
A Sensor System for Autonomous
UAV Landing

A senior design project submitted in partial fulfillment of the
requirements for the degree of

Bachelor of Science in Electrical Engineering

at

Harvard University

by

Ivan Alexis Cisneros

S.B. Degree Candidate in Electrical Engineering

Submitted by .
Ivan Alexis Cisneros

December 8, 2016

Supervised and Evaluated by .
Scott Kuindersma

Assistant Professor of Engineering and Computer Science
Faculty Advisor

Harvard University School of Engineering and Applied Sciences
Cambridge, MA
December 2016

2

A Sensor System for Autonomous

UAV Landing

by

Ivan Alexis Cisneros

Submitted to Harvard University School of Engineering and Applied Sciences
on December 8, 2016, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Electrical Engineering

Abstract

Unmanned Aerial Vehicles (UAVs) have recently surged in popularity and are now
seen as viable tools for use in commercial delivery, search and rescue operations, and
planetary exploration. A challenge in utilizing UAVs for these purposes is the limited
battery capacity: an average-sized drone has 25 minutes of flight time, which results in
limited flight range and payload capacity. Implementing an array of charging stations
would extend UAV flight range, but GPS navigation would not provide the resolution
necessary to reliably find and land on these stations. This project focuses on devel-
oping a vision-based sensor system that would provide onboard sensing mechanisms
and path planning in order to accurately detect and land on a charging pad. This
solution aims to be lightweight, unobtrusive, self-contained, and more accurate than
relying on GPS and IMU alone. This proof of concept sensor system can be adapted
to the form factor of mission-specific UAVs.

Faculty Advisor: Scott Kuindersma
Title: Assistant Professor of Engineering and Computer Science

3

Contents

1 Introduction 9

1.1 Problem . 10

1.2 Motivation . 12

1.3 Prior Art . 13

1.4 Approach . 15

1.5 Customer/Market . 15

2 Design 16

2.1 Design Scope and Assumptions . 16

2.2 Design Goals . 17

2.3 Design Approach . 19

2.4 Design Details . 20

2.4.1 Test UAV . 21

2.4.2 Optics . 22

2.4.3 Rangefinder . 26

2.4.4 Processor . 28

2.4.5 Fiducial Marker . 28

2.4.6 Software Stack . 31

2.4.7 Landing Platform / Fiducial Cluster 32

2.4.8 Design Evolution . 35

3 Evaluation/Verification 41

3.1 Accuracy of Recognition for Altitude 42

4

3.2 Accuracy of Recognition for Lateral Offset 45

3.3 Recognition at Different Illuminance Levels 47

3.4 Recognition While Moving . 50

3.5 Quantitative Design Goal Tests . 52

4 Budget 54

5 Conclusion 55

6 Future Work 57

7 Acknowledgments 59

References 60

A Appendix A - Bill of Materials 62

B Appendix B - Engineering Drawings 63

C Appendix C - Components and Additional Figures 66

D Appendix D - Code 73

5

List of Figures

1-1 Relationship between the flying weight and time of flight 11

1-2 Using a charging platform . 12

1-3 JPL Implementation . 13

1-4 An implementation utilizing a fiducial 14

2-1 Process path . 17

2-2 Separation of Processing Tasks . 20

2-3 System Diagram . 20

2-4 Pixhawk Flight Controller . 21

2-5 Version 1 of the UAV . 22

2-6 The Depth of Field . 23

2-7 The Field of View . 23

2-8 Logitech c920 . 24

2-9 Actual DOF . 25

2-10 Ultrasonic Rangefinder . 27

2-11 Example AR tags . 29

2-12 The UAV’s reference frame . 30

2-13 The AR tag’s reference frame . 30

2-14 The software stack . 31

2-15 Final Platform Design . 34

2-16 UAV with taller landing gear . 36

2-17 UAV with shorter landing gear . 36

2-18 First Prototype . 37

6

2-19 Breadboard Prototype . 38

2-20 Final Prototype . 38

2-21 Exploded View of Final Prototype . 39

2-22 Vibration reduction . 39

2-23 Full Integration . 40

3-1 Distance Test Setup . 42

3-2 Distance Test Setup View 2 . 43

3-3 Image From the Camera . 43

3-4 Z Distance Estimation Accuracy . 44

3-5 Z Estimation Accuracy with Lateral Offset 5m 45

3-6 Z Estimation Accuracy with Lateral Offset 8m 46

3-7 Z Estimation Accuracy with Lateral Offset 10m 46

3-8 Worklight . 48

3-9 Science Journal . 48

3-10 Recognition vs. Illuminance . 49

3-11 Recognition vs. Distance While Moving 50

C-1 Test UAV Original Frame . 66

C-2 LiPo Battery . 67

C-3 Device Voltage Splitter . 67

C-4 Device Power Module . 68

C-5 Pixhawk Wiring . 69

C-6 Radio Receiver . 70

C-7 3D Printer Landing Gear . 71

C-8 Side View of Device . 72

7

List of Tables

2.1 Quantitative design criteria . 18

2.2 Distance sensor comparison . 27

2.3 Tags of different sizes and their recognition distance limitations . . . 33

3.1 Illuminance levels for our simulated conditions 47

3.2 Current Draw Measurements . 52

3.3 Measured Weights of Components . 53

3.4 Design Target Comparison . 53

8

Introduction

Unmanned Aerial Vehicles (UAVs) – colloquially known as "drones" – have risen in

popularity amongst hobbyists, filmmakers, and technology enthusiasts in recent years

due to advancements in miniaturization brought about by the mobile technologies

sector. UAVs are now affordable and powerful enough to be used for non-recreational

applications; various new uses for autonomous unmanned aerial vehicles are currently

being developed. As has been shown with Amazon’s pilot project "Amazon Prime

Air", one function for this new technology is the implementation of rapid short-range

commercial delivery1. While there are a myriad of applications for autonomous drone

technology, the biggest limiting factor is battery life. Because most UAVs are fully

electric, they must carry heavy lithium ion polymer batteries. But since UAVs are

actively fighting gravity to stay airborne, they require the optimization of their thrust-

to-weight ratio, meaning that there are diminishing returns in increasing battery size.

Creating a UAV-specific charging infrastructure similar to the infrastructure nec-

essary for electric vehicles can be a means to solve this issue. Creating a network

of charging or battery swapping platforms will allow for autonomous drones to stop

and "refuel" – without having to return to their origin – in order to fly in trajectories

beyond the limits of their battery’s charge.

1More details found here: http://www.amazon.com/b?node=8037720011

9

1.1 Problem

Various companies and institutions are exploring different applications for autonomous

UAVs that would increase efficiency and/or avoid putting people in dangerous situa-

tions. These include:

∙ Short and medium distance commercial delivery

∙ Search and rescue

∙ Real-time traffic monitoring

∙ High resolution mapping and surveying (both terrestrial and non-terrestrial)

An obstacle towards the realization of these applications is the poor flight range

and battery life of a typical UAV. An average sized multi-rotor can achieve between

20 and 25 minutes of flight time without additional payload weight [1] , and with a

nominal speed of 10 m/s, this translates into a flight distance range of 12 km (7.45

miles) to 15 km (9.32 miles). Amazon – a company which is currently exploring UAV

delivery applications through their Amazon Prime Air division – hopes to achieve air

delivery service within a 16 km (10 miles) radius of a distribution warehouse [2]. This

means that for delivery applications, the limited flight range means that there is a

limited service area, and perhaps extra costs in creating more distribution centers.

Smaller retailers would not be able to implement additional distribution centers, and

so this would limit the amount of retailers than can provide this rapid delivery service.

For the non-delivery applications, such as search and rescue, the limited flight time

would mean that the search and rescue missions would be interrupted or require a

large amount of UAVs to be constantly swapped into usage. Thus, relying solely on

the charge of a single UAV is prohibitive towards the efficient implementation of the

above mentioned applications.

A cause of this limitation is the relatively low energy density of lithium ion poly-

mer (LiPo) batteries. While LiPo batteries are the preferred power source for UAVs

(compared to other battery variants) because of their low weight, quick discharge

10

time, and relatively high energy capacity, they are still heavily limited in the flight

distance that they can provide. Additionally, there is an inverse relationship between

flight time and battery weight. Using the following figure, we can calculate a "Flight

time cost":

𝐹𝑇𝐶 =
1𝑚𝑖𝑛

71𝑔𝑟𝑎𝑚𝑠
(1.1)

a finding which suggests that all UAV configurations have diminishing returns with

regards to battery size (the extra battery capacity does not outweigh the cost of the

added weight).

Figure 1-1: The relationship between the flying weight and time of flight of a UAV
with batteries of two different capacities3

3Figure found here: https://code.google.com/archive/p/ro-4-
copter/wikis/QuadcopterPerformance.wiki

11

1.2 Motivation

Electric vehicles are range-limited in a similar way and for the same reasons. In

order to advance the adoption of electric vehicles, Tesla Motors created the "Tesla

SuperCharger Network", which is a distributed network of high current DC power

sources that allow Tesla vehicle owners to rapidly charge their vehicle while on a trip

[3]. These charging stations are placed along commonly trafficked routes, and allow

owners the ability to drive further than their vehicle’s battery capacity would normally

allow them to travel. In fact, multiple owners have driven across the continental

United States by relying solely on this SuperCharger network. One can imagine that

a similar, albeit closer range, system can be deployed for the specific use of UAVs.

Virtually all autonomous UAVs have the ability to fly along planned trajectories by

using low-cost GPS receivers and following GPS waypoints. As long as sufficient

satellite signals can be accessed during the entire UAV flight path, GPS navigation

techniques can offer consistent accuracy [4].

Figure 1-2: A UAV can locate a charging platform, land on it, charge, and continue
on its route.

This UAV-specific charging network can be composed of several landing platforms

that would charge the UAV, and allow it to continue on its trajectory to its final

destination. If a GPS waypoint were placed at every charging platform location, the

UAV would be able to find the closest one and navigate towards it. While civilian

level GPS is fairly accurate, it can have a location offset of up to 5 meters [5], which

12

means that locating a charging platform requires more than just a GPS coordinate.

In order to land on a charging platform of moderate size the UAV would require

localized information about the location of the platform and its relative position to the

UAV. Onboard sensing would allow the autonomous UAV to react to unpredictable

environments, and to overcome the limitations of GPS resolution.

1.3 Prior Art

There exists some work on the topic of autonomous UAV landing. A vision-based

approach seems to be common because it allows the flexibility of landing in complex

environments and in not relying on a GPS network if the need arises. Fixed winged

UAVs, for example, can use an angled camera (forward facing) in order to identify

potential landing strips by searching for areas of land that are relatively flat and

devoid of hills [6].

At JPL, Johnson, Montgomery and Matthies have implemented a similar terrain-

analyzing vision-system for multi-rotors, which identifies non-hazardous landing areas

amongst hazardous terrain. In this case, a downward facing camera is used to identify

the topology of the area and create a 3D terrain map for identifying the lowest

and flattest areas [7] . This solution is specifically designed for use in planetary

exploration, and so it relies on the assumption that very little human intervention is

available.

Figure 1-3: Visiual information from the UAV landing system developed at JPL.

13

For this project, limited human intervention is assumed; a landing platform has

to be preemptively placed in an ideal location. For a multi-rotor, a landing platform

with a large fiducial marker can be used to not only identify the specific area on which

to land, but also allows the UAV to make estimates about its relative location and

distance relative to the landing platform using preprogrammed information about

the landing platform’s size and the size of its representation in an frame of a video

feed. Lange, Sunderhauf, Protzel, implemented such a system; their system uses a

camera to identify a landing pad with a large "bull’s-eye" marker and process this

visual information to extract the multi-rotor’s relative position and orientation [8].

They note that with a processing rate of 25 Hz they are able to stabilize the UAV’s

position over the center of the landing pad with a standard deviation of 3.8 cm and

a maximum deviation of 23 cm over 5 minutes.

Figure 1-4: The landing marker used in the system developed by Lange et al.

But while they achieve accurate information about the lateral offset position of

their UAV, they do not seem to investigate the recognition altitude or recognition

lateral offset limitations of their system (they tested with a maximum altitude of

70cm and only with the UAV hovering directly above the landing pad). Additionally,

because of the symmetry of their fiducial marker, it is not easy to obtain yaw angle

estimates, which could potentially be important in a charging platform (if metal

contacts are used, the UAV and charging platform must be aligned with the same

yaw orientation).

14

1.4 Approach

Due to the robustness of a vision-based landing sensor system, we elected to develop

on a computer vision platform as well, with specific attention paid to large recognition

distances and the availability and accuracy of position and orientation information.

Because we assume an ideal landing area, we can define the size and design of the

landing platform as well and thus our design will also rely on a fiducial marker system

to mark the area of the landing platform and provide all of the localization estimate

information.

We thus design a self-contained sensor and landing system that is lightweight,

vision-based, and mountable on average sized UAVs. We want this system to be

generalizable and adaptable to different UAV platforms, so it must be as low weight

and low power as possible.

1.5 Customer/Market

This sensor system is designed to be adaptable to different multi-rotor UAV platforms

that are made for different uses. We designed with the applications that were con-

sidered in the motivation section in mind, and thus we can assume that distribution

and logistics companies, emergency responders, and scientific institutions would be

interested in incorporating this product and design into their specific autonomous

UAV solutions.

15

Design

2.1 Design Scope and Assumptions

The idea of extending an autonomous UAV’s flight range by using a distributed charg-

ing network is a big one with lots of interplaying technologies. To fully implement

the idea, a number of solutions must be designed, namely:

∙ The best charging strategy

∙ Optimal placement distances and locations between each charging platform

∙ Optimization of flight paths so that the UAV makes minimal amount of stops

∙ UAV (and battery) identification so that charging is tailored correctly

∙ Platform identification and search strategies

∙ The control system for landing

We must therefore define the scope of this particular project in order to define the

goals.

16

A process path for an autonomous UAV using this network may work like so:

Figure 2-1: A potential process path for an autonomous UAV using a charging net-
work.

This project focuses primarily on the 4th state in this process path, namely how

the UAV will identify the target landing platform and use this information.

A few assumptions that were made when defining the design goals:

∙ UAV is already at GPS waypoint, so it has a general idea of where the landing

platform is located

∙ Laterally located within 5 meters

∙ Landing area is clear of obstacles

∙ Favorable weather conditions (not stormy)

∙ UAV will not be connected to a network (besides GPS) – the system will have

to be self-contained

2.2 Design Goals

Design of this product focused primarily on the platform recognition via visual meth-

ods with specific attention paid to large recognition distances and the availability

17

and accuracy of position and orientation information. The designed system must be

a localized system that supplements GPS information so that an autonomous UAV

can identify the landing platform and extend its functionality beyond the limitations

of GPS and the sensors that the UAV already is expected to have. Additionally, in

order to minimize the amount of extra payload weight it must also be lightweight and

low power.

The following quantitative design criteria for the sensor system and landing area

were established:

Table 2.1: Quantitative design criteria

The decisions for each of the criteria for the sensor system and landing area were

made for the following reasons:

∙ Landing area: big enough to accommodate an average sized drone, but small

enough to not be bulky

∙ Weight: the UAV’s max payload is 2400g (including the UAV weight). UAV

weight is 1080g, and so 1320g are left for use, but want to limit the flight time

costs as much as possible. A 600g limit results in: Flight time cost = 8.5mins

∙ Current Draw: minimal power draw, while still allowing for sufficiently fast

processing

∙ Physical area: restricted by the bottom of the UAV’s frame

18

∙ Height: restricted by the UAV’s vertical clearance

∙ Max lateral offset of recognition: from the expected GPS accuracy error

∙ Max height of recognition: the necessary height to achieve the max lateral offset

condition

2.3 Design Approach

The two primary qualitative design goals for this sensor system were that it be self-

contained and that it be generalizable so that it works with different UAV systems.

A self-contained system would be robust because it would be able to work in unpre-

dictable environments and not rely on the unpredictability of incompatible hardware

and wireless networks. This sensor system was thus designed with the assumption

that the UAV would not have any other wireless receivers beyond a simple GPS

receiver, and that the sensor system itself would not introduce any new wireless re-

ceiving capability. All sensing and processing would be localized.

Additionally, the generalizability of the sensor system requires that it contain its

own processor and power supply. The reasoning behind this is that we cannot guar-

antee that the UAV onto which this sensor system is mounted will have a processor

powerful enough or have sufficient memory for the computer vision tasks. By hav-

ing a dedicated processor in the sensor system we can guarantee two things: that

the hardware is suitably powerful for the computer vision tasks, and that we have a

standardized software environment to work in.

Thus, the system was designed with an assumed division of labor: the onboard

processor would handle computer vision, sensor querying, and high level decision

making, while the UAV’s own flight controller processor would handle any time-

sensitive tasks, as well as the motor control and stabilization algorithms. This requires

that there be some form of communication between the two processors, but this would

be simpler to implement than would a sensor system that was agnostic of processor

type.

19

Figure 2-2: The separation of processing tasks between the sensor system’s processor
and the UAV’s processor.

2.4 Design Details

Our design’s high level system diagram takes all of these considerations into account.

For sensing, we have a camera and ultrasonic sensor. Additionally, it needs a processor

and power supply. For communication with the UAV’s processor, there should also

be a port for a serial bus.

Figure 2-3: A high level overview of the system.

The individual components were chosen as follows:

20

2.4.1 Test UAV

The UAV for this project was a custom made quadcopter. Rather than buying a

prebuilt one, we elected to build one ourselves in order to minimize costs and to

have a customizable platform that was both programmable and easy to modify. This

quadcopter was built on the DJI F450 frame (lightweight and cheap), and uses DJI

2312 motors with 420 Lite Electronic Speed Controllers (well-made and reputable) 1.

There were many options for the flight controller, but we chose to use the Pixhawk

– specifically the HKPilot32 variant – because it is an open source hardware system

that is compatible with the open source ArduPilot software system. The ArduPilot

software system is an environment that allows modulation of the flight controller set-

tings as well as flight path planning.

Figure 2-4: The Pixhawk flight controller.

For power, we used a 4-cell 14.8V LiPo battery. This would provide a quadcopter

of this weight about 25 minutes of flight time. We also used some lightweight quad-

copter legs in order to give the quadcopter enough verticle clearance to mount a device

on the bottom side of the body. Lastly, we used a Futaba R6303SB radio receiver

because it was cheap and compatible with the Futaba T14SG radio transmitter that

we had access to.
1More details about propulstion system can be found here: http://www.dji.com/e305

21

This configuration of the UAV weighed 1155 grams, had a vertical clearance of

14.5cm, and had a total payload capacity of 2400 grams.

Figure 2-5: Version 1 of the UAV.

2.4.2 Optics

Choice of the downward facing camera was made by considering the following factors:

∙ weight

∙ hardware compatibility

∙ focal length

∙ aperture

Specifically, the characteristics of the optics were important in determining the

limitations of the camera and whether these limitations were outside of our design

22

goals. We paid special attention to the depth of field (DOF) and field of view (FOV)

parameters because these parameters gave us insight as to whether we would be able

to detect the landing platform at our design goal limits. The depth of field of the

camera is the distance range where an object was in clear focus, and so this parameter

would give us the altitude limitations of our system. The field of view is the lateral

area that is within the camera frame at a certain distance away from the camera, and

so this parameter would give us the lateral offset limitations of our system.

Figure 2-6: The depth of field defines the distance range where the camera image is
in focus.

Figure 2-7: The field of view defines the area within the camera’s frame at a specific
distance away.

23

In analyzing these characteristics for the Logitech c920 webcam, we found that

we were able to meet these goals, and so that is the camera that we elected to use.

The Logitech c920 had the following characteristics [9]:

∙ Weight = 72.6g

∙ 30fps video

∙ Focal Length = 3.67mm

∙ F stop = 2.9mm

∙ Diagonal FOV angle: 78∘

∙ Horizontal FOV angle: 70.42∘

∙ Vertical FOV angle: 43.3∘

∙ Circle of Confusion: 0.0042mm

Figure 2-8: The logitech c920 camera.

In order to determine the depth of field of our camera we used the following

formulae [10]:

𝑑𝑛 =
𝑑𝑝𝑜𝑓 * 𝑓 2

𝑓 2 + 𝑘𝑐𝑐𝑜𝑐(𝑑𝑝𝑜𝑓 − 𝑓)
(2.1)

24

𝑑𝑓 =
𝑑𝑝𝑜𝑓 * 𝑓 2

𝑓 2 − 𝑘𝑐𝑐𝑜𝑐(𝑑𝑝𝑜𝑓 − 𝑓)
(2.2)

where:

𝑑𝑛 := near DOF distance

𝑑𝑓 := far DOF distance

𝑑𝑝𝑜𝑓 := point of focus

𝑐𝑐𝑜𝑐 := circle of confusion

𝑘 := aperture

𝑓 := focal length

Plotting this relationship in MatLab with a point of focus distance of infinity, we

obtain the following graph which depicts the DOF range: Where the blue curve

Figure 2-9: Focus vs. distance, defining the depth of field range using the Logitech
camera’s characteristics.

is the camera focus at different distances, and the green horizontal line depicts the

point where image blur begins to becomes significant, and the red horizontal line is

the point where the image becomes unrecognizable.

For our camera parameters, we obtain:

𝑑𝑛 = 0.91𝑚

and

𝑑𝑓 = infinity.

25

Meaning that this camera can clearly see anything up to 0.91m from the camera itself.

This suggests that we can theoretically see anything up to and beyond our 10 meter

maximum recognition requirement, but anything within 0.91 meters of the camera is

not guaranteed to be in focus.

In order to meet the 5m lateral offset design goal, we need to calculate the hor-

izontal field of view (HFOV) and see whether a 5m HFOV is achievable within a

reasonable vertical distance. To do this, we use the folowing formula to calculate 1/2

of the entire horizontal distance that should be viewable by the camera:

𝑑𝑉 =
𝑑𝐻

2 * 𝑡𝑎𝑛(𝐻𝐹𝑂𝑉 ∘

2
)

(2.3)

where:

𝑑𝑉 := vertical distance (altitude of the UAV)

𝑑𝐻 := half of the total horizontal view (10m total)

𝐻𝐹𝑂𝑉 ∘ := horizontal field of view angle

Solving this formula with 𝑑𝐻 = 5𝑚 and 𝐻𝐹𝑂𝑉 ∘ = 70.42 results in 𝑑𝑉 = 3.5𝑚,

which means that we should have a horizontal field of view of 5m at an altitude of

3.5m. Thus, at an altitude of 10m we will have a theoretical 𝑑𝐻 = 14.1𝑚 (a total

horizontal field of view of 28.2 meters).

2.4.3 Rangefinder

In addition to the position and orientation information obtained by the camera, the

UAV would benefit from having a localized sensor for altitude estimation. For alti-

tude, GPS can give an estimate, but like position information this estimate is prone

to offset error.

We investigated several distance sensors: Due to the need to remain cost-efficient

26

Table 2.2: Distance sensor comparison

and because the distance sensor would only really be needed when the UAV is within

a few meters of the ground, we elected to go with the ultrasonic rangefinder. Our

specific component of choice was the HC-SR04 rangefinder:

Figure 2-10: The HC-SR04.

Though we had no specific design criteria for the rangefinder, this choice fits into

our system well because of its low power (<2mA quiescent current draw), small size,

and high resolution: it is accurate to 0.3cm between the distances of 0cm and 400cm

[11]. The rangefinder it most accurate within distances of 4 meters, and so it is most

useful in our system at close range, when the UAV approaches the 𝑑𝑛 distance of its

depth of field range calculated in the previous section and the visual system begins

to lose focus because of this close distance.

27

2.4.4 Processor

Visual computing tasks require more RAM, storage space, and processing power than

a simple microcontroller can provide. Thus, a microprocessor is the better option for

this sensor system.

Specifically, a microprocessor will need to fulfill the following requirements:

∙ Have a USB port (for connecting the c920)

∙ Have several GPIO ports (for interfacing with the HC-SR04)

∙ Able to run some distribution of Linux (so that we can run virtually any software

environment)

∙ Have a small enough profile to not exceed our area design goal of 11.4cm x 14cm

∙ Have all of the major serial communication buses (for communication to the

UAV flight controller)

In looking at different single-board computers, we elected to use the Raspberry

Pi 2 Model B, because it was cheap, well documented, and fulfilled our requirements

listed above. The Raspberry Pi 2 has a 32-bit quad-core ARM Cortex-A7 processor,

1GB of RAM, and unlimited storage space (storage is done via micro SD card), every

major communication bus, and more GPIO pins than we require [12].

2.4.5 Fiducial Marker

In order to meet our recognition design goals and maximize the amount of information

we can achieve from our visual system, we thought it be best to use a fiducial marker to

identify the landing platform. Like in the Lange et al. paper, with a fiducial marker

we can gather position and orientation estimates, and we can reduce recognition

false positives since they are easier to identify outdoors due to their non-natural

appearance.

28

For this, we investigated various different implementations of augmented reality

(AR) tags. AR tags were originally created for augmented reality and virtual reality

applications. They are optimized for low-latency recognition in 3D space, and by

design include information about the observer’s relative position and pose [13]. Thus,

they are a very good option for this project. The specific implementation that I chose

to work with was a ROS package called AR Track Alvar, which is a ROS wrapper

of the Alvar variant of the AR toolkit implementation. Alvar is more advanced than

the original ARtoolkit. Alvar features adaptive thresholding to handle a variety of

lighting conditions, optical flow based tracking for more stable pose estimation, and

an improved tag identification method that does not significantly slow down as the

number of tags increases. Multiple AR tags can be identified simultaneously if all of

the markers are unique. I did not need a large amount of tags, so I elected to use AR

tags that were 5bit x 5bit in size; this tag resolution size had 209 unique tags, which

was more than I needed.

Figure 2-11: AR tags 0, 1, and 2. They are 5bit x 5bit.

For my implementation, I needed to know the UAV’s relative x, y, and z position

in meters, as well as the Euler angles (yaw, pitch and roll). The raw information

obtained from the Alvar node included the identified tag id number, x, y, z position,

and the tag’s quaternions.

29

If we define the UAV and AR tag Euler angle reference frames of like so:

Figure 2-12: The UAV’s reference frame.
Figure 2-13: The AR tag’s reference frame.

we can convert the raw quaternion information into the easier to work with roll (𝜑),

pitch (𝜃), yaw (𝜓) in radians using the following formula [14]:

given:

𝑞 =
[︁
𝑞0 𝑞1 𝑞2 𝑞3

]︁𝑇
(2.4)

then:

Given this calculation and the raw data returned by the Alvar ROS node, a vector

defining the state of the UAV with respect to an AR tag 𝑖 can be written like so:

𝑡𝑖 =
[︁
𝑥𝑖 𝑦𝑖 𝑧𝑖 𝜑𝑖 𝜃𝑖 𝜓𝑖

]︁𝑇
(2.5)

where:

𝑥 := lateral offset along the same axis as the pitch (in meters)

𝑦 := lateral offset along the same axis as the roll (in meters)

𝑧 := altitude distance along the same axis as the yaw (in meters)

30

2.4.6 Software Stack

In order to use the AR tag libraries mentioned in the previous section we needed to

use the Robot Operating System (ROS). ROS is a software framework commonly used

in robotics. It allows for the modular representation of sensors and actuators into

abstractions called "nodes". A node has topics associated with it, and a programmer

can either subscribe or publish to a topic in order to either gather data or make the

robot perform an action. For example, our camera would be able to publish video

frames to a \webcam node, which the \ar-track-alvar node would subscribe to and

process, and then publish to the \ar-pose topic, which my script could then subscribe

to and query for the raw position and pose data. Thus, because it is intended for this

purpose, we elected to use the ROS framework in our sensor system’s software stack.

A Raspberry Pi can easily install a plethora of different operating systems. For

our device, we wanted an operating system that was lightweight but versatile, and

was able to run ROS. This narrowed down our choices considerably, as most operating

systems that supported ROS were fairly large. One operating system that did fulfill

our requirements was Ubuntu 14.04 Trusty for ARM processors. At a size of < 1GB

it was a prime candidate.

On top of our Ubuntu OS, we had to also install Python and OpenCV (an open

computer vision package for C++ and Python), as we were most familiar with Python,

and OpenCV was a requirement for the AR Alvar ROS package.

Figure 2-14: Abstract representation of the software stack.

The \ar-pose topic relied on a set of xml files (which can be found in Appendix

31

D) which defined the size associated with each tag ID. In this way, the proper trans-

formation could be made between pixel and meters. The main sensory system script

created a ROS node called \ar-tag-node, which subscribed to the \ar-pose node and

the \ultrasonic-node. Thus, all of the raw sensor information data was available in

a single place, and could all be accessed and processed when convenient. The final

iteration of the script ran at a speed of 10Hz; this was because of the \ar-pose node

bottleneck. While the camera captured video at 30fps, the visual processing of the

AR markers took longer than 1/30th of a second, and so the state data was published

to the \ar-pose node at 10Hz. Fortunately, by design the processor on this system

was not responsible for any time-critical tasks (such as balancing and stabilization of

the UAV itself), and while 10Hz seems rather slow it is enough time for a process to

decide on high-level trajectory commands based on the visual and ultrasonic data.

2.4.7 Landing Platform / Fiducial Cluster

In creating the landing system, one design goal was to have a high recognition altitude.

For this we could have just created a very large AR marker and placed it on the 0.6m

x 0.6m platform since larger markers can be recognized further than smaller markers.

One problem that arises from this is that at lower altitudes it is possible that the

entirety of the marker would not be in the camera frame, and so there would be a

section in the descent path where we would not have any visual information to rely on.

Additionally, another requirement was to have optimal and continuous recognition of

the platform during the entirety of the descent path. Therefore, it was a better idea

to find a set of markers of different sizes – sequentially decreasing in size – such that

the sensor system would recognize and rely on different markers as it descends on the

platform. In this way, the continuity problem is solved.

To accomplish this, we first needed to identify the relationship between marker

size and recognition distance, as this information is not available in the Alvar ROS

package, nor is it a relationship that can be characterized by a simple equation. This

we created tags of different sizes (measured at one side) and used our previously

mentioned ROS topics to find the distance limitations of each tag size. For this test,

32

we define the "recognition rate" as the number of times a tag is recognized over 10

samples. We used a cutoff of 60%, so if a tag were recognized less than 60% of the

time at a certain distance that distance would be the cutoff point. Our findings should

the following limitations for each tag size:

Table 2.3: Tags of different sizes and their recognition distance limitations

From this we chose the tag sizes 10cm, 15cm, 20cm, 25cm, 28cm since their

recognition ranges overlapped best, and they gave use the maximum and minimum

recognition distances that comply with our original design goals. From these choices

we created a fiducial cluster where the markers were all as close to the center of the

platform as possible and are all have a yaw orientation in the same direction (in the

direction of the arrow) so that we can designate a side to be the "Northern" direction:

In this configuration, the tags were given IDs 0, 1, 2, 3, and 4 in order of decreasing

size. The sensor system recognition algorithm that we wrote took into account this

variation in size based on the tag ID, so that position estimates were calibrated

properly based on which ID was recognized. It also took into consideration the fact

that any of the lateral position estimates would be offset from the true center by a

few centimeters.

Another important aspect of our implementation of the final cluster recognition

algorithm was a weighted average of the vectors of the seen vectors. At any point in

the descent (except for at the extrema) it is possible for more than one AR marker

to be recognized simultaneously. Thus, we could create a weighted average estimate

vector of all of the recognized tag estimates, with higher weight given to the largest

33

Figure 2-15: The final platform AR marker design.

tag that is recognized in that given instance. The idea behind this is that the weighted

mean of multiple state estimates would provide the maximum likelihood state estimate

[15]. If we take the vector (2.5) to be a state estimate for an individual tag i, then

we define the weighted mean over n number of tags in the entire cluster at any given

time to be:

𝑡𝑐 =
𝑛∑︁
𝑖

𝑊𝑖𝑡𝑖 (2.6)

where 𝑊𝑖 is the diagonal weight matrix for vector 𝑡𝑖. The weights are normalized

over i, such that:
𝑛∑︁
𝑖

𝑊𝑖 = 𝐼 (2.7)

that is, the element-wise addition of all weight matrices 𝑊𝑖 would result in a square

matrix of dimensions n x n and with a diagonal of 1’s like so:

34

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

0 1 0 · · · ...
... 0

. . . 0
...

0 · · · 0 1 0

0 · · · · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This property is held for any combination of observed AR markers – that is, 𝑊𝑖

is not static, and depends on how many other AR markers are seen in that instance

of time; when there is only one marker spotted, 𝑊𝑖 is the identity matrix of size 6 x

6 (the size of a single vector 𝑡𝑖) . Because the state estimate from the larger tags is

more likely to be correct, the larger tags are weighted more heavily in the combined

estimate. The weights for lower numbered 𝑖 tags are bigger than the weights for

higher numbered 𝑖 tags (since the lower 𝑖’s correspond to larger tags).

2.4.8 Design Evolution

One improvement made to the UAV was to exchange the off-the-shelf landing gear

for a set of 3D-printed landing gear that improved mounting area at the bottom of

the UAV body, prevented obstruction of the camera’s vision, and were lighter than

the previous set. This replacement had the effect of reducing vertical clearance, but

this was not a significant consequence as there was still sufficient clearance for our

device.

The first iteration of our device was made to primarily test vision. It used the

Raspiberry Pi Camera v1, which is a 5MP CSI camera specifically made for interfacing

with Raspberry Pi devices. While lightweight and extremely small, this camera did

not meet our distance recognition requirements, and so it was later replaced by the

c920.

35

Figure 2-16: The UAV with taller landing gear.

Figure 2-17: The UAV with shorter and more spread out landing gear.

36

Figure 2-18: The first iteration of the device. It used a RPi camera v1.

37

Our device was prototyped on a breadboard and testing fixture, powered by a

portable power bank:

Figure 2-19: The second iteration of the device.

After designing an enclosure that met our design goal specifications, the final

prototype was made:

Figure 2-20: The final iteration of the device.

38

An exploded view of this enclosure better illustrates the integration of the com-

ponents:

Figure 2-21: An exploded CAD view.

Vibration reduction foam and velcro was used for mounting to the bottom of the

UAV. This was essential to obtaining clear visual, and in improving recognition.

Figure 2-22: Vibration reduction foam on the bottom side of the UAV body.

39

The final integration of the device onto the UAV. The device siphoned power

from the UAV’s LiPo battery, and also had a serial port for communication with the

Pixhawk.

Figure 2-23: Integration of the device and UAV.

40

Evaluation/Verification

In order to control for different lighting conditions and different distances throughout

these tests, the camera settings were fixed to:

∙ Auto white balance off

∙ Autofocus off

∙ Focus at infinity

First, we performed confirmation tests to see how well the raw data from individual

tags performed for AR markers of several sizes. There are six main variables in a state,

and so to test one we had to fix the other five. For example, while testing for distance

estimation accuracy in the z direction we had to fix the x and y positions, as well as

the yaw, pitch, and roll. The three main variables that we tested were accuracy in

the z direction (altitude), accuracy in the x direction (lateral offset), yaw accuracy

(rotation around the axis normal to the tag). We found that while keeping all other

variables constant, at fixed increments the state estimation by using a single tag was

,on average, off by 3cm or less. For distances of more than 2 meters, this error was

so insignificant that it is likely attributable to user error and/or error in test setup.

From this we concluded that for fixed setups, state estimation was almost completely

accurate, and did not vary with tag size (the error was constant for the ranges in

which a tag was recognizable).

For the fixed variable tests that follow, our test setup consisted of a tag (or multiple

tags) that were held static, distance markers on the ground which were used for

41

reference, and a cart with our sensor system prototype held rigid by tape.

Figure 3-1: The test setup for fixed variable testing.

3.1 Accuracy of Recognition for Altitude

In order to test for the accuracy of recognition with respect to altitude, we fixed the

sensor system at several increments between 0 and 11 meters along the z-axis while

keeping all other variables constant. The sensor system was placed at an y distance

that was approximately aligned with the platform’s y axis; the roll and pitch angles

were fixed at 0, and the yaw was fixed at +/- 𝜋.

42

Figure 3-2: The prototype being used for a test.

Figure 3-3: A raw image from the camera’s perspective.

43

We then modified our script to output a log file that included the state information

from the cluster and from every individual tag that was identified at that particular

distance. We then compared the average of multiple samples at each distance with

the actual distance using the following formula:

𝐸𝐸 =
𝑀 − 𝐴

𝐴
* 100 (3.1)

where:

𝐸𝐸 := estimation error

𝑀 := measured distance

𝐴 := actual distance

The following plot shows this comparison. The red bar is the cluster error (estima-

tion error from the weighted mean vector). Tags that were not spotted at a particular

z distance were omitted.

Figure 3-4: Z distance estimation comparision between the cluster and individual AR
tags.

We can see that for just about every z distance increment, the estimation error

of the cluster was better (closer to 0) or equal to any individual tag estimate error,

which signifies that the mean is actually slightly more accurate than a single estimate.

44

3.2 Accuracy of Recognition for Lateral Offset

Similarly we conducted estimation accuracy tests while modulating lateral offset dis-

tance at fixed lateral offsets and different fixed z distances in order to compare the

estimated lateral offset with the actual lateral offset. We varied the z distances in

order to see whether the accuracy trend continued for further z distance. The z dis-

tances used were: 5m, 8m, and 10m. At these fixed z distances we shifted the x-axis

offset by: 0.5m, 1m, 2m, 3m, and 5m (where possible).

Figure 3-5: Z distance estimation comparision between the cluster and individual AR
tags at various lateral offsets.

Similarly, in all of these tests, the the estimation error of the cluster was better

(closer to 0) or equal to any individual tag estimate error.

45

Figure 3-6: Z distance estimation comparision between the cluster and individual AR
tags at various lateral offsets.

Figure 3-7: Z distance estimation comparision between the cluster and individual AR
tags at various lateral offsets.

46

3.3 Recognition at Different Illuminance Levels

Another test that we conducted was recognition rate vs. illuminance. Illuminance

is a measure of how much luminous flux is spread over a given area. One can think

of luminous flux (measured in lumens) as a measure of the total "amount" of visible

light present, and the illuminance as a measure of the intensity of illumination on a

surface. Thus, testing recognition vs. illuminance would give us insight into how well

the system would perform in various different lighting conditions and times of day.

For this test we used the following commonly accepted lux values [16]:

Table 3.1: Illuminance levels for our simulated conditions

In order to simulate these brightness levels, we used a dual head 1000-Watt halogen

tripod work light and placed it at different distances from the test platform in order to

modulate the lux (the work light brightness could not be modulated otherwise). We

measured lux using our smartphone’s ambient light sensor and a Google app called

"Science Journal" which allows access to the raw data from the smartphone’s sensors.

47

Figure 3-8: The halogen work light used for our brightness level simulations.

Figure 3-9: The Google Science Journal app.

48

We tested all five of these lux values at z distances of 2m, 5m, 8m, and 10m in

order to compare how illuminance affects recognition rate as the UAV increases in

altitude.

Figure 3-10: Recognition rate vs. illuminance at different z distances.

Recognition rate was defined as the number of times out of 10 samples that the

AR cluster was detected (and then converted into a percentage). From this plot, we

can see the further z distances dip in recognition at the lowest lux values, and at the

very highest one. This is to be expected, since darkness and light saturation both

impede recognition. For all distances, the optimal brightness levels were between 400

lux and 1000 lux. It was observed that lower recognition rates affected recognition

accuracy; >60% accuracy was acceptable but not ideal.

49

3.4 Recognition While Moving

In order to see whether recognition would be reliable while the UAV was on its descent

path, we tested recognition rate vs. distance while the sensor system is not static.

To do this, we mounted the sensor system on our test UAV and manually piloted it

over the AR cluster platform along a descent trajectory that it would be expected

to take under ideal circumstances. It was not possible to fix variables such as lateral

positioning or descent speed, so those were controlled as much as was possible.

For this test, the UAV started at ground level and was flown upwards while centered

at the lateral origin of the platform. It moved upwards at approximately 0.2m/s

(the speed that it would be expected to descend at if autonomous) and logged the

recognition rate along with a vertical distance (with recognition rate defined as in the

previous test) until the algorithm could no longer identify the platform.

Figure 3-11: Recognition rate vs. vertical distance while the UAV is moving.

50

A few conclusions from this plot:

∙ Recognition is unreliably until a 1 meter vertical height is achieved. This con-

nects back to our findings about the camera blur region and depth of field (which

detailed a near distance of 0.91m). We see that in practice the depth of field

does have an inhibitory effect on recognition at close distances.

∙ We achieve a recognition rate of 100% between 2 meters and 10 meters of

altitude, meaning that the cluster of AR tags are working more effectively as

a combination than any one tag would work alone. The optimal recognition

ranges (see table 2.3 for these recognition ranges) for the chosen AR tag sizes

overlap enough to achieve reliable recognition along the descent path.

∙ Recognition becomes noisy and unpredictable at altitudes greater than 11.5

meters. Referring to table 2.3 we see that there is only one AR tag which

is still recognizable at this distance (the 28cm tag) and so recognition of the

platform at this altitude is actually just recognition of the 28cm tag. While the

recognition rate jumps around, it still maintains a rate of >60% (which is the

point when estimation error becomes greater than the 3cm error described at

the introduction of the Evaluation/Verification section).

51

3.5 Quantitative Design Goal Tests

Current draw was measured with a supplied voltage of 14.8V (the voltage of the UAV

LiPo battery), which was stepped down to 5V by the sensor system’s buck converter.

The buck converter had an efficiency rate of 80%, so some power was lost for all of

the following measurements. We tested four different states that the sensor system

would undergo during normal operation. These were: Idle (only the Raspberry Pi

is active), Low Load (only the rangefinder is active), Medium Load (only the vision

system is active), and Max Load (all components are active).

Table 3.2: Current Draw Measurements

While 0.33A is not negligible, that accounts for a <1 min flight time reduction

(assuming the device is operating at max load for 5 minutes). Additionally, we were

able to meet our current draw design goal and not surpass that limitation.

We also weighed the components of the system individually before combining them

into the final prototype. We see that the combined device is slightly heavier than the

individual components, but that is a combination of the 4-40 screws, wiring, and the

XT-60 power connector.

52

Table 3.3: Measured Weights of Components

Even at 225 grams, our device does not exceed our design limitation of 600 grams.

The total flight time cost due to this additional weight is 3.17 minutes.

In tallying our measurements detailed here and in previous sections, we can com-

pare our design targets with our actual characteristics:

Table 3.4: Design Target Comparison

We see that we managed to meet 6 of the 7 design targets, with the "Landing

Area" target being exceeded only slightly.

53

Budget

A detailed bill of materials with component prices can be found in Appendix A. In

total, this project cost $548.11, which is slightly higher than the allotted budget of

$500. The device itself cost $100 while the rest of the budget was used for the com-

ponents of the UAV.

This project was formed in the context of a one-off proof of concept prototype. For

this reason, the project budget was considered only as a design constraint and not

a design factor; that is, for the most part the project prototype was not built to be

the most economical. However, we did try to cut costs wherever possible because the

$500 budget for the project was relatively small; UAV parts are notoriously expensive,

and so cutting costs would allow more components to be purchased.

A design that would leverage the economies of scale would require using fewer off-the-

shelf components. In fact, if this product were intended for a consumer or business

market, it would be completely custom made. Everything from the microprocessor

board to the camera to the enclosure would require more time to design and test.

However, the design of a completely custom made sensor system of this sort for mass

production would require a much larger up front investment of both R&D time and

money than the amount that is allowed through ES100.

54

Conclusion

In this paper we have demonstrated the design and evaluation of a proof of concept

prototype of a device that would aid an autonomous UAV in landing at a specific loca-

tion, with the intention that such a device could be used in extending an autonomous

UAV’s performance by allowing it to locate and land on a charging platform.

For this we used a custom-designed fiducial marker system built using the Alvar

markers system, which gave state information about the UAV’s relative x,y,and z

positions, as well as the relative Euler angles. Using the Robot Operating system we

were able to devise a state estimation algorithm that uses visual data from an on-

board camera and the processed information from the ar-track-alvar ROS library in

order to identify and estimate the UAV’s relative state by using the information from

one or more identified markers on the platform. An ultrasonic rangefinder provides

supplementary altitude measurements for altitudes where the visual system becomes

unreliable due to the limitations of its depth of field. It is relatively low power device

that uses a Raspberry Pi 2 for processing and inter-processor communication. All of

this is packaged in a lightweight and mountable enclosure.

In terms of performance, we were able to meet all but one of our quantitative

design goals. The sensor system prototype is capable of identifying the target landing

platform at a maximum altitude of 14.4 meters and with a maximum x lateral dis-

placement of up to 5 meters, with very little error for both quantities. Additionally,

the design of the landing platform fiducial cluster allows for the reliable recognition

55

of the landing platform for a large range of altitudes.

Further research and development would be required to decrease the device’s com-

ponent cost of $100. A custom-made solution devoid of off-the-shelf components

would be cheaper, more lightweight, and easier to mass-produce.

56

Future Work

Beyond the implementation of the rest of the charging system described in section

2.1, the product can be improved in the following ways:

Form factor: The final prototype had dimensions of 5.84cm x 13.2cm x 4.5cm. These

dimensions describe the size of the enclosure, and were as minimal as possible given

the size of the components that had to be housed in the enclosure. While these di-

mensions did not exceed our design constraints, they are not optimal. The form factor

of the sensor system and its housing can be reduced in three ways: using a smaller

camera (non-USB), designing all of the components to fit on a single custom-made

PCB, and creating a slim ABS enclosure for injection molding. There are a plethora

of small but versatile processors, cameras, and rangefinders that if incorporated into

a custom-made system would result in a product that was about the size of a modern

smartphone.

UAV Identification: While it is possible to modify the landing platform to use differ-

ent AR marker combinations in order to allow a landing UAV to distinguish between

different platforms, a landing platform has no way of knowing what kind of UAV has

landed on it. One possible solution is to add an RFID tag on the sensor system in

order to give a contactless way for a UAV to identify itself to the landing platform.

The RFID tag on the UAV sensor system would include identifying information about

ownership, information about the type of battery it is powered with, and charge that

the battery is currently at, and even information about the route that it is taking.

57

This feature would require a standardization of RFID readers on all landing platforms

on a network.

Autonomous flight: While this sensor system was designed from the beginning with

compatibility with the Pixhawk through a serial bus, it was not achieved within the

time frame of the project. Thus, another aspect to work on is implementing a high-

level guidance algorithm that uses the position and orientation information that is

currently acquired from the visual and ultrasonic sensors.

58

Acknowledgments

I would like to thank my advisors for both academic terms: Professor Scott Kuinder-

sma and Professor Radhika Nagpal. Additionally, all of the ES 100 and Teaching Labs

staff were instrumental in helping me in completing this project. I would also like

to thank the SEAS Faculty as a whole for helping me solve unprecedented problems.

And lastly, I would like to thank my friends and family for their support.

59

References

[1] D. James, “10 Drones with the best flight times.” http://www.dronesglobe.
com/guide/long-flight-time/, 2015.

[2] N. Lavars, “Amazon to begin testing new delivery drones in the US.” http:
//newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/,
2015.

[3] “Supercharger.” https://www.tesla.com/supercharger, 2016.

[4] “Using UAV GPS.” http://www.terrisgps.com/how-is-gps-used-in-uav/,
2016.

[5] W. T. Team, “Global positioning system (gps) standard positioning service (sps)
performance analysis report,” Federal Aviation Administration, 2016.

[6] G. Anitha and R. G. Kumar, “Vision based autonomous landing of an unmanned
aerial vehicle,” Procedia Engineering, 2012.

[7] A. Johnson, J. Montgomery, and L. Matthies, “Vision guided landing of an au-
tonomous helicopter in hazardous terrain,” IEEE International Conference on
Robotics and Automation, 2005.

[8] S. Lange, N. Sunderhauf, and P. Protzel, “A vision based onboard approach
for landing and position control of an autonomous multirotor uav in gps-denied
environments,” International Conference on Advanced Robotics, 2009.

[9] “HD Pro Webcam C920 Technical Specifications.” http://support.logitech.
com/en_us/product/hd-pro-webcam-c920#download, 2015.

[10] L. Larmore, Introduction to Photographic Principles. 2nd ed. New York: Dover
Publications, Inc., 1965.

[11] “Product User’s Manual – HC-SR04 Ultrasonic Sensor.” https://docs.google.
com/document/d/1Y-yZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit,
2013.

[12] “Raspberry Pi 2, Model B Datasheet.” https://cdn-shop.adafruit.com/
pdfs/raspberrypi2modelb.pdf, 2013.

60

http://www.dronesglobe.com/guide/long-flight-time/
http://www.dronesglobe.com/guide/long-flight-time/
http://newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/
http://newatlas.com/amazon-new-delivery-drones-us-faa-approval/36957/
https://www.tesla.com/supercharger
http://www.terrisgps.com/how-is-gps-used-in-uav/
http://support.logitech.com/en_us/product/hd-pro-webcam-c920#download
http://support.logitech.com/en_us/product/hd-pro-webcam-c920#download
https://docs.google.com/document/d/1Y-yZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit
https://docs.google.com/document/d/1Y-yZnNhMYy7rwhAgyL_pfa39RsB-x2qR4vP8saG73rE/edit
https://cdn-shop.adafruit.com/pdfs/raspberrypi2modelb.pdf
https://cdn-shop.adafruit.com/pdfs/raspberrypi2modelb.pdf

[13] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration for a video-
based augmented reality conferencing system.,” Proceedings of the 2nd IEEE and
ACM International Workshop on Augmented Reality, 1999.

[14] J.-L. Blanco, “A tutorial on se (3) transformation parameterizations and on-
manifold optimization,” University of Malaga, Tech. Rep., 2010.

[15] F. James, Statistical Methods in Experimental Physics (2nd ed.). Singapore:
World Scientific., 2006.

[16] P. Schlyter, “Radiometry and photometry in astronomy.” http:
//stjarnhimlen.se/comp/radfaq.html#10, 1997.

61

http://stjarnhimlen.se/comp/radfaq.html#10
http://stjarnhimlen.se/comp/radfaq.html#10

Appendix A - Bill of Materials

62

Appendix B - Engineering Drawings

Engineering drawings of the enclosure.

The following CAD models were made in SolidWorks.

63

 1
.0

0
 .1

0

 5
.3

6

 3
.7

6
 1

.0
0

 .6
0

 .0
8

 .0
8

 .1
2

 2
.5

0

 .0
8

.6

8
 1

.0
2

 2
.6

0

 1
.1

8 .0
4

.1

3 .1
2

 1
.7

8

 .5
8

 2
.6

8

 .8
1

.4

8

Se
ns

or
 E

nc
lo

su
re

 -
To

p

4

I.
C

isn
er

os

4
1

AC

D
O

 N
O

T
SC

A
LE

 D
RA

W
IN

G

en
cl

_t
op

SH
EE

T 1
 O

F
1

UN
LE

SS
 O

TH
ER

W
IS

E
SP

EC
IF

IE
D

:

SC
A

LE
: 1

:2
W

EI
G

HT
:

RE
V

D
W

G
.

N
O

.

ASI
ZE

TIT
LE

:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS

:

Q
.A

.

M
FG

 A
PP

R.

EN
G

 A
PP

R.

C
HE

C
KE

D

D
RA

W
N

FI
N

IS
H

M
A

TE
RI

A
L

IN
TE

RP
RE

T
G

EO
M

ET
RI

C
TO

LE
RA

N
C

IN
G

 P
ER

:

D
IM

EN
SI

O
N

S
A

RE
 IN

 IN
C

HE
S

TO
LE

RA
N

C
ES

:
FR

A
C

TIO
N

A
L

A
N

G
UL

A
R:

 M
A

C
H

 B

EN
D

TW

O
 P

LA
C

E
D

EC
IM

A
L

TH

RE
E

PL
A

C
E

D
EC

IM
A

L

A
PP

LIC
A

TIO
N

US
ED

 O
N

N
EX

T
A

SS
Y

PR
O

PR
IE

TA
RY

 A
N

D
C

O
N

FI
DE

N
TIA

L
TH

E
IN

FO
RM

A
TIO

N
 C

O
N

TA
IN

ED
 IN

 T
HI

S
D

RA
W

IN
G

 IS
 T

HE
 S

O
LE

 P
RO

PE
RT

Y
O

F
<I

N
SE

RT
 C

O
M

PA
N

Y
N

A
M

E
HE

RE
>.

 A
N

Y
RE

PR
O

D
UC

TIO
N

 IN
 P

A
RT

 O
R

A
S

A
 W

HO
LE

W
ITH

O
UT

 T
HE

 W
RI

TT
EN

 P
ER

M
IS

SI
O

N
 O

F
<I

N
SE

RT
 C

O
M

PA
N

Y
N

A
M

E
HE

RE
>

IS

PR
O

HI
BI

TE
D

.

2
33

2
1

4

BD
D BC A

64

 1
.0

0

 .1
7

 .1
0

 .1
0

 5
.3

6

 .0
8

.1

7
 1

.2
9

 .1
4

 .4
8

 .3
5

 3
.7

6
 1

.0
0

 .6
0

 2
.5

0 .0
8

 2
.2

8

 1
.9

4

.0

9

 .0
5

.1

3
 .1

2

.2
3

 .2
6

 .2
7

 1
.2

5

 .5
0

 .3
0

 .5
6

 .5
1

.4
8

Se
ns

or
 E

nc
lo

su
re

 -
Bo

tto
m

4

I.
C

isn
er

os

4
1

AC

D
O

 N
O

T
SC

A
LE

 D
RA

W
IN

G

en
cl

_b
ot SH

EE
T 1

 O
F

1

UN
LE

SS
 O

TH
ER

W
IS

E
SP

EC
IF

IE
D

:

SC
A

LE
: 1

:2
W

EI
G

HT
:

RE
V

D
W

G
.

N
O

.

ASI
ZE

TIT
LE

:

N
A

M
E

D
A

TE

C
O

M
M

EN
TS

:

Q
.A

.

M
FG

 A
PP

R.

EN
G

 A
PP

R.

C
HE

C
KE

D

D
RA

W
N

FI
N

IS
H

M
A

TE
RI

A
L

IN
TE

RP
RE

T
G

EO
M

ET
RI

C
TO

LE
RA

N
C

IN
G

 P
ER

:

D
IM

EN
SI

O
N

S
A

RE
 IN

 IN
C

HE
S

TO
LE

RA
N

C
ES

:
FR

A
C

TIO
N

A
L

A
N

G
UL

A
R:

 M
A

C
H

 B

EN
D

TW

O
 P

LA
C

E
D

EC
IM

A
L

TH

RE
E

PL
A

C
E

D
EC

IM
A

L

A
PP

LIC
A

TIO
N

US
ED

 O
N

N
EX

T
A

SS
Y

PR
O

PR
IE

TA
RY

 A
N

D
C

O
N

FI
DE

N
TIA

L
TH

E
IN

FO
RM

A
TIO

N
 C

O
N

TA
IN

ED
 IN

 T
HI

S
D

RA
W

IN
G

 IS
 T

HE
 S

O
LE

 P
RO

PE
RT

Y
O

F
<I

N
SE

RT
 C

O
M

PA
N

Y
N

A
M

E
HE

RE
>.

 A
N

Y
RE

PR
O

D
UC

TIO
N

 IN
 P

A
RT

 O
R

A
S

A
 W

HO
LE

W
ITH

O
UT

 T
HE

 W
RI

TT
EN

 P
ER

M
IS

SI
O

N
 O

F
<I

N
SE

RT
 C

O
M

PA
N

Y
N

A
M

E
HE

RE
>

IS

PR
O

HI
BI

TE
D

.

2
33

2
1

4

BD
D BC A

65

Appendix C - Components and Addi-

tional Figures

Figure C-1: Test UAV Original Frame.

66

Figure C-2: The LiPo battery that we used.

Figure C-3: The voltage splitter that drew power from the LiPo to our sensor system.

67

Figure C-4: The entire device power module integrated.

68

Figure C-5: Connections to the Pixhawk flight controller.

69

Figure C-6: The Futaba radio receiver.

70

Figure C-7: The new 3D-printed landing gear attached to the UAV frame.

71

Figure C-8: A side view of the device in order to demonstrate the component inte-
gration. The space on the left hand side is for the power module and cabling.

72

Appendix D - Code

For a complete set of the code used in this project, please see the publicly avail-

able github repository found here: https://github.com/icisneros/uav_landing.

A few smaller code samples are given here; the bigger, more complex scripts are thou-

sands of lines long, so they are too lengthy to include in this appendix.

An example XML file which details how to handle a particular AR tag. This

particular file defines a marker with ID = 1, and a size of 4.4cm x 4.4cm.

<?xml ve r s i on ="1.0" encoding="UTF−8" standa lone="no" ?>

<multimarker markers="1">

<marker index="1" s t a tu s="1">

<corner x="−2.2" y="−2.2" z="0.0" />

<corner x="2.2" y="−2.2" z="0.0" />

<corner x="2.2" y="2.2" z="0.0" />

<corner x="−2.2" y="2.2" z="0.0" />

</marker>

</multimarker>

The USB camera launch file (for activating the web-cam camera node). It incor-

porates some setting controls (like deactivating the autofocus):

<launch>

73

https://github.com/icisneros/uav_landing

<node name="usb_cam" pkg="usb_cam" type="usb_cam_node"

output="sc r e en " >

<param name="video_device " value="/dev/ video0 " />

<param name="image_width" value ="1920" />

<param name="image_height" value ="1080" />

<param name="pixel_format " value="yuyv" />

<param name="camera_frame_id" value="usb_cam" />

<param name="io_method" value="mmap"/>

<param name="camera_info_url " type="s t r i n g " value=" f i l e

: // $ (f i nd usb_cam) /usb_cam . yaml" />

<param name="auto focus " value=" f a l s e " />

<param name="autowhiteba lance " value=" f a l s e " />

<param name="focus " value="0" />

</node>

<node name="image_view" pkg="image_view" type="image_view"

respawn=" f a l s e " output="sc r e en">

<remap from="image" to="/usb_cam/image_raw"/>

<param name="au to s i z e " value="true " />

</node>

</launch>

The ar-tracking launch file (for activating the ar-pose node/topic):

<launch>

<arg name="marker_size " d e f au l t ="4.4" />

<arg name="max_new_marker_error" d e f au l t ="0.08" />

<arg name="max_track_error" d e f au l t ="0.2" />

<arg name="cam_image_topic" d e f au l t="/usb_cam/

74

image_raw" />

<arg name="cam_info_topic" d e f au l t="/usb_cam/

camera_info" />

<arg name="output_frame" de f au l t="/usb_cam" />

<arg name="bund l e_ f i l e s " d e f au l t="$ (f i nd

ar_track_alvar) / bundles / tag0 . xml $ (f i nd

ar_track_alvar) / bundles / tag1 . xml $ (f i nd

ar_track_alvar) / bundles / tag2 . xml $ (f i nd

ar_track_alvar) / bundles / tag3 . xml $ (f i nd

ar_track_alvar) / bundles / tag4 . xml $ (f i nd

ar_track_alvar) / bundles / tag5 . xml $ (f i nd

ar_track_alvar) / bundles / tag6 . xml $ (f i nd

ar_track_alvar) / bundles / tag7 . xml $ (f i nd

ar_track_alvar) / bundles / tag8 . xml $ (f i nd

ar_track_alvar) / bundles / tag9 . xml $ (f i nd

ar_track_alvar) / bundles / tag10 . xml" />

<node name="ar_track_alvar " pkg="ar_track_alvar " type

="findMarkerBundlesNoKinect " respawn=" f a l s e "

output="sc r e en " args="$ (arg marker_size) $ (arg

max_new_marker_error) $ (arg max_track_error) $ (

arg$

</launch>

The ultrasonic rangefinder class:

import RPi .GPIO as GPIO

import time

75

c l a s s RangeFinder :

de f __init__(s e l f) :

GPIO. setmode (GPIO.BCM)

s e l f .TRIG = 23

s e l f .ECHO = 24

s e l f . c a l i b_d i s t = 0 # in cm

def i n i t i a l i z e (s e l f) :

""" Assign the GPIO pins and delay f o r 2

seconds whi l e i t s e t t l e s

"""

p r i n t "Distance Measurement In Progres s "

GPIO. setup (s e l f .TRIG,GPIO.OUT)

GPIO. setup (s e l f .ECHO,GPIO. IN)

GPIO. output (s e l f .TRIG, Fa l se)

p r i n t "Waiting For Sensor To S e t t l e "

time . s l e e p (2)

de f c a l i b r a t i o n (s e l f) :

""" Sets the ca l i b_d i s t va r i ab l e , which i s a

d i s t ance o f f s e t in cm.

Should be c a l l e d at the very beg inning

be f o r e any distance_read c a l l s .

"""

GPIO. output (s e l f .TRIG, Fa l se)

76

time . s l e e p (2)

s e l f . c a l i b_d i s t = s e l f . d istance_read () # in

cm

def distance_read (s e l f) :

""" Sends u l t r a s o n i c pulse , t imes how long i t

takes to de t e c t an echo , and

then c a l c u l a t e s the d i s t ance based on the

speed o f sound in a i r at sea l e v e l .

Uses the o f f s e t d i s t anc e to zero out the

d i s t ance read ing .

"""

send u l t r a s o n i c pu l s e

GPIO. output (s e l f .TRIG, True)

time . s l e e p (0 . 00001) # 10uS pu le s

GPIO. output (s e l f .TRIG, Fa l se)

pulse_end = 1980458336

l i s t e n f o r the echo

whi le GPIO. input (s e l f .ECHO)==0:

pu l s e_star t = time . time ()

echo was heard

whi le GPIO. input (s e l f .ECHO)==1:

pulse_end = time . time ()

time d i f f e r e n t i a l ; time . time () r e tu rn s the

time in seconds

pulse_durat ion = pulse_end − pu l s e_star t

77

d i s t ance = (pulse_durat ion * 17150) − s e l f .

c a l i b_d i s t # 17150 = (34300 cm/ s) / 2

d i s t ance = round (d i s tance , 2) # d i s t anc e i s

in cm

thr e sho ld s f o r accurate measurements

i f 0 < d i s t anc e < 400 :

d i s t ance = d i s t anc e

e l s e :

d i s t ance = 0 .0

d i s t ance in meters

distance_m = di s t anc e / 100 # 171.50 = (343

m/ s) / 2

return d i s t anc e # return in cm

return distance_m # return in m

def wait (s e l f) :

"""To be c a l l e d in between d i s t anc e reads in

order to a l low the senso r to s e t t l e .

In t roduces a 1 second delay .

"""

GPIO. output (s e l f .TRIG, Fa l se)

time . s l e e p (0 . 2)

de f f i n i s h (s e l f) :

""" Cal led when done us ing the u l t r a s o n i c

78

s enso r .

Uses GPIO. cleanup () func t i on

"""

GPIO. cleanup ()

p r i n t "Measurement stopped"

The AR tag processing function in any of the cluster identification scripts. This

takes the raw data from the ar-pose topic and creates a state vector (which is stored

in a dict where the tag ID is the key and the vector is the value) :

de f processTag (s e l f , data) :

""" index in to tag data (i f a v a i l a b l e) :

data . markers [0] . pose . pose . p o s i t i o n . x

data . markers [0] . pose . pose . p o s i t i o n . y

data . markers [0] . pose . pose . p o s i t i o n . z

"""

g l oba l Tag_Detected

g l oba l Tags_Detected_List

g l oba l Tags_Dict

g l oba l Multiple_Tags

i f data . markers : # make sure data i s not empty

Tag_Detected = True

len_of_dict = len (data . markers)

i f len_of_dict > 1 :

Multiple_Tags = True

79

f o r tag in range (len_of_dict) :

tag_id = data . markers [tag] . id

po s i t i o n (in meters) rounded to the nea r e s t

cm

tag_x = round (data . markers [tag] . pose . pose .

p o s i t i o n . x , 2)

tag_y = round(−data . markers [tag] . pose . pose .

p o s i t i o n . y , 2) # inve r t ed in the camera ’ s

r e f e r e n c e

tag_z = round (data . markers [tag] . pose . pose .

p o s i t i o n . z , 2)

pose ang l e s (in rad ians) . range r e s t r i c t e d

: −pi to +pi

tag_angles = s e l f . quaternion_to_euler (data .

markers [tag])

populate the g l oba l d i c t

Tags_Dict [tag_id] = [tag_x , tag_y , tag_z] +

tag_angles

rospy . l o g i n f o (" tags_dict = ")

rospy . l o g i n f o (Tags_Dict)

e l s e :

Tag_Detected = False

Multiple_Tags = False

remember to empty the d i c t every loop

Tags_Dict = {}

80

	Introduction
	Problem
	Motivation
	Prior Art
	Approach
	Customer/Market

	Design
	Design Scope and Assumptions
	Design Goals
	Design Approach
	Design Details
	Test UAV
	Optics
	Rangefinder
	Processor
	Fiducial Marker
	Software Stack
	Landing Platform / Fiducial Cluster
	Design Evolution

	Evaluation/Verification
	Accuracy of Recognition for Altitude
	Accuracy of Recognition for Lateral Offset
	Recognition at Different Illuminance Levels
	Recognition While Moving
	Quantitative Design Goal Tests

	Budget
	Conclusion
	Future Work
	Acknowledgments
	References
	Appendix A - Bill of Materials
	Appendix B - Engineering Drawings
	Appendix C - Components and Additional Figures
	Appendix D - Code

