City | Forest: Reordering Plant-Human Relationships Towards Healthy Cities

Citation

Villa, Gracie. 2021. City I Forest: Reordering Plant-Human Relationships Towards Healthy Cities. Master's thesis, Harvard Graduate School of Design.

Permanent link

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367592

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story.

Accessibility
City | Forest
Reordering Plant-Human Relationships Towards Healthy Cities
A Thesis Submitted to the Department of Landscape Architecture,Harvard University Graduate School of Design
by
Gracie Villa
In Partial Fulfillment of the Requirements for the Degree of

MASTER IN LANDSCAPE ARCHITECTURE

May 2021

The author hereby grants Harvard University permission to reproduce and distribute copies of this Thesis, in whole or in part, for educational Purposes.

student

Thesis Advisor

City | Forest
Reordering Plant-Human Relationships Towards Healthy Cities

Design by Gracie Villa

Acknowledgments

Introduction

1
City Forest: A Story of Entanglement
2
City Forest: Reproducing; Regenerating; and Renewing a Common World
3
City Forest: A Relational Way of Being

Closing

Work Cited

Acknowledgments

Thank you to my thesis advisor, Gary Hilderbrand, for all of your time and dedication to this work, and your endless support throughout this process. Without you this would not have been possible.

Thank you to Charles Waldheim, Danielle Choi, and Jill Desimini for your ongoing critique, recommendations, and resources

Thank you to Rosetta S. Elkin for your mentorship, this year and throughout my degree.
Thank you to my supportive friends and classmates, Alana Godner-Abravanel, Ciara Stein, and Chloe Soltis.

Thank you to my parents, Peter and Alison Villa, my sister, Alexandra Villa, my partner, Andy Swansburg, and all of my extended family and friends for your ongoing support and cheer.

This thesis investigates how the discipline can shift from a quantified approach, to considering human and non-human interactions, to a relational approach. Typically, we understand the performance of our landscapes through the quantification of ecoservices. This is the most direct way we can convert our designs into metrics or numeric value, which is the dominant way we communicate in a capitalist economy. However, this practice negates the agency of the living systems we work with and oversimplifies the labor being done, so I am advocating for greater recognition of "the work of nature," and our own political and economic entanglement with the natural capital that is produced.

I believe this shift will allow us to design truly resilient and regenerative environments, which will be critical to our lived experience moving forward. To do so, I am using the City of Cambridge as a case study, and I am proposing to disturb and re-order the vegetative and soil regimes across the city's public realm.

"Hybrid labor...aims to call a more-than-human political collective into being."
Alyssa Battistoni, "Bringing in the Work of Nature:
From Natural Capital to Hybrid Labor"

The quality of the urban landscape is a direct reflection of its soil.

I propose to utilize processes of beneficial disturbance to dismantle the city's most prominent built infrastructure. These streets connect us to our favorite places in the city, but they have also come to dominate the public realm and everything living within it.

By reordering the vegetative and soil regimes within these corridors, we can both advance the productivity of the urban vegetation and center the urban experience on plant-human relationships; resulting in a regenerative living infrastructure that I'm calling the City Forest.

City Forest, n.

A collection of trees, associated undergrowth, and soil where people live, work, and play.
"a political movement that names nature as co-laborer [or comrade] is a conscious and deliberate choice to position human laborers with nonhuman nature against destructive forms of economic practice and ontological distinction."

Alyssa Battistoni, "Bringing in the Work of Nature:
From Natural Capital to Hybrid Labor"
"It does not imply absolute equality between all beings or the absence of power differentials. Nor does it suggest the frictionless tranquility of "living in harmony" with nature. Rather, it entails ongoing negotiation over our individual and collective ends and requires us to "stay with the trouble" of figuring out a way to live together rather than imagining a tidy resolution." ${ }^{81}$

Alyssa Battistoni, "Bringing in the Work of Nature:
From Natural Capital to Hybrid Labor"

[Methodology]

As physical space and political movement, the City Forest represents a relational way of being, that requires solidarity. It might get messy.

Using systems disturbance to accomplish this reciprocity may seem counterintuitive, but it builds off the concept of disturbance ecology - an essential cycle for the survival and productivity of many ecosystems.

We've experienced the success of disturbance before - some of the most well-known examples come from Paris and Barcelona; Hausmann's work in Paris required immense change to the structural form of the city, while the Cerda Plan for Barcelona disturbed the agrarian countryside in order to build a city with a hugely productive urban forest of 54,000 London Plane trees. Both ultimately benefitted the human and the ecological community over time. Michael Hough's courtyard and Alan Sonfist's Time Landscape also employ these tactics, but their work primarily focuses on the ecological, and the city forest is much more focused on human occupation.

Pinus serotina

Disturbance Ecology
"Any relatively discrete event in time that disrupts ecosystems, community, or population structure and changes resources substrate availability, or the physical environment.'
(White and Pickett, 1985)

Haussmann's Paris, France

Earth Science Courtyard, Toronto, Michael Hough

Eixample, Barcelona, Spain

Time Landscape, NYC, Alan Sonfist

Unlike the isolated street trees that make up most of our urban vegetation, the City Forest is intentionally produced as an inhabitable network that reimagines our commute as it connects homes, offices, and public spaces, granting it a central role in all residents' daily lives.

In this way, it creates a dialogue between people and forest, or city and forest. One that is not possible under current practices and which elevates the positive impact of that entanglement.

I've selected Cambridge, MA as my case study because it has invested a substantial amount of resources into its urban trees throughou its long history and continues to lead the way for other places on resilience and urban forestry.

Just last year, the city finished a multi-year study that was led by Reed Hilderbrand, called Healthy Forest, Healthy City which has become a resource and foundation that I am intentionally building upon

How do we sustain the urban forest?

For example, while the urban forest master plan offers a comprehensive way to care for the urban forest, it does not address infrastructure problems that require a greater force that may be considered radical. Unfortunately, most street tree initiatives are designed to fold into the existing conditions and the efficiency of those designs ignores the spatial and ecological environments a forest needs to survive, which often causes them to fail. Something we see plainly across Cambridge, today.

To challenge the existing hierarchies and land use patterns inherent to our car-centric landscapes, the City Forest builds on current trends creating shared streets that decrease traffic and prioritize the pedestrian. But it also predicts a significant change in car-centric environments, and the extractive flows they represent, by reclaiming the majority of ground to bring forth the invisible potential of this place. The idea is to make space for new priorities, based in human-plant reciprocity, that will transform the way we plan, design, and exist within our cities.

Union Square, $14^{\text {th }}$ Street, NYC

$14^{\text {th }}$ Street Proposal, Marvel

[Reconfiguring the Street]

For many - prioritizing roots and soil over utilities is already a radical act. These must coexist.

But the City Forest will disturb much more than that - including the hospitality and retail experience, wayfinding, and the distribution of goods.

[Reconfiguring the Street]

Mass. Ave., Existing Conditions

Mass. Ave., Proposed Design

[Reconfiguring the Street]

In the City Forest, soil and the lived experience take center stage while private vehicles are excluded, leaving only a 20^{\prime} dedicated bus lane, which will always be required for transit and life safety.

Trucks and cars seeking the city's center will be redirected to other major streets while thrutraffic is redistributed, and limitations to the shared street along concord ave, Cambridge street, and pieces of Mass Ave, will force the remaining curbs to embrace Flex zones.

These changes bring up obvious concerns for many stakeholders across Cambridge who come together in these spaces; accessibility equity, safety, and wayfinding hold the most weight when it comes to occupying the street and shaping its re-design.

[Stakeholders]

. Fire/Bus lane should be placed at the center of the street whenever possible
$\begin{array}{ll}\text { 1. } & \text { Better able to serve both sides } \\ \text { 2. } & \text { Stormwater sheets to permeable surfaces in all }\end{array}$
Stormwater sheets to permeable surfaces in al
directions
. Cross movement is just as important as thru movement
2. Pedestrian access
2. Commercial equity
4. Wayfinding
3. The street should always be enclosed by the City Forest Allowing the City Forest to define the whole stre section rather than one piece of it emphas
foundational change in urban desigm
. Sidewalks and bike paths should cut through the City
Forest
The only true "edge condition" should appear along the fire/bus lane to emphasize that there is no istinction between the City Forest and genera urban flows or life

"We must realize that our futures are bound up with those of nonhumans, that we need each other to go on living and recreating our shared world."

[Proof of Concept]

This section explores a sited proposal in Central Square, as a case study within a case study, and demonstrates how a collective distributed undertaking of humans and nonhumans can produce truly resilient and life sustaining landscapes.

This study explores three blocks near the Prospect St. intersection. All of the relevant stakeholders overlap in this space, and it is also a major public transit hub, making it a valuable place to test things out in detail.

After some feedback, I expanded the site to include the immediate surroundings, so I could consider how my proposal puts pressure on the landscape around it. This diagram shows how the City Forest will create a sort of "break" in the ladder of streets currently running through Cambridge. As traffic planning goes, this is a familiar adaptation in cities everywherereprioritizing the existing system towards specific redistribution aims

[Proof of Concept]

To maximize soil volume, the footprint of the city forest will expand below the pathways that cut through it, allowing the plant's roots to spread out as needed. This will create an entirely new environment for the ecosystem that emerges.

In comparison, the existing conditions in Central Square are only truly equipped to support $51 / 2$ mature trees, which is why so many of them struggling; and why existing practices are truly inadequate in addressing even the 'stem the loss' aspect of current planning.

- Tree pit dimensions in Central range from $3 \times 5^{\prime}$ to $5 \times 5^{\prime}$ (though current standards require a minimum of 2×8 ')
- Due to the presence of utilities, each pit averages 2.5-3' deep
- Suggests there is $\mathbf{2 5 0 0} \mathbf{- 5 , 4 0 0} \mathbf{c u ~ f t}$ of plant-able soil on site*
- 78 trees on site; 81 tree pits total
*Bartlett Tree Experts suggest that the average mature tree (16" DBH) needs 1000 cuft - the average tree pit in Central square only offers $45-75 \mathrm{cuft}$

SOIL VOLUME FOR TREES

*The ultimate tree size is defined by the projected size of the crown and the diameter of the tree at breast height.

Note

For example, a 16 in. diameter tree requires 1000 cu ft of soil

- Tree pit dimensions : N/A
- Soil depth: 3' minimum
- Pathway surface area: $28,898 \mathrm{sqft}$.
- Plant-able surface area: $45,170 \mathrm{sq} \mathrm{ft}$.
- Soil volume below exposed surface: $45,170 \times 3^{\prime}=135,510$ cu ft
- Soil volume below pathways: $28,898 \times 2.5^{\prime}=72,245 \mathrm{cu} \mathrm{ft}$
- TOTAL SOIL VOLUME: 207,755 cu ft
- \# Large mature trees supported: 207,755/1000=207.75
\# small trees/shrubs supported: 207,755/200 $=1038.75$

SOIL VOLUME FOR TREES

*The ultimate tree size is defined by the projected size of the crown and the diameter of the tree at breast height.

Note

For example, a 16 in. diameter tree requires 1000 cu ft of soil.

To capture the scale of the voids our streets currently create, I thought I should represent what it feels like to walk down Mass Ave., so I returned to the photos I took on my site visit. As I sorted through them, I was reminded of David Hockney's series Drawing with a Camera - which uses many photos to build complex changing perspectives of real life, time, and space across multiple scales.

These collages revealed details and material relationships across the site, allowing me to come back to the spatial tool I started with to begin filling in the voids that those scenes revealed. These iterations built another layer into those studies focused on the materiality at hand.

[^0]

Forest Compositional Change

Figure 6. Non-metric multidimensional scaling ordination of Figure 6. Non-metric multidimensional scaling ordination of
pre-colonial and modern forest composition. (A) Points reperesent
each town in each time period. Taxa names are postion at the centroid each town in each time erifid. Txax a names are eoostioion at the e entestorid
of their distributions within the ordination. (b) Environmental naramof their dibrtibutions within the ordination. (b) Environmental param
eters (table 3) were evertaid onto the eMDS ordination digaram as fitted vectoss. . Wisquare describe the coreation between ortinamition axes and envirionmental vectors only vectors with significant Pearson correation ($P \times 0.05$.) were plotted.
doi:10.1377//journal pone 0072540.000

"What not to do," 1928

Hurricane Damage, 1938

Hemlock Camouflage, 1942

	Lowlands - Wet to Semi-Wet		Low-Uplands - Semi-Wet to Dry		Uplands - Dry to Very Dry	
Groundcover	Osmunda cinnamomea	Cinnamon fern	Dennstaedtia punctilobula	Hay-scented fern	Pteridium aquilinum	Bracken fern
Ferns	Osmunda regalis	Royal fern	Andropogon virginicus	Broom-sedge	Eragrostis spectabilis	Purple lovegrass
Graminoids	Thelypteris palustris	Marsh fern	Carex blanda	Eastern woodland sedge	Juncus tenuis	Path rush
	Juncus canadensis	Canadian rush	Panicum virgatum	Switchgrass	Schizachyrium scoparium	Little bluestem
Forbs	Asclepias incarnata	Swamp milkweed	Asclepias syriaca	Common milkweed	Apocynum cannabinum	Indian hemp
Shrubs	Alnus serrulata	Common alder	Comptonia peregrina	Sweetfern	Comptonia peregrina	Sweetfern
	Cephalanthus occidentalis	Buttonbush	Photinia pyrifolia	Red chokeberry	Lyonia mariana	Staggerbush
	Clethra alnifolia	Sweet pepperbush	Rhus copallina	Winged sumac	Photinia melanocarpa	Black chokeberry
	Ilex glabra	Inkberry	Vaccinium angustifolium	Lowbush blueberry	Photinia pyrifolia	Red chokeberry
	Lindera benzoin	Spicebush	Viburnum dentatum	Arrowwood	Rhus copallina	Winged sumac
Subcanopy	Acer negundo	Boxelder	Acer campestre	Hedge maple	Acer campestre	Hedge maple
	Betula populifolia	Gray birch	Amelanchier canadensis	Canadian serviceberry	Cornus kousa	Kousa dogwood
	Ilex opaca	American holly	Carpinus caroliniana	American hornbeam	Juniperus virginiana	Eastern red cedar
	Nyssa sylvatica	Black tupelo	Cercis canadensis	Eastern redbud	Magnolia soulangeana	Magnolia
	Sassafras albidum	Sassafras	Cornus kousa	Kousa dogwood	Quercus stellata	Post oak
Canopy	Acer rubrum	Red maple	Acer rubrum	Red maple	Fagus sylvatica	European beech
	Celtis occidentalis	Common hackberry	Carya ovata	Shagbark hickory	Ginkgo biloba	Ginkgo
	Metasequoia glypto.	Dawn redwood	Gymnocladus dioicus	Kentuky coffee tree	Gleditsia triacanthos	Honey locust
	Platanus acerifolia	London planetree	Liriodendron tulipifera	Tulip poplar	Pinus echinata	Shortleaf pine
	Populus deltoides	Cottonwood	Pinus nigra	Austrian pine	Quercus coccinea	Scarlet oak
	Quercus bicolor	Swamp white oak	Prunus serotina	Black cherry	Quercus imbricaria	Shingle oak
	Quercus palustris	Pin oak	Quercus prinus	Chestnut oak	Quercus rubra	Red oak
	Quercus phellos	Willow oak	Zelkova serrata	Japanese zelkova	Tilia cordata	Little-leaf linden

	The Short List	
Groundcover	Thelypteris palustris	Marsh fern
Ferns	Juncus tenuis	Path rush
Graminoids	Panicum virgatum	Switchgrass*
	Schizachyrium scoparium	Little bluestem
Forbs	Asclepias incarnata	Swamp milkweed*
Shrubs	Comptonia peregrina	Sweetfern
	Ilex glabra	Inkberry
	Lindera benzoin	Spicebush
	Rhus copallina	Winged sumac*
	Vaccinium angustifolium	Lowbush blueberry
	Viburnum dentatum	Arrowwood
Subcanopy	Amelanchier canadensis	Canadian serviceberry
	Cercis canadensis	Eastern redbud
	Juniperus virginiana	Eastern red cedar*
	Nyssa sylvatica	Black tupelo
	Sassafras albidum	Sassafras
Canopy	Acer rubrum	Red maple
	Ginkgo biloba	Ginkgo
	Gymnocladus dioicus	Kentuky coffee tree
	Liriodendron tulipifera	Tulip poplar
	Pinus echinata	Shortleaf pine
	Pinus nigra	Austrian pine
	Platanus acerifolia	London planetree
	Prunus serotina	Black cherry*
	Quercus bicolor	Swamp white oak
	Quercus palustris	Pin oak

The City Forest's planting palettes grew out out of an indepth study of land use history and vegetation dynamics across New England, and prioritize native populations, culturally significant species, and climatic projections.

These palettes are meant to help the city plant species most adapted to the different environments throughout Cambridge, and ensure that the species selected are visually and texturally interesting, as well as ecologically significant to the non-human species that will encounter them - including birds, pollinators, soil microbes, and small mammals.

This city plan lays out all three of those ecotypes, from lowlands to low-uplands to uplands. This map is intended to guide how different sections of the proposal are planted out as its implemented. These zones are based on precipitation and flooding projections produced by the City of Cambridge.

[Climate Projections]

2030

2070

[Planting Phases]

The City Forest will be planted in 3 phases. The
first includes larger trees, shrubs, and plug
in the most visited parts of the public realm, the second will fill in linear sections between those squares with smaller trees, shrubs, and seed, and the third will fill the final gaps with mulch and seed alone, and then be maintained through managed succession.

"Here one encounters startling adjacencies that evoke a cognitive dissonance, a recognition of strange beauty."

Elizabeth Meyer, "Slow Landscapes"

[Equity, Use, and Resilience]

This map shows us where Cambridge is most impacted by urban heat island effect, as well as its most trafficked routes, and at risk populations.

This data offers a critical foundation for the pieces of the City Forest system that branch off Mass Ave, because it reveals how the project will transform less visible pieces of the public realm and become a tangible way of investing in and advocating for the concerns across the city and its many stakeholders.

Resilience, use, and equity are all key themes in the Healthy Forest, Healthy City report. As a result, the city's action plan created a framework for the City Forest Implementation Plan.

That action plan lays out 9 initiatives to be completed by 2025, and the City Forest's implementation will fold into and ultimately expand 4 of them.

UFMP ACTION PLAN

equity resilience shared responsibility

Prepare and implement a
SOILS MANAGEMENT PLAN
Expand DATA COLLECTION on tree health and use an annual report to TRACK PROGRESS
GALVANIZE THE
COMMUNITY through
an outreach and
engagement plan
Publicize the BACK OF
SIDEWALK program

CURB LOSS

Update the TREE PROTECTION ORDINANCE

GROW CANOPY

Maximize tree planting in existing PARKS, focusing on canopy deficient neighborhoods

Establish a TREE TRUST to support planting on private property

PLANT 1,000 STREET TREES per year, focusing on priority areas and streets

REFMM ZONING tools and revise Article 19 to encourage more trees in
new projects
Leverage planning review to encourage new public open spaces
ew public open spaces

public open spaces

2020-2025

PLANT 1,000 STREET TREES per year, focusing on priorit areas and streets

2021-2025

PLANT AN ADDITIONAL 2,000 TREES per year-automatically increasing canopy cover citywide, year over year
PLANT 1,000 SHRUBS per year establishing more robust and resilient ecosystems citywide

PLANT 5,000 PLUGS per year Stabilizing soils and reducing invasive spread

INSTITUTIONALIZE TREE PLANTING PRIORITIES PLANTING PRIORITIE forming an interasency resiliency group

2021-2022

APPOINT CITY FOREST OFFICERS* to all city departments to oversee actions needed and support stakeholders represented by each department
-candidates might include: landscape architects, planners, arborists, foresters, soil scientists or ecologists

2021-2023

Publicize a campaign to SUPPORT AND EXPAND SOIL MANAGEMENT, financially and materially

CREATE EDUCATIONAL MATERIALS ABOUT ACTIVE CURBS

CREATE EDUCATIONAL MATERIALS ABOUT RELATIONAL URBAN DESIGN SUPPORT PUBLIC TRANSIT campaigns

2025-2035

STEP 5 - Assess + Adjust utilities along City Forest street
STEP 6 - Reorder streets in sections
STEP 7 - Phase $2+3$ planting
$2035+$
STEP 8 - Managed succession citywide
[Phasing]

While the City Forest is focused on more than just trees, the reordering of the public realm is the basis for this proposal, so the first initiative will focus on is street design. Over the course of the next four years that will include the first phase of City Forest implementation which will target the main squares across Cambridge.

This process will go hand in hand with the second initiative, which is to plant an additional 2000 trees, 1000 shrubs, and 5000 plugs per year. By taking ownership of the main corridors in the city, the master plan can focus on the under served neighborhoods beyond these centers.

	Plant X Additional New Trees Per Year	Reduce Net Loss by X\%	Canopy Cover in 2030	Canopy Cover in 2050	Canopy Cover in 2070
Do Nothing Scenario	0	0\%	22.8\%	17.5\%	13.5\%
	0	25\%	23.5\%	19.4\%	15.9\%
	0	50\%	24.3\%	21.4\%	18.7\%
City of Cambridge Annual Goal	1,000	0\%	23.1\%	20.0\%	18.8\%
	1,000	25\%	23.9\%	21.9\%	21.2\%
	1,000	50\%	24.6\%	23.9\%	24.0\%
City of Cambridge Annual Goal $+$ City Forest Implementation Goal	3,000	0\%	23.7\%	24.8\%	29.3\%
	3,000	25\%	24.5\%	26.6\%	31.6\%
	3,000	50\%	25.2\%	28.6\%	34.5\%

"By cultivating a healthy urban forest that is equitably distributed across our neighborhoods, we can create a stronger, healthier, greener Cambridge for everyone."

Louis A. DePasquale, Cambridge City Manager

The additional plant material will help triple the city's goal of 1000 trees year over year to reach equity and resilience goals more quickly For instance, based on the city's current goal, Cambridge will retain about 24% canopy coverage by 2070, but with the addition of this project, it will be bumped up to about 35%. The addition of shrubs and groundcover will only increase the health of the nonhuman and human communities living and laboring within those landscapes.

[Shared Responsibility]

2020-2025

2020-2025

PLANT 1,000 STREET TREES per year,
focusing on priority focusing on priority
areas and streets

2021-2025

STEP 1 - Introduce flex curb
throughout Cambridge
TEP 2 - Assess + Adjust utilities in
main squares
STEP 3 - Reorder main squares and redirect traffic
STEP 4 - Phase 1 planting
025-2035
TEP 5 - Assess + Adjust utilities along
City Forest streets
STEP 6 - Reorder streets in sections
STEP 7 - Phase $2+3$ planting
$2035+$
STEP 8 - Managed succession citywide

2021-2025

PLANT AN ADDITIONAL 2,000 TREES per year- automatically increasing
canopy cover citywide, year over year

PLANT 1,000 SHRUBS per year establishing more robust and resilient
cosystems citywide
PLANT 5,000 PLUGS per year Stabilizing soils and reducing invasive
spread

2021-2022

Nstitutionalize tree PLANTING PRIORITIES
in city Departments by inctity epartments by
forming an interagency resiliency group

2021-2022
APPOINT CITY FOREST OFFICERS* to il city departments to oversee action needed and support stakeholders
epresented by each departmen
candidates might include: landscap architects, planners, arborists, oresters, soil scientists or ecologists

2021-2023

Publicize a campaign to SUPPORT AND financially MATERIALS ABOUT ACTIVE CURBS

CREATEEDUCATIONAL MATERIALS
ABOUTRELATIONAL URBAN DESIGN
SUPPORT PUBLIC TRANSIT campaigns financially and materially

I imagine that these officers will also be responsible for communicating with the public, campaigning to raise funds or find investors, and creating educational content about changes proposed. Because the city is already such a strong advocate for urban forestry, the population is engaged with these topics but it is important that the City Forest is identified on its own to emphasize the shift towards more relational practices.

As I continue this research, I will focus on how to work with the city forester to support and expand the nursery and soil program Cambridge already has, and pursue a deep dive into community outreach and existing policy to drive forward impact on an educational and political level

Without that collaboration the solidarity we need to partner with this place and its processes will not be possible - and the potentials of social and ecological interdependence will remain unseen.

To call nature "labor" rather than "capital" places value on its ability to grow and support life repeatedly, rather than limiting it to a raw material for commodity production. This shift is a cultural one, but it will open an innumerable number of spatial possibilities for cities, for landscape architecture, and for all the beings inhabiting those places. This is a future I want to live in.

Work Cited

Battistoni, Alyssa. "Bringing in the Work of Nature: From Natural Capital to Hybrid Labor." Political Theory 45, no. 1 (2017): 5-31.

Bearfotos. Aerial view of Eixample District. 2018. Freepik. https:// www.freepik.com/free-photo/aerial-view-eixample-district-barcelonaspain_1583870.htm.

Boghosian, Aram. Local environmentalist Marilyn Wellons contests plans to fell trees. August 20, 2009. The Boston Globe. http://archive boston.com/news/local/massachusetts/articles/2009/08/20/growing disagreement_along_memorial_drive_as_environmental_group_contests_ plans_to_fell_trees/.

The Cambridge Department of Public Works. Guide to City Trees. Cambridge, MA: The City of Cambridge, 2020. https://www.mass.gov/ doc/selecting-trees-for-your-urban-and-community-forests-fact-sheet/ download.

The City of Cambridge. Cambridge, Massachusetts Flood Viewer: Cambridge, Massachusetts: The Cambridge Department of Public Works, 2017. https://www.adaptationclearinghouse.org/resources/cambridge-massachusetts-flood-viewer.html.

The City of Cambridge. GIS Data Dictionary. 2021. Distributed by City of Cambridge GIS System. https://www.cambridgema.gov/GIS/ gisdatadictionary.

The City of Cambridge. Healthy Forest Healthy City. Cambridge, MA: The City of Cambridge, 2020. https://www.cambridgema.gov/-/media/Files/ publicworksdepartment/Forestry/healthyforesthealthycity.pdf.

City of New York, Parks \& Recreation. Native Species Planting Guide for New York City, 2nd Edition. New York, NY: City of New York, Parks \& Recreation, 2014. http://growingwildnyc.org/wp-content uploads/2016/03/nrg-native-species-planting-guide-091714.pdf.

Cogbill, Charles V, Burk, John, and Motzkin, G. "The Forests of Presettlement New England, USA: Spatial and Compositional Patterns Based on Town Proprietor Surveys." Journal of Biogeography 29, no. 10-1 (2002): 1279-304

Costello, Laurence R., and Katherine S. Jones. Reducing Infrastructure Damage by Tree Roots : A Compendium of Strategies. Cohasset, CA: Western Chapter of the International Society of Arboriculture (WCISA), 2003.

Department of Conservation \& Recreation. Selecting Trees for Your Urban and Community Forest. Boston, MA: Bureau of Forestry. https://www. mass.gov/doc/selecting-trees-for-your-urban-and-community-forests fact-sheet/download

Harvard Forest Archives, Harvard University. Harvard Forest Collection: Historic. 1830-1942. Massachusetts. https://harvardforest.photoshelter. com/galleries/C0000I60YVnjGj0w/G0000VdCTBOIM4XM/Historic.

Hockney, David. Drawing with a Camera. Composite Polaroids. 1982. The David Hockney Foundation. https://www.thedavidhockneyfoundation.org chronology/1982.

Marvel. Union Square-14th Street District Vision Plan. January 26, 2021. Union Design Forum, NYC. https://www.archpaper.com/2021/01/marvel union-square-14th-street-district-vision-plan-enhance-pedestrian accessibility/.

Massachusetts Invasive Plant Advisory Group. The Evaluation of NonNative Plant Species for Invasiveness in Massachusetts. National Fish \& Wildlife Refuge, 2005. https://www.mass.gov/doc/invasive-plant-list/ download.

Meyer, Elizabeth K. "Slow Landscapes: A New Erotics of Sustainability." Harvard Design Magazine, no. 31 (2009): 22-157.

Unknown. Harvard University, Memorial Hall, (Dining Hall). https:// ww.mypostcard.com/en/designs/vintage-postcards/cambridge-massachusetts-memorial-hall-harvard-university-31295?changelang=1.

Sonfist, Alan. Time Landscape. 2014. Time Landscape, New York, NY http://www.alansonfist.com/landscapes_time_landscape.html

Squires, Jocelyn Lambert. The Earth Science courtyard by Michael Hough. May 27, 2018. https://twitter.com/JocelynSquires/ status/1000831425065766912.

Stock, Andreas. BARBA: The axes in the city project. January 12, 2018 Urban Games 2017. http://www.doyoucity.com/proyectos/entrada/14817

Thompson, Jonathan R, Carpenter, Dunbar N, Cogbill, Charles V, and Foster, David R. "Four Centuries of Change in Northeastern United States Forests." PloS One 8, no. 9 (2013): E72540.

Unknown. Hollis Hall. 1869. CHS Image Collection, Harvard Buildings, Box 16, Folder 2, History Cambridge, Harvard University, Cambridge, MA. https://www.flickr.com/photos/38861678@N03/5958786194/in album- $72157627234824208 /$

Van Der Veen, Marijke. "The Materiality of Plants: Plant-people Entanglements." World Archaeology 46, no. 5 (2014): 799-812.

Wadsworth, Alexander. "Plan of the cemetery of Mount Auburn." Map 1841. Norman B. Leventhal Map \& Education Center, https://collections eventhalmap.org/search/commonwealth:x059cc34p (accessed May 17, 2021)

White, P.S, and Pickett, S.T.A. "Chapter 1- Natural Disturbance and Patch Dynamics: An Introduction." In The Ecology of Natural Disturbance and Patch Dynamics, 3-13. Elsevier, 1985.

[^0]: ".... The properties of plants are not fixed. They change in the context of their relation with people - and this process is mutual; people are changed too - and the properties of plants thus form archives of past human and plant behavior."

