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Abstract

Nowadays, online markets (e.g. online advertising market and online two-sided markets) grow

larger and larger everyday. Designing an efficient and near-optimal market is an intricate

task. Market designers are facing challenges not only in regard to scalability, but also coming

from the use of data to better understand the behavior of strategic participants. At the same

time, these participants are trying to understand how these markets work and to maximize

reward. For these reasons, we continue to need improved frameworks for the design of online

markets. One challenge for market design is to make effective use of data in order to design

better markets. For the players, a central problem is how to optimize their strategy, adaptively

learning from feedback and incorporating this along with other side information.

To handle these challenges, my thesis focuses on two topics, Economic Design via Machine

Learning and Learning in Online Markets. For the first topic, I propose a unified computational

framework for data-driven mechanism design that can help a mechanism designer to auto-

matically design a good mechanism to satisfy incentive constraints and achieve a desired

objective (e.g. revenue, social welfare). I provide different approaches to guarantee Incentive

Compatibility and prove the generalization bounds. This deep-learning framework is very

general and can be extended to handle other constraints, e.g., private budget constraints. In

addition, I investigate how to transform an approximately incentive compatible mechanism to

a fully BIC mechanism without loss of welfare and with only negligible loss of revenue. For

the second topic, I analyze the convergence of the outcome achieved by strategic bidders when

they adopt mean-based learning algorithms to bid in repeated auctions. I also propose a new

online learning algorithm for a bidder to use when bidding in repeated auctions, where the

bidder’s own value, evolving in an arbitrary manner, and observed only if the bidder wins an

auction. This algorithm has exponentially faster convergence in terms of its dependence on the

action space than the generic bandit algorithm.
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Introduction

Nowadays, online markets (e.g. online advertising market and online two-sided markets) grow

larger and larger everyday. Designing an efficient and near-optimal market is an intricate task.

Market designers are facing challenges not only in regard to scalability, but also from how

to use data to better understand the behavior of strategic players in the market. At the same

time, participants are trying to understand how these markets work and to maximize their

own reward. For these reasons, we continue to need improved frameworks for their design.

One challenge for market design is in regard to how to utilize data in order to design better

markets. I think about this as data-driven market design. For the players, a central problem is

how to optimize their strategy, adaptively learning from feedback while also incorporating this

with other side information. These concerns motivate the following fast developing research

areas: automated mechanism design [CS02], learning in online markets [Blu+04], and statistical

machine learning in economics and social science, e.g. [Ath18].

This thesis is motivated by the goal of using machine learning for market design and

mechanism design, and the recognition that there is an absence today of a unified approach to

data-driven market design. The main research questions I investigate in this thesis are in the

following,

1. Economic design via machine learning: Can machine learning solve problems of optimal

economic design that are hard to theoretically analyze?

2. Learning in online markets: Can we optimize the performance of online markets through the

design of the learning algorithms that are used by both users and market platform operators?

For the first research question, the main challenge in applying machine learning to economic
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design comes from the need to handle the strategic behavior of market participants. For instance,

a revenue-optimal auction needs to satisfy incentive constraints (e.g. incentive compatibility and

individual rationality). To handle this challenge, I provide a unified computational framework

for data-driven mechanism design that can help the mechanism designer to automatically

design a mechanism to satisfy incentive constraints and achieve a desired objective (e.g. revenue,

social welfare). The general computational framework is named as RegretNet (Chapter 1), and

uses a multi-layer neural network to flexibly represent mechanisms and access stochastic

gradient descent based optimization. I generalize RegretNet to handle other constraints in

auction design with financially constrained buyers and handled BIC in Chapter 2. I also

propose a way to transform an approximately incentive compatible mechanism to a fully

Bayesian incentive compatible mechanism without loss of welfare and with only negligible loss

of revenue in Chapter 3. The RegretNet framework is a general and powerful tool to support

economists in discovering new theory and help practitioners to optimize target objectives such

as revenue empirically.

For the second research question, I focus on the bidding algorithms of advertisers in

repeated auctions. No-regret learning algorithms are commonly used in practice for advertisers

to decide their bids in repeated auctions [NST15], however, the convergence of the no-regret

learning algorithms in repeated auctions is not well understood. No-regret learning algorithms

are known to converge to a coarse correlated equilibrium (CCE) in repeated general-sum games

in a time-average sense [BM07]. But it was not known which specific CCE no-regret learning

algorithms converge to in repeated auctions. In Chapter 4, I show that mean-based learning

algorithms (a board class of no-regret learning algorithms) converge to a natural Bayesian

Nash Equilibrium in repeated single-item second price auctions, repeated single-item first price

auctions and repeated multi-position VCG auctions in a last-iterate sense. I also investigate

how to design an efficient learning algorithm for bidders in repeated auctions when they don’t

know their valuation before bidding. This is presented in Chapter 5.

My thesis is divided into three parts.

2



Part I: Deep Learning for Auction Design

Optimal economic design, especially optimal auction design, is one of the cornerstones of

economic theory and has also received a lot of attention in computer science in recent years.

The most important question is that of designing a protocol for selling one or more items in

order to maximize expected revenue. Myerson’s seminal work [Mye81] solved the problem for

a single item setting. Although there are several algorithmic advances in the design of optimal,

Bayesian incentive compatible (BIC) multi-item auctions [Das15; CDW12a; CDW12b; CDW13;

CZ17], the design of optimal, dominant strategy incentive compatible (DSIC) mechanisms has

remained open. Progress here is important, because the equilibrium concept in DSIC auctions

requires much weaker assumptions than that of BIC auctions.

Automated Mechanism Design (AMD), initiated by Conitzer and Sandholm [CS02], utilizes

a computational approach, for example integer programming or linear programming, to

automatically design optimal mechanisms. Recently, data-driven automated mechanism design

has also started to gain attention in the machine learning literature [CR14; NAP16; BSV18;

Alb+21], where we can optimize the parameterized mechanism from i.i.d. sampled valuation

data.

Following the research line of data-driven automated mechanism design, and based on the

rich representation and approximation to nonlinear function of deep neural networks, I propose

the use of feed-forward multi-layer neural networks to approximately model optimal auctions

in Chapter 1. I introduce three different architectures: MyersonNet, RochetNet, and RegretNet.

The first two networks use characterization results from economic theory to guarantee DSIC,

but are inflexible in that they can only handle single-item auctions and single-bidder auctions,

respectively. In contrast, RegretNet is a general approach that uses negated, expected revenue

as the loss function. Crucially, we must achieve incentive compatibility. RegretNet is trained

subject to a constraint that the expected ex post regret to bidders for bidding truthfully is zero.

This implies DSIC up to measure zero types. RegretNet can handle multi-item and multi-bidder

settings. I have developed an augmented Lagrangian methodology to train RegretNet subject

to the requirement of very low expected ex post regret. Simulations show that RegretNet can
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learn almost-optimal, almost incentive compatible auctions for essentially all settings for which

there are known analytical solutions, and obtain novel mechanisms for settings in which the

optimal mechanism is unknown. In addition, I have developed generalization results for both the

expected revenue and regret in RegretNet. This work has opened an area of economic design

through deep learning and inspired a lot of follow-up work, e.g., Shen, Tang, and Zuo [STZ19],

Rahme et al. [Rah+20], Rahme, Jelassi, and Weinberg [RJW20], and Curry et al. [Cur+20].

Part II: Extensions of RegretNet

The RegretNet framework is very flexible, and I develop it for settings in which bidders are

financially (budget) constrained. The problem of designing a revenue-maximizing auction for

settings with private budgets is known to be very challenging. Even the single-item case is

not fully understood, and there are no analytical results for optimal, DSIC, two-item auctions.

In Chapter 2, I generalize the RegretNet architecture to handle private budget constraints,

as well as to allow for BIC in order to facilitate comparisons with the existing, theoretical

literature. I discover new auctions with high revenue for multi-unit auctions with private

budgets, including settings with unit-demand bidders for which no analytical results are

available. For benchmarking purposes, I also demonstrate that RegretNet can obtain essentially

optimal designs for simpler settings where analytical solutions were available [CG00; MV08;

PV14].

One weakness of RegretNet is that RegretNet outputs an approximately-IC mechanism

(with tiny regret), which is not fully incentive compatible. A natural question is whether we

can transform this approximately-IC mechanism to a fully IC mechanism without sacrificing

the target objectives. To address this issue, in Chapter 3, I propose an approach to transform an

approximately-IC mechanism into a fully BIC mechanism without any loss of welfare and with

only negligible loss in revenue. I show that the revenue loss bound is tight given the requirement

to maintain social welfare. This is the first ε-BIC to BIC transformation that preserves welfare

while also providing negligible revenue loss. Previous ε-BIC to BIC transformations preserve

social welfare but have no revenue guarantee [BH11], or suffer welfare loss while incurring a
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revenue loss with both a multiplicative and an additive term, e.g., Daskalakis and Weinberg

[DW12], Cai and Zhao [CZ17], and Rubinstein and Weinberg [RW18]. The revenue loss

achieved by our transformation is incomparable to these earlier approaches and can sometimes

be significantly less. I also analyze ε-expected ex-post IC (ε-EEIC) mechanisms [Düt+14], i.e.,

the mechanism with the kinds of approximate guarantees provided by RegretNet and provide

a welfare-preserving transformation with the same revenue loss guarantee for the special case

of uniform type distributions. I give applications of this method to both linear-programming

based and machine-learning based methods of automated mechanism design. I also show

the impossibility of welfare-preserving, ε-EEIC to BIC transformations with negligible loss of

revenue for non-uniform distributions.

Part III: Learning to Bid in Repeated Auctions

In Part III, I focus on learning to bid in auctions and introduce two contributions, convergence

analysis of no-regret bidding algorithms in repeated auctions and learning to bid without knowing your

value, which are presented in Chapter 4 and Chapter 5, respectively.

The connection between games and no-regret algorithms has been widely studied in the

literature. A fundamental result is that when all players play no-regret strategies, this produces

a sequence of actions whose time-average is a coarse-correlated equilibrium of the game,

e.g., [FL98; CL06; Nis+07]. However, little is known about convergence to particular equilibria.

In Chapter 4, I study the convergence of no-regret bidding algorithms in auctions. Besides

being of theoretical interest, bidding dynamics in auctions is also an important question from a

practical viewpoint. I study repeated games in which a single item is sold at each time step

and each bidder’s value is i.i.d. drawn from an underlying distribution. We show that if each

bidder uses a mean-based learning rule then the bidders converge with high probability to the

truthful, dominant strategy equilibrium in a second price single-item auction, to the truthful,

dominant strategy equilibrium in the VCG auction in the multi-slot setting, and to the efficient

Bayesian Nash equilibrium in a first price single-item auction. The mean-based algorithms

cover a wide variety of known no-regret algorithms such as Exp3, UCB, and ε-Greedy. Also, I
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analyze the point-wise convergence in such learning algorithms, as opposed to the time-average

of the sequence. I also present experiments that corroborate my theoretical findings and also

find a similar convergence for other bidding strategies such as Deep Q-Learning.

In Chapter 5, I address online learning in complex auction settings, such as sponsored

search auctions, where the bidder’s own value is unknown, evolving in an arbitrary manner,

and observed only if the bidder wins an allocation. I leverage the structure of the utility of

the bidder and the partial feedback from the auction, in order to provide algorithms with

regret rates against the best fixed bid in hindsight that are exponentially faster in convergence

in terms of dependence on the action space than what would have been derived by applying

a generic bandit algorithm, and almost equivalent to what would have been achieved in

the full information setting. Our results are achieved by analyzing a new online learning

setting with outcome-based feedback, which generalizes from learning with feedback graphs. I

provide an online learning algorithm for this setting, of independent interest, with regret that

grows logarithmically with the number of actions and linearly only in the number of potential

outcomes (the latter being very small in most auction settings). In Section 5.7, I show that this

algorithm outperforms the bandit approach experimentally and that this performance is robust

to dropping some of the theoretical assumptions or introducing noise into the feedback that

the player receives.
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Chapter 1

Optimal Auctions through Deep

Learning

1.1 Introduction

Optimal auction design is one of the cornerstones of economic theory. It is of great practical

importance, as auctions are used across industries and by the public sector to organize the

sale of their products and services. Concrete examples are the US FCC Incentive Auction, the

sponsored search auctions conducted by web search engines such as Google, and the auctions

run on platforms such as eBay. In the standard independent private valuations model, each bidder

has a valuation function over subsets of items, drawn independently from not necessarily

identical distributions. It is assumed that the auctioneer knows the distributions and can (and

will) use this information in designing the auction. A major difficulty in designing auctions

is that valuations are private and bidders need to be incentivized to report their valuations

truthfully. The goal is to learn an incentive compatible auction that maximizes revenue.

In a seminal piece of work, Myerson resolved the optimal auction design problem when

there is a single item for sale [Mye81]. Quite astonishingly, even after 30-40 years of intense

research, the problem is not completely resolved even for a simple setting with two bidders

and two items. While there have been some elegant partial characterization results [MV06;

Pav11; HH19; GK18; DDT17; Yao17], and an impressive sequence of recent algorithmic results
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[CDW12a; CDW12b; CDW13; HN17; Bab+14; Yao15; CZ17; Cha+10], most of them apply to the

weaker notion of Bayesian incentive compatibility (BIC). Our focus is on designing auctions

that satisfy dominant-strategy incentive compatibility (DSIC), the more robust and desirable

notion of incentive compatibility.

A recent, concurrent line of work started to bring in tools from machine learning and

computational learning theory to design auctions from samples of bidder valuations. Much of

the effort here has focused on analyzing the sample complexity of designing revenue-maximizing

auctions [CR14; MM16; HMR18; MR15; GN17; MR16; Syr17; GW18; BSV16]. A handful of

works has leveraged machine learning to optimize different aspects of mechanisms [Lah11;

Düt+14; NAP16], but none of these offers the generality and flexibility of our approach. There

have also been computational approaches to auction design, under the agenda of automated

mechanism design [CS02; CS04; SL15], but where scalable, they are limited to specialized classes

of auctions known to be incentive compatible.

1.1.1 Our Contribution

In this work we provide the first, general purpose, end-to-end approach for solving the

multi-item auction design problem. We use multi-layer neural networks to encode auction

mechanisms, with bidder valuations being the input and allocation and payment decisions

being the output. We then train the networks using samples from the value distributions, so as

to maximize expected revenue subject to constraints for incentive compatibility.

We propose two different approaches to handling IC constraints. In the first, we leverage

characterization results for IC mechanisms, and constrain the network architecture appro-

priately. We specifically show how to exploit Rochet’s characterization result for single-

bidder multi-item settings [Roc87], which states that DSIC mechanisms induce Lipschitz,

non-decreasing, and convex utility functions.

Our second approach, replaces the IC constraints with the goal of minimizing expected

ex post regret, and then lifts the constraints into the objective via the augmented Langrangian

method. We minimize a combination of negated revenue, and a penalty term for IC violations.

This approach is also applicable in multi-bidder multi-item settings for which we don’t have
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tractable characterizations of IC mechanisms, but will generally only find mechanisms that are

approximately incentive compatible.

We show through extensive experiments that our two approaches are capable of recovering

essentially all analytical results that have been obtained over the past 30-40 years, and that

deep learning is also a powerful tool for confirming or refuting hypotheses concerning the

form of optimal auctions and can be used to find new designs.

We also present generalization bounds in the style of machine learning that provide confidence

intervals on the expected revenue and expected ex post regret based on the empirical revenue

and empirical regret during training, the complexity of the neural network used to encode the

allocation and payment rules, and the number of samples used to train the network.

1.1.2 Discussion

In general, the optimization problems we face may be non-convex, and so gradient-based

approaches may get stuck in local optima. Empirically, however, this has not been an obstacle

to deep nets in other problem domains, and there is growing theoretical evidence in support of

this “no local optima” phenomenon (see, e.g., [CLA15; Kaw16; PNB16]).

By focusing on expected ex post regret we adopt a quantifiable relaxation of dominant-

strategy incentive compatibility, first introduced in [Düt+14]. Our experiments suggest that

this relaxation is an effective tool for approximating optimal DSIC auctions.

While not strictly limited to neural networks, our approach benefits from the expressive

power of neural networks and the ability to enforce complex constraints using the standard

pipeline. A key advantage of our method over other approaches to automated mechanism

design such as [SL15] is that we optimize over a broad class of mechanisms, constrained only

by the expressivity of the neural network architecture.

While the original work on automated auction design framed the problem as a linear

program (LP) [CS02; CS04], follow-up work acknowledged that this has severe scalablility

issues as it requires a number of constraints and variables that is exponential in the number

of agents and items [GC10]. We find that even for small setting with 2 bidders and 3 items

(and a discretization of the value into 5 bins per item) the corresponding LP takes 69 hours
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to complete since the LP needs to handle « 105 decision variables and « 4ˆ 106 constraints.

For the same setting, our approach found an auction with low regret in just over 9 hours (see

Table 1.11). Our work shows that we are able to help economists to discover new theory (see

Section 1.5.5) and help practitioners to maximize revenue empirically, by efficiently computing

across a wide set of examples.

1.1.3 Further Related Work

Several other research groups have recently picked up deep nets and inference tools and

applied them to economic problems, different from the one we consider here. These include

the use of neural networks to predict behavior of human participants in strategic scenar-

ios [HWLB16; FL19], an automated equilibrium analysis of mechanisms [TNLB17], deep

nets for causal inference [Har+17; Lou+17], and deep reinforcement learning for solving

combinatorial games [Rag+18].1

1.1.4 Organization

Section 1.2 formulates the auction design problem as a learning problem, describes our two basic

approaches, and states the generalization bound. Section 1.3 presents the network architectures,

and instantiates the generalization bound for these networks. Section 1.4 describes the training

and optimization procedures, and Section 1.5 the experiments. Section 3.6 concludes.

1.2 Auction Design as a Learning Problem

1.2.1 Auction Design Basics

We consider a setting with a set of n bidders N “ t1, . . . , nu and m items M “ t1, . . . , mu. Each

bidder i has a valuation function vi : 2M Ñ Rě0, where vipSq denotes how much the bidder

values the subset of items S Ď M. In the simplest case, a bidder may have additive valuations.

1There has also been follow-up work to the present work that extends our approach to budget constrained
bidders [FNP18] and to the facility location problem [GNP18], and that develops specialized architectures for single
bidder settings that satisfy IC [STZ19] and for the purpose of minimizing agent payments [Tac+19]. A short survey
also appears as a chapter in [Düt+19a].

11



In this case she has a value viptjuq for each individual item j P M, and her value for a subset

of items S Ď M is vipSq “
ř

jPS viptjuq. If a bidder’s value for a subset of items S Ď M is

vipSq “ maxjPS viptjuq, we say this bidder has a unit-demand valuation. We also consider bidders

with general combinatorial valuations, but defer the details to Appendix A.1.2.

Bidder i’s valuation function is drawn independently from a distribution Fi over possible

valuation functions Vi. We write v “ pv1, . . . , vnq for a profile of valuations, and denote

V “
śn

i“1 Vi. The auctioneer knows the distributions F “ pF1, . . . , Fnq, but does not know

the bidders’ realized valuation v. The bidders report their valuations (perhaps untruthfully),

and an auction decides on an allocation of items to the bidders and charges a payment to

them. We denote an auction pg, pq as a pair of allocation rules gi : V Ñ 2M and payment rules

pi : V Ñ Rě0 (these rules can be randomized). Given bids b “ pb1, . . . , bnq P V, the auction

computes an allocation gpbq and payments ppbq.

A bidder with valuation vi receives a utility uipvi; bq “ vipgipbqq ´ pipbq for a report of bid

profile b. Let v´i denote the valuation profile v “ pv1, . . . , vnq without element vi, similarly

for b´i, and let V´i “
ś

j‰i Vj denote the possible valuation profiles of bidders other than

bidder i. An auction is dominant strategy incentive compatible (DSIC) if each bidder’s utility is

maximized by reporting truthfully no matter what the other bidders report. In other words,

uipvi; pvi, b´iqq ě uipvi; pbi, b´iqq for every bidder i, every valuation vi P Vi, every bid bi P Vi,

and all bids b´i P V´i from others. An auction is ex post individually rational (IR) if each bidder

receives a non-zero utility, i.e. uipvi; pvi, b´iqq ě 0 @i P N, vi P Vi, and b´i P V´i .

In a DSIC auction, it is in the best interest of each bidder to report truthfully, and so

the revenue on valuation profile v is
ř

i pipvq. Optimal auction design seeks to identify a

DSIC auction that maximizes expected revenue. There is another weaker notion of incentive

compatibility, Bayesian Incentive Compatibility (BIC) in the literature. An auction is BIC if

each bidder’s utility is maximized by reporting truthfully when the other bidders also report

truthfully, i.e. Ev´iruipvi; pvi, v´iqqs ě Ev´iruipvi; pbi, v´iqqs for every bidder i, every valuation

vi P Vi, every bid bi P Vi. In this work, we focus on DSIC auctions rather than BIC auctions, since

DSIC auctions are more preferable in practice where the bidders need less prior information to

bid.
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1.2.2 Formulation as a Learning Problem

We pose the problem of optimal auction design as a learning problem, where in the place of a

loss function that measures error against a target label, we adopt the negated, expected revenue

on valuations drawn from F. We are given a parametric class of auctions, pgw, pwq PM, for

parameters w P Rd for some d P N, and a sample of bidder valuation profiles S “ tvp1q, . . . , vpLqu

drawn i.i.d. from F.2 The goal is to find an auction that minimizes the negated, expected

revenue ´Er
ř

iPN pw
i pvqs, among all auctions inM that satisfy incentive compatibility.

We present two approaches for achieving IC. In the first, we leverage characterization results

to constrain the search space so that all mechanisms within this class are IC. In the second, we

replace the IC constraints with a differentiable approximation, and lift the constraints into the

objective via the augmented Lagrangian method. The first approach affords a smaller search

space and is exactly DSIC, but requires an IC characterization that can be encoded within

a neural network architecture and applies to single-bidder multi-item settings. The second

approach applies to multi-bidder multi-item settings and does not rely on the availability of

suitable characterization results, but entails search through a larger parametric space and only

achieves approximate IC.

Characterization-Based Approach

We begin by describing our first approach, in which we exploit characterizations of IC mecha-

nisms to constrain the search space. We provide a construction for single-bidder multi-item

settings based on Rochet [Roc87]’s characterization of IC mechanisms via induced utilities,

which we refer to as RochetNet. For the single-bidder setting, there is no difference between

DSIC and BIC constraints. We present this construction for additive preferences, but the

construction can easily be extended to unit demand valuations. See Section 1.3.1. In Ap-

pendix A.1.1 we describe a second construction based on Myerson [Mye81]’s characterization

result for single-bidder multi-item settings, which we refer to as MyersonNet.

To formally state Rochet’s result we need the following notion of an induced utility function.

2There is no need to compute equilibrium inputs—we sample true profiles, and seek to learn rules that are IC.
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The utility function u : Rm
ě0 Ñ R induced by a mechanism pg, pq for a single bidder with

additive preferences is3:

upvq “
m
ÿ

j“1

gjpvq vj ´ ppvq. (1.1)

Rochet’s result establishes the following connection between DSIC mechanisms and induced

utility functions:

Theorem 1.1 (Rochet [Roc87]). A utility function u : Rm
ě0 Ñ R is induced by a DSIC mechanism iff

u is 1-Lipschitz w.r.t. the `1-norm, non-decreasing, and convex. Moreover, for such a utility function u,

∇upvq exists almost everywhere in Rm
ě0, and wherever it exists, ∇upvq gives the allocation probabilities

for valuation v and ∇upvq ¨ v ´ upvq is the corresponding payment.

Further, for a mechanism to be ex post IR, its induced utility function must be non-negative,

i.e. upvq ě 0,@v P Rm
ě0.

To find the optimal mechanism, it thus suffices to search over all non-negative utility

functions that satisfy the conditions in Theorem 1.1, and pick the one that maximizes expected

revenue.

This can be done by modeling the utility function as a neural network, and formulating the

above optimization as a learning problem. The associated mechanism can then be recovered

from the gradient of the learned neural network. We describe the neural network architectures

for this approach in Section 1.3.1, and we present extensive experiments with this approach in

Section 1.5 and Appendix A.2.

Characterization-Free Approach

Our second approach—which we refer to as RegretNet—does not rely on characterizations of

IC mechanisms. Instead, it replaces the IC constraints with a differentiable approximation and

lifts the IC constraints into the objective by augmenting the objective with a term that accounts

for the extent to which the IC constraints are violated.

3For a unit-demand bidder, the utility can also be represented via (1.1) with the additional constraint that
ř

j gjpvq ď 1,@v. We discuss this more in Section 1.3.1.
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We propose to measure the extent to which an auction violates incentive compatibility

through the following notion of ex post regret. Fixing the bids of others, the ex post regret for

a bidder is the maximum increase in her utility, considering all possible non-truthful bids. For

mechanisms (gw, pw), we will be interested in the expected ex post regret for bidder i:

rgtipwq “ E
”

max
v1iPVi

uw
i pvi; pv1i, v´iqq ´ uw

i pvi; pvi, v´iqq
ı

,

where the expectation is over v „ F and uw
i pvi; bq “ vipgw

i pbqq ´ pw
i pbq for model parameters w.

We assume that F has full support on the space of valuation profiles V, and recognizing that

the regret is non-negative, an auction satisfies DSIC if and only if rgtipwq “ 0,@i P N, except

for measure zero events. In this work, we focus on DSIC constriant and our RegretNet can be

adapted to handle BIC constraint, see in [FNP18].

Given this, we re-formulate the learning problem as minimizing expected negated revenue

subject to the expected ex post regret being zero for each bidder:

min
wPRd

Ev„F

„

´
ř

iPN pw
i pvq



s.t. rgtipwq “ 0, @i P N.

Given a sample S of L valuation profiles from F, we estimate the empirical ex post regret for

bidder i as:

xrgtipwq “
1
L
řL

`“1

”

maxv1iPVi
uw

i

`

vp`qi ;
`

v1i, vp`q
´i

˘˘

´ uw
i pv

p`q
i ; vp`qq

ı

, (1.2)

and seek to minimize the empirical loss (negated revenue) subject to the empirical regret being

zero for all bidders:

min
wPRd

´ 1
L
řL

`“1
řn

i“1 pw
i pv

p`qq

s.t. xrgtipwq “ 0, @i P N. (1.3)

We additionally require the designed auction to satisfy IR, which can be ensured by

restricting the search space to a class of parametrized auctions that charge no bidder more than

her valuation for an allocation.

In Section 1.3 we will model the allocation and payment rules as neural networks and
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incorporate the IR requirement within the architecture. In Section 1.4 we describe how the

IC constraints can be incorporated into the objective using Lagrange multipliers, so that the

resulting neural nets can be trained with standard pipelines. Section 1.5 and Appendix A.2

present extensive experiments.

1.2.3 Quantile-Based Regret

Our characterization-free approach will lead to mechanisms with low (typically vanishing)

expected ex post regret. The bounds on the expected ex post regret also yield guarantees of the

form “the probability that the ex post regret is larger than x is at most q.”

Definition 1.1 (Quantile-based ex post regret). For each bidder i, and q with 0 ă q ă 1, the

q-quantile-based ex post regret, rgtq
i pwq, induced by the probability distribution F on valuation profiles,

is defined as the smallest x such that

P

˜

max
v1iPVi

uw
i pvi; pv1i, v´iqq ´ uw

i pvi; pvi, v´iqq ě x

¸

ď q.

We can bound the q-quantile based regret rgtq
i pwq by the expected ex post regret rgtipwq as

in the following lemma. The proof appears in Appendix A.3.1.

Lemma 1.1. For any fixed q, 0 ă q ă 1, and bidder i, we can bound the q-quantile-based ex post regret

by

rgtq
i pwq ď

rgtipwq
q

.

Using this lemma we can show, for example, that when the expected ex post regret is 0.001,

then the probability that the ex post regret exceeds 0.01 is at most 10%.

1.2.4 Generalization Bound

We conclude this section with two generalization bounds. We provide a lower bound on the

expected revenue and an upper bound on the expected ex post regret in terms of the empirical

revenue and empirical regret during training, the complexity (or capacity) of the auction class

that we optimize over, and the number of sampled valuation profiles.
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We measure the capacity of an auction classM using a definition of covering numbers used

in the ranking literature [RS09]. Define the `8,1 distance between auctions pg, pq, pg1, p1q PM as

max
vPV

ÿ

iPN,jPM

|gijpvq ´ g1ijpvq| `
ÿ

iPN

|pipvq ´ p1ipvq|.

For any ε ą 0, let N8pM, εq be the minimum number of balls of radius ε required to coverM

under the `8,1 distance.

Theorem 1.2. For each bidder i, assume that the valuation function vi satisfies vipSq ď 1, @S Ď M.

LetM be a class of auctions that satisfy individual rationality. Fix δ P p0, 1q. With probability at least

1´ δ over draw of sample S of L profiles from F, for any pgw, pwq PM,

Ev„F

„

ř

iPN pw
i pvq



ě 1
L
řL

`“1
řn

i“1 pw
i pv

p`qq´ 2n∆L´Cn
b

logp1{δq
L ,

and

1
n

n
ÿ

i“1

rgtipwq ď
1
n

n
ÿ

i“1

xrgtipwq ` 2∆L ` C1
c

logp1{δq
L

,

where ∆L “ infεą0

!

ε
n ` 2

b

2 logpN8pM, ε{2qq
L

)

and C, C1 are distribution-independent constants.

See Appendix A.3.2 for the proof. If the term ∆L in the above bound goes to zero as the

sample size L increases then the above bounds go to zero as L Ñ8. In Theorem 1.4 in Section

1.3, we bound ∆L for the neural network architectures we present in this work.

1.3 Neural Network Architecture

We describe the RochetNet architecture for single-bidder multi-item settings in Section 1.3.1,

and the RegretNet architecture for multi-bidder multi-item settings in Section 1.3.2. We focus

on additive and unit-demand preferences. We discuss how to extend the constructions to

capture combinatorial valuations for multi-bidder, multi-item settings in Appendix A.1.2.
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Figure 1.1: RochetNet: (a) Neural network representation of a non-negative, monotone, convex induced utility
function; here hjpbq “ αj ¨ b ` β j for b P Rm and αj P r0, 1sm. (b) An example of a utility function represented
by RochetNet for one item.

1.3.1 The RochetNet Architecture

Recall that in the single-bidder, multi-item setting we seek to encode utility functions that

satisfy the requirements of Theorem 1.1. The associated auction mechanism can be deduced

from the gradient of the utility function.

We first describe the construction for additive valuations. To model a non-negative,

monotone, convex, Lipschitz utility function, we use the maximum of J linear functions with

non-negative coefficients and zero:

uα,βpvq “ max
"

max
jPrJs

tαj ¨ v ` β ju, 0
*

, (1.4)

where parameters w “ pα, βq, with αj P r0, 1sm and β j P R for j P rJs. By bounding the

hyperplane coefficients to r0, 1s, we guarantee that the function is 1-Lipschitz. The following

theorem verifies that the utility modeled by RochetNet satisfies Rochet’s characterization

(Theorem 1.1). The proof is given in Appendix A.3.3.

Theorem 1.3. For any α P r0, 1smJ and β P RJ , the function uα,β is non-negative, monotonically

non-decreasing, convex and 1-Lipschitz w.r.t. the `1-norm.

The utility function, represented as a single layer neural network, is illustrated in Fig-

ure 1.1(a), where each hjpbq “ αj ¨ b ` β j for bid b P Rm. Figure 1.1(b) shows an example of a

utility function represented by RochetNet for m “ 1. By using a large number of hyperplanes

one can use this neural network architecture to search over a sufficiently rich class of monotone,
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convex 1-Lipschitz utility functions. Once trained, the mechanism pgw, pwq, with w “ pα, βq,

can be derived from the gradient of the utility function, with the allocation rule given by:

gwpbq “ ∇uα,βpbq, (1.5)

and the payment rule is given by the difference between the expected value to the bidder from

the allocation and the bidder’s utility:

pwpbq “ ∇uα,βpbq ¨ b ´ uα,βpbq. (1.6)

Here the utility gradient can be computed as: ∇juα,βpbq “ αj˚pbq, for j˚pbq P argmaxjPrJstαj ¨

b ` β ju. We seek to minimize the negated, expected revenue:

´Ev„F
“

∇uα,βpvq ¨ v´ uα,βpvq
‰

“ Ev„F
“

β j˚pvq
‰

. (1.7)

To ensure that the objective is a continuous function of the parameters α and β (so that

the parameters can be optimized efficiently), the gradient term is computed approximately by

using a softmax operation in place of the argmax. The loss function that we use is given by the

negated revenue with approximate gradients:

Lpα, βq “ ´Ev„F
“

ÿ

jPrJs

β j
r∇jpvq

‰

, (1.8)

where

r∇jpvq “ softmaxj
`

κ ¨ pα1 ¨ v` β1q, . . . , κ ¨ pαJ ¨ v` β Jq
˘

(1.9)

and κ ą 0 is a constant that controls the quality of the approximation.4 We seek to optimize

the parameters of the neural network α P r0, 1smJ , β P RJ to minimize loss. Given a sample

S “ tvp1q, . . . , vpLqu drawn from F, we optimize an empirical version of the loss. We only do

this approximation during training to minimize the empirical loss function. Nevertheless, we

always use argmax during testingto guarantee the mechanism exact DSIC.

This approach easily extends to a single bidder with a unit-demand valuation. In this

case, the sum of the allocation probabilities cannot exceed one. This is enforced by restricting

4The softmax function, softmaxjpκx1, . . . , κxJq “ eκxj{
ř

j1 eκxj1 , takes as input J real numbers and returns a
probability distribution consisting of J probabilities, proportional to the exponential of the inputs.
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the coefficients for each hyperplane to sum up to at most one, i.e.
řm

k“1 αjk ď 1,@j P rJs,

and αjk ě 0,@j P J, k P rms.5 It can be verified that even with this restriction, the induced

utility function continuous to be monotone, convex and Lipschitz, ensuring that the resulting

mechanism is DSIC.6

An interpretation of the RochetNet architecture is that the network maintains a menu of

randomized allocations and prices, and chooses the option from the menu that maximizes

the bidder’s utility based on the bid. Each linear function hjpbq “ αj ¨ b ` β j in RochetNet

corresponds to an option on the menu, with the allocation probabilities and payments encoded

through the parameters αj and β j respectively. Our RochetNet framework provides a novel

neural network implementation for the menu-based mechanism. Indeed, combining with

standard machine learning training pipeline (e.g., gradient descent method), the RochetNet can

be solved very fast. Recently, [STZ19] extended RochetNet to more general settings, including

non-linear utility function settings.

1.3.2 The RegretNet Architecture

We next describe the basic architecture for the characterization-free, RegretNet approach. Recall

that in this case the goal is to train neural networks that explicitly encode the allocation and

payment rule of the mechanism. The architectures generally consist of two logically distinct

components: the allocation and payment networks. These components are trained together

and the outputs of these networks are used to compute the regret and revenue of the auction.

Additive Valuations

An overview of the RegretNet architecture for additive valuations is given in Figure 1.2. The

allocation network encodes a randomized allocation rule gw : Rnm Ñ r0, 1snm and the payment

network encodes a payment rule pw : Rnm Ñ Rn
ě0, both of which are modeled as feed-forward,

fully-connected networks with a tanh activation function in each of the hidden nodes. The

5To achieve this contraint, we can re-parameterize αjk as softmaxk
`

γj1, ¨ ¨ ¨ , γjm
˘

, where γjk P R,@j P J, k P m.

6The original characterization of Rochet [Roc87] applies to general, convex outcome spaces, as is the case here.
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Figure 1.2: RegretNet: The allocation and payment networks for a setting with n additive bidders and m items.
The inputs are bids from each bidder for each item. The revenue rev and expected ex post rgti are defined as a
function of the parameters of the allocation and payment networks w “ pwg, wpq.

input layer of the networks consists of bids bij ě 0 representing the valuation of bidder i for

item j.

The allocation network outputs a vector of allocation probabilities z1j “ g1jpbq, . . . , znj “

gnjpbq, for each item j P rms. To ensure feasibility, i.e., that the probability of an item being

allocated is at most one, the allocations are computed using a softmax activation function, so

that for all items j, we have
řn

i“1 zij ď 1. To accommodate the possibility of an item not being

assigned, we include a dummy node in the softmax computation to hold the residual allocation

probability. The payment network outputs a payment for each bidder that denotes the amount

the bidder should pay in expectation for a particular bid profile.

To ensure that the auction satisfies ex post IR, i.e., does not charge a bidder more than her

expected value for the allocation7, the network first computes a normalized payment p̃i P r0, 1s

for each bidder i using a sigmoidal unit, and then outputs a payment pi “ p̃ip
řm

j“1 zij bijq,

where the zij’s are the outputs from the allocation network.

7This guarantees the ex post individual rationality, since the expectation is just from the randomization of the
mechanism.
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Figure 1.3: RegretNet: The allocation network for settings with n unit-demand bidders and m items.

Unit-Demand Valuations

The allocation network for unit-demand bidders is the feed-forward network shown in Figure

1.3. For revenue maximization in this setting, it is sufficient to consider allocation rules that

assign at most one item to each bidder.8 In the case of randomized allocation rules, this requires

that the total allocation probability to each bidder is at most one, i.e.,
ř

j zij ď 1, @i P rns. We

would also require that no item is over-allocated, i.e.,
ř

i zij ď 1, @j P rms. Hence, we design

allocation networks for which the matrix of output probabilities rzijs
n
i,j“1 is doubly stochastic.9

In particular, we have the allocation network compute two sets of scores sij’s and s1ij’s. Let s,

s1 P Rnm denote the corresponding matrices. The first set of scores are normalized along the

rows and the second set of scores normalized along the columns. Both normalizations can be

performed by passing these scores through softmax functions. The allocation for bidder i and

item j is then computed as the minimum of the corresponding normalized scores:

zij “ ϕDS
ij ps, s1q “ min

"

esij

řn`1
k“1 eskj

,
es1ij

řm`1
k“1 es1ik

*

,

where indices n` 1 and m` 1 denote dummy inputs that correspond to an item not being

allocated to any bidder and a bidder not being allocated any item, respectively.

8This holds by a simple reduction argument: for any IC auction that allocates multiple items, one can construct
an IC auction with the same revenue by retaining only the most-preferred item among those allocated to a bidder.

9This is a more general definition for doubly stochastic than is typical. Doubly stochastic is usually defined on
a square matrix with the sum of rows and the sum of columns equal to 1.
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We first show that ϕDSps, s1q as constructed is doubly stochastic, and that we do not lose in

generality by the constructive approach that we take. See Appendix A.3.4 for a proof.

Lemma 1.2. The matrix ϕDSps, s1q is doubly stochastic @ s, s1 P Rnm. For any doubly stochastic matrix

z P r0, 1snm, D s, s1 P Rnm, for which z “ ϕDSps, s1q.

It remains to show that doubly-stochastic matrices correspond to lotteries over one-to-one

assignments. This is a special case of the bihierarchy structure proposed in [Bud+13] (Theorem

1), which we state in the following lemma for completeness.10

Lemma 1.3 ([Bud+13]). Any doubly stochastic matrix A P Rnˆm can be represented as a convex

combination of matrices B1, . . . , Bk where each B` P t0, 1unˆm and
ř

jPrms Bij ď 1, @i P rns and
ř

iPrns Bij ď 1, @j P rms.

The payment network for unit-demand valuations is the same as for the case of additive

valuations (see Figure 1.2).

1.3.3 Covering Number Bounds

We conclude this section by instantiating our generalization bound from Section 1.2.4 for the

RegretNet architectures, where we have both a regret and revenue term. Analogous results can

be derived for RochetNet, where we only have a revenue term.

Theorem 1.4. For RegretNet with R hidden layers, K nodes per hidden layer, dg parameters in the

allocation network, dp parameters in the payment network, m items, n bidders, a sample size of L, and

the vector of all model parameters w satisfying }w}1 ď W 11 the following are valid bounds for the ∆L

term defined in Theorem 1.2, for different bidder valuation types:

(a) additive valuations:

∆L ď O
`a

Rpdg ` dpq logpLW maxtK, mnuq{L
˘

,

(b) unit-demand valuations:

∆L ď O
`

b

Rpdg ` dpq logpLW maxtK, mnuq{L
˘

,

10Budish et al. [Bud+13] also propose a polynomial algorithm to decompose the doubly stochastic matrix.

11Recall that } ¨ }1 is the induced matrix norm, i.e. }w}1 “ maxj
ř

i |wij|.
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The proof is given in Appendix A.3.6. As the sample size L Ñ 8, the term ∆L Ñ 0. The

dependence of the above result on the number of layers, nodes, and parameters in the network

is similar to standard covering number bounds for neural networks [AB09a].

1.4 Optimization and Training

We next describe how we train the neural network architectures presented in the previous

section. We focus on the RegretNet architectures where we have to take care of the incentives

directly. The approach that we take for RochetNet is the standard (projected) stochastic gradient

descent12 (SGD) for loss function Lpα, βq in Equation 1.8.

For RegretNet we use the augmented Lagrangian method to solve the constrained training

problem in (1.3) over the space of neural network parameters w. We first define the Lagrangian

function for the optimization problem, augmented with a quadratic penalty term for violating

the constraints:

Cρpw; λq “ ´
1
L

L
ÿ

`“1

ÿ

iPN

pw
i pv

p`qq `
ÿ

iPN

λi xrgtipwq `
ρ

2

ÿ

iPN

´

xrgtipwq
¯2

where λ P Rn is a vector of Lagrange multipliers, and ρ ą 0 is a fixed parameter that controls

the weight on the quadratic penalty. The solver alternates between the following updates on

the model parameters and the Lagrange multipliers: (a) wnew P argminw Cρpwold; λoldq and (b)

λnew
i “ λold

i ` ρ xrgtipw
newq, @i P N.

The solver is described in Algorithm 1. We divide the training sample S into minibatches

of size B, and perform several passes over the training samples (with random shuffling of the

data after each pass). We denote the minibatch received at iteration t by St “ tvp1q, . . . , vpBqu.

The update (a) on model parameters involves an unconstrained optimization of Cρ over w and

is performed using a gradient-based optimizer. Let Ărgtipwq denote the empirical regret in (1.2)

12During training for additive valuations setting in RochetNet, we project each weight αjk into r0, 1s to guarantee
feasibility.
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Algorithm 1 RegretNet Training

1: Input: Minibatches S1, . . . ,ST of size B
2: Parameters: @t, ρt ą 0, γ ą 0, η ą 0, Γ P N, K P N

3: Initialize: w0 P Rd, λ0 P Rn

4: for t “ 0 to T do
5: Receive minibatch St “ tvp1q, . . . , vpBqu
6: Initialize misreports v1p`qi P Vi,@` P rBs, i P N
7: for r “ 0 to Γ do
8: @` P rBs, i P N :
9: v1p`qi Ð v1p`qi ` γ∇v1i

uw
i

`

vp`qi ;
`

v1p`qi , vp`q
´i

˘˘

10: end for
11: Compute regret gradient: @` P rBs, i P N:
12: gt

`,i “

13: ∇w
“

uw
i

`

vp`qi ;
`

v1p`qi , vp`q
´i

˘˘

´ uw
i pv

p`q
i ; vp`qq

‰

ˇ

ˇ

ˇ

w“wt

14: Compute Lagrangian gradient using (1.10) and update wt:
15: wt`1 Ð wt ´ η∇w Cρtpwt, λtq

16: Update Lagrange multipliers once in Q iterations:
17: if t is a multiple of Q
18: λt`1

i Ð λt
i ` ρt Ărgtipw

t`1q, @i P N
19: else
20: λt`1 Ð λt

21: end for

computed on minibatch St. The gradient of Cρ w.r.t. w for fixed λt is given by:

∇w Cρpw; λtq “ ´
1
B

B
ÿ

`“1

ÿ

iPN

∇w pw
i pv

p`qq `
ÿ

iPN

B
ÿ

`“1

λt
i g`,i ` ρ

ÿ

iPN

B
ÿ

`“1

Ărgtipwq g`,i (1.10)

where

g`,i “ ∇w

”

max
v1iPVi

uw
i
`

vp`qi ;
`

v1i, vp`q
´i

˘˘

´ uw
i pv

p`q
i ; vp`qq

ı

.

The terms Ărgti and g`,i in turn involve a “max” over misreports for each bidder i and

valuation profile `. We solve this inner maximization over misreports using another gradient

based optimizer. In particular, we maintain misreports v1p`qi for each i and valuation profile

`. For every update on the model parameters wt, we perform Γ gradient updates to compute

the optimal misreports: v1p`qi “ v1p`qi ` γ∇v1i
uw

i

`

vp`qi ;
`

v1p`qi , vp`q
´i

˘˘

, for some γ ą 0. We show a

visualization of these iterations in Appendix 1.5.6. In our experiments, we use the Adam
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optimizer [KB15] for updates on model parameters w and misreports v1p`qi .13

Since the optimization problem is non-convex, the solver is not guaranteed to reach a

globally optimal solution. However, our method proves very effective in our experiments. The

learned auctions incur very low regret and closely match the structure of optimal auctions in

settings where this is known.

1.5 Experiments

We demonstrate that our approach can recover near-optimal auctions for essentially all settings

for which the optimal solution is known, that it is an effective tool for confirming or refuting

hypotheses about optimal designs, and that it can find new auctions for settings where there

is no known analytical solution. We present a representative subset of the results here, and

provide additional experimental results in Appendix A.2.

1.5.1 Setup

We implemented our framework using the TensorFlow deep learning library.14 For RochetNet

we initialized parameters α and β in Equation (1.4) using a random uniform initializer over

the interval [0,1] and a zero initializer, respectively. For RegretNet we used the tanh activation

function at the hidden nodes, and Glorot uniform initialization [GB10]. We performed cross

validation to decide on the number of hidden layers and the number of nodes in each hidden

layer. We include exemplary numbers that illustrate the tradeoffs in Section 1.5.7.

We trained RochetNet on 215 valuation profiles sampled every iteration in an online manner.

We used the Adam optimizer with a learning rate of 0.1 for 20,000 iterations for making the

updates. The parameter κ in Equation (1.9) was set to 1,000. Unless specified otherwise we

used a max network over 1,000 linear functions to model the induced utility functions, and

report our results on a sample of 10,000 profiles.

13Adam is a variant of SGD, which involves a momentum term to update weights. Lines 9 and 15 in the
pseudo-code of Algorithm 1 are for a standard SGD algorithm.

14All code is available through the GitHub repository at https://github.com/saisrivatsan/
deep-opt-auctions.
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For RegretNet we used a sample of 640,000 valuation profiles for training and a sample of

10,000 profiles for testing. The augmented Lagrangian solver was run for a maximum of 80

epochs (full passes over the training set) with a minibatch size of 128. The value of ρ in the

augmented Lagrangian was set to 1.0 and incremented every two epochs. An update on wt was

performed for every minibatch using the Adam optimizer with learning rate 0.001. For each

update on wt, we ran Γ “ 25 misreport updates steps with learning rate 0.1. At the end of 25

updates, the optimized misreports for the current minibatch were cached and used to initialize

the misreports for the same minibatch in the next epoch. An update on λt was performed once

every 100 minibatches (i.e., Q “ 100).

We ran all our experiments on a compute cluster with NVDIA Graphics Processing Unit

(GPU) cores.

1.5.2 Evaluation

In addition to the revenue of the learned auction on a test set, we also evaluate the regret

achieved by RegretNet, averaged across all bidders and test valuation profiles, i.e., rgt “

1
n
řn

i“1
xrgtipg

w, pwq. Each yrgti has an inner “max” of the utility function over bidder valuations

v1i P Vi (see (1.2)). We evaluate these terms by running gradient ascent on v1i with a step-size of

0.1 for 2,000 iterations (we test 1,000 different random initial v1i and report the one that achieves

the largest regret).

For some of the experiments we also report the total time it took to train the network. This

time is incurred during offline training, while the allocation and payments can be computed in

a few milliseconds once the network is trained.

1.5.3 The Manelli-Vincent and Pavlov Auctions

As a representative example of the exhaustive set of analytical results that we can recover

with our approach we discuss the Manelli-Vincent and Pavlov auctions [MV06; Pav11]. We

specifically consider the following single-bidder, two-item settings:

A. Single bidder with additive valuations over two items, where the item values are inde-
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Figure 1.4: Side-by-side comparison of allocation rules learned by RochetNet and RegretNet for single bidder, two
items settings. Panels (a) and (b) are for Setting A and Panels (c) and (d) are for Setting B. The panels describe the
probability that the bidder is allocated item 1 (left) and item 2 (right) for different valuation inputs. The optimal
auctions are described by the regions separated by the dashed black lines, with the numbers in black the optimal
probability of allocation in the region.

pendent draws from Ur0, 1s.

B. Single bidder with unit-demand valuations over two items, where the item values are

independent draws from Ur2, 3s.

The optimal design for the first setting is given by Manelli and Vincent [MV06], who show

that the optimal mechanism is deterministic and offers the bidder three options: receive both

items and pay p4´
?

2q{3, receive item 1 and pay 2{3, or receive item 2 and pay 2{3. For the

second setting Pavlov [Pav11] shows that it is optimal to offer a fair lottery p 1
2 , 1

2q over the items

(at a discount), or to purchase any item at a fixed price. For the parameters here the price for

the lottery is 1
6p8`

?
22q « 2.115 and the price for an individual item is 1

6 `
1
6p8`

?
22q « 2.282.

We used two hidden layers with 100 hidden nodes in RegretNet for these settings. A

visualization of the optimal allocation rule and those learned by RochetNet and RegretNet is

given in Figure 1.4. Figure 1.5(a) gives the optimal revenue, the revenue and regret obtained

by RegretNet, and the revenue obtained by RochetNet. Figure 1.5(b) shows how these terms

evolve over time during training in RegretNet.

We find that both approaches essentially recover the optimal design, not only in terms

of revenue, but also in terms of the allocation rule and transfers. The auctions learned by
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(a)

0 20 40 60 80
Epochs

0.40

0.45

0.50

0.55

0.60

Te
st

 R
ev

en
ue

RegretNet
Optimal
Mechanism

0 20 40 60 80
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

Te
st

 R
eg

re
t

(b)

Figure 1.5: (a): Test revenue and regret for RegretNet and revenue for RochetNet for Settings A and B. (b): Plot
of test revenue and regret as a function of training epochs for Setting A with RegretNet.

RochetNet are exactly DSIC and match the optimal revenue precisely, with sharp decision

boundaries in the allocation and payment rule. The decision boundaries for RegretNet are

smoother, but still remarkably accurate. The revenue achieved by RegretNet matches the

optimal revenue up to a ă 1% error term and the regret it incurs is ă 0.001. The plots of the

test revenue and regret show that the augmented Lagrangian method is effective in driving the

test revenue and the test regret towards optimal levels.

The additional domain knowledge incorporated into the RochetNet architecture leads to

exactly DSIC mechanisms that match the optimal design more accurately, and speeds up

computation (the training took about 10 minutes compared to 11 hours). On the other hand, we

find it surprising how well RegretNet performs given that it starts with no domain knowledge

at all.

We present and discuss a host of additional experiments with single-bidder, two-item

settings in Appendix A.2.
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Items SJA (rev) RochetNet (rev)
2 0.549187 0.549175
3 0.875466 0.875464
4 1.219507 1.219505
5 1.576457 1.576455
6 1.943239 1.943216
7 2.318032 2.318032
8 2.699307 2.699305
9 3.086125 3.086125

10 3.477781 3.477722

Figure 1.6: Revenue of the Straight-Jacket Auction (SJA) computed via the recursive formula in [GK18], and that
of the auction learned by RochetNet, for various numbers of items m. The SJA is known to be optimal for up to six
items, and conjectured to be optimal for any number of items.

1.5.4 The Straight-Jacket Auction

Extending the analytical result of [MV06] to a single bidder, and an arbitrary number of items

(even with additive preferences, all uniform on r0, 1s) has proven elusive. It is not even clear

whether the optimal mechanism is deterministic or requires randomization.

A recent breakthrough came with Giannakopoulos and Koutsoupias [GK18], who were able

to find a pattern in the results for two items and three items. The proposed mechanism—the

Straight-Jacket Auction (SJA)—offers bundles of items at fixed prices. The key to finding these

prices is to view the best-response regions as a subdivision of the m-dimensional cube, and

observe that there is an intrinsic relationship between the price of a bundle of items and the

volume of the respective best-response region.

Giannakopoulos and Koutsoupias gave a recursive algorithm for finding the subdivision

and the prices, and used LP duality to prove that the SJA is optimal for m ď 6 items.15 They

also conjecture that the SJA remains optimal for general m, but were unable to prove it.

Figure 1.6 gives the revenue of the SJA, and that found by RochetNet for m ď 10 items.

We used a test sample of 230 valuation profiles (instead of 10,000) to compute these numbers

for higher precision. It shows that RochetNet finds the optimal revenue for m ď 6 items, and

that it finds DSIC auctions whose revenue matches that of the SJA for m “ 7, 8, 9, and 10

items. Closer inspection reveals that the allocation and payment rules learned by RochetNet

15The duality argument developed by Giannakopoulos and Koutsoupias is similar but incomparable to the
duality approach of [DDT13]. We will return to the latter in Section 1.5.5.

30



essentially match those predicted by Giannakopoulos and Koutsoupias for all m ď 10. We take

this as strong additional evidence that the conjecture of Giannakopoulos and Koutsoupias is

correct.

For the experiments in this subsection, we used a max network over 10,000 linear functions

(instead of 1,000) to increase the representation and flexibility of the neural network. This

overparameterization trick is commonly used in deep learning and has proven to be very effective

in practice, see e.g., [KSH12; AZLS19]. We followed up on the usual training phase with

an additional 20 iterations of training using Adam optimizer with learning rate 0.001 and a

minibatch size of 230. We also found it useful to impose item-symmetry on the learned auction,

especially for m “ 9 and 10 items, as this helped with accuracy and reduced training time.

Imposing symmetry comes without loss of generality for auctions with an item-symmetric

distribution [DW12]. With these modifications it took about 13 hours to train the networks.

1.5.5 Discovering New Optimal Designs

We next demonstrate the potential of RochetNet to discover new optimal designs. For this, we

consider a single bidder with additive but correlated valuations for two items as follows:

C. One additive bidder and two items, where the bidder’s valuation is drawn uniformly

from the triangle T “ tpv1, v2q|
v1
c ` v2 ď 2, v1 ě 0, v2 ě 1u where c ą 0 is a free parameter.

There is no analytical result for the optimal auction design for this setting. We ran RochetNet

for different values of c to discover the optimal auction. The mechanisms learned by RochetNet

for c “ 0.5, 1, 3, and 5 are shown in Figure 1.8. Based on this, we conjectured that the optimal

mechanism contains two menu items for c ď 1, namely tp0, 0q, 0u and tp1, 1q, 2`
?

1`3c
3 u, and

three menu items for c ą 1, namely tp0, 0q, 0u, tp1{c, 1q, 4{3u, and tp1, 1q, 1` c{3u, giving the

optimal allocation and payment in each region. In particular, as c transitions from values

less than or equal to 1 to values larger than 1, the optimal mechanism transitions from being

deterministic to being randomized. Figure 1.7 gives the revenue achieved by RochetNet and

the conjectured optimal format for a range of parameters c computed on 106 valuation profiles.

31



c Opt (rev) RochetNet (rev)
0.500 1.104783 1.104777
1.000 1.185768 1.185769
3.000 1.482129 1.482147
5.000 1.778425 1.778525

Figure 1.7: Revenue of the newly discovered optimal mechanism and that of RochetNet, for Setting C with
varying parameter c.
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Figure 1.8: Allocation rules learned by RochetNet for Setting C. The panels describe the probability that the
bidder is allocated item 1 (left) and item 2 (right) for c “ 0.5, 1, 3, and 5. The auctions proposed in Theorem 1.5
are described by the regions separated by the dashed black lines, with the numbers in black the optimal probability
of allocation in the region.

We validate the optimality of this auction through duality theory [DDT13] in Theorem 1.5.

The proof is given in Appendix A.3.7.

Theorem 1.5. For any c ą 0, suppose the bidder’s valuation is uniformly distributed over set T “

tpv1, v2q|
v1
c ` v2 ď 2, v1 ě 0, v2 ě 1u. Then the optimal auction contains two menu items tp0, 0q, 0u

and tp1, 1q, 2`
?

1`3c
3 u when c ď 1, and three menu items tp0, 0q, 0u, tp1{c, 1q, 4{3u, and tp1, 1q, 1` c{3u

otherwise.

Shen, Tang, and Zuo [STZ19] also use neural network framework to find the optimal

auction for a similar setting: single additive bidder and two items, where the bidder’s valuation

is drawn uniformly from the triangle tpv1, v2q|
v1
c ` v2 ď 1, v1 ě 0, v2 ě 0u. Our results

demonstrate that RochetNet is a powerful tool to help economists to find new theory.
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Figure 1.9: Visualization of the gradient-based approach to regret approximation for a well-trained auction for
Setting A. The top left figure shows the true valuation (green dot) and ten random initial misreports (red dots).
The remaining figures display 20 steps of gradient descent, showing one in every four steps.

1.5.6 Gradient-Based Regret Approximation

In Section 1.4, we describe a gradient-based approach to estimating a bidder’s regret. We

present a visualization of this approach in Figure 1.9 for a well-trained mechanism that has

(almost) zero regret for Setting A. We consider a bidder with true valuation pv1, v2q “ p0.1, 0.8q,

represented as a green dot. The heat map represents the utility difference uppv1, v2q; pb1, b2qq ´

uppv1, v2q; pv1, v2qq for misreports pb1, b2q P r0, 1s2, with shades of yellow corresponding to low

utility differences and shades of blue corresponding to high utility differences. To estimate

the regret of the bidder which is essentially zero in this case, we draw 10 random initial

misreports from the underlying valuation distribution, represented as red dots, and then

perform a sequence of gradient-descent steps on these random misreports. The figure shows

the random initial misreports and then the 20 gradient-descent steps, plotting one in every four

steps.
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1.5.7 Scaling Up

We next consider settings with up to five bidders and up to ten items. This is several orders of

magnitude more complex than existing analytical or computational results. It is also a natural

playground for RegretNet as no tractable characterizations of IC mechanisms are known for

these settings.

We specifically consider the following two settings, which generalize the basic setting

considered in [MV06] and [GK18] to more than one bidder:

D. Three additive bidders and ten items, where bidders draw their value for each item

independently from Ur0, 1s.

E. Five additive bidders and ten items, where bidders draw their value for each item

independently from Ur0, 1s.

The optimal auction for these settings is not known. However, running a separate Myerson

auction for each item is optimal in the limit of the number of bidders [Pal83]. For a regime

with a small number of bidders, this provides a strong benchmark. We also compare to selling

the grand bundle via a Myerson auction.

For Setting D, we show in Figure 1.10(a) the revenue and regret of the learned auction on a

validation sample of 10,000 profiles, obtained with different architectures. Here pR, Kq denotes

an architecture with R hidden layers and K nodes per layer. The (5, 100) architecture has the

lowest regret among all the 100-node networks for both Setting D and Setting E. Figure 1.10(b)

shows that the learned auctions yield higher revenue compared to the baselines, and do so

with tiny regret.

1.5.8 Comparison to LP

Finally, we compare the running time of RegretNet with the LP approach proposed in [CS02;

CS04]. To be able to run the LP, we consider a smaller setting with two additive bidders and

three items, with item values drawn independently from Ur0, 1s. For RegretNet we used two

hidden layers, and 100 nodes per hidden layer. The LP was solved with the commercial solver
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(a)

Setting
RegretNet RegretNet Item-wise Bundled

rev rgt Myerson Myerson
D: 3ˆ 10 5.541 ă 0.002 5.310 5.009
E: 5ˆ 10 6.778 ă 0.005 6.716 5.453

(b)

Figure 1.10: (a) Revenue and regret of RegretNet on the validation set for auctions learned for Setting D using
different architectures, where pR, Kq denotes R hidden layers and K nodes per layer. (b) Test revenue and regret for
Settings D and E, for the (5, 100) architecture.

Setting Method rev rgt IR viol. Run-time

2ˆ 3
RegretNet 1.291 ă 0.001 0 „9 hrs

LP (5 bins/value) 1.53 0.019 0.027 69 hrs

Figure 1.11: Test revenue, regret, IR violation, and running-time for RegretNet and an LP-based approach for a
two bidder, three items setting with additive uniform valuations.

Gurobi. We handled continuous valuations by discretizing the value into five bins per item

(resulting in « 105 decision variables and « 4ˆ 106 constraints) and rounding a continuous

input valuation profile to the nearest discrete profile for evaluation.

The results are shown in Figure 1.11. We also report the violations in IR constraints incurred

by the LP on the test set; for L valuation profiles, this is measured by 1
Ln

řL
`“1

ř

iPN maxtuipvp`qq, 0u.

Due to the coarse discretization, the LP approach suffers significant IR violations (and as a

result yields higher revenue). We were not able to run an LP for this setting for finer discretiza-

tions in more than one week of compute time. In contrast, RegretNet yields much lower regret

and no IR violations (as the neural network satisfies IR by design), and does so in just around

nine hours. In fact, even for the larger Settings D–E, the running time of RegretNet was less

than 13 hours. This is 4 times faster than naive LP approach for the smaller setting.
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1.6 Conclusion

Neural networks have been deployed successfully for exploration in other contexts, e.g., for the

discovery of new drugs [GB+18]. We believe that there is ample opportunity for applying deep

learning in the context of economic design. We have demonstrated how standard pipelines

can re-discover and empirically surpass the analytical and computational progress in optimal

auction design that has been made over the past 30-40 years. While our approach can easily

solve problems that are orders of magnitude more complex than could previously be solved

with the standard LP-based approach, a natural next step would be to scale this approach

further to industry scale (e.g., through standardized benchmarking suites and innovations

in network architecture). We also see promise for the framework in this work in advancing

economic theory, for example in supporting or refuting conjectures and as an assistant in

guiding new economic discovery.
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Part II

Extensions of RegretNet
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Chapter 2

Deep Learning for Revenue-Optimal

Auctions with Budgets

2.1 Introduction

The design of revenue-optimal auctions in settings where bidders have private budget con-

straints is important yet poorly understood problem. Budget constraints arise when bidders

have financial constraints that prevent them from making payments as large as their value for

items. They are important in many economic settings, including spectrum auctions and land

auctions, and are an integral part of the kinds of expressiveness provided to bidders in internet

advertising [CB+15; Ash+10].

The design problem is not fully understood even for selling a single item. The technical

challenge arises because this is a multi-dimensional mechanism design problem: a bidder’s

private information is her value for an item as well as her budget. This provides an obstacle

to using Myerson’s [Mye81] characterization results. Even for selling a single item and with

two bidders, the optimal dominant-strategy incentive compatible (DSIC) design with private

budget constraints is not known. No revenue-optimal designs are known for selling two or

more items to even a single bidder.

In this paper, we build upon the RegretNet (Chapter 1), and use deep neural networks for

the automated design of optimal auctions with budget constraints. We represent an auction as
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a feed-forward neural network, and optimize its parameters to maximize expected revenue. We

need to include design constraints, namely individual rationality (IR), budget constraints (BC) and

incentive compatibility (IC).1 To the best of our knowledge, this is the first paper on automated

mechanism design for settings with private budget constraints.

We design both approximately DSIC and Bayesian Incentive Compatible (BIC) auctions.

In DSIC auctions, reporting truthfully is the optimal strategy for a bidder no matter what

the reports of others. In a BIC auction, truth-telling is the optimal strategy for a bidder in

expectation with respect to the types of others, and given that the other bidders report truthfully.

The literature has also considered two additional variations in the context of budget constraints:

conditional IC and unconditional IC [CG00]. We can support both of these within our framework.

2.1.1 Main Contributions

Our main contributions are summarized below:

• We extend the RegretNet framework (Chapter 1) to incorporate budget constraints, as well

as, handle BIC and conditional IC constraints. A new aspect is that the utility of an agent

can be unbounded in the presence of budgets (whenever an agent’s payment exceeds her

budget, her utility goes to negative infinity). To handle this, we refine the definition of

regret to filter out misreports that would lead to budget violations.

• We show that our approach can be used to design new auctions with high revenue,

including for the problem of selling multiple identical items to bidders with additive

valuations and selling multiple distinct items to bidders with unit-demand valuations. In

both cases, we consider continuous valuation distributions, which is a setting for which

the problem cannot be solved through linear programming.

• We benchmark our approach in single-item settings for which analytical solutions exist,

showing that neural networks can be used to learn essentially optimal auctions [CG00;

MV08; PV14].

1We consider hard budget constraints for bidders, which means no bidder can pay more than her budget
regardless of the bidder’s value for the allocation. The literature also considers the case of soft budget constraints,
where the bidders are allowed to gain additional funds from markets [KMR03].
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2.1.2 Related Work

The high-level approach that we follow is one of automated mechanism design (AMD) [CS02].

Early approaches to AMD involved the use of integer programs, and did not scale up to large

settings, or heuristics to search over specialized classes of mechanisms known to be IC [SL15].

In recent years, efficient algorithms have been developed for BIC design, but they do not

address problems with budget constraints or problems of DSIC design [CDW12a; CDW12b;

CDW13]

The use of machine learning for AMD was introduced by Dütting et al. [Düt+14], who

use support vector machines for learning payment rules but not allocation rules, seeking

payments that make the resulting mechanism maximally IC. Narasimhan et al. [NAP16] also

use support vector machines to learn social choice and matching rules from a restricted class

of mechanisms. Narasimhan and Parkes [NP16] develop a statistical framework for learning

assignment mechanisms without providing a computational procedure. We first propose the

use of deep neural networks for the automated design of optimal auctions in Chapter 1.

This approach, which we extend in this work, is more general, does not require specialized

characterization results, and uses off-the-shelf deep learning tools. RegretNet has inspired

a lot of follow-up work, e.g., Golowich, Narasimhan, and Parkes [GNP18], Shen, Tang, and

Zuo [STZ19], Rahme et al. [Rah+20], Rahme, Jelassi, and Weinberg [RJW20], and Curry et al.

[Cur+20].

Che and Gale [CG00] design the optimal single-item auction for a single bidder. Pai and

Vohra [PV14] design the optimal BIC auction for a single item and multiple bidders.2 Malakhov

and Vohra [MV08] design the optimal auction for a single-item setting with two bidders, but

consider a weaker, constrained form of DSIC. Che and Gale [CG98] develop a revenue ranking

of three standard single-item auctions. Maskin [Mas00] and Laffont and Robert [LR96] consider

the problem of bidders with identical, known budgets.

In regard to approximation results: Borgs et al. [Bor+05] provide a multi-unit auction for

private budget constraints with revenue that converges to the optimal, posted-price auction

2They focus on the case of independent values and budgets, but mention that they can handle positive
correlation in budget and value.
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in the limit of a large population of bidders. Bhattacharya et al. [Bha+12] propose a constant

approximation for revenue for selling multiple items to additive bidders with private budgets

(BIC) and publicly known budgets (DSIC) respectively, adopting an approach that use linear

programming relaxations. Chawla et al. [CMM11] propose a multi-item auction with a constant

approximation for revenue for bidders with identical, known budgets.

Budget constraints have been handled for the setting of allocative efficiency, with posi-

tive results for various multi-item settings, including for bidders with unit-demand valua-

tions [DLN08; Ash+10; DHW11; AB09b; DHS15].3

2.2 Problem Setup

In this section, we describe the problem setup, starting with the simpler setting of single-item

auctions.

2.2.1 Single-item auctions

There are n risk neutral bidders interested in a single indivisible good. Each bidder has a

private (unknown to other bidders) value vi P Rě0 for the item, and a private budget bi P Rě0 on

the amount she can pay. We let ti “ pvi, biq denote the type of bidder i and use t “ pt1, t2, ..., tnq

to denote a type profile. Let Ti denote the space of possible types for bidder i, and T the space

of type profiles. We assume that bidder i’s type is drawn from distribution Fi, and that Fi is

known to both the auctioneer and, in the case of BIC, the other bidders. Let F “
śn

i“1 Fi and

F́ i “
ś

j‰i Fj. Further, let v´i “ pv1, ..., vi´1, vi`1, ..., vnq denote the valuation profile without vi,

b´i “ pb1, ..., bi´1, bi`1, ..., bnq denote the budget profile without bi, and t´i “ pv´i, b´iq.

Each bidder reports (perhaps untruthfully) a value and budget. An auction pa, pq consists

of a randomized allocation rule a : T Ñ r0, 1sn and a payment rule p : T Ñ Rn
ě0. Given a reported

type profile t1 P T , aipt1q P r0, 1s denotes the probability of bidder i being allocated the item

and
řn

i“1 aipt1q ď 1, and piptq P Rě0 denotes the expected payment by bidder i.4

3The VCG mechanism is not incentive compatible for the budget-constrained case, even when modified in the
natural way to truncate valuations by a bidder’s budget.

4This is equivalent in expectation to charging each agent i a payment pipt1q{aipt1q when she wins the auction
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The utility of bidder i with type ti “ pvi, biq for a reported type profile t1 P T is the difference

between the value and payment if the payment is within the budget, and ´8 otherwise:

uipti, t1q “

$

’

&

’

%

vi ¨ aipt1q ´ pipt1q if pipt1q ď bi,

´8 if pipt1q ą bi.
(2.1)

We consider auctions pa, pq that satisfy the budget constraints (BC), i.e. charge each agent no

more than her budget:

@i P rns, t P T : piptq ď bi (BC)

An auction that satisfies these budget constraints is dominant strategy incentive compatible

(DSIC) if no bidder can strictly improve her utility by misreporting her type, i.e.5

@i P rns, t P T , t1i P Ti : uipti, pti, t´iqq ě uipti, pt1i, t´iqq. (DSIC)

The revenue from an auction is
ř

i piptq. We are interested in designing auctions that

maximize expected revenue, while satisfying BC as well as ensuring ex post individual rationality

(IR), i.e. that each bidder receives non-zero utility for participating:

@i P rns, t P T : uipti, pti, t´iqq ě 0. (IR)

We will also be interested in the design of BIC auctions because this will provide for

benchmarking against some known analytical results. In practice, DSIC auctions are more

preferred, at least when the effect on achievable revenue relative to BIC designs is small (and

there are no other robustness concerns such as those that can arise in DSIC combinatorial

auctions [AM06]) , because they are more robust— the equilibrium does not rely on common

knowledge of the type distribution or common knowledge of rationality.

For Bayesian incentive compatibility (BIC), define the interim allocation for bidder i and report

t1i as Aipt1iq “ Et´i„F́ iraipt1i, t´iqs and the interim payment as Pipt1iq “ Et´i„F́ irpipt1i, t´iqs. Given

and 0 otherwise.

5This inequality is well-defined for an auction that satisfies the budget constraints.
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this, we can define the interim utility function for a bidder with type ti and reported type t1i as:

Uipti, t1iq “

$

’

&

’

%

viAipt1iq ´Pipt1iq if Pipt1iq ď bi,

´8 if Pipt1iq ą bi.
(2.2)

An auction pa, pq satisfies interim budget constraints if

@i P rns, ti P Ti : Piptiq ď bi. (interim BC)

In addition, an auction satisfying interim budget constraints is BIC if:

@i P rns, ti, t1i P Ti : Uipti, tiq ě Uipti, t1iq (BIC)

Pai and Vohra [PV14] show that, for any BIC auction that satisfies interim budget constraints

defined here, there exists an auction with the same revenue that satisfies BIC for which the

largest payment in the support of the interim payment rule is never greater than an agent’s

reported budget.

We will also insist that auctions that are BIC satisfy the property of interim individual

rationality:

@i P rns, ti P Ti : Uipti, tiq ě 0 (interim IR)

There is also a weaker form of both DSIC and BIC, referred to as conditional incentive

compatibility [CG00]. Conditional IC assumes that bidders can only underreport their budgets,

and thus removes one direction of the incentive constraints. DSIC and BIC become, respectively,

@i P rns, t P T , t1i P Ti :

uipti, pti, t´iqq ě uipti, pt1i, t´iqq if b1i ď bi (C-DSIC)

@i P rns, ti, t1i P Ti : Uipti, tiq ě Uipti, t1iq if b1i ď bi (C-BIC)

Conditional IC is motivated by settings in which the auctioneer can require each bidder to

post a bond that is equal to her reported budget. Where this is not practical, the more typical,

unconditional IC properties are required.
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2.2.2 Multi-item auctions

We also consider a multi-item setting, with both additive and unit-demand valuations on items.

In the additive setting, there are m identical units of an item for sale, and each bidder i

has a private value vi P Rě0 for each unit of an item, and a private budget bi P Rě0 on the

payment. Here the valuation of bidder i for k units of the item is k ¨ vi.

An allocation rule a : R2n
ě0 Ñ r0, 1snm maps a type profile t1 P R2n

ě0 to a matrix of allocation

probabilities apt1q P r0, 1snm, where aijpt1q P r0, 1s denotes the probability of bidder i being

allocated the j-th unit of the item, and
ř

i aijpt1q ď 1, @j P rms. The payment rule p : R2n
ě0 Ñ Rn

ě0

defines the expected payment pipt1q for each bidder.6 The utility of a bidder is given by:

uipti, t1q “

$

’

’

’

&

’

’

’

%

m
ÿ

j“1

vijaijpt1q ´ pipptq if pipt1q ď bi,

´8 if pipt1q ą bi.

(2.3)

In the unit-demand setting, there are multiple distinct items t1, . . . , mu for sale, and each

bidder i has a private value vij P Rě0 for each item j, and a private budget bi. A bidder’s

valuation for a bundle of items T is the value of the most-valued item in the bundle: vipTq “

maxjPT vij. Let ti “ pvi1, . . . , vim, biq denote bidder i’s type. The allocation rule a : R
npm`1q
ě0 Ñ

r0, 1snm maps a type profile t1 P R
npm`1q
ě0 to the probabilities aijpt1q that each bidder i is allocated

item j probabilities, and the payment rule p : R
npm`1q
ě0 Ñ Rn

ě0 outputs the expected payments.

For revenue maximization with unit-demand bidders, it is sufficient to consider allocation

rules that allocate at most one item to each bidder. Here we require the matrix of allocation

probabilities to be doubly stochastic, i.e. to satisfy
ř

j aijpt1q ď 1, @i P rns and
ř

i aijpt1q ď 1, @j P

rms for all t1. Such a randomized allocation can be decomposed into a lottery over deterministic,

feasible assignments (the Birkhoff-von Neumann theorem [Bir46; Neu53]). The utility of a

unit-demand bidder under a doubly stochastic allocation a is again given by (2.3).

6If the payment rule p is ex post IR, for any reported type t1, there exists a set of payments Pijpt1q on each
outcome pi, jq s.t. each Pijpt1q ď vij, which are equivalent in expectation to pipt1q. These payments can be computed
by solving a linear program.
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Figure 2.1: Budgeted RegretNet: (a) Allocation rule a and (b) Payment rule p for a setting with m identical items
and n additive buyers.
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Figure 2.2: Budgeted RegretNet: (a) Allocation rule a and (b) Payment rule p for a setting with m distinct items
and n unit-demand buyers.

2.3 The Budgeted RegretNet Framework

In this section, we explain how to extend the RegretNet framework of Dütting et al. [Düt+19b],

which was developed and applied for settings without budget constraints, to a setting with

budget constraints.

We represent an auction as a feed-forward neural network, and optimize the parameters to

maximize revenue subject to regret, IR and budget constraints. While the framework of Dütting

et al. enforces DSIC by requiring that the (empirical) ex post regret for the neural network be

zero, we are able to handle more general forms of incentive compatibility by working with an

45



appropriate notion of regret. For BIC, we constrain the (empirical) interim regret of the network

to be zero; for conditional DSIC/BIC, we constrain the (empirical) conditional regret of the

network to be zero. We additionally include budget constraints.

2.3.1 Network architecture

The allocation and payment rules are represented as separate feed-forward networks, but

trained simultaneously, and connected through training loss function and constraints. The

network architectures are shown in Figure 2.1 for the additive setting and in Figure 2.2 for the

unit-demand setting.

Allocation network: The allocation rule for the additive setting takes a type profile t as

input and outputs the probability aijptq P r0, 1s of the j-th unit of the item being assigned to

each bidder i. The neural network consists of R fully-connected hidden layers, with sigmoid

activations and a fully-connected output layer. In the case of additive bidders, the output layer

computes a real-valued score sij for each bidder-item pair pi, jq and converts these scores to

allocation probabilities using a softmax function: aijptq “ esij
řn`1

k“1 eskj , where sn`1,j is an additional

“dummy score” computed for each item j. Through the inclusion of this dummy score, the

softmax ensures that
řn

i“1 aijptq ď 1 for each item j. The network can allocate multiple units to

a single bidder.

For unit-demand bidders, we require the allocation probabilities to be doubly stochastic.

For this, we modify the allocation network to generate a score sij and a score s1ij for each

bidder-item pair pi, jq, with the first set of scores normalized along the rows, and the second

set of scores normalized along the columns using softmax functions. The final allocation is an

element-wise minimum of the two sets of normalized scores, aijptq “ min

#

esij
řn`1

k“1 eskj , e
s1ij

řm`1
k“1 e

s1jk

+

,

and is guaranteed to be doubly stochastic.

Payment network: The payment rule is also defined through a feed-forward network, and

consists of T fully-connected hidden layers, with sigmoid activations and a fully-connected

output layer. Given an input type profile t, the neural network computes a payment piptq for

each bidder i. In particular, the output layer computes a score s1i P R for each bidder, and applies

the ReLU activation function to ensure that payments are non-negative: piptq “ maxts1i, 0u.
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2.3.2 Training problem

We use the following metrics to measure the degree to which an auction violates the BIC, IR

and BC constraints.

Regret: We define the expected interim regret to bidder i, for an auction with rules pa, pq, as

the maximum gain in interim utility by misreporting the bidder’s type.

rgtipa, pq “

Eti„Fi

«

max
t1iPTi

χpPipt1iqďbiq

`

Uipti, t1iq ´ Uipti, tiq
˘

ff

, (2.4)

where χA is an indicator function for whether predicate A is true. An auction is BIC if and

only if it has zero interim regret. The indicator function in the above expression ensures that the

first utility term does not go to ´8. As long as the auction also satisfies interim BC, the second

utility term is also finite for all type profiles, thus ensuring that the regret is always finite.

IR penalty: The penalty for violating IR for bidder i is given by:

irpipa, pq “ Eti„Fi rmaxt0,´Uipti, tiqsus . (2.5)

BC penalty: The penalty for violating the budget constraint for bidder i is given by:

bcpipa, pq “ Eti„Fi rmaxt0, Piptiq ´ bius . (2.6)

Further, we define the loss function as the negated expected revenue Lpa, pq “ ´Et„F
“
řn

i“1 piptq
‰

.

Let w P Rd denote the parameters of the allocation network, the induced allocation rule

denoted by aw, and w1 P Rd1 denote the parameters of the payment network, the induced

payment rule denoted by pw1 .

The design objective is to minimize the loss function over the space of network parameters,
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such that the regret, IR penalty and BC penalty is zero for each bidder:

min
wPRd,w1PRd1

Lpaw, pw1q

s.t. rgtipaw, pw1q “ 0,@i P rns

irpipaw, pw1q “ 0,@i P rns

bcpipaw, pw1q “ 0,@i P rns.

(OP1)

In practice, the loss, regret, IR penalty and BC penalty can be estimated from a sample of

type profiles S “ ttp1q, tp2q, ..., tpLqu drawn i.i.d. from F. The loss for an auction with rules pa, pq

can be estimated as pLpa, pq “ ´ 1
L
řL

`“1
řn

i“1 pi
`

tp`q
˘

.

To estimate the interim regret, for each type profile tp`q in S, we draw additional samples

S` “ tt̃p1q, . . . , t̃pKqu from F, and S1` “ tt̄p1q, . . . , t̄pK
1qu from a uniform distribution over type

space T .7 Using sample S`, we define the empirical interim utility for bidder i with type ti and

report t1i as:

pUipti, t1iq “
1
K

K
ÿ

k“1

ui

´

ti,
`

t1i, t̃pkq
´i

˘

¯

and the empirical interim payment as:

pPipt1iq “
1
K

K
ÿ

k“1

pi

´

t1i, t̃pkq
´i

¯

Then the empirical interim regret is given by:

xrgtipa, pq “
1
L

L
ÿ

`“1

max
t1PS1`

!

χ`
pPipt1iqďbp`qi

˘

¨

´

pUi
`

tp`qi , t1i
˘

´ pUi
`

tp`qi , tp`qi

˘

¯)

, (2.7)

where the sample S1` provides a set of deviating type profiles to approximate the maximum

over bidder misreports.

7The deviating types need not be sampled from the distributions of true types. We adopt a uniform sampling
scheme, and find this to be effective in our experiments.
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The IR and BC penalties can be similarly estimated as:

xirpipa, pq “
1
L

L
ÿ

`“1

max
!

0,´ pUi
`

tp`qi , tp`qi

˘

)

ybcpipa, pq “
1
L

L
ÿ

`“1

max
!

0, pPi
`

tp`qi

˘

´ bp`qi

)

.

Following RegretNet in Chapter 1, we use the Augmented Lagrangian method to solve the

resulting sample-based optimization problem:

min
wPRd,w1PRd1

pLpaw, pw1q

s.t. xrgtipa
w, pw1q “ 0,@i P rns

xirpipa
w, pw1q “ 0,@i P rns

ybcpipa
w, pw1q “ 0,@i P rns.

(OP2)

Augmented Lagrangian Solver: The solver formulates a sequence of unconstrained optimiza-

tion steps that combine the revenue, regret, IR penalty, and budget penalty terms into a single

objective, with the relative weights on the regret, IR and budget penalty terms adjusted across

iterations. More specifically, the solver constructs the following unconstrained, augmented

Lagrangian objective:

Fρpw, w1; λrgt, λirp, λbcpq

“ pLpaw, pw1q `
ÿ

iPrns

λrgt,i xrgtipa
w, pw1q `

ρ

2

ÿ

iPrns

xrgt
2
i pa

w, pw1q

`
ÿ

iPrns

λirp,i xirpipa
w, pw1q `

ρ

2

ÿ

iPrns

xirp
2
i pa

w, pw1q

`
ÿ

iPrns

λbcp,i
xbcpipa

w, pw1q `
ρ

2

ÿ

iPrns

xbcp
2
i pa

w, pw1q

where λrgt P Rn, λirp P Rn and λbcp P Rn are vectors of Lagrangian multipliers associated with

the equality constraints in (OP2), and ρ ą 0 is a fixed parameter that controls the weight on the

augmented quadratic terms.

The solver operates across multiple iterations, and updates the Lagrange multipliers based
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on the violation of the constraints in each iteration t:

´

wt`1, w1t`1
¯

P argmin
pw,w1qFρpw, w1; λt

rgt, λt
irp, λt

bcpq (2.8)

λt`1
rgt,i “ λt

rgt,i`ρ xrgti

´

awt`1
, pw1t`1

¯

,@i P rns, (2.9)

λt`1
irp,i “ λt

irp,i`ρ xirpi

´

awt`1
, pw1t`1

¯

,@i P rns, (2.10)

λt`1
bcp,i “ λt

bcp,i`ρ xbcpi

´

awt`1
, pw1t`1

¯

,@i P rns, (2.11)

where the inner optimization in (2.8) is approximately solved through multiple iterations of

the Adam solver [KB15]. Specifically, the gradient is pushed through the loss function as well

as the empirical measures of violation of IC, IR and BC.8 In our experiments, the Lagrangian

multipliers are initialized to zero.

2.3.3 Handling other kinds of IC constraints

The approach also extends to a design subject to conditional BIC, as well as DSIC and condi-

tional DSIC. For conditional BIC, we replace the regret in (OP1) with the conditional regret,

defined as:

crgtipa, pq “ Eti„Fi

«

max
t1iPTi

χ`
b1iďbi

˘

`

Ui
`

ti, t1i
˘

´ Ui
`

ti, ti
˘˘

ff

, (2.12)

and use the following estimate of the conditional interim regret in (OP2):

ycrgtipa, pq “

1
L

L
ÿ

`“1

max
t1PS1`

!

χ`
b1iďbp`qi

˘ ¨

´

pUi
`

tp`qi , t1i
˘

´ pUi
`

tp`qi , tp`qi

˘

¯)

. (2.13)

To handle DSIC and conditional DSIC, we replace the interim regret in the training problem

with the ex post regret and a conditional version of the ex post regret, respectively. The expected

ex post regret to bidder i in an auction pa, pq is defined as the maximum gain in ex post utility

8The solver handles the indicator function in the regret definition by taking its gradient to be zero.
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obtained by misreporting her type:

eprgtipa, pq “

Et„F

”

max
t1iPTi

χ`
pipt1i ,t´iqďbi

˘

`

ui
`

ti, pt1i, t´iq
˘

´ ui
`

ti, pti, t´iq
˘˘

ı

(2.14)

Similarly, the ex post IR penalty and ex post BC penalty can be defined as:

epirpipa, pq “ Et„F rmaxt0,´uipti, pti, t´iqqsus (2.15)

epbcpipa, pq “ Et„F rmaxt0, pipti, pti, t´iqq ´ bius (2.16)

To estimate the ex post regret, we use a set of deviating (misreport) samples S1` “ tt̄
p1q, . . . , t̄pK

1qu,

drawn from a uniform distribution over T :

zeprgtipa, pq “
1
L

L
ÿ

`“1

max
t1PS1`

!

χ`
pipt1i ,t

p`q
´i qďbp`qi

˘

¨

´

ui
`

tp`qi ,
`

t1i, tp`q
´i

˘˘

´ ui
`

tp`qi ,
`

tp`qi , tp`q
´i

˘˘

¯)

. (2.17)

The ex post IR and BC penalties can be estimated as:

zepirpipa, pq “
1
L

L
ÿ

`“1

max
!

0, ´ui
`

tp`qi ,
`

tp`qi , tp`q
´i

˘˘

)

(2.18)

{epbcpipa, pq “
1
L

L
ÿ

`“1

max
!

0, pi
`

tp`qi , tp`q
´i

˘

´ bp`qi

)

(2.19)

For the conditional ex post regret, we replace χ`
pipt1i ,t´iqďbi

˘ in eprgti by χ`
b1iďbi

˘. Similarly,

in the empirical version of this quantity zeprgti, we replace χ`
pipt1i ,t

p`q
´i qďbp`qi

˘ by χ`
b1iďbp`qi

˘.

2.4 Experimental Results

We present experimental results to show that we can find new auctions for settings where the

optimal design is unknown, and also recover essentially optimal DSIC and BIC auctions in a

variety of simpler settings for which analytical results are available. Since DSIC is a stronger

property than BIC, and preferred in practice, we give more focus to the automated design of

DSIC auctions.

Experimental setup. We use the TensorFlow deep learning library for experiments. We solve
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the inner optimization in the augmented Lagrangian method using the ADAM solver [KB15],

with a learning rate of 0.001 and a mini-batch size of 64. All the experiments are run on a

compute cluster with NVIDIA GPU cores.

Evaluation. We generate training and test data from different type distributions, use the

training set for fitting an auction network and evaluate performance of the learned auction on

the test set. We use the following metrics for evaluation:

Regret “ 1
n
řn

i“1
xrgtipa, pq

Conditional Regret “ 1
n
řn

i“1
ycrgtipa, pq

IR penalty “ 1
n
řn

i“1
xirpipa, pq

BC penalty “ 1
n
řn

i“1
ybcpipa, pq.

For experiments on DSIC auctions, the terms xrgti, ycrgti, xirpi and ybcpi are ex post quantities.

For experiments on BIC, these terms are interim quantities. The training and test set are large

enough to avoid issues of overfitting. The specific sample sizes and network scale are provided

in subsequent subsections.

2.4.1 Optimal DSIC auctions

We consider the design of DSIC auctions, adopting three different settings studied in the

literature:

• Setting I: There is a single item and a single bidder, with the bidder’s value v1 „ Unifr0, 1s

and budget b1 „ Unifr0, 1s. The optimal DSIC auction for this setting was derived by Che

and Gale [CG00].

• Setting II: There is a single item amd two bidders, where v1, v2 „ Uni f t1, 2, ..., 10u.

The first bidder is unconstrained while the second bidder has a budget of 4. The

optimal auction under conditional DSIC for this setting was derived by Malakhov and

Vohra [MV08].9

9In this special case, the auctioneer knows the true budget of constrained bidder but allows her to misreport
her budget. In effect, the budget of constrained bidder is publicly known.
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Property Setting Opt Budgeted RegretNet
rev rev regret irp bcp

I 0.192 0.196 0.002 (0.003) 0.002 0.001
DSIC II (C) 4.664 4.638 0.002 0.005 0.002

III – 0.709 0.002 (0.004) 0.0 0.002
IV – 0.287 0.002 (0.003) 0.0 0.0

BIC II (C) 4.847 4.788 0.0 0.0 0.0
V 0.342 0.348 0.004 (0.005) 0.001 0.0

Table 2.1: Test metrics for Budgeted RegretNet auctions. Here (C) refers to conditional IC. For continuous
valuation distributions, we also report within parenthesis the regret estimated using a larger misreport sample (i.e.
with 1000 misreports for each type profile).

Setting Misreport sample size |S1`|
100 200 400 800 1600

IV 0.0018 0.0021 0.0023 0.0026 0.0029

Table 2.2: Test regret for Budgeted RegretNet under Setting IV with misreport samples of different sizes for each
type profile.

• Setting III: There are four identical items with two additive bidders where bidder i’s

value for each item vi „ Unifr0, 1s and the budget bi „ Unifr0, 1s. There is no analytical

result.

• Setting IV: There are two items with two unit-demand bidders where bidder i’s value for

the item j, vij „ Unifr0, 1s and the budget bi „ Unifr0, 1s. There is no analytical result.

We use allocation and payment networks with two hidden layers each, and with 100 hidden

nodes in each layer. For all the experiments below, for each type profile tp`q, we randomly

generate a sample of 100 misreports S1` to evaluate the regret. We also report the regret

estimated for continuous valuation distributions using a larger misreport sample (of size 1000

or more) for each type profile.10 A summary of our results is shown in Tables 2.1 and 2.2.

For setting I, we use a training and test sample of 5000 profiles each, with the parameter ρ

in Augmented Lagrangian solver set to 0.01. Figure 2.3(a) presents plots of test revenue and

test ex post regret for the learned auction as a function of solver iterations. Figure 2.3(b)-(c)

show the allocation rule learned by the neural network, and compare this with the optimal

10For discrete valuation distributions in this paper, we find a sample of 100 misreports to be large enough to
accurately estimate the regret.
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(a) Test revenue and regret

(b) Test allocation rule (c) Optimal allocation rule

Figure 2.3: The auction learned under DSIC for Setting I with a single item and single bidder, where v1 „

Uni f r0, 1s and b1 „ Uni f r0, 1s. The solid regions in (b) and (c) depict the probability of the item being allocated
to the bidder.

rule of Che and Gale [CG00]. Not only does the learned auction yields revenue close to the

optimal auctions and incur negligible regret, but the learned allocation rule closely matches

the optimal rule. From Table 2.1, we see that the learned auction also incurs very small IR and

budget violations.

For setting II, we use a smaller training and test sample of 1000 profiles, which are large

enough for the discrete distribution considered here. We set ρ to 0.001. The optimal auction for

this setting is given by Malakhov and Vohra [MV08]. We trained neural network for conditional

DSIC. Figure 2.4(a) shows plots of the test revenue for the learned auction, as well as plots of

the test ex post regret for the learned auction under conditional DSIC constraints. The learned

auction yields revenue very close to the optimal revenue, while yielding negligible regret, IR
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violations, or budget violations. Furthermore, as seen in Figure 2.4(b)-(c), the learned allocation

rule for conditional DSIC closely matches the analytical result in Malakhov and Vohra [MV08].

For setting III, we use a training and test sample of 5000 profiles, with ρ set to 0.01. Since the

optimal auction is not provided by the theoretical literature, we compare the learned auction

rule against the optimal posted pricing auction, as well as the auction proposed by Borgs et

al. [Bor+05]. Figure 2.5 shows test revenue and ex post regret as functions of solver iterations.

In this case, the neural network is able to discover an auction with a higher revenue than the

baseline, while incurring a very small regret, as well as, very small IR and budget violations.

For setting IV, we use a training and test sample of 5000 profiles, with ρ set to 0.03. Since

there is no analytical result for this setting, we compare the learned auction rules against the

ascending auction of Ashlagi and Braverman [AB09b]. Figure 2.6 shows the test revenue and

ex post regret as functions of the number of solver iterations. The auction learned by RegretNet

has a higher revenue than the baseline, while incurring very small regret, IR, and budget

violations.

Since the regret is estimated using a sample of misreports, for this experiment, we also

evaluate the regret using misreport samples S1` of different sizes. The results are summarized

in Table 2.2. Figure 2.7 shows the test ex post regret as functions of solver iterations for different

sizes of misreport samples. As seen, even with larger number of misreport samples, the regret

is still very small, implying that the learned auction is indeed essentially IC.

2.4.2 Optimal BIC auctions

Next, we consider the automated design of BIC auctions. Here we focus on settings for which

analytical results are available. This serves to provide a validation that we are able to use

RegretNet to learn BIC designs. We are less interested in optimal BIC for new settings because

we consider DSIC of more practical interest. We consider the following settings:

• Setting II from Section 2.4.1. The optimal BIC auction for this setting was derived by

Malakhov and Vohra [MV08].

• Setting V: There is a single item and two symmetric budget constrained bidders. Each

55



bidder draws a value vi „ Unifr0, 1s and budget bi „ Unift0.22, 0.42u. The optimal

auction for this setting was derived by Pai and Vohra [PV14].

For these experiments, we use allocation and payment networks with two hidden layers

with 50 nodes each.11 A summary of the results is provided in Table 2.1. The training and

test set have 1000 type profiles each and ρ was set to 0.05. To learn the BIC auctions, we need

additional samples S` from known distribution F for each type profile tp`q, which makes the

training of RegretNet more costly than for the case of DSIC auctions.

Figure 2.8 presents the results of learning a BIC auction for setting II, providing the test

revenue and test interim regret as a function of the number of solver iterations. We also illustrate

the learned allocation rule, and compare it with the optimal allocation rule of Malakhov and

Vohra [MV08]. Not only does the auction that is derived through machine learning achieve

near-optimal revenue with essentially zero regret, IR and budget violations, but we closely

recover the design of the optimal allocation rule. Figure 2.9 shows the test revenue and interim

regret of the learned auction for setting V. Again, we are able to achieve almost-optimal revenue,

while incurring very small regret, IR, and budget violations.

2.5 Conclusion

We have used deep learning to design essentially optimal, multi-item auctions under private

budget constraints. Whereas the state-of-the-art analytical results for the design of optimal,

DSIC auctions cannot handle more than two bidders, or more than one item (to even a

single bidder), RegretNet can discover new, essentially incentive-compatible designs with high

revenue in these settings (consider Setting III and Setting IV). We also validate the approach

by demonstrating that RegretNet can recover essentially optimal designs in settings for which

optimal analytical results do exist, including the case of BIC auction design.

In the future, it will be interesting to study the robustness of the learned auctions to

perturbations in the type distributions, develop methods that allow a single network to handle

11Unlike DSIC settings, we reduce the size of neural networks in BIC settings to trade-off the cost of more
computation for estimating interim rules.
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different number of bidders or items, improve the efficiency with which we can train RegretNet

in the case of BIC design, and use our approach to estimate both upper- and lower-bounds on

the revenue from exactly IC designs. It will also be interesting to explore the effect of allowing

for correlation between value and budget and across bidders, soft budget constraints, and

budgets that depend on a bidder’s allocation. All of these seem within reach of automated

methods, but are extremely challenging to handle through theoretical analysis.
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(a) Revenue and regret as a function of solver iterations

(b) Learned allocation rule

(c) Optimal allocation rule

Figure 2.4: The auction learned under conditional DSIC for Setting II with a single item and two bidders, where
v1, v2 „ Unift1, 2, ..., 10u, bidder 1 is unconstrained, and bidder 2 has a budget of 4.
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Figure 2.5: Revenue and regret for the DSIC auction learned under Setting III with four identical items and two
additive bidders, where bidder i’s value for each item vi „ Uni f r0, 1s and bi „ Uni f r0, 1s.

Figure 2.6: Revenue and regret for the DSIC auction learned under Setting IV with two items and two unit-
demand bidders, where bidder i’s value for item j vij „ Unifr0, 1s and bi „ Unifr0, 1s.

Figure 2.7: A semi-logarithmic plot of test regret as a function of the number of iterations for different misreport
sample sizes for the DSIC auction learned under Setting IV.
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(a) Revenue and regret as a function of solver iterations

(b) Learned allocation rule

(c) Optimal allocation rule

Figure 2.8: Auction learned under BIC for Setting II with a single item and two bidders, where v1, v2 „

Unift1, 2, ..., 10u, bidder 1 is unconstrained and bidder 2 has a budget of 4.
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Figure 2.9: Revenue and regret of auction learned under BIC for Setting V with a single item and two bidders,
where v1, v2 „ Unifr0, 1s and b1, b2 „ Unift0.22, 0.42u.

61



Chapter 3

Welfare-Preserving ε-BIC to BIC

Transformation with Negligible

Revenue Loss

3.1 Introduction

How should one sell a set of goods, given conflicting desiderata of maximizing revenue

and welfare, and considering the strategic behavior of potential buyers? Classic results in

mechanism design provide answers to some extreme points of the above question. If the seller

wishes to maximize revenue and is selling a single good, then theory prescribes Myerson’s

optimal auction. If the seller wishes to maximize social welfare (and is selling any number of

goods), then theory prescribes the Vickrey-Clarke-Groves (VCG) mechanism.

But in practical applications, one often cares about both revenue and welfare. Consider,

for example, a governmental organization, which we might think of as typically trying to

maximize welfare, but can also reinvest any revenue it collects from, say, a land sale, to increase

welfare on a longer horizon. Similarly, a company, which we might think of as trying to

maximize profit, may also care about providing value to participants for the sake of increasing

future participation and, in turn, longer-term profits. Ultimately, strictly optimizing for welfare

may lead to unsustainably low revenue, while strictly optimizing for revenue may lead to an
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unsustainably low value to participants.

Indeed, in the online advertising space, there are various works exploring this trade-

off between revenue and welfare. Display advertising has focused on yield optimization

(i.e., maximizing a combination of revenue and the quality of ads shown) [Bal+14], and

work in sponsored search auctions has considered a squashing parameter that similarly

trades off revenue and quality [LP07]. For the general mechanism design problem, however,

there is a surprisingly small literature that considers both welfare and revenue together (e.g.,

Diakonikolas et al. [Dia+12]).

The reason for this theoretical gap is that optimal economic design is very challenging in

the kinds of multi-dimensional settings where we selling multiple items, for example, such as

those that arise in practice. Recognizing this there is considerable interest in adopting algo-

rithmic approaches to economic design. These include polynomial-time black-box reductions

from multi-dimensional revenue maximization to the algorithmic problem for virtual welfare

optimization e.g.[CDW12a; CDW12b; CDW13], and the application of methods from linear

programming [CS02; CS04] and machine learning [Düt+14; FNP18; Düt+19b] to automated

mechanism design.

These approaches frequently come with a limitation: the output mechanism may only be

approximately incentive compatible (IC); e.g., the black-box reductions are only approximately

IC when these algorithmic problems are solved in polynomial time, the LP approach works on

a coarsened space to reduce computational cost but achieves an approximately IC mechanism

in the full space, and the machine learning approach trains the mechanism over finite training

data that achieves approximately IC for the real type distribution.

While it is debated whether incentive compatibility may suffice, e.g., [Car12; LP12; AB19],

this does add an additional layer of unpredictability to the performance of a designed mech-

anism. First, the fact that an agent can gain only a small amount from deviating does not

preclude strategic behavior—perhaps the agent can easily identify a useful deviation, for

example through repeated interactions, that reliably provides increased profit. This can be a

problem when strategic responses lead to an unraveling of the desired economic properties of

the mechanism (we provide such an example in this paper). The possibility of strategic reports
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by participants has additional consequences as well, for example making it more challenging

for a designer to confidently measure ex-post welfare after outcomes are realized.

For the above reasons, there is considerable interest in methods to transform an ε-Bayesian

incentive compatible (ε-BIC) mechanism to an exactly BIC mechanism [DW12; CZ17; RW18].

In this paper we alslo go beyond ε-BIC mechanisms, and also consider ε-expected ex-post IC

(ε-EEIC) mechanisms [Düt+14], which is also the output of RegretNet (Chapter 1). The main

question we want to answer in this paper is:

Given an ε-BIC mechanism, is there an exact BIC mechanism that maintains social welfare
and achieves negligible revenue loss, compared with the original mechanism? If so, can we
find the BIC mechanism efficiently?

Model and Notation

We consider a general mechanism design setting with a set of n agents N “ t1, . . . , nu. Each

agent i has a private type ti. We denote the entire type profile as t “ pt1, . . . , tnq, which is drawn

from a joint distribution F . Let Fi be the marginal distribution of agent i and Ti be the support

of Fi. Let t´i be the joint type profile of the other agents, F´i be the associated marginal type

distribution. Let T “ T1 ˆ ¨ ¨ ¨ ˆ Tn and T´i be the support of F and F´i, respectively. In this

setting, there is a set of feasible outcomes denoted by O, typically an allocation of items to

agents. Later in the paper, we sometimes also use “outcome” to refer to the output of the

mechanism, namely the allocation together with the payments, when this is clear from the

context.

We focus on the discrete type setting, i.e., Ti is a finite set containing mi possible types,

i.e., |Ti| “ mi. Let tpjqi denote the jth possible type of agent i, where j P rmis. For all i and

ti, vi : pti, oq Ñ Rě0 is a valuation that maps a type ti and outcome o to a non-negative real

number. A direct revelation mechanism M “ px, pq is a pair of allocation rule xi : T Ñ ∆pOq,

possibly randomized, and expected payment rule pi : T Ñ Rě0. We slightly abuse notation, and

also use vi to define the expected value of bidder i for mechanismM, with the expectation

taken with respect to the randomization used by the mechanism, that is

@i,pt P T , vipti, xpptqq “ Eo„xpptqrvipti, oqs, (3.1)
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for true type ti and reported type profile pt. When the reported types are pt “ ppt1, . . . ,ptnq, the

output of mechanismM for agent i is denoted asMipptq “ pxipptq, pipptqq. We define the utility

of agent i with true type ti and a reported type pti given the reported type profile pt´i of other

agents as a quasilinear function,

uipti,Mpptqq “ vipti, xpptqq ´ pipptq. (3.2)

For a multi-agent setting, it will be useful to also define the interim rules.

Definition 3.1 (Interim Rules of a Mechanism). For a mechanismM with allocation rule x and

payment rule p, the interim allocation rule X and payment rule P are defined as, @i, ti P Ti, Xiptiq “

Et´iPF´irxipti; t´iqs, Piptiq “ Et´iPF´irpipti; t´iqs.

In this paper, we assume we have oracle access to the interim quantities of mechanismM.

Assumption 3.1 (Oracle Access to Interim Quantities). For any mechanismM, given any type

profile t “ pt1, . . . , tnq, we receive the interim allocation rule Xiptiq and payments Piptiq, for all i, ti.

Moreover, we define the menu of a mechanismM in the following way.

Definition 3.2 (Menu). For a mechanismM, the menu of bidder i is the set tMiptqutPT . The menu

size of agent i is denoted as |Mi|.

In mechanism design, there is a focus on designing incentive compatible mechanisms, so that

truthful reporting of types is an equilbrium. This is without loss of generality by the revelation

principle. It has also been useful to work with approximate-IC mechanisms, and these have

been studied in various papers, e.g. [DW12; CZ17; RW18; Cai+19; Düt+14; Düt+19b; FNP18;

BSV19; Lah+18; FSS19], and gained a lot of attention.

In this paper, we focus on two definitions of approximate incentive compatibility, ε-BIC and

ε-expected ex post incentive compatible (ε-EEIC) defined in the following. See Appendix B.4

for more different versions of approximately IC.

Definition 3.3 (ε-BIC Mechanism). A mechanismM is called ε-BIC iff for all i, ti,

Et´i„F´iruipti,Mptqqs ě max
ptiPTi

Et´i„F´iruipti,Mppti; t´iqqs ´ ε
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Definition 3.4 (ε-expected ex post IC (ε-EEIC) Mechanism [Düt+14]). A mechanismM is ε-EEIC

if and only if for all i, Et

”

max
ptiPTi

puipti,Mptqq ´ uipti,Mppti; t´iqqq
ı

ď ε.

A mechanismM is ε-EEIC iff no agent can gain more than ε ex post regret, in expectation

over all type profiles t P T (where ex post regret is the amount by which an agent’s utility can

be improved by misreporting to some pti given knowledge of t, instead of reporting its true type

ti). A 0-EEIC mechanism is strictly DSIC.1 We can also consider an interim version of ε-EEIC,

termed as ε-expected interim IC (ε-EIIC), defined as

Eti„Fi

«

max
t1iPTi

Et´i„F´i ruipti,Mpti; t´iqqs

ff

ě Eti„Fi

«

max
t1iPTi

Et´i„F´i

“

uipti,Mpt1i; t´iqq
‰

ff

´ ε

All our results for ε-EEIC to BIC transformation hold for ε-EIIC mechanism. Indeed, we prove

any ε-EEIC mechanism is ε-EIIC in Lemma B.1 in Appendix.

Another important property of the mechanism design is individual rationality (IR), where

we define two standard versions of IR (ex-post/interim IR) in Appendix B.3. The transformation

from ε-BIC/ε-EEIC to BIC mechanisms, proposed in this paper, preserves the individual

rationality, regardless of interim or ex-post implementation. In other words, if the original

ε-BIC/ε-EEIC mechanism is interim/ex-post IR, the mechanism achieved after transformation

is still interim/ex-post IR, respectively.

For a mechanism M (even an approximate IC mechanism), let RMpFq and WMpFq

represent the expected revenue and social welfare, respectively, of the mechanism when agents’

types are sampled from F and they playM truthfully.

Definition 3.5 (Expected Social Welfare and Revenue). For a (approximately IC) mechanism

M “ px, pq with agents’ types drawn from distribution F , the expected revenue is defined as RMpFq “

Et„F r
řn

i“1 piptqs, and the expected social welfare is defined as WMpFq “ Et„F r
řn

i“1 vipti, xptqqs.

In this paper, we focus on welfare-preserving transform that provides negligible revenue

loss, defined in the following,

1For discrete type settings, 0-EEIC is exactly DSIC. For the continuous type case, a 0-EEIC mechanism is strictly
DSIC up to zero measure events.
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Definition 3.6. Given an ε-BIC mechanismM over type distribution F , a welfare-preserving transform

that provides negligible revenue loss outputs a mechanism M1 such that, WM
1

pFq ě WMpFq and

RM
1

pFq ě RMpFq ´ rpεq, where rpεq Ñ 0 if ε Ñ 0.

Previous ε-BIC to BIC transformations

There are existing algorithms for transforming any ε-BIC mechanism to an exactly BIC mecha-

nism with only negligible revenue loss [DW12; CZ17; RW18; Cai+19]. The central tools and

reductions in these papers build upon the method of replica-surrogate matching [HL10; HKM11;

BH11]. Here we briefly introduce replica-surrogate matching and its application to an ε-BIC to

BIC transformation.

Replica-surrogate matching. For each agent i, construct a bipartite graph Gi “ pRi Y Si, Eq.

The vertices in Ri are called replicas, which are types sampled i.i.d. from the type distribution

of agent i, Fi. The nodes in Si are called surrogates, and also sampled from Fi. In particular,

the true type ti is added in Ri. There is an edge between each replica and each surrogate. The

weight of the edge between a replica rpjqi and a surrogate spkqi is induced by the mechanism, and

defined as

wipr
pjq
i , spkqq “ Et´iPF´i

”

vipr
pjq
i , xpspkqi , t´iqq

ı

´ p1´ ηq ¨ Et´iPF´i

”

pips
pkq
i , t´iq

ı

. (3.3)

The replica-surrogate matching computes the maximum weight matching in Gi.

ε-BIC to BIC transformation by Replica-Surrogate Matching [DW12]. We briefly describe

this transformation, deferring the details to Appendix B.1. Given a mechanism M “ px, pq,

this transformation constructs a bipartite graph between replicas (include the true type ti)

and surrogates, as described above. The approach then runs VCG matching to compute

the maximum weighted matching for this bipartite graph, and charges each agent its VCG

payment.For unmatched replicas in the VCG matching, the method randomly matches a

surrogate. LetM1 “ px, p1´ ηqpq be the modified mechanism. If the true type ti is matched to

a surrogate si, then agent i uses si to compete inM1. The outcome ofM1 is xpsq, given matched

surrogate profile s, and the payment of agent i (matched in VCG matching) is p1´ ηqpipsq

plus the VCG payment from the VCG matching, where η is the parameter in replica-surrogate
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matching . If ti is not matched in the VCG matching, the agent gets nothing and pay zero.

The revenue loss of the replica-surrogate matching mechanism relative to the orginal

mechanismM is at most ηRevpMq `O
´

nε
η

¯

, which has both a multiplicative and an additive

loss term [DW12; CZ17; RW18; Cai+19]. Moreover, the transformation does not preserve

welfare. Indeed, the replica-surrogate matching can achieve a welfare loss, which is bounded

by O
´

p1´ηqε
η

¯

.

The black-box reduction proposed in Bei and Huang [BH11] is a special case of this

replica-surrogate matching method, where the weight of bipartite graph only depends on the

valuations and not the prices (η “ 1 in Eq. (3.3)), and the replicas and surrogates are both Ti (no

sampling for replicas and surrogates). For this reason, the transformation method described

there can preserve social welfare but can provide arbitrarily bad revenue (see Example 3.1).

Concurrently and independently, Cai et al. [Cai+19] propose a polynomial time algorithm

to transform any ε-BIC mechanism to an exactly BIC mechanism, with only sample access

to the type distribution and query access to the original ε-BIC mechanism. Their technique

builds on the replica-surrogate matching mechanism [DW12], and [Dug+17]2, by extending

replica-surrogate matching to handle negative weights in the graph. Their approach cannot

preserve social welfare. In this work, we focus on the case that we have oracle access to the

interim quantities of the original ε-BIC mechanism, following the setting proposed in e.g.,[HL10;

HKM11; BH11; DW12; RW18]. How to generalize our approach to the setting that we only

have sample access to the type distribution and get a polynomial-time transformation will be

an interesting future work.

Our Contributions

We first state the main result of the paper, which provides a welfare-preserving transform from

approximate BIC to exact BIC with negligible revenue loss.

Main Theorem 3.1 (Theorem 3.8). With n ě 1 agents and independent private types, and an ε-BIC

2Dughmi et al. [Dug+17] propose a general transformation from any black-box algorithm A to a BIC mechanism
that only incurs negligible loss of welfare, with only polynomial number queries to A, by using Bernoulli factory
techniques.
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and IR mechanismM that achieves W expected social welfare and R expected revenue, there exists a

BIC and IR mechanismM1 that achieves at least W social welfare and R´
řn

i“1 |Ti|ε revenue. Given

an oracle access to the interim quantities ofM, the running time of the transformation fromM toM1

is at most polyp
ř

i |Ti|q.

The transformation works directly on the type graph of each agent, and it is this that allows

us to maintain social welfare— indeed, we may even improve social welfare in our transforma-

tion. In contrast, the transformation from Bei and Huang [BH11] can incur unbounded revenue

loss (see Example 3.1, it loses all revenue), and existing approaches with negligible revenue

loss can lose social welfare (see Example 3.1).

Compared with Bei and Huang [BH11], the transform described here preserves welfare as

well as providing negligible revenue loss. Compared to approx-BIC to exact-BIC transforma-

tions that have focused on revenue [DW12; CZ17; RW18], these existing transformations may

incur welfare loss and incur both a multiplicative and an additive-loss in revenue, while our

revenue loss is additive. Choosing η “
?

ε, the revenue loss of existing transforms is at most
?

εRevpMq `Opn
?

εq. In the case that the original revenue, RevpMq, is order-wise smaller than

the number of types, i.e., RevpMq “ op
ř

i |Ti|q, the existing transforms provide a better revenue

bound (at some cost of welfare loss). But when the revenue is relatively larger than the number

of types, i.e., RevpMq “ Ωp
ř

i |Ti|q, our transformation can achieve strictly better revenue than

these earlier approaches, as well as preserving welfare.

Before describing our techniques, we illustrate the comparision of these properties through

a simple, single agent, two outcome example in Example 3.1. We show that even for the case

that RevpMq “ op
ř

i |Ti|q, our transformation strictly outperforms existing transforms w.r.t

revenue loss, in some cases.

Example 3.1. Consider a single agent with m types, T “ ttp1q, ¨ ¨ ¨ , tpmqu, where the type distribution

is uniform. Suppose there are two outcomes, the agent with type tpjqpj “ 1, . . . , m´ 1q values outcome

1 at 1 and values outcome 2 at 0. The agent with type tpmq values outcome 1 at 1` ε and outcome 2 at
?

m. The mechanismM we consider is: if the agent reports type tpjq, j P rm´ 1s,M gives outcome 1

to the agent with a price of 1, and if the agent reports type tpmq,M gives outcome 2 to the agent with a
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price of
?

m. M is ε-BIC, because the agent with type tpmq has a regret ε. The expected revenue achieved

byM is 1`
?

m´1
m . In addition,M maximizes social welfare, 1`

?
m´1
m .

Our transformation decreases the payment of type tpmq by ε for a loss of ε
m revenue and preserves the

social welfare.

The transformation by Bei and Huang [BH11] preserves the social welfare, however, the VCG

payment (envy-free prices) is 0 for each type. Therefore, Bei and Huang [BH11]’s approach loses all

revenue.

Moreover, the approaches by replica-surrogate matching (with negligible revenue loss) will lose at least

ε
m `

ε?
m´1 revenue, which is about p

?
m` 1q times larger than the revenue loss of our transformation.

We argue this claim by a case analysis,

• If η ě ε?
m´1 , the VCG matching is the identical matching and the VCG payment is 0 for each

type. In total, the agent loses at least η ¨
?

m`m´1
m ě ε

m `
ε?

m´1 expected revenue.

• If η ă ε?
m´1 , the agent with type tpmq will be assigned outcome 1 (tpmq is matched to some

tpjq, j P rm´ 1s, in VCG matching) and the VCG payment is η. Thus, type tpmq loses at least
?

m´ p1´ ηq ´ η “
?

m´ 1 revenue. For any type tpjq, j P rm´ 1s, if tpjq is matched in VCG

matching, the VCG payment is 0, since it will be matched to another type tpkq, k P rm´ 1s. Each

type tpjq, j P rm´ 1s loses at least η revenue. Overall the agent loses at least
?

m´1
m expected

revenue. In addition, since the type tpmq is assigned outcome 1, we lose at least
?

m´1´ε
m expected

social welfare.

In any case, there is a chance that the type is not matched, then it reduces the social welfare strictly.

We also work with the approximate IC concept of ε-expected ex-post IC (ε-EEIC). This is

motivated by work on the use of machine learning to achieve approximately IC mechanisms

for multi-dimensional settings. EEIC is a smoother metric, and can be minimized through

standard machine learning pipeline, such as SVM [Düt+14] and deep learning with an SGD

solver [FNP18; Düt+19b]. In particular, ε-EEIC has been leveraged within the RegretNet

framework [Düt+19b; FNP18]. A concern with the ε-EEIC metric, relative to ε-BIC, is that it

differs in only guaranteeing at most ε gain in expectation over type profiles, with no guarantee for
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any particular type (in general, it is incomparable in strength from ε-BIC because at the same

time, ε-EEIC strengthens ε-BIC in working with ex post regret rather than interim regret).

Our second main result shows how to transform an approximate, ε-expected ex-post IC

(ε-EEIC) mechanism to a BIC mechanism.

Main Theorem 3.2 (Informal Theorem 3.7 and Theorem 3.8). For multiple agents with independent

uniform type distribution, our ε-BIC to BIC transformation can be applied for ε-EEIC mechanism and

all results in Informal Main Theorem 3.1 hold here. For a non-uniform type distribution, we show an

impossibility result for a ε-EEIC to BIC, welfare-preserving transformation with only negligible revenue

loss, even for the single agent case.

Moreover, we also argue that our revenue loss bounds are tight given the requirement to

maintain social welfare. This holds for both ε-BIC mechanisms and ε-EEIC mechanisms for

multiple agents with independent uniform type distribution, summarized in the following

theorem.

Main Theorem 3.3 (Informal Theorem 3.4 and Theorem 3.9). There exists an ε-BIC/ε-EEIC

and IR mechanism for n ě 1 agents with independent uniform type distribution, for which any

welfare-preserving transformation must suffer at least Ωp
ř

i |Ti|εq revenue loss.

Finally, we show the application of our transformation to Automated Mechanism Design in

Section 3.5, where we apply our transformation to linear-programming based and machine

learning based approaches to maximize a linear combination of expected revenue and social

welfare as follows,

µλpM,Fq “ p1´ λqRMpFq ` λWMpFq,

for some λ P r0, 1s and type distribution F . We summarize our results for the application of

our transformation to LP-based and machine learning based approaches to AMD informally in

the following theorem.

Main Theorem 3.4 (Informal Theorem 3.12 and Theorem 3.13). For n agents with independent

type distribution ˆn
i“1Fi on T “ T1 ˆ ¨ ¨ ¨ ˆ Tn and an α-approximation LP algorithm ALG to output
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an ε-BIC (ε-EEIC) and IR mechanism M on F with µλpM,Fq ě αOPT, there exists a BIC and IR

mechanism M1, s.t., µλpM1,Fq ě αOPT´ p1´ λq
řn

i“1 |Ti|ε. Given oracle access to the interim

quantities ofM, the running time to output the mechanismM1 is at most polyp
ř

i“1 |Ti|, rtALGpxqq,

where rtALGp¨q is the running time of ALG and x is the bit complexity of the input. Similar results hold

for a machine learning based approach, in a PAC learning manner.

Our Techniques

Instead of constructing a bipartite replica-surrogate graph, our transformation makes use of a

directed, weighted type graph, one for each agent. For simplicity of exposition, we take the

single agent with uniform type distribution case as an example. Given an ε-BIC mechanism,

M, we construct a graph G “ pT , Eq, where each node represents a possible type of the agent

and there is an edge from node tpjq to tpkq if the output of the mechanism for type tpkq is weakly

preferred by the agent for true type tpjq inM, i.e. uptpjq,Mptpkqqq ě uptpjq,Mptpjqqq. The weight

wjk of edge ptpjq, tpkqq is defined as the regret of type tpjq by not misreporting tpkq, i.e.,

wjk “ uptpjq,Mptpkqqq ´ uptpjq,Mεptpjqqq. (3.4)

Our transformation then iterates over the following two steps, constructing a transformed

mechanism from the original mechanism. We briefly introduce the two steps here and defer to

Figure 3.2 for detailed description.

Step 1. If there is a cycle C in the type graph with at least one positive-weight edge, then

all types in this cycle weakly prefer their descendant in the cycle and one or more strictly

prefers their descendant. In this case, we “rotate" the allocation and payment of types against

the direction of the cycle, to let each type receive a weakly better outcome compared with its

current outcome. We repeat Step 1 until all cycles in the type graph are removed.

Step 2. We pick a source node, if any, with a positive-weight outgoing edge (and thus

regret for truthful reporting). We decrease the payment made by this source node, as well as

decreasing the payment made by each one of its ancestors by the same amount, until we create

a new edge in the type graph with weight zero, such that the modification to payments is

about to increase regret for some type. If we create a cycle, we move to Step 1. Otherwise, we
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repeat Step 2 until there are no source nodes with positive-weight, outgoing edges.

The algorithm works on the type graph induced by the original, approximately IC mech-

anism, M, and directly modifies the mechanism for each type, to make the mechanism IC.

This allows the transformation can preserve welfare and provides negligible revenue loss. Step

2 has no effect on welfare, since it only changes (interim) payment for each type. Step 1 is

designed to remove cycles created in Step 2 so that we can run Step 2, while preserving welfare

simultaneously. Both steps reduce the total weight of the type graph, which is equivalent to

reduce the regret in the mechanism to make it IC. We illustrate how our transformation works

in Fig. 3.1, in high level. For example, in Example 3.1, there is no cycle in the type graph. We

only need to run Step 2, that is reduce the payment of type tpmq by ε to make the approximately

IC mechanism IC.

For a single agent with non-uniform type distribution, to handle the unbalanced density

probability of each type, we redefine the type graph, where the weight of the edge in type

graph is weighted by the product of the probability of the two nodes that are incident to an

edge. We propose a new Step 1 by introducing fractional rotation, such that for each cycle in

the type graph, we rotate the allocation and payment with a fraction for any type tpjq in the

cycle. By carefully choosing the fraction for each type in the cycle, we can argue that our

transformation preserve welfare and provides negligible revenue loss.

For the multi-agent setting, we reduce it to the single-agent case. In particular, we build a

type graph for each agent induced by the interim rules (see more details in Appendix B.4.6

for construction of the type graph). Suppose we have oracle access to the interim quantities

(Assumption 3.1) of original mechanism, we can build the type graph of each agent i in

polyp|Ti|q time.3 We then apply our transformation for each type graph of agent i, induced

by the interim rules. This is analogous to the spirit of ε-BIC to BIC transformation by replica-

surrogate matching, as they also define the weights between replicas and surrogates by

interim rules and they only need to run the replica-surrogate matching for the reported

type of each agent. The existing approaches use the sampling technique in replica-surrogate

3If we only have oracle access to the ex-post quantities, we need at least polyp
ś

j‰i |Tj|q time to build the type
graph of agent i.
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tp2q
tp3qtp1q

tplq

tp1q

tp2q

Step 1

Step 2Update the graph
Update the graph

Type graph G “ pT , Eq

tp1q

The ancestors of tp1q

t1

Figure 3.1: Visualization of the transformation for a single agent with a uniform type distribution: we start from
a type graph GpT , Eq, where each edge ptp1q, tp2qq represents the agent weakly prefers the allocation and payment
of type tp2q rather than his true type tp1q. The weight of each edge is denoted in Eq. (3.4). In the graph, we use
solid lines to represent the positive-weight edges, and dashed lines to represent zero-weight edges. We first find a
shortest cycle, and rotate the allocation and payment along the cycle and update the graph (Step 1). We keep doing
Step 1 to remove all cycles. Then we pick a source node tp1q, and decrease the payment of type tp1q and all the
ancestors of tp1q until we reduce the weight of one outgoing edge from tp1q to zero or we create a new zero-weight
edge from t1 to tp1q or one of the ancestors of tp1q (Step 2).

matching to make the distribution of reported type of each agent is equal to the distribution

of true type. However, in our transformation, both Step 1 and Step 2 don’t change the type

distribution so that our transformation guarantees this property for free. Then we can apply

our transformation for each type graph separately. The new challenge in our transformation

is feasibility, i.e., establishing consistency of the agent-wise rotations to interim quantities.

We show the transformation for each type graph guarantees the feasibility of the mechanism

by appeal to Border’s lemma [Bor91]. Our transformation can be directly applied to ε-EEIC

mechanism, in the case that each agent has an independent uniform type distribution.
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Further related work

Other work has needed to transform an infeasible, but IC mechanism into a feasible and IC

mechanism. In particular, Narasimhan and Parkes [NP16] use a method from Hashimoto

[Has18] to correct for feasibility violations in assignment mechanisms that result from statistical

machine learning, while preserving strategy-proofness.

3.2 Warm-up: Single agent with Uniform Type Distribution

In this section, we consider the case of a single agent and a uniformly distributed type

distribution F , i.e. @j P rms, f ptpjqq “ 1
m . Even for this simple case, the proof is non-trivial.

Moreover, the technique for this simple case can be extended to handle more intricate cases.

The main result for a single agent and a uniform type distribution is Theorem 3.1, which makes

use of a constructive proof to modify a ε-EEIC/ε-BIC mechanism to a BIC mechanism.

An interesting observation is that ε-EEIC is mε-BIC for uniform type distribution, which in-

dicates that transforming ε-EEIC may incur a worse revenue loss bound. However, Theorem 3.1

shows we can achieve the exactly same revenue loss bound for both IC definitions.

Theorem 3.1. Consider a single agent, with m different types T “
 

tp1q, tp2q, ¨ ¨ ¨ , tpmq
(

, and a uniform

type distribution F . Given an ε-EEIC/ε-BIC and IR mechanismM, which achieves W expected social

welfare and R expected revenue, there exists an BIC and IR mechanismM1 that achieves at least W

expected social welfare and R´mε revenue. Given an oracle access to M, the running time of the

transformation fromM toM1 is at most polyp|T |q.

Proof Sketch. We construct a weighted directed graph G “ pT , Eq induced by mechanismM,

following the approach shown in Section 3.1. We apply the iterations of Step 1 and Step 2 (see

Fig. 3.2), to reduce the total weight of edges in E to zero.

Firstly, we show the transformation maintains IR, since neither Step 1 nor Step 2 reduces

utility. We then argue that the transformation in Fig. 3.2 will reduce the total weight of the

graph to zero with no loss of social welfare, and incur at most mε revenue loss. To show this,

we prove the following two auxiliary claims in Appendix B.4.1 and B.4.2, respectively.
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Step 1 (Rotation step). Given the graph G induced byM “ px, pq, find the shortest cycle C in
G that contains at least one edge with positive weight. Without loss of generality, we represent
C “

 

tp1q, tp2q, ¨ ¨ ¨ , tplq
(

. Then rotate the allocation and payment rules for these nodes in cycle
C. Now we slightly abuse the notation of subscripts, s.t. tpl`1q “ tp1q. Specifically, the
allocation and payment rules for each tpjq P C, x1ptpjqq “ xptpj`1qq, p1ptpjqq “ pptpj`1qq. For other
nodes, we keep the allocation and payment rules, i.e. @j R rls, x1ptpjqq “ xptpjqq, p1ptpjqq “ pptpjqq.
Then we update the mechanismM by adopting allocation and payment rules x1, p1 to form a
new mechanismM1, and update the graph G (We still use G to represent the updated graph
for notation simplicity). If there are no cycles in G that contain at least one positive-weight-
edge, move to Step 2. Otherwise, we repeat Step 1.
Step 2 (Payment reducing step). Given the current updated graph G and mechanismM1,
pick up a source node t, i.e., a node with no incoming positive-weight edges. Let outgoing
edges with positive weights associated with node t be a set of Et, and let εt be the minimum
non-negative regret of type t, i.e.

εt “ min
tpjq:pt,tpjqqPEt

”

upt,M1ptpjqqq ´ upt,M1ptqq
ı

(3.5)

Consider the following set of nodes St Ď T , such that St “ ttuYtt1
ˇ

ˇt1 P T is the ancestor of tu.
The weight zero edge is also counted as a directed edge. Denote εt as

εt “ min
t1RSt,t̄PSt

“

upt1,M1pt1qq ´ upt1,M1pt̄qq
‰

(3.6)

Then we decrease the expected payment of all t̄ P St by mintεt, εtu. This process will only
create new edges with weight zero. If we create a new cycle with at least one edge with
positive weight in E, we move to Step 1. Otherwise, we repeat Step 2.

Figure 3.2: ε-BIC/ε-EEIC to BIC transformation for single agent with uniform type distribution

Claim 3.2. Each Step 1 achieves the same revenue and incurs no loss of social welfare, and reduces the

total weight of the graph by at least the weights of cycle C.

Claim 3.3. Each Step 2 can only create new edges with zero weight, and does not decrease social welfare.

Each Step 2 will reduce the weight of each positive-weight, outgoing edge associated with t by mintεt, εtu,

where ε̄t and εt are defined in Eq. (3.5) and Eq. (3.6) respectively.

Given the above two claims, we argue our transformation incurs no loss of social welfare.

The transformation only loses revenue at Step 2, for each source node t, we decrease at most

m mintεt, εtu payments over all the types4. In this transformation, after each Step 1 or Step 2, the

4Actually, we can get a slightly tighter bound. Since no cycle exists in the type graph after Step 1, there is at
least one node is not the ancestor of t. Therefore the revenue decrease is bounded by pm´ 1qmintεt, εtu, actually.
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weight of the outgoing edge of each node t is still bounded by maxj
 

upt,Mptpjqqq ´ upt,Mptqq
(

.

This is because Step 1 does not create new outcome (allocation and payment) and Step 2 will

not increase the weight of each edge. Therefore, in Step 2, we decrease payments by at

most m maxj
 

upt,Mptpjqqq ´ upt,Mptqq
(

in order to reduce the weights of all outgoing edges

associated with t to zero. Therefore, the total revenue loss in expectation is

ÿ

tPT

1
m
¨m max

j

´

upt,Mptpjqqq ´ upt,Mptqq
¯

ď mε,

where the inequality is because of the definition of ε-BIC/ε-EEIC mechanism.

Running time. At each Step 1, we strictly reduce the weight of one edge with positive

weight to 0 in the graph. In total, there are at most |T |2 edges. Thus, the total running time is

ployp|T |, εq.

3.2.1 Lower Bound on Revenue Loss

In our transformation shown in Figure 3.2, the revenue loss is bounded by mε. The following

theorem shows that this revenue loss bound is tight, up to a constant factor, while insisting on

maintaining social welfare.

Theorem 3.4. There exists an ε-BIC (ε-EEIC) and IR mechanismM for a single agent, for which any

ε-BIC and IR to BIC and IR transformation (without loss of social welfare) must suffer at least Ωpmεq

revenue loss.

Proof. Consider a single agent with m types, T “ ttp1q, ¨ ¨ ¨ , tpmqu and f ptpjqq “ 1{m,@j. There

are m possible outcomes. The agent with type tp1q values outcome 1 at ε and the other outcomes

at 0. For any type tpjq, j ě 2, the agent with type tpjq values outcome j´ 1 at jε, outcome j

at jε, and the other outcomes at 0. The original mechanism is: if the agent reports type tpjq,

gives the outcome j to the agent and charges jε. There is a ε regret to an agent with type tpj`1q

for not reporting type tpjq, thus the mechanism is ε-BIC. Since this ε-BIC mechanism already

maximizes social welfare, we cannot change the allocation in the transformation. Thus, we

can only change the payment of each type to reduce the regret. Consider the sink node tp1q, to

reduce the regret of the agent with type tp2q for not reporting tp1q, we can increase the payment
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of type tp1q or decrease the payment of type tp2q. However, increasing the payment of type tp1q

breaks IR, then we can only decrease the payment of tp2q. To reduce the regret between tp2q to

tp1q, we need to decrease the payment of tp2q at least by ε. After this step, the regret of type tp3q

for not reporting tp2q will be at least 2ε and tp2q will be the new sink node. Similarly, tp3q needs

to decrease at least 2ε payment (if tp2q increase the payment, it will envy the output of tp1q

again). So on and so forth, and in total, the revenue loss is at least ε`2ε`¨¨¨`pm´1qε
m “

pm´1qε
2 .

3.2.2 Tighter Bound of Revenue Loss for Settings with Finite Menus

In some settings, the total number of possible types of an agent may be very large, and yet

the menu size can remain relatively small. In particular, suppose that a mechanismM has a

small number of outputs, i.e., |M| “ C and C ! m, where m is the number of types and C is

the menu size. Given this, we can provide a tighter bound on revenue loss for this setting. See

Appendix B.4.3 for the complete proof.

Theorem 3.5. Consider a single agent with m different types T “ ttp1q, tp2q, ¨ ¨ ¨ , tpmqu, sampled from

a uniform type distribution F . Given an ε-BIC mechanimM with C different menus (C ! m) that

achieves S expected social welfare and R revenue, there exists an BIC mechanismM1 that achieves at

least S social welfare and R´ Cε revenue.

3.3 Single Agent with General Type Distribution

In this section, we consider a setting with a single agent that has a non-uniform type distribution.

A naive idea is that we can “divide” a type with a larger probability to several copies of the

same type, each with equal probability, and then apply our proof of Theorem 3.1 to get a

BIC mechanism. However, this would result in a weak bound on the revenue loss, since we

would divide the m types into multiple, small pieces. This section is divided into two parts.

First we show our transformation for an ε-BIC mechanism in this setting. Second, we show an

impossibility result for an ε-EEIC mechanism, that is, without loss of welfare, no transformation

can achieve negligible revenue loss.
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3.3.1 ε-BIC to BIC Transformation

We propose a novel approach for a construction for the case of a single agent with a non-

uniform type distribution. The proof is built upon Theorem 3.1, however, there is a technical

difficulty to directly apply the same approach for this non-uniform type distribution case. Since

each type has a different probability, we cannot rotate the allocation and payment in the same

way as in Step 1 in the proof of Theorem 3.1.

We instead redefine the type graph G “ pT , Eq, where the weight of the edge is now

weighted by the product of the probability of the two nodes that are incident to an edge. We

also modify the original rotation step shown in Fig. 3.2 in Appendix B.4.4: for each cycle in the

type graph, we rotate the allocation and payment with the fraction of f ptpkqq
f ptpjqq for any type tpjq in

the cycle, where f ptpkqq is the smallest type probability of the types in the cycle. This step is

termed as "fractional rotation step." We summarize the results in Theorem 3.6 and show the

proof in Appendix B.4.4.

Theorem 3.6. Consider a single agent with m different types, T “
 

tp1q, tp2q, ¨ ¨ ¨ , tpmq
(

drawn from

a general type distribution F . Given an ε-BIC and IR mechanimM that achieves W expected social

welfare and R expected revenue, there exists a BIC and IR mechanismM1 that achieves at least W social

welfare and R´mε revenue.

3.3.2 Impossibility Result for ε-EEIC Transformation

As mentioned above, given any ε-BIC for single agent with general type distribution, we can

always transform to an exactly BIC mechanism, which incurs no loss of social welfare and

negligible loss of revenue. However, the same claim doesn’t hold for ε-EEIC, and Theorem 3.7

shows that, without loss of social welfare, no transformation can achieve negligible revenue

loss. The complete proof of this result is provided in Appendix B.4.5.

Theorem 3.7. There exists a single agent with a non-uniform type distribution, and an ε-EEIC and

IR mechanism, for which any IC transformation (without loss of social welfare and IR) cannot achieve

negligible revenue loss.

79



3.4 Multiple Agents with Independent Private Types

First, we state our positive result for a setting with multiple agents and independent, private

types (Theorem 3.8). We assume each agent i’s type ti is independent drawn from Fi, i.e. F is a

product distribution can be denoted as ˆn
i“1Fi. Given any ε-BIC mechanism for n agents with

independent private types (or any ε-EEIC mechanism for n agents with independent uniform

type distribution), we show how to construct an exactly BIC mechanism with at least as much

welfare and negligible revenue loss.

Theorem 3.8. With n agents and independent private types, and an ε-BIC and IR mechanism M

that achieves W expected social welfare and R expected revenue, there exists a BIC and IR mechanism

M1 that achieves at least W social welfare and R ´
řn

i“1 |Ti|ε revenue. The same result holds for

an ε-EEIC mechanism with multiple agents, in the case that each agent has an independent uniform

type distribution. Given an oracle access to the interim quantities of M, the running time of the

transformation fromM toM1 is at most polyp
ř

i |Ti|q.

Proof Sketch. We construct a separate type graph for each agent, based on the mechanism

induced by the interim rules. We then prove the induced mechanism for each agent is still

ε-BIC or ε-EEIC. Then we apply our transformation for each type graph separately. Finally, we

argue that our transformation maintains feasibility by Border’s lemma. The complete proof is

shown in Appendix B.4.6.

Lower bound of revenue loss. Similarly to single agent case, we can also prove the lower

bound of revenue loss of any welfare-preserving transformation for multiple agents with

independent private types. We summarize this result in Theorem 3.9 and show the proof in

Appendix B.4.7.

Theorem 3.9. There exists an ε-BIC/ε-EEIC and IR mechanism for n ě 1 agents with independent uni-

form type distribution, for which any welfare-preserving transformation must suffer at least Ωp
ř

i |Ti|εq

revenue loss.
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3.4.1 Impossibility Results

In our main positive result (Theorem 3.8), we assume each agent’s type is independent and the

target of transformation is BIC mechanism. In this section, we argue that these two assumptions

are near-tight, in Theorem 3.10 and Theorem 3.11. See Appendix B.4.8 and Appendix B.4.9 for

complete proofs.

Theorem 3.10 (Failure of interdependent type). There exists an ε-BIC mechanism M w.r.t an

interdependent type distribution F (see Appendix B.3), such that no BIC mechanism over F can achieve

negligible revenue loss compared withM.

Theorem 3.11 (Failure of DSIC target). There exists an ε-BIC mechanism M defined on a type

distribution F , such that any DSIC mechanism over F cannot achieve negligible revenue loss compared

withM.

Theorem 3.10 provides a counterexample to show that if we allow for interdependent types,

there is no way to construct a BIC mechanism without negligible revenue loss compared with

the original ε-BIC mechanism, even if we ignore the social welfare loss. This leaves an open

question that whether we can construct a counterexample for ε-BIC mechanism for correlated

types. Note that Theorem 3.11 shows the impossibility result for the setting that we start

from an ε-BIC mechanism. What if we start from an ε-EEIC mechanismM with independent

uniform type distribution, can we get a DSIC mechanism with the similar properties toM?

We leave open the question as to whether it is possible to transform an ε-EEIC mechanism to a

DSIC mechanism with zero loss of social welfare and negligible loss of revenue, for multiple

agents with independent uniform type distribution.

3.5 Application to Automated Mechanism Design

In this section, we show how to apply our transformation to linear-programming based and

machine-learning based approaches to automated mechanism design (AMD) [CS02], where the

mechanism is automatically created for the setting and objective at hand. For this illustrative

application, we take as the target of MD that of maximizing the following objective, for a given
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λ P r0, 1s and type distribution F ,

µλpM,Fq “ p1´ λqRMpFq ` λWMpFq. (3.7)

Let OPT “ maxM:M is BIC and IR µλpM,Fq be the optimal objective achieved by a BIC and IR

mechanism defined on F . We consider two different AMD approaches, an LP-based approach

and the RegretNet approach. We briefly introduce the above two approaches in the following.

LP-based AMD. In practice, the type space of each agent Ti may be very large (e.g., exponential

in the number of items for multi-item auctions). To address this challenge, we can discretize Ti

to a coarser space T `i , p|T `i | ! |Ti|q and construct the coupled type distribution F`i . (e.g., by

rounding down to the nearest points in T `i , that is, the mass of each point in Ti is associated

with the nearest point in T `i .) Then we can apply an LP-based AMD approach for type

distribution F` “ pF`1 , ¨ ¨ ¨ ,F`n q. See Appendix B.5 for more details of LP-based AMD.

Suppose, in particular, that we have an α-approximation LP algorithm to output an ε-BIC and

IR mechanismM over F ,5 such that µλpM,Fq ě αOPT. Combining with our transformation

forM on F , we have the following theorem.

Theorem 3.12 (LP-based AMD). For n agents with independent type distribution ˆn
i“1Fi, and an

LP-based AMD approach for coarsened distribution F` on coarsened type space T ` that gives an ε-BIC

and IR mechanismM on F , with p1´ λqR` λW ě αOPT, for some λ P r0, 1s, and some α P p0, 1q,

then there exists a BIC and IR mechanismM1 such that

µλpM1,Fq ě αOPT´ p1´ λq
n
ÿ

i“1

|Ti|ε.

Given oracle access to the interim quantities ofM on F and an α-approximation LP solver with

running time rtLPpxq, where x is the bit complexity of the input, the running time to output the

mechanismM1 is at most polyp
ř

i |Ti|, rtLPppolyp
ř

i |T `i |,
1
ε qq.

RegretNet AMD. RegretNet proposed in Chapter 1 is a generic data-driven, deep learning

framework for multi-dimensional mechanism design. See Appendix B.5 for more details of

5Even though LP returns an mechanism defined only on T `, the mechanism M can be defined on T , by
coupling technique. For example, given any type profile t P T , there is a coupled t` P T ` and the mechanismM
takes t` as the input.
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the application of RegretNet to this setting. Suppose that RegretNet is used in a setting with

independent, uniform type distribution F . To train RegretNet, we randomly draw S samples

from F to form a training data S and train our model on S . Let H be the functional space

modeled by RegretNet. Suppose, in particular, that there is a PAC learning algorithm to

train RegretNet which outputs an ε-EEIC mechanism M P H on F , such that µλpM,Fq ě

sup
xMPH µλp

xM,Fq ´ ε holds with probability at least 1 ´ δ, by observing S “ Spε, δq i.i.d

samples from F . Combining with our transformation for M on F , we have the following

theorem.

Theorem 3.13 (RegretNet AMD). For n agents with independent uniform type distribution ˆn
i“1Fi

over T “ pT1, ¨ ¨ ¨ , Tnq, and the use of RegretNet that generates an ε-EEIC and IR mechanismM on

F with µλpM,Fq ě sup
xMPH µλp

xM,Fq ´ ε holds with probability at least 1´ δ, for some λ P r0, 1s,

trained on S “ Spε, δq i.i.d samples from F , where H is the functional (mechanism) class modeled by

RegretNet, then there exists a BIC and IR mechanismM1, with probability at least 1´ δ, such that

µλpM1,Fq ě sup
xMPH

µλp
xM,Fq ´ p1´ λq

n
ÿ

i“1

|Ti|ε´ ε,

Given oracle access to the interim quantities ofM on F and an PAC learning algorithm for RegretNet

with running time rtRegretNetpxq, where x is the bit complexity of the input, the running time to output

the mechanismM1 is at most polyp
ř

i |Ti|, ε, rtRegretNetppolypS, 1
ε qq.

3.6 Conclusion and Open Questions

In this paper, we have proposed a novel ε-BIC to BIC transformation that achieves negligible

revenue loss and with no loss in social welfare. In particular, the transformation only incurs

at most
ř

i |Ti|ε revenue loss, and no loss of social welfare. We also proved that this revenue

loss bound is tight given the requirement that the transform should maintain social welfare.

In addition, we investigated how to transform an ε-EEIC mechanism to an BIC mechanism,

without loss of social welfare and with only negligible revenue loss.

We have demonstrated that the transformation can be applied to an ε-EEIC mechanism

with multiple agents, in the case that each agent has a independent uniform type distribution.
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For a non-uniform type distribution, we have established an impossibility result for ε-EEIC

transforms, and even for the single-agent case.

This is the first work that contributes to approximately IC to IC transformation without

loss of welfare. There remain some interesting open questions:

• Can we design a polynomial time algorithm for this ε-BIC to BIC transformation with

negligible revenue loss and without loss of welfare, given only query access to the original

mechanism and sample access to type distribution? (our polynomial time results assume

oracle access to the interim quantities)

• Is it possible to transform an ε-EEIC mechanism to a DSIC mechanism, for multiple

agents with an independent, uniform type distribution, without loss of welfare, and with

only negligible revenue loss?

• If we only focus on the revenue perspective, is it possible to find a ε-EEIC to DSIC

transformation, perhaps even in the non-uniform case?
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Part III

Learning to Bid in Repeated Auctions
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Chapter 4

Convergence Analysis of No-Regret

Bidding Algorithms in Repeated

Auctions

4.1 Introduction

The connection between Learning and Games has proven to be a very innovative, practical,

and elegant area of research (see, e.g., [FL98; CL06; Nis+07]). Several fundamental connections

have been made between Learning and Game Theory. A folklore result is that if all players play

low-regret strategies in a repeated general-sum game, then the time-averaged history of the

plays converges to a coarse correlated equilibrium (see, e.g., [BM07]). Similarly, low-swap-regret

play leads to correlated equilibria.

In this work, we are interested in the setting of multi-agent learning in auction environments.

Given the importance of auctions and bidding in the online advertising ecosystem, this is an

important question from a practical point of view as well. In this setting, an auction takes input

bids and determines the allocation of ad-slots and the prices for each advertiser. This is a highly

repeated auction setting over a huge number of queries which arrive over time. Advertisers

get feedback on the allocation and cost achieved by their chosen bidding strategy, and can

respond by changing their bids, and often do so in an automated manner (we will assume
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throughout that advertisers are profit-maximizing, although there are potentially other goals as

well). As each advertiser responds to the feedback, it changes the cost landscape for every other

competing advertiser via the auction rules. As advertisers respond to the auction and to each

other, the dynamics lead them to an equilibrium. This results in the following fundamental

question: Given a fixed auction rule, do such bidding dynamics settle in an equilibrium and if

so, what equilibrium do they choose.

Surprisingly, neither the Auction Theory literature from Economics nor the literature on

Learning in Games provides a definitive answer. Consider the simplest setting: a repeated

auction for a single item, where the allocation is either first-price or second-price. Auction

Theory suggests that bidders converge to canonical equilibria (see, e.g., [Kri02]):

• For a second-price auction (or more generally a VCG auction), bidders will choose to be

truthful (bid their true value every time) as this strategy weakly dominates every other

strategy, i.e., no other strategy can yield more profit. This is a weakly dominating strategy

Nash equilibirum (NE).

• For a first price auction in which each advertiser’s value is picked from some commonly

known distribution in an i.i.d. manner, each advertiser will underbid in a specific way to

achieve a Bayesian Nash Equilibrium (BNE). For example, when there are two bidders and the

value distribution is the uniform distribution on r0, 1s, then each advertiser will set its bid to

be half of its true value.

While these canonical equilibria make intuitive sense, they are not the only equilibria in

the respective games. For example, consider a single-item setting in which bidder 1 has a

value of 1.0 and bidder 2 has a value of 0.5 for the item. While truthful bidding is an NE, any

two values b1, b2 P r0.5, 1.0s2, with b1 ą b2 also form an NE (in fact, an Envy-Free NE). Thus,

there are an infinite number of NEs, with very different revenues. Similarly, in the Bayesian

setting where the values are drawn from say, a uniform distribution, there are many NEs as

well. For example, one player could bid 1 and the other player always bids 0 regardless of their

valuations. This issue of multiple equilibria is treated in the Economics literature via various

notions of equilibrium selection but it is not clear if such selection occurs naturally in settings
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such as ours, especially via bidding dynamics.

To take the Learning in Games approach to answering the question, we have to fix the

bidding dynamics. We assume bidders use no-regret (mean-based) online learning algorithms;

these are natural and powerful strategies that we may expect advertisers to use. A lot of

commonly used no-regret learning algorithms, e.g. multiplicative weights update (MWU),

follow the perturbed leader (FTPL), EXP3, UCB, and ε-Greedy, are all special cases of mean-

based no-regret learning algorithms.

Indeed, there has been considerable work recently which studies various questions in

the online advertising setting under this assumption (see, e.g., [NST15]). Folklore results in

Learning imply that under low-regret dynamics the time-average of the advertisers’ bids will

converge to a coarse correlated equilibrium (CCE) of the underlying game. Hartline, Syrgkanis,

and Tardos [HST15] shows that no-regret learning in Bayesian games converges to Bayesian

CCE in the time-average manner. However, there could be many CCEs in a game as well.

Since every NE is a CCE as well, the above examples hold for the second-price auction. For

the first price setting (even when the values are drawn uniformly at random) another CCE

is for the two bidders to bid pv1 ` v2q{2` ε and pv1 ` v2q{2 where v1 and v2 are the drawn

values, and v1 ą v2. Further, since any convex combination of these CCEs is a valid CCE (the

set of CCE forms a polytope), there is an infinite number of CCEs in both first and second

price auctions. So again we are left with the prediction dilemma: it is not clear which of these

CCEs a low-regret algorithm will converge to. Some of the CCEs are clearly not good for the

ecosystem, for revenue or efficiency. Further, as we elaborate below, even if there is a unique

CCE in the games of interest, the convergence guarantee is only for the time-average rather

than point-wise.

Questions

These examples directly motivate the questions we ask in this paper:

• If the values are drawn in a bayesian setting, and the bidders follow a low-regret learning

algorithm in a repeated second-price auction, do they converge to the truthful equilibrium?

• Similarly, in a first price auction with i.i.d. values with bidders values drawn from a uniform
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distribution r0, 1s, do they converge to the Bayesian Nash equilibrium (with two bidders) of

bidding half of true value?

• Do the bidding dynamics converge to such an equilibrium point-wise, i.e., in the last-iterate

sense, or only in the time-average sense?

• When there are multiple slots, do the bidders converge to truthful equilibrium under VCG

settings?

Given the current state of the literature, we see these as fundamental questions to ask. The

only guarantees we have are those known for general games: Low-regret dynamics converge to

some CCE and there is no guarantee for the last-iterate convergence. If it is the case that only

the time average converges, then that means that bidders may be required to keep changing

their bidding strategy at every time step (see the discussion on the non-point-wise-convergence

results in [BP18] below), and would achieve very different rewards over time. This would not

be a satisfactory situation in the practical setting.

4.1.1 Our Results

Our main result is that when each of the bidders use a mean-based learning rule (see Def-

inition 4.1) then all bidders converge to truthful bidding in a second-price auction and a

multi-position VCG auction and to the Bayes Nash Equilibrium in a first-price auction.

Informal Main Theorem. Suppose n players whose value are drawn from a distribution over space

t 1
H , 2

H , . . . , 1u bid according to a mean-based learning algorithm in either (i) a second-price auction; (ii)

a first-price auction (for n “ 2 and uniform value distribution); or (iii) a multi-position VCG auction.

Then, after an initial exploration phase, each bidder bids the canonical Bayes Nash equilibrium with high

probability.

The formal statement of this theorem appears in Theorem 4.1, Theorem 4.4, and Theorem 4.5

for second-price auctions, first-price auctions, and multi-position VCG auctions, respectively.

Moreover, we show each bidder converges to bid canonical Nash Equilibrium point-wise for

any time, which is in sharp contrast with previous time-average convergence analysis.
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Throughout this paper, we assume the learning algorithms that the bidders use may be

oblivious to the auction format that is used by the seller.

We complement these results by simulating the above model with experiments. In particular,

we show that these algorithms converge and produce truthful (or the canonical) equilibria.

Furthermore, we show that the algorithm converges much quicker than the theory would

predict. These results indicate that these low-regret algorithms are quite robust in the context

of Auctions.

4.1.2 Our Techniques

Our proof techniques involve a few key observations. For second-price and VCG auctions,

we want to show that the bidding converges to truthful bidding. Firstly, note that if the other

bidders bid completely randomly then the truthful arms have a slight advantage in profit.

However, the other bidders themselves bid according to their own instance of the low-regret

algorithms, thus the environment that a given bidder sees is not necessarily random; hence

we need more insight. Fix a particular bidder, say bidder 1. In the beginning of the learning

algorithm, all bidders do bid randomly. The next observation is that if the other bidders

happened to converge to truthful bidding, then again bidder 1 will see completely random bids,

because the other bidders’ values are picked randomly at each stage. Hence we can say that

both in the beginning and also if other bidders happen to converge to (or for some reason were

restricted to) truthful bidding, then bidder 2 will see an advantage in truthful bidding and

converge to that. It remains to show that in the interim period, when all bidders are learning,

exploring, and exploiting, the truthful strategy builds and retains an advantage.

In a first price auction, the proofs follow the same structure. However there are some

technical difficulties that one must overcome. Initially, both bidders bid uniformly at random

and it is not difficult to show that bidding according to the canonical NE gives an advantage.

If the bidders happen to converge to the BNE then, of course, bidding according to the BNE is

the optimal strategy for either player. It is not clear, however, that when the opposing bid is

not uniform or bidding according to the BNE that an advantage is maintained. Our technical

contribution here is to show that an advantage for bidding the BNE is maintained which allows
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both bidders to converge to the BNE.

Our results show that we can achieve high probability results we can show that the model

will bid truthfully for all time (assuming a modest exploratory period in the begining). This

requires a new partitioning argument which enables us to apply concentrations results for all

times. This technique may be of independent interest.

4.1.3 Related Works

Our work lies in a wide area of the inter-disciplinary research between mechanism design and

online learning algorithms, e.g., [Aue+95; CL06; BM07], and we only point out a few lines of

research which are more closely related to our work.

In online advertising, the setting where bidders may be running no-regret algorithms

rather than best response, has recently been investigated and has garnered a significant

amount of interest. For example, Nekipelov, Syrgkanis, and Tardos [NST15] study how to

infer advertisers’ values under this assumption. However, Bailey and Piliouras [BP18] show,

somewhat surprisingly, that even in very simple games (e.g., a zero-sum matching pennies

game), the no-regret dynamics of MWU do not converge, and in fact the individual iterates

tend to diverge from the CCE. On the other hand, recent results in [DP18; Mer+19] show that

certain Optimistic variants of Gradient Descent and Mirror Descent converge in the last-iterate

to the NE in certain zero-sum games. Our result can be seen as a contribution in this stream

of work as well, in that we show that for the (non-zero sum) games arising from auctions

that we study, mean-based learning algorithms converge in the last iterate, and, in fact, to the

natural (Bayes) NE. On a related note, Papadimitriou and Piliouras [PP19] shows there is a

conflict between the economic solution concepts and those predicted by Learning Dynamics.

In that framework, one can consider this work as suggesting that perhaps there is no such

conflict between economic theory and learning, in the context of games arising from auctions,

as learning converges to the solutions predicted by auction theory.

Our work is also related with Learning to bid literature, e.g., [WPR16; FPS18; Bal+19], where

these papers focus on designing a good learning algorithm for the bidders in repeated auctions.

In addition, Braverman et al. [Bra+18] considers how to design a mechanism to maximize
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revenue against bidders who adopt mean-based learning algorithms. In contrast, the auctions

are fixed in our setting and we are interested in understanding the bidder dynamics.

Last but not least, Feldman, Lucier, and Nisan [FLN16] characterize multiple equilibria (NE,

CE, and CCE) in first price auctions, under the prior-free (non-Bayesian) setting, and study the

revenue and efficiency properties of these equilibria. They show there are auctions in which a

CCE can have as low as 1´ 2{e » 0.26 factor of the second highest value (although not lower),

and there are auctions in which a CCE can have as low as 0.81 of the optimal efficiency (but

not lower). However, our results show that even though there may be “Bad” CCEs, the natural

dynamics do not reach them, and instead, converge to the classic canonical Nash equilibrium.

4.2 Model and Notations

We consider the setting that there is a single seller repeatedly selling one good to n bidders

per round. At each time t, each bidder i’s valuation vi,t is i.i.d. drawn from an unknown

(CDF) distribution Fi and bidder i will submit a bid bi,t based on vi,t and historical information.

In this paper, we assume the value and the bid of each bidder at any time are always in a

1
H -evenly-discretized space V “ t 1

H , 2
H , ¨ ¨ ¨ , 1u, i.e, vi,t, bi,t P V,@i, t. Let vt “ pv1,t, ¨ ¨ ¨ , vn,tq be

the valuation profile of n bidders at time t, v´i,t be the valuation profile of bidders other than i,

and similarly for bt and b´i,t. Let F be the (CDF) distribution of vt and fi be the probability

density function (PDF) of bidder i’s value. Denote mi,t “ maxj‰i bj,t as the maximum bid of

the bidders other than i and zi,t “ maxj‰i vj,t be the maximum value of the bidders other than

i. We denote Gi as the (CDF) distribution of zi,t and gi as the associated PDF. For theoretical

purpose, we propose an assumption about Gi in the following,

Assumption 4.1 (Thickness Assumption of Gi). There exists a constant τ ą 0 (may depend on n),

s.t., gipvq ě τ,@i P rns, v P V. Without loss of generality1, we assume τ ď 1
Hn´1 .

We assume the each bidder runs a no-regret learning algorithm to decide her bid at each

time. Specifically, in this paper, we are interested in a broad class of no-regret learning

1It is without loss of generality, since if τ ą 1
Hn´1 , we redefine τ :“ min

!

τ, 1
Hn´1

)

.
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algorithm known as mean-based (contextual) learning algorithm [Bra+18]; these include the

multiplicative weights update (MWU), Exp3, and ε-Greedy algorithms as special cases.

In this paper, we focus on the contextual version of mean-based learning algorithms, which

can be used to model learning algorithms of the bidders in repeated auctions, defined in the

following.

Definition 4.1 (Mean-based Contextual Learning Algorithm). Let ra,tpcq be the reward of action

a at time t when the context is c and σa,tpcq “
řt

s“1 ra,spcq. An algorithm for the contextual bandits

problem is γt-mean-based if it is the case that whenever σa,tpcq ă σb,tpcq ´ γtt, then the probability

pa,tpcq that the algorithm plays action a on round t` 1, given context c, is at most γt. We say an

algorithm is mean-based if it is γt-mean-based for some γt such that γtt is increasing and γt Ñ 0 as

t Ñ8. 2

In the repeated auctions setting, the context information received by each bidder i at time t

is the realization of the valuation vi,t. The reward function ri
b,t for bidder i can be defined as

@v P r0, 1s, ri
b,tpvq :“ ui,tppb, b´i,tq; vq, (4.1)

where ui,tppb, b´i,tq; vq is the utility of bidder i at time t when the bidder i bids b and the others

bid b´i,t, if bidder i values the good v.

4.2.1 Learning Algorithms of Mean-Based Bidders

In this paper, we focus on the setting where each bidder i runs a γt-means-based contextual

learning algorithm to submit the bid3. In addition, we assume each bidder runs several pure

exploration steps in the beginning to estimate the reward of each action (bid) for each context

(value). We assume each bidder runs T0 pure exploration steps: at each pure exploration step,

each bidder i uniformly generates a bid from B at random, regardless of the realization of value

vi,t. To summarize, we describe the learning algorithm of mean-based bidders in Algorithm 2.

2The mean-based learning algorithms proposed by [Bra+18] set γt be a constant, which only depends on total
number of time steps T. Here we extend it to be a time-dependent variable, which is used to show our anytime
convergence results.

3Indeed, our analysis can be extended to the setting where each mean-based bidder has different γt parameters.
We assume they share parameters γt, for notation simplicity.
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Algorithm 2 Mean-based (Contextual) Learning Algorithm of Bidder i

1: Input: parameters γt, T0.
2: for t “ 1, 2, . . . , T0 do
3: Choose bid bi,t uniformly from V at random.
4: end for
5: for t “ T0 ` 1, T0 ` 2, . . . do
6: Observes value vt.
7: Choose bid bi,t following a γt-mean-based learning algorithm.
8: end for

In the learning to bid literature, there are different feedback models: full information feed-

back [PP19], bandit feedback [WPR16; FPS18], or cross-learning feedback [Bal+19]. However,

our results hold for any feedback model, as long as each bidder uses the general mean-based

learning algorithm to bid, shown in Algorithm 2.

4.3 Second Price Auctions with Mean-based Bidders

In this section, we analyze the learning dynamics of mean-based bidders in (repeated) second

price auctions. In second price auctions, the utility function of each bidder i at time t can be

represented as,

ui,tppb, b´i,tq; vq “ pv´mi,tq ¨ Itb ě mi,tu (4.2)

Since the bids of each bidder are in a discrete space, we break ties randomly throughout

this paper. We first show the following main theorem in this section, which proves that the

mean-based learners converge to truthful reporting point-wisely, in the repeated second price

auctions.

Theorem 4.1. Suppose assumption 4.1 holds and T0 is large enough, such that exp
´

´
τ2T0

32n2 H2

¯

ď 1
2

and γt ď
τ

8nH ,@t ě T0. Then at time t ą T0, each γt-mean-based learner i will submit bt “ vi,t in

repeated second price auctions with probability at least pptq “ 1´ Hγt ´ 4 exp
´

´
τ2T0

32n2 H2

¯

, for any

fixed vi,t. Note pptq Ñ 1´ 4 exp
´

´
τ2T0

32n2 H2

¯

when t Ñ8.

Our main results for second price auctions show an anytime convergence for each bidder: as

long as T0 is large enough, each bidder will bid truthfully at any time t, with high probability.
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The main technical contribution in this paper is the proof for Theorem 4.1.

4.3.1 Proof of Theorem 4.1

In this section, we summarize the proof of Theorem 4.1. To show that, we propose the following

lemmas, in which the complete proofs are deferred to Appendix C.1.

Firstly, we characterize that in the pure exploration phase, each bidder gains significantly

greater utility when bidding truthfully.

Lemma 4.1. For any fixed value v, any bid b ‰ v and any time t ď T0, we have for each bidder i,

P

ˆ

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq ě
1
H

˙

ě
τ

n

Then by a standard Chernoff bound, we can argue the accumulative utility advantage

obtained by bidding truthfully will be large enough, for any time t in exploration phase.

Lemma 4.2. For any fixed v, any bid b ‰ v and any time t ď T0, we have for each bidder i,

ÿ

sďt

ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě
τt

2nH

holds with probability at least 1´ exp
´

´ τ2t
2n2 H2

¯

.

Finally, we show that if the cumulative utility advantage of truthful bidding is large enough

to satisfy requirements of the mean-based learning algorithms, then truthful bidding still gains

significant greater utility for each bidder at time t ą T0.

Lemma 4.3. For any t ą T0, suppose
ř

sďt ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě γtt holds for any

fixed v, b ‰ v and each bidder i, then

ui,t`1ppv, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq ě
1
H

holds with probability at least τ
2n , for any fixed value v, bid b ‰ v and each bidder i.

Given the above three auxiliary lemmas, we prove Theorem 4.1 in the following.

Proof of Theorem 4.1. One of the key techniques used in this paper is the partitioning of the time

steps into buckets with a geometric partitioning scheme. In particular, we divide time steps
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t ą T0 to several episodes as follows, Γ1 “ rT0 ` 1, T1s, Γ2 “ rT1 ` 1, T2s, ..., such that @k ě 1,

Tk “
Y

τTk´1
4γTk nH

]

. We always choose the smallest Tk to satisfy this condition.4 The total time steps

of each episode |Γk| “ Tk ´ Tk´1,@k ě 1. Then we show the following claim, which states that

in each time bucket the expected utility doesn’t deviate too much.

Claim 4.2. Let event Ek be
ř

sďTk
ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě τTk

4nH holds for all i, given any

fixed v, b ‰ v. Then the event Ek holds with probability at least 1´
řk

`“0 exp
´

´
|Γ`|τ

2

32n2 H2

¯

.

We prove the above claim by induction. If k “ 0, the claim holds by Lemma 4.2. We assume

the claim holds for k, then we argue the claim still holds for k ` 1. We consider any time

t P Γk`1, given event Ek holds, we have

ř

sďt ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq

ě
ř

sďTk
ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq

ě
τTk
4nH ě γtt, (4.3)

where the first inequality is based on the fact that truth-telling is the dominant strategy in

second price auctions, the second inequality holds because of the induction assumption and

the last inequality hold because @t P Γk`1,

γtt ď γTk`1 Tk`1 “ γTk`1

Z

τTk

4γTk`1 nH

^

ď
τTk

4nH
.

Then by Lemma 4.3, given Ek holds, for any t P Γk`1 we have,

P

ˆ

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq ě
1
H

ˇ

ˇ

ˇ
Ek

˙

ě
τ

2n

Thus, E
”

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq
ˇ

ˇ

ˇ
Ek

ı

ě τ
2nH for any t P Γk`1. Letting ∆s “ ui,sppv, b´i,sq; vq´

4Tk always exists since γtt Ñ8 as t Ñ8.
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ui,sppb, b´i,sq; vq, by Azuma’s inequality (for martingales), we have

P

¨

˝

ÿ

sPΓk`1

∆s ď
τ|Γk`1|

4nH

ˇ

ˇ

ˇ
Ek

˛

‚

ď P

¨

˝

ÿ

sPΓk`1

∆s ď
ÿ

sPΓk`1

E
”

∆s

ˇ

ˇ

ˇ
Ek

ı

´
τ|Γk`1|

4nH

ˇ

ˇ

ˇ
Ek

˛

‚

ď exp
ˆ

´
|Γk`1|τ

2

32n2H2

˙

Therefore, the event Ek`1 holds with probability at least
˜

1´ e´
|Γk`1|τ

2

32n2 H2

¸

¨PpEkq ě 1´
k`1
ÿ

`“0

exp
ˆ

´
|Γ`|τ

2

32n2H2

˙

,

which completes the induction and verifies the correctness of Claim 4.2. Given Claim 4.2, we

have the following argument,

For any time t ą T0, there exists kptq, s.t., t P Γkptq, if the event Ekptq happens, the bidder

i will report truthfully with probability at least 1´ Hγt, by the definition of γt-mean-based

learning algorithms and the same argument as Eq. (C.1). Therefore, at any time t ą T0, each

bidder i will report truthfully with probability at least

1´ Hγt ´

kptq
ÿ

`“0

exp
ˆ

´
|Γ`|τ

2

32n2H2

˙

Then we bound
řkptq

`“0 exp
´

´
|Γ`|τ

2

32n2 H2

¯

through the following claim, where the proof is deferred

to Appendix B.

Claim 4.3. Given γt ď
τ

8nH ,@t ą T0,
řkptq

`“0 exp
´

´
|Γ`|τ

2

32n2 H2

¯

ď 4 exp
´

´
τ2T0

32n2 H2

¯

, when T0 is large

enough s.t. exp
´

´
τ2T0

32n2 H2

¯

ď 1
2 .

Combining the above claim, we complete the proof for Theorem 4.1.
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4.4 Generalizations to Other Auctions

In this section, we generalize our results further to first price auctions when each bidder’s

valuation is drawn uniformly from V, and multi-position auctions when we run the Vickrey-

Clarke-Groves (VCG) mechanism. For both cases, we break ties randomly.

4.4.1 First Price Auctions

In first price auctions, the highest bidder wins and pays her bid. Therefore the utility function

of each bidder i at time t can be defined as,

ui,tppb, b´i,tq; vq “ pv´ bq ¨ Itb ě mi,tu (4.4)

It is well-known, first price auctions are not truthful and each bidder will underbid her

value to manipulate the auctions. Bayesian Nash Equilibrium (BNE) bidding strategy is hard

to characterize in general first price auctions. Only the BNE bidding strategy for i.i.d bidders

in first price auctions, is fully understood, e.g. [Kri02].

In this paper, for simplicity, we focus on the setting that there are two i.i.d bidders with

uniform value distribution over V. The BNE bidding strategy for each bidder is b “ v
2 when

the value is v [Kri02], if the value space V “ r0, 1s. In this work, we assume V “
 1

H , 2
H , ¨ ¨ ¨ , 1

(

and we break ties randomly. Under this case, we show each mean-based bidder will converge

to play near-BNE bidding strategy point-wisely if the number of initial exploration steps T0 is

large enough in the following.

Theorem 4.4. Suppose there are two bidders and each bidder’s value is i.i.d drawn uniformly from V at

random, H is a even positive number, and T0 is large enough, such that γt ď
1

4H3 ,@t ě T0. Then at time

t ą T0, each γt-mean-based learner i in repeated first price auctions will bid bt, s.t. v
2 ď bt ă

v
2 `

1
H

with probability at least 1´ Hγt ´ exp
´

´
pH´1qT0

32p4H3`1qH4

¯

log t

log
´

4H3`H
4H3`1

¯ , for any fixed vi,t.

The proof is significantly different than the proof of second price auctions. Firstly, random

tie-breaking makes the analysis more difficult in first price auctions compared with the one in

second price auctions. Secondly, b “ r v
2 s 5 is not a dominant bidding strategy, we need a more

5rxs means rounding x up to the nearest point in V.
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complex time-splitting scheme to make induction procedure works in first price auctions. We

defer the proof to Appendix C.1. We believe our proof for firs price auctions is general enough

and can be extended to handle more than two bidders setting.

4.4.2 Multi-Position VCG Auctions

In multi-position auctions, there are k positions where k ă n and position multipliers p1 ě ¨ ¨ ¨ ě

pk ě 0 “ pk`1 “ ¨ ¨ ¨ “ pn (position multipliers determine the relative values or click-through

rates of the different positions). In particular, we will also say that pi ´ pi`1 ě ρ for all i ď k.

In this paper, we run VCG mechanism for multi-position auctions. Without loss of generality,

we assume that bidders are arranged in descending order of bids and there are no ties, i.e.,

b1 ą b2 ą ¨ ¨ ¨ ą bn. Since we run VCG auctions, bidder i gets the position i and the payment

extracted from the bidder i is exactly
řm

j“ippj ´ pj`1qbj. The utility that bidder i gets at being in

position i is exactly,
řm

j“ippj ´ pj`1q ¨ pvi ´ bjq. When there are ties, we break ties randomly.

Denote zpkqi be the k-th largest value from the bidders other than bidder i, Gpkqi be the

(CDF) distribution of zpkqi , and gpkqi be the associated PDF. We propose the following thickness

assumption for distribution Gpkqi , for our theoretical purpose.

Assumption 4.2 (Thickness Assumption of Gpkqi ). There exists a constant τ ą 0 (may depend on n),

s.t., gpkqi pvq ě τ,@i P rns,@v P V. Without loss of generality, we assume τ ď 1
Hn´1 .

It is well-known that the VCG auction is truthful. Applying the same technique, we can

show the truthful bid has an advantage compared with all the other bids in the exploration

phase, as well as in the mean-based exploitation phase. Similarly, we show the following

convergence results of mean-based bidders in multi-position VCG auctions.

Theorem 4.5. Suppose assumption 4.2 holds and T0 is large enough, such that exp
´

´
τ2ρ2T0
32n2 H2

¯

ď 1
2

and γt ď
τρ

8nH ,@t ě T0. Then at time t ą T0, each γt-mean-based learner i will bt “ vi,t in repeated

multi-position VCG auctions with probability at least 1´ Hγt ´ 4 exp
´

´
τ2ρ2T0
32n2 H2

¯

, for any fixed vi,t.
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(a) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder
(right) in the exploitation phase of contextual ε-Greedy algorithm in second price auctions.

(b) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder
(right) in the exploitation phase of Deep-Q Learning algorithm in second price auctions.

Figure 4.1: Simulation results for second price auctions

4.5 Experiments

In this section, we describe the experiments using Contextual Mean-Based Algorithms and

Deep-Q Learning agents participating in repeated first price and second price auctions. In

these repeated auctions, the private valuations of both players are sampled independently

from identical uniform distributions. The observation for each agent is defined by its private

valuation and its reward by the auction outcome (with ties broken randomly).

In the first set of experiments, we study the convergence of two independent learning

agents following an ε-Greedy policy in first and second price auction. We use the setting of

H “ 10 wherein both agents only observe their private valuation and the respective reward as

an auction outcome.

In both cases, we observe the bidders converge to the BNE after several time steps. There

is a slight gap between the (observed) mean reward and utility under BNE as the value

100



(a) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder
(right) in the exploitation phase of contextual ε-Greedy algorithm in first price auctions.

(b) Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder
(right) in the exploitation phase of Deep-Q Learning algorithm in first price auctions.

Figure 4.2: Simulation Results for first price auctions

of ε (randomly exploration probability) has a floor of 0.05. We also observe that in the

exploitation phase, the bidding converges completely to the BNE in the contextual bandit

setting, which exactly matches our theory in Figures 4.1a and 4.2a. More experiments are

shown in Appendix C.2.

Extensions to Deep-Q Learning

Contextual Mean Based Algorithms are a broad class of algorithms but can be very expensive

to implement if we run a new instance for each possible value and the number of values are

large. In line with modern machine learning, one way to mitigate this in practice is to augment

it via Deep Q-Learning. To be more concrete, we model the learner by using a deep network

with input as the private value and ask it to choose one of many bids. We model this as a

reinforcement learning problem where the agents state is input into a deep neural network.
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The agent’s rewards are then observed over time with a chosen discount rate. The details of

Deep Q-Learning model and the set of hyperparameters used to train the two Q models are

outlined in Appendix C.2.

We use the setting of H “ 100 and consider the observation of the agent as its private

valuation. Again, we observe that both agents converge to BNE, shown in Figures 4.1b and 4.2b.

We also study the model with a wider set of states including previously chosen bids and

empirically observe the convergence of independent DQN agents to BNE for both auctions

(discussed further in Appendix C.2).
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Chapter 5

Learning to Bid Without Knowing your

Value

5.1 Introduction

A standard assumption in the majority of the literature on auction theory and mechanism

design is that participants that arrive in the market have a clear assessment of their valuation

for the goods at sale. This assumption might seem acceptable in small markets with infrequent

auction occurrences and amplitude of time for participants to do market research on the goods.

However, it is an assumption that is severely violated in the context of the digital economy.

In settings like online advertisement auctions or eBay auctions, bidders participate very

frequently in auctions that they have very little knowledge about the good at sale, e.g. the

value produced by a user clicking on an ad. It is unreasonable, therefore, to believe that the

participant has a clear picture of this value. However, the inability to pre-assess the value of

the good before arriving to the market is alleviated by the fact that due to the large volume of

auctions in the digital economy, participants can employ learning-by-doing approaches.

In this paper we address exactly the question of how would you learn to bid approximately

optimally in a repeated auction setting where you do not know your value for the good at sale and where

that value could potentially be changing over time. The setting of learning in auctions with an

unknown value poses an interesting interplay between exploration and exploitation that is not
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standard in the online learning literature: in order for the bidder to get feedback on her value

she has to bid high enough to win the good with higher probability and hence, receive some

information about that underlying value. However, the latter requires paying a higher price.

Thus, there is an inherent trade-off between value-learning and cost. The main point of this

paper is to address the problem of learning how to bid in such unknown valuation settings

with partial win-only feedback, so as to minimize regret with respect to the best fixed bid in

hindsight.

On one extreme, one can treat the problem as a Multi-Armed Bandit (MAB) problem, where

each possible bid that the bidder could submit (e.g. any multiple of a cent between 0 and some

upper bound on her value) is treated as an arm. Then, standard MAB algorithms (see e.g.

[BCB+12]) can achieve regret rates that scale linearly with the number of such discrete bids. The

latter can be very slow and does not leverage the structure of utilities and the form of partial

feedback that arises in online auction markets. Recently, the authors in [WPR16] addressed

learning with such type of partial feedback in the context of repeated single-item second-price

auctions. However, their approach does not address more complex auctions and is tailored to

the second-price auction.

Our Contributions. Our work addresses learning with partial feedback in general mecha-

nism design environments. Importantly, we allow for randomized auctions with probabilistic

outcomes, encompassing the case of sponsored search auctions, where the outcome of the

mechanism (i.e., getting a click) is inherently randomized.

Our first main contribution is to introduce a novel online learning setting with partial

feedback, which we denote learning with outcome-based feedback and which could be of inde-

pendent interest. We show that our setting captures online learning in many repeated auction

scenarios including, all types of single-item auctions, value-per-click sponsored search auctions,

value-per-impression sponsored search auctions and multi-item auctions.

Our setting generalizes the setting of learning with feedback graphs [MS11; Alo+13], in

a way that is crucial for applying it to the auction settings of interest. At a high level, the

setting is defined as follows: The learner chooses an action b P B (e.g. a bid in an auction).

The adversary chooses an allocation function xt, that maps an action to a distribution over a
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set of potential outcomes O (e.g. the probability of getting a click) and a reward function rt

that maps an action-outcome pair to a reward (utility conditional on getting a click with a

bid of b). Then, an outcome ot is chosen based on distribution xtpbq and a reward rtpb, otq is

observed. The learner also gets to observe the function xt and the reward function rtp¨, otq for

the realized outcome ot (i.e. in our auction setting: she learns the probability of a click, the

expected payment as a function of her bid and, if she gets clicks, her value).

Our second main contribution is an algorithm which we call WIN-EXP, which achieves

regret O
`a

T|O| logp|B|q
˘

. The latter is inherently better than the generic multi-armed bandit

regret of O
´

a

T|B|
¯

, since in most of our applications |O| will be a small constant (e.g. |O| “ 2

in sponsored search) and takes advantage of the particular feedback structure. Our algorithm

is a variant of the EXP3 algorithm [Aue+02], with a carefully crafted unbiased estimate of the

utility of each action, which has lower variance than the unbiased estimate used in the standard

EXP3 algorithm. This result could also be of independent interest and applicable beyond

learning in auction settings. Our approach is similar to the importance weighted sampling

approach used in EXP3 so as to construct unbiased estimates of the utility of each possible

action. Our main technical insight is how to incorporate the allocation function feedback that

the bidder receives to construct unbiased estimates with small variance, leading to dependence

only in the number of outcomes and not the number of actions. As we discuss in the related

work, despite the several similarities, our setting has differences with existing partial feedback

online learning settings, such as learning with experts [Aue+02], learning with feedback graphs

[MS11; Alo+13] and contextual bandits [Aga+14].

This setting engulfs learning in many auctions of interest where bidders learn their value

for a good only when they win the good and where the good which is allocated to the bidder

is determined by some randomized allocation function. For instance, when applied to the case

of single-item first-price, second-price or all-pay auctions, our setting corresponds to the case

where the bidders observe their value for the item auctioned at each iteration only when they

win the item. Moreover, after every iteration, they observe the critical bid they would have

needed to submit to win (for instance, by observing the bids of others or the clearing price).

The latter is typically the case in most government auctions or in settings like eBay.
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Our flagship application is that of value-per-click sponsored search auctions. These are

auctions were bidders repeatedly bid in an auction for a slot in a keyword impression on a

search engine. The complexity of the sponsored search ecosystem and the large volume of

repeated auctions has given rise to a plethora of automated bidding tools (see e.g. [Wor18]) and

has made sponsored search an interesting arena for automated learning agents. Our framework

captures the fact that in this setting the bidders observe their value for a click only when

they get clicked. Moreover, it assumes that the bidders also observe the average probability

of click and the average cost per click for any bid they could have submitted. The latter is

exactly the type of feedback that the automated bidding tools can receive via the use of bid

simulators offered by both major search engines [Goo18a; Goo18b; Mic18]. In Figure 5.1 we

portray example interfaces from these tools, where we see that the bidders can observe exactly

these allocation and payment curves assumed by our outcome-based-feedback formulation.

Not using this information seems unreasonable and a waste of available information. Our

work shows how one can utilize this partial feedback given by the auction systems to provide

improved learning guarantees over what would have been achieved if one took a fully bandit

approach. In the experimental section, we also show that our approach outperforms that of the

bandit approach even if the allocation and payment curves provided by the system have some

error that could stem from errors in the machine learning models used in the calculation of

these curves by the search engines. Hence, even when these curves are not fully reliable our

approach can offer improvements in the learning rate.

Figure 5.1: Example interfaces of bid simulators of two major search engines, Google Adwords (left) and BingAds
(right), that enables learning the allocation and the payment function. (sources [Sta14; Lan14])

We also extend our results to cases where the space of actions is a continuum (e.g. all bids

in an interval r0, 1s). We show that in many auction settings, under appropriate assumptions

106



on the utility functions, a regret of O
`a

T logpTq
˘

can be achieved by simply discretizing the

action space to a sufficiently small uniform grid and running our WIN-EXP algorithm. This

result encompasses the results of [WPR16] for second price auctions, learning in first-price

and all-pay auctions, as well as learning in sponsored search with smoothness assumptions on

the utility function. We also show how smoothness of the utility can easily arise due to the

inherent randomness that exists in the mechanism run in sponsored search.

Finally, we provide two further extensions: switching regret and feedback-graphs over outcomes.

The former adapts our algorithm to achieve good regret against a sequence of bids rather

than a fixed bid. The latter has implications on faster convergence to approximate efficiency

of the outcome (price of anarchy). Feedback graphs address the idea that in many cases the

learner could be receiving information about other items other than the item he won (through

correlations in the values for these items). This essentially corresponds to adding a feedback

graph over outcomes and when outcome ot is chosen, then the learner learns the reward

function rtp¨, oq for all neighboring outcomes o in the feedback graph. We provide improved

results that mainly depend on the dependence number of the graph rather than the number of

possible outcomes.

Related Work. Our work lies on the intersection of two main areas: No regret learning in

Game Theory and Mechanism Design and Contextual Bandits.

No regret learning in Game Theory and Mechanism Design. No regret learning has received a

lot of attention in the Game Theory and Mechanism Design literature [CHN14]. Most of the

existing literature, however, focuses on the problem from the side of the auctioneer, who tries

to maximize revenue through repeated rounds without knowing a priori the valuations of the

bidders [Ami+15; ARS14; Blu+04; BMM15; CBGM15; CR14; DRY15; KN14; MM14; OS11; MV17;

Fel+16; KLM17]. These works are centered around different auction formats like the sponsored

search ad auctions, the pricing of inventory and the single-item auctions. Our work is mostly

related to Weed, Perchet, and Rigollet [WPR16], who adopt the point of view of the bidders in

repeated second-price auctions and who also analyze the case when the true valuation of the

item is revealed to the bidders only when they win the item. Their setting falls into the family
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of settings for which our novel and generic WIN-EXP algorithm produces good regret bounds

and as a result, we are able to fully retrieve the regret that their algorithms yield, up to a tiny

increase in the constants. Hence, we give an easier way to recover their results. Closely related

to our work are the works of [DT13] and [BG17]. Dikkala and Tardos [DT13] analyzes a setting

where bidders have to experiment in order to learn their valuations, and show that the seller

can increase revenue by offering an initial credit to them, in order to give them incentives to

experiment. [BG17] introduce a family of dynamic bidding strategies in repeated second-price

auctions, where advertisers adjust their bids throughout the campaign. They analyze both

regret minimization and market stability. There are two key differences from our setting; first,

Balseiro and Gur consider the case where the goal of the bidders is the expediture rate in a

way that guarantees that the available campaign budget will be spent in an optimal pacing

way and second, because of their target being the expenditure rate at every timestep t, they

assume that the bidders get information about the value of the slot being auctioned and based

on this information they decide how to adjust their bid. Moreover, several works analyze

the properties of auctions when bidders adopt a no-regret learning strategy [Blu+08; Car+15;

Rou09]. None of these works, however, addresses the question of learning more efficiently

in the unknown valuation model and either invokes generic MAB algorithms or develops

tailored full information algorithms when the bidder knows his value. Another line of research

takes a Bayesian approach to learn in repeated auctions and makes large market assumptions,

analyzing learning to bid with an unknown value under a Mean Field Equilibrium condition

[AJ13; IJS11; BBW15]1.

Learning with partial feedback. Our work is also related to the literature in learning with partial

feedback [Aga+14; BCB+12]. To establish this connection we observe that the policies and the

actions in contextual bandit terminology translate into discrete bids and groups of bids for which we

learn the rewards in our work. The difference between these two is the fact that for each action

in contextual bandits we get a single reward, whereas for our setting we observe a group of

rewards; one for each action in the group. Moreover, the fact that we allow for randomized

1No-regret learning is complementary and orthogonal to the mean field approach, as it does not impose any
stationarity assumption on the evolution of valuations of the bidder or the behavior of his opponents.
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outcomes adds extra complication, non existent in contextual bandits. In addition, our work is

closely related to the literature in online learning with feedback graphs [Alo+15; Alo+13; CHK16;

MS11]. In fact, we propose a new setting in online learning, namely, learning with outcome-based

feedback, which is a generalization of learning with feedback graphs and is essential when

applied to a variety of auctions which include sponsored search, single-item second-price,

single-item first-price and single-item all-pay auctions. Moreover, the fact that the learner only

learns the probability of each outcome and not the actual realization of the randomness, is

similar in nature to a feedback graph setting, but where the bidder does not observe the whole

graph. Rather, he observes a distribution over feedback graphs and for each bid he learns

with what probability each feedback graph would arise. For concreteness, consider the case of

sponsored search and suppose for now that the bidder gets even more information than what

we assume and also observes the bids of his opponents. He still does not observe whether he

would get a click if he falls on the slot below but only the probability with which he would

get a click in the slot below. If he could observe whether he would still get a click in the slot

below, then we could in principle construct a feedback graph that would say that for all bids

were the bidder gets a slot his reward is revealed, and for every bid that he does not get a click,

his reward is not revealed. However, this is not the structure that we have and essentially this

corresponds to the case where the feedback graph is not revealed, as analyzed in [CHK16]

and for which no improvement over full bandit feedback is possible. However, we show that

this impossibility is amended by the fact that the learner observes the probability of a click

and hence for each possible bid, he observes the probability with which each feedback graph

would have happened. This is enough for a low variance unbiased estimate.

5.2 Learning in Auctions without Knowing your Value

For simplicity of exposition, we start with a simple single-dimensional mechanism design

setting, but our results extend to multi-dimensional (multi-item) mechanisms, as we will see

in Section 5.4. Let n be the number of bidders. Each bidder has a value vi P r0, 1s per-unit of a

good and submits a bid bi P B, where B is a discrete set of bids (e.g. a uniform ε-grid of r0, 1s).
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Given the bid profile of all bidders, the auction allocates a unit of the good to the bidders.

The allocation rule for bidder i is given by Xipbi, b´iq. Moreover, the mechanism defines a

per-unit payment function Pipbi, b´iq P r0, 1s. The overall utility of the bidder is quasi-linear, i.e.

uipbi, b´iq “ pvi ´ Pipbi, b´iqq ¨ Xipbi, b´iq.

Online Learning with Partial Feedback. The bidders participate in this mechanism repeat-

edly. At each iteration, each bidder has some value vit and submits a bid bit. The mechanism

has some time-varying allocation function Xitp¨, ¨q and payment function Pitp¨, ¨q. We assume

that the bidder does not know his value vit, nor the bids of his opponents bit, nor the allocation

and payment functions, before submitting a bid.

At the end of each iteration, he gets an item with probability Xitpbit, b´i,tq and observes his

value vit for the item only when he gets one (e.g. in sponsored search, the good allocated is the

probability of getting clicked, and you only observe your value if you get clicked). Moreover,

we assume that he gets to observe his allocation and payment functions for that iteration,

i.e. he gets to observe two functions xitp¨q “ Xitp¨, b´i,tq and pitp¨q “ Pitp¨, b´i,tq. Finally, he

receives utility pvit ´ pitpbitqq ¨ Ititem is allocated to himu or in other words expected utility

uitpbitq “ pvit ´ pitpbitqq ¨ xitpbitq. Given that we focus on learning from the perspective of a

single bidder we will drop the index i from all notation and instead write, xtp¨q, ptp¨q, utp¨q, vt,

etc. The goal of the bidder is to achieve small expected regret with respect to any fixed bid in

hindsight: RpTq “ supb˚PB E
”

řT
t“1 putpb˚q ´ utpbtqq

ı

ď opTq.

5.3 Abstraction: Learning with Win-Only Feedback

We abstract a bit more the learner’s problem, to a setting that could be of interest beyond

auction settings.

Learning with Win-Only Feedback. Every day a learner picks an action bt from a finite

set B. The adversary chooses a reward function rt : B Ñ r´1, 1s and an allocation function

xt : B Ñ r0, 1s. The learner wins a reward rtpbq with probability xtpbq. Let utpbq “ rtpbqxtpbq be

the learner’s expected utility from action b. After each iteration, if he won the reward then he
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learns the whole reward function rtp¨q, while he always learns the allocation function xtp¨q.

Can the learner achieve regret Op
a

T logp|B|qq rather than bandit-feedback regret Op
a

T|B|q?

In the case of the auction learning problem, the reward function rtpbq takes the parametric

form rtpbq “ vt ´ ptpbq and the learner needs to learn vt and ptp¨q at the end of each iteration,

when he wins the item. This is inline with the feedback structure we described in the previous

section.

We consider the following adaptation of the EXP3 algorithm with unbiased estimates based

on the information received. It is also notationally useful throughout the section to denote

with At the event of winning a reward at time t. Then, we can write: PrAt|bt “ bs “ xtpbq and

PrAts “
ř

bPB πtpbqxtpbq, where with πtp¨q we denote the multinomial distribution from which

bid b is drawn. With this notation we define our WIN-EXP algorithm in Algorithm 3. We note

here that our generic family of the WIN-EXP algorithms can be parametrized by the step-size

η, the estimate of the utility ũt that the learner gets at each round and the feedback structure

that he receives.

Algorithm 3 WIN-EXP algorithm for learning with win-only feedback

Let π1pbq “ 1
|B| for all b P B (i.e. the uniform distribution over bids), η “

b

2 logp|B|q
5T

for each iteration t do
Draw a bid bt from the multinomial distribution based on πtp¨q

Observe xtp¨q and if reward is won also observe rtp¨q

Compute estimate of utility:
If reward is won ũtpbq “

prtpbq´1qPrAt|bt“bs
PrAts

; otherwise, ũtpbq “ ´
Pr At|bt“bs

Pr Ats
.

Update πtp¨q as in Exponential Weights Update: @b P B : πt`1pbq9πtpbq ¨ exp tη ¨ ũtpbqu
end for

Bounding the Regret. We first bound the first and second moment of the unbiased estimates

built at each iteration in the WIN-EXP algorithm.

Lemma 5.1. At each iteration t, for any action b P B, the random variable ũtpbq is an unbiased estimate

of the true expected utility utpbq, i.e.: @b P B : E rũtpbqs “ utpbq ´ 1 and has expected second moment

bounded by: @b P B : E
”

pũtpbqq2
ı

ď
4PrAt|bt“bs

PrAts
`

Pr At|bt“bs
Pr Ats

.
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Proof. Let At denote the event that the reward was won. We have:

E rũtpbqs “ E
„

prtpbq ´ 1q ¨PrAt|bt “ bs
PrAts

ItAtu ´
Pr At|bt “ bs

Pr Ats
It Atu



“ prtpbq ´ 1qPrAt|bt “ bs ´Pr At|bt “ bs

“ rtpbqPrAt|bt “ bs ´ 1 “ utpbq ´ 1

Similarly for the second moment:

E
“

ũtpbq2
‰

“ E

«

prtpbq ´ 1q2 ¨PrAt|bt “ bs2

PrAts2
ItAtu `

Pr At|bt “ bs2

Pr Ats2
It Atu

ff

“
prtpbq ´ 1q2 ¨PrAt|bt “ bs2

PrAts
`

Pr At|bt “ bs2

Pr Ats
ď

4PrAt|bt “ bs
PrAts

`
Pr At|bt “ bs

Pr Ats

where the last inequality holds since rtp¨q P r´1, 1s and xtp¨q P r0, 1s.

We are now ready to prove our main theorem:

Theorem 5.1 (Regret of WIN-EXP). The regret of the WIN-EXP algorithm with the aforementioned

unbiased estimates and step size
b

2 logp|B|q
5T is: 4

a

T logp|B|q.

Proof. Observe that regret with respect to utilities utp¨q is equal to regret with respect to the

translated utilities utp¨q ´ 1. We use the fact that the exponential weights update with an

unbiased estimate ũtp¨q ď 0 of the true utilities, achieves expected regret of the form2:

RpTq ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
”

pũtpbqq2
ı

`
1
η

logp|B|q

Invoking the bound on the second moment by Lemma 5.1, we get:

RpTq ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨
ˆ

4PrAt|bt “ bs
PrAts

`
Pr At|bt “ bs

Pr Ats

˙

`
1
η

logp|B|q ď
5
2

ηT`
1
η

logp|B|q

Picking η “

b

2 logp|B|q
5T , we get the theorem.

2A detailed proof of this claim can be found in Appendix D.7.
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5.4 Beyond Binary Outcomes: Outcome-Based Feedback

In the win-only feedback framework there were two possible outcomes that could happen:

either you win the reward or not. We now consider a more general problem, where there

are more than two outcomes and you learn your reward function for the outcome you won.

Moreover, the outcome that you won is also a probabilistic function of your action. The proofs

for the results presented in this section can be found in Appendix D.2.

Learning with Outcome-Based Feedback. Every day a learner picks an action bt from a

finite set B. There is a set of payoff-relevant outcomes O. The adversary chooses a reward

function rt : BˆO Ñ r´1, 1s, which maps an action and an outcome to a reward and he also

chooses an allocation function xt : B Ñ ∆pOq, which maps an action to a distribution over the

outcomes. Let xtpb, oq be the probability of outcome o under action b. An outcome ot P O is

chosen based on distribution xtpbtq. The learner wins reward rtpbt, otq and observes the whole

outcome-specific reward function rtp¨, otq. He always learns the allocation function xtp¨q after

the iteration. Let utpbq “
ř

oPO rtpb, oq ¨ xtpb, oq be the expected utility from action b.

We consider the following adaptation of the EXP3 algorithm with unbiased estimates

based on the information received. It is also notationally useful throughout the section to

consider ot as the random variable of the outcome chosen at time t. Then, we can write:

Ptrot|bs “ xtpb, otq and Ptrots “
ř

bPB πtpbqPtrot|bs “
ř

bPB πtpbq ¨ xtpb, otq. With this notation

and based on the feedback structure, we define our WIN-EXP algorithm for learning with

outcome-based feedback in Algorithm 4.
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Algorithm 4 WIN-EXP algorithm for learning with outcome-based feedback

Let π1pbq “ 1
|B| for all b P B (i.e. the uniform distribution over bids), η “

b

logp|B|q
2T|O|

for each iteration t do

Draw an action bt from the multinomial distribution based on πtp¨q

Observe xtp¨q, observe chosen outcome ot and associated reward function rtp¨, otq

Compute estimate of utility:

ũtpbq “
prtpb, otq ´ 1qPtrot|bs

Ptrots
(5.1)

Update πtp¨q based on the Exponential Weights Update:

@b P B : πt`1pbq9πtpbq ¨ exp tη ¨ ũtpbqu (5.2)

end for

Theorem 5.2 (Regret of WIN-EXP with outcome-based feedback). The regret of Algorithm 4 with

ũtpbq “
prtpb,otq´1qPtrot|bs

Ptrots
and step size

b

logp|B|q
2T|O| is: 2

a

2T|O| logp|B|q.

Applications to Learning in Auctions. We now present a series of applications of the main

result of this section to several learning in auction settings, even beyond single-item or single-

dimensional ones.

Example 5.1 (Second-price auction). auppose that the mechanism ran at each iteration is just the

second price auction. Then, we know that the allocation function Xipbi, b´iq is simply of the form:

Itbi ě maxj‰i bju and the payment function is simply the second highest bid. In this case, observing the

allocation and payment functions at the end of the auction simply boils down to observing the highest

other bid. In fact, in this case we have a trivial setting where the bidder gets an allocation of either 0 or 1

and if we let Bt “ maxj‰i bjt, then the unbiased estimate of the utility takes the simpler form (assuming

the bidder always loses in case of ties) of: ũtpbq
pvit´Bt´1qItbąBtu

ř

b1ąBt
πtpb1q

if bt ą Bt and ũtpbq ´
ItbďBtu

ř

b1ďBt
πtpb1q

in any other case. Our main theorem gives regret 4
a

T logp|B|q. We note that this theorem recovers

exactly the results of Weed, Perchet, and Rigollet [WPR16], by simply using as B a uniform 1{∆o
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discretization of the bidding space, for an appropriately defined constant ∆o (see Appendix D.2.1 for an

exact comparison of the results).

Example 5.2 (Value-per-click auctions). This is a variant of the binary outcome case analyzed in

Section 5.3, where O “ tA, Au, i.e. get clicked or not. Hence, |O| “ 2, and rtpb, Aq “ vt ´ ptpbq,

while rtpb, Aq “ 0. Our main theorem gives regret 4
a

T logp|B|q.

Example 5.3 (Unit-demand multi-item auctions). Consider the case of K items at an auction where

the bidder has value vk for only one item k. Given a bid b, the mechanism defines a probability distribution

over the items that the bidder will be allocated and also defines a payment function, which depends on

the bid of the bidder and the item allocated. When a bidder gets allocated an item k he gets to observe his

value vkt for that item. Thus, the set of outcomes is equal to O “ t1, . . . , K` 1u, with outcome K` 1

associated with not getting any item. The rewards are also of the form: rtpb, kq “ vkt ´ ptpb, kq for

some payment function ptpb, kq dependent on the auction format. Our main theorem then gives regret

2
a

2pK` 1qT logp|B|q.

5.4.1 Batch Rewards Per-Iteration and Sponsored Search Auctions

We now consider the case of sponsored search auctions, where the learner participates in

multiple auctions per-iteration. At each of these auctions he has a chance to win and get

feedback on his value. To this end, we abstract the learning with win-only feedback setting to a

setting where multiple rewards are awarded per-iteration. The allocation function remains the

same throughout the iteration but the reward functions can change.

Outcome-Based Feedback with Batch Rewards. Every iteration t is associated with a set of

reward contests It. The learner picks an action bt, which is used at all reward contests. For

each τ P It the adversary picks an outcome specific reward function rτ : B ˆO Ñ r´1, 1s.

Moreover, the adversary chooses an allocation function xt : B Ñ ∆pOq, which is not τ-

dependent. At each τ, an outcome oτ is chosen based on distribution xtpbtq and independently.

The learner receives reward rτpbt, oτq from that contest. The overall realized utility from that

iteration is the average reward: 1
|It|

ř

τPIt
rτpbt, oτq, while the expected utility from any bid b is:

utpbq “ 1
|It|

ř

τPIt

ř

oPO rτpb, oq ¨ xtpb, oq. We assume that at the end of each iteration the learner
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receives as feedback the average reward function conditional on each realized outcome, i.e. if

we let Ito “ tτ P It : oτ “ ou, then the learner learns the function: Qtpb, oq “ 1
|Ito|

ř

τPIto
rτpb, oq

(with the convention that Qtpb, oq “ 0 if |Ito| “ 0) as well as the realized frequencies ftpoq “
|Ito|
|It|

for all outcomes o.

With this at hand we can define the batch-analogue of our unbiased estimates of the previous

section. To avoid any confusion we define: Ptro|bs “ xtpb, oq and Ptros “
ř

bPB πtpbqPtro|bs, to

denote that these probabilities only depend on t and not on τ. The estimate of the utility will

be:

ũtpbq “
ÿ

oPO

Pt ro|bs
Ptros

ftpoq pQtpb, oq ´ 1q (5.3)

We show the full algorithm with outcome-based batch-reward feedback in Algorithm 5.

Algorithm 5 WIN-EXP algorithm for learning with outcome-based batch-reward feedback

Let π1pbq “ 1
|B| for all b P B (i.e. the uniform distribution over bids), η “

b

logp|B|q
2T|O|

for each iteration t do

Draw an action bt from the multinomial distribution based on πtp¨q

Observe xtp¨q, chosen outcomes oτ,@τ P It, average reward function conditional on each

realized outcome Qtpb, oq and the realized frequencies for each outcome ftpoq “
|Ito|
|It|

.

Compute estimate of utility:

ũtpbq “
ÿ

oPO

Pt ro|bs
Ptros

ftpoq pQtpb, oq ´ 1q (5.4)

Update πtp¨q based on the Exponential Weights Update:

@b P B : πt`1pbq9πtpbq ¨ exp tη ¨ ũtpbqu (5.5)

end for

Corollary 5.3. The WIN-EXP algorithm with the latter unbiased utility estimates and step size
b

logp|B|q
2T|O| , achieves regret in the outcome-based feedback with batch rewards setting at most: 2

a

2T|O| logp|B|q.

It is also interesting to note that the same result holds if instead of using ftpoq in the

expected utility (Equation (D.4)), we used its mean value, which is xtpo, btq “ Ptro|bts. This
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would not change any of the derivations above. The nice property of this alternative is that

the learner does not need to learn the realized fraction of each outcome, but only the expected

fraction of each outcome. This is already contained in the function xtp¨, ¨q, which we assumed

was given to the learner at the end of each iteration. Thus, with these new estimates, the learner

does not need to observe ftpoq. In Appendix D.3 we also discuss the case where different

periods can have different number of rewards and how to extend our estimate to that case.

The batch rewards setting finds an interesting application in the case of learning in sponsored

search, as we describe below.

Example 5.4 (Sponsored Search). In the case of sponsored search auctions, the latter boils down

to learning the average value pv “ 1
#clicks

ř

clicks vclick for the clicks that were generated, as well as the

cost-per-click function ptpbq, which is assumed to be constant throughout the period t. Given these

quantities, the learner can compute: Qpb, Aq “ pv´ ptpbq and Qpb, Aq “ 0. An advertiser can keep

track of the traffic generated by a search engine ad and hence, can keep track of the number of clicks from

the search engine and the value generated by each of these clicks (conversion). Thus, he can estimate

pv. Moreover, he can elicit the probability of click (aka click-through-rate or CTR) curves xtp¨q and

the cost-per-click (CPC) curves ptp¨q over relatively small periods of time of about a few days. See for

instance the Adwords bid simulator tools offered by Google, which exactly enable a bidder to elicit these

curves [Goo18a; Goo18b; Mic18]3. Thus, with these at hand we can apply our batch reward outcome

based feedback algorithm and get regret that does not grow linearly with |B|, but only as 4
a

T log p|B|q.

Our main assumption is that the expected CTR and CPC curves during this relatively small period of a

few days remains approximately constant. The latter holds if the distribution of click-through-rates does

not change within these days and if the bids of opponent bidders also do not significantly change. This is

a reasonable assumption when feedback can be elicited relatively frequently, which is the case in practice.

3One could argue that the CTRs that the bidder gets in this case are not accurate enough. Nevertheless, even
if they have random perturbations, we show in our experimental results that for reasonable noise assumptions,
WIN-EXP is more robust compared to EXP3.
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5.5 Continuous Actions with Piecewise-Lipschitz Rewards

In this section, we extend our discussions to continuous action spaces; that is, we allow the

action of each bidder to lie in a continuous action space B (e.g. a uniform interval in r0, 1s). To

assist us in our analysis, we are going to use the following discretization result by Kleinberg

[Kle05] 4. For what follows in this section, let RpT,Bq “ supb˚PB E
”

řT
t“1 putpb˚q ´ utpbtqq

ı

be the regret of the bidder, after T rounds with respect to an action space B. Moreover, for

any pairs of action spaces B and B we let: DEpB,Bq “ supbPB
řT

t“1 utpbq ´ supb1PB
řT

t“1 utpb1q,

denote the discretization error incurred by optimizing over B instead of B. The proofs of this

section can be found in Appendix D.5.

Lemma 5.2. ([Kle05; KSU08]) Let B be a continuous action space and B a discretization of B. Then:

RpT,Bq ď RpT, Bq `DEpB,Bq

Observe now that in the setting of Weed, Perchet, and Rigollet [WPR16] the discretization

error was: DEpB,Bq “ 0 if ε ă ∆o, as we discussed in Section 5.4 and that was the key that

allowed us to recover this result, without adding an extra εT in the regret of the bidder. To

achieve that, we construct the following general class of utility functions:

Definition 5.1 (∆o-Piecewise Lipschitz Average Utilities). A learning setting with action space

B “ r0, 1sd, is said to have ∆o-Piecewise Lipschitz Cumulative Utilities if the average utility function

1
T
řT

t“1 utpbq satisfies the following conditions: the bidding space r0, 1sd is divided into d-dimensional

cubes with edge length at least ∆o and within each cube the utility is L-Lipschitz with respect to the `8

norm. Moreover, for any boundary point there exists a sequence of non-boundary points whose limit

cumulative utility is at least as large as the cumulative utility of the boundary point.

Lemma 5.3 (Discretization Error for Piecewise Lipschitz). Let B “ r0, 1sd be a continuous action

space and B a uniform ε-grid of r0, 1sd, such that ε ă ∆o (i.e. B consists of all the points whose

coordinates are multiples of a given ε). Assume that the average utility function is ∆o-Piecewise

L-Lipschitz. Then, the discretization error of B is bounded as: DEpB,Bq ď εLT.

4In [Kle05] Kleinberg discusses the uniform discretization of continuum-armed bandits and in [KSU08] the
authors extend the results for the case of Lipschitz-armed bandits.
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If we know the Lipschitzness constant L mentioned above, the time horizon T and ∆o, then

our WIN-EXP algorithm for Outcome-Based Feedback with Batch Rewards yields regret as

defined by the following theorem. In Appendix D.5, we also show how to deal with unknown

parameters L, T and ∆o by applying a standard doubling trick.

Theorem 5.4. Let B “ r0, 1sd be the action space as defined in our model and let B be a uniform ε-grid

of B. The WIN-EXP algorithm with unbiased estimates given by Equation D.4 on space B with step size
b

logp|B|q
2T|O| and ε “ min

 1
LT , ∆o

(

achieves expected regret at most 2
b

2T|O|d log
`

max
 1

∆o , LT
(˘

` 1

in the outcome-based feedback with batch rewards and ∆o-Piecewise L´Lipschitz average utilities 5.

Example 5.5 (First Price and All-Pay Auctions). Consider the case of learning in first price or all-pay

auctions. In the former, the highest bidder wins and pays his bid, while in the latter the highest bidder

wins and every player pays his bid whether he wins or loses. Let Bt be the highest other bid at time t.

Then the average hindsight utility of the player in each auction is 6:

1
T
řT

t“1 utpbq “ 1
T
řT

t“1 vt ¨ Itb ą Btu ´ b ¨ 1
T
řT

t“1 Itb ą Btu (first price)

1
T
řT

t“1 utpbq “ 1
T
řT

t“1 vt ¨ Itb ą Btu ´ b (all-pay)

Let ∆o be the smallest difference between the highest other bid at any two iterations t and t1 7.

Then observe that the average utilities in this setting are ∆o-Piecewise 1-Lipschitz: Between any two

highest other bids, the average allocation, 1
T
řT

t“1 vt ¨ Itb ą Btu, of the player remains constant and

the only thing that changes is his payment which grows linearly. Hence, the derivative at any bid

between any two such highest other bids is upper bounded by 1. Hence, by applying Theorem 5.4, our

WIN-EXP algorithm with a uniform discretization on a ε-grid, for ε “ min
 

∆o, 1
T

(

, achieves regret

4
b

T log
`

max
 1

∆o , T
(˘

q ` 1, where we used that |O| “ 2 and d “ 1 for any of these auctions.

5Interestingly, the above regret bound can help to retrieve two familiar expressions for the regret. First, when
L “ 0 (i.e. when the function is constant within each cube), which is the case for the second price auction analyzed

by [WPR16], RpTq “ 2
c

2dT|O| log
´

1
∆o

¯

` 1. Hence, we recover the bounds from the prior sections up to a tiny

increase. Second, when ∆o Ñ8, then we have functions that are L-Lipschitz in the whole space B and the regret
bound that we retrieve is: RpTq “ 2

a

2dT|O| log pLTq ` 1, which is of the type achieved in continuous lipschitz
bandit settings.

6For simplicity assume the player loses in case of ties, though we can handle arbitrary random tie-breaking
rules.

7This is an analogue of the ∆o used by [WPR16] in second price auctions.
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5.5.1 Sponsored Search with Lipschitz Utilities

In this subsection, we extend our analysis of learning in the sponsored search auction model

(Example 5.4) to the continuous bid space case, i.e., each bidder can submit a bid b P r0, 1s.

As a reminder, the utility function is: utpbq “ xtpbqppvt ´ ptpbqq, where b P r0, 1s, pvt P r0, 1s

is the average value for the clicks at iteration t, xtp¨q is the CTR curve and ptp¨q is the CPC

curve. These curves are implicitly formed by running some form of a Generalized Second Price

auction (GSP) at each iteration to determine the allocation and payment rules.

We show in this section that the form of the GSP ran in reality gives rise to Lipschitz

utilities, under some minimal assumptions. Therefore, we can apply the results in Section 5.5

to get regret bounds even with respect to the continuous bid space B “ r0, 1s 8. We begin by

providing a brief description of the type of Generalized Second Price auction ran in practice.

Definition 5.2 (Weighted-GSP). Each bidder i is assigned a quality score si P r0, 1s. Bidders are

ranked according to their score-weighted bid si ¨ bi, typically called the rank-score. Every bidder whose

rank-score does not pass a reserve r is discarded. Bidders are allocated slots in decreasing order of

rank-score. Each bidder is charged per-click the lowest bid he could have submitted and maintained the

same slot. Hence, if a bidder i is allocated a slot k and ρk`1 is the rank-score of the bidder in slot k` 1,

then he is charged ρk`1{si per-click. We denote with Uipb, s, rq, the utility of bidder i under a bid profile

b and score profile s.

The quality scores are typically highly random and dependent on the features of the

advertisement and the user that is currently viewing the page. Hence, a reasonable modeling

assumption is that the scores si at each auction are drawn i.i.d. from some distribution with

CDF Fi. We now show that if the CDF Fi is Lipschitz (i.e. admits a bounded density), then the

utilities of the bidders are also Lipschitz.

Theorem 5.5 (Lipschitzness of the utility of Weighted GSP). Suppose that the score si of each

bidder i in a weighted GSP is drawn independently from a distribution with an L´Lipschitz CDF Fi.

Then, the expected utility uipbi, b´i, rq “ Es rUipbi, b´i, s, rqs is 2nL
r ´Lipschitz wrt bi.

8The aforementioned Lipschitzness is also reinforced by real world data sets from Microsoft’s sponsored search
auction system.

120



Thus, we see that when the quality scores in sponsored search are drawn from L-Lipschitz

CDFs Fi,@i P n and the reserve is lower bounded by δ ą 0, then the utilities are 2nL
δ -Lipschitz

and we can achieve good regret bounds by using the WIN-EXP algorithm with batch rewards,

with action space B being a uniform ε-grid, ε “ δ
2nLT and unbiased estimates given by Equation

(D.4) or Equation (5.3). In the case of sponsored search the second unbiased estimate takes the

following simple form:

ũtpbq “
xtpbq¨xtpbtq

ř

b1PB πtpb1qxtpb1q
ppvt ´ ptpbq ´ 1q ´ p1´xtpbqq¨p1´xtpbtqq

ř

b1PB πtpb1qp1´xtpb1qq
(5.6)

where pvt is the average value from the clicks that happened during iteration t, xtp¨q is the

CTR curve, bt is the realized bid that the bidder submitted and πtp¨q is the distribution over

discretized bids of the algorithm at that iteration. We can then apply Theorem 5.4 to get the

following guarantee:

Corollary 5.6. The WIN-EXP algorithm run on a uniform ε-grid with ε “ δ
2nLT , step size

b

logp1{εq
4T

and unbiased estimates given by Equation (D.4) or Equation (5.3), when applied to the sponsored search

auction setting with quality scores drawn independently from distributions with L-Lipschitz CDFs,

achieves regret at most: 4
b

T log
`2nLT

δ

˘

` 1.

5.6 Further Extensions

In this section, we discuss two extensions of our setting, one is about switching regret and the

implications for Price of Anarchy and the other is the extension to feedback graphs setting.

5.6.1 Switching Regret and Implications for Price of Anarchy

We show below that actually our results can be extended to capture the case where, instead

of having just one optimal bid b˚, there is a sequence of C ě 1 switches in the optimal bids.

Using the results presented in [GLL12] and adapting them for our setting we get the following

corollary (with proof in Appendix D.6).

Corollary 5.7. Let C ě 0 be the number of times that the optimal bid b˚ P B switches in a horizon of T

rounds. Then, using Algorithm 2 in [GLL12] with A ” WIN-EXP and any α P p0, 1q we can achieve

121



expected switching regret at most: O
ˆ

b

pC` 1q2
`

2` 1
α

˘

2d|O|T log
`

max
 

LT, 1
∆o

(˘

˙

This result has implications on the price of anarchy (PoA) of auctions. In the case of sponsored

search where bidders’ valuations are changing over time adversarially but non-adaptively, our

result shows that if the valuation does not change more than C times, we can compete with any

bid that is a function of the value of the bidder at each iteration, with regret rate given by the

latter theorem. Therefore, by standard PoA arguments [LST16], this would imply convergence

to an approximately efficient outcome at a faster rate than bandit regret rates.

5.6.2 Feedback Graphs over Outcomes

We now extend Section 5.5, by assuming that there is a directed feedback graph G “ pO, Eq over

the outcomes. When outcome ot is chosen, the player observes not only the outcome specific

reward function rtp¨, otq, for that outcome, but also for any outcome o in the out-neighborhood

of ot in the feedback graph, which we denote with Noutpotq. Correspondingly, we denote with

Ninpoq the incoming neighborhood of o in G. Both neighborhoods include self-loops. Let

Gε “ pOε, Eεq be the sub-graph of G that contains only outcomes for which Ptrots ě ε and

subsequently, let Nin
ε and Nout

ε be the in and out neighborhoods of this sub-graph.

Based on this feedback graph we construct a WIN-EXP algorithm with step-size η “
c

logp|B|q

8Tα ln
´

16|O|2T
α

¯ , utility estimate ũtpbq “ Itot P Oεu
ř

oPNout
ε potq

prtpb,oq´1qPtro|bs
ř

o1PNin
ε poq

Ptro1s
and feedback struc-

ture as described in the previous paragraph. With these changes we can show that the regret

grows as a function of the independence number of the feedback graph, denoted with α, rather than

the number of outcomes. The full Algorithm 6 can be found in Appendix D.1.

Theorem 5.8 (Regret of WIN-EXP-G). The regret of the WIN-EXP-G algorithm with step size

η “
c

logp|B|q

8Tα ln
´

16|O|2T
α

¯ is bounded by: RpTq ď 2
c

8αT logp|B|q ln
´

16|O|2T
α

¯

` 1.

In the case of learning in auctions, the feedback graph over outcomes can encode the possibility

that winning an item can help you uncover your value for other items. For instance, in a

combinatorial auction for m items, the reader should think of each node in the feedback graph

as a bundle of items. Then the graph encodes the fact that winning bundle o can teach you the

value for all bundles o1 P Noutpoq. If the feedback graph has small dependence number then a
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much better regret is achieved than the dependence on
?

2m, that would have been derived

by our outcome-based feedback results of prior sections, if we treated each bundle of items

separately as an outcome.

5.7 Experimental Results

In this section, we present our results from our comparative analysis between EXP3 and

WIN-EXP on a simulated sponsored search system that we built and which is a close proxy

of the actual sponsored search algorithms deployed in the industry. We implemented the

weighted GSP auction as described in definition 5.2. The auctioneer draws i.i.d rank scores that

are bidder and timestep specific; as is the case throughout our paper, here we have assumed

a stochastic auctioneer with respect to the rank scores. After bidding, the bidder will always

be able to observe the allocation function. Now, if the bidder gets allocated to a slot and she

gets clicked, then, she is able observe the value and the payment curve. Values are assumed to

lie in r0, 1s and they are obliviously adversarial. Finally, the bidders choose bids from some

ε-discretized grid of r0, 1s (in all experiments, apart from the ones comparing the regrets for

different discretizations, we use ε “ 0.001) and update the probabilities of choosing each

discrete bid according to EXP3 or WIN-EXP. Regret is measured with respect to the best fixed

discretized bid in-hindsight.

We distinguish three cases of the bidding behavior of the rest of the bidders (apart from

our learner): i) all of them are stochastic adversaries drawing bids at random from some

distribution, ii) there is a subset of them that are bidding adaptively, by using an EXP3 online

learning algorithm and iii) there is a subset of them that are bidding adaptively but using a

WINEXP online learning algorithm (self play). Validating our theoretical claims, in all three

cases, WIN-EXP outperforms EXP3 in terms of regret. We generate the event of whether a

player gets clicked or not as follows: we draw a timestep specific threshold value in r0, 1s and

the learner gets a click in case the CTR of the slot he got allocated (if any) is greater than this

threshold value. Note here that the choice of a timestep specific threshold imposes monotonicity,

i.e. if the learner did not get a click when allocated to a slot with CTR xtpbq, she should
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not be able to get a click from slots with lower CTRs. We ran simulations with 3 different

distributions of generating CTRs, so as to understand what is the effect of different levels of

click-through-rates on the variance of our regret: i) xtpbq „ Ur0.1, 1s, ii) xtpbq „ Ur0.3, 1s and

iii) xtpbq „ Ur0.5, 1s. Finally, we address robustness of our results to errors in CTR estimation.

For this, we add random noise to the CTRs of each slot and we report to the learners the

allocation and payment functions that correspond to the erroneous CTRs. The noise was

generated according to a normal distribution N p0, 1
m q, where m could be viewed as the number

of training samples on which a machine learning algorithm was ran in order to output the CTR

estimate (m “ 100, 1000, 10000).

For each of the following simulations, there are N “ 20 bidders, k “ 3 slots and we ran

the experiment for each round for a total of 10 times. For the simulations that correspond

to adaptive adversaries we used a “ 4 adversaries. Our results for the cumulative regret are

presented below. We measured ex-post regret with respect to the realized thresholds that

determine whether a player gets clicked or not. Note that the solid plots correspond to the

emprical mean of the regret, whereas the opaque bands correspond to the 10-th and 90-th

percentile.

Different discretizations. In Figure 5.2 we present the comparative analysis of the estimated

average regret of WIN-EXP vs EXP3 for different discretizations, ε, of the bidding space when

the learner faces stochastic adversaries (Fig. 5.2a), adaptive ones using EXP3 (Fig. 5.2b) and

adaptive ones using WINEXP (Fig. 5.2c). As it was expected from the theoretical analysis,

observe that the regret of WIN-EXP, as the disretized space (|B|) increases exponentially,

remains almost unchanged compared to the regret of EXP3. What is more, for T “ 5000

the regret of WIN-EXP has almost been stabilized, while the regret of EXP3 has just started

reaching the plateau phase yet. In summary, finer discretization of the bid space helps our

WIN-EXP algorithm’s performance, but hurts the performance of EXP3.

Different CTR Distributions. In Figures 5.3, 5.4 and 5.5 we present the results of the regret

performance of WIN-EXP compared to EXP3, when the learner discretizes the bidding space
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(a) Stochastic Adversaries (b) Adaptive Adversaries EXP3 (c) Adaptive Adversaries WINEXP

Figure 5.2: Regret of WIN-EXP vs EXP3 for different discretizations ε (CTR „ Ur0.5, 1s).

(a) CTR „ Ur0.1, 1s (b) CTR „ Ur0.3, 1s (c) CTR „ Ur0.5, 1s

Figure 5.3: Regret of WIN-EXP vs EXP3 for different CTR distributions and stochastic adversaries, ε “ 0.001.

with ε “ 0.001 and when she faces stochastic, adaptive adversaries using EXP3 and adaptive

adversaries using WINEXP, respectively. For all three cases, the estimated average regret of

WIN-EXP is less than the estimated average regret that EXP3 yields. As the CTRs are shifted to

higher values, the probability of getting clicked (based on our threshold concept) increases and

thus, WIN-EXP can acquires information about the value more frequently.

Robustness to Noisy CTR Estimates. In Figures 5.6, 5.7, 5.8 we empirically tested the robust-

ness of our algorithm to random perturbations of the allocation function that the auctioneer

presents to the learner, for perturbations of the form N
`

0, 1
m

˘

, where m could be viewed as

the number of training examples used from the auctioneer in order to derive an approxima-
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(a) CTR „ Ur0.1, 1s (b) CTR „ Ur0.3, 1s (c) CTR „ Ur0.5, 1s

Figure 5.4: Regret of WIN-EXP vs EXP3 for different CTR distributions and adaptive EXP3 adversaries,
ε “ 0.001.

(a) CTR „ Ur0.1, 1s (b) CTR „ Ur0.3, 1s (c) CTR „ Ur0.5, 1s

Figure 5.5: Regret of WIN-EXP vs EXP3 for different CTR distributions and adaptive WINEXP adversaries,
ε “ 0.001.
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(a) m “ 100 (b) m “ 1000 (c) m “ 10000

Figure 5.6: Regret of WIN-EXP vs EXP3 with noise „ N
´

0, 1
m

¯

for stochastic adversaries, ε “ 0.001.

(a) m “ 100 (b) m “ 1000 (c) m “ 10000

Figure 5.7: Regret of WIN-EXP vs EXP3 with noise „ N
´

0, 1
m

¯

for adaptive EXP3 adversaries, ε “ 0.001.

tion of the allocation curve. Even when the number of training samples is relatively small

(m “ 100) WINEXP clearly outperforms EXP3 in terms of regret, i.e., it is more robust to such

perturbations. The latter validates one of our claims throughout the paper; namely, that even

though the learner might not see the exact allocation curve, but a randomly perturbed proxy

WIN-EXP still performs better than the EXP3.
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(a) m “ 100 (b) m “ 1000 (c) m “ 10000

Figure 5.8: Regret of WIN-EXP vs EXP3 with noise „ N
´

0, 1
m

¯

for adaptive WINEXP adversaries, ε “ 0.001.

5.8 Discussion

We addressed learning in repeated mechanism design scenarios were players do not know

their valuation for the items at sale. We formulated an online learning framework with partial

feedback which captures the information available to players in typical auction settings like

sponsored search and provided an algorithm which achieves almost full information regret

rates. Hence, we portrayed that not knowing your valuation is a benign form of incomplete

information learning in auctions. Our experimental evaluation also showed that the improved

learning rates are robust to violations of our assumptions and are valid even when the

information assumed is corrupted. We believe that exploring further avenues of relaxing the

informational assumptions or being more robust to erroneous information given by the auction

system is an interesting future research direction. We believe that our outcome based learning

framework can facilitate such future work.
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Chapter 6

Conclusion

In this thesis, I mainly focus on two research topics: Economic Design via Machine Learning

and Learning in Online Markets. These two topics form a loop between economic design and

machine learning. Part I and Part II focus on the first topic and Part III is dedicated to the

second topic.

In Part I, I initiate the exploration of the use of tools from deep learning for the automated

design of optimal auctions. I model an auction as multi-layer neural network, frame optimal

auction design as a constrained learning problem, and show how it can be solved using

standard machine learning pipelines. In particular, I propose three neural network architectures:

MyersonNet, RochetNet, and RegretNet to handle different auction settings. The first two networks

use characterization results from economic theory to guarantee DSIC, but are inflexible in that

they can only handle single-item auctions and single-bidder auctions. In contrast, RegretNet is

a general approach that uses negated, expected revenue as the loss function. Crucially, we must

achieve incentive compatibility. RegretNet is trained subject to a constraint that the expected ex

post regret to bidders for bidding truthfully is zero. When attained exactly, this is equivalent

to DSIC up to types with zero measure. RegretNet can handle multi-item and multi-bidder

settings.

In Part II, I extend RegretNet to design multi-item auctions where each buyer has a private

budget and generalize RegretNet to Bayesian incentive compatibility. This work shows the

flexibility and generality of the RegretNet framework, where it can be easily extended to handle
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other economic constraints and different incentive constraints. Indeed, a very recent work

by [Kuo+20] extends the RegretNet framework to handle fairness constraint in auctions. The

transformation proposed in Chapter 3 opens a future direction to transform a RegretNet to

a fully-BIC mechanism, without suffering any welfare loss and with only a negligible loss in

revenue. This work is the first to discuss the transformation of an ε-EEIC mechanism (i.e. with

tiny expected ex post regret) to a fully-BIC mechanism. I also show that if we want to preserve

welfare it is impossible to transform an ε-EEIC mechanism to a fully-BIC mechanism with

only negligible revenue loss unless the type distribution is uniform. A future direction is to

understand whether we can transform an ε-EEIC mechanism into a fully-BIC mechanism while

allowing negligible loss of revenue as well as welfare negligible loss of welfare.

In Part III, I consider the problem of Learning in Online Markets, where I focus on learning to

bid in repeated auctions. In Chapter 4, I analyze the convergence results of mean-based learning

algorithms in repeated single-item second price auctions, single-item first price auctions, and

multi-slot VCG auctions. This work strengthens the convergence results available for repeated

games, where previous results showed only that no-regret learning algorithms converge to

CCE in repeated games and in a time-average manner. A natural future direction of this

work is to understand when we can get stronger convergence results in general-sum repeated

games. In Chapter 5, I propose an online learning algorithm for bidders in repeated auctions

who don’t know their own value before submitting the bid. The algorithm has exponentially

faster convergence in terms of the size of the action space than generic bandit algorithms. The

algorithm can be easily extended to complex auction formats, e.g., sponsored search auctions,

and continuous valuation settings. Indeed, this work abstracts the real bidding system and

motivates how to bid in real ads systems. A natural future direction is to understand how to

incorporate into the algorithm approximate feedback about the allocation and payments and

how to extend to online contextual auctions.
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Further Discussion

I believe there is ample future opportunity for applying deep learning in the context of economic

design. I have demonstrated how standard pipelines augmented with consideration of incentive

alignment can re-discover and empirically surpass the analytical and computational progress in

optimal auction design that has been made over the past 30-40 years. While RegretNet is shown

to have advantages over standard LP approaches for automated mechanism design in terms of

computational efficiency and representation, a natural next step would be to scale this approach

further to industry scale (e.g., through standardized benchmarking suites and innovations

in network architecture). I also see promise for the framework in Chapter 1 in advancing

economic theory, for example in supporting or refuting conjectures and as an assistant in

guiding new economic discovery, if we can continue to capture incentive constraints within

the architecture of neural network. As we show, RegretNet achieves good empirical results

for automated mechanism design problems, by avoiding enumerative representations and

exponentially many constraints in the naive LP approaches. I believe the RegretNet framework

can be extended to other non-standard mechanism design settings, when there is no succinct

characterization of incentive compatibility.

The RegretNet framework can also be used in an online manner: we can train RegretNet

based on the bidding data from a previous period, deploy it in the next period, and iteratively

update RegretNet in this way. When using RegretNet online, we may face new challenges that

the bidding data are from strategic bidders who aim to maximize long term reward, it is an

open question to understand how to design robust mechanisms against these strategic bidders

through deep learning. I provide generalization bounds for the RegretNet framework, however,

there is no theoretical guarantee in regard to solving the optimization problem associated

with training RegretNet. In future work, it will be interesting to understand the convergence

and optimality guarantees of RegretNet. It is worth exploring the opportunity to extend the

menu-based characterization (used in RochetNet) to multi-item settings and capture it within

the architecture of neural networks in order to guarantee exact incentive compatibility. In

addition, the RegretNet framework can directly handle correlated valuations since it only takes

131



the bids profile as an input. Despite the negative sample complexity results for the correlated

valuation setting in the worst case [DHN14], it will be interesting to empirically understand

the sample size needed for training RegretNet for different valuation settings.

In Chapter 3, the approximately IC to BIC transformation builds upon the finite type setting

and needs oracle access to interim quantities of the original mechanism. A natural next step is

to generalize the transformation to continuous valuation settings with only sample access to

the original approximately IC mechanism, and still in polynomial time. The negative results

for ε-EEIC mechanism with non-uniform type distributions only hold for the setting that we

need to preserve welfare. This leaves an open question that whether we can transform an

ε-EEIC mechanism (e.g. the mechanism modeled by RegretNet) to a DSIC mechanism with

only negligible loss of revenue (regardless of welfare). If such a transformation exists, then

we can transform any mechanism modeled by RegretNet to an exactly DSIC mechanism with

negligible loss of revenue.

To conclude, we are moving into an era that will make available a vast amount of detailed

data. This creates new challenges and opportunities for the market designer to rethink

how to utilize this data to design better markets and mechanisms. Moreover, with the

information feedback provided by the platform, participants will need to meet the challenges of

understanding how mechanisms work and learning to maximize their long term reward. These

challenges motivate the work presented in this thesis, this work rethinking the problems that

lie in the loop between economic design and machine learning. I believe that with continued

progress, we can create better markets that serve to benefit society.
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Appendix A

Appendix to Chapter 1

A.1 Additional Architectures

In this appendix we present our network architectures for multi-bidder single-item settings

and for a general multi-bidder multi-item setting with combinatorial valuations.

A.1.1 The MyersonNet Approach

We start by describing an architecture that yields optimal DSIC auction for selling a single item

to multiple buyers.

In the single-item setting, each bidder holds a private value vi P Rě0 for the item. We

consider a randomized auction pg, pq that maps a reported bid profile b P Rn
ě0 to a vector of

allocation probabilities gpbq P Rn
ě0, where gipbq P Rě0 denotes the probability that bidder i

is allocated the item and
řn

i“1 gipbq ď 1. We shall represent the payment rule pi via a price

conditioned on the item being allocated to bidder i, i.e. pipbq “ gipbq tipbq for some conditional

payment function ti : Rn
ě0 Ñ Rě0. The expected revenue of the auction, when bidders are

truthful, is given by:

revpg, pq “ Ev„F

„ n
ÿ

i“1

gipvq tipvq


. (A.1)

The structure of the revenue-optimal auction is well understood for this setting.

Theorem A.1 (Myerson [Mye81]). There exist a collection of monotonically non-decreasing functions,
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φ̄i : Rě0 Ñ R called the ironed virtual valuation functions such that the optimal BIC auction for selling

a single item is the DSIC auction that assigns the item to the buyer with the highest ironed virtual

value φ̄ipviq provided that this value is non-negative, with ties broken in an arbitrary value-independent

manner, and charges the bidders according to pipviq “ vigipviq ´
şvi

0 giptq dt.

For distribution Fi with density fi the virtual valuation function is ψipviq “ vi ´ p1 ´

Fpviqq{ f pviq. A distribution Fi with density fi is regular if ψi is monotonically non-decreasing.

For regular distributions F1, . . . , Fn no ironing is required and φ̄i “ ψi for all i.

If the virtual valuation functions ψ1, . . . , ψn are furthermore monotonically increasing and

not only monotonically non-decreasing, the optimal auction can be viewed as applying the

monotone transformations to the input bids b̄i “ φ̄ipbiq, feeding the computed virtual values to

a second price auction (SPA) with zero reserve price, denoted pg0, p0q, making an allocation

according to g0pb̄q, and charging a payment φ̄´1
i pp0

i pb̄qq for winning bidder i. In fact, this

auction is DSIC for any choice of strictly monotone transformations of the values:

Theorem A.2. For any set of strictly monotonically increasing functions φ̄1, . . . , φ̄n, an auction defined

by outcome rule gi “ g0
i ˝ φ̄ and payment rule pi “ φ̄´1

i ˝ p0
i ˝ φ̄ is DSIC and IR, where pg0, p0q is

the allocation and payment rule of a second price auction with zero reserve.

For regular distributions with monotonically increasing virtual value functions designing

an optimal DSIC auction thus reduces to finding the right strictly monotone transformations

and corresponding inverses, and modeling a second price auction with zero reserve.

We present a high-level overview of a neural network architecture that achieves this in

Figure A.1(a), and describe the components of this network in more detail in Section A.1.1 and

Section A.1.1 below.

Our MyersonNet is tailored to monotonically increasing virtual value functions. For regular

distributions with virtual value functions that are not strictly increasing and for irregular

distributions this approach only yields approximately optimal auctions.
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φ̄1b1

...

φ̄nbn

g0 pz1, . . . , znq

p0

SPA-0

...

φ̄´1
1 t1

φ̄´1
n tn

(a)

bi

...

h1,1

h1,J

...

hK,1

hK,J

max

max

... ... min b̄i

(b)

Figure A.1: (a) MyersonNet: The network applies monotone transformations φ̄1, . . . , φ̄n to the input bids, passes
the virtual values to the SPA-0 network in Figure A.2, and applies the inverse transformations φ̄´1

1 , . . . , φ̄´1
n to

the payment outputs. (b) Monotone virtual value function φ̄i, where hkjpbiq “ eαi
kj bi ` βi

kj.

Modeling Monotone Transforms

We model each virtual value function φ̄i as a two-layer feed-forward network with min and

max operations over linear functions. For K groups of J linear functions, with strictly positive

slopes wi
kj P Rą0, k “ 1, . . . , K, j “ 1, . . . , J and intercepts βi

kj P R, k “ 1, . . . , K, j “ 1, . . . , J, we

define:

φ̄ipbiq “ min
kPrKs

max
jPrJs

wi
kj bi ` βi

kj.

Since each of the above linear function is strictly non-decreasing, so is φ̄i. In practice, we can

set each wi
kj “ eαi

kj for parameters αi
kj P r´B, Bs in a bounded range. A graphical representation

of the neural network used for this transform is shown in Figure A.1(b). For sufficiently large

K and J, this neural network can be used to approximate any continuous, bounded monotone

function (that satisfies a mild regularity condition) to an arbitrary degree of accuracy [Sil98]. A

particular advantage of this representation is that the inverse transform φ̄´1 can be directly

obtained from the parameters for the forward transform:

φ̄´1
i pyq “ max

kPrKs
min
jPrJs

e´αi
kjpy´ βi

kjq.

Modeling SPA with Zero Reserve

We also need to model a SPA with zero reserve (SPA-0) within the neural network structure.

For the purpose of training, we employ a smooth approximation to the allocation rule using a

neural network. Once we learn value functions using this approximate allocation rule, we use
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b̄1

b̄2

...

b̄n

0

z1

z2

zn

zn´1

...

so f tmax

(a) Allocation rule g0

b̄1

b̄2

...

b̄n

0

max t0
1

max t0
2

max t0
n´1

max t0
n

...

(b) Payment rule t0

Figure A.2: MyersonNet: SPA-0 network for (approximately) modeling a second price auction with zero reserve
price. The inputs are (virtual) bids b̄1, . . . , b̄n and the output is a vector of assignment probabilities z1, . . . , zn and
prices (conditioned on allocation) t0

1, . . . , t0
n.

them together with an exact SPA with zero reserve to construct the final auction.

The SPA-0 allocation rule g0 can be approximated using a ‘softmax’ function on the virtual

values b̄1, . . . , b̄n and an additional dummy input b̄n`1 “ 0:

g0
i pb̄q “

eκb̄i

řn`1
j“1 eκb̄j

, i P N, (A.2)

where κ ą 0 is a constant fixed a priori, and determines the quality of the approximation. The

higher the value of κ, the better the approximation but the less smooth the resulting allocation

function.

The SPA-0 payment to bidder i, conditioned on being allocated, is the maximum of the

virtual values from the other bidders and zero:

t0
i pb̄q “ max

 

max
j‰i

b̄j, 0
(

, i P N. (A.3)

Let gα,β and tα,β denote the allocation and conditional payment rules for the overall auction

in Figure A.1(a), where pα, βq are the parameters of the forward monotone transform. Given a

sample of valuation profiles S “ tvp1q, . . . , vpLqu drawn i.i.d. from F, we optimize the parameters

using the negated revenue on S as the error function, where the revenue is approximated as:

xrevpg, tq “
1
L

L
ÿ

`“1

n
ÿ

i“1

gα,β
i pvp`qq tα,β

i pvp`qq. (A.4)

We solve this training problemma using a minibatch stochastic gradient descent solver.
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A.1.2 RegretNet for Combinatorial Valuations1

We next show how to adjust the RegretNet architecture so that it can handle bidders with

general, combinatorial valuations. In the present work, we develop this architecture only for

small number of items.2 In this case, each bidder i reports a bid bi,S for every bundle of items

S Ď M (except the empty bundle, for which her valuation is taken as zero). The allocation

network has an output zi,S P r0, 1s for each bidder i and bundle S, denoting the probability that

the bidder is allocated the bundle. To prevent the items from being over-allocated, we require

that the probability that an item appears in a bundle allocated to some bidder is at most one.

We also require that the total allocation to a bidder is at most one:

ÿ

iPN

ÿ

SĎM:jPS

zi,S ď 1, @j P M; (A.5)

ÿ

SĎM

zi,S ď 1, @i P N. (A.6)

We refer to an allocation that satisfies constraints (A.5)–(A.6) as being combinatorial feasible.

To enforce these constraints, the allocation network computes a set of scores for each bidder

and a set of scores for each item. Specifically, there is a group of bidder-wise scores si,S,@S Ď M

for each bidder i P N, and a group of item-wise scores spjqi,S ,@i P N, S Ď M for each item

j P M. Let s, sp1q, . . . , spmq P Rnˆ2m
denote these bidder scores and item scores. Each group

of scores is normalized using a softmax function: s̄i,S “ exppsi,Sq{
ř

S1 exppsi,S1q and s̄pjqi,S “

exppspjqi,Sq{
ř

i1,S1 exppspjqi1,S1q. The allocation for bidder i and bundle S Ď M is defined as the

minimum of the normalized bidder-wise score s̄i,S and the normalized item-wise scores s̄pjqi,S for

each j P S:

zi,S “ ϕCF
i,S ps, sp1q, . . . , spmqq “ min

 

s̄i,S, s̄pjqi,S : j P S
(

.

Similar to the unit-demand setting, we first show that ϕCFps, sp1q, . . . , spmqq is combinatorial

feasible and that our constructive approach is without loss of generality. See Appendix A.3.5

1We thank Zihe Wang (Shanghai University of Finance and Economics) for pointing out that the incorrect
decomposition statement of combinatorial feasible allocations in the initial draft.

2With more items, combinatorial valuations can be succinctly represented using appropriate bidding languages;
see, e.g. [BH01].
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for a proof.

Lemma A.1. The matrix ϕCFps, sp1q, . . . , spmqq is combinatorial feasible @ s, sp1q, . . . , spmq P Rnˆ2m
.

For any combinatorial feasible matrix z P r0, 1snˆ2m
, D s, sp1q, . . . , spmq P Rnˆ2m

, for which z “

ϕCFps, sp1q, . . . , spmqq.

In addition, we want to understand whether a combinatorial feasible allocation z can be

implemmaentable, defined in the following way.

Definition A.1. A fractional combinatorial allocation z is implemmaentable if and only if z can be

represented as a convex combination of combinatorial feasible, deterministic allocations.

Unfortunately, Example A.1 shows that a combinatorial feasible allocation may not have an

integer decomposition, even for the case of two bidders and two items.

Example A.1. Consider a setting with two bidders and two items, and the following fractional,

combinatorial feasible allocation:

z “

»

—

–

z1,t1u z1,t2u z1,t1,2u

z2,t1u z2,t2u z2,t1,2u

fi

ffi

fl

“

»

—

–

3{8 3{8 1{4

1{8 1{8 1{4

fi

ffi

fl

Any integer decomposition of this allocation z would need to have the following structure:

z “ a

»

—

–

0 0 1

0 0 0

fi

ffi

fl

` b

»

—

–

0 0 0

0 0 1

fi

ffi

fl

` c

»

—

–

1 0 0

0 1 0

fi

ffi

fl

` d

»

—

–

1 0 0

0 0 0

fi

ffi

fl

` e

»

—

–

0 0 0

0 1 0

fi

ffi

fl

` f

»

—

–

0 1 0

1 0 0

fi

ffi

fl

` g

»

—

–

0 1 0

0 0 0

fi

ffi

fl

` h

»

—

–

0 0 0

1 0 0

fi

ffi

fl

where the coefficients sum to at most 1. Firstly, it is straightforward to see that a “ b “ 1{4. Given

the construction, we must have c` d “ 3{8, e ě 0 and f ` g “ 3{8, h ě 0. Thus, a` b` c` d` e`

f ` g` h ě 1{2` 3{4 “ 5{4 for any decomposition. Hence, z is not implemmaentable.

To ensure that a combinatorial feasible allocation has an integer decomposition we need to

introduce additional constraints. For the two items case, we introduce the following constraint:

@i, zi,t1u ` zi,t2u ď 1´
n
ÿ

i1“1

zi1,t1,2u. (A.7)
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Theorem A.3. For m “ 2, any combinatorial feasible allocation z with additional constraints (A.7) can

be represented as a convex combination of matrices B1, . . . , Bk where each B` is a combinatorial feasible,

0-1 allocation.

Proof. Firstly, we observe in any deterministic allocation B`, if there exists an i, s.t. B`
i,t1,2u “ 1,

then @j ‰ i, S : B`
j,S “ 0. Therefore, we first decompose z into the following components,

z “
n
ÿ

i“1

zi,t1,2u ¨ Bi ` C,

and

Bi
j,S “

$

’

&

’

%

1 if j “ i, S “ t1, 2u, and

0 otherwise.

Then we want to argue that C can be represented as
řk

`“i`1 p` ¨ B`, where
řk

`“i`1 p` ď

1´
řn

i“1 zi,t1,2u and each B` is a feasible 0-1 allocation. Matrix C has all zeros in the last (items

t1, 2u) column,
ř

i Ci,t1u ď 1´
řn

i“1 zi,t1,2u, and
ř

i Ci,t2u ď 1´
řn

i“1 zi,t1,2u.

In addition, based on constraint (A.7), for each bidder i,

Ci,t1u ` Ci,t2u “ zi,t1u ` zi,t2u ď 1´
n
ÿ

i1“1

zi1,t1,2u.

Thus C is a doubly stochastic matrix with scaling factor 1´
řn

i1“1 zi1,t1,2u. Therefore, we

can always decompose C into a linear combination
řk

`“i`1 p` ¨ B`, where
řk

`“i`1 p` ď 1´
řn

i1“1 zi1,t1,2u and each B` is a feasible 0-1 allocation.

We leave to future work to characterize the additional constraints needed for the multi-item

(m ą 2) case.

RegretNet for Two-item Auctions with Implementable Allocations

To accommodate the additional constraint (A.7) for the two items case we add an additional

softmax layer for each bidder. In addition to the original (unnormalized) bidder-wise scores

si,S,@i P N, S Ď M and item-wise scores spjqi,S ,@i P N, S Ď M, j P M and their normalized

counterparts s̄i,S,@i P N, S Ď M and s̄pjqi,S ,@i P N, S Ď M, j P M, the allocation network computes

an additional set of scores for each bidder i, s1piqi,t1u, s1piqi,t2u, s1piq1,t1,2u, ¨ ¨ ¨ , s1piqn,t1,2u. These additional
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scores are then normalized using a softmax function as follows,

@i, k P N, S Ď M, s̄1piqk,S “
exp

´

s1piqk,S

¯

exp
´

s1piqi,t1u

¯

`exp
´

s1piqi,t2u

¯

`
ř

k exp
´

s1piqk,t1,2u

¯ .

To satisfy constraint (A.7) for each bidder i, we compute the normalized score s̄1i,S for each

i, S as,

s̄1i,S “

$

’

&

’

%

s̄1piqi,S if S “ t1u or t2u, and

min
!

s̄1pkqi,S : k P N
)

if S “ t1, 2u.

Then the final allocation for each bidder i is:

zi,S “ min
!

s̄i,S, s̄1i,S, s̄pjqi,S : j P S
)

.

The payment network for combinatorial bidders has the same structure as the one in Figure

1.2, computing a fractional payment p̃i P r0, 1s for each bidder i using a sigmoidal unit, and

outputting a payment pi “ p̃i
ř

SĎM zi,S bi,S.

A.2 Additional Experiments

We present a broad range of additional experiments for the two main architectures used in the

body of the paper, and additional ones for the architectures presented in Appendix A.1

A.2.1 Experiments with MyersonNet

We first evaluate the MyersonNet architecture introduced in Appendix A.1.1 for designing

single-item auctions. We focus on settings with a small number of bidders because this is

where revenue-optimal auctions are meaningfully different from efficient auctions. We present

experimental results for the following four settings:

F. Three bidders with independent, regular, and symmetrically distributed valuations

vi „ Ur0, 1s.

G. Five bidders with independent, regular, and asymmetrically distributed valuations vi „

Ur0, is.
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Distribution n Opt SPA MyersonNet
rev rev rev

Setting F 3 0.531 0.500 0.531
Setting G 5 2.314 2.025 2.305
Setting H 3 2.749 2.500 2.747
Setting I 3 2.368 2.210 2.355

Figure A.3: The revenue of the single-item auctions obtained with MyersonNet.

H. Three bidders with independent, regular, and symmetrically distributed valuations

vi „ Expp3q.

I. Three bidders with independent irregular distributions Firregular, where each vi is drawn

from Ur0, 3s with probability 3/4 and from Ur3, 8s with probability 1/4.

We note that the optimal auctions for the first three distributions involve virtual value

functions φ̄i that are strictly monotone. For the fourth and final distribution the optimal auction

uses ironed virtual value functions that are not strictly monotone.

For the training set and test set we used 1,000 valuation profiles sampled i.i.d. from the

respective valuation distribution. We modeled each transform φ̄i in the MyersonNet architecture

using 5 sets of 10 linear functions, and we used κ “ 103.

The results are summarized in Figure A.3. For comparison, we also report the revenue

obtained by the optimal Myerson auction and the second price auction (SPA) without reserve.

The auctions learned by the neural network yield revenue close to the optimal.

A.2.2 Additional Experiments with RochetNet and RegretNet

In addition to the experiments with RochetNet and RegretNet on the single bidder, multi-item

settings in Section 1.5.3 we also considered the following settings:

J. Single additive bidder with independent preferences over two non-identically distributed

items, where v1 „ Ur4, 16s and v2 „ Ur4, 7s. The optimal mechanism is given by

Daskalakis, Deckelbaum, and Tzamos [DDT17].

K. Single additive bidder with preferences over two items, where pv1, v2q are drawn jointly

and uniformly from a unit triangle with vertices p0, 0q, p0, 1q and p1, 0q. The optimal
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Figure A.4: Side-by-side comparison of the allocation rules learned by RochetNet and RegretNet for single bidder,
two items settings. Panels (a) and (b) are for Setting J, Panels (c) and (d) are for Setting K, and Panels (e) and (f)
for Setting L. Panels describe the learned allocations for the two items (item 1 on the left, item 2 on the right).
Optimal mechanisms are indicated via dashed lines and allocation probabilities in each region.

mechanism is due to Haghpanah and Hartline [HH19].

L. Single unit-demand bidder with independent preferences over two items, where the item

values v1, v2 „ Ur0, 1s. See [Pav11] for the optimal mechanism.

We used RegretNet architectures with two hidden layers with 100 nodes each. The optimal

allocation rules as well as a side-by-side comparison of those found by RochetNet and RegretNet

are given in Figure A.4. Figure A.5 gives the revenue and regret achieved by RegretNet and

the revenue achieved by RochetNet.

We find that in all three settings RochetNet recovers the optimal mechanism basically exactly,

while RegretNet finds an auction that matches the optimal design to surprising accuracy.

A.2.3 Experiments with RegretNet with Combinatorial Valuations

We next compare our RegretNet architecture for combinatorial valuations described in Sec-

tion A.1.2 to the computational results of Sandholm and Likhodedov [SL15] for the following
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Distribution
Opt RegretNet RochetNet
rev rev rgt rev

Setting J 9.781 9.734 ă 0.001 9.779
Setting K 0.388 0.392 ă 0.001 0.388
Setting L 0.384 0.384 ă 0.001 0.384

Figure A.5: Test revenue and regret achieved by RegretNet and revenue achieved by RochetNet for Settings J–L.

settings for which the optimal auction is not known:

M. Two additive bidders and two items, where bidders draw their value for each item

independently from Ur0, 1s.3

N. Two bidders and two items, with item valuations v1,1, v1,2, v2,1, v2,2 drawn independently

from Ur1, 2s and set valuations v1,t1,2u “ v1,1 ` v1,2 ` C1 and v2,t1,2u “ v2,1 ` v2,2 ` C2,

where C1, C2 are drawn independently from Ur´1, 1s.

O. Two bidders and two items, with item valuations v1,1, v1,2 drawn independently from

Ur1, 2s, item valuations v2,1, v2,2 drawn independently from Ur1, 5s, and set valuations

v1,t1,2u “ v1,1 ` v1,2 ` C1 and v2,t1,2u “ v2,1 ` v2,2 ` C2, where C1, C2 are drawn indepen-

dently from Ur´1, 1s.

These settings correspond to Settings I.-III. described in Section 3.4 of [SL15]. These

authors conducted extensive experiments with several different classes of incentive compatible

mechanisms, and different heuristics for setting the parameters of these auctions. They observed

the highest revenue for two classes of mechanisms that generalize mixed bundling auctions

and λ-auctions [JMM07].

These two classes of mechanisms are the Virtual Value Combinatorial Auctions (VVCA)

and Affine Maximizer Auctions (AMA). They also considered a restriction of AMA to bidder-

symmetric auction (AMAbsym). We use VVCA˚, AMA˚, and AMA˚bsym to denote the best

mechanism in the respective class, as reported by Sandholm and Likhodedov and found using

a heuristic grid search technique.

3This setting can be handled by the non-combinatorial RegretNet architecture and is included here for compari-
son to [SL15].
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Distribution
RegretNet VVCA˚ AMA˚bsym

rev rgt rev rev
Setting M 0.878 ă 0.001 — 0.862
Setting N 2.860 ă 0.001 — 2.765
Setting O 4.269 ă 0.001 4.209 —

Figure A.6: Test revenue and regret for RegretNet for Settings M–O, and comparison with the best performing
VVCA and AMAbsym auctions as reported by Sandholm and Likhodedov [SL15].

For Setting M and N, Sandholm and Likhodedov observed the highest revenue for AMA˚bsym,

and for Setting O the best performing mechanism was VVCA˚. Figure A.6 compares the

performance of RegretNet to that of these best performing, benchmark mechanisms. To

compute the revenue of the benchmark mechanisms we used the parameters reported in [SL15]

(Table 2, p. 1011), and evaluated the respective mechanisms on the same test set used for

RegretNet. Note that RegretNet is able to learn new auctions with improved revenue and tiny

regret.

A.3 Omitted Proofs

In this appendix we present formal proofs for all theorems and lemmamas that were stated in

the body of the paper or the other appendices. We first introduce some notation. We denote

the inner product between vectors a, b P Rd as xa, by “
řd

i“1 aibi. We denote the `1 norm for a

vector x by }x}1 and the induced `1 norm for a matrix A P Rkˆt by }A}1 “ max1ďjďt
řk

i“1 Aij.

A.3.1 Proof of Lemma 1.1

Let fipv; wq :“ maxv1iPVi
uw

i pvi; pv1i, v´iqq´uw
i pvi; pvi, v´iqq. Then we have rgtipwq “ Ev„Fr fipv; wqs.

Rewriting the expected value, we have

rgtipwq “
ż 8

0
Pp fipv; wq ě xqdx ě

ż rgtq
i pwq

0
Pp fipv; wq ě xqdx ě q ¨ rgtq

i pwq,

where the last inequality holds because for any 0 ă x ă rgtq
i pwq, Pp fipv; wq ě xq ě Pp fipv; wq ě

rgtq
i pwqq “ q.
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A.3.2 Proof of Theorem 1.2

We present the proof for auctions with general, randomized allocation rules. A randomized

allocation rule gi : V Ñ r0, 1s2
M

maps valuation profiles to a vector of allocation probabilities

for bidder i, where gi,Spvq P r0, 1s denotes the probability that the allocation rule assigns subset

of items S Ď M to bidder i, and
ř

SĎM gi,Spvq ď 1. This encompasses both the allocation

rules for the combinatorial setting, and the allocation rules for the additive and unit-demand

settings, which only output allocation probabilities for individual items. The payment function

p : V Ñ Rn maps valuation profiles to a payment for each bidder pipvq P R. For ease of

exposition, we omit the superscripts “w”. Recall that M is a class of auctions consisting

of allocation and payment rules pg, pq. As noted in the theorem statement, we will assume

w.l.o.g. that for each bidder i, vipSq ď 1, @S Ď M.

Definitions

Let Ui be the class of utility functions for bidder i defined on auctions inM, i.e.,

Ui “
 

ui : Vi ˆV Ñ R
ˇ

ˇ uipvi, bq “ vipgpbqq ´ pipbq for some pg, pq PM
(

.

and let U be the class of profile of utility functions defined on M, i.e., the class of tuples

pu1, . . . , unq where each ui : Vi ˆ V Ñ R and uipvi, bq “ vipgpbqq ´ pipbq,@i P N for some

pg, pq PM.

We will sometimes find it useful to represent the utility function as an inner product, i.e.,

treating vi as a real-valued vector of length 2M, we may write uipvi, bq “ xvi, gipbqy ´ pipbq.

Let rgt ˝ Ui be the class of all regret functions for bidder i defined on utility functions in Ui,

i.e.,

rgt ˝ Ui “
!

fi : V Ñ R

ˇ

ˇ

ˇ
fipvq “ max

v1i
uipvi, pv1i, v´iqq ´ uipvi, vq for some ui P Ui

)

,

and as before, let rgt ˝ U be defined as the class of profiles of regret functions.
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Define the `8,1 distance between two utility functions u and u1 as

max
v,v1

ÿ

i

|uipvi, pv1i, v´iqq ´ uipvi, pv1i, v´iqq|

and letN8pU , εq denote the minimum number of balls of radius ε to cover U under this distance.

Similarly, define the distance between ui and u1i as maxv,v1i
|uipvi, pv1i, v´iqq ´ u1ipvi, pv1i, v´iqq|, and

let N8pUi, εq denote the minimum number of balls of radius ε to cover Ui under this distance.

Similarly, we define covering numbers N8prgt ˝ Ui, εq and N8prgt ˝ U , εq for the function

classes rgt ˝ Ui and rgt ˝ U respectively.

Moreover, we denote the class of allocation functions as G and for each bidder i, Gi “ tgi :

V Ñ 2M | g P Gu. Similarly, we denote the class of payment functions by P and Pi “ tpi : V Ñ

R | p P Pu. We denote the covering number of P as N8pP , εq under the `8,1 distance and the

covering number for Pi using N8pPi, εq under the `8,1 distance.

Auxiliary Lemma

We will use a lemmama from [SSBD14]. Let F denote a class of bounded functions f : Z Ñ

r´c, cs defined on an input space Z, for some c ą 0. Let D be a distribution over Z and

S “ tz1, . . . , zLu be a sample drawn i.i.d. from D. We are interested in the gap between the

expected value of a function f and the average value of the function on sample S, and would

like to bound this gap uniformly for all functions in F . For this, we measure the capacity of

the function class F using the empirical Rademacher complexity on sample S, defined below:

pRLpFq :“
1
L

Eσ

»

–sup
fPF

ÿ

ziPS

σi f pziq

fi

fl ,

where σ P t´1, 1uL and each σi is drawn i.i.d from a uniform distribution on t´1, 1u. We then

have:

Lemma A.2 ([SSBD14]). Let S “ tz1, . . . , zLu be a sample drawn i.i.d. from some distribution D

over Z. Then with probability of at least 1´ δ over draw of S from D, for all f P F ,

Ez„Dr f pzqs ď
1
L

L
ÿ

i“1

f pziq ` 2 pRLpFq ` 4C

c

2 logp4{δq
L

,
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Generalization Bound for Revenue

We first prove the generalization bound for revenue. For this, we define the following auxiliary

function class, where each f : V Ñ Rě0measures the total payments from some mechanism in

M:

rev ˝M “
 

f : V Ñ Rě0
ˇ

ˇ f pvq “
řn

i“1 pipvq, for some pg, pq PM
(

.

Note each function f in this class corresponds to a mechanism pg, pq inM, and the expected

value Ev„Dr f pvqs gives the expected revenue from that mechanism. The proof then follows

by an application of the uniform convergence bound in Lemma A.2 to the above function

class, and by further bounding the Rademacher complexity term in this bound by the covering

number of the auction classM.

Applying Lemma A.2 to the auxiliary function class rev ˝M, we get with probability of at

least 1´ δ over draw of L valuation profiles S from D, for any f P rev ˝M,

Ev„F

”

´
ÿ

iPN

pipvq
ı

ď ´
1
L

L
ÿ

`“1

n
ÿ

i“1

pipvp`qq

` 2pRLprev ˝Mq ` Cn

c

logp1{δq
L

, (A.8)

All that remains is to bound the above empirical Rademacher complexity pRLprev ˝Mq in

terms of the covering number of the payment class P and in turn in terms of the covering

number of the auction class M. Since we assume that the auctions in M satisfy individual

rationality and vpSq ď 1,@S Ď M, we have for any v, pipvq ď 1.

By the definition of the covering number for the payment class, there exists a cover pP for P of

size | pP | ď N8pP , εq such that for any p P P , there is a fp P pP with maxv
ř

i |pipvq ´ fpipvq| ď ε.
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We thus have:

pRLprev ˝Mq “
1
L

Eσ

«

sup
p

L
ÿ

`“1

σ` ¨
ÿ

i

pipvp`qq

ff

“
1
L

Eσ

«

sup
p

L
ÿ

`“1

σ` ¨
ÿ

i

fpipv
p`qq

ff

`
1
L

Eσ

«

sup
p

L
ÿ

`“1

σ` ¨
ÿ

i

pipvp`qq ´ fpipv
p`qq

ff

ď
1
L

Eσ

»

–sup
ppP pP

L
ÿ

`“1

σ` ¨
ÿ

i

ppipvp`qq

fi

fl`
1
L

Eσ}σ}1ε

ď

d

ÿ

`

p
ÿ

i

ppipv`qq2
c

2 logpN8pP , εqq

L
` ε

ď 2n

c

2 logpN8pP , εqq

L
` ε, (A.9)

where the second-last inequality follows from Massart’s lemmama, and the last inequality

holds because
g

f

f

e

ÿ

`

˜

ÿ

i

ppipv`q

¸2

ď

g

f

f

e

ÿ

`

˜

ÿ

i

pipv`q ` nε

¸2

ď 2n
?

L.

We further observe that N8pP , εq ď N8pM, εq. By the definition of the covering number

for the auction classM, there exists a cover xM forM of size |xM| ď N8pM, εq such that for

any pg, pq PM, there is a ppg, ppq P xM such that for all v,

ÿ

i,j

|gijpvq ´ pgijpvq| `
ÿ

i

|pipvq ´ ppipvq| ď ε.

This also implies that
ř

i |pipvq ´ ppipvq| ď ε, and shows the existence of a cover for P of size at

most N8pM, εq.

Substituting the bound on the Radamacher complexity term in (A.9) in (A.8) and using the

fact that N8pP , εq ď N8pM, εq, we get:

Ev„F

”

´
ÿ

iPN

pipvq
ı

ď ´
1
L

L
ÿ

`“1

n
ÿ

i“1

pipvp`qq ` 2 ¨ inf
εą0

!

ε` 2n

c

2 logpN8pM, εqq

L

)

` Cn

c

logp1{δq
L

,

which completes the proof.
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Generalization Bound for Regret

We move to the second part, namely a generalization bound for regret, which is the more

challenging part of the proof. We first define the class of sum regret functions:

rgt ˝ U “
#

f : V Ñ R

ˇ

ˇ

ˇ

ˇ

f pvq “
n
ÿ

i“1

ripvq for some pr1, . . . , rnq P rgt ˝ U
+

.

The proof then proceeds in three steps:

(1) bounding the covering number for each regret class rgt ˝ Ui in terms of the covering

number for individual utility classes Ui

(2) bounding the covering number for the combined utility class U in terms of the covering

number forM

(3) bounding the covering number for the sum regret class rgt ˝ U in terms of the covering

number for the (combined) utility classM.

An application of Lemma A.2 then completes the proof. We prove each of the above steps

below.

Step 1. N8prgt ˝ Ui, εq ď N8pUi, ε{2q.

Proof. By the definition of covering number N8pUi, εq, there exists a cover pUi with size at most

N8pUi, ε{2q such that for any ui P Ui, there is a pui P
pUi with

sup
v,v1i

|uipvi, pv1i, v´iqq ´ puipvi, pv1i, v´iqq| ď ε{2.

For any ui P Ui, taking pui P
pUi satisfying the above condition, then for any v,

ˇ

ˇ

ˇ

ˇ

max
v1iPV

`

uipvi, pv1i, v´iqq ´ uipvi, pvi, v´iqq
˘

´max
v̄iPV

`

puipvi, pv̄i, v´iqq ´ puipvi, pvi, v´iqq
˘

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

max
v1i

uipvi, pv1i, v´iqq ´max
v̄i

puipvi, pv̄i, v´iqq ` puipvi, pvi, v´iqq ´ uipvi, pvi, v´iqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

max
v1i

uipvi, pv1i, v´iqq ´max
v̄i

puipvi, pv̄i, v´iqq

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

puipvi, pvi, v´iqq ´ uipvi, pvi, v´iqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

max
v1i

uipvi, pv1i, v´iqq ´max
v̄i

puipvi, pv̄i, v´iqq

ˇ

ˇ

ˇ

ˇ

ˇ

` ε{2
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Let v˚i P arg maxv1i
uipvi, pv1i, v´iqq and pv˚i P arg maxv̄i

puipvi, pv̄i, v´iqq, then

max
v1i

uipvi, pv1i, v´iqq “ uipv˚i , v´iq ď puipv˚i , v´iq ` ε{2 ď puippv˚i , v´iq ` ε{2 “ max
v̄i

puipvi, pv̄i, v´iqq ` ε,

max
v̄i

puipvi, pv̄i, v´iqq “ puippv˚i , v´iq ď uippv˚i , v´iq ` ε{2 ď uipv˚i , v´iq ` ε{2 “ max
v1i

uipvi, pv1i, v´iqq ` ε{2 .

Thus, for all ui P Ui, there exists pui P
pUi such that for any valuation profile v,

ˇ

ˇ

ˇ

ˇ

max
v1i

`

uipvi, pv1i, v´iqq ´ uipvi, pvi, v´iqq
˘

´max
v̄i

`

puipvi, pv̄i, v´iqq ´ puipvi, pvi, v´iqq
˘

ˇ

ˇ

ˇ

ˇ

ď ε,

which implies N8prgt ˝ Ui, εq ď N8pUi, ε{2q.

This completes the proof of Step 1.

Step 2. For all i P N, N8pU , εq ď N8pM, εq.

Proof. Recall that the utility function of bidder i is uipvi, pv1i, v´iqq “ xvi, gipv1i, v´iqy ´ pipv1i, v´iq.

There exists a set xM with |xM| ď N8pM, εq such that, there exists ppg, ppq P xM such that

sup
vPV

ÿ

i,j

|gijpvq ´ pgijpvq| ` }ppvq ´ pppvq}1 ď ε.

We denote puipvi, pv1i, v´iqq “ xvi, pgipv1i, v´iqy ´ ppipv1i, v´iq, where we treat vi as a real-valued

vector of length 2M.

For all v P V, v1i P Vi,

ˇ

ˇuipvi, pv1i, v´iqq ´ puipvi, pv1i, v´iqq
ˇ

ˇ

ď
ˇ

ˇxvi, gipv1i, v´iqy ´ xvi, pgipv1i, v´iqy
ˇ

ˇ`
ˇ

ˇpipv1i, v´iq ´ ppipv1i, v´iq
ˇ

ˇ

ď }vi}8 ¨ }gipv1i, v´iq ´ pgipv1i, v´iq}1 `
ˇ

ˇpipv1i, v´iq ´ ppipv1i, v´iq
ˇ

ˇ

ď
ÿ

j

|gijpv1i, v´iq ´ pgijpv1i, v´iq| `
ˇ

ˇpipv1i, v´iq ´ ppipv1i, v´iq
ˇ

ˇ

Therefore, for any u P U , take pu “ ppg, ppq P xM, for all v, v1,

ÿ

i

|uipvi, pv1i, v´iqq ´ puipvi, pv1i, v´iqq|

ď
ÿ

ij

|gijpv1i, v´iq ´ pgijpv1i, v´iq| `
ÿ

i

ˇ

ˇpipv1i, v´iq ´ ppipv1i, v´iq
ˇ

ˇ
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ď ε

This completes the proof of Step 2.

Step 3. N8prgt ˝ U , εq ď N8pM, ε{2q.

Proof. By definition of N8pU , εq, there exists pU with size at most N8pU , εq, such that, for any

u P U , there exists pu such that for all v, v1 P V,

ÿ

i

|uipvi, pv1i, v´iqq ´ puipvi, pv1i, v´iqq| ď ε.

Therefore for all v P V, |
ř

i uipvi, pv1i, v´iqq ´
ř

i puipvi, pv1i, v´iqq| ď ε, from which it follows

that N8prgt ˝ U , εq ď N8prgt ˝ U , εq. Following Step 1, it is easy to show N8prgt ˝ U , εq ď

N8pU , ε{2q.

Together with Step 2 this completes the proof of Step 3.

Based on the same arguments as in Section A.3.2, we can thus bound the empirical

Rademacher complexity as:

pRLprgt ˝ Uq ď inf
εą0

˜

ε` 2n

c

2 logN8prgt ˝ U , εq

L

¸

ď inf
εą0

˜

ε` 2n

c

2 logN8pM, ε{2q
L

¸

.

Applying Lemma A.2, completes the proof of the generalization bound for regret.

A.3.3 Proof of Theorem 1.3

The convexity of uα,β follows from the fact it is a “max” of linear functions. We now show that

uα,β is monotonically non-decreasing. Let hjpvq “ wj ¨ v` β j. Since wj is non-negative in all

entries, for any vi ď v1i,@i P M, we have hjpvq ď hjpv1q. Then

uα,βpvq “ max
jPrJs

hjpvq “ hj˚pvq ď hj˚pv
1q ď max

jPrJs
hjpv1q “ uα,βpv1q,
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where j˚ P argminjPrJs hjpvq. It remains to be shown that uα,β is 1-Lipschitz. For any v, v1 P Rm
ě0,

|uα,βpvq ´ uα,βpv1q| “ |max
jPrJs

hjpvq ´ max
jPrJs

hjpv1q|

ď max
jPrJs

|hjpv1q ´ hjpvq|

“ max
jPrJs

|wj ¨ pv1 ´ vq|

ď max
jPrJs

}wj}8 |v1 ´ v|1

ď |v1k ´ vk|1,

where the last inequality holds because each component αjk “ σpαjkq ď 1.

A.3.4 Proof of Lemma 1.2

First, given the property of the softmax function and the min operation, ϕDSps, s1q ensures that

the row sums and column sums for the resulting allocation matrix do not exceed 1. In fact, for

any doubly stochastic allocation z, there exists scores s and s1, for which the min of normalized

scores recovers z (e.g. sij “ s1ij “ logpzijq ` c for any c P R).

A.3.5 Proof of Lemma A.1

Similar to Lemma 1.2, ϕCFps, sp1q, . . . , spmqq trivially satisfies the combinatorial feasibility (con-

straints (A.5)–(A.6)). For any allocation z that satisfies the combinatorial feasibility, the follow-

ing scores

@j “ 1, ¨ ¨ ¨ , m, si,S “ spjqi,S “ logpzi,Sq ` c,

makes ϕCFps, sp1q, . . . , spmqq recover z.

A.3.6 Proof of Theorem 1.4

In Theorem 1.4, we only show the bounds on ∆L for RegretNet with additive and unit-demand

bidders. We restate this theorem so that it also bounds ∆L for the general combinatorial

valuations setting (with combinatorial feasible allocation). Recall that the `1 norm for a
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vector x is denoted by }x}1 and the induced `1 norm for a matrix A P Rkˆt is denoted by

}A}1 “ max1ďjďt
řk

i“1 Aij.

Theorem A.4. For RegretNet with R hidden layers, K nodes per hidden layer, dg parameters in the

allocation network, dp parameters in the payment network, and the vector of all model parameters

}w}1 ď W, the following are the bounds on the term ∆L for different bidder valuation types:

(a) additive valuations:

∆L ď O
`a

Rpdg ` dpq logpLW maxtK, mnuq{L
˘

,

(b) unit-demand valuations:

∆L ď O
`

b

Rpdg ` dpq logpLW maxtK, mnuq{L
˘

,

(c) combinatorial valuations (with combinatorial feasible allocation):

∆L ď O
`

b

Rpdg ` dpq logpLW maxtK, n 2muq{L
˘

.

We first bound the covering number for a general feed-forward neural network and

specialize it to the three architectures we present in Section 1.3 and Appendix A.1.2.

Lemma A.3. Let Fk be a class of feed-forward neural networks that maps an input vector x P Rd0 to

an output vector y P Rdk , with each layer ` containing T` nodes and computing z ÞÑ φ`pw`zq, where

each w` P RT`ˆT`´1 and φ` : RT` Ñ r´B,`BsT` . Further let, for each network in Fk, let the parameter

matrices }w`}1 ď W and }φ`psq ´ φ`ps1q}1 ď Φ}s´ s1}1 for any s, s1 P RT`´1 .

N8pFk, εq ď

R

2Bd2Wp2ΦWqk

ε

Vd

,

where T “ max`Prks T` and d is the total number of parameters in a network.

Proof. We shall construct an `1,8 cover for Fk by discretizing each of the d parameters along

r´W,`Ws at scale ε0{d, where we will choose ε0 ą 0 at the end of the proof. We will

use pFk to denote the subset of neural networks in Fk whose parameters are in the range

t´prWd{ε0s´ 1q ε0{d, . . . ,´ε0{d, 0, ε0{d, . . . , rWd{ε0sε0{du. The size of pFk is at most r2dW{ε0sd.

We shall now show that pFk is an ε-cover for Fk.

We use mathematical induction on the number of layers k. We wish to show that for any
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f P Fk there exists a pf P pFk such that:

} f pxq ´ pf pxq}1 ď Bdε0p2ΦWqk.

For k “ 0, the statement holds trivially. Assume that the statement is true for Fk. We now show

that the statement holds for Fk`1.

A function f P Fk`1 can be written as f pzq “ φk`1pwk`1Hpzqq for some H P Fk. Similarly,

a function pf P pFk`1 can be written as pf pzq “ φk`1p pwk`1
pHpzqq for some pH P pFk and pwk`1 is

a matrix of entries in t´prWd{ε0s´ 1q ε0{d, . . . ,´ε0{d, 0, ε0{d, . . . , rWd{ε0sε0{du. Also, for any

parameter matrix w` P RT`ˆT`´1 , there is a matrix pw` with discrete entries s.t.

}w` ´ pw`}1 “ max
1ďjďT`´1

T
ÿ̀

i“1

|w`
`,i,j ´ pw`,i,j| ď T`ε0{d ď ε0. (A.10)

We then have:

} f pxq ´ pf pxq}1

“ }φk`1pwk`1Hpxqq ´ φk`1p pwk`1
pHpxqq}1

ď Φ}wk`1Hpxq ´ pwk`1
pHpxq}1

ď Φ}wk`1Hpxq ´wk`1
pHpxq}1 `Φ}wk`1

pHpxq ´ pwk`1
pHpxq}1

ď Φ}wk`1}1 ¨ }Hpxq ´ pHpxq}1 `Φ}wk`1 ´ pwk`1}1 ¨ }
pHpxq}1

ď ΦW}Hpxq ´ pHpxq}1 `ΦTkB}wk`1 ´ pwk`1}1

ď Bdε0ΦWp2ΦWqk `ΦBdε0

ď Bdε0p2ΦWqk`1,

where the second line follows from our assumption on φk`1, and the sixth line follows from our

inductive hypothesis and from (A.10). By choosing ε0 “
ε

Bp2ΦWqk , we complete the proof.

We next bound the covering number of the auction class in terms of the covering number

for the class of allocation networks and for the class of payment networks. Recall that

the payment networks computes a fraction α : Rmpn`1q Ñ r0, 1sn and computes a payment

pipbq “ αipbq ¨ xvi, gipbqy for each bidder i. Let G be the class of allocation networks and A be
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the class of fractional payment functions used to construct auctions inM. Let N8pG, εq and

N8pA, εq be the corresponding covering numbers w.r.t. the `8 norm. Then:

Lemma A.4. N8pM, εq ď N8pG, ε{3q ¨N8pA, ε{3q

Proof. Let pG Ď G, pA Ď A be `8 covers for G and A, i.e. for any g P G and α P A, there exists

pg P pG and pα P pA with

sup
b

ÿ

i,j

|gijpbq ´ pgijpbq| ď ε{3 (A.11)

sup
b

ÿ

i

|αipbq ´ pαipbq| ď ε{3. (A.12)

We now show that the class of mechanism xM “ tppg,pαq | pg P pG, and pppbq “ pαipbq ¨ xvi, pgipbqyu is

an ε-cover forM under the `1,8 distance. For any mechanism in pg, pq PM, let ppg, ppq P xM be

a mechanism in xM that satisfies (A.12). We have:

ÿ

i,j

|gijpbq ´ pgijpbq| `
ÿ

i

|pipbq ´ ppipbq|

ď ε{3`
ÿ

i

|αipbq ¨ xbi, gi,¨pbqy ´ pαipbq ¨ xbi, pgipbqy|

ď ε{3`
ÿ

i

´

|pαipbq ´ pαipbqq ¨ xbi, gipbqy|

` |pαipbq ¨ pxbi, gipbqy ´ xbi, pgi,¨pbqqy|
¯

ď ε{3`
ÿ

i

|αipbq ´ pαipbq| `
ÿ

i

}bi}8 ¨ }gipbq ´ pgipbq}1

ď 2ε{3`
ÿ

i,j

|gijpbq ´ pgijpbq| ď ε,

where in the third inequality we use xbi, gipbqy ď 1. The size of the cover xM is | pG|| pA|, which

completes the proof.

We are now ready to prove covering number bounds for the three architectures in Section

1.3 and Appendix A.1.2.

Proof of Theorem A.4. All three architectures use the same feed-forward architecture for com-

puting fractional payments, consisting of K hidden layers with tanh activation functions. We
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also have by our assumption that the `1 norm of the vector of all model parameters is at most

W, for each ` “ 1, . . . , R` 1, }w`}1 ď W. Using that fact that the tanh activation functions are

1-Lipschitz and bounded in r´1, 1s, and there are at most maxtK, nu number of nodes in any

layer of the payment network, we have by an application of Lemma A.3 the following bound

on the covering number of the fractional payment networks A used in each case:

N8pA, εq ď

R

maxpK, nq2p2WqR`1

ε

Vdp

where dp is the number of parameters in payment networks.

For the covering number of allocation networks G, we consider each architecture separately.

In each case, we bound the Lipschitz constant for the activation functions used in the layers of

the allocation network and followed by an application of Lemma A.3. For ease of exposition,

we omit the dummy scores used in the final layer of neural network architectures.

Additive bidders. The output layer computes n allocation probabilities for each item j

using a softmax function. The activation function φR`1 : Rn Ñ Rn for the final layer for input

s P Rnˆm can be described as: φR`1psq “ rsoftmaxps1,1, . . . , sn,1q, . . . , softmaxps1,m, . . . , sn,mqs,

where softmax : Rn Ñ r0, 1sn is defined for any u P Rn as softmaxipuq “ eui{
řn

k“1 euk .

We then have for any s, s1 P Rnˆm,

}φR`1psq ´ φR`1ps1q}1

ď
ÿ

j

›

›

›
softmaxps1,j, . . . , sn,jq ´ softmaxps11,j, . . . , s1n,jq

›

›

›

1

ď
?

n
ÿ

j

›

›

›
softmaxps1,j, . . . , sn,jq ´ softmaxps11,j, . . . , s1n,jq

›

›

›

2

ď
?

n
?

n´ 1
n

ÿ

j

d

ÿ

i

}sij ´ s1ij}
2

ď
ÿ

j

ÿ

i

|sij ´ s1ij| (A.13)

where the third step follows by bounding the Frobenius norm of the Jacobian of the softmax

function.

The hidden layers ` “ 1, . . . , R are standard feed-forward layers with tanh activations. Since

the tanh activation function is 1-Lipschitz, }φ`psq ´ φ`ps1q}1 ď }s´ s1}1. We also have by our
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assumption that the `1 norm of the vector of all model parameters is at most W, for each

` “ 1, . . . , R` 1, }w`}1 ď W. Moreover, the output of each hidden layer node is in r´1, 1s, the

output layer nodes is in r0, 1s, and the maximum number of nodes in any layer (including the

output layer) is at most maxtK, mnu.

By an application of Lemma A.3 with Φ “ 1, B “ 1, and d “ maxtK, mnu we have

N8pG, εq ď

R

maxtK, mnu2p2WqR`1

ε

Vdg

,

where dg is the number of parameters in allocation networks.

Unit-demand bidders. The output layer n allocation probabilities for each item j as an

elemmaent-wise minimum of two softmax functions. The activation function φR`1 : R2n Ñ Rn

for the final layer for two sets of scores s, s̄ P Rnˆm can be described as:

φR`1,i,jps, s1q “ mintsoftmaxjpsi,1, . . . , si,mq, softmaxips11,j, . . . , s1n,jqu.

We then have for any s, s̃, s1, s̃1 P Rnˆm,

}φR`1ps, s̃q ´ φR`1ps1, s̃1q}1

ď
ÿ

i,j

ˇ

ˇ

ˇ
mintsoftmaxjpsi,1, . . . , si,mq, softmaxips̃1,j, . . . , s̃n,jqu

´ mintsoftmaxjps1i,1, . . . , s1i,mq, softmaxips̃11,j, . . . , s̃1n,jqu

ˇ

ˇ

ˇ

ď
ÿ

i,j

ˇ

ˇ

ˇ
maxtsoftmaxjpsi,1, . . . , si,mq ´ softmaxjps1i,1, . . . , s1i,mq,

softmaxips̃1,j, . . . , s̃n,jq ´ softmaxips̃11,j, . . . , s̃1n,jqu

ˇ

ˇ

ˇ

ď
ÿ

i

›

›softmaxpsi,1, . . . , si,mq ´ softmaxps1i,1, . . . , s1i,mq
›

›

1

`
ÿ

j

›

›softmaxps̃1,j, . . . , s̃n,jq ´ softmaxps̃11,j, . . . , s̃1n,jqu
›

›

1

ď
ÿ

i,j

|sij ´ s1ij| `
ÿ

i,j

|s̃ij ´ s̃1ij|,

where the last step can be derived in the same way as (A.13).

As with additive bidders, using additionally hidden layers ` “ 1, . . . , R are standard feed-

forward layers with tanh activations, we have from Lemma A.3 with Φ “ 1, B “ 1 and
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d “ maxtK, mnu,

N8pG, εq ď

R

maxtK, mnu2p2WqR`1

ε

Vdg

.

Combinatorial bidders. The output layer outputs an allocation probability for each bidder

i and bundle of items S Ď M. The activation function φR`1 : Rpm`1qn2m
Ñ Rn2m

for this layer

for m` 1 sets of scores s, sp1q, . . . , spmq P Rnˆ2m
is given by:

φR`1,i,Sps, sp1q, . . . , spmqq “ min
!

softmaxSpsi,S1 : S1 Ď Mq, softmaxSps
p1q
i,S1 : S1 Ď Mq, . . . ,

softmaxSps
pmq
i,S1 : S1 Ď Mq

)

,

where softmaxSpaS1 : S1 Ď Mq “ eaS{
ř

S1ĎM eaS1 .

We then have for any s, sp1q, . . . , spmq, s1, s1p1q, . . . , s1pmq P Rnˆ2m
,

}φR`1ps, sp1q, . . . , spmqq ´ φR`1ps1, s1p1q, . . . , s1pmqq}1

ď
ÿ

i,S

ˇ

ˇ

ˇ
min

!

softmaxSpsi,S1 : S1 Ď Mq,

softmaxSps
p1q
i,S1 : S1 Ď Mq, . . . , softmaxSps

pmq
i,S1 : S1 Ď Mq

)

´ min
!

softmaxSps1i,S1 : S1 Ď Mq,

softmaxSps
1p1q
i,S1 : S1 Ď Mq, . . . , softmaxSps

1pmq
i,S1 : S1 Ď Mq

)ˇ

ˇ

ˇ

ď
ÿ

i,S

max
!

ˇ

ˇsoftmaxSpsi,S1 : S1 Ď Mq ´ softmaxSps1i,S1 : S1 Ď Mq
ˇ

ˇ,
ˇ

ˇsoftmaxSps
p1q
i,S1 : S1 Ď Mq ´ softmaxSps

1p1q
i,S1 : S1 Ď Mq

ˇ

ˇ, . . .
ˇ

ˇsoftmaxSps
pmq
i,S1 : S1 Ď Mq ´ softmaxSps

1pmq
i,S1 : S1 Ď Mq

ˇ

ˇ

)

ď
ÿ

i

›

›softmaxpsi,S1 : S1 Ď Mq ´ softmaxps1i,S1 : S1 Ď Mq
›

›

1

`
ÿ

i,j

›

›softmaxpspjqi,S1 : S1 Ď Mq ´ softmaxps1pjqi,S1 : S1 Ď Mq
›

›

1

ď
ÿ

i,S

|si,S ´ s1i,S| `
ÿ

i,j,S

|spjqi,S ´ s1pjqi,S |,

where the last step can be derived in the same way as (A.13).

As with additive bidders, using additionally hidden layers ` “ 1, . . . , R are standard feed-

forward layers with tanh activations, we have from Lemma A.3 with Φ “ 1, B “ 1 and
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d “ maxtK, n ¨ 2mu

N8pG, εq ď

R

maxtK, n ¨ 2mu2p2WqR`1

ε

Vdg

where dg is the number of parameters in allocation networks.

We now bound ∆L for the three architectures using the covering number bounds we derived

above. In particular, we upper bound the the ‘inf’ over ε ą 0 by substituting a specific value of

ε:

(a) For additive bidders, choosing ε “ 1?
L

, we get

∆L ď O

˜

c

Rpdp ` dgq
logpW maxtK, mnuLq

L

¸

(b) For unit-demand bidders, choosing ε “ 1?
L

, we get

∆L ď O

˜

c

Rpdp ` dgq
logppW maxtK, mnuLq

L

¸

(c) For combinatorial bidders, choosing ε “ 1?
L

, we get

∆L ď O

˜

c

Rpdp ` dgq
logpW maxtK, n ¨ 2muLq

L

¸

.

A.3.7 Proof of Theorem 1.5

We apply the duality theory of [DDT13] to verify the optimality of our proposed mechanism

(motivated by empirical results of RochetNet). For the completeness of presentation, we provide

a brief introduction of their approach here.

Let f pvq be the joint valuation distribution of v “ pv1, v2, ¨ ¨ ¨ , vmq, V be the support of f pvq

and define the measure µ with the following density,

Iv“v̄ ` IvPBV ¨ f pvqpv ¨ pnpvqq ´ p∇ f pvq ¨ v` pm` 1q f pvqq (A.14)

where v̄ is the “base valuation”, i.e. upv̄q “ 0, BV denotes the boundary of V, pnpvq is the outer

unit normal vector at point v P BV, and m is the number of items. Let Γ`pXq be the unsigned
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Figure A.7: The transport of transformed measure of each region in Setting C.

.

(Radon) measures on X. Consider an unsinged measure γ P Γ`pXˆ Xq, let γ1 and γ2 be the

two marginal measures of γ, i.e. γ1pAq “ γpAˆ Xq and γ2pAq “ γpXˆ Aq for all measurable

sets A Ď X. We say measure α dominates β if and only if for all (non-decreasing, convex)

functions u,
ş

u dα ě
ş

u dβ. Then by strong duality theory we have

sup
u

ż

V
u dµ “ inf

γPΓ`pV,Vq,γ1´γ2ľµ

ż

VˆV
}v´ v1}1 dγ, (A.15)

and both the supremum and infimum are achieved. Based on "complemmaentary slackness"

of linear programming, the optimal solution of Equation A.15 needs to satisfy the following

conditions.

Corollary A.5 ([DDT17]). Let u˚ and γ˚ be feasible for their respective problemmas in Equation A.15,

then
ş

u˚ dµ “
ş

}v´ v1}1 dγ˚ if and only if the following two conditions hold:
ż

u˚ dpγ˚1 ´ γ˚2 q “

ż

u˚ dµ

ż

u˚pvq ´ u˚pv1q “ }v´ v1}1, γ˚-almost surely.

Then we prove the utility function u˚ induced by the mechanism for setting C is optimal.

Here we only focus on Settiong C with c ą 1, for c ď 1 the proof is analogous and we omit

here4. The transformed measure µ of the valuation distribution is composed of:

4It is fairly similar to the proof for setting c ą 1. If c ď 1, there are only two regions to discuss, in which R1 and
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1. A point mass of `1 at p0, 1q.

2. Mass ´3 uniformly distributed throughout the triangle area (density ´6
c ).

3. Mass ´2 uniformly distributed on lower edge of triangle (density ´2
c ).

4. Mass `4 uniformly distributed on right-upper edge of triangle (density ` 4?
1`c2 ).

It is straightforward to verify that µpR1q “ µpR2q “ µpR3q “ 0. We will show there exists

an optimal measure γ˚ for the dual program of Theorem 2 (Equation 5) in [DDT13]. γ˚ can

be decomposed into γ˚ “ γR1 ` γR2 ` γR3 with γR1 P Γ`pR1 ˆ R1q, γR2 P Γ`pR2 ˆ R2q, γR3 P

Γ`pR3 ˆ R3q. We will show the feasibility of γ˚, such that

γR1
1 ´ γR1

2 ľ µ|R1 ; γR2
1 ´ γR2

2 ľ µ|R2 ; γR3
1 ´ γR3

2 ľ µ|R3 . (A.16)

Then we show the conditions of Corollary 1 in [DDT13] hold for each of the measures

γR1 , γR2 , γR3 separately, such that
ş

u˚dpγA
1 ´γA

2 q “
ş

A u˚dµ and u˚pvq´ u˚pv1q “ }v´ v1}1 hold

γA-almost surely for any A “ R1, R2, and R3. We visualize the transport of measure γ˚ in

Figure A.7.

Construction of γR1 . µ`|R1 is concentrated on a single point p0, 1q and µ´|R1 is distributed

throughout a region which is coordinate-wise greater than p0, 1q, then it is obviously to show

0 ľ µ|R1 . We set γR1 to be zero measure, and we get γR1
1 ´ γR1

2 “ 0 ľ µ|R1 . In addition,

u˚pvq “ 0,@v P R1, then the conditions in Corollary 1 in [DDT13] hold trivially.

Construction of γR2 . µ`|R2 is uniformly distributed on upper edge CF of the triangle

and µ´|R2 is uniformly distributed in R2. Since we have µpR2q “ 0, we construct γR2 by

“transporting” µ`|R2 into µ´|R2 downwards, that is γR2
1 “ µ`|R2 , γR2

2 “ µ´|R2 . Therefore,
ş

u˚dpγR2
1 ´ γR2

2 q “
ş

u˚dµ holds trivially. The measure γR2 is only concentrated on the pairs

pv, v1q such that v1 “ v11, v2 ě v12. Thus for such pairs pv1v1q, we have u˚pvq ´ u˚pv1q “

p
v1
c ` v2 ´

4
3q ´ p

v1
c ` v12 ´

4
3q “ ||v´ v1||1.

Construction of γR3 . It is intricate to directly construct γR3 analytically, however, we will

R2 are the regions correspond to allocation p0, 0q and p1, 1q, respectively. Then we show the optimal γ˚ “ γ̄R1 ` γ̄R2

where γ̄R1 “ 0 for region R1 and show γR2 only "transports" mass of measure downwards and leftwards in region
R2, which is analgous to the analysis for γR3 for setting c ą 1.
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show there the optimal measure γR3 only transports mass from µ`|R3 to µ´|R3 leftwards and

downwards. Let’s consider a point H on edge BF with coordinates pvH
1 , vH

2 q. Define the regions

RH
L “ tv

1 P R3|v11 ď vH
1 u and RH

U “ tv
1 P R3|v12 ě vH

2 u. Let `p¨q represent the length of segment,

then we have `pFHq ă 2
3
?

c2`1
. Thus,

µpRH
Uq “

4`pFHq
?

c2 ` 1
´

6
c
¨
`2pFHqc
2pc2 ` 1q

“
`pFHq
?

c2 ` 1
¨

ˆ

4´
3`pFHq
?

c2 ` 1

˙

ą 0

µpRH
L q “

4`pFHq
?

c2 ` 1
´

2
c
¨
`pFHqc
?

c2 ` 1
´

6
c
¨

ˆ

2`pFHqc
3
?

c2 ` 1
´

`2pFHqc
2pc2 ` 1q

˙

“
`pFHq
?

c2 ` 1
¨

ˆ

3`pFHq
?

c2 ` 1
´ 2

˙

ă 0

Thus, there exists a unique line lH with positive slope that intersects H and separate R3 into two

parts, RH
U (above lH) and RH

B (below lH), such that µ`pRH
Uq “ µ´pRH

Uq. We will then show for

any two points on edge BF, H and I, lines lH and lI will not intersect inside R3. In Figure A.7,

on the contrary, we assume lH “ HK and lI “ I J intersects inside R3. Given the definition of

lH and lI , we have

µ`pFHKDq “ µ´pFHKDq; µ`pFI JDq “ µ´pFI JDq

Since µ` is only distributed along the edge BF, we have

µ`pFIKDq “ µ`pFI JDq “ µ´pFI JDq

Notice µ´ is only distributed inside R3 and edge DB, thus µ´pFIKDq ą µ´pFI JDq. Given the

above discussion, we have

µ`pHIKq “ µ`pFI JDq ´ µ`pFHKDq “ µ´pFI JDq ´ µ´pFHKDq

ă µ´pFIKDq ´ µ´pFHKDq “ µ´pHIKq
(A.17)

On the other hand, let SpHIKq be the area of triangle HIK, DG be the altitude of triangle

DBF w.r.t BF, and h be the altitude of triangle HJK w.r.t the base HI.

µ´pHJKq “
6
c
¨ SpHIKq “

6
c
¨

1
2
`pHIqh ď

3
c
¨ `pHIq ¨ `pDGq

“
3
c
¨

2c
3
?

c2 ` 1
¨ `pHIq “

2
?

c2 ` 1
¨ `pHIq
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ă
2

?
c2 ` 1

¨ `pHIq “ µ`pHIKq,

which is a contradiction of Equation A.17. Thus, we show lH and lI doesn’t intersect inside R3.

Let γR3 be the measure that transport mass from µ`|R3 to µ´|R3 through lines tlH|H P BFu. Then

we have γR3
1 “ µ`|R3 , γR3

2 “ µ´|R3 , which leads to
ş

u˚dpγR3
1 ´ γR3

2 q “
ş

u˚dµ. The measure γR3

is only concentrated on the pairs pv, v1q, s.t. v1 ě v11 and v2 ě v12. Therefore, for such pairs pv, v1q,

we have u˚pvq´ u˚pv1q “ pv1` v2´
c
3 ´ 1q´ pv11` v12´

c
3 ´ 1q “ pv1´ v11q` pv2´ v12q “ ||v´ v1||1.

Finally, we show there must exist an optimal measure γ for the dual program of Theorem 2

in [DDT13].
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Appendix B

Appendix to Chapter 3

B.1 Details of Replica-Surrogate Mechanism

We show the detailed description of Replica-Surrogate Mechanism in Fig. B.1.

B.2 Omitted Properties of Our Transformation

We state an additional property for our transformation. For a mechanismM “ px, pq, let X

denote the induced allocation space, such that @a P X , there always exists t P T to satisfy a “ xptq.

We introduce the following preserved-allocation property.

Definition B.1 (Preserved-allocation property). Let X and X 1 denote the induced allocation space for

M andM1 respectively. MechanismM1 “ px1, p1q preserves the allocation of mechanismM “ px, pq

if, @a P X , a must be in X 1 and
ř

t:xptq“a f ptq “
ř

t1 :x1pt1q“a f pt1q.

This is a useful property, because it states that the same distribution on allocations is

achieved by M1 as the original mechanism M. Consider, for example, a principal running

the mechanism who also incurs a cost for different outcomes. With this preserved allocation

property, then not only is welfare the same (or better) and revenue loss bounded, but the

expected cost of the principal is preserved by the transform. By contrast, the previous

transformations [DW12; RW18; CZ17; Cai+19] cannot preserve the distribution of the allocation,

even for this single agent with uniform type distribution case.
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Phase 1: Surrogate Sale. For each agent i,

• Modify mechanismM to multiply all prices it charges by a factor of p1´ ηq. LetM1

be the mechanism resulting from this modification.

• Given the reported type ti, create r´ 1 replicas sampled i.i.d from Fi and r surrogates
sampled i.i.d from Fi. r is the parameter of the algorithm to be decided later.

• Construct a weighted bipartite graph between replicas (including agent i’s true type
ti) and surrogates. The weight of the edge between a replica rpjq and a surrogate spkq

is the interim utility of agent i when he misreports type spkq rather than the true type
rpjq in mechanismM1, i.e.,

wiprpjq, spkqq “ Et´iPF´i

”

viprpjq, xpspkq, t´iqq
ı

´ p1´ ηq ¨ Et´iPF´i

”

pipspkq, t´iq
ı

• Let wipprpjq, spkqqq be the value of replica rpjq for being matched to surrogate spkq.
Compute the VCG matching and prices, that is, compute the maximum weighted
matching w.r.t wip¨, ¨q and the corresponding VCG payments. If a replica is un-
matched in the VCG matching, match it to a random unmatched surrogate.

Phase 2: Surrogate Competition.

• Let~si denote the surrogate chosen to represent agent i in phase 1, and let~s be the
entire surrogate profile. We let the surrogates~s playM1.

• If agent i’s true type ti is matched to a surrogate through VCG matching, charge
agent i the VCG price that he wins the surrogate and award (allocate) agent i, xipsq
(NoteM1 also charges agent i, p1´ ηqpipsq). If agent i’s true type is not matched in
VCG matching and matched to a random surrogate, the agent gets nothing and pays
0.

Figure B.1: Replica-Surrogate Matching Mechanism.

The following corollary states that, in our transformation for single agent with a uniform

type distribution, the BIC mechanismM (achieved by transformation) has the same distribution

on allocations as the original ε-BIC/ε-EEIC mechanism,M.

Corollary B.1 (Preserved allocation for uniform type distribution). Consider a single agent with a

uniform type distribution, then for any ε-BIC/ε-EEIC mechanismM there exists a fully IC mechanism

M1 that preserves the allocation ofM.

For single agent with a non-uniform type distribution, the technique used in the proof of

Theorem 3.6 does not satisfy this preserved-allocation property, since we use "fractional rotation
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step" to diminish weight (regret) in the type graph, which creates some new allocations.

The following theorem shows that this is not attributed to our technique: no mechanism that

satisfies the preserved-allocation property can also achieve negligible revenue loss compared

with the original ε-BIC mechanism.

Theorem B.2 (Non preserved-allocation for non-uniform type distribution). There exists an

ε-BIC mechanismM with a single agent, such that no BIC mechanism can preserve the distribution of

the allocation ofM.

Proof. There are two items A, B with a single, unit-demand agent. With probability 1{6, the

agent has value 1` ε for item A and value 1 for item B. With probability 2{3, the agent has

value 1 for item A and value p1` εq for item B. With probability 1{6, the agent has value 1 for

each of items A and B.

There exists an ε-BIC deterministic mechanism: ask the agent which item it prefers, and

allocate the other item to the agent and charge 1. This is obviously an ε-DSIC (ε-EEIC)

mechanism, since the agent can only gain an additional ε by misreporting. The allocation

under truth-telling is p1, 0q with probability at least 2{3. For any strictly IC mechanism, by

weak monotonicity, for type p1, 1` εq the allocation probability of item A must be smaller than

the allocation probability of item B. Then the induced allocation space of strictly IC mechanism

contains pa, 1´ aq with probability at least 2{3, where 0 ă a ă 1.

B.3 Omitted Definitions

Definition B.2 (DSIC/ε-DSIC/BIC/ε-BIC Mechanism). A mechanismM is called ε-BIC iff for all

i, ti:

Et´i„F´iruipti,Mptqqs ě max
ptiPTi

Et´i„F´iruipti,Mppti; t´iqqs ´ ε

In other words,M is ε-BIC iff any agent will not gain more than ε by misreporting pti instead of true

type ti. Similarly,M is ε-DSIC iff for all i, ti,pti, t´i : uipti,Mptqq ě uipti,Mppti; t´iqq ´ ε.

A mechanism is called BIC iff it is 0-BIC and DSIC iff it is 0-DSIC.
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Definition B.3 (Individual Rationality). A BIC/ε-BIC mechanismM satisfies interim individual

rationality (interim IR) iff for all i, vi:

Et´i„F´iruipti,Mptqqs ě 0

This becomes ex-post individual rationality (ex-post IR) iff for all i, ti, t´i, uipti,Mptqq ě 0 with

probability 1, over the randomness of the mechanism.

Definition B.4 (Interdependent private type). Each agent i P rns has a private signal si, which

captures her private information and the type of every agent ti depends on the entire signal profile,

s “ ps1, ¨ ¨ ¨ , snq.

B.4 Omitted Proofs

B.4.1 Proof of Claim 3.2

Proof. First, in Step 1, since we only rotate the allocation and payment of nodes in C, the total

weight of the edges from nodes in T zC to nodes in C remains the same. Second, each node in

C achieves a utility no worse than before, so that the weight of each outgoing edge from nodes

in C to nodes in T zC will not increase. Third, since C is the shortest cycle, there are no other

edges among nodes in C in addition to edges in C, which implies we cannot create new edges

among nodes in C by this rotation. It follows that this rotation decreases the total weights of

graph G by the weights of C. Finally, the expected revenue achieved by types tp1q, ¨ ¨ ¨ , tplq is

still the same, since Step 1 only rotates the allocation and payment rules, and the probability of

each type is the same. Combining the fact that each node gets a weakly preferred outcome, the

social welfare does not decrease.

B.4.2 Proof of Claim 3.3

Proof. In Step 2, we first prove that it can only create new edges with zero weight. A new

edge created by Step 2 can only point to a node t̄ P St. We show by contradiction, suppose we

create a positive weight edge from pt to t̄ P St, then uppt,M1pt̄qq ´ uppt,M1pptqq ą 0 for the current
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updated mechanismM1, we have

uppt,M1pptqq ă uppt,M1pt̄qq ă uppt,M1pt̄qq ` εt

ď uppt,M1pt̄qq ` upt2,M1pt2qq ´ upt2,M1pt̄qq

ď uppt,M1pt̄qq ` uppt,M1pptqq ´ uppt,M1pt̄qq pBy definition of t2q

“ uppt,M1pptqq,

which proves our claim. Second, it is straightforward to verify that Step 2 doesn’t decrease

social welfare since we only decrease payment in Step 2. Finally, in Step 2, we reduce the

weight of every positive-weight outgoing edge associated with t by mintεt, ε̄tu. This is because

for any node t1, s.t. there is a positive-weight edge between t and t1, t1 cannot be the ancestor of

t, otherwise, there is already a cycle, which contradicts Step 1.

B.4.3 Proof of Theorem 3.5

Proof. We construct the same weighted directed graph G “ pT , Eq as in the proof of Theorem 3.1.

Again, the target is to reduce the total weight of G to zero, which leads to a BIC mechanism. We

denote Me as the menus and |Me| “ C, and we have for each type tpiq, that there exists a menu

me P Me, s.t. Mptpiqq “ me. If tpiq and tpjq share a same menu, i.e., Mptpiqq “Mptpjqq, there is

an directed edge with weight zero from tpiq to tpjq, and vice versa. We denote the distribution

of each menu me as,

gpmeq “
ÿ

tPT:Mεptq“me

f ptq.

SinceM is ε-BIC, the weight of each edge is bounded by ε. We still apply Step 1 and Step 2

in graph G proposed in Theorem 3.1, however, we count the revenue loss over menu space.

First, in Step 1, we only rotate the allocation and payment (menu) along the cycle, it will

not change the allocation and payment of each menu. In addition, it will not the distribution of

menus, gpmeq is preserved for each me.

In Step 2, consider a source node t, and let the corresponding menu be m1e (the output of

the current mechanism with type t). Every type with m1e is the ancestor of type t, when we
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decrease the payment of type t by mintεt, ε̄tu, the payment for each type t1 associated with

menu m1e will be decreased by the same amount. If there is a type t2 with a different menu

m2e ‰ m1e and t2 is an ancestor of t, then all the types associated with menu m2e are the ancestors

of t. Thus, in Step 2, the payment of the types with the same menu must be decreased by the

same amount. Therefore, Step 2 only changes the payment of each menu by the same amount,

and does not change the distribution of each menu, i.e. gpmeq is the same for each me P Me.

Moreover, if there is an edge ptpjq, tpkqq with positive weight and if tpjq and t share the same

menu, then (1) tpkq must be in different menus, and (2) tpkq is not the ancestor of t, otherwise,

there exists a cycle, which contains a positive-weight edge. Therefore, in Step 2, if we decrease

the payment of type t by mintεt, εtu, we also reduce the weight of edge ptpjq, tpkqq by mintεt, εtu.

In other words, we reduce the regret of all the nodes in menu me by mintεt, εtu.

Since the weight of each edge is bounded by ε, then we may decrease the expected payment

at most ε to reduce all the regret of the nodes belonging to menu me. In total, the revenue loss

is bounded by Cε.

B.4.4 Proof of Theorem 3.6

Proof. We construct a weighted directed graph G “ pT , Eq, different with the one in Theorem 3.1.

A directed edge e “ ptpjq, tpkqq P E is drawn from tpjq to tpkq when the outcome (allocation and

payment) of tpkq is weakly preferred by true type tpjq, i.e. uptpjq,Mptpkqqq ě uptpjq,Mptpjqqq, and

the weight of edge e is

wpeq “ f ptpjqq ¨ f ptpkqq ¨
”

uptpjq,Mptpkqqq ´ uptpjq,Mptpjqqq
ı

It is straightforward to see thatM is BIC iff the total weight of all edges in G is zero.

We show the modified transformation for this setting in Fig. B.2. Firstly, it is trivial that

our transformation preserves IR, since neither Step 1 nor Step 2 reduces utility. Then we show

this modified Step 1 will strictly decrease the total weights of the graph G and has no negative

effect on social welfare and revenue.

First, we observe each type in C achieves utility no worse than before, by truthful reporting.

Then, the weight of each outgoing edge from a type in C to a type in T zC will not increase.
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Second, we claim the total weight of edges from any node (type) t P T zC to nodes (types)

in C does not increase. To prove this, we assume wpt, tpjqq ě 0,@tpjq P C, i.e. there is a edge from

t to any tpjq P C in G. This is WLOG, because if there is no edge between t to some tpjq P C, we

can just add an edge from t to tpjq with weight zero, and this does not change the total weight

of the graph. We denote the mechanism updated after one use of Step 1 asM1, and denote

the weight function w1 for the graph G1 that is constructed fromM1. Let r¨s` be the function

maxp¨, 0q. The total weight from t to tpjq P C according to the mechanismM1 “ px1, p1q is

ÿ

tpjqPC

w1pt, tpjqq

“

l
ÿ

j“1

f ptpjqq f ptq
“

upt,M1ptpjqqq ´ upt,M1ptqq
‰

`

“

l
ÿ

j“1

f ptpjqq f ptq

«

p f ptpjqq ´ f ptpkqqqupt,Mptpjqqq ` f ptpkqq ¨ upt,Mptpj`1qqq

f ptpjqq
´ upt,Mptqq

ff

`

pIn the fractional rotation step,M1ptq “Mptq,@t P T zCq

ď

l
ÿ

j“1

f ptq ¨
´

`

f ptpjqqq ´ f ptpkqq
˘“

upt,Mεptpjqqq ´ upt,Mεptqq
‰

`

`

l
ÿ

j“1

f ptpkqq
“

upt,Mptpj`1qqq ´ upt,Mptqq
‰

`

¯

pBy rearranging the algebra and the fact that rx` ys` ď rxs` ` rys`q

“

l
ÿ

j“1

f ptpjqq ¨ f ptq ¨
“

upt,Mptpjqqq ´ upt,Mεptqq
‰

`

pBy the fact that ttp1q, ¨ ¨ ¨ , tplqu forms a cycle and tpl`1q “ tp1qq

“
ÿ

tpjqPC

wpt, tpjqq

Thus, we prove our claim that the total weight of edges from any node (type) t P T zC to

nodes (types) in C does not increase.

Third, by each use of modified Step 1, we remove one cycle and reduce the weight of edge

ptpiq, tpi`1qq to zero, thus, we decrease the total weight at least by f ptpkqq f ptpk`1qqpuptpkq,Mptpk`1qqq´

uptpkq,Mptpkqqq.

Finally, after one use of Step 1, the expected revenue achieved by types in C maintains,
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Modified Step 1 (Fractional rotation step). Given a mechanism M “ px, pq, find the
shortest cycle C in G that contains at least one edge with positive weight in E. Without loss
of generality, we represent C “

 

tp1q, tp2q, ¨ ¨ ¨ , tplq
(

. Then we find the node tpkq, k P rls, such
that f ptpkqq “ minkPrls f ptpkqq. Next, we rotate the allocation and payment rules of types
along C with fraction of f ptpkqq{ f ptpjqq for each type tpjq, j P rls. Now we slightly abuse the
notation of subscripts, s.t. tpl`1q “ tp1q. Specifically, the allocation and payment rules for
each tpjq,

x1ptpjqq “

“

f ptpjqq ´ f ptpkqq
‰

xptpjqq ` f ptpkqqxptpj`1qq

f ptpjqq
,

p1ptpjqq “

“

f ptpjqq ´ f ptpkqq
‰

pptpjqq ` f ptpkqqpptpj`1qq

f ptpjqq
.

Then we update mechanismM to adopt allocation and payment rules x1, p1 to form a new
mechanismM1 and reconstruct the graph G. If this has the effect of removing all cycles
that contain at least one positive-weight-edge in G, then move to Step 2. Otherwise, we
repeat Step 1.
Modified Step 2 (Payment reducing step). Exactly the same as Step 2 in Theorem 3.1.

Figure B.2: ε-BIC to BIC transformation for single agent with general type distribution.

because

l
ÿ

j“1

f ptpjqq ¨ p1ptpjqq “
ÿ

j

p f ptpjqq ´ f ptpkqqq ¨ pptpjqq ` f ptpkqq ¨ pptpj`1qq

“
ÿ

j

f ptpjqqpptpjqq ` f tpkq
ÿ

j

pptpjqq ´ pptpj`1qq

“
ÿ

j

f ptpjqqpptpjqq pBecause tpl`1q “ tp1qq

The modified Step 2 is the same as Step 2 in Fig. 3.2. At each step 2, we decrease the total

weight of the graph by at least mintεt, εtu. We count the revenue loss as follows, in each Step 2,

if we decrease the payment of t by mintεt, εtu, the expected revenue loss is bounded by

ÿ

j

f ptpjqqmintεt, εtu ď mintεt, εtu

Since the weight of each edge is bounded by ε, to reduce the weight of outgoing edges of t to

zero, we may decrease the expected revenue by ε. Therefore, in total, the expected revenue loss

is bounded by mε.
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B.4.5 Proof of Theorem 3.7

Proof. We construct the type distribution and the ε-EEIC mechanism similar to the one in

Theorem 3.4. We consider a single agent with m types T “ ttp1q, ¨ ¨ ¨ , tpmqu. The type distribution

is f ptp1qq “ 1
2 ´

ε
2m , f ptp2qq “ ε

2m and f ptpjqq “ 1
2pm´2q ,@j ě 3. The agent with type tp1q values

outcome 1 at ε and the other outcomes at 0. For any type tpjq, j ě 2, the agent with type tpjq

values outcome j´ 1 at m` pj´ 1qε, outcome j at m` pj´ 1qε, and the other outcomes at 0. The

mechanism we consider is: (1) if the agent reports type tp1q, gives the outcome 1 to the agent

and charges ε. (2) if the agent reports tpjq, j ě 2, gives the outcome j to the agent and charges

m` pj´ 1qε. There is a m regret to the agent for not misreporting type tp1q with true type tp2q

and a regret ε for not reporting tpjq with true type tpj`1q, for any j ě 2. It is easy to verify that

this mechanism is ε-EEIC (the probability of type tp2q is small) and already maximizes social

welfare. Thus, we can only change the payment to reduce the regret of each type. Following

the same argument as in Theorem 3.4, to reduce all the regret of the types, the revenue loss in

total is at least

f ptp2qqm`
m
ÿ

j“3

f ptpjqqpm` pj´ 2qεq “
ε

2
`

1
2pm´ 2q

m
ÿ

j“3

m` pj´ 2qε

“
ε

2
`

m
2
`
pm´ 1qε

4
ě

m
2

B.4.6 Proof of Theorem 3.8

The earlier proof approach for single agent case does not immediately extend to the multi-agent

setting. However, since our target is a BIC mechanism, we can work with interim rules (see

Definition 3.1), and this provides an approach to the transformation. The interim rules reduce

the dimension of type space and separate the type of each agent. With this, we can construct a

separate type graph for each agent, now based on the interim rules.

To simplify the presentation, we define the induced mechanism for each agent i of a mecha-

nismM as follows.

Definition B.5 (Induced Mechanism). For a mechanism M “ px, pq, an induced mechanism
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ĂMi “ pXi, Piq is a pair of interum allocation rule Xi : Ti Ñ ∆pOq and interim payment rule

Pi : Ti Ñ Rě0. Denote the utility function uipti, ĂMiptiqq “ vipti, Xiptiqq ´ Piptiq.

The following lemma shows that given an ε-BIC/ε-EEIC mechanism, then the induced

mechanism for each agent is also ε-BIC/ε-EEIC.

Lemma B.1. For a ε-EEIC/ε-BIC mechanism M, any induced mechanism ĂMi for each agent i is

ε-EEIC/ε-BIC.

Proof. By ε-BIC definition, each induced mechanism ĂMi must be ε-BIC, if the original mecha-

nismM is ε-BIC. Now, we turn to consider ε-EEIC mechanismM, for any induced mechanism

ĂMi

Eti„Fi

«

max
t1iPTi

uipti, ĂMipt1iqq ´ uipti, ĂMiptiqq

ff

“ Eti„Fi

«

max
t1iPTi

Et´i„F´i

“

uipti,Mpt1i; t´iqq ´ uipti,Mpti; t´iqq
‰

ff

ď Eti„Fi

«

Et´i„F´i

«

max
t1iPTi

uipti,Mpt1i; t´iqq ´ uipti,Mpti; t´iqq

ffff

pBy Jenson’s inequality and convexity of max functionq

“ Et„F

«

max
t1iPTi

uipti,Mpt1i; t´iqq ´ uipti,Mpti; t´iqq

ff

pBy independence of agents’ typesq

ď ε.

Given Lemma B.1, we can construct a single type graph for each agent based on the induced

mechanism and apply the same technique for each graph as the one in Theorem 3.6. The

challenge will be to also handle feasibility of the resulting mechanism. We summarize these

approaches in the following proof for Theorem 3.8.

Proof of Theorem 3.8. Here, we focus on the ε-BIC setting. The proof for ε-EEIC with indepen-

dent uniform type distribution is analogous.
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We construct a graph Gi “ pTi, Eiq for each agent i P rns, such that there is a directed edge

from tpjqi to tpkqi if and only if uptpjqi , ĄMε
ipt
pkq
i qq ě uptpjqi , ĄMε

ipt
pjq
i qq and the weight is

wippt
pjq
i , tpkqi qq “ fiptjq ¨ fipt

pkq
i q ¨

´

uptpjqi , ĂMipt
pkq
i qq ´ uptpjqi , ĂMipt

pjq
i q

¯

Based on Lemma B.1, each graph is constructed by an ε-BIC induced mechanism ĄMε
i, we can

apply the same constructive proof in Theorem 3.6 to reduce the total weight of each graph Gi to

be 0. An astute reader may have already realized that changing type graph Gi may affect other

graphs, since we probably change the distribution of the reported type of agent i. However,

in our transformation, both Step 1 and Step 2 don’t change the density probability of each

type (we only change the interim allocation and payment for each type), therefore when we

do transformation for one type graph Gi of agent i, it has no effect on the interim rules of the

other agents.

Here, if the total weight of all graphs Gi are all 0, it implies that any induced mechanism

ĄMε
i is IC. Therefore, we make the mechanism BIC. Similarly, the new mechanism after

transformation achieves at least the same social welfare and the revenue loss of each graph Gi

is bounded by miε, Hence, the total revenue loss is bounded by
řn

i“1 miε “
řn

i“1 |Ti|ε.

What is left to show is that using modified steps 1 and 2 on each graph Gi shown in

Theorem 3.6 does not violate the feasibility of the mechanism. We only change the allocation

of each type in modified Step 1 (Rotation step). Denote by Xi the interim allocation for agent i

before one rotation step, and let X1i denote the updated interim allocation for agent i after one

rotation step. We then claim in the modified Step 1 in Theorem 3.6,

ÿ

tiPTi

fiptiqXiptiq “
ÿ

tiPTi

fiptiqX1iptiq.

To prove this claim, WLOG, we consider a l length cycle C “ ttp1qi , tp2qi , ¨ ¨ ¨ , tplqi u in modified

Step 1. Let k “ arg minjPrls fiptpjqq. We observe the interim allocation of the types in TizC don’t

change in modified Step 1, i.e., @ti P TizC, Xiptiq “ X1iptiq. We slightly abuse the notation here,

and let tpl`1q “ tp1q. For the types in cycle C,

ÿ

jPrls

fiptpjqqX1ipt
pjqq “

ÿ

jPrls

f ptpjqq ¨
p f ptpjqq ´ f ptpkqqqXiptpkqq ` f ptpkqq ¨ Xiptpj`1qq

f ptpjqq
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“
ÿ

jPrls

fiptpjqqXiptpjqq,

which validates the claim. Therefore, by Border’s lemma [Bor91], the rotation step maintains

the feasibility of the allocation.

Running time. Suppose we have oracle access to the interim quantities of the original

mechanism, we can build each Gi in polyp|Ti|q time. Similarly, at each modified step 1 (shown

in Fig. B.2), we strictly reduce the weight of at least one edge with positive weight to 0 in each

type graph Gi. Then, the running time for each type graph Gi is polyp|Ti|q following the same

argument for the single agent setting. In total the running time is ployp
ř

i |Ti|q.

B.4.7 Proof of Theorem 3.9

Proof. It is straightforward to construct an example such that the type graph of each agent

induced by the interim rules is the same as the type graph constructed by the mechanism

shown in Theorem 3.4. For instance, agent i values outcomes top1qi , ¨ ¨ ¨ , opmiq

i u in the same way

as the one constructed in Theorem 3.4. We assume the outcome opjqi are disjoint, for any i and

j P rmis. Indeed, this is also ε-DSIC mechanism. Thus, we show for this case, that the revenue

loss must be at least Ωp
ř

i |Ti|εq, if we want to maintain the social welfare, following the same

argument in Theorem 3.4.

B.4.8 Proof of Theorem 3.10

Proof. Consider a setting with two items A and B and two unit-demand agents 1 and 2. The

two agents share the same preference order on items. Moreover, agent 1 is informed about

which is better, while agent 2 has no information. Agent 1 values the better item at 1` ε and

the other item at 1. Agent 2 values the better item at 2 and the other item at 0.

There exists an ε-IC mechanism: ask agent 1 which item is better, and give this item to

agent 2 for a price of 2 and give agent 1 the other item for a price of 1. The total welfare and

revenue is 3 if agent 1 reports truthfully. Bidder 1 can get ε more utility by misreporting, in

which case it will get the better item for the same price. From this, we can confirm that this is

an ε-IC mechanism.

194



For any IC mechanism, by weak monotonicity, we have vApxpAqq ´ vApxpBqq ě vBpxpAqq ´

vBpxpBqq, where vA be the type that the better item is A, and similarly for vB. xpAq is the

allocation if agent 1 reports A the better item and similarly for xpBq. This means that when

agent 1 reporting A rather than B, either agent 1 is assigned item A with weakly higher

probability, or agent 1 is assigned item B with weakly less probability. We only consider the

former case, and the latter one holds analogously. In the former case, we have either:

(1) agent 1 is getting at least half of A when reporting A, and the total revenue and social

welfare are each at most 0.5ˆ 2` 0.5ˆ p1` εq ` 1 “ 2.5` ε{2, or

(2) agent 1 is getting at most half of A when reporting B, and the total revenue and social

welfare are each at most 2` 0.5 “ 2.5.

Either way, we will definitely lose at least 0.5´ ε{2 for revenue and social welfare when

making the ε-IC mechanism above BIC.

B.4.9 Proof of Theorem 3.11

Proof. The construction of this ε-BIC mechanism is strictly generalized by the mechanism in

[Yao17]. Consider a 2-agent, 2-item auction, each agent i values item j, tij. tij is i.i.d sampled

from a uniform distribution over set t1, 2u, i.e. Pptij “ 1q “ Pptij “ 2q “ 0.5. The ε-BIC

mechanism is shown as below,

If t2 “ p1, 1q, give both items to agent 1 for a price of 3.

If t2 “ p1, 2q and t1 “ p1, 2q, give both items randomly to agent 1 or 2 for a price of

1.5.

If t1 “ p2, 1q and t2 “ p1, 2q, give item 1 to agent 1 and give item 2 to agent 2, with a

price of 2 for each.

If t2 “ p1, 2q and t1 “ p2, 2q, give both items to agent 1 for a price 3.75` ε.

If t1 “ t2 “ p2, 2q, give both items randomly to agent 1 or agent 2 for a price 2.

For other cases, we get the mechanism by the symmetries of items and agents.

It is straightforward to verify that this is an ε-BIC mechanism and the expected revenue

is 3.1875` ε{16. However, Yao [Yao17] characterizes that optimal DSIC mechanism achieves

expected 3.125. This conclude the proof.

195



B.5 Omitted Details of Applications

In this section, we give a brief introduction to LP-based AMD and RegretNet AMD.

B.5.1 LP-based Approach

The LP-based approach considered in this paper is initiated by [CS02]. We consider n agents

with type distribution F defined on T . For each type profile t P T and each outcome ok P O,

we define xkptq as the probability of choosing ok when the reported types are t and piptq as the

expected payment of agent i when the reported types are t. xkptq and piptq are both decision

variables.

Then we can formulate the mechanism design problem as the following linear programming,

max
x,p
p1´ λqEt„F

«

ÿ

i

piptq

ff

` λEt„F

»

–

ÿ

k:okPO

xkptq
ÿ

i

vipti, okq

fi

fl

s.t. Et´i

»

–

ÿ

k:okPO

xkpti, t´iqvipti, okq ´ pipti, t´iq

fi

fl ě Et´i

»

–

ÿ

k:okPO

xkpt1i, t´iqvipti, okq ´ pipt1i, t´iq

fi

fl ,@i, ti, t1i

Et´i

»

–

ÿ

k:okPO

xkptqvipti, okq ´ piptq

fi

fl ě 0,@i, t

where the first constraint is for BIC and the second is for interim-IR. In this case, the type space

T is discrete, thus the expectation can be explicitly represented as the linear function with

decision variables.

B.5.2 RegretNet Approach

RegretNet (Chapter 1) is a generic data-driven, deep learning framework for multi-dimensional

mechanism design. We only briefly introduce the RegretNet framework here and refer the

readers to Chapter 1 for more details.

RegretNet uses a deep neural network parameterized by w P Rd to model the mechanism

M, as well as the valuation (through allocation function xw : T Ñ ∆pOq) and payment
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functions: vw
i : Ti ˆ ∆pOq Ñ Rě0 and pw

i : T Ñ Rě0. Denote utility function as,

uw
i pti,ptq “ vipti, xwpptqq ´ pw

i p
ptq.

RegretNet is trained on a training data set S of S type profiles i.i.d sampled from F to maximize

the empirical revenue subject to the empirical regret being zero for all agents:

max
wPRd

1´ λ

S

ÿ

tPS

n
ÿ

i“1

pw
i ptq `

λ

S

ÿ

tPS

n
ÿ

i“1

vw
i pti, xptqq

s.t.
1
S

ÿ

tPS

«

max
t1iPTi

uw
i pti, pt1i, t´iqq ´ uw

i pti, tq

ff

“ 0,@i

The objective is the empirical version of learning target in 3.7. The constraint is for EEIC

requirement and IR is hard coded in RegretNet to be guaranteed. Let H be the functional

class modeled by RegretNet through parameters w. In this paper, we assume there exists an

PAC learning algorithm that can produce a RegretNet to model an ε-EEIC mechanismM P H

defined on F , such that

µλpM1,Fq ě sup
xMPH

µλp
xM,Fq ´ p1´ λq

n
ÿ

i“1

|Ti|ε´ ε,

holds with probability at least 1´ δ, by observing S “ Spε, δq i.i.d samples from F .
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Appendix C

Appendix to Chapter 4

C.1 Missing Proofs

C.1.1 Proof of Lemma 4.1

Proof. We prove this lemma by considering the following cases,

• If b ě v` 1
H , then mi,t “ b implies ui,tppv, b´i,tq; vq “ 0, whereas, ui,tppb, b´i,tq; vq “ v´ b ď

´ 1
H with probability at least 1{n, because of random tie-breaking. Therefore,

P

ˆ

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq ě
1
H

ˇ

ˇ

ˇ
b ě v`

1
H

˙

ě P

ˆ

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq ě
1
H

, mi,t “ b
ˇ

ˇ

ˇ
b ě v`

1
H

˙

ě P

ˆ

ui,tppb, b´i,tq; vq ď ´
1
H

, mi,t “ b
ˇ

ˇ

ˇ
b ě v`

1
H

˙

ě
1
n

ˆ

1
H

˙n´1

ě
τ

n

where the second last inequality holds because P pmi,t “ bq ě
` 1

H

˘n´1
and the last in-

equality is based on the fact that 1
Hn´1 ě τ.

• If b ď v´ 1
H , then mi,t “ b implies ui,tppv, b´i,tq; vq “ v´mi,t ě

1
H , whereas, ui,tpb, b´i,tq; vqq “

0 with both probability at least 1{n (random tie-breaking). Therefore,

P

ˆ

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq ě
1
H

ˇ

ˇ

ˇ
b ď v´

1
H

˙
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ě P

ˆ

ui,tppv, b´i,tq; vq ´ ui,tppb, b´i,tq; vq ě
1
H

, mi,t “ b
ˇ

ˇ

ˇ
b ď v´

1
H

˙

ě P

ˆ

ui,tppb, b´i,tq; vq “ 0, mi,t “ b
ˇ

ˇ

ˇ
b ď v´

1
H

˙

ě
1
n

ˆ

1
H

˙n´1

ě
τ

n

C.1.2 Proof of Lemma 4.2

Proof. By Lemma 4.1, we have Erui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vqs ě τ
nH , for any fixed v, b ‰ v

and s ď t. Then by Chernoff bound, we have

P

˜

ÿ

sďt

ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ď
τt

nH
´

τt
2nH

¸

ď P

˜

ÿ

sďt

ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ď tErui,sppv, b´i,sq; vq ´ ui,sppv, b´i,sq; vqs ´
τt

2nH

¸

ď exp
ˆ

´
2τ2t

4n2H2

˙

C.1.3 Proof of Lemma 4.3

Proof. By definition of γt-mean-based learning algorithm, given a value v, each bid b ‰ v

will be selected with probability at most γt for each bidder i, thus, bi,t`1 ‰ vi,t`1 holds with

probability at most Hγt for any bidder i. By union bound, mi,t`1 ‰ zi,t`1 holds with probability

at most pn´ 1qHγt, for all i.

P

ˆ

ui,t`1ppv, b´i,t`1q; vq ´ ui,tppb, b´i,t`1q; vq ě
1
H

˙

ě P

ˆ

ui,t`1ppv, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq ě
1
H

, mi,t`1 “ zi,t`1

˙

ě P

ˆ

ui,t`1ppv, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq ě
1
H

, mi,t`1 “ zi,t`1, zi,t`1 “ b
˙

ě p1´ pn´ 1qHγtq ¨
τ

n
ě

τ

2n
,
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where the third inequality is based on the same argument in Lemma 4.1 and the last inequality

holds because γt ď
1

2nH .

C.1.4 Proof of Claim 4.3

Proof. Based on the construct of Tk and γt ď
τ

8nH ,@t ą T0, we have Tk ě 2Tk´1. Then

|Γ`| “ T` ´ T`´1 ě 2`´1T0,@` ě 1, we have

kptq
ÿ

`“0

exp
ˆ

´
|Γ`|τ

2

32n2H2

˙

ď 2 exp
ˆ

´
τ2T0

32n2H2

˙

`
ÿ

`“2

exp
ˆ

´
2`´1τ2T0

32n2H2

˙

ď 2 exp
ˆ

´
τ2T0

32n2H2

˙

`
ÿ

`“1

exp
ˆ

´
2`τ2T0

32n2H2

˙

“ exp
ˆ

´
τ2T0

32n2H2

˙

¨

˜

2`
ÿ

`“1

exp
ˆ

´
p2` ´ 1qτ2T0

32n2H2

˙

¸

ď exp
ˆ

´
τ2T0

32n2H2

˙

¨

˜

2`
ÿ

`“1

exp
ˆ

´
`τ2T0

32n2H2

˙

¸

pBecause 2` ´ 1 ě `,@` ě 1q

ď exp
ˆ

´
τ2T0

32n2H2

˙

¨

¨

˝2`
1

1´ exp
´

´
τ2T0

32n2 H2

¯

˛

‚

ď 4 exp
ˆ

´
τ2T0

32n2H2

˙

,

where the last inequality holds, because exp
´

´
τ2T0

32n2 H2

¯

ď 1
2 if T0 is large enough.

C.1.5 Proof of Theorem 4.4

Here we slightly abuse the notation, let r v
2 s :“ tb P V : b ě v

2 , and b ď v
2 `

1
H u. Notice, if v

2 P V,

r v
2 s “ v

2 . If v
2 R V, r v

2 s “ v
2 `

1
2H . We prove this theorem based on the following claims,

Claim C.1. For any t ď T0, any fixed v, any bid b ‰ r v
2 s, for each bidder i we have

Eb´i,t

”

ui,tppr
v
2

s, b´i,tq; vq ´ ui,tppb, b´i,tq; vq
ı

ě
1

2H2

Proof. Let UV denote the uniform distribution on V. Note, we assume the random tie-breaking

in this paper, then we can rewrite the expected utility of bidder i when t ď T0 in the following
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way

Eb´i,t„UV rui,tppb, b´i,tq; vqs “ pv´ bq ¨
ˆˆ

b´
1
H

˙

`
1
2
¨

1
H

˙

“ pv´ bq ¨
ˆ

b´
1

2H

˙

Then we consider two different cases in the following,

• v
2 P V, let b “ v

2 ` α, where α ě 1
H or α ď ´ 1

H . Thus, we have

´

v´
v
2

¯

¨

ˆ

v
2
´

1
2H

˙

´ pv´ bq ¨
ˆ

b´
1

2H

˙

“
v2

4
´

v
4H

´

ˆ

v2

4
´ α2 ´

v
4H

`
α

2H

˙

“ α2 ´
α

2H
ě

1
2H2

• v
2 R V, then r v

2 s “ v
2 `

1
2H . Let b “ r v

2 s` α, where α ě 1
H or α ď ´ 1

H . Thus, we have

´

v´
Qv

2

U¯

¨

ˆ

Qv
2

U

´
1

2H

˙

´ pv´ bq ¨
ˆ

b´
1

2H

˙

“

ˆ

v
2
´

1
2H

˙

¨
v
2
´

ˆ

v
2
´

1
2H

´ α

˙

¨

´v
2
` α

¯

“ α2 `
α

2H
ě

1
2H2

Combining the above two cases, we complete the proof.

Claim C.2. For any fixed value v, any t ď T0, any bid b ‰ r v
2 s, we have for each bidder i,

P

˜

ÿ

sďt

ui,sppr
v
2

s, b´i,sq; vq ´
ÿ

sďt

ui,sppb, b´i,sq; vq ď
τt

2nH

¸

ď exp
ˆ

´
t

8H4

˙

Proof. By Claim C.1 and Chernoff bound, we have

P

˜

ÿ

sďt

ui,sppr
v
2

s, b´i,sq; vq ´
ÿ

sďt

ui,sppb, b´i,sq; vq ď
t

4H2

¸

ď P

˜

ÿ

sďt

ui,sppr
v
2

s, b´i,sq; vq ´
ÿ

sďt

ui,sppb, b´i,sq; vq ď
ÿ

sďt

Eb´i,s

”

ui,sppr
v
2

s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq
ı

´
t

4H2

¸

ď exp
ˆ

´
2t

16H4

˙

“ exp
ˆ

´
t

8H4

˙
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Claim C.3. For any t ą T0, for any fixed v, any bid b ‰ r v
2 s and each bidder i, suppose

ř

sďt ui,sppr
v
2 s, b´i,sq; vq´

ui,sppb, b´i,sq; vq ě γtt holds, then for any fixed value v, any bid b ‰ r v
2 s and each bidder i, we have,

Eb´i,t`1

”

ui,t`1ppr
v
2

s, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq
ı

ě
1

2H2

Proof. We assume for each bidder i, with probability ηi
t bids bi,i`1 “ r

vi,t`1
2 s and with probability

1´ ηi
t bids bi,t`1 ‰ r

vi,t`1
2 s. By the condition that

ř

sďt ui,sppr
v
2 s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě γtt

and definition of mean-based learning algorithm, we have ηi
t ě 1´ Hγt for each bidder i.

Let bj,t`1, vj,t`1 be the bid and value from the other bidder j ‰ i at time t` 1, respectively.

Then we can show the lower bound of the expected utility for bidder i, when bid b ď 1
2 , in the

following,

Eb´i,t`1 rui,t`1ppb, b´i,t`1q; vqs

“ pv´ bq ¨
ˆ

Ppb ą bj,t`1q `
1
2
¨Ppbj,t`1 “ bq

˙

ě η
j
t ¨ pv´ bq ¨

ˆ

Ppb ą r
vj,t`1

2
sq `

1
2
¨Ppr

vj,t`1

2
s “ bq

˙

For any b ď 1
2 , 2b P V. Then if vj,t`1 ď 2b´ 2

H , r
vj,t`1

2 s ă b. Therefore, Ppb ą r
vj,t`1

2 sq “ 2b´ 2
H .

Notice, when vj,t`1 “ 2b´ 1
H or vj,t`1 “ 2b, r

vj,t`1
2 s “ b, then P

´Q

vj,t`1
2

U

“ b
¯

“ 2
H . Therefore,

we can lower bound the expected utility for bidder i, when bid b ď 1
2 ,

Eb´i,t`1 rui,t`1ppb, b´i,t`1q; vqs ě 2η
j
t ¨ pv´ bq ¨

ˆ

b´
1

2H

˙

Similarly, we can upper bound the expected utility for bidder i, when bid b ď 1
2 , shown as

below,

Eb´i,t`1 rui,t`1ppb, b´i,t`1q; vqs

ď η
j
t ¨ pv´ bq ¨

ˆ

Ppb ą r
vj,t`1

2
sq `

1
2
¨Ppr

vj,t`1

2
s “ bq

˙

` p1´ η
j
tq

“ 2η
j
t ¨ pv´ bq ¨

ˆ

b´
1

2H

˙

` p1´ η
j
tq

Combining the above lower bound and upper bound of the expected utility of bidder i, we
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have for any b ď 1
2 ,

Eb´i,t`1

”

ui,t`1ppr
v
2

s, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq
ı

ě 2η
j
t ¨

ˆ

pv´ r
v
2

sq ¨

ˆ

r
v
2

s´
1

2H

˙

´ pv´ bq ¨
ˆ

b´
1

2H

˙˙

´ p1´ η
j
tq

ě 2p1´ Hγtq
1

2H2 ´ Hγt “ p1´ Hγtq
1

H2 ´ Hγt,

where the last inequality is based on the same argument as in Claim C.1. Finally, since T0 is

large enough to make γt ď
1

4H3 , then we have p1´ Hγtq
1

H2 ´ Hγt ě
3
4 ¨

1
H2 ´

1
4H2 “

1
2H2 . Thus,

for any bid b ď 1
2 , we have,

Eb´i,t`1

”

ui,t`1ppr
v
2

s, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq
ı

ě
1
H

For bid b ě 1
2 `

1
H , Ppb ą r

vj,t`1
2 sq “ 1 and Ppr

vj,t`1
2 s “ bq “ 0, then it is trivially to show for any

v P V,

Eb´i,t`1

„

ui,t`1pp
1
2

, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq


ě
1
H

Combining the case that b ď 1
2 , we complete the proof.

Similarly to the proof of Theorem 4.1, we divide the time steps t ą T0 to several episodes as

follows, Γ1 “ rT0 ` 1, T1s, Γ2 “ rT1 ` 1, T2s, ..., such that @k ě 1, Tk “

[

´

1
4H2`1

¯

Tk´1

γTk`1

_

. We always

choose the smallest Tk to satisfy this condition. This Tk always exists since pγt ` 1qt Ñ 8

as t Ñ 8. The total time steps of each episode |Γk| “ Tk ´ Tk´1,@k ě 1. Then we show the

following claim holds.

Claim C.4. Let event Ek be
ř

sďTk
ui,sppr

v
2 s, b´i,sq; vq´ ui,sppb, b´i,sq; vq ě Tk

4H2 holds for all i, any fixed

v, and any bid b ‰ r v
2 s. Then the event Ek holds with probability at least 1´

řk
`“0 exp

´

´
|Γ`|

32H4

¯

.

We prove the above claim by induction. If k “ 0, the claim holds by Claim C.2. We assume

the claim holds for k, then we argue the claim still holds for k ` 1. We consider any time
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t P Γk`1, given event Ek holds, we have

ÿ

sďt

ui,sppr
v
2

s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě
ÿ

sďTk

ui,sppr
v
2

s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ´ pt´ Tkq

ě
Tk

4H2 ´ Tk`1 ` Tk “

ˆ

1
4H2 ` 1

˙

Tk ´ Tk`1 ě γtt,

(C.1)

where the first inequality holds because ui,sppr
v
2 s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě ´1,@s ą Tk and

the final inequality holds because of the induction assumption and the last inequality hold

because

γtt` Tk`1 ď pγTk`1 ` 1qTk`1 “ pγTk`1 ` 1q ¨

[

` 1
4H2 ` 1

˘

Tk

γTk`1 ` 1

_

ď

ˆ

1
4H2 ` 1

˙

Tk,@t P Γk`1.

Then by Claim C.3, given Ek holds, for any t P Γk`1 we have, E
”

ui,tppr
v
2 s, b´i,tq; vq ´ ui,tppb, b´i,tq; vq

ˇ

ˇ

ˇ
Ek

ı

ě

1
2H2 for any t P Γk`1. By Azuma’s inequality (for martingale), we have

P

¨

˝

ÿ

sPΓk`1

ui,sppr
v
2

s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ď
|Γk`1|

4H2

ˇ

ˇ

ˇ
Ek

˛

‚

ď P

¨

˝

ÿ

sPΓk`1

ui,sppr
v
2

s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ď
ÿ

sPΓk`1

E
”

ui,sppr
v
2

s, b´i,sq; vq ´ ui,sppb, b´i,sq; vq
ˇ

ˇ

ˇ
Ek

ı

´
|Γk`1|

4H2

ˇ

ˇ

ˇ
Ek

˛

‚

ď exp
ˆ

´
|Γk`1|

32H4

˙

Therefore, the event Ek`1 holds with probability at least

ˆ

1´ exp
ˆ

´
|Γk`1|

32H4

˙˙

¨PpEkq ě 1´
k`1
ÿ

`“0

exp
ˆ

´
|Γ`|

32H4

˙

,

which completes the induction. Given Claim 4.2, we have the following argument,

For any time t ą T0, there exists kptq, s.t., t P Γkptq, if the event Ekptq happens, the bidder i

will report bt “ r
vi,t
2 s at least 1´ Hγt, by the definition of γt-mean-based learning algorithms

and the same argument as Eq. (C.1). Therefore, at any time t ą T0, each bidder i will report

truthfully with probability at least

1´ Hγt ´

kptq
ÿ

`“0

exp
ˆ

´
|Γ`|

32H4

˙
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“ 1´ Hγt ´

kptq
ÿ

`“0

exp
ˆ

´
|Γ`|

32H4

˙

We then bound kptq. First, Tk ě
´

4H3`H
4H3`1

¯

Tk´1, since γt ď
1

4H3 ,@t ą T0. Therefore, we have
´

4H3`H
4H3`1

¯pkptq´1q
T0 ď t, which implies, kptq ` 1 ď 2` logpt{T0q

log
´

4H3`H
4H3`1

¯ ď
log t

log
´

4H3`H
4H3`1

¯ . In addition, we

have |Γ`| ě
H´1

4H3`1 T0. Combining the above arguments together, we complete the proof.

Remark. Let piptq be the probability that each bidder i bids r
vi,t
2 s at time t, for any fixed vi,t. As

long as T0 “ Ωplog log tq, piptq Ñ 1 as t Ñ8.

C.1.6 Proof of Theorem 4.5

This proof exactly follows the same technique in Theorem 4.1. Here we only mention the

difference in multi-position VCG auctions compared with second price auctions, summarized

in the following two claims.

Claim C.5. For any fixed value v, and bid b ‰ v and any time t ď T0, for each bidder i, we have

P
´

ui,tppv, b´i,tq; vq ´ ui,tpb, b´i,tq; vq ě
ρ

H

¯

ě
τ

n

Proof. Firstly, truthful bidding is the weakly dominant strategy for each bidder i, thus, for any

b´i,t and b ‰ v, ui,tppv, b´i,tq; vq ´ ui,tpb, b´i,tq; vq ě 0.

Then we focus on the case that b ě v ` 1
H here. It is analogous to show for the case

b ď v´ 1
H and we omit here. Consider the other bidders all bid b, since m ă n, bidder i wins

no slot if she bids truthfully, i.e. ui,tppv, b´i,tq; vq “ 0 if bj,t “ b,@j ‰ i. However, if bidder i bids

b, by random tie-breaking, bidder i will win a slot with probability 1{n and pay b if she wins,

i.e., ui,tppb; b´i,tq; vq ď ρpv´ bq ď ´ ρ
H if bidder i wins a slot.

Notice, the probability that the other bidders all bid b is 1
Hn´1 , therefore

P
´

ui,tppv, b´i,tq; vq ´ ui,tpb, b´i,tq; vq ě
ρ

H

¯

ě
1

nHn´1 ě
τ

n
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Claim C.6. For any t ą T0, suppose
ř

sďt ui,sppv, b´i,sq; vq ´ ui,sppb, b´i,sq; vq ě γtt holds for any

fixed v, b ‰ v and each bidder i, then

ui,t`1ppv, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq ě
ρ

H

holds with probability at least τ
2n , for any fixed value v, bid b ‰ v and each bidder i.

Proof. Similarly to Lemma 4.3, by definition of γt-mean-based learning algorithm and the

condition assumed in the claim, each bidder i will submit bid b “ vi,t`1 at least 1´ Hγt.

Moreover, by Assumption 4.2, the probability that the k-th largest value from the other bidders

is b, is at least τ. Following the same argument in Claim C.5, we have

ui,t`1ppv, b´i,t`1q; vq ´ ui,t`1ppb, b´i,t`1q; vq ě
ρ

H

holds with probability at least p1´ Hγtq
n´1 τ

n ě p1´ Hpn´ 1qγtq
τ
n .

Given the above two claims, following the exactly same proof steps as in Theorem 4.1, we

complete the proof for Theorem 4.5.

C.2 Additional Experiments

In this section, we outline the experimental setup for the contextual bandit experiments as

well as the deep Q-learning experiments. In the contextual bandit setting, we use the state

to simply represent the private value of the user and reward to be the utility of the auction.

In the RL setup, we define the observations of each agent as their private valuation, the state

transitions as the next private valuation sampled randomly, the rewards as the utility of the

auction and the actions as the discrete bid chosen at each round. Note that in the RL setup

where the state is the private value and the next private valuation is sampled randomly, the

proposed setting would be similar to the contextual bandit setting. Our learning algorithm is

the ε-greedy which is a Mean-Based Algorithm studied earlier. In the experimental setup, we

considered a finite horizon episode consisting of N auction rounds (where N is chosen as 100

typically in the experiments).
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Figure C.1: Training curve of mean reward of each bidder (left) and roll-out bidding strategy of each bidder (right)
in the exploitation phase of contextual ε-Greedy algorithm in first price auctions for three bidders.

C.2.1 Experiment Details

Contextual Bandits Setting: In first and second price auctions, we anneal the ε for both players

from 1.0 to 0.05 over 50,000 episodes with 100 rounds each. To measure the robustness of our

results for more than two players, we evaluate the equilibrium performance for three agents

participating in a first price auction in Figure C.1.

Deep Q Learning Setting: In the DQN experiments mentioned earlier, we used Double Deep

Q Networks [VHGS15] with Dueling [Wan+16] and Prioritized Experience Replay [Sch+15]

to train the two agents with identical hyperparameters. In the experiments, the Q network

is a fully-connected network with hidden dimensions [256, 256] and tanh non-linearity, the

number of discrete states H “ 100, the discount rate was set as γ “ 0.99 and the learning rate

α “ 0.0005. We train over 400,000 time steps with target network updates frequency of τ “ 500

steps. The size of the replay memory buffer is 50000 and the minibatch size is 32 (such that

1000 time steps are sampled from the buffer at each train iteration). We use an ε greedy policy

with annealing wherein ε decreases linearly from 1 to 0.02 in 200,000 steps.

To capture the inter-dependence of actions chosen by the bidder, we model the observation

for each agent as the current private valuation, the previous valuation, the previous bid and

the auction outcome. Like before, we observe that the agents bid approximately with truthful

bids for second price auctions and BNE for first price auctions in Figures C.2.
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Figure C.2: The roll-out of the optimal bidding strategy of each bidder with deep state representations in second
price auction (left) and first price auction (right).
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Appendix D

Appendix to Chapter 5

D.1 Omitted Algorithms

Essentially, the family of our WIN-EXP algorithms is parametrized by the step-size η-parameter,

the estimate of the utility that the learner gets at every timestep ũtpbq and finally, the type of

feedback that he receives after every timestep t. Clearly, both η and the estimate of the utility

depend crucially on the particular type of feedback.

In this section, we present the specifics of the algorithms that we omitted from the main

body of the text.
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D.1.1 Outcome-based feedback graph over outcomes

Algorithm 6 WIN-EXP-G algorithm for learning with outcome-based feedback and a feedback
graph over outcomes

Let π1pbq “ 1
|B| for all b P B (i.e. the uniform distribution over bids), η “

c

logp|B|q

8Tα ln
´

16|O|2T
α

¯

for each iteration t do

Draw an action bt „ πtp¨q, multinomial

Observe xtp¨q, chosen outcome ot and associated reward function rtp¨, otq

Observe and associated reward function rtp¨, ¨q for all neighbor outcomes Nin
ε , Nout

ε

Compute estimate of utility:

ũtpbq “ Itot P Oεu
ÿ

oPNout
ε potq

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s
(D.1)

Update πtp¨q based on the Exponential Weights Update:

(D.2)

end for

D.2 Omitted proofs from Section 5.4

We first give a lemma that bounds the moments of our utility estimate.

Lemma D.1. At each iteration t, for any action b P B, the random variable ũtpbq is an unbiased estimate

of the true expected utility utpbq, i.e.: @b P B : E rũtpbqs “ utpbq ´ 1 and has expected second moment

bounded by: @b P B : E
”

pũtpbqq2
ı

ď 4
ř

oPO
Ptro|bs
Ptros

.

Proof of Lemma D.1. According to the notation we introduced before we have:

E rũtpbqs “ Eot

„

prtpb, otq ´ 1q ¨Ptrot|bs
Ptrots



“
ÿ

oPO

prtpb, oq ´ 1q ¨Ptro|bs
Ptros

Ptros

“
ÿ

oPO

rtpb, oqPtro|bs ´ 1 “ utpbq ´ 1
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Similarly for the second moment:

E
“

ũtpbq2
‰

ď Eot

„

prtpb, otq ´ 1q2Ptrot|bs2

Ptrots2



“
ÿ

oPO

prtpb, oq ´ 1q2Ptro|bs2

Ptros2
Ptros

ď
ÿ

oPO

4Ptro|bs
Ptros

where the last inequality holds since rtp¨, ¨q P r´1, 1s.

Proof of Theorem 5.2. Observe that regret with respect to utilities utp¨q is equal to regret with

respect to the translated utilities utp¨q ´ 1. We use the fact that the exponential weight updates

with an unbiased estimate ũtp¨q ď 0 of the true utilities, achieves expected regret of the form:

RpTq ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
”

pũtpbqq2
ı

`
1
η

logp|B|q

For a detailed proof of the above, we refer the reader to Appendix D.7. Invoking the bound on

the second moment by Lemma D.1, we get:

RpTq ď 2η
T
ÿ

t“1

ÿ

bPB

πtpbq ¨
ÿ

oPO

Ptro|bs
Ptros

`
1
η

logp|B|q

“ 2η
T
ÿ

t“1

ÿ

oPO

ÿ

bPB

πtpbq ¨
Ptro|bs
Ptros

`
1
η

logp|B|q

ď 2ηT|O| `
1
η

logp|B|q

Picking η “
b

logp|B|q
2T|O| , we get the theorem.

D.2.1 Comparison with Results in [WPR16].

We note that our result in Example 5.1 also recovers the results of Weed, Perchet, and Rigollet

[WPR16], who work in the continuous bid setting (i.e. b P r0, 1s). In order to describe their

results, consider the grid LT formed by the maximum bids from other bidders mt “ maxj‰i bjt

for all the rounds. Let lo “ pmt, mt1q be the widest interval in LT, that contains an optimal fixed

bid in hindsight and let ∆o denote its length. Weed, Perchet, and Rigollet [WPR16] provide an

algorithm for learning the valuation, which yileds regret 4
a

T logp1{∆oq.

The same regret can be achieved, if we simply consider a partition of the bidding space
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r0, 1s into 1
ε intervals of equal length ε, for ε ă ∆o, and run our algorithm on this discretized

bid space B. If lo contains an optimal bid, then any bid b P lo is also optimal in-hindsight,

since all such bids achieve the same utility. Since ∆o ą ε, there must exist a discretized bid

b˚ε P BX lo. Thus, b˚ε is also optimal in hindsight. Hence, regret against the best fixed bid in

r0, 1s is equal to regret against the best fixed discretized bid in B. By our Theorem 5.2, the latter

regret is 4
a

T logp1{εq, which can be made arbitrarily close to the regret bound achieved by

Weed, Perchet, and Rigollet [WPR16], who use a more intricate adaptive discretization. Similar

to Weed, Perchet, and Rigollet [WPR16], knowledge of ∆o can be bypassed by instead defining

∆o as the length of the smallest interval in LT and then using the standard doubling trick, i.e.:

keep an estimate of ∆o and once this estimate is violated, divide ∆o in half and re-start your

algorithm. The latter only increases the regret by a constant factor.

D.3 Notes on Subsection 5.4.1

If one is interested in optimizing the sum of utilities at each iteration rather than the average,

then if all iterations have the same number of batches |I|, this simply amounts to rescaling

everything by |I|, which would lead to an |I| blow up in the regret.

If different periods have different number of batches and Imax is the maximum number

of batches per iteration, then we can always pad the extra batches with all zero rewards.

This would amount to again multiplying the regret by Imax and would change the unbiased

estimates at each period to be scaled by the number of iterations in that period:

ũtpbq “
|It|

Imax

ÿ

oPO

Ptro|bs ¨Ptro|bts

Ptros
pQtpb, oq ´ 1q (D.3)

and then we would invoke the same algorithm. This essentially puts more weight on iterations

with more auctions, so that the "step-size" of the algorithm depends on how many auctions

were run during that period. It is easy to see that the latter modification would lead to regret

4Imax
a

T log p|B|q in the sponsored search auction application.
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D.4 Omitted Proofs from Section 5.4.1

We first prove an upper bound on the moments of our estimates used in the case of batch

rewards.

Lemma D.2. At each iteration t, for any action b P B, the random variable ũtpbq is an unbiased

estimate of utpbq ´ 1 and can actually be constructed based on the feedback that the learner receives:

@b P B : ũtpbq “
ř

oPO
Ptro|bs
Ptros

ftpoq pQtpb, oq ´ 1q and has expected second moment bounded by:

@b P B : E
”

pũtpbqq2
ı

ď 4
ř

oPO
Ptro|bs
Ptros

.

Proof of Lemma D.2. For the estimate of the utility it holds that:

ũtpbq “
1
|It|

ÿ

τPIt

prτpb, oτq ´ 1qPtroτ|bs
Ptroτs

“
1
|It|

ÿ

oPO

ÿ

τPIto

prτpb, oq ´ 1qPtro|bs
Ptros

“
ÿ

oPO:|Ito|ą0

Ptro|bs
Ptros

ftpoq
1
|Ito|

ÿ

τPIto

prτpb, oq ´ 1q

“
ÿ

oPO

Ptro|bs
Ptros

ftpoq pQtpb, oq ´ 1q (D.4)

From the first equation it follows along identical lines, that this is an unbiased estimate, while

from the last equation it is easy to see that this unbiased estimate can be constructed based on

the feedback that the learner receives.

Moreover, we can also bound the second moment of these estimates by a similar quantity

as in the previous section:

Erũtpbq2s “
ÿ

btPB

E

»

–

˜

ÿ

oPO

Ptro|bs
Ptros

ftpoq pQtpb, oq ´ 1q

¸2 ˇ
ˇ

ˇ

ˇ

bt

fi

flπtpbtq

ď
ÿ

btPB

E

«

ÿ

oPO

ˆ

Ptro|bs
Ptros

pQtpb, oq ´ 1q
˙2

ftpoq
ˇ

ˇ

ˇ

ˇ

bt

ff

πtpbtq (By Jensen’s inequality)

“
ÿ

btPB

ÿ

oPO

ˆ

Ptro|bs
Ptros

pQtpb, oq ´ 1q
˙2

Er ftpoq|bts ¨ πtpbtq

“
ÿ

oPO

ˆ

Ptro|bs
Ptros

pQtpb, oq ´ 1q
˙2

ÿ

btPB

Er ftpoq|bts ¨ πtpbtq
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“
ÿ

oPO

ˆ

Ptro|bs
Ptros

pQtpb, oq ´ 1q
˙2

Ptros

ď 4
ÿ

oPO

Ptro|bs
Ptros

Then following the same techniques in Theorem 5.2, it is straightforward to conclude the

proof of the corollary.

D.5 Omitted Proofs from Section 5.5

Proof of Lemma 5.3. Let OPT “ arg supbPB
řT

t“1 utpbq be the best fixed action in the continuous

action space B in hindsight. Since ε ă ∆o, then b˚ must belong to some d-dimensional ε-cube,

either as an interior point or as a limit of interior points, as expressed by Definition 5.1. The

utility is L-Lipschitz within this ε-cube and since ε ă ∆o, each cube contains at least one point

in the discretized space B. For the case where OPT is achieved as the limit of interior points

then for every δ ą 0 there exist an interior point of some cube b̃, such that
řT

t“1 utpb̃q ě OPT´ δ.

The same obviously holds when OPT is achieved by an interior point. Let pb be the closest

discretized point to b̃ that lies in the same cube as b̃. Since }pb´ b̃}8 ď ε, by the Lipschitzness

of the average reward function within each cube, we get:

OPT ď
T
ÿ

t“1

utpb̃q ` δ ď
T
ÿ

t“1

utppbq ` δ` εLT ď sup
bPB

T
ÿ

t“1

utppbq ` δ` εLT

Since we can take δ as close to zero as we want, we get the lemma.

Proof of Theorem 5.4. From Lemma 5.3 we know that for ε ă ∆o, the discretization error is

DEpB,Bq ď εLT. Combining Lemma 5.2 and Corollary 5.3, we have

RpT,Bq ď RpT, Bq `DEpB,Bq “ 2
b

2T|O| logp|B|q ` εLT

“ 2

d

2T|O| log
ˆ

1
εd

˙

` εLT

“ 2

d

2dT|O| log
ˆ

1
ε

˙

` εLT
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“ 2

d

2dT|O| log
ˆ

max
"

LT,
1

∆o

*˙

`min
"

1
LT

, ∆o
*

ď 2

d

2dT|O| log
ˆ

max
"

LT,
1

∆o

*˙

` 1

Unknown Lipschitzness constant. In Theorem 5.4 the discretization parameter ε depends

on the prior knowledge of the Lipschitzness constant, L, the number of rounds, T and the

minimum edge length of each d-dimensional cube, ∆o. In order to address the problem that in

general we do not know any of those constants a priori, we will apply a standard doubling

trick ([Aue+02]) to remove this dependence. We assume that T is upper bounded by a constant

TM and similarly we also assume that log
`

max
 

LT, 1
∆o

(˘

is upper bounded by a constant.

We will then initialize two bounds: BT “ 1 and B∆o ,LT “ 1 and run the WIN-EXP algorithm

with step size
b

logp1{εq
2BT |O|

and ε “ min
 1

LT , ∆o
(

until t ď BT or log
`

max
 

tL, 1
∆o

(˘

ď B∆o ,LT fails to

hold. If one of these discriminants fails, then we double the bound and restart the algorithm.

This modified strategy only increases the regret by a constant factor.

Corollary D.1. The WIN-EXP algorithm run with the above doubling trick achieves an expected regret

bound RpTq ď 25
b

2dT|O| log
`

max
 

LT, 1
∆o

(˘

` 1

Proof of Corollary D.1. Based on the doubling trick that we described above, we divide the

algorithm into stages in which BT and B∆o ,LT are constants. Let B˚L, and B˚∆o ,LT be the values

of BL and B∆,LT respectively when the algorithm terminates. There is at most a total of

log
`

B˚T
˘

` log
´

B˚∆o ,LT

¯

` 1 stages in this doubling process. Since the actual expected regret is

bounded by the sum of the regret of each stage, following the result of Theorem 5.4, we have

RpTq ď
rlogpB˚T qs

ÿ

i“0

Q

log
´

B˚∆o ,LT

¯U

ÿ

j“0

ˆ

2
b

2d2i|O|2j
˙

` log pB˚Tq ` log
`

B˚∆o ,LT
˘

` 1

“

rlogpB˚T qs
ÿ

i“0

Q

log
´

B˚∆o ,LT

¯U

ÿ

j“0

ˆ

2
b

2d|O|2i ¨ 2j
˙

` log
`

B˚TB˚∆o ,LT
˘

` 1
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“

»

–

rlogpB˚T qs
ÿ

i“0

´?
2
¯i

fi

fl ¨

»

—

–

Q

log
´

B˚∆o ,LT

¯U

ÿ

j“0

´?
2
¯j

fi

ffi

fl

2
a

2d|O| ` log
`

B˚TB˚LT,∆o

˘

` 1

“
1´

?
2

rlogpB˚T qs`1

1´
?

2
¨

1´
?

2
rlogpB˚∆o ,LTqs`1

1´
?

2
¨ 2
a

2d|O| ` log
`

B˚TB˚∆o ,LT
˘

` 1

ď

˜ ?
2

?
2´ 1

¸2
b

B˚TB˚∆o ,LT ¨ 2
a

2d|O| ` log
`

B˚TB˚∆o ,LT
˘

` 1

“

˜ ?
2

?
2´ 1

¸2

¨ 2
b

2d|O|B˚TB˚∆o ,LT ` log
`

B˚TB˚∆o ,LT
˘

` 1

ď 25
b

2d|O|B˚TB˚∆o ,LT ` 1

Combining the fact that B˚T ď T and B˚∆o ,LT ď log
`

max
 

LT, 1
∆o

(˘

as well as the above

inequalities, we complete the proof.

D.5.1 Omitted Proofs from Section 5.5.1

Proof of Theorem 5.5. Consider a player i. Observe that conditional on the player’s score si, his

utility remains constant if he is allocated the same slot. Moreover, when the slots are different,

then the difference in utilities is at most 2, since utilities lie in r´1, 1s. Moreover, because the

slots are allocated in decreasing order of rank scores, the slot allocation of a player is different

under bi and b1i only if there exists a player j, who passes the rank-score reserve (i.e. sj ¨ bj ě r)

and whose rank-score sj ¨ bj lies in the interval rsi ¨ bi, si ¨ b1is. Hence, conditional on si, the

absolute difference between the player’s expected utility when he bids bi and when he bids

bi ` ε, with ε ą 0, is upper bounded by:

2 ¨P
“

Dj ‰ i s.t sj ¨ bj P rsi ¨ bi, si ¨ pbi ` εqs and sj ¨ bj ě r | si
‰

By a union bound the latter is at most:

2 ¨
ÿ

j‰i

P

„

sj P

„

sibi

bj
,

sipbi ` εq

bj



and sj ¨ bj ě r | si


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Since sj P r0, 1s, the previous quantity is upper bounded by replacing the event sj ¨ bj ě r by

bj ě r. This event is independent of the scores and we can then write the above bound as:

2 ¨
ÿ

j‰i s.t. bjěr

P

„

sj P

„

sibi

bj
,

sipbi ` εq

bj



ˇ

ˇ

ˇ
si



Since each quality score sj is drawn independently from an L-Lipschitz CDF Fj, we can further

simplify the bound by:

2 ¨
ÿ

j‰i s.t. bjěr

„

Fj

ˆ

sipbi ` εq

bj

˙

´ Fj

ˆ

sibi

bj

˙

ď 2 ¨
ÿ

j‰i s.t. bjěr

L
siε

bj
ď 2 ¨

ÿ

j‰i s.t. bjěr

L
siε

r
ď

2nL
r

ε

Since the absolute difference of utilities between these two bids is upper bounded conditional

on si, by the triangle inequality it is also upper bounded even unconditional on si, which leads

to the Lipschitz property we want:

ˇ

ˇuipbi, b´i, rq ´ uipbi ` ε, b´i, rq
ˇ

ˇ ď
2nL

r
ε (D.5)

D.6 Omitted proofs from section 5.6.1

D.6.1 Switching Regret and PoA

Proof of Corollary 5.7. We first observe that the results proven in [GLL12] for a prediction

algorithm A with regret upper bounded by ρpTq hold also for algorithms A for which we know

upper bound of their expected regrets. Specifically, if algorithm A has an upper bound of ρpTq

for its expected regret, where ρpTq is a concave, non-decreasing, r0,`8q Ñ r0,`8q function,

then Lemma 1 from [GLL12] holds for expected regret. With that in mind, we can directly apply

the Randomized Tracking Algorithm and get expected switching regret upper bounded by:

pCpTPq ` 1q LCpTPq,Tρ

ˆ

T
pCpTPq ` 1q LCpTPq,T

˙

`

T
ÿ

t“1

ηt

8
`

rT
`

pCpTPq ` 1q LCpTPq,T´1 ´ 1
˘

ηT

(D.6)

where TP is the switching path of the optimal bids and CpTPq is the number of switches in the

optimal bid according to this path.
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We proceed by making sure that the conditions for the upper bound of the expected

regret of WIN-EXP satisfy the conditions required by algorithm A in [GLL12]. Indeed, the

upper bound of the expected regret of our algorithm,
b

2dT|O| log
`

max
 

LT, 1
∆o

(˘

` 1, is non

decreasing in T. Also, at timestep t “ 0, we incur no regret. We also apply the following

slight modifications in Algorithm 2 in [GLL12] so as to match the nature of our problem. First,

instead of computing the expected loss at each timestep t, we will now compute the expected

outcome-based utility, i.e. ūt pπtq “
ř

bPB πtpbqEot rũtpbqs. Second, instead of the cumulative

loss of their algorithm A we will now use the cumulative outcome-based expected utility of

WIN-EXP, i.e. Ūt pWIN-EXP, Tq “
řC

c“0 ŪWIN-EXPptc, tc`1q, where

ŪWIN-EXPptc, tc`1q “

tc`1´1
ÿ

s“tc

ūs pπWIN-EXP,sptcqq

is the cumulative outcome-based expected utility gained from our WIN-EXP algorithm in the

time interval rtc, tc`1q
1 with respect to ūs for s P rtc, tc`1q. Now, we are computing the regret

components of [GLL12] so as to achieve the desired result.

Before we show the specifics of the computation, we note here that g ą 0 is a parameter of

the Tracking Regret algorithm presented by [GLL12] and can be set a priori from the designer

of the algorithm. The complexity of g affects the computational complexity of the algorithm

and there is a tradeoff between the computational complexity and the regret of the algorithm.

For our computations here, we will set

g` 1 “
ˆ

T
CpTPq ` 1

˙α

(D.7)

where 0 ă α ă 1 is a constant. Now, we are ready to compute the components of the regret:

A “ LCpTPq,T pCpTPq ` 1qRWIN-EXP

ˆ

T
LCpTPq,T pCpTPq ` 1q

˙

ď 25

¨

˝

log
´

T
CpTPq`1

¯

logpg` 1q
` 2

˛

‚pCpTPq ` 1q

¨

˚

˝

g

f

f

e
2d|O|

T logpg` 1q logpmq

log
´

T
CpTPq`1

¯

` 2 logpg` 1q
` 1

˛

‹

‚

“ 50 ¨
ˆ

2`
1
α

˙

¨ pCpTPq ` 1q
c

2d|O| ¨
α

1` 2α
¨ T logpmq

1We clarify here that these time intervals are with respect to the switching bids.
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ď 50

c

1` 2α

α
¨ pCpTPq ` 1q2 2d|O|T logpmq

ď 50

d

ˆ

2`
1
α

˙

¨ pC` 1q2 2d|O|T logpmq

where in the second equality we have denoted logpmq “ log
`

max
 

LT, 1
∆o

(˘

and the last

inequality comes from the fact that C is the upper bound on the number of switches that the

transition path TP can have. Moving on to the computation of the rest of the components of

the regret:

B “
T
ÿ

t“1

ηt

8
ď

1
8

d

T log p1{εq
2|O|

“ O

˜
d

T
|O|

¸

D “ rT
`

LCpTPq,T pCpTPq ` 1q ´ 1
˘

“

ˆ

α` 1
α

` ε2

˙

log T` log p1` ε2q ´

ˆ

α` 1
α

˙

log ε2

where ε2 P p0, 1q is a constant. Before we conclude, we observe that even though Corollary 1

of [GLL12] is stated as a high-probability ex post result, the proof uses a result from [CL06]

(Lemma 4.1) which also holds for the expected regret. According to [GLL12] the switching

regret is the sum of the aforementioned A, B, D. Thus, we get the result.

D.6.2 Feedback Graphs over Outcomes

We first prove bounds on the moments of our unbiased estimates used in the case of a feedback

graph over outcomes.

Lemma D.3. At each iteration t, for any action b P B, the random variable ũtpbq has bias with respect

to utpbq ´ 1 bounded by:
ˇ

ˇE rũtpbqs ´ putpbq ´ 1q
ˇ

ˇ ď 2ε|O| and has expected second moment bounded

by: @b P B : E
“

ũtpbq2
‰

ď 4
ř

oPOε

Ptro|bs
ř

o1PNin
ε poq

Ptro1s
.

Proof of Lemma D.3. For the expected utility we have:

E rũtpbqs “ Eot

»

–Itot P Oεu
ÿ

oPNout
ε potq

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s

fi

fl

“
ÿ

otPOε

ÿ

oPNout
ε potq

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s
Ptrots
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“
ÿ

oPOε

ÿ

otPNin
ε poq

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s
Ptrots

“
ÿ

oPOε

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s

ÿ

otPNin
ε poq

Ptrots

“
ÿ

oPOε

prtpb, oq ´ 1qPtro|bs

“
ÿ

oPO

prtpb, oq ´ 1qPtro|bs ´
ÿ

oROε

prtpb, oq ´ 1qPtro|bs

“ utpbq ´ 1´
ÿ

oROε

prtpb, oq ´ 1qPtro|bs

Thus, we get that the bias of ũ with respect to ut ´ 1 is bounded by:

ˇ

ˇE rũtpbqs ´ putpbq ´ 1q
ˇ

ˇ ď 2ε|O| (D.8)

Similarly for the second moment:

E
“

ũtpbq2
‰

ď Eot

»

—

–

¨

˝Itot P Oεu
ÿ

oPNout
ε potq

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s

˛

‚

2
fi

ffi

fl

“
ÿ

otPOε

¨

˝

ÿ

oPNout
ε potq

prtpb, oq ´ 1qPtro|bs
ř

o1PNin
ε poq

Ptro1s

˛

‚

2

Ptrots (D.9)

Observe that the quantity inside the square:

ÿ

oPNout
ε potq

prtpb, oq ´ 1q
ř

o1PNin
ε poq

Ptro1s
Ptro|bs

can be thought of as an expected value of the quantity prtpb,oq´1q
ř

o1PNin
ε poq

Ptro1s
, were o is the random

variable and is drawn from the distribution of outcomes conditional on a bid b. Thus, by

Jensen’s inequality, the square of the latter expectation is at most the expectation of the square,

i.e.:
¨

˝

ÿ

oPNout
ε potq

prtpb, oq ´ 1q
ř

o1PNin
ε poq

Ptro1s
Ptro|bs

˛

‚

2

ď
ÿ

oPNout
ε potq

prtpb, oq ´ 1q2
´

ř

o1PNin
ε poq

Ptro1s
¯2 Ptro|bs
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Combining with Equation (D.9), we get:

E
“

ũtpbq2
‰

ď
ÿ

otPOε

ÿ

oPNout
ε potq

prtpb, oq ´ 1q2
´

ř

o1PNin
ε poq

Ptro1s
¯2 Ptro|bsPtrots

“
ÿ

oPOε

ÿ

otPNin
ε poq

prtpb, oq ´ 1q2
´

ř

o1PNin
ε poq

Ptro1s
¯2 Ptro|bsPtrots

“
ÿ

oPOε

prtpb, oq ´ 1q2
´

ř

o1PNin
ε poq

Ptro1s
¯2 Ptro|bs

ÿ

otPNin
ε poq

Ptrots

“
ÿ

oPOε

prtpb, oq ´ 1q2
ř

o1PNin
ε poq

Ptro1s
Ptro|bs

ď 4
ÿ

oPOε

Ptro|bs
ř

o1PNin
ε poq

Ptro1s

where the last inequality holds since rtp¨, ¨q P r´1, 1s.

Proof of Theorem 5.8. Observe that regret with respect to utilities utp¨q is equal to regret with

respect to the translated utilities utp¨q ´ 1. We use the fact that the exponential weight updates

with an estimate ũtp¨q ď 0 which has bias with respect to the true utilities, bounded by κ,

achieves expected regret of the form:

RpTq ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q ` 2κT

For the detailed proof of the above claim, please see Appendix D.7. Invoking the bound on the

bias and the second moment by Lemma D.3, we get:

RpTq ď 2η
T
ÿ

t“1

ÿ

bPB

πtpbq ¨
ÿ

oPOε

Ptro|bs
ř

o1PNin
ε poq

Ptro1s
`

1
η

logp|B|q ` 4ε|O|T

“ 2η
T
ÿ

t“1

ÿ

oPOε

ÿ

bPB

πtpbq ¨
Ptro|bs

ř

o1PNin
ε poq

Ptro1s
`

1
η

logp|B|q ` 4ε|O|T

“ 2η
T
ÿ

t“1

ÿ

oPOε

Pros
ř

o1PNin
ε poq

Ptro1s
`

1
η

logp|B|q ` 4ε|O|T

We can now invoke Lemma 5 of [Alo+15], which states that:

Lemma D.4 ([Alo+15]). Let G “ pV, Eq be a directed graph with |V| “ K, in which each node i P V

is assigned a positive weight wi. Assume that
ř

iPV wi ď 1, and that wi ě ε for all i P V for some
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constant 0 ă ε ă 1{2. Then
ÿ

iPV

wi
ř

jPNinpiq wj
ď 4α ln

4K
αε

(D.10)

where neighborhoods include self-loops and α is the independence number of the graph.

Invoking the above lemma for the feedback graph Gε (and noting that the independence

number cannot increase by restricting to a sub-graph), we get:

ÿ

oPOε

Pros
ř

o1PNin
ε poq

Ptro1s
ď 4α ln

4|O|
αε

(D.11)

Thus, we get a bound on the regret of:

RpTq ď 8ηα ln
ˆ

4|O|
αε

˙

T`
1
η

logp|B|q ` 4ε|O|T

Picking ε “ 1
4|O|T , we get:

RpTq ď 8ηα ln
ˆ

16|O|2T
α

˙

T`
1
η

logp|B|q ` 1

Picking η “
c

logp|B|q

8Tα ln
´

16|O|2T
α

¯ , we get the theorem.

D.7 Omitted proof for the regret of the exponential weights update

Lemma D.5. The exponential weights update with an estimate ũtp¨q ď 0 such that for any b P B and t,

|E rũtpbqs ´ putpbq ´ 1q| ď κ, achieves expected regret on the form:

RpTq ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q ` 2κT

Proof. Following the standard analysis of the exponential weight updates algorithm [AHK12]

and the fact that @x ď 0, ex ď 1` x` x2

2 as well as let b˚ “ arg maxbPB E
”

řT
t“1 utpbq

ı

, we have

E

«

T
ÿ

t“1

ũtpb˚q

ff

ď

T
ÿ

t“1

ÿ

bPB

πtpbqE rũtpbqs `
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q

ď

T
ÿ

t“1

ÿ

bPB

πtpbqputpbq ´ 1` κq `
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q

“ E

«

T
ÿ

t“1

utpbtq

ff

`
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q ` κT´ T
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which implies that

RpTq “ E

«

T
ÿ

t“1

utpb˚q

ff

´ E

«

T
ÿ

t“1

utpbtq

ff

ď E

«

T
ÿ

t“1

ũtpb˚q

ff

´ E

«

T
ÿ

t“1

utpbtq

ff

` κT` T

ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q ` 2κT

Remark. Let the estimator ũtpbq be unbiased for any t and any b P B, then the expected regret

is

RpTq ď
η

2

T
ÿ

t“1

ÿ

bPB

πtpbq ¨ E
“

ũtpbq2
‰

`
1
η

logp|B|q
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