
microKanren with Delayed Goals

Citation
Zharmukhametova, Laura. 2021. microKanren with Delayed Goals. Bachelor's thesis, Harvard 
College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368527

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368527
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=microKanren%20with%20Delayed%20Goals&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=56a3464066efe4bf4ae5e0e092927bfd&department
https://dash.harvard.edu/pages/accessibility


MICROKANREN WITH DELAYED GOALS

Laura Zharmukhametova

A Thesis

Submitted to the
Department of Computer Science and the Department of Mathematics

In partial fulfillment of the requirement
For the degree of
Bachelor of Arts

at
Harvard University

March 26, 2021



Acknowledgements

Professor Nada Amin of Harvard University and William Byrd, PhD, of Hugh Kaul

Precision Medicine Institute at the University of Alabama, Birmingham guided me through

this project. They gave me a rigorous introduction to relational programming, and their

insightful ideas and feedback were essential for the completion of this thesis.

ii



Abstract

miniKanren is a relational programming language embedded in Scheme. This paper

studies the problem of supporting delayed goals in the context of µKanren, the core of

miniKanren. It explores different representations of delayed goals and tradeoffs between

them. In the presented approach, delayed goals are both accumulated and dispatched

throughout the execution of a program, and the ones that remain at the end are returned to

the programmer as a continuation. A novel interface, inspired by the concept of engines,

allows continuously supplying µKanren code to partially computed program outputs.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2: µKanren and Delayed Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Challenges and Tradeoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Delayed Goals and Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Partial Computation and Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3: Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 4: Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



Chapter 1
Introduction

µKanren is a relational programming language which is a basic version of miniKan-

ren [1, 2]. It has the core functionality of miniKanren, but its implementation is sig-

nificantly simpler, making it a great starting point for introducing a new feature to the

miniKanren family of languages.

We explore the problem of extending µKanren with delayed goals. A delayed goal

is, roughly, a normal µKanren goal that requires more ground data to be executed. Certain

useful operations such as arithmetic and trigonometric functions can be easily computed

forward using the built-in Scheme procedures. A common problem for a miniKanren pro-

grammer is to define the relational versions of these operations. Defining such relations

can be a meticulous task, as it is normally not enough to have access to the built-in pro-

cedures. The issue is that we no longer have a fixed amount of available data, so, for ex-

ample, inverting multiplication with division could still leave some arguments unknown.

In the existing implementations of delayed goals, this lack of concrete arguments leads

to an error, unless enough variables become ground eventually. We designed a delayed

goals mechanism that eliminates this kind of error via continuations. The implementation

presented in this work can potentially be adopted for the full-featured miniKanren.

The contribution of this paper is an implementation of delayed goals that does

not treat inexecutable delayed goals as errors. The concepts of continuations and partial

evaluation were used to create an interface for continuously providing more data to a

stream of results that was only partially computed due to a lack of ground variables.

Chapter 2 begins with a use case for delayed goals in µKanren and motivation

for modifying the interface. Example programs involving delayed goals are discussed

to illustrate the different models developed and assess design choices. The design and

implementation of delayed goals are presented in Section 2.2. Section 2.4 provides several

interface variants and explores the tradeoffs between them. Chapter 3 is a discussion of

future work, with a focus on how delayed goals and the presented interface could be used

for staged programming. The appendix provides an overview of µKanren and its features.
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Chapter 2
µKanren and Delayed Goals

2.1 Motivation

To demonstrate a use case of supporting delayed goals in miniKanren, consider the

pluso relation. The terms x, y, z satisfy the goal (pluso x y z) if x + y = z. This

relation can be implemented in µKanren without delayed goals, but it involves several

non-trivial definitions. First, numbers are built as lists of bits [3]:

(define build-num

(lambda (n)

(cond

((odd? n)

(cons 1

(build-num (quotient (- n 1) 2))))

((and (not (zero? n)) (even? n))

(cons 0

(build-num (quotient n 2))))

((zero? n) ’()))))

Then we need zeroo, poso and >1o which are relations for checking that a number rep-

resented this way is zero, positive and non-negative respectively. Then, we need the

procedure addero [3]:

(define addero

(lambda (d n m r)

(conde

((== 0 d) (== ’() m) (== n r))

((== 0 d) (== ’() n) (== m r)

(poso m))

((== 1 d) (== ’() m)

(addero 0 n ’(1) r))

((== 1 d) (== ’() n) (poso m)

(addero 0 ’(1) m r))

((== ’(1) n) (== ’(1) m)

(fresh (a c)
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(== ‘(,a ,c) r)

(full-addero d 1 1 a c)))

((== ’(1) n) (gen-addero d n m r))

((== ’(1) m) (>1o n) (>1o r)

(addero d ’(1) n r))

((>1o n) (gen-addero d n m r)))))

Further, addero itself relies on two other procedures full-addero and gen-addero.

Our relation pluso is then defined as a special case of addero:

(define pluso

(lambda (n m k)

(addero 0 n m k)))

Defined this way, the goal pluso is purely relational. It does not use the built-in +

operator in Scheme, and we can safely run it if two or three variables x, y and z are still

fresh. However, if a number is computed using this pluso, it is either the arithmetic sum

or difference of the other two. We would like to take advantage of this fact and try to make

the pluso implementation more concise. In particular, we wish to define pluso in terms

of the non-relational Scheme + and - procedures. An outcome of the present project is an

alternative, shorter definition of pluso that, despite not being purely relational, allows a

safe use of the one-way addition and subtraction procedures.

What we gain from being able to use the built-in Scheme procedures within µKanren

is not only a simpler implementation of arithmetic relations:

• In the purely relational arithmetic, we have to use the special list-like numerals, not

the conventional Arabic numerals.

• Running the operations forward is less efficient than calling the built-in procedures

due to the vast number of unifications involved.

• This arithmetic is not applicable to probabilistic programming, since operations like

sine, logarithm, and floating-point point arithmetic are too complex for it.

• Constraint logic programming makes use of external solvers such as Z3 to outsource

these operations. However, if we need to compute e1/2, why not simply call the

built-in Scheme procedure? The challenge is to stay relational and be able to place

logic variables in arbitrary parts of the expression, so that ex does not lead to an

error.
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• The miniKanren interpreter can be extended with the purely relational arithmetic,

but the expressions need to be tagged. With delayed goals, we can avoid tagging,

thus improving usability.

• Delayed goals could be used to stage the relational interpreter, by treating the envi-

ronment as unavailable data.

• Being able to use such built-in operations as string->symbol, print, length,

etc, code gives us power to write more kinds of programs, e.g. one can build a

reifier inside miniKanren.

In the present extension of µKanren, arbitrary built-in Scheme procedures can

be injected to µKanren code, without introducing a new type of error. This is different

from the existing approaches, where we an error is raised unless all delayed goals are run.

The interface and behavior of µKanren were modified so that the following definition is

allowed due to the delayed goals mechanism:

(define (pluso-2 x y z)

(lambda (c: S D C)

(let ((a (walk* x S))

(b (walk* y S))

(c (walk* z S)))

((cond

((and (number? a) (number? b)) (== (+ a b) c))

((and (number? a) (number? c)) (== (- c a) b))

((and (number? b) (number? c)) (== (- c b) a)))

c))))

Here we check if x, y or z are ground and project to numbers, and if at least two

of them are, we unify the third with their sum or difference. While it is shorter than the

first definition, since we are not using addero, such a goal is not safe to run in the original

µKanren. A least two variables need to be ground and bound to a number. Furthermore,

whether or not it is safe to run it depends on both the previous and the future goals. It

is possible that it is unsafe to run pluso-2 now, but a future unification makes enough

variables ground. One solution is to wrap such an unsafe goal in a “delayed goal” and

postpone it until it becomes safe.

With the delayed goal mechanism developed in this project, we can safely feed

the pluso-2 goal to run* and place it in an arbitrary position with the other goals. When

the other goals are computed, we either have enough information for pluso-2, or more
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variables need to be grounded. In the former case, we run pluso-2 and get a stream, as

we would in the original µKanren. Otherwise, the result is a continuation represented

by a list of the variables that are involved in the pluso-2 goal and a procedure. This

procedure takes more µKanren code and runs it on the partially computed answer.

Here is a program that will delay pluso-2 and return a continuation:

(run* (q)

(fresh (x y)

(== q ‘(,x . ,y))

(maybe-delay ground-2? ‘(,x ,y 2) pluso-2)))

The result is a unit of one continuation: the pair of fresh variables (y!2 x!1) and a

procedure, which we call f below. We can then feed the goal (== x!1 1) to f, making

the x variable ground.

(let* ((res (run* (q)

(fresh (x y)

(== q ‘(,x . ,y))

(maybe-delay ground-2? ‘(,x ,y 2) pluso-2))))

(res0 (car res))

(vars (K->vars res0))

(f (K->f res0)))

(cons vars (f ’(== x!1 1))))

Two of the arguments to pluso-2 are now ground, so the third one y is inferred to be 1.

The result of the above program is then ’((y!2 x!1) (1 . 1)).

It is possible that the continuation returns, among the stream of answers, another

continuation, in which case we can provide more µKanren code. For example, the pro-

gram

(let* ((res (car (run* (q)

(fresh (x y z)

(== q ‘(,x . ,y))

(maybe-delay ground-2? ‘(,x ,y ,z) pluso-2)))))

(f (K->f res))

(res^ (car (krun (== x!1 1) f)))

(f^ (K->f res^)))

(list (K->vars res) (K->vars res^) (krun (== z!3 5) k^)))
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yields the list ’((z!3 y!2 x!1) (z!3 y!2) ((1 . 4))). After the first run there

are three variables that have a delayed goal associated with them, namely x, y and z.

Hence all three of them are listed in the vars field of res. After the second run, x becomes

ground, and unifying it with a value will not facilitate the progress of the pluso-2 goal.

(Every time we need x we walk it in the substitution map, so it is effectively 1.) Since there

are still two fresh variables, namely y and z, the second result resˆ is still a continuation.

Finally, adding the goal (== z!3 5) triggers the delayed pluso-2 goal and the result is

a stream with one element, (1 . 4).

2.2 Challenges and Tradeoffs

One issue with returning a continuation instead of an answer is that the program-

mer needs to know which variables are involved in the delayed goals and hence need to be

grounded to complete the computation. We cannot simply refer to the lexical variables in

the original program. Firstly, there is variable shadowing and the possibility of using the

same variable name in different parts of the program, such as the branches of a conde.

This can be addressed with the help of α-renaming. That is, the program that is given

to run is transformed to an equivalent program where every variable has a unique name.

Thus, the program

(fresh (x y z)

(fresh (x)

(== x y)))

is renamed to

(fresh (x y z)

(fresh (x.0)

(== x.0 y)))

However, this does not entirely solve the problem, as we might have fresh vari-

ables created in recursive goals. Consider the definition of appendo:

(define appendo

(lambda (l s out)

(conde

[(== ’() l) (== s out)]

[(fresh (a d res)

(== ‘(,a . ,d) l)
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(== ‘(,a . ,res) out)

(appendo d s res))])))

Note that α-renaming will not change the program as there are no repeating iden-

tifiers for variables. However, calling appendo with a list l of 5 elements will create 5

different variables all corresponding to the identifier a. These 5 variables might have dis-

tinct delayed goals associated with them, and we would like the programmer to be able to

differentiate between them.

To remedy this, in addition to α-renaming we append an index to the reified vari-

able. This index is acquired through tracing and indicates the “depth” of the variable. It

gives one an idea of where in the execution of the µKanren program this variable was

created. For example, an identifier x can be first α-renamed to x.0, and a corresponding

variable can then be reified to x.0!3.

The process of going from a variable back to a symbol is done through a modified

reification function. In the original implementation, the identifier is forgotten once the

variable, i.e. a vector with a unique index, is created. Now in addition to the index the

vector holds the identifier. To reify the variable, if it is still fresh, we simply retrieve this

symbol and append !i to it, where i is the index.

In the reification process, an important step is creating a map from variables to

their reified names. We take advantage of this map in the subsequent run’s. In particular,

the subsequent run’s take goals involving reified variables from previous run’s, and they

are not automatically bound. However, swapping the pairs in the reification map gives

a map from symbols to variables, which we then use for variable binding. Note that if

the original map was not surjective, we may pick any variable as the inverse, because all

variables in the pre-image of a symbol are unified.

The following example demonstrates how the variables are reified in recursive

programs and can be referred to in the subsequent run’s. Consider the sum-o relation that

unifies out with the sum of the elements of the list l:

(define sum-o

(lambda (l out)

(conde

[(== ’() l) (== 0 out)]

[(fresh (a d res)

(== ‘(,a . ,d) l)

(maybe-delay ground-2? ‘(,a ,res ,out) pluso-2)

(sum-o d res))])))
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Suppose we wish to compute

(res (run* (q)

(fresh (x y z w u)

(== q ‘(,x ,y ,z ,w ,u))

(sum-o ‘(,x ,y ,z ,w) u))))

Parts of the code, such as the creation of multiple sets of a, d and res variables and the

(== ‘(,a . ,d) l) goal, run immediately. However, since not enough variables are

ground, the pluso-2 goal is delayed. We get a continuation k and a list of reified variables

(res!14 w!4 res!11 z!3 res!8 y!2 u!5 x!1). We can then provide more code,

for example:

(krun

(fresh ()

(== y!2 3)

(== z!3 2))

k)

yields another continuation k-1, this time with a shorter list of variables (res!14 w!4

res!11 res!8 u!5 x!1). Lastly, running

(krun (fresh ()

(== x!1 1)

(== u!5 10))

k-1)

We obtain the result, (1 3 2 4 10). Note that the variables continue to have a single !

index after each krun. This is so because they continue to be the same variable and they

do not acquire a new index when we bind the new goals to the old. There is an aspect of

this approach that needs to be clarified. Suppose we have a conde of two branches, both

of which are identical. For instance, suppose they both call appendo on the same set of

fresh variables:

(fresh (x y l)

(conde

((appendo (list x) (list y) l))

((appendo (list x) (list y) l))))

The x, y and l variables will have unique reified names, however, the “hidden” fresh
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variables such as res in the definition of appendo are no longer unique, as they will have

the same index and symbol, but belong to two different states. A goal like (== res!3

11) will be applied to both states, and there is no way to tell krun to apply it to one conde

branch but not the other. Even if we somehow give the two variables distinct indices

during tracing, telling the branches apart without α-renaming the fresh variables inside

appendo would be difficult. The problem is the hidden fresh variables do not undergo

α-renaming like the rest of the program. One solution is to “deep” α-rename appendo

to differentiate the fresh a, d and res variables on different branches. Alternatively, we

could make the restriction that the programmer cannot touch the hidden variables in the

subsequent krun’s.

To implement delayed goals, we modify the state in µKanren as follows. Origi-

nally, a state consisted of a substitution map S and a counter C, and we add a third store D,

holding the delayed goals.

A delayed goal is a triple consisting of a predicate pr, a list of arguments args,

and a goal constructor gc (a relation). We can create a delayed goal via the maybe-delay

mechanism, which can be thought of as taking an unsafe goal and making it a safe, de-

layed goal. Thus, if (pluso-2 x y z) is an unsafe goal, (maybe-delay ground-?

‘(,x ,y ,z) pluso-2) is a safe equivalent of it. It first checks if the predicate applied

to the arguments is true. If so, the goal contructor is applied to the arguments to yield

a goal, which we then apply to the state. Otherwise, the pluso-2 goal is pushed to the

D store of the state, and it will only be dispatched when it is safe to do so (i.e. when at

least two of the variables are ground). This “safeness” check is performed by applying

the predicate ground-2? to the list of arguments ‘(,x ,y ,z) after we walk* it in the

current substitution map.

Once we have a list of delayed goals in the D store, we need to be able to selectively

check which of them become safe as the execution of the goals progresses. A good place

to make these checks is during the unifications via ==. During an == procedure, we

know precisely which variables are involved. Conversely, every time a term becomes

more ground, it must happen via the == operator. One approach would be to perform the

safeness checks for every goal in the D store every time there is a unification. However,

this would not be very efficient because most goals do not even involve the variable being

unified. Instead, the D store could keep a map from variables to lists of delayed goals.

Every time x and y are unified, we look up the associated delayed goals and only run

the predicates of those goals. But now we have another issue: different variables can

be involved in different delayed goals. When two variables are unified, they effectively

become the same variable, so their delayed goals ought to be merged. To achieve a well-
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defined behavior, we make the following observation. In a substitution map, represented

in µKanren as a list of pairs, every key has a unique walk value, which is guaranteed

by the unification algorithm. This means that if we have a set A of variables where each

variable is unified with some other variable in the set, there exists a unique variable which

is a representative of this set and can be reached from any other variable in A. Namely, it

is the result of walk applied to any element of A. For example, the result of applying the

goal

(fresh (x y z u w)

(== x y)

(== u w)

(== u z)

(== y z))

to the empty state is the state

((((#(1 y) . #(2 z))

(#(4 w) . #(2 z))

(#(3 u) . #(4 w))

(#(0 x) . #(1 y)))

(((#(2 z))) () . 0)

.

5))

The unique representative reachable from any variable here is z. This is used in the

delayed goals mechanism as follows. Of all variables in A, only z holds the delayed

goals. Whenever a new variable v is added to the set A through ==, it either becomes the

new unique representative, or we can reach the old representative by calling walk* v s,

where s is the substitution map. In either case, we merge the delayed goals of the old

representative and those of v and update the map in the D store. The delayed goals of A

are now all attached to the new representative. We can then perform the safeness checks

by accessing these merged goals.

An important question to be addressed at this stage is how to deal with delayed

goals that rely on each other. We may have a list of goals such that, in a given state,

only one of them is safe to run. However, as a result of running that goal, some of the

remaining ones might become safe, which themselves can make more goals ready to run.

Moreover, a delayed goal can yield more delayed goals.

To handle the first challenge, we partition the list of goals associated with a vari-
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able being unified. The safe goals are wrapped in a single goal g using conj+, and the

unsafe goals are put back into the state before g is applied to it. For example, suppose

we wish to apply the goal (== x y) to the state c. In the original µKanren, the result of

a successful unification is a stream with one element c’, where c’ is c with an updated

substitution map. We modify it so that the result is the goal g applied to c”, where c” is

c’ with an updated delayed goals store. The state c” holds the unsafe goals of our parti-

tion, so these are passed to the safe goals, as necessary. The case of safe goals yielding

more delayed goals is automatically handled because the safe delayed goals are treated as

normal goals. Note that (== x y) does have the usual behavior if there are no safe goals

to be run, except the returned stream of one state potentially has unfulfilled delayed goals.

There are multiple options regarding what can be done with the delayed goals that

are still unfulfilled by the end of the program. One option is to return an error, but this is

not very interesting. Another approach is to return a continuation of the following form.

We list the variables that need to be grounded and provide a procedure k. The programmer

needs to give the procedure a map which binds some of the listed variables to values. The

function k then unifies these variables with the provided values. Specifically, k holds a

stream it has built so far, wraps the new unifications in a single goal g, and applies it to

the stream by invoking (bind g $ ). The result can be another continuation or a stream.

We can keep feeding more values until a stream is returned. We have implemented this

approach, however, it is not much more interesting than the first one. We would like

to be able to add goals involving the variables with unfulfilled delayed goals. A third

option, which has been discussed earlier and which we adopted, provides this flexibility.

Specifically, the result is a list of answers and continuations. A continuation is represented

by a list of the variables that are involved in the unfulfilled delayed goals along a certain

path, and a procedure that holds a delayed state. This procedure takes more µKanren

code and applies it to the state, resulting in another stream which can contain more fully

computed answers.

Another challenge is representing the delayed goals in a given state. There are

two design choices to be made: representing the goal itself and listing the goals in the

µKanren state.

We distinguished the following three approaches to representing a single goal:

procedural, textual, and combined. A textural representation is somewhat similar to stag-

ing. A delayed goal could be represented as an expression that is to be evaluated later,

along with a predicate for testing whether it is safe to evaluate the goal. If the result of a

run program contains unfulfilled delayed goals, they can be returned to the user as an ex-

plicit expression. This approach has an advantage that one can inspect the delayed goals

11



and understand exactly what kind of information is missing and which part of the pro-

gram has not been computed. However, implementing it would require addressing some

lexical scope issues. For example, in the pluso example, either we would need to pass the

definitions of pluso and ground-2? to the run command, or these functions themselves

would have to hold their own textual representations. In either case, we would need to

have a mechanism for capturing the environment and lexical scope. Then it is not clear

how such an environment would fit in as a relational programming construct.

The procedural approach is less invasive in the sense that we do not need to re-

engineer the interface and implementation of µKanren too much. However, the result

of a run expression, if it is a continuation, is less informative. This was mitigated by

providing α-renamed and traced variables along with the continuation. Note that this so-

lution requires more mental work from the programmer to figure out the contents of the

continuation itself. A delayed goal is represented as a triple consisting of a predicate, an

argument list, and a goal constructor. The goal constructor is a procedure that does not

remember the expression it was derived from. Thus, on the one hand, we lose this con-

venient textual information. On the other hand, the lexical scope issue is automatically

resolved.

Our implementation follows the second approach, but one could also try to com-

bine the two to have the benefits of both. A continuation could be a procedure accompa-

nied with a textual representation for inspection purposes.

Let us now address the second question, namely, how to keep track of the delayed

goals. The first step was to extend the state from holding a substitution map S and a

counter C to a triple S, D and C, where D is the delayed goals store. Now structuring the

store D is tricky. A straightforward representation would be simply listing the delayed

goals in the designated store. However, this introduces a great inefficiency as every goal

needs to be checked every time there is a unification. Most of these checks are likely

trivial as they do not involve the variables being unified.

Another way to represent the delayed goals store is by storing a map m from sets

of variables to sets of delayed goals. If the triple {x, y, z} is associated with the set

{dg0, dg2} where dg0, dg1 are some delayed goals, then grounding any of the three

variables can trigger the goals dg0 and dg1. The delayed goal would be a pair of two

procedures, the predicate pr and the goal constructor gc. This would ensure that we do

not have duplicate delayed goals, hence when a goal is executed, we do not need to worry

about removing all occurences of the goal in the store D. There is a tradeoff: suppose a

fresh variable, say x, enters a unification. Then we need to find every occurrence of its

old and new representatives in a key of the map m and check the corresponding sets of

12



goals. Moreover, it is necessary to carry over the remaining unsafe delayed goals of x to

the new representative r of the variables x is unified with. For the sake of consistency, all

occurrences of x in the keys of m ought to be replaced with r. As a result, some keys might

become identical, so their values, i.e. sets of delayed goals, ought to be merged. Even

though this approach appears simple at first glance, ensuring consistency and correctness

would require some meticulous work.

A third approach to representing the store D is to make m map individual vari-

ables to sets of goals. We let dg = (pr, args, gc) be a delayed goal depending on

the fresh variables x, y, z. Then each of these variables would map to a set containing

dg. This certainly makes looking up the delayed goals associated with a given variable

easier. However, we now need to duplicate the delayed goal dg and put copies of it in

three different sets. Whenever this goal is dispatched as a result of a unification of one

of the three variables, the remaining duplicates must be removed. To remedy this, we

enumerate all the delayed goals in a given state using a counter, so that the map m sends

variables to sets of indices. Whenever a delayed goal is executed, we remove it from

the store D entirely (from the enumeration and the sets of indices in m). Whenever x un-

dergoes a unification, we simply remove the corresponding binding in m and merge the

indices of delayed goals of x with those of the new representative variable, if there is any.

Otherwise, if x becomes ground, we simply remove its binding in m and run the safe goals

of x. We can discard the indices of the unsafe goals of x in this case because x no longer

plays a role in whether the predicate checks succeed. If it is still possible to fulfil these

goals, then their indices appear somewhere else in the map m. Otherwise, an unfulfilled

unsafe goal remains in the store with no variables mapping to it. This would indicate the

delayed goal was ill-defined, as the predicate should always succeed if enough entries of

args are ground.

2.3 Delayed Goals and Streams

When a goal is applied to a state, the result is a stream of states. A stream can

be the empty list, a thunk, or a pair whose car is a state and whose cdr is a stream.

The delayed goals mechanism is implemented by modifying the definition of the goal

constructor ==. We wish to keep the input and the output format of == intact. In particular,

== takes two terms u and v and returns a goal, i.e. a function from states to streams. The

following was the baseline definition of (== u v):

(define (== u v)

(lambda (c)
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(let ((s (unify u v (car c))))

(if s (unit ‘(,s . ,(cdr c))) mzero))))

Let c be some state, represented by a map S and a counter C. The goal (== u v) takes

this state and unifies u and v in the substitution map S using the standard unification

algorithm. The unification algorithm returns either a new substitution map S1 or the

boolean # f, indicating failure. In the former case the result of ((== u v) c) is the

stream (unit ‘(,S1, ,C)), i.e. a list with a single element, the pair (S1, C). In the

latter case, the result is mzero, which is an alias for the empty stream (). In our extension

with delayed goals, this definition is modified as follows.

(define (== u v)

(lambda-c (c : S D C)

(pmatch (pull-delayed u S D)

(‘(,goals-u . ,D-)

(pmatch (pull-delayed v S D-)

(‘(,goals-v . ,D--)

(let ((S (unify u v S)))

(if S

(let ((c ‘(,S ,D-- . ,C)))

(dispatch-safe-goals (walk* u S) goals-u goals-v c))

mzero))))))))

Here (lambda-c (c : S D C) ...) is a macro for disassembling the state c,

so S, D and C are the substitution map, the delayed goals store, and the counter respec-

tively. The pmatch is a pattern matcher. The pull-delayed line retrieves the binding of

(walk* u S) in D. The result is the pair goals-u and D-, where goals-u is the set of

indices corresponding to the delayed goals of u, and D- is D minus the goals of u. Then

we do the same for v. Note that most of these steps will be effectively skipped if u or

v is not a variable. (If they are lists then this process will apply to the variables inside

them.) Lastly, the (dispatch-safe-goals (walk* u S) goals-u goals-v c) line

is responsible for the handling the delayed goals accumulated so far:

(define (dispatch-safe-goals u u-dg v-dg c)

((lambda-c (c : S D C)

((lambda-D (D : i G C1)

(let* ((u-safe/unsafe (partition (is-safe S G) u-dg))

(v-safe/unsafe (partition (is-safe S G) v-dg))
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(safe (append (car u-safe/unsafe) (car v-safe/unsafe)))

(unsafe (append (cdr u-safe/unsafe) (cdr v-safe/unsafe)))

(i (if (var? u) ‘((,u . ,unsafe) . ,i) i))

(D ‘(,i ,G . ,C1))

(c ‘(,S ,D . ,C)))

(apply* safe c))) D)) c))

The (lambda-D (D : i G C1) ...) macro is used for disassembling the D

store of the state c. Specifically, i is the map sending variables to sets of indices, G is the

enumeration of all delayed goals, and C1 is the counter for the delayed goals.

Next, we partition the delayed goals of u and the delayed goals of v, namely u-dg

and v-dg, into safe and unsafe goals. This is done by running a check on every delayed

goal via the function (is-safe S G):

(define (is-safe S G)

(lambda (id)

(pmatch (find-g id G)

(‘(,id ,pr ,args . ,gc)

(pr (walk* args S)))

(‘#f #f))))

Here id is the index of the current delayed goal, which we then look up in the enumeration

G. The predicate of this goal is then applied to (walk* args S) to determine if the goal

is safe to run.

Returning to our definition of dispatch-safe-goals, we can now assemble the

safe and unsafe lists. The map i is then updated to reflect that we have merged the

goals of u and v into a single list, now attached to the representative of u (which also the

representative of v). (Again, this only makes sense for variables.) The lines

(D ‘(,i ,G . ,C1))

(c ‘(,S ,D . ,C)))

are responsible for assembling a new state c where only the unsafe goals of u and v

remain. Then, (apply* safe c) wraps the safe delayed goals into a single usual goal.

This goal is in turn applied to the updated state c. The resulting stream is the value

returned by ((== u v) c).
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2.4 Partial Computation and Continuations

A major conceptual change introduced with the delayed goals is that the output of

a run command can be viewed as a partially computed program. If it is fully computed,

then all goals were eventually safe, and the result is the stream that would be computed

in the usual µKanren. Running programs of the form (run n (q) ...) or (run* (q)

...) yields two types of outputs: a reified answer or a continuation. If an answer is

returned, it means all delayed goals created during the run were fulfilled, and the reified

answer provides a computed value for q. The second type of output is a continuation.

It means there is not enough information to run certain delayed goals. The continuation

provides a list of variables on which the delayed goals rely. One can feed more µKanren

code to the continuation, and this additional code is allowed to have the listed variables as

identifiers. The result of the continuation can itself be a stream or another continuation.

If it is a stream, then it must be the stream resulting from an injection of the goals that

were added later to the original goals. If we get a continuation again, it means more

information is necessary. This process continues and can possibly never stop, but if a

stream is returned at some point, it must be a result of combining all goals we have

incrementally provided so far. There is no obvious way to combine the old and the new

goals, mostly due to scoping issues, and we have explored several models for formatting

the continuation in a way that would make this extension sound.

Firstly, the assumptions about what kind of goals can be applied to a stream of

states need to be revisited. In µKanren, we have the bind operator that takes a goal g and

a stream $, and makes a new stream by applying g to the elements of $:

(define (bind $ g)

(cond

((null? $) mzero)

((procedure? $) (lambda () (bind ($) g)))

(else (mplus (g (car $)) (bind (cdr $) g)))))

In the baseline µKanren, a goal is self-contained in the sense that any variable

must be declared as part of a (fresh (...) ...) expression. There is no dependence

on the existing variables of the state a goal is applied to, because the state is assumed to

be arbitrary. A variable cannot be on its own: it is a vector with a single entry holding its

unique index in a particular state. The (fresh (...) ...) macro is responsible for

allocating the correct index for the variable in each specified state.

This assumption on the goals changes when we transition to µKanren with de-
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layed goals. We want to give the programmer the ability to provide more information to

the result of a run expression (provided that it is a continuation), and to manipulate the

variables that have already been created. How much flexibility we wish to grant to the

programmer determines the extent to which the language needs to change. Let us first

consider the following simple and safe solution, which is also the least permissible and

flexible. Our rule is that the programmer is only allowed to use the variables that have

been declared at the very top of the run program, that is, the variables q0 q1 ... in

run n (q0 q1 ...) ... or run* (q0 q1 ...) .... Let us call them the outer-

most variables. This approach is easy to implement because every state in the stream is

guaranteed to have these variables. Combined with α-renaming, we can eliminate any

ambiguity as to which variable a given identifier refers to.

Even though this provides some leverage to fulfil the residual delayed goals, it

would not be very useful. It is possible that some or all of the delayed goals in the run

expression involve variables that are buried deeper in the program. In that case, if a

continuation is returned, i.e. if some delayed goals are not fulfilled, then there is no way

one could provide more code to trigger those goals. This problem is not resolved even if

the programmer writes a delayed goal that only depends on the outer-most fresh variables.

The very purpose of a fresh variable is to be unified with something later. As soon as an

outer-most fresh variable x enters a unification with another fresh variable y, its delayed

goals are carried over to y. Hence a delayed goal of x will be treated as a delayed goal of y,

the inner variable that is not allowed to be used in the subsequent run. We could attempt

to transform the input program and pull all fresh variables on top, so an expression of the

form

(fresh (x)

(conde

((fresh (y)

(== x y) ...)))

...)

becomes

(fresh (x y)

(conde

((== x y) ...))

...)

However, this would certainly not yield an equivalent program, since, for example, the
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scope of variables would have to change.

An alternative approach is to allow the programmer to use any fresh variable that

appears in the run expression. This means we are further changing the assumption about

what variables a given goal is allowed to involve. In the previous approach, we could only

have fresh variables and the variables that are guaranteed to exist after the previous run.

Adding more goals was equivalent to simply appending it as another clause at the end of

the run expression. In other words, if a program

(run (x y z) A B C)

yields a continuation k, then we are allowed to write a goal D using the variables x, y,

z. Then the result of (k D) is the result of (run (x y z) A B C D).

Now consider a program of the form

(run (x y z)

(conde A B C))

Suppose we allow D to contain a variable that was declared inside one of the goals A, B,

C. For example, suppose C is the goal

(fresh (w) (== w ’(1 2 3)))

and the other goals do not contain a w. (If they do, α-renaming will give them a unique

name.)

We would like to change our specification and make it legal for D to involve the

variable w. Now the question is, what is the meaning of such a goal? If D is (== w

’(1 2)), do we return the empty stream, or should only the C branch fail? Let us try to

formalize both variations.

(a) The first option is to interpret D as part of the goal C. That is, the result of (k D) is

the result of

(run n (x y z)

(conde

A

B

(fresh (w)

(== w ’(1 2 3))

(== w ’(1 2))))
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In general, for an arbitrary goal D involving existing variables w0, w1, ..., we

would place it in the first fresh expression of the original run program that makes

the use of w0, w1, ... legal. We can immediately see that such an intersection

of the fresh-es might not exist. But in this case the entire program would still be

allowed to succeed, because the other clauses such as A and B would not involve the

goal D at all. This seems counter-intuitive, and it would be difficult to reason about

the language if we define it this way.

(b) As an alternative approach, we consider treating the goal D as a separate piece of

code that we conjugate with the original goals A B C in (run n (x y z) A B C).

In other words, we further expand our definition of permissible goals, so that (k D)

could yield the same stream as

(run n (x y z)

(conde

A

B

C)

D)

We modify our interface as follows. The goal D is allowed to use any variable

declared in the original run expression. However, unifying a variable in a state

where it does not exist produces the empty stream. Thus, if the result of

(run n (x y z)

(conde

A

B

(fresh (w)

(== w ’(1 2 3)))))

is a continuation k, then (k (== w ’(1 2))) will evaluate to the empty stream.

This is so because

• Applying (== w ’(1 2)) to the states in the stream (A empty-state) yields

the empty stream. The variable w does not exist in these states. The same is

true for the B clause.

• Applying (== w ’(1 2)) to the single state in ((fresh (w) (== w ’(1 2
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3))) empty-state) yields the empty stream as well. The unification algo-

rithm will fail to unify ’(1 2 3) and ’(1 2).

Such an approach is relatively straightforward to implement, since we are only

modifying the definition of ==.

One might wonder how we can keep the streams resulting from the clauses A and

B. With this approach, would it be possible to add goals to all three clauses at the

same time? It would be possible to do so by using a conde. Suppose A has a local

variable u and B has a local variable v. Consider the expression

(k

(conde

((== u 1))

((== v 2))

((== w 3))))

Let A’, A’ and C’ be A, B and C with the additional goal (== u 1) respectively.

Then the above expression will yield the same stream of results as

(run n (x y z)

(conde A’ B’ C’))

The second model requires a lot of restrictions on the format of the code being

passed to the continuation, and it is quite invasive. The scoping issue persists if we allow

arbitrary variables to be used in the same expression. We therefore need a compromise

between the first and the second approaches. Returning a single continuation as the output

of a run program can thus be achieved if we:

• Explicitly transform the expression in the body of the run so that all variables are

uniquely α-renamed. The programmer will be able to see the transformed expres-

sion and use the renamed variables in the subsequent run’s.

• Implicitly hoist all inner variables and to the outermost level, making them argu-

ments of the run command.

The explicit α-renaming part is quite straightforward. The implicit hoisting can be

done by pulling the variables from inner paths. We begin by modifying the function take.

This is a procedure that, given a number n and a stream $, returns the first n elements of

that stream.

The baseline definition of take is as follows:
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(define (take n $)

(if (zero? n) ’()

(let (($ (pull $)))

(if (null? $) ’() (cons (car $) (take (- n 1) (cdr $)))))))

Where pull is a procedure for forcing an immature stream.

These n elements are states, i.e. pairs (S, C) where S is a substitution map and

C is the counter. With delayed goals, the n elements are triples of the form (S, D, C)

where S and C are as before, and D is the store with delayed goals. Now we cannot

simply return these n states as the final result, because the stores D might still contain

some delayed goals. If each store D is empty, we return the states as usual. Otherwise,

we could keep pulling the stream until we find the first n states that do not have delayed

goals. However, this would produce rather uninteresting results. It would also mean that

we are treating the states with unfulfilled goals as “failed”, which does not seem right.

Instead, we wrap the result in a continuation that takes more goals and binds them with

the stream. To this end, we define a helper procedure takeˆ that accumulates the delayed

goals as it pulls the stream.

(define (take^ n $ res vars)

(if (zero? n) (cons res vars)

(let (($ (pull $)))

(cond

((null? $) (cons res vars))

(else

(let ((vars

(pmatch (car $)

(‘(,s (,vars^ () . ,c^) . ,c) vars)

(‘(,s (,vars^ ,G . ,c^) . ,c) (append-1 vars^ vars))))

(res

(append res (list (car $)))))

(take^ (- n 1) (cdr $) res vars)))))))

Here append-1 accumulates the variables that are associated with delayed goals in the

non-empty D stores. These are necessary because, if there are unfulfilled goals, we need

to know which variables are involved in them.

(define (append-1 list1 list2)

(if (or (null? list1) (null? (cdar list1))) list2
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(cons (caar list1) (append-1 (cdr list1) list2))))

The first entry in D is a map from variables to its delayed goals, and append-1 uses the

keys of that map to assemble the list of variables vars.

Next, the take function is modified as follows.

(define (take n $)

(pmatch (take^ n $ ’() ’())

(‘(,res . ()) res)

(‘(,res . ,vars)

(cons vars (lambda (goal)

(take n (bind $ goal)))))))

The function takeˆ returns a pair (res, vars) where res is a list of the first n elements

of the stream and vars is a list of the variables that have delayed goals associated with

them. If this list is empty, we return res. Otherwise we return vars along with the

continuation

(lambda (goal)

(take n (bind $ goal)))

One way to define the continuation is that it is a procedure that takes a list of

values vals and unifies its elements with the variables in vars, one by one:

(define (k vars vals)

(cond

((or (null? vars) (null? vals)) (lambda (s/d/c) (unit s/d/c)))

(else

(conj+ (== (car vars) (car vals)) (k (cdr vars) (cdr vals))))))

This is the most primitive way to pass values: here k takes a list of variable length

and unifies the first l elements of vars with the first l elements of vars, where l is the

minimum of of their lengths. We could also allow skipping some arguments by intro-

ducing a special symbol that represents a missing value. If ! represents a missing value,

vars is x, y, z, and the result of a run program is ((x, y, z), k), then (k 1 ! 2)

unifies x with 1 and z with 2, and leaves y fresh. Alternatively, we can pass a map from

variables to values to the continuation k.

However, there is not much one can do with such a continuation. In the above

example, we are required to pass concrete values to be unified with the variables x, y
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and z; we cannot introduce arbitrary new goals. We therefore modified the format of

the continuation to achieve greater flexibility. The type of information we are allowed to

feed in to k is a strict superset of that in the previous approach. Instead of passing ready

values one provides information in the form of additional µKanren code that involves

the symbols x, y and z. The continuation then binds these identifiers to the µKanren

variables corresponding to x, y and z and evaluates the provided additional code, which

yields a goal. The goal is applied to the stream, which should trigger some of the delayed

goals, thus making progress in the overall computation. In fact, the predicate of every

delayed goal involving x, y or z is tested whenever one of these variables is unified in

the augmented goal.

As noted before, hoisting the variables to the top does not yield the same program,

due to the changed scope. The last version of the interface solves the problem by replacing

the one continuation holding the entire stream with many small ones.

The list of µKanren states returned by a call to take or take-all can contain

fully computed states, i.e. with no unfulfilled delayed goals left. So, instead of wrapping

the entire stream in a single continuation we can consider individual states and turn the

ones with a non-empty D store into continuations. The run program will then always

return a list where some entries are reified answers that have been fully computed, while

others are continuations. The programmer can then feed additional code to specific con-

tinuations. Choosing a continuation corresponds to selecting a specific path along the

program and injecting the code at the end of that path. The variables attached to a given

continuation are automatically all in the same scope and visible in the part of the program

where the goal is injected.

To summarize, both the choice of internal representation of delayed goals and in-

terface design are subject to various tradeoffs. In terms of internal representation, avoid-

ing information redundancy comes at the cost of additional levels of abstraction. On

the other hand, the usability of the interface is affected when we try to achieve greater

flexibility, e.g. by returning continuations associated with specific paths in the program.
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Chapter 3
Future work

This project was originally aimed at exploring the relation between delayed goals

and staged programming. One future direction for delayed goals is staging the miniKan-

ren interpeter. The idea is to combine delayed goals and staging by using the former to

implement the latter.

Staged programming is manual partial evaluation, where offline manual binding

time analysis is used to select operations for lifting. In the case of staged miniKanren, we

typically choose to lift some unifications and some conditionals.

In partial evaluation, maximizing the amount of computation depends on the cor-

rect annotation of arguments according to their availability. This is done via binding time

analysis. The power of staging is manual control of binding time analysis, where one

can manually decide which operations are to be lifted. The manual design stems from

the observation that automatic binding-time analysis is hard, and that manual control is a

powerful compromise that allows the staging user to specify what they want exactly.

In staged miniKanren, some unifications are done in the first stage, while others

are quoted out and get deferred to the second stage. The second stage represents code

that is “kept for later”, while the first stage is for executing now. Deferring a unification

is similar to deferring a command in functional programming.

Thus, lifting goals by manual annotation has a similar feel to delayed goals. It

therefore might be potentially useful to integrate the two concepts in a single miniKanren

extension. Specifically, an interesting application would be to use delayed goals to stage

the relational interpreter. This would involve adopting the µKanren implementation and

integrating the delayed goals mechanism in miniKanren. The environment could then

be treated as unavailable data. Consequently, when evaluating a lambda expression, we

could evaluate its body at once, preventing the need to traverse it during every application.
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Chapter 4
Conclusion

This paper presents an extension of µKanren for supporting delayed goals. It

sets up a framework for treating program outputs with unfulfilled delayed goals as con-

tinuations. We designed delayed goals as data accumulated for deferred computation

throughout the execution of a miniKanren program. Multiple extensions of µKanren

were developed and tested in Scheme. The main contribution of this project is an explo-

ration of the tradeoffs between different models, as well as several variants of an interface

for programming delayed goals in µKanren.
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Appendix

An overview of µKanren

The basic constructs of µKanren are variables and goals. A µKanren variable is

an object that can be in a relation with other variables and values. In [1], variables are

represented by Scheme vectors, where the first element is the unique index of that vari-

able. A goal is a function that takes a state and returns a stream of states. In µKanren,

goals are used to unify variables with terms such as lists, symbols and numbers. Differ-

ent versions of miniKanren have additional types of constraints. For example, the goal

(absento x y) is the relation that x is not part of y. If x is a fresh variable satisfying the

goal (numbero x), then unifying x with any term that is not a number will fail.

The == operator and the macros fresh and conde are used for creating and com-

bining goals. Some of the simplest goals are of the form (== x y). We write (fresh

(x ...) g ...) to create fresh variables x ... and run the goals g ..., which can

contain these variables. The procedures run and run* serve as the main interface for

computing the variables satisfying a given set of relations. An expression of the form

(run n (q) g0 ...) means “compute the first n values for q that satisfy the goals

g0 ...”. The run command starts from an empty state and applies the goals g0 ...

one by one. The program returns the first n elements accessed from the resulting stream

of states.

Scheme implementation of µKanren

We used a Scheme version of µKanren by Hemman and Friedman [1] as a baseline

implementation.

Streams and states

A µKanren state holds information about the progress of a goal along a certain

path. It accumulates relations between variables, as well as their properties and con-

straints. In the canonical miniKanren, there are constraint stores that associate variables

with types, such as “x is a symbol”, disequality constraints, such as “x is not y”, and

absento constraints, such as “x is not in y”. In µKanren, a state s/c consists of a sub-

stitution map s and a counter c. The substitution map is a list of pairs, where the car of

each pair is a variable (i.e. a vector), and the cdr is an arbitrary term such as a number or
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another variable.

A stream is a sequence of elements that has been only partially computed. The

empty stream is denoted by mzero, while a stream of consisting of one element s/c is a

unit:

(define (unit s/c) (cons s/c mzero))

(define mzero ’())

One can readily access the first element of the stream, and the rest of it is wrapped

in a thunk. Such a stream is called a mature stream, while the thunk is called an immature

stream. Forcing the thunk yields a mature stream, i.e. the next computed element of the

stream along with a thunk representing the rest of the elements.

In addition to the usual lexical variables in Scheme which can be created using

let, λ , etc, µKanren has its own logic variables, which can be associated with values via

a substitution mapping. These can be ground, i.e. associated with a value, or fresh. If we

unify two fresh variables x and y, they both remain fresh. Logic variables can be created

using the fresh operator, which creates a fresh logic variable and locally binds it to a

lexical variable. Initially, the logic variable does not have a value associated with it, but

it can become ground through unification. In the full-featured miniKanren, in addition to

associating logic variables with terms, there can be constraint stores mapping variables to

type, disequality, and other kinds of constraints.

The variables are represented by vectors holding a single non-negative integer.

(define (var c) (vector c))

(define (var? x) (vector? x))

When a variable is created, the integer c depends on a counter carried in the state along

with the substitution map. Variable equality is defined as equality of the indices.

(define (var=? x1 x2) (= (vector-ref x1 0) (vector-ref x2 0)))

This definition is preferrable to pointer equality because it is more pure.

The == operator

The main relation in µKanren is ==, which is used for creating unification goals.

These have the form (== x y). If x and y are variables, then they are said to be fused

through this relation [3]. This means that whatever happens to x also happens to y. If

only x (or only y) is a variable, then a unification procedure binds x to y.
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(define (== u v)

(lambda (s/c)

(let ((s (unify u v (car s/c))))

(if s (unit ‘(,s . ,(cdr s/c))) mzero))))

The unification algorithm (unify u v s) is implemented as follows. First, both

terms u and v are walk-ed in the substitution map s. The recursive function walk looks

up the binding of a given variable in s, and applies itself to the result, if it exists. If u (or

v) is still a variable after we walk them in s, it is said to be fresh. Suppose u is fresh.

Then (unify u v s) extends the map s with a binding associating u with v:

(define (unify u v s)

(let ((u (walk u s)) (v (walk v s)))

(cond

((and (var? u) (var? v) (var=? u v)) s)

((var? u) (ext-s u v s))

((var? v) (ext-s v u s))

...

If u is not fresh but v is, the subsitution map is extended with a pairing (v, y). If neither

of u or v is a variable after they are walk-ed in the substitution map, then we check

whether they are both lists. If so, every element of u must be unified with every element

of v. Finally, if u and v fail to be variables or lists, they must be equal for the unification

to succeed:

...

((and (pair? u) (pair? v))

(let ((s (unify (car u) (car v) s)))

(and s (unify (cdr u) (cdr v) s))))

(else (and (eqv? u v) s)))))

In this most basic version of miniKanren, the counter and the substitution map are

the only characteristics of a state, but the language retains the essential features such

as fresh and conde. Fresh variables are implemented using call/fresh. Calling

(call/fresh f) yields a procedure that takes a state s/c and creates a fresh variable

(var c), where c is the current counter value of the state. Note that f must be a function

taking a variable and returning a goal. It is applied to the new variable and the resulting

goal is applied to the state ‘(,s . ,(+ c 1)). The substitution map remains the same,
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while the counter is incremented by one, so that the next fresh variable will be a vector

holding a higher index. This ensures that all fresh variables are unique.

(define (call/fresh f)

(lambda (s/c)

(let ((c (cdr s/c)))

((f (var c)) ‘(,(car s/c) . ,(+ c 1))))))

The result of applying a goal g to a state s is a stream of states all of which

satisfy this goal. Given two such streams, we can combine them into one using the mplus

operator. It is useful for splitting paths and creating disjunctions of goals.

(define (mplus $1 $2)

(cond

((null? $1) $2)

((procedure? $1) (lambda () (mplus $2 ($1))))

(else (cons (car $1) (mplus (cdr $1) $2)))))

This ensures interleaving of the two streams, as we are pulling the first element of the first

stream, and the next element will be the first element of the second stream, etc.

If the stream $1 is mature, then $1 is a pair, and its car becomes the car of the

resulting stream. On the other hand, the cdr of $1 is an immature stream. So, calling

(mplus (cdr $1) $2) will create another immature stream that swaps the streams ($1)

and $2, where ($1) is the result of forcing the thunk $1. This means the next element of

the resulting stream will be either

(a) The car of $2, if $2 is mature, or

(b) the car of $1, if $2 is immature. However, in this case the third element of the

resulting stream is guaranteed to be the first element of $2.

In either case, we eventually achieve a stream of alternating elements.

Another important mechanism is bind, which is used for applying a goal to a stream

of states.

(define (bind $ g)

(cond

((null? $) mzero)

((procedure? $) (lambda () (bind ($) g)))

(else (mplus (g (car $)) (bind (cdr $) g)))))
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The bind operator is a dual of mplus. It takes a stream $ and a goal g and returns the the

resulting from applying g to each state in $.

Now that we have operators for merging streams and binding goals with them, the

conjunction and disjunction of goals can be defined.

(define (disj g1 g2) (lambda (s/c) (mplus (g1 s/c) (g2 s/c))))

(define (conj g1 g2) (lambda (s/c) (bind (g1 s/c) g2)))

The disjunction of the goals g1 and g2 is a new goal g such that, when applied to the state

s/c, it returns the merged streams g1 s/c and g2 s/c. This is used when g1 and g2 are

goals independent of each other and represents the OR of the two goals.

On the other hand, (conj g1 g2) is the AND of the goals g1 and g2, so they are

applied sequentially. The conjunction of g1 and g2 is a goal g such that, given a state s/c,

it applies g1 to it, and then applies g2 to the resulting stream.

The fresh and conde macros

The fresh macro creates a fresh variable in a given state. It is defined as

(define-syntax fresh

(syntax-rules ()

((_ () g0 g ...) (conj+ g0 g ...))

((_ (x0 x ...) g0 g ...)

(call/fresh

(lambda (x0)

(fresh (x ...) g0 g ...))))))

The goals g0, g ... are expressions that can contain the variables x0, x .... Given a

state s/c, the call/fresh mechanism allocates a new index for the variable x0, then for

x, and so on. As a result, we have a new state with an increased counter, and the Scheme

variables x0, x ... are bound to µKanren variables, i.e. vectors holding indices. Next,

the goals g0 g ... are all conjugated and applied to this new state, in an environment

that now knows about x0, x ....

The conde macro creates the disjunction of a set of goals.

(define-syntax conde

(syntax-rules ()

((_ (g0 g ...) ...) (disj+ (conj+ g0 g ...) ...))))

A principal difference between conde and Scheme’s cond is that the latter checks the
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condition of every clause and only executes the first clause whose test passed. On the

other hand, conde runs every clause, yielding multiple streams, all of which are then

merged using mplus.

To run a µKanren program, the run and run* macros are used. These constitute

an interface allowing to compute a stream of values for a variable satisfying a set of

µKanren goals. Given a set of fresh variables x ... and goals g0 g ..., the run and

run* procedures apply the conjunction of these goals to the empty state ’(() . 0), i.e.

the empty substitution map and the counter 0.

(define-syntax run

(syntax-rules ()

((_ n (x ...) g0 g ...)

(map reify-1st (take n (call/goal (fresh (x ...) g0 g ...)))))))

Here (call/goal g) simply returns (g empty-state). The difference between run

n and run* is that run n computes and returns the first n elements of the stream, while

run* computes the entire stream. The definition only differs in that take n is replaced

with take-all. The two procedures comprise the main interface for programming in

the miniKanren family of languages. It is a wrapper for the lower level procedures that

manipulate streams, states, binding and interleaving.

An arbitrary stream is made mature via the pull procedure that forces immature

streams:

(define (pull $)

(cond

((null? $) mzero)

((procedure? $) (pull ($)))

((pair? $) $)))

The result of pull is thus either the empty stream mzero or a pair (a mature stream with

a computed first element). The take and take-all procedures used by the run interface

invoke pull to compute some or all elements of the stream:

(define (take-all $)

(let (($ (pull $)))

(if (null? $) ’() (cons (car $) (take-all (cdr $))))))

The take-all procedure continues to build a list of the elements of $ until the stream

is exhausted. The function take is defined similarly, except it only computes the first n
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elements of $. The run and run* procedures are reified versions of take and take-all,

where we are only interested in the first variable, (var 0).

Reification is the process of giving an abstract state in a computation an explicit

representation [15]. In our case, the state of a computation is a stream, and we use reifi-

cation to be able to inspect the contents of that stream. Simply returning the substitution

map does not convey much information to the programmer. The Scheme vectors used to

represent µKanren variables are internal constructs that the µKanren programmer is not

concerned with. The function reify-st converts µKanren terms to a human-readable

form and is defined as

(define (reify-1st s/c)

(let ((v (walk* (var 0) (car s/c))))

(walk* v (reify-s v ’()))))

Thus, a term is walked in the substitution map, i.e. all variables are recursively replaced

with their walk* values. The variables that still appear in the term by the end of this

process are guaranteed to be fresh. We then have a term containing concrete values such

as numbers and symbols, as well as vectors representing the fresh variables. Lastly, each

of these vectors acquires a unique special symbol, e.g. one starting with the prefix “_.”.

It might appear that seeing only the first variable is not very informative. However, an

arbitrary set of variables can be viewed this way. One just needs to unify the first variable

with a list of variables we are interested in. Suppose we wish to find all x and y such that

appending y to x yields the list ’(1 2 3 4 5). Then we can query the values for q in the

following goal:

(run* (q)

(fresh (x y)

(== ‘(,x ,y) q)

(appendo x y ’(1 2 3 4 5))))

This program returns the list of all possible combinations of x and y satisfying the relation

(appendo x y ’(1 2 3 4 5)), which holds if and only if (append x y) returns ’(1

2 3 4 5):

’((() (1 2 3 4 5))

((1) (2 3 4 5))

((1 2) (3 4 5))

((1 2 3) (4 5))

((1 2 3 4) (5))
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((1 2 3 4 5) ()))

Each value in the list is the result of reifying q in an element of the computed stream, i.e.

calling (reify-1st s/c) where s/c runs through the states in the list

(take-all (call/goal (fresh (q) (fresh (x y)

(== ‘(,x ,y) q)

(appendo x y ’(1 2 3 4 5))))))

However, we are actually reifying the walk* values of ‘(,x ,y), because that is what

the variable q maps to in the substitution map. The goal (== ‘(,x ,y) q) invokes the

unification algorithm, which walk*-s both ‘(,x ,y) and q in the empty substitution map.

The walk* procedure is defined as follows:

(define (walk* v s)

(let ((v (walk v s)))

(cond

((var? v) v)

((pair? v) (cons (walk* (car v) s)

(walk* (cdr v) s)))

(else v))))

This procedure, when applied to ‘(,x ,y) and q in the empty substitution map, returns

‘(,x ,y) and q back. Then, the unification algorithm checks whether one of these is a

variable. Since q is a variable and ‘(,x ,y) is not, we conclude that q must map to ‘(,x

,y) as a result of this unification.

Reification is performed by incrementally building a map from fresh variables to

symbols. First, a new symbol is created for every fresh variable in a given list:

(define (reify-s v s)

(let ((v (walk v s)))

(cond

((var? v)

(let ((n (reify-name (length s))))

(cons ‘(,v . ,n) s)))

((pair? v) (reify-s (cdr v) (reify-s (car v) s)))

(else s))))

A variable is given a symbol based on the length of the map s constructed so far. If the

length of s is 4, then the index in the reified name for the next fresh variable x is 4, and
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the map is extended with a new entry mapping x to its reified name. The final map s is

then used to reify the first variable. In the earlier example, we walk the vector #(0), i.e.

the first variable q, in a list of states. In each of the states, the substitution map associates

q with the pair of vectors #(1) and #(2) corresponding to the expression ‘(,x ,y). The

result of walk*-ing this pair is different in each answer, since appendo contains a conde,

which splits the program into multiple paths.

These are the essential features of miniKanren upon which implementing other

canonical constraints such as absento, =/=, symbolo, numbero, etc is straightforward.

For a more detailed exposition of the language and its implementation, see [1]. The tech-

niques and theory behind the design of miniKanren are covered in [2]. The Reasoned

Schemer is a thorough guide to programming in miniKanren and implementing it [3].

This project used µKanren as a core implementation of miniKanren to build the exten-

sion for supporting delayed goals. Other variations of miniKanren include cKanren for

constraint logic programming, αKanren for nominal logic, Probabilistic Kanren, Staged

miniKanren, and more [17, 18].
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