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Abstract

Studies are often performed in samples that do not resemble the target populations relevant

for policy, treatment, or other decisions. Much of the causal inference literature has focused

on addressing internal validity bias; however, both internal and external validity are necessary

for unbiased estimates in a target population. The generalizability methods presented in this

thesis allow for inference on the population of interest rather than the one in the study.

Chapter 1 presents a framework for addressing external validity bias, including a syn-

thesis of approaches for generalizability and transportability, the assumptions they require,

as well as tests for the heterogeneity of treatment effects and differences between study

and target populations. The chapter concludes with practical guidance for researchers and

practitioners.

Chapter 2 presents an innovative class of estimators, conditional cross-design synthesis

(CCDS), for combining randomized and observational data to eliminate their respective

external and internal validity biases. CCDS uses the region of covariate overlap between data

types to remove potential unmeasured confounding bias in the observational data in order to

extend inference beyond the support of the randomized data to the full target population. We

derive outcome regression, propensity weighting, and double robust approaches under the

CCDS framework. We illustrate the methods to estimate the causal effect of health insurance

plans on cost among New York City Medicaid enrollees.

Chapter 3 introduces novel approaches for generalizing from an evaluation study of a

voluntary intervention to estimate population average treatment effects for future treated

individuals, which can accommodate nonparametric outcome regression approaches such
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as Bayesian Additive Regression Trees and Bayesian Causal Forests. The generalizability

approach incorporates uncertainty regarding target population treated group membership

into the posterior credible intervals to better-reflect the uncertainty of scaling up a voluntary

intervention. In a simulation based on real data, we estimate impacts of a national scale-up

of a voluntary health policy model and highlight the benefit of using flexible regression

approaches for generalizability.
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Abstract

When assessing causal effects, determining the target population to which the results

are intended to generalize is a critical decision. Randomized and observational studies each

have strengths and limitations for estimating causal effects in a target population. Estimates

from randomized data may have internal validity but are often not representative of the

target population. Observational data may better reflect the target population, and hence

be more likely to have external validity, but are subject to potential bias due to unmeasured

confounding. While much of the causal inference literature has focused on addressing

internal validity bias, both internal and external validity are necessary for unbiased estimates

in a target population. This paper presents a framework for addressing external validity bias,

including a synthesis of approaches for generalizability and transportability, the assumptions

they require, as well as tests for the heterogeneity of treatment effects and differences between

study and target populations.
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Figure (1.1) Internal vs. external validity biases as they relate to target, study, and analysis populations

1.1 Background

The goal of causal inference is often to gain understanding of a particular target population

based on study findings. The true underlying causal effect will typically vary with the

definition of the chosen target population. However, samples unrepresentative of the target

population arise frequently in studies ranging from randomized controlled trials (RCTs) in

clinical medicine to policy research (Bell et al., 2016; Kennedy-Martin et al., 2015; Allcott,

2015). In a clinical trial setting, physicians may be left interpreting evidence from RCTs with

patients who have demographics and comorbidities that are quite different from those of

their patients. As an example, within cancer RCTs, African Americans are widely underrep-

resented despite being at an increased risk for many cancers (Chen and Wong, 2018). Failing

to address this lack of representation can lead to inappropriate conclusions and harm (Chen

et al., 2020). In a policy setting, it is important to consider the effects that can be expected

in the eventual target population in order to set expectations for anticipated results and

determine groups that should be targeted for an intervention.

The relationships between target, study, and analysis populations are visualized in

Figure 1.1. The target sample is a representative sample of the target population, whereas
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the study population is defined by enrollment processes and inclusion or exclusion criteria.

Due to these practical and scientific considerations, the study population may differ from the

target population. Correspondingly, the enrolled participants who form the study sample

may have different characteristics from those of the target sample. In the cancer RCT example,

while a physician might care about the target population of patients that may come in to

be treated by their clinic (of which the clinic’s current patients are a target sample), the

study sample on which they’re basing their treatment recommendations may not include

any African Americans. The study population is the hypothetical population that the study

sample represents, which likewise includes no African Americans. Post-enrollment, further

dropout and missingness may occur that create the observed analysis sample. In this case,

dropout may have occurred for patients who experienced severe adverse events such that the

analysis sample consists of patients who did not experience severe side effects. There then

exists a hypothetical analysis population from which the analysis sample data is a simple

random sample. Hereafter, for simplicity and consistency with the literature, we will use the

terms study sample and study population to be inclusive of the analysis sample and analysis

populations, respectively.

Several key concepts are crucial to understand when considering extending causal in-

ferences beyond a study sample. Generalizability focuses on the setting where the study

population is a subset of the target population of interest, while transportability addresses

the setting where the study population is (at least partly) external to the target population.

Internal validity is defined as an effect estimate being unbiased for the causal treatment effect

in the population from which the sample is a simple random sample (i.e., moving vertically

from a sample to its corresponding population in Figure 1.1). External validity is concerned

with how well results generalize to other contexts. Specifically, that the (internally valid)

effect estimate is unbiased for the causal treatment effect in a different setting, such as a

target population of interest (moving laterally between populations in Figure 1.1). External

validity bias has also been referred to as sample selection bias (Heckman, 1979; Imai et al.,

2008; Moreno-Torres et al., 2012; Bareinboim et al., 2014; Haneuse, 2016).
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External validity bias arises from differences between the study and target populations

in (1) subject characteristics; (2) setting, such as geography or type of health center; (3)

treatment, such as timing, dosage, or staff training; and (4) outcomes, such as length of

follow-up or timing of measurements (Cronbach and Shapiro, 1982; Rothwell, 2005; Dekkers

et al., 2010; Green and Glasgow, 2006; Burchett et al., 2011; Attanasio et al., 2003). The

focus of most generalizability and transportability methods is on addressing differences

in subject characteristics. Hence, these methods assume the remaining threats to external

validity are not present in the data sources they are looking to generalize across. Namely,

external validity bias then arises solely from: (1) variation in the probability of enrollment

in the study, (2) heterogeneity in treatment effects, and (3) the correlation between (1) and

(2) (Olsen et al., 2013). We therefore distinguish between factors differentiating the target

population from the study population (external validity bias) and those that create differences

between treatment groups (internal validity bias), e.g., confounding. RCTs are frequently

performed in a nonrepresentative subset of the target population and may have imperfect

follow-up (challenging their external validity) and may have baseline imbalances (leading to

internal validity bias). Observational studies may be susceptible to unmeasured confounding

(threatening their internal validity), but may be more representative of the target population

(hence having better external validity). Lack of representation in an RCT can lead to external

validity bias that is larger than the internal validity bias of an observational study (Bell et al.,

2016).

The optimal solution to external validity bias centers on study design, which we review

briefly here, but do not cover extensively. One type of ideal study would randomly sample

subjects from the target population and then randomly assign treatment to the selected

individuals. However, this is usually infeasible. Alternative study designs for improving

study generalizability and transportability include purposive sampling, where investigators

deliberately select individuals such as for representation or heterogeneity (Shadish et al.,

2001; Allcott and Mullainathan, 2012); pragmatic or practical clinical trials, which aim to

be representative of clinical practice (Schwartz and Lellouch, 1967; Ford and Norrie, 2016);
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stratified selection based on effect modifiers or propensity scores for selection (Tipton et al.,

2014; Tipton, 2013b; Allcott and Mullainathan, 2012); and balanced sampling designs for

site selection that select representative sites through stratified ranked sampling (Tipton and

Peck, 2017). In lieu of or in addition to study designs that address external validity bias,

generalizability and transportability methods can improve the external validity of effect

estimates after data collection.

This manuscript provides a review of generalizability and transportability research, syn-

thesizing across the statistics, epidemiology, computer science, and economics literature in a

more complete manner than has been done to date. Existing review literature has examined

narrower subsets of the topic: generalizing or transporting to a target population from only

RCT data (Stuart et al., 2015, 2018; Kern et al., 2016; Tipton and Olsen, 2018; Ackerman et al.,

2019), identifiability rather than estimation (Bareinboim and Pearl, 2016), or meta-analysis

approaches for combining summary-level information (Verde and Ohmann, 2015; Kaizar,

2015). A recent related review on combining randomized and observational data featured

a simulation, real data analysis, and software guide (Colnet et al., 2020). However, these

previous reviews have not summarized the full range of generalizability and transportability

methods that incorporate data from randomized, observational, or a combination of random-

ized and observational studies, nor techniques for evaluating generalizability, as we do here.

Additionally, although the importance of describing generalizability and transportability is

recognized by different trial reporting guidelines (e.g., CONSORT, RECORD, STROBE), they

provide no clear guidance on tests or estimation procedures (Schulz et al., 2010; Benchimol

et al., 2015; von Elm et al., 2008). We also contribute recommendations for methodologists

and applied researchers.

The remainder of the article synthesizes considerations for assessing and addressing

external validity bias after data collection (presented as a framework in Figure 2) and is

organized as follows. Section 2 defines the estimand of interest, the average treatment effect

in a target population, as well as alternatives. Section 3 presents key assumptions underlying

many of the methods. Section 4 reviews methods for assessing treatment effect heterogeneity,
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Estimand: consider study and target popula-
tions, and with them, the estimand of interest

Assumptions: assess validity of assumptions neces-
sary for generalizability or transportability approaches

Evaluating Generalizability: examine whether treatment ef-
fect modification exists and whether effect modifiers dif-
fer in distribution between study and target populations

Generalizability and Transportability Methods:
apply methods for addressing external validity bias

Figure (1.2) Overview framework for assessing and addressing external validity bias after data collection

thus further motivating the need for methods that enable generalizing or transporting

study results to a target population. Section 5 then summarizes the analytic methods

available for external validity bias correction that generate treatment effect estimates for a

target population of interest. These techniques include weighting and matching, outcome

regressions, and doubly robust approaches. Section 6 then concludes with guidance for both

applied and methods researchers.

1.2 Estimand

Assume, for one or more studies, the existence of outcome Y , treatment A ∈ {0,1}, and

baseline covariates X ∈Rd . For simplicity of notation, we define X to represent all treatment

effect confounders and effect modifiers (subgroups whose effects are expected to differ)

that differ between study and target populations; each variable in X is both a confounder

and an effect modifier. Without loss of generality, we focus on the single study setting,

with S = 1 indicating selection into it. The observational unit for the study sample is

Ostudy = {X,A,Y ,S = 1}. Ostudy has probability distribution Pstudy ∈ Mstudy, whereMstudy

is our collection of possible probability distributions (i.e., statistical model). We observe

ns realizations of Ostudy, indexed by j. The observational unit for a representative sample

from the target population is given by O = {X,A,Y ,S} ∼ P ∈M. We observe n realizations of
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O, indexed by i. Target sample subjects who do not appear in the study sample will have

S = 0. We use the terminology “selected” or “sampled” throughout the paper for simplicity

although for transportability, subjects are not directly sampled into the study from the target

population. For generalizability, Ostudy ∈O, while for transportability, the two are disjoint

sets, Ostudy <O.

Biases are defined with respect to an estimand. We will focus on the average treatment

effect in a well-defined target population of interest: the population average treatment

effect (PATE). Namely, we are interested in the average outcome had everyone in the target

population been assigned to treatment A=1 compared to the outcome had everyone been

assigned to treatment A=0. We write this as τ = EX(E(Y |S = 1,A = 1,X) −E(Y |S = 1,A =

0,X)) = E(Y 1 −Y 0), where Y 1 and Y 0 are the potential outcomes under treatment and no

treatment, respectively, and required identifiability assumptions are delineated in the next

section. The corresponding estimator is given by τ̂ = 1/n
∑n
i=1 (Ŷ

1
i − Ŷ

0
i ). We also write Y a to

represent the potential outcome under awith lowercase a a specific value for random variable

A. Potential outcomes are either explicitly assumed in the potential outcomes framework

or a consequence of the structural causal model (Rubin, 1974; Pearl, 2000). Different target

populations correspond to alternative PATEs because the expectation is taken with respect to

alternative distributions of covariates X. However, necessarily, we only observe outcomes in

the study sample. A study therefore directly estimates the sample average treatment effect

(SATE): τs = E(Y 1 −Y 0|S = 1) with estimator τ̂s = 1/ns
∑
j :Sj=1 (Ŷ

1
j − Ŷ

0
j ).

When the distributions of treatment effect modifiers differ between study and target

populations, the true study average effect will not equal the true target population average

effect (SATE , PATE) due to external validity bias. Sampling variability as well as internal

validity biases can also drive estimates of SATE further from the truth (Figure 1.3). Biases

may differ in magnitude and may make the SATE either larger or smaller than the PATE.

We may also be interested in estimating other target parameters. For example, the

population conditional average treatment effects (PCATE): τx = E(Y 1 −Y 0|X) is examined

in some of the estimation methods we explore later. Another parameter of interest is the
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Figure (1.3) Illustrative example of the difference between target population and sample average treatment
effects (PATE and SATE)

Biases may differ in magnitude and may make the SATE either larger or smaller than the PATE.

population average treatment effects among the treated: τ1 = E(Y 1 − Y 0|A = 1). Similar

generalizability and transportability considerations presented in the following sections will

apply for these and other causal estimands.

1.3 Assumptions

Under the potential outcomes framework, the assumptions below are sufficient to identify

the PATE using the observed study data. A corresponding set of assumptions under the

structural equation model (SEM) framework has also been derived (Pearl and Bareinboim,

2014; Pearl, 2015; Pearl and Bareinboim, 2011; Bareinboim and Pearl, 2014; Bareinboim

and Tian, 2015; Bareinboim and Pearl, 2016; Correa et al., 2018). Additional assumptions

include those of no missing data or measurement error in outcome, treatment, or covariate

measurements. Other target parameters of interest necessitate a similar set of assumptions.

1.3.1 Internal validity

Sufficient assumptions for identifying the PATE with respect to internal validity:

Conditional treatment exchangeability: Y a⊥A |X,S = 1 for all a ∈ A, the set of all

possible treatments. This condition requires no unmeasured confounding of the treatment-

outcome relationship in the study. It is satisfied by perfectly randomized trials (e.g., no loss to
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follow-up, other informative missingness or censoring, etc.) and by observational studies that

have all confounders measured. While this condition is sufficient, it is not always necessary.

When estimating the PATE, it can be replaced by the weaker condition of mean conditional

exchangeability of the treatment effect, E(Y 1 −Y 0|X,A,S = 1) = E(Y 1 −Y 0|X,S = 1) (Kern

et al., 2016; Dahabreh et al., 2019c).

Positivity of treatment assignment: P (X = x|S = 1) > 0 ⇒ P (A = a|X = x, S = 1) > 0,

with probability 1 for all a ∈ A. This condition entails that each subject in the study has

a positive probability of receiving each version of the treatment. In combination with the

conditional treatment exchangeability assumption above, this assumption is also known as

strongly ignorable treatment assignment (Varadhan et al., 2016).

Stable unit treatment value assumption (SUTVA) for treatment assignment: if A= a

then Y = Y a. This assumption requires no interference between subjects and treatment

version irrelevance (i.e., consistency/well-defined interventions) in the study and target

populations (Dahabreh et al., 2017; Kallus et al., 2018).

1.3.2 External validity

Following the assumptions above, identifying the PATE involves a parallel set of assumptions

for external validity:

Conditional exchangeability for study selection: Y a⊥S |X for all a ∈ A. This assumption

is also known as exchangeability over selection and the generalizability assumption. It

requires that the outcomes among individuals with the same treatment and covariate values

in the study and target populations are the same (Stuart et al., 2011). All effect modifiers that

differ between study and target populations must therefore be measured. This assumption

would be satisfied by a study sample that is a random sample from the target population

or a nonprobability study sample in which all effect modifiers are measured. A weaker

condition, mean conditional exchangeability of selection, E(Y 1−Y 0|X,S = 1) = E(Y 1−Y 0|X)

can replace conditional exchangeability for study selection when focusing on the PATE (Kern

et al., 2016; Dahabreh et al., 2019c).
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Positivity of selection: P (X = x) > 0 ⇒ P (S = 1|X = x) > 0 with probability 1 for all

a ∈ A. This assumption requires common support with respect to study selection; in every

stratum of effect modifiers, there is a positive probability of being in the study sample

(Dahabreh et al., 2017). This can be replaced by smoothing assumptions under a parametric

model, for example, that the propensity score distribution has sufficient overlap or common

support between the study sample and target population (Westreich et al., 2017; Tipton et al.,

2017). Thus, with conditional positivity of selection we assume that all members of the

target population are represented by individuals in the study. The positivity assumption in

combination with the no unmeasured effect modification assumption above is also known as

strongly ignorable sample selection given the observed covariates (Chan, 2017).

SUTVA for study selection: if S = s (and A = a) then Y = Y a. This assumption states

that there is no interference between subjects selected into the study versus those not selected

and that there is treatment version irrelevance between study and target samples (the same

treatment is given to both) (Tipton, 2013a; Tipton et al., 2017). It necessitates no difference

across study and target samples in how outcomes are measured or in how the intervention is

applied, that there is a common data-generating function for the outcome across individuals

in the study and target populations (i.e., that being in the study does not change treatment

effects), and that the potential outcomes are not a function of the proportion of individuals

selected for the study. Treatment version irrelevance in SUTVA can be replaced by the

condition of having the same distribution of treatment versions between study and target

populations when estimating the PATE (Lesko et al., 2017).

1.3.3 Transportability

Similar internal and external validity assumptions are needed for transportability, with the

following modifications. When the study sample is a subset of the target population (gener-

alizability), the positivity assumption for selection will need the propensity for selection to

be bounded away from 0, whereas when the sample is not a subset of the target population

(transportability), the propensity to be in the study population will need to be bounded
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away from 0 and 1 (Tipton, 2013a). Furthermore, for transportability, the set of covariates,

X, required for conditional exchangeability for study selection cannot include those that

separate the study sample from the target population (e.g., hospital type if transporting

results from teaching hospitals to community clinics, or geographic location if transporting

between states) (Tipton, 2013a). Further distinctions are discussed by Pearl (2015) using the

SEM framework. Under this framework, Pearl and Bareinboim formalize the assumptions

necessary for using different transport formulas to reweight randomized data, providing

graphical conditions for identifiability as well as transport formulas for randomized studies

(Pearl and Bareinboim, 2014; Pearl, 2015), observational studies (Pearl and Bareinboim, 2011;

Pearl, 2015; Bareinboim and Tian, 2015; Bareinboim and Pearl, 2016; Correa and Bareinboim,

2017; Correa et al., 2018), and a combination of heterogeneous studies (Bareinboim and Pearl,

2014, 2016).

1.4 Assessing dissimilarity between target and study populations

and testing for treatment effect heterogeneity

Numerous quantitative approaches can help evaluate the extent to which study results may

be expected to generalize to the target population. These assessments examine population

differences and whether treatment effect heterogeneity exists. Methods for assessing the

similarity of study and target populations can broadly be categorized into those that compare

baseline patient characteristics and those that compare outcomes for groups on the same

treatment. For the former, many make use of the propensity score for selection, which

also serves the purpose of assessing the extent to which propensity score adjustment using

measured covariates can sufficiently remove baseline differences between study and target

samples. However, most of these methods do not emphasize effect modifiers, hence should

be combined with an assessment of whether the noted population differences correspond to

heterogeneity of treatment effects. To test for heterogeneity of effects, one must first identify

effect modifiers. Effect modifiers are often pre-specified by the investigator, but data-driven
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approaches exist as well, and will be discussed in this section.

1.4.1 Assessing dissimilarity between populations using baseline characteristics

When summary-level study data are available, assessments that examine differences in

univariate covariate metrics between study and target samples can be deployed. Cahan et al.

(2017) propose a generalization score for evaluating clinical trials that incorporates baseline

patient characteristics, the trial setting, protocol, and patient selection: it takes ratios of

the mean or median values of these characteristics in the study and target samples, then

averages across categories for an overall score. However, this approach does not account for

any measures of dispersion, which may reflect exclusion of more heterogeneous individuals

from the study. When only baseline patient characteristics are responsible for relevant study

vs. target population differences, one can perform multiplicity-adjusted univariate tests for

differences in effect modifiers between study and target samples (Greenhouse et al., 2008).

Alternatively, one could examine absolute standardized mean differences (SMD) for each

covariate, (X̄study − X̄)/σX̄ , where X̄study and X̄ are the means of baseline covariates in the

study and target samples, respectively, and σX̄ is the standard deviation of X̄ (Tipton et al.,

2017). High values indicate heavy extrapolation and reliance on correct model specification;

in smaller samples, imbalances will often occur by chance (Tipton et al., 2017). With one

or more RCTs, generalizability across categorical eligibility criteria can be assessed by the

percent of the target sample that would have been eligible for the study or set of studies

(Weng et al., 2014; He et al., 2016; Sen et al., 2016).

Joint distributions of patient characteristics can likewise be compared, such as by examin-

ing the SMD in propensity scores for selection (Stuart et al., 2011). When the propensity score

is not symmetrically distributed, summarizing mean differences is insufficient. Tipton (2014)

developed a generalizability index that bins propensity scores and is bounded between 0 and

1:
∑k
j=1

√
wpjwsj with j = 1, ...,k bins, each with target sample proportions wpj and study

sample proportions wsj . It is based on the distributions of propensity scores rather than

only the averages. However, this approach requires patient-level study and target sample
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data. A generalizability index score of <0.5 indicates a study being very challenging to

generalize from and a score of >0.9 indicates high generalizability (Tipton, 2014). Other

propensity score distance measures can be used, such as Q-Q plots, Kolmogorov-Smirnov

distance, Levy distance, the overlapping coefficient, and C statistic; these largely focus on

comparing cumulative densities (Tipton, 2014; Ding et al., 2016). To assess the degree of

extrapolation with respect to effect modifiers, one can examine overlap in the propensity of

selection distributions, such as the proportion of target sample individuals with propensity

scores outside the 5th and 95th percentiles of the sample propensity scores (Tipton et al.,

2017).

One can also adopt a machine learning approach for detecting covariate shift–a change

in the distribution of covariates between training and test data (here, the study and target

data) (Glauner et al., 2017). After creating a joint dataset with target and study sample data,

a classification algorithm predicts whether the data came from the study. A dissimilarity

metric surpassing a threshold of acceptability then indicates sizable dissimilarity between

datasets. However, an inability to accurately predict study vs. target data origin does not

rule out differences in effect modifiers. A low score might furthermore indicate an incorrect

model specification or insufficient model tuning.

The tests discussed in this subsection assess differences between populations; however,

they require investigator knowledge of which characteristics moderate the treatment effect (or

are correlated with unmeasured effect modifiers) and what level of differences are clinically

relevant. Many covariates are often tested or included in a propensity score regression

for study selection. This approach prioritizes predictors that are strongly associated with

study selection rather than those that exhibit strong effect modification. Investigators should

therefore aim to identify relevant effect modifiers for testing or inclusion in the propensity

score regression and test this subset.
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1.4.2 Assessing dissimilarity between populations using outcomes

When individual-level outcome data or joint distributions of group-level outcome data are

available in both the study and target samples for at least one of the treatment groups,

the following methods can assess the extent to which measured effect modifiers account

for population differences. One can compare the observed outcomes in the target sample

to predicted outcomes using study controls (Stuart et al., 2011), or more generally, study

individuals who received the same treatment (Hotz et al., 2005): 1/na
∑N
i=1 1(Ai = a)Yi vs.

1/ns,a
∑
i:Si=1 1(Ai = a)wiYi with weights wi defined by weighting and matching methods

discussed in Section 1.5.1. Hartman et al. (2015) formalize this comparison with equivalence

tests. Alternatively, conditional outcomes for study and non-study target sample individuals

receiving the same treatment, conditioning on measured effect modifiers, can be compared to

detect unmeasured effect modification, although other identifiability assumption violations

might also be at fault: E(Y |X,A = a,S = 1) vs. E(Y |X,A = a,S = 0). Possible tests include

analysis of covariance, Mantel-Haenszel, U-statistic based tests, stratified log-rank, or strati-

fied rank sum, depending on the outcome (Marcus, 1997; Hotz et al., 2005; Luedtke et al.,

2019). For example, study controls could be compared to subgroups of the target population

that were known to be excluded from the study (e.g., patients who declined participation in a

RCT, as done by Davis (1988)). Relatedly, unmeasured effect modification can be imperfectly

tested for by disaggregating a characteristic that differentiates the study from the target

sample (Allcott and Mullainathan, 2012). These outcome differences should not exceed those

observed between study treatment groups (Begg, 1992).

In addition to testing for outcome differences, one can test for differences between study

and target regression coefficients or between baseline hazards in a Cox regression (Pan

and Schaubel, 2009). Any identified differences in outcomes or effects will reflect sample

differences unaccounted for by the outcome or weighting method, indicating unmeasured

effect modification or an ineffective modeling approach. To have this comparison reflect

relevant differences, study controls must be representative of the target population after

weighting or regression adjustment. Hartman et al. (2015) provides a more formal set of
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identifiability assumptions that may be violated when each equivalence test is rejected. If

unmeasured effect modification is suspected, one can perform sensitivity analysis to assess

the extent to which it can impact results (Marcus, 1997; Nguyen et al., 2017, 2018; Dahabreh

et al., 2019d; Andrews and Oster, 2017) or to generate bounds on the treatment effect when

only partial identification is possible (Chan, 2017).

1.4.3 Testing for treatment effect heterogeneity

Identified population differences are relevant insofar as they correspond to differences in

treatment effect modifiers. The following tests enable an investigator to assess whether

treatment effects vary substantially across measured covariates. Many are suitable for use

in observational or RCT data, although have largely been demonstrated in RCT data to

date. While some tests require a priori specification of subgroups, others can discover them

in data-driven ways and most require individual-level data. A straightforward, but often

overlooked issue is that studies with enrolled patients that are homogeneous with respect to

effect modifiers will have difficulty identifying heterogeneity of effects. These approaches are

therefore best applied to data representative of the target populations (Gunter et al., 2011).

Tests of prespecified subgroups should focus on target population subgroups under- or

over-represented in the study, or any other clinically relevant subgroup expected to exhibit

effect heterogeneity. Largely, methods for testing treatment effect heterogeneity of a priori

specified subgroups exhibit limited power. Those testing several effect modifiers individually

are particularly underpowered to detect significant effects once multiple testing adjustments

are incorporated. One approach tests the interaction term of treatment assignment with

an effect modifier in a linear model, which also requires modeling assumptions as to the

linearity and additivity of effects (Fang, 2017; Gabler et al., 2009). To address this lack of

power, sequential tests for identifying treatment-covariate interactions can be used with

either randomized or observational data (Qian et al., 2019). Alternative approaches, each

addressing slightly different goals, include testing whether the conditional average treatment

effect is identical across predefined subgroups (Crump et al., 2008; Green and Kern, 2012),
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comparing subgroup effects to average effects (Simon, 1982), and identifying qualitative

interactions or treatment differences exceeding a prespecified clinically significant threshold

(Gail and Simon, 1985).

When effect modifiers are not known a priori, a variety of techniques can be applied for

identifying subgroups with heterogeneous effects. These include those that identify variables

that qualitatively interact with treatment (i.e., for which the optimal treatment differs by

subgroup) (Gunter et al., 2011) as well as determine the magnitude of interaction (Chen et al.,

2017; Tian et al., 2014). Various machine learning approaches can also be used to identify

subgroups with heterogeneous treatment effects while minimizing modeling assumptions.

Approaches that also present tests for treatment effect differences between subgroups include

Bayesian additive regression trees (BART) and other classification and regression tree (CART)

variants (Su et al., 2008, 2009; Lipkovich et al., 2011; Green and Kern, 2012; Athey and

Imbens, 2016). Tree-based methods develop partitions in the covariate space recursively to

grow toward terminal nodes with homogeneity for the outcome. These approaches may be

particularly useful when heterogeneity may be a function of a more complex combination of

factors.

With many effect modifiers or when effect modifiers are unknown, global tests for hetero-

geneity can also be used. Pearl (2015) provides conditions for identifying treatment effect

heterogeneity (including heterogeneity due to unmeasured effect modifiers) for randomized

trials with binary treatments, situations with no unobserved confounders, and with mediat-

ing instruments. Effect heterogeneity can be tested for using the baseline risk of the outcome

as an effect modifier; interaction-based tests assess for differences in baseline risk between

study and target population control groups (Varadhan et al., 2016; Weiss et al., 2012). These

tests avoid the need for multiple testing but require outcome data in the target sample and

modeling assumptions. A consistent nonparametric test also exists that assesses for constant

conditional average treatment effects, τx = τ ∀x ∈ X (Crump et al., 2008). Additional meth-

ods, which suffer from limited power and rely on estimates of SATE, include testing whether

potential outcomes across treatment groups have equal variances and whether cumulative
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distribution functions of treatment and control outcomes differ by a constant shift (Fang,

2017). Global tests do not identify subgroups responsible for effect heterogeneity, although

if a global test is rejected, one can then compare individual subgroups to determine which

demonstrate effect heterogeneity.

If these assessments of generalizability fail and the target population is not well-represented

by the study population (specifically, when strong ignorability fails), Tipton (2013a) provides

several recommended paths forward. Investigators can change the target population to one

represented by the study. That is, change the estimand of interest by aligning inclusion and

exclusion criteria, outcome timepoints, or treatment doses (Hernán et al., 2008; Weisberg

et al., 2009). A population coverage percentage can then summarize the percent overlap

between the new and original target sample propensity scores, and describe relevant differ-

ences from the original target population. Investigators can alternatively retain the original

target population and note the limitations of extrapolated results and likelihood of remnant

bias. It is also important to acknowledge that a different study may need to be conducted.

1.5 Generalizability and transportability methods for estimating

population average treatment effects

Following the application of the methods in the previous sections, including assessing the

plausibility of relevant assumptions, an analytic method is typically needed to generalize

or transport results from randomized or observational data to a target population. These

approaches have many parallels to those used to address internal validity bias. We revisit

weighting and matching-based methods and outcome regressions in depth while additionally

examining techniques that use both propensity and outcome regressions (these are often

doubly robust). To mitigate external validity bias, generalizability and transportability

methods address differences in the distribution of effect modifiers between study and target

populations. To do so, for weighting and matching-based approaches, these methods account

for the probability of selection into the study, rather than the probability of treatment
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assignment. Outcome regressions require that treatment effect is allowed to vary across all

effect modifiers in addition to all confounders being correctly included in the regression.

Most generalizability and transportability methods have been developed for randomized

data. When outcome data are available from both randomized studies and an observational

study representative of the target population, their combination has the potential to over-

come sensitivity to positivity violations for selection into the study (an issue that RCT data

commonly face) as well as to unmeasured confounding (which may afflict observational

studies). Incorporating observational data in a principled manner can also shrink mean

squared error. However, many such approaches do not leverage the internal validity of RCT

data. The following sections will highlight some exceptions. While most approaches require

individual-level study and target sample data, Appendix A highlights approaches that only

use summary-level data for either the study or target sample.

1.5.1 Weighting and matching methods

Methods that adjust for differing baseline covariate distributions between study and target

samples via weighting or matching are particularly effective when effect modifiers strongly

predict selection into the study. While including unnecessary covariates can decrease preci-

sion, increase the chance of extreme weights and difficult-to-match subjects, and provide no

bias reduction (Nie et al., 2013), failing to include an effect modifier is typically of greater

concern than including unnecessary covariates (Stuart, 2010; Dahabreh et al., 2018). Match-

ing and reweighting methods strongly rely on common covariate support between study and

target populations and perform poorly when a portion of the target population is not well-

represented in the study sample or when empirical positivity violations occur. Investigators

should use the estimation approach that leads to the best effect modifier balance for their

study (Stuart, 2010) and strive for fewer assumptions.

19



Matching

Full matching and fine balance of covariate first moments (i.e., expected values) have been

used in the generalizability context (Stuart et al., 2011; Bennett et al., 2020). Stuart et al. (2011)

fully match study and target sample individuals based on their propensity scores to form sets

so that each matched set has at least one study and target individual. Individuals’ outcomes

are then reweighting by the number of target sample individuals in their matched set. This

approach relies heavily on the distance metric used, which can be misled by covariates

that don’t affect the outcome. Fine balance of covariate first moments is a nonparametric

approach for larger data that can also be used with multi-valued treatments (Bennett et al.,

2020). This approach matches samples to a target population to achieve fine balance on the

first moments of all covariates rather than working with the propensity score.

Some implementations of these methods only match a subset of study individuals (hence

show areas of the covariate distribution without common support), while others ensure all

study and target sample individuals are matched. Matching methods require calibration

for bias-variance tradeoff such as via a caliper or by choosing the ratio of study to target

individuals to match. A variety of distance metrics exist; however, none specifically target

effect modifiers. With unrepresentative observational data, treatment groups can first be

matched based on confounding variables before matching study pairs to the target sample

based on effect modifiers, or each treatment group can be separately matched to the target

sample (Bennett et al., 2020).

Weighting

Post-stratification. In a low-dimensional setting with categorical or binary covariates, one

can use nonparametric post-stratification (also known as direct adjustment or subclassifi-

cation), as has been done in the literature with randomized data (Miettinen, 1972; Prentice

et al., 2005) and with observational data in the context of instrumental variables (Angrist and

Fernández-Val, 2013). Post-stratification consists of obtaining estimates for each stratum of

effect modifiers, then reweighting these estimates to reflect the effect modifier distribution in
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the target population, i.e., Ê(Y a) = 1/n
∑L
l=1nl Ȳ

a
l , where L is the number of strata, nl is the

target sample size in stratum l, n=
∑L
l=1nl , and Ȳ al is an estimate from study sample data of

the potential outcome on treatment a in stratum l, commonly the stratum-specific sample

mean for subjects on treatment a (Miettinen, 1972; Prentice et al., 2005).

Post-stratification only requires stratum-specific summary data and closed-form variance

formulas are often available. However, empty strata quickly become an issue when dealing

with continuous variables or many stratifying variables. Conversely, if insufficient strata are

used, residual external validity bias will remain, which is particularly problematic in small

samples (Tipton et al., 2017). To combat this, inference can be pooled across strata using

multilevel regression with post-stratification (Pool et al., 1964; Gelman and Little, 1997; Park

et al., 2004; Kennedy and Gelman, 2019).

For higher dimensional settings or with continuous covariates, more flexible nonparamet-

ric approaches can be applied, such as maximum entropy weighting, where study strata are

reweighted to the distribution in the target sample (Hartman et al., 2015). When target and

study populations differ on post-treatment variables such as adherence, principal stratifica-

tion can be used to estimate PATEs by classifying subjects into never-taker, always-taker, and

complier categories (Frangakis, 2009).

Estimating using the propensity for study selection. Most weighting approaches use a

propensity of selection regression to construct weights. They rely on correct specification of

the propensity score regression and sufficient overlap in propensity scores between study

subjects and target sample individuals not in the study. These approaches have the additional

advantage of allowing one set of weights to be used for treatment effects related to multiple

outcomes. The most straightforward weighting approaches tend to have large variances in

the presence of extreme weights, give disproportionate weight to outlier observations, and

produce outcome estimates outside the support of the outcome variable. Weight standardiza-

tion can address these issues, as can weight trimming, although the latter induces bias by

changing the target population of interest, hence requiring a careful bias-variance trade-off.

Inverse probability of participation weighting (IPPW), a Horvitz-Thompson-like approach
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(Horvitz and Thompson, 1952), is the most common weighting technique for generalizability

(Flores and Mitnik, 2013; Baker et al., 2013; Lesko et al., 2017; Westreich et al., 2017; Correa

et al., 2018; Dahabreh et al., 2018, 2019c). Most simply, IPPW weights the outcome for

each study individual on treatment a by the inverse probability (propensity) of being in the

study. Weights have been developed for estimating PATEs, including those that incorporate

treatment assignment to account for covariate imbalances in an RCT or for confounding

in an observational study. The observed outcomes are reweighted to obtain the potential

outcomes for each treatment group a: E(Y a) = 1
n

∑n
i=1wiYi with

wi =
1
πs,i

I(Si = 1)I(Ai = a) for random treatment assignment (Lesko et al., 2017)

wi =
1

πs,iπa,i
I(Si = 1)I(Ai = a) more generally (Stuart et al., 2011; Dahabreh et al., 2019c),

where I(Si = 1) is the indicator for being in the study, I(Ai = a) is the indicator for being

assigned treatment a, πs,i = P (Si = 1|Xi) is the propensity score for selection into the study

and πa,i = P (Ai = a|Si = 1,Xi) is the propensity score for assignment to treatment a in the

study.

Individual-level data are typically required, although one can also use joint covariate

distributions from group-level data (Cole and Stuart, 2010) or univariate moments (e.g.,

means, variances) with additional assumptions (Signorovitch et al., 2010; Phillippo et al.,

2018). Because IPPW only uses study individuals on a given treatment to estimate poten-

tial outcomes for that treatment, power can become an issue, particularly for multi-level

treatments. These methods also perform poorly when study selection probabilities are small,

which can be a common occurrence for generalizability (Tipton, 2013a). IPPW weights have

also been developed for regression parameters in a generalized linear model (Haneuse et al.,

2009), as well as for Cox model hazard ratios and baseline risks (Cole and Stuart, 2010; Pan

and Schaubel, 2008).

For transportability to the target population S = 0, odds of participation weights are used

rather than inverse probability of participation weights (Westreich et al., 2017; Dahabreh

et al., 2018). This corresponds to the estimator E(Y a|S = 0) = 1
n

∑N
i=1wiYi with N = n+ ns
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and weights (Dahabreh et al., 2018):

wi =
1−πs,i
πs,iπa,i

I(Si = 1)I(Ai = a).

To address potentially unbounded outcome estimates, standardization then replaces n by the

sum of the weights, which normalizes the weights to sum to 1 (Dahabreh et al., 2018, 2019c).

The resulting estimator will be more stable, bounded by the range of the observed outcomes,

and perform better when the target sample is much larger than the study.

Under regularity conditions, estimates derived using IPPW are consistent and asymp-

totically normal (Lunceford and Davidian, 2004; Pan and Schaubel, 2008; Cole and Stuart,

2010; Correa et al., 2018; Buchanan et al., 2018). Variance for the IPPW estimator can be

obtained through either a bootstrap approach or robust sandwich estimators. The latter may

be difficult to calculate (Haneuse et al., 2009) and bootstrap methods for IPPW have been

shown to perform better when there is substantial treatment effect heterogeneity or smaller

sample sizes (Chen and Kaizar, 2017; Tipton et al., 2017).

Propensity scores can also be used in the context of post-stratification, weighting or

matching individuals within strata. RCT individuals are divided into strata defined by their

propensity scores; quintiles are commonly used, based on results showing that this approach

may remove over 90% of bias (O’ Muircheartaigh and Hedges, 2014). Effects are estimated

using sample data within each subgroup, such as through separate regressions or a joint

parametric regression with fixed effects for subgroups and interaction terms for subgroups by

RCT status. Results can then be reweighted based on the number of target sample individuals

in each subgroup (O’ Muircheartaigh and Hedges, 2014). Alternatively, the target sample can

be matched to RCT individuals within the same propensity score stratum (Tipton, 2013a).

The post-stratification estimator is asymptotically normal and closed-form variance

estimates exist for independent strata (O’ Muircheartaigh and Hedges, 2014; Lunceford and

Davidian, 2004). Compared to IPPW, strata reweighting is more likely to be numerically

stable and easily implementable when treatment assignment is done at the group level (e.g.,

cluster-randomized trials). However, stratification implicitly assumes that treatment effects
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are identical for study and target patients in the same stratum; this assumption is rarely met,

resulting in residual confounding and inconsistent estimates (Lunceford and Davidian, 2004).

It also relies on the assumptions of treatment effect heterogeneity being fully captured by

the propensity score for treatment and that outcomes are continuous and bounded. With too

few strata, bias reduction will be insufficient; conversely, too many strata can lead to small

strata counts and unstable estimates (Stuart, 2010; Tipton et al., 2017).

Propensity strata approaches have also been used to address positivity of treatment as-

signment violations within the target sample in the setting where outcome data are available

from both a randomized and observational study (Rosenman et al., 2018). Rosenman et al.

(2020) present an extension which aims to adjust for potential unmeasured confounding

bias.

1.5.2 Outcome regression methods

Outcome data from one study

Outcome regressions, also known as response surface modeling, have not been as exten-

sively developed for generalizability and transportability compared to propensity-based

approaches. Broadly speaking, outcome regressions approaches fit an outcome regression in

study sample data to estimate conditional means, then obtain PATEs by marginalizing over

(i.e., standardizing to) the target sample covariate distribution by predicting counterfactuals

for the target sample: Ê(Y a) = 1
n

∑n
i=1 Ê(Yi |Si = 1,Ai = a,Xi). If the target sample is not a

simple random sample from the target population, this would be a weighted average using

sampling weights (Kim et al., 2018).

Outcome regression approaches are particularly effective when effect modifiers strongly

predict the outcome and when the outcome is common but selection into the study is rare.

They are also convenient for exploring PCATEs. These approaches can yield better precision

than weighting or matching-based methods because they can adjust both for confounders,

effect-modifiers, and factors only predictive of the outcome, thus decreasing variance in

the estimate. They are simple to implement when an outcome regression for confounding
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adjustment has already been fit and accounts for all relevant effect modifiers. The same

regression that was used to estimate impacts within the study can then be used to predict

counterfactuals in the target sample. Outcome regression methods can be used with either

randomized or observational study data, but have been used most frequently in RCTs. In

the presence of significant non-overlap between the target and study samples, outcome

regressions rely on heavy extrapolation (Kern et al., 2016; Attanasio et al., 2003), often with

no corresponding inflation of the variance to reflect uncertainty in the resulting estimates.

The simplest approach is an ordinary least squares outcome regression (Flores and

Mitnik, 2013; Kern et al., 2016; Elliott and Valliant, 2017; Dahabreh et al., 2018, 2019c). An

outcome regression is fit with interaction terms between treatment and all effect modifiers

before predicting counterfactual outcomes for the target sample (the marginalization step).

Dahabreh et al. (2018) showed the consistency of this type of outcome regression for the PATE.

For RCTs, separate regressions are recommended for each treatment group to better capture

treatment effect heterogeneity (Dahabreh et al., 2019c), although this approach precludes

borrowing information across treatment groups, which is possible with machine learning

methods that discover treatment effect heterogeneity.

Among these machine learning techniques is BART, which is the most commonly used

data-adaptive outcome regression approach for generalizability and transportability (Chip-

man et al., 2007, 2010; Kern et al., 2016; Hill, 2011). Tree-based methods, including BART,

were briefly introduced in Section 1.4.3. BART models the outcome as a sum of trees with

linear additive terms and a regularization prior. BART addresses external validity bias via its

data-driven discovery of treatment effect heterogeneity and strengths of the method include

its ability to obtain confidence intervals from the posterior distribution (Hill, 2011; Green

and Kern, 2012). However, BART credible intervals show undercoverage when the target

population differs substantially from the RCT (Hill, 2011).

Data availability may challenge these outcome regression approaches. When the covari-

ates in the target sample aren’t available in the study sample, or vice versa, but the SATE

can be expected to be approximately unbiased for the PATE, the SATE estimates’ credible
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intervals can be expanded to account for uncertainty in the target population covariate

distribution (Hill, 2011).

Outcome data from multiple studies

Here, we consider meta-analytic approaches for summary-level data as well as studies that

combine individual-level data from more than one study (for example, one randomized and

one observational study). Much of the literature has focused on meta-analytic techniques

using summary-level study data and no target sample covariate information. This body of

bias-adjusted meta-analysis methods largely does not explicitly define a target population for

whom inference is desired, but rather relies on subjective investigator judgments of the levels

of bias in each study, specified using bias functions or priors in a Bayesian framework. Eddy

(1989) presents the first such approach, the confidence profile method for combining chains

of evidence. Likelihoods are adjusted for different study designs’ (investigator-specified)

internal and external validity biases; uncertainty around these biases are incorporated

through prior distributions. Various subsequent Bayesian hierarchical models have been

developed, such as a 3-level model (Prevost et al., 2000) with the levels corresponding

to models of the observed evidence, variability between studies, and variability between

study types (randomized vs. observational). When available, covariate information can

be added to the models to address effect heterogeneity. Effectively, this estimator averages

across the internal and external validity biases of the studies and therefore is only unbiased

when the external validity bias in the RCT exactly ‘cancels’ the internal validity bias in the

observational data (Kaizar, 2011).

Other meta-analysis studies leveraging summary-level data separately specify internal

and external validity bias parameters for an explicit target population and down-weight

studies with higher risk of bias. One such example is the bias adjusted meta-analysis approach

by Turner et al. (2009), which presents a checklist that subjectively quantifies the extent of

internal and external validity bias for each study and then weighs studies’ average outcomes

by the extent of bias. Greenland (2005) pool across observational case-control studies using a
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Bayesian meta-sensitivity model with bias parameters to separately permit consideration of

misclassification, non-response, and unmeasured confounding. In the intermediate setting

where individual-level data is available in the study but only covariate moments (e.g., means,

variances) are available in the target setting, Phillippo et al. (2018) present an outcome

regression approach for indirect treatment comparison across RCTs.

When individual-level outcome data is available in the target sample or from multiple

studies, data can be combined into one joint dataset for outcome regression analysis if the

outcome regression can be expected to be the same across studies (Kern et al., 2016). Such an

approach can be preferential to IPPW, which uses only study and not target sample outcome

data (Kern et al., 2016). However, it will be dominated by observational data results (and

their potential biases) when observational subjects constitute the majority of the joint dataset,

effectively result in a weighted average across studies, weighted by the proportion of subjects

in each study.

Hierarchical Bayesian evidence synthesis is the only outcome regression approach we

identified that attempts to empirically adjust for unobserved confounding when estimating

effects for observational patients who are not well-represented in the RCTs (Verde et al., 2016;

Verde, 2019). Summary-level RCT data are combined with individual-level observational

data through a weighting approach in which the control group event rate is assumed to be

similar across all studies and a study quality bias term is added to the observational studies’

outcome regression to account for unmeasured confounding or other uncontrolled biases

and to inflate variance. Alternatively, Gechter (2015) derive bounds on the PATE and PCATE

when transporting from an RCT to a target sample with outcome data (all untreated).

1.5.3 Combined propensity score and outcome regression methods

Outcome data from one study

Double robust methods for generalizability and transportability typically combine outcome

and propensity of selection regressions. They are asymptotically unbiased when at least

one of these regression functions is consistently estimated, and if both are consistently es-

27



timated, asymptotically efficient. However, if neither regression is estimated consistently,

the mean squared error may be worse than using a propensity or outcome regression alone.

Incorporation of flexible modeling approaches can help mitigate regression misspecification.

Three asymptotically locally efficient double robust approaches have been developed in

randomized data: a targeted maximum likelihood estimator (TMLE) for instrumental vari-

ables (Rudolph and van Der Laan, 2017), which is a semiparametric substitution estimator,

the estimating equation-based augmented inverse probability of participation weighting

(A-IPPW) (Dahabreh et al., 2018, 2019c), and an augmented calibration weighting estimator

that can also incorporate outcome information from the target sample when it is available

(Dong et al., 2020).

The TMLE was developed for transportability in an encouragement design setting (i.e.,

intervention focused on encouraging individuals in the treatment group to participate in

the intervention) with instrumental variables (Rudolph and van Der Laan, 2017) and has

also been used for generalizability (Schmid et al., 2020). Three different PATE estimators

were developed: intent to treat, complier, and as-treated. All use an outcome regression

to obtain an initial estimate, then adjust that estimate with a fluctuation function using a

clever covariate C, which is derived from the efficient influence curve and incorporates the

propensity of selection information in a bias reduction step. For example, for the intent to

treat PATE, the fluctuation function takes the form: logit(Ê(Y |S = 1,A,Z,X) + εC), where

C =
I(S = 1,A= a)

P (A= a|S = 1,X)P (S = 1)
P (Z = z|S = 0,A= a,X)P (X |S = 0)
P (Z = z|S = 1,A= a,X)P (X |S = 1)

and Z corresponds to the intervention taken (whereas A corresponds to the assigned inter-

vention, as before). The approach allows outcome and propensity regressions to be flexibly

fit, for example, using an ensemble of machine learning algorithms. Variances are calculated

from the influence curve.

A-IPPW has been developed both for generalizing results to estimate PATEs for all

trial-eligible individuals (Dahabreh et al., 2019c,a) and for transporting results to estimate

PATEs for trial-eligible individuals not included in a trial (Dahabreh et al., 2018). Three
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double robust estimating equation-based estimators are presented: A-IPPW, A-IPPW with

normalized weights that sum to 1 to ensure bounded estimates, and a weighted outcome

regression estimator using participation weights. The non-normalized A-IPPW estimators

are as follows, with wi the same as for IPPW:

1
n

n∑
i=1

{wi{Yi − Ê(Yi |Si = 1,Ai = a,Xi)}+ Ê(Yi |Si = 1,Ai = a,Xi)} for generalizability

1
n

N∑
i=1

{wi{Yi − Ê(Yi |Si = 1,Ai = a,Xi)}+ {1− I(Si = 1)}Ê(Yi |Si = 1,Ai = a,Xi)} for transportability

Variance can be derived using empirical sandwich estimates or using a nonparametric

bootstrap. As these estimators are partial M-estimators, they can produce estimates outside

bounds if the outcome regression is not well-chosen and they may have multiple solutions.

Several other double robust estimators for transportability resemble the IPPW estimator,

with sampling weights derived through alternative approaches that do not rely on propensity

scores (Josey et al., 2020b,a; Dong et al., 2020). For example, the semiparametric and efficient

augmented weighting estimator by Dong et al. (2020) calibrates the RCT covariate distribution

to match that of the sampling-weighted target sample.

An alternative reweighted outcome regression method for observational data does not

claim double robustness and draws from the unsupervised domain adaptation literature.

In general, unsupervised domain adaptation methods aim to make predictions for a target

sample (the “target domain”) when outcomes are only observed in the study sample (“source

domain”). The approach of Johansson et al. (2018) is a regularized neural network estimator

for PCATE parameters that jointly learns representations from the data and a reweighting

function. Representational learning creates balance between the study and target covariate

distributions and between treated and control distributions in a representational space so

that predictors use information common across these distributions and focus on covariates

predictive of the outcome. In this learned representational space, results are then re-weighted

to minimize an upper bound on the expected value of the loss function under the target

covariate distribution. Propensity scores can also be used to reweight a likelihood function,

as done by Nie et al. (2013) in an RCT setting for calibrating control outcomes from prior
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studies to the trial target sample. Similarly, Flores and Mitnik (2013) reweight an outcome

regression to the target sample.

Outcome data from multiple studies

Several methods have combined randomized and observational data sources such that that

they retain the internal validity of the randomized data and the external validity of the

target sample observational data. These approaches broadly rely on the assumption that

the relationship between unmeasured confounders and potential outcomes is the same in

the RCT as in the target sample, which is a weaker assumption than that of no unmeasured

confounding required by most of the methods described thus far. One study combined

individual-level data from several RCTs to transport results to the target sample, extending

the A-IPPW estimator (as well as corresponding IPPW and outcome regression estimators)

to the multi-study setting (Dahabreh et al., 2019b). The remainder of the section discusses

approaches that combine randomized and observational data.

When differences in effect modifiers between the RCT and target population are known

(e.g., by inclusion and exclusion criteria), cross-design synthesis meta-analysis is a method

for combining randomized and observational study data while capitalizing on the internal

validity of the randomized data and the external validity of the observational data (Begg,

1992; Greenhouse et al., 2017). It provides a means for estimating treatment effects for

patients excluded from the RCT and can use summary-level RCT data if outcomes are

available by relevant patient subgroups, although can only accommodate a limited number

of strata of relevant effect modifiers.

Cross-design synthesis meta-analysis effectively assumes a constant amount of unmea-

sured confounding across patients eligible and ineligible for the RCTs (Kaizar, 2011). This

approach will have smaller bias than use of randomized or observational data alone under

various common data scenarios and, across simulations, shows better coverage through

smaller bias and increased variance (Kaizar, 2011).

When differences between RCT and target populations are less well understood, there
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are continuous effect modifiers, or a higher dimensional set of effect modifiers, one can use

Bayesian calibrated risk-adjusted regressions (Varadhan et al., 2016; Henderson et al., 2017).

This parametric approach requires individual-level information from observational and

randomized studies, leveraging outcome regressions and calibration using the propensity of

selection. The target population is assumed to be represented by a subset of the observational

data; the RCT data are likewise assumed to be represented by a (potentially different) subset

of the observational data. The calibrated risk-adjusted model performs well when there is

poor overlap between RCT and target data; however, it relies on the observational dataset

having substantial effect modifier overlap with both the target sample and RCT. Robust

variance formulas or bootstrapping can be used to obtain confidence intervals.

A 2-step frequentist approach for consistently estimating PCATE parameters has been

developed to estimate effects in a target population represented by observational data (Kallus

et al., 2018). It begins with outcome regressions for each treatment group of the observational

data, or a flexible regression that captures effect heterogeneity. Observational data are then

standardized to the RCT population before ‘debiasing’ their estimates using RCT data by

including a correction term that can depend on measured covariates. This method relies on

the assumption that calibrating internal validity bias in the subset of the observational data

distribution overlapping with RCT data appropriately calibrates the bias for the entire target

sample. The 2-step approach would therefore not necessarily decrease bias if the covariate

distribution is highly imbalanced, resulting in average biases that are quite different between

the RCT overlapping vs. nonoverlapping subsets of the target sample.

Lu et al. (2019) present an approach that, unlike the above methods, assumes no un-

measured confounding in the observational data when combining RCT and comprehensive

cohort study data (where patients who decline randomization are enrolled in a parallel

observational study). They use semiparametric double robust estimators that can incorporate

flexible regressions.
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1.6 Discussion

Obtaining unbiased estimates for a relevant target population requires applying generaliz-

ability or transportability methods in studies that meet required identifiability assumptions.

The internal validity of randomized trials is not sufficient to obtain unbiased causal effects;

external validity also needs to be considered. In this synthesis, we have discussed (1) sources

of external validity bias and study designs to address it, (2) defining an estimand in a target

population of interest, (3) the identifiability assumptions underpinning generalizability

and transportability approaches, (4) a variety of approaches for quantifying the relevant

dissimilarity between study and target samples and assessing treatment effect heterogeneity,

and (5) a variety of matching and weighting methods, outcome regression approaches, and

techniques that use both outcome and propensity regressions that generalize or transport

from randomized and observational studies to a target population. These approaches have

been applied across diverse settings from RCT results transported to patients represented

in registries to cluster-randomized educational intervention trials generalized to broader

geographic areas. Across a variety of settings, it is important to estimate results for popu-

lations that go beyond the study population. We suggest the following considerations for

researchers.

Make efforts to explicitly define the target population(s) and identify the study population

from which your study sample data is a simple random sample. Describing the study population

may be a difficult task, and there may not be a practically meaningful population that is

representative of your study sample data. However, this clarity will allow you to compare

and, when feasible, better-align the study sample data to the target population. Discussion

regarding target population(s) should be guided by the ensuing decisions the study aims

to inform as well as practical considerations (e.g., lack of certain subgroups in your study).

These considerations may require iteration between feasibility and the desired study aims as

well as careful discussion amidst study collaborators. When combining across studies, meta-

analyses should likewise carefully specify target population(s) for inference and incorporate

considerations of treatment effect heterogeneity or demonstrate that effect heterogeneity is
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not a concern. Without transparency in the target population(s), a study cannot estimate

well-defined treatment effects nor can readers judge the generalizability of study results to

any other population of interest.

Plan for generalization in your study design, when feasible, including writing generalizability

considerations into your grant or study objectives. Enroll randomized study participants

or design observational study inclusion and exclusion criteria to have the study sample

be representative of the target population, or fully capturing the heterogeneity of effect

modifiers. Collect data on likely treatment effect modifiers that are associated with study

participation. Attempt to identify and mitigate potential sources of missingness or selection

bias. If possible, collect baseline characteristics and outcome data on study nonparticipants

who are part of the target population. Otherwise, identify external sources of data that might

inform the composition of your target population with respect to effect modifiers and work

towards aligning variables between these target sample data sources and your study.

Clearly describe the internal and external validity assumptions needed to identify the treatment

effect as they relate to your study. Substantively assess the justifiability of these internal and

external validity assumptions. To the extent possible, test the validity of the assumptions

and perform sensitivity analyses to assess the impact of assumption violations.

Quantify the dissimilarity between the study and target populations using at least one method.

Ideally, use multiple methods, as they each tell different parts of the story: examine univariate

and joint distributions of effect modifiers, differences in the propensity to participate in the

study, and (if outcome information is available in the target sample) differences in outcomes

between study and target subjects on the same treatment. If differences are identified, one

should investigate which subpopulations drive those differences and assess whether they

have heterogeneous treatment effects. In addition to examining subject characteristics, assess

whether differences exist in the setting, treatment, or outcome.

To obtain causal estimates when the target and study populations differ with respect to effect

modifiers, incorporate at least one generalizability or transportability estimator. Alternatively,

at the minimum, assess and describe sources of effect heterogeneity and whether they’re
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likely to differ for the target population. Derive estimates using as much data as possible

(e.g., when outcome data is available, use it in a principled way). The choice of method for

external validity bias adjustment may be restricted by data availability (e.g., summary-level

vs. individual-level data) but should be driven by similar principles as those that guide the

choice between outcome regressions, matching and weighting methods, and double robust

approaches for confounding adjustment (Van der Laan et al., 2003; Neugebauer and van

der Laan, 2005; van der Laan and Rose, 2011). Flexible nonparametric and semiparametric

models and estimators that use ensemble machine learning minimize the need for strict

parametric assumptions and have the potential to perform the best (Kern et al., 2016).

For both methods developers and applied researchers, we recommend releasing publicly avail-

able code alongside the paper and providing details for implementation. Published code facilitates

replicability and accessibility of methods for future research and applied use. A substantial

barrier to the adoption of new statistical methods, including advances in generalizability and

transportability, is the lack of available computational tools.

While much of the causal inference literature has focused on issues of internal validity,

both internal and external validity are necessary for valid inference. When treatment effect

heterogeneity exists, as is often the case, study results may not hold for a target population

of interest. Approaches to address internal validity biases can be borrowed to improve upon

methods for addressing external validity bias. This review presents a framework for such

analysis and summarizes different choices for estimators that can be used to generalize or

transport results to a population different from the one under study. It brings together

diverse cross-disciplinary literature to provide guidance both for applied and methods

researchers. Improving the incorporation of results from observational studies, including

electronic health databases, can lead to better inference for policy-relevant populations with

reduced bias and improved precision.
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Abstract

While much of the causal inference literature has focused on addressing internal validity

biases, both internal and external validity are necessary for unbiased estimates in a target

population of interest. When the target population is not well-represented by a randomized

study, but is reflected when incorporating observational data, few generalizability approaches

exist to estimate causal quantities in the target population. We propose a class of novel

conditional cross-design synthesis estimators that combine randomized and observational

data, while addressing the respective biases of these data sources, to generalize to a target

population represented by a union of the data. The estimators include outcome regression,

propensity weighting, and double robust approaches. All use the covariate overlap between

the randomized and observational data to remove potential unmeasured confounding bias.

We apply these methods to estimate the causal effect of managed care plans on health care

spending among New York City Medicaid beneficiaries.
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2.1 Background

When estimating causal effects, randomized data estimates often have internal validity—

unbiased causal effects for the population represented by the study. However, these estimates

may not reflect causal effects in the target population (i.e., external validity), and, further-

more, not represent subsets of the target population. Observational data may be more

representative of the target population and, hence, have external validity, but are poten-

tially affected by unmeasured confounding. These challenges arise in settings ranging from

clinical trials that exclude certain patient subsets (Prentice et al., 2005; Lu et al., 2019) to

policy evaluation studies that aim to inform deployment in a different population (Attanasio

et al., 2003; Kern et al., 2016). While much of the causal inference literature has focused

on addressing internal validity biases, both internal and external validity are necessary for

unbiased estimates.

Although generalizability and transportability methods exist for extending inference

from a randomized study to a target population, few leverage a combination of random-

ized and observational data to address each data source’s shortcomings (Degtiar and Rose,

2021). Approaches that do combine individual-level randomized and observational data

face limitations when the target population doesn’t fully overlap with the randomized data

and the observational data have unmeasured confounding. Existing techniques extrapolate

from the randomized data beyond their support (Attanasio et al., 2003; Hill, 2011; Kern et al.,

2016), assume the included observational data have no unmeasured confounding (Kern et al.,

2016; Lu et al., 2019), or allow for unmeasured confounding but assume treatment effects

are identical within strata of effect modifiers, which may not hold with continuous effect

modifiers (Rosenman et al., 2020). Cross-design synthesis methods combine randomized and

observation data, often relying on a binary flag that determines eligibility in the randomized

subset of the data, which requires overlap membership to be known (Begg, 1992; Kaizar,

2011; Greenhouse et al., 2017). Bayesian calibrated risk-adjusted modeling, currently only

deployed in the context of Cox proportional hazards survival regression, necessitates a third

external data source that has strong overlap with both the randomized and observational
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data (Varadhan et al., 2016; Henderson et al., 2017). A 2-step regression approach by Kallus

et al. (2018) assumes that the randomized covariate distribution is subsumed in the observa-

tional data distribution. The method also does not directly extend to estimating population

treatment-specific means rather than average treatment effects.

We present a novel class of methods, which we refer to as conditional cross-design

synthesis (CCDS) estimators, addressing several limitations of existing estimators that incor-

porate outcome information from randomized and observational data. All CCDS approaches

estimate a conditional bias term from the overlapping support between randomized and

observational data that is then used to ‘debias’ observational data estimates. These techniques

are robust to unmeasured confounding in the observational data and positivity violations

for selection into the randomized data. The estimators include outcome regression, 2-step

outcome regression, inverse probability weighting, and double robust augmented inverse

probability weighting approaches. Our implementation allows for the incorporation of

ensemble machine learning to estimate the regression components of the various estimators,

minimizing reliance on misspecified parametric regressions.

We apply our class of CCDS estimators to a study in New York City (NYC) Medicaid Man-

aged Care (MMC), which provides health insurance to most New York Medicaid beneficiaries.

Beneficiaries who do not choose a health plan are randomly assigned to one. However, the 7%

of NYC beneficiaries who are randomized are not representative of the broader NYC Medicaid

population. Of the remaining 93% of enrollees who actively chose their health plan (i.e., the

observational beneficiaries), some are not well-represented by any randomized beneficiaries.

This motivates our CCDS approaches that combine randomized and observational data to

estimate health plan-specific causal effects on health care spending in the full NYC Medicaid

population.

Section 2.2 defines notation and the estimand of interest. Section 2.3 reviews standard

generalizability assumptions, describes our relaxation of two of the assumptions through the

combination of randomized and observational data, and identifies the estimand of interest

under our relaxed assumptions. Section 2.4 presents the novel CCDS estimators and the
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limited available alternative approaches. We evaluate all estimators through a simulation

study in Section 2.5 that highlights settings where each CCDS estimator can be anticipated

to perform well. Section 2.6 applies these methods to our NYC Medicaid study examining

the impact of managed care plans on health care spending. Section 2.7 concludes with a

discussion.

2.2 Notation and estimand

2.2.1 Notation

The target population of interest is represented by a target sample. A portion of the target

sample is randomized to the intervention (i.e., managed care plans) and the remaining

individuals are observational. Hence the target sample is a union of randomized and observa-

tional data. We observe n= nRCT + nobs independent draws from an underlying probability

distribution P ∈M, whereM is statistical model, namely, a collection of possible probability

distributions. Each of these draws consist of an outcome Y ∈R, the intervention A ∈ A, the

vector of covariates X ∈ R ∈Rd , where R is the region of support in the target population’s

covariate distribution, and an indicator for selection into the randomized group S ∈ S = {0,1}.

Thus, the observational unit for the target sample is O = (Y ,A,X ,S).

The data generating processes which result in randomized and observational data re-

alizations differ. The randomized data consist of nRCT i.i.d. realizations conditional on

selection into the randomized group, S = 1. The observational unit for the randomized data

is ORCT = (Y ,A,X ,S = 1) ∼ (Y ,A,X |S = 1) ≡ PRCT. Similarly, the observational data consist

of nobs i.i.d. draws conditional on selection into the observational study, S = 0. The observa-

tional unit for the observational data is thus Oobs = (Y ,A,X ,S = 0) ∼ (Y ,A,X |S = 0) ≡ Pobs.

2.2.2 Estimand

As per the potential outcomes framework, let Y a be the potential outcome if intervention

a were assigned. The estimands of interest for our intervention are the target population
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Figure (2.1) Overlap and nonoverlap regions in the target population

The region of support in the target population’s covariate distribution, R, is the union of the randomized
group’s support (RRCT) and the observational group’s support (Robs). Partial overlap exists between RRCT
and Robs: Roverlap corresponds to the region of overlap (i.e., region of common support in the covariate
distributions) between data sources; Robs-only corresponds to the region only represented in the observational
data and RRCT-only corresponds to the region only represented in the randomized data.

treatment-specific means (PTSMs): E(Y a) for ∀a ∈ A, as have been explored in prior analyses

with multiple unordered treatments (Rose and Normand, 2019). In contrast, study treatment-

specific means (STSMs) are mean counterfactual outcomes for a given treatment over a given

study population: E(Y a|S = s) for ∀a ∈ A,s ∈ S . Because no given health plan serves as a

natural “control” comparator, treatment-specific means rather than the target population

average treatment effect (PATE: E(Y a)−E(Y a′ )) are of interest.

2.2.3 Defining and determining overlap and nonoverlap regions

Covariate distributions differ between randomized and observational groups: P (X |S = 1) ,

P (X |S = 0). Furthermore P (X = x|S = 0) = 0 and P (X = x′ |S = 1) = 0 for some x,x′ ∈ R.

Namely, a portion of the observational data is not well-represented in the randomized data

and potentially a portion of the randomized data may not be well-represented in the observa-

tional data. However, there is a region of overlap between randomized and observational

covariate distributions. Overlap refers to common support across randomized and observa-

tional populations in the distribution of outcome predictors associated with study selection

(or effect modifiers associated with study selection if the estimand of interest had been an aver-

age treatment effect): Roverlap = x ∈ R : P (X = x|S = 1) > 0∩ P (X = x|S = 0) > 0 (Figure 2.1).

Regions of nonoverlap therefore correspond to regions of the covariate distribution where
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either only observational individuals (Robs-only) or only randomized individuals (RRCT-only)

would be observed, i.e., regions where units in one study population are not eligible to be in

the other study population.

The target sample covariate distribution (R) can therefore be decomposed as: R =

Roverlap ∪ Robs-only ∪ RRCT-only Thus, Robs = Roverlap ∪ Robs-only and RRCT = Roverlap ∪

RRCT-only. RRCT-only and Robs-only may be null sets. Let R be an indicator for being in

the respective region, e.g., Roverlap = 1(membership in Roverlap).

At times, it may be the case that rather than a union of a randomized and observational

study being representative of the target population, a reweighted union of the two studies

may be representative, such as when working with a random sample of observational data for

computational efficiency (which we do for our analysis), or when data is collected through

survey sampling. In this case, one can, through reweighting, map the randomized and

observational study regions of covariate support, RRCT and Robs, into a transformation,

RRCT → R∗RCT and Robs → R∗obs, in which the decomposition above of R∗ = R∗overlap ∪

R∗obs-only ∪R
∗
RCT-only holds. Note that this includes the possibility of the target population

being represented by just the observational data.

While the above definition of overlap corresponds to a population feature, nonoverlap

can also occur due to having a finite sample; by chance, the data may be sparse in some

region of the covariate distribution even though that region has support. In practice, we will

account for overlap as both a population and sample feature, determining regions of the

covariate space that have common support and observed data from both groups. To estimate

the region of overlap, Roverlap, we extend a data-driven approach for determining areas of

treatment overlap based on propensity scores for treatment assignment (Nethery et al., 2018).

We adopt a similar approach for the propensity score for study selection πS = P (S |X), but

on the logit scale to give more granularity to very low and very high propensity scores.

2.3 Assumptions and identification

41



2.3.1 Standard assumptions

Identifying population causal quantities such as PTSMs and PATEs standardly relies on the

following sufficient generalizability assumptions (Stuart et al., 2011; Tipton, 2013a; Degtiar

and Rose, 2021):

Internal validity

1. Conditional treatment exchangeability: Y a⊥A |X ,S = s for all a ∈ A,s ∈ S

2. Positivity of treatment assignment: P (X = x|S = 1) > 0 ⇒ P (A= a|X = x,S = 1) > 0

with probability 1 for all a ∈ A.

3. Stable unit treatment value assumption (SUTVA) for treatment assignment: if Ai = a

then Yi = Y ai

External validity

4. Conditional exchangeability for study selection: Y a⊥S |X for all a ∈ A

5. Positivity of study selection: P (X = x) > 0 ⇒ P (S = s|X = x) > 0 with probability 1

for all s ∈ S

6. SUTVA for study selection: if Si = s and Ai = a then Yi = Y ai

For a specific estimand of interest, Assumptions 1 and 4 can be weakened. For example,

when estimating PTSMs, Assumptions 1 and 4 can be replaced by the following:

1. Mean conditional treatment exchangeability: E(Y a|A = a,S = s,X) = E(Y a|S = s,X)

for all a ∈ A,s ∈ S

4. Mean conditional exchangeability for study selection: E(Y a|S = s,X) = E(Y a|X) for all

a ∈ A,s ∈ S
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2.3.2 Relaxation of the mean conditional treatment exchangeability and positiv-

ity of study selection assumptions

To accommodate the potential violations of standard assumptions 1 and 5 for PTSMs, we

replace these assumptions with the following relaxations:

1b. Mean conditional exchangeability in the randomized group:

E(Y a|S = 1,A= a,X) = E(Y a|S = 1,X) for all a ∈ A

and constant conditional bias in the observational group:

E(Y a|S = 0,A= a,X)−E(Y a|S = 1,A= a,X)

= E(Y a|S = 0,A= a,Roverlap = 1,X)−E(Y a|S = 1,A= a,Roverlap = 1,X)

5b. Overlap between study samples: there exists a non-null set Roverlap such that P (X =

x|Roverlap) > 0 ⇒ P (S = s|X = x) > 0 with probability 1 for all s ∈ S .

Assumption 1b corresponds to the same conditional bias relationship holding in Roverlap

as Robs: b(a,x) = b(a,x|R overlap = 1), for all a ∈ A where b(a,x) ≡ E(Y a|S = 0,A = a,X =

x) −E(Y a|S = 0,X = x). See Appendix B.1 in the supplementary material for a derivation

and further motivation for these weakened identifiability assumptions, in addition to a

restatement of Assumption 1b with respect to the unmeasured confounders that are implicitly

being integrated over.

More specifically (and more weakly), Assumption 1b must hold in expectation over the X

covariate distribution in the observational data (mean constant conditional bias):

EX
{
E(Y a|S = 0,A= a,X)−E(Y a|S = 1,A= a,X)

∣∣∣S = 0
}

= EX
{
E(Y a|S = 0,A= a,Roverlap = 1,X)−E(Y a|S = 1,A= a,Roverlap = 1,X)

∣∣∣S = 0
}

Assumption 1b states that the relationship between bias and measured covariates is

unrelated to being in the overlap vs. nonoverlap regions, i.e., that the distribution of

unmeasured confounders does not differ between Roverlap and Robs, conditioning on X and
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A. This assumption is strictly weaker than the no unmeasured confounding assumption

in that the assumption of no unmeasured confounding is nested within Assumption 1b:

with no unmeasured confounding, b(a,x) = 0. Constant conditional bias can be seen as

an extension of the assumption made for cross-design synthesis (Kaizar, 2011), except that

constant conditional bias is allowed to depend on measured covariates and a dichotimization

of the covariate distribution support into overlap and nonoverlap regions replaces predefined

eligibility determining overlap region membership. We hence assume that the covariates X

capture all factors that would lead to differential bias in the overlap as nonoverlap regions.

This suggests that we can estimate bias in the overlap region and use those estimates to also

extrapolate to and correct for bias in the observational group’s nonoverlap region.

Assumption 1b is untestable, just as is the assumption of no unmeasured confounding;

it would fail if the processes that drove unmeasured confounding differed between overlap

and nonoverlap regions in a way that was not captured by measured covariates, or if the

distribution of the unmeasured confounder differed between those regions in such a way as

to create different conditional expectation relationships. This could occur, for example, if an

unmeasured confounder drove overlap region membership. If the constant bias assumption

is not reasonable for a given setting, one can alternatively perform sensitivity analysis to

obtain bounds on PTSMs (Appendix B.2).

In practice, Assumption 5b’s region of overlap should be sufficiently large to learn

the bias term, i.e., sufficiently large for Assumption 1b to hold. Empirical violations of

Assumption 5b are partially testable using πS ; the existence of overlap in the propensity

score distributions between randomized and observational groups provides evidence for this

assumption. Observational group propensity scores may also be close to zero and lacking

overlap with randomized group propensity scores when the observational group size far

exceeds the randomized group.

Of note, the X needed for Assumptions 1b and 2 and the X needed for Assumption 4

and 5b may differ. As a result, the region of overlap should exist with respect to outcome

predictors, but should be large enough to ensure that Assumption 1b holds. It is therefore
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reasonable to use an X matrix that contains all outcome predictors and confounders to assess

all assumptions. Thus, as described earlier, our X is the union of the covariates sets needed

for all assumptions to hold.

2.3.3 Identification

Under the modified assumptions above, the causal estimand of interest can be identified by

the following CCDS functional of the observed data:

ψCCDS(a) =EX |S=1

[
E(Y |S = 1,A= a,X)

∣∣∣∣S = 1
]
P (S = 1)

+EX |S=0

[
E(Y |S = 0,A= a,X)

∣∣∣∣S = 0
]
P (S = 0)

−EX |S=0

[{
E(Y |S = 0,A= a,Roverlap = 1,X)

−E(Y |S = 1,A= a,Roverlap = 1,X)
}∣∣∣∣S = 0

]
P (S = 0)

See Appendix B.3 for the proof and Appendix B.4 for alternative functionals that identify

the PTSM, derived through different decompositions of the data.

2.4 Estimators

We develop four novel estimators that combine randomized and observational data to es-

timate PTSMs relying on our CCDS framework. The novel estimators consist of outcome

regression, 2-stage outcome regression, inverse probability weighting, and double robust

augmented inverse probability weighting approaches.
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2.4.1 CCDS outcome regression estimator

The CCDS outcome regression (CCDS-OR) estimator uses outcome regressions to estimate

the combination of the conditional distributions in ψCCDS(a):

ψ̂CCDS-OR(a) =
1
n

n∑
i=1

Q̂(Si = 1,Ai = a,X i)1(Si = 1) + Q̂(Si = 0,Ai = a,X i)1(Si = 0)

−
{
Q̂(Si = 0,Ai = a, R̂overlap, i = 1,X i)

− Q̂(Si = 1,Ai = a, R̂overlap, i = 1,X i)
}
1(Si = 0).

where R̂overlap is estimated as described in Section 2.2.3, Q̂(S = 1,A= a,X) is an estimator

for E(Y |S = 1,A= a,X), Q̂(S = 0,A= a,X) is an estimator for E(Y |S = 0,A= a,X), Q̂(S =

0,A = a, R̂overlap = 1,X) is an estimator of E(Y |S = 0,A = a,Roverlap = 1,X), and Q̂(S =

1,A = a, R̂overlap = 1,X) is an estimator of E(Y |S = 1,A = a,Roverlap = 1,X). The first term

corresponds to treatment specific mean estimates for the randomized subset of the target

sample, the second term provides preliminary estimates for the observational subset of the

target sample, and the third term debiases the preliminary observational data estimates.

Implementation considerations for regression choices and a conditional treatment-specific

mean version of the estimator are presented in Appendix B.5.

2.4.2 2-stage CCDS outcome regression estimator

To avoid overfitting to overlap region trends, the 2-stage CCDS estimator replaces the

debiasing term, the third term, with a 2-stage regression:

ψ̂2-stage CCDS(a) =
1
n

n∑
i=1

Q̂(Si = 1,Ai = a,X i)1(Si = 1) + Q̂(Si = 0,Ai = a,X i)1(Si = 0)

− b̂(Si = 1,a,X i)1(Si = 0)

where b̂(Si = 1,a,X i) is estimated via

(1) b̂′(Si = 1,a,X i) = Q̂(Si = 0,Ai = a, R̂overlap, i = 1,X i)1(Si = 1, R̂overlap, i = 1) − Q̂(Si =
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1,Ai = a, R̂overlap, i = 1,X i)1(Si = 1, R̂overlap, i = 1)

(2) b̂′(Si = 1,a,X i) =
ŵbias(Si ,X i)∑n
i=1 ŵbias(Si ,X i)

ĝ(X i) with

ŵbias(Si ,X i) =
1(Si = 1, R̂overlap, i = 1)P̂ (Si = 0|X i)

P̂ (R̂overlap, i = 1|Si = 1,X i)P̂ (Si = 1|X i)

and ĝ(X) an estimator of a regression function described below.

Namely, Stage (1), estimates an intermediate bias term b̂′(Si = 1,a,X i) using randomized

overlap data: bias estimates are the difference in predicted counterfactual outcomes using

regressions fit to the overlap region of the observational vs. randomized data, creating

predictions for the randomized overlap data. As there is no bias in expectation in the

randomized overlap data, any estimated bias stems from the regression Q̂(Si = 0,Ai = a,X i).

Stage (2) then fits a weighted regression with the estimates of b̂′(Si = 1,a,X i) from Stage (1)

as the outcome. This second stage focuses on the relationship between the bias estimates

in the overlap region and measured covariates. The debiasing term b̂(Si = 1,a,X i) is then

estimated for the observational data from the fixed regression fit ĝ(X) in Stage (2).

The weight, ŵbias, standardizes the randomized data to the observational data so that

the bias term is estimated for the covariate distribution of interest. The weights follow

from P (S = 0) = E
[
P (S = 0|X)

]
= E

[
1(S = 1,Roverlap = 1)P (S = 0|X)/

(
P (Roverlap = 1|S =

1,X)P (S = 1|X)
)]

. Reweighting will frequently not face issues when positivity of selection

violations occur because S = 1 data is used to estimate the bias term and thus should not

have many values close to zero for P̂ (Si = 1|X i), which is in the denominator of the weight.

Thus, while weighting is not required in such a 2-stage approach, the weights add robustness

compared to an unweighted approach without common drawbacks of weighting, such as

variance inflation due to unstable weights.

Appendix B.6 presents a 2-stage approach that does not restrict itself to the overlap region

(2-stage whole data), which suffers from the same reliance on extrapolating beyond random-

ized group support as does using only the randomized data, highlighting the importance of

focusing on the overlap region to debias observational data.
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2.4.3 CCDS inverse probability weighting estimator

The cross-design synthesis inverse probability weighting (CCDS-IPW) estimator with stabi-

lized weights uses propensity models to estimate PTSMs (see Appendix B.7 for the proof):

ψ̂CCDS-IPW(a) =
nrand

n

 n∑
i=1

ŵ1(Si ,Ai ,X i)


−1 n∑

i=1

ŵ1(Si ,Ai ,X i)Yi

+
nobs

n

 n∑
i=1

ŵ2(Si ,Ai ,X i)


−1 n∑

i=1

ŵ2(Si ,Ai ,X i)Yi

− nobs

n


 n∑
i=1

ŵ3(Si ,Ai ,X i)


−1 n∑

i=1

ŵ3(Si ,Ai ,X i)Yi

−

 n∑
i=1

ŵ4(Si ,Ai ,X i)


−1 n∑

i=1

ŵ4(Si ,Ai ,X i)Yi


where:

ŵ1(Si ,Ai ,X i) =
1(Si = 1,Ai = a)

P̂ (Ai = a|Si = 1,X i)

ŵ2(Si ,Ai ,X i) =
1(Si = 0,Ai = a)

P̂ (Ai = a|Si = 0,X i)

ŵ3(Si ,Ai ,X i) =
1(Si = 0,Ai = a, R̂overlap, i = 1)

P̂ (R̂overlap, i = 1|Si = 0,X i)P̂ (Ai = a|Si = 0, R̂overlap, i = 1,X i)

ŵ4(Si ,Ai ,X i) =
1(Si = 1,Ai = a, R̂overlap, i = 1)[1− P̂ (Si = 1|X i)]

P̂ (Si = 1|X i)P̂ (R̂overlap, i = 1|Si = 1,X i)P̂ (Ai = a|Si = 1, R̂overlap, i = 1,X i)

Here, positivity of selection violations will often not lead to unstable weights since P̂ (R̂overlap, i =

1|Si = 1,X i)P̂ (Si = 1|X i) only appears in the denominator for ŵ4; these individuals, by

overlap region construction, have propensity scores for selection bounded away from zero.

Normalizing weights by their sum adds stability (Robins et al., 2000). Nonetheless, this

method may face lack of efficiency and potentially unstable estimates, particularly from esti-

mating the second bias term contribution weighted by ŵ4, as the components are estimated

using small subsets of the data relative to the overall sample—only individuals randomized

in the overlap region on a given treatment arm. This problem is exacerbated with many

treatment groups, particularly for rare treatments.
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2.4.4 CCDS augmented inverse probability weighting estimator

Our double robust estimator provides consistent estimates when either the outcome regres-

sions or product of propensity regressions are correctly specified in each of the terms of

ψCCDS(a). The CCDS augmented inverse probability weighted (CCDS-AIPW) estimator is as

follows:

ψ̂CCDS-AIPW(a)

=
1
n

n∑
i=1

nrand

n

ŵ1(Si ,Ai ,X i)∑n
i=1 ŵ1(Si ,Ai ,X i)

{
Yi − Q̂i(S = 1,A= a,X)

}
+1(Si = 1)Q̂i(S = 1,A= a,X)

+
nobs

n

ŵ2(Si ,Ai ,X i)∑n
i=1 ŵ2(Si ,Ai ,X i)

{
Yi − Q̂i(S = 0,A= a,X)

}
+1(Si = 0)Q̂i(S = 0,A= a,X)

− nobs

n

ŵ3(Si ,Ai ,X i)∑n
i=1 ŵ3(Si ,Ai ,X i)

{
Yi − Q̂i(S = 0,A= a, R̂overlap = 1,X)

}
−1(Si = 0)Q̂i(S = 0,A= a, R̂overlap = 1,X)

+
nobs

n

ŵ4(Si ,Ai ,X i)∑n
i=1 ŵ4(Si ,Ai ,X i)

{
Yi − Q̂i(S = 1,A= a, R̂overlap = 1,X)

}
+1(Si = 0)Q̂i(S = 1,A= a, R̂overlap = 1,X)

with ŵ(Si ,Ai ,X i) and Q̂i(S,A,X) as defined above. CCDS-AIPW is a double robust estimator

that is asymptotically efficient when the propensity and outcome regressions are estimated

consistently. See Appendix B.8 for a derivation of the efficient influence function.

2.4.5 Inference

Confidence intervals and standard errors in our machine-learning-based analyses were

calculated using a nonparametric bootstrap (Efron and Tibshirani, 1994). When using

parametric regressions, a sandwich variance approach can be used to derive sampling

variance, following M-estimation theory.
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2.4.6 Comparison estimators

There are no existing methods that address both the overlap and unmeasured confounding

challenges specific to our data setting. While the estimator of Rosenman et al. (2020)

addresses overlap and unmeasured confounding, it assumes that treatment effects are

identical between randomized and observational groups within the same stratum of ef-

fect modifiers, which is unlikely to hold in our setting. We therefore compare against two

simple approaches. The first (rand estimator) fits an outcome regression using random-

ized data to extrapolate to the entire target population—including outside its region of

support (Kern et al., 2016): ψ̂rand(a) = 1/n
∑n
i=1 Q̂(Si = 1,Ai = a,X i). This extrapolation

may yield bias when the relationship between covariates and potential outcomes differs

in Roverlap compared to Robs in a way that cannot be extrapolated from the randomized

data. This second (obs/rand estimator) is similar in spirit to Kern et al. (2016) and Prentice

et al. (2006), though those fit one outcome regression to both randomized and observa-

tional data and estimate effects for just the observational data or just the randomized data,

respectively. The obs/rand estimator we deploy here fits an outcome regression using ran-

domized data to estimate counterfactuals for the randomized data and fits an outcome

regression using observational data to estimate counterfactuals for the observational data:

ψ̂obs/rand(a) = 1/n
∑n
i=1 Q̂i(S = 1,A = a,X)1(Si = 1) + Q̂i(S = 0,A = a,X)1(Si = 0). This

approach assumes there is no unmeasured confounding in the observational data. We used

outcome regressions for rand and obs/rand estimators rather than approaches that incorpo-

rate propensities for selection as the latter will result in denominators close to zero due to

lack of overlap.

2.5 Simulation studies

We designed a broad series of simulations to evaluate the finite sample performance of our

novel CCDS estimators compared to alternative approaches for estimating PTSMs as well

as the PATE, examining two treatment groups A ∈ {1,2}. We assessed performance in the
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presence of (1) complex data-generating mechanisms such that the randomized data do not

extrapolate well outside their support, (2) unmeasured confounding in the observational

data, and (3) positivity of selection violations. We also studied alternative data generating

processes including different sample sizes, constant bias violations, unmeasured confounding

settings, overlap settings, ratios of nRCT to nobs, positivity of selection violation settings, ex-

changeability of study selection violations, overlap region determination settings, propensity

for selection relationships, alternative outcome models, and alternative regression fits. In

total, we examined 84 different data generating scenario × regression choice combinations.

In the base case, we generated a target population of 1 million individuals from which we

drew random samples of size n= 10,000, with data generating mechanism P (Y ,S,A,X ,U ) =

P (X)P (U |X)P (S |X ,U )P (A|S,X ,U )P (Y |S,A,X ,U ). The data had four independent mea-

sured confounders X1, ...,X4 ∼ N (0,1); an unmeasured confounder U ∼ Binom(0.5); selec-

tion into the randomized group driven by the strongest confounder such that there existed

RRCT-only (S = 1 if X1 > QNnorm(0.9)), Robs-only (S = 0 if X1 < QNorm(0.5)), and Roverlap

(S ∼ Binom(0.5), otherwise). This study selection process resulted in approximately a 1:4

ratio of randomized to observational individuals. Treatment assignment was A ∼ Binom(0.6)

for S = 1 and A ∼ Binom(logit−1(−0.8+0.125X1+0.1X2+0.075X3+0.05X4+0.1(X1+1)3+

0.625U )) for S = 0. The outcome was generated from the same distribution for both groups,

Y ∼Norm(µY ,1), where µY = −1.5−3A+4X1+4X2+3X3+2X4+0.4(X1+1)3+4AX1+10U .

Estimators were fit with linear outcome regressions as well as an ensemble of 8 machine

learning approaches. We implemented 2000 simulation iterations and 1000 bootstrap repli-

cations to generate confidence intervals. Propensities and their products used in weight

denominators were trimmed at 0.001. We implemented the simulations in R, including

the SuperLearner package (Polley et al., 2019) and the pw_overlap function for overlap

region estimation (Nethery et al., 2018). See Appendix B.9 for the correspondence of our

simulation design with identifiability assumptions, descriptions of alternative data gener-

ating mechanisms, and further implementation details. Our code is available on GitHub

(https://github.com/idegtiar1).
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Figure (2.2) Bias and RMSE for PTSM and PATE estimates for n = 10,000 across 2000 simulation
iterations and 1000 bootstrap replications

Absolute bias is the darker portion of each bar; RMSE corresponds to the total bar size.

Main Findings. Results across different regression specifications highlight the estimators’

relative strengths and disadvantages (Figure 2.2). At the base case sample size of n= 10,000,

CCDS-OR and CCDS-AIPW performance was almost identical. These estimators suffered

from large variability when fitting complex regressions in a small overlap region, which we

observed in the correctly specified and ensemble settings. In contrast, the CCDS-OR and

CCDS-AIPW estimators showed little bias and variance when fitting underspecified main

terms regressions; underspecification avoids overfitting in a small overlap region. The 2-stage

CCDS estimator decreased bias and variance when using correctly specified or ensemble

52



regressions, relative to the (1-stage) CCDS-OR estimator and CCDS-AIPW. In the main terms

setting, its estimates were identical to those of CCDS-OR due to linearity and additivity.

The CCDS-IPW had the smallest bias and RMSE throughout all settings except when

fitting main terms regressions where it grossly misspecifies the propensity for selection,

resulting in large remnant bias for that setting. However, the estimator’s efficiency was due

to the outcome model having more variability compared to the propensity models; e.g., the

propensity for selection was deterministically assigned by X1. With a more probabilistic

relationship and smaller propensity scores, CCDS-IPW’s bias and variance increased.

While the rand estimator performed well with correctly specified regressions, using only

main terms regressions resulted in large bias due to poor extrapolation beyond its support.

With more flexible ensemble approaches, the rand estimator suffered from both large bias

and large variance. The obs/rand estimator was subject to unmeasured confounding bias,

which existed even when correctly specified regressions were fit, though it had relatively low

RMSE due to the large observational sample size.

Estimating Overlap. The last column of Figure 2.2 presents results from overlap region

estimation using α = 0.01 × range(logit(πS)) and β = 0.01 ×min(nRCT,nobs). The region

of overlap consists of points in the logit of the propensity score for selection that have at

least β observations from each study group within an interval of size α around that point

(Nethery et al., 2018). With these specifications, compared to the truth, the estimated overlap

region had a similar number of observational individuals (38% vs. 35%) and randomized

individuals (50% vs. 48%). Performance was similar or better when estimating the overlap

region in this setting and across the various other data generating mechanisms and overlap

region hyperparameter specifications we examined (Appendix B.9).

Coverage. The obs/rand estimator showed 0% coverage across all settings while all CCDS

estimators were able to achieve nominal coverage, except the CCDS-IPW estimator when

using grossly misspecified linear regressions (Figure 2.3). The rand estimator attained 0%

coverage in the main terms setting for the PTSMs but 95% coverage for the PATE due to

linear regressions correctly specifying treatment effects but not treatment-specific means in

53



Figure (2.3) Coverage and confidence interval width for PTSM and PATE estimates for n= 10,000 across
2000 simulation iterations and 1000 bootstrap replications

The dashed line corresponds to the target coverage of 95%.

this data-generating mechanism; coverage remains low when the PATE does not extrapolate

well from the randomized data. Thus, while the bias and RMSE of the CCDS estimators may

or may not decrease compared to the obs/rand estimator (as shown in Figure 2.2) due to

remnant estimation error from misspecifying regressions, which is particular evident with

ensemble approaches, the poor coverage of the obs/rand estimator indicates this can be a

false indication of precision.

Alternative Data Generating Mechanisms. CCDS estimator bias and RMSE shrunk with

more overlap and with increasing proportions of randomized data. As unmeasured confound-

ing bias increased, there was no corresponding increase in bias across CCDS estimators with

correctly specified regressions and only a slight increase with ensembles. However, variance

increased, reflecting additional uncertainty in settings with more unmeasured confounding.
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Violating the constant conditional bias assumption increased bias for the rand and all CCDS

estimators, with CCDS estimators generally performing better than the rand estimator. All

estimators performed poorly when the exchangeability of study selection assumption was

violated. The RMSE for CCDS-IPW was most impacted by a smaller ratio of randomized

to observational individuals. Overall, results for the CCDS estimators were similar across

alternative data generating mechanisms. Further details can be found in Appendix B.9.

2.6 Medicaid study

Medicaid, administered by the Centers for Medicare & Medicaid Services, provides insurance

for low-income and disadvantaged Americans, covering a fifth of all individuals in the United

States (Centers for Medicare & Medicaid Services, 2020). As described earlier, MMC provides

health insurance plans for all but certain exempt groups (Medicaid, 2020), and beneficiaries

who do not actively choose a health plan are randomized to one. Understanding the impact

of these individual MMC health plans on health care spending is an open question. However,

generalizing the 7% of beneficiaries who are randomized to the full NYC Medicaid popula-

tion may be hampered by a lack of overlap in parts of the covariate distributions between

randomized and observational (active chooser) groups. Yet, data from observational benefi-

ciaries may be subject to potential unmeasured confounding from variables not captured in

the claims data.

We estimated the causal effects of enrollment into NYC MMC health plans on health care

spending for all NYC Medicaid beneficiaries with at least 6 months of follow-up, applying

our novel CCDS and comparison estimators. Health care spending was examined over

6 months on the log scale, as log(spending + 1), adjusting for baseline spending decile,

age, documented sex, aid group, whether the beneficiary received social security income,

neighborhood, and neighborhood poverty level. Further descriptions of the data can be

found in Geruso et al. (2020). We used all 65,591 randomized beneficiaries and a 10%

random subset of observational beneficiaries within the study period (2008 - 2012) for

computational efficiency, which totaled 98,232. For the 1% of beneficiaries with missing
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baseline spending, baseline spending was imputed to be zero (the most likely reason for

missingness was no spending) along with an indicator for missingness. Regressions were fit

using a SuperLearner ensemble (of glm, glmnet with α = 0.5, gam, and nnet). Propensity

scores and their products used in weight denominators were trimmed at 0.001. To assess

simultaneous 95% coverage, a conservative Bonferroni adjustment was made to the bootstrap

confidence intervals, which used 500 replications: each marginal confidence interval was

constructed at the 1− 0.05/k level, where k = 10 plans.

Compared to randomized beneficiaries, observational beneficiaries differed across all

measured factors: the latter were slightly younger (34.3 vs. 35.5 years old), spent less at

baseline ($2796 vs. $3052), were more likely to have a documented sex of female (59% vs.

40%), were less likely to live in Manhattan (13% vs 20%) and more likely to live in Queens

(28% vs. 19%), came from different aid groups, and were less likely to be eligible for social

security income (2% vs 9%) (Appendix Table B.3 in Appendix B.10). Effect heterogeneity

within the randomized data was driven by aid group status, supplemental security income

eligibility, and neighborhood effects; within the observational data it was driven by neighbor-

hood effects and receiving aid for children, all of which were imbalanced across randomized

and observational beneficiaries, highlighting the need for generalizability approaches.

Overall, across all measured covariates, observational beneficiary characteristics were

imbalanced across health plans, and these characteristics were also associated with health

care spending, providing empirical evidence that these variables may be confounders. While

randomized beneficiaries were not representative of their observational counterparts, there

was considerable covariate overlap, as measured by the propensity score for selection into

the randomized subset of the data, though overlap was weakest where the observational data

was most concentrated (Appendix Figure B.10 in Appendix B.10). Using the conservative

overlap hyperparameters α = 0.01× range(logit(πS)) and β = 0.01×nRCT resulted in 60%

of the target sample within the overlap region. The standardized mean difference in the

propensity score for selection was 1.1 standard deviations, which far exceeds 0.25, one

proposed threshold indicating large extrapolation (Stuart et al., 2011), and, thus, supportive
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Figure (2.4) STSMs and PTSMs across managed care plans, with 95% multiplicity-adjusted confidence
intervals

of the need for CCDS estimators.

Figure 2.4 presents STSMs for the randomized and observational study populations and

PTSMs for the NYC Medicaid target population, including results for two CCDS estimators

well suited to this setting. (All estimators are available in Appendix Figure B.11 in Appendix

B.10.) Despite higher unadjusted mean spending in the randomized group, causal estimates

of STSMs in the observational data were consistently higher than estimates of STSMs in

the randomized data across all health plans. This discrepancy reflects both a difference in

population characteristics as well as potential unmeasured confounding in the observational

data; neither estimate aligned with rand or CCDS estimates of PTSMs, which were consis-

tently lower than randomized and observational STSMs. While the randomized data STSMs

showed a difference of 12% between the highest and lowest spending health plans and the

observational data STSMs showed a difference of 8%, the rand and CCDS-AIPW estimators
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demonstrate a difference of 16% and 17%, respectively, in PTSMs. Thus, study estimates

underestimated the true variability in spending between plans.

Given the substantial overlap between randomized and observational covariate distribu-

tions, it is unsurprising that CCDS estimates were in a similar range to the rand estimates of

PTSMs. However, the double robust CCDS-AIPW estimates were higher than rand estimates

(12.5-16.7% difference in log spending) and confidence intervals were non-overlapping for

all but plans D and I. CCDS-AIPW also did not show large variability with ensemble regres-

sions, unlike in the simulations. Obs/rand estimates and observational data AIPW STSMs

(which largely aligned as the observational data comprised 93% of the data) were widely

discrepant from other PTSMs, suggesting a large amount of unmeasured confounding bias

in the observational data. Unlike in the simulation, CCDS-IPW confidence intervals were

wider than those of other CCDS estimators, which is common to IPW estimators in practice,

and also reflects the difficulty of estimating propensities for multiple treatments. While the

rand PTSM estimator could provide reasonable estimates in this setting, where there is a fair

amount of overlap between randomized and observational data, the CCDS estimators were

able to incorporate all data and did not rely on extrapolating spending estimates beyond the

support of the randomized data.

2.7 Discussion

When observational and randomized data are both available, there is potential to overcome

each data type’s limitations through their combination. Namely, when some individuals in

the target population are not well-represented in the randomized data and the observational

data has unmeasured confounding, neither data type alone can successfully generalize to the

target population represented by a union of randomized and observational data. This article

proposes a class of novel estimators that can surmount positivity of selection assumption

violations in the randomized data and unmeasured confounding in the observational data by

using common support between the data sources to remove unmeasured confounding bias.

The proposed outcome regression, propensity score, and double robust CCDS estimators
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have varying strengths. When the functional forms of the true data generating processes can

be approximated by simple linear regressions, the double robust CCDS-AIPW estimator with

linear regressions is a suitable default approach for combining randomized and observational

data. Even when linear regressions do not capture the full complexity of the data generating

process, simulations showed that CCDS-AIPW and CCDS-OR with main terms regressions

were able to recover unbiased estimates. However, when fitting more complex regressions,

these estimators may lead to unstable bias extrapolations from the overlap region, although

we did not see this drawback in our NYC Medicaid data analysis, which had a larger area

of overlap. When more complex regression approaches are used, the 2-stage CCDS or

CCDS-IPW may also be suitable depending on whether there is more knowledge of the

outcome relationship or the propensity for selection and treatment relationships, and whether

selection or treatments are rare or multinomial with small probabilities. The 2-stage approach

improves performance compared to the CCDS-OR estimator by stabilizing initial estimates

to alleviate overfitting to overlap region trends.

In the NYC Medicaid data, there were marked differences between the study and target

population causal estimates. Novel and existing generalizability methods helped reconcile

these discrepancies by specifying a target population for which inference was desired. There

were also significant differences between PTSM rand and obs/rand estimates, showcasing

the need to account for both potentially poor extrapolation from the randomized data and

potential unmeasured confounding in the observational data. The proposed CCDS estimators

provided evidence that the observational data remained subject to unmeasured confounding

bias even after adjusting for measured factors.

Our CCDS framework is sensitive to the randomized data regression in the overlap region

being an accurate reflection of the truth, as highlighted in the simulation results. When

the overlap region is small, the conditional mean relationships estimated from the overlap

region may be misspecified, leading to bias and large variability in estimates of unmeasured

confounding bias. To assess goodness of fit, investigators can compare estimates to the truth

in the randomized data overlap region. Regularization and cross-validation can reduce
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chances of overfitting to the data, particularly with more flexible regression approaches.

Further practical challenges to applying CCDS estimators in other settings may include that

of imperfect covariate correspondence between observational and randomized data sources.

Our approach assumes that, after incorporating common covariates, there are no unmeasured

outcome determinants (for estimating PTSMs) or effect modifiers (for estimating PATEs) that

differ in distribution between between randomized and observational groups. However, if

this assumption is violated, CCDS estimators often performed better than using randomized

data alone.

Future extensions to the CCDS estimation framework could consider addressing positivity

of treatment assignment violations, combining more than two studies (with at least one

randomized and one observational), alternative approaches for determining the overlap

region that allow for the degree of information borrowing to depend on the similarity of

randomized and observational observations, and overlap estimation that does not rely on

an estimated propensity score for selection, such as a convex hull approach (King and

Zeng, 2006) or estimating common causal support (Hill and Su, 2013). These possible

extensions are discussed further in Appendix B.11. Randomized and observational data

commonly face multiple challenges beyond those of positivity of selection violation and

unmeasured confounding discussed here. These challenges include lack of independence

between observations (e.g., clustering), missing data, and measurement error. Methods for

addressing such challenges can be combined with our CCDS approaches.

Our CCDS estimators have relevance to many other settings. Positivity of selection

violation and unmeasured confounding arise in other studies where the target population is

composed of randomized and observational subsets, or more broadly when observational

data is being combined with randomized data. For example, in comprehensive cohort studies,

patients who refuse randomization are enrolled in a parallel observational study (Lu et al.,

2019; Olschewski and Scheurlen, 1985) and when randomized controlled trials are embedded

in electronic health record data, the observational data can provide information on patients

included in and excluded from the trial (Kibbelaar et al., 2017). Policy evaluation studies
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can be combined with observational data from outside the evaluation geography to estimate

scale-up impacts (Attanasio et al., 2003; Kern et al., 2016). Across these settings, CCDS

estimators can be used to generalize to the target population represented by the union of

the randomized and observational data. CCDS could also be applied when randomized data

represent the target population but will be combined with observational data to increase

power, such as in clinical trials that use a mix of randomized and historical controls (Ghadessi

et al., 2020), or when, in the absence of a comprehensive target sample, a combination of

randomized and observational studies may more fully represent the target population than

either study alone (Prentice et al., 2005; Vaitsiakhovich et al., 2018).

Generalizability methods applied to a specified target population are necessary to obtain

unbiased estimates for a policy-relevant population. The internal validity of randomized

studies is insufficient to obtain unbiased causal estimates; external validity also needs to be

considered. The CCDS estimators presented here provide several approaches for combining

randomized with observational data to make inferences that do not rely on extrapolating

beyond randomized data support nor on the assumption of unmeasured confounding in the

observational data.

61



Chapter 3

Estimating Target Population Average

Treatment Effects Among the Treated

for a Voluntary Intervention

Irina Degtiar1, Sherri Rose2, Mariel Finucane3

1 Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA

2 Center for Health Policy and Center for Primary Care and Outcomes Research, Stanford Univer-

sity, CA, USA

3 Mathematica Policy Research, Cambridge, MA, USA

62



Abstract

Impact evaluations are often intended to inform future program implementation deci-

sions. However, the context in which a program will be implemented may differ, sometimes

substantially, from the context in the evaluation. This difference leads to uncertainty re-

garding the relevance of evaluation findings to future decisions. Generalizing to future

contexts is further challenged when estimating treatment effects among future participants

of a voluntary intervention, as future volunteers are not an enumerable population. We

present a novel approach for estimating target population average treatment effects among

the treated (PATT) by generalizing results from an observational study to target population

volunteers (the treated group). Our estimation approach can accommodate flexible out-

come regression estimators such as Bayesian Additive Regression Trees (BART) and Bayesian

Causal Forests (BCF). BART is a flexible outcome regression that models the response surface

as a sum of trees. BCF extends BART by separately regularizing confounding and effect

modification components of the outcome regression, which enables full confounding control

while shrinking treatment effect heterogeneity. Our generalizability approach incorporates

uncertainty regarding target population treatment status into the posterior credible intervals

to better-reflect the uncertainty of scaling up a voluntary intervention. In a simulation based

on real data, we applied our PATT estimation approach to estimate impacts of a national

scale-up of a voluntary health policy model.
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3.1 Background

Policy impact evaluations seek to guide future policy decisions, such as whether to scale

up an intervention at the conclusion of the evaluation study. Much consideration is given

to ensuring that impact estimates are internally valid and that all confounders have been

measured and adjusted for. Less commonly considered is the external validity of the study,

namely, the extent to which findings can hold for future contexts and populations. Study

effects may not necessarily hold for a different population when study subjects respond

differently to the intervention—when effect modification exists. For example, a national

expansion of a Medicare model would not show the same effects as those observed in the

evaluation when high-risk patients respond to the intervention differently than low-risk

patients, and the proportion of high-risk patients differs between the study population and

target population of interest.

Addressing the discrepancy between study and target populations to extend impact

results beyond the evaluation at hand requires generalizability and transportability methods.

These methods have attracted increasing attention (Degtiar and Rose, 2021), resulting in

approaches that make use of outcome regressions such as ordinary least squares (Flores and

Mitnik, 2013; Kern et al., 2016) or Bayesian Additive Regression Trees (BART) (Hill, 2011;

Green and Kern, 2012; Kern et al., 2016), propensity of selection weighting approaches like

Inverse Probability of Participation Weighting (IPPW) (Cole and Stuart, 2010; Correa et al.,

2018), and double robust estimators such as the Targeted Maximum Likelihood Estimator

(TMLE) (Rudolph and van Der Laan, 2017) and augmented inverse probability of participa-

tion weighting (AIPPW) (Dahabreh et al., 2018). However, most of these approaches, with the

exception of BART, have to date relied on parametric modeling assumptions. Few existing

approaches allow for flexible modeling, which is particularly important when generalizing

results from large observational studies with many confounders and effect modifiers.

Policy scalability requires additional considerations novel to the generalizability literature.

Inference on the treated population is typically of interest. However, when the intervention

is voluntary, the policy has an uncertain target treated population, as it is unclear who
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would volunteer for the scale-up. Although there exists a large literature on scale-up

implementation considerations (World Health Organization, 2010; Powell et al., 2015; Barker

et al., 2016), and several approaches exist for estimating impacts of a policy model scale-

up (Attanasio et al., 2003; Flores and Mitnik, 2013; Gechter, 2015), no literature to our

knowledge addresses generalizability to a target treated population that is not enumerable

(due to uncertainty as to which units would volunteer for the scaled-up intervention in new

geographic regions).

To address these shortcomings, we present a novel generalizability approach for estimat-

ing target population average treatment effects among the treated (PATT). The approach

can accommodate nonparametric outcome regression estimators such as BART and Bayesian

Causal Forests (BCF) (Hahn et al., 2020) to extend inference from an observational or ran-

domized study sample to the target treated population while accounting for confounding

and effect heterogeneity in a data-driven fashion. BCF has shown superior performance

compared to other causal estimators for confounding adjustment (Hahn et al., 2020) and

is particularly well-suited for extension to generalizability and transportability settings as

it explicitly considers and separately regularizes confounding and effect modification. As

a Bayesian estimator, it also allows for incorporation of additional sources of uncertainty

into the credible intervals, such as uncertainty around what will drive participation in new

geographic regions. Incorporating this source of uncertainty avoids overstating confidence in

estimated scale-up effects.

The PATT generalizability estimator first estimates a propensity to volunteer for all units

in the target sample, the sample to which the scaled-up intervention will be offered, then

estimates impacts for all target sample units from a regression fit to the evaluation sample

using BART, BCF, or other estimator. Impacts for the treated sample of volunteers consist of

propensity-for-volunteering weighted averages of target sample impact estimates. We apply

this novel generalizability estimator to a policy-relevant simulation based on real data to

estimate the impact of scaling up a voluntary Medicare model from the evaluation study

nationwide.
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Figure (3.1) Volunteering in study and target samples and regions

The remainder of this article is organized as follows. Section 2 introduces notation,

the estimand, assumptions, and identification. Section 3 presents our novel approach for

estimating the PATT and introduces BART, BCF, and other estimator choices. Section 4

assesses our generalizability estimator’s performance in a simulation study based on real

data. We conclude with a discussion in Section 5.

3.2 Notation, assumptions, and causal quantities

3.2.1 Data structure, notation, and estimand

The data are generated through the following process, illustrated in Figure 3.1. During the

evaluation, the intervention is offered within the study (evaluation) region. Study region units

who volunteer to participate in the intervention become part of the study treated population.

In the Medicare study, controls were matched to treated units from neighboring regions,

though may be chosen in another manner in other studies. In the scale-up, the intervention

would be offered to the target population in study and non-study regions. Target population

units who volunteer to participate become part of the target treated population. The study

region sample, study sample, target sample, and target treated samples are representative

samples from their respective populations.
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Let Y be the outcome, S be an indicator for being in the study sample, R be an indicator

for being in the study region, V be an indicator for volunteering to participate, A be the study

treatment, X be the vector of measured covariates, and n be the number of units in the target

sample. Capital letters denote random variables while their realizations are denoted in low-

ercase letters (e.g., a, x). The observational unit for the target sample is On = (Y ,A,X,S,R,V )

and the observational unit for the target treated sample is O = (Y ,A,X,S,R,V = 1). The

observational unit for the study region is OR = (Y ,A,X,S,R= 1,V ), the observational unit

for the study sample is OS = (Y ,A,X,S = 1,R,V ) and the observational unit for the study

treated sample is OA = (Y ,A= 1,X,S = 1,R,V = 1).

As per the potential outcomes framework, let Y 1 be the potential outcome corresponding

to participating in the scale-up intervention and Y 0 be the potential outcome corresponding

to not participating. The estimand of interest is the target population average treatment

effect among the treated (PATT): the treatment effect in the target treated population, i.e.

among target population units who would volunteer for the intervention: E(Y 1 −Y 0|V = 1).

3.2.2 Assumptions

PATT generalizability relies on standard internal validity assumptions, standard external

validity assumptions pertaining to the target treated population of volunteers (Stuart et al.,

2011; Tipton, 2013a; Degtiar and Rose, 2021), and an additional assumption regarding

volunteering:

Internal validity assumptions:

1. Conditional mean exchangeability of treatment assignment: E(Y 1 −Y 0|S = 1,X) = E(Y 1 −

Y 0|S = 1,A,X). The evaluation study was not subject to unmeasured confounding: we

adjusted for all variables that risk inducing internal validity bias if not appropriately

accounted for.

2. Positivity of treatment assignment: P (X = x|S = 1) > 0 =⇒ P (A = a|X = x,S = 1) > 0

with probability 1 for a = {0,1}. All units in the study sample would have a positive
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probability of being in the intervention group had the intervention been offered to

them.

3. Stable unit treatment value assumption (SUTVA) for treatment assignment: if A= a then

Y = Y a. Units do not impact each other’s outcomes and hence there is not nor will be an

added benefit nor detriment from being in the same region as an existing intervention

participant, and—while participants may have individually made different changes

as a result of their intervention participation—the intervention is well-defined for all

units.

External validity assumptions:

4. Conditional mean exchangeability of sample selection: E(Y 1 − Y 0|V = 1,X) = E(Y 1 −

Y 0|S = 1,X). There are no unmeasured effect modifiers related to study membership.

Thus, new enrollees in the scale-up can be expected to benefit to a similar degree as

current participants with similar measured characteristics.

5. Positivity of sample selection among volunteers: P (X = x|V = 1) > 0 =⇒ P (S = 1|V =

1,X = x) > 0 with probability 1. The target treated population could have taken part in

the current study had it been implemented in their geography.

6. SUTVA for sample selection: if S = s, and A= a then Y = Y a. Potential outcomes are not

a function of how many units are in the intervention, the scale-up intervention will not

differ from the evaluation intervention (implementation by unit will remain the same),

the study treated population would see similar benefits as those they observed to date,

and—if the intervention were terminated—these current study treated participants

would revert back to their pre-intervention outcomes.

Volunteering assumption:

7. Equivalent drivers of volunteering: P (V = 1|X) = P (V = 1|R = 1,X). Which target

population units volunteer for the scale-up would be driven by measured characteristics

in a similar way as what drove study treated units to participate within study regions.
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3.2.3 Identification of the estimand

Under the above assumptions, the estimand can be identified as follows:

E(Y 1 −Y 0|V = 1) = {EX [w(X)]}
−1EX [w(X)τ(X)]

where w(X) = P (V = 1|R= 1,X) and τ(X)=E(Y |S = 1,A= 1,X)−E(Y |S = 1,A= 0,X).

Proof :

E(Y 1 −Y 0|V = 1) = EX [E(Y
1|V = 1,X)−E(Y 0|V = 1,X)|V = 1] (3.1)

= EX [E(Y
1|S = 1,X)−E(Y 0|S = 1,X)|V = 1] (3.2)

= EX [E(Y
1|S = 1,A= 1,X)−E(Y 0|S = 1,A= 0,X)|V = 1] (3.3)

=
1

P (V = 1)
EX [V {E(Y |S = 1,A= 1,X)−E(Y |S = 1,A= 0,X)}] (3.4)

=
1

EX [P (V = 1|X)]
EX [P (V = 1|X){E(Y |S = 1,A= 1,X)−E(Y |S = 1,A= 0,X)}] (3.5)

=
1

EX [P (V = 1|R= 1,X)]
EX [P (V = 1|R= 1,X){E(Y |S = 1,A= 1,X)−E(Y |S = 1,A= 0,X)}]

(3.6)

= {EX [w(X)]}
−1EX [w(X)τ(X)] (3.7)

Line 3.1 follows from the law of total probability, line 3.2 from conditional sampling ex-

changeability, line 3.3 from conditional treatment exchangeability, line 3.4 from Bayes rule

and SUTVA for treatment assignment and sample selection, line 3.5 from the law of total

probability, and line 3.6 from equivalent drivers of volunteering. Positivity of treatment

assignment and sample selection among volunteers are needed for the functionals to be

well-defined.

3.3 Estimating target population average treatment effects among

the treated

3.3.1 Estimation

The PATT can be estimated by reweighting the target sample to resemble the target treated

sample: Ê(Y 1 −Y 0|V = 1) = 1/M
∑M
m=1

{
[
∑n
i=1w

m(Xi)]
−1 ∑n

i=1w
m(Xi)τ

m(Xi)
}
, with M cor-

69



responding to the number of posterior draws, and wm and τm representing the m-th draw

from the posterior distribution of w and τ , respectively. A frequentist approach would esti-

mate Ê(Y 1−Y 0|V = 1) = [
∑n
i=1 ŵ(Xi)]

−1 ∑n
i=1 ŵ(Xi)τ̂(Xi), with hats denoting point estimates

of their respective quantities.

We can similarly estimate the target population conditional average treatment effects

among the treated (PCATTs) as Ê(Y 1−Y 0|V = 1,X = x) = 1/M
∑M
m=1

{
[
∑n
i=1w

m(xi)]
−1 ∑n

i=1w
m(xi)τ

m(xi)
}
.

Estimating the PATT requires estimating propensity for volunteering weights and treat-

ment effects for all units in the target sample:

1. Estimate propensity for volunteering weights, w: Fit a propensity for volunteering regres-

sion in the study region, then use it to estimate a posterior distribution of propensities

for all units in the target sample.

2. Estimate treatment effects, τ : Fit an outcome regression to the study sample, then use

it to estimate a posterior distribution of treatment effects for all units in the target

sample.

The PATT estimate consists of the mean across posterior draws of propensity-for-volunteering

weighted averages of all target sample treatment effects.

3.3.2 Incorporating uncertainty with respect to target treated sample member-

ship

To account for the uncertainty in estimating volunteering status when predicting target

treated sample impacts, each posterior draw of τ is multiplied by a different posterior draw

of w. This sequential approach, though not fully Bayesian, is an unbiased and valid approach

for propagating uncertainty in the propensity for volunteering (Zigler and Dominici, 2014;

McCandless et al., 2009), given identifiability assumptions. Propensity scores for volunteering

should therefore be estimated using a Bayesian model that produces at least as many posterior

samples as produced for τ . For a frequentist estimation approach, uncertainty around the
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propensity to volunteer can be incorporated using a bootstrap in which both treatment effects

and volunteering weights are re-estimated.

3.3.3 Bayesian Additive Regression Trees and Bayesian Causal Forests for gener-

alizability

We recommend obtaining τ estimates with a flexible regression approach such as BART or

BCF, which flexibly model the response surface. BART is a Bayesian nonparametric outcome

regression (Chipman et al., 2010; Hill, 2011; Green and Kern, 2012; Kern et al., 2016). BART

models the outcomes as a sum of binary regression trees with additive error: Yi = f (xi ,ai)+εi

with f (xi ,ai) =
∑ntrees
j=1 g(xi ,ai ,Tj ,Mj); εi ∼ N (0,σ2), Tj denotes the tree structure for tree j,

Mj denotes the bottom node means of tree j, ntrees is the number of trees, and σ2 is the error.

A prior is placed on the g tree functions to constrain each tree to be small with Mj near

zero (Hill, 2011). However, this prior may create “regularization-induced confounding” by

over-shrinking confounding effects (Hahn et al., 2018, 2020).

To overcome the risk of regularization-induced confounding, BCF introduces the propen-

sity score for treatment assignment, πA(xi) = P (Ai = 1|xi), as an additional covariate and

reparametrizes f to allow for separate priors to be placed on confounding and effect mod-

ification (Hahn et al., 2020): Yi = µ(xi ,πA(xi)) + τ(xi)ai + εi . The function µ captures the

relationship between the outcome and confounders, while τ(xi)ai captures the relationship

between the outcome and effect modifiers such that τ is the treatment effect. Errors may be

heteroskedastic (Delannoy et al.): εi ∼N (0,σi2).

As with BART, BCF is insensitive to hyperparameter specifications, thus requiring little

hyperparameter tuning (the default priors work well across a wide range of settings), and

it allows for inference through Bayesian posterior sampling (Hahn et al., 2020). BCF has

outperformed other causal estimators at causal inference competitions, such as those held at

the Atlantic Causal Inference Conference (Dorie et al., 2019). BCF is particularly well-suited

to addressing generalizability as it identifies effect modifiers in a data-driven fashion rather

than relying on subjective judgements to estimate heterogeneous treatment effects, it allows
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for full confounding control by separately regularizing confounding and effect modification,

and it enables incorporation of additional sources of uncertainty in a Bayesian fashion, such

as uncertainty with respect to the propensity for volunteering.

In simulations, we explored whether including an estimate of the propensity for being

in the study, π̂S = P̂ (S |X), as a covariate in the τ component of the BCF outcome regres-

sion would improve finite-sample performance in a similar manner as when including the

propensity for treatment as a covariate in the µ function. Addition of π̂S provides a one-

dimensional summary of the association between effect modifiers and selection into the

study; the conditional mean exchangeability of sample selection assumption requires that an

effect modifier be associated with study membership in order to lead to bias. However, as a

practical consideration, including π̂S precludes reusing the same outcome regression already

fitted for estimating study impacts. Furthermore, Hahn et al. 2020 found that including

the propensity for treatment as an effect modifier can degrade mixing; in simulations, we

explore whether including the propensity for being in the study as an effect modifier may

likewise hinder mixing.

3.3.4 Alternative estimators for τ

The τ component of the PATT functional can alternatively be estimated through other

generalizability approaches such as alternative outcome regression estimators like parametric

linear regressions (LR), using IPPW, or using AIPPW. IPPW estimates τ(Xi) = Yi ×w(Si =

1,Ai = 1,Xi) − Yi × w(Si = 1,Ai = 0,Xi) where weights can be normalized for stability

w(Si = s,Ai = a,Xi) = w∗(Si = s,Ai = a,Xi)/
∑n
i=1w

∗(Si = s,Ai = a,Xi) and w∗(s,a,Xi) =

I(Si = s,Ai = a)/[P (Ai = a|Si = s,Xi)P (Si = s|Xi)]. AIPPW estimates τ(Xi) = w(Si =

1,Ai = 1,Xi)(Y − Ê(Y |Si = 1,Ai = 1,Xi))−w(Si = 1,Ai = 0,Xi)(Y − Ê(Y |Si = 1,Ai = 0,Xi))+

Ê(Y |Si = 1,Ai = 1,Xi)− Ê(Y |Si = 1,Ai = 0,Xi). To date, LR, IPPW, and AIPPW estimators

for generalizability have relied on parametric regressions which depend on correct model

specification for at least one of the regressions (Flores and Mitnik, 2013; Kern et al., 2016;

Rudolph and van Der Laan, 2017; Dahabreh et al., 2018). Flexible regression approaches
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have demonstrated superior performance to those that rely on parametric assumptions for

estimating study population treatment effects (Dorie et al., 2019). The simulation compares

these parametric approaches, BART, and BCF for estimating PATTs.

3.4 Simulations based on real data

3.4.1 Methods

We conducted a simulation to assesses the finite sample performance of our novel PATT

estimator for extending inference from an observational study of a voluntary intervention to

the target treated sample units who would volunteer to participate in a scale-up. Because

estimating treatment effects for a population that is not enumerable (volunteering units)

is a novel consideration to the generalizability literature that no existing estimators to our

knowledge have addressed, all comparison approaches use our PATT estimation approach,

substituting different choices for estimating impacts and weights.

We compared the performance of flexible regressions for estimating τ and w to using

parametric least-squares regressions. Specifically, we compared:

• A BCF outcome regression for τ that fit a BART propensity model for w (“BCF”)

• BCF including the propensity for study selection as an effect modifier with BART

propensity models (“BCF-πS”)

• BART outcome and propensity models (“BART”)

• A linear outcome regression that included interactions of each X with A but no higher-

order interactions, i.e., between combinations of X with A; it estimated the propensity

model for w with logistic regression (“LR”)

• IPPW with logistic propensity models (“IPPW”)

• AIPPW with all regressions estimated using linear and logistic models (“AIPPW”)
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We generated data to reflect covariate distributions, the outcome generating process, and

matched comparison group design of a Medicare study estimating impacts of scaling up a vol-

untary practice-level Medicare intervention from the evaluation regions nationwide. To do so,

we generated simulated study region (n=11,000) and non-study region (n=37,000) data using

the conditional distributions P (Y ,A,X,S,R,V ) = P (R)P (X |R)P (V |X)P (A,S |R,V ,X)P (Y |A,X)

described in Appendix C.1. Each simulated dataset consisted of approximately 1,000 study

treated practices, 4,000 study control practices, and 3,320 practices volunteering from non-

study regions for a total of approximately 4,320 volunteering practices (the target treated

sample) out of 48,000 nationwide practices (the target sample) (approximately 9% volun-

teered).

Regressions were fit using practice-level simulated data, and outcome regressions were

weighted by the number of beneficiaries in each practice to allow for heteroskedastic errors.

We used 2000 replications to ensure a Monte-Carlo standard error of the bias less than 0.1

based on the standard errors of the estimates being less than 4. Inference was conducted at

the α = 0.1 level, the standard for Medicare evaluations, with empirical 90% uncertainty

bounds formed from posterior draws or bootstrap replications. Simulations were run in R

using the packages BCF (Hahn et al., 2020), dbarts Dorie et al. (2021), and MatchIt (Ho et al.,

2011). Each BCF run used 3 chains with 400 posterior samples each after discarding 500

samples as burn-in and thinning by 400 (1200 total posterior samples); each BART run used

default settings with 1200 posterior samples.

3.4.2 Results

As a result of differences in effect modifier distributions between study and non-study

populations, the true study population average treatment effect among the treated (SATT) was

$0.17 (90% sampling variability, i.e., variability in the truth across simulation replications,

-2.20 to 2.53) while the true PATT was -$8.45 (90% sampling variability -9.52 to -7.37). Thus,

the intervention showed null impacts in the study but would be cost saving in the target

population. All estimators besides IPPW correctly estimated null findings in the study
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Figure (3.2) Bias and RMSE for SATT and PATT estimates

Absolute bias is the darker portion of each bar (in blue); RMSE corresponds to the total bar size.

population and savings in the target population, though estimators using parametric models

overestimated effects by approximately $2 (overestimated the costs in the study treated

sample and underestimated the savings in the target treated sample).

Estimators fit with linear and logistic regressions exhibited large bias for estimating both

the SATT and the PATT as they were unable to discover the complex confounding and effect

heterogeneity relationships observed in the data (Figure 3.2). IPPW’s particularly large SATT

bias stemmed from the large variability and skewdness in the outcome, since IPPW SATT

estimates under treatment simply use the observed outcome for study treated practices.

The SATT and PATT were estimated with the smallest bias and RMSE by BART, though all

estimators except IPPW exhibited similar RMSE. BART and BCF estimators had the smallest

uncertainty bound width (besides IPPW) and attained nominal coverage for the PATT while

parametric estimators showed undercoverage (approximately 85% for LR and AIPPW and

0% for IPPW, which is lower than the target of 90%) due to bias in their estimates. All
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Figure (3.3) Coverage and uncertainty bound width for SATT and PATT estimates

The dashed line corresponds to the target coverage of 90%.

estimators showed undercoverage for estimating SATTs, likely due to unmeasured outcome

determinants and model misspecification for estimators using parametric regressions; BCF

and BART estimators’ coverage was closest to nominal (approximately 85%). Including π̂S

as an effect modifier in BCF’s regression did not noticeably improve performance (bias and

RMSE decreased slightly, by 0.04 and 0.01 respectively for the PATT, a difference smaller

than the Monte-Carlo standard error); mixing did not appear hindered by the inclusion of

π̂S ; on average, this inclusion did not impact effective sample sizes nor the potential scale

reduction factor.

3.5 Discussion

The proposed PATT estimation approach allows for estimating treatment effects among

target treated population units that are not enumerable: those who would volunteer for

the intervention in a scale-up. Estimating PATTs for a voluntary intervention is a novel
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contribution to the generalizability literature that no existing estimator addresses. Our

approach does so via a weighted average of treatment effect estimates for all units in the

target population to which the intervention would be offered, weighted by the propensity

score for volunteering to participate. Posterior credible intervals reflect both uncertainty in

treatment effect estimates across target sample practices and uncertainty in target treated

sample membership.

In simulations we demonstrated that flexible outcome regression approaches such as

BCF and BART improve performance over LR, IPPW, and AIPPW estimators that rely on

parametric regressions. BCF and BART estimators not only flexibly adjust for confounding

(to ensure internal validity) but also flexibly model effect modification (to ensure external

validity). In contrast, parametric regressions were unable to fully account for the complexity

of the response surface and so showed bias for both in-sample SATT estimates and out-of-

sample PATT estimates. Thus, we demonstrate that flexible regressions improve performance

not just for estimating SATTs, as has previously been shown in data analysis competitions

(Dorie et al., 2019), but also for estimating PATTs. While BART outperformed BCF for

estimating both SATTs and PATTs with our data generating process, across other settings,

BCF has demonstrated superior performance to BART (Hahn et al., 2020). In addition to

BART and BCF, other flexible approaches for discovering heterogeneous treatment effects

could also be used, such as causal forests (Athey and Imbens, 2016; Wager and Athey, 2018),

neural network based approaches (Johansson et al., 2018; Shalit et al., 2017), Gaussian process

based approaches (Alaa and van der Schaar, 2017, 2018), and ensembles (Grimmer et al.,

2017; Lee et al., 2020). In contrast to these estimators, BART and BCF offer uncertainty

bounds based on the posterior, ability to easily incorporate other sources of uncertainty due

to being Bayesian estimators, and insensitivity to hyperparameter tuning.

A limitation of many flexible modeling approaches like BCF and BART is their computa-

tional burden. BCF is currently impractical to fit to data involving millions of observations,

rather than thousands, and thus is unworkable for patient-level analyses of health policy

interventions in lieu of the practice-level analyses we conducted in our simulations. Even
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with practice-level data, BCF took approximately 20 minutes to fit and BART approximately

8 minutes while linear regressions took seconds (albeit their bootstrap took around 11 min-

utes, on an Intel(R) Xeon(R) CPU E7-8895 v2 @ 2.80GHz processor). Work by Hahn et al.

(2020) on warm-start BCF, by Pratola et al. (2014) on single program multiple data parallel

computation for BART, by He et al. (2019) on XBART, and others is ongoing to improve the

computational efficiency of these methods. BCF’s practicality can be further enhanced by

extensions to available software to allow for correlated data analysis (Yeager et al., 2019).

The presented estimator assesses the impact of scaling up an intervention such as a policy

model as it was offered in the study. It therefore does not capture changes to the intervention

under scale-up nor does it account for changes to the setting such as the political landscape.

The estimator furthermore relies on identifiability assumptions that preclude unmeasured

confounding and unmeasured effect modification, spillover effects, and different drivers of

participation between study and non-study regions. To the extent that a prior distribution

can be placed on these factors, there is room to incorporate these sources of uncertainty

into the credible intervals. Otherwise, sensitivity analyses can assess the impact of such

considerations on PATT estimates.

The generalizability estimator presented here can also be applied to identify alternative

feasible target populations for a scale-up, such as populations expected to benefit most from

the intervention, defined by values of key effect modifiers. Estimates from such targeting

approaches can inform future policy models and model expansions, particularly when a

broader scale-up is estimated to be ineffective. By estimating treatment effects for the

target treated population of interest, our generalizability estimator provides impacts in a

policy-relevant population to better-guide future policy decisions.
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Appendix A

Appendix to Chapter 1

A.1 Summary of methods that only require summary-level data

Without access to individual patient data in the study and/or target samples, investigators

will be constrained as to the estimators available to them. The following estimators can be

applied in this setting. Investigators should strive to maximally use the available data and

hence use methods that incorporate individual-level data where they are available.

Summary-level data for both study (covariate and outcome) and target samples (covariate).

Post-stratification (Miettinen, 1972; Prentice et al., 2005) only requires joint distributions

or cell counts for each stratum. Using only study and target sample means, one could also

apply outcome regressions that are linear in their predictors.

Summary-level outcome data for both study and target samples. Bias-adjusted meta-

analysis approaches by Turner et al. (2009) and Greenland (2005) require summary-level

study outcome data with estimates of bias for each study. When that summary-level data

are stratified by effect modifiers, one can use approaches by Eddy (1989) and Prevost et al.

(2000). If summary-level study data are stratified by participants included vs. excluded from

the study, cross-design synthesis can be used (Begg, 1992; Kaizar, 2011).
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Summary-level covariate and outcome data in the study, individual-level covariate and

outcome data in the target sample. With summary-level study and individual-level target

sample data, one can use hierarchical Bayesian evidence synthesis (Verde et al., 2016; Verde,

2019).

Individual-level covariate and outcome data in the study, summary-level covariate data

in the target sample. With individual-level study and summary-level target data, one can

use matching with reweighting (e.g., Hartman et al. (2015)), or Signorovitch et al. (2010)

or Phillippo et al. (2018)’s propensity and outcome regression approaches. When joint

distributions of summary-level target sample data are available, one can use IPPW (Cole and

Stuart, 2010; Westreich et al., 2017).
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Appendix B

Appendix to Chapter 2

B.1 Derivation of Assumption 1b

To overcome violations of Assumptions 1 (mean conditional treatment exchangeability, or no

unmeasured confounding) and 5 (positivity of study selection), we can leverage information

from the combination of randomized and observational data.

To tackle the unmeasured confounding bias, let’s begin by characterizing the conditional

bias in the observational group: b(a,x) ≡ E(Y a|S = 0,A = a,X = x) − E(Y a|S = 0,X = x).

The conditional bias corresponds to the average difference in potential outcomes between

observational group individuals on intervention a vs. marginally, conditioning on mea-

sured covariates X = x. We could alternatively have defined conditional bias relative to a

specific alternative intervention, E(Y a|S = 0,A = a′,X = x), or relative to all other inter-

ventions, E(Y a|S = 0,A , a,X = x); the same principles hold. Mean conditional treatment

exchangeability holds if and only if b(a,X) = 0 for all a ∈ A.

By randomization, mean conditional treatment exchangeability holds for the randomized

group, hence E(Y a|S = 1,A= a,X = x)−E(Y a|S = 1,X = x) = 0. We therefore have that:

b(a,x) = E(Y a|S = 0,A= a,X = x)−E(Y a|S = 1,A= a,X = x)

− [E(Y a|S = 0,X = x)−E(Y a|S = 1,X = x)]
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By mean conditional exchangeability for study selection, E(Y a|S = 1,X) = E(Y a|S = 0,X)

and thus b(a,x) = E(Y a|S = 0,A= a,X = x)−E(Y a|S = 1,A= a,X = x).

However, overlapping support between randomized and observational groups only ex-

ists in Roverlap, hence E(Y a|S = 0,A = a,X = x) − E(Y a|S = 1,A = a,X = x) can only be

identified in Roverlap without further assumptions to warrant the extrapolation. One extrap-

olation approach would be to directly extrapolate from the randomized group to obtain

potential outcomes in regions of non-support (see the rand estimator in Section 2.4.6 for

an estimation strategy based on this approach), or to extrapolate for the purposes of es-

timating bias in regions of non-support (see the 2-stage WD estimator in Appendix B.6),

but estimation relying on these strategies is sensitive to parametric assumptions needed

to extrapolate beyond the randomized data’s support. We instead make an alternative as-

sumption, Assumption 1b: b(a,x) = b(a,x|R overlap = 1); namely, that the same conditional

bias relationship that holds in the region of overlap also holds in the broader support of

the observational group. When estimating PTSMs, more weakly, the constant conditional

bias assumption must hold in expectation over the X distribution in the observational data:

EX
[
b(a,x)

∣∣∣S = 0
]
= EX

[
b(a,x|R overlap = 1)

∣∣∣S = 0
]
.

The mean constant conditional bias assumption can also be restated with respect to the

unmeasured confounders that are implicitly being integrated over. Assumption 1b states that,

in expectation, the bias when integrating over the distribution of unmeasured confounders

in Roverlap is equivalent to the bias when integrating over the distribution of unmeasured

confounders in Robs. Namely, with U corresponding to unmeasured confounders, the mean

constant bias assumption can be written as:

EX

{
EU

[
E(Y a|S = 0,A= a,Roverlap = 1,X ,U )|S = 0,A= a,Roverlap = 1,X

]
−E(Y a|S = 1,A= a,Roverlap = 1,X)

∣∣∣∣S = 0
}

= EX

{
EU

[
E(Y a|S = 0,A= a,X ,U )|S = 0,A= a,X

]
−E(Y a|S = 1,A= a,X)

∣∣∣∣S = 0
}
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for all a ∈ A.

B.2 Sensitivity analysis bounds

Making no constant conditional bias assumptions, we arrive at the following functional of

the observed data and potential outcomes:

E(Y a) =EX [E(Y |S = 1,A= a,X)|S = 1]P (S = 1)

+EX [E(Y |S = 0,A= a,X)− b′(a,x)P (A , a|S = 0,X)|S = 0]P (S = 0) (B.1)

where b′(a,x) = E(Y a|S = 0,A= a,X = x)−E(Y a|S = 0,A , a,X = x)

Proof for B.1: Using the law of iterated expectations, no unmeasured confounding in

the randomized group, SUTVA assumptions, and positivity assumptions, we obtain the

following:

E(Y a) = E(Y a|S = 1)P (S = 1) +E(Y a|S = 0)P (S = 0)

= EX [E(Y
a|S = 1,A= a,X)|S = 1]P (S = 1)

+EX [E(Y
a|S = 0,A= a,X)P (A= a|S = 0,X)

+E(Y a|S = 0,A , a,X)P (A , a|S = 0,X)|S = 0]P (S = 0)

= EX [E(Y
a|S = 1,A= a,X)|S = 1]P (S = 1)

+EX [E(Y
a|S = 0,A= a,X)P (A= a|S = 0,X)

+ {E(Y a|S = 0,A= a,X)− b′(a,x)}P (A , a|S = 0,X)|S = 0]P (S = 0)

= EX [E(Y
a|S = 1,A= a,X)|S = 1]P (S = 1)

+EX [E(Y
a|S = 0,A= a,X)− b′(a,x)P (A , a|S = 0,X)|S = 0]P (S = 0)

= EX [E(Y |S = 1,A= a,X)|S = 1]P (S = 1)

+EX [E(Y |S = 0,A= a,X)− b′(a,x)P (A , a|S = 0,X)|S = 0]P (S = 0)

Identity (B.1) can be used as the basis for sensitivity analysis, substituting different

plausible bias relationships for b′(a,x), as was done by Brumback et al. (2004). In many
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settings, it is unlikely that b′(a,x) would have different signs for different a (this would imply

that within the same level of X , individuals would have the largest outcome on the treatment

they ended up on compared to other treatments). Among the various possible functional

forms for the bias term presented in Brumback et al. (2004), we could assume bias would

depend on measured covariates and take the form b′(a,x) = βaX . Note the similarity to the

2-stage CCDS approach where a slightly different formulation of the bias term is estimated

from the overlap region.

Identity (B.1) highlights that the bias from the naive “obs/rand” estimator in Section

2.4.6 that averages across randomized and observational estimates for randomized and

observational units respectively is therefore:

EX
[
b′(a,x)P (A , a|S = 0,X)

∣∣∣S = 0
]
P (S = 0)

= EX

[{
E(Y a|S = 0,A= a,X = x)−E(Y a|S = 0,A , a,X = x)

}
× P (A , a|S = 0,X)

∣∣∣S = 0
]
P (S = 0)
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B.3 Proof for identification of ψCCDS(a)

E(Y a) = E(Y a|S = 1)P (S = 1) +E(Y a|S = 0)P (S = 0) (B.2)

= EX [E(Y
a|S = 1,X)|S = 1]P (S = 1) +EX [E(Y

a|S = 0,X)|S = 0]P (S = 0) (B.3)

= EX [E(Y
a|S = 1,X)|S = 1]P (S = 1) +EX [E(Y

a|S = 1,X)|S = 0]P (S = 0) (B.4)

= EX [E(Y
a|S = 1,A= a,X)|S = 1]P (S = 1)

+EX [E(Y
a|S = 1,A= a,X)|S = 0]P (S = 0) (B.5)

= EX |S=1[E(Y
a|S = 1,A= a,X |S = 1)]P (S = 1) +EX [E(Y

a|S = 0,A= a,X)

− {E(Y a|S = 0,A= a,X)−E(Y a|S = 1,A= a,X)}|S = 0]P (S = 0) (B.6)

= EX [E(Y
a|S = 1,A= a,X)|S = 1]P (S = 1) +EX [E(Y

a|S = 0,A= a,X)

− {E(Y a|S = 0,A= a,Roverlap = 1,X)−E(Y a|S = 1,A= a,Roverlap = 1,X)}|S = 0]P (S = 0)

(B.7)

= EX [E(Y |S = 1,A= a,X)|S = 1]︸                              ︷︷                              ︸
(a) RCT contribution

P (S = 1) +EX [E(Y |S = 0,A= a,X)︸                     ︷︷                     ︸
(b) preliminary

observational contribution

− {E(Y |S = 0,A= a,Roverlap = 1,X)−E(Y |S = 1,A= a,Roverlap = 1,X)}︸                                                                                         ︷︷                                                                                         ︸
(c) debiasing term for observational contribution

|S = 0]P (S = 0)

(B.8)

Lines (B.2) and (B.3) follow from the law of iterated expectations. Line (B.4) follows

from Assumption 4 of conditional exchangeability for study selection; line (B.5) follows

from the first part of Assumption 1b: E(Y a|S = 1,A= a,X) = E(Y a|S = 1,X); line (B.6) adds

and subtracts the same term; line (B.7) then follows from the constant conditional bias part

of Assumption 1b; line (B.8) follows from Assumptions 3 and 6 of SUTVA for treatment

assignment and study selection; the final quantities are well-defined by the two positivity

assumptions, 2 and 5.

One can alternatively identify treatment-specific means through different decomposi-

tions of the data in lines (B.3)-(B.4) (see Appendix B.4). Each functional implies different

estimation strategies that rely on different auxiliary regression models.
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B.4 Estimators from alternative decompositions

One can identify PTSMs through functionals derived from alternative decompositions of

the target population probability distribution. We present estimators ψ̂2(a) and ψ̂3(a) from

two such alternative decompositions. Identification of ψ2(a) and ψ3(a) relies on a slightly

different formulation of Assumption 1b: b(a,x|Robs-only = 1) = b(a,x|R overlap = 1), i.e.,

E(Y a|S = 0,A= a,Roverlap = 1,X)−E(Y a|S = 1,A= a,Roverlap = 1,X)

= E(Y a|S = 0,A= a,Robs-only = 1,X)−E(Y a|S = 1,A= a,Robs-only = 1,X)

Under this alternative formulation of Assumption 1b, along with Assumptions 2 - 5b, we

can identify the causal estimand as follows:

• ψ2(a) =EX

[
E(Y |S = 1,A= a,X)

∣∣∣∣RRCT = 1
]
P (RRCT = 1)

+EX

[
E(Y |S = 0,A= a,Robs-only = 1,X)−

{
E(Y |S = 0,A= a,Roverlap = 1,X)

−E(Y |S = 1,A= a,Roverlap = 1,X)
}∣∣∣∣Robs-only = 1

]
P (Robs-only = 1)

• ψ3(a) =EX

[
E(Y |S = 1,A= a,X)

∣∣∣∣S = 1
]
P (S = 1)

+EX

[
E(Y |S = 1,A= a,Roverlap = 1,X)

∣∣∣∣S = 0,Roverlap = 1
]
P (S = 0,Roverlap = 1)

+EX

[
E(Y |S = 0,A= a,Robs-only = 1,X)−

{
E(Y |S = 0,A= a,Roverlap = 1,X)

−E(Y |S = 1,A= a,Roverlap,X) = 1
}∣∣∣∣Robs-only = 1

]
P (Robs-only = 1)
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Proof for ψ2(a):

E(Y a) = E(Y a|RRCT = 1)P (RRCT = 1) +E(Y a|Robs-only = 1)P (Robs-only = 1) (B.9)

= EX [E(Y
a|RRCT = 1,X)|RRCT = 1]P (RRCT = 1)

+EX [E(Y
a|Robs-only = 1,X)|Robs-only = 1]P (Robs-only = 1) (B.10)

= EX [E(Y
a|S = 1,RRCT = 1,X)|RRCT = 1]P (RRCT = 1)

+EX [E(Y
a|S = 1,Robs-only = 1,X)|Robs-only = 1]P (Robs-only = 1) (B.11)

= EX [E(Y
a|S = 1,A= a,X)|RRCT = 1]P (RRCT = 1)

+EX [E(Y
a|S = 1,A= a,Robs-only = 1,X)|Robs-only = 1]P (Robs-only = 1) (B.12)

= EX [E(Y
a|S = 1,A= a,X)|RRCT = 1]P (RRCT = 1)

+EX [E(Y
a|S = 0,A= a,Robs-only = 1,X)

− {E(Y a|S = 0,A= a,Robs-only = 1,X)

−E(Y a|S = 1,A= a,Robs-only = 1,X)}|Robs-only = 1]P (Robs-only = 1) (B.13)

= EX [E(Y
a|S = 1,A= a,X)|RRCT = 1]P (RRCT = 1)

+EX [E(Y
a|S = 0,A= a,Robs-only = 1,X)

− {E(Y a|S = 0,A= a,Roverlap = 1,X)

−E(Y a|S = 1,A= a,Roverlap = 1,X)}|Robs-only = 1]P (Robs-only = 1) (B.14)

= EX [E(Y |S = 1,A= a,X)|RRCT = 1]︸                                        ︷︷                                        ︸
(a) RCT contribution and observational

contribution in region of overlap

P (RRCT = 1) +EX [ E(Y |S = 0,A= a,Robs-only = 1,X)︸                                       ︷︷                                       ︸
(b) preliminary observational contribution in

region of no overlap

− {E(Y |S = 0,A= a,Roverlap = 1,X)−E(Y |S = 1,A= a,Roverlap = 1,X)}︸                                                                                         ︷︷                                                                                         ︸
(c) debiasing term for observational contribution in

region of no overlap

|Robs-only = 1]× P (Robs-only = 1)

(B.15)
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Proof for ψ3(a):

E(Y a) = E(Y a|S = 1)P (S = 1) +E(Y a|S = 0,Roverlap = 1)P (S = 0,Roverlap = 1)

+E(Y a|Robs-only = 1)P (Robs-only = 1) (B.16)

= EX [E(Y
a|S = 1,X)|S = 1]P (S = 1)

+EX [E(Y
a|S = 1,Roverlap = 1,X)|S = 0,Roverlap = 1]P (S = 0,Roverlap = 1)

+EX [E(Y
a|Robs-only = 1,X)|Robs-only = 1]P (Robs-only = 1) (B.17)

= EX [E(Y |S = 1,A= a,X)|S = 1]︸                                   ︷︷                                   ︸
(a) RCT contribution

P (S = 1)

+EX [E(Y |S = 1,A= a,Roverlap = 1,X)|S = 0,Roverlap = 1]︸                                                                      ︷︷                                                                      ︸
(a) observational contribution in region of overlap

P (S = 0,Roverlap = 1)

+EX [ E(Y |S = 0,A= a,Robs-only = 1,X)︸                                       ︷︷                                       ︸
(b) preliminary observational contribution in

region of no overlap

− {E(Y |S = 0,A= a,Roverlap = 1,X)−E(Y |S = 1,A= a,Roverlap = 1,X)}|Robs-only = 1︸                                                                                                            ︷︷                                                                                                            ︸
(c) debiasing term for observational contribution in region of no overlap

]× P (Robs-only = 1)

(B.18)

As in the proof for ψCCDS(a), lines (B.9), (B.10), and (B.16) follow from the law of iterated

expectations. Line (B.11) follows from Assumption 4 of conditional exchangeability for study

selection; line (B.12) follows from the first part of Assumption 1b: E(Y a|S = 1,A= a,X) =

E(Y a|S = 1,X) (and the redundancy of S = 1 and RRCT); line (B.13) adds and subtracts the

same term; line (B.14) then follows from the constant conditional bias part of Assumption

1b; line (B.15) follows from Assumptions 3 and 6 of SUTVA for treatment assignment and

study selection; the final quantities are well-defined by the two positivity assumptions, 2 and

5. For lines (B.17)-(B.18), the same steps seen in the proof of ψ2(a) were repeated to arrive at

the final functional.

Each of these three functionals (ψCCDS,ψ2,ψ3) suggests slightly different estimation

procedures that rely on different auxiliary regression models for different subsets of data.

For example, the outcome regression estimators of ψ2 and ψ3 would be as follows:
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ψ̂2−OR(a) =
1
n

n∑
i=1

Q̂i(Si = 1,Ai = a,X i)1(RRCT = 1)︸                                        ︷︷                                        ︸
(a) RCT estimate and observational

estimate in region of overlap

+ Q̂i(Si = 0,Ai = a,Robs-only = 1,X i)1(Ri, obs-only = 1)︸                                                                 ︷︷                                                                 ︸
(b) preliminary observational estimate in

region of no overlap

−
{
Q̂i(Si = 0,Ai = a,Roverlap = 1,X i)− Q̂i(Si = 1,Ai = a,Roverlap = 1,X i)

}
1(Ri, obs-only = 1)︸                                                                                                                     ︷︷                                                                                                                     ︸

(c) debiasing term for observational estimate in region of no overlap

ψ̂3−OR(a) =
1
n

n∑
i=1

Q̂i(Si = 1,Ai = a,X i)1(Si = 1)︸                                   ︷︷                                   ︸
(a) RCT estimate

+ Q̂i(Si = 1,Ai = a,Roverlap = 1,X i)1(Si = 0,Ri, overlap = 1)︸                                                                        ︷︷                                                                        ︸
(b1) preliminary observational estimate in

region of overlap

+ Q̂i(Si = 0,Ai = a,Robs-only = 1,X i)1(Ri, obs-only = 1)︸                                                                 ︷︷                                                                 ︸
(b2) preliminary observational estimate in

region of no overlap

−
{
Q̂i(Si = 0,Ai = a,Roverlap = 1,X i)− Q̂i(Si = 1,Ai = a,Roverlap = 1,X i)

}
1(Ri, obs-only = 1)︸                                                                                                                     ︷︷                                                                                                                     ︸

(c) debiasing term for observational estimate in region of no overlap

Choices between the two estimators here and the one presented in the main paper should

rely on such considerations as efficiency and which regression models can be better-fit with

the data (e.g., both ψ̂2−OR(a) and ψ̂3−OR(a) rely on preliminary observational estimates

estimated from regressions fit to small subsets of the data). As a reminder, ψCCDS(a) suggests

an estimation procedure in which models are fit using: (a) all the randomized data to

estimate potential outcomes in the randomized data, (b) all the observational data to estimate

preliminary potential outcomes in the observational data, and (c) the randomized data in

the overlap region and the observational data in the overlap region to estimate the debiasing

term for preliminary observational data estimates.

In contrast, ψ2(a) suggests an estimation procedure in which regressions are fit using:

(a) all the randomized data to estimate potential outcomes in the randomized and in the

overlap region of the observational study, (b) the observational data in the nonoverlap region

to estimate preliminary potential outcomes in the nonoverlap region of the observational

study, and (c) the randomized data in the overlap region and the observational data in the

overlap region to estimate the debiasing term.

Correspondingly, ψ3(a) suggests an estimation procedure in which regressions are fit us-

ing: (a) all the randomized data to estimate potential outcomes in the randomized population,
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(b1) the randomized data in the overlap region to estimate potential outcomes in the overlap

region of the observational study, (b2) the observational data in the nonoverlap region to

estimate preliminary potential outcomes in the nonoverlap region of the observational study,

and (c) the randomized data in the overlap region and the observational data in the overlap

region to estimate the debiasing term.

The three estimators differ in the flexibility of their model specifications: the latter

estimators let the covariate-outcome relationship differ in the overlap vs. nonoverlap regions.

However, this flexibility comes at the cost of less information borrowing across the entire

covariate distribution.

B.5 Implementation

B.5.1 CCDS-OR

Each of the outcome regressions in ψ̂CCDS-OR(a) must appropriately capture treatment

effect heterogeneity such as through including all relevant interaction terms in a least-

squares regression model or by using flexible nonparametric approaches that discover effect

heterogeneity in a data-driven fashion, such as machine learning algorithms (keeping in mind

that many such approaches do not have convergence rates that result in
√
n-consistency).

When fitting more complex models such as machine learning algorithms for the outcome

regressions, there is a potential for overfitting to the trends in the overlap region when

estimating the debiasing term (third term in ψ̂CCDS-OR(a)), even with regularization and

cross-validation.

The CCDS framework can also be used to estimate conditional PTSMs for the CCDS-

OR and 2-stage CCDS-OR estimators via a weighted average of randomized and debiased

observational conditional means, weighted by the relative proportion of randomized and ob-

servational individuals in the target population. The CCDS-OR conditional PTSM estimator
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is as follows:

ψ̂CCDS-OR(a,x) =
nrand

n
Q̂(S = 1,A= a,X = x)︸                                ︷︷                                ︸

(a) RCT estimate

+
nobs

n
Q̂(S = 0,A= a,X = x)︸                              ︷︷                              ︸

(b) preliminary observational estimate

− nobs

n

{
Q̂(S = 0,A= a, R̂overlap = 1,X = x)

−Q̂(S = 1,A= a, R̂overlap = 1,X = x)
}

︸                                                ︷︷                                                ︸
(c) debiasing term for observational estimate

Rather than simply using nstudy/n, these weights can also be replaced by sampling weights.

B.5.2 2-stage CCDS

In the second stage of the 2-stage CCDS estimator, a simple ĝ() function such as ĝ(X) = XT θ̂

can prevent overfitting to the overlap region and thus provide added stability to estimating

bias, particularly when fitting more complex Q̂(S,A,R,X) regressions in the first stage.

Substantive knowledge can also inform choice of the ĝ() function, such as knowledge of

which measured covariates can serve as a proxy for unmeasured confounders.

In studies with fewer treatment groups and thus more data in each one, it may be

beneficial to subset to randomized overlap region data in a given treatment group for bias

estimation to make sure to fully capture treatment effect heterogeneity (though this approach

precludes borrowing strength across treatment groups). Step 2 of the 2-stage CCDS estimator

then becomes:

(2) b̂′(Si = 1,a,X i) =
ŵbias(Si ,Ai ,X i)∑n
i=1 ŵbias(Si ,Ai ,X i)

ĝ(X i) with

ŵbias(Si ,Ai ,X i) =
1(Si=1,Ai=a,Roverlap, i=1)P̂ (Si=0|X i)

P̂ (Roverlap, i=1|Si=1,X i)P̂ (Si=1|X i)P̂ (Ai=a|Si=1,Roverlap, i=1,X i)

B.5.3 CCDS-IPW

To circumvent unstable weights for CCDS-IPW and other novel estimators using weights,

propensity scores and their products used in weight denominators can be trimmed. However,

trimming weights effectively changes the estimand of interest, thus requiring a bias-variance

tradeoff.
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B.6 2-stage whole data outcome regression estimator

B.6.1 Estimator

An alternative to the constant conditional bias assumption is to instead extrapolate from the

randomized study to regions not supported in the randomized study covariate distribution,

Robs-only. If we believe that we can reliably extrapolate from the randomized data for the

purpose of debiasing term estimation (although we are not confident enough to directly

extrapolate potential outcomes), the 2-stage whole data (WD) outcome regression estimator

would provide more power than the 2-stage CCDS approach by not restricting debiasing

term estimation to the overlap region:

(1) b̂′(Si = 1,a,X i) = Q̂i(S = 0,A= a,X)1(Si = 1)− Q̂i(S = 1,A= a,X)1(Si = 1)

(2) b̂′(Si = 1,a,X i) =
ŵbias(Si ,X i)∑n
i=1 ŵbias(Si ,X i)

ĝ(X i) with ŵbias(Si ,X i) =
1(Si=1)P̂ (Si=0|X i)

P̂ (Si=1|X i)
.

One could likewise subset to randomized data in a given treatment group for bias

estimation. The 2-stage WD estimator then becomes:

(1) b̂′(Si = 1,a,X i) = Q̂i(S = 0,A = a,X)1(Si = 1,Ai = a) − Q̂i(S = 1,A = a,X)1(Si =

1,Ai = a)

(2) b̂′(Si = 1,a,X i) =
ŵbias(Si ,Ai ,X i)∑n
i=1 ŵbias(Si ,Ai ,X i)

ĝ(X i) with ŵbias(Si ,Ai ,X i) =
1(Si=1,Ai=a)P̂ (Si=0|X i)

P̂ (Si=1|X i)P̂ (Ai=a|Si=1,Ai=a,X i)
.

A similar approach was taken by Kallus et al. (2018) for estimating target population

conditional average treatment effects for a target population represented by the observational

data, using Yi1(Si = 1,Ai = a)/P̂ (Ai = a|Si = 1,X i) instead of Q̂i(S = 1,A= a,X)1(Si = 1)

in Stage (1) and not weighting Stage (2). Therefore, the Kallus et al. 2-stage approach

optimizes for mean squared error across the covariate distribution in the randomized group

rather than for that in the observational group, a covariate distribution that does not represent

the one over which we want to minimize bias. However, it does not suffer from potentially

increased variability due to the weights. The Kallus et al. 2-stage approach does not directly

extend to estimating PTSMs.
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B.6.2 Simulation results

With correctly specified models, all novel estimators including the 2-stage WD approach

were able to decrease unmeasured confounding bias and the 2-stage WD approach was the

most efficient novel outcome regression estimator because it used more data to fit regressions

compared to CCDS estimators (Appendix Figure B.1). However, when (incorrectly) fitting

main terms regressions, just as with the rand estimator, extrapolation became an issue for

the 2-stage WD estimator. In fact, with linear additive models like the correctly specified

and main terms regressions, the 2-stage WD estimator is numerically equivalent to the rand

estimator due to the linearity and additivity of the models. Even with ensemble approaches,

2-stage WD’s bias tended to be similar to that of the rand estimator. Because of the 2-stage

WD estimator’s sensitivity to model misspecificiation, we do not generally recommend using

this estimator. The estimator’s poor performance highlights the importance of focusing on

the overlap region for estimating unmeasured confounding bias.

B.7 Proof for ψ̂CCDS-IPW(a)

ψCCDS(a) consists of four components:

ψCCDS(a) = EX

[
E(Y |S = 1,A= a,X)

∣∣∣∣S = 1
]

︸                                    ︷︷                                    ︸
(1)

P (S = 1)

+EX

[
E(Y |S = 0,A= a,X)|S = 0

]
︸                                    ︷︷                                    ︸

(2)

P (S = 0)

−
{
EX

[
E(Y |S = 0,A= a,Roverlap = 1,X)|S = 0

]
︸                                                     ︷︷                                                     ︸

(3)

−EX
[
E(Y |S = 1,A= a,Roverlap = 1,X)

∣∣∣∣S = 0
]

︸                                                     ︷︷                                                     ︸
(4)

}
P (S = 0)

We can then identify each of the conditional distributions via the following propensity

decomposition (using conditional probability laws and positivity assumptions). For example,
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for component (4):

(4) = EX

[
E(Y |S = 1,A= a,Roverlap = 1,X)

∣∣∣S = 0
]

(B.19)

=
1

P (S = 0)
EX

[
1(S = 0)E(Y |S = 1,A= a,Roverlap = 1,X)

]
(B.20)

=
1

P (S = 0)
EX

P (S = 0|X)
E(Y1(S = 1,A= a,Roverlap = 1)|X)

P (S = 1,Roverlap = 1|X)P (A= a|S = 1,Roverlap = 1,X)

 (B.21)

=
1

P (S = 0)
EX

E
 Y1(S = 1,A= a,Roverlap = 1)P (S = 0|X)

P (S = 1,Roverlap = 1|X)P (A= a|S = 1,Roverlap = 1,X)


 (B.22)

For weight stabilization, we can also replace 1
P (S=0) with

E(w4)
−1 =

EX
 1(S = 1,A= a,Roverlap = 1)P (S = 0|X)

P (S = 1,Roverlap = 1|X)P (A= a|S = 1,Roverlap = 1,X)



−1

since

E(w4) = EX

 E(1(S = 1,A= a,Roverlap = 1)|X)P (S = 0|X)

P (S = 1,Roverlap = 1|X)P (A= a|S = 1,Roverlap = 1,X)


= EX

(
P (S = 0|X)

)
= P (S = 0)

This weight stabilization creates more stability for estimation and ensure estimates are

in the support of the outcome variable. Note: E(w4) can cancel with E(P (S = 0|X)) in line

(B.22) but doing so would remove the weight stabilization.

We can similarly identify each of the conditional distributions in (1) - (3) through the

following propensity score decompositions:
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(1) = E(w1)
−1EX

E
 Y1(S = 1,A= a)P (S = 1|X)

P (S = 1|X)P (A= a|S = 1,X)


 (B.23)

= E(w1)
−1EX

E
 Y1(S = 1,A= a)

P (A= a|S = 1,X)


 (B.24)

(2) = E(w2)
−1EX

E
 Y1(S = 0,A= a)P (S = 0|X)

P (S = 0|X)P (A= a|S = 0,X)


 (B.25)

= E(w2)
−1EX

E
 Y1(S = 0,A= a)

P (A= a|S = 0,X)


 (B.26)

(3) = E(w3)
−1EX

E
 Y1(S = 0,A= a,Roverlap = 1)P (S = 0|X)

P (S = 0,Roverlap = 1|X)P (A= a|S = 0,Roverlap = 1,X)


 (B.27)

= E(w3)
−1EX

E
 Y1(S = 0,A= a,Roverlap = 1)P (S = 0|X)

P (S = 0|X)P (Roverlap = 1|S = 0,X)P (A= a|S = 0,Roverlap = 1,X)


 (B.28)

= E(w3)
−1EX

E
 Y1(S = 0,A= a,Roverlap = 1)

P (Roverlap = 1|S = 0,X)P (A= a|S = 0,Roverlap = 1,X)


 (B.29)

(B.30)

where

w1 =
1(S = 1,A= a)

P (A= a|S = 1,X)

w2 =
1(S = 0,A= a)

P (A= a|S = 0,X)

w3 =
1(S = 0,A= a,Roverlap = 1)

P (Roverlap = 1|S = 0,X)P (A= a|S = 0,Roverlap = 1,X)

w4 =
1(S = 1,A= a,Roverlap = 1)[1− P (S = 1|X)]

P (S = 1|X)P (Roverlap = 1|S = 1,X)P (A= a|S = 1,Roverlap = 1,X)

B.8 CCDS influence function

To derive the influence function for ψCCDS(a), we first derive the influence function for each

of its four conditional means:
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(1) For χ1(a) = EX [E(Y |S = 1,A= a,X)|S = 1],

χ′1(a) =
1

P (S = 1)

[
w1

{
Y −E(Y |S = 1,A= a,X)

}
+ S

{
E(Y |S = 1,A= a,X)−χ1(a)

}]
(2) For χ2(a) = EX [E(Y |S = 0,A= a,X)|S = 0],

χ′2(a) =
1

P (S = 0)

[
w2

{
Y −E(Y |S = 0,A= a,X)

}
+ (1− S)

{
E(Y |S = 0,A= a,X)−χ2(a)

}]
(3) For χ3(a) = EX [E(Y |S = 0,A= a,Roverlap = 1,X)|S = 0],

χ′3(a) =
1

P (S = 0)

[
w3

{
Y −E(Y |S = 0,A= a,Roverlap = 1,X)

}
+(1− S)

{
E(Y |S = 0,A= a,Roverlap = 1,X)−χ3(a)

}]
(4) For χ4(a) = EX [E(Y |S = 1,A= a,Roverlap = 1,X)|S = 0],

χ′4(a) =
1

P (S = 0)

[
w4

{
Y −E(Y |S = 1,A= a,Roverlap = 1,X)

}
+(1− S)

{
E(Y |S = 1,A= a,Roverlap = 1,X)−χ4(a)

}]
where probabilities and expectations are taken under the true model and weights are as

previously defined.

The joint influence function will then be the reweighted (by P (S = 1) or P (S = 0)) sum

of the 4 conditional mean influence functions:

χ′(a) = w1

{
Y −E(Y |S = 1,A= a,X)

}
+ S

{
E(Y |S = 1,A= a,X)−χ1(a)

}
+w2

{
Y −E(Y |S = 0,A= a,X)

}
+ (1− S)

{
E(Y |S = 0,A= a,X)−χ2(a)

}
−w3

{
Y −E(Y |S = 0,A= a,Roverlap = 1,X)

}
− (1− S)

{
E(Y |S = 0,A= a,Roverlap = 1,X)−χ3(a)

}
+w4

{
Y −E(Y |S = 1,A= a,Roverlap = 1,X)

}
+ (1− S)

{
E(Y |S = 1,A= a,Roverlap = 1,X)−χ4(a)

}

B.9 Supplemental simulation descriptions and results
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B.9.1 Further implementation details

Ensemble regressions were implemented using the SuperLearner package (Polley et al., 2019)

and consisted of SL.glm, SL.glm.interact, SL.glmnet with α = 0.5, SL.ranger with 300

trees and a minimum node size of 5% of the sample being fit, SL.nnet with 2 hidden layers,

SL.earth, SL.gam, and SL.kernelKnn. For primary results, we conservatively estimated the

overlap region using α = 1%× range(logit(πS)) and β = 1%×min(nobs,nrand), i.e., at least

1% of observations in a given treatment group must fall within 1% intervals of the logit

propensity score.

B.9.2 Further descriptions of the data generating mechanism

The data generating mechanism (DGM) resulted in positivity of selection violation (Figure

B.2B), the confounders having varying strengths of confounding, there being relatively

strong unmeasured confounding (U had the second largest impact on treatment and outcome

values), the conditional outcome relationship in Roverlap in the randomized data not fully

extrapolating well to Robs-only unless precisely the correct outcome model was fit, and

observed covariates (X1) differing in distribution across randomized and observational data.

As a result, randomized and observational data each displayed external validity bias for

estimating PTSM and PATE, and observational data likewise displayed internal validity

bias due to measured and unmeasured confounding (Appendix Table B.1). With these

specifications, there likewise was discrepancy between true randomized and observational

study population treatment-specific means (STSMs) and study population average treatment

effects (SATEs) (Table B.1).

This DGM also ensured that identifiability assumptions held, namely:

1. The randomized group had no unmeasured confounding and the distribution of U

was the same in Roverlap as Robs-only conditioning on measured covariates; thus, the

constant conditional bias assumption was satisfied (bias was in fact constant, not just

conditionally constant; it was equal to E(10U )).
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2. All study/treatment groups had a positive probability of receiving each treatment

(treatment propensities are bounded between approximately 0.2-0.8, Appendix Figure

B.2A).

3. Observations were independent.

4. The unmeasured covariate did not confound the relationship between outcome and

study selection.

5. Roverlap was not a null set, Appendix Figure B.2.

6. The same outcome model held for both randomized and observational data.

We likewise investigated the impacts of violations to these assumptions and of other

DGM and regression specifications on CCDS estimators’ performance. Working off the base

case (a true outcome model that contains higher order terms, unmeasured confounding, and

positivity of selection violation; regressions fit with either linear models or an ensemble

approach using either the true overlap region or estimating the overlap region using α = 1%×

range(logit(πS)) and β = 1%×min(nobs,nrand)), we assessed the following settings: 6 model

fit specifications (main effects, squared terms, correctly specified, ksvm, and two ensembles),

5 target sample sizes (n= 200,2000,10000,20000,50000), a constant bias violation setting, 4

unmeasured confounding settings, 3 overlap settings, 3 ratios of nRCT to nobs, 3 positivity of

selection violation settings, 2 exchangeability of study selection violations, 5 overlap region

determination settings, and 3 propensity for selection relationships. We also examined 6

alternative outcome models (main effects model, more complex effect heterogeneity, knot,

more severe knot, knot inside overlap region, U ×X1 interaction).

B.9.3 Overlap region specifications

We examined a range of overlap region specifications (Appendix Table B.2), with α and

β overlap region hyperparameters set on the propensity and log propensity scales. The

overlap region specifications used in the base case (α = 1%× range(logit(πS)) and β = 1%×
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Population RCT Obs
Truth Truth Observed Truth Observed

E(Y 1) 5.09 13.49 13.48 3.00 1.47
E(Y 2) 2.09 15.11 15.11 -1.16 1.65
E(Y 1 −Y 2) 3.00 -1.63 -1.62 4.16 -0.19

Table (B.1) Population and sample true potential outcome means and means observed in each treatment
group

Mean overlap
Obs RCT Total

Truth 38% 50% 40%
α = 1%× range(πS) = 0.01

β = 1%×min(nobs,nrand)) = 20
24% 29% 25%

α = 1%× range(logit(πS)) = 0.3

β = 1%×min(nobs,nrand)) = 20
35% 48% 38%

α = 2%× range(πS) = 0.02

β = 1%×min(nobs,nrand) = 20
38% 42% 39%

α = 2%× range(logit(πS)) = 0.6

β = 1%×min(nobs,nrand) = 20
50% 61% 52%

α = 10%× range(logit(πS)) = 3

β = 4%×min(nobs,nrand) = 78
91% 89% 91%

Table (B.2) Overlap region specifications

min(nobs,nrand)) were the closest to approximating the true overlap region, particularly for

randomized data. Across the range of scenarios examined, which spanned underestimating

to grossly overestimating the overlap region, surprisingly, bias and RMSE were minimally

impacted (Appendix Figure B.3).

B.9.4 Different degrees of overlap (positivity of study selection violation)

We changed the size ofRoverlap from the default ofQNorm(0.5) = 0 ≤ X1 ≤ 1.28 =QNorm(0.9)

to QNorm(0.7) = 0.52 ≤ X1 ≤ 1.28 = QNorm(0.9) for less overlap and QNorm(0.1) =

−1.28 ≤ X1 ≤ 1.28 = QNorm(0.9) for more overlap. These changes resulted in different pro-

portions of observational data falling in the overlap region (13%, 38%, and 88%, respectively),

but always retained 50% of randomized data in the overlap region.

With more overlap, all estimators besides obs/rand were able to shrink bias close to zero
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(Appendix Figure B.4). Novel estimators had a larger region in which to estimate bias and

the rand estimator was able to extrapolate better since more of the target population was in

its region of support. With less overlap, all novel estimators’ bias remained minimal though

variance increased (most starkly for the CCDS-OR/CCDS-AIPW estimators with ensemble

models); rand model bias increased sharply for estimating PTSMs. The DGM allowed PATEs

to be extrapolated from the randomized data, so a corresponding bias increase was not

observed for PATEs. The CCDS-IPW’s RMSE remained the least affected among all novel

estimators.

B.9.5 Different ratios of nRCT : nobs

The base-case ratio of nRCT : nobs was 1:4. We also examined 1:1 and 1:30 ratios. To main-

tain the same overlap region across all settings, we changed the overlap region bounds to

QNorm(0.18) = −0.92 ≤ X1 ≤ 2.05 =QNorm(0.98) .

Bias and RMSE largely decreased across all estimators as the ratio of randomized to

observational observations increased (Appendix Figure B.5). As the randomized observations

comprised a larger portion of the target sample, the bias from using the rand and obs/rand

estimators also correspondingly decreased. With ensemble models, the rate of bias and

RMSE decrease for rand and novel estimators exceeded that of the obs/rand estimator,

highlighting the large impact of having more randomized data when overlap is small. For

correctly specified models, the rate of RMSE decrease exceeded that of the obs/rand models.

Estimators’ relative performance largely remained the same.

B.9.6 Varying sample sizes

We examined sample sizes n= 2,000; 10,000; and 50,000. With correctly specified models,

although all estimators’ bias was lower than that of the obs/rand estimator, the CCDS-OR and

CCDS-AIPW estimators retained a non-trivial amount of bias that minimally decreased with

larger sample sizes due to remnant modeling bias from fitting complex models in the small

overlap region (Appendix Figure B.6). With smaller sample sizes (n= 2000; nRCT = 500), the
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RMSE of all novel estimators and the rand estimator exceeded that of the obs/rand estimator.

With ensemble models, all novel estimators’ bias was below that of the obs/rand estimator.

RMSE, however, only dropped below that of the obs/rand estimator with n= 10,000 for the

PATE (except for the CCDS-IPW estimator, whose RMSE was lower even with n= 2,000).

B.9.7 Varying strengths of unmeasured confounding

We examined four settings: no unmeasured confounding (in which U was included as a

measured covariate) and three levels of unmeasured confounding, for which the U coefficient

in the P (Y |S,X,U ) model was varied from 0.1 to 0.625 to 1.5 and the U coefficient in the

P (A|S,X,U ) model was varied from 5 to 10 to 20 for low confounding, default confounding,

and high confounding, respectively. Results were similar for no and little unmeasured con-

founding. As unmeasured confounding bias increased, with correctly specified models, there

was no corresponding increase in bias across novel estimators, though variance increased, re-

flecting more uncertainty in settings with more unmeasured confounding (Appendix Figure

B.7). With ensemble models, there was a small increase in bias with more confounding. This

increase was smaller for CCDS estimators than for the rand estimator.

B.9.8 Constant conditional bias assumption violation

To violate the constant conditional bias assumption, the amount of unmeasured confounding

bias was varied in a way that is not predictable from the trends observed in the overlap

region (note that the overlap region lower bound is at X1 = 0): E(Y 1) = Ebase(Y
1)− 45 ∗U ∗

(X1 + 0.5) ∗ I(X1 < −0.5) and E(Y 2) = Ebase(Y
2) − 30 ∗U ∗ (X1 + 0.5) ∗ I(X1 < −0.5) where

Ebase(Y
a) corresponds to the base-case potential outcome model.

When the bias relationship observed in the overlap region differed from that outside the

overlap region, bias and RMSE increased for each of the estimators corresponding to the

amount of extra unmeasured confounding bias observed in the observational data which

cannot be estimated from the overlap region (Appendix Figure B.8). The rand estimator

was likewise not able to extrapolate well outside the overlap region even with a correctly
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specified model. Novel estimators’ bias remained below that of the obs/rand estimator as they

removed the portion of unmeasured confounding bias that was estimable from the overlap

region. This bias increase observed with constant conditional bias assumption violation thus

accommodates the extra unmeasured confounding bias which cannot be removed, reflecting

that these novel methods can only remove bias estimable from the overlap region: they rely

on the constant conditional bias assumption. With ensemble models, surprisingly, the rand

estimator’s PATE bias and RMSE decreased with the constant bias violation, likely reflecting

a function of the DGM as this result was not observed for PTSMs: when estimating PTSMs,

the rand estimator was the most affected by the assumption violation.

B.9.9 Exchangeability of study selection violation

We examined this assumption violation through two approaches. In the first, P (S |X ,U )

was changed to be a function of U in the overlap region, P (S = 1|U ) = 0.125+ 0.25U , and

remained deterministically 0 or 1 outside the overlap region; P (S = 1) remained at 0.20.

When study selection was a function of an unmeasured outcome determinant, all estimators

besides the obs/rand estimator showed an increase in bias for PTSMs (but not for PATEs due

to U not being an unmeasured effect modifier) such that bias from all estimators exceeded

that of the obs/rand estimator (Appendix Figure B.9). Interestingly, for estimating E(Y 1), the

rand estimator’s bias decreased slightly, though this was not observed for E(Y 2) estimation.

In the second violation assessment, U was a function of X1, which determines overlap

region membership: U ∼ Binom(pU ) where pU = expit(30X1). Hence, U was an unmea-

sured effect modifier with different distributions in the randomized vs. observational data.

This resulted in the distribution of U differing in the overlap vs. nonoverlap regions, so

randomized estimates would not represent the truth in the overlap region. Hence, the CCDS

estimators’ bias increased with the assumption violation – when rand estimates are biased

for the target population quantities in the overlap region, CCDS estimators are not be able

to properly debias (Appendix Figure B.9). Likewise, the rand estimates’ bias also increased

in all but the ensemble estimating the PATE, in which surprisingly bias actually decreased,
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likely due to bias cancellation between treatment groups.

B.9.10 Alternative data generating mechanisms

We examined alternative DGMs for Y , S, and A such as using simple main terms linear

models (excluding X3
1 terms), including more complex effect heterogeneity such that the

PATE was not extrapolatable from the randomized data (µY = −1.5−3A+4X1 +4X2 +3X3 +

2X4 +2(X1 +1)3 +4AX1 +2A(X1 +1)3 +10U ), using knot terms (µY = µY, base −15 ∗ I(X1 <

−1)∗(X1+1)−15∗I(X1 < −1)∗(X1+1)∗A, µY = µY, base−45∗I(X1 < −0.5)∗(X1+0.5)+15∗I(X1 <

−0.5) ∗ (X1 +0.5) ∗A, µY = µY, base −2 ∗ I(X1 < 0.5) ∗ (X1 −0.5)−2 ∗ I(X1 < 0.5) ∗ (X1 −0.5) ∗A),

and including an interaction between the unmeasured confounder and a measured covariate

(µY = µY, base + 2 ∗U ∗X1 + 1 ∗U ∗X1 ∗A), where µY, base is the outcome mean in the base-case.

Conclusions remained similar across all examined DGMs.

B.10 Supplemental Medicaid results

Figure (B.10) Propensity for selection into the randomized group

The plot displays the density and mean, estimated using a linear regression.
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Figure (B.11) STSMs and PTSMs across health plans for all estimators, with 95% confidence intervals
multiplicity-adjusted with the Bonferroni correction

B.11 CCDS extensions

There are many possible future extensions to the CCDS estimation approach.

Positivity of treatment assignment violations. The novel estimators could be extended

to similarly weaken Assumption 2, positivity of treatment assignment, although care must

be taken to distinguish between structural and empirical/practical violations of positivity.

The causal estimand would not be well-defined for individuals who could not receive a given

intervention (if there was a structural positivity violation). Unless we were willing to change

the causal estimand, we would need to still assume that structural positivity holds (which is

an untestable population characteristic), but do not need to assume that empirical positivity

holds (which is a finite sample characteristic).

Multiple studies. This approach can be extended to a collection of more than two studies

with a common set of covariates (X). Individual-level subject data could be separated into a
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Characteristic Randomized Observational p-value
Sample size 65591 98232
6 month spending (mean (SD)) 3052 (10089) 2796 (6756) <0.001
Plan (n (%)) <0.001

A 8510 ( 13.0) 9879 ( 10.1)
B 7814 ( 11.9) 6390 ( 6.5)
C 6195 ( 9.4) 6200 ( 6.3)
D 2626 ( 4.0) 18149 ( 18.5)
E 6770 ( 10.3) 11302 ( 11.5)
F 8055 ( 12.3) 17673 ( 18.0)
G 8439 ( 12.9) 5689 ( 5.8)
H 7062 ( 10.8) 6833 ( 7.0)
I 1420 ( 2.2) 3402 ( 3.5)
J 8700 ( 13.3) 12715 ( 12.9)

Age (mean (SD)) 35.55 (12.65) 34.26 (12.75) <0.001
Female (n (%)) 26370 ( 40.2) 58076 ( 59.1) <0.001
Race (n (%)) <0.001

White non-Hispanic 17808 ( 27.2) 33258 ( 33.9)
Black 33853 ( 51.6) 29347 ( 29.9)
Asian or Pacific Islander 3020 ( 4.6) 19223 ( 19.6)
American Indian or Alaskan Native 1126 ( 1.7) 1892 ( 1.9)
Other 9784 ( 14.9) 14512 ( 14.8)

County (n (%)) <0.001
Bronx 16423 ( 25.0) 21942 ( 22.3)
Brooklyn 21044 ( 32.1) 32307 ( 32.9)
Manhattan 13281 ( 20.2) 13002 ( 13.2)
Queens 12679 ( 19.3) 27544 ( 28.0)
Staten Island 2164 ( 3.3) 3437 ( 3.5)

Aid group (n (%)) <0.001
MA SN adult 31430 ( 47.9) 56210 ( 57.2)
MA SN child 102 ( 0.2) 339 ( 0.3)
MA SSI blind 714 ( 1.1) 431 ( 0.4)
MA TANF adult 10867 ( 16.6) 27553 ( 28.0)
MA TANF child 931 ( 1.4) 2246 ( 2.3)
SN adult 15573 ( 23.7) 6267 ( 6.4)
SN child 99 ( 0.2) 125 ( 0.1)
SSI blind 5114 ( 7.8) 1358 ( 1.4)
TANF adult 648 ( 1.0) 3520 ( 3.6)
TANF child 65 ( 0.1) 146 ( 0.1)
Other 48 ( 0.1) 37 ( 0.0)

Eligible for SSI (n (%)) 5840 ( 8.9) 1797 ( 1.8) <0.001
Baseline spending decile (mean (SD)) 6.24 (3.31) 3.88 (3.40) <0.001
Missing baseline spending (n (%)) 839 ( 1.3) 715 ( 0.7) <0.001
Percent neighborhood poverty (mean (SD)) 0.24 (0.08) 0.23 (0.08) <0.001
NOTE: The p-values correspond to a t-test for continuous variables and a chi-squared test for categorical variables, with a continuity
correction.
Abbreviations: MA = Medicare Advantage; SD = standard deviation; SN = safety net; SSI = social security income; TANF = Temporary
Assistance for Needy Families.

Table (B.3) Characteristics of randomized and observational Medicaid groups
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“randomized” group of individuals containing individuals from all studies which meet the

mean conditional exchangeability requirement, and an “observational” group of individuals

from all studies which don’t. The assumptions presented in Section 2.3.1 would need to hold

for such an approach. Notably, particular considerations include that:

• At least one of the studies meets the assumption of mean conditional exchangeability

(thus, those study/ies need not be randomized, but can have no unmeasured confound-

ing. This assumption is only guaranteed in expectation for randomized studies but

substantive knowledge can be used to posit no unmeasured confounding in observa-

tional studies.)

• All studies meet Assumption 3 (i.e., one version of the intervention was applied in

all of them, which precludes differential implementation across studies, differential

measurement error of the outcome or intervention, etc.)

• The combined randomized and combined observational groups have some overlap with

one another in their respective covariate distributions.

• The studies together are representative of the target population covariate distribution

or can have their covariate distribution transformed such thatR∗ =R∗overlap∪R
∗
obs-only∪

R∗RCT-only holds.

In such a collection of studies, after separating individuals into randomized and observational

groups, analysis can proceed with the CCDS estimators presented in this paper.

Alternative approaches for determining the region of overlap. Our determination of the

region of overlap is binary (observations are either in or out) and separate from the estimation

step. The region of overlap could alternatively be specified to minimize mean squared error

for estimating the PTSMs. Furthermore, rather than a sharp overlap region threshold, the

degree of borrowing could be based on the similarity of randomized and observational data,

as measured by the propensity score for selection or other covariate similarity metric.

Furthermore, because we rely on an estimated propensity score for selection, determining

whether points lie within the region of overlap is not only sensitive to hyperparameters α

120



and β but also relies on correct propensity model specification. One possible alternative is

the convex hull approach presented by King and Zeng (2006), which avoids modeling the

propensity score (and hence the possibility of model misspecification). Another alternative is

described by Hill and Su (2013): using Bayesian additive regression trees (BART) to estimate

“common causal support.” It compares factual outcomes to BART-generated individual

posterior distributions for each potential outcome to assess whether there exists sufficient

information to make inference about that observation.

Alternative approach for debiasing observational data. Inspired by the representation

of the potential outcome as Y a,s, we can consider our goal as being the estimation of potential

outcomes had everyone in the target population been in the randomized study (S = 1) in

treatment group a. This suggests an alternative approach for bias estimation: (1) join random-

ized and observational data in the overlap region into a joint dataset, (2) fit a regression to

the joint datasent, including S as a covariate and accounting for interactions between S and

X , then (3) predict counterfactual outcomes for the target sample or use observed outcomes

for randomized data and predict counterfactual outcomes for just the observational data,

setting S = 1 and A= a.
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(a) Bias and RMSE

(b) Coverage and CI Width

Figure (B.1) Performance across all estimators

Panel (a) depicts absolute bias is the darker portion of each bar; RMSE corresponds to the total bar size. In
panel (b), the dashed line corresponds to the target coverage of 95%.
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(a) P̂ (A= 1|S = 0,X,U) (b) P̂ (S = 1|X) with true overlap region shaded

Figure (B.2) Estimated propensity scores for treatment and selection

Figure (B.3) Impact of different overlap region specifications on bias and RMSE

The true percent overlap is distinguished by a vertical black line.
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Figure (B.4) Impact of degree of overlap (positivity of selection violation) on bias and RMSE

The settings examined include 13% (less overlap), 38% (default overlap), and 88% (more overlap) of
observational data and 50% of randomized data in the overlap region.

Figure (B.5) Impact of different ratios of nRCT : nobs on bias and RMSE
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Figure (B.6) Impact of n on bias and RMSE for PATE

Figure (B.7) Impact of unmeasured confounding on bias and RMSE

We examined settings with no unmeasured confounding, the default levels (βAU = 0.625, βYU = 10), and
more confounding (βAU = 1.5, βYU = 20) for PATE.
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Figure (B.8) Impact of constant conditional bias assumption violation on bias and RMSE
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(a) S function of U

(b) U function of X1
Figure (B.9) Impact of exchangeability of study selection assumption violation on bias and RMSE
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Appendix C

Appendix to Chapter 3

C.1 Simulation data generating process

For the simulation, we generated P (Y ,A,X,S,R,V ) = P (R)P (X |R)P (V |X)P (A,S |R,V ,X)P (Y |A,X)

as follows:

1. R andX1, ...,X7: The real data on which the simulation was based consisted of beneficiary-

and practice-level claims data for the study and for all nationwide practices eligible for

the scaled-up intervention. As most baseline covariates were categorical, we simulated

baseline beneficiary- and practice-level covariates for the study region and non-study

regions separately in the same proportions observed in the real data based on non-

parametric assignment of practices to combinatoric cells describing possible baseline

characteristic combinations (similar to that described in Lipman et al.).

2. V |X ∼ Binom(expit(βX)): We fit a logistic propensity for volunteering regression to

the real data study region practices (based on the pre-specified drivers of volunteering

X4 and X5) to obtain β’s, which we used to generate a propensity for volunteering

for all nationwide practices. Volunteering status was generated for each practice with

probability corresponding to its propensity. Approximately 9% of practices volunteered,

as was observed in the real data.
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3. A and S: Within the study region, practices which volunteered became the study

treated group. To parallel the real data control selection process, study controls were

then chosen from non-study regions via 4:1 matching. Controls are matched to study

treated patients based on their propensity scores for treatment (estimated via logistic

regression) using the MatchIt package in R (Ho et al., 2011). Study region volunteering

practices and matched controls from the non-study region formed the study sample.

4. Y |A,X: We generated the outcomes as Yt ∼ 263 + c0 + c1X1 + c2X
2
1 +Xc − 45t+ (6 +

X1 + 0.3X2
1 +Xmod)At with t ∈ {0,1} indicating pre/post-intervention time; the out-

come of interest being Y = Yt=1 − Yt=0; X1 corresponding to practice-level averages

of beneficiary sickness levels, determined through a stochastic process described in

Lipman et al. (X1 is an unmeasured variable proxied by the measured variable age);

Xc = −238X2×X3+48log(X4+0.1)+96X5×X6−64X7; Xmod = −40I(X2 = 0)×I(X3 =

0) + 5X1 × I(X2 = 1) where the amount of effect modification corresponded to that

observed in the real data (an interaction between two covariates was similarly ob-

served to modify treatment effects in the real data) and covariates comprising Xmod

were chosen for having large discrepancy between study and non-study regions (e.g.

P (X1|R= 1) = 28% vs. P (X1|R= 0) = 15%); and c0, c1, c2 were unmeasured practice-

level cost-multipliers that correspond to different practices incurring different costs for

treating the same sickness levels (Lipman et al.).
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