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Abstract 

The tree of life lies at the heart of biology, but major gaps persist among bacteria. Attempts 

to identify these missing microbes face challenges in determining which organisms are poorly 

characterized and where to find them. Here, we have devised a bioinformatics-based pipeline for 

identifying novel organisms and assessing their relative abundance in different environments based 

on 16S sequences. Using data from GTDB, we validate that the 16S V4 region can be used to 

estimate the novelty of an organism’s whole genome. Then, we apply the pipeline to 16S SILVA 

data, estimating how many organisms remain to be discovered at each taxonomic level. We also 

determine that V4 sequencing is likely to underestimate genome novelty relative to the full 16S. 

Next, we apply the pipeline to datasets from the Earth Microbiome Project, assessing the relative 

abundance of novel organisms in different environments. Our results indicate that soil samples 

contain the highest volume of novel bacteria, but the optimal environment for microbial discovery 

varies based on the desired taxonomic level of novel organisms and laboratory sequencing 

capacity. We then apply the pipeline to standardized samples collected from several environments, 

determining that salt marsh soil contains a high density of novel organisms. Lastly, we use the 

pipeline to enrich one marsh sample for novel organisms, assembling a novel Gracilibacteria 

genome in the process. This pipeline allows researchers to compare environments for microbial 

sequencing and enrich for novel organisms, speeding up the rate at which we discover novel 

bacteria. 
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Glossary of Key Terms and Abbreviations 

Term Abbreviation Definition 

16S ribosomal RNA 16S rRNA A gene that can be used for inferring 

phylogenetic relationships between 

prokaryotes 

Assembled Sequence 

Variant 

ASV A consensus DNA sequence derived from 

metagenomics that is expected to correspond 

to a particular microbe 

Average Nucleotide Identity ANI The fraction of DNA bases that two organisms 

have in common following alignment (100 

indicates that the genomes are identical at the 

regions being compared) 

Earth Microbiome Project EMP A repository of 16S V4 sequences (with 

standardized preparation) submitted by 

researchers from across the globe 

Genome Taxonomy 

Database 

GTDB A database that contains 16S sequences and 

whole genome sequences for organisms whose 

whole genomes have been assembled 

Level 1 of Characterization  An organism whose 16S ribosomal RNA gene 

has been sequenced 

Level 2 of Characterization  An organism whose whole genome has been 

sequenced 

Level 3 of Characterization  An organism that has been cultured 

Level of Novelty  The taxonomic level corresponding to a novel 

organism based on GTDB (e.g. phylum) 

Novel  An organism that is currently at Level 1 of 

characterization but has not yet moved to 

Level 2 

Operational Taxonomic 

Units 

OTU A cluster of closely related DNA sequences 

derived from metagenomics that are expected 

to correspond to a particular microbe  

SILVA  A database of 16S/18S ribosomal RNA 

sequences 

V4  One of 9 variable subunits of the 16S that can 

be used to compare microbes 
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Chapter 1: Introduction 

The Tree of Life 

At the heart of biology, the tree of life is a fundamental organizing structure [1]. Branching 

from the domains of Archaea, Bacteria, and Eukarya down to individual species, the tree relates 

together all known living organisms. However, the full scale of the tree remains unknown. Much 

of this uncertainty is due to prokaryotes, with estimates for the number of microbial species on 

Earth ranging from hundreds of thousands [2] to millions [3] to a trillion [4]. With a few recent 

exceptions [5], portrayals of the tree of life have tended to focus on evolutionary relationships near 

the tree’s root [6] or well-classified organisms, particularly eukaryotes [7], rather than these 

prokaryotic gaps. 

The lingering uncertainty about prokaryotes allows the tree of life to grow in leaps and 

bounds in response to new findings. For instance, in 2015, researchers identified over 35 new 

bacterial phyla from a single aquifer in Colorado, a group that may comprise over 15% of the 

bacterial domain [8]. These organisms present a drastically expanded view of the tree of life and 

comprise much of the current diversity on Earth [9]. With the acquisition of new whole genome 

sequences, the tree of life continues to expand rapidly [8], [10] with implications across multiple 

fields. 

Three particularly relevant fields pertain to evolution, enzymes, and ecology. In the field 

of evolutionary history, filling in gaps in the tree of life with whole genome sequences helps to 

resolve the evolutionary origins of currently existing life. For example, in 2019, researchers 

identified a novel phylum of bacteria known as Thorarcheota, the closest known prokaryotic 

relative to modern-day eukaryotes [11], which further supports the evolutionary theory that 

eukaryotes developed from an archaeal cell engulfing a bacteria [12]. Researchers interested in 
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identifying enzymes with useful properties, such as Taq polymerase or CRISPR-Cas9, also greatly 

benefit from the acquisition of novel genomes. The discovery of novel genomes permits the 

discovery of the novel proteins contained within. Novel genomes also help to further ecological 

research on biogeochemical cycling and nutrient exchange in environments ranging from the 

oceans [13] to forests [14] to the human gut microbiome [15]. Whether interested in evolution, 

enzymes, or ecology, collecting new genome sequences can help researchers to develop new 

insights.  

Defining Characterization 

Constructing phylogenetic trees relies on the “characterization” of novel microbes, but 

there are multiple ways to characterize microbes. Three common levels of characterization include 

sequencing the portion of an organism’s genome containing the 16S ribosomal RNA (rRNA) [16], 

sequencing of its whole genome [17], or evaluating the phenotype of a cultured isolate [18]. 

Throughout the text, these levels are referred to in shorthand as Level 1, Level 2, and Level 3, 

respectively. Modern efforts tend to focus on sequencing-based approaches [19], which are 

described below. 

Level 1: 16S rRNA Sequencing 

First championed by Woese in 1977 [20], the 16S is a subunit of the ribosomal RNA gene 

that can be used for inferring phylogenetic relationships between prokaryotes. The gene has both 

conserved regions—which can be used for primer targeting—and variable regions that evolve at 

different rates, allowing for comparison of prokaryotes at taxonomic levels ranging from domain 

to species [21], [22]. Woese was able to use the 16S region to distinguish Bacteria from Archaea 

[20], and in the time since, it has become the most sequenced taxonomic marker [23]. The Human 

Microbiome Project [24] was based on this region, and there are massive curated databases, such 
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as Greengenes [25] and SILVA [26], that store full-length 16S sequences from microbes 

sequenced by researchers across the globe.  

In addition to the entire 16S, researchers also commonly sequence the V4 subunit of the 

16S, a short variable region that can be used to compare bacteria at high taxonomic levels [27]. 

Modern high-throughput sequencing technologies have a maximum read length, limiting their 

ability to read the entire 16S at once. Thus, most studies rely on partial 16S rRNA sequences [27]. 

Though the V4 subunit contains less information than the full 16S, the length is more 

accommodating for modern sequencers. After collecting V4 reads, it is common to upload data to 

a shared database such as the Earth Microbiome Project [28]. 

Using the 16S and its subunits, researchers have found some success in resolving gaps in 

the tree of life. Clusters of similar sequencing reads can be grouped into Operational Taxonomic 

Units (OTUs) or Amplicon Sequence Variants (ASVs) that presumably originate from a single 

organism [29]. The majority of bacterial phyla have been discovered via these 16S-based efforts 

[30], [31]. However, these efforts face some limitations. Researchers analyzing sequences from 

the SILVA and Integrated Microbial Genomes databases noted that while 95% of full-length 

bacterial 16S sequences belong to an OTU that has been observed more than once [32], this 

categorization only describes approximately 30% of known bacterial OTUs [32]. In other words, 

the vast majority of full-length bacterial 16S sequences belong to a small fraction of organisms 

that have been repeatedly sampled. Though this leaves 70% of OTUs that have only been 

sequenced to a limited extent, researchers have noted that the rate of discovery of new OTUs seems 

to have slowed and a small number of studies are responsible for most new sequences [32]. These 

findings present what initially appears to be a saturation paradox. The rate of discovery for new 

OTUs seems to have plateaued, implying that most microbes have been discovered. However, the 
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majority of OTUs have only been observed once, implying that much more Level 1 

characterization is required. 

This paradox can partially be attributed to bias in sample selection and preparation. Though 

soil and aquatic samples are known to boast the most microbial biodiversity [33], these 

respectively make up only about 8% and 17% of full-length 16S sequences, with 55% of sequences 

coming from less-diverse host-associated environments [32]. Additionally, common primer sets 

used for 16S amplification have been shown to be biased in favor of certain organisms [34], and 

some prokaryotes have unusual features, such as introns, that prevent primers from binding [8]. A 

dedicated study found that at least 10% of organisms are missed by 16S primer sets [35]. In short, 

bias in 16S-based sequencing efforts limits their ability to fill gaps in the tree of life. 

16S-based efforts also face a massive challenge from chimeric sequences [36]. As depicted 

in Figure 1-1, chimeras are a fusion of DNA from different organisms formed when a partially-

extended piece of DNA reanneals to a foreign strand and is replicated during the PCR process. The 

resulting fusion strand may be misidentified as a novel microbe, artificially increasing the apparent 

diversity of the sample [36]. 

 

Figure 1-1 | A depiction of how chimeric sequences form across two rounds of PCR. Incomplete extension forms 

a short strand (black) that can reprime onto a different DNA strand (red). 
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These sequences have been shown to accumulate in public 16S databases [37], with conservative 

estimates suggesting that at least 5% of database records are chimeric or have substantial errors 

[38]. Unfortunately, chimeric errors can easily appear as highly distinct sequences, providing a 

challenge for estimates of microbial diversity and constructing accurate phylogenetic trees based 

on 16S sequences.  

While algorithmic methods and a requirement for each 16S sequence to appear in more 

than one independent sample can help to mitigate chimeras, at present there are no viable strategies 

to completely prevent or detect chimeras [36]. Nevertheless, the 16S and its variable subunits 

remain popular as short, informative, inexpensive, and easy to sequence markers, with high 

conservation and per-base information content relative to other regions in prokaryotic genomes.  

Level 2: Whole Genome Sequencing 

While sequencing the 16S rRNA gene is a cost-effective way to analyze microbial 

environments, sequencing of the whole genome remains the most accurate method for identifying 

prokaryotes [39]. There are over 20 competing definitions of “eukaryote,” and prokaryotic 

taxonomy is just as contentious [40]. Nevertheless, one common strategy for assigning taxonomy 

is to compare organisms using Average Nucleotide Identity (ANI)—the fraction of DNA bases 

that two organisms have in common [2]. For instance, an ANI of 100 indicates that 100% of bases 

match between organisms at the regions being compared and the sequences are identical. By 

aligning and comparing similar reference genes between organisms, ANI can be used to construct 

a taxonomic tree where organisms that are more closely related are assumed to share a higher ANI 

[41]. This ANI approach can even be applied to 16S sequences, though shorter reads and chimeras 

mean less taxonomic accuracy. 
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To obtain whole genomes, researchers sequence random short sections of the genome and 

computationally reassemble them to form full-length bacterial genomes [42]. Then, an organism’s 

genome can be used to assign taxonomy—through a method such as the ANI of reference genes—

or to explore questions involving regions outside of the 16S. These computational “metagenomic” 

approaches can leverage initial sample DNA from a bacterial isolate, a mixed environmental 

sample, or even an amplified single cell. Many of the resulting whole genome assemblies are 

available in public databases such as the Genome Taxonomy Database (GTDB) [43]. 

Unfortunately, these computational approaches face the issue of skewed species 

distributions. As described in early community ecology literature [44], the number of individuals 

of common environmental species can outnumber the number of individuals of rare species by 

several orders of magnitude. As shown in Figure 1-2, microbial communities are no exception, 

reflecting this same skew with most sequencing data mapping to a handful of common organisms.  

 

Figure 1-2 | Linear and log-scaled rank abundance plots depicting the sequencing data skew associated with 

metagenomic samples. Each bar represents a different bacterial species identified in a salt marsh sample. The 

distribution heavily favors a few organisms, with the 14 most common bacterial species making up >50% of the total 

reads, while the rarest 14 organisms make up 0.1% of the total reads. 
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Since most species are rare in typical environmental communities, many interesting novel 

organisms are likely to appear at low frequencies, making recovery of their genomes a costly 

process [45] and making them difficult to distinguish from background noise [46]. Traditional 

metagenomic approaches can reconstruct the genomes of novel organisms from such mixed 

communities, but the cost is high and the efficacy is low.  

 Multiple groups have developed single-cell approaches to whole genome sequencing that 

minimize the impact of environmentally skewed distributions on genome recovery [10], [47]. 

These microfluidic or “mini-metagenomic” approaches divide environmental samples into many 

subsamples containing one or a few bacterial cells each. These samples are processed and 

sequenced in parallel, rather than as a bulk group. Since each subsample is much less diverse than 

the overall sample, there is a decreased likelihood of accidentally co-assembling DNA from 

different starting organisms. This strategy means that high-quality genome reconstruction is even 

feasible for rare organisms.  

Overall, while some large-scale efforts have been made to sequence whole genomes [31], 

there are far fewer whole genome assemblies than 16S sequences. 

Level 3: Culturing 

The culturing process classically involves growing bacteria on agar plates and isolating 

bacterial colonies. These living colonies can easily be sequenced or studied through techniques 

such as microscopy, Gram staining, and functional assays. This method is considered to be a gold 

standard since it provides large quantities of cells from a clonal population [19]. The clonal sample 

is particularly useful for microbe characterization since there is a surplus of DNA for sequencing. 

However, the vast majority of bacteria cannot yet be grown in a laboratory setting [48] due to a 

variety of potential reasons: inappropriate growth conditions [49], an excessively slow growth rate 
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[50], oxidative stress generated by the laboratory environment [51], missing pathways [52], 

stochastic awakening or acclimation [53], or the absence of necessary compounds produced by 

other members of the community [54]. As a result, over 88% of all cultured microbial isolates 

belong to just four phyla [10], and the majority of what is known about bacterial physiology stems 

from a small subset of easily-culturable, highly studied, medically-relevant organisms [55]. Due 

to this cultivation bias, genome sequencing efforts that are based on culturing reflect this same 

bias toward a few organisms [10]. In short, with culturing, we cannot find what we cannot grow. 

For this reason, most modern characterization efforts focus on Levels 1 and 2 [19]. 

The Challenge of Recovering Whole Genomes 

 Skewed species distributions associated with Level 2 mean that the blind spots remaining 

on the tree of life cannot merely be attributed to a lack of effort. Despite the aid of high-throughput 

DNA sequencing, recovering whole genomes from novel bacteria has remained a persistent 

challenge. There are many environments from which novel genomes could likely be recovered—

such as saltwater, mines, and mosquitos [56]—but it would be useful to have a tool to prioritize 

these environments based on how many novel whole genomes they are expected to contain. This 

tool could be used to increase the efficiency of workflows such as culturing, metagenomics, or 

single-cell mini-metagenomics to maximize the likelihood that the genomes recovered belong to 

novel organisms for which we do not yet have whole genome assemblies. 
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A Specialized Approach 

Researchers have used multiple levels of characterization for identifying novel microbes, 

but they still face two major limitations. First, the starting environmental samples play a major 

role in which bacteria can be discovered, but there remains a high degree of uncertainty about 

where to look to discover highly novel genomes that have not already been assembled. Second, 

even after collecting a sample, it remains difficult to determine which bacteria are both novel and 

real, rather than merely a processing artifact. Several fields of biology would greatly benefit from 

a tool that clarifies these questions and makes it easier to locate novel organisms. 

The primary aim of this thesis was to develop a bioinformatics-based pipeline for 

identifying novel bacteria and ranking environmental sampling sites. In particular, we aimed to 

create a tool (“the pipeline”) to examine 16S sequences (Level 1 of characterization), determine 

which DNA sequences belong to organisms that have been poorly characterized, and make 

corresponding recommendations about where to collect environmental samples for whole genome 

sequencing (Level 2) or culturing (Level 3). Rather than using the full 16S region, which is too 

long for high-throughput sequencing, we primarily rely on the V4 subunit as described earlier.  

We rely on the Genome Taxonomy Database (GTDB)—a repository of whole genome 

assemblies—to determine which DNA sequences belong to poorly characterized microbes. In 

addition to whole genomes, the database contains the extracted 16S sequences for organisms 

whose whole genomes have been assembled. As depicted in Figure 1-3, by querying 16S 

sequences from a sample against the 16S sequences in GTDB, the pipeline can determine which 

microbes in the query sample do not match the 16S sequences of any known sequenced genome 

and are thus likely to be novel at some taxonomic level.  
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Figure 1-3 | A depiction of how environmental samples are compared against GTDB. Microbes in the shaded 

region match poorly to the database, indicating that the 16S sequence is known but the whole genome has not been 

extensively characterized.  

The next step is to calculate the Average Nucleotide Identity (ANI) between the sample 

16S and the 16S from the closest known sequenced genome to generate a quantitative estimate 

for the expected degree of novelty. As shown in Figure 1-4, organisms can be novel at a variety 

of taxonomic levels, such as a novel phylum or class of organisms. Rather than referencing these 

taxonomic levels, this thesis will primarily use ANI to describe the novelty of organisms in each 

sample for a variety of reasons. Primarily, the taxonomic levels are artificial constructs [57], so 

their placement is somewhat subjective. Furthermore, horizontal gene transfer among microbes 

complicates attempts at nomenclature [58]. For reference, some researchers have proposed ANI 

thresholds based on full-length 16S rRNA sequences of 75.0% for phylum, 78.5% for class, 

82.0% for order, 86.5% for family, and 94.5% for genus [2]. However, since this thesis will 

primarily use ANI, this can be summarized as “a lower ANI indicates a higher degree of 

novelty.” 
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Figure 1-4 | A schematic of the tree of life indicating the number of GTDB bacteria at each taxonomic level 

[43]. 

Following comparison to GTDB, samples with many novel 16S sequences that are highly 

different from any known sequenced genomes may represent good starting places for sequencing 

and culturing efforts that attempt to fill in blind spots on the tree of life. By comparing the number 

of novel organisms in different environments, the pipeline aims to indicate which environments 

are promising sampling sites for the identification of novel bacteria. The pipeline can also calculate 

the fraction of each sample that is composed of novel bacteria to determine how easy it would be 

to reconstruct their genomes. This is the first approach we know of that leverages this 16S 

reference database strategy to prioritize and compare the potential of different environmental 

sampling sites to harbor highly novel microbes. This strategy should aid in moving organisms from 

the level of known 16S sequences to known genomes and beyond.  

When attempting to identify novel bacteria, it can be rather challenging to determine 

whether an unusual sequence is an authentic microbial variant or merely an error arising from the 

steps of processing. By the very nature of searching for novel bacteria, there is not a reference 

point with which to compare DNA sequences to ensure that they are real. Furthermore, chimeric 
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sequences remain a significant concern since these are impossible to eliminate but can appear 

highly novel. The pipeline attempts to err on the side of caution, potentially throwing out data that 

may belong to real organisms to minimize the influence of chimeras and other artifacts. 

After detailing the pipeline’s development, this thesis leverages four different datasets. 

First, we used data from GTDB to determine how feasible it is to predict the degree of novelty of 

a whole genome solely from the V4 subunit of the 16S. Second, we applied the pipeline to the 

SILVA database—a 16S sequence repository—to estimate how many microbes are at Level 1 of 

characterization (16S) and have yet to reach Level 2 (Whole Genome Sequencing). Third, we 

applied the pipeline to thousands of V4 reads from other researchers’ environmental samples to 

determine which environments contained a high proportion of poorly characterized organisms 

(Level 1) and could benefit from future sequencing efforts. In the process, we investigated how 

read length—such as using the full 16S or varying length reads of the V4—impacted the predicted 

novelty of a sample. Fourth, we applied the pipeline to samples we collected to determine which 

sites our future experiments should prioritize. In addition, we conducted a mini-metagenomic 16S 

rRNA sequencing experiment on one of these samples, discovering and assembling a rare and 

novel Gracilibacteria genome in the process. 
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Chapter 2: Materials and Methods 

This chapter describes the materials and methods that were involved in the development of 

the pipeline and its application to both environmental datasets and wet-lab samples. We were 

interested in developing a tool that could input high-throughput, 16S V4 sequencing data from any 

environment, remove wet-lab and sequencing artifacts, compare the cleaned data against several 

reference databases, and generate summary tables and figures characterizing each environment. 

The full description of the pipeline begins below. Apart from DADA2, which is based in R, all 

code was written in Python. 

Pipeline Overview

 

Figure 2-1 | A visual overview of the bioinformatic workflow following sequencing. 

Most data sources in this thesis came directly from an Illumina MiSeq or HiSeq and were 

processed using all the steps above. However, SILVA data is already demultiplexed, quality-

checked, and assembled into ASVs based on consensus sequences [26]. As a result, data from 

SILVA bypassed the demultiplexing, quality filtration, and DADA2 steps. For additional 
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flexibility, it is possible to enable or disable individual processing steps to meet a researcher’s 

desired use case. 

Data Sourcing 

Pipeline input data was drawn from three sources: SILVA, the Earth Microbiome Project 

(EMP), and V4 sequencing data from samples that were collected from multiple sites.  

SILVA 

The Ref NR99 database of 16S/18S sequences was downloaded from SILVA Release 

138.1, the latest version at the time of writing. NR99 indicates that the database was dereplicated 

at 99%, which was required to eliminate redundant sequences from the analysis. Using 

VSEARCH, the database was further dereplicated to 85%, which corresponds to families [2]. 

Sequences labeled as eukaryotes (18S) were removed using Biopython. 16S sequences labeled as 

chloroplasts were removed using Biopython to avoid erroneous eukaryotic matches. Comparison 

of the removed eukaryotes to the remaining database revealed that 69 remaining SILVA entries 

matched to removed eukaryotes with homologies of 37.4%-99%. To avoid eukaryotic 

contamination, these sequences were also removed. A full list of removed accessions is included 

in the Appendix under SILVA Accession Numbers of Removed Entries (Page 74). Using 

VSEARCH, the remaining sequences were compared against a database of all eukaryotic 

sequences that had been removed from the SILVA database in previous steps, and sequences that 

matched eukaryotes above 60% ANI were eliminated. (options— --usearch_global --userfields 

query+target+id+alnlen+mism+gaps+qilo+qihi+tilo+tihi+trow --id 0.60 --maxhits 1).  

The remaining data was run through a “singleton filter” to help eliminate chimeras. Using 

a procedure based on Louca et al. [59], sequences were sorted by decreasing length and clustered 
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using VSEARCH (options— –cluster_fast –centroids --id 0.75) at a threshold of 75% ANI. 

Clusters with only one sequence were eliminated to minimize the risk of chimera contamination. 

Earth Microbiome Project 

Data from 19 studies was downloaded from the Qiita EMP repository [28], a collection of 

microbial samples from across the globe. Under the Earth Microbiome Protocol, samples cover 

the sample V4 region, use a standard primer set, and follow a standard library preparation 

workflow. Environmental data was chosen to include animal-associated, soil-associated, and 

marine samples in the analysis. 

Collected Samples 

 Data from a new 16S mini-metagenomics experiment was included in the analysis. Most 

samples were collected from a variety of sites around Boston and Cambridge, including Belle Isle 

Marsh Reservation. Samples were also collected from the Hawaii coast. A full list of samples and 

the wet-lab protocol used for their preparation is included in the Appendix under In Lab Materials 

and Methods (Page 96).  

Sequencing Adapter Removal and Demultiplexing 

Trim Galore (a wrapper for Cutadapt [60] and FastQC) was used to remove sequencing 

adapters to prevent interference with taxonomic classification. Reads were not filtered based on 

length at this stage (options— --length 0 --no_report_file --suppress_warn --cores 8). Samples 

were then demultiplexed using Cutadapt. No barcode insertions or deletions were allowed, 

flanking N bases were trimmed, and a maximum error rate of 10% was permitted (options— --no-

indels --trim-n -e 0.1 --quiet). To ensure accurate adaptor removal, select reads were visually 

inspected with FastQC. 
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Forming Amplicon Sequence Variants 

Based on the cleaned data, DADA2 [61] was used to create Amplicon Sequence Variants 

(ASVs), each of which theoretically corresponds to a unique microbe. Standard filtering 

parameters were used and lingering PhiX from sequencing was removed (options— maxN=0, 

maxEE=2, truncQ=2, rm.phix=TRUE, compress=TRUE). When inferring ASVs, demultiplexed 

samples were pooled to account for low read numbers present in some samples (options— 

multithread=TRUE, pool=TRUE, selfConsist=TRUE). 

Sequence-Based ASV Filters 

Kmer filtering was used to eliminate ASVs with low complexity, such as a continuous 

stretch of a single base. Mutations in the hypervariable V4 region should not have a positional 

bias, so a set of bases that repeats on a fixed interval likely suggests an artifact. The kmer word 

length was 10 bases, and Kmer-Counter was used to track the number of each kmer for ASVs. 

Using the SciPy stats module, Shannon entropy was calculated from the kmer counts, and 

sequences below 3.75 were eliminated. This cutoff was verified using an artificial dataset with 

manually-constructed low-complexity sequences. To prevent short primer or adapter sequences 

from entering the analysis, ASVs shorter than 65 bases were removed. EMP samples have a read 

length of 90-150 base pairs, which was far above this cutoff. 

In case any ASVs containing Illumina adapters bypassed Cutadapt, an additional Illumina 

filter was implemented to discard reads containing forward (TACGGCGACCACCGAGATCTAC) 

or reverse (CAGAAGACGGCATACGAGA) adapter sequences. 
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Sample-Based ASV Filter 

ASVs that did not appear in at least two different samples from the same study were 

eliminated. As described by Louca et al. [59], this filter was implemented to eliminate chimeric 

ASVs, though the apparent richness of some environments may have slightly decreased in the 

process. 

Taxonomy Comparisons 

Query samples were compared against four databases using VSEARCH or BLAST+ [62] 

at a minimum identity threshold of 60%. BLAST+ was used to compare query samples against the 

two NCBI sources: RefSeq and the Nucleotide database (options— -task blastn -dust 'yes' -outfmt 

"10 qaccver saccver sskingdom stitle pident length mismatch gapopen qstart qend sstart send sseq" 

-perc_identity 0.60 -max_target_seqs 1). VSEARCH was used to compare query samples against 

the GTDB and SILVA databases (options— --usearch_global --userfields 

query+target+id+alnlen+mism+gaps+qilo+qihi+tilo+tihi+trow --id 0.60 --maxhits 1) 

Genome Taxonomy Database (GTDB) 

The bac120_ssu_reps database of 16S sequences was downloaded from GTDB Release 95, 

the latest version at the time of writing [43]. GTDB contains both whole genome and 16S datasets 

for the same organisms, and 16S sequences were downloaded to enable comparison with the 16S 

from environmental samples. Since GTDB stores organisms whose whole genomes have been 

assembled, sequences that matched extremely well to a sequence in GTDB were assumed to belong 

to an organism that was well characterized at the whole genome level. Sequences that matched 

poorly to GTDB were considered to represent organisms that were less well characterized at the 

whole genome level, suggesting a higher level of novelty. 
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SILVA 

The Ref database of 16S/18S sequences was downloaded from SILVA Release 138.1. To 

allow for the closest possible match, this database was not dereplicated to remove redundant 

sequences. Sequences labeled as eukaryotes (18S) were removed using Biopython to prevent 

erroneous eukaryotic matches. 16S sequences labeled as chloroplasts were also removed using 

Biopython. Chloroplasts are thought to have evolved from cyanobacteria [63], resulting in genetic 

similarities that complicate nomenclature and could potentially lead to eukaryotic matches.  

Nucleotide and RefSeq 

All sequences in the Nucleotide (nt) and RefSeq (ref_prok_rep_genomes) databases were 

downloaded using the update_blastdb Perl script in BLAST+. The Nucleotide database contained 

both prokaryotes and eukaryotes, while the RefSeq database was limited to prokaryotes. After 

December 2020, the local databases were no longer updated to ensure that all samples were 

compared in identical conditions. No additional processing was necessary for downloaded 

sequences. RefSeq matches can aid in manually confirming the identity of individual organisms 

but were not used to filter sequences. 

Taxonomy-Based ASV Filters 

Following BLAST+, ASVs that most closely matched a eukaryotic sequence in the 

Nucleotide database were discarded to prevent data contamination. After VSEARCH, ASVs that 

matched the SILVA database at below 60% similarity were discarded. SILVA represents an 

extremely thorough database of 16S sequences, and as noted by Louca et al. [59], ASVs whose 

closest match lies below this threshold are likely chimeric.  

ASVs were additionally subjected to a “positive filter” to remove spurious or chimeric 

sequences. To be accepted, ASVs had to meet one of the following criteria: match a GTDB entry 
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with above 60% identity, match a SILVA entry with above 60% identity, or most closely align to 

a BLAST entry with “16S” in the title. 

Diversity Metrics 

 For each sample, the Shannon entropy was calculated using the SciPy stats module. The 

remaining diversity metrics—richness, read count, unweighted mean and median ANI (ignoring 

read count), and weighted mean and median ANI (considering read count)—were computed in 

Python using read counts and ASVs from DADA2. 

V4 Analysis 

The Ref NR99 database was downloaded from SILVA Release 138.1 and prepared as 

described under Data Sourcing. The V4 region was extracted from full-length 16S sequences using 

two different methods: mothur and V-Xtractor [64], [65]. EMP primer sequences corresponding 

to the V4 were fed into mothur (options—pcr.seqs; FWD: GTGYCAGCMGCCGCGGTAA; REV: 

GGACTACNVGGGTWTCTAAT), which attempted to locate the targeted regions within the full-

length sequence. This approach was meant to represent the full V4 region and flanking constant 

regions that would be obtained by EMP wet-lab protocols. V4 regions were also extracted from 

the full-length 16S using V-Xtractor, which attempts to locate the region using Hidden Markov 

Models. This approach was meant to represent short V4 reads (~85bp) associated with earlier 

versions of the EMP protocol. Full-length 16S sequences were grouped with their corresponding 

V4 regions extracted via mothur and V-Xtractor. Groups that did not contain V4 regions extracted 

via both methods were eliminated. 16S and both extracted V4 sequences were compared against 

the GTDB database as described in Taxonomy Comparisons (27).  
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Calculating Number of Organisms Discovered in a Sample 

The number of organisms located in a sample was computed using a probability-based 

sum. In this context, a “sample” represents the environmental site that DNA was collected from 

for sequencing.  

𝑂 = ∑1

𝐸

𝑛=1

− (1 −
𝑥𝑛
𝑥𝑡𝑜𝑡

)
𝑀

 

Equation 2-1 | A probabilistic sum describing how many organisms a researcher can expect to find from 

sequencing based on the read counts of each organism. 

In this equation, O represents the total number of ASVs found, E represents the number of 

different ASVs in a sample, xn represents the number of reads corresponding to the n’th ASV, xtot 

represents the total number of reads from all ASVs in the sequencing run, and M represents the 

theoretical maximum number of individuals that a sequencer can identify. 

𝑥𝑛

𝑥𝑡𝑜𝑡
 represents the fraction of reads that belong to ASV n, which is the likelihood of 

selecting that ASV out of the environmental sample by random chance. Therefore, the portion of 

the equation within the parentheses represents the probability of missing an ASV after one 

sampling event. A sequencing machine can be used to identify up to M individual organisms, and 

each of these attempts represents a different sampling event. Raising the parenthetical expression 

to the power M provides the likelihood of missing a particular ASV after the sequencer has run its 

course. Subtracting this entire expression from one provides the likelihood that the sequencer has 

found ASV n. Summing the results across all ASVs provides the total number of ASVs a researcher 

can expect to find following sequencing. This same process can be repeated by substituting clusters 

in place of ASVs to determine the total number of clusters a researcher can expect to find. 
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This formulation assumes that the community is large enough that all samples are 

independent. It is also, of course, blind to additional ASVs that are not identified in the initial 

sample but could appear in the community with deeper sequencing. 

In practical terms, if a sample contains E different ASVs in total and the sequencing 

machine can identify up to M individuals, a researcher can expect to find O distinct ASVs after 

randomly sampling members of the community.  

Forming Clusters from ASVs 

 To avoid overestimating the number of organisms in environmental samples, similar ASVs 

were assembled into clusters using a VSEARCH centroid-based clustering algorithm (options— –

cluster_fast –iddef 4). “Centroid-based” indicates that the longest ASV was defined as the centroid 

of the cluster, and ASVs that matched to the centroid above a predefined ANI threshold were 

grouped into the same cluster. Then, the next longest ASV was defined as the centroid of a new 

cluster and the process repeated. This process is illustrated in Figure 2-2. At each ANI level, 

clusters were recreated using the new ANI threshold. 

 

Figure 2-2 | An illustration of centroid-based clustering at an ANI threshold of 80%. ASVs that match to a 

centroid sequence (ASV1) above the ANI threshold are included within the cluster. ASVs that fall below the ANI 

threshold for one cluster (ASV4, ASV6) may align more closely to the centroid of another cluster (ASV2). ASVs that 

fall below the threshold for existing clusters become the centroid of a new cluster (ASV8). 
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Pipeline Summary 

 

Figure 2-3 | A detailed summary of the bioinformatic workflow following DNA sequencing. 

 

Predicting Whole-Genome Novelty from the V4 using GTDB 

The bac120_ssu_reps database of 16S sequences was downloaded from GTDB Release 

95. The full database contains ~195,000 bacteria and archaea whose whole genomes have been 

assembled and quality-checked using CheckM. EMP primer sequences corresponding to the V4 

were fed into mothur [64] (options—pcr.seqs; FWD: GTGYCAGCMGCCGCGGTAA; REV: 

GGACTACNVGGGTWTCTAAT), which extracted 9,604 V4 regions with no errors in primer 

sequences permitted. VSEARCH [66] was used to compare V4 sequences to one another and 

obtain ANI values.  
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For each group at every taxonomic level (preassigned by GTDB based on reference genes 

from the whole genome), members of the group were removed from the database and the highest 

ANI match for each member to the remainder of the database was stored. For instance, all entries 

labeled within the Firmicutes phylum were removed from the database and compared to the 

remaining database to determine the closest ANI match. This process was repeated for every 

phylum. Then, it was repeated at all lower taxonomic levels. 
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Chapter 3: GTDB Results 

The Genome Taxonomy Database (GTDB) is the most complete, phylogenetically 

consistent database currently available [67]. Genomes are classified from the domain to species 

level based on ANI between orthologous regions. We were curious how the ANI match of the 

V4 subunit to GTDB corresponds to the taxonomic novelty of the whole genome and 

investigated this question using 16S sequences from GTDB. By individually removing a group at 

a given taxonomic level (e.g. the phylum Firmicutes) and comparing its members to the 

remainder of the database, we aimed to determine the characteristic ANI match of V4 reads 

associated with each taxonomic level. The results are shown in Figure 3-1. 

 
Figure 3-1 | Violin plots of the V4 ANI matches to GTDB corresponding to various taxonomic levels. The outer 

body of the violin plot represents the ANI distribution which surrounds a boxplot in dark grey. 
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When a phylum was removed from the database, its V4 reads tended to have the lowest 

ANI match to the remaining entries. The median ANI associated with taxonomic levels grew 

steadily while approaching the species level. For all taxonomic levels, there is a broad 

distribution with outliers that pass the median of the highest and lowest taxonomic levels. 

For a given V4 ANI match to GTDB, its likelihood of corresponding to a particular 

taxonomic level is shown in Figure 3-2. Organisms with V4 ANI values in the range of 70-85 are 

likely to correspond to phylum and class with approximately equal measure. Larger ANI matches 

are more likely to correspond to lower taxonomic levels. At extremely low ANI values below 70, 

the phylogenetic classifications begin to break down. These results indicate that V4 ANI can be 

used to determine the novelty of the whole genome, primarily for organisms with an ANI at or 

above 70. 

 

Figure 3-2 | Probability of matches to GTDB at a given ANI corresponding to each taxonomic level. 
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Chapter 4: SILVA Results 

The pipeline relies on short reads of the V4 region to predict the level of novelty of the 

whole genome, and GTDB results indicated that the V4 could potentially be used for this 

purpose. Next, 16S sequences from SILVA (ASVs) were run through the pipeline to estimate 

how many organisms at each taxonomic level were at Level 1 of characterization (16S) and had 

yet to reach Level 2 (Whole Genome Sequencing). Organisms that match at a particular level or 

below can be considered as unique members at that taxonomic level. The results are shown in 

Figure 4-1 as a cumulative plot.  

 

Figure 4-1 | Results of comparing SILVA ASVs and Clusters to GTDB. ANI match to the closest item in GTDB 

is shown along the x-axis. The plot is cumulative, so each tick indicates the number of ASVs/Clusters that match to 

GTDB at that level or below. Due to the large size of the SILVA database, sequences were clustered at 86.5% ANI to 

avoid redundancy before being compared to GTDB. 

In addition to comparing SILVA sequences to GTDB directly, sequences were compared 

following clustering to avoid overcounting. As illustrated in the simple example in Figure 4-2, if 

multiple ASVs are compared to GTDB, they may all seem to be highly novel relative to anything 
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in the database. As shown, since each ASV matches GTDB at an ANI of 50%, the sample would 

appear to contain three ASVs that are novel at above the phyla level. However, since the ASVs 

are incredibly similar to one another, it would be more accurate to suggest that there is one new 

phylum with three members. In the example below, all three ASVs would be grouped into one 

cluster and counted as a single phylum. 

 

Figure 4-2 | A sample case demonstrating how ASVs may overestimate the abundance of novel microbes. 

Individual ASVs may be highly dissimilar from GTDB but closely resemble one another. Clustering these similar 

sequences together prevents overestimation. 

The results of clustering are shown in Figure 4-1, and the estimated number of novel items 

at each taxonomic level decreases. Using Figure 3-2, it is possible to estimate the number of items 

corresponding to each taxonomic level based on ANI. For instance, at an ANI of 75, roughly 40% 

of the clusters shown on the plot are expected to be novel at the phylum level. Some caution is 

warranted since chimeric sequences are known to accumulate in 16S databases [37], and some 

may persist despite our efforts to remove them. Nonetheless, there appear to be many novel 

microbes at various taxonomic levels that have not yet reached Level 2 of characterization. 
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Chapter 5: Earth Microbiome Project Results 

SILVA results provided an estimation of how many organisms at each taxonomic level 

were characterized at Level 1 without corresponding whole genome sequences. Next, we 

attempted to determine which Earth Microbiome Project environments contained the highest 

proportion of novel clusters and could potentially yield the most whole genomes with dedicated 

sequencing efforts. As with SILVA, the possibility of chimeric sequences within a sample hinders 

attempts to predict absolute numbers of how many novel microbes a sample will contain. However, 

since chimeras are not expected to form at drastically different rates between samples, relative 

comparisons between samples should be minimally affected. 

Determining How Using the V4 Subunit Impacts ANI Matches 

While SILVA contains full-length 16S sequences (~1400 base pairs), the EMP contains 

much shorter reads of the V4 region. To assess how using this subunit would impact the projected 

novelty of samples, the V4 was extracted from SILVA sequences via two different methods: V-

Xtractor and mothur. V-Xtractor attempted to identify the V4 region using Hidden Markov Models 

(~85 base pairs) while mothur extraction was based on EMP primer sequences (~253 base pairs). 

These extracted V4 regions were classified using GTDB, and the ANI results were compared 

against SILVA to determine how the ANI of the V4 reads compared to the full-length 16S. As 

shown in Figure 5-1, V4 reads tended to match to GTDB with a higher ANI than full-length SILVA 

reads.  
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Figure 5-1 | Comparison of the Average Nucleotide Identity of GTDB matches from full-length 16S sequences 

(~1400bp) and V4 sequences extracted by V-Xtractor (~85bp) and mothur (~253bp). (a) The median of the 

extracted V4 regions is higher than the full-length SILVA 16S. (b) Histograms of the ANI matches provide a more 

granular view of the distribution of higher V4 ANI. Extraction of V4 regions was performed by Adarsh Singh while 

taxonomy comparisons were performed by Nkazi Nchinda. n=1,095,814 sequences. 

After obtaining the general ANI distribution in Figure 5-1, we assessed to what extent the 

ANI for extracted V4 regions predicted the ANI of the corresponding full-length 16S. As shown 

in Figure 5-2, mothur results indicated that the GTDB results of primer-extracted V4 regions 

correlated with the full-length 16S with an R2 of 0.58. Results from V-Xtractor indicated that the 

GTDB results of model-extracted V4 regions from the same samples correlated with the full-length 

16S with an R2 of 0.53.  



40 

 

Figure 5-2 | Comparison of the Average Nucleotide Identity of GTDB matches from various-length components 

of the 16S. (a) Full-length 16S SILVA sequences against V4 regions identified by mothur (y = 0.74x+27.04; R2=.58). 

(b) Full-length 16S SILVA sequences against V4 regions identified by V-Xtractor (y = 1.18x-17.22; R2=.53). 

Extraction of V4 regions was performed by Adarsh Singh while taxonomy comparisons were performed by Nkazi 

Nchinda. n=1,095,814 sequences. 
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Determining How Varying V4 Read Lengths Impact ANI Matches 

The standards of the Earth Microbiome Protocol have changed with time, so typical EMP 

sequence read lengths vary from 90 to 151 base pairs following processing. To determine how 

these varying lengths would affect the apparent novelty of samples, we compared ANI matches 

from mothur (~253 base pairs) and V-Xtractor (~85 base pairs) against one another. As shown in 

Figure 5-3, results indicated that reads of varying lengths from the same starting sample correlated 

with an R2 of 0.77. 

 

 

Figure 5-3 | Comparison of the Average Nucleotide Identity of GTDB matches from mothur and V-Xtractor (y 

= 0.52x+47.16; R2=.77). Extraction of V4 regions was performed by Adarsh Singh while taxonomy comparisons were 

performed by Nkazi Nchinda. n=1,095,814 sequences. 
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Evaluating Samples from Different Environments 

Following these two verification steps, 2480 samples from 19 EMP studies were run 

through the pipeline. Unlike with the SILVA data, sequences from such microbial community 

samples have an associated relative abundance that was a major consideration, since relative 

abundance reflects the practical ability to recover organisms at a given sequencing depth. As 

depicted schematically in Figure 5-4, even if two samples have the same number of novel ASVs, 

it is easier to recover the corresponding microbial genomes if the bacteria make up a larger fraction 

of the overall sample. 

 

Figure 5-4 | A demonstration of why the difficulty of recovering genomes can vary for samples with the same 

number of novel ASVs. A researcher would likely select Sample B for further analysis since novel genomes make 

up a larger proportion of the sample and will thus require less effort to recover. 

Figure 5-5 provides data of a single soil sample from an Alaskan tundra with 63,997 reads. 

In addition to the number of novel ASVs and clusters that a researcher can expect to find of each 

ANI similarity, the graphs indicate how this number varies as a function of sequencing depth (the 

maximal number of individuals sampled). The prediction of the number of organisms discovered 

is probabilistic, depending on relative abundances and the number of individuals sampled, so non-

integer values are possible. The median genome size for a bacterium is 3.65Mb [68]. Therefore, 

for 100x genome coverage, an Illumina MiSeq run (up to 25 million reads of 2x300bp [69]) has a 

theoretical maximum of about 41 organisms. For each ANI level in Figure 5-5a-b, the number of 
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unique ASVs and clusters identified from a MiSeq run at each ANI would be between the depth 

values of 10 and 100. For an Illumina NextSeq run (up to 1.1 billion reads of 2x150bp [70]), the 

theoretical maximum depth is about 904 organisms. 

In Figure 5-5a, the number of items located always drops with clustering. As sequencing 

depth increases, the number of novel organisms that can be identified in the sample increases 

accordingly. In Figure 5-5b, a similar trend is visible, but the image is non-cumulative. Most 

organisms tend to match to GTDB at a higher ANI. In Figure 5-5c, the fraction of clusters at each 

ANI appears nearly linear when the y-axis is log-scaled, indicating an exponential increase.  

Figure 5-6 provides data from a single sample of Catostomid fish slime with 34,138 reads. 

At every depth, fewer organisms are projected to be found relative to the Alaskan soil sample. In 

Figure 5-6a, the lines appear to stack near higher ANI values as the depth increases. In Figure 

5-6b, there are gaps corresponding to ANI values that had no sequence matches to GTDB. In 

Figure 5-6c, a constant fraction of the sample is composed of clusters below an ANI of 79, with 

most clusters matching GTDB at or above 80 ANI. 
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Figure 5-5 | Summary data from a single sample of soil from an Alaskan tundra ecosystem. (a) The cumulative 

number of novel ASVs (solid) and clusters (dashed) predicted to be discovered at each ANI or below for various 

sequencing depths. (b) The non-cumulative number of novel ASVs predicted to be discovered at each ANI for various 

sequencing depths. (c) The cumulative fraction of the sample composed of reads at each ANI or below. 
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Figure 5-6 | Summary data from a sample of slime from Catostomid fish in Colorado. (a) The cumulative number 

of novel ASVs (solid) and clusters (dashed) predicted to be discovered at each ANI or below for various sequencing 

depths. (b) The non-cumulative number of novel ASVs predicted to be discovered at each ANI for various sequencing 

depths. (c) The cumulative fraction of the sample composed of reads at each ANI or below. 
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Comparing Samples from Different EMP Environments 

After collecting data for individual samples, we compared the results across studies to 

determine which environments contained the most novel sequences. For each comparison, the 

theoretical maximum sequencing depth was held constant. Clusters were compared, rather than 

ASVs, to avoid overrepresenting the diversity of particular samples. Data from individual samples 

is shown in Figure 5-7. To avoid spurious fluctuations associated with extremely low read counts, 

samples with read counts below each specified depth are not displayed. This filter only affects a 

small number of samples. Due to the visual complexity of Figure 5-7, the figures that follow 

provide simplified cross-sections of the same data, while a comprehensive figure gallery of 

samples corresponding to each environment is in the Appendix under EMP Environment Gallery 

(Page 76). 

Even at this resolution, it is evident that as the depth increases from 100 to 1,000 to 10,000 

an increasing number of clusters can be identified at all ANI. The shape of sample lines also 

appears to fall into a few different paradigms. At a sequencing depth of 100 (Figure 5-7a), very 

few organisms are sampled at a low ANI. The resulting lines sharply increase as the ANI nears 

100, which must represent all samples by nature of the cumulative plot. At higher sequencing 

depths, such as 10,000 (Figure 5-7c), the number of organisms at each level appears to grow almost 

linearly when plotted on a logarithmic scale. 
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Figure 5-7 | The cumulative number of novel clusters predicted to be discovered at or below each ANI for 

individual samples at depths of 100, 1000, and 10000. (a-c) The cumulative number of novel clusters identified at 

each ANI when samples are sequenced at a sequencing depth of 100, 1000, and 10000, respectively. To avoid spurious 

fluctuations, samples with read counts below each specified depth are not displayed. All plotted values are rounded to 

the nearest whole number. n = 2480 samples. 
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  In Figure 5-8, the samples corresponding to each environment are averaged. While 

averaging obscures potentially interesting variations between samples from the same environment, 

this step was included to aid with visibility. The resulting lines also minimize drastic fluctuations 

that may occur if one sample from an environment contains many novel microbes by chance. 

 The results vary with both the taxonomic level of interest and sequencing depth. At a 

sequencing depth of 100 (Figure 5-8a) and a low ANI, samples from the Kilauea volcano in Hawaii 

contain the most novel clusters, closely followed by samples from an urban study of Manhattan 

green roofs and city parks. As the ANI grows, the trend reverses with samples from the urban 

study containing more novel clusters. Moving further right, the urban study has the most clusters 

at all high levels of ANI, but samples from the Kohala volcano eventually surpass the Kilauea 

volcano. At a sequencing depth of 1000 (Figure 5-8b), samples from the urban study continue to 

contain the most novel clusters at most ANI values. However, for small ANI, samples from 

Alaskan peat soil contain the most novel clusters. At a sequencing depth of 10,000 (Figure 5-8c), 

the observed trend is similar to 1000. However, at high ANI, samples from polluted polar sediment 

surpass the number of clusters from Kohala soil samples. 
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Figure 5-8 | The cumulative number of novel clusters predicted to be discovered at each ANI or below for each 

environment (averaged from individual samples) at varying depths. (a-c) The cumulative number of novel clusters 

identified at each ANI when samples are sequenced at a sequencing depth of 100, 1000, and 10000, respectively. All 

plotted values are rounded to the nearest whole number, and samples with fewer reads than the specified depth are not 

included in the average. 
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Lastly, in Figure 5-9, samples are grouped and averaged based on the type of collection 

site. Soil and aquatic samples are known to boast the most microbial biodiversity [33], so we were 

curious whether having more types of microbes results in having more novel microbes. Again, this 

averaging process obscures potentially interesting variations between individual samples or 

environments. 

 At all depths, soil-associated samples contain the most clusters that are novel at every ANI 

level. At a sequencing depth of 100, water-associated and animal-associated samples present 

similar numbers of novel clusters across ANI levels. However, at higher sequencing depths, marine 

samples have more clusters than animal-associated samples for all ANI. 
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Figure 5-9 | The cumulative number of novel clusters predicted to be discovered at each ANI or below for 

environment types (averaged from samples) at varying depths. (a-c) The cumulative number of novel clusters 

identified at each ANI when samples are sequenced at a sequencing depth of 100, 1000, and 10000, respectively. All 

plotted values are rounded to the nearest whole number, and samples with fewer reads than the specified depth are not 

included in the average. 
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Chapter 6: Results from Collected Samples 

Comparing Environmental Samples with Standardized Processing 

In addition to comparing environmental samples from other researchers’ data, we applied 

the pipeline to samples that we had collected from various sites. Apart from the Hawaii coastal 

soils, all samples were collected at the same time, prepared identically, and sequenced in the same 

run with the same read length, eliminating much of the potential variability in read length and 

preparation between EMP samples. This experiment aimed to mimic how a researcher might use 

the pipeline in an experimental context and determine where to focus future in-lab experiments.  

The results of comparing collected samples are shown in Figure 6-1. Relative to the EMP 

samples, the sample with the most novel clusters varies many more times across the range of ANI. 

More specific trends are visible after categorizing samples. 

Figure 6-2 shows the results of averaging individual samples based on the starting 

environment. At a sequencing depth of 100, the moss sample has the most novel clusters across a 

wide range of ANI. As the depth increases, it is gradually surpassed by samples associated with 

soil. In general, samples collected from urban locations (cars, brick, etc.) tend to contain low 

numbers of novel organisms. 

When comparing samples, it is also notable that the marsh samples frequently contain the 

highest numbers of novel clusters. As shown in Figure 6-3, this trend holds across most ANI and 

at all sequencing depths. 
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Figure 6-1 | The cumulative number of novel clusters predicted to be discovered at each ANI or below for 

individual samples at varying depths. (a-c) The cumulative number of novel clusters identified at each ANI when 

samples are sequenced at a sequencing depth of 100, 1000, and 10000, respectively. All plotted values are rounded to 

the nearest whole number. 
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Figure 6-2 | The cumulative number of novel clusters predicted to be discovered at each ANI or below for 

environment types (averaged from samples) at varying depths. (a-c) The cumulative number of novel clusters 

identified at each ANI when samples are sequenced at a sequencing depth of 100, 1000, and 10000, respectively. All 

plotted values are rounded to the nearest whole number, and samples with fewer reads than the specified depth are not 

included in the average. 
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Figure 6-3 | A comparison of the cumulative number of novel clusters predicted to be discovered at each ANI 

or below for marsh samples relative to other samples at varying depths. (a-c) The cumulative number of novel 

clusters identified at each ANI when samples are sequenced at a sequencing depth of 100, 1000, and 10000, 

respectively. All plotted values are rounded to the nearest whole number. 
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Mini-Metagenomic Experiment 

Since soil and aquatic samples contain the most microbial biodiversity [33], we decided to 

select one marsh sample for further analysis. In particular, we ran a mini-metagenomic experiment 

to attempt to characterize a highly novel organism. As described in Level 2: Whole Genome 

Sequencing (Page 15), mini-metagenomics leverages single-cell methods to minimize the 

environmental skew typically associated with environmental samples. Full details regarding 

sample preparation are included in the Appendix under Mini-Metagenomic Preparation of Marsh 

5 (Page 97). The result was a 96-well plate with a small number of bacterial cells in each well. 

Locating a Gracilibacteria 

Though the pipeline was primarily used for comparing environmental samples, based on 

Figure 3-2, we theorized that it could also be used to find novel organisms in wet-lab samples. For 

instance, following 16S sequencing, samples with a V4 ANI above a certain threshold could be 

eliminated from consideration for Level 2 characterization. The remaining samples would have a 

lower V4 ANI on average and be more likely to contain novel organisms.  

Following this enrichment method, we identified a well containing an organism that 

appeared to be highly novel at the class level. As shown in Figure 6-4, more than 55% of the V4 

reads from the well corresponded to an organism called a Gracilibacteria. Within the original 

community, less than 1% of reads corresponded to the same organism. This strategy enabled us to 

isolate the novel organism in a well for whole genome sequencing. 

Ensuing work by other members of the Cira Lab resulted in the assembly of the full 

Gracilibacteria genome. The organism was also noted to have introns, unusual codon usage, and a 

CRISPR/CAS system.  
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Figure 6-4 | Fraction of reads corresponding to a Gracilibacteria and other organisms from a sequencing run 

of a salt marsh sample. (a) Read fractions of the Gracilibacteria relative to the total number of reads from all sample 

wells. (b) Read fractions within the well where a Gracilibacteria reads make up most data. 
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Chapter 7: Discussion 

GTDB 

In Figure 3-1, we demonstrated that there is an association between V4 ANI and whole 

genome taxonomic classification. Though there was a broad spread in the ANI corresponding to a 

particular taxonomic level, the median ANI characteristically increases as the taxonomic levels 

decrease, suggesting that V4 ANI values carry information about an organism’s novelty. This 

result suggests that the pipeline’s strategy of assessing novelty from V4 ANI is viable, particularly 

when multiple organisms are analyzed simultaneously in a sample. The greatest ANI similarities 

occur between the phylum and class levels. As noted in A Specialized Approach (19), the 

taxonomic levels are artificial constructs [57] resulting in a high degree of subjectivity. 

Furthermore, as taxonomic levels increase, they tend to grow less coherent [71], which could 

partially account for the increased similarities between the phylum and class ANI. 

Figure 3-2 illustrates how the V4 ANI can be used to estimate the novelty of organisms in 

practice. For instance, if an organism has a V4 ANI of 80, there is roughly a 40% chance that it is 

novel at the phylum level, 40% chance that it is novel at the class level, and 20% chance that it is 

novel between the order and genus levels. For extremely low ANI, the boundaries between 

taxonomic levels begin to break down. This effect could be due to contamination in the database 

from misassembled whole genomes that contain 16S sequences from the wrong organism. 

However, for ANI above 70, the V4 provides a robust way to predict the novelty of an organism’s 

whole genome. 

This ability to predict novelty is particularly useful in the context of comparing 

environments. When using the pipeline to compare samples from different environments, if a 

researcher knows the number of clusters at a given ANI (such as in Figure 5-5b), they can use 
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Figure 3-2 to map the ANI of discovered organisms directly to an estimated taxonomic level. In 

other words, rather than expecting to find “100 organisms that are novel at an ANI of 75,” they 

might expect to find approximately 40 phyla, 40 classes, and 20 lower taxa. 

Predicting novelty is also useful in the context of enriching for novel organisms. As briefly 

described in Locating a Gracilibacteria (56), V4 ANI can be used as a cutoff to increase the novelty 

of organisms selected. For instance, if a researcher has V4 reads from several experimental wells, 

they can remove wells with a V4 ANI of above 90% from consideration for whole genome 

characterization (Level 2). In the process, they would eliminate most organisms that are novel at 

the species level and greatly increase the likelihood of locating an organism that is novel at the 

phyla or class level. In other words, they would ensure that the organisms they are characterizing 

at Level 2 are much more likely to be novel. 

Though we ran a mini-metagenomic experiment leveraging this enrichment strategy, future 

wet-lab work could help to determine the efficacy of V4-based enrichment strategies in practice. 

Depending on the results, these approaches could be applied to help identify highly novel 

organisms and resolve gaps in the tree of life. 

SILVA 

In Figure 4-1, we estimated at each taxonomic level how many organisms are characterized 

at Level 1 (16S) that remain to be characterized at Level 2. Using Figure 3-2, it is then possible to 

approximate how many organisms are novel at each taxonomic level. For instance, Figure 4-1 

indicates that there are approximately 5000 clusters that match GTDB at an ANI of 85 or below. 

For ANI values below 85 in Figure 3-2, the average proportion of matches corresponding to 

phylum is 40%. Thus, we can expect approximately 2000 of these clusters to belong to a novel 

phylum. Given that a previously discovered group of 35 new phyla could comprise up to 15% of 
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the bacterial domain [8], this result suggests that if all 2000 clusters were to be sequenced at the 

whole genome level, the tree of life would drastically expand as a result. However, several effects 

suggest that we should not solely rely on this absolute number of clusters. 

Multiple factors could lead to an overestimate. As noted earlier, it is impossible to state 

with complete certainty that novel clusters are not chimeras since these sequences are known to 

accumulate in 16S databases [37] and these sequences could easily appear highly different from 

known sequences. Additionally, the SILVA data is based on a full-length 16S comparison, but 

Figure 3-2 is based on V4 data. Results from Figure 5-1 suggest that the V4 is likely to 

underrepresent sequence novelty relative to the full-length 16S. In other words, a novel organism 

will likely have a higher V4 ANI than full-length 16S ANI. This trend means that if Figure 3-2 

were recomputed with full-length 16S data, the plot would likely shift left, reducing the ANI 

associated with each taxonomic level. This effect would slightly decrease the estimated numbers 

of organisms that are highly novel. Thus, the use of V4-based Figure 3-2 for a full-length 16S 

calculation likely results in an overestimate. 

Other factors could push the estimate in the opposite direction by removing real sequences 

that are novel. The inclusion of a stringent “singleton” filter [59] that threw out all clusters with 

one item likely discarded several novel sequences in addition to chimeric ones. Additionally, all 

chloroplasts (56,572) sequences were removed from the SILVA database to prevent the inclusion 

of any eukaryotes. Lastly, the database was pre-clustered, removing similar organisms that were 

potentially novel. These effects would result in an underestimate, but it is difficult to determine 

their magnitude relative to the factors that could lead to an overestimate. 

Future research could build off this work by incorporating phylogeny. Though highly novel 

clusters have been identified, it remains unknown where on the tree of life these organisms are 
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located. Previous research has identified bacterial phyla that are underrepresented in sequencing 

efforts, such as Tenericutes and Spirochaetes [72]. A continuation of this project could investigate 

whether the highly novel clusters are on a branch adjacent to these underrepresented phyla or 

elsewhere in the tree. Researchers could also consider re-running this same experiment without 

de-replicating the SILVA dataset to get a more accurate indication of the upper limit of clusters. 

Earth Microbiome Protocol 

The Impact of the V4 Subunit Relative to the Full 16S 

In Figure 5-1a, we demonstrated that V4 regions extracted via V-Xtractor and mothur tend 

to have higher ANI GTDB matches than the full-length 16S sequences from SILVA. This issue is 

especially pronounced with the primer-based V4 extraction from mothur. Ideally, the ANI 

distribution of the full 16S region would perfectly match the V4 region so organisms would appear 

equally novel regardless of whether the full 16S or solely the V4 was sequenced. However, since 

the EMP database contains high-throughput short reads of the higher-ANI V4, overall, EMP 

samples will appear to contain fewer novel microbes than the full 16S would suggest. 

Figure 5-1b displays that the ANI distribution for V4 regions is much more compact than 

the full 16S. Prior research demonstrates that Illumina reads of 75-100 base pairs are sufficient to 

represent between-sample diversity [73]. However, a tighter ANI distribution would make it more 

difficult to discriminate between similar microbes, potentially leading to erroneous assessments of 

which organisms are novel. This issue is further demonstrated in Figure 5-2 by the moderate 

correlations between the nearest ANI match of SILVA and mothur (R2=0.58) and SILVA and V-

Xtractor (R2=0.53). These correlations suggest that the pipeline has a limited ability to gauge the 

novelty level of an individual organism based on its V4 sequence relative to the full-length 16S. 
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The Impact of Varying Read Lengths on ANI Matches 

We demonstrated in Figure 5-3 that short V4 regions extracted by V-Xtractor and longer 

V4 regions extracted by mothur are correlated with an R2 of 0.77. This moderate correlation 

suggests that the varying read length of EMP samples has an impact on the novelty reported by 

the pipeline. As shown in Figure 5-1a, V4 reads from mothur (~253 base pairs) tended to have the 

highest median ANI and accordingly, the lowest novelty. The V4 reads extracted by V-Xtractor 

(~85 base pairs) did not match quite as highly. Results from V-Xtractor also had more outliers that 

matched to GTDB extremely poorly, which could represent V4 targeting errors in the Hidden 

Markov Model that do not appear with the primer-based approach. Overall, while reads of varying 

lengths will produce similar results, EMP samples with longer reads are expected to appear slightly 

less novel. This trend could partially be attributable to the inclusion of the constant region flanking 

the V4 in longer reads. 

A Basis for Evaluating Samples from Different Environments 

Figure 5-5 and Figure 5-6 demonstrate that the graph of ANI for individual samples can 

vary based on both the microbial population present and a researcher’s choice of sequencing depth.  

Both samples were processed on an Illumina HiSeq machine, which should theoretically 

produce the same amount of data in each case. However, if many more samples are pooled on a 

single HiSeq run, the number of reads corresponding to each sample decreases. This is likely what 

occurred with the fish sample in Figure 5-6. The 10,000 and 100,000 depth lines in 5-6a are 

extremely similar since even at an increased depth, the pipeline cannot identify microbes that were 

not picked up in the original sample of 34,000 reads.  

Given that starting samples can vary drastically in sequencing depth, in some 

circumstances it makes sense to evaluate samples at lower depths. It has previously been shown 
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that 2000 single-end reads are required to recover the same relationships between samples as the 

full dataset [73], so EMP samples can contain anywhere from few thousand to hundreds of 

thousands of reads. In large part, the probability-based assessment should normalize this variance 

by setting a fixed limit on the depth—how many organisms can be identified by the sequencer. 

However, if the pipeline depth on the figure greatly exceeds the sequencing depth of the original 

sample, the number of ASVs and clusters will be underestimated. To ensure that low-read samples 

are not unfairly disadvantaged during cross-sample comparison, researchers using the pipeline 

should carefully consider the choice of sequencing depth or consider subsampling all 

environments. Researchers should choose the highest depth that they can afford to sequence to get 

the most accurate representation of what the sequencer will detect, but if lines of different depths 

appear to stack, this likely suggests that the starting sample was not sequenced deeply enough and 

a lower depth should be used for comparison. 

Comparing Different Environments 

We demonstrated in Figure 5-8 that the “optimal” sampling environment varies based on 

both the desired taxonomic level and sequencing depth. At some low ANI, Alaska peat soil 

samples appear to dominate. At higher ANI values, samples associated with the urban Manhattan 

study tend to perform better. Thus, the recommended place to look for microbes depends on the 

taxonomic novelty of what researchers are hoping to find. 

The figure also demonstrates that the ranking of samples can vary based on the desired 

sequencing depth. If a researcher has a higher throughput machine, they will likely want to 

compare environments at a high sequencing depth to get an accurate representation of how many 

organisms they can expect to find. Among the samples we compared, typical sample read counts 

were usually above 100,000. To ensure headroom of a couple of orders of magnitude from the 
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sequencing depth and avoid disadvantaging lower-read samples, these environments can be 

compared using the depth of 1000. Therefore, among the analyzed EMP samples, to discover 

highly novel organisms and fill the gaps in the tree of life, samples from Alaska peat soils or 

Manhattan green roofs are likely good places to start. 

In Figure 5-9, we noted that soil samples tended to contain the most novel clusters, 

followed by marine samples, and finally animal-associated microbes. In some ways, this result 

was unsurprising. Soil and aquatic samples are known to boast the most microbial biodiversity 

[33] but make up a minority of full-length 16S sequences in databases [32]. Thus, while there was 

no way to predict that soil from the Alaskan tundra or Manhattan green roofs would contain the 

most novel microbes, they were likely to contain a diverse community. A future study could 

investigate to what extent V4 novelty and microbial diversity correlate. We collected this 

information, but time constraints limited an in-depth analysis. 

However, there are a few suggestions that our results may not be perfectly representative 

of these environments. To start, solid soil samples can have extreme short-distance heterogeneity 

[74] and these changes in texture can have significant impacts on which bacteria are present [75]. 

Though these samples appear to contain high numbers of novel clusters, there is no guarantee that 

a future sample of the same environments will recover the same organisms. Furthermore, the 

Manhattan study performs better than other samples to an unusual degree, even relative to other 

soil samples. Compared to other samples, no significant differences in read length were observed, 

and the probability-based pipeline should minimize differences due to read count. This behavior 

may indicate that there is an underlying structural factor from sample preparation at play. Such 

variations are inherent in relying on data from other researchers and helped to motivate our in-lab 
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sample preparation using standardized reagents and techniques across a wide variety of 

environments.  

Future work in this area may seek to identify factors that explain the Manhattan study’s 

unusual performance to ensure that they do not lead to the mischaracterization of certain 

environments. Researchers could further improve this analysis by cropping all EMP reads to a 

uniform length or discarding certain datasets to ensure that read length variability does not affect 

environment selection. It would also be worthwhile to include additional EMP datasets to conduct 

an even more comprehensive overview.  

As an extension of this project, it would be valuable to determine the relative species 

abundance of organisms at varying levels of novelty. For instance, it would be useful to know if 

microbes that tend to match GTDB at lower ANI also tend to be rarer in environmental samples. 

If so, this would further promote the need for tools such as the pipeline that enrich for these 

organisms. 

Additionally, Figure 5-8c demonstrates that, especially at higher sequencing depths, the 

relationship between organisms at each ANI appears to be roughly linear following a log 

transformation. A future study could evaluate whether it is possible to predict the number of 

organisms in a sample at low ANI based on the number at high ANI. For instance, based on the 

number of novel organisms at the genus and species level in a sample, this could allow a researcher 

to predict whether it may contain novel phyla that were missed in the initial sequencing run. 

Overall, these results demonstrate the usefulness of the pipeline and provide another signal 

that environmental samples are a drastically under-sequenced resource.  
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Collected Samples 

Comparing Standardized Samples from Environments 

 Comparing the EMP results in Figure 5-8 and collected sample results in Figure 6-1 

suggests that sample processing may play a role in the number of novel clusters identified between 

samples. In Figure 5-8, a few samples are much more likely to dominate while in Figure 6-1 the 

results of different environments tend to be more similar. These differences in deviation could be 

due to differences in the samples themselves and sample selection. However, there may also be a 

component that stems from sample processing. In Figure 6-1, samples from various environments 

were processed simultaneously in the laboratory using the same workflow, eliminating much of 

the variability between EMP studies. This difference may account for the smaller variation in 

performance between environments. 

 When grouping environments in Figure 6-2, soil continues to perform very well at high 

depths, similarly to the EMP. As noted earlier, this is partially to be expected due to the high 

diversity associated with soil and water samples [33]. In the absence of the Manhattan sample, 

while soil continues to perform well, the difference is less extreme than prior results from Figure 

5-9. Surprisingly, however, host-associated microbes—moss and horseshoe crab—outperformed 

marine samples from the Charles River and a sewage facility. Looking at Figure 6-1 indicates that 

the Charles River sample performed extremely poorly. There are multiple potential explanations 

for this trend, so it is difficult to assess whether the low number of novel clusters resulted from 

bias—such as during sample preparation—or an actual lack of novel clusters in the environmental 

sample.  

 We demonstrate in Figure 6-3 that salt marsh samples tend to perform well relative to other 

samples at all sequencing depths. These results strengthen the justification for our decision to select 
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a salt marsh sample for mini-metagenomics and characterization of an organism. They also 

emphasize that for future in-lab characterization efforts of novel microbes, salt marshes may be a 

useful site to consider. 

Mini-Metagenomic Experiment 

 In Figure 6-4, we demonstrate how V4-based enrichment can be applied to existing mini-

metagenomic methods to move organisms from Level 1 to Level 2. Using single-cell techniques, 

we were able to fluidically isolate several bacteria in individual wells, enabling the recovery of 

rare genomes in relatively pure form. The figure demonstrates that isolating an organism in a well 

can drastically increase the fraction of reads corresponding to the organism, from less than 1% to 

over 55%. V4-enrichment built on this premise, allowing us to determine that the bacteria in 

question was a Gracilibacteria that was likely to be novel at the phylum or class levels. Then, the 

organism could be selected for Level 2 characterization and other members of the Cira Lab could 

successfully reconstruct its genome. 

 This workflow exemplifies how the pipeline can be used for enrichment, and in our case, 

we discovered a rare, novel Gracilibacteria in the process. Other researchers could consider 

applying the pipeline to other samples to continue discovering novel organisms and resolving gaps 

in the tree of life. 
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Conclusion 

In conclusion, we have developed a bioinformatics-based pipeline for identifying and 

quantifying novel organisms based on their 16S sequences. This approach was validated using 

GTDB data, which indicated that there was a strong link between 16S V4 ANI and whole genome 

taxonomy for ANI above 70. Leveraging this predictive ability, the pipeline can be used both to 

compare environmental samples and enrich wet-lab samples for novel bacteria. By applying the 

pipeline to 16S SILVA data, we were able to estimate the number of organisms at a range of 

taxonomic levels that are known at the 16S level of characterization but have not been sequenced 

at the whole genome level. We were also able to demonstrate that the V4 subunit underestimates 

organism novelty relative to the full 16S and this issue becomes more pronounced with longer V4 

reads. By applying the pipeline to EMP datasets, we determined that soil samples have the highest 

likelihood of containing novel microbes, but individual sample selection should be based on the 

target level of taxonomic novelty and laboratory sequencing depth. Applying the pipeline to 

standardized samples from multiple environments also indicated that soil is likely to contain the 

highest proportion of novel microbes, with salt marsh samples performing particularly well. Lastly, 

a combination of mini-metagenomics and the pipeline was able to enrich one of these samples for 

organisms that were both rare and novel. The resulting assembled genome from a novel 

Gracilibacteria at the class level demonstrates the potential of this pipeline for identifying novel 

microbes and helping to resolve remaining gaps in the tree of life. 
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Chapter 9: Appendix 

Pipeline Code 

All pipeline code will be included in a forthcoming publication. 

SILVA Accession Numbers of Removed Entries 

Accession numbers of SILVA entries with high homology to removed eukaryotic sequences are 

below. Accession numbers of the 56,572 removed chloroplast sequences are available upon 

request. 

 
GDAH01000892.378.1918 FMPP01000014.85987.89090 CBTL0109237701.52.1488 

KY764949.1.3982 JN935880.1.2291 KF738139.15057.16541 

KY764921.1.3967 CMON01000010.50534.53692 GU905026.1.2297 

KY764956.1.4000 ABCE01000043.54659.57378 JN935863.1.2157 

KY764927.1.3979 JN935877.1.2206 EU478645.1.2163 

KY764929.1.3970 ABDO02000010.33827.36483 KC353354.63785.65327 

KY764931.1.3979 JN935881.1.2254 CCYC010538822.33353.35126 

KY764930.1.3983 LT616956.1.2280 DQ984518.233103.235063 

KY764922.1.3954 HG794416.1.1692 KP109804.1.2624 

CP007479.257626.260370 GU905031.1.2316 AOTI010491221.2387.4311 

JN935884.1.2303 AJ810554.1.2891 KX123363.1.2876 

KY764919.1.3704 FIRE01000004.97119.99950 KR071121.97436.99296 

JF731007.1.3023 JX015613.1.1495 MG996776.1.2263 

CRPA01000007.15140.18272 CP010106.282981.285881 JN644756.1.2250 

KX123359.1.3001 KU725488.45630.48552 DQ009461.1.2059 

GU905029.1.2255 DQ009458.1.2068 GARE01001088.846.2317 

EU714234.1.2252 CP002857.115758.118576 KU176938.115999.117675 

EU859976.1.2259 FJ609188.1.2194 LN564836.1.1355 

KP109803.1.2922 LT616955.1.2257 JN644755.1.2305 

KY764920.1.3756 KU725478.45631.48554 EU937961.1.1492 

CP001962.592399.595224 KX123350.1.3104 FPLP01002874.21.1502 

CAQA01000070.1409.4877 GU905021.1.2288 FPLS01056723.9.1292 

LS483396.118448.121363 FJ655918.1.2261 FPLS01021527.5.1367 

KU725489.44345.47260 KU725492.38816.41706 JN935864.1.2290 

CP001047.191404.193931 JN935878.1.2281  

CRGT01000004.76475.79474 FAOM01158642.67832.69764  

 

  



75 

EMP Sample Information 

Alaska_Peat_Soils (Friedman Alaska peat soils - ID 1692; Soil) 

Antarctic_Cleanup (Jurelivicius Antarctic cleanup - ID 776; Soil) 

Bats (Comparison of the gut microbiome of phyllostomid bats, new world leaf nosed bats, that 

encompass a wide range of diets - ID 1494; Animal) 

Bees (Microbiome of honey bees from Puerto Rico - ID 1064; Animal) 

Bergen_Ocean_Acidification (Bergen Ocean Acidification Mesocosms - ID 1222; Water) 

Canada_Waterloo (Canadian MetaMicroBiome Initiative samples from - ID 632; Soil) 

Desert (Environmental metagenomic interrogation of Thar desert microbial communities - ID 829; 

Soil) 

Fish_Slime (Microbiota of freshwater fish slime and gut from Catostomids in Colorado water 

system - ID 940; Animal) 

Great_Lakes (Great Lake Microbiome – SID 1041; Water) 

Kilauea_Soils (Kilauea geothermal soils and biofilms – ID 895; Soil) 

Kohala (Hawaii Kohala Volcanic Soils – ID 1579; Soil) 

Marine_Mammal_Microbiomes (Marine mammal skin microbiomes - ID 1665; Animal) 

Marine_Sediment (Biogeographical distribution and diversity of microbes in methane hydrate-

bearing deep marine sediments on the Pacific Ocean Margin - ID 810; Soil) 

Ocean_Acidification (Ocean acidification shows negligible impacts on high-latitude bacterial 

community structure in coastal pelagic mesocosms - ID 1235; Water) 

Polluted_Polar_Sediment (Polluted Polar Coastal Sediments - ID 1198; Soil) 

Rocky_Shores (The role of macrobiota in structuring microbial communities along rocky shores - 

ID 662; Soil) 

Urban_Microbes (Urban stress is associated with variation in microbial species composition, but 

not richness, in Manhattan - ID 1674; Soil) 

Whole_Grain_Feces (Ercolini whole grain feces - ID 1481; Animal) 

Yellowstone (Yellowstone gradients - ID 925; Water) 
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EMP Environment Gallery 

The following pages contain a gallery of figures corresponding to each of the 19 studied 

EMP environments. All figures are a variant of Figure 5-7. Samples from the specified 

environment are plotted in blue, while all other samples are plotted in grey. Additional data 

regarding individual samples is available upon request. 

 



77 



78 



79 



80 



81 



82 



83 



84 



85 



86 



87 



88 



89 



90 



91 



92 



93 



94 



95 

 

  



96 

In Lab Materials and Methods 

Data Sourcing 

Data was collected from the following locations: 

11A (Elkhorn Slough; Soil) 

Marsh 1-6 (Belle Isle Marsh Reservation; Soil) 

Brick (Brick from The Rowland Institute; Urban) 

Car_Hood (Car Hood Paint; Urban) 

Car_Exhaust (Car Exhaust; Urban) 

Charles1 (Sediment from The Charles River; Soil) 

Charles2 (Water from The Charles River; Water) 

Crab1 (Exterior Shell of a Horseshoe Crab; Crab) 

Crab2 (Underside of A Horseshoe Crab; Crab) 

Deer_Island (Liquid sludge from Deer Island Sewage Facility; Water) 

Garden 1-4 (Indoor Garden Soils of The Rowland Institute; Soil) 

Grout (Grout from the Rowland Institute; Urban) 

Soil1-2 (Soil from Outside the Rowland Institute; Soil) 

Window (Exterior Window of The Rowland Institute; Urban) 

Hawaii S1-6 (Coastal Soils from Hawaii; Soil) 

 

Hawaii Soils were collected on February 12, 2019, while all other samples were collected 

on July 3, 2018. Soil and water samples were collected in 15ml VWR centrifuge tubes. Surfaces 

were sampled with a sterile cotton swab soaked in MilliQ water. Swabs were deposited into 

centrifuge tubes after sample collection. Immediately after sample collection, samples were stored 

at 4C at the Rowland Institute to prevent DNA degradation. The same storage protocol was applied 

to Hawaii soil samples after transport to the Rowland Institute. 
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16S Library Preparation and Sequencing of All Sites 

After swab samples were suspended in 1 mL water, DNA was extracted from all samples 

using the Qiagen DNeasy Powersoil Pro Kit (47014). PCR amplification of the V4 used DreamTaq 

Green PCR Master Mix (K1081) and the corresponding protocol. Due to the number of samples, 

the protocol used a custom multiplexing scheme with barcoded primers as suggested by [73]. 

Internal primers were manufactured by IDT and followed Earth Microbiome Project 

recommendations for 16S V4 targeting with the inclusion of a barcode for demultiplexing [28] 

(FWD: 5'  Primer ACACTCTTTCCCTACACGACGCTCTTCCGATCT Barcode NNNNN V4F 

GTGCCAGCMGCCGCGGTAA; REV: 5'  Primer 

GACTGGAGTTCAGACGTGTGCTCTTCCGATCT Barcode NNNNN V4R 

GGACTACHVGGGTWTCTAAT). PCR products were cleaned using AMPure XP magnetic beads 

(A63880) at a 1x concentration. PCR was repeated using barcoded external primers to adapt the 

sequence to the flow cell (FWD: 5’ P5 AATGATACGGCGACCACCGAGATCTACAC Barcode 

NNNNNNNN Primer ACACTCTTTCCCTACACGACGCT; REV: 5’ P7 

CAAGCAGAAGACGGCATACGAGAT Barcode NNNNNNNN Primer 

GTGACTGGAGTTCAGACGTGTGCTCTTC). Then, PCR products were cleaned a second time 

with AMPure XP magnetic beads at a 1x concentration. Samples were sequenced on an Illumina 

MiSeq (2x300bp) at the Molecular Biology Core Facilities at Dana Farber. 

Mini-Metagenomic Preparation of Marsh 5 

The Marsh 5 sample was selected for mini-metagenomic preparation since soil and aquatic 

samples are known to contain the most microbial biodiversity [33]. The protocol was adapted from 

[47]. The sample was serially diluted to concentrations ranging from 10-2-10-7 and aliquoted into 

wells for each concentration (n=16). Wells were processed using the Repli-g Single Cell Kit 
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(150343) at .25x scale to amplify the full genomes of any single cells present via Multiple 

Displacement Amplification (MDA). A portion of the MDA product was removed and run through 

the 16S Library Preparation protocol. 

Whole Genome Library Preparation  

A portion of MDA product was removed and run through the standard Nextera XT (FC-

131-1024) protocol. Samples were sequenced on an Illumina MiSeq (2x300bp) at the Molecular 

Biology Core Facilities at Dana Farber. 

Data Analysis 

Paired-end reads were combined using SeqPrep [76]. Lingering PhiX reads from 

sequencing were removed using smalt [77] and demultiplexed using BioPython. Data was 

imported into Qiime2 [78] and denoised using DADA2 (options— denoise-single –p-trim-left 0 –

p-trunc-len 0). Sequences were classified using the Greengenes classifier [25] (options— feature-

classifier classify-sklearn). 
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DCR Permit 

 


