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frameworks for efficient sampling designs

Abstract

Efficient sampling designs are valuable in public health research when finite resources necessi-

tate decisions regarding which individuals to sample for detailed data collection. In observational

studies, when the outcome is rare, outcome-dependent sampling (ODS) is a cost-efficient strategy

that leverages information on the subject outcomes at the design stage to inflate the outcome rate in

the sample and thereby increase statistical efficiency. In many settings, the individuals in the target

population are clustered, as are patients in health centers, and therefore exhibit cluster-correlation

in their outcomes. Logistical, ethical, or resource constraints may require sampling clusters rather

than individuals directly. In such settings, the question becomes which clusters should be sampled

to yield the most ‘informative’ sample for the research question of interest.

This dissertation focuses on the design and analysis of cluster-based ODS designs, in which

cluster-level summaries of the outcome, as well as possibly other pieces of cluster-level, readily-

available information from sources such as a country’s Health Management Information System

(HMIS), is used to guide the decision regarding which clusters to sample. In particular, this disser-

tation proposes methods for i) valid estimation and inference given data collected through a cluster-

based ODS design when the number of sampled clusters is small, and ii) a framework for designing

efficient cluster-based ODS designs, when interest lies in estimating with precision one or multiple

parameters in a marginal mean model.
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In Chapter 1, I propose to carry out inference given data collected through a cluster-based ODS

scheme using inverse-probability-weighted generalized estimating equations (IPW-GEE), where the

cluster-specific weights are the inverse of a cluster’s probability of selection into the sample. I pro-

vide a detailed treatment of the asymptotic properties of this estimator, together with an explicit

expression for the asymptotic variance and a corresponding estimator. Furthermore, motivated by a

study on risk factors for low birthweight in Rwanda, I propose a number of small-sample bias cor-

rections to the point estimates and standard error estimates. In Chapter 2, I develop an approach for

optimal allocation in single-stage stratified cluster-based ODS designs and investigate the potential

for gains in statistical efficiency under such a design given one or multiple parameters of interest. As

the optimal allocation formulae presented in Chapter 2 depend on quantities that are unknown in

practice, Chapter 3 proposes and evaluates an adaptive sampling strategy for operationalizing the

optimal allocation design in practice. Finally, in Chapter 4 I give concluding remarks and present

some directions for future work.
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0
Introduction

Conducting research in low-and-middle-income country (LMIC) settings or community-based set-

tings in the US is often challenging for a host of reasons, including that resources for data collection

are limited. When resources are finite, decisions must be made at the study design stage regarding

which individuals to sample for detailed data collection. Efficient sampling designs that aim to select

the most informative individuals to answer the research question(s) of interest are therefore indis-

pensable in such settings.
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Sampling designs that leverage information available at the design stage of a study can increase

the statistical efficiency of the final analysis, which is particularly important when the outcome

and/or exposure of interest is rare. Designs that use information on the outcome of the individuals

in the target population belong to a class of designs known as outcome-dependent sampling (ODS)

designs. A classic example of an ODS design is the case-control design, which is known to yield

substantial efficiency gains over simple random sampling when the outcome of interest is rare53.

Other examples of ODS schemes include the nested case-control, case-cohort, and two-phase de-

signs10,31,74,75. A rich literature exists on the analysis and design of outcome-dependent sampling

designs tailored to different contexts. For the most part, the literature on ODS has focused on the

setting where individuals are treated as independent, although methods have been recently proposed

for longitudinal and cluster-correlated data settings23,44,45,46,57,61,65. However, the majority of pre-

vious research on ODS designs has focused on settings in which sampling occurs at the level of the

individual.

In this dissertation, we instead focus on ODS designs that involve sampling clusters as opposed

to individuals, even while the analysis remains at the level of the individual. Such cluster-based ODS

schemes may be useful in settings where i) individuals are cluster-correlated, and ii) logistical con-

straints permit researchers to visit only a subset of the clusters in the target population for data col-

lection. Rather than using individual-level information on the outcome to guide sampling decisions,

cluster-level summaries of the outcome and possible other relevant pieces of information may be

used. In the context of public health research, such cluster-level summary measures of health indica-

tors are increasingly available through centralized databases such as a country’s Health Management

Information System (HMIS)3,48.

This dissertation aims to answer several questions related to the design and analysis of cluster-

based ODS designs. In Chapter 1, we propose to carry out inference given data collected through a

cluster-based ODS design using IPW-GEE. Furthermore, we propose a number of small-sample bias

2



corrections to the point and variance estimates to be used when the number of sampled clusters is

‘small’. Through a comprehensive simulation study, we show that i) analysis via IPW-GEE is valid

when the number of sampled clusters is large enough, and ii) that the proposed small-sample bias

corrections reduce the bias in both the point and variance estimates when the number of sampled

clusters is small.

Chapter 1 provides a way to analyze data that has been collected through a cluster-based ODS

sampling scheme; it does not, however, address the question of how to choose an efficient sampling

strategy among the class of cluster-based ODS designs. In Chapter 2, we propose a framework for

optimal allocation in the class of single-stage stratified cluster-based ODS designs. In such a design,

the readily available cluster-level information on the outcome, as well as possibly other covariates,

is used to stratify the clusters in the population of interest. Then, given resources to sample a fixed

number of clusters, the optimal allocation of the cluster-level sample size across the defined strata

is determined according to a predefined optimality criterion. The primary goal of Chapter 2 is to

develop a comprehensive understanding of the potential value (in terms of efficiency) of pursuing

an optimal allocation strategy. That is, we seek to provide insight into how the potential for effi-

ciency gain is impacted by different factors such as the optimality criterion, the type of the covariate

of interest (cluster-level or individual-level, binary or continuous) and the relationship between the

covariate of interest and the stratification variable(s).

One major obstacle to implementing the optimal allocation design in practice, however, is the

fact that the formulae for the optimal stratum-specific sample sizes depend on quantities that are

unknown, such as the true parameter values, β0. In Chapter 3, we therefore propose a two-wave

adaptive sampling scheme, in which the data collected in the first wave serves as an internal pilot

study that is used to estimate the optimal allocation of the remaining resources. We develop and

evaluate two approaches to estimating the optimal stratum-specific sample sizes given the first wave

data: an inverse-probability weighting (IPW) approach and a multi-level multiple imputation (MI)
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approach that employs the imputation approach proposed by Jolani (2015).29

Chapters 1-3 in this dissertation are each presented as a self-contained paper. Chapter 4 provides

some concluding remarks, extensions, and directions for future work. In particular, we extend the

methods presented in the first three chapters for single-stage cluster-based ODS schemes to settings

where the sampling design is two-stage cluster-based ODS, which arises when researchers are inter-

ested not only in sampling clusters, but would also like to sample individuals within the selected

clusters. Towards this, we describe how to carry out estimation and inference for data that has been

collected through a two-stage stratified cluster-based ODS design. Furthermore, we extend the idea

of optimal allocation to this setting, in which decisions must be made not only regarding which

clusters to sample, but also which individuals to sample within the selected clusters. We conclude

with a brief discussion regarding challenges that arise when implementing such a design, and pro-

vide some additional areas for future work.
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Abstract

The neonatal mortality rate in Rwanda remains above the United Nations Sustainable Devel-

opment Goal 3 target of 12 deaths per 1,000 live births. As part of a larger effort to reduce pre-

ventable neonatal deaths in the country, we conducted a study to examine risk factors for low birth-

weight. The data was collected via a cost-efficient cluster-based outcome-dependent sampling

scheme wherein clusters of individuals (health centers) were selected on the basis of, in part, the

outcome rate of the individuals. For a given dataset collected via a cluster-based outcome-dependent

sampling scheme, estimation for a marginal model may proceed via inverse-probability-weighted

generalized estimating equations, where the cluster-specific weights are the inverse probability of the

health center’s inclusion in the sample. In this paper, we provide a detailed treatment of the asymp-

totic properties of this estimator, together with an explicit expression for the asymptotic variance

and a corresponding estimator. Furthermore, motivated by the study we conducted in Rwanda,

we propose a number of small-sample bias corrections to both the point estimates and the standard

error estimates. Through simulation, we show that applying these corrections when the number

of clusters is small generally reduces the bias in the point estimates, and results in closer to nominal

coverage. The proposed methods are applied to data from 18 health centers and 1 district hospital in

Rwanda.
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1.1 Introduction

Neonatal mortality is defined as the probability of dying within the first 28 days of life.

While the majority of neonatal deaths are preventable, due to slower progress in neonatal mortality

reduction since 1990 compared to the advances made in child mortality reduction, neonatal deaths

represented 47% of all under-five deaths in 201876. The United Nations Sustainable Development

Goal 3 aims to reduce neonatal mortality to 12 deaths per 1,000 live births by 203026. In Rwanda,

however, the rate of neonatal deaths remains high at 20 deaths per 1,000 live deaths58.

Low birthweight is associated with a higher risk of neonatal death35, strategies that target reduc-

tion of low birthweight births may therefore help to reduce neonatal mortality. This motivated a

study we recently conducted in Rwanda, with the goal to investigate risk factors for low birthweight

in two northern districts of the country. Due to time and resource constraints, it was feasible to visit

only 18 of the 44 health centers for collection of the individual-level data. The 18 health centers

were sampled based on an outcome-dependent sampling (ODS) design, and in the summer of 2017,

the paper’s first author traveled to the sampled health centers and collected data on all live births

recorded in the maternity registers between April-June 2017.

ODS is an indispensable tool for conducting research in resource-limited settings. Examples of

outcome-dependent sampling designs include the case-control, nested case-control, case-cohort,

and two-phase designs10,31,53,74,75. For the most part, the literature on ODS has focused on the set-

ting where individuals are treated as independent, although methods have been recently proposed

for longitudinal and cluster-correlated data settings23,44,45,46,57,61,65. However, in both the inde-

pendent and correlated data settings, the majority of designs proposed involve sampling at the level

of the individual (i.e. the study units within a cluster). In some settings researchers may opt to use

readily-available outcome information (either aggregated or at the level of the individual) to perform
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cluster-based sampling; that is, to sample clusters rather than individuals12. Such sampling may be

preferred when, for example, the costs associated with travel to a clinic are high compared to the cost

of collecting information on individuals once at the clinic.

For data collected through a cluster-based ODS design, Cai et. al (2001)12 proposed to carry out

estimation for a marginally-specified regression model via inverse-probability-weighted generalized

estimating equations (IPW-GEE), with the weights taken to be the inverse of the cluster-specific

probabilities of being selected by the scheme. Furthermore, they proposed that inference be based

on a sandwich estimator for the asymptotic variance. They did not, however, formally establish

the asymptotic properties of the estimator for the regression coefficients nor did they provide ex-

plicit expressions for the variance that acknowledge the inherent negative correlation among the

cluster-specific sampling indicators. In this paper we resolve these gaps by using results by Xie and

Yang (2003)81 for GEE in the complete data setting to establish the asymptotic properties of the

IPW-GEE estimator for cluster-based ODS designs. Through this we derive an expression for the

asymptotic variance and propose a corresponding consistent estimator.

In contrast to Cai et. al (2001)12 where the focus was on settings with a large number of small

clusters (specifically pairs of eyes within the Baltimore Eye Study), our study of low birthweight

risk factors in Rwanda consists of a small number of relatively large clusters. That the number of

clusters is small may be of concern, specifically in regard to small-sample bias in point estimates51

and undercoverage of confidence intervals based on the usual sandwich estimator16,30,38,43,50. To

the best of our knowledge, however, no attempts have been made to investigate the extent to which

these issues manifest in the cluster-based ODS designs that are the focus of this paper. Furthermore,

while small-sample corrections have been proposed in the complete data setting, these have not been

adapted to the ODS setting. Therefore, a final contribution of this paper is that we provide expres-

sions for a bias-correction to the point estimates, as well as several bias-corrections for the variance

estimator.
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1.2 Risk Factors for Low Birthweight in Rwanda

The motivating study for this paper is one that we recently conducted on risk factors for low birth-

weight (< 2,500g) among facility-based births in two districts in northern Rwanda (Gakenke and

Rulindo) between April and June in 2017. Within these districts, pregnant women may receive care

at one ofK=44 health centers. While patient records, that include information on the mother, the

pregnancy and the infant, are maintained locally at the health centers, aggregated information on

a range of health indicators are tallied on a monthly basis by each of the health centers and entered

into the Rwanda Health Management Information System (HMIS), a centralized database main-

tained by the RwandanMinistry of Health. Individual-level data, however, is not readily-available

through the HMIS and must, therefore, be obtained by traveling to a given health center and ab-

stracting the relevant information.

1.2.1 Sampling Design andData Collection

At the design phase of this study, for a number of logistical and financial reasons, an early decision

was made that individual-level patient data would only be collected from 18 health centers. Towards

selecting which health centers to include, health center-specific information on the total number

of births (i.e. Nk, k = 1, . . . ,K) as well as the (unadjusted) prevalence of low birthweight (i.e.

Yk = N−1
k
∑

i Yki) during the three-month study period was made available by HMIS. Figure 1.1

provides a scatterplot; across the 44 health centersNk ranged from 24 to 194 while Yk ranged from 0

to 0.13.

The information available onNk and Yk was then used to form the following selection strategy:

(i) the six health centers with the highest prevalence were sampled with probability πk=1.0; (ii) the

remaining 12 centers were sampled via Poisson sampling on the basis of selection probabilities de-

termined by the model: logit πk = θ0 + θ1 ∗ maxRankk, wheremaxRankk is the maximum of
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Figure 1.1: Scatterplot of health center‐specific number of live births and prevalence of low birthweight births between
April and June 2017, at each ofK=44 health centers in two districts in northern Rwanda. Relative sizes of the circles are
proportional to the probability of selection into the outcome‐dependent scheme, πk. Black shading indicates which of
the 44 health centers were ultimately selected.

clinic k′s standardized rank with respect to outcome prevalence and its rank with respect to size (in

this case, 44 is the highest prevalence/largest size, 1 is the lowest prevalence/smallest size). The value

of θ0 was set to 15/38 to partially control the number of clusters sampled, and the value of θ1 was set

to 0.1.

Note, the relative sizes of the circles in Figure 1.1 are proportional to the value of πk, while the

black shading indicates which of the 44 health centers were ultimately selected. Intuitively, this

strategy was adopted to balance inflating the prevalence of low birthweight in the sample (i.e. to

artificially increase the prevalence of the outcome, a key feature of outcome-dependent sampling

schemes) with maximizing the total sample size in the sub-sample used in the analysis. The particu-
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lar design we used for sampling the health centers was selected based on the results of a simulation

study conducted beforehand to compare the efficiency gains of various designs that seek to achieve

these two objectives.

After visting several health centers, we observed that the high risk deliveries are referred to the dis-

trict hospitals. In order to have representation of these births in the sample, yet with the constraint

of only being able to visit one more location for data collection, we randomly sampled one of the

four district hospitals for data collection. Following data abstraction, patient-level information was

available on 1635 live facility-based births. The data was restricted to singleton births with com-

plete data on the variables of interest, yielding 1572 observations. Table 1.1 describes the maternal

and newborn characteristics of these births. The low birthweight prevalence is higher among moth-

ers younger than 20 years of age, among mothers who weigh less than 56kg, and among women in

their first pregnancy. The low birthweight prevalence is also higher among mothers with a history

of abortion, c-section, or stillbirth. The low birthweight prevalence is slightly higher among female

newborns, and the majority of preterm births are also low birthweight births.

1.3 Analysis Based on Complete Data

1.3.1 MarginalModel Specification

Consider the setting in which the scientific question of interest concerns learning about the rela-

tionship between some outcome Y and p-vector of covariates,X (which may include a 1.0 for the

intercept). Furthermore, suppose the population of interest is naturally clustered, such as is the case

where patients are clustered within health centers. LetK denote the number of clusters andNk the

number of individuals in the kth cluster. In this paper we assume that the scientific question at hand

corresponds to an analysis where estimation and inference will be performed with respect to the fol-

lowing marginal mean model for the outcome of the ith individual in the kth cluster as a function of

11



Table 1.1: Maternal and Newborn Characteristics

LBW Not LBW Total % LBW
Mother’s Age
<20 18 135 153 11.8
20-35 74 1060 1134 6.5
36-49 17 268 285 6.0
Mother’sWeight
< 56 kg 44 311 355 12.4
56− 59 kg 33 344 377 8.8
60− 64 kg 18 427 445 4.0
≥ 65 kg 14 381 395 3.5
Birth Order
1 55 382 437 12.6
2-3 39 653 692 5.6
4+ 15 428 443 3.4
HIV status at admission
Positive 1 24 25 4.0
Negative 107 1433 1540 6.9
Unknown 1 6 7 14.3
Previous abortion
Yes 10 98 108 9.3
No 99 1365 1464 6.8
Previous C-section
Yes 14 20 34 41.2
No 95 1443 1538 6.2
Previous stillbirth
Yes 7 73 80 8.8
No 102 1390 1492 6.8
District
Gakenke District 73 719 792 9.2
Rulindo District 36 744 780 4.6
Sex of newborn
Female 62 745 807 7.7
Male 47 718 765 6.1
Preterm birth
Preterm 25 3 28 89.3
Not Preterm 84 1460 1544 5.4
Total 109 1463 1572 6.9
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their covariates,Xki:

μki = E[Yki|Xki] = g−1(XT
kiβ), (1.1)

where g(·) is a user-chosen link function and β a p-vector of regression parameters.

1.3.2 Complete Data Analysis

Given complete data on (Y,X) for allN =
∑K

k=1Nk individuals in theK clusters, Liang and Zeger

(1986)33 proposed that estimation of β can be carried out by solving the following generalized esti-

mating equations:

U(β, α) =

K∑
k=1

Uk(β, α) =

K∑
k=1

DT
kV

−1
k εk = 0, (1.2)

where εk = (Yk − μk), with Yk = (Yk1, . . . ,YkNk) and μk = (μk1, . . . , μkNk
), and withDk = ∂μk/∂β

denoting theNk × pmatrix of partial derivatives. Finally,Vk, indexed by the unknown α, is an

Nk × Nk working specification for Cov[Yk]. As will become clear below, it will be useful to write

U(β, α) =UT1N×1 whereU = diag{Y− μ}V−1D is anN× pmatrix, where Y = (Y1, . . . ,YK)
T, μ =

(μ1, . . . ,μK)
T,V is anN×N block-diagonal matrix, with theVk on the diagonal, andD is theN×p

matrix obtained by stacking theKDk matrices.

1.4 Cluster-Based Outcome-Dependent Sampling

In some settings analysts may not have access to complete data on all elements of (Y,X) for allN

individuals in theK clusters. They may, however, have access to resources that permit ascertainment

of this information in a sub-sample of, say, n < N individuals. Furthermore, they may have access

to select components of (Y,X), as well as other variables/information that are not of direct relevance

to the scientific question, denoted here by Z, that can, in principle, be used to make decisions re-
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garding the sub-sampling. Moving forward we refer to this information as being available at the de-

sign stage. How researchers choose to make use of the information available at the design stage will

depend, in part, on the precise nature of the information as well as on practical/logistical/financial

considerations regarding how the otherwise unavailable data elements will be ascertained.

Motivated by the study we conducted in Rwanda, suppose the readily-available information

is of the formD∗
k = (Nk,Y∗

k ,X
∗
k ,Z

∗
k)where Y

∗
k is a cluster-level summary of the outcomes (i.e.

across theNk individuals in the kth cluster),X∗
k is a cluster-level feature or a cluster-level summary

of elements ofX that are readily-available at the outset, and Z∗
k is a cluster-level summary of Z. For

example, if Y is binary, as is low birthweight in the study reported on in Section 1.2, then Y∗
k may

be the proportion of babies born at the health center in the last six months with low birthweight.

Furthermore,X∗
k may be a feature of the cluster, such as whether the health center is in a rural or

urban setting, and/or it may be an aggregated summary of individual-level data, such as the percent-

age of mothers that are less than 18 years of age. Finally, Z∗
k may be the prevalence of some other

outcome or comorbidity that is routinely collected. Note, this data scenario is common in resource-

limited settings where detailed information that is recorded and stored locally at health centers is

only reported to a centralized agency/ministry after having been aggregated or otherwise summa-

rized22,39,47.

The information represented byD∗
k can, in principle, be used to inform a cluster-based outcome-

dependent sampling design12. For this type of design, rather than selecting individuals directly,

some sub-sample ofKs < K clusters is initially selected. Then, the otherwise unavailable elements

ofX are ascertained on all individuals within the sampled clusters. For the contexts we consider,

and presented in Section 1.2, this would correspond to selecting a certain number of health centers,

and then having a member of the research team travel to the health center to extract from the local

records all relevant information on patients satisfying the study inclusion/exclusion criteria.

LetRk be a binary indicator of whether the kth cluster is selected and πk = Pr(Rk = 1|D∗) the
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corresponding (known) probability of being selected, whereD∗ = {D∗
1 , . . . ,D∗

K} is the totality

of the information available at the design stage. Towards operationalizing the sampling scheme,

researchers may opt to use stratified sampling or Poisson sampling. For the first of these, the clusters

are cross-classified on the basis of some variable S that is defined on the basis of one or more of the

variables contained inD∗ and is assumed to take on one of J levels. From this, supposeKj clusters

are classified as belonging to the jth stratum. We assume that the stratification scheme is specified

such thatKj > 0 for all j = 1, . . . , J. Then kj ≤ Kj clusters are randomly selected from those in

the jth stratum, such that
∑J

j=1 kj =Ks. Note, for each of the clusters in the jth stratum, we have that

πk = kj/Kj. For those that are selected in this way we setRk=1. Under the second option of Poisson

sampling, one first pre-specifies each of the πk as a function of elements ofD∗. For example, one

could specify a logistic regression model forRk as a function of the clusters’ outcome prevalence.

Whether a cluster is selected is then determined by an independent Bernoulli trial with probability

πk.

We conclude this section with a number of comments. First, we note that a key difference be-

tween the two approaches to selecting the sub-sample of clusters is thatKs is pre-determined under

stratified sampling (and, therefore, fixed), but is random under the Poisson sampling. Second, as we

elaborate upon below, when the sub-sampling is based on stratification theRk indicators for clus-

ters within a given stratum are negatively correlated (although they are independent across strata).

This, in turn, has implications for the variance of the estimator of β. Under Poisson sampling, how-

ever, since the trials are taken to be independent, theRk are also independent (i.e. both within and

between clusters). Finally, the framework described above is sufficiently general that Y∗
k need not

necessarily be used to inform the stratification scheme or the pre-specified model for πk. Moving

forward we assume, however, that Y∗
k will be used at the design stage.
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1.5 Analysis Based onData from a Cluster-Based ODSDesign

When the sampling of the clusters is based, in part, on information on the outcome, the usual gen-

eralized estimating equations given by expression (1.2) are no longer guaranteed to be unbiased54.

To resolve this, Cai et. al (2001)12 proposed that β be estimated as the solution to the following

weighted generalized estimating equations:

Uw(β) =

K∑
k=1

Rkπ−1
k DT

kV
−1
k εk = 0. (1.3)

Note, following the development of Section 1.3.2, one can write Uw(β) = UTWR, whereW is an

N×N diagonal matrix with diagonal entries equal to the vector (W1,W2, . . . ,WK)
T, withWk a

vector of lengthNk with each element equal to π−1
k . LettingRk denote theNk×1 vector with all

entries equal toRk,R is theN× 1 vector obtained by concatenating theRk.

Let β̂w denote the solution to (1.3). In the remainder of this section, we extend Cai et. al (2001)12

by: (i) formally establishing the asymptotic properties of β̂w; (ii) proposing an explicit formula for its

asymptotic variance; and, (iii) proposing a suite of methods to correct for small-sample (i.e. whenKs

is ‘small’) bias in the point and standard error estimates.

1.5.1 Asymptotic Properties

To establish the asymptotic properties of β̂w we consider the setting whereK → ∞while max{Nk; k =

1, . . . ,K} is bounded above, and assume missingness at random (MAR), in other words that

Pr(Rk|D∗,Xind) = Pr(Rk|D∗), whereXind are the individual-level covariate values for which only a

summary is available at the design stage.

Detailed arguments in Appendix B.2, which build on those by Xie and Yang (2003)81, show that
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β̂w is consistent for β0, the true value of β, and that

VT(β0)
−1/2M(β0)

−1/2H(β0)(β̂w − β0) → MVN(0, Ip×p),

whereM(β) = E[U(β)U(β)T],H(β) =−E[∂U(β)/∂β],FK={Y,X,Z, S}, and

VT(β) = Var[M(β)−1/2U(β)] + E[Var[M(β)−1/2Uw(β)|FK]]. Furthermore, from this we have

that the asymptotic variance of β̂w is:

Var[β̂w] = H(β0)
−1M(β0)

1/2VT(β0)M(β0)
1/2H(β0)

−1. (1.4)

Finally,Var[β̂w] can be reexpressed asH(β0)
−1{Var[Uw(β)]|β=β0}H(β0)

−1, withVar[Uw(β)] =

VI(β) + VII(β), whereVI(β) = Var[UT1N×1] represents the variance of the complete data esti-

mating equations, andVII(β) = E[UTWVar[R|FK]WU] the additional variance that arises due to

having only complete data on the individuals in the sampled clusters.

1.5.2 Inference

Inference can be carried out in practice through use of the consistent plug-in estimator for the

asymptotic variance of β̂w:

V̂ar[β̂w] = Ĥw(β̂w)
−1
{
V̂I(β̂w) + V̂II(β̂w)

}
Ĥw(β̂w)

−1, (1.5)

where Ĥw(β) = −
∑K

k=1 Ĥw,k(β) = −
∑K

k=1DT
kV

−1
k Wkdiag(Rk)Dk, and

V̂I(β) = U(β)Tdiag(R)WK
2 diag(R)U(β), and V̂II(β) = U(β)TWdiag(R)Δ̃diag(R)WU(β).

In the expression for V̂I(β),WK
2 is anN × N block-diagonal matrix where the entries of the kth

Nk × Nk block are all equal to π−1
k , the inverse of the pairwise selection probability for any pair of

individuals i and i′ in cluster k: P(Rki = 1,Rki′ = 1) = P(Rki = 1|Rki′ = 1)P(Rki′ = 1) =
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1 ∗ πk = πk. In the expression for V̂II(β), Δ̃ is anN × Nmatrix with all entries in the kth block

along the diagonal equal to πk−π2k
πk and all entries in the off-diagonal block corresponding to clusters

k and k′ equal to (πkk′−πkπk′ )
πkk′

. Given data from a cluster-stratified design, if clusters k and k′ are both

in stratum j, then πkk′ =
kj
Kj

kj−1
Kj−1 , while if they belong to different strata j and j

′, it follows that πkk′ =
kj
Kj

kj′
Kj′

. Under a Poisson sampling design, πkk′ = πkπk′ for individuals from different clusters. In this

case, Δ̃ is a block-diagonal matrix, where the kth block is anNk × Nk matrix with all values equal to
πk−π2k
πk .

In addition, we propose a second estimator of the variance motivated (in part) by the form pro-

posed by Cai et. al (2001)12. Towards this, let ε̂w,k = (Yk − μ̂w,k), where μ̂w,k is anNk-vector with

elements μ̂w,ki = g−1(XT
kiβ̂w). We propose that the asymptotic variance of β̂w be estimated by:

V̂ar
∗
[β̂w] = Ĥw(β̂w)

−1
{
V̂I(β̂w) + V̂∗

II(β̂w)
}
Ĥw(β̂w)

−1, (1.6)

where V̂∗
II(β̂w) =

∑K
k=1 BkkDT

kV
−1
k ε̂w,k̂εTw,kV−1

k Dk, with Bkk=π−3
k (πk−π2k)Rk. After some algebra,

it can be shown that V̂II(β̂w) = V̂∗
II(β̂w) + V̂e

II(β̂w), with

V̂e
II(β̂w) =

K∑
k=1

∑
k′ ̸=k

DT
kV

−1
k diag(̂εw,k)Bkk′diag(̂εw,k′)V−1

k′ Dk′

where Bkk′ is anNk×Nk′ matrix with all entries (πkk′−πkπk′ )RkRk′
πkk′πkπk′

. Thus, expression (1.6) differs from

expression (1.5) in that the former ignores the impact of negative correlation between the selection

indicators. Note that under Poisson sampling, V̂ar[β̂w] = V̂ar
∗
[β̂w].

1.5.3 Estimation and Inference in Small Samples

As in the complete data setting, estimation and inference for β based on data from an outcome-

dependent cluster-based design may be subject to small-sample bias. Indeed, it may be the norm for
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studies based on such a design to have a small number of clusters in the dataset available for analysis.

Motivated by this we propose bias-corrections to both the point estimates, β̂w, and to V̂ar[β̂w]. For

the former, the bias in the point estimates can be expanded to give E[β̂w − β0] = Bw(β0) + O(K−2)

and, building on the work of Paul and Zhang (2014)51 and Lunardon and Scharfstein (2017)36,

we derive the form of Bw(β0), which can be estimated by Bw(β̂w). Since the resulting expressions

are quite involved, we leave the details to Appendix B.3. The bias-corrected point estimate is then

β̂
c
w = β̂w − Bw(β̂w).

We consider four corrections to V̂ar[β̂w] for small-sample settings, adapted from corrections

proposed in the complete data setting (see Appendices B.4-B.6 for details). The first is based on a

simple ‘degrees-of-freedom’ adjustment, to give V̂arDF[β̂w] = Ks
Ks−p V̂ar[β̂w]. The second follows

the approach taken byMancl and DeRouen (2001)38, and is given by

V̂arMD[β̂w] = Ĥw(β̂w)
−1
{
V̂I,MD(β̂w) + V̂II,MD(β̂w)

}
Ĥw(β̂w)

−1, (1.7)

where V̂I,MD(β̂w)
∑K

k=1
Rk
πkD

T
kV

−1
k Ck̂εw,k̂εTw,kCT

kV
−1
k Dk and V̂II,MD(β̂w) =∑K

k=1 BkkDT
kV

−1
k Ck̂εw,k̂εTw,kCkV−1

k Dk + V̂e
II(β̂w) , whereCk = (Ik − Âkk,w)

−1 and Âkk,w =

DkĤw(β̂w)
−1DT

kV
−1
k Wkdiag(Rk). The third is a Kauermann and Carroll (2001)30-type correction,

V̂arKC[β̂w], which is the same as (1.7), except withCk = (Ik − Âkk,w)
− 1

2 . The fourth correction

adapts the approach taken by Fay and Graubard (2001)16, and is given by

V̂arFG[β̂w] = Ĥw(β̂w)
−1
{
V̂I,FG(β̂w) + V̂II,FG(β̂w)

}
Ĥw(β̂w)

−1, (1.8)

where V̂I,FG(β̂w) =
∑K

k=1
Rk
πk F̂k,wD

T
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk(F̂k,w)T and V̂II,FG(β̂w) =∑K
k=1 BkkF̂k,wDT

kV
−1
k ε̂w,k̂εTw,kV−1

k Dk(F̂k,w)T+ V̂e
II(β̂w), where F̂k,w is a p×p diagonal matrix with

the jjth element equal to (1−min(b, (Ĥw,k(β̂w)Ĥ
−1
w (β̂w))jj)

−1/2, and b = 0.75.

Finally, we make two additional comments. First, if the data arise from a cluster-stratified design
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then one could operationalize these corrections for the estimator of the variance that ignores the

negative correlation in the sampling indicators (i.e. for V̂ar
∗
[β̂w] given in Section 1.5.2), by drop-

ping the V̂e
II term in the expressions presented. Second, while the bias-corrected variance estimators

V̂arMD[β̂w], V̂arKC[β̂w], and V̂arFG[β̂w] are proposed for β̂w, the same form could be adopted in

practice using the bias-corrected point estimates β̂
c
w instead.

1.6 Simulation Study

To evaluate the operating characteristics of the methods proposed in Section 1.5, we performed

two sets of simulation studies. The first set was designed using characteristics of the birth dataset

from Rwanda. The second was designed to evaluate the operating characteristics of the methods in

a more general setting.

1.6.1 Data Generation

For the first simulation study, we suppose that interest lies in the following marginal logistic regres-

sion model for a binary response for the ith individual in the kth cluster:

logitP(Yki = 1) = β0 + β1X1,ki + β2X2,k,

where X1,ki is a binary individual-level variable with a cluster-specific prevalence, pk = Unif[0.1, 0.6],

X2,k is a continuous cluster-level variable drawn from a Uniform[-2,2] distribution, and β0 =

(β0, β1, β2) = (-1.6, 0.5, 0.3). The value of β0 was chosen so that the prevalence of the outcome is

around 21%. Complete datasets withK = 44 clusters were generated with the same size distribution

as the 44 health centers in the Rwanda study.
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For the second set of simulations we suppose that interest lies in the model:

logitP(Yki = 1) = β0 + β1X1,ki + β2X2,ki + β3X3,k + β4X4,k,

with X1,ki a binary individual-level variable with the same distribution as in Simulation 1, X3,k a

continuous cluster-specific variable drawn from aN(0.2, 0.052) distribution, and X4,k a binary

cluster-level variable with prevalence 0.20. Finally, X2,ki is an individual-level variable generated

from a Normal distribution with cluster-specific mean E[X2,ki] = 1 + 0.5X4,k and a variance of

1.0. We set β0 = (β0, β1, β2, β3, β4) = (-3.1, 0.5, 0.5, 0.5, 1), where β0 was chosen so that the overall

prevalence was about 13%. Complete datasets were generated with a total ofK = 200 clusters with

equal cluster sizes ofNk = 40.

In all simulations, the true correlation structure was exchangeable; we induced correlation among

the observations using the GenBinaryY() function in the MMLB package for R, which implements

a method for marginally-specified logistic-Normal models25. Briefly, the latter permits analysts

to specify a marginal mean for the response while inducing within-cluster correlation via cluster-

specific random intercepts that are taken to arise from aN(0, σ2V) distribution. For Simulation 1, we

varied σV ∈ {0.25, 0.5, 0.75}, and for Simulation 2, we set σV=0.5. The correlation parameter, α,

was estimated for each of these scenarios by fitting the model of interest to the generated complete

datasets using a working exchangeable correlation structure; this resulted in an estimated correlated

parameter of α̂ ∈ {0.01, 0.04, 0.08} for Simulation 1 and α̂ = 0.01 for Simulation 2.

1.6.2 Sampling Designs

For each of the simulation scenarios we generated 10,000 ‘complete’ datasets. For each of these we

considered three cluster-based designs for selectingKs < K clusters: (#1) simple random sampling

of the clusters; (#2) an outcome-dependent cluster-stratified design, where clusters were stratified
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on Y∗q , the qth quantile of the distribution of the outcome prevalence across the clusters (with q =

0.75 in Simulation 1 and q = 0.80 in Simulation 2); and, (#3) an outcome-dependent cluster-

stratified design where in Simulation 1 clusters were stratified on the basis of Y∗0.75 and X∗
2, where

X∗
2 = I(X2 > 1), while in Simulation 2 clusters were stratified on the basis of Y∗0.80 and X4. Both

designs (#2) and (#3) were ‘balanced’ with respect to the stratification; an equal number of clusters

was sampled from each stratum, with the exception of the cases in whichKs could not be evenly

divided by the number of strata. In these cases, more clusters were sampled from the strata with

higher outcome prevalence (Y∗q=1). In Simulation 1, we considered designs withKs ∈ {12, 18, 24},

and in Simulation 2 we consideredKs ∈ {15, 20, 30, 50, 100}.

1.6.3 Analyses

For each dataset generated through the processes described in Sections 1.6.1 and 1.6.2, we computed

three estimates of β: β̂
(s)
, based on (naïvely) solving the unweighted estimating equations given

in Section 1.3.2 for theKs sampled clusters; β̂w, based on solving the weighted estimating equa-

tions given at the start of Section 1.5; and, the bias-corrected estimator, β̂
c
w, defined in Section 1.5.3.

Note, under simple random sampling of the clusters, β̂
(s)

and β̂w will be numerically the same. Fur-

thermore, we note that the working independence correlation structure was adopted in the speci-

fication ofVk when computing each of these estimators. The reason for this is that ifXki includes

at least one covariate that varies across units within a cluster (as will almost always be the case), the

complete data estimating equations, given by expression (1.2), are not guaranteed to be unbiased

unless working independence is adopted52. We ran one scenario (Simulation 1, σV = 0.5) with

working exchangeable as well, in order to investigate the degree to which using a working correlation

structure other than working independence affects the results.

To evaluate the proposed approaches to inference we focus attention on β̂
c
w as a point estimate

for β, as it generally exhibits little-to-no bias even whenKs is as small as 12 or 15. We then calculated
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six estimates ofVar[β̂
c
w], and thus the standard errors, using the methods described in Sections 1.5.2

and 1.5.3. The first three were: V̂ar[β̂
c
w], the unadjusted estimator; the degrees-of-freedom adjusted

estimator, V̂arDF[β̂
c
w]; and the Mancl and DeRouen-type estimator, V̂arMD[β̂

c
w]. Another three

were as these but ignoring the negative correlation in the sampling indicators: V̂ar
∗
[β̂

c
w], V̂ar

∗
DF[β̂

c
w],

and V̂ar
∗
MD[β̂

c
w]. In Simulation 1, we also computed the the Kauermann and Carroll-type estimator,

V̂arKC[β̂
c
w]/V̂ar

∗
KC[β̂

c
w] and the Fay and Graubard-type estimator, V̂arFG[β̂

c
w]/V̂ar

∗
FG[β̂

c
w], as well as

all of the above variance estimates using the uncorrected point estimates, β̂w, in place of β̂
c
w. The fi-

nal approach towards carrying out inference that we considered was a smoothed bootstrap approach

adapted from the work of Li andWang (2008)32, with details given in Appendix B.7. Using each of

the standard error estimates, we constructed 95% confidence intervals using both the normal distri-

bution and the tKs−p distribution, estimating coverage as the proportion of iterations in which the

constructed confidence intervals contained the true parameter values.

1.6.4 Results: Point Estimation

Figures 1.2 and 1.3 summarize the mean absolute bias in the point estimates (across the 10,000 such

estimates) for each of the three sampling designs, under the scenarios considered in Simulation 1

and Simulation 2. Based on these results, we make the following observations:

First, in general, β̂
(s)

exhibits bias except, as is to be expected, under simple random sampling

whenKs is relatively large. Second, for the two outcome-dependent schemes, the weighted estimator

β̂w generally exhibits less bias than β̂
(s)
. While there appear to be some exceptions to this (see Figure

1.2(e), and Figures 1.3(f), (h) and (i)), the extent of bias is very small and it is unclear if any meaning

can be attributed to the relative ordering.

Third, the bias in β̂
c
w is generally lower than the bias in β̂w; the additional use of the bias-correction

method proposed in Section 1.5.3 generally reduces bias, albeit to a small degree. An exception to

this arises in Figure 1.2(b), although the difference is very small. Additional exceptions are in Fig-
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ures 1.3(j), (k), (m), and (o), each of which correspond to one of the cluster-level covariates, X3 and

X4. This may speak to a fundamental difficulty of estimating associations for cluster-level covariates

whenKs is small, one that may only be resolved through the collection of additional data (rather

than through analytic means). From Figure 1.4 we also see that the extent of bias may depend on the

prevalence of a cluster-level covariate that is used to define S in a cluster-stratified design.

Finally, the bias-corrected weighted point estimates, β̂
c
w, generally exhibit little-to-no bias across

all parameters, even whenKs is a low as 12 or 15.

1.6.5 Results: Coverage

Tables 1.2 and 1.3 report select results regarding coverage of Wald-based 95% confidence intervals in

Simulations 1 and 2, respectively. Comprehensive results, specifically for coverage under a broader

range of values forKs and σV, as well as coverage using the t distribution, use of the uncorrected

point estimates in standard error estimation, and use of working exchangeable correlation matrix,

are given in Appendix A.9.

From the first column of results in Tables 1.2 and 1.3, use of the plug-in estimator, V̂ar[β̂
c
w], gen-

erally leads to undercoverage whenKs=12 or 15, respectively. This is especially the case for design

#3 where the coverage ranges from 0.85-0.87 in Table 1.2, and is even more pronounced in the more

complex setting of Simulation 2 with coverage ranging from 0.79-0.84. WhenKs is increased to 24

or 50 the performance of confidence intervals based on V̂ar[β̂
c
w] is improved, though there is still

undercoverage for all parameters.

Use of any of the proposed small-sample corrections yields improved coverage compared to the

unadjusted approach. Among these, the Mancl and DeRouen-type estimator, V̂arMD[β̂
c
w], gen-

erally exhibits the closest to nominal coverage when the standard normal distribution is used for

confidence interval construction. When the tKs−p distribution is used for confidence interval con-

struction (see Appendix A.9), the Mancl and DeRouen-type estimator tends to be conservative, par-
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Figure 1.2: The absolute bias in the mean of the unweighted point estimates β̂
(s)

, weighted uncorrected point esti‐

mates β̂w, and the bias‐corrected weighted point estimates β̂
c
w in Simulation 1, as a function ofKs ∈ {12, 18, 24},

under designs #1, #2, and #3. The degree of correlation was determined by σV = 0.5. The true parameter values are

given by β = (β0, β1, β2) = (‐1.6, 0.5, 0.3). Under design #1, β̂
(s)

and β̂w are equivalent.
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Figure 1.3: The absolute bias in the mean of the unweighted point estimates β̂
(s)

, weighted uncorrected point estimates

β̂w, and the bias‐corrected weighted point estimates β̂
c
w in Simulation 2, as a function ofKs ∈ {15, 20, 30, 50, 100},

under designs #1, #2, and #3. The degree of correlation was determined by σV = 0.5. The true parameter values are

given by β = (β0, β1, β2, β3, β4) = (‐3.1, 0.5, 0.5, 0.5, 1). Under design #1, β̂
(s)

and β̂w are equivalent.
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Figure 1.4: The absolute bias in the mean of the unweighted point estimate β̂
(s)
4 , weighted uncorrected point estimate

β̂4,w, and the bias‐corrected weighted point estimate β̂
c
4,w in Simulation 2 as a function of the prevalence of

X4 ∈ {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, with the degree of correlation determined by σV =
0.5.

ticularly when working exchangeable is used or σV = 0.75, while the other bias-corrected variance

estimators see improved coverage, though generally remain anti-conservative. Across all variance es-

timators, regardless of whether the normal or t distribution is used for confidence interval construc-

tion, the coverage resulting from using estimators with β̂w is generally very similar to the coverage

when using β̂
c
w . Furthermore, the difference in coverage when using the variance estimators ignor-

ing the negative correlation in the selection indicators generally decreases asKs increases, with the

directionality of the difference for smallerKs depending on the parameter in question, design used,

and the degree of within-cluster correlation. The findings also hold when working exchangeable

correlation structure is used as opposed to working independence.
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Table 1.2: Estimated coverage of Wald‐based 95% confidence intervals in Simulation 1 using methods proposed in
Sections 1.5.2 and 1.5.3, using the bias‐corrected weighted estimator, β̂

c
w, as the point estimate. See Section 1.6 for

details.

Parameter Ks/
Design V̂ar[β̂

c
w] V̂arDF[β̂

c
w] V̂arMD[β̂

c
w] V̂arKC[β̂

c
w] V̂arFG[β̂

c
w]

β0 12/#1 0.89 0.93 0.94 0.91 0.90
#2 0.89 0.92 0.95 0.92 0.91
#3 0.85 0.89 0.93 0.89 0.88

24/#1 0.92 0.94 0.95 0.93 0.93
#2 0.92 0.94 0.95 0.94 0.93
#3 0.91 0.92 0.94 0.92 0.92

β1 12/#1 0.90 0.94 0.94 0.92 0.92
#2 0.89 0.93 0.94 0.92 0.92
#3 0.87 0.91 0.93 0.90 0.90

24/#1 0.92 0.94 0.95 0.94 0.94
#2 0.92 0.94 0.94 0.93 0.93
#3 0.92 0.94 0.95 0.93 0.93

β2 12/#1 0.87 0.91 0.94 0.91 0.90
#2 0.86 0.90 0.93 0.90 0.88
#3 0.85 0.89 0.94 0.90 0.88

24/#1 0.91 0.93 0.94 0.93 0.92
#2 0.91 0.93 0.95 0.93 0.92
#3 0.91 0.93 0.95 0.93 0.92
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Table 1.3: Estimated coverage of Wald‐based 95% confidence intervals in Simulation 2 using methods proposed in
Sections 1.5.2 and 1.5.3, using the bias‐corrected weighted estimator, β̂

c
w, as the point estimate. Shown are results for

estimators that acknowledge negative correlation in the selection indicators. See Section 1.6 for details.

Parameter Ks = 15 Ks = 50
/Design V̂ar[β̂

c
w] V̂arDF[β̂

c
w] V̂arMD[β̂

c
w] V̂ar[β̂

c
w] V̂arDF[β̂

c
w] V̂arMD[β̂

c
w]

β0/#1 0.86 0.92 0.94 0.92 0.93 0.94
#2 0.86 0.92 0.94 0.92 0.94 0.95
#3 0.80 0.87 0.94 0.91 0.93 0.94

β1/#1 0.91 0.96 0.94 0.94 0.95 0.95
#2 0.91 0.96 0.94 0.94 0.95 0.95
#3 0.84 0.90 0.91 0.93 0.94 0.94

β2/#1 0.91 0.96 0.94 0.94 0.95 0.95
#2 0.91 0.96 0.94 0.94 0.95 0.95
#3 0.84 0.90 0.91 0.93 0.94 0.94

β3/#1 0.85 0.91 0.94 0.92 0.93 0.95
#2 0.85 0.91 0.94 0.92 0.94 0.95
#3 0.79 0.86 0.94 0.91 0.92 0.94

β4/#1 0.78 0.85 0.88 0.92 0.93 0.95
#2 0.87 0.93 0.95 0.91 0.92 0.93
#3 0.84 0.90 0.95 0.93 0.94 0.95
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1.7 Data Application

1.7.1 Analysis

For the purpose of applying the methods proposed in Section 1.5, we focus attention on a logis-

tic regression model for the binary outcome of low birthweight as a function of seven covariates:

maternal age, in years (categorized as 1: <20; 2: 20-35; 3: 36-49); maternal weight, in kg (catego-

rized as 1: <56; 2: 56-59; 3: 60-64; 4: ≥ 65); birth order (categorized as 1: 1st; 2: 2nd or 3rd; 3: 4th

or higher); sex of the newborn (1: female; 0: male); whether the mother had a previous abortion (1:

yes; 0: no), whether the woman had a previous stillbirth (1: yes; 0: no); and, the district the health

center/district hospital is located in (1: Rulindo; 0: Gakenke). For this model we estimated and re-

port adjusted odds ratios (OR) based on: β̂
(s)
, the solution to the unweighted estimating equations

given in Section 1.3.2; β̂w, based on solving the weighted estimating equations given at the start of

Section 1.5; and, the bias-corrected estimator, β̂
c
w, defined in Section 1.5.3. In addition, we calcu-

latedWald-based 95% confidence intervals (CI) for the bias-corrected estimator of each OR based on

V̂ar[β̂
c
w], the plug-in estimator given by expression (1.5); the degrees-of-freedom adjusted estimator,

V̂arDF[β̂
c
w]; and the Mancl and DeRouen-type estimator, V̂arMD[β̂

c
w]. Finally, as in the simulation

studies, working independence was adopted throughout (see Section 1.6.3).

1.7.2 Results

Table 1.4 provides a summary of the results. We generally see a difference in the unweighted, weighted,

and bias-corrected point estimates, though the story (direction) remains the same: among women

weighing less than 56 kg, giving birth to a male as their first child in Gakenke district, with no his-

tory of abortion or previous stillbirth, younger women (<20) and older women (ages 36-49) have a

higher odds of having a low birthweight baby than women ages 25-34. After adjusting for the other
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covariates in the model, the higher the mother’s weight the lower the odds of having a low birth-

weight baby. Similarly, after adjusting for the other covariates in the model, as birth order increases

women have a lower odds of having a low birthweight baby than women having their first child,

female newborns have a higher odds of being low birthweight compared to male newborns, and

women who have had a previous abortion or have had a previous stillbirth have a higher odds of hav-

ing a low birthweight birth compared to women who have no history of previous abortions or no

history of previous stillbirths, respectively.

The confidence intervals using both the degrees-of-freedom adjusted standard errors and the

Mancl and DeRouen-type adjusted standard errors generally result in wider confidence intervals

than those constructed using the unadjusted standard errors; a significant effect of age vanishes

when either correction is applied. In some instances, one correction maintains significance while

the other does not: for the effect of stillbirth, the confidence interval using the degrees-of-freedom

adjusted standard errors contains 1, suggesting that the effect is not statistically significant, whereas

the confidence interval using the Mancl and DeRouen-type adjustment does not contain 1, suggest-

ing a statistically significant effect; conversely, for the effect of maternal age (36-39), the confidence

interval using the degrees-of-freedom adjusted standard errors suggests a statistically significant ef-

fect, while that constructed using the Mancl and DeRouen-type adjustment does not. Given the

conflicting results, we recommend the confidence intervals using the Mancl and DeRouen-type

correction to the variance estimator based on the simulation study results. The simulations, in par-

ticular Simulation 2/Ks=15, suggest that sometimes V̂arDF[β̂
c
w] > V̂arMD[β̂

c
w]while at other times

V̂arDF[β̂
c
w] < V̂arMD[β̂

c
w], but that in general, V̂arMD[β̂

c
w] yields the closest to nominal coverage.
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Table 1.4: Results from the analysis of the Rwandan birth dataset. See Section 1.7.1 for details.

Point estimate 95% CI for ÔR
c
w

ÔR ÔRw ÔR
c
w V̂ar[β̂

c
w] V̂arDF[β̂

c
w] V̂arMD[β̂

c
w]

Maternal age
<20 years 1.15 1.11 1.12 (0.78, 1.60) (0.62, 2.02) (0.78, 1.61)
36-49 years 1.90 2.08 2.01 (1.40, 2.88) (1.11, 3.63) (0.97, 4.18)
Maternal weight
56− 59 kg 0.70 0.60 0.59 (0.36, 0.97) (0.26, 1.34) (0.26, 1.34)
60− 64 kg 0.32 0.26 0.26 (0.14, 0.49) (0.09, 0.74) (0.10, 0.71)
≥ 65 kg 0.29 0.23 0.24 (0.11, 0.51) (0.07, 0.84) (0.08, 0.74)
Birth order
2 - 3 0.42 0.44 0.49 (0.32, 0.75) (0.25, 0.99) (0.33, 0.73)
4+ 0.15 0.11 0.13 (0.08, 0.22) (0.05, 0.31) (0.05, 0.36)
Female newborn 1.40 1.68 1.72 (1.07, 2.75) (0.73, 3.74) (0.93, 3.19)
Previous abortion 1.95 2.25 2.17 (1.32, 3.57) (0.96, 4.93) (0.97, 4.87)
Previous stillbirth 1.98 2.51 2.31 (1.18, 4.52) (0.76, 6.98) (1.05, 5.09)
Rulindo District 0.51 0.28 0.26 (0.08, 0.92) (0.03, 2.08) (0.05, 1.38)

1.8 Discussion

In this paper, we consider cluster-based ODS in resource-limited settings. Within this context, we

extend the work of Cai et. al (2001)12 by formally establishing the asymptotic properties of the

IPW-GEE estimator, and provide an explicit expression for the asymptotic variance. In addition,

motivated by our own study in Rwanda, we propose several small-sample bias corrections to both

the point estimates and estimates of the asymptotic variance. Our simulation results suggest that

there is no clear overarching story in terms of one approach consistently outperforming the others.

With regard to the point estimates, our simulations indicate that the bias-corrected point esti-

mates generally reduce the bias in the point estimates, though the improvement is small in most

cases. The impact of the bias-corrected standard errors, on the other hand, is much more substan-

tial. The unadjusted standard errors result in severe undercoverage whenKs is small, and all of the

bias-corrected standard errors yield closer to nominal coverage. Among the bias-corrections to the
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variance estimator that we considered, the Mancl and DeRouen-type correction generally yielded

the closest to nominal coverage when the normal distribution was used for confidence interval con-

struction. When the tKs−p distribution was used for confidence interval construction, the Mancl

and DeRouen-type correction could be conservative, particularly when the degree of correlation

was increased. While the use of the tKs−p distribution also improved the coverage of the other bias-

corrections, there was no method that consistently performed better than the others, and these

methods still suffered from some undercoverage and overcoverage, depending on the design and pa-

rameter. Other degrees of freedom have been proposed when using the t distribution for confidence

interval construction, and may yield improved coverage in this setting as well. Furthermore, onceKs

was at least 50, the standard errors taking into account the covariance of the selection indicators and

the standard errors ignoring the covariance of the selection indicators, generally resulted in similar

coverage, indicating that asympototically, even the naïve method does not perform so poorly. This

result held for both the unadjusted and the adjusted standard errors. WhenKs was small, however,

the narrative was mixed.

For these reasons, while acknowledging that there is not one superior method, and that the deci-

sion regarding which approach to take is in the hands of the researcher, we offer our perspective on

how we would proceed: bias-corrected point estimates, and confidence intervals constructed using

the normal distribution together with the variance taking into account the covariance of the selec-

tion indicators, adjusted with the Mancl and DeRouen-type correction. We stress the importance of

using a bias-correction to the variance estimator, while using uncorrected (but weighted) point esti-

mates will, based on our results, generally not have a substantial impact on the analysis. The obser-

vation that one approach does not consistently outperform all of the others is consistent with results

from papers comparing different small-sample bias corrections to the robust sandwich estimator in

the complete data setting - no single small-sample correction consistently outperforms other small-

sample adjustments. Which correction performs better depends on a variety of factors, including
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the number of clusters, the size of the clusters, the degree of variability in the cluster sizes, the degree

of correlation among the clusters, and the type (cluster-level vs. individual-level) and distribution of

the covariates in the model of interest. The theory that is presented relies on asymptotics, though

in small samples, we are not aware of theory establishing small-sample behavior. Researchers must

make decisions on what to do based on the characteristics of their data, and the objectives of their

analysis. Finally, the simulations in this paper solely consider binary outcomes; more research is

needed to determine the performance of these methods for continuous or count outcomes.

The focus of this paper is how to carry out estimation and inference for a dataset collected through

a cluster-based outcome-dependent sampling design, and on considerations that a researcher must

make when the number of clusters in the sub-sample is small. An open question, however, is how

to identify an optimal sampling design for selecting the clusters at the design stage. As explained

in Section 1.2.1 ,the specific design we adopted in Rwanda arose through efforts to balance finan-

cial/logistic considerations with statistical power/efficiency, with the latter assumed to be driven,

in part at least, by the prevalence of the outcome and the sample size. While this informal strategy

may intuitively be reasonable, how to make optimal (or at the very least wise) choices regarding a

stratification scheme or a choice of model for πk in this context is a topic of our on-going research.

Another approach to increasing efficiency is to use pieces of information known at the design stage

to calibrate the weights used in the weighted estimating equations (Breidt and Opsomer (2017)8,

Rivera-Rodriguez et. al (2019)57); this, too, is an area for future research.
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Abstract

In public health research, finite resources often require that decisions be made at the study design

stage regarding which individuals to sample for detailed data collection. At the same time, when

study units are naturally clustered, as patients are in clinics, it may be preferable to sample clusters

rather than the study units, especially when the costs associated with travel between clusters is high.

In this setting, aggregated data on the outcome and select covariates is sometimes routinely-available,

through, for example, a country’s Health Management Information System (HMIS). If used wisely,

this information can be used to guide decisions regarding which clusters to sample, and potentially

obtain gains in efficiency over simple random sampling. In this paper we derive a series of formulae

for optimal allocation of resources when a single-stage stratified cluster-based outcome-dependent

sampling design is to be used and a marginal mean model is specified to answer the question of in-

terest. Specifically, we consider two settings: (i) when a particular parameter in the mean model is of

primary interest; and, (ii) when multiple parameters are of interest. We investigate the finite popula-

tion performance of the optimal allocation framework through a comprehensive simulation study.

Our results show that there are trade-offs that must be considered at the design stage: optimizing

for one parameter yields efficiency gains over balanced and simple random sampling, while resulting

in losses for the other parameters in the model. Optimizing for all parameters simultaneously yields

smaller gains in efficiency, but mitigates the losses for the other parameters in the model.
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2.1 Introduction

In public health research, finite resources, particularly in low-and-middle-income countries

(LMICs), often require decisions to be made regarding which individuals are to be sampled for de-

tailed data collection. For settings where individual study units in the population of interest are

naturally clustered, as patients are in clinics or residents within districts, it may be preferred to sam-

ple clusters (as opposed to the individuals directly) especially if the cost associated with travel be-

tween clusters is high compared to the cost of sampling individuals within a cluster. Towards this,

single-stage cluster-based sampling proceeds by first identifying a sub-sample of clusters and then

performing detailed data collection on all individuals within those clusters.59 When designing such

a study, the key decision is that of which clusters to select. One straightforward approach is to take a

simple random sample of the clusters. Doing so, however, will likely result in inefficient estimation

if the outcome and/or the exposure of interest is rare. Furthermore, if some information is available

at the design stage, either aggregate or individual-level, using simple random sampling forgoes the

potential benefits associated with incorporating that information in the design. For instance, the

Health Management Information System (HMIS), which has been implemented in a growing num-

ber of LMICs,1,2 stores routinely-collected group or cluster-level summaries on a range of health

indicators, such as the proportion of low birthweight births in health centers or the proportion of

women who had 4 standard antenatal care (ANC) visits. While this aggregated data has primarily

been used for the monitoring and evaluation of health system performance, as well as public health

decision-making,3,49,77 it may be cost-efficient to use relevant pieces of this group-level information

to guide the sampling of the clusters at the design stage of a study.

The optimal design of experiments has been widely studied, and has been extended to the set-

ting with correlated responses.4,27,79 That work, however, has focused on settings that differ from
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the ones we consider, specifically in that they assume complete control over the values of the co-

variate vectors that are included in the design, and how these covariate vectors are grouped into the

K clusters. Such a setting is appropriate in the design of experiments in science and engineering in

which the researcher has control over the experimental units, a level of control that public health

researchers studying clusters of individuals do not have. Optimal design has also been extensively

studied in the survey sampling context, though much of this work was originally limited to the esti-

mation of simple quantities such as the mean or total of the measure of interest.6,59 More recently,

the ideas of optimal design have been extended to the regression context. For example, Zaslavsky

et. al (2008)82 propose a framework for optimal sampling of individuals when it is of interest to es-

timate the parameters in a linear regression model. Tao et. al (2019)70 develop optimal two-phase

designs for nonparametric maximum likelihood estimators, Han et. al (2020)21 propose optimal

sampling designs for survival models using the mean score estimator, and Zhong and Cook (2020)83

develop optimal selection models in the context of family studies. McIsaac and Cook (2014)41,

building on the work of Reilly (1996)55 develop optimal two-phase designs in the independent

data setting with Bernoulli sampling, for analyses using maximum likelihood, mean score, inverse-

probability weighted, and augmented inverse-probability weighted estimating equations. Finally,

McIsaac and Cook (2013)40 evaluate a proposed framework for optimal allocation in the clustered

data setting where: the clusters are small and equally sized; selection is via Bernoulli sampling, so

that the number of selected clusters is random; and, where primary interest lies in a cluster-level co-

variate. As one reviewer pointed out, in many cases, the quantity of interest, for example the param-

eter estimate in a regression model, can be expressed as the total of its influence functions,11 so that

these recent extensions of optimal allocation procedures are in fact related to the classic problems in

survey sampling that were originally developed.

In this paper we consider the class of single-stage stratified cluster-based outcome-dependent sam-

pling (ODS) designs, in which cluster-level information on the outcome (and possibly other covari-
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ates) is taken to be readily-available. Furthermore, we suppose that within each stratum, clusters are

sampled via simple random sampling, and that resources allow only a fixed number of clusters to

be sampled. Depending on the nature of the available data, designs in this class can be operational-

ized in a number of ways. For example, Cai et al (2001)12 proposed the cluster-based case-control

design, in which clusters are sampled from strata defined by some threshold of the outcome preva-

lence of the clusters. They showed that such a design has the potential to yield substantial efficiency

gains relative to a strategy based on taking a simple random sample of clusters, particularly when the

outcome of interest is rare. Additionally, research on study design in the longitudinal data setting

in which an expensive or difficult to measure exposure can only be ascertained for a subsample of

subjects, showed that sampling from strata defined by the individuals’ outcomes yields efficiency

gains.61,62,63,64,67 More generally, efficiency gains under ODS designs depend on various aspects of

the specific design, such as what pieces of information are used to stratify the clusters, the degree of

variability in the outcomes and covariates across the clusters, and the allocation of the sample size

across the strata.

While the aforementioned research demonstrates that leveraging information that is available

at the design stage through thoughtful stratification of the clusters has the potential for efficiency

gains, it does not address how one can optimally allocate finite resources across strata. In this paper

we address this gap. In doing so, we also note that the aforementioned has focused on settings where

the cluster sizes are small (as is the norm in family studies or longitudinal studies). In contrast, mo-

tivated by a study of birth outcomes in Zanzibar, Tanzania, this paper considers settings where the

cluster sizes are medium-to-large, a distinction we make for two reasons. First, it is not clear that the

efficiency gains observed from efficient sampling designs in the setting with small cluster sizes would

hold in the setting with larger cluster sizes, in particular due to greater heterogeneity of the subjects

within larger clusters. Second, with larger cluster sizes, using the outcome to define the strata would

require discretizing the cluster-level summaries of the outcome (e.g. the cluster-specific prevalences
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or counts of the outcome), rather than using the individual-level values of the outcome directly in

defining the strata, which we assume to be unknown at the design stage.

Whether a design is optimal depends on: 1) the optimality criterion; 2) what the target param-

eters are; and, 3) the method of analysis. In this paper, we assume that interest is in estimating one

or more particular associations in a marginal mean model and that the data collected through the

cluster-stratified outcome-dependent sampling scheme will be analyzed using inverse-probability

weighted generalized estimating equations. Within this framing, this paper extends previous re-

search in that it: (i) considers the potential for efficiency gains for individual-level as well as cluster-

level covariates; and, (ii) considers settings in which there are multiple covariates of interest. As will

become clear, the optimal allocation formulae we derive depend on quantities that, at the outset,

will be unknown, including the parameters of the target marginal model. Thus, our primary goal

in this paper is to develop a comprehensive understanding of the potential value (in terms of effi-

ciency) of pursuing an optimal allocation strategy. That is, we seek to provide insight into how the

potential for efficiency gain is impacted by different factors such as the optimality criterion and the

relationship between the covariate of interest and the stratification variable. In the Discussion we

return to this, and speak to how we believe this will spur creative solutions to how optimal designs

can be operationalized in practice.

The remainder of this paper is organized as follows: In Section 2, we describe a hypothetical

study that illustrates the objective of this work. In Sections 3 and 4 we give an overview of the meth-

ods. In Section 5, we present a comprehensive simulation study that examines the finite population

operating characteristics of the optimal allocation sampling strategy proposed in this paper. Section

6 describes the results and Section 7 provides a discussion and concluding remarks.
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2.2 Increasing Facility-Based Births in Zanzibar

2.2.1 Safer Deliveries Zanzibar

Safer Deliveries is a program in Zanzibar, Tanzania, implemented in collaboration between the lo-

cal Ministry of Health and D-tree International, with the goal to reduce the maternal mortality rate

in Zanzibar by increasing the number of health facility deliveries.18 As of May 31, 2017, 42,056

women had been enrolled in the program. For these women, demographic and health informa-

tion, obstetric history, the number of antenatal visits, and the location of delivery was collected by

program-supported community health workers (CHWs). In addition, each woman’s shehia of res-

idence was collected; shehias, of which there areK=280 represented in the data set, are the lowest

official administrative units in Zanzibar.

2.2.2 AHypothetical Study

Given the aim of the program, researchers may be interested in investigating factors that may be

associated with a woman delivering outside of a health facility, the prevalence of which in the avail-

able data is approximately 0.25. Here we consider a hypothetical study, one for which the following

marginal mean model is of interest:

logit(P(Yki = 1)) = β0 + β1Xloc,k + β2XANC,ki + βTAXA,ki. (2.1)

In model (2.1), Yki denotes the binary outcome of delivery outside of a health facility (1/0=Yes/No),

Xloc,k is a binary cluster-level variable indicating which island the shehia of residence is located in

(1/0=Pemba/Unguja) and XANC,ki indicates whether or not the woman had 4 standard ANC visits.

Additionally, the model includes XA,ki, a collection of individual-level, woman-specific covariates
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such as the previous location of delivery (if the woman has previously delivered) and whether the

woman received a visit from a CHW at 8-9 months of pregnancy.

2.2.3 Potential for Efficiency Gains

Although complete data is available on the women enrolled in the Safer Deliveries program, for the

purposes of this paper we consider the hypothetical situation in which this is not the case. In this

setting, as motivated in the Introduction, one can imagine resource constraints limiting the number

of shehias that can be visited for data collection. While the remainder of the paper addresses how to

optimally select shehias, a natural first question to ask is whether there is, in fact, any potential for

efficiency gain. Moreover, while it is well-known that wise selection of individuals in standard ODS

designs can result in substantial efficiency gains over simple random sampling, it is less clear whether

selecting clusters in a wise manner can yield efficiency gains over simple random sampling of the

clusters. This is particularly the case when the analysis takes place at the individual level.

To investigate this, and further motivating the remainder of the paper, we conducted a simula-

tion study, the details of which can be found in Appendix B.1. Briefly, we generated 1000 complete

datasets with 28,789 women (the number of women in the data set who had given birth, with com-

plete data on all covariates in the model of interest) from K=280 shehias according to (2.1). We then

defined 500 ‘designs’, where each design is a set ofKs=40 shehia ids that was obtained via simple

random sampling. For each of the 1000 generated complete datasets, we took 500 samples corre-

sponding to the 500 designs; for each of the resulting 500 samples, we computed the point estimates

according to (2.1). Figure 2.1 shows a histogram of the standard errors (i.e. the standard deviation

of the 1000 point estimates) of β̂ANC across the 500 designs; each value represented in the histogram

of Figure 2.1 corresponds to a particular design/set of cluster ids. From the variation in the standard

errors it is clear that some designs are substantially more efficient than others: the standard deviation

of β̂ANC under the most efficient design is 0.078, while it is 0.129, under the least efficient design.
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Figure 2.1: Distribution of the standard errors of β̂ANC from the 500 simple random sampling designs across 1000
iterations.

2.2.4 The Inadequacies of Rules of Thumb

In thinking about developing guidance for the selection of an efficient design, it might be natural

to posit a rule of thumb that recommends sampling clusters with 1) a higher number of outcome

cases, 2) a higher number of exposure cases, and 3) a higher overall individual-level sample size n.

To investigate whether such a general rule of thumb is valid, we looked at the characteristics of the

‘best’ design for the estimation of βANC, which we defined as follows: we restricted attention to

the designs which yielded a mean point estimate of βANC within 5% of the gold standard, where

the gold standard was taken to be the mean point estimate obtained from running the analysis on

the 1000 generated complete data sets (N=28,789). Among this set of designs, we then defined the

‘best’ design to be that with the lowest standard deviation in the point estimates of βANC, and the

‘worst’ design to be that with the highest standard deviation in the point estimates of βANC.

Table B.1/Scenario 1 displays summary information on the best and worst design for the estima-

tion of βANC. We see that the best design has a substantially larger overall sample size (n = 4606 vs.
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Table 2.1: Characteristics of the ‘best’ (lowest standard deviation of β̂ANC) and ‘worst’ (highest standard deviation of

β̂ANC) designs among the set of ‘unbiased’ designs for the estimation of βANC. In Scenario 1, the number of outcome
cases is proportional to the cluster size, while in Scenario 2, the number of outcome cases is inversely proportional to
the cluster size. See Section 2.2.4 for details.

Design n XANC Y
Scenario 1

Lowest sd(β̂ANC) #431 4606 1284 1337
Highest sd(β̂ANC) #284 3160 672 773

Scenario 2
Lowest sd(β̂ANC) #156 3846 1130 368
Highest sd(β̂ANC) # 316 4621 1234 211

n = 3160), a larger number of exposure cases (1284 vs. 672), and a larger mean number of outcome

cases (1337 vs. 773). These results are intuitive, and abide by the rule of thumb, in that the best de-

sign has a higher average number of outcome cases, a higher number of XANC cases, and a higher

overall individual-level sample size, n.

However, it may not necessarily be the case that a cluster simultaneously satisfies the three criteria

listed above; it may be the case, for example, that the clusters with a higher number of outcome

cases have a lower number of exposure cases. In the original data set-up we described, the number

of outcome cases and the number of XANC cases is proportional to the shehia size. We therefore also

consider a scenario in which the number of outcome cases in a cluster is inversely proportional to

cluster size. This was done by introducing into the data generation model an indicator for cluster

size, where the indicator is equal to 1 if the cluser size is greater than the median cluster size, and 0

otherwise, with a coefficient of -3.

Table B.1/Scenario 2 gives the characteristics of the best and worst design for the estimation of

βANC, in the setting where the number of outcome cases in a cluster is inversely proportional to the

cluster size. We see that in this scenario, the best (lowest standard deviation of β̂ANC) design has a

smaller overall sample size than the design with the highest standard deviation of β̂ANC (n = 3846
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vs. n = 4621), as well as a lower number of exposure cases, but a higher average number of outcome

cases: the rule of thumb breaks down. This, together with the findings from Section 2.2.3, suggests

that there is practical (and not just theoretical) value in developing a formalized framework for the

selection of shehias in such a way as to maximize efficiency for estimation of the covariate of interest.

2.2.5 Optimal Allocation

Within the framing of this paper, suppose that select shehia-level data is available for all of the

K=280 shehias, specifically the shehia-specific count of the outcome and Xloc,k. One could pro-

ceed by stratifying the clusters according to, say, Y∗0.80, the 80th quantile of the number of women

delivering outside of a health facility across shehias, and Xloc,k. Doing so yields the following 2 × 2

stratification of theK=280 shehias:

Xloc,k = 0 Xloc,k = 1

Y∗k < Y∗0.80 134 87

Y∗k ≥ Y∗0.80 21 38

How best to then use this information will depend on the particular research question; here, build-

ing on model (2.1) we illustrate the three settings considered in this paper. In the first, we suppose

particular interest lies in estimating the association between the cluster-specific Xloc,k and the out-

come, adjusting for other covariates in the model. While complete information is available on Xloc,k

in our hypothetical study, woman-level data on the outcome and the other covariates is not, so that

it would be necessary to perform additional data collection on at least some individuals in a sub-

sample. In the second setting, we suppose that it is of particular interest to estimate the association

between XANC,ki and the outcome. Note, in the first of these settings information is available at the

design stage on the covariate of interest, while in the second, information is only available on a co-

variate that may be related to the covariate of interest. In the final setting we consider, we assume it

is of interest to estimate all parameters in (2.1) with precision.
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For each of these settings, the key question is howmany shehias should be sampled from each

stratum in the above 2 × 2 stratification in order to minimize the asymptotic variance of the esti-

mator of the parameter(s) of interest. In the next sections, we propose a framework for deriving the

optimal stratum-specific sample sizes, when the analysis proceeds via inverse-probability-weighted

generalized estimating equations.

2.3 Setting

2.3.1 Model of Interest

In this paper, generalizing beyond model (2.1), we suppose that the research question of interest

concerns learning about the relationship between an outcome Y and a p-vector of covariates, X

(which may include a 1.0 for the intercept), in a population where the study units are naturally clus-

tered in some way. LetK denote the number of clusters andNk the number of individuals in the kth

cluster. Furthermore, we assume that estimation and inference will be performed with respect to the

following marginal mean model for the outcome of the ith individual in the kth cluster as a function

of their covariates, Xki:

μki = E[Yki|Xki] = g−1(XT
kiβ), (2.2)

where g(·) is a user-chosen link function and β a p-vector of regression parameters.

2.3.2 Stratified Cluster-Based ODS

Assuming complete information is not available on all elements of (Y,X) for allN individuals in the

K clusters, we suppose that a stratified cluster-based ODS design will be employed and that bud-

getary or logistical constraints limit the number of clusters that can be visited toKs < K. Towards

this, we suppose that summary measures of (Y,X) for theK clusters are readily-available, as may
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be other variables/information that are readily available but not of direct relevance to the scientific

question, denoted by Z. Notationally, we denote the information available for cluster k at the design

stage byD∗
k = (Nk,Y∗

k ,X
∗
k ,Z

∗
k), where Y

∗
k is a cluster-level summary of the outcomes (i.e. across

theNk individuals in the kth cluster),X∗
k is a cluster-level feature or a cluster-level summary of ele-

ments of X, and Z∗
k is a cluster-level summary of Z. For example, if the outcome is Yki in Section 2.2

then Y∗
k might be the number of women from the kth shehia who did not deliver in a health facility.

Furthermore,X∗
k may be a cluster-level feature, such as Xloc,k in Section 2.2 or it may be an aggre-

gated summary of individual-level data, such as the proportion of mothers in the shehia who had 4

standard ANC visits. Finally, Z∗
k may, for example, be the prevalence of some other outcome such as

the birth outcome.

LetRk be a binary indicator of whether the kth cluster is selected by the design and πk = Pr(Rk =

1|D∗) the corresponding probability of being selected, whereD∗ = {D∗
1 , . . . ,D∗

K} is the totality

of the information available at the design stage. In a cluster-stratified ODS design, the clusters are

cross-classified according to some variable S that is defined on the basis of one or more of the vari-

ables contained inD∗ and is assumed to take on one of J levels. From this, supposeKj clusters are

classified as belonging to the jth stratum. We assume that the stratification scheme is specified such

thatKj > 0 for all j = 1, . . . , J. The design then proceeds by randomly selecting kj ≤ Kj clusters

from those in the jth stratum, such that
∑J

j=1 kj =Ks. Note, because of the random sampling, we

have that πk = kj/Kj for each cluster in the jth stratum. Finally, the otherwise unavailable elements

of (Y, X) are ascertained on all individuals within the sampled clusters.

2.3.3 Estimation and Inference

When information is only available on a subset of clusters that have been selected through a cluster-

based ODS scheme, β can be estimated as the solution to the following weighted generalized esti-
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mating equations12:

Uw(β) =

K∑
k=1

Rkπ−1
k DT

kV
−1
k (Yk − μk) = 0. (2.3)

This can be rewritten as Uw(β) = UTWR, whereU = diag{Y − μ}V−1D is anN × pma-

trix where Y = (Y1, . . . ,YK)
T,μ = (μ1, . . . ,μK)

T,V is anN × N block-diagonal matrix, with

theVk on the diagonal, andD is theN × pmatrix obtained by stacking the KDk = ∂μk/∂β

matrices. Furthermore,W is anN×N diagonal matrix with diagonal entries equal to the vector

(W1,W2, . . . ,WK)
T, withWk a vector of lengthNk with each element equal to π−1

k . LettingRk

denote theNk × 1 vector with all entries equal toRk,R is theN × 1 vector obtained by concate-

nating theRk together. Following arguments similar to those presented by Xie and Yang (2003)81

in the complete data setting, Sauer et. al (2021)60 showed that under regularity conditions, β̂w, the

solution to (2.3), is consistent for β0, the true value of β, and is asymptotically multivariate normal,

with the asymptotic variance given by

Var[β̂w] = H(β0)
−1
{
Var[Uw(β)]|β=β0

}
H(β0)

−1, (2.4)

whereH(β) = −E[∂U(β)/∂β], and U(β) = UT1N×1 .

2.4 Optimal Allocation

In the event that the research team has the opportunity to inform the design of the study (i.e the

data has not already been collected), the simulation in Section 2.2.3 highlighted the potential ef-

ficiency gains associated with a wise choice of which clusters to select. Towards that, suppose pri-

mary scientific interest lies in estimating a treatment or intervention effect. Then the optimal design

will be the one that maximizes the precision of the estimate of that parameter. In other settings,
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there may be multiple covariates of interest, as may be the case in situations in which the research

question concerns identifying risk factors for a health outcome. In this section, we first derive the

optimal allocation formula for the setting in which there is just one parameter of interest. We then

extend this to address the situation in which there are multiple parameters of interest, in particu-

lar the situation in which all parameters are of interest, which involves minimizing the trace of the

variance-covariance matrix.

2.4.1 One Parameter of Interest

In Section 2.2.5, we described two scenarios in which interest was taken to be in investigating the

association between the outcome of whether a woman delivered outside of health facility and which

island the woman’s shehia of residence is on (a cluster-level covariate) and whether the woman had

4 standard ANC vistis (a woman-specific covariate). More generally, suppose that primary inter-

est lies in estimating βq, one specific element of β in model (2.2). Under a cluster-stratified design,

the optimal allocation for the estimation of βq involves determining the kj, j = 1, . . . , J such that

the variance of β̂q is minimized, subject to the constraint that
∑J

j=1 kj = Ks. In determining the

optimal sample sizes for each stratum, it is useful to rewrite (2.4) as:

Var[β̂w] = H(β0)
−1 {Var[UT1N×1] + E[UTWΔWU]

}
H(β0)

−1.

where Δ = Var[R|FK] is anN × Nmatrix with the entries on the diagonal equal toVar[Rk|FK]

= πk − π2k=
kj
Kj

− (
kj
Kj
)2 for allNk individuals in the kth cluster andFK = {Y,X,Z, S}. On the off-

diagonal, the entries are equal to Cov[Rk,Rk′ |FK] = πkk′ − πkπk′ , with πkk′ equal to the joint prob-

ability that clusters k and k′ are selected by the outcome-dependent sampling scheme. If clusters k

and k′ are not in the same stratum, then πkk′ = πkπk′ , and Cov[Rk,Rk′ |FK]=0, while if clusters k

and k′ are in the same stratum, πkk′ =
kj
Kj

kj−1
Kj−1 , and Cov[Rk,Rk′ |FK] =

kj
Kj

kj−1
Kj−1 − (

kj
Kj
)2. In deter-
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mining the optimal allocation across strata, it suffices to determine the allocation that minimizes the

[q, q]th entry of E[H−1UTWΔWUH−1], the term which depends on the sampling of clusters, and is

given by:

E[H−1UTWΔWUH−1][q,q] =
∑J

j=1
Kj−kj
kj [Aq,j −

Bq,j
Kj−1 ] =

∑J
j=1

Kj−kj
kj Cq,j

where Aq,j =
∑

k∈Sj
∑Nk

i=1
∑Nk

i′=1 E[h
[q]
ki h

[q]
ki′ ], Bq,j =

∑
k∈Sj

∑
k′ ̸=k∈Sj

∑Nk
i=1
∑Nk′

i′=1 E[h
[q]
ki h

[q]
k′i′ ],

h[q]ki is the entry in the (q + 1)th column ofUH−1 corresponding to the ith individual in the kth

cluster, and Sj = {k : cluster k ∈ stratum j}. The optimization problem involves minimizing

fq(k1, k2, . . . , kJ) =
∑J

j=1
Kj−kj
kj Cq,j subject to the constraint that

∑J
j=1 kj = Ks, and can be solved

using the method of Lagrange multipliers, which yields:

kj = Ks
(K1/2

j C1/2
q,j )∑J

j=1 K
1/2
j C1/2

q,j

(2.5)

From expression (2.5), the optimal sample size for stratum j, kj, therefore depends on the inter-

play betweenKj, the number of clusters in stratum j, and the value of Cq,j, the contribution of the

elements in stratum j to the variance of β̂q, relative to the totality of these two quantities across all of

the strata.

2.4.2 Multiple Parameters of Interest

In certain situations, researchers may be interested in estimating more than one parameter with

precision. Let wq be a p × 1 vector of weights, with the qth element denoting the weight assigned to

the qth parameter. Of interest is to minimize f(k1, k2, . . . , kJ) =
∑p

q=1 wq
∑J

j=1
(Kj−kj)

kj Cq,j subject

to the constraint that
∑J

j=1 kj = Ks. For example, one may be equally interested in estimating every

parameter in the model with precision. Towards this, one approach would be to minimize the trace

of the variance-covariance matrix of the parameter estimates, which corresponds to setting all of
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the wq to 1, and is known as A-optimality4. Again, the optimal stratum-specific sample sizes can be

solved using the method of Lagrange multipliers:

kj = Ks
K1/2
j (
∑p

q=1 wqCq,j)
1/2∑J

j=1 K
1/2
j (
∑p

q=1 wqCq,j)1/2
. (2.6)

In both expressions (2.5) and (2.6), the Cq,j depend on the expectations E[h
[q]
ki h

[q]
ki′ ] and E[h

[q]
ki h

[q]
k′i′ ].

These expectations are not known, and can be replaced by h[q]ki h
[q]
ki′ and h

[q]
ki h

[q]
k′i′ when computing the

stratum-specific sample sizes.

2.4.3 Practical Issues

In conducting simulation studies to investigate the performance of the allocation schemes given

by expressions (2.5) or (2.6), a number of practical issues/challenges arise that we summarize here.

First, we note that the kjs computed using (2.5) or (2.6) may not be integers. They must there-

fore be rounded if they are to serve as meaningful sample sizes. In doing so, however, the rounded

stratum-specific sample sizes may not add up to the constraintKs. To resolve this, we introduce a

small rounding threshold, τ, which can be increased until the sum of the rounded sample sizes is

equal toKs. For example, ifKs=40, J = 4, and (k1, k2, k3, k4)=(20.18, 7.01, 6.49, 6.32), using the

standard rounding threshold of 0.5 would yield (kr0.501 , kr0.502 , kr0.503 , kr0.504 )=(20, 7, 6, 6), the sum of

which is 39. We would therefore set the rounding threshold at τ = 0.001 and increase the threshold

by a small increment such as 0.0001 until
∑J

j=1 k
rτ
j = 40. In this example, this approach would

yield a rounding threshold of τ = 0.3201, which gives (krτ1 , k
rτ
2 , k

rτ
3 , k

rτ
4 )=(20, 7, 7, 6) and satis-

fies
∑J

j=1 k
rτ
j = 40. Other approaches have been suggested that directly yield integer solutions,

such as the algorithm propose byWright (2017),80 and used with good results by Chen and Lum-

ley (2020);15 we do not consider those here, as our simulations indicate good performance of the

continuous allocation strategy combined with the rounding procedure described above.
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Second, it is possible for one or more of the resulting (rounded) kj to equal zero or to be larger

than the number of clusters in the stratum,Kj. We refer to these as ‘edge cases’. When this occurs,

we fix the stratum-specific sample size at the boundary (i.e. set kj = 1 if kj = 0, set kj = Kj if

kj > Kj), and recalculate the other kj with an updated constraint, a strategy also used by Reilly

(1996)55 :

K∗
s = Ks −

∑
j:kj=0

1−
∑

j:kj>Kj

Kj.

Finally, we note that the calculation of Cq,j in expressions (2.5) and (2.6) relies on having com-

plete data on the outcome and all of the covariates, which is not the case in practice. As indicated in

the Introduction, however, the primary goal of this paper is to establish and understand the poten-

tial for efficiency gains; doing so will, we believe, motivate creative solutions to implementing these

optimal designs in practice.

2.5 Simulation Study

2.5.1 Model Specification

We conducted a simulation study to examine the finite sample performance of the optimal alloca-

tion strategies presented in Sections 2.4.1 and 2.4.2 for a single parameter (expression (2.5)) and for

multiple parameters (expression (2.6)), respectively. In particular, we sought to evaluate the validity

of the approach for estimation and inference as well as the performance of the optimal allocation

designs relative to the simple random sampling and balanced stratified sampling designs in terms of

efficiency. Throughout, we assume that interest lies in the following marginal mean model for the

ith individual in the kth cluster:

logit(P(Yki = 1)) = β0 + β1X1k + β2X2k + β3X3ki + β4X4k + β5X5ki (2.7)
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Table 2.2: Covariate distributions for nine simulation scenarios considered in Section 2.5.

Covariate Baseline Eight scenarios in which X1k and each of the remaining
Scenario covariates are dependent

Positive dependence Negative dependence

X1k Ber(0.3) – –

X2k N(1, 0.25) μ = 1+ 0.5I(X1k=1) μ = 1+ 0.5I(X1k=0)
σ = 0.25+ 0.75I(X1k=1) σ = 0.25+ 0.75I(X1k=0)

X3ki N(1, 0.25) μ = 1+ 0.5I(X1k=1) μ = 1+ 0.5I(X1k=0)
σ = 0.25+ 0.75I(X1k=1) σ = 0.25+ 0.75I(X1k=0)

X4k Ber(pk), pk = 0.6I(X1k=1))+ pk = 0.156I(X1k=1)+
pk = expit(−0.9) 0.156I(X1k=0) 0.346I(X1k=0)

X5ki Ber(pk), pk = 0.6I(X1k=1))+ pk = 0.1I(X1k=1))+
pk = 0.25 0.1I(X1k=0) 0.314I(X1k=0)

where β0 = (−3.1, 0.3, 0.7, 0.7, 0.7, 0.7). The value of the intercept was chosen so that the preva-

lence of the binary outcome in the baseline scenario (defined in the next paragraph) is about 0.23,

close to the prevalence of the outcome of interest in the D-tree dataset.

As summarized in Table 2.2, we consider nine data scenarios. In the baseline scenario, X1k is a

binary cluster-level covariate with prevalence of 0.30, X2k ∼ N(1, σ = 0.25) is a continuous cluster-

level covariate, X3ki ∼ N(1, σ = 0.25) is a continuous individual-level covariate, X4k ∼ Ber(pk)

is a binary cluster-level covariate with pk = expit(-0.9) and X5ki ∼ Ber(pk) is a binary individual-

level covariate with pk = 0.25. Note, in this scenario the covariates are all independent of each

other. Building on this we consider eight additional scenarios where X1k is taken to be positively and

negatively associated with each of the other four covariates (individually).
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2.5.2 Designs

For each data scenario, we generated 10000 complete datasets of K=280 clusters with equal cluster

sizes ofNk = 40 ∀ k = 1, . . . ,K. Correlation between the outcomes under the marginal model

(2.7) was induced using the GenBinaryY() function in the MMLB package for R, which implements

a method for marginally-specified logistic-Normal models25. Given a specification for a marginal

mean model for the response, this method induces within-cluster correlation via cluster-specific

random intercepts that are taken to arise from a N(0, σ2V) distribution. In our simulations, we set σV

equal to 0.5.

For each generated complete dataset, the 280 clusters were stratified according to Y∗0.80, which

as in Section 2.2.5 is defined to be the 80th quantile of the number of outcome cases across the K

clusters, and X1. Then,Ks=80 clusters were sampled from the four strata according to eight designs.

The first two, which serve as current-practice comparators are: SRS, simple random sampling of

theKs clusters; and, BalX1, stratified balanced sampling in which 20 clusters were sampled from

each of the four Y∗0.80 × X1 stratum. The next five each consider optimal allocation with respect

to one parameter using expression (2.5) proposed in Section 2.4.1: OptX1, for the estimation of

β1; OptX2, for the estimation of β2; OptX3, for the estimation of β3; OptX4, for the estimation of

β4; and, OptX5, for the estimation of β5. Finally, OptA represents the optimal allocation based on

expression (2.6) proposed in Section 2.4.2 when interest lies in estimating all parameters with preci-

sion.

The nine data scenarios combined with eight designs for each data scenario resulted in seventy-

two simulations. Further simulations, presented in Appendix B.3 , looked at the impact of: (i) vary-

ing cluster sizes; (ii) increasing the degree of correlation; and, (iii) decreasing the number of sampled

clustersKs. In the setting of unequal cluster sizes, the distribution of theK clusters was taken to be

the same as the distribution of the 280 cluster sizes in the D-tree dataset, adjusted so that the overall
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population sizeN is about the same as the the equal cluster size scenarios described. In the setting

of increased within cluster-correlation, we set σV = 1. In the setting of smallerKs, 40 clusters were

sampled under each design.

2.5.3 Analyses

For each sample taken, we computed the point estimates by solving expression (2.3) and estimated

the standard errors using an estimator of (2.4), the form of which is given in Sauer et. al (2021).60

Due to the potential downward bias of the robust sandwich variance estimator in finite samples,

we computed four estimates of the standard errors: i) unadjusted standard errors, ii) degrees-of-

freedom adjusted standard errors, in which the variance-covariance matrix is multplied by the factor

Ks/(Ks−p),37,60 iii) a Mancl and DeRouen-type bias correction38 that is adapted to accomodate the

weights needed to account for the sampling design,60 and iv) a Kauermann and Carroll-type30 bias

correction that is similarly adapted.60 For each design, across the 10000 iterations, we computed the

mean point estimates and the relative uncertainty of each design for the estimation of each parame-

ter, defined as the ratio:

sd(̂β
1:R
w,q)Design

sd(̂β
1:R
w,q)SRS

q = 1, . . . , p

whereR = 10000 is the number of simulation iterations. Furthermore, to check the validity of

the inference, we estimated the 95%Wald coverage probabilities by computing the proportion of

constructed confidence intervals that contain the true parameter value.
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Figure 2.2: Baseline scenario: K=280,Nk = 40 ∀ k = 1, . . . ,K,Ks = 80, σV = 0.5. Shown is (i) the percent bias
in the mean point estimates (top panel), (ii) the estimated coverage probabilities for confidence intervals (middle panel)
using unadjusted estimated standard errors (UA), estimated standard errors with a degrees‐of‐freedom adjustment
(DF), estimated standard errors with a Mancl and DeRouen‐type correction (MD), and estimated standard errors with a
Kauermann and Carroll‐type correction (KC), and (iii) the uncertainty relative to simple random sampling (bottom panel)
with the dark blue, red, and light blue bars corresponding to scenarios 1, 2, and 3 described in Section 2.2.5 respectively.
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Figure 2.3: Positive association X1 and X2: K=280,Nk = 40 ∀ k = 1, . . . ,K,Ks = 80, σV = 0.5. Shown is (i)
the percent bias in the mean point estimates (top panel), (ii) the estimated coverage probabilities for confidence intervals
(middle panel) using unadjusted estimated standard errors (UA), estimated standard errors with a degrees‐of‐freedom
adjustment (DF), estimated standard errors with a Mancl and DeRouen‐type correction (MD), and estimated standard
errors with a Kauermann and Carroll‐type correction (KC), and (iii) the uncertainty relative to simple random sampling
(bottom panel) with the dark blue, red, and light blue bars corresponding to scenarios 1, 2, and 3 described in Section
2.2.5 respectively.
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Figure 2.4: Negative association X1 and X2: K=280,Nk = 40 ∀ k = 1, . . . ,K,Ks = 80, σV = 0.5. Shown is (i)
the percent bias in the mean point estimates (top panel), (ii) the estimated coverage probabilities for confidence intervals
(middle panel) using unadjusted estimated standard errors (UA), estimated standard errors with a degrees‐of‐freedom
adjustment (DF), estimated standard errors with a Mancl and DeRouen‐type correction (MD), and estimated standard
errors with a Kauermann and Carroll‐type correction (KC), and (iii) the uncertainty relative to simple random sampling
(bottom panel) with the dark blue, red, and light blue bars corresponding to scenarios 1, 2, and 3 described in Section
2.2.5 respectively.
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2.6 Results

2.6.1 Relative Uncertainty

Figures 2.2 - 2.4 show the results for the baseline data scenario (Figure 2.2), the setting in which

there is a positive relationship between X1 and X2 (Figure 2.3), and the setting in which there is

a negative relationship between X1 and X2 (Figure 2.4). Note, complete results for all scenarios

considered can be found in Appendix C of the Supporting Information. Each figure shows: 1)

percent bias in the mean point estimates; 2) estimated coverage probabilities; and, 3) relative un-

certainty. Collectively, we find that there is little to no bias (< 5%) in the mean point estimates and

the estimated coverage probabilities are near the nominal level, in particular when the Mancl and

DeRouen-type standard error correction is used. The conclusions regarding relative uncertainty are

more nuanced, however, with the key results being:

• In general, the optimal design for the parameter of interest estimates that parameter with

the greatest precision. For example, across all scenarios, OptX1 yields the highest efficiency

gain for the estimation of β1, outperforming even the balanced stratified design that stratifies

on X1 (BalX1): in the baseline data scenario (Figure 2.2), for instance, the gain in efficiency

compared to simple random sampling is 13.8% under BalX1, while it is 21.1% under OptX1.

• In the baseline scenario (Figure 2.2), in which there is no relationship between X1 and any of

the other covariates, we do not see substantial efficiency gain for any of the parameters under

any of the optimal allocation schemes aside from β1, which is to be expected.

• In the setting in which X1 and the continuous cluster-level covariate X2 are positively asso-

ciated (Figure 2.3), the OptX2 design yields an efficiency gain of 23.1% over simple random

sampling in the estimation of β2. That is, even though the stratification is based on X1, ef-

ficiency gains regarding β2 are obtained through the proposed optimal allocation scheme.
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Furthermore, even though OptX2 optimizes with respect to β2, using this design when X1

and X2 are positively associated also yields an efficiency gain of 14.5% for β1. This design,

however, yields substantial efficiency losses for the other parameters, ranging from 11.8% to

21.5%. Finally, in this setting, the OptA design results in a smaller efficiency gain for the esti-

mation of β1 and β2 (12.7% and 10%, respectively), but also yields slight gains for β0, β1, and

β4, while mitigating the losses in efficiency for β3 (0.6% loss) and β5 (1.1% loss).

• When there is a negative dependence between X1 and X2, the optimal design still yields effi-

ciency gains relative to simple random sampling, though the magnitude of the gain is atten-

uated (10.8% in the estimation of β2). It is important to recognize, however, that while the

efficiency gain is not as high under this setting, if β2 is the sole parameter of interest, it ap-

pears to be even more important to optimize for this parameter, as other designs may lead to

substantial losses in efficiency for the estimation of that parameter: for example, while both

BalX1 and OptX1 also yield substantial efficiency gains for the estimation of β2 when there is

a positive relationship between X1 and X2 (Figure 2.3), these allocations result in efficiency

losses of 15.7% and 10.8%, respectively, when the relationship between X1 and X2 is nega-

tive (Figure 2.4). The OptX2 design yields substantial losses for all other parameters in this

scenario in the range of 11.2% to 29.8%. Again, the OptA design, while resulting in a smaller

efficiency gain for β2 (3.6%), only yields slight losses for β3 and β5 (0.6 - 1.1%).

• Although not presented here, we see similar results for OptX3 in the settings where there is a

relationship (positive or negative) between X1 and the individual-level covariate X3; see Ap-

pendix B.3. The story is also similar for the settings in which there is a relationship between

X1 and the binary cluster-level X4 or the binary individual-level covariate X5, though the effi-

ciency gains and losses in these scenarios are not as large as those considering the continuous

covariates X2 and X3: 7.9% and 6.4% efficiency gains in the estimation of β4 under OptX4 in
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the positive and negative dependence settings, respectively, and 4.5% and 2.1% gains in the es-

timation of β5 for OptX5 in the positive and negative dependence settings, respectively. This

may be due to the fact that the difference in the distributions of X4/X5 are not as different

across levels of the stratification variable X1 as are the distributions of X2/X3. Note, how-

ever, that even in the situations with small efficiency gain relative to simple random sampling

under the OptX4 (OptX5) design for the estimation of β4 (β5), the loss in efficiency for the

estimation of β4 (β5) under the BalX1 can be substantial (1.7% and 10.9% loss compared to

SRS for estimation of β4 in the positive and negative dependence settings, respectively; 12.6%

and 24.7% loss for the estimation of β5 in the positive and negative dependence settings, re-

spectively), thereby making the optimal allocation preferable, particularly if one is interested

in estimating β1 with precision without the loss of efficiency in the estimation of β4 (β5).

• Finally, while the balanced stratified design yields substantial efficiency gains for the estima-

tion of β1, the gain is generally not as much as that under OptX1. Moreover, BalX1 often re-

sults in substantial losses in the estimation of the other parameters relative to simple random

sampling. The inconsistent performance of the balanced stratified design has been noted in

other settings as well.40 This suggests that the balanced stratified design, while commonly

used due to the fact that it is simple to implement in practice, may not be a wise choice of

design when interest lies in estimating parameters other than that corresponding to the strati-

fication variable with precision.

2.6.2 Design Characteristics

Turning attention to the simulation study in which the cluster sizes vary, Table 2.3 shows the aver-

age stratum-specific, cluster-level sample sizes (i.e. the kjs), and the average overall individual-level

sample size, n, across the 10000 iterations for the eight data scenarios in which there is a dependence
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between X1 and one of the other covariates in the model. Based on these summary characteristics,

we make several observations:

• The design that on average yields the largest overall individual-level sample size, n, is not nec-

essarily the most efficient design for the estimation of the parameter of interest. For example,

under the data scenario in which there is a negative dependence between X1 and X2, the av-

erage sample size under the BalX1 design is 4105, while the average sample size under OptX1

is 3597, and that under OptX2 is 4016. Even though the average sample size under BalX1 is

larger than that under OptX1 (4105 vs. 3597), OptX1 is more efficient for the estimation

of β1 (sd(β̂
1:R
1,OptX1

)/sd(̂β
1:R
1,BalX1

)∼ 0.968). Similarly, even though the average sample size

under BalX1 is larger than that under OptX2, OptX2 is more efficient for the estimation

of β2 (sd(β̂
1:R
2,OptX2

)/sd(β̂
1:R
2,BalX1

)∼ 0.762). Finally, even though the average sample size un-

der OptX2 is larger than that under OptX1, OptX1 is more efficient for the estimation of β1

(sd(β̂
1:R
1,OptX1

)/sd(̂β
1:R
1,OptX2

)∼ 0.720).

• When the covariate of interest is continuous, more clusters are generally selected from the strata

in which the variability of the covariate of interest is greater. For example, in the setting in

which there is a negative association between X1 and X2, more clusters are sampled from

the strata with X1 = 0 (on average, 72 clusters from the strata with X1 = 0 vs. 8 clusters

from the strata with X1 = 1), due to the fact that there is more variation in the values of X2

among clusters with X1 = 0; in contrast, in the setting in which there is a positive association

between X1 and X2, more clusters are sampled from the strata with X1 = 1 (48 clusters on

average vs. 33 clusters from the strata with X1 = 0), because in this scenario there is more

variation in the values of X2 among clusters with X1 = 1.

• In the setting in which the values of the covariate of interest are homogeneous within strata (as

is the case with the stratification variable X1 in all scenarios), the kjs are generally distributed
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across the strata in such a way that results in a decrease in the variability of the weights, Kj/kj,

compared to balanced stratified sampling. For example, under the setting in which there

is a negative relationship between X1 and X2, in comparing the weights under BalX1 and

OptX1, we see that the standard deviation in the average sampling weights under OptX1 is

smaller than that under BalX1 (1.51 vs. 2.82). This may be one of the reasons why OptX1 is

slightly more efficient than BalX1 for the estimation of β1, as greater variability in the weights

is known to impact the efficiency of IPW-GEE estimation.64

• The distribution of the stratum-specific sample sizes across levels of the stratification variable X1

is more extreme for negative dependence vs. positive dependence of the covariate of interest with

X1.

2.7 Discussion

In this paper, we provide a formalized framework for determining optimal stratum-specific sample

sizes when interest lies in estimating one or multiple associations in a marginal mean model and the

analysis is conducted using inverse-probability-weighted generalized estimating equations. Through

a comprehensive simulation study, we showed that the optimal allocation of sample sizes across

strata generally yields the greatest gain in efficiency among all designs considered, performing better

than the straightforward approach of taking a simple random sample of clusters, and better than

the balanced stratified design. Our results indicate that when one parameter is of particular inter-

est, the optimal allocation for that parameter yields the greatest efficiency gain for that parameter;

furthermore, if the covariate of interest is positively associated with the stratification covariate, the

optimal allocation for the parameter of interest also results in substantial efficiency gains for the

parameter associated with the stratification covariate. However, optimizing for one parameter in

particular can result in losses for other parameters in the model. This demonstrates a trade-off that is
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Table 2.3: K = 280, varyingNk,Ks=80, σV=0.5. Shown are the average stratum‐specific cluster‐level sample sizes,
and the average overall individual‐level sample size n, under the eight data scenarios in which there is a dependence
between X1 and one of the other covariates in the model, across 10000 iterations. The average number of clusters
sampled from stratum (Y∗ ≥ Y∗

0.80,X1 = 1) is k11, the average number of clusters sampled from stratum (Y∗ <
Y∗
0.80,X1 = 1) is k01, the average number of clusters sampled from stratum (Y∗ ≥ Y∗

0.80,X1 = 0) is k10, and the
average number of clusters sampled from stratum (Y∗ < Y∗

0.80,X1 = 0) is k00. See Sections 2.5.2 and 2.5.3 for
details.

Covariate Dependence Design k11 k01 k10 k00 Ks n Most efficient
with X1k for β1

X2k Positive BalX1 20 20 20 20 80 4173
OptX1 17 23 13 27 80 3704 ✓
OptX2 22 26 11 22 80 3671

Negative BalX1 17 21 21 21 80 4105
OptX1 11 24 15 30 80 3597 ✓
OptX2 3 5 31 41 80 4016

X3ki Positive BalX1 20 20 20 20 80 4208
OptX1 21 19 12 28 80 3758 ✓
OptX3 24 27 8 22 80 3544

Negative BalX1 17 21 21 21 80 4188
OptX1 11 26 17 26 80 3741 ✓
OptX3 3 6 24 47 80 3724

X4k Positive BalX1 20 20 20 20 80 4184
OptX1 16 21 15 29 80 3760 ✓
OptX4 15 18 17 30 80 3873

Negative BalX1 20 20 20 20 80 4166
OptX1 15 23 15 26 80 3736 ✓
OptX4 10 13 22 35 80 3942

X5ki Positive BalX1 20 20 20 20 80 4174
OptX1 19 19 12 30 80 3717 ✓
OptX5 15 17 12 36 80 3599

Negative BalX1 20 20 20 20 80 4160
OptX1 14 24 16 26 80 3732 ✓
OptX5 7 12 19 42 80 3670
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mitigated by the design that optimizes for all parameters simultaneously: under such a design, there

are generally small to moderate efficiency gains across all parameters. Researchers must therefore

identify the primary objective of the research question at the design stage, in order to select the most

appropriate optimality criterion. While the simulation study described in the paper corresponds to

a specific data setup, we also expanded upon the setting presented here, the results of which can be

found in Appendix B.3. In general, the story remains the same, with differences related to the degree

of efficiency gain observed.

As mentioned in the Introduction, the degree of efficiency gain depends upon a variety of fac-

tors, including which piece(s) of information are used to stratify the clusters, the degree of variabil-

ity of the outcome and the covariates across clusters, the method of analysis, and the sample size

allocations across the strata. In the setting we consider in this paper, only cluster-level summaries of

the outcome would be available at the design stage. A threshold for the outcome summary measures

must therefore be selected for stratification (as must be done for an individual-level covariate that is

to be stratified upon). In the simulation study we conducted, we chose as the threshold, Y∗0.80, the

80th quantile of the distribution of the number of outcome cases across the K clusters. This may not

have been the optimal stratification, and determining the best threshold for stratification is an area

for future research. In the survey sampling context, when interest lies in estimating a mean or a to-

tal of a measure of interest, efficiency may be gained by creating homogenous strata. Making strata

homogeneous for estimation of regression coefficients may be less straightforward.82 With regard

to the method of analysis, we assumed in this paper that the analysis would proceed via inverse-

probability-weighted generalized estimating equations. While inverse-probability-weighted analysis

methods are known to be inefficient compared to other approaches such as maximum likelihood

or mean-score methods, the advantage of such an approach is robustness to model misspecifica-

tion9,62,68 and the fact that one does not need to model the relationship between the exposure of

interest and the stratification variable(s) at the design stage.40
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The results of our simulation study demonstrate the value in sampling clusters according to the

optimal allocation - in other words, sampling clusters wisely has the potential for efficiency gains

over designs such as simple random sampling or balanced stratified sampling, even when the analy-

sis takes place at the level of the individual. There are several direct extensions of this work. First, as

has been mentioned, the formulae for the optimal stratum-specific sample sizes depend on quan-

tities that, at the outset, will be unknown, including the true parameters of the target marginal

mean model, β0, as well as the values of the variance components. Now that we have established

that there are indeed potential benefits to be gained, developing and evaluating creative strategies to

operationalize these designs in practice is, therefore, an important avenue for future research. This

research, for example, could build on adaptive strategies that have been proposed for other instances

in which key parameters are unknown at the outset, such as that proposed in the context of sam-

ple size and power calculations,24 or that presented for approximating optimal allocation in other

settings.15,21,42,69 Another potential way forward would be to use imputation, following the ap-

proaches taken in the analysis of longitudinal data.62,66 Furthermore, with regard to optimizing for

multiple parameters, our simulation study only evaluated the approach in which every parameter

is given equal weight (wq = 1 for q = 1, . . . , p). There may be instances in which researchers are

interested in estimating multiple but not all parameters with high precision. For example, one may

be interested in estimating two of the main effects and their interaction term with precision. Even

if interest lies in estimating all parameters with precision (i.e. all wq non-zero), it may be preferable

to assign different weights to different parameters. A topic for future research therefore concerns

expanding the study of optimal allocation in the setting when multiple parameters are of interest.

In other cases, researchers may not know the exact specification of the model in the final analysis,

and may prefer to move forward with a sampling design that optimizes for more than one model,

presenting another area for future research. Finally, in this paper we considered single-stage cluster-

based sampling designs. A perhaps more common design is a two-stage cluster-based sampling de-
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sign. In such a setting, there may be a specific cost associated with travel to clusters, and a certain

cost associated with collecting information on individuals once at a cluster. Given a budgetary con-

straint, researchers must determine which clusters to sample, and subsequently, which individuals

to sample within the sampled clusters, based on information that is available at the design stage.

Extending the framework for optimal allocation to this setting, and investigating the potential for

efficiency gains, is yet another area for future research.
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Abstract

Cluster-based outcome-dependent sampling (ODS) has the potential to yield efficiency gains

when the outcome of interest is relatively rare, and resource constraints allow only a certain num-

ber of clusters to be visited for data collection. Previous research has shown that when the intended

analysis is inverse-probability weighted generalized estimating equations (IPW-GEE), and the num-

ber of clusters that can be sampled is fixed, optimal allocation of the (cluster-level) sample size across

strata defined by auxiliary variables readily available at the design stage has the potential to increase

efficiency in the estimation of the parameter(s) of interest. In such a setting, the optimal alloca-

tion formulae depend on quantities that are unknown, currently making such designs difficult to

implement in practice. In this paper, we consider an adaptive sampling approach, in which a first

wave sample is collected using balanced stratified sampling, and subsequently used to compute the

optimal second wave stratum-specific sample sizes. We consider two strategies for estimating the

necessary components using the first wave data: an inverse-probability weighting (IPW) approach

and a multiple imputation (MI) approach. In a comprehensive simulation study, we show that the

adaptive sampling approach performs well, and that the MI approach yields designs that are near-

optimal, regardless of the covariate type. The IPW approach, on the other hand, has mixed results,

with better performance for parameters associated with individual-level covariates compared to

those corresponding to cluster-level covariates. Finally, we illustrate the proposed adaptive sampling

procedures with data on maternal characteristics and birth outcomes among women enrolled in the

Safer Deliveries program in Zanzibar, Tanzania.
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3.1 Introduction

Outcome-dependent sampling (ODS) can be a cost-efficient sampling strategy

when resources for data collection are limited. When the outcome of interest is rare, and sampling

occurs at the level of the individual, sampling designs that use information on the outcomes of the

individuals in the population of interest, such as the case-control design, have demonstrated poten-

tial for efficiency gains over alternative sampling schemes such as simple random sampling. In public

health settings, individuals are often clustered. When resource constraints prevent researchers from

being able to carry out data collection in every cluster, a cluster-based ODS design that leverages

information on a summary measure of the outcomes in a cluster and possibly some other auxiliary

variable(s) known at the design stage, can be implemented instead.

One way to operationalize a cluster-based ODS design is to stratify the clusters based on pieces of

information known at the design stage, and to then sample a certain number of clusters from each

of the strata. Data that has been collected in such a way can be analyzed using inverse-probability

weighted generalized estimating equations (IPW-GEE),12,60 where the weights are the inverse of the

cluster-specific probabilities of selection. The number of clusters sampled from each of the defined

strata can influence the efficiency gain or loss for a particular parameter in the analysis model, and in

Chapter 2 we derived formulae for the optimal allocation of the (cluster-level) sample size across the

strata, when the intended analysis is IPW-GEE. We showed that such an optimal allocation strategy

yields efficiency gains for the parameter of interest relative to simple random sampling of clusters or

balanced sampling of clusters across strata.

One major obstacle to implementing such a design in practice, however, is the fact that the for-

mulae for the optimal stratum-specific sample sizes depend on quantities that are, at the outset,

unknown. Such quantities include the true parameter values and the variance components, which
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rely on having complete information on the outcome and the covariates in the analysis model for

all individuals in the population. If external pilot data are available, one could in principle obtain

estimates of the various design components needed. Such pilot studies can be prohibitively expen-

sive, however, or the efficiency to be gained under the optimal allocation design may not justify the

additional cost of conducting the external pilot study.42 As an alternative, we propose a two-stage

adaptive sampling scheme, in which the data collected at the first stage serves as an internal pilot

study that is used to obtain estimates of the quantities needed to calculate the stratum-specific sam-

ple sizes for the clusters that can be sampled with the remaining resources.

The use of an internal pilot study has been shown to be effective in other settings.17,24,34,42,78 For

example, Haneuse et. al (2011) proposed a two-stage strategy for conducting power and sample size

calculations that account for patterns of confounding in observational studies. This approach in-

volves the use of data collected to-date as an internal pilot study, which is used to estimate necessary

components that would otherwise be unknown, such as the joint distribution of the covariates of

interest. In a setting adjacent to the one we consider, McIsaac et. al (2015) presented an adaptive

sampling approach to operationalize optimal allocation in two-phase designs, when the intended

analysis is the mean score method. More recently, the use of an internal pilot study through adap-

tive, or multi-wave sampling, has also been proposed by Han et. al (2020)21, Tao et. al (2020),69 and

Chen and Lumley (2020),71 and with good results.

In this paper, we consider two-wave adaptive sampling in settings where the target population is

clustered into K clusters, but resources are available to sample onlyKs < K clusters. Such a strategy

involves samplingKs,1 clusters in the first wave, using this first wave data to estimate the optimal al-

location of the remaining resources, and sampling the remainingKs,2 = Ks −Ks,1 clusters according

to the (approximated) optimal allocation. We develop and evaluate two approaches to estimating

the variance components given the first wave data: an inverse-probability weighting (IPW) approach

and a multi-level multiple imputation (MI) approach that employs the imputation approach pro-
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posed by Jolani et. al (2015).29 In a comprehensive simulation study, we evaluate the performance

of the adaptive sampling approach. The rest of this paper is organized as follows: in Section 2, we

detail the optimal allocation formulae; in Section 3, we describe our proposed adaptive sampling

strategies; Section 4 describes the simulation study we conducted, and Section 5 applies the pro-

posed methods to a dataset on women enrolled in the Safer Deliveries program, the goal of which

was to to reduce the rate of maternal mortality in Zanzibar, Tanzania. Finally, Section 6 provides a

discussion and concluding remarks.

3.2 Review of Optimal Allocation in Stratified Cluster-Based ODS

In Chapter 2 we proposed a framework for the optimal allocation of finite resources across defined

strata, when the final analysis is expected to proceed via IPW-GEE. Those results are theoretical in

the sense that the proposed allocation formulae assumed knowledge of unknown quantities, includ-

ing the true parameter values. As such, while the results of Chapter 2 are important, they do not

immediately translate into practice. Our goal in this paper is therefore to propose a strategy that en-

ables the operationalization of such a design in practice. The rest of this section reviews the frame-

work laid out in Chapter 2, while the following section describes the proposed adaptive sampling

strategies.

3.2.1 Model of Interest

Suppose that interest lies in learning about the relationship between an outcome Y and a p-vector of

covariates, X, in a population where the individuals exhibit cluster-correlation in their outcomes.

Specifically, the population of interest is made up of K clusters, withNk individuals in the kth

cluster, such that the total number of individuals in the target population isN =
∑K

k=1Nk. Fur-

thermore, we assume that estimation and inference will be performed using the following marginal
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mean model for the outcome of the ith individual in the kth cluster:

μki = E[Yki|Xki] = g−1(XT
kiβ), (3.1)

where g(·) is a user-chosen link function and β a p-vector of regression parameters.

3.2.2 Estimation and Inference

Given data that has been collected through a single-stage cluster-stratified outcome-dependent sam-

pling design, estimation and inference can proceed via IPW-GEE.12,60 In particular, the regression

parameters β can be estimated as the solution to the following:

Uw(β) =
K∑
k=1

Rk
πk

DT
kV

−1
k εk = 0. (3.2)

whereRk is equal to 1 if cluster k is sampled and is equal to 0 otherwise; πk is the probability of

cluster k being sampled; εk = (Yk − μk), with Yk = (Yk1, . . . ,YkNk) and μk = (μk1, . . . , μkNk
). The

Nk × pmatrix of partial derivatives is denoted byDk = ∂μk/∂β, andVk, indexed by the unknown α,

is anNk ×Nk working specification for Cov[Yk].

Note, expression (3.2) can be rewritten as Uw(β) = UTWR, whereU = diag{Y− μ}V−1D is an

N×pmatrix, Y = (Y1, . . . ,YK)
T, μ = (μ1, . . . ,μK)

T,V is anN×N block-diagonal matrix, with the

Vk on the diagonal, andD is theN× pmatrix obtained by stacking theKDk matrices;W is anN×N

diagonal matrix with diagonal entries equal to the vector (W1,W2, . . . ,WK)
T, withWk a vector

of lengthNk with each element equal to π−1
k . LettingRk denote theNk×1 vector with all entries

equal toRk,R is theN × 1 vector obtained by concatenating theRk together. Sauer et. al (2021)60

showed that β̂w, the solution to (3.2), is consistent for β0, the true value of β, and asymptotically

multivariate Normal, with
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Var[β̂w] = H(β0)
−1
{
Var[Uw(β)]|β=β0

}
H(β0)

−1.

In the expression above,H(β) = E[−∂U/∂β], U = UT1N×1,Var[Uw(β)] = Var[UT1N×1] +

E[UTWΔWU], Δ = Var[R|FK], andFK = {Y,X,Z, S}, where Z is a collection of variables

available at the design stage that, while not included in the model, may be used to define the strati-

fication of the clusters, and S is a vector of values of the variable S which defines the stratification of

the clusters into J strata.

3.2.3 Optimal Allocation

The optimal allocation for the estimation of βq, the q
th parameter in (3.1), involves determining the

stratum-specific sample sizes kj, j = 1, . . . , J such that the variance of β̂q is minimized, subject to

the constraint that
∑J

j=1 kj = Ks. This corresponds to determining the allocation that minimizes

the [q, q]th entry of E[H−1UTWΔWUH−1], the term ofVar[β̂w]which depends on the selection

indicatorsR. This is given by:

E[H−1UTWΔWUH−1][q,q] =
∑J

j=1
Kj−kj
kj [Aq,j −

Bq,j
Kj−1 ] =

∑J
j=1

Kj−kj
kj Cq,j

where Aq,j =
∑

k∈Sj
∑Nk

i=1
∑Nk

i′=1 E[h
[q]
ki h

[q]
ki′ ], Bq,j =

∑
k∈Sj

∑
k′ ̸=k∈Sj

∑Nk
i=1
∑Nk′

i′=1 E[h
[q]
ki h

[q]
k′i′ ],

h[q]ki is the entry in the (q + 1)th column ofUH−1 corresponding to the ith individual in the kth

cluster, and Sj = {k : cluster k ∈ stratum j}. The optimization problem involves minimizing

fq(k1, k2, . . . , kJ) =
∑J

j=1
Kj−kj
kj Cq,j subject to the constraint that

∑J
j=1 kj = Ks, and can be solved

using the method of Lagrange multipliers, from which it follows that

kj = Ks
(K1/2

j C1/2
q,j )∑J

j=1 K
1/2
j C1/2

q,j

. (3.3)
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3.3 Two-Wave Adaptive Sampling

The formula for the kj given in expression (3.3) depends on knowledge of the true parameter val-

ues β0, as well as the variance components through the Cq,j. To implement the optimal allocation

in practice, we propose a two-wave adaptive sampling approach. In the first wave,Ks,1 clusters are

sampled through a simple to implement but likely sub-optimal strategy, such as balanced stratified

sampling. In the second wave,Ks,2 = Ks −Ks,1 clusters are then sampled through the approximately

optimal design, using estimates of β0 and the variance components obtained from analyzing the

data collected from theKs,1 clusters sampled in the first wave. By approximately optimal, we mean a

design that yields stratum-specific sample sizes that are close to the optimal allocation one would get

with complete knowledge of the quantities needed to compute (3.3). The overall number of clusters

sampled from stratum j is kj = kj,1+kj,2, where
∑

j kj,1 = Ks,1,
∑

j kj,2 = Ks,2, andKs,1+Ks,2 = Ks.

The probability of selection for cluster k in stratum j is given by:

πk = P(Rk = 1|D∗) = P(Rk,1 = 1 ∪ Rk,2 = 1|D∗)

= P(Rk,1 = 1|D∗) + P(Rk,2 = 1|Rk,1 = 0,D∗) ∗ P(Rk,1 = 0|D∗)

=
kj,1
Kj

+
kj,2

Kj − kj,1
×

Kj − kj,1
Kj

=
kj,1
Kj

+
kj,2
Kj

=
kj
Kj

whereD∗ is the totality of the information available at the design stage,Rk,1 is the selection indica-

tor for cluster k in the first sampling wave, andRk,2 denotes the selection indicator for cluster k in

the second sampling wave. The overall probability of selection under adaptive sampling is therefore

the same as that under the non-adaptive setting. We can then determine the second wave sample

sizes, kj,2 by minimizing

E[H−1UTWΔWUH−1]q,q =
∑J

j=1
Kj−kj,1−kj,2
kj,1+kj,2 Cq,j

subject to the constraint that
∑J

j=1 kj,1 +
∑J

j=1 kj,2 = Ks. Defining the Lagrangian
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L :=
J∑

j=1

Kj−kj,1−kj,2
kj,1+kj,2 Cq,j + η(

J∑
j=1

kj,1 +
J∑

j=1
kj,2 − Ks),

taking the partial derivatives with respect to the kj,2 and η, and setting them equal to 0 yields a sys-

tem of J+ 1 equations. Solving the system of equations for kj,2 and η yields

kj,2 = Ks
(K1/2

j C1/2
q,j )∑J

j=1 K
1/2
j C1/2

q,j
− kj,1,

which must be estimated by estimating Cq,j. In the following two sections we describe two different

approaches to estimating the Cq,j.

3.3.1 Inverse-ProbabilityWeighting

Given the first wave data, one can estimate E[H−1UTWΔWUH−1]with

Ĥ−1UTWdiag(R1)Δ̃1diag(R1)WUĤ−1,

where Ĥ =
K∑
k=1

Rk,1
πk,1D

T
kV

−1
k Dk and πk,1 is the probability of cluster k being sampled in the first wave,

kj,1
Kj
. TheN × 1 vectorR1 is made of up of theK first waveNk-vectors of the selection indicators

concatenated together. Finally, Δ̃1 is anN × Nmatrix with entries in the kth diagonal block equal

to πk−π2k
πk,1 and entries in the off-diagonal block corresponding to clusters k and k′ equal to πkk′−πkπk′

πkk′,1
,

where πkk′,1 is the joint probability of clusters k and k′ being sampled in the first wave. If clusters k

and k′ belong to the same stratum, πkk′,1 =
kj,1
Kj

kj,1−1
Kj−1 , whereas the joint probability is equal to

kj,1
Kj

kj,1
Kj

if

these two clusters belong to different strata.

3.3.2 Multiple Imputation

One of the drawbacks of the IPW approach is that only information on the individuals in theKs,1

clusters sampled in the first wave is used in the estimation of the Cq,j. The IPW approach therefore
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discards some pieces of information that are available for the individuals in all K clusters.66 For ex-

ample, the values of the cluster-level covariates in the model, and the cluster-level summaries of the

outcome, which we assume to be available for all K clusters from the outset. We therefore also con-

sider a second approach to estimating the Cq,j.

Here we assume that after the first wave data has been collected, researchers have the following

information available to them: the values of cluster-level variables for all K clusters, as well as the

proportion of outcome cases and size of each cluster, and the values of individual-level covariates

for all of the individuals sampled in the first wave. One must therefore impute the individual-level

covariates in the model of interest for the individuals not sampled in the first wave. In this setting,

the individual-level covariates are systematicallymissing,56 which in this context means that they are

missing completely for the clusters not sampled in the first wave. To impute these individual-level

covariates, we use the multilevel imputation approach of Jolani et. al (2015),5,29 which takes into

account the hierarchical structure of the data. Briefly, this approach uses a fully conditional specifi-

cation (FCS),72 where a conditional model is specified for every variable that has some missingness.

Using a generalized linear mixed model for the imputation model, this approach first draws the im-

putation model parameters from their posterior predictive distributions using a noninformative

Jeffreys prior; the missing covariate values are then drawn from its posterior predictive distribution

given the imputation model parameters. The multiple imputation approach we propose involves

the following steps:

1. generateM imputed complete datasets

2. for each of theseM datasets, compute the Cq,j

3. compute C̃q,j = 1
M
∑M

m=1 C̃m
q,j

4. compute the kj,2 using C̃q,j as an estimate for Cq,j.
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3.3.3 Other Practical Issues

It is possible for the computed second wave sample sizes to yield kj,2 > Kj − kj,1; such a setting is

problematic, as there are not enough clusters remaining in stratum j after the first wave in order to

sample the kj,2 clusters in the second wave. On the other hand, it is also possible for the computed

kj,2 to be negative; such a scenario suggests that fewer clusters should have been sampled from stra-

tum j, but as the kj,1 clusters have already been sampled in the first wave, it is not possible to sample

fewer clusters at this point. We refer to the cases in which either kj,2 > Kj − kj,1 or kj,2 < 0 as

edge cases, and develop a strategy for handling these scenarios, the details of which are given in Ap-

pendix C.1. Briefly, we define a threshold τ, which denotes the number of edge cases we are willing

to tolerate. If the number of edge cases is greater than or equal to τ, we sampleKs,1inc more clusters

via the first wave sampling strategy and recompute the kj,2 using the larger first wave sample. If the

number of edge case is less than τ, on the other hand, we fix the edge cases at the boundary (i.e. set

kj,2 = Kj − kj,1 if kj,2 > Kj − kj,1 and set kj,2 = 0 if kj,2 < 0), and recompute the other kj,2 with an

updated constraint:

K∗
s = Ks −

∑
j:kj,2<0

kj,1 −
∑

j:kj,2>Kj−kj,1
Kj

We note that if the number of edge cases is greater than τ, the sampling strategy becomes one of

s > 2 waves. This may not be desirable in certain settings, in which getting permission to do data

collection at health centers (clusters) is a long process. This is therefore one of the features we com-

pare between the two proposed estimation procedures in our simulation study, which is described

in the next section.
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3.4 Simulation Study

We conducted a simulation study to evaluate the performance of the proposed adaptive sampling

approach, using both estimation (IPW andMI) strategies. The model of interest for the ith individ-

ual in the kth cluster used in the simulation study is given by:

logit(P(Yki = 1)) = β0 + β1X1k + β2X2k + β3X3ki + β4X4k + β5X5ki

where β0 = (−3.1, 0.3, 0.7, 0.7, 0.7, 0.7). In order to investigate how the performance of the

adaptive sampling procedure is affected by the type of the covariate of interest, and the direction of

the association with the stratification variable(s), we consider nine data scenarios, which are based

on the simulation study in Chapter 2; Table 3.1 provides a summary. In the baseline scenario, X1k

is a binary cluster-level covariate with prevalence of 0.30. X2k ∼ N(1, σ = 0.25) is a continuous

cluster-level covariate, while X3ki ∼ N(1, σ = 0.25) is a continuous individual-level covariate.

X4k ∼ Ber(pk) is a binary cluster-level covariate with pk = expit(−0.9), while X5ki ∼ Ber(pk) is a

binary individual-level covariate with pk = 0.25. In the baseline scenario, there is no dependence

between the covariate used for stratification, X1, and the other covariates in the model. We build

on this scenario by changing the relationship between X1 and each of the other covariates in turn,

considering both positive and negative associations with X1.

3.4.1 Designs

For each data scenario, we generated 10000 complete datasets ofK = 280 clusters with varying

cluster sizes. The number of clusters and the variation of the cluster sizes was set equal to these in

the dataset on maternal characteristics and birth outcomes among women enrolled in the Safer De-

liveries program, a dataset which we discuss in more detail in Secton 3.6. Correlation between the
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Table 3.1: Covariate distributions for nine simulation scenarios considered in Section 3.4.

Covariate Baseline Eight scenarios in which X1k and each of the remaining
Scenario covariates are dependent

Positive dependence Negative dependence

X1k Ber(0.3) – –

X2k N(1, 0.25) μ = 1+ 0.5I(X1k=1) μ = 1+ 0.5I(X1k=0)
σ = 0.25+ 0.75I(X1k=1) σ = 0.25+ 0.75I(X1k=0)

X3ki N(1, 0.25) μ = 1+ 0.5I(X1k=1) μ = 1+ 0.5I(X1k=0)
σ = 0.25+ 0.75I(X1k=1) σ = 0.25+ 0.75I(X1k=0)

X4k Ber(pk), pk = 0.6I(X1k=1))+ pk = 0.156I(X1k=1)+
pk = expit(−0.9) 0.156I(X1k=0) 0.346I(X1k=0)

X5ki Ber(pk), pk = 0.6I(X1k=1))+ pk = 0.1I(X1k=1))+
pk = 0.25 0.1I(X1k=0) 0.314I(X1k=0)

outcomes was induced using the MMLB package for R. For each generated complete dataset, the 280

clusters were stratified according to Y∗0.80, the 80th quantile of the number of outcome cases across

the K clusters, and X1. Then,Ks = 80 clusters were sampled from the four strata according to the

following five designs: (i) optimal allocation for the estimation of β1 (OptX1), (ii) optimal allocation

for the estimation of β2 (OptX2), (iii) optimal allocation for the estimation of β3 (OptX3), (iv) opti-

mal allocation for the estimation of β4 (OptX4), and (v) optimal allocation for the estimation of β5

(OptX5).

3.4.2 Design Approximations

For each of the scenarios described in the previous section, we determined the optimal allocation

using the complete data set and true parameter values (gold standard), and approximated the op-
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timal design using i) adaptive sampling with IPW estimation and ii) adaptive sampling withMI

estimation. For both estimation approaches, we investigated the impact of the relative sizes of the

first wave and second wave samples (i.e. Ks,1 andKs,2) on the performance of the optimal alloca-

tion approximation. In particular, we variedKs,1/Ks,2 ∈ {20/60, 40/40, 60/20}. Furthermore,

we set the first wave increment size to 20 clusters (see Section 3.3.3) and set the threshold for the

number of tolerated edge cases to τ = 3. For the MI approach, we took the cluster-level variables

X1, X2, and X4, as well as the outcome Y, to be known. We then used the multilevel imputation

approach of Jolani et. al (2015)28 to impute the continuous individual-level covariate X3 and the

binary individual-level covariate X5 for the clusters not sampled in the first wave, using the micemd

and mice packages in R. For the setting in which X1 and X3 are associated, due to the fact that the

variance of X3 depends on X1, we imputed X3 and X5 separately for the clusters with X1 = 1 and

X1 = 0. We set M, the number of imputed data sets within one iteration, to 5 in all settings. The

first wave sample size was selected using balanced stratified sampling (BalX1).

3.4.3 Analyses

For each sample obtained under the various design options, we computed the point estimates by

solving expression (3.2). For each design, across the 10000 iterations, we computed the mean point

estimates, as well as the standard deviation of the point estimates. In order to evaluate the perfor-

mance of the adaptive sampling strategies in approximating the optimal design, we computed the

change relative to the optimal design in the standard deviation of the point estimates, expressed as a

percentage: (
sd(̂β

1:R
w,q)Adapt−sd(̂β

1:R
w,q)Opt

sd(̂β
1:R
w,q)Opt

)
× 100 for q = {1, . . . , p}.

whereR is the number of simulation iterations, in this case 10000. Furthermore, we computed the

difference between the stratum-specific sample sizes under the adaptive designs and the optimal
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design, as a fraction of the overall stratum size, a measure presented inMcIsaac et. al (2015)42:

kijAdapt−kijOpt
Ki
jOpt

for i = {1, . . . , 10000}, j = {1, . . . , J}.

The latter can be thought of as a distance measure, by which to evaluate the accuracy and precision

of the adaptive sampling strategies.

3.5 Results

Figure 3.1 shows the percent change in the standard deviation of the point estimates (first measure

described in Section 3.4.3) for the settings in which there is a positive relationship between X1 and

the continuous cluster-level covariate X2 (top panel) and the setting in which there is a negative re-

lationship between X1 and X2 (bottom panel); similarly, Figure 3.2 shows the results corresponding

to the setting in which there is a dependence (positive and negative) between X1 and the continuous

individual-level covariate, X3.

3.5.1 Impact of Estimation Strategy

Based on Figures 3.1 and 3.2, we see that the efficiency losses under the adaptive sampling approach

withMI estimation are generally lower than those under the IPW approach, particularly when the

allocation is optimal with respect to a cluster-level covariate. In fact, under the MI approach in the

settings in which there is a positive association between X1 and X2 (Figure 3.1) or X1 and X3 (Fig-

ure 3.2), the percent change in the standard deviation of the cluster-level parameter estimates β̂1,

β̂2, and β̂4, under the designs that are optimal with respect to those parameters, is less than 2.7% re-

gardless of the first wave sample size. On the other hand, the percent loss under the IPW approach

is as much as 11.7%. The superior performance of the MI approach for allocation to a cluster-level

parameter is intuitive, as the MI approach leverages the cluster-level information that is available for
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allK clusters in the population of interest, while the IPW approach uses only the cluster-level infor-

mation available for theKs,1 clusters sampled at the first wave. When the allocation is optimal with

respect to an individual-level covariate, the performance of the IPW approach improves, though we

see that the losses in efficiency are in general still greater than those under the MI approach, particu-

larly when the first wave sample size is 20 or 40.

Additional results (not shown here) show boxplots of the stratum-specific differences between

the adaptive and optimal sample sizes across the 10000 iterations (the second measure described in

Section 3.4.3). Regardless of the data scenario and the first wave sample size, the variability of the

IPW approach is substantially higher than that of the MI approach.

3.5.2 Impact of ImputationModelMisspecification

The results described in Section 3.5.1 seem to suggest that the MI approach combined with an ap-

propriate first wave sample size is always the preferable strategy for operationalizing the optimal

allocation in practice. However, we note that care must be taken in carrying out the imputation of

variables with missing values. For instance, in the setting in which there is a relationship (positive

or negative) between X1 and X3, imputing the missing values of X3 separately for the clusters with

X1 = 0 and X1 = 1 is necessary in order to capture the fact that the variance of X3 depends on the

value of X1 (for example, X3 ∼Normal(μ, σ2) with σ = 0.25+0.75I(X1 = 1) in the positive depen-

dence setting) - failing to do so results in efficiency losses that exceed those under the IPW approach:

the percent loss in efficiency under the MI/OptX3 approach ranges from 13.6% to 18.6% for the

estimation of β3, compared to losses of 3.4 to 6.8% under the IPW/OptX3 approach. On the other

hand, the stratified imputation approach yields losses of only 0 to 3.4 % under OptX3 for the esti-

mation of β3, as is shown in the top panel of Figure 3.2 in this paper. The reason for the loss stems

from the fact that in this setting, the variance of X3 is higher in the strata with X1 = 1. The opti-

mal allocation therefore samples more clusters from these strata; imputing the values of X3 without

84



carrying out the imputation separately according to levels of X1 fails to capture the difference in the

variation of the X3 values according to X1, and therefore undersamples from the more informative

strata, i.e. those with X1 = 1: under the optimal allocation approach, the average stratum-specific

sample sizes for (I(Y∗≥Y∗0.80),X1) = (1, 1) and (I(Y∗≥Y∗0.80),X1 = (0, 1) under OptX3 are (k11, k01) =

(22, 28), while under the unstratifiedMI adaptive approach with a first wave sample size of 20, the

average sample sizes are (k11, k01) = (13, 15).

3.5.3 Impact of FirstWave Sampling Strategy

The performance of BalX1 as the first wave sampling strategy differs depending on the nature of

the dependence between the covariate of interest and the stratification covariate, X1. In our simula-

tion study, balanced stratified sampling was appropriate in the settings with a positive dependence.

On the other hand, in the settings where the covariate of interest is negatively associated with X1,

balanced stratified sampling in the first wave resulted in too many clusters being sampled from the

strata with X1 = 1. The consequence is a loss in efficiency, as can be seen for the estimation of

β2 under OptX2 in the bottom panel of Figure 3.1 (1.2 - 18.1% loss under the MI approach, 10.8 -

20.5% loss under the IPW approach) and for the estimation of β3 under OptX3 in the bottom panel

of Figure 3.2 (0 - 14.9% loss under the MI approach, 6.4 - 14.9% loss under the IPW approach). Ad-

ditional results (not shown here) in which the first wave sampling strategy involves sampling 40%,

as opposed to 50%, of the first wave clusters from the strata with X1 = 1 whenKs,1=20, and sam-

pling 20% of the first wave clusters from these strata whenKs,1=40 or 60, show that such a strategy

performs better in the negative dependence setting. For example, in the setting of negative depen-

dence between X1 and X2, the loss in efficiency for the estimation of β2 under OptX2 is reduced to

1.2 - 2.4% under the MI approach and 3.6 - 4.8% under the IPW approach. Similarly, in the set-

ting of negative dependence between X1 and X3, the loss in efficiency for the estimation of β3 under

OptX3 is reduced to 1.2 - 2.4% under the MI approach and 4.3-6.4 % under the IPW approach. The
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strategy of sampling fewer clusters from the strata with X1 = 1 in the first wave under the nega-

tive dependence setting works well because this results in fewer clusters being sampled from the less

informative strata.

3.5.4 Impact of Varying FirstWave Sample Size

The impact of varying the first wave sample size depends on the estimation procedure (IPW orMI),

whether the allocation is optimal with respect to a cluster-level or individual-level covariate, and the

direction of the dependence between X1 and the covariate of interest. Under the MI approach, the

first wave sample sizes of 20 or 40 generally resulted in very close approximations to the optimal

allocation, while the performance using a first wave sample of 60 clusters depended on the gold

standard/optimal distribution of the kjs. When using IPW estimation, a first wave sample size of 20

clusters generally resulted in large efficiency losses. This seems to indicate that a first wave sample of

20 clusters is too small to yield reliable IPW estimates of the design components needed to compute

the optimal allocation of the second wave sample.

The relative performance of a first wave sample of 40 or 60 clusters under the IPW approach de-

pends upon the distribution of the kjs that the adaptive sampling strategy is meant to approximate.

For example, across all settings considered with a positive dependence of one of the covariates with

X1, OptX1/Ks,1 = 60 was the most efficient of the adaptive designs for the estimation of β1, while

OptX4/Ks,1 = 60 was most efficient for estimation of β4. On the other hand, across all settings of

positive dependence with X1, OptX2/Ks,1 = 40 and OptX3/Ks,1 = 40 were most efficient for the

estimation of β2 and β3, respectively. This seems to suggest that when using the IPW approach, a

larger first wave sample size yields better estimates of the stratum-specific sample sizes, as long as the

first wave sample has not already ‘overreached’ (sampled too many clusters) in certain strata. For ex-

ample, under positive dependence of X1 and X2, the average stratum-specific sample sizes using the

optimal allocation design was (k11, k01, k10, k00) = (17, 22, 15, 26) for OptX1, and (11, 14, 15, 40) for
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OptX3; under the adaptive approach for OptX1, a first wave sample of 60 clusters permits a larger

sample with which to estimate the second wave allocation, without oversampling too many clusters

from any of the strata, while for OptX3, a first wave sample of 40 clusters is more appropriate. In the

settings of negative dependence with X1, the story was similar.

3.5.5 Impact of Threshold for Edge Cases

The value of τ did not matter under the MI approach, as there were generally less than two edge

cases for every iteration under this estimation strategy. We ran additional simulations to investigate

the impact of varying the threshold τ ∈ {2, 3, 4} for the number of tolerated edge cases under

the IPW approach in the scenario with a positive dependence between X1 and X2. The most pro-

nounced differences arise when the first wave sample size isKs,1=60, with only slight differences

whenKs,1 = 20 or 40. WhenKs,1 = 60, a threshold of τ = 2 results in greater losses in efficiency for

the estimation of β0, as well as β3 − β5. This is most likely due to the fact that the lower threshold

of τ = 2 results in more clusters being sampled via the non-optimal first wave sampling strategy

(BalX1), which differs fromOptX3 - OptX5 more than fromOptX1 and OptX2.

3.5.6 Other Comments

We close this section with a few additional comments pertaining to the simulation results:

1. Though rare, there are a few instances in which the adaptive strategy is more efficient for the

parameter of interest than the optimal allocation design. This is an observation that is also

raised by bothMcIsaac et. al (2015)42 and Chen and Lumley (2020),71 and is most likely

due to the fact that the optimal design is only optimal asymptotically (though as we see, still

efficient in finite samples). In other instances, we see that the adaptive sampling strategy is

more efficient for the other parameters in the model that do not correspond to the covariate
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of interest. This is most likely due to the fact that the adaptive sampling strategy, while losing

some efficiency for the parameter of interest, results in a design that mitigates the losses for

some of the other parameters in the model.

2. Under the IPW approach, there was not much of a difference between using an increment of

4 clusters as opposed to an increment of 20 clusters.

3. The results for the settings in which there is a dependence between a binary covariate and X1

are similar to those described in the previous subsections.

3.6 Data Application

3.6.1 Safer Deliveries Program

The Safer Deliveries program was an effort by the Zanzibar Ministry of Health and D-tree Interna-

tional to reduce the high rate of maternal mortality in Zanzibar, Tanzania, by increasing the rate of

deliveries that occur in health facilities.18,19 Initially piloted in 2011-2012, expanded from 2013 to

2014, and finally implemented at scale in 10 of Zanzibar’s 11 districts between January 2016 and

September 2019, the program involved enlisting and training community health workers (CHWs)

to enroll pregnant women into the program and to subsequently provide guidance and support

during the woman’s pregnancy, all with the aid of a mobile app.19

As part of this process, the CHWs collected data on the women enrolled in the program, such as

demographic and health information, obstetric history, the number of antenatal care (ANC) visits,

and the number of visits the woman received by a CHW during pregnancy. Each woman’s shehia

(lowest offical administrative unit) of residence was also recorded, as was the location of delivery,

after the woman had given birth.
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Figure 3.1: Shown is (sd(̂β
1:R
q,Adapt) ‐ sd(̂β

1:R
q,Opt))/sd(̂β

1:R
q,Opt), q = 1, . . . , p under the adaptive sampling strategy using IPW

estimation (reds) and multiple imputation (blues), forKs = 80 andKs,1 ∈ {20, 40, 60} under positive dependence X1
and X2 (top panel), and negative dependence X1 and X2 (bottom panel).
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Table 3.2 shows the characteristics of a subset of 28, 789 women enrolled in the program who

gave birth between 2014 andMay 2017. This subset includes women from 280 shehias, with the

number of women from each shehia ranging from 1 to 509. We see that a higher percentage of

women in the 36−49 age category delivered outside of a health facility (27.2%) compared to women

in the≤ 20 age category (21.0%) and women in the 21 − 35 age category (26.1%). Furthermore,

women from the island of Pemba are seemingly more likely to deliver outside of a health facility

than women from the island of Unguja (34.5% vs. 18.4%). Finally, a larger proportion of women

who did not have 4 ANC visits during pregnancy, did not receive a visit from a CHW at 8-9 months

of pregnancy, and did not complete secondary school delivered outside of a health facility compared

to women who did have 4 ANC visits, were visited by a CHW at 8-9 months of pregnancy, and did

complete secondary school, respectively.

3.6.2 Hypothetical Study

Given that one of the primary aims of the Safer Deliveries program is to increase the rate of health

facility deliveries, researchers may be interested in investigating the relationship between deliver-

ing outside of a health facility and potentially relevant factors. In the remainder of this section, we

consider a hypothetical study, in which the following marginal mean model is of interest:

logit(P(Yki = 1)) = β0+β1Xloc,k+β2Xage,k+β3XANC4,ki+β4Xeduc,ki+β5X
∗
educ,ki+β6XANC4,ki×Xeduc,ki

(3.4)

where Yki is the indicator for whether the ith woman in the kth shehia delivered outside of a health

facility (1=Yes/0=No), X1k is a binary cluster-level covariate indicating which island the woman

is from (1=Pemba/0=Unguja), X2ki is a continuous individual-level covariate representing the
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Table 3.2: Maternal Characteristics

Delivered outside of a facility
No Yes %

Mother’s Age
≤20 3336 886 21.0
21-35 15689 5536 26.1
36-49 2433 909 27.2

Region
Unguja 13115 2986 18.6
Pemba 8343 4345 34.2

4 ANC visits
Yes 5968 1274 17.6
No 15490 6057 28.1

Previous abortions
Yes 3101 1175 27.5
No 18357 6156 25.1

HIV status
Positive 371 139 27.3
Negative 21087 7192 25.4

Previous location of delivery
Outside of facility 3046 3519 53.6
Facility 12745 2855 18.3
No previous delivery 5667 957 14.4

CHW visit at < 6 months
Yes 17994 6247 25.8
No 3464 1084 23.8

CHW visit at 6-8 months
Yes 4576 1481 24.5
No 16882 5850 25.7

CHW visit at 8-9 months
Yes 14461 4548 23.9
No 6997 2783 28.5

Education level
Low 17847 6591 27.0
High 3611 740 17.0

Recommended facility type
Cottage hospital 7700 1915 19.9
PHCU+ 4550 1728 27.5
Referral hospital 9208 3688 28.6
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mother’s (standardized) age, X3ki is a binary individual-level variable representing whether the

mother in the kth shehia had 4 ANC visits during pregnancy (1=Yes/0=No), X4ki is a binary individual-

level variable indicating whether the woman completed secondary school (1=Yes/0=No), and X5k is

cluster-level covariate representing the proportion of women from the kth shehia who completed

secondary school education. The final term in the model is an interaction between the indicator for

having had 4 ANC visits, and the indicator for having completed secondary school. In our hypo-

thetical study, estimation of the parameter associated with this interaction term, β6, is of primary

interest.

3.6.3 Cluster-Based ODS

Nearly complete information on the covariates in model (3.4) are available for the 28789 women

considered for the analysis. An exception is the education variable, which we multiply impute and

subsequently take to be the true values for the remainder of this section. For the purpose of illustrat-

ing the optimal allocation and adaptive sampling strategies, we assume that complete information is

available for the shehia-specific count of the number of women delivering outside of a health facility

(outcome), the number of women from each of the shehias, the island of residence, as well as the

highest level of education each woman completed. Each woman’s age, and information on whether

the woman received 4 ANC visits, however, we take to be unknown.

In order to operationalize a cluster-based ODS design, one could proceed by stratifying the she-

hias according to Y0.80∗, the 80th quantile of the number of women delivering outside of a health

facility, and region, Xloc. Doing so yields the 2× 2 stratification of the K=280 shehias:

Xloc=0 Xloc=1

Y∗ < Y∗0.80 134 87

Y∗ ≥ Y∗0.80 21 38
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Suppose that resources allow onlyKs = 80 shehias to be visited for data collection of the missing

covariate values: mother’s age and whether the mother had 4 ANC visits. In the following sections

we illustrate how one could determine the optimal allocation of the sample size across strata using i)

the complete data set (though not feasible in practice, this serves as the gold standard for the design

approximations), ii) the adaptive strategy using MI for estimation of the variance components, and

iii) the adaptive strategy using IPW for estimation of the variance components.

3.6.4 Optimal Allocation

The optimal allocation design would yield the following stratum-specific sample sizes: (k00, k10, k01,

k11) = (27.88683, 27.37851, 14.52733, 10.20732). We note that the optimal allocation formulae

will often yield non-integer solutions, and must rounded after edge cases have been appropriately

handled. Under this scheme there is one edge case, as k10 = 27.37851 >K10 = 21. We set k10=21 and

recalculate the remaining stratum-specific sample sizes using an updated constraint:

K∗
s = Ks − 21 = 59

This yields (k00, k10, k01, k11)=(31.26713, 21, 16.28827, 11.44460). There are no longer any edge

cases, and the only step that remains is to round the kj, which yields (kr00, kr10, kr01, kr11) = (31, 21, 16, 12)

using a rounding threshold of 0.28828.

3.6.5 Adaptive + IPW

Under the IPW approach, we againKs,1 =40, so that the Stage 1 sample sizes are (k00,1, k10,1, k01,1,

k11,1) = (10, 10, 10, 10). Computing the Stage 2 sample sizes then yields (k00,2, k10,2, k01,2, k11,2)

= (16.647703, 21.715965, 3.512166,−1.875834). We have two edge cases here: k10,1 + k10,2 =

21.715965 > K10 = 21, and k11,2 < 0. We must therefore fix these edge cases at the boundary (set

k10,2=11 and set k11,2 = 0), and recalculate k00,2 and k01,2 using the updated constraint:
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Figure 3.3: The number of women delivering outside of a health facility, in Unguja and Pemba. Each point represents
one shehia; those shaded blue indicate theKs,1 = 40 shehias selected in the first wave.

K∗
s = Ks − 10− 21 = 49

This results in (k00,2, k10,2, k01,2, k11,2) = (22.513489, 11, 6.486511, 0) and yields overall stratum-

specific sample sizes of (k00, k10, k01, k11) = (32.51349, 21, 16.48651, 10). Finally, rounding with a

rounding threshold of 0.5 gives us (kr00, kr10, kr01, kr11) = (33, 21, 16, 10).

3.6.6 Adaptive +MI

Given a Stage 1 sample of sizeKs,1 = 40, we know, for the women sampled at Stage 1, the age of the

mother and whether the woman had 4 ANC visits during pregnancy. For the women not sampled

at Stage 1, we must impute these two covariates. First, we take a Stage 1 sample of sizeKs,1 = 40

clusters via balanced stratified sampling. Using the Stage 1 data, we impute M=5 complete datasets,

and using these imputed datasets to compute the stratum-specific sample sizes, which gives (k00,2,

k10,2, k01,2, k11,2) = (13.9811422, 20.8349096 , 4.6014676, 0.5824807). There is one edge case, as

k10,1 + k10,2 = 30.83491 > K10 = 21. Setting k10,2 = 11, we recalculate the other Stage 2 sample
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sizes using the updated constraint:

K∗
s = Ks − 21 = 59

The recalculation results in (k00,2, k10,2, k01,2, k11,2) = (18.778293, 11 , 7.522323, 2.699384). With a

rounding threshold of 0.522324, the final stratum-specific sample sizes are (kr00, kr10, kr01, kr11) = (29,

21, 17, 13).

3.6.7 Results

Table 3.3 shows results from the analysis of the data arising from the different sampling schemes.

Looking at the complete data analysis (first column), we see that after adjusting for the other covari-

ates in the model, women who had 4 ANC visits during pregnancy had a lower odds of delivering

outside of a health facility compared to women who did not have 4 ANC visits, with a greater de-

crease among women who did not complete secondary school (OR=0.63, CI = 0.53, 0.74) than that

among women who did complete secondary school (OR=0.94, CI=0.62, 1.43). Furthermore, the

effect of having 4 ANC visits is statistically significant among women who did not complete sec-

ondary school, but is not statistically significant among women who did complete secondary school.

On the other hand, older women had a higher odds of delivering outside of a health facility, as did

women residing on the island of Pemba.

Figure B.6 shows the shehias plotted as a function of the island to which they belong and the

number of women who delivered outside of a health facility; the blue points represent the shehias

that were sampled at Stage 1. Table 3.4 summarizes the resulting designs under optimal alloca-

tion and the two adaptive sampling designs. In this case, both the IPW and the MI approach yield

stratum-specific sample sizes that are quite close to the sample sizes one would get if complete infor-

mation on all of the women in the dataset were available. In particular, displayed are the adjusted

odds ratios and corresponding 95% confidence intervals using the complete dataset and samples
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Table 3.3: Estimated odds ratios (OR) and 95% confidence intervals (CI) from IPW‐GEE analysis, based on five samples
drawn under five different sampling designs.

Complete SRS Balanced
OR (CI) OR (CI) OR (CI)

Intercept 0.18 (0.10, 0.33) 0.19 (0.07, 0.55) 0.16 (0.06, 0.42)
Region 2.02 (1.56, 2.60) 2.11 (1.24, 3.60) 2.16 (1.45, 3.23)
Age 1.10 (1.06, 1.13) 1.12 (1.06, 1.18) 1.12 ( 1.06, 1.18)
ANC4 0.63 (0.53, 0.74) 0.52 (0.39, 0.69) 0.54 (0.37, 0.77)
Ed 0.63 (0.55, 0.72) 0.58 (0.41, 0.81) 0.67 (0.52, 0.86)
Prop Ed 0.88 (0.76, 1.03) 0.90 (0.69, 1.16) 0.88 (0.69, 1.11)
ANC4× Ed 1.51 (1.02, 2.23) 2.41 (0.85, 6.80) 1.56 (0.95, 2.56)

Optimal 2-stage/IPW 2-stage/MI
OR (CI) OR (CI) OR (CI)

Intercept 0.18 (0.08, 0.38) 0.18 (0.10, 0.32) 0.17 (0.09, 0.31)
Region 1.99 (1.31, 3.03) 1.80 (1.23, 2.65) 2.10 (1.39, 3.17)
Age 1.10 (1.04, 1.16) 1.11 (1.06, 1.17) 1.14 (1.08, 1.20)
ANC4 0.69 (0.53,0.89) 0.57 (0.45, 0.73) 0.61 (0.47, 0.80)
Ed 0.54 (0.43, 0.68) 0.65 (0.51, 0.84) 0.66 (0.51, 0.84)
Prop Ed 0.88 (0.73, 1.07) 0.86 (0.75, 1.00) 0.88 (0.76, 1.01)
ANC4× Ed 1.52 (0.99, 2.34) 1.50 (0.96, 2.35) 1.49 (0.95, 2.35)

drawn via i) simple random sampling, ii) balanced stratified sampling, iii) the optimal allocation, iv)

the adaptive strategy with IPW estimation, and v) the adaptive strategy withMI estimation.

We see that in general, the estimates of the adjusted odds ratios are consistent with the complete

data analysis. Furthermore, the confidence intervals for the interaction term under the optimal and

both adaptive sampling designs are substantially narrower than those under both the simple random

sampling and balanced designs: compare (0.85, 6.80) under simple random sampling and (0.95,

2.56) under balanced sampling to (0.96, 2.35) under the adaptive sampling approach with IPW

estimation, for example.

97



Table 3.4: Stratum specific sample sizes under optimal allocation, adaptive sampling with IPW estimation, and adaptive
sampling with MI estimation.

Strat00 Strat10 Strat01 Strat11
Kj 134 21 87 38
kj

Optimal 31 21 16 12
2-stage/IPW 33 21 16 10
2-stage/MI 29 21 17 13

3.7 Discussion

In this paper, we presented an adaptive sampling strategy that can be used to operationalize optimal

allocation in single-stage stratified cluster-based ODS designs. In this context, optimal allocation

was shown in Chapter 2 to yield efficiency gains for the parameter of interest. The adaptive sam-

pling strategy presented in this paper allows for an optimal allocation design to be implemented in

practice, by using the data collected at clusters sampled at Stage 1 to estimate the necessary compo-

nents in the formulae used to compute the stratum-specific sample size, i.e. the kj. Hence, the Stage

1 data can be thought of as an internal pilot study, which is more cost-effective than the alternative

approach of using an external pilot study to estimate the kj.

Results from our simulation study indicate that the adaptive sampling strategy works very well

when multi-level multiple imputation is used to fill in the missing covariate values and subsequently

estimate the kjs. When using the MI approach, a Stage 1 sample size ofKs1=20 clusters, or 25% of

the total number ofKs=80 clusters to be sampled, was sufficient to yield a design that is very close

to the optimal allocation that would arise if complete knowledge of the data were available at the

design stage. Necessary for good performance of the MI approach, however, is an imputation model

that can correctly characterize the relationship between the covariate of interest and the stratifica-

tion variables. In particular, if the parameter of interest is associated with a continuous covariate,

and the variance of the covariate depends on the values of the stratification variable(s), we recom-
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mend that the missing values be imputed within levels of the stratification variable separately.

The performance of the adaptive sampling strategy coupled with the IPW estimation approach

was mixed. In contrast to the MI approach, a Stage 1 sample of 20 clusters resulted in substantial

losses in efficiency compared to the optimal allocation design, most likely due to the high variabil-

ity of IPW estimation given the small Stage 1 sample size. The performance improved by increasing

the Stage 1 sample size toKs,1 = 40 or 60 clusters, and was better under the scenarios in which

allocation was optimal with respect to a parameter associated with an individual-level covariate. Al-

though there are instances in which a Stage 1 sample of 60 clusters yields a closer-to-optimal design

than a Stage 1 sample of 40 clusters, we recommend sampling around 40 clusters at Stage 1, so as

to have sufficient information for estimating the design components using IPW estimation, while

avoiding sampling too many clusters via the non-optimal Stage 1 sampling strategy. Moreover, when

the covariate associated with the parameter of interest is negatively associated with the stratification

variable, we recommend sampling a smaller proportion of clusters from the strata corresponding to

levels where the stratification variable is equal to 1.

In conclusion, optimal allocation in a stratified cluster-based ODS design can be a cost efficient

strategy when there are finite resources for data collection. The obstacle to implementing optimal

allocation in practice, however, is that the optimal allocation formulae depend on quantities that are

unknown in practice. The adaptive sampling procedure we outline in this paper provides a practical

strategy for implementing such a design. The specifics of the adaptive sampling strategy must be

decided upon by researchers, taking into account the various factors described in this paper. While

these methods correspond to a particular class of designs, i.e. single-stage stratified cluster-based

ODS designs, it can be adapted to other settings, for example optimal allocation in two-stage strati-

fied cluster-based ODS designs.
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4
Conclusion

Chapters 1-3 focused on the design and analysis of single-stage cluster-based ODS designs. The

results of Chapter 1 showed that given data that has been collected through a cluster-based ODS

scheme, estimation and inference can be carried out using IPW-GEE. When the number of sampled

clusters is small, researchers should apply small-sample bias corrections, particularly to the variance

estimates. In Chapter 1, several small-sample corrections to the variance estimates were proposed,

and in the settings considered, the Mancl and DeRouen-type38,60 correction most consistently
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yielded the closest to nominal coverage.

Chapter 2 of this dissertation focused on optimal allocation for single-stage stratified cluster-

based ODS designs when the intended analysis method is IPW-GEE. Within this context, the opti-

mal allocation design introduced in Chapter 2 was shown to yield efficiency gains for the parameter

of interest over simple random sampling of clusters and balanced stratified sampling of clusters. In

particular, optimal allocation for one parameter of interest was shown to be the most efficient de-

sign for the estimation of that parameter, but could result in losses for the other parameters in the

model, depending on the relationship of the associated covariate with the covariate of interest. Op-

timal allocation for all parameters simultaneously using the A-optimality criterion generally resulted

in more modest efficiency gains, but also smaller losses compared to the design optimizing for a sin-

gle parameter.

The results of Chapter 2 showed that a wise selection of clusters can yield gains in statistical effi-

ciency, even when the final analysis is at the level of the individual. Due to the fact that the optimal

allocation formulae presented in Chapter 2 depend on quantities that are unknown in practice, the

aim of Chapter 3 was to propose and evaluate an adaptive sampling strategy to to operationalize the

optimal allocation. The adaptive sampling strategy involves sampling the clusters in two waves. The

data collected from the individuals belonging to the clusters sampled in the first wave are treated as

internal pilot data, that is used to estimate the components needed to optimally allocate the remain-

ing resources. The adaptive sampling strategy was shown to yield a near-optimal design when using

multi-level imputation in the estimation of the design components.

A natural next step is to consider optimal allocation in the context of two-stage stratified cluster-

based ODS designs, again assuming that the intended analysis method is IPW-GEE. In the next few

sections, we describe this setting in more detail, present some theory and initial work on this topic,

and discuss gaps for future work.
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4.1 Two-Stage Stratified Cluster-Based ODSDesigns

Two-stage stratified cluster-based ODS can proceed as follows: at Stage I, cross-classify K clusters

into J strata based on information contained in the previously definedD∗. Then, kj clusters are

sampled from stratum j such that
∑

j kj = Ks. At Stage II, theNk individuals in cluster k are cross-

classified intoH strata based on information available on the individuals, for example the outcome

Y. Then, nhk individuals are sampled from stratum hk, such that
∑

k∈sI
∑

hk∈k nhk = n, where sI is

the set of clusters sampled at Stage I.

4.1.1 Estimation and Inference

When information is only available on a subset of individuals that have been selected through a

two-stage stratified cluster-based ODS scheme, β can be estimated as the solution to the following

weighted generalized estimating equations:

Uw(β) =
K∑
k=1

DT
kV

−1
k WI,kdiag(RI,k)WII,kdiag(RII)εk = 0. (4.1)

In the above,WI,k is theNk × Nk diagonal matrix with the Stage I weights for cluster k along

the diagonal. Similarly,WII is anNk × Nk diagonal matrix, with entries along the diagonal equal

to the Stage II weights for the individuals in cluster k. In both cases, the weights are equal to the

inverse-probability of being sampled at the respective stages. Expression (4.1) can be rewritten as

Uw(β) = UTWIdiag(RI)WIIdiag(RII)1N×1, (4.2)

whereWI andWII areN × N diagonal matrices with theWI,ks andWII,ks, respectively, along the
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diagonal. The variance of β̂w is given by the sandwich estimator

Var[β̂w] = H−1(V0 + VI + VII)H−1, (4.3)

whereH−1V0H−1 represents the variance that arises due to the observed population being a realiza-

tion from the super-population,H−1VIH−1 represents the variance that arises due to sampling of

clusters at the first stage, andH−1VIIH−1 represents the variance that arises due to sampling of the

individuals within the selected clusters.

4.1.2 Inference in Practice

To carry out inference in practice, Var[β̂w] can be replaced with V̂ar[β̂w], where

V̂ar[β̂w]=Ĥ
−1(V̂0 + V̂I + V̂II)Ĥ−1.

In the expression above, Ĥ =
K∑
k=1

DT
kV

−1
k WI,kdiag(RI,k)WII,kdiag(RII,k)Dk. Furthermore,

V̂0 = UTdiag(Rt)Wtdiag(Rt)U

WhereWt is anN × N block diagonal matrix with entries in the kth block equal to 1/πkii′ , the joint

probability of individuals i and i′ in cluster k being sampled. This joint probability, πkii′ , is equal to
kj
Kj

nhk
Nhk

if i = i′; equal to kj
Kj

nhk
Nhk

nhk−1
Nhk−1 if i ̸= i′ are in the same stratum hk; and, equal to

kj
Kj

nhk
Nhk

nh′k
Nh′k

if i ̸= i′ are in different strata hk and h′k. The variance due to sampling clusters at Stage I can be

estimated with

V̂I = UTWIdiag(RI)Δ̃Idiag(RI)WIU

where Δ̃I is anN × Nmatrix with entries all entries in the kth Nk × Nk block along the diagonal

equal to πk−π2k
πk , and entries in the off-diagonal blocks equal to πkk′−πkπ′k

πkk′
. If clusters k and k′ are in
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the same stratum j, then πkk′ =
kj
Kj

kj−1
Kj−1 ; if clusters k and k

′ are in different strata j and j′, then πkk′ =
kj
Kj

k′j
K′
j
. Finally,VII can be estimated as

V̂II = UTW1/2
I diag(RI)WIIdiag(RII)Δ̃IIdiag(RII)WIIdiag(RI)W

1/2
I U

where Δ̃II is anN×N block diagonal matrix with entries in the kth block equal to πii′|k−πi|kπi′|k
πkπii′|k

.

4.1.3 Optimal Allocation for One Parameter of Interest

In this section we discuss optimal allocation for one parameter of interest under two different types

of constraints. First, we consider the setting in which time and/or logistical constraints allow data

collection on a total of n <N individuals fromKs < K clusters. In this context, we assume that an

equal number of individuals, nk = n/Ks, will be sampled from each of the selected clusters. Such a

setting may arise if, for example, time constraints only permit one health center to be visited per day

for data collection, and time constraints also require the determination of a sub-sample of individ-

uals for detailed data collection within the selected health centers. The second constraint setting we

consider arises when there is a cost associated with sampling clusters, and a different cost associated

with collecting data on the individuals in these clusters. Given an overall budgetary constraint B,

researchers must make a decision regarding how many clusters vs. how many individuals to sample,

and subsequently which clusters and which individuals to sample.

As in Chapter 2, we suppose that primary interest lies in estimating the qth parameter in a marginal

mean model, βq, with precision. The optimal allocation is therefore determined by minimizing the

[q, q]th element along the diagonal of the variance-covariance matrix for β̂, Var[β̂w], given in expres-

sion (4.3). The first term of Var[β̂w],H
−1V0H−1 does not depend on the sampling indicators, and

therefore the optimal allocation problem becomes one of minimizing {H−1(VI + VII)H−1}[q,q]

subject to the relevant constraint, as described in the following two subsections. Before proceeding,

note that the [q, q]th diagonal element of {H−1(VI + VII)H−1}[q,q] can be expressed as:
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{H−1(VI + VII)H−1}[q,q]

=

J∑
j=1

Kj − kj
kj

Cq,j

+

J∑
j=1

Kj

kj

∑
k∈j

∑
h∈k

(Nhk − nhk)
nhk

Gq,hk

where Cq,j is as defined in Chapters 2 and 3, andGq,hk = [Dq,hk−
Fq,hk
Nhk−1 ], whereDq,hk =

∑
i∈hk

E[h[q]
2

i ]

and Fq,hk =
∑

i̸=i′∈hk
E[h[q]i h[q]i′ ].

Optimal Allocation: FixedKs and n, Equal nk

In this setting, the constraints are
J∑

j=1
kj = Ks and

Hk∑
hk=1

nhk = nk = n
Ks

for each k ∈ sI. We can define

the Lagrangian

L1 :=
J∑

j=1

Kj−kj
kj Cq,j +

J∑
j=1

Kj
kj
∑
k∈j

∑
h∈k

(Nhk−nhk)
nhk Gq,hk + λ(

J∑
j=1

kj − Ks) + μk(
∑
hk∈k

nhk − n
Ks
).

Taking partial derivatives with respect to the kj, nhk, λ, and μk, setting these to 0 and solving the

resulting system of equations yields

nhk = n
Ks

N1/2
hk G1/2

q,hk∑
hk∈k N

1/2
hk G1/2

q,hk
and kj = Ks

K1/2
j [Cq,j+Mq,j]1/2

J∑
j=1

K1/2
j [Cq,j+Mq,j]1/2

,

whereMq,j =
∑
k∈j

∑
hk∈k

Nhk−nhk
nhk Gq,hk. Note that the formula for kj depends on the nhk throughMq,j.
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Optimal Allocation: Fixed Budgetary Constraint

With c1 denoting the cost associated with sampling clusters, and c2 denoting the cost associated with

sampling individuals, the total cost of sampling can be expressed as:

B =

J∑
j=1

(
c1kj + c2

∑
k∈sIj

∑
hk∈k

nhk
)

(4.4)

The second term in 4.4 is random, as it depends on the set of sampled of clusters from stratum j, sIj .

We therefore consider the expected cost:

B∗ =
J∑

j=1

(
c1kj + c2

kj
Kj

∑
k∈sj

∑
hk∈k

nhk
)

(4.5)

In this case, we define the Lagrangian as

L2 :=
J∑

j=1

Kj−kj
kj Cq,j +

J∑
j=1

Kj
kj
∑
k∈sIj

∑
hk∈k

(Nhk−nhk)
nhk Gq,hk + λ

[ J∑
j=1

(
c1kj + c2

kj
Kj

∑
k∈sIj

∑
hk∈k

nhk
)
− B∗

]
.

Taking partial derivatives with respect to the kj, nhk, and λ, setting these equal to 0, and solving the

resulting system of equations, yields

kj = B∗
(K1/2

j S1/2q,j )/c
1/2
1∑J

j=1(c
1/2
1 K1/2

j S1/2q,j +c1/22
∑

k∈Sj

∑
h∈k N

1/2
hk G1/2

hk )
and nhk =

K1/2
j c1/21 N1/2

hk G1/2
hk

S1/2q,j c
1/2
2

,

where Sq,j = Cq,j −
∑
k∈sIj

∑
hk∈k

Gq,hk.

4.1.4 Practical Considerations

As in Chapter 2, the optimal allocation formulae presented in Sections ?? and 4.1.3, rely on quan-

tities that are unknown in practice. The adaptive sampling strategy proposed in Chapter 3 can be

107



extended to this setting as well. If using multi-level imputation for estimation of the design com-

ponents, care must be taken to use an imputation strategy that is valid when there is both system-

atically and sporadically missing data, as will be the case under two-stage stratified cluster-based

ODS designs. Finally, we note that it is possible for kj > Kj and/or nhk > Nhk for j = 1, . . . , J,

nhk = 1, . . .Hk. Due to the potential large number of Stage I and Stage II strata, the approach to

handling edge cases presented in Chapters 2 and 3 may not suffice here. Instead, the optimal Stage

I and II stratum-specific sample sizes may be found using numerical methods. This is an area for

future research.

4.2 Other Areas for FutureWork

In addition to the extension of optimal allocation to two-stage stratified cluster-based ODS designs,

there are a number of areas for future work in the context of single-stage cluster-based ODS, some

of which have already been mentioned. First, it is known that careful stratification is also an im-

portant factor in determining the degree of statistical efficiency gains. Because only cluster-level

summaries of the outcome are known at the design stage, a decision must be made regarding how

to discretize the summary measures. More research is needed to help guide this decision. Second,

we currently assume that the cluster-level summaries of the outcome and possibly other inherently

individual-level covariates are measured without error, an assumption that is unlikely to hold in

most public health research settings. For example, recent work looking at the quality of HMIS data

for indicators related to maternal and newborn health showed that there is variability in the qual-

ity of HMIS data by health indicator48. An area for future research is therefore investigating the

impact of the quality of the routinely collected data available at the design stage on efficiency gains.

Third, we have assumed in this work that data is missing by design only. It will often be the case that

there is data missing by happenstance as well. For example, when collecting detailed information on
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individuals at selected health centers, there will likely be some data entries that are missing. An im-

portant area for future research is therefore how to adapt the optimal allocation formulae/strategy

to accommodate the potential for missingness by happenstance as well.
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A
Supplementary material to accompany

Chapter 1

A.1 Asymptotic Theory for GEE

Before presenting the asympotic theory for WGEE, we first summarize the asymptotic theory results

for GEE in the complete data setting, which was originally laid out by81. GivenN individuals in
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the population of interest, belonging toK clusters, letNk, k = 1, . . . ,K denote the number of

individuals belonging to cluster k. In presenting the results for GEE andWGEE, we consider the

case whenK → ∞ andm is bounded, wherem=max{Nk; k = 1, . . . ,K} is the maximum cluster

size.

A.1.1 Notation

Let Yki denote the outcome for the ith individual in the kth cluster. We assume that the marginal

density of Yki belongs to the exponential family, with density

fki(yki|Xki, β, φ) = exp({ykiθki − a(θki) + b(yki)}/φ),

with θki = u(ηki), where u is an injective function and ηki = [Xki]
Tβ. β is a (p × 1) vector of un-

known regression coefficients, φ is a nuisance scale paramater, μki = E[Yki|Xki] = a′(θki) and

σ2ki = Var(Yki|Xki, β, φ) = a′′(θki)φ. Let Θ = {θ|0 <
∫
exp(yθ + b(y))dy < ∞} be the natu-

ral parameter space of the exponential family. The interior of Θ is denoted by Θo. Letting Yk be the

Nk×1 vector of outcomes for all individuals in the kth cluster, and denote Σk = Cov(Yk|Xk, β, φ).33

proposed estimating β by solving the following generalized estimating equations:

U(β) =
K∑
k=1

Dk(β)TVk(β)−1(Yk − μk(β)) =
K∑
k=1

Uk(β), (A.1)

whereDk = ∂μk/∂β is anNk× pmatrix of partial derivatives,Vk is anNk×Nk working covariance

matrix for Yk, and μk = (μk1, . . . , μkNk
)T. We define

UKm(β) =
1
K

K∑
k=1

Dk(β)TVk(β)−1(Yk − μk(β)) =
1
K

K∑
k=1

Uk(β), (A.2)

where the sub-indexKm is introduced to indicate that the estimating equations depend on the total

111



number of clusters and on the maximum cluster size. The following notation follows from above:

1. DKm = −[
∂UKm(β)

∂β ]

2. MKm = Var(UKm) =
1
K2

∑K
k=1Dk(β)TVk(β)−1Σk(β)Vk(β)−1Dk(β)

3. HKm = − 1
KE[DKm] =

1
K
∑K

k=1Dk(β)TVk(β)−1bDk(β)

4. FKm = HKmM−1
KmHKm

5. Let R̄k denote the true correlation matrix, andRk the working correlation matrix

6. Under working independence,Vk(β) = Ak(β) is the diagonal matrix with the individual

variances in the diagonal. With this, we have that

MKm(β) = 1
K2

∑K
k=1Dk(β)Ak(β)−1/2R̄kAk(β)−1/2Dk(β)

7. Vk = (Ak)
1/2Rk(Ak)

1/2, whereAk is the diagonal matrix with the individual variances on

the diagonal

8. β0 is the true regression parameter.

*Note that81 use slightly different notation, with gnm =
∑n

i=1Di(β)TVi(β)−1(Yi − μi(β)), with

n = K and i = k.

A.1.2 Regularity Assumptions

In the development of their results, Xie and Yang (2003) assume the following regularity conditions:

1. β is in an admissible set B, where B is an open set ofRp

2. ηki = (Xki)
Tβ ∈ g(M) for all β ∈ B andXki ∈ X , whereM is the image of a′(Θ0) andX

is the set of all possible covariate variables.

112



3. a′(θ) is three times continuously differentiable and a′′(θ) > 0 in Θ0. Also, u(η) is three

times continuously differentiable and u′(η) > 0 in g(M)0.

4. MKm andHKm are positive definite whenK orm are large.

A.1.3 Additional Conditions

In the development of their results,81 also assume that the following conditions hold:

1. Condition Iw: The minimum eigenvalue of FKm, λmin(FKm) → ∞

2. Condition Lw: There exists a constant c0 > 0, for any r > 0, such that

P(DT
KmM

−1
KmDKm ≥ c0FKm andDKm is non-singular, for all β ∈ BKm(r)) → 1,

where BKm(r) = {β : ||M−1/2
Km HKm(β− β0)|| ≤ r}

The condition Iw, guarantees that FKm diverges, which in turn implies that F−1
Km converges.

Condition Lw guarantees that if FKm diverges, then so doesDT
KmM

−1
KmDKm. Note that Iw

and Lw depend onMKm, a matrix that depends on the true correlation R̄k, which is often

unknown. The next two conditions I∗w and L∗
w provide an alternative set of conditions that

do not rely on R̄k, only onRk.

3. Condition I∗w : (τKm)−1λmin(HKm) → ∞, where τKm = maxk=1,...,K{λmax((Rk)
−1R̄k)}.

This condition is stronger than Iw. Note that,

vTMKmv =

vT(Dk)
T(Ak)

−1/2(Rk)
−1(Ak)

−1/2(Ak)
1/2R̄k(Ak)

1/2(Ak)
−1/2(Rk)

−1(Ak)
−1/2Dk)v

= vT(Dk)
T(Ak)

−1/2(Rk)
−1R̄k(Rk)

−1(Ak)
−1/2Dkv
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≤ τKmvT(Dk)
T(Sk)−1/2R−1

k S−1/2
k Dk)v

= τKmvTHKmv

*The eigenvalues ofM−1
KmHKm andM−1/2

Km HKmM
−1/2
Km are the same. The same applies to

H−1
KmMKm andH−1/2

Km MKmH
−1/2
Km . Note thatMKm ≤ τKmHKm and F−1

Km ≤ τKmH−1
Km. This

implies that λmax(F−1
Km− τKmH−1

Km) < 0, and that λmax(F−1
Km) ≤ τKmλmax(H−1

Km). Therefore

λmin(FKm) > λmax(H−1
Km)/τKm = λmin(HKm)/τKm. It follows that condition I∗w implies Iw.

4. Condition L∗
w: There exists a constant c0 > 0, for any r > 0, such that

P(DKm(β) ≥ c0HKm andDKm(β) is nonsingular, for all β ∈ B∗Km(r)) → 1

where B∗Km(r) = {β : ||H1/2
Km(β− β0)|| ≤ (τKm)1/2r}.

5. ConditionCC: For any given r > 0 and δ > 0,

P
(
supβ∈B∗Km(r) ||H

−1/2
Km DKm(β)H

−1/2
Km − Ip×p|| < δ

)
→ 1

where B∗Km(r) = {β : ||H1/2
Km(β− β0)|| ≤ (τKm)1/2r} and the matrix norm is the Euclidean

matrix norm. This condition is used to obtain the asymptotic distribution of the estimator

β̂, by helping to establish the relationship between the asymptotic distributions of β̂ and

UKm. This condition guarantees that for every β ∈ B∗Km(r), the matrixH−1/2
Km DKmH

−1/2
Km

converges in probability to the identity matrix Ip×p.

6. ConditionNδ: Let y∗k = (y∗k1, . . . , y
∗
kNk)

T = A−1/2
k (Yk − μk), cKm = λmax(M−1

KmHKm) and

γ(D)
Km = max1≤k≤Kλmax(H

−1/2
Km (Dk)

T(Vk)
−1DkH

−1/2
Km ). Then there exists a δ > 0, such that

E[(y∗kji)
2+(2/δ)] is uniformly bounded above, and

(cKmm)1+δγ(D)
Km → 0
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A.1.4 Asympotic Results for GEE

Theorem 1 (Theorem 1,81). Under conditions Iw and Lw, there exist a sequence of random variables

β̂Km = β̂, such that

UKm(β̂) = 0 and β̂
p
−→ β0

81 also proved that Theorem 1 holds when conditions Iw and Lw are replaced by I∗w and L∗
w:

Theorem 2 (Theorem 2,81). Under conditions I∗w and L∗
w, there exist a sequence of random variables

β̂Km = β̂, such that

UKm(β̂) = 0 and β̂
p
−→ β0

Towards proving the asymptotic normality of the estimator β̂,81 first show that the asymptotic

distribution of β̂ and UKm are closely related:

Theorem 3 (Theorem 3,81) Suppose that conditions Iw,Lw, and CC hold, or the conditions Iw and CC

hold. Then, there exists a sequence of solutions β̂ to the GEE equation in B∗Km(r) such thatM
−1/2
Km HKm(β̂−

β0) andM
−1/2
Km UKm are asymptotically identically distributed

When the cluster size varies, this convergence is not guaranteed. However, it would be guaranteed

when the Lindeberg condition holds:

Lemma 6 Lindeberg theorem,7). Let Sk = Xm(K)1 + . . . + Xm(K)K, where Xm(K)1, . . . ,Xm(K)K are

independent variables with mean zero. Let σ2Km = E(X2
m(K)k) and assume that σ2K =

∑K
k=1 σ2Km > 0.

Additionally, assume that the following (Lindeberg condition) is satisfied:

lim
K→∞

∑K
k=1

1
σ2K

∫
|Xm(K)k|>εσK X

2
m(K)kdP = 0 for all ε > 0.

Then SK/σK
d−→ N(0, 1).

If we demonstrate that the Lindeberg theorem holds for every linear combination vTM−1/2
Km UKm,

where v is a vector such that ||v|| = 1, this will imply, by Cramer-Wold Theorem, thatM−1/2
Km UKm
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converges to a multivariate normal random variable. However, as noted by Xie and Yang (2003),

direct verification of this condition requires knowledge of the true correlation matrix R̄k.

Lemma 7: (Lemma 2,81). For t > 0, let ψ(t) be a positive non-decreasing function such that lim
t→∞

ψ(t) =

∞ and tψ(t) is a convex funcion. Recall that y∗k = (y∗k1, . . . , y
∗
kNk)

T = (Ak)
−1/2(Yk − μk), ckm =

λmax(M−1
KmHKm) and γ

(D)
Km =

max1≤k≤Kλmax(H
−1/2
Km (Dk)

T(Vk)
−1DkH

−1/2
Km ). Under the GEE setting, suppose there exist a con-

stant K0 (independent of K) and an integer m0 such that, for j = 1, . . . ,Nk and k = 1, . . . ,K, when

K > m0,

E[(y∗ki)
2ψ((y∗ki)

2)] ≤ K

In addition, for any ε > 0,

cKmm
[
ψ
(

ε
cKmmγ(D)

Km

)]−1
→ 0

Then when K → ∞, we have

M−1/2
Km UKm → N(0, Ip×p).

The following theorem establishes the asymptotic normality of β̂:

Theorem 4 (Theorem 4,81)Recall that y∗k = (y∗k1, . . . , y
∗
kNk

)T = (Ak)
−1/2(Yk − μk), cKm =

λmax(M−1
KmHKm) and γ

(D)
Km = max1≤k≤Kλmax(H

−1/2
Km (Dk)

T(Vk)
−1DkH

−1/2
Km ). Suppose that the

marginal distribution of each individual observation has a density of the form specified in Section 1.1.

If condition (Nδ) is satisfied, then, when K → ∞, we have,

M−1/2
Km UKm → N(0, Ip×p).

Further, under the conditions in Theorem 3, there exists a sequence of weakly consistent GEE estimators

β̂, and

M−1/2
Km HKm(β̂− β0) → N(0, Ip×p).
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A.2 Asymptotic Theory forWGEE

Moving away from the complete data setting, we now consider the setting where we do not have

data on all of theN individuals from theK clusters in the population of interest. In some settings

analysts may not have access to complete data on all elements of (Y,X) for allN individuals in the

K clusters. They may, however, have access to resources that permit ascertainment of this infor-

mation in a sub-sample of, say, n < N individuals. Furthermore, they may have access to select

components of (Y,X), as well as other variables/information that are not of direct relevance to the

scientific question, denoted here by Z, that can, in principle, be used to make decisions regarding

the sub-sampling. Moving forward we refer to this information as being available at the design stage.

Suppose the readily-available information is of the formD∗
k = (Nk,Y∗

k ,X
∗
k ,Z

∗
k)where Y

∗
k

is a cluster-level summary of the outcomes (i.e. across theNk individuals in the kth cluster),X∗
k is

a cluster-level feature or a cluster-level summary of elements of X that are readily-available at the

outset, and Z∗
k is a cluster-level summary of Z. For example, if Y is binary, then Y∗

k may be the preva-

lence in the last six months at the health center. Furthermore,X∗
k may be a feature of the cluster,

such as whether the health center is in a rural or urban setting or if it is private or publicly-funded,

and/or it may be an aggregated summary of individual-level data, such as the percentage of moth-

ers that are less than 18 years of age. Finally, Z∗
k may be the prevalence of some other outcome or

comorbidity that is routinely collected.

The information represented byD∗
k can, in principle, be used to inform a cluster-based outcome-

dependent sampling design. For this type of design, rather than selecting individuals directly, some

sub-sample ofKs < K clusters is initially selected. Then, the otherwise unavailable elements of X are

ascertained on all individuals within the sampled clusters.

LetRk be a binary indicator of whether the kth cluster is selected and πk = Pr(Rk = 1|D∗)

the corresponding probability of being selected, whereD∗ = {D∗
1 , . . . ,D∗

K} is the totality of the
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information available at the design stage. Towards operationalizing the sampling scheme, researchers

may opt to use stratification or to use Poisson sampling. For the first of these, the clusters are cross-

classified on the basis of some variable S that is defined on the basis of one or more of the variables

contained inD∗ and is assumed to take on one of J levels. From this, supposeKj clusters are classi-

fied as belonging to the jth stratum. We assume that the stratification scheme is specified such that

Kj > 0 for all j = 1, . . . , J. Then kj ≤ Kj clusters are randomly selected from those in the jth

stratum, such that
∑J

j=1 kj =Ks. Note, for each of the clusters in the jth stratum, we have that πk

= kj/Kj. For those that are selected in this way we setRk=1. Under the second option of Poisson

sampling, one first pre-specifies each of the πk as a function of elements ofD∗. For example, one

could specify a logistic regression model forRk as a function of the clusters’ outcome prevalence.

Whether a cluster is selected by the design is then determined by an independent Bernoulli trial with

probability πk.

A.2.1 Notation

We have

Uk,w = (Dk)
T(Vk)

−1Wkdiag(Rk)(Yk − μk) (A.3)

and define

Uw = Uw,Km =
1
K

K∑
k=1

(Dk)
T(Vk)

−1Wkdiag(Rk)(Yk − μk) =
1
K

K∑
k=1

Uk,w (A.4)

whereRk is anNk× 1 vector with all entries equal toRk andWk is anNk×Nk diagonal matrix with

the all entries on the diagonal equal toWk =
1
πk . Note that while stratification and sampling occur

at the level of the cluster, so thatRk andWk = 1
πk are cluster-level quantities, every individual in

cluster k inherits the values ofRk andWk, as well as the stratummembership j of cluster k.
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1. LetUk
ji , k = 1, . . . ,K, i = 1, . . . ,Nk be random variables. We use the sub-index k to indicate

that the subject i from cluster k also belongs to a stratum j.

2. LetFK = {Y,X,Z, S}, where S is aK × 1 vector with the kth entry equal to the stratum j,

j = 1, . . . , J that cluster k belongs to. We use the subscriptK to indicate that the sample can

be cluster-correlated.

3. Dw,Km = −[
∂Uw,Km

∂β ]

A.2.2 Conditions and Assumptions

1. We assume that P(R|X,Y,Z) = P(R|V,Y) (MAR assumption).

2. Recall that we are considering the case whereK → ∞ andm = max{Nk; k = 1, . . . ,K} is

bounded, whereNk is the number of individuals in cluster k.

3. We assume thatKs/K > c > 0 and that lim
N→∞

n = ∞.

4. πk > c > 0, ∀k = 1, ..,K.

5. Under a cluster-stratified design, let nj be the number of individuals sampled in stratum j, let

Nj denote the number of individuals in stratum j, kj the number of clusters sampled from

stratum j, andKj the number of clusters in stratum j. We assume that kj/Kj > c > 0, and

that lim
N→∞

nj = ∞, lim
N→∞

nj/Nj = fj,∞, where 0 < fj,∞ ≤ 1. Furthermore, we assume that

lim
N→∞

Nj/N = Wj,∞, where 0 < Wj,∞ < 1, and that lim
N→∞

Kj/Nj → kj,∞ , whereKj is the

number of clusters in stratum j. These conditions imply that whenK increases,Nj increases

butNk does not.

6. We assume that each map Uw,Km is continuous.

7. Dw,Km is positive definite and non-singular.
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8. Mw,Km = Var(Uw,Km) is continuously differentiable.

9. Under assumptions in Xie and Yang (2003), we know that β̂ is consistent for β0.

We will appeal to the following lemmas in developing the asymptotic theory for WGEE.

Lemma 1. (Lemma A,14) Let H be a smooth injection from Rp to Rp with H(x0) = y0. Define

Br(x0) = {x ∈ Rp, ||x − x0|| < r} and Sr(x0) = ∂Br(x0) = {x ∈ Rp, ||x − x0|| = r}.

Then, infx∈Sr(x0) ||H(x)− y0|| ≥ a implies:

1. Ba(y0) = {y ∈ Rp, ||y− y0|| ≤ a} ⊆ H(Br(x0));

2. H−1(Ba(y0)) ⊆ Br(x0).

Lemma 2. (Lemma 1,81) SupposeC is a p × p matrix. For any p × 1 vector v, ||v|| = 1, we have

vTCTCv ≥ (vTCv)2

Definition 1. (Definition 13.1,20) Given a sequence of finite populations, {FK}, and an associated

sequence of sample designs, the estimator θ̂ is design consistent for the finite population parameter θN, if

for every ε > 0,

lim
N→∞

P(|̂θ− θN| > ε|FK) → 0,

where the notation indicates that for the sequence of finite populations, the probability is that deter-

mined by the sample design.

Lemma 3. (Lemma 5.10,73) LetΘ be a subset of the real line and letΨK be random functions and

Ψ a fixed function of θ such thatΨK(θ)
p
−→ Ψ(θ) for every θ. Assume that each map θ → ΨK(θ) is

continuous and has exactly one zero θ̂, or is non-decreasing withΨK(̂θ) = 0p(1). Let θ0 be a point such

thatΨ(θ0 − ε) < 0 < (Ψ + ε) for every ε > 0. Then θ̂
p
−→ θ0.

Lemma 4a. (Theorem 1.3.3 (Fuller, 2009)). Let u1, u2, ... be a sequence of real numbers and let

π1, π2, ... be a sequence of probabilities, with 0 < πi < 1. Let a Poisson sample be selected from the
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populationFN = {u1, . . . , uN} , and let gi = (1, ui, αNπ−1
i , αNπ−1

i ui)′,where αN = N−1nB and

nB = E(nN|N), where nN is the final sample size, which is a function of N and is random. Assume

that

lim
N→∞

n−1
B

N∑
i=1

giπi = g∞

limN→inf n−1
B
∑N

i=1 πi(1 − πi)gig′i = g∞ = Σg, the submatrices of Σg associated with

(1, ui, αNπ−1
i ) and (αNπ−1

i ui) are positive definite. Also assume that

lim
N→∞

sup
1≤k≤N

( N∑
i=1

πi(1− πi)(γ′gi)2
)−1

(γ′gi)2 = 0

for every fixed vector γ′ such that γΣggγ > 0. Let μ̂g = n−1
B
∑N

i=1 Rigi and μgN = n−1
B
∑N

i=1 gπi

Then

n1/2B (μ̂g − μgN)|FN
D→ N(0,Σgg),

If, in addition, limN→∞ n−1
B
∑N

i=1 πi|g|4 = Mg, for some finiteMg, then

V̂ (̂tπu|FN)
−1/2

(̂tπu − tu)|FN
D→ N(0, I),

where t̂πu is the Horvitz-Thompson estimator, |gi| = (g′igi)1/2 and V̂ (̂tπu|FN) =
∑

s(1 −

πi)π2i uig′i.

Lemma 4b. (Corollary 1.3.4.1,20). LetFN be a sequence of populations, where the Nth population is

composed of J strata withFjN = {uj1 , . . . , ujNj}; h = 1, . . . , J. Assume that uji , j = 1, . . . , J; i =

1, . . . ,Nj are sequences of real numbers satisfying

lim
N→∞

1
Nj

∑Nj
i=1[uji , (uji − ūj)2, u4ji ] = [M1i,∞, S2j,∞,M4j,∞],

whereM2j,∞,M4j,∞ and S2i,∞ are finite and positive. Then
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Var(û− ū|FN)
−1/2(û− ū) d−→ N(0, 1)

where û = 1
N
∑J

j=1
∑Nj

i=1
ujiRji
πij , ū = 1

N
∑J

j=1
∑Nj

i=1 uji , and

Var(û− ū|FN) =
1
N2

∑J
j=1

Nj
nj (Nj − nj)S2j ,

where S2j =
∑Nj

i=1(uji − ūj)2/(Nj − 1) and ūj =
∑Nj

i=1 uji/Nj.

*Below we give the details for showing that

Var(û− ū|FN) =
1
N2

∑J
j=1

Nj
nj (Nj − nj)S2j .

Note that

Var(û− ū|FN)

= Var(û|FN) = Var(
1
N

J∑
j=1

Nj∑
i=1

ujiRji
πij

)

=
1
N2

J∑
j=1

Var(
Nj∑
i=1

ujiRji
πij

)

since the observations from different strata are independent. Now,

1
N2

J∑
j=1

Var(
Nj∑
i=1

ujiRji
πij

)

=
1
N2

J∑
j=1

[

Nj∑
i=1

u2jiVar(Rji)

π2ij
+
∑
i ̸=i′

ujiuji′Cov(Rji ,Rji′ )

πijπi′j
]

Note that πij =
nj
Nj

for all i = 1, . . . ,Nj. Furthermore,Var(Rji) = πij(1 − πij) =
nj
Nj
(1 − nj

Nj
) and

that for individuals i and i′ in stratum j, Cov(Rji ,Rji′ ) = πii′j − πijπi′j = [
nj(nj−1)
Nj(Nj−1) − ( niNj

)2]. It then

follows that
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1
N2

J∑
j=1

Var(
Nj∑
i=1

ujiRji
πij

)

=
1
N2

J∑
j=1

[

Nj∑
i=1

u2jiVar(Rji)

π2ij
+ 2

∑
i<i′

ujiuji′Cov(Rji ,Rji′ )

πijπi′j
]

=
1
N2

J∑
j=1

[

Nj∑
i=1

u2ji
Nj

nj
(1−

nj
Nj

) + 2
∑
i<i′

ujiuji′ (
Nj(nj − 1)
nj(Nj − 1)

− 1)]

=
1
N2

J∑
j=1

Nj

nj
(Nj − nj)[

Nj∑
i=1

u2ji
Nj

− 2
∑
i<i′

ujiuji′
(Nj − 1)Nj

]

=
1
N2

J∑
j=1

Nj

nj
(Nj − nj)

1
Nj − 1

[

Nj∑
i=1

u2ji(Nj − 1)
Nj

− 2
∑
i<i′

ujiuj′i
Nj

]

=
1
N2

J∑
j=1

Nj

nj
(Nj − nj)

1
Nj − 1

[

Nj∑
i=1

u2ji −
1
Nj

Nj∑
i=1

u2ji −
2
Nj

∑
i<i′

ujiuj′i ]

=
1
N2

J∑
j=1

Nj

nj
(Nj − nj)

1
Nj − 1

[

Nj∑
i=1

u2ji −Njū2j ]

=
1
N2

J∑
j=1

Nj

nj
(Nj − nj)

1
Nj − 1

Nj∑
i=1

(uji − ūj)2

=
1
N2

J∑
j=1

Nj

nj
(Nj − nj)S2j

Lemma 5 (Theorem 1.3.620). Let {FN} be a sequence of finite populations, let θN be a function of the

elements ofFN and let the sequence of samples be selected from {FN} by a design such that

(θN − θ0N)
d−→ N(0,V1)

Additionally, assume that
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(̂θ− θN)|FN
d−→ N(0,V2)

for a fixed sequence {θ0N} and an estimator, θ̂, where V1 + V2 > 0. Then,

(V1 + V2)
−1/2(̂θ− θ0N)

d−→ N(0, I).

Remark 1a. Let (U1,U∗
1 ), . . . , (UN,U∗

N) be a sample ofN variables. Under a Poisson sampling

design, the design-based covariance of Ûw − Ū = 1
K
∑N

i=1
RiUi
πi − 1

K
∑N

i=1 Ui and Û∗
w − Ū∗ =

1
K
∑N

i=1
RiU∗

i
πi − 1

K
∑N

i=1 U∗
i is

Cov(Ûw, Û∗
w|(U1,U∗

1 ), . . . , (UN,U∗
N)) =

1
K2

∑N
i=1

(1−πi)
πi UiU∗

i

Similarly, the design-based variance of ÛW − Ū = 1
K
∑N

i=1
RiUi
πj − 1

K
∑N

i=1 Ui, is

Var(Ûw|U1, . . . ,UN) =
1
K2

∑N
i=1

(1−πi)
πi U2

i .

Remark 1b. Let (U1,U∗
1 ), . . . , (UN,U∗

N) be a sample ofN variables. Under a stratified sampling

design, the design-based covariance of Ûw − Ū = 1
K
∑J

j=1
∑Nj

i=1
RjiUji
πji

− 1
K
∑J

j=1
∑Nj

i=1 Uji and

Û∗
w − Ū∗ = 1

K
∑J

j=1
∑Nj

i=1
RjiU

∗
ji

πji
− 1

K
∑J

j=1
∑Nj

i=1 U∗
ji is

Cov(Ûw, Û∗
w|(U1,U∗

1 ), . . . , (UN,U∗
N)) =

1
K2

∑J
j=1

Nj(Nj−nj)
nj Suu∗,j

where Suu∗,j =
∑Nj

i=1(Uji − Ūj)(U∗
ji − Ū∗

j )/(Nj − 1) and Ūj =
∑Nj

i=1 Uji/Nj, Ū∗
j =

∑Nj
i=1 U∗

ji/Nj.

Similarly, the design-based variance of Ûw − Ū = 1
K
∑J

j=1
∑Nj

i=1
RjiUji
πji

− 1
K
∑J

j=1
∑Nj

i=1 Uji , is

Var(Ûw|U1, . . . ,UN) =
1
K2

∑J
j=1

Nj
nj (Nj − nj)S2j ,

where S2j =
∑Nj

i=1(Uji − Ūj)
2/(Nj − 1) and Ūj =

∑Nj
i=1 Uji/Nj.

Remark 2a. : LetU1, . . . ,UN be a sample ofN independent variables with variance σ2. If 1
N
∑N

i=1
(1−πi)

πi U2
i →

v∞, then under a Poisson sampling design and using Chebychev inequality,
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1
N
∑N

i=1
RiUi
πi − 1

N
∑N

i=1 Ui|U1, . . . ,UN
p
−→ 0.

*Chebychev inequality: P(|X− μ| ≥ k) ≤ σ2
k2

Remark 2b. : LetU1, . . . ,UN be a sample ofN independent variables with variance σ2. If S2j →

S2j,∞, then under a stratified sampling design and using Chebychev inequality,

1
N
∑J

j=1
∑Nj

i=1
RjiUji
πji

− 1
N
∑J

j=1
∑Nj

i=1 Uji |U1, . . . ,UN
p
−→ 0.

*Chebychev inequality: P(|X− μ| ≥ k) ≤ σ2
k2

Remark 3a. : LetU1, . . . ,UN be a sample of N cluster-correlated independent variables. Under a

Poisson sampling design, if 1
K
∑K

k=1
∑Nk

i=1
(1−πk)

πk (Uk
i )

2 → v∞, then using Chebyshev inequality,

1
K
∑K

k=1
∑Nk

i=1
RkUk

i
πk − 1

K
∑K

k=1
∑Nk

i=1 Uk
i |{Uk

i , ∀i, k}
p
−→ 0.

Remark 3b. : LetU1, . . . ,UN be a sample of N cluster-correlated independent variables. If S2j (Nj−

1)/K → S2j,∞, then using Chebyshev inequality,

1
K
∑K

k=1
∑J

j=1
∑Nk

j
i=1

Rk
ji
Uk
ji

πkji
− 1

K
∑K

k=1
∑J

j=1
∑Nk

j
i=1 Uk

ji |{U
k
ji ,∀i, j, k}

p
−→ 0.

A.2.3 Existence

We show the existence of the weighted estimator β̂w following a similar approach to that taken by81

(see Theorem 1 of81).

Theorem 5. Under the regularity assumptions, there exist a sequence of random variables β̂w, such

that

P(Uw,Km(β̂w) = 0) → 1.

Proof. Let hw,Km(β)=M
−1/2
Km (β)Uw,Km(β) and hKm(β) = M−1/2

Km (β)UKm(β), where Uw,Km(β) =

Uw(β) and UKm(β) = U(β). Let
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VT = V1 + E[V2],

whereV2 = Var[hw,Km|FK] andV1 = Var[hKm]. For any r > 0, define

Bw,Km(r) = {β : ||V−1/2
T M−1/2

Km HKm(β− β0)|| ≤ r},

and let

Ew,Km =

{
ω : rKm ≤ inf

β∈∂Bw,Km(r)
||V−1/2

T M−1/2
Km HKm(TKm(β)− TKm(β0))||

}
,

where TKm(β) = H−1
KmUw,Km(β), rKm = ||V−1/2

T M−1/2
Km HKmTKm(β0)||} and ∂Bw,Km(r) is the

boundary of the sphere Bw,Km(r). Under the regularity assumptions stated earlier, the mapping

TKm is continuously differentiable. BecauseDw,Km is non-singular for β ∈ Bw,Km(r), then TKm is an

injection from Bw,Km(r) to TKm(Bw,Km(r)). According to Lemma 1, on the set Ew,Km∩{DW,Km(β)

is nonsingular }, there exist β̂w ∈ Bw,Km(r) such that Uw,Km(β̂w) = 0.

A.2.4 Consistency

Lemma 8. Let Uk
ji , k = 1, . . . ,K, i = 1, . . . ,Nk be bounded variables. Let A = {k : k = 1, ...,K}

the set of clusters at first phase. Let ak =
∑Nk

i=1
(1−πk)

πk (Uk
i )

2. Assume that the first and second moments

of ak exist and are bounded. Assume that lim
K→∞

∑
k∈A E[a

k]/K ≡ La,∞ exists. Additionally, assume

thatUk = [Uk
1 , . . . ,Uk

Nk ]
T, k = 1, . . . ,K are independent random vector-variables. Then, under a

correlated setting under the conditions in the previous section,

∑
k∈A

ak/K a.s.→ La,∞ (A.5)

We need to prove that
∑

k∈A ak/K −
∑

k∈A E[ak]/K
a.s.−→ 0 asK → ∞. Using Kronecker’s

Lemma, it suffices to prove that limK→∞
∑

k∈A(ak − E[ak])/k < ∞ . Note thatVar[(ak −
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E[ak])/k] ≤ K0m4/k2, whereK0 is a constant (forUk
i bounded). Using the fact that the series∑K

k=1 1/k2 converges, we have that
∑

k∈Aj
Var[(akj − E[akj ])/k] < ∞, and by the Khintchine-

Kolmogorov Convergence Theorem, we have that
∑

k∈Aj
(akj −E[akj ])/k < ∞. Then, it follows that

lim
K→∞

∑
k∈Aj

akj /Kj −
∑

k∈Aj
E[akj ]/Kj = 0. Recall that lim

K→∞
1
K
∑

k∈A E[ak] exists, then this implies

that implies that equation (A.5) holds.

*

Lemma 8. Let Uk
ji , k = 1, . . . ,K, i = 1, . . . ,Nk be bounded variables, and let Aj = {k| cluster k

is in stratum j}. Let akj =
∑Nk

i=1(Uk
ji)

2 if k ∈ Aj, and bkj =
∑Nk

i=1 Uk
ji if k ∈ Aj. Define akj and

bkj as zero if stratum j does not contain cluster k, in other words if k /∈ Aj. Assume that the first and

second moments of akj and bkj exist and are bounded. Let Kj be the number of clusters in stratum j and

assume that lim
K→∞

∑
k∈Aj E[a

k
j ]/Kj ≡ Laj,∞ and lim

K→∞

∑
k∈Aj E[b

k
j ]/Kj ≡ Lbj,∞ exist. Define

S2j =
∑Nj

i=1(Uji − Ūj)
2/(Nj − 1) and Ūj =

∑Nj
i=1 Uji/Nj. Additionally, assume that Uk =

[Uk
1 , . . . ,Uk

Nk ]
T, k = 1, . . . ,K are independent random vector-variables. Then, under a correlated

setting and under the conditions in the previous section,

S2j (Nj − 1)/Kj
a.s.−→ Laj,∞ − kj,∞L2

bj,∞.

where kj,∞ = lim
K→∞

K/Nj.

Let akj and bkj be defined as above. Note that (Nj − 1)S2j =
∑Nj

i=1 U2
ji − 2Ūj

∑Nj
i=1 Uji +NjŪ2

j =∑Nj
i=1 U2

ji −NjŪ2
j =

∑
k∈Aj

∑Nk

i=1(Uk
ji)

2 − 1
Nj
(
∑

k∈Aj

∑Nk

i=1 Uk
ji)

2, so

(Nj − 1)S2j =
∑

k∈Aj
akj − 1

Nj

(∑
k∈Aj

bkj

)2
.

We therefore need to prove that
∑

k∈Aj
akj /Kj −

∑
k∈Aj

E[akj ]/Kj
a.s.−→ 0 asK → ∞ and that∑

k∈Aj
bkj /Kj −

∑Kj
k∈Aj

E[bkj ]/Kj
a.s−→ 0 asK → ∞. Using Kronecker’s Lemma, it suffices to prove

*Khintchine-Kolmogorov Convergence Theorem: Suppose X1, X2, . . ., are independent with mean 0 such that
∑

n Var(Xn) < ∞. Then
∑

n Xn < ∞ a.s. By Kronecker’s
Lemma, to prove limK→∞ 1

K
∑K

k=1 xk=0 a.s., it suffices to show that the random series
∑∞

k=1 xk/k converges a.s. Proving that a series converges is usually easier than proving

that a sequence converges to a specific limit.
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that limK→∞
∑

k∈Aj
(akj − E[akj ])/k < ∞. Note thatVar[(akj − E[akj ])/k] ≤ K0m4/k2, where

K0 is a constant. Using the fact that the series
∑K

k=1 1/k2 converges, we have that
∑

k∈Aj
Var[(akj −

E[akj ])/k] < ∞, and by the Khintchine-Kolmogorov Convergence Theorem, we have that
∑

k∈Aj
(akj−

E[akj ])/k < ∞. Then by Kronecker’s Lemma, it follows that lim
K→∞

∑
k∈Aj

akj /Kj−
∑

k∈Aj
E[akj ]/Kj =

0. Similarly, note thatVar[(bkj − E[bkj ])/k] ≤ K0m4/k2. The series,
∑∞

k=1 1/k2 converges and by

the Khintchine-Kolmogorov Convergence Theorem,
∑

k∈Aj
(bkj −E[bkj ])/k < ∞, so by Kronecker’s

Lemma it follows that lim
K→∞

∑
k∈Aj

bkj /Kj −
∑

k∈Aj
E[bkj ]/Kj = 0. Recall that we assume that

lim
K→∞

K/Nj = kj,∞ and that lim
K→∞

1
Kj

∑
k∈Aj

E[akj ] and lim
K→∞

1
Kj

∑
k∈Aj

E[bkj ] exist, then this implies

that

S2j (Nj − 1)/Kj
a.s−→ lim

K→∞
1
Kj

∑
k∈Aj

E[akj ]− lim
K→∞

Kj
Nj

(
1
Kj

∑
k∈Aj

E[bkj ]
)2

.

i.e.

S2j (Nj − 1)/Kj
a.s.−→ Laj,∞ − kj,∞(Lbj,∞)2.

Theorem 6a. Let L = DTV−1, where L is a p × Nmatrix and each vector-row l of L is of the form

Ll = [D1lV−1
11 , . . . ,DNlV−1

NN], l = 1, . . . , p,whereV−1
ii is the ii − th element of the matrixV−1.

Let A = {k : k = 1, ...K}. The term Uw,Km(β)l − UKm(β)l can be written as Uw,Km(β)l −

UKm(β)l = 1
K
∑

k∈A
∑Nk

i=1 RkwkUk
i,l − UKm(β)l, whereUk

i,l(β) = Lk
i (Yki − μki (β)). Let a

k =∑Nk
i=1(Uk

i,l)
2. Assume that first and second moments of ak and bk exist and are bounded for all β,

and that lim
K→∞

∑
k∈A E[ak]/K exists a.s. Then,

β̂w
p
−→ β0.

We first prove that the WGEE consistently estimates β̂ under a design-based approach (Fuller,

2009). Based on this, we then prove that β̂w is consistent for β0. The existence of the limits above

128



is relevant because they are sufficient to prove that the design-based variance of the estimating equa-

tions converges to 0. Each entry of Uw,Km(β) can be written as Uw,Km(β)l = 1
K
∑J

j=1
∑

k∈A
∑Nk

i=1 RkwkUk
i,l,

whereUk
i,l = Lk

i,l(Y
k
i − μki ). Then,

Var(Uw,Km(β)l − UKm(β)l|FK) =
1
K2

∑
k∈A

Nk∑
i=1

1− πk
πk

(
Uk
i,l

)2
.

Under the assumptions in Lemma 8,Var(Uw,Km(β)l−UKm(β)l|FK)
a.s.−→ 0 and E[Var[Uw,Km(β)l−

UKm(β)l|FK]]
a.s.−→ 0. By Chebychev’s inequality,

Uw,Km(β)l − UKm(β)l|FK
p
−→ 0

and

Uw,Km(β)l − UKm(β)l
p
−→ 0

As stated before, we assume that Uw,Km(β)l is continuous and has exactly one zero at β̂w. We also

know that UKm(β)l = E[Uw,Km(β)l|FK] and because it is continuous and has one zero at β̂, then

UKm(β̂−εl) < 0 < UKm(β̂+εl) for every ε > 0,where β̂−εl = [̂β1, . . . , β̂l − ε, . . . , β̂p] and

β̂+εl = [̂β1, . . . , β̂l + ε, . . . , β̂p].Therefore

β̂w − β̂|FK
p
−→ 0 (A.6)

Now, note that

||β̂w − β0|| = ||β̂w − β̂+ β̂− β0|| ≤ ||β̂w − β̂||+ ||β̂− β0||

Then,

P
(
||β̂− β0|| > ε

)
≤ P

(
||β̂w − β̂||+ ||β̂− β0|| > ε

)
= E

[
P
(
||β̂w − β̂||+ ||β̂− β0|| > ε

∣∣∣∣FK

)]
= E

[
P
(
||β̂w − β̂|| > ε− ||β̂− β0||

∣∣∣∣FK

)]
= E

[
P
(
||β̂w − β̂|| > ε1

∣∣∣∣FK

)]
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where ε1 = ε − ||β̂ − β0||. Since β̂w − β̂|FK
p
−→ 0, it follows that lim

K,n→∞
P
(
||β̂w − β̂|| > ε

∣∣∣∣F) =

0,∀ε > 0. Then,

lim
K,n→∞

P
(
||β̂w − β0|| > ε

)
≤ lim

K,n→∞
E
[
P
(
||β̂w − β̂|| > ε1

∣∣∣∣FK

)]
= E

[
lim

K,n→∞
P
(
||β̂w − β̂|| > ε1

∣∣∣∣FK

)]
= 0.

Therefore, β̂w
p
−→ β0.

Theorem 6b. Let L = DTV−1, where L is a p × Nmatrix and each vector-row l of L is of the form

Ll = [D1lV−1
11 , . . . ,DNlV−1

NN], l = 1, . . . , p,whereV−1
ii is the ii− th element of the matrixV−1. Let

Aj = {k : cluster k in stratum j}. The term Uw,Km(β)l − UKm(β)l can be written as Uw,Km(β)l −

UKm(β)l = 1
K
∑J

j=1
∑

k∈Aj

∑Nk
i=1 RkwkUk

ji,l − UKm(β)l, whereUk
ji,l(β) = Lk

ji(Y
k
ji − μkji(β)). Let

akj =
∑Nk

i=1(Uk
ji,l)

2 and bkj =
∑Nk

i=1 Uk
ji,l if cluster k is in stratum j and 0 if stratum cluster k is not in

stratum j. Assume that first and second moments of akj and bkj exist and are bounded for all β, and

that lim
K→∞

∑
k∈Aj

E[akj ]/Kj and lim
K→∞

∑
k∈Aj

E[bkj ]/Kj exist a.s., whereKj is the number of clusters

in stratum j. Then,

β̂w
p
−→ β0.

We first prove that the WGEE consistently estimates β̂ under a design-based approach20. Based

on this, we then prove that β̂w is consistent for β0. The existence of the limits above is relevant be-

cause they are sufficient to prove that the design-based variance of the estimating equations con-

verges to 0. Each entry of Uw,Km(β) can be written as Uw,Km(β)l = 1
K
∑J

j=1
∑

k∈Aj

∑Nk
i=1 RkwkUk

ji,l,

whereUk
ji,l = Lk

ji,l(Y
k
ji − μkji). Then,

Var(Uw,Km(β)l − UKm(β)l|FK) =
1
K2

∑J
j=1

Nj
nj (Nj − nj)S2jl,

130



where S2jl =
∑

k∈Aj

∑Nk
i=1(Uk

ji,l − Ūj,l)
2/(Nj − 1), and Ūj,l =

∑
k∈Aj

∑Nk
i=1 Uji,l/Nj.Under the

assumptions in Lemma 8,

S2jl(Nj − 1)/Kj
a.s.−→ lim

K→∞
1
Kj

∑
k∈Aj

E[akj ]− kj,∞
(

lim
K→∞

1
Kj

∑
k∈Aj

E[bk]
)2

.

ThereforeVar(Uw,Km(β)l −UKm(β)l|FK)
a.s.−→ 0 and E[Var[Uw,Km(β)l −UKm(β)l|FK]]

a.s.−→ 0. By

Chebychev’s inequality,

Uw,Km(β)l − UKm(β)l|FK
p
−→ 0

and

Uw,Km(β)l − UKm(β)l
p
−→ 0

As stated before, we assume that Uw,Km(β)l is continuous and has exactly one zero at β̂w. We also

know that UKm(β)l = E[Uw,Km(β)l|FK] and because it is continuous and has one zero at β̂, then

UKm(β̂−εl) < 0 < UKm(β̂+εl) for every ε > 0,where β̂−εl = [̂β1, . . . , β̂l − ε, . . . , β̂p] and

β̂+εl = [̂β1, . . . , β̂l + ε, . . . , β̂p].Therefore

β̂w − β̂|FK
p
−→ 0 (A.7)

Now, note that

||β̂w − β0|| = ||β̂w − β̂+ β̂− β0|| ≤ ||β̂w − β̂||+ ||β̂− β0||
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Then,

P
(
||β̂− β0|| > ε

)
≤ P

(
||β̂w − β̂||+ ||β̂− β0|| > ε

)
= E

[
P
(
||β̂w − β̂||+ ||β̂− β0|| > ε

∣∣∣∣FK

)]
= E

[
P
(
||β̂w − β̂|| > ε− ||β̂− β0||

∣∣∣∣FK

)]
= E

[
P
(
||β̂w − β̂|| > ε1

∣∣∣∣FK

)]

where ε1 = ε− ||β̂− β0||. Since β̂w − β̂|FK
p
−→ 0, it follows that lim

K,n→∞
P
(
||β̂w − β̂|| > ε

∣∣∣∣F) = 0

∀ε > 0. Then,

lim
K,n→∞

P
(
||β̂w − β0|| > ε

)
≤ lim

K,n→∞
E
[
P
(
||β̂w − β̂|| > ε1

∣∣∣∣FK

)]
= E

[
lim

K,n→∞
P
(
||β̂w − β̂|| > ε1

∣∣∣∣FK

)]
= 0.

Therefore, β̂w
p
−→ β0.

A.2.5 Asymptotic Distribution

In this section, we demonstrate the asymptotic distribution of Uw,Km(β0), which implies the asymp-

totic normality of β̂w, given that the conditions outlined below hold.
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A.2.6 Additional Notation

Let

hw,Km(β) = M−1/2
Km Uw,Km(β)

hKm(β) = M−1/2
Km UKm(β)

where UKm(β) = U(β) and Uw,Km(β) = Uw(β). Let v be a vector of size p such that ||v|| = 1 and

let

tKm(β) = v′V−1/2
T hKm(β)

tw,Km(β) = v′V−1/2
T (hw,Km(β)− hKm(β)),

where

VT(β) = V1(β) + E[V2(β)]

V2(β) = Var[hw,Km(β)|FK]

V1(β) = Var[hKm(β)]

Furthermore, let σ21Km(β) = Var[tKm(β)] = v′B1(β)v and σ22Km(β) = Var[tw,Km(β)|FK] =

v′B2(β)v, where

B1(β) = V−1/2
T V1V

−1/2
T = V−1/2

T M−1/2
Km MKmM

−1/2
Km V−1/2

T = V−1
T ,

and
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B2(β) = V−1/2
T Var(hw,Km−hKm|Fk)V

−1/2
T = V−1/2

T Var(hw,Km|FK)V
−1/2
T = V−1/2

T V2V
−1/2
T = V−1

T .

Note that B1 = {V1 + E[V2]}−1 = {I+ E[V2]}−1 and B2 = {I+ E[V2]}−1/2V2{I+ E[V2]}−1/2.

A.2.7 Additional conditions

The following condition is adapted from condition CC for the complete data scenario in81.

Condition CCw0 : Note that E[Dw,Km(β)] = E[DKm(β)]. For any given r > 0 and δ > 0,

P
(
supβ∈Bw,Km(r)||H

−1/2
Km Dw,Km(β)H

−1/2
Km − Ip×p|| < δ

)
→ 1

where Bw,Km(r) = {β : ||V−1/2
T M−1/2

Km HKm(β − β0)|| ≤ r, and the matrix norm is the Euclidean

matrix norm.

Condition CCw: For any given r > 0 and δ > 0, there exist matrices B1,∞ = lim
K→∞

V−1
T and

B2,∞ = lim
K→∞

V−1/2
T E[V2]V

−1/2
T such that

||B2(β0)− B2,∞|| a.s.−→ 0

||B1(β0)− B1,∞|| a.s.−→ 0

where the matrix norm is the Eucildean matrix norm. Note that B1,∞ + B2,∞ = Ip×p, since

V−1
T + V−1/2

T E[V2]V
−1/2
T = V−1/2

T (V−1/2
T + E[V2]V

−1/2
T ) = V−1/2

T ((I + E[V2])V
−1/2
T ) =

V−1/2
T VTV

−1/2
T = Ip×p.

The following theorem, which mirrors Theorem 3 in81, shows that the asymptotic distributions of

β̂w and Uw,Km(β) are closely related.

134



Theorem 7 Suppose that conditions Iw, Lw, and CCw0 hold. Then, there exists a sequence of solutions

β̂w to theWGEE equation in Bw,Km(r) such thatV
−1/2
T M−1/2

Km HKm(β̂w − β0) andV
−1/2
T hw,Km are

asymptotically distributed, where hw,Km(β) = M−1/2
Km Uw,Km(β).

Proof. Let β̄ ∈ Bw,Km(r) such that β̄ is between β0 and β̂w. Using Taylor’s theorem, we have that:

Uw,Km(β0) = DKm(β̄)(β̂− β0)

since

0 = Uw,Km(β̂) = Uw,Km(β0) +
∂Uw,Km
∂βT

∣∣∣∣
β=β̄

(β̂− β0) = Uw,Km(β0)−Dw,Km(β̄)(β̂− β0)

It then follows that

H−1/2
Km Uw,Km

= H−1/2
Km Dw,Km(β̄)(β̂w − β0)

= H−1/2
Km Dw,Km(β̄)H

−1/2
Km H1/2

Km(β̂w − β0)

By condition CCw0 and Slutsky’s theorem,H−1/2
Km Uw,Km andH1/2

Km(β̂w − β0) are asymptotically

identically distributed. Therefore,V−1/2
T M−1/2

Km Uw,Km andV−1/2
T M−1/2

Km HKm(β − β0) are also

asymptotically identically distributed.

We now prove the asymptotic normality of β̂w by first showing the asymptotic normality of Uw,Km.

Theorem 8a For each k = 1, . . . ,K; i = 1, . . . ,Nk, letUk∗
i (β) = Lk∗

i (β)(Yi − μi(β)), where

Lk∗
i (β) denotes the ik-th entry of the vector L∗(β) = vTV−1/2

T M−1/2
Km DTV−1, where v is a p × 1

vector with ||v|| = 1. Suppose that all assumptions in Lemma 4 hold for the variableU. Then,

σ−1
2Kmtw,Km|FK

d−→ N(0, 1), σ−1
1KmtKm

d−→ N(0, 1),V−1/2
T hw,Km

d−→ N(0,B1,∞ + B2,∞)) =

N(0, Ip×p), and
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V−1/2
T M−1/2

Km HKm(β̂− β0)
d−→ N(0, Ip×p)

If, additionally, we assume that limK→∞KM−1/2
Km = M∞, limK→∞HKm = H∞, so thatKV−1/2

T M−1/2
Km HKm →

B1/2
1,∞M∞H∞, then

√
K(β̂w − β0)

d−→ N
(
0, [B1/2

1,∞M∞H∞]−2
)

Proof. Note that the vector L∗(β), which can be reexpressed as L∗(β) = v∗TDTV−1, where v∗ =

M−1/2
Km V−1/2

T v, is of the form

L∗(β) =
[∑p

l=1 v
∗
l D

1
l(V

1
11)

−1, . . . ,
∑p

l=1 v
∗
l D

K
NK,l(V

K
NKNK)

−1
]
,

where (Vkk
ii )

−1 denotes the ikik − th element of the matrixV−1(β). Then tw,Km can be written

as tw,Km =
∑K

k=1
∑J

j=1
∑Nk

j
i=1 RkwkUk∗

ji (β0) −
∑K

k=1
∑J

j=1
∑Nk

j
i=1 Uk∗

ji (β0),whereU
k∗
ji (β) =

Lk∗
ji (β)(Y

k
ji − μkji(β)). It follows thatVar(tw,Km|FK) =

∑
k∈A
∑Nk

i=1
1−πki
πki

Uk∗2
i . By assumption (5)

and Lemma 4, we conclude that

tw,Km/σ2Km =
1

σ2Km

( K∑
k=1

Nk∑
k=1

RkwkUk∗
i (β)−

K∑
k=1

Nk∑
i=1

Uk∗
i (β0

)∣∣∣∣FK
d−→ N(0, 1).

This together with condition CCw implies that

tW,Km =

( K∑
k=1

Nk∑
i=1

RkwkUk∗
i (β)−

K∑
k=1

Nk∑
i=1

Uk∗
i (β0

)∣∣∣∣FK
d−→ N(0, σ22,∞).

So tw,Km = vTV−1/2
T (hw,Km − hKm)|FK

d−→ N(0, σ22,∞), where σ22,∞ = vTB2,∞v. By Theorem 4 in

Xie and Yang (2003), hKm
d−→ N(0, Ip×p). Then, by condition CCw and becauseV

−1/2
T = B1/2

1 , we

have vTV−1/2
T hKm

d−→ N(0, σ1,∞), where σ21,∞ = vTB1,∞v. In summary, we have that

vTV−1/2(hKm)
d−→ N(0, σ21,∞)
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vTV−1/2(hw,Km − hKm)|FK
d−→ N(0, σ22,∞)

Then by Lemma 5, we obtain vTV−1/2hw,Km
d−→ N(0, σ21,∞ + σ22,∞), for any v. Therefore,

V−1/2
T hw,Km

d−→ N(0,B1,∞ + B2,∞) = N(0, Ip×p)

This result and Theorem 7 imply that

V−1/2
T M−1/2

Km HKm(β̂− β0)
d−→ N(0, Ip×p).

and that

√
K(β̂w − β0)

d−→ N(0, [B1/2
1,∞M∞H∞]−2)

Theorem 8b. For each k = 1, . . . ,K; j = 1, . . . , J; i = 1, . . . ,Nk
j , letUk∗

ji (β) = Lk∗
ji (β)(Yji −

μji(β)), where L
k∗
ji (β) denotes the j

k
i -th entry of the vector L∗(β) = vTV−1/2

T M−1/2
Km DTV−1, where

v is a p× 1 vector with ||v|| = 1. Let Aj = {k : cluster k is in stratum j}. Assume that

1
Nj

∑
k∈Aj

Nk∑
i=1

[
Uk∗
ji (β0), (U

k∗
ji (β0)− Ū∗

j (β0))
2, (Uk∗

ji (β0))
4
]

a.s.−→ [M1j,M2j,M4j], (A.8)

where Ū∗
j (β0) = 1

Nj

∑
k∈Aj

∑Nk
i=1 Uk∗

ji (β0) andM1j,M2j,M4j are constants. Then, under the

assumptions above, σ−1
2Kmtw,Km|FK

d−→ N(0, 1), σ−1
1KmtKm

d−→ N(0, 1),V−1/2
T hw,Km

d−→ N(0,B1,∞ +

B2,∞)) = N(0, Ip×p), and

V−1/2
T M−1/2

Km HKm(β̂− β0)
d−→ N(0, Ip×p)

If we additionally assume that limK→∞KM−1/2
Km = M∞, limK→∞HKm = H∞, so thatKV−1/2

T M−1/2
Km HKm →

B1/2
1,∞M∞H∞, then
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√
K(β̂w − β0)

d−→ N
(
0, [B1/2

1,∞M∞H∞]−2
)

Proof. Note that the vector L∗(β), which can be reexpressed as L∗(β) = v∗TDTV−1, where v∗ =

M−1/2
Km V−1/2

T v, is of the form

L∗(β) =
[∑p

l=1 v
∗
l D

1
11l(V1111)

−1, . . . ,
∑p

l=1 v
∗
l D

K
JNK

J
,l(V

KK
JNjNj

)−1
]
,

where (Vkk
ii )

−1 denotes the ikik − th element of the matrixV−1(β). Then tw,Km can be written

as tw,Km =
∑K

k=1
∑J

j=1
∑Nk

j
i=1 RkwkUk∗

ji (β0) −
∑K

k=1
∑J

j=1
∑Nk

j
i=1 Uk∗

ji (β0),whereU
k∗
ji (β) =

Lk
ji(β)(Y

k
ji − μkji(β)). It follows thatVar(tw,Km|FK) =

∑J
j=1

Nj
nj (Nj − nj)S∗2j , where S∗2j =∑K

k=1
∑J

j=1
∑Nk

j
i=1(Uk∗

ji (β0) − Ūk∗
ji (β0))

2/(Nj − 1) and Ū∗
j (β0) =

∑K
k=1
∑J

j=1
∑Nk

j
i=1 Uk∗

ji (β)/Nj.

By assumption (5) and Lemma 4, we conclude that

tw,Km/σ2Km =
1

σ2Km

( K∑
k=1

J∑
j=1

Nk
j∑

i=1
RkwkUk∗

ji (β)−
K∑
k=1

J∑
j=1

Nk
j∑

i=1
Uk∗
ji (β0

)∣∣∣∣FK
d−→ N(0, 1).

This together with condition CCw implies that

tw,Km =

( K∑
k=1

J∑
j=1

Nk
j∑

i=1
RkwkUk∗

ji (β)−
K∑
k=1

J∑
j=1

Nk
j∑

i=1
Uk∗
ji (β0

)∣∣∣∣FK
d−→ N(0, σ22,∞).

So tw,Km = vTV−1/2
T (hw,Km − hKm)|FK

d−→ N(0, σ22,∞), where σ22,∞ = vTB2,∞v. By Theo-

rem 4 in81, hKm
d−→ N(0, Ip×p). Then, by condition CCw and becauseV

−1/2
T = B1/2

1 , we have

vTV−1/2
T hKm

d−→ N(0, σ1,∞), where σ21,∞ = vTB1,∞v. In summary, we have that

vTV−1/2(hKm)
d−→ N(0, σ21,∞)

vTV−1/2(hw,Km − hKm)|FK
d−→ N(0, σ22,∞)
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Then by Lemma 5, we obtain vTV−1/2hw,Km
d−→ N(0, σ21,∞ + σ22,∞), for any v. Therefore,

V−1/2
T hw,Km

d−→ N(0,B1,∞ + B2,∞) = N(0, Ip×p)

This result and Theorem 7 imply that

V−1/2
T M−1/2

Km HKm(β̂− β0)
d−→ N(0, Ip×p).

and that

√
K(β̂w − β0)

d−→ N(0, [B1/2
1,∞M∞H∞]−2)

139



A.3 Bias Correction for Point Estimates under Cluster-Based Outcome-Dependent

Sampling Design

Building upon the work of36, we derive the bias formula that incorporates the weights needed to

account for the non-random sampling design. Under a cluster-based outcome-dependent sampling

design, the bias formula Bw(β0), taking into account the weights, can be expressed as

ι̂l1l2w ι̂l3l4w κ̂l2l3,l4w − 1
2
ι̂l1l2w ι̂l3l4w ι̂l5l6w κ̂l2l3l5w κ̂l4,l6w , (A.9)

where letting V̄k = V−1
k ,

U l1
w =

K∑
k=1

Rk
πk

Dt1l1
k V̄t1t2

k (Yt2k − μt2k ),

U l1l2
w =

K∑
k=1

{(∂/∂βl2)Rk
πk

Dt1l1
k V̄t1t2

k }(Yt2k − μt2k )−
Rk
πk

Dt1l1
k V̄t1t2

k Dt2l2

and

U l1l2l3
W =

K∑
k=1

{(∂2/∂βl2βl3)
Rk
πk

Dt1l1
k V̄t1t2

k }(Yt2k − μt2k )− {(∂/∂βl2)Rk
πk

Dt1l1
k V̄t1t2

k }Dt2l3
k

−{(∂/∂βl3)Rk
πk

Dt1l1V̄t1t2
k }Dt2l2

k − Rk
πk

Dt1l1
k V̄t1t2

k {(∂/∂βl3)Dt2l2
k }.

The moments needed to obtain (10) are

κl1l2w = −
K∑
k=1

Dt1l1
k V̄t1t2

k Dt2l2
k ,

which can be estimated by
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κ̂l1l2w = −
K∑
k=1

Rk
πk

Dt1l1
k V̄t1t2

k Dt2l2
k ,

and ιl1l2w is then defined to be the inverse of κl1l2w . κl1,l2w is the l1l2th component of

Var(Uw) = Var[UT1N×1] + E[UTWVar(R|Fk)WU],

which, as described in section 5.2 of the main paper, can be estimated by

V.I+ V.II = UTdiag(R)Wk
2diag(R)U+UTWdiag(R)Δ̃diag(R)WU.

κl1l2l3w = −
K∑
k=1

{(∂/∂βl2)Dt1l1
k V̄t1t2

k }Dt2l3
k + {(∂/∂βl3)Dt1l1

k V̄t1t2
k }Dt2l2

k +Dt1l2
k V̄t1t2

k {∂/∂βl3)Dt2l2
k },

which can be estimated by

κ̂l1l2l3w = −
K∑
k=1

Rk
πk

{(∂/∂βl2)Dt1l1
k V̄t1t2

k }Dt2l3
k +

Rk
πk

{(∂/∂βl3)Dt1l1
k V̄t1t2

k }Dt2l2
k +

Rk
πk

Dt1l2
k V̄t1t2

k {∂/∂βl3)Dt2l2
k }.

Finally, κl1l2,l3w is the l1l3rd component of
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E[{∂/∂βl2Uw}UT
w |X]

= E[{∂/∂βl2UTWR}RTWU|X]

= E[{∂/∂βl2UT}WRRTWU|X]

= E[E[{∂/∂βl2UT}WRRTWU|X,Y]|X]

= E[{∂/∂βl2UT}WE[RRT|X,Y]WU|X]

E[RRT] is anN × Nmatrix with entries equal to the joint probability of selection for pairs of in-

dividuals. For two individuals belonging to cluster k, the joint probability of selection is πk; for two

individuals from clusters k and k′, the joint probability of selection is πkk′ , which under a cluster-

stratified design is equal to kj
Kj

kj−1
Kj−1 if clusters k and k

′ belong to the same stratum j, and is equal to
kj
Kj

kj′
Kj′

if clusters k and k′ belong to different strata j and j′.

The expression above can be estimated by {∂/∂βl2UT}WRRTWU.
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A.4 Mancl andDeRouen-type Variance Bias Correction

For data collected through a cluster-based outcome-dependent sampling design, parameter estimates

β̂w, are obtained by solving

Uw =
∑K

k=1
Rk
πkD

T
kV

−1
k (Yk − μk) = 0

Furthermore,

V̂ar[β̂w] = Ĥw(β̂w)
−1
{
V̂I(β̂w) + V̂II(β̂w)

}
Ĥw(β̂w)

−1, (A.10)

where Ĥw(β) = −
∑K

k=1 Ĥw,k(β) = −
∑K

k=1
Rk
πkD

T
kV

−1
k Dk, and

V̂I(β̂w) =
∑K

k=1
Rk
πkD

T
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk

and

V̂II(β̂w)

=
K∑
k=1

BkkDT
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk +
K∑
k=1

∑
k′ ̸=k

DT
kV

−1
k diag(̂εw,k)Bkk′diag(̂εw,k′)V−1

k′ Dk′

= V̂∗
II(β̂w) + V̂e

II(β̂w)

with ε̂w,k = (Yk − μ̂w,k), where μ̂w,k is anNk-vector with elements μ̂w,ki = g−1(XT
kiβ̂w), Bkk =

π−3
k (πk − π2k)Rk, and Bkk′ anNk × Nk′ matrix with all entries equal to (πkk′−πkπk′ )RkRk′

πkk′πkπk′
. The

residual estimator, ε̂w,k̂εTw,k, may be downward biased in small samples, and we adapt the approach

of38 to correct V̂I(β̂w) and V̂
∗
II(β̂w) for this bias. First note that
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E[V̂I(β̂w)]

= E[E[V̂I(β̂w)|R]]

=

K∑
k=1

E[
Rk
πk

E[DT
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk|R]]

=
K∑
k=1

E[
Rk
πk

DT
kV

−1
k E[̂εw,k̂εTw,k|R]V−1

k Dk]

and

E[V̂∗
II(β̂w)]

= E[E[V̂∗
II(β̂w)|R]]

=
K∑
k=1

E[BkkE[DT
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk|R]]

=

K∑
k=1

E[BkkDT
kV

−1
k E[̂εw,k̂εTw,k|R]V−1

k Dk]

Now, carrying out a Taylor series expansion of Ûk = Uk(β̂w) = DT
k (β̂w)V

−1
k (β̂w)(Yk(β̂w)− μk(β̂w))

about β yields:

Ûk ≈ Uk(β) +
∂Uk
∂β

∣∣∣∣
β=β

(β̂w − β) = Uk(β)−Hk(β)(β̂w − β) (A.11)

whereHk(β) =−[∂Uk
∂β ] = DT

kV
−1
k Dk. Taking the sum over the clusters, k = 1, . . . ,K, yields:

∑K
k=1 Ûk ≈

∑K
k=1 Uk −

∑K
k=1Hk(β)(β̂w − β)

∑K
k=1 Uk −

∑K
k=1 Ûk ≈

∑K
k=1Hk(β)(β̂w − β)
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From which it follows that

(β̂w − β) ≈ H(β)−1
K∑
k=1

Uk (A.12)

whereH(β) =
∑K

k=1Hk(β). Now, in the same vein as Mancl and DeRouen38, carrying out a

first-order Taylor-series expansion of the fitted residuals, ε̂w,k about β yields

ε̂w,k = εk +
∂εk
∂β

(β̂w − β).

Squaring this and taking the expectation conditional onR, it follows that

E[̂εw,k̂εTw,k|R] = E[εkεTk ]+E[εk(β̂w−β)T
∂εTk
∂βT

]+E[
∂εk
∂β

(β̂w−β)εTk ]+E[
∂εk
∂β

(β̂w−β)(β̂w−β)T
∂εTk
∂βT

]

where the notation indicating that the expectation is conditional onR is suppressed on the right-

hand side of th above equation. Then, using the approximation (β̂w − β) ≈ H(β)−1∑K
k=1 Uk, the

conditional expectation E[̂εw,k̂εTw,k|R] can be approximated by,

Cov[Yk]−Cov[Yk]AT
kk,w−Akk,wCov[Yk]+Akk,wCov[Yk]AT

kk,w+
∑
k′ ̸=k

Akk′,wCov[Yk′ ]AT
kk′,w. (A.13)

whereAkk′,w =

Dk(
∑K

m=1DT
mV−1

m Dm)
−1DT

k′V
−1
k′ = DkH(β)−1DT

k′V
−1
k′ .

Assuming that the last term in (A.13) is negligible, rearranging yields the following approximation:

E[̂εw,k̂εTw,k|R] ≈ (INk − Akk,w)Cov[Yk](INk − Akk,w)
T. (A.14)
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where INk is theNk × Nk identity matrix. The approximation in (A.14) and leads to the following

bias-corrected variance estimator:

̂̂Var[β̂w] = Ĥw(β̂w)
−1
{̂̂VI(β̂w) +

̂̂VII(β̂w)
}
Ĥw(β̂w)

−1, (A.15)

where Ĥw(β) = −
∑K

k=1DT
kV

−1
k Wkdiag(Rk)Dk and

̂̂VI(β̂w) =
K∑
k=1

Rk
πk

DT
kV

−1
k (INk − Âkk,w)

−1̂εw,k̂εTw,k(INk − ÂT
kk,w)

−1V−1
k Dk

and

̂̂VII(β̂w) =
∑K

k=1 BkkDT
kV

−1
k (INk − Âkk,w)

−1̂εw,k̂εTw,k(INk − ÂT
kk,w)

−1V−1
k Dk

+
∑K

k=1
∑

k′ ̸=kDT
kV

−1
k diag(̂εw,k)Bkk′diag(̂εw,k′)V−1

k′ Dk′

where Bkk = π−3
k (πk − π2k)Rk, Bkk′ is anNk × Nk′ matrix with all entries equal to (πkk′−πkπk′ )RkRk′

πkk′πkπk′

and Âkk′,w(β) =

Dk(
∑K

m=1DT
mV−1

m Wmdiag(Rm)Dm)
−1DT

k′V
−1
k′ Wk′diag(Rk′) =

DkĤ−1
w (β)DT

k′V
−1
k′ Wk′diag(Rk′).

If the data arise from a cluster-stratified design, the correction for the naïve estimator of the variance

that ignores the negative correlation in the sampling indicators is:

̂̂Var∗[β̂w] = Ĥw(β̂w)
−1
{̂̂VI(β̂w) +

̂̂V∗
II(β̂w)

}
Ĥw(β̂w)

−1,

where ̂̂V∗
II(β̂w) =

K∑
k=1

BkkDT
kV

−1
k (Ik − Âkk,w)

−1̂εw,k̂εTw,k(Ik − ÂT
kk,w)

−1V−1
k Dk.
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Note that this is also the corrected variance estimator for data arising from a Poisson sampling de-

sign.
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A.5 Kauermann and Carroll-type Variance Bias Correction

The Kauermann and Carroll30-type bias correction to the variance estimator is similar to the bias

correction derived in the previous section. We therefore simply state the form of the correction be-

low:

V̂arKC[β̂w] = Ĥw(β̂w)
−1
{
V̂I,KC(β̂w) + V̂II,KC(β̂w)

}
Ĥw(β̂w)

−1, (A.16)

where Ĥw(β) = −
∑K

k=1DT
kV

−1
k Wkdiag(Rk)Dk and

V̂I,KC(β̂w) =
K∑
k=1

Rk
πk

DT
kV

−1
k (INk − Âkk,w)

− 1
2 ε̂w,k̂εTw,k(INk − ÂT

kk,w)
− 1

2V−1
k Dk

and

V̂II,KC(β̂w) =
∑K

k=1 BkkDT
kV

−1
k (INk − Âkk,w)

− 1
2 ε̂w,k̂εTw,k(INk − ÂT

kk,w)
− 1

2V−1
k Dk

+
∑K

k=1
∑

k′ ̸=kDT
kV

−1
k diag(̂εw,k)Bkk′diag(̂εw,k′)V−1

k′ Dk′

where Bkk = π−3
k (πk − π2k)Rk, Bkk′ is anNk × Nk′ matrix with all entries equal to (πkk′−πkπk′ )RkRk′

πkk′πkπk′

and Âkk′,w(β) =

Dk(
∑K

m=1DT
mV−1

m Wmdiag(Rm)Dm)
−1DT

k′V
−1
k′ Wk′diag(Rk′) =

DkĤ−1
w (β)DT

k′V
−1
k′ Wk′diag(Rk′).

If the data arise from a cluster-stratified design, the correction for the naïve estimator of the variance

that ignores the negative correlation in the sampling indicators is:

V̂ar
∗
KC[β̂w] = Ĥw(β̂w)

−1
{
V̂I,KC(β̂w) + V̂∗

II,KC(β̂w)
}
Ĥw(β̂w)

−1,
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where

V̂∗
II,KC(β̂w) =

K∑
k=1

BkkDT
kV

−1
k (Ik − Âkk,w)

− 1
2 ε̂w,k̂εTw,k(Ik − ÂT

kk,w)
− 1

2V−1
k Dk.

This is also the corrected variance estimator for data arising from a Poisson sampling design.

149



A.6 Fay and Graubard-type Variance Bias Correction

Do a Taylor series expansion ofUk about β̂w:

Uk ≈ Uk(β̂w) +
∂Uk
∂β

∣∣∣∣
β=β̂w

(β− β̂w) = Uk(β̂w)−Hk(β̂w)(β− β̂w) (A.17)

whereHk =−[∂Uk
∂β ] = DT

kV
−1
k Dk. Now, summing over the clusters, k = 1, . . . ,K, yields:

∑K
k=1 Uk ≈

∑K
k=1 Ûk −

∑K
k=1Hk(β̂w)(β− β̂w)

∑K
k=1 Ûk −

∑K
k=1 Uk ≈

∑K
k=1Hk(β̂w)(β− β̂w)

∑K
k=1 Uk −

∑K
k=1 Ûk ≈

∑K
k=1Hk(β̂w)(β̂w − β)

From which it follows that

(β̂w − β) ≈ H(β̂w)
−1

K∑
k=1

Uk = H(β̂w)
−1U (A.18)

whereH(β) =
∑K

k=1Hk(β). We follow the approach of Fay and Graubard (2001) and use approxi-

mations (A.17) and (A.18) to obtain an approximation for E[ÛkÛT
k |R]:
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ÛkÛT
k

≈ (Uk +Hk(β̂w)(β− β̂w))(U
T
k + (β− β̂w)

THT
k (β̂w))

= UkUT
k + Uk(β− β̂w)

THT
k (β̂w) +Hk(β̂w)(β− β̂w)U

T
k +Hk(β̂w)(β− β̂w)(β− β̂w)

THk(β̂w)
T

= UkUT
k − Uk(

K∑
k=1

Uk)
T(H(β̂w)

−1)THk(β̂w)
T −Hk(β̂w)H

−1(β̂w)(
K∑
k=1

Uk)UT
k

+Hk(β̂w)H(β̂w)
−1(

K∑
k=1

Uk)(

K∑
k=1

Uk)
TH−1(β̂w)Hk(β̂w)

T

= UkUT
k − [UkUT

k (H
−1(β̂w))

THk(β̂w)
T + Uk(

∑
j̸=k

Uk)
T(H−1(β̂w))

THk(β̂w)
T]

− [Hk(β̂w)(H
−1(β̂w))

TUkUT
k +Hk(β̂w)(H(β̂w)

−1)T(
∑
j̸=k

Uj)UT
k ]

+Hk(β̂w)(H
−1(β̂w))UkUT

k (H
−1(β̂w))

THk(β̂w)
T

+Hk(β̂w)H
−1(β̂w)(

∑
j̸=k

UjUT
j )(H−1(β̂w))

THk(β̂w)

+Hk(β̂w)H(β̂w)
−1(

K∑
k=1

Uk
∑
j ̸=k

UT
j )(H−1(β̂w))

THk(β̂w)

Now, taking expectations conditional onR (supressing the conditional notation on the right-hand

side of the expression below) yields:
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E[ÛkÛT
k |R]

≈ E[UkUT
k ]− E[UkUT

k ](H
−1(β̂w))

THk(β̂w)
T − E[Uk(

∑
j ̸=k

Uj)
T](H−1(β̂w))

THk(β̂w)
T

− [Hk(β̂w)(H
−1(β̂w))

TE[UkUT
k ]−Hk(β̂w)(H

−1(β̂w))
TE[(

∑
j̸=k

Uj)UT
k ]

+Hk(β̂w)(H(β̂w)
−1)E[UkUT

k ](H
−1(β̂w))

THk(β̂w)
T

+Hk(β̂w)H
−1(β̂w)(

∑
j̸=k

E[UjUT
j )](H−1(β̂w))

THk(β̂w)

+Hk(β̂w)H(β̂w)
−1)E[(

K∑
k=1

∑
j̸=k

UkUT
j )](H−1(β̂w))

THk(β̂w)

= Ψk − Ψk(H−1(β̂w))
THk(β̂w)

T −Hk(β̂w)(H
−1(β̂w))

TΨk

+Hk(β̂w)(H
−1(β̂w))Ψk(H−1(β̂w))

THk(β̂w)
T

+Hk(β̂w)(H
−1(β̂w))(

∑
j̸=k

Ψj)(H−1(β̂w))
THk(β̂w)

= (Ip −Hk(β̂w)(H
−1(β̂w)))Ψk(Ip −Hk(β̂w)(H

−1)(β̂w))
T

+Hk(β̂w)(H
−1(β̂w))(

∑
j̸=k

Ψj)(H−1(β̂w))
THk(β̂w)

T

where Ψk = E[UkUT
k ]. Suppose that Ψk ≈ cHk(β̂w), with c some constant and let Ĥk = Hk(β̂w):
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E[ÛkÛT
k |R]

≈ cĤk − cĤk(Ĥ−1)TĤT
k − cĤk(Ĥ−1

k )Ĥk + cĤk(Ĥ−1)Ĥk(Ĥ−1)TĤT
k

+ cĤk(Ĥ−1)(
∑
j ̸=k

Ĥj)(Ĥ−1)TĤT
k

= cĤk − cĤk(Ĥ−1)TĤT
k − cĤk(Ĥ−1)Ĥk + cĤk(Ĥ−1)(

K∑
k=1

Ĥj)(Ĥ−1)TĤT
k

= cĤk − cĤk(Ĥ−1)TĤT
k − cĤk(Ĥ−1)Ĥk + cĤk(Ĥ−1)ĤT

k

= cĤk − cĤk(Ĥ−1)Ĥk

= cĤk(Ip − (Ĥ−1)Ĥk)

≈ Ψk(Ip − (Ĥ−1)Ĥk) ≈ (Ip − Ĥk(Ĥ−1)))Ψk

Therefore, estimate Ψk with Ψ̂k=Fk,wÛkÛT
k F

T
k,w, where Fk,w is a p × p diagonal matrix with the jjth

element equal to (1 − min(b, (ĤkĤ−1)jj)
− 1

2 . We estimate Fk,w with F̂k,w, a p × p diagonal matrix

with the jjth element equal to (1−min(b, (Ĥw,kĤ−1
w )jj)

− 1
2 , where

Ĥw(β) = −
∑K

k=1 Ĥw,k(β) = −
∑K

k=1DT
kV

−1
k Wkdiag(Rk)Dk, and b is set to 0.75.

The bias-corrected sandwich estimator is then

V̂arFG[β̂w] = Ĥw(β̂w)
−1
{
V̂I,FG(β̂w) + V̂II,FG(β̂w)

}
Ĥw(β̂w)

−1, (A.19)

where

V̂I,FG(β̂w) =
∑K

k=1
Rk
πk F̂k,wD

T
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk(F̂k,w)T
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V̂II,FG(β̂w) =
∑K

k=1 BkkF̂k,wDT
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk(F̂k,w)T

+
∑K

k=1
∑

k′ ̸=kDT
kV

−1
k diag(̂εw,k)Bkk′diag(̂εw,k′)V−1

k′ Dk′

where Bkk′ is anNk ×Nk′ matrix with all entries equal to (πkk′−πkπk′ )RkRk′
πkk′πkπk′

.

If the data arise from a cluster-stratified design, the correction for the naïve estimator of the variance

that ignores the negative correlation in the sampling indicators is:

V̂ar
∗
FG[β̂w] = Ĥw(β̂w)

−1
{
V̂I,FG(β̂w) + V̂∗

II,FG(β̂w)
}
Ĥw(β̂w)

−1,

where

V̂∗
II,FG(β̂w) =

K∑
k=1

BkkF̂k,wDT
kV

−1
k ε̂w,k̂εTw,kV−1

k Dk(F̂k,w)T.
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A.7 Smoothed Bootstrap

We adapt the smoothed bootstrap approach proposed by32 for the complete data setting. When

data has been collected through a cluster-based outcome-dependent sampling scheme, the estimates,

β̂w, are obtained by solving

Uw =

K∑
k=1

Rk
πk

DT
kV

−1
k (Yk − μk) (A.20)

One can obtain smoothed bootstrap replicates, β̃w, by solving the following perturbed inverse-

probability-weighted generalized estimating equations:

Ũw =

K∑
k=1

wk
Rk
πk

DT
k (β̂w)V

−1
k (β̂w)(Yk(β)− μk(β)) (A.21)

where the wk are taken to be independent realizations from a distribution with unit mean and unit

variance. If the clusters have been sampled through Poisson sampling, the known πk are used in

(A.21). The bootstrap replicates are then obtained by solving Ũw = 0:

β̃
(0)
w = β̂w

β̃
(1)
w = β̃

(0)
w + (

∑K
k=1 wkHw,k(β̂w))

−1(
∑

k
Rk
πk wkDT

k (β̃
(0)
w )V−1

k (β̃
(0)
w )(Yk(β̃

(0)
w )− μk(β̃

(0)
w ))

β̃
(2)
w = β̃

(1)
w + (

∑K
k=1 wkHw,k(β̂w))

−1(
∑

k
Rk
πk wkDT

k (β̃
(1)
w )V−1

k (β̃
(1)
w )(Yk(β̃

(1)
w )− μk(β̃

(1)
w ))

whereHw,k(β) = DT
k (β)V

−1
k (β)Wkdiag(Rk)Dk(β).

If the clusters are sampled through a cluster-stratified design, the selection indicatorsRk,Rk′ are

negatively correlated for clusters k and k′ belonging to the same stratum. To account for this, we

take the approach of Cai and Zheng (2013)13: namely, perturbing the selection indicators as though

they were independent, and using estimated selection probabilities rather than the known probabil-

ities to induce a correlation among the selection indicators. In this case, this would involve treating
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theR′
ks as though the clusters were sampled via Poisson sampling: cluster k has a probability πk of

being sampled, where πk is determined by the stratum j to which the cluster belongs. Selection of

cluster k into the sample is determined by a Bernoulli trial with probability πk. In such a setting, πk

can be estimated empirically as kj/Kj, where kj is the number of observed clusters sampled from stra-

tum j. Furthermore, the joint probability of selection, πkk′ , for k ̸= k′ can be empirically estimated

as follows: π̂kk′ =
kj
Kj

kj−1
Kj−1 if clusters k and k

′ belong to the same stratum, and π̂kk′ = (
kj
Kj
)2 if clus-

ters k and k′ belong to different strata. Note that the asymptotic variance of β̂w under Poisson sam-

pling with estimatedweights is the equal to the asymptotic variance of β̂w under cluster-stratified

sampling with knownweights. Below are the steps for the smoothed bootstrap procedure when the

clusters are selected through a cluster-stratified sampling scheme.

1. GenerateKs realizations from a distribution with unit mean and variance: wk, k = 1, . . . ,Ks

2. Use the wk to define perturbed weights, Rkwk
π̂k , where π̂k= kj/Kj

3. Solve the perturbed estimating equations for β̃w using the iterative procedure described

above

4. repeat (1-3) B times

If the clusters are instead selected through a poisson sampling scheme, the above steps may be fol-

lowed, replacing π̂k with the known probabilities of selection πk.

In the simulation results presented in the next section, we used the Gam(4, 2) - 1 distribution to

generate the wk, and set B = 1000. Confidence intervals were then constructed as

(β̂w − 1.96 ∗ sd(β̃w,1:B), β̂w + 1.96 ∗ sd(β̃w,1:B))
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A.8 Simulation Results: Absolute Bias in Point Estimates

A.8.1 Simulation 1
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Figure A.1: Absolute bias in point estimates, σV=0.25, working independence

158



Design #1

(a)

 

12 14 16 18 20 22 24

−
0.

05
0.

01
0.

07
0.

13
0.

19

(d)

 

12 14 16 18 20 22 24

−
0.

02
0.

00
0.

02
0.

04

(g)

 

12 14 16 18 20 22 24

−
0.

12
−

0.
06

0.
00

0.
04

Design #2

(b)

 

12 14 16 18 20 22 24

−
0.

05
0.

01
0.

07
0.

13
0.

19

(e)

 

12 14 16 18 20 22 24

−
0.

02
0.

00
0.

02
0.

04

(h)

 

12 14 16 18 20 22 24

−
0.

12
−

0.
06

0.
00

0.
04

Design #3

(c)

 

12 14 16 18 20 22 24

−
0.

05
0.

01
0.

07
0.

13
0.

19

(f)

 

12 14 16 18 20 22 24

−
0.

02
0.

00
0.

02
0.

04

(i)

 

12 14 16 18 20 22 24

−
0.

12
−

0.
06

0.
00

0.
04

KS

bi
as

, β
2

bi
as

, β
1

bi
as

, β
0

β̂
(s)

β̂w

β̂w
c

Figure A.2: Absolute bias in mean point estimates, σV=0.5, working independence
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Figure A.3: Absolute bias in mean point estimates, σV=0.75, working independence
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Figure A.4: Absolute bias in mean point estimates, σV=0.5, working exchangeable
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Figure A.5: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.5

A.9 Simulation Results: Coverage Probabilities
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Figure A.6: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction, σV=0.5
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Figure A.7: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.5
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Figure A.8: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction, σV=0.5
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Figure A.9: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
ignoring negative correlation, σV=0.5
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Figure A.10: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction, ignoring
negative correlation, σV=0.5
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Figure A.11: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

ignoring negative correlation, σV=0.5
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Figure A.12: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction, ignoring

negative correlation, σV=0.5
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Figure A.13: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.25
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Figure A.14: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction, σV=0.25
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Figure A.15: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.25
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Figure A.16: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction, σV=0.25
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Figure A.17: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.25, ignoring negative correlation
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Figure A.18: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction,
σV=0.25, ignoring negative correlation
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Figure A.19: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.25, ignoring negative correlation

176



Simple Random Sample Y Design Y x X2 Design

β
0

β
x1

β
x2

15 20 15 20 15 20

0.88

0.90

0.92

0.94

0.96

0.88

0.90

0.92

0.94

0.96

0.88

0.90

0.92

0.94

0.96

Ks

E
st

im
at

ed
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

Method

UA

DF

MD

KC

FG

Figure A.20: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction,

σV=0.25, ignoring negative correlation
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Figure A.21: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.75
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Figure A.22: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction, σV=0.75
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Figure A.23: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.75
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Figure A.24: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction, σV=0.75
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Figure A.25: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.75, ignoring negative correlation
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Figure A.26: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction,
σV=0.75, ignoring negative correlation
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Figure A.27: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.75, ignoring negative correlation
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Figure A.28: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction,

σV=0.75, ignoring negative correlation
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Figure A.29: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.5, working exchangeable
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Figure A.30: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction, σV=0.5,
working exchangeable
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Figure A.31: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.5, working exchangeable
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Figure A.32: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction, σV=0.5,

working exchangeable
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Figure A.33: Estimated coverage probabilities with β̂w, using normal distribution for confidence interval construction,
σV=0.5, working exchangeable, ignoring negative correlation
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Figure A.34: Estimated coverage probabilities with β̂w, using t distribution for confidence interval construction, σV=0.5,
working exchangeable, ignoring negative correlation
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Figure A.35: Estimated coverage probabilities with β̂
c
w, using normal distribution for confidence interval construction,

σV=0.5, working exchangeable, ignoring negative correlation

192



Simple Random Sample Y Design Y x X2 Design

β
0

β
x1

β
x2

15 20 15 20 15 20

0.900

0.925

0.950

0.900

0.925

0.950

0.900

0.925

0.950

Ks

E
st

im
at

ed
 c

ov
er

ag
e 

pr
ob

ab
ili

ty

Method

UA

DF

MD

KC

FG

Figure A.36: Estimated coverage probabilities with β̂
c
w, using t distribution for confidence interval construction, σV=0.5,

working exchangeable, ignoring negative correlation
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B
Supplementary material to accompany

Chapter 2

B.1 Initial Simulation to Investigate Potential for Efficiency Gains

As described in Sections 2.3 and 2.4 of Chapter 2, we conducted an initial simulation study using a

data set of women enrolled in the Safer Deliveries Program in Zanzibar, Tanzania. For the women
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in the data set, demographic and health information, obstetric history, the number of antenatal

visits, and the location of delivery was collected by program-supported community health workers

(CHWs). We consider a hypothetical study in which interest lies in determining what factors are

associated with a woman delivering outside of a health facility. In particular, we assume that we are

interested in the following marginal model for the ith woman in the kth shehia:

logit(P(Yki=1)) = β0 + β1Xloc,k + βANCXANC,ki + βTAXA,ki (B.1)

Where Yki is the binary outcome denoting whether the woman delivered outside of a health fa-

cility (1/0=Yes/No), Xloc,k is a binary cluster-level variable indicating which island the shehia of

residence is located in (1/0 = Pemba/Unguja), and XA,ki = (XA1ki,XA2ki,XA3ki,XA4ki,XA5ki)
T,

where XA1 is an individual-level categorical variable giving the woman’s previous location of deliv-

ery (0=NA, 1=At home/in the community, 2=On the way to a health facility, 3=Health facility),

XA2 is an individual-level binary variable denoting whether a woman had 4 standard ANC visits

(1/0=Yes/No), XA3 is an individual-level binary variable indicating whether a woman has cardiac

disease (1/0=Yes/No), XA4 is an individual-level categorical variable denoting the facility type that

was recommended to the woman for her delivery (1=Cottage hospital, 2=PHCU, 3=Referral hos-

pital), and XA5 is an individual-level binary variable indicating whether the woman received a visit

from a community health worker at 8-9 months of pregnancy (1/0=Yes/No).

In model (B.1) above, we suppose that the parameter of primary interest is βANC. While the origi-

nal data set contains information on 42056 women, we restrict the data to include only women who

had already given birth, with complete data on all covariates in model (B.1), which results in a data

set with 28789 women. We defined 500 ‘designs’, where each design is defined as a set of 40 shehia

ids that was obtained via simple random sampling. We generated 1000 complete datasets, by simu-

lating correlated outcomes based on model (B.1), using the GenBinaryY() function in the the MMLB
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packag for R. For each generated complete dataset, we took 500 samples corresponding to the 500

designs, and for each of the 500 samples, we obtained the point estimates using generalized estimat-

ing equations (GEE). Across the 1000 iterations, we then computed the standard deviation of the

1000 point estimates for each for the 500 designs. Figure B.1 shows this for βANC:

Figure B.1 shows that there is efficiency to be gained by making a good choice regarding which

clusters to sample, i.e. by choosing a good sampling design. To investigate whether there is a general

rule of thumb that can be followed to determine such a design, we looked at the characteristics of

the ‘best’ designs for the estimation of βANC: we restricted attention to the designs which yielded

a mean point estimate of βANC within 5% of the gold standard, where the gold standard was taken

to be the mean point estimate obtained from running the analysis on the 1000 generated complete

data sets (N=28789). Among this set of designs, we then defined the ‘best’ designs to be the 25 de-

signs with the lowest standard deviation in the point estimates of βANC, and the ‘worst’ designs to be

the 25 designs with the highest standard deviation in the point estimates.

Table 1/Scenario 1 displays summary information on the best and worst designs for the estima-

tion of βANC. We see that the best design has a substantially larger overall sample size (n = 4606 vs.

n = 3160), a larger number of exposure cases (1284 vs. 672), and a larger mean number of outcome

cases (1337 vs. 773).

The top panel in Figure B.2 shows all 500 designs plotted as a function of the number of XANC

cases, and the mean number of outcome cases across the 1000 iterations. The dark blue points indi-

cate the best designs among the set of ‘unbiased’ designs, whereas the red points indicate the worst

designs in this set. We see that in comparison to the worst designs, the best designs have a higher

number of XANC cases and, on average, a higher number of outcome cases. The bottom panel in

Figure B.2 additionally shows that the best designs yield a larger overall sample size than the worst

designs. These results are intuitive, and suggest that a general rule of thumb for determining an ef-

ficient design might involve selecting clusters with 1) a higher number of outcome cases, 2) a higher
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number of XANC cases, and 3) higher overall individual sample size n.

However, it may not necessarily be the case that a cluster simultaneously satisfies the three cri-

teria listed above; in fact, it may be the case, for example, that the clusters with a higher number

of outcome cases have a lower number of exposure cases. In the original data set-up we described,

the number of outcome cases and the number of XANC cases is proportional to the shehia size. We

therefore also consider a scenario in which the number of outcome cases in a cluster is inversely pro-

portional to cluster size. This was done by introducing into the data generation model an indicator

for cluster size, where the indicator is equal to 1 if the cluser size is greater than the median cluster

size, and 0 otherwise, with a coefficient of -3.

Table 1/Scenario 2 gives the characteristics of the best and worst ‘unbiased’ designs for the esti-

mation of βANC, in the setting where the number of outcome cases in a cluster is inversely propor-

tional to the cluster size. We see that in this scenario, the best (lowest standard deviation of β̂ANC)

design has a smaller overall sample size than the design with the highest standard deviation of β̂ANC

(n = 3846 vs. n = 4621), as well as a lower number of exposure cases, but a higher average number

of outcome cases.

Figure B.3 shows the overall results for this second scenario: we see that the best designs, in com-

parison to the worst designs, generally (though not always) yield samples with a higher average num-

ber of outcome cases, while there is no clear difference between the number of XANC cases or the

overall sample size n: i.e. some of the designs that have a higher number of XANC cases or that yield

a larger overall sample size are less efficient in the estimation of βANC than designs that have a lower

number of XANC cases or that yield a smaller overall sample size. This suggests that there is no gen-

eral rule of thumb that can be reliably used to determine an efficient design, as an efficient design

depends on the interplay of a number of factors. Therefore, while there is demonstrated potential

for efficiency gain through the wise selection of clusters, these results suggest the need for the devel-

opment of a framework for selecting an efficient design, which is the objective of this paper.
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Figure B.1: Distribution of the standard errors of βANC under the 500 simple random sampling designs across 1000
iterations.

Table B.1: Characteristics of the best (lowest standard deviation of β̂ANC) and worst (highest standard deviation of

β̂ANC) designs among the set of ‘unbiased’ designs for the estimation of βANC. In Scenario 1, the number of outcome
cases is proportional to the cluster size, while in Scenario 2, the number of outcome cases is inversely proportional to
the cluster size.

Design n XANC Y
Scenario 1

Lowest sd(β̂ANC) #431 4606 1284 1337
Highest sd(β̂ANC) #284 3160 672 773

Scenario 2
Lowest sd(β̂ANC) #156 3846 1130 368
Highest sd(β̂ANC) # 316 4621 1234 211
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B.2 Complete Simulation Study Results

This section presents the complete simulation results for the simulation studies described in Section

5 of Chapter 2.
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Figure B.2: The top panel shows the 500 designs plotted as a function of the number of XANC cases and the mean
number of outcome cases across the samples. The dark blue points represent the best (lowest standard deviation of
β̂ANC) designs, and the red points represent the worst (highest standard deviation of β̂ANC) designs. In this setting, the
number of outcome cases is proportional to the cluster size.
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Figure B.3: The top panel shows the 500 designs plotted as a function of the number of XANC cases and the mean
number of outcome cases across the samples. The dark blue points represent the best (lowest standard deviation of
β̂ANC) designs, and the red points represent the worst (highest standard deviation of β̂ANC) designs. In this setting, the
number of outcome cases is inversely proportional to the cluster size.
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Figure B.4: Baseline scenario: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.5: Positive association X1 and X2: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.6: Negative association X1 and X2: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.7: Positive association X1 and X3: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.8: Negative association X1 and X3: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.9: Positive association X1 and X4: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.10: Negative association X1 and X4: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.11: Positive association X1 and X5: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.
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Figure B.12: Negative association X1 and X5: K=280,Nk = 40 ∀k = 1, . . . ,K,Ks = 80, σV = 0.5.

210



β0 β1 β2 β3 β4 β5

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

−10

−5

0

5

10

P
er

ce
nt

 b
ia

s

UA
DF
MD
KC

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

0.90

0.95

1.00

C
ov

er
ag

e

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

0.50

0.75

1.00

1.25

R
el

at
iv

e 
un

ce
rt

ai
nt

y

Figure B.13: Baseline scenario: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.14: Positive association X1 and X2: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.15: Negative association X1 and X2: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.16: Positive association X1 and X3: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.17: Negative association X1 and X3: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.18: Positive association X1 and X4: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.19: Negative association X1 and X4: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.20: Positive association X1 and X5: K=280, varyingNk,Ks = 80, σV = 0.5.
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Figure B.21: Negative association X1 and X5: K=280, varyingNk,Ks = 80, σV = 0.5.

219



β0 β1 β2 β3 β4 β5

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

−10

−5

0

5

10

P
er

ce
nt

 b
ia

s

UA
DF
MD
KC

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

0.90

0.95

1.00

C
ov

er
ag

e

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

0.50

0.75

1.00

1.25

R
el

at
iv

e 
un

ce
rt

ai
nt

y

Figure B.22: Baseline scenario: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.23: Positive association X1 and X2: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.24: Negative association X1 and X2: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.25: Positive association X1 and X3: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.26: Negative associaiton X1 and X3: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.27: Positive association X1 and X4: K=280, equalNk=40,Ks = 80, σV = 1.

225



β0 β1 β2 β3 β4 β5

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

−10

−5

0

5

10

P
er

ce
nt

 b
ia

s

UA
DF
MD
KC

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

0.90

0.95

1.00

C
ov

er
ag

e

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

S
R

S
B

al
X

1
O

pt
X

1
O

pt
X

2
O

pt
X

3
O

pt
X

4
O

pt
X

5
O

pt
A

0.50

0.75

1.00

1.25

R
el

at
iv

e 
un

ce
rt

ai
nt

y

Figure B.28: Positive association X1 and X4: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.29: Positive association X1 and X5: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.30: Negative association X1 and X5: K=280, equalNk=40,Ks = 80, σV = 1.
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Figure B.31: Baseline scenario: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.32: Positive association X1 and X2: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.33: Negative association X1 and X2: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.34: Positive association X1 and X3: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.35: Negative association X1 and X3: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.36: Positive association X1 and X4: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.37: Negative association X1 and X4: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.38: Positive association X1 and X5: K=280, equalNk=40,Ks = 40, σV = 0.5.
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Figure B.39: Negative association X1 and X5: K=280, equalNk=40,Ks = 40, σV = 0.5.
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C
Supplementary material to accompany

Chapter 3

C.1 Algorithm forHandling Edge Cases

Notation

• smax is the maximum number of stages possible
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• msl is the number of edge cases: either 1) kj2 < 0 or 2) kj2 > Kj − kj1

• τ is the threshold for the number of edge cases tolerated,msl

• Ksr is the number of clusters that still need to be sampled after fixing the edge cases:

Ksr = Ks −
∑

j:kj2<0
kj1 -

∑
j:kj2>Kj−kj1

Kj

• NEC is the set of strata which did not yield edge cases

Algorithm

1. set s = 1 and sampleKs1 clusters

2. obtain β̂s1 by fitting the analysis model to Stage 1 data

3. compute the kj2

4. determinemsl ∈ {0, . . . , J}

5. while s < smax andmsl ̸= 0

(a) if msl ≥ τ orKsr >
∑

j∈NEC Kj (not enough clusters to achieve the desired sample

size) orKsr <
∑

j∈NEC kj1 (kj2 would necessarily be negative in order to end up with

Ks clusters, which is not possible): sample more clusters at Stage 1

i. set s = s+ 1

ii. sampleKs1inc more clusters

iii. obtain updated β̂s1 by fitting the model to the data collected thus far

iv. if s=smax, set the kj2 to 0 for all strata

v. else, compute the updated kj2 and updatemsl

(b) else set counter=0;while counter=0:
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i. fix the existing edge cases (i.e. set kj2 = 0 if kj2 < 0, set kj2 = Kj − kj1 if

kj2 > Kj − kj1)

ii. recalculate the kj2 for the remaining strata using an updated constraint:

Ksr = Ks −
∑

j:kj2<0
kj1 -

∑
j:kj2>Kj−kj1

Kj

iii. determine the number of remaining cases: msl1

A. if msl1 > msl

• set s = s+ 1

• sampleKs1inc more clusters

• obtain updated β̂s1 by fitting the model to the data collected thus far

• if s = smax, set the kj2 to 0 for all strata

• else compute the updated kj2 and updatemsl

• set counter=1, exiting while loop from (b) and going back to beginning

of while loop in (a)

B. else if msl1=0

• setmsl=msl1

• set counter=1, exiting while loop from (b) and going to beginning of

while loop in (a)

C. else

• update the indices

• setmsl=msl1 this then brings you back to beginning of while loop from

(b), (i.e. fix edge cases again and recalculate the remaining kj2)
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