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Abstract

The interest in chatbots and conversational agents is as old as artificial intelligence (AI) itself.171,176
Recently, multiple members of the HCI community includingWeld and Bansal (2018)177 have sug-
gested that conversational explanation systems is the best path forward for explainable human-agent
interaction. This recommendation is often presented without its supporting arguments so we em-
barked on this thesis to shed some light on the call behind conversational explainable AI (XAI) sys-
tems. First, we survey the research on the need for explanations from AI systems and on the models’
ability to provide them. Second, we provide a set of obstacles in the way of interpreting and making
meaningof these explanations and explain these obstacles bydrawing from the results of several studies
in human-computer interaction, machine learning, cognitive science, and education theory. Finally,
we take these obstacles into account to argue for conversational explanation systems and propose a
Wizard-of-Oz (WoZ) experiment to test some of our hypotheses.
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0
Introduction

As opaqueAI systems are increasingly being employed in critical contexts, the demand for under-

standing their inner workings is increasing from various stakeholders and is fueling more and more

research on explainable AI (XAI) systems.11,139 In the absence of a clear taxonomy, the terms “in-

terpretability” and “explainability” are often used synonymously in the existing literature.17,79,91,103

However, while these two notions are related, they actually mean different things when talking about

AI systems. Explainability is about the extent towhich explainabilitymethods capture the internal in-
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ner workings of a model. As defined by Chakraborty et al. (2017), the explainability of a model refers

to “the type and completeness of the output given when a model is queried for reasoning behind its

decision.”25 On the other hand, interpretability focuses on themeanings explanations lead to and de-

scribes the extent to which the explanations of these internal inner-workings are comprehensible to a

user agent.

Given these differences, the assessment of explainability and interpretability relies on different

interdependent metrics,25 and one might think of interpretability as a bigger umbrella than explain-

ability. Fürnkranz et al. (2019) distinguish between three aspects of interpretability: syntactic in-

terpretability, epistemic interpretability, and pragmatic interpretability.44 Syntactic interpretability

encompasses what Bibal and Frenay (2016) refer to as mental fit and is concerned with the user’s

ability to comprehend the knowledge encoded in themodel and the provided explanations.16,44 Epis-

temic interpretability encompasses notions such as trustworthiness and credibility and corresponds

to an assessment of the extent to which a model and its explanations are in line with existing domain

knowledge and correlated with the user’s prior knowledge.44 Pragmatic interpretability ecompasses

notions such as interestingness, usability, and acceptability and captures the extent to which a model

and its explanations can serve their intended purpose and satisfy the end-user’s needs.44 Note that

these aspects are not independent; syntactic interpretability can be a prerequisite to the other two

notions,16,44 and epistemic interpretability can be a prerequisite to pragmatic interpretability.44

In this thesis, we focus on the notion of interpretability and the meanings explanations lead to.

We provide some background on explainability and its motivations but choose to focus on how these

explanations areunderstoodbyhumanbeings. Workingoffof theobstacles in thewayof interpretabil-

ity, we join the members of the HCI community who have called for the development of conversa-

tional explanation systems and provide a number of arguments for what conversational XAI systems

may be able to do right. We conclude this workwith a proposal for aWizard-of-Oz user study thatwill

test some of these hypotheses. This proposal is the fruit of an on-going collaboration with Elizabeth
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Huunder the supervision of ElenaGlassman. We also present preliminary results frompreviouswork

with Nari Johnson and Elizabeth Hu that motivates and supports this proposal.

Our Contributions

In Chapter 1, we cover both the motivations for providing explainability and the technical con-

siderations for extracting explanations from models. In Section 1.1, we provide a short exposition of

the history of the field of artificial intelligence followingRussell and Norvig’s own exposition153 and

focus on the turning points that led to the current obfuscation inmainstreammodels. In Section 1.2,

we survey the latest research and real-world applications to establish the need for explainability and

expose the reach of these algorithms and their faults. We also summarize the argument ofDoshi-Velez

et al. (2019) for society’s need for explanations in decision-making contexts.35 In Section 1.3, we pro-

vide an exposition of the technical considerations for extracting explanations from both transparent

models and black-box models.

InChapter 2, we turn to the obstacles in theway ofmakingmeaning out of these explanations. In

Section 2.1, we provide an exposition ofDoshi-Velez andKim’s taxonomy for the different approaches

to evaluating a model’s comprehensibility and situate the focus of this thesis within this taxonomy.33

In Section 2.2, we argue thatmonolithic interpretability is amyth because a variety of factors influence

it including the context and the audience. In Section 2.3, we draw on research from cognitive science

and education theory to argue that cognitive biases play an important role in amodel’s interpretability.

In Section 2.4, we discuss the side effects of explanation tools on amodel’s interpretability. In Section

2.5, we will argue for a new understanding of a human-computer interaction with an explainable AI

(XAI) system and suggest viewing it as a bidirectional communication.

In Chapter 3, we argue for conversational explanation systems and propose an experiment to as-

sess participants’ satisfaction with such systems, elicit their implicit expectations, and investigate its
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ability to mitigate cognitive errors. In Section 3.1, we present the design recommendation of Weld

and Bansal (2018) that inspired our work and its motivations.177 In Section 3.2, we defend their call

for conversational explainable AI (XAI) systems by laying out some hypotheses for how these systems

can hold up against the obstacles outlined in Chapter 2. In Section 3.3, we describe a proposal for a

Wizard-of-Oz study to test the effectiveness of conversational explanation systems and present some

preliminary results supporting this effectiveness. The study proposal is based on our on-going collab-

oration with ElizabethHu and the preliminary results are from our previous work with ElizabethHu

and Nari Johnson. Both research projects were supervised by Elena Glassman.
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“In many ways, the modern theory of computation is the

long-awaited science of the relations between parts and

wholes; that is, of theways inwhich local properties of things

and processes interact to create global structures and behav-

iors.”

MarvinMinsky

1
TheWhy and the How of Explainability

In this chapter, we will focus on the notion of explainability, its motivations, and its technical

considerations. In Section 1.1, we provide a short overview of the history of artificial intelligence (AI)

and focus on the turning points that led to the obfuscation of AI models. In Section 1.2, we show

the reach of artificial intelligence in our lives, provide evidence for their faultiness, and summarize the

instances in which explanations may be expected from AI systems as outlined by Doshi-Velez et al.

(2019).35 In Section 1.3, we turn to the technical considerations behind extracting explanations from
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transparent models and black-box models and give some background on the state-of-the-art explain-

ability methods.

1.1 A ShortHistory of Artificial Intelligence

A plethora of ideas from a variety of fields inspired the early research into thinking machines.

Aristotle’s informal systemof syllogisms for proper reasoning,99GeorgeBoole’s propositional logic,18

Charles Babbage’s Analytical Engine,19 Ada Lovelace’s ideas for Babbage’s machine,99 and Norbert

Wiener’s cybernetics151 are but a few of the influential contributions that laid the groundwork for

modern artificial intelligence.153 Although the early work of McCulloch and Pitts from 1943 on a

model of artificial neurons was the first description of what is now known as neural networks,99 it

is Alan Turing who is considered the father of artificial intelligence for his avant-garde vision. As

early as 1947, Turing held lectures on thinking machines at the London Mathematical Society and

his work culminated in the 1950 landmark article “Computing Machinery and Intelligence” where

he introduced the Turing Test, machine learning, reinforcement learning, andmany other influential

ideas.153,171

In 1956, the term “Artificial Intelligence” was coined by James McCarthy at the Dartmouth

conference, the “official birthdate of the new science” and the field of Artificial Intelligence (AI) re-

search.30,112,153 The workshop’s attendees included Allen Newell, Herbert Simon, Marvin Minsky,

and Arthur Samuel.153 Along with their students, these scientists ended up dominating the field for

the 20 subsequent years.153 The early enthusiasm generated by this workshop led to a period full of

successes with a promising performance of early rule-based AI systems on simple examples.153 These

early approaches, now called weak methods, attempted to build general-purpose search mechanisms

that could find complete solutions from elementary reasoning steps.153 However, it rapidly became

clear that simple syntactic manipulations, brute-force techniques, and basic structures like percep-
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trons were doomed for failure with larger and more difficult problems given the daunting combina-

torial explosion and the limited computational power.4,153

By going back to the drawing board, the next generation of Artificial Intelligence (AI) systems fo-

cused on more powerful, domain-specific knowledge and created the methodology of expert systems

formore narrow areas of expertise.153 These expert systems are able to solve complex problems by rea-

soning through bodies of knowledge in the form of facts and rules.75 By their very nature, these sys-

tems are inherently interpretable and don’t present any explainability barriers.11 The first knowledge-

based systems were created in the 1970s and included the Dendral program for inferring molecular

structure from the information provided by a mass spectrometer,21 the MYCIN program for diag-

nosing blood infections,153 and the SHRDLU system for understanding natural language.181 The

approach’s many successes led to an increase in the demand for workable knowledge representation

schemes and the deployment of the first commercial expert system at the Digital Equipment Corpo-

ration in 1982.113,153 This frenzy is considered the first “hype” of AI.11,153

From 1986 onwards, the second “hype” of AI came with the return of the neural networks of

McCulloch and Pitts and the back-propagation learning algorithm of Bryson and Ho made possible

by the increase in computational power.152,153During these days, the field of artificial intelligence also

abandoned its isolationism from the rest of computer science.153 As researchers adopted the scientific

method to empirically confirm hypotheses,28 they started to better understand the problems’ com-

plexities and paved the way for today’s research agendas.153 However, with the increasing availability

of large data sources, they started paying more attention to the data than to the algorithmic solutions

themselves as soon as they realized that mediocre algorithms with large training data can outperform

the best known algorithms with smaller datasets.9,60,63,153 This realization shifted the focus of many

solutions to more obscure learning methods instead of hand-coded knowledge engineering.60
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1.2 WhyDoWeNeed Explainability?

In 1957, Herbert Simon, a pioneer of artificial intelligence, predicted that, in a “visible future,”

the variety of problems machines can handle will be “coextensive with the range to which the human

mind has been applied.”160While Simon’s “visible future” took a bit longer than he expected, 50 years

later, this future is materializing with the growing ubiquitousness of AI. Today, artificial intelligence

is taking over driving,169 speech recognition, planning and scheduling,83 game championships,53 lo-

gistics planning,32 and many other areas of daily life. All over the world, algorithms are distributing

our vaccines,61managing our pandemics,56,120,121 waging our wars,1 tracking our employees,43,64,104

enforcing our laws,6,90,123,148 supporting our clinical decisions,47 and even feeding our gambling ten-

dencies.74 Many of these AImodels perform really well based on their performance but focusing on a

single metric (e.g., classification accuracy) is “an incomplete description of most real-world tasks.”34

1.2.1 The Faults in ourModels

By relying on artificial intelligence (AI) to fulfill many of these functions, we’ve given obscure

learning methods more and more control over our lives and we’re only just starting to see beyond the

tip of the iceberg. Some of society’s most critical AI applications have turned out to be prone to con-

cerning failures and mistakes, going against some of our most important values and principles. The

2016 study ofAngwin et al. on the criminal risk assessment toolCOMPAS sounded awake-up call for

theAI communitywhen they found that its predictionswereunreliable and racially biased.7The2018

study of Gebru and Buolamwini demonstrated the frightening race and gender bias in commercially

available facial recognition software.22 A 2021 study by Juneja and Itra show problematic patterns of

vaccine-misinformation amplification on our e-commerce platforms.82 A full survey of these failures

is beyond the scope of this thesis but the dangers of unchecked AI applications are undeniable.

Many of these problems are inherent to our algorithms. Deep neural networks (DNNs) have

8



been easily fooled into misclassifying inputs with no resemblance to the true category.127 One-pixel-

attacks and other techniques are able to change a network’s classification of any image to any tar-

get class by making imperceptible alterations to a small number of pixels.119,133,166 State-of-the-art

character-level and word-level DNN-based text classifiers and natural language networks can also be

manipulated.80,100 To this day, researchers are still discovering new ways in which our favorite algo-

rithms can fail to meet our expectations,23,52,67,107 and it’s become clear that the faults in our models

are hard to unearth because of their obfuscated inner-workings.

1.2.2 When ShouldWe Expect an Explanation?

To be clear, it’s unrealistic to expect an explanation from every AI system. In fact, even before the

advent of automated decision-making systems, human decision-makers have not had to provide an

explanation for every single decision they made. Explanations can reduce the time and effort available

to spend on other tasks, be used in a socially irresponsible way to game the system in the presence of a

mismatch between the goals of the parties involved (e.g., credit scoring), or decrease observers’ trust in

some decisions.35,116 However, there are instances in which the benefits of an explanation outweigh

its costs and where a decision-maker is morally, socially, or legally obligated to provide it.

Doshi-Velez et al. (2019) outline three factors that society does take into consideration when re-

quiring explanations of the decision-making.35Thefirst factor is the impact of the decisiononpersons

other than the decision-maker.35 The second factor is the possibility of acting on the explanation and

correcting for an error in past or future decision-making.35 The third factor is a belief that an error

has occurred in the decision-making process informed by knowledge of inadequate inputs, inexplica-

ble outcomes, or nonalignment of the decision-maker’s interests with society’s.35 While these factors

may seem exhaustive, it is important to note that, depending on the situation, they may be present in

varying degrees andmay not account for the decision-maker’s own interests (e.g., increase trust in the

decision-making process).35
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When providing legal accountability, the legal system can require a party to “provide an expla-

nation for a decision when the opposing party has provided some degree of proof that the decision

caused a legal-cognizable and redressable injury.”35 This requirement can cover administrative agen-

cies,87 private decision-makers in certain industries,114 or even individual litigants on a case by case

basis.163 The study ofDoshi-Velez et al. (2019) shows that the requirement to explain under the law is

present in several countries with small variations in the explanations’ role, who is obligated to provide

them, and the amount of evidence needed to bring about the requirement.35

When it comes to AI systems, the model’s deployment environment and the formalization of the

problem it’s trying to solve may require some degree of explainability.34 Low-risk or extensively stud-

ied and evaluated environments (e.g., spamfiltering, optical character recognition)maynot necessitate

explanations frommodels. However, the need may arise when the problem’s formalization is incom-

plete and a correct prediction is but a partial solution to the original problem.34 In many instances,

the loss function of the machine learning model doesn’t cover additional constraints such as privacy,

fairness, reliability (e.g., robustness to the avalanche or butterfly effect), or users’ trust. Hence, expla-

nations may be used to account for these constraints and meet the requirements of the deployment

environment.

Given the variety of factors and the different legal contexts, some AI systems may be, and should

be, required to provide explanations that are similar to those currently expected of human decision-

makers and consistent with existing and upcoming standards specific to automated decision-making

systems.168Designers of theseAI systems (e.g., when engineering features and adjusting trainingdatasets),

internal users in an organization (e.g., when making a choice about the degree of trust they should

place in an AI system), and customers (e.g., when understanding how they were affected by the de-

cision of an AI system) can also find value in explaining the model’s predictions, decisions, and ac-

tions.145

Beyond the context of decision-making, thedemand for explainability is alsodrivenbyhumanity’s
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search for scientific understanding.34Relying on large datasets and obscure learningmethods to solve

problems doesn’t help us extract the additional knowledge captured by the model (e.g., causality).

Explanations are the “show, don’t tell” of AI systems and can help bridge the gap between themodels’

knowledge and ours by walking us through their learning and decision-making processes.

1.3 Intelligibility inMachine Learning

Having established the need for explainability in AI systems, we now turn to the technical con-

siderations for extracting explanations. Our ability to generate explanations for the behavior of AI

systems is constrained by the type of algorithms used: transparent models versus black-box models.

This differentiation is mainly based on what has come to be called the model’s complexity in the ma-

chine learning literature. This complexity is commonly and roughly evaluated in terms of themodel’s

size.3,58,150 Note that the exact estimation of amodel’s complexitymay be difficult and the evaluation

itself can be very subjective with respect to the end-user but we will discuss these issues in the next

chapter when we cover the notion of interpretability.

Our ability to explainmodels is also constrained by the types of data we’re dealing with. Forms of

data such as tabular data, images, and texts are easily understandable while other forms of data such as

sequence data, spatio-temporal data, and complex network data are hardly so.58 Even for forms of data

that are easily understandable (e.g., texts and images), their processing for the purposes of predictive

models tends to require their transformation into vectors that are less understandable for humans so

we may use equivalences, approximations or heuristics to allow this data to be used both by the AI

system and for the model’s explanations.58

1.3.1 TransparentModels

Asmall set of existingmachine learning algorithms are considered inherently transparent. This set
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includes decision trees, decision rules, and linearmodels.24,42,73,97,150,175Thesemodels are transparent

because their internal components (e.g., weights, paths, or rules) are visible to an auditor and can

be inspected to trace back the decision-making process. This set also includes K-Nearest Neighbors,

general additive models, and Bayesian models,11 but they are beyond the scope of this thesis.

Decision Trees

A decision tree model is a graph consisting of internal nodes representing tests on the features

(e.g., boolean comparisons) and leaf nodes representing an outcome (i.e., class label).58 The paths

from the root to the leaves represent the classification rules and are linearizable into a set of decision

rules with the if-then form (i.e., if x and y then z).40,142,144 The separate analysis of each path from

the leaf node to the root provides insights on composable “local knowledge.”58 Decision trees are also

widely adopted for their graphical representation because the hierarchical position of the features in

a tree provides immediate information about the most important attributes of a rule.58 However, to

remain interpretable, decision trees need to stay short because the number of terminal nodes increases

exponentially with their depth. Moreover, decision trees are step-like prediction functions that im-

plicitly categorise numeric features and are bad at describing linear relationships between features and

outputs.118 The depth of the tree is often adopted as a measure of the tree model’s complexity.150

Decision Rules

Models based on decision rules are generalizations of those based on decision trees and map an

observation to an outcomeusing association ruleswhose consequence is the outcome. Themost com-

mon decision rules are if-then rules formed by conjunctions,68 m-of-n rules where the consequence

depends on the verification ofm out of the n conditions,122 and list of rules where the consequence

depends on the first rule that’s verified in a set of ordered rules.182 In contrast to decision trees, de-
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cision rules have a textual representation and some of them (e.g., ordered rule lists) can be harder to

interpret than classical rules.58,178 However, an attribute’s relative importance can still be indicated

through positional information and the study of single rules to analyze “local knowledge” remains

possible.58 Similar to decision trees, decision rules require their features to be categorical and are bad

at describing linear relationships between features and outputs.118

LinearModels

Linear models are a class of models in which the output can be expressed as a linear combination

of a series of features where no feature appears as amultiplier, divisor or exponent to any other feature.

Linear regression and its different extensions are the most common linear models. A linear regression

model predicts the output as a weighted sum of the features. The interpretation of a weight in the lin-

ear regression depends on whether it is associated with a numerical feature or a categorical feature. In

the case of a numerical feature, increasing the feature leads to a proportional change in the estimated

output by the associated weight. In the case of a categorical feature, changing the one category to an-

other category changes the estimated output by the feature’s weight with respect to the new category.

Various statistics (e.g., t-statistic) and visualizations (e.g., effect plot) are available to measure the im-

portance of a specific feature and other information relevant for comprehensibility.118 The number

of non-zero weights is often adopted as the measure of a linear model’s complexity.150

1.3.2 Black BoxModels

Deep learning algorithms like convolutional neural networks are considered black box models

because their higher prediction accuracy comes at the expense of their transparency. Instead of re-

lying on the developer’s selection of features and data, these algorithms can process large amounts

of information to learn by themselves which features are important. The internal components of
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these algorithms (e.g., image pixel information, complex connections across several layers of neural

networks) result from unexpected associations and are often uninterpretable to human users. To ad-

dress this trade-off between accuracy and explainability, various explainabality methods, commonly

referred to as post-hoc techniques, have been devised to turn black-boxmodels into glass-boxmodels.

These techniques can be classified using two dimensions, whether they are model-specific or model

agnostic and whether the explanations they provide are global in scope to the model or local in scope

to a prediction.145

Model agnosticism is based on the idea that peaking into a model isn’t necessary for the provi-

sion of explanations. The separation of explainability from the model allows the use of a variety of

machine learning approaches to fulfill a single task. Moreover, this approach allows a single model to

be explained with different types of explanations.149 Model-agnostic approaches can generate expla-

nations using different features than the underlying model.149 Besides, the ability to explain a variety

of models using the same techniques and representations is practical in real-world settings because it

lowers the cost of switching from one model to the other when the system designer is comparing dif-

ferent approaches.149 On the other hand, the dependence of model-specific techniques on the model

to be interpreted may allow them to use this knowledge to generate more precise explanations.

The intuition behind changing the scope of the explanation is that approximating a black-box

model by a transparent model in the neighborhood of the prediction we want to explain is easier than

trying to approximate amodel globally.57 In fact, while global explanations can also be used to explain

individual predictions, they can be less accurate than local explanations. However, for complex mod-

els, a user may find it hard to develop a global understanding of the model using local explainability

methods because different local explanations from the same model can be inconsistent.

Model-Specific Local Explanations

Explainability techniques providing model-specific local explanations focus on explaining the
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model’s decision for a specific instance. In the example of decision trees, a transparentmodel, amodel-

specific local explanation would be equivalent to finding the tree path that led to the outcome for

the specific instance. For black-box deep image classification convolutional networks, one approach

consists in computing the gradient of the class score with respect to the input image using back-

propagation techniques and generating image-specific class saliency visualisations.161 These saliency

maps are topographical representations of an image’s influential regions.

Model-Specific Global Explanations

Explainability techniques providing model-specific global explanations incorporate constraints

into the structure of the model. These constraints can be semantic meaningfulness constraints such

as limits on the abstractions extracted from the data or interpretability constraints such as limits on

the inputs’ number of features.145 For example, in the context of tree-based opaquemachine learning

models such as random forests and gradient boosted trees, TreeExplainer computes optimal local ex-

planations for a specificmodel, extends local explanations todirectly capture feature interactions using

game theory, and provides insights on the model’s global structure with some local faithfulness.106

Model-Agnostic Local Explanations

Explainability techniques providing model-agnostic local explanations generate explanations for

a specific instance or for its vicinity.150,164 For example, the Local Interpretable Model-Agnostic Ex-

planations (LIME) technique perturbs the input around its neighborhood by changing comprehen-

sible components (e.g., words or image regions), weights the model’s predictions on these perturbed

data points by their proximity to the original instance, and learns a transparent linear model on these

intput-output associations.150Another famous technique is the Shapley additive explanations (SHAP)

technique that turns feature values of a data instance into players in a coalition and uses the optimal
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ShapleyValues fromcoalitional game theory to assign each feature an importance value for a particular

prediction.105

Model-Agnostic Global Explanations

Explainability techniques providingmodel-agnostic global explanations use input-output associ-

ations from a black-box model to develop a surrogate white-box model that fully approximates it.145

For example, the Model Agnostic Globally Interpretable Explanations (MAGIX) approach repeat-

edly uses LIME for each instance in the training set and uses a genetic algorithm to evolve this set of

locally important conditions at the global level.141
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“[We] make the world smart so that we can be dumb in

peace”

Andy Clark

2
The Obstacles in theWay of Interpretability

In the first chapter, we’ve established the need for explainable AI (XAI) systems and provided

a short introduction to transparent models and explainability methods. In this second chapter, we

will focus on interpretability and the meanings explanations lead to. Specifically, we will look at the

factors that are relevant for a human-computer interaction with an explainable AI system. In Section

2.1, wewill situate our focuswithin theDoshi-Velez andKim’s taxonomyof evaluation approaches for

a model’s comprehensibility.33 In Section 2.2, we will argue that interpretability is not a monolithic
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concept and can’t be captured by a single measure because it is heavily dependent on the context and

the targeted audience. In Section 2.3, we will discuss several results from cognitive science that have

interesting implications for interpretability and may explain our findings in Section 2.2. In Section

2.4, wewill look at how interpretability tools can confuse a user’smentalmodel of theAI systemunder

investigation. Finally, in Section 2.5, we will argue that interpretability cannot be unidirectional and

needs to be viewed as an interactive process between the user and the interpretability tools standing

for the AI system.

2.1 Evaluation of Comprehensibility

To evaluate amodel’s comprehensibility,Doshi-Velez andKim (2017) provide a taxonomy for the

different approaches: application-grounded, human-grounded, and functionally-grounded.33 The

first, the application-grounded evaluation, is “an evaluation approach for interpretability” where the

quality of an explanation is evaluated “in the context of its end-task, such aswhether it results in better

identification of errors, new facts, or less discrimination.”33The second, the human-grounded evalua-

tion, is an evaluation approach that’s based on “more general notions of the quality of an explanation”

such as comprehensibility under severe time constraints and relies on “abstract tasks” that maintain

“the essence of the target application” and “in which other factors such as the overall task complexity

can be controlled.”33 The third and last one, the functionally-grounded evaluation, abstracts away

the results of a model’s human-grounded evaluation and focuses on improving “explanation quality”

with respect to, for example, prediction performance.33

According to these definitions, functionally-grounded evaluations restrict themselves to evaluat-

ing our notion of explainability while both application-grounded evaluations and human-grounded

evaluations are focused on evaluating our notion of interpretability (See Introduction for these no-

tions’ definitions). Given our own focus on interpretability, this chapter restricts itself to human-
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grounded evaluations and application-grounded evaluations. We cover some aspects of the human-

computer interaction with an explainable AI (XAI) system that should be taken into account and in-

form these evaluations. We unpack abstractions such as “the context of the end-task” and “the essence

of the target application” to make visible how these aspects play an important role in any assessment

of interpretability.

2.2 Breaking Down the “Monolithic” Interpretability

In this section, we argue that interpretability is not a monolithic concept capturable by a single

measure. Unlike the notion of explainability, interpretability depends heavily on the context, the as-

signed task, and the targeted audience andmeaningful explanations can onlymeet our interpretability

objectives if these dependencies are taken into account.

2.2.1 TheMyth of The SingleMeasure

Amodel’s size may be a good proxy for a model’s interpretability,3,95 but it is not the single mea-

sure. Our tendency to think that shorter explanations or simpler models perform best is an interpre-

tation of Occam’s razor principle. Attributed to the philosopher and theologianWilliam ofOckham,

this principle is often used as an inductive bias in the machine learning algorithms’ selection of hy-

potheses to address the problem of running into an unlimited number of hypotheses.143 However,

Occam’s razorwas shown tobe lacking in several contexts. For example, in the context of scientific the-

ories, judgment of simplicity should not be made “solely on the linguistic form of the theory”137 and

should also account for semantic and pragmatic simplicity.77,136,137 Similarly, a model’s size is a syn-

tactical aspect and accounts for none of themodel’s semantic42 or pragmatic aspects.88 Several studies

agree with this assessment.5,42,96 In a study by Lavrac (1999) on the importance of interpretability in

certain medical applications informing medical decisions, medical experts were found to prefer larger
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trees over shorter ones at the expense of the models’ accuracy because the latter failed to meet their ex-

pectations about the required “sensitivity and specificity of the induced descriptions.”96 In an investi-

gation byNarayanan et al. (2018), explanation complexity was shown to hurt a user’s efficiency and

satisfaction but not necessarily their accuracy.124 The work of Forough et al. (2018) shows that the

number of input features doesn’t necessarily help people build better mental models.138

2.2.2 Interpretability Is Context-Dependent

The interpretability of different models and explanations can vary depending on the context and

the generalizability of any evaluation of interpretability is constrained by its context. In fact, if evalua-

tions of interpretability don’t take the context into consideration, their results can seem contradictory

when taken at face value. For example, the studies of Subramanian et al. (1992) andHuysmans et al.

(2011) had different contexts, and these contexts led to opposite conclusions about whether decision

trees or decision tables are more interpretable.73,165 In the study of Subramanian et al. (1992) where

67 non-expert users were asked to interpret decision trees and decision tables tomake investment deci-

sions, the study concluded that trees aremore interpretable than decision tables for the understanding

of conditional logic.165 In the study of Huysmans et al. (2011) where 51 non-expert users answered

questions about a credit-scoring classificationmodel in different representations, the experiment’s re-

sults show that decision tables perform better than decision trees and decision rules when testing for

the end users’ accuracy, response time, and answer confidence.73 The users’ post-test voting is also

consistent with these results and reveals their clear preference for decision tables (62.7%) over decision

trees and decision rules in terms of ease of use.73 Instead of questioning these studies for having dif-

ferent conclusions, it makes more sense to consider their results within their context. In fact, while

explanations of the same type can be compared without any further context as part of a functionally-

grounded evaluation,154 explanations of different types (e.g., decision trees vs. decision tables, saliency

maps vs. text captions) need to be evaluated within a context to account for, among other things, the
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nature of the task assigned and the audience.25

2.2.3 User-Centered Explanations

Aswe’ve previously defined it, interpretability is the extent towhich the explanations of amodel’s

inner workings are comprehensible to a user agent. This comprehensibility can be tied to subjective

factors. For example, to meet users’ interpretability needs, models and their explanations need to earn

the audience’s acceptance, trust, and reliance. Unsurprisingly, the audience’s acceptance of an expla-

nation is affected by subjective preferences that can dictate the style of the explanations as much as the

meaningfulness of their content.

Depending on the audience, explanations may have to look the part to meet the audience’s in-

terpretability needs.2 For example, in an application in the Earth Sciences, Schwabacher and Langley

(2001) found that the form of the learned models should match the form that is customarily used

in the relevant literature to facilitate their acceptance in the corresponding scientific community.95

In their work, they had to rely on a process model, stated in terms of differential equations and not

just graphs, because their choice of algorithms for “aiding [Earth] scientists’ understanding of data”

was constrained by the field’s “common formalism for representing knowledge.”95 These scientists

couldn’t “communicate their results” to their colleagues otherwise.95 If Schwabacher and Langley

were dealing with a different audience, differential equations would probably not be considered the

most interpretable form for the explanations. In a different example from the medical domain, pre-

vious studies found that medical experts can be mentally opposed to over-simplistic explanations of

complex relations.36,96 In fact, they may choose complex models over simpler models that they deem

“unnatural,” evenwhen this complexity comes at the expense of accuracy.96 In otherwords, the expec-

tations of the users canplay a role in their acceptance of the explanations regardless of the explanations’

ground truth. This conception ofwhat a “natural” explanation looks like is similar to the agreed-upon

“formalism for representing knowledge” that Schwabacher and Langley encountered within the com-
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munity of Earth scientists. For medical experts, Bayesian classifiers with conditional probabilities for

how much each feature contributes to a diagnosis and prognosis were found to be “natural” and sat-

isfactory because they think that summing information gains in this manner is closer to how they’d

diagnose patients and makes the most out of all the available information.96

Even within restricted scientific communities, there are individual differences in demands for in-

terpretability that require tailored explanations. To better understand why data scientists need in-

terpretability, Hohman et al. (2019) conducted a user study with 12 professional data scientists and

found that reasons to interpret models included generating a hypothesis about the data and model,

gaining insights into large datasets, and improving models with a better understanding of the under-

lying characteristics.66 For each of these use cases, they found that explanations need to be tailored for

the specific need.66 Interestingly, the data scientists also recognized different scenarios in which they

could use explanations to communicate what features were most predictive to stakeholders looking

to deploy a model and acknowledged that “different audiences require different explanations” that

balance succinctness and completeness.66

2.3 CognitiveBiasesAreTheThirdParty InHuman-Computer Interaction

In this section, we attempt to explain some of the results in Section 2.2 by drawing on existing

research from cognitive science and education theory. Despite the benefits of cognitive biases and

heuristics, we show that cognitive errors play an important role in any human-computer interaction

and need to be taken into consideration. To avoid these pitfalls, researchers of other decision-making

contexts have taken an interest in metacognitive strategies and we suggest that their insights should

inform our recommendations for explainable AI (XAI) systems.
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2.3.1 Human Rationality Borders Irrationality

InModels ofMan (1957),Herbet A. Simon proposed the concept of bounded rationality to chal-

lenge rational choice theory and account for people’s “limits in formulating and solving complex prob-

lems and in processing (receiving, storing, retrieving, transmitting) information.”159 To account for

the unrealisticness of perfect rational decisions, bounded rationality assumes that human beings are

rationally bounded, motivationally limited, and cognitively biased. Bounded rationality rethinks the

norms based on optimization, utilities, and probabilities and focuses on studying the “actual behav-

ior of minds and institutions.”50 Introduced in the 1970s, the term “cognitive bias” describes “peo-

ple’s systematic but purportedly flawed patterns of responses to judgment and decision problems.”179

Common to all human beings, these systematic biases and heuristics are a consequence of our “cog-

nitive limitations, motivational factors, and/or adaptations to natural environments.”179 Given our

restricted working memory and our brainpower’s limitations, boundedly rational agents make deci-

sions based on heuristics instead of optimization despite their inherent faultiness and reductionism.

For example, even though chess and tic-tac-toe are both finite games with perfect information, fully

rational behavior in chess is a lot harder than in tic-tac-toe because of the binding constraints of our

mental capacities.14

2.3.2 The Silver Lining of Cognitive Biases

We often think of these biases as a shortcoming of human judgment but they actually play an

important role in our day-to-day decision-making.51 Some of our cognitive biases effectively support

concept acquisition.167 For example, our mutually exclusive bias, our tendency to infer “if not p then

not q” after being convinced that “if p then q,” was found to promote vocabulary growth in chil-

dren.109,115,167 Other advantages of cognitive biases include speeding up scrutiny to improve target

detection in uncertain situations, supporting swift choice-making for practical short-term plans, al-
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lowing the creationof fairly stable but imperfect categories to navigate the otherwise intractableworld,

and motivating the completion of problem-solving.170 The impressive effectiveness of these biases

have motivated research in introducing these cognitive biases into our models as inductive biases to

reproduce this human-level concept learning.62,157

2.3.3 Pitting Interpretability Against Our Cognitive Biases

Given their importance in building our judgments, cognitive biases also affect human interpreta-

tions of AI systems and cognitive science should informhow explanations are presented. For example,

decades of research by Tversky and Kahneman have established that judging the “human-perceived

plausibility of hypotheses” should take into account that “similarity is more accessible than probabil-

ity, that changes are more accessible than absolute values, that averages are more accessible than sums,

and that the accessibility of a rule of logic or statistics canbe temporarily increasedby a reminder.”84 In

this subsection, we attempt to explain some of the users’ “irrational” behaviors through our cognitive

biases.

Users’ expectations towards the system’s explanationsmaybe influencedbyour recognitionheuris-

tic. Our recognition heuristic is our tendency to infer that a recognized object rather than an unrec-

ognized object has the higher value with respect to some criterion we cannot directly evaluate.48,49,50

This heuristic may explain why Schwabacher and Langley needed their model to follow their audi-

ence’s “common formalisms” of knowledge representation to ensure that it is accepted by the com-

munity of Earth scientists.95 In general, accounting for the recognition heuristic may help secure the

audience’s acceptance.

Some users’ preference for deeper trees and longer rules at the expense of accuracy may be ex-

plained by our representativeness heuristic. This heuristic is our tendency to make judgements based

on similarity because we find a thing more likely when it is representative and similar to our existing

preconceptions.172 A common manifestation of this heuristic is the conjunction fallacy describing
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how “a conjunction can be [found to be] more representative than one of its constituents.”44,172 A

famous example of this fallacy is the Linda Problem: participants who are given the information that

Linda is an outspoken woman, who majored in philosophy and was deeply concerned with issues of

discrimination and social justice, overwhelmingly choose the statement “Linda is a bank teller and is

active in the feminist movement” over the statement “Linda is a bank teller” when asked to pick the

more probable one.173 Given that decision rules and decisions trees can take the form of conjunc-

tions, the users’ interpretation of these models may be prone to the conjunction fallacy which may

explain some users’ preference for deeper trees and longer rules at the expense of accuracy. Hence,

our representativeness heuristic can affect our interpretation of explanations.

Our confirmation bias may lead us to overtrust an AI system and its explanations. Our confir-

mation bias is our tendency to “[seek or interpret] evidence in ways that are partial to existing beliefs,

expectations, or a hypothesis in hands.”128 In a study byLakkaraju et al. (2020), theymanage to elicit

these expectations and take advantage of this bias to fool participants into trusting an untrustworthy

black-box model.94 These experiments show that users’ confirmation bias can lead them to overtrust

explanations that include desired features they think should be relevant and/or omit prohibited fea-

tures they think shouldn’t be relevant.94 To meet our interpretability goals, it is important to take

this confirmation bias into account in order to avoid inadvertently fooling our users into trusting our

explanations

When “the available amount [of information...] makes [it] confusing and dysfunctional,”134 in-

formation overload can affect our cognition and come in the way of our interpretability goals. The

phenomenon of information overload has been observed to reduce the subjective choice accuracy in

different settings.59,76,108 Several studies in cognitive science describe cognition as a property of the

whole system within which we function.27,55,69,70,71,72,130,183 As a result, our cognitive threshold is

influenced by changes in environmental properties (e.g., an increase in the amount of information

presented).98 Several studies found that choice accuracy decreases with the number of options or the
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number of attributes134 and increases with primed attribute information.108,155 In the context of

interpretability, Poursabzi-Sangdeh et al. (2021) found that information overload can lead increased

transparency to hamper people’s ability to detect amodel’s sizablemistakes or unusual inputs.138 The

effect of the amount of information on a user’s behavior is often described by an inverse U-shaped

curve.126,134 However, we also believe that information design, the way information is presented, can

affect our cognitive threshold. As we’ve seen earlier, presenting some information in the form of a

decision table can be easier to process than presenting the same information in the form of a decision

tree.73 In other words, evaluations of the effect of information on users need to take into account

three dimensions: users’ accuracy, the information design, and the amount of information. Regard-

less, given that the amount of information presented affects our cognition, it should be taken into

account in the assessment of interpretability.

Our literature review shows that insights from cognitive science that should inform the design

decisions behind explainable AI (XAI) systems are underexplored. In this section, we show how some

of these results can explain the variations observed in the users’ interpretability. We use some of these

connections to motivate our design recommendation in Chapter 3. However, beyond the objectives

of this thesis, we hope that this discussion can motivate further conversations about the implications

of our bounded rationality for our interpretability needs.

2.3.4 AWayOut of our Cognitive Pitfalls

Given the implications of bounded rationality for our decision-making, we investigated some

metacognitive strategies for the activation of our more “deliberative mode of thinking” and the miti-

gation of the cognitive errors that may arise during our human-computer interactions.85. Introduced

by Flavell in the 1970s, metacognition is best understood as “thinking about thinking,”38,117 and en-

compasses an awareness of the requirements of the learning process, a recognition of the limitations of

memory, an ability to appreciate perspective, and a capacity for self-critque.31 Common strategies for
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promoting metacognition include self-questioning,180 thinking aloud,146 andmaking graphic repre-

sentations of one’s thoughts and knowledge.162 The development ofmetacognitive skills in the realm

of explainable AI systems has not been explored before and the closest work we could find is in the

contexts of flight crew decision-making and clinical decision-making.

In the context of flight crewdecision-making,Orasanu-Engel andMosier (2019)devise approaches

to train crews in making effective decisions by looking at the factors that contributed to errors in

former aircraft accidents.131 In this context, they found that cognitive errors can cause faulty situa-

tion assessments (e.g., a misinterpretation of the available cues), a susceptibility to automation bias

(e.g., relying on pattern recognition instead of more vigilant information search), faulty selections of

course actions, or inadequate risk assessments (e.g., underestimation of the likelihood of possible con-

sequences).131 They consider metacognition to be the “most trainable decision-supporting skill” and

argue for approaches that make explicit the metacognitive processes of “questioning [the crew’s] in-

terpretation of the situation and simulating the consequences of their decision[s].”131 They found

that the explicit provocation of the decision-maker’s questioning and simulating can help in the de-

velopment of metacognition.131

In the context of clinical decision-making,Croskerry (2003)presents three cognitive forcing strate-

gies to avoid the cognitive errors that “underlie most diagnostic errors that are made [...] in the emer-

gency department.”31 These strategies are “formal cognitive debiasing approach[es] to deal with [...]

pitfalls in clinical reasoning” and “prevent clinicians from pursuing a pattern recognition path that

typically will lead to error.”31 Croskerry (2003) differentiates between his proposed forcing strategies

that require the clinician’s conscious application of metacognition and Lewis and Norman’s “baked-

in” forcing functions that are built into the system’s design to minimize or avoid errors.31,98 While

Lewis and Norman force these strategies on the users, Croskerry’s cognitive forcing strategies require

the decision-maker’s conscious choice to partake in metacognition. Unfortunately, experimental ev-

idence suggests that the application and retention of such conscious forcing strategies is poor in the
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clinical decision-making setting.156 Hence, when viable, the “baked-in” strategies of Lewis and Nor-

manmay bemore promising thanCroskerry’s opt-in strategies for the development ofmetacognition.

Insights from these decision-making contexts can informour designs of explainable AI (XAI) sys-

tems because these decision-making contexts have a lot in common with the interpretability context.

In the flight crew decision-making context, flight crews are making decisions based on cues provided

by the equipment at their disposal. Similarly, users of interpretability tools are making sense of the

explainable cues provided by the AI system. Furthermore, the limited effectiveness of opt-in cognitive

forcing strategies in clinical decision-making seems to indicate that “baked-in” forcing strategies are

generally more effective. Finally, both studies conclude that the explicitation of the questioniong of

a decision helps the development of metacognitive skills. In the next chapter, we use these insights to

support the argument for conversational explainable AI (XAI) systems.

2.4 The Veil of Interpretability Tools

In this section, we argue that the availability of the interpretability tools themselves can have un-

expected side effects on users’ trust that go against their interpretability goals. In fact, when relying

on interpretability tools to understand an AI system, the users’ mental model of the system is veiled

by their mental model of the interpretability tools. The user’s mental model of a tool is their repre-

sentation of the relationships between its various parts and is informed by their interaction with it.129

As users rely on these tools to audit or understand an AI system, they often fail to disassociate their

mental model of the tools and their mental model of the underlying system. In a study byKaur et al.

(2020) in which data scientists were given access to a training dataset and some interpretability tools

and were asked to assess the reliability of a model, the authors found that many of these participants

took the provided explanations at face value and used their mere existence to convince themselves that

the underlying models were reliable and ready for deployment.86 Given that any attempt to inter-
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pret anAI system happens behind the veil of interpretability tools, a mismatch between the designers’

conceptual model, the representation of the tool that the designers intended for the users to under-

stand,129 and the user’s mental model can lead a user’s trust of the interpretability tool to sway their

trust of the underlying AI system. Interestingly, in Kaur et al.’s study, the participants’ perception

of the tools and the authority they gave to them weren’t even informed by these tools’ capabilities

and were shrouded by their social context.86 For example, the novelty and public availability of the

tools used, InterpretML and the SHAP Python package, led some of the data scientists to trust them

without fully understanding them.86 One of the participants’ comment is very telling: “I guess this

is a publicly available tool... must be doing something right. I think it makes sense.”86 Given that the

user’s failure to build an accurate mental model of the interpretability tool can be as detrimental as

their failure to build an accurate mental model of the underlying AI system, a good interpretability

tool needs to be able to rein in these expectations.

2.5 Interpretability CanOnly Be Interactive

In this section, we will argue that any explaining of an AI system is a sort of communication be-

tween the AI system represented by the interpretability tool on one hand and the end-user on the

other. Moreover, to meet their end of this communication, interpretability tools need to be interac-

tive, built with the view that a meaningful human-computer interaction is a bidirectional, dynamic

process. Just as the assumptive error of treating human communication as a static entity rather than

a dynamic process has hampered its investigation for a long time,10 the view of interpretability as a

static and unidirectional transaction will only hamper the evaluation of its effectiveness.

The explaining of an AI system is a communication between the AI system represented by the

interpretability tool on one hand and the end-user on the other. Communication stands for “those

acts in whichmeaning develops within human beings.”10 Barnlund (2008)’s TransactionalModel of
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Communication is based on the idea that meaning isn’t “received” but is instead “invented.”10 The

model states that the sender and the receiver invent this sharedmeaning together and are both respon-

sible for the outcome of the communication.10The goal of interpretability is to help users understand

the underlying AI system and give meaning to its structure, parts, and inner-workings from the expla-

nations provided. Hence, the process of explaining an AI system is a sort of communication. In this

communication, the sender is the interpretability tool standing for the AI system and the receiver is

the end-user. In this communication, the end-user can fully understand anAI system’s behavior once

they have a “workingmodel” of the system that somewhat accurately represents “what causes [this be-

havior], what results from it, how to influence, control, initiate, or prevent it, how it relates to other

states of affairs or how it resembles them, how to predict its onset and course, what its internal or un-

derlying “structure” is.”81 A “working model” doesn’t need to perfectly represent what it’s meant to

model to be useful; it only needs to accurately model the behavior the end-user seeks to understand.

An explanation is “a blueprint for the construction of [an AI system’s] working model”81 and

the end-user’s final interpretation is the refined mental or working model. To explain the formation

of these working models, Kenneth Craik (1943) suggests that reasoning consists in the manipulation

of working models through three distinct processes: (1) A translation of an interaction into an inter-

nal representation in symbols (e.g., words, numbers); (2) The derivation of other symbols from the

internalized symbols through inference; and (3) A recognition of the correspondence between these

symbols and the observed external process.12,29 As we add information about the world, we are going

through these 3 steps repeatedly to refine our “working model” of it to our satisfaction. Weld and

Bansal (2018) refer to this process of refining our “workingmodel” as drilling down and following up

and many members of the HCI community argue that it should be part of any explainable AI (XAI)

system.86,177

For a user to trust their interpretation of an explanation and the explanation itself, interpretability

tools need to give them this ability to drill down. As we saw before, a satisfactory “blueprint” for one
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end-usermay be unsatisfactory for another because of a variety of reasons (See Section 2.2). Moreover,

in the context of inscrutablemodels, explanationmethods tend tomap a transparentmodel to a black-

box model so they rely on approximations and necessarily lose some information that may conceal

important details.177 Drilling down by seeking more targeted information out of the interpretability

tool allows the user to leave this communication with an interpretation and a “working model” to

their satisfaction. An example of this ability to drill down is a suggested solution to the variety of

preferences formodels’ sizes that consists in allowing users of explainable AI (XAI) systems to provide

size constraints on the explanations in order to balance the model’s comprehensibility and the users’

preferences and needs all while avoiding a one-size-fits-all solution.95,174 To adapt to the end user’s

goals and needs in this manner, XAI systems need to be interactive, bidirectional, and dynamic.
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“The word ‘communication’ stands for those acts in which

meaning develops within human beings [...] It arises out

of the need to reduce uncertainty, to act effectively, to de-

fend or strengthen the ego. Its aim is to increase the number

and consistency of meanings within the limits set by atti-

tude and action patterns that have proven successful in the

past, emerging needs and drives, and the demands of the

physical and social setting of the moment.”

Dean C. Barnlund

3
Conversational Explanation Systems

In the first chapter, we’ve established the need for explainable AI (XAI) systems and provided

a summary of the state-of-the-art in providing explanations from transparent and black-box models.

In the second chapter, we’ve looked at the obstacles in the way of making meaning of these explana-

tions. In this third and final chapter, we defend a specific approach to designing explainable AI (XAI)

systems and present our design for a study to assess the effectiveness of this recommendation.

In the second chapter, we’ve established that the human-computer interaction between a user and
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the interpretability tool standing in for the AI system needs to be thought of as a communication.

This communication needs to support the refining of the user’s “working model” of the AI system

by giving them the ability to drill-down and follow-up. The right interpretability tool also needs to

have the ability to adapt to its users’ needs and goals by providing a variety of explanations within

the constrains of the users’ personal preferences and biases. Ideally, these tools should be designed

with the common cognitive errors in mind to “bake-in” forcing strategies that support metacognitive

processes.

In this chapter, we defend the design of explainable AI (XAI) systems as conversational explana-

tion systems with those obstacles in mind. In Section 3.1, we present the work ofWeld and Bansal

(2018) andflesh out the arguments for their design recommendation.177 In Section 3.2, wewill look at

how this design recommendation can account for the obstacles discussed in the previous chapter and

potentially mitigate some of them. Finally, in Section 3.3, we will present a proposal for a user study

that’s motivated by previous work with Elizabeth Hu and Nari Johnson. The proposal in its current

form is the fruit of an on-going collaboration between Elizabeth Hu and I under the supervision of

Elena Glassman.

3.1 Explaining by Conversing

Weld and Bansal (2018) were the first to recommend the design of explainable AI (XAI) systems

in the form of an interactive, conversational system.177 The vision they sketched out for building

interactive explanation systems allows these systems to adapt to the user’s needs and support different

follow-up anddrill-down actions.177Their design recommendationswere informedby the priorwork

of Lim and Dey (2009) in ubiquitous computing on the types of information demands users have

and their implications in context-aware applications (i.e., applications that ground their behavior on

information about the state of people, places, and objects relevant to the users and their activities).101
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3.1.1 Intelligibility Types

By taking a usability-centric approach, Lim and Dey (2009) elicited a set of intelligibility types

that users of context-aware applications may be interested in asking about and grounded these types

in the users’ underlying reasoning processes.101 This suite of intelligibility types was developed from

a set of common colloquial questions that participants in their user study asked.101 These different

types of explanations can support a variety of goals including filtering for causes, generalizing and

learning a mental model, and predicting and controlling for a system’s behavior.102

To meet one’s interpretability goals in the more general applications of AI models, Lim et al.

(2019) selected and refined 7 intelligibility types: “Inputs” explanations, “What Output” explana-

tions, “Certainty” explanations, “Why” explanations, “Why Not” explanations, “What If” explana-

tions, and “When” explanations.102 “Inputs” explanations inform users about the input values that

the application is reasoning from for the current instance.102 “What Output” explanations inform

users about the current prediction and what possible output label the application can produce.102

“Certainty” explanations inform users about how (un)certain the application is of the output value

produced.102 “Why” explanations inform users why the application derived its output value from the

current input values.102 For example, these explanations may inform the user of the model’s most in-

fluential features. “Why Not” explanations provide information about why an alternative outcome

was not produced.102 For example, these explanations may help the user infer what changes in an

input could lead to the desired output. “What If” explanations allow users to simulate what the appli-

cationwill do given a user-set input values or changes.102 For example, these explanationswould allow

the user to query the model with their own set of input data that’s chosen to meet the user’s needs.

Finally, “When” explanations inform the user about the cases in which a user-set outcomewould hap-

pen.102 For example, these explanations can provide the user with examples of inputs that lead to a

specific, queried outcome.
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3.1.2 Interactive Explanatory Dialog

The proposal ofWeld andBansal (2018) is consistent withLim, Yang, andWang’s suite of intel-

ligibility types for explainability and envisions different follow-up and drill-down actions.177 These

actions include, among others, asking for more detail about a decision, asking for a decision’s ratio-

nale, or perturbing the input example.177 When asking for more detail about a decision, the user may

restrict the model to a subregion of the feature space such that the interactive explanation systemmay

rely on local explanations with higher local accuracy.177 When asking for a decision’s rationale, the

interactive explanation system may use nearest-neighbor methods to inform the user of the labeled

training examples that were most influential in the underlying model’s decision.177 When perturbing

the input example, the user can simulate and test their hypotheses about the model’s inner workings

to decide for themselves how accurate their “working model” for the AI system is.177

By supporting this variety of follow-up and drill-down actions, these interactive explanation sys-

tems are better-equipped to adapt to the users’ needs and backgrounds. In fact, when checking a

model’s behavior, the user study of Lim et al. (2019) already shows that users tend to exploit dif-

ferent strategies and use different intelligibility queries for the same interpretability objectives.102 To

augment this capacity even further,Weld and Bansal (2018) suggest that explanation systems could

build explicit models of users’ knowledge and misconceptions.177 However, if these interpretability

tools are expected to explain any arbitrary black-boxmodel, they do recognize that existing approaches

from intelligent tutoring systems (ITSs) for building such models about the users may need to be ex-

panded on further.177Wenote that this specific avenue of explorationmay benefit from the flexibility

of model agnostic approaches.

3.2 Defending the Call for Conversational XAI Systems

In this section, we provide our own arguments for Weld and Bansal’s proposal by reconsidering
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the obstacles laid out in the previous chapter in the light of a conversational explanation systemwhere

users can ask questions inspired by these intelligibility types to the chatbot of the interpretability tool

about the underlying AI system.

3.2.1 Polylithic Interpretability

An interactive, conversational explanation system is particularlywell-suited for offering themaleabil-

ity required to adapt to the targeted audience and the end user’s goals, needs, and context. In the

previous chapter, we’ve established that interpretability is not a monolithic concept but is dependent

on the context and the targeted audience. To avoid limiting our understanding of the end users’ in-

terpretability needs by the model’s size, an interactive, conversational explanation system can easily

allow for user-provided size constraints on the explanations to avoid a one-size-fits-all solution. These

constraints can be changed dynamically during the interaction to provide the user with more flexibil-

ity. Moreover, given that preferences for explanations vary depending on the context, conversational

explanation systems can naturally let the users drive the interaction to suit their goals and needs rather

than demanding that the system infers them. Recent work byChen et al. (2020) on context-aware ex-

plainable conversational recommendation models that incorporate user feedback show promising re-

sults in improving recommendation accuracy,meeting users’ explainability needs, andworkingwithin

user-set constraints.26

3.2.2 Interpretability with “baked-in”Metacognition

When interacting with a conversational explanation system, users will be forced to converse in

writing with the chatbot of the interpretability tool. This requirement will act as a “baked-in” forc-

ing strategy because extensive research indicates that the process of writing helps the development of

metacognitive skills. Across education theory research, the writing process is often regarded as similar
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to the thinking process and provides a way for people to automatically engage in metacognition and

become active learners.8,46 With regard to the relationship between writing and mathematical prob-

lem solving, the use of writing facilitates people’s visualization ofmathematical thinking inwords and

helps them describe each step of the problem solving process.13,15,41,135,140 Writing helps people re-

flect and think critically about content by creating a personal transaction through which they take

ownership of learning and build meaning.46,111 It also steers them to self-question, infer from prior

knowledge, and use their imaginations in order to produce novel thoughts and insights.125,46 Writing

also helps people develop reasoning skills and provides them with a way to organize and analyze the

material they have read.37,46,78,93All these benefits ofwritingwill help support the users’ interpretabil-

ity goals as they are conversingwith a conversational explanation system andworking on refining their

working models of the underlying AI system.

When interacting with a conversational explanation system, users will be expected to write out

questions about themodel and its decisions that the interpretability toolwill attempt to answer through

a variety of explanations. This process of question formulation is also a metacognitive process in its

own right. For example, to improve students’ reading comprehension, the Question Formulation

Technique (QFT) is a popular forcing strategy that stimulates students’ awareness of their learning dif-

ficulties through question formulation.89 Students use QFT as a self-monitoring technique to sum-

marize a text by formulating questions and improve their reading comprehension as a result.89 This

strategy pushes people into assuming a more active role in the learning process.92,132 By leaving some

of the questions formulated open, this strategy further “[stimulates] student’ curiosity and [invites]

them to search further for the answer.”89 Interacting with a conversational explanation system will

have the same effect as QFT and act as another “baked-in” forcing strategy. Users will find themselves

required to assume the role of active learners, formulate questions about the underlying model, and

follow-up on the information the chatbot provides.

Given the benefits of writing and formulating questions for developing metacognitive skills, we
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hypothesize that an interactive conversational explanation system will act as a metacognitive process

that’s consistent with the interpretability goals of both the user and the designer. In the process of

writing and formulating questions, the user will be forced to process the explanations they receive

from the tool and figure out which insights they’re missing to build a workingmodel of the AI system

that’s accurate enough for their needs. Given that they are put in the position of an active learner, they

will have to make sure to read and comprehend the explanations provided to generate new questions

and investigate their hypotheses about the model’s behavior. Previous research on troubleshooting

computer systems shows that people tend to fixate, or rely on repetitions, rather than generate specific

procedures based upon reasoning about the particular system.147 By developing their metacognitive

skills in this way, we hope to activate their more deliberative modes of thinking.

3.2.3 Unveiling the AI System

To separate the AI system from the interpretability tool, a conversational explanation system can

help the user draw the line between the tool and the underlying AI system. This line can be drawn by

using carefully crafted answers to the user’s questions. For example, by referring to itself as a separate

entity from the explained AI system, the chatbot can lower the risk of confusing or misleading the

user into wrongly attributing errors to, or misplacing trust in, the wrong party. In a conversational

setting, the explanation system can also provide background knowledge to better handle questions

and provide complete answers.45 Moreover, people are well-equipped to assess the limits and mis-

takes of a conversational agent when these chatbots fail to respond as expected or show limitations to

the questions they can answer. In fact, previous studies have shown that users are able to gauge the

chatbots from the quality of their interpretations of requests and advice,39 and adapt by using more

restricted vocabulary.65 In contrast, as evidenced by the study of Karu et al. (2020), other forms of in-

terpretability tools are harder to objectively and naturally assess.86 In fact, Turing considered fooling

human beings through conversationalmachines to be an interesting challenge for this exact reason.171
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Note that future chatbots based on GPT-3 and their impact on users’ expectations towards chatbots

are considered to be beyond the scope of this thesis.

3.2.4 Bidirectional Interpretability

Conversational explanation systems are by definition interactive and bidirectional. Thy are built

with a bidrectional user-model communication inmind and aremotivated by the users’ questions and

needs that the work of Lim et al. (2019) on intelligibility types elicited.101,102 To promote this bidi-

rectionality, it is important to engage the user and make them comfortable with the interaction. For

example, we believe that the tone used by the explanation system can help users build more accurate

levels of trust towards it and the underlying AI system and weaken the impact of the social context as-

sociated with the tools on the user’s assessment. This intuition stems from established research about

error messages that we believe should inform the language used by conversational explainability chat-

bots to promote a question-friendly environment. A good example of this research is the work of

Shneiderman (1980). Shneiderman (1980) shows that, when offensive, the format and tone of error

messages can lead users, especially beginners, to attribute any ambiguity or misunderstanding to their

own incompetence.98,158 To remedy these problems, Lewis andNorman recommend adopting a user

centered design and relying on a more apologetic tone to make the user more comfortable sharing

the responsibility with the system.98 In general, the language used by the conversational explanation

system can play a big role in creating a safe environment that supports the user’s interpretability goals

and turn the interaction with interpretability tools and AI systems into a cooperative endeavor.

3.3 Our Proposal: AWizard-of-Oz Experiment

In this section, we propose a Wizard-of-Oz study whose goal is to test some of these arguments.

First, we define what we mean by a Wizard-of-Oz experiment. Second, we introduce the study we
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designed with ElizabethHu and include information about the task description, the participants, the

procedure, and the results’ analysis. Finally, we present some preliminary results from earlier work

with Nari Johnson and Elizabeth Hu.

3.3.1 Wizard-of-Oz Experiments

Pioneered by Gould et al. in 1983,54 Wizard-of-Oz (WoZ) experiments in the field of human-

computer interaction are commonly used to speed up the prototyping of costly systems or elicit peo-

ple’s requirements and expectations from futuristic systems. These WoZ experiments are research

experiments in which participants are made to interact with a computer system that they believe to

be autonomous but is actually operated or guided by a human being, the Wizard. While WoZ ex-

periments are powerful tools for research, our work takes into consideration the recommendations

ofMaulsby et al. (1993) about the importance of limiting theWizard’s intelligence and freedom and

basing their capabilities on formalmodels in order to ensure consistent interaction, honest simulation,

and appropriate results.110

3.3.2 Randomized Experimental Design

Inspired by the proposal ofWeld and Bansal (2018) for conversational explanation systems, Eliz-

abethHu and I built off of our projectwithNari Johnson and designed thisWizard-of-Oz experiment

as a user study to:

• (G1)Assess participants’ satisfaction with conversational XAI interfaces,

• (G2) Elicit implicit user expectations towards an explainability chatbot, and

• (G3) Investigate whether this design proposal can help develop users’ metacognitive skills.
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Task Description

Our experiment was inspired byWeld and Bansal’s example of an interactive explanatory dialog.

We assignedparticipants the task of predicting the decisionof a simulated image classificationmodel of

clownfish on 6 images. We choose image classification for our user study because of the task’s general

accessibility.20

For each image, participants are given the ground truth label for whether or not a clownfish is

present in the image and are asked to predict whether the AI system will decide that there is a clown-

fish in the image or not (See Appendix A). To inform their predictions, participants are given access

to explanations. Depending on the group they are assigned to (See Procedure), participants are either

able to ask for these explanations themselves in a conversation with the chatbot by following a for-

mat provided by a question bank and inspired by the intelligibility types or they are given access to

the explanatory answers of all the possible questions they could have asked conversationally at once.

Both the AI system and the explanations are simulated. They are pre-scripted and inspired by cur-

rent research in explanation methods. The same images, simulated model, and explanations are used

across all participants and they were all made to be consistent with a distribution shift, a common AI

failure mode resulting from lacking training data. In our case, we assumed that the AI system was

trained with data that over-represented photos of both clownfish and anemone living symbiotically.

This assumed distribution shift was meant to explain why 2 of the 6 images were misclassified by the

simulated AI system as depicting clownfish for including anemones (i.e. false positives).

Participants

The recruited participants are undergraduate and graduate students from Harvard University.

All participants are recruited through public university mailing lists after they are asked to fill out a

demographic survey. The demographic survey is meant to verify their age and English fluency and
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collect some data about their academic background. Participants are offered a $10 compensation for

their time to incentivize their participation. This compensation was made possible by the support of

the Glassman Lab at the Harvard John A. Paulson School of Engineering and Applied Sciences and

the Harvard College Research Program (HCRP).

Procedure

The study is conducted online on Zoom and Slack. Recruited participants are divided randomly

into two groups: the control group and the experimental group. Both groups are asked to agree to

a consent form before they are led to watching a 3-minute primer YouTube video on key concepts

and terms in Artificial Intelligence to provide all participants with the same baseline knowledge for

the study. Once they are done watching the video, the study operator provides them with a brief

description of the study without giving any hints about the simulated aspects of the experiment (See

Appendix A).

In the experimental variation of the protocol, study participants are given a question bank in-

spired by the intelligibility types outlined above. We limit them to a few “Certainty” explanations

(C1, C2), “Why” explanations (W1, W2, W3), and “What If” explanations (WI1, WI2, WI3) to

provide enough variety, minimize the cognitive load, and simulate realistic capabilities. Below is a list

of the questions that users can ask of the model:

• C1: How confident is the model in this prediction?

• C2: What is the accuracy of the model?

• W1: What regions of the image are most influential to the prediction?

• W2: What image features are most influential to the prediction?

• W3: Which training examples were most influential to the prediction?

• WI1: What happens when object [1-9] is removed from this image?
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Figure 3.1: An example of an interactive explanatory dialog between a participant and the chabot.

• WI2: What happens when there is also a {user-specified} present in the photo?

• WI3: What happens if the color of object [1-9] is {user-specified}?

Once they are ready, study participants can freely converse with the simulated conversational ex-

planation system on the Slack platform. We choose the Slack platform for its support of chatbots and

people’s familiarity with it. We implemented a rule-based chatbot that can recognize questions from

the question bank and respond with our pre-scripted answers. The chatbot responds to questions

one-by-one with images and/or text depending on the exact question and in the order they are asked

(See Figure 3.1). If the participant’s query isn’t recognized, the chatbot responds with an apologetic

message: “Sorry, {user’s name}! I can’t answer your question. Could you try a different question from

the question bank?” Participants can ask as many questions as they want before sharing their predic-

tion with the chatbot. The chatbot then responds with the model’s actual decision: “Thank you for

your response! Your guess was {right/wrong}. My actual prediction for this task was: {YES/NO}.”

In the control variation of the protocol, study participants are given all the answers to all the
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questions they could have asked conversationally in a file without conversing with the explanation

interface. They are expected to read these explanations, comprehend them, and make a prediction

about the model’s decision. This file of questions and answers is the script we used to implement

the chatbot and the only difference between the two settings is the conversational interactivity of the

experimental variation. Given that the model and tasks are otherwise the same, this control group

allows us to directly compare the effect of conversational explanation system to a setting that is non-

interactive and isolate the effect of conversational interactivity.

Design and Analysis

After each of the 6 tasks, participants are asked to answer a short questionnaire that is meant

to track the development of their trust-level throughout the study. This questionnaire includes the

following four questions: “What do you think is the overall accuracy of the AI?”, “To what extent

do you believe you can trust the decisions the AI will make”, “How would you rate the expected

performance of the AI relative to you expected performance for clownfish identification?”, “I feel

that I understand how the AI works {much better, better, somewhat better, the same, somewhat

worse, worse, much worse} than before interacting with the model.” These questions are designed

as multiple-choice questions to reduce the cognitive load on the user and take as little time as possible.

At the end of the study, each participant is also asked to fill out a longer questionnaire with more

detailed questions. These questions are meant to collect data on the user’s trust, mental model de-

velopment, and their satisfaction with the conversational explanation system. This questionnaire in-

cludes the following questions:

• Q1: What do you think is the overall accuracy of the AI?

• Q2: Howwould you rate the expected performance of the AI relative to your expected perfor-

mance for clownfish identification?
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• Q3: To what extent do you believe you can trust the decisions the AI will make?

• Q4: I feel that I understand how the AI works {much better, better, somewhat better, the

same, somewhat worse, worse, much worse} than before interacting with the model.

• Q5: Askingwhich question contributedmost to your understanding of theAI? (please specify

just 1 question or intelligibility type)

• Q6: How likely are you to deploy this AI for use in a practical environment for a clownfish-

identifying task? The concept of deployment in data science refers to the application of an AI

model for prediction using new data. Building an AI is generally not the end of the project.

Deployment is the method by which you integrate an AI into an existing production environ-

ment to make practical business decisions based on data.

• Q7: In 1-2 sentences, please describe how you think the AI determines whether a clownfish is

present or not (i.e. what information you used to predict the AI’s decisions).

• Q8: What did you think of your interactions with the AI? Did you like the conversational

format or would you have preferred all the answers to the Question Categories provided at

once, without having to ask for them?

The answer format for each of these questions is as follows: percentage answer (Q1), 7-point

Likert scale (Q2, Q3, Q4, Q6), and free-form response (Q5, Q7, Q8). Many of these questions are

needed to compensate for the fact that we don’t push participants to think aloud in order to avoid

adding an external cognitive forcing strategy.

We also track the participant’s performance on these tasks, including their accuracy and the time

they spend per task. This data allows us to assess the effectiveness of these explanation systems in

supporting the interpretability goals of users.
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3.3.3 Results from Preliminary Experiments

Given that this study is still under review by the Committee on the Use of Human Subjects

(CUHS) that serves as the Institutional Review Board for Harvard University, we haven’t started

running this study yet. However, for educational purposes and as part of a course, we did run the

interactive version of this experiment a few times with Elizabeth Hu and Nari Johnson to improve

our study design and collect some data to motivate the larger experiment. These experiments didn’t

rely on a chatbot but on a study operator that simulated the bot. We recruited 11 participants, 7 of

them had some background in Computer Science or other adjacent fields.

While preliminary, our results were consistent with many of our predictions and hypotheses. In

terms of trust, the results indicated that, on average, participants tended to somewhat distrust the

model, as they should. This distrust may be attributed to identifying the failure mode within the AI

system and corresponds to an accurate level of trust. When asked whether they would deploy the

model for use in a practical environment, participants’ average response was what they were some-

what likely to deploy it. In terms of satisfaction, most participants (8/11) enjoyed the conversational

interaction and found it better suited for the investigation of an AI model than the static format we

described to them. As one of the participants said, “I liked that it was open-ended because it allowed

me to be more deductive about [...] reason[ing] with the AI [...] the fact that the questions were pre-

sented one after another made me feel like I had to ask every question very intentionally, on a path

to discovery, rather than being given a cheat sheet and looking for patterns.” Alluding to information

overload, another participant commented that they “didn’t have to deal with an influx of information

all at once.” In general, even though participants did spendmore time on the tasks that corresponded

to the false positives (See Task 3 and 6 in Figure 3.2), it is hard to assess the effectiveness of this de-

sign for the development of metacognitive skills without a control group so we couldn’t really draw

satisfactory conclusions from these experimental runs. However, these results do seem to indicate
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Figure 3.2: An example of an interactive explanatory dialog between a participant and the chabot.

that participants build an accurate level of trust towards the AI system and are generally satisfied with

conversational XAI interfaces because they do support their interpretability goals.

Despite the general positive feedback, some participants did express some reservations about our

simulated conversational explanation system. Participants questioned the realisticness of the use of

this system in an industry setting where time and efficiency are highly valued. While participants took

3 minutes per task on average, they weren’t sure that an actual machine learning practitioner with

more complicated models and contexts would be willing to to go through the hassle of conversing

before vetting a model for deployment. Similarly, many participants worried that, in the long run,

theymight get bored from the restrictive back-and-forth format. They suggested allowing them to ask

multiple questions at once to reduce wait time. It would be interesting to see how far we can go along

the spectrum between interactive explanation systems and static explanation systems before losing

many of the benefits of interactivity (e.g., forcing strategies). Another interesting finding was that

some users complained of the limitations of natural language and wished they could refer to objects

and regions on the pictures by describing them or even pointing at them.
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4
Conclusion

This thesis follows our personal journey from exploring why we need explainable AI systems to

researching how to best meet users’ interpretability needs. Artificial intelligence has become an in-

separable part of our daily life. As long as we are willing to allow our technology to shape the world

around us, we need to accept the idea that other fields’ perspectives can direct our work. The same

way isolationism from the rest of computer science stumped the growth of artificial intelligence in its

infancy, the isolationism of computer science from other research areas will only stump the growth
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of artificial intelligence in this critical stage of its development. This thesis draws on research from the

fields of human-computer interaction, machine learning, public interest technology, cognitive sci-

ence, and education theory to make the case for a specific research direction in explainable AI (XAI)

systems. Beyond the technical difficulty of explainability, the quest for interpretability is inherently a

human process strewn with cognitive, contextual, and practical considerations. To account for them,

explainable AI (XAI) systems need to take into consideration users’ needs and expectations. With

some of these needs and expectations in mind, we argued that the design recommendation ofWeld

and Bansal (2018) for conversational explanation systems is not only a natural research direction but

also a promising proposal given the obstacles in the way of human-interpretable AI.177

Aswewait on the review of the university’s Institutional ReviewBoard, we can only look forward

to study the results of our proposed experiment and explore several future directions. One direction

consists in expanding on naive conversational explanation systems to better meet the elicited expec-

tations of users (e.g., providing them with the ability to point to objects in the picture and refer to

them in conversation). We also believe that actually implementing our simulated chatbot will bring

up interesting technical problems for software engineers, statisticians, and UX researchers. The chal-

lenge of building on the explanationmethods considered in Section 1.3 of Chapter 1 andmeeting the

intelligibility expectations outlined in Section 3.2 of Chapter 3 is in and of itself an interesting avenue

of research. As we scale our experiment, it would be interesting to investigate how our results and

the the expectations of users vary across a variety of subgroups (e.g., experts vs. non-experts, students

vs. professionals). Given our preliminary results, we expect to find interesting differences across these

subgroups in the way they interact with the model.
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A
User Study Instructions

All the information in this Appendix is from my on-going collaboration with Elizabeth Hu and

inspired by previous work with Nari Johnson and Elizabeth Hu. Both have been supervised by Elena

Glassman.
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Figure A.1: We provide these introductory instructions to the participants in the conversational setting of our user
study.
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Figure A.2: This is the first task assigned to the participants of our study.
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