec k is equal to Y ,
that is, a diagram

Y Y T �X

Spec k T

˛ ˇ

projec
tio

n

We think of the image of Spec k ,! T as a distinguished point of T , and we will denote
it by ŒY �.

A deformation is called first-order if its base T is the spectrum of a local ring of
the form Rm D kŒ�1; : : : ; �m�=.�1; : : : ; �m/2 for somem. We set Tm WD SpecRm. Note
that this is a scheme with a unique closed point, which we shall denote by 0. We think of
Tm as a first-order neighborhood of a point on a smooth m-dimensional variety.

It follows from the universal property of the Hilbert scheme that a first-order defor-
mation of Y over Tm is the same thing as a morphism Tm ! H sending 0 to ŒY �.

In general, we will denote the set of morphisms of Tm into a k-scheme Z sending 0
to a point z 2 Z by Morz.Tm; Z/; so we have

fdeformations of Y � X over Tmg D MorŒY �.Tm;H/:

For simplicity we restrict ourselves for a while to the case m D 1, and consider deforma-
tions over T1.

The identification of first-order deformations with morphisms from T1 to H is the
key to identifying the tangent space of H (and thus, in our case, of the Fano scheme).
Indeed, for any closed k-rational point z on any scheme Z we can identify the set
Morz.T1; Z/ with the Zariski tangent space to Z at z. To describe the identification,
recall that for any morphism t W T1 ! Z sending 0 to z we have a pullback map on
functions, denoted t� W OZ;z ! R1. Restricting this map to mZ;z , we get

t�jmZ;z W mZ;z ! mT;0 D k� Š k:

Since t� sends m2Z;z to zero, we may identify t�jmZ;z with the induced map

t�jmZ;z W mZ;z=m
2
Z;z ! mT;0 D k� Š k:

Lemma 6.18. Let z 2 Z be a k-rational point on a k-scheme. The map

Morz.T1; Z/! Tz=Z D Homk.mz=Z=m
2
z=Z ; k/

sending a morphism t to the restriction of the pullback map on functions t�jmZ;z is
bijective.
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Proof: Giving a morphism t W T1 ! Z is equivalent to giving the local map of k-alg-
ebras t� W OZ;z ! R1 that induces the identity map k Š OZ;z=mZ;z ! R1=.�1/ D k.
Thus t� is determined by the induced map of vector spaces mZ;z=m2Z;z ! .�1/ � R1.

Conversely, any map mZ;z=m
2
Z;z ! .�/ extends to a local algebra homomorphism

t� W OZ;z ! kŒ��=.�2/ D R1.

As we have explained, the universal property of the Hilbert scheme of Y � X also
allows us to identify MorŒY �.T1;H/ with the set of first-order deformations of Y � X
over T1. Such deformations admit another very concrete description:

Theorem 6.19. Suppose that Y � X are schemes. There is a one-to-one correspondence
between flat families of subschemes ofX over the base Tm with central fiber Y and homo-
morphisms of OY -modules IY =I2Y ! OmY . In particular, flat families of deformations
of Y in X over T1 correspond to global sections of the normal sheaf of Y in X .

We will use the following characterization of flatness over Tm:

Lemma 6.20. If M is a (not necessarily finitely generated) module over the ring Rm,
then M is flat if and only if the map

Mm .�1;:::;�m/
��������!M

induces an isomorphism .M=.�1; : : : ; �m/M/m Š .�1; : : : ; �m/M .

Proof: The general criterion of Eisenbud [1995, Proposition 6.1] says that M is flat
if and only if the multiplication map �I W I ˝R M ! IM is an isomorphism for
all ideals I . But every nontrivial ideal of Rm is a summand of .�1; : : : ; �m/ D .�/,
and, since .R=.�//m Š .�/, the map �.�/ may be identified with the given map
.M=.�/M/m ! .�/M .

Proof of Theorem 6.19: The problem is local, so we may assume that X and Y are
affine. Since any homomorphism of sheaves IY ! OmY must annihilate I2Y , we may
identify a homomorphism

' W IY =I2Y
.'1;:::;'m/
��������! OnY

with the composition IY ! IY =I2Y ! OmY . Let I' � OX ˝Rm be the ideal

I' WD
n
g C

X
j
gj �j

ˇ̌
g 2 IY and gj � 'j .g/ mod IY

o
;

and note that I' �
P
j �jIY D .�/IY .

From I' , we construct the family

Y YTm Tm �X

Spec k Tm

˛ ˇ

projec
tio

n
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where YTm is defined by I' . If we set all the �j D 0, then I' becomes equal to IY , so ˛
is indeed the pullback of ˇ.

We may identify I'=..�/IY / with the graph of ' W IY ! OmY in

IY ˚OmY Š IY ˚
�M

OY �j
�

� OX ˚
�M

OY �j
�

D OX Œ��=..�/2 C .�/IY /:

Thus I' \ .�/OX D .�/IY , and it follows that

.�/.OX=I'/ D .�/OX=.I' \ .�/OX /
D .�/OX=.�/IY
Š .OX=IY /m Š OmY :

By Lemma 6.20, OX=I' is flat over Rm.
Conversely, given an Rm-algebra of the form

S WD OX Œ��=..�/2 C I/;

the statement that Y is the pullback of YTm WD SpecS over the morphism Spec k � Tm
means that I is congruent to IY modulo .�/. Multiplying by .�/ and using that .�/2 D 0,
we see that I � .�/IY . If S is flat over Rm, then we must have I \ .�/ D .�/IY .
Putting these facts together, we see that I=.�/IY is the graph of a homomorphism
IY ! .�/OX=.�/IY Š OmY , and this is the inverse of the construction above.

These results identify both the Zariski tangent space TŒY �;H of the Hilbert schemeH
of Y � X at the point corresponding to Y , and the vector space of global sections of the
normal sheaf, with the set of first-order deformations of Y in X , which we have already
identified with the set MorŒY �.T1;H/. Since our goal is to compute the dimension of
one of these two vector spaces in terms of the dimension of the dimension of the other,
we must also ensure that the identification of sets preserves the vector space structure.
This is the new content of the following result:

Theorem 6.21. Suppose that Y � X is a subscheme of a k-scheme X � Pn, and let H
be the Hilbert scheme of Y . If ŒY � 2 H denotes the point corresponding to Y , then

TŒY �=H Š H
0.HomOY .IY=X=I2Y=X ;OY //

as vector spaces.

Theorem 6.13 is the special case where Y is a k-plane in X .

Proof of Theorem 6.21: We will show how to give the set of morphisms T1 ! H the
structure of a vector space, and prove that this third structure is compatible with the
bijections we have already given.
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The rules for addition and scalar multiplication in the set MorŒY �.T1;H/ are similar,
and the one for addition is more complicated, so will define addition, and check that it
is compatible with the identifications of Lemma 6.18 and Theorem 6.19. We leave the
analogous treatment of scalar multiplication to the reader.

As before, we set Rm D kŒ�1; : : : ; �m�=.�1; : : : ; �m/2 and Tm D SpecRm (we will
only use the cases m D 1 and m D 2). A morphism of schemes ‰ W T2 ! H sending
the closed point to ŒY � corresponds to a homomorphism  W mH;ŒY � ! k�1 ˚ k�2 or,
equivalently, a pair of homomorphisms  1;  2 W mH;ŒY � ! k, or a pair of morphisms
‰1; ‰2 W T1 ! H (in fancier language: T2 is the coproduct of T1 with itself in the
category of pointed schemes). Moreover, there is an addition map

T1
.plus/
�����! T2

that embeds T1 as the closed subscheme with ideal .�1 � �2/ � R2. This map has
the property that ‰ ı .plus/ W T1 ! H is the morphism corresponding to the sum
 1 C  2 W mH;ŒY � ! k.

Let Y'i be the family obtained by pulling back the universal family along ‰i , and
let 'i W IY =I2Y ! OY be the homomorphism corresponding to this flat family. We have
a pullback diagram

Y'1 - Y2 � Y'2

T1

?
- T2

?
� T1

?

of flat families, where Y2 ! T2 is the family obtained by pulling back along‰. To show
that the addition law on the set MorŒY �.T1;H/ agrees with addition in the vector space
H 0.HomOY .IY=X=I2Y=X ;OY //, it suffices to show that the pullback of Y2 along the
map .plus/ W T1 ! T2 is the family Y'1C'2 .

Let ' W IY =I2Y ! O2Y be the homomorphism corresponding to Y2, so that the ideal
of Y2 is the ideal I' . If we compose ' with the map induced by the projection R2 ! R1

annihilating �2 we get the map '1, and similarly for �1 and '2. It follows that ' is in
fact the map

IY =I2Y

�
'1
'2

�
�����! O2Y :

Thus if we pull back Y2 along the map .plus/, that is, factor out �1��2 from the structure
sheaf of Ys , the resulting algebra corresponds to the map '1 C '2, as required.

Associated to any family

Y � X � B �
��! B

of subschemes of X is the union of the schemes in the family, defined to be the image
of Y under the projection to X . In this spirit, if Y � X are projective schemes, and B
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is a subscheme of the Hilbert scheme of Y in X , then we define the subscheme swept
out by B to be the union Y 0 D Y 0B of the schemes in the restriction to B of the universal
family over H .

We can now give a bound on the Zariski tangent spaces to Y 0 in the case where Y
and X are smooth. Suppose that p 2 Y is a point of one of the schemes Y represented
by points of B . The tangent space to Y 0 at p contains the tangent space to Y at p, so it is
enough to bound the image of Tp Y 0 in TpX=Tp Y , which is the fiber at p of the normal
bundle .NY=X /p of Y in X .

Intuitively, the amount the tangent space Tp Y “moves” as Y moves inB is measured
by the tangent space to B at ŒY �, although some tangent vectors to B may produce
trivial motions of Tp Y . Of course TŒY �B � TŒY �H , and by Theorem 6.21 the latter is
H 0.NY=X /. Let 'p;Y be the evaluation map

'p;Y W H
0.NY=X /! .NY=X /p D TpX=Tp Y:

Proposition 6.22. Let Y � X be smooth projective schemes, and let B � H be a
closed subscheme of the Hilbert scheme of Y in X containing the point ŒY �. If p 2 Y
and Y 0 is the subscheme swept out by B , then

Tp Y
0=Tp Y � 'p;Y .TŒY �B/:

This will follow directly from the following lemma:

Lemma 6.23. Let Z � Y be closed subschemes of a scheme X , and let Z� ; Y� �
Spec kŒ��=.�2/ �X be first-order deformations of Z and Y in X corresponding to the
sections � 2 H 0.NZ=X / and � 2 H 0.NY=X /. The scheme Z� is contained in Y� if and
only if the images of � and � are equal under the maps

� 2 H 0.NZ=X / D HomOX .IZ=X ;OZ/

HomOX .IY=X ;OZ/
?

� 2 H 0.NY=X / D HomOX .IY=X ;OY /

6

induced by the inclusion IY=X � IZ=X and the projection OY ! OZ . If Y and
X are smooth, or more generally if Y � X is locally a complete intersection, then
HomOX .IY=X ;OZ/ Š NY=X jZ , and thus HomOX .IY=X ;OZ/ Š H 0.NY=X jZ/.

See Figure 6.3.

Proof: The statement is local, so we can assume Z; Y and X are affine. We regard the
global sections � and � as module homomorphisms IZ=X ! OZ and IY=X ! OY .
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Z

�.Z/

�.Z/
T D TZY

�

Y

Figure 6.3 �.Z/ � �.Z/ modulo the tangent line T to Y at Z, so the deformation
of the point Z corresponding to � keeps Z inside the deformation of Y corresponding
to � .

The schemes Z� ; Y� � X � T1 are given by the ideals

I� D ff C �f 0 jf 2 IZ=X and f 0 � �.f / mod IZ=Xg
and

I� D fg C �g0 jg 2 IY=X and g0 � �.g/ mod IY=Xg

in OX ˝R1 D OX ˚OX�.
Accordingly, we have Z� � Y� — that is, I� � I� — if and only if

�.f / � �.f / mod IZ=X for all f 2 IY=X ;

which is the first statement of the lemma.
The second statement holds because, with the given hypothesis, IY=X=I2Y=X is a

vector bundle, and thus

Hom.IY=X ;OZ/ D Hom.IY=X=I2Y=X ;OZ/

D Hom.IY=X=I2Y=X ;OY /˝X OZ
D NY=X jZ : �

Finally, we use the notion of first-order deformation to see Corollary 6.17 geometri-
cally, via the Gauss map GX W X ! P3� sending p 2 X to the tangent plane TpX � P3

(see Section 2.1.3). The restriction of GX to a line L � X � P3 sends L to the dual line

L? D fH 2 P3� jL � H g;
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Figure 6.4 The tangent planes to a smooth quadric surface along a line wind once
around the line, but in the case of a smooth cubic surface they wind around twice.

and this map, being given by the partial derivatives of the defining equation of X , has
degree d � 1. Thus, for example, as we travel along a line on a smooth quadric surface
Q, the tangent planes to Q rotate once around the line; on a smooth cubic surface X ,
by contrast, they wind twice around the line (see Figure 6.4). But if zL is a first-order
deformation of L in P3, the direction of motion of a point p 2 L— that is, the 2-plane
spanned by L and the normal vector �.p/, where � is the section of the normal bundle
NL=P3 — is linear in p. It is thus impossible to find a first-order deformation of L on X ,
or on any smooth surface of higher degree.

Note that if X is singular at a point of L, the partial derivatives of the defining
equation of X have a common zero along L, and so the degree of GX W L! L? will
be less than d � 1. Thus, for example, the tangent planes to a quadric cone are constant
along a line of its ruling, and if L � X is a line on a cubic surface with an ordinary
double point on L the Gauss map will have degree 1 on L. In this case, there will exist
first-order deformations of L on X — as we will see shortly in Section 6.7

6.4.3 Normal bundles of k-planes on hypersurfaces

In order to apply the description of the tangent space TLFk.X/ to a Fano scheme
Fk.X/ of k-planes on a hypersurface X at a point L, we need to know something about
the normal bundle of L in X .

Suppose that L � X � Pn is a k-plane on a (not necessarily smooth) hypersurface
X of degree d in Pn. Choose coordinates so that the ideal of L is IL D .xkC1; : : : ; xn/,
and let IX D .g/ � IL. There is a unique expression

g D

nX
iDkC1

xigi .x0; : : : ; xk/C h
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with h 2 .xkC1; : : : ; xn/
2. Differentiating, we see that gi , as a form on L, is the

restriction to L of the derivative @g=@xi .
Since the ideal of L � Pn is generated by n � k linear forms, the normal bundle of

L in Pn is On�kL .1/, and, similarly, the normal bundle of X in Pn is OX .d/. Thus the
restriction NX=Pn jL is OL.d/, and the left exact sequence of part (b) of Proposition 6.15
takes the form

0 �! NL=X �! On�kL .1/
˛D.gkC1;:::;gn/
������������! OL.d/: (6.1)

Proposition 6.24. With notation as above, let

˛ D .gkC1; : : : ; gn/ W On�kL .1/! OL.d/:

(a) The map ˛ is a surjection of sheaves if and only if the hypersurface X is smooth
along L.

(b) The map ˛ is surjective on global sections if and only if the point ŒL� is a smooth
point on Fk.X/ and the dimension of Fk.X/ at ŒL� is equal to the “expected
dimension” .k C 1/.n � k/ �

�
kCd
k

�
.

(c) The map ˛ is injective on global sections if and only if the point ŒL� is an isolated
reduced (that is, smooth) point of Fk.X/.

Proof: (a) Since L � X , the derivatives of g along L are all zero, so X is smooth at a
point p 2 L if and only if at least one of the normal derivatives gi D @g=@xi , for i > k,
is nonzero at p. This is the condition that ˛ is surjective as a map of sheaves.

(b) By Corollary 6.2, the dimension of Fk.X/ at any point is at least

D WD .k C 1/.n � k/ �
�kCd

k

�
;

so Fk.X/ is smooth of dimensionD at ŒL� if and only if the tangent space TŒL�Fk.X/ D
H 0NL=X has dimension D. Since

dimH 0.On�kL .1// D .k C 1/.n � k/ and dimH 0.OL.d// D
�dCk

k

�
;

we see from the exact sequence in (6.1) (before the proposition) that dimH 0NL=X D D
if and only if ˛ is surjective on global sections.

(c) The condition that ŒL� is an isolated reduced point of Fk.X/ is the condition that
TŒL�Fk.X/ D H

0NL=X D 0, and by the argument of part (b) this happens if and only
if ˛ is injective on global sections.

We can unpack the conditions of Proposition 6.24 as follows: The condition of
part (a) is equivalent to saying that the components gi of the map ˛ do not all vanish
simultaneously at a point of L.
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Using the exact sequence (6.1), and assuming that X is smooth along L so that ˛ is
a surjection of sheaves, we see that the condition of part (b) that ˛ is surjective on global
sections is equivalent to the condition H 1.NL=X / D 0. On the other hand, the global
sections x0; : : : ; xk of the i-th summand OL.1/ � On�1L .1/ map by ˛ to the sections
x0gkCi ; : : : ; xkgkCi , so the condition of surjectivity on sections is also equivalent to
the condition that the ideal .gkC1; : : : ; gn/ contains every form of degree d .

Similarly, it follows from the exact sequence that the condition of part (c) is equiv-
alent to the condition H 0.NL=X / D 0. This means that there are no maps OL to the
kernel of ˛ or, more concretely, that the gi have no linear syzygies.

Although part (a) of Proposition 6.24 tells only about smoothness along L, we can
do a little better: Bertini’s theorem tells us that the general member of a linear series can
only be singular along the base locus of the series, and it follows that the general X with
a given map ˛ is smooth except possibly along L. Thus if ˛ W On�kL .1/ ! OL.d/ is
any surjective map of sheaves, there is a smooth hypersurface X containing L such that
NL=X D Ker˛.

Example 6.25 (Cubic surfaces again). The following gives another treatment of Corol-
lary 6.17. In the case of a cubic surfaces X � P3, we have n D d D 3 and the expected
dimension of F1.X/ is D D 0. If we choose

g2 D x
2
0 ; g3 D x

2
1

then the conditions in all three parts of Proposition 6.24 apply: g2 and g3 obviously have
no common zeros in P1; because g2 and g3 are relatively prime quadratic forms, they
have no linear syzygies; and since

.x0; x1/.x
2
0 ; x

2
1/ D .x

3
0 ; x

2
0x1; x0x

2
1 ; x

3
1/ � kŒx0; x1; x2; x3�;

the map ˛ is surjective on global sections. Since the numbers of global sections of the
source and target of ˛ are equal, the map ˛ is injective on global sections as well. We
can see this directly, too: Because g2; g3 are relatively prime quadratic forms, the kernel
of ˛ is

OL.�1/

�
�g3
g2

�
�������! OL.1/2;

so NL=X D OL.�1/, and we see again that H 0.NL=X / D 0.
From all this, we see that L will be an isolated smooth point of F1.X/, where X is

the hypersurface defined by the equation x20x2 C x
2
1x3 D 0. Although this hypersurface

is not smooth, Bertini’s theorem, as above, shows that there are smooth cubics having
the same map ˛. Since the rank of a linear transformation is upper-semicontinuous as
the transformation varies, this will also be true for the general cubic surface containing a
line. By Corollary 6.2, every cubic surface in P3 contains lines.

One special case of Proposition 6.24 shows that a smooth hypersurface of degree
d > 1 cannot contain a plane of more than half its dimension:
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Corollary 6.26. Let X � Pn be a hypersurface of degree d > 1. If L � X is a k-plane
on X , and X is smooth along L, then

k �
n � 1

2
:

For example, there are no 2-planes on a smooth quadric hypersurface in P4 —
even though the “expected dimension” '.4; 2; 2/ is 0. This implies that all singular
quadrics contain families of 2-planes of positive dimension — of course, it is easy to see
this directly.

Proof: If k > .n� 1/=2, then k C 1 > n� k, so n� k forms on Pk of strictly positive
degree must have a common zero, and we can apply part (a) of Proposition 6.24.

Remark. Corollary 6.26 is a special case of a corollary of the Lefschetz hyperplane
theorem (see Appendix C), which tells us in this case that if X � PnC is a smooth
hypersurface and Y � X is any subvariety of dimension k > .n � 1/=2, then

deg.X/ j deg.Y /:

In the case of planes of the maximal dimension allowed by Corollary 6.26, Proposi-
tion 6.24 gives us particularly sharp information; note that this applies, in particular, to
lines on surfaces in P3, and thus generalizes Corollary 6.17:

Corollary 6.27. Let X � Pn be a hypersurface of degree d � 3 containing a k-plane
L with k D .n � 1/=2. If X is smooth along L then ŒL� is an isolated smooth point of
the Fano scheme Fk.X/. If n D d D 3— that is, if X � P3 is a cubic surface — then
the converse is also true.

If, in the setting of Proposition 6.24 we take an example where the gi are general
forms of degree d�1 in kC1 variables vanishing at some point of Pk with d D 2; k > 1
or d > 3; k � 1, then the gi have no linear syzygies, so the corresponding L � X will
be a smooth point on the Fano scheme, though X is singular at a point of L. Thus the
“converse” part of the corollary cannot be extended to these cases.

Proof of Corollary 6.27: If X is smooth along L, then by Proposition 6.24 the k C 1
forms gi of degree d � 1 have no common zeros. It follows that they are a regular
sequence, so all the relations among them are also of degree d � 1 � 2, so, again by
Proposition 6.24, ŒL� is a smooth point of Fk.X/.

In the case of a cubic surface, g2 and g3 are quadratic forms in two variables. If
they have a zero in common then they have a linear common factor, so they have a linear
syzygy.
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Despite the nonexistence of 2-planes on smooth quadric hypersurfaces X � P4

and other examples coming from Corollary 6.26, the situation becomes uniform for
hypersurfaces of degree d � 3. The proof for the general case is quite complicated, and
we only sketch it. In the next section we give a complete and independent treatment for
the case of lines.

Theorem 6.28. Set ' D .k C 1/.n � k/ �
�
kCd
k

�
.

(a) If k D 1 or d � 3 and ' � 0, then every hypersurface of degree d contains
k-planes, and the general hypersurface X of degree d in Pn has dimFk.X/ D '.

(b) If ' � 0 and X is a general hypersurface containing a given k-plane L, then L is
an isolated smooth point of Fk.X/.

See Exercise 6.59 for an example that can be worked out directly.

Proof: (a) The first part follows from the second using Corollary 6.2. For the second
part we use Proposition 6.24. We must show that, under the given hypotheses, a general
.n� k/-dimensional vector space of forms of degree d � 1 generates an ideal containing
all the forms of degree d .

On the other hand, for part (b) we must show that a general .n � k/-dimensional
vector space of forms of degree d � 1 generates an ideal without linear syzygies.

These two statements together say that if gkC1; : : : ; gkCn is a general collection of
n � k forms of degree d � 1 in k C 1 variables, then the degree-d component of the
ideal .gkC1; : : : ; gkCn/ has dimension equal to min

˚
.k C 1/.n � k/;

�
kCd
k

�	
. This is a

special case of the formula for the maximal Hilbert function of a homogeneous ideal
with generators in given degrees conjectured in Fröberg [1985]. This particular case of
Fröberg’s conjecture was proved in Hochster and Laksov [1987, Theorem 1].

6.4.4 The case of lines

The case k D 1 of lines is special because, very much in contrast with the general
situation, we can classify vector bundles on P1 completely. The following result is
sometimes attributed to Grothendieck, although equivalent forms go back at least to the
theory of matrix pencils of Kronecker and Weierstrass:

Theorem 6.29. Any vector bundle E on P1 is a direct sum of line bundles; that is,

E D
rM
iD1

OP1.ei /

for some integers e1; : : : ; er .

The analogous statement is false for bundles on projective space Pn of dimension
n � 2 (see for example Exercise 5.41).
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Proof: We use the Riemann–Roch theorem for vector bundles on curves. Riemann–
Roch theorems in general will be discussed in Chapter 14, where we will also discuss
more aspects of the behavior of vector bundles on P1. The reader may wish to glance
ahead or, since we will not make logical use of Theorem 6.29, defer reading this proof
until then.

That said, we start with a basic observation: An exact sequence of vector bundles

0 �! E �! F ˛
��! G �! 0

on any varietyX splits if and only if there exists a map ˇ W G ! F such that ˛ıˇ D IdG .
This will be the case whenever the map Hom.G;F/! Hom.G;G/ given by composition
with ˛ is surjective on global sections; from the exactness of the sequence

0 �! Hom.G; E/ �! Hom.G;F/ �! Hom.G;G/ �! 0;

this will in turn be the case whenever H 1.Hom.G; E// D H 1.G� ˝ E/ D 0.
Now suppose E is a vector bundle of rank 2 on P1, with first Chern class of degree d .

By Riemann–Roch, we have

h0.E/ � d C 2I

from this we may deduce the existence of a nonzero global section � of E vanishing at
m � d=2 points of P1, or equivalently of an inclusion of vector bundles OP1.m/ ,! E
with m � d=2. We thus have an exact sequence

0 �! OP1.m/ �! E �! OP1.d �m/ �! 0;

and, since 2m � d � 0, we have

H 1
�
Hom.OP1.d �m/;OP1.m//

�
D H 1.OP1.2m � d// D 0:

In this case, we conclude that E Š OP1.m/˚OP1.d �m/.
The case of a bundle E of general rank r follows by induction: If we let L � E be a

sub-line bundle of maximal degree m, we get a sequence

0 �! OP1.m/ �! E ˛
��! F �! 0;

with F by induction a direct sum of line bundles Li Š OP1.ei /. Moreover, ei � m for
all i : If ei > m for some i , then ˛�1.Li / would be a bundle of rank 2 and degree > 2m;
by the rank-2 case, this would contradict the maximality of m. Thus this sequence splits,
and we are done.

We remark in passing that vector bundles on higher-dimensional projective spaces
Pn remain mysterious, even for n D 2, and open problems regarding them abound. To
mention just one, it is unknown whether there exist vector bundles of rank 2 on Pn,
other than direct sums of line bundles, when n � 6. Interestingly, though, Theorem 6.29
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provides a tool for the study of bundles on higher-dimensional projective spaces, via the
notion of jumping lines, which we will discuss in Section 14.4

To return to our discussion of linear spaces on hypersurfaces, suppose that X � Pn

is a hypersurface of degree d and L � X a line. We choose coordinates so that L is
defined by x2 D � � � D xn D 0. As before, we write the equation of X in the form

nX
iD2

xigi .x0; x1/C h;

with h 2 .x2; : : : ; xn/2, and we let ˛ be the map .g2; : : : ; gn/ W On�1L ! OL.d/.
In this situation, the expected dimension of the Fano scheme F1.X/ is ' WD 2n� 3� d .
We will make use of this notation throughout this subsection.

We can say exactly what normal bundles of lines in hypersurfaces are possible.
Since any vector bundle on L Š P1 is a direct sum of line bundles, we may write
NL=X Š

Ln�2
1 OP1.ei /.

Proposition 6.30. Suppose that n � 3 and d � 1. There exists a smooth hypersurface
X in Pn of degree d , and a line P1 Š L � X such that NL=X Š

Ln�2
iD1 OPn.ei /,

if and only if

ei � 1 for all i and
n�2X
iD1

ei D n � 1 � d:

Proof: If the normal bundle is NL=X Š
L

OP1.ei /, then, from the fact that there is
an inclusion NL=X ! NL=Pn Š On�1

P1
.1/, it follows that ei � 1 for all i . Computing

Chern classes from the exact sequence of sheaves on P1

0 �!

n�2M
iD1

OP1.ei / �! On�1P1 .1/ �! OP1.d/ �! 0;

we get
P
ei D n � 1 � d .

Conversely, suppose the ei satisfy the given conditions. To simplify the notation,
let F D

Ln�2
iD1 OP1.ei / and G D On�1

P1
.1/. Let ˇ W F ! G be any map, and let ˛ be

the map G ! OP1.d/ given by the matrix of .n � 2/ � .n � 2/ minors of the matrix
of ˇ, with appropriate signs.1 The composition ˛ˇ is zero because the i -th entry of the
composite matrix is the Cauchy expansion of the determinant of a matrix obtained from
ˇ by repeating the i -th column.

1 More formally and invariantly, ˛ is the composite map

G Š OP1 .n� 1/˝
Vn�2G� OP1 .n�1/˝

Vn�2
ˇ�

���������������! OP1 .n� 1/˝
Vn�2F� Š OP1 .d/;

where we have used an identification of G with OP1 .n� 1/˝
Vn�2G� corresponding to a global section of

OP1 D OP1 .�nC 1/˝
Vn�1G:
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If we take ˇ of the form

ˇ D

0BBBBBBBBBBBBBB@

x
1�e1
0 0 0 � � � 0 0

x
1�e2
1 x

1�e2
0 0 � � � 0 0

0 x
1�e3
1 x

1�e3
0 � � �

:::
:::

0 0 x
1�e4
1

: : : 0 0
:::

:::
:::

: : : x
1�en�4
0 0

0 0 0 � � � x
1�en�3
1 x

1�en�3
0

0 0 0 � � � 0 x
1�en�2
1

1CCCCCCCCCCCCCCA
;

then the top .n � 2/ � .n � 2/ minor will be xd�10 and the bottom .n � 2/ � .n � 2/

minor will be xd�11 . This shows that the map ˛ will be an epimorphism of sheaves, so
that the general such hypersurface X containing L will be smooth. By Eisenbud [1995,
Theorem 20.9], the sequence

0 �! F
ˇ
��! G ˛

��! OP1.d/ �! 0

is exact, so NL=X Š F .

Corollary 6.31. If d � 2n � 3, then there exists a pair .X;L/ with X � Pn a smooth
hypersurface of degree d and L � X a line such that F1.X/ is smooth of dimension
2n � 3 � d in a neighborhood of ŒL�.

Proof: Using Proposition 6.30, we observe that, if d � 2n � 3, we can choose all
the ei to be � �1. With this choice, dimH 0.OP1.ei // D ei C 1 for all i and hence
dimH 0.NL=X / D 2n�3�d . SinceF1.X/ has dimension at least 2n�3�d everywhere,
the result follows.

Corollary 6.32. If d � 2n � 3, then every hypersurface of degree d in Pn contains
a line.

Proof: The universal Fano schemeˆ.n; d; 1/ is irreducible of dimensionN�dC2n�3.
Moreover, Corollary 6.31 asserts that at some point .X;L/ 2 ˆ the fiber dimension of the
projectionˆ.n; d; 1/! PN is 2n�d�3. It follows that this projection is surjective.

We have seen above that the Fano scheme of any smooth cubic surface in P3 is
reduced and of the correct dimension. We can now say something about the higher-
dimensional case as well:

Corollary 6.33. The Fano scheme of lines on any smooth hypersurface of degree d � 3
is smooth and of dimension 2n� 3� d . But if n � 4 and d � 4, then there exist smooth
hypersurfaces of degree d in Pn whose Fano schemes are singular or of dimension
> 2n � 3 � d .
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Proof: We follow the notation of Proposition 6.30. If d � 3, then for any e1; : : : ; en�2
allowed by the conditions of the proposition we have that all the ei � �1, and thus
h0.NL=X / D �.NL=X / D 2n � 3, proving that the Fano scheme is smooth and of
expected dimension at L.

On the other hand, if n � 4 and d � 4 then we can take e1 D � � � D en�3 D 1

and en�2 D 2 � d � �2. In this case h0.NL=X / D 2n � 6 > 2n � 3 � d , so the Fano
scheme is singular or of “too large” dimension at L.

The first statement of Corollary 6.33 is an easy case of the conjecture of Debarre
and de Jong, which we will discuss further in Section 6.8.

6.5 Lines on quintic threefolds and beyond
We can now answer the first of the keynote questions of this chapter: How many

lines are contained in a general quintic threefold X � P4? More generally, we can now
compute the number of distinct lines on a general hypersurface X of degree d D 2n� 3
in Pn, the case in which the expected dimension of the family of lines is zero.

The set-up is the same as that for the lines on a cubic surface: The defining equation g
of the hypersurface X gives a section �g of the bundle Symd S� on the Grassmannian
G.1; n/, the zero locus of �g is then the Fano scheme F1.X/ of lines on X , and
(assuming F1.X/ has the expected dimension 0) the degree m of this scheme is the
degree of the top Chern class cdC1.Symd S�/ 2 AdC1.G.1; n//. If we can show in
addition that H 0.NL=X / D 0 for each line L � X , then it follows as in the previous
section that the Fano scheme is zero-dimensional and reduced, so the actual number of
distinct lines on X is exactly m.

To calculate the Chern class we could use the splitting principle. The computation is
reasonable for n D 4, d D 5, the case of the quintic threefold, but becomes successively
more complicated for larger n and d . Schubert2 (in Macaulay2) instead deduces it from
a Gröbner basis for the Chow ring. Here is a Schubert2 script that computes the numbers
for n D 3; : : : ; 20, along with its output:

loadPackage "Schubert2"
grassmannian = (m,n) -> flagBundle({m+1, n-m})
time for n from 3 to 20 do(

G=grassmannian(1,n);
(S,Q) = G.Bundles;
d = 2*n-3;
print integral chern symmetricPower(d, dual S))

27
2875
698005
305093061
210480374951
210776836330775
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289139638632755625
520764738758073845321
1192221463356102320754899
3381929766320534635615064019
11643962664020516264785825991165
47837786502063195088311032392578125
231191601420598135249236900564098773215
1298451577201796592589999161795264143531439
8386626029512440725571736265773047172289922129
61730844370508487817798328189038923397181280384657
513687287764790207960329434065844597978401438841796875
4798492409653834563672780605191070760393640761817269985515

-- used 119.123 seconds

The following result gives a geometric meaning to these numbers beyond the fact
that they are degrees of certain Chern classes:

Theorem 6.34. If X � Pn is a general hypersurface of degree d � 1, then the Fano
scheme F1.X/ of lines on X is reduced and has the expected dimension 2n � d � 3.

We now have the definitive answer to Keynote Question (a):

Corollary 6.35. A general quintic threefold X � P4 contains exactly 2875 lines. More
generally, the numbers in the Schubert2 output above are equal to the number of distinct
lines on general hypersurfaces of degrees 3; 5; : : : ; 37 and dimensions 2; 3; : : : ; 19.

We have seen that every smooth cubic surface has exactly 27 distinct lines. By
contrast, the hypothesis of generality in the preceding corollary is really necessary for
quintic threefolds: By Corollary 6.33, the Fano scheme of a smooth quintic threefold
may be singular or positive-dimensional (we will see in Exercises 6.62 and 6.67 that
both possibilities actually occur).

The 2875 lines on a quintic threefold have played a significant role in algebraic geom-
etry, and even show up in physics. For example, the Lefschetz hyperplane theorem (see
for example Milnor [1963]) implies that all 2875 are homologous to each other, but one
can show that they are linearly independent in the group of cycles modulo algebraic equiv-
alence (Ceresa and Collino [1983]). On the other hand, the number of rational curves of
degree d on a general quintic threefold, of which the 2875 lines are the first example, is
one of the first predictions of mirror symmetry (see for example Cox and Katz [1999]).

Proof of Theorem 6.34: We already know that for general X of degree d > 2n� 3 the
Fano scheme F1.X/ is empty, so we henceforward assume that d � 2n � 3. We have
seen in Corollary 6.31 that there exists a pair .X;L/withX � Pn a smooth hypersurface
of degree d and L � X a line such that dimTLF1.X/ D 2n � 3 � d ; that is, F1.X/ is
smooth of the expected dimension in a neighborhood of L. We now use an incidence
correspondence to deduce that, for general X , the lines L 2 F1.X/ with this property
form an open dense subset of F1.X/. In particular, if d D 2n� 3 then X contains just a
finite number of lines, every one of which is a reduced point of F1.X/.
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Let PN be the projective space of forms of degree d in nC1 variables, whose points
we think of as hypersurfaces in Pn. Consider the projection maps from the universal
Fano scheme ˆ WD ˆ.n; d; 1/:

ˆ D f.X;L/ 2 PN �G.1; n/ jL � Xg

PN G.1; n/
' 

so that the fiber of ' over the point X of PN is the Fano scheme F1.X/ of X . As we
have seen in Proposition 6.1, ˆ is smooth and irreducible of dimension N C 2n� 3� d .
It follows that the fiber of ' through any point of ˆ has dimension � 2n � 3 � d .

The set of points of PN where the fiber dimension of ' is equal to 2n�3�d is open;
within that, the set U of points where the fiber is smooth is also open. Corollary 6.31
shows that this open set is nonempty; given this, it follows that if X is a general
hypersurface of degree d , then any component of F1.X/ is generically reduced of
dimension N C 2n � 3 � d . Since F1.X/ is defined by the vanishing of a section
of a bundle of rank d C 1, it is locally a complete intersection. Thus F1.X/ cannot
have embedded components, and the fact that it is generically reduced implies that it
is reduced.

6.6 The universal Fano scheme and the
geometry of families of lines

In Keynote Question (c) we asked: What is the degree of the surface S in P3 swept
out by the lines on a cubic surface as the cubic surface moves in a general pencil?
What is the genus of the curve C � G.1; 3/ consisting of the points corresponding
to lines on the various elements of the pencil of cubic surfaces? We can answer such
questions by giving a “global” view of the universal Fano scheme as the zero locus
of a section of a vector bundle, just as we have done for Fano schemes of individual
hypersurfaces.

We will compute the degree of S as the number of times S intersects a general line.
The task of computing this number is made easier by the fact that a general point of the
surface lies on only one of the lines in question (reason: a general point that lies on two
lines would have to lie on lines from different surfaces in the pencil, and thus would lie
in the base locus of the pencil, contradicting the assumption that it was a general point).
Thus the degree of the surface is the same as the degree of the curve C � G.1; 3/ in the
Plücker embedding (see Section 4.2.3 for a more general statement).
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Let PN be the space of hypersurfaces of degree d in Pn. The incidence correspon-
dence

ˆ D ˆ.n; d; 1/ D f.X;L/ 2 PN �G.1; n/ jL � Xg;

which we call the universal or relative Fano scheme of lines on such hypersurfaces,
was introduced in Section 6.1. We can learn about its global geometry by realizing it
as the zero locus of a section of a bundle, just as in the case of the Fano scheme of a
given hypersurface.

We have seen that the maps of vector spaces

fpolynomials of degree d on Png ! fpolynomials of degree d on Lg

for different L 2 G.1; n/ fit together to form a bundle map

V ˝OG.1;n/ ! Symd S�

on the Grassmannian G.1; n/, where V D H 0.OPn.d// is the vector space of all
polynomials of degree d . Likewise, the inclusions

hf i ,! V

fit together to form a map of vector bundles on PV Š P19

T D OP19.�1/! V ˝OP19 ;

where T is the universal subbundle on P19.
We will put these two constructions together to understand not only ˆ.n; d; 1/, but

also its restriction to a general linear space of forms M � PN . We denote the restriction
of the universal Fano scheme to M by ˆ.n; d; 1/jM .

Theorem 6.36. The universal Fano scheme ˆ.n; d; 1/jM of lines on a general m-
dimensional linear family M D Pm of hypersurfaces of degree d in Pn is reduced and
of codimension dC1 in the .2n�2Cm/-dimensional space Pm�G.1; n/. It is the zero
locus of a section of the rank-.d C 1/ vector bundle E D ��2 Symd S� ˝ ��1OPm.1/ on
that space, so its class is cdC1.E/.

Proof: The fact that ˆ.n; d; 1/jM is reduced and of the expected dimension follows
from Bertini’s theorem and the corresponding statement for ˆ (Proposition 6.1). To
characterize ˆ.n; d; 1/jM as the zero locus of a section of a vector bundle, it likewise
suffices to treat the case M D P.Symd V �/, the space of all forms of degree d , so that
m D N WD dimV � � 1.

Consider the product of P Symd V � and the Grassmannian G.1; n/, and its projec-
tions

P.Symd V �/
�1
 ��� P.Symd V �/ �G.1; n/

�2
���! G.1; n/:
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On the product, we have maps

��1OP Symd V �.�1/ �! ��1 Symd V � Š ��2 Symd V � �! ��2 Symd S�:

Restricted to the fiber over the point of P Symd V � corresponding to f , the composite
map takes a generator of ��1OP Symd V �.�1/jhf i to �f . Thus the zero locus of the
composite map is the incidence correspondence ˆ.n; d; 1/.

Let � be the corresponding global section of the bundle

E WD Hom.��1OP Symd V �.�1/; �
�
2 Symd S�/

Š ��2 Symd S� ˝ ��1OPN .1/:

The zero locus of the composite map is the same as the zero locus of � . Moreover, if we
restrict to an open subset of the Grassmannian over which the universal subbundle S
is trivial, then the vanishing of � is given by the local equations we originally used to
define the scheme structure on ˆ.

Theorem 6.36 allows us to calculate the class ofˆ in the Chow ring of PN �G.1; n/,
which immediately gives the answers to Keynote Question (c). To express this, we will
use the symbol � for the pullback to P19 � G.1; 3/ of the hyperplane class on the
space P19 of cubic surfaces (and for the pullback to P34 � G.1; 3/ of the hyperplane
class on the space P34 of quartic surfaces), and the symbols �i;j for the pullbacks to
P19 �G.1; 3/ and P34 �G.1; 3/ of the corresponding classes in A.G.1; 3//.

Corollary 6.37. The class of the universal Fano scheme ˆ.3; 3; 1/ of lines on cubic
surfaces in P3 is

Œˆ.3; 3; 1/� D c4.�
�
2 Sym3 S� ˝ ��1OP19.1//

D 27�2;2 C 42�2;1� C .11�2 C 21�1;1/�
2
C 6�1�

3
C �4;

while the class of the universal Fano scheme ˆ.3; 4; 1/ of lines on quartic surfaces
in P3 is

Œˆ.3; 4; 1/� D c5.�
�
2 Sym4 S� ˝ ��1OP34.1//

D 320�2;2� C 220�2;1�
2
C .30�2 C 55�1;1/�

3
C 10�1�

4
C �5:

If C is the curve of lines on a general pencil of cubic surfaces, then the degree of C is
42 and the genus of C is 70. The number of quartic surfaces in a general pencil that
contain a line is 320.

Restricting to a point in P19, we see again that a general cubic surfaceX will contain

Œˆ.3; 3; 1/� � �19 D 27

lines.
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Proof of Corollary 6.37: The identifications of Œˆ.3; 3; 1/� and Œˆ.3; 4; 1/� with the
given Chern classes is part of Theorem 6.36.

For the explicit computations of the Chern classes one can use the splitting principle
or appeal to Schubert2. Here is the computation, via the splitting principle, for the case
of ˆ.3; 3; 1/, the fourth Chern class of the bundle E on P19 �G.1; 3/:

Formally factoring the Chern class of ��2S� as

c.��2S�/ D 1C �1 C �1;1 D .1C ˛/.1C ˇ/;
we can write

c.��1OP19.1/˝ �
�
2 Sym3 S�/
D .1C 3˛ C �/.1C 2˛ C ˇ C �/.1C ˛ C 2ˇ C �/.1C 3ˇ C �/;

and in particular the top Chern class is given by

c4.�
�
1OP19.1/˝ �

�
2 Sym3 S�/ D .3˛ C �/.2˛ C ˇ C �/.˛ C 2ˇ C �/.3ˇ C �/

2 A4.P19 �G.1; 3//:

Evaluating, we first have

.3˛ C �/.3ˇ C �/ D 9�1;1 C 3�1� C �
2;

and then

.2˛ C ˇ C �/.˛ C 2ˇ C �/ D 2�21 C �1;1 C 3�1� C �
2:

Multiplying out, we have

Œˆ� D 27�2;2 C 42�2;1� C .11�2 C 21�1;1/�
2
C 6�1�

3
C �4:

Here is the corresponding Schubert2 code:

n=3
d=3
m=19

P = flagBundle({1,m}, VariableNames=>{z,q1})
(Z,Q1)=P.Bundles
V = abstractSheaf(P,Rank =>n+1)
G = flagBundle({2,n-1},V,VariableNames=>{s,q})
(S,Q) = G.Bundles
p = G.StructureMap
ZG = pˆ*(dual Z)
chern_4 (ZG**symmetricPower_d dual S)

Replacing the line “d D 3” with “d D 4,” we get the corresponding result forˆ.3; 4; 1/.
From the computation of Œˆ.3; 3; 1/�, we see that the number of lines on members

of a general pencil of cubics meeting a given line is

Œˆ� � �1 � �
18
D 42;
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from which we deduce that the degree of C , which is equal to the degree of the surface
swept out by the lines on our pencil of cubics, is 42. For the genus g.C / of C , we use
part (c) of Proposition 6.15 to conclude that the normal bundle of C is the bundle E jC ,
where E is the restriction to P1�G.1; 3/ of the bundle ��2 Sym3 S�˝��1OP1.1/, whose
section defines ˆ.3; 3; 1/P1 , as in Corollary 6.37. From the exact sequence

0 �! TC �! TP1�G.1;3/jC �! NC=P1�G.1;3/ �! 0;

we deduce that the degree of TC , which is 2 � 2g.C /, is

deg TC D deg c1.TC / D deg.ŒC �c1.TP1�G.1;3/// � deg c1.NC=P1�G.1;3//

D c4.E/.4�1 C 2�/ � c4.E/c1.E/;

where we have used the computation c1.TG.1;3// D 4�1 from Proposition 5.18. We can
compute c1.E/ by the splitting principle or by calling

chern_1 (ZG**symmetricPower_d dual S)

and we get c1.E/ D 6�1C 4�. Using the fact that �2 restricts to zero on the preimage of
a line in P19, this gives

2 � 2g.C / D deg.27�2;2 C 42�2;1�/.4�1 C 2� � 6�1 � 4�/

D deg.�138�2;2�/ D �138;

whence g D 70. Another view of this computation is suggested in Exercise 6.54.
Finally, consider a general pencil of quartic surfaces. By Exercise 6.64, no element

of the pencil will contain more than one line. It is likewise true that no line will lie on
more than one element of the pencil. (If a line lay on more than one element of the
pencil, it would be a component of the base locus — but, since the pencil is general, the
base locus is smooth and connected.) Thus, the number of quartic surfaces that contain
a line in a general pencil of quartic surfaces is the number of lines that lie on some
quartic surface in the pencil, that is, the degree of ˆ.3; 4; 1/ \ P1. Writing � again for
the section of ��2 Sym4 S� ˝ ��1OP1.1/ defined above, this is

deg
�
�33c5.�

�
2 Sym4 S� ˝ ��1OP1.1//

�
:

By the computation of Œˆ.3; 4; 1/�, this is 320.

The coefficients of higher powers of � in the class of ˆ.3; 3; 1/ computed above
have to do with the geometry of larger linear systems of cubics: For example, we will
see how to answer questions about lines on a net of cubics in Exercise 6.50.

6.6.1 Lines on the quartic surfaces in a pencil

Here is a slightly different approach to Keynote Question (b). Given that the set of
quartic surfaces that contain some line is a hypersurface � in the projective space P34 of
quartic surfaces, we are asking for the degree of � .
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To find that number, we look again at the bundle E on the Grassmannian G.1; 3/,
whose fiber over a point L 2 G.1; 3/ is the vector space

EL D H 0.OL.4//;

that is, the fourth symmetric power Sym4 S� of the dual of the universal subbundle on
G.1; 3/. As before, the polynomials f and g generating the pencil define sections �f
and �g of the bundle E . The locus of lines L � P3 that lie on some element of the pencil
is the locus where the values of the sections �f and �g are dependent, so the degree of
this locus is the degree of the fourth Chern class c4.E/ 2 A4.G.1; 3// Š Z. As before,
this can be computed either with the splitting principle or with Schubert2, and one finds
again the number 320.

We will see another way of calculating the genus of the curve ˆ in the following
chapter (after we have determined the number of singular cubic surfaces in a general
pencil), by expressing ˆ as a 27-sheeted cover of P1 and using Hurwitz’s theorem.

6.7 Lines on a cubic with a double point
Identifying the Fano scheme F1.X/ as the Hilbert scheme of lines on X has allowed

us to give a necessary and sufficient condition for its smoothness, and to show that it
is indeed smooth in certain cases. But there are aspects of its geometry that we cannot
get at in this way, such as the multiplicity of F1.X/ at a point L where it is not smooth.
We might want to know, for example, if we can find a smooth hypersurface X � Pn of
degree 2n�3 whose Fano scheme of lines includes a point of multiplicity exactly 2, as in
Harris [1979]; or, we might ask, if X has an ordinary double point, how does this affect
the number of lines it will contain? To answer such questions we must go back to the
local equations of F1.X/ introduced (in more generality) at the beginning of this chapter.

We will describe the lines on a cubic surface with one ordinary double point. Other
examples can be found in Exercise 6.55, where we will consider the case of cubic
surfaces with more than one double point, and in Exercise 6.62, where we will show
that it is possible to find a smooth quintic hypersurface X � P4 whose Fano scheme
contains an isolated double point.

To this end, we will adapt the notation of Section 6.1.1 to the case of cubic surfaces.
We work in an open neighborhood U � G.1; 3/ of the line

L W x2 D x3 D 0;

where U consists of the lines not meeting the line x0 D x1 D 0. Any line in U can be
written uniquely as the row space of a matrix of the form

A D

�
1 0 a2 a3

0 1 b2 b3

�
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(so U Š A4, with coordinates a2; a3; b2; b3). Such a line has the parametrization

P1 3 .s0; s1/! .s0; s1/A D .s0; s1; a2s0 C b2s1; a3s0 C b3s1/ 2 P3:

Now let X � P3 be a cubic surface containing L, and suppose that the point
p D .1; 0; 0; 0/ 2 L is an ordinary double point of X ; that is, the tangent cone to X
at p is the cone over a smooth conic curve. We assume that X has no other singularities
along L.

We may also suppose that the tangent cone to X at p is given by the equation
x1x3 C x

2
2 D 0. With these choices, the defining equation g.x/ of X can be written in

the form

g.x/ D x0x1x3 C x0x
2
2 C ˛x

2
1x2 C ˇx

2
1x3 C x1x

2
2 C ıx1x2x3 C �x1x

2
3 C k;

where k 2 .x2; x3/3. The condition that X be smooth along L except at p says that
˛ ¤ 0; otherwise the coefficients ˛; : : : ; � are arbitrary.

As we saw in Section 6.4.3, the normal bundle NL=X can be computed from the
short exact sequence

0 �! NL=X �! O2L.1/
.g2 g3/
������! OL.3/;

where the g3; g3 are the coefficients of x2; x3 in the part of g that is not contained in
.x2; x3/; that is, g2 D ˛x21 and g3 D x0x1 C ˇx21 .

Since the polynomial ring in s; t has unique factorization, the syzygies between
these two forms are generated by the linear syzygy ˛x1g3 � .x0 C ˇx1/g2 D 0, so
NL=X Š OL, and the tangent space to the Fano scheme is given by TŒL�F1.X/ D
H 0.NL=X /, which is one-dimensional. In particular, the Fano scheme is not “smooth of
the expected dimension” at ŒL�.

We can now write down the local equations of F1.X/ near L: If we substitute the
four coordinates from the parametrization of a line in U into g, we get

g.s; t; a2s C b2t; a3s C b3t / D c0s
3
C c1s

2t C c2st
2
C c3t

3;

where the ci are the polynomials in the ai;j that define the intersection of the Fano
scheme with U . Writing this out, we find that, modulo terms of higher degree, the ci are

c0 D a
2
2;

c1 D a3 C 2a2b2 C a
2
2 C ıa2a3 C �a

2
3;

c2 D b3 C ˛a2 C ˇa3 C b
2
2 C 2a2b2 C ı.a2b3 C a3b2/C 2�a3b3;

c3 D ˛b2 C ˇb3 C b
2
2 C ıb2b3 C �b

2
3 :

Examining these polynomials, we see that c1; c2 and c3 have independent differen-
tials at the origin a2 D a3 D b2 D b3 D 0; thus, in a neighborhood of the origin the
zero locus of these three is a smooth curve. Moreover, the tangent line to this curve is
not contained in the plane a2 D 0, so c0 D a22 vanishes to order exactly 2 on this curve.
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Thus the component of F1.X/ supported at L is zero-dimensional, and is isomorphic to
Spec kŒ��=.�2/. In particular, it has multiplicity 2.

Having come this far, we can answer the question: If X � P3 is a cubic surface with
one ordinary double point p, andX is otherwise smooth, how many lines willX contain?
We have seen that the lines L � X passing through p count with multiplicity 2, and
those not passing through p with multiplicity 1. Since we know that the total count, with
multiplicity, is 27, the only question is: How many distinct lines on X pass through p?

To answer this, take p D .1; 0; 0; 0/ as above and expand the defining equation
g.x/ of X around p. Since p is a double point of X , we can write

g.x0; x1; x2; x3/ D x0A.x1; x2; x3/C B.x1; x2; x3/;

where A is homogeneous of degree 2 and B homogeneous of degree 3. The lines on X
through p then correspond to the common zeros of A and B . Moreover, if we write a
line L through p as the span L D p; q with q D .0; x1; x2; x3/, then, by Exercise 6.61,
the condition that X be smooth along L n fpg is exactly the condition that the zero loci
of A and B intersect transversely at .x1; x2; x3/. Thus there will be exactly six lines on
X through p. Summarizing:

Proposition 6.38. Let X � P3 be a cubic surface with an ordinary double point p. If
X is smooth away from p, it contains exactly 21 lines: 6 through p and 15 not passing
through p.

(Compare this with the discussion starting on page 640 of Griffiths and Harris [1994].)
In Exercises 6.55–6.58, we will take up the case of cubics with more than one

singularity, arriving ultimately at the statement that a cubic surface X � P3 can have at
most four isolated singular points.

We have used the local equations of the Fano scheme only to describe the locus
of lines on a single hypersurface. A similar approach gives some information about
the lines on a linear system of hypersurfaces. As a sample application, we will see in
Exercises 6.65 and 6.66 how to describe the singular locus of and tangent spaces to the
locus † � P34 of quartic surfaces in P3 containing a line.

6.8 The Debarre–de Jong Conjecture
By Theorem 6.34, general hypersurfacesX � Pn of degree d all have Fano schemes

F1.X/ of the “expected” dimension ' D 2n � d � 3. On the other hand, it is easy to
find smooth hypersurfaces of degree > 3 whose Fano schemes have dimension > '; any
smooth surface of degree > 3 in P3 that contains a line is such an example.
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However, Corollary 6.33 shows that every smooth hypersurface of degree � 3 has
Fano scheme of dimension ' (that is, the open set of hypersurfaces for which F1.X/ has
the expected dimension contains the open set of smooth hypersurfaces when the degree
is � 3). Further, it was shown by Harris et al. [1998] that when d � n every smooth
hypersurface of degree d in Pn has a Fano scheme of lines of the correct dimension —
in fact, all the Fk.X/ have the expected dimension when both d and k are much smaller
than n. But the lower bound on n given there is very large, and examples are few. In
general, we have no idea what to conjecture for the true bound required!

There is a conjecture, however, for the Fano schemes of lines. To motivate it,
note that a general hypersurface X � P2mC1 containing an m-plane will be smooth
(Exercise 6.68) and will contain a copy of the Grassmannian of lines in the m-plane, a
variety of dimension 2m�2. When d > 2mC1, this is larger than the expected dimension
' D 2d � 3 of F1.X/. Another family of such examples is given in Exercise 6.67, but,
just as in the examples above, that construction requires d > n.

Conjecture 6.39 (Debarre–de Jong). If X � Pn is a smooth hypersurface of degree d
with d � n, then the Fano scheme F1.X/ of lines on X has dimension 2n � 3 � d .

One striking aspect of the Debarre–de Jong conjecture is that the inequality d � n
for a smooth hypersurface X � Pn is exactly equivalent to the condition that the anti-
canonical bundle !�X is ample, though it is not clear what role this might play in a proof.

Conjecture 6.39 has been proven for d � 5 by de Jong and Debarre, and for
d � 8 by Beheshti (see for example Beheshti [2006]). One might worry that proving the
conjecture, even for small d , would involve high-dimensional geometry, but as we will
now show, it would be enough to prove the conjecture for n D d .

Proposition 6.40. If dimF1.X/ D d � 3 for every smooth hypersurface of degree d
in Pd , and d � n, then dimF1.X/ D 2n � d � 3 for every smooth hypersurface of
degree d in Pn.

Proof: We have already treated the case of quadrics (Proposition 4.15), so we may
assume that 3 � d � n. Suppose that X � Pn is a smooth hypersurface and L � X
is a line. Let ƒ be a general d -plane in Pn containing L, and let Y D ƒ \ X . By
Lemma 6.41 below, Y is a smooth hypersurface of degree d in ƒ D Pd .

The Fano scheme F1.Y / is the intersection of F1.X/ with the Schubert cycle
†m�n;m�n.ƒ/ � G.1;m/; by the generalized principal ideal theorem,

d � 3 D dimL F1.Y / � dimL F1.X/ � 2.n � d/;

whence dimL F1.X/ � 2n � d � 3, as required.

We have used a special case of the following extension of Bertini’s theorem:
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Lemma 6.41. Let k < n < m; letX � Pm be a smooth hypersurface andL Š Pk � X
a k-plane contained in X . If ƒ Š Pn � Pm is a general n-plane containing L, then the
intersection Y D X \ƒ is smooth if and only if n � 1 � 2k.

Proof: If n � 1 < 2k then Y must be singular, by Corollary 6.26.
For the converse, we may assume by an obvious induction that n D m� 1. Bertini’s

theorem implies that Y is smooth away from L. On the other hand, the locus of tangent
hyperplanes TpX to X at points p 2 L is a subvariety of dimension at most k in the
dual projective space Pm�, while the locus of hyperplanes containing L will be the
.m � k � 1/-plane L? � Pm�. Thus, if n � 1 D m � 2 � 2k, so that k < m � k � 1,
then not every hyperplane containing L is tangent to X at a point of L. It follows that,
for general ƒ, the intersection Y D ƒ \X is smooth.

We can now prove Conjecture 6.39 for d D 4, and thereby give a negative answer
for Keynote Question (d):

Theorem 6.42. If X � Pn is a smooth hypersurface of degree 4, then the Fano scheme
F1.X/ has dimension 2n � 7.

Proof: Proposition 6.40 shows that it is enough to consider the case n D 4. Suppose
F � F1.X/ is an irreducible component with dimF � 2, and let L 2 F be a general
point. By Proposition 6.30, the normal bundle N D NL=X must be either OL˚OL.�1/
or OL.1/˚OL.�2/. Either way, all global sections ofN take values in a line bundle con-
tained in N . It follows that, for any point p 2 L, the map H 0.NL=X /! .NL=X /p D
TpX=TpL has rank at most 1. (Since dimH 0.N / � dimTLF � 2, the normal bundle
must in fact be OL.1/˚OL.�2/, but we do not need this.)

Let Y � X be the subvariety swept out by the lines of F � F1.X/. By Propo-
sition 6.22, Y can have dimension at most 2. But by hypothesis, Y contains a two-
dimensional family of lines. From Proposition 6.3 we conclude that Y is a 2-plane.
Corollary 6.26 tells us this is impossible, and we are done.

6.8.1 Further open problems

The Debarre–de Jong conjecture deals with the dimension of the family of lines on
a hypersurface X � Pn, but we can also ask further questions about the geometry of
F1.X/: for example, whether it is irreducible and/or reduced. Exercises 6.70–6.73, in
which we show that the Fano scheme F1.X/ of lines on the Fermat quartic hypersurface
X � P4 is neither, shows that the Debarre–de Jong statement cannot be strengthened
for all d � n. But — based on our knowledge of examples — it does seem to be the case
that the smaller d is relative to n, the better behaved F1.X/ is for an arbitrary smooth
hypersurface X � Pn of degree d . For example, the following questions are open:

(a) Is F1.X/ is reduced and irreducible if d � n � 1 and X � Pn is a smooth
hypersurface of degree d?
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(b) Can we bound the dimension of the singular locus of F1.X/ in terms of d? (The
arguments above show that for d D 3 the Fano scheme F1.X/ is smooth, while for
d � n it may not be reduced. What about the range 4 � d � n � 1?)

The analogous questions for Fk.X/ with k > 1 are completely open. We can
ask, for example: Given d and k, what is the largest n such that there exists a smooth
hypersurface X � Pn of degree d with dimFk.X/ > .k C 1/.n � k/ �

�
kCd
d

�
? Again,

Harris et al. [1998] says that such n are bounded, but the bound given there is probably
far too large.

Finally, we can ask: Why the Fano schemes instead of other Hilbert schemes? Why
not look, for example, at rational curves of any degree e on a hypersurface? Here the
field is wide open. Specifically, we have an “expected” dimension: Since a rational curve
C � Pn is given parametrically as the image of a map f W P1 ! Pn, which is specified
by nC1 homogeneous polynomials of degree e on P1, and two such .nC1/-tuples have
the same image if and only if they differ by a scalar or by an automorphism of P1, the
space H of such curves has dimension .nC1/.eC1/�4. On the other hand, the condition
for X D V.F / to contain such a curve C Š P1 is that f �F D 0 2 H 0.OP1.de//,
which may be regarded as ed C 1 conditions on X . If we expect these conditions to be
independent then we would expect the fibers of the incidence correspondence

‰ D f.X; C / 2 PN �H jC � Xg

over H to have dimension N � .de C 1/, and ‰ correspondingly to have dimension

.nC 1/.e C 1/ � 4CN � .de C 1/ D N C .n � d/e C nC e � 4:

This leads us to:

Conjecture 6.43. If X � Pn is a general hypersurface of degree d , then X contains a
rational curve of degree e if and only if

�.n; d; e/ WD .n � d/e C nC e � 4 � 0I

when this inequality is satisfied the family of such curves on X has dimension �.n; d; e/.

We proved the conjecture in this chapter for e D 1, but the general case is difficult
(the case n D 4, d D 5 alone is the Clemens conjecture, which has been the object of
much study in its own right). Recently, however, there has been substantial progress: see
Beheshti and Mohan Kumar [2013] and Riedl and Yang [2014].

Note that the analog of the Debarre–de Jong conjecture in this setting — that the
dimension estimate of Conjecture 6.43 holds for an arbitrary smooth X � Pn of
degree d � n— is false; one counterexample is given in Exercise 6.74. But it might
hold when d satisfies a stronger inequality with respect to n, perhaps for d � n=e.
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6.9 Exercises
Exercise 6.44. Show that the expected number of lines on a hypersurface of degree
2n � 3 in Pn (that is, the degree of c2n�2.Sym2n�3 S�/ 2 A.G.1; n//) is always
positive, and deduce that every hypersurface of degree 2n � 3 in Pn must contain a line.
(This is just a special case of Corollary 6.32; the idea here is to do it without a tangent
space calculation.)

Exercise 6.45. Let X � P4 be a general quartic threefold. By Theorem 6.42, X will
contain a one-parameter family of lines. Find the class in A.G.1; 4// of the Fano scheme
F1.X/, and the degree of the surface Y � P4 swept out by these lines.

Exercise 6.46. Find the class of the scheme F2.Q/ � G.2; 5/ of 2-planes on a quadric
Q � P5. (Do the problem first, then compare your answer to the result in Proposi-
tion 4.15.)

Exercise 6.47. Find the expected number of 2-planes on a general quartic hypersurface
X � P7, that is, the degree of c15.Sym4 S�/ 2 A.G.2; 7//.

Exercise 6.48. We can also use the calculation carried out in this chapter to count lines
on complete intersectionsX D Z1\� � �\Zk � Pn, simply by finding the classes of the
schemes F1.Zi / of lines on the hypersurfaces Zi and multiplying them in A.G.1; n//.
Do this to find the number of lines on the intersection X D Y1\Y2 � P5 of two general
cubic hypersurfaces in P5.

Exercise 6.49. Find the Chern class c3.Sym3 S�/ 2 A3.G.1; 3// as a multiple of the
class �2;1. Why is this coefficient equal to the degree of the curve of lines on the
cubic surfaces in a pencil? Note that this computation does not use the universal Fano
scheme ˆ.

Exercise 6.50. Let fXt � P3gt2P2 be a general net of cubic surfaces in P3.

(a) Let p 2 P3 be a general point. How many lines containing p lie on some member
Xt of the net?

(b) Let H � P3 be a general plane. How many lines contained in H lie on some
member Xt of the net?

Compare your answer to the second half of this question to the calculation in Chapter 2
of the degree of the locus of reducible plane cubics!

Exercise 6.51. LetX � P3 be a surface of degree d � 3. Show that if F1.X/ is positive-
dimensional, then either X is a cone or X has a positive-dimensional singular locus.

Exercise 6.52. Let X � P4 be a smooth cubic threefold and

fSt D X \Htgt2P1
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a general pencil of hyperplane sections of X . What is the degree of the surface swept out
by the lines on the surfaces St , and what is the genus of the curve parametrizing them?

Exercise 6.53. Prove Theorem 6.13 using the methods of Section 6.7, that is, by writing
the local equations of Fk.X/ � G.k; n/

Exercise 6.54. Let fStgt2P1 be a general pencil of cubic surfaces, and let ˆ be the
incidence correspondence

ˆ D f.t; L/ 2 P1 �G.1; 3/ jL � Stg:

Using Propositions 6.38 and 7.4, show that the projection ˆ! P1 has degree 27 and
has six branch points over each of the 32 values of t for which St is singular, and deduce
again the conclusion of Corollary 6.37 that the genus of ˆ is 70.

Exercise 6.55. Extending the results of Section 6.7, suppose that X is a general cubic
surface having two ordinary double points p; q 2 X . Describe the scheme structure of
F1.X/ at the point corresponding to the line L D p; q, and in particular determine the
multiplicity of F1.X/ at L.

Exercise 6.56. Let X � P3 be a cubic surface and p; q 2 X isolated singular points
of X ; let L D p; q. Show that L is an isolated point of F1.X/ and that the multiplicity
multL F1.X/ is � 4.

Exercise 6.57. Let X � P3 be a cubic surface and p1; : : : ; pı isolated singular points
of X . Show that no three of the points pi are collinear.

Exercise 6.58. Use the result of the preceding two exercises to deduce the statement
that a cubic surface X � P3 can have at most four isolated singular points.

Exercise 6.59. Using the methods of Section 6.7, show that there exists a pair .X;ƒ/
with X � P7 a quartic hypersurface and ƒ � X a 2-plane such that ƒ is an isolated,
reduced point of F2.X/.

Exercise 6.60. Using the result of Exercise 6.59, show that the number of 2-planes on a
general quartic hypersurface X � P7 is the number calculated in Exercise 6.47 (that is,
the Fano scheme F2.X/ is reduced for general X ).

Exercise 6.61. To complete the proof of Proposition 6.38, letX � P3 be a cubic surface
with one ordinary double point p D .1; 0; 0; 0/, given as the zero locus of the cubic

F.Z0; Z1; Z2; Z3/ D Z0A.Z1; Z2; Z3/C B.Z1; Z2; Z3/;

where A is homogeneous of degree 2 and B homogeneous of degree 3. If we write a
line L � X through p as the span L D p; q, with q D .0;Z1; Z2; Z3/, show that X is
smooth along L n fpg if and only if the zero loci of A and B intersect transversely at
.Z1; Z2; Z3/.
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Exercise 6.62. Show that there exists a smooth quintic threefoldX � P4 whose scheme
F1.X/ of lines contains an isolated point of multiplicity 2.

Exercise 6.63. Let ˆ be the incidence correspondence of triples consisting of a hyper-
surface X � Pn of degree d D 2n � 3, a line L � X and a singular point p of X lying
on L; that is,

ˆ D f.X;L; p/ 2 PN �G.1; n/ � Pn jp 2 L � X and p 2 Xsingg:

Show that ˆ is irreducible.

Exercise 6.64. Let P34 be the space of quartic surfaces in P3.

(a) Show that the closure of the locus of quartics containing a pair of skew lines
has dimension 32.

(b) Show that the closure of the locus of quartics containing a pair of incident lines also
has dimension 32.

(c) Deduce that if fXt D V.t0FCt1G/g is a general pencil of quartics, then no member
Xt of the pencil will contain more than one line.

Exercise 6.65. Suppose that F and G are two quartic polynomials on P3, and that
fXt D V.t0F C t1G/g is the pencil of quartics they generate; let �F and �G be the
sections of the bundle Sym4 S� on G.1; 3/ corresponding to F and G. Let Xt be a
member of the pencil containing a line L � P3.

(a) Find the condition on F andG forL to be a reduced point of V.�F ^�G/ � G.1; 3/.
(b) Show that this is equivalent to the condition that the point .t; L/ 2 P1 �G.1; 3/ is

a simple zero of the map ��1OP1.�1/ ! ��2 Sym4 S� introduced in the proof of
Theorem 6.36.

Exercise 6.66. Let † � P34 be the space of quartic surfaces in P3 containing a line.
Interpret the condition of the preceding problem in terms of the geometry of the pencil
D around the line L, and use this to answer two questions:

(a) What is the singular locus of †?
(b) What is the tangent hyperplane TX† at a smooth point corresponding to a smooth

quartic surface X containing a single line?

The following two exercises give constructions of smooth hypersurfaces containing
families of lines of more than the expected dimension.

Exercise 6.67. Let Z � Pn�2 be any smooth hypersurface. Show that the cone p;Z �
Pn�1 over Z in Pn�1 is the hyperplane section of a smooth hypersurface X � Pn, and
hence that for d > n there exist smooth hypersurfaces X � Pn whose Fano scheme
F1.X/ of lines has dimension strictly greater than 2n � 3 � d .
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Exercise 6.68. Take n D 2mC 1 odd, and let ƒ � Pn be an m-plane. Show that there
exist smooth hypersurfaces X � Pn of any given degree d containing ƒ, and deduce
once more that for d > n there exist smooth hypersurfaces X � Pn whose Fano scheme
F1.X/ of lines has dimension strictly greater than 2n � 3 � d .

Note that the construction of Exercise 6.68 cannot be modified to provide counter-
examples to the Debarre–de Jong conjecture, since by Corollary 6.26 there do not exist
smooth hypersurfaces X � Pn containing linear spaces of dimension strictly greater
than .n � 1/=2. The following exercise shows that the construction of Exercise 6.67 is
similarly extremal. It requires the use of the second fundamental form (see Section 7.4.3).

Exercise 6.69. Let X � Pn be a smooth hypersurface of degree d > 2. Show that X
can have at most finitely many hyperplane sections that are cones.

To see some of the kinds of odd behavior the variety of lines on a smooth hypersur-
face can exhibit, short of having the wrong dimension, the following series of exercises
will look at the Fermat quartic X � P4, that is, the zero locus

X D V.Z40 CZ
4
1 CZ

4
2 CZ

4
3 CZ

4
4/:

The conclusion is that F1.X/ has 40 irreducible components, each of which is every-
where nonreduced! We start with a useful more general fact:

Exercise 6.70. Let S D p;C � P3 be the cone with vertex p over a plane curve C of
degree d � 2, and L � S any line. Show that the tangent space TLF1.S/ has dimension
at least 2, and hence that F1.S/ is everywhere nonreduced.

Exercise 6.71. Show that X has 40 conical hyperplane sections Yi , each a cone over a
quartic Fermat curve in P2.

Exercise 6.72. Show that the reduced locus F1.Yi /red has class 4�3;2.

Exercise 6.73. Using your answer to Exercise 6.45, conclude that

F1.X/ D

40[
iD1

F1.Yi /I

in other words, F1.X/ is the union of 40 double curves.

Exercise 6.74. Show that:

(a) There exist smooth quintic hypersurfaces X � P5 containing a 2-plane P2 � P5.
(b) For such a hypersurface X , the family of conic curves on X has dimension strictly

greater than the number �.5; 5; 2/ of Conjecture 6.43.



Chapter 7
Singular elements of linear
series
Keynote Questions

(a) If fCt D V.t0F C t1G/ � P2gt2P1 is a general pencil of plane curves of degree d ,
how many of the curves Ct are singular? (Answer on page 253.)

(b) Let fCt � P2gt2P2 be a general net of plane curves. What is the degree and
geometric genus of the curve � � P2 traced out by the singular points of members
of the net? What is the degree and geometric genus of the discriminant curve
D D ft 2 P2 jCt is singularg? (Answer in Section 7.6.2.)

(c) Let C � Pr be a smooth nondegenerate curve of degree d and genus g. How many
hyperplanes H � Pr have contact of order at least r C 1 with C at some point?
(Answer on page 268.)

(d) If fCt � P2gt2P1 is a general pencil of plane curves of degree d , how many of
the curves Ct have hyperflexes (that is, lines having contact of order 4 with Ct )?
(Answer on page 405.)

(e) If fCt � P2gt2P4 is a general four-dimensional linear system of plane curves of
degree d , how many of the curves Ct have a triple point? (Answer on page 257.)

In this chapter we introduce the bundle of principal parts associated with a line
bundle L on a smooth variety X . This is a vector bundle on X whose fiber at a point
p 2 X is the space of Taylor series expansions around p of sections of the line bundle,
up to a given order. We will use the techniques we have developed to compute the Chern
classes of this bundle, and this computation will enable us to answer many questions
about singular points and other special points of varieties in families. We will start out
by discussing hypersurfaces in projective space, but the techniques we develop are much
more broadly applicable to families of hypersurfaces in any smooth projective variety X ,
and in Section 7.4.2 we will see how to generalize our formulas to that case.

In the last section (Section 7.7) we introduce a different approach to such questions,
the “topological Hurwitz formula.”
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It is important to emphasize the standing hypothesis that the ground field k is
of characteristic 0. In contrast to the preceding chapters, many of the theorems in this
chapter are false as stated in characteristic p > 0. When it makes the geometric argument
simpler, we will allow ourselves to work over the complex numbers, appealing to the
“Lefschetz principle” to say that the results we obtain apply over any algebraically closed
field of characteristic 0.

7.1 Singular hypersurfaces and the
universal singularity

Before starting on this path, we will take a moment to talk about loci of singular
plane curves, and more generally singular hypersurfaces in Pn. Let PN D P.

dCn
n /�1

be the projective space parametrizing all hypersurfaces of degree d in Pn. Our primary
object of interest is the discriminant locus D � PN , defined as the set of singular
hypersurfaces.

A central role in this chapter will be played by the universal singular point † D
†n;d of hypersurfaces of degree d in Pn, defined as follows:

† D f.Y; p/ 2 PN � Pn jp 2 Ysingg
�2 - Pn

fhypersurfaces Y of degree d in Png D PN
�1 ?

If we write the general form of degree d on Pn as F D
P
aIx

I and think of it as a
bihomogeneous form of bidegree .1; d/ in the coordinates aI of PN and the coordinates
x0; : : : ; xn of Pn, then † is defined by the bihomogeneous equations

F D 0 and
@F

@xi
D 0 for i D 0; : : : ; n;

so † is an algebraic set. Note that the first of these equations is implied by the others
(in characteristic 0!); given the dimension statement of Proposition 7.1 below, this means
that† is a complete intersection of nC1 hypersurfaces of bidegree .1; d�1/ in PN �Pn.

The image D of† in PN is the set of singular hypersurfaces, called the discriminant.
The next proposition shows that D is a hypersurface, and that †! D is a resolution of
singularities:

Proposition 7.1. With notation as above, suppose that d � 2.

(a) The variety † is smooth and irreducible of dimension N � 1 (that is, codimension
nC 1); in fact, the fibers of † over Pn are projective spaces PN�n�1.
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(b) The general singular hypersurface of degree d has a unique singularity, which is an
ordinary double point. In particular, † is birational to its image D � PN .

(c) D is an irreducible hypersurface in PN .

Proof: Let p 2 Pn be a point, and let x0; : : : ; xn be homogeneous coordinates on Pn

such that p D .1; 0; : : : ; 0/. Let f .x1=x0; : : : ; xn=x0/ D x�d0 F.x0; : : : ; xn/ D 0 be
the affine equation of the hypersurface F D 0. For d � 1, the n C 1 coefficients of
the constant and linear terms f0 and f1 in the Taylor expansion of f at p are equal to
certain coefficients of F , so the fiber of † over p is a projective subspace of PN of
codimension nC 1. The first part of the proposition follows from this, and implies that
the discriminant D D �1.†/ is irreducible.

To prove the statements in the second part of the proposition, note that the fiber of
† over a point p 2 Pn contains the hypersurface that is the union of d � 2 hyperplanes
not containing p with a cone over a nonsingular quadric in Pn�1 with vertex p. This
hypersurface has an ordinary double point at p, and is generically reduced. By the
previous argument, the hypersurfaces corresponding to points of the fiber of † over p
form a linear system of hypersurfaces, with no base points other than p. Bertini’s theorem
shows that a general member of this system is smooth away from p. Thus the fiber of the
map �1 W †! D � PN over a general point of D consists of just one point, showing
that the map is birational onto its image. Since smoothness is an open condition on a
quadratic form, the general member has only an ordinary double point at p.

The fact that †, which has dimension N � 1, is birational to D shows that D also
has dimension N � 1, completing the proof.

The defining equation of D � PN is difficult to write down explicitly, though of
course it can be computed in principle by elimination theory. There are determinantal
formulas in a few cases: see for example Gelfand et al. [2008] and Eisenbud et al.
[2003]. Even in relatively simple cases such as n D 1 the discriminant locus has a lot of
interesting features, as a picture of the real points of the discriminant of a quartic f .a/ D
x4Cax2C bxC c in one variable suggests (see Figure 7.1). For a nice animation of the
discriminant of a quartic polynomial, see http://youtu.be/MV2uVYqGiNc, created by
Hans-Christian Graf v. Bothmer and Oliver Labs as part of their Geometrical Animations
Advent Calendar.

In view of Proposition 7.1, we can rephrase the first keynote question of this chapter
as asking for the number of points of intersection of a general line L � PN with the
hypersurface D; that is, the degree of D. How can we determine this if we cannot write
down the form? As we will see below, Chern classes provide a mechanism for doing
exactly this.

There is an interpretation of the discriminant hypersurface in PN that relates D to
an object previously encountered in Chapter 1. The d -th Veronese map �d embeds Pn in
the dual PN� of the projective space PH 0.OPn.d//, in such a way that the intersection
of �d .Pn/ with the hyperplane corresponding to a point F 2 PN is isomorphic, via �d ,

http://youtu.be/MV2uVYqGiNc
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Figure 7.1 Real points of the discriminant of a quartic polynomial.

to the corresponding hypersurface F D 0 in Pn. Thus the discriminant is the set of
hyperplanes in PN� that have singular intersection with �d .Pn/, or, equivalently, those
that contain a tangent plane to �d .Pn/. This is the definition of the dual variety to
�d .Pn/, which we first encountered in Section 2.1.3. Proposition 7.1 shows that the dual
of �d .Pn/ is a hypersurface, and that the general tangent hyperplane is tangent at just
one point, at which the intersection has an ordinary double point.

7.2 Bundles of principal parts
We can simplify the problem of describing the discriminant by linearizing it. We

do not ask “is the hypersurface X D V.F / singular?”; rather, we ask for each point
p 2 Pn in turn the simpler question “is X singular at p?”. This is very much analogous
to our approach to lines on hypersurfaces, where instead of asking “does X contains
lines?” we asked for each line L “does X contain L?”. As in that context, this approach
converts a higher-degree equation in the coefficients of F into a family of systems of
linear equations, whose solution set we can then express as the vanishing of a section of
a vector bundle.

For each point p 2 Pn, we have an .nC 1/-dimensional vector space

Ep D
fgerms of sections of OPn.d/ at pg
fgerms vanishing to order � 2 at pg

:

This space should be thought of as the vector space of first-order Taylor expansions of
forms of degree d . We will see that the spaces Ep fit together to form a vector bundle,
called the bundle of first-order principal parts, which we will write as P1.OPn.d//.
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A form F of degree d will give rise to a section �F of this vector bundle whose value at
the point p is the first-order Taylor expansion of F locally at p, and whose vanishing
locus is thus the set of singular points of the hypersurface F D 0.

An important feature of the situation is that each vector space Ep has a naturally
defined subspace: the space of germs vanishing at p. These subspaces will, as we will
see, glue together into a subbundle of P1. Using the Whitney formula (Theorem 5.3),
this will help evaluate the Chern classes of the bundle.

We can generalize this in two ways: We can replace “2” by “mC 1,” with m any
positive integer; and we can replace the forms of degree d by the sections of a coherent
sheaf on an arbitrary varietyX (though in practice we will be working almost exclusively
with line bundles on smooth varieties). To make this precise, let L be a quasi-coherent
sheaf on a k-scheme X , and write �1; �2 W X �X ! X for the projections onto the two
factors. Let I be the ideal of the diagonal in X �X . We set

Pm.L/ D �2�.��1L˝OX�X=ImC1/;

which is a quasi-coherent sheaf on X . When X is smooth we call this the bundle of
principal parts. We will parse and explain this expression below, but first we list its very
useful properties:

Theorem 7.2. The sheaves Pm.L/ have the following properties:

(a) If p 2 X is a closed point, then there is a canonical identification of the fiber
Pm.L/ ˝ �.p/ of Pm.L/ at p with the sections of the restriction of L to the
m-th-order neighborhood of p; that is,

Pm.L/˝ �.p/ D H 0.L˝OX;p=mmC1X;p /

as vector spaces over �.p/ D OX;p=mX;p D k. In other words,

Pm.L/˝ �.p/ D
fgerms of sections of L at pg

fgerms vanishing to order � mC 1 at pg
:

(b) If F 2 H 0.L/ is a global section, then there is a global section �F 2 H 0.Pm.L//
whose value at p is the class of F in H 0.L˝OX;p=mmC1X;p /.

(c) P0.L/ D L, and for each m > 0 there is a natural right exact sequence

L˝ Symm.�X / �! Pm.L/ �! Pm�1.L/ �! 0;

where �X denotes the sheaf of k-linear differential forms on X .

(d) If X is smooth and of finite type over k and L is a vector bundle on X , then Pm.L/
is a vector bundle on X , and the right exact sequences of part (c) are left exact
as well.
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Proof: Since the constructions all commute with restriction to open sets, we may
harmlessly suppose that X D SpecR is affine. Thus also X � X D SpecS , where
S WD R˝k R. We may think of L as coming from an R-module L, and then ��1L WD
L˝K R. Pushing a (quasi-coherent) sheaf M on X �X forward by �2� simply means
considering the corresponding S-module as an R-module via the ring map R ! S

sending r to 1˝k r .
In this setting, the sheaf of ideals I defining the diagonal embedding of X in

X � X corresponds to the ideal I � S that is the kernel of the multiplication map
S D R˝k R! R. If R is generated as a k-algebra by elements xi , then I is generated
as an ideal of S by the elements xi ˝ 1 � 1˝ xi .

With this notation, we see that the R-module corresponding to the sheaf Pm.L/ can
be written as

Pm.L/ D .L˝k R/=I
mC1.L˝k R/;

regarded as an R-module by the action f 7! 1˝ r as above.
Part (a) now follows: If the k-rational point p corresponds to the maximal ideal

m D Ker
�
R

'
��! k

�
; ' W xi 7! ai ;

then in R=m˝R S Š R the class of xi ˝k 1� 1˝k xi is xi ˝k 1� 1˝k ai D xi � ai .
Thus

Pm.L/˝R R=m D L=.fxi ˝k 1 � 1˝k xig/
mC1L D L=.fxi � aig/

mC1L;

as required.
Part (b) is similarly obvious from this point of view: The section �F can be taken to

be the image of the element F ˝k 1 in .L˝kR/=I
mC1.L˝kR/. As the construction is

natural, these elements will glue to a global section when we are no longer in the affine
case.

Part (c) requires another important idea: The module of k-linear differentials �R=k
is isomorphic, as an R-module, to I=I 2, which has a universal derivation ı W R! I=I 2

given by ı.f / D f ˝k 1 � 1˝k f . This is plausible, since when X is smooth one can
see geometrically that the normal bundle of the diagonal, which is Hom.I=I 2; R/, is
isomorphic to the tangent bundle of X , which is Hom.�R=k; R/. See Eisenbud [1995,
Section 16.8] for further discussion and a general proof. Given this fact, the obvious
surjection Symm.�R=k/ Š Symm.I=I 2/ ! Im=ImC1 yields the desired right exact
sequence.

Finally, it is enough to prove part (d) locally at a point q 2 X � X . If q is not on
the diagonal then, after localizing, I is the unit ideal, and the result is trivial, so we may
assume that q D .p; p/. Locally at p, the module L is free, so it suffices to prove the
result when L D R.
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X

X

X �X

�X

N�X=X�X Š TX

Figure 7.2 The normal bundle of the diagonal �X � X � X is isomorphic to the
tangent bundle of X .

Write d W R! �R=k for the universal k-linear derivation of R. Since X is smooth,
�R=k is locally free at p, and is generated there by elements d.x1/; : : : ; d.xn/, where
x1; : : : ; xn is a system of parameters at p, and thus Symm.�R=k/ is the free module
generated by the monomials of degree m in the d.xi /. Since R is a domain, I is a
prime ideal.

Because Symm.�R=k/ is free, it suffices to show that the map

Symm.�R=k/! S=ImC1

is a monomorphism (in fact, an isomorphism onto Im=ImC1) after localizing at the
prime ideal I . Since I=I 2 Š �R=k is free on the classes mod I 2 of the elements
xi˝k1�1˝kxi that correspond to the d.xi /, Nakayama’s lemma shows that, in the local
ring SI , II is generated by the images of the xi˝k 1�1˝kxi themselves, and it follows
that these are a regular sequence. Thus the associated graded ring SI=II ˚ II=I 2I ˚ � � �
is a polynomial ring on the classes of the elements xi ˝k 1 � 1˝k xi , and in particular
the monomials of degree m in these elements freely generate ImI =I

mC1
I . Consequently,

the map SI ˝S Symm.�R=k/! ImI =I
mC1
I is an isomorphism, as desired.

Remark. The name “bundle of principal parts,” first used by Grothendieck and Dieud-
onné, was presumably suggested by the (conflicting) usage that the “principal part” of
a meromorphic function of one variable at a point is the sum of the terms of negative
degree in the Laurent expansion of the function around the point — a finite power series,
albeit in the inverse variables. It is not the only terminology in use: Pm.L/ would be
called the bundle of m-jets of sections of L by those studying singularities of mappings
(see for example Golubitsky and Guillemin [1973, II.2]) and some algebraic geometers
(for example Perkinson [1996].) On the other hand, the m-jet terminology is in use in
another conflicting sense in algebraic geometry: the “scheme of m-jets” of a scheme X
is used to denote the scheme parametrizing mappings from Spec kŒx�=.xmC1/ into X .
So we have thought it best to stick to the Grothendieck–Dieudonné usage.
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Example 7.3. We will not use this in any of the calculations below, but in the simplest
and most interesting case, where m D 1, X D Pn and L D OPn.d/, it is possible to
describe the bundle P1.OPn.d// very explicitly:

P1.OPn.d// Š

�
�Pn ˚OPn if d D 0;
OPn.d � 1/

nC1 if d ¤ 0:

This curious dichotomy is explained by the answer to a more refined question: By
part (d), we have a short exact sequence

0 �! �Pn.d/ �! P1.OPn.d// �! OPn.d/ �! 0;

and we can ask for its class in

Ext1Pn.OPn.d/;�Pn.d// Š Ext1Pn.OPn ; �Pn/ D H
1.�Pn/ D k:

More generally, for any line bundle L on a smooth variety X , the short exact sequence
in part (d) gives us a class in

Ext1X .L; �X ˝ L/ D H 1.�X /;

called the Atiyah class of L and denoted at.L/ (Atiyah [1957] and Illusie [1972]). The
formula for P1.OPn.d// follows at once from the more refined and more uniform
result that

at.OPn.d// D d � �;

where � 2 Ext1Pn.OPn ; �Pn/ is the class of the tautological sequence

0 �! �Pn �! OPn.�1/
nC1 .x0;:::;xn/
��������! OPn �! 0:

See Perkinson [1996, 2.II] and Re [2012] for an analysis of all the Pm.

7.3 Singular elements of a pencil

7.3.1 From pencils to degeneracy loci

Using the bundle of principal parts, we can tackle a slightly more general version of
Keynote Question (a): How many linear combinations of general polynomials F and G
of degree d on Pn have singular zero loci? By Proposition 7.1, none of the hypersurfaces
Xt D V.t0F C t1G/ of the pencil will be singular at more than one point. Furthermore,
no two elements of the pencil will be singular at the same point, since otherwise every
member of the pencil would be singular there. Thus, the general form of the keynote
question is equivalent to the question: For how many points p 2 Pn is some element Xt
of the pencil singular at p? This, in turn, amounts to asking at how many points p 2 Pn



252 Chapter 7 Singular elements of linear series

are the values �F .p/ and �G.p/ in the fiber of P1.OPn.d// at p linearly dependent,
given that they are dependent at finitely many points? We can do this with Chern classes,
provided that the degeneracy locus is reduced; we will establish this first.

To start, consider the behavior of the sections �F and �G around a point p 2 Pn

where they are dependent. At such a point, some linear combination t0F C t1G— which
we might as well take to be F — vanishes to order 2. If G were also zero at p, then the
scheme V.F;G/ would have (at least) a double point at p. But Bertini’s theorem shows
that a general complete intersection such as V.F;G/ is smooth, so this cannot happen;
thus we can assume that G.p/ ¤ 0.

To show that V.�F ^ �G/ is reduced at p, we restrict our attention to an affine
neighborhood of p where all our bundles are trivial. By Proposition 7.1, the hypersurface
C D V.F / has a node at p, so if we work on an affine neighborhood where the bundle
OPn.d/ is trivial, and take p to be the origin with respect to coordinates x1; : : : ; xn, we
may assume that the functions F and G have Taylor expansions at p of the form

f D f2 C .terms of order > 2/;

g D 1C .terms of order � 1/:

The sections �F and �G are then represented locally by the rows of the matrix�
f @f=@x1 � � � @f=@xn

g @g=@x1 � � � @g=@xn

�
:

The vanishing locus of �F ^ �G near p is, by definition, defined by the 2 � 2 minors
of this matrix, and to prove that it is a reduced point we need to see that it contains n
functions (vanishing at p) with independent linear terms. Suppressing all the terms of
the functions in the matrix that could not contribute to the linear terms of the minors, we
get the matrix �

0 @f2=@x1 � � � @f2=@xn

1 0 � � � 0:

�
:

Thus there are 2� 2 minors whose linear terms are @f2=@x1; : : : ; @f2=@xn, and these are
linearly independent because f2 D 0 is a smooth quadric and the characteristic is not 2.

As usual, if we assign multiplicities appropriately, we can extend the calculations to
pencils whose degeneracy locus V.�F ^ �G/ is nonreduced. In Section 7.7.2 we will see
one way to calculate these multiplicities.

7.3.2 The Chern class of a bundle of principal parts

Once again, let F;G be general forms of degree d on Pn. As we saw in the previous
section, the linear combinations t0F C t1G that are singular correspond exactly to points
where the two sections �F and �G are dependent. The degeneracy locus of �F and
�G is the n-th Chern class of the rank-.nC 1/ bundle P1.OPn.d//, so we turn to the
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computation of this class. For brevity, we will shorten P1.OPn.d// to P1.d/, but the
reader should keep in mind that this is not “a bundle P1 tensored with O.d/!”

Stated explicitly, if � 2 A1.Pn/ denotes the class of a hyperplane in Pn, we want to
compute the coefficient of �n in

c.P1.d// 2 A.Pn/ Š ZŒ��=.�nC1/:

Parts (c) and (d) of Theorem 7.2 give us a short exact sequence

0 �! �Pn.d/ �! P1.d/ �! OPn.d/ �! 0;

so c.P1.d// D c.OPn.d// � c.�Pn.d//. (See Proposition 7.5 for the other Pm.d/.)
On the other hand, �Pn fits into a short exact sequence

0 �! �Pn �! OPn.�1/
nC1
�! OPn �! 0:

Tensoring with O.d/, we get an exact sequence

0 �! �Pn.d/ �! OPn.d � 1/
nC1
�! OPn.d/ �! 0

similar to the one involving P1.d/. This does not mean that P1.d/ and OPn.d � 1/
nC1

are isomorphic (they are not), but by the Whitney formula their Chern classes agree:

c.P1.d// D c.OPn.d � 1/
nC1/ D .1C .d � 1/�/nC1:

Putting this formula together with the idea of the previous section, we deduce:

Proposition 7.4. The degree of the discriminant hypersurface in the space of forms of
degree d on Pn is

deg cn.P1.d// D .nC 1/.d � 1/n;

and this is the number of singular hypersurfaces in a general pencil of hypersurfaces of
degree d in Pn.

In particular, this answers Keynote Question (a): A general pencil of plane curves of
degree d will have 3.d � 1/2 singular elements.

It is pleasant to observe that the conclusion agrees with what we get from elementary
geometry in the cases where it is easy to check, such as those of plane curves (n D 2)
with d D 1 or d D 2. For d D 1, the statement c2 D 0 simply means that there are no
singular elements in a pencil of lines. The case d D 2 corresponds to the number of
singular conics in a general pencil fCtg of conics. To see that this is really 3.d �1/2 D 3,
note that the pencil fCtg consists of all conics passing through the four (distinct) base
points, and a singular element of the pencil will thus be the union of a line joining two of
the points with the line joining the other two. There are indeed three such pairs of lines
(see Figure 7.3).
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A

X

Y

C

B

Figure 7.3 A;B;C are the singular elements of the pencil of plane conics containing
X and Y .

We could also get the number 3 by viewing the pencil of conics as given by a
3 � 3 symmetric matrix M of linear forms on P2 whose entries vary linearly with a
parameter t ; the determinant of M will then be a cubic polynomial in t .

As the reader may have noticed, there is a simpler way to arrive at the formula of
Proposition 7.4. We observed in Section 7.1 that the universal singularity

† D f.Y; p/ 2 PN � Pn jp 2 Ysingg

is a complete intersection of nC 1 hypersurfaces of bidegree .1; d � 1/ in PN � Pn.
Denoting by ˛ and � the pullbacks to PN � Pn of the hyperplane classes in PN and Pn,
this means that † has class

Œ†� D .˛ C .d � 1/�/nC1

D ˛nC1 C
�nC1

1

�
˛n.d � 1/� C � � � C

�nC1
n

�
˛n.d � 1/n�n:

When we push this class forward to PN , all the terms go to 0 except the last, from
which we can conclude that the class of the discriminant hypersurface D is ŒD� D
.nC 1/.d � 1/n˛; that is, D D �1.†/ has degree .nC 1/.d � 1/n.

Why did we adopt the approach via principal parts, given this alternative? The
answer is that, as we will see in Section 7.4.2, the principal parts approach can be applied
to linear series on arbitrary smooth varieties; the alternative we have just given applies
only to projective space.

It is easy to extend the Chern class computation in Proposition 7.4 to all the
Pm.OPn.d//, and this will be useful in the rest of this chapter:

Proposition 7.5. c
�
Pm.OPn.d//

�
D .1C .d �m/�/.

nCm
n /:
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Proof: We will again use the exact sequences of Theorem 7.2. With the Whitney formula,
they immediately give

c
�
Pm.OPn.d//

�
D

mY
jD0

c.Symj .�Pn/.d//:

To derive the formula we need, we apply Lemma 7.6 below to the exact sequence

0 �! �Pn �! OPn.�1/
nC1
�! OPn �! 0

and the line bundle L WD OPn.d/. To simplify the notation, we set U D OPn.�1/
nC1.

The lemma yields

c.Symj .�Pn/.d// D c.Symj .U/.d// � c.Symj�1.U/.d//�1

for all j � 1. Combining this with the obvious equality Sym0.�Pn/.d/ D OPn.d/, we
see that the product in the formula for c

�
Pm.OPn.d//

�
is

c.OPn.d// �
c.Sym1.U/.d//
c.OPn.d//

�
c.Sym2.U/.d//
c.Sym1.U/.d//

� � � ;

which collapses to

c
�
Pm.OPn.d//

�
D c.Symm.U/.d//:

But

c.Symm.U/.d// D c.Symm.OPn.�1/
nC1/.d// D c

�
OPn.�m/

.nCmn /.d/
�

D c
�
OPn.d �m/

.nCmn /
�

D .1C .d �m/�/.
nCm
n /;

yielding the formula of the proposition.

Lemma 7.6. If

0 �! A �! B �! C �! 0

is a short exact sequence of vector bundles on a projective variety X with rank C D 1,
then, for any j � 1,

c.Symj .A/˝ L/ D c.Symj .B/˝ L/ � c.Symj�1.B/˝ C ˝ L/�1:

Proof: For any right exact sequence of coherent sheaves

E �! F �! G �! 0;

the universal property of the symmetric powers (see, for example, Eisenbud [1995,
Proposition A2.2.d]) shows that for each j � 1 there is a right exact sequence

E ˝ Symj�1.F/ �! Symj .F/ �! Symj .G/ �! 0:
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Since A;B and C are vector bundles, the dual of the exact sequence in the hypothesis is
exact, and we may apply the result on symmetric powers with G D A�;F D B� and
E D C�.

In this case, since rank E D rank C D 1, the sequence

0 �! E ˝ Symj�1.F/ �! Symj .F/ �! Symj .G/ �! 0

is left exact as well, as one sees by comparing the ranks of the three terms (this is a
special case of a longer exact sequence, independent of the rank of E , derived from the
Koszul complex).

Since these are all bundles, dualizing preserves exactness, and we get an exact
sequence

0 �! Symj .A�/� �! Symj .B�/� �! Symj�1.B�/� ˝ C �! 0:

Of course the double dual of a bundle is the bundle itself, and the dual of the j -th
symmetric power is naturally isomorphic to the j -th symmetric power of the dual, so all
the �’s cancel, and we can deduce the lemma from the Whitney formula.

7.3.3 Triple points of plane curves

We can adapt the preceding ideas to compute the number of points of higher order
in linear families of hypersurfaces. By way of example we consider the case of triple
points of plane curves.

Let PN be the projective space of all plane curves of degree d � 3, and let

†0 D f.C; p/ 2 PN � P2 j multp.C / � 3g:

The condition that a curveC have a triple point at a given point p 2 P2 is six independent
linear conditions on the coefficients of the defining equation of C , from which we see
that the fibers of the projection map †0 ! P2 on the second factor are linear spaces
PN�6 � PN , and hence that †0 is irreducible of dimension N � 4. It follows that
the set of curves with a triple point is irreducible as well. An argument similar to that
for double points also shows that a general curve f D 0 with a triple point has only
one. In particular, the projection map †0 ! PN on the first factor is birational onto
its image. It follows in turn that the locus ˆ � PN of curves possessing a point of
multiplicity 3 or more is an irreducible variety of dimension N � 4. We also see that
if C is a general curve with a triple point at p, then p is an ordinary triple point of C ;
that is, the projectivized tangent cone TCpX is smooth or, equivalently, the cubic term
f3 of the Taylor expansion of f around p has three distinct linear factors.

We ask now for the degree of the variety of curves with a triple point, or, equivalently,
the answer to Keynote Question (e): If F0; : : : ; F4 are general polynomials of degree d
on P2, for how many linear combinations Ft D t0F0 C � � � C t4F4 (up to scalars) will
the corresponding plane curve Ct D V.Ft / � P2 have a triple point?
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If we write �F for the section defined by F in P2.OP2.d//, then C has a triple
point at p if and only if �F vanishes at p. An argument analogous to the one given in
Section 7.3.1, together with the smoothness of the tangent cone at a general triple point,
shows that the 5� 5 minors of the map O5

P2
! P2.OP2.d// generate the maximal ideal

locally at a general point where a linear combination of the Fi defines a curve with an
ordinary triple point.

Thus the number of triple points in the family is the degree of the second Chern
class c2

�
P2.OP2.d//

�
. By Proposition 7.5,

c
�
P2.OP2.d//

�
D .1C .d � 2/�/6 D 1C 6.d � 2/� C 15.d2 � 4d C 4/�2:

Proposition 7.7. If ˆ D ‰d;n � PN is the locus in the space of all curves of degree d
in P2 of curves having a triple point, then for d � 2

deg.ˆ/ D 15.d2 � 4d C 4/:

In case d D 1, the number 15 computed is of course meaningless, because the
expected dimension N � 4 of ˆ is negative — any five global sections �Fi of the bundle
P2.O.1// are everywhere-dependent. On the other hand, the number 0 computed in the
case d D 2, which is 0, really does reflect the fact that no conics have a triple point. For
d D 3, the computation above gives 15, a number we already computed as the degree of
the locus of “asterisks” in Section 2.2.3.

7.3.4 Cones

As we remarked, the calculation in the preceding section is a generalization of
the calculation in Section 2.2.3 of the degree of the locus ˆ parametrizing triples of
concurrent lines (“asterisks”) in the space P9 parametrizing plane cubic curves. There
is another generalization of this problem: We can ask for the degree, in the space PN

parametrizing hypersurfaces of degree d in Pn, of the locus ‰ of cones. We are now in
a position to answer that more general problem, which we will do here.

We will not go through the steps in detail, since they are exactly analogous to the
last calculation; the upshot is that the degree of ‰ is the degree of the n-th Chern class
of the bundle Pd�1.OPn.d//. By Proposition 7.5,

c
�
Pd�1.OPn.d//

�
D .1C �/.

nCd�1
n /;

and so we have:

Proposition 7.8. If ‰ D ‰d;n � PN is the locus of cones in the space of all hyper-
surfaces of degree d in Pn, then

deg.‰/ D
��nCd�1

n

�
n

�
:
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Thus, for example, in case d D 2 we see again that the locus of singular quadrics
in Pn is n C 1, and in case d D 3 and n D 2 the locus of asterisks has degree 15.
Likewise, in the space P14 of quartic plane curves, the locus of concurrent 4-tuples of
lines has degree ��5

2

�
2

�
D

�10
2

�
D 45:

Compare this to the calculation in Exercise 2.57!

7.4 Singular elements of linear series in
general

Let X be a smooth projective variety of dimension n, and let W D .L; W / be
a linear system on X . We think of the elements of PW as divisors in X , and, as in
Section 7.1, we introduce the incidence correspondence

†W D f.Y; p/ 2 PW �X jp 2 Ysingg

with projection maps �1 W †! PW and �2 W †! X . Also as in Section 7.1 we denote
by D D �1.†/ � PW the locus of singular elements of the linear series W , which we
again call the discriminant.

As mentioned in the introduction to this chapter, the techniques developed so far
apply as well in this generality. What is missing is the analog of Proposition 7.1: We do
not know in general that † is irreducible of codimension nC 1, we do not know that it
maps birationally onto D (as we will see more fully in Section 10.6, the discriminant
D may have dimension strictly smaller than that of †) and we do not know that the
general singular element of W has one ordinary double point as its singularity. Thus
the formulas we derive in this generality are only enumerative formulas, in the sense
of Section 3.1: They apply subject to the hypothesis that the loci in question do indeed
have the expected dimension, and even then only if multiplicities are taken into account.

That said, we can still calculate the Chern classes of the bundle of principal parts
P1.L/, and derive an enumerative formula for the number of singular elements of a
pencil of divisors (that is, the degree of D � PW , in case D is indeed a hypersurface);
we will do this in Section 7.4.1 below.

We note one interpretation of D in case the linear series PW is very ample. If
X � PN is a smooth variety and

W D .OX .1/;W / with W D H 0.OPN .1//jX

is the linear series of hyperplane sections of X , then a section in W is singular if and
only if the corresponding hyperplane is tangent to X . Thus the set of points in PW
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corresponding to such sections is the dual variety to X , and the number of singular
elements in a general pencil of these sections is the degree of the dual variety. We will
treat dual varieties more thoroughly in Section 10.6.

7.4.1 Number of singular elements of a pencil

Let X be a smooth projective variety of dimension n and W D .L; W / a pencil of
divisors on X (typically, a general pencil in a larger linear series). We can use the Chern
class machinery to compute the expected number of singular elements of W . To simplify
the notation, we will denote the first Chern class of the line bundle L by � 2 A1.X/,
and the Chern classes of the cotangent bundle �X of X simply by c1; c2; : : : ; cn.

From the exact sequence

0 �! �X ˝ L �! P1.L/ �! L �! 0

and Whitney’s formula, we see that the Chern class of P1.L/ is the Chern class of
L˝ .OX ˚�X /. Since ci .OX ˚�X / D ci .�X / D ci , we may apply the formula for
the Chern class of a tensor product of a line bundle (Proposition 5.17) to arrive at

ck.P1.L// D
kX
iD0

�nC1�i
k�i

�
�k�ici :

In particular,

cn.P1.L// D
nX
iD0

.nC 1 � i/�n�ici

D .nC 1/�n C n�n�1c1 C � � � C 2�cn�1 C cn: (7.1)

As remarked above, this represents only an enumerative formula for the number
of singular elements of a pencil. But the calculations of Section 7.3.1 hold here as
well: A singular element Y of a pencil corresponds to a reduced point of the relevant
degeneracy locus if Y has just one ordinary double point as its singularity. Thus we have
the following:

Proposition 7.9. LetX be a smooth projective variety of dimension n. If W D .L; W / is
a pencil of divisors on X having finitely many singular elements D1; : : : ;Dı such that

(a) each Di has just one singular point,
(b) that singular point is an ordinary double point, and
(c) that singular point is not contained in the base locus of the pencil,

then the number ı of singular elements is the degree of the class

.L/ WD cn.P1.L// D .nC 1/�n C n�n�1c1 C � � � C 2�cn�1 C cn 2 An.X/;

where � D c1.L/ and ci D ci .�X /.
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Naturally, there will be occasions when we want to apply this formula but may
not be able to verify hypotheses (a)–(c) of Proposition 7.9 — for example, as we will
see in Section 10.6, these hypotheses are not necessarily satisfied by a general pencil
of hyperplane sections of a smooth projective variety X � Pr . It is worth asking,
accordingly, what can we conclude from the enumerative formula in the absence of these
hypotheses.

First off, if the class .L/ is nonzero, then we can conclude that the pencil W must
have singular elements; this applies to any pencil on any variety. Secondly, if W is a
general pencil in a very ample linear series V D .L; V /, we can form the universal
singular point, as in Section 7.1:

† D f.v; p/ 2 PV �X jp 2 .Dv/singg;

where Dv � X is the divisor corresponding to the element v 2 PV . As in the proof of
Proposition 7.1, we see that the fibers of † over X are projective spaces of codimension
nC1 in PV , and hence that† has codimension nC1 in PV �X ; it follows that the preim-
age of a general pencil PW � PV is† will be finite. We can conclude, therefore, that in
this situation the degree of the class .L/ must be nonnegative, and if it is 0 then W will
have no singular elements — in other words, the locus of singular elements of the linear
system V has codimension >1 in PV , and every singular element will have positive-
dimensional singular locus. We will see an example of a situation where this is the case
in Exercise 7.28 below, and investigate the question in more detail in Section 10.6.

Finally, we will see in Section 7.7.2 below a way of calculating multiplicities of the
relevant degeneracy locus topologically, so that even in case the singular elements of
W do not satisfy the hypothesis of having only one ordinary double point we can say
something about the number of singular elements. (The conclusions of Section 7.7.2 are
stated only for pencils of curves on a surface, but analogous statements hold in higher
dimension as well.)

7.4.2 Pencils of curves on a surface

By way of an example, we will apply the results of Proposition 7.9 to pencils of
curves on surfaces. For the case d D 2, see Exercises 7.22 and 7.23.

Suppose that X � P3 is a smooth surface of degree d and that V is the linear series
of intersections of X with surfaces of degree e, so that L D OX .e/.

We claim that the three hypotheses of Proposition 7.9 are satisfied for a general
pencil W � V :

(a) The fact that a general singular element of W (equivalently, of V) has only one
singularity in the case e D 1 is somewhat subtle; it is equivalent to the statement that
the Gauss map from the surface to its dual variety is birational. (This is sometimes
false in characteristic p!) This statement is proven for all smooth hypersurfaces in
Corollary 10.21.
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The case e > 1 can be deduced from the case e D 1 by using Bertini’s theorem and
Proposition 7.10.

(b) The fact that the singularity of a general singular element of W is an ordinary double
point is also tricky. Again, it follows for e > 1 from the case e D 1, and when e D 1 it
can be done for a general surface X � P3 by an incidence correspondence/dimension
count argument (Exercise 7.42). For an arbitrary X , however, it requires the introduction
of the second fundamental form; we will describe this in the following section and use it
to prove the statement we want in Theorem 7.11.

(c) Finally, the third hypothesis of Proposition 7.9 follows much as in the case of plane
curves: By Bertini’s theorem, the base locus of a general pencil in a very ample linear
series is smooth — in this case a set of reduced points — and a reduced point on a smooth
surface cannot be the intersection of two divisors if one of them is singular.

We have used:

Proposition 7.10. Let � � Pn be a finite subscheme with homogeneous coordinate
ring S� .

(a) � imposes independent conditions on forms of degree deg� � 1.

(b) � fails to impose independent conditions on forms of degree � � 2 if and only if �
is contained in a line.

(c) Let l be a general linear form, and set R� WD S�=.l/S� . In general, � imposes
independent conditions on forms of degree e in Pn if and only if R� is 0 in degree e.

Since R� is generated as an S� -module in degree 0, the range of integers e such
that .R�/e ¤ 0 is an interval in Z of the form Œ0; : : : ; r�, and the number r is called the
Castelnuovo–Mumford regularity of R� . See Eisenbud [2005, Chapter 4] for more on
this important notion.

Proof: The condition that � imposes independent conditions on forms of degree s is
equivalent to the statement that .dimS�/s D deg� .

Using the exact sequences

0 �! .S�/t�1
� l
��! .S�/t �! .R�/t �! 0;

we see that dimk.S�/s D
Ps
tD0 dimk.R�/t .

By Eisenbud [1995, Section 1.9], the dimension ofR� is the degree of the scheme � ,
proving Part (c). Part (a) is an immediate consequence. If � is not contained in a line,
then .R�/1 � 2, so .R�/deg��1 D 0, proving Part (b). See Eisenbud and Harris
[1992].
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Letting � 2 A1.X/ denote the restriction of the hyperplane class, we have c1.L/ D
e�, and, as we have seen,

c.TX / D
c.TP3/
c.NX=P3/

D
.1C �/4

1C d�

D .1C 4� C 6�2/.1 � d� C d2�2/

D 1C .4 � d/� C .d2 � 4d C 6/�2:

Thus c1 D .d � 4/� and c2 D .d2 � 4d C 6/�2. From (7.1), above we see that

c2.P.L// D .3e2 C 2.d � 4/e C d2 � 4d C 6/�2:

Finally, since deg.�2/ D d , the number of singular elements in the pencil of curves on a
smooth surface X � P3 of degree d cut by a general pencil of surfaces of degree e is

deg c2.P.L// D d.3e2 C 2.d � 4/e C d2 � 4d C 6/: (7.2)

As explained above, this will be the degree of the dual surface of the e-th Veronese
image �e.X/ of X . For example, when e D 1 this reduces to

degX� D d.d � 1/2;

as calculated in Section 2.1.3.
When e D 2, we are computing the expected number of singular points in the

intersection of X with a general pencil fQt � P3gt2P1 of quadric surfaces in P3, and
we find that it is equal to

d3 C 2d:

The reader should check the case d D 1 directly! We invite the reader to work out some
more examples, and to derive analogous formulas in higher (and lower!) dimensions, in
Exercises 7.22–7.27.

7.4.3 The second fundamental form

A useful tool in studying singularities of elements of linear series is the second
fundamental form SX of a smooth variety X � Pn. The notion was first considered
in differential geometry, and is usually described using a metric, but we give a purely
algebro-geometric treatment. We will explain the definition and an application; more
information can be found, for example, in Griffiths and Harris [1979].
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As we shall see at the end of this section, the second fundamental form is closely
related to the Gauss map GX W X ! G.k; n/, which sends each point p 2 X to
its tangent plane TpX � Pn: The information SX carries is equivalent to that of
the differential

dGX W TX ! G�XTG.k;n/:

(See Section 2.1.3 for the definition of the Gauss map for hypersurfaces, and below for
the general case.)

Since we will be dealing with both duals and pullbacks of vector bundles in this
section, we will write the dual of a bundle E as E_ instead of our more usual E�.

Throughout this section X will denote a smooth subvariety of dimension k in Pn.
We will define S D SX to be a map of sheaves on X

S W IX=I2X ! Sym2.T _X /:

We regard Sym2.T _X / as the bundle of quadratic forms on the tangent spaces to X . Let
f be a function on an open subset of Pn defined in a neighborhood of p 2 X and
vanishing on X , so that f is a local section of IX . When restricted to the tangent space
TpX � Pn of X at p, the function f is singular at p, so the restriction f D f jTpX
vanishes together with all its first derivatives at p. Because of this, the quadratic part
of the Taylor expansion of f at p is independent of the choice of coordinates. Via the
identification Tp .TpX/ D TpX , we define S.f /p, the value of S.f / at p, to be the
quadratic term in the expansion of f at p.

We claim that S.f / vanishes if f 2 I2X , and thus that S defines a map IX=I2X !
Sym2.T _X /. We work in local coordinates zi at p. In these terms, S.f / is the quadratic
form defined by the Hessian matrix�

@2f

@zi@zj
.p/

�
:

If f D gh is the product of two functions vanishing on X , then the locally defined
function @f=@zi D g.@h=@zi / C h.@g=@zi / vanishes on X , so the Hessian matrix is
identically 0 on X . Since S is linear, this suffices to prove the claim.

Recall from Eisenbud [1995, Chapter 16] that there is an exact sequence

0 �! IX=Pn=I2X=Pn �! �Pn jX �! �X �! 0:

Since X is smooth this is a short exact sequence of vector bundles. Composing the
inclusion IX=Pn=I2X=Pn ! �Pn jX with the first map of the restriction of the Euler
sequence

0 �! �Pn jX �! OnC1X .�1/ �! OX �! 0;

we get an inclusion of bundles � W IX=Pn=I2X=Pn ! OnC1X . The Gauss map G W X !
G.n � k; nC 1/ may be defined as the unique map such that the pullback G�.S/ of the
inclusion of the universal subbundle on G.n � k; nC 1/ is �.
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(The more usual definition of the Gauss map is dual to this one: Starting from the
derivative TX ! TPn jX of the inclusion map, one takes the pullback of the image under
the surjection

OnC1X ! TPn jX I

the two descriptions are related by the duality isomorphism G.k C 1; n C 1/ Š

G.n � k; nC 1/.)
As explained in Section 3.2.5, the derivative of this map takes a derivation @ to

the result of applying @ to the entries of a matrix representing � and then projecting to
OnC1=E . We can put all these actions into the composite map

TX ˝ .IX=Pn=I2X=Pn/! �Pn jX ! �X ;

or equivalently the map

IX=Pn=I2X=Pn ! �Pn jX ˝�X ! �X ˝�X :

A local computation in coordinates xi on X shows that the image of the class of a
function f 2 IX=Pn has the form

X
i;j

@f

@xi@xj
dxi ˝ dxj ;

and is thus a symmetric tensor, an element of Sym2.�X / � �X ˝�X ; in fact, it is the
quadratic term of the Taylor expansion of f .

We can now complete the proof of the result of Section 7.4.2, based on Corol-
lary 10.21, which will be proven independently:

Theorem 7.11. Let X � Pn be any smooth hypersurface of degree d > 1. The set of
points Xi � X where the rank of the quadratic form S.f /p is at most i is an algebraic
subset of dimension at most i . In particular:

(a) There are at most finitely many points where the tangent hyperplane section Y D
X \ TpX has multiplicity 3 or more at p; that is, S.f /p D 0.

(b) If p 2 X is a general point, then the tangent hyperplane section Y D X \ TpX
has an ordinary double point at p; that is, for general p the rank of S.f /p is equal
to the dimension of X .

Proof: Since X is a hypersurface, the ideal of X near p is generated by a single
function f , so we may regard S.f / as a map from X to the total space of a twist of
the vector bundle Sym2.T _X /. The locus Xi is thus the (reduced) preimage of the closed
algebraic set of forms of rank � i .
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It suffices to prove the general statement. Suppose that Xi had dimension > i

for some i � 0, and let p be a general (and in particular smooth) point of Xi . Since
p is general in Xi , the null-space T 0X;q � TX;q of S.f /q has constant dimension
� dimX � i for q in a neighborhood U � Xi of p, and these null-spaces form a
subbundle T 0U � TX jU . The tangent spaces to U also form a subbundle, and by our
hypothesis on the dimension ofXi these two subbundles intersect in a subbundle TU\T 0X
of rank � 1.

We may assume that the ground field is the complex numbers. Integrating a local
analytic vector field inside TU \ T 0X , we obtain the germ of a curve in X along which
the Gauss map has derivative 0. This contradicts the assertion of Corollary 10.21 that
GX is a finite mapping from X to its dual.

7.5 Inflection points of curves in Pr

Bundles of principal parts are very useful for studying maps of curves to projective
space. The connection with “singular elements of linear series” comes from the fact
that a hyperplane in projective space is tangent to a nondegenerate curve if and only if
its intersection with the curve — an element of the linear system corresponding to the
embedding — is singular. If the plane meets the curve with a higher degree of tangency —
think of the tangent line at a flex point of a plane curve — then that will be reflected in a
higher-order singularity. Thus the technique we developed in Section 7.2 will allow us
to solve the third of the keynote questions of this chapter: How to extend the notion of
flexes to curves in Pn, and how to count them.

Recall that if C � X is a reduced curve on a scheme X and D � X an effective
Cartier divisor on C , then for any closed point p 2 D \ C we defined the multiplicity
of intersection of C with D at p to be the length (or the dimension over the ground
field k, which will be the same since we are supposing that k is algebraically closed) of
OC;p=I.D/ �OC;p . Thus, for example, when p … C \D the multiplicity is 0, and the
multiplicity is 1 if and only if C andD are both smooth at p and meet transversely there.

For the purpose of this chapter it is convenient to expand this notion. Suppose that
C is a smooth curve, f W C ! X is a morphism andD is any subscheme of X such that
f �1.D/ is a finite scheme. We define the order of contact of D with C at p 2 C to be

ordp f �1.D/ WD dim�.p/OC;p=f �.I.D//:

Since we have assumed that C is smooth, the local ring OC;p is a discrete valuation ring,
so ordp f �1.D/ is the minimum of the lengths of the algebras OC;p=f �.g/, where g
ranges over the local sections of I.D/ at p, or over the generators of this ideal.

If f is the inclusion map of a smooth curve C � X D Pr , and D D ƒ � Pr is a
linear subspace, then the order of contact ordp f �1.ƒ/ is the minimum, over the set of
hyperplanes H containing ƒ, of the intersection multiplicity mp.C;H/.
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For example, if p 2 C � P2 is a smooth point of a plane curve and L � p is any
line through p, then the order of contact of L with C at p is at least 1; L is tangent to
C at p if and only if it is at least 2. The line L is called a flex tangent if the order is at
least 3, and in this case p is called a flex of C . Carrying this further, we say that p is a
hyperflex if the tangent line L at p meets C with order � 4. We adopt similar definitions
in the situation where f W C ! P2 is a nonconstant morphism from a smooth curve. For
a curve in 3-space we can consider both the orders of contact with lines and the orders
of contact with hyperplanes.

7.5.1 Vanishing sequences and osculating planes

We will systematize these ideas by considering a linear system W D .L; W /
on a smooth curve C with dimW D r C 1. Given a point p 2 C and a section
� 2 W , the order of vanishing ordp � of � at p is defined to be the length of the
OC;p-module Lp=.OC;p�/. Again, because the ground field k is algebraically closed
we have �.p/ D k, so

ordp � D dimk Lp=.OC;p�/:

Given p 2 C , consider the collection of all orders of vanishing of sections � 2 W at p.
We define the vanishing sequence a.W; p/ of the linear system W at p to be the

sequence of integers that occur as orders of vanishing at p of sections in W , arranged in
strictly increasing order:

a.W; p/ WD .a0.W; p/ < a1.W; p/ < � � � /:

Since sections vanishing to distinct orders are linearly independent, a.W; p/ has at most
dimW elements. On the other hand, we can find a basis for W consisting of sections
vanishing to distinct orders at p (start with any basis; if two sections vanish to the same
order replace one with a linear combination of the two vanishing to higher order, and
repeat). It follows that the number of elements in a.W; p/ is exactly dimkW D r C 1:

a.W; p/ D .a0.W; p/ < � � � < ar.W; p//:

We set ˛i D ai � i , and call the associated weakly increasing sequence

˛.W; p/ D .˛0.W; p/ � � � � � ˛r.W; p//

the ramification sequence of W at p. When the linear system W or the point p we are
referring to is clear from context, we will drop it from the notation and write ai .p/ or
just ai in place of ai .W; p/, and similarly for ˛i .



Inflection points of curves in Pr Section 7.5 267

For example, p is a base point of W if and only if a0.p/ D ˛0.p/ > 0, and more
generally a0.p/ is the multiplicity with which p appears in the base locus of W . If p is
a base point of W then, since C is a smooth curve, we may remove it; that is, W is in
the image of the monomorphism H 0.L.�a0p//! H 0.L/, and we may thus consider
W as defining a linear series W 0 WD .L.�a0p/;W /. In this way most questions about
linear systems on smooth curves can be reduced to the base point free case.

When p is not a base point of W , so that W defines a morphism f W C ! Pr in a
neighborhood of p, we have a1.p/ D 1 if and only if f is an embedding near p. If r D 2
and W is very ample, so that f is an embedding, we thus have ˛0.p/ D ˛1.p/ D 0

for all p and ˛2.p/ > 0 for some particular p if and only if there is a line meeting
the embedded curve with multiplicity > 2 at p; that is, p is an inflection point of the
embedded curve. The geometric meaning of the vanishing sequence is given in general
by the next result:

Proposition 7.12. Let W D .L; W / be a linear series on a smooth curve C , and
let p 2 C . If p is not a base point of W , we let W 0 D W; in general, let W 0 D�
L.�a0.W; p/p/;W

�
.

(a) ai .W 0; p/ D ai .W; p/ � a0.W; p/.
(b) Choose �0; : : : ; �r 2 W such that �j vanishes at p to order aj .W 0; p/, and let Hj

be the hyperplane in P.W �/ corresponding to �j . The plane

Li D HiC1 \ � � � \Hr

is the unique linear subspace of dimension i with highest order of contact with C
at p, and that order is aiC1.W; p/.

The planes Li are called the osculating planes to f .C / at p. We always have
L0 D p. If f .C / is smooth at f .p/ then L1 is the tangent line, and in general it is the
reduced tangent cone to the branch of f .C / that is the image of an analytic neighborhood
of p 2 C .

Proof: (a) A section of L.�dp/ that vanishes to order m as a section of L.�dp/ will
vanish to order mC d at p as a section of L.

(b) Writing f for the germ at p of the morphism defined by W 0, it follows from the
definitions that ordp Li D aiC1. If there were an i -plane L0 with higher order of contact,
and we wrote

L0 D H 0iC1 \ � � � \H
0
r

for some hyperplanes H 0r , then each H 0r would have order of contact with C at p strictly
greater than aiC1. But these would correspond to independent sections in W , and taking
linear combinations of these sections we would get r � i sections with vanishing orders
at p strictly greater than aiC1. This contradicts the assumption that the highest r � i
elements of the vanishing sequence are aiC1; : : : ; ar .



268 Chapter 7 Singular elements of linear series

7.5.2 Total inflection: the Plücker formula

We say that p is an inflection point for a linear system .L; W / of dimension r if
the ramification sequence .˛0; : : : ; ˛r/ is not .0; : : : ; 0/, or, equivalently, if ˛r > 0,
which is the same as ar > r . When W arises from a morphism f W C ! Pr that is
an embedding near p, p is an inflection point of W if and only if some hyperplane has
contact � r C 1 at p.

We define the weight of p 2 C with respect to W to be

w.W; p/ WD

rX
iD0

˛i :

This number is a measure of what might be called the “total inflection” of W at p. We
can compute the sum

P
p2C w.W; p/ as a Chern class of the bundle of principal parts

of L.

Theorem 7.13 (Plücker formula). If W is a linear system of degree d and dimension r
on a smooth projective curve C of genus g, thenX

p2C

w.W; p/ D .r C 1/d C .r C 1/r.g � 1/:

This is our answer to Keynote Question (c). Note that it is only an enumerative
formula, in the sense that each hyperplane having contact of order r C 1 or more
with C at a point p has to be counted with multiplicity w.W; p/. We might expect
that if C is a suitably general curve — say, one corresponding to a general point on a
component of the open subset of the Hilbert scheme parametrizing smooth, irreducible,
nondegenerate curves — then all inflection points of C would have weight 1, but this is
actually false (see Exercises 7.40–7.41). It can be verified in some cases, such as plane
curves (see Exercise 7.32), and it is true also for complete intersections with sufficiently
high multidegree (see Exercise 7.39 for a step forward in that direction); it remains an
open problem to say when it holds in general.

Proof: The key observation is that both sides of the desired formula are equal to the
degree of the first Chern class of the bundle Pr.L/. We can compute the class of this
bundle from Theorem 7.2 as

c.Pr.L// D
rY
jD0

c.Symj .�C /˝ L/:

Since �C is a line bundle we have Symj .�C / D �
j
C , and thus c..Symj .�C /˝L/ D

1C jc1.�C /C c1.L/. It follows that

c1.Pr.L// D .r C 1/c1.L/C
�rC1
2

�
c1.�C /:
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Since the degree of �C is 2g � 2, the degree of this class is

deg c1.Pr.L// D .r C 1/d C .r C 1/r.g � 1/;

the right-hand side of the Plücker formula.
We may define a map ' W OrC1C ! Pr.L/ by choosing any basis �0; : : : ; �r of W

and sending the i-th basis element of OrC1C to the section ��i of Pr.L/ corresponding
to �i . We will complete the proof by showing that for any point p 2 C the determinant
of the map ' vanishes at p to order exactly w.W; p/, and that there are only finitely
many points w.W; p/ where the determinant is 0.

To this end, fix a point p 2 C . Since the determinant of ' depends on the choice
of basis �0; : : : ; �r only up to scalars, we may choose the basis �i so that the order of
vanishing ordp.�i / D ai at p is ai .W; p/. Trivializing L in a neighborhood of p, we
may think of the section �i locally as a function, and ' is represented by the matrix0BBBB@

�0 �1 � � � �r

� 00 � 01 � � � � 0r
:::

:::
:::

�
.r/
0 �

.r/
1 � � � �

.r/
r

1CCCCA ;

where � 0i denotes the derivative and � .r/i the r-th derivative. Because �i vanishes to order
� i at p, the matrix evaluated at p is lower-triangular, and the entries on the diagonal are
all nonzero if and only if ai D i for each i ; that is, if and only if p is not an inflection
point for W .

We can compute the exact order of vanishing of det' at an inflection point as
follows: Denote by v.z/ the .r C 1/-vector .�0.z/; : : : ; �r.z//, so that the determinant
of ' is the wedge product

det.'/ D v ^ v0 ^ � � � ^ v.r/:

Applying the product rule, the n-th derivative of det.'/ is then a linear combination of
terms of the form

v.ˇ0/ ^ v.ˇ1C1/ ^ � � � ^ v.ˇrCr/;

with
P
ˇi D n. Now, v.ˇ0/.p/ D 0 unless ˇ0 � ˛0; similarly, v.ˇ0/.p/^v.ˇ1/.p/ D 0

unless ˇ0 C ˇ1 � ˛0 C ˛1, and so on. We conclude that any derivative of det.'/ of
order less than w D

P
˛i vanishes at p, and the expression for the w-th derivative of

det.'/ has exactly one term nonzero at p, namely

v.˛0/ ^ v.˛1C1/ ^ � � � ^ v.˛rCr/:

Since this term appears with nonzero coefficient, we conclude that det.'/ vanishes to
order exactly w at p.
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It remains to show that not every point of C can be an inflection point for W —
that is, that det' is not identically zero. To prove this, suppose that det.'/ does vanish
identically, that is, that

v ^ v0 ^ � � � ^ v.k/ � 0 (7.3)

for some k � r . Suppose in addition that k is the smallest such integer, so that at a
general point p 2 C we have

v.p/ ^ v0.p/ ^ � � � ^ v.k�1/.p/ ¤ 0I

in other words, v.p/; : : : ; v.k�1/.p/ are linearly independent, but v.k/.p/ lies in their
span ƒ. Again using the product rule to differentiate the expression (7.3), we see that

d

dz
.v ^ v0 ^ � � � ^ v.k�1/ ^ v.k// D v ^ v0 ^ � � � ^ v.k�1/ ^ v.kC1/ � 0;

so that v.kC1/.p/ also lies in the span of v.p/; : : : ; v.k�1/.p/. Similarly, taking the
second derivative of (7.3), we see that

d2

dz2
.v ^ v0 ^ � � � ^ v.k�1/ ^ v.k// D v ^ v0 ^ � � � ^ v.k�1/ ^ v.kC2/ � 0;

where are all the other terms in the derivative are zero because they are .k C 1/-fold
wedge products of vectors lying in a k-dimensional space. Continuing in this way, we see
that v.m/.p/ 2 ƒ for allm; it follows by integration that v.z/ 2 ƒ for all z. This implies
that the linear system W has dimension k < r C 1, contradicting our assumptions.

Flexes of plane curves
Theorem 7.13 gives the answer to Keynote Question (c). We do not even need to

assume C is smooth; if C is singular, as long as it is reduced and irreducible we view it
as the image of the map � W zC ! Pr from its normalization. For example, when r D 2,
if we apply the Plücker formula to the linear system corresponding to this map, we see
that C has

.r C 1/d C r.r C 1/.g � 1/ D 3d C 6g � 6

flexes, where g is the genus of zC , that is, geometric genus of C . If the curve C is indeed
smooth, then 2g � 2 D d.d � 3/, and so this yields

3d C 6g � 6 D 3d C 3d.d � 3/ D 3d.d � 2/:

To be explicit, this formula counts points p 2 zC such that, for some line L � P2,
the multiplicity of the pullback divisor ��L at p is at least 3. In particular:

(a) It does not necessarily count nodes of C , even though at a node p of C there will
be lines having intersection multiplicity 3 or more with C at p.

(b) It does count singularities where the differential d� vanishes, for example cusps.
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Some applications of the general Plücker formula appear in Exercises 7.35–7.37.
We mention that there is an alternative notion of a flex point of a (possibly singular)

curve C � P2: a point p 2 C such that, for some line L � P2 through p, we have

mp.C � L/ � 3:

In this sense, a node p of a plane curve C is a flex point, since the tangent lines to the
branches of the curve at the node will have intersection multiplicity at least 3 with C
at p. When we want to talk about flexes in this sense, we will refer to them as Cartesian
flexes, since they are defined in terms of the defining equation of C � P2 rather than its
parametrization by a smooth curve.

There is a classical way to calculate the number of flexes of a plane curve that does
count Cartesian flexes. Briefly, if C is the zero locus of a homogeneous polynomial
F.X; Y;Z/, we define the Hessian of C be the zero locus of the polynomial

H D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
@2F

@X2
@2F

@X@Y

@2F

@X@Z

@2F

@X@Y

@2F

@Y 2
@2F

@Y @Z

@2F

@X@Z

@2F

@Y @Z

@2F

@Z2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ :

For a smooth plane curve C , the Cartesian flexes are exactly the points of intersection
of C with its Hessian (it is even true that on a smooth curve C the weight of a flex p is
equal to the intersection multiplicity of C with its Hessian at p). In Exercise 7.33, we
will explore what happens to the flexes on a smooth plane curve when it acquires a node.

Hyperflexes
First, the bad news: We are not going to answer Keynote Question (d) here. The

question itself is well-posed: We know that a general plane curve C � P2 of degree
d � 4 has only ordinary flexes, and it is not hard to see that the locus of those curves
that do have a hyperflex is a hypersurface in the space PN of all such curves (see
Exercise 7.38). Surely the techniques we have employed in this chapter will enable us
to calculate the degree of that hypersurface? Unfortunately, they do not, and indeed the
reason we included Keynote Question (d) is so that we could point out the problem.

Very much by analogy with the analysis of lines on surfaces and singular points on
curves, we would like to determine the class of the “universal hyperflex:” that is, in the
universal curve

ˆ D f.C; p/ 2 PN � P2 jp 2 C g;

the locus

� D f.C; p/ 2 ˆ jp is a hyperflex of C g:
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Moreover, it seems as if this would be amenable to a Chern class approach: We would
define a vector bundle E onˆwhose fiber at a point .C; p/ 2 ˆwould be the vector space

E.C;p/ D
fgerms of sections of OC .1/ at pg
fgerms vanishing to order � 4 at pg

:

We would then have a map of vector bundles on ˆ from the trivial bundle with fiber
H 0.OP2.1// to E , and the degeneracy locus of this map would be the universal hyper-
flex � . Since this is the locus where three sections of a bundle of rank 4 are linearly
dependent, we could conclude that

Œ�� D c2.E/:

As we indicated, though, there is a problem with this approach. The description
above of the fibers of E makes sense as long as p is a smooth point of C , but not
otherwise. Reflecting this fact, if we were to try to define E by taking � � ˆ�PN ˆ the
diagonal and setting

E D �1�.��2OP2.1/˝Oˆ�PNˆ=I
4
�/;

the sheaf E would have fiber as desired over the open set U � ˆ of .C; p/ with C
smooth at p, but would not even be locally free on the complement. The fact that bundles
of principal parts do not behave well in families (except, of course, smooth families) is a
real obstruction to carrying out this sort of calculation.

There is a way around this problem: Ziv Ran [2005a; 2005b] showed that — at least
over the preimage C � ˆ of a general line P1 � PN — the vector bundle E jU\C extends
to a locally free sheaf on a blow-up of C, realized as a subscheme of the relative Hilbert
scheme of C over P1. This approach does yield an answer to Keynote Question (d), and
indeed applies far more broadly, albeit at the expense of a level of difficulty that places it
outside the range of this text.

And now, the good news: there is another way to approach Keynote Question (d),
and we will explain it in Section 11.3.1.

7.5.3 The situation in higher dimension

Is there an analog of the Plücker formula for linear series on varieties of dimension
greater than 1? Assuming that the linear series yields an embedding X � Pr , we might
ask, for a start, what sort of singularities we should expect the intersection X \ƒ of X
with linear spaces ƒ � Pr of a given dimension to have at a point p, and ask for the
locus of points that are “exceptional” in this sense.

We do not know satisfying answers to these questions in general. One issue is that,
while the singularities of subschemes of a smooth curve are simply classified by their
multiplicity, there is already a tremendous variety of singularities of subschemes of sur-
faces. (If we have a particular class of singularities in mind, such as the An-singularities
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described in Section 11.4.1, then these questions do become well-posed; see for ex-
ample the beautiful analysis of elements of a linear system having an An-singularity
in Russell [2003].) Another problem is that the analog of the final step in the proof of
Theorem 7.13 — showing that not every point on a smooth curve C � Pr can be an
inflection point — may not hold. For example, a dimension count might lead us to expect
that for a general point p on a smooth, nondegenerate surface S � P5 no hyperplane
H � P5 intersects S in a curve C D H \ S with a triple point at p, but there are such
surfaces for which this is false, and we do not know a classification of such surfaces.

We will revisit this question in Chapter 11, where we will describe the behavior of
plane sections of a general surface S � P3.

7.6 Nets of plane curves
We now want to consider larger-dimensional families of plane curves, and in partic-

ular to answer the second keynote question of this chapter. A key step will be to compute
the class of the universal singular point † D f.C; p/ jp 2 Csingg as a subvariety of
PN � P2, where PN D PH 0.OP2.d//.

7.6.1 Class of the universal singular point

Let W D H 0.OPn.d//, so that PW is the projective space of hypersurfaces of
degree d in Pn, and consider the universal m-fold point

† D †n;d;m D f.X; p/ 2 PW � Pn j multp.X/ � mg;

and let

PW � Pn
�2- Pn

PW

�1
?

be the projection maps. We can express the class Œ†� 2 A.PW � Pn/ in terms of
Chern classes:

Proposition 7.14. †n;d;m is the zero locus of a section of the vector bundle

Pm WD ��1OPW .1/˝ �
�
2Pm.OPn.d//;

which has Chern class

c.Pm/ D .1C .d �m/�n C �W /.
nCm
n /;

where �n and �W are the pullbacks of the hyperplane classes on Pn and PW respectively.
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Thus the class of †n;d;m in A.PW � Pn/ is the sum of the terms of total degree
�
nCm
n

�
in this expression. For example, in the case n D 2;m D 1 this is

Œ†� D �3W C 3.d � 1/�2�
2
W C 3.d � 1/

2�22�W 2 A
3.PW � P2/:

Proof: The computation is similar to the one used in the calculation of the class of the
universal line in Section 6.6. Since every polynomial F 2 W defines a section �F of
Pm.OPn.d//, we have a map

W ˝OPn ! Pm.OPn.d//

of vector bundles on Pn. Likewise, we have the tautological inclusion

OPW .�1/! W ˝OPW

on PW . We pull these maps back to the product PW � P2 and compose them to obtain
a map

��1OPW .�1/! ��2Pm.OPn.d//;

or, equivalently, a section of the bundle Pm. The zero locus of this map is† � PW �Pn,
so the class of †n;d;m in A.PW � Pn/ is the class of a section of Pm, as claimed.

To compute the Chern class of Pm, we follow the argument of Proposition 7.5,
pulling back the sequences

0 �! Symi .�Pn/.d/ �! P i .OPn.d// �! P i�1.OPn.d// �! 0

and tensoring with the line bundle ��1OPW .1/ to get

c.Pm/ D
mY
jD0

c.Symj .��2�Pn/˝O.d�n C �W //;

where we write O.d�nC�W / as shorthand for the line bundle ��1OPW .1/˝�
�
2OPn.d/.

Using the exact sequences

0 �! Symi .�Pn/ �! Symi .OPn.�1// �! Symi�1.OPn.�1// �! 0

we get a collapsing product as before, yielding the desired formula for the Chern class
of Pm. To deduce the special case at the end of the proposition, it suffices to remember
that since �2 is the pullback from a two-dimensional variety we have �32 D 0.

7.6.2 The discriminant of a net of plane curves

We return to the case of a net of plane curves of degree d . Throughout this section
we fix a general net of plane curves of degree d , that is, the family of curves associated
to a general linear subspace W � H 0.OP2.d// of dimension 3, parametrized by
B D PW Š P2.
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Let D � B be the set of singular curves, called the discriminant curve of the net B.
Since D is the intersection of B with the discriminant hypersurface in PW , its degree is
degD D 3.d � 1/2 by Proposition 7.4. Next, let � � P2 be the plane curve traced out
by the singular points of members of the net, so that if we set

†B WD † \ .B � P2/;

then the projection maps �i on † restrict to surjections

†B
�2jB- �

D

�1jB
?

Since † is smooth of codimension 3, Bertini’s theorem shows that †B is a smooth curve
in B � P2. Since the generic singular plane curve is singular at only one point, the
map †B ! � is birational. Since the fiber of † over a given point p 2 P2 is a linear
space of dimension N � 3, the general 2-plane B containing a curve singular at p will
contain a unique such curve. Thus the map †B ! D is also birational, and †B is the
normalization of each of � and D. In particular the geometric genus of D and that of �
are the same as the genus of †B.

From the previous section, we know that †B is the zero locus of a section of the
rank-3 bundle P1jB�P2 on B � P2. This makes it easy to compute the degree and genus
of †B, and we will derive the degree and genus of � , answering Keynote Question (b):

Proposition 7.15. With notation as above, the map†B ! � is an isomorphism, so both
curves are smooth. The curve � has degree 3d � 3, and thus has genus

�
3d�4
2

�
. When

d � 2, the curve D is singular.

We will see how the singularities of D arise, what they look like and how many
there are in Chapter 11.

Proof: We begin with the degree of � , the number of points of intersection of � with a
line L � P2. Since †B ! � is birational, this is the same as the degree of the product
Œ†B��2 2 A

4.B � P2/: (More formally, �2�Œ†B� D � and �2�Œ†B�ŒL� D Œ†B��2.)
Write �B for the restriction of �W , the pullback of the hyperplane section from PN , to
B � P2. The degree of a class in B � P2 is the coefficient of �22�

2
B in its expression in

A.B � P2/ D ZŒ�2; �B�=.�32 ; �
3
B/:

Since �3B D 0, the last formula in Proposition 7.14 gives

deg.�/ D deg �2
�
3.d � 1/�2�

2
B C 3.d � 1/

2�22�B
�

D deg 3.d � 1/�22�
2
B

D 3d � 3:
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Since � is a plane curve, the arithmetic genus of the curve � is
�
3d�4
2

�
.

Next we compute the genus g†B of the smooth curve †B. The normal bundle of †B
in P2 �B is the restriction of the rank-3 bundle P1, and the canonical divisor on P2 �B
has class �3�2 � 3�B, so by the general adjunction formula (Part (c) of Proposition 6.15)
the degree of the canonical class of †B is the degree of the line bundle obtained by
tensoring the canonical bundle of B � P2 with

V3P1 and restricting the result to †B.
This is the degree of the class

.�3�2�3�BCc1.P1//Œ†B � D .�3�2�3�BCc1.P1//�
�
3.d�1/�2�

2
BC3.d�1/

2�22�B
�
:

Substituting the value c1.P1/ D 3..d � 1/�2 C �W / from Proposition 7.14 and taking
account of the fact that �W �B D �2B, this becomes

.3d � 6/�2 �
�
3.d � 1/�2�

2
B C 3.d � 1/

2�22�B
�
D .3d � 6/.3d � 3/�22�

2
B

with degree 2g†B � 2 D .3d � 3/.3d � 6/, and we see that

g.†B/ D
.3d � 4/.3d � 5/

2
D

�3d�4
2

�
:

Since this coincides with the arithmetic genus of � computed above, we see that
� is smooth and the map †B ! � is an isomorphism. On the other hand the degree
3.d � 1/2 of D is different from that of � for all d � 2, so in these cases the arithmetic
and geometric genera of D differ, and D must be singular, completing the proof.

Here is a different method for computing the degree of �: The net B of curves,
having no base points, defines a regular map

'B W P2 ! ƒ;

where ƒ Š P2 is the projective plane dual to the plane parametrizing the curves in
the net B. This map expresses P2 as a d2-sheeted branched cover of ƒ, and the curve
� � P2 is the ramification divisor of this map.

By definition,

'�Oƒ.1/ D OP2.d/I

so that, if we denote by �ƒ the hyperplane class on ƒ, we have '��ƒ D d�.
Pulling back a 2-form via the map ' W P2 ! ƒ we see that

KP2 D '
�Kƒ C �;

and since Kƒ D �3�ƒ, this yields

�3� D �3d� C Œ��

or Œ�� D .3d � 3/�.
These ideas work for a net W D .L; W / on an arbitrary smooth projective surface S ,

as long as we know the classes c1.�S /; c2.�S / and � D c1.L/ and can evaluate the
degrees of the relevant products in A.S/. See Exercise 7.31 for an example.
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7.7 The topological Hurwitz formula
In this section we will work explicitly over the complex numbers, so that we can use

the topological Euler characteristic. Using this tool, we will give a different approach to
questions of singular elements of linear series. It sheds additional light on the formula of
Proposition 7.4, and is applicable in many circumstances in which Proposition 7.4 cannot
be used. In addition, it will allow us to describe the local structure of the discriminant
hypersurface, such as its tangent planes and tangent cones. By the Lefschetz principle
(see for example Harris [1995, Chapter 15]), moreover, the purely algebro-geometric
consequences of this analysis, such as Propositions 7.19 and 7.20, hold more generally
over an arbitrary algebraically closed field of characteristic 0. (There are also alternative
ways of defining an Euler characteristic with the desired properties algebraically.)

This approach is based on the following simple observation:

Proposition 7.16. Let X be a smooth projective variety over C, and Y � X a divisor.
If we denote by �top the topological Euler characteristic (in the classical, or analytic,
topology), then

�top.X/ D �top.Y /C �top.X n Y /:

Proof: This will follow from the Mayer–Vietoris sequence applied to the covering of X
by U D X n Y and a small open neighborhood V of Y .

Let L D OX .Y /, and let � be the section of L vanishing on Y . Introducing
Hermitian metrics on X and the line bundle L, we can use the gradient of the absolute
value of � to define a C1 map V ! Y expressing V as a fiber bundle over Y with
fiber a disc D2, and simultaneously expressing V \ U as a bundle over Y with fiber a
punctured disc. It follows that

�top.V / D �top.Y / and �top.V \ U/ D 0;

and we deduce the desired relation.

It is a surprising fact that the formula �top.X/ D �top.Y /C �top.X n Y / applies
much more generally to an arbitrary subvariety Y of an arbitrary X ; see for example
Fulton [1993, pp. 93–95, 142].

Now let X be a smooth projective variety, and let f W X ! B be a map to a smooth
curve B of genus g. This being characteristic 0, there are only a finite number of points
p1; : : : ; pı 2 B over which the fiber Xpi is singular. We can apply the relation on Euler
characteristics to the divisor

Y D

ı[
iD1

Xpi � X:
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Naturally, �top.Y / D
P
�top.Xpi /, and on the other hand the open set X n Y is a fiber

bundle over the complement B n fp1; : : : ; pıg, so that

�top.X n Y / D �top.X�/�top.B n fp1; : : : ; pıg/ D .2 � 2g � ı/�top.X�/;

where again � is a general point of B . Combining these, we have

�top.X/ D .2 � 2g � ı/�top.X�/C

ıX
iD1

�top.Xpi /

D �top.B/�top.X�/C

ıX
iD1

.�top.Xpi / � �top.X�//:

In this form, we can extend the last summation over all points q 2 B . We have proven:

Theorem 7.17 (Topological Hurwitz formula). Let f W X ! B be a morphism from a
smooth projective variety to a smooth projective curve; let � 2 B be a general point. Then

�top.X/ D �top.B/�top.X�/C
X
q2B

.�top.Xq/ � �top.X�//:

In English: The Euler characteristic ofX is what it would be ifX were a fiber bundle
over B — that is, the product of the Euler characteristics of B and the general fiber X� —
with a “correction term” coming from each singular fiber, equal to the difference between
its Euler characteristic and the Euler characteristic of the general fiber.

To see why Theorem 7.17 is a generalization of the classical Riemann–Hurwitz
formula (see for example Hartshorne [1977, Section IV.2]), consider the case where X
is a smooth curve of genus h and f W X ! C a branched cover of degree d . For each
point p 2 C , we write the fiber Xp as a divisor:

f �.p/ D
X

q2f �1.p/

mq � q:

We call the integer mq � 1 the ramification index of f at q; we define the ramification
divisor R of f to be the sum

R D
X
q2X

.mq � 1/ � q;

and we define the branch divisor B of f to be the image of R (as a divisor, not as a
scheme!) — that is,

B D
X
p2C

bp � p; where bp D
X

q2f �1.p/

mq � 1:
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Now, since the degree of any fiber Xp D f �1.p/ of f is equal to d , for each p 2 C
the cardinality of f �1.p/ will be d � bp , so its contribution to the topological Hurwitz
formula is �bp. The formula then yields

2 � 2h D d.2 � 2g/ � deg.B/;

the classical Riemann–Hurwitz formula.

7.7.1 Pencils of curves on a surface, revisited

To apply the topological Hurwitz formula to Keynote Question (a), suppose that
fCt D V.t0F C t1G/ � P2g is a general pencil of plane curves of degree d . Since the
polynomials F and G are general, the base locus � D V.F;G/ of the pencil will consist
of d2 reduced points, and the total space of the pencil — that is, the graph

X D f.t; p/ 2 P1 � P2 jp 2 Ctg

of the rational map ŒF;G� W P2 - P1 — is the blow-up of P2 along � . In particular,
X is smooth, so Theorem 7.17 can be applied to the map f W X ! P1 that is the
projection on the first factor.

Since X is the blow-up of P2 at d2 points, we have

�top.X/ D �top.P2/C d2 D d2 C 3:

Next, we know that a general fiber C� of the map f is a smooth plane curve of degree d ;
as we saw in Example 2.17, its genus is

�
d�1
2

�
and hence

�top.C�/ D �d
2
C 3d:

We know from Proposition 7.1 that each singular fiber C appearing in a general pencil
of plane curves has a single node as singularity. By the calculation in Section 2.4.6, then,
its normalization zC will be a curve of genus

�
d�1
2

�
� 1 and hence Euler characteristic

�d2 C 3d C 2. Since C is obtained from zC by identifying two points, we have

�top.C / D �d
2
C 3d C 1;

so the contribution of each singular fiber of f to the topological Hurwitz formula is
exactly 1. It follows that the number of singular fibers is

ı D �top.X/ � �top.P1/�top.C�/

D d2 C 3 � 2.�d2 C 3d/

D 3d2 � 6d C 3;

as we saw before.
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This same analysis can be applied to a pencil of curves on any smooth surface S .
Let L be a line bundle on S with first Chern class c1.L/ D � 2 A1.S/, and let
W D h�0; �1i � H

0.L/ be a two-dimensional vector space of sections with

fCt D V.t0�0 C t1�1/ � Sgt2P1

the corresponding pencil of curves. We make — for the time being — two assumptions:

(a) The base locus � D V.f�g�2W / of the pencil is reduced; that is, it consists of
deg.�2/ points.

(b) Each of the finitely many singular elements of the pencil has just one node as
singularity.

We also denote by ci D ci .�S / the Chern classes of the cotangent bundle to S .
Given this, the calculation proceeds as before: we letX be the blow-up of S along � ,

and apply the topological Hurwitz formula to the natural map f W X ! PW � Š P1. To
start, we have

�top.X/ D �top.S/C #.�/ D c2 C �2

(we omit the “deg” here for simplicity). Next, by the adjunction formula, the Euler
characteristic of a smooth member C� of the pencil is given by

�top.C�/ D � deg.!C�/ D �.c1 C �/ � � D ��
2
� c1�;

and, by Section 2.4.6, as in the plane curve case the Euler characteristic of each singular
element of the pencil is 1 greater than the Euler characteristic of the general element. In
sum, then, the number of singular fibers is

ı D �top.X/ � �top.P1/�top.C�/

D �2 C c2 � 2.��
2
� c1�/

D 3�2 C 2�c1 C c2;

agreeing with our previous calculation.
We will see how this may be applied in higher dimensions in Exercises 7.43–7.44.

7.7.2 Multiplicities of the discriminant hypersurface

One striking thing about this derivation of the formula for the number of singular
elements in a pencil is that it gives a description of the multiplicities with which a
given singular element counts that allows us to determine these multiplicities at a
glance.



The topological Hurwitz formula Section 7.7 281

In the derivation of the formula, we assumed that the singular elements of the pencil
had only nodes as singularities. But what if an element C of the pencil has a cusp? In
that case the calculation of Section 2.4.6 says that the geometric genus of the curve —
the genus of its normalization zC — is again 1 less than the genus of the smooth fiber, but
this time instead of identifying two points of zC we are just “crimping” the curve at one
point. (In the analytic topology, C and zC are homeomorphic.) Thus,

�top.C / D �top. zC/ D �top.C�/C 2;

and the fiber C “counts with multiplicity 2,” in the sense that its contribution to the
sum in the right-hand side of Theorem 7.17 is 2. Similarly, if C has a tacnode, we have
g. zC/ D g.C�/� 2, so that �top. zC/ D �top.C�/C 4, but we identify two points of zC to
form C , so in all

�top.C / D �top.C�/C 3;

and the contribution of the fiber C to the rightmost term in Theorem 7.17 is thus 3. If C
has an ordinary triple point — consisting of three smooth branches meeting at a point —
then g. zC/ D g.C�/ � 3, but we identify three points of zC to form C , so

�top.C / D �top.C�/C 4;

and the contribution of the fiber C is 4. Moreover, if a fiber has more than one isolated
singularity, the same analysis shows that the multiplicity with which it appears in
the formula above is just the sum of the contributions coming from the individual
singularities.

In addition to giving us a way of determining the contribution of a given singular
fiber to the expected number, this approach tells us something about the geometry of
the discriminant locus D � PN in the space PN of plane curves of degree d . To see
this, suppose that C � P2 is any plane curve of degree d with isolated singularities.
Let D be a general plane curve of the same degree, and consider the pencil B of plane
curves they span — in other words, take B � PN a general line through the point
C 2 PN . By what we have said, the number of singular elements of the pencil B other
than C will be 3.d � 1/2 � .�top.C / � �top.C�//, where C� is a smooth plane curve
of degree d ; it follows that the intersection multiplicity mp.B;D/ of B and D at C is
�top.C / � �top.C�/.

Proposition 7.18. LetC � P2 be any plane curve of degree d with isolated singularities.
Then

multC .D/ D �top.C / � �top.C�/;

where C� is a smooth plane curve of degree d

Thus a plane curve with a cusp (and no other singularities) corresponds to a double
point of D, a plane curve with a tacnode is a triple point, and so on. A curve C with one
node and no other singularities is necessarily a smooth point of D.
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7.7.3 Tangent cones of the discriminant hypersurface

We can use the ideas above to describe the tangent spaces and tangent cones to the
discriminant hypersurface D � PN . To do this, we have to remove the first assumption
in our application of the topological Hurwitz formula to pencils of curves, and deal with
pencils whose base loci are not reduced.

To consider the simplest such situation, suppose that p 2 L � P2 are a point and a
line in the plane, and that F;G are general forms of degree d such that V.F / and V.G/
pass through p and are tangent to L at p. Let � D V.F;G/ be the base locus of the
pencil Ct D V.t0F C t1G/, so that � will be a scheme of degree d2 consisting of d2�2
reduced points and one scheme of degree 2 supported at p. Since being singular at p
is one linear condition on the elements of the pencil, exactly one member of the pencil
(which we may take to be C0 after re-parametrizing the pencil) will be singular at p.

We could arrive at such a pencil by taking F to be the equation of a general curve
with a node p and G a general polynomial vanishing at p; thus for the general pencil
above, the singular element C0 of the pencil will have a node at p, with neither branch
tangent to L, while all the others elements are smooth at p and have a common tangent
line Tp .Ct / D L at p.

Let X be the minimal smooth blow-up resolving the indeterminacy of the rational
map ' from P2 to P1 associated to the pencil — that is, X is obtained by blowing up
P2 at �red and then blowing up the resulting surface at the point p0 on the exceptional
divisor corresponding to the common tangent line L to the smooth members of the
pencil at p. (This is not the blow-up of S along the scheme � , which is singular! See
for example Eisenbud and Harris [2000, IV.2.3].) Note that we are blowing up P2 a total
of d2 times, so that the Euler characteristic �top.X/ is equal to 3C d2, just as in the
general case.

What is different is the fiber of the map X ! P1 over t D 0: Rather than being
a copy of the curve C0 D V.F /, it is the union of the proper transform of C0 and the
proper transform E of the first exceptional divisor, that is, the union of the normalization
zC0 of C0 and a copy E of P1, meeting at the two points of zC0 lying over the node p

(See Figure 7.4).
In sum, the Euler characteristic of the fiber over t D 0 is

�top. zC0/C �top.E/ � 2 D �top. zC0/ D �top.C�/C 2;

and the fiber counts with multiplicity 2. We can use this to analyze the tangent planes to
D at its simplest points:

Proposition 7.19. Let C be a plane curve with a node at p and no other singularities.
The tangent plane TCD � PN is the hyperplane Hp � D of curves containing the
point p.
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X D blow-up of X1

zC�

zC0 zC0

E

X1 D blow-up of P2 at three points

f

P1

f �1.�/ D zC��

f �1.0/ D QC0 CE0

C0

C�

p L

a pencil of conics tangent to L at p

P2

Figure 7.4 The morphism f W X ! P1 coming from the pencil of conics tangent to
L at p.

Proof: If C � P2 is a plane curve with one node p and no other singularities, then, by
Proposition 7.18, C is a smooth point of D. It thus suffices to show that Hp is contained
in the tangent space to D at C0. But, as we have seen, if B � PN is a general pencil
including C and having p as a base point, B will meet D in exactly 3.d � 1/2 � 1
points — in other words, a general line B � PN through C and lying in Hp will be
tangent to D somewhere.

As above, we may suppose that B is spanned by a curve F D 0 with a node at p
and no other singularities and a smooth curve G D 0 that passes through p.

To complete the argument — to show that such a line is indeed tangent to D specifi-
cally at C , and not somewhere else — we have to do two things: We have to relate the
pencil B to nearby general pencils, and we have to localize the Euler characteristic. For
the first, choose a general polynomial G0, and consider the family of pencils fBsg with
B0 D B and Bs the pencil spanned by F and a linear combination Gs D G C sG0;
that is,

Bs D fV.F C t .G C sG0// j t 2 P1g:

For each s, we let Xs be the total space of the pencil Bs and fs W Xs ! P1 the map
ŒF;G C sG0�.
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For general s, the pencil Bs will be a general pencil of curves of degree d ; in
particular, if � > 0 is sufficiently small, then for any 0 < jsj < � the pencil Bs will
intersect D transversely in exactly 3.d � 1/2 points. Moreover, by our description of
B0 \D, we know that as s approaches 0, two of these 3.d � 1/2 points will approach a
particular element Ct0 2 B — the point of tangency of B with D — and the remaining
3.d � 1/2 � 2 will remain distinct from each other and from Ct0 .

For the second component of the argument (localizing the Euler characteristic), we
cover the t-line P1t by a pair of open sets: U D .jt j < �/ a disc around the point t D 0,
and V D P1 n .jt j � �=2/ the complement of a smaller closed disc. We can choose �
small enough so that no singular fiber of B other than C0 lies in U ; in particular, no
singular fiber lies in U \ V . It follows that, for some � > 0, the same is true for all
Bs with jsj < �: none of the singular fibers of Bs lie in the overlap U \ V . For any
0 < jsj < �, accordingly, the number of singular fibers of Bs in U is the intersection
multiplicity mC0.B;D/ of B and D at C0, which we claim is 2.

Now consider the total space of our family of pencils:

ˆ D f.s; t; p/ 2 � � P1 � P2 jF.p/C t .G.p/C sG0.p// D 0g:

Let ˆV be the preimage of V in ˆ. Since the fiber ˆVs of ˆV over each s 2 � is
smooth, ˆV is a fiber bundle over � and, in particular, all the ˆVs have the same Euler
characteristic. We know that ˆV0 has exactly 3.d � 1/2 � 2 singular fibers, each a curve
with a single node, so that by Theorem 7.17

�top.ˆ
V
0 / D �d.d � 3/C 3.d � 1/

2
� 2I

since for s ¤ 0 the ˆVs have the same Euler characteristic, the same logic tells us that
they also have exactly 3.d � 1/2 � 2 singular fibers over V . It follows that ˆVs has two
singular fibers for 0 < jsj < �, completing the argument.

This argument shows that, more generally, if C is a plane curve with a unique
singular point p, the tangent cone to D at C will be a multiple of the hyperplane Hp,
and, more generally still, if C has isolated singularities p1; : : : ; pı , the tangent cone
TCD is supported on the union of the planes Hpi .

There is also a sort of converse to Proposition 7.18:

Proposition 7.20. The smooth locus of D consists exactly of those curves with a single
node and no other singularity.

Proof: Proposition 7.18 gives one inclusion: if C has a node and no other singularity, it
is a smooth point of D. Moreover, if C has more than one (isolated) singular point, then
the projection map †! D is finite but not one-to-one over C ; it is intuitively clear (and
follows from Zariski’s main theorem) that D is analytically reducible and hence singular
at C . Moreover, we observe that if d � 3 any curve with multiple components is a limit
of curves with isolated singularities and at least three nodes — just deform each multiple
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component mC0 � C to a union of m general translates of C0 — so these must also lie
in the singular locus of D.

It remains to see that if C is a singular curve having a singularity p other than a
node, then D is singular at C . This follows from an analysis of plane curve singularities:
If C has isolated singularities including a point p of multiplicity k � 3, then, as we saw
in Section 2.4.6, the genus of the normalization zC is at most

g. QD/ �
�d�1
2

�
�
k.k � 1/

2

and, since at most k points of the normalization lying over p are identified in C ,

�top.C / � 2 � 2g. zC/C k � 1 � �d.d � 3/C .k � 1/
2:

As for double points p other than a node, we have already done the case of a cusp;
other double points will drop the genus of the normalization by 2 or more, and since
we have at most two points of the normalization lying over p, we must have �top.C / �

�d.d � 3/C 3.

Finally, note that the techniques of this section can be applied in exactly the same
way in one dimension lower!

Proposition 7.21. Let Pd D PH 0.OP1.d// be the space of polynomials of degree d
on P1, and D � Pd the discriminant hypersurface, that is, the locus of polynomials
with a repeated root. If F 2 D is a point corresponding to a polynomial with exactly
one double root p and d � 2 simple roots, then D is smooth at F with tangent space the
space of polynomials vanishing at p.

We leave the proof via the topological Hurwitz formula as an exercise; for an
algebraic proof, see Proposition 8.6.

We add that there are many, many problems having to do with the local geometry of
D and its stratification by singularity type, only a small fraction of which we know how
to answer. The statements above barely scratch the surface; for more, see for example
Brieskorn and Knörrer [1986] or Teissier [1977].

7.8 Exercises
Exercise 7.22. Let S D P1 � P1, and let fCt � Sgt2P1 be a general pencil of curves
of type .a; b/ on S , where a; b > 0. What is the expected number of curves Ct that are
singular? (Make sure your answer agrees with (7.2) in the case .a; b/ D .1; 1/!)

Exercise 7.23. Prove that the number found in the previous exercise is the actual number
of singular elements; that is, prove the three hypotheses of Proposition 7.9 in the case of
S D P1 � P1 and the line bundle O.a; b/.
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Exercise 7.24. Let S � P3 be a smooth cubic surface and L � S a line. Let fCtgt2P1
be the pencil of conics on S cut out by the pencil of planes fHt � P3g containing L.
How many of the conics Ct are singular? Use this to answer the question of how many
other lines on S meet L.

Exercise 7.25. Let p 2 P2 be a point, and let fCt � P2gt2P1 be a general pencil of
plane curves singular at p— in other words, let F and G be two general polynomials
vanishing to order 2 at p, and take Ct D V.t0F C t1G/. How many of the curves Ct
will be singular somewhere else as well?

Exercise 7.26. Let S D X1 \ X2 � P4 be a smooth complete intersection of hyper-
surfaces of degrees e and f . If fHt � P4gt2P1 is a general pencil of hyperplanes in
P4, find the expected number of singular hyperplane sections S \Ht . (Equivalently: if
ƒ Š P2 � P4 is a general 2-plane, how many tangent planes to S intersect ƒ in a line?)

Exercise 7.27. Let X � P4 be a smooth hypersurface of degree d . Using formula (7.1),
find the expected number of singular hyperplane sections of X in a pencil. Again,
compare your answer to the result of Section 2.1.3.

Exercise 7.28. Let X Š P1 � P2 � P5 be the Segre threefold. Using formula (7.1),
find the number of singular hyperplane sections of X in a pencil.

Exercise 7.29. Let S D X1 \ X2 � P4 be a smooth complete intersection of hyper-
surfaces of degrees e and f . What is the expected number of hyperplane sections of S
having a triple point? (Check this in the case e D f D 2!)

Exercise 7.30. Let S � Pn be a smooth surface of degree d whose general hyperplane
section is a curve of genus g; let e and f be the degrees of the classes c1.TS /2; c2.TS / 2
A2.S/. Find the class of the cycle T1.S/ � G.1; n/ of lines tangent to S in terms of
d; e; f and g; from Exercise 4.21, we need only the intersection number ŒT1.S/� � �3.
Hint: Consider instead the variety of tangent planes T2.S/ � G.2; n/, and find the
intersection with �2 as the intersection with .�1/2 minus the intersection with �1;1.

Exercise 7.31. Let S � P3 be a general surface of degree d and B a general net of
plane sections of S (that is, intersections of X with planes containing a general point
p 2 P3). What are the degree and genus of the curve � � S traced out by singular
points of this net? What are the degree and genus of the discriminant curve? Use this to
describe the geometry of the finite map �p W S ! P2 given by projection from p.

Exercise 7.32. Verify that for a general curve C � P2 of degree d the number 3d.d�2/
is the actual number of flexes of C , that is, that all inflection points of C have weight 1.
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Exercise 7.33. Let fCt � P2gt2P1 be a general pencil of plane curves of degree d � 3;
suppose C0 is a singular element of C (so that in particular by Proposition 7.1 C0 will
have just one node as singularity). By our formula, C0 will have six fewer flexes than
the general member Ct of the pencil. Where do the other six flexes go? If we consider
the incidence correspondence

ˆ D f.t; p/ 2 P1 � P2 jCt is smooth and p is a flex of Ctg;

what is the geometry of the closure of ˆ near t D 0? Bonus question: Describe the
geometry of

ẑ D f.t; p; L/ 2 P1 � P2 � P2� jCt smooth, p a flex of Ct and L D TpCtg

near t D 0.

Exercise 7.34. Find the points on P1, if any, that are ramification points for the maps
P1 ! P3 given by

.s; t/ 7! .s3; s2t; st2; t3/ 2 P3 and .s; t/ 7! .s4; s3t; st3; t4/ 2 P3:

Exercise 7.35. Show that the only smooth, irreducible and nondegenerate curve C � Pr

with no inflection points is the rational normal curve.

Exercise 7.36. We define an elliptic normal curve to be a smooth irreducible nondegen-
erate curve of genus 1 and degree r C 1 in Pr . Observe that for an elliptic normal curve
E the Plücker formula yields the number .r C 1/2 of inflection points. Show that these
are exactly the images of any one under the group of translations of order r C 1 on E,
each having weight 1.

Exercise 7.37. Let C be a smooth curve of genus g � 2. A point p 2 C is called a
Weierstrass point if there exists a nonconstant rational function on C with a pole of order
g or less at p and regular on C n fpg.

(a) Show that the Weierstrass points of C are exactly the inflection points of the
canonical map ' W C ! Pg�1.

(b) Use this to count the number of Weierstrass points on C .

Exercise 7.38. Let PN be the space of all plane curves of degree d � 4, and let
H � PN be the closure of the locus of smooth curves with a hyperflex. Show that H is
a hypersurface. (We will be able to calculate the degree of this hypersurface once we
have developed the techniques of Chapter 11.)

Exercise 7.39. To prove that a general complete intersection C � P3 does not have
weight-2 inflection points, we need to prove that it does not have flex lines (lines with
multiplicity-3 intersection with the curve) or planes with a point of contact of order 5.
Prove the first statement: that a general complete intersection of two surfaces S1 and S2
of degrees d1 � d2 > 1 does not have a flex line.
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The following two exercises show how to construct an example of a component of
the Hilbert scheme whose general member is a smooth, irreducible, nondegenerate curve
having inflection points of weight > 1.

Exercise 7.40. Let S D p;E � Pn be a cone over an elliptic normal curve E � Pn�1

(that is, a smooth curve of genus 1 embedded by a complete linear system of degree n),
and let L1; : : : ; Ln�1 � S be lines of the ruling. Show that, for n > 9 and m� 0:

(a) The residual intersection C of S with a general hypersurface X � Pn of degree m
containing L1; : : : ; Ln�1 is a smooth, irreducible and nondegenerate curve.

(b) Every deformation of C also lies on a cone over an elliptic normal curve. (The
condition n > 9 is necessary to ensure that the surface S has itself no deformations
other than cones. This follows from the classification of del Pezzo surfaces; see for
example Beauville [1996].)

Thus the smooth, irreducible and nondegenerate curves C constructed in this fashion
form an open subset of the Hilbert scheme of curves in Pn.

Exercise 7.41. Let C � S � Pn be a curve as constructed in the preceding problem.
Show that C has inflection points of weight > 1 (look at points where C is tangent to a
line of the ruling of S ).

Exercise 7.42. Let S � P3 be a general surface of degree d � 2, p 2 S a general
point and H D TpS � P3 the tangent plane to S at p. Show by an elementary
dimension count (not using the second fundamental form or quoting Theorem 7.11) that
the intersection H \ S has an ordinary double point at p.

Exercise 7.43. Let S D P1 � P1, and let fCt � Sgt2P1 be a general pencil of curves
of type .a; b/ on S . Use the topological Hurwitz formula to say how many of the curves
Ct are singular. (Compare this with your answer to Exercise 7.22.)

Exercise 7.44. Let p 2 P2 be a point, and let fCt � P2gt2P1 be a general pencil of
plane curves of degree d singular at p, as in Exercise 7.25. Use the topological Hurwitz
formula to count the number of curves in the pencil singular somewhere else.

Exercise 7.45. Let P5 be the space of conic plane curves and D � P5 the discriminant
hypersurface. Let C 2 D be a point corresponding to a double line. What is the
multiplicity of D at C , and what is the tangent cone?

Exercise 7.46. Now, let P14 be the space of quartic plane curves and D � P14 the
discriminant hypersurface. Let C 2 D be a point corresponding to a double conic. What
is the multiplicity of D at C , and what is the tangent cone?



Chapter 8
Compactifying parameter
spaces
Keynote Questions

(a) (The five conic problem) Given five general plane conics C1; : : : ; C5 � P2, how
many smooth conics C � P2 are tangent to all five? (Answer on page 308.)

(b) Given 11 general points p1; : : : ; p11 2 P2 in the plane, how many rational quartic
curves C � P2 contain them all? (Answer on page 321.)

All the applications of intersection theory to enumerative geometry exploit the fact
that interesting classes of algebraic varieties — lines, hypersurfaces and so on — are
themselves parametrized by the points of an algebraic variety, the parameter space,
and our efforts have all been toward counting intersections on these spaces. But to
use intersection theory to count something, the parameter space must be projective
(or at least proper) so that we have a degree map, as defined in Chapter 1. In the
first case we treated in this book, that of the family of planes of a certain dimension
in projective space, the natural parameter space was the Grassmannian, and the fact
that it is projective is what makes the Schubert calculus so useful for enumeration.
When we studied the questions about linear spaces on hypersurfaces, we were similarly
concerned with parameter spaces that were projective — the Grassmannian G.k; n/ and,
in connection with questions involving families of hypersurfaces, the projective space
PN of hypersurfaces itself. These spaces have an additional feature of importance: a
universal family of the geometric objects we are studying, or (amounting to the same
thing) the property of representing a functor we understand. This property is useful
in many ways, first of all for understanding tangent spaces, and thus transversality
questions.

In many interesting cases, however, the “natural” parameter space for a problem is
not projective. To use the tools of intersection theory to count something, we must add
points to the parameter space to complete it to a projective (or at least proper) variety. It
is customary to call these new points the boundary, although this is not a topological
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boundary in any ordinary sense — the boundary points may look like any other point
of the space — and (more reasonably) to call the enlarged space a compactification of
the original space. If we are lucky, the boundary points of the compactification still
parametrize some sort of geometric object we understand. In such cases we can use this
structure to solve geometric problems. But as we shall see, the boundary can also get in
the way, even when it seems quite natural. In such cases, we might look for a “better”
compactification. . . but just how to do so is a matter of art rather than of science.

Perhaps the first problem in enumerative geometry where this tension became clear
is the five conic problem, which was solved in a naive way, not taking the difficulty into
account (and therefore getting the wrong answer) by Steiner [1848], and again, with the
necessary subtlety (and correct answer!) by Chasles [1864]. In this case there is a very
beautiful and classical construction of a good parameter space, the space of complete
conics. In this chapter we will explore the construction, and briefly discuss two more
general constructions: Hilbert schemes and Kontsevich spaces.

8.1 Approaches to the five conic problem
To reiterate the problem: Given five general plane conics C1; : : : ; C5, how many

smooth conics are tangent to all five? Here is a naive approach:

(a) The set of plane conics is parametrized by P5. The locus of conics tangent to each
given Ci is an irreducible hypersurface Zi � P5, as one sees by considering the
incidence correspondence

f.C; p/ 2 P5 � Ci jC a conic tangent to Ci at pg

Zi Ci
�2

and noting that the fibers of �2 are linear subspaces of P5 of dimension 3. (Here,
“tangent to Ci at p” means mp.C � Ci / � 2, that is, the restriction to Ci of the
defining equation of C vanishes to order at least 2 at p.)

(b) The degree ofZi is 6. To see this, we intersectZi with a general line in P5 — that is,
we take a general pencil of conics and count how many are tangent to Ci . The conic
Ci may be thought of as the embedding of P1 in P2 by the complete linear system
of degree 2. Thus a general pencil of conics cuts out a general linear series on Ci of
degree 4, and the degree of Zi is the number of divisors in this family with fewer
than four distinct points. The linear series defines a general map Ci ! P1 of degree
4 with distinct branch points, and by the Riemann–Hurwitz theorem (Section 7.7)
the number of branch points of this map is six.
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(c) Thus the number of points of intersection of Z1; : : : ; Z5, assuming they intersect
transversely, will be 65 D 7776.

Alas, 7776 is not the answer to the question we posed. The problem is not hard to
spot: far from being transverse, the hypersurfaces Zi do not even meet in a finite set!
To be sure, the part of the intersection within the open set U � P5 of smooth conics
(which is what we wanted to count) is finite, and even transverse, as we will verify below.
The trouble is with the compactification: we used the space of all (possibly singular)
conics, and “excess” intersection of the Zi takes place along the boundary.

In more detail: the hypersurface Zi is the closure in P5 of the locus of smooth
conics C tangent to Ci . A smooth conic C is tangent to Ci exactly when the defining
equation F of C , restricted to Ci Š P1 and viewed as a quartic polynomial on P1, has a
multiple root. When we extend this characterization to arbitrary conics C we see that
a double line is tangent to every conic. Thus the five hypersurfaces Z1; : : : ; Z5 � P5

will all contain the locus S � P5 of double lines, which is a Veronese surface in the P5

of conics. As we shall see, the intersection
T
Zi is the union of S and the finite set of

smooth conics tangent to the five Ci . The presence of this extra component S means that
the number we seek has little to do with the intersection product

Q
ŒZi � 2 A

5.P5/.
There are at least three successful approaches to dealing with this issue:

Blowing up the excess locus
Suppose we are interested in intersections inside some quasi-projective variety U

and we have a compactification V of U ; in the example above, U is the space of smooth
conics and V the space of all conics. We could blow up some locus in the boundary V nU
to obtain a new compactification. This is the classical way of separating subvarieties of
a given variety that we do not want to meet. In the five conic problem, we would blow
up the surface S in P5 and consider the proper transforms zZi of the hypersurfaces Zi
in the blow-up X D BlS P5. If we are lucky (and in this case we are), we will have
eliminated the excess intersection — that is, the zZi will not intersect anywhere in the
exceptional divisor E � X of the blow-up. (If this were not the case we would have to
blow up again, along the common intersection

T
zZi \E.) In our case, the zZi intersect

transversely, and only inside U . To finish the argument, we could determine the Chow
ring A.X/ of the blow-up, find the class � 2 A1.X/ of the zZi (as members of a family
parametrized by an open subset of P5, they all have the same class) and evaluate the
product �5 2 A5.X/.

Readers who want to carry this out themselves can find a description of the Chow
ring of a blow-up in Section 13.6; there is also a complete account of this approach in
Griffiths and Harris [1994, Section 6.1].

This approach has the virtue of being universally applicable, at least in theory: Any
component of any intersection of cycles can be eliminated by blowing up repeatedly.
But often we cannot recognize the blow-up as the parameter space of any nice geometric
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objects, and this makes the computations less intuitive and sometimes unwieldy. For
example, this approach to the problem of counting cubics satisfying nine tangency condi-
tions (solved heuristically by Maillard and Zeuthen in the 19th century and rigorously in
Aluffi [1990] and Kleiman and Speiser [1991]) requires multiple blow-ups of the space
P9 of cubics and complex calculations.

Excess intersection formulas
Excess intersection problems were already considered by Salmon in 1847, and

were generalized greatly by Cayley around 1868. The excess intersection formula of
Fulton and MacPherson (see Fulton [1984, Chapter 9]) subsumes them all: It is a general
formula that assigns to every connected component of an intersection

T
Zi � X a class

in the appropriate dimension, in such a way that the sum of these classes (viewed as
classes on the ambient variety X via the inclusion) equals the product of the classes of
the intersecting cycles. This applies whenever all but at most one of the subvarieties
Zi are locally complete intersections in X ; in our case all are hypersurfaces. We will
give an exposition of the formula in Chapter 13, and show in Section 13.3.5 how it
may be applied to the five conic problem, as was originally carried out in Fulton and
MacPherson [1978].

As a general method, excess intersection formulas are often an improvement on
blowing up. But, as with the blow-up approach, they require some knowledge of the
normal bundles (or, more generally, normal cones) of the various loci involved.

Changing the parameter space
To understand what sort of compactification is “right” for a given problem is, as

we have said, an art. In the case of the five conic problem, we can take a hint from
the fact that the problem is about tangencies. The set of lines tangent to a nonsingular
conic is again a conic in the dual space (we will identify it explicitly below). But when
a conic degenerates to the union of two lines or a double line, the dual conic seems to
disappear — the dual of a line is only a point! This leads us to ask for a compactification
of the space of smooth conics that keeps track of information about limiting positions
of tangents.

There are at least two ways to make a compactification that encodes the necessary
information. One is to use the Kontsevich space. It parametrizes not subschemes of
P2, but rather maps f W C ! P2 with C a nodal curve of arithmetic genus 0. This
is an important construction, which generalizes to a parametrization of curves of any
degree and genus in any variety. We will discuss it informally in the second half of this
chapter. But proving even the existence of Kontsevich spaces requires a considerable
development, and we will not take this route; the reader will find an exposition in Fulton
and Pandharipande [1997].

The other way to describe a compactification of the space of smooth conics that
preserves the tangency information is through the idea of complete conics. The space of
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complete conics is very well-behaved, and we will spend the first half of this chapter on
this beautiful construction. It turns out that the space we will construct is isomorphic
to the Kontsevich space for conics (and, for that matter, to the blow-up BlS P5 of
P5 along the surface of double lines), but generalizes in a different direction: There
are analogs for quadric hypersurfaces of any dimension, for linear transformations
(“complete colineations”) and, more generally, for symmetric spaces (see De Concini
and Procesi [1983; 1985], De Concini et al. [1988] and Bifet et al. [1990]), but not for
curves of higher degree or genus. (There is an analogous construction but, as we will
remark at the end of Section 8.2.2, in general the space constructed is highly singular
and not well-understood.)

8.2 Complete conics
We begin with an informal discussion. Later in this section we will provide a rigorous

foundation for what we describe. Recall that the dual of a smooth conic C � P2 is the
set of lines tangent to C , regarded as a curve C � � P2�. As we shall see, C � is also a
smooth conic (this would not be true in characteristic 2!).

8.2.1 Informal description

Degenerating the dual
Consider what happens to the dual conic as a smooth conic degenerates to a singular

conic — either two distinct lines or a double line. That is, let C ! B be a one-parameter
family of conics with parameter t , with Ct smooth for t ¤ 0. Associating to each curve
Ct the dual conic C �t � P2� we get a regular map from the punctured disc B n f0g to
the space P5� of conics in P2�. (If P2 D PV and P2� D PV �, the space of conics on
each are respectively P Sym2 V � and P Sym2 V — in particular, they are naturally dual
to one another, so if we write the former as P5 it makes sense to write the latter as P5�.)
Since the space P5� of all conics in P2� is proper, this extends to a regular map on all
of B — in other words, there is a well-defined conic C �0 D limt!0 C �t . However, as
we will see, this limit depends in general on the family C and not just on the curve C0:
in other words, the limit of the duals C �t is not determined by the limit of the curves Ct .

To provide a compactification of the space U of smooth conics that captures this
phenomenon, we realize U as a locally closed subset of P5 � P5�: As we will see in the
following section, the map C 7! C � is regular on smooth conics, so U is isomorphic to
the graph of the map U ! P5� sending a smooth conic C to its dual. That is, we set

U D f.C; C �/ 2 P5 � P5� jC a smooth conic in P2 and C � � P2� its dualg:

The desired compactification, the variety of complete conics, is the closure

X D U � P5 � P5�:
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M L
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Ct

Figure 8.1 Conics specializing to a conic C0 D L [M of rank 2.

The dual of the dual of a smooth conic is the original conic, as we shall soon see (in fact,
the same statement holds for varieties much more generally, and will be proven in
Section 10.6), so the set U is symmetric under exchanging P5 and P5�. It follows that X
is symmetric too. (As one consequence of this symmetry, note that if .C; C �/ 2 X and
either C or C � is smooth, then the other is too.) The set U � P5 of smooth conics is by
definition dense in X , and it follows that X is irreducible and of dimension 5 as well.

What happens to C � when C becomes singular? Let us first consider the case of a
family fCtg of smooth conics approaching a conic C0 of rank 2, that is, C0 D L[M is
the union of a pair of distinct lines; for example, the family given (in affine coordinates
on P2) as

C D f.t; x; y/ 2 B � P2 jy2 D x2 � tg;

as shown in Figure 8.1. The picture makes it easy to guess what happens: Any collection
fLtg of lines with Lt tangent to Ct for t ¤ 0 approaches a line L0 through the point
p D L \M , and conversely any line L0 through p is a limit of lines Lt tangent to
Ct . (Actually, the second statement follows from the first, given that the limit C 00 D
limt!0 C �t is one-dimensional.) Since C 00 is by definition a conic, it must be the double
of the line in P2� dual to the point p, irrespective of the family fCtg used to construct it
or of the positions of the lines L and M .

Things are much more interesting when we consider a family of smooth conics
fCt � P2g specializing to a double line C0 D 2L, and ask what the limit limt!0 C �t of
the dual conics C �t � P2� may be. One way to realize such a family of conics is as the
images of a family of maps 't W P1 ! P2. Such a family of maps is given by a triple
of polynomials .ft .x/; gt .x/; ht .x//, homogeneous of degree 2 in x D .x0; x1/, whose
coefficients are regular functions in t . In our present circumstances, our hypotheses
say that for t ¤ 0 the polynomials ft ; gt and ht are linearly independent (and so span
H 0.OP1.2//), but for t D 0 they span only a two-dimensional vector space W �

H 0.OP1.2//. For now, we will make the additional assumption that the linear system
W D .OP1.2/;W / is base point free; the case where it is not will be dealt with below.
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Figure 8.2 The family of conics y2 D t .x2 � 2y/.

To see what the limit of the dual conics C �t will be in this situation, let u; v 2 P1

be the ramification points of the map 'W W P1 ! P1 associated to W (note that the
map '0 is just the composition of this map with the inclusion of the target P1 as the
line L � P2), and let p D '0.u/ and q D '0.v/ 2 L be their images. We claim that
in this case the limit limt!0 C �t of the dual conics is the conic C �0 D p

� C q� � P2�

consisting of lines through p and lines through q.
To prove this, let r 2 P2 be any point not in L and not in any curve Ct , and let

� W P2 ! L be the projection from r to L. The composition � ı 't W P1 ! L Š P1

has degree 2; let ut ; vt 2 P1 be the ramification points of this map and pt ; qt 2 L
the corresponding branch points. Suppose that � ı 't is the map associated to the
pencil Wt D .OP1.2/;Wt / for a two-dimensional vector space Wt � H 0.OP1.2//. As
t ! 0, the linear system Wt approaches the linear system W; correspondingly, the
divisor ut C vt approaches uC v and pt C qt approaches p C q. In other words, the
tangent lines to Ct passing through r — which are exactly the lines r; 't .ut / D r; pt and
r; 't .vt / D r; qt — approach the lines r; p and r; q, independently of r . Thus every line
through p or q is a limit of tangent lines to Ct , and conversely.

It is important to note that in this situation, unlike in the case where C0 is the union
of two distinct lines, the limit of the dual conics C �t is not determined by the conic
C0. As we will see in Section 8.2.2, the points p and q may be any pair of points of L,
depending on the path along which Ct approaches C0.

The remaining case to consider is when the branch points pt ; qt 2 L of the maps
� ı 't approach the same point p 2 L. (Typically, this corresponds to the case where
W has a base point: When W has a base point u, the ramification of W is concen-
trated at this point, which must then be the limit as t ! 0 of both the ramification
points ut and vt of Wt .) In this case, the same logic shows that the limit of the dual
conics C �t will be the double 2p� of the line p� � P2� dual to the image point
p D '0.u/.
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Types of complete conics
In conclusion, there are four types of complete conics, that is, points .C; C 0/ 2 X :

(a) .C; C 0/ 2 U ; that is, C and C 0 are both smooth and C 0 D C �. We will call these
smooth complete conics.

(b) C D L [ M is of rank 2 and C 0 D 2p�, where p� � P2� is the line dual to
p D L \M .

(c) C D 2L is of rank 1, and C 0 D p� [ q� is the union of the lines in P2� dual to two
points p; q 2 L.

(d) C D 2L is of rank 1, and C 0 D 2p� is the double of the line in P2� dual to a point
p 2 L.

Note that the description is exactly the same if we reverse the roles of C and C 0,
except that the second and third types are exchanged. Note also that the points of each
type form a locally closed subset of X , with the first open and the last closed, and all
four are orbits of the action of PGL3 on P5 � P5�.

As we have already explained, the locus of complete conics of type (a) is isomorphic
to U ; in particular, it has dimension 5. It is easy to see that those of type (b) are
determined by the pair of lines L;M , and thus form a set of dimension 4. By symmetry
(or inspection) the same is true for type (c). Finally, those of type (d) are determined by
the line L and the point p 2 L; thus these form a set of dimension 3, which is in fact the
intersection of the closures of the sets of points described in (b) and (c).

8.2.2 Rigorous description

Let us now verify all these statements, using the equations defining the locus
X � P5 �P5�. We could do this explicitly in coordinates, but it will save a great deal of
ink if we use a little multilinear algebra. The reader to whom this is new will find more
than enough background in Appendix 2 of Eisenbud [1995]. The multilinear algebra
allows us to treat some basic properties in all dimensions with no extra effort, so we
begin with some general results about duality for quadrics.

Duals of quadrics
Let V be a vector space. Recall that since we are assuming the characteristic of the

ground field k is not 2 the following three notions are equivalent:

� A symmetric linear map ' W V ! V �.
� A quadratic map q W V ! k.
� An element q0 2 Sym2.V �/.

Explicitly, if we start with a symmetric map ' W V ! V � then we take q.x/ D h'.x/; xi,
and the element q0 2 Sym2.V �/ comes about from the identification of Sym.V �/ with
the ring of polynomial functions on V .
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Any one of these objects, if nonzero, defines a quadric hypersurface Q � PV ,
defined as the zero locus Q D V.q/ of q, or equivalently the locus

fv 2 PV j h'.v/; vi D 0g:

(Here, and in the remainder of this discussion, we will abuse notation and use the same
symbol v to denote both a nonzero vector v 2 V and the corresponding point in PV .)
The quadric Q � PV will be smooth if and only if ' is an isomorphism; more generally,
the singular locus of Q will be the (projectivization of the) kernel of '. The rank of Q is
defined to be, equivalently, the rank of the linear map ', or n � dim.Qsing/ (where we
adopt, for the present purposes only, the convention that dim.¿/ D �1); another way to
characterize it is to say that a quadric of rank k is the cone with vertex a linear space
Qsing Š Pn�k � Pn over a smooth quadric hypersurface Q � Pk�1.

Now, the dual of any variety X � Pn is defined to be the closure in Pn� of the locus
of hyperplanes tangent to X (that is, containing the tangent space TpX at a smooth point
p 2 X). (We will describe this construction in far more detail in Section 10.6.) Given
the description in the last paragraph of a quadric Q of rank k as a cone, we see that the
dual of a quadric of rank k has dimension k � 2. That said, we ask: what, in these terms,
is the dual to Q?

To state the result, recall that if ' W V ! W is any map of vector spaces of dimension
nC 1, then there is a cofactor map 'c W W ! V , represented by a matrix whose entries
are signed n � n minors of ', satisfying ' ı 'c D det.'/ IdW and 'c ı ' D det.'/ IdV .
In invariant terms, 'c is the composite

W Š
VnW � Vn

'�

�����!
VnV � Š V;

where the identificationsW Š
VnW � and

VnV � Š V are defined by choices of nonzero
vectors in the one-dimensional spaces

VnC1W � and
VnC1V � respectively. Note that

when the rank of ' is < n the map 'c is zero.

Proposition 8.1. Let Q � P.V / D Pn be the quadric corresponding to the symmetric
map ' W V ! V �, and let v 2 V be a nonzero vector such that h'.v/; vi D 0, so that
v 2 Q. The tangent hyperplane to Q at v is

TvQ D fw 2 P.V / j h'.v/; wi D 0g:

The dual of Q is thus

Q� D f'.v/ 2 P.V �/ j v 2 Q and '.v/ ¤ 0g:

In particular, if Q is nonsingular (that is, if the rank of ' is n C 1), then Q� is the
image '.Q/ of Q under the induced map ' W PV ! PV �, and Q� is the quadric
corresponding to the cofactor map 'c .
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On the other hand, if the rank of Q is n, and Qc is the quadric corresponding to
the cofactor map 'c , then Qc is the unique double hyperplane containing Q�; that is,
the support of Qc is the hyperplane corresponding to the annihilator of the singular
point of Q.

Proof: For any w 2 V , the line v;w � PV spanned by v and w is tangent to Q at v if
and only if

h'.v C �w/; v C �wi D 0 mod .�2/:

Expanding this out, we get

h'.w/; vi C h'.v/; wi D 0;

and, by the symmetry of ' and the assumption that we are not in characteristic 2, this is
the case if and only if

h'.v/; wi D 0;

proving the first statement and identifying the dual variety as Q� D '.Q/.
Suppose the rank of Q is n or n C 1. Let 'c be the matrix of cofactors of ', so

that 'c' D det' ı I , where I is the identity map. Since rankQ D rank' � n, the
map 'c is nonzero. The quadric Qc is by definition the set of all w 2 V � such that
hw; 'c.w/ D 0. If v 2 Q then

h'.v/; 'c'.v/i D .det'/h'.v/; vi D 0;

so '.Q/ is contained in Qc .
If rank' D nC 1, so that ' is an isomorphism, thenQ� D '.Q/ is again a quadric

hypersurface, and we must have Q� D Qc . If rank' D n, then since 'c' D 0 the
rank of 'c is 1, and the associated quadric is a double plane. On the other hand, Q
is the cone over a nonsingular quadric in Pn�1, and Q� is the dual of that quadric
inside a hyperplane (corresponding to the vertex of Q) in Pn�. Thus Q� spans the plane
contained in Qc .

The following easy consequence will be useful for the five conic problem:

Corollary 8.2. IfQ andQ0 are smooth quadrics, thenQ andQ0 have the same tangent
hyperplane l D 0 at some point of intersection v 2 Q \Q0 if and only if Q� and Q0�

have the common tangent hyperplane v D 0 at the point of intersection l 2 Q� \Q0�.

In particular, it follows that if D is a smooth plane conic then the divisor ZD � X ,
which is the closure of the set of complete conics .C; C 0/ such that C is smooth and
tangent to D, is equal to the divisor defined similarly starting from the dual conic D�,
that is, the closure of the set of .C; C 0/ such that C 0 � P2� is smooth and tangent to the
dual conic D�.
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Proof: Suppose that Q and Q0 correspond to symmetric maps ' and  . Since the
tangent planes at v are the same, Proposition 8.1 shows that '.v/ D  .v/ 2 Q� \Q0�.
Since v D '�1.'.v// D  �1. .v// �  �1.'.v//, we see that Q� and Q0� are in fact
tangent at '.v/. (In addition to the fact that the duality interchanges points and planes,
we are really proving that the dual of Q� is Q, and similarly for Q0. Such a thing is
actually true for any nondegenerate variety, as we will see in Section 10.6.)

Equations for the variety of complete conics
We now return to the case of conics in P2, and suppose that V is three-dimensional.

Proposition 8.3. The variety

X � P.Sym2 V �/ � P.Sym2 V / D P5 � P5�

of complete conics is smooth and irreducible. Thinking of .';  / 2 P5 � P5� as coming
from a pair of symmetric matrices ' W V ! V � and  W V � ! V , the scheme X
is defined by the ideal I generated by the eight bilinear equations specifying that the
product  ı ' has its diagonal entries equal to one another (two equations) and its
off-diagonal entries equal to zero (six equations).

(For the experts: it follows from the proposition that the ideal I has codimension 5,
and that its saturation, in the bihomogeneous sense, is prime. Computation shows that
the polynomial ring modulo I is Cohen–Macaulay. With the proposition, this implies
that I is prime. In particular, I is preserved under the interchange of factors ' and  ,
which does not seem evident from the form given.)

Proof: Let Y be the subscheme defined by the given equations. We first show that
Y agrees set-theoretically with X on at least the locus of those points .';  / where
rank' � 2 or rank � 2, that is, where ' or  corresponds to a smooth conic or the
union of two distinct lines. On the locus of smooth conics, ' has rank 3 and .';  / 2 Y
if and only if  D '�1 up to scalars, so Proposition 8.1 shows that the dual conic is
defined by  . Moreover, if the rank of ' is 2 and .';  / 2 Y , then we see from the
equations that  ı ' D 0. Up to scalars,  D 'c is the unique possibility, and again
Proposition 8.1 shows that the corresponding conic C 0 is the dual of C . To see the
uniqueness (up to scalars) in terms of matrices, note that in suitable bases

' D

0@1 0 0

0 1 0

0 0 0

1A
and the symmetric matrices annihilating the image have the form

 D

0@0 0 0

0 0 0

0 0 a

1A D a'c :
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The same arguments show that when rank � 2, ' D  c and again they correspond
to dual conics. (Note that since rank c D 1 on this locus we do not have  D 'c there.)

Since X is defined as the closure in P5 � P5� of the locus U of pairs .C; C �/ with
C smooth, we see now in particular that X � Y . We will show next that Y is smooth of
dimension 5 locally at any point .';  / 2 Y where both ' and  have rank 1. We will
use this to show that Y is everywhere smooth of dimension 5.

To this end, suppose that .';  / 2 Y and that both ' and  have rank 1. The tangent
space to Y at the point .';  / may be described as the locus of pairs of symmetric
matrices ˛ W V ! V �; ˇ W V � ! V such that

. C �ˇ/ ı .' C �˛/ mod .�2/

has equal diagonal entries and zero off-diagonal entries. Since both ' and  have rank 1,
the rank of  ı ˛ C ˇ ı ' is at most 2, so this is equivalent to saying that

 ı ˛ C ˇ ı ' D 0:

We must show that this linear condition on the entries of the pair .˛; ˇ/ is equivalent
to five independent linear conditions. In suitable coordinates the maps '; will be
represented by the matrices

' D

0@1 0 0

0 0 0

0 0 0

1A and  D

0@0 0 0

0 1 0

0 0 0

1A :
Multiplying out, we see that

 ı ˛ D

0@ 0 0 0

˛2;1 ˛2;2 ˛2;3

0 0 0

1A and ˇ ı ' D

0@ˇ1;1 0 0

ˇ2;1 0 0

ˇ3;1 0 0

1A :
Thus the equation  ˛ C ˇ' D 0 is equivalent to the equations ˛2;1 C ˇ2;1 D 0 and
˛2;2 D ˛2;3 D ˇ1;1 D ˇ3;1 D 0: five independent linear conditions, as required.

To complete the proof of smoothness, note that Y is preserved scheme-theoretically
by the action of the orthogonal group G. (Proof: If .';  / 2 Y and ˛ is orthogonal,
then .˛'˛�; ˛ ˛�/ 2 Y since ˛�˛ D 1.) Any closed point on Y where rank' � 2
degenerates under the action ofG to a point where rank' D 1. (Proof: If ˛ is orthogonal,
that is, ˛˛� D 1, then the matrix ' is diagonal if and only if ˛'˛�˛ ˛� D ˛' ˛�

is diagonal. Thus, in a basis for which ' is diagonal, stretching one of the coordinates
will make the corresponding entry of ' approach zero, and  D 'c moves at the same
time; a similar argument works when rank � 2.) Consequently, if the singular locus
of Y were not empty it would have to intersect the locus of pairs of matrices of rank 1,
and we have seen that this is not the case.
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Finally, to see Y is equal toX scheme-theoretically it is enough to show that the open
subset U of Y is dense in Y . We use the fact that each point .';  / of Y corresponds
to a unique pair of quadrics .Q;Q0/. When ' has rank 2, Q corresponds to a pair of
distinct lines, and Q0 is uniquely determined. Thus this set is four-dimensional. The
same goes for the case where  has rank 2. On the other hand, when both ' and  have
rank 1, Q is the double of a line L and Q0 is the double of a line corresponding to one
of the points of L; thus this set is only three-dimensional. Since Y is everywhere smooth
of dimension 5, any component of Y must intersect the set where ' and  have rank 3,
as required.

The classification of the points of X into the four types on page 296 follows from
Proposition 8.3:

Corollary 8.4. If .';  / 2 X , then one of the following holds:

(a) (Smooth complete conics) If ' is of rank 3, then  must be its inverse.
(b) If ' is of rank 2, then (since X is symmetric) the products  ı ' and ' ı  must

both be zero; it follows that  is the unique (up to scalars) symmetric map V � ! V

whose kernel is the image of ' and whose image is the kernel of '.
(c) If ' is of rank 1,  may have rank 1 or 2; in the latter case, it may be any symmetric

map V � ! V whose kernel is the image of ' and whose image is the kernel of '.
(d) If ' and  both have rank 1, they simply have to satisfy the condition that the kernel

of  contains the image of ' and vice versa.

Relations with the blow-up of P5

We mentioned at the beginning of this chapter that another approach to the problem
of excess intersection in the five conic problem would be to blow up the excess compo-
nent — that is, to pass to the blow-up Z D BlS P5 of P5 along the surface S � P5 of
double lines. It is natural to ask: what is the relation of the space X of complete conics
to the blow-up Z?

The answer is that they are in fact the same space. To see this, it is helpful to recall
the characterization of blow-ups given in Eisenbud and Harris [2000, Proposition IV-22]:
For an affine scheme Y and subscheme A � Y with ideal .f1; : : : ; fk/, the blow-up
BlA Y ! Y of Y along A is the closure in Y � Pk�1 of the graph of the map Y n A!
Pk�1 given by Œf1; : : : ; fk�. We can globalize this: Let Y be any scheme and A � Y a
subscheme. If L is a line bundle on Y and �1; : : : ; sk 2 H 0.L/ sections generating the
subsheaf IA=Y ˝ L, then the closure of the graph of the map Y n A! Pk�1 given by
Œf1; : : : ; fk� is the blow-up BlA Y ! Y of Y along A.

This is exactly what we have in the construction of the space X of complete conics.
Again, we think of the space P5 of conics as the space of symmetric 3 � 3 matrices M ,
and the Veronese surface S � P5 of double lines as the locus of matrices of rank 1. The
six minors �i ofM are then sections of OP5.2/ generating IS=P5.2/, so that the blow-up
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BlS P5 is the closure of the graph of the map Œ�1; : : : ; �6� W P5 n S ! P5. But as we
have just seen this is the map sending a conic to its dual, so the closure of the graph is
the variety X of complete conics.

One note: We could construct an analogous compactification of the space U � PN

of smooth plane curves of any degree d by associating to each smooth C � P2 its dual
curve. This defines a regular map U ! PM , where PM is the space of plane curves of
degree d.d � 1/, and we can compactify U by taking the closure in PN � PM of the
graph of this map. The resulting spaces are highly singular — already in the case d D 3,
Aluffi [1990] showed it takes five blow-ups of P9 to resolve the singularities — so in
general this is not a useful approach.

8.2.3 Solution to the five conic problem

Now that we have established that the space X of complete conics is smooth and
projective, we will show how to solve the five conic problem. To any smooth conic
D � P2 we associate a divisor Z D ZD � X , which we define to be the closure
in X of the locus of pairs .C; C �/ 2 X with C smooth and tangent to D, and let
� D ŒZD� 2 A

1.X/ be its class. We will address each of the following issues:

� We have to show that in passing from the “naive” compactification P5 of the space
U of smooth conics to the more sensitive compactification X , we have in fact
eliminated the problem of extraneous intersection; in other words, we have to show
that for five general conics Ci the corresponding divisors ZCi � X intersect only
in points .C; C 0/ 2 X with C and C 0 D C � smooth.

� We have to show that the five divisors ZCi are transverse at each point where they
intersect.

� We have to determine the Chow ring of the space X , or at least the structure of a
subring ofA.X/ containing the class � of the hypersurfacesZCi we wish to intersect.

� We have to identify the class � in this ring and find the degree of the fifth power
�5 2 A5.X/.

Complete conics tangent to five general conics are smooth
We begin by recalling that X is symmetric under the operation of interchanging the

factors P5 and P5�.
Let us start by showing that no complete conic .C; C 0/ of type (b) lies in the

intersection of the divisors associated to five general conics. The first thing we need to
do is to describe the points .C; C 0/ of type (b) lying in ZD for a smooth conic D. This
is straightforward: If C D L [M is a conic of rank 2 which is a limit of smooth conics
tangent to D, then C also must have a point of intersection multiplicity 2 or more with
D; thus either L or M is a tangent line to D, or the point p D L \M lies on D. (Note
that by symmetry a similar description holds for the points of type (c): the complete
conic .2L; p� C q�/ will lie on ZD only if L is tangent to D, or p or q lie on D.)
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Now, suppose that .C; C 0/ is a complete conic of type (b) lying in the intersection of
the divisors Zi D ZCi associated to five general conics Ci . Write C D L [M , and set
p D L \M . We note that since the Ci are general, no three are concurrent; thus p can
lie on at most two of the conics Ci . We will proceed by considering three cases in turn:

� p lies on none of the conics Ci . This is the most immediate case: Since the conics
C �i are also general, it is likewise the case that no three of them are concurrent.
In other words, no line in the plane is tangent to more than two of the Ci , and
correspondingly .L [M;p/ 2 ZCi for at most four of the Ci .

� p lies on two of the conics Ci , say C1 and C2. Since C3; C4 and C5 are general with
respect to C1 and C2, none of the finitely many lines tangent to two of them passes
through a point of C1 \ C2; thus L and M can each be tangent to at most one of
the conics C3; C4 and C5, and again we see that .L[M;p/ 2 ZCi for at most four
of the Ci .

� p lies on exactly one of the conics Ci , say C1. Now, since C1 is general with respect
to C2; C3; C4 and C5, it will not contain any of the finitely many points of pairwise
intersection of lines tangent to two of them. Thus L and M cannot each be tangent
to two of the conics C2; : : : ; C5, and once more we see that .L [M;p/ 2 ZCi for
at most four of the Ci .

Thus no complete conic of type (b) can lie in the intersection of the ZCi ; by symmetry,
no complete conic of type (c) can either.

It remains to verify that no complete conic .C; C 0/ of type (d) can lie in the inter-
section

T
ZCi , and again we have to start by characterizing the intersection of a cycle

Z D ZD with the locus of complete conics of type (d).
To do this, write an arbitrary complete conic of type (d) as .2M; 2q�/, with q 2M .

If .2M; 2q�/ 2 ZD , then there is a one-parameter family .Ct ; C 0t / 2 ZD with Ct
smooth, C 0t D C

�
t for t ¤ 0 and .C0; C 00/ D .2M; 2q

�/; let pt 2 Ct \D be the point of
tangency of Ct with D, and set p D limt!0 pt 2M . The tangent line TptCt D TptD
to Ct at pt will have as limit the tangent line L toD at p, so L 2 q�. Thus both p and q
are in both L and M . If p D q then in particular q 2 D. On the other hand, if p ¤ q,
then we must haveM D p; q D L, soM 2 D�. We conclude, therefore, that a complete
conic .2M; 2q�/ of type (d) can lie in ZD only if either q 2 D or M 2 D�.

Given this, we see that the first condition (q 2 Ci ) can be satisfied for at most two
of the Ci , and the latter (M 2 C �i ) likewise for at most two; thus no complete conic
.2M; 2q�/ of type (d) can lie in ZCi for all i D 1; : : : ; 5.

Transversality
In order to prove that the cycles ZCi � X intersect transversely when the conics

C1; : : : ; C5 are general, we need a description of the tangent spaces to the ZCi at points
of
T
ZCi . We have just shown that such points are represented by smooth conics, and

the open subscheme parametrizing smooth conics is the same whether we are working
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M M

D qDq

Figure 8.3 The two types of complete conics .2M; 2q�/ of type (d) tangent to D.

in P5 or in the space of complete conics, so we may express the answer in terms of the
geometry of P5.

Lemma 8.5. Let D � P2 be a smooth conic curve and ZıD � P5 the variety of smooth
plane conics C tangent to D.

(a) If C has a point p of simple tangency withD and is otherwise transverse toD, then
ZıD is smooth at ŒC �.

(b) In this case, the projective tangent plane TŒC �ZıD to ZıD at ŒC � is the hyperplane
Hp � P5 of conics containing the point p.

Proof: First, identify D with P1, and consider the restriction map

H 0.OP2.2//! H 0.OD.2// D H 0.OP1.4//:

This map is surjective, with kernel the one-dimensional subspace spanned by the section
representingD itself. In terms of projective spaces, the restriction induces a rational map

�D W P5 D PH 0.OP2.2//! PH 0.OP1.4// D P4

(this is just the linear projection of P5 from the point D 2 P5 to P4). The closure
ZıD in P5 is thus the cone with vertex D 2 P5 over the hypersurface D � P4 of
singular divisors in the linear system jOP1.4/j; Lemma 8.5 will follow directly from the
next result:

Proposition 8.6. Let Pd D PH 0.OP1.d// be the space of polynomials of degree d on
P1 and D � Pd the discriminant hypersurface, that is, the locus of polynomials with
a repeated root. If F 2 D is a point corresponding to a polynomial with exactly one
double root p and d � 2 simple roots, then D is smooth at F with tangent space the
space of polynomials vanishing at p.

Proof: Note that we have already seen this statement: it is the content of Proposition 7.21
(stated in Section 7.7.3 as a consequence of the topological Hurwitz formula). For another
proof, this time in local coordinates, we can introduce the incidence correspondence

‰ D f.F; p/ 2 Pd � P1 j ordp.F / � 2g;
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and write down its equations in local coordinates .a; x/ in Pd � P1: ‰ is the zero locus
of the polynomials

R.a; t/ D adx
d
C ad�1x

d�1
C � � � C a1x C a0

and

S.a; t/ D dadx
d�1
C .d � 1/ad�1x

d�2
C � � � C 2a2x C a1:

Evaluated at a general point .a; x/ where a1 D a0 D x D 0, all the partial derivatives
of R and S vanish except0BB@

@R

@a1

@R

@a0

@R

@x

@S

@a1

@S

@a0

@S

@x

1CCA D �0 1 0

1 0 2a2

�
:

The fact that the first 2 � 2 minor is nonzero assures us that ‰ is smooth at the point,
and the fact that a2 ¤ 0 and the characteristic is not 2 assures us that the differential
d� W T.a;0/‰ ! TaPd of the projection � W D ! Pd is injective, with image the
plane a0 D 0. Finally, the fact that � is one-to-one at such a point tells us the image
D D �.‰/ is smooth at the image point.

Getting back to the statement of Lemma 8.5, if C � P2 is a conic with a point p of
simple tangency with D and is otherwise transverse to D, then, by Proposition 8.6, D is
smooth at the image point in P4, with tangent space the space of polynomials vanishing
at p. Since ZD is the cone over D it follows that ZD is smooth at C ; the tangent space
statement follows as well.

In order to apply Lemma 8.5, we need to establish some more facts about a conic
tangent to five general conics:

Lemma 8.7. Let C1; : : : ; C5 � P2 be general conics, and C � P2 any smooth conic
tangent to all five. Each conic Ci is simply tangent to C at a point pi and is otherwise
transverse to C , and the points pi 2 C are distinct.

Proof: Let U be the set of smooth conics, and consider incidence correspondences

ˆ D f.C1; : : : ; C5IC/ 2 .U
5
� U/ j each Ci is tangent to C g

� ˆ0 D f.C1; : : : ; C5IC/ 2 ..P5/5 � U/ j each Ci is tangent to C g:

The set ˆ is an open subset of the set ˆ0. Since U is irreducible of dimension 5 and the
projection map ˆ0 ! U on the last factor has irreducible fibers .ZC /5 of dimension 20,
we see that ˆ0, and thus also ˆ, is irreducible of dimension 25.
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There are certainly points in ˆ where the conditions of the lemma are satisfied:
simply choose a conic C and five general conics Ci tangent to it. Thus the set of
.C1; : : : ; C5IC/ 2 ˆ where the conditions of the lemma are not satisfied is a proper
closed subset, and as such it can have dimension at most 24, and cannot dominate U 5

under the projection to the first factor. This proves the lemma.

To complete the argument for transversality, let ŒC � 2
T
ZCi be a point corre-

sponding to the conic C � P2. By Lemma 8.7 the points pi of tangency of C with the
Ci are distinct points on C . Since C is the unique conic through these five points, the
intersection of the tangent spaces to ZCi at ŒC �\

TŒC �ZCi D
\
Hpi D fŒC �g

is zero-dimensional, proving transversality.

8.2.4 Chow ring of the space of complete conics

Having confirmed that the intersection
T
ZCi indeed behaves well, let us turn now

to computing the intersection number. We start by describing the relevant subgroup of
the Chow group A.X/.

First, let ˛; ˇ 2 A1.X/ be the pullbacks to X � P5 �P5� of the hyperplane classes
on P5 and P5�. These are respectively represented by the divisors

Ap D f.C; C
�/ jp 2 C g

(for any point p 2 P2) and

BL D f.C; C
�/ jL 2 C �g

(for any point L 2 P2�).
Also, let ; ' 2 A4.X/ be the classes of the curves � and ˆ that are the pullbacks

to X of general lines in P5 and P5�. These are, respectively, the classes of the loci of
complete conics .C; C �/ such that C contains four general points in the plane, and such
that C � contains four points Li 2 P2� (that is, C is tangent to four lines in P2).

Lemma 8.8. The group A1.X/ of divisor classes on X has rank 2, and is generated
over the rationals by ˛ and ˇ. The intersection number of these classes with  and '
are given by the table  ˛ ˇ

 1 2

' 2 1

!
Proof: We first show that the rank of A1.X/ is at most 2. The open subset U � X of
pairs .C; C �/ with C and C � smooth is isomorphic to the complement of a hypersurface
in P5, and hence has torsion Picard group: Any line bundle on U extends to a line bundle
on P5, a power of which is represented by a divisor supported on the complement P5 nU .
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Thus, if L is any line bundle on X , a power of L is trivial on U and so is represented
by a divisor supported on the complement X n U . But the complement of U in X has
just two irreducible components: the closures D2 and D3 of the loci of complete conics
of type (b) and (c). Any divisor class on X is thus a rational linear combination of the
classes of D2 and D3, from which we see that the rank of the Picard group of X is
at most 2.

Since passing through a point is one linear condition on a quadric, we have
deg.˛/ D 1 and dually deg.ˇ'/ D 1. Similarly, since a general pencil of conics
will cut out on a line L � P2 a pencil of degree 2, which will have two branch points,
we see that deg.˛'/ D 2 and again by duality deg.ˇ/ D 2. Since the matrix of in-
tersections between ˛; ˇ and ; ' is nonsingular, we conclude that ˛ and ˇ generate
Pic.X/˝Q.

In fact, ˛ and ˇ generateA1.X/ over Z as well, as we could see from the description
of X as a blow-up of P5.

The class of the divisor of complete conics tangent to C
It follows from Lemma 8.8 that we can write � D p˛C qˇ 2 A1.X/˝Q for some

p; q 2 Q. To compute p and q, we use the fact that, restricted to the open set U � X ,
the divisor Z is a sextic hypersurface; it follows that deg � D p C 2q D 6, and since �
is symmetric in ˛ and ˇ we get deg �' D q C 2p D 6 as well. Thus

� D 2˛ C 2ˇ 2 A1.X/˝Q:

From this we see that deg.�5/ D 32 deg.˛ C ˇ/5, and it suffices to evaluate the
degree of the class ˛5�iˇi 2 A5.X/ for i D 0; : : : ; 5. By symmetry, it is enough to do
this for i D 0, 1 and 2.

To do this, observe first that the projection of X � P5 � P5� onto the first factor is
an isomorphism on the set U1 of pairs .C; C 0/ such that rankC � 2 (the map U ! P5�

sending a smooth conic C to its dual in fact extends to a regular map on U1 sending a
conic C D L [M of rank 2 to the double line 2p� 2 P5�, where p D L \M ). Since
all conics passing through three given general points have rank � 2, the intersections
needed will occur only in U1. Since the degree of a zero-dimensional intersection is equal
to the degree of the intersection scheme, this implies that we can make the computations
on P5 instead of on X . For this we will use Bézout’s theorem:

� i D 0: Passing through a point is a linear condition on quadrics. There is a unique
quadric through five general points, and the intersection of five hyperplanes in P5

has degree 1, so deg.˛5/ D 1.
� i D 1: The quadrics tangent to a given line form a quadric hypersurface in P5. Since

not all conics in the one-dimensional linear space of conics through four general
points will be tangent to a general line, deg.˛4ˇ/ D 2.
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� i D 2: Similarly, we see that the conics passing through three given general points
and tangent to a general line form a conic curve in U1 � P5. Not all these conics
are tangent to another given general line. (For example, after fixing coordinates we
may think of circles as the conics passing through the points ˙

p
�1 on the line

at1. Certainly there are circles through a given point and tangent to a given line
that are not tangent to another given line.) It follows that deg.˛3ˇ2/ is the degree of
the zero-dimensional intersection of a plane with two quadrics, that is, 4.

Thus

deg..˛ C ˇ/5/ D
�5
0

�
C 2

�5
1

�
C 4

�5
2

�
C 4

�5
3

�
C 2

�5
4

�
C

�5
5

�
D 1C 10C 40C 40C 10C 1

D 102

and, correspondingly,

�5 D 25 � 102 D 3264:

This proves:

Theorem 8.9. There are 3264 plane conics tangent to five general plane conics.

Of course, the fact that we are imposing the condition of being tangent to a conic is
arbitrary; we can use the space of complete conics to count conics tangent to five general
plane curves of any degree, as Exercises 8.11 and 8.12 show, and indeed we can extend
this to the condition of tangency with singular curves, as Exercises 8.14–8.16 indicate.
See Fulton et al. [1983] for a general formula enumerating members of a k-dimensional
families of varieties tangent to k given varieties.

Other divisor classes on the space of complete conics
We will take a moment here to describe as well the classes of two other important

divisors on the space X of complete conics: the closures E and G of the strata of
complete conics of types (b) and (c). As we mentioned in the initial section of this
chapter, the space X can also be realized, via the projection map X � P5 � P5� ! P5,
as the blow-up of P5 along the Veronese surface S � P5 of double lines, or dually as a
blow-up of P5�; in these descriptions of X , the divisors G and E are the exceptional
divisors of the blow-up maps.

We can describe the classes � and � of E and G by the same method we used
to determine the class of Zd , that is, by calculating their intersection numbers with
the curves � and ˆ. For E, we see that a general pencil of plane conics will have
three singular elements, so that deg.�/ D 3 (that is, the image of E in P5 is a cubic
hypersurface), while the image of E in P5� has codimension 3, and so will not meet a
general line in P5� at all, so that deg.�'/ D 0; solving, we obtain

� D 2˛ � ˇ; and dually � D 2ˇ � ˛:
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Alternatively, we can argue that in the space P5 of conics the closure BL of the locus
of smooth conics tangent to a given line L � P2 is a quadric hypersurface containing the
Veronese surface of double lines. It necessarily has multiplicity 1 along S (the singular
locus of a quadric hypersurface in Pn is contained in a proper linear subspace of Pn), so
that its proper transform has class ˇ D 2˛ � �, and the relations above follow.

8.3 Complete quadrics
There are beautiful generalizations of the construction of the space of complete

conics to the case of quadrics in Pn and more general bilinear forms or homomorphisms.
The paper Laksov [1987] gives an excellent account and many references. Here is a sketch
of the beginning of the story. As usual we restrict ourselves to characteristic 0, though
the description holds more generally as long as the ground field has characteristic¤ 2.

As in the case of conics, we represent a quadric in Pn D PV by a symmetric
transformation ' W V ! V �, or equivalently a symmetric bilinear form in Sym2 V �.
To this transformation we associate the sequence of symmetric transformations

'i W
ViV ! Vi .V �/ D .ViV /� for i D 1; : : : ; n:

Here the identification
Vi .V �/ D .

ViV /� is canonical — see for example Eisenbud
[1995, Section A2.3].

We think of 'i as an element of Sym2.
ViV �/, and we define the variety of complete

quadrics in Pn, which we will denote by ˆ, to be the closure in
nY
iD1

P.Sym2.
ViV �//

of the image of the set of smooth quadrics under the map ' 7! .'1; : : : ; 'n/.
The space P.

ViV �/ in which the quadric corresponding to 'i lies is the ambient
space of the Grassmannian Gi D G.i � 1; n/ of .i � 1/-planes in Pn, and in fact an
.i � 1/-plane ƒ � Pn is tangent to Q if the point Œƒ� 2 Gi lies in this quadric.

From the definition we see that ˆ has an open set U isomorphic to the open set
corresponding to quadrics in the projective space of quadratic forms on Pn. As with the
case of complete conics, there is a beautiful description of the points that are not in U .

To start, let Pn D PV and consider a flag V of subspaces of V of arbitrary length r
and dimensions k D fk1 < � � � < krg:

0 � Vk1 � Vk2 � � � � � Vkr � V:

Now consider the variety Fk of pairs .V;Q/, where V is a flag as above and Q D
.Q1; : : : ;QrC1/, where theQi are smooth quadric hypersurfaces in the projective space
P.Vki=Vki�1/; this is an open subset of a product of projective bundles over the variety
of flags V . We then have:
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Proposition 8.10. There is a stratification of ˆ whose strata are the varieties Fk , where
k ranges over all strictly increasing sequences 0 < k1 < � � � < kr < r .

One can also describe the limit of a family of smooth quadrics qt 2 U D F¿ when
the family approaches a quadric q0 of rank nC 1 � k, as in

't WD

 
t � Ik 0

0 InC1�k

!
:

The limit lies in the stratum Ffkg, where the flag consists of one intermediate space
0 � Vk � V ; the k-plane Vk will be the kernel of '0, the quadric Q2 on P.V=Vk/
will be the quadric induced by Q0 on the quotient, and Q1 will be the quadric on PVk
associated to the limit

lim
t!0

't jVk
t

:

In general, the stratum Fk lies in the closure of Fl exactly when l � k; the
specialization relations can be defined inductively, using the above example.

8.4 Parameter spaces of curves
So far in this chapter we have been studying compactifications of parameter spaces

of smooth conics. The most obvious is perhaps P5, which we can identify as the space
of all subschemes of P2 having pure dimension 1 and degree 2 (and thus arithmetic
genus 0), and we have shown how the compactification by complete conics was more
useful for dealing with problems involving tangencies. Here we have used the fact that
the dual of a smooth conic is again a smooth conic. It would have been a different story
if the problem had involved twisted cubics in P3 rather than conics in P2 — if we had
asked, for example, for the number of twisted cubic curves meeting each of 12 lines, or
tangent to each of 12 planes, or, as in one classical example, the number of twisted cubic
curves tangent to each of 12 quadrics. In that case it is not so clear how to make any
parameter space and compactification at all!

In this section, we will discuss two general approaches to constructing parameter
spaces for curves in general: the Hilbert scheme of curves and the Kontsevich space
of stable maps. (In specific cases, other approaches may be possible as well; for exam-
ple, see Cavazzani [2016] in the case of twisted cubics.) The Hilbert scheme and the
Kontsevich space each have advantages and disadvantages, as we will see.

8.4.1 Hilbert schemes

Recall from Section 6.3 that the Hilbert scheme HP .Pn/ is a parameter space for
subschemes of Pn with Hilbert polynomial P ; in the case of curves (one-dimensional
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subschemes), this means all subschemes with fixed degree and arithmetic genus. We start
by describing the Hilbert schemes parametrizing conic and cubic curves in P2 and P3;
when we come to Kontsevich spaces, we will describe these cases in that setting for
contrast.

The Hilbert schemes of conics and cubics in P2

As we have observed, these are just the projective spaces P5 and P9 associated to the
vector spaces of homogeneous quadratic and cubic polynomials on P2; they parametrize
subschemes of P2 with Hilbert polynomial 2mC 1 and 3m respectively.

The Hilbert scheme of plane conics in P3

We will discuss this space at much greater length in the following chapter (where,
in particular, we will prove all the assertions made here!). Briefly, the story is this: Any
subscheme of P3 with Hilbert polynomial 2mC1 is necessarily the complete intersection
of a plane and a quadric surface; the plane, naturally, is unique. This means that the
Hilbert scheme admits a map to the dual projective space P3�; the fiber over a point
H 2 P3� is the P5 of conics in H Š P2. (This P5-bundle structure is what allows us to
calculate its Chow ring; we will use this information to solve the enumerative problem of
counting the conics meeting each of eight general lines in P3.) In any event, the Hilbert
scheme of plane conics in P3 is irreducible and smooth of dimension 8.

The Hilbert scheme of twisted cubics
In the case of the Hilbert scheme parametrizing twisted cubic curves in P3 (that

is, parametrizing subschemes of P3 with Hilbert polynomial 3mC 1) we begin to see
some of the pathologies that affect Hilbert schemes in general. It has one component
of dimension 12 whose general point corresponds to a twisted cubic curve. But it also
has a second component, whose general point corresponds to the union of a plane cubic
C � P2 � P3 and a point p 2 P3. Moreover, this second component has dimension
15 (the choice of plane has three degrees of freedom, the cubic inside the plane nine
more, and the point gives an additional three). These two components meet along the
11-dimensional subscheme of singular plane cubics C with an embedded point at the
singularity, not contained in the plane spanned by C (see Piene and Schlessinger [1985]).

8.4.2 Report card for the Hilbert scheme

The Hilbert scheme is from some points of view the most natural parameter space
that is generally available for projective schemes. Among its advantages: As shown
in Section 6.3, it represents a functor that is easy to understand. There is a useful
cohomological description of the tangent spaces to the Hilbert scheme, and, beyond that,
a deformation theory that in some cases can describe its local structure. It was shown
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to be connected in characteristic 0 by Hartshorne [1966] and in finite characteristic
by Pardue [1996] (see Peeva and Stillman [2005] for another proof). Reeves [1995]
showed that the radius of the graph of its irreducible components is at most one more
than the dimension of the varieties being parametrized. And, of course, associated to a
point on the Hilbert scheme is all the rich structure of a homogeneous ideal in the ring
kŒx0; : : : ; xn� and its free resolution.

However, as a compactification of the space of smooth curves, the Hilbert scheme
has drawbacks that sometimes make it difficult to use:

(a) It has extraneous components, often of differing dimensions. We see this phe-
nomenon already in the case of twisted cubics, above. Of course we could take just
the closure Hı in the Hilbert scheme of the locus of smooth curves, but we would
lose some of the nice properties, like the description of the tangent space. (Thus
while it is relatively easy to describe the singular locus of H, we do not know in
general how to describe the singular locus of Hı along the locus where it intersects
other components; in the case of twisted cubics it was not known until Piene and
Schlessinger [1985] that Hı is smooth.)

In fact, we do not know for curves of higher degree how many such extraneous
components there are, nor their dimensions: For r � 3 and large d , the Hilbert
scheme of zero-dimensional subschemes of degree d in Pr will have an unknown
number of extraneous components of unknown dimensions, and this creates even
more extraneous components in the Hilbert schemes of curves.

(b) No one knows what is in the closure of the locus of smooth curves. If we do choose
to deal with the closure Hı of the locus of smooth curves rather than the whole
Hilbert scheme — as it seems we must — we face another problem: except in a few
special cases, we cannot tell if a given point in the Hilbert scheme is in this closure.
That is, we may not know how to tell whether a given singular one-dimensional
scheme C � Pr is smoothable.

(c) It has many singularities. The singularities of the Hilbert scheme are, in a precise
sense, arbitrarily bad: Vakil [2006b] has shown that the completion of every affine
local k-algebra appears (up to adding variables) as the completion of a local ring on
a Hilbert scheme of curves.

8.4.3 The Kontsevich space

In the case of curves in a variety, the Kontsevich space is an alternative compactifi-
cation. A precise treatment of this object is given in Fulton and Pandharipande [1997];
here we will treat it informally, sketch some of its properties, and indicate how it is used,
with the hope that this will give the interested reader a taste of what to expect.
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The Kontsevich space M g;0.Pr ; d / parametrizes what are called stable maps of
degree d and genus g to Pr . These are morphisms

f W C ! Pr ;

with C a connected curve of arithmetic genus g having only nodes as singularities, such
that the image f�ŒC � of the fundamental class of C is equal to d times the class of
a line in A1.Pr/, and satisfying the one additional condition that the automorphism
group of the map f — that is, automorphisms ' of C such that f ı ' D f — is finite.
(This last condition is automatically satisfied if the map f is finite; it is relevant only
for maps that are constant on an irreducible component of C , and amounts to saying
that any smooth, rational component C0 of C on which f is constant must intersect
the rest of the curve C in at least three points.) Two such maps f W C ! Pr and
f 0 W C 0 ! Pr are said to be the same if there exists an isomorphism ˛ W C ! C 0

with f 0 ı ˛ D f . There is an analogous notion of a family of stable maps, and
the Kontsevich space M g;0.Pr ; d / is a coarse moduli space for the functor of fam-
ilies of stable maps. Note that we are taking the quotient by automorphisms of the
source, but not of the target, so that M g;0.Pr ; d / shares with the Hilbert scheme
Hdm�gC1.Pr/ a common open subset parametrizing smooth curves C � Pr of de-
gree d and genus g.

There are natural variants of this: the space M g;n.Pr ; d / parametrizes maps f W
C ! Pr with C a nodal curve having n marked distinct smooth points p1; : : : ; pn 2
C . (Here an automorphism of f is an automorphism of C fixing the points pi and
commuting with f ; the condition of stability is thus that any smooth, rational component
C0 of C on which f is constant must have at least three distinguished points, counting
both marked points and points of intersection with the rest of the curve C .) More
generally, for any projective variety X and numerical equivalence class ˇ 2 Num1.X/,
we have a space M g;n.X; ˇ/ parametrizing maps f W C ! X with fundamental class
f�ŒC � D ˇ, again with C nodal and f having finite automorphism group.

It is a remarkable fact that the Kontsevich space is proper: In other words, if
C � D � Pr is a flat family of subschemes of Pr parametrized by a smooth, one-
dimensional base D, and the fiber Ct is a smooth curve for t ¤ 0, then no matter what
the singularities of C0 are there is a unique stable map f W zC0 ! Pr which is the
limit of the inclusions �t W Ct ,! Pr . Note that this limiting stable map f W zC0 ! Pr

depends on the family, not just on the scheme C0; the import of this in practice is that the
Kontsevich space is often locally a blow-up of the Hilbert scheme along loci of curves
with singularities worse than nodes. (This is not to say we have in general a regular
map from the Kontsevich space to the Hilbert scheme; as we will see in the examples
below, the limiting stable map f W zC0 ! Pr does not determine the flat limit C0 either.)
We will see how this plays out in the four relatively simple cases discussed above in
connection with the Hilbert scheme:
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p q p D q

Figure 8.4 Stable maps of degree 2 with image a line.

Plane conics
One indication of how useful the Kontsevich space can be is that, in the case of

M 0.P2; 2/ (that is, plane conics), the Kontsevich space is actually equal to the space of
complete conics.

To begin with, if C � P2 is a conic of rank 2 or 3 — that is, anything but a double
line — then the inclusion map � W C ,! P2 is a stable map; thus the open set W � P5 of
such conics is likewise an open subset of the Kontsevich space M 0.P2; 2/.

But when a one-parameter family C � D � P2 of conics specializes to a double
line C0 D 2L, the limiting stable map is a finite, degree-2 map f W C ! L, with
C isomorphic to either P1 or two copies of P1 meeting at a point. Such a map is
characterized, up to automorphisms of the source curve, by its branch divisor B � L, a
divisor of degree 2. (If B consists of two distinct points, then C Š P1, while if B D 2p
for some p 2 L, the curve C is reducible.) Thus the data of the limiting stable map is
equivalent to specifying the limiting dual curve.

This suggests what is in fact the case: The identification of the common open subset
W of the Kontsevich space M 0.P2; 2/ and the Hilbert scheme H2mC1.P2/ D P5

extends to a regular morphism, and to a biregular isomorphism of M 0.P2; 2/ with the
space X of complete conics, commuting with the projection X ! P5:

M 0.P2; 2/
Š - X

H2mC1.P2/ D P5
�

-

We will not verify these assertions, but they are not hard to prove given the analysis
of limits of conics and their duals in Section 8.2.1.
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Plane conics in P3

By contrast, there is not a natural regular map in either direction between the Hilbert
scheme of conics in space and the Kontsevich space M 0.P3; 2/. Of course there is a
common open set U : its points correspond to reduced connected curves of degree 2
embedded in P3 (such a curve is either a smooth conic in a plane or the union of two
coplanar lines). To see that the identification of this open set does not extend to a regular
map in either direction, note first that, as before, if C � D � P3 is a family of conics
specializing to a double line C0, then the limiting stable map is a finite, degree-2 cover
f W C ! L, and this cover is not determined by the flat limit C0 of the schemes
Ct � P3. Thus the identity map on U does not extend to a regular map from the Hilbert
scheme to the Kontsevich space. On the other hand, the scheme C0 is contained in a
plane — the limit of the unique planes containing the Ct . Since it has degree 2, the plane
containing it is unique. But this plane is not determined by the data of the map f . Thus
the identity map on U does not extend to a regular map from the Kontsevich space to
the Hilbert scheme either.

The birational equivalence between the Hilbert scheme and the Kontsevich space
is of a type that appears often in higher-dimensional birational geometry: the Kontsevich
space is obtained from the Hilbert scheme H by blowing up the locus of double lines,
and then blowing down the exceptional divisor along another ruling. (The blow-up
of H along the double line locus is isomorphic to the blow-up of M 0.P3; 2/ along
the locus of stable maps of degree 2 onto a line; both can be described as the space
of pairs .H I .C; C �//, where H � P3 is a plane and .C; C �/ a complete conic in
H Š P2.) The birational isomorphism between the Hilbert scheme and Kontsevich
space in this case is an example of what is known as a flip in higher-dimensional
birational geometry.

Plane cubics
Here, we do have a regular map from the Kontsevich spaceM 1.P2; 3/ to the Hilbert

scheme H3m.P2/ Š P9, and it does some interesting things: It blows up the locus of
triple lines, much as in the example of plane conics, and the locus of cubics consisting
of a double line and a line as well. But it also blows up the locus of cubics with a
cusp, and cubics consisting of a conic and a tangent line, and these are trickier: The
blow-up along the locus of cuspidal cubics, for example, can be obtained either by three
blow-ups with smooth centers or by one blow-up along a nonreduced scheme supported
on this locus.

But what we really want to illustrate here is that the Kontsevich space M 1;0.P2; 3/
is not irreducible — in fact, it is not even nine-dimensional! For example, maps of the
form f W C ! P2 with C consisting of the union of an elliptic curve E and a copy of
P1, where f maps P1 to a nodal plane cubic C0 and maps E to a smooth point of C0,
form a 10-dimensional family of stable maps; in fact, these form an open subset of a
second irreducible component of M 1.P2; 3/, as illustrated in Figure 8.5.
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pDf .E/

C Df .P1/

Figure 8.5 A typical point in the 10-dimensional component of M 1;0.P2; 3/.
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C1Df .P1/

Figure 8.6 General member of a third component of M 1;0.P2; 3/.

And there is also a third component, whose general member is depicted in Figure 8.6.

Twisted cubics
Here the shoe is on the other foot. The Hilbert scheme H D H3mC1 has, as we

saw, a second irreducible component besides the closure H0 of the locus of actual
twisted cubics, and the presence of this component makes it difficult to work with. For
example, it takes quite a bit of analysis to see that H0 is smooth, since we have no simple
way of describing its tangent space; see Piene and Schlessinger [1985] for details. By
contrast, the Kontsevich space is irreducible, and has only relatively mild (finite quotient)
singularities.

8.4.4 Report card for the Kontsevich space

As with the Hilbert scheme, there are difficulties in using the Kontsevich space:

(a) It has extraneous components. These arise in a completely different way from the
extraneous components of the Hilbert scheme, but they are there. A typical example
of an extraneous component of the Kontsevich space M g.Pr ; d / consists of maps
f W C ! Pr in which C was the union of a rational curve C0 Š P1, mapping to a
rational curve of degree d in Pr , and C1 an arbitrary curve of genus g meeting C0
in one point and on which f was constant; if the curve C1 does not itself admit a
nondegenerate map of degree d to Pr , this map cannot be smoothed.
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So, using the Kontsevich space rather than the Hilbert scheme does not solve
this problem, but it does provide a frequently useful alternative: There are situations
where the Kontsevich space has extraneous components and the Hilbert scheme
does not — like the case of plane cubics described above — and also situations
where the reverse is true, such as the case of twisted cubics.

(b) No one knows what is in the closure of the locus of smooth curves. This, unfortu-
nately, remains an issue with the Kontsevich space. Even in the case of the space
M g.P2; d / parametrizing plane curves, where it might be hoped that the Kontsevich
space would provide a better compactification of the Severi variety parametrizing
reduced and irreducible plane curves of degree d and geometric genus g than simply
its closure in the space PN of all plane curves of degree d , the fact that we do not
know which stable maps are smoothable represents a real obstacle to its use.

(c) It has points corresponding to highly singular schemes, and these tend to be in
turn highly singular points of M g.Pr ; d /. Still true, but in this respect, at least, it
might be said that the Kontsevich space represents an improvement over the Hilbert
scheme: Even when the image f .C / of a stable map f W C ! Pr is highly singular,
the fact that the source of the map is at worst nodal makes the deformation theory of
the map relatively tractable.

Finally, we mention one other virtue of the Kontsevich space: It allows us to work
with tangency conditions, without modifying the space and without excess intersection.
The reason is simple: IfX � Pr is a smooth hypersurface, the closureZX inM g.Pr ; d /
of the locus of embedded curves tangent to X is contained in the locus of maps f W
C ! Pr such that the preimage f �1.X/ is nonreduced or positive-dimensional. Thus,
for example, a point in M g.P2; d / corresponding to a multiple curve — that is, a map
f W C ! P2 that is multiple-to-one onto its image — is not necessarily in ZX .

8.5 How the Kontsevich space is used:
rational plane curves

One case in which the Kontsevich space is truly well-behaved is the case g D 0.
Here the space M 0.Pr ; d / is irreducible — it has no extraneous components — and,
moreover, its singularities are at worst finite quotient singularities (in fact, it is the coarse
moduli space of a smooth Deligne–Mumford stack). Indeed, the use of the Kontsevich
space has been phenomenally successful in answering enumerative questions about
rational curves in projective space. We will close out this chapter with an example of
this; specifically, we will answer the second keynote question, and, more generally, the
question of how many rational curves C � P2 of degree d are there passing through
3d � 1 general points in the plane.
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p1;t

p2;t

p3;t

p4;t

p1;0

p2;0

C1

C2

p2;t

p1;t

p3;t

p4;t

ft

f .p2;t /

f .p1;t /

f .p3;t /

f .p4;t /

P2

Figure 8.7 A family of maps that blows down C1.

Since we have not even defined the Kontsevich space, this analysis will be far from
complete. The paper Fulton and Pandharipande [1997] provides enough background to
complete it.

Before starting the calculation, let us check that we do in fact expect a finite
number. Maps of degree d from P1 to P2 are given by triples ŒF;G;H� of homogeneous
polynomials of degree d on P1 with no common zeros; since the vector space of
polynomials of degree d on P1 has dimension d C 1, the space U of all such triples has
dimension 3d C 3. Now look at the map U ! PN from U to the space PN of plane
curves of degree d , sending such a triple to the image (as divisor) of the corresponding
map P1 ! P2. This has four-dimensional fibers (we can multiply F , G and H by a
common scalar, or compose the map with an automorphism of P1), so we conclude that
the image has dimension 3d � 1. In particular, we see that there are no rational curves
of degree d passing through 3d general points of P2, and we expect a finite number
(possibly 0) through 3d � 1. We will denote the number by N.d/.

We will work on the space Md WD M 0;4.P2; d / of stable maps from curves with
four marked points. This is convenient, since onMd we have a rational function ', given
by the cross-ratio: at a point of Md corresponding to a map f W .C Ip1; p2; p3; p4/!
P2 with C Š P1 irreducible, it is the cross-ratio of the points p1; p2; p3; p4 2 P1; that
is, in terms of an affine coordinate z on P1,

' D
.z1 � z2/.z3 � z4/

.z1 � z3/.z2 � z4/
;

where zi D z.pi /. The cross-ratio takes on the values 0; 1 and1 only when two of the
points coincide, which in our setting corresponds to when the curve C is reducible: For
example, if C has two components C1 and C2, with p1; p2 2 C1 and p3; p4 2 C2, then
by blowing down the curve C1 in the total space of the source family, we can realize
.C; p1; : : : ; p4/ as a limit of pointed curves .Ct ; p1.t/; : : : ; p4.t// with Ct irreducible
and limt!0 p1.t/ D limt!0 p2.t/ (see Figure 8.7). Thus ' has a zero at such a point.
Similarly, if three of the pi , or all four, lie on one component of C , then ' will be equal
to the cross-ratio of four distinct points on P1, and so will not be 0, 1 or1.
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We now introduce a curve B �Md on which we will make the calculation. Fix a
point p 2 P2 and two lines L;M � P2 passing through p; fix two more general points
q; r 2 P2 and a collection � � P2 of 3d � 4 general points. We consider the locus

B D

(
f W .C Ip1; p2; p3; p4/! P2

ˇ̌̌̌ f .p1/ D q; f .p2/ D r;
f .p3/ 2 L; f .p4/ 2M;

� � f .C /

)
�Md :

Since, as we said, the space of rational curves of degree d in P2 has dimension 3d � 1,
and we are requiring the curves in our family to pass through 3d � 2 points (the points q
and r , and the 3d � 4 points of �), our locus B will be a curve.

There may be points in B for which the source C of the corresponding map
f W .C Ip1; p2; p3; p4/! P2 is reducible. But in these cases C will have no more than
two components. To see this, note that if the image of C has components D1; : : : ;Dk of
degrees d1; : : : ; dk , by the above the curveDi can contain at most 3di � 1 of the 3d � 2
points � [ fq; rg. Thus

3d � 2 �

kX
iD1

.3di � 1/ D 3d � k;

whence k � 2. As a consequence, we see that the map f cannot be constant on any
component: By the stability condition, if f were constant on a component C0, then C0
would have to meet at least three other components — but f can be nonconstant on only
two, and it follows that the stability condition is violated on some component.

This argument also shows that there are only finitely many points in B for which the
source C is reducible: If D D D1 [D2 � P2, with Di a rational curve of degree di ,
and � [ fq; rg � D, then by the above Di must contain exactly 3di � 1 of the 3d � 2
points � [ fq; rg. The number of such plane curves D is thus� 3d�2

3d1�1

�
N.d1/N.d2/:

Moreover, for each such plane curve D there are d1d2 stable maps f W C ! P2 with
image D: We can take C the normalization of D at all but any one of the points of
intersection D1 \D2. (By Exercise 8.18, D1 and D2 will intersect transversely.)

On with the calculation! We equate the number of zeros and the number of poles of
' on B . To begin with, we consider points f W .C Ip1; p2; p3; p4/! P2 of B with C
irreducible. Since f .p1/ D q and f .p2/ D r are fixed and lie off the lines L and M ,
the only way any two of the points pi can coincide on such a curve is if

f .p3/ D f .p4/ D p; where L \M D fpg:

Such points are zeros of '; the number of these zeros is the number of rational plane
curves of degree d through the 3d � 1 points p, q, r and � , that is to say, N.d/.
(Of course, to make a rigorous argument we would have to determine the multiplicities
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of these zeros; since we are just sketching the calculation, we will omit the verification
that all multiplicities are 1, here and in the following.)

What about zeros and poles of ' coming from points

f W .C Ip1; p2; p3; p4/! P2

in B with C D C1 [ C2 reducible? As we have observed, we get a zero of ' at such
a point if and only if the points p1 and p2 lie on one component of C and p3 and p4
lie on the other. How many such points are there? Well, letting d1 be the degree of
the component C1 of C containing p1 and p2, and d2 D d � d1 the degree of the
other component C2, we see that f .C1/ must contain q, r and 3d1 � 3 of the points of
� , while C2 contains the remaining 3d � 4 � .3d1 � 3/ D 3d2 � 1 points of � . For
any subset of 3d1 � 3 points of � , the number of such plane curves is N.d1/N.d2/,
and for each such plane curve there are d2 choices of the point p3 2 C2 \ f �1.L/
and d2 choices of the point p4 2 C2 \ f �1.M/, as well as d1d2 choices of the point
f .C1 \ C2/ 2 f .C1/ \ f .C2/. We thus have a total of

d�1X
d1D1

d1d
3
2

� 3d�4
3d1�3

�
N.d1/N.d2/

zeros of ' arising in this way.
The poles of ' are counted similarly. These can occur only at points

f W .C Ip1; p2; p3; p4/! P2

in B with C D C1 [ C2 reducible, specifically with the points p1 and p3 lying on
one component of C and p2 and p4 on the other. Again letting d1 be the degree of the
component C1 of C containing p1 and p3, and d2 D d � d1 the degree of the other
component C2, we see that f .C1/ must contain q and 3d1 � 2 points of � , and f .C2/
the remaining 3d�4�.3d1�2/ D 3d2�2 points of � , plus r . For any subset of 3d1�2
points of � , the number of such plane curves is N.d1/N.d2/, and for each such plane
curve there are d1 choices of the point p3 2 C2 \ f �1.L/ and d2 choices of the point
p4 2 C2\f

�1.M/, as well as d1d2 choices of the point f .C1\C2/ 2 f .C1/\f .C2/.
We thus have a total of

d�1X
d1D1

d21 d
2
2

� 3d�4
3d1�2

�
N.d1/N.d2/

poles of ' arising in this way. Now, adding up the poles and zeros, we conclude that

N.d/ D

d�1X
d1D1

d1d2

h
d1d2

� 3d�4
3d1�2

�
� d22

� 3d�4
3d1�3

�i
N.d1/N.d2/;

a recursive formula that allows us to determine N.d/ if we know N.d 0/ for d 0 < d .
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To see how this works, we start with the fact that there is a unique line through two
points, and a unique conic through five general points, so N.d1/ D N.d2/ D 1. Next, if
we take d D 3 we see that

N.3/ D 2
h
2
�5
1

�
� 4

�5
0

�i
C 2

h
2
�5
4

�
�

�5
3

�i
D 12:

In fact, we have already seen this in Proposition 7.4: The set of all cubics containing
eight general points p1; : : : ; p8 2 P2 is a general pencil, and we are counting the number
of singular elements of that pencil.

Continuing to d D 4, we have

N.4/ D 3 � 12
h
3
�8
1

�
� 9

�8
0

�i
C 4

h
4
�8
4

�
� 4

�8
3

�i
C 3 � 12

h
3
�8
7

�
�

�8
6

�i
D 620:

Always ignoring the question of multiplicity, this answers Keynote Question (b): There
are 620 rational quartic curves through 11 general points of P2.

Exercises 8.19 and 8.20 suggest some additional problems that can be solved using
spaces of stable maps.

8.6 Exercises
Exercise 8.11. Let D � P2 be a smooth curve of degree d , and let ZD � X be the
closure, in the space X of complete conics, of the locus of smooth conics tangent to D.
Find the class ŒZD� 2 A1.X/ of the cycle ZD .

Exercise 8.12. Now let D1; : : : ;D5 � P2 be general curves of degrees d1; : : : ; d5.
Show that the corresponding cycles ZDi � X intersect transversely, and that the
intersection is contained in the open set U of smooth conics.

Exercise 8.13. Combining the preceding two exercises, find the number of smooth
conics tangent to each of five general curves Di � P2.

Exercise 8.14. Let D � P2 be a curve of degree d with ı nodes and � ordinary cusps
(for a definition of cusps, see Section 11.4.1), and smooth otherwise. Let ZD � X be
the closure, in the space X of complete conics, of the locus of smooth conics tangent to
D at a smooth point of D. Find the class ŒZD� 2 A1.X/ of the cycle ZD .

Exercise 8.15. Let fDtg be a family of plane curves of degree d , with Dt smooth for
t ¤ 0 and D0 having a node at a point p. What is the limit of the cycles ZDt as t ! 0?

Exercise 8.16. Here is a very 19th century way of deriving the result of Exercise 8.11
above. Let fDtg be a pencil of plane curves of degree d , with Dt smooth for general t
and D0 consisting of the union of d general lines in the plane. Using the description of
the limit of the cycles ZDt as t ! 0 in the preceding exercise, find the class of the cycle
ZDt for t general.
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Exercise 8.17. True or false: There are only finitely many PGL4-orbits in the Kontsevich
space M 0.P3; 3/.

Exercise 8.18. Let �1 and �2 be collections of 3d1�1 and 3d2�1 general points in P2,
and Di � P2 any of the finitely many rational curves of degree di passing through �i .
Show that D1 and D2 intersect transversely.

Exercise 8.19. Let p1; : : : ; p7 2 P2 be general points and L � P2 a general line. How
many rational cubics pass through p1; : : : ; p7 and are tangent to L?

Exercise 8.20. (a) Let M D M 0.P2; d / be the Kontsevich space of rational plane
curves of degree d , and let U � M be the open set of immersions f W P1 ! P2

that are birational onto their images. For D � P2 a smooth curve, let ZıD � U

be the locus of maps f W P1 ! P2 such that f .P1/ is tangent to D at a smooth
point of f .P1/, and ZD �M its closure. Show that ZD is contained in the locus
of maps f W C ! Pr such that the preimage f �1.D/ is nonreduced or positive-
dimensional.

(b) Given this, show that for D1; : : : ;D3d�1 general curves the intersection
T
ZDi is

contained in U .



Chapter 9
Projective bundles and
their Chow rings
Keynote Questions

(a) Given eight general lines L1; : : : ; L8 � P3, how many plane conic curves in P3

meet all eight? (Answer on page 354.)
(b) Can a ruled surface (that is, a P1-bundle over a curve) contain more than one curve

of negative self-intersection? (Answer on page 341.)

Many interesting varieties, such as scrolls, blow-ups of linear subspaces of projective
spaces, and some natural parameter spaces for enumerative problems can be described as
projective bundles over simpler varieties. In this chapter we will investigate such varieties
and compute their Chow rings. This is a tremendously useful tool, and in particular will
allow us to answer the first of the keynote questions above. It will also help us to describe
the Chow ring of a blow-up, which we will do in Chapter 13.

9.1 Projective bundles and the tautological
divisor class

Definition 9.1. A projective bundle over a scheme X is a map � W Y ! X such that
for any point p 2 X there is a Zariski open neighborhood U � X of p in X with
YU WD �

�1.U / Š U � Pr as U -schemes; that is, there are commuting maps

��1.U /
Š - U � Pr

U
�

�1�

-

where �1 W U � Pr ! U is projection on the first factor.
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One can make projective bundles from vector bundles as follows: First, if E Š OrC1X

is a trivial vector bundle, then

X � Pr D Proj.OX Œx0; : : : ; xr �/ D Proj.Sym E�/;

and the structure map OX ! Sym E� corresponds to the projection � W X � Pr ! X .
By definition, any vector bundle E becomes trivial on an open cover of X , so PE WD
Proj.Sym E�/! X is a projective bundle, called the projectivization of E . In fact, every
projective bundle can be written as PE for some vector bundle E . Before we can prove
this, we need to know a little more about projectivizations of vector bundles.1

From the local description of PE as a product, it follows that the points of PE
correspond to pairs .x; �/ with x 2 X and � a one-dimensional subspace � � Ex of the
fiber Ex of E . The bundle ��E on PE thus comes equipped with a tautological subbundle
of rank 1, whose fiber at a point .x; �/ 2 PE is the subspace � � Ex of the fiber Ex
corresponding to the point � 2 PEx . This subbundle is denoted by OPE.�1/ � �

�E .
On an open set U � X where E becomes trivial, so that ��1U D U � Pr , the bundle
OPE.�1/ is the pullback of OPr .�1/ from the second factor. We write OPE.1/ D

Hom.OPE.�1/;OPE/ for the dual bundle. Dualizing the inclusion of the tautological
bundle, we get a surjection ��E� ! OPE.1/.

We can get an idea of the relation between PE and E from the case where E is a
line bundle. In this case PE is locally X � P0, so the projection � W PE ! X is an
isomorphism. Identifying PE with X via � , we see that ��.E/ D E , and moreover
OPE.�1/ D E .

From this example we see that the bundles E and OPE.�1/ are not determined by
the scheme PE or even by the map � W PE ! X — rather, the bundle E is an additional
piece of data that determines the bundle OPE.�1/. We shall soon see that, in general, the
projective bundle PE ! X alone determines E up to tensor product with a line bundle
(Proposition 9.4), and that the line bundle OPE.�1/ on PE determines E completely
(Proposition 9.3).

9.1.1 Example: rational normal scrolls

Before continuing with the general theory we pause to work out the case of projective
bundles over P1. As we saw in Theorem 6.29, vector bundles on P1 are particularly
simple: Each one is a direct sum of line bundles

Lr
iD0OP1.ai /.

Write P1 D PV , where V is a vector space of dimension 2, with homogeneous
coordinates s; t 2 V �. Recall that for a � 1 the rational normal curve of degree a is the

1 There is a conflicting definition that is also in use. Some sources, following Grothendieck, define the projectivization
of E to be what we would call the projectivization of E�, that is, � W Proj.SymE/! X: Its points correspond to
1-quotients of fibers of E . We are following the classical tradition, which is also the convention adopted in Fulton
[1984]. Grothendieck’s convention is better adapted to the generalization from vector bundles to arbitrary coherent
sheaves, which we will not use.
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image of the morphism

' W P1 ! Pa; .s; t/ 7! .sa; sa�1t; : : : ; ta/:

When a D 0 we take ' W P1 ! P0 to be the constant map. More invariantly, for a � 0,
we can think of ' as the map PV ! Pa D PW � given by the complete linear series

jOP1.a/j WD
�
OP1.a/;H

0.OP1.a//
�
:

Fix a sequence of rC1 nonnegative integers a0; : : : ; ar , and let E D
L
i OP1.�ai /.

We will analyze the projective bundle PE by mapping it to a projective space PN using
the line bundle OPE.1/.

Set Wi D H 0.OP1.ai // D Symi V � and W D H 0.E�/ D
L
Wi , and write

N D dimW � 1 D
X

.ai C 1/ � 1 D r C
X

ai :

Inside PE , we consider the r C 1 rational curves

Ci D P.OP1.�ai // Š P1:
There are natural maps

W D H 0.E�/! H 0.��E�/! H 0.OPE.1//;

and from the commutative diagramsL
Wi D W - H 0.OPE.1//

Wi D H
0.OP1.ai //

projection
?

Š- H 0.OPOP1 .�ai /
.1//

restriction to Ci?

we see that W ! H 0.OPE.1// is a monomorphism and that its restriction to Ci is the
complete linear series jOP1.ai /j. Let 'i W P1 ! PW �i � PW � be the corresponding
morphism, which embeds Ci as the rational normal curve of degree ai as above.

For each p 2 P1, the restriction of the linear series W WD .OPE.1/;W / to the fiber
Pr D ��1.p/ is a subseries of jOPr .1/j. Since the image contains the r C 1 linearly
independent points 'i .p/, it is the complete linear series, and this fiber is mapped
isomorphically to the Pr that is the linear span of the points 'i .p/. Thus the linear series
W is base point free, and defines a morphism ' W PE ! PN .

We define the rational normal scroll

S.a0; : : : ; ar/ � P
�M

Wi

�
D PN

to be the image '.PE/ of this morphism. It is the union of the r-dimensional planes
spanned by '0.p/; : : : ; 'r.p/ as p runs over P1:

S WD S.a0; : : : ; ar/ D
[
p2P1

'0.p/; : : : ; 'r.p/:
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1 0

0 1

0L 1L

Figure 9.1 S.1; 1/, the union of lines joining corresponding points on the parametrized
skew lines L0 and L1, is a nonsingular quadric in P3.

Since each POP1.�ai / is embedded by the restriction of W , and the distinct 'i .p/
are linearly independent for every p 2 P1, it is already clear that ' is set-theoretically
an injection.

In the next section, we will show that W is the complete linear series jOPE.1/j, and
that when all ai > 0 the map ' induces an isomorphism PE Š S . The ideal of forms
vanishing on a rational normal scroll is also easy to describe (Exercises 9.27–9.29).

We will also show that

P
� rM
iD0

OP1.ai /

�
Š P

� rM
iD0

OP1.bi /

�
if and only if there is an integer b such that (after possibly reordering the indices)
bi D ai C b for all i ; thus the description above can also be applied to describe the
bundles P

�Lr
iD0OP1.ai /

�
even when some of the ai are negative.

Some examples of this construction are already familiar. In the case r D 0, we have
already noted that S.a0/ is the rational normal curve of degree a0 (or a point, if a0 D 0).
From the construction of S.1; 1/ � P3 above as the union of lines joining corresponding
points on two given disjoint lines, the images of '0 and '1, we see that S.1; 1/ is the
nonsingular quadric in P3: the lines in the union are the lines in one of the two rulings,
while the images of '0 and '1 are two of the lines in the other ruling (see Figure 9.1).
Another instance is the scroll S.1; 1; 1/ � P5, which is the Segre threefold, that is, the
image of the Segre embedding P1 � P2 ! P5.

If ar D 0, then from the construction we see that S.a0; : : : ; ar/ is a cone over
S.a0; : : : ; ar�1/, and similarly for the other ai . This remark allows us to reduce most
questions about scrolls to the case where all ai > 0 for all i . For example, the quadric in
P3 with an isolated singularity, that is, the cone over a nonsingular conic in P2, can be
described as S.2; 0/ or S.0; 2/.

To describe the first example beyond these, the scroll S.1; 2/ � P4, we choose an
isomorphism between a lineL and a nonsingular conic C lying in a plane disjoint fromL.
The scroll is then the union of the lines joining the points of L to the corresponding
points of C .
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There is much more to say about the geometry of rational normal scrolls, some of
which will be deduced from the more general situation of projective bundles in the next
sections, some in Exercises 9.27–9.29. For more information see Eisenbud and Harris
[1987] or Harris [1995].

9.2 Maps to a projective bundle
One of our goals is to show that every projective bundle � W Y ! X is the

projectivization of a vector bundle E on X , as stated above. In fact, we will construct the
bundle E from the geometry of � , as the dual of the direct image of a suitably chosen
line bundle L on Y . To construct the isomorphism Y ! PE , we will use the following
universal property, which generalizes the one for projective spaces:

Proposition 9.2 (Universal property of Proj). Given a vector bundle E on a scheme X ,
commutative diagrams of maps of schemes

Y
' - PE

X
� �p -

are in natural one-to-one correspondence with line subbundles L � p�E .

Proof: Given ', we pull back the inclusion OPE.�1/ � �
�E via ' and get

'�OPE.�1/ � '
���E D p�E :

Conversely, given L � p�E , we may cover X by open sets on which E and L are trivial,
and get a unique map over each of these using the universal property of ordinary pro-
jective space. By uniqueness, these maps glue together to give a map over all of X .

To prepare for the next step we need at the least to know how to reconstruct E from
a line bundle on PE . For future use, we will treat an easy generalization. Write OPE.m/

for the m-th tensor power of OPE.1/. Thus (for any integer m) the sheaf OPE.m/ is the
sheaf on Proj.Sym E�/ associated to the sheaf of Sym E�-modules .Sym E�/.m/ on X ,
obtained by shifting the grading of Sym E�. For any quasi-coherent sheaf F on PE we
write F.m/ to denote F ˝OPE.m/.

The surjection ��E� ! OPE.1/, restricted to the fiber over a point .x; �/ 2 PE ,
sends a linear form on Ex to its restriction to the subspace � � Ex . Thus any global sec-
tion � of E� gives rise to a global section Q� of OPE.1/. The following result strengthens
and extends this observation:
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Proposition 9.3. If � W PE ! X is a projectivized vector bundle on X then for m � 0

��OPE.m/ D Symm E�;

and Ri��OPE.m/ D 0 for i > 0.

Taking m D 1, we see that the map � W PE ! X , together with the tautological
line bundle OPE.1/, determines E .

Proof: Suppose that E has rank r C 1. Over an affine open set U � X where E jU Š
OrC1U , the natural maps H 0.�� Symm E jU / ! H 0.OPE.m/jU / are isomorphisms,
while H i .OPE.m/jU / D 0 for i > 0, so the proposition follows immediately from the
definition of the direct image functors.

Remark. Proposition 9.3 is a direct generalization of the standard computation of
H 0.OPr .m//— the case when X is a point. Though we will not make use of these facts,
the rest of the computation of the cohomology of line bundles on a projective space, and
Serre duality, also generalize, and one can show that

Ri��OPE.m/ D

8̂<̂
:

Symm E� for i D 0;
0 for 0 < i < r � 1;
Sym�m�r�1 E for i D r:

(Here we adopt the convention that Symk E D 0 for k < 0.) As a part of our computation
of the Chow ring of PE in the next section, we will see that every line bundle on PE
has the form ��L ˝ OPE.m/ for a unique line bundle L on X and integer m; that
is, Pic.PE/ Š PicX ˚ Z. From the push-pull formula of Proposition B.7, we get a
computation of the direct images of any line bundle:

Ri��.�
�L˝OPE.m// D L˝Ri��.OPE.m//:

See Dieudonné [1969, p. 308] for equivalent material, with references to EGA.
Serre duality also generalizes to a relative duality. For example, setting

!PE=B D
VrE.�r � 1/

we have Rr��.!PE=B/ D OB , and more generally

Rr��.M/ D Hom.��.! ˝M�1/;OB/

for any line bundle M on PE .
See Altman and Kleiman [1970], in particular Theorem 3.8, for most of this.

Supposing that E� has a global section � ¤ 0, the proof of Proposition 9.3 shows
that the corresponding section Q� of OPE.1/ vanishes on the locus of pairs .x; �/ such
that �x vanishes on �; thus the divisor . Q�/ meets a general fiber of � W PE ! X in a
hyperplane. It will not in general meet every fiber of PE ! X in a hyperplane, however;
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the section � of E� may have zeros x 2 X , and the divisor . Q�/ � PE will contain the
corresponding fibers .PE/x D ��1.x/.

Using these ideas, we can characterize the schemes over X that are projective
bundles:

Proposition 9.4. Let � W Y ! X be a smooth morphism of projective schemes whose
(scheme-theoretic) fibers are all isomorphic to Pr . The following are equivalent:

(a) Y D PE is the projectivization of a vector bundle E on X .

(b) � W Y ! X is a projective bundle; that is, it is locally isomorphic to a product in
the Zariski topology on X .

(c) There exists a line bundle L on Y whose restriction to each fiber Yx Š Pr of � is
isomorphic to OPr .1/.

(d) There exists a Cartier divisor D � Y intersecting a general fiber Yx Š Pr of � in
a hyperplane.

Proof: Condition (a) clearly implies (b) and (c): The projectivization of a vector bundle
is locally trivial in the Zariski topology, since a vector bundle is, and comes with the line
bundle OPE.1/.

It is clear that (b) implies (d): Just take an isomorphism ��1.U / Š U � Pr for any
Zariski open U � X , choose a hyperplane H Š Pr�1 � Pr and take D the closure in
Y of U �H .

Also, it is easy to see that (c) and (d) are equivalent: If D is a divisor as in (d), the
line bundle L D OY .D/, restricted to a general fiber, is OPr .1/. By the constancy of
the Euler characteristic of a sheaf in a flat family (Corollary B.12), the restriction of L to
any fiber is OPr .1/.

Conversely, if L is a line bundle as in (c), tensoring with the pullback of an ample
line bundle from X we can assume the existence of a nonzero global section of L, whose
zero locus will be the divisor of part (d).

To complete the argument we take L as in part (c), and we must prove that Y is as in
part (a). For any p 2 X we have H 1.Lp/ D H 1.OPr .1// D 0, so Theorem B.5 shows
that E WD ��L is a vector bundle whose fiber at p is H 0.OPr .1//.

We claim that there is an isomorphism ˛ W Y ! PE commuting with the projections
to X . By Proposition 9.2 we can define the morphism ˛ by giving a line bundle that
is a subbundle of ��E , or equivalently a line bundle that is a homomorphic image of
��E� D ����L.

There is a natural map ����L ! L coming from the definitions of �� and ��.
Restricted to the fiber over a point p this map becomes the surjection Ep ˝OP.Ep/ !

OP.Ep/.1/, so ����L ! L is surjective. Let ˛ W Y ! PE be the corresponding
morphism.
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The map ˛ is an isomorphism on each fiber of � because it restricts to the map
��1.p/ Š Pr ! Pr given by the complete linear series jOPr .1/j. This shows that ˛ is
a set-theoretic isomorphism.

To prove that ˛ is a scheme-theoretic isomorphism, we need to show that if ˛
carries y 2 Y to a point q 2 PE then the map of local rings ˛� W OPE;q ! OY;y
is an isomorphism. Of course it is enough to prove this after completing both rings.
Set p D �.y/. By smoothness, the completions of both local rings are isomorphic
to yOX;pŒŒz0; : : : ; zr ��. Since ˛ commutes with the projections, it induces the identity
modulo the maximal ideal of OX;p, and thus induces an isomorphism.

We can also use Proposition 9.2 to see when two vector bundles give the same
projective bundle:

Corollary 9.5. Let X be a scheme. Two projective bundles � W PE ! X and � 0 W
PE 0 ! X are isomorphic as X-schemes if and only if there is a line bundle L on X
such that L ˝ E 0 D E . In this case the line bundle OPE.�1/ corresponds under the
isomorphism to � 0�.L/˝OPE 0.�1/.

Proof: Let L be a line bundle, and set E 0 D L ˝ E . Tensoring the tautological sub-
bundle OPE 0.�1/ ! � 0�E 0 D � 0�L ˝ � 0�E with � 0�.L�1/, we get a subbundle
� 0�.L�1/˝OPE 0.�1/! � 0�E . By Proposition 9.2 this determines a unique morphism
of X -schemes ' W PE 0 ! PE such that

'�OPE.�1/ D �
0�.L�1/˝OPE 0.�1/:

The inverse map is defined similarly. The proof that they are inverse to each other is
that the composite PE ! P.L ˝ E/ ! PE corresponds to the original subbundle
OPE.�1/ � �

�E .
Conversely, suppose that E 0 is a vector bundle on X , and let � 0 W PE 0 ! X be the

projection. If ' W PE 0 ! PE is an isomorphism commuting with the projections to X ,
then since any isomorphism from Pn to itself preserves the bundle OPn.1/ it follows that
'�OPE.1/ restricts on each fiber P.E 0x/ Š Pn to the bundle OPn.1/. By Corollary B.6,
OPE 0.1/ D �

0�.L/˝ '�OPE.1/ for some line bundle L on X . Thus

E 0� D � 0�.OPE 0.1// D �
0
�.�
0�L˝ '�OPE.1//

D L˝ � 0�'�OPE.1/

D L˝ � 0�'�1� OPE.1/

D L˝ ��OPE.1/

D L˝ E�;

and also '�OPE.�1/ D �
�.L/˝OPE 0.�1/, as claimed.
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9.3 Chow ring of a projective bundle
We now turn to the central problem of this chapter: to describe the Chow ring of a

projective bundle Y D PE ! X . We will see that the Chow groups of Y depend only
on the rank of E , but the ring structure reflects the Chern classes of E .

As we mentioned in Section 2.1.4, the Künneth theorem holds for the Chow ring of
the product of any smooth variety with a projective space. Thus, if

Y D P.OrC1Pr / D X � Pr

then

A.Y / Š A.X/˝Z A.Pr/
Š A.X/˝Z ZŒ��=.�rC1/
Š A.X/Œ��=.�rC1/;

where � is the pullback of the hyperplane class on Pr . In particular,

A.Y / D

rM
iD0

�iA.X/

as groups. (Given that the pullback map A.X/! A.Y / is injective, here and in what
follows we think of A.X/ as a subalgebra of A.Y /, suppressing the “��;” for example,
when we write products of the form ˛ˇ with ˛ 2 A.X/ and ˇ 2 A.Y /, we mean
.��˛/ˇ 2 A.Y /.)

The general case is not much more complicated:

Theorem 9.6. Let E be a vector bundle of rank r C 1 on a smooth projective scheme X ,
and let � D c1.OPE.1// 2 A

1.PE/. Let � W PE ! X be the projection. The map
�� W A.X/! A.PE/ is an injection of rings, and via this map

A.PE/ Š A.X/Œ��=.�rC1 C c1.E/�r C � � � C crC1.E//:

In particular, the group homomorphism A.X/˚rC1 ! A.PE/ given by .˛0; : : : ; ˛r/ 7!P
�i��.˛i / is an isomorphism, so that

A.PE/ Š
rM
iD0

�iA.X/

as groups.

It is worth remarking that much of the statement of Theorem 9.6 remains true
without the assumption that X is smooth: If E is a vector bundle of rank r C 1 over an
arbitrary scheme X and PE D Proj.Sym E�/ its associated projective bundle, then we
have a well-defined line bundle OPE.1/ on PE such that � D c1.OPE.1// restricts to the
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hyperplane class on each fiber, and we can show that

A.PE/ Š
rM
iD0

�iA.X/

as groups, just as in the smooth case (see Fulton [1984, Chapter 3]). (Note that in this
setting we do not have a ring structure on A.X/ or A.PE/, but multiplication by the
class � is still well-defined since it is the Chern class of a line bundle.)

It was one of the insights of Grothendieck [1958] that Theorem 9.6 could be inverted
and used to define the Chern classes of E as the coefficients in the unique expression of
�rC1 as a linear combination of the classes 1; �; : : : ; �r (or rather to prove the existence
of classes satisfying the axioms of Theorem 5.3). The original definitions of Chern
and Stiefel–Whitney classes in the 1930s came from topology. They did not mention
degeneracy loci, but could be directly related to that characterization of the classes; as
we have seen in Chapters 6 and 7, this is closer to the way Chern classes are thought of
and used in practice. As a definition, however, it has the drawback of depending on the
existence of global sections. (This is a problem only in the algebro-geometric context; in
the continuous or C1 settings, thanks to partitions of unity there is never a shortage of
sections.) While it is possible to define Chern classes for bundles with enough sections
via degeneracy loci, and even (as we illustrate in Section 5.9.1) to prove basic properties
such as the Whitney formula in that setting, in order to have a full toolkit of techniques
for calculating Chern classes it is necessary to extend the definition to arbitrary bundles,
and for this the Grothendieck–Serre definition is better.

We isolate part of the proof of Theorem 9.6 that will be useful elsewhere:

Lemma 9.7. Let the hypotheses be as in Theorem 9.6. If ˛ 2 A.X/, then

��.�
i˛/ D

�
˛ if i D r ,
0 if i < r:

Proof: By the push-pull formula (Proposition B.7), ��.�i˛/ D ��.�i /˛. If i < r , then
��.�

i / is zero for dimension reasons. If i D r , we see similarly that ��.�r/ must be
a multiple mŒX� 2 A0.X/ of the fundamental class of X . Let � be the class of a point
x 2 X and f D ��.�/ D ŒPEx� the class of the fiber PEx Š Pr . Intersecting both sides
of the equality ��.�r/ D mŒX� with � and taking degrees, we have

m D deg.��.�r/ � �/ D deg.�r � ŒPr �/ D 1;

since the restriction of � to a fiber is the hyperplane class.

In fact, we have encountered this construction before, in the proof of Lemma 5.12.

Proof of Theorem 9.6: Let  W A.PE/!
Lr
iD0A.X/�

i be the map

ˇ 7!
X
i

��.�
r�iˇ/�i ;
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and let ' W
Lr
iD0A.X/! A.PE/ be the sum of the multiplications by powers of �:

' W .˛0; : : : ; ˛r/ 7!
X
i

�i˛i :

By Lemma 9.7, the composite  ' is upper-triangular with ones on the diagonal; in
particular, ' is a monomorphism.

To prove the additive part of Theorem 9.6, it now suffices to show that the subgroups
�iA.X/ generate A.PE/ additively. This is a relative version of the fact that the linear
subspaces of a projective space generate its Chow ring, and the proof runs along the
same lines. In the case of a single projective space, we used the technique of dynamic
projection to degenerate a given subvariety Z � Pn to a multiple of a linear space; we
do the same thing here, but in a family of projective spaces.

We start with a definition. If Z � PE is a k-dimensional subvariety, we say that Z
has footprint l if the image W D �.Z/ has dimension l , or equivalently if the general
fiber of the map � W Z ! W has dimension k � l .

Lemma 9.8. If Z � PE is a subvariety of dimension k and footprint l , then

Z � Z0 C
X

niBi

for some subvarieties Bi � PE such that:

(a) ŒZ0� D �r�kCl˛ for a class ˛ 2 A.X/.
(b) Each Bi has footprint strictly less than l .

Applying the lemma repeatedly, we can express the class of an arbitrary sub-
variety as a sum of classes of the form �i˛, establishing the group isomorphism
A.PE/ Š

L
�iA.X/.

Proof of Lemma 9.8: By Corollary 9.5, replacing E with its tensor product with a line
bundle L does not change PE , but has the effect of replacing the class � by � ���c1.L/.
In particular, it does not affect the truth of our assertion, so we can assume from the
outset that E� is generated by global sections.

This done, we choose a point x 2 �.Z/ � X and a general collection �0; : : : ; �r of
global sections of E�, making sure that the �i satisfy two conditions:

(a) �0.x/; : : : ; �r.x/ are independent, that is, they span the fiber Ex .
(b) The zero locus .�0.x/ D � � � D �k�l.x/ D 0/ � PEx is disjoint from the fiber

Zx D Z \ PEx of Z over x.

These are both open conditions; let U � X be the locus of x 2 X where they hold. Note
in particular that, by the first condition, the bundle PE is trivial over U , the sections
�0; : : : ; �r giving an isomorphism PEU Š U � Pr .
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Now consider the one-parameter group of automorphisms At of PEU Š U � Pr

given, in terms of this trivialization, by the matrix�
Ik�lC1 0

0 t � Ir�kCl

�
:

Let zZ D Z \ PEU be the preimage of U in Z (note that �.Z/ \ U ¤ ¿, since
x 2 �.Z/); let Zt be the closure of the image At . zZ/ and let Z0 be the limiting cycle,
as t ! 0, of the subvarieties Zt . In other words, let ˆı � A1 � PE be the incidence
correspondence

ˆı D f.t; p/ 2 A1 � PE j t ¤ 0 and p 2 At . zZ/gI

let ˆ be the closure of ˆı and let Z0 be the fiber of ˆ over t D 0.
What doesZ0 look like? Over the open subset U � X the original cycleZ has been

flattened to a multiple of the zero locus �k�lC1 D � � � D �r D 0. There is thus a unique
component Z0 of Z0 dominating W D �.Z/, and it is the closure of the intersection of
the common zero locus �k�lC1 D � � � D �r D 0 with the preimage ��1.W \ U/.

Now, we have arranged for E� to be generated by global sections, so that the linear
series jOPE.1/j has no base locus. Since the �i are general sections of OPE.1/, by Bertini
the common zero locus �k�lC1 D � � � D �r D 0 of r � k C l of them intersects the
subvariety ��1.W / generically transversely, in a k-dimensional subvariety of PE with
class ŒW � � �r�kCl ; moreover, since this intersection is fibered over W with fibers Pk�l ,
it is irreducible. In sum,

ŒZ0� D mŒW � � �r�kCl

for some multiplicity m.
To complete the proof we note that we do not need to know what happens over

the complement of U \ W in W , because any component of Z0 not dominating W
necessarily has footprint smaller than l .

From this description of the Chow groups we see that we can write �rC1 as a linear
combination of products of (pullbacks of) classes in A.X/ with lower powers of �—
that is, � satisfies a monic polynomial f of degree r C 1 over A.X/. Thus the ring
homomorphism A.X/Œ�� ! A.PE/ factors through the quotient A.X/Œ��=.f /. Since
A.X/Œ��=.f / Š

L
�iA.X/ as groups, it follows that the map A.X/Œ��=.f /! A.PE/

is an isomorphism of rings.
It remains to identify the polynomial f . Let S D OPE.�1/, and let Q be the

cokernel of the natural inclusion S ! ��E , a bundle of rank r . We have an exact
sequence

0 �! S �! ��E �! Q �! 0:

Identifying A.X/ with ��A.X/ as before, we have

c.S/ � c.Q/ D c.E/
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by the Whitney formula (Theorem 5.3).
We defined the class � to be the first Chern class of the line bundle OPE.1/, which

is the dual of S; thus c.S/ D 1 � �, and we can write this as

c.Q/ D c.E/ � c.S/�1 D c.E/.1C � C �2 C � � � /:

Since Q is a vector bundle of rank r , we conclude that

0 D crC1.Q/ D �rC1 C c1.E/�r C c2.E/�r�1 C � � � C cr.E/� C crC1.E/;

so the polynomial f is given by the formula in the theorem.

If L is a line bundle on X then Corollary 9.5 shows that PE Š P.E ˝ L/, but the
class � is different in the two representations; the two classes differ by multiplication
with the pullback of L. The relation between the two resulting descriptions of the Chow
ring is addressed in Exercises 9.30 and 9.31.

Using Theorem 9.6, we can immediately compute the degrees of rational normal
scrolls, or, more generally, of any projectivized vector bundle PE over a curve X ,
embedded by jOPE.1/j:

Corollary 9.9. If a0; : : : ; ar are positive integers, then the degree of the rational normal
scroll S.a0; : : : ; ar/ is

P
ai . More generally, if E is a vector bundle on a smooth curve

X and the line bundle OPE.1/ on PE is very ample, then the degree of the image of PE
under the embedding given by jOPE.1/j is � deg c1.E/.

Note that degree and codimension of a scroll S satisfy the equation

degS D 1C codimS:

This is the minimal degree for any subvariety of projective space not contained in a
hyperplane. The Veronese surface in P5, and any cone over it, also satisfy this equation,
but these are the only “varieties of minimal degree.” See Harris [1995, Theorem 19.19].

Proof: If the rank of E is r C 1 then the dimension of PE is r C 1, so the degree
of the image of PE under the embedding given by jOPE.1/j is deg �rC1. Since X is
one-dimensional, we have ci .E/ D 0 for i > 1, so �rC1 D �c1.E/. If X D P1 and

E D OP1.�a0/˚ � � � ˚OP1.�ar/;

then deg c1.E/ D �
P
ai and S.a0; : : : ; ar/ is the embedding of PE by OPE.1/.

9.3.1 The universal k-plane over G.k; n/
In this section and the next, we will use Theorem 9.6 to give a description of the

Chow ring of some varieties that arise often in algebraic geometry: the universal k-plane
over the Grassmannian G.k; n/ and the blow-up of Pn along a linear space.
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For the first of these, let G D G.k;PV / be the Grassmannian parametrizing k-
planes ƒ � PV in the projectivization of an .nC 1/-dimensional vector space V , and
let ˆ be the universal plane

ˆ D f.ƒ; p/ 2 G � PV jp 2 ƒg;

initially introduced in Section 3.2.3. We can recognize ˆ, via the projection � W ˆ! G

on the first factor, as the projectivization PS of the universal subbundle on G, and use
Theorem 9.6 to describe A.ˆ/. We will use the notation introduced above: We will
identify A.G/ with its image in A.ˆ/ via the pullback map ��, and denote the first
Chern class of the tautological bundle OPS.1/ by � 2 A1.ˆ/.

Note that a linear form l 2 V � on V gives rise to a section of S� by restriction in turn
to each subspace of V , hence to a section of ��S�, and ultimately to a section of OPS.1/

via the surjection ��S� ! OPS.1/ dual to the tautological inclusion OPS.�1/ ,! ��S .
Simply put, if we think of ˆ D PS as the variety of pairs .zƒ; �/ with zƒ � V a .k C 1/-
dimensional subspace and � � zƒ a one-dimensional subspace, then we can define a
section �l of OPS.1/ by setting

�l.zƒ; �/ D l j� :

In particular, we see that the zero locus of the section �l is just the locus of .zƒ; �/ such
that � is contained in the hyperplane Ker.l/ � V , and hence the tautological class
� D c1.OPS.1// 2 A

1.ˆ/ is just the pullback of the hyperplane class on PV via the
projection map � W ˆ! PV on the second factor.

Recalling the calculation of the Chern classes of the universal bundles on G.k; n/
from Section 5.6.2 and applying Theorem 9.6, we conclude:

Proposition 9.10. Let G D G.k; n/ be the Grassmannian of k-planes in Pn and
ˆ � G � Pn the universal k-plane as above, with � W ˆ ! G and � W ˆ ! Pn the
projection maps. We have then

A.ˆ/ D A.G/Œ��=.�kC1 � �1�
k
C �1;1�

k�1
C � � � C .�1/kC1�1;1;:::;1/;

where � 2 A1.ˆ/ is the tautological class, or equivalently the pullback via � of the
hyperplane class in Pn.

The two special cases occurring most commonly are the cases k D n � 1 of the
universal hyperplane and the case k D 1 of the universal line. In the first case,

ˆ D f.H; p/ 2 Pn� � Pn jp 2 H g;

and if we let ! be pullback to ˆ of the hyperplane class in Pn�, we have

A.ˆ/ D ZŒ!; ��=.!nC1; �nC1; �n � !�n�1 C � � � C .�1/n!n/:
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�

q

ƒ

Figure 9.2 The fiber over a point under the projection of P3 from the line ƒ.

We have written the ideal of relations in this way to emphasize the symmetry, but it is
redundant: we could drop either !nC1 or �nC1. Note that when a C b D dim.ˆ/ D
2n � 1, we have

deg.!a�b/ D
�
1 if .a; b/ D .n; n � 1/ or .n � 1; n/;
0 otherwise,

which we could also see from the fact that ˆ � Pn� � Pn is a hypersurface of bide-
gree .1; 1/.

The universal line will also come up a lot in the following chapters; in this case
we have

A.ˆ/ D A.G.1; n//Œ��=.�2 � �1� C �1;1/:

We will leave it to the reader to calculate the degrees of monomials �a1 �
b
1;1�

c of top
degree aC 2b C c D dim.ˆ/ D 2n � 1 in Exercise 9.33.

9.3.2 The blow-up of Pn along a linear space

In Section 2.1.9 we saw how to describe the Chow ring of the blow-up of projective
space at a point. We can now analyze much more generally and systematically the
Chow ring of the blow-up Z D Blƒ Pn of projective space Pn D PV along any linear
subspace ƒ Š Pr�1. The key is to realize Z as the total space of a projective bundle.

To understand the picture, first recall that the blow-up is the graph of the rational map
�ƒ W Pn - Pn�r given by projection from ƒ. Thus Z � Pn � Pn�r . We will show
that the projectionZ ! Pn�r to the second factor makesZ into a projective bundle. Cer-
tainly, each fiber of the projection is an r-dimensional projective space (see Figure 9.2).
Concretely, if we choose an .n � r/-plane � � Pn disjoint from ƒ, we can write

Z D f.p; q/ 2 Pn � � jp 2 ƒ; q g:
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The fiber over a point q 2 � is thus the linear subspaceƒ; q Š Pn�rC1 � Pn. If we
write Pn as PV , then ƒ corresponds to an r-dimensional linear subspace V 0 � V and �
corresponds to a complementary .n � r C 1/-dimensional subspace W . The fiber of Z
over q 2 � corresponds to the subspace spanned by V 0 and the one-dimensional subspace
Qq corresponding to q in W . Here V 0 is fixed, while the one-dimensional subspace varies
over all such subspaces of W . This suggests that Z is the projectivization of the bundle
OPn�r .�1/˚ .V

0 ˝OPn�r /, which we will now prove:

Proposition 9.11. Let V 0 � V be an r-dimensional subspace of an .nC1/-dimensional
vector space V , and let

E D OPn�r .�1/˚ .V
0
˝OPn�r /;

so that E is a vector bundle of rank r C 1 on Pn�r D P.V=V 0/. The blow-up Z of P.V /
along the .r � 1/-dimensional subspace P.V 0/, together with its projection to Pn�r ,
is isomorphic to the projective bundle � W PE ! Pn�r . Under this isomorphism, the
blow-up map Z ! Pn corresponds to the complete linear series jOPE.1/j.

Proof: Choose a complement V=V 0 Š W � V to V 0, so that V D W ˚ V 0. With E as
in the proposition, the natural inclusion OPW .�1/ � .W ˝OPW / induces an inclusion

E � .W ˝OPW /˚ .V
0
˝OPW / D V ˝OPW :

The dual map, which is a surjection, induces an isomorphism V � ! H 0.E�/ D
V 0� ˚W �. Thus E� is generated by its global sections and the complete linear series
jOPE.1/j corresponds to a map PE ! PV .

The fiber of E over a point q 2 PW is, as a subspace of V , equal to V 0 ˚ Qq, whose
projectivization is the fiber over q of the blow-up Z of PV 0 in PV . Thus, together with
the projection map � W PE ! PW , we get a closed immersion ' W PE ! PV � PW
that maps the fiber of PE isomorphically to Z.

Corollary 9.12. Let Z � Pn � Pn�r be the blow-up of an .r � 1/-plane ƒ in Pn.
Writing ˛; � 2 A1.Z/ for the pullbacks of the hyperplane classes on Pn�r and Pn

respectively, we have

A.Z/ D ZŒ˛; ��=.˛n�rC1; �rC1 � ˛�r/:

With this notation the class of the exceptional divisor E � Z, the preimage of ƒ in Z, is

ŒE� D � � ˛:

Proof: The Chern class of E D OPn�r .�1/˚ .V
0 ˝OrPn�r / is 1 � ˛, so the formula

for A.Z/ follows at once from Theorem 9.6. Since � is the class of the preimage of
a hyperplane H � Pn (which could contain ƒ), and ˛ is represented by the proper
transform of a hyperplane containing ƒ, we have ŒE� D � � ˛ as claimed.
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For example, in the case of the blow-up of the plane at a point we have

ŒE�2 D .� � ˛/2 D �2 � 2˛� C ˛2 D ��2;

that is, minus the class of a point, as we already knew. But we can now compute degŒE�n

in general (Exercise 9.38).

9.3.3 Nested pairs of divisors on P1 revisited

We start by introducing two vector bundles that arise often in studying the geometry
of rational curves; in particular, they will be a central object of study in Section 10.4.2.

To begin with, let Pd D PH 0.OP1.d// be the projective space of polynomials of
degree d in two variables modulo scalars — that is, divisors of degree d on P1. For any
e � d , then, we can define a vector bundle F on Pd informally by associating to each
divisor D 2 Pd the vector space

FD D H 0.ID.e//

of polynomials of degree e on P1 vanishing on D. Similarly, we can define a bundle E
on Pd informally by associating to each divisor D 2 Pd the quotient vector space

ED D H 0.OP1.e//=H
0.ID.e// D H 0.OD.e//

of polynomials of degree e modulo those vanishing on D. To define these bundles
precisely, let D � Pd � P1 be the universal divisor of degree d , that is

D D f.D; p/ 2 Pd � P1 jp 2 Dg;

and let � W Pd � P1 ! Pd and � W Pd � P1 ! P1 be the projection maps. We can
then take

F D ��.��OP1.e/˝ ID/
and

E D ˛�.��OP1.e/˝OD/I

an application of the theorem on cohomology and base change shows that these have the
fibers indicated, and that the exact sequence of sheaves on Pd � P1

0 �! ID �! OPd�P1 �! OD �! 0;

tensored with the line bundle ��OP1.e/ and pushed forward to Pd , gives the expected
exact sequence

0 �! F �! H 0.OP1.e//˝OPd �! E �! 0 (9.1)

of bundles on Pd .
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Consider now the projectivization ˆ D PE of the bundle E . This is a variety we
have encountered before, in Section 2.1.8: We can realize it as the subvariety

ˆ D f.D;E/ 2 Pd � Pe jE � Dg

of nested pairs of divisors of degrees d and e on P1. Moreover, under the inclusion of
ˆ D PE in Pd � Pe, the pullback � of the hyperplane class from Pe restricts to the
tautological class � D c1.OPE.1// on PE .

We can use this to describe the Chow ring of ˆ, and correspondingly the Chern
classes of E . The key, as it was in Section 2.1.8, is to observe that ˆ Š Pd � Pe�d

abstractly, via the map

˛ W Pd � Pe�d ! Pd � Pe; .D;D0/ 7! .D;D CD0/:

Let � , � and � be the pullbacks of the hyperplane classes on Pd , Pe and Pe�d ,
respectively. As we saw in Section 2.1.8, the pullback of the class � to ˆ is the sum
� C �. We can then rewrite the relation �e�dC1 D 0 in A.PE/ as

0 D .� � �/e�dC1 D
X

.�1/i
�e�dC1

i

�
� i�e�dC1�i ;

and we conclude that

ci .E/ D .�1/i
�e�dC1

i

�
� i :

To express this more compactly, we can write the total Chern class as

c.E/ D .1 � �/e�dC1:

In this form, it follows from the exact sequence (9.1) that

c.F/ D
1

.1 � �/e�dC1
D

X�e�dCi
i

�
� i ;

so we have the Chern classes of F as well.

9.4 Projectivization of a subbundle
If E is a vector bundle on a smooth variety X and F � E a subbundle then PF

is naturally a subvariety of PE , and we can ask for its class in the Chow ring A.PE/.
This will be a crucial element in understanding the Chow ring of a blow-up in general
(Section 13.6); for now, it will allow us to answer Keynote Question (b).

Let � W PE ! X be the projection and let OPE.�1/ � ��E be the universal
subbundle. A point p 2 PE lying over a point x 2 X corresponds to the one-dimensional
space that is the fiber of OPE.�1/ at p. Thus p 2 PF if and only if this space is contained
in the fiber of F . In other words, p 2 PF if and only if the composite map

' W OPE.�1/! ��E ! ��.E=F/
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vanishes at p. We can view ' as a global section of the bundle

Hom.OPE.�1/; �
�.E=F// Š OPE.1/˝ �

�.E=F/:

If we write everything in local coordinates then we see that PF is scheme-theoretically
defined by the vanishing of '. Since the codimension of PF is the same as the rank of
E=F , it follows that ŒPF � 2 A.PE/ is given by a Chern class, which we can compute
using the formula for the Chern class of the tensor product of a bundle with a line bundle
(Proposition 5.17):

Proposition 9.13. If X is a smooth projective variety and F � E are vector bundles on
X of ranks s and r respectively, then

ŒPF � D cr�s.OPE.1/˝ �
�.E=F//

D �r�s C 1�
r�s�1

C � � � C r�s 2 A
r�s.PE/;

where � D c1.OPE.1// and k D ck.E=F/: Moreover, the normal bundle of PF in PE
is OPE.1/˝ �

�.E=F/.

This formula will be useful to us in many settings; for an immediate application, see
Exercises 9.43 and 9.44.

An important reason to consider projectivized subbundles is suggested by the
following characterization of sections. Giving a section — that is, a map ˛ W X ! PE
such that � ı ˛ is the identity — is the same as giving the image of the section; and we
will therefore refer to the image as a section as well.

Proposition 9.14. If L � E is a line subbundle of a vector bundle E on a variety X ,
then PL � PE is the image of a section X ! PE of the projection PE ! X , and every
section has this form.

Informally: giving a section is the same as specifying point of PE over each point
of X , that is, giving a one-dimensional subspace of each fiber of E .

Proof: By the universal property of � W PE ! X , giving a map ˛ W X ! PE that
“commutes with” the identity map X ! X is the same as giving a line subbundle of E .

9.4.1 Ruled surfaces

Recall that a ruled surface is by definition the projectivization of a vector bundle of
rank 2 over a smooth curve. We can now answer Keynote Question (b):

Proposition 9.15. A ruled surface can contain at most one irreducible and reduced
curve of negative self-intersection.
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Proof: Let X be a smooth curve, let � W PE ! X be a ruled surface, and suppose that
C1; C2 � PE are two irreducible curves of strictly negative self-intersection. A fiber
��1.x/ satisfies Œ��1.x/�2 D ��.Œx�2/ D 0, so the induced maps � W Ci ! X are
finite. Let C 01 ! C1 be the normalization of C1, and let ˛ W C 01 ! C1 � X be the
corresponding map. Consider the pullback diagram

P˛�E D C 01 �X PE
ˇ- PE

C 01

?

˛
- X

�
?

The preimage ˇ�1.C1/ D C 01 �X C1 represents a cycle m†1 C D1, where †1 is a
section, D1 has no component in common with †1 and m > 0. Hence

m2 degŒ†1�2 D degŒ†1�Œˇ�C1� � degŒ†1�ŒD1�

� degŒ†1�Œˇ�C1�

D degŒˇ�†1�ŒC1�

D degŒC1�2;

so degŒ†1�2 < 0.
Since a section pulls back to a section with the same self-intersection, we can

repeat the process with a component of ˇ�1C2 to obtain two sections †1 and †2 of
negative self-intersection. We can analyze this case using Proposition 9.14. Suppose that
†i D PLi � PE .

By Theorem 9.6, we have

A.PE/ D A.X/Œ��=.�2 C c1.E/�/;

where � D c1.OPE.1//. Now deg.c1.E/�/ D deg��.c1.E/�/ D deg c1.E/ because
� meets each fiber of � in degree 1. It then follows that deg �2 D � deg c1.E/. By
Proposition 9.13,

Œ†i � D � C c1.E/ � c1.Li /;

so

0 > degŒ†i �2 D deg �2 C 2 deg c1.E/ � 2 degLi :

Thus 2 degLi > deg c1.E/. (Exercise 9.50 strengthens this conclusion slightly.)
Supposing now that †1 ¤ †2, we get an exact sequence

0 �! L1 ˚ L2 �! E �! G �! 0;

where G is a sheaf with finite support; it follows that deg E � degL1 C degL2 > deg E ,
a contradiction.
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By contrast, it is possible for a (nonruled) smooth projective surface to contain
infinitely many irreducible curves of negative self-intersection; Exercises 9.45–9.47
show how to construct an example. It is an open problem (in characteristic 0) whether
the self-intersections of irreducible curves on a surface S are bounded below, that
is, whether a surface can contain a sequence C1; C2; : : : of irreducible curves with
deg.Cn � Cn/! �1. (In characteristic p > 0, János Kollár has shown us an example,
described in Exercise 9.49.)

9.4.2 Self-intersection of the zero section

The total space of a vector bundle E on a scheme X may itself be considered as
a scheme AE WD Spec.Sym E�/ over X . For various purposes it is useful to have a
compactification of AE , that is, a variety proper over X that includes AE as an open
subset, and we will describe the simplest such construction here.

It is natural to try to compactify each fiber by putting it inside a projective space of
the same dimension, and we can do this globally by taking the projectivization of the
direct sum E ˚OX ; that is, we set

E WD P.E ˚OX /:

Let r be the rank of E . Since c.E ˚OX / D c.E/, we have

A.E/ D A.X/Œ��=.�rC1 C c1.E/�r C � � � C cr.E/�/:

In terms of coordinates, AE � E is “the locus where the last coordinate is nonzero.”
Its complement is the divisor PE � P.E˚OX /, which we therefore call the “hyperplane
at infinity.” Since this is the locus where the section of OE.1/ corresponding to 1 2 OX �
.E ˚OX /� vanishes, we get

� WD c1.OE.1// D ŒPE �:

(One can also see this from Proposition 9.13.)
The section POX � E is the locus where all the coordinates in E� vanish; it is

thus the zero section of AE , which we will call †0. By Proposition 9.13, we have
Œ†0� D �r C c1.E/�r�1 C � � � C cr�1.E/� C cr.E/. More generally, if � is a global
section of E , then .�; 1/ is a nowhere-vanishing section of E˚OX , and the line subbundle
it generates corresponds to a section of E , which we will call †� . Using Proposition 9.13
or the family †t� , which gives a rational equivalence between †� and †0, we see that
Œ†� � D Œ†0�. If � vanishes in codimension r , then

��.Œ†0�
2/ D ��.ŒŒ†0�Œ†� ��/ D Œ.�/0� D cr.E/:

We claim that this formula holds in general:
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Proposition 9.16. Let E be a vector bundle of rank r on a smooth variety X , and let
� W E D P.E˚OX /! X be the projection. Let � W X ! A.E/ � E be the zero section,
with image †0 D P.OX /. We have

��.Œ†0�
2/ D cr.E/;

and, for any class ˛ 2 A.X/,

����˛ D ˛cr.E/:
Proof: By Proposition 9.13,

Œ†0� D �
r
C c1.E/�r�1 C � � � C cr�1.E/� C cr.E/:

Since†0 is disjoint from the hyperplane at infinity PE � P.E˚OX /, which has class �,
we get Œ†0�� D 0. (This also follows from the computation of A.E/.) Thus

Œ†0�
2
D Œ†0�.�

r
C c1.E/�r�1 C � � � C cr�1.E/� C cr.E//

D Œ†0�cr.E/ 2 A.E/:

From the push-pull formula we get ��.Œ†0�2/ D .��Œ†0�/cr.E/ D cr.E/, proving the
first assertion.

For the second assertion, we use the fact that � induces an isomorphism from †0 to
X , and thus ��ˇ D ��.ˇ \ Œ†0�/ for any cycle ˇ on E . Thus

����˛ D �
�.��˛Œ†0�/ D ��.��˛Œ†0�

2/ D ˛cr.E/;
as required.

See Theorem 13.7 for a generalization.

9.5 Brauer–Severi varieties
We defined a projective bundle to be a morphism � W Y ! X that is isomorphic

to a product with projective space over Zariski open subsets covering the target X .
Interestingly, if we had weakened the condition to saying that � was a product locally in
the étale, or analytic, topology onX , we would get in general a larger class of morphisms!
In this section, we will illustrate the difference with an example of a morphism that
satisfies the weaker condition but not the stronger.

We start with a definition: A Brauer–Severi variety over a variety X is a variety Y
together with a proper, smooth map � W Y ! X such that all the (scheme-theoretic)
fibers of � are isomorphic to Pr , for some fixed r . Thus any projective bundle � W Y !
X is a Brauer–Severi variety. But, as we will see, the converse is false.

It is in fact the case that such a morphism � will be trivial locally in the étale (or, in
case the ground field is C, the analytic) topology, in the sense that every point x 2 X
will have an étale or analytic neighborhood U such that ��1.U / Š U � Pr . This is a
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qC

q
C

C

L

M

C0

0

Figure 9.3 Local analytic triviality of the universal family of conics in the plane:
Y jU Š C 2 U � P1 via projection from qC 2 C 2 U .

consequence of the fact that Pr has no nontrivial deformations. But it may not be trivial
locally in the Zariski topology. Here is an example:

Example 9.17. Let P5 be the space of conics in P2 D PV , and consider the universal
conic

ˆ D f.C; p/ 2 P5 � P2 jp 2 C g
�2- P2

P5
�1
?

with its projections �i to the two factors. We can realize ˆ as the total space of a P4-
bundle over P2 via �2: Indeed, ˆ is the projectivization of the rank-5 subbundle E �
Sym2 V � whose fiber Ep at a point p is the subspace of quadratic polynomials vanishing
at p. (In particular,ˆ is smooth.) In these terms, the tautological class � D c1.OPE.1// 2

A1.ˆ/ is the pullback of the hyperplane class ��1 .OP5.1//. By Theorem 9.6, the divisor
class group A1.ˆ/ Š Z2 is generated by the pullbacks of the hyperplane classes
from P2 and P5. Note that these classes restrict to classes of degrees 2 and 0 on
any fiber of �1. Thus the intersection of the fiber of �1 with any divisor on ˆ has
even degree.

We now consider the projection �1. To obtain a map whose fibers are all isomor-
phic to P1, we let X � P5 be the open subset corresponding to smooth conics and
let � W Y D ˆX ! X be the restriction of �1 to the preimage of X in ˆ. By defini-
tion, the fibers of � are smooth conics, and in particular isomorphic to P1, so ˆX is a
Brauer–Severi variety over X .

We claim that � W Y ! X is not a projective bundle. Indeed, if there were a
nonempty Zariski open U � X � P5 such that � W YU ! U were isomorphic to
the projection to U of the product U � P1, then we could take a section of YU and
take its closure in ˆ, obtaining a divisor in ˆ meeting the general fiber of ˆ ! P5

in a reduced point. This contradicts the computation above. Thus � W Y ! X is not a
projective bundle.
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If we work over the complex numbers, we can see directly that � is locally trivial
in the analytic topology (and the same argument would work more generally for the
étale topology). Let C0 2 X be a smooth conic. Choose lines L;M � P2 such that L is
transverse to C0 and M \L\C0 D ¿. Over a sufficiently small analytic neighborhood
U of C0 2 X we can solve analytically for a point qC 2 C \ L. The restriction of Y
to U is isomorphic to U � P1 as U -schemes by the maps projecting a fiber C from qC
to M (see Figure 9.3).

The conclusion of this example may be interpreted as a theorem in polynomial
algebra: It says that there does not a exist a rational solution to the general quadratic
polynomial. In other words, there do not exist rational functions X.a; b; c; d; e; f /,
Y.a; b; c; d; e; f / and Z.a; b; c; d; e; f / such that

aX2 C bY 2 C cZ2 C dXY C eXZ C f YZ � 0:

This is a generalization of the statement that the roots of a quadratic polynomial in
one variable are not expressible as rational functions of its coefficients, though much
stronger: Polynomials in several variables have many more solutions than polynomials
in one variable! The same is true of polynomials of any degree d > 1 in any number of
variables (Exercise 9.51).

The set of Brauer–Severi varieties over a given variety X , modulo an equivalence
relation that makes the projective bundles trivial, can be given the structure of a group,
called the Brauer group of X . There is another avatar of this group, as the group of
Azumaya algebras over OX modulo those that are the endomorphism algebras of vector
bundles. Understanding the Brauer groups of varieties is an important goal of arithmetic
geometry. See for example Artin [1982] for more about Brauer–Severi varieties, and
Grothendieck [1966a] or Serre [1979] for more on the Brauer group.

9.6 Chow ring of a Grassmannian bundle
Suppose that X is any smooth variety and E is a vector bundle of rank n on X .

Generalizing the projective bundle associated to E , we can form the Grassmannian
bundle G.k; E/ of k-planes in the fibers of E ; that is,

G.k; E/ D f.x; V / j x 2 X; V � Exg
�
��! X:

(As with a single Grassmannian, we can realize G.k; E/ as a subvariety of the projec-
tivization P.

VkE/.) There is a description of the Chow ring of G.k; E/ that extends both
the description of the Chow ring of a projective bundle above and the description of the
Chow ring of G.k; n/ given in Theorem 5.26; we will explain it here without proof.

As in the projective bundle case, there is a tautological subbundle S � ��E defined
on G.k; E/; this is a rank-k bundle whose fiber over a point .x; V / is the vector space
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V � Ex . Let Q D ��.E/=S be the tautological quotient bundle. As in the case of
projective bundles, the Chow ring A.G.k; E// is generated as an A.X/-algebra by the
Chern classes ci .S/, and also by the classes ci .Q/. To understand the relations they
satisfy, consider the exact sequence

0 �! S �! ��E �! Q �! 0:

By the Whitney formula

c.Q/ D
c.E/
c.S/

:

Since Q has rank n � k, the Chern classes cl.Q/ vanish for l > n � k, and as in the
projective bundle case (above) or the case of G.k; n/ (Theorem 5.26) this gives all
the relations:

Theorem 9.18. Let X be a smooth variety, and let E be a vector bundle of rank n on X .
If G D G.k; E/! X is the bundle of k-planes in the fibers of E then

A.G/ D A.X/Œ�1; : : : ; �k�
ı �� c.E/

1 � �1 C �2 C � � � ˙ �k

�l
; l > dimG � nC k

�
;

where f�gl denotes the component of � of codimension l and �k has degree k.

In fact, the same formula holds without the assumption that X is smooth, as long as
one has developed the theory of Chern classes on singular varieties, as in Fulton [1984,
Chapter 3]

One can go further and, fixing a sequence of ranks 0 < r1 < � � � < rm < rank E ,
consider the flag bundle F.r1; : : : ; rm; E/ whose fiber over a point of X is the set of all
flags of subspaces of the given ranks in E . There is again an analogous description of
the Chow ring of this space. See Grayson et al. [2012] for this result and an interesting
proof that is in some ways more explicit than the one we have given, even in the case
of A.G.k; n//.

9.7 Conics in P3 meeting eight lines
The family of plane conics in P3 is naturally a projective bundle, and we will

now use this fact, together with Theorem 9.6, to compute the number of such conics
intersecting each of eight general lines L1; : : : ; L8 � P3.

We start by checking that we should expect a finite number. There is a three-
parameter family of planes in P3, and a five-parameter family of conics in each. Since
two distinct planes intersect only in a line, the space of conics, whatever it is, should
have dimension 3C 5 D 8.
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Next, the locus DL of conics meeting a given line L � P3 has codimension 1 in
the space of conics: If C � P3 is the image of the map given by .F0; F1; F2; F3/, the
condition that C meet the line Z0 D Z1 D 0 is that F0 and F1 have a common zero.
More geometrically: A one-parameter family of conics sweeps out a surface that meets L
in a finite set, so a curve in the space of conics will intersect the locus of conics meeting
L a finite number of times. It is reasonable, then, to ask whether there is only a finite
number of conics that meet each of eight general lines and, if so, how many there are.

We will proceed as follows. First, as a parameter space for conics in P3, we will
use a projective bundle Q! P3�, whose points correspond to pairs .H;C / with H a
plane in P3 and C a conic in H ; we will use the theory developed earlier in this chapter
to calculate in its Chow ring. In particular, we will identify the class ı 2 A.Q/ of the
cycle DL � Q of conics meeting a given line L, and compute the number deg ı8, our
candidate for the number of conics meeting eight given general lines Li .

To prove that this number is correct, we must show that the cycles DLi meet
transversely, and this requires a tangent space calculation. To do this, we will show
that our bundle Q is in fact isomorphic to the Hilbert scheme H D H2mC1.P3/ of
subschemes of P3 having Hilbert polynomial p.m/ D 2mC 1. This will allow us to
prove the necessary transversality by describing the tangent spaces to DL in terms of the
general description of the tangent spaces to Hilbert schemes from Theorem 6.21; this is
a special case of an important general principle explained in Exercise 9.60.

9.7.1 The parameter space as projective bundle

Since the conics in a given plane naturally form a P5, and each conic is contained in
a unique plane, it is plausible that the set of all conics in P3 is a P5-bundle over P3�, the
projective space of planes in P3.

To make this structure explicit, consider the tautological exact sequence on P3�,
which we may write as

0 �! S �! O4P3�
.x0;x1;x2;x3/
�����������! OP3�.1/ �! 0:

The projective bundle PS � P.O4
P3�
/ D P3� � P3 is the family of 2-planes in P3:

the fiber of PS over a point a D .a0; : : : ; a3/ 2 P3� is the plane Ha � P3 defined byP
aixi D 0. The dual S�a is thus the space of linear forms on this plane, and, setting

E WD Sym2.S�/, the fiber of PE over the point a may be identified with the set of conics
in Ha. We will therefore take Q D PE as our parameter space for conics in P3. Note
that there is a tautological family of conics in P3

X � PE �P3� PS � PE � P3

whose points are pairs consisting of a conic in a 2-plane and a point on that conic, with
projections both to P3� and to P3.
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From the dual of the exact sequence above, we derive an exact sequence

0 �! O4P3� ˝OP3�.�1/ �! Sym2.O4P3�/ �! E �! 0:

If we denote the tautological class on P3� by !, then, taking into account that !4 D 0,
the Whitney formula (Theorem 5.3) yields

c.E/ D 1=.1 � !/4 D 1C 4! C 10!2 C 20!3:

We can now apply Theorem 9.6 to describe the Chow ring of Q. Letting � 2 A1.Q/ be the
first Chern class of the tautological quotient OPE.1/ of the pullback of E� to Q, we get

A.Q/ D A.P3�/Œ��=.�6 C 4!�5 C 10!2�4 C 20!3�3/
D ZŒ!; ��=.!4; �6 C 4!�5 C 10!2�4 C 20!3�3/:

9.7.2 The class ı of the cycle of conics meeting a line

We next compute the class ı 2 A1.Q/ of the divisorD D DL using the technique of
undetermined coefficients. We know that ı D a!C b� for some pair of integers a and b,
and restricting to curves in Q gives us linear relations on a and b. Let � � Q be the
curve corresponding to a general pencil fC� � H g of conics in a general plane H � P3

and let ˆ � Q be the curve consisting of a general pencil of plane sections fH� \Qg
of a fixed quadric Q. We denote their classes in A1.Q/ by  and ' respectively.

We claim that the following table gives the intersection numbers between our divisor
classes !; �; ı, and the curves �;ˆ:

! � ı

 0 1 1
' 1 0 2

The calculation of the five intersection numbers other than �' is easy, and we leave
to the reader the pleasure of working them out (Exercise 9.54).

We can compute �' as the degree of the restriction of the bundle OPE.1/ to the curve
ˆ; equivalently, to show that �' D 0 we must show that T D OPE.�1/ is trivial on ˆ.
To see this, recall that a point of Q is a pair .H; �/, with H a plane in P3 and � a one-
dimensional subspace of H 0.OH .2//; the fiber of T over the point .H; �/ is the vector
space �. Now, if F 2 H 0.OP3.2// is the homogeneous quadratic polynomial defining
Q, we see that the restrictions of F to the planesH� give an everywhere-nonzero section
of T over ˆ, proving that T jˆ is the trivial bundle, as required.

Given the intersection numbers in the table above, we conclude that

ı D 2! C �:

There is also a direct way to arrive at this class, which we will describe in Exercise 9.55.
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9.7.3 The degree of ı8

To compute ı8, we need to know the degrees of the monomials !i�j of degree 8.
To start with, we have !4 D 0, and, since !3 is the class of a fiber of Q! P3� and �
restricts to the hyperplane class on this fiber, we have

deg.!3�5/ D 1:

To evaluate the next monomial !2�6, we use the relation

�6 D �4!�5 � 10!2�4 � 20!3�3

of Theorem 9.6, which gives

deg.!2�6/ D deg!2.�4!�5 � 10!2�4 � 20!3�3/ D �4:

The same idea yields

deg.!�7/ D 6 and deg �8 D �4:

Putting these together we obtain

deg..2! C �/8/ D deg
�
�8 C 2

�8
1

�
!�7 C 4

�8
2

�
!2�6 C 8

�8
3

�
!3�5

�
D 92:

Writing � W Q! P3 for the projection, the numbers deg.!i�j / computed above
may be interpreted (via the push-pull formula) as the degrees of the classes ���k , which
are called Segre classes of the bundle E . See Definition 10.1 and, for an alternative
computation, Proposition 10.3.

9.7.4 The parameter space as Hilbert scheme

If C � ƒ is a smooth plane conic then the Hilbert polynomial of C is p.m/ D
2mC 1. Let H WD H2mC1 be the Hilbert scheme of subschemes of P3 with this Hilbert
polynomial, and let C ! H � P3 be the universal family. We have already described the
tautological family of plane conics X ! Q � P3, and by the universal property of the
Hilbert scheme there is a unique map  W Q! H such that X D . � 1/�C.

Theorem 9.19. Q with its universal family X ! Q � P3 is isomorphic to H with its
universal family C ! H � P3 via the map  .

We postpone the proof to develop a few necessary facts about subschemes C with
Hilbert polynomial p.m/ D 2mC 1. To show that C is really a conic, we first want to
show that C is contained in a plane ƒ— that is, there is a linear form vanishing on C .
Since the number of independent linear forms on P3 is 4 D p.1/C 1, it suffices to show
that the value hC .1/ of the Hilbert function of C — that is, the dimension .SC /1 of the
degree-1 part of the homogeneous coordinate ring of C — is equal to p.1/.
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Once this is established we must show that a nonzero quadratic form on ƒ vanishes
on C , and it suffices, for similar reasons as above, to show that hC .2/ D dim.SC /2 D
5 D p.2/. In fact, we will prove that if C � P3 is any subscheme with Hilbert
polynomial p.m/ D 2mC 1, then the Hilbert function hC .m/ of C is equal to p.m/
for all m. This is contained in the following result:

Proposition 9.20. Let C � Pn be a subscheme, and let IC be its ideal sheaf and
SC D kŒx0; : : : ; xn�=I its homogeneous coordinate ring.

(a) If the Hilbert polynomial of SC is pC .m/ D 2mC 1, then the Hilbert function of
SC is also equal to 2mC 1.

(b) C is the complete intersection of a unique 2-plane and a (non-unique) quadric
hypersurface.

(c) H 1.IC .m// D 0 for all m � 0.

Proof: The form of the Hilbert polynomial implies that C has dimension 1 and degree 2.
Thus a general plane section � D fx D 0g \ C is a subscheme of degree 2 in the plane,
either two distinct points or one double point. In either case, the Hilbert function of � is
h�.m/ D 2 for all m � 1. Writing SC for the homogeneous coordinate ring of C , we
have a surjective map SC ! S� whose kernel contains xSC , whence

hC .m/ � hC .m � 1/ � h�.m/ D 2

for m � 1. Since hC .0/ D 1, it follows that hC .m/ � 2m C 1 for all m � 0, and
that a strict inequality for any value of m implies the same for all larger values. Since
hC .m/ D pC .m/ D 2mC 1 for large m, the inequality above must be an equality for
all m � 1, proving the first statement.

The second statement follows. From hC .1/ D 3, we see that C is be contained in
a unique plane ƒ. From hC .2/ D 5, we see that C lies on five linearly independent
quadrics; since at most four of these can contain ƒ, we see that C lies on a quadric
Q � P3 not containing ƒ. The subscheme C 0 WD ƒ \ Q also has Hilbert function
2mC 1, and since C � C 0 they are equal.

To prove the last statement, we use the long exact sequence in cohomology

H 0.IC .m//�!H 0.OPn.m//�!H 0.OC .m//�!H 1.IC .m//�!H 1.OPn.m//:

Since the last term is zero and the cokernel of the map H 0.IC .m//! H 0.OP3.m// is
the component of degree m in SC , it suffices to show that h0.OC .m// D 2mC 1. But
as C is defined in the plane by a quadratic hypersurface, we have also a sequence

0 �! H 0.OP2.m � 2// �! H 0.OP2.m// �! H 0.OC .m// �! H 1.OP2.m � 2//;
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and, since the twists of OP2 have no intermediate cohomology, we get

h0.OC .m// D h0.OP2.m// � h
0.OP2.m � 2// D

�mC2
2

�
�

�m
2

�
D 2mC 1;

as required.

Proof of Theorem 9.19: By Proposition 9.20, the fibers of C � H � P3 over closed
points of H are precisely the distinct conics in P3. Since this is also true for X � Q�P3,
the map  W Q! H is bijective on closed points.

Since Q is smooth, it now suffices to prove that H is smooth. From the bijectivity
of  , we see that dimH D dimQ D 8, so it suffices, in fact, to prove that the tangent
space to H at each point ŒC � has dimension 8. By Theorem 6.21, there is an isomorphism
TŒC �=H Š H 0.NC=P3/. Using Proposition 9.20 again, we know that C is a complete
intersection of a linear form and a quadric. Thus NC=P3 D .OP3.1/˚OP3.2//jC , and
the dimension of the tangent space is h0.OC .1//C h0.OC .2//.

By Proposition 9.20, H 1.IC=P3.m// D 0 for all m, so the desired value is the
sum of the values of the Hilbert function of C at 1 and at 2. Putting this together,
we get

dimTŒC �=H D .2 � 1C 1/C .2 � 2C 1/ D 8

as required.

9.7.5 Tangent spaces to incidence cycles

To prove that theDLi intersect transversely we need to compute their tangent spaces
at the points of intersection. This task is made easier by the fact that, for general Li ,
the intersection of the DLi takes place in the locus U of smooth conics, as we shall
now prove:

Lemma 9.21. For a general choice of lines L1; : : : ; L8 � P3, no singular conic meets
all eight.

Proof: The family of singular conics has dimension 7, and the family of lines meeting a
line, or a singular conic, has dimension 3. Thus the family consisting of 8-tuples of lines
meeting a singular conic has dimension 7C 3 � 8 D 31, while the family of 8-tuples of
lines has dimension 8 � 4 D 32.

Next we describe the tangent spaces to the cycles DL at points in U . Again, we use
the computation of the tangent space to Q Š H at a point ŒC � corresponding to a conic
C as TŒC �=H D H 0.NC=P3/.
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C

p �.p/

L

Figure 9.4 If C is a conic meeting a line L at a point p, then a deformation of C
corresponding to a normal section � remains in DL if and only if �.p/ is tangent to L.

Proposition 9.22. Let L � P3 be a line and DL � H the locus of conics meeting L.
If C � P3 is a smooth plane conic such that C \ L D fpg is a single reduced point,
then DL is smooth at ŒC �, and its tangent space at ŒC � is the space of sections of the
normal bundle whose value at p lies in the normal direction spanned by L; that is,

TŒC �DL D

�
� 2 H 0.NC=P3/

ˇ̌
�.p/ 2

TpLC TpC

TpC

�
:

See Figure 9.4 for an illustration.

Proof: We prove Proposition 9.22 by introducing an incidence correspondence: For
L � P3 a line, we let

ˆL D f.p; C / 2 L �H jp 2 C g:

The image of ˆL under the projection �2 to the second factor is the cycle DL � H of
conics meeting L. By Lemma 6.23, the tangent space to ˆL at the point .p; C / is

T.p;C/ˆL D f.�; �/ 2 TpL �H
0.NC=P3/ j �.p/ � � mod TpC g:

In particular, ˆL will be smooth at .p; C /, and the projection �2 will carry its tan-
gent space injectively to the space of sections � 2 H 0.NC=P3/ such that �.p/ 2
.TpL C TpC/=TpC . Since the map �2 is one-to-one over p, it follows that DL is
smooth at ŒC � with this tangent space.

This argument also applies to Hilbert schemes in a more general context; see
Exercise 9.60.

Corollary 9.23. Let C be a smooth conic in P3. If L1; : : : ; L8 are general lines meeting
C at general points, then the cycles DL1 ; : : : ;DL8 � Q Š H meet transversely at ŒC �.

Proof: By Proposition 9.22, it suffices to show that the eight linear conditions speci-
fying that a global section of the normal bundle of C lie in specified one-dimensional
subspaces at eight points of C are independent, for a general choice of the points and the
subspaces. Since the rank of the normal bundle is 2, this is a special case of Lemma 9.24,
proved below.
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Lemma 9.24. Let E be a vector bundle on a projective variety X , and let V � H 0.E/
be a vector space of global sections. If p1; : : : ; pk 2 X are general points and Vi � Epi
a general linear subspace of codimension 1 in the fiber Epi of E at pi , then the subspace
W D f� 2 V j �.pi / 2 Vig has dimension

dimW D maxf0; dim.V / � kg:

The obvious analog of this result fails if we allow codimVi > 1; see Exercise 9.53.

Proof: Proceeding inductively, it suffices to show the case k D 1, and note that if the
general section in V had value in every hyperplane Vi � Ep at a dense set of points
p 2 X then V D 0.

9.7.6 Proof of transversality

Proposition 9.25. IfL1; : : : ; L8 � P3 are eight general lines, then the cyclesDLi � Q
intersect transversely.

Proof: To start, we introduce the incidence correspondence

† D f.L1; : : : ; L8IC/ 2 G.1; 3/8 �Q j C \ Li ¤ ¿ for all ig:

Since the locus of lines L � P3 meeting a given smooth conic C is an irreducible hyper-
surface in the Grassmannian G.1; 3/, we see via projection to Q that † is irreducible of
dimension 32.

Now, let †0 � † be the locus of .L1; : : : ; L8IC/ such that the cycles DLi fail to
intersect transversely at ŒC �; this is a closed subset of †. By Corollary 9.23, †0 ¤ †,
so dim†0 < 32. It follows that †0 does not dominate G.1; 3/8, so for a general
point .L1; : : : ; L8/ 2 G.1; 3/8 the cycles DLi are transverse at every point of their
intersection.

In sum, we have proved:

Theorem 9.26. There are exactly 92 distinct plane conics in P3 meeting eight general
lines, and each of them is smooth.

As with any enumerative formula that applies to the general form of a problem, the
computation still tells us something in the case of eight arbitrary lines. For one thing, it
says that if L1; : : : ; L8 � P3 are any eight lines, there will be at least one conic meeting
all eight (here we have to include degenerate conics as well as smooth), and, if we assume
that the number of conics meeting all eight (again including degenerate ones) is finite,
then, assigning to each such conic C a multiplicity (equal to the scheme-theoretic degree
of the component of the intersection

T
DLi � H supported at ŒC �, since the cycles DL

are Cohen–Macaulay), the total number of conics will be 92. In particular, as long as
the number is finite, there cannot be more than 92 distinct conics meeting all eight lines.
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In Exercises 9.56–9.68 we will look at some other problems involving conics in P3,
including some problems involving calculations in A.H/, some other applications of
the techniques we have developed here and some problems that require other parameter
spaces for conics.

9.8 Exercises
Exercise 9.27. Choosing coordinates x0; x1; : : : ; xa on Pa corresponding to the mono-
mials sa; sa�1; : : : ; ta, show that the 2 � 2 minors of the matrix�

x0 x1 � � � xa�1

x1 x2 � � � xa

�
vanish identically on the rational normal curve S.a/. By working in local coordinates,
show that the ideal I generated by the minors defines the curve scheme-theoretically.
Find a set of monomials forming a basis for the ring kŒx0; x1; : : : ; xa�=I , and show that
in degree d it has dimension ad C 1. By comparing this with the Hilbert function of P1,
prove that I is the saturated ideal of the rational normal curve.

Exercise 9.28. In order to do the same as we did in the previous exercise for surface
scrolls, prove that the Hilbert polynomial fS .d/ of the surface scroll S.a; b/ � PaCbC1

satisfies

fS .d/ � .aC b/
�dC1

2

�
C d C 1:

Exercise 9.29. Let x0; : : : ; xaCbC1 be coordinates in PaCbC1. Prove that the 2 � 2
minors of the matrix�

x0 x1 � � � xa�1 xaC1 xaC2 � � � xaCb
x1 x2 � � � xa xaC2 xaC3 � � � xaCbC1

�
vanish on a surface scroll S.a; b/. As in Exercise 9.27, show that the ideal I generated
by the minors defines the surface scheme-theoretically. Then, using Exercise 9.28, prove
that I is the saturated ideal of the surface scroll.

Exercise 9.30. Let X be a smooth projective variety, E a vector bundle on X and
PE ! X its projectivization. Let L be any line bundle on X ; as we have seen, there is a
natural isomorphism PE Š P.E ˝ L/, such that

OP.E˝L/.1/ Š OPE.1/˝ �
�L�:

Using the results of Section 5.5.1, show that the two descriptions of the Chow ring of
PE D P.E ˝ L/ agree.
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Exercise 9.31. Let � W Y ! X be a projective bundle.

(a) Show that the direct sum decomposition of the group A.X/ given in Theorem 9.6
depends on the choice of vector bundle E with Y Š PE .

(b) Show that if we define group homomorphisms  i W A.Y /! A.X/˚iC1 by

 i W ˛ 7! .��.˛/; ��.�˛/; : : : ; ��.�
i˛//;

then the filtration of A.Y / given by

A.Y / � Ker. 0/ � Ker. 1/ � � � � � Ker. r�1/ � Ker. r/ D 0

is independent of the choice of E .
Hint: Give a geometric characterization of the cycles in each subspace of A.Y /.

Exercise 9.32. In Example 9.17, we used intersection theory to show that there does not
exist a rational solution to the general quadratic polynomial; that is, there do not exist
rational functions X.a; : : : ; f /, Y.a; : : : ; f / and Z.a; : : : ; f / such that

aX2 C bY 2 C cZ2 C dXY C eXZ C f YZ � 0:

To gain some appreciation of the usefulness of intersection theory, give an elementary
proof of this assertion.

Exercise 9.33. Let

ˆ D f.L; p/ 2 G.1; n/ � Pn jp 2 Lg

be the universal line in Pn, and let �1, �1;1 and � be the pullbacks of the Schubert
classes �1 2 A1.G.1; n//, �1;1 2 A2.G.1; n// and the hyperplane class � 2 A1.Pn/
respectively. Find the degree of all monomials �a1 �

b
1;1�

c of top degree a C 2b C c D
dim.ˆ/ D 2n � 1.

Exercise 9.34. Consider the flag variety F of pairs consisting of a point p 2 P3 and a
line L � P3 containing p; that is,

F D f.p;L/ 2 P3 �G.1; 3/ jp 2 L � P3g:

F may be viewed as a P1-bundle over G.1; 3/, or as a P2-bundle over P3. Calculate the
Chow ring A.F/ via each map, and show that the two descriptions agree.

Exercise 9.35. By Theorem 9.6, the Chow ring of the product P3 �G.1; 3/ is just the
tensor product of their Chow rings; that is

A.P3 �G.1; 3// D A.G.1; 3//Œ��=.�4/:

In these terms, find the class of the flag variety F � P3 �G.1; 3/ of Exercise 9.34.
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Exercise 9.36. Generalizing the preceding problem, let

F.0; k; r/ D f.p;ƒ/ 2 Pr �G.1; r/ jp 2 ƒg:

Find the class of F.0; 1; r/ � Pr �G.1; r/.

Exercise 9.37. Generalizing Exercise 9.35 in a different direction, let

ˆr D f.L;M/ 2 G.1; r/ �G.1; r/ jL \M ¤ ¿g:

Given that by Theorem 9.18 we have

A.G.1; r/ �G.1; r// Š A.G.1; r//˝ A.G.1; r//;

find the class of ˆr in A.G.1; r/ �G.1; r// for:

(a) r D 3.
(b) r D 4.
(c) General r .

Exercise 9.38. Let Z be the blow-up of Pn along an .r � 1/-plane, and let E � Z be
the exceptional divisor. Find the degree of the top power ŒE�n 2 A.Z/.

Exercise 9.39. Again let Z D Blƒ Pn be the blow-up of Pn along an .r � 1/-plane ƒ.
In terms of the description of the Chow ring ofZ given in Corollary 9.12, find the classes
of the following:

(a) The proper transform of a linear space Ps containing ƒ, for each s > r .
(b) The proper transform of a linear space Ps in general position with respect to ƒ

(that is, disjoint from ƒ if s � n � r , and transverse to ƒ if s > n � r).
(c) In general, the proper transform of a linear space Ps intersecting ƒ in an l-plane.

Exercise 9.40. Let Z D BlL P3 be the blow-up of P3 along a line. In terms of the
description of the Chow ring of Z given in Corollary 9.12, find the classes of the proper
transform of a smooth surface S � P3 of degree d containing L.

Exercise 9.41. Now let Z D BlL P4 be the blow-up of P4 along a line, and let S � P4

be a smooth surface of degree d containing L. Show by example that the class of the
proper transform of S in Z is not determined by this data. For example, try taking
S D S.1; 2/ � P4 a cubic scroll, with L either

(a) a line of the ruling of S , or
(b) the directrix of S , that is, the unique curve of negative self-intersection,

and observe that you get different answers.
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Exercise 9.42. Let Z D Blƒ Pn be the blow-up of Pn along an .r � 1/-plane ƒ; that
is, if we consider the subspace Pn�r � G.r; n/ of r-planes containing ƒ, we have

Z D f.p; �/ 2 Pn � Pn�r jp 2 �g:

Using the description of the Chow ring of Z given in Corollary 9.12, find the class of
Z � Pn � Pn�r .

Exercise 9.43. Let C be a smooth curve, E a vector bundle of rank r on C and F ;G � E
two subbundles of complementary ranks s and r � s such that for general p 2 C the
fibers Fp and Gp are complementary in Ep. In terms of the Chern classes of the three
bundles, describe the locus of p 2 C where Fp \ Gp ¤ 0:

(a) By using the result of Proposition 9.13 to calculate the class of the intersection
PF \ PG in PE .

(b) By considering the bundle map F ˚ G ! E .

Exercise 9.44. To generalize the preceding problem: Let X be a smooth projective
variety of any dimension, E a vector bundle of rank r on X and F ;G � E subbundles
of ranks a and b with a C b � r . Describe the locus of p 2 C where Fp \ Gp ¤ 0,
assuming this locus has the expected codimension r C 1 � a � b.

We will see how to generalize this calculation substantially using the Porteous
formula of Chapter 12; see Exercise 12.11.

The following three exercises show one way to construct a surface with infinitely
many reduced and irreducible curves of negative self-intersection.

Exercise 9.45. Let F and G be two general polynomials of degree 3 in P2, and let
fCt D V.t0F C t1G/gt2P1 be the associated pencil of curves; let p1; p2; : : : ; p9 be the
base points of this pencil. Show that for very general t 2 P1 (that is, for all but countably
many t ) the line bundle OCt .p1 � p2/ is not torsion in Pic.Ct / D A1.Ct /.

Exercise 9.46. Now let S be the blow-up of the plane at the points p1; : : : ; p9 — that is,
the graph of the rational map P2 - P1 given by .F;G/— and let E1; : : : ; E9 be
the exceptional divisors. Show that there is a biregular automorphism ' W S ! S that
commutes with the projection S ! P1 and carries E1 to E2.

Exercise 9.47. Using the result of Exercise 9.45, show that the automorphism ' of
Exercise 9.46 has infinite order, and deduce that the surface S contains infinitely many
irreducible curves of negative self-intersection.

Exercise 9.48. An amusing enumerative problem: In the circumstances of the preceding
exercises, for how many t 2 P1 will OCt .p1 � p2/ be torsion of order 2 — that is, for
how many t will OCt .2p1/ Š OCt .2p2/?
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Exercise 9.49. Let C be a smooth curve of genus g � 2 over a field of characteristic
p > 0; let ' W C ! C be the Frobenius morphism. If �n � C � C is the graph of 'n

and n D Œ�n� 2 A1.C � C/ its class, show that the self-intersection deg.2n/ goes to
�1 as n!1.

Exercise 9.50. Show that if E is a vector bundle of rank 2 and degree e on a smooth
projective curve X , and L and M sub-line bundles of degrees a and b corresponding to
sections of PE with classes � and � , then

�� D e � a � b and �2 C �2 D 2e � 2a � 2b:

In particular, if L and M are distinct then deg �2C deg �2 � 0, with equality holding if
and only if E D L˚M.

Exercise 9.51. Let PN be the space of hypersurfaces of degree d in Pn. Using the
analysis of Example 9.17 as a template, show that for d > 1 the universal hypersurface

ˆd;n D f.X; p/ 2 PN � Pn jp 2 Xg ! PN

admits no rational section.

Exercise 9.52. Consider the flag variety F of pairs consisting of a point p 2 P4 and a
2-plane ƒ � P4 containing p; that is,

F D f.p;L/ jp 2 ƒ � P4g � P4 �G.2; 4/:

F may be viewed as a P2-bundle over G.2; 4/, or as a G.1; 3/-bundle over P4. Calculate
the Chow ring A.F/ via each map, and show that the two descriptions agree.

Exercise 9.53. Show that the analog of Lemma 9.24 is false if we allow the Vi to
have codimension >1: in other words, if Vi � Epi is a general linear subspace of
codimensionmi , then the corresponding subspaceW � H 0.E/ need not have dimension
max

˚
0; h0.E/ �

P
mi
	
.

Hint: Consider a bundle whose sections all lie in a proper subbundle.

Exercise 9.54. Calculate the remaining five intersection numbers in the table of inter-
section numbers on page 349 of Section 9.7.2.

Exercise 9.55. To find the class ı D ŒDL� 2 A
1.H/ of the cycle of conics meeting a

line directly, restrict to the open subset U � H of pairs .H; �/ 2 H such that H does
not contain L (since the complement of this open subset of H has codimension 2, any
relation among divisor classes that holds in U will hold in H). Show that we have a map
˛ W U ! L sending a pair .H; �/ to the point p D H \L, and that in U the divisor DL
is the zero locus of the map of line bundles

T ! ˛�OL.2/
sending a quadric Q 2 � to Q.p/.
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Exercise 9.56. Let � � H be the locus of singular conics.

(a) Show that � is an irreducible divisor in H.
(b) Express the class ı 2 A1.H/ as a linear combination of ! and �.
(c) Use this to calculate the number of singular conics meeting each of seven general

lines in P3.
(d) Verify your answer to the last part by calculating this number directly.

Exercise 9.57. Let p 2 P3 be a point and Fp � H the locus of conics containing the
point p. Show that Fp is six-dimensional, and find its class in A2.H/.

Exercise 9.58. Use the result of the preceding exercise to find the number of conics
passing through a point p and meeting each of six general lines in P3, the number of
conics passing through two points p; q and meeting each of four general lines in P3,
and the number of conics passing through three points p; q; r and meeting each of two
general lines in P3. Verify your answers to the last two parts by direct examination.

Exercise 9.59. Find the class in A3.H/ of the locus of double lines (note that this is
five-dimensional, not four!).

Exercise 9.60. Suppose that X � Pn is a subscheme of pure dimension l and H a
component of the Hilbert scheme parametrizing subschemes of Pn of pure dimension
k < n � l in Pn; let ŒY � 2 H be a smooth point corresponding to a subscheme Y � Pn

such that Y \X D fpg is a single reduced point, and suppose moreover that p is a smooth
point of both X and Y . Finally, let †X � H be the locus of subschemes meeting X .

Use the technique of Proposition 9.22 to show that †X � H is smooth at ŒY �, of
the expected codimension n � k � l , with tangent space

TŒY �†X D

�
� 2 H 0.NY=Pn/

ˇ̌
�.p/ 2

TpX C Tp Y

Tp Y

�
:

The next few problems deal with an example of a phenomenon encountered in the
preceding chapter: the possibility that the cycles in our parameter space corresponding
to the conditions imposed in fact do not meet transversely, or even properly.

Exercise 9.61. Let H � P3 be a plane, and let EH � H be the closure of the locus
of smooth conics C � P3 tangent to H . Show that this is a divisor, and find its class
ŒEH � 2 A1.H/.

Exercise 9.62. Find the number of smooth conics in P3 meeting each of seven general
lines L1; : : : ; L7 � P3 and tangent to a general plane H � P3. More generally, for
k D 1; 2 and 3 find the number of smooth conics in P3 meeting each of 8 � k general
lines L1; : : : ; L8�k � P3 and tangent to k general planes H1; : : : ;Hk � P4.
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Exercise 9.63. For k � 4, why do the methods developed here not work to calculate the
number of smooth conics in P3 meeting each of 8� k general lines L1; : : : ; L8�k � P3

and tangent to k general planes H1; : : : ;Hk � P3? What can you do to find these
numbers? (In fact, we have seen one way to deal with this in Chapter 8.)

Next, some problems involving conics in P4:

Exercise 9.64. Now let K be the space of conics in P4 (again, defined to be complete
intersections of two hyperplanes and a quadric). Use the description of K as a P5-bundle
over the Grassmannian G.2; 4/ to determine its Chow ring.

Exercise 9.65. In terms of your answer to the preceding problem, find the class of the
locus Dƒ of conics meeting a 2-plane ƒ, and of the locus EL of conics meeting a line
L � P4.

Exercise 9.66. Find the expected number of conics in P4 meeting each of 11 general
2-planes ƒ1; : : : ; ƒ11 � P4.

Exercise 9.67. Prove that your answer to the preceding problem is in fact the actual num-
ber of conics by showing that for general 2-planesƒ1; : : : ; ƒ11 � P4 the corresponding
cycles Dƒi intersect transversely.

Finally, here is a challenge problem:

Exercise 9.68. Let fSt � P3gt2P1 be a general pencil of quartic surfaces (that is, take
A and B general homogeneous quartic polynomials, and set St D V.t0AC t1B/ � P3).
How many of the surfaces St contain a conic?
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Keynote Questions

(a) Let v1; : : : ; v2n be general tangent vector fields on Pn. At how many points of Pn

is there a nonzero cotangent vector annihilated by all the vi? (Answer on page 366.)
(b) If f is a general polynomial of degree d D 2m � 1 in one variable over a field of

characteristic 0, then there is a unique way to write f as a sum of m d -th powers
of linear forms (Proposition 10.15). If f and g are general polynomials of degree
d D 2m in one variable, how many linear combinations of f and g are expressible
as a sum of m d -th powers of linear forms? (Answer on page 377.)

(c) If C � P4 is a general rational curve of degree d , how many 3-secant lines does C
have? (Answer on page 379.)

(d) If C � P3 is a general rational curve of degree d , what is the degree of the surface
swept out by the 3-secant lines to C ? (Answer on page 380.)

10.1 Segre classes
Our understanding of the Chow rings of projective bundles makes accessible the

computation of the classes of another natural series of loci associated to a vector bundle.
We start with a naive question. Suppose that E is a vector bundle on a scheme X and

that E is generated by global sections. How many global sections does it actually take to
generate E? More generally, what sort of locus is it where a given number of general
global sections fail to generate E locally?

We can get a feeling for these questions as follows. First, consider the case where E
is a line bundle. In this case, each regular section corresponds to a divisor of class c1.E/.
If E is generated by its global sections, the linear series of these divisors is base point
free, so a general collection of i of them will intersect in a codimension-i locus of class
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c1.E/i . That is, the locus where i general sections of E fail to generate E has “expected”
codimension i and class c1.E/i .

Now suppose that E has rank r > 1; again, suppose that it is generated by global
sections. Choose r general sections, and let X 0 be the codimension-1 subset of E
consisting of points p where the sections do not generate E . One can hope that at a general
point ofX 0 the sections have only one degeneracy relation, so that on some open set U �
X 0 they generate a corank-1 subbundle of E 0 � E , and the quotient E=E 0 is a line bundle
on U . The sections of E yield sections of E=E 0, so if it is a line bundle they will vanish
in codimension 1 in U ; that is, we should expect r C 1 general sections of E to generate
E away from a codimension-2 subset of X . Continuing in this way (and assuming that
r � i ), it seems that rC i �1 sections of E might generate E away from a codimension-i
locus. In particular, r C dimX sections might generate E locally everywhere.

A case beloved by algebraists is that of E D OPV .1/
r . Here a collection of rC i �1

general sections is a general map

OrCi�1PV
'
��! OPV .1/

r ;

that is, a general r � .r C i � 1/ matrix of linear forms. The locus where the sections
fail to generate is the support of the cokernel, which is defined by the r � r minors of
the matrix. By the generalized principal ideal theorem (Theorem 0.2), the codimension
of this locus is at most i , and in fact equality holds (as we shall soon see) whenever
r C 1 � i . In fact, the support of the cokernel is exactly the scheme defined by the ideal
of minors in this case (see Buchsbaum and Eisenbud [1977]).

It turns out that the construction of projective bundles gives us an effective way of
reducing this question (and many others) about vector bundles to the case of line bundles,
passing from E to the line bundle OPE.1/ on PE . To relate this line bundle to classes
on X , we push forward its self-intersections:

Definition 10.1. Let X be a smooth projective variety, let E be a vector bundle of rank r
on X and � W PE ! X its projectivization, and let � D c1.OPE.1//. The i-th Segre
class of E is the class

si .E/ D ��.�r�1Ci / 2 Ai .X/;

and the (total) Segre class of E is the sum

s.E/ D 1C s1.E/C s2.E/C � � � :

(For a more general definition of the Segre classes, see Fulton [1984, Chapter 4].)
The Segre classes give the answer to our question about generating vector bundles:

Proposition 10.2. Let E be a vector bundle of rank r on a smooth variety X that is
generated by global sections, and let �1; : : : ; �rCi�1 be general sections. If Xi is the
scheme where �1; : : : ; �rCi�1 fail to generate E , then Xi has pure codimension i and
the class ŒXi � is equal to .�1/isi .E/.
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We will prove here only the weaker statement that .�1/isi .E/ is represented by a
positive linear combination of the components of Xi ; the stronger version is a special
case of Porteous’ formula (Theorem 12.4), which will be proved in full in Chapter 12.

The proposition shows an interesting parallel between the Chern classes and the
Segre classes of a bundle:

� The i -th Chern class ci .E/ is the locus of fibers where a suitably general bundle map

O˚r�iC1X ! E

fails to be injective.

� The i -th Segre class si .E/ is .�1/i times the locus of fibers where a suitably general
bundle map

O˚rCi�1X ! E

fails to be surjective.

The Segre classes may seem to give a way of defining new cycle class invariants
of a vector bundle, but in fact they are essentially a different way of packaging the
information contained in the Chern classes. Postponing the proof of Proposition 10.2 for
a moment, we explain the remarkable relationship:

Proposition 10.3. The Segre and Chern classes of a bundle E on X are reciprocals of
one another in the Chow ring of X :

s.E/c.E/ D 1 2 A.X/:

Using the formula ci .E�/ D .�1/ici .E/, we deduce that

si .E�/ D .�1/isi .E/:

Also, for any exact sequence 0 �! E �! F �! G �! 0 of vector bundles, the
Whitney formula gives c.F/ D c.E/c.G/, whence

s.F/ D s.E/s.G/:

Proof of Proposition 10.3: If S and Q are the tautological sub- and quotient bundles
on PE and � D c1.S�/ is the tautological class, then c.S/ D 1 � �, so by the Whitney
formula

c.Q/ D
c.��E/
c.S/

D c.��E/.1C � C �2 C � � � / 2 A.PE/:
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We now push this equation forward to X . Considering first the left-hand side, we see that
for i < r�1 the Chern class ci .Q/ is represented by a cycle of dimension> dimX , so it
maps to 0, while the top Chern class cr�1.Q/maps to a multiple of the fundamental class
ofX — in fact, we saw in Lemma 9.7 that the multiple is 1. Thus ��.c.Q// D 1 2 A.X/.
On the other hand, the push-pull formula tells us that

��.c.�
�E/.1C � C �2 C � � � // D c.E/ � ��.1C � C �2 C � � � /

D c.E/s.E/;
completing the argument.

For example, if X D Pn and E D .OPn.1//
r , then

s.E/ D
1

c.E/
D

1

.1C �/r
D 1 � r� C

�rC1
2

�
�2 �

�rC2
3

�
�3 C � � � :

Proof of Proposition 10.2: Let V D H 0.E/; suppose that dimV D n. Since E is
generated by global sections, we have a natural map ' W X ! G.n � r; n/ sending
each point p 2 X to the kernel of the evaluation map V ! Ep, that is, the subspace
of sections of E vanishing at p. Via this map, E is the pullback '�Q of the universal
quotient bundle on G.n � r; V /, and by Section 5.6.2 we have correspondingly

ci .E/ D '�.c.Q// D '�.�i /:

In fact, we can see this directly: If �1; : : : ; �r�iC1 2 V are general sections of E , the
locus where they fail to be independent will be the preimage of the Schubert cycle
†i .W /, where W � V is the span of �1; : : : ; �r�iC1, and, since the plane W � V

is general, by Kleiman transversality the class Œ'�1.†i .W //� of the preimage is the
pullback of the class Œ†i .W /� D �i .

In the same way, if �1; : : : ; �rCi�1 2 V are general sections of E , the scheme
Xi where they fail to span will be the preimage of the Schubert cycle †1i .W / D
†1;1;:::;1.W /, where W � V is the span of �1; : : : ; �rCi�1; again, we can invoke
Kleiman to deduce that the Xi have pure codimension i and that

ŒXi � D '
�.�1i /:

Finally, we saw in Corollary 4.10 that in the Chow ring of the Grassmannian we have

.1C �1 C �2 C � � � /.1 � �1 C �1;1 � � � � / D 1;

and combining these we haveX
.�1/i ŒXi � D '

�
�X

.�1/i�1i
�
D '�

1P
�i
D

1

c.E/
D s.E/;

as desired.
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We can now answer Keynote Question (a). A tangent vector field on Pn is a section
of TPn D ��Pn , so the question can be rephrased as: At how many points of Pn do 2n
general sections of TPn fail to generate TPn? By Proposition 10.2, this is .�1/n times
the degree of the Segre class sn.TPn/. By Proposition 10.3, s.TPn/ D 1=c.TPn/. And, as
we have seen (in Section 5.7.1), c.TPn/ D .1C �/nC1, where � is the hyperplane class
on Pn. Putting this together,

s.TPn/ D
1

.1C �/nC1
D 1 � .nC 1/� C

�nC2
2

�
�2 C � � � ;

so the answer is
�
2n
n

�
.

10.2 Varieties swept out by linear spaces
We can use Segre classes to calculate the degrees of some interesting varieties

“swept out” by linear spaces in the following sense. Let B be a smooth variety of
dimension m and ˛ W B ! G D G.k; n/ a map to the Grassmannian of k-planes in Pn,
and let

X D
[
b2B

ƒ˛.b/ � Pn

be the union of the planes in Pn corresponding to the points of the image of B . Let S be
the universal subbundle on G and

ˆ D PS D f.ƒ; p/ 2 G � Pn jp 2 ƒg

the universal k-plane. Form the fiber product

ˆB D B �G ˆ D f.b; p/ 2 B � Pn jp 2 ƒ˛.b/g;

with projection maps

B
�
 �� ˆB

�
��! Pn;

so that we can write

X D �.ˆB/:

Since ˆB is necessarily a variety of dimension mC k, we see from this that X will be a
subvariety of Pn of dimension at mostmC k. In case it has dimension equal tomC k—
that is, the map � is generically finite of some degree d , or in other words a general point
of X lies on d of the planes ƒ˛.b/ — we will say that X is swept out d times by the
planes ƒ˛.b/.

Assuming now that X has the “expected” dimension m C k, we can ask for its
degree in Pn. This can be conveniently expressed as the degree of a Segre class:
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Proposition 10.4. Let B � G.k; n/ be a smooth projective variety of dimension m,
˛ W B ! G D G.k; n/ any morphism and E D ˛�S the pullback of the universal
subbundle on G. If

X D
[
b2B

ƒ˛.b/ � Pn

is swept out d times by the planes corresponding to points of B , then

deg.X/ D deg.sm.E//=d:

Proof: If L 2 H 0.OPn.1// is a homogeneous linear form on Pn, then L defines a
section of E� by restriction to each fiber of E D SB , and hence a section �L of OPE.1/.
The preimage ��1B .H/ of the hyperplane H D V.L/ � Pn given by L is the zero
locus of �L. Thus the pullback of the hyperplane class on Pn under the map �B is the
tautological class � D c1.OPE.1// on PE , and it follows that d �deg.X/ D deg �mCk D
deg sm.E/, as required.

Alternatively, we could argue that the degree of X is the number of points of its
intersection with a general .n � m � k/-plane � � Pn; since the class of the cycle
†m.�/ � G of k-planes meeting � is the Schubert class �m 2 Am.G/, this is 1=d
times the degree of the pullback ˛��m. Thus we have

d � deg.X/ D deg˛��m
D deg cm.˛�Q/
D deg sm.E/

since s.S/ D 1=c.S/ D c.Q/.

10.3 Secant varieties
The study of secant varieties to projective varieties X � Pn is a rich one, with

a substantial history and many fundamental open problems. In this section, we will
discuss some of the basic questions. In the following sections we will use Segre classes
to compute the degrees of secant varieties to rational curves.

10.3.1 Symmetric powers

A k-secant m-plane to a variety X in Pn is a linear space ƒ Š Pm � Pn of
dimension m that meets X in k points, so it will be useful to introduce a classical
construction of a variety whose points are (unordered) k-tuples of points of X : the k-th
symmetric power X .k/ of X .
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Formally, we define X .k/ to be the quotient of the ordinary k-fold product Xk by
the action of the symmetric group on k letters Sk , acting onXk by permuting the factors.
If X D SpecA is any affine scheme, this means that

X .k/ WD Spec..A˝ A˝ � � � ˝ A/Sk /:

When X is quasi-projective, X .k/ is defined by patching together symmetric powers
of affine open subsets of X . The main theorem of Galois theory shows that when X
is a variety the extension of rational function fields k.Xk/=k.X .k// is Galois, and of
degree kŠ .

One can show that such quotients are categorical: Any morphism X .k/ ! Y

determines an Sk-invariant morphismXk ! Y , and this is a one-to-one correspondence.
Further, the closed points of X correspond naturally to the effective 0-cycles on X : they
are usually denoted additively by p1 C � � � C pk , where the pi 2 X need not be distinct.
For these results, see Mumford [2008, Chapter 12].

Since the natural map Xk ! X .k/ is finite, X .k/ is affine or projective if and only
if X is.

A familiar example is the case X D A1: Here, X D Spec kŒt �, so

.A1/.k/ D Spec.kŒt1; : : : ; tk�
Sk /:

This ring of invariants is a polynomial ring on the k elementary symmetric functions
(see for example Eisenbud [1995, Section 1.3] for an algebraic proof), so .A1/.k/ D Ak .
Set-theoretically, this is the statement that a monic polynomial is determined by the set
of its roots, counting multiplicity.

A similar result holds for P1. We could deduce it from the case of A1, but instead
we give a geometric proof:

Proposition 10.5. .P1/.k/ Š PH 0.OP1.k// D Pk .

Proof: We think of P1 as PH 0.OP1.1//, the space of linear forms in 2 variables modulo
scalars. The product of k linear forms is a form of degree k, which is independent
of the order in which the product is taken. Thus multiplication defines a morphism
' W .P1/k ! PH 0.OP1.k// that is invariant under the group Sk . The morphism ' is
finite and generically kŠ-to-one, so it has degree kŠ .

Since ' is invariant, it factors through a morphism  W .P1/.k/ ! Pk , and, since
the degree of the quotient map .P1/k ! .P1/.k/ is kŠ, we see that  is birational. Since
Pk is normal and  is finite and birational,  is an isomorphism.

The construction of X .k/ is most useful when X is a smooth curve. One reason is
given by the following result:

Proposition 10.6. If X is a variety and k > 1, then X .k/ is smooth if and only if X is
smooth and dimX � 1.



Secant varieties Section 10.3 369

Proof: If dimX D 0, then X consists of a single reduced point, and X .k/ is also a
single reduced point. Thus we may assume that dimX > 0.

Away from the subsets where at least two factors are equal, the quotient map
Xk ! X .k/ is an unramified covering. Thus if X is singular at a point p, and
p; q1; : : : ; qk�1 2 X are distinct points, then near p C q1 C � � � C qk�1 the variety
X .k/ looks like the product Xk near .p; q1; : : : ; qk�1/; in particular, it is singular. Thus
if X is singular then X .k/ is singular.

Now suppose that X is smooth and of dimension � 2. If X .k/ were smooth as well,
the quotient map � W Xk ! X .k/ would be étale away from the diagonal in Xk , a
locus of codimension at least 2. But the differential d� W TXk ! ��TX.k/ , being a map
between vector bundles of equal rank, would necessarily be singular in codimension 1, a
contradiction.

It remains to see that if X is a smooth curve then X .k/ will be smooth. This in fact
follows from the special case X D P1 described in Proposition 10.5: in the analytic
topology, any collection of points pi on any smooth curve X have neighborhoods iso-
morphic to open subsets of P1, and it follows that any point of X .k/ has a neighborhood
isomorphic to an open subset of Pk .

The symmetric powers of a smooth curve C are central to the analysis of the
geometry of C , as we will see illustrated in Appendix D. We can think of a point of
C .k/ as a subschemeD � C , and use notation such asD [D0 andD \D0 accordingly.
In fact, C .k/ is isomorphic to the Hilbert scheme of subschemes of C with constant
Hilbert polynomial k— that is, zero-dimensional subschemes of degree k (see Arbarello
et al. [1985] for a proof). When dimX > 1 or X is singular, a point on X .k/ does
not in general determine a subscheme of X , and the Hilbert schemes Hk.X/ are often
more useful.

10.3.2 Secant varieties in general

In this subsection we will prove a basic result related to the dimension of secant
varieties. Then we will state without proof some general results that may help to orient
the reader. In the following two sections we will prove a number of results about the
secant varieties of rational curves.

Let X � Pr be a projective variety of dimension n not contained in a hyperplane.
Since m � r C 1 general points of X are linearly independent, for any m � r we have a
rational map

� W X .m/ - G.m � 1; r/;

called the secant plane map, sending a general m-tuple p1 C � � � C pm to the span
p1; : : : ; pm Š Pm�1 � Pr . (In coordinates: If pi D .xi;0; : : : ; xi;r/, then � is given by
the maximal minors of the matrix .xi;j /.) We define the locus of secant .m � 1/-planes
to X to be the image ‰m.X/ � G.m � 1; r/ of the rational map � — that is, the closure
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in G.m� 1; r/ of the locus of .m� 1/-planes spanned by m linearly independent points
of X . Finally, the variety

Secm.X/ D
[

ƒ2‰m.X/

ƒ � Pr

is called the m-th secant variety of X .

Caution: If ƒ 2 ‰m and ƒ \ X is finite, then deg.ƒ \ X/ � m, but the converse is
false; Exercise 10.24 suggests an example of this.

If n > 1 and m > 1 then the secant plane map � W X .m/ - G.m � 1; r/ is
never regular: When a point p 2 X on a variety of dimension 2 or more approaches
another point q 2 X , the limiting position of the secant line p; q necessarily depends on
the direction of approach. (When X is a curve and q a smooth point of X , the limit is
always the tangent line TqX .) This illustrates the point that — in this context, at least —
the Hilbert scheme Hm.X/ may be a better compactification of the space of unordered
m-tuples of points on X than the symmetric power: When m D 2, for example, the map
Q� W H2.X/ ! G.1; r/ sending a subscheme of length 2 to its span is always regular.
Further, if we fix m and replace the embedding X � Pr by a sufficiently high Veronese
re-embedding, then every length-m subscheme of X will span an m � 1 plane, so the
map Hm.X/! G.m� 1; r/ will be regular. In this chapter, we will care only about the
image of � , so it does not matter which we use.

We begin with the dimension of Secm.X/:

Proposition 10.7. Ifm � r�n, then the map � is birational onto its image; in particular,
‰m.X/ has dimension dimX .m/ D mn.

This is slightly more subtle than it might at first appear. The first case would be
the statement that if C � P3 is a nondegenerate curve then the line joining two general
points of C does not meet C a third time. Though intuitively plausible, this is tricky
to prove, and requires the hypothesis of characteristic 0. For the proof we will use the
following general position result:

Lemma 10.8 (General position lemma). If X � Pr is a nondegenerate variety of
dimension n and � Š Pr�n � Pr a general linear subspace of complementary
dimension, then the points of � \X are in linear general position; that is, any r �nC 1
of them span � .

We will not prove this here; a good reference is the discussion of the uniform position
lemma in Arbarello et al. [1985, Section III.1]).

Proof of Proposition 10.7: The proposition amounts to the claim that if p1; : : : ; pm 2
X are general points, then the plane p1; : : : ; pm they span contains no other points of X .
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To prove this, let U � X .m/ be the open subset of m-tuples of distinct, linearly
independent points, and consider the incidence correspondence

‰ D f.p1 C � � � C pm; �/ 2 U �G.r � n; r/ jp1; : : : ; pm 2 �g:

Via projection on the first factor, we see that ‰ is irreducible, and by Lemma 10.8 it
dominates G.r � n; r/; it follows that a general .r � n/-plane � containing m general
points p1; : : : ; pm 2 X is a general .r � n/-plane in Pr , and applying Lemma 10.8
again we deduce that the .m � 1/-plane p1; : : : ; pm contains no other points of X .

Let

ˆ D f.ƒ; p/ 2 G.m � 1; r/ � Pr jp 2 ƒg

be the universal .m � 1/-plane in Pr , with projection maps

ˆ
� - Pr

G.m � 1; r/:

�
?

Set

ˆm.X/ D �
�1.‰m.X// and �X D �jˆm.X/;

so that the m-th secant variety Secm.X/ is the image of �X . We will call ˆm.X/ the
abstract secant variety.

Projection on the first factor shows ˆm.X/ is irreducible of dimensionmnCm� 1,
so that dim Secm.X/ � mnC m � 1, with equality holding when a general point on
Secm.X/ lies on only finitely many m-secant .m� 1/-planes to X . By way of language,
if X � Pr has dimension n we will call min.mnCm � 1; r/ the expected dimension
of the secant variety Secm.X/; we will say that X is m-defective if dim Secm.X/ <
min.mnCm � 1; r/, and defective if it is m-defective for some m.

Everyone’s favorite example of a defective variety is the Veronese surface in P5:

Proposition 10.9. The Veronese surface X D �2.P2/ � P5 is 2-defective.

In fact, the Veronese surface is the only 2-defective smooth projective surface! This
much more difficult theorem was asserted, and partially proven, by Severi. The proof
was completed by Moishezon in characteristic 0; see Dale [1985] for a modern treatment
that works in all characteristics.

Proof: The Veronese surface may be realized as the locus where a symmetric 3 � 3
matrix

M D

0@z0 z1 z2

z1 z3 z4

z2 z4 z5

1A
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has rank 1. But if M has rank 1 at two points p; q 2 P5, then M has rank at most 2
at any point of the form �p C �q. Thus the determinant of M vanishes on the whole
line spanned by p and q, so the cubic form detM vanishes on the secant locus Sec2.X/.
Thus dim Sec2.X/ � 5 � 1 D 4, not 2 � 2C 1 D 5.

We can give a more geometric proof using a basic result introduced by Terracini
[1911]:

Proposition 10.10 (Terracini’s lemma). Let X � Pr be a variety and p1; : : : ; pm 2 X
linearly independent smooth points of X . If p 2 � D p1; : : : ; pm is any point in their
span not in the span of any proper subset, then the image of the differential d�X at the
point .�; p/ 2 ˆm.X/ is the span

Im d�X D Tp1X; : : : ;TpmX

of the tangent planes to X at the points pi . In particular, if X has dimension n and
r � mnCm � 1, then X is m-defective if and only if its tangent spaces at m general
points are dependent.

For a proof, see Landsberg [2012].
We can use Terracini’s lemma to see that the Veronese surfaceX � P5 is 2-defective

as follows: A hyperplane H � P5 contains the tangent plane to X at a point p if and
only if the curve H \X is singular at p. Of course we can consider H \X as a conic
in P2 Š X , and, from the definition of the Veronese surface, we see that every conic
appears in this way. Now, two planes in P5 are dependent if and only if they are both
contained in a hyperplane. Putting this together with Terracini’s lemma, we see that to
show that X is 2-defective we must show that given any two points in P2 there is a conic
in P2 that is singular at both these points; of course, the double line passing through the
points is such a conic.

We can also use Terracini’s lemma to show that there are no defective curves:

Proposition 10.11. If C � Pr is a nondegenerate reduced irreducible curve, then
dim Secm.X/ D min.2m � 1; r/ for every m.

Proof: By Terracini’s lemma, it suffices to show that if p1; : : : ; pm 2 C are general
points then the tangent lines TpiC are linearly independent when 2m � 1 � r and span
Pr when 2m � 1 � r .

We have already seen in the proof of Theorem 7.13 that for a general point p 2 C
the divisor .r C 1/p spans Pr (that is, a general point p 2 C is not inflectionary); it
follows that the divisor 2m � p spans a P2m�1 when 2m � r C 1 and spans Pr when
2m � r C 1. By lower-semicontinuity of rank, it follows that for general p1; : : : ; pm
the divisor 2p1 C � � � C 2pm has span of the same dimension.
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The general question of which nondegenerate varieties are defective is a fascinating
one, with a long history. Perhaps because of Terracini’s lemma, which relates the issue
to the question of when multiples of general points impose independent conditions on
polynomials (the interpolation problem), the case of Veronese embeddings of projective
spaces has attracted a great deal of attention. The following is a result of Alexander
and Hirschowitz [1995]. The proof was later simplified by Karen Chandler, and an
exposition of this version, with a further simplification, can be found in Brambilla and
Ottaviani [2008].

Theorem 10.12. The defective Veronese varieties are the following:

� �2.Pn/ is 2-defective for any n.
� �4.P2/ is 5-defective.
� �4.P3/ is 9-defective.
� �3.P4/ is 7-defective.
� �4.P4/ is 14-defective.

We will see in Exercises 10.26–10.29 that the Veronese varieties listed in the theorem
are indeed defective (the hard part is the converse!). Note that by Terracini’s lemma
Theorem 10.12 implies (and indeed is equivalent to) the following corollary:

Corollary 10.13. Let p1; : : : ; pm be general points in An, and let d be any positive
integer such that

�
dCn
n

�
� m.nC 1/. There exists a polynomial f of degree d on An

with specified values and derivatives at the points pi , except in the cases d D 2 and
.n; d;m/ D .2; 4; 5/; .3; 4; 9/; .4; 3; 7/ and .4; 4; 14/.

10.4 Secant varieties of rational normal
curves

We turn now from secant varieties in general to the special case of rational curves.
Every rational curve is the projection of a rational normal curve, and its secant varieties
are correspondingly projections of the secant varieties of the rational normal curve, so
we will focus initially on that case.

10.4.1 Secants to rational normal curves

We begin with the observation that finite sets of points on a rational normal curve
are always “as independent as possible.” (This property actually characterizes rational
normal curves, as we invite the reader to show in Exercise 10.31.)

Lemma 10.14. Let C � Pd be a rational normal curve. IfD � C is a divisor of degree
m � d C 1, thenD is not contained in any linear subspace of Pd of dimension < m� 1.
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Informally: Any finite subschemeD � C of length � d C1 is linearly independent,
in the sense that the map H 0.OPd .1//! H 0.OD.1// is surjective. On an affine subset
of P1 the parametrization of the rational normal curve looks like t 7! .1; t; t2; : : : ; td /,
so the independence of the images of any d C 1 points a0; : : : ; ad is given by the
nonvanishing of the Vandermonde determinant

det

0B@1 a0 � � � ad0
:::

:::
: : :

:::

1 ad � � � ad
d

1CA DY
i<j

.ai � aj /:

Proof: IfD were contained in a linear subspace L of dimension n < m�1, then adding
d�n�1 general points toD we would arrive at a divisorD0 � C of degreemCd�n�1
contained in a hyperplane H . Since C is not contained in a hyperplane, the intersection
H \ C is finite, and we deduce the contradiction degC > d .

In Section 10.3.2 we described the secant map as a regular map on an open set, that
is, as a rational map

� W C .m/ - G.m � 1; d/:

One consequence of Lemma 10.14 is that the secant plane map has a natural extension to
an injective map of sets. It is not hard to show that � is actually a morphism, and in fact
an embedding. We can thus regard the restriction ˆC to the image of � of the universal
Pm�1-bundle over G.m � 1; d/ as a Pm�1-bundle over .P1/.m/ D Pm, and Secm.C /
is the image of this bundle.

Proposition 10.15. Let C � Pd be a rational normal curve. When 2m � 1 � d , the
map �C W ˆm.C / ! Pd is birational onto its image Secm.C /; more precisely, it is
one-to-one over the complement of Secm�1.C / in Secm.C /.

Proof: Suppose a point p 2 Pd is the image of two different points of ˆm.C /, say
.D; p/ and .D

0
; p/. Let k D dim.D \D

0
/; note that 0 < k < m � 1. Since the span

of D and D
0

has dimension 2m � 2 � k, by Lemma 10.14 the union (as subschemes
of C ) of D and D0 can have degree at most 2m � k � 1. It follows that the intersection
D \D0 (again, as subschemes of C ) has degree at least k C 1. Thus D \D

0
is a secant

k-plane, and p 2 Sk.C / � Sm�1.C /.

Proposition 10.15 is not particularly remarkable in case 2m� 1 < d : all irreducible,
nondegenerate curves C � Pd have the property that when 2m � 1 < d a general
point on the m-secant variety Secm.C / lies on a unique m-secant .m � 1/-plane to C
(see Exercises 10.33–10.35). In case 2m � 1 D d , however, it is striking. For example,
the twisted cubic curve C � P3 is the unique nondegenerate space curve whose secant
lines sweep out P3 only once (see Exercise 10.30).
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10.4.2 Degrees of the secant varieties

Let C � Pd be a rational normal curve, and m any integer with 2m� 1 � d . Since
the secant plane map � W C .m/ ! G.m � 1; d/ is regular, and ˆC ! Secm.C / is
birational, it is reasonable to hope that we can answer enumerative questions about the
geometry of the varieties Secm.C /. We will do this in the remainder of this section and
the next, starting with the calculation of the degree of Secm.C /.

There are a few cases that we can do without any machinery; for example:

(a) Sec1.C / D C , so deg Sec1.C / D d .
(b) The case m D 2 is not quite as trivial, but is readily done: The variety Sec2.C / has

dimension 3, so its degree is the number of points in which it intersects a general
.d � 3/-planeƒ. As we saw in Exercise 3.34, the projection of C fromƒ to P2 will
map C birationally onto a plane curve C0 with nodes, and the points of ƒ \ S2.C /
correspond to these nodes. Since C0 has arithmetic genus

�
d�1
2

�
and geometric

genus 0, we conclude that deg Sec2.C / D
�
d�1
2

�
.

(c) Finally, if d is odd and m D .d C 1/=2, then the secant locus is all of Pd , so
deg Secm.C / D 1.

In order to go further, we use the Segre class technique of Proposition 10.4. To begin
with, the map

ˆm.C /
�
��! ‰m.C / D �..P1/.m// Š .P1/.m/ Š Pm

has the form PH! Pm, where H is the pullback ��S of the tautological subbundle on
G.m � 1; d/ to Pm.

In fact, we have already seen this bundle before, in Section 9.3.3! To see this, let
V D H 0.OP1.d//. The rational normal curve lives naturally in PV �, as the locus
C of linear functionals on V given by evaluation at a point p 2 P1. The span of a
divisor D of degree m on C is the space of linear functionals vanishing on those points,
that is, the annihilator in V � of the subspace VD D H 0.ID;P1.d//. Thus the map
� W Pm ! G.m � 1; d/ sends D 2 Pm to the subspace Ann.VD/ � V �, and it follows
that the pullback ��S is the dual F� of the bundle F introduced in Section 9.3.3. We
have from the results of that section that

c.F/ D
1

.1 � �/d�mC1
;

where � 2 A1.Pm/ is the hyperplane class. The Segre class is the inverse, and taking
the dual we have

s.F�/ D .1C �/d�mC1:

Finally, we can deduce:
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Theorem 10.16. If C � Pd is a rational normal curve, then, for 2m � 1 � d ,

deg Secm.C / D
�d�mC1

m

�
:

Note that in the case d D 2m � 1, the calculation reaffirms the conclusion of
Proposition 10.15 that the m-secant planes to C sweep out Pd exactly once.

10.4.3 Expression of a form as a sum of powers

We can now answer Keynote Question (b): If f and g are general polynomials
of degree d D 2m in one variable, how many linear combinations of f and g are
expressible as a sum of m d -th powers of linear forms?

This question is related to secants of rational normal curves, because if we realize
Pd as the projective space of forms of degree d on P1 then the curve of pure d -th powers
is a rational normal curve — it is the image of the morphism

� W P1 3 .s; t/ 7!
�
sd ; dsd�1t;

�d
2

�
sd�2t; : : : ; td

�
2 Pd :

(Note that we are relying here on the hypothesis of characteristic 0: If, for example, d is
equal to the characteristic, then � is a purely inseparable map whose image is a line!)

A point p 2 Pd lies on the plane spanned by distinct points q1; : : : ; qm 2 C if and
only if the homogeneous coordinates of p can be expressed as a linear combination
of the homogeneous coordinates of q1; : : : ; qm. Thus a form of degree d is a linear
combination of m d -th powers of linear forms if and only if the corresponding point in
Pd lies in the union of the m-secant .m � 1/-planes to �.P1/, and questions about the
expression of a polynomial as a sum of powers become questions about the secants.

There is an important subtlety: It is not the case that every point of Secm.C /
corresponds to a polynomial that is expressible as a sum of m d -th powers! For example,
the tangent lines to C are contained in Sec2.C /. If d � 3, then no 2-plane in Pd meets
the rational normal curve in four points, so a tangent line to C cannot meet any other
secant line at a point off C . Thus the points on the tangent lines away from C are points
of Sec2.C / that cannot be expressed as the sum of two pure d -th powers.

(The points on the tangent lines do have an interesting characterization, however:
At the point corresponding to the polynomial f .t/ D .t � �/d , the tangent line is the set
of linear combinations of f and @f=@t , or equivalently the set of polynomials that have
d � 1 roots equal to �.)

By definition, Secm.C / contains an open set consisting of points on secant .m� 1/-
planes spanned by m distinct points of C . Further, by Proposition 10.15 a point in the
open subset Secm.C / n Secm�1.C / of Secm.C / lies on the span of a unique divisor of
degree m. Thus Theorem 10.16 yields the answer to Keynote Question (b), and even a
generalization:
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Corollary 10.17. If d � 2m�1, then the number of linear combinations of d �2mC2
general forms of degree d that can be expressed as the sum of m pure d -th powers is
deg Secm.C / D

�
d�mC1
m

�
.

10.5 Special secant planes
For a curve C � Pr other than a rational normal curve, it is interesting to consider

the subspaces that meet C in a dependent set of points; these are called special secant
planes. Examples of this that we will investigate below include trisecant and quadrisecant
lines to a curve C � P3, and trisecant lines to a curve C � P4.

We start, as usual, with the question of dimension: When would we expect a curve
C � Pr to contain m points lying in a Pm�1�k-plane? What would be the expected
dimension of the locus C .m/

k
� C .m/ of such m-tuples?

There are many ways to set this up. One would be to express the locus of such
m-tuples as a determinantal variety: If the coordinates of points p1; : : : ; pm 2 C are the
rows of the matrix

M D

0B@x1;0 x1;1 : : : x1;r
:::

:::
: : :

:::

xm;0 xm;1 : : : xm;r

1CA ;
then C .m/

k
is just the locus where this matrix has rankm�k or less. Now, in the space of

m� .rC1/matrices, those of rankm�k or less have codimension k.rC1�mCk/, so
we would expect the locus C .m/

k
ofm-tuples spanning only a Pm�1�k to have dimension

m � k.r C 1 �mC k/ D .k C 1/.m � r � k/C r:

An alternative in the case C is a rational curve would be to express C as the projection
�ƒ W zC ! C of a rational normal curve zC � Pd from a plane ƒ Š Pd�r�1. The
m-secant .m � 1 � k/-planes to C then correspond to the m-secant .m � 1/-planes to
zC that intersect ƒ in a .k � 1/-plane, that is, the preimage under the secant plane map
� W C .m/ ! G.m � 1; d/ of the Schubert cycle

†.rC1�mCk/k .ƒ/ D f� 2 G.m � 1; d/ j dim.� \ƒ/ � k � 1g:

This Schubert cycle has codimension k.r C 1 �mC k/, so again we would expect the
preimage to have dimension m � k.r C 1 �mC k/.

The first three cases (with k > 0) are:

(a) trisecants to a curve C � P3 (that is, r D 3, m D 3 and k D 1), where we expect a
one-parameter family;

(b) quadrisecants to a curve C � P3 (that is, r D 3, m D 4 and k D 2), where we
expect finitely many; and
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(c) trisecants to a curve C � P4 (that is, r D 4, m D 3 and k D 1), where, again, we
expect finitely many.

That our expectations for the dimensions of these loci are indeed the case for general
rational curves is shown in Exercise 10.36, though it is not necessarily true of a general
point on any component of the Hilbert scheme of curves of higher genus, as shown in
Exercise 10.37.

In this section, we will show how to count the trisecants to a general rational curve
in P4, answering Keynote Question (c), and we will determine the degree of the trisecant
surface of a general rational curve in P3, answering Keynote Question (d). We leave the
case of quadrisecants to a rational curve in P3 to Exercise 10.38 for now; it will also be
a direct application of Porteous’ formula in Section 12.4.4.

10.5.1 The class of the locus of secant planes

In case the curve C is rational, the answers to all of the above questions come
directly from the answer to a question we have not yet addressed directly: If C � Pd

is a rational normal curve, � W C .m/ Š Pm ! G.m � 1; d/ the secant plane map and
‰m.C / � G.m�1; d/ the image of � , what is the class Œ‰m.C /� 2 Am.G.m�1; d//?

We have all the tools to answer this question at hand: We know that the pullback
��S� of the dual of the universal subbundle S on G.m � 1; d/ is the bundle E� whose
Chern classes we gave in Section 10.4.2. We know that ci .S�/ D �1i , so this says that

���1i D
�d�mCi

i

�
�i 2 Ai .Pm/;

where � as usual is the hyperplane class in C .m/ Š Pm. Equivalently, since we also
know that the Segre class of S is s.S/ D 1C �1 C �2 C � � � C �d�m, we have

���i D
�d�mC1

i

�
�i 2 Ai .Pm/: (10.1)

Since the classes �i generate the Chow ring of G.m�1; d/ (and � is an embedding), this
determines the class of the image. We will use this idea to compute Œ‰m.C /� explicitly
in the cases below. It is an interesting fact that the map � W C .m/ Š Pm ! G.m � 1; d/
composed with the Plücker embedding of the Grassmannian is the d -th Veronese map
on Pm; see Exercise 10.32

Trisecants to a rational curve in P4

How many trisecant lines does a general rational curve of degree d in P4 possess?
We already know the answer in at least two cases. First, there are no trisecant lines to a
rational normal curve in the case d D 4. If d D 5, Proposition 10.15 says that a general
point p 2 P5 lies on a unique 3-secant 2-plane to a rational normal curve zC � P5, and
thus the projection of that curve from a general point has just one trisecant line.
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The general case may be handled similarly to the case d D 5 above: We use the fact
that a rational curve C � P4 of degree d is the projection of a rational normal curve
zC � Pd from a .d � 5/-plane ƒ � Pd . The trisecant lines to C then correspond to
3-secant 2-planes to zC of degree d that meet ƒ. The trisecant lines to C correspond to
the intersection of the Schubert cycle †3.ƒ/ � G.2; d/ of 2-planes meeting ƒ with the
cycle ‰3. zC/ � G.2; d/ of 3-secant 2-planes to zC .

This gives the answer to Keynote Question (c):

Proposition 10.18. If C � P4 is a general rational curve of degree d , then C has�
d�2
3

�
trisecant lines.

Proof: Since C is general, it is the projection of the rational normal curve zC from
a general .d � 5/-plane ƒ. The number of trisecant lines is the number of points
in which †3.ƒ/ meets ‰3. zC/. By Kleiman transversality, this is the degree of the
intersection class Œ‰3.C /��3, or equivalently the degree of the pullback ���3; by the
above, this is

�
d�2
3

�
.

Trisecants to a rational curve in P3

We next turn to Keynote Question (d): If C � P3 is a general rational curve of
degree d , what is the degree of the surface S � P3 swept out by the 3-secant lines to C ?

Again we already know the answer in the simplest cases: 0 in the case d D 3

(a rational normal curve has no trisecants); and 2 in the case d D 4, since a smooth
rational quartic is a curve of type .1; 3/ on a quadric surface Q � P3, and the trisecants
of C comprise one ruling of Q.

To set up the general case, let C be the projection �ƒ. zC/ of a rational normal
curve zC � Pd from a general plane ƒ Š Pd�4; let L � P3 be a general line, and let
� D ��1ƒ .L/ � Pd be the corresponding .d � 2/-plane containing ƒ. The points of
intersection of L with S correspond to 3-secant 2-planes to zC � Pd that

(a) meet ƒ, and
(b) intersect � in a line.

These are the points of intersection of ‰3. zC/ with the Schubert cycle †2;1.ƒ; �/.
Kleiman transversality shows that the cardinality of this intersection is the degree of the
pullback ��.�2;1/.

To evaluate this we express �2;1 as a polynomial in �1; �2; : : : and evaluate each
term using (10.1). Giambelli’s formula (Proposition 4.16) tells us that

�2;1 D

ˇ̌̌̌
�2 �3

�0 �1

ˇ̌̌̌
D �1�2 � �3

(an equality we could readily derive by hand). By (10.1),

deg ��.�1�2/ D
�d�2
1

��d�2
2

�
and deg ��.�3/ D

�d�2
3

�
:
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Putting these things together, we have the answer to the question:

Proposition 10.19. If C � P3 is a general rational curve of degree d , then the degree
of the surface swept out by trisecant lines to C is�d�2

1

��d�2
2

�
�

�d�2
3

�
D 2

�d�1
3

�
:

10.5.2 Secants to curves of positive genus

It is instructive to ask whether we could extend the computations of Sections 10.4
and 10.5 to curves other than rational ones. There is one key problem: in treating rational
curves, we made essential use of the fact that the space of effective divisors of degree m
on P1 is the variety Pm, whose Chow ring we know. But when C has positive genus, the
Chow rings A.C .k// of symmetric powers of C are unknown.

In the case of g D 1 this is not an insurmountable problem; it is the content of
Exercises 10.48 and 10.49. For genera g � 2, however, it typically necessitates the
use of a coarser equivalence relation on cycles, such as homology rather than rational
equivalence. Given this framework, however, it is indeed possible to extend the results of
this chapter to curves of arbitrary genus; see (Arbarello et al. [1985, Chapter 8]), where
there are explicit formulas generalizing all the above formulas to arbitrary genus.

10.6 Dual varieties and conormal varieties
We next turn to a remarkable property of projective varieties called reflexivity. A

corollary of reflexivity is the deep fact that the dual of the dual of a variety is the variety
itself. See Kleiman [1986] for a comprehensive account of the history of these matters
(our account is based on that in Kleiman [1984]). We emphasize that the statements
below are very much dependent on the hypothesis of characteristic 0; see the references
above for the characteristic p case.

LetX � Pn be a subvariety of dimension k. IfX is smooth, we define the conormal
variety CX � Pn � Pn� to be the incidence correspondence

CX D f.p;H/ 2 Pn � Pn� jp 2 X and TpX � H g:

If X is singular, we define CX to be the closure in Pn � Pn� of the locus CXı of
such pairs .p;H/, where p is a smooth point of X . Whatever the dimension of X , the
conormal variety CX will have dimension n � 1: it is the closure of the locus CXı,
which maps onto the smooth locus of X with fibers of dimension n � k � 1. The dual
variety X� � Pn� of X is the image of CX under projection on the second factor.

In these terms, we can state the main theorem of this section:
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r

p
q

X

L D TpX

X� M D TqX

P2 P2

Figure 10.1 The tangent line to X� � P2� at L D TpX is the line dual to p.

Theorem 10.20 (Reflexivity). If X � Pn is any variety and X� � Pn� its dual, then
the conormal variety CX � Pn � Pn� is equal to C.X�/ � Pn� � Pn with the factors
reversed. It follows that .X�/� D X — that is, the dual of the dual of X is X .

For example, if X is a plane curve, then the statement X�� D X says that if
p 2 X is a smooth point then the tangent line to X� at the point L D TpX is the line
p� � P2� of lines through p. More picturesquely put, the tangent lines to points near
x 2 X “roll” on the point x. It is true more generally that the osculating k-planes to a
smooth curve X � Pn at points near p 2 X move, to first order, by rotating around the
osculating .k � 1/-plane to X at p while staying in the osculating .k C 1/-plane to X
at p (see Exercise 10.47).

This picture, for plane curves, can be made precise as follows. Observe that if p 2 X
is a smooth point, then the tangent line TpX � P2 is the limit of the secant lines p; q as
q 2 X approaches p. Applied to the dual curve X� � P2�, this says that the tangent
line TLX� � P2� to the curve X� at a point L is the limit of the secant lines L;M
as M 2 X� approaches L. But the line L;M � P2� joining two points L;M 2 P2�

corresponding to lines L;M � P2 is the line in P2� dual to the point L \M in P2.
Now, the equalityX�� D X means that the tangent line toX� at the pointL D TpX

corresponding to p 2 X is p itself; this amounts to saying that the limit as q 2 X
approaches p of the point of intersection r D TpX \ TqX is just the point p itself,
which is clear from Figure 10.1.

Combining Theorem 10.20 with the argument at the beginning of Section 2.1.3, we
see that the Gauss map of a smooth hypersurface is birational as well as finite:

Corollary 10.21. If X is a hypersurface whose dual is also a hypersurface, then the
Gauss map GX W X ! X� is birational, with inverse GX� W X� ! X . Thus if X � Pn

is a smooth hypersurface of degree d then the Gauss map is finite and birational, and
X� is a hypersurface of degree d.d � 1/n�1.
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This allows us, finally, to complete the proof of Proposition 2.9.

Proof of Corollary 10.21: By Section 2.1.3, the dual of a smooth hypersurface is al-
ways a hypersurface.

If X and X� are both hypersurfaces then both GX and GX� are well-defined rational
maps. Since the graphs of GX and GX� are equal after exchanging factors, the two
rational maps are inverse to each other, and are thus birational. As already noted in
Section 2.1.3, the degree computation follows from the birationality of GX .

One aspect of Theorem 10.20 may seem puzzling. The only way the dual of a
variety X � Pn can fail to be a hypersurface is if the map CX ! X� has positive-
dimensional fibers — in other words, if every singular hyperplane section of X has
positive-dimensional singular locus. This is a rare circumstance; as we will see in
Exercise 10.42, it can never be the case for a smooth complete intersection, and, as we
will see in Exercise 10.44, it can only happen for X swept out by positive-dimensional
linear spaces. But if we have a one-to-one correspondence between varieties X � Pn

and their dual varieties, we seem to be suggesting that there are as many hypersurfaces
as varieties of arbitrary dimension in Pn! The discrepancy is due to the fact that the duals
of smooth varieties tend to be highly singular — see, for example, Exercise 10.45.

There are many fascinating results about the geometry of dual varieties and conormal
varieties. We recommend in particular Kleiman [1986], and the surprising and beautiful
theorems of Ein and Landman (see Ein [1986]) and Zak [1991]. Ein and Landman proved,
for example, that for any smooth variety X � Pn of dimension d in characteristic 0 the
difference .n � 1/ � dimX� is congruent to dimX modulo 2!

As we mentioned earlier, it is relatively rare for the dual X� of a smooth variety
X � Pn to not be a hypersurface. Exercises 10.43 and 10.46 give two circumstances
where it does happen.

10.6.1 The universal hyperplane as projectivized
cotangent bundle

The proof of the reflexivity theorem will make use of the universal hyperplane

‰ D f.p;H/ 2 Pn � Pn� jp 2 H g;

a special case of the universal k-plane introduced in Section 3.2.3 and analyzed further
in Section 9.3.1. To express it another way, let V be an .nC 1/-dimensional vector space
and W D V � its dual; we can then write

‰ D f.v; w/ 2 PV � PW jw.v/ D 0g:

Write the tautological sequence on PV as

0 �! OPV .�1/ �! V ˝OPV �! Q �! 0:
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Thus Q� � W ˝ OPV . From the inclusion it follows that the line bundle OPQ�.�1/

on PQ� is the restriction from Pn � Pn� of the bundle ��2OPn�.�1/. In Section 6.1.1
we observed that ‰ � PV � PW may be regarded as the projectivization PQ� inside
PW ˝OPV D PV � PW .

To simplify notation, we write �V and �W for the projections fromZ WD PV �PW
to PV and PW respectively, and we set OZ.a; b/ WD ��VOPV .a/ ˝ �

�
WOPW .b/. In

this language, ‰ D ��V .Q
�/ and OPQ�.�1/ is the restriction of OZ.0;�1/. For our

present purpose, we want to give a more symmetric description.

Proposition 10.22. The map �V W ‰ ! PV may be described as the projectivization
of the cotangent bundle P�PV of PV . The tautological subbundle

OP�PV .�1/ � �
�
V .�PV /

is the restriction to ‰ � PV � PW D Z of OZ.�1;�1/.

Proof: The Euler sequence

0 �! �PV �! W ˝OPV .�1/ �! OPV �! 0

that may be taken as the definition of �PV is the tautological sequence twisted by
OPV .�1/, and in particular �PV D Q� ˝ OPV .�1/. By Corollary 9.5, we have
PQ� Š P�, with

OP�.�1/ D OPQ� ˝ �
�
VOPV .�1/;

and this is the restriction to‰ of OZ.0;�1/˝��VOPV .�1/ D OZ.�1;�1/, as required.

Proof of Theorem 10.20: IfX � PV is any subvariety then, over the open set whereX
is smooth, the conormal varietyCX � ‰ D P�PV D Proj Sym TPV is the projectivized
conormal bundle PK D Proj SymK�, where

K WD Ker.�PV jX ! �X /:

The conormal variety of X itself is defined as the closure of this set. Over the open set
where X is smooth, K� is the cokernel of the map of bundles

TX ! TPV jX ;

so SymK� is equal to Sym TPV jX modulo the ideal generated by TX , thought of as
being contained in the degree-1 part TPV jX of the graded algebra Sym TPV jX . Sheaf-
ifying, this means that the ideal sheaf of CX in OP�PV is the image of the composite
map u in the diagram

��V TX ˝O�Pn .�1/ ��V TPn ˝O�Pn .�1/

OP�Pn

u
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where the vertical map is the dual of

OP�Pn .�1/

P
Ai dZi

��������! ��V�Pn ;

the tautological inclusion, tensored with O�Pn.�1/.
With these equations, we can tell whether a given subvariety C of ‰ \ ��1V .X/ is a

subset of CX . Let � W C ! ‰ be the inclusion. Set

v D u� ˝OP�Pn .�1/ W OP�Pn .�1/! ��V�X ;

and consider the diagram

OP�Pn .�1/jC ��V�Pn jC �‰jC

��V�X jC �C

P
Ai dZi

vjC

d�V

d�

d.�1jC /

From what we have said about the equations of the conormal variety, we see that
C � CX if and only if vjC D 0; since d�V jC is generically injective, we see that
C � CX if and only if the composition d�V jC ı vjC is zero.

We will show that this condition is symmetric, so that C � CX if and only if
C � C.X�/ (with the factors reversed). Since ‰ is defined by a hypersurface of
bidegree .1; 1/, we have an exact sequence

0 �! OPn�PW .�1;�1/
'
��! �Pn�PW j‰ �! �‰ �! 0:

In coordinates, using the decomposition

�Pn�PW D �
�
V .�Pn/˚ �

�
W .�PW /

this becomes

0 �! OPn�PW .�1;�1/j‰

P
Ai dZi ;

P
ZidAi

���������������! ��V .�Pn/j‰ ˚ �
�
W .�PW /j‰

.d�V; d�W /
����������! �‰ �! 0:

Noting that OP�Pn .�1/ D OPn�PW .�1;�1/j‰, we see that if � W C ! ‰ is the
inclusion of any subvariety, then the composition

OP�Pn .�1/

P
Ai dZi

��������! ��V .�Pn/
d�V
����! �‰

is the negative of the composition

OP�Pn .�1/

P
ZidAi

��������! ��W .�PW /
d�W
�����! �‰:
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It follows that the composition

OP�Pn .�1/jC

P
Ai dZi- ��V�Pn jC

d�V- �‰jC

�C

d�
?

is zero if and only if the composition

OP�PW .�1/jC

P
ZidAi- ��W�PW jC

d�W- �‰jC

�C

d�
?

is zero.
If C � C.X�/ then the composite above is zero, and it follows that C � CX . If

C � ‰, then C � CX if and only if C � CX 0. Applying this argument to C D CX
and C D C.X�/, we obtain the desired equality.

10.7 Exercises
Exercise 10.23. Use the result of Exercise 9.36 (describing the class of the universal
k-plane in G.k; r/ � Pr ) to give an alternative proof of Proposition 10.4.

Exercise 10.24. (Improper secants) LetX � Pr be a variety, and‰m.X/ � G.m�1; r/
the image of the secant plane map � W X .m/ - G.m � 1; r/. Show by example that
not every .m� 1/-plane ƒ such that deg.ƒ\X/ � m lies in ‰m.X/. (For example, try
X a curve in P5 with a trisecant line, with m D 3.)

Exercise 10.25. Prove Proposition 10.7 in the case of a nondegenerate space curve
C � P3 — that is, that the line joining two general points of C does not meet the curve
a third time — without using the general position lemma (Lemma 10.8).

Exercises 10.26–10.29 verify that the Veronese varieties listed in Theorem 10.12
are indeed defective.

Exercise 10.26. Show that for p; q 2 Pn the subspace H 0.I2pI2q .2// � H 0.OPn.2//

of quadrics singular at p and q has codimension 2nC1 (rather than the expected 2nC2).
Deduce that any two tangent planes to the quadratic Veronese variety �2.Pn/ meet, and
thus that �2.Pn/ is 2-defective for any n.

Exercise 10.27. Show that for any five points p1; : : : ; p5 2 P2 there exists a quartic
curve double at all five; deduce that the tangent planes Tpi S to the quartic Veronese
surface S D �4.P2/ � P14 are dependent (equivalently, fail to span P14), and hence
that S is 5-defective.
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Exercise 10.28. Show that for any nine points p1; : : : ; p9 2 P3 there exists a quartic
surface double at all nine; deduce that the tangent planes TpiX to the quartic Veronese
threefold X D �4.P3/ � P34 are dependent (equivalently, fail to span P34), and hence
that X is 9-defective.

Exercise 10.29. Finally, show that for any seven points p1; : : : ; p7 2 P4 there exists a
cubic threefold double at all seven; deduce that the tangent planes TpiX to the cubic
Veronese fourfold X D �3.P4/ � P34 are dependent (equivalently, fail to span P34),
and hence that X is 7-defective.
Hint: This problem is harder than the preceding three; you have to use the fact that
through seven general points in P4 there passes a rational normal quartic curve.

The following exercises can be solved using the following fact, the completeness
of the adjoint series for plane curves: if C is a nodal curve of degree d in P2, and zC
its normalization, then we obtain the entire canonical series H 0.K zC / by pulling back
polynomials of degree d � 3 on P2 vanishing on the nodes of C (see Arbarello et al.
[1985, Appendix A]).

Exercise 10.30. Show that the twisted cubic curve is the unique nondegenerate curve
C � P3 such that a general point p 2 P3 lies on a unique secant line to C . (Note: This
can be done without it, but it is easy if you apply the Castelnuovo bound on the genus of
a curve in P3; see Chapter 3 of Arbarello et al. [1985] for a statement and proof.)

Exercise 10.31. Show that the rational normal curve and the elliptic normal curve of
degree d C 1 are the only nondegenerate curves C � Pd with the property that every
divisor of degree d on C spans a hyperplane.

Exercise 10.32. Let C � Pd be a rational normal curve. Show that the map � W C .m/ Š
Pm ! G.m � 1; d/ sending a divisor of degree m on C to its span composed with the
Plücker embedding of the Grassmannian is the d -th Veronese map on Pm.
Hint: Show that the hypersurface in Pm associated to any monomial of degree d is the
preimage of a hyperplane section of G.m � 1; d/

For the following three exercises, C � Pd will be an irreducible, nondegenerate
curve and 2m � 1 < d . The exercises will prove the assertion made in the text that a
general point on the m-secant variety Secm.C / lies on a unique m-secant .m� 1/-plane
to C .

Exercise 10.33. Show by a dimension count that a general point of Secm.C / lies on
only proper secants, that is, m � 1 planes spanned by m distinct points of C .

Exercise 10.34. Using Lemma 10.8, show that the variety of 2m-secant .2m�2/-planes
to C (equivalently, the locus C .2m/1 of divisors of degree 2m on C contained in a
.2m � 2/-plane) has dimension at most 2m � 2.
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Exercise 10.35. Now suppose that a general point of Secm.C / lay on two or more
m-secant planes. Show that the dimension of the variety of 2m-secant .2m � 2/-planes
to C would be at least 2m � 1.

Exercise 10.36. Show that if C � Pr is a general rational curve of degree d , and k is a
number such that d � rCk andm�1 � k, then the locus ofm-secant .m�k�1/-planes
has the expected dimension m � k.r C 1 �mC k/.

Exercise 10.37. By contrast with the last exercise, show that there exist components
H of the Hilbert scheme of curves in P3 whose general point corresponds to a smooth,
nondegenerate curve C � P3 with a positive-dimensional family of quadrisecant lines,
or with a quintisecant line.

Exercise 10.38. Compute the number of quadrisecant lines to a general rational curve
C � P3 of degree d .
Hint: In the notation of Section 10.5, the answer is the degree of the class deg ��.�2;2/ 2
A4.P4/. Express the class �2;2 in terms of the special Schubert classes �i and use (10.1)
to evaluate it.

Exercise 10.39. Let S � Pn be a smooth surface of degree d , and let g be the genus
of a general hyperplane section of S ; let e and f be the degrees of the classes c1.TS /2
and c2.TS / 2 A2.S/. Find the class of the cycle T1.S/ � G.1; n/ of lines tangent to
S in terms of d , e, f and g. (Note: From Exercise 4.21, we need only the intersection
number deg.ŒT1.S/� � �3/; do this using Segre classes.)

Exercise 10.40. Let C � P3 be a smooth curve of degree n and genus g, and S and
T � P3 two smooth surfaces containing C , of degrees d and e. At how many points of
C are S and T tangent?

Exercise 10.41. Show the conclusion of Corollary 10.21 fails in characteristic p > 0:

(a) Let k be a field of characteristic 2, and consider the plane curve

C D V.X2 � YZ/ � P2:

Show that C is smooth, but the dual curve C � � P2� is a line, so that C �� ¤ C .

(b) Now suppose that the ground field k has characteristic p > 0, set q D pe and
consider the plane curve

C D V.YZq C Y qZ �XqC1/ � P2:

Show that C is smooth, and that the double dual curve C �� is equal to C , but that
GC W C ! C � is not birational!
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Exercise 10.42. We saw in Section 2.1.3 that if X � Pn is a smooth hypersurface of
degree d > 1 then the dual variety X� � Pn� must again be a hypersurface. Show
more generally that if X � Pn is any smooth complete intersection of hypersurfaces of
degrees di > 1 then X� will be a hypersurface.

Exercise 10.43. Let X � Pn be a k-dimensional scroll, that is, a variety given as
the union

X D
[
ƒb

of a one-parameter family of .k � 1/-planes fƒb Š Pk�1 � Png; suppose that k � 2
(see Section 9.1.1).

(a) Show that if H � Pn is a general hyperplane containing the tangent plane TpX to
X at a smooth point p then the hyperplane section H \X is reducible.

(b) Deduce that dimX� � n � k C 2 when k � 3.

Exercise 10.44. This is a sort of partial converse to Exercise 10.43 above. Let X � Pn

be any variety. Use Theorem 10.20 to deduce that if the dual X� is not a hypersurface,
then X must be swept out by positive-dimensional linear spaces.

Exercise 10.45. Let X � Pn be a smooth hypersurface of degree d > 2. Show that the
dual variety X� is necessarily singular.

Exercise 10.46. Let X D G.1; 4/ � P9 be the Grassmannian of lines in P4, embedded
in P9 by the Plücker embedding. Show that the dual of X is projectively equivalent to
X itself!

Exercise 10.47. Let X � Pn be a smooth curve, and for any k D 1; : : : ; n � 1 let

�k W X ! G.k; n/

be the map sending a point p 2 X to its osculating k-plane. Show that the tangent
line to the curve �k.X/ � G.k; n/ at �k.p/ is the (tangent line to the) Schubert cycle
of k-planes containing the osculating .k � 1/-plane to X at p and contained in the
osculating .k C 1/-plane to X at p; in other words, to first order the osculating k-planes
move by rotating around the osculating .k � 1/-plane to X at p while staying in the
osculating .k C 1/-plane to X at p.

Exercise 10.48. If E is a smooth elliptic curve (over an algebraically closed field this
means a curve of genus 1 with a chosen point), the addition law on E expresses the
k-th symmetric power Ek as a Pk�1-bundle over E. Verify this, and use it to give a
description of A.Ek/.

Exercise 10.49. Using the preceding exercise, find the degrees of the secant varieties of
an elliptic normal curve E � Pd .
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Contact problems

Keynote Questions

(a) Given a general quintic surface S � P3, how many lines L � P3 meet S in only
one point? (Answer on page 391.)

(b) If fCt D V.t0F C t1G C t2H/ � P2g is a general net of cubic plane curves, how
many of the curves Ct will have cusps? (Answer on page 416.)

(c) If fCt D V.t0F C t1G/ � P2g is a general pencil of quartic plane curves, how
many of the curves Ct will have hyperflexes? (Answer on page 405.)

(d) If fCtg is again a general pencil of quartic plane curves, what are the degree and
genus of the curve traced out by flexes of members of the pencil? (Answer in
Section 11.3.2.)

Problems such as these, dealing with orders of contact of varieties with linear spaces,
are known as contact problems. Their solution can often be reduced to the computation
of the Chern classes of associated bundles. The most important of the bundles involved is
a relative version of the bundle of principal parts introduced in Chapter 7 and described
by Theorem 7.2. We will begin with an illustration showing how these arise.

One point of terminology: We define the order of contact of a curve C on a smooth
variety X with a Cartier divisor D � X at p 2 C to be the length of the component of
the scheme of intersection C \D supported at p, or (equivalently) if � W zC ! C is the
normalization, the sum of the orders of vanishing of the defining equation of D at points
of zC lying over p. If p is an isolated point of C \D, this is the same as the intersection
multiplicity mp.C �D/, and we will use this to denote the order of contact; however, we
will also adopt the convention that if C � D then the order of contact is1, so that the
condition mp.C �D/ � m is a closed condition on C , D and p.

Finally, we reiterate our standing hypothesis that our ground field has characteristic 0.
As with most questions involving derivatives, the content of this chapter is much more
complicated in characteristic p, and many of the results derived here are false in that
setting.
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11.1 Lines meeting a surface to high order
Consider a general quintic surface S � P3. A general line meets S in five points; to

require them all to coincide is four conditions, and there is a four-dimensional family of
lines in P3. Thus we would “expect” there to be only finitely many lines meeting S in
just one point. On this basis we would expect, more generally, that for a general surface
S � P3 of any degree d � 5 there will be a finite number of lines having a point of
contact of order 5 with S .

As we shall show, this expectation is fulfilled, and we can compute the number. To
verify the dimension statement, we introduce the flag variety

ˆ D f.L; p/ 2 G.1; 3/ � P3 jp 2 Lg;

which we think of as the universal line over G.1; 3/; we can also realize ˆ as the
projectivization PS of the universal subbundle S on G.1; 3/. Next, we fix d � 4 and
look at pairs consisting of a point .L; p/ 2 ˆ and a surface S � P3 of degree d such
that the line L has contact of order at least 5 with S at p (or is contained in S ):

� D f.L; p; S/ 2 ˆ � PN jmp.S � L/ � 5g;

where PN is the space of surfaces of degree d in P3.
Assuming d � 4, the fiber of � over any point .L; p/ 2 ˆ is a linear subspace

of codimension 5 in the space PN of surfaces of degree d . Since ˆ is irreducible of
dimension 5, it follows that � is irreducible of dimension N , and hence that the fiber of
� over a general point ŒS� 2 PN is finite. Note that this includes the possibility that the
fiber over a general point is empty, as in fact will be the case when d D 4: any line with
a point of contact of order 5 with a quartic surface S must lie in S , but, as we saw in
Chapter 6, a general quartic surface contains no lines. In the case d D 4, correspondingly,
� projects with one-dimensional fibers to the hypersurface † � P34 of quartics that do
contain a line. By contrast, we will see (as a consequence of Theorem 11.1) that if d � 5
then the projection � ! PN is generically finite and surjective.

To linearize the problem, we consider for each pair .L; p/ 2 ˆ the five-dimensional
vector space

E.L;p/ D
fgerms of sections of OL.d/ at pg
fgerms vanishing to order � 5 at pg

:

To say that mp.S � L/ � 5 means exactly that the defining equation F of S is in the
kernel of the map

H 0.OP3.d//! E.L;p/

given by restriction of F to a neighborhood of p in L.
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To compute the number of lines with five-fold contact, we will define a vector
bundle E on ˆ whose fiber at a point .L; p/ 2 ˆ is the vector space E.L;p/ D
H 0.OL.d/=m5p.d// defined above, so that a polynomial F of degree d on P3 will
give a global section �F of E by restriction in turn to each pointed line .L; p/. The zeros
of the section �F will then be the points .L; p/ 2 ˆ such that mp.S � L/ � 5, and —
assuming that there are no unforeseen multiplicities — the answer to our enumerative
problem will be the degree of the top Chern class c5.E/ 2 A5.ˆ/. The necessary theory
and computation will occupy the next two sections, and will prove:

Theorem 11.1. If S is a general quintic surface, then there are exactly 575 lines meeting
S in only one point. More generally, if S � P3 is a general surface of degree d � 4,
then there are exactly 35d3 � 200d2 C 240d lines having a point of contact of order 5
with S .

Note that this does return the correct answer 0 in the case d D 4! (In case
d � 3, the number is meaningless, since the locus of such pairs .L; p/ is positive-
dimensional.)

11.1.1 Bundles of relative principal parts

The desired bundle E on ˆ is a bundle of relative principal parts associated to
the map

� W ˆ! G.1; 3/; .L; p/ 7! ŒL�:

The construction is a relative version of that of Section 7.2; the reader may wish to
review that section before proceeding. The facts we need are the analogs of some of the
properties spelled out in Theorem 7.2.

Suppose more generally that � W Y ! X is a proper smooth map of schemes, and
let L be a vector bundle on Y . Set Z D Y �X Y , the fiber product of Y with itself over
X , with projection maps �1; �2 W Z ! Y , and let � � Z be the diagonal, so that we
have a diagram

� - Z D Y �X Y
�1- Y

Y

�2
? � - X

�
?

The bundle of relative m-th order principal parts Pm
Y=X

.L/ is by definition

PmY=X .L/ D �2�.�
�
1L˝OZ=ImC1� /:
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Theorem 11.2. With � W Y ! X and projections �i W Y �X Y ! Y as above:

(a) The sheaf Pm
Y=X

.L/ is a vector bundle on Y , and its fiber at a point y 2 Y is the
vector space

PmY=X .L/y D
fgerms of sections of LjFy at yg

fgerms vanishing to order � mC 1 at yg
;

where Fy D ��1.�.y// � Y is the fiber of � through y.

(b) We have an isomorphism ����L Š �2���1L.

(c) The quotient map ��1L! ��1L˝OZ=ImC1� pushes forward to give a map

����L Š �2���1L! PmY=X .L/;

and the image of a global section G 2 H 0.L/ is the section �G of Pm
Y=X

.L/ whose
value at a point y 2 Y is the restriction of G to a neighborhood of y in Fy .

(d) P0
Y=X

L D L. For m > 1, the filtration of the fiber Pm
Y=X

.L/y by order of vanishing
at y corresponds to a filtration of Pm

Y=X
.L/ by subbundles that are the kernels of

surjections Pm
Y=X

.L/! Pk
Y=X

.L/ for k < m. The graded pieces of this filtration
are identified by the exact sequences

0 �! L˝ Symm.�Y=X / �! PmY=X .L/ �! Pm�1Y=X .L/ �! 0: (11.1)

The exact sequences in (11.1) allow us to express the Chern classes of the bundles
Pm
Y=X

.L/ in terms of the Chern classes of L and those of �Y=X . We will compute the
latter in the case where Y is a projectivized vector bundle over X in the next section,
and this will allow us to complete the answer to Keynote Question (a).

Proof: Just as in the absolute case (Theorem 7.2), part (a) is an application of the
theorem on cohomology and base change (Theorem B.5). Similarly, part (b) follows
from statement (2) on page 525 in the appendix on cohomology and base change
(Section B.2).

Part (c) is also a direct analog of the absolute case. For part (d), consider the
diagonal � WD �Y=X � Y �X Y and its ideal sheaf I�. As in the absolute case, we
have �1�.I�=I2�/ D �Y=X (see Eisenbud [1995, Theorem 16.24] for the affine case,
to which the problem reduces). The sheaf �Y=X is a vector bundle on Y because �
is smooth. Since � is locally a complete intersection in Y �X Y , it follows (see, for
example, Eisenbud [1995, Exercise 17.14]) that

Im�=I
mC1
� D Symm.I�=I2�/:

The desired exact sequences are derived from this exactly as in the absolute case.
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11.1.2 Relative tangent bundles of projective bundles

To use the sequences (11.1) to calculate the Chern class of Pm
Y=X

.L/, we need to
understand the relative tangent bundle TY=X . Recall first the definition: If � W Y ! X is
a smooth map, then the differential d� W TY ! ��TX is surjective. Its kernel is called
the relative tangent bundle of � , and denoted by T� or, when there is no ambiguity, by
TY=X ; its local sections are the vector fields on Y that are everywhere tangent to a fiber.
Thus, for example, if x 2 X then the restriction TY=X j��1.x/ is the tangent bundle to
the smooth variety ��1.x/.

One special case in which we can describe the relative tangent bundle explicitly
is when � W Y D PE ! X is a projective bundle (as was the case in the example of
Keynote Question (a), discussed in Section 11.1 above); in this section we will show how.

Recall from Section 3.2.4 that if � 2 PV is a point in the projectivization PV of
a vector space V , then we can identify the tangent space T�PV with the vector space
Hom.�; V=�/. As we showed, these identifications fit together to give an identification
of bundles

TPV D Hom.S;Q/;

where S D OPV .�1/ and Q are the universal sub- and quotient bundles.
This identification extends to families of projective spaces. Explicitly, suppose E

is a vector bundle on X and PE its projectivization, with universal sub- and quotient
bundles S D OPE.�1/ and Q. At every point .x; �/ 2 PE , with x 2 X and � � Ex , we
have an identification T�PEx D Hom.�; Ex=�/ D Hom.S.x;�/;Q.x;�//, and these agree
on overlaps of such open sets to give a global isomorphism:

Proposition 11.3. TPE=X Š Hom.S;Q/:

Proof: This is a special case of the statement that with notation as in the proposition the
relative tangent bundle of the Grassmannian bundle G.k; E/! X is

TGr.k;E/=X D Hom.S;Q/:

Over an open subset where E is trivial this is an immediate consequence of the iso-
morphism described in Section 3.2.4 between the tangent bundle of a Grassmannian
and the bundle Hom.S;Q/, and as in that setting the fact that these isomorphisms
are independent of choices says they fit together to give the desired isomorphism
TGr.k;E/=X D Hom.S;Q/.

Using the exact sequence

0 �! S �! ��E �! Q �! 0;

Proposition 11.3 yields an exact sequence

0 �! OPE �! ��E ˝OPE.1/ �! TPE=X �! 0;
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the relative Euler sequence. Applying the formula for the Chern classes of the tensor
product of a vector bundle with a line bundle (Proposition 5.17), we arrive at the
following theorem:

Theorem 11.4. If E is a vector bundle of rank r C 1 on the smooth variety X , then the
Chern classes of the relative tangent bundle TPE=X are

ck.TPE=X / D
kX
iD0

�rC1�i
k�i

�
ci .E/�k�i ;

where � D c1.OPE.1// 2 A
1.PE/ and we identify A.X/ with its image in A.PE/ via

the pullback map.

11.1.3 Chern classes of contact bundles

Returning to Keynote Question (a), we again let

ˆ D f.L; p/ 2 G.1; 3/ � P3 jp 2 Lg

be the universal line over G.1; 3/. Via the projection � W ˆ ! G.1; 3/, this is the
projectivization PS of the universal subbundle S on G.1; 3/. Let E be the bundle on ˆ
given by

E D P4ˆ=G.1;3/.ˇ
�OP3.d//;

where ˇ W ˆ! P3 is the projection .L; p/ 7! p on the second factor. By Theorem 11.2,
this has fiber E.L;p/ D H 0.OL.d/=m5p.d// at a point .L; p/ 2 ˆ. Thus, counting
multiplicities, the number of lines having a point of contact of order at least 5 with a
general surface of degree d is the degree of the Chern class c5.E/.

To find the degree of c5.E/, we recall first the description of the Chow ring of ˆ
given in Section 9.3.1: Since

ˆ D PS ! G.1; 3/

is the projectivization of the universal subbundle on G.1; 3/, and

c1.S/ D ��1 and c2.S/ D �11;
Theorem 9.6 yields

A.ˆ/ D A.G.1; 3//Œ��=.�2 � �1� C �11/;

where � 2 A1.ˆ/ is the first Chern class of the line bundle OPS.1/. Recall, moreover,
that the class � can also be realized as the pullback � D ˇ�!, where ˇ W ˆ! P3 is the
projection .L; p/ 7! p on the second factor and ! 2 A1.P3/ is the hyperplane class.

The relative tangent bundle Tˆ=G.1;3/ is a line bundle on ˆ. By Theorem 11.4, its
first Chern class is

c1.Tˆ=G.1;3// D 2� � �1:
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By Theorem 11.2, the bundle E D P4
ˆ=G.1;3/.ˇ

�OP3.d// has a filtration with
successive quotients

ˇ�OP3.d/; ˇ
�OP3.d/˝�ˆ=G.1;3/; : : : ; ˇ

�OP3.d/˝ Sym4�ˆ=G.1;3/:

The bundle �ˆ=G.1;3/ is dual to the relative tangent bundle Tˆ=G.1;3/, so its m-th
symmetric power has Chern class

c.Symm�ˆ=G.1;3/ D 1Cm.�1 � 2�/:

With the formula c1.ˇ�OP3.d// D d�, this gives

c.ˇ�OP3.d/˝ Symm�ˆ=G.1;3/ D 1C .d � 2m/� Cm�1;

and altogether

c.E/ D
4Y

mD0

.1C .d � 2m/� Cm�1/:

In particular,

c5.E/ D d� � ..d � 2/�C �1/ � ..d � 4/�C 2�1/ � ..d � 6/�C 3�1/ � ..d � 8/�C 4�1/:

We can evaluate the degrees of monomials of degree 5 in � and �1 by using the
Segre classes introduced in Section 10.1, and in particular Proposition 10.3: We have

deg.�a�b1 / D deg��.�a�b1 / D deg.sa�1.S/�b1 //;

where sk.S/ is the k-th Segre class of S . Combining Proposition 10.3 and the Whitney
formula, we have

s.S/ D
1

c.S/
D c.Q/ D 1C �1 C �2;

and so we have
deg.��41 /ˆ D deg.�41 /G.1;3/ D 2;

deg.�2�31 /ˆ D deg.�41 /G.1;3/ D 2;

deg.�3�21 /ˆ D deg.�2�21 /G.1;3/ D 1:

The remaining monomials of degree 5 in � and �1 are all zero: �51 D 0 since the
Grassmannian G.1; 3/ is four-dimensional, while �4�1 D �5 D 0 because the Segre
classes of S vanish above degree 2 (alternatively, since � D ˇ�! is the pullback of a
class on P3 we see immediately that �4 D 0).

Putting this together with the formula above for c5.E/, we get

deg c5.E/
D deg

�
d�..d � 2/� C �1/..d � 4/� C 2�1/..d � 6/� C 3�1/..d � 8/� C 4�1/

�
D deg

�
24d��41 C d.50d � 192/�

2�31 C d.35d
2
� 200d C 240/�3�21

�
D 35d3 � 200d2 C 240d:
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Assuming there are only finitely many and counting multiplicities, this is the number of
lines having a point of contact of order at least 5 with S .

To answer the keynote question, we need to know in addition that for a general
surface S � P3 of degree d � 5 all the lines having a point of contact of order 5 with S
“count with multiplicity 1” — that is, all the zeros of the corresponding section of the
bundle E on ˆ are simple zeros. To do this, we invoke the irreducibility of the incidence
correspondence

� D f.L; p; S/ jmp.S � L/ � 5g � ˆ � PN ;

introduced in Section 11.1. By virtue of the irreducibility of � , it is enough to show
that at just one point .L; p; S/ 2 � the section of E corresponding to S has a simple
zero at .L; p/ 2 ˆ: Given this, the locus of .L; p; S/ for which this is not the case,
being a proper closed subvariety of � , will have strictly smaller dimension, and so
cannot dominate PN . As for locating such a triple .L; p; S/, Exercise 11.17 suggests
one. We should also check that for S general, no line has a point of contact of order at
least 6 with S , or more than one point of contact of order at least 5; this is implied by
Exercise 11.18. This completes the proof of Theorem 11.1.

11.2 The case of negative expected
dimension

In this section, we will describe a rather different application of the contact calculus
developed so far: We will use it to bound the maximum number of occurrences of some
phenomena that occur in negative “expected dimension.”

We begin by explaining an example. We do not expect a surface S � P3 of degree
d � 4 to contain any lines. But some smooth quartics do contain a line and some contain
several. Thus we can ask: How many lines can a smooth surface of degree d contain?

We observe to begin with that the number of lines a smooth surface of degree d can
contain is certainly bounded: If we let PN be the space of surfaces of degree d � 4,
and write

† D f.S; L/ 2 PN �G.1; 3/ jL � Sg

for the incidence correspondence, then the set of points of PN over which the fiber
of the map � W † ! PN is finite of degree � m is a locally closed subset of PN for
any m. Since, as we saw in Section 2.4.2, a smooth surface in P3 of degree >2 cannot
contain a positive-dimensional family lines, by the Noetherian property the degrees of
the fibers over the open set U � PN of smooth surfaces are bounded. We can thus ask
in particular:
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Question 11.5. What is the largest numberM.d/ of lines that a smooth surface S � P3

of degree d can have?

Remarkably, we do not know the answer to this in general!
The situation here is typical: there is a large range of quasi-enumerative problems

where the actual number is indeterminate because the expected dimension of the solution
set is negative. In general, almost every time we have an enumerative problem there are
analogous “negative expected dimension” variants. For example, we can ask:

Question 11.6. (a) How many isolated singular points can a hypersurface X � Pn of
degree d have?

(b) How many tritangents can a plane curve C � P2 of degree d have? How many
hyperflexes?

(c) How many cuspidal curves can a pencil of plane curves of degree d have? How
many reducible ones? How many totally reducible ones (that is, unions of lines)?

We can even go all the way back to Bézout, and ask:

Question 11.7. How many isolated points of intersection can nCk linearly independent
hypersurfaces of degree d in Pn have?

Here there is at least a conjecture, described in Eisenbud et al. [1996] and proved
in the case k D 1 for reduced sets of points by Lazarsfeld [1994, Exercise 4.12]. For
a general discussion of these questions (and a more general conjecture), see Eisenbud
et al. [1996].

All of these problems are attractive (especially Question 11.7). But we will not
pursue them here; rather, we will focus on the original problem of bounding the number
of lines on a smooth surface in P3, in order to illustrate how we can use enumerative
methods to find such a bound.

11.2.1 Lines on smooth surfaces in P3

Since the number of lines on a smooth surface S of degree d � 4 is variable, it
cannot be the solution to an enumerative problem of the sort we have been considering.
But we can still use enumerative geometry to bound the number. What we will do is to
find a curve F on S whose degree is determined enumeratively and such that F contains
all the lines on S . In this we follow a line of argument proposed in Clebsch [1861, p. 106].

A natural approach is to relax the condition that a line L be contained in S to the
condition that L meets S with multiplicity � m at some point p 2 S . We can adjust
m so that the set of points p for which some line satisfies this condition has expected
dimension 1, defining a curve on the surface (as we will see, the right multiplicity is 4).
Since this curve must contain all the lines lying on the surface, its degree — which we
can compute by enumerative means — is a bound for the number of such lines.
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Ordinary node Flecnode

Figure 11.1 A flecnode is a node in which one branch has a flex at the node.

First of all, we say that a point p 2 S is flecnodal if there exists a line L � P3

having contact of order 4 or more with S at p; let F � S be the locus of such points.
(The reason for the name comes from another characterization of such points: for a
general surface S , a general flecnodal point p 2 S will be one such that the intersection
S \ TpS has a flecnode at p, that is, a node such that one branch has contact of order
at least 3 with its tangent line; see Figure 11.1.) As we will show in Proposition 11.8,
the flecnodal locus F � S of a smooth surface of degree d � 3 will always have
dimension 1.

As we have observed, any line lying in S is contained in the flecnodal locus F .
Of course when d D 3 any line meeting S with multiplicity � 4 must lie in S , so
the flecnodal locus is exactly the union of the 27 lines in S . To describe the locus of
flecnodes on S more generally, we again write ˆ for the incidence correspondence

ˆ D f.L; p/ 2 G.1; 3/ � P3 jp 2 Lg;

and we let �; �1 2 A1.ˆ/ be the pullbacks of the corresponding classes on P3 and
G.1; 3/. Given a surface S , we wish to find the class of the locus

� D f.L; p/ 2 ˆ jmp.L � S/ � 4g:

Since the flecnodal locus F � S is the image of � under the projection of ˆ to P3,
knowledge of this class will determine in particular the degree of F .

To compute the class of � , consider the bundle F D P3
ˆ=G.1;3/.�

�
2OP3.d// of

third-order relative principal parts of ��2OP3.d/. It is a bundle of rank 4 on ˆ whose
fiber at a point .L; p/ is the vector space of germs of sections of OL.d/ at p, modulo
those vanishing to order at least 4 at p:

F.L;p/ D H 0.OL.d/=I4p.d//:

If A 2 H 0.OP3.d// is a homogeneous polynomial of degree d defining a surface S ,
then the restrictions of A to each line L � P3 yield a global section �A of the bundle F ,
whose zeros are the pairs .L; p/ such that L meets S with multiplicity � 4 at p.

Since dimˆ D 5 and F has rank 4, the locus � (if not empty) is at least one-
dimensional; if it has dimension exactly 1 then its class is the top Chern class

Œ�� D c4.F/ 2 A4.ˆ/:
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We can calculate this class as before: We can filter the bundle F by order of vanishing —
that is, invoke the exact sequences (11.1) — and apply the Whitney formula to arrive at

c4.F/ D d� � ..d � 2/� C �1/ � ..d � 4/� C 2�1/ � ..d � 6/� C 3�1/:

Of course, none of this will help us bound the number of lines on S if every point of
S is a flecnode! The following result, which was assumed by Clebsch, is thus crucial for
this approach. A proof can be found in McCrory and Shifrin [1984, Lemma 2.10]. For
partial results in finite characteristic see Voloch [2003].

Proposition 11.8. If S � P3 is a smooth surface of degree d � 3 over a field of
characteristic 0, the locus

� D f.L; p/ 2 ˆ jmp.L � S/ � 4g

has dimension 1. In particular, the general point of S is not flecnodal.

We will defer the proof of this proposition to the next section, and continue to derive
our bound on the number of lines. By the proposition, the flecnodal locus F � S of S
is a curve, whose degree is the degree of the intersection of � with the class �. We can
evaluate this as before:

deg.F / D d�2 � ..d � 2/� C �1/ � ..d � 4/� C 2�1/ � ..d � 6/� C 3�1/

D d.11d � 24/:

Putting this together, we have proven a bound on the number of lines in S :

Proposition 11.9. The maximum number M.d/ of lines lying on a smooth surface
S � P3 of degree d � 3 is at most d.11d � 24/.

In the case d D 3 this gives the exact answer since d.11d � 24/ D 27. But
for d � 4 the bound is not sharp: Segre [1943] proved the slightly better bound
M.d/ � d.11d � 28/C 12. Even this is not sharp; for example with d D 4 we have
d.11d � 28/C 12 D 76, but Segre also showed that the maximum number of lines on a
smooth quartic surface is exactly M.4/ D 64.

Of course, we can give a lower bound for M.d/ simply by exhibiting a surface with
a large number of lines. The Fermat surface V.xd C yd C zd C wd /, for example, has
exactly 3d2 lines (Exercise 11.25), whence M.d/ � 3d2. This is still the record-holder
for general d . More is known for some particular values of d ; Exercises 11.26 and 11.27
exhibit surfaces with more lines in the cases d D 4; 6; 8; 12 and 20 (respectively, 64,
180, 256, 864, and 1600 lines), and Boissière and Sarti [2007] find an octic with 352
(the current champion!).
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11.2.2 The flecnodal locus

It remains to prove that for any smooth surface S � P3 of degree d � 3 the locus
� � ˆ of pairs .L; p/ with mp.L � S/ � 4 has dimension 1. The following proof was
shown us by Francesco Cavazzani:

Proof of Proposition 11.8: Suppose on the contrary that the locus � � ˆ has a com-
ponent �0 of dimension 2 or more, and let .L0; p0/ be a general point of �0. Since the
fiber of � over a point p 2 S consists of lines through p in TpS , it has dimension at
most 1. By Theorem 7.11(a), there are only finitely many points p over which the fiber
has positive dimension. Thus �0 must dominate S , so p0 is a general point of S . By
Theorem 7.11(b), the intersection S \ Tp0S has a node at p0.

We will proceed by introducing local coordinates onˆ and writing down the defining
equations of the subset � . To start with, we can find an affine open A3 � P3 and choose
coordinates .x; y; z/ on A3 so that the point p0 is the origin .0; 0; 0/ 2 A3 and the line
L0 D f.x; 0; 0/g is the x-axis; we can also take the tangent plane Tp0S to be the plane
z D 0, and, given that the tangent plane section S \Tp0S has a node at p0, we can take
the tangent cone at p to the intersection S \ Tp0S to be the union V.z; xy/ of the x-
and y-axes.

We can take coordinates .a; b; c; d; e/ in a neighborhood U of .L0; p0/ 2 ˆ so that
if .L; p/ is the pair corresponding to .a; b; c; d; e/ then

p D .a; b; c/ and L D f.aC t; b C dt; c C et/g:

Let f .x; y; z/ be the defining equation of S in A3. If we write the restriction of f
to L as

f jL D f .aC t; b C dt; c C et/ D
X
i�0

˛i .a; b; c; d; e/t
i ;

the four functions ˛0; ˛1; ˛2 and ˛3 will be the defining equations of � in U . We want
to show their common zero locus has codimension 4 in ˆ; we will actually prove the
stronger fact that their differentials at .L0; p0/ are independent.

By the specifications above of p0, L0, Tp0S and TCp0.S \ Tp0S/, we can write

f .x; y; z/ D z � u.x; y; z/C xy � v.x; y/C y3 � l.y/C x4 �m.x/:

Note that since S is smooth at p0 we have u.0; 0; 0/ ¤ 0, and since the tangent plane
section S\Tp0S has multiplicity 2 at p0 we have v.0; 0/ ¤ 0; rescaling the coordinates,
we can assume u.0; 0; 0/ D v.0; 0/ D 1. Note by contrast that we may have m.0/ D 0;
this will be the case exactly when mp0.L0 � S/ � 5.

Now, we can just plug .aC t; b C dt; c C et/ in for .x; y; z/ in this expression to
write out f jL, and hence the coefficients ˛i .a; b; c; d; e/. This is potentially messy, but
in fact it will be enough to evaluate the differentials of the ˛i at .L0:p0/— that is, at
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.a; b; c; d; e/ D .0; 0; 0; 0; 0/— and so we can work modulo the ideal .a; b; c; d; e/2.
That said, we have

f jL D f .aC t; b C dt; c C et/ D

.c C et/uC .aC t /.b C dt/v C .b C dt/3l.b C dt/C .aC t /4m.aC t /;

and thus
˛0 � c mod .a; b; c; d; e/2;

˛1 � e C b mod .c/C .a; b; c; d; e/2;

˛2 � d mod .b; c; e/C .a; b; c; d; e/2;
and finally

˛3 � 4a �m.0/ mod .b; c; d; e/C .a; b; c; d; e/2:

What we see from this is that the differentials of ˛0; : : : ; ˛3 at .L0; p0/ are linearly
independent, unless m.0/ D 0; or in other words, if there is a two-dimensional locus
† � ˆ of pairs .L; p/ such thatmp.L�S/ � 4, then in fact we must havemp.L�S/ � 5
for all .L; p/ 2 †. But we can carry out exactly the same argument again to show that if
there is a two-dimensional family of lines having contact of order 5 or more with S , then
all these lines in fact have contact of order 6 or more with S , and so on. We conclude
that if � has dimension 2 or more, then S must be ruled by lines; in other words, S must
be a plane or a quadric.

11.3 Flexes via defining equations
In our initial discussion of flexes in Section 7.5, we gave the curve C � P2 in

question parametrically — that is, as the image of a map � W zC ! P2 from a smooth
curve zC , the normalization of C , to P2. We defined flexes as the points p 2 zC such that
for some line L � P2 the multiplicity mp.��L/ is at least 3.

This definition does not work well in families of curves. As we shall see, when
a smooth plane curve degenerates to one with a node, a certain number of the flexes
approach the node; but, according to the definition in Section 7.5, the nodal point will
generally not be a flex, since in general neither branch of the node will have contact of
order 3 or more with its tangent line. Thus to track the behavior of flexes in families
we need a different way of describing them, related to the notion of Cartesian flexes
described in Section 7.5.2. We will call the objects described below “flex lines” rather
than flexes.

We define a flex line of C � P2 to be a pair .L; p/ with L � P2 a line and p 2 L
a point such that C and L intersect at p with multiplicity � 3; that is, the set � of flex
lines is the locus

� D f.L; p/ 2 P2� � P2 jmp.C � L/ � 3g:
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Thus if C is the vanishing locus of a polynomial F , then .L; p/ is a flex line if and only
if the restriction of F to L vanishes to order at least 3 at p; in other words, instead of
taking the defining equation of L and restricting to C (or, more precisely, pulling back
to the normalization of C ), we are restricting the defining equation of C to L. The two
are the same when C is smooth, but different in general: For example, if C is a general
curve with a node at p, the tangent lines to the two branches are flex lines at the node.

To compute the number of flexes on a curve defined by a homogeneous form F , we
define ‰ to be the incidence correspondence

‰ D f.L; p/ 2 P2� � P2 jp 2 Lg;

thought of as the universal line over P2�, and consider

E D P2
‰=P2�.�

�
2OP2.d//;

a rank-3 vector bundle on the three-dimensional variety‰, whose fiber at a point .L; p/ is

E.L;p/ D H 0.OL.d/=I3p.d//:

The homogeneous polynomial F gives rise to a section �F of E , and the zeros of this sec-
tion correspond to the flex lines of the corresponding plane curve C D V.F /. Thus the
number of flex lines — when this number is finite, of course, and counting multiplicity —
is the degree of c3.E/ 2 A3.‰/.

Since the projection on the first factor expresses ‰ as the projectivization

‰ D PS ! P2�

of the universal subbundle S on P2�, we can give a presentation of the Chow ring
exactly as in the case of the universal line ˆ over G.1; 3/ in Section 11.1.3. Letting
� 2 A1.P2�/ be the hyperplane class, we have

A.‰/ D A.P2�/Œ��=.�2 � �� C �2/;

where � 2 A1.ˆ/ is the first Chern class of the line bundle OPS.1/. Recall from
Section 9.3.1, moreover, that the class � can also be realized as the pullback � D ˇ�!,
where ˇ W ˆ! P2 is the projection .L; p/ 7! p on the second factor and ! 2 A1.P2/
is the hyperplane class.

We can also evaluate the degrees of monomials of degree 3 in � and � as before by
using the Segre classes introduced in Section 10.1, and in particular Proposition 10.3:
We have

deg.��2/ D deg.�2�/ D 1 and deg.�3/ D deg.�3/ D 0:

(We could also see these directly by observing that ‰ � P2� � P2 is a hypersurface of
bidegree .1; 1/, and the classes � and � are the pullbacks of the hyperplane classes in the
two factors.)
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We can now calculate the Chern classes of E by applying the exact sequences (11.1)
and using Whitney’s formula, and we get

c3.E/ D d� � ..d � 2/� C �/ � ..d � 4/� C 2�/:

Hence
deg.c3.E// D 2d.d � 2/C d.d � 4/C 2d

D 3d.d � 2/:

This shows that the number of flex lines, counted with multiplicity, is the same in
the singular case as in the smooth case, whenever the number is finite. (Note that if
F D 0 defines a nonreduced curve, or a curve containing a straight line as a component,
the section defined by F vanishes in the wrong codimension.) The present derivation
allows us to go further in two ways, both having to do with the behavior of flexes in
families. In particular, it will permit us to solve Keynote Question (c).

11.3.1 Hyperflexes

We define a hyperflex line to a plane curve C similarly: It is a pair .L; p/ such
that L and C meet with multiplicity at least 4 at p. As with ordinary flex lines (and
for the same reason), this definition is equivalent to the definition of a hyperflex given
in Section 7.5 when the point p is a smooth point of C , but not in general: If a curve
C � P2 has an ordinary flecnode at p (that is, two branches, one not a flex and the
other a flex that is not a hyperflex), then the tangent line to the flexed branch of C at p
will be a hyperflex line, though p is not a hyperflex in the sense of Section 7.5. Since
a general pencil of plane curves will not include any elements possessing a flecnode
(Exercise 11.29), this will not affect our answer to Keynote Question (c).

To describe the locus of hyperflex lines in a family of curves, we denote by PN the
space of plane curves of degree d , and consider the incidence correspondence

† D f.L; p; C / 2 ‰ � PN jmp.L � C/ � 4g:

When d � 3, the fibers of the projection †! ‰ are linear spaces of dimension N � 4,
from which we see that† is irreducible of dimensionN�1; in particular, it follows that a
general curve C � P2 of degree d > 1 has no hyperflexes. Furthermore, since for d � 4
the general fiber of the projection †! PN is finite (see the proof of Theorem 7.13), the
locus „ � PN of curves that do admit a hyperflex is a hypersurface in PN in this case.
Keynote Question (c) is equivalent to asking for the degree of this hypersurface in the
case d D 4. We will actually compute it for all d .

To do this, we consider the three-dimensional variety ‰ � P2� � P2 as above, and
introduce the rank-4 bundle

E D P3
‰=P2�.�

�
2O2P.d//
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whose fiber at a point .L; p/ is

E.L;p/ D H 0.OL.d/=I4p.d//:

With this definition in hand, we consider a general pencil ft0F C t1Ggt2P1 of
homogeneous polynomials of degree d on P2. The polynomials F;G give rise to
sections �F ; �G of E , and the set of pairs .L; p/ that are hyperflexes of some element
of our pencil is the locus where these sections fail to be linearly independent. Thus the
number of hyperflex lines, counted with multiplicities, is the degree of c3.E/ 2 A3.‰/.

We do this as before: Filtering the bundle E by order of vanishing, we arrive at
the expression

c.E/ D .1C d�/.1C .d � 2/� C �/.1C .d � 4/� C 2�/.1C .d � 6/� C 3�/:

Thus
c3.E/ D .18d2 � 88d C 72/�2� C .22d � 36/��2

D 18d2 � 66d C 36

D 6.d � 3/.3d � 2/:

This gives zero when d D 3, as it should: a cubic with a hyperflex is necessarily
reducible, and a general pencil of plane cubics will not include any reducible ones. We
also remark that the number is meaningless in the cases d D 1 and d D 2, since every
point on a line is a hyperflex and a pencil of conics will contain reducible conics equal
to the union of two lines.

To show that the actual number of elements of a general pencil possessing hyper-
flexes is equal to the number predicted, we have to verify that for general polynomials F
and G the degeneracy locus V.�F ^�G/ � ‰ is reduced. We do this, as in the argument
carried out in Section 7.3.1, in two steps: We first use an irreducibility argument to reduce
the problem to exhibiting a single pair F;G of polynomials and a point .L; p/ 2 ‰ such
that V.�F ^ �G/ is reduced at .L; p/, then use a local calculation to show that there do
indeed exist such F;G and .L; p/.

For the first, a standard incidence correspondence suffices: We let PN be the space
of plane curves of degree d and G D G.1;N / the Grassmannian of pencils of such
curves, and consider the locus

‡ D f.D; L; p/ 2 G �‰ j some C 2 D has a hyperflex line at .L; p/g:

The fiber of ‡ over .L; p/ is irreducible of dimension 2N � 5: It is the Schubert cycle
†3.ƒ/ � G, where ƒ D fC 2 PN jmp.L � C/ � 4g is the codimension-4 subspace of
PN consisting of curves with a hyperflex line at .L; p/. It follows that ‡ is irreducible
of dimension 2N � 2 D dimG. Now, if ‡ 0 � ‡ is the locus of .D; L; p/ such that
V.�F ^ �G/ is not reduced of dimension 0 at .L; p/ (where D is the pencil spanned by
F and G), then, since ‡ 0 � ‡ is closed,

‡ 0 ¤ ‡ H) dim‡ 0 < 2N � 2;
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and it follows that if ‡ 0 ¤ ‡ then ‡ 0 cannot dominate G.
Thus we need only exhibit a single F;G and .L; p/ such that V.�F ^�G/ is reduced

at .L; p/. We do this using local coordinates. Choose A2 � P2 with coordinates x; y so
that p D .0; 0/ is the origin and L � A2 is the line y D 0. Set f .x; y/ D F.x; y; 1/

and g.x; y/ D G.x; y; 1/.
For local coordinates on ‰ in a neighborhood of the point .L; p/, we can take the

functions x; y and b, where

p D .x; y/ and L D f.x C t; y C bt/gt2k:

We can trivialize the bundle E in this neighborhood of .L; p/, so that the section
�F of E is given by the first four terms in the Taylor expansion of the polynomial
f .x C t; y C bt/ around t D 0. Thus, for example, the section associated to the
polynomial f .x; y/ D y C x4 (that is, F.x; y; z/ D yzd�1 C x4zd�4) is represented
by the first four terms in the expansion of y C bt C .x C t /4:

�F D .y C x
4; b C 4x3; 6x2; 4x/;

and the general polynomial g.x; y/ D
P
ai;jx

iyj gives rise to the section �G repre-
sented by the vector

.a0;0Ca1;0xCa0;1yC� � � ; a1;0Ca0;1bCa1;1yC2a2;0xC� � � ; a2;0C� � � ; a3;0C� � �/:

(Here we are omitting terms in the ideal .x; y; b/2.) The section �F ^ �G is given by
the 2 � 2 minors of the matrix�

y C x4 b C 4x3 6x2 4x

a0;0 C � � � a1;0 C � � � a2;0 C � � � a3;0 C � � �

�
:

We have minors with linear terms a1;0y � a0;0b, a3;0y � 4a0;0x and a3;0b � 4a2;0x,
and for general values of the ai;j these are independent. This shows that the section
�F ^ �G vanishes simply at p, as required. Thus:

Proposition 11.10. In a general pencil of degree-d plane curves, exactly 6.d�3/.3d�2/
will have hyperflexes; in particular, in a general pencil of quartic plane curves, exactly
60 members will have hyperflexes.

11.3.2 Flexes on families of curves

We can also use the approach via defining equations to answer another question
about flexes in pencils, one that sheds some more light on how flexes behave in families.
Again, suppose that fCt D V.t0F C t1G/gt2P1 is a general pencil of plane curves of
degree d . The general member Ct of the pencil will have, as we have seen, 3d.d � 2/
flex points, and as t varies these points will sweep out another curve B in the plane. We
can ask: What are the degree and genus of this curve? What is the geometry of this curve
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Figure 11.2 The singular elements of a pencil of conics are the pairs of lines joining
the four base points.

around singular points of curves in the pencil? We will answer these questions in this
section and the next.

To this end, we again write

‰ D f.L; p/ 2 P2� � P2 jp 2 Lg;

and set

� D f.t; L; p/ 2 P1 �‰ jmp.L � Ct / � 3g:

We will describe � as the zero locus of a section of a rank-3 vector bundle on the
four-dimensional variety P1 � ‰. For d � 2, we will show that � has the expected
dimension 1, and we will ask the reader to show that in fact � is smooth by completing
the sketch given in Exercise 11.33. This will allow us to determine not only the class of �
(which will give us the degree of its image B under the projection P1 �‰ ! ‰ ! P2)
but its genus as well. We will also describe the projection of � to P1, which tells how
the flexes may come together as the curve moves in the pencil.

The case of a pencil of conics, d D 2, is easy to analyze directly, and already exhibits
some of the phenomena involved. As we saw in Proposition 7.4 and the discussion
immediately following, a general pencil of conics will have three singular elements, each
consisting of two of the straight lines through two of the four base points of the pencil.

A smooth conic has no flexes, while the flex lines of a singular conic C are the pairs
.L; p/ with p 2 L � C . Thus the curve B , consisting of points p 2 P2 such that some
.L; p/ is a flex line of some member of the pencil, is the union of the singular members
of the pencil — that is, the union of the six lines joining two of the four base points. As
such it has degree 6, four triple points, and three additional double points. However,
the points of the curve � “remember” the flex line to which they belong, so � is the
disjoint union of the six lines — a smooth curve, which is the normalization of B . The
singularities of B are typical of the situation of pencils of curves of higher degree, as we
shall see: In general, B will have triple points at the base points of the pencil and nodes
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at the nodes of the singular elements of the pencil. In the case of conics, the projection
map � ! P1 has three nonempty fibers, each consisting of one of the singular members
of the pencil. For general pencils of degree > 2 we shall see that the projection is a
finite cover.

Returning to the general case, we again write E for the rank-3 vector bundle

E D P2
‰=P2�.�

�
2OP2.d//:

Writing V for the two-dimensional vector space spanned by F and G, the sections �F
and �G define a map of bundles

V ˝O‰ ! E :

We now pull this map back to P1 �‰ via the projection � W P1 �‰ ! ‰. If P1 D PV
is the projective line parametrizing our pencil, we also have a natural inclusion

OPV .�1/ ,! V ˝OPV ;

which we can pull back to the product P1 � ‰ via the projection � W P1 � ‰ ! P1.
Composing these, we arrive at a map

� W ��OP1.�1/! V ˝OP1�‰ ! ��E I

over the point .t; L; p/ 2 P1�‰, this is the map that takes a scalar multiple of t0FCt1G
to its restriction to L (modulo sections of OL.d/ vanishing to order 3 at p). In particular,
the zero locus of this map is the incidence correspondence � .

Tensoring with the line bundle ��OP1.1/, we can think of � as a section of the
bundle ��OP1.1/˝ �

�E ; the class of � is thus given by the Chern class

Œ�� D c3.�
�OP1.1/˝ �

�E/ 2 A3.P1 �‰/:

We denote by � the class of a point in A1.P1/, or its pullback to P1 �‰. Similarly, we
use the notation � and � , introduced as classes in A.‰/ above, to denote the pullbacks
of these classes to P1 �‰. With this notation we have

c.��OP1.1/˝ �
�E/ D .1C �C d�/.1C �C .d � 2/�C �/.1C �C .d � 4/�C 2�/:

Collecting the terms of degree 3, we get

c3.�
�OP1.1/˝ �

�E/
D .3d2 � 8d/�2� C 2d��2 C �..3d2 � 12d C 8/�2 C .6d � 8/�� C 2�2/:

To find the degree of the curve B � P2 swept out by the flex points of members of
the family, we intersect with the (pullback of the) class � of a line L � P2; we get

deg.B/ D � � c3.��OP1.1/˝ �
�E/ D 6d � 6:

Note that this yields the answer 6 in the case d D 2, consistent with our previous analysis.
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We can use the same constructions to find the geometric genus of the curve � . As
we observed in Proposition 6.15, the normal bundle to � in the product P1 �‰ is the
restriction to � of the bundle ��OP1.1/˝ �

�E . Since ‰ � P2� � P2 is a hypersurface
of bidegree .1; 1/, its canonical class is

�c1.T‰/ D K‰ D KP2��P2 C � C � D �2� � 2� I

it follows that

KP1�‰ D �2� � 2� � 2�:

By the calculation above,

c1.E/ D 3�C .3d � 6/� C 3�;
and so we have

K� D .�C .3d � 8/� C �/j� :

We have seen that the degree of �j� is 3d.d � 2/, and deg.�j�/ D 6d � 6; similarly, we
can calculate

deg.� j�/ D .3d2 � 12d C 8/C .6d � 8/ D 3d2 � 6d:

Altogether, we have

2g.�/ � 2 D deg.K�/ D 24d2 � 78d C 48;

and so

g.�/ D 12d2 � 39d C 25:

Note that when d D 2 this yields g.�/ D �5, as it should: As we saw, in this case
� consists of the disjoint union of six copies of P1.

11.3.3 Geometry of the curve of flex lines

We will leave the proofs of most of the assertions in this section to Exercises 11.34–
11.38; here, we simply outline the main points of the analysis.

We begin with the geometry of the plane curve B traced out by the flex points of the
curves Ct — that is, the image of the curve � under projection to P2. We have already
seen that the degree of B is 6d � 6.

The singularities of B can be located as follows: At each base point p of the pencil,
all members of the pencil are smooth. We will see in Exercise 11.34 that three members
of the pencil have flexes at p, so that B has a triple point at each base point of the pencil.
The only other singularities of B occur at points p 2 P2 that are nodes of the curve Ct
containing them. As we have seen, at such a point the tangent lines to the two branches
are each flex lines to Ct , so that map � ! B is two-to-one there; as we will verify in
Exercise 11.35, the curve B will have a node there.
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Since the projection � ! B is the normalization, these observations give another
way to derive the formula for the genus of �: There are in general d2 base points of the
pencil, and as we saw in Chapter 7 there will be 3.d � 1/2 nodes of elements Ct of our
pencil, so that the genus of � is

g.�/ D pa.B/ � 3d
2
� 3.d � 1/2

D
1
2
.6d � 7/.6d � 8/ � 3d2 � 3.d � 1/2

D 12d2 � 39d C 25:

We can study the geometry of the curve � in another way as well: via the projection
� ! P1 on the first factor. Since a general member of our pencil has 3d.d � 2/ flexes,
� is a degree 3d.d � 2/ cover of the line P1 parametrizing our pencil. Where is this
cover branched? The Plücker formula of Section 7.5.2 shows that if Ct is smooth it
can fail to have exactly 3d.d � 2/ flexes only if it has a hyperflex, in which case the
hyperflex counts as two ordinary flexes. Such hyperflexes are thus ordinary ramification
points of the cover � ! P1.

That leaves only the singular elements of the pencil to consider, and this is where it
gets interesting. By the formula of Section 7.5.2, a curve of degree d with a node has
genus one lower, and hence six fewer flexes (in the sense of that section), than a smooth
curve of the same degree. If Ct0 is a singular element of a general pencil of plane curves,
then as t ! t0 three of the flex lines of the curves Ct approach each of the tangent lines
to the branches of Ct0 at the node (Exercise 11.38). Thus each of the tangent lines to the
branches of Ct0 at the node is a ramification point of index 2 of the cover � ! P1.

We can put this all together with the Riemann–Hurwitz formula to compute the
genus of � yet again: Since there are 6.d � 3/.3d � 2/ hyperflexes in the pencil, and
3.d � 1/2 singular elements,

2g.�/ � 2 D �2 � 3d.d � 2/C 6.d � 3/.3d � 2/C 4 � 3.d � 1/2;

and so
g.�/ D �3d.d � 2/C 3.d � 3/.3d � 2/C 2 � 3.d � 1/2 C 1

D 12d2 � 39d C 25:

11.4 Cusps of plane curves
As a final application we will answer the second keynote question of this chapter:

How many curves in a general net of cubics in P2 have cusps? This will finally complete
our calculation, begun in Section 2.2, of the degrees of loci in the space P9 of plane
cubics corresponding to isomorphism classes of cubic curves. Solving this problem
requires the introduction of a new class of vector bundles that further generalize the idea
of the bundles of principal parts.
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We start by saying what we mean by a cusp. An ordinary cusp of a plane curve C
over the complex numbers is a point p such that, in an analytic neighborhood of p in the
plane, the equation of C can be written as y2�x3 D 0 in suitable (analytic) coordinates.
If we were working over an algebraically closed field k other than the complex numbers,
we could say instead that the completion of the local ring of C at p is isomorphic to
kŒŒx; y��=.y2 � x3/, and this is equivalent when k D C. Similar generalizations can be
made for many of the remarks below.

It is inconvenient to do enumerative geometry with ordinary cusps directly, because
the locus of ordinary cusps in a family of curves is not in general closed: ordinary cusps
can degenerate to various other sorts of singularities (as in the family y2 � tx3 C xn

when t ! 0). For this reason we will define a cusp of a plane curve to be point where
the Taylor expansion of the equation of the curve has no constant or linear terms, and
where the quadratic term is a square (possibly zero). As will become clearer in the next
section, this means that a cusp is a point at which the completion of the local ring of the
curve, in some local analytic coordinate system, has the form

yOC;p D kŒŒx; y��=.ay2 C terms of degree at least 3/;

where a is a constant that may be equal to 0. From the point of view of a general net
of curves of degree at least 3, the difference between an ordinary cusp and a general
cusp, in our sense, is immaterial: Proposition 11.13 will show that no cusps other than
ordinary ones appear.

It is interesting to ask questions about curves on other smooth surfaces besides
P2. Most of the results of this section can be carried over to general nets of curves in
any sufficiently ample linear series on any smooth surface, but we will not pursue this
generalization.

11.4.1 Plane curve singularities

Before plunging into the enumerative geometry of cusps, we pause to explain a little
of the general picture of curve singularities.

Let p 2 C be a point on a reduced curve. In an analytic neighborhood of the point,
C looks like the union of finitely many branches, each parametrized by a one-to-one map
from a disc. Over the complex numbers these maps can be taken to be parametrizations
by holomorphic functions of one variable; in general, this statement should be interpreted
to mean simply that the completion yOC;p of the local ring OC;p of C at p is reduced
and the normalization of each of its irreducible components (the branches) has the form
kŒŒt ��, where k is the ground field (if our ground field were not algebraically closed then
the coefficient field might be a finite extension of the ground field). These statements are
part of the theory of completions; see Eisenbud [1995, Chapter 7].
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Node (A )1 2 3Cusp (A ) Tacnode (A )

Figure 11.3 The simplest double points.

It is a consequence of the Weierstrass preparation theorem that over the complex
numbers two reduced germs of analytic curves are isomorphic if and only if the comple-
tions of their local rings are isomorphic, so we will use the analytic language although
we will work with the completions. See Greuel et al. [2007] for more details.

The theory of singularities in general is vast. But what will concern us here are dou-
ble points of curves, and in that very limited setting we can actually give a classification,
which we will do now.

To begin with, we have already defined the notion of the multiplicity of a variety
X at a point p 2 X in Section 1.3.8. One consequence is that if X has multiplicity 2
at p (“p is a double point of X”), then the Zariski tangent space TpX has dimension
dimX C 1. In particular, if p is a double point of a curve C then dimTpC D 2, so that
an analytic neighborhood of p in C is embeddable in the plane, and hence the completion
yOC;p of the local ring OC;p of C at p has the form kŒŒx; y��=.g.x; y//, where g has

leading term of degree exactly 2.

Definition 11.11. Let p 2 C be a double point of a reduced curve C . We say that
p is an An-singularity of C (or that C has an An-singularity at p) if yOC;p Š
kŒŒx; y��=.y2 � xnC1/, that is, if in suitable (analytic) coordinates, C has equation
y2 � xnC1 D 0 around p.

For example, a double point p 2 C is a node (C has two smooth branches meet-
ing transversely at p) if and only if C has, in suitable analytic coordinates, equation
y2 � x2 D 0, and is thus an A1-singularity. Similarly, an ordinary cusp is a point
p 2 C with local analytic equation y2 � x3 D 0 (A2-singularity), and an ordinary
tacnode is a point with local analytic equation y2 � x4 D 0 (A3-singularity); this
looks like two smooth curves simply tangent to one another at p. In general, if p 2 C
is an An-singularity and n D 2m C 1 is odd, then a neighborhood of p in C con-
sists of two smooth branches meeting with multiplicity m C 1 at p (we can write
y2 � x2mC2 D .y � xmC1/.y C xmC1/), while if n is even then C is analytically
irreducible at p.

Proposition 11.12. Over an algebraically closed field any double point of a plane curve
C is an An-singularity for some n � 1.
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Proof: We work in the power series ring CŒŒx; y��, and we must show that if a power
series f .x; y/ has nonzero leading term of degree 2 then, after multiplication by a unit
of CŒŒx; y�� and a change of variables, it can be written in the form y2 � xnC1. Since
any nonzero quadratic form over C may be written (modulo scalars) as y2 C ax2 with
a 2 C, we may assume that f has the form f D y2Cg.x/Cyg1.x/Cy

2g2.x; y/ for
some g, g1 and g2 with g2.0; 0/ D 0. Multiplying f by the unit 1�g2.x; y/, we reduce
to the case g2 D 0. Making a change of variable of the form y0 D y � g1.x/ (called a
Tschirnhausen transformation), we can raise the order of vanishing of g1; repeating this
operation and taking the limit we may assume that g1 D 0 as well. But if g has order
nC 1, then, by Hensel’s lemma (Eisenbud [1995, Theorem 7.3]), g has an .nC 1/-st
root of the form xC ax2C � � � . We may take this power series to be a new variable, and
after this change of variables we get f .x; y/ D y2 � xnC1, as required.

In the space PN parametrizing all plane curves of given degree d , we can estimate
the dimension of the locus of curves having certain types of singularities, at least
when the degree of the curves is large compared with the complexity of the singularity
(this is an open problem when the degree is small; see Greuel et al. [2007] for more
information):

Proposition 11.13. Let PN be the space of plane curves of degree d � k, and let
�k � PN � P2 be the set of pairs .C; p/ such that C has an Ak-singularity at p.
�k is locally closed and has codimension k C 2 in PN � P2. Its closure is irreducible,
and contains in addition the locus ˆ � PN � P2 of pairs .C; p/ such that C has
multiplicity 3 or more at p and the locus „ � PN � P2 of pairs .C; p/ such that p lies
on a multiple component of C ; in fact,

�k D ˆ [„ [
[
l�k

�l :

Note that since the projection �k ! PN on the first factor is generically finite, the
image of �k will have codimension k in PN . Thus, among all plane curves we will see
curves with a node in codimension 1, curves with a cusp in codimension 2 and curves
with a tacnode in codimension 3; all other singularities should occur in codimension 4
and higher.

Finally, note that the situation is much less clear when k is large relative to d ;
for example, as we mentioned in Section 2.2, it is not known for all d and k whether
there exists an irreducible plane curve of degree d with an Ak-singularity. In particular,
it is not known for d > 6 whether there exists an irreducible plane curve C � P2

of degree d with an A.d�1/.d�2/-singularity (this is the largest value allowed by the
genus formula).
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11.4.2 Characterizing cusps

As in the case of the simpler problem of counting singular elements of a pencil of
curves, the first thing we need to do to study the cusps in a net of plane curves is to
linearize the problem. The difficulty arises from the fact that even after we specify a
point p 2 P2 it is not a linear condition on the curves in our linear system to have a
cusp at p. It becomes linear, though, if we specify both the point p and a line L � P2

through p with which we require our curve to have intersection multiplicity at least 3.
Thus we will work on the universal line over P2�

‰ D f.L; p/ 2 P2� � P2 jp 2 Lg;

which we used in Section 11.3 above. In the present circumstances, we also want to
think of ‰ as a subscheme of the Hilbert scheme H2.P2/ parametrizing subschemes of
P2 of degree 2. Specifically, it is the locus in H2.P2/ of subschemes of P2 supported at
a single point: We associate to .L; p/ 2 ‰ the subscheme � D �L;p � P2 of degree 2
supported at p with tangent line Tp� D L � P2.

For a given point .L; p/ 2 ‰, we want to express the condition that the curve
C D V.�/ associated to a section � of the line bundle L D OP2.d/ on P2 have a cusp
at p withmp.C �L/ � 3. This suggests that we introduce for each .L; p/ the ideal JL;p
of functions whose zero locus has such a cusp; that is, we set

JL;p D m3p C I
2
� ;

where � D �L;p � P2 is the subscheme of degree 2 supported at p with tangent line L.
We want to construct a vector bundle E on ‰ whose fiber at a point .L; p/ is

E.L;p/ D H 0.P2;L=L˝ JL;p/:

To do this, consider the product‰�P2, with projection maps �1 and �2 to‰ and P2. Let
� � ‰�P2 be the graph of the projection map ‰ � P2� �P2 ! P2 — in other words,

� D f..L; p/; q/ 2 ‰ � P2 jp D qg:

Likewise, let � � B � P2 be the universal scheme of degree 2 over ‰ � H2.P2/. We
then take

E D �1�
�
��2L=��2L˝

�
I3
�=‰�P2 C I2

�=‰�P2
��
I

by the theorem on cohomology and base change (Theorem B.5), this is the bundle
we want.

A global section of the line bundle L gives rise to a section of E by restriction. Given
a net D corresponding to a three-dimensional vector space V � H 0.L/, we get three
sections of E , and the locus in B where they fail to be independent — that is, where some
linear combination is zero — is the locus of .p; �/ such that some element of the net
has a cusp at p in the direction �. In sum, observing that two elements of a general net
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cannot have cusps at the same point, and that a general cuspidal curve of degree d > 2
has a unique cusp (we leave the verification of this fact to the reader), the (enumerative)
answer to our question is the degree of the Chern class c3.E/. In the remainder of this
section we will calculate this.

One remark before we launch into the calculation. We are using here the fact that we
can characterize the condition that a curve C have a cusp at p by saying that C contains
a scheme isomorphic to Spec kŒx; y�=JL;p; the parameter space ‰ can be viewed as
parametrizing such subschemes of P2. We could use the same technique to count curves
with tacnodes; this is sketched in Exercises 11.46–11.48.

If we try to apply the same techniques to count curves with other singularities,
however, we run into trouble. For example, the condition that C have an A5-singularity
(an oscnode, in the classical terminology) is that C contain a scheme isomorphic to
Spec kŒx; y�=.y; x3/2. But the parameter space for such subschemes of the plane is not
complete (schemes isomorphic to Spec kŒx; y�=.y; x3/ can specialize to the “fat point”
scheme Spec kŒx; y�=.x; y/2), and if we try to complete it in the most natural way, by
taking the closure in the Hilbert scheme, the relevant bundle E does not extend as a
bundle to the closure. This problem is addressed and largely solved in Russell [2003].

11.4.3 Solution to the enumerative problem

We start by recalling the description of the Chow ring A.‰/ of ‰ � P2� � P2 from
Section 11.3: We have

A.‰/ D A.P2�/Œ��=.�2 � �� C �2/ D ZŒ�; ��=.�3; �2 � �� C �2/;

where � 2 ‰ is the pullback of the hyperplane class in P2� and � is the pullback of the
hyperplane class in P2 (equivalently, if we view‰ as the projectivization of the universal
subbundle S on P2�, the first Chern class of the line bundle OPS.1/). The degrees of
monomials of top degree 3 in � and � are

deg.��2/ D deg.�2�/ D 1 and deg.�3/ D deg.�3/ D 0:

Now, in order to find the Chern class of E we want to relate it to more familiar
bundles. To this end, we observe that the inclusions

m3p ,! JL;p ,! m2p

and the corresponding quotients

Lp
m3pLp

!
Lp

JL;pLp
!

Lp
m2pLp

globalize to give us surjections of sheaves

��2P2P2.L/
˛
��! E and E �! ��2P1P2.L/I
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the composition

��2P2P2.L/
ˇ
��! ��2P1P2.L/

is the standard quotient map of Theorem 7.2.
Consider the corresponding inclusion

Ker.˛/ ,! Ker.ˇ/ D ��2 .Sym2 T �P2 ˝ L/:

What is the image? It is the tensor product of L with the sub-line bundle of ��2 Sym2 T �
P2

whose fiber at each point .L; p/ is the subspace spanned by the square of the linear form
on Tp P2 vanishing on TpL � Tp P2. In other words, the inclusion TpL ,! Tp P2 at
each point .L; p/ 2 ‰ gives rise to a sequence

0 �! N �! ˇ�T �P2 �! T �
‰=P2� �! 0; (11.2)

where N is the sub-line bundle of ˇ�T �
P2

whose fiber at .L; p/ is the space of linear forms
on Tp P2 vanishing on TpL�Tp P2 (we can think of N as the “relative conormal bundle”
of the family ‰ � P2� � P2 ! P2�). Taking symmetric squares, we have an inclusion

Sym2N ,! ˇ� Sym2 T �P2 ;

and tensoring with the pullback of L we arrive at an inclusion

Sym2N ˝ ˇ�L ,! ˇ�.Sym2 T �P2 ˝ L/;

whose image is exactly ˇ�P2
P2
.L/=E .

We can put this all together to calculate the Chern class c.E/. To begin with, we
know the classes of the bundle P2

P2
.L/ from Proposition 7.5: We have

c.ˇ�P2P2.L// D .1C .d � 2/�/
6
D 1C 6.d � 2/� C 15.d � 2/2�2:

Next, the Chern class of the line bundle N can be found from the sequence (11.2):
We have

c1.N / D c1
�
ˇ�T �P2

�
� c1

�
T �
‰=P2�

�
D �3� � .�2� C �/

D �� � �;

where the equality c1.T �
‰=P2�

/ D �2� C � comes from Theorem 11.4. Thus

c.Sym2N ˝ ˇ�L/ D 1C .d � 2/� � 2�;
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and since ˇ�P2
P2
.L/=E Š Sym2N ˝ ˇ�L the Whitney formula gives

c.E/ D
c
�
ˇ�P2

P2
.L/

�
c.Sym2N ˝ ˇ�L/

D
1C 6.d � 2/� C 15.d � 2/2�2

1 � .2� � .d � 2/�/

D .1C 6.d � 2/� C 15.d � 2/2�2/

3X
kD0

.2� � .d � 2/�/k :

In particular, the third Chern class c3.E/ is

c3.E/ D .2��.d �2/�/3C6.d �2/�.2��.d �2/�/2C15.d �2/2�2.2��.d �2/�/;

and taking degrees we have

deg c3.E/ D 30.d � 2/2 C 24.d � 2/ � 24.d � 2/2 � 12.d � 2/C 6.d � 2/2

D 12d2 � 36d C 24:

We have thus proven the enumerative formula:

Proposition 11.14. The number of cuspidal elements of a net D of curves of degree d
on P2, assuming there are only finitely many and counting multiplicities, is

12d2 � 36d C 24 D 12.d � 1/.d � 2/:

Of course, to answer Keynote Question (b) we have to verify that for a general net
there are indeed only finitely many cusps, and that they all count with multiplicity 1. The
first of these statements follows easily from the dimension count of Proposition 11.13.
The second can be verified by explicit calculation in local coordinates, analogous to
what we did to verify, for example, that hyperflexes in a general pencil occur with
multiplicity 1; alternatively, we can use the method described in Section 11.4.4 below.

Note that the formula yields 0 in the cases d D 1 and 2, as it should. And, in the
case d D 3, we see that a general net of plane cubics will have 24 cuspidal members,
answering Keynote Question (b). Equivalently, we see that the locus of cuspidal plane
cubics has degree 24 in the space P9 of all plane cubics, completing the analysis begun
in Section 2.2.

Note that there was no need to restrict ourselves to nets of curves in P2; a similar
analysis could be made for the number of cusps (possibly with multiplicities) in a
sufficiently general net of divisors associated to a sufficiently ample line bundle L on any
surface S . (Here the role of‰ would be played by the projectivized tangent bundle PTS .)
We leave this version of the calculation to the reader; the answer is that the number of
cuspidal elements in a net of curves D D .L; V / on a surface S is

deg.12�2 � 12�c1 C 2c21 C 2c2/;

where � D c1.L/ and ci D ci .TS /. As always, this number is subject to the usual
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caveats: it is meaningful only if the number of cuspidal curves in the net is in fact
finite; in this case, it represents the number of cuspidal curves counted with multiplicity
(with multiplicity defined as the degree of the component of the zero scheme of the
corresponding section of E supported at .p; �/).

11.4.4 Another approach to the cusp problem

There is another approach to the problem of counting cuspidal curves in a linear
system, one that gives a beautiful picture of the geometry of nets. It is not part of the
overall logical structure of this book, so we will run through the sequence of steps
involved without proof; the reader who is interested can view supplying the verifications
as an extended exercise.

To begin with, let S be a smooth projective surface and L a very ample line bun-
dle; let D � jLj be a general two-dimensional subseries, corresponding to a three-
dimensional vector subspace V � H 0.L/. We have a natural map

' W S ! P2 D PV �

to the projectivization of the dual V �; the preimages '�1 � S of the lines L � PV � are
the divisorsC � S of the linear system D. If we want, we can think of the complete linear
system jLj as giving an embedding of S in the larger projective space Pn D PH 0.L/�,
and the map ' as the projection of S corresponding to a general .n � 3/-plane.

Now, the geometry of generic projections of smooth varieties is well understood in
low dimensions. Mather [1971; 1973] showed that these are the same in the algebro-
geometric setting as in the differentiable; in the latter context the singularities of general
projections of surfaces are described in Golubitsky and Guillemin [1973, Section 6.2].
The upshot is that if ' W S ! P2 is the projection of a smooth surface S � Pn from a
general .n � 3/-plane, then:

� The ramification divisor R � S of the map ' is a smooth curve.
� The branch divisor B � PV � is the birational image of R, and has only nodes and

ordinary cusps as singularities.

In fact, étale locally around any point p 2 S , one of three things is true. Either:

(i) The map is étale (if p … R).
(ii) The map is simply ramified, that is, of the form .x; y/ 7! .x; y2/ (if p is a point of

R not lying over a cusp of B).
(iii) The surface S is given, in terms of local coordinates .x; y/ on PV � around '.p/,

by the equation

z3 � xz � y D 0:



418 Chapter 11 Contact problems

(This is the picture around a point where three sheets of the cover come together;
in a neighborhood of '.p/ the branch curve is the zero locus of the discriminant
4x3 � 27y2, and in particular has a cusp at '.p/.)

The interesting thing about this set-up is that we have two plane curves associated
to it, lying in dual projective planes:

(a) The branch curve B � PV � of the map '.
(b) In the dual space PV parametrizing divisors in the net D, we have the discriminant

curve � � PV , that is, the locus of singular elements of the net.

What ties everything together is the observation that the discriminant curve � � PV
is the dual curve of the branch curve B � PV �. To see this, note that if L � PV � is a
line transverse to B (in particular, not passing through any of the singular points of B),
then the preimage '�1.L/ � S will be smooth: This is certainly true away from points
of B , where the map ' is étale, and at a point p 2 L \ B we can take local coordinates
.x; y/ on PV � with L given by y D 0 and B by x D 0; at a point of '�1.p/ the
cover S ! PV � will either be étale or given by z2 D x. A similar calculation shows
conversely that if L is tangent to B at a smooth point then ��1.L/ will be singular.

At this point, we invoke the classical Plücker formulas for plane curves. These say
that if C � P2 is a plane curve of degree d > 1 and geometric genus g having ı nodes
and � cusps as its only singularities, and the dual curve C � has degree d� and ı� nodes
and �� cusps as singularities, then

d� D d.d � 1/ � 2ı � 3�;

d D d�.d� � 1/ � 2ı� � 3��;

g D 1
2
.d � 1/.d � 2/ � ı � � D 1

2
.d� � 1/.d� � 2/ � ı� � ��:

See, for example, Griffiths and Harris [1994, p. 277ff.]. Given these, all we have to do is
write down everything we know about the curves R, B and �. To begin with, we invoke
the Riemann–Hurwitz formula for finite covers f W X ! Y : If � is a rational canonical
form on Y with divisor D, the divisor of the pullback f �� will be the preimage of D
plus the ramification divisor R � X ; thus

KX D f
�KY CR 2 A

1.X/:

In our present circumstances, this says that

KS D '
�KPV � ˝OS .R/I

since the pullback '�OPV �.1/ is equal to L, we can write this as

KS D L�3.R/;

or, in terms of the notation c1 D c1.T �S / and � D c1.L/, the class of R is

ŒR� D c1 C 3� 2 A
1.S/:
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Among other things, this tells us the genus g of the curve R: Since R is smooth, by
adjunction we have

g D 1
2
R � .RCKS /C 1

D
1
2
.c1 C 3�/.2c1 C 3�/C 1

D
1
2
.9�2 C 9�c1 C 2c

2
1/C 1:

It also tells us the degree d of the branch curve B D '.R/ � PV �: This is the
intersection of R with the preimage of a line, so that

d D �.c1 C 3�/ D 3�
2
C �c1:

Finally, we also know the degree e of the discriminant curve � � PV : This is the
number of singular elements in a pencil, which we calculated back in Chapter 7; we have

e D 3�2 C 2�c1 C c2:

We now have enough information to determine the number of cusps of �. Let
ı and � denote the number of nodes and cusps of � respectively. First off, the geometric
genus of � is given by

g D 1
2
.e � 1/.e � 2/ � ı � �;

and the degree d of the dual curve is

d D e.e � 1/ � 2ı � 3�:

Subtracting twice the first equation from the second yields

� D 2g � d C 2.e � 1/

D 9�2 C 9�c1 C 2c
2
1 C 2 � .3�

2
C �c1/C 2.3�

2
C 2�c1 C c2 � 1/

D 12�2 C 12�c1 C 2c
2
1 C 2c2;

agreeing with result stated at the end of Section 11.4.3. Note that this method also gives
us a geometric sense of when a cusp “counts with multiplicity one;” in particular, if all
the hypotheses above about the geometry of the map ' are satisfied, the count is exact.

This also gives us a formula for the number of curves C in the net with two nodes.
This is the number ı of nodes of the curve �, which we get by subtracting three times
the equation for g above from the equation for d : this yields

ı D d � 3g � e.e � 1/C 3
2
.e � 1/.e � 2/;

where d , e and g are given in terms of the classes �; c1 and c2 by the equations above.
Note that the formula returns 0 in the cases d D 1 and d D 2, as it should, and in

the case d D 3 it gives 21 — the degree of the locus of reducible cubics in the P9 of all
cubics, as calculated in Section 2.2.

Exercises 11.49–11.51 describe an alternative (and perhaps cleaner) way of deriving
the formula for the number of binodal curves in a net, via linearization.



420 Chapter 11 Contact problems

11.5 Exercises
Exercise 11.15. Let X � P4 be a general hypersurface of degree d � 6. How many
lines L � P4 will have a point of contact of order 7 with X?

Exercise 11.16. Let S � P3 be a general surface of degree d � 2. Using the dimension
counts of Proposition 11.13 and incidence correspondences, show that:

(a) For p in a dense open subset U � S , the intersection S \ TpS has an ordinary
double point (a node) at p.

(b) There is a one-dimensional locally closed locus Q � S such that for p 2 Q the
intersection S \ TpS has a cusp at p.

(c) There will be a finite set � of points p 2 S , lying in the closure of Q, such that the
intersection S \ TpS has a tacnode at p.

(d) S is the disjoint union of U;Q and �; that is, no singularities other than nodes,
cusps and tacnodes appear among the plane sections of S .

Exercise 11.17. Let ˆ be the universal line over G.1; 3/ and E the bundle on ˆ intro-
duced in Section 11.1. Let L � P3 be the line X2 D X3 D 0, and let p 2 L be the point
Œ1; 0; 0; 0�. By trivializing the bundle E in a neighborhood of .L; p/ 2 ˆ and writing
everything in local coordinates, show that the section of E coming from the polynomial
X51 CX

4
0X2 CX

2
0X

2
1X3 has a simple zero at .L; p/.

Exercise 11.18. Let S � P3 be a general surface of degree d � 4. Show that, for any
line L � P3 and any pair of distinct points p; q 2 L:

(a) mp.S � L/ � 5.

(b) mp.S � L/Cmq.S � L/ � 6.

Exercise 11.19. A point p on a smooth surface S � P3 is called an Eckhart point of S
if the intersection S \ TpS has a triple point at p. Recall that in Exercise 7.42 we saw
that a general surface S � P3 of degree d has no Eckhart points.

(a) Show that the locus of smooth surfaces that do have an Eckhart point is an open
subset of an irreducible hypersurface ‰ � P.

dC3
3 /�1 in the space of all surfaces.

(b) Show that a general surface S � P3 that does have an Eckhart point has only one.

(c) Find the degree of the hypersurface ‰.

Exercise 11.20. Consider a smooth surface S � P4. Show that we would expect there
to be a finite number of hyperplane sectionsH \S of S with triple points, and count the
number in terms of the hyperplane class � 2 A1.S/ and the Chern classes of the tangent
bundle to S .
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Exercise 11.21. Applying your answer to the preceding exercise, find the number of
hyperplane sections of S � P4 with triple points in each of the following cases:

(a) S is a complete intersection of two quadrics in P4.

(b) S is a cubic scroll (Section 9.1.1).

(c) S is a general projection of the Veronese surface �2.P2/ � P5.

In each case, can you check your answer directly?

Exercise 11.22. For S � P3 a general surface of degree d , find the degree of the surface
swept out by the lines in P3 having a point of contact of order at least 4 with S .

The following exercise describes in some more detail the geometry of the flecnodal
locus � � S of a smooth surface S � P3, introduced in Section 11.2.1; we will use the
notation of that section.

Exercise 11.23. Let S � P3 be a general surface of degree d .

(a) Find the first Chern class of the bundle F .

(b) Show that the curve � is smooth, and that the projection � ! C is generically
one-to-one.

(c) Using the preceding parts, find the genus of the curve � .

(d) Show, on the other hand, that the flecnodal curve of S is the intersection of S with a
surface of degree 11d � 24, and use this to calculate the arithmetic genus of C .

(e) Can you describe the singularities of the curve C ? Do these account for the discrep-
ancy between the genera of � and of C ?

Exercise 11.24. Let PN be the space of surfaces of degree d � 4 in P3 and‰ � PN the
locus of surfaces containing a line. Show that the maximum possible number M.d/ of
lines on a smooth surface S � P3 of degree d is at most the degree of ‰ by considering
the pencil spanned by S and a general second surface T . Is this bound better or worse
than the one derived in Section 11.2.1?

Exercise 11.25. Show that for d � 3 the Fermat surface Sd D V.xdCydCzdCwd / �
P3 contains exactly 3d2 lines.

Exercise 11.26. For F.x; y/ any homogeneous polynomial of degree d , consider the
surface S � P3 given by the equation

F.x; y/ � F.z;w/ D 0:
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If ˛ is the order of the group of automorphisms of P1 preserving the polynomial F (that
is, carrying the set of roots of F to itself), show that S contains at least d2 C ˛d lines.
Hint: if L1 and L2 are the lines z D w D 0 and x D y D 0 respectively, and
' W L1 ! L2 any isomorphism carrying the zero locus F.x; y/ D 0 to F.z;w/ D 0,
consider the intersection of S with the quadric

Q' D
[
p2L1

p; '.p/:

Exercise 11.27. Using the preceding exercise, exhibit smooth surfaces S � P3 of
degrees 4, 6, 8, 12 and 20 having at least 64, 180, 256, 864 and 1600 lines, respectively.

Exercise 11.28. Verify that the Fermat quartic curve C D V.x4 C y4 C z4/ � P2 has
12 hyperflexes and no ordinary flexes.

Exercise 11.29. Recall that a node p 2 C of a plane curve is called a flecnode if one of
the branches of C at p has contact of order 3 or more with its tangent line. Show that
the closure, in the space PN of all plane curves of degree d � 4, of the locus of curves
with a flecnode is irreducible of dimension N � 2.

Exercise 11.30. How many elements of a general net of plane curves of degree d will
have flecnodes?

Exercise 11.31. Verify that for a general pencil fCt D V.t0F C t1G/g of plane curves
of degree d , if .L; p/ is a hyperflex of some element Ct of the pencil, then:

(a) mp.Ct � L/ D 4; that is, no line has a point of contact of order 5 or more with any
element of the pencil.

(b) p is a smooth point of Ct .
(c) p is not a base point of the pencil.

Using these facts, show that the degeneracy locus of the sections �F and �G of the
bundle E introduced in Section 11.3.1 is reduced.

Exercise 11.32. Let fCt D V.t0F C t1G/g be a general pencil of plane curves of
degree d . If p 2 P2 is a general point, how many flex lines to members of the pencil
fCtg pass through p?

For Exercises 11.33–11.38, we let fCt D V.t0F C t1G/g be a general pencil of
plane curves of degree d ,

‰ D f.L; p/ 2 P2� � P2 jp 2 Lg

be the universal line and

� D f.t; L; p/ 2 P1 �ˆ jmp.L � Ct / � 3g:

Let B � P2 be the image of � under the projection � ! ˆ ! P2; that is, the curve
traced out by flex points of members of the pencil.
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Exercise 11.33. First, show that � is indeed smooth, by showing that the “universal flex”

† D f.C;L; p/ jmp.C � L/ � 3g � PN �ˆ

(where PN is the space parametrizing all degree-d plane curves) is smooth and invoking
Bertini. Can you give explicit conditions on the pencil equivalent to the smoothness
of �?

Exercise 11.34. If p 2 P2 is a base point of the pencil, show that exactly three members
of the pencil have a flex point at p, and that the curve B has an ordinary triple point at p.

Exercise 11.35. If a point p 2 P2 is a node of the curve Ct containing it, the tangent
lines to the two branches are each flex lines to Ct , so that the map � ! B is two-to-one
there. Show that the curve B has correspondingly a node at p.

Exercise 11.36. Finally, show that the triple points and nodes of B described in the
preceding two exercises are the only singularities of B .

Exercise 11.37. Let Ct be an element of our pencil with a hyperflex .L; p/. Show that
the map � ! P1 is simply ramified at .t; L; p/, and simply branched at t .

Exercise 11.38. Let Ct be an element of our pencil with a node p; let L1 and L2 be the
tangent lines to the two branches of Ct at p. Show that .t; p; Li / 2 � , and that these
are ramification points of weight 2 of the map � ! P1 (that is, each of the lines Li
is a limit of three flex lines of nearby smooth curves in our pencil, and these three are
cyclically permuted by the monodromy in the family). Conclude that t is a branch point
of multiplicity 4 for the cover � ! P1.

Exercise 11.39. Let fCtg be a general pencil of plane curves of degree d including a
cuspidal curve C0. (That is, let C0 D V.F / be a general cuspidal curve, C1 D V.G/
a general curve and fCt D V.F C tG/g the pencil they span.) As t ! 0, how many
flexes of Ct approach the cusp of C0? How about if C0 has a tacnode?

The following series of exercises (Exercises 11.40–11.44) sketches a proof of
Proposition 11.13.

Exercise 11.40. Suppose that p 2 C is an An-singularity for n � 3. Show that the
blow-up C 0 D Blp C of C at p has a unique point q lying over p, and that q 2 C 0 is
an An�2-singularity. Conclude in particular that the normalization zC ! C of C at p
has genus

pa. zC/ D pa.C / �
�
1
2
.nC 1/

˘
:

Exercise 11.41. Let S be a smooth surface and C � S a curve with an A2n�1-
singularity at p.

(a) Show that there is a unique curvilinear subscheme � � S of degree n supported at
p such that a local defining equation of C � S at p lies in the ideal I2� .
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(b) If zS D Bl� S is the blow-up of S along � , show that the proper transform zC of C
in zS is smooth over p and intersects the exceptional divisor E transversely twice at
smooth points of zS .

(c) Conversely, show that if D � zS is any such curve then the image of D in S has an
A2n�1-singularity at p.

Exercise 11.42. Prove the analog of Exercise 11.41 for A2n-singularities. This is the
same statement, except that in the second and third parts the phrase “intersects the
exceptional divisor E transversely twice at smooth points of zS” should be replaced with
“is simply tangent to the exceptional divisor E at a smooth point of zS and does not meet
E otherwise.”

Exercise 11.43. Let L be a line bundle on a smooth surface S , and assume that for any
curvilinear subscheme � � S of degree n supported at a single point we have

H 1.L˝ I2�/ D 0:

Show that the locus �k � PH 0.L/ of curves in the linear series jLj with an Ak-
singularity is locally closed and irreducible of codimension k in PH 0.L/ for all
k � 2n � 2.

Exercise 11.44. Deduce from the above exercises the statement of Proposition 11.13.

Exercise 11.45. Show that if L is the n-th power of a very ample line bundle, then the
condition H 1.L˝ I2�/ D 0 is satisfied for any curvilinear subscheme � � S of degree
n=2 or less. Conclude in particular that if D � jLj is a general net in the complete linear
series jLj associated to the fourth or higher power of a very ample bundle then no curve
C 2 D has singularities other than nodes and ordinary cusps.

The following three exercises sketch out a calculation of the number of curves
C � S with a tacnode in a suitably general three-dimensional linear system. (Here, as
in the case of cusps, when we use the term “tacnode” without the adjective “ordinary”
we include as well singularities that are specializations of ordinary tacnodes, that is,
An-singularities for any n � 3, triple points or points on multiple components.)

Exercise 11.46. Let S be a smooth surface and L a line bundle on S . Let B D PTS be
the projectivization of the tangent bundle of S , which we may think of as a parameter
space for subschemes � � S of degree 2 supported at a single point. Construct a vector
bundle E on B whose fiber at a point � 2 B may be naturally identified with the
vector space

E� D H 0.L=L˝ I2�/

Exercise 11.47. In terms of the description of the Chow ringA.B/ ofB D PTS given in
Section 11.4.2, calculate the top Chern class of the bundle constructed in Exercise 11.46.
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Exercise 11.48. Using the preceding two exercises, find an enumerative formula for the
number of curves in a three-dimensional linear series D � jLj that have a tacnode. If
S � P3 is a smooth surface of degree d , apply this to find the expected number of plane
sections with a tacnode. Check your answer by calculating the number directly in the
cases d D 2 and 3.

The following three exercises describe a way of deriving the formula for the number
of binodal curves in a net via linearization. We begin by introducing a smooth, projective
compactification of the space of unordered pairs of points p; q 2 P2: We set

ẑ D f.L; p; q/ jp; q 2 Lg � P2� � P2 � P2;

and let ˆ be the quotient of ẑ by the involution .L; p; q/ 7! .L; q; p/. To put it
differently, ˆ consists of pairs .L;D/ with L � P2 a line and D � L a subscheme of
degree 2; or, differently still, ˆ is the Hilbert scheme of subschemes of P2 with Hilbert
polynomial 2. (Compare this with the description in Section 9.7.4 of the Hilbert scheme
of conic curves in P3 — this is the same thing, one dimension lower.)

Exercise 11.49. Observe that the projection ˆ ! P2� expresses ˆ as a projective
bundle over P2�, and use this to calculate its Chow ring.

Exercise 11.50. Viewing ˆ as the Hilbert scheme of subschemes of P2 of dimension 0
and degree 2, construct a vector bundle E on ˆ whose fiber at a point D is the space

E.L;p;q/ D H 0.OP2.d/=I
2
D.d//:

(What would go wrong if instead of using the Hilbert scheme ˆ as our parameter space
we used the Chow variety — that is, the symmetric square of P2?) Express the condition
that a curve C D V.F / � P2 be singular at p and q in terms of the vanishing of an
associated section �F of E on H at .L; p; q/

Exercise 11.51. Calculate the Chern classes of this bundle, and derive accordingly the
formula for the number of binodal curves in a net.
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Keynote Questions

(a) LetM Š Pef �1 be the space of e�f matrices andMk �M the locus of matrices
of rank k or less. What is the degree of Mk? (Answer on page 433.)

(b) Let S � Pn be a smooth surface and f W S ! P3 the projection of S from a
general plane ƒ Š Pn�4 � Pn. At how many points p 2 S will the map f fail to
be an immersion? (Answer on page 438.)

(c) Let C � P3 be a smooth rational curve of degree d . How many lines L � P3 meet
C four times? (Answer on page 441.)

12.1 Degeneracy loci
We saw in Chapter 5 that the Chern class ci .F/ of a vector bundle F of rank f on

a smooth variety X can be characterized, when F is generated by global sections, as
the class of the scheme where e D f � i C 1 general sections of F become dependent:
Specifically, if the locus where a map

' W OeX ! F

fails to have maximal rank has the expected codimension i , then ci .F/ is the class of the
scheme that is locally defined by the e � e minors of a matrix representing '. A similar
result holds for Segre classes.

We can substantially extend the usefulness of this characterization in two ways:
by considering the rank-k locus of a map OeX ! F for arbitrary k � min.e; f /, and
by replacing OeX with an arbitrary vector bundle E . In this chapter we will do both:
We henceforth consider the class of the scheme Mk.'/ where a map of vector bundles
' W E ! F has rank � k, locally defined by the ideal of .k C 1/ � .k C 1/ minors of a
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matrix representation of '. Such loci are called degeneracy loci. We write e and f for
the ranks of E and F , respectively.

In the “generic” case, where X is an affine space of dimension ef and 'gen is the
map defined by an f � e matrix of variables, the codimension of the locus Mk.'gen/ is
.e � k/.f � k/ (Harris [1995, Proposition 12.2] or Eisenbud [1995, Exercise 10.10]).

In general we say that .e � k/.f � k/ is the expected codimension of Mk.'/. In
this chapter we will give a formula for the class ofMk.'/ under the assumption that it
has the expected dimension

Such a formula was first found by Giambelli in 1904, in the special case where E
and F are both direct sums of line bundles. René Thom observed more generally in
the context of differential geometry that when Mk.'/ has the expected codimension
its class (suitably construed) depends only on the Chern classes of E and F . This was
made explicit by Porteous (see Porteous [1971], which reproduces notes from 1962),
giving the expression now called Porteous’ formula. (The formula might more properly
be called the Giambelli–Thom–Porteous formula; we have chosen to call it the Porteous
formula for brevity and because that is how it appears in much of the literature.) The
result was proven (in a more general form, in which one specifies the ranks of the
restriction of ' to a flag of subbundles of E) in the context of algebraic geometry by
Kempf and Laksov [1974].

The form of the expression is interesting in itself: Porteous’ formula expresses
ŒMk.'/� as a polynomial in the components of the ratio c.F/=c.E/.

To get an idea of what is to come, consider the case k D 0, and suppose that the
locus M0.'/, where the map ' induces the zero map on the fibers, has the expected
codimension ef . The map ' may be regarded as a global section of the bundle E� ˝ F ,
and the locus M0.'/ is the locus where this global section vanishes; thus its class is
cef .E� ˝ F/.

The splitting principle makes it easy to understand cef .E� ˝ F/: If E D
L

Li and
F D

L
Mi were sums of line bundles, then E�˝F would be the sum of the L�i ˝Mj .

If we write c.Li / D 1C ˛i and c.Mj / D 1C ˇj , then c.L�i ˝Mj / D 1C ˇj � ˛i ,
so, by Whitney’s formula,

c.E� ˝ F/ D
Y
i;j

.1C ˇj � ˛i /;

and in particular

cef .E� ˝ F/ D
Y
i;j

.ˇj � ˛i /:

This expression is symmetric in each of the two sets of variables ˛i and ˇj , so it can
be written in terms of the elementary symmetric functions of these variables, which are
the Chern classes of E and F . If we think of the ˛i as the roots of the Chern polynomial
ct .E/ WD 1 C c1.E/t C c2.E/t2 C � � � , and similarly for ct .F/, then cef .E� ˝ F/ is
the classical resultant of ct .E/ and ct .F/, written Rest .ct .E/; ct .F//. (See for example
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Eisenbud [1995, Section 14.1] for more about resultants and their role in algebraic
geometry.) By the splitting principle, the result we have obtained holds for all maps of
vector bundles:

Proposition 12.1. If E and F are vector bundles of ranks e and f on a smooth varietyX ,
then

cef .E� ˝ F/ D Rest .ct .E/; ct .F//:

The polynomials ct .E/ and ct .F/ each have constant coefficient 1, and in this case
we can express the resultant differently.

We first introduce some notation. For any sequence of elements  WD .0; 1; : : : /
in a commutative ring and any natural numbers e; f , we set�e

f
./ D detDe

f
./, where

Def ./ WD

0BBBBBBBBB@

f fC1 � � � � � � eCf �1

f �1 f � � � � � � eCf �2
:::

:::
: : :

:::

:::
:::

: : :
:::

f �eC1 f �eC2 � � � � � � f

1CCCCCCCCCA
:

Proposition 12.2. If a.t/ D 1C a1t C � � � C aet
e and b.t/ D 1C b1t C � � � C bf t

f

are polynomials with constant coefficient 1, then

Rest .a.t/; b.t// D �ef

�
b.t/

a.t/

�
D .�1/ef�fe

�
a.t/

b.t/

�
;

where Œb.t/=a.t/� denotes the sequence of coefficients .1; c1; c2; : : : / of the formal power
series b.t/=a.t/ D 1C c1t C c2t2 C � � � , and similarly for Œa.t/=b.t/�.

We will give the proof in Section 12.2.
For any element  2 A.X/, we write Œ� for the sequence .0; 1; : : : /, where i is

the component of  of degree i . The next corollary gives the expression of the top Chern
class of a tensor product that we will use:

Corollary 12.3. If E and F are vector bundles of ranks e and f on a smooth variety X ,
then

cef .E� ˝ F/ D Rest .ct .E/; ct .F// D �ef

�
c.F/
c.E/

�
:

In particular, if ' W E ! F is a homomorphism that vanishes in expected codimension
ef , then

ŒM0.'/� D �
e
f

�
c.F/
c.E/

�
:
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Porteous’ formula for the class of an arbitrary degeneracy locus follows the same
pattern:

Theorem 12.4 (Porteous’ formula). Let ' W E ! F be a map of vector bundles of
ranks e and f on a smooth variety X . If the scheme Mk.'/ � X has codimension
.e � k/.f � k/, then its class is given by

ŒMk.'/� D �
e�k
f �k

�
c.F/
c.E/

�
:

The formula is easiest to interpret in the case k D e � 1 < f ; in this case �f �k
e�k

./

is the determinant of the 1 � 1 matrix

D1f �eC1

�
c.F/
c.E/

�
D

�
c.F/
c.E/

�f �eC1
;

where we write f˛gk for the codimension-k part of a Chow class ˛ 2 A.X/. Specializing
further, if E D OeX then fc.F/=c.E/gf �eC1 D cf �eC1.F/, so we recover the charac-
terization of Chern classes as degeneracy loci (Theorem 5.3). If instead F D OfX , then
fc.F/=c.E/�gf �eC1 D f1=c.E/gf �eC1, the Segre class sf �eC1.E�/, so we recover
the characterization of the Segre class as degeneracy locus of a map OfX ! E�.

More generally, �1
f �eC1

Œc.F/=c.E/� represents an obstruction to the existence of
an inclusion of vector bundles ' W E ! F : If ' were an inclusion of vector bundles,
then F=E would be a vector bundle of rank equal to rankF � rank E D f � e, so
�1
f �eC1

Œc.F/=c.E/� D fc.F/=c.E/gf �eC1 D 0.
The proof of Theorem 12.4 will be given in Section 12.3: After a reduction to a

“generic case,” we will express ŒMk.'/� as the image of ŒM0. /�, where is a map from
a bundle S of rank e � k to a bundle F 0 of rank f on a Grassmannian bundle over X ;
under the pushforward to X , the entry fc.F 0/=c.S/gi in the matrix De�k

f
Œc.F/=c.E/�

will be replaced by fc.F/=c.E/gi�k , yielding Porteous’ formula.

12.2 Porteous’ formula for M0.'/

In this section we will prove the resultant formula of Proposition 12.2, and thus
complete the proof of Corollary 12.3.

Proof of Proposition 12.2: Since the polynomial
Q
.ˇi � ˛j / has no repeated factors,

it divides any polynomial in the ˛i and ˇj that vanishes when one of the ˛i is equal to
one of the ˇj . We first show that �e

f
.b.t/=a.t// has this vanishing property. Indeed,

if a.t/ and b.t/ have a common factor 1 C  , then dividing a.t/ by this root gives a
polynomial a.t/ such that

a.t/
b.t/

a.t/
D g.t/
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is a polynomial of degree < f . If we write the ratio b=a as a power series

b.t/

a.t/
D 1C c1t C c2t

2
C � � � ;

and substitute the power series 1C c1t C � � � into this expression, we get a power series

g.t/ D a.t/c.t/ D 1C c1t C c2t
2
C � � �

whose coefficients ci D ci C a1ci�1 C � � � C ae�1ci�eC1 vanish for i � f . It fol-
lows that the vector .ae�1; : : : ; a1;�1/ is annihilated by De

f
.b.t/=a.t//, and thus

�e
f
.b.t/=a.t// D detDe

f
.b.t/=a.t// D 0.

It follows that

�ef .b.t/=a.t// D d Rest .a.t/; b.t// D d
Y
i;j

.ˇj � ˛i /

for some polynomial d in the ˛i and ˇj .
Writing a.t/ D

Q
.1C˛i t / and b.t/ D

Q
j .1Cˇj t /, we see that the coefficient of

tk in the power series
P
ckt

k D b.t/=a.t/ is homogeneous of degree k in the variables
˛i ; ˇj , and thus every term in the determinant �e

f
.b.t/=a.t// has degree ef , as does

Rest .a.t/; b.t//. It follows that d is a constant.
If we take all the ai D 0, we see that b.t/=a.t/ D b.t/, and De

f
.b.t/=a.t// becomes

lower-triangular; in this case its determinant is .bf /eD
�Q

j ˇj
�e
D Rest .a.t/; b.t//,

so d D 1.

12.3 Proof of Porteous’ formula in general

12.3.1 Reduction to a generic case

We first explain how to reduce the proof to a case where a slightly stronger hypothesis
holds:

(a) Mk.'/ is of the expected dimension .e � k/.f � k/.
(b) Mk.'/ is reduced.
(c) The points x 2 X where the map 'x has rank exactly k are dense in Mk.'/;

equivalently, Mk�1.'/ has codimension >.e � k/.f � k/.

To do this, consider the map

 W E

�
1
'

�
����! E ˚ F

taking E onto the graph �' � E ˚ F of '. The original map ' is the composition of  
with the projection to F .
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We now form the Grassmannian bundle � W X 0 WD G.e; E˚F/! X , and we write
S ! ��.E ˚ F/ for the tautological subbundle of rank e. Since  is an inclusion of
bundles, the universal property of the Grassmannian guarantees that there is a unique
map u W X ! X 0 such that the pullback under u of the tautological inclusion map
S ! ��.E ˚ F/ on the Grassmannian is  W E ! E ˚ F , and thus the pullback
of the composite map '0 W S ! ��.E ˚ F/ ! ��F is '. It follows that Mk.'/ D

u�1.Mk.'
0//.

Since E � E ˚ F is the kernel of the projection to F , the points of Mk.'
0/ are the

points x 2 X 0 such that the fiber of S meets the fiber of ��E in dimension at least e � k.
With notation parallel to that of Chapter 4, this is the Schubert cycle† WD †.e�k/f�k .E/:
It is defined over any open subset of X where the bundles in question are trivial, by the
same determinantal formula that defines the corresponding Schubert cycle in the case of
vector spaces. A look at this formula shows that † DMk.'/ as schemes.

Over an open set in X where the bundles E and F are trivial, the Grassmannian
X 0 D G.e; E ˚ F/ is the product of X with the ordinary Grassmannian G.e; e C f /
and the Schubert cycle † is the product of X with the corresponding Schubert cycle
in G.e; e C f /. As was mentioned in the discussion of the equations of Schubert
varieties after Theorem 4.3, these varieties are reduced, irreducible and Cohen–Macaulay
(Hochster [1973] or De Concini et al. [1982]). In particular, Mk.'

0/ D † is reduced,
irreducible and Cohen–Macaulay of codimension .e�k/.f �k/. Moreover,Mk�1.'

0/ D

†.e�kC1/f�k .E/ has codimension .e�kC1/.f �k/ > codim†, so the points x0 2 X 0

where '0x0 has rank exactly k are dense in Mk.'
0/.

Because Mk.'
0/ D † is a Cohen–Macaulay subvariety, we can apply the Cohen–

Macaulay case of Theorem 1.23 and conclude that ŒMk.'/� D u�ŒMk.'
0/�. Since

u� W A.X 0/ ! A.X/ is a ring homomorphism, and since the Chern classes of S and
��F pull back to the Chern classes of E and F respectively, we see that it suffices to
prove Porteous’ formula for the map '0.

12.3.2 Relation to the case k D 0

Replacing ' by '0 as above, we may assume that ' satisfies hypotheses (a), (b) and
(c) of the previous section.

We next linearize the problem by introducing more data. To say that x 2 Mk.'/

means that there is some k-dimensional subspace of Fx that contains 'x.Ex/, and by
assumptions (a) and (c) the subspace is equal to 'x.Ex/ when x is a general point of
Mk.'/. To make use of this idea, we introduce the Grassmannian � W G.e � k; E/! X .
We write S � ��E for the tautological rank-k subbundle. Let � W S ! ��E ! ��F
be the composite map. The locus in G.e � k;F/ where ��.'/ W ��E ! ��F factors
through the tautological rank-k quotient ��.E/=S may also be described as M0.�/, the
locus of points x where � vanishes. It follows that the map from M0.�/ to Mk.'/ is
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surjective and generically one-to-one. Since we have assumed that Mk.'/ is reduced,
we can compute the class ŒMk.'/� as ��ŒM0.�/�.

From the fact that � is generically one-to-one onM0.�/, we have that dimM0.�/ D

dimMk.'/ D dimX � .e� k/.f � k/. Since dimG.e� k; E/ D dimX C k.e� k/, it
follows that M0.�/ has the expected codimension .e � k/f , and thus by Corollary 12.3

ŒMk.'/� D ��ŒM0.�/� D ���
e�k
f

�
c.��F/
c.S/

�
:

12.3.3 Pushforward from the Grassmannian bundle

Completion of the Proof of Theorem 12.4: It remains to compute

���
e�k
f

�
c.��F/
c.S/

�
:

Let Q D .��E/=S. By Whitney’s formula,

c.S/ D
c.��E/
c.Q/

;

so
c.��F/
c.S/

D
c.��F/
c.��E/

c.Q/ D ��
�
c.F/
c.E/

�
c.Q/:

The point is that we have isolated the factors in the entries of the matrix

De�kf Œ��.c.F/=c.E//c.Q/�

that are pullbacks from X . To take advantage of this, we expand the determinant
�e�k
f

Œ��
�
c.F/=c.E/

�
c.Q/� into a sum of classes of the form ��.ı/�, where � is a

product of e � k Chern classes of Q. From the push-pull formula (Theorem 1.23), we
see that �� takes ��.ı/� to ı��.�/.

The fibers of the morphism � are all isomorphic to the Grassmannian G.e � k; e/,
which has dimension .e � k/k, so any class of codimension < .e � k/k pushes forward
to 0. Since Q has rank k, the only product of e � k Chern classes of Q that has nonzero
pushforward is ck.Q/e�k , and this class will push forward to some multiple dŒX� of the
fundamental class of X . The coefficient d is the intersection number of ck.Q/e�k with
the general fiber of � .

We can compute d by first restricting Q to a general fiber of � , obtaining the
tautological quotient bundle Q on G.e�k; e/. The number d is the degree of ck.Q/e�k ,
which is 1 by Corollary 4.2.

It follows that if � is any k-fold product of Chern classes of Q then

��.�
�.ı/�/ D

�
ı if � D ck.Q/e�k;
0 otherwise:
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In particular, since each term in the usual expansion of an .e � k/� .e � k/ determinant
is the product of e � k factors,

���
e�k
f

�
c.��F/
c.S/

�
D �� det

0BBBBBBBBB@

cf cfC1 � � � ce�kCf �1

cf �1 cf � � � ce�kCf �2
:::

:::
:::

:::
:::

:::
:::

:::
:::

cf �eCkC1 � � � � � � cf

1CCCCCCCCCA
;

where

cj D �
�

�
c.F/
c.E/

�j�k
ck.Q/:

Since �� is a ring homomorphism, the coefficient of ck.Q/e�k in this expansion is

���e�kf �k

�
c.F/
c.E/

�
;

and we see that

���
e�k
f

�
c.��F/
c.S/

�
D �e�kf �k

�
c.F/
c.E/

�
;

as required.

12.4 Geometric applications

12.4.1 Degrees of determinantal varieties

As a direct application, we use Porteous’ formula to determine the degrees of the
varieties of e � f matrices of rank � k. Another approach is to form an explicit basis
for the component of each degree in the homogeneous coordinate ring of this variety,
and thus to compute the Hilbert function. This seems first to have been done in Hodge
[1943]; for a modern treatment related to his ideas, see De Concini et al. [1982]. For
other approaches, generalizations and references, see Abhyankar [1984] and Herzog and
Trung [1992].

Theorem 12.5. Let A be an e � f matrix of linear forms on Pr , and let Mk WD

Mk.A/ � Pr be the scheme defined by its .k C 1/ � .k C 1/ minors. If Mk has the
expected codimension .e � k/.f � k/ in Pr , then its degree is

deg.Mk/ D

e�k�1Y
iD0

i Š.f C i/Š

.k C i/Š.f � k C i/Š
:
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Note that as a special case we could take Pr D Pef �1 the space of all nonzero
e � f matrices modulo scalars and A the matrix of homogeneous coordinates on Pef �1.
Indeed, the general case follows from this one: Any matrix A as in the statement of the
theorem corresponds to a linear map Pr ! Pef �1, and if the preimage Mk of the locus
ˆk � Pef �1 of matrices of rank k or less has the expected codimension its degree must
be equal to the degree of ˆk .

The formula simplifies in the case k D e � 1, with f � e. Here we see that

deg.Me�1/ D
0Š.f /Š

.e � 1/Š.f � .e � 1//Š
D

� f

e�1

�
I

if in addition e D f , the degree is f , the degree of the determinant.
On the other hand, when k D 1 the formula telescopes: We have

e�2Y
iD0

i Š

.i C 1/Š
D

1

.e � 1/Š

and

e�2Y
iD0

.f C i/Š

.f � 1C i/Š
D
.e C f � 2/Š

.f � 1/Š
;

so we get

deg.M1/ D
1

.e � 1/Š
�
.e C f � 2/Š

.f � 1/Š
D

�eCf �2
e�1

�
:

Note that when Pr D Pef �1 is the space of all nonzero e � f matrices modulo scalars
and A the matrix of homogeneous coordinates on Pef �1, the scheme M1.A/ is the
Segre variety Pe�1 � Pf �1 � Pef �1 and the formula gives the degree of that variety,
agreeing with the computation made by other means in Section 2.1.5.

Proof of Theorem 12.5: Multiplication by the matrix A defines a vector bundle map

.OPr /
˚e
! .OPr .1//

˚f ;

and we are asking for the class of the locus where this map has rank k or less. Letting
� 2 A1.Pr/ be the hyperplane class, we have

c.F/ D .1C �/f D
fX
rD0

�f
r

�
�r ;



Geometric applications Section 12.4 435

from which we conclude that the class of Mk is given by

ŒMk� D

ˇ̌̌̌
ˇ̌̌̌
� f
f �k

�
�f �k � � �

� f
fCe�2k�1

�
�fCe�2k�1

:::
:::� f

f �eC1

�
�f �eC1 � � �

� f
f �k

�
�f �k

ˇ̌̌̌
ˇ̌̌̌

D

ˇ̌̌̌
ˇ̌̌̌
� f
f �k

�
� � �

� f
fCe�2k�1

�
:::

:::� f
f �eC1

�
� � �

� f
f �k

�
ˇ̌̌̌
ˇ̌̌̌ �.e�k/.f �k/:

The degree of Mk is thus the last determinant, which may be simplified as follows.
To begin with, we make a series of column operations: First, we replace each column,
starting with the second, with the sum of it and the column to its left, arriving atˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

� f
f �k

� � f
f �kC1

�
� � �

� f
fCe�2k�1

�
:::

:::
:::

:::
:::

:::� f
f �eC1

� � f
f �eC2

�
� � �

� f
f �k

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

� f
f �k

� � fC1
f �kC1

�
� � �

� fC1
fCe�2k�1

�
:::

:::
:::

:::
:::

:::� f
f �eC1

� � fC1
f �eC2

�
� � �

�fC1
f �k

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ :

Now we do the same thing again, this time starting with the third column, then again,
starting with the fourth, and so on, obtaining the determinantˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

� f
f �k

� � fC1
f �kC1

�
� � �

� fCe�k�1
fCe�2k�1

�
:::

:::
:::

:::
:::

:::� f
f �eC1

� � fC1
f �eC2

�
� � �

�fCe�k�1
f �k

�

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

f Š
kŠ.f �k/Š

.fC1/Š
kŠ.f �kC1/Š

� � �
.fCe�k�1/Š

kŠ.fCe�2k�1/Š
:::

:::
:::

:::
:::

:::
f Š

.e�1/Š.f �eC1/Š
.fC1/Š

.e�1/Š.f �eC2/Š
� � �

.fCe�k�1/Š
.e�1/Š.f �k/Š

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ :
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We can pull a factor of f Š from the first column, .f C 1/Š from the second, and
so on; similarly, we can pull a kŠ from the denominators in the first row, a .k C 1/Š from
the denominators in the second row, and so on. We arrive at the product

e�k�1Y
iD0

.f C i/Š

.k C i/Š

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

1
.f �k/Š

1
.f �kC1/Š

� � �
1

.fCe�2k�1/Š
:::

:::
:::

:::
:::

:::
1

.f �eC1/Š
1

.f �eC2/Š
� � �

1
.f �k/Š

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ :

Next, we multiply the first column by .f � k/Š , the second by .f � kC 1/Š , and so
on, obtaining the expression

e�k�1Y
iD0

.f C i/Š

.k C i/Š.f � k C i/Š

ˇ̌̌̌
ˇ̌̌̌
ˇ

1 1 � � �

f � k f � k C 1 � � �

.f � k/.f � k � 1/ .f � k C 1/.f � k/ � � �
:::

:::

ˇ̌̌̌
ˇ̌̌̌
ˇ :

Finally, we can recognize the columns of this matrix as the series of monic polyno-
mials 1, x, x.x � 1/, x.x � 1/.x � 2/; : : : of degrees 0; 1; 2; : : : ; m� k � 1, applied to
the integers f � k; f � k C 1; : : : ; f C e � 2k � 1. Its determinant is thus equal to the
Vandermonde determinantˇ̌̌̌

ˇ̌̌̌
ˇ

1 1 1 � � �

f � k f � k C 1 f � k C 2 � � �

.f � k/2 .f � k C 1/2 .f � k C 2/2 � � �

:::
:::

:::

ˇ̌̌̌
ˇ̌̌̌
ˇ ;

which is equal to
Qe�k�1
iD0 i Š . Putting this all together, we have established Theorem 12.5.

12.4.2 Pinch points of surfaces

Let C � Pn be a smooth curve. A classical theorem (Exercise 3.34) describes the
projection � D �ƒ W C ! P2 from a general .n � 3/-plane: it is an immersion whose
image has only ordinary nodes as singularities. We would now like to describe in similar
fashion the geometry of the projection � W S ! P3 of a smooth surface S � Pn from a
general plane L Š Pn�4.

In general, Mather [1971; 1973] gave normal forms for the singularities of general
projections of a smooth variety of dimension � 7 to a hypersurface. For the case of a
smooth surface S � Pn and a general projection � W S ! P3 this is classical and easy
to describe; see for example Griffiths and Harris [1994, p. 611]. There are precisely three
local analytic types of singular points of the image �.S/ � P3:
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xyz D 0

Figure 12.1 Three branches of the double curve meeting in a triple point.

pinch point

x2z C y2 D 0

Figure 12.2 Double curve passing through a pinch point.

� There is a curve in �.S/ over which the map is two-to-one, and in an analytic
neighborhood of a general point on this curve the surface S0 is the union of two
smooth sheets crossing transversely.

� There are a finite number of points in �.S/ with preimage of length 3, and at
each such point �.S/ is the union of three smooth sheets intersecting transversely
(Figure 12.1).

� There are finitely many points of S where the differential of � is not injective, and
in suitable local coordinates near such a point the map is .s; t/ 7! .s; st; t2/, so
that the image satisfies the equation x2z D y2. Such points in the image are called
pinch points (Figure 12.2). In the given coordinates the double curve is the z-axis,
and the two sheets at the point .0; 0; z0/ will have tangent planes y D ˙

p
z0 � x.

The geometry of the map, and of the image, is beautiful: pinch points are
points of the double curve of �.S/ where the local monodromy interchanges the
two sheets.



438 Chapter 12 Porteous’ formula

We now ask the enumerative question: In terms of the standard invariants of the sur-
face S � Pn, how many pinch points will S0 have? This is Keynote Question (b), and we
can answer it with Porteous’ formula. The differential of the map � is a vector bundle map

d� W TS ! ��TP3 ;

and the formula tells us that the number of points where this map fails to be injective,
counted with multiplicities, is the degree-2 piece of the quotient

c.��TP3/
c.TS /

:

Denote by � D c1.OS .1// the pullback to S of the hyperplane class on P3 (equivalently,
the restriction to S of the hyperplane class on Pn). Pulling back the Euler sequence

0 �! OP3 �! OP3.1/
4
�! TP3 �! 0

to S , we see that c.��TP3/ D 1C 4� C 6�
2. Writing c1 and c2 for c1.T �S / and c2.T �S /,

we have

c.��TP3/
c.TS /

D
1C 4� C 6�2

1 � c1 C c2
D .1C 4� C 6�2/.1C c1 C .c

2
1 � c2//:

Since deg.�2/ D degS , the degree-2 part of this expression is

6 deg.S/C deg.4�c1 C c21 � c2/:

Proposition 12.6. The number of pinch points of a general projection of a smooth
surface S � Pn to P3 is

6 deg.S/C deg.4�c1 C c21 � c2/;

where the ci D ci .T �S / are the Chern classes of the cotangent bundle of S .

Proof: The map � fails to be an immersion at a point s 2 S � Pn if and only if the
projection center ƒ Š Pn�4 � Pn meets the projective tangent plane TpS to S at p.
The union of the tangent planes to S is clearly at most four-dimensional, so for generalƒ
the number of such points is finite.

It remains to prove that each pinch point counts with multiplicity 1 in the degeneracy
locus of the differential d� W TS ! ��TP3 : This is equivalent to saying that at each point
where the differential drops rank the 2 � 2 minors of the Jacobian matrix representing it
generate the maximal ideal. From the local form of the map given above, we see that the
Jacobian is 0@

@=@s @=@t

s 1 0

st t s

t2 0 2t

1A;
with ideal of 2 � 2 minors .s; t/ as required.
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A beautiful example of Proposition 12.6 is the projection � W S ! P3 of the
Veronese surface S D �2.P2/ � P5 from a general line L � P5. We will sketch the
geometry of the map and its image briefly.

To begin with, the secant variety of the Veronese surface is a hypersurface X � P5.
This is a reflection of the fact that a point x 2 P5 lying on a secant line p; q of S
in fact lies on a one-dimensional family of secants: the line in P2 through the points
p; q 2 S D P2 is carried, under the Veronese map, to a conic curve C � S � P5, and,
since the point x lies in the plane spanned by C , every line through x in that plane will
be a secant line to S .

Now, since X is in fact a cubic hypersurface, a general line L � P5 will meet X
in three points, corresponding to three lines in P2. Each of these lines will be carried
into a conic in P5 and then under projection from L will be mapped onto a line with
degree 2 (and two branch points). Thus the double curve of �.S/ will consist of three
lines, meeting in a single point in P3 (the unique triple point of �.S/), and each line will
have two pinch points, accounting for the six pinch points predicted by Proposition 12.6.

12.4.3 Pinch points and the tangential variety of S

There is an alternative derivation of the formula of Proposition 12.6, based on the
observation that the number of pinch points of a general projection of a smooth surface
S � Pn to P3 is related to the degree of the tangential surface T .S/ of S , that is, the
union

T .S/ D
[
p2S

TpS � Pn

of the projective tangent planes to S . More precisely, the number of pinch points of a
general projection of S � Pn to P3 is the degree of T .S/ times the number d of tangent
planes TpS containing a general point of T .S/.

To carry this out, recall from Section 7.4.3 that the Gauss map G W S ! G.2; n/ is
the map sending each point p 2 S to its projective tangent plane TpS ; assuming T .S/
does have the expected dimension 4, we can apply Proposition 10.4 on the degree of a
variety swept out by linear spaces to express this degree as the second Segre class of
the pullback G�.S/ via G of the universal subbundle S on G.2; n/. To express this, we
recall also from Section 7.4.3 that we have an exact sequence

0 �! OX .�1/ �! G�S �! TX .�1/ �! 0

relating G�.S/ to the hyperplane bundle of S � Pn and a twist of the tangent bundle.
Applying the formula for the Chern class of a tensor product with a line bundle (Proposi-
tion 5.17) and the Whitney formula, we arrive at the conclusion of Proposition 12.6 again.
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There is one advantage of this approach: Once we show that the tangential variety
T .S/ is indeed four-dimensional, we may conclude that if S � Pn is any smooth,
irreducible nondegenerate surface and n � 4, the number of pinch points of a general
projection of S to P3 is positive. We will sketch a proof that T .S/ is indeed four-
dimensional in Exercises 12.16–12.18.

On the other hand, the derivation of Proposition 12.6 via Porteous carried out here
has an advantage as well: It applies to any map of a surface S to P3, assuming only that
the singularities of the map and its image are as described on page 436 for a general
projection. Indeed, the same method may be applied to a map of a surface S to any
smooth threefold X , again assuming the singularities of the map are as described.

12.4.4 Quadrisecants to rational curves

As a final application of Porteous’ formula we will count the number of quadrisecant
lines to a rational space curve C � P3 (that is, lines meeting C in four points). This
will conclude our discussion, began in Section 10.5, of special secant planes to rational
curves; other cases that can similarly be dealt with using the Porteous formula are
suggested in Exercise 12.23.

The question we will address here is: Is there an enumerative formula for the number
of quadrisecant lines to a curve C � P3, say in terms of the degree d and genus g of C ?
We discuss a formula in the general case at the end of the subsection, but first we treat
the rational case, and we suppose that C Š P1.

Instead of looking at all lines in P3 and imposing the condition of meeting C
four times, we will look at 4-tuples of points on C and impose the condition that they
span only a line. We will use the set-up of Section 10.4.2: We identify the space of
subschemes � of degree 4 in C Š P1 with the symmetric power C .4/ Š P4 of C , and
introduce the bundle E� on C .4/ with fibers

E�� D H
0.O�.d//:

As in Section 10.4.2, a global section � of OC .1/ D OP1.d/ gives rise to a global
section of E� by restriction to each subscheme of C in turn. The restriction map

H 0.OP3.1// ,! H 0.OP1.d//! H 0.O�.d//

gives us a map ' W F ! E� of vector bundles on C .4/, where F is the trivial bundle
with fiber H 0.OP3.1//, and we see that the locus M2.'/ � P4 of subschemes � � P1

of degree 4 with dim� D 1 is the locus where the map ' has rank 2. (Note that ' can
never have rank <2.) Porteous’ formula will then give us an expression for the class of
this locus, valid in the case it has the expected dimension 4 � 2 � 2 D 0.

To carry this out, recall from Theorem 10.16 that the Chern classes of E� are

ci .E�/ D
�d�4Ci

i

�
�i 2 Ai .P4/;
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where � 2 A1.P4/ is as always the hyperplane class. Now we apply Porteous’ formula,
which tells us that the class of the locus of subschemes � � P1 contained in a line is

ŒM2.'/� D

ˇ̌̌̌
c2.E�/ c3.E�/
c1.E�/ c2.E�/

ˇ̌̌̌
D

ˇ̌̌̌
ˇ
�
d�2
2

�
�2

�
d�1
3

�
�3�

d�3
1

�
�

�
d�2
2

�
�2

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ
�
d�2
2

� �
d�1
3

��
d�3
1

� �
d�2
2

�ˇ̌̌̌ˇ �4
D
�
1
4
.d � 2/2.d � 3/2 � 1

6
.d � 1/.d � 2/.d � 3/2

�
�4

D
1
12
.d � 3/2.d � 2/.3.d � 2/ � 2.d � 1//�4

D
1
12
.d � 2/.d � 3/2.d � 4/�4:

This gives us the enumerative formula:

Proposition 12.7. If C � P3 is a rational space curve of degree d possessing only
finitely many quadrisecant lines then the number of such lines, counted with multiplicities,
is

1
12
.d � 2/.d � 3/2.d � 4/:

Note as a check that this number is 0 in the cases d D 2, 3 and 4, as it should be.
We will see in Exercise 12.24 a condition for a given quadrisecant line to be simple,

that is, to count with multiplicity 1. We will also see in Exercise 12.25 that for C � P3

a general rational curve of degree d — that is, a general projection of a rational normal
curve from Pd to P3 — all quadrisecants are simple, so this is the actual number of
quadrisecant lines.

Quadrisecants to curves of higher genus
If we try to generalize the arguments above to the case where C has higher genus, a

new issue arises. The Hilbert scheme parametrizing subschemes of degree 4 in P1 is P4,
whose Chow ring we know. But the space of subschemes of degree 4 of a smooth curve
C of higher genus — again, the fourth symmetric power C .4/ of C — is more complex;
in particular, its Chow ring is much harder to determine explicitly (see Collino [1975]).
The most general formula, for the number of d -secant .d � r � 1/-planes to a curve
of degree n and genus g in Ps , is derived (using topological cohomology groups rather
than Chow groups) in Chapter 8 of Arbarello et al. [1985]; the formula for the number q
of quadrisecant lines to a curve C � P3 of degree d and genus g is

q D 1
12
.d � 2/.d � 3/2.d � 4/ � 1

2
g.d2 � 7d C 13 � g/:
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We could also approach the problem of counting quadrisecant lines to a space
curve of arbitrary genus via the classical theory of correspondences. This is described in
Chapter 2 of Griffiths and Harris [1994].

12.5 Exercises
Exercise 12.8. Let A D .Pi;j / be a 2 � 3 matrix whose entries Pi;j are general
polynomials of degree ai;j on P3. Assuming that a1;j C a2;k D a1;k C a2;j for all j
and k— so that the minors of A are homogeneous — what is the degree of the curve
M1.A/ where A has rank 1?

Exercise 12.9. In Exercise 2.32, we introduced the variety of triples of collinear points,
that is,

‰ D f.p; q; r/ 2 Pn � Pn � Pn jp; q and r are collinear in Png:

Calculate the class  D Œ‰� 2 An�1.Pn � Pn � Pn/ by applying Porteous to the
evaluation map E ! F , where E is the trivial bundle on Pn � Pn � Pn with fiber
H 0.OPn.1// and

F D ��1OPn.1/˚ �
�
2OPn.1/˚ �

�
3OPn.1/;

with �i W Pn � Pn � Pn ! Pn projection on the i -th factor.

Exercise 12.10. In Exercise 9.37, we introduced

ˆr D f.L;M/ 2 G.1; r/ �G.1; r/ jL \M ¤ ¿g:

Find the class of ˆr in A.G.1; r/ �G.1; r// using Porteous’ formula.

The following exercise uses Porteous to generalize the result of Exercise 9.44.

Exercise 12.11. Let X be a smooth projective variety, E a vector bundle of rank r on X
and F ;G � E subbundles of ranks a and b. For any k, find the class of the locus

† D fp 2 X j dim.Fp \ Gp/ � kg;

assuming this locus has the expected (positive) codimension.

Exercise 12.12. Verify Proposition 12.6 directly in case S is a smooth surface in P3 to
begin with.

Exercise 12.13. Verify Proposition 12.6 directly in case S D S.1; 2/ � P4 is a cubic
scroll (Section 9.1.1). What is the double curve of the image S0?

Exercise 12.14. Verify Proposition 12.6 directly in case S D S.2; 2/ � P5 is a rational
normal surface scroll. What does the double curve of S0 look like in this case, and how
many triple points will S0 have?
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Exercise 12.15. Let S � Pn be a smooth surface.

(a) Show that we have a map from the projective bundle P.TS ˚OS / to Pn with image
the tangential variety X of S (specifically, carrying the fiber over p to the tangent
plane Tp .S/).

(b) Show that the pullback of OPn.1/ under this map is the line bundle

OP.TS˚OS /.1/˝OS .1/:

(c) Use this and our description of the Chow ring of the projective bundle P.TS ˚OS /
to re-derive the formula of Proposition 12.6 for the degree of X .

Exercises 12.16–12.18 suggest a proof of the assertion made in Section 12.4.3 that
if S � Pn is a nondegenerate surface and n � 4 then the union of the tangent planes to
S is a fourfold.

Exercise 12.16. Let B � G.2; n/ be an irreducible surface, and let

X D
[
ƒ2B

ƒ � Pn

be the variety swept out by the corresponding 2-planes. Show that if X is three-
dimensional then

(a) a general point p 2 X lies on a one-dimensional family of planesƒ 2 B , and hence
(b) any two planes ƒ;ƒ0 2 B meet in a line.

Exercise 12.17. Let B � G.2; n/ be an irreducible surface such that any pair of planes
ƒ;ƒ0 2 B meet in a line. Show that either all the planes ƒ lie in a fixed 3-plane or all
the planes ƒ contain a fixed line.

Exercise 12.18. Using the preceding two exercises, conclude that if S � Pn is a
nondegenerate surface and n � 4 then the union of the tangent planes to S is a fourfold.

Exercise 12.19. Let X � Pn be a smooth sixfold and � W X ! P7 a general projection.
Find the number of points where the differential d� has rank 4 or less.

Exercise 12.20. Let S � Pn be a smooth surface of degree d whose general hyperplane
section is a curve of genus g; let e and f be the degrees of the classes c1.TS /2 and
c2.TS / 2 A2.S/. Find the class of the cycle T1.S/ � G.1; n/ of lines tangent to S
in terms of d , e, f and g. From Exercise 4.21, we need only the intersection number
ŒT1.S/���3; find it as the number of pinch points of a projection of S from a general Pn�4.

Exercise 12.21. Let C � P3 be a smooth, nondegenerate curve. Show that the general
secant line to C is not trisecant, and deduce that the locus of trisecant lines to C , if
nonempty, has dimension 1. (For extra credit, show that it is empty only in case C is a
twisted cubic or an elliptic quartic.)
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Exercise 12.22. Check the conclusion of Proposition 12.7 for general rational curves
of degrees d D 5 and 6 by independently counting the number of quadrisecant lines to
such curves.
Hint: Show that such a curve C will lie on a smooth cubic surface S , and observe that
the quadrisecant lines to C will be contained in S .

Exercise 12.23. Use Porteous’ formula to find the expected number of:

(a) Trisecant lines to a rational curve C � P4.
(b) 6-secant 2-planes to a rational curve C � P4.
(c) 8-secant 3-planes to a rational curve C � P5.
(d) 4-secant 2-planes to a rational curve C � P6.

Exercise 12.24. Let C � P3 be a smooth curve and L � P3 a line meeting C in
exactly four points p1; : : : ; p4 and not tangent to C at any of them. Suppose that the
tangent lines Tpi .C / to C at the pi are pairwise independent mod L (that is, they span
distinct planes with L), and that the cross-ratio of the four points p1; : : : ; p4 2 L is
not equal to the cross-ratio of the four planes Tp1 .C /C L; : : : ; Tp4 .C /C L. Show
that � D p1 C � � � C p4 2 P4 counts as a quadrisecant line with multiplicity 1 (that
is, the 3 � 3 minors of a matrix representative of ' near � generate the maximal ideal
m� � OP4;� ).

Exercise 12.25. Let C now be a general rational curve of degree d in P3.

(a) Show that C has no 5-secant lines.
(b) Show that if L � P3 is any quadrisecant line to C , then L meets C in four

distinct points.
(c) Finally, show that every quadrisecant line to C satisfies the conditions of the pre-

ceding exercise, and deduce that the number of quadrisecant lines to C is exactly
1
12
.d � 2/.d � 3/2.d � 4/. (Note: The two preceding parts are straightforward

dimension counts; this one is a little more subtle.)

Exercise 12.26. Let fQ� � P3g�2P3 be a general web of quadrics in P3, that is, the
three-dimensional linear series corresponding to a general four-dimensional vector space
V � H 0.OP3.2//.

(a) Find the number of 2-planes ƒ � P3 that are contained in some quadric of the net.
(b) A line L � P3 is said to be a special line for the web if it lies on a pencil of quadrics

in the web. Find the class of the locus † � G.1; 3/ of special lines.
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Excess intersections and
the Chow ring of a
blow-up

Keynote Questions

(a) Suppose that S1, S2 and S3 � P3 are three surfaces of degrees s1, s2 and s3 whose
intersection consists of the disjoint union of a reduced line L and a zero-dimensional
scheme � � P3. What is the degree of �? More generally, what happens when we
replace L with a smooth curve of genus g and degree d? (Answer on page 450.)

(b) Suppose that S1 and S2 � P4 are two surfaces whose intersection consists of the
disjoint union of a reduced line L and a zero-dimensional scheme � � P4. In terms
of the geometry of S1 and S2, can we say what the degree of � is? Can we say what
the degree of � is in terms of the degrees of S1 and S2 alone? As in the preceding
question, what happens when we replace L with a smooth curve of genus g and
degree d? (Answers on page 459.)

(c) Letƒ Š Pn�c � Pn be a codimension-c linear subspace, and letQ1; : : : ;Qn � Pn

be general quadric hypersurfaces containing ƒ. If we write the intersection
T
Qi

as the union
n\
iD1

Qi D ƒ [ �;

what is the degree of �? (Answer on page 460.)
(d) Is it the case that every smooth curve C � P3 is the scheme-theoretic intersection

of three surfaces? (Answer on page 452.)
(e) Let C � P3 be a smooth curve of degree d and genus g. If S; T � P3 are smooth

surfaces of degrees s and t containing C , at how many points of C are S and T
tangent? (Answer on page 476.)



446 Chapter 13 Excess intersections and the Chow ring of a blow-up

Let X be a smooth projective variety and S1; : : : ; Sk � X subvarieties. Basic
intersection theory, for example in the form of Bézout’s theorem for proper intersections
(Theorem 1.1), tells us that the sum of the classes of the irreducible components of the
intersection, with appropriate multiplicities, is

Q
ŒSi �, but only under the hypothesis that

the intersection has the expected dimension. The first three keynote questions of this
chapter are examples of what are called excess intersection problems: situations in which
we wish to describe something about improper intersections, where the intersection has
components of dimension greater than expected.

A remarkable discovery of Fulton and MacPherson is that this is possible in surpris-
ing generality: Given a collection of cycles Si � X , subject to mild hypotheses there
is a canonical way of assigning a class C˛ 2 A.C˛/ of the right dimension to each
connected component C˛ of the intersection

T
Si so that the sum of the pushforwards

of these classes in A.X/ is equal to
Q
ŒSi �. Moreover, the C˛ are determined by local

geometry. The result is sometimes called the excess intersection formula.
The first part of this chapter will be devoted to an exposition of this formula. We

begin with some elementary examples, including Keynote Question (a), worked out by
hand, which should make it at least plausible that such a formula should exist. We then
present the general statement, Theorem 13.3. (An excellent account, with proofs, from
which some of the material in this chapter is taken, is Fulton and MacPherson [1978];
see also Fulton [1984, Section 6.3].) We also give a heuristic argument which may help
to explain the form that the excess intersection formula takes. As an application of the
excess intersection formula, we answer Keynote Questions (b) and (c), and explain how
the excess intersection formula applies to the problem of finding the number of conics
tangent to five given conics, as suggested in Chapter 8.

The rest of the chapter is devoted to several related topics: the technique of special-
ization to the normal cone, the “key formula” for intersections in a subvariety, and a de-
scription of the Chow ring of the blow-up of a smooth variety along a smooth subvariety.

One note: We do not have the tools to give a proof of either the excess intersection
formula or the Grothendieck Riemann–Roch formula, the subjects of this chapter and
the next. Nonetheless, given their beauty and their importance in modern intersection
theory, we wanted to give an exposition of both topics. Thus in the final two chapters of
this book, we will not attempt to prove all the assertions made, focusing rather on what
they say and heuristically why they might be true.

One aspect of this is that while up to now we have introduced Chern classes only
on smooth varieties, here we want to invoke the fact that they may be defined much
more generally for locally free sheaves on any scheme, and that they continue to satisfy
Theorem 5.3. In particular, we can use part (d) of that theorem to define the product of an
arbitrary Chow class with the Chern class of a bundle; in other words, a Chern class ci .E/
of a vector bundle on an arbitrary scheme X defines an operation Ak.X/! Ak�i .X/.
This is the point of view taken by Fulton; the reader can find proofs of these assertions
in Fulton [1984, Chapter 3].
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13.1 First examples

13.1.1 The intersection of a divisor and a subvariety

Suppose that X is a smooth projective variety, D � X is a Cartier divisor and
� W C ,! X the inclusion of a subvariety C in X . If C intersects D generically
transversely, then the intersection class ŒC �ŒD� of D and C is ŒC \D�; more generally,
since D is Cohen–Macaulay, this holds as long as C is not contained in D. But what if
C is contained in D? In this case D \C D C , so we would like to find a class C on C
that pushes forward to the class ŒD�ŒC � on X .

Since D is an effective divisor, it is the zero locus of a global section � of the line
bundle L D OX .D/ onX , and is equivalent to .� 0/0� .� 0/1, the divisor of zeros minus
poles, of any rational section � 0 of L. We can find a rational section � 0 of L such that
.� 0/0 and .� 0/1 are both generically transverse to C . (Reason: If L0 is a very ample
bundle then L ˝ L0n is very ample for large n, and thus both L ˝ L0n and L0n have
sections without poles that vanish on divisors generically transverse to C . If we call these
sections � and � 0, then �=� 0 is a rational section of L with the desired property.) If we
take C to be the class of the cycle h.� 0/0 \ C i � h.� 0/1 \ C i, then since intersection
products are well-defined on rational equivalence classes we have

��.C / D Œ.�
0/0 \ C � � Œ.�

0/1 \ C � D ŒD�ŒC � 2 A.X/;

as required.
We may think of the class C as the class of a rational section of the line bundle

LjC , or equivalently as the first Chern class of LjC . Anticipating what is to come, we
note that

ND=X WD HomX .ID=X ;OD/ D HomX .L�1;OD/ D LjD:

Thus we have proven:

Proposition 13.1. Suppose that X is a smooth projective variety. Let � W C ,! X be the
inclusion of a subvariety of codimension k in a smooth variety X , and let D � X be an
effective Cartier divisor containing C . We have

ŒC �ŒD� D ��C 2 A
kC1.X/;

where

C D c1.ND=X jC /:

Under suitable hypotheses we can give a geometric interpretation of Proposition 13.1
that shows why the normal bundle of D, restricted to C , is relevant. For simplicity we
will take C to be a smooth curve, and suppose that there is a rational deformation of the
divisor D � X , that is, a one-parameter family of divisors D � � �X , parametrized
by A1, such that the special fiber D0 is D. (This will be the case in particular whenever
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D0 D C

D�

X

Figure 13.1 The limits of the points of intersection of C with the deformed divisorD�
are zeros of the corresponding section of the normal bundle.

h0.OX .D// > 1.) Suppose moreover that a general member Dt of the deformation is
transverse to C ; that is,

Dt \ C D fp1.t/; : : : ; pk.t/g for t ¤ 0;

with k D deg.ŒDt � � ŒC �/ D deg.ŒD� � ŒC �/. Finally, suppose that the deformation is
nontrivial to first order along C ; that is, its restriction to the scheme Spec kŒt �=.t/2 � �
supported at 0 corresponds to a section � of the normal bundle ND=X that is not
identically 0 along C .

In this situation, we claim that the limit as t ! 0 of the divisor Dt \ C is the zero
locus of the section � , and thus represents the class c1.ND=X jC /. Heuristically, away
from zeros of � the deformation moves D away from itself (and hence away from C ),
while the points where � is zero are stationary to first order.

To see this, take local analytic coordinates .z1; : : : ; zn/ on X near a point of C such
that, locally,

D D .zn D 0/ and C D .z2 D � � � D zn D 0/:

Locally, z1 is a coordinate on C , and the normal bundle of D is trivial. We can write the
family D � � �X as the zero locus of the function

zn C tf1.z1; : : : ; zn�1/C t
2f2.z1; : : : ; zn�1/C � � � ;

with f1.z1; : : : ; zn�1/ representing the corresponding section of the normal bundle.
Restricting to � � C , this becomes

tf1jC C t
2f2jC C � � � D t .f1jC C tf2jC C � � � /;

from which we see that a zero of f1jC of order m will be a limit of exactly m points of
intersection of C with Dt as t ! 0.
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L

L [D

L [E

S1

Figure 13.2 S2 and S3 intersect S1 in L [D and L [E.

13.1.2 Three surfaces in P3 containing a curve

Next we consider Keynote Question (a): Given three surfaces S1, S2 and S3 � P3

of degrees si whose intersection consists of the disjoint union of a reduced line L and
a zero-dimensional scheme � , we wish to find the degree of � . We will approach the
question naively, solving it the way it might have been solved in the 19th century. We
will then explain the modification necessary if L is replaced with an arbitrary smooth
curve. This leads us to a formula exhibiting the main features of the general case.

By way of preparation, we would like to be able to assume that S1 is smooth without
changing the intersection S1 \ S2 \ S3. We can do this if we reorder the surfaces so that
the degree s1 of S1 is maximal among the si . With this choice we can replace S1 by the
zero locus of a general linear combination F1 C AF2 C BF3, where Fi is the defining
equation of Si and A and B are general polynomials of degrees s1 � s2 and s1 � s3.
The surface S1 is then the general element of a linear system in P3 whose base locus is
smooth of dimension less than 3=2, and smoothness follows from Proposition 5.6.

Because S1 is smooth, we can simplify the problem of computing deg� by working
in the intersection ring A.S1/. By hypothesis, the intersection of the two surfaces S1 and
S2 may be written as

S1 \ S2 D LCD 2 Z1.S1/

for some divisor D on S1. Similarly, write

S1 \ S3 D LCE 2 Z1.S1/

for some divisor E on S1. (Note that D, E or even both may be 0.) If p 2 D \ L,
then p is a singular point of S1 \ S2. If also p 2 S3, then, since S3 is a Cartier divisor,
p is a singular point of S1 \ S2 \ S3 as well, contradicting our hypothesis that the
intersection is smooth along L. Thus S1\S2\S3 is the disjoint union of L andD\E,
so � D D \E. In particular the degree of � is the intersection number of the classes of
D and E in A.S1/.
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Denote by H 2 A1.S1/ the hyperplane class on S1; since S1 \ S2 � s2H and
S1 \ S3 � s3H , we have

D � s2H � L and E � s3H � L

in A1.S1/. Thus, in A.S1/ we have

ŒD�ŒE� D Œs2H � L�Œs3H � L�

D s2s3ŒH �
2
� .s2 C s3/ŒH�ŒL�C ŒL�

2

D s2s3ŒH �
2
� .s2 C s3/ŒH�ŒL�C ��c1NL=S1 ;

where � denotes the inclusion of L in S1, and ŒL�2 D ��c1NL=S1 by the reasoning of
Section 13.1.1.

To obtain a numerical result, we note that deg.ŒH�2/ D degS1 D s1, while
deg.ŒH�ŒL�/ D degL D 1. We can compute deg.c1.NL=S1// D deg.ŒL�2/ as in
Section 2.4 by using the adjunction formula twice. First, KL D ŒL�jL C ŒKS1 �jL and
KS1 D OS1.s1 � 4/. Thus

deg.ŒL�ŒKS1 �/ D s1 � 4;

and since degKL D 2g.L/ � 2 D �2 we get

deg.ŒL�2/ D 2 � s1:

This gives

deg.�/ D deg.ŒD�ŒE�/ D
Y

si �
X

si C 2;

which is the answer to our first keynote question. Note that in this formula the numberQ
si D degŒS1�ŒS2�ŒS3� is the degree that the intersection would have if there were no

curve component, so we can think of the remaining terms
P
si � 2 as representing “the

contribution L of the line to the intersection.”
For example, if s1 D s2 D s3 D 1 we get deg� D 0, corresponding to the

fact that three planes meet in a linear space. More generally, if s1 D 1 then we get
deg� D .s2 � 1/.s3 � 1/, corresponding to the fact that the residual curves D and E
are plane curves of degrees s2 � 1 and s3 � 1, respectively.

We can make a similar computation if we replace the line L by any smooth curve C .
If D has degree d and genus g then the adjunction formula, applied in the same way,
gives

deg.c1.NC=S1// D deg.ŒC �2/ D 2g � 2 � d.s1 � 4/:

It follows that in this more general case

deg� D deg.ŒD�ŒE�/ D
Y

si � d
�X

si

�
C 4d C 2g � 2:
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We can interpret this formula as saying that the class
Q
ŒSi � can be decomposed

into the actual number of isolated points of intersection (with multiplicities) and a class,
supported on the positive-dimensional component of

T
Si , expressed in terms of various

normal bundles. First, note that

deg c1.NSi=P3 jC / D dsi :

Next consider the natural exact sequence of ideal sheaves

0 �! IS1=P3 �! IC=P3 �! IC=S1 �! 0:

Since S1 is a Cartier divisor in P3 and C is a Cartier divisor on S1, the left-hand
term is a line bundle on P3 and the right-hand term is the line bundle on S1. Thus the
sequence restricts to an exact sequence of vector bundles on C and, applying the functor
HomOS .�;OC /, we derive the exact sequence of restricted normal bundles

0 �! NC=S1 �! NC=P3 �! NS1=P3 jC �! 0:

In particular,

deg c1.NC=P3/ D deg c1.NC=S1/C deg c1.NS1=P3 jC /

D 2g � 2 � d.s1 � 4/C ds1

D 4d C 2g � 2:

Putting this together, we have proven an excess intersection formula for our case:

Proposition 13.2. Let S1, S2 and S3 � P3 be surfaces of degrees s1, s2 and s3 whose
intersection consists of the disjoint union of a smooth curve C of degree d and genus g
and a zero-dimensional scheme � . We have

deg
�Y

ŒSi �
�
D deg.�/C d

�X
si

�
� .4d C 2g � 2/

D deg.�/C
X

deg c1.NSi=P3 jC / � deg c1.NC=P3/:

Another way to view this result is to imagine that we have one-parameter families
S1;S2;S3 � � � P3 specializing to S1; S2 and S3 such that the fibers .S1/t ; .S2/t and
.S3/t intersect transversely in s1s2s3 points p1.t/; : : : ; ps1s2s3.t/ for t ¤ 0. Proposi-
tion 13.2 tells us that the number of points pi .t/ that tend toward C as �! 0 isX

deg c1.NSi=P3 jC / � deg c1.NC=P3/I

in other words, this is “the contribution ofC to the total degree s1s2s3 of the intersection.”
We will see in Section 13.3.1 a heuristic way to interpret this expression.
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We can apply the formula of Proposition 13.2 to answer Keynote Question (d): If
C � P3 is a smooth curve of degree d and genus g, can C necessarily be expressed as
the (scheme-theoretic) intersection of three surfaces? By the formula of Proposition 13.2,
the degrees si of the three surfaces would have to satisfy the equalityY

si � d
�X

si

�
C 4d C 2g � 2 D 0:

For example, if C � P3 is an elliptic quintic curve, then C lies on no planes or quadrics
(this follows from the genus formula for smooth curves on a plane and quadric), but when
all si are � 3 the quantity

Q
si � 5

�P
si
�
C 20 is positive. (In Exercise 13.16 the reader

is asked to answer the corresponding question for quintic curves C � P3 of genera 0
and 2.) This question was first answered by Peskine and Szpiro [1974] in a different
way; the method given here is from Fulton [1984, Example 9.1.2]. Exercises 13.17 and
13.18 give further examples of such applications.

We will now explain how to restate Proposition 13.2 in forms that match the general
expression of the excess intersection formula given in Theorem 13.3. The expressionP
i deg c1.NSi=P3 jC /�deg c1.NC=P3/ that appears in Proposition 13.2 may be thought

of as the degree of the component in A0.C / of the ratio of Chern classesQ
c.NSi=P3 jC /
c.NC=P3/

:

This expression also works for the components of
T
Si that are of the correct dimen-

sion — that is, of dimension 0. For if p 2
T
Si is an isolated zero-dimensional (possibly

nonreduced) component, then the multiplicity of the reduced point pred in the intersection
is equal to the degree of p, as per the discussion in Section 1.3.8, and the normal bundle
Np=P3 is isomorphic to the sum of the normal bundles of the Si restricted to p, so thatQ

c.NSi=P3 jp/
c.Np=P3/

D 1;

representing the fundamental class Œp� 2 A0.p/. If for each connected component C˛
of the intersection we define the class

C˛ D

�Q3
iD1 c.NSi=P3 jC˛ /
c.NC˛=P3/

�
0

2 A0.C˛/;

then we have shown
3Y
iD1

ŒSi � D
X

�C˛�.C˛ /;

where the sum is taken over all connected components C˛ of
T
Si .
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This expression for C˛ is symmetric in the Si but, as we shall soon see, there is
sometimes an advantage in using the following nonsymmetric form. We single out S1,
and note that since S1 is smooth, C is actually a Cartier divisor on S1. Thus it makes
sense to speak of the normal bundle of C in S1, and we have an exact sequence of
normal bundles

0 �! NS1=P3 �! NC˛=P3 �! NC˛=S1 �! 0:

Using Whitney’s formula (Theorem 5.3), we get

c.NC˛=P3/ D c.NS1=P3/c.NC˛=S1/:

Substituting the right side for the left in the formula for C˛ , we get

C˛ D

�Q3
iD2 c.NSi=P3 jC˛ /
c.NC˛=S1/

�
0

:

Bearing in mind that the Segre class of a bundle is the inverse of the Chern class, we get
the expressions

C˛ D

�
s.NC˛=P3/

3Y
iD1

c.NSi=P3 jCa/
�
0

D

�
s.NC˛=S1/

3Y
iD2

c.NSi=P3 jC˛ /
�
0

:

13.2 Segre classes of subvarieties
One might wonder why we have bothered to replace the inverse Chern class in the

formula above with the Segre class. The reason is that Segre classes can be defined in
a much more general context; indeed, this is the approach of Fulton [1984], where the
Segre classes are used to define the Chern classes. What we need for the definition of
Segre classes is really just a projective morphism � W E ! C and a distinguished Cartier
divisor class � 2 A.E/. Since we can compute the intersection of a Cartier class with
any subvariety, we can define a codimension-i class on E as the i-th self-intersection
�i , and push

P
�i forward to C . In the case where E is the projectivization of a bundle

N on C and � D c1.OPN .1//, the result is by definition the Segre class s.N /. More
generally we say that � W E ! C is a cone if E D ProjS, where S is a graded, locally
finitely generated sheaf of algebras over OC with S0 D OC , and � is the morphism
corresponding to the inclusion. Taking � to be the line bundle on E associated to the
sheaf of S-modules S.1/, we define the Segre class of the cone E to be

s.E/ D ��

�X
k

�k
�
2 A.C/:
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For our purposes it suffices to take the case where X is a variety, C � X is a proper
subscheme, and S D

L
n.InC=X=I

nC1
C=X

/, that is, the case where � W E ! C is the
exceptional divisor of the blow-up B D BlC X of X along C and � is the negative of
the class of the exceptional divisor E � B , restricted to E. Following the pattern above
we define the Segre class of C in X to be

s.C;X/ WD ��

�X
k�0

c1.OE .1//k
�
;

where the intersections are taken in A.E/.
For example, in the case where X is smooth and E is equidimensional (in particular,

when C is locally a complete intersection), since the blow-up has the same dimension as
X the dimension ofE is dimX�1, so the relative dimension ofE overC is codimC�1;
the codimension-k component sk.C;X/ of s.C;X/ is thus

sk.C;X/ WD ��.�
codimC�1Ck/:

Indeed, if C is locally a complete intersection in X then

InC=X=I
nC1
C=X
Š Symn.IC=X=I2C=X / D Symn.N �C=X /;

so Proj
�L

n InC=X=I
nC1
C=X

�
D Proj.N / and thus

s.C;X/ D s.NC=X / D c.NC=X /�1;
as before.

13.3 The excess intersection formula
Putting together these ideas, and recalling that on any variety C we can take the

product of an arbitrary class in A.C/ with the Chern class of a bundle on C , we can
express a very general form of Bézout’s theorem. It suffices to treat the case where we
intersect just two subvarieties:

Theorem 13.3 (Excess intersection formula). If S � X is a subvariety of a smooth
variety X and T is a locally complete intersection subvariety of X , then

ŒS�ŒT � WD
X
C

.�C /� .C /;

where:

� The sum is taken over the connected components C of S \ T .
� �C W C ! X denotes the inclusion morphism.
� C D fs.C; S/c.NT=X jC /gd 2 Ad .C /, where d D dimX � codimS � codimT

is the “expected dimension” of the intersection.
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If the subvariety S is locally a complete intersection as well, then we have a
symmetric form

C D fs.C;X/c.NS=X jC /c.NT=X jC /gd :

Two notes on this statement. First, it should be emphasized that each connected
component C of S \ T is to be taken with the scheme structure inherited from S \ T ;
this is important, because it may affect the classes s.C; S/ and s.C;X/. Secondly, it
might appear that when S � X is a locally complete intersection we have an exact
sequence of normal bundles

0 �! NC=S �! NC=X �! NS=X jC �! 0;

from which it would follow by Whitney that

s.NC=S / D
1

c.NC=S /
D
c.NS=X jC /
c.NC=X /

D s.NC=X /c.NS=X jC /;

accounting for the difference in the two expressions above for C . Sadly, the equality
s.C; S/ D s.C;X/c.NS=X / is not true in general, even when both S and T are locally
complete intersections, as for example in the case X D P3, C and T are both equal to a
line L � P3 and S is the union of two planes containing L. So the equality of the two
expressions in this case is even subtler than it looks.

By induction, we could extend the formula to a formula for the intersection of S with
an arbitrary number of locally complete intersection subvarieties Si � X . In the case
where the subvarieties Si to be intersected are all hypersurfaces, there is a form of the
excess intersection formula due to Wolfgang Vogel that is sometimes more easily adapted
to computation; see Vogel [1984] and, for a comparison with Theorem 13.3, van Gastel
[1990]. We will give a brief description of Vogel’s approach in Section 13.3.6 below.

Theorem 13.3 is of great theoretical importance in at least three circumstances:

Intersection products on nonsmooth varieties: The formula can serve as a definition of
the intersection product of locally complete intersection subvarieties of an arbitrary
variety X ; there is no smoothness used in defining the terms on the right-hand side of
the formula. This is, in fact, the way that Fulton [1984] defined intersections in this case.

Intersection products on smooth varieties: Defining intersections with locally complete
intersection subvarieties actually suffices to define all intersection products on a smooth
variety! Indeed, suppose T1; T2 � Y are arbitrary subvarieties. Since Y is smooth the
diagonal Y Š � � Y � Y is a locally complete intersection subvariety, so we can use
the asymmetric form of the formula on X D Y � Y to define classes on the connected
components of �\ .T1 � T2/ Š T1 \ T2. Pushing these classes forward to � Š X and
adding, we get the intersection class of T1 and T2 in X . Again, this is the path followed
in Fulton [1984].
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General pullbacks: In Theorem 1.23, we characterized the pullback '� of equivalence
classes of cycles along a projective morphism ' W X ! Y of smooth varieties by
taking the class of a cycle A on X to the class of '�1.A/, in the case where A is
generically transverse to ', in the sense that A is a linear combination of subvarieties
of Y whose preimages in X are generically reduced of the same codimension; the
moving lemma shows that we can find a cycle A with this property in any rational
equivalence class, so that specifying the pullback class in this case determines '�.
Theorem 13.3 gives a different way of defining '�.ŒA�/, without smoothness hypotheses
and without the moving lemma, in the cases where A � X is a closed locally complete
intersection subscheme ofX or the graph of ' is locally a complete intersection inX�Y
(a situation that holds whenever both X and Y are smooth): In these cases one can apply
Theorem 13.3 to compute the product of the class ŒX � A� and the class of the graph �'
of ' as a class on the intersection .X �A/\ �' Š '�1.A/ inside A.X � Y /, and push
the result forward along the projection to X . (Note that, as in the case of intersections,
the pullback class '�ŒA� is expressed as the pushforward of a class on the preimage
'�1.A/; this is occasionally very useful, as in the proof of Proposition 13.12.) One
must, of course, prove that this agrees with Œ'�1.A/� 2 A.X/ in the case where A is
generically transverse to '. Once more, this is the route taken in Fulton [1984].

For the proof of Theorem 13.3 and the treatment of its consequences as above, we
refer to Fulton [1984, Section 6.3], where all this is worked out. We will give only the
proof of a special case, Theorem 13.7; however, this proof contains one of the major new
ideas, from Fulton and MacPherson [1978], that went into the general theorem.

In the following section, we will give a heuristic argument that may help to explain
the form of Theorem 13.3. Following that, we work out some examples, including the
second and third keynote questions.

13.3.1 Heuristic argument for the excess intersection
formula

The expression given in Theorem 13.3 for the class C may seem to come out of
nowhere. The following calculation may help explain where it is coming from; though it
is not a suitable framework for a proof — it involves far too many extra hypotheses, and
we have omitted the multiplicity calculations that would be necessary, even subject to
those hypotheses, to make it into a proof — it will hopefully at least make the form of
Theorem 13.3 more plausible.

To begin with, we make the following assumptions:

� X will be a smooth, projective variety of dimension n.
� S and T � X will be smooth subvarieties of codimensions k and l respectively.
� The intersection C D S \ T will be smooth, with connected components C˛ of

codimension k C l �m˛.
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ˆ
f0g � C � � P4

�
0

Figure 13.3 Limits of points of intersection of the deformed varieties S� and T� are
singular points of S \ T D ˆ [ .f0g � C/.

Again, we want to assign to each C˛ a cycle class ˛ 2 Am˛ .C˛/ of dimension
kC l �n, which represents the contribution of C˛ to the total intersection S \T , that is,
such that if we denote by i˛ W C˛ ! X the inclusion, thenX

˛

.i˛/�.˛/ D ŒS� � ŒT � 2 A
kCl.X/:

We will do this by imagining that we can deform S and T to cycles S� and T�
on X intersecting transversely, and asking for the limiting position of the intersection
S� \ T� as � ! 0. We therefore make a crucial (and very frequently counterfactual)
fourth hypothesis:

� There exist families S; T � � �X , flat over a smooth rational curve �, with fibers
S0 D S and T0 D T , such that S� \ T� is transverse for � ¤ 0.

Given all this, we can express the intersection S\T of the .kC1/- and .lC1/-folds
S and T in the .nC 1/-fold � �X as a union

S \ T D ˆ [D;

where ˆ is flat over �, consisting of the components of the intersection S� \ T� for
� ¤ 0 and their limits — that is, the closure in � �X of the intersection of S \ T with
.� n f0g/ �X — and D D f0g � C , as in Figure 13.3 above.

Now, we know that the cycle „ D ˆ \ .f0g � X/ has dimension k C l � n, and
has class ŒS� � ŒT � 2 AkCl.X/ as a cycle on X . Moreover, „ consists of the sum of its
intersections „˛ D ˆ \D˛ with the connected components D˛ D f0g � C˛ of S \ T .
To find the class ŒS� � ŒT �, accordingly, we have to figure out the class of the intersection
ˆ \D˛ for each connected component.

Finally, one way to characterize the points of ˆ \D˛ is to observe that they are the
points p 2 D˛ where the tangent spaces Tp S and Tp T � Tp .� �X/ fail to intersect
in TpD˛. Now, if we had

TpD˛ D Tp S \ Tp T
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for all p 2 D˛, we would have a direct sum decomposition of bundles

ND˛=��X D NS=��X jD˛ ˚NT =��X jD˛ :

In general, we see that we have a map

ND˛=��X ! NS=��X jD˛ ˚NT =��X jD˛

between vector bundles on D˛ of ranks k C l �m˛ C 1 and k C l , and the locus where
this map fails to be injective (as a map of vector bundles) is exactly the cycle „˛.

We have

c.ND˛=��X / D c.NC˛=X /

and

NS=��X jD˛ D NS=X jC˛ ;

and likewise

NT =��X jD D NT=X jC˛ :

Now we can apply Porteous to deduce that the class of „ D ˆ \D˛ is

˛ D Œ„˛� D

�
c.NS=X jC˛ / � c.NT=X jC˛ /

c.NC˛=X /

�m˛
2 Am˛ .D˛/;

from which we arrive at the statement of Theorem 13.3.

13.3.2 Connected components versus irreducible
components

One further remark is in order before we get to the examples. One might ask if
it is possible to refine the excess intersection formula to associate a class C to each
irreducible component of the intersection, as opposed to each connected component, in
such a way that when we push forward each C into A.X/ and sum the results, we get
the class ŒS�ŒT �. The following example shows that this is not in fact possible.

Example 13.4. Let L1; : : : ; L4 � P2 be four concurrent (but distinct) lines, and
consider two reduced effective cycles S and T on P2, where S is the sum L1CL2CL3

and T D L1CL2CL4, as in Figure 13.4. Since S and T are cubic curves, the product
ŒS�ŒT � 2 A.P2/ is the class of (any) cycle consisting of nine points. On the other hand,
the intersection of the underlying algebraic sets is C WD L1 [ L2, and the two lines L1
and L2 play completely symmetric roles. Since 9 is an odd number, there is no canonical
way of dividing the intersection cycle into a cycle on L1 and a cycle on L2.
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L3

S=L +L +L1 2 3

T=L +L +L1 2 4

L1

L2

L4

Figure 13.4 The product ŒS�ŒT � is a cycle of nine points on L1 [ L2.

13.3.3 Two surfaces in P4 containing a curve

We can use Theorem 13.3 to answer the second of our keynote questions: Given
smooth surfaces S and T � P4 of degrees s and t whose intersection consists of a
smooth curve C of genus g and degree d and a collection � of reduced points, we ask,
as before, what we can say about the degree of � .

Because S and T are assumed smooth, they are locally complete intersections.
Moreover, since � is reduced each point p 2  satisfies p D Œp�. Thus the asymmetric
form of the expression for L in Theorem 13.3 gives

st D deg� C deg
�
c.NT=P4 jC /

c.NC=S /

�
0

D deg� C deg c1.NT=P4 jC / � deg c1.NC=S /:

Now deg c1.NC=S / is the degree of the class ŒC �2, computed in A.S/, which we
write ŒCS �2. On the other hand, the adjunction formula gives degKC D 2g � 2 D

degKT jC C degŒCT �2, and

KT D c1.NT=P4/CKP4 jT D c1.NT=P4/C 5H;

whereH is the hyperplane class inA1.T / (Hartshorne [1977, Proposition II.8.20]). Thus

deg c1.NT=P4 jC / D 2g � 2C 5d � degŒCT �2:

Putting this all together, we get

st D deg� C 2g � 2C 5d � degŒCS �2 � degŒCT �2;

which becomes deg� D st � 3 C degŒLS �2 C degŒLT �2 when C D L, a line. For
example, if S; T � P4 are 2-planes containing the line L, then � is empty and indeed
the formula gives deg� D 0. For other examples, see Exercise 13.19. In contrast to
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the answer to our first keynote question, this does not depend only on the degrees of S
and T (that is, their classes in A.P4/), but on their geometry; the simplest example of
this is described in Exercise 13.20 below.

13.3.4 Quadrics containing a linear space

As a second application of Theorem 13.3, we will answer Keynote Question (c). Let
Q1; : : : ;Qn � Pn be general quadric hypersurfaces containing a codimension-c plane
ƒ Š Pn�c � Pn.

Proposition 13.5. Let ƒ � Pn be a plane of codimension c. If Q1; : : : ;Qn are quadric
hypersurfaces that are general among those containing ƒ, then

n\
iD1

Qi D ƒ [ �

as schemes, where � is a set of�n
0

�
C

�n
1

�
C � � � C

� n

c�1

�
D 2n �

�n
c

�
� � � � �

�n
n

�
reduced points, disjoint from ƒ.

At one extreme, when c D 1 each Qi is the union of ƒ with a generic hyperplane,
and the intersection of these hyperplanes is a single point outsideƒ. At the other extreme,
when c D n, so that ƒ is a point, the set � consists of all but one of the 2n points in the
complete intersection of the Qi .

More interesting geometrically is the case where c D 2. Supposeƒ is the zero locus
of the linear forms X0 and X1. Then each of the quadrics Qi can be written as the zero
locus of a linear combination of X0 and X1:

Qi D V.Fi /; where Fi D X0Li CX1Mi

for some linear forms Li and Mi . Now consider the 2 � .k C 1/ matrix

ˆ D

�
X0 M1 M2 � � � Mk

X1 L1 L2 � � � Lk

�
:

Away from the locus ƒ D V.X0; X1/ where X0 and X1 both vanish, the rank-1 locus
of ˆ is just the intersection of the quadrics Qi ; in other words,

� D fX 2 Pn j rank.ˆ.X// � 1g:

The degree of � is then given by Porteous’ formula; as we worked out in Section 12.4.1,
this has degree k C 1. This is a special case of what is sometimes called the Steiner
construction; see Griffiths and Harris [1994, Section 4.3] for more information.
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Proof of Proposition 13.5: We first claim that ƒ is a reduced connected component of
the intersection and � consists of a collection of reduced points. In particular, since ƒ
is a connected component of the intersection, we may apply Theorem 13.3. Since the
ideal of ƒ is generated by c linear forms li , the conormal bundle N � WD Iƒ=I2ƒ of ƒ is
Ocƒ.�1/: The equation of a quadric hypersurface vanishing onƒ is a linear combination
of the li with linear coefficients, and thus defines a general section of N .�1/. Thus if
we fix equations for the Qi we get a general map

Onƒ.�2/! Ocƒ.�1/:

Since a general c � n matrix has minors vanishing in codimension n � c C 1, this
map is locally a surjection everywhere on ƒ, which is to say that the Qi cut out ƒ
scheme-theoretically. Since

T
Qi is smooth along ƒ, no other component of

T
Qi

meetsƒ. In addition, since the linear series spanned by theQi has no base points outside
of ƒ, it follows that the “residual” scheme � consists of reduced points, as claimed.

The normal bundle of Qi in Pn is OPn.2/jQi D OQi .2/. Thus, writing � 2 A1.ƒ/
for the hyperplane class, we have

c.NQi=Pn jƒ/ D 1C 2�:

From Nƒ=Pn Š Oƒ.1/˚c , we get

c.Nƒ=Pn/ D .1C �/c :

Thus, in the notation of Theorem 13.3, the contribution ƒ of the component ƒ to the
intersection is given by

ƒ D

�
.1C 2�/n

.1C �/c

�
0

2 A0.ƒ/ Š Z:

This is the coefficient of zn�c in

.1C 2z/n

.1C z/c
;

which is

x WD

n�cX
jD0

.�1/j 2n�c�j
� n

n�c�j

��cCj�1
j

�
;

and we must show that it is equal to
Pn
iDc

�
n
i

�
, the number of subsets with � c elements

in a set S of cardinality n.
Now

2n�c�j
� n

n�c�j

��cCj�1
j

�
D #fA � B � S j #B D n � c � j g

�cCj�1
j

�
:
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Thus we may regard the alternating sum x as counting subsets by inclusion-exclusion:
Setting k D n � c, a given subset A of cardinality a is counted a total ofX

.�1/j
� n�a

k�a�j

��n�kCj�1
j

�
times, and we recognize the last expression as the coefficient of zk�a in the power series
expansion of

.1C z/n�a

.1C z/n�k
;

which is 1 since the quotient is .1C z/k�a.

We can also verify the statement of Proposition 13.5 by specializing to the case
where each quadric Qi is a union of a general hyperplane Hi containing ƒ and a second
general hyperplane H 0i . Each point of

T
Qi is the point of intersection of a subset of

d hyperplanes fHigi2D and n � d hyperplanes fH 0i gi…D , and the point is outside ƒ if
and only if d < c. This establishes a bijection between the points of intersection outside
ƒ and subsets of f1; : : : ; ng of cardinality < c, yielding the result. Indeed, given that
the number of points depends only on the rational equivalence class of the Qi and the
fact that ƒ is a component of their intersection (the principle of specialization), this
argument gives an alternative proof of Proposition 13.5.

13.3.5 The five conic problem

Theorem 13.3 gives another way to solve the five conic problem treated in Chapter 8:
How many conics C � P2 are tangent to each of five given conics C1; : : : ; C5. The
problem was first solved by this method in Fulton and MacPherson [1978]; a short
version appears in Fulton [1984, p. 158]. Here we simply sketch the necessary ideas.

As we saw in Chapter 8, the set of conics tangent to Ci is a sextic hypersurface
Zi � P5 in the space P5 parametrizing all plane conics. As we also saw there, the
hypersurfaces Z1; : : : ; Z5 � P5 do not intersect properly; rather, they all contain
the Veronese surface S � P5 corresponding to double lines. Thus, if T denotes the
component of the (scheme-theoretic) intersection

T
Zi supported on S , we have

5\
iD1

Zi D T [ �;

and the problem is to determine the cardinality of � . In Chapter 8 we did this by replacing
P5 by the space of complete conics. Now we can apply Theorem 13.3 directly in P5. To
do this, we need:
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(a) The Chern class of the restriction to S of the normal bundle of Zi � P5. This is the
easiest part: Let � 2 A1.S/ be the class of a line in S Š P2, and let � 2 A1.P5/ be
the hyperplane class on P5; note that the restriction of � to S is 2�. Since the Zi are
sextic hypersurfaces, NZi=P5 D OZi .6/ and so

c.NZi=P5 jS / D 1C 12�:

(b) The multiplicity of Zi along S . By Riemann–Hurwitz, a general pencil of plane
conics including a double line 2L will have four other elements tangent to Ci , so
that multS .Zi / D 2. (See Exercise 13.31.)

(c) The Chern classes of the normal bundle of S � P5. In terms of the hyperplane
classes � 2 A1.P5/ and � 2 A1.S/, we have

c.TS / D .1C �/3 D 1C 3� C 3�2

and

c.TP5 jS / D .1C �/
6
jS D 1C 12� C 60�

2:

Applying the Whitney formula to the sequence

0 �! TS �! TP5 jS �! NS=P5 �! 0;

we conclude that

c.NS=P5/ D
1C 12� C 60�2

1C 3� C 3�2

D 1C 9� C 30�2;

and inverting this we have

s.NS=P5/ D 1 � 9� C 51�
2:

(d) The scheme-theoretic intersection of the hypersurfaces Zi . This is easy to state:
The component of

T
Zi supported on S is exactly the scheme T D V.I2

S=P5
/

defined by the square of the ideal IS=P5 . We will not give a proof here; given part (b)
above, the statement is equivalent to the statement that the proper transforms of the
Zi in the blow-up of P5 along S have no common intersection in the exceptional
divisor, which is proved Griffiths and Harris [1994, Chapter 6]. Alternatively, via
the isomorphism of the blow-up with the space of complete conics, it is tantamount
to the statement, proved in Section 8.2.3, that every complete conic tangent to each
of C1; : : : ; C5 is smooth.

Given part (d), the blow-up of P5 along T is the same as the blow-up along S , but
with the exceptional divisor doubled. Applying the definition of Section 13.2, the k-th
graded piece of the Segre class s.T;P5/ is 2kC3 times the corresponding graded piece
of s.S;P5/, so that

s.T;P5/ D 8 � 144� C 1632�2:
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Thus the contribution of S to the degree of the intersection
T
Zi is

deg
�Y

c.NZi=P5 jS / � s.T;P
5/
�
D deg..1C 12�/5.8 � 144� C 1632�2//

D 1632 � 60 � 144C 1440 � 8

D 4512;

and the degree of � is correspondingly 7776 � 4512 D 3264.

13.3.6 Intersections of hypersurfaces in general:
Vogel’s approach

We take a moment here to describe Vogel’s approach to the problem of excess
intersection, in the case where the varieties being intersected are all hypersurfaces. In
fact, we have already seen this approach carried out in a special case: The method
described here is exactly what we did in the case of the intersection of three surfaces in
P3 considered in Section 13.1.2.

Briefly, let X be a smooth, n-dimensional projective variety and D1; : : : ;Dk a
collection of hypersurfaces in X . Assume the intersection Y D

T
Di has components

of dimension strictly greater than n�k, as well as components of the expected dimension
n � k. For simplicity, say

k\
iD1

Di D ˆ [ �;

with ˆ and � smooth and disjoint, ˆ of pure dimension n � k C m and � of pure
dimension n � k. Can we find the class of the sum � of the components of the expected
dimension n � k?

In fact, we can, if we know something about the geometry of the divisors Di and
their intersection. What we want to do here is intersect the hypersurfaces Di one at
a time, and focus on the first step where the intersection fails to have the expected
dimension; if we allow ourselves to change the order of the divisors Di , we can assume
that this occurs after we have intersected k �mC 1 of the divisors, at which point ˆ
appears as a component of excess intersection. The point is, if we back up one step, we
see that the previous intersection D1 \ � � � \Dk�m must have been reducible: if � ¤ ¿,
then we must have

D1 \ � � � \Dk�m D ˆ [ B0:

Now back up one further step, and consider the intersection S D D1 \ � � � \Dk�m�1,
which has dimension n � k CmC 1. We have an equation of divisors on S

Dk�m \ S D AC B0;
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and similarly we can write

Dk�mC˛ \ S D AC B˛

for each ˛ D 0; : : : ; m. We can then express the cycle � as a proper intersection of
mC 1 divisors on the variety S :

� D B0 \ � � � \ Bm;

and if we know enough about the geometry of ˆ— specifically, if we can evaluate the
products of powers Œˆ�l 2 Al.S/ with products of the classes ŒD˛�jS 2 A1.S/— we
can then evaluate the class of this intersection as

Œ�� D

mY
˛D0

.ŒDk�mC˛�jS � Œˆ�/ 2 A
mC1.S/! An�k.X/:

As we said, this approach was the one we used in Section 13.1.2; for some other
examples, try Exercises 13.17 and 13.18.

13.4 Intersections in a subvariety
One frequently occurring situation in which excess intersection arises is the case of

cycles A and B on a smooth variety X that happen to both lie on a proper subvariety
Z ¨ X ; in this case, the generalized principal ideal theorem (Theorem 0.2) says that their
intersection has dimension at least dimAC dimB � dimZ > dimAC dimB � dimX .
Thus as cycles on X their intersection cannot even be dimensionally transverse. Never-
theless we can relate their intersection class ŒA�ŒB� 2 A.Z/ in Z to the intersection of
their classes on X . (To avoid confusion, we will denote the classes of A and B , viewed
as cycles on X , by ��ŒA�; ��ŒB� 2 A.X/.)

Proposition 13.6 (Key formula). Let � W Z ! X be an inclusion of smooth projective
varieties of codimension m, and let N D NZ=X be the normal bundle of Z in X . If
˛ 2 Aa.Z/ and ˇ 2 Ab.Z/, then

��˛ � i�ˇ D ��.˛ � ˇ � cm.NZ=X // 2 AaCbC2m.X/:

Proposition 13.6 follows easily from the important special case where B D Z.
Using the fact that ˛ŒZ� D ˛ 2 A.Z/, this takes the following form:

Theorem 13.7. Let � W Z ! X be an inclusion of smooth projective varieties of
codimensionm, and let NZ=X be the normal bundle of Z in X . For any class ˛ 2 A.Z/
we have

��.��˛/ D ˛ � cm.NZ=X / 2 AaCm.Z/:
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Proof of Proposition 13.6 from Theorem 13.7: From ��.��˛/ D ˛NZ=X , we use the
push-pull formula to get

��.˛NZ=Xˇ/ D ��.��.i�˛/ˇ/ D .��˛/.��ˇ/: �

Note that Theorem 13.7 and Proposition 13.6 may be deduced from the more
general Theorem 13.3. The result is easier to visualize in the special case, however,
and it will give us an occasion to describe a key technique, that of specialization to the
normal cone.

One way to see the plausibility of Theorem 13.7 is to consider the special case where
the normal bundle NZ=X extends to a bundle N with enough sections on all of X (this
happens, for example, when Z is a suitably positive divisor): In that case, ŒZ� D cm.N /,
so at least

��.�
�.��˛// D ��ŒZ�˛ D cm.N /˛:

The situation above can actually be realized topologically: Consider the complex
case, and suppose that NZ=X has enough sections. Topologically, the normal bundle
looks like a tubular neighborhood of Z in X , and again cm.NZ=X / is the class of the
zero locus of a general section � . Thinking of the image � as a perturbation Z0 of Z
within the tubular neighborhood, the set where � D 0 corresponds to the intersection
Z0 \Z— that is, the self-intersection of Z as a subvariety of X .

Neither of these ideas suffice to prove Theorem 13.7, even in the complex analytic
case: Rational equivalence is more subtle than homological equivalence, and the tubular
neighborhood theorem that we used is false in the category of complex analytic or
algebraic varieties. (For example, no analytic neighborhood of a conic curve C � P2

is biholomorphic to any neighborhood of the zero section in the normal bundle NC=P2 ;
see Exercise 13.23.) However, the technique of “specialization to the normal cone”
(also called “deformation to the normal cone”), introduced in Fulton and MacPherson
[1978] (see also the references at the end of Fulton [1984, Chapter 5]), provides a flat
degeneration from the neighborhood of Z in X to the neighborhood of Z in its normal
bundle, which suffices. We will take up this technique in the next section, and then return
to the proof of Theorem 13.7 in the following one.

Note that as a special case of Theorem 13.7, we see that if � W Z � X is an
inclusion of smooth projective varieties of codimension m then the square of the class
ŒZ� 2 Am.X/ is the pushforward ��.cm.NZ=X // of the top Chern class of the normal
bundle. (We can use this, for example, to determine the self-intersection of a linear space
ƒ Š Pm � X on a smooth hypersurface X � P2mC1, as suggested in Exercise 13.22.)
More generally, associating to a class � 2 Am.X/ the pushforwards ��.ck.NZ=X // of
the other Chern classes of the normal bundle of a smooth representative � W Z ! X (that
is, a smooth subvariety Z � X with ŒZ� D �) represents the analog, in the Chow setting,
of the Steenrod squares in algebraic topology.
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13.4.1 Specialization to the normal cone

Suppose again that X is a smooth projective variety of dimension n and Z � X is a
smooth subvariety of codimension m. Let

� W X D Blf0g�Z.P1 �X/! P1 �X

be the blow-up of P1 � X along the subvariety f0g � Z, and write E � X for the
exceptional divisor. As a variety, E is the projectivization of the normal bundle

N
f0g�Z=P1�X Š NZ=X ˚OZ :

Thus E is the compactification of the total space of the normal bundle N D NZ=X
described in Section 9.4.2.

We think of X as a family of projective varieties over P1 via the composition
˛ D �1 ı � W X ! P1 �X ! P1. Because X is a variety, the family is flat. The fibers
Xt of X over t ¤ 0 are all isomorphic to X , while the fiber X0 of X over t D 0 consists
of two irreducible components: the proper transform zX of f0g � X in X (isomorphic
to the blow-up BlZ.X/) and the exceptional divisor E Š P.N ˚ OZ/, with the two
intersecting along the “hyperplane at infinity” PN � P.N ˚OX / in E, which is the
exceptional divisor in the first component zX Š BlZ.X/.

Now consider the subvariety P1�Z � P1�X , and let Z be its proper transform in X .
Since f0g �Z is a Cartier divisor in P1 �Z, the morphism � carries Z isomorphically
to Z.

Write jN j � P.N ˚OZ/ for the open subset that is isomorphic to the total space
of the normal bundle N of Z in X . Because P1 �Z intersects f0g �X transversely in
f0g � Z, the intersection Z \ X0 is the zero section N0 � jN j. In particular, Z does
not meet the component zX of the zero fiber X0.

Let

� D �2 ı � W X ! X

be the composition of the blow-up map � W X ! P1 � X with the projection on the
second factor. For t 2 P1 other than 0, � carries Xt isomorphically to X . As for the fiber
X0, on the component zX � X0 the map � is the blow-down map zX D BlZ X ! X ,
while on the component E the map � is the composition i ı � of the bundle map
� W E Š P.N ˚OZ/! Z with the inclusion i W Z ,! X . The situation is summarized
in Figure 13.5.

We may describe the situation by saying that, in the family X ! P1, as t 2 P1

approaches 0 the neighborhood of Z in the fibers specializes from the neighborhood
of Z in X to the neighborhood of Z in the total space of its normal bundle in X .
More formally:
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E

Z

X D Blf0g�Z P1 �X

zX

�

f0g�Z
P1 �Z

P1 �X

�1

0
P1

Figure 13.5 Specialization to the normal cone.

Theorem 13.8. There is a flat family ˛ W X ! P1 containing a subvariety Z Š Z �P1

such that the restriction to P1 n f0g is isomorphic to

.P1 n f0g/ �X  - .P1 n f0g/ �Z

and such that an open neighborhood of Z Š ˛�1.0/ \ Z in ˛�1.0/ is isomorphic to
the total space of the normal bundle of Z in X .

If we have a family fAtgt2P1 of cycles in X that we would like to intersect with Z,
then we can use this construction to transform the intersection of A0 with Z into the
intersection of the fiber of the proper transform of A in X with the zero section in the
compactified normal bundle E Š P.N ˚OZ/. We can use our knowledge of the Chow
rings of projective bundles to analyze this intersection.

13.4.2 Proof of the key formula

We now return to the proof of Theorem 13.7. Using Theorem 13.8 we will reduce
the general case to the one treated in Proposition 9.16, where X is the total space of the
compactification P.NZ=X ˚OX / of the normal bundle of Z.
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We will use the notation introduced in Section 13.4.1. The idea of the proof is that
under the specialization to the normal cone the class i�i�˛ is deformed into the rationally
equivalent class j �j�˛, where

j W Z ! P.NZ=X ˚OZ/ D E

is the section sending Z to the zero section N0 � jN j � N WD P.NZ=X ˚OZ/. By
Proposition 9.16, j �j�˛ D ˛ � cm.N /.

Proof of Theorem 13.7: We may assume that ˛ is the class of an irreducible subvariety
A � Z. Let A and Z be the proper transforms of the subvarieties A � P1 and Z � P1.
Since Z � P1 meets X � f0g transversely, Z Š Z � P1 via the projection, and this
isomorphism also induces an isomorphism A Š A � P1. To simplify notation, we
will write At � Zt � Xt for the copies in the general fiber of X , but we will write
A � Z � E instead of A0 � Z0 � E for the fibers A � Z contained in E � X0.

By the moving lemma, we can find a cycle C on X linearly equivalent to A and
generically transverse to Z , to Z, to E, to Xt and to Zt . The family A meets Xt and
E generically transversely in At and A, respectively, so the equality ŒC� D ŒA� 2 A.X /
restricts to equalities i�ŒAt � D i�ŒA\Xt � D ŒC \Xt � 2 A.Xt / and j�ŒA� D ŒC \E� 2
A.E/. Since C meets Zt and Z generically transversely as well, we have i�i�ŒAt � D
ŒC \Zt � and j �j�ŒA� D ŒC \E�.

By generic transversality, neither Zt nor Z can be contained in C. It follows that
after removing any components that do not dominate P1 the cycle C in Z Š Z � P1 is
a rational equivalence between i�i�ŒA� and j �j�ŒA�. By Proposition 9.16, j �j�ŒA� D
ŒA� � cm.N /, as required.

13.5 Pullbacks to a subvariety
Theorem 13.7 has an important extension which we will explain here and use in

Section 13.6 to compute the relations in the Chow ring of a blow-up. Suppose that
� W X 0 ! X is a morphism of smooth varieties and Z � X is a subvariety. Set
Z0 D ��1.Z/ and let � 0 W Z0 ! Z be the restriction of � . If A � Z � X , then
the expected dimension of ��1.A/ is dimA C dimX 0 � dimX ; however — at least
when Z and Z0 are smooth — the actual dimension of ��1.A/ D � 0�1.A/ is at least
dimAC dimZ0 � dimZ. Since fiber dimension is only semicontinuous, it may well
happen that dimZ0�dimZ > dimX 0�dimX . When this occurs,A cannot be transverse
to � , in the sense that ��1.A/ is generically reduced of the right codimension, even
when it is transverse to � 0. As we shall see, this is exactly the situation when � is
the blow-up of a smooth (or locally complete intersection) subvariety Z. Thus it is
interesting to try to compute ��ŒA� 2 A.X 0/; more precisely, writing i W Z ! X and
i 0 W Z0 ! X 0 for the inclusions, we wish to compute ��.i�ŒA�/ in terms of � 0�.ŒA�/ or
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perhaps i 0��
0�.ŒA�/. The following picture may help keep track of the notation:

��1.A/ Z0 X 0

A Z X

i 0

� 0 �

i

Theorem 13.7 does exactly what we want in the special case where � D i W Z ,! X is an
inclusion of smooth varieties: then � 0 W Z0 ! Z is the identity, i 0 D i , and we saw that

��.i�ŒA�/ D i
�.i�ŒA�/

D ŒA�cmNZ=X
D i 0�.�

0�.ŒA�/� 0�.cmNZ=X //:

The next result is a direct generalization. In order to state it, we have to assume that Z0 is
smooth; this is unnecessarily restrictive, but to state the theorem in its correct generality
requires the formalism of Fulton [1984].

Theorem 13.9. Suppose that Z � X is a smooth subvariety of a smooth variety X ,
and that � W X 0 ! X is a morphism from another smooth variety. Let Z0 D ��1.Z/

and assume that Z0 is smooth, with connected components C˛ of dimension c˛. Write
i W Z ! X and i 0˛ W C˛ ! X 0 for the inclusion maps, and likewise �˛ for the restriction
of � to C˛. For any class ˇ 2 Ab.Z/,

��.i�ˇ/ D
X
˛

.i 0˛/�
˚
��˛ .ˇc.NZ=X //s.C˛; X 0/

	
bCdimX 0�dimX :

For the proof, see Fulton [1984, Chapter 6].

13.5.1 The degree of a generically finite morphism

Let ' W X ! Y be a generically finite projective morphism to a smooth variety Y .
If q 2 Y is a point such that '�1.q/ is finite, then the degree of ' is the number of
points of '�1.q/, counted with appropriate multiplicity. By the moving lemma, any
point q 2 Y is rationally equivalent to a cycle of points that is transverse to the map ' in
the sense of Definition 1.22, so deg' D deg'�Œq� for any point q. Using Theorem 13.9
we can express this in terms of the local geometry of X near '�1.q/:

Corollary 13.10. Let ' W X ! Y be a generically finite surjective map of smooth
projective varieties. If q 2 Y is any point, then

deg.'/ D deg'�Œq� D degfs.'�1.q/; X/g0:

Proof: The normal bundle of q in Y is trivial, so the given formula follows from
Theorem 13.9.
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As a trivial example, consider the degree-1 map ' W X D Blq Y ! Y that is the
blow-up of an n-dimensional variety Y at a point q. Since the normal bundle to the
exceptional divisor E D '�1.q/ Š Pn�1 is OE .�1/, we have

s.NE=X / D
1

1 � �
;

and the coefficient of �n�1 is indeed 1.
A nontrivial example where the principle of Corollary 13.10 is decisive is the

beautiful calculation by Donagi and Smith [1980] of the degree of the “Prym map” in
genus 6. Here ' is the map from the space R6 of unramified covers of curves of genus 6
to the space A5 of abelian varieties of dimension 5 (both of dimension 15) defined by
the “Prym construction;” while it does not seem possible to enumerate the points of a
general fiber, Donagi and Smith were able to calculate its degree by looking at a very
special point (the Prym of a double cover of a smooth plane quintic) over which the fiber
has three components: a point, a curve and a surface!

13.6 The Chow ring of a blow-up
We can now describe the Chow ring of a blow-up of a smooth projective variety

along a smooth subvariety. After reviewing some basic facts about blow-ups, we give a
set of generators and calculate their products. We illustrate the results in Section 13.6.3.
In the last section we complete the story by describing the relations among the generators.

Throughout this section we will use the following notation. Let X be a smooth
projective variety and Z � X a smooth subvariety of codimension m. Write i W Z ! X

for the inclusion map. Let � W W D BlZ X ! X be the blow-up ofX alongZ. LetE �
W be the exceptional divisor and j W E ,! W the inclusion, so that we have the diagram

W D BlZ X E

X Z

�

j

�E

i

We write N D NZ=X for the normal bundle of Z in X .
Recall from Hartshorne [1977] or Eisenbud and Harris [2000, Theorem IV-23]

that if I D IZ � OX denotes the ideal sheaf of Z then the blow-up W is Proj of the
Rees algebra

A D OX ˚ I ˚ I2 ˚ � � � :

The preimage E of Z D V.I/ � X is then

E D Proj.A˝OX=I/ D Proj.OX=I ˚ I=I2 ˚ I2=I3 ˚ � � � /:
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Since Z � X is smooth it is locally a complete intersection, so the conormal bundle
N �
Z=X
D I=I2 is locally free and

Ik=IkC1 D Symk N �Z=X

(see Eisenbud [1995, Exercise 17.14]). Thus we may make the identification

E D Proj.SymN �Z=X / D PNZ=X :

We write � 2 A1.E/ for the first Chern class of the line bundle OPN .1/.

13.6.1 The normal bundle of the exceptional divisor

Proposition 13.11. The normal bundle of E D PNZ=X in W is

NE=W D OPNZ=X .�1/;

the tautological subbundle on PNZ=Y .

Proof: With notation as above, IE=I2E is the line bundle associated to the module

I=I2 ˚ I2=I3 ˚ � � � D OPNZ=X .1/;

so that

NE=W D HomW .IE=I2E ;OW / Š OPNZ=X .�1/;

as stated.

The proof of Proposition 13.11 just given works for any locally complete intersection
subscheme of any scheme (and in complete generality, if we replace NZ=X by the normal
cone). In the case where Z and X are smooth, we can give a geometric proof and show
that the isomorphism is induced by the differential d� of the projection � W W ! X .

To this end, we first observe that, since the restriction of � to E is the projection
from PN to Z, the differential d� induces a surjection from the tangent space TqE at a
point q of E to TpZ, where p D �.q/. Thus d� induces a map

d� W NE=W D TW =TE ! ��.TX=TZ/ D ��NZ=X :

It now suffices to see that d� carries the one-dimensional vector space that is the fiber
of NE=W at a point q to the one-dimensional subspace of NZ=X;�.q/ D ��.NZ=X /q
that corresponds to the point q regarded as an element of PN . Indeed, if C � X is the
germ of a smooth curve passing through p with tangent space L � TpX corresponding
to q, then the proper transform zC of C passes through the point q 2 E, and d� carries
the tangent space of zC at q to L, as required.
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13.6.2 Generators of the Chow ring

We maintain the notation introduced at the beginning of Section 13.6. Using the
identification E Š PN , we let � 2 A1.E/ be the first Chern class of the line bundle
OPN .1/. In these terms Proposition 13.11 implies that the first Chern class of the normal
bundle of E in W is ��.

Proposition 13.12. The Chow ring A.W / is generated by ��A.X/ and j�A.E/, that is,
classes pulled back from X and classes supported on E. The rules for multiplication are

��˛ � ��ˇ D ��.˛ˇ/ for ˛; ˇ 2 A.X/;

��˛ � j� D j�. � �
�
E i
�˛/ for ˛ 2 A.X/;  2 A.E/;

j� � j�ı D �j�. � ı � �/ for ; ı 2 A.E/:

Proof: The first formula is the statement that pullback �� W A.X/! A.W / is a ring
homomorphism. For the second, we note that ��˛ � j� D j�.j

���˛ � / by the
push-pull formula, while j ���˛ D ��E i

�˛ by functoriality (both part of Theorem 1.23).
Since the normal bundle of E in W has first Chern class ��, the third formula is a
special case of Proposition 13.11.

To conclude we must show that A.W / is generated by ��A.X/ and j�A.E/. Let
U D W n E Š X n Z. Let k W U ! W be the inclusion. Suppose that A � W is a
subvariety. If A � E we are done; else � maps A generically isomorphically onto �.A/,
so ��ŒA� D Œ�.A/�.

By the moving lemma there is a cycle B on X that is rationally equivalent to
�.A/ and generically transverse to � (Definition 1.22), so that, by Theorem 1.23,
��ŒB� D Œ��1.B/�. It is enough to show that ŒA� � ��ŒB� is in the image of j�.

From the right exact sequence

A.E/ �! A.W /
k�

���! A.U / �! 0

of Proposition 1.14, we see that it suffices to show that k���.ŒB�/ D k�ŒA�. Since
Œ�.A/� D ŒB�, we have

k�.ŒA�/ D ŒA \ U � D ��U .Œ�.A/�/ D �
�
U ŒB� D k

���ŒB�

by functoriality, completing the argument.

13.6.3 Example: the blow-up of P3 along a curve

The first nontrivial case, the blow-up of a smooth curve in P3, is already interesting.
We first establish some notation:
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Let C � P3 be a smooth curve of degree d and genus g, and let � W W ! P3 be
the blow-up of P3 along C . We write E, �, i and j as in the general discussion above,
so that we have the diagram

W D BlC P3 E Š PN

P3 C

�

j

�E

i

In addition, we write h 2 A1.P3/ for the class of a plane, e D ŒE�, and Qh for the
pullback ��h 2 A1.W /. Finally, for D 2 Z1.C / any divisor, we will denote by
FD D �

�
ED 2 Z

1.E/ the corresponding linear combination of fibers of E ! C , and
similarly for divisor classes.

Proposition 13.13. If W is the blow-up of P3 along a smooth curve C , then, with
notation as above,

A0.W / D Z; generated by the class of W I

A1.W / D Z2; generated by e; QhI

A2.W / is generated by e2 D �j�.�/; FD for D 2 A1.C / and Qh2I

A3.W / D Z; generated by the class of a point:

Other products among these classes are

deg.e � FD/ D degD; Qh � FD D 0; deg. Qh3/ D 1;

deg. Qh2e/ D 0; deg. Qhe2/ D �d; deg.e3/ D �4d � 2g C 2:

Proof: As for any variety, A0.W / Š Z, generated by the fundamental class ŒW � of W .
Since W is rational, A3.W / Š Z is generated by the class of a point.

Proposition 13.12 shows that A1.W / is generated by the classes Qh and e WD ŒE�.
The map �� sends Qh to h and sends ŒE� to 0, so we have an exact sequence

A0.E/
j�
���! A1.W /

��
���! Z � h Š Z �! 0:

Also, by Proposition 13.12, j �.e/ D j �j�ŒE� D ��. By Theorem 9.6, � generates a
subgroup of A1.E/ that is isomorphic to Z, and thus the map

Z D Z � ŒE� D A0.E/! A1.W /

is a monomorphism. It follows that A1.W / Š Z2, freely generated by Qh and e.
It will be convenient to introduce the notation Ql D ��l 2 A2.W / for the pullback

of a line. Since A2.P3/ is freely generated by l , Proposition 13.12 and Theorem 9.6
together show that A2.W / is generated by Ql ; j�� and j�FD for D 2 A1.C /.
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If we represent h as the class of a general hyperplane H , then we can see by
considering cycles that

Qh2 D ��ŒH �2 D ��l D Ql and Qh � e D j�F.C\H/;

while

e2 D �j��

by Proposition 13.12.
Similarly, we see by considering cycles that

deg. Qh � l/ D 1 and deg. Qh � j�fD/ D 0

for any divisor class D on C , while

deg. Qh � j��/ D d;

which follows from the push-pull formula and the equality ��.j��/ D ŒC � D dl 2

A2.P3/. This determines the pairing between A1.W / � A2.W /! A3.W / D Z.
Likewise,

deg.e � l/ D 0;

deg.e � j�fD/ D � degD for any divisor class D on C ,

deg.e � j��/ D � deg c1.NC=P3/ D �4d � 2g C 2:

Three surfaces in P3 revisited
As a first application of this description, we revisit the first keynote question of this

chapter, or rather its generalization to Proposition 13.2. Again, let S1; S2; S3 � P3 be
surfaces of degrees s1, s2 and s3 whose scheme-theoretic intersection consists of the
disjoint union of a smooth curve C of degree d and genus g and a zero-dimensional
scheme � .

We can get rid of the component C of the intersection by pulling back the problem
to the blow-upW of P3 along C . If we let zSi be the proper transform of Si , then the fact
that

T
Si D C scheme-theoretically implies that the intersection

T
zSi does not meet E.

Thus \
zSi D �

�1.�/I

in particular,

deg.�/ D deg
�Y

Œ zSi �
�
:

In terms of the generators of A.W / given in Proposition 13.13,

Œ zSi � D si Qh � e;

and so our answer is

deg.�/ D deg
Y
.si Qh � e/:
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By Proposition 13.13, then

deg.�/ D
Y

si � d
�X

si

�
C 4d C 2g � 2;

as before.

Tangencies along a curve
We can also use Proposition 13.13 to answer Keynote Question (e): If C � P3 is

a smooth curve of degree d and genus g, and S; T � P3 smooth surfaces of degrees s
and t containing C , at how many points of C are S and T tangent?

We will count these points with the multiplicity defined by the intersection multiplic-
ity of the sections of the normal bundle of C determined by S and T . Equivalently, these
are the intersection multiplicities of the proper transforms zS and zT with the exceptional
divisor of the blow-up W of P3 along C . With notation above, Proposition 13.13 yields

deg.Œ zS� � Œ zT � � ŒE�/ D deg..s Qh � e/.t Qh � e/e/

D �.s C t / deg. Qhe2/C deg.e3/

D .s C t /d � 4d � 2g C 2:

Thus, for example, two planes meeting along a line are nowhere tangent, but two
quadrics Q1;Q2 containing a twisted cubic curve C will be tangent twice along C — as
we can see directly, since the intersection Q1 \Q2 will consist of the union of C and a
line meeting C twice.

One can check that the intersection multiplicity of the intersection of zS and zT and
E at a point q with image p 2 C is 1 when S \ T is in a neighborhood of p the union
of C with a curve D meeting C transversely in S — in other words, when S \ T has a
node at p.

13.6.4 Relations on the Chow ring of a blow-up

There is one item missing in the description of the Chow ring of a blow-up provided
by Proposition 13.12: a criterion for deciding whether a given class is zero. This is
provided by the following:

Theorem 13.14. Let i W Z ! X be the inclusion of a smooth codimension-m subvariety
in a smooth variety X , � W W ! X the blow-up of X along Z and E the exceptional
divisor, with inclusion j W E ! W . If Q is the universal quotient bundle on E Š
PNZ=X , there is a split exact sequence of additive groups, preserving the grading by
dimension:

0 �! A.Z/
.i� h/
�����! A.X/˚ A.E/

.�� j�/
�������! A.W / �! 0;

where h W A.Z/! A.E/ is defined by h.˛/ D �cm�1.Q/��E .˛/.
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Proof: We adopt the notation from the beginning of Section 13.6.
Note that Q D ��EN=OPN .�1/, a bundle of rank m � 1 on E. Theorem 13.9

shows that

��i�.˛/ D j�.cm�1.Q/��E .˛//I

that is, the two maps in the exact sequence compose to zero. As for the surjectivity of the
right map, this was part of our preliminary description of A.W / in Proposition 13.12.

Finally, to prove that the left map is a split monomorphism, it is enough to prove
that h is a split monomorphism. We will show that �E ı h D 1 on A.Z/. To this end,
we compute the Chern class of Q in terms of � and the Chern class of N :

c.Q/ D
c.N /
1 � �

; so cm�1.Q/ D �m�1 C c1.N /�m�2 C � � � C cm�1.N /;

where we are regarding the ci .N / as elements of A.E/ via the ring homomorphism ��E .
Since cm�1.Q/ is monic in �, Lemma 9.7 shows that

�E�.h.˛// D ˛;

as required.

13.7 Exercises
Exercise 13.15. Show that the formula of Proposition 13.2 applies more generally if we
replace P3 by an arbitrary smooth projective threefold X — that is, under the hypotheses
of the proposition, we have

deg.�/ D

deg.ŒS� � ŒT � � ŒU �/�deg.NS=X jL/�deg.NT=X jL/�deg.NU=X jL/Cdeg.NL=X /:

Exercise 13.16. (a) Show that a smooth quintic curve C � P3 of genus 2 is the
scheme-theoretic intersection of three surfaces in P3.

(b) Show that a smooth rational quintic curve C � P3 is the scheme-theoretic intersec-
tion of three surfaces in P3 if and only if it lies on a quadric surface; conclude that
some rational quintics are expressible as such intersections and some are not.

Exercise 13.17. Let S; T; U; V � P4 be smooth hypersurfaces of degrees d , e, f and g
respectively, and suppose that

S \ T \ U \ V D C [ �;

with C a smooth curve of degree a and genus g and � a zero-dimensional scheme
disjoint from C . What is the degree of �?
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Exercise 13.18. Let S; T; U; V;W � P5 be smooth hypersurfaces of degree d , and
suppose that

S \ T \ U \ V \W D ƒ [ �

with ƒ a 2-plane and � a zero-dimensional scheme disjoint from ƒ. What is the degree
of �?

Exercise 13.19. Verify the answer to Keynote Question (b), given in Section 13.3.3, in
the following cases:

(a) S is a smooth surface of degree d in a hyperplane P3 � P4 containing a line L, and
T is a general 2-plane in P4 containing L.

(b) S and T are smooth quadric surfaces.

Exercise 13.20. Let S D S.1; 2/ � P4 be a cubic scroll, as in Section 9.1.1. Show
directly that a general 2-plane T � P4 containing a line of the ruling of S meets S in
one more point, but a general 2-plane containing the directrix of S (that is, the line of S
transverse to the ruling) does not meet S anywhere else.

Exercise 13.21. Let P8 be the space of 3 � 3 matrices and P5 � P8 the subspace of
symmetric matrices. Show that the Veronese surface in P5 is the intersection of P5 with
the Segre variety P2 � P2 � P8, and verify the excess intersection formula in this case.

Exercise 13.22. Let X � P5 be a smooth hypersurface of degree d andƒ Š P2 � X a
2-plane contained inX . Use Theorem 13.7 to determine the degree of the self-intersection
Œƒ�2 2 A4.X/ of ƒ in X . Check this in the cases d D 1 and 2.

Exercise 13.23. Let X D 2C � P2 be a double conic, that is, a subscheme defined
by the square of a quadratic polynomial whose zero locus is a smooth conic curve
C � P2. Show that the dualizing sheaf !X is isomorphic to OX .1/, and applying
Riemann–Roch deduce that X is not hyperelliptic; that is, it does not admit a degree-2
map to P1. Conclude that as asserted in Section 13.4 no analytic neighborhood of C
in P2 is biholomorphic to an analytic neighborhood of the zero section in the normal
bundle NC=P2 . (See Bayer and Eisenbud [1995] for more about this.)

In Exercises 13.24–13.26 we adopt the notation of Section 13.6.3; in particular, we
let C � P3 be a smooth curve of degree d and genus g, W D BlC P3 the blow-up of
P3 along C and E � W the exceptional divisor.

Exercise 13.24. Let q 2 P3 be any point not on the tangential surface of C , and let
� � E � W be the curve of intersections with E of the proper transforms of lines p; q
for p 2 C . Find the class of � in A.W /.
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Exercise 13.25. Let B � P3 be another curve, of degree m, and suppose that B meets
C in the points of a divisor D on C . Show that the class of the proper transform zB � W
of B is

Œ zB� D ml � FD:

Exercise 13.26. Let S � P3 be a smooth surface of degree e containing C , zS � W its
proper transform and †S D zS \ E the curve on E consisting of normal vectors to C
contained in the tangent space to S . Find the class Œ†S � 2 A.W / of †S in the blow-up

(a) by applying Proposition 9.13; and
(b) by multiplying the class Œ zS� by the class ŒE� in A.W /.

Exercise 13.27. In Section 9.3.2, we observed that the blow-up X D BlPk P
n of Pn

along a k-plane was a PkC1-bundle over Pn�k�1, and used this to describe the Chow
ring of X . We now have another description of the Chow ring of X . Compare the two,
and in particular:

(a) Express the generators of A.X/ given in this chapter in terms of the generators
given in Section 9.3.2.

(b) Verify the relations among the generators given here.

Exercise 13.28. Redo Exercise 13.17 by the method of Section 13.6.3, that is, by
blowing up the positive-dimensional component of the intersection.

Exercise 13.29. LetQ � P3 be a quadric cone with vertex p and � W X D BlpQ! Q

its blow-up at p. Let � D �q W Q! P2 be the projection from a general point q 2 P3

and f D � ı � W X ! P2 the composition of the blow-up map with the projection. Find
the degree of f by looking at the fiber over �.p/.

Exercise 13.30. Prove that ifZ � A is a locally complete intersection subscheme inside
the projective variety A then s.Z;A/ D s.NZ=A/.

Exercise 13.31. Let PN be the space of plane curves of degree d andX � PN the locus
of d -fold lines dL. Let C � P2 be a smooth curve of degree m, and let † � PN be the
locus of curves tangent to C (that is, intersecting C in fewer than dm distinct points).

(a) Let D � PN be a general line. Show that every curve D 2 D is either transverse to
C or meets C in exactly dm� 1 points, and use Riemann–Hurwitz to conclude that

deg.†/ D 2md Cm.m � 3/:

(b) Now suppose that D � PN is a general line meeting the locus X of d -fold lines.
Show that D meets† in 2mdCm.m�3/�m.d�1/ other points, and conclude that

multX .†/ D m.d � 1/:
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Exercise 13.32. Recalling the definition of a circle from Section 2.3.1, we say that a
sphereQ � P3 is a quadric containing the “circle at infinity”W D X2CY 2CZ2 D 0.
LetQ1; : : : ;Q4 � P3 be four general spheres, and let Si � G.1; 3/ be the locus of lines
tangent to Qi . Using Theorem 13.3 applied to the intersection

T
Si , find the number of

lines tangent to all four.

Exercise 13.33. Let S � P5 be the Veronese surface. Find the Chow ring A.X/, where
X D BlS .P5/ is the blow-up of P5 along S .

Exercise 13.34. Use the result of the preceding exercise to re-derive the number of
conics tangent to five conics, as suggested in Section 8.1

Exercise 13.35. In Section 3.5.5 we saw how to determine the number of common chords
of two general twisted cubics C;C 0 � P3 by specializing C and C 0 to curves of types
.1; 2/ and .2; 1/ on a smooth quadric surface Q � P3. As noted there, if we specialized
both curves to curves of type .1; 2/ onQ, there would be a positive-dimensional family of
common chords. Use Theorem 13.3 to analyze this case, and to show that the intersection
number deg.Œ‰2.C /�Œ‰2.C 0/�/ of the cycles ‰2.C /;‰2.C 0/ � G.1; 3/ is 10.



Chapter 14
The Grothendieck
Riemann–Roch theorem

The goal of Riemann–Roch theorems is to relate the dimension of the space of
solutions of an analytic or algebraic problem — typically realized as the space H 0.F/
of global sections of a coherent sheaf F on a compact analytic or projective algebraic
variety X — to topological invariants, expressed in terms of polynomials in the Chern
classes of the sheaf and of the tangent bundle ofX . In practice, the formulas deal not with
h0.F/ but with the Euler characteristic �.F/ D

P
.�1/ihi .F/ of F , so the strength and

importance of Riemann–Roch theorems, which are very great in the case of curves and
surfaces, decline as the dimension of X , and with it the number of potentially nonzero
cohomology groups, grows. Nevertheless, Riemann–Roch theorems have played an
important role in the history of algebraic geometry.

Our goal in this chapter is to state, explain and apply a version of the Riemann–Roch
theorem proved by Grothendieck that deals not just with a sheaf on a variety X but with
families of such sheaves. To clarify its context, we start this chapter with older versions
of the theorem. Although some of these were first proven in an analytic context, we will
stick with the category of projective algebraic varieties. Good references for the simplest
forms of these theorems are Sections IV.1 and V.1 of Hartshorne [1977].

Convention: To simplify notation in this chapter, we sometimes identify a class in A0.X/
with its degree when X is a projective algebraic variety.

14.1 The Riemann–Roch formula for curves
and surfaces

14.1.1 Curves

The original Riemann–Roch formula deals with a smooth projective curve C over C.
It says in particular that the dimension h0.KC / of the space of regular 1-forms on C , an
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algebraic/analytic invariant, is equal to the topological genus g.C / D 1 � �top.C /=2.
To express this in modern language and suggest the generalizations to come, we invoke
Serre duality, which says that

h0.KC / D h
1.OC /;

and the Hopf index theorem for the topological Euler characteristic, which says that
�top.C / D c1.TC /. In these terms, we can state the Riemann–Roch theorem as the
formula

�.OC / WD h0.OC / � h1.OC / D
c1.TC /
2

:

From this formula, and the additivity of the Euler characteristic, it is easy to prove
the Riemann–Roch formula for any line bundle on C , as we will see now.

To start, recall that for a coherent sheaf F on an arbitrary projective variety the
Euler characteristic is defined to be

�.F/ D
X

.�1/ihi .F/:

This formula is additive on exact sequences: if

0 �! F 0 �! F �! F 00 �! 0

is an exact sequence of coherent sheaves on a projective variety, then the resulting long
exact sequence in cohomology

� � � �! H iC1.F 00/ �! H i .F 0/ �! H i .F/ �! H i .F 00/ �! H i�1.F 0/ �! � � �

yields �.F/ D �.F 0/C �.F 00/.
Returning to the case of a smooth curve, suppose that L D OC .D/ for an effective

divisor D of degree c1.L/ D d . From the sequence

0 �! OC �! L �! LjD �! 0;

it follows that

�.L/ D �.OC /C �.LjD/ D c1.L/C
c1.TC /
2

F D d C 1 � g;

and a similar sequence extends this formula to line bundles of the form OC .D � E/,
that is, arbitrary line bundles. (See Appendix D for a fuller discussion of this theorem
and its consequences.)

It is not hard to go from this to the version for an arbitrary coherent sheaf F on C ,
valid for a smooth curve over any field (see Section 14.2.1 for the definition of the Chern
classes of coherent sheaves):

Theorem 14.1 (Riemann–Roch for curves). If F is a coherent sheaf on a smooth
curve C , then

�.F/ D c1.F/C rank.F/
c1.TC /
2

:
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14.1.2 Surfaces

To state a Riemann–Roch theorem for a smooth projective surface S , we start again
from a special case,

�.OS / D
c1.TS /2 C c2.TS /

12
;

usually referred to as Noether’s formula (see Bădescu [2001, Chapter 5] for references).
From this, the prior Riemann–Roch for curves, and sequences of the form

0 �! L �! L.D/ �! L.D/jD �! 0

for smooth effective divisors D � S , we can deduce the version for line bundles:

�.L/ D
c1.L/2 C c1.L/c1.TC /

2
C
c1.TS /2 C c2.TS /

12
:

For example, to prove the formula for L D OX .D/ when D is a smooth curve on S , we
use the sequence

0 �! OS �! OS .D/ �! OS .D/jD �! 0:

From the additivity of the Euler characteristic, we get

�.OS .D// D �.OS /C �.OS .D/jD/

D
c1.TS /2 C c2.TS /

12
C �.OS .D/jD/:

To evaluate the last term, observe that OS .D/jD is a line bundle of degree D �D on the
curve D, which by the adjunction formula has genus

g.D/ D
D �D CD �KS

2
C 1:

Using Riemann–Roch for curves we obtain

�.OS .D/jD/ D D �D �
D �D CD �KS

2

D
D �D CD � c1.TS /

2
;

and the Riemann–Roch formula above follows for L D OS .D/.
As in the previous case of curves, this can be extended to apply to arbitrary coherent

sheaves on S :

Theorem 14.2. If F is a coherent sheaf on a smooth projective surface S , then

�.F/ D
c1.F/2 � 2c2.F/C c1.F/c1.TC /

2
C rank.F/

c1.TS /2 C c2.TS /
12

:
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14.2 Arbitrary dimension
Much of the content of the formulas in Section 14.1 above was known to 19th

century algebraic geometers, although the formulas were expressed without cohomology,
and only for line bundles (represented by divisors). In the 20th century these formulas
were extended to sheaves on varieties of arbitrary dimension by Hirzebruch. One key to
this extension was the introduction of cohomology groups in general, and the recognition
that the left-hand side of all the classical formulations of Riemann–Roch represented
Euler characteristics of sheaves.

Equally important was understanding how to express the polynomials in the Chern
classes that appear in the right-hand side of these formulas in a way that generalized to
arbitrary dimensions. We digress to introduce the two useful power series in the Chern
classes that are needed, the Chern character and the Todd class.

14.2.1 The Chern character

We have seen many uses of the Whitney formula (Theorem 5.3); we have also used
special cases of the formula for the Chern classes of the tensor product of vector bundles,
which we deemed too complicated to write down in closed form in general. But there
is a better way to make sense of these two formulas, discovered by Hirzebruch [1966];
together, they say that a certain power series in the Chern classes, the Chern character,
defines a ring homomorphism. To explain this useful fact, we first recall the definition of
the Grothendieck ring of vector bundles:

The set of isomorphism classes ŒA� of vector bundles A of finite rank on a variety X
forms a semigroup under direct sum that we will call Bun.X/. The Euler characteristic
� defines a homomorphism of semigroups Bun.X/ ! Z and, as we have already
remarked, this map is also additive on exact sequences of bundles 0 ! A ! B !
C ! 0. It is interesting to ask what other such maps there may be, and a natural step
in investigating this is to form the Grothendieck group K.X/ of vector bundles on a
variety X . This is defined as the free abelian group on the set of isomorphism classes
ŒA� of vector bundles A on X , modulo relations ŒA�C ŒC� D ŒB� for every short exact
sequence of vector bundles 0 ! A ! B ! C ! 0. The natural map of semigroups
Bun.X/ ! K.X/ is universal, in the sense that any map from Bun.X/ to a group
that is additive on short exact sequences factors uniquely through the map to K.X/.
A bonus of this construction is that, since tensoring with a vector bundle preserves
exact sequences, K.X/ has a natural ring structure, where the product is given by
tensor product.

The Chern character is a way of combining the Chern classes to produce a ring
homomorphism

Ch W K.X/! A.X/˝Q:
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To see how such a combination could be defined (and how the rational coefficients arise),
consider first the case of line bundles. If L and M are two line bundles, then the first
Chern class of the tensor product c.L˝M/ is c1.L/C c1.M/, so if we set

Ch.ŒL�/ D ec1.L/ D 1C c1.L/C
c1.L/2

2
C
c1.L/3

6
C � � � ;

then
Ch.L˝M/ D ec1.L/Cc1.M/

D ec1.L/ec1.M/

D Ch.ŒL�/Ch.ŒM�/:

Note that the apparently infinite sums are actually finite, since Ai .X/ vanishes for
i > dimX .

If now E D
L

Li is a direct sum of line bundles, then for Ch to preserve sums we
must extend the definition above by setting

Ch.E/ D
X

ec1.Li /:

The coefficients of this power series are symmetric in the “Chern roots” c1.Li /, and thus
can be expressed in terms of the elementary symmetric functions of these quantities —
that is, in terms of the Chern classes of E .

We define Ch.E/ in general by using these expressions: If E is any vector bundle,
we write c.E/ D

Q
.1C ˛i /, and then define

Ch.E/ D
X

e˛i I

in other words, the k-th graded piece Chk.E/ of the Chern character is

Chk.E/ D
X ˛ki

kŠ
;

expressed as a polynomial in the elementary symmetric functions of the ˛i and applied
to the Chern classes ci .E/. The first few cases are

Ch0.E/ D rank.E/;
Ch1.E/ D c1.E/;

Ch2.E/ D
c1.E/2 � 2c2.E/

2
:

The splitting principle implies that this formula does indeed give a ring homomor-
phism: First, Whitney’s formula shows that if

0 �! E 0 �! E �! E 00 �! 0

is an exact sequence of vector bundles, then the Chern roots of E are the Chern roots
of E 0 together with the Chern roots of E 00, so the definition above yields Ch.E/ D
Ch.E 0/CCh.E 00/. Further, the Chern roots of E 0˝E 00 are the pairwise sums of the Chern
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roots of E 0 and those of E 00, so the definition in terms of Chern roots again immediately
yields the product formula Ch.E 0 ˝ E 00/ D Ch.E 0/Ch.E 00/, as required.

Since the Chern character is equivalent data to the rational Chern class, this yields a
formula for the rational Chern class of a tensor product. The result is quite convenient
for machine computation, but the conversion of polynomials in the power sums to
polynomials in the elementary symmetric polynomials is complicated enough that it is
not so useful for computation by hand; see Exercise 14.11 for an example.

Coherent sheaves
Let X be a smooth projective variety and F a coherent sheaf of X . By the Hilbert

syzygy theorem, we can resolve F by locally free sheaves; that is, we can find an exact
sequence

0 �! En �! En�1 �! � � � �! E1 �! E0 �! F �! 0

in which all the sheaves Ei are locally free. We can use this to extend the definitions of
Chern classes and Chern characters to all coherent sheaves, in the only way possible
that makes the Whitney formula and the product formula hold in general: We define the
Chern polynomial and Chern character by

c.F/ D
nY
iD0

c.Ei /.�1/
i

and Ch.F/ D
nX
iD0

.�1/i Ch.Ei /:

Of course for these definitions to make sense we need to know that they are independent
of the resolution chosen; the verification is left as Exercise 14.12.

Caution: If Y � X is a Cartier divisor, then from the sequence

0 �! OX .�Y / �! OX �! OY �! 0

we see the Chern class of the sheaf OY , viewed as a coherent sheaf on X , is simply

c.OY / D
c.OX /

c.OX .�Y //
D

1

1 � ŒY �
D 1C ŒY �:

The equality c.OY / D 1 C ŒY � is emphatically not true for subvarieties Y � X of
codimension c > 1: In general, even when X and Y are smooth the Chern class of
OY may have components of codimensions greater than c, and even the component in
Ac.X/ differs from ŒY � by a factor of .�1/c�1.c � 1/Š . This is a consequence of the
Grothendieck Riemann–Roch theorem below; for examples, see Exercises 14.13–14.14.

The information in the Chern classes
Up to torsion, giving the Chern classes of a bundle E is equivalent to giving the class

of E in K.X/:
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Theorem 14.3 (Grothendieck). If X is a smooth projective variety, then the map

Ch W K.X/˝Q ! A.X/˝Q

is an isomorphism of rings.

For more information, see Fulton [1984, Example 15.2.16b].
Strikingly, there is an analogous statement in the category of differentiable manifolds:

If we define the topological K-group of a manifold M to be the group of formal linear
combinations of C1 vector bundles modulo relations coming from exact sequences,
with ring structure given as above by tensor products, then for a suitable filtration of the
K-group the Chern character gives an isomorphism

grK.M/˝Q Š H 2�.X;Q/;

where the term on the right is the ring of even-degree rational cohomology classes (see
Griffiths and Adams [1974]).

14.2.2 The Todd class

In the case of curves and surfaces we derived the Riemann–Roch formula by starting
with an expression for the Euler characteristic �.OX / of our variety X in terms of the
Chern classes of the tangent bundle TX of X . The Todd class of a vector bundle gives
us a way of doing this in general: It is a polynomial in the Chern classes, with rational
coefficients, such that for any smooth variety X we have

�.OX / D fTd.TX /g0I

that is, if X is n-dimensional, �.OX / D Tdn.TX /, the degree of the n-th graded piece
of the Todd class.

This is the property of these classes that led Todd to their definition (see Exer-
cise 14.15). In fact the Todd class may be characterized as the only formula in the Chern
classes that, when evaluated on the Chern classes of the tangent bundle TP of any product
P of projective spaces, has zero-dimensional component fTd.TP/g0 D 1 (Hirzebruch
[1966, p. 3]).

The naturality of this characterization does not imply that the formula will look
simple! Suppose E is a vector bundle/locally free sheaf of rank n on a smooth variety X ,
and formally factor its Chern class:

c.E/ D
nY
iD1

.1C ˛i /:

We define the Todd class of E to be

Td.E/ D
nY
iD1

˛i

1 � e�˛i
;

written as a power series in the elementary symmetric polynomials ci .E/ of the ˛i .
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This definition, together with Whitney’s formula and the splitting principle, immedi-
ately implies a multiplicative property: If

0 �! E 0 �! E �! E 00 �! 0

is an exact sequence of vector bundles, then, as before, the Chern roots of E are the
Chern roots of E 0 together with the Chern roots of E 00, so the definition above at once
yields Td.E/ D Td.E 0/Td.E 00/.

To calculate the first few terms of the Todd class, write

1 � e�˛ D ˛ �
˛2

2
C
˛3

6
�
˛4

24
C � � � ;

so
1 � e�˛

˛
D 1 �

˛

2
C
˛2

6
�
˛3

24
C
˛4

120
� � � � I

inverting this, we get

˛

1 � e�˛
D 1C

˛

2
C
˛2

12
�
˛4

720
C � � � ;

so

Td.E/ D
nY
iD1

�
1C

˛i

2
C
˛2i
12
�
˛4i
720
C � � �

�
:

Rewriting the first few of these in terms of the symmetric polynomials of the ˛i — that
is, the Chern classes of E — we get formulas for the first few terms of the Todd class:

Td0.E/ D 1;

Td1.E/ D
X ˛i

2
D
c1.E/
2

;

Td2.E/ D
1

12

X
˛2i C

1

4

X
i<j

˛i˛j D
c21.E/C c2.E/

12
;

Td3.E/ D
1

24

X
i¤j

˛i˛
2
j D

c1.E/c2.E/
24

:

14.2.3 Hirzebruch Riemann–Roch

We now have the language necessary to express the Hirzebruch Riemann–Roch
theorem, one formula that specializes to all the Riemann–Roch theorems stated above
and their higher-dimensional analogs. In fact, given the definitions above, it is remarkably
simple:

Theorem 14.4 (Hirzebruch’s Riemann–Roch formula). If X is a smooth projective
variety of dimension n and F a coherent sheaf on X , then

�.F/ D fCh.F/Td.TX /gn:
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This formula was first stated and proved in the setting of algebraic varieties over
C by Hirzebruch [1966]; it was generalized to differentiable manifolds and elliptic
differential operators by Atiyah and Singer; see Palais [1965]. The generalization to
varieties over arbitrary fields is a special case of the work of Grothendieck, which we
will describe next.

14.3 Families of bundles
Grothendieck’s version of the Riemann–Roch theorem introduces a fundamental

new idea into the mix.
Briefly, suppose we have a family fXbgb2B of schemes, and a family of sheaves

Fb on Xb — in other words, a morphism � W X ! B and a sheaf F on X . As we
see in Appendix B, the vector spaces H 0.Fb/ form, at least for b in an open subset
U � B , the fibers of a sheaf on B; this is the direct image ��F . We can think of the
“classical” Hirzebruch Riemann–Roch theorem, applied to the sheaf Fb on the general
fiber Xb , as a formula for the dimension h0.Fb/ (that is, the rank of the sheaf ��F),
with “error terms” coming from the dimensions hi .Fb/ of the higher cohomology groups
(i.e., the ranks of the higher direct images Ri��F). The Grothendieck version of the
Riemann–Roch theorem describes the way in which the spaces H 0.Fb/ fit together as b
varies as measured by the Chern classes of ��F .

14.3.1 Grothendieck Riemann–Roch

Theorem 14.5 (Grothendieck’s Riemann–Roch formula). If � W X ! B is a projective
morphism with X and B smooth, and F is a coherent sheaf on X , then

nX
iD0

.�1/i Ch.Ri��F/ D ��
�

Ch.F/ � Td.TX /
�� Td.TB/

�
2 A.B/˝Q:

This was first stated and proved in Borel and Serre [1958]; a shorter and more
natural argument may be found in Fulton [1984, Section 15.2]

Hirzebruch’s Riemann–Roch is Grothendieck’s Riemann–Roch in the special case
when B is a single point.

There are equivalent formulations of the Grothendieck Riemann–Roch theorem. For
example, using the push-pull formula we can rewrite it in the form

� nX
iD0

.�1/i Ch.Ri��F/
�

Td.TB/ D ��ŒCh.F/ � Td.TX /�:



490 Chapter 14 The Grothendieck Riemann–Roch theorem

Also, in case the map � is a submersion — that is, the differential d� is surjective
everywhere — then from the short exact sequence

0 �! T vX=B �! TX �! ��TB �! 0

for the relative tangent bundle of � and the multiplicativity of the Todd class we have:

Corollary 14.6. If � W X ! B is a projective morphism and a submersion, and F is a
coherent sheaf on X , then

nX
iD0

.�1/i Ch.Ri��F/ D ��ŒCh.F/ � Td.T vX=B/�:

When applying these formulas it is crucial to know when the sheaves Ri��F have
fibers at an arbitrary point b equal to H i .F j��1.b//. The theorem on cohomology and
base change (Theorem B.5 in Appendix B) gives conditions under which this happens.
Given this, it is possible to use the Grothendieck Riemann–Roch formula to calculate
the Chern classes of many of the bundles whose Chern classes we calculated by ad hoc
methods, e.g., filtrations and the splitting principle, earlier in this book. Indeed, virtually
all of the bundles we have introduced and analyzed in the preceding chapters can
be defined as direct images, and the Grothendieck Riemann–Roch formula gives an
expression of their Chern classes. In the next section we will work this out in a simple
case. Other examples are suggested in Exercises 14.17–14.19.

Following this example, the remainder of this chapter will be concerned with two
applications of the Grothendieck Riemann–Roch formula in situations where we do not
have alternative ways of calculating the Chern classes of the bundles in question. In
Section 14.4, we will describe an application of the formula to the geometry of vector
bundles on projective space, and in Section 14.5 an application to the geometry of
families of curves.

14.3.2 Example: Chern classes of Sym3 S� on G.1; 3/

Recall that to compute the number of lines on a smooth cubic surface S � P3 in
Chapter 6 we introduced a vector bundle E on the Grassmannian G D G.1; 3/ of lines
in P3. Informally, we described E by saying that, for each line L � P3, the fiber of E at
the point ŒL� 2 G was the vector space of homogeneous cubic polynomials on L; that is,

EŒL� D H 0.OL.3//:

We explained that the number of lines, computed with multiplicity, was equal to c4.E/.
(The result that every smooth cubic surface actually has 27 distinct lines required further
argument.)
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Back then, we showed how E may be realized as a direct image, but did not use that
construction to calculate its Chern class. (Rather, we calculated the Chern classes of E
by realizing that E D Sym3 S�, the third symmetric power of the dual of the universal
subbundle on G, and using the splitting principle.) We now have a tool that will allow us
to calculate the Chern classes of E directly from its construction; as an illustration of the
general technique, we will carry this out explicitly here.

To set this up, recall that the universal family of lines over G is the incidence
correspondence

ˆ D f.L; p/ 2 G � P3 jp 2 LgI

we will let ˛ W ˆ ! G and ˇ W ˆ ! P3 be the projection maps. The bundle E is the
direct image of L D ˇ�OP3.3/.

To compute the Chern classes of E we first observe that the restriction of OL.3/ of L
to each fiber ˆŒL� D ˛�1.ŒL�/ D L Š P1 is OP1.3/, which has no higher cohomology.
From the theorem on cohomology and base change (Theorem B.5), it follows that the
direct image

E D ˛�L D ˛�.ˇ�OP3.3//

is locally free, with fiber H 0.OL.3// at ŒL�.
Because of the vanishing of the higher cohomology of L on the fiber of ˛, the higher

direct images Ri˛�.L/ are 0 for i > 0, so the Grothendieck Riemann–Roch theorem
becomes a formula for the Chern character of E :

Ch.E/ D ˛�.Ch.L/ � Td.T vˆ=G//:

To evaluate this explicitly requires the following steps:

(a) Describe the Chow ring A.ˆ/.
(b) Describe the direct image map ˛� W A.ˆ/! A.G/.
(c) Calculate the Chern character of L and the Todd class of the relative tangent bundle

T v
ˆ=G

.
(d) Take the direct image of their product, to arrive at Ch.E/.
(e) Finally, convert this back into the Chern classes of E .

The necessary result for step (a) is Proposition 9.10: ˆ D PS is the projectivization
of the universal subbundle on G, so that we have

A.ˆ/ D A.G/Œ��=.�2 � �1� C �1;1/;

where � D c1.OPS.1//.
As for step (b), we have

˛�.1C � C �
2
C � � � / D s.S/ D

1

c.S/
D

1

1 � �1 C �1;1
D 1C �1 C �2I
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in other words,

˛�� D 1; ˛�.�
2/ D �1; ˛�.�

3/ D �2 and ˛�.�
4/ D 0:

(The last equation can also be seen directly: �4 D 0 in A.ˆ/, since � is the pullback of
the hyperplane class on P3.) By the push-pull formula, this allows us to evaluate the
pushforward of any product of a power of � with the pullback of a class from G.

To compute the Chern character of L for step (c), we first observe that, since the
fiber of the line bundle OPS.1/ at a point .L; p/ 2 ˆ is the dual of the one-dimensional
vector subspace of C4 corresponding to p, we have

� D c1.OPS.1// D ˇ
�c1.OP3.1//:

In particular, it follows that

c1.L/ D 3�;
and so

Ch.L/ D 1C 3� C 9
2
�2 C 27

6
�3;

since higher powers of � vanish.
In Section 11.1.2 we saw how to find the Chern classes of the relative tangent bundle

of ˆ over G: If we denote by U the tautological subbundle on ˆ D PS, and by Q the
tautological quotient bundle, we have

T vˆ=G D U� ˝Q:
From the exact sequence

0 �! U �! ˛�S �! Q �! 0

we see that

c1.Q/ D c1.˛�S/ � c1.U/ D ��1 C �;
and hence

c1.T vˆ=G/ D c1.U
�
˝Q/ D � C c1.Q/ D ��1 C 2�:

Plugging this into the formula for the Todd class, we have

Td.T vˆ=G/ D 1C
2� � �1

2
C
.2� � �1/

2

12
�
.2� � �1/

4

720
:

For step (d) we take the product

Ch.L/Td.T vˆ=G/ D 1C
1
2
.8� � �1/C

1
12
.94�2 � 22�1� C �

2
1 /

C
1
12
.120�3 � 39�1�

2
C 3�21 �/

C
1
720
.�2668�1�

3
C 246�21 �

2
C 8�31 � � �

4
1 /

C
1
720
.198�21 �

3
C 24�31 �

2
� 3�41 �/:
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Applying the direct image map, we find that by Grothendieck Riemann–Roch

Ch.E/ D 4C 6�1 C .7�2 � 3�1;1/ � 3�2;1 C 1
3
�2;2:

It remains to convert this to the Chern class of E (step (e)). We have

c1.E/ D Ch1.E/ D 6�1
and

c2.E/ D 1
2

Ch1.E/2 � Ch2.E/
D 18�21 � .7�2 � 3�1;1/

D 11�2 C 21�1;1:

Similarly,

c3.E/ D 1
6

Ch1.E/3 � Ch1.E/Ch2.E/C 2Ch3.E/
D 36�31 � 6�1.7�2 � 3�1;1/ � 6�2;1

D 72�2;1 � 24�2;1 � 6�2;1

D 42�2;1;

and, finally, the payoff!

c4.E/ D 1
24

Ch1.E/4� 12 Ch1.E/2 Ch2.E/C 1
2

Ch2.E/2C2Ch1.E/Ch3.E/�6Ch4.E/
D 54�41 �18�

2
1 .7�2�3�1;1/C

1
2
.7�2�3�1;1/

2
�36�1�2;1�2�2;2

D .108�72C29�36�2/�2;2

D 27�2;2I

we have calculated again the number of lines on a cubic surface, counted with multiplici-
ties, under the assumption that the number is finite.

We have also illustrated a fact well-known to practicing algebraic geometers: One
should almost never use Grothendieck Riemann–Roch to calculate the Chern classes of
a bundle if there is an alternative!

14.4 Application: jumping lines
In this section, we will describe the notion of jumping lines, an invariant used to

study the geometry of vector bundles on projective space. To keep the notation simple,
we will deal just with the case of vector bundles of rank 2 on P2. The generalization to
rank-2 bundles on Pn is indicated in Exercises 14.20–14.22.

We start by recalling that, though a vector bundle E of rank 2 on P2 may be
indecomposable (see for example Exercise 5.41), its restriction to any lineL Š P1 � P2

can be expressed as a direct sum

E jL D OP1.a1/˚OP1.a2/
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of line bundles, and of course

c1.E jL/ D a1 C a2:

This splitting type .a1; a2/ of E on L provides a useful way to analyze vector bundles:
For every pair a D .a1; a2/ with a1 < a2 and a1 C a2 D c1.E jL/, we define a subset
�a � G.1; 2/ D P2� by

�a D fL 2 P2� j E jL Š OP1.a1/˚OP1.a2/g:

As we will see in a moment, these will be locally closed subsets of P2�. In particular,
the decomposition of E jL will be constant for L in an open dense subset of P2�;
the lines outside this open set are called jumping lines. Together the loci �a give
a stratification of P2� whose geometry is an important invariant of E ; the closures
of the strata �a are called loci of jumping lines. It follows at once that the loci of
jumping lines will not change (except for indexing) if we replace E with a bundle of the
form E.n/.

14.4.1 Loci of bundles on P1 with given splitting type

To continue the analysis we need some basic facts about how vector bundles on P1

behave in families. Let B be a connected scheme. By a family of vector bundles on P1

with base B we mean a vector bundle E on the product B � P1. The rank of the bundle
Et on P1 that is the restriction of E to the fiber ftg � P1 is locally constant in t since E
is locally trivial, and by the theorem on cohomology and base change (Theorem B.5)
the Euler characteristic, and thus the degree, is too. Since we have assumed that B is
connected, both these are constant. Denote the common rank by r and the common
degree by d .

The actual decomposition Et Š
L

OP1.ai .t//, however, may vary with t ; we want
to describe the possible variation. After rearranging the summands, the decomposition
of Et is given by an increasing sequence of integers with sum d :

a D .a1; : : : ; ar/ with a1 � a2 � � � � � ar 2 Z and
X

ai D d:

We partially order such sequences by initial subsums: we say

a � b if
jX
iD1

ai �

jX
iD1

bi for all j D 1; : : : ; r I

and we say that a < b if a � b and a ¤ b. For example, if aiC1 > ai C 1 for any i < r ,
then we can form a larger sequence by the replacements

ai  ai C 1; aiC1  aiC1 � 1:
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Thus there is a unique maximal sequence for a given r and d , determined by the
condition jai � aj j � 1 for all i; j . Equivalently, this largest sequence is the “most
balanced:” it is the unique sequence of the form .a; : : : ; a; a C 1; : : : ; a C 1/. On the
other hand, there is no minimal sequence; for example, with r D 2; d D 0 we have
.0; 0/ > .�1; 1/ > .�2; 2/ > � � � . But if we impose an upper bound on ar , say ar � e,
then the partially ordered set is finite. If e � d the set has unique minimal element
.�.r � 1/e C d; e; : : : ; e/.

As a measure of the deviation of a given sequence a from the most balanced,
we will set

u.a/ D
X
i<j

maxfaj � ai � 1; 0g:

The quantity u.a/ should be thought of as the “expected codimension of the locus of
bundles of splitting type a,” as explained by the following result:

Theorem 14.7. Let E be as above a vector bundle on B � P1. If for each sequence a
we set

�a D
˚
t 2 B j Et Š

M
OP1.ai /

	
;

then:

(a) For each a, the locus

‰a D
[
a0�a

�a0

is closed in B (so that in particular �a is a locally closed subset of B).
(b) The codimension of �a in B is at most u.a/.

We will prove (a) completely, but we prove (b) only for r D 2, the case we will use.

Proof: (a) Consider the function on B

�.t/ D maxfm j h0.Et .�m// > 0g:

Since h0.Et .�m// is upper-semicontinuous in t , the function � is as well; this shows
that the degree ar.t/ of the largest summand of Et is upper-semicontinuous. Applying
this to the bundle

Vk.Et /, we see that the function

�k.t/ D maxfm j h0..
VkEt /.�m// > 0g D ar.t/C � � � C ar�kC1.t/

is likewise upper-semicontinuous, and correspondingly

d � �r�k.t/ D a1.t/C � � � C ak.t/

is lower-semicontinuous, establishing part (a).
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(b) (r D 2) Suppose that E is a bundle of rank 2 on B � P1 and let b 2 B be a point.
The function u.a/ is invariant under the addition of a fixed quantity to all the ai , so
we can twist the bundle E by the pullback of a line bundle on P1 without affecting
the truth of the statement; after such a twist we can assume that the fiber at b has the
form Eb Š OP1 ˚ OP1.n/ for some n � 0. If n D 0 there is nothing to prove, so we
may assume n � 1, and we must show that the locus �.0;n/ has codimension at most
u.0; n/ D n � 1 near b.

Since h1.Eb/ D 0, the section .1; 0/ of Eb extends to a nowhere-zero section of E in
a neighborhood of the fiber fbg�P1. ReplacingB by a suitably small open neighborhood
of b 2 B , then, we have a sequence

0 �! OB�P1 �! E �! OB�P1.n/ �! 0;

where we write OB�P1.n/ for the pullback of OP1.n/ to B � P1.
Now, a sequence

0 �! OP1 �! E ˛
��! OP1.n/ �! 0

splits if and only if there exists a bundle map ' W OP1.n/ ! E such that ˛ ı ' is the
identity on OP1.n/. Accordingly, consider the exact sequence of bundles on B � P1

0! Hom.OB�P1.n/;OB�P1/! Hom.OB�P1.n/; E/
! Hom.OB�P1.n/;OB�P1.n//! 0

and the coboundary map

��
�
Hom.OB�P1.n/;OB�P1.n//

� ı
��!R1��.Hom.OB�P1.n/;OB�P1//

appearing in the associated long exact sequence of sheaves on B . If we let � D ı.id/ be
the image in

R1��.Hom.OB�P1.n/;OB�P1//

of the identity section of ��
�
Hom.OB�P1.n/;OB�P1.n//

�
, then the zero locus .�/ � B

of � will be contained in the stratum �.0;n/; since

R1��.Hom.OB�P1.n/;OB�P1//

is locally free of rank n � 1, it follows that the codimension of �.0;n/ in B is at most
n � 1, as required.

One can also realize the �a as pullbacks of strata in a family of vector bundles
directly: After suitable twisting, every member Eb of the family will be an extension of
the form

0 �! Or�1P1 �! Eb �! OP1.d/ �! 0;
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and the family over B will locally be a pullback of a family defined over

B 0 WD Ext1P1.OP1.d/;O
r�1

P1 / Š A.r�1/d :

The codimension of the locus �a in B 0 is exactly u.a/. For a general study, including
a conjecture on the equations of the strata �a in B 0, see Eisenbud and Schreyer [2008,
Example 5.2].

14.4.2 Jumping lines of bundles of rank 2 on P2

Let E be a vector bundle of rank 2 on P2. The nature of the locus of jumping lines
depends on whether c1.E/ 2 A1.P2/ Š Z is even or odd. In the even case the expected
dimension of the locus in 1, and we will compute the degree of the curve of jumping
lines; for a complete treatment see Barth [1977]. In the odd case the expected dimension
is 0, and we will compute the degree of this finite scheme; for a complete treatment
see Hulek [1979].

Vector bundles with even first Chern class
Let c1.E/ D 2k�, where � 2 A1.P2/ is the class of a line. We want to think of

the restrictions of E to each line in P2 in turn as a family of vector bundles on P1,
parametrized by the Grassmannian G.1; 2/ Š P2�. Let

ˆ D f.L; p/ 2 P2� � P2 jp 2 Lg

be the universal line, and let �1 W ˆ! P2� and �2 W ˆ! P2 be the projections. We
can view �1 W ˆ! P2� as the projectivization of the universal rank-2 subbundle S on
P2� D G.1; 2/. We let

� D c1.OPS.1// 2 A
1.ˆ/

be the tautological class; note that this is also the pullback to ˆ of the hyperplane class
� 2 A1.P2/ on P2. Similarly, we denote by ˛ both the hyperplane class on P2� and its
pullback to ˆ. The Chow ring of ˆ is given by

A.ˆ/ D ZŒ˛; ��=.˛3; �2 � ˛� C ˛2/:

Note that �3 D 0; this follows either from the relations above or from the fact that
� is the pullback of a class from A1.P2�/. We see also that the pushforward map
�1� W A.ˆ/! A.P2�/ is given by

˛2 7! 0; ˛� 7! ˛; �2 7! ˛:

To realize the restrictions of E to the lines in P2 as a family, we consider the pullback
bundle

F D ��2 .E/
on ˆ.
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We now assume that the “expected” codimensions of the loci �a of Theorem 14.7
are actually attained; that is, that for an open dense subset U of L 2 P2�, the restriction
of F to the fiber over L splits as

E jL D F j��12 .L/ Š OL.k/˚OL.k/;

that there is a codimension-1 locus — a curve —C � P2� of lines L such that

E jL D F j��12 .L/ Š OL.k C 1/˚OL.k � 1/;

and that no other splitting types occur.
To get some information about C we replace E by E 0 D E ˝ OP2.�k � 1/ and

consider F 0 D ��2 E 0. The restriction of E 0 to L will split as

E 0jL Š
�
OL.�1/˚2 if L 2 U ,
OL ˚OL.�2/ if L 2 C ,

and thus

h0.E 0jL/ D h1.E 0jL/ D
�
0 if L 2 U ,
1 if L 2 C .

By the theorem on cohomology and base change (Theorem B.5), the direct image
�1�.F 0/ is 0: over the open subset U � P2� there are no sections, and, since �1�.F 0/
is torsion-free, it follows that �1�.F 0/ D 0. However, the jump in the cohomology
groups H i .E 0jL/ is reflected in the higher direct image R1�1�.F 0/; this will be a sheaf
supported on the curve C . It follows that

c1.R
1�1�.F 0//

will give us the degree of this curve (counting each component with some positive mul-
tiplicity). The class c1.R1�1�.F 0// is something we can calculate from Grothendieck
Riemann–Roch.

To make the computation, we first need the Todd class of the relative tangent bundle
of �1 W ˆ! P2�. From Theorem 11.4,

c1.T vˆ=P2�/ D �˛ C 2�;

and correspondingly

Td.T v
ˆ=P2�/ D 1C

1
2
.�˛ C 2�/C 1

12
.�˛ C 2�/2

(note that since T v
ˆ=P2�

is a line bundle, there is no cubic term). If we write the Chern class
of the bundle F 0 as

c.F 0/ D �2� C e�2;
then we have

Ch.F 0/ D rank.F 0/C c1.F 0/C 1
2
.c21.F 0/ � 2c2.F 0//

D 2 � 2� C .2 � e/�2:
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Now the Grothendieck Riemann–Roch formula tells us that

ŒC � D Ch1.R1�1�.F 0//
D ��1�

˚
.2 � 2� C .2 � e/�2/

�
1C 1

2
.�˛ C 2�/C 1

12
.�˛ C 2�/2

�	
2

D ��1�
�
1
6
.�˛ C 2�/2 � �.�˛ C 2�/C .2 � e/�2

�
D .e � 1/�I

or, in other words, the degree of the curve of jumping lines, counted with multiplicities,
is e � 1. Given that E 0 D E ˝OP2.�k � 1/, we have

e D c2.E 0/ D c2.E/ � .k2 � 1/

and so for our original bundle E we have:

Proposition 14.8. If E is a vector bundle of rank 2 on P2 with even first Chern
class 2k�, and the restriction of E to a general line L � P2 is balanced (that is,
E jL Š OL.k/˚OL.k/), then the degree of the curve of jumping lines, counted with
multiplicities as above, is c2.E/ � k2 D c2.E/ � c21.E/=4.

In fact there is a natural scheme structure on the curve C , defined by a Fitting
invariant of R1�1�.F 0/, that determines the multiplicities. See Maruyama [1983] for a
treatment and further references. Although we have not described the multiplicities or
given conditions under which they are equal to 1, Proposition 14.8 has nontrivial content:
For example, we may deduce that the degree of C is at most c2.E/ � c21.E/=4, and if
c2.E/� c21.E/=4 ¤ 0 we may conclude that the curve of jumping lines is nonempty. We
give an explicit example below.

Vector bundles with odd first Chern class
We now assume that c1.E/ D .2k C 1/� and, as before, that the “expected” codi-

mensions of the loci �a of Theorem 14.7 are attained. Thus, over an open dense subset
U of L 2 P2�, the restriction of F to the fiber over L splits as

E jL D F j��12 .L/ Š OL.k/˚OL.k C 1/:

But now our assumption means that the locus of lines L such that

E jL D F j��12 .L/ Š OL.k � 1/˚OL.k C 2/

is a finite set � . Again, no other splitting types occur.
To get some information about � , we again twist the vector bundle E so that the

jump in splitting type is reflected in the ranks of the cohomology groups of its restriction
to lines. Specifically, we replace E by E 0 D E ˝OP2.�k � 1/, so that the restriction of
the bundle E 0 to L will split as

E 0jL Š
�
OL ˚OL.�1/ if L 2 U ,
OL.1/˚OL.�2/ if L 2 � .
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We now have

h0.E 0jL/ D
�
1 if L 2 U ,
2 if L 2 � ,

and correspondingly

h1.E 0jL/ D
(
0 if L 2 U ,

1 if L 2 � .

As before, this means that the sheaf R1�1�.F 0/ is supported on the exceptional locus,
in this case � , and thus the length of this sheaf counts the number of points in � , with
some nonzero multiplicities.

An important difference between this case and that of even first Chern class is that
here the direct image �1�.F 0/ is nonzero. By the theorem on cohomology and base
change it is locally free of rank 1 away from �; in fact, it is locally free everywhere, as
we will now show.

Let L 2 U be a point in an open subset of P2� such that the splitting of F 0jL
is F 0jL D OP1.�2/ ˚ OP1.1/ and the splitting of F 0jL0 for L0 2 U other than L is
F 0jL0 D OP1.�1/˚OP1 . There is a short exact sequence

0 �! OˆU .�2/
2
�! OˆU .�2/˚OˆU .�1/

3
�! F 0 �! 0

(see Exercise 14.26). Applying R�1�, we get an exact sequence of sheaves on U of
the form

0 �! �1�F 0 �! R1�1�OˆU .�2/
2
�! R1�1�OˆU .�2/ �! R1�1�F 0 �! 0:

This can be written as

0 �! �1�F 0 �! O2U
.f;g/
�����! OU �! R1�1�F 0 �! 0;

where the common zero locus of f and g is the locus of jumping lines. Given that the
locus of jumping lines has codimension 2, it follows that �1�F 0 is locally free of rank 1,
and thus

�1�.F 0/ Š OP2�.m/

for some m; the value of m will also emerge in the calculation.
Note that in a neighborhood of a point p 2 � � P2� corresponding to a line

L � P2 the comparison map

�1�.F 0/jp ! H0.F 0jL/

will be zero: none of the sections of F 0jL extend to a neighborhood of L.
We now apply Corollary 14.6. If we write

c.E 0/ D 1 � � C e�2;
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then the Chern character of E 0, and of its pullback F 0 to ˆ, is

Ch.F 0/ D 2 � � C
�
1
2
� e

�
�2:

By Corollary 14.6,

Ch.�1�F 0/ � Ch.R1�1�F 0/
D �1�

��
2 � � C

�
1
2
� e

�
�2
��
1C 1

2
.�˛ C 2�/C 1

12
.�˛ C 2�/2

��
D 1 � e˛ C

e

2
˛2:

From the isomorphism �1�.F 0/ Š I�.m/, we get

Ch.�1�F 0/ D 1Cm˛ C
m2

2
˛2:

Since

Ch.R1�1�F 0/ D Ch.O�/ D Œ�� D ˛2;
we have

1 � e˛ C
e

2
˛2 D 1Cm˛ C

�
m2

2
� 2

�
˛2:

From the degree-1 terms, we see that m D �e, and then equating the degree-2 terms we
find that the degree of � is

 D
e2 � e

2
:

To express this in terms of the Chern classes of our original bundle E , we observe that,
by the splitting principle, for an arbitrary bundle E of rank 2 on P2 with first Chern class
c1.E/ D .2kC 1/�, the degree of the second Chern class of the twist E 0 D E.�k � 1/ is

e D c2.E/ � .k C 1/c1.E/� C .k C 1/2�2

D c2.E/ � k.k C 1/:

Proposition 14.9. Let E be a vector bundle of rank 2 on P2 with odd first Chern class
.2k C 1/�. Under the hypotheses introduced above, the locus � � P2� of jumping lines
is a set of .e2 � e/=2 points counted with multiplicities, where e D c2.E/ � k.k C 1/.

As in the case of Proposition 14.8, this statement implicitly invokes a scheme
structure on � that we have not described; again, however, even in the absence of this
we can deduce that the number of jumping lines is at most .e2 � e/=2, and if e2 � e ¤ 0
we may conclude that the locus of jumping lines is nonempty.

14.4.3 Examples

Suppose that F0; F1 and F2 are general homogeneous polynomials of degree d
on P2, and let E be the kernel of the bundle map

OP2.�d/
˚3 .F0; F1; F2/
���������! OP2 :



502 Chapter 14 The Grothendieck Riemann–Roch theorem

Note that since F0; F1 and F2 have no common zeros this is a surjection, so that E is
locally free of rank 2.

By Whitney’s formula we have

c.E/ D
1

.1 � d�/3
D 1C 3d� C 6d2�2 2 A.P2/:

For odd degree d D 2k C 1, Proposition 14.9 suggests that the number of jumping
lines should be the binomial coefficient

�
3k2C3kC1

2

�
.

For example, when d D 1 (hence k D 0) this number is 0. It is easy to see that
this is correct: If L D P1 is a line then (after applying a suitable element of GL3 to
OP2.�d/

˚3, that is, replacing F0, F1 and F2 with independent linear combinations) we
may assume that L is given by the equation F2 D 0; then F0; F1 necessarily restrict to
independent linear forms F 1; F 2 on L. Thus

E jL D OP1.�1/
˚3 .F 0;F 1;0/
���������! OP1 D OP1 ˚OP1.�1/:

Put differently, the bundle E is invariant under the transitive group PGL.3/ (it is the
cotangent bundle of P2), and this group must preserve the locus of jumping lines.

When d D 3, Proposition 14.9 suggests that the number of jumping lines should
be 21; we will see how to verify this count in Exercise 14.24.

For even degree d D 2k, we would expect from Proposition 14.8 that the curve of
jumping lines, with multiplicity, will have degree 3k2 D 3

4
d2. In case d D 2 this number

is 3; in Exercise 14.23 we explain how to verify that it is actually a nonsingular cubic.

14.5 Application: invariants of families of
curves

We close this chapter by describing one of the most important applications of the
Grothendieck Riemann–Roch formula, a result that is central to the study of the moduli
space of curves.

Consider one-parameter families of curves of genus g; that is, flat morphisms
˛ W X ! B from a surface X to a curve B , with fibers curves of genus g. How can we
measure how much the isomorphism class of Xb is varying with b 2 B?

In order to address this meaningfully, we have to make some restrictions on the type
of curves that appear as fibers of ˛ (as the footnote below will illustrate). For simplicity, in
the present discussion we will assume that X and B are smooth, and that the fibers Xb of
˛ are irreducible with at worst nodes as singularities. These conditions could be relaxed:
we could drop the requirement thatX andB be smooth, and we could weaken the hypoth-
esis that Xb be irreducible to require only that Xb be stable (see for example Harris and
Morrison [1998]) — but our goal here is just to acquaint the reader with the basic ideas.
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A parenthetical note: This discussion touches on a topic that, had we the energy and
expertise and you the willingness to countenance an 800-page book, we would take up:
intersection theory on algebraic stacks. Briefly, the category of stacks is an enlargement
of the category of schemes — schemes form a full subcategory of stacks — in which we
can find parameter spaces that may not exist in the category of schemes. In the present
setting, the correct framework for the calculations we are about to undertake is to view
ı, � and � as classes in A1.Mg/, where Mg is the moduli stack of stable curves. A
discussion of these ideas can be found in Harris and Morrison [1998, Chapters 2 and 3].

We consider three natural ways of quantifying the variation in the family:

(a) Number of nodes: If the family ˛ were trivial, that is, if ˛ were the projection of a
product C � B to B , there would be no singular fibers. Thus the number of singular
fibers is a measure of nontriviality.1 It turns out (given that the total space X is smooth)
to be natural to count a singular fiber with multiplicity equal to the number of nodes that
appear in it. Thus we let ı.˛/ be the total number of nodes appearing in the fibers of ˛.
(Again, we are being unnecessarily restrictive here; it is possible to assign multiplicities
without the assumption that X is smooth, but it requires additional complication.)

(b) Degree of the Hodge bundle: Recall that any projective curve C has a dualizing sheaf
!C , which is the cotangent bundle if the curve is smooth and is defined in general to
be !C WD Extn�1Pn .OC ; !Pn/ for any embedding C � Pn. Moreover, the dimension of
H 0.!C / is equal to the arithmetic genus pa.C / of C .

By the theorem on cohomology and base change (Theorem B.5), the quantity

�.OXb / D h
0.OXb / � h

1.OXb / D 1 � pa.Xb/

is independent of the point b 2 B , so h0.!Xb / is independent of b. The relative dualizing
sheaf

!X=B D !X ˝ ˛
�!�1B

of the family restricts on each fiber Xb to !Xb . Thus

E WD ˛�.!X=B/

is a vector bundle on B of rank g. It is called the Hodge bundle of the family.
Set

�.˛/ D c1.E/;

the degree of the Hodge bundle. If the family were trivial then E would be the trivial
bundle, so �.˛/ would be 0.

1 This would not be true if we did not assume that the fibers were irreducible: You could take a trivial family
B �C ! B and blow-up a point in B �C to arrive at a family of curves of constant modulus with one singular
fiber. The logic would be valid if we assumed all fibers to be stable curves; in the present context we avoid getting
into a discussion of this notion by assuming all fibers to be irreducible.
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(c) Self-intersection of the relative canonical divisor: Set

�.˛/ D c1.!X=B/
2:

If the family were trivial then the relative cotangent bundle !X=B would be the pullback
of !C via projection on the second factor, so its self-intersection number �.˛/ would
be 0.

The Mumford relation is a linear relation among these three numerical invariants:

Theorem 14.10. If ˛ W X ! B is a morphism from a smooth projective surface X to a
smooth projective curve B whose fibers are irreducible curves g having at most nodes
as singularities, then

�.˛/ D
�.˛/C ı.˛/

12
:

We will give the proof in Section 14.5.2; see Harris and Morrison [1998, Section 3E]
for a proof in greater generality and Mumford [1983] for many extensions. First, however,
we show how to compute an example; further examples are in the exercises, and together
these show that the Mumford relation is the only linear relation satisfied by ı; � and �.

Though there are no other linear relations, these invariants satisfy some subtle
inequalities. For example, if X ! B is a one-parameter family of irreducible curves of
genus g having at most nodes as singularities and not all singular, then

ı �
�
8C

4

g

�
�I

this is sharp, as shown by the example of Exercise 14.31. For a discussion of these
questions, with references to the literature, see Harris and Morrison [1998].

14.5.1 Example: pencils of quartics in the plane

We will compute the invariants ı; �; � for a general pencil

fCt D V.t0F C t1G/ � P2g

of plane quartic curves. Set

X D f.t; p/ 2 P1 � P2 jp 2 Ctg:

We observe that X is smooth — the projection ˇ W X ! P2 on the second factor
expresses X as the blow-up of the plane at the 16 base points F D G D 0 of the pencil.
We showed in Section 7.1 that every fiber Ct of ˛ W X ! P1 is either smooth or is
irreducible with a single node; thus the family ˛ W X ! P1 satisfies the conditions of
our discussion.

In Chapter 7 we computed that the number of nodes in the fibers of ˛ is

ı.˛/ D 27:
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To compute �.˛/, let L be the preimage under ˇ of a line in P2 and let E be the sum of
the 16 exceptional divisors of ˇ, the preimages of the base points in P2 of the family ˛.
Let l; e 2 A1.X/ denote their classes. In these terms, the class of the fibers Ct of the
projection ˛— that is, the pullback under ˛ of the class � of a point in P1 — is given by

ŒCt � D ˛
�.�/ D 4l � e:

In particular, this implies that

˛�KP1 D �2˛
�.�/ D �8l C 2e:

On the other hand, from the blow-up map ˇ W X ! P2 we see that

KX D ˇ
�.KP2/CE D �3LCE:

Thus, the first Chern class of the relative dualizing sheaf !X=P1 is

c1.!X=P1/ D c1.KX / � ˛
�c1.KP1/ D 5l � e

and the invariant �.˛/ is given by

�.˛/ D c1.!X=P1/
2
D 25 � 16 D 9:

To compute � we describe the Hodge bundle: Since 5L �E D .4L �E/C L, we
can write the dualizing sheaf as

!X=P1 D OX .5L �E/ D ˛�OP1.1/˝ ˇ
�OP2.1/:

Now, the pushforward ˛�.ˇ�OP2.1// is simply the trivial bundle on P1 with fiber
H 0.OP2.1//; by Proposition B.7 we have then

˛�.!X=P1/ D ˛�.˛
�OP1.1/˝ ˇ

�OP2.1//

D OP1.1/˝H
0.OP2.1//

Š OP1.1/
3;

and correspondingly

�.˛/ D c1.˛�.!X=P1// D 3:

Another, more concrete way to arrive at this is suggested in Exercise 14.27.
To summarize, we have

ı.˛/ D 27; �.˛/ D 9 and �.˛/ D 3;

verifying Mumford’s relation in this case.
Further examples of one-parameter families of curves for which we can verify the

Mumford relation are given in Exercises 14.28–14.30.
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14.5.2 Proof of the Mumford relation

Proof of Theorem 14.10: The Grothendieck Riemann–Roch theorem tells us thatX
i

.�1/i Ch.Ri˛�!X=B/ D ˛�ŒCh.!X=B/Td.T vX=B/�;

and we recall that Td.T v
X=B

/ D Td.TX /=˛�.Td.TB//. Thus

c1.˛�!X=B/ D Ch1.R0˛�!X=B/

D Ch1.R1˛�!X=B/C
˚
˛�.Ch.!X=B/Td.T vX=B//

	
0

D c1.R
1˛�!X=B/C ˛�fCh.!X=B/Td.T vX=B/g0:

We will compute the terms on the right.
We first claim that R1˛�.!X=B/ D OB , and thus c1.R1˛�.!X=B// D 0. This

follows from a generalization of Serre duality due to Grothendieck, which we now
describe:

Recall that Serre duality says that for any invertible sheaf F on a smooth curve C ,
we have a natural identification

H 1.F/ D Hom.F ; !C /� D H 0.Hom.F ; !C //�:

Although this is sometimes stated just for nonsingular curves, it holds for any purely
one-dimensional scheme C . Moreover, the identification is so natural that, properly
formulated, it applies to families of such schemes: If ˛ W X ! B is a family of
projective curves of genus g and F is an invertible sheaf on X whose cohomology
groups have constant rank on the fibers of ˛, then there is a natural isomorphism

R1˛�.F/ Š ˛�.Hom.F ; !X=B//�I

see Barth et al. [2004, Section III.12]. If we apply this to the case of F D !X=B , we get

R1˛�.!X=B/ D ˛�.OX / D OB :

We next compute the necessary Todd classes. Recall the Hopf index theorem
(Theorem 5.20): The degree of the top Chern class c2.TX / of the tangent bundle of
the smooth projective surface X is the topological Euler characteristic of X . Also, the
topological Hurwitz formula (Section 7.7) says that the topological Euler characteristic
of X is the product of the Euler characteristics 2 � 2g of the general fiber of ˛ and the
Euler characteristic of the base curve B , plus the total number ı of nodes in the fibers
of ˛. Combining these, we see that

c2.TX / D .2 � 2g/c1.TB/C ı
D �c1.!X=B/ � ˛

�c1.TB/C ı
D .c1.TX / � c1˛�TB/ � ˛�c1.TB/C ı:
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Abbreviating the expression !X=B for the relative dualizing sheaf to simply !, we can
thus express the ratio c.TX /=˛�c.TB/ as

c.TX /
˛�c.TB/

D .1C c1.TX /C c2.TX //.1 � ˛�c1.TB//

D 1 � c1.!/C ı;

where we have used the equality c1.˛�.TB//2 D ˛�.c1.TB/2/ D 0. Substituting these
classes into the formulas for the Todd classes of degrees 0, 1, and 2, we get

Td.TX /
˛� Td.TB/

D 1 �
c1.!/

2
C
c1.!/

2 C ı

12
:

We now have everything we need to apply Corollary 14.6, and we conclude that

�.˛/ D c1.˛�!/

D

�
˛�

��
1C c1.!/C

c1.!/
2

2

��
1 �

c1.!/

2
C
c1.!/

2 C ı

12

���
0

D ˛�

�
c1.!/

2

2
�
c1.!/

2

2
C
c1.!/

2 C ı

12

�
D
�.˛/C ı.˛/

12
:

14.6 Exercises
Exercise 14.11. (a) Find the Chern characters of the universal bundles S and Q on

G D G.1; 3/.
(b) Use this to find the Chern character of the tangent bundle TG D S� ˝Q.
(c) Use this in turn to find the Chern class of TG .

Exercise 14.12. Verify that the definition of the Chern class of a coherent sheaf given in
Section 14.2.1 is well-defined; that is, c.F/ does not depend on the choice of resolution.

Exercise 14.13. Let p 2 Pn be a point. Using the Koszul complex, show that the Chern
class of the structure sheaf Op, viewed as a coherent sheaf on Pn, is

c.Op/ D 1C .�1/n�1.n � 1/Š Œp�:

Exercise 14.14. Let C � P3 be a smooth curve. Find the Chern class of the structure
sheaf OC , viewed as a coherent sheaf on P3, when:

(a) C is a twisted cubic.
(b) C is an elliptic quartic curve.
(c) C is a rational quartic curve.
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Exercise 14.15. Consider the three varieties X1 D P3, X2 D P1 � P2 and X3 D
P1 � P1 � P1.

(a) In each case, calculate the degrees of the classes c3.TXi /, c1.TXi /c2.TXi / and
c1.TXi /3.

(b) Show that the resulting 3 � 3 matrix is nonsingular.
(c) Show that the Euler characteristic �.OXi / is 1 for each i .
(d) Given that the Euler characteristic of the structure sheaf of a smooth projective

threefold X is expressible as a polynomial of degree 3 in the Chern classes of its
tangent bundle, show from the above examples that the polynomial must be

Td3.c1; c2; c3/ D
c1c2

24
:

Exercise 14.16. Verify that the formula of Theorem 14.4 gives the classical Riemann–
Roch formula for n D 1 or 2, and write down the analogous formula for n D 3.

Exercise 14.17. In Section 7.2 we introduced a vector bundle E on P2 whose fiber
at a point p 2 P2 is the space H 0.OP2.d/=I

2
p.d// of homogeneous polynomials of

degree d , modulo those vanishing to order 2 or more at p; we also described E as a
direct image. Use this and the Grothendieck Riemann–Roch formula to calculate the
Chern classes of E .

Exercise 14.18. In Chapter 11 we introduced a vector bundle E on the universal line

ˆ D f.L; p/ 2 G.1; 3/ � P3 jp 2 Lg

whose fiber at a point .L; p/ 2 ˆ is the space H 0.OL.d/=I5p.d// of homogeneous
polynomials of degree d on L, modulo those vanishing to order 5 or more at p; we also
described E as a direct image. Use this and the Grothendieck Riemann–Roch formula to
calculate the Chern classes of E .

Exercise 14.19. Let C � P2 be an irreducible plane curve of degree d . Construct
a bundle E on the dual plane P2� whose fiber at a point L is the space of sections
of the structure sheaf O� of the intersection � D C \ L, and use the Grothendieck
Riemann–Roch formula to calculate the Chern classes of E .

Exercise 14.20. Let E be an indecomposable vector bundle of rank 2 on P3 with first
Chern class 0, and let

�1 D fL 2 G.1; 3/ j E jL Š OL.k/˚OL.�k/ with k � 1g:

Find the class of the divisor �1 � G.1; 3/.

Exercise 14.21. With E as in the preceding problem, let

�2 D fL 2 G.1; 3/ j E jL Š OL.k/˚OL.�k/ with k � 2g:

Find the class of the locus �2 � G.1; 3/, assuming it has the expected dimension 1.
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Exercise 14.22. Now let E be a vector bundle of rank 2 on P3 with first Chern class
c1.E/ D � (the hyperplane class), and let

ˆi D fL 2 G.1; 3/ j E jL Š OL.k C 1/˚OL.�k/ with k � ig

for i D 1; 2. Find the classes of the loci ˆi � G.1; 3/, assuming they have the expected
codimension 2i .

Exercise 14.23. Let F0; F1; F2 be three general quadratic forms in three variables, and
define a bundle E on P2 as the kernel of the surjection

OP2.�2/
˚3 .F0; F1; F2/
���������! OP2 :

Prove the locus C of jumping lines of E is a nonsingular cubic curve in P2 as follows:

(a) Show that C is also the locus of jumping lines of

E� D coker
�
OP2

.F0; F1; F2/
���������! OP2.2/

˚3
�
:

(b) Show that E�jL contains a copy of OL.2/ as a summand if and only if some linear
combination of F0; F1; F2 vanishes identically on L.

(c) We may represent each Fi as a general symmetric 3 � 3 matrix of scalars Qi .
Introducing new variables z0; z1; z2, we see from the previous item that the curve
of jumping lines is a double cover of the smooth cubic curve defined in coordinates
z0; z1; z2 by the equation det

�P
i ziQi

�
D 0.

Exercise 14.24. Let E be defined as in Exercise 14.23, but now take the Fi to be general
cubics (and replace the occurrences of OP2.�2/ with OP2.�3/). Show that the jumping
lines of 0 are exactly the lines in P2 contained in some curve of the form

P
aiFi D 0.

Show that there are exactly 21 of these by observing that this is the degree of the
seven-dimensional variety of reducible plane cubics in the P9 of all plane cubics.

Exercise 14.25. As an example, let q W k4�k4 ! k be a nondegenerate skew-symmetric
bilinear form. We can define a bundle of rank 2 on P3 by setting

0p D hpi
?=hpi:

Describe the locus of jumping lines for such a bundle.

Exercise 14.26. As in Section 14.4.2, let L 2 U be a point in an open subset of P2�

such that the splitting of F 0jL is F 0jL D OP1.�2/˚OP1.1/ and the splitting of F 0jL0
for L0 2 U other than L is F 0jL0 D OP1.�1/˚OP1 . Show that there is a short exact
sequence

0 �! OˆU .�2/
2
�! F 0 �! OˆU .1/ �! 0

and a resolution

0 �! OˆU .�2/
2
�! OˆU .�1/

3
�! OˆU .1/ �! 0;
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and use these to deduce the presentation

0 �! OˆU .�2/
2
�! OˆU .�2/˚OˆU .�1/

3
�! F 0 �! 0:

Exercise 14.27. We will show how to arrive at the result �.˛/ D 3 of Section 14.5.1
more concretely. Choose affine coordinates t on A1 � P1 and .x; y/ on A2 � P2, and
write the equation of Ct as ft .x; y/, where ft is a quartic polynomial in x and y whose
coefficients are linear in t .

(a) Show that the differential

't D
dx

.@=@y/ft .x; y/

is regular on Ct , as are x't and y't .
(b) Show that these differentials give rise to sections ', x' and y' of the Hodge bundle

E D ˛�.!X=B/ that are everywhere linearly independent for t ¤1, and that in a
neighborhood of t D1 the sections t', tx' and ty' are everywhere regular and
linearly independent.

(c) Deduce that the Hodge bundle E D ˛�.!X=B/ is isomorphic to OP1.1/
˚3, and in

particular that �.˛/ D 3.

Exercise 14.28. Let fCt � P2gt2P1 be a general pencil of plane curves of degree d .
Calculate the numerical invariants ı, � and � for the family, and verify the Mumford
relation.

Exercise 14.29. Let fCt � Sgt2P1 be a general pencil of plane sections of a smooth
surface S � P3 of degree d . Calculate the numerical invariants ı, � and � for the family,
and verify the Mumford relation.

Exercise 14.30. Let fCt � P1 � P1gt2P1 be a general pencil of curves of bidegree
.a; b/ in P1�P1. Calculate the numerical invariants ı, � and � for the family, and verify
the Mumford relation.

Exercise 14.31. Let C � P1 � P1 be a general curve of bidegree .2; 2g C 2/, and let
X ! P1 � P1 be the double cover of P1 � P1 branched over C . Viewing X ! P1 as a
family of hyperelliptic curves of genus g via projection on the first factor, calculate the
invariants ı, � and � for the family; verify the Mumford relation, and also show that the
inequality

ı �
�
8C

4

g

�
�

stated in Section 14.5 is sharp.



Appendix A

The moving lemma

For many years, the development of intersection theory was based on a result known
as the “moving lemma.” This came in two flavors, the basic moving lemma and the
strong moving lemma.

Lemma A.1 (Basic moving lemma). Let X be a smooth, quasi-projective variety.

(a) Given cycles A;B on X , there exists a cycle A0 rationally equivalent to A and
generically transverse to B .

(b) The resulting class ŒA0 \ B� 2 A.X/ is independent of the choice of such an A0.

Given the validity of these assertions, the intersection product may be defined by
the formula ŒA�ŒB� D ŒA0 \ B�.

Lemma A.2 (Strong moving lemma). Let f W Y ! X be a morphism of smooth,
quasi-projective varieties.

(a) Given a cycle A on X , there exists a cycle A0 D
P
niAi rationally equivalent to A

and generically transverse to f ; that is, such that the preimage f �1.Ai / � Y is
generically reduced of the same codimension as Ai .

(b) The class
�P

nif
�1.A0/

�
2 A.Y / is independent of the choice of such an A0.

Given this, we can define a pullback map f � W A.X/! A.Y /, making the Chow
ring into a contravariant functor. Note that the strong moving lemma is not just a
generalization of the basic one — the basic moving lemma is just the strong one in case
the map f is an inclusion — but also a strengthening: even in case f is an inclusion
Y ,! X , it produces a class in A.Y / whose pushforward to X is the product ŒA�ŒY �,
rather than simply a class in A.X/. This is called a semi-refined intersection product (the
prefix “semi-” is because this is not the full degree of refinement possible; in Fulton’s
theory, subject to mild hypotheses it is possible to associate to a pair of subvarieties
A;B � X a class supported on the actual intersection A \ B).
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A method of proving part (a) of the basic moving lemma was put forward in Chow
[1956] and Samuel [1956], following ideas of Severi [1933], and we will give the details
in the first section of this appendix. (For other treatments see Samuel [1971], Roberts
[1972a] and Hoyt [1971], as well as the discussion in Fulton [1984, Chapter 11].) In
addition, part (a) of Lemma A.2 may be deduced from part (a) of Lemma A.1; we will
do this in Section A.2 below.

It is also possible to use the same argument to prove part (b) of the basic version, by
moving the second cycle B to a cycle B 0 generically transverse not only to all the com-
ponents of A0 but also to all subvarieties appearing in the rational equivalence between A
and A0; this is carried out in the Stacks Project [2015, Tag 0AZ6] of de Jong and others.
None of these approaches, however, suffice to prove part (b) of the strong moving lemma.

The Fulton–MacPherson approach to the definition of the intersection product,
extended and detailed in Fulton [1984], has made the moving lemma unnecessary, and
gives a technically superior and more general approach to intersection products. Though
the direct proofs of part (b) (in either version) have remained controversial, the Fulton–
MacPherson theory implies that the statements are correct. (If one is willing to work
with rational coefficients, there is an alternative approach via K-theory as well.)

In our view, part (a) of the moving lemma, even though superseded (and rendered
unnecessary) by the Fulton–MacPherson approach, still has heuristic importance, hence
this appendix.

A.1 Generic transversality to a cycle
All existing proofs of part (a) of Lemma A.1 are based on an approach proposed

by Severi, called the cone construction. The idea is this: We are given cycles A and
B in a smooth variety X � PN , and want to find a cycle A0, rationally equivalent
to A and generically transverse to B . We will do this by expressing the cycle A as a
difference of two cycles A D E �A1, where E is the generically transverse intersection
of X with another subvariety ˆ � PN (so that E can be moved, by applying a linear
transformation g of PN , to a cycle E1 D gˆ \X generically transverse to B), and A1

is better situated with respect to B than A. “Better situated” here means two things: if
the intersection A \ B was not dimensionally transverse, then A1 \ B will have strictly
smaller dimension than A \ B , and if A \ B is dimensionally transverse then A1 \ B
will actually be generically transverse. (It is called the cone construction because the
variety ˆ used is a cone over A, with vertex a general linear space � � PN .) If we carry
out this process repeatedly, we will arrive at the desired cycle A0.

We remark that most of the salient points of the proof are already present in the very
simplest case, where X � P3 is a smooth surface and A D B � X a (possibly) singular
curve; see Figure A.1.
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A A0

X

P2
A;�

�
E

��
����!

�� .E/

�� .A/

Figure A.1 A;� \X D AC A0 and hAi � hEi � hA0i.

Proof of part (a) of Lemma A.1: Set n D dimX and a D codimX A. We may assume
that B is equidimensional, and we set b D codimX B .

We will construct sequences of equidimensional cycles of codimension a on X

A D A0; A1; A2; : : : and E1; E2; : : :

satisfying the following conditions:

(a) Ai is rationally equivalent to EiC1 � AiC1 on X .
(b) Ei is generically transverse to B .
(c) If C is a component of AiC1 \ B and C � Ai \ B , then C is properly contained

in a component of Ai \ B; in particular, codimC > codimAi \ B .
(d) AiC1 is generically transverse to B n .Ai \ B/.

In what follows, the word “component” refers to an irreducible, nonembedded
component. By Theorem 0.2, every component of A \ B has codimension � a C b.
Thus part (c) shows that for m > a C b � codim.A \ B/ there are no components of
Am \ B that are contained in Am�1, and part (d) then shows that Am is generically
transverse to B . By part (a) we have

A �

mX
iD1

.�1/iC1Ei C .�1/mAm;

and by part (b) all the Ei are generically transverse to B , so this will establish the
theorem.
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By induction it suffices to show that, given an equidimensional cycle A, we can
produce E1 and A1 satisfying the given conditions. Without loss of generality we may
assume that A is the cycle associated to a subvariety, which we also call A.

We begin by embedding X in a projective space PN in such a way that no three
points of X are collinear and no two tangent planes to X at distinct points meet. The
following lemma shows that it suffices to replace whatever embedding X � PN

0

we
are originally given by its composition with the third Veronese map �3 W PN

0

! PN

(the embedding by the linear system of cubics):

Lemma A.3. Let �3 W PN ! PM be the third Veronese map. No three points of �3.PN /
are collinear, and the tangent planes at distinct points of �3.PN / are disjoint.

Proof: By Proposition 7.10, any subscheme of degree � 4 in PN imposes independent
conditions on cubics. Thus any subscheme of �3.PN / of degree d � 4 spans a plane
of dimension � d � 1. In particular, no three points of �3.PN / lie on a line (this also
follows from the fact that �3.PN / is cut out by quadrics and contains no lines). If the
tangent planes to �3.PN / at points p; q met in some point r , then the lines L1 D p; r
and L2 D q; r would be contained in the 2-plane p; q; r , and this plane would contain
the subscheme .L1 \X/ [ .L2 \X/, which has length at least 4, a contradiction.

Thus we may assume from the outset that no three points of X in PN are collinear,
and that any two tangent planes to X at distinct points are disjoint.

Lemma A.4. Let X and A be as above and �� W X ! Pn be the linear projection from
a general N � n � 1 plane � � PN . We may write

��1� .��.A// D A [ A
0
�

as schemes, where A0� is a generically reduced scheme of pure codimension a that does
not contain A.

Write G WD G.N � n � 1;N / for the Grassmannian of .N � n � 1/-dimensional
planes in PN ; the statement above means that the conclusion holds for all planes in an
open dense subset of G.

Proof: To simplify the notation, we set zA� WD ��1� .�.A// D X\A;� (see Figure A.1).
By Theorem 0.2, the components of zA� have codimension in X at most the codi-

mension of the irreducible variety ��.A/ in Pn. Since �� W X ! Pn is finite, ��.A/
has dimension n � a. Thus every component of ��1� .��.A// is of pure codimension a
and maps surjectively to ��.A/. In particular, A itself is a component of zA� .

Thus it suffices to prove that zA� is generically reduced. Since every component
of zA� surjects onto ��.A/, it even suffices to show that the general fiber of �� is
reduced. The fibers of �� are the intersections of X with the .N � n/-dimensional
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planes containing � , and a general such plane † is a general .N � n/-plane containing a
general .N � n � 1/-plane � . Thus † is general in the space of all .N � n/-planes, so
reducedness follows from Bertini’s theorem.

With notation as in Lemma A.4, we set A1� WD A0� . The situation is illustrated in
Figure A.1. We can now establish conditions (a) and (b) of the proof of Lemma A.1:

Lemma A.5. With notation as above, if � 2 G is general then

ŒA� D ŒE1� � ŒA1� � 2 A.X/;

where E1 is generically transverse to B .

Proof: We have

A D zA� � A
1
�

where zA� is the generically transverse intersection of X with the cone A;� . Let g 2
PGLNC1 be a general automorphism of PN . By the argument of part (c) of the Kleiman
transversality theorem (Theorem 1.7),

zA� � E
0
WD X \ g.A; �/;

and by part (a) of the same theorem g.A; �/, and henceE 0, will be generically transverse
to B .

Completion of the proof of Lemma A.1: With notation and hypotheses as above, it suffices
to show that, for general � , the cycle corresponding to the scheme A1� satisfies (c)
and (d). Since an intersection of open dense subsets of G is again open and dense, it
suffices to do this for one component of B at a time, so we may assume that B is (the
cycle associated to) a subvariety, which we also call B .

Condition (c): Consider a component C of A1� \ B that is contained in A, so that in fact

C � A \ A1� \ B � A \ B:

We must show that C is not a component of A \ B .
Since � is general, every component of A \ B contains points p such that � does

not meet the tangent plane to X at p. The map �� W X ! Pn is nonsingular at such
points. Since ��1� .��.A// D A

0 [A, such points cannot lie in A\A0. Consequently C
must be properly contained in some component of A \ B , as required.

Condition (d): Finally, we wish to show that for general � the intersection of A1� with
B� D B nA\B is generically transverse, or equivalently that zA� andB� are generically
transverse.

We first prove the weaker statement that zA� and B� are dimensionally transverse.
Consider the incidence correspondence ‰ defined by

‰ WD f.�; p; q/ 2 G � A � B� j� \ p; q ¤ ¿g:
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The fiber of ‰ over any point .p; q/ 2 A � B� is isomorphic to the set †.p; q/ of
.N � n� 1/-planes � 2 G� meeting the line p; q. By Theorem 4.1 this is an irreducible
variety of codimension n in G�. Since the projection ‰ ! A � B� is proper, it follows
that ‰ is irreducible of dimension

dim‰ D dimG� C dimAC dimB � n:

This implies that for general � the fiber of‰ over � has dimension dimACdimB�n.
Since this fiber surjects onto A1� \B

�, we see that dimA1� \B
� � dimAC dimB � n,

so by Theorem 0.2 we have equality. That is, for general � the sets A� and B�

are dimensionally transverse; every component of their intersection has dimension
dimAC dimB � n.

Let G� � G be the open dense set consisting of the planes � disjoint from X such
that �� W A! ��.A/ is birational and zA� is generically reduced.

To prove the generic transversality of zA� and B� for general � , we next consider
‰0 � ‰, where

‰0 WD f.�; p; q/ 2 G� �A�B� j��.p/ D ��.q/; zA� is not transverse to B� at qg:

If zA� and B� were not generically transverse for generic � , then for an open set of �
in G the fiber of ‰0 over � would surject to at least one component of A1� \ B

�, and
thus would have dimension � dimAC dimB � n. This would imply that dim‰0 �

dimG C dimAC dimB � n D dim‰. Thus it suffices to show that dim‰0 < dim‰.
To do this, we will write ‰0 as the union of five subsets

‰0 D ‰1 [‰2 [‰3 [‰4 [‰5;

defined in terms of the reasons why A� might not be transverse to B� at q. To start, the
intersection of A1� and B at q will be nontransverse if:

(1) q is a singular point of B .

The intersection will also be nontransverse if q is a singular point of zA� . Since q 2 X ,
we have q … � , so q is singular on zA� if and only if ��.q/ D ��.p/ is singular on
��.A/. This can occur only if one of the following occurs:

(2) q 2 �; p with p a singular point of A.
(3) q 2 �; p and q 2 �; p0 for two distinct points p; p0 2 A.
(4) q 2 �; p and � \ TpA ¤ ¿.

Accordingly, we set

‰1 WD f.�; p; q/ 2 ‰0 j q 2 Bsingg � ‰;

‰2 WD f.�; p; q/ 2 ‰0 jp 2 Asingg � ‰;

‰3 WD f.�; p; q/ 2 ‰0 j there exists p0 ¤ p 2 A with � \ p0; q ¤ ¿g � ‰;
‰4 WD f.�; p; q/ 2 ‰0 jp 2 Asm and � \ TpA ¤ ¿g � ‰;
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where Asing � A denotes the singular locus, Asm D A n Asing, and similarly for B .
Now suppose that .p; q/ 2 ‰0 is not in

S4
1‰i , so that zA� and B� are both smooth

at q. The intersection of zA� and B� will be nontransverse if and only if the tangent
spaces of these two varieties at q fail to be transverse. The tangent plane to the cone
A;� at q is the span of � and the tangent space TpA. This span fails to intersect B
transversely at q only if the three linear spaces � , TpA and TqB fail to span all of PN .
From our hypothesis on the embedding of X , it follows that TpA and TqB are disjoint.
Thus a necessary condition for nontransversality at q in this case is that:

(5) � is not transverse to TpA;TqB .

Since dimTpA;TqB D 2n � a � b C 1 and dim� D N � n, the relevant set is

‰5 WD f.�; p; q/ 2 ‰0 jp 2 Asm; q 2 Bsm; dim.� \ TpA;TqB/ > n � a � bg:

We can compute the dimensions of ‰1 and ‰2 just as we computed the dimension
of ‰ itself. Since A and B are reduced, the sets Asing and B�sing have strictly smaller
dimension than A and B�. Noting again that the fibers of the projection ‰ ! A � B�

all have codimension n in G, we see that ‰1 and ‰2 have strictly smaller dimensions
than ‰.

The set ‰4 dominates Asm � B
�, but with strictly smaller fibers than ‰: By

our hypothesis on the embedding of X in PN , we have q … TpA. Also p … � . If
� \ TpA ¤ ¿ then, in addition to meeting the line p; q in at least a point, � must
intersect the .aC 1/-plane q;TpA in at least a line. This is a proper subvariety of the
Schubert cycle †n.p; q/, so ‰4 has smaller dimension than ‰.

Similarly, the fiber of ‰5 over any point .p; q/ 2 Asm � B
�
sm is a proper subvariety

of †n.p; q/, and again we conclude that dim‰5 < dim‰.
To compute the dimension of ‰3 we introduce one more incidence correspondence.

Set

z‰3 WD f.�; p; p
0; q/ 2 G��A�A�B� jp ¤ p0; � \p; q ¤ ¿ and � \p0; q ¤ ¿g:

Since ‰3 is the image of z‰3 under a projection to G� �A �B�, it suffices to show that
dim z‰3 < dim‰.

To estimate the dimension of z‰3, consider the projection to A � A � B�. By our
hypothesis on the embedding of X in PN , any three points of X span a 2-plane. Also
q 2 X , so q … � . Thus the conditions � \ p; q ¤ ¿ and � \ p0; q ¤ ¿ amount to
saying that dim.� \ p; p0; q/ � 1. This describes the Schubert cycle �n;n.p; p0; q/,
which has codimension 2n in G� by Theorem 4.1. We thus have

dim z‰3 D dimG C 2aC b � 2n < dim‰;

as required. Putting this all together, we get that dim‰0 < dim‰, completing the proof
of Lemma A.1.
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A.2 Generic transversality to a morphism
Let f W Y ! X be a morphism of smooth varieties. Recall that a subvariety

A � X is said to be dimensionally transverse to f if the codimension of f �1.A/ in
Y is the same as the codimension of A in X , and generically transverse to f if in
addition f �1.A/ is generically reduced (Definition 1.22). In this section we will show
that there is a finite collection of subvarieties of X , depending on f , such that if A
is generically transverse to each of these subvarieties then A is generically transverse
to f . (This would not be true without our standing hypothesis of characteristic 0, or at
least a hypothesis that f is generically separable; if f is not separable, then f �1.A/ is
necessarily nonreduced, so A is never generically transverse to f .) For each k set

ˆık.f / WD fx 2 f .Y / j dimf �1.x/ � kg;

and write

‰ı.f / WD fx 2 X j for some y 2 f �1.x/;

rank dfy W TyY ! TxX is < min.dimX; dimY /g

for the image of the singular locus of f ; let ‰.f / and ˆk.f / be the closures of ‰ı.f /
and ˆı

k
.f /.

Theorem A.6. Suppose that f W Y ! X is a morphism of varieties. If a subvariety
A � X is dimensionally transverse to each ˆk.f / then A is dimensionally transverse
to f . If in addition A is generically transverse to ‰ then A is generically transverse to f .

If f is not separable, then f �1.A/ is necessarily nonreduced, so A is never generi-
cally transverse to f .

Proof: First suppose that A is dimensionally transverse to each ˆk . The dimension
of ˆk is � dimY � k, with strict inequality for k > dimY � dimf .Y / since Y is
irreducible.

Let k0 D dimY � dimf .Y /, so that ‰k0 D f .Y /. For k > k0, transversality to
‰k yields

dim.A \ˆk/ � dimA � codimf .Y / � k C k0 � 1;

from which it follows that

dim.f �1.A \ˆk// � dimA � codimf .Y /C k0 � 1:

By Theorem 0.2 every component of f �1.A/ has dimension� dimA�codimf .Y /Ck0.
It follows that no component of f �1.A/ is contained in f �1.ˆk/ for k > k0, and hence

dimf �1.A/ D k0 C dim.A \ f .Y //

D k0 C dimf .Y / � codimA

D dimY � codimA;

as required.
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Because the characteristic of the ground field is 0, the branch locus ‰ is strictly
contained in f .Y / (this is the algebraic version of Sard’s theorem; see Milnor [1965,
Theorem 6.1]). Thus A \ f .Y / is not contained in ‰. It follows that a general point of
each component of f �1.A/ is smooth, so that f �1.A/ is generically reduced.



Appendix B

Direct images,
cohomology and base
change

B.1 Can you define a bundle by its fibers?
To study the lines on a cubic surface back in Section 5.1, we needed to construct “the”

vector bundle on the Grassmannian of lines in P3 whose fiber at the point representing
a line L is the space of cubic forms on L. This specification is at best incomplete: the
condition determines only the rank of the bundle. In the example we needed an additional
property: we wanted the restriction map from the space of cubic forms on P3 to the
line L to be induced by a map of bundles on the Grassmannian; that is, we needed the
construction to be functorial in some reasonable sense.

To make things precise in this and many similar cases, we constructed the desired
sheaves as direct images, and used the theorem on cohomology and base change to justify
their properties. In this appendix we will give a gentle treatment of these important ideas.
Much of the material is derived from Mumford [2008]; see also Arbarello et al. [1985,
Chapter 4].

To state the problem more generally, suppose that we are given a family of varieties
Xb with sheaves Fb on them, parametrized by the points b of a base variety B . As usual,
by a family of varieties we mean a map � W X ! B , the “members” of the family being
the fibers Xb WD ��1.b/. Similarly, by a family of sheaves we mean a sheaf F on X ,
with the members of the family being the sheaves F jXb . We can expect nice results only
if the members of the family “belong” together in some reasonable sense, which we
generally take to be the condition that F is flat over B . Given such data, we ask whether
there is a functorial construction of a sheaf G on B whose fiber Gb at a point b is the
space of global sections of Fb .
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Such a sheaf G may or may not exist, as we shall soon see. Nevertheless, under
very general circumstances we can define a sheaf ��F on B , called the direct image
of F under � , that is functorial in F and comes equipped with canonical maps 'b W
.��F/b ! H 0.F jXb / for b 2 B . The theorem on cohomology and base change gives
conditions under which all the 'b are isomorphisms, in which case G WD ��F will have
the property we wish.

We present three versions of the theorem on cohomology and base change. The
first — and the most often applied! — is Theorem B.5. A useful extension is the version
given in Theorem B.9. The most general version, Theorem B.11, is paradoxically also the
simplest, and easily implies the others. We prove these results, after various preliminaries,
in Section B.5.

Before describing the results, we pause to explain an example that we will follow
throughout this appendix:

Example B.1 (Two and three points in P2). Let fp; qg � P2 be a set of two distinct
points. Since h0.Ofp;qg.d// D 2 and h1.Ofp;qg.d// D 0 for all d 2 Z, the long exact
sequence in cohomology coming from the short exact sequence 0! Ifp;qg ! OP2 !

Ofp;qg ! 0 immediately yields

h0.Ifp;qg.d// D
��2Cd

2

�
� 2 if d � 1;

0 if d � 0;

h1.Ifp;qg.d// D

8̂<̂
:
0 if d � 1;
1 if d D 0;
2 if d < 0:

Ideal sheaves of sets of three distinct points fp; q; rg can be analyzed similarly,
using the sequence 0 ! Ifp;q;rg ! OP2 ! Ofp;q;rg ! 0, but there is a difference:
When d D 1 there are two cases, depending on whether some linear form vanishes on
all three points; we have

h0.Ifp;q;rg.1// D h1.Ifp;q;rg.1// D
�
1 if r lies on the line p; q,
0 otherwise.

It is thus interesting to consider a family of ideal sheaves of triples fp; q; rg of distinct
points as one of the points crosses the line joining the other two.

We prefer to work with a projective family, so we fix points p and q in P2 and let
r move along a line B � P2 containing neither p nor q. To set this up, we consider in
B � P2 three families of points: the constant families

�p D B � fpg and �q D B � fqg;

contained in B � P2, and a family of points moving along B , that is, the diagonal

� D f.r; r/ 2 B � P2 j r 2 Bg � B � B:
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p

q

rB

2

rB

Figure B.1 The fibers of � 0 � � over r 2 B are the sets fp; qg � fp; q; rg � P2.

We take

� D �p [ �q [� � B � P2;

which we regard (via the projection map � W � ! B) as a family over B , with fiber over
r 2 B the triple fp; q; rg � P2. Let � 0 be the trivial subfamily

� 0 D �p [ �q � B � P2

whose fiber over each point of B is the pair of fixed points fp; qg. See Figure B.1.
We now ask: Given an integer d , are there are sheaves G;G0 on B whose fibers at a

point r 2 B are the spaces of forms of degree d vanishing on � and � 0, respectively,
and a map G ! G0 inducing the obvious inclusion of spaces of forms?

To see that this question fits into the former context, let F � F 0 be the ideal sheaves
of � and � 0 in B � P2. Abusing notation slightly, we write OP2.d/ for the pullback to
B � P2 of OP2.d/ on P2 and F.d/ for F ˝OP2.d/. Thus

F.d/j��1.r/ D Ifp;q;rg.d/;

the d -th twist of the ideal sheaf of fp; q; rg in P2, and similarly for F 0.d/.
The answer is that such sheaves exist when d ¤ 1 (and can, by Theorem B.5,

be taken to be ��F and ��F 0, defined below). But no such G ! G0 exists when
d D 1!

By our computation of H 0.Ifp;q;rg.1// above, the sheaf G would be a skyscraper
sheaf concentrated at the unique point r0 on the intersection of the line B with the line
p; q. Furthermore, the map H 0.Ifp;q;r0g.1//! H 0.Ifp;qg.1// is an isomorphism, so
functoriality would imply that the map on fibers Gr0 ! G0r0 would be an isomorphism.

On the other hand, the fibers of G0 would all be equal to the one-dimensional vector
spaceH 0.Ifp;qg.1//, so G0 would be a line bundle. Since the only map from a skyscraper
sheaf to a line bundle is 0, this is a contradiction, showing that the desired functorial
construction is impossible! As we shall see in Example B.10, ��F D 0, and thus the
fiber .��F/r0 is not equal to H 0.F j��1.r0//.
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B.2 Direct images
We remind the reader of our global convention that “sheaf” means coherent sheaf

unless otherwise stated.
It becomes clear how to define ��F if we add another natural condition to our

desiderata: in cases where the fibers of ��F are the spaces H 0.F jXb /, we would like
algebraic families of elements of H 0.F jXb / to give rise to sections of F in a way that is
compatible with the identification of Gb with H 0.F jXb /. Here we interpret the phrase
“algebraic family of elements” to mean “section of G defined over the preimage of an
open set of B .”

Definition B.2. Given a morphism of schemes � W X ! B and a sheaf F on X , we
define the direct image ��F of F to be the quasi-coherent sheaf on B that assigns to
each open subset U � B the space of sections of F on the open set ��1.U /, that is,

.��F/.U / D F.��1.U //:

It is immediate that ��.F/ is a sheaf if F is, and that the construction is functorial
in F .

This definition is particularly natural if we think of a presheaf F as a contravariant
functor

U ! .Sets/; U 7! F.U /;

from the category U whose objects are open sets of X and whose morphisms are
inclusions to the category of sets. Since � induces a covariant functor ��1 W V 7!
��1.V / from the category of open sets of B to that of X , we may simply compose to
get the presheaf

��F D F ı ��1:

Note that by definition H 0.��F/ D .��F/.B/ D F.X/ D H 0.F/.
WhenX and B are affine varieties, or more generally when the morphism � is affine

(for example when � is a finite map), the sheaf ��F is easy to understand: Giving F is
equivalent to giving an OX -module, and it follows at once from the definitions that ��F
corresponds to the same module, viewed as a OB -module via the map of (sheaves of)
rings �� W OB ! OX . In particular we see that even when F is coherent ��F may be
only quasi-coherent.

The situation is very different when � is a projective morphism. A fundamental
result of Serre (Theorem B.8) shows that when F is a coherent sheaf and � is a projective
morphism ��F is coherent. (Recall that a projective morphism is one that factors as the
inclusion of X as a closed subset of some B � Pn and the projection to B; since any
morphism can be factored through its graph, any morphism of projective varieties is a
projective morphism.) With a little more effort, the results can all be extended to proper
morphisms; see Grothendieck [1963, Theorem 3.2.2.1].
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The theorems on cohomology and base change give information not only about
fibers of the direct image sheaf, but about more general pullbacks (“base changes”) as
well; we pause to put things into this more general context.

We may think about the fiber Xb of � over a point b as coming from a pullback, or
base change diagram

Xb
�0 - X

fbg

� 0
? � - B

�
?

The restriction of F to Xb can also be thought of as �0�.F/, and from the definition of
� 0� we see that � 0�.F jXb / D H 0.F jXb /. Thus the theorem on cohomology and base
change is about the comparison of � 0�.�

0�F/ and ��.��F/.
More generally, for any map � W B 0 ! B we can consider the pullback of the family

X ! B to B 0:

X 0 D X �B B
0 �0- X

B 0

� 0
?

� - B

�
?

We say that the map � 0 W X 0 ! B 0 and sheaf F 0 D �0�F are obtained from the map
� W X ! B and sheaf F by base change. In this situation, there is a natural map

'B 0 W �
�.��F/! � 0�.�

0�F/;

constructed as follows:
Applying the definitions, we see that the module of sections of ��.��F/ over an

open set U 0 � B 0 is the direct limit over all open sets U � B such that ��1.U / � U 0

of the OB 0-modules

AU WD OU 0 ˝OB
�
F.��1.U //

�
:

On the other hand, the module of sections of � 0�.�
0�F/ over U 0 is

�0�.F/.� 0�1.U 0//;

which is the limit over all open subsets V � X such that ��1.V / � � 0�1.U 0/ of the
OX 0-modules

BV WD O��1.U 0/ ˝OX F.V /:

Each open set U entering into the former limit gives rise to a V D ��1.U / that enters
into the latter limit, and since O��1.U 0/ is a module over OU 0 there is an induced map
AU ! B��1.U /. The map

'B 0 W �
�.��F/! � 0�.�

0�F/

is the natural map induced between the limits.



Direct images Appendix B 525

When B 0 D fbg is a closed point of B we write 'b instead of 'fbg. In this case,
��.��F/ is the fiber of ��F at b and � 0�.�

0�F/ is the set of global sections of F on the
fiber Xb , and we see that the image of 'b is simply the set of global sections of F jXb
that extend to an open neighborhood of Xb in X . On the other hand, the kernel consists
of sections defined in some small neighborhood V of ��1.b/ that vanish on ��1.b/,
but cannot be expressed in terms of functions pulled back from any small neighborhood
of b and vanishing at b.

In general, we ask when the natural maps 'B 0 are isomorphisms; in other words,
when does the formation of the direct image of F commute with base change?

There are two cases that are easy:

(1) If � is affine, then the maps 'B 0 are isomorphisms for any quasi-coherent sheaf F .
(This follows at once from the description of �� for affine morphisms given above.)

(2) If � W B 0 ! B is a flat map, then the maps 'B 0 are isomorphisms. (This is an
immediate consequence of Theorem B.11. See Hartshorne [1977, Proposition III.9.3]
for a direct proof.) Since the inclusion of a point is not generally flat, this case is
not, in practice, very useful.

The simplest case of a projective morphism is that of a finite morphism. The
following proposition summarizes the situation in that case:

Proposition B.3. If � W X ! B is a finite morphism of quasi-projective varieties
and F is a coherent sheaf on X , then ��F is a coherent sheaf on B and the maps
' W .��F/b ! H 0.F jXb / are isomorphisms for all closed points b 2 B . Moreover, the
following are equivalent:

(a) ��F is a vector bundle on B .
(b) F is flat over B .
(c) The dimension of H 0.F jXb / as a vector space over the residue class field �.b/ is

independent of the closed point b 2 B .

Proof: Since sheaves are defined locally and the preimage of an affine subset under
a finite map is again affine, we may suppose from the outset that both X and B are
affine. Let X D SpecR and B D SpecS , and let M D H 0.F/ be the R-module
corresponding to F . Because the varieties are affine, ��F is represented by M regarded
as a module over S via the map �� W S ! R. The ring R is by hypothesis a finitely
generated S-module, so M is a finitely generated S-module as well. The maps 'b are
isomorphisms because, writing mb � S for the maximal ideal corresponding to b, both
.��F/jb and H 0.F jXb / may be identified canonically with M=mbM . (The same proof
shows that the map 'B 0 is an isomorphism for any closed set B 0.) The equivalence of
parts (a) and (c) is proven in Proposition B.15 below. The equivalence of (a) and (b) is
Eisenbud [1995, Exercise 6.2].
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Example B.4 (Direct images of O� 0.d/ and O�.d/). Returning to the situation of
Example B.1, note that the families � 0 and � are finite over B . For every p; q; r and
every d , the space of global sections of Ofp;qg.d/ is two-dimensional and that of
Ofp;q;rg.d/ is three-dimensional. From Proposition B.3 we see that ��O� 0.d/ and
��O�.d/ are vector bundles of ranks 2 and 3, respectively. The inclusion � 0 � �

induces an inclusion of these bundles. Since we can choose a fixed basis of functions
on the fibers of � 0, and the pullback of OB.d/ to � 0 is the trivial bundle, the bundle
��O� 0.d/ is the trivial bundle O2B .

We have O�.d/ D O� 0.d/˚O�.d/, where� D f.r; r/ 2 B �P2g, as before, and
projects isomorphically to each factor. Thus O�.d/, the pullback of OB.d/ from the
first factor, pushes forward to OB.d/ on the second factor for every d , and ��O�.d/ Š
O2B ˚OB.d/ is a nontrivial bundle.

For more general projective morphisms neither condition (b) nor condition (c) of
Proposition B.3 alone will imply that ��F is a vector bundle or that the maps 'b are
isomorphisms. But conditions (b) and (c) together do imply both of these conclusions.
This result is the most often used special case of the theorem on cohomology and base
change (Theorem B.9):

Theorem B.5 (Cohomology and base change, version 1). Let � W X ! B be a projective
morphism of varieties and let F be a coherent sheaf on X that is flat over B . If the
dimension of H 0.F j��1.b// is independent of the closed point b 2 B , then ��F is a
vector bundle of rank equal to h0.F j��1.b//, and the comparison map

'b W .��F/b ! H 0.F j��1.b//

is an isomorphism for every closed point b 2 B . More generally, if B 0 is any scheme,
� W B 0 ! B is a morphism, and

X 0 D X �B B
0 �0- X

B 0

� 0
?

� - B

�
?

is a pullback diagram, then the natural map

'B 0 W �
���F ! � 0��

0�F
is an isomorphism.

Theorem B.5 is subsumed by Theorem B.9, which will be proven in Section B.5.
We note that although we allow B 0 to be an arbitrary scheme it is necessary for the

formulation above to assume that B is a variety (being reduced would be enough).
We will make use of the following natural “adjunction” maps, defined for any

morphism � W X ! B of schemes as follows:
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(a) If F is a quasi-coherent sheaf on X , there is a natural map

�F W �
���F ! F ;

defined by the condition that, on the preimage of an open set U � B , �F is the map

OX .��1.U //˝OY .U / F.�
�1.U //! F.��1.U //

sending each section 1 ˝ � to � . This is well-defined because F.��1.U // is an
OX .��1.U //-module.

(b) Given a quasi-coherent sheaf G on B , there is a natural map

�G W G ! ���
�G;

defined by the condition that, on any open set U � B , �G is the map

G.U / D OB.U /˝OB.U / G.U /
��˝1
�����! OX .��1.U //˝OB.U / G.U /

D ��.G/.��1.U //
D .���

�G/.U /:

For example, ��OB D OX , so �OB is a map OB ! ��OX .

As an application that does not mention base change, we derive a result about line
bundles that we used in studying projective bundles (Chapter 9):

Corollary B.6. Suppose � W X ! B is a flat, projective morphism and that all the
fibers of � are reduced and connected.

(a) �OB W OB ! ��OX is an isomorphism.
(b) If L;L0 are line bundles on X , then Lj��1.b/ Š L0j��1.b/ for all b 2 B if and only

if L Š .��M/˝ L0 for some line bundle M on B , that is, if L and L0 differ by
tensoring with a line bundle pulled back from B .

Remark. The result fails without flatness, for example in the case when � is the
embedding of a proper closed subscheme of B .

Proof: To say that X is flat over B means that OX is flat over B . Since flatness is a
local property, this implies that any line bundle on X is flat over B , so we may apply
Theorem B.9 to line bundles on X .

(a) The map �OB takes the global section 1 of OB to the global section 1 in ��OX .
Because X is flat, 1 2 ��OX is not annihilated by any nonzero (local) section of OB ,
so �OB is injective.

Since ��1.b/ is a reduced, connected projective variety for every b 2 B , the vector
space H 0.OX j��1.b// D H 0.O��1.b// is one-dimensional. With this, Theorem B.5
shows that ��OX is a line bundle with fiber H 0.O��1.b//. It follows that the restriction
of �OB to any fiber is surjective. By Nakayama’s lemma, �OB itself is surjective.
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(b) First, suppose that L0 D L˝ ��M for some line bundle M on B . We have

L0j��1.b/ D .L˝ ��M/j��1.b/ DMb ˝ Lj��1.b/ Š Lj��1.b/:

For the converse, given L and L0, we may multiply both by L0�1, and thus reduce
to the case where L0 D OX , so that Lj��1.b/ is trivial for each b 2 B . Our hypothesis
then implies that H 0.Lj��1.b// is one-dimensional for every b 2 B , so by Theorem B.9
��L is a line bundle.

We will complete the proof by showing that �L W ����L! L is an isomorphism.
Since both the source and target are line bundles, it suffices to show that �L is surjective,
and for this we may by Nakayama’s lemma restrict to a fiber. By Theorem B.5, the
fiber of ��L at a point b is H 0.Lj��1.b//, so .����L/j��1.b/ is the trivial line bundle
of rank 1, generated by 1˝ � for any nonzero global section � of Lj��1.b/. Since �L
sends 1 ˝ � to � , and Lj��1.b/ is a trivial line bundle, we see that �L restricts to an
isomorphism on each fiber, as required.

B.3 Higher direct images
Let � W X ! B be a morphism and let F be a sheaf on X . The direct image functor

F 7! ��F is a generalization of the functor sending a sheaf to its vector space of global
sections. The higher direct image functors F 7! Ri��F have the same relation to
the higher cohomology, and may be defined as right derived functors of �� or as the
sheafification of the presheaf U 7! H i .F j��1.U // (in the case i D 0 the sheafification
is unnecessary). For this see Hartshorne [1977, Section III.8]. Here we will take a more
concrete approach, defining the right derived functors via the Čech complex and for
simplicity sticking to the case of a projective morphism.

Just as the higher cohomology of a sheaf can be used to derive information about
global sections, the higher direct image sheaves shed light on the direct image itself.
There are other applications as well. For example, in Chapter 14 we used higher direct
images to study jumping lines.

We will deal with both the cohomology of sheaves and the homology of complexes.
To limit confusion, we will use H i to denote the i -th Čech cohomology functor applied
to a sheaf, while Hi will denote the i -th homology of a complex.

Suppose that � W X ! B is a projective morphism; that is, � factors as a closed
immersion X � B � Pn and the projection B � Pn ! B . If F is a sheaf on X , we may
regard F as a sheaf on P WD B � Pn. We write P D Proj.S/, where S is the sheaf of
graded algebras OB Œx0; : : : ; xn�, and thus F is the sheafification of a sheaf of graded
S -modules.
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Let Ui � P be the open subscheme xi ¤ 0, and let

C� W
M
i

OP jUi �!
M
i;j

OP jUi\Uj �! � � �

be the Čech complex on P. Note that each term Ci is Z-graded. If F is a quasi-coherent
sheaf on X we define Ri��F to be the degree-0 part of the homology of the complex
F ˝OP C� at the i -th term, that is,

Ri��F WD .Hi .F ˝OP C�//0:

What makes this somewhat technical definition useful is that

.F ˝OP jUi /0

is the sheaf of modules over

OB Œx0; : : : ; xi�1; Oxi ; xiC1; : : : ; xn�

corresponding to the restriction of the sheaf F to the open set Ui D B � An. This and
the assumption that F is a sheaf show thatR0��F D ��F . Also, when U � B is affine,
so that each Ui \ ��1.U / is affine, we get

Ri��F j��1.U / D H i .F j��1.U //:

Since any sheaf is determined by its restriction to affine open subsets, this property
(together with the restriction morphisms) characterizes Ri��F and shows that the
definition is independent of the embedding X � B � Pn that we chose. If b 2 B is a
point or a subvariety, then

H i .Fb/ D Hi .�.b/˝ F ˝ C�/:

This is generally not equal to the fiber

.Ri��F/b D �.b/˝ Hi .F ˝ C�/

of the higher direct image. However, if z is a cycle or boundary in F ˝ C�, then 1˝ z is
a cycle or boundary in �.b/˝ F ˝ C�, so we get maps Ri��F ! H i .F jXb / that in
turn induce comparison maps

'ib W .R
i��F/b ! H i .F jXb /:

In the previous section we asked when the groups H i .F jXb / are the fibers of a sheaf,
and when this sheaf is a vector bundle. Again, we will give sufficient conditions for these
things to be the case by giving conditions for the maps 'i

b
to be isomorphisms and for

Ri��F to be a vector bundle.
We start with some properties of the sheaves Ri��F :
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Proposition B.7. Let � W X ! B be a projective morphism.

(a) (Restriction to open sets) Let U � B be an open subset, and let � 0 W ��1.U /! U

be the restriction of � . If F is any quasi-coherent sheaf on X , then .Ri��F/jU D
Ri� 0�.F j��1.U //.

(b) (Long exact sequence) The functor �� is left exact, and the functors Ri�� are the
right derived functors of ��. In particular, if

� W 0 �! F ˛
��! G

ˇ
��! H �! 0

is a short exact sequence of quasi-coherent sheaves on X , then there are natural
“connecting homomorphisms” �i making the sequence

� � � �! Ri��F
Ri��˛
������! Ri��G

Ri��ˇ
������! Ri��H

�i
���! RiC1��F �! � � �

exact.
(c) (Push-pull formula) If E is a vector bundle on B and F is a quasi-coherent sheaf

on X , then

Ri��.�
�E ˝ F/ Š E ˝Ri��F :

Proof: (a) Since OU is flat over OB , the restriction to U commutes with taking
homology.

(b) The terms of the complex C� are flat over OX , so when we tensor C� with the short
exact sequence � we get a short exact sequence of complexes, and thus a long exact
sequence of homology sheaves. Taking the degree-0 part preserves exactness. Since the
long exact sequence begins with

0 �! ��F �! ��G �! � � � ;

we see that �� is left exact.
To show thatRi�� is the i -th right derived functor of ��, it now suffices to show that

Ri��F D 0 when F is injective (Eisenbud [1995, Appendix A3.9]), or more generally
flasque. It suffices to prove this after restricting to an affine subset U � B . Since the
restriction of a flasque sheaf to an open subset is flasque, the result follows from the
corresponding result for cohomology.

(c) The sheaf ��E is also a vector bundle, and thus flat, so tensoring with ��E commutes
with taking homology:

Hi .��E ˝ F ˝ C�/ D ��E ˝ Hi .F ˝ C�/:

Taking the degree-0 part yields the desired formula.

Theorem B.8 (Serre’s coherence theorem). If � W X ! B is a projective morphism and
F is a coherent sheaf on X , then Ri��F is coherent for each i .

The proof involves some useful ideas from homological commutative algebra.



Higher direct images Appendix B 531

Proof: Since the formation of Ri��F commutes with the restriction to an open set in
the base, it suffices to treat the case where B D SpecA is affine. The Čech complex C�
is the direct limit of the duals of the Koszul complexes that are S -free resolutions of the
ideals .xm0 ; : : : ; x

m
n / � S , and direct limits commute with taking homology. Thus if M

is any finitely generated graded S D AŒx0; : : : ; xn�-module representing the sheaf F ,
the homology of F ˝ C� is

Ri��F D limm ExtiS ..x
m
0 ; : : : ; x

m
n /;M/0:

Write m for the “irrelevant” ideal .x0; : : : ; xn/ � S . For eachm there is an integerN.m/
such that mN.m/ � .xm0 ; : : : ; x

m
n / � mm. It follows that

limm ExtiS ..x
m
0 ; : : : ; x

m
n /;M/ D limm ExtiS .m

m;M/:

Each term ExtiS .m
m;M/ of this limit is a finitely generated S-module, so its degree-0

part is a finitely generated A-module, and it suffices to show that the natural map

ExtiS .m
m;M/0 ! ExtiS .m

mC1;M/0

is an isomorphism for large m. From the long exact sequence in ExtS , and the fact
that mm=mmC1 is a direct sum of copies of A.�m/ (the free A-module of rank 1 with
generator in degree m), we see that it is enough to prove that ExtiS .A.�m/;M/0 D 0

when m is large. Disentangling the degree shifts, we see that

ExtiS .A.�m/;M/0 D ExtiS .A;M/.m/0 D ExtiS .A;M/m:

However, A is annihilated (as an S-module) by m, so ExtiS .A;M/ is annihilated by m.
Since it is a finitely generated S -module, it can only be nonzero in finitely many degrees,
whence, indeed, ExtiS .A;M/m D 0 when m is large.

We remark that it is possible, using the notion of Castelnuovo–Mumford regularity,
to bound the degree m for which ExtiS .A;M/m D 0 in terms of the data in a free resolu-
tion of M (similar to Smith [2000]), so the proof just given allows effective computation
of the functors Ri��F . For a different proof see Hartshorne [1977, Theorem III.8.8].

Theorem B.9 (Cohomology and base change, version 2). Let � W X ! B be a projective
morphism of schemes, with B connected and quasi-projective, and let F be a coherent
sheaf on X .

(a) If B is reduced then there is a dense open set U � B such thatRi��F jU is a vector
bundle, and such that for all closed points b 2 U the fiber .Ri��F jU /b is equal to
H i .F jXb /.

(b) Suppose that F is flat over B . Let i be an integer. If H j .F jXb / D 0 for all j > i
and all closed points b 2 B , then for every closed point b 2 B the comparison map

'ib W .R
i��F/b ! H i .F jXb /

is an isomorphism.
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(c) Suppose that F is flat over B and B is reduced. If for some i the function b 7!
dim�.b/H i .F jXb / is constant, then Ri��F is a vector bundle of rank equal to
dim�.b/H i .F jXb /, and for every closed point b 2 B the comparison maps

'ib W .R
i��F/b ! H i .F jXb /;

'i�1b W .Ri�1��F/b ! H i�1.F jXb /

are isomorphisms. More generally, if B 0 is any scheme, � W B 0 ! B is a morphism,
and

X 0 D X �B B
0 �0- X

B 0

� 0
?

� - B

�
?

is a pullback diagram, then the natural map

'iB 0 W �
�Ri��F ! Ri� 0��

0�F
is an isomorphism.

Theorem B.9 will be proven in Section B.5.

Example B.10 (Continuation of Example B.1). Using Theorem B.9 we can easily com-
pute the sheaves Ri��I�.d/ and Ri��I� 0.d/ introduced in Example B.1. The sheaves
I� and I� 0 are flat over B Š P1 because they have no torsion (see for example Eisenbud
and Harris [2000, Theorem II-29]). The functions b 7! hi .I� 0

b
.d// are constant for

all d , since � 0
b

is itself constant. The computation discussed in Example B.1 shows that
the same is true for I�b .d/ as long as d � 2. It follows that for all d

R0I� 0.d/ D O.
dC2
2 /�2

B ;

R1I� 0.d/ D 0;
and for d � 2

R0I�.d/ D O.
dC2
2 /�3

B ;

R1I�.d/ D 0:

On the other hand, if d D 1, we will prove that

R0I�.d/ D 0;
R1I�.d/ D Or0 :

To this end we first apply Theorem B.9, which shows that Ri��OB�P2.1/ is a vector
bundle for each i and its fiber over r 2 B is H iOP2.1/, while R0��O�.1/ is a vector
bundle of rank 3 whose fiber over r is the set of functions on fp; q; rg. We now use
Proposition B.7(b) to obtain the exact sequence

0 �! R0I�.1/ �! R0��OB�P2.1/
e
��! R0��O�.1/ �! R1I�.1/ �! 0:
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The map labeled e, restricted to the fiber over r , is (after choosing coordinates) the map
k3 ! k3 sending each linear form on P2 to the vector of its values at the (homogeneous
coordinates of the) three points p; q; r . When the points are non-collinear, this map
is an isomorphism. A map of vector bundles that is generically an isomorphism is a
monomorphism of sheaves, so R0I�.1/ D Ker e D 0. The unique fiber where the rank
of e drops is r0, and there the rank of e is 2. At the fiber over r0 the image of the map is
two-dimensional. It follows that R1I�.1/ D coker e is the skyscraper sheaf of length 1
concentrated at the point r0, as claimed.

B.4 The direct image complex
We now turn to the most general and simplest version of the theorem on base change

and cohomology. To simplify the notation, we will identify quasi-coherent sheaves over
an affine scheme B D SpecA with their modules of global sections.

Theorem B.11 (Cohomology and base change, version 3). Let � W X ! B be a
projective morphism to an affine scheme B D SpecA, and let F be a sheaf on X that is
flat over B . Suppose that the maximum dimension of a fiber of � is n. There is a complex

P� W � � � �! P 0 �! � � � �! P n �! 0

of finitely generated projective A-modules such that:

(a) Ri��.F/ Š Hi .P�/ for all i .
(b) For every b 2 B and i 2 Z there is an isomorphism

H i .F jXb / Š Hi .�.b/˝A P�/:

More generally, for every pullback diagram

X 0
�0 - X

B 0

� 0
?

� - B

�
?

with B 0 D SpecA0,

Ri� 0��
0�.P�/ Š Hi .A0 ˝A P�/:

Moreover, if B is reduced, then we may choose P� so that P i D 0 for i < 0.

Theorem B.11 is proven at the end of this section. A version where the base B is
any quasi-projective scheme is given in Exercise B.18.

The second statement of (b) could be improved to say that ��R��F is quasi-
isomorphic (or, equivalently, isomorphic in the derived category) to R���0�F .
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The complex P� in Theorem B.11 is not unique up to isomorphism, but it is unique
up to the equivalence relation, called quasi-isomorphism, generated by maps of com-
plexes that induce isomorphisms on homology (for right-bounded projective complexes,
as in our case, this comes down to homotopy equivalence). The class of P� modulo
quasi-isomorphism is called the direct image complex of F , written R��F , which is
usually treated as an element of the derived category of (right-bounded) complexes of
coherent sheaves on B . We say that P� represents R��F .

Abstract as Theorem B.11 may seem, the construction of R��F can be performed
explicitly in examples of modest size, for instance by the computer algebra package
Macaulay2; see Exercise B.20.

Theorem B.11 makes the proof of most other statements about base change easy, as
we shall see in the next section. Here is a taste:

Corollary B.12. Let � W X ! B be a projective morphism of schemes and let F be a
sheaf on X that is flat over B . For each i , the dimension function

B 3 b 7! dim�.b/H
i .F jXb /

is an upper-semicontinuous function (in particular, it takes its smallest value on an
open set). Moreover, the Euler characteristic

�.F jXb / WD
X

.�1/i dim�.b/H
i .F jXb /

is constant on connected components of B .

Proof: It suffices to prove the result in the case where B is affine and connected, say
B D SpecA. Let P� be a complex of finitely generated projective A-modules with
the properties given in Theorem B.11. Restricting to some possibly smaller open set
of B , we may assume that P� is a complex of finitely generated free modules. For each
b 2 B we get a complex of vector spaces by taking the fiber of P� at b. The maps
'i W P i ! P i�1 in P� are given by matrices with entries in A, and thus the rank of
'i
b
WD �.b/˝A '

i is a semicontinuous function of b. It follows that

dim�.b/ Hi .P�jb/ D dim�.b/ P
i
jb � rank'iC1

b
� rank'ib

is a semicontinuous function of b. Further, the Euler characteristic

�.F jXb / D
X

.�1/i dim�.b/ Hi .P�jb/

D

X
.�1/i dim�.b/.P

i
jb/

D

X
.�1/i rankP i

is a constant function of b.

Example B.13 (Further continuation of Example B.1). The tools above can be converted
into algorithms for computing the direct image complex of a coherent sheaf — see
Exercise B.20 — but sometimes one can understand the result without computation.
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The derived category Db.P1/ of bounded complexes of coherent sheaves on P1 (or on
any smooth curve) is formal, in the sense that every bounded complex of locally free
sheaves is quasi-isomorphic to the direct sum of its homology sheaves, or equivalently
to the direct sum of locally free resolutions of its homology sheaves (see Exercise B.17).

Thus, if F is a family of sheaves on the family of varieties � W X ! C , where C
is a smooth curve and F is flat over C with support of relative dimension n, the direct
image complex may be taken simply to be the direct sum of locally free resolutions of
the coherent sheavesR0��F ; R1��F ; : : : ; Rn��F , each in its appropriate homological
degrees.

Returning to Example B.1, we see for example that the direct image complex
R��I� 0.1/ is the quasi-isomorphism class of

0 �! OB �! 0;

with nonzero term in cohomological degree 0, whileR��I�.1/ is the quasi-isomorphism
class of

0 �! OB.�1/
�
��! OB �! 0;

where OB is in cohomological degree 1 and the differential is multiplication by a section
(unique up to scalars) that vanishes at the point r0. Further, the map I�.1/ � I� 0.1/
induces

R��.I� 0.1// W 0 - OB - 0 - 0

R��.I�.1// W

6

0 - OB

6

�- OB.1/

6

- 0

The following example shows that the hypothesis of flatness in Theorem B.11
is essential:

Example B.14. Let B D A2 and let � W X ! B be the blow-up of B at the origin.
Let P1 Š E � X be the exceptional divisor and let F be the line bundle O.E/. Note
that F is not flat over B . We have �.F jb/ D 1 for b ¤ 0, but F j0 D OP1.�1/, so the
dimension of H 0.F jb/ is not upper-semicontinuous and the Euler characteristic �.F jb/
is not constant.

B.5 Proofs of the theorems on cohomology
and base change

We require two tools from commutative algebra. First, a fundamental method for
proving that a sheaf is a vector bundle (that is, is locally free):
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Proposition B.15. A coherent sheaf G on a connected reduced scheme B is a vector
bundle if and only the dimension of the �.b/-vector space Gb is the same for all points
b 2 B; if B is quasi-projective, then it even suffices to check this for closed points. These
conditions are satisfied, in particular, if G has a resolution

P� W � � � �! P�1 �! P 0 �! G �! 0

by vector bundles of finite rank that remains a resolution when tensored with �.b/ for
every b 2 B .

Proof: If G is a vector bundle, then it has constant rank because B is connected, and
this rank is the common dimension of Gb over �.b/.

To prove the converse, and also the last statement of the proposition, we note that
the problem is local, so we may assume that B D SpecA, where A is a local ring with
maximal ideal m corresponding to the closed point b0 2 B , and that G is the sheaf
associated to a finitely generated A-module G. By Nakayama’s lemma, a minimal set of
generators of G corresponds to a map f W F ! G from a free A-module F such that
the induced map .A=m/˝ F ! .A=m/˝G is an isomorphism. In particular, the rank
of the free module F is dimA=m.A=.m/˝G/ D dim�.b/ Gjb .

Let K D Ker', and let P be a minimal prime of A. Since A is reduced, AP is a
field. Localizing at P , we get an exact sequence of finite dimensional vector spaces

0 �! KP �! FP �! GP �! 0;

from which we have rankF D dimAP GP C dimAP KP . By hypothesis, dimAP GP D
dimA=mG=mG D rankF , so KP D 0. Since A is reduced, the only associated primes
of F are the minimal primes of A, and thus K � F itself must be zero.

To prove that it suffices to assume the constancy of the dimension of Gb at closed
points in the quasi-projective case, it suffices to show that

dim�.�/ G� D minb dim�.b/ Gb;

where � is a generic point and the minimum is take over the closed points in the closure
of �. The inequality � follows at once from Nakayama’s lemma, since G is generated
locally at b— and thus at �— by dim�.b/ Gb elements.

For the opposite inequality, choose elements fxig � G that form a �.�/-basis
for G� and a set of generators fyig � G for G. We can express all the yi as linear
combinations of the xi with rational coefficients, using finitely many denominators. By
the Nullstellensatz, there is a closed point b in the closure of � such that the product
of these denominators is invertible at b, and it follows that the elements xi span Gb , so
dim�.�/ G� � dim�.b/ Gb as required.

For the last statement of the corollary, suppose that G has a resolution P� with the
given property. Since B is the spectrum of the local ring A, we may identify P� with
a free resolution of G. Since a minimal free resolution is a summand of any resolution
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(Eisenbud [1995, Theorem 20.2]) the minimal free resolution P 0� of G has the same
property. But after tensoring with the residue class field �.b0/ the differentials in P 0�
become zero. Since by hypothesis the resolution remains acyclic, we must have P 00 D G,
so G is free.

The proof of Theorem B.11 requires one more tool, a way of approximating a
complex by a complex of free modules with good properties.

Proposition B.16. Let A be a Noetherian ring, and let

K� W � � � d
��! Ki

d
��! KiC1

d
��! � � �

be a complex of (not necessarily finitely generated) flat A-modules whose homology
modules are finitely generated and such that Km D 0 for m� 0. There is a complex of
finitely generated free A-modules P� with Pm D 0 for m� 0 and a map of complexes
r W P� ! K� such that for every A-module M the map

r ˝AM W P� ˝AM �! K� ˝AM

induces an isomorphism on homology.

Proof: We will construct a complex of finitely generated free modules P� with a map r
to K� inducing an isomorphism on homology without the assumption of flatness, and
then we will use the flatness hypothesis to show that any such r W P� ! K� induces an
isomorphism on homology after tensoring with the arbitrary module M .

We will construct the complex P� by downward induction on i , using the hypothesis
that a map of complexes

KiC1
d iC1- KiC2

d iC2 - � � �

P iC1

riC1
6

eiC1- P iC2

riC2
6

eiC2 - � � �

inducing isomorphisms Hj .P�/! Hj .K�/ for all j � i C 2 has been constructed, with
the additional property that the composite map Ker eiC1 ! Ker d iC1 ! HiC1.K�/
is surjective.

If i is sufficiently large that Km D 0 for all m � i C 1, then the choice Pm D 0

and rm D 0 for m � i C 1 satisfies these conditions, giving a base for the induction.
To make the inductive step from i C 1 to i , we choose P i to be the direct sum of

two projective modules, P i D P i1 ˚ P
i
2 , where P i1 is chosen to map onto the kernel

of the composite Ker eiC1 ! Ker d iC1 ! HiC1.K�/ and P i2 is chosen to map onto
Hi .K�/. We define the differential ei to be the given map on P i1 and zero on P i2 . Also,
we define ri on P i2 by lifting the chosen map P i2 ! Hi .K�/ to a map P i2 ! Ker d i and
composing with the inclusion Ker d i � Ki . On the other hand, since riC1 carries the
image of P i1 to the kernel of the map Ker d iC1 ! HiC1.K�/, which is by definition
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Im d i , we may define ri on P i1 to be the lifting of this map P i1 ! Im d i to a map
P i1 ! Ki .

This gives a map of complexes

Ki
d i - KiC1

d iC1- KiC2
d iC2 - � � �

P i D P i1 ˚ P
i
2

ri
6

ei - P iC1

riC1
6

eiC1- P iC2

riC2
6

eiC2 - � � �

It is clear from the construction that the ri induce isomorphisms Hj .P�/! Hj .K�/ for
all j � i C 1 and the composite map Ker eiC1 ! Ker d iC1 ! HiC1.K�/ is surjective,
so the induction is complete.

We now use the hypothesis that the Ki are flat, and suppose that we have proven
that rj induces an isomorphism Hj .P� ˝M/! Hj .K� ˝M/ for every j > i and for
every module M . This is trivial in the range where Kj and P j are both zero, so again
we can do a downward induction.

Choose a surjection F !M from a free A-module, and let L be the kernel, so that

0 �! L �! F �!M �! 0

is a short exact sequence. Since all the Ki and the P i are flat, we get short exact
sequences of complexes by tensoring with P� and K�, from which we get two long
exact sequences by applying the higher direct image functors, and the comparison map
r W P� ! K� induces a commutative diagram

H i .K�˝L/ H i .K�˝F / H i .K�˝M/ H iC1.K�˝L/ H iC1.K�˝F /

H i .P�˝L/ H i .P�˝F / H i .P�˝M/ H iC1.P�˝L/ H iC1.P�˝F /

ri˝L ri˝F Š ri˝M riC1˝L Š riC1˝F Š

where, for any module N , we write ri ˝ N to denote the map H i .P� ˝ N/ !

H i .K� ˝ N/ induced by ri . The maps marked “Š” are isomorphisms: ri ˝ F and
riC1 ˝ F are isomorphisms because F is free, while riC1 ˝ L is an isomorphism by
induction. A diagram chase (sometimes called the “five-lemma”) immediately shows
that the map ri ˝M is a surjection. Since the module M was arbitrary, ri ˝ L is a
surjection as well. Using this information, a second diagram chase shows that ri ˝M is
injective, completing the induction.

Proof of Theorem B.11: Since � is projective we may writeX � P WD PnA for some n,
and we let Ui , i D 0; : : : ; n, be the standard open covering of P as in Section B.3. Let C�
be the Čech complex defined there. Since F is flat and .F˝OUi\Uj\ ���/0 is the module
corresponding to the restriction of F to the affine open set Ui \ Uj \ � � � , the modules
of the complex .F ˝ C�/0 are flat. By Theorem B.8 the homology of this complex is
finitely generated, so we may apply Proposition B.16 and obtain a complex P� whose
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i-th homology is Ri��F . Taking M D �.b/ in the proposition, we see that P� has the
second required property as well.

Finally, to show that we may choose P� with P i D 0 for i < 0, note that for any
choice of P� satisfying the proposition the homology Hi .P�/ is zero for i < 0. The last
statement of Proposition B.15 shows that P 00 WD coker.P�1 ! P 0/ is projective. The
map r0 induces a map P 00 ! coker.K�1 ! K0/, and since P 00 is projective we may
lift this to a new map r 00 W P

00 ! K0. It follows from the construction that

� � � - K�1 - K�1 - K0 - K1 - � � �

� � � - 0

0
6

- 0

0
6

- P 00

r 00
6

- P 1

6

- � � �

again induces an isomorphism on homology.

Proof of Theorem B.9: The statements being local on B , we may assume from the
outset that B is affine. In parts (b) and (c) we have assumed that F is flat, and by the
generic flatness theorem (see Eisenbud [1995, Section 14.2]) there is in any case an
open set U1 � B over which F is flat. Thus even for part (a) we may assume that F
is flat over B . Let P� be a complex of projective modules representing R��F , as in
Theorem B.11.

(a) Removing the intersections of the components of X and then passing to a connected
component, we may harmlessly assume that X is integral. Shrinking the open set U
further, we may assume that the ranks of the maps in the restricted complex .P�/b are
constant for all b 2 U . It follows from Proposition B.15 that all the homology modules
of P� are vector bundles. Thus P� is locally split, and forming its homology commutes
with any pullback.

(b) Since Hi .P�jb/ D H i .F jXb /, these spaces are zero for all j > i . Ifm is the greatest
integer for which Pm ¤ 0, and m > i , then Nakayama’s lemma implies that the map
Pm�1 ! Pm is surjective, and thus split. Consequently we can build a quasi-isomorphic
complex P 0� by replacing Pm�1 by P 0m�1 WD Ker.Pm�1 ! Pm/ and truncating the
complex there:

P 0� W � � � - Pm�2 - P 0m�1 - 0

P� W � � � - Pm�2
?

- Pm�1
?

- Pm - 0

Continuing in this way, we may assume that Pj D 0 for all j > i . Since forming
cokernels commutes with pullback,

H i .F j��1b/ D coker.P i�1b ! P ib/
D .coker.P i�1 ! P i //b
D .Ri��F/b:
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(c) Let

� � � �! P i�1 d i�1

�����! P i d i

���! P iC1 �! � � �

be the differentials of P�. Since the ranks of the differentials d i�1
b

and d i
b

are lower-
semicontinuous, the constancy of dim�.b/H i .F��1.b// implies the constancy of the
ranks of d i�1

b
and d i

b
.

Focusing for a moment on d i�1, we see that since taking fibers commutes with
taking images the fibers of the module Im d i�1 have constant rank. By Proposition B.15,
Im d i�1 is a projective module, so the short exact sequence

0 �! Ker d i�1 �! P i�1 �! Im d i�1 �! 0

splits, and thus stays exact under pullback along � W B 0 ! B . It follows that

Ri�1� 0�.�
0�F/ D Hi�1.��P�/

'i�1
B0

�����! ��Hi�1.P�/ D ��Ri�1��.F/

is an isomorphism.
Of course, the same considerations hold for Ri��F . Furthermore, since the map

Im d i�1 ! Ker d i has constant rank on restriction to each closed point b, so does the
cokernel Ri��F , so this sheaf is projective, proving part (c).

Remark. Suppose that � W X ! B is a projective morphism and F is a coherent
sheaf on X , flat over B , as in Theorem B.9, and suppose that b 2 B is a point at
which dim�.b/H i .FXb / “jumps” — i.e., is larger than it is for some points in any open
neighborhood of b. From the constancy of the Euler characteristic �.F jXb /, it follows
that some dim�.b/H j .F jXb / with j ¤ i mod 2 must jump too. But the proof above
gives a tiny bit more: Since the rank of d i

b
or of d i�1

b
must have gone down, either

dim�.b/H iC1.F jXb / or dim�.b/H i�1.F jXb / must jump at b. Colloquially, “the jumps
occur in adjacent pairs.”

B.6 Exercises
Exercise B.17. (a) Suppose that R is a ring. Show that if

C W � � � ! C i�1 ! C i ! C iC1 ! � � �

is a complex of R-modules and H WD H iC has a projective resolution of length 1
Pi W 0 ! Qi�1 ! P i ! H i ! 0 then there is a map P ! C inducing the identity
map on H . Conclude that if R is a Dedekind domain any complex is quasi-isomorphic
to a direct sum of projective resolutions of its homology modules, and thus to a direct
sum of its homology modules themselves. Note that there is generally no map from the
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direct sum of the homology modules to C; rather, there is a “roof” diagram with two
maps that are quasi-isomorphisms, pointing in opposite directions:M

Pi

M
H iC
�

C
-

(b) Now suppose that C is a smooth curve. Given any coherent sheaves H;G on C ,
show that there is a resolution 0! P ! Q! H! 0 by coherent sheaves such that
Ext1.P ˚Q;G/ D 0. Use this to imitate the argument of part (a), proving that every
complex of coherent sheaves on C is quasi-isomorphic to its homology.

Exercise B.18. In Theorem B.11 we made the hypothesis that the base was affine in
order to make use of projective resolutions, which do not generally exist over quasi-
projective bases. Show that if B is quasi-projective, and G is a coherent sheaf on B ,
then one can resolve G by sums of line bundles, and that the twists of these bundles
may be taken to be arbitrarily negative. Use this to give a version of Proposition B.16
that works for quasi-projective schemes. Show that this suffices to prove a version of
Theorem B.11 where the object R��F is represented by a complex whose terms are
sums of line bundles.

Exercise B.19. Let B be a curve of genus 1 over k and let p 2 B be a point. Let
X D B�B , and let � W X ! B the projection onto the first factor. Let� be the diagonal
in X , and consider the line bundle F D OX .��B � p/, so that F jb�B D OB.b � p/.
Show that ��F D 0, but the natural map H 0.F jp�B/ ! �.p/ ˝ R0��F is not an
isomorphism.

Show that R1��F is a torsion sheaf, supported at p with fiber isomorphic to
H 1.F jp�B/, and that the complex

0 �! L.�p/ �! L �! 0

represents R��F .

Exercise B.20. Get a copy of Macaulay2 from the website http://www.math.uiuc.

edu/Macaulay2/, and compute some direct image complexes, using the following com-
putation as a model. In the code below, we work over the field QQ of rational numbers
(for a larger computation we would use a finite field such as Z=31003 for efficiency).
The projection map P2 �P1 ! P1 is expressed by writing the homogeneous coordinate
ring of P2 � P1 as a polynomial ring P in three variables over the polynomial ring B
in two variables representing the base. The ideals I � I 0 � P are the bihomogeneous
ideals of the families � � � 0. Thus the computation is prepared as follows:

B = QQ[s,t];
P = B[x_0,x_1,x_2];
I’ = intersect(ideal(x_0,x_1), ideal(x_0,x_2));
I = intersect(I’, ideal(x_1-x_2, s*x_0-t*x_1));

http://www.math.uiuc.edu/Macaulay2/
http://www.math.uiuc.edu/Macaulay2/
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We now compute the complex R��.I� 0.d// for d from 0 to 3. The computation
uses code in the Macaulay2 package BGG. Macaulay2 does not abuse notation as
we have in this chapter; both components of the twist P.d; 0/ must be made explicit:
Macaulay2 notation for this shifted module is P ffd;0gg. Note that the ideal I 0 is made
into a module explicitly. The ** represents the tensor product.

needsPackage "BGG";
for d from 0 to 3 do
<<directImageComplex(module I’**Pˆ{{d,0}}) << endl<<endl

The output is something like the following (with the difference that in the actual
output the complexes are indexed homologically instead of cohomologically):

2 1 0 �1

0 � B � 0 � 0

0 � 0 � B � 0

0 � 0 � B4 � 0

0 � 0 � B8 � 0

We can do the same with R��.I�.d//
for d from 0 to 3 do
<<directImageComplex(module I**Pˆ{{d,0}}) << endl<<endl

and obtain
2 1 0 �1

0 � B2 � 0 � 0

0 � B � B � 0

0 � 0 � B3 � 0

0 � 0 � B8 � B

where the map on the right in the last complex is a split inclusion, so that the last complex
is quasi-isomorphic to

0 � 0 � B7 � 0:



Appendix C

Topology of algebraic
varieties

Throughout this appendix we work with projective varieties X � PNC — that is,
with complex projective varieties. We can also view such a variety as a complex analytic,
or holomorphic, subvariety of PNC — that is, a subset locally defined by the vanishing of
analytic equations — or, if X is smooth, as a complex submanifold of PNC . The topology
induced from the standard topology on PNC , referred to as the classical, or sometimes
analytic, topology, is much finer than the Zariski topology with which we have dealt
in this text. Using it, we can consider geometric invariants of X such as the singular
homology and cohomology groups H�.X;Z/ and H�.X;Z/.

In this appendix, we explain a little of what is known about such invariants. Through-
out, when we speak of topological properties of X , we refer to the classical, or analytic,
topology.

C.1 GAGA theorems
One might think that there would be many more holomorphic subvarieties of PN

than algebraic subvarieties, or that in passing from a smooth projective variety X over
C to its underlying complex manifold we would be losing information, since regular
functions are holomorphic but not conversely. But this is not the case:

Theorem C.1 (Chow). Every holomorphic subvariety of PNC is algebraic.

See for example Griffiths and Harris [1994, Section I.3] for a proof. Many further
results in this direction were proven in Serre [1955/1956]. These are collectively known
as the GAGA theorems, after the name of Serre’s paper (“Géométrie algébrique et
géométrie analytique”).
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It follows immediately from Chow’s theorem that if X and Y are projective varieties
over C then any holomorphic map f W X ! Y is algebraic (Proof: Apply Theorem C.1
to the graph �f � X � Y ). Not quite so immediate are the facts that any holomorphic
vector bundle on a projective variety is algebraic and that if E is any such vector
bundle on X then any global holomorphic section of E is algebraic. More generally,
the Čech cohomology groups of E will be the same, whether computed for the sheaf of
holomorphic sections of E in the analytic topology or the sheaf of regular sections in the
Zariski topology. Thus, for example, the tangent space to the Picard group of X , which
can be identified with the first Zariski cohomology H 1.OX /, may also be identified
with the cohomology H 1.OX;an/ in the analytic topology.

In sum, as it applies to projective varieties, we should think of the classical topology
and the analytic tools it brings as a new approach to the study of the same projective
algebraic varieties and phenomena. This is the point of view taken, for example, in
Griffiths and Harris [1994], and we will give references to that book.

Once one goes beyond projective varieties, there are many complex manifolds
that are not algebraic: while every one-dimensional compact complex manifold is an
algebraic curve, there are many natural examples of compact complex surfaces that are
not algebraic.

C.2 Fundamental classes and Hodge theory

C.2.1 Fundamental classes

Let X � PNC be a smooth projective variety. Since PNC is compact as a topological
space and X is a closed subspace, X is compact. Because C has an orientation pre-
served by holomorphic functions, X is automatically orientable. In particular, if X has
dimension n then it is a compact oriented real 2n-dimensional manifold, and has a fun-
damental class ŒX� 2 H2n.X;Z/. (In this appendix, when we talk about the homology
or cohomology groups of X or of a subvariety of X we mean the singular homology or
cohomology.) By Poincaré duality, capping with this class induces an isomorphism

H 2n�k.X;Z/
\ŒX�
�����! Hk.X;Z/:

More generally, let Y � Pr be any k-dimensional variety. By a theorem of
Łojasiewicz [1964] (see Hironaka [1975]), Y admits a finite triangulation in which
the singular locus is a subcomplex. Since the singularities of Y occur in real codimen-
sion � 2, the sum of the simplices of dimension 2k in the triangulation is a cycle, called
the fundamental cycle of Y ; the class of this cycle is called the fundamental class of Y
and is again denoted by ŒY � 2 H2k.Y;Z/. If � W zY ! Y is a desingularization of Y ,
then the fundamental class of Y is equal to the pushforward ŒY � D ��Œ zY �.
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If X is an n-dimension projective variety (possibly singular), we can use this idea to
define a homomorphism

Zk.X/! H2k.X;Z/

from the group of k-cycles on X to its homology group, defined by associating to
any k-dimensional subvariety i W Y ,! X the pushforward i�ŒY � 2 H2k.X;Z/ of
the fundamental class ŒY � of Y . We say that two k-cycles A and A0 are homologically
equivalent if the pushforwards of their fundamental classes are equal. This is a coarser
equivalence relation than rational equivalence; that is, this map factors through a map

Ak.X/! H2k.X;Z/:

If we suppose that X is smooth, then composing with Poincaré duality we get a
homomorphism

� W An�k.X/ D Ak.X/! H 2n�2k.X;Z/;

which we call the fundamental class map; the image of the class of a subvariety Y � X
will be denoted by �Y . (If one wants to avoid invoking the triangulability of complex
varieties, the map � can be defined in de Rham cohomology by arguing that if Y � X
is any k-dimensional subvariety then integration over Y gives a well-defined linear
functional on closed modulo exact 2k-forms on X ; see Griffiths and Harris [1994,
p. 61].) For example, if X D Pn then � is an isomorphism —A.X/ D ZŒ��=.�nC1/ D
H�.X;Z/— so the information in the fundamental class ŒY � is the dimension and degree
of Y .

A crucial fact is that intersection products in A.X/ corresponds to cup products in
H�.X;Z/:

Theorem C.2. The map � is a ring homomorphism; that is, it takes the intersection
product in A.X/ to the cup product on H�.X;Z/:

�.ŒA�ŒB�/ D �ŒA� [ �ŒB�:

For a proof, see Griffiths and Harris [1994, Section 0.4].
The fundamental class map underlies much of the relevance of topology to geometry.

The simplest invariant of a subvariety A � X of a variety in general is its fundamental
class in H�.X;Z/, just as the simplest invariants of a subvariety of projective space are
its dimension and degree.

This picture of the classes of subvarieties has a missing piece, encapsulated in one
of the major open problems in the field: Which cohomology classes of a smooth variety
are represented by linear combinations of classes of subvarieties? That is, what is the
image of �? The Hodge conjecture (Section C.2.4) is an attempt to answer this question.
Before explaining the statement, we provide some background.
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C.2.2 The Hodge decomposition

Hodge noticed that if one tensors the real cotangent bundle of a complex manifold
with the complex numbers it splits in a natural way. We can explain this phenomenon
as follows:

Let p 2 X � PNC be a point on a smooth, n-dimensional projective algebraic variety.
ViewingX as a real C1 manifold of dimension 2n, we consider the C1 cotangent bundle
T �X . The fiber T �pX has a natural complex structure coming from the fact that the
differentials of real functions on a small open set are spanned by the differentials of the
real and imaginary parts of complex analytic functions: for any such function ' W X ! C
we have i � d.Re.'// WD d.Re.i � '// D �d.Im.'//.

Now, any n-dimensional complex vector space V can be regarded as a real vector
space of dimension 2n. Though there is no natural splitting into real and imaginary
parts (that is, no splitting that is invariant under complex-linear transformations), the
complexification C˝RV does split naturally as C˝RV Š Cn˚Cn, where the complex
structure is defined by multiplication in the first factor and the two summands are theC1
and �1 eigenspaces under the real linear transformation that is multiplication by i ˝ i .

In particular, the complexification of the real cotangent space of a complex analytic
manifold X at a point p is naturally a direct sum of the complex cotangent space (the
complex vector space of differentials of complex analytic functions at p) and a space
that may be identified as the space of differentials of anti-holomorphic functions. If
z1 D x1 C iy1; : : : ; zn D xn C iyn are complex analytic coordinates on an open set
U � X then the splitting may be written as

C ˝R T
�
p X Š Chdz1; : : : ; dzni ˚ Chdz1; : : : ; dzni;

where dz˛ D dx˛ C i dy˛ and dz˛ D dx˛ � i dy˛. A direct computation shows that
T �p X , with the complex structure defined above, is mapped isomorphically to the fiber
of the complex cotangent bundle under the composition of the inclusion into C ˝ T �p X
and the projection modulo the space spanned by the differentials of the anti-holomorphic
functions. Putting this together, we get:

Theorem C.3 (Hodge). If X is a complex manifold, then the complexified cotangent
bundle T .X/˝ C splits as a direct sum

C ˝ T �X D T �0X ˚ T �00X; (C.1)

where, with respect to any analytic local coordinates fz˛g at any point p, the fibers of
T �0X and T �00X are given by

T �p
0X D Chdz1; : : : ; dzni; T �p

00X D Chdz1; : : : ; dzni:

Moreover, T �0X is the underlying holomorphic vector bundle of �X , the algebraic
cotangent bundle of X .
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The decomposition (C.1) immediately gives rise to a direct sum decomposition of
the exterior powers of T �p X ˝ C:

Vk.C ˝ T �p X/ D M
pCqDk

VpT �p 0X ˝VqT �p 00X:
From this we get a decomposition of the sheaf Ak.X/ of complex-valued C1 differential
forms of degree k on X :

Ak.X/ D
M

pCqDk

Ap;q; (C.2)

where Ap;q is the sheaf of complex-valued C1 k-forms whose value at every point
p 2 X lies in the summand

VpT �p 0X ˝VqT �p 00X . A section of Ap;q is called a form of
type .p; q/, or a .p; q/-form. Note that while the bundle

VkT �0X has the structure of a
holomorphic vector bundle, the sheaf Ak;0 consists of all C1 sections of

VkT �0X .
Hodge proved that when X is a smooth projective variety, and more generally when

X is a Kähler variety, the decomposition (C.2) descends to the level of the de Rham
cohomology ofX : Any closed differential form ' onX can be written naturally as a sum

' D '.k;0/ C '.k�1;1/ C � � � C '.0;k/;

where '.p;q/ is closed of type .p; q/ and the de Rham cohomology class of '.p;q/

depends only on the class of '.1 Since the de Rham cohomology may be identified with
the complexified singular cohomology, we get a decomposition of that space:

Theorem C.4 (Hodge decomposition). If X is a smooth projective variety, then the
singular cohomology of X with complex coefficients decomposes as

Hk.X;C/ D Hk
dR.X;C/ D

M
pCqDk

Hp;q.X/;

where Hp;q.X/ is the subspace of de Rham cohomology classes represented by forms
of type .p; q/. Complex conjugation interchanges Hp;q.X/ and H q;p.X/.

Hodge also showed that the spacesHp;q.X/, despite their apparently transcendental
character, could be computed algebraically:

Theorem C.5. Hp;q.X/ D H q.�
p
X /;

the q-sheaf cohomology space of the p-th exterior power of the sheaf of differential
forms on X ; in particular, Hk;0.X/ is the space of global holomorphic k-forms on X .

1 More precisely, the Hodge theorem asserts that with respect to any given Hermitian metric onX every de Rham
cohomology class is uniquely represented by a harmonic form; the Kähler condition on the metric ensures that the
Laplacian commutes with the decomposition of a form by type.
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Proof sketch: This result follows from computing the homology of the Dolbeault
complex which resolves �pX :

0! �X ! Ap;0 @
��! Ap;1 @

��! � � � I

since the sheaves Ap;i are flasque, we can compute the Zariski cohomology of �pX as
the homology of the complex

H 0Ap;0 @
��! H 0Ap;1 @

��! � � �

and this homology, at the q-th step of the resolution, is Hp;q.X/.

The data we have just described, consisting of a lattice (that is, finitely generated free
Z-module) ƒ D Hk.X;Z/=tors, together with a decomposition of its complexification

ƒ˝Z C D
M

pCqDk

Hp;q with Hp;q
D H q;p;

where H q;p denotes the complex conjugate of H q;p, is called a Hodge structure of
weight k. When dimX D k, so thatƒ D Hk.X;Z/ is the middle-dimensional cohomol-
ogy, the cup product is a unimodular inner product on the latticeƒ, and, since the wedge
product of a .p; q/-form with a .p0; q0/ form is a .p C p0; q C q0/-form, the subspaces
Hp;q and Hp0;q0 are orthogonal, that is, Hp;q [Hp0;q0 D 0 unless .p0; q0/ D .q; p/.
Hodge structures with these additional properties are said to be polarized.

C.2.3 The Hodge diamond

The dimensions hp;q D hp;q.X/ of the Hodge groups Hp;q D Hp;q.X/ of a
smooth projective variety are often represented in a diamond, called the Hodge diamond,
with hn;n at the top. For example, the Hodge diamond of a smooth quartic surface
X � P3 is

1

0 0

1 20 1

0 0

1

meaning, for example, that h1;1.X/ D 20. (Given the Lefschetz hyperplane theorem of
Section C.4 below, the tools of Section 5.7.3 enable us to compute these numbers.)
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The Hodge diamond is left-right symmetric through complex conjugation since
Hp;q.X/ D H q;p.X/, but it is also top-bottom symmetric: the cup product is defined on
de Rham cohomology by multiplication of differential forms, and thusHp;q[Hp0;q0D 0

if either pCp0 > n or qCq0 > n. Given this, Poincaré duality shows thatHn�p;n�q.X/

is dual to Hp;q.X/, and in particular they have the same dimension.
An immediate consequence of the symmetry is that the odd Betti numbers of a

smooth projective variety are even; for example, b1.X/ D h1;0 C h0;1 D 2h1;0. This
tells us, for example, that the compact complex manifold X given as the quotient of
C2nf.0; 0/g by the group of automorphisms generated by ' W .z; w/ 7! .2z; 2w/, which
is homeomorphic to S1 � S3, cannot be a complex algebraic variety.

Holomorphic forms can be pulled back under birational transformations, and it
follows that the Hodge numbers hk;0.X/ D H 0.�kX / are birational invariants. However,
the other Hodge numbers hp;q.X/ are not in general birational invariants.

The Hodge numbers are however deformation invariant, in the sense that they are
constant in flat families X� of smooth projective varieties. Indeed, the Hodge numbers
are upper-semicontinuous because they are the dimensions of the cohomology groups of
coherent sheaves (Corollary B.12). On the other hand, their sumX

pCqDk

hp;q.X�/ D dimHk.X�/

is a topological invariant, and any two fibers in a flat family of smooth varieties are
homeomorphic.

C.2.4 The Hodge conjecture

We now return to the question of which cohomology classes on a smooth projective
variety X can be represented as linear combinations of the fundamental classes of
algebraic varieties; that is, what is the image of � W A.X/! H�.X/?

Since the map on cohomology induced by a holomorphic map (such as the inclusion
Z ,! X , or the composition of the inclusion with a resolution zZ ! Z of the singular-
ities of Z) respects Hodge type, the fundamental class of a codimension-k subvariety
Z � X is of type .k; k/. Thus the image of C ˝Z � lies in

L
kH

k;k.X/ � H�.X;C/.
The Hodge conjecture asserts that modulo torsion the converse is true:

Conjecture C.6 (Hodge). Every class in H 2k.X;Q/ whose image in H 2k.X;C/ lies
in Hk;k.X/ is a rational linear combination of fundamental classes of algebraic subva-
rieties of X .

It might seem more natural to make this conjecture without tensoring with Q; but
this statement, sometimes known as the “integral Hodge conjecture,” is known to be
false; see Atiyah and Hirzebruch [1961] and, for a recent survey, Totaro [2013].
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An important special case of the Hodge conjecture is the following result of Lef-
schetz, which is the integral Hodge conjecture in the codimension-1 case:

Theorem C.7 (Lefschetz .1; 1/-theorem). Let X be a smooth projective variety. If
˛ 2 H 2.X;Z/ is any class whose image in H 2.X;C/ lies in H 1;1.X/, then ˛ is the
fundamental class of a divisor on X .

In particular, any torsion class in H 2.X;Z/ is algebraic — that is, it is the class of a
divisor on X .

Proof: We will give an outline of the proof; the explicit calculations may be found in
Griffiths and Harris [1994, p. 163]. As above, let OX;an be the sheaf of holomorphic
functions, defined as a sheaf in the classical topology. Let O�X;an denote the sheaf of
nowhere-zero holomorphic functions; this is a sheaf of abelian groups with respect to
multiplication (in particular, it is not a coherent sheaf). There is an exact sequence

0 �! Z �! OX;an
exp
���! O�X;an �! 0;

where Z denotes the sheaf of locally constant integer-valued functions and the expo-
nential map exp sends a function f to ef . (Note that this sequence is not exact in
the Zariski topology, where a point p 2 X may not have any simply connected open
neighborhoods.) The cohomology groupsH i .Z/ (in the classical topology) are naturally
isomorphic to the singular homology groups H i .X;Z/.

By the GAGA theorems

H 1.O�X;an/ D PicX;

and the coboundary map ı W H 1.O�X;an/ ! H 2.X;Z/ in the associated long exact
sequence is the composition of the Chern class map PicX ! A1.X/ with the funda-
mental class map � W A1.X/! H 2.X;Z/. A calculation shows that the maps

H i .X;Z/! H i .OX;an/ D H
0;i .X/

in the long exact sequence are the compositions of the maps H i .X;Z/ ! H i .X;C/
with the projections H i .X;C/! H 0;i .X/. It follows that a class ˛ 2 H 2.X;Z/ that
maps to H 1;1.X/ is in the kernel of the induced map H i .X;Z/ ! H i .OX;an/, and
hence in the image of ı.

C.3 Comparison of rational equivalence
with other cycle theories

In addition to the Chow ring A.X/ and the cohomology ring H�.X;Z/ defined
above, there are other cycle theories that we could have used in this text. In this section
we will describe:
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� The ring Aalg of algebraic cycles modulo algebraic equivalence.
� The ring H�alg.X;Z/ of algebraic cycles modulo homological equivalence.
� The ring N �.X/ of algebraic cycles modulo numerical equivalence.

The reader will find more complete treatments in Fulton [1984, Chapter 19] and
Fulton and MacPherson [1981]. A further way to treat algebraic cycles, which we will not
discuss, is through K-theory (Fulton [1984, Section 20.5]). For interesting speculations
about how this and other cycle theories might work even in the context of singular
varieties, see Srinivas [2010].

For an example where the singular cohomology ring is useful (in a purely algebraic
setting!), see Appendix D.

C.3.1 Algebraic equivalence

Rather than defining cycles to be equivalent only if there is a rational family of
cycles interpolating between them — that is, a family parametrized by P1 — we can
instead allow families parametrized by curves of any genus; that is, we say that two
subvarieties Z1; Z2 � X are algebraically equivalent if there is a reduced irreducible
curve C and a subvariety Y � C �X such that the fibers of Y over two points p; q 2 C
are Z1 and Z2. The resulting equivalence relation is called algebraic equivalence. The
corresponding group Aalg.X/ comes with a natural map

A.X/! Aalg.X/:

All the items of the basic theory of Chow groups are true for the groups of cycles
modulo algebraic equivalence; in particular, there is a decomposition by dimension
Aalg.X/ D

L
Aalg;d .X/, for a smooth variety X the groups Akalg.X/ WD Aalg;dimX�k

form a graded ring, and there are pushforward and pullback maps as in the case of the
Chow rings.

By Bertini’s theorem there is an irreducible curve through any two points of a
projective varietyX , and thus unlike in the case of the Chow groups we haveAalg;0.X/ Š

Z via the degree map. The description of the group of cycles in codimension 1 is also
simpler modulo algebraic equivalence than modulo rational equivalence: if X is smooth
and projective over C, then two divisors are algebraically equivalent if and only if they
are homologically equivalent, and so A1alg.X/ ,! H 2.X;Z/; in particular, A1alg.X/ is
finitely generated.

In other codimensions, however, the group of cycles modulo algebraic equivalence
is as little understood as the Chow group. For example, if X � P4 is a smooth quintic
threefold then we shall see in Section C.4.1 that two curvesC;C 0 � X are homologically
equivalent if and only if they have the same degree. On the other hand, the 2875 lines on
a general smooth quintic threefold X are linearly independent in A2alg.X/ by Ceresa and
Collino [1983], and it is not known whether A2alg.X/ is even finitely generated.
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C.3.2 Algebraic cycles modulo homological equiva-
lence

The group of algebraic cycles modulo homological equivalence is the image of the
map � W A.X/ ! H�.X;Z/ defined in Section C.2.4, and is denoted by H�alg.X;Z/.
Since it is a subgroup of a finitely generated group, it is finitely generated (again, unlike
the Chow groups). When X is smooth, � is a ring homomorphism, so this is a subring
of H�.X;Z/.

However, it still has quirks: For example, by the Noether–Lefschetz theorem (see
for example Griffiths and Harris [1985]), if U � P34 is the space of smooth quartic
surfaces, the function r W U ! Z associating to each surface S the rank of H 2

alg.S;Z/
is nowhere continuous.

C.3.3 Numerical equivalence

We say that a class ˛ 2 Ak.X/ is numerically equivalent to 0 if the degree of the
product ˛ˇ is 0 for all classes ˇ 2 An�k.X/ of complementary dimension. The group of
Chow classes modulo numerical equivalence is denoted by N �.X/; when X is smooth,
the intersection product gives this group the structure of a ring, and the quotient map
A.X/! N �.X/ is a ring homomorphism.

Numerical equivalence has some of the advantages of cohomology and is easily
available in all characteristics. In characteristic 0, any class homologically equivalent to
0 is evidently numerically equivalent to 0, so numerical equivalence represents a further
coarsening of the notion of homological equivalence for varieties over C.

Conjecturally, it is not much coarser: If the Hodge conjecture is true, then by
Poincaré duality and the hard Lefschetz theorem (Theorem C.13) the pairing

H 2k
alg .X;Q/ �H

2n�2k
alg .X;Q/! Q

given by the intersection/cup product would be nondegenerate. Given this, it would
follow that any class ˛ 2 H�alg.X/ numerically equivalent to 0 is torsion in H�.X;Z/,
or, in other words,

N k.X/ D H 2k
alg .X/=tors:

Since the Hodge conjecture is known in codimension 1, this statement is known for
k D 1 and n � 1. This makes the notion of numerical equivalence particularly suitable
for applications of intersection theory that deal largely with divisors and curves, such as
the minimal model program; most papers in that area work with numerical equivalence.
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C.3.4 Comparing the theories

Summarizing the relationships of the theories we have defined, we have

A�.X/ A�alg.X/ H�alg.X/ H�.X;Z/

N �.X/

with N �.X/ conjecturally isomorphic to H�alg.X/=tors.
In fact, with small modifications to our arguments (and ignoring the necessary

restriction to characteristic 0 when using cohomology), we could use any of the five
cycle theories we have described for almost every intersection we compute in this book.
The class of smooth projective varieties for which the theories coincide includes any
variety with an affine stratification, and in particular all products of projective spaces
and Grassmannians; it includes all homogeneous spaces for affine algebraic groups; it
includes any projective bundle over a variety of this class, and all blow-ups of varieties
in this class along subvarieties in this class. This class represents a tiny fraction of all
varieties, but a large fraction of the set of varieties on which we can effectively carry out
intersection theory.

C.4 The Lefschetz hyperplane theorem
The Lefschetz hyperplane theorem says that if X � Y is a smooth, ample divisor

on a smooth projective variety then in all but one dimension the cohomology of X is
induced (in a sense we make precise below) from that of Y . The name comes from the
use of the theorem to compare the topology of a projective variety with that of its general
hyperplane section.

Theorem C.8 (Lefschetz hyperplane theorem). Let X � Y be a smooth subvariety
of codimension 1 on a smooth projective variety. If, as a divisor, X is ample, then the
restriction map

Hk.Y;Z/! Hk.X;Z/

is an isomorphism for k < dim.X/ and injective for k D dim.X/. Similarly, the map

Hk.X;Z/! Hk.Y;Z/

is an isomorphism for k < dim.X/ and surjective for k D dim.X/.
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Despite the apparent symmetry of these two assertions they are rather different: the
morphism

H 2.dimX/�k
Š Hk.X;Z/! Hk.Y;Z/ Š H 2.dimXC1/�k

is induced by inclusion, whereas the homomorphism Hk.Y;Z/! Hk.X;Z/ may be
defined by the intersection of X with a generic translate of a cycle in Hk.Y;Z/. We will
see the importance of this difference in the examples of Section C.4.1.

By Poincaré duality, the groups Hk.X;Z/ for k > dim.X/ are isomorphic to the
groups Hk.X;Z/ with k < dim.X/, so this describes all the cohomology groups of X
in terms of those of Y , except for one: the middle-dimensional cohomology of X .

See Milnor [1963] for an elegant proof of Theorem C.8 following an argument
of Andreotti and Frankel [1959]. Here is a sketch: The hypothesis that X is ample in
Y implies that the line bundle L D OY .X/ has a Hermitian metric k � k with positive
curvature. If � is a global section of L vanishing on X , then k�k is a Morse function
on Y with minimum 0 along X . We may apply Morse theory and use the curvature
statement to bound the index of the critical points of k�k. It follows that Y has the
homotopy type of a space obtained by attaching cells of dimension � dim.X/ to X ,
from which the Lefschetz theorem follows.

Lefschetz’ original proof [1950] applied only to very ample divisors X � Y , that
is, divisors that could be realized as hyperplane sections of Y under some embedding
Y � PN in projective space (hence the name of the theorem). In this setting, Lefschetz
took a general pencil of divisors fX�g�2P1 including X , and so gave a map

� W zY D Bl�.Y /! P1

from the blow-up of Y along the base locus � D
T
X� of this pencil to P1. The map

� is almost a fiber bundle: the fibers are all homeomorphic to X except over the finite
number of values � 2 P1 with X� singular. By studying the local geometry of the
map around these points, Lefschetz was able to relate the cohomology of the variety
zY , and hence that of Y , to that of X . Lefschetz’ analysis in the end yields more than
just the statement above — for example, it tells us about the monodromy action on the
cohomology of the elements of the pencil — and is worth reading, despite the difficulties
of translation (both linguistic and, more challengingly, mathematical!).

C.4.1 Applications to hypersurfaces and complete
intersections

We can apply Theorem C.8 to smooth hypersurfaces in PN , but also, inductively
using Bertini’s theorem, to smooth complete intersections in projective space. In the
following discussion we will write � for the class of a hyperplane in projective space, as
well as its restriction to a projective variety X .
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Corollary C.9. If X � PnCc is a smooth complete intersection of dimension n, then
the map

Hk.X;Z/! Hk.PnCc ;Z/ D
�
Z if k is even;
0 if k is odd;

induced by the inclusion X � PnC1 is an isomorphism for k < n and surjective for
k D n, and the restriction map

Hk.PnCc ;Z/! Hk.X;Z/

is an isomorphism for k < n and injective for k D n.

Proof: We induct on the codimension c of the complete intersection X ; the case c D 1
is the Lefschetz theorem itself. Now suppose that

X D V.f1/ \ � � � \ V.fc/

with degf1 � � � � � degfc . To carry out the inductive step, it suffices to know that

X D V.f1/ \ � � � \ V.fc�1/

is smooth. To achieve this, we may replace f1; : : : ; fc�1 by general forms f 01; : : : ; f
0
c�1

of the same degrees in the ideal .f1; : : : ; fc/. By Bertini’s theorem,

X 0 D V.f 01/ \ � � � \ V.f
0
c�1/

is smooth away from the base locus X . But since X is a complete intersection in X 0 any
singular point on X 0 that lies on X would be a singular point on X as well.

As an application of Corollary C.9, observe that if Z � X is any subvariety of
codimension k < n=2 in X then Corollary C.9 tells us that the class ŒZ� 2 H 2k.X;Z/
of Z is the restriction to X of an integral cohomology class on PnCc ; in other words,

ŒZ� D .˛ � �k/jX

for some ˛ 2 Z.
In Corollary 6.26 we showed that a smooth hypersurface in projective space cannot

contain a linear space of more than half its dimension. Using Corollary C.9, we can say
much more:

Corollary C.10. Let X � PnCc be a smooth complete intersection of dimension n and
degree d . If Z � X is any subvariety with dim.Z/ > n=2, then the degree of Z is
divisible by d . In particular, if Z � PnC1 is any nondegenerate subvariety of dimension
> n=2 and prime degree, then Z is contained in no smooth hypersurface.
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Proof: Let k be the codimension of Z in X . By Lefschetz, we have ŒZ� D ˛�k for
some ˛ 2 Z, whence

deg.Z/ D deg.ŒZ� � �n�k/

D deg.˛�n/

D ˛d:

Thus, for example, a smooth nondegenerate surface of degree 3 in P4 (every such
surface is a cubic scroll S.1; 2/) lies on no smooth threefold of degree d > 3 in P4.
(In fact, it lies on no smooth hypersurfaces at all; the cases d D 2 and 3 can be handled
by direct examination.)

There is a substantial strengthening in the case of codimension-1 subvarieties:

Corollary C.11. IfX is a smooth complete intersection of dimension n � 3 in projective
space, any subvariety Z � X of codimension 1 in X is the intersection of X with a
hypersurface; equivalently, the homogeneous coordinate ring of X is factorial, so every
unmixed codimension-1 subscheme of X is the intersection of X with a hypersurface.

Proof: Since n D dimX > 1, we have

H 1.X;Z/ D 0:

From the identification of PicX with H 1.O�X / and the exponential sequence

0 �! Z �! OX;an
exp
���! O�X;an �! 0

introduced in Section C.2.4, it follows that every line bundle on X is determined
by its topological Chern class in H 2.X;Z/. Since n > 2, the map H 2.PN ;Z/ !
H 2.X;Z/ is surjective, so every class of codimension 2 on X is the restriction of
a class on projective space. Thus every line bundle on X has the form OX .m/ for
some m.

Now suppose thatX is a hypersurface of degree d in PnC1. From the sheaf sequence

0 �! OPnC1.m � d/ �! OPnC1.m/ �! OX .m/ �! 0

and the fact that H 1.OPnC1.m � d// D 0, we deduce that every global section of
OX .m/ is the restriction to X of a global section of OPnC1.m/— that is, a homoge-
neous polynomial of degree m. The same argument, applied inductively, yields the same
statement for complete intersections.

Putting this together, we see that if Z � X is a divisor then OX .Z/ D OX .m/ for
some m, and moreover the global section of OX .Z/ vanishing on Z is the restriction
to X of a homogeneous polynomial of degree m. This proves the first statement of
the corollary.
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For the factoriality, it suffices to show that every codimension-1 prime ideal P in the
homogeneous coordinate ring SX is principal. We know that the subvariety S defined
by P is the complete intersection of X and a hypersurface V.f /, and it follows that
.f / D P \Q, where Q contains a power of the irrelevant maximal ideal. But since
SX=.f / is a complete intersection, it is unmixed (see for example Eisenbud [1995,
Theorem 11.5]), and we deduce that .f / D P .

The statement for unmixed codimension-1 subschemes follows at once.

Grothendieck eliminated topology and generalized this result substantially; see Call
and Lyubeznik [1994] for the statement and a relatively simple proof.

C.4.2 Extensions and generalizations

There have been numerous extensions of the Lefschetz hyperplane theorem:

� One can replace the hypothesis “complete intersection of ample divisors” with the
hypothesis “zero locus of a section of an ample vector bundle” (see for example
Matsumura [2014]).

� More fundamentally, it became clear from Milnor’s proof that over C the result
should be strengthened to a result on homotopy in place of homology; see for
example Barth [1975] for a development in this direction.

� Singularities on Y away from X seem to play a secondary role. For statements
allowing such singularities, see for example Okonek [1987] and Hamm [1995].

� Another stream of activity has centered on subvarieties “of low codimension” in
projective space that are not complete intersections. It turns out that these are very
special (see for example the survey Hartshorne [1974]), so it is reasonable to hope
that there might be analogous theorems for them. For example, we have:

Theorem C.12 (Larsen [1973]). IfX� PnCr is a smooth codimension-r subvariety
then the restriction map

Hk.PnCrC ;Z/! Hk.X;Z/

is an isomorphism for k � n � r and injective for k D n � r C 1.

Thus, for example, if X � P5 is a smooth threefold then H 1.X;Z/ D 0. See
also the simplified proof in Barth [1975], which includes a homotopy-theoretic
version.
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C.5 The hard Lefschetz theorem and
Hodge–Riemann bilinear relations

In this section we briefly describe two further results on the topology of varieties
that are frequently used (though not in this text). A reference for both is Griffiths and
Harris [1994, Section 0.7]. The first is called the “Hard Lefschetz theorem” in English;
the more colorful French name is “Théorème de Lefschetz vache.”

Theorem C.13 (Hard Lefschetz theorem). Let X � Pr be a smooth projective variety
of dimension n. If � 2 H 2.X;C/ is the class of a hyperplane section of X , then the map[

�k W Hn�k.X;C/! HnCk.X;C/

is an isomorphism for all k D 1; : : : ; n.

We define the primitive cohomology groups of X for m � n as

P n�k.X/ WD Ker
�[

�kC1 W Hn�k.X;C/! HnCkC2.X;C/
�
;

and using Theorem C.13 we get the Lefschetz decomposition

Hm.X;C/ D
M

�k � Pm�2k.X/

for m � n.
Since the class � is of type .1; 1/, the Lefschetz decomposition is compatible with

the Hodge decomposition: If for k D p C q we set

P p;q.X/ D P k \Hp;q.X/;

then we have

P k.X/ D
M

pCqDk

P p;q.X/:

In these terms, we can state the Hodge–Riemann bilinear relations. First, we define
a Hermitian inner product

Q W Hn�k.X;C/ �Hn�k.X;C/! C

on the cohomology of X in middle degree or lower by

Q.˛; ˇ/ D .˛ [ ˇ [ �k/ŒX�:

Theorem C.14 (Hodge–Riemann bilinear relations). For ˛ 2 P p;q.X/,

ip�q.�1/.
n�k
2 /Q.˛; ˛/ > 0:



Chern classes in topology and differential geometry Appendix C 559

When n is even we can use this to express the index of the cup product onHn.X;R/
in terms of the dimensions of the primitive cohomology groups of X . For example, when
X is a surface, the Lefschetz decomposition of H 2.X;C/ has the form

H 2.X;C/ D P 2.X/˚ Ch�i;

and we conclude the signature of the cup product on H 2.X;R/ is .2h2;0 C 1; h1;1 � 1/.
As a consequence:

Corollary C.15. Let S � PN be a smooth surface of degree d . If  D ŒC � is the class
of a curve C of degree e on S , then

deg.2/ �
e2

d
:

Proof: If  is a multiple of the class � of a hyperplane section this is immediate (and
we have equality above); if not, this is just the statement that the intersection pairing on
the group Zh�; i � A1.S/ generated by the classes � and  has signature .1; 1/ (and
we have a strict inequality).

Note that the statement of Corollary C.15 makes no reference to homology, and in
fact it is true over any field; see Beauville [1996].

C.6 Chern classes in topology and
differential geometry

If X is a smooth complex projective algebraic variety and E is an algebraic vector
bundle on X , then applying the map � W A.X/! H�.X;Z/ to the Chern class of E we
get a class in H�.X;Z/, which we also denote by c.E/ and call the topological Chern
class of E .

It is possible to define c.E/ 2 H�.X;Z/ much more generally, for any continuous
complex vector bundle E on any reasonably nice topological space, say a simplicial
complex. Here we think of E as a topological space, with a map � W E ! X whose
fibers are complex vector spaces Cn, rather than as a locally free sheaf, and we denote
by E� the complement of the zero section in E.

The topological Chern classes are among the characteristic classes of vector bundles.
Such classes were defined by Stiefel and Whitney (see for example Whitney [1941])
before they came into algebraic geometry. In this section we will sketch the original
topological idea behind the construction.
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�0.p/

�0.q/

p q

Figure C.1 Extending the section �0 over a 1-simplex.

C.6.1 Chern classes and obstructions

As we have seen, the top Chern class in algebraic geometry may be thought of as an
obstruction to the existence of a nowhere-vanishing global section. In the category of
manifolds (or more generally simplicial complexes) and continuous maps, we can make
this precise, as follows:

Let E be a complex vector bundle on a topological space X that is the underlying
space of a simplicial complex. We start by choosing an arbitrary section �0 of E� over
the 0-skeleton X0 of X — that is, we select arbitrary nonzero vectors �0.p/ 2 E�p in the
fibers of E over the vertices p 2 X of our complex.

Next we extend �0 to a section �1 of E� defined over the 1-skeleton of X . We can
always do this: Since a closed 1-cell �1 � X is contractible, the restriction of E to �1
is trivial, so that finding a nonzero section of E over �1 with the assigned values �0j@�1
on the boundary @�1 amounts to finding an arc  W Œ0; 1�! Cn n f0g with given starting
and ending points; since Cn n f0g is connected, we can always do this (see Figure C.1).

We continue in this way, extending �1 to a section of E� over successively larger
skeleta of X : Given a section �k�1 of E� over the .k � 1/-skeleton Xk�1, for each
k-simplex �k � X we trivialize the bundle on �k , and view the problem of extending
�k�1 over �k as that of giving a homotopy of �k�1j@�k with the constant map. We can
certainly make the extension as long as �k�1.Cn n f0g/ D 0.

We first encounter difficulty when k D 2n: Since �2n�1.Cn n f0g/ Š Z, we may
not be able to extend �2n�1 over X2n. As a measure of the obstruction, we define a
simplicial 2n-cochain ˛ 2 C 2n.X;Z/ by

˛.�2n/ D Œ�2n�1j@�k � 2 �2n�1.C
n
n f0g/ Š Z:

One can show that the cochain ˛ is a cocycle and that while ˛ depends on the choices
made its cohomology class does not.

In this context we define the topological Chern class cn.E/ of E to be

cn.E/ D Œ˛� 2 H
2n.X;Z/:
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The nonvanishing of cn.E/ is an obstruction to finding a nowhere-zero section of
E in the sense that the nonvanishing of Œ˛� implies that we cannot have a nowhere-zero
section of E, but the converse is not true: the vanishing of Œ˛� says only that we can find
such a section over the 2n-skeleton X2n.

The other topological Chern classes are defined similarly. To measure the obstruction
to finding k everywhere-independent sections of E, we introduce the bundle of k-frames
in E: the space

Fk.E/ D f.p; v1; : : : ; vk/ jp 2 X and v1; : : : ; vk 2 Ep are independentg:

The fibers of Fk.E/ over X are frame manifolds

Fk D fv1; : : : ; vk 2 Cn j v1 ^ � � � ^ vk ¤ 0g;

and a simple calculation with the long exact sequence in homotopy shows that we have

�i .Fk/ D

�
0 if i < 2n � 2k C 1;
Z if i D 2n � 2k C 1:

Thus we get a class in H 2n�2kC2.X;Z/, which is an obstruction to finding a section of
Fk.E/. This class agrees with the Chern class cn�kC1.E/ in the cases where the latter
is defined.

One can show that when E is an algebraic vector bundle with enough sections this
definition of the Chern classes agrees with their characterization as classes of degeneracy
loci. For example, if � is a global holomorphic section of E vanishing on a generically
reduced subscheme A � X of codimension n, we can choose the simplicial structure
on X to be transverse to the zero locus of � , meaning that V.�/ is disjoint from the
.2n � 1/-skeleton of X and intersects each 2n-simplex of X transversely in a finite
number of points. If we choose the section �2n�1 of E� over the .2n � 1/-skeleton on
X to be the restriction of � to X2n�1, then the obstruction cocycle ˛ will associate to
each 2n-simplex �2n the number of its points of intersection with V.�/, counted with
appropriate sign. Unwinding the definitions, the cohomology class of this cocycle is
exactly the Poincaré dual of the fundamental class of V.�/.

C.6.2 Chern classes and curvature

Under slightly stronger hypotheses, Chern [1946] characterized the classes ck.E/
in terms of curvature. Suppose that X is a differentiable manifold and E a differentiable
complex vector bundle on X . Choose a Riemannian metric on the manifold X and a
Hermitian metric on the vector bundle E— that is, a Hermitian inner product on each
fiber of the bundle, varying differentiably with the point, so that in terms of a local
trivialization of E the entries of the Hermitian matrix giving the inner product on Ep are
C1 functions of p. The metric on the bundle E defines a notion of parallel transport:
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p

v w

Figure C.2 A small geodesic quadrilateral with vertex at p.

given an arc  in X , the metric determines a canonical way to identify the fibers of E
over the points of the arc.

Now, suppose that v;w 2 TpX are tangent vectors at a point p 2 X . We can form
a small geodesic square with a vertex at p and sides at p that are geodesics of length �
in the directions v and w; see Figure C.2.

Parallel transport around the perimeter of this square yields an automorphism
'.v;w; �/ of the fiber Ep; since '.v;w; �/ goes to the identity as � ! 0, we arrive at
an endomorphism A.v;w/ of Ep

A.v;w/ D lim
�!0

'.v;w; �/ � Id
�

:

The endomorphism A.v;w/ is bilinear and skew-symmetric in v and w, so that we can
think of A as an element of Hom.

V2TpX;End.Ep//; as p varies this gives us a global
section ‚ of the bundle

Hom.
V2T .X/;End.E// D �2X ˝ End.E/:

The section ‚ is called the curvature form of the metric.
In terms of a local trivialization of E near p, we may think of ‚ as an n � n

matrix of differentiable 2-forms, called the curvature matrix of the metric. If we change
the trivialization of E, the matrix ‚ is replaced by its conjugate under the change-of-
basis matrix. The coefficients of the characteristic polynomial of this matrix are thus
well-defined global forms !2k on X for k D 0; 1; : : : ; n.

Chern showed that:

(a) The forms !2k are closed.

(b) The de Rham cohomology classes Œ!2k� 2 H 2k
dR .X;C/ are independent of the

choice of metric.

(c) The class Œ!2k� is the image of the class ck.E/ 2 H 2k.X;Z/ under the natural map
H 2k.X;Z/! H 2k.X;C/ D H 2k

dR .X;C/.

See Chern [1946] for a proof.
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The analogs of many of the theorems proved in Chapter 5 and elsewhere for the
algebraic Chern classes c.E/ 2 A.X/ hold true in the topological setting as well: The
Whitney product formula and the splitting principle, and their consequences, such as the
formula for the Chern class of a tensor product with a line bundle (Proposition 5.17),
hold more generally for topological vector bundles, and indeed can be proved along
similar lines. In particular, the analog of the formula of Theorem 9.6 for the Chow ring
of a projective bundle holds true for the cohomology ring of a projective bundle as well
(see for example Bott and Tu [1982]), a fact we will use in Appendix D.



Appendix D

Maps from curves to
projective space

Keynote Questions

(a) What is the smallest degree of a nonconstant map from a general curve of genus g
to P1? (Answer on page 567.)

(b) In how many ways can a general curve C of genus 4 be expressed as a 3-sheeted
cover of P1, up to automorphisms of P1? (Answer on page 577.)

(c) What is the smallest degree of a nondegenerate map from a general curve of genus g
to P2? (Answer on page 567.)

(d) In how many ways can a general curve C of genus 6 be expressed as a curve of
degree 6 in P2, up to automorphisms of P2? (Answer on page 578.)

(e) What is the smallest degree of an embedding of a general curve of genus g in P3?
(Answer on page 567.)

(f) In how many ways can a general curve C of genus 8 be embedded as a curve of
degree 9 in P3, up to automorphisms of P3? (Answer on page 578.)

In this book we have treated problems in enumerative geometry as interesting for
the aspects of algebraic geometry that they illuminate, and for their own sake — there is
a certain fascination with being able to enumerate solutions to a geometric problem, even
when we cannot find those solutions explicitly. In this appendix we will see a striking
example of another kind, where the methods of enumerative geometry are crucial in the
analysis of a qualitative questions in geometry. We will describe and prove half of a
foundational result in the theory of algebraic curves: the Brill–Noether theorem, which
answers the question of when a general curve of given genus admits a map of given
degree to projective space.

This material also illustrates the value of considering cycle theories other than the
Chow ring of a variety. We will be working with Jacobians and symmetric powers of
curves (see Section 10.3.1 for the definition and basic properties of symmetric powers
in general, and Section D.2 below for a description of the Jacobian of a curve and its
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relation to the symmetric powers). These are spaces whose Chow rings remain opaque
but whose cohomology rings are readily accessible (the Jacobian of a curve of genus g
is homeomorphic to a product of 2g copies of S1, so we can apply the Künneth formula
to give a compact description of its cohomology ring). In particular, Poincaré’s formula
(Section D.5.1), which is crucial to our calculation, is readily verified in cohomology but
difficult even to state in the Chow ring.

We will therefore assume for the duration of this appendix that we are working over
the complex numbers, and use the results of Appendix C relating the Chow ring of a
projective variety to its cohomology ring. The techniques developed can be extended
to all characteristics using étale cohomology or numerical equivalence (Kleiman and
Laksov [1972] and [1974], respectively).

D.1 What maps to projective space do
curves have?

Until the 20th century, varieties were defined as subsets of projective space. In this
respect, algebraic geometry was much like other fields in mathematics; for example,
in the 19th century a group was by definition a subset of GLn or Sn closed under the
operations of composition and inversion; the modern definition of an abstract group
did not appear until well into the 20th century. But in about 1860 Riemann’s work
introduced a way of talking about curves that crystallized, over the next hundred years,
into our notion of an abstract variety — a geometric object defined independently of any
particular embedding in projective space.

The basic problem of classifying all curves in projective space was thus broken
down into two parts: the description of the family of abstract curves (the study of moduli
spaces of curves), and the problem of describing all the ways in which a given curve C
might be embedded in or, more generally, mapped to a projective space. To continue our
analogy with group theory, the latter question is the analog of representation theory, that
is, the study of the ways in which a given abstract group G can be mapped to GLn.

Among the most basic questions we can pose along these lines is: “What maps to
projective space do most curves of genus g have?” To focus on the objects of principal
interest and avoid redundancies, we consider only nondegenerate maps ' W C ! Pr ,
that is, maps whose image does not lie in any hyperplane. We define the degree of such
a map to be the degree of the line bundle '�OPr .1/, or equivalently the cardinality of
the preimage '�1.H/ of a general hyperplane H � Pr .

There are really two parallel questions: First, “For which d; g and r is it the case
that every curve of genus g admits a nondegenerate map of degree d or less to Pr?” and
second, “For which d; g and r is it the case that a general curve of genus g admits a
nondegenerate map of degree d or less to Pr?”
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The second version of this question begs the further question of the meaning of the
phrase “general curve of genus g.” As explained in the introduction to this book, such a
statement invokes the existence of a family of smooth projective curves. In this case we
refer to the universal family of curves that exists over an open set of the moduli space
parametrizing smooth, projective curves of genus g— a space whose points correspond
naturally to isomorphism classes of such curves; this moduli space, denoted Mg , is
irreducible. We will take this existence as given; details can be found in Harris and
Morrison [1998].

Recall that maps ' W C ! Pr (modulo the group PGLrC1 of automorphisms of the
target Pr ) correspond bijectively to pairs .L; V / with L a line bundle of degree d on
C and V � H 0.L/ an .r C 1/-dimensional vector space of sections without common
zeros (base locus). If we drop the requirement that the sections of V have no common
zeros, such an object is called a linear series of degree d and dimension r ; classically,
it was referred to as a gr

d
. (Note that if a gr

d
has a nonempty base locus then we can

subtract that locus and get a map ' W C ! Pr with degree smaller than d .) The linear
series is called complete if V D H 0.L/

It is easy to produce high-degree maps and high-degree embeddings: An application
of the Riemann–Roch theorem shows that on a curve of genus g any line bundle of
degree � 2g defines a morphism, and any line bundle of degree � 2g C 1 defines an
embedding (see Hartshorne [1977, Section IV.3]); a slightly more refined argument
shows that on any curve of genus g a general line bundle of degree g C 1 defines a
morphism and a general line bundle of degree g C 3 defines an embedding.

If we are interested in the simplest representation of the curve, our primary question
becomes: How low a degree line bundle can we find that gives a morphism, or an
embedding? For the case of a general curve, these are Keynote Questions (a) and (e).
The correct answers were given by Brill and Noether [1874] soon after Riemann’s work,
but the first complete proofs followed only about 100 years later! The numerical function

�.g; r; d/ WD g � .r C 1/.g � d C r/

plays a central role. We will see how it arises in Section D.3.1. Here is the simplest
version of the Brill–Noether theorem:

Theorem D.1. (a) If �.g; r; d/ � 0 then every curve of genus g admits a nondegenerate
map of degree d or less to Pr .

(b) For a general curve this bound is sharp; that is, a general curve C of genus g admits
a nondegenerate map of degree d or less to Pr if and only if �.g; r; d/ � 0.

For example, we see that:

� All curves of genus g are expressible as covers of P1 of degree d.g C 2/=2e or less,
and for general curves this is sharp; thus all curves of genus 1 or 2 are expressible
as 2-sheeted covers of P1, but general curves of genus 3 are not.
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� All curves of genus g admit maps to P2 of degree d.2g C 6/=3e or less, and for
general curves this is sharp; for example, curves of genus 2 or 3 admit maps of
degree 4 to P2, but general curves of genus 4 do not.

Part (a) of Theorem D.1, the existence, was first proved by Kleiman and Laksov
[1972] and Kempf [1971], while part (b) was first proved by Griffiths and Harris [1980].
The two statements require quite different methods, part (a) using enumerative geometry
and part (b) involving specialization techniques. We give successively stronger forms of
part (a) in Theorems D.1, D.9 and D.17, and we will give a proof of the strongest form;
in Section D.3.2 we sketch some of the steps needed for part (b).

It is sometimes interesting to ask what happens for the complete linear series
corresponding to a general line bundle L of degree d with h0.L/ � r C 1 on a specific
curve C ; again, this makes sense because the set Picd .C / of line bundles of degree d is
a variety, isomorphic to the Jacobian variety of the curve, and the locus of L 2 Picd .C /
with h0.L/ � rC1 is a closed subset (we will explain both of these assertions below). It
turns out that general linear series on general curves are as well-behaved as possible. The
following result, together with the Brill–Noether theorem, answers Keynote Questions (c)
and (e).

Theorem D.2. Let C be a general curve of genus g.

� r D 1: The map ' W C ! P1 given by a general g1
d

is simply branched.
� r D 2: The map ' W C ! P2 given by a general g2

d
is birational onto a plane curve

C0 � P2 having only nodes as singularities.
� r � 3: The map ' W C ! Pr given by a general gr

d
is an embedding.

See Eisenbud and Harris [1983a, Theorems 1,2] for the proof of parts (a) and (c),
and Zariski [1982] or Caporaso and Harris [1998] for part (b).

Thus, for example, a general curve of genus g is birational to a plane curve of degree
d.2g C 6/=3e, but no less, and is embeddable in projective space as a curve of degree
d.3g C 12/=4e but no less.

Before stating the more refined versions of the Brill–Noether theorem, we pause to
describe three classic and more elementary results that provide limitations on what gr

d
’s

and embeddings in projective space a curve can possess: the theorems of Riemann and
Roch, Clifford, and Castelnuovo.

D.1.1 The Riemann–Roch theorem

The Riemann–Roch theorem for curves (Chapter 14) says that for a line bundle L
on a smooth curve of genus g

h0.L/ D d � g C 1C h0.!C ˝ L�1/;
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r

d

.�1;�1/ .g�1;�1/

.g�1;g�1/
.2g�1;g�1/

r D d�g

Figure D.1 Points in the shaded region correspond to degrees and dimension .d; r/ of
complete linear series whose existence is not excluded by the Riemann–Roch theorem.

where !C denotes the sheaf of differential forms on C . We will often exploit the
equivalence between the notions of line bundles and divisors on a smooth curve, and
write a divisor D in place of the line bundle O.D/. Thus we allow ourselves to rewrite
the Riemann–Roch theorem as

h0.D/ D d � g C 1C h0.K �D/;

where K denotes a canonical divisor.
For line bundles L of degree d > 2g � 2 the last term is zero, and so the Riemann–

Roch theorem tells us the dimension precisely:

h0.L/ D d � g C 1:

For line bundles of degree close to 2g � 2 it gives us approximate information: For
example, if d D 2g � 2, the Riemann–Roch theorem says that

h0.L/ D
�
g if L D !C ;
g � 1 otherwise;

(D.1)

and if g > 0 and d D 2g � 3 it says that

h0.L/ D
�
g � 1 if L D !C .�p/ for some point p 2 C ,
g � 2 otherwise:

(D.2)

It also tells us that for any line bundle

d C 1 � h0.L/ � d � g C 1:

Beyond these values the Riemann–Roch theorem gives less precise information.
We summarize what the Riemann–Roch theorem tells us about the possible existence

of gr
d

’s on curves of genus g in Figure D.1, which shows the possible pairs .d; r/ where
L is a line bundle of degree d on C and r D h0.L/ � 1.
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r

d

rDd=2

Figure D.2 Points in the shaded region correspond to degrees and dimension .d; r/ of
complete linear series whose existence is not excluded by Clifford’s theorem. In fact,
the result is sharp: every such degree and dimension occurs for some complete linear
series on some curve.

D.1.2 Clifford’s theorem

Clifford’s theorem (Hartshorne [1977, Theorem IV.5.4]) says that if C is a curve of
genus g and D is a divisor of degree d � 2g � 2 on C then

h0.D/ � d=2C 1:

In the case when h0.K �D/ D 0, this inequality follows at once from the Riemann–
Roch theorem, so its import is for effective divisorsD such that h0.K�D/ ¤ 0— these
are called special divisors. An extension of Clifford’s theorem says that if, moreover,
equality holds then either L D O, L D !C or C is hyperelliptic and L is a multiple of
the g12 on C . If we exclude the cases of degree d D 0 and d � 2g � 2 (where after all
Clifford tells us nothing new), we may state this as:

Theorem D.3 (Clifford). If C is a curve of genus g and L a line bundle of degree d on
C with 0 < d < 2g � 2, then

h0.L/ � d=2C 1;

with equality holding only if C is hyperelliptic and L a multiple of the g12 .

This cuts the above graph of allowed values of d and r essentially in half, as shown
in Figure D.2.

Clifford’s theorem is sharp: For every d , g and r allowed by Theorem D.3, there
exist curves of genus g and gr

d
’s on them. This does not represent a satisfactory answer

to our basic problem, however, for two distinct reasons:

(a) Given our motivation for studying gr
d

’s on curves — the classification of curves
in projective space — you may say that our real object of interest is not gr

d
’s in

general but those whose associated maps give generically one-to-one morphisms



570 Appendix D Maps from curves to projective space
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2gg

g

g=2

Figure D.3 Points in the shaded region correspond to degrees and dimension .d; r/
of complete linear series defining birational maps whose existence is not excluded by
Castelnuovo’s theorem.

to Pr . (When the morphism is generically one-to-one, or birationally very ample in
more classical terminology, the source curve is the normalization of the target, so the
image curves can be described as curves of geometric genus g— see Section 2.4.6.)
The linear systems satisfying equality in Clifford’s theorem — and, as we will see
in a moment, those that are close to this — are not birationally very ample. Thus,
we refine our original question and ask: “What birationally very ample linear series
may exist on a curve of genus g?” — in other words, for which d , g and r do there
exist irreducible, nondegenerate curves of degree d and geometric genus g in Pr?

(b) As we have seen, interesting linear series that achieve equality in Clifford’s theorem
exist only on hyperelliptic curves, which are very special: they form a closed subset
of codimension g � 2 in the space Mg of all smooth curves of genus g. Clifford’s
theorem thus leaves unanswered the question of what linear series exist on a general
curve of genus g.

D.1.3 Castelnuovo’s theorem

The issue of which linear series can embed a curve is dealt with in a theorem of
Castelnuovo:

Theorem D.4 (Castelnuovo). Let C � Pr be an irreducible, nondegenerate curve of
degree d and geometric genus g. Then

g � �.d; r/ WD
�m
2

�
.r � 1/Cm�;

where d D m.r � 1/C � C 1 and 0 � � � r � 2.

Castelnuovo showed that this bound is sharp, and using his analysis it is not hard to
see that curves of all geometric genera between 0 and the bound do occur. Figure D.3
shows the values of d and r allowed by Castelnuovo’s bound in the case g D 30. See
Arbarello et al. [1985, Chapter 3] for a proof. It is worth pointing out, though, that a
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p0

p



 0

Figure D.4 The integral
R p
p0
! may depend on the choice of path.

slight variant of this question — “For which d , g and r do there exist smooth, irreducible
and nondegenerate curves of degree d and genus g in Pr?” remains open in general. It
was solved for r D 3 in Gruson and Peskine [1982]; see Ciliberto [1987] and Harris and
Eisenbud [1982, Chapter 3] for a discussion of some of the relevant issues in general.

It should be said that Castelnuovo’s theorem answers question (a) in the preceding
section (the question of what birationally very ample linear series a curve may have). It
does not, however, address question (b); that is, it does not tell us what linear series are
present on a general curve. To put it another way, inside the space Mg parametrizing
smooth projective curves of genus g, the locus of “Castelnuovo curves” — that is,
curves C � Pr of degree d with g D �.d; r/— is contained in a subvariety of high
codimension. Thus, the question remains of what linear series exist on all or most curves
of genus g. This is the question addressed by the Brill–Noether theorem, of which
Theorem D.1 is a weak version. To state it in a strong form and to prove it we will have
to analyze the geometry of curves in greater depth.

D.2 Families of divisors
D.2.1 The Jacobian

A deeper study of linear series requires us to make sense of the set of linear systems
as a variety. For this purpose we introduce the Jacobian.

One of the early motivations for studying algebraic curves came from calculus,
specifically the desire to make sense of integrals of algebraic functions. In modern terms,
this means integrals Z p

p0

!;

where ! is a holomorphic (or more generally meromorphic) differential on a smooth
projective curve C over the complex numbers, p0 and p are points of C and the integral
is taken along a path from p0 to p on C .
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One problem in trying to define such integrals is that if the curve in question has
positive genus then the value of the integral depends on the choice of the path. A change
of the path corresponds to adding a functional obtained by integration over a closed loop
on C . Now, the integral of holomorphic (and hence closed) forms over a closed loop 
depends only on the homology class of  ; we thus have a map

H1.C;Z/! H 0.!C /
�

which embeds H1.C;Z/ Š Z2g as a discrete lattice in H 1.!C /
� Š Cg (see for

example Griffiths and Harris [1994, p. 228]). Thus we may view the integral
R p
p0

as an
element of the quotient

H 0.!C /
�=H1.C;Z/:

We define the Jacobian Jac.C / of the curve C to be this quotient. By our construction,
Jac.C / is a complex torus, and in particular a compact complex manifold; in fact, it
is a projective variety over C, and the map p !

R p
p0

is a map of projective varieties.
We will use this often; see Griffiths and Harris [1994, ��2.2–2.3] for a treatment in the
complex-analytic setting.

Having defined the Jacobian, we see that, after choosing a base point p0 2 C ,
integration defines a map C ! Jac.C / and, more generally, maps

u D ud W Cd ! Jac.C /

from the symmetric powers Cd D C d=Sd of C to its Jacobian, defined by

D D
X

pi 7!
XZ pi

p0

:

These maps are called Abel–Jacobi maps.

D.2.2 Abel’s theorem

Theorem D.5 (Abel). Let u W Cd ! Jac.C / be the Abel–Jacobi map. Divisors D;E on
C of the same degree are linearly equivalent if and only if u.D/ D u.E/.

One direction of Abel’s theorem — the “if” half — is relatively easy to prove: If
D and E are linearly equivalent, there is a pencil of divisors, parametrized by P1,
interpolating between them. But if f W P1 ! A is any map from P1 to a torus, the
pullbacks f �� of holomorphic 1-forms on A vanish identically. Since these 1-forms
generate the cotangent space at every point of A, it follows that the differential df is
identically zero and hence that f is constant; thus u.D/ D u.E/. The hard part (which
was in fact proved by Clebsch) is the converse. See Griffiths and Harris [1994, p. 235]
for a treatment.
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The import of Abel’s theorem is that we may, for each d , identify the set of linear
equivalence classes of effective divisors of degree d on C with the Jacobian Jac.C /.
The identification is not canonical; it depends on the choice of a base point p0 2
C . In Section D.2.3 we will use this correspondence to show that there exists a fine
moduli space Picd .C / for line bundles of degree d on C — that is, a space together
with a universal family — and that Picd .C / is isomorphic (again, non-canonically) to
Jac.C /.

Abel’s theorem tells us that the fiber u�1.u.D// of u through a point D 2 Cd is
the complete linear system jDj D fE 2 Cd jE � Dg— set-theoretically, at least, a
projective space. (We will see in Theorem D.6 that it is indeed isomorphic to Ph

0.D/�1.)
Beyond this, the behavior of the map u depends very much on d .

If p1; : : : ; pd 2 C are general points with d � g, then the conditions of vanish-
ing at the pi are independent linear conditions on differential forms. Writing D D
p1 C � � � C pd , we get h0.! �D/ D g � d . From the Riemann–Roch theorem, we see
that h0.D/ D 1; that is, no other effective divisor of degree d is linearly equivalent to
D. It follows from Abel’s theorem that the map u W Cd ! Jac.C / is birational onto its
image, and in particular that the image Wd WD u.Cd / � Jac.C / is again d -dimensional.

In particular, the map u W Cg ! Jac.C / is birational (this statement is called
the Jacobi inversion theorem; see Exercise D.18 for a more classical version). Further,
the image of u W Cg�1 ! Jac.C / is a divisor in Jac.C /, called the theta divisor and
written ‚.

When d � g the same argument shows that the map u W Cd ! Jac.C / is surjective.
When g � d � 2g � 2 the dimensions of the fibers will vary, but when d > 2g � 2

the picture becomes regular: the fibers of u W Cd ! Jac.C / are all of dimension d � g.
We will see in this case that u W Cd ! Jac.C / is in fact a projective bundle, and in
Section D.5.2 we will identify the vector bundle E on Jac.C / such that Cd Š PE .

Note that the subset of line bundles L of degree d such that h0.L/ � rC1 is Zariski
closed in Picd .C /: it is the locus where the fiber dimension of u is r or greater. We
define the Brill–Noether locus W r

d
.C / to be the set

W r
d .C / D fL 2 Picd .C / j h0.L/ � r C 1g:

This Zariski closed subset of Picd .C / has a natural scheme structure, which we will
explain in Section D.4.2 below.

Here is the first step toward proving that for large d the Abel–Jacobi map is the
projection from a projectivized vector bundle on Jac.C /:

Theorem D.6. For any d , the scheme-theoretic fiber of the Abel–Jacobi map u W Cd !
Jac.C / through a point D 2 Cd is the projective space jDj D PH 0.OC .D//. For d >
2g � 2, the map u is a submersion, that is, the differential du W TDCd ! Tu.D/ Jac.C /
is surjective everywhere.
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Proof: From Abel’s theorem above, we see that the projective space

jDj Š f.�;D0/ 2 PH 0.OC .D// � Cd j � vanishes on Dg

projects onto the fiber u�1u.D/ � Cn, so it is enough to show that u�1u.D/ is smooth
and of dimension equal to h0.OC .D// � 1.

We start with the case d > 2g � 2, and consider a point D 2 Cd corresponding to
a reduced divisor, that is, D D p1 C � � � C pd 2 Cd with the points pi distinct. From
the definition of the Jacobian as H 0.!C /

�=H1.C;Z/ we see that the cotangent space at
any point is

T �u.D/ Jac.C / D H 0.!C /;

the space of regular differentials on C . We may similarly identify the cotangent space to
Cd at D: because the pi are distinct we have

T �DCd D
M

T �piC D
M

H 0..!C /p/ D H
0.!C =!C .�D//:

Differentiating the Abel–Jacobi map

D D
X

pi 7!
XZ pi

p0

with respect to the points pi , we see that, in terms of these identifications, the differential
duD of u at a point D 2 Cd is given as the transpose of the evaluation map

H 0.!C /!
M

T �piC;

! 7! .!.p1/; : : : ; !.pd //I

in particular, the cokernel of the differential duD of u at a pointD 2 Cd is the annihilator
of the subspaceH 0.!C .�D// � H

0.!C / of differentials vanishing alongD. Since we
are working in the range d > 2g � 2 D deg!C , there are no such differentials, and we
are done.

In fact, the identification T �DCn D H
0.!C =!C .�D// extends to all divisors D 2

Cd and in these terms the differential is again the transpose of the evaluation map

H 0.!C /! H 0.!C =!C .�D//

(see for example Arbarello et al. [1985, �IV.1]); so the same logic applies.
Finally, in the case d � 2g � 2 the Riemann–Roch theorem tells us that the

dimension of the kernel of the differential du at any point D— that is, the dimension
of the cokernel of the evaluation map H 0.!C /! H 0.!C =!C .�D//— is exactly the
dimension r.D/ D h0.OC .D//� 1 of the fiber of u through D; thus the fibers of u are
smooth in this case as well, even though they are not all of the same dimension.
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D.2.3 Moduli spaces of divisors and line bundles

Abel’s theorem tells us that when d � g the fibers of the Abel–Jacobi map Cd !
Jac are in one-to-one correspondence with the line bundles L of degree d on C , making
the set of bundles Picd .C / into an analytic variety; the same follows for every d via the
isomorphisms Picd .C / Š Pice.C /. The defining isomorphism Picd .C / Š Jac.C / is
not canonical: it depends on the choice of a base point p0. If we chose a different point
p00 then the identifications would take L to L.d.p00 � p0//. For clarity, it is usually best
to think of the Picd .C / as distinct schemes.

The variety Picd .C / is actually a fine moduli space, in the sense that Picd .C / � C
carries a universal line bundle P . The key property of P is that its restriction to each
fiber fLg � C is isomorphic to the corresponding line bundle L. In fact, it satisfies a
stronger functorial characterization:

Proposition D.7. Let C be a smooth, projective curve of genus g, and d any integer.
Let p0 2 C be a point. There exists a projective scheme Picd .C / and a line bundle P
on Picd .C / � C such that:

(a) P is trivial on Picd .C / � fp0g; and

(b) for any scheme B and any line bundle M on B � C of relative degree d that is
trivial on B � fp0g, there exists a unique map ' W B ! Picd .C / such that

M D .' � IdC /�P :

(The condition PjfLg�C Š L is the special case of part (b) where B is a point.) The
“universal line bundle” P on Picd .C / � C is called the Poincaré bundle (with respect
to p0). We postpone its construction to Section D.4.1.

We have constructed Picd .C / as an analytic variety, but it has in fact the structure
of an algebraic variety, and can be constructed for curves over any field. This was
first done by André Weil. He observed that via the birational map u W Cg ! Jac.C /
an open subset of Jac.C / was isomorphic to an open subset of Cg . Composing u
with translations, we see that Jac.C / may be covered by such open sets, and these
can be glued together to construct Jac.C /. (Indeed, it was the desire to carry out this
construction that led Weil to the definition of an abstract variety.) In even greater
generality, Grothendieck applied his theory of étale equivalence relations to construct
Picd .C / as the quotient of Cd by linear equivalence for large d ; see Milne [2008] for
a description.

The symmetric power Cd that is the source of the Abel–Jacobi map is also a fine
moduli space, supporting a universal family of divisors; equivalently, we may regard Cd
as the Hilbert scheme of subschemes of degree d on C :
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Proposition D.8. There exists a divisor D � Cd � C such that, for any scheme B and
any effective divisor � � B � C finite over B of relative degree d , there exists a unique
map ' W B ! Cd such that

� D .' � IdC /�1D:

It is easy to make the “universal divisor” explicit: it is just the reduced divisor

D D f.D; p/ 2 Cd � C jp 2 Dg;

which we will encounter repeatedly in what follows.
For proofs of Propositions D.7 and D.8, see, e.g., Arbarello et al. [1985, �IV.2].

D.3 The Brill–Noether theorem
Here is our second version of the Brill–Noether theorem. Recall that we have defined

�.g; r; d/ WD g � .r C 1/.g � d C r/:

Theorem D.9 (Brill–Noether). (a) For every curve C of genus g

dimW r
d .C / � �.g; r; d/:

(b) If C is a general curve of genus g then equality holds.

The appearance of � in this theorem can be understood as follows: g is the dimension
of the Jacobian of C , which may be thought of as the space Picd .C / of all line bundles
of degree d on C . Furthermore, if a line bundle L 2 Picd .C / has h0.L/ D rC1, so that
L 2 W r

d
.C / nW rC1

d
.C /, the Riemann–Roch theorem asserts that h1.L/ D g � d C r .

Thus the Brill–Noether theorem asserts that if C is a general curve of genus g then the
codimension of W r

d
� Picd .C / is h0.L/h1.L/. Indeed, as we shall see, W r

d
can be

thought of as the rank-k locus of a map between vector bundles of ranks k C h0.L/
and k C h1.L/ (for any large k!), so this is the “expected” codimension in the sense of
Chapter 12.

In general, the formula of Theorem D.9 is far more restrictive than Castelnuovo’s
bound. For example, Figure D.5 shows the values of d and r allowed in the case g D 100;
we see that only a tiny fraction of the complete linear series allowed by Castelnuovo
actually occur on a general curve.

In the final section of this appendix we will give an enumerative proof of the
existence half of Theorem D.9, namely:

Theorem D.10. If � D g � .r C 1/.g � d C r/ � 0, then every smooth curve C of
genus g has

dimW r
d .C / � �:

In particular, there exist linear systems on C of degree d and dimension r .
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r

d

Figure D.5 The shaded regions correspond to points .d; r/ such that there exists:

a complete linear series whose existence is not contradicted by the
Riemann–Roch theorem;
a complete linear series that actually exists on some curve of genus 100;
a complete linear series on some curve of genus 100, which defines a
birational map; and
a complete linear series on a general curve of genus 100 (this necessarily
defines a birational map when r > 1).

The heart of our proof of Theorem D.10 is an enumerative formula for the class of
W r
d
.C /, given in the stronger Theorem D.17. When g D .r C 1/.g � d C r/— that is,

when � D 0— this formula becomes a number:

Corollary D.11. If C is a smooth curve of genus g D .r C 1/.g � d C r/ and if W r
d

is
finite, then C possesses

gŠ

rY
iD1

i Š

.g � d C r C i/Š

linear series of degree d and dimension r , counted with multiplicity. When r D 1 and
g D 2.g � d C 1/ D 2k, this number is the Catalan number

1

k C 1

�2k
k

�
:

Proof: By Poincaré’s formula (Proposition D.13 below), deg.�g/ D gŠ; substituting
in the formula of Theorem D.17 yields the corollary. Note that the multiplicity with
which a given linear series occurs is equal to the multiplicity of the scheme W r

d
at the

corresponding point.

For example, in the first case that is not answered by the Riemann–Roch theorem,
we can ask if a general curve of genus 4 is expressible as a 3-sheeted cover of P1, and
if so in how many ways; this is the content of Keynote Question (b). Corollary D.11
gives an answer: It says that C will admit two such maps. Indeed, we can see directly
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that there are two: the canonical model of a non-hyperelliptic curve of genus 4 is the
complete intersection of a quadric and a cubic surface in P3, and if the quadric is smooth
its two rulings will each cut out a g13 on C . (Note that we see in this example a case
where multiplicities may arise: If the quadric surface in question is a cone, the curve C
will possess only one g13 , counted with multiplicity 2.)

Similarly, Corollary D.11 says that a general curve C of genus 6 will possess
five g14’s, and dually five g26’s. Again, we can see these linear series explicitly: By the
extension below, any one of the g26’s will give a birational embedding of C as a plane
sextic C0 � P2 with four nodes as singularities. The five g14’s will then be the pencils cut
out on C by the pencil of lines through each node and the pencil cut by conics passing
through all four. (See Exercises D.19 and D.20 for a proof that these are all the g14’s on
C , and Exercise D.21 for another example.)

There are various extensions of this theorem for general curves C of genus g: Fulton
and Lazarsfeld [1981] showed that if � > 0 then W r

d
.C / is irreducible; Gieseker proved

that the singular locus of W r
d
.C / is exactly W rC1

d
.C /, and hence (given Exercise D.23)

that W r
d
.C / is reduced (see Harris and Morrison [1998] for a discussion of this theo-

rem and its proofs). In particular, we see that for a general curve there are in fact no
multiplicities in the formula in Corollary D.11.

D.3.1 How to guess the Brill–Noether theorem and
prove existence

Here is one way to describe the locus W r
d
.C /. Fix a divisor

D D p1 C � � � C pm

consisting of m distinct points of C . For any line bundle L on C , there is an exact
sequence

0 �! L �! L.D/
bL
���!

mM
iD1

L.D/pi Š
mM
iD1

Opi �! 0;

and taking cohomology we see that

H 0.L/ D Ker
�
H 0.L.D//

h0bL
�����!

mM
iD1

C
�
:

If the numberm is large — saym > 2g� 2�d — then the Riemann–Roch formula tells
us that h0.L.D// D mC d � g C 1, independently of L. Thus, as L varies over the set
Picd .C / of line bundles of degree d , the locus W r

d
.C / � Picd .C / is the locus where

the m � .mC d � g C 1/ matrix h0bL has rank at most .mC d � g C 1/ � .r C 1/.
The expected codimension of the locus where an s � t matrix with s � t has rank u, in
the sense of Chapter 12, is .s � u/.t � u/. Thus the “expected” codimension of W r

d
in
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Picd .C / is .r C 1/.m� .mC d � g C 1� r � 1// D .r C 1/.g � d C r/, exactly the
codimension predicted for a general curve by the Brill–Noether theorem.

As we will see, the maps h0bL vary algebraically with L 2 Picd .C /. It follows
that if W r

d
.C / is nonempty for a given curve C then its dimension is at least �.g; r; d/,

and, given the existence of one curve C0 for which W r
d

is really nonempty and of
dimension �.g; r; d/, it would follow that this is true for an open set of curves in
any family containing C0. Brill and Noether must have known many cases where
these conditions were all satisfied, but they lacked the tools to give a proof of the
theorem.

In Section D.4.2 we will identify the map bL as the fiber of a map of vector bundles
b W F ! G over Picd .C /, which is isomorphic to the Jacobian Jac.C / of C (this implies
that the map h0bL varies algebraically with L). As remarked above, this implies that
W r
d
.C / has dimension at least �.g; r; d/ provided that it is nonempty.
To prove that W r

d
.C / is nonempty when �.g; r; d/ � 0, we will compute the Chern

classes of the vector bundles F and G. Porteous’ formula allows us to compute the
class ˛ 2 H 2.rC1/.g�dCr/.Jac.C // that the locus W r

d
would have if it had dimension

�.g; r; d/. We will show that this class is nonzero when 0 � .r C 1/.g � d C r/ � g,
and this suffices to prove the desired existence.

D.3.2 How the other half is proven

The proof of the other half of the Brill–Noether theorem — the statement that for a
general curve C the dimension dimW r

d
.C / is at most �.g; r; d/, and in particular that

C possesses no gr
d

’s when � < 0— requires very different ideas. One could prove it
by exhibiting for each g, r and d a smooth curve C of genus g with dimW r

d
.C / D

�.g; r; d/ (or with W r
d
.C / D ¿ if � < 0), but no one has ever succeeded in doing this

explicitly for large g. The known proofs fall into two families:

Degeneration to singular curves
One approach to this problem is to consider a one-parameter family of curves fCtg

specializing from a smooth curve to a singular one, C0. What needs to be done in this
setting is first of all to describe the limit as t ! 0 of a gr

d
on Ct , and then to prove that

such limits do not exist on C0 when � < 0. This was done in the original proof, with
C0 a general g-nodal curve (that is, P1 with g pairs of general points identified); the
possible limits of a gr

d
on Ct were identified in Kleiman [1976] and the proof that no

such limit exists when � < 0 was given in Griffiths and Harris [1980]. Another proof
(Eisenbud and Harris [1983a]) used a g-cuspidal curve as C0, and in Eisenbud and Harris
[1983b] the role of C0 was played by a curve consisting of a copy of P1 with g elliptic
tails attached. See Figure D.6 for examples of these curves. Much more recently, a proof
was given using the methods of tropical geometry in Cools et al. [2012].
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E1

E2

Eg

:::

P1

Figure D.6 Three singular curves used in specialization arguments for the nonexis-
tence half of Brill–Noether.

Curves on a very general K3 surface
A completely different proof was given by Lazarsfeld [1986], who showed that a

smooth curve C embeddable in a very general K3 surface — specifically, one whose
Picard group was generated by the class of the curve C — necessarily satisfied the
statement of the basic Brill–Noether theorem. The theorem was thus proved by special-
izing to a smooth curve, rather than a singular one (though the smooth curve in question
could still not be explicitly given, inasmuch as we have no way to explicitly produce K3
surfaces with Picard number 1).

D.4 W r
d as a degeneracy locus

In the remainder of this appendix we will deal with a fixed curve C . To simplify
notation, we will write Jac for the Jacobian Jac.C / and Picd for the Picard variety
Picd .C / parametrizing line bundles of degree d on C .

In this section we will explain how to construct the family of all line bundles of
a given degree, and how to put the maps bL of Section D.3.1 together into a map of
bundles. To do this, we first need to construct the Poincaré bundle, a fundamental object
in the theory.

D.4.1 The universal line bundle

Choose a base point p0 2 C . The Poincaré bundle is a line bundle on the product
Picd �C whose restriction to the fiber fLg � C over L 2 Picd is isomorphic to L and
whose restriction to the cross-section Picd � fp0g is trivial.

Without the normalizing condition of triviality on Picd � fp0g the bundle P would
not be determined uniquely: We could tensor with the pullback of any line bundle on
Picd .C / and get another. But with the normalizing condition, Corollary B.6(b) shows
that the Poincaré bundle is unique — if it exists.



W r
d

as a degeneracy locus Appendix D 581

C

C1 D C

D D � (the diagonal)

D0 D C1 � fp0g

Figure D.7 The divisors D and D0 in the case d D 1.

We will construct the Poincaré bundle as the direct image of a line bundle M on
Cd � C under the map

� D u � Id W Cd � C ! Picd �C:

For p 2 C , let Xp � Cd be the divisor that is the image of fpg � C d�1 in Cd ,
that is, the set of divisors containing p. To describe M, we write D0 for the divisor
Xp0 � C � Cd � C , and let D � Cd � C be the universal divisor of degree d as in
Proposition D.8, that is,

D D f.D; p/ 2 Cd � C jD � p � 0g:

Thus the restriction of D to a fiber fDg � C of the projection to Cd is the divisor D,
and the restriction of D to the fiber Cd � fpg of the projection to C is the divisor Xp.
Finally, define

M D OCd�C .D �D0/;
and set P D ��M.

Proposition D.12. P D ��.M/ is a Poincaré bundle on Picd �C ; in particular,

PjfLg�C Š L
for any point L 2 Picd and

PPicd �fp0g
Š OPicd :

Proof: Since the restriction of M to any fiber Pr of � is trivial (both divisors D
and D0 intersect Pr in a hyperplane), the theorem on cohomology and base change
(Theorem B.9) shows that the direct image ��M is a line bundle and the formation of
this direct image commutes with base change.

The proof that PPicd �fp0g
Š OPicd is immediate: If we restrict to the preimage

��1.Picd � fp0g/;

the divisors D and D0 agree, so that Mj��1.Picd �fp0g/
is trivial, and so is its direct

image.
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To prove that PjfLg�C Š L we use the theorem on cohomology and base change. It
implies that the formation of the direct image ��.M/ commutes with base change, so
we can first restrict to the preimage

jLj � C D ��1.fLg � C/;

where jLj Š Pr � Cd is the linear system of effective divisors D on C with
OC .D/ Š L. The restriction of � to jLj � C is projection on the second factor.

As observed, the line bundle M D OCd�C .D � D0/ is trivial on each fiber of
� W jLj � C ! C , so that the restriction MjjLj�C must be a pullback of some line
bundle on C ; to prove that ��.M/jfLg�C Š L amounts to showing that this line bundle
is L. Thus, it suffices to prove that

MjjLj�C D ��L: (D.3)

For this it is enough to show that, for a general divisor D,

MjfDg�C Š L:

This is immediate if D does not contain the point p0: By definition, the divisor D0 D
Xp0 � C � Cd � C is disjoint from fDg � C , while the divisor D intersects fDg � C
in the divisor D.

D.4.2 The evaluation map

Fix a reduced divisor D D p1C � � � C pm of degree m � 2g � 1� d on C , and set
n D mC d . Choosing D gives us an identification of Picd with Picn. We will describe
the locus W r

d
CD � Picn as the degeneracy locus of an evaluation map.

On the product Picn �C , consider the evaluation map

P ! Pj� ;
where

� D Picn �D D
m[
iD1

.Picn � fpig/

is the union of the horizontal sections of Picn �C over Picn corresponding to the
points pi . Taking the direct image of this map under the projection � W Picn �C ! Picn,
we have a map of vector bundles

� W E WD ��.P/! F D
mM
iD1

Li ;

where Li is the restriction of P to the cross-section Picn � fpig. For each point L 2 Picn,
this is the map

EL D H 0.L/!
M

Lpi
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obtained by evaluating sections of L at the points pi . In particular, the kernel of this map
is the vector space H 0.L.�D// � H 0.L/ of sections vanishing along D. We have now
proven that the locus W r

d
CD � Picn is the locus where the map � has rank n�g�r or

less.
In particular, the determinantal ideal defines a scheme structure on W r

d
. Though this

structure appears to depend on the choice of the divisor D, in fact it does not: for any
choice of D one can prove that the scheme W r

d
has a universal property independent of

D that characterizes it. This is done explicitly, for example, in Arbarello et al. [1985,
Chapter 4].

It remains to show that W r
d
.C / is nonempty. To do so we will compute the Chern

classes of the bundles E and F and apply Porteous’ theorem. Before we do so, however,
we must develop some basic information about the cohomology ring of the Jacobian,
where these Chern classes live, and we must also identify the bundle E in a more
useful way.

D.5 Natural classes in the cohomology ring
of the Jacobian

Why are we working with the cohomology ring of the Jacobian rather than with the
Chow ring? For one thing, it is computable: Since the Jacobian of a curve of genus g is
topologically the product of 2g copies of the circle, its cohomology ring is an exterior
algebra on 2g generators of degree 1, whereas the Chow groups of an abelian variety
of dimension � 2 are largely unknown. In particular, since any deformation of a cycle
along a continuous path preserves the homology class of the cycle, the cohomology
class of a cycle does not change under translation. The same is not true modulo rational
equivalence, and this is very much an issue here: Most of the cycles whose classes we
might hope to determine are in fact only defined after a choice of base point — in effect,
only up to translation.

That said, our first goal will be to identify the classes in H�.Jac;Z/ of certain basic
cycles. To start, the Jacobian is the quotient of the contractible space H 0.!C /

� Š Cg

by the subgroup H1.C;Z/ Š Z2g , so there is a natural identification

H1.Jac;Z/ D H1.C;Z/:

The first cohomology H 1.Jac;Z/ is similarly identified with H 1.C;Z/. These identifi-
cations are induced by the Abel–Jacobi map u W C ! Jac because the integral takes a
closed path  W Œ0; 1�! C to the path Q W Œ0; 1�! H 0.!C /

� defined by

Q.t/ D

Z
.Œ0;t�/

2 H 0.!C /
�;

which joins the origin to the lattice point corresponding to the homology class of  .
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We choose a basis ˛1; : : : ; ˛g ; ˇ1; : : : ; ˇg for H 1.C;Z/, normalized so that the
cup product has the form

.˛i [ ˇj /ŒC � D

�
1 if i D j ,
0 otherwise,

and

˛i [ ˛j D ˇi [ ˇj D 0 for all i; j:

By abuse of notation, we will also use the symbols ˛i and ˇi to denote the corresponding
cohomology classes in H 1.Jac;Z/.

Since the cohomology ring of the Jacobian is the exterior algebra generated by the
˛i and ˇj , we can compute arbitrary products of these elements. Given a multi-index
I D .i1; : : : ; ik/ with i1; : : : ; ik 2 f1; : : : ; gg, we will write ˛I and ˇI for the classes

˛I D ˛i1 [ � � � [ ˛ik and ˇI D ˇi1 [ � � � [ ˇik

in Hk.Jac;Z/. The classes

f˛I [ ˇJ j I; J � f1; : : : ; ggg

form a basis for H�.Jac;Z/. The cup product in complementary dimension is given (via
the identification H 2g.Jac;Z/ Š Z) for I; J;K;L � f1; : : : ; gg by�

.˛I [ ˇJ / [ .˛K [ ˇL/
�
ŒJac� D

�
˙1 if K D I 0 and L D J 0,
0 otherwise,

(D.4)

where I 0 denotes the complement of I . To determine the signs, we can pull back to the
direct product of g copies of C , and use (D.10) below to prove that

.˛1 [ ˇ1 [ ˛2 [ ˇ2 [ � � � [ ˛g [ bg/ŒJac� D C1I

the signs of the other expressions in (D.4) are determined by skew-symmetry.
Of special interest are the classes �i 2 H 2.Jac;Z/ defined as

�i D ˛i [ ˇi for i D 1; : : : ; g:

For a multi-index I D .i1; : : : ; ik/ with i1; : : : ; ik 2 f1; : : : ; gg, we will write �I for
the class

�I D �i1 [ � � � [ �ik 2 H
2k.Jac;Z/:

For example, by what we have just said �.1;:::;g/ D 1 2 H 2g.Jac;Z/ D Z. Rearranging
the terms, we see that in general

�I D .�1/
.k2/˛I [ ˇI :

The cup product in complementary dimension is easy to compute: For I; J �
f1; : : : ; gg we have

.�I [ �J /ŒJac� D
�
1 if J D I 0,
0 otherwise.

(D.5)
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D.5.1 Poincaré’s formula

The objects of primary interest to us are the classes of the subvarieties Wd � Picd

parametrizing effective divisor classes of degree d , that is, the images of the maps
u D ud W Cd ! Jac Š Picd . Like most of the objects in our treatment, the map u
depends on the choice of base point p0 2 C , so the subvarieties Wd � Jac are really
only defined up to translation, though their classes in H�.Jac;Z/ are well-defined. Here
is the basic result:

Proposition D.13 (Poincaré’s formula).

ŒWd � D
X

I�f1;:::;gg
jI jDg�d

�I 2 H 2g�2d .Jac;Z/:

The divisor Wg�1 � Jac occurs often, and is usually called the theta divisor on Jac
and denoted by ‚; its class is denoted by � 2 H 2.Jac;Z/. By Proposition D.13 we have

� D �1 C � � � C �g :

With this notation we can restate the proposition as

ŒWd � D
�g�d

.g � d/Š
:

The formula ŒWd � D ŒWg�1�
g�d=.g � d/Š makes sense in the ring of cycles

on Jac modulo numerical equivalence — we do not need to introduce the topological
cohomology of Jac to state it — and indeed it was proven in this numerical form for
curves and their Jacobians over arbitrary fields in Kleiman and Laksov [1974]. We do
not know if there is an analogous formula in a finer cycle theory such as the group of
cycles modulo rational or algebraic equivalence.

Proof of Proposition D.13: By Poincaré duality, it suffices to take the product of both
sides of the formula with an arbitrary element ˛I [ ˇJ with jI j D jJ j D d , evaluate
on the fundamental class of Jac and show that they are the same. In view of (D.4)
and (D.5) above, in the case I ¤ J we have ˛I [ ˇJ [ �K D 0 for any �K of
complementary degree, while if I D J we have .˛I [ ˇI [ �K/ŒJac� D .�1/.

d
2/

if K D I 0 and 0 otherwise. Equivalently, since the map Cd ! Wd is generically
one-to-one for d � g, Proposition D.13 will be proven if we show that

.u�.˛I [ ˇJ //ŒCd � D

�
.�1/.

d
2/ if I D J ,

0 otherwise.
(D.6)
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To evaluate the expression on the left, it is useful to pull back from the symmetric
power Cd of the curve to C d , the ordinary d -fold product. Let � W C d ! Cd be
the quotient map, and let � D u ı � W C d ! Jac be the composition. Since � is a
dŠ-fold cover,

��ŒC
d � D dŠ � ŒCd �;

so (D.6) is equivalent to

.��.˛I [ ˇJ //ŒC
d � D

�
.�1/.

d
2/d Š if I D J ,

0 otherwiseI
(D.7)

that is,

.��.˛I [ ˇJ //ŒC
d � D 0 if I ¤ J (D.8)

and

.���I /ŒC
d � D dŠ for all I : (D.9)

Let �k W C d ! C be projection on the k-th factor, and set ˛ki D �
�
k
˛i and ˇki D

��
k
ˇi . By the Künneth formula, H 1.C d / D

L
k �
�
k
.H 1.C //. Writing �k W C ! C d

for the inclusion sending C to

fp0g � � � � � fp0g � C � fp0g � � � � � fp0g;

with C in the k-th position, we see that �k�k W C ! C is the identity, while �j �k is
the constant map when j ¤ k. It follows that if  2 H 1.C d / then  D

P
k �
�
k
.��
k
.//.

Applying this to ��˛i and ��ˇi , we see that

��˛i D ˛
1
i C � � � C ˛

d
i and ��ˇi D ˇ

1
i C � � � C ˇ

d
i : (D.10)

By symmetry we may assume that I D f1; : : : ; dg. Applying Formula (D.10) to

���I D �
�˛1 [ �

�ˇ1 [ � � � [ �
�˛d [ �

�ˇd ;

we get the sum of all products of the form

˛
j1
1 [ ˇ

k1
1 [ � � � [ ˛

jd
d
[ ˇ

kd
d
:

This product is zero unless each ji D ki and the set fj1 : : : ; jd g is equal to f1; : : : ; dg.
For these dŠ terms,

˛
j1
1 [ ˇ

j1
1 [ � � � [ ˛

jd
d
[ ˇ

jd
d
ŒC d � D 1;

because ˛jii [ ˇ
ji
i is the pullback of the class of a point under �ji .
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D.5.2 Symmetric powers as projective bundles

We now return to the argument of Section D.4.2. Recall that we have chosen a
base point p0, and that P denotes the Poincaré bundle on Picn �C for some n >

2g � 2, normalized so that P is trivial on Picn � fp0g. To complete the argument of
Theorem D.10 we need to compute the Chern classes of ��P , where � W Picn �C !
Picn is the projection. To do this we will identify ��P in another way:

Theorem D.14. With notation as above, the map u W Cn ! Picn is isomorphic to
the projective bundle P.��P/ ! Picn, via an isomorphism P.��P/ ! Cn sending
OP.��P/.1/ to OCn.Xp0/.

Note that there is a natural identification of the fibers of the Abel–Jacobi map
u W Cn ! Picn with the fibers of the projective bundle: By Theorem D.6, the scheme-
theoretic fiber of u over a point L 2 Picn is the projective space jLj. On the other
hand, the restriction of P to the fiber C Š C � fLg is L. Since the degree n of L is
large, its higher cohomology vanishes, and the theorem on cohomology and base change
(Theorem B.9) shows that the fiber of ��P at a point L 2 Picn is the vector space
H 0.L/ of sections of the line bundle L. The projectivization of this space is again the
projective space jLj D u�1fLg. This fiber-by-fiber argument does not constitute a proof,
but it suggests how we might go about giving one.

The divisor Xp0 � Cn, consisting of divisors containing p0, cuts out the hyperplane
section in each fiber of u, so, by Proposition 9.4, Cn ! Picn is a projective bundle in the
Zariski topology. That is, u is the projection PG ! Picn, where G WD .u�OCn.Xp0//�.

To prove Theorem D.14, accordingly, it suffices to show that the direct image ��P
is isomorphic to the dual of u�OCn.Xp0/. The key is to consider the direct image ��P
as the direct image of the line bundle M D OCn�C .D �D0/ in two ways: by definition
��P D ��.��M/, and since � ı � D u ı �1 we can also write it as u�.�1�M/. It may
be helpful to have a diagram of the relevant objects:

M D OCn�C .D �D0/
Cn � C

�1�M
OCn.Xp0/

Cn Picn � C ��M D P

Picn

u��1�M D ��P
u�OCn.Xp/

�1�

u �

It will also be helpful to have the following lemma:
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Lemma D.15. With notation as above,

�1�M Š u�.��P/:

Proof: There is a natural evaluation map

u�u�.�1�M/! �1�MI

since u��1�M D ��P , this gives a map

u�.��P/! �1�M:

We claim this map is an isomorphism. This follows by looking at the map on fibers at a
point D 2 Cn. Since the sheaves involved have no higher cohomology of the fibers of
the morphisms, the theorem on cohomology and base change allows us to identify the
fibers of u�.��P/ and �1�M at D with the spaces

u�.��P/D D H 0.MjjDj�C / and .�1�M/D D H
0.MjfDg�C /;

and in these terms the induced map u�.��P/D ! .�1�M/D is the restriction map
H 0.MjjDj�C /! H 0.MjfDg�C /. By equation (D.3), the bundle MjjDj�C on jDj�C
is the pullback of a bundle on C , and so the restriction map is an isomorphism on
global sections.

We now proceed with the proof of Theorem D.14:

Proof of Theorem D.14: Since D0 D ��1 .Xp0/, we can write

M D OCn�C .D �D0/ D OCn�C .D/˝ �
�
1OCn.�Xp0/;

and so

�1�M D �1�.OCn�C .D//˝OCn.�Xp0/:

We have an inclusion of sheaves OCn�C ,! OCn�C .D/ coming from the effective
divisor D; taking the direct image under �1 gives an inclusion

OCn ,! �1�OCn�C .D/:

Note that this is actually an inclusion of vector bundles. Indeed, for any point D 2 Cn
we have DjfDg�C D D, so by the theorem on cohomology and base change the fiber
of �1�OCn�C .D/ at D is just the vector space H 0.OC .D//, and the image of the
inclusion is the one-dimensional subspace of sections vanishing on D. Tensoring with
OCn.�Xp0/, we get an inclusion of bundles

OCn.�Xp0/ ,! �1�M

and, dualizing, a surjection

� W .�1�M/� ! OCn.Xp0/:
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To finish, we claim that the pushforward of � gives an isomorphism

u�� W u�..�1�M/�/ �! u�OCn.Xp0/I

given the identification of Lemma D.15, this will complete the proof of Theorem D.14.
Once more invoking the theorem on cohomology and base change, it is enough to prove
that � induces an isomorphism on global sections on each fiber jLj D u�1.L/ � Cn
of u; so, let us consider the restriction of the sheaves in question to jLj D PH 0.L/. To
begin with, by Lemma D.15 the restriction of the bundle �1�M D u�.��P/ to jLj is
the trivial vector bundle with fiber V D H 0.L/, and so

.�1�M/�jjLj D V
�
˝OPV :

Next, the restriction of OCn.Xp0/ to jLj is given by

OCn.Xp0/jjLj Š OPV .1/;

and in these terms the map �jjLj is just the quotient map

V � ˝OPV ! OPV .1/

on the projective space PV . This induces an isomorphism on global sections, and we
are done.

D.5.3 Chern classes from the symmetric power

We can now calculate the Chern class of E WD ��P:

Theorem D.16. For n � 2g � 1, the pushforward E of the Poincaré bundle P from
Picn �C to Picn has Chern class c.E/ D e�� I that is, ci .E/ D .�1/i� i=iŠ for each i .

Proof: Computing the Chern class is equivalent to computing the Segre class s.E/ DP
si .E/, since c.E/ D 1=s.E/ by Proposition 10.3. Recall that

sk.E/ D u�.�kCn�g/;

where � D ŒXp� 2 H 2.Cn/.
Since we are working in H�.Cn/ rather than A.Cn/, the class � is also the class of

the divisor Xq D Cn�1 C q � Cd for any point q 2 C . To represent the class �kCn�g

we can just choose distinct points p1; : : : ; pkCn�g 2 C and consider the intersection\
Xpi D fD 2 Cn jD � pi � 0 for all ig D Cg�k CE � Cd ;

where E D p1C� � �CpkCn�g . This intersection is generically transverse — it is visibly
transverse at a point E CD0, where D0 consists of g � k distinct points distinct from
p1; : : : ; pkCn�g , and no component of the intersection is contained in the complement
of this locus — and so we have

�kCn�g D ŒCg�k CE� 2 H
2kC2n�2g.Cd /:
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We have

sk.E/ D u�ŒCg�k CE� D ŒWg�k� 2 H 2k.Jac/:

Applying Poincaré’s formula, this yields

sk.E/ D
�k

kŠ
:

We can express this compactly as

s.E/ D e� ;

from which the theorem follows.

Theorem D.16 allows us to give a description of the cohomology ring of Cd ; though
we will not use it in what follows, we state it here. By the analog of Theorem 9.6 for
topological cohomology, we have for n � 2g � 1 that

H�.Cn/ D H
�.Jac/Œ��

ı �
�n�gC1 � ��n�g C

�2

2
�n�g�1 � � � �

�
:

Finally, we remark that there is an alternative way to derive the Chern classes of E :
Given that E D ��M, we can apply Grothendieck–Riemann–Roch to the morphism
� to arrive at Theorem D.16. This approach involves a larger initial investment — we
have to have more knowledge of products in H�.Cd / than we currently do — but is also
much more broadly applicable. This approach is carried out in Arbarello et al. [1985,
Chapter 8], where many other applications are given.

D.5.4 The class of W r
d

Here is our third and final version of the Brill–Noether theorem. It sharpens The-
orem D.9 by giving the class of W r

d
.C / in case this locus has the expected dimension.

This enumerative statement is the key to the proof of the qualitative existence statement,
which, surprisingly, does not depend on an a priori knowledge of the dimension.

Theorem D.17 (Enumerative Brill–Noether). (a) For every curve C of genus g, the
locus W r

d
.C / is nonempty of dimension

dimW r
d .C / � �.g; r; d/:

(b) If C is a curve of genus g such that dimW r
d
.C / D �.g; r; d/, then the class of

W r
d
.C / in the cohomology ring of the Jacobian Jac.C / is

ŒW r
d � D

rY
iD1

i Š

.g � d C r C i/Š
� .rC1/.g�dCr/:

If � � 0 then this class is nonzero.
(c) If C is a general curve of genus g then dimW r

d
.C / D �.g; r; d/.
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Proof of parts (a) and (b): Part (a) follows from part (b) as in the discussion of the
content of enumerative formulas generally (Section 3.1) because, first, a determinantal
locus is either empty or of dimension at least the “expected dimension” (see Lemma 5.2),
and second, if it were empty, then we could consider it to have been of the correct
dimension, and thus it would have to have the nonzero homology class of part (b), a
contradiction.

We will use Porteous’ formula to calculate the class of W r
d

as a degeneracy locus of
the map E ! F of vector bundles on Picn obtained by pushing forward the evaluation
map P !

L
Li .

The necessary ingredients are the Chern class of E , computed in the previous section,
and the Chern class of F . The line bundles Li can all be continuously deformed to the
bundle Pp0 D PjPicn �fp0g, which is trivial by our normalization of P . The Chern
classes c1.Li / 2 H 2.Picn/ are thus all 0, so that

c.F/ D 1 2 H�.Picn/:

We have
c.F/
c.E/

D
1

e��
D e� ;

and so Porteous’ formula tells us that ifW r
d

has pure dimension � D g�.rC1/.g�dCr/
then its class is the determinant

ŒW r
d � D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

�g�dCr

.g�dCr/Š

�g�dCrC1

.g�dCrC1/Š
� � �

�g�dC2r

.g�dC2r/Š

�g�dCr�1

.g�dCr�1/Š

�g�dCr

.g�dCr/Š
� � �

�g�dC2r�1

.g�dC2r�1/Š
:::

:::
: : :

:::

�g�d

.g�d/Š

�g�dC1

.g�dC1/Š
� � �

�g�dCr

.g�dCr/Š

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
:

In other words,

ŒW r
d � D Da;r � �

.rC1/.g�dCr/;

where Da;r is the .r C 1/ � .r C 1/ determinant

Da;r D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

1

aŠ

1

.aC1/Š
� � �

1

.aCr/Š

1

.a�1/Š

1

aŠ
� � �

1

.aCr�1/Š
:::

:::
: : :

:::

1

.a�r/Š

1

.a�rC1/Š
� � �

1

aŠ

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
:
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It remains to evaluate Da;r . To do this, we clear denominators by multiplying the
first column by aŠ , the second column by .aC1/Š , and so on; we arrive at the expression

Da;r D

rY
iD0

1

.aC i/Š
�M;

where M is the determinantˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

1 1 � � � 1

a aC 1 � � � aC r

a.a � 1/ .aC 1/a � � � .aC r/.aC r � 1/
:::

:::
: : :

:::

a � � � .a � r C 1/ .aC 1/ � � � .a � r C 2/ � � � .aC r/ � � � .aC 1/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ :

Since the columns of M all consist of the same sequence of monic polynomials, applied
to the arguments a; : : : ; aC r , the determinant is equivalent to the Vandermonde deter-
minant, and thus has value Y

0�i<j�r

.j � i/ D

rY
iD0

i Š:

Thus

Da;r D

rY
iD1

i Š

.aC i/Š
:

It follows that if the dimension ofW r
d
.C / is � then it has the class given in the theorem. In

particular, if it were empty then it would have this class, which is nonzero, a contradiction.
Thus it must be nonempty. Since it is defined as a degeneracy locus, it must have
dimension at least the “expected dimension” locally at each of its points. This completes
the proof of both Theorems D.17 and D.10.

D.6 Exercises
Exercise D.18. Use the statements of Section D.2.2 to prove the original form of Jacobi
inversion: Given two g-tuples of points p1; : : : ; pg and q1; : : : ; qg 2 C on a smooth
curve C of genus g, there exists a g-tuple of points r1; : : : ; rg 2 C , whose coordinates
are rational functions of the coordinates of the pi and qi , such thatXZ pi

p0

C

XZ qi

p0

D

XZ ri

p0

:

Exercise D.19. Let C0 � P2 be a plane sextic with four nodes as singularities, whose
normalization is a general curve of genus 6. Show that no three of the nodes are collinear.
Hint: Use a dimension count.
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Exercise D.20. Let C0 � P2 be a plane sextic with four nodes as singularities, whose
normalization is a general curve of genus 6. We have seen that there are five g14’s on C :
the pencils cut out on C by the pencil of lines through each node and the pencil cut by
conics passing through all four. Show that there are no others.

Exercise D.21. Let C be a curve of genus 8, embedded in P3 by one of the g38’s on C .
Show that if C is general then the image curve C0 � P3 does not lie on a cubic surface.
In case it does, can you locate the 14 g15’s on C ?

Exercise D.22. Let C be a general curve of genus 9. How many plane octic curves
C0 � P2 are birational to C ?

Exercise D.23. Show that W r
d
.C / nW rC1

d
.C / is dense in W r

d
.C /.

Hint: For any point L 2 W rC1
d

.C /, consider the line bundle L.p� q/ for general points
p; q 2 C .
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calcul de fonctions de Hilbert”, Rend. Sem. Mat. Univ. Politec. Torino 42:3 (1984), 65–88.

Alexander and Hirschowitz [1995] J. Alexander and A. Hirschowitz, “Polynomial interpolation in several
variables”, J. Algebraic Geom. 4:2 (1995), 201–222.

Altman and Kleiman [1970] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory,
Lecture Notes in Math. 146, Springer, Berlin-New York, 1970.

Aluffi [1990] P. Aluffi, “The enumerative geometry of plane cubics, I: Smooth cubics”, Trans. Amer. Math.
Soc. 317:2 (1990), 501–539.

Aluffi [1991] P. Aluffi, “The enumerative geometry of plane cubics, II: Nodal and cuspidal cubics”, Math.
Ann. 289:4 (1991), 543–572.

Andreotti and Frankel [1959] A. Andreotti and T. Frankel, “The Lefschetz theorem on hyperplane sec-
tions”, Ann. of Math. .2/ 69 (1959), 713–717.

Arbarello et al. [1985] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic
curves, I, Grundlehren der Mathematischen Wissenschaften 267, Springer, New York, 1985.

Artin [1982] M. Artin, “Brauer–Severi varieties”, pp. 194–210 in Brauer groups in ring theory and
algebraic geometry (Wilrijk, 1981), edited by A. Verschoren, Lecture Notes in Math. 917, Springer,
Berlin-New York, 1982.

Atiyah [1957] M. F. Atiyah, “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc. 85
(1957), 181–207.

Atiyah and Hirzebruch [1961] M. F. Atiyah and F. Hirzebruch, “Vector bundles and homogeneous spaces”,
pp. 7–38 in Differential Geometry, edited by C. B. Allendoerfer, Proc. Sympos. Pure Math. 3, Amer.
Math. Soc., Providence, RI, 1961.
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Dieudonné [1969] J. Dieudonné, “Algebraic geometry”, Advances in Math. 3 (1969), 233–321.
Donagi and Smith [1980] R. Donagi and R. Smith, “The degree of the Prym map onto the moduli space of

five-dimensional abelian varieties”, pp. 143–155 in Journées de Géometrie Algébrique d’Angers (Angers,
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multidimensional determinants, Birkhäuser, Boston, 2008. Reprint of the 1994 edition.

Golubitsky and Guillemin [1973] M. Golubitsky and V. Guillemin, Stable mappings and their singularities,
Graduate Texts in Mathematics 14, Springer, New York-Heidelberg, 1973.

Grayson and Stillman [2015] D. Grayson and M. Stillman, “Macaulay2: a software system for research in
algebraic geometry”, 2015. Available at http://math.uiuc.edu/Macaulay2.

Grayson et al. [2012] D. Grayson, A. Seceleanu, and M. Stillman, “Computations in intersection rings of
flag bundles”, preprint, 2012. Available at http://arxiv.org/abs/1205.4190.

Green [1989] M. Green, “Restrictions of linear series to hyperplanes, and some results of Macaulay and
Gotzmann”, pp. 76–86 in Algebraic curves and projective geometry (Trento, 1988), edited by E. Ballico
and C. Ciliberto, Lecture Notes in Math. 1389, Springer, Berlin, 1989.

Greuel et al. [2007] G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deforma-
tions, Springer, Berlin, 2007.

Griffiths and Adams [1974] P. Griffiths and J. Adams, Topics in algebraic and analytic geometry, Mathe-
matical Notes 13, Princeton University Press and University of Tokyo Press, 1974.

Griffiths and Harris [1979] P. Griffiths and J. Harris, “Algebraic geometry and local differential geometry”,
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Bézout’s theorem, 14–15, 17, 46–48
for dimensionally transverse intersections, 14
general statement, 46

base change, 524
associated natural map, 524–525
commuting with direct image, 525–526

for finite morphisms, 525–526
for flat base change, 525
of an affine morphism, 525

commuting with higher direct image, 531–533
Bertini’s theorem, 11, 230

application to lines on a cubic, 221
extension, 237–238
strong form, 169–170

Betti numbers
odd Betti numbers of a smooth projective variety are

even, 549
of a hypersurface, 182
of a K3 surface, 192
of the quadric line complex, 192

binodal curves
in a net, 425

birational equivalence
between the Hilbert scheme and Kontsevich space, 315

blow-up, 36
applied to the five conic problem, 291–292
as projective bundle, 337–338
Chow ring, 471–473

generators, 473
relations, 476–477

of P2 at a point, 339
of P3 along a line, 81

class of proper transform of a smooth surface, 357
of P3 along a smooth curve, 473–475, 478–479
of P4 along a line, 357
of P5, 301–302
of Pn along a linear space, 337–339, 357, 358

Chow ring, 479
various classes, 357

of Pn at a point, 56–60, 72, 80
of a curve at an An-singularity, 423–424
of a singular curve, 74
of a surface at a point, 72–74
of the Veronese surface in P5, 480

applied to the five conic problem, 480
resolving indeterminacy of a rational map, 282
utility in calculating intersection multiplicities, 61–62

boundary, 289
branch divisor, 278
Brauer group, 346
Brauer–Severi variety, 344–346
Brill–Noether locus, 573
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as degeneracy locus, 580–583, 591–592
class, 577, 590–592
description, 578–579
dimension, 576, 579, 590

bound for a general curve, 579–580
nonemptiness, 583, 590
scheme structure, 583

Brill–Noether theorem, 564
existence part, 578–579
used to count linear series, 577
version 1, 566
version 2, 576

comparison with Castelnuovo’s bound, 576
version 3, 590–592
via curves on a K3 surface, 580
via degeneration to singular curves, 579

bundle of k-frames, 561
bundle of principal parts, 244, 247–248

advantage, 254
Chern class, 254

via Grothendieck Riemann–Roch, 508
definition and properties, 248–250
does not behave well in families, 272
of a line bundle on Pn, 251

bundle of relative principal parts, 391–392
Chern class, 508
properties, 392

canonical bundle, 39
canonical class, 14, 39–40

of a blow-up, 73–74
of a subvariety, 40
of hypersurfaces and complete intersections, 41–42
of projective space, 39–40

Cartesian flex, 271
Cartier divisor, see divisor, Cartier
Castelnuovo bound, 386
Castelnuovo’s theorem, 570–571

open problem, 570
Castelnuovo–Mumford regularity, 261
Catalan number, 149, 577
Čech complex, 528–529
characteristic classes, 559
Chern character, 177, 484–486

computes the Chern class of a tensor product, 486
definition, 485–486
is a ring homomorphism, 485–486
is an isomorphism up to torsion, 486–487
of the tangent bundle of G.1; 3/, 507

Chern class, 14, 134, see also topological Chern class
alternative definition via Grassmannian, 170
and the Chow ring of a projective bundle, 331
as degeneracy locus, 167–168, 177, 426
characterization, 167–169
coincides with topological Chern class for an algebraic

vector bundle, 561
construction, 170–172
definition for smooth quasi-projective varieties, 169
first Chern class, 37, 167

is a homomorphism, 37
of a line bundle, 37–42
on a singular variety, 38

general definition, 171
Grothendieck’s definition via projective bundles, 332
in connection with lines on a cubic, 199–200
in connection with the degree of a discriminant

hypersurface, 253
information about the Grothendieck ring, 486–487
introductory example, 166
is the reciprocal of the Segre class, 364
of E D Sym3 S�, 200

via Grothendieck Riemann–Roch, 490–493
of OPr .1/, 177
ofˆ.3; 3; 1/, 232
of Symd S�, 227
of a bundle of principal parts, 252–255

on Pn, 254
of a coherent sheave is well-defined, 507
of a determinant, 173–174
of a direct sum, 169, 174
of a Fano scheme, 198
of a smooth curve, 179
of a symmetric power tensored with a line bundle, 255
of a symmetric square, 174
of a tensor product with a line bundle, 174–176
of tautological quotient bundle, 347
of the dual bundle, 173
of the relative tangent bundle of a projective bundle, 394
of the structure sheaf of a point in Pn, 507
of the structure sheaf of a smooth curve in P3, 507
of the tangent bundle, 179–183

of G.1; 3/, 507
of a Grassmannian, 183
of a hypersurface, 179–180
of a product of projective spaces, 192
of a quadric in P5, 192
of products of projective spaces, 508
of projective space, 179
of the Grassmannian ofG.2; 4/, 191

of the tensor product of a vector bundle and a dual
bundle, 428

of the tensor product of bundles, 176, 191
of the universal bundles on the Grassmannian, 178–179
of the universal quotient bundle on projective space,

177–178
parallel with Segre class, 364
top Chern class of a tensor product via the resultant, 428
topological, see topological Chern class
vanishes above the rank, 173
via Grothendieck Riemann–Roch, 490

Chern polynomial, 427
Chinese remainder theorem, 11
chords, 113

of two twisted cubics, 85, 115, 129
via specialization, 122, 130

to a curve, 113–115
class, 163
computing the class via specialization, 121–122, 130
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Chow cohomology, 77
Chow group, 16–17

analogy with (co)homology, 15, 28
definition, 16
grading, 17
of a Grassmannian via Young diagrams, 153
of a projective bundle, 331
of a subset of affine space, 26
of an affine space, 24
theory carries over to cycles modulo algebraic

equivalence, 551
via affine stratification, 28

Chow ring, 14
computation, 22–36
definition, 19
examples, 44–62
existence, 19
introduction, 15–19
of a 0-dimensional scheme, 22
of a blow-up, 471–473

generators, 473
of P3 along a smooth curve, 474–475
of Pn along a linear space, 338–339
of Pn at a point, 56–61
of a surface, 72
of the Veronese surface in P5, 480
relations, 476–477

of a flag variety, 356, 359
of a Grassmannian bundle, 346–347
of a parameter space, 62, 86

of conics in P3, 349
of a product of projective spaces, 51–52, 79
of a projective bundle, 331–335
of projective space, 44
of the Grassmannian, 137, 183–187

of lines in P3, 105–109
of the space of complete conics, 306–309
of the universal hyperplane, 336
of the universal line, 337, 394
of the universal plane, 335–336
relation to transversality, 17–19

circle
circular points, 66
in complex projective space, 66–67
tangent to a given circle, 67–68
tangent to three general circles, see circles of

Apollonius
circles of Apollonius, 66–68
classical topology

and algebraic geometry, 544
is finer than the Zariski topology, 543

Clemens conjecture, 239
Clifford’s theorem, 569–570
codimension

definition, 10
expected, see expected codimension
of a Schubert cycle, 133
of a subvariety, 17

cofactor map, 297

Cohen–Macaulay variety
and Bézout’s theorem, 46–47
and intersection multiplicity, 32
and the theory of liaison, 71
pullback, 30

coherent sheaf
criterion to be a vector bundle, 536
has a locally free resolution, 486

cohomology
group vs. ring, 192
of P3, 192
of a smooth quadric threefold, 192

collinearity, 80
compactification, 290, 292

of the total space of a vector bundle, 343
complete conic, see space of complete conics
complete flag, 102, 132
complete intersection, 109

and the excess intersection formula, 455
Chern class, 180
counting lines, 240
homology and cohomology, 555
hyperplane section with triple points, 286, 421
normal bundle, 212
singular curves on a complete intersection, 286
subvariety contained in no smooth hypersurface, 555
subvariety of codimension-1 is intersection with

hypersurface, 556–557
complete linear series

allowed by Castelnuovo, 576
corresponding to a line bundle on a curve, 567

completeness of the adjoint series, 386
complex of flat modules

approximation by finitely generated free modules, 537
for quasi-projective schemes, 541

complex projective variety
as holomorphic subvariety/submanifold, 543

complexification
and Hodge theory, 546
of the cotangent bundle of a complex manifold, 546

composition series, 11
cone, 83, 257, 453
cone construction, 512
conic curve

in P4, 361
conormal variety, 380
contact problem, 389
cotangent bundle, 179
cubic surface

can have at most four isolated singular points, 236, 241
cannot have three collinear isolated singular points, 241
must contain lines, 201

curvature form, 562
curvature matrix, 562
curve of genus 4

expressed as a 3-sheeted cover of P1, 564, 577–578
curve of genus 6

expressed as a degree-6 curve in P2, 564
curve of genus 8
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embedded as a degree-9 curve in P3, 564
image curve of embedding does not lie on a cubic, 593

curves expressed as covers of P1, 566
cusp, 34, 410

in a net of plane curves, 413–419
ordinary, see ordinary cusp

cycle, 15
definition, 15
of plane conics in P3 meeting a given line, 348

class, 349, 359
tangent spaces, 352–353

Debarre–de Jong conjecture, 227, 236–239, 243
defective variety, 371

curves are not defective, 372
defective Veronese varieties, 373, 385–386
equivalent characterization via tangent spaces, 372

deformations, see first-order deformations
degeneracy locus, 167, 168, 426–427

class, 429, see also Porteous’ formula
is independent of sections chosen, 187

expected codimension, 427
from pencils, 251–252
geometry, 168
reducedness, 252

degeneration to singular curves
in connection with Brill–Noether, 579

degree map, 29
degree of a covering, 28
del Pezzo surface, 288
derivations

identification with Zariski tangent space, 100
derived category, 534

is formal, 535, 540–541
determinant of a bundle, 173
determinantal variety, 430

degree, 433, 442
scheme structure on the Brill–Noether locus, 583

diagonal of Pr � Pr
class, 53–54

generalization, 189
via specialization, 79

dimensional transversality, 31–33, 46
definition

for cycles, 32
for subschemes, 32

fails for cycles in a proper subvariety, 465
to a morphism, 518

sufficient condition, 518
weaker than generic transversality, 33

dimensionally proper intersection, 14
direct image, 520–521, 523–528

conditions to be a vector bundle, 525–526
definition, 523
for a projective morphism, 523
for an affine morphism, 523
for finite morphisms, 525
higher, see higher direct image
of a line bundle, 541

direct image complex, 533–534
explicit computation, 534, 541–542
with terms given by sums of line bundles, 541

directrix, 357
discriminant, 244, 245, 418

definition, 258
degree in the space of forms of degree d , 253
is an irreducible hypersurface, 245–246
linearizing the description, 247
multiplicity, 280–281

at a double conic, 288
at a double line, 288

of a net
of plane curves, 274–276

of a quartic polynomial, 246, 247
of a very ample linear series, 258
smooth locus, 284
tangent cone, 284
tangent space, 282–284

of discriminant of degree-d polynomials, 285, 304
divisor, 15

associated to a rational function, 23
Cartier, 37, 41, 165
cohomology of an ample divisor, 553
of a function, 23
of a nonaffine variety, 23

divisor class group, 22, 306
divisor classes in the space of complete conics, 307–309
Dolbeault complex, 548
double conic, 478
double point, 34, 411

is an An-singularity, 411
of a curve, 411–412

dual conic
degeneration, 293–295

dual variety, 259, 297, 380
of a hypersurface, 49–50, 78

degree, 50, 382
of a quadric, 296–299
of a smooth complete intersection, 388
of a smooth conic, 293

divisor, 298
of a smooth hypersurface, 381

in char p, 387
of a smooth variety failing to be a hypersurface, 382,

388
of a smooth variety tends to be singular, 382, 388
of the Veronese embedding, 247
reflexivity of projective varieties, 294, 381

dualizing sheaf, 503
dynamic projection

in a family of projective spaces, 333–334
introduction, 117–119

dynamic specialization, 150–152, 162–163

Eckhart point, 420
elementary symmetric functions, 169, 175, 485
elliptic curve

elliptic quintic lies on no planes or quadrics, 452
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secant varieties, 388
symmetric power, 388

elliptic normal curve, 287
characterized by independence of divisors, 386

embedded component, 9
embedded point, 121, 129
enumerative formula, 85, 87–88

for singular elements of linear series, 258
enumerative geometry, 62

19th century achievements, 2
applications of intersection theory, 289
aspects of problems, 88
used to analyze geometric questions, 564

enumerative problem, 86
generality, 88
geometry of set of solutions, 87
negative expected dimension analog, 397
steps to solving, 86–88

étale equivalence relations, 575
étale topology, 344
Euler characteristic, see also topological Euler

characteristic
constancy for a sheaf on a family, 534–535
of a coherent sheaf, 482
of the structure sheaf of a smooth projective threefold,

508
via the Todd class, 487

Euler sequence, 97–99, 179
evaluation map, 582–583
exceptional divisor, 36, 57, 60, 61, 72

normal bundle, 472
of a blow-up of Pn along a linear space, 338, 357

excess intersection
elementary examples, 447–452
in a subvariety, 465–466
of a pullback to a subvariety, 469–470
of hypersurfaces, 464–465, 477, 478

via blowing up, 479
of three surfaces intersecting in a curve and a

0-dimensional scheme, 445, 449–451
via blowing up, 475–476

excess intersection formula, 5, 292, 446, 454–456
applied to the five conic problem, 462–464
does not extend to irreducible components, 458
for a pullback via an inclusion, 470
for cycles on a subvariety, 465

via specialization to the normal curve, 468–469
for hypersurfaces, 465
for three surfaces meeting in a curve and a

0-dimensional scheme, 451
for Veronese surface in P5, 478
heuristic explanation, 456–458
statement, 454–455
three-surface case restated in general form, 452–453
utility, 455–456

excision, 25
expected codimension, 19, 187

of a degeneracy locus, 427
expected dimension, 446

negative, 396
of the secant variety, 371

family of bundles, 489
on P1, 494–497

family of divisors, 571–576
family of lines, 230–233
Fano scheme, 193, 194

as special case of Hilbert schemes, 201
bounds on k; n necessary to obtain expected dimension,

237
Chern class, 198
definition, 196–197
dimension, 194

bound via the normal bundle, 209
expected dimension, 195

expression via the Grassmannian, 198–199
has expected dimension when d � n, 237
of 2-planes on a quadric, 240
of a cubic surface

with one ordinary double point, 234–236
with two ordinary double points, 241
must have � 4 isolated singular points, 241

of a smooth cubic surface, 226
of a smooth degree-4 hypersurface, 238
of a smooth quintic threefold, 228
of a smooth surface, 212
of lines on a quadric surface, 197
of lines on a smooth hypersurface, 226, 243
of planes of maximal dimension, 222
of the Fermat quartic in P4, 226
potential generalization, 239
reducedness, 197, 208, 228, 238
scheme structure, 196–197
smoothness and the normal bundle, 208–212
the nonsmooth case, 234–236, 241, 242
universal property, 203
upper bound on dimension, 197
Zariski tangent space, 208

Fermat surface
Fermat quartic, 238, 243
hyperflexes, 422
lines contained in, 421

fiber of a vector bundle, 10
fine moduli space, 575

of degree-d line bundles, 573, 575–576
first-order deformations, 212–219

geometric view of lines on a cubic, 218
identification with global sections of the normal sheaf,

214–215
identification with morphisms from a double point,

213–214
utility in identifying tangent spaces, 213
vector space structure, 215–216

five conic problem, 3, 289
answer, 308
generalization, 321
naive approach, 290–291
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transversality in the variety of complete conics,
303–306

via blowing up the excess locus, 291, 480
via the excess intersection formula, 292, 462–464
via the space of complete conics, 302–308

flag bundle, 347
flag variety, 125, 159–160

Chow ring, 356, 359
class, 356

flecnodal locus, 398–401
degree, 399
general point of a smooth surface of degree � 3 is not

flecnodal, 399
geometry, 421

flecnode, 398
flex, 266

flex tangent, 266
flexes approaching a cusp, 423
hyperflex, 244, 266, 271–272

in a general pencil of curves, 405
in a pencil of plane curves, 287
in families, 401
of a family of curves, 405–408
of a general curve, 286
of a plane curve, 270–271

alternate notion, 271
via defining equations, 401–409

flex line, 401–402
geometry of the curve of flex lines, 408–409
hyperflex lines, 403–405
on a curve defined by a homogeneous form, 402–403

flip, 315
footprint of a subvariety, 333
form of type .p; q/, 547
frame manifolds, 561
fundamental class, 544

of a codimension-k subvariety, 549
of a scheme, 22

fundamental class map, 545
applied to the Chern class, 559
image, 545, 552
is a ring homomorphism, 545

fundamental cycle, 544

GAGA theorems, 543–544
Gauss map, 49–50, 218, 219, 263, 439

definition, 263–264
from a surface to its dual, 260
of a hypersurface is either birational or has

positive-dimensional fibers, 381
of a smooth hypersurface is finite and birational, 381

general polynomial of degree 2m� 1
unique expression as a sum ofm d -th powers, 362,

376–377
general position lemma, 370
general quadratic polynomial has no rational solution, 346,

356
generality, 9, 88

of a curve, 565–566

of a rational curve, 441
very general, 9

generalized principal ideal theorem, 11, 363
generic finiteness, 28
generic transversality, 46

definition
for a subvariety and a function, 30
for subvarieties, 18

is stronger than dimensional transversality, 33
of Schubert cycles, 139
reasons for nontransversality, 516–517
to a cycle, 512–517
to a morphism, 518–519

necessity of char 0, 518
sufficient condition, 518

generically finite morphism
degree, 470–471

genus formula, 69–70
applications, 70–71
for singular curves, 74

geometric genus, 74
Giambelli’s formula, 157–159

in conjunction with Pieri’s formula, 158–159
inductively via Pieri’s formula, 164
statement, 158

graph of a map, 54–55
Grassmannian

as Hilbert scheme, 96, 201
Chow ring, 137

generators and relations via Chern classes, 183–187
is generated by special Schubert classes, 158

class of the pullback to the product of Grassmannians,
189

covering by affine spaces, 92–94
cut out by quadrics, 91, 94, 125
definition, 89
degree, 150, 164
differential of a morphism into the Grassmannian,

99–100
generalizations, 159–160
Lagrangian Grassmannian, 160
natural identification with Grassmannian of dual space,

89, 134
notation, 89
of lines in P3

Chow ring, 105–109
of lines in Pn, 126, 147–150

degree, 131, 149–150
of 2-planes, 91–92
orthogonal Grassmannian, 160
smoothness, 91
tangent bundle, 96–99

expression via the universal bundles, 96
tangent space, 129

via the universal property, 100–102
universal bundles, 95–96
universal property, 201–203
universal quotient bundle, 95

Chern class, 178
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is globally generated, 178
universal subbundle, 95

Chern class, 178–179
existence, 95
lacks nonzero global section, 178

used to define Fano schemes, 198–199
Grassmannian bundle, 346

Chow ring, 346–347
Grothendieck ring of vector bundles, 484
group of cycles, 15

“hairy coconut” theorem, 179
hard Lefschetz theorem, 558
Hessian, 271
higher direct image, 489, 498, 528–532

computation via Serre’s coherence theorem, 531
definition, 528–529
is coherent for a projective morphism and coherent

sheaf, 530
natural map to Čech cohomology group, 529
properties, 529–530
relation to direct image, 528

higher direct image functors, 528
Hilbert polynomial, 35, 45, 204–207

of a hypersurface, 206
subschemes with polynomial 2mC 1, 350–352

Hilbert scheme, 3, 83, 201, 203–207, 310–312
advantages, 311–312
as better compactification than symmetric power, 370
construction, 205–207
definition and uniqueness, 204–205
disadvantages, 312
extraneous components, 312
mysterious closure of locus of smooth curves, 312
of a hypersurface, 206
of conics and cubics in P2, 311
of divisors on a smooth scheme identified with

symmetric power, 575–576
of hypersurfaces in Pn, 207
of plane conics in P3, 311
of subschemes of P3 with Hilbert polynomial 2mC 1,

350–352
as projective bundle, 350

of twisted cubics, 311
singularities, 312

Hilbert series
of a graded complete intersection, 185

Hodge bundle, 503
of a pencil of quartics, 505, 510

Hodge conjecture, 545, 549–550
integral codimension-1 case, 550

Hodge decomposition, 546–548
algebraic computation ofHp;q.X/, 547–548

Hodge diamond, 548–549
of a smooth quartic surface, 548
symmetries, 549

Hodge number, 549
as invariant, 549

Hodge structure, 548

polarization, 548
Hodge–Riemann bilinear relations, 558–559
holomorphic

map is algebraic, 544
subvariety is algebraic, 543

homological equivalence, 545
hook formula, 164
Hopf index theorem, 506
hyperelliptic curves, 570
hyperplane

contact with a curve, 244, 265
hypersurface

criterion to contain a line, 240
in P4 containing a complete intersection, 192
lines having point of contact of order 7, 420
of sufficiently low degree contains lines, 226

ideal sheaf
of three points in P2, 521–522

direct image, 526
direct image complex, 534–535
higher direct images, 532–533

of two points in P2, 521
inflection point, 265–273

weight on a general curve, 268
integrals of algebraic functions, 571–572
interpolation problem, 373
intersection multiplicity, 14, 31–33

coinciding with the order of contact, 389
connection with multiplicity of a scheme at a point, 36
definition and existence, 32
in the Cohen–Macaulay case, 32
necessity, 19
of a curve and a Cartier divisor, 265
of a divisor and a subvariety, 447–448
Serre’s formula, 48
via blow-ups, 61–62

intersection number, 69
intersection product, 15, 20, 41, 76

correction terms, 47–48
existence, 7, 19
for curves on surfaces, 68–74
in Chow ring corresponds to cup product in

cohomology, 545
necessity of smoothness, 20
of a Cartier divisor and a subvariety, 447

geometric view, 447–448
of cycles on a proper subvariety, 465–466
on singular varieties, 38, 75–77, 455
semi-refined version via the strong moving lemma, 511
via the basic moving lemma, 511

intersection theory
applications to enumerative geometry, 289
dependence on the moving lemma, 511, 512
goals, 14–15
influence on algebraic geometry, 1–2, 5
motivation, 1–2
on algebraic stacks, 502

invariants of families of curves, 502–504
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degree of the Hodge bundle, 503
for a pencil of plane quartics, 504–505
inequalities, 504, 510
number of nodes, 503
of a pencil of curves of bidegree .a; b/, 510
of a pencil of plane curves, 510
of a pencil of plane sections of a smooth surface, 510
relations, 504
self-intersection of the relative canonical divisor, 504

irreducible component, 9
isotropic, 155

Jacobi inversion theorem, 573
classical form, 592

Jacobian, 571–572
Chow vs. cohomology rings, 583
cohomology ring, 583–584

classes of interest, 584
cotangent space, 574
definition, 572
identified with linear equivalence classes of effective

divisors, 573
isomorphism with Picd .C/, 575

join, 9
Jordan–Hölder theorem, 11
jumping lines, 225, 493–494

examples, 501–502
on a bundle of rank 2 on P2, 497–502
on a bundle of rank 2 on P3, 508–509

K3 surface, 192
curves on a very general K3 surface, 580

Kleiman’s transversality theorem, 20–21
Kontsevich space, 292

and tangency conditions, 317
application, 322
birationality to the Hilbert scheme, 313
cross-ratio, 318
disadvantages, 316–317
extraneous components, 316
introduction, 312–313
is proper, 313
mysterious closure of locus of smooth curves, 317
number of PGL4-orbits, 322
of plane conics, 314

in P3, 315
of plane cubics, 315–316

is not irreducible, 315
of rational plane curves, 317–321
of twisted cubics, 316
singularities, 317

Krull’s principal ideal theorem, 16, 23
statement, 11

Künneth formula, 51

Lefschetz .1; 1/-theorem, 550
Lefschetz decomposition, 558
Lefschetz hyperplane theorem, 182, 222, 228, 553–554

applied to complete intersections, 554–557
extensions, 557
statement, 553

Lefschetz principle, 245, 277
lexicographic ordering, 207
liaison, 71
line bundle

generated by global sections, 362–363
on the projectivization of a bundle, 327–328
products of line bundles, 191
restriction to pullback, 527–528
tautological line bundle of a projective bundle, 171
twisting a vector bundle, 335, 355, 356

linear series, 10, 566
complete, see complete linear series
discriminant of a very ample linear series, 258
maps to Pn given by a linear series, 568–570

by a general series, 567
embeddings, 570–571
existence, 576
number, 577, 590

present on a general curve, 570–571
singular elements, 258–265

characterization of tangency of hyperplanes, 265
via the topological Hurwitz formula, 277

singular elements of a pencil, 259–260
linear subspaces

characterized by Fano scheme, 197
characterized by Hilbert polynomial, 204

linearization, 5, 166
lines

and curves in P3, 110–115
and surfaces in P3, 122–125
have no sixth order contact with a general surface, 420
meeting a curve, 111–112

via specialization, 120–121, 128
meeting a curve in P4, 161
meeting a line on a quadric, 286
meeting a smooth rational curve four times, 426
meeting a surface in P4, 161
meeting a surface to high order, 390–391, 420
meeting four curves, 85, 112

transverse intersection of cycles, 127–128
meeting four lines, 85, 110–111, 127
meeting four planes, 131, 150, 162
on a complete intersection, 240
on a cubic surface, 199–201, 212

geometric viewpoint via first-order deformations, 218
the smooth case, 212
via the map ˛ and Bertini’s theorem, 221

on a cubic with a double point, 234–236
on a hypersurface, 240
on a pencil of quartic surfaces, 231–233

alternative approach, 233–234
on a quadric, 122–123
on a quintic threefold, 193, 227–229

in algebraic geometry and string theory, 228
on a smooth cubic, 165, 166, 493
on a smooth hypersurface

odd behaviors, 243
on a smooth surface in P3, 396–399

bounds, 399, 421
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number, 422
on the intersection of two quadrics, 131, 157
tangent to a surface, 161
tangent to four quadrics, 85, 125
tangent to four spheres, 480

linked curves in P3, 70–71
Littlewood–Richardson coefficients, 143

appearing with multiplicity >1, 164
locally closed subscheme, 9
loci in space of plane cubics, 81–83
locus of d -fold lines, 479
locus ofm-tuples of points of a curve lying on a plane,

377
locus of asterisks, 65–66, 82
locus of bundles of splitting type a, 495

as pullback of strata in a family of vector bundles, 496
locus of Castelnuovo curves, 571
locus of chords tangent to a curve, 113

alternative characterization, 129
class, 114

locus of cones, 83, 257
locus of conics containing a point in P3, 360
locus of cubics of the form 2LCM , 82
locus of curves tangent to a smooth curve

degree, 479
multiplicity along locus of d -fold lines, 479

locus of curves with a triple point, 244, 257
locus of degeneracy, see degeneracy locus
locus of double lines, 81

class, 360
locus of flecnodal curves

dimension and irreducibility, 422
locus of hyperflex lines, 403
locus of jumping lines, 494

as a nonsingular cubic curve, 509
degree in the even first Chern class case, 499
degree in the odd first Chern class case, 501
for a bundle of rank 2 on P3, 508–509
of a bundle defined by a bilinear form, 509
scheme structure, 499, 501

locus of matrices of rank � k
degree, 426, 433–436

locus of planes on a quadric, 155–157
class, 157

locus of reducible cubics, 64–65, 81
locus of reducible cubics composed of a smooth conic

with a tangent line, 83
locus of secant planes, 369

class, 378–380
improper secants, 385

locus of singular conics, 81, 360
locus of singular plane cubics, 62–66, 409
locus of singular plane curves, 412, 423–424
locus of smooth conics with a tangent line, 83
locus of smooth curves

closure in the Hilbert scheme, 312
locus of smooth curves with a hyperflex, 287
locus of special lines, 444
locus of triangles, 65, 82

locus of triple lines, 82
locus of trisecant lines, 443
locus where global sections do not generate a bundle, 366

codimension and class, 363

Macaulay2, 2
applied to direct image complex, 534, 541–542
calculation of c1.E/, 233
calculation of c4.ˆ.3; 3; 1//, 232
calculation of c4.Sym3 S�/, 200
calculation of cdC1.Symd S�/, 227

maps from a curve to Pn, 565–566
all curves vs. general curves, 565
birationally very ample maps, 569–571
correspond to pairs .L; V /, 566
ease of finding high-degree maps and embeddings, 566
embedding in P3, 564, 567
existence condition, 566, 576
to P1, 564
to P2, 564, 567

Mayer–Vietoris, 25
method of undetermined coefficients, 53–55, 79, 80, 107,

156
applied to the cycle of plane conics in P3 meeting a

line, 349, 359
applied to the Grassmannian, 143–144
applied to the product of Grassmannians, 189

minimal model program, 552
minor, 90
mirror symmetry, 228
moduli space, see also fine moduli space

parametrizing smooth projective genus-g curves, 566
moduli stack of stable curves, 503
moving lemma, 7, 19–21

basic version, 511
via the cone construction, 512–517

bypassed via the Fulton–MacPherson approach, 512
direct proofs of the second part, 512
failure for singular varieties, 75
necessity of smoothness, 20
proof of basic version, 511–512
statement, 19
strong version, 511
when one cycle is a first Chern class, 38

multiplicity
of a hypersurface in smooth variety, 34
of a scheme, 15
of a scheme at a point, 33–36

connection with intersection multiplicity, 36
of a variety at a point, 411
of an intersection, 14

Mumford relation, 504
in the case of a pencil of plane quartics, 505
proof via Grothendieck Riemann–Roch, 506–507

Nakayama’s lemma, 101
nested pairs of divisors, 55–56, 339–340

as projective bundle, 340
net of cubic surfaces, 240
net of curves
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binodal elements, 425
geometric view, 417–419

net of plane curves, 273–276
cusps, 413–419
discriminant, 274–276
flecnodes, 422
hyperflexes of quartics, 405
of cubics, 389, 409
singular points, 244, 275

node, 411
Noether’s formula, 483
nondegenerate map, 565

degree, 565
nondegenerate quadratic form, 34
nontransversality, 47–48
normal bundle, 180, 208

computation, 209
definition, 40

for arbitrary schemes, 209
lines on a hypersurface with prescribed normal bundle,

225
of k-planes on hypersurfaces, 219–220
of complete intersections, 212
of the diagonal, 249
of the exceptional divisor, 472
used for excess intersections, 447, 451

numerical equivalence, 552, 565
and the Hodge conjecture, 552
yields ring structure, 552

one-parameter family, 10
order of contact, 265, 389

of a plane curve and a hyperflex, 422
order of vanishing, 23
ordinarym-fold point, 72
ordinary cusp, 409–411
ordinary double point, 34
ordinary tacnode, 411
ordinary triple point, 256
oscnode, 414
osculating plane, 267

rotation, 381, 388

parallel transport, 561
parameter space, 1, 62

alternative choices, 292–293
as projective bundle, 348–349
Chow ring of a parameter spaces, 62
desired attributes, 86
necessity of compactification, 289–290
of conics in P3, 348–349
of curves, 310–317
utility in enumerative problems, 289

pencil of cubic surfaces, 193
pencil of curves

on a quadric surface, 285, 288, 510
on a surface, 260–262, 279–280
singular at a point, 286, 288

pencil of plane curves, 422–423
curve traced out by flexes, 389, 405–409, 422–423

flex lines through a point, 422
hyperflexes, 389, 422
invariants, 504–505, 510

pencil of plane sections of a smooth surface, 510
pencil of quartic surfaces containing a line, 193, 231–233
Pfaffians, 92
Picard group, 37

of degree-d line bundles, 567
class of subvarieties, 585
is a fine moduli space, 573, 575
is an algebraic variety, 575

of the space of complete conics, 306
tangent space can be identified with cohomology, 544

Pieri’s formula, 145–147
for other special Schubert classes, 154–155
interpreted via Young diagrams, 154
statement, 145

pinch point
of a projection of the Veronese surface, 439
of a smooth surface in P3, 442
of the projection of a cubic scroll, 442
of the projection of a rational normal surface scroll, 442
of the projection of a smooth surface, 436–440

plane conics in P3
form a projective bundle, 347
locus of conics meeting a given line, 348
meeting eight general lines, 323

finite expected answer, 347
must be smooth, 352
outline of proof, 347–348
solution, 354

plane curve
cusps, 389, 409
singularities, 410–412
triple points, 256–257

plane sextic with four nodes, 592–593
planes on the intersection of two quadrics, 157
Plücker coordinates, 90

ratios as determinants of submatrices, 94
Plücker embedding, 89–92, 131, 229

image, 90–91
Schubert cycles as intersections, 138

Plücker formula, 268–270
analog in higher dimension, 272–273

Plücker formula for plane curves, 418
Plücker relations, 91

for the Grassmannian of 2-planes, 92
general case, 94

Poincaré bundle, 575, 580–582
as direct image, 581
pushforward, 587–589

Chern class, 589–590
Poincaré duality, 15

for the Chow ring of projective space, 45
Poincaré’s formula, 565, 585–586
Poincaré–Hopf theorem, 181
Porteous’ formula, 427–429

applied tom-secant lines to curves, 444
applied to pinch points of a projection, 438
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applied to quadrisecant lines, 440
as general case of Theorem 10.2, 364
forM0.'/, 429–430
geometric applications, 433–442
linearizing the problem, 431–432
reduction to a generic case, 430–431
statement, 429
used to calculate class of the Brill–Noether locus, 591

primary decomposition, 9
primitive cohomology groups, 558
principle of specialization, 462
projection of a smooth curve

singularities, 128
projection of a smooth surface, 436

pinch points, 426, 438–440
singularities, 436–437

projection of the Veronese surface, 439
projective bundle, see also vector bundle, projectivization

can be written as projectivization, 324
characterization, 329
Chow ring, 331–335
definition, 323
is a Brauer–Severi variety, 344
is the projectivization of a bundle, 327–330
over P1, 324–327
over an arbitrary scheme, 331
pushforward, 332
utility, 363
weakening of definition, 344

projective tangent space, 10
projectivization

of a bundle, 96, 324
degree, 335
identifying isomorphic projectivization, 330
recovering original data, 327–328

of a subbundle, 340–341
class, 341
line subbundle, 341
normal bundle, 341

of a vector space, 9
projectivized tangent cone, see also tangent cone, 61

characterization via blow-ups, 36
extension to arbitrary schemes, 35
of a hypersurface, 34

proper transform, 57, 72
class, 61

Prym map, 471
pullback, 29–31

existence and uniqueness, 30
flat, 31
flat pullback, 25
general definition via the excess intersection formula,

456
is not defined on a singular variety, 77
to a subvariety, 469–471

push-pull formula, 30
pushforward

for a projective bundle, 332
from the Grassmannian bundle, 432–433

of a cycle, 28
proper pushforward, 28–29

quadric cone, 479
quadric line complex, 192
quadric surface

curves lying on a smooth quadric, 69–70
defined by a symmetric map V ! V �, 297–298
intersection of quadrics containing a linear space, 445,

460–462
linear subspaces, 155–157
ruling, 53, 69
tangency of two smooth quadrics, 298
two rulings, 123

quadrisecant
condition to be simple, 444
to a curve in P3, 377
to a curve of higher genus, 441–442
to a general rational curve is simple, 444
to a rational curve, 387
to a rational space curve, 440–441, 444

quartic curve
double at five specified points, 385
hyperflexes of a plane quartic, 389, 405
reducible quartics in P2, 83

quartic surface
containing a conic, 361
containing a line, 165
double at nine specified points, 386
in P3, 242

quasi-affine stratification, 27, see also affine stratification
quasi-isomorphism, 534
quintic surface

homological equivalence of curves on a smooth
threefold, 551

lines on a quintic threefold, 3, 193, 227–229
lines with high-order contact, 389–391, 394–396

ramification
divisor, 278
index, 278
points on P1, 287
sequence, 266, 268

rational curve
in projective space via the Kontsevich space, 317–321
is the projection of a rational normal curve, 373
on a hypersurface, 239
quadrisecant lines via Porteous’ formula, 440–441, 444

rational equivalence, 16
definition, 16
failure to preserve genera, 45
generation by divisors of rational functions, 23
of two 0-cycles on a curve, 24
preservation by pushforward, 29
via divisors, 22–24

rational normal curve, 324, 355
abstract secant variety, 374
characterized by independence of divisors, 386
curve of pure d -th powers, 376
independence lemma, 373
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passing through seven general points, 386
secant variety

degree, 375–376
rational normal scroll, 53, 324–327, 355

degree, 335
pinch points, 442

rational quartic
containing 11 points, 289, 321

rational quartic containing 11 points, 318
reducible cubic, 64
Rees algebra, 471
reflexivity, 380–382
regular 1-forms, 481
relative duality, 328
relative dualizing sheaf, 503
relative Euler sequence, 394
relative tangent bundle, 393

of a projective bundle, 393–394
Chern classes, 394

representable functors, 205
resultant, 427

formula via�e
f

, 428–430
Riemann–Hurwitz formula, 68, 278
Riemann–Roch theorem

applied to linear series on curves, 567–568
for smooth curves, 481–482
for smooth projective surfaces, 483
Grothendieck vs. Hirzebruch, 489
Grothendieck’s version, 489–490

applied to E D Sym3 S�, 490–493
applied to bundle of principal parts, 508
for a submersion, 490

Hirzebruch’s version, 488–489
reduces to classical versions, 508

motivation, 481
original formulation, 481–482
produces high-degree maps and embeddings, 566

ruled surface, 341–343
containing curve of negative self-intersection, 323,

341–342
sections, 359

Sard’s theorem
algebraic version, 519

scheme, 9
Schubert calculus, 2, 131

by static specialization, 115–117
Schubert cell, 135

in G.1; 3/, 102, 104
tangent space, 135

Schubert class, 160
and the Chern class, 134
as fundamental invariant, 134
basis for Chow ring, 142–143
closed-form expression for multiplication, 148
combinatorial formula for multiplication, 149
counting via Young diagram, 153
definition, 132
notation, 132

product formula, 143
relation among special classes, 147
representation via Young diagram, 152
special classes, 145, 155

generate Chow ring of Grassmannian, 158, 183
Schubert cycle, 4, 132

common cases, 132–133
definition, 132
equations, 138–139
generic transversality, 139
in G.1; 3/, 102–103
intersection in complementary dimension, 141–142
notation, 103

benefits, 133–134
partial ordering, 133
relative to transverse flags, 140
special cycles, 133
tangent space, 108–109, 126

Schubert index, 135
dual index, 142

Schubert variety, see Schubert cycle
scroll, 388
secant line, 113, see also secant variety

stationary, 128
secant plane, see secant variety
secant plane map, 369

birationality, 370, 385
composed with the Plücker embedding, 378, 386
extends to an embedding, 374
improper secants, 385
is never regular for n;m > 1, 370

secant variety, 367–371
abstract, see abstract secant variety
definition, 370
dimension, 370
expected dimension, 371
general point lies on unique secant plane to a curve,

386–387
of a curve of positive genus, 380
of a curve that is not a rational normal curve, 377–380
of a rational normal curve, 373–377

degree, 375–376
of an elliptic curve, 388
of the Veronese surface, 439
proper, 386
secant plane, 367
used to study pure d -th powers, 376–377

second fundamental form, 243, 261–265
of a smooth hypersurface, 264

section, 58
Segre class, 350

as locus where global sections do not generate a bundle,
362, 363

definition, 363
generalized definition, 453–454
gives degree of the variety swept out by a linear space,

367, 385
is the reciprocal of the Chern class, 364
of the dual of a bundle, 364



614 Index

parallel with Chern class, 364
used to obtain degrees of secant varieties, 375

Segre map, 78
Segre variety

as determinantal variety, 434
definition, 52
degree, 52–53
Segre threefold, 286, 326

self-intersection, 83
of a 2-plane on a fourfold, 478
of a curve on a surface, 70
of the zero section, 343–344
question of boundedness below, 359

Serre duality, 328, 482
Serre’s coherence theorem, 530
Serre’s formula, 48
sheaf, 9
sheaf with specified fiber, 520

for 3-point ideal sheaf example, 522
singular curve

conic meeting seven general lines in P3, 360
cubic, 62
in a general pencil, 165, 244, 253, 279–280

of conics, 253
of higher degree, 64
on a quadric, 285

singular elements
of linear series, see linear series, singular elements

singular hypersurface, 34, 245–247
in a general pencil of hypersurfaces, 253

singularity
of plane curves, 410–412
of plane sections of a general surface, 420
of the curve traced out by flexes of a pencil, 423

smooth curve
conic tangent to a singular curve, 321
conic tangent to five conics, see five conic problem
conic tangent to five general curves, 321
conics degenerating to a double line, 294–295
conics degenerating to a rank-2 conic, 294
in P3 as intersection of three surfaces, 445, 452
quintic of genus 2 is the intersection of three surfaces,

477
quintics lying on surfaces, 83
with no inflection points is the rational normal curve,

287
smooth hypersurface

cannot contain a plane of more than half its dimension,
222

containing a 2-parameter family of lines, 193, 238
quintic containing a 2-plane, 243

smooth locus of discriminant, 284
smooth plane curve

divisor of a conic, 298
genus, 69
smooth cubics, 62

smooth rational curve
meeting lines four times, 426
quintic as intersection of three surfaces, 477

smooth surface
class of a curve squared, 559
containing a curve

points of tangency, 445, 476
containing infinitely many irreducible curves of

negative self-intersection, 343, 358
finitely many hyperplane sections with triple points,

420–421
finitely many lines on, 70, 83
of degree 3 in P4

lies on no smooth hypersurface, 556
snake lemma, 187
socle, 184
space of complete conics, 290, 292

as compactification of smooth conics, 293
Chow ring, 306–309
classification of smooth conics, 296, 301
complete conic tangent to five general conics is smooth,

302–303
divisor class of complete conics tangent to a conic,

307–308
equations, 299–301
informal introduction, 293–296
is smooth and irreducible, 299
other divisor classes, 308–309
relation to blow-up, 301–302
rigorous description, 296–301
smooth complete conics, 296
used in solution of five conic problem, 302–308

space of complete quadrics, 309–310
stratification, 310

special divisors, 569
special secant plane, 377

examples, 377–378
expected dimension, 387

specialization, 62, 115–122
appearance of multiplicities, 121–122, 129
dynamic, see dynamic specialization
introductory example, 115
relations between singular plane cubics, 63
static vs. dynamic, 116–117
utility in projective space, 117

specialization to the normal cone, 5
specialization to the normal curve, 466–468

applied to excess intersection of cycles on a subvariety,
468–469

sphere in complex projective space, 480
splitting principle, 172–173

splitting construction, 172
statement, 172
with Whitney’s formula, 173–174

splitting type, 494
stability of fibers, 502, 503
stable map, 313
Steiner construction, 460
stratification, 27

of P9, 62–64
of the space of complete quadrics, 310

strict transform, see proper transform
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swallowtail singularity, 247
sweeping out

by a subscheme, 217
bound on dimension of tangent space, 217

by linear spaces, 144–145, 161, 366–367
degree via the Segre class, 367

by lines on a pencil of hyperplane sections of a cubic,
240

by lines on a quartic threefold, 240
by lines with specified order of contact, 421
by the 2-planes of an irreducible surface, 443
by trisecants, 362, 379–380
by twisted cubic, 131, 144–145, 162

symmetric power, 367–369
affineness and projectivity, 368
as a projective bundle, 587–589
is a fine moduli space, 575–576
maps to Jacobian, 572
of A1, 368
of P1, 368
smoothness, 368–369

tacnode, see also ordinary tacnode, 424–425
tangent bundle, 179

of projective space, 179
of projective spaces

is not the sum of line bundles, 192
to hypersurface, 179–180
to the Grassmannian, 96–99

tangent cone
extension to arbitrary schemes, 35
of a hypersurface, 34
to the discriminant, 284

tangent hyperplane
to a quadric, 297
to two smooth quadrics, 298

tangent lines to a surface, 123–125
tangent space

of a cycle of tangent conics, 304
of the Fano scheme, 208
to a Schubert cycle, 108–109
to cycle of plane conics in P3 meeting a given line, 353
to the discriminant, 282–284

of degree-d polynomials, 285, 304
to the Fano and Hilbert schemes, 208–227
to the Grassmannian, 129
to the Picard group can be identified with cohomology,

544
tangent vector

rank, 97, 126
tangential variety of a surface, 161, 286, 387, 439, 443

is 4-dimensional, 440, 443
tautological bundle, 177–179

on the universal k-plane, 336
tautological class, 336
tautological family of plane conics, 348, 350
tautological quotient bundle

of a Grassmannian bundle, 347
tautological subbundle, 324

of a Grassmannian bundle, 346
Chern class, 347

Terracini’s lemma, 372–373
theorem on cohomology and base change, 520

necessity of flatness in version 3, 535
proof via approximation of a complex and the vector

bundle criterion, 535–540
version 1, 526
version 2, 531–532
version 3, 533

alternative formulation, 541
theta divisor, 573, 585
Todd class, 487–488

as polynomial in the Chern classes, 508
multiplicativity, 488

topological Chern class
algebraic Chern class results carry over, 563
and curvature, 561–563
as obstruction to a nowhere-zero section, 560–561
coincides with Chern class for an algebraic vector

bundle, 561
definition, 560–561

topological Euler characteristic, 39, 179–182, 280, 482
additivity, 277
and multiplicity of the discriminant, 281
determines the middle Betti number, 182
of a blow-up of a surface, 181
of a hypersurface, 181–182
of a smooth hypersurface of bidegree .a; b/, 192
of projective space, 181
via top Chern class, 181

topological genus, 482
topological Hurwitz formula, 277–285

applied to pencils of curves on a surface, 279, 280
statement, 278

total inflection, 268
transversality

generic, 18
of eight cycles corresponding to general lines, 354
of five cycles in the variety of complete conics, 303–306

transverse flags, 139
transverse intersection

definition, 18
of Schubert cycles, 141

triangle, 65
triple point, 34

of plane curves, 256–257
triples of collinear points, 79

class via Porteous’ formula, 442
trisecant

surface in P3 swept out by, 362, 379–380
to a curve in P3, 377
to a curve in P4, 378
to a rational curve in P4, 362, 378–379
to a space curve, 443

Tschirnhausen transformation, 412
tubular neighborhood theorem, 466

fails to generalize, 466, 478
twisted cubic



616 Index

common chords of two twisted cubics, 122
positive-dimensional component, 480

is the unique curve whose secants sweep out P3 once,
374, 386

tangent to 12 quadrics, 2
two surfaces intersecting in a curve and a 0-dimensional

scheme, 445, 459–460
dependence on geometry of the surfaces, 460
examples, 478

2-planes meeting three quadrics, 164

universal divisor, 576, 581
universal family of conics in the plane, 345
universal family of subschemes, 204
universal Fano scheme, see also Fano scheme, 230

and families of lines, 229–234
classes of universal Fano schemes of lines on surfaces

in P3, 231
defining equations, 197
definition, 194
dimension, 194
global view as the zero locus of a section of a vector

bundle, 229–231
of lines on cubic surfaces, 230
reducedness, 230

universal flex, 423
universal hyperplane, 382

Chow ring, 336
universal hypersurface, 359
universal line

Chow ring, 337, 394
in Pn, 356

universal line bundle, 575, 580–582
universal plane, 96, 125, 144, 159

as projectivization of the universal subbundle, 336
Chow ring, 335–336
class via Porteous’ formula, 442

universal property of Proj, 327
universal singular point, 245, 254, 260

class, 273–274
is a complete intersection, 245

universality of a map, 484

vanishing sequence, 266
geometric meaning, 267

variety, 9
vector bundle

complete classification over P1, 223–224
generated by global sections, 362
mysteries on higher-dimensional projective space, 224
of rank 2 on P2

with even first Chern class, 497–499
with odd first Chern class, 499–501

on P1 splits, 223
on projective space

behavior in families, 494–497
projectivization, 171, 172
twisting by a line bundle, 335, 355, 356

vector field, 99
Veronese map, 48, 78

relation to discriminant, 246–247
used to prove the moving lemma, 514

Veronese surface, 82
as variety of minimal degree, 335
hyperplane section with triple points, 421
in P5 as defective variety, 371–372
in P5 is the intersection of P5 with a Segre variety, 478
projection from a general line, 439

Veronese variety, 48, 78
degree, 48–49
tangent planes, 385
which arem-defective, 373, 385–386

very ample line bundle, 424

web of quadrics in P3, 444
Weierstrass point, 287
weight of a point with respect to a linear system, 268
Weil divisor, see divisor
Whitney’s formula, 169

for globally generated bundles, 187–190
with the splitting principle, 173–174

Young diagram, 132, 152–154
transposition and Grassmannian duality, 153–154, 163

Zariski tangent space, 34, 208
algebraic descriptions, 100–102
identified with first-order deformations, 213
of a local ring, 209
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