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Analytic Structure and Finiteness of Scattering Amplitudes

Abstract

Scattering amplitudes are fundamental objects in high energy physics, providing a

bridge between theoretical calculations and data from particle colliders. The framework

underpinning the study of elementary particles - quantum field theory - has led to re-

markably precise scattering amplitude predictions, which, in turn, provide a foundation

for fundamental physics discoveries. Despite this success, particles remain poorly de-

scribed within this framework. Consequently, in theories with massless particles, asymp-

totic interactions render scattering amplitudes infrared divergent in perturbation theory

and ill-defined non-perturbatively. In this dissertation, we take steps towards strengthen-

ing the theoretical foundations of quantum field theory, by defining infrared finite cross

sections and amplitudes, and by probing the analytic structure of amplitudes through

examining their sequential discontinuities. First, we show that infrared finite cross sec-

tions are obtained by summing over either initial or final states, and explore how forward

scattering diagrams often constitute a crucial contribution to achieve finiteness. Then,

using universality and factorization of asymptotic interactions, we demonstrate how to
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define finite scattering amplitudes in gauge theories. Exploiting freedom in choosing reg-

ulators and cutoffs for the asymptotic interactions, these amplitudes can be interpreted

alternatively as Wilson coefficients, as remainder functions, or as coherent states. Finally,

we extend the traditional cutting rules, that relate discontinuities of amplitudes to cuts

of the corresponding Feynman diagrams, to sequential discontinuities and multiple cuts.

Our relations provide a new probe of the analytic properties of amplitudes, in addition

to a scheme for exploring the finite scattering amplitudes further. Through an enhanced

understanding of the analytic structure of finite amplitudes, we hope to unveil a proper

description of particles in quantum field theory.
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Introduction
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1.1 Quantum field theory: Probing protons and electrons

Physics addresses questions about the world in which we live: How did the Milky Way

form? Can we make superconductors at room temperature? What kind of particles is our

universe made of?

Over the course of centuries, scientists have probed ever larger and smaller parts of our

universe. While we once thought that Earth was a unique phenomenon situated at its cen-

ter, we now know that our home planet is at the edge of one out of billions of galaxies, the

Milky Way, with each galaxy containing billions of planets orbiting their stars. Similarly, we

have probed small scales by decoding the composition of matter; revealing that it is made

out of atoms, which, in turn, are made out of electrons, protons and neutrons. In the 20th

century, we discovered the constituents of protons and neutrons, called quarks and gluons,

in addition to other elementary particles that compose our world, such as the Z boson, the

photon and the Higgs boson. Particle physics involves the study of these smallest known

constituents of nature.

All elementary particles are described within an elegant mathematical framework called

quantum field theory (QFT). This framework weaves together two hallmarks of early 20th

century physics – Einstein’s special relativity and quantum mechanics – and allows for the

creation and destruction of particles using the mass-energy equivalence relation E = mc2.

For instance, QFT allows us to calculate the probability for two protons to create a Higgs

boson in a particle collider. The QFT framework is guided by symmetries, which provide

valuable and powerful restrictions since, by Noether’s theorem [1], each continuous sym-
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metry implies a conservation law. Energy conservation, for example, is a consequence of

time-translation invariance, i.e. the fact that the laws of physics are the same today as they

were yesterday. These types of conservation laws highly constrain our QFT. Other symme-

tries are also encountered in QFT, such as the one denoted with SU(3), that governs and

constrains interactions between quarks and gluons. Using symmetries as building blocks, we

can construct theories incorporating different types of particles.

By specifying the symmetry groups, masses of particles, and some other parameters, we

formulate the Standard Model of Particle Physics. The Standard Model is therefore a spe-

cific QFT with the necessary inputs specified, resulting in a theory that describes all known

real-world elementary particles. To observe these tiny, subatomic particles experimentally,

we resort to particle colliders. For example, the Large Hadron Collider (LHC) at CERN,

accelerates protons using magnetic fields in a 27 km long underground tunnel. When two

protons have reached speeds close to the speed of light, they collide to create sprays of ele-

mentary particles. One of the goals in theoretical particle physics is to calculate, to a high

degree of precision, the probabilities of different outcomes at the LHC and other colliders.

When comparing theoretical calculations to data from particle colliders, QFT comprises

an essential ingredient in verifying the existence and properties of the elementary particles.

The Higgs boson is the most recently verified particle of the Standard Model: its discovery

was announced at CERN in 2012 with a significance of more than five standard deviations.

In addition to unveiling new particles, QFT has predicted the outcome of many other scat-

tering experiments in colliders to a high precision. In fact, quite remarkably, we have yet to

find any striking discrepancy of collider experiment results and the Standard Model. Thus,
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the Standard Model is one of the best tested theories in science.

Despite this success, we have ample evidence for new particles, waiting to be discovered.

Measurements of rotations of stars in the Milky Way, along with many other experiments,

demonstrate the existence of dark matter. This form of matter is not comprised of any

Standard Model particles, and makes up around 85% of matter in the universe. To probe

what constitutes dark matter, physicists look for a discrepancy between collider data and

the Standard Model, since such a discrepancy can point to places where the theory can be

enhanced. We then hope to formulate an even more fundamental model of nature using

QFT, which explains the data by incorporating new particles, and thus sheds light on the

particle nature of dark matter.

While QFT is both an elegant and experimentally successful theory, it is still a work in

progress. For instance, we can set up a QFT calculation for any intricate process of our

choice, but it often results in such a complicated expression that the answer is intractable.

Furthermore, a physical understanding is sometimes lacking, for example pertaining to

how we can incorporate electromagnetic fields into the description of particles. In this

dissertation, I will pinpoint improvable parts of the theory and propose possible develop-

ments. With such advancements, we can both improve theoretical scattering calculations

and deepen our understanding of particles, which could, in turn, lead to new discoveries in

physics.
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1.2 Infrared divergences

A proper particle description becomes important when our QFT contains massless parti-

cles, such as photons, which can be created without any cost in energy. As a result, a naive

application of the theory can result in illogical results of scattering calculations. For in-

stance, the probability for an electron and photon to bounce off one another, which should

never exceed 100%, becomes infinite. This well-known problem in QFT, referred to as an

infrared (IR) divergence, arises since this simple calculation does not account for the elec-

tromagnetic field of charged particles. The unphysical, infinite probabilities are therefore a

consequence of misinterpreting the mathematical result by not correctly accounting for the

effects of massless particles. As an old problem, present since the dawn of QFT, it has a

traditional solution: the radiation and absorption of massless particles must be accounted

for in scattering calculations to get finite answers.

An example illustrating this solution is as follows: If we detect an electron in a parti-

cle detector, and since any real-world detector has some uncertainty in energy, we do not

know whether a photon, whose energy was less than the detector resolution, accompanied

the electron. In other words, when calculating the probability for measuring an electron hit-

ting our detector, we must also account for the possibility of having had an electron and

a photon, where the photon had such little energy that it escaped our detector, undiscov-

ered. This construction always works in Quantum Electrodynamics and is referred to as the

Bloch-Nordsieck theorem [2]: If we calculate the probability for some scattering process to

occur, and add the possibility of having had any number of low-energy, undetected, outgo-
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ing photons, the result is free of infrared divergences.

Using the explicit example of qq → qqµµ, Doria, Frenkel and Taylor [3] showed that

the Bloch-Nordsieck theorem is a special feature of Quantum Electrodynamics, and does

not hold generally in QFT. In more complicated theories, we must instead resort to the

Kinoshita-Lee-Nauenberg [4, 5] theorem: To get a finite cross section for a certain process,

one needs to sum over all possible initial states and final states consistent with the chosen

process. This theorem is also physically motivated; since we cannot know the initial nor

final state precisely in any real-world particle detector, we should take all possibilities into

account. In this dissertation, we revisit the KLN theorem and show that a more general

version can be proven: To get a finite cross section, we do not need to sum over both initial

states and final states; an initial state or final state sum suffices.

A drawback of the KLN construction, pertaining to comprehending particles in QFT, is

that the required sum over all initial or final states is not restrictive. In other words, the

theorem does not guide us towards an enhanced intuition, as it would if it required only

a particular set of states to achieve infrared finiteness. Moreover, an important feature of

both of these theorems is that they apply to scattering probabilities, and not probabil-

ity amplitudes. It is more appealing to have an infrared finite calculation from the out-

set, without needing to sum over multiple divergent processes to get a finite result. Thus,

to gain further insight into particles and our theory, we aim to eliminate infrared diver-

gences from probability amplitudes. To do so, we must examine properties of the S-matrix

in QFT.
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1.3 The S-matrix

The scattering matrix, or S-matrix, is a fundamental mathematical construct in QFT, un-

derpinning theoretical calculations for particle collider experiments. More precisely, the S-

matrix gives the probability amplitude for some initial state |ψin〉 at t → −∞ to evolve into

a final state |ψout〉 at t → +∞, where the states |ψin/out〉 specify the initial and final state

particles and their momenta. As a consequence, probabilities are obtained by squaring the

absolute value of the S-matrix, i.e. computing |S|2, and then integrating over all possible

momentum configurations of the particles involved in the scattering. In addition to provid-

ing accurate predictions for colliders, studies of the S-matrix can lead to new insights into

the mathematical foundations of QFT. Symmetries, limiting behavior and analytic proper-

ties are analyzed to shortcut calculations and define precision observables for colliders.

Most calculations in QFT are done in perturbation theory, i.e. by expanding in some

small parameter. When writing the Hamiltonian of the system as

H = H0 + V, (1.3.1)

where H0 is the free Hamiltonian, we expand in the interaction term V , and as a result, we

can calculate the S-matrix by summing over Feynman diagrams. An example of a Feynman

diagram is shown in Figure 1.1. The lines correspond to particles evolving freely with H0,

while the vertices correspond to interactions between particles. Each diagram represents

an integral we would like to calculate; we can read off which integral the Feynman diagram

7
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Figure 1.1: An example of a two-loop Feynman diagram.

represents using Feynman rules, that dictate which mathematical expressions the lines and

vertices correspond to.

An important feature of Feynman diagrams is that the incoming and outgoing parti-

cles are represented by lines, indicating that they evolve without any interactions. In other

words, we assume that particles evolve freely at asymptotic times, as t → ±∞. When our

theories contain massless particles, however, interactions persist even as t → ±∞, so the

free-evolution assumption breaks down. These non-vanishing long-range interactions are

to blame for the infrared divergence of the S-matrix in perturbation theory. Thus, despite

the importance of the S-matrix both for calculating outcomes of experiments and for the

mathematical development of QFT, these divergences prevent the formal existence of the

S-matrix when long-range interactions are present.

We propose a solution to the infrared divergence problem in this dissertation by adding

asymptotic interactions to H0 in a universal manner. Then, we obtain finite scattering am-

plitudes, in contrast to achieving cancellations of infrared divergences for squared ampli-

tudes, i.e. probabilities, as proposed by the KLN theorem. This construction results in a

finite scattering object which we call the “hard” S-matrix. Furthermore, we show that this

object is mathematically equivalent to known and useful quantities in scattering theory, and

thus it provides a new starting point for investigating these quantities.
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1.4 Analytic methods for probing amplitudes

Armed with a new definition of an infrared finite scattering matrix, we aim to use some

clever and modern methods to examine its properties. A useful technique for studying the

S-matrix is to examine its analytic structure. Instead of performing traditional Feynman-

diagrammatic calculations, the goal of this method is to deduce properties of amplitudes by

combining known constraints and complex analysis techniques.

A useful constraint on amplitudes is based on combining Lorentz invariance and analyt-

icity. When the incoming and outgoing particles and their momenta have been specified,

the scattering amplitude must depend on frame-invariant parameters only. This depen-

dence follows from special relativity; since the amplitude is independent of the frame in

which the calculations are done, it can only depend on frame-invariant quantities. Further-

more, the amplitude is analytic except at certain loci in the complex plane of the invariants,

which provides another valuable constraint. Exploiting mathematical techniques for ana-

lytic functions can therefore probe physical properties of the S-matrix, and thus shortcut

calculations. Modern bootstrapping programs, for example, use these kinds of analyticity

constraints to determine amplitudes to high loop orders.

An example of a useful probe of the analytic structure of the S-matrix is its discontinu-

ity, defined as the difference between the values of the amplitude on two sides of a branch

cut in the complex plane. Its practicality for examining amplitudes stems from a mathe-

matical formula relating it to cuts. More precisely, the traditional Cutkosky cutting rules [6]

assert that discontinuities of amplitudes are equal to a sum over cuts through the corre-

9
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Figure 1.2: Example of a cut C through a Feynman diagram.

sponding Feynman diagram:

DiscM =
∑

CutM . (1.4.1)

Here,M is the scattering amplitude,1 Disc is the discontinuity operator, and the Cut op-

erator acts on the Feynman diagram corresponding toM by putting all cut momenta on

shell. An example of a cut C through a Feynman diagram is shown in Figure 1.2. Since

the cuts, denoted with
∑

CutM, can sometimes be calculated more easily than the full

Feynman diagrams corresponding toM, they provide a simpler computation of its discon-

tinuities, which can consequently be used to deduce analytic properties. Moreover, an even

more powerful probe of scattering amplitudes is obtained by examining sequential discon-

tinuities ofM, i.e. discontinuities of discontinuities, and relating them to multiple cuts, as

we examine in this dissertation. Our new formulas will hopefully help clear a path towards

analyzing both the traditional and the hard S-matrix, and thus bring us closer to a proper

particle description.

1The definition of the amplitude denoted withM differs from the definition of the S-matrix by a
constant, an overall momentum conserving delta function and the absence of forward scattering.
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1.5 Overview of dissertation

In this dissertation, I present a path towards studying the analytical properties of an in-

frared finite S-matrix. The following chapters contain our findings in chronological order.

In Chapter 2, we address infrared divergences by proving a stronger version of the KLN

theorem. According to our new theorem, we only need to sum over either initial or final

states to obtain an infrared finite cross section. A crucial component of the sum, however,

is the forward scattering contribution, that represents the process where no scattering oc-

curs; the initial state particles move forward in time without a change in their momenta.

Thus, the KLN theorem and its stronger version are a consequence of unitarity: the prob-

ability of anything happening, either something or nothing, is 1. We illustrate the claims

of the stronger version of the KLN theorem with multiple examples, some of which require

disconnected Feynman diagrams. In addition, we present other infrared finite cross section

calculations, which are physically motivated rather than prompted by the theorem, and

thus perhaps more appealing. These findings suggest that further research is needed to de-

termine how infrared finiteness connects to our physical understanding of scattering.

We use the insight gained from studying infrared divergent cross sections to obtain a

finite S-matrix in Chapters 3 and 4. Exploiting factorization of soft and collinear diver-

gences in gauge theories, we show how to define an infrared finite S-matrix, SH . Chapter

3 presents this construction concisely, while Chapter 4 contains details on the derivation

of the relevant Feynman rules along with multiple examples. This new scattering object

can be interpreted as Wilson coefficients in Soft-Collinear Effective Theory, as remainder
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functions in N = 4 Super Yang-Mills Theory, or as coherent states in Quantum Electro-

dynamics. Probing its properties will therefore provide new insights into familiar scattering

objects.

In Chapter 5, we probe the analytic structure of scattering amplitudes by generaliz-

ing the cutting rules. While the traditional Cutkosky cutting rules establish the equiva-

lence between discontinuities across branch cuts of a scattering amplitude and the sum

of cuts through the corresponding Feynman diagrams, our new formulas relate sequential

discontinuities to multiple cuts. We prove our relations in time-ordered perturbation the-

ory (TOPT), and demonstrate them using a number of polylogarithmic examples. As a

corollary, we prove the Steinmann relations [7], stating that sequential discontinuities in

partially-overlapping momentum channels cannot exist, in the case when all external parti-

cles are massive. Analogously to the Steinmann relations, our new formulas relating discon-

tinuities and cuts might become useful for constraining scattering amplitudes using boot-

strapping methods.
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2
Infrared Finiteness and Forward Scattering
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2.1 Introduction

The appearance and interpretation of infinities has been an essential ingredient of quan-

tum field theory since its inception. While ultraviolet divergences appearing in perturbation

theory are now completely understood through the program of renormalization, infrared di-

vergences remain somewhat mysterious. In contrast to ultraviolet divergences, which drop

out when amplitudes are expressed directly in terms of other amplitudes, infrared diver-

gences seem only to cancel at the cross-section level for sufficiently inclusive quantities. It is

imperative, therefore, to have a precise definition of sufficiently inclusive, i.e. to characterize

the minimal set of states that must be included to get a finite cross section.

Part of the reason we find the question of IR finiteness compelling is that its resolution

is essential to defining a sensible S matrix. If we define the S matrix in the usual way in

quantum field theory, its matrix elements in states of fixed particle number are all infinite

at each order in perturbation theory, and zero nonperturbatively. This old problem has

not yet limited the applicability of field theory to computing observables at colliders, but

is important for studying formal properties of the S-matrix, such as its symmetries. The

coherent state approach argues that the problem is that isolated charged particles are not

well-defined asymptotic states [8–10], but that electrons dressed with a cloud of photons

may be. Although the idea is appealing, it is not clear that the dressed/coherent state ap-

proach will work for any theory more complicated than QED with massive electrons. If the

approach is to succeed it will likely do so through the same mechanism, with the same set

of processes, that the cancellation is achieved at the cross section level. Thus, we focus here
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on cross-section level computations where the the path forward is less obscure.

Although working towards a finite S matrix is a noble goal, there are more practical mo-

tivations for understanding IR divergence cancellations. One important one is precision col-

lider physics. Over the last several years, there has been renewed interest in understanding

factorization, and its violation in various forms. Consequences of factorization violation

include the various large logarithms that appear in perturbative calculations, such as non-

global logarithms or super-leading logarithms. Non-global logarithms arise when virtual and

real-emission contributions end up in different regions of phase space [11–18]. Super-leading

logarithms are associated with collinear factorization violation [19–23], which is in turn tied

to forward scattering, a focus of this paper. Thus, broadly speaking, an improved under-

standing of IR divergences is relevant to both formal aspects of quantum field theory and

precision collider physics.

One of the earliest important papers on infrared finiteness was by Bloch and Nordsieck

in 1937 [2]. They showed that in QED with massive electrons, infrared singularities in loops

and real emission graphs have the same functional form with opposite signs. The Bloch-

Nordsieck theorem is that an observable that sums over all possible numbers of final state

photons with energies E < δ is “sufficiently inclusive,” i.e. it is infrared finite for any δ.

Proofs of the Bloch-Nordsieck theorem were developed sometime later [24–26] and have

become textbook material [27, 28]. Essentially, the proof works through the Abelian ex-

ponentiation theorem [24, 26]: the soft singularities in QED to all orders in α are given by

the exponential of the singularities at 1-loop. With massive electrons, all the singularities in

QED are soft in nature and so Abelian exponentiation is all that is needed for the proof.
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In theories with massless charged particles, such as QCD, the cancellation of infrared

singularities (soft and collinear) is significantly more subtle. The Bloch-Nordsieck theorem

fails in QCD: summing inclusively over final state gluon radiation is insufficient to cancel

all infrared singularities, even if the initial state consists only of massive quarks [3, 29–31].

Nevertheless, even in QCD infrared divergences can be shown to cancel in certain contexts.

For example, in hadronic events in Z boson decays, one can identify “sufficiently inclusive”

with “infrared-and-collinear (IRC) safe”: an observable should have the same value if par-

ticles with zero energy are added, or if finite energy particles are split into multiple parti-

cles going in exactly the same direction. This implies that although the rate for a Z boson

to decay to two quarks and nothing else is infinite, the rate for a Z to decay to two “jets”,

defined as collections of radiation within an angle θ including all radiation softer than an

energy δ, is well-defined (i.e. it is finite) [32]. While this definition of sufficiently inclusive is

adequate to remove infrared singularities in Z → hadron events, it is not a sufficient crite-

rion in other contexts. As we will discuss, Z → X is special because the Z → Z forward

scattering amplitude is IR finite to all orders. In most other contexts, IRC safety must be

generalized.

A non-minimal definition of “sufficiently inclusive” was proposed by Kinoshita, Lee and

Nauenberg in their KLN theorem [4, 5]. The KLN theorem states that summing over all

initial and final states with energies in some compact energy window around a reference en-

ergy E0 guarantees finiteness. Stated this way, the theorem is fairly useless as all states in-

cludes Z’s, neutrinos, quarks, little red dragons, etc. Fortunately, the KLN theorem deriva-

tion involves a sum in a more restricted set: those intermediate particles appearing in any
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double-sided-cuts [4, 33, 34] through any given time-ordered perturbation theory diagram

gives a finite answer. A double sided cut means summing over all possible initial and final

states (we give some examples in Section 2.5.3). There are some caveats to the restriction:

a number of different diagrams must be included to maintain gauge invariance and Lorentz

invariance, but generally the particles involved can be read off the initial graph.

Despite the importance of the KLN theorem, there are very few explicit computations

in the literature showing how the cancellation actually occurs [35–38]. One such example

was provided by Lavelle and McMullan who showed that IR divergences cancel in processes

with an electron scattering off of a background Coulomb potential [38] (see also [5, 39]). In

working out some examples, a number of troublesome features associated with initial state

sums emerge. First of all, even though we can define a n → m cross section mathemati-

cally, it is not clear how to think about it physically. Although one can envision a kind of

generalization of IRC safety for initial states, including soft and collinear incoming parti-

cles, it is not clear how to identify the physical incoming states in a given experiment. In

addition, for the KLN cancellation to occur, not only must disconnected diagrams be in-

cluded, but also an infinite number of photons can participate at any fixed order in the

coupling. How to sum this infinite series, with alternating signs for the divergent and fi-

nite pieces, requires careful consideration [38, 40]. We examine some of these issues for the

process e+e− + photons→ Z + photons in Section 2.5.

Although one can demonstrate the cancellation of IR divergences when summing over ini-

tial and final states following the KLN theorem, a careful examination of the proof of theo-

rem provides two revelations: 1) The processes that contribute to assure the cancellation in-
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clude exactly forward scattering and 2) infrared divergences cancel when summing over final

states alone for fixed initial state or summing over initial states for a fixed final state. This

second point is a relief: one can avoid the troublesome aspects of initial state sums. The

first point is less of a relief: it requires us to revise our intuition for what states are physi-

cally distinguishable. For example, to resolve infrared divergences in γγ → e+e− one must

also include γγ in the final state. In the end, it seems there are multiple ways to achieve

finiteness for this process at next-to-leading order: a final state sum, an initial state sum,

or a partial final and initial state sum. We discuss this example in depth in in Section 2.5

and some related QED processes are considered in Sections 2.6 and 2.7. A summary of the

various results of this paper and some additional thoughts are presented in Section 2.8. Ap-

pendix A.1 shows how to compute diagrams with on-shell intermediate states that occur

from cuts with disconnected pieces. Appendix A.2 gives some details of an initial-state jet

mass calculation from Section 2.5.

2.2 KLN theorem revisited

We begin by reviewing the KLN theorem and showing that the initial state sum is not nec-

essary. The KLN theorem is attributed to two papers [4], the first by Kinoshita and the

second by Lee and Nauenberg [5]. The Kinoshita paper follows after a paper by Kinoshita

and Sirlin [41] that considered muon decay µ− → e−νµν̄e in the 4-Fermi theory. They

observed that while the exclusive cross section for this process is infrared divergent in the

limit of a massless electron, the inclusive cross section is finite when the virtual contribu-
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tion in µ− → e−νµν̄e is combined with the µ− → e−νµν̄eγ cross section. The Kinoshita

paper, which builds on work by Nakanishi [34], proves the finiteness of µ− → e−νµν̄e with

me = 0 to all orders in perturbative QED. In this way, it generalizes Bloch-Nordsieck to

include collinear divergences (mass singularities) as well as soft divergences. Kinoshita also

discusses the sum over initial and final states as necessary to cancel mass singularities as-

sociated with the muon being massless. Lee and Nauenberg (LN) generalize Kinoshita’s

result, providing a simple proof for any quantum mechanical system that all infrared diver-

gences (soft and collinear) cancel when initial and all degenerate final states are summed

over. Since the LN approach is simple and includes Kinoshita’s result, we will focus on it

here.

The theorem proved by Lee and Nauenberg is that the transition amplitude squared is IR

finite when summed over initial and final states,

∑
a∈D(E),b∈D(E)

|〈b|U(∞,−∞)|a〉|2 <∞ . (2.2.1)

Here a ∈ D(E) means that the energy of the state a is in the range specified by D(E), e.g.

|Ea − E| < δ for some δ > 0. For Eq. (2.2.1) to be true, we must define the sum over states

|b〉 to include the state where |b〉 = |a〉, i.e. the forward scattering contribution. Including

|a〉 in the sum is critical – without it the proof does not hold.

The operator U(t2, t1) is the unitary operator that evolves the system from time t1 to t2.

In the interaction picture we write the Hamiltonian as H(t) = H0 + V (t) with H0 the free
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Hamiltonian of which the Fock-states |a〉 are eigenstates and

U(t2, t1) = T
{

exp

[
−i
∫ t2

t1

dt′VI(t
′)

]}
, (2.2.2)

with VI(t) = eiH0(t−t1)V (t1)e−iH0(t−t1) the interaction picture potential and t0 an arbitrary

reference time.

To prove Eq. (2.2.1), LN observe that

|〈b|U(∞,−∞)|a〉|2 =
∑
i,j

[
〈b|U(∞, 0)|j〉〈j|U(0,−∞)|a〉

][
〈b|U(∞, 0)|i〉〈i|U(0,−∞)|a〉

]?
= R+

bijR
−
aij , (2.2.3)

with

R+
bij = 〈i|U(0,∞)|b〉〈b|U(∞, 0)|j〉 , (2.2.4)

R−aij = 〈j|U(0,−∞)|a〉〈a|U(−∞, 0)|i〉 . (2.2.5)

So, it is enough to show that

R+
ij =

∑
b∈D(E)

R+
bij <∞, R−ij =

∑
a∈D(E)

R−aij <∞, (2.2.6)

for Eq. (2.2.1) to hold.

LN prove Eq. (2.2.6) inductively on the number of singular intermediate states. The sin-

gularities come from time-ordered-perturbation theory propagators of the form 1
Ei−Ej±iε
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when Ei = Ej . By unitarity, we get a finite answer by summing over all states b:

R+
ij,all =

∑
b

〈i|U(0,∞)|b〉〈b|U(∞, 0)|j〉 = δij <∞ (2.2.7)

Thus to show Eq. (2.2.6), we only need to consider states b with energy outside of D(E).

But any contribution with Eb 6= Ei or Eb 6= Ej must have at least one non-singular prop-

agator. In this way, LN reduce the number of singular propagators using unitarity and are

thereby able to use mathematical induction to complete their proof.

2.3 Final or initial state sums only

The key step in the LN proof is the employment of unitarity, in Eq. (2.2.7). Note that the

sum over all states b includes the intermediate state where |b〉 = |i〉, namely forward scat-

tering. Once we accept that forward scattering must be included in the sum, we can prove

a stronger result than the KLN theorem. Say we have an initial state |a〉, at t = −∞ with

energy E. Then the rate to produce any final states 〈b| in an energy window D(E) around

E is finite:

REab =
∑

j,Ej∈D(E)

〈b|U(−∞,∞)|j〉〈j|U(∞,−∞)|a〉 <∞ (2.3.1)

To prove this, we only need unitarity and energy conservation. Note that for the LN

theorem, the matrix element 〈b|U(∞, 0)|a〉 appeared. This matrix element can be non-

vanishing when Ea = Eb. Thus the restriction to an energy window was non-trivial. Since

〈b|U(∞,−∞)|a〉 ∝ δ(Eb − Ea), energy must be conserved and the restriction on Ej ∈ D(E)
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is the same as summing over all states. Removing the restriction, we then find

REab =
∑
j

〈b|U(−∞,∞)|j〉〈j|U(∞,−∞)|a〉 = δab , (2.3.2)

which is finite. Note that we are not trying to make this trivial proof seem more compli-

cated than it is – it really does just require completeness and unitarity. This is in contrast

to the LN proof, which is less simple because of the required induction step due to energy

non-conservation at finite time.

In words, we have shown that

• For a given fixed initial state |a〉, the cross section for |a〉 to go to anything is IR fi-

nite.

An analogous proof shows that

• For a given fixed final state |b〉, the cross section for anything to go to |b〉 is IR finite.

Note that in both cases, the states summed over include when the initial state and final

state are the same, i.e. forward scattering. Importantly, however, we do not need to sum

over final and initial states for IR finiteness.

Obviously, we do not want to sum over all possible states all the time: the probability

for anything, including both something and nothing, to happen is 1. To get a physical pre-

diction, we must remove a set of states from the sum whose production cross section is fi-

nite on its own. The question is then, what is the minimal sufficiently inclusive set of fi-

nal states required for a finite cross section? For perturbative unitarity to hold, the virtual
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states summed over in the loops must be the same as the real states summed over in the

final state phase space integrals. The criteria for IR finiteness is therefore the same: any

particles with any spins or momenta contributing to the IR divergences in a loop must be

included in the phase-space sum. In the next sections, we will study some particular exam-

ples where various subtleties in this requirement emerge.

2.4 Z → e+e−(+γ)

As a warm-up, let us review the textbook story for the finiteness of Z → e+e−(+γ) in QED

with a massless electron. In this and the following sections we always take the electron to

be massless, since the massive electron QED case is entirely solved by Bloch-Nordsieck.

In d = 4− 2ε dimensions, the virtual graphs give

σV = +

= σd0Γd
e2

π2

{
− 1

4ε2
− 3

8ε
+

7π2

48
− 1

}
δ(1− z) ,

(2.4.1)

where Γd =
(

4πe−γEµ2

Q2

) 4−d
2 , σd0 = σ0

d−2
2 µ4−d, and σ0 = 4πg2

Q2 with σ0δ(1 − z) the tree-level

cross section at center-of-mass energy Q. We have written the result in terms of z =
m2
Z

Q2

for later convenience. Note that this 1 → 2 process only has support at z = 1. The real
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emission graphs give

σR =

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

= σd0Γd
e2

π2

{
1

4ε2
+

3

8ε
− 7π2

48
+

19

16

}
δ(1− z) . (2.4.2)

The IR singularities cancel between these two, giving the textbook result σV + σR =

σ0
3e2

16π2 δ(1− z).

Note that for this process, the cross section is finite without including the Z → Z for-

ward scattering contribution Z → Z. Indeed, the forward-scattering amplitude for Z → Z

is IR-finite to all orders in perturbation theory. This follows from the Kinoshita-Poggio-

Quinn theorem [4, 28, 42–44]. It is also easy to see from general features of infrared diver-

gences [45–50]: there are no massless external states, so there are no collinear divergences

and the external lines are not charged, so there are no soft divergences.

Note that unitarity alone does not guarantee that these diagrams together are infrared

finite. Strictly speaking, unitary holds when summing over cuts of a fixed topology only

if the on-shell states in the cut correspond to the those in the loop. In a covariant gauge,

the photon propagator does not represent the sum over physical states. Thus only when a

gauge invariant combination of all the relevant topologies is summed will unitarity hold.

In this case, graphs with external-leg self-energy contributions are amputated while cuts

though them (the individual graphs-squared in Eq. (2.4.2)) are included. This is the correct

procedure as dictated by the LSZ reduction theorem, and the final result is gauge-invariant

and subtraction-scheme-independent as it must be.
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2.5 e+e− → Z +X

Next let us consider the crossed process, e+e− → Z + X. The virtual graphs are the same

as for Z → e+e−:

σ̃00 = +

= σd0Γd
e2

π2

{
− 1

4ε2
− 3

8ε
+

7π2

48
− 1

}
δ(1− z) ,

(2.5.1)

where Γd =
(

4πe−γEµ2

Q2

) 4−d
2 , σd0 = σ0

d−2
2 µ4−d, and σ0 = 4πg2

Q2 with σ0δ(1 − z) the tree-level

cross section at center-of-mass energy Q. The real emission graphs give

σ̃01 =

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

= σd0
e2

π2
Γd

{
δ(1− z)

(
1

4ε2
− π2

16

)
+

1 + z2

4

(
−1

ε

[
1

1− z

]
+

+ 2

[
ln(1− z)

1− z

]
+

)}
. (2.5.2)

The sum of these graphs does not vanish: σ̃00 + σ̃01 = ∞. Here, our notation σ̃nm refers to

the generalized cross section with n incoming photons and m outgoing photons (the gener-

alized cross section is the same as the regular cross section for 2 → n scattering where the

incoming particles are massless, see Eq. (2.5.4) below).

What is different about radiation off incoming and outgoing electrons that changes the

singularity structure? Note that for Z → e+e−γ, both the soft and collinear singularities
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have support only at z = 1, as can be seen in Eq. (2.4.2). For e+e− → Zγ, if the pho-

ton is soft then z = 1, since a soft photon induces no recoil so the kinematics is the same

as for e+e− → Z. However, for a hard collinear photon, additional energy is needed in

the final state above that in the Z boson, so we must have z < 1. Thus the 1
ε

1
1−z pole in

Eq. (2.5.2) is of collinear origin, and different from the 1
εδ(1 − z) structure of the loop so

cannot cancel it. That collinear photons are the origin of the difference is consistent with

the Bloch-Nordsieck theorem: if the electron were massive, then there would be no collinear

singularities and the cross section would be IR finite with either incoming or outgoing elec-

trons.

2.5.1 Generalized cross section

In order to cancel the singularities coming from the loop, we can instead sum over initial

states. To sum over initial states, we need a generalization of cross section that can apply

to n → m scattering processes. First of all, we want to allow for forward scattering, so

instead of writing S = 1 + (2π)dδd(Pµi − P
µ
f )iM, we write

S = (2π)dδd(Pµi − P
µ
f )iM̃ , (2.5.3)

so that M̃ includes the forward scattering contribution.1 Here Pµi is the sum of all the in-

coming particles’ momenta and Pµf is the sum of all the outgoing particles’ momenta. Then,

1One might hope that IR finiteness could be achieved usingM in the conventional way, rather
than M̃. Unfortunately, arguments based on cluster decomposition and analyticity that allow us to
discard the 1 in S, and more generally the disconnected components, do not apply with massless
particles, when the S matrix is IR divergent. A brief discussion can be found in [51, pp. 191-192].
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rather than computing a cross section, we integrate over both initial and final state phase

space. Because the result is Lorentz invariant, it is convenient to work in the center-of-mass

frame. So we define

σ̃ ≡ 22d−4π2d−2

Qd−2

∑
spins

∫
dΠidΠf |M̃|2(2π)dδd(Pµi − P

µ
f )δd−1(~Pi + ~Pf )δ(P 0

i −Q)δd−2(Ω
(1)
d−1) ,

(2.5.4)

where Ω
(1)
d−1 corresponds to the angle of particle 1 and

dΠi =
∏

initial states j

dd−1pj
(2π)d−1

1

2Epj
, dΠf =

∏
final states j

dd−1pj
(2π)d−1

1

2Epj
. (2.5.5)

We always sum over initial and final state spins. For a fixed initial or final state, one can

always divide by the number of spins to turn the sum into an average. We do not include

this averaging factor so that σ̃ corresponds more precisely to what is proven to be infrared

finite in Section 2.3.

The normalization is set so that this definition reduces to the usual definition of a cross

section for 2 → n processes where the incoming particles are massless. For example,

Eqs. (2.5.1) and (2.5.2) still hold.

Note that we always sum over spins, for simplicity. One can consider more exclusive cross

sections without the spin sum, but since all spins are summed in virtual contributions, we

will often need to perform a spin sum to get a finite answer.
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2.5.2 Initial and final state sum

Integrating inclusively over the initial state photon phase space at fixed center-of-mass en-

ergy Q gives

σ̃10 =

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

= σd0
e2

π2
Γd

{
1

4ε2
+

3

8ε
− 7π2

48
+

19

16

}
δ(1−z) . (2.5.6)

This is identical to Eq. (2.4.2) and the infrared divergences (soft and collinear) of these ab-

sorption graphs exactly cancel those from the loop in Eq. (2.5.1): σ̃00 + σ̃10 < ∞. This is

not surprising as we are doing the identical integrals as for Z → e+e−(+γ).

Although the IR divergences of the loop are cancelled by absorption graphs in this way,

the emission graphs in Eq. (2.5.2) cannot simply be ignored. There is no reason not to in-

clude final state radiation in the physical cross section. But since we have already used the

loop to cancel the absorption singularities, what is left to cancel them? Since we have now

accepted processes with additional photons in the initial state, we should also allow for all

such processes. For example, we can have a diagram with an incoming and outgoing photon

interfered with a disconnected graph (the importance of disconnected diagrams has been

28



observed in many contexts [5, 38, 52]). These diagrams give:

σ̃11 =

 + +

+ + +

 + c.c.

= σd0
e2

π2
Γd

{
δ(1− z)

(
− 1

2ε2
+
π2

8

)
− 1− z

2

+
3z2 − 2z + 1

2

(
1

ε

[
1

1− z

]
+

− ln z

[
1

1− z

]
+

− 2

[
ln (1− z)

1− z

]
+

)}
(2.5.7)

Evaluating these diagrams requires some care. Consider the first diagram for example.

When interfered with the diagram on the right, the outgoing photon momentum is forced to

be the same as the incoming photon momentum. This puts one of the intermediate electron

propagators on-shell. Normally, on-shell propagators are amputated, but in this case, the

on-shell propagator is internal. Such singular propagators were handled by Lee and Nauen-

berg by including subleading terms in ε using the iε prescription in time-ordered pertur-

bation theory [5]. We find however, that their prescription does not work in our case. An

alternative method was suggested by Lavelle and McMullan [38]. A similar situation also

occurs when trying to factorize on-shell top production from decay [53]. Our approach is

most similar to that of [53].

To deal with the on-shell intermediate state, we must recall that a propagator i
p2+iε

is

technically a distribution, defined only after integration. Similarly, the δ(p2) putting the cut
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electron on-shell is also a distribution. The product of these distributions must be treated

as a distribution, proportional to δ′(p0 − ωp), as we show with an explicit computation of

the first diagram above in Appendix A.1. The sum of all the diagrams gives the result in

Eq. (2.5.7). It is intriguing that one cannot interpret these cut diagrams as the product of

an amplitude and a conjugate amplitude: the δ′ distribution is only meaningful under the

integral of the cut.

Once we have allowed for disconnected diagrams, nothing prevents contributions with

disconnected photons both in M̃ and M̃?, such as

+ + · · · (2.5.8)

We have to be careful in evaluating such graphs. If we contract the disconnected photons

with each other, as shown in the first graph, then an extra δ4(0) results. This extra infinity

is expected by cluster decomposition as the S matrix must factorize into disconnected non-

interfering pieces for separated processes [51]. We are not interested in those contractions

here, and indeed they are not required by the KLN theorem, as they do not come from

double-cut diagrams (see Section 2.5.3 below). Thus, when we draw diagrams like this we

refer to only the connected interference component, like the second diagram in Eq. (2.5.8),

where the disconnected photon in M̃ contracts with the absorbed photon in M̃? or vice-

versa.2 Note that the connected component must be gauge-invariant on its own as contribu-

2The connected interference component means that the uncut full double-cut diagram, wrapped
on a cylinder (see Section 2.5.3), is connected. Thus a contribution to σ̃ can be connected even if
the contribution M̃ or M̃? is disconnected.
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tions with different numbers of δ functions cannot cancel.

Focusing on the connected interference terms, in the center of mass frame, the outgoing

Z and γ have energies EZ = Q2+m2

2Q and Eγ = Q2−m2

2Q respectively. Since this photon con-

tracts with the absorbed photon, both photons have the same momentum and so the e+e−

pair has twice the 3-momentum of the Z and energy Eee ≥ 2Eγ . For energy to be conserved

in the e+e−γ → Z subdiagram we must then have EZ = 3Eγ , which only has solution for

Q >
√

2mZ or equivalently z > 1
2 . This kinematic regime is the one we are interested in

anyway as the singularity in the original e+e− → Z loop diagram occurred at z = 1 and so

we want to focus on singularities in the z ≈ 1 regime. The result is:

σ̃21 =

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

connected

= σd0
e2

π2
Γd Θ(2z − 1)

{
δ(1− z)

(
1

4ε2
− π2

16

)
+

5z2 − 4z + 1

4

(
−1

ε

[
1

1− z

]
+

+ ln(2z − 1)

[
1

1− z

]
+

+ 2

[
ln(1− z)

1− z

]
+

)}
(2.5.9)

Note the θ-function enforcing the kinematical limit. In the kinematic regime we are inter-

ested in, z > 1
2 , the IR divergences in the sum of Eqs. (2.5.2), (2.5.7) and (2.5.9) exactly

cancel: σ̃01 + σ̃11 + σ̃21 <∞.

This is, however, not the end of the story. Once we agree that connected interference

diagrams involving disconnected photons are allowed, we must also allow for such photons

to be added to any of the diagrams we have already included. Since disconnected photons
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do not change the order in the coupling, one can have an arbitrary number of them.3 We

find for a process with m incoming photons and n outgoing photons, for z > 1
2 and n > 0

that

σ̃mn = σd0
e2

π2
Γd (δm−1,n − 2δm,n + δm+1,n)

{
δ(1− z)

(
1

4ε2
+

lnn

ε
− π2

16
+

ln2 n

2

)
+

2nz[n−m(1− z)] + (1− z)2

4n2

[(
−1

ε
+ ln

(
n−m(1− z)

n3

))[
1

1− z

]
+

+2

[
ln (1− z)

1− z

]
+

]
+

1− z
4n2

δmn

}
. (2.5.10)

Note that the number of incoming and outgoing photons can differ by at most 1 at this

order in the coupling. At higher order, there will be additional terms in σ̃mn farther from

the diagonal.

It is easy to check from this formula that the IR divergences cancel for any fixed n, i.e.

σ̃n−1,n + σ̃n,n + σ̃n+1,n is finite. Moreover, we find that if we sum over m first, then the sum

over n is convergent. Indeed, at large n, the asymptotic behavior is

σ̃n−1,n + σ̃n,n + σ̃n+1,n = σd0
e2

π2
Γd

{
− (1− z)3

6z2n4
+O(

1

n6
)
}
, (2.5.11)

which is summable. Unfortunately, the series is not absolutely convergent and thus there

is an ambiguity on the answer depending on the order in which the terms are summed [38,

40]. The ambiguity can be easily seen by considering reversing the order of the sum. Hold-

3One way to understand these multi-photon processes from the KLN theorem is that they
original originate from diagrams where the photon wraps around the double-cut cylinder more than
once [38].
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ing the number of initial-state photons fixed, we find that the sum over m of σ̃m,m−1 +

σ̃m,m+σ̃m,m+1 is finite and scales like 1
m2 at large m. However, the sum of the m = 0 terms,

σ̃00 + σ̃01, is IR divergent: this is the original problematic sum e+e− → Z(+γ). So summing

n first, then m we get infinity, while summing m first, then n we get a finite answer.

Even if one could come up with a consistent justification for how to sum the infinite se-

ries of m → n photon contributions, the physical interpretation is still unsettling. Even the

σ̃10 contribution, e+e−γ → Z is disturbing. The way we have done the calculation involved

integrating over the entire kinematically accessible phase space for the incoming photon,

including the region of hard, large-angle (non-collinear) photons. It is hard to justify why

such photons should be involved in any experimental measurement of e+e+ → Z. Instead,

we might try to restrict the integral to some infrared-and-collinear safe region. For example,

we can consider scattering only incoming “jets” with invariant mass less than some cutoff m.

Details using a hemisphere-jet mass definition are provided in Appendix A.2. We find that

as with the total cross section, the jet mass cross section is also IR finite for any fixed num-

ber n of outgoing photons. Although the infinite sum retains the same ordering ambiguity

as for the full cross section, it is closer to something that could conceivably be measured.

Indeed, one can think of the initial-state jet mass calculation as a matching calculation if

we set the jet masses equal to the physical electron mass. While this line of inquiry might

ultimately be fruitful, it is not clear that at higher order in perturbation theory, or in more

complicated theories like QCD, the IR divergences will still cancel without including for-

ward scattering.

33



2.5.3 KLN interpretation

We saw that summing over e+e− + mγ → Z + nγ cross sections was infrared finite when

summed over m and n. This is exactly the kind of cancellation the KLN theorem predicts:

including all degenerate initial and final states guarantees finiteness. Although we found the

relevant set of graphs by guessing all the relevant physical processes that might contribute

at the same order in perturbation theory the KLN theorem actually tells us which subsets

of diagrams should cancel: those coming from the double cuts of the same Feynman graph.4

The KLN theorem says that if we take a particular graph and identify the initial and fi-

nal states, then all possible cuts of that graph should add up to a finite result. For example,

the first σ̃11 graph in Eq. (2.5.7) can be represented as:

= (2.5.12)

where the red dashed line is the usual final-state cut and the blue dotted line represents an

initial state cut. The diagram should be viewed as on a cylinder, with the right-hand side

identified with the left-hand side. Then, for example, the square of the first real emission

4As noted before, although the proof works diagram-by-diagram, it requires unitarity which only
holds if the propagator-numerators are the same as the sum over physical on-shell spin states. This
is true for gauge theories in physical gauges (like axial gauge) but not true in covariant gauges (like
Feynman gauge). One can work in Feynman gauge as long as all of the diagrams required to ensure
gauge invariance are included.
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graph in Eq. (2.5.2) can be drawn as

= (2.5.13)

A different double-cut diagram can produce the third diagram in Eq. (2.5.7) or the discon-

nected diagram in Eq. (2.5.9):

= , =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

(2.5.14)

Now, as we have observed, the double-cut sum in the KLN theorem also includes con-

tributions where both cuts are in the same place, giving forward scattering contributions.

For example, the double cut diagram in Eqs. (2.5.12) and (2.5.13) also generates forward-

scattering cuts,

= (2.5.15)

The double-cut sum also includes contributions where the initial and final state cuts are
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swapped from Eq. (2.5.13)

σγZee = = (2.5.16)

The process corresponding to these cuts are γZ → γZ and γZ → e+e− respectively, neither

of which seems very much like the original e+e− → Z process whose singularities we were

trying to cancel.

If the KLN theorem requires us to sum over this large number of contributions, why do

a subset of them cancel among themselves? In some cases, we can find a clear answer. For

example, we found that the virtual contribution to e+e− → Z was IR finite when summed

with e+e−γ → Z; these are contributions with a fixed final state, namely the Z. Since

Z → Z is IR finite on its own, the sum of contributions of anything → Z will be finite

whether or not we include forward scatting.

Similarly, we found e+e− → Zγ canceled against γe+e− → Zγ and γγe+e− → Zγ.

These contributions all have final states with Zγ. Thus we could explain the cancellation

among these terms alone if the forward scattering contribution Zγ → Zγ were infrared
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finite. Evaluating the loop, we find:

σ̃γZ = + crossings + c.c.

= σd0
e2

π2
Γd ×



5z2 − 4z + 1

4 (1− z)

[
−1

ε
+ 2 ln(1− z)

]
+

3z2 − 2z + 1

2 (1− z)
ln z +

1− z
2

z < 1
2

3z2 − 2z + 1

2
ln z

[
1

1− z

]
+

+
−5z2 + 4z − 1

4
ln(2z − 1)

[
1

1− z

]
+

+
1− z

2
, z > 1

2

(2.5.17)

In this expression, the O(ε) piece is evaluated at z = 1 since it only contributes when multi-

plying the 1
εδ(1− z) term from the expansion of the prefactor.

We see that the forward scattering contribution is infrared divergent, but only for z < 1
2

(Q2 > 2m2
Z). For z ≈ 1 (Q ≈ mZ), which is the limit in which we can examine the IR

divergence associated with e+e− → Z, the γZ → γZ forward scattering contribution is IR

finite. This explains why the the sum over all other X → γZ diagrams,
∑
σ̃n1 will be IR

finite, as we have seen.

At high energy, Q2 > 2m2
Z , the forward scattering process is IR divergent. Note however

that this is the identical to threshold above which the 2 → 1 diagrams σ̃21 vanish. Since

the singularities of σ̃γZ and σ̃21 are identical, the cross section to produce γZ is IR finite

smoothly through the threshold. Despite the IR finiteness, the physical interpretation of the

cancellation at high energy is a little strange: to produce a γZ from e+e− initial states, we

37



must also include initial states with γZ in them. On the other hand, we were not originally

interested in γZ final states, but e+e− initial states, so a more relevant question is what

states must we include along with e+e− to make a finite cross section?

2.5.4 Final states only

Unitarity implies that the sum over final states only, including forward scattering, is IR fi-

nite for any initial state. In this case, e+e− → X summed over all states X coming from

cuts of the e+e− → Z diagrams must be finite on their own. We already computed e+e− →

Z and e+e− → Zγ, and they did not cancel by themselves. We cannot add additional pho-

tons in the initial state, but we must also consider e+e− forward scattering with γZ inter-

mediate states. Adding the 2 box diagrams gives:

+ + c.c.

= σd0
e2

π2
Γd

{
δ(1− z)

(
− 1

4ε2
+
π2

16

)
+

1 + z2

4

(
1

ε

[
1

1− z

]
+

− 2

[
ln(1− z)

1− z

]
+

)}
(2.5.18)

These contributions exactly cancel the real emission graphs in Eq. (2.5.2).

We saw that the IR divergences in the e+e− → Z 1-loop amplitude where canceled by

real absorption graphs. To cancel these divergences without absorption graphs we need a

different set of forward scattering diagrams, namely those containing the troublesome loop.
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We find in this case

+ + c.c. = σd0
e2

π2
Γd

×

{
δ(1− z)

(
1

4ε2
+

3

8ε
+ 1− 7π2
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)
+

1− z
(1− z)2 + Γ̂2

z

(
− 1

4ε
− 3

8

)}
, (2.5.19)

where Γ̂z ≡ Γzmz
Q2 . There is also an additional cut to this diagram, representing a non-

forward scattering e+e− → e+e− contribution:

+ c.c. = σd0
e2

π2
Γd

{
1− z

(1− z)2 + Γ̂2
z

(
1

4ε
+

3

8

)}
(2.5.20)

The sum of these graphs cancel the cut graphs in Eq. (2.5.1).

Although the cancellation confirms the general theorem from Sec. 2.3, it is still a bit sur-

prising: to cancel the infrared singularities in e+e− → Z + photons we must include states

without a Z in them, namely e+e− → e+e−. One way to explain this observation is that

a Z boson can mix with an e+e− pair, so the two states are not distinguishable. Actually,

this case has extra complications over other QED processes because the Z is massive and

unstable (as it must be if it can be produced by massless particles). If the Z were mass-

less, like the photon, the disconnected diagrams with Z → e+e− would not be allowed. We

thus turn next to pure QED processes, Compton scattering and light-by-light scattering, to

further explore the physics of infrared finiteness and forward scattering.
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2.6 Compton scattering

Compton scattering is a simple example where where the KLN theorem, summing over de-

generate initial and final states, but not including forward scattering, fails. At leading or-

der, Compton scattering has an s- and t-channel contribution:

σ̃C =

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

(2.6.1)

The s-channel graph makes a non-singular contribution at finite Q, but the t-channel graph

has a pole. Regulating the divergence in d dimensions and working in Feynman gauge we

find that the t-channel contribution is

σ̃tC =
e4

πQ2
Γd

{
− 1

2ε
+ 1

}
, (2.6.2)

with Γd =
(

4πe−γEµ4

Q2

) 4−d
2 .

What could cancel this singularity? We cannot dress the initial or final state electron

with additional photons, as the contribution would be higher order in e. Because of uni-

tarity, and the proof of cancellation, we can find the answer by simply drawing all possible
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cuts:
CF F?D1 D2

(2.6.3)

Actually, rather drawing the cuts as lines (or shaded lines), we find it clearest to enumerate

the possible cuts as all possible circlings of the vertices, following ’t Hooft and Veltman [54,

55]. For example,

D1 = , C = , F
? = , etc. (2.6.4)

Lines going from uncircled vertices to uncircled vertices get a +iε, lines going from circled

to circled get a −iε and lines going from uncircled to circled are cut, so they get δ func-

tions. Although not explained explicitly in [54, 55], an incoming line connecting to a circled

vertex or an outgoing line connecting to an uncircled vertex, as in diagram D1 gives a dis-

connected line. In this way, we see that there are 16 possible cuts. Most of these vanish.

Indeed, if a connected set of circled vertices attaches only to incoming lines or a connected

set of uncircled vertices attaches only to outgoing lines, the graph vanishes by energy con-
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servation. Thus,

= 0, = 0, = 0, etc. (2.6.5)

Enumerating the cuts through circled vertices is particularly helpful for disconnected dia-

grams, like the crossed-box graphs in Eq. (2.5.18), where drawing lines through the graph is

ambiguous. For example,

= (2.6.6)

This is the connected component of the interference between the disconnected and con-

nected graph (see discussion in Sec. 2.5.2). It vanishes for Compton scattering since the

photon is massless even though the equivalent topology for γZ → e+e−Z in Eq. (2.5.9),

does not vanish.

Now let us look at some of the graphs. Cut D1 is

D1

(2.6.7)

This diagram is the product of a disconnected graph for e− → e− and γ → e+e− and a con-

nected graph for e−γ → e−e+e−. The disconnected part only has support if the e+e− pair
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is collinear to the incoming photon. In this phase space region, which is a set of measure

zero over all of phase space, the connected part is non-singular and thus the product van-

ishes when integrated over phase space. (The disconnected diagrams in Eq. (2.5.7) had an

e+e− → Z component which did not vanish because the Z boson is massive.) In is not hard

to see that for Compton scattering at this order, all the cuts giving disconnected graphs are

exactly 0.

Thus the only remaining contribution to cancel the divergence in the σ̃C is forward scat-

tering. The forward scattering contribution, labeled F in Eq. (2.6.3) is the interference of

the forward scattering non-interacting diagram and the box

σ̃F =

F

=
e4

πQ2
Γd

{
i

4πε2
+
−2i+ π

4πε
− 1

2
+

i

4π
− 7iπ
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}
. (2.6.8)

In this contribution, the tree-level part only has support for forward scattering and the loop

however is singular at t = 0. Their product is integrable in d dimensions, leading to the

above result.

Adding to this the cut graph F? , which is the complex conjugate to F gives

σF + σF? =
e4

πQ2
Γd

{
1

2ε
− 1

}
, (2.6.9)

which exactly cancels the tree-level cross section, as expected.

On the one hand, this result should not come as a surprise. It is guaranteed by unitarity.

However, note that the Compton diagrams had a singularity in the Bjorken x = 1 region,
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where the entire momentum of the incoming electron is transferred to the outgoing pho-

ton. In contrast, the forward scattering contribution is at x = 0, where the momentum of

the electron stays with the electron. Thus in the two cancelling contributions the hard elec-

tron is going off in entirely different directions. It seems like the question of whether a hard

particle is an electron or photon should be physical. We find that instead, only the cross

section for an hard electron or hard photon is finite.

One way to understand why electrons and photons are effectively indistinguishable at

high energy is that when the electron is massless, there is no energetic penalty to produce

additional e+e− pairs from the vacuum. Thus, the state with a photon and electron can

mix with one where a soft positron is created in the hard electron’s direction, neutralizing

its charge to produce a photon, and a soft electron is created in the hard photon’s direction.

Thus a hard electron going left and a hard photon going right can mix with the state of a

hard electron going right and hard photon going left. Such mixing are exactly the degenera-

cies that must be summed over in the KLN theorem to get a finite result.

One could object to the reasoning here because the electron is in fact massive. Indeed,

there are no massless particles in nature with nonzero electric charge, and such particles

may not even be consistent (although gluons are, of course, massless particles charged un-

der a different force). The point, however, is not to envision some fictitious theory with

massless electrons. Rather, we want to understand when and how large contributions to

the cross section are counterbalanced by superficially distinguishable processes. If the elec-

tron had a small mass, the collinear divergence would be regulated. We would then find the

rate for producing a hard electron scales like e4 ln Q
me

at large Q
me

and the rate for producing
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a hard forward photon scales like 1−e4 ln Q
me

. Thus at high energy, when the logarithms be-

come large, the two contributions should be added to restore perturbativity. In terms of the

physical picture, when the center of mass energy of the collision becomes high enough, the

energetic penalty to produce e+e− pairs takes a negligible amount of the total energy. In

this way, a hard electron and hard photon become indistinguishable and their cross sections

must be combined, according to the same logic as when me = 0.

2.7 γγ → X

Perhaps the most powerful example of the failure of the initial-and-final-state sum picture is

for light-by-light scattering – it is hard to argue that a photon is not a well-defined asymp-

totic state and that additional initial state particles must be added in γγ → γγ. Let us

consider then the process γγ → e+e−. The total cross section for this process is IR diver-

gent due to the forward scattering region:

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
2

=
e4

πQ2
Γd

{
−1

ε
+ 1

}
(2.7.1)

with Γd =
(

4πe−γEµ4

Q2

) 4−d
2 . As with Compton scattering, since the divergence is at tree-level,

there can be no loop or bremsstrahlung contributions to cancel this singularity. Instead, the
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singularity is canceled by the forward scattering amplitude

+ crossings + c.c. =
e4

πQ2
Γd

{
1

ε
− 1

}
. (2.7.2)

The sum of these is exactly zero, as expected by unitarity. Note that for this process, as for

Compton scattering, all the diagrams with 1 → 2 disconnected pieces vanish exactly since

all the particles are massless.

We have found something shocking: the total rate for photons to annihilate into charged

particles is undefined. Similarly, the total rate for photons to annihilate into photons is un-

defined. Only the total cross section including photon final states and e+e− final states is

IR finite.

2.8 Summary and Conclusions

This paper explores the question of which cross sections must be summed along with the

cross section for a given process to produce an infrared finite result. Some of the main re-

sults of this paper are that

1. One never needs to sum over initial and and final states to achieve IR finiteness, in

contrast to expectations from the KLN theorem.

2. IR finiteness often requires the inclusion of forward scattering and the interference

between disconnected and connected Feynman diagrams.
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3. In QED with massless electrons, e+e− → Z can be made IR finite at the first nontriv-

ial order by including

(a) outgoing photons and e+e− → e+e−,

(b) incoming photons and Z → Z, or

(c) an infinite number of processes dressing e+e− → Z with additional incoming or

outgoing photons. Summing all the contributions, the cross section with fixed

initial-state jet masses is convergent.

4. In e−γ → e−γ, the tree-level IR divergence from the region with the outgoing γ

collinear to the incoming e− is canceled by the region with the outgoing γ collinear

to the incoming γ.

5. The IR divergence in γγ → γγ scattering is cancelled by γγ → e+e−.

The first point is perhaps the most important observation in this paper. Although the

KLN theorem instructs us to sum over degenerate initial and final states to produce an in-

frared finite cross section, in fact only the sum over initial or final states is necessary. More-

over, finiteness is only guaranteed if the forward scattering contribution is included.

In some cases, the forward scattering contribution is infrared finite on its own. An im-

portant example is Z → Z. Its finiteness allows the rate for Z → e+e−+ photons to be

finite, or Z → hadrons to be finite in QCD. That the infrared singularities (in particular

the collinear singularities associated with massless electrons or quarks) cancel is in a sense

an accident of the simplicity of the Z → Z amplitude. For most other processes, forward
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scattering is singular and must be included for infrared finiteness. For example, Zγ → Zγ

at 1-loop is IR finite only in a small kinematic window but otherwise divergent.

Although one may sum only over final states, it may be important to consider initial

state sums in some contexts. The example we studied in detail here was e+e− → Z. For

this process, one can add photons to the initial state and the cross section will be finite, as

the process is then the exact crossing of Z → e+e−. However, for e+e− → Z, one can-

not prevent the electrons from radiating photons into the final state. These e+e− → Zγ

processes are infrared divergent, with their infrared divergences canceled in turn by addi-

tional diagrams with disconnected photons. We understood this cancellation as a initial-

state sum cancellation because the Zγ forward scattering amplitude is infrared finite when

the center-of-mass energy is close to mZ . Moreover, we found an infinite number of dia-

grams contributing at next-to-leading order in perturbation theory. Summing these dia-

grams, all the infrared divergences cancel. The infinite sum over the finite parts of all the

diagrams appears to be convergent, although it is not clear how to interpret the result as

hard wide-angle initial state photons are included. In Appendix A.2, we refined the calcu-

lation to initial-state jet masses, to eliminate the hard wide-angle photons, and still found

convergence. It will certainly be interesting to consider connecting these infinite sums to

experimental observables, as this is an example where an initial and final state sum gives a

non-trivial result. Two reasons this may be challenging are that 1) the infinite sum over the

finite parts is convergent but not absolutely convergent, so the result depends on how the

terms are ordered and 2) it is not clear if the cancellation will hold at higher orders, or in

more complicated theories like QCD.
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An alternative to summing over initial and final states is to sum over just final states,

but to include also the e+e− → Z → e+e− forward scattering contribution. This contribu-

tion is IR divergent and cancels the IR divergence of the e+e− → Z virtual corrections as

well as the e+e− → Zγ bremsstrahlung graphs. Thus, the forward scattering in this case

achieves the same cancellation as the multiple initial and final state photons did, but avoids

having to include disconnected diagrams and perform an infinite sum. On the other hand,

when forward scattering is included, the total cross section is exactly zero at this order (as

required by unitarity).

Additional insight came from examining Compton scattering. In Compton scattering, the

total cross section with massless electrons is IR divergent. With an small electron mass, the

total cross section diverges as σ ∼ e4

32πQ2 ln Q2

m2
e
. The singularity is from the kinematic re-

gion where the outgoing photon is collinear to the incoming electron. The large logarithm

is canceled by the process e−γ → e−γ at 1-loop interfered with the disconnected forward

scattering amplitude, so the outgoing photon is collinear to the incoming photon. This says

that if a cosmic ray electron comes in at ultra-high energy, and scatters off a photon in the

atmosphere one should not be able to distinguish a high-energy photon coming towards

us from a high-energy electron. Only the sum of the two cross sections is IR finite (or free

of large logarithms at high energy). We presented a physical justification for the indistin-

guishability: at very high energy, there is negligible energetic cost to the photon converting

to an e+e− pair. If the positron produced is soft and the electron goes in the photon direc-

tion, then effectively the photon has transformed into an electron. From a practical point of

view, since the electron is in fact massive and clearly distinguishable from a photon when it
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is slow, the criterion for distinguishability must depend on some experimental resolution to

identifying a conversion or charged tracks.

More broadly, we must question when the charge flowing into a certain direction is ob-

servable or only the net (global) charge. It seems that in addition to experimental limits

on the energy and angles that can be resolved, there must also be an experimental limit

on how well the momentum of a charged particle can be measured. That is, the notion of

infrared-and-collinear safety might need to be extended to a restriction on charge measure-

ment when massless initial states are involved (of if large logarithms are to cancel when

initial state charged particles have mass).

Part of the reason we began investigating the KLN theorem was to gain a handle on the

intricate subject of asymptotic states and the S-matrix. In particular, there are propos-

als that the S-matrix might be rendered IR finite if initial and final states are dressed as

coherent states. While the original proposals focused on QED with massive electrons [8–

10, 56] there have been extensions to the cases with massless charged particles [57–59],

QCD [60, 61] and gravity [52]. While this coherent state approach is intuitively appealing

– it certainly makes sense in the context of the e+e− + photons → Z + photons case we

studied here – our observations indicate that the cancellations observed may be accidental.

For example, we discussed photon scattering in Sec. 2.7. We showed there that the cross

section for γγ → photons is infinite in a theory with massless electrons. This IR divergence

is canceled by the process γγ → e+e−. In a coherent state approach, one would attempt to

achieve the cancellation at the amplitude level, but this would involve dressing the photons

with electrons. While such a dressing is not inconceivable, it deviates from the the Faddeev-
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Kulish idea that the IR divergences originate from the long-range interactions in the Hamil-

tonian. If it is possible to dress states so that the S-matrix is finite, the integrals involved

in the dressing are likely to be closely related to integrals involved in achieving finite cross

sections, like those we have studied here.

Finally, it is worth ruminating on how to connect infrared finiteness forward scattering

to experimentally testable predictions. They key may be to understand better the initial

state sums. Indeed, although we have shown that one can achieve IR finiteness with just a

final state sum, it is not clear that this is the most physical way to proceed. A case in point

is massive-electron QED, where the Bloch-Nordsieck theorem holds. In QED a final-state

sum is sufficient in any process, such as for e+e− → Z + photons. However, our analysis

in Section 2.5 demonstrated that combining final state emission of e+e− → Zγ with the

virtual e+e− → Z loop is morally equivocal:5 these contributions do not come from cuts

of the same graph and their cancellation is accidental (a consequence of Abelian exponen-

tiation). Indeed, in the massless-electron case, the cancellation does not work without also

including e+e− → e+e− forward scattering. Alternatively, once can cancel the e+e− → Z

loop against γe+e− → Z graphs. Doing so not only cancels the IR divergences, but also the

large logarithms of meQ . Thus we actually have 3 different ways to compute e+e− annihila-

tion: 1) with a final state sum, à la Bloch-Nordseick, whereby a large logarithm results 2)

with a final state sum, including e+e− → e+e− whereby the inclusive cross section is zero

or 3) with an initial state sum, where a finite cross section with no large logarithms results.

Of these, the 3rd option may be the most appealing. However, to actually connect initial-

5A counterargument based on spacetime symmetries [62] can be found in [63].
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state jets and disconnected diagrams to experiment will require understanding initial state

sums in greater detail, to higher order, and in a more complicated yet more experimentally

accessible theory, QCD.
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3
A Finite S-matrix
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One of the most fundamental objects in high energy physics is the scattering- or S-

matrix. Not only is it a bridge between a definition of a quantum theory and data from

particle colliders, but the study of the S-matrix itself has led to deep insights into the

mathematical and physical pillars of quantum field theory itself. The idea behind the S-

matrix is that it gives the amplitude for a set of particles in an “in” state |ψin〉 at t = −∞

to turn into a different set of particles in an “out” state 〈ψout| at t = +∞. To go from

this intuitive picture to a mathematically rigorous definition of the S-matrix has proven

remarkably challenging. For example, suppose we take the in and out states to be eigen-

states of the Hamiltonian H with energy E. Then they would evolve in time only by a

phase rotation and the S-matrix elements would all have the form limt→∞ e
−2iEt〈ψout|ψin〉.

Such an S-matrix would be both ill-defined (because of the limit) and trivial (because

of the projection). In non-relativistic quantum mechanics, one avoids this infinitely os-

cillating phase by subtracting from H the free Hamiltonian H0 = ~p 2

2m . More precisely,

one looks for states |ψ〉 which, when evolved with the full Hamiltonian, agree with in and

out states evolved with the free Hamiltonian: e−iHt|ψ〉 → e−iH0t|ψin〉 as t → −∞ and

e−iHt|ψ〉 → e−iH0t|ψout〉 as t → +∞. Then the projection of in states onto out states is

given by matrix elements 〈ψout|S|ψin〉 of the operator S = Ω†+Ω− where the Møller opera-

tors are defined as Ω± = eiHt±e−iH0t± , with t± shorthand for the t → ±∞ limit. In this

way, the free evolution, which is responsible for the infinite phase, is removed. Note that

limt→±∞ e
−iHt|ψ〉 is not a well-defined state, so the in and out states should be thought of

as either Heisenberg picture states or as Schrödinger picture states at t = 0 not at t = ±∞

(see Fig. 3.1). Defining the S-matrix this way gives sensible results and a pleasing physi-
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cal picture: particles we scatter are free when not interacting. Their freedom means they

should have momentum defined by the free Hamiltonian and the S-matrix encodes the

effects of interactions impinging on this freedom.

In quantum field theory, a similar construction is fraught with complications. The Møller

operators which convert from the Heisenberg picture to the interaction picture, do not ex-

ist as unitary operators acting on a Fock space (Haag’s theorem [64]). So one must work

entirely in the Heisenberg picture without reference to H0. The matching of the states at

t → ±∞ is then replaced with an asymptotic condition on the matrix elements of fields.

In the Haag-Ruelle construction [65–67], a mass gap is required to isolate the few-particle

asymptotic states as limits of carefully constructed wave packets. From there, one can de-

rive the LSZ reduction theorem, relating elements of the S-matrix to time-ordered products

of fields [68, 69].

While it is satisfying to know that the S-matrix can be rigorously defined, its existence

requires a theory with a mass gap, a unique vacuum state, and fields whose two-point func-

tions vanish exponentially at spacelike separation. None of these requirements hold in any

real-world theory. The practical resolution to this impasse is to ignore Haag’s theorem, ig-

nore that charged particles cannot be isolated and other assumptions, and simply use the

LSZ reduction theorem as if it were true, computing S-matrix elements with Feynman di-

agrams. Although the resulting matrix elements are singular (due to infrared divergences)

as long as one combines S-matrix elements computed this way into observable cross sec-

tions, the singularities will drop out. This is guaranteed by the KLN theorem [4, 5] which

says that infrared divergences will cancel when initial and final states are summed over, or
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by its stronger version, that the cancellation occurs when initial or final states are summed

over [70]. Despite the success of this pragmatic approach, it remains deeply unsettling that

the underlying object we compute, the S-matrix, has no formal definition even in QED.

There has been intermittent progress on constructing an S-matrix for QED (and QCD)

over the last 50 or so years. The infrared divergence problem of the S-matrix can be seen

already in non-relativistic scattering off a Coulomb potential. Because of its 1
r behavior,

the Coulomb potential is not square integrable, and the asymptotic states do not exist.

This complication was observed by Dollard [71], and resolved by using a modified Hamil-

tonian Has(t) that appends the dominant large-distance behavior of the Coulomb interac-

tion to the free Hamiltonian. Chung [8], independently, observed that if instead of scatter-

ing single-particle Fock-state elements, one scatters linear combinations of these elements,

similar to coherent states used in quantum optics (and to an early attempt by Dirac [72]),

finite amplitudes would result. In Chung’s construction, the IR divergent phase space in-

tegrals from cross-section calculations are moved into the definition of the states. Fad-

deev and Kulish [10] subsequently redefined the S-matrix to include the dominant long-

distance interactions of QED in its asymptotic Hamiltonian (similar to Dollard), and iden-

tified Chung’s coherent states as arising during the asymptotic evolution. Over the years,

various subtleties in the coherent-state approach to soft singularities in QED have been ex-

plored [56, 73, 74], and attempts have been made to construct a finite S-matrix for theories

like QCD with massless charged particles and hence collinear singularities [57–59, 61].

Remarkably, in all this literature, there are very few explicit calculations of what a finite

S-matrix looks like. Indeed almost all of the papers concentrate on the singularities alone.
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Doing so sidesteps the challenge how to handle finite parts of the amplitudes and precludes

the possibility of actually calculating anything physical. With an explicit prescription, you

have to contend with questions such as: what quantum numbers do the dressed states have?

They cannot have well-defined energy and momentum outside of the singular limit, since

they are superpositions of states with different numbers of non-collinear finite-energy parti-

cles.

The basic aspiration of much of this literature is that when there are long-range in-

teractions, the S-matrix should be defined through asymptotic Møller operators Ωas
± =

eiHt±e−iHast± with some kind of asymptotic Hamiltonian Has replacing the free Hamilto-

nian H0. Despite the simple summary, working out the details and establishing a produc-

tive calculational framework has proved a resilient challenge.

In this paper we continue the quest for a finite S-matrix by folding into the previous

analysis insights from the modern understanding of scattering amplitudes and factoriza-

tion. We argue that the principle by which the asymptotic Hamiltonian is to be defined is

not that the dominant long-distance interactions be included (which allows for Has = H

and S = 1), but that the evolution of the states be independent of how they scatter.

In gauge theories, infrared divergences can be either soft or collinear in origin. Both

soft and collinear interactions are universal and can be effectively separated from the re-

mainder of the scattering process. Factorization has been understood from many perspec-

tives [49, 50, 75–81]. A precise statement of factorization can be found in [49, 50], where it

is proven that the IR divergences of any S-matrix in QCD are reproduced by the product of

a hard factor, collinear factors for each relevant direction, and a single soft factor. A useful
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language for understanding factorization is Soft-Collinear Effective Theory (SCET) [77–83].

The SCET Lagrangian is

LSCET = −1

4
(F sµν)2 +

∑
n

−1

4
(F c,nµν )2 +

∑
n

ψ̄cn
/̄n

2

[
in ·D + i /Dc⊥

1

in̄ ·Dc
i /Dc⊥

]
ψcn + LGlauber ,

(3.0.1)

where s and c, n are soft and collinear labels respectively; these act like quantum numbers

for the fields. The derivation of the SCET Lagrangian and more details on the notation

an be found in the reviews [82, 83]. The Glauber interactions denoted by LGlauber are dis-

cussed in [84]; when they are included, the SCET Lagrangian can reproduce all of the IR

singularities of any non-Abelian gauge theory. The main relevant features of the SCET

Lagrangian are that 1) there are no interactions between fields with different collinear-

direction labels (up to Glauber effects) and 2) collinear particles going in different direc-

tions only interact through soft photons or gluons with eikonal interactions. We define the

asymptotic Hamiltonian Has as the SCET Hamiltonian appended with the free Hamiltoni-

ans for massive particles.

In collider physics applications, one typically adds to the SCET Hamiltonian a set of op-

erators necessary to reproduce the hard scattering of interest. For example, one might add

∆H = Cψ̄γµψ for jet physics applications in e+e− collisions. Then one determines the

Wilson coefficient C by choosing it such that matrix elements computed using SCET agree

with matrix elements computed in the full theory. Importantly, the infrared divergences

cancel in the difference, so that C is IR-finite order-by-order in perturbation theory. Moti-

vated by such cancellations, we define hard Møller operators as ΩH
± = eiHt±e−iHast± and the
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hard S-matrix as SH = ΩH†
+ ΩH

− . Because Has reproduces the IR-divergence-generating

soft and collinear limits of H, we expect the hard S-matrix will be IR-finite.

To evaluate matrix elements of SH in perturbation theory, one could attempt to work out

Feynman rules in an interaction picture based on Has instead of H0. A propagator would

then be a Green’s function for Has, which has no known closed-form expression. Alterna-

tively, we can write SH suggestively as (cf. [10, 57])

SH = ΩH†
+ ΩH

− = Ωas
+ Ω†+Ω−Ωas†

− , (3.0.2)

where Ωas
± = eiH0t±e−iHast± . This encourages us to define

|ψdin〉 = Ωas†
− |ψin〉 and |ψdout〉 = Ωas†

+ |ψout〉 (3.0.3)

as dressed in and out states. Then,

〈ψout|SH |ψin〉 = 〈ψdout|S|ψdin〉 . (3.0.4)

We will take |ψin〉 and |ψout〉 to be eigenstates of the free momentum operator Pµ0 with a

few (finite number of) particles in them. Thus we can think of SH as computing either pro-

jections among few-particle states with the hard Møller operators or projections of dressed

states with the original S-matrix Møller operators. For example, in the process e+e− → Z

in QED, |ψin〉 would be an e+e− state of definite momentum and |ψdin〉 a superposition of

|e+e−〉, |e+e−γ〉, |e+e−γγ〉, and so on.

59



|ψin〉eiH0t

|ψ〉 eiHt

|ψout〉 eiH0t

t=−∞ t=0 t=∞

time

S

|ψin〉
|ψdin〉

|ψout〉

|ψdout〉

eiHsct

eiH0t

eiHt

eiH0t

eiHsct

t=−∞ t=0 t=∞

SH

Figure 3.1: (Left) The traditional S-matrix is computed from Fock states evolved using H0 and H.
(Right) The hard S-matrix is computed either using Fock states evolved with Has and H or using
dressed states evolved with H0 and H.

More explicitly, we can relate |ψdin〉 to |ψin〉 using time-ordered perturbation theory

(TOPT). For example, if |ψin〉 is the state of an electron with momentum ~p, then in QED

∣∣∣ψdin〉 = |ūs(p)〉 + e
∑
ε

∫
dd−1k

(2π)d−1

1

2ωp

1

2ωk

2 p · ε

ωk − ~p·~k
ωp
− iε

|ūs(p− k), ε(k)〉 + · · · (3.0.5)

The denominator factor comes from the soft expansion of the TOPT propagator (ωp−k +

ωk − ωp − iε)−1. Note that the states in the expansion of |ψdin〉 have different energies. Al-

though electric charge and 3-momentum are conserved, energy is not as we evolve with Ωas
−

in TOPT. Due to the IR-divergent integral over ~k, dressed states do not exist (in contrast

to |ψin〉 and |ψout〉), but they do provide a useful qualitative handle on scattering.

As a concrete example, we now compute SH for deep-inelastic scattering, e−γ? → e−

in QED with massless fermions at momentum transfer Q =
√
−q2 in the Breit frame. At

order e2, the loop contribution to the S-matrix element is, in MS and d = 4 − 2ε dimen-
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sions [85],

MA =

t=−∞ t=∞

=M0
α

4π

[ 1

εUV
− 2

ε2IR
−

2 ln µ2

Q2 + 4

εIR
− ln2 µ

2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

]
,

(3.0.6)

withM defined by SH = 1 + (2π)dδd(q + p1 − p2)iM andM0 = −eū(p2)γµu(p1) is the

tree-level amplitude.

While this S-matrix element is IR-divergent, there are other contributions to SH at the

same order. These can be thought of as S-matrix elements for the e−γ components of |ψdin〉

or |ψdout〉. We can represent the new graphs as cuts through a broader graph, going from

0 → −∞ → ∞ → 0. The first and last transitions go backward in time and represent the

dressing and undressing of the state in the asymptotic regions. For example, the graph with

both photon vertices coming from soft-collinear interaction in Has is

MB =
↘p1

→ k
p2↗

t=−∞ t=∞

q

=M0e
2µ4−d

∫
dd−1k

(2π)d−1

× 1

2ωk

1

2ω1

1

2ω2

8ω1ω2

ωk − ~p1·~k
ω1
− iε

1

ωk − ~p2·~k
ω2
− iε

. (3.0.7)

To derive this integrand, we have power-expanded in the soft limit as in the method-of-

regions approach [86], rather than using LSCET directly. Although energy is not conserved

in the asymptotic regions, the central region gives δ(ωk + ωp1−k − ωk − ωp2−k)
∼= δ(ω1 − ω2)

which is factored out in the definition ofM.
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This integral is scaleless and vanishes. Although we cannot easily separate all the UV

and IR poles, the double soft/collinear pole in this amplitude is

MB =M0
α

4π

[
− 2

ε2IR
+ · · ·

]
(3.0.8)

Focusing on the double pole also lets us restrict to just the soft graphs, as they contain the

complete soft-collinear singularity. There are also graphs with one vertex coming from Has

and one coming from H:

MC +MD =

t=−∞ t=∞

+

t=−∞ t=∞

=M0
α

4π

[ 4

ε2IR
+ · · ·

]
. (3.0.9)

The double IR pole from the S-matrix element cancels exactly in the sumMA +MB +

MC +MD, as anticipated.

It is worth emphasizing the even the double-pole calculation is not trivial and requires

careful manipulation of the distributions involved (cf. Ref.[70]). Moreover, the cancella-

tion is different in nature from the cancellation in the computation of a Wilson coefficient.

There the soft exchange graph (the analog ofMB) is subtracted fromMA; here the graphs

add, with the cancellation coming from graphsMC +MD with one soft and one regular

vertex.
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The other TOPT diagrams involving soft-collinear vertices in Has, such as

t=−∞ t=∞

or

t=−∞ t=∞

(3.0.10)

are not infrared divergent. In fact, the second diagram is zero, because there is no electron-

positron annihilation vertex in Has. Similarly, there are no diagrams with the hard vertex

in the asymptotic regions, as Has has only soft and collinear interactions.

To see the subleading IR poles cancel, we need a regulator other than pure dimensional

regularization, such as offshellness (see [85, 87]), or explicit phase space restrictions. One

should also then include graphs involving the collinear interactions in Has as well as a zero-

bin subtraction to avoid overcounting [87]. Using pure dimensional regularization is sim-

plest, since all of the graphs other thanMA are scaleless. Thus, after removing UV poles

with renormalization, we find

〈e−|SH |γ?e−〉 = (2π)4δ4(q + p1 − p2)ū(p2)γµu(p1)

× (−ie)
[
1 +

α

4π

(
− ln2 µ

2

Q2
− 3 ln

µ2

Q2
− 8 +

π2

6

)]
. (3.0.11)

To confirm that the IR divergences cancel in SH , without invoking scaleless-integral magic,

we can impose physical cutoffs on the degrees of freedom that interact in Has, such as in-

cluding only photons with energy less than δ or within angle R of an electron [32]. Then

the diagrams likeMB are no longer scaleless. We have checked that all of the IR diver-

gences cancel in SH using this approach. Although SH comes out IR finite, it retains sen-
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sitivity to the scales R and δ; in pure dimensional regularization, these cutoff scales are re-

placed by the single scale µ.

With a new definition of the S-matrix, it is natural to ask what are its predictions for

observables? Consider an infrared-finite observable, such as the total cross section in Z →

hadrons. To compute it, note that the total cross section for Z → anything, at order αs

is zero, since the forward scattering Z → Z cross section exactly cancels the cross section

to everything else. This follows from unitarity, whether using SH or S. Now, the Z has no

soft or collinear interactions, so |Zd〉 = |Z〉. Thus 〈Z|SH |Z〉 = 〈Z|S|Z〉 to all orders in

perturbation theory. Therefore the Z → Z forward-scattering cross section is the same with

SH and S, and so is the Z → hadrons cross section.

More generally, if we consider an observable less inclusive than the total cross section,

such as a jet rate, then the details of the asymptotic dynamics will be important to deter-

mining the differential cross section. When we include this dynamics by evolving the final

state with an e−iHast+ factor, we would effectively be computing
∑

X |〈X|e−iHastSH |Z〉|2 =∑
X |〈X|S|Z〉|2, so the differential cross section will agree exactly with one computed using

S. Since infrared-safe cross sections computed using S are incontrovertible agreement with

data, this is reassuring: we have not created more problems than we have solved with a fi-

nite S-matrix. On the other hand, there are also issues where physical predictions using S

are ambiguous, such as with charged particles in the initial states. SH could possibly shed

light on these processes.

Having a finite S-matrix is perhaps most appealing in situations where the S-matrix is

of interest for its own sake, for example, for its mathematical properties. One popular play-
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ground for studying the mathematics of the S-matrix is N = 4 super-Yang-Mills theory.

This theory is a conformal gauge field theory. Although its S-matrix is UV finite, it is still

IR-divergent. Moreover, its mathematical properties depend on how these IR divergences

are removed. For example, the simplest approach is simply to drop the 1
εIR

terms, MS-style.

Doing so for the planar 2-loop 6 particle amplitude, for example, gives a complicated func-

tion of the 9 kinematical invariants. If instead one employs the BDS-Ansatz, taking the ra-

tio of the S-matrix element to the exponentiation of the 1-loop result [88, 89], then the re-

sult is a relatively simple “remainder function” of only the three dual-conformally invariant

cross-ratios [90, 91]. While dual-conformal invariance is preserved by the BDS-Ansatz, the

BDS remainder functions have unappealing analytic properties, such as violating the Stein-

mann relations [92]. A BDS-like Ansatz might preserve these [93]. A minimal normalization

is another option [94]. In the computation of SH , the IR divergences cancel automatically:

the analog of the BDS subtraction comes naturally from multiplying 1/ε counterterms for

SH with the finite O(ε) parts SH -matrix elements. Thus SH -matrix elements provide some

of the benefits of IR-finite remainder functions, without the arbitrariness of a ratio. More-

over, as the SH operator is unitary, properties that follow from unitarity (perhaps including

the Steinmann relations) should be automatically satisfied. This is in contrast to remainder

functions which are quotients of S-matrix elements to other quantities.

In this paper, we have argued that there is nothing sacred about the traditional S-

matrix. Its non-perturbative definition is absurdly complicated, and its interaction-picture

definition involves an admixture of free and full-theory time evolution. In a theory with

massless particles, it is natural to replace the free evolution with universal soft and collinear
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evolution. Unlike S, whose matrix elements are either infinite (IR divergent) or zero (after

exponentiation of the IR divergences), matrix elements of this new object SH are IR finite

to all orders.

In summary, this paper provides the first explicit construction of a S-matrix for non-

Abelian gauge theories with no collinear or soft divergences; it provides rules (see also [95])

for computing SH beyond just the cancellation of the singularities, allowing the mathemat-

ical properties of the S-matrix to be explored with the IR-divergence problem removed in

a natural way; it connects to previous literature on dressed/coherent states, but also argues

that such non-normalizable states are not needed for SH or to compute observables; finally,

it connects SH -matrix elements to SCET and to remainder functions in N = 4 SYM the-

ory for the first time. While there is much still to be understood about SH , it provides a

solid starting point for an improved understanding of scattering in theories with massless

particles.
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4
An S-matrix for Massless Particles
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4.1 Introduction

The scattering matrix, or S-matrix, is a fundamental object in physics. Intuitively, the S-

matrix is meant to transform an “in” state |ψin〉 at t = −∞ into an “out” state 〈ψout| at

t = +∞. Unfortunately, constructing an operator in quantum field theory which achieves

this projection is far from trivial. To begin, one might imagine that S = limt→∞ e
−iHt.

However, this operator does not exist, even in a free theory. For example, acting on states

with energies Ei, matrix elements of this operator would be infinitely oscillating phases.

The proper resolution in quantum mechanics was first understood by Wheeler [96], who

defined the S-matrix to project from a basis of metastable asymptotic states |ψin〉 (a nu-

cleus) to other states (other nuclei) |ψout〉. This idea was expanded for use in quantum field

theory by Heisenberg, Feynman, and Dyson [97–99] for calculations in quantum electro-

dynamics (QED). In modern language, one must factor out the evolution due to the free

Hamiltonian H0 to make S well-defined.

In the Wheeler-Heisenberg-Feynman-Dyson (henceforth “traditional”) approach, one as-

sumes that in the far past, the “in” state is well-approximated with a freely evolving state,

i.e. a state that evolves with the free Hamiltonian H0: e−iHt|ψ〉 → e−iH0t|ψin〉 as t → −∞.

The interaction is assumed to occur during some finite time interval so that in the far fu-

ture, the time evolution is again nearly free: e−iHt|ψ〉 → e−iH0t|ψout〉 as t→ +∞. The state

|ψ〉 is then related to the in and out states by Møller operators

Ω± = lim
t→±∞

eiHte−iH0t (4.1.1)
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as |ψ〉 = Ω+|ψout〉 = Ω−|ψin〉 and so |ψout〉 = S|ψin〉 where the traditional S-matrix is

defined as

S = Ω†+Ω− . (4.1.2)

Unfortunately, this textbook approach has problems too: bare S-matrix elements computed

this way are both ultraviolet (UV) and infrared (IR) divergent.1 Ultraviolet divergences are

by now completely understood: they are an artifact of computing S-matrix elements using

unphysical fields in terms of unphysical (bare) parameters. When S-matrix elements are

computed with physical, renormalized, fields in terms of physical observable parameters,

the UV divergences disappear. IR divergences, however, are not as well understood and

remain an active area of research. In theories with massless charged particles, such as QCD,

S-matrix elements have IR divergences of both soft and collinear origin. Historically, three

approaches have been explored to ameliorate the problem: the “cross section method”, the

“dressed-state method” and the “modification-of-S method”.

The first way of dealing with IR divergences, referred to as the cross section method (fol-

lowing [57, 100]) is the most common. It argues that S-matrix elements themselves are not

physical; only cross sections, determined by the squares of S-matrix elements integrated

over sufficiently inclusive phase space regions, correspond to observables. Importantly, in

this method, IR divergences cancel between virtual contributions and real emission contri-

butions to different final states. The cancellation in QED was demonstrated definitively by

Bloch and Nordsieck [2] in 1937. They showed that cross sections in QED (with massive

1In this paper, we use “IR divergences” to refer to any divergence that is not of short-distance
origin. So IR divergences come from both soft and collinear regions.
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fermions) are IR finite order-by-order in perturbation theory when processes with all possi-

ble numbers of final state photons with energies less than some cutoff δ are summed over.

The proof of Bloch-Nordsieck cancellation [24–26] crucially relies on Abelian exponentia-

tion [24]: the soft singularities at any given order in α in QED are given by the exponential

of the 1-loop soft-singularities. For theories with massless charged particles, such as QCD,

Bloch-Nordsieck fails [3].

In non-Abelian gauge theories, the theorem of Kinoshita, Lee and Nauenberg (KLN)

[4, 5] is often invoked to establish IR finiteness. The KLN theorem states that for any given

process a finite cross section can be obtained by summing over all possible initial and final

states for processes whose energy E lies within some compact energy window around a ref-

erence energy E0, i.e. |E − E0| < δ for a given δ. In fact, the KLN theorem is weaker and

its proof more complicated than required. First of all, energy is conserved, so the cancella-

tion must occur without the energy window. Second of all, one does not need to sum over

initial and final states; the sum over only final states for a fixed initial state will do, as will

the sum over initial states for a fixed final state. This stronger version of the KLN theorem

was proven recently by Frye et al. [70]. The proof is one line: for a given initial state, the

probability of it becoming anything is 1, which is finite to all orders in perturbation theory.

Importantly, both the KLN theorem and its stronger version by Frye et al. generically re-

quire the sum of diagrams to include the forward scattering contribution, which is usually

excluded from a cross section definition. Unless they happen to be IR finite on their own,

the forward scattering diagrams are crucial to achieve IR finiteness. Multiple illustrative ex-

amples can be found in [70]. If one wants the cross section to be finite when summing over
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only a restricted set of final states, insights beyond Block-Nordsieck, KLN, and Frye et al.

are required, such as those coming from factorization (e.g. [49, 50, 75–79, 81, 101]).

In the second approach to remedy IR divergences, the dressed-state method, the S-matrix

is defined in the traditional way, but it is evaluated between states |ψd〉 that are not the

usual few-particle Fock states |p1, · · · , pn〉. One of the first proposals in this direction was

by Chung [8] (see also [102]), who argued that in QED one should replace single-particle

electron states |p〉 wifth dressed states of the form |pd〉 = eR|p〉 with R defined as

R |p〉 = e
2∑
j=1

∫
dd−1k

(2π)d−1√2ωk

p · εj(k)

p · k
aj †k |p〉 , (4.1.3)

where εj is a photon polarization vector and aj †k is its corresponding creation operator.

The idea behind this dressing is that the eikonal factors p · ε
p · k give the real emission ampli-

tude in the singular (soft) limit, which is then canceled by virtual contributions, so that

〈pd3 · · · pdn|S|pd1pd2〉 is IR finite. The exponentiation of the eikonal interaction is the same

mechanism (Abelian exponentiation) as invoked in the Bloch-Nordsieck cancellation. In-

deed, the proof of the IR finiteness of these dressed states in QED is essentially the same

as in the proof of the Bloch-Nordsieck theorem. This cloud of photons in the dressing has

the same form as Glauber’s coherent states [103] used in quantum optics [104, 105] (these

are, roughly speaking, eR|0〉), and so the dressed states in this case are commonly called

coherent states.

While the coherent state approach is in some ways appealing, it has drawbacks. The

main problem is that the IR divergences are just moved from the amplitudes to the states.
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That is, the coherent states themselves are IR divergent and therefore not normalizable el-

ements of a Fock space (although they may be understood as living in a non-separable von

Neumann space, as explained in a series of papers by Kibble [9, 73, 106, 107]). The IR di-

vergence problem is therefore still present in this construction; it has merely been moved

from the S-matrix elements to the states of the theory. Additionally, generalizing beyond

massive QED to theories like QCD with collinear divergences and color factors has re-

mained elusive [108, 109]. In particular, no prescription is given for how to go beyond the

singular points (zero energy or exactly collinear). For example, the coherent states are sums

over particles with different momenta, so they do not have well-defined momenta them-

selves. Is momentum then conserved by the S-matrix in the coherent-state basis? How does

one integrate over coherent states to produce an observable cross section? These problems

are not commonly discussed in the literature. As far as we know, no one has explicitly com-

puted an S-matrix element between coherent states. This defect gives the coherent-state

literature a rather formal aspect.

The third approach to removing the IR divergences in scattering theory is to redefine the

S-matrix rather than the states. That the traditional S-matrix inaccurately captures the

asymptotic dynamics arises already in non-relativistic scattering of a charged particle off a

Coulomb potential in non-relativistic quantum mechanics. The standard assumption that

particles move freely at asymptotic times is not justified for non-square-integrable poten-

tials, like the 1
r Coulomb potential, and leads to ill-defined S-matrix elements. In modern
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language, the S-matrix element for non-relativistic Coulomb scattering has the form

〈~pf |S|~pi〉 ∼
α

(~pi − ~pf )2
e
−iα m

|~pi−~pf |
1

2εIR . (4.1.4)

We see that the leading term of order α, corresponding to the first Born approximation,

is not problematic: except in the exactly forward limit, there are no divergences in the

tree-level scattering process. The logarithmic IR divergence (showing up as a 1
εIR

pole in

d = 4 − 2ε dimensions) first appears in the second Born approximation, where it is seen

to be purely imaginary. Moreover, the IR divergent part exponentiates (as do all IR diver-

gences in QED), into the Coulomb phase. Thus, in non-relativistic quantum mechanics, one

can apply the cross section ideology even without the inclusive phase space integrals: the

cross section for the scattering of a single electron off a Coulomb potential is well-defined.

However, the S-matrix is not.

One of the first attempts to define an S-matrix for potentials that are not square-

integrable was made by Dollard [71] in 1971. He noted that when incoming momentum

eigenstates are evolved to late times with the Coulomb interaction H = H0 + α
r , there is a

residual logarithmic time dependence for large t:

e−i
∫ tH(t′)dt′ |p〉 ∼= e

−i
(
p2

2m
t+mα
|p| ln t

)
|p〉 (4.1.5)

The intuition for this form is that at large t, the particle moves approximately on a classi-

cal trajectory with r = pt
m , which gives the logarithmic dependence on t when integrated

up to infinity. While the e−i
p2

2m
t is removed by Wheeler’s eiH0t factor, the other term is not
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and persists to generate the 1
εIR

divergences in the S-matrix. Dollard then proposed to re-

place to the eiH0t factor with a eiHas(t) factor, with Has(t) defined with exactly the logarith-

mic time dependence needed to cancel the time dependence in Eq. (4.1.5). He then showed

that a modified S-matrix, defined with his asymptotic Hamiltonian replacing H0, exists for

Coulomb scattering.

When the electron is relativistic, the IR divergence in the second Born approximation has

a real part that does not cancel at the cross section level. So first-quantized quantum me-

chanics is insufficient to produce an IR-finite cross section: QED is needed. Faddeev and

Kulish [10] combined the aforementioned work of Chung in QED and Dollard’s in non-

relativistic quantum mechanics. They observed that in QED, infrared divergences have

both a real part (as Chung observed) and an imaginary part (the relativistic generalization

of the Coulomb phase). These can be combined into a modified S-matrix of the form

SFK = lim
t±→±∞

e−R(t+)e−iΦ(t+)Se−iΦ(t−)eR(t−) , (4.1.6)

where

Φ(t) =
α

2

∫
d3p

(2π)3

d3q

(2π)3
: ρ(p)ρ(q) :

p · q√
(p · q)2 −m4

ln |t| (4.1.7)

corresponds to the Coulomb phase (compare to the ln t dependence in Dollard’s form,

Eq. (4.1.5)). The factor R is similar to Chung’s in Eq. (4.1.3) but with a power-expanded

phase, and annihilation operators included as well:

R(t) = e

2∑
j=1

∫
d3p

(2π)3

d3k

(2π)3
√

2ωk

[
p · ε?j (k)

p · k
aj †k e

i p·k
ωp
t − p · εj(k)

p · k
ajke
−i p·k

ωp
t
]
ρ(~p) (4.1.8)
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where

ρ (p) =
∑
s

(
as †p a

s
p − bs †p bsp

)
(4.1.9)

is the electron-number operator. Acting on states, it pulls out the direction p of each

fermion and multiplies the contribution by 1 for electrons or -1 for positrons:

ρ(p)|q1 · · · qn〉 =
∑
± (2π)3 δ3 (~p− ~qj) |q1 · · · qn〉 (4.1.10)

Faddeev and Kulish proceed to argue that SFK has finite matrix elements between coher-

ent states in QED. They argued that one should include the phase factors in a redefinition

of the S-matrix while including the eR factors in dressing the states. Although there are

some suspicious orders-of-limit and signs in Faddeev and Kulish’s paper (see [57]), we be-

lieve their construction is essentially valid. Indeed, one goal of our paper is to translate this

classic work in QED to modern language. As we will show in Section 4.2.3, both the real

and imaginary parts in the factor eiΦ(t−)eR are reproduced by the action of a single Wilson

line.

In the 50 odd years since Faddeev and Kulish’s work, there has been intermittent

progress on generalizing the coherent state construction from QED to non-Abelian the-

ories. Early work [108, 110, 111] focused on trying to use coherent states to salvage the

Bloch-Nordsieck theorem, following the QCD counterexamples given by Doria et al. [3, 30].

Although soft divergences in QCD do not exponentiate into a compact form as they do

in QED [112, 113], they still have a universal form and factorize off of the hard scatter-

ing [50, 75]. Using this observation, it has been argued using a frequency-ordered for-
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malism that soft-finite dressed states can be constructed between S-matrix elements in

QCD [61, 108]. Collinear divergences and the soft-collinear overlap in gauge theories were

explored in [57, 58, 114, 115]. An explicit check of the dressed formalism was performed by

Forde and Signer [59] who used explicit cutoffs to separate the regions and showed that the

cross section for e+e− → jets can be reproduced at leading power at order αs through finite

S-matrix elements. Ref. [58] argued that if soft-collinear factorization holds in QCD, then

the dressed state formalism should allow one to construct a finite S-matrix in QCD to all

orders. Collinear factorization was proven diagrammatically at large N a decade later [116]

and a full proof of collinear factorization and soft/collinear factorization for QCD to all

orders in perturbation theory was given in [49, 50], inspired by [75, 76, 78, 80, 81, 101].

One goal of the current paper is to combine these various insights to provide, for the first

time, an explicit construction of an IR-finite S-matrix for QCD.

In all of this literature, there are a number of unresolved issues. First, there are essen-

tially no results about the finite parts of a finite S-matrix. Showing the cancellation of

the IR singularities is one thing, but to evaluate S one needs to deal with complications

of momentum conservation, cutoffs, UV divergences, and to actually be able to compute the

resulting integrals. A prescription to determine the finite parts of the modified S-matrix

is required if we are to explore the S-matrix’s properties. While some authors have sug-

gested criteria such as that the dressed states should be gauge [74] or BRST invariant [117],

or have asymptotic charges [62, 63], or be compatible with decoherence [118–120], the ne-

cessity of these choices is unclear. Certainly nothing goes wrong at the level of cross sec-

tions if we proceed using the cross section method. After the finite part is fixed, one must
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further explain how to relate modified S-matrix elements to observables: what is the mea-

sure for integration over momenta in the von Neumann space of dressed states (if one goes

that route)? To agree with data, the predictions had better reduce to what one calculates

using the IR-divergent S, but how that will happen in any of the approaches to dressed

states is rarely discussed. In this paper, we attempt to raise the bar for constructing a fi-

nite S-matrix by providing a motivated, calculable scheme, and give explicit expression for

S-matrix elements and observables in a number of cases in QED, QCD, and N = 4 super

Yang-Mills theory.

The organization of this paper is as follows. We start by motivating and defining a

“hard” S-matrix in Section 4.2. We show how to get finite answers, and connect to the pre-

vious work on QED using dressed states in Section 4.2.1. In Section 4.2.2, we discuss how

to compute observables and show that the same predictions for infrared-safe differential

cross sections results from SH as from the traditional S. In Section 4.2.3 we connect our

construction to the expressions of Faddeev and Kulish in QED. We then proceed to explicit

calculations, working out the Feynman rules and some toy examples in Section 4.3. In Sec-

tion 4.4 we demonstrate IR finiteness in the process γ?e− → e− in QED using cutoffs, and

illustrate the relative simplicity when pure dimensional regularization is invoked. In Section

4.5 we discuss Z → e+e− including the connection to the Coulomb phase and the Glauber

operator as well as an explicit calculation of the thrust distribution, both exactly at NLO

and to the leading logarithmic level using the asymptotic interactions. Section 4.5.2 makes

explicit some of the general observations about exclusive measurements from Section 4.2.2.

Section 4.6 gives some examples in N = 4 super Yang-Mills theory, connecting to obser-
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vations about remainder functions, renormalization and subtractions schemes. Concluding

remarks and a summary of our main results are given in Section 4.7.

4.2 The hard S-matrix

The intuition behind scattering is that one starts with some initial state, usually well-

approximated as a superposition of momentum eigenstates, which then evolves with time

into a region of spacetime where it interacts, and then a new state emerges. The S-matrix

is meant to be a projection of this emergent final state onto a basis of momentum eigen-

states. For scattering off a local (square-integrable) potential, this picture works fine. The

S-matrix is then defined as S = Ω†+Ω− as in Eq. (4.1.2) with the Møller operators Ω±

defined in Eq. (4.1.1). However, when the interactions cannot be confined to a finite-volume

interaction region, as in Coulomb scattering or in a quantum field theory with massless

particles, this picture breaks down: the states at early and late times continue to interact,

so the momentum-eigenstate approximation is no longer valid.

As mentioned in the introduction, the simplest example with the traditional definition

of S breaks down is for non-relativistic scattering off a Coulomb potential. In this case, the

Møller operators acting on momentum eigenstates generate an infrared divergent “Coulomb”

phase. While the infrared divergence is a problem for a formal definition of the S-matrix,

it is not a problem for cross section calculations that depend only on squares of S-matrix

elements. In relativistic Coulomb scattering, or in QED, S has both an infrared divergent

Coulomb phase and an infrared divergent real part. A convenient feature (Abelian exponen-
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tiation [24]) of QED is that a closed form expression is known for the IR-divergent contri-

bution to all orders in perturbation theory for any process. Indeed, the 1-loop divergences

are given by S ∼ γcusp
εIR

where the cusp-anomalous dimension is (see [121])

γcusp = −α
π

[(β − iπ) cothβ − 1] , (4.2.1)

with the cusp angle defined by coshβ = v1·v2
|v1||v2| and v

µ
1 =

pµ1
E1

and vµ2 =
pµ2
E2

are the 4-

velocities of the incoming and outgoing electrons. To all orders, the IR divergences expo-

nentiate as S ∼ exp
−γcusp

2εIR
[122]. Thus, it is possible to factor out IR-divergent parts from

the S-matrix and redefine a new S-matrix that is IR-finite order-by-order. This was done

by Chung and Faddeev and Kulish, as discussed in the introduction. Note that the non-

relativistic limit corresponds to β → 0 in which case γcusp = iα 1
β becomes the purely imagi-

nary Coulomb phase.

When the charged particles are also massless, as in QED with me = 0, new IR diver-

gences appear associated with collinear divergences. Soft-collinear divergences appear as

double IR-poles. Indeed, in the me → 0 limit, vµi becomes lightlike, so β → ∞. At large β

in the cusp angle γcusp ∼ −α
πβ diverges linearly with β, so the S-matrix now has double,

1
ε2IR

poles. In QCD, or other non-Abelian theories, the cusp angle gets corrections beyond

one loop and the IR divergences do not exponentiate into a closed form expression [112,

113, 123]. These complications have made it difficult to come up with a complete formula-

tion of an IR-finite S-matrix in general quantum field theories [57–59].

The approach we take in this paper is to construct an S-matrix that is IR finite by re-
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placing the free Hamiltonian H0 in the definition of the traditional S-matrix with an appro-

priate asymptotic Hamiltonian Has. That is, we can define new hard Møller operators

ΩH
± = lim

t±→±∞
eiHt±e−iHast± , (4.2.2)

and a hard S-matrix as

SH = ΩH†
+ ΩH

− . (4.2.3)

Ideally, we would want to choose Has so that the hard Møller operators exist, as unitary

operators on the Hilbert space. Proving their existence is challenging, as even in a mass-

gapped theory, where we can take Has = H0, they do not exist by Haag’s theorem [64].

From a practical point of view, we can be less ambitious and aim to choose Has so that the

hard S-matrix is free of IR divergences at each order in perturbation theory. If this was our

only criteria, we could choose Has = H, so that SH = 1.

A better criteria for defining Has is that, in addition to capturing long-distance inter-

actions, the asymptotic Hamiltonian should be defined so that the asymptotic evolution

of the states is independent of how they scatter. It is possible to define Has this way due

to universality of infrared divergences in gauge theories. Using factorization [49, 50, 75–

79, 81, 101], the soft and collinear interactions can be separated from the hard scattering

process: Any S-matrix element in gauge theories can be reproduced by the product of a

hard factor, collinear factors for each relevant direction, and a single soft factor. See [50] for

a concise statement of factorization at the amplitude level.

In order to exploit factorization, we employ methods developed in Soft-Collinear Effective
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Theory (SCET). The theory provides a systematic power expansion of the QED or QCD

Lagrangian, and reproduces all infrared effects. The leading power Lagrangian in SCET

is [82, 83]

LSCET = −1

4
(F sµν)2 +

∑
n

−1

4
(F c,nµν )2

+
∑
n

ψ̄cn
/̄n

2

[
in ·Dc + gn·Aas(x−)T a + i /Dc⊥

1

in̄·Dc
i /Dc⊥

]
ψcn + LGlauber , (4.2.4)

where s and c, n are soft and collinear labels respectively and the collinear covariant deriva-

tive is

iDc
µ = i∂µ + gAc,aµ T a . (4.2.5)

The last term LGlauber describes Coulomb or Glauber gluon interactions [84] (see also [22]).

Pedagogical introductions to SCET can be found in [82, 83, 124].

We define the asymptotic Hamiltonian Has to be the SCET Hamiltonian appended with

free Hamiltonians for massive particles. The hard S-matrix is then defined in terms of Has

using Eqs. (4.2.2) and (4.2.3).

Although the SCET Lagrangian looks complicated and non-local, much of the compli-

cation comes from being careful to include only leading-power interactions. In principle,

for a theory to be valid at leading power, one could include any subleading power interac-

tions one wants. Exploiting this flexibility, the collinear interactions in LSCET can be re-

placed simply with the full interactions of QCD: iψ̄cn /Dcψ
c
n. The soft interactions, from the

ψ̄cn
/̄n
2n ·A

a
s(x−)ψcn term, are also not that complicated: they are equivalent to treating the
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collinear fermions as being infinitely energetic, with no recoil. That is, the fermions act as

classical sources for radiation moving in a straight line along the nµ direction. This leads

to an alternative representation of the soft interactions as coming from Wilson lines. This

connection is made more precise in Section 4.2.3.

In practice, when computing SH elements we will not use the explicit and cumbersome

interactions in LSCET. Instead, we will take the method-of-regions approach [82, 86]. We

start with a particular Feynman diagram and then expand to leading power based on the

collinear or soft scaling associated with particles involved. In a sense, this is the most

straightforward and foolproof way to compute SH amplitudes. Numerous examples are

given in subsequent sections.

We also, in accord with the general principles of the method of regions, do not impose

any hard cutoffs on the momenta of the soft and collinear particles that interact through

Has. Imposing cutoffs is helpful for demonstrating explicit IR-divergence cancellation, and

some examples are provided in Section 4.4.1. However, cutoffs generally lead to very diffi-

cult integrals, and moreover they break symmetries like gauge-invariance that we would like

SH to respect. More precisely, it is only the finite, cutoff-dependent remainder terms that

may depend on gauge – the IR divergence cancellation mechanism is gauge-independent.

Since the cutoff-dependent finite parts are unphysical anyway, it is not a problem that they

are also gauge-dependent. In general, however, the whole framework with cutoffs is rather

unwieldy.

When using pure dimensional regularization, the diagrams involving Has interactions will

lead to scaleless integrals. These integrals are both UV and IR divergent. The IR diver-
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gences cancel in other contributions to SH (as we will provide ample demonstration), but

the UV divergences must be removed through renormalization. As a consequence, in pure

dimensional regularization, SH -matrix elements are not guaranteed to be independent of

renormalization scheme. Indeed, they are generally complex and will depend on the scale µ

at which renormalization is performed. The SH -matrix is not scale independent: d
dµSH 6= 0,

in contrast to S which does satisfy the Callan-Symanzik equation d
dµS = 0. This is un-

satisfying, but not unsettling, as SH elements are not themselves observable. (To be fair,

if S-matrix elements are IR divergent, it is not clear what it means to say they are scale-

independent). In any case, one should think of SH(µ) like one thinks about the strong cou-

pling constant αs(µ) in MS. While αs(µ) is not observable, it is still an extraordinarily use-

ful concept. The running coupling indeed encodes qualitatively and quantitatively a lot of

important physics, such as unification and confinement. As with αs(µ), when SH(µ) is used

to compute an observable, the scale dependence will cancel. We demonstrate that in general

in Section 4.2.2, and provide an explicit example in Section 4.5.

4.2.1 SH and dressed states

The usual way of calculating S-matrix elements in perturbation theory is to work in the

interaction picture, where one expands the interactions in terms of freely evolving fields.

The propagators for free fields have a relatively simple form, and S-matrix elements then

become integrals over these propagators. One might try to work out Feynman rules for SH

analogously, in an asymptotic interaction picture. Then propagators would correspond to

non-perturbative Green’s functions for the soft and collinear fields in LSCET, including all of
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their interactions. Unfortunately, finding a closed-form expression for these propagators is

not possible. In any case, it is not necessary, since if we want to work perturbatively in the

coupling constants, we must do so consistently in both H and Has.

To proceed, we note that the hard S-matrix can be written suggestively as

SH = ΩH†
+ ΩH

− = Ωas
+ Ω†+ Ω−Ωas†

− = Ωas
+ S Ωas†

− , (4.2.6)

where

Ωas
± = lim

t→±∞
eiHaste−iH0t (4.2.7)

are asymptotic Møller operators and Ω± = limt→±∞ e
iHte−iH0t are the usual Møller op-

erators. Inserting complete sets of states lets us write hard S-matrix elements between a

Heisenberg picture out-state |ψout〉 and a Heisenberg picture in-state |ψin〉 as

〈ψout|SH |ψin〉 =

∫
dΠψ′out

∫
dΠψ′in

〈ψout|Ωas
+ |ψ′out〉 〈ψ′out|S |ψ′in〉 〈ψ′in|Ω

as†
− |ψin〉 . (4.2.8)

Here the integral is over complete sets of Fock-space states |ψ′in〉 and |ψ′out〉. The hard scat-

tering matrix elements are written as a product of three terms. The middle term is the tra-

ditional S-matrix and the outer terms correspond to evolution with the asymptotic Møller

operators. The Feynman rules for these contributions closely resemble those of time-ordered

perturbation theory and are derived in Section 4.3.1 below.

Another interpretation of the hard matrix elements can be obtained by defining dressed
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states as

|ψdin〉 ≡ Ωas†
− |ψin〉 ,

|ψdout〉 ≡ Ωas†
+ |ψout〉 .

(4.2.9)

Then

〈ψout|SH |ψin〉 = 〈ψdout|S|ψdin〉 , (4.2.10)

i.e. the matrix elements of the hard S-matrix are equivalent to matrix elements of the tra-

ditional S-matrix between dressed states. This connection was made in the context of QED

in [57]. The role of the asymptotic evolution can then be viewed as transforming the in-

state defined at t = 0 into a dressed state at t = −∞ that scatters in the traditional way

(with S). The role of dressed states is illustrated in Figure 4.1.

The dressed states |ψdin〉 and |ψdout〉 are not normalizable elements of the Fock space that

|ψin〉 and |ψout〉 live in. Indeed, if we expand them perturbatively their coefficients in the

Fock space basis contain infrared divergent integrals. For example, starting with an |e+e−〉

state

|ψin〉 = |v̄s(p1)us′(p2)〉 =
√

2ωp1b
s †
p1

√
2ωp2a

s′ †
p2
|0〉 (4.2.11)

in QED, the asymptotic Møller operator can add or remove soft photons with each factor

of the coupling e. Up to order O(e2) the dressed state will be a superposition of the leading
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order |e+e−〉 state, |e+e−γ〉 states and |e+e−γγ〉 Fock states. Explicitly,

|ψdin〉 = |v̄(p1)u(p2)〉

− e
∫

d3k

(2π)3

1

2ωk

[
p1 · ε
p1 · k

∣∣∣v̄(p1 − k)u(p2)ε(k)
〉
− p2 · ε
p2 · k

∣∣∣v̄(p1)u(p2 − k)ε(k)
〉]

+
e2

2

∫
d3k1

(2π)3

1

2ωk1

∫
d3k2

(2π)3

1

2ωk2

×
[
p1 ·ε1
p1 ·k1

p1 ·ε2
p1 ·k2

∣∣∣v̄(p1 − k1 − k2)u(p2)ε1(k1)ε2(k2)
〉

+
p2 ·ε1
p2 ·k1

p2 ·ε2
p2 · k2

∣∣∣v̄(p1)u(p2 − k1 − k2)ε1(k1)ε2(k2)
〉

− p1 ·ε1
p1 ·k1

p2 ·ε2
p2 ·k2

∣∣∣v̄(p1 − k1)u(p2 − k2)ε1(k1)ε2(k2)
〉

− p1 ·ε2
p1 ·k2

p2 ·ε1
p2 ·k1

∣∣∣v̄(p1 − k2)u(p2 − k1)ε1(k1)ε2(k2)
〉]

− e2

∫
d3k

(2π)3

1

2ωk

p1 ·p2

p1 ·k p2 ·k

∣∣∣v̄(p1 − k)u(p2 + k)
〉

+ · · ·

(4.2.12)

Let us make a few observations about these dressed states. First, note that the Fock states

being added have different 3-momenta. When k has exactly zero momentum (the case al-

most exclusively considered in the literature), momentum is conserved. But if one really

wants to take these dressed states seriously, k must be allowed to have finite energy too,

and then |ψdin〉 is not a momentum eigenstate.

Second, the coefficient at order e2 is a UV and IR divergent integral. The IR divergence

is expected; it is exactly the IR divergence that cancels the IR divergence in elements of S

to make elements of SH IR finite. Nevertheless, it makes |ψdin〉 hard to deal with as a state.

The divergence requires an excursion from the traditional Fock space to a von Neumann

space [9, 73, 106, 107]. The UV divergence is due to the fact a soft momentum is not sensi-
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tive to any hard scale in the problem, so there is no natural cutoff on the k integrals. One

could, of course, put in explicit hard cutoffs on the soft momenta, however, it is easier to

simply renormalize the UV divergence by rescaling |ψdin〉.

Third, it is not each separate electron that is being dressed. Rather it is the combination.

Indeed, the IR divergence in the example above comes from loops connecting the two elec-

trons. These loops are critical to cancelling the IR divergences in SH . In Chung’s original

formulation (cf. Eq. (4.1.3)), a picture can be sketched for a coherent state as an electron

moving with a cloud of photons around it. But this picture is too naive: the cloud depends

on all the charged particles. This is even clearer in QCD, where the soft factors come with

non-Abelian color matrices so one cannot rely on the crutch of Abelian exponentiation to

move the dressing factors from state to state at will. A discussion of additional complica-

tions in QCD and the failure of Bloch-Nordsieck mechanism, can be found in [108].

In conclusion, although the dressed state picture fits in naturally with the construction of

SH we have presented, we doubt that thinking of the dressed states as physical states will

ultimately be profitable.

We emphasize that for the purpose of having finite matrix elements, neither the in- and

out-states |ψin〉 and |ψout〉, nor the dressed states |ψdin〉 and |ψdout〉, need to be eigenstates

of the asymptotic Hamiltonian. In the examples to follow we will take |ψin〉 and |ψout〉 to

be eigenstates of the free momentum operator Pµ0 with a finite number of particles, but in

principle they can be taken to be any sensible linear combination of states in the relevant

Hilbert space, i.e. with finite coefficients, in contrast to the usual coherent states which are

an infinite linear superposition of Fock state elements. The SH -matrix elements between
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|ψin〉eiH0t

|ψ〉 eiHt

|ψout〉 eiH0t

t=−∞ t=0 t=∞

time

S

|ψin〉
|ψd

in〉

|ψout〉

|ψd
out〉

eiHsct

eiH0t

eiHt

eiH0t

eiHsct

t=−∞ t=0 t=∞

SH

Figure 4.1: (Left) The traditional S-matrix is computed from Fock states evolved using H0 and H.
(Right) The hard S-matrix is computed either using Fock states evolved with Hsc and H or using
dressed states evolved with H0 and H.

any such states are always finite.

4.2.2 Computing observables using SH

To compute an observable using SH , one must specify what is to be included in the mea-

surement and what is not. As a concrete example, consider computing the inclusive decay

rate of the Z boson in perturbation theory. Since the Z does not couple to massless gauge

bosons, it has no interactions in Has and therefore Ωas
± |Z〉 = |Z〉. The rate is then (up to

kinematic factors)

ΓZ ∝
∑
X 6=Z

|〈X|SH |Z〉|2 =
∑
X 6=Z
〈Z|Ωas

− S
†Ωas†

+ |X〉〈X|Ωas
+ S Ωas†

− |Z〉 . (4.2.13)

The sum is over all states in the theory except the Z itself, since Z → Z does not con-

tribute to the rate and includes an implicit integral over the phase space for |X〉. Now we
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write
∑

X 6=Z |X〉〈X| = 1− |Z〉〈Z| to get

ΓZ ∝ 〈Z|Z〉 − 〈Z|S†Ωas†
+ |Z〉〈Z|Ωas

+S|Z〉 =
∑
X 6=Z

|〈X|S|Z〉|2 , (4.2.14)

where Ωas†
+ |Z〉 = |Z〉 was used in the last step. So the sum over final states gives the same

decay rate using SH as it would using S. The key here was that there are no asymptotic

interactions for Z. If there were, then the derivation would not hold. But in that case, the

Z → Z forward scattering amplitude would be infrared divergent using S so it is not clear

what physical result we should expect.

Suppose we wanted to compute something less inclusive than the total decay rate. The

observable has to be infrared safe. For example, we could consider a 2-jet rate in e+e− →

hadrons. Such a rate depends on the jet definition, which depends on exactly how the soft

and collinear momenta are handled. In other words, it depends not only on the hard pro-

cess, which is roughly speaking the jet-production amplitude, but also on the evolution of

the jets after the hard scattering occurs. For this evolution, we need to include the dynam-

ics induced by e−iHast+ ≡ limt→∞ e
−iHast, as the state evolves from t = 0 to t = ∞ after the

hard scattering. That is, we should define our exclusive cross section as

σ2-jet =
∑
X

∑
Y

|〈X|e−iHast+ |Y 〉〈Y |SH |Z〉|2δ
[
Njets(X)− 2

]
. (4.2.15)

Here Njets(X) is the measurement function which takes as input the momenta of the par-

ticles in the final state X and returns the number of jets according to some jet definition.

The factor 〈Y |SH |Z〉 gives the amplitude to produce the jets and 〈X|e−iHast+ |Y 〉 gives
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the amplitude for those jets to evolve into a state with the particles in |X〉 at asymptotic

times. The sum over Y can be as restrictive as desired. For example, if Y is taken to be

only |qq̄〉 quark-antiquark states, the distribution will be valid to leading power. To get the

jet mass distribution exactly right, including subleading power effects, one should extend

the sum from over |q̄q〉 states to anything that could possibly evolve into a state X with

Njets(X) = 2. For example, |q̄qg〉 should be included. If all states are allowed then one can

replace
∑

Y |Y 〉〈Y | with 1. In that case, the rate reduces to

σ2-jet =
∑
X

|〈X|eiH0t+S|Z〉|2δ
[
Njets(X)− 2

]
. (4.2.16)

The eiH0t+ factor generates a phase eiEX t which is constant for all X by energy conserva-

tion and therefore drops out of the absolute value. Thereby the exclusive cross section re-

duces to the same thing one would compute using S (in agreement with a century of the-

ory/experiment comparisons). A cartoon of the reduction of the cross section to the one

computed with S for this process is shown in Fig. 4.2.

Just because one can reduce cross section calculations using SH to those using S, does

not mean one should. Additional physical insight is gained by maintaining the separation

into a calculation of SH first and then of the evolution using e−iHast+ or equivalently Ω+
as.

In particular, since Has is independent of the hard scattering, the separation leads to the

physical picture of a short-distance amplitude for jet production followed by an evolution

from short-to-long distances where the jets are resolved into their constituents. For exam-

ple, in the computation of thrust in e+e− events, when the events comprise pencil-like jets,
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|Z〉

|q̄q〉

|X〉

eiH0t

eiHt

eiHast

t=−∞ t=0 t=∞

measurement

|q̄q〉

|X〉

t=−∞t=0t=∞

=

|Z〉

|X〉
|q̄q〉

eiHt

t=−∞ t=0 t=∞

|q̄q〉

eiHt

t=−∞t=0t=∞

Figure 4.2: An observable is computed by integrating the square of an amplitude against a measure-
ment function, inserted at t = ∞. In computing an exclusive observable sensitive to the asymptotic
dynamics, one must evolve the dressed states to +∞ using the asymptotic Hamiltonian. The exam-
ple Z → jets is illustrated on the left. The result is equivalent to evolving the initial state |Z〉 at
t = −∞ with the full Hamiltonian to the set of states |X〉 on which the measurement is performed
at t = +∞ (right).

the structure of the distribution is almost completely determined by the asymptotic evolu-

tion alone. This example, and the utility of the separation will be discussed more in Sec-

tion 4.5.

The above discussion of observables also helps clarify how one should think of assign-

ing hard or soft/collinear labels to the particles in the states. Consider, for example, the

process Z → q̄qg. In what circumstances should one consider the gluon momentum to be

collinear to the quark or antiquark momenta, or soft?

On the one hand, if one declares the gluon momentum to be soft or collinear, then there

are necessarily interactions in Has that can produce the gluon through a real emission. Due
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to factorization, the amplitude for this emission from Has will approach that from H, but

with an opposite sign. So the two will cancel in the exact soft/collinear limits. In other

words, if the gluon momentum is soft/collinear, then the hard matrix element 〈q̄qg|SH |Z〉

will vanish in soft/collinear limits. In this case, there is also a contribution to a q̄qg final

state from the hard q̄q production 〈q̄q|SH |Z〉 and then an emission of g though the asymp-

totic interactions. This additional contribution is not power suppressed and adds to the

〈q̄qg|SH |Z〉 amplitude to produce the full distribution, in agreement with 〈q̄qg|S|Z〉. Such a

deconstruction corresponds to the picture of matching onto a 2-jet operator C2O2 and then

matching on to a 3-jet operator C3O3 in SCET. [125, 126]. In such matching, the Wilson

coefficient C3 vanishes in soft and collinear limits.

On the other hand, it does not really make sense to compute 〈q̄qg|SH |Z〉 when the gluon

is soft or collinear. The hard S-matrix is meant to give amplitudes for production of hard

particles. The evolution of those hard particles into jets with soft/collinear substructure

is subsequently determined by Has. Thus, a more sensible convention is to consider only

matrix elements 〈q̄qg|SH |Z〉 when all 3 final state particles are considered hard. In this

case, these particles have no interactions with each other in Has and there are no contri-

butions to 〈q̄qg|SH |Z〉 that have real emissions from the asymptotic region. Thus, all the

contributions to SH involving the asymptotic region are virtual (and give scaleless integrals

in pure dimensional regularization). In other words, if one is interested in 3-jet produc-

tion, one should study 〈q̄qg|SH |Z〉 and if one is interested in 2-jet production, one should

study 〈q̄q|SH |Z〉. Although the final predictions for IR-safe differential cross sections are

independent of what convention we take for assigning labels to the final state particles
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(and always agree with the result from S), the hard S-matrix should always be thought of

as giving the amplitudes for producing hard particles. With this convention 〈q̄qg|SH |Z〉

no longer vanishes in soft or collinear limits. Instead in these limits, it factorizes into

〈q̄qg|e−iHast+ |q̄q〉〈q̄q|SH |Z〉. Since the splitting amplitudes 〈q̄qg|e−iHast+ |q̄q〉 are univer-

sal [49, 50, 116], this restricts the possible form that 〈q̄qg|SH |Z〉 could have. Implications

of these restrictions have been discussed extensively (see [127, 128]) and are one instance of

the deep structure present in SH -matrix elements.

In summary, one has two choices:

• Allow states in which SH matrix elements are taken to have soft or collinear mo-

menta. Observables computed this way will only be valid to leading power, but can

be computed efficiently exploiting factorization.

• Insist that all states in which SH matrix elements are taken have only hard momenta.

Then all the contributions from the asymptotic regions are virtual, and scaleless in

dimensional regularization. Observables agree exactly with their computation using S.

We emphasize that with either choice, SH matrix elements are IR finite. The general obser-

vations in this section are backed up with explicit calculations in Section 4.5.2.

4.2.3 Soft Wilson lines

To connect our framework to previous work, we consider the QED case with massive elec-

trons. In this case, there are only soft interactions in the asymptotic Hamiltonian. The in-

teraction in the SCET Hamiltonian between soft photons and collinear fermions has the
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form (see Eq. (4.2.4))

H int
soft(t) = e

∑
n

∫
d3xn·A(x−)ξ̄n(x)

/̄n

2
ξn(x) , (4.2.17)

where nµ is a lightlike 4-vector labeling the fermion, n̄µ is the direction backwards to nµ,

and x− = n̄ · x. For simplicity, we take nµ = (1, 0, 0, 1) so n̄µ = (1, 0, 0,−1) and x− = t+ z.

The dependence of the interaction only on x− follows from the multipole expansion2. The

collinear fields have only half the degrees of freedom of fields in QED: they only describe

electrons in this case, as pair-creation is power-suppressed. So we can write

ξn(x) =

∫
d3p

(2π)3

1√
2ωp

u(p)ape
−ipx, ξ̄n(x) =

∫
d3q

(2π)3

1√
2ωq

ū(q)a†qe
iqx . (4.2.18)

The field expansion for the soft photon is as usual, but the phase is power expanded,

Aµ(x−) =

2∑
j=1

∫
d3k

(2π)3

1√
2ωk

[
εjµ(k)ajke

−i 1
2
k+x− + εj∗µ (k)aj †k e

i 1
2
k+x−

]
. (4.2.19)

2A collinear momentum scales as (p−, p+, p⊥) ∼ (λ2, 1, λ) so x scales like (x−, x+, x
⊥) ∼

(1, λ−2, λ−1). Then since a soft momentum scales homogeneously like k ∼ λ2, only the k+x− com-
ponent is relevant at leading power. See [82] for more details.

94



Inserting these field expansions and integrating over d3x gives

H int
soft(t) = e

∑
n

∫
d3p

(2π)3
√

2ωp

d3q

(2π)3
√

2ωq

d3k

(2π)3
√

2ωk
(2π)3δ2(~p⊥ − ~q⊥)u(q)

/̄n

2
u(p)a†qap

×
2∑
j=1

[
n · εj(k)ajkδ

(
qz − pz − 1

2
k+

)
ei(ωq−ωp−

1
2
k+)t

+ n · εj∗(k)aj †k δ

(
qz − pz +

1

2
k+

)
ei(ωq−ωp+ 1

2
k+)t

]
. (4.2.20)

Since k+ � pz after doing the q integral, we can replace a†q ∼= a†p at leading power and write

1√
2ωp

1√
2ωq

u(q)
/̄n

2
u(p) ∼=

1

2ωp
p · n̄ ∼= 1 . (4.2.21)

Power expanding the energy ωq gives

ωq =

√
~p2
⊥ +

(
pz ± 1

2
k+

)2
∼= ωp ±

pz

2ωp
k+ ∼= ωp ∓

1

2
k+ , (4.2.22)

and hence the argument of the exponential becomes i(ωq − ωp ∓ 1
2k

+)t ∼= ∓ik+t. So we get

H int
soft(t) = e

∑
n

Aµ(tnµ)

∫
d3p

(2π)3
a†pap . (4.2.23)

Then we find that the asymptotic Møller operator acting on a single electron state gives

Ωsoft
+ |p〉 = T

{
exp

[
−i
∫ ∞

0
dtH int

soft(t)

]}
|p〉 = P

{
exp

[
−ie

∫ ∞
0

ds n·A(snµ)

]}
|p〉 , (4.2.24)
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with P a path-ordered product. The path ordering is actually superfluous in QED, but is

important in the non-Abelian case. The soft Wilson line in QED is defined as

Y †n = exp
[
−ie

∫ ∞
0

ds n·A(snµ)e−εs
]
, (4.2.25)

where the factor e−εs ensures convergence near s = ∞. Then, the action of the asymptotic

soft Møller operator is the same as that of a product of soft Wilson lines:

Ωsoft
+ |p1 · · · pj〉 = T

{
Y †n1
· · ·Y †nj

}
|p1 · · · pj〉 (4.2.26)

For antiparticles, one would have Yn factors instead, and for incoming particles, one would

have factors of Yn, defined as Y †n but with an integral from −∞ to 0 [49].

We can combine the time-ordered product of exponential into a single exponential using

the Magnus expansion [129],

T

{
exp

[∫ ∞
0

dtO(t)

]}
= exp

{∫ ∞
0

dtO(t) +
1

2

∫ ∞
0

dt

∫ ∞
t

ds [O(s),O(t)]

×1

6

∫ ∞
0

dt

∫ ∞
t

ds

∫ ∞
s

du
([
O(u), [O(s),O(t)]

]
+
[
O(t), [O(s),O(u)]

])
+ · · ·

}
, (4.2.27)

where the higher order terms are sums of nested commutators. The commutators of two

fields in Feynman gauge can be computed directly from the field expansions in Eq. (4.2.19),

[
n1 ·A(snµ1 ), n2 ·A(tnµ2 )

]
= −

∫
d3k

(2π)3

n1 ·n2

2ωk

[
e−i(sn

µ
1−tn

µ
2 )kµ − ei(sn

µ
1−tn

µ
2 )kµ

]
. (4.2.28)
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Since the commutator in Eq. (4.2.28) is a c-number, additional commutators vanish. This is

the essence of Abelian exponentiation. Then, we can combine all the time-ordered exponen-

tials into a single exponential:

T
{
Y †n1
· · ·Y †nj

}
= exp

−ie∑
j

∫ ∞
0

ds nj ·A(snµj )

 exp

i∑
ij

Φij

 (4.2.29)

where

iΦij ≡ −e2 1

2

∫ ∞
0

dt

∫ ∞
t

ds
[
ni ·A(snµi ), nj ·A(tnµj )

]
e−ε(s+t) . (4.2.30)

When acting on states with electrons, this combination is exactly of the form eReiΦ

that Faddeev and Kulish write (see Eq. (4.1.6)), with R the expression in Eq. (4.1.8).

The electron-number operator ρ(~p) from Eq. (4.1.9) is of the same origin as the a†pap in

Eq. (4.2.23).

Consider the case of an outgoing electron and positron in QED, where we want to sim-

plify the time-ordered product of two Wilson lines T{Y †n1Yn2}. Then

O(t) = −ie [n1 ·A(tnµ1 )− n2 ·A(tnµ2 )] . (4.2.31)

To see the connection to the Coulomb phase, let us do the integrations over s and t in

Eq. (4.2.30) using Eq. (4.2.28),

iΦij = ie2

∫
d3k

(2π)3

1

2ωk
Im

n1 ·n2

(n1 ·k − iε)((n1 − n2)·k − 2iε)
. (4.2.32)
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Taking n1 = (1, 0, 0, 1) and n2 = (1, 0, 0,−1) we can simplify this to

Φ = e2

∫
d3k

(2π)3

1

2ωk
Im

2

(ωk − kz − iε) (−2kz − 2iε)
= − e2

16π2

∫
d2k⊥
k2
⊥

. (4.2.33)

This is the usual divergent integral appearing in the Coulomb phase (cf. Eq. (4.5.9)). When

one of the electrons is incoming, the
∫∞

0 ds gets replaced with
∫ 0
−∞ ds in Eq. (4.2.30) and

we get

Φ = −e2

∫
d3k

(2π)3

1

2ωk
Im

2

(ωk + kz + iε)(ωk − kz − iε)
= 0 , (4.2.34)

which is consistent with the Coulomb phase vanishing for timelike kinematics.

In this way, we have shown that our framework agrees with previous work in the case of

QED, where there are soft but not collinear singularities and the gauge boson is Abelian.

Note that both the Coulomb phase and the real part of the exponent emerge from the sin-

gle soft-collinear interaction in Has.

In the non-Abelian case, one cannot combine the path-ordered exponentials into the ex-

ponential of a single closed-form expression as in Eq. (4.2.29): the gauge generators do not

commute. There is an analog of Abelian exponentiation, called non-Abelian exponentia-

tion [112, 113, 123] but one must include higher order commutators, and no closed form

expression is known. Thus, a Faddeev-Kulish type formulation of the dressed states is im-

possible for QCD. The Wilson-line description of the soft interactions is still valid, however,

and the soft interactions in QCD still factorize off of the scattering operator into soft Wil-

son lines.

98



t=0

time

|ψdin〉|ψin〉

t=−∞asymptotic region t=∞central region

t=0

|ψout〉|ψdout〉

asymptotic region

Figure 4.3: In order to facilitate calculations in perturbation theory, we divide the matrix elements
of SH into three parts. In the two outer parts, the asymptotic evolution Møller operators Ωas

± work
to dress the in- and out-states. The middle part corresponds to a calculation of traditional S-matrix
elements between dressed states.

4.3 Computing the hard S-matrix

In this section, we show how to compute SH -matrix elements perturbatively. We will use

the formula in Eq. (4.2.8):

〈ψout|SH |ψin〉 =

∫
dΠψ′out

∫
dΠψ′in

〈ψout|Ωas
+ |ψ′out〉︸ ︷︷ ︸

asymptotic region

〈ψ′out|S |ψ′in〉︸ ︷︷ ︸
central region

〈ψ′in|Ω
as†
− |ψin〉︸ ︷︷ ︸

asymptotic region

. (4.3.1)

We call the two outer matrix elements the asymptotic region and the part involving

〈ψ′out|S |ψ′in〉 the central region. The asymptotic regions go from 0 > t > −∞ and

∞ > t > 0, both backward in time. The central region calculation is just that of an or-

dinary S-matrix. A cartoon of the division is shown in Fig 4.3. In this section we establish

the Feynman rules for the asymptotic regions, which are similar to those in old-fashioned,

time-ordered perturbation theory with a few changes. We also give an example calculation

in φ3 theory that clarifies some of the subtleties. Calculations for physical process in QED,

QCD and N = 4 SYM theories are given in subsequent sections.
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4.3.1 Asymptotic region Feynman rules

We have reduced the problem of computing matrix elements of SH to calculating matrix

elements of S and matrix elements of the form

〈ψout|Ωas
+ |ψ′out〉 and 〈ψ′in|Ω

as†
− |ψin〉 (4.3.2)

in perturbation theory. To evaluate these matrix elements, we separate the asymptotic

Hamiltonian into a free part and an interaction part:

Has = H0 + Vas (4.3.3)

Defining the operator Uas
+ (t) by the equation Ωas

+ = limt→∞ U
as
+ (t), it satisfies the differen-

tial equation

−i∂tUas
+ (t) = Uas

+ (t)V I
as(t) ,

Uas
+ (0) = 1 ,

(4.3.4)

where the superscript I indicates that V I
as is the interaction picture potential, i.e. the

asymptotic potential Vas[φ0] = −
∫
d3xLas [φ0] expressed in terms of freely-evolving in-

teraction picture fields φ0, and where Las is the Lagrangian density corresponding to the
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asymptotic interactions. This differential equation has the solution

Uas
+ (t) = 1 + i

t∫
0

dt′V I
as(t
′) + i2

∫ t

0
dt′
∫ t′

0
dt′′V I

as(t
′′)V I

as(t
′) + . . .

= T

{
exp

[
i

∫ t

0
dt′
∫
d3~xV I

as(t
′)

]}
,

(4.3.5)

where T denotes an anti time-ordered product.

To see how to evaluate matrix elements of this operator, consider the following diagram

in scalar φ3 theory:

S
+(2)
A =

t=∞ t=0

time

p′1

p′2

p1

p2

x

y
k

(4.3.6)

The free fields are given by

φ0(x) =

∫
d3p

(2π)3

1√
2ωp

(
ape
−ipx + a†pe

ipx
)
. (4.3.7)

One-particle states in the free theory are

|p〉 =
√

2ωpa
†
p |0〉 . (4.3.8)

Up to renormalization, which will be discussed later, the external states are as usual taken
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to be free creation operators acting on the free vacuum. We therefore aim to calculate

S+ = 〈p1p2|Ωas
+ (t) |p′1p′2〉 = 〈p1p2|T

{
exp

[
−i
∫ ∞

0
dt′
∫
d3~xLas [φ0]

]}
|p′1p′2〉 . (4.3.9)

The second order term in g is

S+(2)
= 〈0|

√
2ωp1ap1

√
2ωp2ap2

∞∫
0

dtx

∞∫
tx

dty

∫
d3~x

∫
d3~y

× −ig
3!

φ3
0(x)
−ig
3!

φ3
0(y)

√
2ωp′1a

†
p′1

√
2ωp′2a

†
p′2
|0〉 . (4.3.10)

Inserting Eq. (4.3.7) and commuting creation and annihilation operators, gives the following

expression corresponding to the diagram above:

S
+(2)
A = (−ig)2 〈0|

√
2ωp1ap1

√
2ωp2ap2

∞∫
0

dtx

∞∫
tx

dty

∫
d3~x

∫
d3~y

×
∫

d3q1

(2π)3√2ωq1
a†q1e

iq1x

∫
d3q2

(2π)3√2ωq2
a†q2e

iq2y

∫
d3k

(2π)3√2ωk
ak′e

−ik′x

×
∫

d3k′

(2π)3√2ωk′
a†ke

iky

∫
d3q′2

(2π)3√2ωq′2

aq′2e
−iq′2y

∫
d3q′1

(2π)3√2ωq′1

aq′1e
−iq′1x

×
√

2ωp′1a
†
p′1

√
2ωp′2a

†
p′2
|0〉

(4.3.11)

Integrating over ~x and ~y gives δ-function. Integrating over these δ-functions and the addi-

tional δ-functions coming from the creation and annihilation operators reduces the expres-
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sion to

S
+(2)
A = (2π)3 δ3

(
~p1 + ~p2 − ~p1

′ − ~p2
′) (−ig)2

× 1

2ωk

∫ ∞
0

dtx

∫ ∞
tx

dtye
i(ω1−ω′1−ωk)txei(ω2−ω′2+ωk)ty . (4.3.12)

Finally, the integrals over tx and ty give

S
+(2)
A = (2π)3 δ3

(
~p1 + ~p2 − ~p1

′ − ~p2
′) (−ig)2

× 1

2ωk

−i
ω′1 + ω′2 − ω1 − ω2 − iε

−i
ω′2 − ω2 − ωk − iε

. (4.3.13)

More generally, the Feynman rules for the asymptotic regions are the same as those in

ordinary relativistic time-ordered perturbation theory (see [130] for example) with two dif-

ferences: 1) Since the outermost integral goes from 0 to ∞ instead of −∞ to ∞, the overall

energy-conserving δ-function; and 2πδ(Ef − Ei) is replaced by a propagator i
Ef−Ei+iε 2) the

evolution is backwards in time (eiHast instead of e−iHast) so the whole amplitude is complex

conjugated. This means ig → −ig and i
E+iε →

−i
E−iε .

For explicit computations and consistency checks, one has to be very careful about the iε

prescription. It is important to keep in mind that the propagators −i
E−iε are distributions,

only defined under integration. The iε comes from an integral representation of the θ func-
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tion,

∫ ∞
0

dte−iωt =

∫ ∞
−∞

dtθ(t)e−iωt

=

∫ ∞
−∞

dt

[∫ ∞
−∞

dE

2π
eiEt

−i
E − iε

]
e−iωt =

∫ ∞
−∞

dEδ(E − ω)
−i

E − iε
=
−i

ω − iε
, (4.3.14)

so it really should be associated with the shift ω → ω−iε for any integral ending at t = +∞

or ω → ω + iε for any integral starting at t = −∞. When we have a nested integral, like

Eq. (4.3.12), we get

∫ ∞
0

dt2

∫ ∞
t1

dt2e
iω1txeiω2t2 →

∫ ∞
0

dt2

∫ ∞
t1

dt2e
i(ω1−iε)t1ei(ω2−iε)t2 =

−i
ω2 − iε

−i
ω1 + ω2 − 2iε

.

(4.3.15)

So each vertex gives another factor of ε. An example of the importance of careful treatment

of these distributions is given in Section 4.3.2.

In summary, the Feynman rules for 〈ψout|Ωas
+ |ψ′out〉 are as follows

• Draw all relevant time-ordered diagrams between the state |ψout〉 at t = 0 on the

right and |ψ′out〉 at t =∞ on the left:

t=∞ t=0

time

|ψout〉|ψ′out〉
(4.3.16)
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• Assign momenta kµi to each internal line, with k0
i = ωk =

√
m2 + ~k2

i the on-shell

energy.

• Start at the far left of the diagram (t = ∞), and move a vertical cut rightwards in

time until a vertex is crossed. After each vertex is crossed, include a factor of

−i
(E′out − niε)− Ecut

(4.3.17)

where Ecut =
∑
ωcut is the total energy of the particles in the cut, E′out =

∑
ω′out is

the total energy of the particles in |ψ′out〉, and n is the number of vertices that have

already been crossed in the asymptotic region. Note that the −iε comes from a +iε

from the t = +∞ region, and is then complex conjugated.

• For each vertex, add a factor of (2π)3δ3(
∑
~pi) to impose 3-momentum conservation

and −ig for the interaction (or whatever the interaction is, just as in regular Feyn-

man rules, complex-conjugated).

• Integrate over
∏
i

∫
d3ki

(2π)32ωi
for the momentum of each internal line.

The Feynman rules for 〈ψ′in|Ωas
− |ψin〉 are identical except that the diagrams go from t =
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−∞ on the right to t = 0 on the left

t=0 t=−∞
time

|ψ′in〉|ψin〉
(4.3.18)

and the propagators are

−i
(E′in − inε)− Ecut

, (4.3.19)

where E′in =
∑
ω′in is the total energy of the particles in |ψ′in〉.

4.3.2 Cross check in φ3 theory

To validate the Feynman rules, consider the case where Has = H. In this case, the hard S-

matrix is trivial SH = 1. Perturbatively, this means that diagrams with all vertices in the

central region should be exactly canceled by diagrams involving vertices in the asymptotic

regions. Moreover, the cancellation should occur for each time-ordered diagram on its own.

We can check this cancellation in any theory and any diagram, so we take φ3 theory with

Lagrangian L = −1
2φ2φ+ g

3!φ
3 for simplicity and consider the diagram
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~p ~p
t1 t2

~k

~p− ~k

(4.3.20)

We sum over diagrams with t1 and t2 going from 0 to −∞ to ∞ and back to 0. Let us call

the initial energy as ωi = ωp, the final energy ωf = ωp and the energy of the intermediate

state ωc = ωp−k + ωk.

The usual time-ordered perturbation theory loop (i.e. the contribution from S to SH

with all vertices in the central region) is

S1 = =
(ig)2

2

∫
d3k

(2π)3 4ωk ωp−k

i

ωi − ωc + iε
2πδ(ωi − ωf ) .

(4.3.21)

To see this cancel other diagrams, it is helpful to break this diagram down further, into the

contribution into 3 regions: first, −∞ < t1 < t2 < 0 then −∞ < t1 < 0 < t2 <∞ and finally

0 < t1 < t2 <∞:

S1 =
(ig)2

2

∫
d3k

(2π)3 4ωk ωp−k

[
i

ωi − ωc + iε

i

ωi − ωf + 2iε

+
i

ωi − ωc + iε

i

ωf − ωc + iε
+

i

ωf − ωc + iε

i

ωf − ωi + 2iε

]
(4.3.22)

In this decomposition, we have employed the careful treatment of the distributions dis-
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cussed around Eq. (4.3.15).

Contributions from the loop in the asymptotic region are given by

S2 =

=
(−ig)2

2

∫
d3k

(2π)3 4ωk ωp−k

−i
ωi − ωc − iε

−i
ωi − ωf − 2iε

,

S3 =

=
(−ig)2

2

∫
d3k

(2π)3 4ωk ωp−k

−i
ωf − ωc − iε

−i
ωf − ωi − 2iε

,

(4.3.23)

and contributions from the loop divided between the two asymptotic regions is

S4 =

=
(−ig)2

2

∫
d3k

(2π)3 4ωk ωp−k

−i
ωc − ωi − iε

−i
ωc − ωf − iε

.

(4.3.24)
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Lastly, there are contributions from diagrams with one vertex in the asymptotic region:

S5 =

=
(ig)(−ig)

2

∫
d3k

(2π)3 4ωk ωp−k

−i
ωc − ωf − iε

(2π) δ(ωc − ωi) ,

S6 =

=
(ig)(−ig)

2

∫
d3k

(2π)3 4ωk ωp−k

−i
ωc − ωi − iε

(2π) δ(ωc − ωf ) .

(4.3.25)

Adding these contributions up, we find

6∑
i=1

Si = 0 . (4.3.26)

Similarly, all the contributions to the other time ordering of the diagram in Eq. (4.3.20)

sum up to zero. Note that for the cancellation to occur, it was important to keep track of

the distributional nature of the diagrams as encoded in the factors of ε.

4.4 QED: Deep Inelastic Scattering

As a first real application, we consider the e−γ? → e− in QED with a massless electron. We

call this deep inelastic scattering (DIS) in reference to the analogous process in QCD at the

parton level, although obviously there is nothing inelastic about this scattering. We want
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to establish two facts about this process: that the hard S-matrix is IR-finite and what its

value is. To compute the value for SH it is most sensible to use dimensional regularization.

In dim reg, all the diagrams with interactions in the asymptotic region give scaleless inte-

grals that formally vanish, so the bare SH -matrix element is determined by the S-matrix

element alone. However, in pure dimensional regularization, it is difficult to separate UV

from IR singularities. Therefore to check the cancellation of IR divergences, we use explicit

cutoffs in the asymptotic regions.

4.4.1 SH using cutoffs on Has

In this section, we look at the diagram where a photon is exchanged between the two elec-

tron legs. The Feynman diagram in Feynman-’t Hooft gauge is given by [85]

S(1) =
~pi

k
~pf

q

= iM0(2π)dδd(pi+q−pf )
α

4π

 1

εUV
− 2

ε2IR
− 4

εIR
−

2 ln µ̃2

Q2

εIR
− ln2 µ̃

2

Q2
− 3 ln

µ̃2

Q2
− 8 +

π2

6

 ,
(4.4.1)

with µ̃2 = 4πe−γEµ2 andM0 = −eufγαui the tree-level matrix element. To get a cancel-

lation of the IR divergent terms, we need to add contributions to SH from graphs with ver-

tices in the asymptotic regions. We would like to avoid the possible double counting of the

soft and collinear degrees of freedom in Has. Working in pure dimensional regularization,
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the soft-collinear overlap always gives scaleless integrals that vanish. Indeed, the method-

of-regions approach is to simply discount the overlap region all together. If one works with

regulators that separate the UV from IR, one can explicitly remove the overlap through a

zero-bin subtraction procedure [87]. In SCET, this is done by computing the soft contri-

bution and the collinear contribution then subtracting the soft-collinear overlap through

a soft-collinear power expansion at the diagram level. If one formulates SCET in terms of

operators with full theory fields, as in [50], the zero-bin subtraction appears as an operator-

level subtraction. In this section, we take the pragmatic approach of [50]: we exclude by

hand the soft-collinear region in Has. So we compute soft contributions from Has by power

expanding in the soft limit, and then integrating photon momenta up to some ωmax. We

compute the collinear contributions by power expanding in the collinear limit and includ-

ing only those photons with energy greater than ωmax that are within θmax of one of the

collinear directions. Similar calculations showing IR divergence cancellations for thrust and

jet broadening can be found in [131].

To check IR divergence cancellations, we only need to look at a subset of time-ordered

perturbation theory diagrams. For example, the diagrams

or (4.4.2)

are not IR divergent. Although these diagrams give finite contributions to SH , they do not

need to be analyzed for the purposes of demonstrating IR finiteness.
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It is natural to work in the Breit or “brick-wall” frame, where the off-shell photon has no

energy, qµ = (0, 0, 0, Q) and pi and pf are back to back. Defining θ as the angle between ~k

and Q, we have

pµi = (ωi, 0, 0, ωi), pµf = (ωf , 0, 0,−ωf ), kµ = (ωk, 0, ωk sin θ, ωk cos θ) (4.4.3)

and

ωi−k =
√
ω2
i − 2ωiωk cos θ + ω2

k, ωf−k =
√
ω2
i + 2ωiωk cos θ + ω2

k.
(4.4.4)

If we were to impose overall energy conservation, then we would also have ωi = ωf = Q
2 .

However, in time-ordered perturbation theory graphs involving vertices in the asymptotic

regions, energy conservation is not guaranteed, so for those diagrams we leave ωi and ωf

more general until energy conservation can be established. With these kinematics the phase

space integral becomes

∫
dd−1k

(2π)d−1
=

Ωd−2

(2π)d−1

∫
dωkω

d−2
k

∫ 1

−1
d cos θ(1− cos2 θ)

d−4
2 , (4.4.5)

where Ωd−2 = 2π
d−2

2 /Γ(d−2
2 ) is the d− 2-dimensional solid angle.
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The graph with all the vertices in the central region is

SA = ~pi
k

~pf

t=−∞ t=∞

= (−ie)3 µ4−d
∫

dd−1k

(2π)d−1

1

2ωk

1

2ωi−k

1

2ωf−k

i

ωi − ωi−k − ωk + iε

i

ωf − ωf−k − ωk + iε

× ufγµuf−kuf−kγαui−kui−kγνui (−gµν) (2π)d δd (pi + q − pf ) .

(4.4.6)

This graph is UV and IR divergent. But since this is the only IR-divergent time ordering,

we know its result must reproduce the IR divergences of the sum over all time orderings,

i.e. the Feynman diagram in the full theory. So we can then read the IR divergences di-

rectly off of Eq. (4.4.1):

SA = iM0 (2π)d δd (pi + q − pf )
α

4π

− 2

ε2IR
− 4

εIR
−

2 ln µ̃2

Q2

εIR
+ IR-finite

 (4.4.7)

The contribution with both interactions in an asymptotic region is given by soft photon

exchange alone; there are no collinear photons that couple to both the incoming and out-

going electrons since these are back-to-back. Thus, we need to power expand the integrand

in Eq. (4.4.1) at small ωk and restrict to ωk < ωmax. Before power expanding, the time-
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ordered perturbation theory amplitude has the form

SB = ~pi
k

~pf

t=−∞ t=∞

= (−ie)(ie)2 µ4−d
∫

dd−1k

(2π)d−1

1

2ωk

1

2ωi−k

1

2ωf−k
θ(ωmax − ωk)

× −i
ωi−k + ωk − ωi − iε

−i
ωf−k + ωk − ωf − iε

× ufγµuf−kuf−kγαui−kui−kγνui(−gµν)(2π)dδd−1 (~pi + ~q − ~pf ) δ(ωi−k − ωf−k) .
(4.4.8)

Note that the overall energy-conserving δ-function δ(ωi − ωf ) from Eq. (4.4.1) is replaced

with δ(ωi−k − ωf−k). in Eq. (4.4.8), however at leading power the two δ-functions agree. In

the soft limit, the energies of the intermediate electrons are

ωi−k =
√
ω2
i − 2ωiωk cos θ + ω2

k
∼= ωi − ωk cos θ , (4.4.9)

ωf−k =
√
ω2
f + 2ωfωk cos θ + ω2

k
∼= ωf + ωk cos θ , (4.4.10)

and the numerators are expanded as

ufγ
µuf−kuf−kγ

αui−kui−kγ
νui (−gµν) ∼= −4 pi · pf ufγαui = −8ωiωf ufγ

αui . (4.4.11)
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Inserting the power expansion, the amplitude reduces to

SB = −iM0(2π)dδd(pi + q − pf )
Ωd−2

(2π)d−1
µ2ε

×
∫ ωmax

0
dωkω

1−2ε
k

∫ 1

−1
dx(1− x2)−ε

1

ωk(1− x)− iε
1

ωk(1 + x)− iε
, (4.4.12)

where x = cos θ. Performing the integrals gives

SB = iM0(2π)dδd(pi + q − pf )
α

4π

− 2

ε2IR
+

2 ln (2ωmax)2

µ̃2

εIR
+
π2

2
− ln2 (2ωmax)2

µ̃2

 . (4.4.13)

The remaining two graphs are

SC =

t=−∞ t=∞

and SD =

t=−∞ t=∞

(4.4.14)

These have one vertex in the asymptotic region and one in the central region. In the first

graph, the asymptotic vertex forces the exchanged photon to either be soft or collinear

to the direction of the outgoing electron. In the second graph, the photon can be soft

or collinear to the incoming electron. We must therefore power expand each in soft and

collinear limits separately.
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Before doing any expansion the first graph is

SC = (−ie)2(ie)µ4−d
∫

dd−1k

(2π)d−1

1

2ωk

1

2ωi−k

1

2ωf−k

−i
ωi−k + ωk − ωi − iε

i

ωf − ωf−k − ωk + iε

ufγ
µuf−kuf−kγ

αui−kui−kγ
νui(−gµν) (2π)d δd−1 (~pi + ~q − ~pf ) δ(ωi−k + ωk − ωf ) .

(4.4.15)

In the soft limit, this reduces to the same integral as in SB up to a sign flip since only one

vertex is anti-time ordered. SD is similar. So we get

SsoftC = SsoftD = iM0(2π)dδd(pi + q − pf )
α

4π

 2

ε2IR
−

2 ln (2ωmax)2

µ̃2

εIR
− π2

2
+ ln2 (2ωmax)2

µ̃2

 .
(4.4.16)

These will cancel the double poles of SA + SB.

The graph SC has a collinear singularity when θ → 0. For the collinear graphs, as men-

tioned above, we consider collinear photons to be collinear but not soft, so they have ener-

gies ωk > ωmax and angles 0 < θ < θmax. In the collinear limit, k ‖ pi, the energies expand

to

ωi−k =
√
ω2
i − 2ωiωk cos θ + ω2

k
∼= ωi − ωk +

ωiωk
ωi − ωk

(1− cos θ) , (4.4.17)

ωf−k =
√
ω2
f + 2ωfωk cos θ + ω2

k
∼= ωf + ωk . (4.4.18)

Since these expansions are only valid in the regime where the electron does not recoil

against the photon, i.e. for ωk < ωi, we put ωi as an upper cutoff on the photon energy.

The spinors in the numerator are on-shell, so in the collinear limit the numerator can be
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approximated using pi−k ∼= ωi−k
ωi

pi and pf−k ∼=
ωf−k
ωf

pf , and hence

ufγ
µuf−kuf−kγ

αui−kui−kγ
νui(−gµν) ∼= −4 pi · pf

ωi−kωf−k
ωiωf

ufγ
αui ∼= −8ωi−kωf−kufγ

αui .

(4.4.19)

Then ScollC reduces to

ScollC = −ie2M0(2π)dδd(pi + q − pf )
Ωd−2

(2π)d−1
µ2ε

×
∫ ωi

ωmax
dωkω

1−2ε
k

∫ θmax

0
dθ sin1−2ε θ

1− ωk
ωi

ωk(1− cos θ)− iε
1

−2ωk + iε

= iM0(2π)dδd(pi + q − pf )
α

4π

 2

εIR
+

ln (2ωmax)2

Q2

εIR

+

(
2 + ln

(2ωmax)2

Q2

)(
2− ln

(θmaxωmax)2

µ̃2

)
+

1

2
ln2 (2ωmax)2

Q2

]
.

(4.4.20)

Note that this graph has a single 1
ε pole corresponding to the collinear-but-not-soft region.

The amplitude ScollD is the same as ScollC .
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In summary, extracting just the IR poles,

SA = iM0 (2π)d δd (pi + q − pf )
α

4π

− 2

ε2IR
− 4

εIR
−

2 ln µ̃2

Q2

εIR
+ IR-finite

 (4.4.21)

SB = iM0 (2π)d δd (pi + q − pf )
α

4π

− 2

ε2IR
+

2 ln (2ωmax)2

µ̃2

εIR
+ IR-finite

 (4.4.22)

SC = iM0(2π)dδd(pi + q − pf )
α

4π

 2

ε2IR
+

2

εIR
+

ln (2ωmax)2

Q2

εIR
−

2 ln (2ωmax)2

µ̃2

εIR
+ IR-finite


(4.4.23)

SD = iM0(2π)dδd(pi + q − pf )
α

4π

 2

ε2IR
+

2

εIR
+

ln (2ωmax)2

Q2

εIR
−

2 ln (2ωmax)2

µ̃2

εIR
+ IR-finite


(4.4.24)

withM0 = −eufγαui the tree-level matrix element. Summing these graphs, the IR diver-

gences all cancel.

Note that this is a different mechanism from the way the cancellation happens in a

matching calculation for the DIS Wilson coefficient in SCET [85]. There, the soft graph is

subtracted from the full theory graph (SA − SB) to achieve the cancellation. Here those

graphs are added, and additional graphs come in to effect the cancellation.

4.4.2 SH in dimensional regularization

Imposing cutoffs on the asymptotic Hamiltonian is useful for showing the cancellation of

IR divergences. In practice, however, the calculations are much simpler using pure dimen-

sional regularization. Dimensional regularization respects both Lorentz and gauge invari-
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ance, while explicit cutoffs do not. Moreover all 1PI graphs involving vertices in the asymp-

totic region are scaleless and formally vanish. This follows from simple power counting ar-

guments: in the soft limit, we take all hard scales to infinity so there are no scales left for

the amplitude to depend on. In collinear limits, only lightlike momenta in one direction are

relevant and no Lorentz-invariant scale can be constructed from collinear lightlike momenta.

For an explicit example, consider the soft graph SB, from Eq. (4.4.12)

SB = ~pi
k

~pf

t=−∞ t=∞

= −iM0(2π)dδd(pi + q − pf )
Ωd−2

(2π)d−2
µ2ε

∫ ∞
0

dωkω
−1−2ε
k

∫ 1

−1
dx(1− x2)−1−ε . (4.4.25)

The integral over ωk is scaleless and formally vanishes in dimensional regularization. Note

that there is also a IR divergence in this case in the angular, x, integral, so the final result

has an overlapping UV/IR 1
εUV

1
εIR

singularity. Such singularities never occur in renormaliz-

able theory, but they do occur in SCET. However, since when one adds up all the diagrams

we know that the IR divergences cancel, the overlapping UV/IR divergences must cancel as

well. These cancellations have been studied extensively in SCET (see the reviews [82, 83]).

Thus the only non-vanishing graphs in pure dimensional regularization are those with all

vertices in the central region. In the central region, hard interactions are present, and these

are associated with particular scales. In d = 4 − 2ε dimensions, in Feynman gauge, the

result for the loop is given in Eq. (4.4.1). For this diagram, the UV and IR divergences can
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be unambiguously separated since the UV divergences are known separately to be cancelled

by the ordinary QED counterterms. For SH diagrams, such a separation is also possible,

but much more difficult, since there can be overlapping UV and IR singularities (see [87,

131, 132] for some discussion).

In any case, since the other diagrams contributing to SH are scaleless and since SH is IR

finite, we can immediately write down the bare SH amplitude using Eq. (4.4.1). Writing,

for |ψout〉 6= |ψin〉,

〈ψout|SH |ψin〉 = (2π)dδd(pin − pout)iM̂ (4.4.26)

we then have

M̂bare =M0

1 +
α(µ)

4π

− 2

ε2UV
−

2 ln µ̃2

Q2 + 3

εUV
− ln2 µ̃

2

Q2
− 3 ln

µ̃2

Q2
− 8 +

π2

6

+O(α2)

 .
(4.4.27)

The renormalized SH -matrix element is related to the bare one by operator renormaliza-

tion. To remove the UV divergences, we can rescale the S-matrix by

Z = 1 +
α(µ)

4π

− 2

ε2UV
−

2 ln µ̃2

Q2 + 3

εUV

+O(α2) . (4.4.28)

So that the renormalized matrix element in MS is then

M̂ =

[
1

Z4
M̂bare

]
=M0

[
1 +

α(µ)

4π

(
− ln2 µ̃

2

Q2
− 3 ln

µ̃2

Q2
− 8 +

π2

6

)
+O(α2)

]
, (4.4.29)

which is UV and IR finite.
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It may seem surprising that Z can depend on the scale Q: normally Z-factors are just

numbers. In fact, the Q dependence is just shorthand for a more formal dependence of

the SH -matrix elements on the labels of the collinear fields. In the label formalism, the S-

matrix for e−(p1)γ?(q) → e−(p2) can depend on its labels, which are the large components

of the momenta of the collinear particles, p−1 = n̄1 ·p1 ∼ Q and p+
2 = n̄2 ·p2 ∼ Q. These

labels are non-dynamical, and so the Z-factor can depend on them. Thus, one could more

pedantically write

Zp−1 p
+
2

= 1 +
α(µ)

4π

− 2

ε2UV
−

2 ln µ̃2

p−1 p
+
2

+ 3

εUV

+O(α2) (4.4.30)

and SH,bare
p−1 p

+
2

= Zp−1 p
+
2
SH
p−1 p

+
2

. But writing the dependence as on Q or more generally sij =

(pi + pj)
2 is simpler.

It is perhaps worth commenting on why SH needs to be renormalized in the first place.

The traditional S-matrix is also an operator, however it does not normally get an opera-

tor renormalization: its UV divergences are cancelled by rescaling the interaction strengths

in the Lagrangian and the fields. The reason SH needs to be renormalized is due to dia-

grams that have both interactions in the asymptotic regions and hard momentum flowing

through the graph due to interactions in the central region. The soft particles in Has cannot

resolve the hard scales and there are no interactions in Has which could be renormalized to

remove the associated UV divergences. While S-matrix elements are smooth, differentiable

functions of momenta, the smoothness is lost in the soft power expansion generating SH .

Thus hard scattering, from the point of SH looks instantaneous and non-local, like a sharp,
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non-differentiable cusp at the hard vertex. In other words, the additional renormalization

required in SH is the same as the need for renormalization associated with cusps in Wilson

line matrix elements. The non-locality of SCET (on hard length scales) and cusp renormal-

ization is discussed more in [82, 83].

4.5 QCD: e+e− → jets

To illustrate the use of SH to compute infrared-safe observables, we will explore as an ex-

ample, the computation of thrust in e+e− events to NLO in QCD.

The hard matrix element for γ? → q̄q is the same as for DIS, up to a crossing. Explicitly,

M̂ =M0

[
1 +

αs(µ)

4π
CF

(
− ln2 µ̃2

−Q2 − iε
− 3 ln

µ̃2

−Q2 − iε
− 8 +

π2

6

)
+O(α2)

]
. (4.5.1)

Due to the ln(−Q2 − iε) term, this SH -matrix element is complex. The imaginary part

is the leading order expansion of the Coulomb/Glauber phase, and is present in processes

with more than one charged particle in the initial or final state.

4.5.1 Glauber graph

It is perhaps illuminating to see the origin of the imaginary part from the relevant asymp-

totic-region graphs. Part of the reason this question is interesting in our framework is be-

cause Glauber gluons are normally associated with purely off-shell modes, with entirely

transverse momentum. In time-ordered perturbation theory one has only on-shell modes.
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So how is the Glauber contribution going to be reproduced?

t=∞t=−∞ p1 + k

p2

p1

p2 − k

↓k ∼
∫

dd−1k

(2π)d−1

1

2ωk

1

2ω1+k

1

2ω2−k

× −i
ω1+k − (ω1 + ωk)− iε

−i
ω1+k + ω2−k − (ω1 + ω2)− 2iε

(4.5.2)

If we were to enforce 3-momentum and energy-conservation in the central region, this would

force ω1+k = ωp2+k = ω1 = ω2 = Q
2 . Then k must have exactly zero energy, as expected

for an off-shell mode, and the integrand appears ill-defined. The problem however is not

that k is off-shell, but that we have not been sufficiently careful handling the product of

distributions.

To properly evaluate the integral, we must be patient in enforcing the energy conser-

vation in the central region. Recall that energy conservation comes from integrating over

−∞ < t < ∞. If we break the central region up into a −∞ to 0 region and a 0 to ∞ re-

gion, then the hard vertex can be in only one of the regions. Let us also pretend for now

that Has is the same as H with the exception of the hard vertex. Then, if the hard vertex is

at t < 0, the evolution from e−iHt from 0 to ∞ will be exactly be cancelled by the evolution
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from t =∞ to 0 in the asymptotic region. That is,

t=−∞ t=∞t=0

+

t=−∞ t=∞t=0

+

t=−∞ t=0 t=∞

= 0 .

(4.5.3)

In equations, the cancellation occurs point-by-point in phase space as

[
i

ωf − ωi + 2iε

i

ωf − ωc + iε
− i

ωc − ωi + iε

−i
ωc − ωf − iε

+
−i

ωi − ωc − iε
−i

ωi − ωf − 2iε

]
× i

Q− ωi + iε
= 0 , (4.5.4)

where ωi = ω1+k + ω2−k, ωc = ω1+k + ω2−k + ωk and ωf = ω1 + ω2. In the real case,

where Has is not exactly the same as H without the hard vertex, these graphs will not sum

to precisely zero, but to something that is IR finite.

The cancellation of the graphs with the hard vertex at t < 0 implies that the nonzero

contribution of the graph in Eq. (4.5.2) comes from the region where the hard vertex is at

t > 0. So we must look at

MG =

t=0 t=∞p1 + k

p2

p1

p2 − k

↓k ∼
∫

dd−1k

(2π)d−1

1

2ωk

1

2ω1+k

1

2ω2−k

i

ω1+k + ω2−k −Q+ iε

× −i
ω1+k − (ω1 + ωk)− iε

−i
ω1+k + ω2−k − (ω1 + ω2)− 2iε

. (4.5.5)
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Now we only have 3-momentum conservation, not energy conservation. So, ~p1 + ~p2 = 0 and

thus ω1 = ω2, but nothing forces ω1 = Q
2 . Defining the angle between ~k and ~p1 as θ, in the

soft limit ω1+k
∼= ω1 + ωk cos θ and ω2−k ∼= ω2 + ωk cos θ, so performing the power expansion

results in

MG ∼
i

ω1 + ω2 −Q+ iε

∫
dd−1k

(2π)d−1

1

ω3
k

1

cos θ − 1− iε
1

cos θ − iε
(4.5.6)

∼ i

ω1 + ω2 −Q+ iε

∫
dωkω

d−5
k

(
1

εIR
− iπ + · · ·

)
. (4.5.7)

The ωk integral is scaleless, being both UV and IR divergent. The iπ in this expression

corresponds to the imaginary part in Eq. (4.5.1), and is known to exponentiate into the

Coulomb/Glauber phase. The third graph in Eq. (4.5.3) is similar, leading to the same re-

sult as in Eq. (4.5.7) with i
ω1+ω2−Q+iε replaced by i

Q−ω1−ω2+iε . The two graphs combine to

produce the expected δ(ω1 + ω2 −Q) factor.

So we see that the Glauber phase is indeed reproduced by asymptotic diagrams with on-

shell modes. Moreover, energy is conserved in this process. The key was to carefully handle

the imaginary parts of the propagators and δ distributions. There are of course many other

ways to compute this imaginary part (cf. [22]), but this approach clarifies the importance of

carefully treating energy conservation in SH computations.

In more complicated processes, such as q̄q → q̄q in QCD at 2 loops, it is known that

the Glauber contribution from the full graph (the central region) is not reproduced by the

eikonal approximation [75]. Consequences of this failure include collinear-factorization vi-

olation [20] and the emergence of super-leading logarithms [19]. For SH this means that
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the IR divergences of the central region will not be canceled by an asymptotic Hamiltonian

with soft and collinear gluons alone. Fortunately, it has been shown that one can add to the

SCET Lagrangian a set of Glauber operators [84] and remedy the failure of the soft limit.

A detailed discussion of when these operators are relevant and how they resolve issues such

as collinear-factorization violation can be found in [133]. The Glauber interactions, like soft

interactions, are long distance and will persist after the hard scattering. Although they vio-

late factorization, in the sense that they are long-distance interactions that depend on mul-

tiple directions, they are still independent of the hard scattering.

To connect the Glauber graphMG to the Glauber operator, we can massage the imagi-

nary part of the integral in Eq. (4.5.6) into a more familiar form. We first drop the iε in the

denominator 1
cos θ−1−iε , since the endpoint singularity at cos θ = 1 is regulated for ε < 0 by

the (1 − cos2 θ)−ε factor in the measure (see Eq. (4.4.5)). Rewriting the integral in terms of

kz = ωk cos θ and ~k⊥ gives

MG ∼
∫ ∞
−∞

dkz

∫
dd−2~k⊥
(2π)d−2

1√
k2
z + ~k2

⊥

1

kz −
√
k2
z + ~k2

⊥

1

kz − 2iε
. (4.5.8)

To take the imaginary part we now use Im
[

1
kz−2iε

]
= πδ(kz) and integrate over kz to get

Im [MG] ∼ −iπ
∫

dd−2~k⊥

(2π)d−2

1

~k2
⊥
. (4.5.9)

This 1
~k2
⊥

integrand is exactly what comes out of the ξ̄n1

/n2
2 ξn1

1
P2
⊥
ξ̄n2

/n1
2 ξn2 Glauber opera-

tors [22, 23, 84]. In other words, tree-level exchange in the asymptotic region corresponds
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to the Glauber region expansion, except it has an opposite sign. Note that since kz = 0

the on-shell energy of the Glauber gluon is ωk = |~k⊥|. So the 1
~k2
⊥

is not coming from an off-

shell mode but rather from energy not being conserved in time-ordered perturbation theory.

Alternative ways of understanding the Glauber phase can be found in [121, 122, 134, 135].

For completeness, we list the IR divergent parts of the various contributions to SH for

this process cutting off the UV divergence of the soft integrals at ωmax, as in Section 4.4.1.

Writing SH = iM̂(2π)dδd(q − p1 − p2), the contributions to M̂ are:

t=∞

=M0
αs
4π
CF

− 2

ε2IR
− 4

εIR
+

2 ln Q2

µ̃2

εIR
− 2iπ

εIR
+ IR-finite

 (4.5.10)

t=∞

=M0
αs
4π
CF

− 2

ε2IR
+

2 ln (2ωmax)2

µ̃2

εIR
+

2iπ

εIR
+ IR-finite

 (4.5.11)

t=∞

=M0
αs
4π
CF

 2

ε2IR
+

2

εIR
+

ln (2ωmax)2

Q2

εIR
−

2 ln (2ωmax)2

µ̃2

εIR
+ IR-finite



(4.5.12)

t=∞

=M0
αs
4π
CF

 2

ε2IR
+

2

εIR
+

ln (2ωmax)2

Q2

εIR
−

2 ln (2ωmax)2

µ̃2

εIR
+ IR-finite



(4.5.13)
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with µ̃2 = 4πe−γEµ2 andM0 = u1γ
αv1 the tree level matrix element. Summing these

graphs, the IR divergences all cancel.

Note that while the imaginary part of the Glauber graph, Eq. (4.5.11), cancels against

the S-matrix graph, Eq. (4.5.10), the real part of the Glauber graph has the same sign as

the S-matrix graph, and the sum of the two cancels against the cut graphs. This is different

from how the cancellation occurs in matching to a 2-jet operator in SCET, where a single

soft graph cancels both the real and imaginary parts of the divergences of the full-theory

graph.

4.5.2 Thrust

Next, let us use the hard S-matrix to compute the thrust observable [136]. Thrust is a par-

ticularly simple infrared-safe e+e− observable. It is defined as

T ≡ max
~n

∑
j |~pj · ~n|∑
j |~pj |

. (4.5.14)

It is convenient to use τ = 1 − T rather than T . Thrust has the property that for events

that consist of two highly collimated jets τ � 1. At small τ , thrust is approximated by the

sum of the masses of these two jets τ ∼= 1
Q2

(
m2
J1 +m2

J2

)
, with Q the center of mass energy.

Events that are more spherical have values of τ ∼ 0.2− 0.5.

To compute dσ
dτ in perturbation theory using SH , we start at lowest order, where the hard

S-matrix element is

M̂0(γ? → q̄q) = ūi(pq)γ
µvj(pq̄) . (4.5.15)
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At next to leading order we need the hard matrix element for q̄q final states at NLO, as

given in Eq. (4.5.1):

M̂(γ? → q̄q) = M̂0

[
1 +

αs(µ)

4π
CF

(
− ln2 µ

2

Q2
− (3 + 2πi) ln

µ2

Q2
− 8− 3πi+

7π2

6

)
+O(α2

s)

]
(4.5.16)

We also need the matrix elements for γ? → q̄qg where we treat the gluon as hard. Treating

it as hard, the only contribution at order gs is from diagrams with all vertices in the central

region. Then this amplitude is identical to the S-matrix element for the same process,

M̂(γ? → q̄qg) = −gsT aij ūi(pq)

[
γα

1

/pq + /pg
γµ − γµ 1

/pq̄ + /pg
γα

]
vj(pq̄)ε

?
α(pg) . (4.5.17)

To compute the observable, we must then evolve these final states to t = +∞ using Has,

as discussed in Section 4.2.2. On the formal level, this additional evolution exactly cancels

the entire effect of Has, so the cross section predicted is identical to that using the original

S. On the practical level, however, one can gain additional insight into the distribution by

actually using the SH -matrix elements we have computed, rather than simply discarding

them and starting over. To this end, it is helpful to contemplate the small τ and moderate

τ regions separately.

For small τ , the gluon is necessarily soft or collinear. Thus we can disregard the hard

M̂(γ? → q̄qg) contribution. Instead, we should start with M̂0(γ? → q̄q) and then evolve

the q̄q final state towards a 2-jet state with nonzero τ using Has. To compute the cross sec-
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tion, we need to sum the cut graphs

t=0 t=0

t=0 t=0

+

t=0 t=0

t=0 t=0

+

t=0 t=0

t=0 t=0

+

t=0 t=0

t=0 t=0

(4.5.18)

In these graphs each dotted green line represents a separate contribution where the mea-

surement function at t = ∞ is inserted. The first two graphs have only soft contributions

and the second two soft and collinear contributions (although the soft ones vanish in Feyn-

man gauge).

The middle cuts in these graphs using soft interactions in the asymptotic regions cor-

responds to soft real-emission processes. The amplitude for soft emission using Has is the

eikonal limit of Eq. (4.5.17), with an opposite sign and without the hard matrix element,

Msoft = gsT
a
ij

[
pαq

pq · pg
−

pαq̄
pq̄ · pg

]
ε?α(pg) . (4.5.19)

Then the contribution to the differential thrust cross section at order αs from these four

cuts is

[
dσ

dτ

]
soft,R

= σ0

∫
d3pg
(2π)3

1

2ωg
|Msoft|2

×
[
δ

(
τ − pq̄ · pg

Q2

)
θ(~pg · ~pq̄) + δ

(
τ − pq · pg

Q2

)
θ(~pg · ~pq)

]
. (4.5.20)

In this expression, the θ-functions project onto the appropriate hemisphere defined by the
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thrust axis (which aligns with the q̄ − q axis at leading power). The first and third cuts in

all the graphs, using soft interactions, give the virtual contributions. Summing all of them,

the result is the same as the contribution to thrust from the thrust soft function [133, 137]:

1

σ0

[
dσ

dτ

]
soft,R

+
1

σ0

[
dσ

dτ

]
soft,V

= δ(τ)

[
1 + CF

αs
4π

(
π2

3

)]
− 16CF

αs
4π

[
ln τQ

µ

τ

]
+

+O
(
α2
s

)
(4.5.21)

Although the real and virtual contributions are separately infrared divergent, the final con-

tribution to the cross section is not.

Similarly, the contribution from collinear graphs gives the jet functions. The net contri-

bution is

1

σ0

[
dσ

dτ

]
coll

= δ(τ) + CF
αs
4π

δ(τ)
(
7− π2

)
+

−3 + 4 ln τQ2

µ2

τ


+

+O
(
α2
s

)
. (4.5.22)

Multiplying these by the SH -matrix element squared, the sum is

1

σ0

[
dσ

dτ

]
soft+coll

= δ(τ) + CF
αs
2π

{
δ(τ)

(
π2

3
− 1

)
− 3

[
1

τ

]
+

− 4

[
ln τ

τ

]
+

}
. (4.5.23)

This agrees with the exact NLO thrust distribution at leading power (see [16]). Note that

the µ dependence of SH -matrix elements exactly cancels against the µ dependence of the

soft and collinear contributions in the asymptotic region.

For values of τ that are not small, one should necessarily treat the gluon as hard. The

measurement function in this region is therefore only sensitive to hard particles. Since there

are no asymptotic interactions between hard gluons and hard quarks, the SH -matrix el-
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ement in this regime is the same as in Eq. (4.5.17). Integrating the square of this matrix

element against the thrust measurement function gives for τ > 0,

1

σ0

[
dσ

dτ

]
3-jet

= CF
αs
2π

{
3(1 + τ)(3τ − 1)

+
[4 + 6τ(τ − 1)] ln(1− 2τ)

τ(1− τ)
− [4 + 6τ(τ − 1)] ln τ

τ(1− τ)

}
. (4.5.24)

Near τ = 0 this contribution coming from M̂(γ? → q̄qg) is singular, and the phase space

integral is IR divergent. However, at τ = 0 there is also the contribution from M̂(γ? → q̄q).

Although we can define the measurement function so that it is not sensitive to any gluon

that couples in Has, we cannot remove the soft and collinear gluons from Has. These gluons

still contribute to the cross section through loops, and affect the thrust distribution at τ =

0. The virtual graphs are the first and third cuts in all the diagrams in Eq. (4.5.18). These

graphs are IR divergent. If we work in 4 − 2ε dimensions, the full phase space integral over

the 3-jet contribution |M̂(γ? → q̄qg)|2 generates 1
ε2IR

and 1
εIR

poles that exactly cancel the

1
ε2IR

and 1
εIR

from the virtual graphs. The result is that

1

σ0

[
dσ

dτ

]
3-jet

+
1

σ0

[
dσ

dτ

]
2-jet

= δ(τ) + CF
αs
2π

{
δ(τ)

(
π2

3
− 1

)
+

[
3(1 + τ)(3τ − 1) +

[4 + 6τ(τ − 1)] ln(1− 2τ)

1− τ

] [
1

τ

]
+

− 4 + 6τ(τ − 1)

1− τ

[
ln τ

τ

]
+

}
,

(4.5.25)

which is the exact NLO thrust distribution in QCD.

So we see that SH is capable of both reproducing distributions in fixed order QCD and,
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through the asymptotic expansion, reproducing just the leading-power parts of those distri-

butions. An advantage of leading-power approach is that one is not forced to compute the

SH -matrix elements and the asymptotic evolution to the same order in αs. Instead, one can

use exponentiation properties of the soft and collinear emission to evaluate the asymptotic

evolution to all orders in perturbation theory. In particular, one can perform resummation

with the renormalization group, since the soft and collinear contributions are each associ-

ated with only a single scale. Doing so in this example reproduces the resummed thrust

distribution computed using SCET [133, 137].

4.6 N = 4 Super Yang-Mills

To further illustrate the features of SH , we now consider amplitudes in N = 4 super Yang-

Mills (SYM) theory. N = 4 SYM is a superconformal SU(Nc) gauge theory in which scat-

tering amplitudes have been studied quite extensively. To leading order in 1
Nc

, the only

Feynman diagrams that contribute have planar topology and each loop order gives an ad-

ditional factor of the ’t Hooft coupling λ = g2
sNc. Since only one color structure is relevant

at large Nc, is convenient to factor out the group theory factors. In addition, the amplitude

for n-gluon scattering is totally symmetric in the permutation of the external legs. With

these observations, it is conventional to write the L-loop amplitude with n external legs as

A(L)
n = gn−2

s

[(
4πe−γ

)ε g2
sNc

8π2

]L∑
ρ

Tr (T aρ(1) . . . T aρ(n))A(L)
n (ρ(1), ρ(2), . . . , ρ(n)) , (4.6.1)
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where the sum is over non-cyclic permutations ρ of the external legs. The arguments ρ(1),

etc., refer to the permutation of the momenta and helicities of the legs. It is furthermore

convenient to scale out the kinematic dependence of the tree-level amplitude by defining

M (L)
n (ε) ≡ A

(L)
n (ε)

A
(0)
n (ε)

. (4.6.2)

In addition, we will find it useful to discuss the terms of each order in ε separately, so we

write

M (L)
n (ε) =

∑
εrM (L)

n (εr) , (4.6.3)

and decompose other quantities analogously.

In general, the bare n-leg L-loop amplitude is an extremely complicated function of the

external momenta, even for planar maximal-helicity violating (MHV) amplitudes. What

is interesting though is that there seems to be structure in the L-loop amplitude after the

1-loop amplitude is subtracted. More precisely, the ABDK/BDS ansatz proposes that the

L-loop amplitude should be expressible in terms of the 1-loop amplitude and some tran-

scendental constants [88, 89]. More precisely, the full matrix element with n legs has the

form

MBDS
n = exp

[∑
L

((
4πe−γ

)ε g2
sNc

8π2

)L (
f (L)(ε)M (1)

n (Lε) + C(L) + E(L)
n (ε)

)]
, (4.6.4)

where f (L)(ε) is independent of n and related to the cusp anomalous dimension (explicitly

f (1)(ε) = 1 and f (2)(ε) = −ζ2− ζ3ε− ζ4ε
2 + · · · . The numbers C(L) are also independent of n
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and represent the part of the L-loop amplitude not given by the exponentiation of the first

term. By explicit computation it is known that C(1) = 0 and C(2) = −1
2ζ

2
2 . Finally, E

(L)
n (ε)

has only positive powers of ε, so that E(L)
n (0) = 0.

It turns out the BDS ansatz was not quite correct: there is more structure to the ampli-

tudes than just the numbers C(L) for n > 5. Thus, it is common to express amplitudes as

ratios of the bare amplitudes and the BDS ansatz. More precisely, the remainder function is

defined as

Rn = ln

[
Mn

MBDS
n

]
, (4.6.5)

and one can expand Rn order-by-order in gs.

While the remainder functions have some nice properties, such as respecting dual con-

formal invariance, they violate other conditions, such as the Steinmann relations [92]. To

preserve the Steinmann relations, the BDS ansatz is modified to the “BDS-like” ansatz [93].

For certain amplitudes (n = 8 for example), it has been shown that both the Steinmann

relations and dual conformal invariance cannot be satisfied simultaneously [138]. That the

BDS ansatz violates the Steinmann relations is due to the additional subtraction of finite,

O(ε0), terms in Eq. (4.6.4) in addition to the IR divergences. A more conservative ansatz is

the “minimally-normalized” amplitudeMmin
n defined as [94]

Mmin
n = exp

[∑
L

((
4πe−γ

)ε g2
sNc

8π2

)L (
f (L)(ε)M (1,div)

n (Lε) + C(L)
)]

, (4.6.6)

135



where the IR divergences of M (1)
n are

M (1,div)
n (ε) = − 1

2ε2

n∑
i=1

(
µ2

−si,i+1

)ε
. (4.6.7)

The ratio Mn

Mmin
n

of the full amplitude to the minimally normalized amplitude is IR finite,

just like the BDS remainder function in Eq. (4.6.5), but the finite parts of Mn

Mmin
n

and Mn

MBDS
n

are different.

In this section we relate some of these observations to the hard S-matrix element. We

will see that the hard S-matrix element computed in MS corresponds closely to the mini-

mally normalized amplitude.

4.6.1 4-point amplitude

We begin by discussing the MHV amplitude with 4 external legs. The IR divergences of the

1-loop amplitude for n = 4 are known to agree with the divergences of

C
(1)
4 (ε) = − eγε

Γ(1− ε)
1

ε2

[(
µ2

−s

)ε
+

(
µ2

−t

)ε]
, (4.6.8)

and the divergences of the 2-loop amplitude agree with the divergences of

C
(2)
4 (ε) =

1

2

(
C

(1)
4 (ε)

)2
+ C

(1)
4 (ε)

(
M

(1)
4 (ε)− C(1)

4 (ε)
)
− (ζ2 + εζ3)

e−εγΓ(1− 2ε)

Γ(1− ε)
C

(1)
4 (2ε) .

(4.6.9)

These formulas are due to Catani [139] (see also [140]). Note that C(2)
4 (ε) depends on the

complete 1-loop amplitude M (1)
4 (ε). Thus, although the quantity M (2)

4 (ε) − C
(2)
4 (ε) is IR-
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finite, more terms are being subtracted this way than those determined by the universality

of IR-divergences. These extra terms depend on quantities such as M (1)
4 (ε2) which are not

fixed by factorization alone. Although factorization does not determine M (1)
4 (ε), its appear-

ance in the universal formula can be understood from the point of view of effective field

theory [141]: it comes from a cross term between the non-universal 1-loop Wilson coefficient

and the universal 1-loop divergences. An equivalent mechanism explains its appearance dur-

ing the computation of SH , as we now show.

With 4 legs (n = 4), the 1-loop amplitude is

M1
4 (ε) = − 2

ε2
+

1

ε
M

(1)
4 (ε−1) +M

(1)
4 (ε0) +O(ε) , (4.6.10)
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where

M
(1)
4 (ε−2) = −2 , (4.6.11)

M
(1)
4 (ε−1) = − ln

µ2

−s
− ln

µ2

−t
, (4.6.12)

M
(1)
4 (ε0) = − ln

µ2

−t
ln
µ2

−s
+

2π2

3
, (4.6.13)

M
(1)
4 (ε1) = −π

2

2
ln
−s
u
− 1

3
ln3 −s

u
+
π2

12
ln
µ2

−s
− 1

6
ln3 µ

2

−s
+
π2

4
ln
µ2

u
, (4.6.14)

+
1

2
ln2 −s

u
ln
µ2

u
− 1

2
ln
−s
u

ln
−t
u

ln
µ2

u
− ln

−s
u

Li2
−s
u

+ Li3
−s
u

+
7

3
ζ3 + (s↔ t) ,

M
(1)
4 (ε2) =

5π2

24
ln2 −s

u
+

1

8
ln4 −s

u
+

3

8
ln
−s
u

ln
−t
u

+
1

6
ln3 −s

u
ln
−t
u

(4.6.15)

− 1

4
ln2 −s

u
ln2 −t

u
+
π2

24
ln2 µ

2

−s
− 1

24
ln4 µ

2

s
− π2

2
ln
−s
u

ln
µ2

u

− 1

3
ln3 −s

u
ln
µ2

u
+
π2

8
ln2 µ

2

u
+

1

4
ln2 −s

u
ln2 µ

2

u
− 1

4
ln
−s
u

ln
−t
u

ln2 µ
2

u

+
7

3
ζ3 ln2 µ

2

−s
+

1

2
ln2 −s

u
Li2
−s
u
− ln

−s
u

ln
µ2

u
Li2
−s
u

+ ln
µ2

u
Li3
−s
u

− ln
−s
u

Li3
−t
u
− Li4

−s
u

+
49π4

720
+ (s↔ t) .

In these expressions, s = (p1 + p2)2, t = (p1 + p3)2, u = −t − s and the convention is that

incoming momenta are treated as outgoing with negative energy. Note that the ε are all εIR

since N = 4 SYM is UV finite.

At 2-loops, the amplitude can be written as

M
(2)
4 =

2

ε4
− 2

ε3
M

(1)
4 (ε−1) +

1

ε2

[
π2

12
+

1

2
M

(1)
4 (ε−1)2 − 2M

(1)
4 (ε0)

]
+

1

ε

[
−π

2

12
M

(1)
4 (ε−1) +M

(1)
4 (ε−1)M

(1)
4 (ε0)− 2M

(1)
4 (ε1) +

ζ3

2

]
+M

(2)
4 (ε0) +O(ε) , (4.6.16)
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where

M
(2)
4 (ε0) =

1

2

[
M

(1)
4 (ε0)

]2
− π2

6
M

(1)
4 (ε0)− π4

120

+M
(1)
4 (ε−1)

[
M

(1)
4 (ε1)− ζ3

2

]
+M

(1)
4 (ε−2)M

(1)
4 (ε2) . (4.6.17)

Although there is some hint of exponentiation in this expression, it is not particularly sim-

ple. That is, if one defines an IR finite 2-loop amplitude by dropping all the singular terms

in ε and then taking ε → 0 the result, M (2)
4 (ε0), is complicated, with all the polylogarithms

from Eqs. (4.6.14) and (4.6.15).

The appearance of the O(ε1) and O(ε2) terms fromM(1)
4 in the 2-loop amplitude hints

at a relationship between them. Indeed, the BDS/ABDK ansatz notes that if we subtract

C
(2)
4 (ε0) in Eq. (4.6.9) from M

(2)
4 (ε0) the result is relatively simple,

M
(2)
4 (ε0)−C(2)

4 (ε0) =
1

2

(
M

(1)
4 (ε0)− C(1)

4 (ε0)
)2
− ζ2

(
M

(1)
4 (ε0)− C(1)

4 (ε0)
)
− 21

8
ζ4 . (4.6.18)

Recall that C(2)
4 (ε) is not fixed by the IR structure alone, but includes additional terms.

Although this relation works well for the 4-point amplitude, it is somewhat ad hoc and re-

quires modification for n > 5 legs and higher loops.

Now let us consider the hard S-matrix elements. We define them analogously to S-

matrix elements, adding a hat. So Â(L)
n is the color-stripped hard-S-matrix element for

n legs at L loops. This amplitude is IR finite, but UV divergent. Denoting M̂ (L)
n (ε) ≡

Â
(L)
n (ε)/Â

(0)
n (ε) in analogy to Eq. (4.6.2), the 1-loop bare hard matrix element is the same
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as Eq. (4.6.10) with εIR replaced by εUV. The renormalized matrix element is then

M̂
(1)
4 =

[
1

Z4
(M̂4)bare

]
color-stripped

1-loop
= − ln

µ2

−t
ln
µ2

−s
+

2π2

3
+O(ε) , (4.6.19)

where, with minimal subtraction (MS),

ZMS
4 = 1 +

(
4πe−γ

)ε g2
sNc

8π2

[
− 2

ε2
+

1

ε

(
− ln

µ2

−s
− ln

µ2

−t

)]
+O(g4

sN
2
c ) . (MS) (4.6.20)

Note that M̂ (1)
4 is finite as ε → 0, since the IR divergences are absent in hard S-matrix

elements and the UV divergences are removed through renormalization. There are never-

theless terms of O(ε) and O(ε2) in the matrix elements in d dimensions. These terms are

the same as the O(ε) and O(ε2) terms in M (1)
4 . Then the 2-loop hard S-matrix element gets

a contribution from both the 2-loop graphs, giving M (2)
4 (ε0) after renormalization, as well

as a contribution from the cross terms between the 1
ε2

and 1
ε terms in Z4 and the O(ε) and

O(ε2) terms in M̂ (1)
4 . The result is that

M̂
(2)
4 =

1

2

[
M̂

(1)
4 − π2

6

]2

− π4

45
+
ζ3

2

(
ln
µ2

−s
+ ln

µ2

−t

)
. (MS) (4.6.21)

This matrix element is significantly simpler than M (2)
4 (ε0) in Eq. (4.6.17), and does not re-

quire any ad-hoc subtractions.
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4.6.2 Scheme choice

Dimensional regularization and minimal subtraction is the most widespread scheme in use

in SCET. We must keep in mind, however, that due to renormalization there is scheme de-

pendence in SH . This is not a problem per se, since SH itself is not directly observable.

One expects that one SH -matrix elements are combined into observables the scheme depen-

dence will cancel. Indeed, the cancellations that occur will be similar to the cancellations

that occur in SCET. For example, Ref. [142] showed that physical observables agree when

conventional dimensional regularization, four-dimensional helicity scheme, or dimensional

reduction are used, despite the fact that the hard, jet and soft functions are different in the

different schemes. In a normal, local field theory, the counterterms are strongly constrained:

they must just be numbers. In SCET the counterterms can depend on the labels for the

various collinear directions which translates to dependence of hard kinematical quantities,

like s and t, as in Eq. (4.6.20). However, one cannot choose an arbitrary function of labels,

as the dependence must be canceled by contributions from soft and jet functions. Roughly

speaking the combination, H ⊗ J ⊗ S must be scheme independent, where the hard func-

tion H corresponds to the square of our hard S-matrix elements. More discussion of these

constraints can be found in [142].

Let us suppose that adding a finite part to the counterterm is not problematic. More

precisely, suppose we can add a finite part δ4(ε) to the Z4 renormalization constant. Then
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the color-stripped hard S-matrix element at 1-loop shifts from the MS version by δ(1)
4 (ε):

M̂
δ,(1)
4 = M̂

(1)
4 − δ(1)

4 (ε) (4.6.22)

At 2-loops, the shift picks up a cross term between δ(1)
4 and the divergent parts of the bare

amplitude (M̂4)bare:

M̂
δ,(2)
4 = M̂

(2)
4 −

2∑
j=0

M̂
bare,(1)
4 (ε−j)δ

(1)
4 (εj)− δ(2)

4 , (4.6.23)

so that

M̂
δ,(2)
4 =

1

2

[
M̂

δ,(1)
4 − π2

6

]2

− π4

45
− δ(1)

4 (ε1)M̂
bare,(1)
4 (ε−1)− δ(1)

4 (ε2)M̂
bare,(1)
4 (ε−2)

− π2

6
δ

(1)
4 (ε0)− 1

2
[δ

(1)
4 (ε0)]2 +

ζ3

2

(
ln
µ2

−s
+ ln

µ2

−t

)
− δ(2)

4 . (4.6.24)

This motivates choosing a “BDS” subtraction scheme, where

δ
(1)
4 = −π

2

6
− ζ3

2
ε, δ

(2)
4 = − π4

120
+O(ε) (4.6.25)

or equivalently

ZBDS
4 = 1+

(
4πe−γ

)ε g2Nc

8π2

[
− 2

ε2
− 1

ε

(
ln
µ2

−s
+ ln

µ2

−t

)
− π2

6
− ζ3

2
ε

]
+O(g4) . (BDS scheme)

(4.6.26)
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Then we get simply

M̂
BDS,(2)
4 =

1

2

[
M̂

BDS,(1)
4 − π2

6

]2

. (BDS scheme) (4.6.27)

There are two things to note about this result. First, it is nontrivial that one can pick

pure numbers for δ4 to cancel the explicit s and t dependence in Eq. (4.6.21). This was

possible only because the ln µ2

−s + ln µ2

−t factor in Eq. (4.6.21) is the same as in M̂ (1)(ε−1).

Second it is impossible to choose δ4 to remove the π2

6 in Eq. (4.6.27). Thus there is a sense

in which the constant term π2

6 = ζ2 of the second order amplitude is scheme independent.

This term gives the constant C2 = 1
2ζ

2
2 from Eq. (4.6.4).

The BDS ansatz implies that to all orders, the 4-gluon planar amplitude exponentiates

in the BDS subtraction scheme. In the language of the hard S-matrix, this means that

the finite parts of the counterterms will be pure numbers to all orders. Indeed, for dual-

conformal invariance to be respected by the 4-point amplitude, we should not be adding

extra dependence on s and t into the counterterms. Equivalently, we can say that the dual-

conformal anomaly is manifest in the BDS subtraction scheme but somewhat obscure in

MS.
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4.6.3 6-point amplitude

The amplitude with 6 external particles is more interesting because it can depend on more

kinematic invariants. The hard MHV S-matrix element with 6 legs in MS is

M̂
(1)
6 (ε) =

∑
cycles

[
−1

2
ln2(−s12)− ln

−s12

−s123
ln
−s23

−s123
+

1

4
ln2 −s123

−s234

]

− Li2 (1− u)− Li2 (1− v)− Li2 (1− w) + 6ζ2 +O(ε) , (MS) (4.6.28)

where the 3 dual-conformal cross ratios are

u =
s12s45

s123s345
, v =

s23s56

s234s123
, w =

s34s61

s345s234
. (4.6.29)

The notation here is that s123 = (p1 + p2 + p3)2 and sum over cycles means sum over the

6 rotations of the labels, e.g. s123 → s234 and so on. This amplitude is simply the bare 1-

loop MHV amplitude [143, 144] with IR divergences converted to UV divergences by the

diagrams involving Has and then removed by counterterms:

Z6 = 1 +
(
4πe−γ

)ε g2Nc

8π2

− 2

ε2
− 1

ε

∑
cycles

(
ln

µ2

−s12

)+O(g4
s) (MS) (4.6.30)

The “BDS-like” ansatz adds to this amplitude the terms on the second line plus another

cyclic sum,

Y6 = Li2 (1− u) + Li2 (1− v) + Li2 (1− w) +
1

2

(
ln2 u+ ln2 v + ln2w

)
. (4.6.31)
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If we are free to shift the counterterm, ZBDS-like
6 = Z6 − Y6, then the matrix element has a

somewhat simpler form:

M̂
(1)
6 (ε) =

∑
cycles

[
− ln(−s12) ln(−s23) +

1

2
ln(−s12) ln(−s45)

]
+ 6ζ2 (BDS-like scheme)

(4.6.32)

In particular, it is a function of only 2-particle invariants. This means that when the am-

plitude is exponentiated, it cannot violate the Steinmann relations (these require 3 particle

invariants) [145, 146].

Note however, that we do not know how to specify this BDS-like subtraction scheme at

higher order. More importantly, we do not know if it is consistent. As mentioned above,

(see [142]) there are constraints on the scheme from self-consistency of SCET. Since we

also do not know general constraints on the finite parts of the counterterms, it is safest

to restrict to conventional dimensional regularization with minimal subtraction, where

SCET at least is believed to be consistent. In MS, the counterterm is in Eq. (4.6.30) and

the hard matrix element is in Eq. (4.6.28). In MS, the hard matrix elements agree with the

minimally-normalized amplitudes discussed in [94] up to at least 2-loops and preserve the

Steinmann relations.

4.7 Summary and Outlook

The traditional S-matrix is only well defined if time evolution of a theory is well approxi-

mated by free evolution at early or late times. Indeed, the free Hamiltonian H0 is part of

the definition of S used for perturbative calculations. When a theory has massless particles,
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the interactions do not die off fast enough at asymptotic times, resulting in a poorly de-

fined, divergent S-matrix. We argue that a sensible, finite S-matrix is obtained by replacing

H0 in its definition with an asymptotic Hamiltonian Has that correctly accounts for all the

asymptotic interactions. Our key principle for choosing Has is that the states should evolve

before and after they scatter independently of how they scatter. That such an Has exists

and makes the S-matrix finite is guaranteed by theorems of hard-collinear-soft factorization.

Capitalizing on these theorems, we define Has as the leading power expansion of the full

Hamiltonian in soft and collinear limits, and call the corresponding S-matrix the hard S-

matrix, SH . SH is finite order-by-order in perturbation theory, as we have verified through

a number of explicit examples in QED, QCD and N = 4 super Yang-Mills theory.

While the traditional S-matrix is IR divergent, it can still be used to compute IR-finite

observables. This is done by summing over a broad enough set of processes so that the sum

is finite even though individual contributions are divergent. With SH , the same physical

predictions result using the matrix elements of a scattering operator that are finite process-

by-process.

We presented a method and Feynman rules for the perturbative calculation of SH -matrix

elements. The method involves separating SH into three parts: An asymptotic part evolv-

ing the state from t = 0 to t = −∞, the evolution from t = −∞ to t = ∞ and an asymp-

totic part evolving from t = ∞ to t = 0. Each asymptotic part is calculated using Feynman

rules similar to those in time-ordered perturbation theory but without overall energy con-

servation, and the middle part consists of conventional Feynman diagrams. The three part

picture is presented for calculational convenience, since it breaks up calculations into es-

146



sentially usual time-ordered perturbation theory and Feynman diagrams, and bypasses the

need to derive a new interaction picture with modified propagators.

The hard S-matrix has numerous advantages over the traditional S-matrix. The first ad-

vantage is the obvious one: SH exists. Second, matrix elements of SH have a rich structure

with diverse interpretations. One can interpret the asymptotic evolution as dressing the

states, so that a initial Fock state with a finite number of particles evolves into a dressed

state with an infinite number of particles at asymptotic times. This connects our construc-

tion to previous work on coherent states, such as by Chung [8] or Faddeev and Kulish [10].

Alternatively, SH -matrix elements can be interpreted as Wilson coefficients in Soft-Collinear

Effective Theory. Finally, SH -matrix elements are closely related to finite remainder func-

tions studied in the amplitude community. Indeed, much of the progress in understanding

scattering amplitudes over the last few decades has comprised results about an object, the

S-matrix, that formally does not exist. Since there is so much interest in the S-matrix itself

(as opposed to cross sections), it is logical to try to put this object on a firmer theoretical

footing. Doing so was one of the main motivations of this paper.

There are a number of new ideas contained in this paper. These include:

• The first explicit calculation of a finite S-matrix in theories with massless particles.

While other authors have introduced similar concepts in QED, there are no explicit

calculations in the literature of actual matrix elements. The majority of papers fo-

cuses on just the IR divergence cancellation. Issues such as regulator dependence,

renormalization, subtraction schemes, phase space integrals, computation of observ-

ables, completeness of the Hilbert space, etc., are all glossed over unless one is able to
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do explicit computations.

• We present a new rationale for choosing the asymptotic Hamiltonian. While others

have argued that the asymptotic Hamiltonian should make the S-matrix IR finite,

we argue that such a criterion is not restrictive enough: one could choose Has = H

to satisfy that requirement. Instead we argue that one should use that the asymp-

totic evolution is independent of the hard scattering. That there exists an asymptotic

Hamiltonian with this property in gauge theories is non-trivial and follows from fac-

torization theorems.

• We connect the literature on coherent states to that of factorization and that of scat-

tering amplitudes. In particular, the hard S-matrix elements can be identified as S-

matrix elements of coherent states, as Wilson coefficients in SCET, and as finite re-

mainder functions in N = 4 SYM fields corresponding to BDS-inspired subtraction

schemes.

• We provide an explicit set of Feynman rules to evaluate SH elements in perturbation

theory. These rules involve distributions and products of distributions that must be

handled with some care.

• We provide a number of examples of SH -matrix element calculations, both using pure

dimensional regularization and with explicit cutoffs on Has.

• We examine how the Glauber/Coulomb phase arises in asymptotic-region diagrams.

In particular, energy non-conservation in the asymptotic regions allows the Glauber

contribution to be reproduced (and cancelled) without off-shell modes.
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• We demonstrate that infrared-safe observables computed with SH will agree with

those computed using the normal S-matrix, and, to leading power, with those com-

puted using SCET or other factorization frameworks. We are not aware of any paper

on dressed states that makes a physical prediction using them. In our framework, one

can see how the dressing occurs, but also how the states get “undressed” in the final

asymptotic evolution before the measurement is made.

• Although predictions using SH reduce (almost trivially) to predictions using S, ma-

trix elements of SH can be studied as interesting objects on their own. These matrix

elements are scheme and scale-dependent, but still have physical interpretations, just

like the MS couplings αs(µ).

These last two bullets are perhaps worth some additional discussion. The incontrovertible

truth is that cross sections computed with S, despite coming from IR-divergent amplitudes,

are in perfect agreement with observations. Thus, no matter how one attempts to make

scattering amplitudes finite, the framework must reproduce these cross sections exactly. In

other words, it is foolhardy to try to make different predictions at the cross section level

with a new S-matrix. That being said, there are situations, in particular those with charged

initial states such as e+e− + photons → Z + photons, where it is not entirely clear what

the physical cross section is supposed to be [70]. In such situations, a finite SH may provide

some clarity.

Although we cannot expect SH to revolutionize the computation of physical cross sec-

tions, having a finite S-matrix is still enormously beneficial for the study of scattering am-
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plitudes themselves. Indeed, the majority of research of scattering amplitudes focuses on

S-matrix elements themselves, not on observables. So it is this community that might bene-

fit first from SH . As an example, we showed that certain SH elements in a supersymmet-

ric theory naturally satisfy the Steinmann relations, at least to two loops. In contrast,

S-matrix elements are IR divergent and, depending on how the IR divergences are sub-

tracted, the Steinmann relations may or may not be satisfied. More broadly, because SH

corresponds to the matrix elements of a single unitary operator, rather than a ratio of such

matrix elements, it should automatically satisfy any constraints that follow from unitarity.

One might also imagine that properties stemming from analyticity would be more transpar-

ent in matrix elements of a single operator rather than a ratio.

Finally, let us briefly discuss how to think about SH non-perturbatively. In this paper,

we have advocated for computing SH in dimensional regularization with MS subtraction.

At each order in perturbation theory, one can compute SH elements this way. It may seem

counterintuitive, but perturbation theory has historically been the best way to orient inves-

tigation into non-perturbative physics, and a perturbative approach could be similarly suc-

cessful for SH . One can also resum SH using renormalization group techniques to examine

its all-orders behavior. Alternatively, one could (in principle) compute SH numerically with

hard cutoffs, but to compare to the perturbative results in dimensional regularization, one

would have to convert between the cutoff scheme and MS. Through various approaches like

these, it should be possible to explore the analytic structure of SH . It would be interesting

to look at its properties in the Borel plane, for example, or whether a renormalon-free mass

scheme naturally emerges. More generally, since SH is IR finite, it resembles more closely
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S in a theory with a mass gap than the IR-divergent S. Thus one might hope that when

massless particles are present, the S-matrix bootstrap program might make more progress

with SH than it has on S.
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5
Sequential Discontinuities of Feynman

Integrals and the Monodromy Group
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5.1 Introduction

Feynman integrals – integrals over Feynman propagators appearing in perturbative quan-

tum field theory calculations – are primarily useful for making observable predictions about

particle physics experiments. Famously, they have been used to make some of the most pre-

cise predictions in the history of science [147]. However, these integrals have also increas-

ingly become recognized as interesting mathematical objects in their own right, exhibiting a

variety of geometric, analytic, and number-theoretic properties.

One of the aspects of Feynman integrals that has become better understood in recent

years is the class of transcendental functions they evaluate to in integer dimensions. In par-

ticular, at low loop order and low particle multiplicity, they can often be expressed in terms

of generalized polylogarithms [148–150]. These functions are under good theoretical and nu-

merical control, due in part to the symbol and coaction [91, 151–154], which provide a sys-

tematic way to understand their analytic structure and to exploit identities among them. In

particular, arbitrarily complicated polylogarithms can be broken down into simpler building

blocks such as logarithms and Riemann zeta values, at the cost of losing only integration

boundary data.

Knowing the analytic structure of polylogarithms has proven especially useful in the

computation of Feynman integrals and scattering amplitudes, as the branch cut structure

of these quantities is constrained by physical principles such as locality and causality. For

example, in the Euclidean region where all Mandelstam invariants are negative, Feynman

integrals can only have logarithmic branch points at the vanishing loci of sums of external
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momenta. This places strong constraints on the symbol and coaction of the polylogarithms

these integrals produce.1

That Feynman integrals have branch cut singularities has been known since the early

days of quantum field theory. In a seminal paper by Landau [45], these branch cuts were

shown to be associated with regions of external momenta where the poles in Feynman prop-

agators coalesce around the integration contour, so that the contour is pinched between the

singularities (see also [162, 163]). Cutkosky subsequently gave a general formula relating the

discontinuity across these branch cuts to “cut graphs” in which some Feynman propagators

are replaced by delta functions [6]. ’t Hooft and Veltman later gave a simple diagrammatic

derivation of Cutkosky’s cutting rules [54, 164]. However, these works are mostly confined

to the study of a single discontinuity of Feynman integrals.

In this paper, we are interested in studying the cutting rules for discontinuities of dis-

continuities: is there a way to compute sequential discontinuities of Feynman integrals

with cut diagrams, as there is for single discontinuities? Cutkosky and his contemporaries

touched on this topic, but computing sequential discontinuities is significantly more com-

plicated than computing a single discontinuity. Usually cuts are computed as differences

F (s + iε) − F (s − iε) = F (s + iε) − F (s + iε)∗, which is appropriate in the physical region

where the cut runs along the positive kinematic invariants and the amplitude satisfies a re-

ality condition F (s − iε) = F (s + iε)∗. However, as can be observed in explicit examples,

when taking cuts of cuts the situations is more complicated. In particular, one generically

1This constraint on the symbol can also be extended to Feynman integrals that evaluate to ellip-
tic polylogarithms [155–157]; however, no coaction has been worked out for the types of worse-than-
elliptic integrals that appear in Feynman integrals in integer dimensions (see for instance [158–161]).

154



encounters complex branch points, and the same reality condition does not hold (in fact,

this reality condition clashes with holomorphy).

Some progress on the study of sequential discontinuities was made in [165], where a for-

mula relating sequential discontinuities in different channels to a sum over cuts was con-

jectured. Drawing inspiration from this work, we make use of time-ordered perturbation

theory (TOPT) to derive more general relations between the sequential discontinuities of

Feynman integrals and cut integrals. In particular, our method clarifies the role of the ±iε

prescription in cut integrals, and emphasizes the importance of considering monodromies

around branch points rather than discontinuities across branch cuts. In this approach, we

can analytically continue from the physical region, along a path that goes around a branch

point and returns to the physical region. Now the function can be thought as being evalu-

ated on a different sheet and the discontinuity is the difference between the initial value and

the final value.2 While this monodromy-based approach does not appear to be widely used,

it goes back at least as far as [166]. Our approach was also influenced more by recent math-

ematical literature on polylogarithms, where the general theory simplifies in several ways.

One of the simplifications is that the monodromy group is represented by numerical matri-

ces whose entries are integer (or rational) multiples of powers of iπ. Using these methods,

we are able to compute discontinuities in any sequence of channels, including discontinuities

in the same channel.

Sequential cuts of Feynman integrals can also be computed using the multivariate residue

calculus of Leray [167]. This has been worked out explicitly at one loop [168]. While this

2Note that in this approach the choice for where to place the branch cut is not important.
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approach is both general and mathematically rigorous, it quickly becomes computationally

onerous. More Hodge-theoretic approaches have also been developed in [169, 170]; we com-

ment on the difference between these approaches and the methods of the present paper at

the end of Section 5.4.2. In this paper, our main goal was to come up with a prescription

for computing sequential discontinuities that was more computationally tractable than ex-

isting approaches.

One set of constraints on sequential discontinuities are the Steinmann relations. As orig-

inally studied by Steinmann [7], these relations follow from causality and express linear re-

lations between vacuum expectation values of certain types of operator products called R-

products (as defined in [171]). Steinmann originally studied these relations for the case of

four local gauge-invariant operators; they were subsequently generalized to higher multiplic-

ity [172–175]. Later, it was shown that the Steinmann relations imply scattering amplitudes

cannot have double discontinuities in partially overlapping momentum channels [176]. The

Steinmann relations have also been studied directly from the point of view of S-matrix the-

ory, without reference to local fields and their commutators; for a review, see [177].

Steinmann-type constraints have proven extremely useful for the modern amplitude boot-

strap program, which attempts to determine the functional forms of Feynman integrals or

scattering amplitudes from their general properties (such as symmetries, analytic proper-

ties, and factorization in certain kinematic limits). So far, these methods have been mostly

applied to processes in planar N = 4 supersymmetric Yang-Mills theory [92, 144, 146, 178–

186], where there is rich theoretical data available and integrability-based computations

provide crucial consistency checks [187–190]. However, similar analytic constraints and
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bootstrap techniques are expected to extend to non-supersymmetric quantities as well (see

for instance [191–193]).

Scattering amplitudes in Yang-Mills theories necessarily involve massless particles, so

the Steinmann relations, originally derived in field theories with a mass gap, do not nec-

essarily apply. Indeed, massless particles engender infrared divergences in these theories.

In planar N = 4, instead of studying the amplitude itself, one typically studies finite

Feynman integrals (see for instance [186, 194–198]) or remainder functions, defined as ra-

tios of amplitudes or ratios of amplitudes to the exponentiation of lower-order amplitudes.

It is to these types of remainder functions that Steinmann-type constraints are often ap-

plied [92, 94, 138, 184].3 While there has been some progress in systematically extracting

the infrared-finite content of the S-matrix (for example, through the construction of an

infrared-finite S-matrix [95, 200]), there remains some uncertainty over how and when con-

straints like Steinmann relations should hold. One goal of this paper is to pry away some of

the strong assumptions used in the axiomatic field theory approach. Thus, rather than full

scattering amplitudes in mass-gapped theories, we study Feynman integrals directly.

More broadly, in this paper we set out to provide some clarity on how to think about

and compute sequential discontinuities of Feynman integrals, and to study the types of con-

straints these sequential discontinuities satisfy. We treat this problem both at the level of

cut integrals and at the level of polylogarithmic functions. In particular, we make use of

time-ordered perturbation theory (TOPT) to prove new relations between the sequential

3The Steinmann relations were first used to analyze these amplitudes in the multi-Regge limit,
where it was also pointed out that normalizing by the BDS ansatz did not preserve these rela-
tions [199].
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discontinuities of Feynman integrals and their cuts. We also describe how these discontinu-

ities can be computed systematically from polylogarithmic representations of these integrals

with the use of variation matrices and the monodromy group, both of which we describe in

some detail.

The main practical results of this paper take the form of relations between discontinuities

of Feynman integrals and cuts of those integrals. For example, we show that the mth dis-

continuity of the Feynman integralM in a momentum channel corresponding to the Man-

delstam invariant s satisfies the relation

[
Discms M

]
Rs

= m!
∞∑
k=m


k

m

 (−1)m−k
[
Mk-cuts

]
Rs+

, (5.1.1)

where {km} = 1
m!

∑m
`=1(−1)m−`(m` )`k are the Stirling numbers of the second kind. On the

left side of the equation, we compute m discontinuities in the s channel by taking m mon-

odromies around a branch point in s. We write this as

Discms M = (1−M
s
)mM (5.1.2)

These monodromies are taken by analytically continuing along a closed contour that goes

between the region Rs, which we define to be the region in which all Mandelstam invariants

are real and negative, except for s which is real and positive, and the Euclidean region R?,

where all invariants are negative. On the right-hand side,Mk-cuts denotes the sum over all

ways of cutting the Feynman integral k times, with positive energy flowing across all cuts.
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These cuts must be computed in the region Rs+, where the + subscript indicates that all

the Feynman propagators in these cut diagrams should be assigned +iε. A careful treat-

ment of the ±iε in the cut diagrams is essential to have a sensible (and correct) formula

relating discontinuities and cuts. Eq. (5.1.1) is derived in Section 5.5. We also derive similar

relations between cuts and discontinuities in different channels.

One thing that our analysis makes clear is that sequential discontinuities can only be

nonzero when there exists at least one TOPT diagram that depends on the energies corre-

sponding to each cut momentum channel. When one of these energies is not present, the

cut in this channel vanishes. Since the energies that appear in TOPT diagrams always take

the form of sums of external energies
∑

i∈J Ei, where the sets of summed-over external par-

ticle indices J that appear in a given diagram are strict subsets or supersets of each other,

TOPT graphs never have sequential discontinuities in partially-overlapping momentum

channels. This amounts to a new proof of the Steinmann relations in perturbation theory.

We emphasize that the relations we derive between sequential discontinuities and cuts hold

for individual Feynman integrals, and as such the Steinmann relations must also be obeyed

by individual Feynman integrals.

This is a long paper, partly because we wanted to give a pedagogical introduction to var-

ious subjects relevant for the main results in a uniform language. We begin in Sections 5.2

and 5.3 by reviewing first the cutting rules and then the discontinuities of integrals in both

covariant perturbation theory and TOPT. These sections essentially review what is needed

to understand and prove the relation between single discontinuities and cuts, as in the op-

tical theorem. We proceed in Section 5.4 to introduce the main mathematical tools we use
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for computing sequential discontinuities. Here, we discuss the maximal analytic continu-

ation of polylogarithmic functions and introduce the formalism of variation matrices. We

then show how the discontinuities of polylogarithms can be computed using the action of

the monodromy group. Our treatment of these topics draws heavily from [201, 202], but is

intended to be introductory since these topics have not featured prominently in the physics

literature. In Section 5.5 we use these tools to prove our main results for sequential discon-

tinuities and cuts of Feynman integrals. A corollary is a new integral-by-integral proof of

the Steinmann relations. In Section 5.6 we work through some explicit examples that illus-

trate these new relations between the cuts and discontinuities of Feynman integrals, includ-

ing bubble, triangle, and box diagrams up to L-loop order. A summary and discussion of

some possible implications of our work and future directions are given in Section 5.7.

We also include in this paper a number of appendices with some technical details not

needed for the main results of the paper. Appendix B.1 discusses the relation between the

variation matrix and the coproduct. Appendix B.2 discusses the relationship between the

monodromy group associated with a polylogarithm and the fundamental group of the man-

ifold on which it is defined, and explicitly works out the relation between these groups in

the case of the triangle and box ladder integrals. Appendix B.3 shows how single-valued

functions can be easily constructed in the variation matrix formalism. In Appendix B.4,

we provide details on how the permutation symmetry of the one-loop triangle integral acts

on its rational and transcendental parts. Appendix B.5 presents the variation matrix for

the transcendental function Φ2(z, z̄) appearing in the two-loop ladder triangle and box di-

agrams. Finally, Appendices B.6 and B.7 give some details of the calculation of cuts of the
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three-loop and L-loop triangle diagrams.

5.2 Cutting rules: a review

The branch points and branch cuts of Feynman integrals have been studied since the early

days of S-matrix theory. Landau described how to compute the location of these branch

hypersurfaces[45], and later Cutkosky described how to compute discontinuities across these

hypersurfaces, using Feynman integrals with cut propagators [6]. In this section we review

the cutting rules and the relationship between cuts, discontinuities, and the imaginary part

of a scattering amplitude.

5.2.1 Cutkosky, ’t Hooft and Veltman

We begin with the generalized optical theorem, which states that the imaginary part of a

scattering amplitude A is given by a sum over intermediate states X,

ImA(A→ B) = i
∑
X

∫
dΠX(2π)4δ4(pA − pX)A(A→ X)A?(X ← B) . (5.2.1)

This optical theorem is non-perturbative and follows from the unitarity of the S-matrix.

By expanding each side order-by-order in any coupling, the theorem implies a constraint on

the sum of all Feynman diagrams contributing to A at any order. However, it does not pro-

vide any constraints on individual diagrams. Some nontrivial checks on the optical theorem,

including examples where disconnected diagrams play a crucial role, can be found in [70].

One can derive stronger results than the optical theorem by directly studying individual
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Feynman integrals. These integrals are Lorentz-invariant integrals over Feynman propaga-

tors, and take the form

M(p) =

∫ ∏
`

ddk`
i(2π)d

∏
j

1

[qj(k, p)]2 −m2
j + iε

. (5.2.2)

In our notation, the integer ` indexes L loop momenta k`, and j indexes the internal lines.

The variables k and p denote the collective set of loop and external momenta, respectively,

while qj(k, p) and mj denote the momentum and mass of the jth internal line. We do not

include factors of i in the numerators of the propagators, but include a factor of 1/i per

loop integral in anticipation of the i’s generated by the k0
` integrals. Throughout this paper,

we take incoming particles to have positive energy.

Feynman integrals are defined in terms of external four-momenta pµ, but since they are

Lorentz invariant they depend only on invariants of the form sI = P 2
I , where P

µ
I ≡

∑
i∈I p

µ
i

denotes a sum of external momenta. These invariants cannot all be independent. For in-

stance, in four dimensions a Feynman integralM(p) depends on n external momenta and

hence (at most) 4n independent quantities, while there are 2n invariants sI . The number of

independent invariants is further reduced by momentum conservation and the on-shell con-

dition for each external particle. Thus, the sI are highly interdependent. The constraints on

the sI are easiest to derive using their expression in terms of four-momenta.

The integralM may become singular as iε → 0 in the propagators. For physical mo-

menta the Mandelstam invariants sI are real, but we can analytically continueM to be a

function of complex sI . Then the singularities as iε → 0 can be thought of as the endpoints
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of branch cuts on a Riemann surface (more generally a hypersurface of maximal analytic

continuation) associated toM. In 1959, Landau derived a set of equations whose solutions

indicate the regions of momenta where these singularities may reside, collectively known

as the Landau surface [45]. The Landau surface may be disconnected, but each connected

component corresponds to some set of propagators becoming singular: [qj(k, p)]
2 = m2

j .

Cutkosky

Shortly after Landau’s paper, Cutkosky gave a prescription for computing the disconti-

nuity across one region of the Landau surface [6]. If the singularity is associated with the

region LJ where the propagators j ∈ J go on-shell, then the discontinuity is given by

DiscLJM =

∫ ∏
`

ddk`
i(2π)d

∏
j∈J

(−2πi)δ(q2
j −m2

j )Θ(q0
j )

∏
k/∈J

1

q2
k −m2

k

. (5.2.3)

Cutkosky also considered the singularities of DiscLJM. He argued that the discontinuity

across a region of the Landau surface associated with a set of propagators K (that are in

the complement of J) going on shell is given by

DiscLKDiscLJM = DiscLJ∪KM . (5.2.4)

This is the type of sequential discontinuity we focus on in this paper.

Unfortunately, Cutkosky’s results are phrased entirely in terms of discontinuities across

regions of the Landau surface where particular propagators go on-shell. However, it is gen-

erally not possible to isolate a region corresponding to the singularity locus of (just) a given

163



set of propagators in the space of independent invariants. For example, a string of bubbles

depends only on a single external kinematic invariant p2, but the Landau equations identify

a different branch hypersurface when the propagators in different bubbles are cut. Thus,

Cutkosky’s formula gives no constraint for sequential discontinuities in the same channel, a

central focus of this paper.

’t Hooft and Veltman

A simplified treatment of cuts and discontinuities was provided in the 1970’s by ’t Hooft

and Veltman [54, 164]. Their approach sidestepped the Landau equations and analytic con-

tinuation entirely, to provide a constraint onM directly. They start with the Feynman

graph associated with the Feynman integralM, and consider all possible colorings of the

vertices of this graph as either black or white. The following rules are then assigned to the

edges between these colored vertices:

≡ 1

p2 −m2 + iε
≡ 1

p2 −m2 − iε ≡−2πiδ(p2 −m2)Θ(p0)(5.2.5)

The graph with all black vertices is the original time-ordered Feynman integralM, with all

+iε propagators, while the graph with all white vertices corresponds to −M, whereM is

defined by

M(p) =

∫ ∏
`

ddk`
−i(2π)d

∏
j

1

[qj(k, p)]2 −m2
j − iε

. (5.2.6)

Propagators connecting black and white vertices are said to be cut, meaning these lines are

on-shell and positive energy flows from black to white. Using the position-space version

of these rules, ’t Hooft and Veltman showed that the sum over all possible assignments of
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white and black vertices is zero. This implies what we call the covariant cutting rules

M−M =
∑
•,◦

(−1)L◦
∫ ∏

`

ddk`
i(2π)d

∏
•−•

1

q2
j −m2

j + iε

×
∏
•−◦

(−2πi)δ(q2
j −m2

j )Θ(q0)
∏
◦−◦

1

q2
j −m2

j − iε
, (5.2.7)

where the sum is over all diagrams with mixed black and white vertices and L◦ is the num-

ber of loops connecting exclusively white vertices.

There are a few important aspects of this equation to note. First, the covariant cutting

rules (like Cutkosky’s rules) do not require unitarity. Eq. (5.2.7) is derived algebraically,

as a constraint among integrals over propagators and delta functions. In a unitary theory,

M is related to the complex-conjugated integralM? (where the numerators and vertices

are complex conjugated in addition to +iε → −iε), and the numerators of cut propagators

correspond to a sum over physical spins. Then the sum over cuts gives the total scattering

cross section, and the generalized optical theorem in Eq. (5.2.1) results.

Second, even in a non-unitary theory the covariant cutting rules relate an integral with

all +iε propagators to an integral with all −iε propagators. Since the Feynman integrals

we consider have all the other sources of imaginary parts stripped out, the cutting rules

directly compute ImM. Although we would like to viewM as an analytic function, so that

ImM is related to the discontinuity ofM around a branch point, this has to be done with

some care. The covariant cutting rules directly let us compute onlyM−M.

Third, if we compare to Cutkosky’s formula in Eq. (5.2.3) we note that the covariant

cutting rules involve mixed +iε and −iε propagators, while Eq. (5.2.3) is agnostic to the
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pole positions of the propagators. This does not make the two equations inconsistent, since

left-hand-side of Eq. (5.2.3) is the discontinuity across a Landau surface defined by the cut

propagators while the left-hand side of Eq. (5.2.7) is the imaginary part ofM. It does how-

ever make it difficult to explicitly verify Cutkosky’s equation. In contrast, Eq. (5.2.7) can

be verified in a straightforward manner in any number of examples.

Finally, because the ’t Hooft-Veltman derivation of the cutting rules builds on a single

constraint among all the diagrams (the largest time equation), it is hard to break it down

further to derive constraints on individual Feynman diagrams. Although such a dissection

might be possible, we find it more transparent to work in time-ordered perturbation theory

where the cutting rules can be derived in a way that makes generalizations to sequential

cuts and discontinuities more straightforward.

5.2.2 Time-ordered perturbation theory

To prove the cutting rules in time-ordered perturbation theory (TOPT) we exploit the fol-

lowing simple mathematical identity. If some functions Aj , Bj and Cj are related by

Aj −Bj = Cj , (5.2.8)

then

A1 · · ·An −B1 · · ·Bn = C1B2 · · ·Bn +A1C2B3 · · ·Bn + · · ·+A1 · · ·An−1Cn . (5.2.9)
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For n = 1, there are no Aj or Bj on the right hand side, and so Eq. (5.2.9) reduces to

Eq. (5.2.8).

For example, if we take Aj = 1
p2
j+iε

, Bj = 1
p2
j−iε

and Cj = −2πiδ(p2
j ), then Eq. (5.2.8)

corresponds to the familiar relation

1

p2
j + iε

− 1

p2
j − iε

= −2πiδ(p2
j ) . (5.2.10)

To be clear, this is an identity in the sense of distributions; it is the cutting equation for

M = 1
p2
j+iε

. In general, with this choice of Aj , Bj and Cj , the left hand side of Eq. (5.2.9)

corresponds to the difference between an integral with all +iε propagators and one with all

−iε propagators, which is eitherM−M orM+M depending on the number of loops. For

an even number of loops, Eq. (5.2.9) can be applied, but even then it produces some combi-

nation of propagators with +iε propagators, some −iε propagators and delta functions with

no clear relation to Eq. (5.2.7).

To derive the cutting rules using Eq. (5.2.9), we use TOPT. Recall that covariant Feyn-

man rules are derived for time-ordered products by inserting extra energy integrals to gen-

erate expressions in terms of Feynman propagators. In TOPT, the time-orderings are kept

separate and no energy integral is introduced. Each Feynman diagram is the sum of v!

TOPT diagrams, with v the number of vertices. In a time-ordered diagram, the internal

lines are on-shell (meaning q0 = ωq =
√
~q 2 +m2) and three-momentum is conserved at

each vertex, but energy is in general not conserved at each vertex. The positive sign is al-

ways taken for the energy (in front of the square root), because all intermediate states are
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Fock-state elements of physical on-shell positive-energy particles. Each intermediate state

contributes an energy denominator to the TOPT amplitude M , with its energy subtracted

from the initial energy, along with a +iε. M also acquires a 1
2ωq

from each propagator with

momentum q, and loop three-momenta are integrated over. A detailed discussion, and a

derivation of the TOPT Feynman rules, is given in [130] (see also [95]). For example, the

scalar loop can be written as

p p

k

p− k

=

∫
d4k

i(2π)4

1

k2 −m2
1 + iε

1

(p− k)2 −m2
2 + iε

(5.2.11)

= −
∫

d3k

(2π)3

1

2ωk

1

2ωp−k

[
1

Ep − (ωk + ωp−k) + iε
+

1

Ep − (ωk + ωp−k + 2ωp) + iε

]
,

where Ep = ωp =
√
~p 2 +m2 is the energy of pµ and

ωk =

√
~k2 +m2

1, ωp−k =

√
(~p− ~k)2 +m2

2
(5.2.12)

are the energies of the virtual particles. Eq. (5.2.11) can be verified by performing the k0

integral, which picks up two of the four poles. In terms of diagrams, we have

p p

k

p− k

=
~p ~p

~k

~p− ~k

+

~p

~p− ~k
~k

~p

(5.2.13)

The intermediate state in the TOPT diagrams changes as each vertex is passed in time

(where time flows to the right). In the first diagram this state includes only the k and p− k

lines, so its energy is ωk + ωp−k; in the second diagram, the intermediate state includes also
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the energy of the initial and final states, and thus its energy is ωk + ωp−k + 2ωp.

It is often difficult to perform the k0 integrals to reduce Feynman diagrams to TOPT di-

agrams. Their equivalence is easiest to show from more general principles of quantum field

theory, since both compute the same time-ordered products (cf. [124, 130]). Keep in mind

that although the +iε is necessary to determine the k0 integration contour, it cannot be

removed after the integration is done. Indeed the +iε originates from the fact that parti-

cles move forward in time with positive energy and is an essential part of the Lippmann-

Schwinger propagator in TOPT.

Now for each term in the TOPT decomposition we can apply the identity in Eq. (5.2.9),

using the TOPT analog of Eq. (5.2.10):

1

Ej − ωj + iε
− 1

Ej − ωj − iε
= −2πiδ(Ej − ωj) . (5.2.14)

The sum of all TOPT diagrams with a given topology and all +iε propagators gives the

Feynman diagramM, while the sum of these diagrams with all −iε propagators givesM.

The remaining terms have δ(Ej − ωj) factors which impose energy conservation at an in-

termediate time. These diagrams neatly split in two along the cut, with positive energy

automatically flowing across the cut (because TOPT diagrams have positive energy at any

intermediate time) and where all cut particles are on-shell (since all particles are on-shell

in TOPT). By Eq. (5.2.9) all the propagators before the cut have +iε and those after the

cut have −iε. Thus the cut TOPT diagram is one particular time-ordering of a white/black

partition, which is one time-ordering of a cut Feynman diagram. The sum of all possible
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cut TOPT diagrams gives all the possible time-orderings of the black and white vertices,

and therefore reproduces the full cut Feynman diagram and confirms the cutting rules.

For example, when we apply Eq. (5.2.9) to Eq. (5.2.13), there is only one intermediate

state in each diagram to cut (in contrast to the Feynman diagram, which has two interme-

diate propagators to cut). Cutting the first diagram gives

=

∫
d3k

(2π)3

1

2ωk

1

2ωp−k
(−2πi)δ(Ep − (ωk + ωp−k)) (5.2.15)

=

∫
d4k

i(2π)4

∫
d4k′

i(2π)4
(−2πi) (2π)3δ4(p− k − k′) (5.2.16)

× (−2πi)δ(k2 −m2
1)Θ(k0)(−2πi)δ(k′2 −m2

2)Θ(k′0) .

So this diagram alone gives the cut of the Feynman diagram. The cut of the other diagram

is zero, since energy conservation at the cut is impossible to satisfy:

=

∫
d3k

(2π)3

1

2ωk

1

2ωp−k
(−2πi)δ(Ep − (2ωp + ωk + ωp−k)) = 0 . (5.2.17)

This is typical of TOPT graphs: when one time-ordering can be cut, the same diagram with

vertices in reversed time order cannot be cut.

More broadly, the key reason why the cutting rules can be derived diagrammatically in

TOPT is that cuts in TOPT are associated with internal multiparticle states, not individ-

ual particles. So a cut, which replaces a TOPT propagator by a delta function, splits the

diagram in two, ordered by time, in contrast to Feynman diagrams, where using Eq. (5.2.9)
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just opens up a loop.

In fact, we have derived something stronger than the covariant cutting rules: the con-

straint on the amplitude holds for each time-ordered Feynman diagram separately and

it holds point-by-point in phase space. Indeed, the equation that we use to prove it,

Eq. (5.2.9) holds at the integrand level. Let us define an individual TOPT integrand for

fixed loop momenta as

M ≡ 1

E1 − ω1 + iε
· · · 1

En − ωn + iε
, M ≡ 1

E1 − ω1 − iε
· · · 1

En − ωn − iε
. (5.2.18)

Then, by putting in the explicit form of the TOPT propagators, Eq. (5.2.9) gives what we

call the time-ordered cutting rules:

M −M =
∑
j

1

E1 − ω1 + iε
· · · 1

Ej−1 − ωj−1 + iε
(−2πi)δ(Ej − ωj)

× 1

Ej+1 − ωj+1 − iε
· · · 1

En − ωn − iε
. (5.2.19)

When the loop momenta are integrated over, this equation implies the cutting rules, but

this equation holds for any Ej and ωj .

5.3 Discontinuities

Having understood the cutting rules in covariant perturbation theory and in time-ordered

perturbation theory, we can now proceed to connect cuts to the discontinuities of ampli-

tudes. As discussed above, the Feynman integralM, viewed as an analytic function of
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Mandelstam invariants, is a multi-valued function on a complex manifold. Cutkosky showed

that one can compute the discontinuity ofM across some region of its Landau surface by

summing over integrals in which different sets of propagators have been cut. However, to

provide practical constraints on amplitudes we need a prescription much more explicit than

Cutkosky’s. For example, how do we identify what region of the surface we are probing

from knowledge of which Feynman propagators have been cut? And how do we actually

perform the analytic continuation around the relevant branch points?

There are two related concepts that we will discuss, and which we want to connect. The

first is the total discontinuity of a Feynman integral in a particular region, which is com-

puted by the covariant cutting rules. A region in this context is the specification of the

signs of the Mandelstam invariants, and the signs of the energies (which particles are in-

coming and which are outgoing), if necessary. Once the signs are specified, we can compute

the total discontinuity using Eq. (5.2.7). The second concept is the discontinuity of a Feyn-

man integral with respect to a particular kinematic invariant s. More specifically, we define

DiscsM as the difference betweenM before and after analytic continuation along a path

that encircles the branch point in s (but no other branch points). Since Mandelstam invari-

ants are not all independent, this has to be done with some care.

5.3.1 Covariant approach

We begin with the total discontinuityM−M, which can be computed using the covariant

cutting rules in Eq. (5.2.7). As defined in Eqs. (5.2.2) and (5.2.6),M is a Feynman integral

with all +iε propagators andM is the same integral with all −iε propagators, multiplied
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by a factor of (−1)L. At any real phase-space point,M andM are complex conjugates of

each other for finite values of iε. From this point of view,M andM are separated by a

branch cut at iε = 0, and may have a finite difference as iε → 0 from the positive or neg-

ative direction. In contrast, viewed as an analytic function of the momenta,M andM are

evaluations of the same function at different points on a complex manifold. Thus the finite

difference betweenM andM can be thought of as the discontinuity of a single function

M. We would like to understand the analytic continuation contour along whichM can be

transformed intoM, as this will allow us to connect the total discontinuity computed by

the covariant cutting rules to the notion of discontinuities with respect to particular Man-

delstam invariants.

The branch cut betweenM andM starts at a branch point (more generally, a branch

hypersurface) somewhere in the space of Mandelstam invariants on whichM depends. As

such, the discontinuity can be computed by analytically continuingM around this branch

point to the other side of the branch cut. To do this, we can continueM into a regime

where it is analytic, and then to the region where it matchesM. For example, suppose

M = ln(−s + iε) andM = ln(−s − iε), and take s > 0. Then we can continueM along

the path s → eiαs with 0 ≤ α ≤ π to the region where s < 0. From this region we can ei-

ther go back and reproduceM using s → e−iαs, or keep going to arrive atM on the other

side of the branch cut using s → eiαs. We can also continue increasing the phase of s in

this manner: as α increases, we end up on higher and higher sheets of the Riemann surface

of ln(−s). A single discontinuity corresponds to the single monodromy around the branch

point at s = 0. In equations, for the logarithm we have DiscsM = DisctotM = M−M =
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2iImM in the region where s > 0.

A useful concept for studying the analytic properties of Feynman integrals is the Eu-

clidean region. In this region, all Mandelstam invariants are negative andM is analytic.4

To see that integrals are analytic in the Euclidean region, it is helpful to write a general

Feynman integral in the Symanzik representation [203]. This is done by using Feynman

parameters and then integrating over the loop momenta. The result is that a Feynman am-

plitude as in Eq. (5.2.2) can be written as

M(p) =

∫
xj≥0

∏
j

dxj δ
(
1−

∑
xj
) Un−2L−2

Fn−2L
. (5.3.1)

Here, the first Symanzik polynomial U is

U =
∑
T1

[ ∏
j 6∈T1

xj

]
, (5.3.2)

where the sum is over all 1-trees T1, which correspond to tree chapters/diagrams that con-

nect all vertices in the graph. The second Symanzik polynomial F is

F =
∑
T2

[ ∏
j 6∈T2

xj

]
(−sP (T2)) + U

∑
j=1

xjm
2
j − iε, sP (T2) =

[∑
j 6∈T2

pj

]2
, (5.3.3)

where mj are the masses of the internal lines and the sum is over 2-trees T2, which them-

4Due to momentum conservation, the Euclidean region will not exist for all Feynman integrals.
However, while the Euclidean region is useful for motivating the relations we derive in Section 5.5,
these relations will not depend on the existence of this region. In particular, any number of Mandel-
stam invariants will be allowed to be positive in these relations in addition to the Mandelstams with
respect to which discontinuities are being taken.
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selves correspond to pairs of disconnected tree chapters/diagrams that involve all vertices of

the original graph. The nice thing about this parametrization is thatM is now manifestly

a function of Mandelstam invariants.

Singularities inM can only arise when F = 0. Since the integration region corresponds

to xi ≥ 0 and in the Euclidean region sP (T2) < 0 for all T2 and m2
j ≥ 0 for all j, the denom-

inator will never vanish and the result will be analytic in the external momenta. Note that

the Euclidean regime is identified with a stronger requirement than thatM is analytic; it

requires that all Mandelstam invariants are negative, not just those associated with 2-trees

from a particular graph. We denote the Euclidean region by R?.

We denote generic regions, in which kinematic invariants can be positive or negative, by

R. We use the more precise notation R+ to indicate a region in which all positive invariants

are slightly above the associated branch cut, i.e. all propagators have +iε. The region in

which all positive invariants are instead below the associated branch cut, and all propaga-

tors have −iε, will be denoted R−.5 Thus, we write

[DisctotM]R =
[
M−M

]
R

=MR+ −MR− . (5.3.4)

To compute the right hand side, we would like to understand how to analytically continue

the amplitude between R+, R?, and R−. There are many ways to do this. The precise path

should not affect the answer for the discontinuity. It is nevertheless important to know that

the path exists, and having an explicit path can help determine which branch points are

5With Feynman propagators, the amplitude in this region also has a (−1)L in R− due to the
additional rotation of the energies in the loop integrals. With TOPT, we simply flip iε → −iε as
there are no energies in the loop integrals.
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encircled.

SinceM is Lorentz invariant, it may seem most natural to continue the invariants them-

selves. For example, we can rotate all the positive invariants to negative values via sI →

eiαsI with 0 < α < π while leaving the negative invariants stationary. This puts us

in R?, where all sI < 0 and the amplitude is nonsingular. We can then keep going, and

analytically continue all the invariants that were originally positive further by extending

0 < α < 2π, to end up in R−. Unfortunately, since the invariants are not all independent,

this procedure can be ambiguous. For example, in massless four-particle kinematics, if we

want to rotate s from being positive to negative while holding the other invariants fixed, we

could try the above analytic continuation path. But if we rewrite our amplitude or integral

to depend just on the other invariants using the relation s = −t − u, this rotation would

seem to have no effect. Thus, one must be careful to do the rotation in a manner that re-

spects the reparameterization invariance of the integrals.

In this paper, we will restrict ourselves to analytic continuations in external energies that

respect overall energy conservation and leave all external three-momenta fixed. In addition

to avoiding the issue described above, this choice facilitates our derivation of relations be-

tween sequential discontinuities and cut integrals, and leads to unambiguous predictions. In

addition, rotating the energies while respecting four-momentum conservation ensures that

we always satisfy any Gram determinant constraints.

In general, there are many ways to rotate external energies to get from a region R to the

Euclidean region. For example, if the momenta in R all take non-exceptional values, one

can uniformly lower the energies Ej → αEj with α < 1. Eventually, at some point αmin
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Figure 5.1: Example analytic continuation involving three external energies. We start at the kine-
matic point p1 = (4, 2, 0, 0), p2 = (3, 6, 0, 0), and p3 = (−7,−8, 0, 0), where we have p21 = 12, p22 =
−27, and p23 = −15. We rotate the energies by Ej → [0.1 + 0.9eiπs cos(πs)]Ej with 0 ≤ s < 1.
During this rotation the positive invariant p21 circles its branch point at p21 = 0, thus taking us from
R1 → R? → R1, but changing the sign of the corresponding iε. The small gaps at the beginning
and end of the paths represent the ±iε.

all the invariants become negative. One can then rotate the energies in the complex plane

around αminEj and return to α = 1 on the opposite side of the real energy axis. This pro-

cedure respects energy-momentum conservation everywhere along the path. One only has

to be careful that the invariants do not encircle their branch points twice. A concrete ex-

ample involving three momenta that follows a path homotopic to the one described in this

paragraph is shown in Fig 5.1. We construct a number of similar paths for the examples we

consider in Section 5.6.

Let us now assume that an appropriate analytic continuation in the energies has been

chosen, which takes us from a region R+ to the corresponding region R− (where all Man-

delstam invariants have the same sign, but each +iε has been changed to −iε). Then the

difference betweenM before and after this analytic continuation should match the total
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discontinuity of a Feynman integral in the region R using the covariant cutting rules:

[DisctotM]R+
=MR+ −MR− =

∑
cuts

MR+|− (5.3.5)

We emphasize the right side of this equation involves a sum over all cuts (in all channels),

as explicitly given in Eq. (5.2.7). When we cut a set of propagators, we replace each one by

cut :
1

p2 −m2 + iε
→ −2πiδ(p2 −m2)θ(p0) (5.3.6)

and use +iε for all propagators before the cut and −iε for all propagators after the cut, as

implied by the subscript on R+|−.

We would now like to derive a concrete relation between DiscsM, and the cuts ofM.

The discontinuity ofM with respect to s corresponds to analytically continuingM from

being evaluated at s + iε to being evaluated at s − iε, while the other invariants remain

unchanged. Let us denote the region in which s > 0 and all other kinematic invariants are

negative by Rs. As only the invariant s is positive in this region, all the nonzero cuts in the

sum in Eq. (5.3.5) are in the s-channel. As a result, we have

[DisctotM]Rs =MRs+
−MRs−

=
∑
cuts

MR+|− =
∑

cuts in s

MR+|− . (5.3.7)

To further connect this sum of cut integrals to DiscsM, we must show that the analytic

continuation corresponding to Disctot in this region encircles a branch point in only in s,

and in no other invariants. This turns out to be easiest to see in TOPT, which we turn to
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now.

5.3.2 Discontinuities in TOPT

In TOPT all internal lines are on-shell with positive energy and real masses (q0 > 0 and

q2 ≥ 0). External lines, however, have no such restriction; they can have p2 < 0 if the

diagram is meant to be embedded in a larger diagram (for example, the off-shell photon

in deep-inelastic scattering is spacelike), and incoming external particles can have negative

energy if they correspond to outgoing particles.

Because we are ultimately interested in the analytic properties of Feynman integrals as

functions of external energies, it is helpful to separate out the contributions to TOPT prop-

agators from internal and external lines. In particular, we can put each TOPT propagator

in the form 1/(EP − ωq + iε), where EP corresponds to a sum over external energies, and

ωq =
∑

j ωj is a sum over particles in internal lines, where ωj =
√
~qj

2 +m2
j .

Consider for example the one-loop TOPT graph, with all Ei > 0:

p1

q1

q3

q2

p3

p2

=
1

E1 − (ω1 + ω2) + iε

1

(E1 − E3)− (ω2 + ω3) + iε
. (5.3.8)

In the first propagator, EP = E1 = E2+E3 and ωq = ω1+ω2 while in the second propagator

EP = E1 − E3 = E2 and ωq = ω2 + ω2. If we had drawn p2 and p3 as incoming lines with

negative energy, the diagram would have been more awkward to draw, but we would have
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found an equivalent expression:

p3

p1

p2

=
1

E1 − (ω1 + ω2) + iε

1

(E1 + E3)− (ω2 + ω3) + iε
. (5.3.9)

The value of the diagram is the same since we have flipped E3 → −E3. We use the conven-

tion that all lines have positive energies, as in Eq. (5.3.8).

For a general TOPT graph, the energies EI appearing in the amplitude have a natural

sequence. We begin with the total initial-state energy on the far left. Each time a vertex

connecting to an external momentum is passed, the external energy is either added, if it is

incoming, or subtracted, if it is outgoing. If the vertex is purely internal, then EP does not

change. For example, consider this graph:

p1

p2

p3

p4

p5

(5.3.10)

The initial energy is E1 + E2 and the energy past the first vertex (i.e. the energies of the

states that cross the first vertical dashed line) is E1 + E2 + E5 + ω1 + ω2 + ω3 for some

internal energies ωj ; this first propagator depends on the difference between these energies

EP = −E5. The sequence of EP values as we move forward in time is

−E5, E1−E5, E1−E5, E1−E5, E1−E5−E3, E1−E5−E3+E2 . (5.3.11)
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If we took all momenta to be incoming, then we would flip the sign of E3, E4, and E5 so all

the signs in Eq. (5.3.11) would be positive. The corresponding sequence is

5→ 1→ 3→ 2→ 4 . (5.3.12)

If we use energy conservation to rewrite the energy sum (i.e. E5 = −E4 − E3 − E2 − E1),

the sequence would be the same, in the opposite direction: 5 ← 1 ← 3 ← 2 ← 4. The

fact that the energies appearing in each successive propagator are a subset of the energies

that appeared the preceding propagators (or vice versa) will be important to proving the

Steinmann relations in Section 5.5.

Each energy EI is the energy of a four-vector PµI =
∑

i∈I ±p
µ
i . Thus there is a one-to-

one correspondence between invariants sI = P 2
I and these energies. A TOPT propagator

1/(EI − ωq + iε) can only become singular when EI = ωq, which only happens if sI >

0. To check this claim, note that the three-momentum ~PI is the same as the sum of the

three-momenta of all the internal particles contributing to ωq, namely ~PI =
∑

j ~qj . So we

have two four-vectors, PµI = (EI , ~PI) and qµ = (ωq, ~PI), with the same three-momentum.

Recall that ωq is the sum of the (positive) energies of the on-shell internal lines. Thus, the

four-vector qµ must be timelike, q2 > 0, since it corresponds to the sum of four-momenta

of physical on-shell particles. Therefore, PµI must be timelike when EI = ωq. So if sI =

P 2
I < 0 then EI 6= ωq. Thus the TOPT propagators can go on-shell only in the kinematical

regions where there are singularities in the full Feynman integral, namely when sI > 0.

As a corollary, we can drop the +iε in any TOPT propagator corresponding to a negative
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invariant.

Now let us discuss how to take the discontinuity of a TOPT graph. A TOPT graph is

a product of propagators of the form 1/(EI − ωq + iε). To take the discontinuity in the

channel sI associated with EI , we want to analytically continue EI around the pole of this

propagator. More precisely, we want to continue EI around the branch point E?I at the end

of the line of possible values of ωq for a given external momentum. This branch point E?I

is at least as large as the magnitude of the momentum in the channel, E?I ≥ |~PI | but can

be strictly larger, for example, if the internal lines are massive. The analytic continuation

between R+ and R− should have all the energies pass around their branch points, holding

the three-momenta fixed and respecting energy conservation.6

Taking the difference between a single TOPT propagator before and after this analytic

continuation gives

Disctot
1

EI − ωq + iε
=

1

EI − ωq + iε
− 1

EI − ωq − iε
= −2πiδ(EI − ωq) , (5.3.13)

as expected. Similarly, taking the difference between a generic TOPT graph M before and

after analytically continuing from R → R? → R using a path that encircles the branch

points in all of the energies, we get

DisctotM =
∑
j

1

EI1 − ω1 + iε
· · · (−2πi)δ(EIj − ωj) · · ·

1

EIn − ωn − iε
. (5.3.14)

6Note that we do not require the external masses to remain fixed, so in general external particles
will not remain on-shell during this analytic continuation.
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If we sum over all TOPT chapters/diagrams with the same topology, this reproduces the

covariant cutting rules for the total discontinuity of the corresponding Feynman integralM.

That is, we have shown that Eq. (5.2.7) holds with the left-hand side explicitly written as a

discontinuity, and have thereby rederived Eq. (5.3.5) using TOPT.

Eqs. (5.3.5) and (5.3.14) hold in any region R. Let us now focus on the region Rs, where

only the Mandelstam invariant s is positive, and all other invariants are negative. Since we

have shown that singularities in TOPT chapters/diagrams only arise when the energy and

corresponding invariant are positive (P 0 > 0 and s = P 2 > 0), in the region Rs there can

only be singularities associated with s. In other words, as we continue from Rs+ to R? and

back to Rs−, we can only pass around branch points associated with s. This is what we set

out to show at the end of the last subsection. As a result, we can now write

[DiscsM]Rs = [DisctotM]Rs =
∑

all cuts

MR+|− =
∑

cuts in s

MR+|− . (5.3.15)

Stated more formally, what we have shown is that the analytic continuation used to com-

pute DiscsM is homotopic to the path used to compute DisctotM in the region Rs.

We would next like to generalize this formula to the case of sequential discontinuities,

in the same or different channels. Unfortunately, we cannot simply repeat the procedure

that allowed us to compute the first discontinuity. The problem is that this first disconti-

nuity takes the difference of two functions on the branch cut, and thus seems to be only

defined on the branch cut itself. For example, Disc ln2(s) = 4πi ln |s|Θ(−s) is only defined

for negative real s, where the branch cut is. In addition, when we take a cut, we turn all
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the propagators beyond the cut from +iε to −iε. What is then the right way to cut a −iε

propagator? To proceed, we will now describe a more sophisticated set of mathematical

tools that will allow us to analytically continue Feynman integrals beyond the cut plane.

This will allow us to take sequential discontinuities of Feynman integrals.

5.4 Discontinuities as monodromies

The ±iε notation in Feynman propagators is sufficient to compute single discontinuities

of Feynman integrals, because this first discontinuity computes the difference between the

value of the integral on different sides of a branch cut. For sequential discontinuities, we

must explore a larger swath of the analytic structure of the various polylogarithmic func-

tions that appear in a given Feynman integral.7 The ±iε notation is not sufficient to de-

scribe this structure. Thus, in this section we review how polylogarithmic functions can be

analytically continued beyond the principal branch, and how the resulting functions can be

related back to the ±iε prescription. We also discuss how these types of analytic continua-

tions can be carried out on TOPT propagators.

5.4.1 Warm-up: the natural logarithm

Consider first the natural logarithm. It can be defined in the region |s− 1| < 1 by the sum

ln s ≡ −
∞∑
n=1

1

n
(1− s)n for |s− 1| < 1 . (5.4.1)

7While more general types of functions are known to appear in Feynman integrals, we leave
these generalizations to future work.
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To define ln s outside the region |s− 1| < 1, one can series expand Eq. (5.4.1) around points

other than s = 1 that are within the original region of convergence to find sum representa-

tions that are valid beyond this region. Iterating this procedure, one can extend the func-

tion ln s to the entire complex plane, excluding a curve going from the origin to infinity (the

branch cut). This is called the cut complex plane. Since the cut complex plane is simply

connected, this analytic continuation is uniquely defined, once the location of the branch

cut has been chosen. While the shape of this branch cut is in principle arbitrary, some of

this arbitrariness can be removed if we ask that the continued logarithm satisfy the reality

property f(s̄) = f(s). The standard branch cut choice for the logarithm, going from 0 to

−∞ along the real s axis, is consistent with this requirement. We call ln s with this choice

of branch cut the principal branch of the logarithm.

With the standard placement of the branch cut for ln s along the negative real axis, the

value of ln s for negative real s is usually defined to mean the function produced by analytic

continuation going counterclockwise from the positive real axis. Moreover, the discontinu-

ity of the logarithm, which computes the difference between the value of this function just

above and below the negative real axis, is given by

Discs ln s = ln(s+ iε)− ln(s− iε) pd7−→ 2πiΘ(−s) , (5.4.2)

where pd7−→ indicates that this value for Discs ln s only makes sense when one restricts to

infinitesimally-separated points that are both in the principle domain. The fact that this

discontinuity is nonzero for negative values of s illustrates the ambiguity in defining ln s
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directly on the branch cut. This is consistent with the way discontinuities were calculated

in the previous section, as the only way to analytically continue a function back to the same

point in the cut complex plane is if we start and end on the cut.

The ±iε notation is sufficient for indicating which side of a branch cut we are on when

we restrict ourselves to the principal branch of a function. However, when taking additional

discontinuities, the ±iε notation and the associated non-analytic theta function are prob-

lematic. The single logarithm is a bit too simple, but already ln2 s demonstrates the prob-

lem. Its discontinuity in the cut complex plane picture is

Discs ln2 s = ln2(s+ iε)− ln2(s− iε) pd7−→ 4πi ln |s|Θ(−s) . (5.4.3)

As with ln s, the discontinuity of ln2 s is only nonzero for real s < 0, since otherwise ln2(s+

iε) and ln2(s − iε) agree. But if this discontinuity is only nonzero on the negative real axis,

further analytic continuations are ambiguous, and correspondingly so are sequential discon-

tinuities.

To proceed, we note that an alternative way to define the logarithm (other than

Eq. (5.4.1)) is through the contour integral

ln s =

∫ s

1

dx

x
. (5.4.4)

The integration is to be performed along any contour within the cut complex plane that

goes from 1 to s. This definition agrees with the series definition and analytic continuation.
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The discontinuity across the branch cut can then be computed as

Discs ln s =

∫ s+iε

1

dx

x
−
∫ s−iε

1

dx

x
=

∫
0

dx

x
= 2πi , (5.4.5)

where 0 is the infinitesimal contour that wraps around the origin once counterclockwise.

For other functions, like ln3 s or the dilogarithm Li2(s), the discontinuity will not be con-

stant. In such cases we can consider further discontinuities. To do so we need to consider

the maximal analytic continuation of our functions, in which we do not restrict their do-

main to the cut complex plane.

A clue to how to proceed is given by the closed contour 0 in Eq. (5.4.5), which appar-

ently passes right through the cut. Indeed, although the integral computation agrees with

the discontinuity across the cut, what it is actually computing is the difference between the

value of the function on two sheets of a Riemann surface; the location of the branch cut is

immaterial. The only invariant is the location of the branch point, at s = 0 for the loga-

rithm. This is the unmovable singularity of the integrand.

We can extend the definition of the logarithm in Eq. (5.4.4) beyond the cut complex

plane by simply writing

lnγs =

∫
γ

dx

x
, (5.4.6)

where the integration contour γ can be any path from 1 to s that does not pass through

the origin. This is the maximal analytic continuation of ln s. The domain of the maximal

analytic continuation in this case is an infinite number of copies of the complex plane with

a branch point at s = 0. These additional copies can be accessed by integration contours
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Figure 5.2: The logarithm can be defined as an integral along a path lnγ s =
∫
γ
dx
x , where the paths

begin at x = 1 and end at x = s. The value of lnγ s depends on the number of times the integration
contour wraps around the branch point at the origin. We define families of paths by γn where n
denotes the number of times the path circles the origin. The family labelled γ0 is defined to give
the principal branch of the logarithm. On the negative real s axis lnγ0 s = ln(s + iε) and lnγ−1

s =
ln(s− iε).

that wrap around this branch point a given number of times. By considering all such paths,

we obtain an infinite number of values for ln s that differ by multiples of 2πi. This is illus-

trated in Fig. 5.2, where we denote by γn equivalence classes of paths that end at s after

wrapping around the origin n times in the counterclockwise direction. The principal branch

of the logarithm corresponds to paths that never cross the negative real s axis.

The infinite tower of values associated with ln s can be thought of as being generated by

the closed integration contour around the branch point at the origin. This integral is re-

ferred to as the monodromy of ln s around the origin, and constitutes the only element of

the natural logarithm’s monodromy group. The discontinuities of polylogarithms can be

computed in terms of their monodromies; for instance, in our new notation the discontinu-

ity across the branch cut of ln s becomes

lnγ0s− lnγ−1s =

∫
0

dx

x
= 2πi , (5.4.7)
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where the integral over 0 is the monodromy. To connect the monodromy picture to the

cut-plane picture, we now identify

ln(s+ iε) = lnγ0s , ln(s− iε) = lnγ−1s . (5.4.8)

To be clear, ln(s ± iε) on the left side of these equations means we approach the real s axis

from above or below on the principal branch of the logarithm on the cut complex plane.

The logarithms on the right hand side are defined through contours and have no branch cut

— the function lnγ s is analytic on the negative real s axis (and everywhere else) as long

as the path γ is deformed smoothly to change s. With this identification, Eq. (5.4.7) then

agrees with Eq. (5.4.2) up to the theta function. Indeed, the discontinuity defined in terms

of the monodromy is an analytic function, while the difference using the principal branch of

the logarithm comes with a non-analytic Θ(−s).

If we adopt the relations in Eq. (5.4.8) as analytic generalizations of ln(s+ iε) and ln(s−

iε), we can easily compute discontinuities of powers of logarithms by simply substituting in

Eq. (5.4.7). For instance,

Discs ln2(s+ iε) = ln2(s+ iε)− ln2(s− iε) = (2πi) [2 ln(s+ iε)− 2πi] (5.4.9)
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and

Discs ln3(s+ iε) = ln3(s+ iε)− ln3(s− iε)

= (2πi)
[
3 ln2(s+ iε)− 6πi ln(s+ iε)− 4π2

]
. (5.4.10)

We can now proceed to take additional discontinuities by subtracting from the function its

value with all +iε switched to −iε. We then find

DiscsDiscs ln3(s+ iε) = (2πi)2 [6 ln(s+ iε)− 12πi] (5.4.11)

and

DiscsDiscsDiscs ln3(s+ iε) = 6(2πi)3 . (5.4.12)

If we take any further discontinuities of ln3(s+ iε) we get zero. It is worth emphasizing here

that Disc does not in general satisfy the product rule

Disc(AB) 6= ADiscB +BDiscA . (5.4.13)

The discontinuity operator computes a finite difference around a branch point, which is not

an infinitesimal differential in any sense.

In summary, we have seen that for powers of logarithms, we can compute sequential dis-

continuities by identifying the ±iε prescription with integration contours that end on dif-

ferent Riemann sheets, and the discontinuity across the cut with the monodromy around
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the branch point. In general, the transcendental functions that show up in scattering ampli-

tudes are more complicated than logarithms, and depend on many Mandelstam invariants

with many branch points. Understanding the monodromy group of these more complicated

functions will help us untangle their analytic structure, and thereby help us compute their

sequential discontinuities. Correspondingly, we now turn to a systematic procedure for com-

puting the generators of the monodromy group associated with a general polylogarithmic

function.

5.4.2 The monodromy group

Given a function defined by a contour integral, we can determine the effect of an analyti-

cally continuing around one of its branch points by integrating along a closed contour that

encircles this branch point. The integrals along these closed contours are referred to as the

monodromies of the function, and form a group. By computing an explicit representation

of this group, we can compute the value of this function anywhere in its maximally analyt-

ically continued domain. We illustrate how this group can be systematically computed, by

working through some examples.

One branch point

Let us first return to the example of powers of logarithms lnn s, for any positive integer

n. As the discontinuities of lnn s involve lower powers of ln s, we consider all powers up to n
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simultaneously. The total differential of these functions is

d

(
lnn s

n!

)
=

(
lnn−1 s

(n− 1)!

)
ds

s
, (5.4.14)

where we have normalized lnn s by a factor of n! for convenience. Let’s take n = 3 for con-

creteness and collect the functions that appear in the derivatives of ln3 s into a vector

V ≡
(

1 ln s 1
2 ln2 s 1

3! ln3 s

)
. (5.4.15)

The differential relations in Eq. (5.4.14) can then be put in the matrix form

dV = V · ω, (5.4.16)

where the connection ω is an (n+ 1)× (n+ 1) matrix defined on C∗ ≡ C\{0} whose entries

are one-forms:

ω =



0 ds
s 0 0

0 0 ds
s 0

0 0 0 ds
s

0 0 0 0


. (5.4.17)

As we analytically continue lnn s around s = 0, the vector of functions V will mix with

other functions that, like V, satisfy the differential equation in Eq. (5.4.16). These other

functions have lower transcendental weight, and the mixing coefficients will be proportional

to powers of iπ. Thus, general solutions to Eq. (5.4.16) will contain all the possible informa-

192



tion about the monodromies of the function.

As there are n + 1 independent solutions to Eq. (5.4.16), we can group these solutions

into an upper-triangular matrix M called the variation matrix, which we normalize to have

1’s along the diagonal. The variation matrix on the principal branch of the logarithm for

n = 3 can be written as

Mγ0(s) =



1 ln s 1
2 ln2 s 1

3! ln3 s

0 1 ln s 1
2 ln2 s

0 0 1 ln s

0 0 0 1


. (5.4.18)

Variation matrices have a close connection to the coproduct structure often utilized in

Feynman integral calculations. Further discussion of this connection is given in Ap-

pendix B.1.

To extend the variation matrix in Eq. (5.4.18) beyond the cut complex plane, we need to

determine the effect of deforming the integration contour defining its entries around their

branch points. Although this extension changes the value of the function at s, the differ-

entials of the function will still be related by the differential equation Eq. (5.4.16). Since

the general solution to this differential equation are linear combinations of the rows of the

variation matrix, we can interpret the action of the monodromy as multiplication of the

variation matrix by another matrix, the monodromy matrix.
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The most general solution to the differential equation in Eq. (5.4.16) is given by

Mγ(s) = P exp

(∫
γ
ω

)
, (5.4.19)

where P exp(
∫
γ ω) is a path-ordered exponential along the path γ starting at 1 and ending

at s. For a given contour from a to b, the path-ordered exponential is defined by

P exp

(∫ b

a
ω

)
= 1 +

∫ b

a
ω +

∫ b

a
ω ◦ ω + · · · (5.4.20)

where
∫ b
a ω ◦ ω denotes an iterated integral. Since ω is a matrix, ω ◦ ω implies matrix multi-

plication: ∫ b

a
ω ◦ ω =

∫
a≤t1≤t2≤b

ωik(t1)ωkj(t2) . (5.4.21)

Here we have made the matrix indices explicit for clarity, and k is to be summed over. Note

that the expansion in powers of ω is finite since ω is nilpotent.

For differential forms in several variables x = (x1, . . . , xn), these iterated integrals are

defined as follows. First, we choose a path γ parametrized by t ∈ [0, 1] and defined by

(x1(t), . . . , xn(t)). Then, given some differential forms ξ1(x), . . . , ξk(x) in the variables x, we

can pull them back to the path γ, whereupon they become differential forms γ∗ξi(t) in the

variable t parameterizing the path. The iterated integral of these forms along γ is defined

as ∫
γ
ξ1(x) ◦ · · · ◦ ξk(x) =

∫
0≤t1≤···≤tk≤1

γ∗ξ1(t1) · · · γ∗ξk(tk). (5.4.22)

We discuss how to evaluate integrals of this type in more detail in Appendix B.5.
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Given an integration contour γ that ends at x, the value of Mγ(x) can be computed by

integrating the path-ordered exponential in Eq. (5.4.19). We can split up any path γ be-

tween the basepoint (where the integration starts) and x into a contour γ0 that goes from

the basepoint to x without encircling any of branch points (the poles in ω), and a series

of contours {γ′j} that each begin and end at x and encircle one of the branch points of ω.

That is, we have γ = γ0 ◦ γ′i1 ◦ · · · ◦ γ
′
in
, where γa ◦ γb denotes the composition of paths in

which we first run along the path γa and then along the path γb. A very useful feature of

defining matrices as path-ordered exponentials is that composing two paths corresponds to

matrix multiplication. So

Mγ = Mγ0◦γ′i1◦···◦γ
′
in

= Mγ0 ·Mγ′i1
· · ·Mγ′in

(5.4.23)

Now, this contour can also be written γ = (γ0 ◦ γ′i1 ◦ γ
−1
0 ) ◦ · · · ◦ (γ0 ◦ γ′in ◦ γ

−1
0 ) ◦ γ0, where

γik = γ0 ◦ γ′ik ◦ γ
−1
0 encircles the same poles as γik but starts and ends at the same basepoint

as γ0 rather than starting and ending at x. Hence, we can also write

Mγ = Mγi1◦···◦γin◦γ0 = Mγi1
· · ·Mγin ·Mγ0 (5.4.24)

where we are now prepending closed contour integrals from a common basepoint onto the

integration contour before we arrive at x. This convention ensures that the monodromy ma-

trices are independent of the endpoint x. In summary, to compute the monodromy from

x along the path γ′1 followed by γ′2 we first multiply on the left by Mγ2 followed by multi-

plication on the left of the result by Mγ1 where the paths γ1 and γ2 start and end at the
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basepoint independent of x.

In the case of lnn s there is only a single branch point at the origin. The contour γ0 can

be taken to be the straight path from 1 to s, except when s lies on the negative real axis, in

which case we deform the path γ0 to go just above the branch point at zero. Then one can

check that the variation matrix Mγ0 in Eq. (5.4.18) is exactly P exp
∫
γ0
ω along this path

(see Eq. (5.4.29) below). Since there is only one branch point, we define paths γ+ and γ−

that encircle the origin counterclockwise or clockwise with unit radius. We can thus decom-

pose a general path γ into some number of iterations of γ+ or γ−, followed by γ0, namely

γ = γ+ ◦ · · · ◦ γ+ ◦ γ0 or γ = γ− ◦ · · · ◦ γ− ◦ γ0.

Given a member γk of the equivalence class of contours that encircle the origin k times

clockwise and end at s, we have

Mγk(s) =
(
Mγ−

)k ·Mγ0(s) . (5.4.25)

The matrix Mγ− can thus be seen to be a generator of the monodromy group, since it maps

lnn s to its value after encircling the branch point s = 0 one more time.

Since we have specified their integration contours, Mγ0(s) and Mγ− can be computed

directly. To calculate Mγ− , we parametrize the path γ− by s = exp(−iθ) for θ ∈ [0, 2π].

This gives us ds
s = −idθ, and thus

∫
γ−

ds

s
◦ · · · ◦ ds

s︸ ︷︷ ︸
j

=
(−2πi)j

j!
. (5.4.26)
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The analogous set of integrals over γ0 just return the logarithms we started with, namely

∫
γ0

ds

s
◦ · · · ◦ ds

s︸ ︷︷ ︸
j

=
lnj(s)

j!
. (5.4.27)

Expanding the path-ordered exponentials and evaluating the iterated integrals as described

above on the connection in Eq. (5.4.17) for ln3 s, we find

Mγ−(s) = 1+

∫
γ−

ω+

∫
γ−

ω◦ω+

∫
γ−

ω◦ω◦ω =



1 −2πi 1
2(−2πi)2 1

3!(−2πi)3

0 1 −2πi 1
2(−2πi)2

0 0 1 −2πi

0 0 0 1


(5.4.28)

and

Mγ0(s) = 1 +

∫
γ0

ω +

∫
γ0

ω ◦ ω +

∫
γ0

ω ◦ ω ◦ ω =



1 ln s 1
2 ln2 s 1

3! ln3 s

0 1 ln s 1
2 ln2 s

0 0 1 ln s

0 0 0 1


, (5.4.29)

in agreement with Eq. (5.4.18).

Using Eq. (5.4.25), we can then compute the effect of going around the branch point by
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multiplying these matrices. For example, we can calculate the first discontinuity by

(1−Mγ−) ·Mγ0(s) = −



0 −2πi −2πi ln s+ (−2πi)2

2
−2πi

2 ln2 s+ (−2πi)2

2 ln s+ (−2πi)3

3!

0 0 −2πi −2πi ln s+ (−2πi)2

2

0 0 0 −2πi

0 0 0 0


.

(5.4.30)

The discontinuity of ln3s is then 3! times the top-right entry of this matrix, in agreement

with Eq. (5.4.10).

More generally, under the action of Mγ− the entry in the first row and last column of

Mγ0(s) transforms as

Mγ−
lnn(s)

n!
=

n∑
k=0

lnn−k(s)

(n− k)!

(−2πi)k

k!
. (5.4.31)

Here we are generalizing notation slightly by having Mγ− act on a function rather than the

variation matrix in which it is the upper-right entry. Thus, the discontinuity is

Discs lnns = (1−Mγ−) lnns = −
n∑
k=1

n!
lnn−k(s)

(n− k)!

(−2πi)k

k!
. (5.4.32)

This agrees with what we get using the substitution ln(s − iε) = ln(s + iε) − 2πi, as we did
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for instance in Eq. (5.4.9), which gives us

Discs lnn(s+ iε) = lnn(s+ iε)− lnn(s− iε) = −
n∑
k=1

n
k

 lnn−k(s+ iε)(−2πi)k (5.4.33)

for arbitrary n.

Further discontinuities can be computed by acting with the same operator 1 − Mγ− .

For later reference, we list here some general formulas that can be derived either using the

substitution method or with the use of monodromy matrices:

DiscsDiscs lnn(s+ iε) = lnn(s+ iε)− 2[ln(s+ iε)− 2πi]n + [ln(s+ iε)− 4πi]n (5.4.34)

=
n∑
k=1

(2k − 2)

n
k

 lnn−k(s+ iε)(−2πi)k . (5.4.35)

Similarly, the formula for m discontinuities is

Discms lnn(s+ iε) =
m∑
`=0

(−1)`

m
`

 [ln(s+ iε)− `2πi]n (5.4.36)

= (−1)mm!
n∑
k=1


k

m


n
k

 lnn−k(s+ iε)(−2πi)k (5.4.37)

where 
k

m

 =
1

m!

m∑
`=1

(−1)m−`

m
`

 `k (5.4.38)
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are the Stirling numbers of second kind. These numbers have a useful combinatorial inter-

pretation: {km} is the number of ways of partitioning a set of k elements into m non-empty

sets.

Multiple branch points

Let us now consider an example involving two branch points, the dilogarithm

Li2(s) ≡
∞∑
n=1

sn

n2
for |s| < 1 . (5.4.39)

Similar to the definition of the logarithm in Eq. (5.4.1), this power series definition is only

convergent in the region |s| < 1, but can be uniquely continued to the rest of the cut com-

plex plane, where the branch cut is usually placed on the positive real axis running from 1

to ∞. The dilogarithm can also be given by an integral definition,

Li2(s) ≡
∫ s

0

dx

x
Li1(x), with Li1(s) ≡

∫ s

0

dx

1− x
= − ln(1− s) , (5.4.40)

We write the integral in terms of Li1(s) rather than − ln(1 − s) to make the singularities

more transparent, as Li1(s) and Li2(s) both have branch points at s = 1, with a branch cut

conventionally going from 1 to ∞ along the positive real s axis. The standard placement of

the branch cut for Lin(s), from 1 < s < ∞ is consistent with the standard branch cut for

the logarithm, s < 0.
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Re s

Im s

0 1

s
s

s

Li2(s) =
∫
γ0

ds
1−s ◦

ds
s

Figure 5.3: Li2(s) has branch points at s = 0 and s = 1. The principal branch of Li2(s) has a
branch cut on the real line from s = 1 to +∞. The standard contour γ0 in the analytic integral
definition of Li2(s) begins at a basepoint at s = ε > 0 and proceeds in a straight line to s, diverting
in a counterclockwise path around the branch points when necessary.

Using equation (5.4.40), we have

dLi2(s) = −ds
s

ln(1− s), d ln(1− s) = − ds

1− s
. (5.4.41)

We can again put these relations in a matrix form

d

(
1 Li1(s) Li2(s)

)
=

(
1 Li1(s) Li2(s)

)
· ω , (5.4.42)
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where

ω =


0 ds

1−s 0

0 0 ds
s

0 0 0

 (5.4.43)

is defined on C\{0, 1}.

For Li2(s), we take the basepoint to be s = 0 and the path γ0 defining its principal

branch to be the straight line from 0 to s, which avoids the branch points at 0 and 1 with

a counterclockwise detour if necessary. This is shown in Fig. 5.3. Note that this contour

is problematic for the differential dss , which diverges at the lower integration bound. This

can be dealt with using tangential basepoint regularization, which amounts to introducing

a cutoff ε on the lower integration limit and dropping the powers of ln ε that result (see for

instance [204]).8 For example,

∫ s

0

ds

s
◦ ds

1− s
=

∫ s

ε

ds′

1− s′

∫ s′

ε

ds′′

s′′
= −Li2(s)− ln(1− s) ln

s

ε
(5.4.44)

∼= −Li2(s)− ln(1− s) ln s , (5.4.45)

where ∼= means terms divergent in ε are dropped and then ε → 0. Then it is straightfor-

8In more detail, this regularization implies a choice of parametrization for the path in which the
tangent vector to the path at the basepoint is of length one. The monodromy group is then defined
with respect to the paths that satisfy this constraint. In other words, we consider homotopy classes
of paths which can be continuously deformed into one another with the tangent at the basepoint
being kept constant.
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ward to compute the variation matrix by integrating ω along γ0:

Mγ0(s) = P exp

(∫
γ0

ω

)
=


1 Li1(s) Li2(s)

0 1 ln s

0 0 1

 . (5.4.46)

Note that the this variation matrix encodes precisely the coproduct structure of Li2(s),

∆Li2(s) = 1⊗ Li2(s) + Li1(s)⊗ ln s+ Li2(s)⊗ 1 , (5.4.47)

as discussed further in Appendix B.1.

We would now like to extend this construction to the maximal analytic continuation of

Li2(s). As there are multiple branch points, we should in general be careful to distinguish

between infinitesimal contours that encircle these branch points, and the full contours that

not only wrap around these points but also start and end at our chosen basepoint of inte-

gration. For lnn s we took the basepoint to be 1, but for all the other functions we study in

this paper we will take the basepoint to be 0 (or a small value ε on the positive real axis,

when regularization is required). We denote the infinitesimal contour in a variable x that

encircles the point p counterclockwise by x
p . In contrast, we denote the path around x = p

that starts and ends at the basepoint by x
p . When the function under study only depends

on a single variable x, we will often drop the index indicating which variable the contour is

taken in.

The contribution from moving along any contour is computed by evaluating the path-
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ordered exponential P exp(
∫
γ ω) on the contour. For the monodromy around 0, we find

M
0

= M
0

=


1 0 0

0 1 2πi

0 0 1

 . (5.4.48)

To compute the monodromy matrix associated with the branch point at 1, we first use

Eq. (5.4.46) to determine the contribution from the path between 0 and 1, and compute

the infinitesimal contour around 1 as before. We find

M0→1 =


1 0 π2

6

0 1 0

0 0 1

 , M
1

=


1 −2πi 0

0 1 0

0 0 1

 , (5.4.49)

where we have dropped all logarithmically-divergent terms in accordance with tangential

basepoint regularization. The complete path thus gives

M
1

= M0→1 ·M 1
·
(
M0→1

)−1
=


1 −2πi 0

0 1 0

0 0 1

 . (5.4.50)

We highlight again that the action of the monodromy matrices proceeds from left to right;

Eq. (5.4.50) computes the effect of moving from 0 to 1 along the real line, rotating counter-

clockwise around an infinitesimal contour centered at 1, and then moving back to 0.

Acting with these matrices on Mγ0 allows us to compute any sequence of monodromies

204



on the functions appearing in Mγ0 . For instance, prepending a monodromy around 0 to the

path γ0 gives

M
0
·Mγ0 =


1 Li1(s) Li2(s)

0 1 ln s+ 2πi

0 0 1

 , (5.4.51)

while prepending a contour around 1 gives

M
1
·Mγ0 =


1 Li1(s)− 2πi Li2(s)− 2πi ln s

0 1 ln s

0 0 1

 . (5.4.52)

These matrices imply that Li1(s) and Li2(s) only have a monodromy around s = 1 while

ln s only has a monodromy around s = 0, as expected. We can also now compute the

sequential discontinuity of Li2(s) by first taking the monodromy around s = 1 and then

around s = 0. As we prepend these contours, this corresponds to

(1−M
1
) · (1−M

0
) ·Mγ0 =


0 0 −(2πi)2

0 0 0

0 0 0

 , (5.4.53)

which tells us that Disc0Disc1Li2(s) = −(2πi)2. Similarly, we can compute that (1−M
1
) ·

(1 −M
0
) ·Mγ0 = 0, consistent with the fact that Li2(s) does not have a discontinuity

around s = 0.

205



Multiple variables

Let us finally turn to an example involving multiple variables. We consider the two-

variable function

Φ1(z, z̄) = 2Li2(z)− 2Li2(z̄)− ln(zz̄)
[
Li1(z)− Li1(z̄)

]
. (5.4.54)

This function arises in the one-loop triangle and one-loop box integrals (see Section 5.6.2

below). Here we treat z and z̄ as independent variables, so this function is analytic for |z −

1
2 | <

1
2 and |z̄ − 1

2 | <
1
2 . Following the same steps as in our previous examples, we first

compute

dΦ1 =

(
dz

z
− dz̄

z̄

)(
Li1(z) + Li1(z̄)

)
−
(

dz

1− z
− dz̄

1− z̄

)
ln(zz̄) . (5.4.55)

This can be put in the matrix form dMγ0 = Mγ0 · ω, where

ω =



0 dz
z + dz̄

z̄
dz

1−z + dz̄
1−z̄ 0

0 0 0 − dz
1−z + dz̄

1−z̄

0 0 0 dz
z −

dz̄
z̄

0 0 0 0


. (5.4.56)

The connection ω is well-defined in C2\{z = 0, z = 1, z̄ = 0, z̄ = 1}, so there are now four

codimension-one branching varieties.

We can define a path γ0 between the basepoint (0, 0) and (z, z̄) in the same way we did
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for Li2(s), namely we use straight line paths, except when z or z̄ are on the real line out-

side of (0, 1), when we go counterclockwise around the branch points. Integrating along this

path gives the variation matrix on the principal branch. The result is

Mγ0(z, z̄) = P exp

(∫
γ0

ω

)
=



1 ln(zz̄) Li1(z) + Li1(z̄) Φ1(z, z̄)

0 1 0 −Li1(z) + Li1(z̄)

0 0 1 ln(z/z̄)

0 0 0 1


. (5.4.57)

Note that the antisymmetry of Φ1(z, z̄) in its arguments is encoded in the matrices Mγ0

and ω by the action of conjugation by diag(1, 1, 1,−1), namely

diag(1, 1, 1,−1) ·Mγ0(z, z̄) · diag(1, 1, 1,−1) = Mγ0(z̄, z) . (5.4.58)

Further, it can be checked that the connection ω is closed (dω = 0) and flat (dω − ω ∧ ω =

0). These requirements were trivially satisfied in the preceding one-variable examples, but

guarantee that the functions appearing in P exp
∫
γ ω only depend on the homotopy class of

γ. Further discussion of this point can be found in Appendix B.5.

We now compute the monodromy matrices associated with the branch points at 0 and 1

in both z and z̄ by evaluating the path-ordered exponential (5.4.20) on cycles that encircle
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each of these four poles. First, we compute

M z
0

= M z
0

=



1 2πi 0 0

0 1 0 0

0 0 1 2πi

0 0 0 1


, M z̄

0
= M z̄

0
=



1 2πi 0 0

0 1 0 0

0 0 1 −2πi

0 0 0 1


. (5.4.59)

To compute the monodromy matrices associated with contours around 1 we need

M
0
z→1

=



1 0 0 2ζ2

0 1 0 0

0 0 1 0

0 0 0 1


, M z

1
=



1 0 −2πi 0

0 1 0 2πi

0 0 1 0

0 0 0 1


, (5.4.60)

M
0
z̄→1

=



1 0 0 −2ζ2

0 1 0 0

0 0 1 0

0 0 0 1


, M z̄

1
=



1 0 −2πi 0

0 1 0 −2πi

0 0 1 0

0 0 0 1


. (5.4.61)
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Putting these paths together, we find

M z
1

= M
0
z→1
·M z

1
·
(
M

0
z→1

)−1 =



1 0 −2πi 0

0 1 0 2πi

0 0 1 0

0 0 0 1


, (5.4.62)

M z̄
1

= M
0
z̄→1
·M z̄

1
·
(
M

0
z̄→1

)−1
=



1 0 −2πi 0

0 1 0 −2πi

0 0 1 0

0 0 0 1


. (5.4.63)

Note that the matrices that encode monodromies in the variable z commute with the matri-

ces that encode monodromies in the variable z̄.

These matrices allow us to compute monodromies of Φ1(z, z̄) and the other functions

appearing in Eq. (5.4.57) anywhere in their domain, and therefore to compute sequential

discontinuities in z or z̄ (and correspondingly the kinematic invariants of the triangle or box

diagrams). For example, to compute a sequential discontinuity in z around 1 and then 0,

we would evaluate

(1−M z
1
) · (1−M z

0
) ·Mγ0 =



0 0 0 −(2πi)2

0 0 0 0

0 0 0 0

0 0 0 0


. (5.4.64)
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Taking these discontinuities in a different order, we get a different result

(1−M z
0
) · (1−M z

1
) ·Mγ0 =



0 0 0 (2πi)2

0 0 0 0

0 0 0 0

0 0 0 0


. (5.4.65)

It is also possible to take a discontinuity around both branch points by considering the

monodromy matrix associated with ∞. We construct this monodromy matrix and discuss

the full monodromy group in Appendix B.2.

As long as we analytically continue along paths which are fully contained in the Eu-

clidean region, we never encounter branch singularities and the functions we consider are

single-valued. The variation matrix approach lends itself well to the description of single-

valued functions, and in Appendix B.3 we describe a general construction that builds a

single-valued version of any generalized polylogarithm from its variation matrix.

Finally, let us highlight that the variation matrices we associate with Feynman integrals

using the above construction are not the same as the matrices considered in [169, 170]. The

matrices considered in those works look similar, insofar as they are lower-diagonal matrices

in which a Feynman integral sits in the bottom-left entry and various cuts of the Feynman

integral appear in other entries. However, in that approach several lower-diagonal matrices

are associated with each graph. For example, they associate six such matrices with the tri-

angle diagram, labeled by spanning trees whose edges are ordered. The variation matrices

we consider are useful for determining how the transcendental functions appearing in them
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transform under monodromies. It is unclear to us if the matrices described in [169, 170] can

be used in the same way, and if they can, what representations of the monodromy group

they furnish.

5.4.3 Monodromies of propagators

We have seen that the ±iε notation is good for describing where we are on the principal

branch of multivalued functions, where they describe being on opposite sides of a branch

cut. We have also seen that discontinuities across the branch cut can be recast using mon-

odromies around the branch point where the cut begins.

In the case of the logarithm, we recall that this amounts to identifying

ln(s+ iε) ≡ lnγ0s , ln(s− iε) ≡ lnγ−1s , (5.4.66)

where γ0 is homotopic to the straight path from 1 to s, and γ−1 is given by a path that first

crosses the real negative axis before ending at s, as shown in Fig. 5.2. With these identifica-

tions, we have that ln(s − iε) = ln(s + iε) − 2πi for all values of s. Using this identity, we

can compute the discontinuity of not only ln(s+ iε), but also ln(s− iε), finding

Discsln(s− iε) = Discs[ln(s+ iε)− 2πi] = 2πi . (5.4.67)

This can be rewritten in a more suggestive manner:

Discsln(s− iε) = ln(s− iε)− [ln(s− iε)− 2πi] = lnγ−1s− lnγ−2s . (5.4.68)
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Thus, when we take the discontinuity of ln(s − iε), we are not computing the difference be-

tween its value and the value of ln(s+ iε). Rather, we are computing the difference between

analytically continuing lnγ0s around the origin of s once versus twice.

For sequential discontinuities, the contour definitions are particularly helpful as they al-

low us to migrate away from the principal branch where ±iε is applicable. Recall however

that all the ±iε displacements in Feynman integrals originate in the ±iε displacement of

the poles in TOPT propagators. Thus, just as we were able to identify higher winding num-

ber versions of ln(s ± iε) using different integration contours, we should be able to iden-

tify higher winding number versions of propagators. To do so, recall that propagator comes

originally from a semi-infinite integral over time

1

E + iε
= −i

∞∫
0

dt eiEt ,
1

E − iε
= −i

−∞∫
0

dt eiEt , (5.4.69)

so that

1

E + iε
− 1

E − iε
= −i

∞∫
−∞

dt eiEt = −2πiδ(E) . (5.4.70)

Thus, for the propagator the integration path goes from t = 0 to t = ±∞ and the ±iε is

shorthand for this integration path. We can correspondingly take sequential discontinuities

of products of propagators in the same way as for logarithms. To do so, we introduce the

notation

Dj = −2πiδ(Ej − ωj) (5.4.71)
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and

P
(n)
j =

1

Ej − ωj + iε
+ nDj , (5.4.72)

where we call this distribution a propagator with winding number n. The propagators we

are used to seeing correspond to P (0)
j = 1

Ej−ωj+iε and P (−1)
j = 1

Ej−ωj−iε .

In this notation, a TOPT amplitude and its conjugate are

M =
n∏
j=1

P
(0)
j , M =

n∏
j=1

P
(−1)
j . (5.4.73)

The TOPT cutting rules in Eq. (5.2.19) become

DisctotM = M −M =

n∑
j=1

( j−1∏
k=1

P
(0)
k

)
Dj

( n∏
k=j+1

P
(−1)
k

)
. (5.4.74)

Since Disctot is a linear operator, this can also be generalized to products of propagators

with arbitrary winding numbers:

Disctot
n∏
j=1

P
(lj)
j =

n∑
j=1

( j−1∏
k=1

P
(lk)
k

)
Dj

( n∏
k=j+1

P
(lk−1)
k

)
. (5.4.75)

To take further discontinuities, we just use Eq. (5.4.72) to express propagators with nonzero
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winding number in terms of propagators with winding number 0. Then, as in Eq. (5.4.35),

Disc2
totM = DisctotM −DisctotM (5.4.76)

= (P1 · · ·Pn) − 2(P1 −D1) · · · (Pn −Dn) + (P1 − 2D1) · · · (Pn − 2Dn)

=
∑
k

(−1)k(2k − 2)
[
D1 · · ·DkPk+1 · · ·Pn + perms

]

where the sum over permutations in the last bracket corresponds to the (nk) choices for

which k propagators to replace with delta functions. The analog of Eq. (5.4.37) is

(Disctot)mP1 · · ·Pn =
m∑
`=0

(−1)`

m
`

[(P1 − `D1) · · · (Pn − `Dn)
]

=
m∑
`=0

(−1)`

m
`

 n∑
k=1

[
P1 · · ·Pk(`Dk+1) · · · (`Dn) + perms

]
. (5.4.77)

Although the winding numbers have been left implicit in Eq. (5.4.76) and Eq. (5.4.77),

these equations are valid for any assignment of winding numbers.

Let us try to briefly summarize this section. We found that to take sequential discon-

tinuities the ±iε language was insufficient. For a single discontinuity, one can compare a

function on two sides of a branch cut on the principal branch. However, to take additional

discontinuities, one needs an analytic function defined away from the cut itself. A natural

way to do that is to treat the discontinuity as a monodromy around the branch point. In

the monodromy language, there is no branch cut at all (the branch cut is an artifact of pro-

jecting onto a complex plane) and the discontinuity is automatically an analytic function.
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Moreover, monodromies can be computed in an algebraic way using a variation matrix and

a connection. Finally, we saw that the monodromy picture led to a natural generalization

of the +iε propagator to a family of propagators with additional winding numbers. These

propagators will be used in the derivation of the relation between multiple cuts and sequen-

tial discontinuities, to which we now return.

5.5 Sequential discontinuities

We saw in Section 5.3 that an advantage of TOPT over the covariant formalism is that

one can directly identify the origin of singularities in a particular channel. Propagators in

a given TOPT diagram depend on a sequence of energies, EI1 → · · · → EIn , and each prop-

agator will only lead to a singularity in the integration region if the corresponding energy

and invariant are non-negative (EI ≥ 0 and sI = P 2
I ≥ 0). We then saw in Section 5.4

that, while the ±iε notation is sufficient to identify the two sides of a branch cut for tak-

ing a single discontinuity, for sequential discontinuities it proves useful to think in terms of

branch points and monodromies. We now make use of these tools to derive formulas for the

sequential discontinuities of Feynman integrals in terms of cuts.

If we work in a region Rs, where only a single invariant s = sI = P 2
I with PµI =

∑
i∈I P

µ
i

is positive, then we can drop the iε in all TOPT propagators not involving the energy as-

sociated with this invariant. To make the equations in this section more transparent, we

denote the energy and momentum associated with the s channel by Es = EPI and Ps = PI .
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In this notation, a generic TOPT diagram in Rs takes the form

M =
∏
Pi 6=Ps

1

EPi − ωi

[
1

Es − ω1 + iε
· · · 1

Es − ωn + iε

]
. (5.5.1)

In this region, the discontinuity in the s channel is the same as the total discontinuity:

[DiscsM ]Rs = [DisctotM ]Rs

=
∏
Pi 6=Ps

1

EPi − ωi

∑
j

1

Es − ω1 + iε
· · · (−2πi)δ(Es − ωj) · · ·

1

Es − ωn − iε
, (5.5.2)

The second equality comes from applying the TOPT cutting rules in Eq. (5.2.19) to all

propagators, or equivalently just to the propagators involving Es, as all the delta func-

tions involving other sums of energies evaluate to zero. Summing over all TOPT graphs

with a given topology then gives the discontinuity of the corresponding Feynman integral,

[DiscsM]Rs from Eq. (5.3.15).

Before taking further discontinuities, let us pause to clarify the role being played by the

region Rs in Eq. (5.5.2). In principle, the discontinuity operator Discs that appears in this

equation can be applied anywhere in the maximal analytic domain of the function M . On

the other hand, the relation between DiscsM and cut integrals in Eq. (5.5.2) only holds

in regions where these cuts are allowed, and only when appropriate analytic continuation

paths from Rs to R? are used to take this discontinuity. This requirement, that the analytic

continuation path starts in the region where the cuts are being computed and only passes

through an adjacent region, will become even more important when we compute sequential
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discontinuities below. For instance, in the triangle and box ladder integrals we will consider

in Section 5.6.2, we will see there are multiple ways of encircling branch points in the z and

z̄ variables used there that correspond to encircling the branch point in a given Mandelstam

invariant; however, only some of these monodromies in z and z̄ can be accessed via paths

that pass through the appropriate regions. Thus, while we can compute the discontinuities

ofM in arbitrary regions, these discontinuities must be evaluated in the appropriate region

and using appropriate contours to be related to cuts. For instance, DiscsM can be com-

puted (and will in general be nonzero) in the Euclidean region, where the cuts ofM are

zero. However, it is perfectly valid for us to analytically continue the discontinuity that has

been computed using the right monodromy matrices in the Euclidean region to the region

Rs, where it must satisfy Eq. (5.5.2).

5.5.1 Sequential discontinuities in the same channel

We are now ready to consider discontinuities of discontinuities. To take a second disconti-

nuity of Eq. (5.5.2) in the s channel we can simply rotate all the energies around the same

path as for the first discontinuity. This gives

[
Disc2

sM
]
Rs

=
∏
Pi 6=Ps

1

EPi − ωi

∑
j

∑
k

P (0)(Es − ω1) · · ·P (0)(Es − ωj−1)

× (−2πi)δ(Es − ωj)P (−1)(Es − ωj+1) · · ·P (−1)(Es − ωk−1)

× (−2πi)δ(Es − ωk)P (−2)(Es − ωk+1) · · ·P (−2)(Es − ωn) . (5.5.3)
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In words, the first cut turns the +iε propagators, denoted P (0), to −iε propagators, de-

noted P (−1). The second cut turns the P (−1) propagators into P (−2) ones.

To make sense of the P (−2)(E) propagators, we rewrite them using Eq. (5.4.72),

P (−2)(E) =
1

E + iε
− 2(−2πi)δ(E) . (5.5.4)

To avoid any ambiguity, we also substitute P (−1)(E) = 1
E+iε − (−2πi)δ(E). The result

is a sum over cutting different numbers of s-channel propagators, in which each non-cut

propagator is in the region corresponding to +iε. Explicitly, we get

[
Disc2

sM
]
Rs

=
∏
Pi 6=P

1

EPi − ωj

n∑
k=2

(−1)k(2k − 2) (5.5.5)

×
[
(−2πi)δ(Es − ω1) · · · (−2πi)δ(Es − ωk)

1

Es − ωk+1 + iε
· · · 1

Es − ωn + iε
+ perms

]
,

similar to Eq. (5.4.76).

Summing over the double discontinuities of all TOPT diagrams with the same topology,

we get the double discontinuity of the associated Feynman integral. Recall that each delta

function in a TOPT diagram directly corresponds to a Feynman diagram cut. As such, we

can extract the combinatorial factor from Eq. (5.5.5) and directly compute the cut Feyn-

man diagram with all +iε propagators. Doing so, we get

[
Disc2

sM
]
Rs

=

[∑
k=2

(−1)k(2k − 2)Mk-cuts

]
Rs+

, (5.5.6)

whereMk-cuts is the sum over all possible ways to cutM exactly k times, and Rs+ indicates
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that all uncut propagators have +iε. Each cut should split the diagram in two, and the

sum of momenta flowing across it should be Ps, as the cuts in all other channels vanish in

Rs.

The formula for the triple discontinuity can be computed the same way, giving

[
Disc3

sM
]
Rs

=

[∑
k=3

(−1)k(−3k + 3 · 2k − 3)Mk-cuts

]
Rs+

, (5.5.7)

and the generalization to m cuts is as in Eq. (5.4.37):

[Discms M]Rs = (1−M s
0
)mM = m!

∞∑
k=m


k

m

 (−1)m−k
[
Mk-cuts

]
Rs+

, (5.5.8)

where {km} = 1
m!

∑m
`=1(−1)m−`(m` )`k are the Stirling numbers of the second kind. We em-

phasize again that this relation holds when all non-cut propagators inMk-cuts are taken to

be in the region corresponding to +iε. We have also included the definition of the disconti-

nuity operator in terms of M s
0
, which returns the monodromy around s = 0. More pre-

cisely, this monodromy matrix acts on the variation matrix Mγ0 , which should be computed

along paths from the basepoint to Rs. Examples are given in Section 5.6.

5.5.2 Sequential discontinuities in different channels

Next, let us consider how to take sequential discontinuities in different channels. Unlike

the case of sequential discontinuities in the same channel, we must now analytically con-

tinue along at least two different paths. As before, we insist on using paths that rotate the
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external energies while leaving the external three-momenta fixed and respecting energy-

momentum conservation. This gives us n − 1 independent parameters that we can vary

along each analytic continuation path, where n is the number of external particles. One

also must make sure that the relevant invariants only encircle their branch points once. In

the examples we have explored (see Section 5.6), we have not found these constraints to be

overly restrictive. Nevertheless, choosing paths has to be done carefully. While Cauchy’s

residue theorem guarantees that normal contour integrals only depend on the homology

class of the integration contour, iterated integrals in general depend on the homotopy class

of the integration path. This means that one can in general find multiple discontinuity op-

erators that give the same first discontinuity, but different sequential discontinuities. This

highlights the importance of our prescription for taking discontinuities by analytically con-

tinuing through specific kinematic regions. We discuss this ambiguity in more detail in Ap-

pendix B.2.

To fix our notation, suppose we want to compute DiscsDisctM, where s = sI = (PI)
2

and t = sJ = (PJ)2 for sets I and J are different momentum invariants. We abbreviate the

associated energies and momenta with Es = EPI , Ps = PI , Et = EPJ , and Pt = PJ . We also

denote by R{s,t} the region in which s > 0, t > 0, and all other Mandelstam invariants are

real and negative. A general TOPT amplitude with ns propagators in the s channel and nt

propagators in the t channel in the region R{s,t} has the form

[M ]R{s,t} =
∏

Pi /∈{Ps,Pt}

1

EPi − ωi

ns∏
k=1

1

Es − ωk + iε

nt∏
`=1

1

Et − ω` + iε
. (5.5.9)
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We have dropped the iε from all propagators in channels other than s or t, since these will

never go on shell.

To take the discontinuity in the t channel, we want to pass around the branch point at

t = 0 and no other branch points. We can do this by passing through the region Rs, where

only s > 0 and then back to R{s,t} on the other side of the t = 0 branch cut. Thus we must

find a path rotating the energies, respecting energy conservation, to go from R{s,t} → Rs

(some examples are given in Section 5.6). Let us assume such a path exists. This path will

encircle the branch point for Et, located at the smallest value of ωk appearing in any Et

propagator, but will not encircle the branch point for Es. The difference between M before

and after analytic continuation along this path is thus

[DisctM ]R{s,t} =
∏

Pi /∈{Ps,Pt}

1

EPi − ωi

ns∏
k=1

1

Es − ωk + iε

×
nt∑
`=1

1

Et − ω1 + iε
· · · (−2πi)δ(Et − ω`) · · ·

1

Et − ωnt − iε
. (5.5.10)

Again, the propagators not in the t channel will remain unaffected since our analytic con-

tinuation path has gone from R{s,t} → Rs → R{s,t}.

We can take a discontinuity in the s channel in an analogous way, using an analytic con-

tinuation path in energy that encircles the branch point for Es while going from R{s,t} →
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Rt → R{s,t}. This allow us to compute

[DiscsDisctM ]R{s,t} =
∏

Pi 6=Ps,Pt

1

EPi − ωi

×
ns∑
k=1

1

Es − ω1 + iε
· · · (−2πi)δ(Es − ωk) · · ·

1

Es − ωns − iε

×
nt∑
`=1

1

Et − ω1 + iε
· · · (−2πi)δ(Et − ω`) · · ·

1

Et − ωnt − iε
. (5.5.11)

Like before, when we take the s-channel discontinuity, the t-channel propagators are unaf-

fected since we have not gone around the branch point at t = 0.

We cannot immediately sum over TOPT diagrams in Eq. (5.5.11) to get a Feynman inte-

gral, since it is not clear which Feynman propagators should get +iε and which should get

−iε. To remedy the problem, we rewrite each diagram in terms of all +iε propagators as

we did for the sequential discontinuities in Section 5.5.1. This gives

[DiscsDisctM ]R{s,t} =
∏

Pi 6=Ps,Pt

1

EPi − ωi

×
ns∑
k=1

(−1)k
[
(−2πi)kδ(Es − ω1) · · · δ(Es − ωk)

1

Es − ωk+1 + iε
· · · 1

Es − ωns + iε
+ perms

]
×

nt∑
`=1

(−1)`
[
(−2πi)`δ(Et − ω1) · · · δ(Et − ω`)

1

Et − ω`+1 + iε
· · · 1

Et − ωnt + iε
+ perms

]
(5.5.12)
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After summing over all TOPT diagrams with the same topology, we get

[DiscsDisctM]R{s,t} =

[ ∞∑
k=1

∞∑
`=1

(−1)k+`M{k cuts in s, ` cuts in t}

]
R
{s,t}
+

(5.5.13)

where the sum is over all diagrams with k ≥ 1 cuts in the s-channel and ` ≥ 1 cuts in the t

channel, and all propagators are assigned +iε.

One should think of Eq. (5.5.13) as applying at an implicit phase-space point in the

physical region where the cuts are to be computed. One can analytically continue the re-

sulting cut graphs to any region one wants, such as the Euclidean region, but the result

will not be the same as evaluating the cut graphs at a phase-space point in the Euclidean

region. This is because the theta functions associated with the original region determine

whether the cut vanishes, rather than by the kinematics of the new region. In other words,

one cannot evaluate some of the cuts at a phase space point in Rs and others at a phase

space point in Rt. Thus, our formula is derived assuming we want to relate cuts and dis-

continuities at a single phase space point in R{s,t}. You can use a region other than R{s,t}

(such as R{s,t,u}), as long as the paths in analytic continuation between these regions exist.

In terms of monodromy matrices, this sequential discontinuity can be computed as

[DiscsDisctM]R{s,t} = (1−M t
0
)(1−M s

0
)M , (5.5.14)

where we recall that the action of these monodromy matrices should be read left to right

(unlike discontinuity operators). The variation matrixM should be evaluated along paths
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from the basepoint to the region R{s,t}. The monodromy matrices are computed from the

basepoint and the monodromies are prepended to the path γ ending in R{s,t}. Alterna-

tively, one can apply the monodromy matrices in some other region, such as R? and then

continue to R{s,t}; since we are prepending the monodromies, whether we continue before or

after we prepend them gives the same answer. However, we highlight again that the same is

not true of cuts—for instance, all cuts evaluate to zero in R?.

One can generalize this formula to apply to mi discontinuities in channel i without addi-

tional complication:

[(Discs1)m1 · · · (Discsn)mnM]R{s1,··· ,sn}

= (−1)Ndiscs−Ncutsm1! · · ·mn!

∞∑
k1=m1


k1

m1

 · · ·
∞∑

kn=mn


kn

mn


[
M{k1 cuts in s1...

kn cuts in sn

}]
R
{s1,··· ,sn}
+

(5.5.15)

where

Ndiscs = m1 + · · ·+mn and Ncuts = k1 + · · ·+ kn . (5.5.16)

This is the master formula for computing any number of sequential discontinuities in any

channels. Note that the right side of this equation does not depend on the order in which

discontinuities are taken on the left side, which points to a non-obvious set of identities that

the discontinuities of these functions must satisfy.

One can even go one step farther and generalize from si being individual invariants to

being sets of invariants. For example, we might have a set Si = {s, t}. Then the disconti-

nuity in Si is computed by taking the monodromy from a region RSi where the invariants in

224



Si are positive through the Euclidean region and back. Then

[DiscSiM]RSi = (1−M
Si

)M =
∑
j

[
Mcuts in sj ∈ Si

]
R
Si
+

(5.5.17)

The generalization to multiple sets and multiple discontinuities is

1

m1!
· · · 1

mn!
[(DiscS1)m1 · · · (DiscSn)mnM]R∪Si

= (−1)Ndiscs−Ncuts

∞∑
k1=m1


k1

m1

 · · ·
∞∑

kn=mn


kn

mn


[
Mkj cuts from set Sj

]
R
∪Si
+

(5.5.18)

where DiscSj is taken between the region R∪Si where all invariants in any set Si are pos-

itive to a regionR∪Si/Sj where all the invariants have the same sign as in R∪Si except for

those in Sj , which are negative. An example of this type of set discontinuity is given in Eq.

(5.6.43) below.

In [165], a different prescription for calculating sequential discontinuities in different

channels was proposed. Their proposal was that DiscsDisctM should be computed by first

calculating DisctM in Rt, and then analytically continue to R{s,t} before computing Discs.

They defined these discontinuities as the difference between a function on different sides

of a branch cut. Using the language of monodromies around a branch point rather than

discontinuities across branch cuts, this can be interpreted to mean first prepending a mon-

odromy matrix around t = 0 to a path going into Rt and then extending the path into

R{s,t}. Since the monodromy matrix is independent of the endpoint of the integration, this

is the same as simply computing the discontinuity in t in the region R{s,t} to begin with.
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No details were given in [165] for how to choose paths for analytic continuation.

As for the cuts, the prescription given in [165] for how to compute sequential cuts in-

volves an algorithm with tuples of black and white dots that determines whether +iε or

−iε should be chosen. For the examples they considered, this algorithm worked. However,

in more complicated cases, it may not correctly account for the discontinuity of −iε prop-

agators that appear after a first discontinuity. The main difference, however, is that [165]

excluded from consideration cases where sequential discontinuities were taken in the same

channel. Our formulas allow for any number of discontinuities in any channels, with no re-

strictions.

5.5.3 Steinmann relations

Finally, let us connect to the Steinmann relations. One of the important implications of

Eq. (5.5.13) is that [DiscsDisctM]R{s,t} can only be nonzero when there exists at least one

TOPT diagram in which both Es and Et appear. However, it is a general feature of TOPT

that whenever two energies Et and Es appear in the propagators of a single diagram, one

must depend on a subset of the energies that appear in the other (e.g. Es = E1 + E2 +

E3 and Et = E1 + E2). It follows that [DiscsDisctM]R{s,t} will vanish whenever s and t

involve partially overlapping sets of energies. More precisely, recall from the beginning of

this section that s = (
∑

i∈I Pi)
2 and t = (

∑
i∈J Pi)

2. Then,

[DiscsDisctM]R{s,t} = 0 if I 6⊂ J and J 6⊂ I . (5.5.19)
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This is a version of the Steinmann relations, which state that the double sequential discon-

tinuity in such overlapping channels must vanish, which we have thus proven at the level of

Feynman integrals.

It is worth emphasizing two conditions that are necessary for our proof of the Steinmann

relations to hold. First, the region R{s,t}, where all invariants other than s and t are nega-

tive and all momenta are real, must exist. The existence of such regions is consistent with

the assumptions of axiomatic field theory, where all particles are massive; however, when

there are massless external particles, the on-shell constraint may mean the region R{s,t} is

empty. In such a case, we cannot immediately apply our formulas.

Second, we go around the poles in the TOPT propagators by continuing the external

energies, holding the external three-momenta fixed. This allowed us to isolate the singu-

larities, since the internal energies ωk depend only on the external three-momenta, which

are held fixed during the analytic continuation. If one tries to impose a constraint on some

of the external momenta, such as fixing their masses to zero or some other value, then one

must also rotate the external momenta to maintain the mass-shell condition. In such cases,

finding the singular variety for the TOPT propagators is more complicated and our deriva-

tion also does not immediately apply.

Because of these preconditions, the Steinmann relations in Eq. (5.5.19) do not restrict all

possible double discontinuities in partially-overlapping channels. In particular, they do not

apply to discontinuities on sheets that are far removed from the physical sheet; they only

hold at real kinematic points, in the physical region. This subtlety appears, for instance, in

the one-loop box with massless internal and external legs. This box is infrared divergent. In
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d = 4− 2ε dimensions it has the expansion [205]

M0m =
1

st

[
4

ε2
− 2

ε

(
ln
−s
µ2

+ ln
−t
µ2

)
+ 2 ln

−s
µ2

ln
−t
µ2
− π2 +O(ε)

]
(5.5.20)

where s = (p1+p2)2 and t = (p2+p3)2 partially overlap. The O(ε0) term has a ln(−s) ln(−t)

component that has a nonzero sequential discontinuity in s and t. With massless external

lines, the region R{s,t} does not exist, so there is no contradiction with our formula. This

observation is consistent with results from S-matrix theory; since s and t can only simulta-

neously vanish outside of the physical region, the Steinmann relations do not apply [206].

If internal particles are massless, our sequential discontinuity formulas in Eq. (5.5.8) and

Eq. (5.5.13), and correspondingly the Steinmann relations in Eq. (5.5.19), should still ap-

ply. The key problem with massless external particles is that the massless condition con-

strains the surface of maximal analytic continuation; massless internal particles impose

no such constraint. Nevertheless, with massless internal particles, certain cuts also have

to be treated with care when applying the Steinmann relations (as explained, for instance,

in [177]). When two overlapping momentum channels only depend on a single common mo-

mentum, cutting both channels can lead to a three-point vertex in which an external state

decays into a pair of internal physical states. Some discussion of these vertices is given in

Appendix B.7. In S-matrix theory, external states are stable and massless three-point ver-

tices do not appear.

Finally, let us highlight the fact that the right side of Eq. (5.5.15) does not know any-

thing about the order of the discontinuities begin taken on the left side. This implies that
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the Steinmann relations force any sequence of discontinuities involving partially-overlapping

channels to vanish, even if these partially-overlapping discontinuities are separated by a

long sequence of unrelated discontinuities. This is related to the fact that Eq. (5.5.15) only

governs discontinuities that are computed at a phase-space point in which all the relevant

cuts are accessible, and holding all other variables fixed [206]. Thus, in many cases the rel-

evant region may not correspond to real kinematics, in which case this restriction does not

immediately apply.

5.6 Examples

In this section, we consider a number of examples in which we can check the general rela-

tions between cuts and discontinuities developed in the previous sections.

5.6.1 Bubbles

The first examples we consider are sequences of bubbles. The single bubble integral with

massless internal lines in d = 4− 2ε dimensions evaluates to

Mbare
1 =

p

k

p− k

= µ4−d
∫

ddk

i(2π)d
1

k2 + iε

1

(p− k)2 + iε
(5.6.1)

= − 1

16π2

[
−1

ε
+ ln

(
−s
µ̃2
− iε

)
− 2

]
, (5.6.2)

where s = p2 and µ̃2 = 4πe−γEµ2. The counterterm graph is analytic, so we add it to re-

move the UV divergence and the algebraic part of the integral (the −2 contribution), giving
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a simpler answer for the renormalized amplitude:

M1 = − 1

16π2
ln

(
−s
µ̃2
− iε

)
. (5.6.3)

The cut through the bubble is finite in four dimensions:

Mcut
1 =

p→
(5.6.4)

=

∫
d4k

i(2π)4
(−2πi) δ(k2)Θ(k0) (−2πi) δ[(p− k)2]Θ(p0 − k0) =

i

8π
Θ(s) . (5.6.5)

Here we have assumed p0 > 0. If p0 < 0, this cut vanishes but the cut with energy flowing

in the opposite direction compensates and gives the same result. M1 has a branch cut on

the positive real line in the s plane. The discontinuity across this branch cut is

DiscsM1 = − 1

16π2
(−2πi) Θ(s) =Mcut

1 , (5.6.6)

in agreement with the covariant cutting rules and the optical theorem. Similarly, the mon-

odromy computed around the branch point at s = 0,

(1−M s
0
)M1 =

i

8π
, (5.6.7)

gives the same answer in Rs, where s > 0.

Sequential discontinuities in the same channel
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Now we consider an example that has a nonzero sequential discontinuity in a single chan-

nel. We keep the propagators in the loops massless, but give the internal lines connecting

the bubbles a mass m so that we can ignore their discontinuities for m >
√
s. The chain of

three bubbles is given by

M3 =
p→

m m
A B C (5.6.8)

=
1

(−16π2)3

(
1

s−m2

)2

ln3

(
−s
µ2
− iε

)
. (5.6.9)

Since this is just a product of logarithms, the discontinuities in s are simple to calculate

using Eq. (5.4.37). We find

DiscsM3 =
2πi

(16π2)3

(
1

s−m2

)2 [
3 ln2

(
−s
µ2
− iε

)
+ 6πi ln

(
−s
µ2
− iε

)
− 4π2

]
, (5.6.10)

DiscsDiscsM3 = − (2πi)2

(16π2)3

(
1

s−m2

)2 [
6 ln

(
−s
µ2
− iε

)
+ 12πi

]
, (5.6.11)

and

DiscsDiscsDiscsM3 =
6(2πi)3

(16π2)3

(
1

s−m2

)2

. (5.6.12)

We expect these discontinuities to be related to cuts by Eq. (5.5.8).

Assuming p0 > 0 and s > 0, and using all +iε propagators, the cut through loop A is
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given by

Mcut
3A =

p→
m m

A B C

=
1

(−16π2)3

(
1

s−m2

)2

(−2πi) ln2

(
−s
µ2
− iε

)
. (5.6.13)

The cuts of the second and third loop give identical results since we always assign uncut

propagators +iε. Thus, we haveMcut
3B = Mcut

3C = Mcut
AC . There are also three chap-

ters/diagrams involving two cuts. Cutting loops A and B gives

Mcut
3AB =

p→
m m

A B C

=
(−2πi)2

(−16π2)3

(
1

s−m2

)2

ln

(
−s
µ2
− iε

)
. (5.6.14)

The other chapters/diagrams involving two cuts give identical results: Mcut
3AC = Mcut

3BC =

Mcut
3AB. The triple cut is

Mcut
3ABC =

p→
m m

A B C (5.6.15)

=
(−2πi)3

(−16π2)3

(
1

s−m2

)2

. (5.6.16)
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We can now compute the right side of Eq. (5.5.8). For m = 1, we get

−
∞∑
k=1

(−1)k


k

1

M(k-cuts)
3 =M(1-cut)

3 −M(2-cuts)
3 +M(3-cuts)

3 (5.6.17)

= (Mcut
3A +Mcut

3B +Mcut
3C )− (Mcut

3AB +Mcut
3AC +Mcut

3BC) +Mcut
3ABC (5.6.18)

=
(−2πi)

(−16π2)3

(
1

s−m2

)2 [
3 ln2

(
−s
µ2
− iε

)
+ 6πi ln

(
−s
µ2
− iε

)
− 4π2

]
.

(5.6.19)

This agrees with DiscsM3, as expected. Similarly, for m = 2 and m = 3 we get

2

∞∑
k=2

(−1)k


k

2

M(k-cuts)
3 = 2(Mcut

3AB +Mcut
3AC +Mcut

3BC)− 6Mcut
3ABC . (5.6.20)

and

−3!
∞∑
k=3

(−1)k


k

3

M(k-cuts)
3 = 6Mcut

3ABC . (5.6.21)

It can be checked that these quantities agree with the discontinuities computed in

Eq. (5.6.11) and Eq. (5.6.12).

One can similarly check that the relation in Eq. (5.5.8) holds for the mth discontinuity

of the n-loop bubble chain. This is not particularly surprising, since the algebra involved is

essentially the same as the algebra used to derive equations like Eq. (5.5.7).

Sequential discontinuities in different channels

We now turn to an example involving discontinuities in different channels. We consider
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Figure 5.4: The function ln(−s) ln(−t) has branch hypersurfaces at s = 0 and t = 0, shown in black.
The Euclidean region R? corresponds to s < 0 and t < 0. We can compute discontinuities in s and
t ofM by rotating around the branch points as indicated by the curves on the right. These curves
pass out of the real s, t plane.

the diagram

Mst =

Ps Pt

=
1

256π4
ln

(
−s
µ2
− iε

)
ln

(
−t
µ2
− iε

)
, (5.6.22)

where s = P 2
s and t = P 2

t . This function has branch points at s = 0 and at t = 0. In

the space of complex s and t, these branch points correspond to one-dimensional complex

hypersurfaces. We have depicted this in Fig. 5.4.

The connection and variation matrix for this function in the Euclidean region where s <
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0 and t < 0 are

ω =



0 ds
s

dt
t 0

0 0 0 dt
t

0 0 0 ds
s

0 0 0 0


, Mγ0 =



1 ln(−s) ln(−t) ln(−s) ln(−t)

0 1 0 ln(−t)

0 0 1 ln(−s)

0 0 0 1


, (5.6.23)

and the monodromy matrices are

M s
0

=



1 2πi 0 0

0 1 0 0

0 0 1 2πi

0 0 0 1


, M t

0
=



1 0 2πi 0

0 1 0 2πi

0 0 1 0

0 0 0 1


. (5.6.24)

The variation matrix in a region with s > 0 and/or t > 0 is the same with ln(−s) →

ln(−s− iε) and/or ln(−t)→ ln(−t− iε).

We can compute DiscsDisctMst by computing monodromies around the branch points at

s = 0 and t = 0. First, the discontinuity in s gives

DiscsMst = (1−M s
0
)Mst =

−2πi

256π4
ln

(
−t
µ2
− iε

)
. (5.6.25)

Computing the discontinuity in t of this quantity gives

DisctDiscsMst = (1−M s
0
)(1−M t

0
)Mst =

(−2πi)2

256π4
. (5.6.26)
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To compute the cuts, we must be in the region R{s,t} where neither cut vanishes. There, we

find

[CutstMst]R{s,t} =
(−2πi)2

256π4
. (5.6.27)

We see that the cut and the sequential discontinuity agree, as they should according to

Eq. (5.5.13).

We can also compute the total discontinuity of this function in R{s,t},

[DisctotMst]R{s,t} =Mst −Mst

=
1

256π4

[
ln

(
−s
µ2
− iε

)
ln

(
−t
µ2
− iε

)
− ln

(
−s
µ2

+ iε

)
ln

(
−t
µ2

+ iε

)]
=
−2πi

256π4

[
ln

(
−s
µ2
− iε

)
+ ln

(
−t
µ2

+ iε

)]
(5.6.28)

in agreement with the standard cut prescription, where the iε is flipped on the ln(−t) prop-

agator because it comes after the s cut. We can also write this in our standardized form,

where the iε are homogeneous:

[DisctotMst]R{s,t} =
−2πi

256π4

[
ln

(
−s
µ2
− iε

)
+ ln

(
−t
µ2
− iε

)
+ 2πi

]
. (5.6.29)

According to Section 5.5.2, this should match the function returned by the operator

Disc{s,t}, which corresponds to analytically continuing around both the branch points s = 0

and t = 0 along a path R{s,t} → R? → R{s,t}, as depicted by the green curve in Fig. 5.4.
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The result is

[DiscMst]R{s,t} = (1−M s
0
M t

0
)Mst (5.6.30)

=
−2πi

256π4

[
ln

(
−s
µ2
− iε

)
+ ln

(
−t
µ2
− iε

)
+ 2πi

]
, (5.6.31)

in agreement with Eq. (5.6.29).

5.6.2 Triangles and Boxes

Next we consider the triangle and box ladder integrals, with massless internal lines and

massive external lines. These integrals are known to all loop orders [207], and can be

treated simultaneously because they give rise to the same transcendental function at each

order. For simplicity, we concentrate mostly on the triangle ladders, and comment on the

box ladders at the end of the section. Our momentum labeling convention is shown in

Fig. 5.5. All momenta are incoming, and we have
∑
pµi = 0.

Triangle kinematics

For the triangle integrals, we follow the conventions of [165] and [208]. Since all internal

lines are massless, the amplitude depends only on ratios of the invariants p2
1 , p2

2, and p2
3.

These kinematics can be parametrized using the variables u, v, z, and z̄, defined as

u ≡ p2
2

p2
1

= zz̄ and v ≡ p2
3

p2
1

= (1− z)(1− z̄) , (5.6.32)
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Figure 5.5: The L-loop triangle and box ladder integrals. We take all momenta incoming with p3
along the long direction of the triangle. For the box ladders, s = (p1 + p2)2 and t = (p2 + p3)2.

where we choose

z =
1 + u− v +

√
1 + u2 + v2 − 2uv − 2u− 2v

2
, (5.6.33)

z̄ =
1 + u− v −

√
1 + u2 + v2 − 2uv − 2u− 2v

2
. (5.6.34)

This corresponds to the convention that z̄ ≤ z for real kinematics. The triangle ladders are

invariant under the Z2 symmetry z ↔ z̄.

For these integrals, it is possible to find real phase-space points with any pattern of signs

for the invariants p2
1, p2

2, and p2
3. We denote the region where p2

1 > 0 and p2
2, p

2
3 < 0 by R1.

In this region, z and z̄ are real, and z̄ < 0 while 1 < z. Similarly, we denote the region in

which p2
2 > 0 and p2

1, p
2
3 < 0 by R2, and here we have z̄ < 0 < z < 1. Finally, we denote by

R3 the region where p2
3 > 0 and p2

1, p
2
2 < 0, which implies 0 < z̄ < 1 < z. We also consider

dual regions in which two invariants are positive, such as R23, where p2
1 < 0 and p2

2, p
2
3 > 0,
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and so on. Since taking p2
j → −p2

j for all j leaves u and v invariant (and therefore also z

and z̄), any function of u and v has the same form in a given region and the dual region

in which all invariants have the opposite sign. For example, functions of u and v take the

same form in R23 and R1. It is nevertheless important to distinguish a region from its dual

because cuts can only be nonzero for positive invariants.

The Euclidean region, where all invariants are negative, is denoted R?. The Euclidean

region has a number of subregions, based on the relative sizes of the p2
j invariants (or equiv-

alently of z and z̄). Of particular importance is the region R?A, which corresponds to real

values 0 < z̄ < z < 1. The functions ln z, ln z̄, Linz, and Linz̄ are all analytic in this

region. Region R?C corresponds to real z̄ < z < 0, and region R?B corresponds to real

1 < z̄ < z. Finally, region R?I involves complex z and z̄ that are related by complex con-

jugation, namely z̄ = z∗. All of these regions correspond to two-dimensional slices of the

four-dimensional space of complex z and z̄, in which all the invariants p2
i are real. The dual

of the Euclidean region, where all invariants are negative, is denoted R123 and also has sub-

regions corresponding to R?A, R
?
B and R?C . A summary of the regions is shown in Fig. 5.6.

To take sequential discontinuities of Feynman integrals, we analytically continue around

branch points where Mandelstam invariants vanish. This analytic continuation takes us into

different kinematic regions; for example, to take
[
Discp2

1

]
R1 we need to analytically continue

from R1 to R? and back. Our formula relating cuts and discontinuities assumes that we

rotate the energies while preserving E1 + E2 + E3 = 0 and holding all three-momenta fixed.

Thus, we can set E3 = −E1−E2 and ~p3 = −~p1−~p2 and work in a frame where all momenta

are aligned in the x direction. Then, rescaling these momenta so that px1 = 1, we can solve
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Figure 5.6: The triangle ladder integrals we consider depend only on u = p22/p
2
1 and v = p23/p

2
1, or

equivalently on z and z̄. The different regions in u, v and z, z̄ space correspond to regions in which
the Mandelstam invariants have different relative signs. For instance, in R1 the invariants satisfy
p21 > 0, p22 < 0, and p23 < 0. The Euclidean region, where p2j < 0 for all j, has four further subre-
gions, described in the text.

for E1 and E2 in terms of z, z̄, and the remaining unfixed momentum component px2 :

E1 =
−2px2 − (z + z̄)

z̄ − z
, E2 =

2zz̄ + px2(z + z̄)

z̄ − z
. (5.6.35)

One can use these equations to translate a given path in z and z̄ to an acceptable path in

energy for a given value of px2 . It turns out, however, that an analytic continuation path

cannot be found between any pair of regions. For example, we cannot go from R1 to R?A.

To see this, note that in these coordinates, the invariants are given by

p2
1 =

4(px2 + z)(px2 + z̄)

(z − z̄)2
, p2

2 = zz̄p2
1, p2

3 = (1− z)(1− z̄)p2
1 . (5.6.36)

In R?A, all the p
2
j are negative. For a fixed value of px2 > 0, this constraint is impossible to

satisfy, as z > z̄ > 0 in R?A, which implies p2
1 > 0. In fact, we need −1 < px2 < 0 to get to
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R?A. But then, in R
1 where 0 < z̄ < 1 < z, we must have px2 + z > 0 and px2 + z̄ < 0, and

so p2
1 < 0. But this is a contradiction, since p2

1 must be positive in R1. Thus, we cannot go

from R1 to R?A.

In addition to making sure the path exists, one must check that the path only encircles

the desired branch points in the invariants once. For example, in particle j’s rest frame,

Ej → e2πiEj would not be an acceptable path, as it would encircle the branch point in p2
j

twice.

Some paths that satisfy all of these constraints are shown in Fig. 5.7. For example, we

show a path from R2 → R?A → R2. It is also possible to construct a path from R2 →

R?C → R2. Conversely, no path exists from R2 to R∗B, by the same type of argument that

showed the impossibility of analytically continuing between R1 and R?A. We also show a

path that starts and ends in R1, after passing through R?C. When this path intersects the

Re z = Re z̄ plane, the branch cut in the square root that distinguishes z and z̄ is crossed.

This path can be viewed as going around z = 0 and z = 1, or as going around z = ∞. The

right side of this figure shows paths between other regions, such as R23 → R3 → R23. The

existence of such paths is required to take sequential discontinuities in p2
2 and p2

3.

Having constructed these paths, we can enumerate the monodromies corresponding to

each of the discontinuities we’re interested in computing. For sequential discontinuities in a
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RC
R2

R1

R3

RA
RB

Re z

Im
(z

+
z̄)

Re z̄

z = 0
z = 1

z̄ = 0
z̄ = 1

R2/R13

R1/R23

R3/R12

Re z

Im
(z

+
z̄)

Re z̄

Figure 5.7: Analytic continuation of three-point and four-point ladder chapters/diagrams takes
place in the four-dimensional space of complex z and z̄. Sample paths of analytically continuing
the energies are shown. The figure on the left depicts contours that are relevant for computing se-
quential discontinuities in a single channel: R1 → R?C → R1, R2 → R?A → R2 and R3 → R?B → R3.
The figure on the right depicts paths relevant for computing sequential discontinuities in different
channels: R23 → R2 → R23, R13 → R3 → R13 and R23 → R3 → R23. These paths each encircle
some combination of the branch hypersurfaces shown as black lines, corresponding to where z or z̄
are equal to either 0 or 1.

single channel, we find

[Discp2
1
]R1 = 1−M z

0
·M z

1
= 1−M z

∞ , (5.6.37a)

[Discp2
2
]R2 = 1−M z̄

0
, (5.6.37b)

[Discp2
3
]R3 = 1−M z̄

1
. (5.6.37c)

In each case, there are two choices of Euclidean region that we can pass through (e.g. R2 →

R∗A → R2 or R2 → R∗C → R2). This choice amounts to permuting z ↔ z̄. The mon-

odromy matrix M z
∞ corresponds to going around infinity counterclockwise, where infinity

is approached along some angle that goes below the real line. This implies that the con-

tour around infinity crosses the branch cut on the negative real axis before the one on the
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positive real axis. This choice to go below the real axis corresponds to taking p2
1 to have a

small positive imaginary part, which endows z with a small negative imaginary part, as per

Eq. (5.6.33). This monodromy matrix is computed in Appendix B.2.

To compute sequential discontinuities in different channels, we consider analytic contin-

uation paths from regions with multiple positive invariants to regions in which one of these

invariants has the opposite sign. To construct the discontinuity operator corresponding to

each of these analytic continuations, we need to determine which branch points in z and z̄

the path encircles. Let us illustrate how this can be done for the path from R12 → R2 →

R12, which computes a discontinuity in p2
1 in the region R12. We first take the differential of

Eq. (5.6.32):

d ln z + d ln z̄ = d ln p2
2 − d ln p2

1 , (5.6.38)

d ln(1− z) + d ln(1− z̄) = d ln p2
3 − d ln p2

1 . (5.6.39)

Since we are considering a discontinuity in p2
1, our path γ must satisfy

∮
γ
d ln p2

1 = 2πi,

∮
γ
d ln p2

2 =

∮
γ
d ln p2

3 = 0 . (5.6.40)

Eqs. (5.6.38) and (5.6.39) then imply that

∮
γ
(d ln z + d ln z̄) = −2πi ,

∮
γ
(d ln(1− z) + d ln(1− z̄)) = −2πi . (5.6.41)

We furthermore have that 0 < z̄ < 1 < z in R12, while z̄ < 0 < z < 1 in R2. This
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suggests that z should encircle 1 while z̄ should encircle 0 along this path. We see that this

can be achieved in a manner consistent with Eq. (5.6.41) if both of these branch points are

encircled clockwise. Thus, we conclude that [Discp2
1
]R12 = 1−M z̄

0
·M z

1
.

Using similar reasoning, we compute the discontinuity operators in each of the regions

involving two positive invariants to be

[Discp2
2
]R23 = 1−M z̄

0
, [Discp2

3
]R23 = 1−M z

1
, (5.6.42a)

[Discp2
1
]R13 = 1−M z̄

0
·M z

1
, [Discp2

3
]R13 = 1−M z

1
, (5.6.42b)

[Discp2
1
]R12 = 1−M z̄

0
·M z

1
, [Discp2

2
]R12 = 1−M z̄

0
. (5.6.42c)

In contrast to the first discontinuity, the region that we pass through is completely fixed,

so there is only a single correct monodromy matrix in each of these cases. The paths corre-

sponding to these discontinuity operators are depicted in Fig. 5.7.

One can also consider other analytic continuation paths, such as R123
C → R1 → R123

C (not

shown in the figure). Such a path exists and gives us the discontinuity with respect to the

pair of invariants S23 = {p2
2, p

2
3}. This path encircles z = 0 and z = 1, so

[DiscS23 ]R123
C

= 1−M z
1
·M z

0
. (5.6.43)

Other paths that encircle the branch points of more than one invariant are also possible.

It is easiest to compute the monodromy matrices in one region and then continue the

result to the other regions. The most natural region to use is R?A, since 0 < z̄ < z < 1
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so all of ln z, ln z̄,Lin(z) and Lin(z̄) are analytic there. To evaluate the matrices for real

values of z and z̄ below 0 or above 1, we need to be careful about which side of the branch

cuts we are on. In the region Ri, where only p2
i > 0 and the other squared momenta are

negative, we assign p2
i a small positive imaginary part. It can be checked using Eqs. (5.6.33)

and (5.6.34) that this corresponds to giving z and z̄ the following small imaginary parts in

these regions:

R1, R12, R13, R123 : z → z − iε, z̄ → z̄ + iε , (5.6.44a)

R2, R3, R23 : z → z + iε, z̄ → z̄ − iε . (5.6.44b)

These assignments allow us to evaluate the variation matrix and monodromy matrices in

the different regions.

One loop

The one-loop triangle with all massless internal lines is finite in four dimensions. In the

region R?I , where all invariants are negative and z̄ = z∗, the Feynman integral is

T1 =
p1 q1

q3

q2

p3

p2

=

∫
d4k

i(2π)4

1

k2 + iε

1

(p2 − k)2 + iε

1

(p3 + k)2 + iε

=
1

16π2p2
1

1

z − z̄
Φ1(z, z̄) , (5.6.45)
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where

Φ1(z, z̄) = 2Li2(z)− 2Li2(z̄) + ln(zz̄) ln

(
1− z
1− z̄

)
. (5.6.46)

In the regions R?I and R?A, this function is analytic.

The variation matrix for Φ1 was given in Eq. (5.4.57):

M
R?A
γ0 =



1 ln z + ln z̄ Li1(z) + Li1(z̄) Φ1(z, z̄)

0 1 0 −Li1(z) + Li1(z̄)

0 0 1 ln z − ln z̄

0 0 0 1


. (5.6.47)

Here γ0 is the straight-line path from the basepoint (0, 0) to (z, z̄). In the region R?A, the

variation matrix is analytic. In other regions, it has the same form with z and z̄ on the ap-

propriate sides of their branch cuts as determined by the displacements in Eq. (5.6.44).

Using the monodromy matrices in Eqs. (5.4.59) and (5.4.62), we can calculate the differ-

ences of paths relevant to evaluating the discontinuities in Eq. (5.6.37). We find

(1−M z
0
)Φ1 = 2πi

[
Li1(z)− Li1(z̄)

]
, (1−M z

1
)Φ1 = 2πi

[
ln z − ln z̄

]
, (5.6.48)

and

(1−M z
∞ )Φ1 = −2πi

[
Li1(z)− Li1(z̄) + ln z − ln z̄ + 2πi

]
. (5.6.49)

Rewriting these results in terms of logarithms with manifestly positive arguments in the
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relevant region, which in the case of [Discp2
1
T1]R1 means replacing

Li1(z − iε)− Li1(z̄) + ln z − ln(z̄ + iε) + 2πi = − ln

[
(z − 1)(−z̄)

(1− z̄)z

]
, (5.6.50)

we have

[
Discp2

1
T1

]
R1

=
1

16π2p2
1

2πi

z − z̄
ln

[
(z − 1)(−z̄)

(1− z̄)z

]
, (5.6.51a)

[
Discp2

2
T1

]
R2

=
1

16π2p2
1

2πi

z − z̄
ln

[
1− z̄
1− z

]
, (5.6.51b)

[
Discp2

3
T1

]
R3

=
1

16π2p2
1

2πi

z − z̄
ln
[z
z̄

]
. (5.6.51c)

As an initial cross check, we note that these discontinuities map to each other under the

dihedral symmetry that permutes the legs of the one-loop triangle. Both the rational part

and the transcendental part of these functions pick up a sign under odd permutations of the

legs; for instance, under p2 ↔ p3, we have z → 1− z and z̄ → 1− z̄ in the logarithms, while

(z − z̄) → −(z − z̄) in the rational prefactor. The action of this symmetry is discussed in

detail in Appendix B.4.

The corresponding cuts must be computed in the appropriate region. For example, the

cut in p2
1 requires p2

1 > 0, and evaluates to

Cutp2
1
T1 =

1

16π2p2
1

2πi

z − z̄

{
ln[−z̄(1− z)− iε]− ln[−z(1− z̄)− iε]

}
Θ(p2

1) . (5.6.52)
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In region R1, this can be written

[
Cutp2

1
T1

]
R1

=
1

16π2p2
1

2πi

z − z̄
ln

[
(z − 1)(−z̄)

(1− z̄)z

]
, (5.6.53)

matching the discontinuity in Eq. (5.6.51a) as well as the corresponding expression in [165].

The cuts in p2
2 and p2

3 can similarly be computed, and agree with the discontinuities in

Eqs. (5.6.51b) and (5.6.51c), and with the results of [165].

We can also compute the discontinuity in p2 and p3, using Eq. (5.6.43). This gives

[DiscS23T1]R123
C

=
1

16π2p2
1

2πi

z − z̄
[2πi+ Li1(z)− Li1(z̄) + ln(z − iε)− ln(z̄ + iε)] (5.6.54)

=
1

16π2p2
1

2πi

z − z̄
ln

[
(1− z̄)(−z)
(1− z)(−z̄)

]
. (5.6.55)

We should compare to the sum of the cuts in p2 and p2
3 which can be deduced from

Eqs.(5.6.51b) and (5.6.51c):

[
Cutp2

2
T1 + Cutp2

3
T1

]
R123
C

=
1

16π2p2
1

2πi

z − z̄

[
ln

1− z̄
1− z

+ ln
z

z̄

]
. (5.6.56)

Again, we see the discontinuities and cuts agree.

A similar example involves going from R123
A → R?A → R123

A . A path between these re-

gions exists that does not go around any branch points. So [DiscS123T1]R123
C

= 0. In R123
A

the sum of the cuts also vanishes, although each individual cut does not. In other words,

total discontinuity in the dual Euclidean region vanishes, but the discontinuities in separate

channels do not. In contrast, in the Euclidean region R123
A , all the cuts vanish individually

248



(and the total discontinuity is still zero, using the same path).

To take sequential discontinuities in a single channel, we iterate the monodromies in

Eq. (5.6.37). We find that these double discontinuities vanish in all channels,

[
Discp2

j
Discp2

j
T1

]
Rj

= 0 ∀j . (5.6.57)

This is consistent with our expectations, since the triangle has at most one cut in each

channel. We can also consider sequential discontinuities of the triangle in different chan-

nels, such as Discp2
2
Discp2

3
T1. The corresponding double cut in p2

2 and p2
3 can be computed

in the region R23, where p2
2 > 0, p2

3 > 0, and p2
1 < 0. Using the discontinuity operators

defined in Eq. (5.6.42), we find

[Discp2
3
Discp2

2
T1]R23 = (1−M z

1
)(1−M z̄

0
)T1 =

1

16π2p2
1

(2πi)2

z − z̄
. (5.6.58)

Notice that we could have equivalently taken these discontinuities in the other order, as

both sequences of discontinuities are related to the same cut integrals by Eq. (5.5.13); that

is, we have [Discp2
3
Discp2

2
T1]R23 = [Discp2

2
Discp2

3
T1]R23 . Similarly, we find

[Discp2
1
Discp2

2
T1]R12 = [Discp2

2
Discp2

1
T1]R12 = − 1

16π2p2
1

(2πi)2

z − z̄
(5.6.59)

and

[Discp2
1
Discp2

3
T1]R13 = [Discp2

3
Discp2

1
T1]R13 = − 1

16π2p2
1

(2πi)2

z − z̄
. (5.6.60)
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Notice the additional minus sign in both of these expressions compared to Eq. (5.6.58). As

discussed in Appendix B.4, these relative signs are expected from the invariance of the tri-

angle integral under permutations of its external legs.

To illustrate the importance of using the specific operators in Eq. (5.6.42) for computing

sequential discontinuities in different channels, we can see what happens if we instead use

the discontinuity operators from Eq.(5.6.37). In the case of Discp2
3
Discp2

2
T1 we would have

found

[Discp2
3
[Discp2

2
T1]R2 ]R3 = (1−M z̄

1
)(1−M z̄

0
)T1 =

1

16π2p2
1

(2πi)2

z − z̄
,

[Discp2
2
[Discp2

3
T1]R3 ]R2 = (1−M z̄

0
)(1−M z̄

1
)T1 = − 1

16π2p2
1

(2πi)2

z − z̄
.

(5.6.61)

The results differ by a sign. This highlights the importance of computing the discontinu-

ities by analytically continuing from the region in which the cuts are being computed into

adjacent regions.

Let us also reiterate that all the discontinuities we consider are computed along paths in

external energies such that energy is conserved. If one tries instead to do what may seem

more natural, by continuing the Lorentz invariants directly, one can run into trouble. For

example, by continuing z and z̄ one can easily go from R123
A → R23 → R123

A by passing

around z̄ = 0 and z = 1. The discontinuity along this path is

(1−M z̄
0
·M z

1
)T1 =

1

16π2p2
1

2πi

z − z̄
[Li1(z)− Li1(z̄) + ln(z)− ln(z̄) + 2πi] . (5.6.62)

This is analytic in R123
A , but differs from Cutp2

1
T1 in R123

A in Eq. (5.6.52) by the extra 2πi.
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Thus, specifying the regions of interest is not in general enough: one must also know how to

connect them.

Two loops

Next, we consider the two-loop triangle. As before, all internal lines are taken to be mass-

less. The Feynman integral evaluates to

T2 =
p3

1

3

4

2

6

5

p2

p1

=

∫
d4k1

i(2π)4

∫
d4k2

i(2π)4

1

k2
1 (p3 − k1)2 (k1 + p1)2 k2

2 (p3 − k2)2 (k1 − k2)2

=
1

(4π)4 p2
1p

2
3

1

(z − z̄)
Φ2(z, z̄)

(5.6.63)

where in the region R?A the function Φ2(z, z̄) takes the form

Φ2(z, z̄) = 6[Li4(z)−Li4(z̄)]− 3 ln(zz̄)[Li3(z)−Li3(z̄)] +
1

2
ln2(zz̄)[Li2(z)−Li2(z̄)] , (5.6.64)

and as before z and z̄ satisfy the relations in Eqs. (5.6.32), (5.6.33), and (5.6.34). The vari-

ation matrix for this integral is described in Appendix B.5, where the relevant monodromy

matrices are also presented.
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We first compute the single discontinuities, using the operators in Eq. (5.6.37):

[
Discp2

1
Φ2

]
R1

= (2πi)×
{

3Li3(z̄)− 3Li3(z) +
(

ln z + ln z̄ − iπ
)(
Li2(z)− Li2(z̄)

)
+

1

2
ln z

(
ln z − ln z̄ + 2πi

)(
ln z̄ − 2πi

)}
, (5.6.65a)[

Discp2
2
Φ2

]
R2

= (2πi)×
{

3Li3(z)− 3Li3(z̄)−
(

ln z + ln z̄ + iπ
)
[Li2(z)− Li2(z̄)]

}
, (5.6.65b)[

Discp2
3
Φ2

]
R3

= (2πi)×
{
− 1

2
ln z ln z̄

(
ln z − ln z̄

)}
. (5.6.65c)

All the explicit factors of iπ in these expressions can be absorbed into polylogarithms that

are manifestly real in the appropriate region (taking into account Eq. (5.6.44)). The result-

ing expressions agree with the cuts computed in Eqs. (5.26), (5.37) and (5.41) of [165].

The sequential discontinuities in these channels can be computed using the same mon-

odromy matrices. We find

[
Discp2

1
Discp2

1
Φ2

]
R1

= (2πi)2
{
Li2(z)− Li2(z̄) +

1

2

(
ln z − ln z̄ + 2πi

)(
ln z + ln z̄

)}
,

(5.6.66a)[
Discp2

2
Discp2

2
Φ2

]
R2

= (2πi)2
{
Li2(z)− Li2(z̄)

}
, (5.6.66b)[

Discp2
3
Discp2

3
Φ2

]
R3

= 0 . (5.6.66c)

Note that the right side of Eq. (5.6.66a) can be rewritten as Li2(1/z̄) − Li2(1/z) in R1, and

thus
[
Discp2

1
Discp2

1
Φ2

]
R1 and

[
Discp2

2
Discp2

2
Φ2

]
R1 get mapped to minus each other under the

permutation p1 ↔ p2, which corresponds to z → 1/z, z̄ → 1/z̄. This is consistent with what
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we expect from Appendix B.4. The triple discontinuities all vanish,

[
Discp2

j
Discp2

j
Discp2

j
Φ2

]
Rj

= 0 , (5.6.67)

in accordance with the fact that there aren’t three cuts in any of the channels.

These sequential cuts in the same channel have not been computed before to our knowl-

edge. To do so, we regulate the IR divergence of the cuts by giving the lines labeled 4 and

5 in the figure below with a small mass mreg, and work to leading power in mreg. In region

R3, we find

[
T cut

(12),(45)

]
R3

=
p3

1

3

4

2

6

5

p2

p1

= −2T cut
2 (5.6.68)

where

T cut
2 =

1

64p2
1p

2
3π

2(z − z̄)
ln
m2

reg

p2
3

ln
z

z̄
. (5.6.69)

The other cuts give multiples of this expression. In particular, we find

[
T cut

(12),(135)

]
R3

=
p3

1

3

4

2

6

5

p2

p1

= 0 , (5.6.70)

[
T cut

(12),(234)

]
R3

=
p3

1

3

4

2

6

5

p2

p1

= 0 , (5.6.71)
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and

[
T cut

(45),(135)

]
R3

=
p3

1

3

4

2

6

5

p2

p1

= T cut
2 , (5.6.72)

[
T cut

(45),(234)

]
R3

=
p3

1

3

4

2

6

5

p2

p1

= T cut
2 . (5.6.73)

It follows that the sum of all double cuts in R3 is exactly zero,

[ ∑
double cuts

T2

]
R3

= 0 , (5.6.74)

which agrees with Eq. (5.6.66c). Note that the chapters/diagrams in Eq. (5.6.72) and

Eq (5.6.73) both involve an isolated three-point vertex with only massless lines. For d > 4

such cut graphs may be zero, while they are nonzero in d = 4 (they contain integrals of the

form
∫
dxδ(x)x

d−4
2 ). If we were to set them to zero, we would get the wrong answer. This

can easily be seen in the example above, as Eq. (5.6.69) would give a non-vanishing result

in dimensional regularization, while the graphs in Eq. (5.6.70), Eq. (5.6.71), Eq. (5.6.72),

and Eq. (5.6.73) would vanish. See Appendix B.7 for more details.

In R2, there is only one diagram. We find

[
T cut

(46),(136)

]
R2

=
p3

1

3

4

2

6

5

p2

p1

= − 1

256π2p2
1p

2
3

2Li2(z)− 2Li2(z̄)

z − z̄
. (5.6.75)
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Comparing to Eq. (5.6.65b), we then find

[ ∑
double cuts

T2

]
R2

=
[
Discp2

2
Discp2

2
T2(z, z̄)

]
R2

= 2
[
T cut

(46),(136)

]
R2

, (5.6.76)

in agreement with Eq. (5.5.6). The sum of double cuts in the p2
1 channel are related by

z ↔ 1/z, z̄ ↔ 1/z̄ to the sum of double cuts in the p2
2 channel, and thus the sum of dou-

ble cuts in R1 is related to the sequential discontinuity computed in Eq. (5.6.66a) by the

same combinatorial factor. These provide highly nontrivial checks of Eq. (5.5.6).

Finally, we compute the sequential discontinuities in different channels. We find

[
Discp2

3
Discp2

1
Φ2

]
R13

= (2πi)2
{
− 1

2
ln2 z + ln z ln(z̄ + iε)− iπ ln z

}
, (5.6.77a)[

Discp2
2
Discp2

1
Φ2

]
R12

= (2πi)2
{
Li2(z̄)− Li2(z − iε)− 1

2
ln2 z + ln z ln z̄ − iπ ln z

}
,

(5.6.77b)[
Discp2

2
Discp2

3
Φ2

]
R23

= (2πi)2
{1

2
ln2 z − ln z ln(z̄ − iε)− iπ ln z

}
. (5.6.77c)

We believe these agree with the results in [165].

9

Recall that [165] uses a different cut prescription, which involves both −iε and +iε prop-

agators, and that they use dimensional regularization and so massless three-point vertices

vanish. For reasons discussed in Appendix B.7, we believe it is safer to use a mass regula-

9These equations differ slightly from Eqs. (6.4) and (6.5) in [165]. However, summing the
results from their Appendix D, we believe their (6.4) should agree with our Eq. (5.6.77a).
For Discp22Discp21Φ2, we find that summing their expressions with some typos corrected gives
(2πi)2{Li2(z̄) + Li2(1− z) + ln(z − 1) ln z − 1

2 ln2 z + ln z ln z̄ − π2

6 }, which agrees with Eq. (5.6.77b).
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tor. With our +iε convention, the double-cut graphs in R12 give

[
Φ
(2-cuts)
2

]
R12

=
p3

1

3

4

2

6

5

p2

p1

+
p3

1

3

4

2

6

5

p2

p1

+
p3

1

3

4

2

6

5

p2

p1

+
p3

1

3

4

2

6

5

p2

p1

= (2πi)2
{
Li2(z̄)− Li2(z − iε)− 1

2
ln2 z + ln z ln z̄ + iπ ln z − 2πi ln z̄

}
.

(5.6.78)

To match onto the discontinuity in Eq. (5.6.77b), we must in our analysis add the three-cut

graphs according to Eq. (5.5.15). We find

[
Φ
(3-cuts)
2

]
R12

=
p3

1

3

4

2

6

5

p2

p1

+
p3

1

3

4

2

6

5

p2

p1

p3
1

3

4

2

6

5

p2

p1

+
p3

1

3

4

2

6

5

p2

p1

= (2πi)3 {ln z − ln z̄} (5.6.79)

Inserting into Eq. (5.5.15) the sum of all cuts gives

[
Φ
(2-cuts)
2 − Φ

(3-cuts)
2

]
R12

= (2πi)2
{
Li2(z̄)− Li2(z − iε)− 1

2
ln2 z + ln z ln z̄ − iπ ln z

}
(5.6.80)

in agreement with the discontinuity in Eq. (5.6.77b). In particular, the three-cut chap-
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ters/diagrams Φ
(3-cuts)
2 containing massless three-point vertices must be added to get the

correct result. We have verified this result using a mass regulator, and the technique dis-

cussed in Appendix B.7. Note that while these chapters/diagrams add up to a finite result

in this case, each diagram would naïvely be set to zero in dimensional regularization as dis-

cussed earlier, which would lead to a wrong result. Further discussion on how to calculate

massless three-point vertices can be found in Appendix B.7.

Three loops

It is instructive to continue to three loops. The most interesting case is the one in which

two cuts are taken in the p2
2 channel, where Eq. (5.5.6) tells us we should find

[
Disc2

p2
2
T3

]
R2

=
[
2T

(2-cuts)
3 − 6T

(3-cuts)
3

]
R2

(5.6.81)

when we assign all propagators +iε.

The three-loop triangle

p2

p3

p1

C1 C2 C3

k1

k2

p2 − k1 p3 + k1

p3 + k2
(5.6.82)
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is given by

T3 = − 1

6 (4π)6 p2
1p

4
3 (z − z̄)

{
[Li3(z)− Li3(z̄)] ln3(zz̄)− 12 [Li4(z)− Li4(z̄)] ln2(zz̄)

+ 60 [Li5(z)− Li5(z̄)] ln(zz̄)− 120 [Li6(z)− Li6(z̄)]
}
. (5.6.83)

Taking two discontinuities in the p2
2 channel using Eq. (5.6.37) gives

Disc2
p2

2
T3 =

1

1024π4p2
1p

4
3 (z − z̄)

{
[Li3(z)− Li3(z̄)] [ln(zz̄) + 2πi]− 4 [Li4(z)− Li4(z̄)]

}
,

(5.6.84)

while taking three discontinuities results in

Disc3
p2

2
T3 = − i

512π3p2
1p

4
3 (z − z̄)

[Li3(z)− Li3(z̄)] . (5.6.85)

To facilitate the cut computation, we rewrite Eq. (5.5.6) in a way that allows us to recy-

cle results for the single cuts of the two-loop triangle. The sum of all single cuts in the p2
2

channel of the two-loop triangle T2

(
p2

1, p
2
2, p

2
3

)
, with the traditional iε prescription involv-

ing −iε’s to the right of the cut, was shown in [165] to agree with the discontinuity in p2
2.

We can use these results if we rewrite the term corresponding to the double cut C1C2 in

Eq. (5.6.82) to have −iε’s to the right of the cut, adding a triple cut term to compensate

for it. When doing so, we must be careful with the combinatorial factors that come along

with massless three-point vertices, as these cut integrals involve delta functions with sup-

port only at integration endpoints. In Appendix B.7, we show that one gets an additional
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factor of 1
m! compared to naïvely evaluating these delta functions to 1, where m is the num-

ber of cuts being taken. Thus, we must absorb a term −6T
(3-cuts)
3 to correct the +iε’s to

−iε’s in the term 2T C1C23 . The result we want to verify is therefore

[(
Discp2

2

)2
T3

]
R2

= 2 T C1,C23

∣∣∣
−iε on r.h.s.

+ 2T C1,C33 + 2T C2,C33 . (5.6.86)

The first two terms in this expression correspond to cutting in C1 and summing over the

one-cuts of the two-loop triangle. The details of the calculation are worked out in Ap-

pendix B.6, and the result is

T C1,C23

∣∣∣
−iε on r.h.s. of cut

+ T C1,C33 =
1

2048π4

1

p2
1p

4
3 (z − z̄)

{
− 3 [Li4 (z)− Li4 (z̄)]

+ ln

(
−m

2

p2
3

)
[Li3 (z)− Li3 (z̄)]− 1

2

[
Li22 (z)− Li22 (z̄)

] }
, (5.6.87)

where m is a small mass of the line labelled as k used to regulate the IR divergence of the

cut graphs. The cut T C2C33 is given by

T C2,C33 =
1

2048π4p2
1p

4
3 (z − z̄)

{[
− ln

(
−m

2

p2
3

)
+ ln (zz̄) + 2πi

]
[Li3 (z)− Li3 (z̄)]

+

[
1

2
Li2 (z)− 1

2
Li2 (z̄)

]
− [Li4 (z)− Li4 (z̄)]

}
. (5.6.88)
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The sum of all cuts is therefore

2 T C1,C23

∣∣∣
−iε on r.h.s.

+ 2T C1,C33 + 2T C2,C33

=
1

1024π4p2
1p

4
3 (z − z̄)

{
[Li3(z)− Li3(z̄)] [ln(zz̄) + 2πi]− 4 [Li4(z)− Li4(z̄)]

}
(5.6.89)

in agreement with Eqs. (5.6.86) and (5.6.84).

L loops

Let us now consider the L-loop triangle integral,

TL
(
p2

1, p
2
2, p

2
3

)
= p3

p1

p2

p2 − k1

k1
k2

kL

p3 − k1
p3 − k2

· · · (5.6.90)

=

∫
d4k1

i (2π)4 · · ·
d4kL

i (2π)4

1

k2
1 + iε

1

k2
2 + iε

· · · 1

k2
L + iε

1

(p2 − k1)2 + iε
(5.6.91)

× 1

(k1 − k2)2 + iε
· · · 1

(kL−1 − kL)2 + iε

1

(p3 − k1)2 + iε
· · · 1

(p3 − kL)2 + iε
.

The result after performing the loop integration is [207]

TL
(
p2

1, p
2
2, p

2
3

)
= − 1

z − z̄
1

L! (4π)2L p2
1

(
p2

3

)L−1

2L∑
j=L

(−1)j j! ln2L−j (zz̄)

(j − L)! (2L− j)!
[Lij (z)− Lij (z̄)] ,

(5.6.92)

with z and z̄ defined as before.

One thing we can immediately observe about this expression is that taking two or more

260



discontinuities along the long axis (in the p2
3 channel) gives zero. To see this, we note that

taking a discontinuity in p2
3 corresponds to taking a monodromy around z = 1, which is

only nonvanishing for the Lij(z) factor in Eq. (5.6.92). Using the fact that the discontinuity

of Lin(z) corresponding to encircling the branch point at z = 1 gives 2πi lnn−1 z
(n−1)! , we get

[
Discp2

3
TL
(
p2

1, p
2
2, p

2
3

)]
R3

=
−2πi

z − z̄
1

L! (4π)2L p2
1

(
p2

3

)L−1

2L∑
j=L

(−1)j j! ln2L−j (zz̄)

(j − L)! (2L− j)!
lnj−1(z)

(j − 1)!
.

(5.6.93)

In this expression, there are no longer branch points at 1 in z or z̄. Thus, further disconti-

nuities in p2
3 vanish, [

(Discp2
3
)2TL

]
R3

= 0 . (5.6.94)

The sum of taking two and more cuts of the L-loop triangle along the long axis must corre-

spondingly also vanish.

We now show that taking L discontinuities in the p2
2 channel amounts to taking L cuts in

the same channel, i.e.

[(
Discp2

2

)L
TL
(
p2

1, p
2
2, p

2
3

)]
R2

=
[
L!CutC1,··· ,CLTL

(
p2

1, p
2
2, p

2
3

)]
R2 . (5.6.95)

We start by computing the sequential discontinuity, which amounts to taking L discontinu-

ities of the factor ln2L−j (zz̄) in the expression above. Only the first term in the sum over j,

where j = L, contributes to this discontinuity. The result is

[
DiscLp2

2
TL
(
p2

1, p
2
2, p

2
3

)]
R2

= − iL

z − z̄
1

(8π)L p2
1

(
p2

3

)L−1
[LiL (z)− LiL (z̄)] . (5.6.96)
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Next, we calculate the cuts. Putting the lines corresponding to the cuts C1 · · · CL on-shell in

the region R2 gives the following expression:

CutC1,··· ,CLTL
(
p2

1, p
2
2, p

2
3

)
=

∫
d4k1

i (2π)4 · · ·
d4kL

i (2π)4 (−2πi)2L δ
(
k2

1

)
Θ
(
k0

1

)
· · · δ

(
k2
L

)
Θ
(
k0
L

)
× δ

[
(p2 − k1)2

]
Θ
(
p0

2 − k0
1

)
δ
[
(k1 − k2)2

]
Θ
(
k0

1 − k0
2

)
· · · δ

[
(kL−1 − kL)2

]
Θ
(
k0
L−1 − k0

L

)
× 1

(p3 + k1)2

1

(p3 + k2)2 · · ·
1

(p3 + kL)2 . (5.6.97)

We perform the energy integrals using the delta functions δ
(
k2

1

)
· · · δ

(
k2
L

)
, and get

CutC1,··· ,CLTL
(
p2

1, p
2
2, p

2
3

)
=

∫
d3k1

(2π)3 2ωk1

d3k2

(2π)3 2ωk2

· · · d3kL

(2π)3 2ωkL
(2πi)L δ

(
p2

2 − 2 p2 · k1

)
× δ (−2 k1 · k2) · · · δ (−2 kL−1 · kL)

1

(p3 + k1)2 · · ·
1

(p3 + kL)2 . (5.6.98)

The remaining delta functions show that this cut only has support when the momenta

k1, · · · kL and k1−k2, · · · kL−1−kL are all collinear. We therefore get a product of L−1 mass-

less vertices. This configuration is singular and must be treated with care, using TOPT. As

explained in Appendix B.7, evaluating the integrals over these remaining delta functions

gives rise to a combinatorial factor of 1
L! . The result of the integral, worked out in detail in

Appendix B.7, is

CutC1···CLTL
(
p2

1, p
2
2, p

2
3

)
= − iL

z − z̄
1

L! (8π)L p2
1

(
p2

3

)L−1
[LiL (z)− LiL (z̄)] . (5.6.99)

Comparing this result to Eq. (5.6.96), we see that Eq. (5.6.95) is indeed satisfied.

262



Sequential discontinuities of the L-loop box ladders

We finally comment on the sequential discontinuities of the L-loop box ladder,

BL
(
p2

1, p
2
2, p

2
3, p

2
4, (p1 + p2)2, (p2 + p3)2

)
=

x`L x`L-1 x`1

p4

p3

p1

p2

x2

x3

x4

x1

· · ·

(5.6.100)

These ladder integrals yield the same transcendental functions as the triangle integrals.

This is easiest to see in dual space, as first considered in [209].10 Translating to dual space,

we label the dual points corresponding to loops by x`i , and by xj for external points, with

j ∈ {1, 2, 3, 4}. The ladder integral is then given by

BL ∝ ((x1 − x3)2)L(x2 − x4)2 (5.6.101)

×
∫ L∏

i=1

d4x`i
(x`i − x1)2(x`i − x3)2

1

(x2 − x`1)2

L−1∏
i=1

1

(x`i − x`i+1
)2

1

(x`L − x4)2
.

This integral is invariant under conformal transformations of the dual variables x, which

can be shown using Lorentz invariance and the (less obvious) invariance under inversion

10Dual space can be defined as follows: for any planar diagram, we associate a variable x`i for
each loop and a variable xi for each region between two external lines. Then, once we pick an orien-
tation on each of the edges, we take the momentum flowing through that edge to be the difference
between the dual variable on the right and the dual variable on the left. This ensures momentum
conservation at each vertex. In some cases, the dual variables make manifest hidden symmetries,
such as the dual conformal symmetry (see [210]).
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xµ → xµ

x2 . By a combination of translation and inversion we can send x4 to infinity. In this

limit we have (x2−x4)2

(x`L−x4)2 → 1. This is precisely the triangle ladder in dual space. The box

and triangle integrals therefore give the same analytic expression, and working out the ex-

act transformation between the two, one can show that z and z̄ variables for the box are

given in terms of the Mandelstams as

zz̄ =
p2

2p
2
4

p2
1p

2
3

, (1− z) (1− z̄) =
st

p2
1p

2
3

, (5.6.102)

with s = (p1 + p2)2 and t = (p2 + p3)2. All of the analysis for the triangle integrals there-

fore extends to L-loop box ladders.

We can also compute the sequential discontinuity of the box ladder integrals in the s and

then t channels, which is expected to vanish due to the Steinmann relations. To compute

this quantity, we go to the region R{s,t}, where s, t > 0 while all other invariants p2
i < 0. For

concreteness, we consider the phase-space point

p1 = (1, 5,−6, 0) , p2 = (1,−6, 5, 0) , (5.6.103)

p3 = (1, 7,−6, 0) , p4 = (−3,−4, 7, 0) . (5.6.104)

We can analytically continue into Rt by rescaling E1 → αE1 and E2 → αE2 by 1 > α > 0,

while keeping E3 fixed and varying E4 = −E1 − E2 − E3 along with E1 and E2. We then

return to R{s,t} by the reverse path, after encircling the branch point at s = 0. In the z and

z̄ variables, this corresponds to analytically continuing around z = 1. A similar path around
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the branch point at t = 0 can be constructed by instead rescaling E2 and E3, and also cor-

responds to computing a monodromy around z = 1. Since this sequence of discontinuity

operators is identical to the sequence of operators used to compute sequential discontinu-

ities in the p2
3 channel of the triangle, Eq. (5.6.94) confirms that the Steinmann relations

are satisfied by the box ladder integral at all loop orders. This matches the Steinmann anal-

ysis carried out in [193], where the expression that appears in Eq. (5.6.93) was also shown

to reduce to a simpler functional form (given as Eq. (19) of that paper, which has slightly

different rational normalization).

5.7 Conclusions

In this paper we have analyzed the discontinuities and cuts of Feynman integrals from sev-

eral points of view. We first described how to compute the imaginary part of Feynman inte-

grals in terms of cuts, reviewing the work of Cutkosky and ’t Hooft and Veltman, and also

described the analogous relations in non-covariant time-ordered perturbation theory. These

traditional approaches are based on the idea that Feynman integrals have branch cuts in

physical regions, and that integrals over propagators with +iε and −iε displacements are

on opposite sides of these branch cuts. The main focus of this paper has been to extend

these methods to sequential discontinuities. The ±iε prescription is in general insufficient

for computing more than one discontinuity, but the relevant computations can be carried

out by considering monodromies around the branch points of Feynman integrals. In partic-

ular, by understanding discontinuities in terms of monodromies, we are able to homogenize
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the +iε and −iε propagators that appear after the first discontinuity by analytically contin-

uing them into same cut complex plane. This allows subsequent discontinuities to be taken.

For integrals that are expressible in terms of generalized polylogarithms, we have also de-

scribed how discontinuities can be computed using variation matrices and the monodromy

group.11

The main result of this paper is a formula relating the sequential discontinuities in the

same or different channels around branch points associated with invariants sj to cuts:

1

m1!
· · · 1

mn!
[(Discs1)m1 · · · (Discsn)mnM]R{s1,··· ,sn}

=
∞∑

k1=m1


k1

m1

 · · ·
∞∑

kn=mn


kn

mn

 (−1)
∑
mi−

∑
ki
[
M{ki cuts in channel si}

]
R
{s1,··· ,sn}
+

. (5.7.1)

It is crucial that these relations are understood to apply only in regions where all the cuts

of interest are nonvanishing. In particular, we emphasize that these discontinuities are al-

ways taken as the difference betweenM evaluated at the same physical value of real exter-

nal momenta on different Riemann sheets.

An important consideration that we have spent considerable time exploring is that the

analytic continuations by which these discontinuities are computed must be chosen with

care. Paths that are homologous but not in the same homotopy class may give different an-

swers (as discussed in Appendix B.2). In addition, the derivation of our formulas is made

assuming a path exists which continues the external energies, holding the three-momenta

11It should be possible to extend the variation and monodromy matrix construction to elliptic
polylogarithms [155–157], which also appear in Feynman integral calculations. It would be interest-
ing to see if it could also be used in conjunction with the diagrammatic coaction [211–213].
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fixed and respecting energy conservation. We have presented many nontrivial examples of

cut and discontinuity computations, and have checked that Eqs. (5.5.8) and (5.5.13) hold

in these examples. For each example, we have been sure to find an explicit path in ener-

gies connecting the relevant regions, and used the path to determine which branch points

are encircled. If one just picks an arbitrary path between regions, the discontinuity can

still be computed, but there is no guarantee of agreement with cuts (and in fact, the agree-

ment sometimes fails). While there is undoubtedly a more covariant way to understand the

constraints on the paths, in every case where we have found an explicit path in energy we

have found agreement between discontinuities and cuts according to our formulas, and con-

versely, in cases where our formulas seem to fail, we have not been able to find an explicit

path in energy between regions (so that our formulas do not apply).

An important class of sequential discontinuities described by Eq. (5.5.13) are those in

which the discontinuity channels are partially overlapping. In these cases, this equation

encodes the Steinmann relations, originally derived using axiomatic quantum field theory,

which state that sequential discontinuities in partially overlapping channels must vanish. In

the original S-matrix program, this was shown to hold for full non-perturbative S-matrix

elements in a mass-gapped scalar quantum field theory. Our analysis implies that the Stein-

mann relations in fact hold for individual Feynman integrals.12 This amounts to a proof of

the Steinmann relations in perturbation theory, diagram by diagram. Our proof requires

only that the region where both channels can be simultaneously cut must exist, and that

12It had previously been observed that the Steinmann relations were obeyed by many of the
Feynman integrals that appear in planar N = 4, insofar as these integrals appear in the space of
Steinmann-satisfying hexagon functions [92, 186, 214].
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the external momenta are not constrained (for instance by being massless).

Of course, the constraint that all external lines be massive is a strong one, and excludes

many theories of physical interest. As such, it would be good to understand the massless

case in more depth. The tools we have developed should in principle apply to any Feyn-

man integral, but a full analysis of the massless case involves an additional profusion of sub-

tleties. For example, if we regulate the IR divergences of the massless box by going to d > 4

dimensions, we get a ln s ln t contribution (see Eq. (5.5.20)), and a nonzero (and IR-finite)

sequential monodromy in s and t. However, regulating the external lines with masses, as

done in the four-mass box, the sequential monodromy in s and t vanishes (this follows from

Eq. (5.6.57), if we use Eq. (5.6.102) to map the triangle to the box integral). Thus, this

sequential discontinuity, despite being IR finite, is regulator-dependent. We leave further

study of these subtleties to future work.

Time-ordered perturbation theory played an essential role in our derivation. There is a

sense in which time-ordered perturbation theory is more physical than covariant perturba-

tion theory, since particles are always on-shell. Indeed, the benefits of a non-covariant for-

mulation in some other contexts are well-known, such as how light-cone perturbation theory

is used to show factorization, and new uses are constantly being developed, such as for cos-

mological polytopes [215, 216]. It would be interesting to see if Steinmann-type constraints

and the monodromy group could be useful as a bootstrapping technique in cosmological

contexts.

The existence of IR divergences in amplitudes involving massless particles actually fa-

cilitates the study of certain aspects of these amplitudes. The IR structure of gauge the-
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ories is particularly well understood: a scattering amplitude can be factorized into a hard

part, a jet (collinear) part, and a soft part [49, 50, 75, 76, 79–81, 101, 139]. The hard part

is IR-finite and can be interpreted as the S-matrix (the ‘hard’ S-matrix) in a computa-

tional scheme where the soft and collinear parts are included in the asymptotic Hamil-

tonian [95, 200]. This suggests that analytic properties of the hard part alone might be

amenable to the same techniques used to study massive, IR-finite theories like we have done

in this paper. Indeed, the analytic properties of scattering amplitudes in planar N = 4

super-Yang-Mills theory are usually studied at the level of IR-finite remainder functions,

which can also be interpreted as hard S-matrix elements. In fact, this connection was part

of the motivation for the current work.

The soft part of the scattering amplitude in theories with massless particles can also re-

produce the IR-dominated non-analytic behavior of the full S-matrix elements. The soft

function, which can be represented as a matrix element of Wilson lines, satisfies a renor-

malization group equation and can be written as the exponential of the integral of the soft

anomalous dimension [122, 217–222]. The soft anomalous dimension depends on kinematics

and is a matrix in color space; it contains a dipole part, which is diagonal in color space,

and a correction term with restricted kinematic dependence [128, 141]. The dipole part

is determined by the cusp anomalous dimension, and is proportional to
∑

i<j ln(
−pi·pj
µ2 ),

where µ is the renormalization-group scale. The correction to the dipole formula depends

only on the directions of the external momenta and not on their magnitudes; this implies

that it can only depend on rescaling-invariant cross-ratios of the form ρijkl =
(pi·pj)(pk·pl)
(pi·pk)(pj ·pl) .

This constitutes a strong constraint, and in particular implies that a soft function can never
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have cuts in channels with more than two particles. Since simultaneously cutting a pair of

partially-overlapping two-particle channels isolates a one-particle channel, i.e. a decay, such

partially-overlapping cuts are forbidden in theories with only stable particles. This is one

way to understand the Steinmann relation in S-matrix theory in the soft limit. In contrast,

in theories with massless particles, 1 → n amplitudes do not have to identically vanish.

Correspondingly, the articulation of the Steinmann relations for these theories proves to be

more challenging. Nevertheless, the restriction to two-particle cuts in the soft limit gives a

clue to how we might understand the analytic properties of the massless case. Also, since

the soft function is an expectation value of a product of Wilson lines, one could ask what

restrictions causality imposes on this expectation value.13

To facilitate our analysis, we have presented an introduction to the monodromies of poly-

logarithmic functions, drawing inspiration from [201, 202]. A central role in this analysis is

played by the connection ω and an integration contour γ. These ingredients are sufficient

to determine a variation matrix via Mγ = P exp
∫
γ ω. The variation matrix is a homotopy

functional, i.e. its value depends only on the homotopy class of the integration contour γ.

In typical cases, the number of homotopy classes is infinite. Nevertheless, in physical ap-

plications one rarely considers analytic continuations in the full domain of analyticity; in

the examples we studied, it was sufficient to consider rotations in the phases of energies.

The allowed sequences of cuts correspond to non-vanishing elements in the variation matrix,

while forbidden sequences of cuts correspond to vanishing elements.

This type of reasoning, in which the vanishing of certain cuts (or sequences of cuts) is

13While the Steinmann relations were initially studied for correlation functions of local operators,
the implications of causality on non-local operators do not seem to have been studied.
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used to constrain the analytic structure of polylogarithmic scattering amplitudes and Feyn-

man integrals, has appeared in a number of contexts (see for instance [165, 178, 179, 195,

208, 223]). These analyses are often carried out at the level of the symbol, with the result-

ing objects only being later upgraded to full polylogarithmic functions using the methods

of [153, 154, 223] (or more implicitly, using the methods reviewed in [224]). It is important

to note, however, that when such constraints are imposed directly at the level of the sym-

bol, it is not always clear whether the corresponding cuts can arise in the physical region,

or only outside of it. This could prove salient, as the Steinmann relations do not necessarily

apply when the relevant cuts are not accessible within the physical region.

It would be particularly interesting to understand whether the Steinmann-type con-

straints that prove useful in planar N = 4 [92] all correspond to cuts that are accessible

within physical regions, or point to some further special property of these amplitudes. In

particular, it has been observed that these constraints can be generalized to the extended

Steinmann relations, which apply to sequential discontinuities at all depths in the sym-

bol [186, 214], and that these extended constraints exhibit intriguing connections to cluster

algebras [225]. The extended Steinmann relations have been used in conjunction with addi-

tional formal constraints, such integrability (which ensures that symbols can be upgraded to

genuine functions), first entry conditions (which constrain the branch cuts that are accessi-

ble on the boundary of the Euclidean region), and last entry conditions (which constrains

the derivative of these amplitudes) to formulate ansätze for six- and seven-particle ampli-

tudes in this theory, which can be further constrained in special kinematic limits to deter-

mine the amplitude at a given loop order [92, 144, 146, 179–185]. These types of constraints
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can all be conveniently formulated in terms of the connection ω. The integrability condition

is just the requirement that ω ∧ ω = 0, the first entry condition constrains the differentials

that appear in the first row of ω, and the last entry condition constrains differentials that

appear in the last column of ω.

In fact, one can consider bootstrapping Feynman integrals directly in terms of the el-

ements of their variation matrices Mγ .14 Many of the entries in the right column of Mγ

correspond to different (sequential) cut channels, and should therefore be expressible as in-

tegrals over the phase space of on-shell amplitudes.15 The integrability condition ω ∧ ω = 0

imposes linear constraints that relate these cut integrals to the other entries of M . More-

over, when working in terms of the connection ω, one can impose additional constraints

having to do with the unipotence of its monodromy matrices, namely that property that

(1 −M x
p
)k = 0 for some integer k, where this integer k is related to the number of cuts

one can take in channel corresponding to this monodromy. More generally, this unipotence

property provides strong constraints on the underlying mixed Hodge structure of the poly-

logarithmic functions that arise from Feynman integrals, and it would be interesting to un-

derstand these constraints in more detail.

14A similar idea, of using dispersion relations to complete the coproduct of a Feynman integral,
was developed in [165].

15This will not be true in channels that are only accessibly outside of physical regions.
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A.1 On-shell intermediate propagators

In this appendix, we explain how to compute cut diagrams with on-shell intermediate prop-

agators, as in Eq. (2.5.7). Consider the contribution to the total cross section for γZ scat-

tering with a final state e+e−γ, interfered with a disconnected diagram:

σ11.A =

pZ

k′

q

p

k
+ c.c. (A.1.1)

This is the same as the first diagram in Eq. (2.5.7), but crossed so the γZ is incoming. We

do this to separate this complication of on-shell intermediate states from that of integrating

over 3-body initial-state phase space. The spin-summed cut diagram is

σ11.A = σ0

∫
ddk

(2π)d
ddq

(2π)d
ddp

(2π)d
2πδ(k2)θ(k0)2πδ(p2)θ(p0)2πδ(q2)θ(q0)

× (2π)dδd(q + p− pZ)(2π)d−1(2ωk)δ
d−1(k′ − k)

× i

(p+ k)2 + iε

i

(p+ k − k′)2 + iε
Tr[/pγ

µ(/p+ /k)γµ(/p+ /k − /k′)γα/qγ
α] + c.c. (A.1.2)

The (2π)d−1(2ωk)δ
d−1(k′ − k) = 〈k|k′〉 factor on the second line comes from projecting

the incoming photon momentum onto the outgoing photon momentum in the absence of

interactions. Integrating over ddkddq causes no problems. But once k = k′, the integral

reduces to δ(p2) i
p2+iε

, which must be treated carefully. Integrating over all variables other
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than p0 and ωp = |~p| gives

σ11.A = σ0
Ωd−2

(
−2(d− 2)2

)
(2π)d−2(1− z)

∫ ∞
−∞

dp0

∫ 1
2

z
2

dωpδ(p
2
0 − ω2

p)

[
1

p2
0 − ω2

p + iε
+ c.c.

]
θ(p0)

× ωd−3
p

[
[(1− p0)2 − ω2

p][ω
2
p − (p0 − z)2]

(1− z)2ω2
p

] d−4
2

×
p4

0 − 2p0z + z2 − (1− z)ω2
p + ω4

p − p2
0(2ω2

p + z − 1)

2p0 − z
. (A.1.3)

While p2
0 − ω2

p has two roots, the root with p0 = −ωp is off the integration contour due to

the θ(p0) in the integrand. Thus we can drop the iε term for the p0 + ωp factor and focus

on the singularity at p0 = ω. For this singularity, it is critical to treat the product δ(p0 −

ωp)
[

1
p0−ωp+iε + c.c.

]
as a distribution. By taking the derivative of the relation 2πδ(x) =

i
x+iε −

i
x−iε we are led to

2πδ′(x) = −i
(

1

x+ iε

)2

+ i

(
i

x− iε

)2

. (A.1.4)

Thus we can write

δ(p0 − ωp)
[

1

p0 − ωp + iε
+ c.c.

]
=

i

2π

(
1

p0 − ωp + iε

)2

− 1

2π

(
1

p0 − ωp − iε

)2

= −δ′(p0 − ωp) .

(A.1.5)
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The δ′(p0 − ωp) can then be integrated by parts. So, for a test function f(p0) we have

∫ ∞
0

dp0δ(p
2
0 − ω2

p)

[
1

p2
0 − ω2

p + iε
+ c.c.

]
f(p0) =

d

dp0

[(
1

p0 + ωp

)2

f(p0)

]
p0=ωp

. (A.1.6)

Applying this prescription to Eq. (A.1.3) gives

σ11.A = σ0Γd
1

π

{
1

ε
− 3− ln z

}
. (A.1.7)

The same technique is used to compute Eq. (2.5.7).

A highly non-trivial check on this procedure is that the cross section for γZ → γe+e−

computed this way exactly cancels the contributions from other γZ final states at the same

order in perturbation theory. In particular, the other diagrams, such as the forward scatter-

ing loop and the γZ → e+e− process are computed without having singular intermediate

propagators.

A.2 Initial state masses

In Section 2.5 we showed that the cross section for nγ + e+e− → mγ + Z was IR finite

for each n, summed over m. Because of its finiteness and the possible convergence of the

sum over n, one might hope to connect the cross section to a physical observable. To do

so, the total cross section, inclusive over all possible initial state photons, including hard

non-collinear ones, is probably not the most sensible thing to try to measure. To refine the

calculation to something closer to physical, we consider instead the cross section for the col-
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lision of two initial-state hemisphere jets with masses less than some scale m. Using mass

and hemisphere jets makes this infrared-safe cross section depend on only a single parame-

ter, rather than say energy and angle cuts, like Steman-Weinberg jets.

The initial-state hemispheres are defined by the initial-state thrust axis. For a 2-body

e+e− initial state, the thrust axis is the same as the collision direction and both hemisphere

masses are zero. For e+e−γ initial states, the thrust axis aligns with the hardest of the 3

momenta. The two softer momenta are in one hemisphere and the hemisphere mass con-

taining the single hard particle is zero. For simplicity, we ignore the region of phase space

with e+e− in the same hemisphere, as it is power suppressed and does not contribute an

infrared divergence. Although we consider states with m + 2 particles in the initial state,

there are still at most 3 independent momenta, so we do not have to worry about the more

complicated 4-body computation of the thrust axis and hemisphere masses.

We calculate the cumulant total cross section, integrated over the phase space where

both hemisphere masses are less than
√
λQ. That is, m2

hemi 1 ≤ λQ2 and m2
hemi 2 ≤ λQ2.

So at leading order

σ̃00(λ) = σd0δ(1− z) , (A.2.1)

where Γd =
(

4πe−γEµ2

Q2

) 4−d
2 , σd0 = σ0

d−2
2 µ4−d, σ0 = 4πg2

Q2 , and z =
m2
Z

Q2 as before. The virtual

correction σ̃00 is the same as in Eq. (2.5.1).

σ̃00(λ) = σd0
e2

π2
Γd

{
− 1

4ε2
− 3

8ε
+

7π2

48
− 1

}
δ(1− z) . (A.2.2)

There is no λ dependence as the virtual contribution always contributes.
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The only other contribution with no photons in the final state at this order has one pho-

ton in the initial state. The cross section is

σ̃10(λ) = σd0
e2

π2
Γd

{ 1

4ε2
+

3

8ε
− 1

4
ln2 λ− 3

8
lnλ− 5π2

48
+

7

8

+
7

32
ln(1− 2λ) + λ

(
15

16
+

1

2
lnλ− 1

2
ln(1− 2λ)

)
+ λ2

(
3

16
− 1

8
lnλ+

1

8
ln(1− 2λ)

)
− 1

2
Li2(2λ)

}
δ(1− z) . (A.2.3)

Note that the IR divergences of σ̃00 and σ̃10 exactly cancel, leaving lnλ and ln2 λ terms,

just as for final state jets.

For n > 0 photons in the final state, we have to be a little careful about the kinematics.

For Q ≈ mZ , the jet masses can only be as large as roughly m . Q−mZ , thus λ . (1− z).

For values of λ larger than this, the cumulant becomes λ independent. The precise cutoff

depends on the numbers of photons in the initial state and final state. Explicitly σ̃mn be-

comes λ independent for λ > m
2n(1 − z). For simplicity, we also take z > 1

2 as we want the

Born process to be e+e− → Z not e+e− → γZ.

The various contributions for λ > m
2n(1− z) are, for m = n− 1,

σ̃n−1,n = σd0
e2

π2
Γd

{
δ(1− z)

(
1

4ε2
+

lnn

ε
− π2

16
+

ln2 n

2

)
− 1

ε

(
2n2 − 2n+ 1

)
z2 + 2(n− 1)z + 1

4n2

[
1

1− z

]
+

+

(
2n2 − 2n+ 1

)
z2 + 2(n− 1)z + 1

4n2

(
ln

(
(n− 1) z + 1

n3

)[
1

1− z

]
+

+ 2

[
ln(1− z)

1− z

]
+

)}
,

(A.2.4)
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for m = n,

σ̃n,n = σd0
e2

π2
Γd

{
δ(1− z)

(
− 1

2ε2
− 2 lnn

ε
+
π2

8
− ln2 n

)
+

1

ε

(
2n2 + 1

)
z2 − 2z + 1

2n2

[
1

1− z

]
+

−1− z
2n2

−
(
2n2 + 1

)
z2 − 2z + 1

2n2

(
ln
( z
n2

)[ 1

1− z

]
+

+ 2

[
ln(1− z)

1− z

]
+

)}
, (A.2.5)

and for m = n+ 1,

σ̃n+1,n = σd0
e2

π2
Γd

{(
1

4ε2
+

lnn

ε
− π2

16
+

ln2 n

2

)
δ(1− z)

− 1

ε

(
2n2 + 2n+ 1

)
z2 − 2(n+ 1)z + 1

4n2

[
1

1− z

]
+

+

(
2n2 + 2n+ 1

)
z2 − 2(n+ 1)z + 1

4n2

(
ln

(
(n+ 1) z − 1

n3

)[
1

1− z

]
+

+ 2

[
ln(1− z)

1− z

]
+

)}
.

(A.2.6)

For λ ≤ m
2n(1− z), we find for m = n− 1:

σ̃n−1,n = σd0
e2

π2
Γd

{
−1

ε

(
2n2 − 2n+ 1

)
z2 + 2(n− 1)z + 1

4n2

(
1

1− z

)

+
(n− 1)(1− z)− 2nλ

4n2(n− 1)

+

(
2n2 − 2n+ 1

)
z2 + 2(n− 1)z + 1

4n2(1− z)
ln

(
((n− 1)z + 1)λ(1− z)2

n2 ((n− 1)(1− z)− nλ)

)}
, (A.2.7)
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for m = n,

σ̃n,n = σd0
e2

π2
Γd

{
1

ε

(
2n2 + 1

)
z2 − 2z + 1

2n2

(
1

1− z

)

+
(1− z)− 4λ

2n2
−
(
2n2 + 1

)
z2 − 2z + 1

2n2(1− z)
ln

(
zλ(1− z)2

n2(1− z − λ)

)}
, (A.2.8)

and for m = n+ 1,

σ̃n+1,n = σ0
e2

π2
Γd

{
−1

ε

(
2n2 + 2n+ 1

)
z2 − 2(n+ 1)z + 1

4n2

(
1

1− z

)

+
(n+ 1)(1− z)− 2nλ

4n2(n+ 1)

+

(
2n2 + 2n+ 1

)
z2 − 2(n+ 1)z + 1

4n2(1− z)
ln

(
((n+ 1)z − 1)λ(1− z)2

n2((n+ 1)(1− z)− nλ)

)}
. (A.2.9)

As with the total cross section, the IR divergences from these contributions cancel in

triplets: σ̃n−1,n + σ̃n,n + σ̃n+1,n is finite for any n. To see if the sum over n converges, we

look at the large n behavior of the series. The asymptotic behavior for n� 1 is:

σ̃n−1,n+ σ̃n,n+ σ̃n+1,n = σd0Γd
e2

π2
×


− (1−z)3

6z2n4 +O( 1
n6 ), λ > 1− z

− z(3λ2−4λ(1−z)+2z2−3z+1)
2n2(1−z−λ)2 + 3−6λ

2n2 +O( 1
n4 ), λ < 1−z

2

(A.2.10)

Note that for λ > 1 − z the asymptotic behavior is the same as the total cross section,

Eq. (2.5.11), as expected, and that the sum converges for any λ.

While it is satisfying that the sum converges, we have be careful drawing too strong con-
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clusions. As pointed out in [38] for potential scattering, series like this one are not abso-

lutely convergent. Summing in terms in a different order will give a different answer. For

example, grouping by fixed number of initial state photons σ̃m,m−1 + σ̃m,m + σ̃m,m+1 the IR

divergences still cancel in triplets, however there is a leftover uncancelled IR divergence σ̃00.

So the sum over m is also IR divergent. Besides the ordering ambiguity, it is not at all clear

that the cancellations and convergence will persist at higher order in perturbation theory or

in QCD rather than QED. There is clearly much more to be understood, both computation-

ally and physically, about initial state jets.
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B.1 The coproduct from variation matrices

Polylogarithms come equipped with a motivic coproduct [151, 226] which is sometimes use-

fully upgraded to a coaction [152, 227]. The coproduct or coaction can be used to system-

atically decompose the analytic structure of complicated functions into simpler building

blocks. These mathematical notions have been used in a wide variety of Feynman integral

calculations to constrain the functional form of the answer based on knowledge of the lo-

cations of its discontinuities (see for example [91, 146, 165, 186, 223, 223, 228]). In this ap-

pendix, we show how the coproduct arises naturally in the language of the variation matri-

ces M .

Let us consider again the example of the dilogarithm, which has the variation matrix

M =


1 Li1(z) Li2(z)

0 1 ln(z)

0 0 1

 . (B.1.1)

A couple of observations can be made about the entries in the top row and the last column

of this matrix. The first is that the product M1iMi3 has the same transcendental weight as

the original function M13, for all i. Second, because of the differential equation this matrix

satisfies, the entries M1i involve the iterated integral corresponding to carrying out the first

i − 1 integrations in the definition of Li2(z) (as given in Eq. (5.4.40)), while the entries Mi3

involve the iterated integral that results from dropping the first i − 1 integrations. Follow-

ing these observations, we can consider defining an operator ∆ that maps Li2(z) to a sum
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over a tensor product of these matrix entries, which we might think of as summing over the

possible ways to partition the integrations in Li2(z) into an initial and a final set:

∆M13 =

3∑
j=1

M1j ⊗Mj3. (B.1.2)

Plugging in the functions that appear in M , this equation becomes

∆ Li2(z) = 1⊗ Li2(z) + Li1(z)⊗ ln(z) + Li2(z)⊗ 1 , (B.1.3)

which can be recognized to be precisely the coproduct of the dilogarithm, as defined

in [151].

These observations, and the corresponding construction of the coproduct, can be ex-

tended to the general case. Namely, due to the fact that each row of M satisfies the same

differential equation, the product MijMjk has the same transcendental weight as Mik for

all i ≤ j ≤ k. And while generic variation matrix entries Mik involve sums of iterated in-

tegrals, the functions Mij still correspond to carrying out (some linear combination of) the

initial integrations entering Mik, while the functions Mjk still correspond to carrying out

(some linear combination of) the final integrations in Mik. Correspondingly, the coproduct

can be defined in terms of entries of the variation matrix by

∆Mik =

k∑
j=i

Mij ⊗Mjk . (B.1.4)

As indicated by the use of general indices i and k, the coproduct can be applied to any en-
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try of a variation matrix; however, as in [151], the second factor in this tensor product must

be interpreted modulo factors of iπ. Instances of iπ that appear in the first factor can be

retained using the methods of [153].

It is worth emphasizing that the coproduct (B.1.4) can be applied to entries of the

variation matrix in any region, and that it commutes with the action of the monodromy

matrices. For instance, recall the variation matrix for the triangle and box integral from

Eq. (5.4.57),

Mγ0 =



1 ln(zz̄) Li1(z) + Li1(z̄) Φ1(z, z̄)

0 1 0 −Li1(z) + Li1(z̄)

0 0 1 ln(z/z̄)

0 0 0 1


, (B.1.5)

where we recall that

Φ1(z, z̄) = − ln(zz̄)(Li1(z)− Li1(z̄)) + 2(Li2(z)− Li2(z̄)) . (B.1.6)

Using Eq. (B.1.4), we can easily read off the coproduct of Φ1(z, z̄) from Eq. (B.1.5):

∆Φ1(z, z̄) = 1⊗ Φ1(z, z̄)− ln(zz̄)⊗ Li1(z) + ln(zz̄)⊗ Li1(z̄) (B.1.7)

+ Li1(z)⊗ ln(z/z̄) + Li1(z̄)⊗ ln(z/z̄) + Φ1(z, z̄)⊗ 1 .

To analytically continue Eq. (B.1.7) around one of its branch points, we can replace all of
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the functions in the left factor of the coproduct with the value they take after being acted

on by one of the monodromy matrices. It should be clear that this results in the same co-

product that one would get from applying Eq. (B.1.4) directly to the variation matrix that

results from the action of the monodromy matrix. Further details on the properties of the

coproduct can be found in [229].
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B.2 The monodromy and fundamental groups

As seen in Section 5.4, the complete analytic structure of a collection of polylogarithms can

be encoded in a set of monodromy matrices. These matrices occur in one-to-one correspon-

dence with the location of simple poles in the integral definition of these polylogarithms,

reflecting the fact that the corresponding integration contours are always homotopic to a

composition of (some sequence of) closed contours that encircle individual poles, and a con-

tour that does not cross any branch cuts. This indicates that there should be some rela-

tion between the monodromy group and the fundamental group describing the manifold on

which these polylogarithms are defined, which has punctures at precisely the loci of these

simple poles.

To make this connection between the monodromy and fundamental groups more explicit,

we first observe that monodromy matrices can be written as the conjugation of a matrix

with rational entries by a diagonal matrix whose entries are integer powers of 2πi. For in-

stance, the monodromy matrices of the dilogarithm from Eq. (5.4.48) and Eq. (5.4.50) can

be written as

M
0

=


1 0 0

0 1 2πi

0 0 1

 =


1 0 0

0 2πi 0

0 0 (2πi)2



−1

·


1 0 0

0 1 1

0 0 1

 ·


1 0 0

0 2πi 0

0 0 (2πi)2

 (B.2.1)
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and

M
1

=


1 −2πi 0

0 1 0

0 0 1

 =


1 0 0

0 2πi 0

0 0 (2πi)2



−1

·


1 −1 0

0 1 0

0 0 1

 ·


1 0 0

0 2πi 0

0 0 (2πi)2

 .

(B.2.2)

These conjugated matrices can be understood as furnishing a representation of the homo-

topy group of C − {0, 1} by matrices in GL(3,Z). More explicitly, the homotopy group of

C − {0, 1} is the free group with two generators, which are associated with the homotopy

classes of paths around z = 0 and z = 1. Up to conjugation by diag
(
1, 2πi, (2πi)2

)
, the

monodromy matrices give us an explicit representation of this group.

Note that this connection to the fundamental group remains valid if we compactify the

complex plane by considering the monodromy matrix associated with infinity. Using the

connection in Eq. (5.4.43), we can compute the monodromy matrix from an infinitesimal

contour encircling infinity. For instance, if we integrate the dilogarithm integrand around a

circular path that starts and ends at a complex point |R| > 1, we have

∫
γR

ds

1− s
◦ ds
s

= (2πi)2

∫ 1

0
dt

∫ t

0
du

Re2πiu

1−Re2πiu
= 2π2 + 2πi ln

R− 1

R
. (B.2.3)

Since ln R−1
R is a continuous function for large |R|, limR→∞ ln R−1

R = 0 and we get 2π2. The
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full matrix can be computed to be

M ∞ =


1 −2πi 2π2

0 1 2πi

0 0 1

 . (B.2.4)

Note that going around infinity clockwise corresponds to a counterclockwise contour around

0 and 1. If we compute the matrix along a straight line path between 0 and R, we get the

variation matrix in Eq. (5.4.46):

M0→R =


1 − ln(1−R) Li2(R)

0 1 lnR

0 0 1

 . (B.2.5)

Then, if we take R→∞ with Im R > 0, we get

M∞ = M0→R ·M ∞ ·M
−1
0→R =


1 −2πi 0

0 1 2πi

0 0 1

 = M
0
·M

1
. (B.2.6)

This monodromy around infinity can be written as the product of a monodromy around

0 and 1, since the path around infinity is homotopic to a path around 0 then around 1, as

illustrated in the left part of Fig. B.1. There, we see that the choice to take Im R > 0 was

what determined that we encircled the branch point at 0 first, and then the branch point

at 1. If we take R → ∞ with Im R < 0 (so that the contour circles the branch point at 1
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first), the monodromy matrix differs in the top-right entry

M∞ = M0→R ·M ∞ ·M
−1
0→R =


1 2πi 4π2

0 1 −2πi

0 0 1

 = M
1
·M

0
(B.2.7)

The result is the product of the 0 and 1 monodromies in the opposite order. This path

around infinity is illustrated on the right in Fig. B.1.

This ambiguity at O(π2) in the monodromy matrix associated with infinity is also

present for the other monodromy matrices. For example, we could have computed the

monodromy around 1 using a contour that first crosses the negative real axis before going

around 1, as illustrated on the right in Fig. B.1. The result would have been

M
0,1

= M
0

−1 ·M
1
·M

0
=


1 −2πi 4π2

0 1 0

0 0 1

 . (B.2.8)

The O(π) terms in this monodromy matrix are the same as for M
1
in Eq. (B.2.2), as

expected from Cauchy’s residue theorem, but the O(π2) terms are different.

To describe these O(π2) ambiguities more formally, consider a codimension-one branch

variety defined by an equation f({sj}) = 0, for some set of variables {sj} which we can take

to be Mandelstam invariants. To compute the monodromy around this branch variety, we

find a closed path γ such that
∮
γ d ln f({sj}) = 2πi. However, as there are many paths γ

that satisfy this requirement, there is some ambiguity in this choice. In particular, all the
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0 1

∞

γ
0

γ
1

γ∞

γ∞

Re s

Im s

0 1

γ
0,1

γ∞

∞

Re s

Im s

Figure B.1: Paths around 0, 1 and ∞. We depict two possible contours that go around infinity,
starting at points in the upper or lower half-plane. These are each homotopic to paths around 0 and
1, but in different orders. The two contours around infinity are not homotopically equivalent. The
right panel shows that the path ambiguity is present also for paths around s = 1.

paths in the same homology class of γ satisfy the same relation; however, the paths in this

homology class may still be in different homotopy classes. While the integral
∮
γ d ln f({s})

depends only on the homology class of γ, the elements of the monodromy group depend on

the homotopy class of γ.

The fundamental group and first homology group are related by Hurewicz theorem,

which states that the first homology group is the abelianization of the fundamental group.

That is, given any two elements a and b of the fundamental group, we can quotient the

fundamental group by the commutator subgroup generated by elements aba−1b−1 to obtain

the homology group. The contour corresponding to the commutator aba−1b−1 is called

a Pochhammer contour, and corresponds to a trivial element in homology. Thus, for ev-

ery path γ which satisfies the condition
∮
γ d ln f({sj}) = 2πi, we can find another path

γaba−1b−1 that also satisfies this relation. Moreover, as this new path belongs to a different

homotopy class, it yields a different monodromy beyond O(π).
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Despite these ambiguities, any choice of closed contours around 0, 1, and infinity will

furnish us with a representation of the fundamental group on the Riemann sphere with

three marked points. For instance, we can choose the rational matrices appearing in

Eqs. (B.2.1), (B.2.2), and (B.2.6), which satisfy a single multiplicative identity. Note,

however, that the contours used must all start at the same basepoint, so we cannot use the

rational matrices corresponding to M
0
, M

1
, and M ∞ .

For a multivariable function, like the function Φ1(z, z̄) that appears in the one-loop trian-

gle and box, we can carry out the same analysis for the contours in z while holding z̄ fixed.

The contours around z = 0 and z = 1 were computed in Eqs. (5.4.59) and (5.4.62) to be

M z
0

=



1 2πi 0 0

0 1 0 0

0 0 1 2πi

0 0 0 1


, M z

1
=



1 0 −2πi 0

0 1 0 2πi

0 0 1 0

0 0 0 1


. (B.2.9)
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For the contours around infinity, a calculation analogous to the dilog case gives

M∞
z

=



1 2πi −2πi −4π2

0 1 0 2πi

0 0 1 2πi

0 0 0 1


= M z

0
·M z

1
, (B.2.10)

M z
∞ =



1 2πi −2πi 4π2

0 1 0 2πi

0 0 1 2πi

0 0 0 1


= M z

0
·M z

1
. (B.2.11)

The monodromy matrices for contours in z̄ can be computed in a similar fashion, and com-

mute with the monodromy matrices in z. Like for the case of the dilogarithm, each mon-

odromy matrix gives rise to an associated rational matrix that corresponds to a generator

of the fundamental group, which in this case describes the manifold corresponding to the

space of complex z and z̄ with the points 0, 1, and infinity in each variable removed.

More generally, the monodromy group describing the discontinuity of a set of polylog-

arithms also furnishes us with a representation of the fundamental group describing the

manifold on which these polylogarithms are defined. When we consider polylogarithms

that only depend on a single variable, the relevant manifold is the Riemann sphere with

n marked points and the fundamental group corresponds to the free group with n − 1 gen-

erators. However, the fundamental group of higher-dimensional manifolds will in general be

more complicated.
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B.3 Single-valued polylogarithms

Using the Knizhnik-Zamolodchikov equation, polylogarithms can be mapped to single-

valued avatars of themselves [230]. In these new single-valued functions, all contributions

generated by analytically continuing around branch points are systematically cancelled out

by new functional dependence on variables conjugate to the variables of the original func-

tion. This type of single-valued map has proven useful in a variety of physics contexts, such

as multi-Regge limits [231, 232], the infrared structure of gauge theory [192, 233], string

amplitudes [234], and massless φ4 theory [235]. Motivated by [201, 202] we show here that

the same map can be constructed in terms of variation matrices.

We begin by considering a variation matrix M that depends on any number of variables,

whose discontinuities are described by a set of monodromy matrices {M ,k} indexed by

k. In order to construct a single-valued version of the matrix M , we want to find a ma-

trix that transforms in the opposite way as M when analytically continued around branch

points. A natural object to consider is the inverse conjugate matrix M
−1, namely the in-

verse matrix of M in which all variables zj have additionally been replaced by their com-

plex conjugates zj . Under the action of the monodromy group, this pair of matrices trans-

form as

M → M ,k ·M , (B.3.1)

M
−1 → M

−1 ·M −1
,k . (B.3.2)
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Thus, the product of these two matrices is not quite invariant under arbitrary analytic con-

tinuations, because M
−1
,k ·M ,k 6= 1.

This mismatch can be fixed by decomposing the monodromy matrices as discussed in

section B.2. In particular, we have

M ,k = D−1 ·Mk ·D , (B.3.3)

where D is a diagonal matrix whose entries are integer powers of 2πi, and Mk is an ele-

ment of the general linear group with rational entries. Since the action of the monodromy

matrices preserves transcendental weight, the matrix D (which encodes the relative weight

the rows of M ) does not depend on k. Having made this observation, we define the single-

valued matrix

Msv ≡M
−1 ·D−1 ·D ·M . (B.3.4)

This matrix invariant under the action of the monodromy group, since

Msv →
(
M
−1 ·D−1 ·M−1

k ·D
)
·D−1 ·D ·

(
D−1 ·Mk ·D ·M

)
= Msv (B.3.5)

whenever zj = z∗j . We note that the definition (B.3.4) is equivalent to the map defined in

Eq. (3.82) of [232] using the coproduct formalism.

Let us see how this works in the case of the dilogarithm. Referring to its variation matrix
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M in Eq. (B.1.1), we see that D−1 ·D = diag(1,−1, 1) and

M
−1

=


1 −Li1(z) −Li2(z) + Li1(z) ln z

0 1 − ln z

0 0 1

 . (B.3.6)

The single-valued matrix is thus given by

Msv =


1 Li1(z) + Li1(z̄) Li2(z)− Li2(z̄) + ln(zz̄) Li1(z̄)

0 −1 − ln(zz̄)

0 0 1

 . (B.3.7)

It is not hard to check that all effects of analytically continuing z and z̄ in opposite direc-

tions around any branch point cancel out in the entries of this matrix, as expected.
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B.4 Permutation symmetry of the triangle integral

The one-loop triangle integral considered in Section 5.6.2, given by

1

16π2p2
1

1

z − z̄
Φ1(z, z̄) (B.4.1)

where Φ1(z, z̄) was defined in Eq. (5.6.46), respects an S3 symmetry under the permutation

of its external legs. This symmetry turns out to be realized in an interesting way, by the

collusion of this integral’s rational and transcendental parts.

We first discuss the rational prefactor. To determine how the quantity p2
1(z − z̄) trans-

forms under the permutation of external momenta, we consider the wedge product p1 ∧ p2.

We work in the coordinate system described above Eq. (5.6.35), where p1 = (E1, 1) and

p2 = (E2, p
x
2). In terms of a pair of basis vectors et and ex, these momenta become p1 =

E1et + ex and p2 = E2et + px2ex, and we have

p1 ∧ p2 = −1

2
p2

1(z − z̄)et ∧ ex . (B.4.2)

We can correspondingly use this quantity to study the transformation properties of p2
1(z −

z̄). Clearly, under p1 ↔ p2 the left-hand side of Eq. (B.4.2) changes sign. Similarly, under

p1 ↔ p3 we have p1 ∧ p2 ↔ p3 ∧ p2 = −p1 ∧ p2. We conclude that the representation of the

symmetric group S3 when acting on p2
1(z − z̄) is the sign representation.

Before moving on to discuss the symmetries of Φ1(z, z̄), we need to find the action of the
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S3 symmetry on z and z̄. From the above, we know that

σ(p2
1(z − z̄)) = p2

σ(1)(σ(z)− σ(z̄)) = (−1)|σ|p2
1(z − z̄). (B.4.3)

We also know, from Eq. (5.6.32), that under the p2 ↔ p3 permutation we have zz̄ ↔

(1 − z)(1 − z̄). These constraints can be solved with the unique solution that p2 ↔ p3

corresponds to z ↔ 1 − z and z̄ ↔ 1 − z̄. Similarly, one can show that p1 ↔ p2 must cor-

respond to z ↔ 1
z and z̄ ↔ 1

z̄ . The action of the remaining permutations can be determined

from these two transformations.

We are now ready to study the symmetry of the transcendental part of the triangle func-

tion. It turns out that this is related to the Bloch-Wigner function

D(z) = =Li2(z) + arg(1− z) ln(|z|). (B.4.4)

In particular, using

=Li2(z) =
1

2i
(Li2(z)− Li2(z∗)), (B.4.5)

arg(1− z) =
1

2i
ln

1− z
1− z∗

, (B.4.6)

ln|z| = 1

2
ln(zz∗), (B.4.7)

we have

4iD(z) = 2(Li2(z)− Li2(z∗)) + ln

(
1− z
1− z∗

)
ln(zz∗). (B.4.8)
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In the region R∗I , where z̄ = z∗, this gives precisely the transcendental part of the one-loop

triangle, Φ1(z, z̄).

The Bloch-Wigner function satisfies

D(z) = −D(1− z) = −D
(

1

z

)
. (B.4.9)

These signs precisely compensate the signs arising from the action of the permutation group

on the rational prefactor. In the other regions, where z̄ 6= z∗, the transcendental part should

be thought as a function of two independent variables. Still, the same relations hold under

the transformation of both z and z̄.

How is the symmetry realized on the cuts? It is instructive to consider the example of

a leading singularity, where the only dependence on the kinematics is in the rational pref-

actor, while the transcendental part is a power of 2πi. By the argument above, under the

action of the permutation of external legs, the rational prefactor may pick up a sign. Hence,

the residue on a given leading singularity is not invariant under the permutation group.

However, each leading singularity locus is paired with another one with opposite residue, as

required by global residue theorems. It follows that the set of values the residue takes on all

the leading singularities is invariant under the action of the permutation group. A similar

statement holds for the rest of the cuts.
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B.5 Variation matrix of the two-loop box

In this appendix we present the connection and variation matrix for the two-loop ladder

triangle/box function

Φ2(z, z̄) = 6[Li4(z)− Li4(z̄)]− 3 ln(zz̄)[Li3(z)− Li3(z̄)] +
1

2
ln2(zz̄)[Li2(z)− Li2(z̄)] . (B.5.1)

The two-loop connection is

ω =



0 −ω1 − ω1 ω0 + ω0 0 0 0 0 0 0

0 0 0 −ω0 ω0 0 0 0 0

0 0 0 ω1 −ω1 ω0 + ω0 0 0 0

0 0 0 0 0 0 ω0 − ω0 −ω0 0

0 0 0 0 0 0 −ω0 −ω0 + ω0 0

0 0 0 0 0 0 −ω1 ω1 0

0 0 0 0 0 0 0 0 ω0

0 0 0 0 0 0 0 0 ω0

0 0 0 0 0 0 0 0 0



,

(B.5.2)

where

ω0 =
dz

z
, ω1 =

dz

z − 1
, (B.5.3)

ω̄0 =
dz̄

z̄
, ω̄1 =

dz̄

z̄ − 1
. (B.5.4)

300



The connection trivially satisfies dω = 0, and using the fact that ω0 ∧ ω1 = 0, we also have

that ω ∧ ω = 0. Thus, the connection has zero curvature (dω − ω ∧ ω = 0).

Using this connection, we can compute the variation matrix Mγ0 . We encounter integrals

of one-forms, which are familiar, but also iterated integrals of higher weight. These can be

easily evaluated by leveraging the shuffle algebra associated with iterated integrals [148,

226]. As an example, consider

M1,6 =

∫ z,z̄

(ω0 + ω0) ◦ (ω0 + ω0) . (B.5.5)

While this integral can be computed using Eq. (5.4.22) along a concretely chosen contour, it

is easier to use the fact that any pair of one-forms σ1 and σ2 satisfies

∫
γ
(σ1 ◦ σ2 + σ2 ◦ σ1) =

(∫
γ
σ1

)(∫
γ
σ2

)
. (B.5.6)

This allows us to rewrite Eq. (B.5.5) as

M1,6 =
1

2

∫ z

ω0

∫ z

ω0 +

∫ z

ω0

∫ z̄

ω0 +
1

2

∫ z̄

ω0

∫ z̄

ω0 . (B.5.7)

These integrals are much simpler to evaluate, and we get

M1,6 =
1

2
ln2 z + ln z ln z̄ +

1

2
ln2 z̄ . (B.5.8)
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The relation in Eq. (B.5.6) can be iterated, to give us

∫
γ

∑
{j1,··· ,jn}

∈perms of {1,···n}

σj1 ◦ σj2 ◦ · · ·σjn =

∫
γ
σ1

∫
γ
σ2 · · ·

∫
γ
σn (B.5.9)

for n one-forms σ1, · · · , σn, along with relations such as

∫
γ
(σ1 ◦ σ2 ◦ σ3 + σ2 ◦ σ1 ◦ σ3 + σ2 ◦ σ3 ◦ σ1) =

∫
γ
σ1

∫
γ
σ2 ◦ σ3 . (B.5.10)

Using these kinds of formulas, we can reduce the expressions in the calculation of the varia-

tion matrix to familiar integrals, such as

Lin (z) = −
∫ z

0
ω1 ◦ ω0 ◦ ω0 · · · ◦ ω0︸ ︷︷ ︸

n−1

, (B.5.11)

along with integrals that can easily be performed, such as

∫ z

0
ω0 ◦ ω1 ◦ ω0 = 2Li3 (z)− ln zLi2 (z) . (B.5.12)

The iterated integrals we study have the special property that they are independent of

small deformations of the integration contour which preserve its endpoints. This is a con-

sequence of the flatness of the connection ω and is sometimes called integrability condition.

In our example, the integrability condition reads

(ω0 + ω0) ∧ (ω0 + ω0) = 0. (B.5.13)
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This condition is trivial when both forms only depend on a single variable, but imposes

non-trivial restrictions when two or more variables are involved.

The result of performing the integrations is

Mγ0(z, z̄) =



1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9

0 1 0 M2,4 M2,5 0 M2,7 M2,8 M2,9

0 0 1 M3,4 M3,5 M3,6 M3,7 M3,8 M3,9

0 0 0 1 0 0 M4,7 M4,8 M4,9

0 0 0 0 1 0 M5,7 M5,8 M5,9

0 0 0 0 0 1 M6,7 M6,8 M6,9

0 0 0 0 0 0 1 0 M7,9

0 0 0 0 0 0 0 1 M8,9

0 0 0 0 0 0 0 0 1



, (B.5.14)

where

M1,2 = − ln(1− z̄)− ln(1− z), (B.5.15)

M1,3 = ln z + ln z̄, (B.5.16)

M1,4 = −Li2(z̄) + ln(1− z) (ln z + ln z̄) + Li2(z), (B.5.17)

M1,5 = −Li2(z̄)− ln(1− z̄) (ln z + ln z̄) + Li2(z), (B.5.18)

M1,6 =
1

2
ln2 z + ln z ln z̄ +

1

2
ln2 z̄, (B.5.19)

M1,7 =
1

2

[
6Li3(z̄)− 4Li2(z) (ln z + ln z̄)− 2Li2(z̄) (ln z + ln z̄)− ln(1− z) ln2z̄
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− 2 ln(1− z) ln z ln z̄ + 6Li3(z)− ln(1− z) ln2z
]
, (B.5.20)

M1,8 =
1

2

[
− 6Li3(z) + 4Li2(z̄) (ln z + ln z̄) + 2Li2(z) (ln z + ln z̄) + ln(1− z̄) ln2z

+ 2 ln(1− z̄) ln z ln z̄ − 6Li3(z̄) + ln(1− z̄) ln2z̄
]
, (B.5.21)

M1,9 = Φ2, (B.5.22)

M2,4 = − ln z̄, M2,5 = ln z, (B.5.23)

M2,7 =
1

2
ln2 z̄ − ln z̄ ln z, M2,8 = −1

2
ln2 z + ln z ln z̄, (B.5.24)

M2,9 =
1

2
ln z ln2 z̄ − 1

2
ln2 z ln z̄, (B.5.25)

M3,4 = ln(1− z), M3,5 = − ln(1− z̄), M3,6 = ln z + ln z̄, (B.5.26)

M3,7 = −Li2(z̄)− ln(1− z) (ln z + ln z̄)− 2Li2(z), (B.5.27)

M3,8 = 2Li2(z̄) + ln(1− z̄) (ln z + ln z̄) + Li2(z), (B.5.28)

M3,9 = 3Li3(z̄) + Li2(z) (ln z + ln z̄)− Li2(z̄) (ln z + ln z̄)− 3Li3(z), (B.5.29)

M4,7 = ln z − ln z̄, M4,8 = − ln z, M4,9 =
1

2
ln2 z − ln z ln z̄, (B.5.30)

M5,7 = − ln z̄, M5,8 = ln z̄ − ln z, M5,9 =
1

2
ln2 z̄ − ln z̄ ln z, (B.5.31)

M6,7 = − ln(1− z), M6,8 = ln(1− z̄), M6,9 = Li2(z)− Li2(z̄), (B.5.32)

M7,9 = ln z, M8,9 = ln z̄. (B.5.33)
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The monodromy around z = 0 is

M z
0

=



1 0 2πi 0 0 1
2(2πi)2 0 0 0

0 1 0 0 2πi 0 0 −1
2(2πi)2 0

0 0 1 0 0 2πi 0 0 0

0 0 0 1 0 0 2πi −2πi 1
2(2πi)2

0 0 0 0 1 0 0 −2πi 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 2πi

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (B.5.34)

We note that (1 −M z
0
)3 = 0. This is consistent with three (but not two) sequential cuts
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in the p2
2 channel of the 2-loop triangle vanishing. The monodromy around z = 1 is

M z
1

=



1 −2πi 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 2πi 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 −2πi 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



. (B.5.35)

In this case we have (1 −M z
1
)2 = 0. This is consistent with two sequential cuts in the

p2
3 channel (the long direction) of the 2-loop triangle vanishing. Finally, the clockwise mon-
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odromy around infinity (where we approach infinity above the real line) is

M∞
z

= M z
0
·M z

1
(B.5.36)

=



1 −2πi 2πi (2πi)2 0 1
2(2πi)2 −1

2(2πi)3 0 0

0 1 0 0 2πi 0 0 −1
2(2πi)2 0

0 0 1 2πi 0 2πi −(2πi)2 0 0

0 0 0 1 0 0 2πi −2πi 1
2(2πi)2

0 0 0 0 1 0 0 −2πi 0

0 0 0 0 0 1 −2πi 0 0

0 0 0 0 0 0 1 0 2πi

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



and again we get (1−M
z
)3 = 0.

To compute the monodromy matrices associated with contours in z̄, we can use the fact

that z and z̄ can be exchanged in the connection from Eq. (B.5.2) via conjugation by the
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matrix

C =



1

1 0

0 1

0 −1 0

−1 0 0

0 0 1

0 −1

−1 0

−1



. (B.5.37)

That is, we have ω(z, z̄)→ ω(z̄, z) = CωC−1. Thus, we also have that

M z̄
0

= CM z
0
C−1, M z̄

1
= CM z

1
C−1. (B.5.38)

These are the last monodromy matrices that are needed to construct the discontinuity oper-

ators in Eq. (5.6.42).
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B.6 Cuts of the three-loop triangle

In this Appendix, we work out the details of the calculations in Section 5.6.2. We start by

computing the sum of the two cuts involving C1 and write

T C1,C23

∣∣∣
−iε on r.h.s.

+ T C1,C33 =
1

2

∫
d4k1

i (2π)4 (−2πi) δ
(
k2

1 −m2
)

×Θ(k0
1) (−2πi) δ

[
(p2 − k1)2

]
Θ(p0

2 − k0
1)

1

(p3 + k1)2

∑
Cutk2

1
T 2
[
(p3 + k1)2 , k2

1, p
2
3

]
,

(B.6.1)

where
∑

Cutk2
1
T2

[
(p3 + k1)2 , k2

1, p
2
3

]
is the sum of cuts in k2

1 through the two-loop triangle

T2 with masses (p3 + k1)2, k2
1 and p2

3. We take the particle with momentum k1 to have a

small mass m to regulate the IR divergences that arise in the cut calculations, and work to

leading power in m2. The factor of 1
2 arises because the mass regulator does not capture

the 1
L! arising from a product of L − 1 massless vertices, as worked out in Appendix B.7.

The sum of the cuts through the two-loop triangle is given by [165],

∑
Cutk2

1
T 2
[
(p3 + k1)2 ,m2, p2

3

]
=

2πi

256π4

1

(p3 + k1)4

1

(1− x) (1− x̄) (x− x̄)

×
{

3 [Li3 (x)− Li3 (x̄)]− ln (−xx̄) [Li2 (x)− Li2 (x̄)]
}
, (B.6.2)
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with

xx̄ =
m2

(p3 + k1)2 , (B.6.3)

(1− x) (1− x̄) =
p2

3

(p3 + k1)2 . (B.6.4)

Working to leading power in k2
1 = m2, we can take either x or x̄ to be small. The final

answer is independent of which one is picked, so we assume that x̄ is small, and hence x̄ =

m2(1−x)
p2

3x
.

Using the delta functions, and performing the integral over the azimuthal angle, the

phase space can be written as

∫
d4k1

i (2π)4 (−2πi) δ
(
k2

1 −m2
)

Θ(k0
1) (−2πi) δ

[
(p2 − k1)2

]
Θ(p0

2 − k0
1) =

i

16π

∫ 1

−1
d cos θ .

(B.6.5)

In the rest frame of p2, the propagator in p3 + k1 becomes

(p3 + k1)2 = p2
3 −m2 (ω3 − p cos θ) , (B.6.6)

where p is the magnitude of the three-momentum of the outgoing particles, and where we

have dropped power corrections in m2 and hence used that ωk1 = |~k1| = m2/2. Changing

variables from cos θ to x = 1− p2
3

(p3+k1)2 gives a Jacobian of

d cos θ = −(p3 + k1)4

m2pp2
3

dx . (B.6.7)
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In this frame, the energy of p3 is ω3 =
m2

2+p2
3−p2

1
2m2

and momentum of the outgoing particles is

p = − p2
1

2m2
(z − z̄), which gives

(p3 + k1)2 ∼=
1

2
p2

1 [(1− z) (1− cos θ) + (1− z̄) (1 + cos θ)] , (B.6.8)

and hence we have

1

1− x
=

1

2

1 + cos θ

1− z
+

1

2

1− cos θ

1− z̄
(B.6.9)

to leading power in m2. This shows that x = z̄ for cos θ = −1 and x = z for cos θ =

1. Putting everything together, phase space along with the propagator in p3 + k1 can be

written as

∫
d4k1

i (2π)4 (−2πi) δ
(
k2

1

)
Θ(k0

1) (−2πi) δ
[
(p2 − k1)2

]
Θ(p0

2 − k0
1)

1

(p3 + k1)2

= − i

16π

∫ z

z̄
dx

1

m2p (1− x)
. (B.6.10)

Then, dropping polylogarithms in x̄ that are subleading in the limit m2 → 0,

T C1,C23

∣∣∣
−iε on r.h.s. of cut

+ T C1,C33 =
1

16 (4π)4

1

m2p p4
3

∫ z

z̄

dx

x

{
3Li3 (x)− ln (−xx̄)Li2 (x)

}
.

(B.6.11)

The integration contour from z̄ to z in the region R2 can be taken to be a straight line from
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z̄ < 0 to z, with 0 < z < 1. Integrating this expression and using p = − p2
1

2m2
(z − z̄) gives

T C1,C23

∣∣∣
−iε on r.h.s. of cut

+ T C1,C33 =
1

2048π4

1

p2
1p

4
3 (z − z̄)

{
− 3 [Li4 (z)− Li4 (z̄)]

+ ln

(
−m

2

p2
3

)
[Li3 (z)− Li3 (z̄)]− 1

2

[
Li22 (z)− Li22 (z̄)

] }
. (B.6.12)

Next, we calculate the double cut C2C3, with all other propagators having a +iε. We write

the cut as

T C2,C33 =
1

2

∫
d4k2

i (2π)4 (−2πi) δ
(
k2

2 −m2
)

Θ(k0
2)Cut(p2−k2)2B

(
p2

2, k
2, (p3 + k2)2 , p2

1

)
× 1

(p3 + k2)2Cutk2
2
T 2
[
(p3 + k2)2 , k2

2, p
2
3

]
, (B.6.13)

where Cut(p2−k2)2B is an s−channel cut through a box with one massive internal line,

CutsB
(
p2

2, k
2
2, (p3 + k2)2 , p2

1

)
= Cs

p2

k2 −p3 − k2

p1

k1

k1 − k2

k1 + p3

k1 − p2

(B.6.14)

=
1

16π

log

[
− m2p2

1(p2
3−2ωk2

(ω3−p cos θ))
2m2(p2

3−m2(ω3−p cos θ))
2
ωk2

]
+ 2πi

m2

(
p2

3 −m2 (ω3 − p cos θ)
)
ωk2

(B.6.15)
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where θ is now the angle between p3 and k2. The cut of the three mass triangle is given by

Cutk2
2
T 1 =

i

8π
(
ξ − ξ̄

) 1

(p3 + k2)2 ln

(
1− ξ
1− ξ̄

)
(B.6.16)

with

ξξ̄ =
k2

2

(p3 + k2)2 , (1− ξ)
(
1− ξ̄

)
=

p2
3

(p3 + k2)2 , (B.6.17)

where we take k2
2 > 0, p2

3 < 0 and it can be shown that for these cuts, (p3 + k2)2 < 0. As

before, we assume that ξ̄ is small. We make a change of variables from ωk2 and cos θ to ξ

and x, defined by

ξ = 1− p2
3

(p3 + k2)2 , x = 1− p2
3

p2
3 −m2 (ω3 − p cos θ)

, (B.6.18)

with Jacobian

∂(ξ, x)

∂(ωk2 , cos θ)
=

 ∂ξ
∂ωk2

∂ξ
∂ cos θ

0 ∂x
∂ cos θ

 , (B.6.19)

where

∂ξ

∂ωk2

=
−2p2

3 (ω3 − p cos θ)

(p3 + k2)4 ,
∂x

∂ cos θ
=

m2pp
2
3[

p2
3 −m2 (ω3 − p cos θ)

]2 . (B.6.20)

The limits of the ξ integrals are at 0 and x, while the limits of the x integration are at z

and z̄. Putting everything together, we get

T C2,C33 =
1

4096π4m2p2
3

∫ z

z̄

dx

xpp2
3

∫ x

0
dξ ln

[
−m2 (1− x)xp2

1

p2
2p

2
3ξ

]
ln (1− ξ)

ξ
. (B.6.21)
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Performing the integrals in ξ and x, and using that p = − p2
1

2m2
(z − z̄) results in

T C2,C33 =
1

2048π4p2
1p

4
3 (z − z̄)

{[
− ln

(
−m

2

p2
3

)
+ ln (zz̄) + 2πi

]
[Li3 (z)− Li3 (z̄)]

+

[
1

2
Li22 (z)− 1

2
Li22 (z̄)

]
− [Li4 (z)− Li4 (z̄)]

}
. (B.6.22)
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B.7 Massless three-point vertices

When calculating cut graphs, we sometimes encounter subgraphs with cuts of massless lines

on either side of a three-point vertex. This appendix discusses two important subtleties

involved in computing these cut subgraphs. The first relates to evaluating the diagrams

in dimensional regularization, and the second comes from delta functions evaluated at the

endpoints of integration.

When evaluating diagrams with massless three-point vertices in dimensional regulariza-

tion using the covariant cutting rules, one gets a delta function in the angle between the

two particles multiplied with its argument raised to a power. For example, consider the

graph

p3
1

3

4

2

6

5

p2

p1

∝
∫ 1

−1
d cos θ

(
1− cos2 θ

) d−4
2 δ (1− cos θ) , (B.7.1)

which contributes to (Discp2
2
)2Φ2. The dashed lines correspond to cuts and the circled sub-

graph is the problematic three-point vertex. Here, θ is the angle between internal particles

1 and 3 in the diagram.

The first problem with this expression is that the limit d → 4 is not smooth. For d > 4

the integral is zero, for d = 4 it is finite, and for d < 4 it is divergent. In [165] it was ar-

gued that one should use the d > 4 result and set all such graphs to zero. Indeed, such

an approach seems to work in the examples considered in [165]. However, it may give re-

sults for the cut graphs that are inconsistent with the discontinuities, as discussed below
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Eqs. (5.6.74) and (5.6.80). An alternative to using dimensional regularization is to give the

internal lines a small mass mreg and take the limit mreg → 0. Although masses are not

great regulators in general, particularly in gauge theories where they can violate gauge in-

variance, for the Feynman integrals we consider in this paper they always seems to give re-

sults for the cuts consistent with the discontinuities.

The second problem is that, even if a graph or sum of graphs is IR finite in d = 4, the

delta function of the angle between the two particles may need to be evaluated at one of

the endpoints of the limits of integration. Such expressions are not generally well-defined,

and more careful analysis is needed. As we will show, this ultimately results in a combina-

torial factor of 1
L! compared to the naïve expectation of setting

∫ 1
−1 δ(1− cos θ)d cos θ to 1,

where L− 1 is the number of massless three point vertices in the cut diagram.

To see how the combinatorial factor arises, we calculate the L-loop triangle:

p

C1 C2 CL

k1

k2

kL

p− k1

(B.7.2)

The incoming particle is massive with p2 = m2, and we cut the massless propagators with

momentum k1, . . . , kL, p−k1, and k2−k1, . . . , kL−kL−1. Naïvely, using the covariant cutting
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rules, one would put all the cut particles on-shell and the diagram above would be given by

T = iL
∫

d4k1

(2π)4 · · ·
d4kL

(2π)4 (2π) δ
(
k2

1

)
Θ
(
k0

1

)
· · · (2π) δ

(
k2
L

)
Θ
(
k0
L

)
× (2π) δ

[
(p− k1)2

]
Θ
(
p0 − k0

1

)
(2π) δ

[
(k1 − k2)2

]
Θ
(
k0

1 − k0
2

)
× · · · (2π) δ

[
(kL−1 − kL)2

]
Θ
(
k0
L−1 − k0

L

)
. (B.7.3)

We label the angle between ki and kj by θi,j , define ωi ≡ k0
i , and denote the angle between

k1 and the z-axis as θ. In the center of mass frame of p, the above expression can be writ-

ten

T = iL
∫

d3k1

(2π)3 2ω1

· · · d3kL

(2π)3 2ωL
(2π) δ

(
m2 − 2mω1

)
(2π) δ [−2ω1ω2 (1− cos θ1,2)]

× · · · (2π) δ [−2ωL−1ωL (1− cos θL−1,L)] Θ (ω1 > ω2 > · · · > ωL) . (B.7.4)

Extracting the Jacobian factors results in

T =
iL

(8π)Lm

∫ ∞
0

dω1

∫ ω1

0

dω2

ω2
· · ·
∫ ωL−2

0

dωL−1

ωL−1

∫ ωL−1

0
dωLδ

(
ω1 −

m

2

)
∫ 1

−1
d cos θ

∫ 1

−1
d cos θ1,2 · · ·

∫ 1

−1
d cos θkL−1,kLδ (1− cos θ1,2) · · · δ

(
1− cos θkL−1,kL

)
. (B.7.5)

This integral is ambiguous, since the delta functions of the angles are evaluated at the in-

tegration endpoints. To evaluate it properly, we must go back to the TOPT expression for

the corresponding diagram, where we have a handle on how to make sense of these products
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of delta functions. Namely, we know that they arise when using the relation

lim
ε→0

(
1

E + iε
− 1

E − iε

)
= −2πiδ(E) . (B.7.6)

Thus, when we encounter a delta function that is evaluated at an integration endpoint, this

implies we have used the distributional identity in Eq. (B.7.6) too early. For massless three-

point vertices, we should instead use the expression

1

E + iε
− 1

E − iε
= −2i

ε

E2 + ε2
, (B.7.7)

and only take the limit ε → 0 after all the integrals have been evaluated. To shorten our

equations, we define the expression that appears on the right-hand side of Eq. (B.7.7) as

δε ≡ 1
π

ε
x2+ε2

.

Two loops

For extra clarity, we now show how the correct combinatoric factor results in the two-loop

case. The L-loop case is worked out analogously afterwards; it involves the same ideas but

with longer expressions. The two-loop TOPT diagram is given by

T = i2
∫

d3k1

(2π)3 2ω1

∫
d3k2

(2π)3 2ω2

1

2ω1

1

2ω1−2
(2π) δε (m− 2ω1) (2π) δε (m− ω1 − ω2 − ω1−2)

(B.7.8)

with ω1−2 =
√
ω2

1 + ω2
2 − 2ω1ω2 cos θ1,2. We have already imposed three-momentum con-

servation. We perform the azimuthal integrals, and change variables from cos θ1,2 to ω1−2 to
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get

T =
i2

(2π)2 24

∫
dω1

∫
d cos θ

∫
dω2

∫ ω1+ω2

ω1−ω2

dω1−2δ
ε (m− 2ω1) δε (m− ω1 − ω2 − ω1−2) .

(B.7.9)

We now use that ∫
δε(x)dx =

1

π

∫
ε

x2 + ε2
dx =

1

π
arctan

(x
ε

)
(B.7.10)

to write

T =
i2

(2π)2 24

∫
d cos θ

∫
dω2

∫
dω1

ω1
δε (m− 2ω1)

× 1

π

[
arctan

(
m− 2ω1

ε

)
− arctan

(
m− 2ω1 − 2ω2

ε

)]
. (B.7.11)

We can plug in ω1 = m
2 everywhere except at singular points, to get

T =
1

26π3

∫
d cos θ

∫
dω2

∫
dω1δ

ε (m− 2ω1)

[
arctan

(
m− 2ω1

ε

)
− arctan

(
−2ω2

ε

)]
.

(B.7.12)

Since d
dx arctan

(
x
ε

)
= πδε (x), we get

∫ ∞
0

dω1 πδ
ε (m− 2ω1)

[
arctan

(
m− 2ω1

ε

)
− arctan

(
−2ω2

ε

)]
=

1

2

[(
arctan

(
m− 2ω1

ε

)
− arctan

(
−2ω2

ε

))2
]∞

0

=
π2

2
, (B.7.13)

where we have taken the limit ε → 0+ when writing the last equation. The factor of 1
2 in

this equation, arising from the integral over the product of arctan and a δε function, has
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the same origin as the 1
L! factor in the L-loop case. The combinatorial factor arises because

the δεs in Eq. (B.7.9) only have support on the endpoint of the sequential delta function.

We plug this into Eq. (B.7.12) to get

T =
i2

27π2m

∫
d cos θ

∫
dω2 . (B.7.14)

Comparing to the L = 2 case of Eq. (B.7.5), we learn that we must multiply the right

hand side of
∫ 1
−1 δ (1− cos θ1,2)

?
= 1 by a combinatorial factor of 1

2 . Although this factor of

1
2 could potentially be justified in the two-loop case by claiming that the delta function in

Eq. (B.7.5) is only integrated up to its endpoint, and hence should be evaluated to give 1
2 ,

that argument does not generalize to the L-loop case, where we will see that we encounter a

combinatorial factor of 1
L! rather than

1
2L

.

L loops

The L-loop TOPT diagram is given by

T = iL
∫

d3k1

(2π)3 2ω1

· · · d3kL

(2π)3 2ωL

1

2ω1

1

2ω1−2
· · · 1

2ω(L−1)−L
(2π) δε (m− 2ω1)

× (2π) δε (m− ω1 − ω2 − ω1−2) (2π) δε (m− ω1 − ω3 − ω1−2 − ω2−3)

× · · · (2π) δε
(
m− ω1 − ωL − ω1−2 − · · · − ω(L−1)−L

)
, (B.7.15)

where

ωi−j =
√
ω2
i + ω2

j − 2ωiωj cos θi,j . (B.7.16)
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Preforming the azimuthal integrals gives

T =
iL

22L (2π)L

∫ ∞
0

ω1dω1

∫ ω1

0
ω2dω2 · · ·

∫ ωL−1

0
ωLdωL

1

ω1

1

ω1−2
· · · 1

ω(L−1)−L

×
∫ 1

−1
d cos θ

∫ 1

−1
d cos θ1,2 · · ·

∫ 1

−1
d cos θkL−1,kLδ

ε (m− 2ω1)

× δε (m− ω1 − ω2 − ω1−2) δε (m− ω1 − ω3 − ω1−2 − ω2−3)

× · · · δε
(
m− ω1 − ωL − ω1−2 − · · · − ω(L−1)−L

)
. (B.7.17)

We change variables from the cos θi,i+1 variables to x1, · · · , xL−1 with xi = ωi−(i+1). The

Jacobian for each i is given by

Ji =

(
∂ωki−ki+1

∂ cos θi,i+1

)−1

= −
(
ωiωki+1

ωki−ki+1

)−1

, (B.7.18)

so

T =
iL

22L (2π)L

∫ 1

−1
cos θ

∫ ∞
0

dω1

ω1

∫ ω1

0

dω2

ω2
· · ·
∫ ωL−2

0

dωL−1

ωL−1

∫ ωL−1

0
dωLδ

ε (m− 2ω1)

×
∫ ω1+ω2

ω1−ω2

dx1δ
ε (m− ω1 − ω2 − x1)

∫ ω2+ω3

ω2−ω3

dx2δ
ε (m− ω1 − ω3 − x1 − x2)

× · · ·
∫ ωL−1+ωL

ωL−1−ωL
dxL−1δ

ε (m− ω1 − ωL − x1 − x2 − · · · − xL−1) . (B.7.19)
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Shifting the integrals gives

T =
iL

22L+1 (2π)L

∫ 1

−1
d cos θ

∫ ∞
0

dx0

x0

∫ x0

0

dω2

ω2
· · ·
∫ ωL−2

0

dωL−1

ωL−1

∫ ωL−1

0
dωLδ

ε
(
x0 −

m

2

)
×
∫ ω2+x0

−ω2+x0

dx1δ
ε (m− ω2 − x0 − x1)

∫ ω2+ω3+x1

ω2−ω3+x1

dx1,2δ
ε (m− ω3 − x0 − x1,2)

× · · ·
∫ ωL−1+ωL+x1,L−2

ωL−1−ωL+x1,L−2

dx1,L−1δ
ε (m− ωL − x0 − x1,L−1) , (B.7.20)

where x1,i = x1 + · · · + xi and x0 = ω1. We now have a product of delta functions where

each is evaluated at the endpoint of the previous one. To handle this more carefully, we use

the δε distributions. In particular, we investigate the expression

I =

∫ ∞
0

dx0δ
ε
(
x0 −

m

2

)∫ ω2+x0

−ω2+x0

dx1δ
ε(m− ω2 − x0 − x1)

×
∫ ω2+ω3+x1

ω2−ω3+x1

dx1,2δ
ε(m−ω3−x0−x1,2) · · ·

∫ ωL−1+ωL+x1,L−2

ωL−1−ωL+x1,L−2

dx1,L−1δ
ε(m−ωL−x0−x1,L−1)

× F (x0, x1, x1,2, . . . , x1,L−1), (B.7.21)

where F is a test function, which we take to be a smooth function of compact support. We

aim to compute the ε→ 0+ limit of this integral. We use the fact that if x = a+ εy, then

δε(x− a)dx =
dy

π(1 + y2)
.
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Using this formula repeatedly, we find

I =

∫ ∞
−m

2ε

dy0

π(1 + y2
0)

∫ y0+
2ω2
ε

y0

dy1

π(1 + y2
1)

∫ y1+
2ω3
ε

y1

dy1,2

π(1 + y2
1,2)
· · ·
∫ y1,L−2+

2ωL
ε

y1,L−2

dy1,L−1

π(1 + y2
1,L−1)

× F (m/2 + εy0,m/2− ω2 + εy1,m/2− ω3 + εy1,2, . . . ,m/2− ωL + εy1,L−1). (B.7.22)

Since the function F is smooth, we can series expand it around ε = 0. We keep only the

zeroth-order terms in the expansion; the higher-order terms do not contribute in the limit

ε→ 0+.

If ωi vanishes, then the integral over y1,i−1 vanishes, as the upper and lower integration

limits are coincident. If all of the ωi all strictly positive, then the upper integration limits

all become +∞ in the ε→ 0+ limit. Hence, we obtain

lim
ε→0+

I = F (m/2,m/2− ω2, . . . ,m/2− ωL)

×
∫ ∞
−∞

dy0

π(1 + y2
0)

∫ ∞
y0

dy1

π(1 + y2
1)

∫ ∞
y1

dy1,2

π(1 + y2
1,2)
· · ·
∫ ∞
y1,L−2

dy1,L−1

π(1 + y2
1,L−1)

. (B.7.23)

Performing the integrals one by one, we get an arctan function raised to a power each time,

just as in Eq. (B.7.13). The result after performing L− 1 integrations is

lim
ε→0+

I = F (m/2,m/2− ω2, . . . ,m/2− ωL)

× (−1)L−1
∫ ∞
−∞

dy0

2L−1 (L− 1)!πL
(
1 + y2

0

) (π − 2 arctan (y0))L−1 . (B.7.24)
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The last integral evaluates to

lim
ε→0+

I = F (m/2,m/2− ω2, . . . ,m/2− ωL)

× (−1)L
[

1

2LL!πL
(π − 2 arctan (y0))L

]∞
−∞

=
1

L!
. (B.7.25)

Making use of this in Eq. (B.7.20), we get

T =
iL

(8π)L L!m

∫ 1

−1
d cos θ

∫ m/2

0

dω2

ω2
· · ·
∫ ωL−2

0

dωL−1

ωL−1

∫ ωL−1

0
dωL . (B.7.26)

In particular, this result has an extra factor of 1
L! compared to what one would get by eval-

uating each of the delta functions to 1. Although we can compute these integrals in TOPT,

it is harder to find this combinatorial factor using covariant Feynman rules.
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