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ABSTRACT

The equations of motion that govern the dynamics of fluid flows—the Navier-Stokes equations—
were formulated nearly two centuries ago. In that time, we have made immense advancements in
the ways that we understand these equations in order to characterize, analyze, and model a myriad
of fluid flows. To this day, however, our understanding of how turbulent flows evolve dynamically
remains limited. The challenge in understanding how turbulent flows develop arises from the com-
plexity of the transfer of energy through the interactions of vortices over a broad range of length and
time scales. These ubiquitous flows are notoriously difficult to study due to our lack of a mecha-
nistic framework that encapsulates how vortices interact, break down, and form new generations of
vortices, driving the cascade of energy down to the dissipative scale. Here we examine the violent,
head-on collision of vortex rings in order to identify how the vortices break down into a transient
turbulent flow. At moderate Reynolds numbers, the colliding vortices locally flatten each other and
split into new, smaller generations of vortex filaments. These secondary filaments, themselves, in-
teract with each other, flatten, and break down again in an iterative manner that is consistent with
recent theoretical predictions. At higher Reynolds numbers, the colliding vortices generate a new
ordered array of antiparallel secondary filaments through the onset of the elliptical instability. These
secondary filaments interact, leading to the formation of even smaller tertiary filaments in the same
manner as the preceding generation. We examine what role these vortex interactions play in the cas-
cading of energy down to smaller scales in recent numerical studies of turbulence. This mechanistic
framework could help shift the paradigm of viewing turbulence as a cascade of discrete instabilities
through vortex interactions, rather than statistically.
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Introduction

When I first began my undergraduate education in engineering, I was under the impression that
all of classical mechanics had been largely figured out. While new, transformative developments
were emerging constantly in fields like biology, electronics, quantum mechanics, and astrophysics,
there were no deep, open questions that remained about the interactions of everyday objects. The
fundamental equations of motion governing such classical systems were established centuries ago

by Newtonian mechanics and other conservation laws regarding how mechanical systems—discrete



or continuous—respond to external forcing. However, upon taking my first class in fluid mechanics,
I quickly became aware of the main void remaining within our understanding of classical physics:
turbulent flows.

Needless to say, this was shocking to learn. Surely, the physics of how incompressible fluids move
and interact with other rigid bodies had been established and could be modelled and predicted.
This is true under certain cases, namely laminar flows—when fluid elements flow in ordered parallel
streamlines without mixing. Flows remain laminar when the viscous forces between fluid elements
temper the inertial forces that drive them, thereby keeping the flow stable. However, when the in-
ertial forces of a flow are so high that they overpower the viscous forces, the streamlines become
unstable and the flow breaks down into a disordered ensemble of swirling eddies, known as tur-
bulence. This transition to turbulence was first examined experimentally by Osborne Reynolds in
1883, who developed a dimensionless measure of this balance between inertial and viscous forces in

a flow, eponymously known as the Reynolds number, Re: ®*

inertial forces UL

e=——— = (1)

viscous forces v

In this equation, U's the characteristic velocity scale of a flow, L is a characteristic length scale in
aflow, and » is the kinematic viscosity of the fluid. Though Reynolds initially proposed this dimen-
sionless parameter for water flowing through a pipe, where U was the mean velocity of the flow and
L was the diameter of the pipe, it has been applied over a myriad of different flow configurations.

In each case, a flow will transition to a turbulent state when the Reynolds number reaches a thresh-
old value, wherein the inertial behavior of the flow dominates. The applicability and extensibility
of this dimensionless parameter in any incompressible flow demonstrates the universal nature of
turbulence.

Turbulent flows are ubiquitous in everyday life, from the flows of streams, rivers, and oceans,



to the flows past moving cars and planes. The velocity fields of turbulent flows are disordered and
irregular, meaning that they fluctuate both spatially and temporally. This is a consequence of the
formation and interaction of eddies over a wide range of scales, from the largest scales where energy
is injected into the flow, down to the smallest scales where it is dissipated through viscosity. The
complicated nature of these dynamics has limited our understanding of how turbulence evolves on a
fundamental level.

Our understanding of how the dynamics of viscous fluid flows evolve was developed in the early
1800s with the derivation and later formalization of the Navier-Stokes equations, shown in Egs. (2)
and (3)'*. They characterize the equations of motion of an incompressible, Newtonian fluid with
density, p and kinematic viscosity, ».

Ju

_ 1 2
E—l—(u'V)u— ﬁVp—#—f—l—vVu (2)

V-u=0 (3)

In these equations, u(x, y, z, #) is the velocity field of the flow, p(x, y, 2, #) is the pressure distribu-
tion, and f(x, y, 2, £) is an external body force acting on the fluid. Eq. (2) represents the application
of Newton’s second law of motion in a continuum fluid model, whereby the momentum of each
fluid element (the left side of the equation) is balanced by the forces acting on each fluid element
(the right side of the equation). Eq. (3) results from mass continuity for a fluid with a constant den-
sity. While these equations impose local constraints on the transfer of momentum of interacting
fluid elements and global constraints on the flow’s incompressibility, they provide no insights on the
structural evolution of the flow. In particular, the non-linearity of the advective term, (u - V) u, has
made solving these equations mathematically intractable. In fact, determining whether the Navier-

Stokes equations remain smooth for all time and do not become singular or “blow-up” remains an



unsolved Millenium Prize problem with a million-dollar reward *>. With such a limited mathemat-
ical understanding of how the solutions to these equations behave, it’s no wonder that our physical
understanding of turbulence has been hampered for so long.

Given the mathematical challenges of characterizing how turbulent flows develop, researchers
began to tackle the problem more abstractly in order to formulate a more fundamental understand-
ing of the interactions that govern the dynamics of turbulent flows. This was initiated by Lewis Fry
Richardson in 1922, who poetically encapsulated the interactions of eddies, or whirls, in turbu-

lence: ©3

“Big whirls have little whirls,
That feed on their velocity;
And little whirls have lesser whirls,

And so on to viscosity.”

This simple poem was the foundation of the turbulent energy cascade—the mechanism by which
the energy of a turbulent flow is transferred from large to small scales. This mechanism, though
vague at first, was transformative. It established that large vortices in a turbulent flow interact with
each other and break down to smaller vortices, which, themselves, break down in the same manner.
This process would iterate again and again until the vortices become so small that their motion is
damped out by the viscosity of the fluid. This proposed mechanism for energy transfer seemed in-
tuitive, but it still required a mathematical basis by which the cascade could be characterized and
measured in turbulent flows.

Researchers quickly rose to the challenge and began proposing more rigorous mathematical for-
mulations to test the validity of Richardson’s energy cascade. While several models were developed
and tested, it wasn’t until Andrey Kolmogorov’s seminal 1941 work that the study of turbulence

was forever transformed*#. Kolmogorov’s elegant approach of characterizing turbulent flows was



based on viewing the dynamics of the interacting eddies statistically, abstracting away the details

of their structure. Kolmogorov proposed that for turbulent flows at high Reynolds numbers, the
small-scale motions of eddies are homogeneous and isotropic. He assumed that as large scale eddies
interacted and broke down to smaller scales, they would lose their anisotropic properties, making
their dynamics universal and independent of initial or boundary conditions. Kolmogorov then pro-
posed two similarity hypotheses for the dynamics of interacting eddies.

The first similarity assumption states that in every turbulent flow, at a sufficiently high Reynolds
number, the dynamics of small-scale eddies are universally and uniquely determined by the eddy
size, ¢, the kinematic viscosity of the fluid, », and the rate of energy dissipation per unit mass, ¢.
From this assumption, Kolmogorov was able to determine a minimum cutoft eddy size, 7, at which

viscosity dominates and the kinetic energy of the eddy is dissipated as heat: >*

V3 1/4
7= (g) (4

This established a range of scales over which the turbulent energy cascade is confined. These iner-

~

tial eddies would have to be larger than the viscous scale but smaller than the large-scale eddies where
energy is injected into the flow. Kolmogorov postulated that within this inertial subrange, the dy-
namics of the interacting eddies are largely unaftected by viscosity. This led to Kolmogorov’s second
similarity assumption, which states that for turbulent flows at sufficiently high Reynolds numbers,
the dynamics of eddies within the inertial subrange are universally and uniquely determined by the
eddy size, £, and the energy dissipation rate, . Through the use of dimensional analysis, this assump-
tion led to the characterization of the kinetic energy spectrum within the inertial subrange, E(k),

known as Kolmogorov’s -5/3 law:

E(k) = C2Pp/3 (s)



In this scaling law, £, is the mean wavenumber in Fourier space corresponding to an eddy of size,
¢, such that # ~ ¢71, and Cis a constant that is determined experimentally 7. This scaling law has
since become a hallmark of characterizing the statistical behavior of turbulent flows. It has been re-
peatedly observed in numerical simulations of turbulence as well as experimentally in a multitude of
systems, including wind tunnels, atmospheric flows, and the rushing currents of rivers 16 However,
to this day, there is still no unifying theory by which the statistical behavior of Kolmogorov’s -5/3
law can be derived from the governing Navier-Stokes equations for turbulent flows.

While Kolmogorov was able to formalize Richardson’s vision of an energy cascade by develop-
ing a statistical framework for analyzing turbulence, it still has many limitations. This statistical
approach is another form of abstraction that obscures the complicated nature of the interacting
vortices in turbulence. One of the most notable examples of this is the intermittency of turbulence,
which refers to the sporadic and unpredictable “bursts” of the dissipation rate, ¢, that are localized

both spatially and temporally in turbulent flows 16,

4. The prevalence of these fluctuations, which
have been observed numerically and experimentally, arises from the strong, albeit rare interactions
of discrete vortices, which deviates from Kolmogorov’s similarity assumptions and requires higher-
order corrections for the statistical behaviors of turbulent flows’*.

It is natural to attempt to pare down the complexity of such a system through statistics in order
to better understand the emergent properties that arise from the interactions of the constituent
components. However, broadening our understanding of turbulence also requires the development
of a mechanistic framework that characterizes how vortices interact and break down in real space to
drive the cascade of energy down to the viscous scale. This bottom-up, mechanistic approach could
help to bridge the chasm between the Navier-Stokes equations and Kolmogorov’s -5/3 law.

Developing an experimental system to visualize and probe the dynamics of interacting vortices

in order to observe and characterize such a mechanism was the motivation that drove the research

for this thesis. Many experimental configurations have been developed over the years to character-



ize and quantify the structure of turbulent flows; that is, visualizing the irregular and complicated
flow patterns that result from eddies interacting simultaneously over many scales. Experimentally
isolating and capturing these dynamics is extremely challenging and often necessitates trade-ofts
between temporal and spatial resolution. For example, in wall-bounded turbulent flows, like the
flow through a pipe, the turbulent eddies are formed along the walls of the channel and are rapidly
carried away with the flow. It is thus difficult to track the motion of the eddies as they interact with
the rest of the flow while being advected downstream. For examples of stationary turbulence, like
the flow that results from an array of jets ejecting fluid at a localized region, the same challenge of
localizing the dynamics of the interacting vortices arises. The vortices wrap around one another in
a tangled “nest” or “spaghetti-soup” of swirling eddies. The geometries of these vortices undergo
rapid transformations as they smash into each other, breaking down into smaller and smaller scales.
Even if one could capture the full velocity field of such a stationary flow, which is experimentally
very challenging, it is impossible to isolate each eddy from its formation and trace out its lifetime,
calculating how the neighboring eddies influence it and lead it to break down. The dynamics are
simply too complicated and span too wide of a range of length and time scales.

The work in this thesis centers around a unique, bottom-up approach to understanding how the
turbulent cascade evolves in real space, which epitomizes the experimental approach that physicists
take in order to understand complicated systems. When particle physicists want to learn how matter
behaves on a fundamental level, they take the simplest components of matter, smash them together
violently in particle accelerators, and measure what results from the collision. Analogously, we have
developed an experimental system to learn about the behavior of the turbulent cascade by smashing
together its fundamental components: vortices. Specifically, we have revisited the work of Lim and
Nickels*' by violently colliding two identical vortex rings, head-on into one another in water and
visualizing the full 3D dynamics of the resulting breakdown. The symmetry and reproducibility

of these collisions have allowed us to precisely localize when and where the colliding vortices break



down. This ability to isolate and track the interactions of the vortices has enabled us to observe by
what dynamic, structural mechanisms the vortices interact with each other and break down to form
a turbulent cascade.

In Chapter 1, we show experimentally and numerically that for vortex ring collisions at moder-
ate Reynolds numbers, the counter-rotating vortices collide with one another and break down in an
iterative manner. When the vortex cores collide, they locally contact and flatten into vortex sheets,
which split and roll up into smaller secondary filaments. These secondary filaments, themselves, can
also collide with other remaining vortices, and split again in the same manner to form even smaller
tertiary filaments. This iterative cascade could be indicative of a possible mechanism by which ki-
netic energy is conveyed to small scales in turbulent flows. This chapter was published in Physical
Review Fluids as “Cascade leading to the emergence of small structures in vortex ring collisions” in
2018%.

In Chapter 2, we demonstrate the existence of a new mechanism in which two counter-rotating
vortices violently collide and break down, leading to the rapid development of a turbulent energy
cascade mediated by iterations of the elliptical instability. We observe how the onset of the ellipti-
cal instability causes the vortex cores to develop antisymmetric perturbations, which give rise to an
ordered array of secondary vortex filaments, perpendicular to the original cores. Adjacent pairs of
these secondary filaments counter-rotate and interact with each other in the same manner as the
original configuration. In the high-Reynolds number limit, we observe another iteration of this in-
stability, whereby a new generation of tertiary filaments forms, perpendicular to the interacting sec-
ondary filaments. The energy spectrum of this turbulent breakdown exhibits Kolmogorov’s epony-
mous k£ ~5/3 scaling, a hallmark of turbulence. We find that the elliptical instability may play a major
role in the formation and sustenance of the turbulent energy cascade. This chapter was published in
Science Advances as “Turbulence generation through an iterative cascade of the elliptical instability” in

2020%,
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1.1 INTRODUCTION

Our work experimentally and numerically revisits a classical study reported in 1992 by Lim and
Nickels, wherein they investigated the instability of vortex filaments during the head-on collision
of two dyed vortex rings #'. They demonstrated that the collision of a red vortex ring with a blue
vortex ring gives birth to a tiara of smaller, half-red, half-blue Janus vortex rings, mediated by recon-
nections of vortex cores. Additionally, Lim and Nickels insightfully remarked that when the the
vortex ring collisions are more vigorous, no secondary rings are created; instead, a turbulent cloud
forms nearly instantaneously. This turbulent cloud is composed of a multitude of small-scale flow
structures, the dynamics of which were too rapid to capture experimentally or numerically at that
time.

Vortex tubes can be observed in many flow configurations, from the largest scales %05 down to
the finest scales in turbulent flows *>7*5*3_ Their interactions are mediated by many instabilities
and may lead to breakdown, reconnection, and annihilation of vortex lines due to viscosity. Vortices
can be considered topologically protected, in the sense that without viscosity, a vortex line cannot
be broken 3'-3>27#4, Thus, the annihilation of vortex lines is impossible in the infinite Reynolds
number limit (or equivalently, in the zero-viscosity limit). At moderate Reynolds numbers, lami-
nar reconnections dominate vortex line interactions #':5¢67:1:49:6469 However, at higher Reynolds
numbers, interactions become more violent and lose their laminar character #"4°. The rapid dis-
integration of coherent vortex structures and formation of small-scale vortices are likely mediated
by a combination of various well-studied vortex instabilities '*7%3:#1:29:3539 Nevertheless, many
questions remain regarding the dynamics that initiate the breakdown of vortices from large to small
scales.

In this work, we examine the conceptually simple configuration of two identical vortex rings col-

liding head-on 5. The early experimental results of *' indicate—for collisions at sufficiently high
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Reynolds numbers—the development of a violent interaction between the rings, causing them to
rapidly disintegrate into a turbulent cloud. Due to the very small temporal and spatial scales in-
volved in this interaction process, it has not been possible to study in detail the interaction that ini-
tiates the complete breakdown of the vortices. By using state-of-the art visualization techniques, we
investigate with sufficient temporal and spatial resolution how this violent interaction breaks down
the colliding vortex rings.

From a fundamental point of view, understanding the formation of small-scale flow structures
over very short times is a classical problem in fluid mechanics”7, as it is expected to play an impor-
tant role not only in vortex reconnection, but more generally in turbulent flows 16 Tt has been rec-
ognized that the close-range interaction of vortices is also a prime candidate for the formation of
singularities in the inviscid 3D fluid equations, although the numerical evidence for or against the
existence of such solutions has been ambiguous 95,60,26,22

Recently, a new class of mechanisms for energy transfer has been proposed, in which the kinetic
energy of a flow is conveyed from large to small scales via an iterative cascade, with the same ele-
mentary process repeating again and again on smaller and smaller scales®7#, reminiscent of early
simulations 5092628, Analogous iterative instabilities have been previously observed in the breaking
of fluid jets into droplets77°. The physical realization of this iterative process leading to the emer-
gence of small flow structures is envisioned through the interaction between two antiparallel vortex
filaments”*5?, whose collision is described by a universal similarity solution ®. The filaments become
perturbed and develop into a characteristic shape reminiscent of two opposing tents. The collision
initiates at the nose of the tents, leading to what will be referred throughout the text as tent-like
structures®. As a result of the collision, the filaments flatten into extremely thin vortex sheets. An it-
erative cascade of instabilities occurs if the sheets, themselves, break up into smaller vortex filaments
which subsequently collide, flattening and breaking down into even thinner filaments. Estimates

show that these dynamics occur over fleeting time-scales and diminutive length scales®. To date, it
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has not been possible to directly observe the extreme flattening of colliding vortex cores, followed by

their subsequent breakdown into secondary and tertiary filaments, as documented here.

1.2 METHODS AND MATERIALS

Directly observing the breakdown of large coherent vortices into a turbulent cloud requires the vi-
sualization of large flow structures disintegrating over ephemeral time-scales (a few milliseconds)
into the smallest constituents of turbulent flow (micrometer length scales). The difficulty results
from the chaotic spatiotemporal nature of these processes, making them hard to pin down. In or-
der to isolate and experimentally probe the emergence of the turbulent cloud that results from the
breakdown of colliding vortices, we examine the head-on collision of two identical vortex rings, as
shown in Fig. 1.1(a) and video 14"#°. The planar geometry of the vortex ring collision restricts all of
the dynamics to occur within a narrow volume whose position is fixed in the laboratory frame. This
confinement allows for the real-time, high speed, and fully three-dimensional visualization of the
flow. Our experimental setup is shown in Fig. 1.1(b-c) and described in detail in Appendix A.1.
Two vortex rings are fired head-on using a piston-cylinder assembly in a 75-gallon water aquar-
ium (45 x 122 x 50 cm?). The vortex cannons are capable of reaching a maximum Reynolds num-
ber, Re = UD/7, of 25,000 and a maximum stroke ratio, SR = L/D, of 4'%. Uand L are the piston
velocity and stroke length, respectively, » is the kinematic viscosity of the fluid, and D = 2.54 cm
is the tube diameter. The cores of the vortex rings, where the vorticity of the flow is concentrated,
are dyed 7 with a fluorescent dye (Rhodamine B) in order to track their motion and deformation.
Complementary two-dimensional particle-image velocimetry (PIV) measurements were conducted
to ensure that the injected dye coincides with the vortex cores during the collision, as discussed fur-
ther in Appendix A.2. The breakdown dynamics of the cores are directly visualized in real time

and in full 3D. The collision plane is illuminated by a pulsed (= 15 ns), 2-Watt laser sheet (Spect-
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Figure 1.1: Experimental system. (a) A montage of images showing the head-on collision of two vortex rings formed

at Re = 8000 and SR = 2.5, where both rings are dyed with food coloring. Upon first colliding, the vortex rings stretch
and grow radially before rapidly breaking down to fine-scale “smoke.” (b) An image and (c) schematic of the two vortex
cannons and high-speed scanning laser sheet fluorescence microscopy setup, which enables each scan of the flow to be
reconstructed into a 3D volume.

raphysics Explorer One 532-2W), synchronized with the exposure signal of a high-speed imaging
sensor (Phantom V2511). The laser sheet scans through the flow over a distance of up to 2.54 cm at
a frequency of 1 kHz, allowing a data capture rate of 1, 000 volumes per second; this high scanning
rate ensures that the dynamics of the flow are effectively “frozen” in each individual scan. The full
3D spatiotemporal dynamics of the vortex cores are reconstructed with Dragonfly visualization soft-
ware (Object Research Systems) at a maximal spatial resolution of 145 um along the collision plane

and 100 x#m in the scanning direction.
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Tentlike
Structures~sa

t=0.58s

Figure 1.2: Two vortex rings colliding. Four consecutive snapshots simultaneously taken from the front (top) and side
(bottom) showing the progressive stages of the head-on collision between two identical vortex rings with Re = 4000 and
SR = 2.5. Both cores are injected with a small volume of fluorescent dye (Rhodamine B) and illuminated from the side by
a scanning green laser sheet, highlighting the core in bright yellow. (a) As the two cores approach, they stretch radially
but remain circular. (b) With further stretching, the vortex rings develop long-wavelength perturbations that form tent-
like structures. (Inset) Zoomed-in view of a developing tent-like structure. (c) The tips of the tent-like structures flatten
due to the intense strains exerted by the circulating cores. (Inset) The flattened core stretches into a vortex sheet and
splits into two secondary vortex filaments. (d) The initial breakdown of the vortex cores at these local tent-like struc-
tures propagate along the vortex cores, leading to the annihilation of the vortex rings and the formation of a turbulent
cloud.

1.3 VORTEX RING COLLISIONS

The collision between two vortex rings occurs over several distinct stages, shown for a typical exam-
ple in Fig. 1.2 and video 2. As the two rings initially approach one another, they expand radially,
stretching along the collision plane, as shown in Fig. 1.2(a). This stretching is initially uniform, such
that the rings maintain a toroidal shape. Eventually, however, azimuthal undulations develop cir-
cumferentially into unstable tent-like structures around the vortex rings, as shown in Fig. 1.2(b-c).

The undulations grow, contact, and initiate the complete breakdown of the coherent cores into a
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tiara of turbulent puffs, shown in Fig. 1.2(d).

The observed initial azimuthal undulations of the core can arise from two different mecha-
nisms>?: the Crow instability '® and the elliptical instability ° 378 The Crow instability develops
from the interaction of the two vortex rings and has a wavelength on the order of the distance be-
tween the rings, much larger than the core radius, . In contrast, the elliptical instability occurs from
a resonant interaction of a single vortex ring with a strain field, either from itself or from the other
vortex, and has a wavelength on the order of the core size. The current experiment has an initial in-
stability that is consistent with the Crow instability, which leads to the initial formation of tent-like
structures. As the Reynolds number increases, we expect that the ensuing dynamics will become

richer and more complicated as a result of the interplay between the different types of instabilities *”.

Figure 1.3: 3D reconstruction of the breakdown of two dyed vortex cores. Three snapshots showing the late-stage
dynamics of two colliding vortex rings where Re = 4000 and SR = 2.5. (a) The cores deflect toward one another, de-
veloping a tent-like structure. (b) The tent-like structure grows in amplitude, and the lower core flattens into a vortex
sheet at the region where the two cores are closest. (c) The cores contact and break down. In all panels, the cyan arrows
indicate length scales: (a) 1.7 mm, (b) 1.4 mm, and (c) 1.4 mm.

The nonlinear dynamics—following the initial formation of the long-wavelength undulations—
develop the two vortex cores into opposing tent-like structures, as shown by the 3D reconstruction
of a typical collision of two dyed filaments in Fig. 1.3(a-c) and in video 3 “°. The tent-like structures
grow as a result of the mutual strain imposed by the two interacting vortex cores. At the point of
shortest separation, the strain is the strongest, which amplifies the local curvature of the filaments.

Eventually, the mutual strain becomes so strong that the lower core flattens into a vortex sheet, as
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shown in Fig. 1.3(b). This vortex sheet flattens to a thickness that is approximately one tenth that of
the initial core diameter, consistent with theoretical predictions®. Ultimately, the vortex sheet breaks

down completely, as shown in Fig. 1.3(c).

1.4 VORTEX CORE BREAKDOWN

Imaging the dynamics beyond the formation of tent-like structures requires increased spatial and
temporal resolution. The dynamics of both vortex cores are rapid and three-dimensional, making
them difficult to distinguish clearly when both cores are dyed. However, they are clearly discernible
when only one cores is injected with dye while the other remains invisible, as shown for a typical
example in Figs. 1.4-1.5.

The initial breakdown of the dyed vortex core can be characterized by slicing through the 3D
reconstruction and examining the deformation of the core’s cross section, as shown in Fig. 1.4(a).
The vortex core stretches and deforms into a curved vortex sheet as a result of the strain exerted
upon it by the counter-rotating undyed core, as shown in Fig. 1.4(a). The centerline length of the
vortex core grows linearly to nearly four times its initial length, as shown in Fig. 1.4(b). While the
stretching of the dyed core is initially uniform, when the end-to-end distance of the core reaches
three times its initial length, the ends of the core bulge as the dye and likely the vorticity are continu-
ously drawn from the center of the sheet to the edges. Concomitantly, the center of the vortex sheet
contracts and thins until its thickness reaches our spatial resolution limit, as shown in Fig. 1.4(c).
As a result of this intense stretching and thinning of the vortex sheet, the aspect ratio of the core
approaches a value of 100:1 before the dye in the center of the vortex sheet becomes too dilute to

resolve and the bulges at the edges of the sheet roll up into secondary vortex filaments.
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Figure 1.4: Extreme stretching of a colliding vortex core. (a) Cross-sectional slice of a deforming vortex core extracted
from 3D flow visualization during the collision of a dyed vortex ring with an invisible, undyed vortex ring. The dyed
vortex core, rotating in the clockwise direction, is shown in blue and is stretched by the undyed vortex core, which
rotates in the counter-clockwise direction. The centerline of the vortex core is indicated by the black dashed line, and
the plane perpendicular to the midpoint of the centerline is shown by the red lines. The grid spacing is 1 mm X 1 mm.
(b) Centerline length vs. time for the dyed core. (c) Core thickness along the midpoint of the centerline vs. time. The
green dashed lines correspond to the times indicated in (a), the data in both plots is averaged over 10 adjoining slices,
and for this collision, Re = 4000 and SR = 2.5.
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During the later stages of the breakdown, however, the colliding vortex cores undergo far more
complicated three-dimensional dynamics, as shown in Fig. 1.5 and videos 4-54°. Initially, the dyed
vortex is distorted by the interaction with the partner vortex and forms a tent-like structure, as
shown at# = 0 msin Fig. 1.5(a). This interaction causes the vortex to flatten into an extremely
thin vortex sheet, as shown in Fig. 1.5(b). The vortex sheet continues to thin, and the dye gradually
collects at the edges, as shown in Fig. 1.5(c). Eventually, the intensity of the vorticity in the center
the sheet becomes very small, and concentrates into two new filaments emerging from the edges of
the sheet, as shown in Fig. 1.5(d). The secondary filaments undergo complicated three-dimensional
motion as they unravel the original vortex core. Eventually, the daughter filaments, themselves,
split into even thinner tertiary filaments, as indicated in Fig. 1.5(e-f). The tertiary filaments are so
thin, that they are difficult to resolve, but enhancing the contrast reveals a complex topology of
fine, multi-scale filaments, as shown in the inset of Fig. 1.5(f). The tertiary filaments continue to
stretch and interact with each other, the secondary filaments, and with the undyed vortex, as shown
in Fig. 1.5(g-h).

The essence of the overall breakdown mechanism is captured elegantly in a single moment which
simultaneously showcases three generations of vortices in the iterative cascade, as shown in Fig. 1.5(i)—
the primary vortex core splits into secondary filaments, which then split again into tertiary fila-
ments. The fluorescent dye that is injected into the vortex cores effectively traces their position
and slightly under-estimates their size, defined by the vorticity distribution in the cores detailed in
Appendix A.2. The mean thickness of the initial primary, secondary, and tertiary cores is approxi-
mately 1.83+0.1 mm, 0.61£0.1 mm, and 0.2240.1 mm, respectively. The same intensity threshold
is maintained during the measurement of each core size, and the topology of the filaments is quite
stable over a wide range of intensity thresholds. Thus, at each iteration of the breakdown, the vor-
tex core size decreases by a factor of three. As the iterative breakdown process generates smaller and

smaller scales of vortices, it is ultimately halted by viscosity. This therefore suggests that the itera-
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Figure 1.5 (following page): An iterative cascade of instabilities leads to the emergence of small-scale flow structures. 3D
reconstruction of the breakdown dynamics following the collision of a dyed vortex ring (top) with an invisible undyed
one (bottom). For this typical example, Re = 4000 and SR = 2.5. (a) The upper dyed vortex develops a tent-like perturba-
tion that deflects toward the undyed lower vortex. (b) The tent-like structure flattens into a very thin vortex sheet. Most
of the dye collects at the edges of the sheet. (c) The thin vortex sheet ruptures, and a hole is formed, which extends
down the rest of the core. (d) The vortex sheet splits into two smaller secondary filaments, which unravel the vortex
core at both ends. (e) A secondary vortex splits into smaller tertiary vortex filaments. (f) A complex structure of interact-
ing secondary and tertiary vortex filaments emerges. (Inset) Zoomed-in and contrast-enhanced view showing a network
of interacting coherent secondary and tertiary vortex filaments. The magnified view is a sub-volume of the main panel
indicated by the dashed box and is viewed through the dashed magenta window. (g-h) Full view of the emerging tertiary
filaments. The contrast is enhanced to highlight the faint tertiary filaments. (i) The essence of the dynamics is captured
entirely in one snapshot, simultaneously showing three generations of the iterative cascade. In every panel, the size of

a distinct feature is indicated by a cyan scale bar: (a) 1.3 mm, (b) 1.2 mm, (c) 1.2 mm, (d) 1.7 mm, (€) 2.9 mm, (f) 2.1 mm,
(Inset) 1.1 mm, (g) 1.1 mm, (h) 0.6 mm, and (i) 2.8 mm.
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Figure 1.5: (continued)
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tive cascade could continue and repeat itself to even smaller scales during higher Reynolds number
collisions.

Nevertheless, it is important to point out that viscous effects play a critical role even in the break-
down of the primary vortex core. Viscous effects are required for the topological change in which
the vortex sheet splits into secondary filaments, clearly shown in Fig. 1.5(b-c). Viscosity acts only for
short times and on small scales when the sheet is stretched thinly and appears to rupture. Addition-
ally, it is important to stress that three-dimensional effects play an essential role in the breakdown
dynamics. While the splitting of the vortex sheet into smaller filaments may seem to be a quasi-
two-dimensional phenomenon, the relative motion of the vortex filaments is induced both from

individual vortex filaments, from interactions with neighboring filaments, and vortex stretching.

1. DIRECT NUMERICAL SIMULATIONS

To probe this breakdown mechanism further, we also examine the head-on collision of two vortex
rings with direct numerical simulations of the Navier-Stokes equations. Technical details of the sim-
ulations are described in Appendix A.3. In the same configuration as the experiments, the initial
condition for the simulations consists of two identical vortex rings colliding head-on. In the calcu-
lation shown here, the Reynolds number, defined by Rer = I'/», where I'is the circulation of the
rings, is Rer = 3500. The initial core slenderness ratio, A = o/R, is setat 0.35, where R is the
vortex ring radius. Throughout the progression of the simulation, we calculate both the evolution
of the vorticity distribution as well as the concentration of an advected dye in both vortex rings.
Computational limitations prohibit using a dye diffusivity comparable to that of the experiments,
~ 1073 »'7. The simulated dye diffusivity is equal to the kinematic viscosity of the fluid. The initial
dynamics mirror those of the experiments, as shown in Fig. 1.6(a)—the rings expand radially as they

approach one another and develop a long-wavelength Crow instability *°.
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Figure 1.6: Numerical simulation of colliding vortex rings. (a) Volumetric plot of dye concentration in a simulation of

two colliding vortex rings whose cores are initially seeded with red and blue dye, respectively. As the vortex cores
approach, the blue vortex flattens into thin vortex sheets, which break down into secondary filaments. (b) Zoomed-in,
cross-sectional view of the developing secondary filaments indicated by the white box in (a). The top panels plot the dye
concentration, and the bottom panels plot the vorticity modulus. The formation and rupture of sheets into filaments is
clearly shown by the top (blue) vortex, while the lower vortex shows that if no rupture occurs, the sheet eventually curls
back into a vortex when the strain is released.

The simulations nicely capture one iteration of the cascade mechanism, as shown in Fig. 1.6(b)
and video 64°. The dye tracks the vorticity during the initial development of the instability and
formation of the tent-like structures. The dynamics of the simulations are qualitatively similar to
those of the experiments as one of the dyed vortex cores flattens into a sheet, which then ruptures
into two secondary filaments. These same dynamics are mirrored in the vorticity distribution, as
shown in green in Fig. 1.6(b). The circulation is distributed between the two ruptured filaments in
a 2:1 proportion, and its sum roughly corresponds to the pre-split sheet configuration, with minor
losses (< 1%), likely due to viscosity. The diffusive losses for the dye are larger: = 40% (a similar
phenomena is also seen by the evanescent secondary filaments in Fig. 1.5(i)), but the ratio between
the amount of dye in both secondary filaments matches those of the circulations. The simulations

suggest that the minimum thickness of the sheet joining the two secondary filaments is given by
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the viscosity of the fluid. If y is the shear rate through which the sheet is being stretched, viscous
effects will set in when the sheet thickness is of order \/W This viscous length scale is calculated
to be approximately 0.005R for the vortex sheet at # = 111 ms, the same order as the thickness of
the sheet (= 0.01R). This is approximately 4 grid points. While the rupture of the sheet is not
produced in a strict sense—i.e. no region with zero vorticity appears—at later times, the vorticity in
the sheet remnants becomes vanishingly small and the flow structure can be eftectively thought of as
two discrete secondary filaments. Vorticity amplification is primarily localized to the breakdown of
the vortex cores, while the mean vorticity of the simulation is amplified only slightly. Additionally,
the whole collision process tends to make the vorticity lose its initially preferential orientation in
the azimuthal direction, indicating the emergence of a turbulent cloud like in the experiments. In

Appendix A.4, we show more details about the evolution of vorticity in the simulations.

1.6 CONCLUSION

Vortex ring collisions at high Reynolds numbers lead to a near-instantaneous breakdown of the ini-
tial vortices into a turbulent cloud. We have shown that the formation of this cloud is initiated by
an iterative cascade of instabilities: colliding vortex filaments break down into smaller secondary fila-
ments, which then interact with each other and break down into even smaller tertiary filaments. To
our knowledge, this is the first reported experimental observation of a dynamic cascade of instabili-
ties in a bulk fluid. The iterative mechanism, whereby large vortex filaments flatten into sheets and
then break down into smaller filaments, qualitatively agrees with recent theoretical predictions 674
although the mechanism observed experimentally and numerically difters in details from the one
envisioned in®. The degree to which the vortices stretch during each step of the cascade is a cru-

cial question to understand the possible relevance of the scenario discovered here to the singularity

problem in the inviscid equations of fluid motion”'5:3°. A semi-quantitative modelling approach
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may provide much-needed insight. Viscosity must play an essential, though limited, role at each it-
eration, as it enables the topological transition that leads to the rupture of the vortex sheets. The
observation that vortex ring collisions lead to such complicated dynamics on ever smaller length
scales, with viscosity playing such a critical role, therefore exposes the subtlety of understanding the
singular or near-singular dynamics of the Euler and Navier-Stokes equations.

Because the breakdown dynamics that emerge in the head-on collision of vortex rings occur lo-
cally through the close-range interactions of vortex filaments, one may speculate that it could be
extended to other high-Reynolds number flows. In fact, this mechanism could conceivably supply
an eftective means for a flow to rapidly convey energy down to the smallest constitutive scales, in-
dicative of the type of dynamics that could lead to the turbulent cascade itself—reminiscent of, but
perhaps different from Richardson’s initial proposal ®*. While the mechanism uncovered here may
be involved in the proliferation of small-scale vortex structures in turbulent flows—documented
many times both experimentally > and numerically”"*5>** —our measurements occur at compar-
atively moderate Reynolds numbers. We expect that richer breakdown dynamics have yet to be
observed for collisions at higher Reynolds numbers. Nevertheless, our model system provides an
exciting new lens through which we can attempt to observe and characterize the emergence of com-
plex, multi-scale flows in real-time. By identifying the mechanisms by which these vortical flows
break down to small scales, we hope to develop a new framework for viewing the turbulent cascade
as a collection of discrete dynamic instabilities. Our study therefore indicates that the rigorous in-
vestigation of colliding vortex rings, at high spatial and temporal resolution, may potentially provide
profound insights on both the fundamental physics of vortex breakdown and the deep underlying

mathematical foundations that govern the emergence of small scales in violent turbulent flows.
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2.1 INTRODUCTION

Understanding how turbulent flows develop and organize has puzzled scientists and engineers for
centuries*. The foundational characterization of turbulent flow began with Reynolds over a cen-
tury ago ®> and was quickly followed by rigorous statistical interpretations of how turbulent flows
develop75:°3'4. In 1937, Taylor and Green’® introduced an initial flow condition which produces
a cascade of energy from large to small scales. Subsequently, Kolmogorov postulated that turbulent
flows exhibit universal behaviors over many length scales. Kolmogorov*# predicted that within an
inertial subrange, the energy spectrum of a turbulent flow has a universal, self-similar form wherein
the energy scales as the inverse 5/3 power of the wavenumber k. Kolmogorov’s energy cascade has
been observed in a plethora of experimental systems and numerical simulations, from wind tunnels
to river beds, see e.g. Fig.13 of Chapman®.

The efficient conveyance of energy from the large scales, where it is injected, to the small scales,
where it is dissipated, is at the heart of how complex, three dimensional flows are maintained. It
is thus critical to understand how small-scale flow structures are formed and maintained at high
Reynolds numbers. In spite of major progress in providing an eftective statistical description of
turbulent flows*”, our understanding of the mechanisms by which interactions between eddies
are mediated remains limited. In fact, the explanations of how this occurs in real-space are often
abstract and “poetic” 33

The temporal development of the turbulent cascade remains one of the most intriguing mysteries
in fluid mechanics. In particular, it is not well understood what specific mechanisms lead to the de-
velopment of large velocity gradients in turbulent flows. These large velocity gradients, which derive
from the interactions of turbulent eddies, amplify the kinetic energy dissipation rate, ¢, in a manner
that is independent of the fluid viscosity in the high-Reynolds number limit 116 This implies the

existence of an inertial mechanism by which vortices locally interact to convey energy across scales
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such that the statistical properties of the energy cascade develop in accordance with the scaling laws
established by Kolmogorov. Note that the limit to how fast an initially regular flow may produce
extremely large velocity gradients is also a celebrated mathematical problem 5. It is therefore of great
interest to look directly for elementary flow configurations of interacting vortices that begin smooth
and rapidly develop into turbulence. This approach was implemented by Lundgren *?, who ana-
lytically examined the breakdown of a single vortex under axial strain, bursting into an ensemble of
helical vortex bundles. While this configuration has been observed to lead to the development of

a turbulent flow, it requires the presence of a particular, large-scale strain configuration acting on

an isolated vortex'*. We implement a more general flow configuration that typifies the fundamen-
tal components of the turbulent cascade: the collision of two identical vortices. Recent numerical
and experimental works demonstrate that the breakdown of colliding vortex rings at intermediate
Reynolds numbers gives rise to small-scale flow structures*>, mediated by the iterative flattening and
splitting of the vortex cores to smaller and smaller filaments 5.

Here, we revisit the emergence of a turbulent burst of fine-scale flow structures that results from
the violent, head-on collision of two coherent vortex rings*"*5. This classical configuration is a
unique model system for probing the development of turbulence without any rigid boundaries
or large-scale constraints. We show that for high Reynolds numbers, the violent breakdown of the
colliding vortex rings into a turbulent “soup” of interacting vortices is mediated by the elliptical
instability. During the late-stage, nonlinear development of the elliptical instability, an ordered
array of antiparallel secondary vortex filaments emerges perpendicular to the collision plane. Lo-
cally, these pairs of counter-rotating secondary filaments spawn another generation of tertiary vortex
filaments, resulting in the expeditious formation of a hierarchy of vortices over many scales. Our
numerical simulations show that at this stage of the breakdown, the interacting tangle of vortices
reaches a turbulent state, such that the energy spectrum of the flow exhibits Kolmogorov scaling.

We observe both experimentally and numerically how the elliptical instability precipitates the onset

2.8



of turbulence, generating and maintaining the means by which the energy of the flow cascades from

large to small scales.

2.2 VORTEX RING COLLISIONS

The geometry of the experimental setup is depicted schematically in Fig. 2.1(A). Two identical
counter-rotating vortex rings are fired head-on in a 75-gallon aquarium filled with deionized water,
as shown in Movie S1#*. The vortex rings are formed via a piston-cylinder configuration in which

a slug fluid with viscosity, », is pushed through a cylinder of diameter, D (2.54 cm), at a constant
velocity, U, with a stroke, L. The resulting flow is controlled by two dimensionless parameters: the
Reynolds number, Re = UD/», and the stroke ratio, SR = L/D 8 Fluorescent dye (Rhodamine B)
is injected into the cores of the rings as they are formed. Since the collision occurs at a fixed plane

in the laboratory frame, this configuration is attractive for directly observing the rapid formation
of small-scale flow structures. The dynamics and eventual breakdown of the dyed cores are visu-
alized in full 3D by imaging over the collision plane with a scanning laser sheet (1 = 532 nm),
which is pulsed synchronously with a high-speed camera (Phantom Vas11). The technical details
of how the vortex rings are formed and visualized in 3D are described in previous work* and in Ap-
pendix B.1. Additionally, we perform direct numerical simulations (DNS) of interacting vortices at
Reynolds numbers equivalent to the experiments (see Appendix B.1- B.2 for how the definitions of
the Reynolds numbers in simulations and experiments compare).

As the vortex rings collide, they exert mutual strains on one another, causing them to stretch ra-
dially at a constant velocity before breaking down at a terminal radius, as shown in Fig. 2.1(B). At
low Reynolds numbers, Re S sooo, the dyed cores break down, ejecting a tiara of secondary vor-
tex rings or smoky turbulent puffs#"*#5 at approximately 6 times the initial radius, R¢. The initial

vortex ring radius and core radius, o, were measured separately through particle image velocime-
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Figure 2.1: Vortex ring collisions. (A) Schematic side-view showing the formation and collision of dyed vortex rings

in experiments. Fluorescent dye (Rhodamine B) is injected into the core of the vortex via a thin gap in the orifice of

the vortex cannon. The dashed horizontal line denotes the symmetry axis. (B) Vortex ring radius vs. rescaled time for
collisions at various Reynolds numbers. Both cores are dyed, the core centerlines are extracted from 3D reconstructions,
and the centerlines are fitted to circles with a fixed center point. The initial time begins when the vortex rings enter the
scanning volume and ends when the vortex cores break down. (inset) All experimental curves shifted by 7 to collapse.
The radial growth of the rings coincides with the Biot-Savart prediction.
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try (PIV), as described in Appendix B.2. Strikingly, for collisions at higher Reynolds numbers, Re
2 5000, the cores “burst” into an amorphous turbulent cloud of dye at a maximum radius of ap-
proximately s R, indicating the onset of a different breakdown mechanism at this high Reynolds
number regime. The mean radial growth of the colliding rings is well described by the Biot-Savart
model?, as described in Appendix B.3.1- B.3.2. Additionally, the radial expansion of the rings is

encapsulated by a universal functional form, as shown in the inset of Fig. 2.1(B).

2.3 ONSET OF THE ELLIPTICAL INSTABILITY: VORTEX CORE PERTURBATIONS

While the mean radial growth of the colliding vortex rings follows the same linear evolution at any
Reynolds number, the cores themselves develop different forms of perturbations, due to their mu-
tual interaction. The formation of these perturbations can arise from two different types of insta-
bilities. The Crow instability ' causes the cores to develop symmetric circumferential perturbations
with long wavelengths, much larger than the core radius, ¢. This instability stems from the mutual
advection of the interacting vortices ** and governs the breakdown dynamics for collisions at lower
Reynolds numbers*#53?. The nonlinear development of the Crow instability causes the rings to

deflect into one another and form “tent-like” structures >"%45

, which interact locally at the collision
plane.

At higher Reynolds numbers, both our experiments and simulations show that the breakdown
dynamics are governed by the elliptical instability, causing the vortex cores to develop short-wavelength
perturbations on the order of the core radius7*53%¢ (see Appendix B.3.3). This instability originates
from the parametric excitation of Kelvin modes in the vortex cores due to the resonant interaction
of the strain field from the other vortex***?. A hallmark of the elliptical instability, these short-

wavelength perturbations grow synchronously in an antisymmetric manner, as shown for two typi-

cal experimental and numerical examples in Fig. 2.2(A-B).
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Figure 2.2: Antisymmetric perturbations in vortex ring collisions. A montage of core centerline trajectories for vortex
ring collisions in both (A) experiment and (B) direct numerical simulation. The top (z > 0) cores are indicated by the red
lines, and the bottom (z < 0) cores are indicated by the blue lines. For the experimental collision, Re = 7000, SR = 2,
and Ry = 17.5 mm. For the DNS collision, Rep = I'/¥ = 4500 and ¢ = 0.1R. The cores are segmented from the 3D
flow visualization in the experimental collision and from the pressure distribution in the simulation. Mean core separa-
tion distance vs. rescaled time for the same (C) experimental and (D) numerical collisions. The blue circles correspond
to the trajectories in (A) and (B), and the red dashed lines correspond to the visualizations in the insets. (C, inset) 3D
visualization of the dyed vortex cores in the experimental collision. (D, inset) 3D visualization of the dyed vortex rings in
the simulation, showing both the dye in the cores (dark) and surrounding them (light).
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As the elliptical instability grows radially along the collision plane, the mean spacing between
the cores, d, decreases linearly. However, the separation distance between the cores saturates when
the perturbations deflect out-of-plane, just prior to breaking down, as shown in Fig. 2.2(C-D) and
Movie S2 4. The minimum mean spacing between the cores is approximately equal to twice the
initial core radius, o. For the experiment, & = 0.14£0.01 Ry, and for the simulation, & = 0.1R (see
Appendix B.2). After the elliptical instability develops and the symmetry of the two cores is broken,
a periodic array of satellite flow structures is shed from each core, bridging the gap between them,
as shown in the inset of Fig. 2.2(D) and Movie S3 **. Notably, in our experiments, the emergence of

these secondary flow structures can only be resolved if the fluid outside of the cores is dyed.

2.4 LATE-STAGE DEVELOPMENT OF THE ELLIPTICAL INSTABILITY: SECONDARY FILAMENTS

In order to better resolve the late-stage development of the elliptical instability and the resulting
breakdown, we dye the full vortex rings, as shown in Fig. 2.3(A-F) and Movie S4**. Observing the
tully dyed vortex rings reveals the intricate structure of the flow that develops in response to the core
dynamics. The antisymmetric coupling of the perturbations break the azimuthal symmetry of the
flow, leading to the exchange of fluid between the two rings. This periodic wrapping of dye causes
the outer layers of the rings to interdigitate around one another along alternating “tongues,”*°

as shown in Fig. 2.3(A-B). At the boundaries of adjacent tongues, the dyed fluid cutls into vor-

tex filaments, perpendicular to the cores, as shown in Fig. 2.3(C). These alternating filaments are
stretched by the circulating vortex cores into an array of counter-rotating secondary vortices, as
shown in Fig. 2.3(D-E). The secondary filaments have a fleeting lifetime of only tens of milliseconds

before they break down. Violent interactions between the secondary filaments and primary cores

result in the rapid ejection of fine-scale vortices and the formation of a turbulent cloud, as shown in

Fig. 2.3(F).
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Figure 2.3: Formation of perpendicular secondary filaments in a typical experimental vortex ring collision. 3D recon-

struction of two fully-dyed vortex rings colliding head-on, viewed from overhead (top) and from the side (bottom). Re

= 6000 and SR = 2.5. (A-C) As the rings grow, they interdigitate as the dye from the upper ring is wrapped around the
lower ring and vice-versa. (D-E) The colliding rings form an array of secondary vortex filaments that are perpendicular to
the vortex cores. (F) The cores and perpendicular filaments break down into a fine-scale turbulent cloud.

By performing direct numerical simulations of the colliding vortices, we additionally probe how
energy is transferred through the flow via the onset of the elliptical instability. Since the breakdown
of the vortices is localized to the area around the cores, we implement a new configuration for the
simulations, which consists of two initially parallel, counter-rotating vortex tubes with circulation I,
initially spaced a distance, & = 2.5¢, apart. The flow is simulated in a cubic domain of side length,
L = 16.670, and the Reynolds number of this configuration is given by Rer = I'/» (see Ap-

pendix B.1). From PIV measurements, we find that Rer ~ 0.678Re as shown in Appendix B.2.
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The dynamics of the vorticity distribution in the simulated flow are qualitatively equivalent to the
experimental flow visualizations, as shown for a typical example at Rer = 4500 in Fig. 2.4(A-C) and
Movie S5 %, When the antisymmetric perturbations resulting from the elliptical instability materi-
alize, the tips of the perturbed cores deform into flattened vortex sheets, as illustrated in Fig. 2.4(A).
These sheets are stretched by strains applied by the other core and roll up along the edges into an
alternating series of hairpin vortices, as shown in Fig. 2.4(B) and Appendix B.4.1. Upon stretching
across the gap to the other perturbed core, these hairpin vortices form an ordered array of secondary
vortex filaments perpendicular to the initial tubes, as shown in Fig. 2.4(C). Adjacent pairs of sec-
ondary filaments counter-rotate relative to one another*°, as shown in Fig. 2.4(D). Integrating the
transverse vorticity along the symmetry plane, we find that as the secondary filaments are stretched,
approximately 25% of the streamwise circulation from the initial vortex tubes is conveyed to each
filament (see Appendix B.4.2). As the vorticity of the original tubes is transferred to the secondary

filaments, the circulation of the flow is conserved.
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Figure 2.4: Generation of perpendicular secondary filaments in DNS. (A-C) Vorticity modulus for simulated interacting
tubes where Rer = 4500, = 0.06L,6 = 2.57,andt* = Ft/bz. The vorticity modulus is normalized by
the maximum vorticity modulus during the simulation, a)|max. (A) The initial antisymmetric perturbations of the cores
develop as the tips of the perturbations locally flatten (0.103 < \w|/|w\max < 0.117). (B) At the same time, low-
vorticity perpendicular filaments form as a result of the perturbations (0.046 < |w|/|@|max < 0.092). (C) Once the
secondary filaments form, their vorticity amplifies (0.076 < |a)\/|w|max < 0.114). (D) Vorticity distribution in the
z-direction along the center plane (z = 0) indicated by the dashed line in (C). Adjacent secondary filaments counter-
rotate.

36



2.5 INTERACTIONS OF SECONDARY VORTICES

Once formed, each pair of secondary filaments can be locally viewed as a replica of the initial flow
configuration on a smaller scale and with a reduced circulation, hence corresponding to a smaller
effective Reynolds number. The resulting close-range interactions of neighboring filaments can
lead to an iterative cascade by which even more generations of small-scale vortices are formed. For
collisions at moderately high Reynolds numbers (e.g. Rer = 3500), the concentrated strains exerted
by the counter-rotating secondary filaments cause one of them to flatten into an extremely thin
vortex sheet and split into two smaller tertiary vortex filaments, as shown in Movies $6-S7** and
Appendix B.s. This behavior is consistent with the breakdown mechanism observed experimentally
in the head-on collision of vortex rings at comparatively lower Reynolds numbers mediated by the
Crow instability 5.

In the high-Reynolds number limit, the secondary filaments may give rise to another genera-
tion of perpendicular tertiary vortex filaments, as shown for a typical example at Rer = 6000 in
Fig. 2.5(A-F) and Movies S8-S9 **. The secondary filaments are drawn into one another due to their
mutual counter-rotation, as shown in the close-ups in Fig. 2.5(B-C). The narrow gap between these
writhing vortices, which experiences intense strain, almost instantaneously becomes enveloped by
several high-vorticity tertiary filaments, as shown in Fig. 2.5(D-E). These tertiary filaments align
perpendicular to the previous generation of vortices, wrapping tightly around them. The tertiary
filaments develop locally in an ordered manner while the remnants of the primary cores and sec-

ondary filaments become increasingly entangled into a disordered “soup” of vortices, as shown in

Fig. 2.5(F).
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Figure 2.5 (following page): The development of a turbulent cascade. (A-F) Vorticity modulus for simulated interacting
tubes where Rer = 6000, = 0.06L,b = 2.50,and t* = Ft/bz. Each panel shows the front view of the

full cores (left) and a close-up top view of the interacting secondary filaments indicated in the full view (right). (A) The
antisymmetric perturbations of the cores develop. (B) Perpendicular secondary filaments form between the cores. (C)
Secondary filaments begin to interact with each other and break down. (D) Tertiary filaments begin to form perpendicu-
lar to the secondary filaments. (E) Tertiary filaments are fully formed. (F) The flow breaks down into a disordered tangle
of vortices. The vorticity thresholds are 0.079 < |@|/|@|max < 0.099 for (A) and 0.110 < |w|/|@|mx < 0.211
for (B-F), where |a)|max is the maximum vorticity modulus for the entire simulation. (G) Normalized shell-to-shell en-
ergy transfer spectra indicate whether a mode is an energy source (T(/e) < 0)orsink (T(/e) > 0). At early times

(t" = 65.56,74.44), the secondary filaments switch from energy sinks to sources as they are generated and then
interact to form new vortices. At late times, the spectra flatten as energy is transferred more uniformly across the scales
of the flow. (G, inset) Normalized kinetic energy dissipation rate as a function of time. The energy dissipation rate in-
creases with the development of the secondary filaments and peaks as the secondary filaments and residual cores break
down into a tangle of fine-scale vortices. (H) Normalized kinetic energy spectra show the rapid development of a sus-
tained turbulent state with Kolmogorov scaling-as indicated by the black line-around the peak dissipation rate.
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Figure 2.5: (continued)
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2.6 FORMATION OF A TURBULENT CASCADE

The iterative breakdown process occurs over diminutive length scales and fleeting time scales. This
rapid generation of small-scale vortices leads to a dramatic increase in the energy dissipation rate,

¢, as shown in the inset of Fig. 2.5(G). The initial increase in ¢ is triggered by the onset of the el-
liptical instability and the formation of antisymmetric perturbations in the cores. The following
precipitous rise in the dissipation rate coincides with the formation of the perpendicular secondary
filaments.

The rate at which kinetic energy is transferred across scales is calculated for the simulation in
three-dimensional Fourier space through the instantaneous shell-to-shell energy transfer spectrum,
Tk, t), as shown in Fig. 2.5(G) 57#*. Ata fixed time, 7(k) is positive for a wavenumber, £, when
energy flows toward the corresponding spatial scale (~ %#7'). Conversely, a negative value of 7(k)
indicates the flow of energy away from that corresponding spatial scale to other modes (see Ap-
pendix B.6 for details). When initially formed, the secondary filaments become pronounced en-
ergy sinks, given the large positive value of 7(k) at the intermediate wavenumber of approximately
kb = 6.75. This coincides with their absorption of energy from the primary vortex cores. Next, as
the secondary filaments become fully developed and interact with each other, they change behavior
and become sources of energy, as indicated by the negative value of 7(k). Coupled with the simul-
taneous increase in the dissipation rate, this change in behavior of the secondary filaments from en-
ergy sinks to energy sources indicates the existence of a cascade by which kinetic energy is conveyed
to smaller scales.

Through the breakdown of the secondary filaments and residual vortex cores into a disordered
tangle of vortices, the dissipation rate reaches a maximum value. At this point, the flow is most
vigorous and the energy transfer spectra asymptote toward a flattened profile, indicating that en-

ergy is conveyed more uniformly across the various scales of the system, as shown in Fig. 2.5(G).
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Thus, for this brief time, £ maintains an approximately constant maximum value, as the energy is
smoothly transferred to the smallest, dissipative scale, = ¢~ i, Kolmogorov proposed that for
turbulent flows under similar conditions, the kinetic energy spectrum follows a distinct scaling of
(ky)~>/334, Strikingly, we find that the fully developed turbulent cloud formed by the collision of
the two vortices, indeed, exhibits Kolmogorov scaling. The evolution of the normalized energy spec-
tra, E(k)/ (77% vi ), demonstrates how the flow reaches a sustained turbulent state around the peak
dissipation rate, as shown in Fig. 2.5(H). This turbulent energy spectrum scaling at the peak dissi-
pation rate also emerges during the breakdown of interacting vortex tubes mediated by the elliptical
instability at lower Reynolds numbers, as shown in Appendix B.7.1. Since the energy input of the
system is finite, this turbulent state cannot be maintained indefinitely. As time progresses further,
the viscosity of the fluid damps out the motion of the vortices at the smallest scales. While much
energy remains at the large scales of the flow, it is unable to be transmitted to smaller scales following
this iterative breakdown. Accordingly, the energy dissipation rate decreases and the turbulent state

decays.

2.7  DiscussioN

The violent interaction between two counter-rotating vortices leads to the rapid emergence of a tur-
bulent cascade, resulting in a flow with an energy spectrum that—for an ethereal moment—obeys
Kolmogorov scaling. We find that the emergence of this turbulent cascade is initiated by the late-
stage, nonlinear development of the elliptical instability, which forms an ordered array of counter-
rotating secondary vortex filaments perpendicular to the primary cores. In the high-Reynolds num-
ber limit, the neighboring secondary filaments may interact to form a new generation of perpen-
dicular tertiary vortex filaments. These interactions of the secondary filaments with each other and

the remnants of the vortex cores lead to the rapid formation of small-scale vortices. This ensemble
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of vortices interacting over the full range of scales of the system provides a conduit through which
energy cascades down to the dissipative scale.

The iterative cascade, which leads to the generation of vortices at decreasingly small length scales,
is strongly reminiscent of the mechanism proposed by Brenner, Hormoz, and Pumir®. One may
speculate that the self-similar process suggested by this work could be modeled by assuming, in the
spirit of' ¢ that at each iteration, the circulation is multiplied by a factor xr < 1, and the character-
istic scale of the vortices by a factor xy < 1, resulting after 7 steps in a generation of vortices with
circulation, I', = xl'ffll" 1, and a spatial scale, 9, = xgl*lz?l. The corresponding time scale over
which each step evolves can be estimated as #, ~ 3, /T,, ~ (37 /I1) (x5 /xr)" L. The cascade can
go all the way down to vanishingly small spatial scales in a finite time provided x§ < xr. The nu-
merical results presented here, during the first steps of the cascade, suggest thatxr ~ 0.25, and
x5 ~ 0.2 — 0.4, and therefore that the cascade may proceed in a finite time. It would be interesting
to understand whether the cascade suggested by this work proceeds faster or slower than the Kol-

2/316

mogorov cascade. Whereas Kolmogorov theory implies #, /1, ~ (9, /1) , our results imply that

ty/t1 ~ (0,/ 31)2_1“(”)/ In(%) Therefore, the cascade proposed in this work proceeds faster than the

/

Kolmogorov cascade for xy < x% *_ Our estimates suggest that the two cascades may proceed asymp-
totically at a comparable rate. A more precise understanding of the development of the elliptical
instability is necessary to determine accurately the scaling factors xr and x;.

The essential element of the cascade process is that at each scale, discrete pairs of antiparallel vor-
tices are able to locally interact and produce a subsequent iteration via the elliptical instability. Vor-
tices of similar size and circulation locally align in an antiparallel manner when they interact. This
is a well established consequence of Biot-Savart dynamics”*. Thus, the largest strains that drive the
cascade will arise from the interactions of nearby vortices. we suggest that iterations of this cascade

could proceed down to ever-smaller scales until viscous eftects take over. Yet, the proliferation of

other small-scale vortices, clearly visible in Fig. 5, could conceivably prevent vortex pairs from form-
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ing at some stage of the process, and we do not rule out that it may influence the dynamics. We
remark, however, that the present work shows that only two clear iterations of the cascade are suf-
ficient to produce a Kolmogorov spectrum. Even in the high-Reynolds number limit, a finite set of
iterations occurring simultaneously for many independent pairs of interacting vortices might suffice
to establish and sustain a turbulent cascade. The details of how this iterative process unfolds in the
limit of large Reynolds number is an important question for future research.

This framework strongly agrees with recent works by Goto et al. in a fully turbulent flow regime.
Namely, their numerical results demonstrate the existence of many independent pairs of antipar-
allel vortices interacting and locally forming smaller generations of perpendicular vortex filaments
in both fully developed homogeneous isotropic turbulence and wall-bounded turbulence >4,
These discrete interactions of antiparallel vortex pairs appear simultaneously throughout Goto’s
simulations over four distinct scales*°. Due to the striking similarities between the iterative mecha-
nism we observe and the results of Goto, we propose that the elliptical instability is likely the means
by which these successive generations of perpendicular filaments are formed. Establishing a precise
connection between our own results and Goto’s observations requires a fully quantitative analysis,
which is beyond the scope of the present work.

Our work thus demonstrates how the elliptical instability provides a long-sought-after mech-
anism for the formation and perpetuation of the turbulent energy cascade through the local in-
teractions of vortices over a hierarchy of scales. Supplied by the injection of energy at large scales,
discrete iterations of this instability effectively channel the energy of a flow down to the dissipative
scale through the formation of new vortices. From a quantitative point of view, the approximate
estimates provided in this work suggest that the corresponding cascade proceeds in a finite time, al-
though a precise comparison with the Kolmogorov cascade requires a better understanding of the
nonlinear development of the elliptical instability. While the dynamics of turbulent flows likely in-

volve other multi-scale vortex interactions, this fundamental mechanistic framework can begin to
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unravel the complexity that has long obscured our understanding of turbulence.
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Conclusion

The dynamical evolution of turbulence is mired in complexity that arises from the intricate 3D
motion of interacting vortices over a wide range of length and time scales. Statistical approaches
have been utilized to obscure the details of these vortex interactions in order to characterize the
overall, emergent behavior of turbulent flows. However, our understanding of how turbulence
develops will remain limited as long as we continue to use statistical methods to abstract away how

these ensembles of interacting vortices convey the energy of the flow down to dissipative scales.
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In this thesis, we have begun to examine the mechanistic underpinnings of the turbulent energy
cascade; that is, we have investigated through what real-space configurations counter-rotating vor-
tices interact with each other and break down to small scales. We have shown that the head-on colli-
sion of vortex rings provides an excellent case study in measuring and characterizing the mechanistic
“building blocks” that lead to the formation of a transient turbulent flow. At moderate Reynolds
numbers, the breakdown is mediated by the Crow instability, in which the interacting vortices lo-
cally contact, flatten, and split into a new, smaller generation of vortex filaments (Chapter 1). At
high Reynolds numbers, the breakdown is driven by the onset of the elliptical instability, which
gives rise to an array of counter-rotating secondary filaments, perpendicular to the original colliding
vortices (Chapter 2). Successive iterations of these breakdown modalities have also been observed,
suggesting the possible extensibility of these “building blocks” to other, more general turbulent flow
configurations. The application of these local breakdown mechanisms to the complicated dynam-
ics of HIT poses many challenges, as there are likely other latent mechanisms by which vortices at
a large scales interact with smaller vortices. Nonetheless, these tools could help advance our under-
standing of turbulence in a more fundamental, bottom-up manner, enabling us to analyze turbu-

lence as a cascade of discrete vortex interactions, rather than statistically.
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Supplementary Material: Chapter 1

A.1 EXPERIMENTAL SETUP AND PROCEDURE

Two identical vortex rings are launched head-on into one another in a 75-gallon water aquarium
(45 x 122 x 50 cm?). The vortex rings are formed using two piston-cylinder assemblies, as shown in
Fig. A.1. Each piston is driven by an underwater linear shaft motor (Nippon Pulse S160D) through

a stainless steel tube with a diameter, D = 2.54 cm, expelling a slug of fluid of length, Z, through
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the tapered nozzle. The pistons are impulsively accelerated to a constant speed, U < 1m/s. The
displacement of both pistons is measured with a non-contact linear encoder (Renishaw LM15) with
aresolution of 5 um. The linear motors are servo controlled and coupled with each other through
CNC software (TwinCAT3) so that the firing of the vortex rings is synchronized. Each vortex can-
non is capable generating vortex rings with a maximum Reynolds number, Re = UD /v, of 25, 000,
where v is the kinematic viscosity of water, and a maximum stroke ratio, SR = L/D, of 4*®. The
outer orifice of the vortex cannon is double-walled, and fluorescent dye (Rhodamine B) is ejected
through the thin, 150 zm, gap just prior to firing the pistons, as shown in Fig. A.1 (b)®7. As the
ejected fluid separates at the sharp edge of the nozzle, the ring of dye becomes trapped in the core of
the vortex, allowing us to visualize the dynamics of the vortex cores.

In all the experiments discussed in this work, the vortex cannons are spaced a distance, H = 8D,
apart. We simultaneously fire two identical vortex rings head-on into each other. As the counter-
rotating vortex rings initially approach one another, they expand radially and become flattened
along the collision plane, as shown in Fig. 1.2 in the main text. We directly observe the breakdown
dynamics of the vortex rings in real-time and in 3D by imaging the flow tomographically with a
scanning laser sheet. Recently, Irvine et 4/. used a similar visualization technique to measure vari-
ous properties of coherent vortices in 3D 2%, They developed a powerful method to recover the
flow field of the vortices by mapping the centerlines of the vortex cores, but this required that the
cores remain largely undeformed. The dynamics of our system involve extreme contortions and de-
formations of the vortex cores, which cannot be captured by merely resolving the centerlines of the
vortices. Studying this rapid breakdown requires clearly resolving the full three-dimensional struc-
ture of the vortex cores.

The collision plane is illuminated by a pulsed (= 15 ns), 2-Watt laser sheet (Spectraphysics Ex-
plorer One 532-2W), which is synchronized with the exposure signal of a high-speed imaging sensor

(Phantom V2s511), as shown in Fig. 1.1 (b-c) in the main text. The laser beam is deflected by a mir-
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Figure A.1: Vortex cannon assembly. (a) Image and (b) cross-sectional schematic of the vortex cannon assembly. The
piston shaft is loaded with permanent magnets and is impulsively driven by the magnetic fields generated by a series of
current-carrying coils in the linear motor. The linear motor is servo controlled, and the feedback position of the piston is

measured by a non-contact linear encoder. The core of the vortex ring is dyed by injecting fluorescent dye at the outer
edge of the nozzle.

ror mounted on a servo-controlled galvanometer (Cambridge Technology Model 6210HMG60),
which is placed at the focal point of a plano-convex lens; thus, the deflected beam is collimated.

The laser beam then passes through a cylindrical lens that opens into laser sheet with a thickness

0f 100 zm. The laser sheet scans over a distance of up to 2.54 cm at a frequency of 1 kHz, driven via
a sawtooth command signal. At this rapid scanning rate, the flow is effectively “frozen” during each
scan. The high-speed camera captures cross sections of the flow illuminated by the laser sheet as it

scans through the fluid. A sequential series of 2D image slices is thus continuously captured by the
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high-speed camera. High-intensity regions in these image slices correspond to the fluorescent dye
within the vortex cores. The short pulsing of the laser is critical to prevent the blurring of the images
due to the motion of the laser sheet. The dynamics described in this paper cannot be observed with
a continuous laser.

The timing of each captured image is correlated with the measured position of the laser sheet.
Each stack of 2D image slices is reconstructed into a 3D volume with dimensions of 256 X 384 X
114 voxels using Dragonfly visualization software (Object Research Systems). The reconstructed
4D data has a resolution of (145 x 145 x 100 zm? and 1 msec) in the (x, y, z) directions and time.
The resolution of the volume in the xy-plane is limited by the magnification of the lens on the high-
speed camera (Nikkor f= 85 mm, f/1.4), and the resolution in the 2-direction is given by the spacing
between the image slices and the thickness of the laser sheet. This imaging technique allows us to
directly observe and probe the full volume and resolve the three-dimensional dynamics of the vortex

ring collision with high spatial and temporal resolution.

A.2 VORTEX CORE TRACKING WITH PIV AND DyE

Complementary PIV measurements were conducted in order to determine how well the fluorescent
dye tracks the motion of the vortex cores during the head-on collision. A laser sheet was used to il-
luminate a 2D cross-section aligned along the central axes of the vortex cannons, perpendicular to
the collision plane. Additionally, the aquarium was seeded with polyamide particles with a diame-
ter of so um and a density of 1.03 g/mL (Dantec Dynamics). Several vortex ring collisions, where
Re=4000 and SR=2.5, were imaged with a high speed camera using a window size of 8oox 1280

at a maximum frame rate of 2000 fps with a resolution of 0.14 mm/pixel. The velocity field along
this 2D cross-section was evaluated using the MATLAB program PIVsuite. The locations and sizes

of the vortex cores were then detected by fitting the vorticity distribution of each core to a two-
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Figure A.2: Vortex core tracking in 2D with PIV and dye. (a) Vorticity distribution and core trajectory of two colliding
vortex rings at several time steps obtained via PIV through a 2D cross section perpendicular to the collision plane. The
plotted vorticity distribution is the result of fitting the raw vorticity data to a 2D Gaussian function for each core. As
the vortex rings collide, they grow radially and the cores contract, amplifying their vorticity before breaking down. The
time steps correspond to t=0, 0.225, 0.5, 0.675, 0.8, 0.9, 1, and 1.25 s, and for all data in this figure Re = 4000 and SR

= 2.5. (b) Vortex ring radius vs. time for 10 collisions where the vortex core is tracked from the vorticity data via PIV
(black) and from the dyeing the core with fluorescent dye (color). (c) Vortex core radius vs. vortex ring radius for 10
collisions; the core is tracked by fitting to the vorticity data (black) and by injecting the vortex ring with various amounts
of fluorescent dye: 0.08 mL (red), 0.1 mL (orange), 0.1 mL (green) and 0.12 mL (blue).

dimensional Gaussian function, as shown in Fig. A.2(a). When the vortex rings collide, they grow
radially in an axisymmetric manner, amplifying the vorticity of the core through vortex stretching,
before developing perturbations and breaking down, as shown in Fig. 1.2 in the main text.
Additionally, the same collisions were performed and visualized along this illuminated 2D plane
with one of the vortex cores dyed using fluorescent dye (Rhodamine B). The cross-section of the
dyed core was segmented and fitted to an ellipse in order to extract the centroid of the core, its semi-
major axis length, 4, and its semi-minor axis length, 4. The trajectories of the colliding vortex cores
follow the same linear trend of radial growth for both the cores tracked with vorticity through PIV
and through dyeing the core, as shown in Fig. A.2(b). The vortex core radius was calculated as the
average of the standard deviation in the two principal directions for the cores fitted from the vortic-
ity data and the average of 2 and & for the dyed cores. During the radial growth of the rings when

they collide, the vortex cores accordingly contract due to vortex stretching, as shown by Fig. A.2(c).
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Naturally, the more dye that is initially injected into the vortex ring, the thicker the core appears
throughout the collision. The radius of the dyed core is smaller than that of the core obtained from
the vorticity distribution during each stage of the collision. However, for vortex rings injected with
atleast o.1 mL of dye, during the later stages of the collision just prior to breakdown—i.e. when the
3D visualizations begin—the core radius from the dye under-estimates the core radius from the vor-
ticity by less than 0.4 mm. This demonstrates that fluorescent dye effectively tracks the motion of
the vorticity distribution of the core, especially when the visualized breakdown dynamics of the core

begin.

A.3 NUMERICAL SIMULATION DETAILS

The incompressible Navier-Stokes equations are solved using an energy-conserving second-order
centered finite difference scheme in cylindrical coordinates with fractional time-stepping. A third
order Runge-Kutta scheme is used for the non-linear terms and a second order Adams-Bashworth
scheme is used for the viscous terms®°. The solver uses 9, = rv,asa primitive variable to avoid
singularities near the center axis. The time-step was dynamically chosen so that the maximum
Courant-Friedrich-Lewy (CFL) condition number was 1.2. A Gaussian (Lamb-Oseen) veloc-

ity profile was used as the initial condition for the velocities inside the ring with a slenderness of

A = /R = 0.35, where 7is the core radius and R is the vortex ring radius. The Reynolds num-
ber based on the circulation, Rer, is Rer = I'/» = 3500, where I'is the circulation of the vortex
ring. Length and time-scales are matched to the experimental values by using the ring diameter and
circulation. The first is matched by assuming the ring diameter coincides with the vortex cannon
tube diameter, and the second is matched by using the piston stroke length, the piston velocity, and
the correlations developed by Gharib & Shariff BA passive tracer, corresponding to a dye, is also

simulated. Due to computational restrictions, the Schmidt number of the dye is limited to unity.
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The rings are initially positioned at a distance L, = 2.5R away from each other. A rotational
SYMMELTY, 72y, of order five was forced on the simulation to reduce computational costs. The
ring’s initial position was perturbed according to the formula R(8) = Ry (1 + ¢sin (k[0 + &))),
where ¢ is taken from a normal distribution with variance of 10~ for the first two wavelengths, to
account for the ring’s self-instability, and 1073 for the other wavelengths; & is taken from a uniform
distribution.

The cylindrical computational domain was bounded by stress-free walls at a sufficient distance
not to affect the dynamics of the flow. In practice, we set the walls at a distance R, below and above
the initial locations of the vortex rings, and at a distance of SR from the ring axis in the radial direc-
tion. Points were clustered near the collision plane in the axial direction, while uniform resolution
was used in the other two directions. A total of 384 x 512 X 264 grid points were used in the az-
imuthal, radial and axial directions, respectively. Resolution adequacy was checked by monitoring

that the viscous dissipation and the energy balance are within the acceptable bound 0f 1%7°.

A.4 VorTICITY EVOLUTION IN SIMULATIONS

The evolution of the vorticity in the simulated collision was quantified to complement the exper-
imental results. Fig. A.3(a) shows the amplification of the maximum and mean vorticity modulus
during the collision. While the vorticity locally grows by over a factor of five, the mean vorticity
never grows beyond 1.5 times its original value. This is because, as shown in Fig. 1.5, not all regions
of the ring undergo the iterative evolution shown in Fig. 1.6(b).

Additionally, Fig. A.3(b) shows how the initially coherent vortex cores, whose mean vorticity is
primarily aligned in the azimuthal, or 6 direction, become more three-dimensional during the late
stages of the collision, as suggested by the experimental observations. Indeed, an isotropic vorticity

distribution corresponds to |wg|/|w| of 1/1/3 & 0.577, very close to the value attained at the end of
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the simulation. This demonstrates that as time progresses

and quasi-isotropic.

, the flow becomes fully three dimensional
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Figure A.3: Vorticity evolution in the collision simulations. (a) Evolution of the maximum (orange) and mean (blue) vortic

Time (ms)

ity modulus with time, relative to the initial values. (b) Weight of the mean azimuthal component of vorticity relative to
the mean vorticity modulus as a function of time. A value of 1/\@ =~ (.577 would correspond to a vorticity distribu-

tion with no preferential direction.
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Supplementary Material: Chapter 2

B.1 METHODS AND MATERIALS

We use both experiments and simulations to probe the dynamic formation of the turbulent cascade
resulting from the interaction between counter-rotating vortices. Experimentally, we examine the
head-on collision of vortex rings, and numerically we examine the collision of vortex rings and vor-

tex tubes. In the experiments*, fluorescent dye (Rhodamine B) is injected into the initially formed
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rings to visualize the core dynamics, as shown in Fig. 2.1(A) in the main text. Two vortex rings are
fired head-on into one another in a 75-gallon aquarium. The vortex cannons are positioned a dis-
tance of 8D apart, where D is the vortex cannon diameter. The full, three-dimensional dynamics
of the resulting collision are visualized by tomographically scanning over the collision plane with a
rapidly translating pulsed laser sheet (1 = 532 nm). The pulsing of the laser (Spectraphysics Ex-
plorer One 532-2W) is synchronized with the exposure signal of a high speed camera (Phantom
Vas11), which images the illuminated plane head-on. Each image plane spans along the xy-plane,
and the laser sheet scans in the z-direction. Thus, for each scan, the image slices are stacked together
to form a 3D reconstruction of the collision. The spatial resolution of each volume is 145 X 145
X 100 um?> per voxel in (x,7,2), and the time resolution is up to 0.5 ms per scan. The number of
voxels in each scanned volume depends on the imaging window size, the camera frame rate, and the
scanning rate. For example, the volume size is 512 X 512 X 64 voxels in (x, y, z) for the dyed core
collision in Movie S2 and 384 X 288 X 75 voxels for the fully dyed ring collision in Movie S4. The
series of volumetric scans are reconstructed in full 3D with temporal evolution using Dragonfly vi-
sualization software (Object Research Systems). The imaging apparatus can only detect the dyed
regions of the fluid, so any flow structures that emerge during the breakdown that are undyed can-
not be observed. When only the vortex cores are dyed, we probe through the volumes of each 3D
scan along the azimuthal direction to locate the centroids of the cores at each cross section. This en-
ables us to extract the vortex core centerlines, which we use to track the deformation of the cores and
measure the vortex ring radius, R(z), and the average spacing between the cores, d(). In order to
visualize the development of secondary flow structures that emerge during the collisions, we fill the
vortex cannons with fluorescent dye prior to driving the pistons to form the rings. As a result, the
regions around the vortex cores are dyed, as shown in Fig. 2.3 in the main text.

We use direct numerical simulations (DNS) to further probe the unstable interactions between

the vortices. This allows us to directly examine the evolution of the vorticity field, relate it to ex-
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perimental visualizations, and compute statistical quantities characterizing the flow. We solve the
incompressible Navier-Stokes equations using an energy-conserving, second-order centered finite
difference scheme with fractional time-stepping. We implement a third-order Runge-Kutta scheme
for the non-linear terms and second-order Adams-Bashforth scheme for the viscous terms3>*°. We
simulate both vortex rings and tubes, in cylindrical and Cartesian coordinates, respectively. To avoid
singularities near the axis, the cylindrical solver uses ¢, = 7v, as a primitive variable 8¢ The time-step
is dynamically chosen such that the maximum Courant-Friedrich-Lewy (CFL) condition number

is 1.2. Resolution adequacy is checked by three methods: monitoring the viscous dissipation and
the energy balance, examining the Fourier energy spectra, and using the instantaneous Kolmogorov
scale. White noise is added to all all initial conditions to trigger the most unstable modes.

The rings are initialized as two counter-rotating Gaussian (Lamb-Oseen) vortices, each with a
core radius ¢ wrapped into a torus of radius Ry. The control parameters for this system are the cir-
culation Reynolds number, Rer = I'/» and the slenderness ratio of the rings, A = ¢/Ry. The
circulation of the vortex rings, I', and the initial ring radius, Ry, are used to non-dimensionalize pa-
rameters in the code. We simulate the collision in a closed cylindrical domain, bounded by stress-free
walls at a distance far enough to not affect the collision. After testing several configurations, the
bounds on the domain were placed a distance Ry below and above the rings, and SR from the ring
axis in the radial direction. For the simulation presented in this paper, we selected a ring slenderness
of A = 0.1, acirculation Reynolds number of Rer = 4500, and an initial ring-to-ring distance
of d = 2.5R. These parameters are comparable to the experimental vortex rings, as shown by the
measurements in Appendix B.2. Points are clustered near the collision regions in the axial and radial
directions, while uniform resolution is used in the azimuthal direction "®45. A rotational symmetry
of order five is forced on the simulation to reduce computational costs. The vortex core centerlines
are located by slicing azimuthally through the pressure field at every time step and identifying the

local minima of each vortex cross section. Additionally, a simulated passive scalar is injected into
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the vortex rings to visualize the dynamics of the collision and compare with experiments, as shown
in Movie S3. Due to computational restrictions, the diffusivity of the dye is equal to the kinematic
viscosity of the fluid (i.e. the Schmidt number is unity).

For the vortex tubes, we simulate a triply periodic cubic domain of period £, which is discretized
using a uniform grid. The two counter-rotating, parallel tubes are both initialized with a Gaussian
(Lamb-Oseen) vorticity profile of radius, ¢, and circulation, I', initially separated a distance, &, apart.
The system is characterized by two dimensionless parameters: the circulation Reynolds number,
Rer, and the ratio ¢/ 4. Again, the circulation, T, is used as a non-dimensional parameter, along
with b. We set the core size to o = 0.06L, fix b/o = 2.5, and run simulations with Rer at 2000,
3500, 4500, and 6000, with grid sizes 0f 2563, 3603, 5403, and 5403, respectively. As the counter-
rotating tubes interact and break down, they naturally propagate through the periodic domain. For
each visualization, the propagation of the tubes is subtracted so that the tubes remain in the center
of the domain. Additionally, in all 3D visualizations of the vorticity modulus, ||(z), the vorticity
modulus at each voxel is normalized by the maximum vorticity modulus for all time, |@|(#)max (see

Appendix B.7.2).

B.2 PIV ANALYSIS OF VORTEX RING GEOMETRY

The vortex rings are characterized experimentally through 2D patricle image velocimetry (PIV).
The fluid is seeded with polyamide particles with a diameter of S0 zm and a density of 1.03 g/mL
(Dantec Dynamics). A laser sheet is positioned along the central axis of the vortex cannon in order
to illuminate the cross section of the ejected vortex rings. The motion of the particles in the vortex
rings along this cross section is imaged with a high-speed camera (Phantom V2511) with a win-
dow size of 1280 X 800 pixels at a maximum frame rate of 2000 fps, such that the resolution is 0.12

mm/pixel. Vortex rings are formed over a range of stroke ratios (SR = L/D) and Reynolds num-
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bers (Re= UD/v), where L is the stroke of the piston, D = 25.4 mm is the diameter of the vortex
cannon, Uis the piston velocity, and » is the kinematic viscosity of water.

The velocity field for each generated vortex ring is calculated using MATLAB PIVsuite. The
cores of the vortex rings are identified by computing the vorticity field, and each core is fitted to
a two-dimensional Gaussian function, as shown for a typical example in Fig. B.1 and Movie Sto.
After pinching off, the vortex ring reaches a steady size with radius, Ry, as it propagates forward
through the fluid, as shown in Fig. B.1(A). Additionally, the core radius, o, is calculated by averaging

the standard deviations of each Gaussian fit, o, and 7, as shown in Fig. B.1(B).
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Figure B.1: Vortex ring tracking and measurement through PIV. (A) 2D vorticity distribution and core trajecto-

ries for a vortex ring formed via a piston-cylinder assembly, where Re = 7000 and SR = 2.5. Each vorticity distri-

bution results from fitting the raw vorticity data to a 2D Gaussian function. The time steps correspond toz =
0,0.158,0.368,0.578, and 0.788 seconds, and the vortex cannon orifice is located at x = 0. (B) Zoomed-in view of
the final vortex core indicated by the dashed gray box. The vortex core is defined by the level curve shown by the black
ellipse, with a center point, (‘ux, ‘uy), a rotation angle, 8, and standard deviations, o, and ay.

By fitting to the vortex cores to a Gaussian function, we evaluate the geometry of the rings over
a wide range of Reynolds numbers at various stroke ratios, as shown in Fig. B.2. This parameteriza-
tion of the vortex rings and their core structures enables us to directly relate the initial state of the
vortex rings used in the experimental collisions to those of the simulations, as described in the main

text. Accordingly, all of the parameterizations for the vortex ring geometry are performed when the
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vortex ring propagates a distance between 2D and 4D from the orifice of the vortex cannon. This
corresponds to the range of distances required for the vortex ring to pinch off and reach a steady
morphology prior to reaching where the collision plane is located in the experiments at 4D.

At every stroke ratio, the core size is larger for the vortex rings produced with lower Reynolds
numbers, as shown in Fig. B.2(A). However, for vortex rings with a Reynolds number greater than
~ 10, 000, the core size remains relatively constant. This is because vortex rings formed at lower
Reynolds numbers are more susceptible to viscous dissipation from the ambient fluid as they propa-
gate forward. This dissipation leads to a spreading of the vorticity distribution in the cores through
the diffusion of momentum via the viscosity of the fluid, thereby resulting in the thicker cores of the
vortex rings at lower Reynolds numbers. The vortex ring radius, R, remains roughly constant for
each stroke ratio over this wide range of Reynolds numbers, as shown in Fig. B.2(B). Like with the
core size, the vortex rings formed with a larger stroke ratio naturally have a slightly larger radius, as
more fluid is injected to form vortex rings. However, by normalizing the core radius with the vor-
tex ring radius at each Reynolds number to compute the slenderness ratio, A, the data collapses, as
shown in Fig. B.2(C). This consistency of the vortex ring and core geometry across various stroke
ratios informs the selection of the vortex ring parameters in the simulated collisions described in the
main text. In particular, for all of the simulated vortex ring collisions, a slenderness ratio of A = 0.1
is used.

The circulation of the vortex cores, I', is calculated by integrating the raw vorticity data for each
core over an elliptical contour defined by the Gaussian fit that overcompensates the core size by a
factor of 1.5 for both standard deviations. The magnitude of the circulation is then normalized by
the kinematic viscosity of the fluid in order to compute the circulation Reynolds number, Rer =
I'/v. This parameter, as previously discussed in the main text and in Appendix B.1, is used to define
the Reynolds number in the numerical simulations of the colliding vortex rings and the interacting

vortex tubes. This calculation thus allows to relate the Reynolds number of the vortex rings formed
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Figure B.2: Vortex ring and core geometry. From the Gaussian fits of the vorticity data, the following parameters are
measured as a function of the Reynolds number across various stroke ratios: (A) vortex core radius, , (B) vortex ring
radius, Ry, (C) slenderness ratio, /A, and (D) circulation Reynolds number, Rer. The dashed line in (D) corresponds to the
linear fit to the data: Rer = 0.678Re. All calculations are performed when the vortex rings reach a distance between
2.D and 4D from the vortex cannon orifice.

experimentally with those formed numerically, as shown in Fig. B.2(D). Accordingly, we find that
the experimental Reynolds number scales linearly with the circulation Reynolds number, such that

Rer ~ 0.678Re, which is consistent with previous experimental works *®.
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B.3 SIMULATING VORTEX RING COLLISIONS USING THE BIOT-SAVART APPROXIMATION

B.3.1 BIOT-SAVART MODEL AND REGULARIZATION

In this section, we establish the conditions that lead to the emergence of the elliptical instability in
vortex ring collisions, focusing on the range of Reynolds numbers in which this instability is ob-
served. Our approach consists of modeling the rings using the Biot-Savart model 5*7*73 while ac-
counting for the evolution of the core size, which is assumed to have a circular cross-section for all
time. With the parameters given by this model, we determine the growth rate of the elliptical insta-
bility, as calculated in 7.

Regularization of the Biot-Savart model is required due to the logarithmic divergence of the prin-
cipal integral. Here, we use the regularization used in”*7%. Denoting o;() as the core radius of each

vortex filament, 7, at time, #, we replace the Biot-Savart integral (up to a prefactor) by:

% % (£:(6) — r;(9))

61’((9 f) rj / 7
i\Y _ A d&/ ol ‘ (BI)
Ot zj: 4 filament; [(rz(e) - rl~(§,))2 + 0';‘(!9)2 + 0}(!9,)2}3/2
In this configuration, we consider two filaments, with indices 7 = land7 = 2. The centerline

positions of the filaments with circulation, I';, are given by r;(6, ). We start with an initially axisym-
metric configuration, consisting of two counter-rotating vortex rings, perfectly aligned along the

same central axis. We parametrize the centerlines of the two rings in the (%, y, z) directions by:

R(z) cos(9) R(z) cos(9)
11(6,2) = | R(t)sin() | and 1r2(6,2) = | R(¢)sin(6) | (B.2)
—d(r)/2 +d(2)/2

where R(z) is the vortex ring radius, and the azimuthal angle is given by 0 < ¢ < 27. The per-

pendicular distance between the two rings, d(z), is taken to be positive, and the circulations are
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It = —T, = I > 0. With these conventions, filament 1, atz = —d(z)/2, moves upward,
toward filament 2 at z = d(z) /2.
In the following, as was the case in”*7?, we impose incompressibility, by enforcing that the total

volume of the rings is conserved:

R()e* () = Roag. (B.3)

The evolution equations reduce to two simple ordinary differential equations for R(z) and d(z),
as explained in turn. With the parameterization proposed in Eq. (B.2), an elementary calculation
shows that the contribution of the filament 1 to the velocity at the point 11 () reduces to a uniform
velocity in the positive z-direction:

= R(t)*(1 —cos(6—¢))

1s L
=T g 49 [2R(£)2(1 — cos(6 — ) + 252]3/2

(B.4)

The contribution of filament 2 to the velocity of filament 1 consists of a component in the radial
direction:
r [* d(t)R(¢) cos(6 — &)

1m . —
v =i ; g [2R(l‘)2(1 _ COS(Q— 9’)) + d(t)2 + 20.2]3/2 (BS)

and a component in the vertical direction:

LT[ R()2(1 — cos(8 - 9))
o T T n A dg[ZR(t)z(l—COS(e—e’))+d(t)2+2,z]3/z- (B.6)

Hence, the evolution equation of the vortex ring radius, R(#) reduces to:

Y([(d(0)* +20%)/ (2R(2)*)], (B7)
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where ¥ is defined as:

cos(6— &)
[2(1 — cos(6 — &) + 2X2]3/2°

Y(X?) = /0 ” dag (B.8)

Similarly, the evolution equation of the spacing between the rings, d(%), is given by:

. T
d(t) = v + o™ =

= 22R() (‘DWW + )/ (2R - @WR@ZJ) (B.9)

where @ is defined as:

(1—cos(6—¢))
[2(1 — cos(d — &) + 2Xx2]3/2°

27
@(X):/O dg (B.10)

It is a simple matter to compute asymptotic expressions for the functions ® and ¥ when X2 50
or X* — o0. To determine the evolution of R(#) and d(¢), we numerically integrate Eq. (B.3),

Eq. (B.7) and Eq. (B.9).

B.3.2 DYNAMIC EVOLUTION OF THE VORTEX RINGS

Eq. (B.3), Eq. (B.7), and Eq. (B.9) are used to compare the radial growth of the colliding vortex rings
from the Biot-Savart model with the experimental data in the inset of Fig. 2.1(B) in the main text.
This model agrees well with the mean radial growth of the rings prior to breaking down, at which
point the assumptions of Biot-Savart are clearly violated. Here, we further compare the model
against direct numerical simulations which describe the head-on collision of two vortex rings with
the following initial conditions: R(0) = Ry, d(0) = 2.5R, and ¢(0) = 0.1Ry. This choice of pa-
rameters allows for the direct comparison of the model with the DNS, starting from the same initial
configuration. The DNS collision, where Rer = 4500, was already presented in Fig. 2.2(B,D) of the

main text and in Movie S3.
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Figure B.3: Comparison between the evolution of the perpendicular spacing between the cores, d(t), and the vortex
ring radius, R(t), obtained from DNS of the Navier-Stokes equations where Rer = 4500 (full lines) and from the
Biot-Savart model (dashed lines). For both configurations, 4(0) = 2.5R( and ¢(0) = 0.1R,.

Fig. B.3 shows the evolution of the vortex ring radius, R(z), (blue curves) and the perpendicular
distance between the filaments, d(¢), (red curves). The solution of the Biot-Savart model is shown
with dashed lines, and the full lines correspond to the same configuration evaluated numerically by
solving the Navier-Stokes equations. As the two rings initially approach one another, the distance
between them decreases linearly. However, in both the Biot-Savart model and the DNS, the rings
reach a minimum distance on the order of the core size before breaking down. During the late stage
of the collision, the rings grow radially outwards; however, the growth of the ring radius predicted

by the Biot-Savart model significantly exceeds that of the collision obtained from the DNS because
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the core dynamics—and hence the breakdown—is not captured by Biot-Savart model.

B.3.3 ELLIPTICAL INSTABILITY

Here we examine the the onset of the elliptical instability when the vortex rings collide head-on.

We are primarily interested in the growth of short-wavelength modes, characteristic of the elliptical
instability *>3°. For this reason, we neglect the curvature of the rings and approximate the filaments
with a pair of straight antiparallel vortices, located at z = +d(z) /2, with circulations £T’, and each
with a core radius (#). The values of d(z) and o(#) are determined from the solutions of the Biot-
Savart model.

The onset of the elliptical instability results in the development of perturbations with a wave-
length on the order of the core size**. Our analysis is based on the work of LeDizes, who examined
the elliptical instability in the same flow configuration 373¥. LeDizes derived the following equa-
tion for the growth rate, y, of an infinitesimal perturbation of the vortex cores with a longitudinal

wavenumber £,:

r 3\* 64d* (1 > Sakld
= =) Knp(0)2— —— (= - my) - B.
y WZ\/(Z}) e (0)2 = 2 (2 cos({! )) ey A
where Kz (0) = 1.5 +0.038 x 0.16™%/% & 2.52, and cos({™)) = (1 — (24HLOm) ke,

In the expression for cos(2™), m is an integer that distinguishes between several branches of
solutions. We only examine the most unstable branch, corresponding to 7 = 0. To estimate the
growth rate of the elliptical instability, we consider an azimuthal perturbation mode, 7, along the
rings. This corresponds to a wavenumber ¢, () = 7/R(z). The growth of the radius, R(z), im-
plies that the wavenumber g, () decreases as time progresses for a fixed value of 7. Note that when
neglecting the curvature of the colliding rings, £, = g, (¢).

We evaluate the growth rate of the elliptical instability, ;/EL’”ZO), as a function of time forn =
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120, 180, and 240, focusing on only the times when the growth rate is positive, as shown in Fig. B.4.
These values of 7 were selected because they correspond to wavelengths that are on the order of

the core radius, o(#), when the instability begins. We examine how the growth rates of these modes
evolve when Rer = 3500 (dotted-dashed lines), Rer = 4500 (dashed lines) and Rer = 5000
(full lines). The elliptical instability develops at each value of # only over a short period of time. The

magnitude of the growth rate y(”‘:O)

. increases as the Reynolds number increases.
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Figure B.4: Onset of the elliptical instability for colliding vortex rings. The normalized growth rate, Vo of three azimuthal
perturbation modes, 7, is evaluated for the head-on collision of two vortex rings using Eq. (B.11). (inset) zoomed-in
view of the plot of the z = 120 mode indicated by the dashed gray box. The full lines, dashed lines, and dot-dashed
lines correspond to Rer = 5000, 4500, and 3500, respectively. The values of R(¢) and d(¢) are calculated from the
Biot-Savart model, shown by the dashed lines in Fig. B.3 above.

The Biot-Savart model-Eq. (B.3), Eq. (B.7), and Eq. (B.9)—provides a semi-quantitative de-

scription of the solutions of the Navier-Stokes equations when the z = 120 mode becomes un-
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stable, as shown in the inset of Fig. B.4. At this time, I'z/ R% = 5.9, the unstable wavelength is

A &~ 27R(t)/120 ~ 20(¢). The model therefore predicts that perturbations with a wavelength on
the order of the core size are unstable due to the elliptical instability mechanism when Rer = 4500,
but are stable for Rer = 3500, in qualitative agreement with our findings. The elliptical insta-
bility is still triggered for the Rer = 3500 configuration, albeit at later times. The model also
demonstrates that the onset of the elliptical instability for Rer = 4500 occurs when the spacing
between the rings, d(z), reaches the minimum threshold on the order of the initial core thickness,
209 = 0.2Ry, as shown in Fig. B.3. This is consistent with the experimental and DNS results shown

in Fig. 2.2(C-D) in the main text.

B.4 NONLINEAR DEVELOPMENT OF THE ELLIPTICAL INSTABILITY

B.4.1 FORMATION OF SECONDARY VORTEX FILAMENTS

Following the development of antisymmetric perturbations that result from the elliptical instabil-
ity, an array of secondary vortex filaments spontaneously forms perpendicular to the original vortex
cores. This has been directly observed experimentally and numerically for vortex ring collisions, as
detailed in the main text. The same flow structures emerge via the elliptical instability during the
interaction between two antiparallel vortex tubes#>35. This observation seems at first surprising,

as it indicates the emergence of a component of circulation in the plane separating the two vor-
tices, where the vorticity is initially zero. If the midplane separating the two vortices (i.e. thez = 0
plane) were a plane of symmetry—as is the case in many studies examining the Crow instability *° of

interacting vortex tubes ®>*

—the vorticity along this plane would remain zero at all times. The anti-
symmetric nature of the perturbed vortex cores, shown in Fig. 2.2(A-B) of the main text, however,
allows for the development of a non-zero circulation in the collision plane. Here, we examine how a

significant component of the circulation can accumulate on the plane z = 0, referred to here as the
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plane of reflection, as shown in Fig. 2.4(C-D) in the main text.

We examine the same direct numerical simulation presented in Fig. 2.4 in the main text and
Movie S5, consisting of two, initially parallel, counter-rotating vortex tubes with Rer = 4500.
We examine the evolution of the normal vorticity component, wy, along a fixed axial cross-section of

the tubes, as shown in Fig. B.s. The upper vortex rotates in the clockwise direction, and the lower
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Figure B.5: Formation of a secondary vortex filament. Temporal evolution of the axial vorticity distribution, wx(% z),
along a fixed cross section at x/ﬁ = 0.48 for DNS of counter-rotating vortex tubes where Rer = 4500. The black
arrows indicate the propagation direction, though a horizontal offset is applied at each time to keep the vortices in the
center of the domain. (A) The vorticity from the two vortex tubes is initially separated along the (z = 0) reflection
plane. (B) As the perturbations develop, the lower core migrates to the leading direction and the upper core migrates to
the trailing end. (C) The cores flatten into sheet-like structures, and vorticity from the upper vortex is advected down to
the lower vortex. (D) The cores contract into highly curved, sheetlike structures where the vorticity is concentrated. The
advected vorticity forms a secondary vortex filament across the (z = 0) reflection plane. Note: & = 0.06L, 5 = 2.5¢,
and #* = Tt/ b
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vortex rotates in the opposite direction, resulting in their propagation in the negative y—direction,
indicated by the black arrows. Initially, the vorticity of the tubes largely remains on the respective
sides of the plane of reflection, as shown in Fig. B.5(A). However, once the tubes become perturbed,
the centroids of the vortex cores deform such that the lower core moves forward in the propagation
direction and the upper core moves backward, as shown in Fig. B.5(B-D). This contrary motion of
the cores illustrates the antisymmetric structure of the perturbations, as this particular cross section
is located along an anti-node of the pair. While the amplitudes of the perturbations grow, the vortic-
ity distributions of the cores contract and amplify into flattened, sheet-like structures, as shown in
Fig. B.s(D) and Fig. 2.4(A) in the main text. The curvatures of the deformed cores are of opposite
sign; the leading vortex core is curved toward the propagation direction and vice-versa for the trail-
ing core. Additionally, the lower core, which is deflected toward the leading edge of the vortex pair,
has a higher curvature than that of the upper core. The tendency of the kinked, perturbed cores to
locally flatten into vortex sheets results from the stretching field generated by each filament, as char-
acterized by the Biot-Savart model. An elementary calculation predicts that, on the outer side of a
kinked filament, the vorticity is stretched and grows, while on the inner side, the vorticity decreases
(see Fig. 4 of®). The tendency of the perturbed vortex cores to flatten into sheets is therefore the
result of the dynamics of kinked vortex tubes.

Because the perturbations of the vortex cores are periodic, the relative positions of the cores re-
vert every half-wavelength along the axial direction of the tubes, as shown in Fig. B.6. The 3D vi-
sualization of the vorticity modulus, |w|, shows how the peaks of the perturbed cores flatten into
mushroom-cap structures, as shown in Fig. B.6(A). By lowering the threshold of the vorticity mod-
ulus, as shown in Fig. B.6(B), one can visualize how the edges of the flattened cores roll up into
two secondary vortex filaments that are pulled toward the opposite vortex tube. Moving along
the axial direction, the leading vortex switches from the top core (Fig. B.6(C)) to the bottom core

(Fig. B.6(E)). At the nodes of the perturbations, the cores are aligned with each other, as shown in
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Figure B.6: Alternating structure of secondary filaments. DNS of counter-rotating vortex tubes where Rer=4500 at

a fixed time, t* = Ft/bz = 60.0. (A-B) 3D vorticity modulus of the simulated flow and (C-E) distribution of axial
vorticity, wx(y, z), along cross sections of the tubes indicated by the dashed green lines. The black arrows indicate

the propagation direction of the vortex pair. (A) The cores flatten into vortex sheets at the tips of each perturbation
(0.092 < |w|/|w|max < 0.122). (B) The edges of the each flattened perturbation roll up into pairs of secondary
filaments (0.031 < |@|/|@|max < 0.053). Due to the antisymmetric structure of the perturbations, the orientation
of the secondary filament pairs alternates periodically. (C) At anti-nodes where the top vortex core leads, the secondary
filament is stretched up from the lower vortex tube. (D) At nodes, neither vortex core leads and no secondary filaments
form. (E) At anti-nodes where the bottom vortex core leads, the secondary filament is stretched down from the upper
vortex tube. Note: ¢ = 0.06L and and b = 2.5¢.

Fig. B.6(D). Notably, the inherent asymmetry of the offset vortices causes the highly curved, leading
core to locally advect the low-vorticity region of the trailing core around itself, as previously shown
in Fig. B.s. This shedding of vorticity repeats along each anti-note peak of the perturbed cores, lead-
ing to an alternating array of perpendicular secondary filaments that traverse the plane of reflection,
as shown in Fig. B.6(B). The alternation of pairs of secondary filaments accounts for the interdigi-
tation of the colliding vortices visualized with dye both experimentally and numerically in the main

text. The counter-rotating structure of adjacent secondary filaments, as shown in Fig. 2.4(D) in the
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main text, results from two sources. First, the edges of each flattened perturbation roll up into a
pair of secondary filaments that counter-rotate relative to one another. Additionally, the alternat-
ing orientation of the secondary vortex pairs cause filaments formed from adjacent perturbations to

counter-rotate with each other.

B.4.2 TRANSFER OF CIRCULATION

The dynamics of the thin secondary filaments, transported across the reflection plane (z = 0), vary

along the axial direction. This implies that the axial component of the circulation in the half-plane,

2=0 0 0
= / dy/ dz wy(x, 9,2, t) (B.12)

varies, both as a function of time and of x. By integrating the vorticity distribution on the lower half
plane at several times, we find that the axial component of circulation varies periodically with x, as
shown in Fig. B.7(A). This demonstrates how the formation and stretching of the secondary fila-
ments develop a periodic transfer of vorticity from the original tubes through the reflection plane.
Once the secondary filaments are fully formed after #* 2 65, however, the variations in the axial
component of circulation saturate.

Concomitantly, as the axial component of circulation is drained from the lower vortex tube, the
secondary filaments traverse through the reflection plane, z = 0. The corresponding flux of vortic-
ity in the transverse direction is quantified by computing the transverse component of circulation

I;(«, t) along the reflection plane on [0, x]:

X +0o0
L(x,0) = / dx’/ dy w.(¥,y,z=0) (B.13)
0 —00

The derivative of T, (x, #) with respect to x reduces Eq. (B.13) into the normalized sum of the
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Figure B.7: Evolution of circulation. DNS of counter-rotating vortex tubes where Rer = 4500. (A) Evolution of the
axial component of circulation, Iy (x;, £), in the lower half plane ()/, z) forz < 0. (inset) Evolution of the axial and
transverse components of circulation, Iy (x, ) + I, (x, £). (B) Evolution of the derivative of the transverse component
of circulation, O, / Ox along the reflection plane (z = 0).

transverse vorticity, @, along a line located at the axial position, x, on the reflection plane, as shown
in Fig. B.7(B) at various times. The sinusoidal nature of OI;(x, #) / Ox|,—o—about a mean value of
zero—along the axial direction showcases the counter-rotating structure of adjacent secondary fila-
ments, as shown in Fig. 2.4(D) in the main text.

An important relation between I (x, ) and I'y (v, #) results from the observation that V - w = 0;
that is, the flux of vorticity a through a closed surface limiting a finite volume of fluid is conserved.
We define the half-plane P, by the conditions x = a2andz < «, and the band Q4 fora < Bby
z = 0anda < x < f. Additionally, we use the property that V - @ = 0 to the domain limited
by P, Qa‘g, and Pg, with < B. An elementary calculation shows that the flux of  on this domain
reduces to (T4(8,£) + I;(8,£)) — (Tu(a, £) + To(a, £)). Thus, the condition that the flux of vorticity
is zero imposes that I'y(x, £) + I;(x, £) does not dependent on x. We find that our numerical results
satisfy this conservation relation, as shown in the inset of Fig. B.7.

Physically, the relation 9 (Tx(x, £) + I'x(x,£)) = 0 imposes that the axial variations of I'y(x, £),
clearly visible in Fig. B.7(A), necessitate the variations of the flux I';(, #), which are proportional

to the transverse circulation in the plane z = 0. That is, because the circulation of the system is
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conserved—aside from viscous dissipation—any axial circulation lost from the vortex tubes is redi-

rected to the secondary filaments through the transfer of transverse circulation. The fluctuations of
Iy (x, #) correspond to &~ 0.25I, implying that in the configuration studied here, the circulation of
each transverse secondary filament is approximately 1/4 of the axial component of circulation in the

original tubes.

B.s INTERACTIONS OF SECONDARY VORTEX FILAMENTS

Through the creation of secondary filaments, the elliptical instability provides a mechanism by
which smaller generations of counter-rotating vortex filaments form and interact to generate small-
scale flow structures. During the evolution of the elliptical instability, the development of antisym-
metric perturbations in the cores leads to the formation of an array of counter-rotating secondary
filaments, as shown numerically for a typical example in Fig. B.8(A), Movie S6, and Movie S7, where
Rer = 3500. Neighboring secondary filaments interact with one another in the same manner as the
initial vortex tubes. Because the secondary filaments are smaller and have a lower circulation than
the original vortex tubes, they can be viewed as having a lower effective Reynolds number. These
adjacent secondary filaments align with one another in pairs, as shown in Fig. B.8(B-C). Due to their
counter-rotation, the filaments exert large strains on each other, which causes one of the secondary
filaments to flatten into a vortex sheet, as shown in Fig. B.8(D). Upon further stretching, this vortex
sheet splits into two smaller tertiary vortex filaments, as shown in Fig. B.8(E-F). This breakdown
mechanism in which counter-rotating vortex filaments interact, flatten into vortex sheets, and split
into even smaller generations of vortices has been previously observed in vortex ring collisions* and
is attributed to the late-stage development of the Crow instability °. This instability dominates dur-
ing the interaction of vortices at low-Reynolds numbers, like that of the secondary vortex filament

pair.

74



t*=7222] B t*=72.22 t*=72.22

\

t*=7778 E t*=83.33 t*=85.56

Figure B.8: Interactions of secondary vortex filaments. Vorticity modulus of a simulated vortex tube interaction where
Rer = 3500. (A) Array of secondary filaments formed during the late-stage evolution of the elliptical instability. (B)
Zoom-in view of two pairs of secondary filaments indicated by the dashed box. (C) Cross-sectional view of the sec-
ondary filaments through the plane of reflection (z = O), indicated by the dashed line in (B). Neighboring filaments
counter-rotate and interact with each other. (D) Interacting secondary filaments deform from the mutual strain and one
of the filaments locally flattens into a vortex sheet. (E) The flattened vortex sheet splits into two smaller tertiary vor-
tex filaments. (F) The newly-formed tertiary filaments unravel the secondary filament. For (A-F), the vorticty threshold
is0.122 < |@|/|@|max < 0.206, where |@|may is the maximum vorticity modulus for the entire simulation. Note:

o= 0.06L,b = 2.50,and t* = Tt/ b
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As shown previously, only a fraction of the initial circulation is transferred to the secondary fila-
ments. Even though the elliptical instability fully develops during the Rer = 3500 configuration,
the effective Reynolds number of the interacting secondary filaments is not sufficient enough for
the elliptical instability to develop again. Instead, the Crow instability dominates during this second
iteration, and the secondary vortices flatten into vortex sheets and split into smaller tertiary fila-
ments. In order for the secondary filaments to, themselves, interact through the elliptical instability
and form a tertiary generation of perpendicular filaments—as shown in Fig. 2.5 in the main text and

in Movie S9—the initial counter-rotating vortex tubes must have a higher Reynolds number.

B.6 ANALYSIS OF THE TRANSFER OF ENERGY IN A TURBULENT FLOW

This section examines the derivation and meaning of the shell-to-shell energy transfer spectrum,
T(k, t), introduced in the main text and plotted in Fig. 2.5(G). A typical method for characteriz-
ing a turbulent flow, which encompasses of a wide range of excited scales of motion, is to exam-
ine evolution of the the energy spectra in Fourier space. This energy spectrum is designated by the
term E(k, t), such that E(k, £) dk is the amount of kinetic energy at time 7 in a shell in wavenumber
space between £ and k£ + dk. In the absence of forcing, and in the simplified case of a homogeneous
isotropic flow, one can derive from the Navier-Stokes equations the following energy balance 574*:
OFE(k,?)

5 + T(k,t) = —20k*E(k, 1). (B.14)

The terms in this equation state that for a given wavenumber, £, and at any time, t, the rate of
change of the energy of that mode plus the rate of energy transferred to or from that wavenumber

via other modes is balanced by the viscous dissipation of that mode. In this equation, 71, ¢) origi-
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nates from the nonlinear, advective term in the Navier-Stokes equations:

Th,)dk= Y R((u-V)ulk)-u(-k)). (B.1s)

k<|k|<k-+dk
While Eq. (B.14) is often used in a context of fluid turbulence, it can be applied to any solution
of the Navier-Stokes equations. In our direct numerical simulations, 7k, #) is calculated by ap-
plying a discrete Fourier transform to both our solved flow field, u(x, #) and the nonlinear term,

(u - V)u(x, #), which are then applied to Eq. (B.15).

B.7 EMERGENCE OF TURBULENCE FROM THE ELLIPTICAL INSTABILITY WITH INCREAS-

ING REYNOLDS NUMBER

B.7.I DiSSIPATION RATE EVOLUTION AND ENERGY SPECTRA

Direct numerical simulations of the interacting, counter-rotating vortex tubes are performed at a
range of Reynolds numbers to examine by what mechanism the onset of the elliptical instability
leads to the development of turbulence. At each Reynolds number, the energy dissipation rate, ¢,
qualitatively follows the same temporal evolution, as shown in Fig. B.9(A). The coherent vortex
tubes initially interact, and the rapid increase in ¢ is initiated by the onset of the elliptical instability
at each Reynolds number, as shown in Fig. 2.5 in the main text. The dissipation rate is maximized
during the late-stage of the elliptical instability, in which the secondary filaments interact with each
other and the remnants of the original primary vortex cores. As the Reynolds number is increased,
the maximum dissipation rate increases. Because the viscous dissipation of energy in the flow pri-
marily occurs on the smallest scales of the system, this behavior indicates that the high-Reynolds
number configurations more effectively convey energy into small-scale flow structures.

Additionally, we examine the normalized kinetic energy spectra, E(k)/ (;7% yi ), when the dissi-
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Figure B.9: Dissipation rate evolution and energy spectra for simulated vortex tube interactions at various Reynolds

numbers. (A) Evolution of normalized kinetic energy dissipation rate. The markers indicate the maximum energy dis-

sipation rate. (B) Normalized kinetic energy spectra at the peak dissipation rate, where the black line corresponds to

Kolmogorov scaling. (C-F) Snapshots of the 3D vorticity modulus at the times corresponding to the maximum dis-

sipation rate for each Reynolds number. The vorticity thresholds are 0.153 < |w|/\w|max < 0.305 for (C) and

0.061 < ||/ |®|max < 0.183 for (D-F). For each simulatiorgcr = 0.06L, b = 2.50,Rer = I'/v,and £* = Tt/b*.
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pation rate is maximized for each Reynolds number, as shown in Fig. B.9(B). Each of the energy
spectra generally follow the ~ (k7)~5/3 Kolmogorov scaling of turbulence, where 7 is the dissipative
length scale*#. Notably, the agreement of the simulated energy spectra with this turbulent scaling
improves for simulations that are carried out at higher Reynolds numbers. This is because the in-
ertial range of the breakdown is more developed at higher Reynolds numbers—i.e. there is a larger
range of scales over which Kolmogorov’s axioms for turbulence are valid *#. The emergence of this
multi-scale turbulent behavior is encapsulated by the snapshots in Fig. B.9(C-F) which show the
vorticity modulus of the interacting tubes at each Reynolds number when ¢ is maximized.

In each configuration, the elliptical instability is fully developed at the peak dissipation rate, as an
array of perpendicular secondary filaments bridges the gap between the original vortex tubes. These
stretched, counter-rotating secondary filaments interact with each other and the remnants of the
original tubes through different means at each Reynolds number. For the Rer = 2000 configu-
ration, the secondary filaments do not have sufficient circulation to interact with one another and
break down further, as viscous dissipation sets in (see Movie S11+*). When the Reynolds number
is raised to 3500, neighboring secondary filaments locally interact with one another, flatten into
vortex sheets, and split into smaller tertiary filaments, as shown in Movie S6 and Movie S7 48 The
same interactions between secondary filaments occur for the Rer = 4500 configuration; however,
the secondary filaments become more disordered as they undergo complex 3D motion and become
wrapped around each other and the original tubes, breaking down into fine-scale vortex filaments
(see Movie S5 **). Lastly, in the Rer = 6000 configuration, the secondary filaments rapidly emerge,
interact, and violently break down as they almost instantaneously burst into an ensemble of vor-
tices interacting over a wide range of scales, as shown in Movie S8 **. Notably, the high-circulation
secondary filaments in this configuration locally interact to form new generations of perpendicular
tertiary filaments, as shown in Fig. 2.5 in the main text and in Movie S9**. We propose that these

tertiary filaments form through another iteration of the elliptical instability.
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These results demonstrate how the elliptical instability provides a mechanism by which counter-
rotating vortex tubes at high Reynolds numbers interact and break down to develop a turbulent
cascade. This iterative instability generates new vortices that interact with each other and “grind

down” into smaller and smaller vortex filaments before being dissipated through viscosity7°.

B.7.2 VORTICITY EVOLUTION

The evolution of the vorticity modulus in the simulated vortex tube interactions also indicates the
onset of a turbulent state during the breakdown of the tubes, which is especially pronounced for
high-Reynolds number configurations. For each Reynolds number, the maximum vorticity mod-
ulus, |@|max, remains initially constant until it increases during onset of the elliptical instability, as
shown in Fig. B.1o(A). For the Rer = 2000 configuration, the maximum vorticity modulus in-
creases slightly during the formation and stretching of the secondary filaments; however, because
the filaments do not interact due to the onset of viscous dissipation, the maximum vorticity mod-
ulus decreases. For the higher-Reynolds number configurations, the maximum vorticity modulus
increases precipitously due to the formation and stretching of the secondary filaments and remains
sustained at a heightened level before decreasing due to viscous dissipation. This heightened level
of |@|max coincides with the maximization of the energy dissipation rate, ¢, as shown in Fig. B.9(A).
The sustained amplification of the maximum vorticity modulus thus results from the new genera-
tion and local interactions of small-scale vortices during the turbulent breakdown. The higher the
Reynolds number, the longer the maximum vorticity modulus remains at this elevated level before
viscosity damps out the motion of the vortices.

Additionally, the mean vorticity modulus, m, increases during the onset of the elliptical insta-
bility, reaches a peak value approximately when the dissipation rate, ¢, is maximized, and decreases
as viscosity damps out the small-scale motion of the flow, as shown in Fig. B.10o(B). The increase in

the mean vorticity modulus indicates how the initially localized and coherent flow becomes more
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Figure B.10: Vorticity evolution for simulated vortex tube interactions at various Reynolds numbers. (A) Maximum

vorticity modulus and (B) mean vorticity modulus evolution. Both moduli are normalized by the initial mean vorticity
modulus. For each simulation, @ = 0.06L, & = 2.5¢,Rer = I'/»,and ¢* = Tt/b*.

distributed throughout the domain during the breakdown. The amplification of the mean vortic-

ity with increasing Reynolds number further demonstrates how the turbulent breakdown in the

high-Reynolds number configurations is more three-dimensional and quasi-isotropic.

B.8 SUPPLEMENTAL MOVIE DESCRIPTIONS

Movie S1. Head-on collision of vortex rings.

Underwater view of the head-on collision of two vortex rings dyed separately, where Re = UD /v =

6000 and SR = L/D = 2.5. The rings expand radially as they collide at the midplane before rapidly

breaking down into a turbulent cloud of dye.

Movie S2. Experimental vortex ring collision with dyed cores.

Head-on view (top) and side view (bottom) showing the core dynamics of two colliding vortex

rings, where Re = 7000 and SR = 2.0. As the rings stretch radially during the collision, the cores

develop antisymmetric, short wavelength perturbations, indicative of the elliptical instability. Once
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tully formed, the perturbations deflect out-of-plane and break down into a turbulent cloud of dye.

Movie S3. DNS of dyed vortex ring collision.

Overhead view (top) and side view (bottom) showing the simulated collision of two vortex rings
dyed red and blue, respectively (Rer = I'/v = 4500and #* = TIz/R3). The dye in the cores of
the rings (dark) is differentiated from the dye surrounding the cores (light). As the rings collide, they
stretch radially and develop antisymmetric, short-wavelength perturbations, indicative of the ellip-
tical instability. As a result of these perturbations, the vortex rings interdigitate, forming alternating
pairs of secondary vortex filaments, perpendicular to the cores. The rings then rapidly break down

into a turbulent cloud of dye.

Movie S4. Experimental fully dyed vortex ring collision.

Opverhead view (top) and side view (bottom) showing the collision of two vortex rings, where Re
= 6000 and SR = 2.5. As the vortex rings collide, they develop alternating “tongues” that inter-
digitate around one another. The edges of these tongues roll up into an ordered array of secondary
vortex filaments, perpendicular to the vortex cores. These secondary filaments interact and rapidly

break down into a turbulent cloud of dye.

Movie S5. DNS of vortex tube interaction: Rer = 4500.

Vorticity modulus for the simulated interaction of two antiparallel vortex tubes, where Rer =
4500 and #* = T't/b*. Asaresult of the elliptical instability, the cores develop antisymmetric per-
turbations, and an array of counter-rotating secondary vortex filaments forms perpendicular to the
cores. The secondary filaments interact with each other and the remains of the cores before breaking
down into a “soup” of small-scale vortices that are dissipated by viscosity. The vorticity threshold is

0.076 < |@|/|@|max < 0.198, and the tubes propagate in the —y direction.

Movie S6. DNS of vortex tube interaction: Rer = 3500.
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Vorticity modulus for the simulated interaction of two antiparallel vortex tubes, where Rer =
3500 and £ = Tt/b*. Asa result of the elliptical instability, the cores develop antisymmetric per-
turbations, and an array of counter-rotating secondary vortex filaments forms perpendicular to the
cores. The secondary filaments interact with each other and the remains of the cores before breaking
down into a “soup” of small-scale vortices that are dissipated by viscosity. The vorticity threshold is

0.122 < |w|/|@|max < 0.275, and the tubes propagate in the —y direction.

Movie S7. Interaction and splitting of secondary vortex filaments.

Vorticity modulus for the simulated interaction of two antiparallel vortex tubes, where Rer =
3500 and #* = I'#/b*. Neighboring secondary filaments counter-rotate and interact with one
another. This close-range interaction causes one of the filaments to become flattened into a vor-
tex sheet before splitting into smaller tertiary vortex filaments. The vorticity threshold is 0.122 <

|w|/]@|max < 0.206.

Movie S8. DNS of vortex tube interaction: Rer = 6000.

Vorticity modulus for the simulated interaction of two antiparallel vortex tubes, where Rer =
6000 and #* = Tz/b*. Asaresult of the elliptical instability, the cores develop antisymmetric per-
turbations, and an array of counter-rotating secondary vortex filaments forms perpendicular to the
cores. The secondary filaments and remaining cores interact violently and rapidly “burst” into a
turbulent flow of vortices interacting over many scales. Viscosity damps out the motion of the re-
maining vortices. The vorticity threshold is 0.077 < ||/|®|max < 0.153, and the tubes propagate

in the —y direction.

Movie S9. Iterative cascade of elliptical instabilities.
Vorticity modulus for the simulated interaction of two antiparallel vortex tubes, where Rer =

6000 and #* = T't/b*. Neighboring secondary filaments violently interact and form another gener-
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ation of perpendicular, tertiary filaments through the elliptical instability. The vorticity threshold is

0.092 < |@]/|@|ma < 0.214.

Movie S10. Gaussian fit to vortex core PIV data.
2D PIV measurement of the vorticity distribution of a formed vortex ring, where Re = 7000 and
SR = 2.5. The raw PIV vorticity data is plotted in the top panel and the Gaussian fit of the top and

bottom cores is plotted in the bottom panel.

Movie S11. DNS of vortex tube interaction: Re r = 2000.

Vorticity modulus for the simulated interaction of two antiparallel vortex tubes, where Rer =
2000 and #* = T'#/b*. Asaresult of the elliptical instability, the cores develop antisymmetric per-
turbations, and an array of counter-rotating secondary vortex filaments forms perpendicular to the
cores. The secondary filaments have little circulation and quickly dissipate due to viscosity. The

vorticity threshold is 0.229 < |w|/|@|max < 0.458, and the tubes propagate in the —y direction.
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