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Abstract

Traditional accumulationtobound decisionmaking models assume that all choice options are
processed with equal attention. In real life decisions, however, humans alternate their visual fix
ation between individual items to efficiently gather relevant information [1]. These fixations also
causally affect one’s choices, biasing them toward the longerfixated item [2]. We derive a norma
tive decisionmaking model in which attention enhances the reliability of information, consistent
with neurophysiological findings [3]. Furthermore, our model actively controls fixation changes to
optimize information gathering. We show that the optimalmodel reproduces fixationrelated choice
biases seen in humans and provides a Bayesian computational rationale for this phenomenon. This
insight led to additional predictions that we could confirm in human data. Finally, by varying the
relative cognitive advantage conferred by attention, we show that decision performance is benefited
by a balanced spread of resources between the attended and unattended items.
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CHAPTER 1

Introduction

Would you rather have a donut or an apple as a midafternoon snack? If we instantaneously
knew their associated rewards, we could immediately choose the higherrewarding option. How
ever, such decisions usually take time and are variable, suggesting that they arise from a neural
computation that extends over time [4, 5]. In the past, such behavior has been modeled descrip
tively with accumulationtobound models that continuously accumulate noisy evidence from each
choice option, until a decision boundary is reached in favor of a single option over its alternatives.
Such models have been successful at describing accuracy and response time data from human deci
sion makers performing in both perceptual and valuebased decision tasks [6,7]. Recently, we and
others showed that, if we assume these computations to involve a stream of noisy samples of each
item’s perceptual feature (for perceptual decisions) or underlying value (for valuebased decisions),
then the normative strategy could be implemented as an accumulationtobound model [8–10].
Specifically, the normative strategy could be described with the diffusion decision model [6] with
timevarying decision boundaries that approach each other over time.

Standard accumulationtobound models assume that all choice options receive equal attention
during decisionmaking. However, the ability to drive one’s attention amidst multiple, simultane
ous trains of internal and external stimuli is an integral aspect of everyday life. Indeed, humans tend
to alternate between fixating on different items when making decisions, suggesting that control of
overt visual attention is intrinsic to the decisionmaking process [11, 12]. Furthermore, their final
choices are biased towards the item that they looked at longer, a phenomenon referred to as the
choice bias [2, 13–15]. While several prior studies have developed decisionmaking models that
incorporate attention [2,16–19], our goal was to develop a normative framework that incorporates
control of attention as an intrinsic aspect of the decisionmaking process in which the agent must
efficiently gather information from all items while minimizing the deliberation time, akin to real
life decisions. In doing so, we hoped to provide a computational rationale for why fixationdriven
choice biases seen in human behavior may arise from an optimal decision strategy. For example,
the choice bias has been previously replicated with a modified accumulationtobound model, but
the model assumed that fixations are driven by brain processes that are exogenous to the computa
tions involved in decisionmaking [2]. This stands in contrast to studies of visual attention where



fixations appear to be controlled to extract choicerelevant information in a statistically efficient
manner, suggesting that fixations are driven by processes endogenous to the decision [1, 20–23].

We asked if the choice bias associated with fixations can be explained with a unified framework
in which fixation changes and decisionmaking are part of the same process. To do so, we endowed
normative decisionmaking models [10] with attention that boost the amount of information one
collects about each choice option, in line with neurophysiological findings [3,24–26]. We further
more assumed that this attention was overt [27,28], and thus reflected in the decision maker’s gaze
which was controlled by the decisionmaking process.

We first derive the complex normative decisionmaking strategy arising from these assumptions
and characterize its properties. We then show that this strategy featured the same choice bias as
observed in human decision makers: it switched attention more frequently when deciding between
items with similar values, and was biased towards choosing items that were attended last, and
attended longer. It furthermore led to new predictions that we could confirm in human behavior:
choice biases varied based on the amount of time spent on the decision and the average desirability
across both choice items. Lastly, it revealed why the observed choice biases might, in fact, be
rational. Overall, our work provides a unified framework in which the optimal, attentionmodulated
informationseeking strategy naturally leads to biases in choice that are driven by visual fixations,
as observed in human decisions.

2
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CHAPTER 2

Results

2.1 An attention-modulated decision-making model

Before describing our attentionmodulated decisionmaking model, we will first briefly recap
the attentionfree valuebased decisionmaking model [10] that ours builds upon. This model as
sumes that for each decision trial, a true value associated with each item (z1,z2) is drawn from a
normal prior distribution with mean z̄ and variance σ2

z . Therefore, zj ∼ (z̄, σ2
z) for both j ∈ {1, 2}.

The smaller σ2
z , the more information this prior provides about the true values. We assume the

decision maker knows the shape of the prior, but can’t directly observe the drawn true values. In
other words, the decision maker apriori knows the range of values associated with the items they
need to compare, but doesn’t know what exact items to expect nor what their associated rewards
will be. For example, one such draw might result in a donut and an apple, each of which has an
associated value to the decision maker (i.e., satisfaction upon eating it). In each nth time step of
length δt, they observe noisy samples centered around the true values, calledmomentary evidence1,
δxj,n|zj ∼ (zjδt, 2σ2

xδt). The variance σ2
x here controls how informative the momentary evidence

is about the associated true value. A large σ2
x implies larger noise, and therefore less information

provided by each of the momentary evidence samples. While the model is agnostic to the origin of
these samples, they might arise from computations to infer the items’ values (e.g., how much do I
currently value the apple?), memory recall (e.g., how much did I previously value the apple?), or
a combination thereof [5]. As the decision maker’s aim is to choose the highervalued item, they
ought to accumulate evidence for some time to refine their belief in the items’ values. Once they
have accumulated evidence for t = Nδt seconds, their posterior belief for the value associated with
either item is

zj|δxj,1:N ∼
(

σ2
xσ−2

z z̄ + 1
2xj(t)

σ2
xσ−2

z + 1
2t

,
σ2

x

σ2
xσ−2

z + 1
2t

)
, (2.1)

where xj(t) = ∑N
n=1 δxj,n is the accumulated evidence for item j [10]. The mean of this posterior

(i.e., the first fraction in brackets) is a weighted sum of the prior mean, z̄, and the accumulated
evidence, xj(t). The weights are determined by accumulation time, t, and the variances of the prior,

1In [10] the variance of the momentary evidence was σ2
xδt rather than 2σ2

xδt. We here added the factor 2 without
loss of generality to relate it more closely to the attentionmodulated version we introduce further below.



FIGURE 2.1 Attentionmodulated evidence accumulation. (A) Schematic depicting the valuebased decisionmaking
model. When choosing between two snack items (e.g., apple versus donut), people tend to evaluate each item in
turn, rather than think about all items simultaneously. While evaluating one item, they will pay less attention to the
unattended item (blurred item). (B) Schematic of the valuebased decision process for a single trial. At trial onset,
the model randomly attends to one item (green box). At every time step, it accumulates momentary evidence (orange
box) that provides information about the true value of each item, which is combined with the prior belief of each
item’s value to generate a posterior belief. Note that the momentary evidence of the attended item comes from a
tighter distribution. Afterwards, the model assesses whether to accumulate more evidence (orange), make a choice
(black), or switch attention to the other item (green). (C) Evolution of the evidence accumulation process. The top
panel shows momentary evidence at every time point for the two items. Note that evidence for the unattended item
has a wider variance. The middle panel shows how the posterior estimate of each item may evolve over time (mean ±
1SD). The dotted lines indicate the unobserved, true values of the two items. The bottom panel shows how uncertainty
decreases regarding the true value of each item. As expected, uncertainty decreases faster for the currently attended
item compared to the unattended one. For this descriptive figure, we used the following parameters: z = [13, 10],
σ2

x = 5, σ2
z = 10, γ = 0.1, δt = 0.01.

σ2
z , and themomentary evidence, σ2

x, which control their respective informativeness. Initially, t = 0
and xj(t) = 0, such that the posterior mean equals that of the prior, z̄. Over time, with increasing
t, the influence of xj(t) becomes dominant, and the mean approaches xj(t)/t (i.e., the average
momentary evidence) for large t, at which point the influence of the prior becomes negligible. The
posterior’s variance (i.e., the second fraction in brackets) reflects the uncertainty in the decision
maker’s value inference. It initially equals the prior variance, σ2

z , and drops towards zero once t

becomes large. In this attentionfree model, uncertainty monotonically decreases identically over
time for both items, reflecting the standard assumption of accumulationtobound models that, in
each small time period, the same amount of evidence is gathered for either choice item.

To introduce attentionmodulation, we assume that attention limits information about the unat
tended item (Figure 2.1). This is consistent with behavioral and neurophysiological findings show
ing that attention boosts behavioral performance [3, 29, 30] and the information encoded in neural
populations [26,31,32]. To achieve this, we first assume that the total rate of evidence across both
items, as controlled by σ2

x, is fixed, and that attention modulates the relative amount of information
gained about the attended versus unattended item. This ‘attention bottleneck’ is controlled by κ

(0 ≤ κ ≤ 1), such that κ represents the proportion of total information received for the unattended
item, versus 1 − κ for the attended item. The decision maker can control which item to attend to,
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but has no control over the value of κ, which we assume is fixed and known. To limit information,
we change the momentary evidence for the attended item j to δxj,n ∼

(
zjδt, 1

1−κ
σ2

xδt
)
, and for

the unattended item k = 3 − j to δxk,n ∼
(
zkδt, 1

κ
σ2

xδt
)
. Therefore, if κ ≤ 1

2 , the variance of
the unattended item increases (i.e., noisier evidence) relative to the attended item. This makes the
momentary evidence less informative about zk, and more informative about zj , while leaving the
overall amount of information unchanged (see Methods). Setting κ = 1

2 indicates equally informa
tive momentary evidence for both items, and recovers the attentionfree scenario [10].

Lowering information for the unattended item impacts the value posteriors as follows. If the
decision maker again accumulates evidence for some time t = Nδt, their belief about item j = 1’s
value changes from Eq. (2.1) to

z1|δx1,1:N ∼
(

σ2
xσ−2

z z̄ + (1 − κ)X1(t)
σ2

xσ−2
z + (1 − κ)t1 + κt2

,
σ2

x

σ2
xσ−2

z + (1 − κ)t1 + κt2

)
, (2.2)

where t1 and t2, which sum up to the total accumulation time (t = t1 + t2), are the durations
that items 1 and 2 have been attended, respectively. The accumulated evidence X1(t) now isn’t
simply the sum of all momentary pieces of evidence, but instead downweights them by 1−κ

κ
if

the associated item is unattended (see Methods). This prevents the large inattention noise from
swamping the overall estimate [33]. An analogous expression provides the posterior z2|δx2,1:N for
item 2 (see Appendix).

The attention modulation of information is clearly observable in the variance of the value’s
posterior for item 1 (Eq. (2.2)). For κ < 1

2 , this variance, which is proportional to the decision
maker’s uncertainty about the option’s value, drops more quickly over time if item 1 rather than
item 2 is attended (i.e., if t1 rather than t2 increases). Therefore, it depends on how long each of the
two items have been attended to, and might differ between the two items across time (Figure 2.1C).
As a result, decision performance depends on howmuch time is allocated to attending to each item.

The decision maker’s best choice at any point in time is to choose the item with the larger
expected value, as determined by the value posterior. However, the posterior by itself does not
determine when it is best to stop accumulating evidence. In our previous attentionfree model,
we addressed the optimal stopping time by assuming that accumulating evidence comes at cost
c per second, and found the optimal decision policy under this assumption [10]. Specifically, at
each time step of the decisionmaking process, the decision maker could choose between three
possible actions. The first two actions involve immediately choosing one of the two items, which
promises the associated expected rewards. The third action is to accumulate more evidence that
promises more evidence, better choices, and higher expected reward, but comes at a higher cost for
accumulating evidence. We found the optimal policy using dynamic programming that solves this
arbitration by constructing a value function that, for each stage of the decision process, returns all
expected rewards and costs from that stage onward [34, 35]. The associated policy could then be
mechanistically implemented by an accumulationtobound model that accumulates the difference

5



in expected rewards,∆ = ⟨z2|δx2,1:N⟩−⟨z1|δx1,1:N⟩, and triggers a choice once one of two decision
boundaries, which collapse over time, is reached [10].

Once we introduce attention, a fourth action becomes available: the decision maker can choose
to switch attention to the currently unattended item (Figure 2.1B). If such a switch comes at no cost,
then the optimal strategy would be to continuously switch attention between both items to sample
them evenly across time. We avoid this physically unrealistic scenario by introducing a cost cs for
switching attention. This cost may represent the physical effort of switching attention, the temporal
cost of switching [18,36], or a combination of both. Overall, this leads to a value function defined
over a fourdimensional space: the expected reward difference∆, the evidence accumulation times
t1 and t2, and the currently attended item y ∈ {1, 2} (see Appendix). As the last dimension can
only take one of two values, we can equally use two threedimensional value functions. This results
in two associated policies that span the threedimensional state space (∆, t1, t2) (Figure 2.2).

6



2.2 Features of the optimal policy

At any point within a decision, the model’s current state is represented by a location in this 3D
policy space, such that different regions in this space designate the optimal action to perform (i.e.,
choose, accumulate, switch). The boundaries between these regions can be visualized as contours
in this 3D state space (Figure 2.2A). As previously discussed, there are two distinct policy spaces
for when the decision maker is attending to item 1 versus item 2 that are symmetric to each other
(Figure 2.2B).

Within a given decision, the deliberation process can be thought of as a particle that drifts and
diffuses in this state space. The model starts out attending to an item at random (y ∈ 1, 2), which
determines the initial policy space (Figure 2.2B). Assume an example trial where the model attends
to item 1 initially (y = 1). At trial onset, the decision maker holds the prior belief, such that the
particle starts on the origin (∆ = 0, t1 = t2 = 0) which is within the “accumulate” region. As the
model accumulates evidence, the particle will move on a plane perpendicular to t2 = 0, since t2

remains constant while attending to item 1 (Figure 2.2C, first column). During this time, evidence
about the true values of both items will be accumulated, but information regarding item 2 will
be significantly noisier (as controlled by κ). Depending on the evidence accumulated regarding
both items, the particle may hit the boundary for “choose 1”, “choose 2”, or “switch (attention)”.
Assume the particle hits the “switch” boundary, indicating that the model is not confident enough to
make a decision after the initial fixation to item 1. In other words, the difference in expected rewards
between the two items is too small to make an immediate decision, and it is deemed advantageous to
collect more information about the currently unattended item. Now, the model is attending to item
2, and the policy space switches accordingly (y = 2). The particle, starting from where it left off,
will now move on a plane perpendicular to the t1 axis (Figure 2.2C, second column). This process
is repeated until the particle hits a decision boundary (Figure 2.2C, third column). Importantly,
these shifts in attention are endogenously generated by the model as a part of the optimal decision
strategy — it exploits its ability to control how much information it receives about either item’s
value.

The optimal policy space shows some notable properties. As expected, the “switch” region
in a given policy space is always encompassed in the “accumulate” region of the other policy
space, indicating that the model never switches attention or makes a decision immediately after
an attention switch. Furthermore, the decision boundaries in 3D space approach each other over
time, consistent with previous work that showed a collapsing 2D boundary for optimal valuebased
decisions without attention [10]. The collapsing bound reflects the model’s uncertainty regarding
the difficulty of the decision task [9]. In our case, this difficulty depends on how different the
true item values are, as items of very different values are easier to distinguish than those of similar
value. If the difficulty is known within and across choices, the boundaries will not collapse over
time, and their (fixed) distance will reflect the difficulty of the choice. However, since the difficulty

7



FIGURE 2.2 Navigating the optimal policy space. (A) The optimal policy space. The policy space can be divided into
regions associated with different optimal actions (choose item 1 or 2, accumulate more evidence, switch attention).
The boundaries between these regions can be visualized as contours in this space. The three panels on the right show
crosssections after slicing the space at different ∆ values, indicated by the gray slices in the left panel. Note that
when ∆ = 0 (middle panel), the two items have equal value and therefore there is no preference for one item over
the other. (B) Optimal policy spaces for different values of y (currently attended item). The two policy spaces are
mirrorimages of each other. (C) Example deliberation process of a single trial demonstrated by a particle that diffuses
across the optimal policy space. In this example, the model starts by attending to item 1, then makes two switches in
attention before eventually choosing item 1. The bottom row shows the plane in which the particle diffuses. Note that
the particle diffuses on the (grey, shaded) plane perpendicular to the time axis of the unattended item, such that it only
increases in tj when attending to item j. Also note that the policy space changes according to the item being attended
to, as seen in (B). See results text for more detailed description. See Figure 2.3 to view changes in the optimal policy
space depending changes to model parameters.

8



of individual choices varies and is a priori unknown to the decision maker in our task, the decision
boundary collapses so that the model minimizes wasting time on a choice that is potentially too
difficult.

The optimal model had five free parameters that affect its behavior: 1) variance of evidence
accumulation (σ2

x), 2) variance of the prior distribution (σ2
z ), 3) cost of evidence accumulation

(c[s−1]), 4) cost of switching attention (cs), and 5) relative information gain from the attended vs.
unattended items (κ). The contour of the optimal policy boundaries changes in intuitive ways as
these parameters are adjusted (Figure 2.3). Increasing the noisiness of evidence accumulation (σ2

x)
causes an overall shrinkage of the evidence accumulation space. This allows the model to reach a
decision boundary more quickly under a relatively higher degree of uncertainty, given that evidence
accumulation is less reliable but equally costly. Similarly, increasing the cost of accumulating ev
idence (c[s−1]) leads to a smaller accumulation space so that the model minimizes paying a high
cost for evidence accumulation. Increasing the switch cost cs leads to a smaller policy space for the
“switch” behavior, since there is an increased cost for switching attention. Similarly, decreasing
the inattention noise by setting κ closer to 1

2 leads to a smaller “switch” space because the model
can obtain more reliable information from the unattended item, reducing the necessity to switch at
tention. To find a set of parameters that best mimic human behavior, we performed a random search
over a large parameter space and selected the parameter set that best demonstrated the qualitative
aspects of the behavioral data (see Appendix).

9



FIGURE 2.3 Changes in the optimal policy space and model behavior with adjustments in free model parameters. The
optimal policy space and its associated psychometric curves from the base model is shown in the top row. The policy
space and psychometric curves corresponding to changes in single free parameters are shown in subsequent rows.
In rows 24, psychometric curves from he base model on row 1 is shown in red for comparison. P(choose item 1),
probability of choosing item 1; RT, response time.
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2.3 The optimal policy replicates human behavior

To assess if the optimal policy features the same decisionmaking characteristics as human
decision makers, we used it to simulate behavior in a task analogous to the valuebased decision
task performed by humans in Krajbich et al (2010) [2]. Briefly, in this task, participants first rated
their preference of different snack items on a scale of 10 to 10. Then, theywere presentedwith pairs
of different snacks after excluding the negatively rated items and instructed to choose the preferred
item. While they deliberate on their choice, the participants’ eye movements were tracked and the
fixation duration to each item was used as a proxy for visual attention.

We simulated decisionmaking behavior using value distributions similar to those used in the
human experiment (seeMethods), and found that the model behavior qualitatively reproduce essen
tial features of human choice behavior (Figure 2.4). As expected in valuebased decisions, a larger
value difference among the compared items made it more likely for the model to choose the higher
valued item (Figure 2.4A; t(38) = 105.7, p < 0.001). Furthermore, the model’s mean response
time (RT) decreased with increasing value difference, indicating that less time was spent on trials
that were easier (Figure 2.4B; t(38) = −11.1, p < 0.001). The model also made less attentional
switches for easier trials, indicating that difficult trials required more evidence accumulation from
both items, necessitating multiple switches in attention (Figure 2.4C; t(38) = −8.10, p < 0.001).
Since the number of switches is likely correlated with response time, we also looked at switch rate
(number of switches divided by response time). Here, although human data showed no relationship
between switch rate and trial difficulty, model behavior showed a positive relationship, suggesting
an increased rate of switching for easier trials. However, this effect was absent when using the same
number of trials as humans, and did not generalize across all model parameter values (Figure 2.5).

The model also reproduced the biasing effects of fixation on preference seen in humans [2]. An
item was more likely to be chosen if it was the last one to be fixated on (Figure 2.4D), and if it was
viewed for a longer time period (Figure 2.4E; t(38) = 5.32, p < 0.001). Interestingly, the model
also replicated a particular fixation pattern seen in humans, where a short first fixation is followed
by a significantly longer second fixation, which is followed by a mediumlength third fixation (Fig
ure 2.4F). We suspect this pattern arises due to the shape of the optimal decision boundaries, where
the particle is more likely to hit the “switch” boundary in a shorter time for the first fixation, likely
reflecting the fact that the model prefers to sample from both items at least once. Consistent with
this, Figure 2.4C shows that the “accumulate” space is larger for the second fixation compared to
the first fixation. Of note, the attentional drift diffusion model (aDDM) that was initially proposed
to explain the observed human data [2] did not show this fixation pattern (Figure 2.8D)

One feature that distinguishes our model from previous attentionbased decision models is that
attention only modulates the variance of momentary evidence without explicitly downweighting
the value of the unattended item [2,37]. Therefore, at first glance, preference for the moreattended
item is not an obvious feature since our model does not appear to boost its estimated value. How
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FIGURE 2.4 Replication of human behavior by simulated optimal model behavior [2]. (A) Monotonic increase in
probability of choosing item 1 as a function of the difference in value between item 1 and 2 (t(38) = 105.7, p < 0.001).
(B) Monotonic decrease in response time (RT) as a function of trial difficulty (t(38) = −11.1, p < 0.001). RT
increases with increasing difficulty. (C) Decrease in the number of attention switches as a function of trial difficulty.
More switches are made for harder trials (t(38) = −8.10, p < 0.001). (D) Effect of last fixation location on item
preference. The item that was fixated on immediately prior to the decision wasmore likely to be chosen. (E) Attention’s
biasing effect on item preference. The item was more likely to be chosen if it was attended for a longer period of time
(t(38) = 5.32, p < 0.001). Since the probability of choosing item 1 depends on the degree of value difference between
the two items, we normalized the p(choose item 1) by subtracting the average probability of choosing item 1 for each
difference in item value. (F) Replication of fixation pattern during decision making. Both model and human data
showed a fixation pattern where a short initial fixation was followed by a long, then mediumlength fixation. Error
bars indicate SEM across both human and simulated participants (N = 39 for both). See Figure 2.9 for an analogous
figure for the perceptual decision task. See Figure 2.5 for psychometric curves when evidence accumulation is less
noisy, and exploration of switch rate, rather than switch number.
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FIGURE 2.5 Psychometric curves with varying parameter values and exploration of switch rate rather than switch num
ber for the optimal model, and choice bias predictions for the aDDM [2]. (A,B) Choice curves after decreasing the
evidence noise term (σ2) from 27 to 5. In Figure 3A,D there seemed to be qualitative difference in the choice curves
between human and model behavior, in which model behavior exhibited more linear rather than sigmoid curves. We
show that this is a result of the difficulty of the task set by the evidence noise term (σ2), and not a generalizable prop
erty of the model. If we set (σ2) to a lower value, the model will exhibit sigmoid choice curves because the decision
becomes easier at extreme value differences. Consistent with this, the choice curves in A&B show sigmoid curves. (C)
Switch rate (number of switches divided by time) as a function of trial difficulty in human data showed no significant
relationship (t(38) = 0.32, p = 0.75). (D) The switch rate in the optimal model significantly increases with a decrease
in task difficulty (t(38) = 2.96, p = 0.0052). (E) This relationship ceases to be apparent once we reduce the number of
simulated trials to that of the human data (t(38) = 1.02, p = 0.31), suggesting the human data may be underpowered to
show such a relationship. (F) The relationship between switch rate and trial difficulty is not a general property of the
optimal model, as a significant increase in the switch cost (adjusting Cs from 0.018 to 0.1) removes the effect seen in
D (t(38) = 0.50, p = 0.62), even with a large number of simulated trials. (G) Effect of RT and value sum on choice
bias in the aDDM. The aDDM also replicated the same effects as predicted by the optimal model (RT: t(38) = 48.6, p
< 0.001; value sum: t(38) = 14.7, p < 0.001). For both plots, trial data were binned into equally sized bins based on the
variable on the xaxis. The plots show the average curves across participants, where vertical error bars indicate SEM
for the choice bias coefficient (see Methods for how to compute the choice bias coefficient), and horizontal error bars
indicate the SEM of the bin means.
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ever, under the assumption that decisionmakers start out with a zeromean prior, Bayesian belief
updating with attentionmodulation turns out to effectively account for a biasing effect of fixation on
the subjective value of items [38]. For instance, consider choosing between two items with equal
underlying value. Without an attentionmodulated process, the model will accumulate evidence
from both items simultaneously, and thus have no preference for one item over the other. How
ever, once attention is introduced and the model attends to item 1 longer than item 2, it will have
acquired more evidence about item 1’s value. This will cause item 1 to have a sharper, more certain
likelihood function compared to item 2 (Figure 2.6A). As posterior value estimates are formed by
combining priors and likelihoods in proportion to their associated certainties, the posterior of item
1 will be less biased towards the prior than that of item 2. This leads to a higher subjective value
of item 1 compared to that of item 2 even though their true underlying values are equal.

This insight leads to additional predictions for how attentionmodulated choice bias should vary
with certain trial parameters. For instance, the Bayesian account predicts that trials with longer
response times should have a weaker choice bias than trials with shorter response times. This is
because the difference in fixation times between the two items will decrease over time as the model
has more opportunities to switch attention. Both the human and model behavior robustly showed
this pattern (Figure 2.6B; human, t(38) = −3.25, p = 0.0024; model, t(38) = −32.0, p < 0.001).
Similarly, choice bias should increase for trials with highervalued items. In this case, since the
evidence distribution is relatively far away from the prior distribution, the posterior distribution is
“pulled away” from the prior distribution to a greater degree for the attended versus unattended
item, leading to greater choice bias. Both human and model data confirmed this behavioral pattern
(Figure 2.6C; human, t(38) = 2.95, p = 0.0054; model, t(38) = 11.4, p < 0.001). Since response
time may be influenced by the sum of the two item values and vice versa, we repeated the above
analyses using a regression model that includes both value sum and response time as independent
variables (see Methods). The results were largely consistent for both model (effect of RT on choice
bias: t(38) = 5.73, p < 0.001, effect of value sum: t(38) = 7.88, p < 0.001) and human (effect of
RT: t(38) = 1.32, p = 0.20, effect of value sum: t(38) = 2.91, p = 0.006) behavior.

Next, we assessed how the behavioral predictions arising from the optimal model differed from
those of the original attentional drift diffusion model (aDDM) proposed by [2]. Unlike our model,
the aDDM follows from traditional diffusion models rather than Bayesian models. It assumes that
inattention to an item diminishes its value magnitude rather than increasing the noisiness of evi
dence accumulation. Despite this difference, the aDDM produced qualitatively similar behavioral
predictions as the optimal model (Figure 2.5G, Figure 2.7), although the optimal model was able
to better reproduce some of the fixation patterns seen in human behavior Figure 2.8A,D). We also
tested to which degree the optimal model yielded a higher mean reward than the aDDM, which,
despite its simpler structure, could nonetheless collect competitive amounts of reward. To ensure
a fair comparison, we adjusted the aDDM model parameters (i.e., attentional value discounting
and the noise variance) so that the momentary evidence provided to the two models has equivalent
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FIGURE 2.6 Behavioral predictions from Bayesian value estimation, and further properties of the optimal policy. (A)
Bayesian explanation of attentiondriven value preference. Attending to one of two equallyvalued items for a longer
time (red vs. blue) leads to a more certain (i.e., narrower) likelihood and weaker bias of its posterior towards the
prior. This leads to a subjectively higher value for longerattended item. (B) Effect of response time (RT; left panel;
t(38) = −3.25, p = 0.0024) and sum of the two item values (value sum; right panel; t(38) = 2.95, p = 0.0054) on
attentiondriven choice bias in humans. This choice bias quantifies the extent to which fixations affect choices for the
chosen subset of trials (see Methods) (C) Effect of response time (left panel; t(38) = −32.0, p < 0.001) and sum
of the two item values (right panel; t(38) = 11.4, p < 0.001) on attentiondriven choice bias in the optimal model.
See Methods for details on how the choice bias coefficients were computed. For (B) and (C), for the left panels, the
horizontal axis is binned according to the number of total fixations in a given trial. For the right panels, the horizontal
axis is binned to contain the same number of trials per bin. Horizontal error bars indicate SEM across participants
of the mean xvalues within each bin. Vertical error bars indicate SEM across participants. (D) Comparing decision
performance between the optimal policy and the original aDDM model. Performance of the aDDM was evaluated for
different boundary heights (error bars = SEM across simulated participants). Even for the rewardmaximizing aDDM
boundary height, the optimal model significantly outperformed the aDDM (t(76) = 3.01, p = 0.0027). (E) Decision
performance for different degrees of the attention bottleneck (κ) while leaving the overall input information unchanged
(error bars = SEM across simulated participants). The performance peak at κ = 0.5 indicates that allocating similar
amounts of attentional resource to both items is beneficial (t(38) = −8.51, p < 0.001).
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signaltonoise ratios (see Appendix). The original aDDM model fixed the decision boundaries
at ±1 and subsequently fit model parameters to match behavioral data. Since we were interested
in comparing mean reward, we simulated model behavior using incrementally increasing decision
barrier heights, looking for the height that yields the maximum mean reward (Figure 2.6D). We
found that even for the bestperforming decision barrier height, the aDDM model yielded a signif
icantly lower mean reward compared to that of the optimal model (t(76) = 3.01, p = 0.0027).

Recent advances in artificial intelligence used attentional bottlenecks to regulate information
flow with significant associated performance gains [39–43]. Analogously, attentional bottlenecks
might also be beneficial for valuebased decisionmaking. To test this, we asked if paying relatively
full attention on a single item at a time confers any advantages over the ability to pay relatively less
reliable, but equal attention to multiple options in parallel. To do so, we varied the amount of
momentary evidence provided about both the attended and unattended items while keeping the
overall amount of evidence, as controlled by σ2

x, fixed. This was accomplished by varying the κ

term. The effect of κ on the optimal policy was symmetric around κ = 0.5, such that information
gained from attended item at κ = 0.2 is equal to that of the unattended item at κ = 0.8. Setting
κ = 0.5 resulted in equal momentary evidence about both items, such that switching attention had
no effect on the evidence collected about either item. When tuning model parameters to best match
human behavior, we found a low κ ≈ 0.004, suggesting that humans tend to allocate the majority of
their presumably fixed cognitive resources to the currently attended item. This allows for reliable
evidence accumulation for the attended item, but is more likely to necessitate frequent switching
of attention.

To investigate whether widening this attention bottleneck leads to changes in decision perfor
mance, we simulated model behavior for different values of κ (0.1 to 0.9, in 0.1 increments). Inter
estingly, we found that mean reward from the simulated trials is greatest at κ = 0.5 and decreases
for more extreme values of κ, suggesting that a more even distribution of attentional resources be
tween the two items is beneficial for maximizing reward (Figure 2.6E;t(38) = −8.51, p < 0.001).
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FIGURE 2.7 Comparison of attention switching and fixation behavior between human data, optimal model, and aDDM.
For all plots, the trial data were binned into five equally sized bins based on the variable on the xaxis. The plots show
the average curves across participants, where vertical error bars indicate SEM for the relevant yvariable (e.g., switch
rate), and horizontal error bars indicate the SEM of the bin means. (A) Switch rate as a function of RT. In human data,
the probability of switching decreases as a function of time (t(38) = 4.49, p < 0.001), while this relationship is neither
apparent in the optimal model nor the aDDM. (B) When only including trials where at least one switch occurred, both
models predicted a decrease in switch rate over time, consistent with human data (optimal model: t(38) = 29.6, p <
0.001, aDDM: t(38) = 7.70, p < 0.001). This suggests that in both models, single fixation trials significantly affect the
switch rate. (C) Human data showed no significant relationship between switch rate and value sum (t(38) = 0.84, p =
0.40). However, both the optimal model and the aDDM showed a negative association, such that switch rate decreased
as the value sum increased, suggesting that the model is less likely to switch attention within the same timeframe for
trials where higher value items are being compared (optimal model, t(38) = 4.11, p < 0.001; aDDM, t(38) = 2.09, p
= 0.044). (D) Human data again showed no significant relationship between switch rate and absolute value difference
(i.e., trial difficulty; t(38) = 0.67, p = 0.51). The optimal model also showed no significant relationship between switch
rate and value difference (t(38) = 0.41, p = 0.68). However, the aDDM showed a positive association, suggesting that
more switches occurred within the same timeframe for easier trials (t(38) = 4.62, p < 0.001). (E) Human data and both
models showed a positive association between mean fixation duration and RT (human: t(38) = 9.28, p < 0.001; optimal
model: t(38) = 85.6, p < 0.001; aDDM: t(38) = 13.65, p < 0.001). (F) Human data and both models showed a negative
association between mean fixation duration and value sum (human: t(38) = 2.81, p = 0.0078; optimal model: t(38) =
4.19, p < 0.001; aDDM: t(38) = 3.32, p = 0.002). (G) Human data and both models showed a negative association
between mean fixation duration and absolute value difference (human: t(38) = 5.46, p < 0.001; optimal model: t(38)
= 3.60, p < 0.001; aDDM: t(38) = 6.44, p < 0.001). Of note, for the aDDM simulations in AG, we used the same
parameter setup used in the original paper by [2] rather than the signaltonoisematched version we used to compare
the mean reward between the optimal model and aDDM.
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FIGURE 2.8 Additional analyses of fixation behavior, performance, and choice bias between human data, optimal
model, and aDDM. (A) Proportion of all trials that ended after a single fixation. While both the optimal model and
aDDM featured more single fixation trials than human data, the aDDM predicted significantly more than the optimal
model (t(76) = 5.84, p < 0.001). (B) Comparing the mean reward received by humans versus the two models. There
was no significant difference between the mean rewards of humans versus the optimal model (t(76) = 0.69, p = 0.49)
and humans versus the aDDM (t(76) = 0.062, p = 0.95). Of note, the mean reward of the optimal model was not larger
than the aDDM in this scenario because we used the original parameter setup rather than the signaltonoise matched
setup. To calculate mean reward, we used the same cost per unit time used for the optimal model (c = 0.23). (C) Dis
tribution of response times. Both models predict a RT distribution that seem to include more <1s RT trials. (D) Mean
fixation duration of the first three fixations across participants for humans and both models. The aDDM did not predict
the same fixation pattern as the data and optimal model. This fixation pattern in the optimal model is wellpreserved
across different model parameter values. For the aDDM simulations in AD, we used the same parameter setup used
in the original paper by [2]
.
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2.4 Optimal attention-modulated policy for perceptual decisions

The impact of attention is not unique to valuebased decisions. In fact, recent work showed that
fixation can bias choices in a perceptual decisionmaking paradigm [44]. In their task, participants
were first shown a target line with a certain orientation, then shown two lines with slightly different
orientations. The goal was to choose the line with the closest orientation to the previously shown
target. Consistent with results in the valuebased decision task, the authors demonstrated that the
longerfixated option was more likely to be chosen.

We modified our attentionbased optimal policy to perform in such perceptual decisions, in
which the goal was to choose the option that is the closest in some quantity to the target, rather
than choosing the highervalued option. Therefore, our model can be generalized to any task that
requires a binary decision based on some perceptual quality, whether that involves finding the
brighter dot between two dots on a screen, or identifying which of the two lines on the screen is
longer. Similar to our valuebased case, the optimal policy for perceptual decisions was successful
at reproducing the attentiondriven biases seen in humans in [44] (Figure 2.9).
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FIGURE 2.9 Replication of human behavior by simulated optimal model in a perceptual decisionmaking task. This task
involves choosing the item with a greater degree of a certain a perceptual quality (e.g., brightness of a dot, angle of a
line). Therefore, the decisionmaker is interested in the difference in the perceptual quality between the two items, rather
than their difference in value. (A) Monotonic increase in probability of choosing item 1 as a function of the perceptual
difference between item 1 and 2. (B) Decrease in response time (RT) as a function of trial difficulty. (C) Decrease in
the number of switches as a function of trial difficulty. (D) Effect of last fixation location on item preference. The item
that was fixated on immediately prior to the decision was more likely to be chosen. (E) Attention’s biasing effect on
item choice. The item was more likely to be chosen if it was attended to for a longer period of time. (F) Replication of
fixation pattern during decision making. In the perceptual decisionmaking task, both model and human data showed
increased duration for every subsequent fixation, a notable difference compared to fixation behavior in the valuebased
task. For (A)(D), the behavioral data has a smaller range of perceptual differences due to insufficient trials with such
large perceptual difference. Error bars indicate SEM across participants for both human and simulated data.
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CHAPTER 3

Discussion

In this work, we derive a novel normative decisionmaking model with an attentional bottle
neck, and show that it is able to reproduce the choice and fixation patterns of human decision
makers. Our model significantly extends prior attempts to incorporate attention into perceptual and
valuebased decisionmaking in several ways. First, we provide a unified framework in which fix
ations are endogenously generated as a core component of the normative decisionmaking strategy.
In previous work, fixation patterns were assumed to be either independent of the decisionmaking
strategy [2, 14] or generated by heuristics that relied on features such as the salience or value esti
mates of the choice options [17, 19]. Other models generated fixations under the assumption that
fixation time to different information sources should depend on the expected utility or informa
tiveness of the choice items [18, 37, 45]. For example, [18] assumed that the informativeness of
each item differed, which means the model should attend to the less informative item longer in
general. Furthermore, since their decision task involved a fixedduration, attention switches also
occurred at fixed times rather than being dynamically adjusted across time, as in our case with
a freeresponse paradigm. A recent normative model supported a continuous change of attention
across choice items, and so couldn’t relate attention to the observed discrete fixation changes [46].
Our work significantly builds on these prior models by identifying the exact optimal policy using
dynamic programming, demonstrating that fixation patterns could reflect active information gath
ering through controlling an attentional bottleneck. This interpretation extends previous work on
visual attention to the realm of valuebased and perceptual decisionmaking [1, 20–23].

Second, our model posits that attention enhances the reliability of information about the at
tended item [33]. In contrast, previous models accounted for attention by downweighting the
value of the unattended item [2,14,37], where one would a priori assume fixations to bias choices.
Our approach was inspired by neurophysiological findings demonstrating that visual attention se
lectively increases the firing rate of neurons tuned to taskrelevant stimuli [47], decreases the mean
normalized variance of individual neurons [26,48], and reduces the correlated variability of neurons
at the population level [3,24,25]. In essence, selective attention appears to boost the signaltonoise
ratio, or the reliability of information encoded by neuronal signals rather than alter the magnitude
of the value encoded by these signals.



Under this framework, we show that the optimal policy can be implemented as a 4dimensional
accumulationtobound model where the particle drifts and diffuses according to the fixation dura
tion to either item, the currently attended item, and the difference in items’ value estimates. This
policy space is significantly more complex compared to previous attentionfree normative models,
which can be implemented in a 2dimensional space. Nevertheless, the attentionmodulated opti
mal policy still featured a collapsing boundary in time consistent with the attentionfree case [9,10].

When designing our model, we took the simplest possible approach to introduce an attentional
bottleneck into normativemodels of decisionmaking. When doing so, our aimwas to provide a pre
cise (i.e., without approximations), normative explanation for how fixation changes qualitatively in
teract with human decisions rather than quantitatively capture all details of human behavior, which
is likely driven by additional heuristics and features beyond the scope of our model [49, 50]. For
instance, it has been suggested that normative allocation of attention should also depend on the item
values to eliminate noncontenders, which we did not incorporate as a part of our model [17, 19].
As such, we expect other models using approximations to have a better quantitative fit to human
data [2, 51]. Instead, a normative understanding can provide a basis for understanding limitations
and biases that emerge in human behavior. Consistent with this goal, we were able to qualitatively
capture a wide range of previously observed features of human decisions (Figure 2.4, 2.5 and 2.7),
suggest a computational rationale for fixationbased choice biases (Figure 2.6A), and confirm new
predictions arising from our theory (Figure 2.6BC).

Due to the optimal policy’s complexity (Figure 2.2), we expect the nervous system to implement
it only approximately (e.g., similar to [52] for multialternative decisions). Such an approximation
has been recently suggested by [51], where they proposed a model of Nalternative choice using
approaches from rational inattention to approximate optimal decisionmaking in the presence of
an attentional bottleneck. Unlike our work, they assumed that the unattended item is completely
ignored, and therefore could not investigate the effect of graded shifts of attentional resources be
tween items (Figure 2.6E). In addition, their model did not predict a choice bias in binary choices
due to a different assumption about the Bayesian prior.

In our model, we assumed the decision maker’s prior belief about the item values is centered
at zero. In contrast, [51] chose a prior distribution based on the choice set, centered on the average
value of only the tested items. While this is also a reasonable assumption [53], it likely contributed
to their inability to demonstrate the choice bias for binary decisions. Under the assumption of our
zeromean prior, formulating the choice process through Bayesian inference revealed a simple and
intuitive explanation for choice biases (Figure 2.6A) (see also [54]). This explanation required
the decision maker to apriori believe the items’ values to be lower than they actually are when
choosing between appetitive options, consistent with evidence that item valuations vary inversely
with the average value of recently observed items [55]. The zeromean prior also predicts an op
posite effect of the choice bias when deciding between aversive items, such that lessfixated items
should become the preferred choice. This is exactly what has been observed in human decision
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makers [56]. We justified using a zeromean bias because participants in the decision task were
allowed to rate items as having both positive or negative valence (negativevalence items were ex
cluded from the binary decision task). However, there is some evidence that humans also exhibit
choice biases when only choosing between appetitive items [15, 57, 58]. Although our setup sug
gests a zeromean prior is required to reproduce the choice bias, the exact features and role of the
Bayesian prior in human decisions still remains an open question for future work.

We show that narrowing the attentional bottleneck by setting κ to values closer to 0 or 1 does
not boost performance of our decisionmaking model (Figure 2.6E). Instead, spreading a fixed cog
nitive reserve evenly between the attended and unattended items maximized performance. This is
consistent with prior work that showed that a modified drift diffusion model with a continuously
varying attention would perform optimally when attention is always equally divided [59]. How
ever, this does not necessarily imply that equally divided attention always constitutes the normative
behavior. If the decision maker has already paid more attention to one item over the other within
a decision, it may be optimal to switch attention and gain more information about the unattended
item rather than to proceed with equally divided attention.

Parameters fit to human behavior reveal that humans tend to allocate a large proportion of their
cognitive resource toward the attended item, suggesting that the benefits of an attentional bottleneck
might lie in other cognitive processes. Indeed, machine learning applied to text translation [39,40],
object recognition [41,42], and videogame playing [43] benefits from attentional bottlenecks that
allow the algorithm to focus resources on specific task subcomponents. For instance, image clas
sification algorithms that extract only the relevant features of an image for highresolution pro
cessing demonstrated improved performance and reduced computational cost compared to those
without such attentional features [41]. Similarly, attentional bottlenecks that appear to limit human
decisionmaking performance might have beneficial effects on cognitive domains outside the scope
of binary valuebased decisions. This is consistent with the idea that the evolutionary advantage
of selective attention involves the ability to rapidly fixate on salient features in a cluttered environ
ment, thereby limiting the amount of information that reaches upstream processing and reducing
the overall computational burden [60].

An open question is whether our findings can be generalized to multialternative choice
paradigms [17, 19, 45, 52]. While implementing the optimal policy for such choices may be an
alytically intractable, we can reasonably infer that a choice bias driven by a zeromean prior would
generalize to decisions involving more than two options. However, in a multialternative choice
paradigm where heuristics involving value and salience of items may influence attention alloca
tion, it is less clear whether an equally divided attention among all options would still maximize
reward. We hope this will motivate future studies that investigate the role of attention in more
realistic decision scenarios.
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CHAPTER 4

Methods

Here, we provide an outline of the framework and its results. Detailed derivations are provided
in the Appendix.

Attention-modulated decision-making model

Before each trial, z1 and z2 are drawn from zj ∼ (z̄, σ2
z). z1 and z2 correspond to the value of

each item. In each timestep n > 0 of duration δt, the decisionmaker observes noisy samples of
each zj . This momentary evidence is drawn from δxj,n|zj ∼

(
zjδt, 1

1−κ
σ2

xδt
)
for the attended item

j = yn, and δxk,n|zk ∼
(
zkδt, 1

κ
σ2

xδt
)
for the unattended item k ̸= yn. We measure how informa

tive a single momentary evidence sample is about the associated true value by computing the Fisher
information it provides about this value. This Fisher information sums across independent pieces
of information. This makes it an adequate measure for assessing the informativeness of momentary
evidence, which we assume to be independent across time and items. Computing the Fisher infor
mation results in (1 − κ)σ−2

x δt in δxj,n about zj for the attended item, and in κσ−2
x δt in δxk,n about

zk for the unattended item. Therefore, setting κ ≤ 1
2 boosts the information of the attended, and re

duces the information of the unattended item, while keeping the total information about both items
at a constant (1−κ)σ−2

x δt+κσ−2
x δt = σ−2

x δt. The posterior zj for j ∈ {1, 2} after t = Nδt seconds
is found byBayes’ rule, p (zj|δxj,1:N , y1:N) ∝ p(zj)

∏N
n=1 p (δxj,n|zj, yn), which results in Eq. (2.2).

If yn ∈ {1, 2} identifies the attended item in each timestep, the attention times in this posterior are
given by t1 = δt

∑N
n=1(2 − yn) and t2 = δt

∑N
n=1(yn − 1). The attentionweighted accumulated

evidence is X1(t) = ∑N
n=1

(
1−κ

κ

)yn−1
δx1,n and X2(t) = ∑N

n=1

(
1−κ

κ

)2−yn

δx2,n, downweighting
the momentary evidence for periods when the item is unattended. Fixing κ = 1/2 recovers the
attentionfree case of [10], and the associated posterior, Eq. (2.1).

We found the optimal policy by dynamic programming [9, 34], which, at each point in time,
chooses the action that promises the larges expected return, including all rewards and costs from
that point into the future. Its central component is the value function that specifies this expected
return for each value of the sufficient statistics of the task. In our task, the sufficient statistics are
the two posterior means, ⟨zj|Xj(t), t1, t2⟩ for j ∈ {1, 2}, the two accumulation times, t1 and t2, and
the currently attended item yn. The decision maker can choose between four actions at any point in



time. The first two are to choose one of the two items, which is expected to yield the corresponding
reward, after which the trial ends. The third action is to accumulate evidence for some more time
δt, which comes at cost cδt, and results in more momentary evidence and a corresponding updated
posterior. The fourth is to switch attention to the other item 3 − yn, which comes at cost cs > 0.
As the optimal action is the one that maximizes the expected return, the value for each sufficient
statistic is the maximum over the expected returns associated with each action. This leads to the
recursive Bellman’s equation that relates values with different sufficient statistics (see Appendix
for details) and reveals the optimal action for each of these sufficient statistics. Due to symmetries
in our task, it turns out these optimal actions only depend on the difference in posterior means ∆,
rather than each of the individual means (see Appendix). This allowed us to compute the value
function and associated optimal policy in the lowerdimensional (∆, t1, t2, y)space, an example of
which is shown in (Figure 2.2).

The optimal policy was found numerically by backwards induction [10,61], which assumes that
at a large enough t = t1 + t2, a decision is guaranteed and the expected return equals∆. We set this
time point as t = 6s based on empirical observations. From this point, we move backwards in small
time steps of 0.05s and traverse different values of ∆ which was also discretized into steps of 0.05.
Upon completing this exercise, we are left with a 3dimensional grid with the axes corresponding
to t1, t2 and ∆, where the value assigned to each point in space indicates the optimal decision to
take for the given set of sufficient statistics. The boundaries between different optimal actions can
be visualized as 3dimensional manifolds (Figure 2.2).

Model simulations

Using the optimal policy, we simulated decisions in a task analogous to the one humans per
formed in Krajbich et al., 2010 [2]. On each simulated trial, two items with values z1 and z2 are
presented. The model attends to one item randomly (y ∈ [1, 2]), then starts accumulating noisy
evidence and adjusts its behavior across time according to the optimal policy. Since the human
data had a total of 39 participants, we simulated the same number of participants (N = 39) for
the model, but with a larger number of trials. For each simulated participant, trials consisted of all
pairwise combinations of values between 0 and 7, iterated 20 times. This yielded a total of 1280
trials per simulated participant.

When computing the optimal policy, there were several free parameters that determined the
shape of the decision boundaries. Those parameters included the evidence noise term (σ2

x), spread
of the prior distribution (σ2

z ), cost of accumulating evidence (c[s−1]), cost of switching attention
(cs), and the relative information gain for the attended vs. unattended items (κ). In order to find
a set of parameters that best mimics human behavior, we performed a random search over a large
parameter space and simulated behavior using the randomly selected set of parameters [62]. We
iterated this process for 2,000,000 sets of parameters and compared the generated behavior to that
of humans (see Appendix 1). After this search process, the parameter set that best replicated human
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behavior consisted of cs = 0.0065, c = 0.23, σ2
x = 27, σ2

z = 18, κ = 0.004.

Statistical analysis

The relationship between task variables (e.g., difference in item value) and behavioral mea
surements (e.g., response time) were assessed by estimating the slope of the relationship for each
participant. For instance, to investigate the association between response times and absolute value
difference (Figure 2.4B), we fit a linear regression within each participant using the absolute value
difference and response time for every trial. Statistical testing was performed using onesample
ttests on the regression coefficients across participants. This procedure was used for statistical
testing involving Figure 2.4B,C,E, and 2.6B,C. To test for the effect of RT and value sum on choice
bias after accounting for the other variable, we used a similar approach and used both RT and value
sum as independent variables in the regression model and the choice bias coefficient as the depen
dent variable. To test for a significant peak effect for Figure 2.6E, we used the same procedure after
subtracting 0.5 from the original κ values. To compare performance between the optimal model
and the aDDM (Figure 2.6D), we first selected the bestperforming aDDM model, then performed
an independentsamples ttest between the mean rewards from simulated participants from both
models.

To quantify the degree of choice bias (Figure 2.6B,C), we computed a choice bias coefficient.
For a given group of trials, we performed a logistic regression with fixation time difference (t1 −t2)
as the independent variable and a binary dependent variable indicating whether item 1 was chosen
on each trial. After performing this regression within each participant’s data, we performed a t
test of the regression coefficients against zero. The the resulting tstatistic was used as the choice
bias coefficient, as it quantified the extent to which fixations affected choice in the given subset of
trials.
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CHAPTER 5

Summary

Every day, we make decisions based on our subjective preferences, such as choosing which
dish to order at a restaurant. When comparing between different options, we tend to shift our gaze
between different items, evaluating each option before moving on to the next, rather than assess
multiple options simultaneously. We may also fixate on certain options for longer periods of time if
we are uncertain or less familiar with them (e.g., a special menu). This allows us to reliably dedicate
attention to each individual option until we feel sufficiently informed tomake a decision. While this
is a seemingly effortless, automatic endeavor, it is unknown what computational principles underlie
the brain’s ability to gather information about multiple items in a statistically optimal manner.

Our work is aimed at developing a computational model of such a decisionmaking process.
To do so, we developed a normative model that incorporates visual fixations as a part of the deci
sion strategy. Importantly, the model accumulated information about a fixated option with higher
fidelity compared to the unattended option, consistent with evidence that attention can sharpen our
perception about the environment. Therefore, our model endogenously controls its own visual fix
ations (i.e., gathers information) in a way that allows for the best decisions in the shortest amount
of time, similar to decision processes in humans.

Using an optimization method called dynamic programming, we derived the complex optimal
decision strategy that allows the model to decide, across time, whether to 1) make a choice, 2)
accumulate more evidence, or 3) switch attention to a different item. We found that the model
successfully incorporates attentional shifts as a part of the optimal decision strategy, and that this
strategy featured the same choice bias as observed in human decision makers: it switched attention
more frequently when deciding between items with similar values, and was biased towards choos
ing items that were attended last, and attended longer. The model also provided insight into why
choice biases may in fact be rational, using a Bayesian explanation. This insight also led to novel
behavioral predictions which we confirmed in human data, suggesting that decisionmaking in our
model and the human brain may involve similar computational principles.
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CHAPTER 6

Appendix

Here we describe in more detail the derivations of our results, and specifics of the simulations
presented in the main text. Of note, we sometimes use x|y ∼ p(y) to specify the conditional density
p(x|y). Furthermore, N (µ, σ2) denotes a Gaussian with mean µ and variance σ2.

6.1 Task setup

6.1.1 Latent state prior

We assume two latent states zj , j ∈ {1, 2}, (here, the true item values) that are before each
choice trial drawn from their Gaussian prior, zj ∼ N (z̄jσ

2
z), with mean z̄j and variance σ2

z .
Throughout the text, we will assume z̄1 = z̄2, to indicate that there is no apriori preference of
one item over the other.

6.1.2 Likelihood function of momentary evidence

The decision maker doesn’t observe the latent states, but instead, in each time step of size δt,
observes noisy evidence about both zj’s. Let us assume that, in the nth such time step, the decision
maker attends to item yn ∈ {1, 2}. Then, they simultaneously observe δx1 and δx2, distributed as

δxj,n|yn, zj ∼ N
(

zjδt,
(1 − κ

κ

)|j−yn| σ2
x

1 − κ
δt

)
, (6.1)

where we have defined the attention modulation parameter κ, bounded by 0 ≤ κ ≤ 1 (we will
usually assume κ ≤ 1

2 ), and the overall likelihood variance σ2
x. For the attended item j = yn, we

have |j−yn| = 0, such that the the variance of the momentary evidence for this item is σ2
xδt/(1−κ).

For the unattended item, for which |j − yn| = 1, this variance is instead σ2
xδt/κ. As long as κ < 1

2

this leads to a larger variance for the unattended item than the attended item, making the momentary
evidence more informative for the attended item. In particular if we quantify this information by
the Fisher information in the momentary evidence δxj,n about zj , then we find this information to
be (1 − κ)σ−2

x δt for the attended, and κσ−2
x δt for the unattended item. The total Fisher information



across both items is thus σ−2
x δt, independent of κ. This shows that σ2

x controls the total information
that the momentary evidence provides about the latent states, whereas κ controls how much of this
information is provided for the attended vs. the unattended item.

6.1.3 An alternative form for the likelihood

While the above form of the likelihood has a nice, intuitive parametrization, it is notationally
cumbersome. Therefore, we will here introduce an alternative variance parametrization of this
likelihood that simplifies the notation in the derivations that follow. Wewill use this parametrization
for the rest of this Appendix.

This alternative parametrization assumes the variance of the momentary evidence of the at
tended item to be given by σ2δt = σ2

x/(1 − κ), while that of the unattended item is given by
γ−1σ2δt = σ2

xδt/κ, where the new attention modulation parameter γ is assumed bounded by
0 ≤ γ ≤ 1. Thus, the previous parameter pair {σ2

x, κ} is replaced by the new pair {σ2, γ}. A
γ < 1 results in an increased variance for the unattended item, resulting in less information about
the value of the unattended item. Overall, the momentary evidence likelihood is given with the
alternative parametrization by

δxj,n|yn, zj ∼ N
(

zjδt,
1

γ|j−yn| σ
2δt

)
, (6.2)

This is the likelihood function that we will use for the rest of this Appendix. Any of the results can
easily be mapped back to the original parametrization (as used in the main text) by

σ2 = σ2
x

1 − κ
, σ2

x = (1 − κ)σ2, (6.3)

γ = κ

1 − κ
, κ = γ

γ + 1
. (6.4)

Note that the alternative parametrization does not preserve the separation between total information
and balancing the information between the attended and unattended item. In particular, the total
Fisher information is now given by (γ + 1)σ−2δt, which depends on both γ and σ2.

Below we will derive the posterior zj’s, given the stream of momentary evidences
[δx1,1, δx2,1], [δx1,2, δx2,2], . . . , and the attention sequence y1, y2, . . . . The mean and variance of
the posterior distributions represent the decision maker’s belief of the items’ true values given all
available evidence.

6.1.4 Costs, rewards, and the decision-maker’s overall aim

While the posterior estimates provide information about value, it does not tell the decision
maker when to stop accumulating information, or when to switch their attention. To address these
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questions, we need to specify the costs and rewards associated with these behaviors. For value
based decisions, we assume that the reward for choosing item j is the latent state zj (i.e., the true
value) associated with the item. Furthermore, we assume that accumulating evidence comes at cost
c per second, or cost cδt per time step. The decision maker can only ever attend to one item, and
switching attention to the other item comes at cost cs which may be composed of a pure attention
switch cost, as well as a loss of time that might introduce an additional cost. As each attention
switch introduces both costs, we only consider them in combination without loss of generality.

The overall aim of the decisionmaker is to maximize the total expected return, which consists of
the expected value of the chosen item minus the total cost of accumulating evidence and attention
switches. We address this maximization problem by finding the optimal policy that, based on
the observed evidence, determines when to switch attention, when to accumulate more evidence,
and when to commit to a choice. We initially focus on maximizing the expected return in a single,
isolated choice, and will later show that this yields qualitatively similar policies as when embedding
this choice into a longer sequence of comparable choices.

6.2 Bayes-optimal evidence accumulation

6.2.1 Deriving the posterior z1 and z2

To find the posterior over z1 after having accumulated evidence x1,1:N ≡ x1,1, . . . , x1,N for
some fixed amount of time t = Nδt while paying attention to items y1:N ≡ y1, . . . yN , we employ
Bayes’ rule,

p (z1|δx1,1:N , y1:N) ∝z1 p(z1)
N∏

n=1
p (δx1,n|z1, yn)

= N
(
z̄1, σ2

z

) N∏
n=1

N
(

zδt,
σ2

γ|1−yn| δt

)

∝z1 N
(

z̄1σ
2σ−2

z + X1(t)
σ2σ−2

z + t1 + γt2
,

σ2

σ2σ−2
z + t1 + γt2

)
,

(6.5)

where we have definedX1(t) = ∑N
n=1 γ|1−yn|δx1,n as the sum of all attentionweighted momentary

evidence up to time t, and tj = t − δt
∑N

n=1 |j − yn| as the total time that item j has been attended.
Note that, for time periods in which item 2 is attended to, (i.e., when yn = 2), the momentary
evidence is downweighted by γ. With δt → 0, the process becomes continuous in time, such that
X1(t) becomes the integrated momentary evidence, but the above posterior still holds.

Following a similar derivation, the posterior belief about z2 results in

p (z2|δx2,1:N , y1:N) = N
(

z̄2σ
2σ−2

z + X2(t)
σ2σ−2

z + γt1 + t2
,

σ2

σ2σ−2
z + γt1 + t2

)
(6.6)
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where X2(t) = ∑N
n=1 γ|2−yn|δx2,n. As the decision maker acquires momentary evidence

independently for both items, the two posteriors are independent of each other, that is
p (z1, z2|δx1,1:N , δx2,1:N , y1:N) = p (z1|δx1,1:N , y1:N) p (z2|δx2,1:N , y1:N).

6.2.2 The expected reward process

At each point in time, the decision maker must decide whether it’s worth accumulating more
evidence versus choosing an item. To do so, they need to predict how the mean estimated reward
for each option might evolve if they accumulated more evidence. In this section we derive the
stochastic process that describes this evolution for item 1. The same principles will apply for item
2.

Assume that having accumulated evidence until time t = Nδt, the current expected reward
for item 1 is given by r̂1(t), where r̂1(t) = ⟨z1|δx1,1:N , y1:N⟩ is the mean of the above posterior,
Eq. (6.5). The decisionmaker’s prediction of how the expected reward might evolve after accu
mulating additional evidence for δt is found by the marginalization,

p (r̂1(t + δt)|r̂1(t), t1, t2, yN+1)

=
∫∫

p (r̂1(t + δt)|r̂1(t), δx1,N+1, t1, t2, yN+1) p (δx1,N+1|z1, yN+1) p (z1|r̂1(t), t1, t2) dδx1,N+1dz1.

(6.7)

As the last term in the above integral shows, r̂(t), t1 and t2 fully determine the posterior z1 at
time t. We can use this posterior to predict the value of the next momentary evidence δx1,N+1|z1.
This, in turn, allows us to predict r̂1(t + δt). As all involved densities are either deterministic
or Gaussian, the resulting posterior will be Gaussian as well. Thus, rather than performing the
integrals explicitly, we will find the final posterior by tracking the involved means and variances,
which in turn completely determine the posterior parameters.

We first marginalize over δx1,N+1, by expressing r̂1(t + δt) in terms of r̂(t) and δx1,N+1. To
do so, we use Eq. (6.5) to express r̂1(t + δt) by

r̂1(t + δt) = z̄1σ
2σ−2

z + X1(t) + γ|yN+1−1|δx1,N+1

σ2σ−2
z + t1 + γt2 + γ|1−yN+1|δt

, (6.8)

where we have used X1(t + δt) = X1(t) + γ|yN+1−1|δx1,N+1.
Note that, for a given δx1,N+1, r̂(t + δt) is uniquely determined by r̂(t). r̂(t + δt) be

comes a random variable once we acknowledge that, for any z1, δx1,N+1 is given by Eq. (6.2),
which we can write as δx1,N+1 = z1δt +

√
σ2γ−|1−yN+1|δtηx, where ηx ∼ N (0, 1).

Substituting this expression into r̂1(t + δt), and using Eq. (6.5) to reexpress X1(t) as
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X1(t) = r̂1(t) (σ2σ−2
z + t1 + γt2) − z̄1σ

2σ−2
z , results in

r̂1(t + δt) =
r̂1(t) (σ2σ−2

z + t1 + γt2) + γ|1−yN+1|z1δt +
√

σ2γ|1−yN+1|δtηx

σ2σ−2
z + t1 + γt2 + γ|1−yN+1|δt

. (6.9)

The secondmarginalization over z1 is found by noting the distribution of z1 is given by Eq. (6.5),
which can be written as

z1 = r̂1(t) +

√√√√ σ2

σ2σ−2
z + t1 + γt2

ηz, (6.10)

with ηz ∼ N (0, 1). Substituting this z1 into the above expression for r̂(t + δt) results in

r̂1(t + δt) = r̂1(t) +

√
σ2γ|1−yN+1|δt

σ2σ−2
z + t1 + γt2 + γ|1−yn+1|δt

ηx, (6.11)

where we have dropped the ηzdependent term which had a δt prefactor, and thus vanishes with
δt → 0. Therefore, r̂1(t) evolves as a martingale,

r̂1(t + δt)|r̂1(t), t1, t2, yN+1 ∼ N
(

r̂1(t),
σ2γ|1−yn+1|

(σ2σ−2
z + t1 + γt2 + γ|1−yN+1|δt)2 δt

)
. (6.12)

Using the same approach, the expected future reward for item 2 is given by

r̂2(t + δt)|r̂2(t), t1, t2, yN+1 ∼ N
(

r̂2(t),
σ2γ|2−yN+1|

(σ2σ−2
z + γt1 + t2 + γ|2−yn+1|δt)2 δt

)
. (6.13)

6.2.3 The expected reward difference process

In a later section, we will reduce the dimensionality of the optimal policy space by using the
expected reward difference rather than each of the of the expected rewards separately. To do so,
we define this difference by

∆(t) = r̂1(t) − r̂2(t)
2

. (6.14)

As for r̂1(t) and r̂2(t), we are interested in how ∆(t) evolves over time.
To find ∆(t + δt)|∆(t), t1, t2, yN+1 we can use

p (∆(t + δt)|∆(t), t1, t2, yN+1)

= p

(
∆(t + δt) = r̂1(t + δt) − r̂2(t + δt)

2
|∆(t) = r̂1(t) − r̂2(t)

2
, t1, t2, yN+1

)
. (6.15)

As the decisionmaker receives independent momentary evidence for each item, r̂1(t) and r̂2(t)
are independent when conditioned on t1, t2 and y1:N . Thus, so are their timeevolutions,
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r̂1(t + δt)|r̂1(t), . . . and r̂2(t + δt)|r̂2(t), . . . . With this, we can show that

∆(t + δt)|∆(t), t1, t2, yN+1

∼ N
(

∆(t), σ2δt

4

(
γ|1−yN+1|

(σ2σ−2
z + t1 + γt2 + γ|1−yN+1|δt)2 + γ|2−yN+1|

(σ2σ−2
z + γt1 + t2 + γ|2−yN+1|δt)2

))
.

(6.16)

Unsurprisingly, ∆(t) is again a martingale.

6.3 Optimal decision policy

6.3.1 Optimal policy for value-based decisions

We find the optimal decision policy by dynamic programming [34, 35]. A central concept in
dynamic programming is the value function V (·), which, at any point in time during a decision,
returns the expected return, which encompasses all expected rewards and costs from that point
onwards into the future when following the optimal decision policy. Bellman’s equation links value
functions across consecutive times, and allows finding this optimal decision policy recursively. In
what follows, we first focus on Bellman’s equation for single, isolated choices.

For a single, isolated choice, accumulating evidence comes at cost c per second. Switching
attention comes at cost cs. The expected reward for choosing item j is r̂j(t), and is given by the
mean of Eqs. (6.5) and (6.6) for j = 1 and j = 2, respectively.

To find the value function, let us assume that we have accumulated evidence for some time
t = t1 + t2, expect rewards r̂1(t) and r̂2(t), and are paying attention to item y ∈ {1, 2}. These
statistics fully describe the evidence accumulation state, and thus fully parameterize the value func
tion Vy (r̂1, r̂2, t1, t2). Here we use y as a subscript rather than an argument to V (·) to indicate that
y can only take one of two values, y ∈ {1, 2}. At this point, we can choose among four ac
tions. We can either immediately choose item 1, immediately choose item 2, accumulate more
evidence without switching attention, or switch attention to the other item, 3 − y. The expected
return for choosing immediately is either r̂1(t) or r̂2(t), depending on the choice. Accumulating
more evidence for some time δt results in cost cδt, and changes in the expected rewards according
to r̂j(t + δt)|r̂j(t), t1, t2, y, as given by Eqs. (6.12) and (6.13). Therefore, the expected return for
accumulating more evidence is given by

−cδt + ⟨Vy (r̂1(t + δt), r̂2(t + δt), t1 + |2 − y|δt, t2 + |1 − y|δt) |r̂1, r̂2, t1, t2, y⟩ , (6.17)

where the expectation is over the timeevolution of r̂1 and r̂2, and t1 + |2 − y|δt and t2 + |1 − y|δt

ensures that only the ty associated with the currently attended item is increased by δt. Lastly,
switching attention comes at cost cs, but does not otherwise impact reward expectations, such that
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the expected return associated with this action is

−cs + V3−y (r̂1, r̂2, t1, t2) , (6.18)

where the use of V3−y(·) implements that, after an attention switch, item 3 − y will be the attended
item.

By the Bellman optimality principle [34], the best action at any point in time is the one that
maximizes the expected return. Combining the expected returns associated with each possible
action results in Bellman’s equation

Vy (r̂1, r̂2, t1, t2)

= max


r̂1, r̂2,

⟨Vy (r̂1(t + δt), r̂2(t + δt), t1 + |2 − y|δt, t2 + |1 − y|δt) |r̂1, r̂2, t1, t2, y⟩ − cδt,

V3−y (r̂1, r̂2, t1, t2) − cs


.

(6.19)

Solving this equation yields the optimal policy for any combination of r̂1, r̂2, t1, t2 and y by picking
the action that maximizes the associated expected return, that is, the term that maximizes the left
hand side of the above equation. The optimal decision boundaries that separate the (r̂1, r̂2, t1, t2, y)
space into regions where different actions are optimal lie at manifolds in which two actions yield
the same expected return. For example, the decision boundary at which it becomes best to choose
item 1 after having accumulated more evidence is the manifold at which

Vy (r̂1, r̂2, t1, t2) = r̂1

= ⟨Vy (r̂1(t + δt), r̂2(t + δt), t1 + |2 − y|δt, t2 + |1 − y|δt) |r̂1, r̂2, t1, t2, y⟩ − cδt. (6.20)

In Section 6.4 we describe how we found these boundaries numerically.
Formulated so far, the value function is fivedimensional, with four continuous (r̂1, r̂2, t1, and

t2) and one discrete (y) dimension. It turns out that it is possible to remove one of the dimen
sions without changing the associated policy by focusing on the expected reward difference ∆(t),
Eq. (6.14), rather than the individual expected rewards. To show this, we use the value function
property Vy (r̂1, r̂2, t1, t2)+C = Vy (r̂1 + C, r̂2 + C, t1, t2) for any scalarC (see [63] for derivation
leading to this property). Next, we define the value function on expected reward differences by

V̄y(∆, t1, t2) = Vy(r̂1, r̂2, t1, t2) − r̂1 + r̂2

2
= Vy(∆, −∆, t1, t2). (6.21)
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Applying this mapping to Eq. (6.19) leads to Bellman’s equation

V̄y (∆, t1, t2) = max


∆, −∆,〈

V̄y (∆(t + δt), t1 + |2 − y|δt, t2 + |1 − y|δt) |∆, t1, t2, y
〉

− cδt,

V̄3−y (∆, t1, t2) − cs


,

(6.22)
which is now defined over a fourdimensional rather than a fivedimensional space while yielding
the same optimal policy. This also confirms that optimal decisionmaking doesn’t require tracking
individual expected rewards, but only their difference.

6.3.2 Optimal policy for perceptual decisions

To apply the same principles to perceptual decisionmaking, we need to revisit the interpreta
tion of the latent states, z1 and z2. Those could, for example, be the brightness of two dots on a
screen, and the decisionmaker needs to identify the brighter dot. Anternatively, they might reflect
the length of two lines, and the decision maker needs to identify which of the two lines is longer.
Either way, the reward is a function of z1, z2, and the decision maker’s choice. Therefore, the
expected reward for choosing either option can be computed from the posterior z’s, Eqs. (6.5) and
(6.6). Furthermore, these posteriors are fully determined by their means, r̂1, r̂2, and the attention
times, t1 and t2. As a consequence, we can formulate the expected reward for choosing item j by
the expected reward function Rj (r̂1, r̂2, t1, t2).

What are the consequences for this change in expected reward for the optimal policy? If we as
sume the attentionmodulated evidence accumulation process to remain unchanged, the only change
is that the expected return for choosing item j changes from r̂j toRj (r̂1, r̂2, t1, t2). Therefore, Bell
man’s equations changes to

Vy (r̂1, r̂2, t1, t2)

= max


R1 (r̂1, r̂2, t1, t2) , R2 (r̂1, r̂2, t1, t2) ,

⟨Vy (r̂1(t + δt), r̂2(t + δt), t1 + |2 − y|δt, t2 + |1 − y|δt) |r̂1, r̂2, t1, t2, y⟩ − cδt,

V3−y (r̂1, r̂2, t1, t2) − cs


.

(6.23)

The optimal policy follows from Bellman’s equation as before.
The above value function can only be turned into one over expected reward differences under

certain regularities of R1 and R2, which we will not discuss further at this point. Furthermore, for
the above example, we have assumed two sources of perceptual evidence that need to be compared.
Alternative tasks (e.g., the random dot motion task) might provide a single source of evidence that
needs to be categorized. In this case, the formulation changes slightly (see, for example, [9]), but
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the principles remain unchanged.

6.4 Simulation details

6.4.1 Computing the optimal policy

In Section 6.3, we described the Bellman equation (Eq. (6.22)) which outputs the expected
return given these four parameters: currently attended item (y), reward difference (∆), expected
return for accumulating more evidence, and expected return for switching attention. Note that the
symmetry of the value function (see [63] for the derivation establishing symmetry) allows us to drop
−∆ from the original Eq. (6.22). Solving this Bellman equation provides us with a 4dimensional
”policy space” which assigns the optimal action to take at any point in this space defined by the
four parameters above.

The solution to the optimal policy can be found numerically by backwards induction [10]. To
do so, first we assume some large t = t1 + t2, where a decision is guaranteed. In this case,
Vy(∆, t1, t2) = max{−∆, ∆} = |∆| for both y = 1 and y = 2. We call this the base case. From
this base case, we can move one time step backwards in t1 (y = 1):

V̄1 (∆, t1 − δt, t2) = max


∆,〈

V̄1 (∆, t1, t2) |∆, t1, t2
〉

− cδt,

V̄2 (∆, t1 − δt, t2) − cs


, (6.24)

The second expression in the maximum can be evaluated, since we assume a decision is made at
time t. But V̄2 (∆, t1 − δt, t2)− cs, which is the value function for switching attention, is unknown.
This unknown value function is given by

V̄2 (∆, t1 − δt, t2) = max


∆,〈

V̄2 (∆, t1 − δt, t2 + δt) |∆, t1, t2
〉

− cδt,

V̄1 (∆, t1 − δt, t2) − cs


, (6.25)

In this expression, the second term can again be found, but V̄1 (∆, t1 − δt, t2) − cs is un
known. Looking at the two expressions above, we see that under the parameters (∆, t1 − δt, t2),
V1 ≥ V2 − cs, and V2 ≥ V1 − cs, which cannot both be true. Therefore, we first assume that V1 is
not determined by V2 − cs, removing the V2 − cs term from the maximum. This allows us to find
V̄1 (∆, t1 − δt, t2) in Eq. (6.24). Then, we compute Eq. (6.25) including the V1 − cs term. If we
find that V2 = V1 − cs, then V1 ̸= V2 − cs, which means the V2 − cs term could not have mattered in
Eq. (6.24), and we are done. If not, we recompute V1 with the V2 − cs term included, and we are
done. Therefore, we were able to compute V1 and V2 under the parameters (∆, t1 − δt, t2) using
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information about V̄1 (∆, t1, t2) and V̄2 (∆, t1 − δt, t2 + δt).
Using the same approach, we can find V1,2 (∆, t1, t2 − δt) based on V̄1 (∆, t1 − δt, t2 + δt) and

V̄2 (∆, t1, t2). Thus, given that we know Vy (∆, t1, t2) above a certain t = t1+t2, we canmove back
wards to compute V1 and V2 for (∆, t1 − δt, t2), then (∆, t1 − 2δt, t2), and so on, until (∆, 0, t2)
for all relevant values of ∆. Subsequently, we can do the same moving backwards in t2, solving
for Vy (∆, t1, t2 − δt), Vy (∆, t1, t2 − 2δt), ..., Vy (∆, t1, 0). Following this, we can continue with
the same procedure from Vy (∆, t1 − δt, t2 − δt), until we have found V1,2 for all combinations of
t1 and t2.

In practice, the parameters of the optimal policy space were discretized to allow for tractable
computation. We set the large time at which decisions are guaranteed at t = 6s, which we de
termined empirically. Time was discretized into steps of δt = 0.05s. The item values, and their
difference (∆) were also discretized into steps of 0.05.

Upon completing this exercise, we now have two 3dimensional optimal policy spaces. The
decisionmaker’s location in this policy space is determined by t1, t2, and ∆. Each point in this
space is assigned an optimal action to take (choose item, accumulate more evidence, switch atten
tion) based on which expression was largest in the maximum of the respective Bellman equation.
The decisionmaker moves between the two policy spaces depending on which item they are at
tending to (y ∈ [1, 2]).

In order to find the 3dimensional boundaries that signify a change in optimal action to take, we
took slices of the optimal policy space in planes of constant ∆’s. We found the boundary between
different optimal policies within each of these slices. We in turn approximated the 3dimensional
contour of the optimal policy boundaries by collating them along the different ∆’s.

6.4.2 Finding task parameters that best match human behavior

In computing the optimal policy, there were several free parameters that determined the shape
of the policy boundaries, thereby affecting the behavior of the optimal model. These parameters
included σ2, σ2

z , c, cs, and γ. Our goal was to find a set of parameters that qualitativelymimic human
behavior as best as possible. To do so, we performed a random search over the following parameter
values: cs ∈ [0.001, 0.05] (steps size 0.001), c ∈ [0.01, 0.4] (steps size 0.01), σ2 ∈ [1, 100] (step
size 1), σ2

z ∈ [1, 100] (step size 1), γ ∈ [0.001, 0.01] (step size 0.001) [62].
To find the best qualitative fit, we simulated behavior from a randomly selected set of parame

ter values (see next section for simulation procedure). From this simulated behavior, we evaluated
the match between human and model behavior by applying the same procedure to each of Fig
ure 2.4B,C,E. For each bin for each plot, we subtracted the mean values between the model and
human data, then divided this difference by the standard deviation of the human data correspond
ing to that bin, essentially computing the effect size of the difference in means. We computed the
sum of these effect sizes for every bin, which served as a metric for how qualitatively similar the
curves were between the model and human data. We performed the same procedure for all three
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figures, and ranked the sum of the effect sizes for all simulations. We performed simulations for
over 2,000,000 random sets of parameter values. The set of parameters for which our model best
replicated human behavior according to the above criteria was cs = 0.0065, c = 0.23, σ2 = 27,
σ2

z = 18, γ = 0.004.

6.4.3 Simulating decisions with the optimal policy

The optimal policy allowed us to simulate decision making in a task analogous to the one hu
mans performed in [2]. For a given set of parameters, we first computed the optimal policy. In
a simulated trial, two items with values z1 and z2 are presented. At trial onset, the model attends
to an item randomly (y ∈ [1, 2]), and starts accumulating noisy evidence centered around the true
values. At every time step (δt = 0.05), the model evaluates ∆ using the mean of the posteriors
between the two items (see Eqs. (6.5) and (6.6)). Then, the model performs the optimal action
associated with its location in the optimal policy space. If the model makes a decision, then the
trial is over. If the model instead accumulates more evidence, then the above procedure is repeated
for the next time step. If the model switches attention, it does not obtain further information about
either item, but switches attention to the other item. Switching attention allows for more reliable
evidence from the nowattended item, and also switches the optimal policy space to the appropriate
one (see Figure 2.2).

To allow for a relatively fair comparison between the model and human data, we simulated the
same number of subjects (N = 39) for the model, but with a larger number of trials. For each
simulated subject, trials were created such that all pairwise combinations of values between 0 and
7 were included, and this was iterated 20 times. This yielded a total of 1280 trials per subject.

6.4.4 Attention diffusion model

In order compare the decision performance of the optimal model to that of the original atten
tional drift diffusion model (aDDM) proposed by Krajbich et al. (2010) [2], we needed to ensure
that neither model had an advantage by receiving more information. We did so by making sure that
the signaltonoise ratios of evidence accumulation of both models were identical. In aDDM, the
evidence accumulation evolved according to the following process, in steps of 0.05s (assuming y
= 1):

vt = vt−1 + d(z1 − γkz2) + ηt, (6.26)

where vt is the relative decision value that represents the subjective value difference between the
two items at time t, d is a constant that controls the speed of integration (in ms−1), γk controls the
biasing effect of attention, and ηt ∼ N (0, σ2) is a normally distributed random variable zero mean
and variance σ2. Written differently, the difference in the attentionweighted momentary evidence
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between item 1 and item 2 can be expressed as

δ∆ = d (z1 − γkz2) + ηt ∼ N
(
d(z1 − γkz2), σ2

)
∼ N

(
k(z1 − γkz2)δt, σ2

kδt
)

,
(6.27)

where d and σ2 were replaced by kδt, and σ2
kδt, respectively. Here, the variance term σ2

kδt can be
split into two parts, such that the δ∆ term can be expressed as

δ∆ ∼ N
(

z1kδt,
1
2

σ2
kδt
)

− N
(

γkz2kδt,
1
2

σ2
kδt
)

. (6.28)

The signaltonoise ratios (i.e., the ratio of mean over standard deviation) of the two terms in the
above equation are z1kδt√

δt
2 σk

and z2kδt
1

γk
σk

√
δt
2
, respectively.

Continuing to assume y = 1, in the Bayesoptimal model, evidence accumulation evolves
according to

δx1 ∼ N
(
z1δt, σ2

b δt
)

,

δx2 ∼ N
(
z2δt, γ−1

b σ2
b δt
)

.
(6.29)

Therefore, the difference in the attentionweighted momentary evidence between item 1 and item
2 can be expressed as:

δ∆ ∼ N
(
z1δt, σ2

b δt
)

− γbN
(
z2δt, γ−1

b σ2
b δt
)

∼ N
(
z1δt, σ2

b δt
)

− N
(
γbz2δt, γbσ

2
b δt
)

.
(6.30)

The signaltonoise ratios of the two terms in the above equation are z1δt√
δtσb

and z2δt
1√
γb

σb

√
δt
, respec

tively.
In order to match the signaltonoise ratios of the two models, we set equal their corresponding

expressions, to find the following relationship between the parameters of the two models:

k = 1,

σ2
k = 2σ2

b ,

γk = √
γb.

(6.31)

Therefore, we simulated the aDDM with model parameters γk = √
γb and σ2

k = 2σ2
b .

In the original aDDMmodel, themodel parameters were estimated by fitting themodel behavior
to human behavior after setting a decision threshold at ±1. Since we adjusted some of the aDDM
parameters, we instead iterated through different decision thresholds (1 through 10, in increments of
1) and found the value that maximizes model performance. To keep it consistent with behavioral
data, we generated 39 simulated participants that each completed 200 trials where the two item
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values were drawn from the prior distribution of the optimal policy model, zj ∼ N (z̄, σ2
z) using

both the optimal model and the aDDM model.

6.4.5 Adjusting the attention bottleneck

We investigated whether changing the relative amount of attentional resource dedicated to the
attended versus unattended item would influence decisionmaking performance. To do so, we var
ied the amount of momentary evidence provided about the attended and unattended items while
keeping the overall evidence constant. We found the overall evidence from the base model by
computing the Fisher information (Ibase) it provides about the respective true item values. This
Fisher information is computed as the sum of the reciprocal of the variance from the attended and
unattended items, resulting in

Ibase = 1
σ2 + 1

γ−1σ2 = 1 + γ

σ2 . (6.32)

Our goal is to use κ (0 ≤ κ ≤ 1) to control the relative attentional resource allocated to the at
tended versus unattended item, analogous to the γ term used in the base model. To do so, we set
the variance of the two items as σ2

tot/(1 − κ) and σ2
tot/κ for the attended and unattended items,

respectively, where σ2
tot = 1

Ibase
represents the total variance associated with evidence accumula

tion of both items. This satisfies our requirement of flexibly changing attention allocation while
maintaining the Fisher information of the base model,

1 − κ

σ2
tot

+ κ

σ2
tot

= 1
σ2

tot

= Ibase. (6.33)

To implement this adjusted model, for each value of κ, we found the associated σ2
κ and γκ to replace

the σ2 and γ terms in the base model. To do so, we set the variance of the attended item above equal
to that from the base model,

1 − κ

σ2
tot

= 1
σ2

κ

. (6.34)

Since σ2
tot = 1

Ibase
= σ2

1+γ
, we can rearrange the above and solve for σ2

k and γκ to get,

σ2
κ = σ2

tot

1 − κ
,

γκ = κ

1 − κ
.

(6.35)

Using the above σ2
κ and γκ, we computed the optimal policy and simulated behavior using the same

approach as for the base model.
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