
Gaussian Processes for Time-Varying Treatment
Effects

Citation
Zhu, Justin. 2021. Gaussian Processes for Time-Varying Treatment Effects. Bachelor's thesis,
Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368587

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368587
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Gaussian%20Processes%20for%20Time-Varying%20Treatment%20Effects&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=1f3423565d80d425d9580a0592b593fa&department
https://dash.harvard.edu/pages/accessibility

Gaussian Processes for Time-Varying
Treatment Effects

a dissertation presented
by

Justin Zhu
to

The Department of Computer Science and The Department of
Mathematics

in partial fulfillment of the requirements
for the degree of
Bachelor of Arts

in the joint subjects of
Computer Science and Mathematics

Harvard University
Cambridge, Massachusetts

May ǾǼǾǽ

©ǾǼǾǽ – Justin Zhu
all rights reserved.

ɬesis advisor: Professor Susan Murphy Justin Zhu

Gaussian Processes for Time-Varying Treatment Effects

Abstract

Gaussian Process (GP) models have gained popularity for their flexibility to handle
correlation among data sampled from the Gaussian Distribution. ɬe correlation
frequently characterizes time-dependent data, such as step count data across different
time-horizons. Unlike Gaussian Processes used in a regression setting, the outcomes y
are not continuous but are discrete, and the posterior distribution of the outcomes
conditioned on our data cannot be solved analytically in closed-form.

ɬis thesis surveys the theory and computation of Gaussian Processes in fitting
time-varying treatment effects, drawing upon binary outcomes for its simplicity in
illustrating the ideas behind fitting Gaussian Processes on non-Gaussian parameters.
Binary outcomes are defined by a Bernoulli distribution, from which the probability
parameter π exists as both a function of input variables as well as a random variable
described by a Gaussian Process.

Gaussian Processes fitted on changing values of π over time provide greater flexibility in
describing the effects of input variables on a target variable across time. ɬis flexibility
has certain desirable qualities in context of causal inference, decision theory, and bandit
learning.

iii

This is dedicated to everybody I had the privilege of meeting in my Ǿǽ years
so far – and the many more who have yet to come.

iv

Acknowledgments

I would like to thank my thesis adviser Professor Susan Murphy for the kindness and
knowledge she’s given me all this time, from when I first entered her lab as a sophomore
in college to the years now beyond. While there is so much to thank her for, I am
perhaps most inspired by her ever-present enthusiasm for investigating difficult problems,
her generosity in teaching others, and her sense of responsibility for how her research is
to make the world a better place. Researching with her lab has been the privilege of my
undergraduate career.

I would also like to thank Dr. Tianchen Qian for the mentorship he’s given me when I
first started in Susan’s lab. Tianchen’s understanding of statistics is some of the deepest
I’ve seen, and I would be remiss to not credit him with providing me the statistical
foundations for this thesis and my research as a whole.

Along the way, I have been blessed by the pedagogy of Professor Joe Blitzstein, whose
two classes on probability have provided some of the most elegant and intuitive
explanations of probability I’ve experienced, and many others – Professors Eddie Kohler
and James Mickens for their teachings on systems programming, Professor David Parkes
for his insightful course on economics and computation, Professor Lucas Janson for his
teachings on statistical inference and learning, and Professor Finale Doshi-Velez for her
support in machine learning research.

It takes a village to raise a child, and just so, it takes a society to raise a student. So many
people have sacrificed so much just so I could continue my studies in a post-covid world.
To all of them, I am forever grateful.

v

Contents

ǽ Introduction 1

Ǿ Gaussian Processes 3

2.1 Stochastic Processes . 3

2.2 Gaussian Process Definition . 4

2.3 Multivariate Distribution . 4

2.4 Properties of Multivariate Normal . 9

2.5 Assumptions . 11

2.6 Inference and Learning . 12

2.7 Design Matrix . 14

2.8 Linear Regression . 15

2.9 Gaussian Process Regression . 16

2.10 Likelihood Function . 17

2.11 Weight-Space View . 18

2.12 Function-Space View . 19

2.13 Bayesian Inference . 20

1

ǿ Binary Outcomes 27

3.1 Classification . 28

3.2 Binary Target . 28

3.3 Binary Treatment Effects . 30

3.4 Causal Inference . 31

3.5 Counterfactual Model . 31

3.6 Directed Acyclic Graphs . 34

3.7 Probability and DAG . 37

3.8 Independence . 39

3.9 D-Separation . 39

3.10 Binary Outcomes . 41

3.11 Gaussian Process on π . 42

3.12 DAG Representation . 45

3.13 Likelihood Function . 46

3.14 Prior Distribution . 47

3.15 Posterior Distribution . 48

3.16 Marginal Likelihood . 48

3.17 Predictive Distribution . 49

3.18 Time-Varying Effects . 50

Ȁ Computation 51

4.1 Analytic Solutions . 51

2

4.2 Computational Complexity . 52

4.3 Matrix Operations . 54

4.4 Kernel Operations . 55

4.5 Approximation Algorithms . 57

4.6 P vs. NP . 58

4.7 Laplace Approximation . 58

4.8 Expectation-Propagation . 61

4.9 Markov chain Monte Carlo . 63

4.10 Testbed . 65

4.11 Software . 66

ȁ Flexibility 67

5.1 Decision ɬeory . 67

5.2 Risk Function . 69

5.3 Flexibility in Decision ɬeory . 71

5.4 Reinforcement Learning . 71

5.5 Bandit Learning . 72

5.6 Towards Greater Flexibility . 73

References 74

3

1

Introduction

Change is the only constant in life.

ɬis observation, made by the Greek philosopher Heraclitus over 2500 years ago, has
never seemed more appropriate in our lives today. ɬe 21st century has been defined by
constant change, not only in the physical world but even more so in a digital one, as the
Internet has permeated every nook and cranny of our everyday lives. Now marks a time
where granular details in all our changing activities can be stored by big-data systems and
processed by efficient algorithms. ɬe rise of fields like machine learning, cloud
computing, and reinforcement learning further perpetuate this understanding that the
changes in our lives can be studied and engineered in radically new ways.

As change happens so frequently in our lives, how is this change reflected in the data that
we collect? We can quantify this change by using mathematical models, which are
formulas that describe relationships between variables that have crystallized into
observed data. While the Gaussian Process model is a popular model for describing
change, there is an abundance of other models that can also describe changes over time.
ɬe difference between models can often be attributed to different assumptions about the
data, which are our beliefs on how the data should behave.

Once we have formulated a model, we would like to find ways of testing this model.
Computational tools allow us to test models by simulating data or splitting data, often
randomly, thereby creating a testbed. Using our testbed that we have generated
computationally, we can then evaluate the performance of our model.

Performance can have many definitions, but in context of a model, it refers to how well

1

the model performs with respect to a loss function, which is a function of the difference
between the estimated values of the testbed data as predicted from our model and the
true values from the testbed data. In general, the lower the values we obtain from our
loss function after plugging in our predicted values from our model, the better the
performance. It is a convention to often use loss function and objective function
interchangably despite the difference in meaning – the loss function can be thought of a
as negative objective function so that optimizing the loss function means minimizing the
loss function and optimizing the objective function means maximizing the objective
function.

Performance also has another definition used more prevalently in computer science, which
is how well computation scales as a function of the data. ɬe less computations needed in
our model for every incremental increase of data, the better the performance. ɬis type
of performance is also known as computational complexity, and is described using a big-O
notation (O(n)) where n is typically a proxy of data quantity.

Computation provides rich insights into ways we can better optimize and refine our
models so that we can formulate more models that have even better performance,
according to both the loss function and computational complexity. ɬrough this constant
iteration between formulating models and evaluating our models computationally, we
can ideally come close to creating a perfect model that describes the change that
constantly enters our lives.

2

2

Gaussian Processes

Gaussian Processes are a class of stochastic processes1, which are models that describe 1ɬe word
stochastic
is originally
derived
from the
Greek
word stok-
hazesthai,
which
means to
aim or to
guess at.
Today, it’s
used more
commonly
as a
synonym
for
random.

outcomes that behave randomly. ɬe opposite of a stochastic process is a deterministic
process, where outcomes do not behave randomly. While deterministic processes are
fixed and can be better studied using the tools of pure mathematics, stochastic processes
are flexible and can be studied using the tools of computation.

An example of a deterministic process is Newton’s law of gravity. Because gravity’s
acceleration is fixed to be 9.8 meters per second squared according to Newton’s law, we
can use this acceleration to calculate the time it takes an object to hit the ground from a
certain height, guaranteeing this time value will never change. In contrast, a stochastic
process could characterize a particle moving in air. We can never guarantee where the
particle be at any given moment in time, but we can model the stochastic behavior of the
particle by describing the probability the particle will be in a given space at any given
moment in time.

Many real-life phenomenon behave stochastically rather than deterministically, which
motivates the study and formalization of stochastic processes.

Ǿ.ǽ Stochastic Processes

A stochastic process is a collection of random variables {Xt, t ∈ I} ɬe set I is the index
set of the processes, indexed by t, which typically represents time. ɬe random variables

3

are defined on a common state space S. When describing a stochastic process, the
random variables2 across state and time are of particular interest. 2A random

variable is
formally
defined as a
function
that maps
objects into
a number
between 0
and 1.

Time

ɬe time t can take on discrete or continuous values. If t is continuous, we write
mathematically t ∈ [0,∞) and if t is discrete, we write mathematically, t ∈ {0, 1, 2, · · · }.
Time is an unbounded variable and therefore approaches infinity.

A Gaussian Process has continuous values of t while a Markov Process has discrete values
of t. ɬe implications of discrete and continuous values will become apparent in later
chapters.

State Spaces

ɬe state space, represented as S, represents the state of values Xt can take on at any
given point in time. A Gaussian Process has continuous state space S = (−∞,∞) while
a Markov Process has countable state space S = {0, 1, 2, · · · , N}.

Ǿ.Ǿ Gaussian Process Definition

A Gaussian process (Xt)t≥0 is a continuous-time stochastic process with the property
that for all n = 1, 2, . . . and 0 ≤ t1 < · · · < tn, the random variables Xt1 , . . . , Xtn have
a multivariate normal distribution. Because Xt1 , . . . , Xtn have a multivariate normal
distribution, any instance of Xt follows a normal3 distribution. 3ɬe

Normal dis-
tribution
and the
Gaussian
distribu-
tion refer
to the same
distribu-
tion:
N (µ, σ2)

Ǿ.ǿ Multivariate Distribution

A multivariate distribution normal distribution is a collection of Gaussian, or Normal,
random variables X = (X1, X2, X3, · · ·Xk)

T 4.

4A
convention
used here is
to let bold
symbols
denote
vectors or
matrices of
random
variables,
while
unbolded
symbols
denote a
single
random
variable

X ∼ N (µ,Σ)

4

where µ = (µ1, · · · , µk) ∈ Rk and Σ =


∑

11 . . .
∑

1k
...∑
k1 · · ·

∑
kk

 ∈ Rk×k.

Mean Vector

A mean vector is a p× 1 vector, where p denotes the number of features in our dataset5. 5p or k is
typically
used to
denote
dimension-
ality of
features
while n is
used to
denote
number of
observa-
tions.

We write the sample mean vector as a column vector.

x =


x̄1
·
·
x̄p



Note that the sample mean vector is different from the population mean vector, which
we write also as a column vector.

µ =


µ1

·
·
µp


ɬe difference between sample mean and population mean is subtle. ɬe sample mean is
a statistic that is calculated, while the population mean is a parameter that is estimated.
ɬe only way we know our population mean is often when we set it ourselves in a testbed
– rarely is that provided to us in real life.

Being able to identify the true parameter as a function of a statistic is called inference in
the field of statistics, or learning in the field of computer science.

Law of Large Numbers

ɬe law of large numbers help relate our sample mean statistic and population mean
parameter. It states that the sample mean x̄ approaches the population mean µ with
probability 1 as the number of observations increase.

Proof:

5

We can use Chebyshev’s inequality which states that for any random variable X and for
all ε > 0,

P (|X − E[X]| ≥ ϵ) ≤ Var(X)

ϵ2

We calculate the expected value of our random variable X̄n, where X̄n = 1
n

∑n
i=1Xi.

E
[
X̄n

]
= E

[
1

n

n∑
i=1

Xi

]

=
1

n

n∑
i=1

E [Xi]

=
1

n

n∑
i=1

µ

=
nµ

n
= µ

We procced to apply similar rules to calculate the variance of our random variable X̄n

Var
(
X̄n

)
= Var

[
1

n

n∑
i=1

Xi

]

=
1

n2
Var

(
n∑

i=1

Xi

)
iid
=

1

n2

n∑
i=1

Var (Xi)

=
1

n2

n∑
i=1

σ2

=
nσ2

n2

=
σ2

n

We are able to make the substitution 1
n2 Var (

∑n
i=1Xi) =

1
n2

∑n
i=1Var (Xi) because

the random variables X1, · · · , Xn are independent6 to one another. 6We say two
variables
are inde-
pendent to
one
another if
P (X and Y) =
P (X)P (Y)

Now substitute values of E
[
X̄n

]
and Var (Xn) into Chebyshev’s Inequality to obtain

P
(∣∣X̄n − µ

∣∣ ≥ ϵ
)
≤ σ2

nϵ2

6

It is clear that as as number of data points increase, n → ∞ so that
limn→∞ P

(∣∣X̄n − µ
∣∣ ≥ ϵ

)
= 0, illustrating that sample mean X̄ converges in

probability to µ.

Consistency

We say that a statistic is consistent if it converges to the parameter in probability as the
number of observations increase. Under the law of large numbers, we have shown that
the sample mean X̄ is a consistent estimator of µ.

Covariance Matrix

In addition to the mean vector, the covariance matrix is the additional parameter
characterizing the Multivariate Normal distribution. We can write out the covariance
matrix to store covariances between random variables Xi and Xj in the (i, j) position,
represented mathematically as Σij for values of i ∈ {1, · · · , k} and j ∈ {1, · · · , k}.

Σ =

Σ11 . . . Σ1k
...

Σk1 · · · Σkk



Covariance Function

For any two variables Xi and Xj , the covariance function between them is the expected
product minus the product of expectations.

Σij = Cov(Xi, Xj)

= E((Xi − E(Xi)(Xj − E(Xj)))

= E(XiXj − E(Xi)Xj −XiE(Xj) + E(Xi)E(Xj)]

= E(XiXj)− E(Xi)E(Xj)− E(Xi)E(Xj) + E(Xi)E(Xj)

= E(XiXj)− E(Xi)E(Xj)

7

When i = j, i.e., the random variables Xi and Xj become two identical random
variables, the covariance becomes variance.

Σii = Cov(Xi, Xi)

= E(XiXi)− E(Xi)E(Xj)

= E(X2
i)− E(Xi)

2

= Var(Xi)

From this observation relating covariance and variance, we can conclude that the
diagonal along the covariance matrix is always the variance of a particular i-th random
variable. ɬus, we can write out all the terms in our covariance matrix as either a variance
of a single random variable or the covariance of two different random variables.

Σij =

{
Var(Xi) if i = j

Cov(Xi, Xj) if i ̸= j

A key point to be made here is the difference between covariance matrix and covariance
function. ɬe covariance function is a function of random variables, while the covariance
matrix is a matrix of observations. Recall that we can think of observations in our data as
crystallized instances of random variables – in other words, when a random variable
ceases to be random anymore, it becomes an observation. Likewise, a covariance matrix
is a crystallization of our covariance function. When random variables become numbers,
a covariance function of random variables becomes a number as well.

While the word “covariance” on its own is frequently used in scientific literature without
this distinction between covariance function or covariance matrix, it is almost always
implied that covariance refers to the covariance matrix or a value inside the covariance
matrix. ɬis is because rarely do covariance functions change from the definition
Cov (Xi, Xj) = E (XiXj)− E (Xi)E (Xj) unless there exists compelling reason to do
so. ɬerefore, because the function is not of interest but the values are, covariance
generally refers to the covariance matrix.

However, in this dissertation, we are interested in examining changing definitions of the
covariance function because changing definitions of the covariance function create greater
generalizations of the Gaussian Process model. To lessen any possible ambiguity between
the covariance matrix and the covariance function, we introduce the word kernel to mean
the same thing as the covariance function, and covariance as a shorthand for covariance
matrix or a value inside the covariance matrix.

8

Probability Density Function

A distribution is characterized by a probability density function (PDF), which expresses
the infinitesimal probability mass around any given point in a continuous distribution.

When the density function is integrated over the entire support7 of values, the entire 7ɬe
support is
the range
of values
that our
random
variable can
take on, i.e.,
the sample
space.

integral sums to 1. ɬe PDF will always output a nonnegative value.

As an example, the probability density function of the normal distribution is

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ)

2

ɬe probability density function of the multivariate normal distribution follows a similar
convention when written using vector notation.

f(X) =
1

(2π)k/2|det(Σ)|1/2
e−

1
2
(x−µ)⊤Σ−1(x−µ)

Of particular interest is the determinant function, present in the PDF of the multivariate
normal distribution but not in the PDF of the single variable distribution. ɬe most
intuitive explanation of the determinant is the volume of our multivariate distribution
stretched out in a multidimensional space, where the dimension of the multidimensional
space is the number of random variables in our multivariate distribution.

Ǿ.Ȁ Properties of Multivariate Normal

ɬe Multivariate Normal Distribution has a few elegant properties that allow us to derive
solutions analytically, with minimal use of computational tools.

Linear Combinations of Normal Distributions

A linear combination of Gaussian random variables is a Gaussian random variable8. 8ɬe formal
proof
involves
showing
characteris-
tic
functions
φX(t) =
E
[
exp

(
itTX

)]
to be equal.
Character-
istic
functions
are Fourier
transforms
of the
PDF.

9

Let Y be the linear combination of p normal random variables X1, · · · , Xp. Note that
(X1, X2, · · · , Xp)

⊤ form a multivariate normal distribution.

Y = c1X1 + c2X2 + · · ·+ cpXp

=

p∑
j=1

cjXj

Y itself would form a normal distribution with certain mean and certain variance
parameters.

ɬe mean of Y can be calculated in a straightforward manner using the linear
combinations of X1, · · · , Xp.

E(Y) = E

 p∑
j=1

cjXj


=

p∑
j=1

cjE(Xj)

= c⊤µ

where

µ =


E(X1)
E(X2)

...
E(Xp)

 , c =


c1
c2
...
cp


ɬe variance of Y can be calculated using the covariance matrix Σ of

10

(X1, X2, · · · , Xp)
⊤, a multivariate normal distribution.

Var(Y) = Cov(Y, Y)

= Cov

 p∑
j=1

cjXj ,

p∑
j=1

cjXj


= E

 p∑
j=1

cjXj

2− E

 p∑
j=1

cjXj

2

= E

 p∑
j=1

c2jX
2
j + 2

p∑
i<j

cicjXiXj


−

 p∑
j=1

c2jE(Xj)
2 + 2

p∑
i<j

cicjE(Xi)E(Xj)


=

p∑
j=1

c2j (E(X2
j)− E (Xj)

2)

+ 2

p∑
i<j

cicj (E(XiXj)− E (Xi)E (Xj))

=

p∑
j=1

c2jVar(Xj) + 2

p∑
i<j

cicjCov(Xi, Xj)

= c⊤Σc

Ǿ.ȁ Assumptions

In theory, once we know the mean and the variance of our random variables X1, · · · , Xn

and the appropriate linear combination of X1, · · · , Xn to obtain Y , our model is
complete. However, in real life, rarely are we given the true behavior of random variables
X1, · · · , Xn, and whether they follow the normal distribution at all!

In using a Gaussian distribution to describe a random variable, we’ve already created an
assumption about our data – that the true behavior of our data follows the Normal
distribution. In fact, all models are defined by their assumptions about the data. Assumptions
sound unscientific, as if we’re bringing personal bias into our examination of the data, but
they are in fact quite necessary. If there were no assumptions about our data, it would be

11

impossible to create a model because there would be no structure in how we think about
the data. ɬis would be akin to writing a mathematical proof without any axioms to start
with!

Of course, the less assumptions we make about our data, the more generalizable our
model behaves, that is, the better our model will be able to describe relationships as new
data arrives. ɬis relates to a common topic of overfitting, where too much assumptions
of our data cause the model to behave narrowly well on a particular existing dataset, but
fail to capture the overall behavior of data. ɬe goal of any good model should be to
reduce overfitting so that its description of the data is as generalizable as possible.

Ǿ.Ȃ Inference and Learning

Because we cannot observe the ground truth of how our data is generated, we must
create models that come close in describing the ground truth of how our data is
generated. Simply described, inference is the process of using observed data to describe a
ground truth. We noted previously that learning is the same thing as inference, and is a
term more commonly used in the vernacular of computer science. Machine Learning,
then, is inference conducted by machines.

Machine Learning

What does it mean to have inference conducted by machines? On a very high level, it
means to ultimately have machines identify the assumptions that go into a model.
Traditionally, the standard workflow of developing a model has been:

1. Human constructs a model using assumptions

2. ɬe machine evaluates model performance on some data testbed

3. Human refines model and assumptions based on results and data

4. Iterate between steps 2 and 3

Under machine learning, the third step could be automated away by machines:

12

1. Human constructs a model using assumptions

2. ɬe machine evaluates model performance on some data testbed

3. ɬe machine refines model and assumptions based on results and data

4. Iterate between steps 2 and 3

Note that in both cases, the initial step always starts with a human constructing an initial
model with human assumptions. Assumptions are the axioms of any model, and as of
date, machines are incapable of constructing their own axioms, although they are
outstanding at using the axioms we’ve defined to identify new results via algorithms.

Machine Learning has emerged as its own category of learning in recent years mostly as
consequence of better technology and more data. Computers have greater processing
power than ever before, as the number of transistors on a chip now reach several billion.
ɬe more transistors on a chip, the more computations can be performed per unit time,
enabling generalizable models that previously were computationally intensive to now be
immediate, accelerating the iteration cycle between model evaluation and model
refinement (steps 2 and 3). With great power in computation comes great power in
inference.

Simultaneously, the rise of digital services have consolidated a wealth of data about
everyday human activities on the computer and smartphone. We’ve previously seen how
with the law of large numbers, the sample mean converges absolutely in probability to
the population mean. Taken in a larger context, with a large number of data, a statistic
converges absolutely in probability to a parameter. ɬis implies that with more data, any
parametric model approaches closer to the ground truth.

ɬe same could be said of nonparametric models, which are a different class of models
that do not rely on assumptions about the distribution of the model, the most popular
example in machine learning literature being the neural network. Both nonparametric
and parametric models have gained more power in recent years as a consequence of
training on more data, leading to machines being able to accomplish extremely diverse
tasks, leading to the popular conception of artificial intelligence, where the range of tasks
that machines can perform have become so diverse that machines appear as capable as
humans.

13

Ǿ.ȃ Design Matrix

ɬe design matrix is the most common representation of data used in inference and
learning.

Recall that we have a collection of random variables X1, · · · , Xp that can be linearly
combined to express a random variable Y . If we observe n observations of Xi for each
i ∈ {1, · · · , p}, then Xi can be written as a column vector of n elements:

Xi =


xi1
xi2
...

xin


If we were to concatenate all our Xi column vectors along the same row, we would have a
design matrix. Here, the dimension of the design matrix is n× p (n rows and p columns):

X =


X11 . . . X1j . . . X1p
...

...
...

Xi1 . . . Xij . . . Xip
...

...
...

Xn1 . . . Xnj . . . Xnp


In our design matrix, Xij is the i-th observation of the j-th variable or the j-th feature.

In any model depicting a time series, the design matrix will have a slight modification:
instead of n observations, we have T time points indexed by t, where larger t denotes
observations that happen at later timepoints.

X =


X11 . . . X1j . . . X1p
...

...
...

Xt1 . . . Xtj . . . Xtp
...

...
...

XT1 . . . XTj . . . XTp


For the Gaussian Process model in this dissertation, we will use i as the variable for
indexing, although much of the principles behind the notation of a time series still apply,
i.e. n = T and larger values of i correspond to observations that happen at later
timepoints.

14

Ǿ.Ȅ Linear Regression

ɬe fact that we can so easily define a linear combination of Gaussian random variables
as a Gaussian random variable lies at the heart of the theory of linear regression. Linear
Regression is a model determining the strength of the relationship between a dependent
variable Y as a linear combination of other independent variables X1, · · · , Xp.

Y = c1X1 + c2X2 + · · ·+ cpXp

= β1X1 + β2X2 + · · ·+ βpXp

= β⊤X (linear regression)

By changing the weights ci in our linear combination to βi, we have our familiar
expression of linear regression, where X is our design matrix and β is a vector of
coefficients:

β =


β1
β2
...
βp


ɬe aim of linear regression is to fit, or to estimate, our coefficients β appropriately such
that a loss function is minimized. A loss function, also known as a cost function, typically
describes a difference between the fitted values as predicted from our model and the true
values of the observations.

ɬe most common loss function used in linear regression is the L2 loss function, which is
the square of the difference between estimated and observed values.

L2 =
n∑

i=1

(Yi − β⊤Xi)
2

Note that, in the above equation, X is the design matrix such that Xi is the i-th
observation. ɬe β-coefficients that minimize the loss function are then our fitted values,
or trained parameters. ɬese fitted values are denoted using a hat symbol, β̂.

β̂ = argmax
β

n∑
i=1

(
Yi − β⊤Xi

)2
In real life, we cannot express Y perfectly as a linear combination of a predetermined set
of features X1, · · · , Xp. Fortunately, because a linear combination of Gaussian variables
is a Gaussian variable, we can fit an additional Gaussian variable X0 ∼ N (µ0, σ

2
0) to

15

describe the difference between Y and our most optimal linear combination of
X1, · · · , Xp:

X0 = Y − β⊤X

ɬis X0 variable is commonly called noise. It will always exist, because in real life, it is
impossible to express Y perfectly as a linear combination of a predetermined set of
features (X1, · · · , Xp) unless the relationship between Y and (X1, · · · , Xp) is
deterministic. Introducting an additional variable X0 ∼ N (µ0, σ

2
0) is the best way we

can continue to describe Y perfectly as a linear combination of Gaussian variables:

Y = X0 + β⊤X

X0 is typically incorporated in our design matrix X as a column vector of 1’s because the
coefficient of X0 under this linear combination representation of Y is 1. ɬe column
vector of 1’s is also what mathematicians and statisticians refer to as the intercept term.
ɬus, to represent this new design matrix in its entirety, we write the following:

X =


1 X11 . . . X1j . . . X1p
...

...
...

...
1 Xi1 . . . Xij . . . Xip
...

...
...

...
1 Xn1 . . . Xnj . . . Xnp


Typically, to center X0 so that the resulting distribution is N (0, σ2

0), we introduce an
additional beta coefficient set to the mean of X0. Explicitly, we write β̂0 = µ̂0 because
we recall X0 − µ0 ∼ N (0, σ2

0). We can then express Y now as the following linear
combination:

Y = β0 + β⊤X +N
(
0, σ2

0

)
Finally, as a notational convention, statisticians like to employ ε to denote this
zero-centered noise variable ε ∼ N

(
0, σ2

0

)
. It is extremely common to see linear

regression expressed in this final manner:

Y = β0 + β⊤X + ε

Ǿ.ȅ Gaussian Process Regression

Gaussian Processes Regression is an extension of linear regression. ɬere are two
common ways of viewing Gaussian Processes. ɬe extension of linear regression is one

16

view of Gaussian Processes, known as the weight-space view. Another view of Gaussian
Processes is the function-space view, and both will be examined here. From here, we
begin using the language of inputs interchangably with dependent variables X and
targets interchangably with indepedent variable Y .

Recall that a major goal of inference is to use observed data to describe a ground truth.
Our Gaussian Process Regression model is what we perceive to be the ground truth.
ɬerefore, to conduct inference, there must be ways to describe how likely our observed
data fits in our model of ground truth.

Ǿ.ǽǼ Likelihood Function

A likelihood function describes the probability of observing the data conditioned on the
parameters of the model we’ve specified, and is commonly used to describe how likely
our observed data fits our model of ground truth. Higher values produced by the
likelihood function indicate greater likelihood that the data we observed was generated
by the model with the parameters we’ve specified.

Explicitly, we can write the likelihood function as a function of our data y and
parameters θ in any of the following ways:

L(θ) = P (y|θ) = fθ(y) = P (y; θ)

When writing out the likelihood function of the Gaussian distribution, we observe that
θ =

(
µ, σ2

)
, so that the θ in our likelihood is actually a vector of two parameters µ and

σ, and we can therefore plug in our values to obtain our likelihood function for one
observed data point as follows:

L(θ) = P (y|θ)
= P (y|µ, σ2)

=
1

σ
√
2π

e−
1
2(

y−µ
σ)

2

We observe that the likelihood function is similar to the probability density function
(PDF)!

However, there is a subtlety here: the probability density function describes the
probability of obtaining a specific instance of data from known parameters, while the
likelihood function describes the likelihood of obtaining a specific instance of parameters

17

from observed data. In other words, probability and inference are two sides of a coin – to
go from model to data, probability is applied, and to go from data to model, inference is
applied.

Moreover, the likelihood function is almost always taken with respect to many
observations, while a probability is usually taken with respect to one observation. ɬus,
likelihood functions are a product of n PDFs, where n is the number of observations.

L(θ) =
1

σ
√
2π

e
− 1

2

(
y1−µ

σ

)2

× · · · × 1

σ
√
2π

e−
1
2(

yn−µ
σ)

2

=

n∏
i=1

1

σ
√
2π

e
− 1

2

(
yi−µ

σ

)2

ɬe likelilhood function is powerful in capturing a direct relationship between the
observed data and the model parameters. We will use the likelihood function extensively
in our treatment of Gaussian Processes under both the weight-space view and the
function-space view.

Ǿ.ǽǽ Weight-Space View

Recall in linear regression, we can express Y = β̂0 + β⊤X + ε where ε ∼ N (0, σ2).
ɬe weight-space view treats each Yi at every i-th time point as a linear regression of
Yi = β0 + β⊤ϕ(X≤i) + ε where ϕ(X≤i) is a basis function of a subset of the decision
matrix of all values up until the i-th time point. A basis function transforms our random
variables so that they cover a different basis space. However, regardless of what basis
functions we construct, or whether we even decide to construct a basis function at all, we
observe the weights β are still used in the model to describe Yi, thus giving this
particular formulation the name weight-space view.

We are interested in making inferences about the relationship between inputs and targets,
i.e., the conditional distribution of the targets given the inputs, which is known as a
discriminative model9. ɬis is a less difficult problem than modeling the input 9A discrimi-

native
model
learns a
conditional
probability
P (Y |X)

distribution itself, known as a generative model10, where the difficulty is ascribed to more

10A
generative
model
learns a
joint
probability
P (Y and X)

computations needed for a generative model.

ɬe discriminative model P (Y |X,β) can be derived using the likelihood function as
shown below.

18

P (Y | X,β) =
n∏

i=1

P (Y i | Xi,β)

=
n∏

i=1

1

σ
√
2π

exp

(
−
(
Y i − β⊤Xi

)2
2σ2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

∣∣∣Y − β⊤X
∣∣∣2)

From the likelihood function, we can conclude that the discriminative model shares the
PDF with a Gaussian distribution of mean β⊤X and variance σ2I .

P (Y | X,β) ∼ N
(
β⊤X, σ2I

)

Ǿ.ǽǾ Function-Space View

ɬe function-space view extends our original definition of a Gaussian Process, which we
can recall here:

A Gaussian process (Xt)t>0 is a continuous-time stochastic process with
the property that for all n = 1, 2, . . . and 0 ≤ t1 < · · · < tn, the random
variables Xt1 , . . . , Xtn have a multivariate normal distribution.

In our examination of the multivariate normal distribution, we identified the two
parameters that characterize the multivariate normal distribution, one being the mean
vector µ, and the other being the covariance matrix Σ. We can define both the mean and
the covariance as a function of the inputs X , thus giving this particular formulation the
name function-space view.

ɬus, using a change of notation, a Gaussian Process is a collection of random variables
with mean function µ(X) and covariance function, or kernel, K(X,X⊤).

µ(X) = E[f(X)]

K
(
X,X⊤

)
= E

[
(f(X)− µ(X))

(
f
(
X⊤
)
− µ

(
X⊤
))]

19

ɬe discriminative model under weight-space view can then be represented as a Gaussian
Process with those functions as parameters:

P (Y | X) ∼ GP
(
µ(x),K

(
X,X⊤

))
Here, we introduce a new notation K

(
X,X⊤), sometimes shorthanded with just K.

While we have just familiarized ourselves with K
(
X,X⊤) being a covariance function,

we now refer to K
(
X,X⊤) in context of Gaussian Processes more commonly as a

kernel. ɬe motivation comes from the ability to reduce ambiguity between the
covariance matrix and the covariance function, in addition to the application of some
principles of Bayesian inference, because we are interested in modeling the changes of
our covariance matrix upon new observations of data. By treating the covariance matrix
as a parameter, the covariance function can then be used in describing changes of the
covariance matrix.

Moreover, the covariance function has traditionally had a fixed definition:
Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj). In spirit of dispelling the notion that there
only exists a fixed definition for the covariance function, the language of kernels is used
instead.

Ǿ.ǽǿ Bayesian Inference

Gaussian Processes have gained popularity because of some elegant properties as applied
in Bayesian inference.

Bayesian inference is a particular point of view in inference where parameters are treated
as random variables with a prior density distribution π(θ) before any data has been
collected. ɬe prior density distribution is updated into a posterior density distribution
g(θ|y) upon observation of data y.

ɬe Bayesian point of view is typically contrasted with the Frequentist point of view. ɬe
fundamental difference on a high level is that Frequentist inference treats the parameters
to be fixed, as opposed to being random. As a consequence, Frequentist inference does
not rely on a prior distribution on the parameters.

ɬe interpretations and conclusions of Frequentist inference are weaker than those of
Bayesian inference because it is harder to infer how flexibly the parameters of the model
change as the data changes. However, by the same token, Bayesian inference can offer

20

too much flexibility such that a particular choice of prior distribution on the parameters
could result in a less performant model under limited data. Ultimately, both the Bayesian
and Frequentist point of views converge as the data size increases.

Bayesian inference derives its name from Bayes’ Rule:

P (θ | Y) =
P (Y | θ)P (θ)

P (Y)

ɬe prior distribution is P (θ), the likelihood is P (Y | θ) and the posterior distribution is
P (θ | Y). P (Y) is effectively treated as a normalizing constant because we recall that all
probabilities must sum to 1 over the entire sample space. Typically, it is more succinct to
drop the normalizing constant when focusing on the relationship between the posterior
and prior distributions under Bayesian inference:

P (θ|Y) ∝ P (Y |θ)P (θ)

Without any structure on the parameter’s prior distribution and its relationship with the
data via the likelihood function, it is hard to describe what the posterior distribution will
be. Fortunately for the Gaussian Process, the posterior distribution of the parameter will
always be the same distribution as the prior distribution of the parameter – both
distributions will be Gaussian distributions due to the Normal-Normal conjugacy.

Normal-Normal Conjugacy

Given a Gaussian prior distribution on the mean parameter µ ∼ N (µ0, σ
2
0) and

observations X = (x1, · · · , xn), the posterior distribution µ|X is a Gaussian
distribution with updated parameters:

P (µ|X) ∼ N

((
1

σ2
0

+
n

σ2

)−1(µ0

σ2
0

+

∑n
i=1 xi
σ2

)
,

(
1

σ2
0

+
n

σ2

)−1
)

ɬis is known as the Normal-Normal conjugacy.

Proof:

Recall that in Bayesian inference, P (θ | Y) ∝ P (Y | θ)P (θ). By identifying our
parameter of interest to be θ = µ, we can substitute the likelihood function P (X | µ)

21

and the prior P (µ) to solve for the posterior P (µ | X).

P (µ | X) ∝ P (X|µ)P (µ)

=

(
n∏

i=1

exp

(
− 1

2σ2
(xi − µ)2

))
exp

(
− 1

2σ2
0

(µ− µ0)
2

)

= exp

(
−

n∑
i=1

1

2σ2
(xi − µ)2 − 1

2σ2
0

(µ− µ0)
2

)

∝ exp

(
−1

2

((
n

σ2
+

1

σ2
0

)
µ2 − 2

(∑n
i=1 xi
σ2

+
µ0

σ2
0

)
µ

))
∝ exp

(
−a

2

(
µ− b

a

)2
)

where a =

(
n

σ2
+

1

σ2
0

)
, b =

(∑n
i=1 xi
σ2

+
µ0

σ2
0

)
ɬe final expression is proportional to the PDF of a Normal distribution containing all
the terms that interact with the parameter µ. ɬus, we can conlude that µ | X has the
PDF of a Normal distribution with mean parameter b/a and variance parameter 1/a.

µ | X ∼ N
(
b

a
,
1

a

)
Substituting in our values of a =

(
n
σ2 + 1

σ2
0

)
and b =

(∑n
i=1 xi

σ2 + µ0

σ2
0

)
, the posterior

distribution is a Normal distribution with updated parameters.

N

((
1

σ2
0

+
n

σ2

)−1(µ0

σ2
0

+

∑n
i=1 xi
σ2

)
,

(
1

σ2
0

+
n

σ2

)−1
)

Bayesian Weight-Space View

We can apply Bayesian inference in the weight-space view by imposing a prior
distribution on the parameter weights β with mean 0 and covariance matrix Σp:

β ∼ N (0,Σp)

Using Bayes’ rule, there exists a posterior distribution of the parameter weights, which
we can derive.

22

P (β | y, X) =
P (y | X,β)P (β)

P (y | X)

=
P (y | X,β)P (β)∫
P (y | X,β)P (β)dβ

∝ P (y | X,β)P (β)

∝ exp

(
− 1

2σ2
(y −Xβ)⊤ (y −Xβ)

)
exp

(
−1

2
β⊤Σ−1

p β

)
∝ exp

(
−1

2
(β − β)⊤

(
1

σ2
X⊤X +Σ−1

p

)
(β − β)

)

where
β = σ−2

(
σ−2X⊤X +Σ−1

p

)−1
X⊤y

ɬis result implies

p(β | X,y) ∼ N
(
β =

1

σ2
A−1X⊤y, A−1

)
where

A = σ−2X⊤X +Σ−1
p

Finally, we can use the posterior distribution to obtain the predictive distribution, which
averages all linear models with respect to the posterior. We can write x∗ as a new input
for f∗, so that f∗ is the new generative model under newly observed x∗. ɬis procedure
of finding the updated generative model is also known as finding the marginal
distribution, or marginalization.

P (f∗ | x∗, X,y) =

∫
P (f∗ | x∗,β)P (β | X,y)dβ

=

∫
x∗βP (β | X,y)dβ

= N
(

1

σ2
0

x∗A
−1Xy,x⊤

∗ A
−1x∗

)

Ridge Regression

From the weight-space view, we obtain an interesting result, which is that our choice of
priors corresponds directly to a constraint function on our weights β.

23

Recall that in linear regression, we are finding an optimal β which minimizes the loss
function:

L2 =
n∑

i=1

(
Yi − β⊤Xi

)2

β̂ = argmax
β

n∑
i=1

(
Yi − β⊤Xi

)2

To find the optimal β̂, we set the derivative of our loss function to 0, observing a local
minimum because the second derivative of our loss function at that point is positive.

β̂ =
(
X⊤X

)−1
X⊤Y

In ridge regression, an additional penalty term is added to the loss function:

Lridge =
n∑

i=1

(
Yi − β⊤Xi

)2
+ λ

n∑
j=1

β2
j

β̂ = argmax
β

n∑
i=1

(
Yi − β⊤Xi

)2
subject to λ

n∑
i=1

β2
j ≤ 1

Just as in the linear regression setting, to find the optimal β̂ in ridge regression, we set
the derivative of our loss function to 0, observing a local minimum because the second
derivative of our loss function at that point is positive. ɬe only difference is that the loss
function is now Lridge as opposed to L2.

β̂ridge =
(
X⊤X + λIp

)−1
X⊤y

Our posterior distribution in the weight-space view contains a posterior mean β that is
extremely similar to β̂ridge .

p(β | X,y) ∼ N
(
β =

1

σ2
A−1X⊤y, A−1

)
where A = σ−2X⊤X +Σ−1

p .

β̄ =

(
X⊤X +

1

σ2
Σ−1
p

)−1

X⊤y

24

We can pattern-match our terms to notice that 1
σ2Σ

−1
p inside β̄ is analogous to the λIp in

β̂ridge , thereby relating ridge regression and the Gaussian prior distribution in an elegant
manner.

Bayesian Function-Space View

Recall in the function-space view, we formulate a Gaussian Process to be

P (Y | X) ∼ GP
(
µ(X),K

(
X,X⊤

))
Our parameters under this representation are the mean parameter µ(X) and the
covariance function, also known as the kernel, K

(
X,X⊤). Because parameters are

treated as unknown variables under Bayesian inference, we can place a prior on both the
mean function and kernel directly under this function-space view.

Typically, a good choice of a prior density function is µ(X) = 0, since we’d like to center
our Gaussian process at 0 for easier mathematical representation and computation. ɬen,
we would update the mean accordingly from the data via the likelihood function.

ɬe kernel, however, is more interesting to study. We can define our kernel to be any
function, not limited to the definition of the traditional covariance function. ɬe only
requirement for a valid kernel is that the covariance matrix produced by the kernel using
the observations as inputs is positive definite.

For a covariance matrix to be positive semi-definite, the covariance matrix a symmetric
matrix with all positive eigenvalues. It is mathematically tedious to check the matrix with
all positive eigenvalues, but fortunately, there exists efficient computation and
decomposition techniques that we can employ to study positive definiteness of matrices.
ɬese techniques will be examined in the computation chapter.

ɬe process of defining a new valid kernel from scratch is not always trivial, because
there must be a compelling assumption to justify pre-defined kernels in modeling a
Gaussian Process. ɬe choice of kernels is a question frequently encountered in
hyperparameter tuning, where computation is applied to find optimal parameters that
cannot be learned from fitting or training the data. Hyperparameters are pre-defined
throughout the model-fitting process, and therefore can be seen as an extension of our
assumptions rather than as fitted values from inference or learning.

Because the choice of kernels requires certain assumptions about the data, in the case
where there are no particularly strong views on how the data is to behave, a popular

25

choice of kernel is the squared exponential kernel, also known as the radial basis function
kernel, because it can be shown that the squared exponential kernel, corresponds to the
defined covariance function Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) for a Gaussian
Process.

K (xp,xq) = exp

(
−1

2
|xp − xq|2

)
= E(f(xp)f(xq))− E(f(xp))E(f(xq))

= Cov (f (xp) , f (xq))

ɬe squared exponential kernel is an example of a stationary kernel, which is any function
containing r = |x− x⊤|. If the kernel only interacts with x and x⊤ via the expression
r = |x− x⊤|, as is the case with the squared exponential kernel, then we say that the
kernel is isotropic.

ɬe kernel provides the underlying structure to any Gaussian Process model. ɬerefore,
any formulation of a Gaussian Process demands an assumption about the kernel.

26

3

Binary Outcomes

In traditional Gaussian Process models, the data is assumed to follow a Gaussian
distribution, which possesses many elegant properties. By assuming the prior
distribution of the data is a Gaussian distribution, the predictive posterior distribution of
the data is also a Gaussian distribution.

However, not all real life phenomenon behave according to a Gaussian distribution.
Some phenomenon take on values that are discrete, rather than values that are continuous.
For such phenomenon, it is a poor assumption to assume that the data follows a
Gaussian distribution because the Gaussian distribution takes on continuous values.

Instead, a different distribution must be used in describing the data, one that follows a
more appropriate assumption of the discrete nature of the data.

While a different distribution is needed to describe data that is discreet, it need not be
the case that the Gaussian Process model fails entirely as a model for the data. Rather, a
Gaussian Process model could be useful in fitting and modeling the parameters of the
newly defined distribution.

ɬis chapter is dedicated to examining Gaussian Processes on such non-Gaussian data,
specifically addressing binary outcomes data. Binary outcomes are perhaps the simplest
examples of discreet data, and from this simplicity comes ubiquity. Binary data is easy to
define, collect, and store, and is used extensively in product testing and A/B testing,
providing a real-world motivation for understanding Gaussian Processes on binary
outcomes.

27

ǿ.ǽ Classification

ɬe difference between discrete and continuous data can be better formalized into two
classes of problems – classification and regression. By definition, a discrete value is any
value that takes on integer values, so we write D ∈ Z if the data D is discrete, while
continuous data are values that can take on any value in the real number line, so we write
D ∈ R if the data D is continuous.

Classification problems must assign a discrete target Y ∈ Z based on some given inputs
X .

Regression problems must assign a continuous target Y ∈ R based on some given inputs
X .

From the definitions provided, the distinction between classification and regression
problems is decided completely by the nature of values we are trying to assign, or to
predict, whether Y ∈ Z or Y ∈ R. Note that there is no restriction on the behavior of
the inputs X in both cases.

ǿ.Ǿ Binary Target

A discrete target becomes binary if the target only has two classes in the classification
scheme, which we can denote {C1, C2}.

Target synonymous with the dependent variable as well as the response variable. Because
of all these synonyms, it’s often clearest to reference the mathematical variable Y as
defined to be all of these things to lessen confusion over language.

ɬe two classes can be translated into ordinal numbers, indicated by 0 for the first class
and 1 for the second class. Traditionally, the class indicated 0 is the default outcome
(C1), and the class indicated 1 is the non-default outcome (C2). ɬus for any binary
outcome, there exists a function f which maps classes into 0 and 1.

f(C) 7→

{
0 if C = C1

1 if C = C2

We can use this function f to ultimately define Y , the target, so that f(C) = Y . ɬen
for each Yi, an assignment is made for whether the i-th observation was in the first class

28

C1 or the second class C2.

Yi 7→

{
0 if Ci = C1

1 if Ci = C2

Examples

Here are some examples to make classification more explicit.

1. A data scientist is interested in testing whether a new placement of banner ads
will cause users to visit a certain website. ɬe classification is C1 being defined as
no users are visiting the website and C2 being defined as at least one user is
visiting the website.

2. A quantitative researcher is interested in seeing whether a trade will cause the
market price of a stock to go up or down by the end of the day. ɬe classification
is C1 being defined as the market price going up end of day and C2 being defined
as the market price going down end of day.

3. A sabermetrician is interested in whether there is a home-team advantage for
baseball teams. ɬe classification is C1 being defined as the home team winning
and C2 being defined as the home team losing.

4. A biostatistician is interested in whether a new quantum drug causes a cat to stay
alive under radioactive poison. ɬe classification is C1 being defined as the cat
dies with the quantum drug and C2 being defined as the cat stays alive with the
quantum drug.

Note that in each of the cases, a clear delineation is made between the two classes. All
outcomes can either be classified into C1 or C2 but not both. Of course, some
assumptions are made such that C1 and C2 together define the entire sample space of
outcomes.

Example 1 with the data scientist assumes that there cannot exist a negative number of
users visiting the website. Example 2 with the quantitative researcher assumes the
market price cannot stay the same end of day (intriguingly, this assumption can be
verified using the Black-Scholes model, which is an application of Gaussian Processes on
stock movement, which, by nature of there being a continuous distribution, places
zero-mass probability on stock movement staying at 0). Similarly, Example 3 with the

29

sabermetrician assumes that there can be no ties (which is true in baseball, but not in
soccer!). Finally, although Example 4 sounds eerily similar to the Schrödinger’s cat
thought experiment, where a cat can be simultanously alive and dead, in order for the
classes to be binary, the assumption is ultimately made that the cat can either be dead or
alive with the quantum drug, but not both.

ǿ.ǿ Binary Treatment Effects

In the preceding examples, we identified the binary classes that the target would be
classified into.

Binary treatment effects, or binary actions, also follow a similar definition in that actions
themselves are discreet and binary, taking on the value 0 if action was not taken and the
value 1 if action was taken. However, a critical difference between binary actions and
binary outcomes is that binary outcomes is always used to describe the target Y while
binary action exists as a feature or input in our design matrix X. We use the notation Ai

as a scalar to denote the i-th binary action, which takes on values of 0 or 1 based on
whether action was taken.

Ai 7→

{
0 if action Ai not taken
1 if action Ai taken

Because A is an input in our design matrix, the dimensions of vector A must be of the
same size as the number of rows in the design matrix X. ɬus if X has n observations,
the number of rows is n and A must be a column vector of dimension n.

A =


A0
...
Ai
...

An


Binary actions are important in causal inference, a branch of inference which determines
causality between input A and outcomes Y .

30

ǿ.Ȁ Causal Inference

In typical studies, we are passively observing a relationship between inputs X and target
Y , so that any significant relationship discovered between X and Y can best be
characterized as a strong correlation. ɬe study of causal relationships between X and Y
is causal inference.

In order to make the statement that X causes Y , we employ two popular frameworks in
causal inference – counterfactual random variables or directed acyclic graphs.

ǿ.ȁ Counterfactual Model

ɬe counterfactual model attempts to model counterfactual outcomes, that is, the
outcomes that would have happened had the opposite action been applied.

Continuing with our notation as before, we let A be a binary treatment variable where
A = 1 means “action taken” and A = 0 means “action not taken.”

Ai 7→

{
0 if action Ai not taken
1 if action Ai taken

Here is where the subtlety arrises – the classes in the counterfactual model themselves are
no longer the values that target Y can take on, but a conditional variable on binary
actions A. ɬe classes defined here to be potential outcomes, are the conditional variable
Y |A, corresponding to the two outcomes of Y when action A is applied and Y when
action A is not applied. One will always be observed and the other not observed, but
both exist under the counterfactual model.

Y 7→
{

C0 if A = 0
C1 if A = 1

A more succinct representation of Y with respect to C and A is the following:

Y = CA

Note that in any counterfactual model, Y need not be binary. Y can take on continuous
values, since it is not the values of Y that are binary, but the actions A that must be
binary in order for there to exist binary potential outcomes.

31

From here, we observe that when A = 0 we don’t observe C1, in which case we say that
C1 is a counterfactual since it is the outcome that would have happened had the opposite
action been applied (A = 1).

Similarly, when A = 1 we don’t observe C0, and we say that C0 is counterfactual.

ɬe average causal effect, or average treatment effect, is then calculated to be the following.
We use the parameter θ to mean the difference between all potential outcomes where
action was applied (C1) and the outcomes where action was not applied C0

θ = E (C1)− E (C0)

If Y was a binary outcome, however, it may not make as much sense to use the average
treatment effect since Y can only take on values of 0 or 1. A more appropriate parameter
may be the causal odds ratio, which measures the ratio of the causal odds P (Y=1)

P (Y=0) when
action was applied to when action was not applied.

θ =
P (C1 = 1)

P (C1 = 0)
÷ P (C0 = 1)

P (C0 = 0)

Causal relative risk is an additional parameter one may wish to use, which focuses only
on the ratio of Y = 1 when action was applied to when action was not applied.

θ =
P (C1 = 1)

P (C0 = 1)

Finally, to illustrate the point that causation is not association, we consider what it means
to find association (α) between Y and A, where we defined I(Ai = 1) to be an indicator
random variable where the i-th observation contains action applied.

α = E(Y | A = 1)− E(Y | A = 0)

=
1∑n

i=1 I(Ai = 1)

n∑
i=1

Yi × I(Ai = 1)

− 1∑n
i=1 I(Ai = 0)

n∑
i=1

Yi × I(Ai = 0)

Association only tells half of the story, because Y |A = 1 contain only the observed cases
of Y where action has been applied as opposed to all possible outcomes where action has
been applied. Similarly, Y |A = 0 contains only observed cases of Y where action has not
been applied, not capturing all potential outcomes. ɬe treatment effect does capture all

32

potential outcomes, and therefore, provides a measure of true causality.

θ = E (C1)− E (C0)

=
1

n

n∑
i=1

C1i

− 1

n

n∑
i=1

C0i

Randomization

While we can never actualize both potential outcomes C0 and C1, we can use
randomization to identify a causal effect.

ɬis is because random assignment creates independence between between the action
performed A and potential outcomes C0, C1, causing our treatment effect to be
equivalent to the asociation.

θ = E (C1)− E (C0)

= E (C1 | A = 1)− E (C0 | A = 0) since X is independent to (C0, C1)

= E(Y | A = 1)− E(Y | A = 0) since Y = CA

= α

ɬe association α becomes a consistent estimator of the average causal effect θ. Recall
that a statistic is consistent if it converges to the parameter in probability as the number of
observations increase.

θ̂ = α̂

= E(Y | A = 1)− E(Y | a = 0)

=
1

n1

n∑
i=1

YiAi −
1

n0

n∑
i=1

Yi (1−Ai)

where n1 =
∑n

i=1Ai and n0 =
∑n

i=1 (1−Ai).

Randomization is considered a key tenet to any scientific study trying to identify
causality between variables.

33

ǿ.Ȃ Directed Acyclic Graphs

ɬe idea behind causal inference can also be formalized in directed acyclic graphs (DAG).

A directed graph G = (V,E) consists of a set of nodes or vertices V and edges E. In a
directed graph, each edge E points from a source node u to a destination node v, and we
can write e = (u, v) .

A path on a graph is a sequence of nodes v1, v2, · · · , vk such that the edge (vi, vi+1) ∈ E
for i = 1, · · · , k − 1.

A cycle is a path v1, v2, . . . vk with k ≥ 3 such that v1 = vk.

ɬen, as the name implies, a directed acyclic graph is a directed graph where there are no
cycles.

Directed cyclic graph:

V1 V2 V3

e1 e2

e3

Undirected cyclic graph

V1 V2 V3

e1 e2

e3

Undirected acyclic graph

V1 V2 V3

e1 e2

34

Directed acyclic graph

V1 V2 V3

e1 e2

If we were to replace the nodes in the directed acyclic graph with random variables, and
the directed edges represented causal relationships, we have constructed a pictoral
representation of causal inference using directed acyclic graphs. Note that cyclic graphs
make no sense in context of causal inference, because there exists a chicken-vs-egg
problem since any of the random variables in the cycle would exist simultaneously as a
causal variable as well as a response variable.

X Y Z
X causes Y Y causes Z

Bayesian Networks

Directed acyclic graphs provide a rich illustration of independence relations between
variables. ɬis representation is frequently described as a Bayesian network, even though
there is nothing particular Bayesian about this representation, because we recall that
Bayesian inference places a prior distribution on the parameters, and the graphs here
make no assumption about prior distributions of variables. We will stick to the language
of DAG over Bayesian networks because of its cleaner definition and connotation.

It is useful to define the specific types of relationships between random variables under a
DAG.

Parent

Random variable X is a parent of random variable Y if there is an edge from X to Y .
Equivalently, this also implies X causes Y .

X Y

35

Child

Random variable X is a child of random variable Y if there is an edge from Y to X .
Equivalently, this also implies Y causes X .

Y X

Ancestor

Random variable X is an ancestor of random variable Y if there is a path from X to Y .
ɬis also implies X causes Y .

X · · · Y

Descendent

Random variable X is a descendent of random variable Y if there is a path from Y to X .
ɬis also implies Y causes X .

Y · · · X

Collider

A configuration between three variables X , Y , Z is a collider if there exists an edge
pointing from X to Y and an edge pointing from Z to Y . We say there exists a collider
at Y . Note that the collider relationship must apply to three variables, as opposed to two.

X Y Z

36

ǿ.ȃ Probability and DAG

For any directed acyclic graph, we can represent a joint probability as a product of
marginal probabilities and conditional probabilities.

We can make this relationship between probability and DAG more explicit in the
following example.

X Z Y

W

Using our definitions in the previous section, we observe several relationships:

1. X is a parent of Z, which also implies Z is a child of X

2. Y is a parent of Z, which also implies Z is a child of Y

3. Z is a parent of W , which also implies W is a child of Z

4. X is an ancestor of W , which also implies W is a descendent of X

5. Y is an ancestor of W , which also implies W is a descendent of Y

6. X,Z, Y form a collider at Z

When calculating the joint probability f(x, y, z, w), we want to start at the source nodes
in our DAG, in other words, nodes with no parents, because these nodes are not
dependent on any other node. In our example, this would correspond to nodes X and Y
with marginal probabilities f(x) and f(y) respectively.

Afterwards, we traverse our DAG by going along the parents to the children via the
edges. In doing so, we arrive at some new nodes, and we must multiply our starting
marginal probabilities now with conditional probabilities. ɬe conditional probabilities
are conditioned on all the nodes that are direct parents. When placed in context of our

37

example, the next node as we traverse from both X and Y would be Z. Z ’s direct parents
are X and Y , so we write f(z|x, y) as the conditional probability.

Next, from Z, would traverse to its child node, which is W . We observe that W has a
direct parent which is Z, so the conditional probability of W is f(w|z).

Seeing that there are no more children nodes left, we stop and multiply all the
probabilites we’ve stores in our traversal to find the joint probability. ɬis would
correspond to

f(x, y, z, w) = f(x)f(y)f(z|x, y)f(w|z)

Algorithm

One might notice that the description of our procedure was quite verbose. Indeed, we
can provide a more succinct summary of our procedure via algorithms.

Algorithms simplify procedures into units of computation and units of storage.
Algorithms provides two benefits in that it simplifies the English for us in addition to
describing procedures that computers can understand, since computers operate on
systems of computation and systems of storage.

Algorithm 1: DAG to Probability
Initialize q := [] (q is a queue of nodes)
Initialize f := [] (f contains probabilites for DAG)
Loop ∀s ∈ V where ∄s′ such that (s′, s) ∈ E:
q.push(s)

Loop while not q.empty:
s = q.pop() (pops first element f)
if ∄s′ such that (s′, s) ∈ E:
f.push(f(s))

else:
Initialize c := [] (c contains conditional variables)
Loop ∀s′ ∈ V where (s′, s) ∈ E:

c.push(s′)
f.push(f(s|c))

Return f

Using Directed Acyclic Graphs, we can break down the joint probability f(x, y, z, w)
into marginal and conditional probabilities, which provides a useful technique in relating
the generative model (characterized by the joint probability) and discriminative model
(characterized by marginal and conditional probabilities).

38

ǿ.Ȅ Independence

We recall that for two random variables X,Y to be independent,
P (X and Y) = P (X)P (Y). ɬen, using Bayes’ rule, we can reorder this expression to
get

P (X|Y) =
P (X and Y)

P (Y)
=

P (X)P (Y)

P (Y)
= P (X)

Independence can be made more intuitive using the language of conditioning: If
P (X|Y) = P (X), then the probabilistic behavior of X does not change whether new
information about Y is presented.

We can use DAG to identify independence between variables by observing that every
variable is independent of its ancestors conditioned on the parents. ɬis is also known as
the Markov condition, where every variable is independent of its history conditioned on
the previous step.

However, to generalize indepedence properties further, we can use “d-separation” rules,
or “directed separation.”

ǿ.ȅ D-Separation

D-separation is a property characterizing the relationship between two variables with
respect to a set of variables. X and Y are d-separated given a set of vertices Z if there
exists no undirected path P between X and Y such that

1. Every collider in P has a descendent in Z

2. No other vertex in P is in Z

If X and Y are not d-seperated, they are d-connected.

ɬe formalization of d-separation can be captured completely by three explicit rules, with
examples provided.

39

First Rule of d-separation

If X and Z are d-connected and Y is not a collider, X and Z are d-separated given Y.

X Y Z

X Y Z

X Y Z

Second Rule of d-separation

If X and Z collide at Y , then X and Z are d-separated, but they are d-connected given
Y.

X Y Z

Third Rule of d-separation

Conditioning on the descendant of a collider has the same effect as conditioning on the
collider. X and Z are d-separated but they are d-connected given W .

X Z Y

W

40

ǿ.ǽǼ Binary Outcomes

Having defined directed acyclic graphs, we can now formally define binary outcomes.

In a binary outcome, the target Y is a binary. Recall our definition of binary targets:

Yi 7→

{
0 if Ci = C1

1 if Ci = C2

Moreover, Y is a column vector of n× 1 indicating n observations.

Y =


Y1
...
Yi
...
Yn


Because we are interested in outcomes, we want to identify causal effects of an action on
Y . We recycle our notation of Ai, where Ai is an indicator variable for binary action for
the i-th observation: 1 if action was applied and 0 if action was not applied.

Ai 7→
{

0 if action Ai not taken
1 if action Ai taken

Similar to Y , we can concatenate values of Ai into a column vector A of dimension
n× 1 indicating n observations.

A =


A1
...
Ai
...

An


Moreover, there often exists other variables that are not A in our design matrix. Let us
group these variables as X , which is also known as the matrix effects.

X =


X11 . . . X1j . . . X1p
...

...
...

Xi1 . . . Xij . . . Xip
...

...
...

Xn1 . . . Xnj . . . Xnp


41

Note that Y is a function of both A and X . If this was a linear regression formulation,
we could simply express Y as a linear combination of A and X :

Y = β⊤
AA+ β⊤

XX

However, because the targets Y are binary outcomes, wecannot use vanilla linear
regression to describe the effects of A and X on Y . ɬis is because Yi|Ai, Xi is
generated from a Bern(π) distribution.

Bernoulli Distribution

ɬe Bernoulli distribution fundamentally describes all binary data. ɬe only parameter
characterizing the Bernoulli distribution is π, the probability of success.

If X ∼ Bern(π), then the probability mass function (PMF) is

P (X = k) = pk(1− p)1−k

Note that because X is binary, k can either be 1 (success) or 0 (failure). ɬis implies
P (X = 1) = p and P (X = 0) = 1− p if we were to plug in values of k = {1, 0}
respectively into the probability mass function.

ǿ.ǽǽ Gaussian Process on π

Because our target data Y is a binary outcome and therefore is not Gaussian-distributed,
we cannot fit a Gaussian Process on the data Y . We must use a Gaussian Process to fit
the parameters of a distribution, as opposed to fitting the observations directly.

ɬe only parameter characterizing binary outcomes is the probability parameter π under
the Bernoulli distribution. ɬerefore, we will use a Gaussian Process on the parameter π.

We can identify the parameter π as a function of our inputs Ai, Xi. ɬis leads us to
conclude that Yi|Ai, Xi ∼ Bern(π(Ai, Xi)).

For some more intuition from a causal inference perspective, we can consider there to be
two parameters π0 and π1 that correspond to the true potential outcomes when action is
not applied (C0) and when action is applied (C1). ɬen, assuming the actions were
randomized, C0 ∼ Bern(π0(Ai = 1, Xi)) and C1 ∼ Bern(π1(Ai = 0, Xi)). ɬen

42

π(Ai, Xi) is the generalizable parameter which becomes π0 when Yi = C0 or becomes
π1 when Yi = C1.

π(Ai, Xi) =

{
π0(Ai = 0, Xi) if Yi = C0

π1(Ai = 1, Xi) if Yi = C1

Using the function-space view of Gaussian Processes, we write fπ as the model for
parameter π, and we can define this model fπ with the appropriate mean function and
kernel function accordingly in a Gaussian Process. fπ is known as a latent function.

fπ ∼ GP (0, g(KA,KX))

We denote KA as the kernel function corresponding to data where an action was sent
and KX as the kernel function corresponding to data where we only contain the main
effects. ɬe final kernel is a function g of that is a function of both kernel KA and KX .

When action is not applied, the kernel function g becomes a function of only the main
effects X . We can write the kernel function as g(0,KX) when action is not applied, in
other words, when A = 0.

In summary, we use the following assumptions in our GP model:

1. Yi | Ai, Xi ∼ Bern (π (Ai,Xi))

2. π (Ai, Xi) = expit(fπ (Ai, Xi))

3. fπ ∼ GP (0, g (KA,KX))

4. fπ|A = 0 ∼ GP (0,KX)

Logit Transformation

Why can we not directly fit the π parameter by a Gaussian Process? ɬis is because we
recall a Gaussian Process describes Gaussian variables, which take on continuous values
between −∞ and +∞. Probability π is a continuous value, but it is bounded between 0
and 1. ɬerefore, to transform a range of values z ∈ (−∞,+∞) to f(z) ∈ [0, 1] using a
transformation f , an expit transformation is applied. ɬe expit function is defined below:

expit(z) = 1

1 + e−z

Graphically, we can visualize the expit function approaching 0 when z → −∞, and then
approaching 1 when z → +∞. When z = 0, the expit function is exactly 1

2 .

43

ɬe expit function is also known as a logistic response function. ɬis is because the inverse
of the expit function is the logit function, which is typically used to map values from
[0, 1] to (−∞,+∞).

logit(p) = log

(
p

1− p

)
In context of our Gaussian Process model on π, we mentioned one of our assumptions is
that π (Ai, Xi) = expit (fπ (Ai, Xi)). ɬis necessarily implies that
logit(π (Ai, Xi)) = fπ (Ai, Xi) .

π = expit(fπ)

=⇒ π =
1

1 + e−fπ

=⇒ 1

p
= 1 + e−fπ

=⇒ 1− p

p
= e−fπ

=⇒ log

(
1− p

p

)
= −fπ

=⇒ log

(
p

1− p

)
= fπ

Probit Transformation

It is also worth mentioning that another common choice of transformation f from
z ∈ (−∞,+∞) to f(z) ∈ [0, 1] is the probit function. ɬe probit function is the
cumulative density function of a standard Gaussian distribution.

Recall that the probability density function of any Gaussian distribution where
X ∼ N (µ, σ) is

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ)

2

A standard Gaussian distribution transforms the variable x into z so that x−µ
σ = z. ɬen,

z is a standard Gaussian distribution because z has mean 0 and variance 1. We can then
write the probability density function of z to be the following

f(z) =
1√
2π

e−
1
2
z2

44

ɬe cumulative density distribution Φ is then the sum of probabilities from the lowest
possible value up to a specified value of z. Because the Gaussian distribution is
continuous with zero point-mass at every point, we will integrate from negative infinite
up to z.

Φ(z) =

∫ z

−∞

1√
2π

e−
1
2
z2dz

Naturally, Φ(z) must be in [0, 1] because all probabilities must be in [0, 1]. A
transformation using Φ(z) is known as a probit transformation.

ǿ.ǽǾ DAG Representation

To bring a more visual interpretation to our Gaussian Process formulation, we once again
turn towards a directed acyclic graph. We can represent the inputs X and A as source
nodes which affects our model of the π parameter, which then affects our target Y .

X fπ A

π

Y

KX KA

π = expit(fπ)

Y ∼ Bern(π)

Under this directed acyclic graph, we can follow the DAG to Probability algorithm on
page 38 to relate the joint probability with the correct marginal and conditional
probabilities.

f(y, π, fπ, A,X) = f(A)f(X)f(fπ|X,A)f(π|fπ)f(y|π)
= f(A)f(X)f(fπ|X,A)f(y|π)
= f(A)f(X)f(fπ|X,A)f(y|fπ)

We can point out that the relationship between π and fπ is deterministic. Once we know
fπ ’s value, we just need to apply expit(fπ) = π. ɬus, due to this deterministic

45

relationship, f(π|fπ) = 1. In the final step we made the direct substitution between
deterministic variables expit(fπ) = π to get f (y|π) = f (y | fπ) .

One term in the probability expansion looks jarring. What does it mean to have
f(fπ|X,A)?

Recall that we defined fπ ∼ GP (0, g (KA,KX)) so fπ is a random variable as much as
a function fπ(A,X). Recall that a random variable is function that maps a sample space
to real numbers. We can think of fπ(A,X) as the function mapping a more structured
sample space defined by A,X in addition to fπ ∼ GP (0, g(KA,KX)) as a random
variable being structured by the kernels of A and X . In both cases, A and X are inputs
that affect the structure of f, and we are merely using two different representations to
convey the same thing.

Because fπ is a random variable, then the intepretation of f(fπ|X,A) has much of the
same interpretation as any conditional probability.

ǿ.ǽǿ Likelihood Function

Once we have our Gaussian Process formulation, the next step is to define the likelihood
function. When writing out the likelihood function, we want to be explicit in defining
fπ as a Gaussian Process, which is a function of a vector of random variables indexed by
time. ɬe convention we have been employing thus far has been to bold vectors and
matrices, but we want to distinguish functions of vectors and matrices from values and
matrices themselves. ɬerefore, we will place a vector above f⃗π to emphasize that f⃗π is a
function of a vector of values ordered by time, so that vector f⃗π is equal to
⟨fπ (A1, x1) , · · · , fπ (Ai, xi)⟩.

ɬe likelihood function, as we recall, is the probability of observing the data conditioned
on the parameters of the model we’ve specified. ɬe parameter of Y is Bern(π) where
logit(π) = f⃗π ∼ GP (0, g (KA,KX)). For now, we don’t need to worry about the
parameterization of f⃗ , thinking more on a high level that f⃗ is a random variable which
describes the specific probability instance πi for observation Yi based on specified Ai and

46

Xi.
L(θ) = P (Y | π)

= P
(
Y | f⃗π

)
=

n∏
i=1

(1− expit fπ (Ai, Xi))
1−Yi (expit fπ (Ai, Xi))

Yi

=

n∏
i=1

(1− π (Ai, Xi))
1−Yi (π (Ai, Xi))

Yi

=

n∏
i=1

(1− θ (Ai, Xi))
1−Yi (θ (Ai, Xi))

Yi

We took some more steps than neccessary in writing our likelihood function in order to
provide a better idea of the generalization of Gaussian Processes on parameter θ. under
weight-space view and function space view.

1. θ is a transformed linear combination of Ai, Xi. θ(Ai, Xi) = g(βAAi + βXXi)
where g is some function transformation of the linear combination of Ai, Xi. ɬis
is in accordance with the weight-space view.

2. θ is a random variable. Specifically, f(θ) ∼ GP (0, g(A,X)) for some function f
on parameters. ɬis is in accordance with the function space view.

ǿ.ǽȀ Prior Distribution

Next, we place a prior distribution for our parameter π to be pπ. Traditionally, the
symbol π is used as the prior, but we already have π as our probability parameter
characterizing the Bernoulli distribution, so we will use the notation pπ as the prior. ɬe
interpretation here is that before any data has been collected, π = pπ.

ɬe prior for θ is
P (θ) = pπ

= expit(fpπ)
= P (f⃗π)

Traditionally, the prior fpπ is fit on some test data. For now, we keep the prior a simple
expression

47

ǿ.ǽȁ Posterior Distribution

ɬe posterior distribution is the product of likelihood and prior.

P (f⃗π | Y ,X,A) =
P (Y |f⃗π,X,A)P (f⃗π)

P (Y | X,A)

∝ P
(
Y | f⃗π,X,A

)
P
(
f⃗π

)
= P

(
Y | f⃗π

)
P
(
f⃗π

)
=

n∏
i=1

(1− expit fπ (Ai, Xi))
1−Yi (expit fπ (Ai, Xi))

Yi fpπ

ǿ.ǽȂ Marginal Likelihood

ɬe marginal likelihood is the product of likelihood and prior integrated over all possible
Gaussian processes. ɬe marginal likelihood function here cannot be computed
analytically because the likelihood function is not a Gaussian distribution and the
principle of Normal-Normal conjugacy, as derived on page 21, does not apply. For there
to exist an analytic solution, we can express the marginal likelihood as a mathematical
expression that can easily be calculated.

However, we will still express a general representation of the marginal likelihood
according the principles of Bayesian inference.

f (Y | X,A, pπ) =

∫
f⃗π∈Ω

P
(
f⃗π | Y ,X,A, pπ

)
df⃗π

=

∫
f⃗π∈Ω

L(θ)× P (θ)df⃗π

=

∫
f⃗π∈Ω

n∏
i=1

(1− expit fπ (Ai, Xi))
1−Yi (expit fπ (Ai, Xi))

Yi fpπdf⃗π

Using the marginal likelihood, we can find the optimal p̂π by finding the optimal f̂pπ
which maximizes the marginal likelihood. p̂π is known as the maximum likelihood
estimator (MLE) for the prior probability pπ. However, remember that p̂π = expit(fpπ)
so the problem of optimizing pπ really become finding the best Gaussian Process fitted
on prior data. ɬen, as new data flows in, the posterior π becomes the new prior pπ.

48

ǿ.ǽȃ Predictive Distribution

Using the marginal likelihood, we can find a new posterior distribution given new data.
Let X∗ be new main effects data and A∗ be new action data. Note that the convention
we employ is to subscript ∗ as new data. If there are m new observations, we can simply
append it to the column vectors X and A

X =

 x⊤1
...
x⊤n

 , X∗ =

 x⊤n+1
...

x⊤n+m

 , A =

 A⊤
1
...

A⊤
n

 , A∗ =

 A⊤
n+1
...

A⊤
n+m


Now we can interpret P (fπ (X∗,A∗) | X,A,Y ,X∗,A∗, p̂π) as our generative model
for π distributed according to X,A,Y ,X∗,A∗, p̂π.

ɬe posterior distribution gives us the generative model of π, with which we could use to
predict new observations of Y ∗.

π∗ = P (Y ∗ = 1 | X,A,Y ,X∗,A∗)

To do so, we use our previously defined P (fπ (X∗,A∗) | X,A,Y ,X∗,A∗) . As stated
before, ɬe vector f⃗π is equal to ⟨fπ (A1, X1) , · · · , fπ (An, Xn)⟩. We also have the prior
values pπ.

P (Y ∗ | X,A,X∗, A∗) =

∫ ∞

−∞
P
(
Y ∗ | f⃗π,X∗,A∗

)
P
(
f⃗π | X,A

)
df⃗π

=

∫ ∞

−∞

m∏
i=1

P (Y∗i | fπ (X∗i) , X∗i, A∗i)P
(
f⃗π | X,A

)
df⃗π

=

∫ ∞

−∞

m∏
i=1

(1− π (A∗i, X∗i))
1−Y∗i (π (A∗i, X∗i))

Y∗i fpπfpπdf⃗π

=

∫ ∞

−∞

m∏
i=1

(1− expitfπ (A∗i, X∗i))
1−Y∗i (expitfπ (A∗i, X∗i))

Y∗i fpπdf⃗π

From here, we have come full circle, relate our generative model back to the
representation of our Bernoulli distribution:

Y ∗ |fπ(A∗,X∗),X,A ∼ Bern (expit (fπ(X∗,A∗))︸ ︷︷ ︸
π(X∗,A∗)

)

49

Our prediction of π(X∗, A∗) is equivalently the probability of test outcomes succeeding,
primarily Y∗ = 1, after inputting new data X∗ and A∗.

After deciding the new π values for new data, X∗, A∗, Y∗, we can repeat our calculations
of the likelihood function, prior distribution, and posterior distribution by using the
fitted π function produced by our Gaussian process as the prior function for new data
coming in over time, thus repeating the cycle of marginalization ad infinitum.

ǿ.ǽȄ Time-Varying Effects

ɬe motivation for such a Gaussian Process model is the obvious flexibility with which
the model updates the parameter π as data is being collected over time. Other than the
assumption of the target following a Bernoulli distribution, there does not exist any other
assumptions about the environment or the treatment effect, which makes the Gaussian
Process model highly generalizable in any binary outcome study.

Despite not making any assumptions about the environment or the treatment effect, any
changes in the environment or the treatment over time will be reflected in changing
values of the π as fitted under the Gaussian Process model, which makes the Gaussian
Process model highly sensitive to time-varying effects. A sensitive model to time-varying
effects has tremendous value in causal inference because it is able to better capture the
true state of the target at any given state in time, therefore providing greater precision
and richness in describing of treatment effects and main effects on the target.

However, while the Gaussian Process provides an extremely flexible and generalizable fit
of the parameters of binary outcomes, the computation of Gaussian Process for binary
outcomes will not be trivial because as we’ve noted, the marginal likelihood function
cannot be solved analytically. ɬe next section explores different options of computation
in best solving the problem of marginalization.

50

4

Computation

If mathematical models are the language with which we describe the world, then
computation is the tool with which we develop greater fluency in describing the world.

Ȁ.ǽ Analytic Solutions

Recall that we previously defined analytic solutions to be solutions that can be solved
mathematically in closed-form.

We’ve seen a good example of an analytic solution and a non-analytic solution when
solving the marginal distribution of parameters under a Gaussian regression setting and a
Gaussian binary outcomes setting, respectively.

Recall that in the regression setting, the data X,Y are both Gaussian-distributed.
Because the parameters are also Gaussian distributed, the marginalization of the posterior
distribution over all possible parameters yields a solution where the mean parameter can
be computed as a series of matrix operations, and the covariance a series of matrix

51

operations as well. Namely, the mean is 1
σ2
0
x∗A

−1Xy and the covariance is x⊤
∗ A

−1x∗.

f (Y ∗ | β,x∗, X,y) =

∫
P (Y∗ | x∗,β)P (β | X,y)dβ

=

∫
x∗βP (β | X,y)dβ

= N
(

1

σ2
0

x∗A
−1Xy,x⊤

∗ A
−1x∗

)

In contrast, in the binary outcomes setting, the target Y is Bernoulli-distributed. By
fitting a Gaussian Process on the probability parameter π of that Bernoulli distribution,
the marginal likelihood can best be simplified as an integration which cannot be
serialized into clear matrix operations. ɬere is no analytic solution under the binary
outcomes setting.

P (Y ∗ | X,A,X∗, A∗) =

∫ ∞

−∞
P
(
Y ∗ | f⃗π,X∗,A∗

)
P
(
f⃗π | X,A

)
df⃗π

=

∫ ∞

−∞

m∏
i=1

P (Y∗i | fπ (X∗i) , X∗i, A∗i)P
(
f⃗π | X,A

)
df⃗π

=

∫ ∞

−∞

m∏
i=1

(1− π (A∗i, X∗i))
1−Y∗i (π (A∗i, X∗i))

Y∗i fpπfpπdf⃗π

=

∫ ∞

−∞

m∏
i=1

(1− expit fπ (A∗i, X∗i))
1−Y∗i (expit fπ (A∗i, X∗i))

Y∗i fpπdf⃗π

When there exists no analytic solutions, approximate solutions are the next best thing.

Computational tools are useful for finding a solution both analytically and approximately.
While analytic solutions are more elegant for us to work with because of its direct
mathematical representation, to the computer, both analytic and approximate solutions
are just as good as long as there exists a clear, working algorithm to describe the
problem-solving procedures. Algorithms are procedures capable of being broken down
into units of computation and units of storage.

Ȁ.Ǿ Computational Complexity

A working algorithm is good as long as it’s computatable, that is, the algorithm can be
broken down into a series of operations which are guaranteed to terminate.

52

However, sometimes it’s not enough to describe the goodness of an algorithm by whether
the algorithm is computable. Some algorithms may take longer than other algorithms to
perform the same task, in which case, it’s clearly better to use the algorithm that takes
less time. To describe the degree as to which algorithms take longer, we introduce the
concept of computational complexity.

Computational complexity describes the worst-case runtime of a series of operations.
Computational complexity is typically expressed as a function f which maps a given
input n to the amount of resources needed to compute n, denoted f(n).

Typically, the resource of interest is the time needed to run an algorithm, so f(n) is used
to describe the running time, the number of steps needed per unit of input. Because each
step is assumed to atomically take one unit of time, there exists a direct one-to-one
relationship between the total number of steps in an algorithm and the total amount of
time in an algorithm.

For any complex algorithm, it is simply too much book-keeping to describe the exact
number of steps. Rather, it is just as useful to describe the rate of growth of the steps of
an algorithm as the input n increases. ɬis is because any algorithm is bottlenecked by
the longest step which interacts with the input of length n. To describe the efficiency of
any algorithm then just requires describing the rate of growth of that bottleneck as n
increases.

To do so, the notation O(g(n)) is used, where O denotes the asymptotic upper bound on
the rate of growth of an algorithm. We say that f(n) = O(g(n)) if there exists a
constant ε > 0 and a number N such that for all n > N :

f(n) ≤ εg(n)

From here, we can conclude that any algorithm that takes a polynomial number of steps
is bounded by the term with the highest order.

apn
p + ap−1n

p−1 + · · ·+ a0 = O(np)

ɬis is because there will always exist a constant ε > 0 and large number N such that for
all n > N, f(n) ≤ εg(n). One could show this result by setting ε = ap + 1.

lim
n→∞

apn
p + ap−1n

p−1 + · · ·+ a0
εnp

= lim
n→∞

apn
p

εnp

=
ap

ap + 1

< 1

53

ɬerefore, for algorithms whose running time can be expressed in a polynomial, the
computational complexity is O(np) where p is the highest order, or degree, of the
polynomial. ɬe lower the value of p, the more efficient the algorithm.

Ȁ.ǿ Matrix Operations

Having formalized computational complexity using big-O notation, we can proceed to
analyze the running time of matrix operations.

Recall that under big-O notation, O(g(n)) describes the upper bound of an algorithm
with respect to input of size n. ɬroughout our discussion of Gaussian Processes, the
inputs have always existed as data that have been organized in a matrix or column vector.
Because all computation is performed with respect to a design matrix, any analysis of
computational complexity should be performed with respect to this design matrix. Recall
the design matrix X contains a dimension of n× p (n rows for the number of
observations and p columns for the number of features).

X =


X11 . . . X1j . . . X1p
...

...
...

Xi1 . . . Xij . . . Xip
...

...
...

Xn1 . . . Xnj . . . Xnp


An algorithm that will just read in values from the design matrix will have runtime
O(np) because the algorithm will need to have at least a single pass through all np
elements inside the matrix.

An algorithm that tries to multiply the design matrix with its transpose to obtain XX⊤

using the traditional matrix multiplication approach will have runtime that is O(n2p)
because each element in the new matrix XX⊤ is a dot product between two vectors of
length p, so performing the dot product is O(p). ɬere are n2 elements in the matrix
XX⊤ and therefore the runtime is O(n2p).

Similarly, an algorithm that tries to multiply the transpose of the design matrix with
itself to obtain X⊤X using the traditional matrix multiplication approach will have
runtime that is O(np2) because each element in the new matrix X⊤X is a dot product
between two vectors of length n, so performing the dot product is O(n). ɬere are p2
elements in the matrix X⊤X and therefore the runtime is O(np2).

54

Ȁ.Ȁ Kernel Operations

Recall that the kernel, or covariance function, is a function of random variables,
outputting a covariance matrix once the random variables have crystallized into
observations.

In our definition of a valid kernel function on page 25, we stated that the covariance
matrix produced by the kernel using the observations as inputs is positive semi-definite.
ɬe mathematical justification is that kernel functions must exist as inner products
between random variables under any Hilbert space. In other words, the kernel functions
should exist as a measure of distance between two variables, and distance cannot be
negative.

A matrix Σ of dimension n× n is positive semi-definite if for all vectors v ∈ Rn,
Q(v) = v⊤Kv ≥ 0. A stronger property is positive-definite where for all vectors v ∈ Rn

and v ̸= 0, Q(v) = v⊤Kv > 0.

Alternatively, another definition typically used in a linear algebra context is that a matrix
Σ is positive semi-definite if it is a symmetric matrix with all nonnegative eigenvalues
λ ≥ 0. A positive definite matrix will have all positive eigenvalues λ > 0.

To find all the eigenvalues, one would need to find all n solutions a characteristic
equation.

det(Σ− λI)x = 0 =⇒ anλ
n + an−1λ

n−1 + · · ·+ a0 = 0

Alternatively, we can check positive-definiteness in a matrix by computing the Cholesky
decomposition.

Cholesky Decomposition

ɬe Cholesky decomposition decomposes a positive semi-definite matrix into a
lower-triangular matrix and a conjugate transpose. ɬat is, for any positive semi-definite
matrix Σ, there exists a lower-triangular matrix L such that the following relationship
holds:

Σ = LL⊤

55

Lower triangular matrix L can be written as follows:

L =


ℓ1,1 0
ℓ2,1 ℓ2,2

ℓ3,1 ℓ3,2
. . .

...
...

ℓn,1 ℓn,2 . . . ℓn,n−1 ℓn,n


ɬe runtime for computing the Cholesky decomposition is typically O(n3), where n is
the dimension of the columns or the dimension of rows. Either is fine because Σ must be
a square matrix in order to be positive semi-definite. A matrix is square if the dimensions
are n× n.

ɬe runtime for the Cholesky algorithm is O(n3) because it is incorporates similar
techniques to Gaussian elimination. For every column i, there will be a maximum of
n(n−1)

2 = O(n2) operations among the n rows via swapping, multiplication, or addition
so that the i-th column has leading 1’s in Gaussian elimination. ɬen, going through
each of the n columns, there exists O(n3) runtime.

Cholesky Algorithm

Algorithm 2: Cholesky Algorithm
Initialize Σ(1) := Σ
Loop ∀i ∈ [1, · · · , n]:

Σ(i) =

 Ii−1 0 0
0 Σi,i b∗

i

0 bi B(i)


where Ii−1 denotes the identity matrix of dimension i− 1

Initialize Li :=

 Ii−1 0 0

0
√

Σi,i 0
0 1√

Σi,i
bi In−i


Update Σ(i+1) =

 Ii−1 0 0
0 1 0

0 0 B(i) − 1
Σi,i

bib
∗
i


where Σ(i) = LiΣ

(i+1)L∗
i

Set L := L1L2 . . .Ln

Return L

56

At each step of the Cholesky Algorithm, the operation is bottlenecked by the operation
B(i) − 1

Σi,i
bib

∗
i , which takes O(n2). Since there are n iterations, the total runtime is

O(n3).

Ȁ.ȁ Approximation Algorithms

Having formalized computational complexity and familiarized ourselves with the
runtime of matrix operations, we can return to solving the problem of fitting a Gaussian
Process on the probability parameter π of a Bernoulli distribution, as the marginal
likelihood of binary outcomes from fitted values cannot be solved analytically. For this
problem, approximation algorithms are used instead.

ɬe essence of an approximation algorithm is to repeat steps until the difference between
the approximate solution satisfies the specifications of the problem within a margin of
error.

Unlike deterministic algorithms, it is hard to bound the runtime of approximation
algorithms because it is hard to bound the number of steps it takes for convergence,
defined to be when the approximate solution satisfies the specifications of the problem
within a margin of error.

Instead, experiments are needed to demonstrate the performance of approximation
algorithms, usually with respect to a certain input. ɬe problem that we face is
identifying a good enough integration of the marginal likelihood of binary outcomes,
where the input is a provided design matrix and target observations.∫ ∞

−∞

m∏
i=1

(1− expit fπ (A∗i, X∗i))
1−Y∗i (expit fπ (A∗i, X∗i))

Y∗i fpπdf⃗

If we were to have found a good approximation algorithm for this integration, in the
sense that it takes relatively few steps to achieve convergence, we cannot necessarily
generalize the approximation algorithm is good enough to solve all other marginalization
problems where the input or the length of input n changes. In contrast, a deterministic
algorithm is always guaranteed to perform well with respect to the input, no matter what
choice of inputs and what length of input n.

57

Ȁ.Ȃ P vs. NP

Approximation algorithms are commonly used to solve NP -hard problems, which are
problems that take polynomial time to verify correctness. In contrast, P problems are
problems that take polynomial time to solve correctly. While there has been no proof yet
that P = NP nor is there proof that P ̸= NP , the lack of deterministic polynomial
algorithms and the reliance on approximation algorithms to solve NP -hard problems
support the idea that P ̸= NP.

In solving the marginalization problem using computation, we can examine three
approaches: Laplace Approximation, Expectation-Propogation, and Markov chain
Monte Carlo.

From here, we will employ the notation f in lieu of fπ so as to generalize the algorithms
for any parameters.

Ȁ.ȃ Laplace Approximation

Performing a Laplace Approximation consists of performing a second order Taylor
expansion of log p(f |X, y) around the maximum of the posterior, denoted here as
q(f | X,y):

q(f | X,y) = N
(
f | f̂ , A−1

)
∝ exp

(
−1

2
(f − f̂)⊤A(f − f̂)

)
where f̂ = argmaxf p(f |X, y) and A is the Hessian of the negative log posterior at the
point f̂ . Explicitly, A is written as

A = −∇∇ log p(f | X,y)

Derivation

Under Bayes’ ɬeorem, the posterior is p(f | X,y) = p(y|f)p(f |X)
p(y|X) and the marginal

distribution p(y | X) is independent of f.

We take the logarithm of the posterior. ɬe rationale for taking logs is so that the
likelihood function can be expressed in sums as opposed to products, thus enabling easier

58

computation. Moreover, we observe that optimal values of f̂ along p(f | X,y) will stay
optimal under log p(f | X,y) and vice versa.

We can then perform the second-order Taylor expansion as follows. ɬe Taylor
expansion gives us a good approximation of any function as a polynomial with higher
order terms. However, higher order terms tend to converge to zero because the
denominator is a factorial function, thereby scaling quicker than the denominator of
higher-order powers.

log p(f | X,y) = log p(y | f) + log p(f | X)

= log p(y | f)− 1

2
f⊤K−1f − 1

2
log |K| − n

2
log 2π

To find optimal values, we are looking for values of f which are a criticial point, having
no derivative. Taking the first derivative of log p(f | X,y) with respect to f, we have

∇ log p(f | X,y) = ∇ log p(y | f)−K−1f

We can verify the second derivative of log p(f | X,y) with respect to f is negative,
indicating maximality at f .

∇∇ log p(f | X,y) = ∇∇ log p(y | f)−K−1

If we were to solve for maximum f̂ , we would set f̂ = K(∇ log p(y | f̂)) but because
∇ log p(y | f̂) cannot be solved analytically, Newton’s method is used to approximate
∇ log p(y | f̂).

f̂ = f − (∇∇ log p(y | f))−1∇ log p(y | f)

= f +
(
K−1 −∇∇ log p(y | f)

)−1 (∇ log p(y | f)−K−1f
)

=
(
K−1 −∇∇ log p(y | f)

)−1
(−∇∇ log p(y | f)f +∇ log p(y | f))

ɬe posterior is then modeled accordingly under this numerical approximation of f̂ :

q(f | X,y) = N
(
f̂ ,
(
K−1 −∇∇ log p(y | f)

)−1
)

59

Algorithm

Algorithm 3: Laplace Approximation
Initialize Σ (covariance matrix), Y (targets), p(y | f) (likelihood function)
Initialize f := 0
Repeat (Newton iteration)
W := −∇∇ log p(y | f),
L := cholesky

(
I +W

1
2ΣW

1
2

)
b := W f +∇ log p(y | f)
a := b−W

1
2L⊤\

(
L\
(
W

1
2Σb

))
f := Σa

until convergence with objective −1
2a

⊤f + log p(y | f)
log q(y | X, θ) := −1

2a
⊤f + log p(y | f)−

∑
i logLii return: f̂ := f (post.

mode) , log q(y | X, θ) (approx. log marg. likelihood)

An important point to note is that we set B = I +W
1
2ΣW

1
2 because it is not always

guarenteed that W
1
2ΣW

1
2 is positive-definite. Adding the identity matrix ensures that

I +W
1
2ΣW

1
2 is positive-definite when applying the Cholesky decomposition.

Finally, while we cannot analyze the runtime of this algorithm using big-O notation,
since this algorithm is an approximation algorithm, we can make a statement about its
convergence property, which is when
|12a

⊤f + log p(y | f)(i+1) − 1
2a

⊤f + log p(y | f)(i)| < ε for some ε > 0. In other words,
the algorithm for Laplace approximation terminates in i+ 1 steps once the difference
between the predicted objective function under the i+ 1 iteration and the predicted
objective function under the i iteration is less than some specified ε value. In
approximation algorithms, the convergence property is essential for describing runtime
or whether the algorithm terminates at all.

60

Ȁ.Ȅ Expectation-Propagation

ɬe Expectation-Propagation algorithm approximates the posterior p(f | X,y) by
q(f | X,y) under the following relationship:

q(f | X,y) =
1

ZEP
p(f | X)

n∏
i=1

ti

(
fi | Z̃i, µ̃i, σ̃

2
i

)
= N (µ,Σ)

Breaking the above equation down, we identify that p(f | X) is the prior and∏n
i=1 ti

(
fi | Z̃i, µ̃i, σ̃

2
i

)
is the likelihood. ti is a local likelihood of fi around fitted

Z̃i, µ̃i, σ̃
2
i values. In other words, we can approximate p (yi | fi) using

ti

(
fi | Z̃i, µ̃i, σ̃

2
i

)
to obtain the following relationships:

p (yi | fi) = ti

(
fi | Z̃i, µ̃i, σ̃

2
i

)
= Z̃iN

(
fi | µ̃i, σ̃

2
i

)
Finally, ZEP = q(y | X), which is the approximation of p(y|X).

Z = p(y | X)

=

∫
p(f | X)

n∏
i=1

p (yi | fi) df

ɬe Expectation-Propagation approach can be thought of as constantly alternating
between approximating the posterior and approximating the marginal likelihood. To
make the approximation of the posterior q(f | X,y), the Expectation-Propagation
algorithm holds variables approximated from the marginal likelihood to be fixed.
Likewise, when approximating the marginal likelihood q(y | X), the
Expectation-Propagation algorithm holds variables approximated from the posterior to
be fixed. By “propagating” these fixed values, the integration of the marginal and
posterior distributions become analytic as opposed to non-analytic, thereby allowing us
to identify numerical values.

Expectation-Propagation is an example of variational inference, which minimizes the
Kullback–Leibler divergence between two probability distributions. ɬe Kullback-Leibler
divergence is defined to be the following integral:

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx

61

Derivation

Using the notation µ̃i and σ̃2
i as the local likelihood approximations under the marginal

distribution Z̃ = p (yi | Xi), and µ and Σ for the parameters of the approximate
posterior, we can optimize the likelihoods sequentially, leaving out the i-th observation.
ɬis is often referred to as a cavity distribution.

q−i (fi) ∝
∫

p(f | X)
∏
j ̸=i

Lj

(
fj | Z̃j , µ̃j , σ̃

2
j

)
dfj

ɬen, to find the exact likelihood, we multiply the cavity distribution by the likelihood of
the i-th observation:

q̂ (fi) ≃ q−i (fi) p (yi | fi)

ɬe cavity distribution has the following parameters:

q−i (fi) = N
(
fi | µ−i, σ

2
−i

)
where µ−i = σ2

−i

(
σ−2
i µi − σ̃−2

i µ̃i

)
, and σ2

−i =
(
σ−2
i − σ̃−2

i

)−1
.

Multiplying the cavity distribution and the likelihood, we have updated parameters for
the marginal distribution, from which we can repeat the steps once more until
convergence.

µ̃i = σ̃2
i

(
σ̂−2
i µ̂i − σ−2

−i µ−i

)
, σ̃2

i =
(
σ̂−2
i − σ−2

−i

)−1

Z̃i = Ẑi

√
2π
√

σ2
−i + σ̃2

i exp
(
1
2 (µ−i − µ̃i)

2 /
(
σ2
−i + σ̃2

i

))

62

Algorithm

Algorithm 4: Expectation-Propagation
inputs: Σ (covariance matrix), y (targets)
Initialize ν̃ := 0, τ̃ := 0,Σ := K,µ := 0
Repeat

for i := [1, · · · , n] do

τ−i := σ−2
i − τ̃i

ν−i := σ−2
i µi − ν̃i

∆τ̃ : = σ̂−2
i − τ−i − τ̃i and τ̃i := τ̃i +∆τ̃

ν̃i :σ̂
−2
i µ̂i − ν−i

Σ := Σ−
(
(∆τ̃)−1 +Σii

)−1
sis

⊤
i

µ := Σν̃

end for

L := cholesky
(
In + S̃

1
2KS̃

1
2

)
V := L⊤\S̃

1
2K

Σ := K − V ⊤V and µ := Σν̃

until convergence
compute logZEP (approximate log marginal likelihood)
Return: ν̃, τ̃ (natural site parameters), logZEP

ɬe Expectation-Propagation algorithm has the convergence property of terminating
when |Σ(i+1) − Σ(i)| < ε and

∣∣µ(i+1) − µ(i)
∣∣ < ε for some ε > 0. In other words, the

algorithm for Expectation-Propagation terminates in i+ 1 steps once the difference
between the predicted parameters of the marginal distribution under the i+ 1 iteration
and the predicted parameters of the marginal distribution the i iteration are both less
than some specified ε value.

Ȁ.ȅ Markov chain Monte Carlo

ɬe Markov chain Monte Carlo (MCMC) can be thought of as a brute-force solution
that does not necessarily guarantee quick convergence in context of our problem.

63

Definition

Given a random experiment and event A, a Monte Carlo estimate of P (A) is obtained
by repeating a random experiment many times, taking the proportion of trials in which A
occurs as an approximation for P (A).

More formally, given a probability distribution π and a function f, we are want to
calculate or estimate the expected value of f(x) for X ∼ π. We are trying to find the
expectation E[f(x)] but we can’t evaluate X ∼ π analytically.

Instead we can construct an ergodic Markov Chain with π as the limiting distribution,
also known as an invariant.

Markov Chain

A Markov Chain is a sequence of Random Variables that follow the Markov property:

P (XN = k|X0 = x0, · · · , XN−1 = xn−1) = P (XN = k|XN−1 = xn−1)

Ergodic

A Markov Chain is ergodic if it is

1. Irreducible (every state can get back to itself)

2. Aperiodic (the greatest common factor of all the steps needed to get back to the
original state is 1)

3. Positive Recurrent (the expected return time to get back to the original state is not
zero)

Algorithm

1. Start X0 = i for i

2. Run chain for a long time (N >> 1)

64

3. ɬen, we can obtain Xi ∼ π

4. Treat Xij to be drawn from π

In theory, we should get something that’s very close to the true value π as as a result from
our simulation, but it is often not clear how large N is needed to do so.

Ȁ.ǽǼ Testbed

To analyze approximation algorithms like Laplace Approximation,
Expectation-Propogation, and Markov chain Monte Carlo, it is useful to create a testbed
of data generated from a known model. ɬe known model which generates the testbed is
known as the ground truth.

ɬen to test performance of these models, one can define a loss function between the
predicted values of the parameter of the model (θ̂) and the ground truth values of the
parameter θ. ɬe loss function is typically defined to be the L2 loss function. More
performant models have smaller L2 values.

L2 =
n∑

i=1

(
θi − θ̂i

)2
For Gaussian Processes on binary outcomes, to model the ground truth, we can fit a Beta
distribution on the probability parameter π. ɬen, as we model π changing over time, we
can update the parameters of the Beta distribution to produce a different ground truth π
parameter. ɬe ground truth π parameter can then be compared against fitted π̂ from a
Gaussian Process.

Beta-Binomial Conjugacy

ɬe Beta distribution is a good prior distribution to describe a probability parameter p.
ɬis is because we can recall the beta distribution to have the probability density function
(PDF):

f(x) =
xα−1(1− x)β−1

B(α, β)
where B(α, β) = Γ(α)Γ(β)

Γ(α+ β)

65

If α = 1 and β = 1, it is evident that the PDF of the Beta distribution becomes the PDF
of the Uniform distribution from [0, 1].

f(x) = 1

ɬus, it is often a good choice to place a Beta prior on uniform random variables with the
prior

p ∼ Beta(a, b)

ɬen, the distribution of our binary outcomes under the probability p parameter
collectively can be represented as a Binomial distribution:

Y | p ∼ Bin(n, p)

By focusing only on the terms that involve our probability parameter p, we multiply the
prior and the likelihood to get the posterior.

py(1− p)n−y · pa−1(1− p)b−1 = pa+y−1(1− p)b+n−y−1.

Hence, using Bayes’ rule once again, we have show that the posterior distribution is still
Beta, and the parameters of the Beta update in a simple way:

p | (Y = y) ∼ Beta(a+ y, b+ n− y)

Ȁ.ǽǽ Software

ɬe Python package GPflow utilizes Markov chain Monte Carlo – there is no
Expectation-Propagation as a Variational Inference option, nor is there Laplace
approximation. In contrast, the Python package GPy uses Expectation-Propagation and
the Python package sklearn uses Laplace Approximation. Some preliminary testbeds
have been generated and tested against Laplace Approximation,
Expectation-Propogation, and Markov chain Monte Carlo using these packages, but no
conclusive commentary can be made yet about performance of Gaussian Process models
on binary outcomes under these different computational approaches.

66

5

Flexibility

Gaussian Processes fitted on changing values of π over time provide greater flexibility in
describing the effects of input variables on a target variable across time. ɬis flexibility
has certain desirable qualities in context of causal inference, decision theory, and bandit
learning, giving us greater control and structure in how we model change across all these
fields.

ȁ.ǽ Decision Theory

Decision theory examines the consequences of actions along some defined loss function.
Formally defined, there exists five components to decision theory:

1. Parameter θ defining the environment: ɬe true parameter which characterizes
the distribution of random variable X

2. Data D: Crystallized observations of random variable X

3. Objective g(θ): ɬe estimand that we try to estimate. If the objective is not the
true parameter itself, it is a function of the true parameter θ we are trying to
estimate

4. Decision rule δ(X): How we decide to estimate g(θ)

67

5. Loss function L(θ, δ): ɬe regret of our decision between our estimated g(θ) and
the true value of g(θ) as chosen by our decision rule

ɬe goal in decision theory is to identify the most optimal choice an agent can make by
examining the consequences of actions, known as a decision rule, that the agent can take.

Optimal decision-making is a highly coveted skill in life, which explains for its
popularity across many disciplines, from economics to psychology to medicine. By being
able to break down optimal decision-making using the language of mathematics, there
can be better structure in thinking about this highly complex and open-ended task.

Inference

On a fundamental level, decision theory can be perceived as an inference problem. ɬe
goal of inference is to construct good models that describe the truth based on observed
data. Similarly, the goal of decision theory is to make good decisions grounded in truth
based on observed data.

To make this connection more explicit, consider a decision theory problem where an
agent performs an action that estimates the mean θ of the random variable X where
X ∼ N (θ, 1) and observes a new data point xi after performing the action. We can then
define the components of our decision theory problem as follows:

1. Parameter θ = µ

2. Data D = {x1, · · · , xn} (where n is the number of observed data before
performing action)

3. Objective g(θ) = θ

4. Decision rule δ(X) =
∑n

i=1X

5. Loss function L(θ, δ) = (δ(X)− θ)2

Seen here, the decision rule is taking the expected value of observed data, which under
long periods of time, should converge to the true mean parameter due to the law of large
numbers. ɬus, over long periods of time, as more data gets collected, the loss function
approaches 0, illustrating that this decision achives optimality under the loss function.

68

ȁ.Ǿ Risk Function

To be more structured in how we think about a decision’s goodness, we introduce a risk
function R(θ, δ), which evaluates a decision rule’s success over a large number of
experiments with fixed parameter θ.

If we observe X many times independently, we should expect to see the average loss
function over all possible parameters θ under decision rule δ to converge to the risk
R(θ, δ):

R(θ, δ) = E[L(θ, δ(X))]

=

∫
L(θ, δ(x))Pθ(dx)

If our decision rule is not fixed, but probabilistic, we would need to average the loss
function under all possible types of decisions, in addition to all possible true parameters θ
as befire:

R(θ, δ) =

∫∫
L(θ, δ)Pδ|X(dδ | x)Pθ(dx).

Admissibility

ɬe risk function gives us a useful metric in comparing different decision rules. ɬe
language for comparing two decision rules δ, δ′ ∈ D is through admissibility.

Before defining admissibility, let’s consider what it means for a decision rule δ′ to be
better than δ. We say that δ′ dominates (is better) than δ if for all possible parameter
values the risk function of δ′ is lower than or equal to δ where at some parameter θ there
exists a stricly lower risk function value at δ′ compared to the risk function value at δ.

Dominating Decision Rule

δ′ dominates δ if
∀θ ∈ Θ : R

(
θ, δ′

)
≤ R (θ, δ)

∃θ0 ∈ Θ : R
(
θ0, δ

′) < R (θ0, δ)

A decision rule δ is admissible in the class of decision rules D if it is not dominated by any
other decision rule in D. In other words, there does not exist a decision rule δ′ ∈ D that
dominates δ.

69

ɬe opposite of admissible is inadmissible. A decision rule is inadmissible if there exists
another decision rule that dominates it.

An important point of note is that admissibility is a relationship between two different
decision rules from the same class D. If there only exists one decision rule δ ∈ D, then
by default δ is admissible, because there exists no other decision rules in the same class D
that dominate δ.

Moreover, admissibility is always taken with respect to a risk function, which is the
expected loss function under all possible θ. ɬus, if the loss function changes, the risk
function changes, and so too the properties of admissibility.

Optimality

In mathematics and statistics, we always define optimality with respect to a loss function.
For example, a fitted value from our model, or an estimate, is optimal if it achieves the
minimum value according to a defined loss function. ɬe loss function is usually convex1, 1convex

functions
are
functions
whose
second
derivatives
are positive

so as to actually have a minimum value. If it were concave2, then the function would

2concave
functions
are
functions
whose
second
derivatives
are negative

have many minimum values that approach negative infinite, and there would be nothing
to optimize for! ɬus, the choice of a well-defined loss function is a major component in
defining optimality.

It may be tempting to use the risk function and definitions of admissibility to define an
optimal decision rule, but it is critical to observe that admissibility does not imply
optimality. All we know from our definition of admissibility is that there exists certain
decision rules δ that are inadmissible (not optimal) and certain decision rules δ′ that are
admissible (potentially optimal). At best, we can winnow out the inadmissible decision
rules to have ourselves a smaller class of potentially optimal, admissible decision rules.

Optimality of a decision rule is conditional on both the loss function L(θ, δ) and the
parameter θ. It’s clear that decision rules with lower loss function values are more
optimal, but it’s never guaranteed that there exists a globally optimal decision rule with
lowest loss function value under all possible θ.

Moreover, we have to remember that optimality of a decision rule is always taken in
context of a class of decision rules D. If δ was the only decision rule in D, then there
would be no other decision rule we can follow other than δ, and therefore by default, δ
must be optimal! ɬus, in decision theory, we must be explicit in our definition of the
state space of all decision rules D.

70

Minimaxity

Some alternative metrics have emerged in decision theory to describe desirable
characteristics of decision rules. One such metric is minimaxity.

ɬe decision rule δM is minimax within a class of rules D if

δM ∈ argmin
δ∈D

max
θ∈Θ

R(θ, δ)

ɬe interpretation of a minimax δM is that it is the decision rule whose largest possible
risk under any parameter θ ∈ Θ is the smallest out of all other decision rules in D.

ɬe steps for finding the decision rule δM that is minimax is a two-step process, as its
definition implies:

1. For all decision rules δ̃ ∈ D, find θ∗(δ̃) := argmaxθ∈ΘR(θ, δ̃).

2. For all pairs of of (δ̃, θ∗(δ̃)), find δM ∋ argminδ∈D R
(
θ∗(δ̃), δ̃

)
.

ȁ.ǿ Flexibility in Decision Theory

Decision theory with fixed parameters can be limiting in many ways, because parameters
in the real-world are often not fixed. Flexible modeling of the parameters changing over
time is ultimately a relaxation of the assumption in decision theory that parameters must
be fixed. ɬis has the desirable quality in making any decision theory problem more
generalizable to the ground truth where parameters are changing as a consequence of a
changing world.

ȁ.Ȁ Reinforcement Learning

Reinforcement Learning can be thought of as an extension of problems derived from
decision theory. While the goal of decision theory is to make optimal decisions over time,
the goal of reinforcement learning is to reinforce actions that maximize rewards over
time, and thus both reinforcement learning and decision theory share the same ideas in
principle.

71

What is different between the two is that reinforcement learning adopts a different
formulation of the problem, using policies rather than decision rules and rewards instead
of an objective. In reinforcement learning, there is more flexibility in defining the
objective (because reward functions can change over time), less assumptions about the
decision rules (agents can choose to engage in on-policy learning or off-policy learning,
i.e. change between decision rules), and less assumptions about the environment (the
environment need not stay fixed with a true parameter).

ɬe lack of assumptions about the decision rules and the environment speaks to the
focused idea in reinforcement learning that the primary interest is the interaction
between decision rules and the environment in maximizing rewards, and therefore
having a model of the decision rule and the environment is a sufficient, but not necessary,
condition. It is perfectly fine, and often more computationally efficient, for our agent to
maximize rewards without knowing anything about the environment at all.

ȁ.ȁ Bandit Learning

Bandit learning is a subproblem in the field of reinforcement learning describing an
agent interacting with the environment by choosing one of k actions, after which a
reward conditioned on the agent’s actions at any time point (At) is received by the agent.

Formally, each of the k actions has an expected reward (Rt) given that that action (At) is
selected, known as the value. ɬe value then of an arbitrary action a, denoted q∗(a), is
the expected reward given that a is selected:

q∗(a)
.
= E [Rt | At = a]

ɬe bandit’s goal in interacting with the environment is to maximize rewards. Although
the bandit does not know the action values with certainty, it can estimate the value of
action a at time step t by defining its own function Qt(a). A good Qt(a) function is as
close to q∗(a) as possible.

It is the bandit’s best interests to learn q∗(a), the true value function over successive
interactions with the environment. With a flexible Gaussian Process model on Qt(a), the
bandit can come better learn q∗(a), even if the value function q∗(a) changes over time.

72

ȁ.Ȃ Towards Greater Flexibility

From here, we begin to see the potential for Gaussian Processes to be rather limitless.
Gaussian Processes have great flexibility in modeling parameters and functions, provided
that the computation converges quickly. For future exploration, different kernels,
hyperparameter-tuning, and cross-validation can all be studied, providing many more
ways of increasing the flexibility of Gaussian Processes in describing changing parameters
in a changing world. As computation continues to accelerate and data continues to
aggregate, the flexible power of Gaussian Processes will become more pronounced,
ultimately helping us to better navigate the constant change in our lives.

73

References

[1] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning, English. 2019, OCLC: 1178958074, isbn: 9780262256834.
[Online]. Available: http://www.vlebooks.com/vleweb/product/
openreader?id=none&isbn=9780262256834 (visited on 03/26/2021).

[2] T. H. Cormen, Ed., Introduction to algorithms, 3rd ed. Cambridge, Mass:
MIT Press, 2009, OCLC: ocn311310321, isbn: 9780262033848
9780262533058.

[3] J. Erickson, Algorithms, English. 2019, OCLC: 1135409183, isbn:
9781792644832.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction,
Second edition, ser. Adaptive computation and machine learning series.
Cambridge, Massachusetts: ɬe MIT Press, 2018, isbn: 9780262039246.

[5] S. M. Kay, Fundamentals of statistical signal processing, ser. Prentice Hall
signal processing series. Englewood Cliffs, N.J: Prentice-Hall PTR, 1993,
isbn: 9780133457117 9780135041352 9780132808033.

[6] R. P. Dobrow, Introduction to stochastic processes with R. Hoboken, New
Jersey: John Wiley & Sons, 2016, isbn: 9781118740729 9781118740705.

[7] E. P. Liski, “An introduction to categorical data analysis, 2nd edition by
alan agresti,” en, International Statistical Review, vol. 75, no. 3,
pp. 414–414, Dec. 2007, issn: 03067734. doi:
10.1111/j.1751-5823.2007.00030_6.x. [Online]. Available:
http://doi.wiley.com/10.1111/j.1751-5823.2007.00030_6.x
(visited on 03/26/2021).

74

http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780262256834
http://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780262256834
https://doi.org/10.1111/j.1751-5823.2007.00030_6.x
http://doi.wiley.com/10.1111/j.1751-5823.2007.00030_6.x

[8] A. Agresti, Foundations of linear and generalized linear models, ser. Wiley
series in probability and statistics. Hoboken, New Jersey: John Wiley &
Sons Inc, 2015, isbn: 9781118730058 9781118730300.

[9] A. N. Shiryaev, Probability, ser. Graduate Texts in Mathematics. New
York, NY: Springer New York, 1996, vol. 95, isbn: 9781475725414
9781475725391. doi: 10.1007/978-1-4757-2539-1. [Online].
Available:
http://link.springer.com/10.1007/978-1-4757-2539-1 (visited
on 03/26/2021).

[10] I. Ntzoufras and C. Tarantola, “Conjugate and conditional conjugate
Bayesian analysis of discrete graphical models of marginal independence,”
en, Computational Statistics & Data Analysis, vol. 66, pp. 161–177, Oct.
2013, issn: 01679473. doi: 10.1016/j.csda.2013.04.005. [Online].
Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0167947313001357
(visited on 03/26/2021).

[11] S. L. Zeger and K.-Y. Liang, “An overview of methods for the analysis of
longitudinal data,” en, Statistics in Medicine, vol. 11, no. 14-15,
pp. 1825–1839, 1992, issn: 02776715, 10970258. doi:
10.1002/sim.4780111406. [Online]. Available:
http://doi.wiley.com/10.1002/sim.4780111406 (visited on
03/26/2021).

[12] L. Wasserman, All of nonparametric statistics, ser. Springer texts in statistics.
New York: Springer, 2006, isbn: 9780387251455.

[13] Hyun-Chul Kim and Z. Ghahramani, “Bayesian gaussian process
classification with the em-ep algorithm,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 12, pp. 1948–1959, Dec.
2006, issn: 0162-8828, 2160-9292. doi: 10.1109/TPAMI.2006.238.
[Online]. Available:
http://ieeexplore.ieee.org/document/1717455/ (visited on
03/26/2021).

[14] Fei Cheng, Jiangsheng Yu, and Huilin Xiong, “Facial expression
recognition in jaffe dataset based on gaussian process classification,” IEEE
Transactions on Neural Networks, vol. 21, no. 10, pp. 1685–1690, Oct.
2010, issn: 1045-9227, 1941-0093. doi: 10.1109/TNN.2010.2064176.
[Online]. Available:

75

https://doi.org/10.1007/978-1-4757-2539-1
http://link.springer.com/10.1007/978-1-4757-2539-1
https://doi.org/10.1016/j.csda.2013.04.005
https://linkinghub.elsevier.com/retrieve/pii/S0167947313001357
https://linkinghub.elsevier.com/retrieve/pii/S0167947313001357
https://doi.org/10.1002/sim.4780111406
http://doi.wiley.com/10.1002/sim.4780111406
https://doi.org/10.1109/TPAMI.2006.238
http://ieeexplore.ieee.org/document/1717455/
https://doi.org/10.1109/TNN.2010.2064176

http://ieeexplore.ieee.org/document/5551215/ (visited on
03/26/2021).

[15] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z. Wen, A tutorial
on thompson sampling, English. Norwell, MA: Now Publishers, 2018,
OCLC: 1195825895, isbn: 9781680834710. [Online]. Available: http:
//public.eblib.com/choice/PublicFullRecord.aspx?p=6309027
(visited on 03/26/2021).

[16] B. Szabó, A. W. van der Vaart, and J. H. van Zanten, “Frequentist
coverage of adaptive nonparametric Bayesian credible sets,” The Annals of
Statistics, vol. 43, no. 4, Aug. 2015, issn: 0090-5364. doi:
10.1214/14-AOS1270. [Online]. Available:
https://projecteuclid.org/journals/annals-of-
statistics/volume-43/issue-4/Frequentist-coverage-of-
adaptive-nonparametric-Bayesian-credible-sets/10.1214/14-
AOS1270.full (visited on 03/26/2021).

[17] N. Tishby and N. Zaslavsky, “Deep learning and the information
bottleneck principle,” in 2015 IEEE Information Theory Workshop (ITW),
Jerusalem, Israel: IEEE, Apr. 2015, pp. 1–5, isbn: 9781479955244
9781479955268. doi: 10.1109/ITW.2015.7133169. [Online]. Available:
http://ieeexplore.ieee.org/document/7133169/ (visited on
03/26/2021).

[18] P. Diaconis and D. Ylvisaker, “Conjugate priors for exponential families,”
The Annals of Statistics, vol. 7, no. 2, Mar. 1979, issn: 0090-5364. doi:
10.1214/aos/1176344611. [Online]. Available:
https://projecteuclid.org/journals/annals-of-
statistics/volume-7/issue-2/Conjugate-Priors-for-
Exponential-Families/10.1214/aos/1176344611.full (visited on
03/26/2021).

[19] S. Karlin, “Admissibility for estimation with quadratic loss,” en, The
Annals of Mathematical Statistics, vol. 29, no. 2, pp. 406–436, Jun. 1958,
issn: 0003-4851. doi: 10.1214/aoms/1177706620. [Online]. Available:
http://projecteuclid.org/euclid.aoms/1177706620 (visited on
03/26/2021).

[20] H. Cramér, Mathematical methods of statistics, ser. Princeton landmarks in
mathematics and physics. Princeton: Princeton University Press, 1999,
isbn: 9780691005478.

76

http://ieeexplore.ieee.org/document/5551215/
http://public.eblib.com/choice/PublicFullRecord.aspx?p=6309027
http://public.eblib.com/choice/PublicFullRecord.aspx?p=6309027
https://doi.org/10.1214/14-AOS1270
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Frequentist-coverage-of-adaptive-nonparametric-Bayesian-credible-sets/10.1214/14-AOS1270.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Frequentist-coverage-of-adaptive-nonparametric-Bayesian-credible-sets/10.1214/14-AOS1270.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Frequentist-coverage-of-adaptive-nonparametric-Bayesian-credible-sets/10.1214/14-AOS1270.full
https://projecteuclid.org/journals/annals-of-statistics/volume-43/issue-4/Frequentist-coverage-of-adaptive-nonparametric-Bayesian-credible-sets/10.1214/14-AOS1270.full
https://doi.org/10.1109/ITW.2015.7133169
http://ieeexplore.ieee.org/document/7133169/
https://doi.org/10.1214/aos/1176344611
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-2/Conjugate-Priors-for-Exponential-Families/10.1214/aos/1176344611.full
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-2/Conjugate-Priors-for-Exponential-Families/10.1214/aos/1176344611.full
https://projecteuclid.org/journals/annals-of-statistics/volume-7/issue-2/Conjugate-Priors-for-Exponential-Families/10.1214/aos/1176344611.full
https://doi.org/10.1214/aoms/1177706620
http://projecteuclid.org/euclid.aoms/1177706620

[21] H. van Trees, “Bounds on the accuracy attainable in the estimation of
continuous random processes,” en, IEEE Transactions on Information
Theory, vol. 12, no. 3, pp. 298–305, Jul. 1966, issn: 0018-9448. doi:
10.1109/TIT.1966.1053910. [Online]. Available:
http://ieeexplore.ieee.org/document/1053910/ (visited on
03/26/2021).

[22] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate analysis,
ser. Probability and mathematical statistics. London ; New York:
Academic Press, 1979, isbn: 9780124712508 9780124712522.

[23] I. H. Bernstein, C. P. Garbin, and G. K. Teng, Applied multivariate
analysis, en. New York, NY: Springer New York, 1988, isbn:
9781461387428 9781461387404. doi: 10.1007/978-1-4613-8740-4.
[Online]. Available:
http://link.springer.com/10.1007/978-1-4613-8740-4 (visited
on 03/26/2021).

[24] A. Belloni, V. Chernozhukov, and C. Hansen, “High-dimensional
methods and inference on structural and treatment effects,” en, Journal of
Economic Perspectives, vol. 28, no. 2, pp. 29–50, May 2014, issn:
0895-3309. doi: 10.1257/jep.28.2.29. [Online]. Available:
https://pubs.aeaweb.org/doi/10.1257/jep.28.2.29 (visited on
03/26/2021).

[25] L. Wasserman, All of statistics: a concise course in statistical inference, eng,
Corrected second printing, 2005, ser. Springer texts in statistics. New
York, NY: Springer, 2010, OCLC: 837651382, isbn: 9780387217369
9781441923226.

[26] S. Axler, Linear algebra done right. New York: Springer, 2014, isbn:
9783319110790.

[27] C. E. Frangakis, T. Qian, Z. Wu, and I. Díaz, “Rejoinder to Discussions
on: Deductive derivation and turing-computerization of semiparametric
efficient estimation,” en, Biometrics, vol. 71, no. 4, pp. 881–883, Dec.
2015, issn: 0006341X. doi: 10.1111/biom.12365. [Online]. Available:
http://doi.wiley.com/10.1111/biom.12365 (visited on
03/26/2021).

77

https://doi.org/10.1109/TIT.1966.1053910
http://ieeexplore.ieee.org/document/1053910/
https://doi.org/10.1007/978-1-4613-8740-4
http://link.springer.com/10.1007/978-1-4613-8740-4
https://doi.org/10.1257/jep.28.2.29
https://pubs.aeaweb.org/doi/10.1257/jep.28.2.29
https://doi.org/10.1111/biom.12365
http://doi.wiley.com/10.1111/biom.12365

[28] J. M. Rehg, S. A. Murphy, and S. Kumar, Eds., Mobile Health: Sensors,
Analytic Methods, and Applications, en. Cham: Springer International
Publishing, 2017, isbn: 9783319513935 9783319513942. doi:
10.1007/978-3-319-51394-2. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-51394-2 (visited
on 03/26/2021).

[29] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY: Springer New
York, 2009, isbn: 9780387848570 9780387848587. doi:
10.1007/978-0-387-84858-7. [Online]. Available:
http://link.springer.com/10.1007/978-0-387-84858-7 (visited
on 03/26/2021).

[30] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” en, Biostatistics, vol. 9, no. 3,
pp. 432–441, Jul. 2008, issn: 1465-4644, 1468-4357. doi:
10.1093/biostatistics/kxm045. [Online]. Available:
https://academic.oup.com/biostatistics/article-
lookup/doi/10.1093/biostatistics/kxm045 (visited on
03/26/2021).

[31] D. M. Witten, R. Tibshirani, and T. Hastie, “A penalized matrix
decomposition, with applications to sparse principal components and
canonical correlation analysis,” en, Biostatistics, vol. 10, no. 3, pp. 515–534,
Jul. 2009, issn: 1465-4644, 1468-4357. doi:
10.1093/biostatistics/kxp008. [Online]. Available:
https://academic.oup.com/biostatistics/article-
lookup/doi/10.1093/biostatistics/kxp008 (visited on
03/26/2021).

[32] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and
variable selection with the Lasso,” The Annals of Statistics, vol. 34, no. 3,
Jun. 2006, issn: 0090-5364. doi: 10.1214/009053606000000281.
[Online]. Available: https://projecteuclid.org/journals/annals-
of-statistics/volume-34/issue-3/High-dimensional-graphs-
and-variable-selection-with-the-
Lasso/10.1214/009053606000000281.full (visited on 03/26/2021).

[33] V. Ročková and E. I. George, “EMVS: ɬe EM Approach to Bayesian
Variable Selection,” en, Journal of the American Statistical Association,

78

https://doi.org/10.1007/978-3-319-51394-2
http://link.springer.com/10.1007/978-3-319-51394-2
https://doi.org/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
https://doi.org/10.1093/biostatistics/kxm045
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxm045
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxp008
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxp008
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxp008
https://doi.org/10.1214/009053606000000281
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-3/High-dimensional-graphs-and-variable-selection-with-the-Lasso/10.1214/009053606000000281.full
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-3/High-dimensional-graphs-and-variable-selection-with-the-Lasso/10.1214/009053606000000281.full
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-3/High-dimensional-graphs-and-variable-selection-with-the-Lasso/10.1214/009053606000000281.full
https://projecteuclid.org/journals/annals-of-statistics/volume-34/issue-3/High-dimensional-graphs-and-variable-selection-with-the-Lasso/10.1214/009053606000000281.full

vol. 109, no. 506, pp. 828–846, Apr. 2014, issn: 0162-1459, 1537-274X.
doi: 10.1080/01621459.2013.869223. [Online]. Available: http://
www.tandfonline.com/doi/abs/10.1080/01621459.2013.869223
(visited on 03/26/2021).

[34] A. Belloni, V. Chernozhukov, and C. Hansen, “Inference on Treatment
Effects after Selection among High-Dimensional Controls,” en, The
Review of Economic Studies, vol. 81, no. 2, pp. 608–650, Apr. 2014, issn:
0034-6527, 1467-937X. doi: 10.1093/restud/rdt044. [Online].
Available: https://academic.oup.com/restud/article-
lookup/doi/10.1093/restud/rdt044 (visited on 03/26/2021).

[35] T. W. Anderson, An introduction to multivariate statistical analysis, 3rd ed,
ser. Wiley series in probability and statistics. Hoboken, N.J:
Wiley-Interscience, 2003, isbn: 9780471360919.

[36] E. J. Hannan, Ed., Multiple Time Series, en, ser. Wiley Series in
Probability and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc.,
Aug. 1970, isbn: 9780470316429 9780471348054. doi:
10.1002/9780470316429. [Online]. Available:
http://doi.wiley.com/10.1002/9780470316429 (visited on
03/26/2021).

[37] G. H. Golub and C. F. Van Loan, Matrix computations, Fourth edition,
ser. Johns Hopkins studies in the mathematical sciences. Baltimore: ɬe
Johns Hopkins University Press, 2013, OCLC: ocn824733531, isbn:
9781421407944.

[38] N. Choudhuri, S. Ghosal, and A. Roy, “Nonparametric binary regression
using a Gaussian process prior,” en, Statistical Methodology, vol. 4, no. 2,
pp. 227–243, Apr. 2007, issn: 15723127. doi:
10.1016/j.stamet.2006.07.003. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1572312706000475
(visited on 03/26/2021).

[39] J. O. Berger, Statistical Decision Theory and Bayesian Analysis, ser. Springer
Series in Statistics. New York, NY: Springer New York, 1985, isbn:
9781441930743 9781475742862. doi: 10.1007/978-1-4757-4286-2.
[Online]. Available:
http://link.springer.com/10.1007/978-1-4757-4286-2 (visited
on 03/26/2021).

79

https://doi.org/10.1080/01621459.2013.869223
http://www.tandfonline.com/doi/abs/10.1080/01621459.2013.869223
http://www.tandfonline.com/doi/abs/10.1080/01621459.2013.869223
https://doi.org/10.1093/restud/rdt044
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdt044
https://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdt044
https://doi.org/10.1002/9780470316429
http://doi.wiley.com/10.1002/9780470316429
https://doi.org/10.1016/j.stamet.2006.07.003
https://linkinghub.elsevier.com/retrieve/pii/S1572312706000475
https://linkinghub.elsevier.com/retrieve/pii/S1572312706000475
https://doi.org/10.1007/978-1-4757-4286-2
http://link.springer.com/10.1007/978-1-4757-4286-2

[40] A. G. d. G. Matthews, M. van der Wilk, T. Nickson, K. Fujii,
A. Boukouvalas, P. León-Villagrá, Z. Ghahramani, and J. Hensman,
“GPflow: A Gaussian process library using TensorFlow,” Journal of
Machine Learning Research, vol. 18, no. 40, pp. 1–6, Apr. 2017. [Online].
Available: http://jmlr.org/papers/v18/16-537.html.

[41] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. ɬirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[42] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[43] GPy, GPy: A gaussian process framework in python,
http://github.com/SheffieldML/GPy, since 2012.

80

http://jmlr.org/papers/v18/16-537.html
http://github.com/SheffieldML/GPy

	Abstract
	Dedication
	Introduction
	Gaussian Processes
	Stochastic Processes
	Gaussian Process Definition
	Multivariate Distribution
	Properties of Multivariate Normal
	Assumptions
	Inference and Learning
	Design Matrix
	Linear Regression
	Gaussian Process Regression
	Likelihood Function
	Weight-Space View
	Function-Space View
	Bayesian Inference

	Binary Outcomes
	Classification
	Binary Target
	Binary Treatment Effects
	Causal Inference
	Counterfactual Model
	Directed Acyclic Graphs
	Probability and DAG
	Independence
	D-Separation
	Binary Outcomes
	Gaussian Process on \pi
	DAG Representation
	Likelihood Function
	Prior Distribution
	Posterior Distribution
	Marginal Likelihood
	Predictive Distribution
	Time-Varying Effects

	Computation
	Analytic Solutions
	Computational Complexity
	Matrix Operations
	Kernel Operations
	Approximation Algorithms
	P vs. NP
	Laplace Approximation
	Expectation-Propagation
	Markov chain Monte Carlo
	Testbed
	Software

	Flexibility
	Decision Theory
	Risk Function
	Flexibility in Decision Theory
	Reinforcement Learning
	Bandit Learning
	Towards Greater Flexibility

	References

