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Topics in False Discovery Rate Control and Factor Analysis

ABSTRACT

This dissertation develops statistical theories and methodologies in the realm of false discovery
rate (FDR) control and factor analysis. Both these topics are of great scientific importance in the
field of social science, economics, and bioinformatics. The dissertation contains three self-contained
chapters.

Chapter 1 studies how the key components (including symmetric statistics, ranking algorithm,
design of fake variables, and the scheme of adding fake variables) of an FDR control method impact ts
power. We focus on two recent FDR control methods, the knockoft filter, and the Gaussian mirror,
and develop a unified theoretical framework for power analyses under the rare/weak signal model.
Our analyses lead to several noteworthy discoveries. First, the choice of the symmetric statistic in FDR
control methods crucially affects the power. Second, when the components are designed properly, the
operation of adding “noise” to achieve FDR control yields almost no loss of power compared with
its prototype, at least for some special classes of designs. Third, a different FDR control method is
preferred (in terms of power) under different sparsity levels and gram matrix designs. Our simulation
studies nicely support these theoretical discoveries.

Chapter 2 studies the problem of estimating the number of spiked eigenvalues, K in a covariance
matrix, or in other words identifying the number of factors in a factor model. We propose a novel
approach for estimating K using the bulk eigenvalues of the sample covariance matrix. Our method
imposes a working model on the residual covariance matrix, which is assumed to be a diagonal ma-

trix whose entries are drawn from a gamma distribution. Under this model, the bulk eigenvalues are
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asymptotically close to the quantiles of a fixed parametric distribution, which motivates us to propose
a two-step method: the first step uses bulk eigenvalues to estimate parameters of this distribution,
and the second step leverages these parameters to assist the estimation of K. We theoretically show the
consistency of our estimator and we also propose a confidence interval estimate for K. Our extensive
simulation studies show that the proposed method is robust and outperforms the existing methods in
arange of scenarios. We finally apply the proposed method to the analysis of a lung cancer microarray
data set and the 1000 Genomes data set.

Chapter 3 dives into the realm of the sparse Bayesian factor model and studies the posterior dis-
tribution inconsistency problem in the high dimensional regime, where the column-wise averaged
nonzero element number in the loading matrix is larger than the number of observations. We ana-
lyze the inconsistency issue when using non-informative priors on the elements of the loading matrix.
Namely, we show that using independent spike-and-slab prior on the elements of the loading ma-
trix leads to a ‘magnitude inflation’ phenomenon for the posterior distribution of the loading matrix.
Our theoretical analyses reveal the connection between posterior inconsistency and the assumption
on the factors, which gives rise to a natural remedy—changing the normal factors (after scaling) to
be uniform on the Stiefel manifold. Without losing any model interpretability, we propose to adopt
this new orthonormal factor model in high dimensions (in place of the normal factor model) since it
enjoys two major advantages. First, the posterior distribution is more robust against the choice of the
prior distribution for elements of the loading matrix. Second, it leads to a significant efficiency gain
in MCMC sampling. We verify these claims in both numerical studies and a real application to the

AGEMAP data set.
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Introduction

With the increasing capacity of collecting and storing data, we have seen an explosion in dimensions
of data sets statisticians are dealing with. In some financial or genetic data sets (e.g. high-frequency
stock data, gene-expression measurements data), it is not uncommon to have the number of samples
or the dimension of features to be at the order of 10”. With this amount of data, achieving statistical
objectives with limited space and time has become the new challenge. A prevailing answer to this

challenge is dimension reduction, which brought in the notion of sparsity.



Sparsity assumption plays a key role in high-dimensional statistical problems. For example, in
a linear regression problem where the number of features exceeds the sample size. In this case, the
ordinary least squares method is not applicable due to multicollinearity. But, by assuming that the re-
sponse only depends on a small portion (sparsity) of the features, one can still establish proper linear
models to model the response. Selecting the relevant features to include in the model is an important
topic in modern statistics and has led to the developments of several branches of researches according
to different variable selection objectives. In the first chapter, we study variable selection methods aim-
ing at controlling the false discovery rate (FDR). More specifically, we study how the key components
(including symmetric statistics, ranking algorithm, design of fake variables, and the scheme of adding
fake variables) of an FDR control method impact its power. We focus on two recent FDR control
methods, the knockoff filter (Barber & Candes, 2015) and the Gaussian mirror (Xing et al., 2019),
and develop a unified theoretical framework for power analyses under the Rare/Weak signal model
(Donoho & Jin, 2015). Existing literature focuses more on the analyses of the ability to control FDR
while we acknowledge that the power study of these methods is of equal importance for practical use.
Our study in chapter 1 aims at bridging this gap in theory and providing insight on the construction of
an FDR control method in practice to boost power. The model setup and theoretical tools we used in
chapter 1 are quite different from those in existing literature (Weinstein et al., 2017, 2020) for power
analysis of FDR control methods, and we hope these can shed some light on related future theoretical
developments.

Another example of assuming sparsity in high dimensions is the factor model. This model as-
sumes that the observed data matrix is a perturbed version of a true data matrix that possesses a low
dimensional matrix product representation. This is essentially imposing sparsity on the eigenvalues
of the true data matrix. Though the model itself is rather simple, it possesses severe identifiability
issues, making it difficult to pinpoint the factor dimensionality or the low dimensional decomposi-

tion. Factor analyses have a long history that dates back to 1900 and this realm stays active for almost



a century, for its wide use in biology, psychometrics, and finance. In this process, a large number of
methods were proposed for the sole purpose of estimating the factor dimensionality. Prominent ones
include the Kaiser’s criterion (Kaiser, 1960) and parallel analysis (Horn, 1965). These methods are
later advanced to empirical Kaiser’s criterion (Bracken & Van Assen, 2017) and deterministic parallel
analysis (Dobriban & Owen, 2019) utilizing the recent developments in random matrix theory. These
methods, though having very nice theoretical properties, tend to fall apart in real applications due to
a violation of certain modeling assumptions. In chapter 2, we propose a novel random matrix the-
ory based approach for estimating the factor dimensionality. Our method imposes a working model
for the residual covariance matrix, assuming that it is a diagonal matrix with entries drawn from a
gamma distribution. Under this model, the bulk eigenvalues are asymptotically close to the quantiles
of a fixed parametric distribution, which motivates us to propose a two-step method: the first step
uses bulk eigenvalues to estimate parameters of this distribution, and the second step leverages these
parameters to assist the estimation of factor dimensionality. We show that, besides having sharp theo-
retical guarantees, our model fits nicely with real data sets and our estimators are more robust against
model misspecifications than existing alternatives.

In the last chapter, we switch to the Bayesian perspective. While Frequentists are seeking esti-
mators with nice theoretical properties, Bayesians are trying to come up with priors that induce nice
posterior consistency and low computational (sampling) cost (Roc¢kovd & George, 2016, Fruehwirth-
Schnatter & Lopes, 2018). This turns out to be a subtle task for the high dimensional Bayesian factor
model when the column-wise averaged nonzero element number in the loading matrix exceeds the
number of observations. In such a scenario, common choices of prior setup for the loading matrix,
e.g. the priors from (Bhattacharya & Dunson, 2011, Roc¢kovd & George, 2016), can easily lead to an
inconsistent posterior distribution. Chapter 3 aims at analyzing this posterior inconsistency issue with
the notion of using non-informative priors on the elements of the loading matrix. Problems with the

use of diffuse priors in Bayesian inference when observation sample sizes are small relative to the num-



ber of parameters being estimated have been studied in the literature (Efron, 1973, Kass & Wasserman,
1996, Natarajan & McCulloch, 1998). In this chapter, we elaborate on this problem in the context
of the factor model. We reveal connections between posterior inconsistency and the assumption on
the factors, and suggest using orthonormal factors (after scaling) in place of normal factors in high
dimensional settings. Without losing model interpretability, the orthonormal factor model is shown

to be more robust against prior specification and leads to an efficiency gain in MCMC sampling.
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1.1 INTRODUCTION

We consider a linear regression model:
y=XB+z, X=[X,X,,...,X,]) € R, z ~ N(0,5°L,). (1.1)

Given a subset of selected variables S C {1,2,...,p}, the false discovery rate (FDR) is defined as

r#G = 0sE8)
#{j:jestvt |

The control of FDR is a problem of great interest. When the design is orthogonal (i.e., X' X is a diag-
onal matrix), the Benjamini-Horchberg procedure (Benjamini & Hochberg, 1995) can be employed
to control FDR at a targeted level. When the design is non-orthogonal, the BH-procedure faces chal-
lenges, and several recent FDR control methods were proposed. Examples include but are not limited
to the knockoff filter (Barber & Candes, 2015), model-X knockoff (Candes et al., 2018), Gaussian
mirror (Xing et al., 2019), and multiple data splits (Dai et al., 2020). All these methods are shown
to control FDR at a targeted level, but their power is less studied. This chapter aims to provide a
theoretical understanding to the power of FDR control methods.

We introduce a unified framework that captures the key ideas behind recent FDR control meth-
ods. Starting from the seminal work of Barber & Candes (2015), this framework has been implicitly

used in the literature, but it is the first time that we abstract it out:
(a) There is a ranking algorithm, which assigns an importance metric to each variable.
(b) An FDR control method creates a tampered design matrix by adding fake variables.

(c) The tampered design and the response vector y are supplied to the ranking algorithm as input,

and the output is converted to a (signed) importance metric for each original variable through
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a symmetric statistic.

The three components, (a) ranking algorithm, (b) tampered design, and (c) symmetric statistic, need
to coordinate so that the resulting importance metrics for null variables (i.c., 18], = 0) have symmetric
distributions and the importance metrics for non-null variables (i.e., ﬂj # 0) are positive with high
probability. Then, given any threshold # > 0, the number of false discoveries is estimated by counting
the number of variables whose importance metric is below —z. As a result, one can mimic the BH
procedure to control FDR at a targeted level.

The power of an FDR control method is essentially hinged on the quality of ranking variables by
those importance metrics. In the aforementioned framework, each of the three components (a)-(c) has
a significant impact on the resulting importance metrics and thus on the power of the FDR control
method. The literature works have revealed a lot of insight on how to design these components to
facilitate valid FDR control. However, there is very little understanding on how to design them so
as to boost power. The main contribution of this chapter is to dissect and detail the impact of each
component on the power. We discover that each of (a)-(c) can have a significant impact under some
settings. Therefore, one has to be careful on the choice of these components in designing an FDR
control method, and our theoretical results provide a useful guideline. Our study also helps answer
a fundamental question: It is well known that adding noise often makes inference more difficult.
The operation of adding fake variables to facilitate FDR control is essentially an operation of adding
“noise.” Does it yield any loss of power, compared with variable selection methods that do not aim for
FDR control? We find that the answer is complicated, depending on not only the choice of (a)-(c) but
also model parameters such as sparsity, signal strength, and correlations among variables. For some
particular model settings and particular choices of (a)-(c), we obtain encouraging answers where the
operation of adding fake variables yields only a negligible power loss.

We focus our study primarily on two FDR control methods, the knockoft filter (Barber & Candgs,

2015) and Gaussian mirror (Xing et al., 2019), but the analysis is readily extendable to other methods.
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We chose these two methods as the object of study because they cover a variety of ideas in designing
(a)-(c). For example, knockoff uses the solution path of Lasso to rank variables, while Gaussian mirror
uses least-squares coefficients. Knockoff constructs the tampered design matrix by simultaneously
adding p fake variables, while Gaussian mirror adds one fake variable at a time. Both methods adopt
symmetric statistics including the signed maximum and the difference statistic. The study of these
two methods allow us to explore quite a few different ideas in designing an FDR control method. We
have also studied variants of these two methods by altering one or more component of (a)-(c). For
example, we have considered the knockoft filter using least-squares as the ranking algorithm, and we
have also investigated different ways of constructing fake variables in knockoff. For Gaussian mirror,
we propose a de-randomized version of the method, and we also propose a hybrid of Gaussian mirror
and knockoff by combining their construction of tampered design. We hope our results will shed light

on power analysis of many other FDR control methods.

1.1.1 THE THEORETICAL FRAMEWORK AND RELATED LITERATURE

We study a challenging regime of “Rare and Weak signals” (Donoho & Jin, 2015, Jin & Ke, 2016),

where for some constants & € (0,1) and » > 0, we consider settings where

number of nonzero ﬂj ~ magnitude of nonzero /JJ ~n V2 2r log(p). (1.2)

The two parameters, 4 and 7, characterize the signal rarity and signal weakness, respectively. Here,
nY 2\/@ is the minimax order for successful inference of the support of 4 (Genovese et al.,
2012), and the constant factor » drives subtle phase transitions. When » = 1, the setting (1.2) has
been commonly used in the literature of multiple testing (e.g., Donoho & Jin (2004), Jager & Wellner
(2007), Cai etal. (2007), Hall & Jin (2010), Arias-Castro et al. (2011), Barnett et al. (2017)). Recently,

this setting has been considered in the study of variable selection for sparse linear models (e.g., Ji & Jin



(2012), Jin et al. (2014), Ke et al. (2014)).

We study the power of FDR control methods under the above Rare/Weak signal setting. For any
method, its power changes with the target FDR level 4. Instead of fixing ¢, we derive a trade-oft di-
agram between FDR and the true positive rate (TPR) as g varies. This trade-off diagram provides a
full characterization of power, given any model parameters (3, ). We also derive a phase diagram (Jin
& Ke, 2016) for each FDR control method. The phase diagram is a partition of the two-dimensional
space (&, 7) into three regions, region of no recovery (NR), region of almost full recovery (AFR), and
region of exact recovery (ER), where the asymptotic behavior of the Hamming error, defined as the
expected sum of false positives and false negatives, is different in different regions. The boundary be-
tween NR and AFR is related to the achievability of asymptotically full power under FDR control,
and the boundary between AFR and ER is connected to the achievability of model selection consis-
tency. The phase diagram is a visualization of power of an FDR control method for all (#, 7) together.

Power analysis of FDR control methods is a small body of literature. Su et al. (2017) set up a
framework for studying the trade-off between false positive rate and true positive rate across the lasso
solution path. Weinstein et al. (2017) and Weinstein et al. (2020) extended this framework to find
a trade-oft for the knockoft filter, when the ranking algorithm is the Lasso and thresholded Lasso,
respectively. These trade-off diagrams are for linear sparsity (i.e., the number of nonzero coefficients
of B is a constant fraction of p), which is a limit of our Rare/Weak setting as ¢ — 0. Under linear
sparsity, the phase transition happens when |ﬂ]| = 7~'/2, and the FDR takes constant values. In the
current chapter, we consider a different sparsity framework in which the number of signals is much
smaller than p. We thus need a higher signal strength at the individual coefficient level, and the phase
transition happens when |ﬂ]] = n~1/? \/10g(p). Note that the overall signal strength as characterized
by ||4]| in our framework is actually much smaller than that in the aforementioned work. The FDR is
anegative power of p, and so we draw the trade-off diagram in the log scale. Additionally, these works

only considered the uncorrelated design, but our framework can accommodate correlated designs.



For correlated designs, Liu & Rigollet (2019) investigated sufficient and necessary conditions
on X such that the knockoft has a full power, but they do not give the explicit trade-oft diagram;
furthermore, what they studied in the paper is not the orthodox knockoff but a variant using de-
biased Lasso as the ranking algorithm. Beyond linear sparsity, Fan et al. (2019) studied the power
of model-X knockoft for arbitrary sparsity, but they required a stronger signal strength by assuming
8] > n1/2, /log(p). In a similar setting, Javanmard & Javadi (2019) studied the power of using
de-biased Lasso directly as an FDR control method. Our work differs from these literature because we
study the Rare/Weak signal setting (1.2) and derive explicit FDR-TPR trade-oft diagrams and phase
diagrams.

In our analysis, we develop a new technical tool. It relates the rates of convergence of variable se-
lection errors with the geometry of the “rejection region” induced by an FDR control method. Con-
sequently, the analysis of FDR-TPR trade-off diagram and phase diagram reduces to (i) deriving the
rejection region and (ii) studying its geometric properties. This new tool will be useful for studying

other problems under the Rare/Weak signal setting.

1.1.2 MAIN DISCOVERIES

We give a high-level summary of the discoveries. We use phase diagram as the main criterion of power
comparison because a single phase diagram covers the whole parameter range (in contrast, the FDR-
TPR trade-off diagram is tied to a specified (&, 7)). We say two methods have the “same power” if their
associated phase diagrams are the same, and we say one method has a “higher power” than another if
the phase diagram of the latter is inferior to that of the former. The precise statements will be given
in Sections 1.2-1.5.

As mentioned, we are interested in the role of the three components, (a) ranking algorithm, (b)

tampered design, and (c) symmetric statistic.
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RoLE OF COMPONENT (A)  We use the ranking algorithm to define a prototype for each FDR control
method. The prototype runs the ranking algorithm on the original design matrix to obtain impor-
tance metrics for variables and then applies an ideal threshold (practically infeasible) to control FDR
at a targeted level. We discover that the power of an FDR control method is primarily determined
by the power of its prototype. We focus on two methods, knockoft' and Gaussian mirror. The pro-
totype of knockoft is a ranking method based on the lasso solution path (called “Lasso-path”), and
the prototype of Gaussian mirror is a method that ranks variables by least-squares coefficients (called
“least-squares”). The power comparison between knockoft and Gaussian mirror is largely the power
comparison between Lasso-path and least-squares. Which prototype has a higher power depends on
correlations in the design as well as the sparsity level of regression coeflicients. Typically, Lasso-path is
better when & is large (i.e., 8 is sparser), and least-squares is better when & is small (i.e., 4 is less sparse).

See Section 1.4.

ROLE OF COMPONENT (C) Two commonly used symmetric statistics in knockoff are the signed
maximum and the difference. It appears that using the difference as the symmetric statistic yields a
considerable power loss relative to its prototype, even in the orthogonal design. In contrast, using the
signed maximum as the symmetric statistic can successfully prevent power loss for a class of designs.
Barber & Candes (2015) commented on the signed maximum as “a specific instance that we find to
perform well empirically.” Our result is a theoretical justification to their numerical observation. We
also provide a geometric interpretation, which suggests that the signed maximum is indeed the “best”

choice among all possible symmetric statistics. See Section 1.3.

RoLE OF cOMPONENT (B)  The construction of the tampered design matrix usually involves adding
fake variables (i.c., “noise”). A natural concern is whether “adding noise” for the purpose of FDR

control reduces power. We first consider orthogonal designs. We show that the phase diagrams of

11



knockoft and Gaussian mirror (using signed maximum as symmetric statistics) are the same as the
optimal phase diagram. This suggests that “adding noise” to achieve FDR control yields negligible
power loss for orthogonal designs. See Section 1.3.

We then consider non-orthogonal designs. For these designs, even the prototypes of knockoff
and Gaussian mirror may have non-optimal power (Ke et al., 2014). Therefore, it makes more sense
to compare the power of an FDR control method with its own prototype. The answer for Gaussian
mirror is relatively clear. For a wide class of designs, we show that the Gaussian mirror has negligible
power loss compared with its prototype, least-squares. See Section 1.5.

The study of knockoft is much more demanding because the Lasso solution path has no explicit
form. To get tractable results, we restrict to a class of block-wise diagonal designs: In this design matrix,
p variables are divided into p/2 pairs, where variables in distinct pairs are uncorrelated, and variables
in the same pair have a correlation of p € (—1,1). We show that there exists a constant p, ~ —0.35,
such that: If p € (p,, 1), knockoft and Lasso-path share the same phase diagram; if p € (—1, o)), they
have the same phase transitions only when & is appropriately large. The discrepancy of power between
knockoftand Lasso-path can be mitigated by modifying the tampered design in knockoff. We consider
a variant of knockoff, where the tampered design follows the construction in Liu & Rigollet (2019)
(called conditional-independence knockoft). We show that the conditional-independence knockoft
and Lasso-path share the same phase diagram for every p € (—1,1).

Since the ranking algorithm in knockoft can be replaced by least-squares, we also make a direct
comparison of knockoft'and Gaussian mirror by fixing the ranking algorithm as least-squares. We find
that the phase diagram of Gaussian mirror is better than that of knockoff, and the main reason is that
Gaussian mirror adds 1 fake variable at a time while knockoft adds p fake variables simultaneously. It
motivates us to propose a general principle of constructing fake variables that suits for the “one-at-
a-time” scheme. We call the resulting FDR control method the “de-randomized Gaussian mirror.”

It turns out that the fake variables in knockoff suit for one-at-a-time scheme, which gives rise to a

12



new FDR control method that is a hybrid of Gaussian mirror and knockoff. We show that this new
method improves the brute-forth “knockoft plus least-squares” and attains the same phase diagram
as its prototype for a broad class of designs. On the other hand, the one-at-a-time scheme is limited
to using least-squares to rank, and it does not apply to the original “knockoft plus Lasso-path.” See

Section 1.5.

1.1.3 ORGANIZATION

The remainder of this chapter is organized as follows. Section 1.2 introduces the Rare/Weak signal
model and explains how to use it as a theoretical platform to study and compare FDR control meth-
ods. Sections 1.3-1.5 contain the main results, where Section 1.3 studies the power of FDR control
methods for orthogonal designs, Section 1.4 investigates the prototypes of FDR control methods,
and Section 1.5 studies the power of FDR control methods for non-orthogonal designs. Section 1.6
sketches the proof and explains the geometrical insight behind the proof. Section 1.7 contains simu-
lation results, and Section 1.8 concludes with a short discussion. Detailed proofs are relegated to the

Supplementary Material.

1.2 FDR CONTROL METHODS AND CRITERIA OF POWER COMPARISON

Consider a linear regression model, y = X8 + ¢, where y € R”, X = [X1, X5, ...,X,] € R**?,and

¢ ~ N(0,0%1,). Throughout this chapter, we fix o = 1. The Gram matrix is

G=XXecR*?, where we assume Gj; = 1, forall1 <; < p. (1.3)

Here each column of X is normalized to have a unit #2-norm. Such a normalization is common in
the study of Rare/Weak setting but is different from the standard normalization where each column

of X has an ¢*-norm of y/z. The j vector in our setting is actually the vector of v/z 8 in a standard
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normalization. In this chapter, we only consider the setting that z > p and that the design is non-
random, but the results are extendable to the setting that z < p and that the rows of X are iid drawn
from a multivariate Gaussian distribution.

We adopt the Rare/Weak signal model (Donoho & Jin, 2004) to assume that j satisfies:
iid .
B~ (L —gp)vo + gpvs,s 1<;7<p, (1.4)

where 7, denotes a point mass at 2. Here, ¢, € (0,1) is the expected fraction of signals, and 75 > 01is
the signal strength. We let p be the driving asymptotic parameter and tie (¢, 75) with p through fixed

constants & € (0,1) and » > 0:

& :p_s, 7, = 4/ 2rlog(p). (1.5)

The parameters, ¢ and 7, characterize the signal rarity and the signal weakness, respectively.

1.2.1 THE KNOCKOFF FILTER AND GAUSSIAN MIRROR

The knockoff filter (Barber & Candés, 2015) creates a design matrix X € R**? such that XX = G
and X'X = G — diag(s), where G = XX and diag(s) is a nonnegative diagonal matrix satisfying that
diag(s) < 2G. The j-th column of X is called a krockoff of variable j. Let (@ (1) € R? be the solution

of running Lasso on the expanded design matrix [X, X]:

A(2) = argmin, {|ly — X, X617 /2 + 216]): }-
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Foreach1 <j < p,let Z; = sup{l > 0 :Zgj(l) # 0} ande = sup{l1 >0 :‘éﬁj(l) # 0}. The

importance of variable ; is measured by a symmetric statistic

where f{-, -) is a bivariate function satisfying flv, #) = —f{u,v). Here {VV]}le are (signed) impor-
tance metrics for variables. Under some regularity conditions, it can be shown that w; has asymmetric
distribution when ﬂj = 0and that I} is positive with high probability when ﬂj # 0. Hence, given a
threshold # > 0, the number of false discoveries is estimated by #fu W < —t}, and the data-driven

threshold to control FDR at g is

Tl<q>=min{t>o: AR }

wwy>aqvi

This method falls into the framework we introduced in Section 1.1. The ranking algorithm uses
Lasso solution path to assign an importance metric to each variable, the tampered design is the 72 x (2p)
matrix [X, X], and the symmetric statistic is defined in (1.6). The ultimate importance metrics W) are
obtained by first applying the ranking algorithm on the tampered design and then re-combining the
output via the symmetric statistic.

The Gaussian mirror (Xing et al., 2019) creates two columns xji = x; & ¢;z; for each variable j,
where z; ~ N(0, 1,,) is sampled independently from data and ¢; = [|(Z, — P—;)x;|/[| (£, — P—;)zl
where P_ is the projection matrix to the column space of X_;. Let {%i be the ordinary least-squares

. + .
coefficients of x; by regressing y on
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The importance of variable 7 is measured by the mirror statistic:
A + P A Jr A—
]Mj = ’15] —|—‘Ej | - |{8] _{gj | (1-7)

The construction of xji ensures that M; has a symmetric distribution when ‘Bj = 0 and that M;is

positive with high probability when /Zj # 0. The data-driven threshold to control FDR at ¢ is

Tz(q)—min{t>0: M < 1) }

2> v

Again, this method follows the framework in Section 1.1. The ranking algorithm uses least-squares
coefficients to rank variables, the tampered design is the 2 X (p+1) matrix XU) for each 1 <j<p,and
the symmetric statistic is as in (1.7). Different from knockoft, Gaussian mirror adds 1 fake variable at
atime. When applying the ranking algorithm to the tampered design, Gaussian mirror solves p linear

models, each with (p + 1) variables, while knockoff solves 1 linear model with 2p variables.

1.2.2  THE FDR-TPR TRADE-OFF DIAGRAM AND THE PHASE DIAGRAM

Under the Rare/Weak signal model (1.4)-(1.5), we define two diagrams for characterizing the power
of an FDR control method. Let 7; be the importance metric assigned to variable / by the FDR control

method, and consider the set of selected variables at a threshold /2% log(p):

S(u) = {1<j<p:L;>/2ulog(p)}.

Lee S ={1<;j<p: B; # 0}. Define FPy(x) = E(|S(2)\S]), FN,(#) = E(|S\S()]), and

TPy(x) = E(ISN S(u)|), where the expectation is taken with respect to the randomness of both 4
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and y. Write $p = pep. Define

Hammy, () = FPy() + FN,(x), FDR,(x) = FP;,(%F)Pi(%T)PP(u)’ TER, () — Tpfp(u) |

The first quantity is the expected Hamming selection error. The last two quantities are proxy of the

false discovery rate and true positive rate, respectively.

Definition 1.2.1. Let L, be a generic multi-log(p) term, which may change from occurrence to oc-

currence and satisfies that Lpp5 — 0o and Lﬂ)‘a — 0asp — oo forany 9 > 0.

In the Rare/Weak signal model, fixing an FDR control method and a class of designs of interest,

FDR, (%) and TPR, () often have the form: For any fixed (3, 7, #), as p — oo,
FDR,, () = Lpp_gFDR(WS,V)’ 1 — TPR,(n) = Lpp—ngR(u;&,r)7 (1.8)

where ggpr (+; 4, 7) and grpr (+; 3, 7) are two fixed functions, determined by the FDR control method

and the design class. We propose the FDR-TPR trade-oft diagram as follows:

Definition 1.2.2 (FDR-TPR trade-off diagram). Given an FDR control method and a sequence of
designs indexed by p, if FDR,(#) and TPR(#) satisfy (1.8) under the Rare/weak signal model (1.4)-
(1.5), then the FDR-TPR trade-off diagram associated with (&, 7) is the plot with grpr (#; &, ) in the

y-axis and grpg (#; 3, 7) in the x-axis, as # varies.

An FDR-TPR trade-off diagram is tied to a particular (3, 7). To compare the performance of two
FDR control methods, we need to draw many curves for different values of (3, 7). Here we introduce
another metric for characterizing the power of an FDR control method at all (3, 7) simultaneously.
Define Hammy; = min, {FP,(#) + FN,(#)}. This is the minimum expected Hamming selection

error when the threshold # is chosen optimally. We will see that for each method and each class of
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designs of interest in this chapter, there exists a fixed bivariate function ff, ... (3, ) such that, for any
fixed (8, 7),as p — o0,

Hamm, = Lppﬁ*amm ) (1.9)

Definition 1.2.3 (Phase diagram). Given an FDR control method and a sequence of designs indexed

by p, it Hammj satisfies (1.9), then the phase diagram is a partition of the space (8, 7) into three regions:

* Region of Exact Recovery (ER): {(,7) : ff1umm ($,7) < 0}.
* Region of Almost Full Recovery (AFR): {($,7) : 0 < ff1,nm($,7) <1 — 8}
* Region of No Recovery (NR): {(3,7) : fiamm (3, 7) > 1— 3}

The curves separating different regions are called phase curves. We use bar (#) to denote the curve
between NR and AFR, and bgg (9) the curve between AFR and ER.

In the ER region, the expected Hamming error, Hamm}, tends to zero. As a result, with an
overwhelming probability, the support of 4 is exactly recovered. In the AFR region, Hamm; does
not tend to zero but is much smaller than pe, (which is the expected number of signals). As a result,
with an overwhelming probability, the majority of signals are correctly recovered. In the region of NR,
Hamm; is comparable with the number of signals, and variable selection fails. The phase diagram was
introduced in the literature (Genovese et al., 2012, Ji & Jin, 2012) but has never been used to study
FDR control methods.

We illustrate these definitions with an example where we apply the BH-procedure to the marginal

regression coefhicients to control FDR at a targeted level. In this example,
I =[x, 1<;<p. (1.10)

The following proposition is proved in the supplementary material. Throughout this chapter, we use

a4 to denote max{a, 0}, foranyz € R.
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Figure 1.1: The FDR-TPR trade-oft diagram (left) and the phase diagram (right) for the FDR control method
in (1.10) under orthogonal designs. Each FDR-TPR trade-off diagram corresponds to one point in the phase
diagram.

Proposition 1.2.1. Fix the FDR control method as in (1.10), and consider a sequence of orthogonal

designs, that is, XX = I,

* When » > &, the FDR-TPR trade-off diagram associated with (&, 7) is grpr (#; 8, 7) = (u —

)+ and gron (15.9,) = (V5 — V)2
* The phase diagram is such that hag (§) = $ and bgr (3) = (1 + V1 — 9)2.

These diagrams are shown in Figure 1.1.

Remark 1. The FDR-TPR trade-off diagram and the phase diagram are determined only by the
importance metrics assigned to variables (i.c., the way variables are ranked). Although in many real
applications feature ranking is often of the primary interest, another important aspect of an FDR
control method is to derive a threshold so as to achieve the targeted FDR level ¢ accurately. Thus, the
power of an FDR-controlled feature selection method is affected not only by its ability of ranking the
features properly, but also by its ability of estimating the FDR. We feel that, without a good ability in
ranking features, a method may be of little interest to practitioners even if it can control the FDR well.
Itis desirable, however, to have a method that compromises with only alittle loss of power in exchange

of a precise FDR control. It is known that knockoff can control FDR precisely if certain conditions
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about X are satisfied and Gaussian mirror can control FDR asymptotically. Thus, the power analysis
in this chapter focuses only on the comparison of feature ranking abilities of different FDR control

methods.

1.3 PowEeR ANALYSIS OF FDR CONTROL METHODS FOR ORTHOGONAL DESIGNS

Given an FDR control method that follows the unified framework in Section 1.1, we define its prozo-
type as the method that assigns an importance metric to each variable by applying the ranking algo-
rithm on the origional desgin matrix X (in comparison, the FDR control method applies the ranking
algorithm on the tampered design matrix and then re-combines the output through symmetric statis-
tics). It is generally infeasible to estimate a proper threshold to control FDR based on the importance
metrics given by the prototype. We use the prototype as a benchmark.

~lasso

The solution of Lasso is defined by 8~ (1) = argmin, { ||y — X&||*/2 + 2||6||; }. The prototype

of knockoff assigns an importance metric to variable 7 as

~lasso

W; =sup{2 >0 B () # 0}. (1.11)

We call this method the Lasso-patrh. Let IZZOIS = argmin, {||y — X&||*} be the ordinary least squares

estimator. The prototype of Gaussian mirror assigns an importance metric to variable 7 as
M= = ld6Y
=18 | = lgG Xy, (112)

We call this method the least-squares. In an orthogonal design, XX = 1. Both VV’Jk and]M;-k reduce
to the absolute marginal regression coefficient in (1.10). Therefore, we use the FDR-TPR trade-oft
diagram and the phase diagram in Figure 1.1 as the benchmark for the respective diagram of each FDR

control method.
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First, we study the knockoft filter. This method involves constructing a matrix X such that X'X =

Gand X'X = G — diag(s). We consider the form
diag(s) = (1 — )1, where —1<a<1. (1.13)

The value of # controls the correlation between a variable and its own knockoff variable. Let Z; and

Zj be the same as in (1.6). Two commonly-used symmetric statistics are:
W = (Z;V Z) - , ad W =2-2, (1.14)

We call the first one the signed maximum statistic and the second one the difference statistic. The next

theorem is proved in the supplementary material.

Theorem 1.3.1 (Knockoff, orthogonal designs). Consider a linear regression model where £ satisfies
Models (1.4)-(1.5). Suppose n > 2pand G = I,. We construct X in the knockoff filter as in (1.13),
fora constanta € (—1,1). Forany constant # > 0, let FP,(#) and FN, () be the expected numbers
of false positives and false negatives, by selecting variables with 17; > \/m . When I} is the

signed maximum statistic in (1.14), as p — oo,
FP,(u) = Lp' ™, FNp(u) = Ly Sl 5 (Vv )
When I} is the difference statistic in (1.14), as p — 0o,
FP,(u) = Lp' ™, FN,(u) = Lp' 5= "3 (Vv

Corollary 1.3.1. In the same setting of Theorem 1.3.1, when » > &, the FDR-TPR trade-off diagram
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of the knockoff filter associated with (&, ) is given by

min{ O (Ve val} i W=
S (vr— vk i W= Wi,

gior(#;9,7) = (u —9)1,  gror(#) =

The phase diagram of the knockoft filter is given by

max{f:—lzj, A+V1-38)?2}, if W= VV]S.gn,

2 .
(1+/28), if W, = Wi,

1—a

har(3) = 3, ber () =

The FDR-TPR trade-off diagram and the phase diagram are shown in Figure 1.2.

A noteworthy observation is that the value of « in the construction of the tampered design matrix
affects the power. The best choice is 2 = 0, which means that a variable is uncorrelated with its own
knockoft variable. Another noteworthy observation is that the symmetric statistic plays a crucial role.
The signed maximum is strictly better than the difference. In the end of this section, we will provide
geometric insight to explain that the signed maximum is (almost) the only best choice.

If we fixa = 0in (1.13) and use the signed maximum as the symmetric statistic, the phase diagram
of knockoft is the same as the phase diagram in Figure 1.1. This means that, using phase diagram as the
criterion for power comparison, knockoff has no power loss relative to its prototype. On the hand,
the FDR-TPR trade-off diagram is different from that in Figure 1.1. From Theorem 1.3.1, we see that
(1—=TPR,) = FN, /s, > Lpp_’/ 2, Therefore, the FDR-TRP trade-off curve is truncated at /2 in the
x-axis. For large &, the trade-off curve hits zero before the x-axis reaches 7/2, and the truncation has no
impact. However, for small &, the trade-off curve has changed due to the truncation. See Figure 1.2.

. . ot . . .
Next, we study the Gaussian mirror. Let ﬂj be the same as in (1.7). The importance metric
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Figure 1.2: The power of knockoff (2 = 0) and Gaussian mirror for orthogonal designs. The left and middle
panels contain the variable selection phase diagrams, where the symmetric statistic is difference (left) and signed
maximum (middle). The right panel contains the FDR-TPR trade-off diagram, where the symmetric statistic
is signed maximum. Each FDR-TPR trade-off diagram corresponds to one point in the phase diagram in the
middle panel.

assigned to variable 7 is the mirror statistic:
if A+ A— ~+ A—
Mj('h = |{g] —{—[Qj | - |{@j _ﬂj ’ (1-15)

Itis reminiscent of the statistic I/V]‘»“fin (1.14). Inspired by (1.14), we introduce a variant of the Gaussian

mirror by replacing the mirror statistic by

At " ~+ 3
U NS TN My B VA Iy
M= B+ B IV B

~1, if |8+ <18 —& |

= (81 + 15 1) -sen®) -0 @), (L16)

For this variant to be a valid FDR control method, we require that ]l/I]s-gm has a symmetric distribution
when ﬂ], = 0. This can be verified easily. The following theorem is proved in the supplementary

material.

Theorem 1.3.2 (Gaussian mirror, orthogonal designs). Consider a linear regression model where £

satisfies Models (1.4)-(1.5). Suppose z > p —l—p’; for a constant 9 > 0, and G = I,. For any constant
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u > 0, let FPy(x) and FN,(«) be the expected numbers of false positives and false negatives, by
selecting all variables with A; > +/2ulog(p), where M; is the mirror statistic and the expectation
here is taken with respect to the randomness of both y and z1, 22, . . ., z,. When A} is the difference

statistic in (1.15), as p — oo,
FP,(u) = Lp" ™, FN,(u) = Lp' >3 (Vi Vi,
When A} is the signed maximum statistic in (1.16), as p — oo,
FP,(u) = Lp'™,  FN,(n) = Lppl_s_min{g’ (ViR )

Corollary 1.3.2. In the same setting of Theorem 1.3.2, the FDR-TPR trade-oft diagram of the Gaus-

sian mirror associated with (&, 7) is given by

mln{%a (\/;'_ \/;)3-}7 if ]14] :}M;gna

VN i€ My = M

gipr (39, 7) = (0 — 9) 4, grer () =

The phase diagram of Gaussian mirror is given by

1+V1=9)72 if My=M*,

(1+v2—-28)%, if M;=M".

har(3) = 3, her (9) =

Comparing Corollary 1.3.2 with Corollary 1.3.1, we find that Gaussian mirror and the knockoft
with 2 = 0 (i.e., a variable is uncorrelated with its own knockoft variable) have the same FDR-TPR
trade-oft diagram and the same phase diagram when they both use signed maximum as the symmetric

statistic. Similarly, they share the same phase diagram when they both use difference as the symmetric
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statistic.

Last, we provide some geometric insight behind these results. Take knockoff for example. We
abbreviate the knockoff using signed maximum and difference as symmetric statistic the knockoff-
sgm and knockoff-dif, respectively. By default, we set 2 = 0 in (1.13). Under orthogonal designs, the
ultimate importance metrics 1#; can be writtenas I7; = i (x]’y, fcj’y), where x; and ; are the jth variable

and its knockoff, and (-, -) is a fixed bivariate function. Define the “rejection region” as

R = {(bl,/oz) e R?: [(/ol\/ZIOg(p), bz\/ZIOg(p)> > 1/2u log(p)} .

Figure 1.3 shows the rejection region induced by knockoft-sgm, knockoft-dif, and their prototype (see
(1.10)). Write by = xy/~/2log(p) and by = Xy/~/21log(p). The random vector (hy, by)' follows a

bivariate normal distribution with a covariance matrix @[ »,and amean vector (0, 0)’ when ﬂj =0

and (1/7,0)" when B, = 7. By Lemma 1.6.1 (to be introduced in Section 1.6), the exponent in FP,
is determined by the Euclidean distance from (0, 0) to R and the exponent in FN, is determined by
the Euclidean distance from (4/7, 0)’ to R¢. From Figure 1.3, it is clear that the difference statistic is
inferior to the signed maximum statistic because the distance from (1/7, 0)’ to R is strictly smaller in
the former.

The phase diagram of knockoft-sgm is the same as the phase diagram of the prototype. It sug-
gests that signed maximum is already the “optimal” choice of symmetric statistic. Figure 1.3 also
gives a geometric interpretation of why signed maximum is optimal. From (1.6) and that (Z;, Zj) =
(I, [¥»1)’, we can derive necessary conditions for a subset R to be an eligible rejection region (i..,

there exists a symmetric statistic whose induced rejection region is R):
(i) R is symmetric with respect to both x-axis and y-axis.

(ii) RN R+ = 0, where R is the reflection of R with respect to the line y = +x.
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Figure 1.3: The rejection region of symmetric statistics (orthogonal design, 2 = 0 in the construction of

knockoff). Left: the signed maximum statistic. Middle: the difference statistic. Right: the thresholding esti-
mator in Section 1.2, which is used as a benchmark. In each plot, the x-axis is x/y/ /2 log(p), and the y-axis:

Xy/\/21og(p).

The rejection region Ry of the prototype (Figure 1.3, right panel) does not satisfy requirement (ii).
The rejection region of knockoft-sgm (left panel) is a minimal modification of R to tailor to require-
ment (ii). From this perspective, it is almost impossible to find a symmetric statistic better than signed

maximum.

1.4 BEHAVIOR OF THE PROTOTYPES FOR NON-ORTHOGONAL DESIGNS

The power of an FDR control method is related to (i) the power of its prototype and (ii) the difference
of power between this method and its prototype. For orthogonal designs, the prototypes of knock-
off and Gaussian mirror both reduce to the simple method in (1.10). However, for non-orthogonal
designs, their prototypes can have different behaviors, which we study in this section. To save space,
from now on, we only present the phase diagram. The FDR-TPR trade-off diagram can be easily
derived from the expressions of FPy(«) and FNj(«), so we omit it.

We are often interested in a class of block-wise diagonal designs. For a fixed p € (—1,1), Gram
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matrix G € R?*? satisfies that G = diag(B, B, . . ., B, B ), where

1 B, ifpiseven,
B= 4 , and By = (1.17)

p 1 1, ifpisodd.

It is a theoretical idealization of the block-wise covariance tructure in many real data (e.g., in genetics
and bioinformatics). In this class of designs, the level of correlations is characterized by a single pa-
rameter p, so that it is possible to get a tractable form of the rate of convergence of variable selection
errors.

First, we consider the prototype of Gaussian mirror. It uses least-squares coeflicients to assign an
importance metric M to variable /; see (1.12). We call this method the least-squares. The following

theorem is proved in the supplementary material.

Theorem 1.4.1 (Least-squares, general designs). Consider a linear regression model where £ satisfies
Models (1.4)-(1.5). Suppose z > p. For any constant # > 0, let FP, (%) and FN,(«) be the expected
numbers of false positives and false negatives, by selecting variables with M7 > /2u log(p). Let
w; > 0 be the j-th diagonal element of the inverse of the Gram matrix (note that the Gram matrix has
been normalized to have its diagonal elements equal to 1). Suppose w; < Co, forall1 <;j < p, where

Co > Oisaconstant. As p — oo,
: —w; -9 : —o (Vr—V/u)?
FPy(u) <Ly Y p 7% ", FNp(u) <Ly p +.
J=1 J=1

In the special case where G is the block-wise diagonal matrix as in (1.17) with a constant p € (—1,1),
asp — o0,

FP,(x) = Lp' 00 FN(u) = Lp = 0=V—Vis,

Corollary1.4.1. In the same setting of Theorem 1.4.1, consider a special case where G is the block-wise
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diagonal matrix as in (1.17). The phase diagram of least-squares is given by

13 5 be (5) = (1+\/1— 9)? .
—p 1—p?

har(8) =

Figure 1.4 (left panel) shows the phase diagram for |p| = 0.5.
Next, we consider the prototype of knockoff. It utilizes the solution path of Lasso to assign an
importance metric I/V’Jk to variable 7; see (1.11). We call it the Lasso-path. This method is difficult to

characterize for a general design. We focus on the block-wise design (1.17).

Theorem 1.4.2 (Lasso-path, block-wise diagonal designs). Consider a linear regression model where
(8 satisfies Models (1.4)-(1.5). Suppose » > p and G is a block-wise diagonal matrix as in (1.17) with a
constant p € (—1,1). For any constant # > 0, let FP,(«) and FN, () be the expected numbers of

false positives and false negatives, by selecting variables with 177 > /2x log(p). Asp — oo,

1—ming #, $+( 7 r—
FD,() = Lyp {4+ bV + G L~ (ViV}

and
LPPI*S*{(W*\/QH*[(1*5;)«/?*(1*@,)\/@#2’ £ >0,

FN,(«) =
P
Lp VD0V WY 234G/, R

, p <0,

wheref mandiy —\/1—J/7’ )/ (L+ [el).

Corollary 1.4.2. In the same setting of Theorem 1.4.2, the phase diagram of Lasso-path is given by

max{h (3), h(3)}, when p >0,
har(3) =9,  b(3) = ()Pl g

max{h(3), h2(3),h3(3)}, when p <0,
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Figure 1.4: The phase diagrams for block-wise diagonal designs. Left: least-squares (0 = £0.5). Middle:
Lasso-path (o = 0.5). Right: Lasso-path (¢ = —0.5). Least-squares and Lasso-path are the prototypes of
Gaussian mirror and knockoff, respectively.

whereby(9) = (14+VI = 92, a(8) = (144 ) (1=9), and by (9) = L (/T2 VI =25+
\/E\A ) 1{8 < 1/2}.

Figure 1.4 (middle and right panels) shows the phase diagrams for p = £0.5.

We compare the two prototypes for block-wise diagonal designs.

* In terms of hpr (#), Lasso-path is always better than least-squares. To achieve Almost Full

Recovery, Lasso-path only requires » > &, but least-squares requires » > &/(1 — Joz).

* In terms of bggr (#), Lasso-path is better than least-squares when § is relatively large (i.e., 8 is
comparably sparser), and least-squares is better than Lasso-path when § is relatively small (i.c.,

{8 is comparably denser).

* The sign of p also matters. For small 4, the advantage of least-squares over Lasso-path on

ber (3) is much more obvious when p is negative.

In Section 1.6, we will provide a geometric interpretation to the above statement. Here we give an
intuitive explanation. We say a signal variable (i.e., ﬂj # 0) is ‘isolated” if it is the only signal variable
in the 2 x 2 block, and we say two signals are ‘nested’ if they are in the same 2 x 2 block. In the

sparser regime (i.e., & is large), least-squares has a disadvantage because it is inefficient in discovering
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an ‘isolated’ signal. In the less sparse regime (i.e., & is small), Lasso-path has a disadvantage because it
suffers from signal cancellation when estimating a pair of ‘nested’ signals (‘signal cancellation’ means a
signal variable has a weak marginal correlation with y due to the effect of other signals correlated with
this one).

For broader design classes, similar phenomenons are observed empirically (Xing et al., 2019). In
Section 1.7, we show simulations on various design classes, where the insight here continues to apply.

Remark 2. There is a duality between setting a negative p in the block-wise diagonal design and
allowing for negative entries in 8. We modify the Rare/Weak signal model to £, % (1 — &) +
(ep/ Z)VTP + (&/ Z)V_TP, for1 < j < p. Under this model, by a similar proof, we can show that,
for block-wise diagonal designs parametrized by p and any given method, the exponent in FP,(#) (or
FN,(#))is the maximum of the two previous exponents in FPy(#) (or FN,(#)) corresponding to = |p|.
Consequently, the phase diagram is equal to the worse of the previous two phase diagrams associated
with = |p|. With this being said, even for applications where the correlations are all positive, our study
of a negative p is still useful, because it helps understand the case of allowing for positive and negative
signs in A.

Remark 3. The phase diagram for Lasso-path is connected to the phase diagram for Lasso in Ji &
Jin (2012) but is different in important ways. They considered using Lasso (with a proper tuning pa-
rameter 1) for variable selection, but we considered using the solution path of Lasso to rank variables.

The results and the analysis are both different.

1.5 POWER ANALYSIS OF FDR CONTROL METHODS FOR NON-ORTHOGONAL DESIGNS

In Section 1.4, we investigate the prototypes of FDR control methods. In this section, we compare
them with their prototypes. In light of the study in Section 1.3, we always use the signed maximum

as the symmetric statistic.
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1.5.1 RANKING BY LEAST-SQUARES

In this subsection, we study FDR control methods whose prototype is least-squares. The first method

is Gaussian mirror.

Theorem 1.5.1 (Gaussian mirror, general designs). Consider alinear regression model where £ satisfies
Models (1.4)-(1.5). Suppose z > p 4 p°, for a constant & > 0. For any constant # > 0, let FP,(«)
and FN, () be the expected numbers of false positives and false negatives, by selecting variables with
M; > \/m, where M; is the signed maximum statistic in (1.16) and the expectation here is
taken with respect to the randomness of y and 21, 22, . . . , 2. Let w; > 0 be the j-th diagonal of the
inverse of the Gram matrix. Suppose w; < Co, forall1 < j < p, where Cp > 0 is a constant. As

p — 00,

?
pr;l min{ (Vi-v)}, $r}

P
—1
—w. U —3
FPp(u) <L, g p 7, FNP(M) < Lpp
7=l 7=l

In the special case where G is the block-wise diagonal matrix as in (1.17) with a constant p € (—1,1),

asp — 00,
FPP(%) = L])lj)l_(l_f’z)”7 FN;,(%) — Lppl—z‘}—(l—f:z) min{(\/}_\/;)i_’ %r}

Compare Theorem 1.5.1 with Theorem 1.4.1: The rate of convergence for FP,(#) is the same,
and the rate of convergence for FN, () has a minor difference. This minor difference has no impact
on the rate of convergence of FPy(#) + FN,(x), and thus no impact on the phase diagram. The
next corollary confirms that, for block-wise diagonal designs, the phase diagram of Gaussian mirror

matches with that of its prototype.

Corollary 1.5.1. Under the same setting as Theorem 1.5.1, consider a special case where G is the block-
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wise diagonal matrix as in (1.17). For Gaussian mirror, the phase curves are the same as those in Corol-

lary 1.4.1.

The second method is knockoft-OLS. Knockoff can accommodate different ranking algorithms,
not limited to Lasso-path. We use least-squares here. Same as before, let X € R™? be such that
X'X = Gand X'X = G — diag(s). Let Bj and Bj be the respective least-squares coefficient of x; and
%; by regressing y on [X, X]. Define Z; = |ﬁ]\ and Z; = ]2]| The importance metric ¥} is computed

from (Z;, Z]) in the same way as VVj-gm in (1.14).

Theorem 1.5.2 (Knockoft-OLS). Consider a linear regression model where 8 satisfies Models (1.4)-
(1.5). Suppose z > 2p. We apply the knockoff filter and use least-squares as the ranking algorithm.
For any constant # > 0, let FP,(x) and FN,(#) be the expected numbers of false positives and false
negatives, by selecting variables with W} > \/2ulog(p). Let G* = [X,X]'[X,X] € R?*%, and let
A; € R**? be the submatrix of (G*) ! restricted to the fth and (7 + p)th rows and columns. Denote
wi; = A;(1,1) and wy; = A;(1,2). Suppose wy; < Co, forall 1 < j < p, where Cy > 0 is a constant.

Asp — 00,
]7 _ P _w—l hi o ”2 L.lr
FPP(%) SLP le_wljla FNP(M) SLPP_S Zp 1 nln{(\[ NOk® oy Ty 2 }
=1 =1

By Theorem 1.5.2 and elementary calculations, the phase diagram of knockoff-OLS is governed by
the quantities wi;. In comparison, by Theorem 1.5.1, the phase diagram of Gaussian mirror is governed
by the quantities w;. We compare wy; and w;. Recall that they are the jth diagonal elements of G land

(G*)™1, respectively. Since G is a principal submatrix of G*, by elementary linear algebra,
wj < wy;.

The inequality is often strict, e.g., see Corollary 1.5.2 below. It suggests that the phase diagram of
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Gaussian mirror is better than that of knockoff-OLS. We will show that such difference is primarily
due to that Gaussian mirror uses a one-at-a-time scheme of adding fake variables.

The third method is anew FDR control method that can be viewed as a variant of Gaussian mirror
by removing randomness in the tampered design. We call it “de-randomized Gaussian mirror.” This

method creates a design matrix X € R”*? and regresses y on

) _ + - +_ -
XV = [xl,...,xj_l,xj % ,xj_,_l,...,xp], where x; = x; + X;.

At
Let ﬂj be the least-square coeflicients of x]i. The mirror statistic of variable 7 is defined by

M; = (\ﬁj] + ]2]7|) 'sgn(ﬁ;) . sgn(ﬁ;). (1.18)

This is similar to ]l/I]s-gm in (1.16). Given {]Wj}f:l, we can micmic the procedure in Section 1.2.1 to
find a data-driven threshold that controls FDR at a targeted level. The next lemma gives a sufhicient

condition on X such that the above method stays valid for FDR control.

Lemma 1.5.1. In alinear regression model y = X8 + N(0,0%1,), let P_; € R"*” be the projection

matrix to the column space of X_;,1 < j < p. Suppose the following conditions are satisfied:
U= P_)E = (I~ P foreach1 < <

* There exist constants C > 0 and & € (0, 2) such that, for the set of null features 7 = {; :

‘8] 7& 0}3 #{(]7 k) eT? o 7é k, (36‘],56‘])/(1_ P*])(]_ P—k)(xkv-%k) 7& 02><2} < C|T|3
Then, the de-randomized Gaussian mirror yields asymptotically valid FDR control.

Here, ||(1 — P—;)%j|| = ||(/ — P—;)x|| is the key requirement. It guarantees that A4; has a sym-
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metric distribution when ‘Ej = 0. The orthodox Gaussian mirror uses a random X:

X = sz, where z; ~ N(0, I,,) is independent of X.
1(Zs = P—p)zll
It automatically satisfies that ||(/ — P—_;)%;|| = ||(/ — P—;)x;||. Alternatively, we can always construct

anon-random X to satisfy this equation. The next theorem characterizes the power of de-randomized

Gaussian mirror:

Theorem 1.5.3 (De-randomized Gaussian mirror). Consider a linear regression model where 8 satis-
fies Models (1.4)-(1.5). Suppose z > 2pand weare given a matrix X € R”*? such that || (=P )% =
|(/—P—;)x|| foralll <j < p. Weapply the de-randomized Gaussian mirror. Forany constantz > 0,
let FP, () and FN, () be the expected numbers of false positives and false negatives, by selecting vari-
ables with M; > /2ulog(p), where M; is as in (1.18). Let GY) = T O o £ P
Ky %] € REHD* 4D and let D; € R**2 be the submatrix of (GV) 1 restricted to the jth and
(7 + 1)th rows and columns. Denote o1; = D;(1,1) and 5, = D;(1,2). Suppose g1; < Co, for all

1 <j < p, where Cp > 0isaconstant. As p — o0,

P P

7a7.1u _
() <L, 5 EN) < Lp S
= =

1 . a1;
—ay; mln{ (Vr—vu)i, W%r}

There are many eligible choices of X. We are particularly interested in using the X from knockoff.
Re-write

1= P)5l” = B3 — B (X X)X .

The X from knockofF satisfies that fcjfcj = x]’xj and &;X_j = x;X_j. Itis easy to see that ||(/—P_;)%|| =
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|(1 — P—;)x;]|. We can thus use this X in de-randomized Gaussian mirror.” It gives rise to a “hybrid”
of knockoft and Gaussian mirror.

Fixing X to be the matrix from knockoff, we compare least-squares, knockoff-OLS, and deran-
domized Gaussian mirror. By Theorems 1.4.1 and 1.5.2-1.5.3, their phase diagrams are governed by
Wy Wijs and a1, respectively. Note that (a)j, a1, a)lj) are the respective jth diagonal element of G,
(GY)~ and (G*)". Since that G is a principal submatrix of G¥) and that GY is a principal subma-
trix of G*, we immediately have

Therefore, with the same X, the phase diagram of knockoff-OLS is always no better than that of de-
randomized Gaussian mirror. Now, it is clear that the advantage of Gaussian mirror over knockoft-
OLS is essentially from the one-at-a-time scheme of incorporating fake variables. Given the same col-
lection of fake variables, knockoff-OLS enrolls all of them simultaneously while de-randomized Gaus-
sian mirror enrolls one at a time. The more variables included in a linear regression, the larger variance
of an individual least-squares coefficient. This explains that adding 1 fake variable at a time is a better

S trategy.

Lemma 1.5.2. Given two matrices X € R?*? and X € R"*2, let wj and a1; be the same as in Theo-
rem 1.5.1 and Theorem 1.5.3. Foreach1 < ; < p, iij’-([ — P_j)%; = 0, then gy; = w;and o; = 0.
Furthermore, if x(/ — P_;)%; = 0 forall1 < j < p, then this choice of X minimizes both FP, () and

FN,(#) of de-randomized Gaussian mirror, for any # > 0.

By Lemma 1.5.2, the best option of X is such that x]’(l — P_j)icj = 0, i.e., the projections oij

and X; onto the orthogonal complement of X_jare mutually orthogonal. In the orthodox Gaussian

"We need some regularity conditions on X to ensure that the second bullet point of Lemma 1.5.1 is satisfied.
When X is from knockoff, a sufficient condition is that the Gram matrix restricted to noise variables is a block-
wise diagonal matrix, where the size of the largest block is < Cpl_“ for some constants 2 € (0,1) and C > 0.
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mirror, ¥; X z;, where z; ~ N(0, 1,,) is drawn independently from x; and X_;. It can be shown that
X(I—P_;)%; =~ 0,aslongasn —p > 2°, forany constant 8 > 0. This explains why the phase diagram
of Gaussian mirror matches with that of least-squares. There are many possible ways of constructing
anon-random X such that xj([ — P_j)%; = 0. If we construct X from knockoff, we can use the choice

of diag(s) suggested by Liu & Rigollet (2019):
diag(s) = [diag(G™")] " (1.19)

They showed that the resulting X satisfies e T and called this construction the
conditional-independence knockoff. * By matrix inversion formula, an equivalent expression of diag(s)
iss; = ||lxj||* — ||P—;||*, which implies that the covariance between x; and its knockoff should be
(| P—jx||>. We exemplify this idea on the block-wise diagonal designs parametrized by p € (—1,1),

where (1.19) reduces to diag(s) = (1 — *),.

Corollary 1.5.2. Under the same setting of Theorems 1.5.2-1.5.3, consider a special case where G is
the block-wise diagonal matrix as in (1.17). We construct X from knockoff with diag(s) = (1 — PNy

The phase diagram of knockoff-OLS is given by

har($) = ber () =

(1=p?)*
The phase diagram of de-randomized Gaussian mirror is given by

3 14+ V1 —9)?
T e
—p 1—p

har(S) =

"Their equation (9) shows that, if /(7 — P—;)%; = 0 for every j, then diag(s) has to equal to [diag(G~")] .
In fact, the opposite is also true. See the remark in the end of the proof of Lemma 1.5.2.

"It is not guaranteed that diag(s) < 2G. If this is violated, some truncation on diag(s) may be needed.
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Figure 1.5: The phase diagrams of methods that use least-squares as the ranking algorithm (block-wise dia-
graonal designs, p = £0.5). Left: least-squares, Gaussian mirror, and de-randomized Gaussian mirror with
CI-knockoft design (the three methods share the same phase diagram). Middle: de-randomized Gaussian mir-
ror with SDP-knockoff design. Right: knockoff-OLS with CI-knockoff design.

Figure 1.5 shows the phase diagrams for p = £0.5.

Remark 4. The main insight gained here is that the one-at-a-time scheme of incorporating fake
variables (as in Gaussian mirror) yields a higher power than the p-at-a-time scheme (as in knockoft).
However, we note that the one-at-a-time scheme is tied to using least-squares as the ranking algorithm.
For a general ranking algorithm, the one-at-a-time scheme may not guarantee valid FDR control. In
comparison, the p-at-a-time scheme is flexible to accommodate different ranking algorithms.

Remark 5. Another ranking algorithm that is closely related to least-squares is the debiased Lasso

. . . . . ~dbLasso
(see Javanmard & Javadi (2019) and references therein). The de-biased Lasso estimator is 4 =
£+ QX' (y — £), where £ is the Lasso estimator and  is a matrix such that Q - E[X"X] ~ [,. Under
. . A . ~dbLasso . ~ols
some regularity conditions, the asymptotic distribution of ﬂj is the same as that of ﬁj . Hence,

the results in this subsection also shed light on the power of FDR control methods based on de-biased

Lasso.

1.5.2 RANKING BY LASSO-PATH

In this subsection, we study FDR control methods whose prototype is Lasso-path. Since the solution

path of Lasso has no tractable form, the analysis is much more demanding than that in Section 1.5.1.
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We thereby restrict to the block-wise diagonal designs.
We consider knockoff. It involves choosing a diagonal matrix diag(s). Two options are recom-
mended in Barber & Candes (2015), the equi-correlated knockoff and the SDP knockoft. For block-

wise diagonal designs as in (1.17), these two options are the same:

20l =1, el = 1/2,

diag(s) = (1 — a)ly, where 4 = (1.20)
0, el < 1/2.

When |p| > 1/2, the tampered design matrix [X, X] is always singular. In this case, we can obtain

the explicit rates of convergence of FP, and FN,.

Theorem 1.5.4 (Knockoff, block-wise diagonal designs, || > 1/2). Consider a linear regression
model where j satisfies Models (1.4)-(1.5). Suppose z > 2p and G is the block-wise diagonal matrix
as in (1.17) with a constant p, where |p| > 1/2. We construct X in the knockoff filter with diag(s) as
in (1.20). For any constant # > 0, let FP, (%) and FN,(#) be the expected numbers of false positives
and false negatives, by selecting variables with w; > \/m , where W;is the signed maximum

statistic in (1.14). As p — oo,

FP,(x) = Lpplfmin{”: 3+(\/ﬁ?*lﬁ|\/?)2+(§g\/;f;7ﬁ\/;)i,(\/;,ﬁ)i}’

and forp > 1/2,

2
FNP(%) = Lpplisi{(\/;7\/;!)4—7[(17%;7)\/;7(17;7/;)\/;]-5-*().}0\/;7;7})ﬁ)+} |

and forp < —1/2,

i 2
FN, («) :Lpplfmm{ﬂ{(\/?*\/5)+*[(175)\/?—(17@)\/;”,(lﬁ\/;,@\/;”} , 219}

9
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Wherefﬁ = \/l—ﬁz,yﬁ = \/(1—]p|)/(1+[p|),andlﬁ = \/1 —p? = \/1—]p\.

When |p| < 1/2, the tampered design matrix [X, X] is non-singular. In this case, listing the sepa-
rate forms of FP, and FN,, is very tedious. We instead present the rate of convergence of FP, + FN,,

which is sufficient for deriving the phase diagram.

Theorem 1.5.5 (Knockoff, block-wise diagonal designs, |p| < 1/2). Consider a linear regression
model where j satisfies Models (1.4)-(1.5). Suppose z > 2p and G is the block-wise diagonal matrix
as in (1.17) with a constant p, where |p| < 1/2. We construct X in the knockoff filter with diag(s) as
in (1.20). For any constant # > 0, let FP,(#) and FN,(#) be the expected numbers of false positives
and false negatives, by selecting variables with w; > \/m , where W;is the signed maximum

statistic in (1.14). As p — oo,

Ly i (47, 0<p<1/2,
; - (1+20)*(1=p)
Lppl*m‘“{fﬁammwﬂ’)’ 25+, ik 29+12€7+f>“}, ~1/2<p <0,

where

Ftawm (0 7:9) = min{a, 3+ (Vi = ol + (Evr — 7,0 1) = (Vr = V)2 ),
S+ [(Vr = V) = (A= E)Vr— (L= 5,)Vu)+ P},

and £, 7, are the same as those in Theorem 1.5.4.
We combine Theorem 1.5.4 and Theorem 1.5.5 to obtain the phase diagram:

Corollary 1.5.3. In the same setting of Theorems 1.5.4-1.5.5, consider the knockoff filter with diag(s)
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as in (1.20). Define
Po = V2—1—1/2—-2 (note: p, &~ —0.35).

The phase curve by () = 3. The phase curve hgg($) has three cases:

* Whenp € [p,,1),
her(S) = W™ (9),

where L5904 (9) is the phase curve in Corollary 1.4.2.
* Whenp € (—0.5,p,),

bix ( 3) — max { b}L;;{mPatb( 19)’ bs (3)}’ where bs (19) = ?1(14__2;;92) ((11 jjj)) .

* Whenp € (—1,—0.5],

hé%ﬁopﬂ[b(qs)’ 3> 1/2’
her($) =

00, $<1/2.

Comparing Corollary 1.5.3 and Corollary 1.4.2, we observe that, when p € [p, 1), the phase
diagram of knockoft is the same as that of Lasso-path. When p € (—1, g ), the phase diagrams of two
methods are different. Figure 1.6 shows the phase diagram of knockoff for different values of p. To see
what causes the discrepancy of the phase diagram between knockoft and Lasso-path, we first look at
the range of p € (0.5, p,). In this case, the construction in (1.20) guarantees that the jth knockoff
is uncorrelated with the jth original variable. However, this knockoft is still highly correlated with the

(7 +1)th original variable. Suppose ;is a true signal variable. Then, a true signal at (+ 1) will increase
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Figure 1.6: The phase diagrams of knockoff (SDP knockoff, symmetric statistic is signed maximum). The
design is the block-wise diagonal design, where p = —0.3 (left), p = —0.4 (middle), and p = —0.5 (right),
corresponding to the three cases in Corollary 1.5.3. The shadowed area is the Almost Full Recovery region for
knockoff but Exact Recovery region for Lasso-path. If SDP-knockoff is replaced by CI-knockoff, then in each
of three cases the phase diagram is the same as that of Lasso-path.

the absolute correlation between y and &; but decrease the absolute correlation between y and «; (since
< 0), making it more difficult for x; to stand out.
We then look at the range of p € (—1, —0.5]. In this range, the construction of knockoff variables
changes to a different form (see (1.20)). This has a significant consequence on the phase curve bzg ().
To gain some insight, we look at a scenario of two ‘nested’ signals, i.c., (ﬂj, B; 1) = (%,7)- By

elementary calculation,

) PTps when — 0.5 < p <0,
Elxy] = 1+p)7,  Elp] =
—(1+4+p)75, when —1<p < —0.5.

When p < —0.5, variable j and its knockoff have the same absolute correlation with y. Consequently,
there is a non-diminishing probability that the true signal variable fails to dominate its knockoft vari-
able, making it impossible to select j consistently. In the Rare/Weak signal model, ‘nested’ signals ap-
pear with a non-diminishing probability if & < 1/2. This explains why hzg (§) = co whenp < —0.5
and & < 1/2.

The above issue can be resolved by modifying diag(s). We take the conditional independence

41



knockoft in (1.19). For block-wise diagonal designs, it reduces to
diag(s) = (1 — p*)1,, forallp € (—1,1). (1.21)
We now revisit the scenario of two ‘nested’ signals, i.c., ([Bj, ‘Bj 1) = (7, 7). Itis seen that

Elxyl = (1 +p)7,  E&p] =p(1+p)7

The signal strength is always higher at the original variable than at its knockoff. We conclude that
her($) < oo forall $ € (0,1). The next theorem gives the explicit rate of convergence of FP, 4 FN,,

for this version of knockoff, which is proved in the supplementary material.

Theorem 1.5.6 (CI-Knockoff, block-wise diagonal designs). Consideralinear regression model where
[ satisfies Models (1.4)-(1.5). Suppose z > 2p and G is the block-wise diagonal matrix as in (1.17) with
a constant p. We construct X in the knockoff filter with diag(s) as in (1.21). For any constant # > 0,
let FP,(x) and FN,(#) be the expected numbers of false positives and false negatives, by selecting

variables with 17; > \/2u log(p), where 17} is the signed maximum statistic in (1.14). Asp — oo,

Lppl—ﬂ;mm(ﬁt,rﬁ)’ p >0,

1=min { . (e9), 25+(EF—7; Vi) }

Lyp , P <0,

where fif. (u,7,9) is the same as that in Theorem 1.5.5.

It can be verified that the above rate of convergence for FP, (%) + FN,(#) is the same as that in
Theorem 1.4.2. We immediately know that CI-knockoff yields the same phase diagram as its proto-

type, Lasso-path.
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Corollary 1.5.4. Under the same setting as Theorem 1.5.6, consider a special case where G is the block-
wise diagonal matrix as in (1.17). For the conditional independence knockoff, the phase curves are the

same as those in Corollary 1.4.2.

Our results show the advantage of Cl-knockoft over SDP-knockoft for block-wise diagonal de-
signs. It is an interesting question whether CI-knockoft can improve the phase diagram of SDP-
knockoft for general designs. The theoretical study is extremely tedious. We instead investigate it

numerically in Section 1.7.

1.6 THE PROOF IDEA AND GEOMETRIC INSIGHT

A key technical tool in the proof is the following lemma, which is proved in the supplementary mate-

rial.

Lemma 1.6.1. Fixd > 1, a vector u € R4, a covariance matrix 3 € R4*4 and an open set S C R4
such that z ¢ S. Suppose & = inf,es{(x — 1)’ (x — g)} < oco. Consider a sequence of random

vectors X, € R4, indexed by p, satistying that

1
Xl (g5 =) NNd(“P’ Zlog(mzp)7

where u ) € R4 is a random vector and DINS R4*4 is 2 random covariance matrix. As p — 00,
suppose for any fixed y > 0 and L > 0, IP’(H‘uP —ull >y) <ptandP(|Z, - 2| > y) <p L
Then, as p — 00,

P(X, €S8) =Lyp "

This lemma connects the rate of convergence of P(X, € §) with the geometric property of the set
S. The exponent & is the “radius” of the largest ellipsoid that centers at z and is fully contained in the

complement of S.
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We now illustrate how to use Lemma 1.6.1 to prove the claims in Sections 1.3-1.5. Take the proof
of Theorem 1.4.1 for example. Consider the block-wise diagonal design in (1.17). Fix j and let VV]* be

asin (1.11). Write
b= (dy, 19)'/\/2l0g(p) € R (1.22)

It is not hard to see that VV]* is purely determined by ». Hence, the selection criteria VV’jk > % can
be equivalently written as » € R,,, where R,, is a subset in the two-dimensional space. We call it the
“rejection region” of Lasso-path. The probabilities of a false positive and a false negative occurring at

7 are respectively

P(he R, 8,=0) and P(heR; f=17).

Conditioning on 3, the random vector 4 has a bivariate normal distribution, whose mean is a constant
. .. 1 . . .
vector and whose covariance matrix is g B where Bis thesameasin (1.17). Applying Lemmal.6.1,

we reduce the proof into two steps:
(i) Derive the rejection region R,,.

(ii) For each possible 8 with ﬂ/ = 0, obtain b(8) = infier,{(x — x(8))'B(x — u(8))}, and
for each possible £ with §; # 0, obtain b(8) = infrer: {(x — 1(8))' B~ (x — u(f))}, where

~

#(B) = E[p|].

Both steps can be carried out by direct calculations.

We use a similar strategy to prove other theorems. The proof is sometimes complicated and te-
dious. For example, to analyze knockoff for block-wise diagonal designs, we have to consider the
random vector b = (%9, 19, 59, 419)'/ \/2log(p) € R* The proof requires deriving a 4-
dimensional rejection region and calculating 4(4), for an arbitrary p € (—1,1). The calculations
are very tedious. To study Gaussian mirror, we have to deal with the randomness introduced by the

algorithm. Let h = (%}, X7)/\/21og(p), and let z; be the random vector used to construct xji in
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Gaussian mirror. The covariance matrix of /| (8,%;) depends on the realization of z;, and we need to
show that this matrix, scaled by 21log(p), converges to a fixed covariance matrix at a sufficiently fast
rate.

As seen, our proof has a straightforward geometric visualization. We now use this geometric visu-
alization to reveal some useful insight about the different performance of Lasso-path and least-squares.
Their associated rejection regions in R* are given by the following lemma. It is proved in the supple-

mentary material.

Lemma 1.6.2. Consider a linear regression model, where the Gram matrix G is as in (1.17) with a

constantp € (—1,1). Let 7} and M be the same as in (1.11) and (1.12). Define

RE(6) = {(br, ba) : n = phy > (1= p)/it, by > /)
U{(h1,b2) < I — o > (1+ p) v/}
U{(b1,b2) by = pha < —(1 = p)Vu, by < —\/u}
U{(h1,by) i x—py < —(1+p)u}, forp>0,
RE(6) = {(bn, o) : (1, —ha) € RE(=p)},  forp <0,
R (e) = {(br, ba) : by — pho > (1= p*) /)

U{(hi, b2) s b= pha < —(1 = p*)/u}.

Let h = (€9, 4419)'//21og(p). Then, W} > \/2ulog(p) if and only ifh e Rgath(p), and
M; > wifand only ifh e R (o).

These rejection regions are shown in Figure 1.7. Their geometric properties are different for pos-

itive and negative p. Fix . Let b be as in (1.22), and write () = ]E[l;]ﬂ]

* The rate of convergence of FP, () is determined by the largest ellipsoid that centers at z(j)

and is contained in R{,. We call this ellipsoid the FP-ellipsoid.
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Figure 1.7: Rejection regions and ‘most-likely” cases in block-wise diagonal designs (x-axis: x7y/+/2 log(p);

y-axis: %1 1y/+/21og(p)). From left to right: (i) positive o and large 9, (ii) positive p and small 3, (iii) negative
pand large &, (iv) negative p and small &. In each plot, the blue solid lines define rejection region of Lasso-path,
and the red solid lines define rejection region of least-squares. For each method, FP, is determined by the largest
FP-ellipsoid in R¢, and FN, is determined by the largest FN-ellipsoid in R, where the centers of these ellipsoids
are determined by (ﬂj, [Ej 1) in the ‘most-likely’ case. In each plot, the largest FP-ellipsoid is controlled to be the

same for both Lasso-path and least-squares, and so the method with a larger FN-ellipsoid is better.

* The rate of convergence of FN,(#) is determined by the largest ellipsoid that centers at z(j)

and is contained in R,,. We call this ellipsoid the FIN-ellipsoid.

By direct calculations,

#(B) = (zg] +J0(gj+1’ ﬁz@j +1gj+1)//\/ 2log(p)-

It depends on 8 only through (ﬁj, B; .1)- Under our model, (ﬂj, B; 1) has 4 possible values to take:
{(0,0),(0,7), (5, 0), (75, 75) }, where the first two correspond to a null at / and the last two corre-
spond to a non-null at /. The probability of having a selection error at 7 thus splits into 4 terms, and
which term is dominating depends on the values of & and p. The realization of (ﬂj, ﬂj 1) that plays
a dominating role is called the ‘most-likely’ case. For example, when & is large (i.c., 8 is sparser), the
most-likely case of a false positive occuring at 7 is when (ﬂp B; 1) = (0,0); when § is small (i.e., 8
is less sparse), the most-likely case of a false positive is when (ﬂj, ﬂj +1) = (0,7,). The table below
summarizes the ‘most-likely’ cases.

To see why Lasso-path and least-squares have different behavior, we visualize the ‘most-likely’ cases
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Sparsity Correlation Error type  Most-likely case Center of ellipsoid
P =08, =0 (0, 0)
FN B=18,, =0 (W7, p\7)
FP zgj =0, ﬂj«l»l =7 (/’\/’7 V7)
)
V7)

large §  positive/negative p

small 3 positive p

FN B=7lu =0 (V7 pv/r
FP ﬂj =0, ﬂj+1 =7 (/’\/;’
N f=mb =5 (4pVE 142V

small 3 negative p

Table 1.1: The ‘most-likely’ cases and the corresponding ellipsoid center E[h|4]

for different (p, ) in Figure 1.7. In each plot of Figure 1.7, we have coordinated the thresholds # in
two methods so that the FP-ellipsoid is exactly the same. It suffices to compare the FN-ellipsoid: The
method with a larger FN-ellipsoid has a faster rate of convergence on the Hamming error.

In Figure 1.7, it is clear that, when § is large, the FN-ellipsoid of Lasso-path is larger; when &
is small, the FN-ellipsoid of least-squares is larger. This explains the different performance of two
methods. Moreover, when & is small, comparing the case of a positive p with the case of a negative p,
we find that the difference between FN-ellipsoids of two methods are much more prominent in the

case of a negative p. This explains why the sign of p matters.

1.7 SIMULATIONS

We use numerical experiments to support the theoretical results in Sections 1.3-1.5. In Experiments 1
and 2, we investigate orthogonal designs and the 2 x 2 block-wise diagonal designs, respectively. In
Experiments 3-5, we investigate more design classes, including block-wise diagonal designs with larger
blocks, factor models, exponentially decaying designs, and normalized Wishart designs. We consider
four different ranking methods, Lasso-path (Lasso), least-squares (OLS), knockoft (KF) and Gaussian
mirror (GM). For KF and GM, we use either signed maximum or difference as the symmetric statistic.
For KF, we choose diag(s) = min{1, 2Amin(G)} - I, unless specified otherwise. It is called the equi-

correlated knockoff (EC-KF), and is the same as the SDP-knockoft for orthogonal designs and the
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2 x 2 block-wise diagonal designs. In Experiments 1-3, this is the only diag(s) we use, and so we write
EC-KF as KF for short. In Experiments 4-5, we also consider the conditional independence knockoft
(CI-KF). For most experiments, fixing a parameter setting, we generate 200 data sets and record the

averaged Hamming selection error among these 200 repetitions.

Experiment 1. We investigate the performance of different methods for orthogonal designs.
Given (n,p) = (2000,1000), & € {0.3,0.5} and r ranging on a grid from 0 to 6 with step size
0.2, we generate data y from N(XJ, I,,) where X is an 7 X p matrix with unit length columns that are
orthogonal to each other and  is generated from (1.4). We implemented Lasso and OLS, as well as
KF and GM using both the signed maximum and difference as the symmetric statistic. Each method
outputs p importance statistics, and we threshold these importance statistics at \/ZM*IT(])) where #*
minimizes FN,(#) + FN, () in theory. The results are in Figure 1.8, where the y-axis is log,, (1, /p),
and H, is the averaged Hamming selection error over 200 repetitions. For KF and GM, we also plot
log, (F} /p) via solid lines, where Hj is FP,(#*) + FN,(#*) excluding the multi-log(p) term Z,. It
serves as a theoretical reference for H,.

The theory in Section 1.3 suggests the following for orthogonal designs: (i) Regarding the choice
of symmetric statistic, for both KF and GM, signed maximum outperforms difference. (ii) With
signed maximum as the symmetric statistic, KF has a similar performance as Lasso, and GM has a
similar performance as OLS. These theoretical results are perfectly validated by simulations (see Fig-
ure 1.8). We also notice that there is a discrepancy between the error curves and their theoretical ref-
erence curves. This is because we ignore the multi-log(p) term L, in plotting the theoretical curves.
Ignoring L, causes an increase of < log(log(p)) in the error curve, which is non-negligible for a mod-
erately large p such as p = 1000. After taking L, into account, the empirical and theoretical error

curves are nicely aligned.

Experiment 2. We here consider the block-wise diagonal design with 2 x 2 blocks, where we
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Figure 1.8: Experiment 1 (orthogonal designs). The y-axis is log, (H,/p), where H), is the average Hamming
error over 200 repetitions. The solid curves are the theoretical values from Section 1.3.
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Figure 1.9: Experiments 2 and 3 (block-wise diagonal designs, d: block size, p: off-diagonal entries). The y-axis
islog,(H,/p), where H, is the average Hamming error. The parameter 4 controls the construction of knock-off.
The solid curves are the theoretical values from Section 1.5.

take p = 0.5and p = 0.7. In the data generation, we fix an # X p matrix X such that X’X has
the desirable form. We then generate (4, y) in the same way as before. For each p, we fix (7, p,3) =
(2000,1000, 0.2), and let 7 range on a grid from 0 to 8 with a step size 0.2. For KF and GM, we
now fix the symmetric statistic as signed maximum. In KF, the default choice of diag(s) yields that
diag(s) = (1 — a)I, with 4 = 2p — 1. The results are in the first two panels of Figure 1.9.

The theory in Section 1.5 suggests the following for block-wise diagonal designs: (i) GM has a
similar performance as its prototype, OLS. (ii) Since the two values of p considered here are in (p,, 1),
KF has a similar performance as its prototype, Lasso. The simulation results are consistent with these
theoretical predictions. Additionally, from the theoretical reference curves, we can see that, for the

current ¢ value, GM has a smaller Hamming error than that of KF when 7 is large, and the opposite
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is true when 7is small. The actual error curves exhibit the same phenomenon, confirming our theory

even for moderate dimension p and sample size 7.

Experiment 3. We further consider blockwise diagonal designs with larger-size blocks. Given
d > 2 and p that is a multiple of d, we generate X € R”*? such that XX is block-wise diagonal
with d x d diagonal blocks, where the oft-diagonal elements of each block are all equal to p. Other
steps of the data generation are the same as in Experiment 2. We consider (d,p) = (4,0.4) and
(d,p) = (5,0.3). For each choice of (d, p), we set (z, p, §) = (2000,1000, 0.3) and let »range on a
grid from 0 to 6 with a step size 0.2. We use signed maximum as symmetric statistic in KF and GM.
For KF, we use the equi-correlated knockoff described above. The results are in the last two panels of
Figure 1.9.

One noteworthy observation is that KF still has a similar performance as its own prototype, so
does GM. Another observation is that GM outperforms KF when 7 is large, and KF slightly outper-
forms GM when 7 is small. While our theoretical results are only derived for d = 2, the simulations

suggest that similar insight continues to apply when the block size gets larger.

Experiment 4. In Section 1.5.2, we studied variants of knockoff. The theory for 2 x 2 block-
wise diagonal designs suggests that using CI-knockoft to construct Xyields a higher power than using
EC-knockoft (for 2 x 2 block-wise diagonal designs, EC-knockoff is the same as SDP-knockoff). In
this experiment, we investigate whether using CI-knockoft still yields a power boost for other design

classes. We consider 4 types of designs:

* Factor models: XX = (BB' + I,)/2, where Bis ap x 2 matrix whose j-th row is equal to

[cos(;), sin(;)] with {&;}=1,... » Zd drawn from Uniform|0, 27;
* Block diagonal: Same as in Experiment 2, where p = 0.5.
s Exponential decay: The (7, 7)-th element of X' Xis 0.6/ for1 < 4,j <p.
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* Normalized Wishart: X' X is the sample correlation matrix of 7 7zd samples of N(0, 1).

In the normalized Wishart design, the CI-knockoff in (1.19) may not satisfy diag(s) < 2G. We modify
it to diag(s) = «[diag(G™')]™%, where « is the maximum value in [0, 1] such that diag(s) < 2G.
For each design, we fix (7,p) = (1000,300), let & take values in {0.2,0.4} and let » range on a
grid from 0 to 6 with a step size 0.2. Different from previous experiments, we generate 8 from ﬂj 9
(1-— gp)vo + %5},7/71) + %5},7/_71,, for1 < j < p. The motivation of using this model is to allow for
negative entries in 8. As mentioned in Remark 2 (see the end of Section 1.4), even when X’ X contains
only nonnegative elements, this signal model can still reveal the effect of having negative correlations
in the design. We compare two versions of knockoft, EC-knockoft and CI-knockoff, along with the
prototype, Lasso. The results are in Figure 1.10.

For the 2 X 2 block-wise diagonal design, the simulations suggest that CI-KF significantly outper-
forms EC-KF, and that CI-KF has a similar performance as the prototype, Lasso. This is consistent
with the theory in Section 1.5.2. CI-KF also yields a significant improvement over EC-KF in the factor
design, and the two methods perform similarly in the exponentially decaying design and the normal-
ized Wishart design. We notice that the Gram matrix of the normalized Wishart design has uniformly
small off-diagonal entries for the current (7, p), which is similar to the orthogonal design and explains
why EC-KF and CI-KF do not have much difference. Combining these simulation results, we recom-
mend CI-KF for practical use. Additionally, in some settings (e.g., factor design, 4 = 0.4; exponen-
tially decaying design, 4 = 0.2), CI-KF even outperforms its prototype Lasso. One possible reason is
that the ideal threshold we use is derived by ignoring the multi-log(p) term, but this term can have a
non-negligible effect for a moderately large p. As a result, the Hamming error of Lasso presented here

may be larger than the actual optimal one.

Experiment 5. In the previous experiments, we only examined the Hamming errors. In this

experiment, we examine FDR and power separately. Fixing (7,p,8,7) = (1000, 300,0.2,5), we
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Figure 1.10: Experiment 4 (general designs). The y-axis is log,(H,/p), where H, is the average Hamming
error. We focus on comparing two constructions of knockoff’s, EC-KF and CI-KF, and include Lasso as the
benchmark.

generate data in a similar way as in Experiment 4, where the enries of 8 are zid drawn from (1—¢,)vo +
%spvfp + %gpv,fp. We consider (i) the 2 x 2 block-wise diagonal design, where the off-diagonal entries
in each block are p, and (ii) the exponentially decaying design, where the (7, /)-th element of X' X is

Jo“‘_j |, We let p range from 0.1 to 0.9, to cover the cases of weak, moderate, and strong correlations.
We implement GM and two versions of knockoff, EC-KF and CI-KF (for all methods we use signed
maximum as symmetric statistic). The prototypes, Lasso and OLS, are not included, as they do not
aim for FDR control.

The results are shown in Figure 1.11. We set the targeted FDR level at 10%. The first and third
panels show the boxplots of actual FDR. Except for the extreme case of p = 0.9 in the exponentially
decaying design, all three methods yield satisfactory FDR control. The second and fourth panels show
boxplots of the true positive rate (TPR). As p increases, the TPR of all methods has a considerable

decrease. In comparison, GM has a higher TPR than two versions of knockoft in most scenarios.
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Figure 1.11: Experiment 5 (block-wise diagonal designs and exponential decayed designs). The FDR and TPR
of two knockoft methods (with equi-correlated and conditional independence construction) as well as Gaussian
mirror in 500 repetitions. The parameter p characterizes how far away is X' X from Z,.

This difference is primarily caused by the difference of ranking algorithm. For the settings considered
here, 3 = 0.2, and our theory in Section 1.4 suggests that least-squares is a better ranking algorithm
than Lasso-path. Between two versions of knockoff, CI-KF has an advantage over EC-KF for p €

{0.4,0.5,0.6}.

1.8 DiscussIONsS

How to maximize the power when controlling FDR is a problem of great interest. Most existing
results on power analysis focus on one particular method. In this chapter, we introduce a unified
framework that captures 3 key components in recent FDR control methods—(a) ranking algorithm,

(b) tampered design, and (c) symmetric statistic, and our theoretical power analysis reveals the im-
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pact of each component. The results not only facilitate a deeper understanding of existing methods
but also provide useful insights for developing new methods. We focus on the knockoff filter and
Gaussian mirror as two illustrating examples, but they have covered different aspects of designing
(a)-(c). Our analysis allows for comparison of difterent proposals of designing (a)-(c) and inspires im-
provements/variants/hybrid of two methods. It is unlikely to gain such insights from studying one
particular FDR control method only.

We have several noteworthy discoveries: (i) The power of an FDR control method is primarily
determined by the ranking algorithm; which ranking algorithm to use depends on the sparsity level
and the design correlations. (ii) The choice of symmetric statistic affects the power; between the two
common choices, the signed maximum is better than the difference. (iii) The tampered design can
follow the p-at-a-time scheme (as in knockoff) or the one-at-a-time scheme (as in Gaussian mirror) in
adding fake variables; the former is more flexible as it can accommodate different ranking algorithms,
and the latter yields a higher power when the ranking algorithm is restricted to least-squares. (iv)
The construction of fake variables also matters for power (e.g., SDP-knockoft versus CI-knockoff);
it is sometimes beneficial to let a fake variable be properly correlated with the corresponding original
variable.

Our analysis adopts a Rare/Weak signal model and uses the phase diagram and the FDR-TPR
trade-off diagram to characterize the power of an FDR control method. These criteria are essentially
measuring the quality of variable ranking. Good ranking is a necessary condition for simultaneously
attaining a low FDR and a high power. This perspective is shared by other works on power analysis of
FDR control methods, where it is common to measure the performance of variable ranking (via some
trade-off diagram). Compared with works focusing on linear sparsity (e.g., Su et al. (2017), Weinstein
etal. (2017)), our framework allows for a wide range of sparsity.

We focusonp < zin theory. When p > 7 and X,’s are 77d generated, most FDR control methods

split samples, half for screening and half for FDR control, where on the second half sample the method
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is the same as before. Therefore, the roles of three components are similar as before. Extending the
results from p < 7 top > n requires more complicated analysis but leads to very few new discoveries.
For this reason, we only consider p < 7 in this chapter.

There are several directions to extend current results. First, we focus on the regime where FDR
and TPR converge to either 0 or 1 and characterize the rates of convergence. The more subtle regime
where FDR and TPR converge to constants between 0 and 1is not studied. We leave it to future work.
Second, the study of knockoft here is only for block-wise diagonal designs. For general designs, it is
very tedious to derive the precise phase diagram, but some cruder results may be less tedious to derive,
such as an upper bound for the Hamming error. This kind of results will help shed more insights
on how to construct the knockoff variables (e.g., how to choose diag(s)). Third, we only investigate
Lasso-path or least-squares as options of ranking algorithms. It is interesting to study the power of
FDR control methods based on other ranking algorithms, such as the marginal screening and iterative
sure screening (Fan & Lv, 2008) and the covariance assisted screening (Ke et al., 2014, Ke & Yang,
2017). The covariance assisted screening was shown to yield optimal phase diagrams for a broad class
of sparse designs; whether it can be developed into an FDR control method with “optimal” power
remains unknown and is worth future study. Last, some FDR control methods may not fit exactly
the unified framework here. For instance, the multiple data splits (Dai et al., 2020) is a method that
controls FDR through data splitting. We can similarly assess its power using the Rare/Weak signal
model and phase diagram, except that we need to assume the rows of X are 7.7.d. generated. We leave

such study to future work.
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Estimating the number of Spikes by Bulk

Eigenvalue Matching Analysis

CoNTRIBUTION This chapter is based on a paper Ke et al. (2020b) jointly with Prof. Zheng Tracy

Ke and Prof. Xihong Lin.
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2.1 INTRODUCTION

The spiked covariance model (Johnstone, 2001) has been widely used to model the covariance struc-
ture of high-dimensional data. In this model, the population covariance matrix has K large eigenval-
ues, called sprked eigenvalues, where K is presumably much smaller than the dimension. Estimation of
K is of great interest in practice, as it helps determination of the latent dimension of data. For exam-
ple, in a clustering model with K clusters (Jin et al., 2017), the pooled covariance matrix has (Ko — 1)
spiked eigenvalues; therefore, an estimate of K tells the number of clusters. Similarly, in Genome-
Wide Association Studies (GWAS), the number of spiked eigenvalues of a genetic covariance matrix
reveals the number of ancestry groups in the study (Patterson et al., 2006). In high-dimensional co-
variance matrix estimation, K is often required as input for factor-based covariance estimation (Fan
etal., 2013).

In this chapter, we assume the data vectors X, X, ..., X, € R? are independently generated

from a multivariate distribution with covariance matrix ¥ € R?*?, which has positive values ¢, >

ty > ... 2> pg-and mutually orthogonal unit-norm vectors §, &, , . . ., §x € R? such that
K
Y= Z[ukEkEZ + D, where D = diag(s7, 5, . . . ,aﬁ) (2.1)
k=1
Here, D is called the residual covariance matrix. The goalis to estimate K from X, X5, . .., X,,. Weare

primarily interested in the settings where K is finite and p/n — 7, for a constant ¥ > 0. Throughout
the chapter, we denoteby 4; > 4, > ... > lp the eigenvalues of X, and denote by ;11 > )12 > >
in Ap the nonzero eigenvalues of the sample covariance matrix.

In the literature, there are several approaches for estimating K. The first is the information crite-

rion approach, which finds K that minimizes an objective of the form L, (K) + P,(K), where L, (K)

is a measure of goodness-of-fit and P, (K) is a penalty on K. An influential work is Bai & Ng (2002),
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who let L, (K) be the sum of squared residuals after fitting a K-factor model and studied a few choices
of the penalty function L, (K). Other examples include Wax & Kailath (1985), where L, (K) is a func-
tion of the arithmetic and geometric means of (72— K) smallest eigenvalues. However, the information
criterion approach requires the spiked eigenvalues to be sufficiently large. In Bai & Ng (2002), the
spiked eigenvalues are at the order of p, which is much larger than the necessary order. It has been rec-
ognized that correct estimation of K is possible even when the spiked eigenvalues are at the constant
order (Baik et al., 2005).

The second approach finds a big “gap” between eigenvalues of the sample covariance matrix. Re-
call that )1/6 is the kth eigenvalue of the sample covariance matrix. Onatski (2009) introduced a test
statistic, MAX g, << Kynax (il — i,'_,_l) / (;1,4_1 — iz‘-&-z), for testing against the null hypothesis K = K
and then applied it sequentially to estimate K. Cai et al. (2020) proposed an iterative algorithm for
estimating K that searches for a gap of 2 O(n=?/3) between eigenvalues. Passemier & Yao (2014)
suggested estimating K by finding two consecutive gaps in eigenvalues. Such methods rely on sharp
limiting distributions of the first K empirical eigenvalues, which theoretically requires a large mag-
nitude of the spiked eigenvalues. Additionally, while utilizing eigengap is a neat idea in theory, its
practical use faces challenges, since the actual eigengaps in many real data sets are slowly varying, with-
out a clear cut.

The last approach estimates K by thresholding the empirical eigenvalues. For this approach,
the key is to calculate a proper data-driven threshold. The threshold should reflect the “scaling” of
the residual matrix D. One idea is to first standardize the data matrix so that each variable has a
unit variance and then use a scale-free threshold. Examples include the empirical Kaiser’s criterion
(Bracken & Van Assen, 2017) and parallel analysis (Horn, 1965), where the scale-free threshold is de-
termined by asymptotic behavior of the largest eigenvalue of sample covariance matrix associated with
X; N (0,I,). Anotherideais to estimate D by the diagonal of the sample covariance matrix and then

calculate the threshold via a deterministic algorithm (Dobriban, 2015). The success of both ideas rely
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on regularity conditions to ensure that the low-rank part in Model (2.1) has a negligible effect on the
diagonal of Z; for example, the population eigenvalues cannot be enormously large and the popula-
tion eigenvectors have to satisfy “delocalization” conditions. Dobriban & Owen (2019) improved the
algorithm in Dobriban (2015) by a recursive procedure to remove leading eigenvalues and eigenvec-
tors, but their method still requires some “delocalization” conditions on eigenvectors. Other related
work includes Onatski (2010), which used a convex combination of iKmaerl and iszax+1 as the
threshold, where Ky, is a pre-specified upper bound of K, and Fan et al. (2020), which introduced
an unbiased estimator for each of the first few eigenvalues of the population correlation matrix, and
estimated K by thresholding these unbiased estimators at 1 + /p /7.

To address the limitations of these methods, we propose a new estimator of K. Different from the
existing work, our attention is largely focused on how to better utilize the bulk empirical eigenvalues

in the estimation of K, especially those eigenvalues in the middle range:
{;1/6 ta(nAp) <k < (1—a)(nNp)}, for some constant« € (0,1/2).

It is well-known in random matrix theory that these bulk eigenvalues are almost not affected by the
low-rank part in Model (2.1) (e.g., see Bloemendal et al. (2016)). We can use these eigenvalues to gauge
the “scaling” of D and determine an appropriate threshold for top eigenvalues. To this end, we impose
a working model on the diagonal matrix D. Let Gamma(z, ) denote the gamma distribution with

shape parameter 2 and rate parameter 4. Fixing o > 0 and & > 0, we assume
iid .
0]2 < Gamma(d, 6/7%), 1<;<p. (2.2)

The mean and variance of Gamma(, 6/¢?) is o> and o* /6, respectively. As a result, the diagonal

entries of D are centered around o2, where the level of dispersion is controlled by 6. As § — o0,
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Gamma(d, §/a”) converges to a point mass at o7, and it yields D = o°I,. This case corresponds to
the standard spiked covariance model which is frequently studied in the literature (Johnstone, 2001,
Donoho etal., 2018). Combining Model (2.2) with Model (2.1), we now have a flexible spiked covari-
ance model that includes the standard spiked covariance model as a special case.

Under Models (2.1)-(2.2), the empirical spectral distribution (ESD) converges to a limit, which
is a fixed distribution with two parameters (o2, 8) (Silverstein, 2009). Since the empirical eigenvalues
are nothing but quantiles of the ESD, we expect that all the bulk eigenvalues are asymptotically close
to the corresponding quantiles of the limit of ESD. We thus estimate (o2, 6) by minimizing the sum of
squared differences between bulk eigenvalues and quantiles of the limiting distribution. Once (&%, 8)
are available, we borrow the idea of parallel analysis (Horn, 1965) to decide a threshold for the top
eigenvalues by Monte Carlo sampling. This gives rise to a new method for estimating K, which we call
bulk eigenvalue matching analysis (BEMA). Analogous to the orators’ bema in Athens, our BEMA
is a platform for gathering a large number of bulk eigenvalues and utilizing them efficiently in the
estimation of K. Additional to the point estimator, we also propose a confidence interval for XK.

Our method has an intuitive explanation in terms of a scree plot. Figure 2.1 shows the scree plot
of a simulated example. There are multiple elbow points, and it is hard to decide where the true X
is. The core idea of our method is to explore the “shape” of the scree plot in the middle range and fit
it with a parametric curve; this curve is determined by the theoretical quantiles of the limit of ESD,
governed by two parameters o and 6. Then, this curve can be extended to the left boundary of the
scree plot to produce a threshold for top eigenvalues.

The goodness-of-fit check of Model (2.2) on real datasets can also be done via the scree plot. If
the middle range of the scree plot can be well approximated by the estimated parametric curve, then
it suggests that the model indeed fits the real data. In Section 2.6, we shall see that Model (2.2) is well
suited to gene microarray data and GWAS data. We remark that assuming the diagonal entries of D

are generated from a fixed distribution is only a mild assumption. Similar conditions appear in the
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Figure 2.1: Illustration of BEMA via a scree plot. The red solid curve shows the quantiles of the theoretical
limit of Empirical Spectral Distribution (ESD) under Models (2.1)-(2.2). It is a parametric curve with two
parameters (2, 9), and by random matrix theory, it should fit the bulk eigenvalues well. BEMA first uses bulk
eigenvalues to estimate (%, §) and then extends the estimated curve to the left boundary to get a threshold for
top eigenvalues.

literature (often implicitly as regularity conditions in the theory); e.g., Dobriban & Owen (2019) and
Fan et al. (2020) assume that the histogram of population eigenvalues of D converges to a fixed limit.
We make one step ahead by assuming that this fixed distribution is a gamma distribution. At the first
glance, restricting to the gamma family seems restrictive, but Model (2.2) is in fact much more flexible
than expected. With only two parameters (o2, §), it can accommodate various kinds of real data and
even misspecified models (see Section 2.5).

The special case of § = o0 is of independent interest. It corresponds to the standard spiked
covariance model (Johnstone, 2001), where D = azlp. This model has attracted a lot of attention
(Baik et al., 2005, Paul, 2007, Donoho et al., 2018). In this special case, BEMA reduces to a simpler
algorithm. We conduct theoretical analysis under this model. First, we give an explicit error bound
for estimating o*. This is connected to the robust estimation of ¢ in the literature of reconstruction
of spiked covariance matrices (Donoho et al., 2018, Shabalin & Nobel, 2013). In our method, we
obtain a new robust estimator of ¢ as a byproduct, and we study it theoretically. Second, we prove
the consistency of estimating K under minimal conditions. Our results impose no assumptions on
the population eigenvectors &, . . . , Ex and only require the spiked eigenvalues 11, . . . , Ak to be larger

than a constant. In comparison, literature works often either require some regularity conditions on
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eigenvectors or need much larger spiked eigenvalues. We also provide theory for the general case of
§ < 00, which has never been studied.

The remaining of this chapter is organized as follows: In Section 2.2, we describe BEMA for the
standard spiked covariance model (i.c., § = 00); in this case, the idea is easier to understand and
the algorithm is simpler. In Section 2.3, we describe BEMA for the general case. Section 2.4 states
the theoretical properties. Section 2.5 and Section 2.6 provide simulation study results and real data

analysis, respectively. Section 2.7 concludes the chapter. Proofs are relegated to the Appendix.

2.2 BEMA FOR THE STANDARD SPIKED COVARIANCE MODEL

In this section, we consider the standard spiked covariance model (Johnstone, 2001), a special case of

Models (2.1)-(2.2) with § = oo. Since each a]2 is equal to ¢, the model is re-written as

K
=) wEE + 7L, (2.3)

k=1

The first K eigenvalues of X are 1, = y, + o2, and the remaining eigenvalues are . The sample
covariance matrixis S = 1 37 (X, — X)(X; — X) T, where X = 15" | X With probability 1, S
has z A p distinct nonzero eigenvalues (Uhlig, 1994), denoted as il > j.z >0 > j.n/\p.

We first review some existing results about the asymptotic behavior of empirical eigenvalues.

Definition 2.2.1. Given a parameter y > 0, the zero-excluded Machenko-Pastur (MP) distribution

is defined by the density

1 1

— ﬁm\/(x—ﬂh_)(ﬂm 2 P <x< by}, (2.4)

fy(x:0%)

where by = (14 \/7)*. Welet F,(x; ) denote its cumulative distribution function.
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When y < 1, this definition is the same as the classical MP law; when y > 1, it excludes the point

mass at zero in the classical MP law. The zero-excluded empirical spectral distribution (ESD) is given

by F,(x) = ﬁ Zi\f 1{1; < x}. For convenience, we shall omit the word ‘zero-excluded’ and still
call them MP and ESD.

When X satisfies (2.3), K is fixed and p/n — y for a constant y € (0, 00), under mild regularity

conditions, the following statements are true (Bloemendal et al., 2016):

* The ESD converges to the MP distribution with parameter y; more precisely, it holds that

E[sup, |F,(x) — F,(x)|] = O(n~/2) (Gétze et al., 2004).

s Iy, >\ 7+ n~1/3, the first K empirical eigenvalues are located outside the support of the

MP distribution with high probability.

See Figure 2.2 for an illustration via simulated data (z = 1000, p = 500).

0.8

q —— Empirical histogram
—— Machenko-Pastur density

0.6

Bulk

0.4

o
o

Spike 1 Spike2 Spike 3 Spike 4

]

Figure 2.2: The asymptotic behavior of empirical eigenvalues. The histogram of bulk eigenvalues converges to
an MP distribution, and K top eigenvalues are outside the support.

Inspired by the asymptotic behavior of empirical eigenvalues, we propose a two-step approach
to estimating K. In the first step, we use bulk eigenvalues to fit an MP distribution. The density
fy(x;6%) in (2.4) has two parameters (y, o> ), where ¥ can be approximated by y, = p/z. It reduces
to considering f;, (x;0*), for all possible . We aim to find 6* such that £, (x;5”) is the best fit to the
histogram of empirical eigenvalues. In the second step, we determine K by comparing top eigenvalues

with the right boundary of the support of the estimated MP density, namely, 5*(1 + V7%
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Now, we describe the method in detail. First, consider the estimation of 2. Fixing a constant

a € (0,1/2), we take only a faction of nonzero eigenvalues:
Uit alnhp) <k < (1—a)(nAp)}.

Since K'is fixed and 7 A p — 00, any « guarantees that the first K eigenvalues are excluded. The choice
of  does not matter. We usually set 2 = 0.2, so that 60% of the nonzero eigenvalues in the middle
range are used. Write for short = A p. By definition, J; is the (k/7)-upper-quantile of the ESD.
Letg; = g4(y,) denote the (£/p)-upper-quantile of the MP distribution associated with y =y _and

¢ =1, that s,

+y7,)? ~
g is the unique value such that / Jy, (x;1)dx = k/p. (2.5)
7

These g;’s can be easily computed (e.g., via the R package RM Tstar). For an MP distribution with a
general o, its (k/p)-upper-quantile equals to o?g;. Since the ESD is asymptotically close to the MP
distribution, we expect that

i/ezaz-q/e.

It motivates us to use { (g, j/e)}afgkg(l—a)ﬁ to fit a line without intercept, and this can be done by a
simple least-squares. The slope of this line is an estimator of ¢*.

Next, we use & to determine a threshold for the top eigenvalues. A natural choice of threshold
is (1 + V7 )%, but it has a considerable probability of over-estimating K. We slightly increase this
threshold by taking an advantage of another result in random matrix theory. When p,- > (72\/77, itis

known that (Johnstone, 2001, Bloemendal et al., 2016)

Asr — P21+ V7

— “ type-I Tracy-Widom distribution. (2.6)
Fn iy (L4 7,)

(ST
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Algorithm 1. BEMA for the standard spiked covariance model.

A~

Input: Nonzero eigenvalues A, ... s Annps2 € (0,1/2) and £ € (0,1).

Output: An estimate of K.

Step 1: Write p = n A p. Foreachap < k < (1 — a)p, obtain g, the (£/p)-upper- quantile of
the MP distribution associated with o> = 1and y, = p/n. Compute

2 D ap<i<(1—a)p T
-5 =
ap<k<(1—a)p 95

Step 2: Obtain #,_g, the (1 — 8)-quantile of Tracy-Widom distribution. Estimate K by

k:#{l <k<p: j./g >52[(1+ﬁn)2+t1—,8'”_%7;%(14‘\/}’7)%]}-

We propose thresholding the top eigenvalues at

O\ =
[SIFS

]

where #;_g denotes the (1 — £)-quantile of the Tracy-Widom distribution. Then, the probability of

T=2 |1+ 7, + 0 n it (14 7,)

over-estimating K is controlled by §.

Algorithm 1 has two tuning parameters («, 8). The output of the algorithm is insensitive to « if «
is not too small, and we set # = 0.2 by default. 4 controls the probability of over-estimating K and is
specified by the user. In theory, the ideal choice of 4 should satisfy that 4 — 0 at a properly slow rate
(see Section 2.4). In practice, choosing a moderate 8 often yields the best finite-sample performance.
Our numerical experiments suggest that 8 = 0.1 is a good choice for most settings.

A simulation example. We illustrate Algorithm 1 on a simulation example. Fix (z,p,K) =

(1000,500,10). We generate X, S N(0,X), where X is a diagonal matrix whose first K diagonals
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equal to 5.4 and the remaining diagonals equal to o = 2. In the left panel of Figure 2.3, we plot ik
versus ¢;. Except for a few top eigenvalues, it fits well to a straight line crossing the origin. We use
300 bulk eigenvalues {jk}100<k§4oo (the blue dots) to fit a regression line (the red dotted line). The
slope of this line gives the estimate & = 2.04. In the middle panel of Figure 2.3, we plot i/e versus
k. The red solid line is the curve of & gy versus k. Although it is estimated using the blue dots only,
we can extend this curve to the left boundary, which gives rise to the value (1 + V7 )?. We then
use this value and the Tracy-Widom distribution to calculate a threshold for the top eigenvalues. The
estimator K equals to the number of top eigenvalues that exceed this threshold. The right panel of
Figure 2.3 is a zoom-in of the middle panel. As £ gets smaller (e.g., # < 50), the eigenvalues stay above
the fitted MP quantile curve. This is because these ik are influenced by the spiked eigenvalues of .
Such eigenvalues are already excluded in the estimation of o*. The right panel can also be viewed as
a scree plot. Finding the elbow point of the scree plot is a common ad-hoc method for estimating K.
In this plot, the elbow points are {6, 7,10, 11}, hard to decide the true K. In contrast, our method
correctly picks K = 10.

Remark 1 (Connection to the robust estimation of ). As abyproduct, the BEMA algorithm yields
anew estimator for o2 in the standard spiked covariance model, which can be useful for other problems
such as reconstruction of spiked covariance matrices. Gavish & Donoho (2014) proposed a robust
estimator of 2, which is the ratio between the median of eigenvalues and the median of a standard
MP distribution. Viewed in the Q-Q plot (left panel of Figure 2.3), their method is equivalent to using
a single point to decide the slope. In comparison, our method uses a number of bulk eigenvalues to
decide the slope and is thus more robust. Kritchman & Nadler (2009) proposed an estimator of o> by
solving a non-linear system of equations, and Shabalin & Nobel (2013) estimated ¢* by minimizing
the Kolmogorov-Smirnov distance between the ESD and its theoretical limit. In comparison, our
estimator of o2 is from a simple least-squares and is much easier to compute. In Section 2.4, we also

give an explicit error bound for our estimator.
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Figure 2.3: Illustration of BEMA for the standard spiked covariance model (simulated data, » = 1000, p =

500, K = 10). The left panel plots ik versus ¢y, where gy, is the (£/p)-upper-quantile of the standard MP
distribution. The dashed red line is the fitted regression line on bulk eigenvalues (blue dots), whose slope is

an estimate of ¢*. The middle panel plots ik versus k£, which is the scree plot. The red solid curve is b I
versus k. It fits the bulk eigenvalues (blue dots) very well. When this curve is extended to the left boundary, it
hits 67 (1 + V/7,)?- Our threshold for the top eigenvalues, which is the (1 — 8)-quantile of the Tracy-Widom
distribution, is slightly larger than this value and shown by the dotted red line. The right panel zooms into the
grey square area of the middle panel. It shows that 10 empirical eigenvalues exceeds the threshold, resulting in
K =10.

2.3 BEMA FOR THE GENERAL SPIKED COVARIANCE MODEL

We now consider the general case where the residual covariance matrix can have unequal diagonal

entries. We shall modify Algorithm 1 to accommodate this setting. Re-write Models (2.1)-(2.2) as

K
T . id
Y= Z‘ukikgk + diag(c?, 3, . .- ,0'[27), where o7 % Gamma(4, /o). (2.7)
k=1
Same as before, let il > j.z > > imp denote the nonzero eigenvalues of the sample covariance
matrix. Below, in Section 2.3.1, we first state some well-known results from random matrix theory
and motivate our methodology idea. In Section 2.3.2, we formally introduce the BEMA algorithm.

In Section 2.3.3, we provide an asymptotic confidence interval for K.
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2.3.1 THE ASYMPTOTIC BEHAVIOR OF EMPIRICAL EIGENVALUES

Under Model (2.7), the asymptotic behavior of bulk eigenvalues and top eigenvalues exhibit some

similarity to the case of standard spiked covariance model:
* The empirical spectral distribution (ESD) converges to a fixed limit.
* The first K empirical eigenvalues stand out of the bulk.

However, the precise statement is more sophisticated.

We first consider the ESD. When K is finite and p/% — 7, the ESD converges to a distribution
Fy(x; 0%, 6). This distribution is parametrized by (¢2, §), but it does not have an explicit form. It is
defined implicitly by an equation of its Stieltjes transform (Marcenko & Pastur, 1967). Let H,2 4(¢)
be the CDF of Gamma(6, §/5). For each z € C, there is a unique m = m(z;y, 0%, ) € C* such

that

1 t
= —— dH, . 2.8
em by [ a0 (8)

The density of F, (x; 0%, 6), denoted by £, (x; o, ), satisfies that

flx;0%,6) = lim {

y—0+

AT S(m(x+iy;7,02,5))},* (2.9)

where $(+) denotes the imaginary part of a complex number.

We aim to estimate (o2, §) by comparing the bulk eigenvalues with the corresponding quantiles of
Fy(x; 0%, 6). In the special case of § = 00, F,(x; 0>, 6) reduces to the MP distribution. Therefore, we
can compute its quantiles explicitly and estimate o> by a simple least-squares. For the general case, we

have to compute the quantiles of F (x; %, 8) numerically. There are two approaches, one is solving the

"The factor 1/(y A 1) is due to considering the zero-excluded ESD. If we consider the classical ESD, this
factor should be 1/7.
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density from equations (2.8)-(2.9) and then computing the quantiles, and the other is using Monte
Carlo simulations. We will describe them in Section 2.3.2.

Next, we consider the top eigenvalues. It requires a precise definition of “standing out” of the
bulk. We use the distribution of 1 x+1 under Model (2.7) as a benchmark, i.e., i/e needs to be much
larger than a high-probability upper bound of 2 k+1 in order to be called “standing out.” Fortunately,
the behavior of 1 k+1 has been studied in the literature of random matrix theory. We define the fol-

lowing null model, which is a special case of Model (2.7) with K = 0:
T = diag(s7, 5, . . - ,aﬁ), where o7 - Gamma(6, 6/5°). (2.10)

Let )A: denote the largest eigenvalue of the sample covariance matrix under this null model. By eigen-
value sticking result (see Bloemendal et al. (2016), Knowles & Yin (2017) and a detailed discussion
in Section 2.4.3), the distribution of p) K+1 is asymptotically close to the distribution of ir We now
re-frame the statement that “the first K empirical eigenvalues stand out” as follows: Under some reg-
ularity conditions, each of )11, R dx is significantly larger than j: associated with Model (2.10).
We aim to threshold the top eigenvalues by the (1 — 4)-quantile of the distribution of /ﬁ, where
{8 controls the probability of over-estimating K. In the special case of ¢ = oo, the distribution of j:
converges to a Tracy-Widom distribution, so that we have a closed-form expression for the threshold.
In the general case, we calculate this threshold by Monte Carlo simulation, where we simulate data

from the null model to approximate the distribution of j: We relegate the details to Section 2.3.2.

2.3.2 THE ALGORITHM OF ESTIMATING K

Same as before, the BEMA algorithm has two steps: Step 1 estimates (%, §) from bulk eigenvalues,
and Step 2 calculates a threshold for the top eigenvalues.

Consider Step 1. Writep = p A nand y, = p/n. For a constant 2 € (0,1/2), we take the
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(1 — 2a)-fraction of bulk eigenvalues in the middle range, i.c., {2 ap < k < (1 — a)p}. Each
empirical eigenvalue 2y is also the (k/ p)-upper-quantile of the ESD. We recall that F, (x; 0%, 6) is the
theoretical limit of ESD as defined in (2.8)~(2.9). Let Fy_ Y(k/p; 2, 6) denote the (k/p)-upper-quantile

of this distribution. We expect to see
L ~ F,(k/p; 7, 6).
It motivates the following estimator of (o2, 6):

(5‘2, :9) = argmin(az,e){ Z [ik — F},_nl(k/ﬁ; 7, 9)]2}. (2.11)

ap<k<(1—a)p

We now describe how to solve (2.11). This is a two-dimensional optimization. As long as we can
evaluate the objective function for arbitrary (62, §), we can solve it via a simple grid search. To further
simplify the objective, we first get rid of ¢* and reduce it to an optimization on & only. Note that
Gamma(6, §/7%) is equivalent to o* - Gamma(§, §). We can deduce from (2.8)-(2.9) that a similar

connection holds between F, (x;%,8) and F, (x;1,6). Then, their quantiles satisfy
E(k/p;0%,6) = & - F, ' (k/p; 1,06).
We re-write (2.11) as

min H(9), where H(f) = H;%n{ Z [i/e - 0'2]:21(/@/]3; 1, 9)]2}.

14
p<k<(1-2)p

Aslong as we can compute F},_nl (y;1,0) forany § > O and y € [0, 1], we can obtain H(8) for each &by
least squares regression of the Ji’s on the Fy_ Y(k/p; 1, 6)’s. Given H(8), we can solve the optimization

by a grid search on 6.
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This is described in Step 1 of Algorithm 2. Suppose there is an available algorithm GetQT that
computes £, '(y; 1, 6) forany ¢ > O and y € [0,1]. Fixa set of grid points {6}1;. For each §;, we
first compute Fy_nl(/e/j); 1,6;) forallap < k < (1 — )p. Given 6}, the value of &> that minimizes
(2.11)is obrained by regressing {1t }sp<k<(1—)p 00 {E; ' (k7 1, 6)) bapie< (1-a)p With a least-squares.
Let 5* () denote this optimal value of ¢, and let ; denote the objective in (2.11) associated with
{8,,5%(8;)}. We select /* so that ; is minimized and set § = ¢+ and &* = &* ().

What remains is the design of an algorithm GetQT(y, y, , ¢) to compute the y-upper-quantile of
the distribution F, (+;1,6) forarbitrary (6, 7). We note that F,, (x;1, 6) only has an implicit definition

through equations (2.8)-(2.9). In the appendix, we propose two algorithms that serve for this purpose:

* GetQT1 takes advantage of the fact that £, (x; o2, 8) is also the theoretical limit of the ESD of
the null model (2.10). This algorithm simulates data from Model (2.10) with &> = 1to get the

Monte Carlo approximation of the target quantile.

* GetQT2 first utilizes the definition (2.8)-(2.9) to solve the density f, (%;1,6) and then uses the

density to compute quantiles.

The two GetQT algorithms have comparable numerical performance, but each has an advantage on
running time in some cases; see the appendix for more discussions.

Consider Step 2. We estimate K by comparing each top eigenvalue with the (1 — 8)-quantile of
the distribution of j: under the null model (2.10), with (62, §) plugged in. The threshold is

. (1 — B8)-quantle of the distribution of ir under the null model
7= . (212)

% = diag(st, 03, . .. ,aﬁ), whereajz» # Gamma(6, §/5%)

The T here generalizes the threshold in Algorithm 1. The threshold in Algorithm 1 is a special case of

Tat 6 = co, which happens to have an explicit formula.
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Algorithm 2. BEMA for the general spiked covariance model.

A~

Input: Nonzero eigenvalues A, ... s Annps 2 € (0,1/2), 8 € (0,1),agrid of values
0 <6 <6, <...<0n,analgorithm GetQT, and an integer A1 > 1.

Output: An estimate of K.

Step 1: Writep = n A pandy, = p/n. Foreach1 <; < N:
* Foreachap <k < (1 — a)p, run the algorithm GetQT(k/p, ¥, ;) to obtain Tij-
* Compute 52(‘9/) = (Zaﬁgkg(l—w)]) qkjl/e)/(zaﬁg/ega—a)ﬁ q/ij)-

e Let vj = szﬁg/eg(l—a)}[ik - &2(‘9]) "Gkl

WV

Find/* = argmin, . ;. Let 6= Gy and &~ = 3‘2(5]*)

Step 2: For1 < m < M:
* Sampled; ~ Gamma(4, 6), independently for 1 < j < p. Sample X7 (/) ~ N(0, &Zd]’«“),
independently for1 <7 < nzand1 <; <p.

* Compute the largest singular value of »~/2X*, where X* = [X}, X5, ..., X*]".

Let j.;k (m) be the square of this singular value.

Let T'be the (1 — §)-quantile of{if(m)}lgmgM. Output K = #{1 <k <p: Ay > T}.

We compute T via Monte Carlo simulations. We first draw Z from the null model in (2.12), and

then draw the data matrix from multivariate normal distributions and compute the largest eigenvalue

of the sample covariance matrix. By repeating these steps multiple times, we obtain the sampling

distribution of if in (2.12). This is described in Step 2 of Algorithm 2.
The BEMA algorithm has three tuning parameters (2, 4, M), where « controls the percentage
of bulk eigenvalues used for estimating (%, §) and M is the number of Monte Catlo repetitions for

approximating T. The performance of the algorithm is insensitive to («, M) (see Section 2.5). We set
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a = 0.2 and M = 500 by default. The parameter 8 controls the probability of over-estimating K.
Theoretically, if the spiked eigenvalues are large enough, we should use a diminishing 8 (i.e., £ — 0
as n — 00) so that the probability of over-estimating K tends to zero. In practice, it often happens
that the spiked eigenvalues are only moderately large. We thus need a moderate j to strike a balance
between the probability of over-estimating K and the probability of under-estimating K. We leave it
to the users to decide. It is analogous to the situation in false discovery rate control, where the users
select the target false discovery rate. In our numerical experiments, we find that 4 = 0.1 is a good
choice.

A Simulation Example. We illustrate Algorithm 2 using a simulation example. Fix (7, p, K) =
(1000, 200, 5) and (¢?, §) = (1,10). We generate X, 7id from N(0, X), where X satisfies model (2.7)
with Y, = 2.3 for1 < k < K. The left panel of Figure 2.4 shows the plot of i/e versus the MP
quantiles g. It does not fitaline crossing the origin, suggesting that Algorithm 1 does not work for this
general covariance model. The middle panel contains the plot of g versus FV_,, Y(k/p;1,8), where 8is
from Algorithm 2. Except for a few top eigenvalues, it fits very well aline crossing the origin, suggesting
that Algorithm 2 is successful in this setting. The estimated parameters are (52, ) = (1.02,10.39),
which is close to the true values. The right panel contains the plot of ik versus k, and the fitted curve
of & - j‘;—n Y(k/p; 1, 8) versus k (solid red line). The threshold 7is also shown by the dashed line. It
yields K = S, which is the same as the ground truth.

Remark 2 (Connection to parallel analysis). Parallel analysis (Horn, 1965) is a popular method for
estimating the number of spiked eigenvalues in real applications. It samples data from a null covariance
model that has no spiked eigenvalues, and estimates K by comparing the distribution of top empirical
eigenvalues on simulated data to those actually observed from the original data. The most common
version of parallel analysis first standardizes the data matrix so that each variable has a unit variance
and then uses X = L, as the null model. Our algorithm has a similar spirit as parallel analysis, but we

adopt a more sophisticated null covariance model, Model (2.10), and estimate parameters of this null
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Figure 2.4: Illustration of BEMA for the general spiked covariance model. The left panel plots ik versus gy,
where the ¢;’s are quantiles of the standard MP distribution. It fits the regression line poorly, suggesting that
Algorithm 1 is no longer working for this general model. The middle panel plots g versus Fy_” Yx; 1, @), where 8
is an estimate of ¢ by Algorithm 2. The bulk eigenvalues (blue dots) fit the regression line very well. The right
panel is the scree plot, where the red solid curve is F;ﬂ 1(x; 5, 6) versus k. A threshold (red dotted line) is given

by the 90%-quantile of the distribution of j: from a null model; see (2.12). There are 5 empirical eigenvalues
exceeding this threshold, which gives K=5s.

model carefully from bulk eigenvalues.

Remark 3 (Memory use of BEMA). The input of BEMA includes nonzero eigenvalues of the
sample covariance matrix. These eigenvalues can be computed by eigen-decomposition on either the
p X p matrix X "X or the n X 7 matrix XX . Therefore, the memory use depends on the mini-
mum of 7 and p. In many real applications, p is very large but # is relatively small, and BEMA is still

implementable under even strict memory constraints.

2.3.3 A CONFIDENCE INTERVAL OF K

By varying 8 in Algorithm 2, we get different estimators of K, where the over-shooting probability is

controlled at different levels. We use these estimators to construct a confidence interval for K.

Definition 2.3.1 (Confidence interval of K). Denote the output of Algorithm 2 by f([g to indicate its

dependence on . Given any wy € (0, 1), we introduce the following (1 — wy)-confidence interval of

74



Kas [kwo/Z’ f(l—w()/Z]'

We explain why the confidence interval is asymptotically valid. Let T = ?:g be the threshold
in (2.12), and let ir be the largest eigenvalue of the sample covariance matrix when data are from

the null model (2.10). We use PPy to denote the probability measure associated with Model (2.10).

By definition of T{g, ]P’o{j: < t} N
=1g

= 1 — B. At the same time, the eigenvalue sticking result
(Bloemendal et al., 2016, Knowles & Yin, 2017) states that, under some regularity conditions, the

distribution of 1 K+1 is asymptotically close to the distribution j.;k . It follows that

P{K, /o> K} <PLxpr > Ty o} = Po{dy > 2}

:a)o/z,

= Two/z

:a)o/z.

t:n—wO/Z

P{kl—wo/Z <K} < P{iK < ?l_wo/z} < P{iKﬂ < ?l_wo/z} ~ Po{if <t}

2.4 THEORETICAL PROPERTIES

We study in this section the theoretical properties of the proposed BEMA method. In Section 2.4.1,
we focus on the standard spiked covariance model (6 = 00), where we derive the error rate of ¢ and
the consistency of K. In Section 2.4.2, we study the general spiked covariance model (¢ < 00). This
setting is much more complicated. It connects to an unsolved problem in random matrix theory, that
is, how to get sharp asymptotic theory for eigenvalues when the limiting spectrum of X is unbounded
and has convex decay in the tail. Only partial results are known (Kwak et al., 2019). To overcome the
technical difficulty, in our theoretical investigation, we approximate Model (2.7) by a proxy model
where 012 are 77d generated from a truncated Gamma distribution. Under this proxy model, we derive
the rate of convergence for (5%, @) and the consistency of K. In Section 2.4.3, we connect Model (2.7)
to the proxy model and discuss the theory for Model (2.7).

Through this section, we assume Xj, X», . . ., X, are generated as follows:
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Assumption 2.4.1. LetY = [Y1,Y>,. .. ,Y,]T € R"*? be a random matrix with independent but

not necessarily identically distributed entries, where E[Y;(;)] = 0 and Var(Y;(j)) = 1,for1 < i < »,

1 <j<p Givenoy,oo,...,00 > 0,0 > g, > ... 2 up > 0, and orthonormal vectors
T T

€,8,---,8 E R let X = Soieilor + )8k + Z;):,H JJZEJEJ . We assume X; = =V/2Y,, for

1<7:<n.

Under this assumption, each X; is a linear transform of a random vector Y; that has independent

entries. This is stronger than assuming Cov(X;) = Z but is conventional in the literature.

Assumption 2.4.2. For each integer 7 > 1, there exists a universal constant C,, > 0 such that

SUP; << 1<j<p Bl YA(7)]"] < Con

This assumption can be further relaxed. For example, we do not actually need the inequality to hold
for every m > 1but only for 1 < m < M, where M is a properly large integer (Bloemendal et al.,
2016, Knowles & Yin, 2017). We use the current assumption for convenience.

We will use the following notation frequently, which is conventional in random matrix theory:

Definition 2.4.1. Let U, and V), be two sequences of random variables indexed by 7. We say that
U, is stochastically dominated by V,,, if forany ¢ > 0 and s > 0 there exists N = N(e, ) such that

P(U, > n°V,) < n*foralln > N. We write U, < V,,.

2.4.1 THE STANDARD SPIKED COVARIANCE MODEL

The standard spiked covariance model (Johnstone, 2001) assumes D = (TZIP. In this case, BEMA

simplifies to Algorithm 1. It outputs & and K. We first give an error bound on estimating 2.

Theorem 2.4.1 (Estimation error of 6°). Suppose Xi,Xo, . . ., X, satisfy Assumptions 2.4.1-2.4.2
with 0]2 = ¢?. Suppose K > 1is fixed and p/n — y for a constant y > 0. Let 6* be the estimator of

o2 by Algorithm 1, where the tuning parameter « is a constant in (0,1/2). Then, |6* — ¢?| < »~%.
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This result is connected to the robust estimation of ¢ in a standard spiked covariance model
(Gavish & Donoho, 2014, Kritchman & Nadler, 2009, Shabalin & Nobel, 2013). In these work,
there are only consistency results available (Donoho et al., 2018) which say that & — o> almost
surely, but there are no explicit error rates. Using the recent advancement in random matrix theory
on sharp large-deviation bounds for individual empirical eigenvalues (see Ke (2016) for a survey), we
can leverage those results to obtain an explicit bound for |¢* — o2|.

We then establish the consistency on estimating K.

Theorem 2.4.2 (Consistency of K). Suppose X;, X, . .., X, satisfy Assumptions 2.4.1-2.4.2 with
af = ¢%. Suppose K > 1is fixed, p/n — y € (0, 00), and u; > a’z(\ﬁ/—l— 7, ), where 7, > n1/3,
Let K be the estimator of K by Algorithm 1, where the tuning parameters are such thatz € (0,1/2)

is a constant and that 4 — 0 at a properly slow rate. As z — 00, P{k =K} =1-o0(1).

We compare the conditions required for consistent estimation of K with those in other work. Let
M= >...> lp denote the eigenvalues of 2. In our model, 4; = g, + P forl < k < K. The

condition in Theorem 2.4.2 translates to
Ak > P (1+ 7+ 7), 7, > n /3,

It is weaker than the conditions in Bai & Ng (2002) and Cai et al. (2020), where the former requires
Ak < pand the latter needs 1x — o0o. Our condition on Ax matches with the critical phase transi-
tion threshold in Baik et al. (2005) and is hardly improvable. In fact, Fan et al. (2020) showed that if
Ak < (14 /) then there exists no consistent estimator of K. Dobriban & Owen (2019) impose
the same condition on A, but they need stronger conditions on population eigenvectors. Their “de-
localization” condition states as || EAY?||o, — 0, where E = [§, ..., &, A = diag(1y, ..., k),
and || - ||oc is the maximum absolute row sum. It requires the eigenvectors to be incoherent (i..,

max;<;<x ||& || oo is sufficiently small) and that the eigenvalues cannot be too large. Examples such

77



as equal-correlation matrices (i.e., X(7,7) = a, forall 7 # j, wherea € (0,1) is a constant) are ex-
cluded. We do not need such a de-localization condition."

The proof of Theorem 2.4.2 is an application of the eigenvalue sticking theory (Bloemendal et al.,
2016). It compares the distribution of empirical eigenvalues {i/e} under the spiked covariance model
with the distribution of empirical eigenvalues {;12} under the null model ¥ = azlp. The claim is that

~ ~
the distribution of A is asymptotically close to the distribution of A, for a wide range of s. We use

this result to study the thresholding step in Algorithm 1.

2.4.2 THE TRUNCATED GAMMA-BASED GENERAL SPIKED COVARIANCE MODEL

The general spiked covariance model (2.7) assumes a}z are 7id drawn from Gamma(4, §/5°). It differs
from the conventional settings in random matrix theory because X is not a deterministic matrix and
because the limiting spectral density of X does not have a compact support. Unfortunately, there is no
existed random matrix theory that deals with this setting directly (Bao, 2020). We thus approximate

Model (2.2) by

sz % TruncGamma(6, 8/o*, Ty, o> T»), 1<;<p, (2.13)

where TruncGamma(a, 8, /, ) denotes the truncated Gamma distribution with rate and shape pa-
rameters « and 4 and truncations at / and #. When (73, 75) = (0, 00), it reduces to Model (2.2).
Given fixed 0 < 77 < T, < 00, the limiting spectral density of X has a compact support, so that
we can take advantage of the existing random matrix theory (Knowles & Yin, 2017, Ding, 2020). We

first present the theory for Model (2.13) and then discuss how to extend it to (77, 72) = (0, 00).

"We remark that the comparison is for the standard spiked covariance model only. For this model, our
method has the weakest conditions for consistent estimation of K. On the other hand, other methods apply to
some other settings, which are not considered in the comparison.
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Fixing 0 < 77 < T3 < oo and two intervals 72 = [4, 6] C (0,00) and Jp = [¢,d] € (0, 00),
let Q(T1, T2, T2, Js) be the family of distributions TruncGamma(4, 8/5%, 5> T1, > T, ) satistying
that &2 € Jr and 8 € Jp. The following Lemma is a result of Theorem 3.12 and Example 2.9 in

Knowles & Yin (2017), and its proof is omitted.

Lemma 2.4.1. SupposeXi, Xy, . .., X, satisfy Assumptions 2.4.1-2.4.2 with o~ generated from Model
(2.13). Suppose K > 1isfixed and p/n — y for a constant y # 1. Suppose the truncated Gamma dis-
tribution in (2.13) is from the family Q( 71, T, J2, J5), for fixed (11, T2, T2, J5). Let Hp g 1, 1, (2)
be the CDF of TruncGamma(é, 8/0%, > T, > T3). Define a distribution F, (02,6, i, T5) in the
same way as in (2.8)-(2.9), with H 2 (¢) replaced by H g 7, 1,(¢) and y replaced by y, = p/n. Let
g: = F,'(i/p; 0,0, T1, T») be the (i/p)-upper-quantile of this distribution, where p = 7 A p. As

n — 00, for every K < 7 < p, we have H. — gl =A@ +H1—0)]VPnm23,

Given (T3, T3), we estimate o> and § by

(&, @) = argmin(azﬂ)ejfzxjg{ Z [il — F;Ll(z'/j); 2,0, Th, Tz)]z}. (2.14)

ap<i<(l—a)p

It can be solved by a slight modification of Step 1 of Algorithm 2. We note that (2.13) is equivalent
to (7]2/0-2 S TruncGamma(9, 6, 71, 7). Hence, the quantiles satisfy that F;l(z'/f); 2,60, T, ) =
- Fy;l (7/p;1,6, Th, T,). We first modify GetQT so that it outputs the quantiles of I, (51,6, Th, T2)
for any given 6. Next, we mimic Step 1 of Algorithm 2 to solve (2.14), where we run a least-squares for

every ¢ and then optimize over ¢ via a grid search. The details are relegated to the Appendix.

Theorem 2.4.3 (Estimation error of 5% and 6). Suppose the conditions of Lemma 2.4.1 hold, where

K,y, 11, T2, J 2, and Jp are fixed. Let

[ g 49+1€xp( (9x)dx][ 1 - 1€XP(—(9x)dx] |
U xDexp(—bx) dx]
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Suppose there exists a constant @ = (71, T», J5) such that supye 7, @'(8) < —w. Let #* and fbe
the estimators from (2.14), where the tuning parameter « satisfies #p > K and 2p = O(n/ log(n)).

Asn — 0o, wehave |72 — 2| < nLand |§ — 6] < n 1.

Theorem 2.4.3 assumes supge 7, ®'(6) < —a for some constant @ > 0. It is a regularity condi-

tion on (Jg, 11, T2). The next lemma shows that this condition is mild.

Lemma 2.4.2. For any fixed J; = [c,d] and w < d™?, there exist constants 0 < 7} < T3 < 00

such that supge 7, ®'(6; 11, T2) < —wholdsforall 7} < T{ and T > T5.

With the estimates & and @, we then slightly modify Step 2 of Algorithm 2 by thresholding all

the empirical eigenvalues at

. (1 — B)-quantle of the distribution of j.;k under the null model
T, = » - . 1)
% = diag(d?, . .. ,aﬁ), where sz X TruncGamma(6, 8/5%,6* Ty, T>)
This threshold can be computed via Monte Carlo simulations, similarly as in Step 2 of Algorithm 2.

We estimate K by the number of empirical eigenvalues exceeding T

To establish the consistency of K, we introduce the function

1 1
G(x) = —; + }// [_1 n deFz,57ﬂ7T2 (f) (216)

By Example 2.9 of Knowles & Yin (2017), G(x) has 2 critical points 0 > xf > x5 (the definition of
critical points can be found in Knowles & Yin (2017)), and the distribution F, (-; 02,0, Ty, T») defined
in Lemma 2.4.1 has the support [G(x} ), G(x{)]. The next theorem is proved in the appendix. It uses

aresultin Ding (2020) about the top empirical eigenvalues.

Theorem 2.4.4 (Consistency of K). Suppose the conditions of Lemma 2.4.1 and Theorem 2.4.3

hold. Let x{ be the largest critical point of the function G(x) in (2.16). We assume —1/(77 + ;) >
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xf + 7,5 where 7 > 0 is a constant and 77 is a truncation point in (2.13). Let K = #{1 <i <
(nAp) : A > T/_g}, where i;g is as in (2.15) with 8 — 0 at a properly slow rate. Asn — o0,
P{K=K}=1—o(1).

2.4.3 REMARKS ONEXTENSION TO THE GAMMA-BASED GENERAL SPIKED COVARIANCE

MATRIX

We now discuss extension of the theoretical results to the Gamma-based general spiked covariance
model (2.7), which is an extreme case of Model (2.13) at 7} = 0 and 7, = oo. As mentioned
earlier, this setting is unconventional because the eigenvalues of X are stochastic and the support of
the limiting spectral density of X is unbounded.

First, we discuss the estimation of (2, ). The accuracy of (6%, ) depends on whether we have
similar large deviation bounds to those in Lemma 2.4.1. Our conjecture is that the stochasticity and
unboundedness of the spectrum of X has a negligible effect on the eigenvalues deep into the bulk. To
see why, we note that the classical result about weak convergence of ESD (Marcenko & Pastur, 1967)
does not need the limiting spectrum of X to have a compact support; therefore, the unboundedness is
notan issue. The stochasticity is not an issue, either, because almost surely, the spectral distribution of
< converges weakly to Gamma(4, /5*). We conclude that the weak convergence of ESD still holds.
This further implies that the bulk eigenvalues still converge to the corresponding quantiles of the
theoretical limit of ESD.

The open question is whether we have the rates of convergence as in Lemma 2.4.1. The stochas-
ticity and unboundedness of the spectrum of X affect the rates of convergence of large eigenvalues.

We thus do not expect Lemma 2.4.1 to hold for all 7. Fortunately, the estimation of (¢?, §) in BEMA

*In our model (see Assumption 2.4.1), the spiked eigenvalues of X are {yk + o3 h<ik<x. Therefore, x T
is a lower bound of these spiked eigenvalues.
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only involves bulk eigenvalues in the middle range, i.c.,ap < 7 < (1 — 2)p, wherea € (0,1/2) isa
constant. We conjecture that Lemma 2.4.1 continues to hold for these eigenvalues. If our conjecture
is correct, then we can show similar results for & and 6 as those in Theorem 2.4.3.

Next, we discuss the consistency of K. The stochasticity and unboundedness of the spectrum of
2 together yields a significant change of the behavior of edge eigenvalues. This can be seen from a
relevant setting in Kwak et al. (2019)— X is a diagonal matrix whose diagonal entries are 7zd drawn
from a density p(¢) oc (1 — £)°A) - 1{I < ¢t < 1}, where b > land/ € (0,1) are constants
and £ € C'([/,1]). This setting has no spike. They showed that the limiting distribution of the largest
eigenvalue, j:, is not a Tracy-Widom distribution; it is a Weibull distribution if y < y,, and a Gaussian
distribution if > y,, where y, is a positive constant. Our model is even more complicated, where
the Gamma density exhibits a similar convex decay on the right tail but has an unbounded support.
We do not expect if to follow a Tracy-Widom distribution any more.

However, this does not eliminate the consistency of K. To prove consistency, we first need that
the stochastic threshold (2.12) in BEMA well approximates the (1 — «)-upper-quantile of ir , where
i;k is the largest eigenvalue of the null model with no spike. This follows from the nature of Monte
Carlo simulations, no matter whether ir converges to a Tracy-Widom distribution. Furthermore, the
implementation of (2.12) does not need any knowledge of the limiting distribution of ir .

To prove consistency, we also need to show that, under Model (2.7), when g, is appropriately
large, (i) the distribution of p) K+11s asymptotically close to the distribution of ir in the null model (this
is the “eigenvalue sticking” argument), and (ii) each of il, iz, ey D is significantly larger than the
(1—a)-upper-quantile of ir . We conjecture that both (i)-(ii) are correct, provided that ;- > log ().
If our conjectures are correct, then we can obtain the consistency of K as in Theorem 2.4.4, under the
slightly stronger condition that ¢, > log(n).

The rigorous proofs of our conjectures require re-development of several fundamental results

in random matrix theory for Model (2.7), such as the local law on bulk eigenvalues and the limiting
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behavior of edge eigenvalues (including the spiked and non-spiked ones). It is beyond the scope of

this chapter, and we leave for future work.

2.5 SIMULATION STUDIES

We examine the performance of our methods in simulations. To differentiate between Algorithm 1
and Algorithm 2, we call the former BEMAO and the latter BEMA. BEMAO is a simplified version
of BEMA, specifically designed for the standard spiked covariance model. The tuning parameters
are fixed as (@, 8) = (0.2, 0.1) for BEMAO and («, 8, M) = (0.2,0.1,500) for BEMA when not
particularly specified.

In Section 2.4.2, we also introduced a modification of BEMA using the truncated Gamma-based
spiked mode for technical needs in our theoretical studies. We showed that this algorithm has desirable
theoretical properties. It however requires two additional tuning parameters (77, 75 ). Our simulation
studies (not reported here) show that the performance of the modified BEMA is similar to that of
BEMA, when T is appropriately small and 75 is appropriately large. For this reason, we use BEMA,
instead of the modified BEMA, in the following simulation studies.

We compare our methods with a few methods in the literature, including the deterministic par-
allel analysis (DDPA) from Dobriban & Owen (2019), the empirical Kaiser’s criterion (EKC) from
Braeken & Van Assen (2017), the information criteria /Cy; (Bai&Ng) from Bai & Ng (2002) and the

eigen-gap detection (Pass&Yao) from Passemier & Yao (2014).

SimuraTION 1. This experiment is for the standard spiked covariance model, where we investigate
the performance of BEMAO and the confidence interval for K as described in Section 2.3.3. We gen-

erate data from X; 22 N| (0,%),1 <7 < n, where X satisfies Model (2.3) with

/41:/42:---:;41(:/0-0'2\/10/;1, for some p > 0.
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Figure 2.5: Simulation 1: The performance of BEMAGO in a standard spiked model. K = S, and (#, p) take
the value of (10000, 1000), (1500, 5000), and (1500, 1500) (from left to right). The top three panels show the

estimator K along with the 95% confidence upper/lower bound, where each quantity is the average of 100 repe-
titions. The bottom three panels show the probability of correctly estimating K (correct rate) and the coverage
probabilities of the 95% confidence intervals (coverage rates). In each panel, the x-axis is the value of p (see the
text for definition), controlling the magnitude of spiked eigenvalues. Our theory states that BEMAO gives a
consistent estimator of K when p slightly exceeds 1. This is confirmed by these simulations.

The value of p controls the magnitude of spiked eigenvalues. p < 1is the region where consistent
estimation of K is impossible (Baik et al., 2005, Fan et al., 2020). We examine the performance of
BEMADO in the region of p > 1.

Fix K = Sand ¢ = 1. We consider three settings, where (7, p) are (10000, 1000), (1500, 5000),
and (1500,1500), respectively. They cover different cases of size relationship between p and 7. The
eigenvector matrix Z is drawn uniformly from the Stiefel manifold (which is the collection of all p x K
matrices that have orthonormal columns). For each of the three settings, we vary the value of p and
report the average of K and upper/lower boundary of a 95% confidence interval, based on 100 repe-

titions; the results are in the top three panels of Figure 2.5. We also report the probability of correctly
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estimating K (correct rate) and the coverage probability of the 95% confidence interval (coverage rate);
see the bottom three panels of Figure 2.5.

It agrees with our theoretical understanding that p = 1is the critical phase transition point. When
p slightly departs from 1, the coverage rate starts to increase from 0% and quickly reaches the target
of 95%. The increase of the correct rate is slightly slower, but it reaches 100% before p = 1.5, for all
three settings. Our theory suggests that the correct rate is asymptotically 100% as long as p > 1, but
in the finite-sample performance we need a larger p to attain a 100% correct rate. Furthermore, as p
increases, the estimated K increases from 0 to S, with a sharp change at around p = 1. The length of

the 95% confidence interval initially decreases with p and then stays almost constant.

SiMULATION 2. In this simulation, we compare BEMAO and BEMA with other methods. We con-
sider both the standard spiked covariance model (2.3) and the general spiked covariance model (2.7).
BEMAO and BEMA are designed for these two settings, respectively. We note that BEMA can also
be applied to Model (2.3), which simply ignores the prior knowledge of equal diagonal in the resid-
ual covariance matrix. We thereby also include BEMA in the numerical comparison on the standard
spiked covariance model.

Given (n,p, K, 1, 0), we generate data X; S N(0,%),1 < 7 < n, where X satisfies Model (2.7)
with 2 = 1and ¢, = A forl < k& < K. The eigenvector matrix Z is drawn uniformly from the
Stiefel manifold. We allow 4 to take the value of co; when 8 = o0, it indicates that X follows the
standard spiked covariance model (2.3). We consider 8 different settings which cover a wide range
of parameter values. The results are shown in Table 2.1, where the average K and the probability of
correctly estimating K (correct rate) are reported based on 500 repetitions.

We have a few observations. First, in the standard spiked covariance model (¢ = oo, top four rows
of Table 2.1), BEMAO has the best performance. Interestingly, BEMA has nearly comparable perfor-

mance. The reason is that the algorithm will automatically output a very large &, so that the estimator
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(n,p,K,2,0) BEMAO BEMA DDPA EKC Bai&Ng Pass&Yao

(100,500,5,9,00)  4.996(99.6%) 4.982(98.2%) 6.102 (41%) 5.552(57.8%) 0 (0%) 4.904 (929%)
(100,500, 5, 49, 00) 5 (100%) 5 (100%) 6.328(38%)  6.4(27.4%) S (100%) 5.012 (98.8%)
(500,100, 5,1.5,00) 5 (100%) 493(93.0%)  6.1(45.6%) 5.016 (98.4%) 0 (0%) 2.784 (43.8%)
(500,100,5,3,00) 5 (100%) 5 (100%) 5.92(45.4%)  5.056(94.4%) 0 (0%) 4.432 (84.4%)
(100,500,5,15,3) - 5.182(85.2%) 9.222(20.8%)  5.974(40.2%) 0.078 (0%)  5.292(73.2%)
(100,500,5,50,3) - 5142 (88.4%) 9.214(20.8%)  9.852(8.6%) 5 (100%) 5.362 (70.4%)
(500,100, 5,4.5,3) - 4748 (81.2%) 57.954(25.4%) 5.588(49.0%) 3.392(39%)  7.624 (5%)

(500,100,5,6,3) - 5.018 (98.2%) 43.734(38.8%) 6.244 (18.4%) 5.002(99.8%) 8.098 (4.2%)

Table 2.1: Simulation 2: Comparison of different methods in the standard/general spiked model. In these
settings, all the spiked eigenvalues are equal to 4, and the eigenvectors are randomly generated from the Stiefel
manifold. The top four rows (¢ = 00) correspond to the standard spiked model, and the bottom four rows
correspond to the general spiked model. The number in each cell is the average K over 500 repetitions, and the
number in brackets is the probability of correctly estimating K (correct rate).

is similar to that of knowing ¢ = oo. This suggests that we do not have to choose between BEMAO
and BEMA in practice. We can always use BEMA, even when the data come from the standard spiked
covariance model. On the other hand, BEMAO is conceptually simpler and computationally much
faster, hence, it is still the better choice if we are confident that the standard spiked covariance model
holds.

Second, in the general spiked covariance model (bottom four rows of Table 2.1), BEMA outper-
forms DDPA, EKC and Pass&Yao in all settings, and outperforms Bai&Ng in two out of four settings.
BEMA is the only method whose correct rate is above 80% in all settings.

DDPA requires a delocalization condition. Let Z be the p X K matrix of eigenvectors, and let A be
the diagonal matrix consisting of spiked eigenvalues. The delocalization condition is || EAY/?|| o, — 0.
It prevents eigenvectors from having large entries. This condition is not satisfied here, explaining the
unsatisfactory performance of DDPA. Bai&Ng requires that the spikes are sufficiently large. The
larger p/n, the higher requirement of spikes. When p/n = 5and 1 = 49 or when p/n = 0.2 and
A = 6, Bai&Ng has a nearly 100% correct rate. However, as 1 decreases, the correct rate drops very
quickly. EKC uses a thresholding scheme that gives smaller thresholds to lower ranked eigenvalues

(e.g., the threshold for iz is smaller than the threshold for il) This method often over-estimates K,
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(n,p,K,5,0) BEMAO BEMA DDPA EKC Bai&Ng Pass&Yao

(100,500,1,1,00)  0.988(96%)  0.956(95.2%) 1.086(88.6%) 1.07(88.8%) 0 (0%) 0.934 (91.8%)
(100,500,1,3,00) 1.012(98.8%) 1.008(99.2%) 1138(87%)  1.146(86.4%) 1(100%) 1.036 (96.8%)
(500,100,1,3,00) 1.020 (98%)  1(100%) 1152(85.6%)  1.056 (94.4%) 0 (0%) 1.018 (98.2%)
(500,100,1,6,00) 1.014(98.6%) 1(100%) 1.124 (88.6%)  1.12 (88%) 1(100%) 1.014 (98.8%)
(100,500, 1,2,10) - 1.096 (90.6%) 1.2(82.6%)  1.102(90.4%) 0.388(38.8%) 1.084 (92.6%)
(100,500, 1,6,10) - 1104 (89.8%) 1.226 (79%)  1.608 (54.2%) 1(100%) 1.054 (95%)
(500,100,1,6,3) - 1114 (89.2%) 1.062(95.4%) 1.226(78.2%) 1.008(99.4%) 3.93 (6.2%)
(500,100,1,12,3) - 1.124(88.0%)  1.042(97.4%) 3.782(0.8%) 1.006(99.4%) 3.672(9.8%)

Table 2.2: Simulation 3: Comparison of different methods in the standard/general spiked model, when the
eigenvectors are ‘delocalized’. Here, s; controls the magnitude of spiked eigenvalues, where 5 (p/7) plays the role
of A in Simulation 2. The top four rows (¢ = 00) correspond to the standard spiked model, and the bottom
four rows correspond to the general spiked model. The number in each cell is the average K, and the number
in brackets is the probability of correctly estimating K (correct rate).

especially when all the spikes are large (e.g., Row 6 of Table 2.1). Pass&Yao is developed for the standard
spiked model. It has an unsatisfactory performance in the general spiked model (bottom four rows of

Table 2.1).

SIMULATION 3. In this simulation, we change the generation process of eigenvectors to satisfy the
“delocalization condition” (Dobriban & Owen, 2019). This condition means |[|EAY? | is suffi-
ciently small, where Z is the p x K matrix consisting of eigenvectors and A is the diagonal matrix
consisting of spiked eigenvalues.

We adapt the simulation settings in Dobriban & Owen (2019) to our general spiked model. Given
(n,p,K,0) and 51, ..., 55 > 0, we generate X, “ N(0,%),1 < i < n,whereX = BB" + D. The
matrix D = diag(s7,43, .. ., 0;) is generated in the same way as in Model (2.7), and Bis a p x K
matrix obtained by first generating a p X K matrix with independent N(0,1) entries and then re-
normalizing each column to have an ?-norm equal to s \/]% Under this setting, the Loo-norm of
each population eigenvector is only O(p_l/ 2 \/@ ), so the “delocalization” condition is satisfied.
We fix K = 1and let (7, p, 51, 6) vary. The results are shown in Table 2.2.

Compared with Simulation 2, the performance of DDPA is significantly better. BEMAO and
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BEMA continue to perform well, indicating that their performance is insensitive to the generating
process of eigenvectors. This is consistent with our theoretic understanding. In Section 2.4, we have

seen that the success of BEMAO and BEMA requires no conditions on eigenvectors.

SIMULATION 4. In this simulation, we investigate the case of model misspecification. We still as-
sume that X is a low-rank matrix plus a residual covariance matrix D. However, we no longer let D
be a diagonal matrix. Below, we consider three misspecified models, where D is a Toeplitz matrix, a

block-wise diagonal matrix, and a sparse matrix, respectively.

* Inthe first model, D(7,7) = (14 |7 —|) ™% for1 < 7,7 < p. Here, D is a Toeplitz matrix with

polynomial decays in the off-diagonal. The larger 7, the closer to a diagonal matrix.

* In the second model, D(7,7) = 1for1 <7 < p,and D(2j — 1,2) = D(2/,2j — 1) = bfor
1 <j < p/2. Disablock-wise diagonal matrix which has many 2 x 2 diagonal blocks. The

smaller &, the closer to a diagonal matrix.

* In the third model, D(7,7) = 1for1 < 7 < p,and D(7,) = D(j,7) ~ ¢ - Bernoulli(0.1) for
7 # j. The matrix D has approximately 0.1p nonzero entries in each row. The smaller ¢, the

closer to a diagonal matrix.

The low-rank part of X is generated in the same way as before: Weletall #, equal to 1 and let the eigen-
vector matrix Z be drawn uniformly from the Stiefel manifold, which allows = to have orthonormal
columns. Fix (7, p, K) = (500,100, 1). The results are shown in Table 2.3.

For each misspecified model, we consider two settings, where D is closer to a diagonal matrix in the
first setting (Rows 1,3,5 of Table 2.3) than in the second one (Rows 2,4,6 of Table 2.3). Every method
performs better in the first case, suggesting that the diagonal assumption on D is indeed critical. In

comparison, BEMA is least sensitive to a non-diagonal D. In Rows 2,4,6 of Table 2.3, the correct rate

88



A residual covariance BEMAO BEMA DDPA EKC Bai&Ng Pass&Yao

6 Toeplitz(t=4) 1104 (89.6%) 1(100%) 1422 (65.4%) 136 (67.4%) 1(100%) 1.06(94.8%)

3 Toeplitz(t=2) 9.352(0%)  112(88.6%) 100 (0%) 15148 (0%)  0(0%)  2.46 (24.6%)
6 block diagonal(b=0.1) 1.344 (66.8%) 1(100%) 2378 (3L6%) 1.854(33.6%) 1(100%) 1.038 (96.6%)
3 block diagonal(b=0.2) 3.764(0%)  1(100%) 100 (0%) 6.602(0%)  0(0%) 112 (89.8%)

6 sparse(c=0.05) 1784 (30.2%) 1016 (98.4%) 5.024 (9.4%)  2.474(9.4%) 1(100%) 1.084 (91.6%)
3 0

sparse(c=0.08) 3.348(0%)  1.036(96.4%) 97.752(0%)  5.18(0%) (0%)  1.58 (47.4%)

Table 2.3: Simulation 4: Comparison of different methods in three misspecified models, where the residual
covariance matrix D is a Toeplitz matrix, a block diagonal matrix, and a sparse matrix, respectively. (7, p, K) =
(500,100, 1). The spiked eigenvalue is equal to 1. For each misspecified model, we consider two settings, where
D is closer to a diagonal matrix in the first setting (rows 1, 3, 5) than in the second setting (rows 2, 4, 6). The
number in each cell is the average K, and the number in brackets is the probability of correctly estimating XK
(correct rate).

of BEMA is still above 80%, while the correct rate of some other methods is only 0%. Pass&Yao is the
second least sensitive to a non-diagonal D.

To try to understand this phenomenon, we first note that one can always apply an orthogonal
transformation to data vectors Xj, ..., X, so that the post-transformation data follow a different
spiked covariance model whose residual covariance matrix Disa diagonal matrix containing the eigen-
values of D. This orthogonal transformation is unknown in practice. However, if a method uses the
empirical eigenvalues on/y, it does not matter whether or not we know this orthogonal transforma-
tion, because any orthogonal transformation does not change eigenvalues of the sample covariance
matrix and thus it does not change the estimator of K. It implies that, for methods that only use
eigenvalues, we can treat the misspecified model as if D is replaced by the diagonal matrix D. There-
fore, the surprising robustness of BEMA can be interpreted as the capability of the gamma model (2.2)
in approximating the eigenvalue structure in D. The flexibility of this gamma model comes from the
parameter 6. In comparison, such strong robustness is not observed for BEMAO, where & is fixed as
0.

The method of DDPA uses empirical eigenvectors in the procedure, thus, it is more sensitive to

the diagonal assumption of D. EKC uses eigenvalues only, but its thresholding scheme is too con-
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distribution  (1,6)  BEMAO(0.1) BEMAO(0.2) BEMAO(0.3) BEMA(01) BEMA(0.2) BEMA (0.3)
Gaussian (15,00) S (100%) 5 (100%) 5 (100%) 495(95%)  4.93(93%)  4.904(90.4%)
Randomsign  (1.5,00)  4.996 (99.6%) 4.996 (99.6%) 4.998 (99.8%) 4.972(97.2%) 4.96(96%)  4.94 (94%)
Laplace (1.5,00) 4.998(99.8%) 4.998(99.8%) 4.998(99.8%) 4.914(91.4%) 4.9 (90%) 4.88 (88%)
Gaussian (45.3) - - - 4.518(69%)  4.748(81.2%) 4.76 (81%)
Randomsign  (4.5,3) - - - 4678 (78.4%) 4.818(85%) 4.9 (85.4%)
Laplace (45,3) - - - 4.352(56.8%) 4.634(73.8%) 4.656(74.8%)

Table 2.4: Simulation 5: The robustness of BEMAO and BEM A under non-Gaussian data and different values
of a. Data are generated from the factor model with Gaussian/random-sign/Laplace factors and noise. K = 5,
and all the spiked eigenvalues are equal to 4. BEMAO and BEMA are implemented with « € {0.1,0.2,0.3}
(denoted as BEMAO («)/BEMA () in the table). The number in each cell is the average K, and the number in
brackets is the probability of correctly estimating K (correct rate).

servative. In these misspecified models, some bulk empirical eigenvalues can get large; EKC gives too

small thresholds to non-leading eigenvalues and yields over-estimation of XK.

SIMULATION 5. In this simulation, we tested the robustness of our proposed methods against the
choice of 2 and the distributional assumption on data generation. Fix (z, p, K) = (500,100, 5). We
generate X; = Ew; + ¢ where £ € R?*K is uniformly drawn from the Stiefel manifold, w; are 7id
drawn from a multivariate zero-mean distribution with covariance matrix Al g, ¢; are 7zd drawn from
a multivariate zero-mean distribution with covariance matrix D, and D is generated in the same way
as in Model (2.7) with o> = 1and § € {oc,3}. We consider three settings where the entries of w;
and ¢; are Gaussian, random sign, or Laplace variables (centered and re-scaled to match the required
variance), respectively. The results are in shown Table 2.4.

For the standard spiked covariance model (top 3 rows of Table 2.4), the results are very similar
for different distributions. For the general spiked covariance model (bottom 3 rows of Table 2.4), the
performance of BEMA increases/decreases when the data have lighter/heavier tails, but the difference
is within a reasonable range. Our theory only requires a mild distributional assumption (Assump-
tion 2.4.2), which is validated by this simulation.

The choice of « decides the fraction of bulk eigenvalues used to estimate (o2, §). The larger &, we
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method  (1,6) B =0.01 B=0.05 =01 =02 =03 =05
BEMAO (1.5,00) 4.994(99.4%) S (100%) 5 (100%) 5 (100%) 5 (100%) 5.006 (99.4%)
BEMA  (1.5,00) 4.712(72.6%) 4.888(89%)  4.93(93%)  4.966(96.6%) 4.982(98.2%) 4.996(99.6%)
BEMA  (6,3)  4.734(83.6%) 4.978(97.2%) 5.018(98.2%) 5.056(94.4%) 5.082(92%)  5.188 (83%)

Table 2.5: Simulation 6: The dependency of BEMAO and BEMA upon the value of 4. All the spiked eigenval-
ues are equal to 4, and the eigenvectors are randomly generated from the Stiefel manifold. BEMAO and BEMA

are implemented with 8 € {0.01,0.05,0.1,0.2,0.3,0.5}. The number in each cell is the average K, and the
number in brackets is the probability of correctly estimating K (correct rate).

restrict to a narrower range of eigenvalues deep into the bulk. The performance of BEMA is similar
fora € {0.2,0.3} and slightly worse for = 0.1. In the asymptotic theory, « can be chosen as
any constant, but for good finite-sample performance we need (p2 — K) to be properly large, where
p = n A p. In practice, if p is extremely large, the choice of « has a negligible effect; if p is only
moderately large, we recommend choosing a large « so that we are confident that pz is significantly

larger than K.

SIMULATIONG6.  In thissimulation, we briefly tested the dependency of our proposed methods upon
the choice of 4. Fix (7, p, K) = (500,100, 5). We generate data X; %i N(0,%),1 <7 < n, where
Y satisfies Model (2.7) with > = 1and W, = A, for1 < £ < K. The eigenvector matrix Z is drawn
uniformly from the Stiefel manifold. The results are shown in Table 2.5.

The choice of 4 decides the probability of overestimating K asymptotically. Ideally, when the spike
population eigenvalues are large enough, we can apply our methods with a very small 4 to tie down the
probability of overestimation without concerning about underestimation. In the case where the spike
population eigenvalues are only moderately large, we need to make a tradeoff between overestimation
and underestimation. As we observe from Table 2.5, 8 € [0.05, 0.3] empirically gives a nice tradeoff
for both BEMA and BEMAO. In practice, we recommend using 4 = 0.1 as a benchmark and one

may adjust this value base on his tolerance towards overestimating/underestimating K.
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2.6 REAL APPLICATIONS

We apply BEMA to two real datasets. We compare our method with EKC (Bracken & Van Assen,
2017), Bai&Ng (Bai & Ng, 2002), DDPA and its variants (Dobriban & Owen, 2019), and Pass&Yao
(Passemier & Yao, 2014). DDPA has 3 versions: DPA is a deterministic implementation of parallel
analysis (Horn, 1965); DDPA is an improvement of DPA aiming to resolve the issue of “eigenvalue
shadowing,” that is, an extremely large spiked eigenvalue shadows the other spiked eigenvalues and
causes an under-estimation of K; DDPA+ is a robust version of DDPA recommended for real data

analysis. We include all three versions in comparison.

2.6.1 THE LuNG CANCER DATA

The Lung Cancer dataset was collected and cleaned by Gordon et al. (2002). The original data set
contains the expression data of 12,533 genes and 181 subjects. The subjects divide into two groups,
the diseased group and the normal group. Jin & Wang (2016) processed this data set by removing
genes that are not differentially expressed across subject groups and resulted in a new data matrix with
(p, n) = (251,181). Theselection of these 251 “influential genes” used no information of true groups,
including the number of groups. We use this processed data matrix, because the original data matrix
contains too many features (genes) that are irrelevant to the clustering structure, where no method
gives meaningful results. It was argued in Jin & Wang (2016) that this data matrix follows a clustering
model. As a result, the covariance matrix has (K — 1) spiked eigenvalues, where Ky is the number of
clusters. Here, the ground-truth is Ky = 2, i.e., the true number of spiked eigenvalues is K = 1.

We apply BEMA with (2,8, M) = (0.2,0.1,500), i.c., 60%(= 1 — 2) of the bulk eigenvalues
in the middle range are used to estimate model parameters, the probability of over-estimating K is
controlled by 0.1, and S00 Monte Carlo samples are used to determine the ultimate threshold for

eigenvalues. The BEMA algorithm outputs (6,6%) = (0.288,0.926). In Figure 2.6(a), we check
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BEMA BEMAO EKC Bai&Ng DPass&Yao DDPA DPA DDPA+ | truth
Lung Cancer Data 1 27 56 180 8 180 1 11 1
1000 Genomes Data | 28 67 2503 4 28 85 20 4 25

Table 2.6: Comparison of different estimators of K using two real data sets: the lung cancer gene expression data
and the 1000 Genome data of genome-wide common genetic variants. For BEMA and BEMAO, the choices
of tuning parameters are described in the text. In the Appendix, we report the results with various choices of
tuning parameters, which are very stable.

the goodness-of-fit. If the proposed spiked covariance model (2.7) is suited for the data, we expect to
see by ~ 5 - F}Tn Y(k/$;1,8), except for a few small £. The left panel of Figure 2.6(a) plots O versus
F}fn Y(k/$;1, 8), suggesting a good fit to a line crossing the origin. The right panel contains the scree
plot, i.e., 2y, versus k. We also plot the curve o{"j:},_n1 (k/p; 8) versus k. This curve is a good fit to the
scree plot in the middle range. These plots suggest that Model (2.7) is well-suited for this dataset.

The estimator of K by BEMA is K = 1, which is exactly the same as the ground truth. This
is the output of the algorithm by setting 8 = 0.1. Using the argument in Section 2.3.3, this is also
a confidence lower bound for K. By setting 4 = 0.9 in the algorithm, we get a confidence upper
bound which is 4. This gives an 80% confidence interval for K as [1, 4]. Figure 2.6(b) contains the
scatter plots of the left singular vectors of X, colored by the true group label. The first singular vector
clearly contains information for separating two groups, but other singular vectors also contain some
information. This explains why the confidence upper bound is larger than 1.

The comparison with other methods is summarized in Table 2.6. The behavior of EKC is con-
sistent with our observation in simulations. In this dataset, the eigenvalues of the residual covariance
matrix vary widely (this can be seen from the estimated ¢ by BEMA, 6 = 0.288, which is far from
00), and EKC gives too small threshold to non-leading eigenvalues. The behavior of Bai&Ng is dif-
ferent from what we observe in simulations. Note that we have to use the effective p after the data
processing by Jin & Wang (2016), where the dimension reduces from 12,533 to 251. As a result, the

penalty in Bai&Ng is weaker than that in simulations, and so the method significantly over-estimates
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(a) The goodness-of-fit of BEMA on the Lung Cancer data. The
left panel plots 1 versus F;ﬂl(k/i); 1,6) (which is quantile of the
theoretical limit of ESD with estimated §), where the first 4 eigen-
values are removed for better visualization. It fits well a line cross-
ing the origin. The right panel plots ik versus &, where the red solid
curve is 1_:'7: Y(k/p; 5, 6) versus k. The curve fits the bulk eigenval-
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covariance model (2.7) is suitable for this dataset.
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Figure 2.6: Results for the Lung Cancer data.

K. Pass&Yao also over-estimates K. Among DDPA and its variants, DPA performs the best. A possible

reason is that DPA does not use empirical eigenvectors and is more stable than DDPA and DDPA+.

Different from all other methods, BEMA not only outputs an estimator of K but also yields a

fitted model, Gamma(8, 8/5*) = Gamma(0.288, 0.311), for cigenvalues of the residual covariance

matrix. This can be useful for many other statistical inference tasks.

2.6.2 TuEe 1000 GENOMES DATA

The 1000 Genomes Phase 3 whole genome sequencing dataset (1000 Genomes Project Consortium,

2015) consists of the genotypes of 2504 subjects for over 84.4 million variants. We restrict the anal-

ysis to common variants with minor allele frequencies greater than 0.01. There are 26 self-reported

ethnicity groups, coming from five super-populations: African (AFR), Ad Mixed American (AMR),

East Asian (EAS), European (EUS), and South Asian (SAS).
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Figure 2.7: Results for analysis of the 1000 Genomes data .

In view of high linkage disequilibrium (LD) among some variants, which can distort the eigen-
vector and eigenvalue structure (Patterson et al., 2006), we first performed LD pruning. We used
an independent pair-wise LD pruning, with window size 1000, step size 50 and a threshold 0.02
for R-squared. Restricting to LD pruned markers, we obtain a data matrix with p = 24, 248 and
n = 2,504. The number of spiked eigenvalues equals to the number of true ancestry groups minus
one (Patterson et al., 2006). We treat the self-reported ethnicity groups as the ground truth, which
gives K = 25.

We apply BEMA with («,8,M) = (0.1,0.1,500). First, we check the goodness-of-fit. BEMA
outputs (4,57) = (4.256, 0.377). Figure 2.7(a) shows the Q-Q plot and the scree plot, with reference
curves from the BEMA fitting. The meaning of these plots is the same as described in Section 2.6.1

and is also explained in the caption of this figure, which we do not repeat here. The conclusion is that
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our proposed spiked covariance model (2.7) is an excellent fit to this dataset.

The estimated model for eigenvalues of the residual covariance matrix is Gamma(4, §/5%) =
Gamma(4.256,11.3). We note that the variance of the genotype on each SNP is 2¢4(1 — ¢), where g is
the null Minor Allele Frequency (MAF) of this SNP. We thus interpret the BEMA fitting as follows:
After the ancestry effect is removed, the null MAFs g; (on LD pruned SNPs) satisfy that 2¢;(1—g;) S
Gamma(4.256,11.3). The mean and standard deviation of this gamma distribution is 0.377 and 0.18,
respectively.

Next, we look at the estimation of K. The BEMA algorithm outputs K= 28, which is very close
to the ground truth K = 25. The 98% confidence interval of K is [27, 31].

A comparison with other methods is summarized in Table 2.6. EKC and DDPA significantly
over-estimate K, and Bai&Ng and DDPA + significantly under-estimate K. DPA gives K = 20, which
is relatively close to the ground truth. BEMA and Pass&Yao both give K= 28, which is closest to the
ground truth. Pass&Yao assumes that all a}z are equal. In this data set, BEMA estimates the standard
deviation of 0]2 to be 0.18, which is relatively small. This explains why Pass&Yao also performs well.

Last, we validate the results by investigating the singular vectors of X. We first measure the as-
sociation between each singular vector and the true ethnicity labels by the Rayleigh quotient (Horn
& Johnson, 2012). Let#, € R” be the kth left singular vector of the centralized data matrix. We
treat its entries as 7 data points and compute the ratio of between-cluster-variance and within-cluster-
variance, denoted as RQy. A larger RQ);, indicates that 9, is more correlated with the true ethnicity
labels. Figure 2.8(a) plots RQy, versus k. The first a few singular vectors have very high association
with the ethnicity labels. These singular vectors capture the super population structure. The pair-
wise scatter plots of the first 4 singular vectors are contained in Figure 2.7(b), which show clearly that
super populations are well separated on these singular vectors. Besides the first few singular vectors,
the remaining singular vectors capture more of the sub-structure within each super population. Fig-

ure 2.8(b) is the parallel coordinate plot. In Figure 2.8(c), we re-generate parallel coordinate plots by

96



1.00- 10
£0.75- 08
Q
§ 0.6
E .
2050
2
% 0.4
& 0.25-
0.2
0.00- T T ot el
6 10 20 30 40 50 0.0
inde)( of Singu|ar vector 123 456 7 8 91011121314151617 181920212223 242526272829 30
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(c) The parallel coordinate plots of singular vectors for each super-population, color-coded by the ethnicity
groups within each super-population. The five super-populations are EAS (top left), EUR (top right), AFR
(middle left), AMR (middle right), and SAS (bottom left). The sub-population labels used in the legends of
can be found in 1000 Genomes Project Consortium (2015).

Figure 2.8: Interpretation of results for the 1000 Genomes data.
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restricting to each super population. Within the super population AMR, there is still separation of
ethnicity groups for £ as large as 27. This explains why BEMA outputs a K that is slightly larger than

the ground truth.

2.7 DiscussioN

We propose a new method for estimating the number of spiked eigenvalues in a large covariance ma-
trix. The novelty of our method lies in a systematic approach to incorporating bulk eigenvalues in the
estimation of K. Under a working model which assumes the diagonal entries of the residual covariance
matrix are 77d drawn from a Gamma distribution, we fit a parametric curve on bulk eigenvalues. The
estimated parameters of this curve are then used to decide a threshold for top eigenvalues and produce
an estimator of K. We study the theoretical properties of our method under a standard spiked covari-
ance model, and show that our estimator requires weaker conditions for consistent estimation of K
compared with the existing methods. We examine the performance of our method using both simu-
lated data and two real data sets. Our empirical results show that the proposed method outperforms
other competitors in a variety of scenarios.

Our approach is conceptually connected to the empirical null (Efron, 2004) in multiple testing.
The empirical null imposes a working model (e.g., a normal distribution) on Z-scores of individual
null hypotheses and estimates the parameters of this distribution from a large number of Z-scores.
The fitted null model is then used to correct p-values and help identify the non-null hypotheses. Simi-
larly, we impose a working model (i.e., a Gamma distribution) on non-spiked population eigenvalues
and estimate the parameters of this distribution from a large number of bulk empirical eigenvalues.
The fitted null model is then used to assist estimation of K. From this perspective, our method can
be regarded as a conceptual application of the empirical null approach to eigenvalues. Meanwhile,

our setting is much more complicated than that in multiple testing. The bulk eigenvalues are highly
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correlated, and their marginal distribution has no explicit form. These impose great challenges on
algorithm design and theoretical analysis.

For the theoretical study, we first analyze the special case of § = oo. This corresponds to the well-
known standard spiked covariance model (Johnstone, 2001), which has attracted many theoretical
interests. Our theory contributes to this literature with an explicit error bound on estimating o> and
consistency theory on estimating K. The theoretical study for a general & that corresponds to the
setting of heterogeneous residual variances is of great interest but is technically challenging. Instead,
we study a proxy model where the population eigenvalues are 774 drawn from a truncated Gamma
distribution. Under this model we derive error bounds for (6%, 8) and prove the consistency of K
with mild conditions. The analysis uses advanced results in random matrix theory (Bloemendal et al.,
2016, Knowles & Yin, 2017, Ding, 2020).

The method can be extended in multiple directions. Here we assume that the diagonal entries of
the residual covariance matrix are from a Gamma distribution. It can be generalized to other paramet-
ric distributions. In Section 2.4.2, we have already seen a variant of our method by using a truncated
Gamma distribution, which assumption helps eliminate extremely large variances for the residuals.
We can also use a mixture of Gamma distributions to accommodate heterogeneous feature groups.
Our main algorithm can be easily adapted to such cases. When the distribution family is unknown,
we may combine our method with the techniques in nonparametric density estimation. The thresh-
olding scheme in our method can also be modified. We currently apply a single threshold to all eigen-
values. Alternatively, we may use different thresholds for different eigenvalues. One proposal is to use
the (1 — B)-quantile of the distribution of iz in the null model (2.12) as a threshold for ;. We leave
these extensions to future work.

In the numerical experiments, our method exhibits robustness to model misspecification. It is
suggested by Simulation 4 of Section 2.5 that our method continues to work when the residual co-

variance matrix is a Toeplitz matrix, or a block-wise diagonal matrix, or a sparse matrix. A theoretical
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understanding to this phenomenon will be useful. As stated in Section 2.5, we have observed empiri-
cally that there always exist (02, §) such that the theoretical limit of ESD induced by the Gamma model
(2.2) can accurately approximate the theoretical limit of ESD induced by a Toeplitz or block-wise diag-
onal or sparse covariance matrix. It remains an interesting question on how to justify it theoretically.

We leave it to future work.
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On Posterior Consistency of Bayesian

Factor Models in High Dimensions

ConTRIBUTION This chapter is based on a paper Ma & Liu (2020) jointly with Prof. Jun S. Liu.
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3.1 INTRODUCTION

Factor models have been widely adopted in social science, economics, bioinformatics, and many other
fields that need interpretable dimension reduction for their data. They serve as a formal way to en-
code high-dimensional observations as a linear combination of a few latent factors plus idiosyncratic
errors, which accommodate some intuitive interpretations and can sometimes be further validated by
additional knowledge. In this chapter, we consider the following standard parametric formulation:
each G-dimensional vector observation y; (e.g., daily returns of ~3000 U.S. stocks) is assumed to be
linearly related to a K-dimensional vector of latent factors w; (e.g., 20 market factors) through a skinny

tall factor loading matrix B:

y: | w;, B, X “Ld Ne(Bw;, %), i=1,...,n, (3.1)
and the idiosyncratic variance matrix X is assumed to be diagonal as in the literature. In matrix form,
we denote the observations as Y = (yy, -+ ,y»), whichis a G X 7z matrix, and the factors as a K x
n matrix Q = (wi,...,w,). The factors are usually assumed to be independently and normally
distributed: w; ~ Nx(0, Ix).

People are often interested in estimating the G X K loading matrix B in order to gain insight on
the correlation structure of the observations. Marginalizing out w;, we obtain that [y; | B,Z] ~
Ng(0,BBT + %), implying that the loading matrix B is only identifiable up to a right orthogonal
transformation (rotationally invariant). It is thus rather difficult to pinpoint the factor loading matrix
consistently, to determine the dimensionality of the latent factors, or to design efficient algorithms to
conduct a proper full Bayesian analysis of the model.

In recent years, researchers begin to investigate the effects of sparsity assumptions on factor load-

ings, since a sparse loading matrix has a better interpretability and is easier to be identified. Consid-
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erable progresses have been made in the realm of sparse Bayesian factor analysis, such as Fruehwirth-
Schnatter & Lopes (2018) and Rockovd & George (2016), which are two representatives of the ap-
proaches using hierarchical continuous or discrete spike-and-slab (SpSL) priors (i.e., a mixture of a
concentrated distribution, which can be either continuous with a small variance or a point mass, and
a diffuse distribution) to represent the sparsity of the factor loading matrix. The identifiability issues
of sparse factor models are formally discussed in Fruchwirth-Schnatter & Lopes (2018), who also de-
signed an efficient Markov chain Monte Carlo (MCMC) procedure to simulate from the posterior
distribution of an over-parameterized sparse factor model under the discrete SpSL prior. Rockovi &
George (2016) proposed a sparse Bayesian factor analysis framework assuming independent (condi-
tioned on the feature allocation) continuous SpSL priors on loading matrix’s elements, under which
a fast posterior mode-detecting strategy is proposed.

Our work originates from a peculiar phenomena we observed when implementing a full Bayesian
inference procedure for the factor model in (3.1) under the SpSL prior from Rockovd & George
(2016). Although the simulation studies of Rockovd & George (2016) show a good consistency (up
to trivial rotations) of the maximum a posteriori (MAP) estimation of the loading matrix in various
large G and large # scenarios, we found that the corresponding Wald type consistency for the pos-
terior distribution requires 7 diverging at a faster rate than s besides other numerical conditions on
the true loading matrix that are generally required for justifying the posterior contraction (Pati et al.,
2014). Here s is the average number of nonzero elements of each column of the loading matrix B and
is usually much smaller than G.

When s > 7 but is still much smaller than G, we observed from simulations a ‘magnitude infla-
tion’ phenomenon. That is, posterior samples of the loading matrix are inflated in the matrix norm
compared to the data-generating loading matrix, and the extent of inflation is affected by the variance
of the slab part of the SpSL prior —the more diffuse the slab prior we use the more inflation we ob-

serve. Thiss > 7 setting is not unusual in practice. For example, the gene expression dataset analyzed
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in Section 3.7 contains measures of mRNA expression levels of G = 8932 genes in 10 mice in four
age periods (7 = 40). Each factor may correspond to a pathway and s would be the average number
of genes in each pathway, which can be much larger than 7.

The reason for this inflation phenomena is not immediately obvious since the total number of
observed quantities is # X G, corresponding to 7 observed G-dimensional vectors y;, 7 = 1,...,7,
which is often much larger than s X K, the number of nonzero elements in the loading matrix. Con-
sider a special case with K = 1, G = s,and X = I isknown. Thenw; for7 = 1,. .., nisascalar, and
B = (b1,...,bg)" isa G-dimensional vector. Thus, each component y;; of y; can be written as

Vi = wl~bj + &ijy Eij lfl\fl N(O, 1).

Although the total number of unknown parameters in the model is G+, the number of independent
scalar observations y;;is 7 X G, much larger than G+ #. The model is unidentifiable because w; x b; =
(wi/c) x (bjc) for any ¢ # 0. Requiring that the &; g N(0,1),7 =1,...,n, can indeed alleviate
the identifiability issue, but is not enough to “tie down” the 4;’s in the posterior distribution if there
are too many of them, which manifests itself in the inflation phenomena. But how many is “too
many”? In this simple example, there are “too many” if G > 7 (Section 3.4). Our later theoretical
analysis shows that, if 5, the column average number of nonzero elements of B, is no smaller than 7,
the inflation will provably happen, although we observed empirically that the inflation occurs when
s ~ n. An apparent remedy revealed from the above intuition and our later analysis is to further
restrict the ,’s, such as requiring that Y 7, w? = 2.

More generally speaking, due to a nearly non-identifiable structure of model (3.1), an overdose
of independent diffuse priors on loading matrix elements dilutes the signal from the data. Problems
with the use of diffuse priors in Bayesian inference when observation sample sizes are small relative to

the number of parameters being estimated have been studied in the literature (Efron, 1973, Kass &
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Wasserman, 1996, Natarajan & McCulloch, 1998). This problem for Bayesian factor analysis was also
noted in Ghosh & Dunson (2009) and a practical solution was proposed without further theoretical
investigations.

The Ghosh-Dunson model allows each factor to have an unknown variance that follows an in-
verse Gamma prior and imposes the standard Gaussian prior on the loading matrix’s elements. If one
reallocates the variance of factors to the loading matrix side, this model is equivalent to reformatting
the loading matrix as B = Q x D with D being a diagonal matrix, and assuming that 4 prior: elements
in Q are z.z.d. standard Gaussian and diagonal elements of D follow an inverse-Gamma distribution.
When assigning non-informative priors to diagonal elements of D, elements of B can also marginally
have non-informative priors. Consequently, this hierarchical prior construction resolves the magni-
tude inflation problem by reducing the number of diffuse parameters, which is achieved by imposing
a dependency between the magnitudes of B’s elements within the same column through D.

Some later work (e.g. Bhattacharya & Dunson (2011) and Legramanti et al. (2020)) all follows
this loading matrix decomposition idea to induce dependencies among the magnitudes. However,
informative priors are usually applied to D. In the fixed p and » — 00 scenario, they develop pos-
terior consistency results. But in the “Large s, Small n” scenario, these informative priors on D can
be influential for the magnitude of the loading matrix sampled from its posterior distribution as we
verified in simulations.

In this chapter, we study asymptotic behaviors of the posterior distributions when an indepen-
dent SpSL prior is employed for elements of the loading matrix and a right-rotational invariant distri-
bution is assumed on the factor matrix Q (i.e., Q and QR follows the same distribution for all z X 7
orthogonal matrix R; this is different from the left-rotational invariance that makes B nonidentifi-
able), to thoroughly understand the inflation phenomena. All consistency and convergence concepts
in our work are in the frequentist (repeated-sampling) sense. Take the loading matrix for example. If

for any open neighborhood NV of an entry of the true loading matrix (the magnitude of entries are at
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the constant order), the probability for a random draw from the posterior distribution of that entry
to fall in V, as a function of the data in the repeated sampling sense, converges to 1 almost surely as 7
and G go to infinity, we say that the posterior inference of the loading matrix is consistent, or simply
that “the posterior sample of the loading matrix converges to the truth.”

We theoretically show that the observed inflation phenomena of the posterior distribution is due
to the fact that the control of QQ T/ n, or more specifically, the singular values of QQ T/ n, is too weak
under only the normality assumption on the factor matrix Q. Our analysis also suggests that employ-
ing a stronger control over QQ7 /n can result in consistent posterior distribution for the loading ma-
trix in Roc¢kovd & George (2016)’s framework under high dimensions. Consequently, we consider
the y/n-orthonormal factor model: let Q/+/7 be uniform on the Stiefel manifold S¢#(K, 7), which is
the set of all orthonormal K-frames in R”, or, equivalently, the first K rows of a z X » Haar-distributed
random orthogonal matrix (there exists a unique right and left invariant Haar measure on the set of
orthogonal matrices, see Meckes (2014)).

From the modelling perspective, whenever the data is generated from the normal factor model (3.1)
where Y = BQ + A, it can also be viewed as generated by an /z-orthonormal factor model Y =
(BK(Q)/+/n) x (v/n-V(Q)) + A with loading matrix being (BK(Q)//%). Here K(Q) and V(Q)
are from the LQ decomposition Q = K(Q)V(Q). The new loading matrix (BK(Q)/+/7) inherits
the same generalized lower triangular structure (Fruehwirth-Schnatter & Lopes, 2018) from B (if it
posses any) and they are identical in the asymptotic sense as # — 00. Beside having the same model
interpretability, we reveal in our work that the y/z-orthonormal factor model enjoys two major ad-

Vantages:

(a)  The posterior distribution is more robust against the choice of the prior distribution for ele-
ments of the loading matrix in the “Large s, Small n” scenario. The posterior consistency can hold for

a broader set of prior choices including the one from Rockovi & George (2016).
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(B) Gibbs samplers for the normal factor model can be easily adapted to handle y/z-orthonormal
factors by only modifying the conditional sampling step for Q. This modification requires negligible
computational cost, but leads to a significant efficiency gain in MCMC sampling.

For these reasons, in the high-dimensional “Large s, Small n” scenario, we propose to use the /-
orthonormal factor model in place of the normal factor model when doing full Bayesian inference on
the population covariance matrix. Our proposed Gibbs sampler provides encouraging results in both
simulations and a real data example.

This chapteris structured as follows. Section 3.2 introduces the Bayesian factor model of Roc¢kovd
& George (2016) and a corresponding basic Gibbs sampler. Under their framework, Section 3.3 illus-
trates by a synthetic example the ‘magnitude inflation’ phenomenon of the posterior samples of the
loading matrix and its dependence upon the slab prior. Section 3.4 provides theoretical explanations
for the phenomenon. Section 3.5 reveals the connection between the phenomenon and the factor
modeling assumption, and proposes the /z-orthonormal factor model whose posterior consistency
can be guaranteed. By revisiting the synthetic example, Section 3.6 numerically verifies the consis-
tency and robustness against prior, and provides a comparison between our method and alternative
approaches from Ghosh & Dunson (2009) and Bhattacharya & Dunson (2011). Section 3.7 presents

a real-data application. Section 3.8 concludes with a short discussion.

3.2 BAYESIAN SPARSE FACTOR MODEL AND INFERENCE

3.2.1 PRIOR SETTINGS FOR LOADING COEFFICIENT SELECTION

In order to enhance model identifiability and interpretability, one often imposes a sparsity assump-
tion for the loading matrix. Traditional approaches considered post-hoc rotations as well as regulariza-
tion methods, see, e.g. Kaiser (1958) and Carvalho et al. (2008). By integrating these two paradigms,

Rockovd & George (2016) proposed a sparse Bayesian factor model framework along with a fast mode-
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identifying PXL-EM algorithm. In their framework, the sparsity assumption on factor loading matrix

is encoded through a hierarchical SpSL prior, and we mostly follow their framework in this chapter.
Let 8, denote the (7, k) element of the loading matrix B. We assume that & priori the B’s fol-

low a SpSL prior and are mutually independent given the hyper-parameters. We introduce for each

element a binary indicator Yk such that

PBulyi A0, 1) = (L= 7 )¥(Byl2o0) + 7Byl A1), Ao > A (32)

where y(8|1) = % exp(—A4|4|) is a Laplace distribution, and

k
7]’/e|€k ond Bernoulli(4;) and 6, = H v, v itd Beta(e, 1). (3.3)
=1
We note that ; decreases with respect to k. We call @ = (64, ..., Ok) the feature sparsity vector and

I= (7/ 1) Gx i the feature allocation matrix. The idiosyncratic variance matrix X is assumed to be diag-
onal with elements 012 endowed with a conjugate prior: o7, - - - , 0% wrd Inverse-Gamma(y/2, 7e/2).
When K = 00, the foregoing setup leads to an infinite factor model, for which some weak consistency
results of the posterior distribution are established for the fixed-p scenario (Rockovd & George, 2016).
In simulations, they adopted a truncated approximation to the infinite factor model by setting K to
a pre-specified value larger than the true K in data generation. Throughout the chapter, we assume
that K'is a pre-specified finite value.

Rockovd & George (2016) showed in simulations that the PXL-EM converges dramatically faster
than the EM algorithm in finding the maximum a posteriori (MAP) estimator (i.e., B, X, © that max-
imizes 7(B, %, ® | Y)) and also demonstrated the consistency of MAP estimator in estimating the
loading matrix under the “Large s, Small n” setting. However, converting their method into a full

Bayesian inference procedure turns out to be more subtle and challenging.
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3.2.2 A STANDARD GIBBS SAMPLING PROCEDURE
The full posterior distribution of the parameters, (B, Q, Z, T, @), in a Bayes factor model can be writ-
ten generically as

7(B,Q,%,T, 0 [ Y) x fIY[B, Q, Z)f{Q)p(B|T)p(I©)p(©)p(%), (3.4)

where f'denotes the likelihood, p denotes prior,  denotes the K X 7 matrix with columns given by
w;, I denotes the G x K matrix with entries given by Vik and © denotes the K-dimensional feature
sparsity vector formed by the &’s. Here observation Y represents a G X 7 matrix with columns y;.

A standard Gibbs sampler (Gelfand & Smith, 1990, Liu, 2008, Tanner & Wong, 1987) for sam-
pling from the full posterior distribution (3.4) iteratively update each component according to the

following conditional distributions:

* Update B iteratively as
(Bl QT Z) o exp(—aufy, + by — culByl), allj ks

where Ajp = Z?:l wlz’/@/za}z7 bj/e = Zf:l wz/e()’y - Z[;ﬁk(gﬂwﬂ)/a}a Cik = ll}’j/e + 20(1 - 7/]k)
This conditional density can be written as a mixture of two truncated normal density, and thus

can be sampled efficiently.

* Update Q component by component independently:

w;|B, X ~ Ni((Ix + B'Z7'B) By, (I + B'=7'B) ™), i =1,..., 2.
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* Update I component by component independently:

B,©~B Ay exp(—1|B,1)0
. y ~ Dbern )
7t 20 exp(— 2018, ) (L — ) + A1 exp(— B4

forj=1,...,Gk=1,....K.

* Update O iteratively:
5;€|I‘, t9_/€ ~ Trunc—Beta(ﬁ/eH, 5/6_1; &k,ﬁk)
where 8y = 1, 041 = 0 and

#{yp=1j=1-,G} k<K
#yp=17=1, .G +a k=K

B, = #{;/jk:O,j:l,n- , G} + 1.

Here Trunc-Beta(a, b; a, 8) is the density proportional to fzer (%; 2, 8) [{xe .5}

* Update X along its diagonal:
1 1 -
sz»|B, Q ~ Inverse-Gamma (2(77 + n), 5(;75 + ; (yj — B]Twl.)2)>

where Bf represents the j-th row vector of B.

Due to multimodality of the posterior distribution caused by the invariance of the likelihood

function under matrix rotations (therefore only the sparsity prior can provide information to differ-

entiate different modes) and the strong ties between the factor loading and common factors (thus

making gaps among different modes very deep), the performance of this basic Gibbs sampler is very
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sticky and can only explore the neighborhood of the initial values. By initializing the sampler at some
estimated mode such as the MAP estimator from the PXL-EM algorithm, however, this sampler ap-
pears to be a reasonable tool for exploring the local posterior behavior around the MAP. Indeed, more
dramatic global MCMC transition moves are needed in order to have a fully functional MCMC sam-

pler (see Appendix C.1).

3.3 THE MAGNITUDE INFLATION PHENOMENON

3.3.1 A SYNTHETIC EXAMPLE

To illustrate the magnitude inflation phenomenon in high dimensional sparse factor models, we gener-
ate a dataset from model (3.1) similar to that of Roc¢kovd & George (2016), which consists of # = 100
observations, G = 1956 responses, and K = S factors drawn from A (0, Is). The true loading ma-
trix is a block diagonal matrix as shown in the leftmost sub-figure of Figure 3.1, where black entries
correspond to 1 and blank entries correspond to 0 (thus s = 500 > #). X, is selected to be the
identity matrix. With the synthetic dataset, we use the basic Gibbs sampler from section 2.2 with
a=1/G,y=¢=1, = 20,4 € {0.001,0.1} and K = 8, to explore the posterior distribution.
Ten snapshots of heat-maps of |B| in a Gibbs trajectory of 100 iterations initialized at the true
value is displayed in Figure 3.1, from which we can conclude that the direction of each column vector
in the loading matrix is well preserved during Gibbs iterations, whereas the absolute value of every non-
zero element increases over the iteration time and eventually stabilizes around a much larger value than
the true one (about 4000 in our test setting with 2; = 0.001). As a demonstration of the inflation,
Figure 3.2(a) displays the trace plot of log(|§, ;[) with 2 = 0.001 and 0.1, respectively, which also
indicates the slow convergence of the basic Gibbs sampler using a small A;. The degree of inflation is
influenced by the ratio of the number of observations 7 over the average number of nonzero elements

of each column in the true factor loading matrix, 5, as well as the choice of independent slab priors. For
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Figure 3.1: Heat-maps of |B| in 100 iterations from the basic Gibbs sampler. The black entries correspond
to 1 and blank entries correspond to 0. The directions of the columns of the loading matrix are well preserved
throughout the Gibbs iterations.
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Figure 3.2: Trace plot oflog(|8, ,|) from Gibbs sampler with » =100,1000, and 2; = 0.001, 0.1. The sampler
of 8, | stabilizes around a much larger value than the truth, 1. The inflation of samples is more severe when 7 is
smaller or the variance of slab priors is larger.

example, when 7 is increased from 100 to 1000, the posterior samples of the loading matrix stabilize
around somewhere much closer to the true loading matrix.

By adding some scaling group moves (Liu & Wu, 1999, Liu & Sabatti, 2000) to the basic Gibbs
sampler (details can be found in Appendix C.1), which takes negligible computing time, we can greatly
improve the convergence rate of the sampler, as demonstrated by contrasting Figure 3.2 with Fig-
ure 3.3, of which the latter shows the trace plot for log(|§, ,|) of the modified Gibbs sampler under

various slab priors, for the case with » = 100. Figure 3.3 shows that as 1; decreases from 0.5 to 0.001
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Figure 3.3: Trace plot of log( |,@171 |) from the modified Gibbs sampler with 4;=0.001, 0.01, 0.1, 0.5 for the case
with z = 100. The modified Gibbs sampler has a much shorter burn-in process.

so that the slab part becomes more and more diffused, the posterior mean of |4, ,| increases from
around 2.5 to around 4000. Heat-maps of the factor loading are similar to Figure 3.1 in all cases with
A1 € {0.001,0.01,0.1,0.5}, which means that the direction of each column vector in the loading

matrix remains roughly the same throughout Gibbs iterations.

3.3.2 MAGNITUDE INFLATION AND DIRECTION CONSISTENCY

Our numerical results revealed some perplexing consequences of using independent SpSL priors for
a Bayesian factor model when s > 7, which can be summarized as “magnitude inflation” and “direc-
tion consistency”. While the former means that the posterior draws of the loading matrix are inflated
entry-wise compared with the true loading matrix with the inflation magnitude dependent on how
diffuse the slab prior is, the latter says that the direction of columns of posterior samples of the loading
matrix somehow still converges to the true direction as 7,5 — oo. Intuitively, when the number of
independent slab priors employed grows at a faster rate than the number of observations, these priors
will overwhelm the signal from data. The interesting observation is that the overdose of independent
slab priors only dilutes the signal for the magnitude part in the loading matrix but has little impact

on the identification of the column space. It is also worth mentioning, regardless of the occurrence of
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“magnitude inflation”, the posterior distribution of the idiosyncratic variance matrix X still has a nice
concentration around the truth.

The inflation problem is quite a concern in practice when people try to use these posterior samples
of the loading matrix for estimating the observation covariance structure. The low rank part (BB7)
in the estimated covariance matrix is usually exaggerated to some extent depending on the selected
slab prior. Traditional literature tends to ignore the inflation problem by treating it as a consequence
of the lack of enough observations (i.c., 7 is too small compared to s5) to guarantee posterior sample
consistency. But this argument is inaccurate as we will show in next sections. Furthermore, we notice
that, with the same amount of observations, the MAP estimator is rather precise in estimating the
true loading matrix and directions of columns of the loading matrix are well captured by the posterior
samples, provided that the structure of the true feature allocation matrix is known, as in the synthetic
example. This suggests that the data provide sufficient information for recovering the true loading
with the aid of knowing true feature allocation matrix. Thus, the magnitude inflation phenomena
may be caused by some modeling issues. In the next two sections, we will provide some theoretical

verifications for the magnitude inflation as well as a simple and provable remedy.

3.4 POSTERIOR DEPENDENCE ON THE SLAB PRIOR

Itis generally recognized that in a Bayesian factor model using an improper flat prior on elements of the
loading matrix can be dangerous, and will lead to an improper posterior distribution when G > #.
This is in fact not very intuitive, so we illustrate this point with a very simple example with K = 1
factor, » = 2 observations, and independent noises. Let the two vector observations be y; and y»,
each of G-dimensional. We can therefore write y; = vi + &1, and y, = v, + &5, with e, ~ NV (0,15),
which is very much like the canonical Normal means problem, with only one additional requirement:

vi = wiband vy = w;b. Here, the model assumes that the factor w; ~ N(0,1),and bis a G-
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dimensional loading matrix (vector). Thus, marginally we have y; ~ N (0,15 + bb?),7 =1,2.

A peculiar thing is that in the canonical Normal means problem, if we assign flat priors to v
and v,, their posterior distributions are simply AV (y1, I¢) and NV (y2, 1), respectively, which are still
proper although they yield inadmissible estimators for v; and v, when G > 3. However, with the
factor model assumptions, which effectively reduce the number of parameters from 2G to G, the pos-
terior distribution for b becomes improper if we assign b a flat prior and G > 2.

Mathematically equivalent phenomena occur even in the simple univariate Gaussian mean esti-
mation: lety ~ N(a8,1). If we assume that @ ~ N(0,1), then, when assuming a flat prior, the
posterior distribution of 4 is proportional to (8% +1) "2 exp { —(2(* + 1)) ~!»?}, which is a non-
integrable function, thus improper. But if we assume a proper prior on j, its posterior distribution
becomes proper but its posterior variance relies heavily on its prior variance. A simple fix of the prob-
lem is to realize that we cannot identify both parameters simultaneously and have to let « take a fixed
value. These phenomena also happen for the general factor models in certain settings, and our goal
is to understand how these issues play out in high dimensional factor models and whether certain
intuitive remedies work both theoretically and computationally for these more complex cases.

For the general factor model, we can similarly marginalize out the factor variables and derive the

posterior distribution of the loading matrix under the flat prior:

1
T n/2 - T
7(B|Y,X) x [BB' + X|” exp{ 2tr[BB +3)” E Yiy; ]}7

where the exponential term is both upper and lower bounded by some functions of Y and X. Term

nxK

IBB” + =|7"/% is lower bounded by (||B||% 4 Anax(E)) ™ 2 , where ||B|| ¢ represents the Frobenius
norm of B, and 4,,,(Z) denotes the largest eigenvalue of Z. When the dimension of B, which is
G x K, is no smaller than z x K, 7(B|Y, %) will integrate to infinity in the complement region of

any bounded set in R*X, leading to an improper posterior distribution. If we impose a proper but
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diffuse slab prior instead of the improper flat prior on elements of B, the posterior distribution can
still be very sensitive to the variance of slab prior, as seen in Figure 3.3.

To formalize this intuition for general Bayesian factor models, we provide the following theorem
on the divergence of the posterior distribution of the loading matrix if we use a sequence of increas-
ingly diffused “slab” priors. Note that for theorems in Section 3.4, we do not require X to be diagonal.

To cover generic prior choices, we replace (3.2) with

PBlyi) = U= 7)¥(By) + 742(84) (3.5)

where ¥ denotes the spike prior density and @ denotes the slab prior density.

Theorem 3.4.1. Let {@, },—1,... bea sequence of densities such that /im,, 0 p,,(8) = 0 for every
£ € R and there exists a constant C € (0,1) such that ¢ (8) > Cmaxp(p,,(8)) holds for every B in
some non-decreasing Borel sets.S,, that converges to R as m — 0o. If s = ||I||%/K > n, then for any
fixed finite-measure Borel set S, lim,, oo P(B € S|Y, X, T, m) = 0, where [B | Y, X, T, m] is based
on the posterior distribution from model (3.1) with normally distributed factors and ¢, as the slab

part in the SpSL prior on loading matrix elements.

Theorem 3.4.1 partially explains the magnitude inflation and the dependence of the inflation rate
on the choice of the slab prior. Let S be any fixed G X K dimensional ball. The theorem implies that
the probability of a posterior sample B, conditional on Y, X, I', 7, having a matrix norm smaller than
any constant goes to zero as we use a series of slab priors {¢m}m=172,"' that is increasingly diftused. In
a general sense, it can also be understood as the convergence in distribution of B|Y, X, I, m towards
B|Y, %, T, oo (conditional posterior of B with flat slab prior), which is a point mass at infinity when
s > n. For cases such that B[Y, Z, T, 0o is indeed proper, e.g., when s < 7 or the assumed distribu-
tion on the factors is changed, we strictly have the convergence of B|Y, X, T, m towards B|Y, Z, T, 0o

in distribution as stated in the next theorem. Therefore, if the posterior distribution of the loading
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matrix is proper under a flat slab prior and the Bayesian consistency is justified in this situation, we

have approximately the same consistency when employing a reasonably diffuse slab prior.

Theorem 3.4.2. Consider model (3.1) without the normality assumption on factors. Let {@, },=1,...
be a sequence of prior densities maximized at 0 such that, V8 € R, lim,, @, (8)@,'(0) = 1.
Let 7(B|Y, X, T, m) denote the conditional posterior density of B under a SpSL prior for its ele-
ments, with the spike density ¥ and the slab density ¢_, and let z(B|Y, X, T, 00) be the one corre-
sponding to the flat slab prior (this is appropriate since the indicator matrix I is conditioned on). If
7(B|Y, X, T, 00) is integrable, then B|Y, Z, T, m converges to B|Y, X, I', 0o in distribution as m —

Q.

3.5 MODEL MODIFICATIONS AND POSTERIOR CONSISTENCY

To concentrate on the magnitude inflation and direction consistency problems, we study behaviors
of the posterior distribution of the Bayesian factor model assuming that the diagonal idiosyncratic
covariance matrix X and the true number of factors (for the basic factor model) or the true feature
allocation matrix I' (for the sparse factor model) are known. In contrast to the solution provided
by Ghosh & Dunson (2009), which imposes dependency among the magnitudes of loading matrix
elements within the same column through prior setup, we restrict ourselves to a special class of SpSL
priors for loading matrix elements, which have a point mass at zero as the spike and a flat (limit of
a sequence of increasingly diffused distributions) slab part. This is a natural choice for being non-
informative and is always appropriate when considering the conditional posterior distributions given
I'. We focus on studying the connection between posterior consistency and the factor assumption,
and demonstrate why /z-orthonormal factor model is a natural choice under high dimensions.
Notations: Let /, denote the Haar measure (i.e., uniform distribution) on the space of z X 7

orthogonal matrices and let 72, be the uniform measure on the Stiefel manifold S¢#(K, 7). Let M.
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and M.; denote the 7-th row and the j-th column of matrix M, respectively, as column vectors, and

let M; ; denote the element at 7-th row and j-th column of M. M, ;, denotes the sub-matrix formed

11:12
by row 71-th to 73 and M, , 5, denote the sub-matrix formed by rows 7-th to 7, and columns j; to
/2. Notation M represents an orthogonal complement (not unique) of M when M is not a square
matrix, 77(.) represents the projection mapping towards the row vector space of a matrix and Pyis the
projection matrix of the mapping. Let 4,,:(+) and A, () denote the largest and smallest singular

values of a matrix, and let A;(-) denote the k-th largest singular values. The L, norm is denoted by

||-||, the Frobenius norm is denoted by ||-|| , and the outer product is “®”.

3.5.1 THE BASIC BAYESIAN FACTOR MODEL

We show the posterior consistency of the loading matrix by first studying the posterior consistency of
the factor matrix Q (defined in section 2.2). It is easy to see that, with a flat prior on every element of

B, the posterior distribution of B and  can be written as:

B.[Y, 0, X % N((Qa”) QY. 2(eal)™) (3.6)

G
7(dQ|Y,2) x |QQT|7%? exp Z#YTQT o0”)7'ay;, | pa(dQ) (3.7)

7=1 J

where pg denotes the prior distribution of Q and “2% means that the B;.’s are mutually independent.

For this section, we no longer restrict the factors in £ to follow the standard Normal distribution,
only requiring its distribution pg to satisfy the following two conditions: (a) cov(w;) = I, so as to
keep the marginal covariance structure of Y unchanged; (b) right rotational-invariant (i.e., Q and QR
follow the same distribution V 7z x 7 orthogonal matrix R). Two non-Gaussian examples are: (i)

each row of Q follows independently a uniform distribution on the /z-radius sphere; (ii) Q/+/7 is
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uniform on the Stiefel manifold S#(K, »), i.e., Q/+/n is the first K rows of a Haar-distributed 7 x 7
orthogonal random matrix. A straightforward characterization of condition (b) can be made through
the LQ decomposition (the transpose of the QR decomposition). Suppose the LQ decomposition of
Q = K(Q)V(Q) is done by the Gram-Schmidt orthogonalization starting from the first row of Q,
resulting in a K x K lower triangular matrix K(Q) and a K x 7 orthonormal matrix V(Q). Then,
requirement (b) enables us to generate Q from pq by generating a pair of K(Q) and V(Q) from
two independent distributions—a marginal distribution on K(Q) (denoted as pk) and a uniform
distribution on the Stiefel manifold S#(X, ) for V(Q).

Using the LQ decomposition, we can rewrite expression (3.7) as

#(dQIY, %) o (IK(QK(Q)'|~px (dK ()

(3.8)
x (exp(i Py (%)) mlav(@) )
7

7=l

since |QQ7| = |K(Q)K(Q)7]|, and YJ?QT(QQT)_IQY]; is the square of the length of Y;.’s projec-

tion on the row space of Q. Therefore, K(Q) and V(Q) are independent a posteriors, and

7(dK(Q)|Y, Z) o [K(Q)K(Q)"|~“px (dK(Q)) (3.9)
‘1
7(dV(Q)|Y, Z) o exp ( Jz:; 27 1Py(a)(Y.) IIZ) m(dv(Q)). (3.10)

Equation (3.9) implies that K(Q) may have an improper posterior distribution because the likeli-
hood term |[K(Q)K(Q)7|~6/2 creates “attractors” when the determinant of K(Q)K(Q) 7 is close to
0. Therefore, with large enough G, the right-hand side of (3.9) explodes to infinity fast enough around

the attractors and becomes non-integrable, thus leading to an improper posterior distribution for
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K(Q). In contrast, since exp (Z]'G1 % |Py(0)(Y,.) ||2> isupper bounded by exp <Z],G1 % 1Y, ”2> ’
the posterior distribution (3.10) for V() is always proper, based on which we can further derive pos-

terior consistency of the row vector space of Q.

CONSISTENCY OF THE ROW VECTOR SPACE OF THE FACTOR MATRIX

The consistency of row vector space of € is intuitive from (3.10) for the noiseless case (i.e., Y =
By Qy), since the exponential term in (3.10) is uniquely maximized when the row vector spaces of Q
and Q coincide. As in an annealing algorithm, the exponential term enforces the growing contrac-
tion towards the maximum point (where row spaces of Q and Q coincide) as G increases. On the
other hand, the prior measure in a neighborhood of the row vector space of Q (defined as po ({Q :
[V(Q0)2V(Q)7||F < ¢})) gets more diffused as 7 grows. Therefore, in an asymptotic regime with
G, n — 00, and under some mild conditions on the growing rate of G and 7 to ensure that the diffu-
sion is slower than the contraction, the consistency of the row vector space of Q follows immediately

as summarized below. Detailed proofs of the lemma and theorem can be found in Appendix C.3.

Lemma 3.5.1. Let By g be a G x K matrix, Qg , be a K X » matrix, and Zg be a known G x G
diagonal matrix. Suppose noiseless data generated as Y = By €0, are given. We, however, model
each column of Y as mutually independent and Y., ~ Ng(BQ.;, 2¢),7 =1, - - - , n. With a flat prior
on each of B’s elements and a right-rotational invariant prior on €, we have the following inequality

for the posterior distribution of Q:

P(|[V(Q0,,) " V(Q)T||F > €Y, Z5)

3 _ —1
< (L ma (Y < [IVaV [ < 23) X exp(5e (T Bo.oK(Q0.0))?) )

where L = Zlmﬂx(zal/zBo,GK(Qo,n))/lmm (ZEI/ZBQGK(QOW)) and V) is any fixed K x 7 or-

thonormal matrix.
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Lemma 3.5.1 provides a probability bound between V() sampled from the posterior distribu-
tion and V(L ,,) when there is no noise in the observation Y. Since |[V(Qq_,)>V(Q)7||2 equals
to the sum of squared sine canonical angles between the row space of Q and Q, lemma 3.5.1 implies
the convergence of these canonical angles towards 0 as z, G = s — oo (i.e. the Bayesian consistency of
row vector space of Q) when — log (7, ({V : |[Vi VT ||r < £})) = 0(£2 Lin (Zgl/zBogK(Qo?n))z),
which is the technical requirement that ensures the dilution is “covered up” by the contraction. Base

on this lemma, we generalize the consistency of row vector space of £ to the noisy observation case

under the “Large p(s), Small n” paradigm.

Definition 3.5.1. Let By be a countable array, or a bivariate function of the form By(f, k), with
j=1---,00and k = 1,--- , K. Intuitively, this is an oo X K matrix. We say that By is a regu-
lar infinite loading matrix if there are two universal constants Cy, C; > 0 such that, ||(Bo);|| < G

and lmzn((BO)lj)/\ﬁ 2 Cz fOl‘j = 17 <.+, 00.

Theorem 3.5.1. Suppose By is a regular infinite loading matrix. Let Qg , be a K x 7 matrix with linear
independent rows and and let £ = diag(o7, - - - ) be a known infinite diagonal matrix in which 7, V},
is bounded below and above by constants ¢z > 0 and ¢4 < 00, respectively. Let Y be an 00 X 7 matrix,
whose j-th row is generated from Nn((Bo)j.Qo,n, ajz.I,l), independently. For every fixed G, consider
modeling the 7-th column of Y1.¢ by Ng(BQ.;, Z¢) fori = 1, ..., n with Z¢ = diag(a?, - ,0%).
With a flat prior on each of B’s elements and a proper right-rotational invariant prior on Q, we have,
for a random draw Q from its posterior distribution, almost surely (with respect to the randomness
in'Y) that

IV(Q0,,)V(Q) ||| Yi.6,Z¢ — 0 in probability as G — oo.
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POSTERIOR DISTRIBUTION OF THE LOADING MATRIX

From (3.10), itis clear that data only provide information on the row vector space of V(Q), the poste-
rior distribution of V() conditioned on its row vector space is uniform among all the K x # orthonor-
mal matrices within the row space. Utilizing the posterior consistency of the row space provided by
Theorem 3.5.1, we can approximate an V() drawn from its posterior by another random variable
of the form OV(Qy ), where O is a K x K uniform (Haar distributed) random orthogonal matrix
(see Appendix C.3.5 for details).

Let By, ¢ denotes the matrix formed by the first G rows of By. By plugging V(Q) = OV(Qy ,)

into the matrix form of (3.6), which can be written as
B|Y,Q, =~ Nixg(YOT(QQT)! () 1w F),
we obtain a decomposition for the posterior samples of BK(Q)/+/7 as:

\;ZBK(Q) | Y, ~ Boc(K(Q0,)/v7)O" + ((Y = Bo,cQ0,)/v7)V(Q,,) 0"

1
+Nexx(0, I ® 3). (3.11)

For a considerable large 7 and normal true factor matrix Q ,, K(Qy_,)/+/7, as the Cholesky factor
of Qo,nQ({ ./ 1> approaches the identity matrix, so the first term of the right hand side of (3.11) ap-
proaches By O’ Meanwhile, the second term ((Y—Bo 60 ,,)/+v/7)V(Qo ,) 7O is the row projec-
tion of the idiosyncratic noise matrix (Y — By €, ) to a K dimensional space, divided by /7, which
converges in probability to 0 entry-wise as # — 00. The third term is a centered normal (independent
with O) with variance shrinking to 0 as 7z increases. This implies thatunder G = s > n — 0o regime,
posterior samples of BK(Q)/+/7 can be asymptotically expressed as the true loading matrix times an

uniform random orthogonal matrix.
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Factor assumption and consistency. Posterior distributions of B and K(Q) are coupled. A
“deflation” problem of K(€)/1/7 occurs when the factors in Q are assumed to be normal and » =
O(G), in which case the posterior distribution of K()/+/% can be derived in closed form by the

Bartlett decomposition as:

(K(Q))/e,/e‘Y7 X~ k= 17 to 7K7

1 1
ﬁ ﬁ)(n—k-‘rl—G’
1 1
W(K(‘Q’))k/JJYvZ ~ N(07 ;)’ 1<k<k< K,

(3.12)

where y, denotes the Chi distribution with » degrees of freedom. Posterior samples of the loading ma-
trix, therefore, have to be inflated correspondingly. Ideally, we desire the convergence of the posterior
distribution of K(Q) /+/7 towards a point mass at the identity matrix to guarantee the posterior con-
sistency (up to rotations) of the loading matrix, and can indeed achieve this by imposing a stronger
control over the singular values of Q through the assumption on pq. Such remedy is not unique.
A particular simple strategy is to require that all factors are orthogonal and have equal norm, which
implies that Q //7 is uniform in the Stiefel manifold S#(K, 7). More discussions are deferred to Sec-

tion 3.5.2.

3.5.2 SPARSE BAYESIAN FACTOR MODEL

With a special feature allocation design, V() is identifiable so that the consistency of the row space
of the factor matrix can be generalized to the consistency of V(Q). We impose a generalized lower
triangular structure (Fruehwirth-Schnatter & Lopes, 2018) on the feature allocation matrix I to cope
with the rotational invariance problem of the loading matrix. We call I a generalized lower triangular
matrix if the row index of the top nonzero entry in the £-th column /; (define /y = 1, /g1 = G + 1)
increases with £and Vi = lifand onlyif; > /;. Under the flat SpSL prior (use a mixture of point mass

at zero and flat distribution as prior) on entries of B in the Sparse Bayesian factor model introduced
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in section 3.2, we can derive the conditional distributions of Band Q: forj =/, - -+ , [ — 1,

ind —
Bj14|Y, Q,Z,T % N (1400 ") ' Q1Y) , o7 (14 Q12") ), (3.13)
K K -1 1
7(dQIY,2,T) o [ [1Qu@u 708 2 exp | 3 0> 7 S11Pa, (V) | pa(dR),
k=1 k=1 =l 27;
(3.14)
whereB; 1., = (ﬂﬂ, (sz, e (8]/e) and pq denotes the distribution assumed on € such that condition

(2) and (b) holds.

Given the LQ decomposition Q = K(Q)V(Q) and
Q. = K(Q)1:V(Q) = K(Q)1:4,1:4V(Q) 14

since K(Q) is lower triangular, Q;., Q.7 = K(Q)lzk’l:kK(Q)lsz:kTis afunction of K(Q). Pq,, (Y,.)
is the projection of Y}, towards the row vector space of €4, which is a function of V(Q). The adop-
tion of the generalized lower triangular structure on feature allocation matrix ensures a separation
in likelihood of (3.14) so that the determinant part is connected to Q only through K(Q) and the
exponential part only through V(Q). We thus can derive that K(Q) and V(Q) are independent 4

posteriors and that:

K
#(dK(Q)|Y, =, T) o« [[K(Q), (" Vpr(dK(2)) (3.15)
k=1
K 11
7@V Q)Y ET) ocexp (D> > - prmlk (Y)I? | m(@v(Q).  (3.16)
k=1 j=l

124



Expression (3.16) gives a proper posterior for V(€ ), and for the noiseless case (i.c. Y = BoQy), the
density is maximized when the row vector space of V(Q);.; and V(Qq)1 coincide fork =1, - - - | K,

based on which we can generalize theorem 5.2 to the consistency (up to sign permutations) of V(Q).

CONSISTENCY OF V(Q)

Definition 3.5.2. Let By be an 0o X K matrix with nonzero rows and let I'g be a binary matrix of the

same shape. We call I'y a generalized lower triangular feature allocation matrix of By if it satisfies
L H(Bo)j,wéo < (To);4 holdsforj =1,--- 00,k =1,- -, K, where Lis the indicator function;
2. (r())jJ€1 < (r())ﬁ/ez holds fOI‘j =1, ,00, K>k >k > 1.

Furthermore, for every fixed dimension G, let ¥; denote the unique permutation of (1,---,G), so

that (/1) < ¥(2) ifand only if either (i) (Zk I‘jl,/e) < (Zk I‘jz’/e) or (ii) (Zk I‘jl,/e) = (Zk I‘jz’/e)

butj; < f>.

Definition 3.5.3. Let By be a 0o X K matrix with nonzero rows and let I'y be a generalized lower
triangular feature allocation matrix of By. The two G x K matrices By ¢ and Iy ¢ are formed by
permuting the first G rows of By and Iy according to ¥, (the j-th row of By is the .(;)-th row of
Bo,:). Let /g 4 be the row index of the top nonzero entry in the k-th column of the generalized lower
triangular matrix I'p ¢ (define /o o = 1, /o x+1 = G+1), and let Bg% be the submatrix of By ¢ formed
by rows indexed from /o 4 to [y 441 — 1 and columns indexed from 1 to k. We call (By, I'y) a regular

infinite loading pair if there are two universal constants C, C; > 0 such that, [[(By);.|| < Ci and

ml}’l/elmln(B(()/f]))/\[] Z C2 forj = 17 <ee 00,

Theorem 3.5.2. Let (By, I'y) be a regular infinite loading pair with I'y known, let Q¢ , be a K x #

matrix with linearly independent rows, and let £ = diag(s7, - - - ) be aknown infinite diagonal matrix
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Figure 3.4: An example of By, Iy, and By ¢, ['o ¢ after ¢, permutation.

such that C3 < 0}2 < Cyholds forj = 1, - - -, with constants C3, C4 > 0. The j-th row of 0o X 7
matrix Y is generated by V,,((Bo) - Q0,1 ajlln) For every fixed G, let Y;.¢ denote the matrix formed
by permuting the first G rows of Y according to ¢, and consider modeling the 7-th column of Y;.¢ by
Ne(BQ.;,Zg) fori =1,...,nwithZs = dzag(aigl(l), e ,ai(_;l(c))

B’s non-zero element according to the feature allocation matrix I'y  and a prior on  that is invariant

. With a flat prior on each of

under right orthogonal transformations, for a random draw Q from its posterior distribution, we have

almost surely (with respect to the randomness in Y) that

IV(Q0,)12V () {xllFY1:6, 26, To.c — 0,

fork=1,--- ,Kas G — oo.

Theorem 3.5.2 is understood as the consistency (up to sign permutations) of V(Q) for fixed n
and G < 5 — o0, in the sense that ||V(Qo )i, V(Q)L || converges to 0 for all £, which implies
that the canonical angles between the row space of V(g , )14 and that of V(). converge to 0 as
G — 00. When these angles are all equal to 0, V(Q) differs from V(Qy , ) only by a sign for each row.

Since the data provides no information on the signs, in the asymptotic regime with G < s > n — 00,
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we can approximate V(Q) drawn from its posterior distribution by a random sign diagonal matrix S,

i.e., a diagonal matrix with 7.7.d. random signs on the diagonal, times V(Qy ,).

POSTERIOR SAMPLE CONSISTENCY

Recall that from Section 3.5.1, for the basic Bayesian factor model with G = s > n — 00, BK(Q)//2
drawn from the posterior distribution can be asymptotically represented as the true loading matrix
times a uniform random orthogonal matrix. If the true feature allocation matrix is lower triangular,

we have

BUK(Q)14/v/7lY, @, 26, To.c ~ BY 5 (K(Qo,0)k1/ V) V(Qo,0 )14 V(Q)
+ ((YlkilkH—I - B(()IT)G(QOW)I:/e)/\/;)V(Q)l]:k (3.17)

1 k
+ Ntk (0, T ® 2G),

whose right hand side converges entry-wise in probability to B(()IT)GSIT: g underthe G < s > 7 —
00 setting (by similar argument as in section 5.1.2). Note that BHK(Q); = By, —1K(Q), we
can therefore summarize the convergence of B®¥K(Q);.;/1/7 to derive the convergence of posterior
samples of BK(Q)//7 towards By cS7.

The posterior sample consistency (up to sign permutations) of the loading matrix is immediate
once we have K(Q) / /7, or equivalently QQ /n, from its posterior distribution converging in prob-
ability to the identity matrix. The density in (3.15) indicates that the posterior distribution of QO /n
is contributed by two terms: the determinant HkK:1 K(Q)k_JSG—Z" 1) and the model assumption rep-
resented by pa. The determinant term creates singularities when K(Q); ;. = 0 and the order of these
“poles” ~ s. When this term dominates, we observe the inflation phenomenon of posterior samples of

the loading matrix. Meanwhile, the model assumption term can bound K () away from these singu-

larities by assigning little probability measure in their neighborhoods and also induces the convergence
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of QQT /n towards the identity matrix (through requirement (a) introduced in section 3.5.1). Con-
sequently, the posterior behavior of QQ7/x is influenced by both the increasing rate of 7, s and the
choice of distribution pg. Those pq that bounds away singularities with high probability and forces
a fast convergence of QQ7/n towards the identity matrix can allow a fast rate of s going to infinity
comparing to 7, to guarantee the posterior consistency of the loading matrix. A simple and effective
choice is to adopt the /n-orthonormal factor model. That is, we assume a priori that Q/+/n is uni-
form in the Stiefel manifold St(K;, 7). With this choice, we have QQ7 /n = Iy and that the posterior
sample consistency of B naturally holds even when 7 has a rather slow growing rate compared with s.

Our analysis regarding the relation between the factor assumption and the magnitude problem
is specific to the independent spike and slab prior setup. But we believe that the magnitude problem,
meaning that the column-wise magnitude of the loading matrix sampled from its posterior distribu-
tion is very sensitive to its prior distribution, exists for general priors in the “Large s, Small n” regime
when the factors are only assumed to be normally distributed. When a more complicated prior is
assigned on the loading matrix, the analysis becomes rather challenging and the magnitude problem
may be expressed in other forms (as we will see in the simulations) rather than an ‘inflation’ (infla-
tion is typical for using non-informative priors on loading matrix). The intuition we gain from the
analysis is that the factor assumption crucially impacts the strength of posterior contraction (through
data) of the magnitude of the loading matrix towards its true value, and using 1/z-orthonormal fac-
tors achieves the strongest contraction thus allows more flexibility in prior assignment of the loading

matrix while maintaining the posterior consistency.
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3.6 NUMERICAL RESULTS

3.6.1 MODIFICATION OF THE GIBBS SAMPLER

In Section 3.5, we justify the adoption of the \/z-orthonormal factor model in the “Large s, Small n”
paradigm (i.e., the factor matrix Q scaled by 1/4/7 is uniform in the Stiefel manifold S¢#(K, z)). To
construct a Gibbs sampler under this new factor model and the prior setup in Section 3.2.1 (denoted
as SpSL-orthonormal factor model), we only need to revise the conditional sampling step of Q|Y, B, X
in the basic Gibbs sampler described in Section 3.2.2.

Let Q. denote the £-th row of the factor matrix and Q_;, denote the remaining rows, all as col-
umn vectors. The conditional distribution Q4.|Y, Q_, B, X is altered from a multivariate normal

distribution to:
7(dQ Y, Q_, B, Z) x AQ; Q.. 73L,) X pa_, (dQy.) (3.18)

where pq_, is the uniform measure on the centred /z-radius sphere in the orthogonal space of Q_,
and f{Qy; Q. E%In) is the multivariate normal density function with mean Q. and covariance ma-

trix 5'/%1”, with

Q. = (BIZ7'By) (Y- B.Q))'T'B,, 7 = (BT 'By) "
£k
To sample from (3.18), we cut this /%-radius sphere by hyperplanes that are orthogonal to vector
Q. and denote this collection of intersections of the sphere and hyperplanesas {Sy | d € (—+/n,/7)},
where d is the Euclidean distance between the origin and the hyperplane. Essentially, {S,} are (z-k)-
dimensional spheres and every point in the same S, has the same multivariate normal density f{-; Qy., 771L,),

so we can sample Q. from (3.18) by first sampling 4 from its marginal distribution and then uni-

129



formly sample from sphere S; given the sampled 4. Using the area formula of sphere, we can deduce

the marginal distribution for  as
HAIY, Q0 B,E) o (n — ) 5D 2 exp([ Py (84 4/7) (319)

and sample from this unimodal distribution using the Metropolis algorithm. The additional compu-
tational cost brought by the model revision only comes from the Metropolis algorithm and is almost

negligible.

3.6.2 COMPARISON WITH ALTERNATIVE APPROACHES

We now revisit the synthetic example in Section 3.3.1 to check the consistency of the posterior dis-
tribution of the loading matrix under the SpSL-orthonormal factor model and compare the MCMC
performance with the sampler of two alternative approaches: a modified Ghosh-Dunson model (de-
tails provided in Appendix B) and the model from Bhattacharya & Dunson (2011) (applied with
v = 3,4, = 1,b, = 0.3,41,a, ~ Gamma(2,1)). The factor dimensionality X is fixed at 8 in
all Gibbs samplers.

Figure 3.5 shows the heat map of |B| in 3000 iterations. We perform the PXL-EM algorithm for
the first 50 iterations and then Gibbs sampling in all three approaches, respectively, for the next 2950
iterations. Figure 3.6 shows the posterior means of the nonzero elements of loading matrix obtained
by averaging over 2500 posterior samples after burn-in. For the SpSL-orthonormal factor model,
the posterior means are nicely centered around the true value 1. For the other two approaches, there
exhibit some ‘twists” in the column-wise magnitude of the posterior means. This is most obvious for
the fifth (purple) column of panel (c) in Figure 3.6.

To understand the cause, we examine more closely the priors employed by the latter two ap-

proaches. These two approaches share the same idea of imposing dependency among the magnitudes
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Figure 3.5: Heat-maps of |B| in 3000 iterations of Gibbs sampler using specified models.

of loading matrix elements within the same column via the decomposition B = Q x D as we explained
in the introduction. However, they differ in the scheme of learning factor dimensionality: the modi-

fied Ghosh-Dunson model adopts a SpSL prior on elements of Q, an Indian buffet process on ® and
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Figure 3.6: Posterior means of the nonzero elements of loading matrix under three factor models. Nonzero

elements are sorted first by the column index and then by the row index, both in ascending order, e.g. the first

500 entries colored in blue correspond to the posterior means of £, 1, -+, Bgcy ;-

a diffuse prior on diagonals of D; whereas Bhattacharya & Dunson (2011) uses a continuous prior on
elements of Q and a shrinkage prior on D. The former model learns factor dimensionality though the
shrinkage on the feature sparsity vector @ while the latter does so through the shrinkage on diagonals
of D. Under the “Large s, Small n” regime, using an informative prior on D can be influential for
the posterior of the column-wise magnitude and results in the ‘twists’ in panel (c). As for the ‘twist’
in panel (b), we think it is caused by the high auto-correlation among the samples generated by the
Gibbs sampler for the modified Ghosh-Dunson model, so that the sample mean estimator still has a
large Monte Carlo error using 2500 Gibbs samples.

With a sufficient computation budget, Gibbs sampler for the modified Ghosh-Dunson model
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gives similar posterior results as our approach. This highlights another advantage of our approach—
computational efficiency. When running the corresponding Gibbs sampler for 2500 rounds after
burn-in, our approach with the SpSL-orthonormal factor model attained an average effective sample
size (ESS) of 2758.8; whereas the ESS for the other two approaches are only 51.6 and 82.5, respectively,
on average. The computation times per iteration of Gibbs sampling for the three methods are 2.8, 2.2,
and 1.8 seconds, respectively. Besides computational aspect, although both the SpSL-orthonormal
factor model and the modified Ghosh-Dunson model give very similar numerical results after appro-
priately adjusting tuning parameters of the priors, our analysis rigorously justifies the consistency of

the former model, whereas a similar theoretical study of the latter model is still beyond our reach.

3.6.3 ROBUSTNESS AGAINST PRIOR SPECIFICATION

Under the SpSL-orthonormal factor model, Figure 3.7 illustrates the posterior density of ﬂl’l and
B, 5 (estimated by averaging over the conditional posterior densities) using slab priors with ranging
variances. We tested with 19 = 20, 4; € {0.001,0.01,0.1,0.5} and the posterior distribution
shows a great robustness against the choice of the slab prior.

At the end of Section 3.5.2, we claim that restricting to \/z-orthonormal factors grants more
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Figure 3.8: Posterior mean of the nonzero elements of loading matrix using specified models. Column-wise
magnitudes of the loading matrix from posterior are balanced after changing from normal factors (left panels)
to y/n-orthonormal factors (right panels).

flexibility in prior assignment of the loading matrix while maintaining the posterior consistency. We
verify this claim by applying the prior setups from Ghosh-Dunson model and Bhattacharya & Dun-
son (2011) to the y/z-orthonormal factor model. Note that we only need to revise the conditional
sampling step Q|Y, B, X in the Gibbs samplers as we did in Section 3.6.1.

Figure 3.8 plots the posterior means of the nonzero elements of the loading matrix estimated by
averaging over 2500 posterior samples. We observe that the ‘twists” in column-wise magnitudes dis-
appear after switching to the /z-orthonormal factor model. Furthermore, the average ESS increases
significantly from 51.6 and 82.5 to 2667.9 and 2296.6, respectively, for the two approaches since the

source of high auto-correlations—strong tie between the magnitudes of the loading matrix and the
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factors, is removed by restricting the magnitude of factors to a specific value. Summary figures for
credible intervals of the loading matrix elements of all implemented approaches are illustrated in the

appendix of Ma & Liu (2020).

3.7 DYNAMIC EXPLORATION WITH APPLICATION

Although the \/z-orthonormal factor model can be coupled with general prior assignments on the
loading matrix, we focus on the setup from Rockovd & George (2016) (i.e., the SpSL-orthonormal
factor model), under which posterior consistency has a theoretical guarantee. When applying this
framework to real data, the choice of the factor dimensionality K as well as the penalty parameters 1o
and 1 (parameters in the spike and the slab parts, respectively) is crucial.

The application of our Gibbs sampler requires a successful implementation of the PXL-EM al-
gorithm to search for a posterior mode that can serve to initialize the sampler. For the choice of K
when applying the sampler, we make two recommendations: (i) use the estimated number of factors
from PXL-EM as a plug-in estimator for K; (ii) choose K to be sufhiciently large initially and discard
the useless factors (whose corresponding {7’J'k}j=1f" .G are all zero) in the sampling process, which is
similar to the idea of choosing the number of factors adaptively from Bhattacharya & Dunson (2011).
More precisely, we discard unless factors if there are any, and append a null factor whenever there is
no useless factor remained. Though this adaptive approach also provides posterior samples for X it
is worth mentioning that the computational complexity of the Gibbs sampler scales linearly with the
factor dimensionality K.

The penalty parameters determine the threshold for a loading matrix’s element to follow either a
spike or a slab prior. For the PXL-EM algorithm, Roc¢kovd and George proposed a dynamic posterior
exploration process to help searching for the MAP in a sequence of prior settings as well as determining

the appropriate value for these penalty parameters. Initially, they fix 1; at a small value and gradually
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Figure 3.9: Posterior pdf of (2) 8,45 , and (b) £, | under SpSL-orthonormal factor model with increasing 1o

increase Ao until the solution path is stabilized. The solution given by the PXL-EM under the final
value of 1¢ approximates the MAP estimate under a flat and point mass mixture prior on loading
matrix elements and is proposed as the estimator for parameters. The same procedure can be applied
to the full posterior inference based on the SpSL-orthonormal factor model.

We observed a similar stabilization of the posterior distributions of every nonzero loading element
when performing dynamic exploration for the SpSL-orthonormal factor model, which is illustrated
in the application of our method to the cerebrum microarray data from AGEMAP (Atlas of Gene
Expression in Mouse Aging Project) database of Zahn et al. (2007), which was analyzed by Rockova
& George (2016) using their PXL-EM algorithm. For every mice individual in this dataset (5 males and
S females, at four age periods), cerebrum microarray expression data from 8932 genes are recorded,
observations y;,7 = 1, -, 40 for the factor model are taken to be the residuals of the expression
values for each of the 8932 genes regressed on age and gender with an intercept.

We ran the posterior sampler initialized at the MAP detected by the PXL-EM algorithm with
A1 = 0.001, 2 = 1/G, and A gradually increasing in the sequence 0f 12,15,20,30,40. As the detected
factor dimensionality by the PXL-EM algorithm is 1, we specify K to be 1in our framework. Figure 3.9
demonstrates the evolution of the posterior density of 8¢/, ; and f, ; as Ao changes.

The posterior distribution of &, | centers at 0 and becomes more and more spiky as 1 increases.
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Figure 3.10: Posterior mean and credible interval of 4, |, - - - , B, ; estimated from samples of specified model

and the MAP estimate from PXL-EM algorithm

For the nonzero element [82873’1, its posterior distributions resemble the normal distribution with a
relative stable variance. The posterior mean of /3287371 first moves towards zero and then away and
stabilizes. This change of direction is caused by the alteration of its slab indicator 28731 from 0 to
1 in posterior samples, in which case the posterior distribution of (Eﬁ ; is only influenced by the slab,
but not the spike prior. Vertical dotted lines are the MAP estimates, which are close to the posterior
means. Having recognized that the stabilization of the MAP estimates and the posterior distributions
occur almost simultaneously as A increases, in practice we can find the ideal pair of penalty parameters
such that the posterior distribution is stabilized by looking for the stabilization of the MAP estimates
instead of sampling from the posterior distribution with 4y on multiple levels. More summary and
comparative figures of the posterior simulation are illustrated in Appendix C.4 with 1o = 30.
Figure 3.10 provides a comparison between the posterior results from the SpSL-orthonormal fac-
tor model (19 = 30) and the modified Ghosh-Dunson model (A = 0.001, 2o = 200) which shows

that the two models give very similar posterior credible intervals (computed using 1000 posterior sam-
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ples after burn-in) for the loading matrix, and both posterior means are also very close to the MAP
estimator from PXL-EM algorithm. Additionally, the Gibbs sampler for the SpSL-orthonormal fac-
tor model results in a much larger ESS compared to that for the Ghosh-Dunson model (e.g., the ESS
for B | are 905.0 and 42.7 for the two methods, respectively). We omit scientific interpretations of
the inference results since our goal is only to verify that our procedure gives similar results as those in
Rockovd & George (2016) based on points estimates of the normal factor model, and to show how to
conduct the full Bayesian analysis properly and efficiently for this dataset.

In summary, we can start our Bayesian inference for the SpSL-orthonormal factor model by first
choosing a small 4; and a sequence of increasing ¢, denoted as {/1(()[) }i=1,.... Wethen run the PXL-EM
algorithm sequentially with 4; and l(()t) fort =1, - -, with parameters initialized at the MAP estimate
found in the previous round. The process is terminated when the difference between the new MAP
estimate and the one from the previous round is below a chosen threshold. Afterward, we run our
Gibbs sampler under the SpSL-orthonormal factor model using the final pair of penalty parameters

with B, X, ® and Kinitialized at the MAP estimate and Q, I initialized with random draws from their

domains.

3.8 DiscussioN

A primary intention of our work is to provide an efficient posterior sampler for the Bayesian factor
model in high dimensions and show its consistency. Roc¢kovd & George (2016)’s sparse Bayesian fac-
tor model framework serves as a promising starting point, for both its explicit encoding of the sparsity
and its providing of a fast posterior mode finding algorithm. By analyzing the magnitude inflation
problem of the posterior samples of the loading matrix under the prior setup of Rockovd & George
(2016), we propose the y/z-orthonormal factor model as a practical remedy, which not only pro-

cesses posterior consistency and robustness against prior settings, but also dramatically improves the
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computational efficiency. Our work naturally bridges the gap between the point estimation based on
posterior modes and the full Bayesian analysis under the SpSL factor modeling framework.

Besides our proposed solution, i.e., enforcing a common scale and orthogonality among the fac-
tors, Bernardo et al. (2003) and Ghosh & Dunson (2009) provided another perspective, which is to
reduce the dimensionality of diffuse parameters in the prior to ensure that they do not overwhelm
the data. Their approach allows the factors to have different variances, but restricts elements of the
loading matrix to follow standard Gaussian z priori. In this chapter, we provide a further modifica-
tion of their model by imposing a SpSL prior on the loading matrix’s elements, which allows a greater
flexibility in handling sparsity in high dimensions (details in Appendix C.2).

Using the prior from Rockovd & George (2016), we are able to show theoretically that the adop-
tion of a strict \/z-orthonormal factor assumption can ensure posterior consistency. But this type
of rigorous analysis for other models, including the Ghosh-Dunson model and its modification, still
evades our vigorous attempts. Furthermore, in some follow up work, informative priors were assigned
to the diffuse parameters in Ghosh-Dunson model, and it is unclear how these priors influence the
posterior magnitude of the loading matrix generally. Interests for future exploration may be focused
on the design of dependent priors for easy posterior sampling as well as the justification of posterior
consistency when using such priors. The /z-orthonormal factor model itself is also interesting, since
the posterior consistency under this model is empirically more robust against prior specification of
the loading matrix in the high dimensional setting. It would be interesting to see a mathematical for-

mulation of this empirical result in future works.
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Supplemental Materials of Chapter 1

A.l Proors

A.11 Proor or LEmMma 1.6.1

By definition of the multi-log(p) term, it suffices to show that, for every ¢ > 0, as p — 00,
P P(X, €8 —0, and  pPTPX, €8) — oo. (A1)
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We introduce two sets S and S such that

SCScCs.

Define m(x) = (x — Iu)’E_l(x — ) forany x € R4, By definition, & = inf,csm(x). Asa result,

m(x) > bforallx € S. Define

S={x e R :m(x) > b}. (A.2)

Then, S C S. Furthermore, since 72 (x) is a quadratic function and b = inf g m(x), given any ¢ > 0,
there exists xy € Ssuch that

m(xp) < b+ ¢/8. (A.3)

Note that (A.3) guarantees that ||xg — || is bounded. Forany x € Sand ||x — xo|| < 1,

() = m(x0)] < 2|(x — 1) =7 (& = x0)| + | (o = %0) =7 (v — o)
< 2l = @lllIZ7H] - e = xoll + 1=l — 0|2

< Cillx — x| + Col|x — x|,

where Cj and C; are positive constants that only depend on (¢, Z, 4, ). It follows that there exists a

constant d; > 0 such that

x€S, |x—x| <o - |m(x) — m(x)| < ¢/8. (A.4)

Additionally, since S'is an open set and x € S, there exists 0, > 0, such that

{x € R? |lx — x| < 9} CS.
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Define

S={xeR: ||x— x| <9}, where 9 = min{0dy, d,}. (A5)

Itis easy to see that § C S. Additionally, in light of (A.3) and (A.4),
m(x) < b+ ¢/4, forallx € S. (A.6)
Since S C S C S, to show (A.1), it suffices to show that
PP, €8) — o0 (A7)

and
P P(X, €5) —o0. (A.8)
First, we show (A.7). Let f,(x) denote the density of N (u - ﬁg(p)Ep). Write m2,(x) = (x —

ﬂp)’Z]jl(x — ,)- Itis seen that

 Rlegp)”
S = Gy den(Z )

.pme(x). (A9)

By direct calculations,

[2log(p))4/2 —mp(3)
P(X,eS|u,S,) = Y
( pE,’/‘pv p) (27r)d/2|det(2p)|1/2 xe§p X
d/2
D Volume(s) et (a10)

= 22 det(s,) 112

The assumptions on (x - %,) imply that, for any constant y > 0,

lim ]P’(||[up —ull > yor[|Z, —Z[ > ;/) =0.

p—00
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Let E be the event that ||ﬂp —p| <y, and [|Z, — Z|| < y,, for some y, to be decided. On this event,

foranyx € S,

() — myp(x)| < |(x = @) =7 (= ) = (v — ), (v — )]
=) Z o — ) = (o= ,)'S (e — )|
<@ = - @)+ 20— ) (e - p,)]
+ (=) (e~ )
< o= elPIZTHIZ - 12 = =0+ 20— ellIZ5 - e — g,
HIZ - Ml = )12

< Gyy, + Cay?2,

where C3 and Cy are positive constants that do not depend on y,, and in the last line we have used the
fact that Sis a bounded set so that ||x — || is bounded. It follows that we can choose an appropriately

small ¥, such that
[m(x) — my(x)| < ¢/4, forallx € S. (A11)
Combining (A.11) with (A.6) gives
iLGH; my(x) < b+¢/2, on the event E.

Moreover, since S is a ball with radius 9,

Volume(S) = 8¢ - Volume(B,),
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where B, is the unit ball in R?, whose volume is a constant. We plug the above results into (A.10) and
notice that | det(2,)| > | det(X)| — Csd on the event E, for a constant Cs > 0. It yields that, when

(« - 3,) satisfies the event E,
P(X, €S| ,,3,) > collog(p)/? - p=H/2), (A12)
for some constant ¢y > 0. It follows that
P(X, € 8) > P(E) - co[log (p)] /2~ 0/

We plug it into the left hand side of (A.7) and note that P(E) — 1asp — oo. This gives the desirable
claim in (A.7).

Next, we show (A.8). We define a counterpart of the set S by
S, = {x € R my(x) > b}.
Define Y, = \/210g(p) - 5, /*(X, — ). Then, ¥, ~ Ny(0, 1) and
X, €8, ifandonlyif  |¥,]* > 2blog(p).
The distribution of || Y, [|* is a 3 distribution, which does not depend on (u » ;). We have

P(X, €S, =E[P(X, €S, | Hps %,)]
= E[P(|,]* > 26108(p))]

=P(y; > 2blog(p)). (A.13)
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For chi-square distribution, the tail probability has an explicit form:

(2 > 2blog(p)) = r(d/?(;/t))g(ﬁ))j

where I'(s,x) = [°#7" exp(—¢)dt is the upper incomplete gamma function and I'(s) = T'(s, 0) is

the ordinary gamma function. By property of the upper incomplete gamma function,

I(s,x)/(x exp(—x)) — 1, as  x — 00.

It follows that
I'(d/2, blog(p))
[blog(p)]4/2—1p=t

— 1, as  p— oo.

In particular, when p is sufficiently large, the left hand side is > 1/2. We plug these results into (A.13)

to get
< [blog(p)]/*t
P(X,es,) > —=2r~r . A.l4
% €5) 2 =5 (A.14)
It remains to study the difference caused by replacing EP by S. Let
Uy, = (S\Sp) U (EP\E).
Then,
|P(X, €5) —P(X, €S| <P(X, € U,). (A1S)

Similar to (A.10), we have

2 1og(p)]%/? —mp(x)
PX, € Uy |u,%,) = e
( p » ‘ (up ]7) (277)‘1/2’ det(ZP)’1/2 erpp i

10g dj2 —in mp(x
= ﬂd/g\dgz]z e Volume(U) - p~ b= h (A 16)
P
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For a constant ¥ > 0 to be decided, let Fbe the event that
le, =l <y, and |5, - Z[ <. (A.17)

On this event, we study both Volume(U,) and inf ey, 7, (x). Re-write

By definition, S = {x € R? : m(x) < b} = {x € R : ||Z7V%(x — p)|| < VB, andS;, ={x€
R4 : HZP_I/Z(x — ‘MP)H < V/b}. On the event F, for any x € 3;,

ISP — )l < Vo + 572 — ) — 5, P (o — )|
Vot [, - )l + 172 = 5V e - )
< Vo =72 g, — el + 12725, = Ll - 12,2 (e = )|
<VE+[Z2 -l — pll + Vo 1225, — |

< \/Z-i- Csy,

for a constant Cs > 0 that does not depend on . Choosing y < C5 /b, we have =712 (x — p)|| <
2Vbforallx € 3; Additionally, by definition, ||[£™/2(x — )| < V& forallx € §°. Combining the

above gives

Uy C (SUS) C {xeR:|=72(x—p)| < 2V5}.

Recall that B, is the unit ball in R%. It follows immediately that

Volume(U,) < (2vb)? - Volume(By), on the event F. (A.18)
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At the same time, for any x € S, on the event F,

1 2 = )l = 1272 — )| = 15, 2w — ) = =72 — )|
> =72 = )l = 15,2, — ) = 172 = 2,2 (= )|
> =72 = @)l = 1%, 20 - Nl — ll = 1% 222 = d| - 1272 = )|
= =72 = )l (1= 11,222 = 1ll) = 1272 e, —
> =72 (e — )1 - Cep) — [=7ly

> V(1= Cey) = |72y,

where Cg > 0 is a constant that does not depend on y and in the last line we have used the fact that

|=7Y2(x — w)|| > Vb forx € S. We choose y properly small so that v/5(1 — Cgy) — |[=7/2||y >

/b — ¢/2. It follows that
my(x) = ||Z;1/2(x—‘up)||2 >b—¢/2, forallx € S. (A.19)
Additionally, the definition of S, already guarantees that 7, (x) > & for all x € S,. Consequently,
inf m,(x) > inf {m,(x)} > b—¢/2, on the event F. (A.20)
xelp x€SUS,
We plug (A.18) and (A.20) into (A.16). It yields that, on the event F,
P(X, € Uy | 1, %)) < Crllog(p))*/? - p= /), (A.21)

for a constant C7 > 0. Then,

P(X, € Uy) < P(F) - C/log(p)] /> - p~ =/ + P(F).
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By our assumption, forany y > 0and > 0, P([lz, —ul| > 7) <p tandP(|Z,—Z|| >y) <p L

In particular, we can choose L = b. It gives

P(F) <p~°.

We combine the above results and plug them into (A.15). It follows that
IP(X, €S) —P(X, €5,)| < Crllog(p)]/? - p~ /2 4 p~. (A.22)
Combining (A.14) and (A.22) gives
P(X/ €5) < [L+o(1)] - Crllog(p)}*/2 - =12,
This gives the claim in (A.8). The proof of this lemma is complete. 0

A.12 ProororLEMMA1.6.2

First, we study the least-squares. Note that 4 has an explicit solution: 4 = G~X7y. Since G is a

block-wise diagonal matrix, we immediately have

-1

P I O I L S U I ey
o - )
Y I VS B E Py — e

Recall that y = X’y//21og(p). Then, ]2}\ > \/2ulog(p) if and only if
1 . ~
1= 20 Al > Ve

It immediately gives the rejection region for least-squares.
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Next, we study the Lasso-path. The lasso estimate ‘@ (4) minimizes the objective
1 2 1 2 T 1 T
Q) = Ly~ 30l + 208l = LIyl — yx0 + 176+ 20

When G is a block-wise diagonal matrix, the objective Q(4) is separable, and we can optimize over each

pair of (b;, bj+1) separately. It reduces to solving many bi-variate problems:

~ A~

(B2, Ba(2) = argming { Sy — [ 4210113 + 21161 . (A.23)

A~

Write b = ( (1), 8,1,(2)) " and lec

X
B— 4 and  h= |77
po1 x/yy

Then, the optimization (A.23) can be written as
b = argmin, { —h"b + b"Bb/2 + 2|61} (A.24)

Recall that VV]* is the value of 1 at which l;l becomes nonzero for the first time. Our goal is to find a
region of (b1, ) such that W} > £,(n) = \/2ulog(p).

It suffices to consider the case of p > 0. To see this, we consider changing p to —p in the matrix B.
The objective remains unchanged if we also change &, to —b, and b, to —h,. Note that the change of
by to —b has no impact on W7 this means W7 is unchanged if we simultaneously flip the sign of p
and b,. Consequently, once we know the rejection region for p > 0, we can immediately obtain that
for p < 0 by a reflection of the region with respect to the x-axis.

Below, we fix p > 0. We first derive the explicit form of the whole solution path and then use it
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to decide the rejection region. Taking sub-gradients of (A.23), we find that b has to satisfy

~ ~

1 pl| |& ) sgn(by) B b (A425)

e 1| | sgn(b2) by
where sgn(x) = 1ifx > 0,sgn(x) = —1ifx < 0, and sgn(x) can be equal to any value in [—1, 1] if
x = 0.LetA; > A5 > 0 be the values at which variables enter the solution path. When A € (1, 00),
by = 0and by = 0. Plugging them into (A.25) gives sgn(h1) = A~'h;. The definition of sgn(b;)
implies that |b;| < A, forany 4 > ;. We then have |b;| < 4. Similarly, it is true that |b,| < 2;. It
gives

21 = max{]bl\, |}J2’} (AZG)

We first assume |by| > | b2 |. By (A.25) and continuity of solution path, there exists a sufficiently small

constant & > 0 such that, for 1 € (1, — 9, 1»), the following equation holds.

1 P bl(l) +2 sgn(bl) _ bl (A27)

A~ ~

e 1| |62(4) sgn(b2) by

Thesignvectoroféforl € (22—9, A2) hasfour different cases: (1,1)7, (1, —1)7, (=1, 1)7, (-1, —1)7.

For these four different cases, we can use (A.27) to solve . The solutions in four cases are respectively

1 |l —ph2) = (1—p)2 1 |l —ph2) = (1+p)2
L ) = =2 T )+ (1 p02]
1 (b — phy) + (1 +p)A 1 (b — phy) + (1 —p)d

L —ph) — 2| T )+ (-2

The solution & has to match the sign assumption on 4. For each of the four cases, the requirement
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becomes
e Casel: (b —phy) — (1—p)A >0, (hy—phy) —(1—p)) > 0.
* Case2: (b —phy) — (1+p)A >0, (b —ph)+ (14 )2 <O.
* Case3: (b —ph2) + (14p)2 <0, (hy—ph)— (14p)2 > 0.
* Case4d: (b —phy) + (1 —p)d <0, (hy—ph)+ (1—p)2 <0.

Note that we have assumed |b;| > |b,|. Then, Case £ is possible only in the region Ay, where

./41 = {(101,192) : /.71 > 0, Jobl < ]92 < 191}, .A;)_ = {(}Jl,bz) : 191 > 0, —/.71 < 192 <J0191},

A3 = {(hl,hz) : 1{71 <0, Johl < /]2 < —}]1}, ./44 = {(bl,hz) : }.71 <0, }.71 < 192 <j)h1}.

In each case, ; = |hy]. To get the value of 15, we use the continuity of the solution path. It implies

that éz(i) = 0at 1 = 1,. Asaresult, the value of 1, in Case k£ is

20 _ = p 10) _ Pl —h 26) _ P2 —ph 26 _ PP b
2 ’ - ’ - ’ - .
1—p 1+p 1+p 1—p

(A.28)

It is easy to verify that 4, < 4, in each case. We also need to check that in the region A, the KKT
condition (A.25) can be satisfied with &, = 0 forall 1 € (lgk) , A1). For example, in Case 1, (A.25)

becomes

1 ﬁ bl 1 /91

+
)
Il

, for some |¢| < 1.

P 1 0 c 192

We can solve the equations to get [;1 =ph—Aand lc = b, —Jol;l = (by — ph) — A. It can be verified
that [(by — phy) — 2| < Afor (b1, hy) € Ajand A € (lgl),ll). The verification for other cases is

similar and thus omitted. We then assume |h;| > |b;]. By symmetry, we will have the same resul,
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hl_ﬂh1=\/;

140

Figure A.1: The rejection region of least-squares (left) and Lasso-path (right). On the right panel, the regions
Aj-As are the same as those defined in the proof. In the regions A;-Aj, ]VI}k = ||, and the rejection region is
colored by yellow. In the regions As and As, M = |y — phs|/(1 — p), and the rejection region is colored by
purple. In the regiions Ag and A7, ]WJ’.“ = |1 — ph>|/(1+ p), and the rejection region is colored by green.

except that (by, by) are switched in the expression of A and (4, A2). This gives the other four cases:

As = {(h1,h2) : by >0, phy < by < by}, Ag=A{(b1,h2) : by >0, —hy < b1 < phy},

A7 = {(h1,h2) : by <0, phy < by < =hy}, Ag={(h1,h2) : by <0, by < by <phy}.

In these four cases, we similarly have 1; = |b,| and

/1:(,_5) _h —ﬁbz, 26) _pha —b1’ 2:(27) _h —/J‘bz’ /1:()‘8) _pha —/91. (A.29)
1—p 1+p 1+p 1—p

These eight regions are shown in Figure A.1.

We then compute M]* and the associated rejection region. Note thatt]l/I}k = J; in Case 1-Case 4,
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and]l/fj’-‘ = Az in Case 5-Case 8. It follows directly that

|b1‘, if(bl,hz) c A UA UA3U Ay,

M7 by — pha| /(1= p), if (b, by) € As U As, (A.30)

\|191 —pha| /(A +p), if (b1, b2) € AU A;.

As a result, the region M} > /2ulog(p) if and only if the vector (ijy, xﬁ_Ly) /\/2log(p) is in the

following set:

R = [(AUAUAUA) N{|h] > u}]
U [(As UAs) N {|br = pha| > (1= p)v/u}]

N [(As U A7) N {|b1 — pho| > (14 p)v/u}].

In Figure A.1, the 3 subsets are colored by yellow, purple, and green, respectively. This gives the rejec-

tion region for Lasso-path. O

A.1.3 Proor orF THEOREM 1.3.1
By definition of (FP,, FN,) and the Rare/Weak signal model (1.4)-(1.5), we have

? ?
FP, = > (1—&)P(W; > t(u)|g;=0), FN,= > P < ()8, =7),  (A31)
j=1 j=1
wheres, = p~%, 7, = \/2rlog(p),and t,(x) = /2ulog(p). Therefore, it suffices to study P(77; >
Fix1 < j < p. The knockoff filter applies Lasso to the design matrix [X, X]. This design is belongs

to the block-wise diagonal design (1.17) with a dimension 2p and p = 4. The variable j and its own
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knockoft are in one block. Fix j and write

ho=ay/\[21o8(p),  and by =Hy/y[2108(p). (A32)

It is easy to see that (xj’-y, 5cj’y)’ follows a distribution N> (0,, ) when /Jj = 0, and it follows a distribu-
tion N3 (¢/210g(p), %), when B, = 7, where

v 1 a

a\/r a 1
Let R be the region of (b1, h,) corresponding to the event that {7 > #,(x)}. It follows from

Lemma 1.6.1 that

P, > ty(u) |, = 0) = Lyp~ Wiren =0,
i A () S (h—

P(W; < t,(n) |{@] =17) = Lyp infyere{(h—p)" 27 (h—)} (A.33)

Below, we first derive the rejection region R, and then compute the exponents in (A.33).
Recall that Z; ande are the same as in (1.14). They are indeed the values of A at which the variable
7 and its knockoff enter the solution path of a bivariate lasso as in (A.23). We can apply the solution
path derived in the proof of Lemma 1.6.2, with p = 4. Before we proceed to the proof, we argue that it
suffices to consider the case of 2 > 0. If 2 < 0, we can simultaneously flip the signs of 2 and /5, so that
the objective (A.23) remains unchanged; as a result, the values of (Z;, 7 /) remain unchanged, so does

the symmetric statistic Wi e implies that, if we flip the sign of 4, the rejection region is reflected with

respect to the x-axis. At the same time, in light of the exponents in (A.33), we consider two ellipsoids
Ep(t) = {h e R* : 'S 7h < ¢}, En() ={heR*: (h—p)'S (h—p) <t} (A34)
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Similarly, if we simultaneously flip the signs of « and b,, these ellipsoids remain unchanged. It implies
that, if we flip the sign of 4, these ellipsoids are reflected with respect to the x-axis. Combining the
above observations, we know that the exponents in (A.33) are unchanged with a sign flip of 4, i.c.,

they only depend on |2|. We assume 2 > 0 without loss of generality.

Fixa > 0. Writez = Z;/+/2log(p) and z = %/\/Zlog(p). The symmetric statistics in (1.14)

can be re-written as

+1, ifz>z _
W;gm = (zV z)y/21og(p) - , Wf‘f: (z —2)4/21og(p).

-1, ifz<z

Recall that by and b, are as in (A.32). Let 1y > A, > 0 be the values of A at which variables enter
the solution path of a bivariate lasso. In the proof of Lemma 1.6.2, we have derived the formula of

(A1, 22); see (A.28) and (A.29) (with p replaced by ). It follows that

(1,42), in the regions A;-Ay,
(z7 %) =
(22, 41), in the regions As-As,

where regions A;-Ag are the same as those on the right panel of Figure A.1 (with p replaced by ).

Plugging in (A.28) and (A.29) gives the following results:
+ Region Ay 5= by, &= 20 ¥ _ iy [TTog(p), W = Bl /3Tog(p).
 Region Ay 2= by, 2 = 2 W _ by 3Tog(p), W = BB fTToa(7).
 Region Ay: 2= —hy, 3= 2280 W = ST, W =~ Tog(p)
 Region Ay 2= —hy, 2= N — iy aTog(p), W = BohfToa(7).

* Regions As-Ag:  |Z;] < |ZJ" VV;gm <o, I/deif< 0.
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Figure A.2: The rejection region of knockoft in the orthogonal design, where the symmetric statistic is signed
maximum (left) and difference (right). The rate of convergence of FP, is captured by an ellipsoid centered at
(0,0), and the rate of convergence of FN,, is captured by an ellipsoid centered at (\/7, a+/7).

The event that VVJS»gm > y/2ulog(p) corresponds to that (b1, by) is in the region of

RE" = (A1 U A U A3 U Ay) nA{|h]| > \/;}

= {lbl > |bal, |bn] > Vu}. (A.35)
The event that VV}ﬁf > \/2ulog(p) corresponds to that (by, b2 ) is in the region of

R\ = (AN {by — by > (1= a)va}) U (A0 {y + by > (14 a)a))

UAsN{h+h < —(1+a)Vu}) U (AsN {by — by < —(1— a)\/u}) (A.36)

These two regions are shown in Figure A.2.
We are now ready to compute the exponents in (A.33). First, we compute inf,c g {/’='h}. Let

Erp(¢) be the same as in (A.34). Then,

big};{b’i”b} =sup{r>0:Emp(t) "R #0}.
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When the rejection region is RE", from Figure A.2, we can increase ¢ until Ep(#) intersects with
the line of /; = =£/u. For any b on the surface of this ellipsoid, the perpendicular vector of its
tangent plane is proportional to =/, When the ellipsoid intersects with the line of 5; = 4=/, the

perpendicular vector should be proportional to (1, 0)’. Therefore, we need to find 4 such that

by =4u, W 'h=¢ and Z'ho (1,0).

The second equation requires that », = ah;. Combining it with the firstequation gives h = (£+/%, £a\/u).

We then plug it into the second equation to obtain # = #. This gives

inf {V'>7'h} =u. (A.37)
heRE™

When the rejection region is RAY, there are 3 possible cases:

(i) The ellipsoid intersects with the line by — b, = (1 — 2)+/,
(ii) The ellipsoid intersects with the line by + by = (1 + a)+\/,
(iii) The ellipsoid intersects with the point b = (\/x, a\/).

In Case (i), we can compute the intersection point by solving b for by — b, = (1—a)\/wand =~'h
(1, —1)". The second relationship gives b, = —h;. Together with the first relationship, we have
h = (52\/u, 5%\/u). Itis not in RIF. Similarly, for Case (ii), we can show that the intersection
pointis h = (2./u, 42, /u), which is not in R3F either. The only possible case is Case (iii), where
the intersection point s (y/#, 4v/#) and the associated # = #'S 't = u. We have proved that

inf {/'="1h} = u. A.38
hér;%ﬁf{ p=u (A.38)
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Next, we compute inf,ere{(h — u)’= (b — ) }. Let Epn(2) be the same as in (A.34). Then,

bié%[{(b — )TN h—p)} =sup{r > 0: En() NR # 0}.

Note that the center of the ellipsoid is ¢ = (1/7, 2\/7). Wheneither R = R;¥" or R = RIf, 4 ¢ R
if and only if » > #. In other words, the above is well defined only if » > #. We now fix » > #. When
the rejection region is Rs, the ellipsoid intersects with either the line of b = \/« or the line of
by = hy. Since the perpendicular vector of the tangent plane of the ellipsoid at 4 is proportional to

7Y (h — 1), we can solve the intersection points from

hl = \/;7 bl = hZa

and

(b —u) < (1,0), S b —p) o (1,-1)".

By calculations, the two intersection points are b = (y/u, a\/u)and b = (22\/r, E2,/7). The
associated value of (h — u)/ =7 (b — w)ist = (v/r — \/u)? and t = (1 — a)r/2, respectively. When
we increase the ellipsoid until it interacts with (R,f ), the corresponding # is the smaller of the above
two values. This gives

. P . 1-—
int (=S (b - )} = min{ (v7 = vi)l, —r}. (A39)

When the rejection region is RIY, the ellipsoid intersects with either the line of by — b, = (1—a)\/z

or the line of by 4+ by = (14 a)+/u. We can solve the intersection points from

b= by = (1—a)y/a, bt by = (1+a) V7,

and

SN h—p) x (1,-1Y, SN h—p) x (1,1).
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Solving these equations gives the two intersection points: b = (2 /r+ 152 /u, 2 /r— 122, /y)
and h = (52/r+ 42 /u, —152\/r + 52, /u). The corresponding value of (b — u)'S 7 (b — )
ist = 52(\r — Vu)* and t = H2(\/r — /u)?, respectively. The smaller of these two values is
24 (\/r — \/u)?. We have proved that

inf {(h—p)S7(h—p)} = —2(Vr— V)i (A.40)

he(RJf)e

We plug (A.37)-(A.40) into (A.33), and we further plugitinto (A.31). This gives the claim fora > 0.

As we have argued, the results for 2 < 0 only requires replacing z by |4]. O

Al4 Prooror THEOREM 1.3.2

This theorem is a special case of Theorem 1.5.1. The proof can be found there. O

A.1S5 Proor or THEOREM 1.4.1

Theleast-squares estimator satisfies thatﬁ ~ Ny (B, G™"). Ttgives ﬁj ~ N (8, ;). Applying Lemma1.6.1
to X, = féj and S = {x € R: x> /u}, we have

(8| > tp(w)g, = 0) = Lpp T *,  P(B| < w)lg; =) = Lpp 7 V'V

It follows that

=1
@ r— 2
FN () (M} < ()|, = 7) = Lyp Szp WV
J=1 J=1
For the block-wise diagonal design (1.17), wp = 1 —Joz)f1 foralll <;j<p—-1 ]
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A.1.6 ProOOF OF THEOREM 1.4.2

Without loss of generality, we assume p is even. Then, for block-wise diagonal designs as in (1.17), the

Lasso objective is separable. Therefore, for each I/Vj’-k, it is not affected by any 3 4 outside the block.

Additionally, by symmetry, the distribution of W]"‘ is the same for all 1 < j < p. It follows that

FP,(#) = Lyp - P{W>fp \(ﬂ 15]4-1 = (0, )}

+ L' P{W} > ty(n) | B,8,11) = (0,7)}, (A.41)

where j can be odd index. Similarly, we can derive that

FN, () = Lppl_s : P{ W]* < ty(n) | ((8 Ig]+1) (75, )}

L Ly Pl W < ty(n)| B;:8,41) = (7, )} (A.42)
Fix variables {/, / + 1}, and consider the random vector h= ) //1og(p). Then,
b~ N; (/4 ! Z) where X = bos
2\ % 7N )
log(p) !

w_ |° @ _ |[PVT @ _ | V7 . 1+ p)V/r

0 Vr VT A +p)Vr

, (A.43)

in the four cases where (ﬂj,ﬁﬂ_l)’ is (0,0)", (0,75)", (75,0)", and (7, 75)’, respectively. Let R, be

the rejection region induced by Lasso-path, given explicitly in Lemma 1.6.2. By Lemma 1.6.1, the
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probabilities in (A.41) and (A.42) are related to the following quantities:

inf infyer, {(h — £®)Y="2h — @)}, k=1,2,

ap =

infpere {(h — £@)E (b= p®)}, k=34

and plug it into (A.41) and (A.42). It gives
FPP(%) — Lpplfmin{al, 19+062}7 FNP(ﬂ) — Lpplfmin{19+d3, 219+oc4} . (A44)

It remains to compute the exponents aj-e4.
First, we consider the case that p > 0. The rejection region in Figure A.1is defined by the follow-

ing lines:

* Linel: by — phy = (1 — p)+\/a.
* Line2: by = /u.
* Line3: bl —ﬂbz = (1 +ﬁ)\/;

* Line4: by — phy = —(1 — p)/u.

* LineS: bl = —\/ﬁ.
* Line6: 191 —ﬁhz = —(1 —‘rﬁ)\/ﬁ

Consider a general ellipsoid:
Erp)={be R*: (b —[u)'Z_l(b —u) <t}
Given any line by + bby = ¢, as ¢ increases, this ellipsoid eventually intersects with this line. The
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intersection point is computed by the following equations:
b+ bby = c, S b —p) o< (1,6).

The second equation (it is indeed a linear equation on /) says that the perpendicular vector of the
tangent plane is orthogonal to the line. Solving the above equations gives the intersection point and

the value of #: As long as b* # 1, we have

c— ((“1"‘@“2) 14 bp /= [C_(z“1+b/‘2)]2
1+ 62+ 2bp ’ 1+ 62 + 2bp

b=+ (A.45)

b+p

Using the expressions of lines 1-6, we can obtain the corresponding #* for 6 lines:

)

— (4 =)l b (Vai-w? - ¢! +ﬁ)\/f:j()/2‘1 — )l

We first look at the ellipsoid & (#; V) and study when it intersects with R,,. Note that () = (0,0)".

The above #* values become

Therefore, as we increase 7, this ellipsoid first intersects with line 1 and line 4. For line 1, the intersection
pointis ((1 — p)/#, 0)’, but it is outside the rejection region (see Figure A.1); the situation for line
4 is similar. We then further increase ¢, and the ellipsoid intersects with line 2 and line S, where the

intersection point is (/%, p+/n)'; this point is indeed on the boundary of the rejection region. We
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thus conclude that

inf _(1)/—1_(1):' 4
jnf {(b— V) ET (b — )} = (A.46)

We then look at the the ellipsoid & (z; ), with £2) = (o\/7, \/7)'. The #* values for 6 lines are:

* * 1— * *
tl - t4 = ﬁ”? t2 - (\/Z _ﬁ\/;)zu t3 = t6

The smallest #* is among {£, 75,7 }. Since () is in the positive orthant, the intersection point of
the ellipsoid with line 4 must be outside the rejection region, so we further restrict to # and #;. The
ellipsoid intersects with line 1 at (o\/7 + (1 — p)+/#, /7). This point is on the boundary of R,, if
and only if its second coordinate is > 1/« (see Figure A.1), i.e., # < 7. The ellipsoid intersects with
line 2 at (\/u, py/u + (1 — p*)y/7)’. This point is on the boundary of R, if and only if its second
coordinate is < /# (see Figure A.1), i.e., # > (1 + p)*r. Inthe range of » < # < (1 + p)?r, the

ellipsoid intersects with R, at the corner point (/#, /#)’, with the corresponding

Lt (Vi — VP
(Vi = /7 + 2 (Vi — (1 +p)v7)

r=r+
"

2

u— 2\/ru =
+p
This #* has two equivalent expressions. Comparing them with 7" and #5, we can see that the smallest
£* is a continuous function of #, given (p, ). It follows that

it ((h— @Y1 _ ,@
ble%{(b ) E (b — @)}

_ 1—p%+(f_\/;)i_;ﬁ(\/;_(1 + V) (A47)

1+p

We plug (A.46) and (A.47) into (A.44). It gives the expression of FP,(«) for p > 0.

We then look at the ellipsoid & (; #3)), with u®) = (y/r, p/7)". Note that we now investigate
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its distance to the complement of R,,. In order for #(3) to outside R, (i.., in the interior of R,,),
we require that # < 7; furthermore, when # < 7, the ellipsoid can only intersect with lines 1-2 (see
Figure A.1). Using the formula of #* in the equation below (A.45), we have

G = T eVE -V = (V- VR

By (A.45), the ellipsoid intersects with line 1 at (v/7— (1—p)[(1+p)v/7— /], py/7)". To guarantee
that this point is on the boundary of R,,, we need its second coordinate to be > / (see Figure A.1),
ie,u < jzzr; furthermore, when z > Jozr, it can be easily seen from Figure A.1 that the ellipsoid must
have already crossed line 2. By (A.45) again, the ellipsoid intersects with line 2 at (1/#, py/%)’. This
point is always on the boundary of R,,. It follows that

inf {(h— Pz (h— 1)} = min{i?;((l + p)Vr— \/Zt)z, (Vr— \/Z)i}. (A.48)

hERS,

We then look at the ellipsoid &(#; «*)), with z*) = (1 + )7, (1 +p) \/}7)/ It follows from
Figure A.1 that z*) is in the interior of the ellipsoid if and only if (1 + p)y/7 > \/z. We restrict to
(14 p)\/r > \/u. Then, this ellipsoid can only touch lines 1-2 first. The #* values are

£ = L (- VA B = (+p)Vr— Vi)

1+p

Since #f < £, the ellipsoid touches line 1 first, at the intersection point ((1—p)y/z+p(1+p)\/7, (1+
P) \/;7)/ In order for this point to be on the boundary of R, we need that its second coordinate is
> \/u, which translates to \/# < (1 + p)+/7. This is always true when » > % and p > 0. It follows

that

nf (b= w57 (= W) = :ﬁ(a +pVF— ) (A.49)
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We plug (A.48) and (A.49) into (A.44). It gives the expression of FN, () for p > 0.

Next, we consider the case that p < 0. By Lemma 1.6.2, R, (p) is a reflection of R, (|p|) with re-
spect to the x-axis. Asaresult, if we re-define b= (x]’% _x]/'+1}’) / \/m, then the rejection region
becomes R, (|p|), which has the same shape as that in Figure A.1. At the same time, the distribution

of b becomes

>

1 1 /C|
~ N , T > s wh > =
2 ([4 1 ) ) €re ’ )

The vector p is equal to

o= [°| oo [TV eV PO A e

0 _ Plvr| SN

when (8,8, 1) 15 (0,0)",(0,75)", (75,0)', and (7, 7)', respectively. Therefore, the calculations are
similar, except that the expressions of ¢(!) to z(*) have changed to (A.50).

Below, for a negative p, we calculate the exponents in (A.44) as follows: We pretend that p > 0
and calculate the exponents using the same R,, and ¥ as before, with (1) to 4(*) replaced by those in
(A.50). Finally, we replace p by |p| in all four exponents.

We now pretend that p > 0. Then, for each ellipsoid & (#; ), its intersection point with a
line by + bhy = csstill obeys the formula in (A.45), and the corresponding ¢, values associated with
line 1-line 6 are still the same as those in the equation below (A.45) (but the vector x has changed).
Comparing (A.50) with (A.43), we notice that z!) and (3 are unchanged. Therefore, the expressions
of exponents in (A.46) and (A.48) are still correct. The current /1(2) is a sign flip (on both x-axis and
y-axis) of the #() in (A.43); also, it can be seen from Figure A.1 that the rejection region remains
unchanged subject to a sign flip. Therefore, the expression in (A.48) is also valid. We only need to

re-calculate the exponent in (A.49). The current ;4(4) is in the 4-th orthant. It is in the interior of R,
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onlyif (1—p)\/7 > /u,ie,u < (1—p)?r. Asweincrease , the ellipsoid & (¢; x*)) will first intersect

with either line 2 or line 3. Using the formula of #* in the equation below (A.45), we have

—

g=(Vi-(-pvr)h  h= L (1—p)r— Vi)

1—

“

While £ is the smaller one, the intersection point of the ellipsoid with line 2 is (v/z, —(1 — p)/7)’,

which by Figure A.1is in the interior of R,,. Hence, the ellipsoid hits line 3 first. We conclude that

1+

~ @yl _ @ —
bg;g;{(b p ) (b — @)}

(1= p)Vr— ). (A.51)

)

Finally, we plug (A.46), (A.47), (A.48) and (A.51) into (A.44), and then change p to |p|. This gives

the expressions of FP,(#) and FN,(«) for a negative p. O

A.17 Proor orF THEOREM 1.5.1

By elementary properties of the least-squares estimator, (@ji depends on 4 only through ﬁj. We thus
have a decomposition of FP,(x) and FN,(«) similarly as in (A.31). It suffices to study P(A1; >
t],(u)|ﬂj = 0) and P(M; < tp(u)LEj =15).

The statistic M; is a function of 1@;.[, where ﬁ]i are the least-squares coeflicients of xfE by regressing
y onXV) = [,y X, x;r, X X , %), with xji = x; £ ¢3;. According to Xingetal. (2019),

¢ is chosen such that

(=Pl (I = Py )
Y 5 _ ; e e
7 m Py e PR, as)
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Using %i, we can re-express the model of y as

14 B;

=~ S~

y = § B + Exf +5% + N(0,1,).
1<k<p:k#j

Therefore, conditioning on (X, z;), (ﬁ;, f@j_)/ follows a bivariate normal distribution, whose mean
vector is (ﬂj /2, {Qj /2)" and whose covariance matrixisa 2 x 2 block of G, where G = (X)) (X)).

Recall that G = X'X. Write 7 = 2. X_. By direct calculations,

s+ o5l i = 2lgl® | Gy + 67
( 2 2 2 2 1| = M 4
G=1 lxl*> = <llzl b —gzill™ & G—j—ar | = | 7
e e s S A Gy
Gy + 6y Gjj=g1 1 Gy

where we have re-arranged the order so that xji are the first two variables. The matrix inversion formula

implies that the top left 2 x 2 block of G lis equalto (M — 4’ G:jl»’ A ). By direct calculations,

+1(12 +N\(,—
V- v V-
M—AG A= I VRAR . where o = (I, — P)(x; £ ¢)).

/> i+ —n2 J
(”j ) (vj ) ij |

Write 57 = (I, — P)xjand 2z} = (I, — P)z;. The choice of ¢; in (A.52) yields that (vj'-")’(vj_) = 0and

that vji = |l - v, where v = («7 /|7 || & 27 /[2} ||). It follows that the top left 2 X 2 block of

G lis
/([0 1Pl 11%)

1/ (o= [ l711)

Using the definition of Pin (A.52), we have ||« > = XL, — P)xy = Gy — Gj’,jG:}’ij,ﬁ. Com-
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bining it with the matrix inversion formula gives

£F)? = w where w; is the j-th diagonal of G!. (A.53
Ji ’f 7 J g

We have obtained that the distribution of (‘@; , /;); )" conditional on (X, 2;) is
1

N, (({gj/z)lzv Z]))) where %, = o; [ . (A.54)

[ER

To apply Lemma 1.6.1, we further study %,. Note that ||, ||* = (o7 / [l7 || & z]’"/||zj*||)2 =2+
20 /lI%7 ||, 27 /ll27 ||} Herex; = (£, — P)x; is a vector in the orthogonal space of the column space
of X_, and z is the projection of z; ~ N, (0, ) into the same subspace. Since the distribution of 2;
is spherically symmetric, we can assume that the orthogonal space of X_; is spanned by the standard

basis vectors ey, €2, . . . , €4—p41 and that /|57 || = e, without loss of generality. It follows that
l|lok ||2 2£25/||8|, where £~ N(0,1,-511) and & is the first coordinate of £.

Introduce = = (w;/2) - L. By direct calculations,

HEP_ZH (:) w/ ‘fl|/”9&“ . (A.SS)

2 1= &1/l

We aim to bound IP(||X, — Z[| > ) forany y > 0. Note that

-2
g 4%y

> — ()2, (A.56)
IELP T 1540y

1Z, = Z|| >y —

where £_, is the subvector of £ excluding the first coordinate. Here & ~ N(0,1), [|E_||* ~ x>_ »
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and they are independent of each other. Let E be the event that ||£_,||> > (n — p) /2.

P(&I/1 > ) =E[P(1&] > 7 IEl | £)]

<P(E)+E |I-

2 & 2
Var /y*fln el /Z)dx]

()21I€_, 117
e ()

<PE)+ — 21+ ()] P (A57)

YV (n—p)w

where in the third line we have used the well-known inequality of f;o /2y < ic’*“z/ 2 for any
a > 0, and in the last line we have used expression of the moment generating function of ;(i_ 5 To
bound P(£), we use a concentration inequality for chi-square distributions (it is an application the

Bernstein’s inequality for sub-exponential variables): If 177 ~ ;{%, then
P — 1] > £) < 2exp(—k*/8), foranyz € (0,1).

We apply this inequality to get

P(E) = p(“j_lf e b) caep(-12),

We plug it into (A.57) and then combine (A.57) with (A.56). It yields that
n—p
2

) o+ 4 472
P(|Z, — =) > y) <2(e732)" 7+ \/:“7;/ <1+ 1:)14 }:21 > <pt  (AS8)
vV n—p)w Wiy

as long as p is sufficiently large, for any fixed constant L > 0. Here we have used the assumption of

n—p Zp‘; and wfl > Cgl for constants & > 0and Cy > 0.
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We apply Lemma 1.6.1 to the random vector b = (,éf , (@j_ ) /\/21log(p). By (A.54),

i = 0~ N0 o om) =5 N ).

where ¥ = (w;/2) - Iy and u = (\/r,1/7)’ /2. Together with (A.58), it is implied by Lemma 1.6.1 that

P(M; > ty(u)|8; = 0) = Lyp~ infier, (=70}

B(M; < ()|, = 7,) = Lyp™ "hers (0070},

where R, is the collection of values of / such that M; > /2ulog(p). Recall that

it ME"
E T ! L . .
L = \b 4 by = | —hy|,  —=L——= = |y + ba| - sgn(hy) - sgn(h).
210g: ) | 1 2| | 1 2| Zlog: ) | 1 2| sgn( 1) sgn( 2)

The associated T\’,iif and R;#" are shown in Figure A.3. These rejection regions do not depend on the

design, but = depends on the design. By direct calculations,

P(M; > t,()|§; = 0) = Lp™ .

Ly mlWVAR o) e o M,
P(M; > ty(u)|B; = 7) =
Lyp~ 2™ (vl if M; =M™,

The claim follows immediately.
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Figure A.3: The rejection region of Gaussian mirror in a general design, where the symmetric statistic is signed
maximum (left) and difference (right). The rate of convergence of FP, is captured by a ball centered at (0, 0),
and the rate of convergence of FN, is captured by a ball centered at (1/7/2, 1/7/2).

A.1.8 Proor oF THEOREM 1.5.2

By the property of least-square coefficients,

(‘@1’... 7@}77@1,... ,(ép) N/\/‘ZP(({/JJI,... 7/3’?,07... ,0),(6’*)*1).

Consider the joint distribution of Kéj and Bj which are the regression coefhicient of % and X, we know
that (3 s B j) ~ N, ((ﬂj, 0),4;) where 4; has wj; as its diagonal element and wy; as its off-diagonal
elements. Then theorem 1.5.2 is immediate from the following lemma:

Lemma A.11. If (Z;, Z;) follows N> ((ﬂj, 0)7, E) with 2 = ((01,02), (62,01)), then

P(1Z] > \/2ulog(p), 2] > |Z||8, = 0) = Lp~*/" (A.59)

and

P(|Z;] < \/2ulog(p) or|Z)| < |Zj||§; = \/2rlog(p))

:Lp]’_ min{(\/?—\/;t)i/a'l,r/(z max{a+0o2,01—02})} ]

(A.60)
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Next, we prove Lemma A.1.1. To compute the left hand side of (A.59), we only need to find the
¢ such that ellipsoid (x, y)= 7! (¥, )7 = £ is tangent with x = =/2u log(p). This is because when
we increase the radius of the ellipsoid, it must intersect with x = =£/2x log(p) first amongst the

boundaries of the region that pick variable ; as a signal. When they intersect,

#= gt ) = (- ) (- F) <) 2 2

When ## = %f(p), the tangent points are (£+/2x log(p), £2 /2 log(p)). By Lemma 1.6.1, we
verified (A.59).

For (A.60), when » < #, the center of the bi-variate normal is in the region of rejecting variable
7 as a signal thus the false positive rate is Ly. When » > #, we need to find the ¢ such that ellipsoid

(x — ﬂj,y)Z_l(x - ﬂj,y)T = £ is tangent with either x = +./2xlog(p) or y = +x. When the

ellipsoid intersects with x = £ /2% log(p),

Pt (alr- Z-) + (a - 2)s- ) 2 2 VLER),

therefore, they are tangent at (++/2x log(p), 2 (++/2ulog(p) — ﬂ])) when 2 = %?Zbg(ﬁ)'

Meanwhile, since the long/short shaft of the ellipsoid are paralleled with y = =x, the tangent

points of ellipsoid with y = =x must be (ﬂj/Z,ﬁj/Z) and (181/2, —ﬂj/Z), which gives £ = rlog(p)

a1+

1
and rlog(p)

g1—0o2

. From here we can conclude the "distance” between the center of the normal distribution

and the region that reject variable 7 as a signal is

27— i los(p) rlosp) rlos(p),

min{ , ,
a1 o+toy o —o
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By Lemma 1.6.1, we know

B(17] < \/20l08(p)|§; = \/2rlog(p)) = Lyp~ V=V [/ @it =)},

A19 ProororLemmalS.l

By Xing et al. (2019), the Gaussian mirror framework can achieve asymptotically valid FDR control

when the following two requirements are satisfied:
¢ The mirror statistics M;is symmetrically distributed for any null feature ;.

* There exist constants C > 0 and 0 € (0, 2) such that, for the set of null features 7 = {; :

ﬁj # 0}, Z]‘,/eeT Cov(1(M; > £),1(M;, > t)) < C|T | holds for V.

(ll;; + ,@;) and (ﬁj — 1@;) are, respectively, the regression coefficient of x; and x; when regressing
yon [xy, -+, X1, X, X, %41, -, Xp]. Therefore, (‘[AZj_ + [@j_,[@;— — [[AZJ._) ~ /\/2(@[3], 0), D;) where
Dy is the inverse of gram matrix GW) =[x, . .. V5 Xy X[, -, %, 5, L, %) restricted to the
jth and (j + 1)th rows and columns. By the block matrix inversion formula, D;I = (%) (1 —
P_;) (%, %;). Since [|({ — P—;)%|| = ||({ — P—;)x;]| holds for each 1 < j < p, D;i(1,1) = D;(2,2).
For any null feature 7, ([@]Jr + ﬁ;, [ZZJJF - ‘@]‘7) ~ N>((0,0), D;). By construction, A; is the signed
maximum of |Z§j+ + féj_ | and | [@f — /AZj_ |, thus A, is symmetrically distributed for any null feature ;.

Secondly, we will show that (x;, %) (I — P—;)(I — P_)(x, %) = 0 implies Coo(I(M; >
t),1(M}, > t)) = 0. This gives

3" Covl(M; = 1), 1(My > 1)) < i x #{j € T,k € T|Coo(I(M; > £), (M}, > 1)) # 0}
JkET
< 3 XY E T € T|(5,5) (= PL)(I — P, x) # 0},



so that condition 2 in Lemma 1.5.1 guarantees the second requirement at the beginning of our proof.
The regression coefficients when regressing y on [x7, &, %1, -+ -, %71, %11, - - , %] is explicitly given

by ((x, %, X—;)' (a7, X7, X—;)) (7, X7, X—;)'y. Wee focus on the first two coordinates:

A+ A—
ﬂj +ﬂj — =\ X ~1| (x;, %, X_,)'y = Dj(x;,%) (I — P_;)
i = |Djs =Dyl %) X (XX ;) 7| (%%, A7)y = Dyl % —=i)7-
7

When (x;, %)/ (1 = P—;) (I — P—) (e, %) = 0,

/\+ A AJ,_ A
Cov< (gj + (8]‘ (gk + (8k
~+

I RN DU ) = o Dy(x, %) (I = P—;)(I = P_y) (s, %) Dy = 0,
B =8| (& — &

thus ([Zj_ —1—[@]._ 71@;_ —I@j_)J_(/AZZ_ —1—[@/: , 1@: _{ék_ )> which implies M | My and Coo(I(M; > 1), 1(M}, >

t)) = 0. O

A.110 Prooror THEOREM 1.5.3

Similar as in the proof of theorem 1.5.2, when regression Y'on [y, - - -, x;, X7, - - = , %], the regression
coefficient of x; and ; are jointly normal distributed: A3 ((8 i 0), D;) where D; has 7y, as its diagonal

element and o, as its off-diagonal elements. Theorem 1.5.3 immediately holds by Lemma A.1.1.  [J

A.111 Prooror LEMMma1l5.2

w;is the jth diagonal of the inverse of X'X, thus w; = (¢/(/ — P—;)x;) -1
717 and ¢y, are the diagonal and off-diagonal of D; = ((x, %) T (1 — P—;) (%, %)) ! When (I —
P_;)%; = 0, D; has its diagonal elements equal to x]’(] — P_;)x; and off-diagonal elements equal to 0,

s0 g1 = wyand ap; = 0. O
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Remark. Here we provide a proof for the footnote on page 17.

= ¥x — x]'-P_jxj =0,V

A.1.12 Proor oF THEOREM 1.5.4

We assume p > 1/2 throughout the proof. The calculation for the case where p < —1/2 is simi-
lar. By the design of the gram matrix X TX and the construction of the knockoff variables, we know
Lasso regression problem with 2p variables can be reduced to (p/2) independent four-variate Lasso

regression problems:

) (1 o
ng-aﬂj+1aﬂj+pvﬂj+p+1)(l) = ”gmmb{zH)’ - (361'739'+173€j'73€j'+1)b|’§ + )'Hle} (A61)

forj = 1,3,---,p — 1. By taking the sub-gradients of the objective function in (A.61), we know

A~ A

(Igj"gj+l’ﬂj+p’lgj+p+1) should satisfy:

(ﬂjnngrluéjeru@jerJrJ G+ l(sgn(‘é]‘), sgn({éj+l), sgn(ﬁjﬁ,), Sgn(ﬁjerJrl))

T T T~ T~
= (V' %, %419 %, 9 Xit1)

(A.62)

where G = ((1,0,2p — 1,0)7, (p,1,p,20 — )T, (20 — 1,0, 1,0) T, (6,20 — 1, p,1)7) and sgn(x) = 1

if x > 0; —1if x < 0; any value in [—1,1] if x = 0. We have choose the correlation between a true
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variable and its knockoff to be 2o — 1, which is the smallest value such that (X, X)7(X, X) is semi-
positive definite. In this case, G is degenerated and has rank 3. As A is decreasing from infinity, we
recognize that the first two variables (assume these two features are linear independent) entering the
model will not leave before the third variable enters the model, which is obviously true from the close
form solution of the bi-variate Lasso problem. We then show that the first two variables enter the
Lasso path, individually. Furthermore, if the first two variables are a true variable and its knockoft
variable, then the third and fourth variable enter the Lasso path simultaneously.

Since (yx, y %11,y 7%,y %) T ~ N(G(ﬂj,/ﬁjﬂ, 0,0)7, G) is a degenerated normal random
variable, we reparametrize it as (m + dy, m + dy, m — dy, m — dy) with (m, dy,dy)T ~ ./\/((pﬁj +
P8y 1 —Jo)ﬂj, (1 —Jo)ﬂjH)T, diag(p,1 — p,1 — p)). We intend to give the Lasso solution path (or
Zj, 7 j) as a function of m,d; and d,. We only present the result in the case where d; > d, > 0.
Results from other cases are immediate by permuting the rows in equation set (A.62) and transform-
ing to the d; > d, > 0 case. Lasso solution path are obtained by the KKT condition (A.62) and

summarized in the table below.

range of m A sign, Az sign, A3 sign,
(00, & (dy—dy)) | —m+dy (0,0,07,0) —m—Edi+dy (0,0,—,07)
(5 (d> = d)),0) | —m+dy (0,0,07,0) “Lm +dy (0%,0,—,0) dy (+,0%,—,07)
(0.2 (d~dy)) | m+di  (07,0,0,0) m o+ dy (+,0,07,0) dp (+,07,—,07)
(L (dy—dy),00) | m+dy (0%,0,0,0) m— lffﬁdl + 1iﬁd2 (+,0%,0,0)

Table A.1: Summary of solution path of the Lasso problem (A.61). A, record the critical value of 2 where a new
variable enters the model and sign, records the sign and the limiting behavior of (ﬁj, /o} . p) asA — 4, . Value of
A3 is omitted in row 1 and 4 since it will not affect the value of 7;and IW},.

Here we explain the third row of the table as an example, b1 = (¢,0,0,0)7 is a solution of the
KKT condition (A.62) when 1 = m + dy — efore € (0, %], so sign, is expressed as (07, 0,0, 0).
By property of the Lasso solution, if 4; and b, are both Lasso solutions, then G(6; — b,) = 0 and
1611 = [|62]]1- G(b1 — b2) = Oimplies by — by = 9 x (1, —1,1, —1)7 for some & # 0. Therefore,

by = (¢ —9,9,—9,9) T and ||b2]|; > ||b1]|1 + 2]9]. This means the Lasso solution is unique with
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A = m + di — ¢ and variable 1 is the only one entering the model when A gets below 4;. When

_r1 p,1 __(m 3 3 T: :
A= —m +dy —efore € (0, —m +dy—dy], b = (; + 5 0, — 35 0)” isa solution of the
KKT conditions. If there is another Lasso solution &, then b, = (% + zfzﬁ — 9,9, —ﬁ —9,9)7

and ||b2|1 > ||&1]]1 + 2|9]. So &, does not exist and variable 3 is the only one entering the model

m+d1 :  m

when 4 gets below 1,. When A = d — ¢ for sufficient small positive ¢, b; = (5 3550 220 25

Zf—lzﬁ, — ﬁ) T satisties the KKT condition, thus variable 2 and 4 enters the model simultaneously. At
this point, the Lasso solution is not unique and all solutions can be expressed as by — 9 x (1, —1, 1, —1)7
withd € [— ﬁ, ﬁ] Other rows from the table can be analyzed similarly.

Table A.1 implicitly expresses Z;, Z;11, Zj and Zj_H as a function of dy, d> and m. By examining
all possible ordinal relationship of dy, d> and 0, we record the region in the space of (dy, d>, m) such
that Bj(u) > 0 and denote it as R(#). R(#) is the union of 4 disjoint sub-regions {R;(#) };=1.... 4,

defined as following:

Ri(n) ={(x,9,2) :x >0,y > 0,x>y,2>0,x+2> T}
1
UE{(x,y,z) ix>0,y>0,x<y,2<0,2>x—y,x>17T}
1
UE{(x,y,z) tx>0,9>0,x<y,2>0,2< lf%ﬁ(y—x),x> T}

1
U{(x,9,2) : x>0,y > 0,x < y,z> 0,z > max (lj‘%ﬁ(y—x),T—i—L )}7

- —X
L—p" 1—p
(A.63)

Ry(u) = {(x,9,2) : (=x,9, —2) € Ri()}, Ry () = {(x,7,2) : (¥, —3,2) € Ru(n)} and Ry(n) =
{(x,7,2) : (—x,—y,—2) € Ry(u)}, where T = \/2ulog(p) and the § ahead of a certain region

means when (dy, d», m) isin this region, [@j(u) > 0 happens with 1/2 probability. Let the four disjoint

regions that composes R (%) in (A.63) be denoted by Ry ;(x) forj =1, - - - , 4. We can similarly define
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R;j(u) fori =2,3,4. By Lemmal,asp — oo,

P(ﬂj = 072]‘(”) #0) :P@j(”) £ O|{8j = OMEJ‘-H = O) X P(ﬂj = O,(@ﬁ_l =0)

+ P(Izgj( 7é 0’18 =0 [BJ_H Tp) X IP([B 0"8]4-1 — TP)
=Lyp~ inf g, [(22/p+2 ) (1=p)+97/ (1—p)) / (2 10g (p))]

(A.64)

+LP—3 infg(u) [((z—pp)? [p /(1=p)+ (= (1—p )Tp)z/(l—ﬁ))/(z10g(1?>))]7

P(8, # 0,8,(x) = 0) =P(§,(x) = 0l; = 7, 8,4, = 0) X P(§; = 7, 8,,, = 0)
+P(B (1) =018, = 7,8,y = ) X P(B, = 7,8, = %)
:Lpp—s—mfwc[((z—ﬁwwx—<1—ﬁ>rp>2/< 247/ (1=p))/ 2108 7))

_|_Lpp_zs_infk(u)C[((Z—2ﬁ7p)2/ﬁ+(x—(1—ﬁ)7p)2/(l—ﬁ)+()’—(1—10)712)2/(1—]’))/(210%(17))].

(A.65)

Define the p-distance function of two sets 4 and B in R3 as

dp(4,B) = inf [(a1—01)*/(1—p)+ (a2 — b2)*/(1 = p) + (a3 — b3)* /]

a€A,beB

where 4y, b, denote the k-th coordinate of vector 2 and 4. An immediate property of the p-distance

function would be

d

L, (Ui=1,... mAi; Uj=1,... NBj) = mind,(4;, B;).

lj 2y )

Utilizing the symmetry of the regions, we can compute the region distances involved in (A.64)
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and (A.65) explicitly. Take the second exponent in (A.64) as an example, it can be simplified as

~5-d,(R(u), {(0, (1 — p)7p.p7)}) /(2108 (7))
— —5—d,(Ry(1) U Ry(a) U Ry (1) U R (), {(0, (1  p) o 7,)})/ (2108 (p)

— —5—d,(Ry,1 (1) U Ry 3() U Ry (1) U Ro,a (1), {(0, (1 = £)5p5)})/ (2108 (0)).

Define Ry 2(x) = {(x,7,2) : x> 0,y > 0,2 > 0,x < y,x > T,z < y — x}, Ry 3(u) = {(x,7,2) :
x>0,y >0,2>0,x<yx>T} and Ry 4(u) = {(x,7,2) : x>0,y > 0,2 > 0,x < y,x <
T,Z > T+ If%/)-y - ﬁx} Then jzhz(ﬂ) C }‘élﬁ(%) and R173(I/t) U R174(%) = R1,3(u) U k174(1/l).

Since ]~21,2(u) and R, 5 () are symmetric about the plane x = 0, we know

dp(Ra2(2),{(0, (1 = p)7,p7)}) = dp(R12(), {(0, (1 = p) 75, 7) })-
Therefore,

dp(R(2), {(0, (1 = p)7p, ) })
= min{d, (Ry,1(#), {(0, (1 = p)7p.p7p)}), dp(R13(1), {(0, (1 = p)7p.p75)}),

dp(R1,4(2), {0, (1 = p)7p.p7p)})}

= min {752 x5 (T (/24— 12 X (T = (),
liﬁ R G ELAN i;;’ X T4 (T 7):))

= (T—p5)* + (&7 — 7,13 — (5 — D3,

where £, = \/l—ﬁzandiyﬁ = /(1 —p)/1+p).
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Let 7, = 0, we know d,(R(x), {(0,0,0)}) = 7%. By (A.64) we immediately have

P(lgj — 0"%‘(”) 7& 0) _ Lp])_ min{u, 3+(\/;_./0\/;)2+(§0\/;_77j@\/1;)i_(\/;‘_\/;i)i}‘ (AGG)

We can see the false positive rate is exactly the same when using the Lasso filter and the Knockoft filter

when p > 0. For p > 1/2, we can similarly compute 4,(R(«), {((1 — p)7), 0, p75) } ) to be
(5= T4 — (= £)ep — (L= 7)) T)s — (yp — 7, T2

and d,(R(#), {((1 — p)75, (1 — p)7p, 207) }) to be

]2

[(fﬁ Tp — ’7J0T)+ - (l/ﬂ’p - 77/,T)+

9

whereéjo = \/1—_p2,77ﬁ =/(1—p)/(1 —I—Jo),and)vJ = \/1 —p? — \/1 —p.

Plug these results in to (A.65), we have

P, # 0.4 u) = 0) = Lp AV V0V 0oL} ()

From here we have prove the result for p > 1/2 case.

In the case where p < —1/2, the exponent of false negative rate is additionally lower bounded
by —28. One can verify the rate given in the theorem through similar calculations. This is somehow
more straight forwards sincein the case where 8, = £, = 7, (T v 341,975,y R40) T~ N (1

p)7 - (1,1, -1, 1), G), meaning there is no way to distinguish the true variable from its knockoff

variable. 0]

180



A.113 Proor oF THEOREM 1.5.5

In the following proofs, we only consider p > 0 case, since p < 0 case can be transformed to the

positive |p| case by flipping the sign of either ‘Ej or forj=1,3,---,p — 1. By the block diagonal

J+1
structure of the gram matrix, the Lasso problem with 2p features can be reduced to (p/2) independent

four-variate Lasso regression problems:
5 . 1 .
b(2) = argmmb{g\ly = (% %41, 8, )l |5 + 2110] !1} (A.68)

forj =1,3,---,p—1. Before we turn to the proof of the theorem, we first analysis the solution path

of the following four-variate Lasso problem:
b = argmin, { —h"b + bTBb/2 + 2|61} (A.69)

with B = ((1,p,4,p)7, (p,1,p,4)7, (a,p,1,0)7, (p,a,p,1)T) and 2 € [2|p| — 1,1]. By taking the

sub-gradients, we know b should satisfy
Bb+ 2 sgn(b) = h. (A.70)

Let Z,- and b, denotes the 7-th coordinate of band b. Let A1 > Ay > A3 > A4 be the values at which
variables enter the solution path. Asdiscussed in the proof of Lemmal.6.2, 4y = max{|h1|, |h2|, | b3,
|h4|}. Withoutloss of generality, assume Ay = |b;| and variable 1 is the first variable entering the model
in solution path. We know for one variate Lasso problem, the only feature will not leave the model

after its entry as A is decreasing. So in the four-variate Lasso (A.69), variable 1 will stay in the model
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until the second variable enters the model. Consider three bi-variate Lasso problems (£ = 2, 3, 4):

b® = argmin, ) {—(H®)T6® 4 (6O TBB® /5 1 2160 ||;} (A.71)
with
B? = ) — bos and BB = b )
P 1 a 1

b = (by, b2), B® = (by, b3) and b®) = (by, bs). Now, we claim 2, = max;{2\" } where 2{" is
the value at which the second variables enter the solution path in the -th bi-variate Lasso problems.
Suppose 1Y) > 2 for i # k € {2,3,4}, when 2 € [2”, 1], we know the KKT condition
(A.70) is satisfied with b, = b3 = b4 = 0 by looking at the KKT conditions of the bi-variate Lasso
problems. When 1 € [lg') — ¢, ).g')), a second variable 7 must have entered the four-variate Lasso
path, since the objective function of (A.69) is smaller when including variable 1 and 7 than including
variable 1 alone (this is because the second variable have entered the model in the 7-th bi-variate Lasso
path when A € [lg’) — e, Rg))). We are ready to prove the theorem now, using what we have shown
regarding A; and ;. We next compute the false positive rate and false negative rate given (,Bj, B, )=
(0,0),(0,75), (7p,0), (7, 75), (—7, 7) by deriving upper and lower bounds for those rates.

We first establish some noatations. For the four-variate Lasso problem (A.68), let 4; denotes
the event that variable 7 is the first one entering the model, 4;, ;, denotes the event that variable 7
and 7, are the first two entering the model (ignoring the order between 7 and 7,) and 4;,;, de-
notes the event that variable 7] is the first one and variable 7 is the second one entering the model.
Let L; ;, denote the bi-variate Lasso problem with y as the response and x;,, x;, as the variables.
Let h = (y"x, 5 %41, "%, 5 %11), then b ~ N(g, G) with g = G(g,,£,,,,0,0)" and G =
((1,£,0,0)7, (0, 1,0,0)7,(0,0,1,0)7, (0,0, p,1)7). When not causing any confusing, we write £, in

place of #,(#) for simplicity.
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* When (Ig]"[gj+1) = (0,0),
P{w; > tp‘wjvﬂjﬂ) =(0,0)} = Lyp~™. (A.72)

To derive alower bound for P{ 17} > 1,| (ﬂj, ﬁj+1) = (0,0) }, welook for a point in the region
(or on the boundary of the region) that choose variable ; as a signal and apply Lemma 1.6.1.

The point we choose is p1 = (¢, 05, 0, pt,) T where £, = /2u log(p). It’s obvious that when
h = p1, variable ; is the first one entering the Lasso path. Though » = p; is in the rejection
region, it is also on the boundary of the region that choose variable ; as a signal because slight
increasing the first coordinate will result in variable j being selected. Since b ~ N (¢, G) with

4, = 0,by Lemma 1.6.1,
- - Tg—1 — U O! —u

The upper bound is straight forward by considering the first variable-7 entering the model and

notice that I7; ~ N(0,1):

P{w; > tP{(ﬂjHEjJrl) =(0,0)} :ZP{ Wi > thAi‘(/gjv/gjﬂ) =(0,0)}

= ZP{ wi> t]’}(ﬂjﬂgfrl) =(0,0)} =Lyp*.

(A.73)
* When <1Ej”6j+1) =(0,7),

S (E S )2 72
P{W; > t]"(ﬁj’ﬁj’-}-l) = (0,7)} > Lyp (Vu=pV/r) =GN r=1,Vu) 1 +(Vr \f)Jr7 (A.74)
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P{w; > tP’Aleung) =(0,7)} < Lp* (A.75)

ford = Ajypy1-j, Ajt1j+p+1 and

S o PV (E Sr—ry )2 )
P{ Wi > tp7A‘(18j7(8j+1) = (077}7)} < Lpp (Vamp /1) = (G i3 A (V=) (A.76)

ford = Ay, djjip, Ajsyiprr-

This time we choose

(1o ptp + (1= p2) 0, pTps 1y — 7). (1407 < 1,
T _
P2 =9 (%1, f‘fﬁfpa lffﬁl‘p)a 7y < 1, < (1+)7p,

(ty +p(7p — 1), 7p, p7p — 25) + f‘fﬁtp, lffﬁtp), ty < 7.

When b = p; and ¢, > 17, variable ; is the first variable entering the four-variate Lasso path
with W; = t,; when h = py and ty < 7, variable j + 1 s the first and ; is the second variable
entering the Lasso path with IW; = ¢, and W;1; = 7,. b = p; is on the boundary of the
region that chooses variable 7 as a signal. Since » ~ N (,, G) with i, = (p7), 7, p75, 0)7, by

Lemma 1.6.1,

(rr—2) TG (py—
P{w; > tP‘Q@fﬂj—H) =(0,7)} > Lyp (P2—1,)" G (p2—1t,) /2108 (p)
_ Lpp*(\/ﬁfﬁ\/;)zf(é;\/;*@\/ﬁ)?r(«/;ﬂ/ﬁ)i_
When Ajy1j4p+1 occurs, since by our argument on 4; and A, Ziy1 and Zy 44y are the A
value at which the variables enter the solution path in the bi-variate Lasso problem L; {1 j45+1-

Therefore, Z1 = |y"wj11|, Zipprr = [p"%41|. We notice that Zypyy > Z; > ¢, and
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marginally y'%;41 ~ N(0,1), so

P{W; > tp, diajipa| (B 8i4a) = (0,7)}

< IP){‘)’TQNC]'+1| > tp‘(xgjvﬂj'+1) - (07 fp)} - L}?p_”

Above inequality also holds for 4, 1 since if variable j+ p+1is the first entering the Lasso
path, then we must have b/Ticj_H] =Zipr1 > Zi > by,

When any one of 411, 4; 45, Aj—j+p+1 occurs, it implies in the bi-variate Lasso problem
L; 41, the largest A such that variable 1 enters the model for the first time is equal to 17,
thus larger than #,. In other words, if variable ; is a false positive using Knockoft for vari-
able selection, then it is also a false positive when using bi-variate Lasso Z; ;1. This means
P{W; > t,, 4| (ﬂ B; -1) = (0,75) } isupper bounded by the corresponding false positive rate
of Lasso, whichis Lyp Vi /7 ==,/ (\/;_\[)‘*,forA = A;jy1,

Ajjtpy Aisjtpt1-

Since Ajy1j4pand ;5 i1 41 can never occur when ;> 0, (A.75) and (A.76) implies

P{W; > 1|8 811) = (0,7)} < Lyp™ M VImA VG (Vi IR,
(A.77)

Further coupled with (A.72) and (A.74), we have

B{W, > 1,8, = 0} = Lp~ "5+ (Vi HEVF ViR ~(Fvi) (a7

e When (ﬂf 8 ) = (75,0),

PLW; < 5] (B8,10) = (7,0)} = Lypp~ (V=)< (A.79)
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and

P{w; < fﬁ‘(xg Biit) = (7,0)} < Lyp® P 7). (A.80)

Let p3 = (t,pt5,0,pt,)". When b = ps, variable ; is the first variable entering the Lasso
path and p; is in the region of rejecting variable 7 as a signal. Since b ~ N (¢, G) with u; =

(7,75, 0,p7,)7, by Lemma 1.6.1,

]P){W < t/" ﬁ ﬂj-H TP’ } > Lpp (s ;“3) G (p3—u,)/21og(p)
_ 1 Wvar

Before we prove (A.80), we first analysis f+ (#,7,8). By simply calculation, we find the

Hamm

optimal value of # that maximize £}, (u, 7, 3) given r, 3 is

SR L/ B QS R—
i 7S e i
e (\/@+\/ljﬁ)zri~9<r,
3, r<d.

S 7 A . . .
This implies #™ > ( YISy r regardless of the relationship of 4 and ». Consider 7, & as

fixed, fi7,m (7 #, 3) as a function of # is monotonically non-decreasing in [0, #*] and mono-
tonically non-increasing in [#*, 00). £y, (r,9) = 3+ [(v/7 — V) + — (1 — ENr—(1—
;7ﬁ)\/ﬁ)+]2 if and only if # > u*. Since (1 — &) \/r — (1 - ;7ﬁ)\/pF <0,(1-§)vr—(1—

7,0V < Oforallu > u*, which implies £, (r,9) = 3+ [(/7 — Vu)+]* when u > u*.
Therefore,

Fitam (r2,9) = minfu, $ + (Vi = ol v/7)? + (§,v/7r = 7,V0)4)* = (Vr = V) +)%,
+[(Vr = V)4 ).
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Now, we show that (A.80) holds for # > #«*. This would implies (A.80) for all # > 0, since
the false negative rate P{ W/ < £,(u)| (/3 /3] 1) = (7,0 )} is monotone non-decreasing with
u,soforu < u*, P{VV] < tp(u)‘(ﬂ],,ﬂjﬂ = (75,0) } < P{W < t(u ‘(ﬂ ﬂj+1
(7, 0)} < Lyp® SFramn3) < Ly Frann ),

1+p
Assume # > u*,sou > ——,~———rand
=77 T ({/14pt4/1—p)?

1—p 2 1-— 1
- — 2> > —(2— —o)r> — >
(rvisl > (=) vz~ VB pr 2 =
(A.81)
We next prove (A.80) by showing that
P{W; < 15, 4|(8,8,1,) = (7,0)} < Lp~ (VFVidsF’ (A.82)

holds for 4 = A;, Aj 11, Aj+p, Ajrp+1 and u > u*. Respectively,

P{VV] < tP’Af‘(lgj’Igj—I—l TP’ } < P{b’ J| < tp}(lgj”gj-'rl (TP’ 0)}
Ly~ [(Vr— f)+]2

and by symmetry and (A.81),

P{W; < 1, /+1’(ﬂ Bi) = (7,00} =P{W; <1, ]+P+1‘(Ig /’]JH (7.0}

P{W; < 1, djsp| (B B:11) = (7, 0)} <P ] < 'l |(B,.8,11) = (7, 0)}

<L],p 5 <Lp \/‘7_‘[)”2.

(A.80) is immediate by [(v/7 — /%) 1£]* > A (72 1, 3) — 3.
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¢ When (ﬂj,[@jﬂ) = (Tp, Tp),

P{ w; < tP}(ﬂj’lgj—H) = (7, Tp)} < LpP%f;‘r““’m(”’r"gx (A.83)
More precisely, we will prove that

P{w; < tp|(ﬂ = (55,7)} < Lyp~ (Vv (A.84)

ﬂ /+1

holds for # > «*, thus implies (A.83). We prove (A.84) by showing

P{W; < 15, A|(B,8,11) = (7, 7p) } < Lyp (Vv (A.85)

18 j+1

holds fOI‘A = Aj?Aj—l—lﬁj?Aj+1—>j+p7Aj+1—>j+p+17Aj+})7Aj+])+1 and # Z M*, which cover all

possibilities. Respectively,

P{W; < tp, 4)|(£,8,11) = (70, 7) } SP{ 51 < 5] (B,.8,41) = (5, 7) }

< Lp AV < [ oo (Vi Vi,

P{W; < tp, 4jsp| (8 8:11) = (5. 5) } SP{D 5] < '51|(8,841) = (5,7 }

< Lp~ ir < Lp~ \/;_f)+]27

P{W; < tp, Appir (B 8,11) = (5. 7) } S B{D ] < y'5l[ (B, 8,41) = (5 %) }

< Lyp ol <LP [(Vr=vu) ]

When 4 [i+1-; occurs, the bi-variate Lasso problem L; j41 shares the same A; and A, with the
four-variate Lasso problem. So variable j is a false negative when doing variable selection using

the bi-variate Lasso L; ;11 given W; < t,, which implies IP{ w; < fp7A1'+1—>]" (ﬂﬁ /Zj +1)
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(75, Tp)} is upper bounded by the corresponding false negative rate of Lasso, which is Z, -

p_(é\/;_’&‘/’?)i < Lpp*[(\/;*‘/;)”z. The last inequality is equivalent to

(1- 1—ﬁ2>¢;s(l—,/;ﬁ)ﬁ.

By (A.81), the right hand side is no smaller than /7, thus no smaller than the left hand side.

When A4 y1-,4 occurs, we know variable j + p instead of variable / is the second one entering
the Lasso path. This means the 1, (the A value when the second variable entering Lasso path)
of the bi-variate Lasso problem Liy1j4pis larger than the 1, of the bi-variate Lasso problem
L; ;11. Since we have derived the explicit expression of A in bi-variate Lasso problems, when

}’ijﬂ > 0, we must have

S AR e L D s LS B O

max{ - — ,

—F —l1—p
Therefore, A;y1-+, implies one the three following events must occur:

Yy g sn )" —p e Yy g a7 - yn
1—p 1—p ’ 1=p 1oy

1 <0,

The probability of these three events given (/5],, B; 1) = (7, 7p) are Lpp*(Hf’)z”, Lpp_g and

(1+20)% (1)

Lyp 2077 ", all of which are upper bounded by Lpp_[(\/;_ﬁ)”z when # > u*.

When A;41_y;1,11 occurs, the A, of the bi-variate Lasso problem L. 1 ;1,41 is larger than the
1=+ p+ p j+1+p+ 8
A2 of the bi-variate Lasso problem Z; ;1. When )’ij—f—l > 0, we must have
T T T T
X LY XL VX T LY N

max{y ,
1—p —1—p

} < %l
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Therefore, ;1145 +1 implies one the three following events must occur:

Va—plyn o Yx—plyn

T T~
V %ip1 <0, -5 <Y X1, -5 < =) X1

- _ (1429)? A=p)
Respectively, the probability of these three events are L,p™ ()7, Lyp~2andLyp 20+

all of which are upper bounded by Lpp’[(\/;’ V)+” when u > u#*. From here we have verified

(A.85), thus implies (A.83).

From (A.78) and (A.79), we have

P{W; > 1,6, = 0} + P{W; < 1,8, = 7} > LypFumn3) (A .86)

P{W; < 1.8, =7} =p° x P{W; < 1,(8,,8,,,) = (7,0)}
+p I % IP’{ w; < tp’(ﬂ ﬂjH (75, r],)} (A.87)

SLpp_ﬁamm(}ﬁ’”“?)
Since (A.78) also implies IP’{ w; > tp, = 0} < Lyp ~Friamm (:5) , we know

P{W) > 1,6, = 0} + P{W; < 1, = 7} = LypFunn3) . (A.88)

. When(ﬂ ,8]+1 (— TP,TP),

— =L )1 )2
P{VV] < tPKIEng]q-l) = (_Tpafp)} > Lp]? (Gvr=, Vi+) , (A.89)
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(1—2p)* (1+ﬁ)

P{W; < (B 8,41) = (=7 7)) = Lop 209 7, (A.90)

and

(=20)*(tp) | .
P{W; < 15 (B18,41) = (=7, 7p) } < Lpp min{ (/77 Vi) +) 5y i (079
(A.91)
Let

(=1 = p)7p, (1 = p)7p, 75, —p75), (1—p)zp < 1,

|

2
(p(1=p)7p = (L4 )ty L = P)pip(L = p)7p + 00 —1550), (L=p)7 > 1.

When h = p4 and (1 — p)7, < ¢y, variablef is the first variable entering the Lasso path with
Wi = (1—-p)r, < ty;whenh = pgand (1 — p)75, > 5,7 + 1is the first and f is the
second variable entering the Lasso path with I7; = #,. Regardless of the relationship between
7y and ty, b = py is always in the region of rejecting 7 as a signal. Since » ~ N (g, G) with

Hs = (- _ﬁ)T;n (1 —ﬁ)Tp,ﬁTp, —JOT],)T, by Lemma 1.6.1,

IF’{W < tp‘(xg ﬂj_H (— TP77P>} > LPP*(PrM)TG—l(prh)/z1og([7)

— Lppf((s;\/?ﬂ;;l\/ﬁh)z_

403 —2p%+p—1 14-2p—4p” 2 . . .
Let pl = <%rp, (1 —p)7, Joz ﬁ T, —fTﬁTP) When b = ps, variable j + 1 1is
the first one entering the Lasso path with 1741 = (1 — p)7,, if we slightly increase the value
of the third coordinate of ps, then it falls in the region of rejecting 7 as a signal since variable

j + pis the second variable entering the Lasso path. This implies » = ps in on the boundary
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of the region that rejects 7 as a signal, by Lemma 1.6.1,

P{W; < 45| (B;,8101) = (=7 7p) } = Lyp~ ) G ) /2 1ex(p)

_ (1=29)%(14p)

= Lp]) 2(1—p)
Next, we show that

1—2p)2 (1+,
2’%V7_3+f§amm(tﬁr7’9)} .

—min{(({,\/r—7""\u
P{W; < 1, 4[(8:8:41) = (=7 %) } < Lyp UGy Vi)
(A.92)

holds for A = Aj, Aj+1—)j7 Aj+1—>j+])7 Aj+1—>j+]7+1 y Aj+])714j+p+1, which cover all pOSSibilitiCS.

When 4 = A; or Aj;1-; occurs, as previously discussed, variable / is a false negative when do-
ing variable selection using the bi-variate Lasso L;jv1 given W; < ¢y, which implies IP’{ w; <
ty, A | (‘Ej, B; 1) = (=7, 7,)} is upper bounded by the corresponding false negative rate of

Lasso, which is Lpp_((é\/;_’glﬁh)z'

When 41,1 occurs, the A, of the bi-variate Lasso problem ;1 ;1 is larger than the 4, of

the bi-variate Lasso problem Z; ;1. When yijH > 0, we must have

Y —pmn ¥y *ﬁmil} < max{

R *ﬁyTxm}
1—p ’ —1—p 1—p ’

I _1 —JO

max{

Therefore, A;y1;, implies one of the three following events must occur:

r R R R R A R e
Y X+l <0, < ) <
—1—p 1—p —l—=p —l=p

(1—20)? (1+p)

The probeability of these three events are Lpp’(lff))zr, Lp 209 "and Lpp_g, all of which

2
— min{ % 7, —«9+f]§amm (n,,9)}

are upper bounded by Lyp

When 414 p+1 occurs, the A of the bi-variate Lasso problem Lj11,j+p+1 is larger than the
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A of the bi-variate Lasso problem L; ;1. When yijH > 0, we must have

=y v — ey

1—p ’ —1

} < ' Fal

max{

Therefore, A;y1;4,+1 implies one of the three following events must occur:

T T
7 )X TP Nl

T T
VG G e
aEant 1,

—1—p

T..,

T
Vi1 <0, < 7Y Xt

(1—20)2 (1)

The probeability of these three events are Lpp_(l_f’ )y, Lppfg andL,p~ 20 allof which

2
— min{ 7(1722{1)_;1){” ) r= S+ (u,r,8)}

are upper bounded by Z,p
When 44, occurs, then [y'%;| > [y'x] and [y'%| > [y"x44]. If "% > 0, we further have
"% — yTa) + 2ﬁ+1(y %+ y7x) > 0;if "% < 0, we further have y'%; + yTx;41 < 0.
Therefore,

P{W; < 1y, 41| (B, /3;+1) = (=7%.7)}

SP{@T%]‘ _)'ijJrl 2 +1(}’ x] +}’ xj > O‘(ﬂjazgﬁq) = (_TP>T]7)}

+ {5+ x4 < 0[(B,84) = (—707)}

2(1-20)% (1+/J) - _ = Zﬁ) ),
<Lp % 4 Lp i< Lyp iy S (479}

Ford = A;y 511, (A.92)is immediate due to the symmetry between variable j+pand j+p+1.

Now consider the case where ﬂj takes value in {0, —7,} and ‘Ej ,; takes value in {0, 7,}, this

corresponds to the p < 0 case (we flipped the sign of p and ﬂj simultaneously). By (A.72),
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(A.74), (A.79), (A.89) and (A.90), we know

(1=2]e))* (1+[eD) (A.93)
> Lpp_ Inin{f}tamm u,r,S),ZS-‘r((fj,\/;’—iy;l\/;) )? 2‘9—"_2(17{/’\) }
Meanwhile, (A.72), (A.75), (A.76), (A.80) and (A.91) gives
P{W; > 1,8, =0} + P{W; < 1,8, = —7,}
(1=20e)* (1+e]) (A.94)
< Lpp_ min{f, . (4,7,9),28+((&, V) 4)? 28+ S }'
Therefore,
(1=20e))* (A+[eD) (A.95)
_ Lpp min{f (#,7,9), 29+ ((&,v/r— ’1\/>)+)2 23+W;’}i
A.88) and (A.95) complete the proof for Theorem 1.5.5. O
(A.88) p p

A.l114 Proor oF THEOREM 1.5.6

The only difference of the conditional knockoft from the Equal-correlated knockoft construction is

that ijfcj is changed from 0 to Joz forj =1,---,p. Therefore,

= ((Lp®p) s (o Lo ™) (020 1) T (0% s 1))

is the new gram matrix for the four-variate Lassos (A.68). We follow the same notations and workflow

from the previous proof.

* When (18]'718]'—1-1) = (0,0),
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P{ w; > tp‘(ﬂj,ﬂjﬂ) = (0, O)} = Lyp~". (A.96)

Let p1 = (4,15 ,Joztp Plp) T where t, = /2ulog(p). When b = py, variable ; is the first one
entering the Lasso path. Though » = p; is in the rejection region, it is also on the boundary of

the region that choose variable  as a signal. Since b ~ N (¢, G) with ¢, = 0,by Lemma1.6.1,
P{ Wi > tp}(ﬂj”@j_’_l) = (0, 0)} > Lp]’_(pl_ﬂl)TGﬂ(pl_ﬂl)/z log(p) — LP]J_”.

The upper bound is derived exactly the same as (A.73).

When (Igja(gjq-l) = (Oa Tp)a
—(Sa—p )2 — T J7)? e S7)?
B{IW; > 1)](8.8,,) = (0,7)} = Lyp (Va7 =G, /i +(VF=Vih (7 o7y

This time we choose

(tpopty + (1 — p1) 75, 0%t + p(1 — p )75 01,) T, (14 p)7p < 15,
T _
P2 =N (b, ptp,p1)7, 7, <ty < (140)75,

(1= p)tp + p75, T, pT p(1 — )ty + p775) T, 1y < 7.

When b = p, and ty > Ty, variable 7 is the first variable entering the four-variate Lasso path
with W; = t,; when b = py and ¢, < 7, variable 7 + 1 s the first and ; is the second variable
entering the Lasso path with W, =1t and Wisi = 1. h = ps is on the boundary of the

region that chooses variable j as a signal. Since b ~ N (g,, G) with z, = (p7,, 7, p7p, JOZT],)T,
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by Lemma 1.6.1,

]P){ VV] > tp‘({gj’ﬂj+l) — (O’ Tp)} Z Lpp_(PZ_(“z)TG—l(PZ_/‘z)/ZIOg(P)

(A.98)
(Vi = G iV + (i

Next we show that

]P’{W > IP’A‘Q@ ﬂ]—s-l (0 Tp } <LP (Vu=p/7)? = (ENr=, /) L+ (Vr—u)} (A.99)

holds for 4 = Ajzf'i‘l?AjJ"rP? Aj—>j+]7+17Aj+P+1—>j7Aj+1J+P+1’ which covers all pOSSibﬂitiCS.

When any one of 4; 11, 4; j+p, Aj—j+p+1 occurs, same as for EC-knockoft, it implies if variable
7 is a false positive using Knockoff for variable selection, then it is also a false positive when

using bi-variate Lasso L; ;1. So ]P’{ w; > tP,A} (ﬂ (0,75) } is upper bounded by the

(WA G RV

Kg ]+1

corresponding false positive rate of Lasso, which is Z,p
ford = djji1, 4y p, Ajmpr-

When 4 = Ay 11,7+ p + Lis the first variable entering the model in the four-variate Lasso
problem, thus it’s also the first variable entering the model in the bi-variate Lasso problem

Lty j+pr1and Lj 4y . Variablej + p + 1 gets picked up as a signal in 2,41 ;4511 implies

_ 2 2 > 2 — 2
P{w; >¢p,A]+p+H]}(ﬂj,g]+l (0,7)} < Lyp (V=[P VP =(Ea =12 V)2 (V=)
< LPP—(\/»?—MW) (V=g +(Vr—u)k

when# > (14 p)?roru < (1+ p*)%r

Now consider bi-variate Lasso problem L; 11 541 given (1 + p*)*r < u < (1+ p)*r. Variable
J»J + p + 1both get picked up as signals with j + p + 1 entering the model first given 17; > ¢,.

This implies (yij, nych) falls in the purple or green region of the right panel of Figure A.1.
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Marginally, (y"x;, y"%41) ~ N((p7p,0%7,)7, [(1,0), (p,1)]). The point in purple or green
region that has the smallest ellipsoid distance to (o7, p%7,) " is (¢, £,) when (1+p%)%r < u <

(14 p)?r, thus by Lemma 1.6.1,

2_1=p

P{w; > tpyA]‘+p+l~>j‘(ﬁj,ﬂj+l) = (0,75} < Lppf(\/;fﬁ‘[) e
< Lppﬂﬂﬂfﬁ”

_ Ly VP =G (V)

foru € ((1+4 p*)*r, (14 p)*r), which completes the proof of (A.99) for 4 = Aj1541-5;.

When 4;114+p+1 occurs, consider the bi-variate Lasso problem L1 j1+1. In this bi-variate
Lasso problem, {11, 22} = {Zj11,Z;4p11}, both of which are larger than 7. Thus in
this bi-variate Lasso problem, both variables will be picked up as signals given 7; > ¢,. So
Tty % 2 log(p) falls in one of the four regions in the right panel of Figure A.1

G+ ) X & ght p g
withx” %11 = p? instead of p): the purple region, the mirror of purple region against x = y,
1% = P P purple reg purple region ag )
the green region and the mirror of green region against x = —y. Since (y’ %41,y %41) ~
N((zp,p*7) 7, [(1,4%), (6%, 1)]). By Lemma 1.6.1, we need to find the point in those regions
that has the smallest ellipsoid distance to the center-(7, Jozz'],)T. When 7, < ¢, this critical
point is O/Tag+1,yT5§,-+1) = (%,1y); when 7, > 1, this critical point is (yijH,nych) =
(79,8 +p(75 — 1,)). So Lemma 1.6.1 gives the probability for A; and A5 in Ljy1 7411 to be

both larger than Ly is

LPP—(\/%—W)i—L/, < Ly~ VAPV o VR Vi

Since Aj 11,1541 NV {W; > t,} implies {41 > £,} N {2 > #,} in Lj11 1541, we know

2
P{W > tP7A]+1j+}7+1‘ ﬂ ﬂ]+1) O TP } <Lp \[ Jﬁ‘\[) (f\/ ‘7}\[)++(\[ \[) .
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Now, we have verified (A.99). Further coupled with (A.98), we have (A.97).

When <IE]'718]’+1) = (TP7 O)’
P{IW; < 15](8:8;41) = (5, 0)} > Lyp™ V=Vl (A.100)

and

P{W; < (8, (7, 0)} < Lyp® o () (A.101)

16]+1

Let p3 = (25,00, Jozt], , jotP)T. when b = ps, variable  is the first variable entering the Lasso
path and p3 is in the region of rejecting variable 7 as a signal. Since b ~ N (g5, G) with u, =

(Tp,ﬁTp,ﬁsz,ﬁTp) T by Lemma 1.6.1,

]P){W < [P‘(Ig (@J+1 T]), } > LPP (p3—us) VTG (p3—p5)/210g(p)

= Ly (VT

Now, we show that (A.101) holds for # > #*, which implies (A.101) for all # > 0 as discussed

in the proof of EC-knockoff. We prove (A.101) by showing that

P{W; < 15, 4|(8,8,1,) = (7,0)} < Lp~ (VFVisF’ (A102)

Kg ]+1

holds for 4 = A;, Aj11, Ajvp, Aj1pr1 given u > u™. Respectively,

P{W; < tp, 4)|(,8,11) = (7, 0)} S P{ 5] < 5[ (8, 8,,1) = (7,0}
_ Lyl
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and by symmetry and (A.81),

P{W; < ty. A1 (B 8;11) = (7, 0) } = P{WV; < 1y, Ay pia| (B 8,11) = (7,0}

<P{h'5l <y x]+p+1||(ﬂ Bi) = (7,0)} < Lyp~ 2 < Lp WVl

P{W; <ty Ajip| (B 8,11) = (7,00} < P{y" xf\ < "0l[ (8, 811) = (7, 0)}

<L]JP i <Lp [(Vr=vu)+]*

(A.101) is immediate by [(v/7 — V%) +]* > flam (7 11, 8) — 3.
* When (/Zj,/%#l) = (75, 7p)s
P{W = tp}(ﬂ]’fngrl TP’ p } < LPP f*amm(u,r,é‘)' (A.103)
We prove (A.103) by showing
P{W; < 15, 4|(B,8,11) = (7, 7p) } < Lyp (Vv (A.104)

holds for 4 = A, Ajp1—, Ajpr—ps Aji—jptts Aprps Ajpr given w > u™, which cover

all possibilities. Respectively,

P{w; < twAj‘(ﬂj’ﬂjH) = (5, 7)} <P{ly'x| < tﬁ‘(ﬂﬁﬂjﬂ) = (%)}

< Ly OVl < [ o[-V,

P{W; < tp. djsp| (8 8:11) = (5. 5) } <P{D ] < '51|(B£11) = (50 7) }

< Ly Fr < Ly (vl

199



P{W; <ty djspa| (B 8,11) = (5. 75) } <P{ ] < 5l (8 840) = (5 )}

SLPP (1—/’)(1+ﬂ) LP [\/;_\[)+]2

When 41—, occurs, the bi-variate Lasso problem Z; ;1 has variable f is a false negative given
W; < t,, which implies P{ W} < t,, Aj1/] (/Z Igj—H = (7p,7p) } is upper bounded by the
corresponding false negative rate of Lasso, which is L p GV, < Lpp_[(\/;_‘/”?”]z for

u > u*.

When A4 [+1-j+p OCCUrs, we know variable j 4 p instead of variable j is the second one entering
the Lasso path. This means the 1, (the A value when the second variable entering Lasso path)
of the bi-variate Lasso problem L j+1j4p 1 larger than the 1, of the bi-variate Lasso problem

Ljjy1. Whenyng_H > 0, we must have

T

T, T, _ 2T, T%. Ty
— L) xj‘H.yxj — P xj+l}<max{.yxj LY X1 Y X — LY x/+1}.

max{ , )
1 —p —1—p 1—p —1—p

Therefore, A; 41,1, implies one the three following events must occur:

Y5 e e Ym0 e
1—p L—p 7 1=p 1=y

)’ij—&-l < 07

The probability of these three events given (ﬂj,ﬂﬂ_l) = (75, 7) are Lpp*(lﬁo)%’ Lpp_Tﬁr

_ (1+2)%(1—p)

and L,p 20+2) " all of which are upper bounded by Lpp_[(\/;_\/;)*']z when z > u*.

When 4414 p+1 occurs, the A, of the bi-variate Lasso problem L1 ;11 is larger than the

A2 of the bi-variate Lasso problem Z; ;1 1. When y x]-_,_l > 0, we must have

max{ lf’}' xj+1’}’ — 2 %1

{nycm — 22y Y R —ﬁz)’ijH}

< ma ,
} < max o

_1_J0 1_ﬁ2
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Therefore, A;11_,;1,11 implies one the three following events must occur:
j+1—j+p+11MP g

Yy —pn 0y Gn = s ey = g
1—p 1—p? ’ 1—p —1—p?

%1 <0,

2 _+0)3—p)

Respectively, the probability of these three events are Lyp~ (142)*r " Lpp~ = "and L 2P 2(1442)

all of which are upper bounded by Lpp’[ Vr=vVi)+" whenu > u*. From here we have verified

(A.104), thus implies (A.103).

From (A.96), (A.97), (A.100), (A.101) and (A.103), we have
P{W} > 1,6, = 0} + P{W; < 1,6, = 7} = Lyp Trum"3), (A.105)

which completes the proof for positive p.

When (ﬂj.,ﬁ],+1) = (=75, 75),
_ L )L )2
P{ VVJ < t]’}wjngjﬁ) = (_Tpa Tp)} > Lp]? (Gv/r=," Vi) +) (A.106)

and

(1=p)3 (140)
mm{((f\/}7 1, 1u)1)?, 2{1+f 5 } (A.107)

P{W; < 1] (B, 811) = (=7, 5) } < Lyp
Let

T (=1 =p)7p, (1 = p)7pop(1 = )75, =p(1 = p)7), (L=p)7p <,
4
(p(1 = p)7p — (L+p)tp, (1 = p)7ps p(1 = p) 7, 7 (L = p)7p — p(L + p)1y), (1= p)7p > 15

When b = psand (1 — Jo)rp < 4, variable ; is the first variable entering the Lasso path with
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w; = 1 —Jo)rp < t; when b = p4 and 1 —ﬁ)Tp > t,,j + 1is the first and  is the
second variable entering the Lasso path with W;=t,. Regardless of the relationship between
7y and ty, b = py is always in the region of rejecting 7 as a signal. Since » ~ N (g, G) with

= (—(1=p)7p, (1 = p)75,p(1 — p)75, —p(1 — p)75) ", by Lemma 1.6.1,

P{w; < fp}(ﬂ (—7p,7p) } > Lpp*(ﬁrm)rG‘l(prm/z1og(p)

18]-1-1

_ Ly GV VR

Next, we show that

— min =L )1 )2 (lfﬁ)3(1+ﬁ)r
P{VV/ S tP7A|(18j718j+1) = (_T]HTP)} S LPP {((fﬂ\[ T f)+) 204 } (A.IOS)

holds for A = Aj, Aj+1—>j7 Aj+1_>j+P,Aj+1_>j+P+1 y Aj—i—pv Aj—l—p—l-l» which cover all pOSSibilitiCS.

When 4 = A; or Ajy1-; occurs, as previously discussed, variable / is a false negative in the
bi-variate Lasso L; ;41 given W; < t,, which implies P{ 17; < tp,A‘ ({8 lgﬁl (=75, 7) } is

upper bounded by the corresponding false negative rate of Lasso, whichis ZLyp (Govr=r, Vi)

When A [j-+1-+p Occurs, the A, of the bi-variate Lasso problem L j+1j4p 18 larger than the 1, of
the bi-variate Lasso problem Z; ;1. When y xj_H > 0, we must have

T T T
VX T LY XL )Y T PY YL 9% = v 3% =y g
J Y J 7Y < max{ Xy i J AnaY

max{ , ,
1—p —1—p 1—p —1—p

Therefore, A; 11, implies one of the three following events must occur:

"5 — ' T3 — oy,
ylas + 975 < 0’)’ N G V% —py xj+17y — i B s
—l—p 1 —F —1—p —1—p

149 (1-p)% (=)’ (k)

The probability of these three events are Lyp~ 2 R Lpp 2047 " and Lyp~ 3 ,all of
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(=) (4p) .

which are upper bounded by Lppi 2(144%)

When 4414541 occurs, the A, of the bi-variate Lasso problem ;11 j1 511 is larger than the

Az of the bi-variate Lasso problem L;jv1. When }’ij—H > 0, we must have

Y=oy gy _ﬁ}’ijH} < max {yT;Cj-l-l — "y g1 ¥ R — ﬁz)’ijH}
1—p B 1—p? ’ —1—p?

max{

Therefore, 441+ p+1 implies one of the three following events must occur:

r ro o Y=l Y G =Y Yy - 9 R -
Y xipty x <0, < 5 ) < 5 :
—1-p 1—p —1—p —1—p

" B P R o' . =2
The probability of these three events are L,p 2 T Lypm 2 N Ly 205 allof
(=) tp) .

which are upper bounded by Lppi 2(144%)

When Ajtp occurs, if yTicj < 0, then )’ij-i-l + yTicj < 0, which happens with probability

3
_ (4p)(1-p)? _(1=p)°(+p) ~ ~ _
Lyp 2 "< Ly 20 ", Ify’%; > 0, theny’%; + lTﬁyij - 1#}/Txﬂ_l > 0, which
20)° _1=p(4p)

happens with probability Lppi W< Lyp 2049 " Therefore, (A.108) holds for Ay

and also for 4;,+1 due to symmetry. We thus complete the proof for (A.108).

Now consider the case where 8, takes value in {0, —7,} and B, takes value in {0, 75}, this
corresponds to the p < 0 case (we flipped the sign of p and ng simultaneously). By (A.96),

(A.97), (A.100) and (A.106), we know

P{W} > t,,8,= 0} + P{W; < 1., = -7}

(A.109)
> Lpp_ min Hamm(u,r,&),l&—i—((éﬂﬁ_yfjl\/;t)+)z}.
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Meanwhile, (A.96), (A.97), (A.101) and (A.107) gives

P{W; > 19, f; = =0} +P{w; < tp ;= —7,}
(A.110)

A (08) 23 (/P V) 1225+ L)y

< Lyp 20417

The proof is complete once we show that

L3
min{fy, . (u,7,9),28 + ((é;o\/;— ;7;1\/1;)4_)2} <28+ a ZJ/(JI)+(;2—i)_ LODV (A.111)

Otherwise, there exists a tuple of (&, 7, p, #, r) such that

29 + o J’(O’ +J07)L M)r <29+ ((§,v/r = ;;/;1\/5)+)2 (A.112)

and

(1 — e’ + o)) 2 2 2
(A.113)

are satisfied simultaneously.

By (A112),£,\/r— 7 1\/;t > 0, which implies (1 — |p|)/7 > \/%. Therefore, the right hand

side of (A.113) simplifies to & + 1+ll£= u. By (A.113), we know

(1= [pD)( 1+ Jel) | 19+(1*|/°|)3(1+]P| 1l
2(1+p%) 2(1+p%) 1+]P|
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Plug this into the right hand side of (A.112), we have

219__‘_ (I_JP|)3(1+V‘)F<2$+((€0\/;_77;1\/;)+)2

2(1+,%)
TEPEARE (A.114)
— )1+
<
28 —I— \/1 \/ 20+ ) ) 2
which can only be true when p* > 1. By reductio, we proved (A.111). ]
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Supplemental Materials of Chapter 2

B.1 GetQT ALGORITHMS

We present details of the GetQT algorithms used in BEMA. Under the general spiked covariance model
(2.7), the empirical spectral distribution (ESD) converges to a fixed distribution F, (x; %, §). Write
¥, = p/n. The purpose of the algorithm GetQT(y, 7, , ) is as follows: Fixing o = 1, given any & > 0

and y € [0, 1], it outputs the y-upper-quantile of the distribution F, (x;1,6).
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B.1.1 THE MoONTE CARLO SIMULATION ALGORITHM GetQT1

As explained in Section 2.3.1, F, (+;1,9) is also the theoretical limit of the ESD under the following

null covariance model:
T = diag(7, . .. ,0’;), where o7 S Gamma(4, 6). (B.1)

We can simulate data from (B.1) and use its ESD as a numerical approximation to F, (-1, 6).

Write p = min{z, p} and y = k/p. When the population covariance matrix satisfies (B.1), the
kth eigenvalue of the sample covariance matrix, ik, is asymptotically close to the y-upper-quantile of
Fy (+;1,8). We thereby use the mean of 2, obtained by sampling the data matrix multiple times, to
estimate the desired quantile. We note that model (B.1) only specifies how to sample X, but it does
not specify how to sample X,’s. Due to universality theory of eigenvalues (Knowles & Yin, 2017,
Section 3.3), the choice of distribution of X;’s does not matter. For convenience, we sample X,’s

from multivariate normal distributions. See Algorithm 3.

Algorithm 3. GetQT1.
Input: n, p, 6, k, and an integer B.
Output: An estimate of the (k/p)-upper-quantile of £, (+;1,6).

1. Forb=1,2,...,B, repeat: First generate >®) from (B.1), and then generate

X N(0,20),1 < 7 < . Write XO = X XI)T € o,

Construct the sample covariance matrix $%) = (1/2)(X®)) TX®) and obtain

its kth eigenvalue i/(f).

2. Output 3 S i,(eb) as the estimated (k/p)-upper-quantile.

In the practical implementation, we use the following strategies to further reduce computation
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time and memory use: (i) When 7 is smaller than p, we no longer construct the p X p covariance
matrix $(). Instead, we construct an 7 x 7 matrix (1/7)X® (X®) T This matrix shares the same
nonzero eigenvalues as S but requires much less memory in eigen-decomposition. This strategy is
especially useful for genomic data, where 7 is typically much smaller than p. (ii) In the main algorithm,
Algorithm 2, GetQT1 is applied multiple times to compute the (k/p)-upper-quantile for a collection
of k. We let the sampling step, Step 1 above, be shared across different values of k: For each b =
1,2,...,B, weobtain and store j/(eb) for all values of &; next, in Step 2, we output the estimated (k/p)-
upper-quantile simultaneously for all values of 4. This strategy can significantly reduce the actual

running time.

B.1.2 THE DETERMINISTIC ALGORITHM GetQT2

This algorithm directly uses the definition of F, (+;,1,6). Let Hy(#) be the CDF of Gamma(¥, §).
Given a positive sequence £, such that £, — 0 asz — 00, let m,(y) = m,(y,£,.7,,6) € C* be the

unique solution to the equation

1 t
i& = —— dHy(?). B.2
yrigi= =y, [ ) 82)

Then, the density of F,, (+;1,6), denoted by £, (y; 1, 9), is approximated by

};n(%lve) = ! ) S(ma(9,£0,7,,9)), (B.3)

z(y, N1

where $(+) denotes the imaginary part of a complex number. The choice of £, needs to satisfy £, >
71, in order to guarantee that the approximation is not governed by stochastic fluctuations (Knowles

& Yin, 2017). We choose £, = n~2/3 for convenience.

The above motivates a three-step algorithm.
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1. Fixagridy; < y2 < ... < yn. Solve equation (B.2) to obtain 7z, (y;) for1 <j < N.

2. Use equation (B.3) to obtain};‘, (973 1,6), for1 < j < N. Obtain the whole density curve

};,ﬂ (y;1, 6) by linear interpolation.
3. Find g such that fq(H\/}T”)Z_}A”},n (2;1,6)dz = y. Output g as the estimated y-upper-quantile.

Step 2 is straightforward. Step 3 is also easy to implement, sinceﬁn (;1, 0) is a piece-wise linear func-
tion. Below, we describe Step 1 with more details.

In Step 1, fix y and write m = a + bi, wherei = vV/—1,andz € Rand b € R are the real and
imaginary parts of 7, respectively. We aim to find (4, b) so that 7 solves the complex equation (B.2).

Pretending that £, = 0, the equation (B.2) can be re-written as a set of real equations: *

_ _ 2
V=7 f 1+24t+(;2+b2)t2 dHﬁ(t)’ 2ay = Y 1+2ﬂt+(i€+bz)t2 dH@(t)a

L = 2 _ @+
717 = Vo | T e dHe(0), 1=7, ) trar@rmedts()-

First, by combining the above equations with y, = 7, %ng(f), we have
-2 / ! AHH(2) > 0
p— —_ d = .
Vn PE0 | Tt 2ar+ (2 + 2)2 0

Ityields thatz < (y, —1)/2y. Second, by Cauchy-Schwarz inequality, | dHy(t)] 2 <

13
f 14 2at+(a>+56%)1?

fmd[{g(t) . fmzwdfjg(t) It fOllOWS that

1
2
yE0 - 2a) s

"The second equation is obtained by letting the imaginary part of both hand sides of (B.2) be equal. The
first equation is obtained by letting the real part of both hand sides of (B.2) be equal and then substituting %
by a times the second equation.
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Algorithm 4. GetQT?2.
Input: n, p, 6,and y € [0,1].
Output: An estimate of the y-upper-quantile of £, (+;1, ).

Step 1: Writep = n A pand 7, = p/n. Fixagridy1 <y, < ...yn—1 < yn. Foreach
1 <j < N, compute 71, (y) as follows:

* For a tuning parameter 0 > 0, construct the set of grid points in R x R*:

Syy s =1{(a:0) :a=kd,b =10, k,L € Z,(a —1/y,)* + " <,/7,
a<(y,—1)/2}-
* Foreach (4,0) €, ;and§, = n~2/3, compute

t
14+ tm

1
Mad) =y +ig+ o=, [ )]

where Hy(z) is the CDF of Gamma(é, 6). The integral above can be computed via

standard Monte Carlo approximation (by sampling data from Gamma(4, 9)).

* Find (2,b) = argmin, ;o A(a,b). Letrn(y) =2+ bi.

Step 2: Letﬁﬂ (5 1,6) = m S(m(y)), for1 <j < N.Foranyy, 1 <z <y let
N Vi—2 - Z— Y1~
Fr(@1,6) = =——f, (5-1;1,6) + —=—f, (5;31,0).
Yj — i1 i — -1

Step 3: Find g such that fq(H\/}T”)Zﬁn (2;1,6) = . Output g as the estimated
y-upper-quantile.

Re-arranging the terms gives (2 —1/y)* -+ b* < v, /y*. So far, we have obtained a feasible set of («, b)

210



for the solution of (B.2) when &, = 0:

Syy ={(a,b) : (a—1/y)* + 6" <y,/y*, a < (y,—1)/2y}. (B.4)

Since £, is very close to 0, we use the same feasible set when solving (B.2). Observing that Sy, is

bounded, we solve equation (B.2) by a grid search on this feasible set. See Algorithm 4.

B.1.3 CoOMPARISON

We compare the performance of two GetQT algorithms on a numerical example where (7, p,6) =
(10000,1000,1). The results are in Figure B.1. To generate this figure, first, we simulate eigenvalues
{ig)}lgkgp,lgbg p as in Step 1 of GetQT1, where B = 20, and plot the histogram of eigenvalues.
Next, we plot the estimated densityﬁn (;1,6) from GetQT2 (tuning parameter is 9 = 0.05). The
estimated density fits the histogram well, suggesting that the steps in GetQT2 for estimating £, (y;1,6)
are successful. Furthermore, the estimated quantiles from two algorithms are very close to each other.

In terms of numerical performance, the two GetQT algorithms are similar. We now discuss the
computing time. The main computational cost of GetQT1 comes from computing the eigenvalues of
S() at each iteration. As we have mentioned in the end of Section B.1.1L,if p < n, we conduct eigen-
decomposition on an p X p matrix; if # < p, we conduct eigen-decomposition on an 7 X 7 matrix.
Therefore, as long as min{z, p} is not too large, GetQT1 is fast.

Compared with GetQT1, the advantage of GetQT2 is that it does not need to compute any eigen-
decomposition. As a result, when min{n,p} is large, GetQT2 is much faster than GetQT1 (and GetQT2
also requires less memory use). The computational cost of GetQT2 is proportional to the number of
grid points in the algorithm, governed by the tuning parameter J. Sometimes, we need to choose J
sufficiently small to guarantee the accuracy of computing 7(y, 7, , §), which significantly increases

the cost of grid search. Our experience suggests that GetQT2 is faster than GetQT1 only in the case that
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Figure B.1: Comparison of two GetQT algorithms. The simulated histogram is from GetQT1, and the density
curve is estimated by GetQT2.

min{z, p} is larger than 10%.

B.1.4 MODIFICATIONS UNDER MODEL (2.13)

Section 2.4.2 introduces Model (2.13), as a proxy of Model (2.2), to facilitate the theoretical analysis.
In Model (2.13), the diagonal entries of D are 77d generated from a truncated Gamma distribution.
In Section 2.4.2, we described how to adapt Algorithm 2 to this setting, where the key is to modify
GetQT so that it can compute the y-upper-quantile of the distribution F,(+; 1, 8, T1, T2 ), for any given
yand (0, T1, T2).

To modify GetQT1, we note that (11,6, Ty, T») is the theoretical limit of the ESD under the

null covariance model:
T = diag(d7, . .. ,aﬁ), where o7 i TruncGamma(4, 6, T, T5). (B.S)

We can simulate data from (B.5) and use its ESD as a numerical approximation to £}, (51,6, T1, T>).
In Algorithm 3, we only need to modify Step 1 so that >(®) i generated from (B.5).

To modify GetQT2, we solve (B.2) with Hy(z) replaced by Hj 1, 7, (¢), where Hy 7, 1, (+) is the
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CDF of TruncGamma(6, ¢, T1, T>). We note that the feasible set in (B.4) is derived without using the
explicit form of Hy(z), so it continues to apply. In Algorithm 4, we only need to modify the definition

of A(a,b) to
t

—dH, t
TS tm 611,15 (2)|5

1
Az, b) = i - _
(a,b) y+%ﬁvn n/

and the other steps remain the same.

B.2 Proors

B.2.1 ProoF oF THEOREM 2.4.1

Letz, = i/e — Pqp, forall1 < k < p. It follows that

2 Zafﬁkﬁ(l—a)ﬁ qe(Tqu + ) — 24 sz]ygkg(l—a)]} k2
Eaﬁgleg(lfa)f; ' Zmﬁﬁkﬁ(lfu)ﬁ '

It follows that

ap —a)p 19k
2 — 2| < 2 apsis i ’qz‘ x  max |al-
Zajygkg(l—a)}qk ap<k<(1—a)p

=B,,(2)
We recall that ¢, is the (£/p)-upper-quantile of a standard Machenko-Pastur distribution associated
with y = p/n. Note thatp/n — yanda < k/p < 1 —a,wherey > Oanda € (0,1/2) are
constants. It follows immediately that there is a constant C; = Cy(«, y) such that B, »(2) < C1. Asa

result,

P Al <C Ly — Paul. B.6
| | < 1d]3§£r%a(mlx_“)ﬁlk 9| (B.6)

We bound the right hand side of (B.6). By Assumption 2.4.1, the data vectors X;, X5, ..., X,

are obtained from a random matrix Y = [Y1,Ya,...,Y,]T € R?*?, where the entries of Y are
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independent variables with zero mean and unit variance. Given Y, define X7, X3, ..., X} by
X: () = o Yi(j), 1<i<nl1<j<p.

Then, X7, ..., X} follow a “null” model that is similar to the factor model in Assumption 2.4.1 but
corresponds to K = 0. Let §* be the sample covariance matrix of Xj, ..., X’. Then, §* serves as a
reference matrix for 8. The eigenvalue sticking result says that eigenvalues of S “stick” to eigenvalues
of the reference matrix. The precise statement is as follows: Let )A: > i; >0 > i; be the nonzero
eigenvalues of §*. When the entries of Y satisfy the regularity conditions stated in Theorem 2.4.1, by
Theorem 2.7 of Bloemendal et al. (2016), there is a constant C; = Cy(, 7, %) such that, for any

¢>0ands >0,

P j_ _j'* C —(1—¢) < = B
{@még@wm’”“ 1> Con }—” , (B.7)

where K is the total number of spiked eigenvalues in Model (2.3) such that 2; = ¢*(,/7 + %) for
some 7, > 713 Tt remains to study ij* Its large deviation bound can be found in Pillai & Yin
(2014) (also, see Theorem 3.3 of Ke (2016)). There is a constant C3 = C3(a, y,*) > 0 such that, for

anye > Oands > 0,
P j,* — 0’2 ; C. —(1—¢) < n s B.S
{wmﬁﬁwmﬁf 9l > Can }—” (B.8)

Furthermore, since K < K and K is fixed, there is a constant C; = C4(y, K) such that

max i —q; < Cun L. (B.9)
(a/2)p<j<(1—a/2)p ’q] 91+K1‘ 4
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Combining (B.7)-(B.9) gives that, for any ¢ > 0 and s > 0,
P j, — g S C —(-o | « -
{(a/zﬁ%??l—a)ﬁ' ki = 7 gpeial > Cn } <n

We plug it into (B.6). The claim follows immediately. U

B.2.2 Proor or THEOREM 2.4.2

Denote by 7}, ,(6%, 8,) the threshold used in Algorithm 1. It satisfies that
Tn,p(&z,ﬂn) =71+ \ﬁ/n)z + wyl, where w, = O(i’l_z/Stl_[gn). (B.10)

Here, g is the (1 — 4,)-quantile of Tracy-Widom distribution. Note that 7, > n~13. We can

choose 8, — oo appropriately slow such that1 < 45 < n2/3 min{z2,1}. It follows that
n 3 < w, < min{z, 1}. (B.11)

First, we derive a lower bound for 2 « and show that K > K with probability 1 — o(1). Recall that
A denotes the kth largest eigenvalue of X. In view of Model (2.3), it is true that 1, = g, + o for

1<k<Kandl, =2 forK <k < p. Introduce
* 7}’1
M 216( +lk/a‘2—1)’ ks

Write 9 = Az /o — 1,fork=1,2,... K. Letg(t) = (14 £)(1 4 y,/t). Then,

2p = g(%), 1<k<K.
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The function g satisfies that g(,/7,) = (1 + \/)Tn)z and ¢/(r) > 1 — /7, /t. Hence, it is monotone
increasing in (/7,, 00). Forany z > Oandz > /¥, + 7, wehaveg(¢) > ¢(\/7,) +4 (\/7, +7)-7 >
1+ 7,)° + Tz/(\ﬁ/n + 7). It follows that

5
* 2 K

At the same time, by Theorem 2.3 of Bloemendal et al. (2016), with probability 1 — o(1),

51[(/2, if 0 < 1,

Mk — 1| < C?n™V/? (B.13)
1+ 0k/(1+ /7,), ifdx > 1,

for a constant C, > 0. If 0 > 1, then (B.12) implies 1 — 02(1 + \/;Tn)z > (3029, for a constant
Cs > 0,and (B.13) yields that | 1x — %] < Coo?(1 4 9g)n /2. It follows that

Ak — P+ 7)) > (C3)2) - Pox > (C3/2) -
If 0x < 1, then (B.12) yields that Az — 21+ \/77)2 > (40292, for a constant C4; > 0, and (B.13)
yields that g — %] < Czozé‘l[(/zn_l/z. It follows that

Cr? %

it

where the last inequality is because ox > 7, > 7~1/3. We combine the two cases and note that

v

Ak — P+ 7)) > CidPdk — > (C4)2) - P2,

dx > 7p. It gives that

P{iK > 2[(1+ 7,)? + Cmin{2, 1}]} —1-o(1).
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Furthermore, by Theorem 2.4.1, |¢* — ¢?| < »~! < min{z2, 1}. Hence, we can replace ¢® by &* in

the above equation, i.e.,
P{iK > Z[(1+ 7,)? + Cmin{2, 1}]} =1-0(1). (B.14)

We compare g with the threshold in (B.10). Since », < min{z2,1}, it is implied from (B.14) that

Ak exceeds this threshold with probability 1 — o(1). Therefore,
P{f(z K} =1-0(1).

Next, we derive an upper bound for Ax+1 and show that K < K with probability 1 — o(1). We

apply Theorem 2.3 of Bloemendal et al. (2016) again: Forany ¢ > 0 and s > 0,
P{im — 21+, 7)> < Jzn_(2/3_5)} =1 o(1). (B.15)

Since w,, >> n~2/3, we can take ¢ arbitrarily small to make 2~ (/37 < @, /2. We also apply the large

deviation bound for 5% in Theorem 2.4.1 to replace 2 by & It follows immediately that

]P’{iKH <P[(1+7) + /2] } —1-o(1). (B.16)

We compare 2 x+1 with the threshold in (B.10). Itis seen that 2 k+1is below this threshold with prob-
ability 1 — o(1). Therefore,
P{i{g K} =1-0(1).

The claim follows immediately. O
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B.2.3 ProOOF OF THEOREM 2.4.3

Throughout this proof, we let C be a generic constant, whose meaning may vary from occurrence
to occurrence. Let F (- 2,6, T1, T>) be the theoretical limit of ESD, whose definition is given in
Lemma 2.4.1. We replace y by , = p/n in this definition, write £, = 1 — F, and let4,(¢*,6) =
j:y_n Yy; 02,6, T1, T>) denote the (7/p)-upper-quantile of this distribution, where p = 7 A p. We use

(63, 6o) to denote the true parameters. Write s, = [ap] and

]}(a‘%ﬁ) = Z [j'l'_ql'(0-2>€)]27 R(o'z,e) = Z [%(‘%7%) _qi("l?e)]z'

52 <i<p—sn 50 Si<p—sn

LetA=3" <psn A — 4:(73, 60)|?. By direct calculations and Cauchy-Schwarz inequality,

R(2,6) = R0 <2 Y 1g:(e5,60) = 9:(2.0)| - |A: — 4:(5, b))

sn<i<p—sp

+ Z |j“z‘_qi(0%790>’2

Sn Sigf_fn

< 2\/R(e2, VA + A.

It follows that R(o?,6) < R(c?,6) + 2:/R(2,0)VA + A = (VR(e2,6) + \/K)Z In the above
inequality, we can switch R(¢?, 8) and R(o?, §) and similarly derive that R(c?,6) < (/ R(2,6) +
\/X) 2 Asa result,

‘\/ﬁ(@z,é’) - \/W( < VA. (B.17)

We now bound A. By Lemma 2.4.1, for all K < 7 < p,

A — 465, 60)| < [i A (B +1— )]/,
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We note that the stochastic dominance in Lemma 2.4.1 can be made ‘uniform’ over 7 i.e., the integer
N(e,s) in Definition 2.4.1 is shared by all K’ < 7 < p (Knowles & Yin, 2017). Hence, summing over

7 preserves ‘stochastic dominance.” Additionally, Z{’Zﬂ 2343 < opt [% b/2 (/) —2/3] <

=5y

Cn! 1//1 x"23dx < Cn~'. Combining the above arguments gives

Sn

> Mgl =< Y FAGE1— ) e

52 <i<p—sn 52 <i<p—sn

< Z i < g

Sn SZS[;/Z

This gives A < n~!. We plug it into (B.17) to get

R(c2,8) — /R(e2, )| < n~V/2. (B.18)
V |

Since A does not depend on (o2, 8), the ‘stochastic dominance’ here is uniform for all (%, §) € J» x

Js. We claim that there exists a constant ¢y > 0 such that for any (2, 6) in T2 X Js,
R(o?,6) > con - [(* — a5)> + (6 — 6))*]. (B.19)

Note that R(c3, 8p) = 0. Combining it with (B.18)-(B.19) gives

R 80 <n2 a2+ (- ) < \JRE8) + 07,

where a random variable is O (b,) if its absolute value is < b,. Since (6%, 8) minimizes R (c2, §), we

have R(6%,8) < R(c2,8y) < n~". It follows that
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This proves the claim.
What remains is to show (B.19). Define the quantile function b,2 g(2) = Z'; Yo; 02,6, 11, T>).
Then, g;(¢%, 8) = h,2 6(i/p). We can re-write

o

s L \]2

R(,8) = [hes(i/p) — b g (i/p)] "
Introduce R*(%,6) = p fol (b2 5(2) = b2 5, (2))?da. Then, p~'R(o?, 6) is the Riemann approxima-
tion of the integral ' R* (¢, §). Note that s, /p = o(1). Furthermore, /,2 4(2) is uniformly square
integrable for (2, 68) € T x Ts(the proofis very similar to the analysis of C, below; we thus omit it).
Hence, the Riemann approximation error is negligible. Particularly, there exists a constant¢; € (0,1)

such that

R(*,8) > ¢ - R*(%, 6). (B.20)
It suffices to study R* (o2, §). The next lemma is proved in Section B.2.6.

Lemma B.2.1. Let F(x) be a distribution on (0, 00) with a continuous density flx). Let F(x) =
1 — F(x), he(a) = FYa),and (/) = [«"Ax)dx, m > 1. For another distribution G(x)
on (0,00) with a continuous density g(x), we define G(x), hg(«), and g, (g) similarly. Suppose
[ «*|F(x) — G(x)|dx < oo. Let g(x,y) = MaXcl Ul £(2) forx,y € (0,00). We assume that

G = fol [‘%%w]zda <ooand C; = fol [W]zﬂé < 00. Then,

1 . 2 1 B 5
[ o)tz B ZEEE - [pgte) - ez BP0

We apply Lemma B.2.1 to F(-) = F, (+; 65,0, 11, T2) and G(-) = F, (-;0%,6, 11, T2). Define

‘1,41(02,{9) = /xdF;,n(x;az,ﬁ, 11, Tr), #2(02,5) = /xzdF},n(x;az,ﬁ, ., Ty).
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We now show that the quantities Cj, C, in Lemma B.2.1 are uniformly upper bounded by constants
forall (62, 6) € J? x Js. We only study C, and the analysis of C; is similar. By Knowles & Yin (2017),
Ding (2020), the support of F, (-; o%,8, T1, T») is in a compact subset of (0, o0), and the density is

upper bounded by a constant; these constants are uniform for (6%, 8) € J,» x Jp. It follows that

= C/ol [ﬂhplw))rd“ - / / )

Here we have used a change of variable x = hp(a), wherea = 1 — F(x) and da = flx)dx. We

then apply Theorem 3.3 of Ji (2020). Note that F(-) = F, (+; 5, 60, T1, T2) is the free multiplicative
convolution between a truncated Gamma distribution and the standard MP distribution. These two
distributions are compacted supported and have power law behavior on left/right ends. The condi-
tions in Theorem 3.3 of Ji (2020) are satisfied for £ = 0 (truncated Gamma) and 7, = 1/2 (MP

law). By that theorem, the density of {(+) has a square-root decay at the left/right edge: Let [6™, 6]

be the support of F(-); then, C™' < Alx)//(x — b~) (6" — x) < Cforx € [b~,b"]. Ityields hat

bt c
C, < dx = O(1).
2= - (x— b b+—x)x M

We have verified that C; and C, in Lemma B.2.1 are uniformly upper bounded. As a result,
¥ 2
R 8) 2 On(|w(2.0) - (3. 0 + (.0 — (@) (B2)

Below, we study p, (o2, 6) and %y (%, 6). Note that Gamma(d, 8/52, 7> 11, 7> T5) is equivalent to
o?-Gamma(4, 4, T1, T). Then, the distributions F, (5 02,6, Ty, T») and Fy, (11,0, Ty, Ty) also have

such a connection. This implies x, (0%, 6) = * - ¢,(1,6) and (6%, 6) = o* - 1, (1, 6). Define

K(&) = 1“2(027 6)/[1“1(027 6)]2
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Consider a mapping M from R? to R?, where M(x, y) = (x,y/x*) . It maps (¢,(¢%, 6), 1, (>, 6)) to
(4,(d*, ), x(8)). The Jacobian matrix is

1 0
—2y/x> 1/x

When (%, 8) € T2 X Ty, the vector (1;(6%,6), u, (%, 6)) is in a compact set. The spectral norm of

Jacobian is uniformly upper bounded. It follows that

(2, 8) — (3, 80)|* + |1y (2, 6) — 11, (2, 60) |

> (|(,6) — (e o) + () = x(80)[*)- (8.22)

We then study g, (o2, 8) and x(6). Denote by F(-;02,6, T1, T>) the ESD when (o2, ) are true pa-
rameters. Write 2,(0%,6) = [ xdF(x; 2,6, Ty, T>) and iy (0*,6) = [ #dF(x;?,6, T1, T»). The
converges of ESD to its theoretical limit yields that |z, (%, 6) — ¢,(¢*,6)] — 0 and |2,(c*,6) —

t,(0%, 6)| = 0 in probabiliy. In fact, we have a stronger result (Knowles & Yin, 2017):
’]E[[zl(az, 9)] —[ul(a'z,t?)’ <n 1 ’EL&Z(JZ, 9)] —yz(az,ﬁ)’ <n L (B.23)

Here the expectation is with respect to the null model (i.e., K = 0) with true parameters (o2, §). The

left hand sides above are non-stochastic quantities, and “< 77 is interpreted as “< »~1** for any
¢ > 0.” Since ¢, (¢%, 6) and ¢, (¢%, §) are uniformly upper/lower bounded, it follows that
B[z, (c*, 6
(fc(e) - L“Z()]‘ <L, (B.24)

(Bl (2, 9))°

1?1_

5 a2
By definition, we can also write 2, = 5 2= = w(S)andz, = 137 2 = %HSH%, where

? =171

NS —
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S = %XTX is the sample covariance matrix under the null model of K = 0. By Assumption 2.4.1,
X = Y=V 2 where Y contains 7id zero-mean, unit variance entries. Note that our purpose here is
to approximate the moments of the theoretical limit of ESD, and we are flexible to choose the eigen-

vectors in . We choose £, as the kth standard basis, and so £ = diag(c7, 03, . .. ,a';) By direct

calculations,

n

Efi, ()] = [ﬁ(zf )] (, V1) - El)

7 =1

L) Y (S

j=1 =l 1<jAL<p i=1

E[i, (o, 6)] =

= 0(n™Y) + (3, V1) -Elf] +7,(r, V1) - (E[F])°.

Note that 67 /> ~ Gamma(4, 6, Ty, T>). The density of Gamma(4, 6, Ty, T>) is equal to 71 % .

T 6 l—ﬁzdz)

( 7 2 . We immediately have

fT 7 exp(—6x)dx
fT 19 exp(—6x)dx
a* [, 2 3+ oxp(—x)dx [fT «% exp(—0x)dx]

. _ ok
ELuz(az,ﬁ)]—O(n)+(7nv ) lez x?~Vexp(—6x)dx +}/”(}/nv )Usz&—leXp 9)‘1’5]2.

Eliy(e,0)] = (7, V1)7* -

2

Define Y(0) = Y(4, 11, T») = ( ;2 =% dx) /( TTZ 5=1¢=%x). Let ®(8) be the same as in the

statement of this theorem. We plug the above equations into (B.23)-(B.24) to get

w (7,0 = (y, V)& - ¥(9) + 0<(n),

— 1 771 -1
x(6) = oV () + +os(n Y. (B.25)
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Consider the mapping from (o2, ) to (¢,(¢%, 6), x(6)). The Jacobian matrix is

¥ (4 R 4
J={, V1 ©) @ + 04 (n 7).

0 G )

First, since Jp is a bounded set, ¥(8), ¥’(6) and @' (8) are uniformly upper bounded by constants.
Second, we have ¥(6) > 0 in a fixed compact set J3. As a result, ¥(¢) must be uniformly lower
bounded by a constant. Last, the assumption says that infge 7, |®'(6)| > w, for a constant w > 0.
Combining these arguments with the formula of the inverse of 2 2 x 2 matrix, we have ||/~!|| < C.

It follows that

(2, 6) — (B, 60) | + | (8) — x(80) |

> (| - AP+ 16— 4f). (B.26)

We plug (B.26) into (B.22), and then into (B.21), and then combine it with (B.20). It gives (B.19).

0
B.2.4 PROOF OF LEMMA 2.4.2
Write
78 = ( / 7 () ) / e dy),  Ja(8) = ( / 7 eup(—w)dr)?.
Then ¥(6) = i(4)//2(9) and
v~ KOO SO0 -

J2(6)?
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By direct calculations,

12

¥AG) :(/tz log (x)x"exp(—8x)dx — /fz x€+26xp(—€x)dx)(/ & Lexp(—6x)dx)

fn 131 n

+ (/fz log (x)x"Lexp(—x)dx — /[2 xeexp(—é’x)dx)(/tz K Hexp(—6x)dx),

f n 151

%)

S(8) = 2(/t2 xé)wcp(—ﬁx)dx)(/t2 log (x)x’exp(—6x)dx — / & Hexp(—6x)dx).

n 151 n
Let L(«, 6; 11, t2) denote ff log (x)x*exp(—6x)dx and I(2, 6; 11, £,) denote f;z x*exp(—6x)dx. When

not causing any confusion, we write them as L(«) and I(«). Then
A6 =10+1) x I(6-1), J(6) = 1(6)*

J6) = (LO+1) — 16 +2)) x [0 —1) + (L(6 — 1) — I(6)) x I(+1)
J,(8) = 2(L(8) — I(6+1)) x 1(9)

Plugging them into (B.27), we have

() = X

6+ 1)I1(6—1) ((L(€+ 1) L(6—-1)

16y + -2

L(ﬁ))_ ([(9+ 2) 16
16+1) 16-1) 1)

16+1)
R CE G )

Recall that we are interested in € Jy = [¢,d]. Fora € [c —1,d + 2] and § € [¢, d],

[e'e] 15} o0
/ log (x)x"exp(—0x)dx— L(a, 0; 11, 1) :/ log(x)x“exp(—é’x)dx—i—/ log ()" exp(—06x)dx,
0 0

17}

151 5]
‘ / log(x)x"‘exp(—ﬁx)dx) < / (—log(x))x texp(—cx)dx — 0, asy, — 0,
0 0

/ log(x)x”‘exp(—ﬁx)dx‘ < / log () 2exp(—cx)dx — 0, asty — o0.

1 123
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Thisimpliesfora € [c—1,d+2],0 € [¢,d],as (1, 2) = (0,00), L(«, 8; 1, £2) uniformly converges
to Lo(a,6) = [, log(x)x*exp(—bx)dx. By a similar argument, we can show that /(«, 6; #1, ;) uni-
formly converges to Io(a, §) = [;° x*exp(—6x)dx. From the uniform convergence and the fact that
Io(a, 9) islower bounded by a common positive constant whena € [c—1,d+2], 8 € [c, d], we know

thatas (#, %) — (0, 00) we have ¥’ (6) uniformly converges to

[0(6’+];2§§§¢9— 1) <(§§(€+1)+Lo(6’— 1) _2L0(¢9)>_(]0(¢9+ 2) 19 2[0(<9+1)))7

6+1)  L6—1) " L9 L(6+1) L6—1) ~ L8

forall 8 € [c,d]. Here, Lo(«) and Iy(«) are short for Lo(«, 8) and Iy(«, §). Let Z ~ Gamma(z, 6)

and let ¥ denote the digamma function. By properties of the Gamma distribution,

Io(2,6) a Lyla—1,8)
ol = E@) =5 ) = Blon(2) = yla) — o).

Therefore, ¥/ (6) uniformly converges to

g+1 g+2 ¢ €+1>):9+1(1 1)2 612

5 (Her2) 90 —2p(611) - (Z5+5-2x 5 \G41 3

The first equation uses the recurrence relation of digamma function. By the uniform convergence,
for any 9 > 0 there exists 0 < 7} < 75 < 00 such that supge. 4 [¥'(6) — (—%)] < 9. The claim

follows by choosing 8 = 1/d* — w. O

B.2.5 PrROOF OF THEOREM 2.4.4

Letd; = 0_]2 —|—/4jfor1 <k < Kandd; = a'jzforK—kl <j < p. Then,dy,d,...,d,areall the

eigenvalues of Z. Define

(B.28)

?
Af,Z
xpz;
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By Lemma 2.2 and Condition 3.6 of Ding (2020), this function G(x) has 2 critical points 0 > x; >
%23 furthermore, conditioning on X, the ESD converges to a limit whose support is [C(fcz), C(fq)]
We apply Theorem 3.2 of Ding (2020). Using the first claim there, if —1/d; > % + n/3 for each

1 <k <K, then
N — G(=1/dp)| = n V2 (=1/d, — %)"?, 1<k<K.

Using the second claim there,

Akt — GGay)| < n= 23,

The above “stochastic dominance” arguments are conditioning on E. Under Model (2.13) for =, G(x)
converges weakly to G(x) defined in (2.16), and the critical points (%1, X» ) also converge to (x], x3 ), the
critical points of G(x), almost surely. Replacing G(-) and & by G(-) and x} in the above inequalities
has a negligible effect (e.g., see Example 3.9 of Ding (2020)). It follows that

e = G=1/dg)l <72 e = GGl < 72

Note that d, = o} + 1, > g + 11. The assumption of —1/(71 + pz) > &} + 7 guarantees that

G(—=1/dy) > G(=1/(Th + py)) = G(xf + 7) > G(x{) + ¢, where ¢ > 0 is a constant. Therefore,

i (2} = G) = ¢+ 007 di = GG) < 7P (B29)

where O (b,,) means the absolute value is < b,,.
The estimator K is obtained by thresholding the empirical eigenvalues at T{g as in (2.15). Let

if = j.r (02, 6) be the largest empirical eigenvalue under the null model (K = 0) with parameters
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(62, 6). Applying Theorem 3.2 of Ding (2020) again, for the same ;" as above,
21(7,8) = Gl < a7

In Theorem 2.4.3, we have shown |7> —%| < » 'and [6—6] < »~1. Now, let & be the largest critical

point of G(x) in (2.16), except that (o2, §) is replaced by (6%, 6). Then, we have |G(&}) — G(x)| =

O(\/]&Z — 2P+ 16— f?) < n'and |ir(&2, 8) — G| < n2/3, Combining these claims gives
21 (7,6) = ()| < n™*/>

Note that T/; is the (1 — 8)-quantile of ir (6%, 8) (it means the quantile of jr (02, 6) evaluated at

(2,8) = (5%,60)). The above inequality implies that there exists 8 — 0 properly slow such that
—2/3 T *

n < Tp—Gly) < 1 (B.30)

It follows from (B.29) and (B.30) that K = K. O

B.2.6 Prooror LEmMma B.2.1

We only show the second inequality. The proof of the first inequality is similar and thus omitted.

Note that f{x) — g(x) is the derivative of G(x) — F(x). Using integration by part, we have

i)~ o) = [ P~ gy =2 [ o) - G (B3
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We consider a change of variable from x to « = F(x). Note that x = hp(«). It follows that

/ () — Glx)]dx = / () — Glbe(e))] By
/ b (@) — G(hi())| e(a)da.

By mean value theorem, there is x* between hp(2) and hg(2) such that G(hg(2)) — G(hp(2)) =

—g(x*)[hg(2) — hr(a)]. Recall that g(x,y) = max,c(s.,jupq g(z)- It follows that |G(hg(a)) —
G(hr(a))| < g(he(a), hg(2)) - |hc(a) — br(a)|. We plug it into the above equation to get

| / HF() — Glolde| < /0 b() — be()] - | () 2(br(), b)) Bl | dee
Since hp(-) = F~!, we have Wo(a) = —1/f(br(a)). It follows that

| / Fl) — G| < /0 o) — bafe) }{((Z;((:))),bc(@)da

< \//0 |he(a) — hr(a)|>da \//0 [191-"(04) f((:j((:)))’ bo(a)) zdd

\/ / hG() a)de -/ C,. (B.32)

Combining (B.31)-(B.32) gives the claim. O

B.3 RoBUSTNESS OF BEMA ON REAL DATA

For the two real data sets in Section 2.6, we apply BEMA with different values of . The results are
presented in the tables below. Both the point estimator and the confidence interval are very stable as

long as  is in a reasonable range.
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BEMA (0.1) BEMA (0.2) BEMA (0.3) BEMA (0.4)
6 0.343 0.288 0.281 0.270
& 0.869 0.926 0.949 1
K(B=0.1) 1 1 1 1
90% quantile 16.074 19.231 20.261 21.944
10% quantile 9.379 10.872 11.186 12.098
confidence interval  [1,4] [1,4] [1,4] [1,2]

Table B.1: Lung Cancer data. BEMA is applied with 2 € {0.1,0.2,0.3,0.4} (denoted as BEMA () in the
table). The quantiles are from Gamma(4, 8/5%), and they are used to construct the 80% confidence interval.

BEMA (0.1) BEMA (0.2) BEMA (0.3) BEMA (0.4)
6 4.256 4.239 4.198 4.261
& 0.3779 0.3780 0.3782 0.3783
K(B=0.1) 28 28 28 28
90% quantile 6.895 6.899 6.909 6.903
10% quantile 6.822 6.829 6.838 6.831
confidence interval  [28,30] [28,30] [28,29] [28,30]

Table B.2: 1000 Genomes data. BEMA is applied with « € {0.1,0.2,0.3,0.4} (denoted as BEMA () in the
table). The quantiles are from Gamma(4,6/5%), and they are used to construct the 80% confidence interval.
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Supplemental Materials of Chapter 3

C.1 SCALING GROUP MOVES

To see how the posterior distribution of the loading matrix is influenced by the SpSL prior, we need
to observe the sample behavior at equilibrium with different priors. Due to the strong ties between
the loading matrix and the latent factors, samples are inflating slowly along the basic Gibbs sampling

iterations, which demonstrates the slow mixing behavior of the Gibbs sampler.
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A promising way to improve Markov Chain Monte Carlo (MCMC) convergence is to add a group
move into the sampler. Liu & Sabatti (2000) proposed “generalized Gibbs sampling”, which can be
seen as a generalization of Liu & Wu (1999) for conditional sampling along the trajectories of any
designed transformation group. By taking advantage of the model structure and proposing a group
trajectory that can cross various significant local modes, this group move can dramatically improve the
MCMC convergence. The following theorem from Liu & Sabatti (2000) characterizes how a group

move should be conducted.

Theorem C.1.1. (Liu and Sabatti(2000)) Let 7 be an arbitrary distribution on a space 2, and sup-
poset,(z) : & — Z isatransformation parameterized by 2 € .. Assume there is a group structure
on both .27 and the transformation family, and a left-Haar measure H on 7. If z follows distribution

7 and « is drawn from
0t,(2)
Oz

H(dw), (C1)

(el  7(1(9)|
then #,(z) follows distribution 7.

If 7 in Theorem C.1.1. is the full posterior distribution, then #, generated by the conditional dis-
tribution (C.1) gives a transformation that preserves the target distribution 7. We can add this trans-
formation after each round of Gibbs sampling to improve convergence. To design group moves that
can move the loading matrix and factors jointly in the synthetic example, we consider the following
group of scale transformations fork =1, --- , K:

1 1
tazk(ﬁlka t uggka Diks " 7“)}1/6) = (“/e(glka T 70‘/@8(;163 kalka ) akwnk) ’

and draw «;, sequentially from:

G " X
plday) o H((l - @k)sk(ﬂkﬁjkuo) + %kgk(akﬁjkul)) X Hexp(—;;%) x af " day
J=1 i=1
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We design these group moves to rescale each column since we observe a synchronous inflation
within every column during Gibbs sampling and changes of magnitude are encumbered due to the
strong connection between factors and loading. These scaling group moves are cheap to implement
since the conditional distribution of #;, is a univariate and unimodal distribution. More delicate moves
such as linear restructuring (corresponding to ‘rotate’ the loading in PXL-EM) 24(B, Q) : B,Q —

BA, A7 Q can be difficult to implement in practice.

C.2 THE MODIFIED GHOSH-DUNSON MODEL

Since the magnitude inflation is associated with the overdose of independent slab priors on the loading
matrix, an immediate counter measure would be to control the number of slab priors used. Ghosh
& Dunson (2009) proposed to use an inverse gamma prior for the variance of the normal factors
and impose the standard Gaussian prior on elements of the loading matrix, which will be called th
Ghosh-Dunson model. Here we propose a modified Ghosh-Dunson model by relocating the variance

parameters of the factors to the loading matrix and imposing a SpSL prior on its elements:

Model:y; | ;,B, X rhd- Ne(Bw;, X), w; rLd- Nk (0,Ix)
Priors: [Ejk = g% p(re|d) = Y| A);

2(giely s 20, A1) = (1= 7)¥(gieldo) + 7 ¥ (gl 1), Ao > i

7’]'/e|‘9k ~ Bernoulli(;) independently; (€.2)
k .
G, = H v, v wLd Beta(a, 1);
I=1

i.id.
Jf ~" Inverse-Gamma(y/2, 7¢/2).

where ﬂjk denote the (7, k) element of B and y(-|2) is the normal density with precision 2. We chose

Ao largeand 4; = 1.
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In this framework, each loading element {gjk is expressed as the product of a column-wise magni-
tude parameter 7; and the ‘normalized’ loading g;4. Ghosh & Dunson (2009)’s original model corre-
sponds to assuming Vi = O = 1, ie., anormalinstead of mixture normal prior for the ;. We impose
a diffuse normal prior on the 7;’s and a SpSL prior on gj;. With this dependent prior specification,
the number of the “slab parameters” is greatly reduced (all elements in each column of B share a com-
mon “slab parameter” 73), while marginally the prior on each ﬂjk is the same as that of the independent
SpSL prior. This prior setup on the loading matrix is similar to the one in the hierarchical linear model
in Jia & Xu (2007) where Q is prescribed, and the prior setup on B establishes connections between
rows of the loading matrix to prevent the degeneration of the original model to multiple independent
linear regressions. However, the hierarchical linear model is not subject to the inflation problem even
if completely independent priors are imposed on the loading matrix since  is already prescribed.

Although the dependent slab prior specification is an effective way for resolving the posterior in-
flation problem, the justification of the posterior consistency is rather difficult under this framework.
We simply provide some numerical results in Section 3.6 and 3.7 to compare the posterior distribution
based on the modified Ghosh-Dunson model (C.2) with that resulting from our strategy of imposing
the /n-orthonormal factor assumption. The simulations are performed withae = 1/G,y = ¢ =
1,4 =0.001, g = 200, 4; = 1and K = 8 (in Section 3.6) / 1 (in Section 3.7) using a Gibbs sampler

starting from the MAP identified by the PXL-EM algorithm.

234



C.3 Proors

C.3.1 ProOF OF THEOREM 3.4.1

Proof. Let 8, be the vector formed by the ﬂjk’s with their corresponding Vi =1 and let 3, be the

vector formed by {Bj/e’s with their corresponding Vi = 0.

#(BIY.E,I,m) of(B8) =[] 0.6 II v

{j,/e:)f/.kzl} {/‘,/e:;/j.kZO}

(C.3)
n 1
x|BBY + |73 exp{—ztr [BBT—i—E ZYZYZ ]}
Let 41 (M) > - - - > Ag(M) denote the eigenvalues of a matrix M and let ; > --- > .. be the
eigenvalues of BB + X. According to Weyl’s inequality,
L(BBY) + 4(2) > 1, > 4(8), j=L-- .G,
we have
G T G T
4(YY") 4(YY") r
< <t [(BB' +X)° OF
z;lj(BBT)Hl( ) Z “ Z”
= (C.4)
(0T (A A0
B = HG1—; B =1 )“GH*J'(E)
Note that 2;(B) = 0 forj > K, so we have:
G G
2,(YYT) - 2 YYT
<u|(BBT+3)" ¥ Cs
/;—1 A(Z) Zy ¥ Z Ag1-(Z )
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According to the Minkowski determinant theorem, [BB? + Z| > |X|. Furthermore,

K
BB+ 3/ = H#<H 2,(BB”) + 24(2) < (4(2) ¥ TJ(IIBB" 1+ + 11(2)-
j=1

Combining this with (C.5), we have

G
B 1 1 2:(YYT)
BBT b n/2 BBT < —n/2 - J
BB + X exp{ 5t [ +X)” E yiyi ”_IE! exp( 2}5 6 )

=K+1
(C.6)
and
IBBY + 2|~ ”/zexp{—;tr (BBY + =)~ Zy,yl ]}
(C.7)
K G
2,(YYT)
S —n(G=K)/2 2 w2 L j
>(1(2) T+ 20 opt=3 3232 s
Therefore,
| pulepyan
G T
_ 1 (YY) _ -
< dB |2 n/ZGX - 7 #{Z,-k 1} m #{ij 0}
oI o3 3 ) (a0 7 (s (16)

=Ci(maxg(p,, (8)))* =1

(C.8)
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For a constant R > 0,

[ e

K
2 —n/2
> / <k /ﬂ lesf{yjkl}q(HBHFHl(z)) Ag,dp,

G T
(YY') =1t #{y, =0}
X (A1(Z)) O 2exp —*Zm)(cmaxﬁ@m(ﬁ))) 7= (ming<r (¥(8))) "
#{ 1} —n/2
= Calma(p, (B)) /0|<R/ =D H |[BI[7 + 21(%)) "/ dB,dB,
#{y=1} o

—C. mﬂt/ / B|[7 + A,()) "/ dp,d

»(maxs(o, () o en AER#{W}JH(H |7+ 21(2)) /% dB,dB,

(C.9)
as m — oo following the monotone convergence theorem. We also know that
K
B3 + (X)) /2 dB.d
/OSR /ﬂleR#{rﬂe—l}g(H 7+ 4 (%) 1y
K
> 2+ R* + 4(2) "/ dBd
_/0<R /{31672#{7/1@1}]1_[1(“51” 1( )) 181 (go
K
—n 1)1
([ g [ TIOGIR + R 4 20(2) 2180+ dlld8)
£y | <R BERT T J=1
(C.10)

from the polar coordinate transformation, of which the last term goes to infinity since #{;/jk =1} >

n X K. Taken together, we have shown that

. fBeSfm(xgngo) dB
limy, 00 =0, C.1
[P TR ANNE i
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which implies the theorem. O

C.3.2 ProoFr oF THEOREM 3.4.2

Proof. By marginalizing out Q from the full posterior distribution, we know that:

7(B|Y,Z,T, m) / AYB. Q. AQ)de ] gp’”(f(f)"e)) I[I w6 =78 (C12)

{/’k:;/jkzl} m {/’k:;/ijO}

#(B|Y,X,T, 00) /ﬂYyB oxAde [ e, = (C.13)

{jk: }/Jk—O}

For any Borel set S, B)dB < B)dB < 00, by the dominant convergence theorem we
y S m S oo y g

have:
lim 72” )dB = /7:” (C.14)
m—r00
lim 7# B)dB / / B)dB = / 7 (B)dB / 7_(B)dB. (C.15)
m—»00 REXK Ky REXK
This means that B|Y, X, T, m converges to B|Y, 2, T', oo in distribution as m — oc. O

C.3.3 Proor orF LEMMa 3.5.1

Proof. Fore > 0and L > 0,

1 T ¢
PV (@0, V(@) > Y. 30) < 1/(1-+ Phel WLl < 0201 -
From .
V(@Y. Z) o exp( 3 L [Py (Y| m(av(e) )
=1 %%
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W€ can compute

P(I[V(Q0,) V(@) |r < ¢/L|Y, Zg)
G

1
e / ep( =3 =5 [Py (Y2 [2) m(dv ()
(V(Q)IV(Q0,) - V(@)T|[r<e/ L) ( ]Z::‘Zaf' e )

1 —
< (= SlIVQ) Y (90,) K(Q0,) B 625 ) m(dv(@)
{V(Q):||V(Q0,,) - V(Q)T||r<e/L}

1
>c [ exp (= SIIVIQIV(Q0,) T [Fnar (25" Bo, oK (Q0,0) ) m(@V ()
{V(Q):IV(Q0,,) - V(Q)T||r<e/L}
2

£ 1e¢e _
>Cm, (1Y |[VoV |7 < 21) % exP (= 5525 *Bo.oK(Q0.0))?).
(C.18)
where Vy is a K x 7 orthonormal matrix. Similarly, we can derive
P(|[V(Q0,,) V(@) |7 > €Y, Z0) 1)
I B )
<Cm,({V: [VoV |l > e} exp = 36 (25" Bo.cK(Q0,.))?)
Inserting (C.18) and (C.19) to (C.16), we complete the proof. O
C.3.4 Proor or THEOREM 3.5.1
Proof. First, we show a strong uniform law of large number that:
G 1,1
2 21
Jim sup | £ ) 02 1Py (I - ; 22 EIPve (G| =0 a5 (C20)
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Define the inner part of the absolute value on left-hand side of (C.20) as D(Q,Y). We know for Q

and Q,

Pvia)y(Y)I? = [Pvia) (V)] = Y (Py(a) — Py(a)Y;

(C.21)
< 2¢/K(n — K)|[V(Q1)-V(Q) |7 Y;. ||
and
IE[| Py o) (Y)II> — El[Pyia,) (Y)lI*| < 2¢/K(z — K)|[V(Q (©)"|£1Q4,,(Bo),. 1>

(C.22)

Thus

1DG(Q,Y) — Dg(Q1,Y)| < 2/K(n — K)|[V(Q1)V(Q)||

(C.23)

1 & 18
X( Z 02||Y 1>+ Z a_zHQOn(BO) Al )

J=1 ]—
In order to apply the Kolmogorov’s strong law of large number, we check the variance of i 1Py (Y2
2

andz%‘f_HYj.Hz:

1
Var( 5 [Pyay (G)I) = 5 IV(@)OL, (Bo)y |1 + K/2 (C.24)
207 2
1 1
Var(zf,j;\m.!\z) = EHQOT,n(BO)fHZ +n/2. (C.25)
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Both of them are uniformly upper bounded with respect to j. So by Kolmogorov’s strong law, we have

for every fixed Q1, D (€4, Y) is almost surely converging to 0 as G — oo and

G 1 1 G

1 2 1 T 2
o> 150 = S (ZOfugoﬁn(Bo)j.H +7/2) 0 as, (C.26)

J=1 J=

For a fixed ¢ > 0, define a neighborhood Uy (q,) for every V(Q,),

e

Uya) ={V: IV(Q) V|| < m

(HQo,nH%mjaX H(Iz)JHZ nfat 5) ,17

V is an orthonormal K-frames in R” }

(C.27)

Let ) denote the Stiefel manifold S¢(K, 7), then there exists Qq, Q, - - -, Q,, suchthatV = |2, Uy(q,)-
Forr = 1,--- ,m, Dg(Q,,Y) — 0 almost surely, let  denotes the realizations of Y such that

D¢(9,;,Y) — Oforall zand

G G

1 1 1 1
3SR - =3 (5108, o) P+ #/2) 0.
GZ%@\,H 2 22100, Bo)s I +1/2) =

J=1

J=1

By definition P()) = 1, for a realization y in ) there exist Gy, Gy, - - - , G, such that

G G
I 1, o, 1 1. ,
Ie Z ZT;HYfH e Z <E|’00,n(B0)j"‘ + ﬂ/2> <¢/2,forG> Gy (C.28)
j=1 J j=1 J
D¢(Qy,y) <¢/2,forG> Gyt =1,---,m (C.29)
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When G > max,{G,}, for any Q, there exists Q, such that V(Q) € Uy(q, ), by (C.23),(C.28) and
(C.29):

1D6(Q,y)| < [D6(Q,y) = D6(Quy y)| + [D6(Quys y)| < ¢ (C.30)

From here we have proved (C.20).

Combined with lemma 5.1, we know when G > max,{G,},

P(|[V(Q0,,)"V(Q)"|F < Z/Lly, Z¢)

G
1

—c / exp( S -5 | Pyay (7)) m(@v ()
{V(Q):IV(Q0,) - V(Q)7||p<E/L} (;Zof ! )

=C G Dg(Q,y) (C.31)

/ exp
{V(Q):[|V(Q0,,) L V(Q)T||<E/L}

1 p—
— SV V(90,) K(©0,) B 62 ) m(av (@)

12

- z _
>Cm,({V: |[VoV |l < 1) exp ( — > T3l E6 B0 K (Q0,))? - Gg),

and on the other hand,

2(|IV(Q0,) " V(Q) | > Ely, Z¢)
) . (C.32)
<Cmp({V : ||VoVT||F > 7)) exp ( — 38 2(25" B 6K (90.,)) + GE).

Therefore we have

P(|[V(20,) V(@) |7 < &/Lly, Z6)
P(|[V(Q0,)V(Q)T|F > Ely, Z¢)

g
>m,({V 2 [[VoVT]| < )

X GXp (ggzlmm (251/2B07GK(Q()7;1))2 - ZGE)

(C.33)

Since lmin(Bo,G)/ﬁ is lower bounded, 1,,;, (Zgl/zBong(Qoyn))/\@ is also lower bounded. Se-

242



lect € such that

| - 2
e < ggz (lmz'n(ZGI/ZBO,GK(QOW))/\/E) ’

then the right hand side of (C.33) is no smaller than
; 1. —
ma({V £ VoVl < 23) x exp ($22(25 " Bo oK (90,))?).

which goes to infinity by the lower boundedness of A,,,;,(Bo.¢)/ VG.
Thus |[V(Q0,,)-V(Q)7||£ly, £ — 0 in probability for every y in )’ which leads to the conclu-

sion.

O]

The spirit of this proof is essentially the same as that of the classical Bayesian consistency theorem,
but is involved with infinite-dimensional potential data. In theorem 3.5.1, we made the assumption
that the L, norm of rows of By are upper bounded due to the proof, which restricted ourselves to the
case where all singular values of By ¢ are increasing at the order of v/G. This condition can be satisfied

when rows of By are i.i.d from an underlying distribution pjp:

2(Bo.)/VG = \/zk(BgGBO,G/G) = \/zk(EPB(B,.BjT)) , G — 00 as.

C.3.5 REMARK OF SECTION 3.5.1

From Cai et al. (2018), for every pair of V(g ,) and V(Q) there exists an orthogonal matrix W
such that [[V(Q) — WV(Q,,)l|r < V2 sin(£(V(Qa,), V(Q)))]|r where £ (V(Q,,), V(@)
denotes the diagonal matrix formed by canonical angles between row spaces of g, and Q. For
fixed n and G = 5 — 00, using the shrinkage of canonical angles between row spaces from Theo-

rem 3.5.1, there exists a orthogonal random matrix W such that ||[V(Q) — WV(Qq,)||s]Y,Z — 0
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in probability as G — oo. The posterior distribution of V() conditioned on the row vector space
of Q is actually an uniform distribution on all the orthonormal basis within since the density in
(3.10) involves V(Q) only through the row vector space. Therefore V(Q)|Y, X ~ O;V(Q)|Y,Z ~
0:(WV(Qy,,) + (V(Q) — WV(Qy,,)))|Y, Z for an independent uniform random orthogonal ma-
trix Oy. Since |01 (V(Q) =WV (Qo ,))||]Y, Z — 0, the posterior sample of V() can be asymptot-
ically express as OV (Qy ,) where O = O; W is an independent uniform random orthogonal matrix,
ie., V(Q) differs OV(Qy ,) by a matrix that has Frobenius norm converging to 0 under the asymp-

totic regime of Theorem 3.5.1.

C.3.6 PrOOF oF THEOREM 3.5.2

Theorem 3.5.2 is an immediate result of the following lemma and the proof of Theorem3.5.1.

Lemma C.3.1. Let (By, I'y) be a regular infinite loading pair with Ty known, Q¢ be a K x 0o matrix
and X = diag(cy, - - - ) be aknown infinite diagonal matrix. Define X = diag(e; 1y, + 1 o1 ()
and () = diag(2 o+ P, yy)- Qo denotes the matrix formed by the first 2 columns
of Q. Suppose there exists an ¢ > 0 such that the following holds for the increasing pair (2, G) =
{(”17 Gt)}tzl,u--

L ming L (Z4 ) 7V/2BY 2K (Qo, ) 1) — 00 ast — oc.

2. Let V| be any fixed K X 7 orthonormal matrix,

K eming o (X)) V2BK(Q0 ) 100)
—tog(ma () {V H1(Vo) VIl < e }
k=1 Amar((ZG") 7Y By cK(Q0,1)1:4)

=o(<’ min Znin(EX)) 2B IK(Q0 0 )10)?) as £ — oo

Let Y = By Qo and model Y.; with N(BQ.;,Z¢) for7 = 1,--- , n. Impose a point mass

and flat mixture prior on entries of B according to the feature allocation matrix Iy ¢ and assume a
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distribution on € that is invariant under right orthogonal transformations, then for a random draw

Q from its posterior distribution,

K
PV = IV(Q0)1aV(Q) [l lr > VE + 16}|Y, 26, To6) — 0
k=1

asz — OQ.
Proof. We know that for Az, G) = ¢ miny imm((de/))_I/ZB(()/T/G)K(QOJL)I:M):

I’. fln, G) goes to infinity.

2’. Let Vg be a fixed K X z orthonormal matrix,

K
f(”a G) 2
—log(ma ([ )1V : (Vo)1 Visllr < z ; )) = o(fln, G)7).
k=1 { lmﬂx((z"(G))_I/ZB(()7)GK(QO,;1)1:/€) }
Define two disjoint set S; and S as following
S1= ﬁ {V3 |IV(Q0,0)1 Vil < S0 G) }
i T Rl (26) T PBIK Qo)1)
K
VK + 1f(n, G)
5= U{vs V@0Vl > — }
k=1 lmz’n((zc ) BO,GK(QO,n)I:/e)

Similar as (C.18), we can compute:

P(V(Q) € $1|Y,Z6,To,6)
K
:C/S exp (=5 D V@V (@0, LK) LB (8) /22 mav(0) (€34
1 k=1

>C ma($1) expl(— 5 fim G))
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P(V(Q) S S2|Y, 2, r()’G)

K
= [ e (=5 3 IV@LV (@0 LK (@0, B EE) ) mavi) (©39)
2 k=1

K+1
SC mn(SZ) exp(— ;— ﬂna G)Z)
Combine (C.34) and (C.35), we have:

P(V(Q) € 8i|Y,Z¢,To6)
P(V(Q) € $|Y,26,T0.6)

> m(S1) exp(%ﬂn, GP) (C.36)

From condition 2, the right hand side goes to infinity for the increasing pair (2, G) = {(n;, G;) }s=1,...
as t — 00, thus
P(V(Q) € S2|Y, >, I“O,G) — 0.
Therefore,
K

PV = [IV(Qo0)iV(Q) 4l lF > VK +1e}Y, 26, To ) — Oast — oo.
k=1

C.4 ADDITIONAL FIGURES - THE AGEMAP DATASET
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(b) The modified Ghosh-Dunson model

Figure C.1: Boxplots of posterior samples of the latent factors under specified models.
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(b) The modified Ghosh-Dunson model

Figure C.2: Boxplots of posterior samples of the first S0 entries of idiosyncratic variances under specified mod-
els.
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(b) The modified Ghosh-Dunson model

Figure C.3: Boxplots of posterior samples of the first 50 entries of the loading vector under specified models.
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