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Abstract

This thesis is an investigation into the performance ramifications of making

specialized component reservations for machine learning workloads in virtualized en-

vironments. The reliance of machine learning on floating-point operations makes

graphics processing units an important part of processing these workloads quickly.

While virtualization is one of the most widely-used consolidation techniques used

in data centers of all sizes, compatibility issues between graphics processing units

and virtualization have slowed the adoption of virtualization for machine learning

workloads.

To that end, this paper discusses the motivations and history behind virtualiza-

tion and the application-specific acceleration devices used and how they are applied to

machine learning on various public and private computing platforms. This is followed

by a presentation of an experimental framework for testing the impact of controlling

for non-uniform memory access when running machine learning workloads.

Using this framework, a series of experiments were performed and documented

in this thesis that test multiple placement configurations for graphics processing units

in a virtualized system and how throughput of data from the host system to the

device was affected. Current virtualization platforms offer recommendations to use

these settings, but do not talk about the specific impacts of implementing them.



Based on the results of the experiments, configuration parameters and placement

recommendations are presented along with information about how these settings can

help optimize the machine learning pipeline and the potential pitfalls to their use.
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Chapter I.

Introduction

Due to the increased utilization of machine learning in applications and the

strong demands placed upon computing systems, machine learning is a driving force of

innovation of computing components. Significant research goes into ways to optimize

the different layers of these workloads in terms of speed, cost, algorithmic complexity,

and data structure size. Machine learning, or ML for short, is a field of computing

broadly referring to the use of neural network or similar algorithms that can be

trained using a small initial dataset, then classify and identify data that has not been

previously seen. ML workloads can utilize many or all components of the computing

system, but one of the most important pieces of that system today is the electronic

pathways used to move data across the system bus to a Graphics Processing Unit,

or GPU, where floating point operations can be performed with a level of parallelism

much greater than would be available on the CPU (Keckler et al., 2011).

This thesis will present a set of recommendations and configuration param-

eters that help optimize ML workloads that will be running on servers employing

Virtualization. These configuration parameters will be applicable at multiple levels,

both in how VM instances are sized and balanced on Hypervisor systems and how

memory can be best allocated at the guest OS level.

The system bus of the x86 architecture has always been important from the
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standpoint of moving data from the CPU to its various peripheral devices like stor-

age and networking controllers. For most of its history, the Peripheral Component

Interconnect Express, referred to as PCI and PCI Express bus have done a fine job of

meeting the I/O needs of system components. It is the responsibility of processor de-

velopers to implement the PCI Express standard, which calls for a number of electrical

lanes on the motherboard dedicated to the interface. Modern computing peripherals

using the PCI Express, PCIe for short, have embraced the potential speed of this

interface, bringing to market powerful high-speed devices like 40 Gigabit Ethernet

adapters, non-volatile memory for fast storage, and Graphics Processing Units. PCIe

slots are divided up among the limited number of electrical lanes provided by the

computer system, using as few as one lane, or more commonly four, eight, or sixteen

lanes. This topic is discussed in detail in Chapter 3.5.1. Today’s GPUs most com-

monly use 16x slots in order to quickly move data to the high-performance processors

and large amounts of memory located on the cards.

These cards have become so important to ML work that cloud providers like

Google are taking steps to develop their own accelerators for this type of work in

order to compete with GPU developers on price and performance (Jouppi et al.,

2017). Cloud providers are also some of the heaviest users of virtualization technology.

Virtualization is a technique in computing where a complete hardware computing

system can be abstracted in software and as a result, many of these systems that

were previously using an entire piece of physical hardware can be colocated on a

single computer. The upside of this is that it reduces the physical footprint required

to run massive computing operations while also enabling more flexible usage and

payment models for only those resources that are needed for an application to run.

If there is a downside, it is that all these virtual machines, or VMs, must share the

limited physical resources of the computer on which they reside. The intersection of
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GPU use and virtualization is worth exploring in order to analyze the effects of the

heavy PCIe bus consumption of GPU when applied to a shared computing model like

Virtualization.

We will briefly cover some current designs in machine learning system systems

as well as trends and challenges relevant to data center and cloud computing oper-

ators. This overview will present some commonly understood definitions for various

jargon and official terms in the realm of system design. This introduction will serve

as a way to set context for why optimizing execution environment is important to

machine learning and the benefits that can be derived from doing so. We will also

discuss the state of research and some prior work in this area.

Following the introductory chapter, this thesis will present some requirements

relevant to both generically running ML workloads and to implement the environ-

ment used to prove the thesis. These details will include a summary of a common

model used in processing of data for machine learning, as well as discussion on re-

quirements in terms of hardware and software for that work. Before moving onto

results, the implementation chapter will cover details on how experiments were run

and the parameters used for each scenario.

The conclusion chapter will present sample VM configurations and code con-

siderations to use when building ML workflows. Finally, the thesis will close with

some brief discussion of some future considerations which may alter the importance

of GPUs for this work in the future.

1.1 Problem Statement

Not all workloads are so large as to need exclusive access to dedicated hardware

and four or more GPUs. Many models and datasets exist that are smaller scale and

still return useful results. For example, there are methods for training one of the
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most popular data sets, ImageNet, using down sampled versions of the images that

produced results on par with algorithms using the full-resolution images (Chrabaszcz

et al., 2017). Chrabaszcz et al.’s approach to working with a data set at a smaller

scale gives support to the idea that more detail in data and training accuracy are

not strictly tied to each other. Knowing this, it becomes possible to propose that

the newest, fastest multiple GPU setups are not necessarily required for acceptable

ML training. Another point worth considering is that GPUs are becoming popular to

help speed up inference workloads on already trained models. One set of researchers

recently presented research on how they used Nvidia V100 GPUs to speed up inference

in COVID-19 infection simulations (Kulkarni et al., 2020). The conclusion to draw

given these points is that the use cases for GPU are expanding into smaller use cases

even as powerful GPUs are becoming more common. These smaller workloads are

easily able to be run on virtualization platforms with a single GPU backing them,

and it’s worth exploring how to optimize those as well.

However, the solution isn’t as simple as heading to the console of a favorite

cloud provider, provisioning a VM, and training our new model. Most current config-

urations for GPUs on VM instances use a virtualization technique called pass-through

to grant exclusive GPU access to a VM. Once pass-through is involved, it complicates

the utilization of resources for the hypervisor.

The first problem is that management of a hardware component is no longer

the exclusive domain of the hypervisor, and this has security, performance, and re-

source sharing implications. The second issue is that of Non-Uniform Memory Access,

known commonly as NUMA. NUMA refers to the amount of time needed to access

memory that is non-local to the processor where an instruction is being executed.

Each CPU in a multi-processor system gets their own set of PCIe lanes and system

RAM, and when you use pass-through the VM instance employing pass-through be-
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comes strongly associated with one of those processors, the processor’s PCIe lanes,

and the processor’s RAM. NUMA therefore has the potential to harm performance for

the VM instance using pass-through because every memory-related operation could

end up taking longer as the VM has to move data from one processor’s memory to a

device in another NUMA domain.

1.2 Prior Work

In their paper about OpenCL and CUDA performance on four different hy-

pervisors using pass-through, Walters, et al. acknowledged that virtualization effects

on NUMA is “interesting in its own right” (Walters et al., 2014). Briefly, CUDA is

a programming language which uses C-style convention and is designed to make it

easier to harness the power of a GPU for floating point arithmetic. Their deep dive

into GPU pass-through provides sufficient evidence that it can be reliably expected

to get performance approaching the levels of an OS installed on bare metal rather

than a hypervisor.

Of note, in the time since Walters et al. paper was published, the hypervisor

landscape has shifted quite a bit. Their research involved performance comparisons

between the major hypervisors of the era — ESXi, KVM, and Xen. VMware’s ESXi

is still a popular choice for private data centers. Xen has faded somewhat in use

— Citrix remains the primary commercial vendor supporting Xen in their Citrix

Hypervisor product. KVM has a tremendous amount of momentum in 2020, with

development support from Google, and an active fork used by Amazon Web Services

for their Nitro hypervisor platform, (Honig & Porter, 2017), (AWS, 2020).

AWS announced the change to KVM in 2018, and Google Cloud Platform came

to market with KVM as their hypervisor of choice. It can be difficult to determine

quite where ESXi stands in terms of installed base and usage. As a publicly-traded
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company, VMware sales are a matter of public record and from all appearances, ESXi

is a well-regarded hypervisor for private datacenters. Its high regard, however, has

done little to improve ESXi’s standing in the rankings of Hypervisors used for public

cloud companies. For what it’s worth, KVM is free and open-source, where as ESXi

is licensed commercial software.

Denneman makes the case that in world with high-speed peripherals like GPU,

PCIe devices are the primary units of data processing, (Denneman, 2020). Denne-

man rightly points out that in an x86 architecture, breaking NUMA locality for a

VM instance means that data must traverse a central interconnect between proces-

sor/memory domains when trying to access a PCIe device owned by another processor.

In the case of a system that is heavily utilized, this could become a limiting factor on

performance, especially when dealing with many gigabytes or even terabytes of data.

Fortunately, the bandwidth available to this central interconnect is greater than any

single PCIe slot, so it may not be an issue to utilize it. The potential parallelism

gains by utilizing another GPU may outweigh the costs of moving this data across

the central interconnect.

Nvidia has introduced multiple solutions for virtualizing GPU access, the first

being Nvidia Grid in 2013. Grid is a set of kernel modules for hypervisors and a

specialized fork of Nvidia’s display drivers that allowed for fractional access to a

GPU, not unlike virtualizing a CPU. Cards designed for Grid, such as the Tesla M60,

Tesla V100, and Tesla A100 contain multiple GPU cores on a single card, thereby

routing around some issues related to low PCIe lane count in some previous CPU

designs. While a promising and developing technology, much of its evolution has

been focused on 3D accelerated application and desktop delivery rather than ML

workload support.

A technology startup called Bitfusion (acquired by VMware in 2018) created
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a GPU virtualization layer that allows for a user to split GPUs into logical blocks

similarly to how CPU time can be split by a hypervisor. Bitfusion’s solution was

unique in the market because it not only allowed the user to slice up a GPU, but

it allowed these devices to be accessed over an Ethernet transport. In other words,

despite the advertised need of GPU hardware for the highest PCIe speeds available, it

is conceivable that bandwidth needs can be met using a slower transport than PCIe.
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Chapter II.

Requirements

This chapter specifies the requirements of the system.

2.1 High-level Requirements

This paper is primarily concerned with producing recommendations that help

optimize workload placement on computing hardware that uses hypervisors. Previ-

ously, when combining older generations of processors with a hypervisor, the type

of throughput and CPU utilization pattern desired for high-performance comput-

ing meant accepting trade-offs. Either the HPC-style workload wouldn’t run well

while general-purpose workloads did, or vice versa. Recent advances in processors

from both Intel and Advanced Micro Devices (AMD) along with improvements in

hypervisor software have made the general-purpose workloads and high-performance

computing-style workloads much better tenants when sharing a piece of host hard-

ware. As such, when designing and building virtualization hosts, there are several

minimums that should be taken into account and are explained in more detail in this

chapter.
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2.1.1 GPU

Chapter 1.2 discussed some options for GPU virtualization or abstraction such

as Nvidia Grid and VMware’s Bitfusion product. These products either add a pro-

prietary layer or shift I/O to a different part of the computer. Additionally, they add

additional cost and setup complexity to a virtualized ML environment that is unnec-

essary. As a result, this thesis presents its solution using a pass-through configuration

for the GPU due to its low cost and common deployment in the industry. This allows

the VM to use the theoretical maximum performance of that specific hardware at

the expense of removing the ability of another VM to be able to share that resource.

Pass-through mode is a configuration option offered by all current hypervisors and

needs to be employed to maximize ML workload performance. This is the method

that is employed by most major cloud vendors, and as such, has the most real-world

applicability.

When generating the conclusions of this paper, Nvidia GPUs were employed,

specifically Nvidia Tesla M60 GPUs. The M60 is a GPU built specifically for use

in hypervisor environments, as it colocates two distinct GPU units on a single PCIe

slot in order to more densely pack GPUs into a single Hypervisor server. Nvidia

publishes software and drivers that allow an administrator to fractionally divide the

GPU core along various memory boundaries, such as 512 MB, 1 GB, 4 GB, and

so on. This feature was expanded upon in later cards such as the V100, which

employ a technique called multi-instance GPU (MIG), which allows an administrator

to fractionally divide the GPU core up to seven times and present each as a distinct

GPU to a VM, container, or application instance. The card can also be addressed as

a single-core GPU card with 8 GB of RAM and passed through to a VM, which is the

configuration used here. Due to limitations with this line of GPU, it is not possible
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to test the fractional usage features noted above as CUDA can only function with the

card in a full 8 GB configuration. This limitation is due to the Tesla’s use of CUDA

cores rather than the Tensor cores used on more recent cards, and this limitation

exists regardless of whether a pass-through or virtual GPU solution is employed.

Fortunately, GPU choice is more or less inconsequential to the methods used

to reach the paper’s conclusions. While library and hardware choice play a large part

in the overall performance of ML workloads, here the focus is on verifying the effects

of virtualization and NUMA locality when moving data across the PCIe bus. As such,

there is less concern about what happens with the data once it is on the GPU and

more about how fast data can be moved to the GPU. Nvidia’s CUDA libraries expose

a simple interface for copying data across the PCI bus from host memory to device

memory. While CUDA is used here, OpenCL exposes a similar set of functionality,

as does Google’s TensorFlow. This mean that the methods described here could also

be applied to AMD GPUs or ASICs.

2.1.2 CPU and Hardware Platform

While virtualization can be used in a variety of system CPU configurations,

this paper is concerned primarily with applications for ML workload optimization

in data center scenarios. Using advertised system sizes from major cloud providers

such as AWS and Amazon as a guide it can be observed that the overwhelming

majority of systems advertised for GPU utilize multi-socket systems with tens if not

hundreds of cores. Large-scale systems are also an area of interest for GPU developers

and cloud providers. For example, Nvidia recently entered the custom computer

market with a line of data center systems packed with GPUs to do large-scale floating-

point calculations for the data center with their DGX line of computer systems.

Competitive to that approach, major cloud providers like Google and Amazon are
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developing their own application-specific integrated circuits to accelerate floating-

point operations in their products.

Therefore, the recommendations of this paper are tailored around the use of

multi-socket systems that employ two or more CPU sockets, high CPU core counts,

and multiple PCIe interfaces. The conclusions presented here assume that processors

from generations released in 2016 to present are used, such as Intel’s Sandy Bridge or

AMD Zen series. These CPU revisions guarantee the presence of features that are re-

quired for good performance on ML workloads and are enumerated here. First, PCIe

3.0, commonly available since 2010, is certain to be present on these platforms. PCIe

4.0 improves upon the standard, doubling the transfer rate of its predecessor, but the

standard was only ratified in 2017. Peripherals using the 4.0 standard only became

available in 2020. Second, these systems feature a high-speed bus interconnect be-

tween the processors which facilitates higher connectivity speeds between component

devices on the PCIe bus and for processes that must cross NUMA domains. Intel’s

Ultra Path Interconnect and AMD’s Infinity Fabric are examples of these intercon-

nects, which has been available under various names since 2003. The speed of these

devices is a contributor to the throughput that can be achieved for a workload, es-

pecially once system memory sizes start to get large enough to cross CPU memory

domains.

Along with the high-speed interconnect, the system also needs to have na-

tive support for virtualization. Specifically, the processor needs to support CPU

virtualization extensions like AMD-Vi and Intel VT-d, as well as memory and I/O

virtualization for the PCIe pass-through features like function level reset and memory

mapping. Note that while a processor may support virtualization extensions, it also

needs explicit enablement in the system BIOS/EFI interface, as some vendors may

not enable it by default. Without these features enabled, hypervisor software will
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either run poorly or not at all. Most processors released since 2008 should have these

features, but the more recent the processor, the better. In the case of Intel, recent

high-profile CPU cache exploits and the subsequent mitigation techniques have come

with some costs to hypervisor performance under load. More recent CPU releases

have lessened the impact of these exploits, but it is worthy of note since cloud and

virtualization vendors who use Intel processors will still have some of these affected

CPUs in their datacenters for years to come.

2.1.3 Software Requirements

As it serves as the layer between the computer’s hardware and the VM in-

stances, the hypervisor plays an extremely important role in the level of performance

that our VMs can achieve. Using a recent version is important so that the execution

environment can make effective use of pass-through devices, large memory allocations

at the hardware and VM layer, and optimizations in NUMA techniques. As discussed

in earlier chapters, hypervisors passing control of devices to a VM have been around

for a while. Newer GPUs can include memory banks that rival system memory and

utilize low-level PCIe features. Using recent hypervisor versions ensures that there is

support for these features. For example, in the test environment used here, advanced

VM configuration had to be set in order to support large memory allocations on the

PCIe bus. This functionality is available in KVM versions running on Linux 3.9 or

higher, and on ESXi 4.0 or higher.

The VMs themselves should be built using UEFI boot and whichever drivers

are provided by your hypervisor vendor to enable paravirtualized hardware. As of

2018, current versions of operating systems already include drivers or modules that

allow seamless operation in a virtual environment regardless of hypervisor vendor.

The VMs built for the GPU-backed VM instances in the test environment
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used in this thesis used Ubuntu Linux 20.04, though the methods and configuration

presented here are OS-agnostic and should perform the same under other Linux dis-

tributions or Windows, given that similar versions of the software and drivers are

employed. VMs used for load simulation used Linux and the stress-ng package due

to its high flexibility in terms of targeting specific parts of the data processing path

(King, 2017). Stress-ng was written with Linux in mind, though recent additions to

Windows may make it possible to use for the load generation VM instances (this was

not tested).

2.2 System Components

This section describes in detail the versions of the various components that

were used to create an environment to test ML workload

2.2.1 Orchestration

For provisioning both the load generation VM instances and the GPU-backed

VM instances in the experiment environment, automation scripts are provided and

their usage is detailed in Chapter IV. These can be used to quickly stand up the initial

environment as well as supporting components like networking. Since the experiment

environment involves a hypervisor, it is also an ideal target for automation of these

types of operations.

For this experiment, Terraform was chosen as the automation tool (Hashicorp,

2021). Terraform is an open source infrastructure-as-code tool with commercial sup-

port from Hashicorp. It’s an ideal fit for environments where building from scratch

every time you want to change parameters in undesirable. Since Terraform tracks

the state of the components you deploy, it is fast to quickly deploy an environment,

test, and then change things and redeploy. Terraform itself consists of a few small
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components, a parser for Hashicorp Configuration Language (HCL), a framework for

creating, updating, and deleting the state of your infrastructure objects, and an en-

gine for using first and third party providers to perform the actual work of creating

or changing infrastructure. A provider in this context is a bundle of code which im-

plements all the Terraform functions for create, read, update, and delete for a list of

objects from a particular vendor. For provisioning the test environment used in this

thesis Terraform’s vsphere provider was used.

Of note, during the experimentation phase the author had a vCenter instance

available for ESXi. vCenter is an enterprise-grade management product for one or

more instances of their vCenter is commercial software and VMware restricts a sig-

nificant portion of API functionality behind it. ESXi is available as a free version

for personal use. As much as is possible, a version of the automation scripts will be

available for the free edition of ESXi.

Component Version
Terraform ≥ v0.13
vsphere provider ≥ v1.24.3

Table 1: Version constraints for automation components

2.2.2 Hypervisor

The hypervisor is an x86 architecture server with enough resources to run

multiple VMs simultaneously. It must also support PCIe device pass-through so that

distinct GPU cards can be reserved by distinct VMs. The experiment environment

used ESXi 6.7, the most current stable release of the 6.0 branch of VMware’s hy-

pervisor. It provides an industry-standard level of performance and stability, while

providing all the features needed to run the type of ML workloads that are of interest

today.
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Component Version
VMware ESXi ≥ v6.7

Table 2: Version constraints for hypervisor

2.2.3 GPU-backed VM instances

GPU-backed VM instances are VMs which run ML workloads on the hyper-

visor. As discussed in the introduction, machine learning really doesn’t have many

constraints on what we can try to teach a neural network to do. Specifically though,

these workloads can be simplified as different implementations of neural networks

that do things like object recognition, sentiment analysis, or transformation tasks.

Rather than try to figure out parameters specific to each of type of workload,

this thesis concerns itself with the hardware common to the GPU processing pipeline.

Certainly, if one were interested in the hyperparameters or algorithms that could best

process a specific type of ML workload, there would probably have been a new paper

proposing a novel solution published in the time it took to read this paragraph.

Since this experiment is interested in the NUMA effects and virtualization

bus-sharing factors of multiple GPU-equipped VMs, the experiment environment will

need to have at least two VMs dedicated to simulating an ML training environment.

Furthermore, each GPU will need to be attached to the PCIe bus of a distinct CPU

socket, and then to a VM using a specific set of CPU cores. The number of cores

and the allocation from each physical NUMA domain will be changed several times

in order to demonstrate the various scenarios that can occur as VM processes are

scheduled. Specific configurations for this will be discussed in the implementation

chapter.

The GPU-backed VM instances use a baseline of 16 virtual CPUs and a total

of 256 GB of RAM to match instance sizes used by common GPU instance sizes on
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GCP and AWS. This CPU configuration was also chosen because the systems used

for the thesis had enough physical cores that we could guarantee that a VM instance

would only see a single NUMA domain. In large-scale training scenarios, more RAM

may be desirable and this paper makes no specific recommendations for CPU to RAM

ratios. For the sake of generating this paper’s conclusions, this size made sense as an

instance size larger than commonly available for desktop processors while having a

RAM size that allowed for multiple GPU-backed VM instances to be loaded at once

on the test hardware without resorting to memory over-commitment techniques.

Some recent Nvidia GPUs implement a technology known as NVLink, which

chains together multiple GPU cards via a proprietary private bus in order to increase

I/O speed and parallelism between GPUs by bypassing the PCIe bus. These cards

were not taken into consideration during testing, due to their relatively high cost and

lower applicability to the small-to-medium sized hypothetical ML workloads that are

part of the scenario being tested for. It is the opinion of the author that NVLink

is an impressive technology in terms of adding parallelism, increasing the available

GPU memory space, and reducing the number of times that workloads must return

to the CPU for additional data. However, this solution does not take away the fact

data must still traverse the PCIe bus at least twice, once on load, and once on return

of results. Therefore, it is still worth sizing VM instances in such a way as to avoid

virtualization and NUMA effects, regardless of whether additions to the system bus

such as NVLink are utilized.

A final consideration that is discussed briefly in the implementation chapter

is that rack mount and blade server platforms can and do make use of interfaces that

are uncommon in desktop and laptop systems. In particular, PCIe riser or other port

multiplier solutions are used to increase the number of expansion slots, or for cooling

considerations. These riser cards will make use of 32x PCI slots and divide those
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lanes among multiple slots. This would be unremarkable, however it does appear to

interfere with the reporting of PCIe link speed by lspci tool. In the case of one of

the test servers used in the experiment environment, the GPU would be reported as

being plugged into a 5 GT/s slot with a 32x width. This led to some considerable

investigation time to understand why the link speed was reported in this manner.

The lesson learned here is that relatively uncommon hardware plus virtualization

interactions can cause strange reporting errors. In some cases, verification by physical

examination may be preferable.
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Chapter III.

Implementation

The original goal of this thesis was to produce recommendations around build-

ing configurations for how to best generically allocate computing resources in a mixed-

use data center. The author envisioned a deep-dive into virtualized system architec-

ture and alignment of virtual CPUs against a physical architecture. This study would

investigate the effects of higher CPU utilization, non-uniform memory access effects,

and high VM density vs. high physical CPU use. This was driven by a need to under-

stand how to best allocate shifting consumption of compute workloads from databases

and web applications to ML and other research workloads. Historically, applications

like web servers were easy to virtualize because those applications had CPU usage

patterns that involved low sustained use or short bursts of high utilization.

Instead of low utilization that can be easily shifted to idle processors or even

other physical nodes based on overall system load, number crunching for research

and machine learning uses a constant stream of I/O from local/remote storage, to

the CPU for preprocessing, then onto the PCIe bus for GPU processing. Without

going into detail about the nuances of CPU scheduling, virtualization has functioned

best when resource utilization is short bursts of high activity vs. sustained use.

Since virtualization is a foundational technology in cloud computing and data centers,

it’s important to think about the impact that many VMs running at high resource
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utilization means for scaling and consolidation ratios in data centers.

During the period spent researching this topic, it became overwhelmingly clear

that while there are projects that use CPU for ML training and inference work, a

majority of this work takes advantage of the ability of GPUs to do fast floating-point

arithmetic. However, this doesn’t make the CPU obsolete or remove it from the ML

workload equation. GPUs do one the one task of floating point arithmetic and do

it extremely well, but cannot perform the common tasks expected of a computer.

As the central component of a computer the CPU is required for allocating memory

and moving data across the system buses to the GPU, and this vital role makes

it ideal for preprocessing data. When considering the full data ingestion path and

how many components are utilized, an ML workload doesn’t appear to be something

that should be difficult to use a hypervisor for. However, one of the most important

factors for ML workloads is how much I/O the system can provide when it has to move

data between system memory, GPU memory, network, and disk, all which share a

common bus. That lead to the investigation of how much it matters to properly align

VMs to particular CPU/Memory/PCI bus boundaries and if doing so truly provides

optimization in the data center-size computing space.

A central question this thesis seeks to answer was what, if any, performance

effects would be encountered due to I/O limitations on the PCIe bus and system

bus. In virtualization scenarios that do not involve ML, this wasn’t necessarily an

issue, or at least it wasn’t one to worry about over sustained periods. With the greater

prevalence of GPU in servers, and not just one GPU per server, there now needs to be

consideration given to what the cost will be to move data from disk, to main memory,

and then onto the GPU and back. GPU and other application-specific accelerators

depend on the use of 16x PCIe slots and bandwidth provided by the PCIe 3.0 and

higher specifications. This places GPUs at the top of the priority chart in terms of
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the bandwidth they can demand from the system bus.

3.1 Non-Uniform Memory Access and Multi-Processor Design

For a variety of reasons, designs for x86 processors changed in the early 2000s

to place more processing cores on each physical CPU chip. These chip designs are

referred to be as multi-core processors. This innovation made multi-CPU processing

much more accessible by bringing a level of computing power to the desktop that was

previously only possible in x86 multi-socket systems, which at the time used multiple

single-core processors.

Today, desktop multi-socket processors can have as many as 10 cores per pro-

cessor chip. Server-class processors are capable of having two more times that number

of cores depending on CPU generation and manufacturer.

The most differentiating factor for systems with multiple processors over more

common single-socket systems is that each socket gets its own set of memory pathways

and system bus channels. This enables more effective density of VMs using GPUs

because you can place more VMs on a system each with exclusive access to its own

pass-through GPU without concerns that multiple VMs will consume all the PCIe

bandwidth and slow operations for every consumer. Extra sets of PCIe lanes and

memory channels come with their own set of concerns though.

Non-Uniform Memory Access is a design consideration in multi-processor sys-

tem architecture that divides system memory into domains based on how close the

memory is to each distinct processor. Each processor is designated as a single domain

and can access its own memory without penalty. Processes running in a NUMA do-

main are able to access any part of the system memory, but accessing memory outside

the execution domain incurs an access time penalty.

There are various implementations of NUMA depending on CPU architecture.
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The major processor design companies using the x86 architecture implement NUMA

using a central interconnect between all system CPUs. Intel refers to this component

as the Ultra Path Interconnect or Quick Path Interconnect depending on processor

generation. AMD uses a technology called HyperTransport for their interconnects.

Modern interconnect designs have greatly increased the speed of this compo-

nent, but it cannot match the speed of a dedicated CPU to memory lane. NUMA de-

signs enable a much higher density of processing power available in a single computer,

though as described here there are additional parameters to take into consideration

when writing software for these platform.

Multi-processor systems also get a full set of PCIe lanes allocated to each

processor, greatly increasing the density of peripheral devices that can be attached

to a single computer. Peripheral devices attached to a processor are also subject to

the effects of NUMA in the same manner that memory is.

In a virtualized system, NUMA becomes a concern because VMs can be told

that they have more than one processor and then be scheduled and executed on

multiple physical CPUs when it may not be advantageous to do so. Knowing the

conditions under which the hypervisor will make a VM instance aware of the host

system’s multiprocessor architecture is an important part of maximizing performance

for a specific workload.

For this thesis, VMware’s ESXi hypervisor was chosen as the platform. As an

example, ESXi’s rules for NUMA awareness are as follows: Any VM with an eight

CPU configuration will be not be NUMA-aware, beyond that, any VM with a CPU

count greater than the core count on a single physical CPU will be scheduled into

multiple NUMA nodes. Figure 1 shows the output of the lscpu command on a VM

instance with eight virtual CPUs.

As CPU count increases, NUMA node count for the VM instance will also
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Figure 1: GPU VM instance with 8 CPUs

user@gpu-node01:~$ lscpu | grep NUMA

NUMA node(s): 1

NUMA node0 CPU(s): 0-7

Figure 2: GPU VM instance with 16 CPUs, host has 40 cores (80 logical CPUs)

user@gpu-node01:~$ lscpu | grep NUMA

NUMA node(s): 1

NUMA node0 CPU(s): 0-15

increase depending on the physical CPU socket and core count. If a VM can be

scheduled onto a single physical CPU, ESXi will continue to constrain the VM instance

to a single NUMA node. This can be validated on the test system, which has a total

of two physical CPUs with 20 cores each. Note that NUMA calculations happen

based on core count without hyperthreading or related thread-splitting techniques

being considered. These processor features split a single CPU core into two execution

threads, allowing the platform to report itself as having twice the physical cores,

referred to as logical cores. To the untrained eye, this can be misleading, as other

parts of the ESXi interface will report available CPUs as the value of cores * 2 with

this processor feature enabled. Figures 2 and 3 illustrate this difference.

Likewise, NUMA controls where a VM instance’s RAM is allocated even if

the entire RAM allocation could fit entirely in the memory banks of a single NUMA

node. See 4 and 5 for examples of the allocations.

Figure 3: GPU VM instance with 24 CPUs, host has 40 cores (80 logical CPUs)

user@gpu-node01:~$ lscpu | grep NUMA

NUMA node(s): 2

NUMA node0 CPU(s): 0-11

NUMA node1 CPU(s): 12-23
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Figure 4: GPU VM instance with 16 CPUs and 256 GB of RAM

user@gpu-node01:~$ cat /sys/devices/system/node/node*/meminfo | grep

MemTotal

Node 0 MemTotal: 263948196 kB

Figure 5: GPU VM instance with 24 CPUs and 256 GB of RAM

user@gpu-node01:~$ cat /sys/devices/system/node/node*/meminfo | grep

MemTotal

Node 0 MemTotal: 131974098 kB

Node 1 MemTotal: 131974098 kB

3.2 Test Environment Details

To test the ideas being proposed in this paper, two server-class computers

with multiple GPUs were procured — A HP ProLaint DL380 Gen9 rack mount server

and an HP ProLaint WS460c Gen9 blade server. Both systems meet the high-level

requirements presented in chapter II, though they differ slightly in terms of CPU and

GPU. System Configurations for these two systems are summarized in the following

table.

The GPUs available in the test systems are not an exact match in terms of

model. However, they are the same in terms of processor generation and installed

RAM. Both utilize the Nvidia GM204 GPU core, which is one of the last chips to

use Nvidia’s Maxwell architecture. The following table summarizes the differences

between the two in order to establish that the test systems are close enough to be

able to consider results together.

It is worth noting that System 2 is a blade form factor, and does not use the

traditional PCIe form factor for its GPUs. This server utilizes the Mobile PCI Ex-

press, which uses the acronym MXM, interface for its Tesla M6 cards. This interface

23



System 1 System 2
CPU Intel Xeon(R) E5-2698 v4 Intel Xeon(R) E5-2699 v3
CPU Family Broadwell Haswell
CPU Clock 2.20 GHz 2.30 GHz
System RAM 512 GB 512 GB
PCIe Revision 3.0 3.0
Max PCI Lanes 40 40
Installed GPU Nvidia Tesla M60 Nvidia Tesla M6
Storage None installed None installed
GPU Tesla M60 Tesla M6
GPU Card Interface PCI Express MXM
PCIe Slot Speed 16x 16x
GPU Architecture Maxwell Maxwell
GPU RAM 16 GB (2x 8 GB) 8 GB
GPU Core Type CUDA CUDA
GPU Core Count 4096 (2x 2048) 1536

Table 3: Hardware configuration for test systems

may be unfamiliar to those who haven’t worked with blade systems or PC laptops

that integrate high-performance GPUs over the past decade. MXM interface slots

resemble laptop RAM slots, in that it uses a flat connector with the device entering

at a 45-degree angle and then lowered until the back of the card is flat against the

motherboard surface. Retaining clips and multiple screws are used to keep the card

in place. As it is a form-factor and not a different bus, standard PCIe slot speeds are

determined by number of pins utilized. While laptops will generally only have space

for a single MXM form-factor card, other devices without the same space constraints

can have multiple MXM slots. Indeed, this is the case with the blade server used

here, as it comes equipped with four MXM slots, all of which are populated in the

test environment.

For the MXM/blade configuration, it should be stated that the Tesla M6 is one

of only a few Nvidia GPUs that utilized the MXM interface and were not designated

mobile GPUs intended for laptop use. The Tesla M6 was released in September 2015
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and has not seen a followup since. Given the lack of new product in this line, the

comparatively low core count vs the PCIe version, and the absence of other servers

that include GPU using the blade form factor it can be assumed that this was not

a direction the data center market decided to go. Fortunately, the test parameters

as defined here are decoupled from the actual GPU performance, as we are only

controlling for PCIe congestion and NUMA effects. The MXM form factor does

provide us with equivalent PCIe speeds and functionality, and therefore should still

be a valid test bed here.

3.3 IOMMU

On the x86 platforms involving virtualization an additional system compo-

nent comes into play, the input-output memory management unit (IOMMU). This

interposer provides memory address virtualization and management functions for the

PCIe bus. It also serves as a cache for translated addresses and a way to add a

compatibility layer for devices that are not designed with virtualized environments

in mind. In a hypervisor or bare-metal OS, use of the IOMMU is elective based on

need. Enabling or disabling it is a configuration toggle in the kernel configuration.

Use of the IOMMU is in fact a common configuration parameter when attempting

to use desktop or gaming GPUs in a hypervisor environment. However, it has been

shown that using the IOMMU device can cause appreciable latency for certain types

of network workloads, (Neugebauer et al., 2018).

For the sake of completeness several benchmarks using this option were tested

during the research phase of this thesis. In contrast to Neugebauer, there was not an

observed difference in completion times of the benchmark with IOMMU disabled or

enabled. This is likely a result of the NVIDIA Tesla cards in use being specifically built

for use in a hypervisor environment. That said, based on other findings, it is likely
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a best practice to enable IOMMU only if it is required in order to successfully pass-

through a GPU to a VM. Adding additional PCIe latency is obviously not optimal,

even if it was not observed here.

3.4 Machine Learning Workflow Sample

In order to test how both virtualization and NUMA can impact the execution

of ML workloads, it’s important to understand how these workloads are structured.

The steps involved in a common ML workload will be summarized here.

All workloads will start with data resting on a storage volume. The closer

the data is to the system bus, the better, so high-speed SSD or non-volatile memory

express (NVMe) disks residing on a SATA 3.x or PCIe bus are preferred. These

transports provide the highest speeds possible for data, with the lowest potential

for transport latency that might be incurred by an Ethernet or fiber-based storage

solution. That said, it is worth considering that because NVMe also shares the PCIe

bus with other devices like Ethernet or GPU devices, that could potentially slow

movement of data to a GPU depending on how the workload is structured.

Once the data is in memory, some preprocessing of the data element may be

performed on the CPU for tasks that a GPU doesn’t do well. Following this, data

can be moved to the GPU over the PCIe bus. In the case of CUDA, which was used

here, the required memory is allocated, and the object is moved from system memory

across the PCIe bus into GPU memory.

Objects in memory on the GPU can then be processed by whatever GPU

program is written for the workload and returned to system memory across the PCIe

bus. Depending on complexity and data set size, all the objects may not fit into GPU

memory at one time. In these cases, data should be moved in batches and returned

to the system in batches.
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Figure 6: Notable python libraries used in experiment code

numa==1.4.6

numpy==1.19.4

psutil==5.8.0

pycuda==2020.1

3.4.1 Code and Language Choices

Fortunately, analyzing the effects of virtualization and NUMA doesn’t require

a replication of the entire workflow described in the previous chapter. By focusing

exclusively on an area of the process that utilizes a shared system resource, we can

write tests that stress that component and see which, if any, parameters can be used

to balance or ensure that a chosen workload gets 100% of the resources it requests.

Before going into further detail about the testing workflow, figure 6 lists the

important external libraries used in the experiment code. numpy, mp, and pycuda are

core to the functionality of the code (Harris et al., 2020), (McKerns et al., 2012),

(Klöckner et al., 2012). numa and psutil are helpful in data collection about where

and how processes ran (Smirnov, 2020), (Rodola, 2021). This chapter will discuss the

specific application and rationale for each package’s inclusion.

The experiment environment skips the loading of data from disk, opting in-

stead to use the numpy library to create in-memory numpy.float32 arrays using random

data of a user-defined size at runtime. This process simulates the workflow steps

where data would be loaded from disk, preprocessed by the CPU, and allocated in

system memory.

numpy.float32 is a reasonable default to choose for this example. The reasons

being is that numpy.float32 represents a single-precision number and is a reasonable de-

fault to choose given performance and support configurations in Nvidia’s card lineup.

Using double-precision numbers also requires a much larger memory footprint, re-
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sulting in longer times to transfer data to the GPU for not much benefit. There is

evidence that even lower levels of precision can still yield well-trained models, and

that the costs of using higher precision don’t outweigh the benefits of being able to

do more training operations in the same time frame (Gupta et al., 2015). In the in-

terest of running on as many devices as possible, and avoiding unnecessary processing

and memory overhead, single-precision is an ideal choice in these experiments as a

reasonable trade off between the speed of lower precision, and the possibility of using

higher precision as future hardware innovation allows for it.

PyCUDA uses the most recent version, 2020.1, though the functions employed

here are all stable portions of the code base, and it is not expected that they will be

significantly altered in the future. PyCUDA is a python interface to the CUDA API

that allows the programmer to make use of the power and speed of CUDA while also

maintaining the convenience, readability, and breadth of the python language. Using

python as a hook into CUDA enables the programmer to make use of popular and

powerful data processing libraries like matplotlib, numpy, scipy, and more while still

being able to write GPU code and execute from the python environment with few

speed penalties. In this manner, the example can be more relevant to how machine

learning code is written now than being a one-off example.

The experiment code also uses the python multiprocessing library. This allows

the user to spawn any number of worker processes to split up the data across them for

movement onto the GPU. During the design phase of the experiment environment,

it would sometimes be observed that a single process could not fully saturate the

PCIe bus. Running multiple workers ensures that the bus is completely consumed,

as well as providing flexibility in the code should it be desired to run against multiple

GPUs. Multiple GPU behavior is configurable at runtime, please see chapter IV for

complete instructions on how to do this. By default, the code tries to account for
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multiple GPUs if available and map them to workers in a round-robin fashion in order

to emulate the behavior of popular libraries that take advantage of multiple GPUs

like TensorFlow, though that is not a specific end goal.

Finally, the numa and psutil libraries are used to help with results collection.

psutil is handy because it can provide all sorts of stats about the execution of a

process. Most important here is that psutil has knowledge of what CPU a process

executes on, which is important for being able to determine if a process ran in a non-

local NUMA node. Due to the way python processes are scheduled by the OS, we can

have certainty that all of a process’ instructions will execute on the same CPU core,

even when more than one processor is available. Since the multiprocessing library

is used, it becomes even more important to track which CPU a process executes on,

since child processes are likely to execute on other CPUs.

3.5 Testing PCIe Performance

In the benchmark code, there are a few key functions that are used to test the

parts of the system that can tell us how load is being processed. This chapter will

discuss specific details about the benchmark code that has been implemented.

The following table details all the switches available in the benchmark appli-

cation.

Switch Default Description
–help, -h N/A Displays the help dialog
–hwinfo DEVICE ID 0 Displays some diagnostic info
–single SIZE 8 Size in MB of an element
–batch SIZE 512 Size in MB of a batch of elements
–elements, -e N 1 Number of elements to use for –single or –batch
–num devices, -d N 1 Number of CUDA devices to use in benchmark
–iterations, -i N 4 Number of iterations to run the benchmark
–workers, -w N 1 Number of concurrent processes to run

Table 4: Command line switches for the benchmark application
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Figure 7: Main method spawning child processes

np_list = [args.single for x in range(args.elements)]

pool = Pool(processes=args.workers)

for i in range(args.iterations):

print("Run {}:".format(i))

total_size = args.single * args.elements

res = pool.map(process_single, np_list)

The benchmark application has three major parts: the main method which

ingests the command line parameters, the data to host memory mover, and the host

memory to device mover. These correspond to various parts of the ML workflow,

and it makes most sense to explain them in order starting with the main method.

As Table 4 illustrates, there are a number of configurable run-time behaviors for the

application. The main method is responsible for ingesting the command line param-

eters and dispatching those to the python multiprocessing module, which determines

how many processes will run the load.

Figure 7 covers the majority of the program loading logic. The application cre-

ates a python multiprocessing Pool object based on the number of workers requested.

Then for the number of iterations requested, the pool will spawn the number of work-

ers specified by the --workers flag and pass a list of elements to the pool. The pool

remains as the parent process and passes each element of np_list off to a child worker

process to complete the load.

There are two ways in which to run the application code, single or batch

mode. Single mode allocates and moves data once per element, while batch mode

is intended to model the behavior of allocating and moving data as one large block.

Moving memory in batches is the recommended method in order to optimize execution

time and batch mode is implemented in a manner to mimic this behavior (Harris

et al., 2020). However, due to the way the --batch switch is implemented, only a
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Figure 8: Python method used to move data from system memory to GPU

def test_child(size):

# Init the CUDA context

cuda.init()

# Create numpy array of n size

np_array = np.random.randn(int(size * (10**6)/4)).astype(np.float32)

# Allocate memory on GPU

mem_gpu = cuda.mem_alloc(np_array.nbytes)

# Allocate memory on host

mem_host = cuda.register_host_memory(np_array)

# Copy np array to system memory

np_to_hmem(np_array,mem_host)

# Copy system memory to GPU memory

cuda.memcpy_htod(mem_gpu, mem_host)

# Clean up CUDA instance

mem_host.base.unregister()

mem_gpu.free()

single worker process is possible due to restrictions in how CUDA manages execution

context. Reasons behind this will be explained further along in this section when

analyzing the data to host memory mover. Both modes have been implemented

as a way to test if batch transfers still perform better when there’s contention for

bandwidth on the PCIe bus.

Before explaining this piece of code, it’s important to understand that CUDA

does not support an execution model where CUDA is initialized in a parent process

and then accessed from a child process. Therefore, all child processes must initialize

their own context when they start up. This is unfortunate from the standpoint that

context creation and destruction does come with a time and resource cost in order to

set up and tear down. Managing context is an important part of production code for

this reason, but for the purposes of this experiment, we control for it by not starting

the timer until after the context creation is complete. In production code, a library

such as Tensorflow or similar would use a threaded approach and shared memory.

Once CUDA is initialized, the full power of PyCUDA is available to the child
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process. This function takes in the size of the desired numpy array and creates

it using the numpy.randn() function and of type np.float32. As discussed in 3.4.1,

float32 is the most commonly-employed precision level as well as being the one best

supported by Nvidia GPUs and therefore a natural choice for the experiment. With

the array created, the space required for it can be registered in memory using the

cuda.register_host_memory()function and then copied to system memory using the

np_to_hmem() function.

This leads to the question of why this step is needed if the numpy object

already exists in memory. In order to move data across the system bus, a memory

region on the GPU device must map to a block of system memory. CUDA has

two techniques to accomplish this, pageable or page-locked (pinned) transfers. cuda.

memcpy_htod() permits the user to pass it a GPU memory allocation and the numpy

object or a host memory allocation as the second argument. The first case executes

the copy as a pageable transfer. However, in the first scenario, CUDA performs its

own host memory allocation and copy to host memory anyway. With system memory

allocation having a small cost in terms of execution time, it is therefore advantageous

in production code to pre-allocate a block of page-locked memory and use that during

ML workload execution.

For the experiment environment, the code uses the explicit allocation of mem-

ory for a page-locked transfer because it allows the isolation and timing of only the

step where data is moved across the PCIe bus from system memory. Otherwise, it

would be difficult to determine if latency is being encountered at the system memory

or PCIe level once outside load is added to the system. In production code, this

would be controlled for by designing code for the device and system RAM size and

pre-allocating all the required memory ahead of time.

The code in Figure 9 just needs a brief explanation. Since the experiment code
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Figure 9: Python method for moving data to main memory

def np_to_hmem(src, dest):

source = src.ctypes.data_as(ctypes.POINTER(ctypes.c_float))

destination = dest.ctypes.data_as(ctypes.POINTER(ctypes.c_float))

size = src.size * ctypes.sizeof(ctypes.c_float)

ctypes.memmove(source,destination,size)

is isolating the movement of data over the PCIe bus, the copy to system memory

needs to be manually implemented. This is accomplished using the python ctypes

functionality, specifically with the ctypes.memmove() function, which is required to

ensure that the memory allocated by PyCUDA will match what is seen by the CUDA

API when it executes. Effectively, ctypes.memmove() will populate the memory it is

told to with C efficiency and ruthlessness: immediately and without regard for what

is there already.

Finally, in terms of specifying --single vs. --batch, there are some implemen-

tation details that bear explaining. Single mode grants more flexibility in terms of

the amount of variance between individual element size, number of workers, and num-

ber of elements. Starting the application with --single 128 -w 2 -e 100 for example,

would create a list of 100 elements of 128 MB in size, use two workers, and run for

one iteration (the default). Due to the limitations of this implementation in terms of

using the multiprocessing library, in --batch mode, the application can only run using

a single worker. This is a result of not being able to share a memory pool among

child processes. When in batch mode, the worker flag is set to one, even if a larger

number of workers is specified. This means that when wishing to test batch mode, it

is recommended to pick a relatively high element size, say a minimum of 1 gigabyte.
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3.5.1 PCIe Bandwidth

PCIe bandwidth is traditionally expressed in GT/s, or gigatransfers per sec-

ond. A transfer refers to the number of operations performed per second by a par-

ticular device across a data channel. While this might seem unusual for a computing

device, it’s important to remember that PCIe is a multi-layered standard with multi-

ple points of interaction. The PCIe standard defines a transaction layer, a data link

layer, and a physical connection layer. In other words, the maximum speed of a PCIe

device is a function of its PCIe revision, and the number of PCIe lanes that a device

uses.

The most important consideration for this thesis is the number of lanes that a

device uses. A PCIe device will be classified as a 1x, 2x, 4x, 8x, 16x, or uncommonly,

a 32x device. Each PCIe lane has two pairs of wires used for sending and receiving

data, and as the number of lanes on a device increases so too does its throughput.

With PCIe 3.0, each lane can operate at a transfer rate of 8 GT/s, or 2.0 GB/s total

bandwidth per lane for send and receive. That is a bit of an important detail as

well — bandwidth is the total data transfer for both directions, so the maximum

throughput for send is 1.0 GB/s and receive is also maximum 1.0 GB/s. This works

out to a specification maximum bandwidth of 15.8 GB/s in a 16x slot.

There is also transactional overhead involved with PCIe data movement. In

benchmarking this during the development phase, it was observed that in general 6.1

GB/s is the average speed at which data can be sent, and 6.5 GB/s for receiving

data from a PCIe device when the total data sent was greater 1024 MB. This works

out to average about 12.6 GB/s total, a number that becomes more stable as the

size of the data transfer increases. Results here correlate with Intel’s PCI Express

High Performance Reference design, which indicates that the expectation is that
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throughput should increase and stabilize as the size of the payload increases (Intel,

2018). Please see Chapter V, specifically the baselines chapter for a more complete

picture of what this looks like.

As a final point on the PCIe specification — while the PCIe 4.0 specification

has been ratified and was released in its final form in summer 2017, the first systems

from AMD and Intel to use it were only released in January 2019 and mid 2020

respectively. Few GPUs support the 4.0 specification at the publishing date of this

paper, and it may be a couple more years before support is widespread.

There are a few final things to say about PCIe that have been a part of

the specification from its very first version. The total number of PCIe lanes that a

computer has is a sum of how many lanes are provided by the CPU and how many

are provided by the motherboard chipset via electrical switches. What this means

is that there is a limit to how many lanes are provided for peripheral devices, and

furthermore, available lanes will be divided among the various slot types. Take for

example Intel’s Haswell chip, which defines a maximum of 32 PCIe lanes provided by

the CPU. If a motherboard vendor decides to divide the PCIe lanes in an arrangement

such as 16x, 8x, 4x, 2x, 1x, 1x, the ability to have multiple GPUs running at their

rated speed is limited. The PCIe specification allows for a slot to accept larger cards

than actually connected lanes, and therefore it is important to validate that a card is

connected to the correct slot in order to maximize its performance. In the example

above, only one GPU would be able to run at the full 16x speed, and any subsequent

devices added would have their throughput halved.

3.5.2 Multiple GPU scenarios

One of the switches for the benchmark application, -d or --num_devices, allows

the user to control the number of CUDA devices the application will use. This option
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is available as a convenience for environments where PCIe throughput cannot be

reached with a single device. As an example, these may be environments that have

PCIe 4.0, but older GPUs that are not capable of saturating the bus. When this

option is in use, the application will assign GPUs to workers in a round-robin scheme.

In limited testing, this functions fine and definitely ensured that the test system

was always completely saturating the PCIe bus. The default is set to one, and the

application by design does not respect the system environment variable CUDA_DEVICES,

which can be used to mask or enable devices as needed.

For environments that want to use a specific CUDA device, pass the argument

-c cuda_device_id. CUDA devices are 0-indexed by the NVIDIA driver and can be

identified by using the --hwinfo flag from the benchmark application. This will limit

the application to using the single specific GPU, the application does not implement

a way to control for more than one specific device.

3.6 Simulating non-ML workloads

Since the experiment environment is concerned with simulating general pur-

pose virtualization environments, some benchmarks need to be run in an environment

that has non-ML workloads running. In the interest of trying to keep the scope man-

ageable the experiment environment does not try and set up numerous various work-

loads like databases or web servers. Rather, stress-ng is used to tax VMs at various

CPU/memory/bus levels. These will generally try to adhere to some high-level usage

patterns, such as databases having high disk I/O and memory transactions, or web

servers that run at a constant CPU utilization and will be noted as such in results.

Non-ML workloads can be deployed in batches or clusters running various

workloads types. Terraform can be used with the various template files provided to

deploy different swarms of generic traffic nodes. Once they are provisioned, use the
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Description Switches
CPU stress only –cpu-load 50 –cpu-load-slice 0
Add memory –cpu-load 50 –vm-bytes 1G –cpu-load-slice 0 -vm 4 –cpu 24
Add NUMA stress –cpu-load 50 –vm-bytes 1G –cpu-load-slice 0 -vm 4 –cpu 24 –numa 24

Figure 10: Load Generator Workload Types

bash scripts to issue commands to them. Since an unknown number VM instances

may be spawned for this purpose, the test automation does not depend on network-

ing being available. Rather, all the VM instances can be controlled using an open

source component written in the Go language called govc. govc is part of the govmomi

library, which is an implementation of the VMware API using Google’s Go language

(MacEachern, 2021). govc allows the user to run commands on a VM without network

access by making use of the hypervisor to guest interface via VM support tools. The

bash scripts are tuned to use the Terraform outputs and dispatch commands to a

group of these non-ML workloads VMs using govc.

Figure 10 summarizes all the stress-ng command-line switches used during the

experiments.
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Chapter IV.

System Documentation

This chapter specifies how to reproduce the execution environment.

4.1 Basic VM instance

This thesis uses Ubuntu Linux 20.04 as the guest OS for all VM instances.

Ubuntu Linux 20.04 is a long-term support version released April 23, 2020, which

means it values stability and reliability and will be supported for a period of five

years. Ubuntu releases are popular platforms for ML researchers as well, and enjoy

frequent updates from third-party vendors like Nvidia, making the OS a natural choice

for both the GPU-backed VM instances and the load generation VM instances.

Before taking any other step, download an installation image of the Ubuntu

installer from https://ubuntu.com for Ubuntu LTS 20.04. Ubuntu Linux is distributed

in both desktop and server editions, but these instructions can be used to reproduce

the benchmark environment with either edition. The benchmark environment does

not use any GUI-based tools that are included with Ubuntu Desktop, so the smaller

download size of the server edition may be preferable.

The next step is to create a template VM instance that can be used as a base

for the other resources that must be created. If desired, the user can build the VM

instance manually using the GUI. However, github.com/broestls/virtual-numa-test
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includes code using Terraform to help manage these steps.

Start by cloning the thesis repo, github.com/broestls/virtual-numa-test, and

entering the environment/globals folder. This folder contains configuration parameters

that need to be set, such as the ESXi host to use, the virtual network to use, and other

common parameters. The comments in that file will also cover the necessary steps

to set up a credential set for future steps. Once those configuration parameters are

complete, change to the terraform/bootstrap director, which contains the Terraform

code necessary to build the VM instance template that can be used as a base for every

component in the experiment environment. Building this portion of the experiment

of the environment will require the user to run the commands terraform plan and

terraform apply in the bootstrap directory.

The result of running the bootstrap code is that there is a new VM instance

ready for guest OS installation. From the ESXi interface, open a console for the new

VM and attach the installation media downloaded in an earlier step and power on

the VM. Complete the installation using the defaults, unless you know a different

configuration is needed for your situation. The installation is followed by a reboot,

at which point the VM instance should be ready for use. Figure 11 lists the common

packages that can be installed using apt using the console or the Terminal application

if using Ubuntu desktop.

Figure 11: Required packages for benchmark VM instance

openssh-server

python3-dev

python3-setuptools

jq

stress-ng

At this point, shut down the VM and from the ESXi interface, take a snapshot

of the VM with the name ubuntu-2004-stress-ng. This will be the base for the load
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Figure 12: Commands used to install CUDA 11 on Ubuntu 20.04

wget <NVIDIA Driver download link>

sudo sh NVIDIA-Linux-x86_64-450.57.run

wget https://developer.download.nvidia.com/compute/cuda/11.2.1/

local_installers/cuda_11.2.1_460.32.03_linux.run

sudo sh cuda_11.2.1_460.32.03_linux.run

git clone https://github.com/broestls/thesis-code

generation VM instances. Start the VM back up for additional software installs.

The next steps will require the retrieval of a download link from an external

site and will be used for the first command in figure 12. Nvidia’s Linux driver is

required and the download link can be retrieved from https://www.nvidia.com/en-us/

drivers/unix/. The latest version in the 460.x series of Nvidia drivers is appropriate

for CUDA 11. Copy the link and use it where specified in Figure 12. With the steps

in Figure 12 complete, once again shut down the VM and take another snapshot,

using the name ubunutu-2004-gpu.

4.2 GPU-backed VM instances

From the experiment environment repo, switch to the environment/gpu-instance

directory. Terraform provisioning steps (terraform plan; terraform apply) can be used

to deploy a total of four GPU-backed VM instances. This process makes use of the

concept of linked clones, where each of the VM instances use one of the snapshots

taken of the template VM made in the previous section. In this manner, VMs can

quickly be spun up and destroyed while using very little disk space.

Terraform will power up the VMs automatically. Once that is complete, it is

up to the user to log onto each node to execute the benchmark application as needed.

Please see the section 3.5 for details on how to tailor the benchmark application to

specific scenarios.
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4.3 Non-GPU Load Generation

From the experiment environment repo, switch to the environment/load-generation

directory. The file terraform.tfvars file controls how many load generators will be

spawned. Alter the num_load_generators and load_profile variables to set the number

of VM instances to spawn and what stress-ng load will be executed on each one. When

terraform apply is run, the VM instances will be quickly spawned and begin running

their specified stress-ng command until a terraform destroy command is issued.
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Chapter V.

Experimental Results

This chapter discusses in detail the results of the experiments set up to test

where machine learning workloads performed best or worst. The beginning of the

chapter will present baseline numbers for different common scenarios with GPU and

no other workloads. That will be followed by a section that presents results when

running multiple GPU-backed VM instances in parallel. Next, some results involving

single GPU-backed VM instances and non-ML workloads will be presented. The

final section will present results that involve multiple GPU-backed VM instances and

non-ML workloads, i.e., a scenario designed to model real-world load.

Each experiment result will include a table with the configuration used, some

contextual information about what is intended with that particular configuration,

and what result was expected. Where appropriate, charts or graphs will be included

to visually explain results. Each result section will conclude with a summary of what

was observed along with notes about the run and comments on how it differed from

the expectation, if applicable. In some cases, figures may be compiled into a single

chart and referenced in the text depending on the size of the chart.

Prior to each experiment group each system was rebooted and allowed 15

minutes to perform startup tasks and return to an idle state. Also, unless otherwise

noted, each GPU-backed VM instance runs with a total of four processes running the
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benchmark application running in a batch mode and static/single processing mode.

Initial sample runs indicated that PyCUDA and PCIe 3.0 on the test hardware server

was able to consistently max out the roughly 6 GB/sec bandwidth available on the

bus. While it was observed that each process could move 6.1 GB/sec of data on

their own, in practice running four processes insures that each benchmark run is fully

saturating the bus with data at every interval possible.

5.1 Baseline Results

This set of experiments exist in order to establish baseline results. For each

experiment in this group, a single GPU-backed VM instance is run using different

CPU/PCI placement scenarios: no CPU affinity, local CPU affinity, and non-local

CPU affinity. Each GPU-backed VM instance will have unfettered access to system

resources, bounded only by the fences placed on CPU and RAM utilization by the

hypervisor. System resource contention is minimal as there are no other VMs running

that could cause even the slightest speed bump for the GPU-backed VM instance.

Predictions for this set of experiments is that GPU-backed VM instance will

be able to saturate the entire bandwidth available to a 16x PCIe card. This actually

isn’t a bold prediction, since the baseline scenario is also the target parameters used

during the development phase. During development of the application, there were

plenty of examples of seeing the application use all the available bandwidth regardless

of CPU affinity.

For these experiment runs the default GPU-backed VM instance size for each

test system was used, 16 virtual CPU and 256 GB or 64 GB of RAM with no other

VMs running on the hypervisor host. On the test machines, this configuration was

guaranteed to fit in a single physical NUMA node because it did not extend over a

core or memory boundary. lscpu output confirmed that a single NUMA node was
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available in the guest OS. It can be cleanly scheduled on either CPU socket and should

remain there for the duration of its execution.

For this batch of experiments, the command used was python bwt.py -d 1 -i 3

-w 1 -e 10 -n <run_name> --single <element_size> for the single transfer process and

--batch <element_size> for the batch transfer mode. This translates to using a single

device, repeat the run for three iterations, and use one worker process. Single mode

used 10 elements, whereas batch mode is a single element per iteration.

Figure 13: Baseline data transfer rate for single mode

Figures 13 and 14 illustrate the results, and the first thing to note from these

results is that we can more or less confirm the findings from Walters et al. In pass-

through mode, we can match or come within a couple percentage points of bare-

metal GPU performance. The test program is easily able to reach the PCIe 3.0 data

transfer rates that were seen during the development phase and were detailed in 3.5.1.

Therefore, a couple conclusions can be drawn — the first being that a single VM can

easily consume all the physical bandwidth of a 16x PCIe slot by itself, and that

this can be accomplished using a fraction of total system resources available at the
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Figure 14: Baseline time elapsed for single mode

hypervisor level. Indeed, even in smaller test cases using four or eight virtual CPUs,

these results remained unchanged.

Several more observations are worth noting. It is apparent that the systems’

CPU interconnect between NUMA domains contains plenty of bandwidth to be able

to continue to saturate a PCIe slot, as bandwidth values remained consistent across

all baseline scenarios. So it can be said that in a situation with no other load on the

hypervisor host, NUMA effects are non-existent for moving data across the PCIe bus.

As stated in the intro paragraph to this chapter, this CPU configuration is

always able to be scheduled on a single CPU socket from the standpoint of the hyper-

visor. Indeed, even when CPU affinity is not set, the VM instance stayed constrained

to a single physical CPU and was never scheduled across two physical CPUs. The

benchmark application also displays which CPU a worker node is executed on, and

during these tests it reported using at least two distinct CPUs. On the hypervisor

side, this behavior was reflected by the hypervisor assigning a different physical CPU

core when the single worker node swapped to a new CPU in the VM. Curiously, even

when not using any CPU pinning for the VM, the hypervisor preferred to assign CPUs
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on the second CPU socket regardless of the location of the PCI card in the system.

To confirm this behavior, a new experimental run was enqueued using 10

iterations per run. The results of those runs confirmed that without any CPU affinity

being set at the hypervisor level, the GPU-backed VM instance continued to be

scheduled on the second physical CPU socket in all but the case where CPU affinity

was constrained to physical CPU 1. There was not a good explanation for this

behavior, but at least in this case there is not a penalty for it.

5.2 Workload spanning multiple NUMA nodes

In this scenario, a VM instance is large enough that the hypervisor must

schedule it across multiple physical NUMA domains. The rules for the hypervisor

used in the tests are reviewed in section 3.1. Here, the VM CPU configuration is set

to use 24 CPUs and 384 GB of RAM. This ensures that the hypervisor will advertise

to the VM instance that multiple NUMA domains are available. This can be validated

using the lscpu command, which is shown in figure 3.

As in the previous experiment, no other load has been added to the system

yet. The GPU-backed VM instance should be able to utilize 100% of its resource

assignment without any contention. Based on the results from the baseline batch

of experiments, it is not expected that this scenario will yield significantly different

results.

As expected and shown in figures 15 and 16, the results did not differ for

this experiment. If anything, it reinforces the fact that throughput improves with

data size and that in an unburdened system, NUMA effects simply don’t appear to

be an issue. In terms of scheduling at the hypervisor level, it was indeed observed

that CPUs from both NUMA nodes were utilized. This set of experiment runs did

demonstrate an interesting part of the hypervisor scheduler though that couldn’t be
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Figure 15: Data transfer rate for single mode when VM instance sees multiple NUMA
nodes

quite quantified during the baseline experiments.

During this experiment, it was much more clear that from the guest OS point

of view, a worker can keep executing on the same CPU over and over. The hypervisor

takes a much different view though. During a run in batch mode using a data size of

4096, it was observed that the benchmark application used the same CPU for eight

of the 10 elements in the set. However, the hypervisor used a total of six distinct

physical CPUs to do the work. This presents an interesting circumstance for the user

who might use the python library numa to try and control which cores a workload

executes on. The actual execution core is obfuscated from the user, and as a result

it is fruitless to try and control for NUMA at the guest OS level.

5.3 ML Workload on Mixed-use System (CPU-bound Load)

With baseline numbers established, the next step is to make it more difficult for

the GPU-backed VM instance to get access to resources. This set of experiments will

start with a single load generation node, perform a run of the benchmark program,
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Figure 16: Time elapsed for single mode when VM instance sees multiple NUMA
nodes

then add more load generation nodes, and repeat until total system utilization has

reached 70%.

For this set of experiments, the load generator nodes will initially be limited to

an eight CPU configuration. This is to ensure load generator nodes will not expand

past a NUMA boundaries. The load generation will use stress-ng --cpu-load 50

--cpu-load-slice 0 --cpu 8 to simply set the utilization to 50% across on all load

generation nodes.

The expectation is that the GPU-backed VM instance will continue to run full

speed until a large enough number of load generation nodes come online and cause

CPU contention for the GPU-backed VM instance. In the baseline scenarios, it should

be noted that getting full speed on the PCIe data movement required 100% CPU.

That is likely to be the only thing that will cause any slow down until the nodes that

are bigger than a single NUMA node are added into the mix.

Results from this experiment were a bit surprising in that a total of 10 load

generators were brought online and using a pattern where they iterated between 0 and
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50% utilization over a random gap of time between 0 and 0.5 seconds. At 10 running

load generators with eight CPUs each plus the GPU-backed VM instance, the CPU

utilization for the test system was at 100%, each individual CPU core had an average

utilization of 50%. The experiment began with a single load generator, then two,

and then they were doubled every pass until 10 load generators were running. Only

one run displayed any significant change to the throughput that the GPU-backed

VM instance was able to achieve. That run was one where 10 load generators were

running, the application was in single mode, and using an element size of 64 MB. The

bandwidth on that iteration was 5.6 GB/s . 6.1, a roughly 8% performance penalty.

Total experiment time was over a period of 45 minutes, though not fully loaded

that entire time. It is a good sign that in an environment where the non-ML workload

is constrained to just uncomplicated CPU operations, a single ML workloads can run

with little encumbrance.

5.4 ML Workload on Mixed-use System (CPU and Memory-bound Load)

This scenario builds on the previous one by continuing to stress the CPU at

50% and also adding memory allocation and freeing to the mix. Load generation

VMs will continue to use the same VM hardware profile as in the previous scenario

of eight CPUs and 32 GB of RAM. Memory allocation will run using four workers,

which will allocate and free 1 GB of RAM each time they run. The command passed

to load generators is stress-ng --cpu-load 50 --vm-bytes 1G --cpu-load-slice 0 -vm 4

--cpu 8

For this set of parameters, expectation continues to be that until the system

becomes heavily loaded there won’t be much of a negative effect on PCIe speed, if

at all. Memory allocation operations don’t touch the PCIe bus. In this case, the

potential for slowdown for the GPU-backed VM instance is if a large single payload
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or multiple smaller payloads need to traverse between NUMA domains at the same

time as a memory transfer operation for a GPU-backed VM instance that is also

trying to traverse NUMA domains.

Figure 17: Data transfer rate sampling when loading CPU and RAM

Figure 17 shows the results of this particular scenario. Results were a surprise

on the whole. Even though the expectation was to see greater penalties for data

movement as total system utilization increased, it never came to pass. There were

some benchmark runs that yielded slightly slower data throughput to the GPU and

Figure 17 highlights some of these. The worst case scenario here was with the 64 MB

element size, where multiple iterations reported a data transfer speed of 5.79 GB/sec,

or about a 5% penalty. In aggregate the results were slightly worse than when just

CPU was being stressed, overall there is only a 1-2% slowdown over the GPU-backed

VM instance running its workload as the only tenant on a hypervisor system.

These experiments are focused on analyzing potential effects on PCIe data

movement speeds, but it is worth noting that it was observed that total execution

time for each benchmark run (i.e., context creation, memory allocation, transfer,

memory freeing, and context destruction) were slightly longer (about 1 second) at
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higher levels of hypervisor system utilization. This could become a factor depending

on the types of workloads being mixed together. To be fair though, stress-ng is likely

allocating and freeing memory more frequently than a real-world application would

be doing.

5.5 ML Workload on Mixed-use System (Multiple NUMA-aware VMs)

This scenario uses the CPU and memory stressors of the previous experiment,

but the load generating VM instances use a virtual CPU configuration that is certain

to be scheduled across multiple physical CPU sockets. stress-ng --numa will cause

the worker processes to spread move data in such a way that they stress the CPU

interconnect and CPU caches. The load generator nodes also need to be resized in

order to use the –numa switch for stress-ng, as it requires the system to have more

than one NUMA node. Command used was stress-ng --cpu-load 50 --vm-bytes 1G --

cpu-load-slice 0 -vm 4 --cpu 24 --numa 24

Expectation in this experiment that some lag on the PCIe bus will be observed

here as the GPU-backed VM instance is also configured with no CPU affinity and is

free to be scheduled on any CPU.

The results here were surprising in the sense that they didn’t really match

expectation. Due to the higher virtual CPU configuration of the load generation VM

instances, the hypervisor system’s resources became constrained much more quickly.

Just the GPU-backed VM instance and one load generator alone was enough to cause

the hypervisor to report that 81% of the CPU was consumed. With two load generator

VM instances running, CPU consumption quickly rose to 100%.

Once three or more load generators were running, more of the 4-5% penalties

started to appear in the results, though batch mode results stayed consistent as

they have throughout the experiments so far. The results do confirm a hypothesis
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put forward in the previous section, that more CPU and memory resources that are

allocated on non-local NUMA domains increases the chance that the GPU-backed

VM instances may experience lower performance. That said, that chance is also

fairly low, especially in batched transfers that don’t need to allocate/free memory

constantly. At this point, it is looking clear that if one is seeking the most consistent

results, allocating a large block of memory and using that throughout model training

is a more reliable methodology to adopt.

5.6 ML Workload vs ML Workload

This section focuses on test of how PCIe performance is affected when multiple

ML workloads are running by using multiple GPU-backed VM instances in different

configurations. Based on the results of the previous experiments, it appears as though

workloads that only traverse the CPU caches, system memory, and between NUMA

domains is not able to strain the system in such a way that movement of data to a

GPU device is severely affected. For this set of experiments, only ML workloads run

on GPU-backed VM instances will be used. The focus is on maximizing utilization of

the PCIe bus to the greatest degree possible with the hardware available on the test

system.

5.6.1 Experiment Setup

Table 5 presents a total of seven different arrangements of GPU-backed VM

instances using the four available GPUs in the test systems. These different align-

ments of GPU-backed VM instances test the various ways in which GPUs can be

allocated to VM instances to run ML workloads. Scenario one and four best resemble

what would be considered to be best practice, where the GPU-backed VM instances

are placed in the same NUMA domain as their backing device.
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Scenarios two, three, five, and six use configurations which place greater num-

bers of VM instances in a different NUMA domain than their backing GPU device.

It should be noted that in these scenarios, the configurations are intentionally set to

induce contention between the GPU-backed VM instances. Seeing these in a real-

world situation would be unusual, but it is necessary in order to be able to observe

and measure any possible contention.

Scenario seven is intended to model a real-world configuration made without

consideration of NUMA effects. For this scenario, all the VMs use 24 virtual CPUs so

that they are NUMA-aware and can be scheduled on either physical NUMA domain.

The GPU-backed VM instances also do not have any CPU affinity configuration in

place, the physical CPU core they execute on will be scheduled at the hypervisor’s

discretion. This details of this configuration and its implications are discussed in

sections 5.2 and 5.5.

Except for scenario seven, which uses a specific virtual CPU configuration

noted in the previous paragraph, all other GPU-enabled VM instances use 16 CPUs

and 64 GB of RAM.

Scenario Number of Nodes Condition
1 2 GPUs in a local domain to owning VM
2 2 Both GPUs are in a non-local domain to owning VM
3 2 GPUs are both non-local to owning VM
4 4 GPUs are all local to owning VM
5 4 no GPU is local to its owning VM
6 4 half the GPUs are local and half are not
7 4 All nodes are NUMA-aware, no pinning

Table 5: ML vs. ML workload experiment scenarios

This experiment group differs from previous ones because of the involvement

of more than a single GPU-backed VM instance and therefore has more complex

interactions of hardware components. Scenario one is there simply to set a baseline
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set of results for two GPU-backed VM instances. There is a clear expectation that

throughput should be affected in every other scenario, starting with scenario two. This

expectation became evident during development, where unoptimized testing against

multiple GPUs was a reliable way to see negative effects on PCIe throughput.

One other factor that bears mentioning is that there may be some speed penal-

ties due to the way the Tesla M60 cards in the primary test system are architected.

Since the M60 places two GPUs on a single PCIe expansion card, there is a very high

chance that there will be immediate speed penalties upon using two GPU-backed

VM instances that access the same PCIe expansion card. In those cases, the more

interesting result will be if the load is balanced fairly by the hypervisor and system

hardware. This should provide some insight of how fair the sharing of bus resources

is once they start to become constrained.

5.6.2 Results

This section will review results from all seven scenarios presented in Table 5.

Results are broken down into two subsections, section 5.6.3, which covers results using

2 GPU-backed VM instances (scenarios 1-3) and section 5.6.4, which covers results

using 4 GPU-backed VM instances (scenarios 4-7).

Figures 18 and 19 for the experimental runs that end in 1. These correspond

the experimental profile in line 1 of table 5. Those are for two VM instances with

GPU executing on a single physical CPU with the PCIe devices residing on the same

PCIe lanes owned by that processor. It can be observed that with two GPUs in use,

the VMs can still sustain around 6.0 GB/s of throughput each to the GPUs.
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5.6.3 Results with two GPU-backed VM instances

This section will discuss the results from scenarios that used only two GPU-

backed VM instances. Scenario 1 (Table 5) serves as the baseline for all multiple

GPU experiments. In scenario 1, two GPU-backed VM instances were benchmarked,

each with CPU affinity for the VM instance set to a separate physical CPU socket

and backing GPUs located on PCIe lanes owned by that same processor. As shown

in Figures 18 and 19 (Scenario 1), this set of parameters allowed both GPU-backed

VM instances to operate at full speed.

Figure 18: Baseline data transfer rate and time elapsed for multiple ML workloads
(single mode)

In addition to the baseline configuration, scenarios two and three also demon-

strated full speed for all GPU-backed VM instances in both single and batch mode.

Scenario two involved two GPU-backed VM instances in different NUMA domains

with both their backing devices being non-local to their NUMA domain. No perfor-

mance drop was observed, even though both devices had to send data from non-local
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Figure 19: Baseline data transfer rate and time elapsed for multiple ML workloads
(batch mode)

memory. Likewise, scenario three (two GPU-backed VM instances in the same NUMA

domain with GPU devices non-local) showed no drop in performance regardless of

data size.

There is one difference between the results in single and batch mode that

merits further explanation. In all instances of the benchmark in single transfer mode

regardless of whether two or four GPUs are used, it can be observed (and shown on

the graph in Figures 18, 20, 21, and 25) that transfers with data element sizes of four

and eight MB ran slightly slower. This is a function of PCIe data transfer overhead

and data encoding. As Intel details in their PCIe reference design documents, as

data size increases, the overall effects of the overhead involved data encoding and

connection negotiation are minimized, leading to greater throughput.

As a result, it is worth taking into consideration that smaller element sizes

should at least be batched into 64 if not 128 MB chunks. Doing so reliably provides
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around a 5% speedup in overall transfer speed over the entire transfer.

The results with two GPU-backed VM instances were encouraging in the sense

that they provide confirmation that there is plenty of bandwidth, even crossing NUMA

domains for two machine learning workloads. As the previous experiments have

shown, a single GPU-backed VM instance working in its own NUMA domain never

saw any penalty to its performance. It is safe to say that this is also true for two

GPU-backed VM instances.

5.6.4 Results with four GPU-backed VM instances

This section will discuss the results of scenarios that used four GPU-backed

VM instances. Scenarios four through seven in Table 5 are those that involve four

GPU-backed VM instances. These results make clear that at least four GPU-backed

VM instances are needed in order to see any negative effects on throughput and will

be discussed below.

The biggest takeaway from scenarios four through seven is that penalties to

throughput were seen by one or more GPU-backed VM nodes in multiple scenarios.

However, this wasn’t true of both modes, as batch mode performed well in two of the

four scenarios where single mode only performed well in a single scenario.

The differences between single and batch mode in scenario four are worth

examining closer, as the parameters were not expected to cause any contention. Sce-

nario four is one that doesn’t have any GPU traffic crossing into non-local NUMA

domains, and it had a poor result for single mode anyway. After some review of the

results, it appears as though the slowdown was likely the result of some competition

for CPU time between the two GPU-backed VM instances. In the case of single mode,

because each new child process that is spawned could be executed on another CPU

by the guest OS, it increases the chance that two processes could accidentally be
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Figure 20: Transfer rate and time elapsed for 4 GPU-backed ML workloads (single
mode), scenario 4

scheduled on the same physical CPU core. This effect is more likely to appear when

using CPU affinity settings for each VM, which is the case for all scenarios except

seven. Ultimately, single mode in scenario four suffered a 12% throughput penalty at

a 64 MB element size and a 7% penalty at the 128 MB element size.

scenario five highlights the worst-case scenario, where no GPU-backed VM

instance is in the same NUMA domain as its backing GPU device. Any CPU time or

memory allocation has to cross between NUMA domains, and this must happen for

all four GPU-backed VM instances In both modes, it can be seen that two of the four

the GPU-backed VM instances are relegated to splitting the available bandwidth and

the implications of this become worse as element size increases. Earlier in the results

chapter, it was mentioned that it was important to determine not just if resources

would be constrained, but how they would be split when those conditions occurred.

Based on the results here and in scenario seven, it would appear that those GPU-
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Figure 21: Transfer rate and time elapsed for 4 GPU-backed ML workloads (single
mode), scenario 5

Figure 22: Transfer rate and time elapsed for 4 GPU-backed ML workloads (batch
mode), scenario 5

59



backed VM instances that started first (even if it was only seconds earlier) will get

their resource request fully fulfilled. Those VM instances that are left to compete end

up splitting the remaining resources evenly. While it could not be shown with the

equipment available, the expectation is that this effect would continue this trend as

the number of VM instances as the number of GPU-backed VM instances increased.

Scenario six appears to be an arrangement of system resources that is easier

for the hypervisor to handle, as all GPU-backed VM instances were able to complete

their benchmarks at full speed. As only two of the four GPU-backed VM instances

need to traverse into another NUMA domain, demand on the system bus is much

lower than in scenario five. This scenario gives support to the notion that there are

two configuration parameters that need to be taken into consideration when sizing

these workloads. The first point is one that this thesis aims to prove: that taking

measures to avoid breaking NUMA locality are worthwhile and improve outcomes for

ML workloads. A second point is that while using CPU affinity to control for NUMA

effects with GPUs, it is also important to take into consideration that using CPU

affinity also makes work harder for the hypervisor CPU scheduling. This is shown

when comparing outcomes from scenario four to six -— scenario four should have run

at full speed, but NUMA isolation did not always lead to the expected outcome.

This chapter will close with discussion of scenario seven. In scenario seven,

all CPU affinity for the VM instances was disabled and furthermore, each VM was

assigned 24 virtual CPUs. As in previous scenarios on this hypervisor host, config-

uring 24 virtual CPUs for a VM instance causes the hypervisor to assign a NUMA

architecture to the VM instance. Doing so allows the VM to be scheduled on either

physical processor and NUMA domain, though the VM instance has no actual control

over which physical CPU processes will be executed on. Scenario seven is intended to

represent an unoptimized real-world scenario, where the GPU-backed VM instances
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Figure 23: Transfer rate and time elapsed for 4 GPU-backed ML workloads (single
mode), scenario 6

Figure 24: Transfer rate and time elapsed for 4 GPU-backed ML workloads (batch
mode), scenario 6
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can be scheduled and allocate memory in either NUMA domain, no CPU affinity is

set on the VM instances, and as is the case in other scenarios — the hypervisor does

not have visibility into the I/O requests to a peripheral device by a VM instance

using pass-through mode.

Figure 25: Transfer rate and time elapsed for 4 GPU-backed ML workloads (single
mode), scenario 7

It would appear that in addition to being an unoptimized real-world scenario,

scenario seven could also be considered a worst-case scenario. Results match those

that were seen in scenario five, which was by design supposed to be a difficult ar-

rangement of resources for the hypervisor to handle. Resource collisions occurred,

and first consumer to those resources won while the other VM instances had to split

what is left over.
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Figure 26: Transfer rate and time elapsed for 4 GPU-backed ML workloads (batch
mode), scenario 7
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Chapter VI.

Summary and Conclusions

This chapter provides conclusions based on the data from chapter V and rec-

ommendations for how to optimize workloads to avoid negative effects on throughput.

The first section will summarize the results from the various experiments and contex-

tualize why results occurred in a particular way. After the results summary, there is

a section that goes into detail about the specific configuration parameters to use in

order to minimize NUMA effects on ML workloads. These findings will also be listed

in Appendix B, though without as much explanation. Finally, the chapter closes with

a short summary of aspects to consider when conducting future research in this area.

6.1 Knowledge Gained

One of the surprises here is how little overall system load played a part in the

results observed. System traffic directed to and from peripheral devices is the single

biggest factor affecting PCIe speeds. It is only within the most dire of CPU usage

circumstances that performance appeared to be affected, and the only real penalty

was a slight (≤ 0.5 sec) extra latency in system memory allocation times and/or

CUDA context init/destruction tasks.

Furthermore, in the scenarios where only two GPU devices were in use it was

difficult to see any significant effect on average PCIe bandwidth. In the cases where
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bandwidth speeds were less than the maximum, the throughput was still only im-

pacted by a few percentage points and may be flattened out over the timescale of a

much larger data transfer. Once four GPUs were involved, there were more occur-

rences of 50% throughput penalties for half the GPU-backed VM instances. This gives

support to the notion that as the number of devices utilizing the PCIe bus increases,

the potential for impact to the performance of that bus increases in kind. The only

situation where this wasn’t observed was the alignment profiles where GPU-backed

VM instances were constrained to the same NUMA domain where their backing GPU

device resided. Another manageable situation is when least some instances were con-

strained (as shown in alignment profile five).

This effect is likely to be magnified as the number of GPUs installed in the

system increases. The full extent of this factor was likely not able to be observed with

the test systems available here due to the relatively low number of installed GPUs.

These conditions are explained in the limitations and known issues section. With that

said, the conclusion to be drawn here is that controlling for NUMA locality in devices

installed in a pass-through context is important in order to maximize performance

for all clients. As discussed in section 5.6.4, when pass-through devices are used by a

VM instance the hypervisor loses visibility for that device. On the flip side of that,

the condition in which the VM instance doesn’t have any knowledge of which physical

CPU its processes are executing on leads to the potential for poor performance when

using pass-through devices. Manual intervention through setting NUMA domain

affinity is likely the only tool available to administrators of hypervisor systems to

mitigate this shortcoming at this time.
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6.2 Configuration Recommendations

Armed with the knowledge gained from this thesis, the following are some

recommended configuration parameters to apply to virtualized systems that are going

to use GPUs. The first place to apply optimizations is at the system level.

In the system firmware management, power management should be set to off

or maximum performance in order to limit CPU throttling and keep system thermal

management from throttling down and putting extra thermal load on the GPUs.

Virtualization extensions should be set to on, otherwise the hypervisor will run very

poorly or not at all. Node interleaving should be set to off, as it allows each NUMA

domain to be responsible for its own memory and devices rather than having the

system create a unified memory map without regard to the memory’s distance from

its owning processor. The last required setting is that Single Root I/O Virtualization

(SR-IOV) must be set to enabled or true. Briefly, SR-IOV allows the system to

differentiate between the various PCIe functions being executed in the system and is

necessary in order for a VM to take sole ownership of a pass-through device. Finally,

if the system firmware provides an option to enable IOMMU, that should be enabled

for the benefit on the hypervisor even if the GPU card is hypervisor-aware. The

implications of this option are discussed in section 3.3.

At the hypervisor level, the GPUs to be used in pass-through mode need to be

marked for pass-through. In ESXi, this can be set from the Host Configuration menu

under Hardware, PCI Devices, Configure Passthrough. Changing this configuration

setting requires a hypervisor host reboot.

VM instances require both some common and advanced configuration param-

eters. The first is that all VM instance memory must be reserved. This is a boolean

option in the vsphere API, memoryReservationLockedToMax = true, but it can also be
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toggled via a VM’s configuration in the GUI. In order to use a pass-through device

with a VM, the following options must also be set: pciPassthru.use64bitMMIO = true,

and VM instance firmware should be set to use EFI. Finally, there is an advanced

setting: pciPassthru.64bitMMIOSizeGB, whose value depends on how many cards are

being used in pass-through mode and how much RAM they have. To determine the

correct value for pciPassthru.64bitMMIOSizeGB, multiply the number of pass-through

devices being attached to the VM instance by the amount of RAM on each card,

rounded to the next power of two. The experiment environment used a value of 16,

since multiple cards were used during development. There does not appear to be a

penalty for over-sizing.

Appendix B has specific configuration parameters to be applied to the hard-

ware system itself, the hypervisor, and the VM instances.

6.3 Limitations and Known Issues

There is one primary limitation with this thesis that bears mention. That

is the fact that while the experiments used servers that have GPUs in them, there

may not have been enough GPUs to truly enumerate the full extent of what was

intended to be shown. With only four GPUs installed, there were situations missed

in which most or all the PCIe lanes are in use, and it would’ve been a chance to further

investigate how reliable the CPU, system management controller, and hypervisor are

when a larger portion of the PCIe bus is under heavy use.

This thesis also limited the scope to just PCIe-based GPU adapters and ig-

nored the impact of PCIe-based local storage or Ethernet adapters, both of which

would likely play a part in a real-world application. It is expected that once PCIe-

based network adapters or PCIe-based storage solutions are part of the workflow,

bandwidth will be much more constrained. Non-volatile memory express, or NVMe,

67



disks are rapidly becoming the disk of choice for high-performance applications.

NVMe disks, as they sit on the PCIe bus and take a 4x slot per disk can quickly

add load to the bus. Including these devices in a comprehensive benchmark would

likely lead to a better understanding of where other optimization points may exist in

this entire workflow.

Finally, one other limitation in the data gathering process is that it was difficult

to identify which CPUs VM instances were executing on due to the mismatch between

VM instance CPU IDs and the actual physical CPU core seen at the hypervisor

level. During the baseline-type scenarios it was easy to identify generally where

VM instances were executing, and indeed, doing so led to the discovery in Chapter

5.1 (Baseline Results) section where it appeared as though the hypervisor was always

favoring certain high-ID cores regardless of GPU location for a particular GPU-backed

VM instance. When working through the scenarios with a more than two or three

load generating VM instances, it quickly became overwhelming to track where a

single VM instance was executing and eventually this data was too chaotic to be of

use. Ultimately, during the development phase it was proven that one is able to trust

CPU affinity settings to act as advertised on the hypervisor used in the experiment

and this issue wasn’t too much of a hindrance.

6.4 Lessons Learned

While the findings in this thesis give support to the idea that controlling for

NUMA effects in ML workloads is an important configuration parameter to control

for, there are ways in which this research can be taken further.

One of the primary limitations of the experiments performed is that the age

of the GPUs made it impractical to run many contemporary ML benchmarks. It is

unfortunate that Nvidia introduced the tensor core for their GPUs a mere generation

68



after the Maxwell-core GPUs used in these experiments. The Maxwell-based GPUs

are not particularly adept at CUDA compute operations compared to devices that

are available today. As a result, the decision was made to focus on the parts of a

GPU which would be common to multiple generations of devices: PCIe 3.0.

Another limitation related to hardware is that the test systems did not feature

any NVMe or even SATA-based local storage. These types of devices both use PCIe

lanes as well and as a result, could be used as additional load-generating devices in

order to further ascertain the degree of system bus congestion caused by loading data

from disk to memory, and then onto the GPU.

With these types of modifications to the test criteria, it would be easier to gen-

erate results that could be compared to other platforms using common benchmarks.

Benchmarks like those developed by the MLCommons project would have results

comparable using modern hardware, likely even running on a hypervisor (Mattson,

2021). When attempting to run some more demanding MLCommons benchmarks

on the test system, estimated completion times were estimated to be in excess of 24

hours in some cases.

Another angle worth investigating is how these results apply to other hyper-

visors and possibly to cloud-provider forks of KVM. As KVM is likely the most

widely-used open source hypervisor, it is a high-value platform to investigate to see

if the results observed here are reproducible on any hypervisor. Likewise, since KVM

is a common hypervisor for major cloud providers, it is of interest to see if they per-

form this type of optimization and if not, see how the potential performance penalties

could be avoided.
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6.5 Future Considerations

Improving the capacity of the system buses and the amount of bandwidth

that can be provided to peripherals is always an area of innovation in computing.

Systems used in this thesis provide a mere 40 lanes for PCIe devices to use. Two

16x GPUs would consume over half of those available slots, and leaves few expansion

slots available for high-speed Ethernet or fast local storage. These conditions have

made it difficult for system integrators and data center administrators to achieve the

consolidation ratios they desire, never mind ML developers who want to use lots of

GPU and load data from network-based volumes.

The PCIe 4.0 standard was ratified in 2016, and the first motherboards and

devices using it were released in 2020. PCIe 4.0 doubles the bandwidth available to

the bus and should help push forward the adoption of technologies like 40 and 100

Gigabit Ethernet. Nvidia’s 3000-series GPUs support PCIe 4.0 and the higher data

transfer rate should help the card realize its potential for all sorts of applications. A

specification has already been proposed for PCIe 5.0, which should bring a similar

jump in capability in a few years.

Another development of note from the chip developers is the massive expansion

of available PCIe lanes in CPU and motherboard designs. For example, two of the

latest processors in AMD’s Ryzen 3000-series CPUs not only have an industry-leading

number of cores, but also include a massive number of on-CPU PCIe lanes. These

new CPUs include 64 or even 128 PCIe lanes on certain models, more than doubling

the number available from other x86 CPU vendors. The potential for being able

to colocate multiple GPUs, Terabytes of fast PCIe-based storage and fast Ethernet

without having to compromise the throughput of any single device is a compelling

prospect for computing in general and machine learning specifically.
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There are also many researchers who are developing new algorithmic ap-

proaches to machine learning that make use of the CPU power that’s been ignored as

GPUs and neural networks for ML have been at the forefront. A group of researchers

at Rice University designed an algorithmic approach to neural network training called

SLIDE (Sub-LInear Deep learning Engine) (Chen et al., 2020). SLIDE does depend

on the presence of some vector-math enhancing instructions present in contemporary

Intel CPUs, but they claim to achieve training and inference performance several

times better than when using a single Nvidia V100 GPU. Algorithmic advances have

the potential to swing the pendulum away from the reliance on GPU that have domi-

nated machine learning and neural network design since AlexNet first appeared 2012

(Russakovsky et al., 2015).

The bottom line is that there is a march of hardware advancement as well as

algorithmic research that is pushing the level of utilization in computing systems for

machine learning. The future of this space will likely involve two different approaches

to increase the overall utilization of hardware. First, innovation in the general purpose

CPU space to compete with the GPU will likely lead to development of additional

specialized CPU instructions for ML purposes or specially tuned algorithms that take

advantage of both CPU and GPU at the same time. The second approach, which

is already a reality today, are custom chip designs built with ML-like operations in

mind. For example, Apple’s M1 chip is more than just a general-purpose CPU -— it is

built as a system-on-a-chip, which moves components like the CPU, GPU and system

storage much closer together. Apple praises this design as being responsible for greatly

enhanced ML workload performance, and while some custom CPU instructions come

into play, there is no doubt that moving system components closer together has a

high potential to minimize the effects observed in this thesis. Developments such as

these are the kind of innovation that will likely be responsible for significant leaps
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forward in ML workload performance, rather than the iterative steps that come with

a new GPU chip or PCIe revision. Future research directions based on this thesis

would do well to focus on studying how the system-on-a-chip design improves data

movement to a GPU-like processor optimized for vector operations and what that

means for both existing algorithms and those being written for this specific type of

architecture.

In closing, the stated goal for this thesis was to test and demonstrate the

actual cost for not properly taking NUMA into account in virtualized environments.

A secondary goal was to also provide a set of configuration parameters for optimized

performance of ML workloads that takes NUMA into account. As Chapter V showed,

there is indeed a performance cost of to unoptimized alignments of GPU-backed

VM instances ranging from a 5-10% penalty all the way up to a 50% throughput

penalty. Fortunately, there are methods to mitigating these penalties, and those were

presented in Chapter VI. The conclusions chapter offers both placement scenarios

and configuration parameters for multiple components to help optimize placement of

GPU-backed VM instances. Finally, it is clear that while the conclusions presented

here help provide concrete evidence for why accounting for NUMA for GPU use in

hypervisors is important, there is still work to be done, especially in systems with a

greater number of GPUs and to see the potential benefits of system-on-a-chip designs.

Additional paths forward can be found in 6.5.
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Appendix A.

Glossary

Advanced Micro Devices AMD is a microprocessor development company for the

x86 architecture. Notably, AMD competes not only in the CPU space with Intel,

but also with Nvidia by selling designs to vendors for their Radeon line of GPUs.

8

Amazon Web Services Cloud computing provider wholly owned by Amazon and

launched in 2006. Provides a full suite of computing services such as VM in-

stances, storage, databases, networking, containers and more. 5

Citrix Citrix provides application and desktop virtualization via an ever-changing

matrix of product and service lines. Citrix is notable to this thesis as it was

the steward of the Xen hypervisor for many years, having acquired the rights

to the hypervisor from XenSource in 2007. 5

CUDA CUDA is a C-like language used to write programs, or kernels, for execution

on GPUs. The CUDA language is exclusive to Nvidia devices. 5, 28

ESXi A type-1 hypervisor developed, maintained, and sold by VMware, Inc. Used

heavily in the private cloud and datacenter space. VMware, Inc. is generally

considered to be first to market with an x86 server virtualization product in
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2001 with VMware GSX (which eventually was renamed ESX). ”ESXi” is an

acronym, elastic sky X integrated, though it is not used in any product docu-

mentation or marketing.. 5, 6, 21, 66

Google Cloud Platform Cloud computing provider operated by parent company

Alphabet, launched in 2008. Provides a full suite of computing services such as

VM instances, storage, databases, networking, containers, etc. 5

GPU See Graphics Processing Unit. 2–6, 9, 19, 20

Graphics Processing Unit A peripheral device that contains one or more pro-

cessors designed to perform floating point calculations at high speed. GPUs

initially came to market as a device for accelerating computer graphics for gam-

ing and 3D applications. Their specific aptitude for vector math made them

a popular tool for training neural networks and performing blockchain-related

operations. 1, 2, 78

hypervisor Software that provides acts as the governor of I/O passing between log-

ical and physical resources in a computer system. There are two recognized

schemes – Type-1 (bare-metal) and Type-2 (hosted) hypervisors. Type-1 is ef-

fectively the operating system installed on the hardware and has direct manage-

ment of the system resources. Type-2 is a process running in another operating

system and must manage I/O using the OS-provided methods. 1, 4–6, 8, 9, 12

Intel A historically dominant CPU design company. Intel is one of the primary

vendors developing microprocessors using the x86 architecture. 8

KVM KVM: Also referred to as ”kernel-based virtual machine”, KVM is considered

a type-1 hypervisor, though it exists as a module for the Linux kernel (though
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it has ports to many other kernels and platforms). KVM is distributed under

an open-source license. KVM is the hypervisor of choice for a number of cloud

platforms such as GCP and AWS. 5, 6

machine learning Machine Learning – an area of research that aims to have com-

puters aid in decision making by applying statistical models and ever-larger sets

of training data. The aim is not necessarily to have a pre-determined solution

for every question, but rather for the computer be able to use inference to an-

swer a question based on knowledge of previous situations. This makes it an

ideal mechanism for processing streams of data that can evolve over time or

have large variation, such as facial recognition or spam filtering. 1, 79

ML See Machine learning. 1, 3, 9, 19

Mobile PCI Express An implementation of the PCIe standard that defines a dif-

ferent form factor for peipheral cards that makes it easier to integrate them into

smaller computers such as laptops or blade servers. 23, 79

MXM See Mobile PCI Express. 23, 24

neural network Neural networks are data systems that model the arrangement of

neurons in the brain, with the intention of emulating the ability of biological

nervous system to process inputs and learn how to act, respond, or recognize

future unknown inputs. 1

Non-Uniform Memory Access A design component used in multiprocessor sys-

tems to define memory access rules between different processors. 4, 20, 79

NUMA See Non-Uniform Memory Access. 4, 5, 11, 12, 20, 21
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Nvidia Perhaps the most prominent name in GPU development today. Nvidia pro-

duces and sells GPU designs to vendors for gaming cards while also manufac-

turing and selling its own line of maching learning and artificial intelligence ac-

celerators for data center use. The company develops and maintains the CUDA

language, sponsors ML research as well as retaining an in-house research divi-

sion, and contributes to other software projects that use its accelerators. 6, 9,

16, 23, 27, 32, 38, 40, 70, 71

OpenCL A language used to provide a standard interface for writing programs, or

kernels, that execute on GPUs. OpenCL is an alternative to CUDA and is

available for a far greater number of devices, though at the cost of not being

able to take advantage of hardware-specific optimizations. 5

paravirtualized Paravirtualization is a design technique used for VM instances

where rather than emulating all the device functions of a peripheral device such

as an Ethernet adapter or storage controller, the hypervisor provides a piece of

kernel software for the VM instance that offloads processing of those types of

commands to the hypervisor itself, reducing CPU load on the VM instance. 12

PCIe See Peripheral Component Interconnect Express. 4–6, 9, 11

Peripheral Component Interconnect Express An electrical and physical con-

nection specification for adding expansion devices to a computer. PCIe defines

multiple slot sizes (commonly 1x-16x) that determine the throughput of the

connected device. PCIe is the most common connection standard today and

is used for everything including storage, networking, and graphics expansion

devices. 2, 80
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virtual machine A virtual machine is an abstraction of a complete operating system

install. In other words, a VM is a bundle of files that describe the hardware

resources of the VM and contains its entire filesystem. In concept, VMs should

be abstract enough to be portable to different platforms and hypervisors. In

practice, a VM is strongly tied to the hypervisor that created it, especially the

more a VM takes advantage of hypervisor-specific optimizations for accessing

the underlying hardware. 2, 81

virtualization Generally meant to describe a scheme that divides a concrete resource

into one or more logical instances of the concrete one. For the purposes of this

document, virtualization refers to the splitting of physical computing resources

into multiple logical copies of that system. This allows the user to execute

multiple instances of an operating system on a single piece of hardware as

virtual machines. 1–5

VM See Virtual machine. 2–5, 12, 20

Xen Xen: A type-1 hypervisor used by multiple cloud vendors (notably AWS) and in

commercial hypervisor distributions, such as Citrix’s XenApp and XenDesktop.

Xen is freely available as an open-source project, but commercial derivatives are

sold by Citrix due to them having acquired XenSource, the company that holds

the various technology patents for Xen in 2007. 5
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Appendix B.
Configuration Settings

B.1 VM Configuration

The following configuration parameters are added/changed in the VM in-
stance’s vm_name.vmx config file.

memoryReservationLockedToMax = true

pciPassthru.use64bitMMIO = true

pciPassthru.64bitMMIOSizeGB = 16

firmware = efi

sched.cpu.affinity = "all" or ["0-39", "40-79"]

B.2 Hypervisor Configuration

The following configuration parameters are added/changed in the ESXi con-
figuration.

GPU Device(s) = Configuration, Hardware, PCI Devices, Configure Passthrough (

checked)

B.3 Hardware Configuration

The following configuration parameters are set in the System Configuration
tool.

Node Interleaving = false/disabled

Single Root I/O Virtualization = true/enabled

IOMMU (if present) = true/enabled

Power Management = Off, Maximum Performance

Virtualization Support = enabled
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