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Abstract

Proving that a distribution 𝑃 is “close to uniform” is an integral part of many problems in pseu-

dorandomness, and is often defined either in terms of indistinguishability—no algorithm (possibly

required to be efficient) should be able to distinguish between 𝑃 and the uniform distribution, or

unpredictability—the distribution 𝑃 should have high entropy, or be unpredictable by any (efficient)

algorithm. In most cases, the application will require the former type of guarantee, although the latter

can sometimes be easier to reason about. In this thesis, we develop tools to relate these notions, and

apply information-theoretic reasoning to problems in complexity theory and cryptography:

• We extend the definition of randomness extractors to allow the error to be measured in terms

of an arbitrary distance measure, and extend the connection between extractors and averaging

samplers (Zuckerman, Rand. Struct. Alg.‘97) to an arbitrary familyℱ of test functions and the

integral probability metric defined byℱ. Using this connection, we show that extractors for the

Kullback–Leibler (KL) divergence are subgaussian samplers as defined by Błasiok (SODA‘18).

By showing that KL extractors exist with essentially the same parameters as standard extractors

(explicitly and non-explicitly), we construct the first explicit subgaussian samplers matching the

best known constructions of averaging samplers for [0, 1]-bounded functions in the parameter

regime where the approximation error 𝜀 and failure probability 𝛿 are subconstant.

• We introduce hardness in relative entropy, a new notion of hardness for search problems which
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on the one hand is satisfied by all one-way functions and on the other hand implies both next-

block pseudoentropy and inaccessible entropy, two forms of computational entropy used in recent

constructions of pseudorandom generators and statistically hiding commitment schemes, re-

spectively, thereby shedding light on the apparent “duality” between them.

• We show that the moment generating function of the KL divergence between the empirical

distribution of 𝑛 independent samples from a distribution 𝑃 over a finite alphabet of size 𝑘 (i.e. a

multinomial distribution) and 𝑃 itself is no more than that of a gamma distribution with shape

𝑘 − 1 and rate 𝑛. The resulting exponential concentration inequality becomes meaningful (less

than 1) when the divergence 𝜀 is larger than (𝑘 − 1)/𝑛, whereas the standard method of types

bound requires 𝜀 > 1
𝑛
⋅ log (𝑛+𝑘−1𝑘−1 ) ≥ (𝑘−1)/𝑛 ⋅ log(1+𝑛/(𝑘−1)), thus saving a factor of order

log(𝑛/𝑘) in the standard regime of parameters where 𝑛 ≫ 𝑘.

• We systematically study the relationship between 𝑓-divergences and integral probability metrics

(IPMs) from the perspective of convex duality. Starting from a tight variational representation

of the 𝑓-divergence, we derive a generalization of the moment generating function, which we

show exactly characterizes the best lower bound of the 𝑓-divergence as a function of a given IPM.

Using this characterization, we obtain new bounds while also recovering in a unifiedmanner well-

known results, such as Hoeffding’s lemma, Pinsker’s inequality and its extension to subgaussian

functions, and the Hammersley–Chapman–Robbins bound. The variational representation

also allows us to prove new results on topological properties of the divergence which may be of

independent interest.
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Chapter 1

Introduction

1.1 Background: measuring the distance between distributions

A basic question in statistics is to understand what it means for two distributions to be similar, with the

special case of one of the distributions being uniform over a finite set holding particular importance in

discrete settings. Perhaps the most common answer to this question, especially in computer science,

defines distance in terms of distinguishability by test functions, meaning that two distributions 𝑃 and𝑄

on a finite setΩ are said to have distance

𝑑ℱ(𝑃, 𝑄) ≝ sup
𝑓∈ℱ

|
|𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑄)]||

for some class of test functionsℱ fromΩ to the real numbers (indeed, usually to [0, 1]). Such distance

measures, a special case of the integral probability metrics (IPMs) [Mül97 ; Zol84 ], are extremely opera-

tional in nature: they quantify the worst-possible deviation of running a procedure (a function 𝑓 ∈ ℱ)

on a distribution 𝑃 instead of a “true” distribution𝑄. Particular examples include the total-variation

distance (also called the statistical distance), obtained by takingℱ to be all functions into the set {0, 1}
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(equivalently the set [0, 1]) and corresponds to all possible decision procedures, and the standard

definition of computational indistinguishability [GM84 ; Yao82 ] which takes ℱ to be the set of all

functions computable by polynomial-sized1  circuits. Unfortunately, the operational nature of IPMs

comes at a cost: though they capture well the desired behavior of the output of an algorithm or protocol,

they are often unsuitable for use in the intermediate analysis of a protocol:

Example 1. Suppose there is a secret random string 𝑋 ∈ {0, 1}𝑛, and the value 𝑓(𝑋) is “leaked” for a

function 𝑓 ∶ {0, 1}𝑛 → {0, 1}with Pr[𝑓(𝑈𝑛) = 1] = 1/2—intuitively the secret 𝑋 is still mostly random

even given the value of 𝑓(𝑋), but from the perspective of total variation it is far from uniform, as

𝑑TV((𝑓(𝑋), 𝑋), (𝑓(𝑋), 𝑈𝑛)) =
1
2 . (1.1)

Note that a distance of 1/2 is within a constant factor of the maximal possible distance 1 and that

cryptographic protocols usually require error at most 𝑛−𝜔(1), so that the bound of Eq. (1.1 ) is almost

meaningless.

To better capture the intuition that 𝑋 is still close to uniform given 𝑓(𝑋) in the above example, one

can use an alternative measure of the randomness of a random variable based on unpredictability, most

notably the (Shannon) entropy [Sha48 ] foundational to information theory:

H(𝑃) = ∑
𝑥∈Ω

𝑃(𝑥) lg 1
𝑃(𝑥)

.

Recall that the entropy of a random variable over a finite set achieves its maximal possible value of2  

lg|Ω| if and only if it is uniformly distributed, and its minimum possible value of 0 if and only if it takes

1Here we employ the standard computer science abuse of notation, where asymptotic notation in the context of a
single object implicitly refers to a family of objects parametrized by the natural parameter, in this case lg|Ω|.

2To avoid confusion, in this work we avoid the notation log and instead write lg and ln for the binary and natural
logarithms respectively.
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exactly one value (i.e. is deterministic), so that the entropy can also be thought of as a measure of

distance to uniform—explicitly, the quantity lg|Ω| −H(𝑃) is the special case of the Kullback–Leibler

(KL) divergence [KL51 ]

KL(𝑃 ‖ 𝑄) = ∑
𝑥∈Ω

𝑃(𝑥) lg 𝑃(𝑥)
𝑄(𝑥)

where𝑄 is the uniform distribution.

Entropy of course plays a central role in information theory and coding theory, but it also has found

many uses in complexity theory and cryptography. For instance, in the stylized setting of Example 1 ,

the (conditional) entropy of 𝑋 given 𝑓(𝑋) is

H(𝑋 | 𝑓(𝑋)) = H(𝑋) −H(𝑓(𝑋)) = 𝑛 − 1,

or equivalently, the (conditional) KL divergence is

KL(𝑋 || 𝑓(𝑋) ‖‖ 𝑈𝑛 || 𝑓(𝑋)) = 𝑛 − (𝑛 − 1) = 1,

which is much smaller than the maximal possible value 𝑛, thus capturing the fact that 𝑋 remains

unknown given 𝑓(𝑋). As a result, the leftover hash lemma [McI87 ; BBR88 ; ILL89 ] in cryptography im-

plies3  that applying a universal hash function ℎ ∶ {0, 1}𝑛 → {0, 1}𝑛−𝜔(lg𝑛) to𝑋 gives output statistically

indistinguishable from uniform, i.e. with

𝑑TV((ℎ, 𝑓(𝑋), ℎ(𝑋)), (ℎ, 𝑓(𝑋), 𝑈𝑛−𝜔(lg𝑛))) ≤ 𝑛−𝜔(1) . (1.2)

Thus, by arguing via an entropy-type notion, we were able to obtain 𝑛−𝜔(1) closeness in total variation

distance in Eq. (1.2 ), whereas the direct analysis in Eq. (1.1 ) led to the much weaker bound of 1/2. In

particular, we see that entropy-type notions are useful in arguing about random variables, even if the

3Technically, this requires that the conditional Rényi (collision) entropy is 𝑛 − 1, which it is in this case.
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desired end result requires a guarantee formulated in terms of an IPM.

1.2 This work

In this work, we extend the reach of the information-theoretic world of entropy and Kullback–Leibler

divergence, reducing the need to argue about IPMs directly for problems in pseudorandomness. We

give applications to complexity theory and cryptography, and develop statistical tools to further this

connection.

1.2.1 Applications

ComplexityTheory (Chapter 2 , [Agr19 ])

Averaging samplers, introduced by Bellare and Rompel [BR94 ] and an important object of study in

pseudorandomness, are algorithms which use a short random seed to produce correlated samples from

a universe {0, 1}𝑚 with the property that for every 𝑓 ∶ {0, 1}𝑚 → [0, 1], the mean of 𝑓 on the samples

is with high probability close to the true mean of 𝑓 on all of {0, 1}𝑚. Such samplers are usually used in

the context of randomness-efficient error reduction for algorithms or protocols, where the function 𝑓

encodes the acceptance or success probability. However, for an application in streaming algorithms,

Błasiok [Bła19 ] recently introduced the notion of a subgaussian sampler, defined as an averaging sampler

for approximating the mean of functions 𝑓 ∶ {0, 1}𝑚 → ℝ such that 𝑓(𝑈𝑚) has subgaussian tails, and

asked for explicit constructions.

InChapter 2 , based on [Agr19  ], we give the first explicit constructions of subgaussian samplers (and

in fact averaging samplers for the broader class of subexponential functions) that match the best known

constructions of averaging samplers for [0, 1]-bounded functions in the regime of parameters where

4



the approximation error 𝜀 and failure probability 𝛿 are subconstant. Our constructions are established

via an extension of the standard notion of randomness extractor [NZ96 ], where the error is measured by

an arbitrary distance measure rather than total variation distance, and a generalization of Zuckerman’s

equivalence [Zuc97 ] between extractors and samplers to arbitrary integral probability metrics and

their defining familyℱ. Once recast in the extractor language, we use a result of Boucheron, Lugosi,

and Massart [BLM13 , §4.9], which shows that the indistinguishability notion of “subgaussian distance”

is controlled by a much simpler unpredictability-type notion, the Kullback–Leibler divergence. We

thus further develop a framework of KL-extractors, which are stronger than both standard extractors

and subgaussian samplers, but we show that they exist with essentially the same parameters as standard

extractors, with regards to both explicit constructions and (using a result from Chapter 4 ) optimal

non-explicit constructions.

Cryptography (Chapter 3 , [ACHV19 ])

Since one-way functions (OWFs) [DH76 ] are the minimal assumption for complexity-based cryp-

tography [IL89 ], it is of interest to simplify and improve the parameters of the constructions of basic

cryptographic primitives from OWFs, such as pseudorandom generators (PRGs) [BM82 ; Yao82 ;

HILL99 ], universal-one way hash functions (UOWHFs) [NY89 ; Rom90 ], and statistically hiding

commitments (SHCs) [BCC88 ; HNORV09 ]. A recent line of work [HRVW09  ; HRV13 ; HHRVW10  ;

VZ12  ] has improved all of these constructions using computational versions of entropy: the first step

of each of these works is to argue that every one-way function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 has a gap between

the true entropy of the sequence (𝑓(𝑋)1, … , 𝑓(𝑋)𝑛, 𝑋1, … , 𝑋𝑛), which is simply 𝑛, and some form of

computational entropy. Specifically, for PRGs, one argues that the next-block pseudoentropy [HRV13 ;

VZ12  ] is at least 𝑛+𝜔(lg𝑛), and for SHCs one argues that the next-block accessible entropy [HRVW09  ]
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is at most 𝑛 − 𝜔(lg𝑛).4  Perhaps surprisingly, once this first step has been accomplished, the remaining

parts of the constructions of PRGs, SHCs, and UOWHFs follow a very similar sequence of steps,

suggesting the intriguing possibility that the constructions or proofs might be unified.

In Chapter 3 , based on joint work with Yi-Hsiu Chen, Thibaut Horel, and Salil Vadhan [ACHV19 ],

we make partial progress towards a unified proof by introducing hardness in relative entropy, a new

unpredictability-type notion of hardness for search problems which on the one hand is easily shown

to be satisfied by all one-way functions, and on the other hand implies gaps between the true entropy

and both next-block pseudoentropy and next-block accessible entropy. Furthermore, the proof that it

yields a gap in next-block accessible entropy, similar in structure to the proof that one-way functions

imply a gap in next-block pseudoentropy [VZ12  ], is primarily information-theoretic and isolates the

part of the argument involving bounded adversaries, thereby simplifying and slightly strengthening the

original proof of [HHRVW10 ], which used a more indistinguishability-style proof directly relating

bounded and unbounded adversaries.

1.2.2 Tools

Concentration Inequalities (Chapter 4 , [Agr20 ])

Understanding the rate of convergence of an empirical distribution obtained from samples from an un-

known distribution 𝑃 to the true distribution is a basic problem in statistics and learning. Furthermore,

computer science applications, it is often important to have good finite-sample (rather than asymptotic)

bounds, as for example is needed in establishing the existence of randomness extractors with optimal

parameters (as described in the complexity theory section above). In the case of a finite alphabet of

4For UOWHFs, a different notion of accessible entropy is used [HHRVW10  ], and integrating it with the others is an
interesting open problem.
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size 𝑘 and number of samples 𝑛, this is equivalent to asking for tail bounds on the random variable

𝑉𝑑 = 𝑑((
𝑋1
𝑛 , … ,

𝑋𝑘
𝑛 ), (𝑝1, … , 𝑝𝑘))

where 𝑑 is some distance measure, and the randomness is taken over the draw of (𝑋1, … , 𝑋𝑘) from the

multinomial distribution with 𝑛 samples and probabilities (𝑝1, … , 𝑝𝑘).

When 𝑑 is the total variation distance, this is well-understood: we have 𝑑TV(𝑃, 𝑄)2 ≲ 𝜒2(𝑃 ‖ 𝑄)

by Jensen’s inequality, so that 𝔼[𝑉𝑑TV] ≲ √𝔼[𝑉𝜒2] = √(𝑘 − 1)/𝑛, and since the total variation is

the IPM defined by the 2𝑘 functions 𝑓 ∶ [𝑘] → {0, 1}, the Chernoff and union bounds imply the

exponential concentration inequality Pr[𝑉𝑑TV ≥ 𝜀] ≤ 2𝑘−2𝑛𝜀2/ ln 2 which decays exponentially in 𝑛𝜀2

once 𝜀 ≳ √𝑘/𝑛, which is of the same order as the expectation5  .

However, when 𝑑 is the Kullback–Leibler divergence, our understanding is more rudimentary. As

with the total variation distance, the expectation can be bounded sinceKL(𝑃 ‖ 𝑄) ≤ lg(1 + 𝜒2(𝑃 ‖ 𝑄)),

and thus 𝔼[𝑉KL] ≤ lg(1 + 𝑘−1
𝑛
) ≲ (𝑘 − 1)/𝑛 [Pan03 ]. Since Pinsker’s inequality implies that

𝑑TV(𝑃, 𝑄) ≲ √KL(𝑃 ‖ 𝑄), one would hope that 𝑉KL concentrates like 𝑉2
𝑑TV , that is, that the tail proba-

bility of 𝑉KL decays exponentially in 𝑛𝜀 for 𝜀 ≳ (𝑘 − 1)/𝑛. However, the standard tail bound, based

on the method of types [Csi98 ], states that Pr[𝑉KL ≥ 𝜀] ≤ (𝑛+𝑘−1𝑘−1 ) ⋅ 2−𝑛𝜀, which only falls below 1

once 𝜀 ≳ 1
𝑛
⋅ lg (𝑛+𝑘−1𝑘−1 ) ≳ (𝑘 − 1)/𝑛 ⋅ lg(1 + 𝑛/(𝑘 − 1)), which is off from the expectation by a factor

𝑂(lg(𝑛/𝑘)). Though themethod of types bound has since been improved byMardia et al. [MJTNW19  ],

the bound still only becomes meaningful once 𝜀 ≳ (𝑘 − 1)/𝑛 ⋅ lg(1 + 𝑛/(𝑘 − 1)).

In Chapter 4 , based on [Agr20  ], we give the first tail bound on 𝑉KL that decays exponentially in 𝑛𝜀

once 𝜀 ≳ (𝑘 − 1)/𝑛, by showing that the moment generating function of 𝑉KL is no more than that of

5In fact, by McDiarmid’s inequality we have Pr[𝑉𝑑TV ≥ 𝔼[𝑉𝑑TV] + 𝜀] ≤ 2−2𝑛𝜀2/ ln2.
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a gamma distribution with shape 𝑘 − 1 and rate 𝑛.6  As discussed earlier, we use these results in our

analysis of non-explicit constructions of KL extractors in Chapter 2 , and in fact this analysis via the

KL-divergence is the only method we are aware of to obtain tight bounds on the concentration of the

empirical subgaussian distance 𝑉𝑑𝒢 , thus again showing the utility of arguing about indistinguishability

via unpredictability. As a further consequence, we also obtain finite-sample bounds on all the moments

of the empirical divergence which are within constant factors (depending on the moment) of their

asymptotic values.

Optimal bounds between 𝑓-divergences and IPMs (Chapter 5 , [AH20 ])

Recall that in Chapter 2 , we use a generalization of Pinsker’s inequality [BLM13 , §4.9] which states

that the unpredictability-type notion of Kullback–Leibler divergence controls the indistinguishability

notion of subgaussian distance defined by test functions 𝑔which need not be bounded in [0, 1] (as in

total variation distance and the standard Pinsker’s inequality) if they satisfy appropriate subgaussian tail

bounds. This result is based on the Donsker–Varadhan variational representation of the KL divergence

[DV76 , Theorem 5.2], which expresses the divergence between two probability distributions 𝑃 and𝑄

on the finite set7  Ω as

KL(𝑃 ‖ 𝑄) = sup
𝑔∶Ω→ℝ

𝔼[𝑔(𝑃)] − lg𝔼[2𝑔(𝑄)]

= sup
𝑔∶Ω→ℝ

𝔼[𝑔(𝑃)] − 𝔼[𝑔(𝑄)] − lg𝔼[2𝑔(𝑄)−𝔼[𝑔(𝑄)]] . (1.3)

6Technically the rate is 𝑛 only when the KL is defined in the natural base (as it will be in Chapter 4 ), in base 2 the rate
is 𝑛/ ln 2.

7For consistency, in this introduction we use finite sets and the binary logarithm, but in Chapter 5 we will work with
arbitrary probability spaces and the (technically more convenient) natural logarithm.
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Equation (1.3 ) makes clear the connection between such a representation of the divergence and IPMs,

and it is natural to ask whether this connection can be generalized beyond the specific case of the KL

divergence and subgaussian functions.

The Donsker–Varadhan representation is a specific instance of the convex conjugate in convex anal-

ysis, and so a natural generalization is to consider the class of 𝑓-divergences [Csi63 ; Mor63 ; Csi67a ],

also called Ali–Silvey distances in statistics [AS66 ], which are a family of convex divergences general-

izing the KL divergence. However, it has been observed by [RRGP12 ] that the standard variational

representation of 𝑓-divergences, which is valid for all finite measures, is not optimal for the case of

probability distributions. In Chapter 5 , based on joint work with Thibaut Horel [AH20 ], we derive a

tight variational representation of the 𝑓-divergence, and use it to define a generalization of the moment

generating function thatwe show exactly characterizes the best lower bound of an arbitrary𝑓-divergence

as a function of an arbitrary given IPM. Using this characterization, we obtain new bounds while also

recovering in a unified manner well-known results, such as Hoeffding’s lemma, Pinsker’s inequality

and its extension to subgaussian functions, and the Hammersley–Chapman–Robbins bound. The

variational representation also allows us to prove new results on topological properties of the divergence

which may be of independent interest.
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Chapter 2

Samplers and Extractors forUnbounded

Functions

This chapter is based on [Agr19 ].

2.1 Introduction

2.1.1 Averaging samplers

Averaging (or oblivious) samplers, introduced by Bellare and Rompel [BR94 ], are one of the main

objects of study in pseudorandomness. Used to approximate the mean of a [0, 1]-valued function with

minimal randomness and queries, an averaging sampler takes a short random string and produces a

small set of correlated points such that any given [0, 1]-valued function will (with high probability)

take approximately the same mean on these points as on the entire space. Formally,

Definition 2.1.1 ([BR94 ]). A function Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷 is a (𝛿, 𝜀) averaging sampler if for

10



all 𝑓 ∶ {0, 1}𝑚 → [0, 1], it holds that

Pr
𝑥∼𝑈𝑛

[
|
|
|
1
𝐷

𝐷
∑
𝑖=1

𝑓(Samp(𝑥)𝑖) − 𝔼[𝑓(𝑈𝑚)]
|
|
|
> 𝜀] ≤ 𝛿,

where 𝑈𝑛 is the uniform distribution on {0, 1}𝑛. The number 𝑛 is the randomness complexity of the

sampler, and 𝐷 is the sample complexity. A sampler is explicit if Samp(𝑥)𝑖 can be computed in time

poly(𝑛,𝑚, lg𝐷).

Traditionally, averaging samplers have been used in the context of randomness-efficient error

reduction for algorithms and protocols, where the function 𝑓 is the indicator of a set ({0, 1}-valued),

or more generally the acceptance probability of an algorithm or protocol ([0, 1]-valued). There has

been significant effort in the literature to establish optimal explicit and non-explicit constructions of

samplers, which we summarize in Table 2.1 . We recommend the survey of Goldreich [Gol11a ] for

more details, especially regarding non-averaging samplers1  .

However, averaging samplers can also have uses beyond bounded functions: Błasiok [Bła19 ], moti-

vated by an application in streaming algorithms, introduced the notion of a subgaussian sampler, which

he defined as an averaging sampler for functions 𝑓 ∶ {0, 1}𝑚 → ℝ such that 𝑓(𝑈𝑚) is a subgaussian

random variable. Since subgaussian random variables have strong tail bounds, subgaussian functions

from {0, 1}𝑚 have a range contained in an interval of length 𝑂(√𝑚), and thus one can construct a

subgaussian sampler from a [0, 1]-sampler by simply scaling the error 𝜀 by a factor of𝑂(√𝑚). Unfortu-

nately, looking at Table 2.1 one sees that this induces a multiplicative dependence on𝑚 in the sample

complexity, and for the expander walk sampler induces a dependence of𝑚 lg(1/𝛿) in the randomness

complexity. This loss can be avoided for some samplers, such as the sampler of Chor and Goldreich

1A non-averaging sampler is an algorithm Samp which makes oracle queries to𝑓 and outputs an estimate of its average
which is good with high probability, but need not simply output the average of 𝑓’s values on the queried points.
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Table 2.1: Best known constructions of averaging samplers for [0, 1]-valued functions

Key Idea Randomness complexity
𝑛 Sample complexity𝐷 Best regime

Pairwise-independent
Expander Neighbors

[GW97 ]
𝑚+𝑂(lg(1/𝛿) + lg(1/𝜀)) 𝑂( 1

𝛿𝜀2
) 𝛿 = Ω(1)

Ramanujan Expander
Neighborsa[KPS85 ;

GW97 ]
𝑚 𝑂( 1

𝛿𝜀2
) 𝛿 = Ω(1)

Extractors
[Zuc97 ; GW97 ;

RVW00 ; GUV09 ]

𝑚+ (1 + 𝛼) ⋅ lg(1/𝛿)
any constant 𝛼 > 0 poly(lg(1/𝛿), 1/𝜀) 𝜀, 𝛿 = 𝑜(1)

Expander Walk Chernoff
[Gil98 ] 𝑚+𝑂(lg(1/𝛿)/𝜀2) 𝑂( lg(1/𝛿)

𝜀2
) 𝜀 = Ω(1)

Pairwise Independence
[CG89 ] 𝑂(𝑚) 𝑂( 1

𝛿𝜀2
) None, but simple

Non-Explicit [Zuc97 ] 𝑚+ lg(1/𝛿) − lg lg(1/𝛿)
+ 𝑂(1) 𝑂( lg(1/𝛿)

𝜀2
) All

Lower Bound [CEG95 ;
Zuc97 ; RT00 ]

𝑚+ lg(1/𝛿) + lg(1/𝜀)
− lg(𝐷) − 𝑂(1) Ω( lg (1/𝛿)

𝜀2
) N/A

a Requires explicit constructions of Ramanujan graphs.

[CG89 ] based on pairwise independence (as its analysis requires only bounded variance) and (as

we will show) the Ramanujan Expander Neighbor sampler of [KPS85 ; GW97 ], but Błasiok showed

[Bła18 ] that the expander-walk sampler does not in general act as a subgaussian sampler without

reducing the error to 𝑜(1). We remark briefly that the median-of-averages sampler of Bellare, Goldreich,

and Goldwasser [BGG93 ] still works and is optimal up to constant factors in the subgaussian setting

(since the underlying pairwise independent sampler works), but it is not an averaging sampler1 ,pg. 11 ,

and matching its parameters with an averaging sampler remains open in general even for [0, 1]-valued

functions.

One of the contributions of this chapter is to give explicit averaging samplers for subgaussian
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functions (in fact even for subexponential functions that satisfy weaker tail bounds) matching the

extractor-based samplers for [0, 1]-valued functions in Table 2.1 (up to the hidden polynomial in the

sample complexity). This achieves the best parameters currently known in the regime of parameters

where 𝜀 and 𝛿 are both subconstant, and in particular has no dependence on𝑚 in the sample complex-

ity. We also show non-constructively that subexponentially samplers exist with essentially the same

parameters as [0, 1]-valued samplers.

Theorem 2.1.2 (Informal version of Theorem 2.6.1 and Corollary 2.6.7 ). For every integer 𝑚 ∈ ℕ,

1 > 𝛿, 𝜀 > 0, and 𝛼 > 0, there is a function Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷 that is:

• an explicit subgaussian (in fact subexponential) sampler with randomness complexity 𝑛 = 𝑚 + (1 +

𝛼) ⋅ lg(1/𝛿) and sample complexity𝐷 = poly(lg(1/𝛿), 1/𝜀) (see Theorem 2.6.1 )

• anon-constructive subexponential samplerwith randomness complexity𝑛 = 𝑚+lg(1/𝛿)−lg lg(1/𝛿)+

𝑂(1) and sample complexity𝐷 = 𝑂(lg(1/𝛿)/𝜀2) (see Corollary 2.6.7 ).

2.1.2 Randomness extractors

To prove Theorem 2.1.2 , we develop a corresponding theory of generalized randomness extractors

which we believe is of independent interest. For bounded functions, Zuckerman [Zuc97 ] showed

that averaging samplers are essentially equivalent to randomness extractors, and in fact several of the

best-known constructions of such samplers arose as extractor constructions. Formally, a randomness

extractor is defined as follows:

Definition 2.1.3 (Nisan and Zuckerman [NZ96 ]). A function Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is

said to be a (𝑘, 𝜀) extractor if for every distribution 𝑋 over {0, 1}𝑚 satisfyingmax𝑥∈{0,1}𝑛 Pr[𝑋 = 𝑥] ≤

2−𝑘, the distributions Ext(𝑋, 𝑈𝑑) and 𝑈𝑚 are 𝜀-close in total variation distance. Equivalently, for all
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𝑓 ∶ {0, 1}𝑚 → [0, 1] it holds that 𝔼[𝑓(Ext(𝑋, 𝑈𝑑))] − 𝔼[𝑓(𝑈𝑚)] ≤ 𝜀. The number 𝑑 is called the seed

length, and𝑚 the output length.

The formulation of Definition 2.1.3 in terms of [0, 1]-valued functions implies that extractors

produce an output distribution that is indistinguishable from uniform by all bounded functions 𝑓.

It is therefore natural to consider a variant of this definition for a different set ℱ of test functions

𝑓 ∶ {0, 1}𝑚 → ℝwhich need not be bounded.

Definition 2.1.4 (Special case of Definition 2.3.1 using Definition 2.2.5 ). A function Ext ∶ {0, 1}𝑛 ×

{0, 1}𝑑 → {0, 1}𝑚 is said to be a (𝑘, 𝜀) extractor for a set of real-valued functionsℱ from {0, 1}𝑚 if for

every distribution 𝑋 over {0, 1}𝑚 satisfyingmax𝑥∈{0,1}𝑛 Pr[𝑋 = 𝑥] ≤ 2−𝑘 and every 𝑓 ∈ ℱ, it holds

that 𝔼[𝑓(Ext(𝑋, 𝑈𝑑))] − 𝔼[𝑓(𝑈𝑚)] ≤ 𝜀.

We show thatmuch of the theory of extractors and samplers carries over to thismore general setting.

In particular, we generalize the connection of Zuckerman [Zuc97 ] to show that extractors for a class of

functions ofℱ are also samplers for that class, along with the converse (though as for total variation

distance, there is some loss of parameters in this direction). Thus, to construct a subgaussian sampler it

suffices (and is preferable) to construct a corresponding extractor for subgaussian test functions, which

is how we prove Theorem 2.1.2 .

Unfortunately, the distance induced by subgaussian test functions is not particularly pleasant to

work with: for example the point masses on 0 and 1 in {0, 1} are 𝑂(1) apart, but embedding them

in the larger universe {0, 1}𝑚 leads to distributions which are Θ(√𝑚) apart. We solve this problem

by constructing extractors for a stronger notion, the Kullback–Leibler (KL) divergence, equivalently,

extractors whose output is required to have very high Shannon entropy.

Definition 2.1.5 (Special case of Definition 2.3.1 using KL divergence). A function Ext ∶ {0, 1}𝑛 ×
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{0, 1}𝑑 → {0, 1}𝑚 is said to be a (𝑘, 𝜀) KL-extractor if for every distribution 𝑋 over {0, 1}𝑚 satis-

fying max𝑥∈{0,1}𝑛 Pr[𝑋 = 𝑥] ≤ 2−𝑘 it holds that KL(Ext(𝑋, 𝑈𝑑) ‖ 𝑈𝑚) ≤ 𝜀, or equivalently that

H(Ext(𝑋, 𝑈𝑑)) ≥ 𝑚 − 𝜀.

A strong formofPinsker’s inequality (e.g. [BLM13 , Lemma4.18]) implies that a (𝑘, 𝜀2)KL-extractor

is also a (𝑘, 𝜀) extractor for subgaussian test functions. The KL divergence has the advantage that is

nonincreasing under the application of functions (the famous data-processing inequality), and although

it does not satisfy a traditional triangle inequality, it does satisfy a similar inequality when one of the

segments satisfies stronger ℓ2 bounds. These properties allow us to show that the zig-zag product for

extractors of Reingold, Vadhan, and Wigderson [RVW00  ] also works for KL-extractors, and therefore

to construct KL-extractors with seed length depending on 𝑛 and 𝑘 only through the entropy deficiency

𝑛 − 𝑘 of 𝑋 rather than 𝑛 itself, which in the sampler perspective corresponds to a sampler with sample

complexity depending on the failure probability 𝛿 rather than the universe size 2𝑚. Hence, we prove

Theorem 2.1.2 by constructing corresponding KL-extractors.

Theorem 2.1.6 (Informal version of Theorem 2.6.2 ). For all integers𝑚, 1 > 𝛿, 𝜀 > 0, and 𝛼 > 0 there

is an explicit (𝑘, 𝜀) KL-extractor Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 with 𝑛 = 𝑚 + (1 + 𝛼) ⋅ lg(1/𝛿),

𝑘 = 𝑛 − lg(1/𝛿), and 𝑑 = 𝑂(lg lg(1/𝛿) + lg(1/𝜀)).

Though the above theorem is most interesting in the high min-entropy regime where 𝑛− 𝑘 = 𝑜(𝑛),

we also show the existence of KL-extractors matching most of the existing constructions of total

variation extractors. In particular, we note that extractors for ℓ2 are immediately KL-extractors without

loss of parameters, and also that any extractor can bemade aKL-extractor by taking slightly smaller error,

so that the extractors of Guruswami, Umans, and Vadhan [GUV09 ] can be taken to be KL-extractors

with essentially the same parameters.
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Furthermore, in addition to our explicit constructions, we also show non-constructively that KL-

extractors (and hence subgaussian extractors) exist with very good parameters:

Theorem 2.1.7 (Informal version of Theorem 2.5.30 ). For any integers 𝑘 < 𝑛 ∈ ℕ and 1 > 𝜀 > 0

there is a (𝑘, 𝜀) KL-extractor Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 with 𝑑 = lg(𝑛 − 𝑘) + lg(1/𝜀) + 𝑂(1) and

𝑚 = 𝑘 + 𝑑 − lg(1/𝜀) − 𝑂(1).

One key thing to note about the nonconstructive KL-extractors of the above theorem is that they

incur an entropy loss of only 1 ⋅ lg(1/𝜀), whereas total variation extractors necessarily incur entropy

loss 2 ⋅ lg(1/𝜀) by the lower bound of Radhakrishnan and Ta-Shma [RT00 ]. In particular, by Pinsker’s

inequality, (𝑘, 𝜀2) KL-extractors with the above parameters are also optimal (𝑘, 𝜀) standard (total

variation) extractors [RT00 ], so that one does not lose anything by constructing a KL-extractor rather

than a total variation extractor. We also remark that the above theorem gives subgaussian samplers

with better parameters than a naive argument that a random function should directly be a subgaussian

sampler, as it avoids the need to take a union bound over 𝑂(𝑀𝑀) = 𝑂(2𝑀 lg𝑀) test functions (for

𝑀 = 2𝑚) which results in additional additive lg lg factors in the randomness complexity.

In the total variation setting, there are only a couple of methods known to explicitly achieve optimal

entropy loss 2 ⋅ lg(1/𝜀), the easiest of which is to use an extractor which natively has this sort of loss, of

which only three are known: An extractor from randomwalks overRamanujanGraphs due toGoldreich

and Wigderson [GW97 ], the Leftover Hash Lemma due to Impagliazzo, Levin, and Luby [ILL89 ]

(see also [McI87 ; BBR88 ]), and the extractor based on almost-universal hashing of Srinivasan and

Zuckerman [SZ99 ]. Unfortunately, all of these are ℓ2 extractors and so must have seed length linear in

min(𝑛−𝑘,𝑚) (cf. [Vad12 , Problem 6.4]), rather than logarithmic in 𝑛−𝑘 as known non-constructively.

The other alternative is to use the generic reduction of Raz, Reingold, and Vadhan [RRV02 ] which
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turns any extractor Ext with entropy loss Δ into one with entropy loss 2 ⋅ lg(1/𝜀) + 𝑂(1) by paying

an additive 𝑂(Δ + lg(𝑛/𝜀)) in seed length. We show that all of these ℓ2 extractors and the [RRV02 ]

transformation also work to give KL-extractors with entropy loss 1 ⋅ lg(1/𝜀)+𝑂(1), so that applications

which require minimal entropy loss can also use explicit constructions of KL-extractors.

2.1.3 Future directions

Broadly speaking, we hope that the perspective of KL-extractors will bring new tools (perhaps from

information theory) to the construction of extractors and samplers. For example, since KL-extractors

can have seed length with dependence on 𝜀 of only 1 ⋅ lg(1/𝜀), trying to explicitly construct a KL-

extractor with seed length 1 ⋅ lg(1/𝜀) + 𝑜(min(𝑛 − 𝑘, 𝑘))may also shed light on how to achieve optimal

dependence on 𝜀 in the total variation setting.

In the regime of constant 𝜀 = Ω(1), we do not have explicit constructions of subgaussian samplers

matching the expander-walk sampler of Gillman [Gil98 ] for [0, 1]-valued functions, which achieves

randomness complexity𝑚 + 𝑂(lg(1/𝛿)) and sample complexity 𝑂(lg(1/𝛿)), as asked for by Błasiok

[Bła19 ]. From the extractor point-of-view, it would suffice (by the reduction of [GW97 ; RVW00 ]

that we analyze for KL-extractors) to construct explicit linear degree KL-extractors with parameters

matching the linear degree extractor of Zuckerman [Zuc07 ], i.e. with seed length 𝑑 = lg(𝑛) +𝑂(1) and

𝑚 = Ω(𝑘) for 𝜀 = Ω(1). A potentially easier problem, since the Zuckerman linear degree extractor is

itself based on the expander-walk sampler, could be to instead match the parameters of the near-linear

degree extractors of Ta-Shma, Zuckerman, and Safra [TZS06 ] based on Reed–Muller codes, thereby

achieving sample complexity𝑂(lg(1/𝛿) ⋅ poly lg lg(1/𝛿)).

Finally, we hope that KL-extractors can also find uses beyond being subgaussian samplers and

total variation extractors: for example it seems likely that there are applications (perhaps in coding or
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cryptography, cf. [Bar+11 ]) where it is more important to have high Shannon entropy in the output

than small total variation distance to uniform, in which case one may be able to use (𝑘, 𝜀)KL-extractors

with entropy loss only 1 ⋅ lg(1/𝜀) directly, rather than a total variation extractor or (𝑘, 𝜀2)KL-extractor

with entropy loss 2 ⋅ lg(1/𝜀).

2.2 Preliminaries

2.2.1 (Weak) statistical divergences andmetrics

Our results in general will require very few assumptions on notions of “distance” between probability

distributions, so we will give a general definition and indicate in our theorems when we need which

assumptions.

Definition 2.2.1. A weak statistical divergence (or simply weak divergence) on a finite set𝒳 is a function

D from pairs of probability distributions over 𝑋 toℝ∪ {±∞}. We writeD(𝑃 ‖ 𝑄) for the value ofD on

distributions 𝑃 and𝑄. Furthermore

1. If D(𝑃 ‖ 𝑄) ≥ 0 with equality iff 𝑃 = 𝑄, then D is positive-definite, and we simply call D a

divergence.

2. IfD(𝑃 ‖ 𝑄) = D(𝑄 ‖ 𝑃), thenD is symmetric.

3. IfD(𝑃 ‖ 𝑅) ≤ D(𝑃 ‖ 𝑄) +D(𝑄 ‖ 𝑅), thenD satisfies the triangle inequality.

4. IfD(𝜆𝑃1 + (1 − 𝜆)𝑃2 ‖ 𝜆𝑄1 + (1 − 𝜆)𝑄2) ≤ 𝜆D(𝑃1 ‖ 𝑄1) + (1 − 𝜆)D(𝑃2 ‖ 𝑄2) for all 𝜆 ∈ [0, 1],

thenD is jointly convex. If this holds only when𝑄1 = 𝑄2 thenD is convex in its first argument.

5. IfD is defined on all finite sets𝒴 and for all functions𝑓 ∶ 𝒳 → 𝒴 the divergence is nonincreasing

under 𝑓, that isD(𝑓(𝑃) ‖ 𝑓(𝑄)) ≤ D(𝑃 ‖ 𝑄), thenD satisfies the data-processing inequality.
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IfD is positive-definite, symmetric, and satisfies the triangle inequality, then it is called a metric.

Example 2.2.2. The ℓ𝑝 distance for 𝑝 ≥ 1 between probability distributions over𝒳 is

𝑑ℓ𝑝(𝑃, 𝑄) ≝ (∑
𝑥∈𝒳

||𝑃𝑥 − 𝑄𝑥||
𝑝)

1/𝑝

is a jointly-convex metric. Furthermore, the ℓ𝑝 distance is nonincreasing in 𝑝, and when 𝑝 = 1 it

satisfies the data-processing inequality.

Example 2.2.3. The total variation distance is

𝑑TV(𝑃, 𝑄) ≝
1
2𝑑ℓ1(𝑃, 𝑄) = sup

𝑆⊆𝒳

|
|Pr[𝑃 ∈ 𝑆] − Pr[𝑄 ∈ 𝑆]|| = sup

𝑓∈[0,1]𝒳
(𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑄)])

and is a jointly convex metric that satisfies the data-processing inequality.

Example 2.2.4 (Rényi Divergences [Rén61 ]). For two probability distributions 𝑃 and𝑄 over a finite

set𝒳, the Rényi 𝛼-divergence or Rényi divergence of order 𝛼 is defined for real 0 < 𝛼 ≠ 1 by

D𝛼(𝑃 ‖ 𝑄) ≝
1

𝛼 − 1 lg(∑𝑥∈𝒳

𝑃𝛼𝑥
𝑄𝛼−1
𝑥

)

where the logarithm is in base 2 (as are all logarithms in this chapter unless noted otherwise). The

Rényi divergence is continuous in𝛼 and so is defined by taking limits for𝛼 ∈ {0, 1,∞}, giving for𝛼 = 0

the divergenceD0(𝑃 ‖ 𝑄) ≝ lg(1/Pr𝑥∼𝑄[𝑃𝑥 ≠ 0]), for 𝛼 = 1 the Kullback–Leibler (or KL) divergence

KL(𝑃 ‖ 𝑄) ≝ D1(𝑃 ‖ 𝑄) = ∑
𝑥∈𝑋

𝑃𝑥 lg
𝑃𝑥
𝑄𝑥

,

and for𝛼 = ∞ themax-divergenceD∞(𝑃 ‖ 𝑄) ≝ max𝑥∈𝑋 lg
𝑃𝑥
𝑄𝑥

. TheRényi divergence is nondecreasing

in𝛼. Furthermore, when𝛼 ≤ 1 theRényi divergence is jointly convex, and for all𝛼 theRényi divergence

satisfies the data-processing inequality [vEH14 ].

The Rényi 𝛼-entropy of 𝑃 is defined as H𝛼(𝑃) ≝ lg |𝒳| − D𝛼(𝑃 ‖ 𝑈𝒳) for 𝑄 = 𝑈𝒳 the uniform
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distribution over the set𝒳, and satisfies 0 ≤ H𝛼(𝑃) ≤ lg|𝒳|. For 𝛼 = 0,H0(𝑃) = lg||Supp(𝑃)|| is the

max-entropy of 𝑃, for 𝛼 = 1, H1(𝑃) = ∑𝑥∈𝒳 𝑃𝑥 lg(1/𝑃𝑥) is the Shannon entropy of 𝑃, and for 𝛼 = ∞,

H∞(𝑃) = min𝑥∈𝒳 lg(1/𝑃𝑥) is the min-entropy of 𝑃.

For 𝛼 = 2, the Rényi 2-entropy can be expressed in terms of the ℓ2-distance to uniform:

lg|𝒳| −H2(𝑃) = D2(𝑃 ‖ 𝑈𝒳) = lg(1 + |𝒳| ⋅ 𝑑ℓ2(𝑃, 𝑈𝒳)
2),

and also in terms of the collision probability

H2(𝑃) = lg 1
Pr𝑥,𝑥′∼𝑃[𝑥 = 𝑥′]

= lg 1
∑𝑥∈𝑋 𝑃

2
𝑥
.

2.2.2 Integral ProbabilityMetrics, or weak divergences from test functions

Zuckerman’s connection [Zuc97 ] between samplers for bounded functions and extractors for total

variation distance is based on the following standard characterization of total variation distance as the

maximum distinguishing advantage achieved by bounded functions,

𝑑TV(𝑃, 𝑄) = sup
𝑓∈[0,1]𝒳

𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑄)].

By considering an arbitrary class of functions in the supremum, we get the following weak divergence,

a special case of what Müller [Mül97 ] called integral probability metrics (IPMs):

Definition 2.2.5. Given a finite 𝒳 and a set of real-valued functions ℱ ⊆ ℝ𝒳, the ℱ-distance on 𝒳

between probability distributions on𝒳 is denoted byDℱ and is defined as

Dℱ(𝑃 ‖ 𝑄) ≝ sup
𝑓∈ℱ

(𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑄)]) = sup
𝑓∈ℱ

D{𝑓}(𝑃 ‖ 𝑄).

We call the set of functionsℱ symmetric if for all 𝑓 ∈ ℱ there is 𝑐 ∈ ℝ and 𝑔 ∈ ℱ such that 𝑔 = 𝑐 − 𝑓,

and distinguishing if for all 𝑃 ≠ 𝑄 there exists 𝑓 ∈ ℱwithD{𝑓}(𝑃 ‖ 𝑄) > 0.
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Remark 2.2.6. For simplicity, all our probabilistic distributions are given only for random variables and

distributions over finite sets as this is all we need for our application in this chapter. We examine the

more general case of integral probability metrics [Mül97 ] on arbitrary probability spaces in Chapter 5 .

Example 2.2.7. Ifℱ = {0, 1}𝒳 orℱ = [0, 1]𝒳, thenDℱ is exactly the total variation distance. Equiva-

lently, the ℓ1 distance is theℱ-distance forℱ = {−1, 1}𝒳 orℱ = [−1, 1]𝒳.

Example 2.2.8. Families of ℱ-distances for ℱ ⊆ [0, 1]𝒳 have a long history in computer science:

for example, by takingℱ to be the set of functions computable by efficient algorithms (under some

formalization), one recovers the standard notions of pseudorandomness and computational indistin-

guishability in computer science dating back to Goldwasser and Micali [GM84 ] and Yao [Yao82 ], and

the work of Reingold et al. [RTTV08b  ; RTTV08a  ] has more examples of this definition in computer

science.

Example 2.2.9. Generalizing Example 2.2.7 , for every 1 ≤ 𝑝, 𝑞 ≤ ∞ such that 1/𝑝+ 1/𝑞 = 1, we have

that that 𝑑ℓ𝑝 = |𝒳|−1/𝑞 ⋅𝑑ℳ𝑞 whereℳ𝑞 is the family of real-valued functions with bounded 𝑞-moments

ℳ𝑞 ≝ {𝑓 ∶ 𝒳 → ℝ |
| ‖𝑓(𝑈𝒳)‖𝑞 ≝ 𝔼[|𝑓(𝑈𝒳)|

𝑞]1/𝑞 ≤ 1} .

This is a special case of the duality of the Lebesgue spaces 𝐿𝑝 and 𝐿𝑞 (see for example Dunford and

Schwartz [DS58 , Theorem IV.3.9]).

Remark 2.2.10. An equivalent definition ofℱ being symmetric is that for all 𝑓 ∈ ℱ there exists 𝑔 ∈ ℱ

withD{𝑔}(𝑃 ‖ 𝑄) = −𝐷{𝑓}(𝑃 ‖ 𝑄) = D{𝑓}(𝑄 ‖ 𝑃) for all distributions 𝑃 and𝑄. Hence, one might also

consider a weaker notion of symmetry that reverses quantifiers, whereℱ is “weakly-symmetric” if for

all 𝑓 ∈ ℱ and distributions 𝑃 and 𝑄 there exists 𝑔 ∈ ℱ such that D{𝑔}(𝑃 ‖ 𝑄) = −D{𝑓}(𝑃 ‖ 𝑄) =

D{𝑓}(𝑄 ‖ 𝑃). However, such a classℱ gives exactly the sameweak divergenceDℱ as its “symmetrization”
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ℱ = ℱ ∪ {−𝑓 | 𝑓 ∈ ℱ}, so we do not need to introduce this more complex notion.

Remark 2.2.11. We use a superscript in the notation Dℱ to avoid confusion with the Csiszár 𝑓-

divergences [Csi63 ], also known as Ali–Silvey distances [AS66 ], which are a family of divergences

parametrized by a convex function 𝑓 and are commonly denotedD𝑓.

Remark 2.2.12. By identifying distributions with their probability mass functions, one can realize

𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑄)] as an inner product ⟨𝑃 − 𝑄, 𝑓⟩, so thatDℱ(𝑃 ‖ 𝑄) is the supremum of linear func-

tions on the space of real-valued functions on𝒳.

We now establish some basic properties ofDℱ.

Lemma 2.2.13. Let ℱ ⊆ ℝ𝒳 be a set of real-valued functions over a finite set 𝒳. Then Dℱ satisfies the

triangle inequality and is jointly convex, and

1. ifℱ is symmetric thenDℱ is symmetric and

Dℱ(𝑃 ‖ 𝑄) = sup
𝑓∈ℱ

|
|𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑄)]|| ≥ 0,

2. ifℱ is distinguishing thenDℱ is positive-definite,

so that ifℱ is both symmetric and distinguishing thenDℱ is a jointly convexmetric on probability distributions

over𝒳, in which case we also use the notation 𝑑ℱ(𝑃, 𝑄) ≝ Dℱ(𝑃 ‖ 𝑄).

Proof. The triangle inequality and joint convexity both follow from the linearity of each D{𝑓}, as by

linearity of expectation, for all 𝑓 ∶ 𝒳 → ℝ it holds that

D{𝑓}(𝑃 ‖ 𝑅) = D{𝑓}(𝑃 ‖ 𝑄) +D{𝑓}(𝑄 ‖ 𝑅)

D{𝑓}(𝜆𝑃1 + (1 − 𝜆)𝑃2 ‖ 𝜆𝑄1 + (1 − 𝜆)𝑄2) = 𝜆D{𝑓}(𝑃1 ‖ 𝑄1) + (1 − 𝜆)D{𝑓}(𝑃2 ‖ 𝑄2).
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Upper bounding the terms on the right-hand side byDℱ and taking the supremum of the left hand side

over 𝑓 ∈ ℱ then gives the claims. The symmetry and positive-definite claims are immediate from the

definitions.

2.3 Extractors for weak divergences and connections to samplers

2.3.1 Definitions

We now use this machinery to extend the notion of an extractor due to Nisan and Zuckerman [NZ96 ]

and the average-case variant of Dodis et al. [DORS08 ].

Definition 2.3.1 (Extends Definition 2.1.4 ). Let D be a weak divergence on the set {0, 1}𝑚, and

Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚. Then if for all distributions 𝑋 over {0, 1}𝑛 withH∞(𝑋) ≥ 𝑘 it holds

that

1. D(Ext(𝑋, 𝑈𝑑) ‖ 𝑈𝑚) ≤ 𝜀, then Ext is said to be a (𝑘, 𝜀) extractor forD, or a (𝑘, 𝜀)D-extractor.

2. 𝔼𝑠∼𝑈𝑑[D(Ext(𝑋, 𝑠) ‖ 𝑈𝑚)] ≤ 𝜀, then Ext is said to be a (𝑘, 𝜀) strong extractor for D, or a (𝑘, 𝜀)

strongD-extractor.

Furthermore, if for all joint distributions (𝑍, 𝑋)where 𝑋 is distributed over {0, 1}𝑛 with H̃∞(𝑋|𝑍) ≝

lg(1/ 𝔼𝑧∼𝑍[2−H∞(𝑋|𝑍=𝑧)]) ≥ 𝑘, it holds that

3. 𝔼𝑧∼𝑍[D(Ext(𝑋|𝑍=𝑧, 𝑈𝑑) ‖ 𝑈𝑚) ≤ 𝜀], then Ext is said to be a (𝑘, 𝜀) average-case extractor forD, or

a (𝑘, 𝜀) average-caseD-extractor.

4. 𝔼𝑧∼𝑍,𝑠∼𝑈𝑑[D(Ext(𝑋|𝑍=𝑧, 𝑠) ‖ 𝑈𝑚)] ≤ 𝜀, thenExt is said to be a (𝑘, 𝜀) average-case strong extractor

forD, or a (𝑘, 𝜀) average-case strongD-extractor.
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Remark 2.3.2. By taking D to be the total variation distance we recover the standard definitions of

extractor and strong extractor due to [NZ96 ] and the definition of average-case extractor due to

[DORS08 ].

However, our definitions are phrased slightly differently for strong and average-case extractors

as an expectation rather than a joint distance, that is, for strong average-case extractors we require a

bound on the expectation𝔼𝑧∼𝑍,𝑠∼𝑈𝑑[D(Ext(𝑋|𝑍=𝑧, 𝑠) ‖ 𝑈𝑚)] rather than a bound on the joint distance

D(𝑍, 𝑈𝑑,Ext(𝑋, 𝑈𝑑) ‖ 𝑍,𝑈𝑑, 𝑈𝑚). In our setting, the weak divergenceD need not be defined over the

larger joint universe, but it is defined for all random variables over {0, 1}𝑚. In the case of 𝑑TV and KL

divergence, both definitions are equivalent (for KL divergence, this is an instance of the chain rule).

Remark 2.3.3. The strong variants of Definition 2.3.1 are also non-strong extractors assuming the weak

divergenceD is convex in its first argument, as it is for most weak divergences of interest, including

the ℓ𝑝 norms for 𝑝 ≥ 1, allDℱ defined by test functions, the KL divergence, Rényi divergences for

𝛼 ≤ 1, and all Csiszár–Morimoto–Ali–Silvey 𝑓-divergences. The average-case variants are always

non-average-case extractors by taking 𝑍 to be independent of 𝑋.

Remark 2.3.4. We gave Definition 2.3.1 for general weak divergences which need not be symmetric,

and made the particular choice that the output of the extractor was on the left-hand side of the weak

divergence and that the uniform distribution was on the right-hand side. This is motivated by the

standard information-theoretic divergences such as KL divergence, which require the left-hand distri-

bution to have support contained in the support of the right-hand distribution, and putting the uniform

distribution on the right ensures this is always the case. Furthermore, the KL divergence to uniform has

a natural interpretation as an entropy difference,KL(𝑃 ‖ 𝑈𝑚) = 𝑚−H(𝑃) forH the Shannon entropy,

so that in particular a KL-extractor with error 𝜀 requires the output to have Shannon entropy at least

𝑚− 𝜀. If for a weak divergenceD the other direction is more natural, one can always reverse the sides
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by considering the weak divergenceD′(𝑄 ‖ 𝑃) = D(𝑃 ‖ 𝑄).

Remark 2.3.5. Definition 2.3.1 does not technically need even a weak divergence, as it suffices to simply

have a measure of distance to uniform. However, since weak divergences have minimal constraints,

one can define a weak divergence from any distance to uniform by ignoring the second component (or

setting it to be infinite for non-uniform distributions).

We also give the natural definition of averaging samplers for arbitrary classes of functionsℱ extend-

ing Definition 2.1.1 , along with the strong variant of Zuckerman [Zuc97 ].

Definition2.3.6. Given a class of functionsℱ ∶ {0, 1}𝑚 → ℝ, a functionSamp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷

is said tobe a (𝛿, 𝜀) strong averaging sampler forℱor a (𝛿, 𝜀) strong averagingℱ-sampler if for all𝑓1, … , 𝑓𝐷 ∈

ℱ, it holds that

Pr
𝑥∼𝑈𝑛

[ 𝔼
𝑖∼𝑈[𝐷]

[𝑓𝑖(Samp(𝑥)𝑖) − 𝔼[𝑓𝑖(𝑈𝑚)]] > 𝜀] ≤ 𝛿

where [𝐷] = {1, … , 𝐷}. If this holds only when 𝑓1 = ⋯ = 𝑓𝐷, then it is called a (non-strong) (𝛿, 𝜀)

averaging sampler forℱ or (𝛿, 𝜀) averagingℱ-sampler. We say that Samp is a (𝛿, 𝜀) strong absolute averaging

sampler forℱ if it also holds that

Pr
𝑥∼𝑈𝑛

[||| 𝔼
𝑖∼𝑈[𝐷]

[𝑓𝑖(Samp(𝑥)𝑖) − 𝔼[𝑓𝑖(𝑈𝑚)]]
||| > 𝜀] ≤ 𝛿.

with the analogous definition for non-strong samplers.

Remark 2.3.7. We separated a single-sided version of the error bound in Definition 2.3.6 as in [Vad12 ],

as it makes the connection between extractors and samplers cleaner and allows us to be specific about

what assumptions are needed. Note that ifℱ is symmetric then every (𝛿, 𝜀) (strong) sampler forℱ is a

(2𝛿, 𝜀) (strong) absolute sampler forℱ, recovering the standard notion up to a factor of 2 in 𝛿.
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2.3.2 Equivalence of extractors and samplers

We now show that Zuckerman’s connection [Zuc97 ] does indeed generalize to this broader setting as

promised.

Theorem 2.3.8. Let Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be an (𝑛 − lg(1/𝛿), 𝜀)-extractor (respectively

strong extractor) for the weak divergence Dℱ defined by a class of test functions ℱ ∶ {0, 1}𝑚 → ℝ as in

Definition 2.2.5 . Then the function Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷 for 𝐷 = 2𝑑 defined by Samp(𝑥)𝑖 =

Ext(𝑥, 𝑖) is a (𝛿, 𝜀)-sampler (respectively strong sampler) forℱ.

Proof. The proof is essentially the same as that of Zuckerman [Zuc97 , Lemmas 2.6 and 2.14, Proposi-

tions 2.7 and 2.15].

Fix a collection of test functions𝑓1, … , 𝑓𝐷 ∈ ℱ, where ifExt is not strongwe restrict to𝑓1 = ⋯ = 𝑓𝐷,

and let 𝐵𝑓1,…,𝑓𝐷 ⊆ {0, 1}𝑛 be defined as

𝐵𝑓1,…,𝑓𝐷 ≝ {𝑥 ∈ {0, 1}𝑛 ||| 𝔼
𝑖∼𝑈[𝐷]

[𝑓𝑖(Ext(𝑥, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]] > 𝜀}

= {𝑥 ∈ {0, 1}𝑛 ||| 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(𝑈{Ext(𝑥,𝑖)} ‖‖ 𝑈𝑚)] > 𝜀},

where𝑈{𝑧} is the point mass on 𝑧. Then if 𝑋 is uniform over 𝐵𝑓1,…,𝑓𝐷 , we have

𝜀 < 𝔼
𝑥∼𝑋

[ 𝔼
𝑖∼𝑈[𝐷]

[𝑓𝑖(Ext(𝑥, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]]]

= 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)]

=

⎧
⎪

⎨
⎪
⎩

D{𝑓1}(Ext(𝑋, 𝑈𝑑) ‖ 𝑈𝑚) if 𝑓1 = ⋯ = 𝑓𝐷

𝔼𝑖∼𝑈[𝐷][D
{𝑓𝑖}(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)] always
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≤

⎧
⎪

⎨
⎪
⎩

Dℱ(Ext(𝑋, 𝑈𝑑) ‖ 𝑈𝑚) if 𝑓1 = ⋯ = 𝑓𝐷

𝔼𝑖∼𝑈[𝐷][D
ℱ(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)] always

Since Ext is an (𝑛 − lg(1/𝛿), 𝜀)-extractor (respectively strong extractor) forDℱ we must haveH∞(𝑋) <

𝑛 − lg(1/𝛿). But H∞(𝑋) = lg||𝐵𝑓1,…,𝑓𝐷|| by definition, so we have ||𝐵𝑓1,…,𝑓𝐷|| < 𝛿2𝑛. Hence, the

probability that a random 𝑥 ∈ {0, 1}𝑛 lands in 𝐵𝑓1,…,𝑓𝐷 is less than 𝛿, and since 𝐵𝑓1,…,𝑓𝐷 is exactly the

set of coin tosses which are bad for Samp, this concludes the proof.

Remark 2.3.9. Hölder’s inequality implies that an extractor for ℓ𝑝 with error 𝜀 ⋅ 2−𝑚(𝑝−1)/𝑝 is also an

ℓ1 extractor and thus [−1, 1]-averaging sampler with error 𝜀. Example 2.2.9 and Theorem 2.3.8 show

that they are in fact samplers for the much larger class of functionsℳ𝑝/(𝑝−1) with bounded 𝑝/(𝑝 − 1)

moments (rather than just∞moments), also with error 𝜀.

Furthermore, if all the functions in ℱ have bounded deviation from their mean (for example,

subgaussian functions from 𝑓 ∶ {0, 1}𝑚 → ℝ have such a bound of 𝑂(√𝑚) by the tail bounds from

Lemma 2.4.3 ), then we also have a partial converse that recovers the standard converse in the case of

total variation distance.

Theorem 2.3.10. Let ℱ be a class of functions ℱ ⊂ {0, 1}𝑚 → ℝ with finite maximum deviation

from the mean, meaning max dev(ℱ) ≝ sup𝑓∈ℱmax𝑥∈{0,1}𝑛(𝑓(𝑥) − 𝔼[𝑓(𝑈𝑚)]) < ∞. Then given a

(𝛿, 𝜀) ℱ-sampler (respectively (𝛿, 𝜀) strongℱ-sampler) Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷, the function Ext ∶

{0, 1}𝑛×{0, 1}𝑑 → {0, 1}𝑚 for𝑑 = lg𝐷 defined byExt(𝑥, 𝑖) = Samp(𝑥)𝑖 is a (𝑘, 𝜀+𝛿⋅2𝑛−𝑘 ⋅max dev(ℱ))

Dℱ-extractor (respectively strongDℱ-extractor) for every 0 ≤ 𝑘 ≤ 𝑛.

In particular,Ext is an (𝑛−lg(1/𝛿)+lg(1/𝜂), 𝜀+𝜂⋅max dev(ℱ)) average-caseDℱ-extractor (respectively

strong average-caseDℱ-extractor) for every 𝛿 ≤ 𝜂 ≤ 1.
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Proof. Again the proof is analogous to the one in Zuckerman [Zuc97 , Propositions 2.8, 2.9, and 2.16].

Fix a distribution 𝑋 over {0, 1}𝑚 withH∞(𝑋) ≥ 𝑘 and a collection of test functions 𝑓1, … , 𝑓𝐷 ∈ ℱ,

where if Samp is not strong we restrict to 𝑓1 = ⋯ = 𝑓𝐷. Then since Samp is a (𝛿, 𝜀) ℱ-sampler, we

know that the set of coin tosses for which the sampler is bad must be small. Formally, the set

𝐵𝑓1,…,𝑓𝐷 ≝ {𝑥 ∈ {0, 1}𝑛 ||| 𝔼
𝑖∼𝑈𝑑

[𝑓𝑖(Samp(𝑥)𝑖) − 𝔼[𝑓𝑖(𝑈𝑚)]] > 𝜀}

= {𝑥 ∈ {0, 1}𝑛 ||| 𝔼
𝑖∼𝑈𝑑

[𝑓𝑖(Ext(𝑥, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]] > 𝜀}

has size ||𝐵𝑓1,…,𝑓𝐷|| ≤ 𝛿2𝑛. Thus, since 𝑋 has min-entropy at least 𝑘 we know Pr[𝑋 ∈ 𝐵𝑓1,…,𝑓𝐷] ≤

(max𝑥∈𝐵𝑓1,…,𝑓𝐷 Pr[𝑋 = 𝑥]) ⋅ ||𝐵𝑓1,…,𝑓𝐷|| ≤ 2−𝑘 ⋅ 𝛿2𝑛, so we have

𝔼
𝑖∼𝑈𝑑

[𝔼[𝑓𝑖(Ext(𝑋, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]]]

= 𝔼
𝑋
[ 𝔼
𝑖∼𝑈𝑑

[𝑓𝑖(Ext(𝑋, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]]]

= Pr[𝑋 ∈ 𝐵𝑓1,…,𝑓𝐷] ⋅ 𝔼𝑋
[ 𝔼
𝑖∼𝑈𝑑

[𝑓𝑖(Ext(𝑋, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]]
||| 𝑋 ∈ 𝐵𝑓1,…,𝑓𝐷]

+ Pr[𝑋 ∉ 𝐵𝑓1,…,𝑓𝐷] ⋅ 𝔼𝑋
[ 𝔼
𝑖∼𝑈𝑑

[𝑓𝑖(Ext(𝑋, 𝑖)) − 𝔼[𝑓𝑖(𝑈𝑚)]]
||| 𝑋 ∉ 𝐵𝑓1,…,𝑓𝐷]

≤ Pr[𝑋 ∈ 𝐵𝑓1,…,𝑓𝐷] ⋅max dev(ℱ) + Pr[𝑋 ∉ 𝐵𝑓1,…,𝑓𝐷] ⋅ 𝜀

≤ 2−𝑘 ⋅ 𝛿2𝑛 ⋅max dev(ℱ) + 𝜀

completing the proof of the main claim. The “in particular” statement follows since if (𝑍, 𝑋) are jointly

distributed with H̃∞(𝑋|𝑍) ≥ 𝑛 − lg(1/𝛿) + lg(1/𝜂)we have

𝔼
𝑧∼𝑍

[𝜀 + 𝛿 ⋅ 2𝑛−H∞(𝑋|𝑍=𝑧) ⋅max dev(ℱ)] = 𝜀 + 𝛿 ⋅ 2𝑛−H̃∞(𝑋|𝑍) ⋅max dev(ℱ) ≤ 𝜀 + 𝜂 ⋅max dev(ℱ)

by definition of conditional min-entropy.
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2.3.3 All extractors are average-case

Under a similar boundedness condition for general weak divergences, we can recover the standard

fact that all extractors are average-case extractors under a slight loss of parameters (the same loss as

achieved by Dodis et al. [DORS08  ] for the case of total variation distance). More interestingly, if the

weak divergence is given byDℱ for a symmetric class of (possibly unbounded) functionsℱ, we can

also generalize and recover the result of Vadhan [Vad12 , Problem 6.8] that shows that a (𝑘, 𝜀) extractor

(for total variation) is a (𝑘, 3𝜀) average-case extractor without any other loss.

Theorem 2.3.11. LetD be a bounded weak divergence over {0, 1}𝑚, meaning that

0 ≤ ‖D‖∞ ≝ sup
𝑃 on {0,1}𝑚

D(𝑃 ‖ 𝑈𝑚) < ∞.

Then a (𝑘, 𝜀)-extractor for D (respectively strong extractor) Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is also a

(𝑘 + lg(1/𝜂), 𝜀 + 𝜂 ⋅ ‖D‖∞) average-case-extractor forD (respectively strong average-case-extractor) for any

0 < 𝜂 ≤ 1.

Proof. The proof is analogous to that of [DORS08 ]. We prove it only for non-strong extractors, the

proof for strong extractors is completely analogous by adding more expectations.

For jointly distributed random variables (𝑍, 𝑋) such that H̃∞(𝑋|𝑍) ≥ 𝑘 + lg(1/𝜂), we have by

[DORS08 , Lemma 2.2] that the probability that Pr𝑧∼𝑍[H∞(𝑋|𝑍=𝑧) < 𝑘] ≤ 𝜂. Thus

𝔼
𝑧∼𝑍

[D(Ext(𝑋|𝑍=𝑧, 𝑈𝑑) ‖‖ 𝑈𝑚)]

= Pr
𝑧∼𝑍

[H∞(𝑋|𝑍=𝑧) < 𝑘] ⋅ 𝔼
𝑧∼𝑍

[D(Ext(𝑋|𝑍=𝑧, 𝑈𝑑) ‖‖ 𝑈𝑚) ||H∞(𝑋|𝑍=𝑧) < 𝑘]

+ Pr
𝑧∼𝑍

[H∞(𝑋|𝑍=𝑧) ≥ 𝑘] ⋅ 𝔼
𝑧∼𝑍

[D(Ext(𝑋|𝑍=𝑧, 𝑈𝑑) ‖‖ 𝑈𝑚) ||H∞(𝑋|𝑍=𝑧) ≥ 𝑘]

≤ 𝜂 ⋅ ‖𝐷‖∞ + 1 ⋅ 𝜀
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Theorem 2.3.12. Let ℱ be a symmetric class of test functions and Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be

a (𝑘, 𝜀) extractor (respectively strong extractor) for Dℱ, where 𝑘 is at most 𝑛 − 1. Then Ext is an (𝑘, 3𝜀)

average-case extractor (respectively strong average-case extractor) forDℱ.

Remark 2.3.13. Theorem 2.3.12 also applies to extractors for the ℓ𝑝 norms via Example 2.2.9 .

The proof of Theorem 2.3.12 follows the strategy outlined by Vadhan [Vad12 , Problem 6.8]. We

first isolate the following key lemma which shows that any extractor with error that gracefully decays

with lower min-entropy is average-case with minimal loss of parameters, as opposed to Theorem 2.3.11 

which used a worst-case error bound when the min-entropy is low.

Lemma 2.3.14. Let Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be a (𝑘, 𝜀) extractor (respectively strong extractor)

forD such that for every 0 ≤ 𝑡 ≤ 𝑘, Ext is also a (𝑘 − 𝑡, 2𝑡+1 ⋅ 𝜀) extractor (respectively strong extractor) for

D. Then Ext is a (𝑘, 3𝜀) average-case extractor (respectively strong average-case extractor) forD.

Proof. We prove this for strong extractors, the non-strong case is analogous. For every (𝑍, 𝑋)with 𝑋

distributed on {0, 1}𝑛 and H̃∞(𝑋|𝑍) ≥ 𝑘, we have

𝔼
𝑧∼𝑍,𝑠∼𝑈𝑑

[D(Ext(𝑋|𝑍=𝑧, 𝑠) ‖ 𝑈𝑚)] = 𝔼
𝑧∼𝑍

[ 𝔼
𝑠∼𝑈𝑑

[D(Ext(𝑋|𝑍=𝑧, 𝑠) ‖ 𝑈𝑚)]]

≤ 𝔼
𝑧∼𝑍

⎡
⎢
⎢
⎢
⎢
⎣

⎧
⎪

⎨
⎪
⎩

𝜀 if H∞(𝑋|𝑍=𝑧) ≥ 𝑘

2𝑘−H∞(𝑋|𝑍=𝑧)+1 ⋅ 𝜀 otherwise

⎤
⎥
⎥
⎥
⎥
⎦

≤ 𝜀 ⋅ 𝔼
𝑧∼𝑍

[1 + 2𝑘−H∞(𝑋|𝑍=𝑧)+1] ≤ 3𝜀

where the last inequality follows from the fact that 𝔼𝑧∼𝑍[2−H∞(𝑋|𝑍=𝑧)] = 2−H̃∞(𝑋|𝑍) by definition of

conditional min-entropy.

Proof of Theorem 2.3.12 . By the previous lemma, it suffices to prove that for every 𝑡 ≥ 0, Ext is a

30



(𝑘 − 𝑡, (2𝑡+1 − 1) ⋅ 𝜀) extractor (respectively strong extractor) forDℱ. SinceDℱ is convex in its first

argument by Lemma 2.2.13 , following Chor and Goldreich [CG88 ] it is enough to consider only

distributions with min-entropy 𝑘− 𝑡 that are supported on a set of at most 2𝑛−1. Fix such a distribution

𝑋 and a collection of test functions 𝑓1, … , 𝑓𝐷 ∈ ℱ with 𝑓1 = ⋯ = 𝑓𝐷 if Ext is not strong. Then since

𝑋 is supported on a set of size at most 2𝑛−1, the distribution 𝑌 that is uniform over the complement

of Supp(𝑋) has min-entropy at least 𝑛 − 1 ≥ 𝑘, and furthermore the mixture 2−𝑡𝑋 + (1 − 2−𝑡)𝑌 has

min-entropy at least 𝑘. Hence, as Ext is a (𝑘, 𝜀) extractor (respectively strong extractor) forDℱ,

𝜀 ≥ 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(2−𝑡𝑋 + (1 − 2−𝑡)𝑌, 𝑖) ‖‖ 𝑈𝑚)]

= 2−𝑡 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)] + (1 − 2−𝑡) 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(𝑌, 𝑖) ‖ 𝑈𝑚)]

= 2−𝑡 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)] − (1 − 2−𝑡) 𝔼
𝑖∼𝑈[𝐷]

[D{𝑐𝑖−𝑓𝑖}(Ext(𝑌, 𝑖) ‖ 𝑈𝑚)]

≥ 2−𝑡 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)] − (1 − 2−𝑡) ⋅ 𝜀 (sinceH∞(𝑌) ≥ 𝑘)

(2𝑡+1 − 1) ⋅ 𝜀 ≥ 𝔼
𝑖∼𝑈[𝐷]

[D{𝑓𝑖}(Ext(𝑋, 𝑖) ‖ 𝑈𝑚)]

where 𝑐𝑖 ∈ ℝ is such that 𝑐𝑖 − 𝑓𝑖 ∈ ℱ as guaranteed to exist by the symmetry ofℱ.

2.4 Subgaussian distance and connections to other notions

Now that we’ve introduced the general machinery we need, we can go back to our motivation of

subgaussian samplers. Wewill need some standard facts about subgaussian and subexponential random

variables, we recommend the book of Vershynin [Ver18 ] for an introduction.

Definition 2.4.1. A real-valued mean-zero random variable 𝑍 is said to be subgaussian with parameter
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𝜎 if for every 𝑡 ∈ ℝ the moment generating function of 𝑍 is bounded as

ln𝔼[𝑒𝑡𝑍] ≤ 𝑡2𝜎2
2 .

If this is only holds for |𝑡| ≤ 𝑏 then 𝑍 is said to be (𝜎, 𝑏)-subgamma, and if 𝑍 is (𝜎, 1/𝜎)-subgamma then

𝑍 is said to be subexponential with parameter 𝜎.

Remark 2.4.2. There are many definitions of subgaussian (and especially subexponential) random

variables in the literature, but they are all equivalent up to constant factors in 𝜎 and only affect constants

already hidden in big-𝑂’s.

Lemma 2.4.3. Let 𝑍 be a real-valued random variable. Then

1. (Hoeffding’s lemma) If𝑍 is bounded in the interval [0, 1], then𝑍−𝔼[𝑍] is subgaussian with parameter

1/2.

2. If 𝑍 is mean-zero, then 𝑍 is subgaussian (respectively subexponential) with parameter 𝜎 if and only if

𝑐𝑍 is subgaussian (respectively subexponential) with parameter |𝑐|𝜎 for every 𝑐 ≠ 0.

Furthermore, if 𝑍 is mean-zero and subgaussian with parameter 𝜎, then

1. For all 𝑡 > 0,max(Pr[𝑍 > 𝑡],Pr[𝑍 < −𝑡]) ≤ 𝑒−𝑡2/2𝜍2 .

2. ‖𝑍‖𝑝 ≝ 𝔼[|𝑍|𝑝]1/𝑝 ≤ 2𝜎√𝑝 for all 𝑝 ≥ 1.

3. 𝑍 is subexponential with parameter 𝜎.

We are now in a position to formally define the subgaussian distance.

Definition 2.4.4. For every finite set𝒳, we define the set 𝒢𝒳 of subgaussian test functions on𝒳 (respec-

tively the set ℰ𝒳 of subexponential test functions on𝒳) to be the set of functions 𝑓 ∶ 𝒳 → ℝ such that
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the random variable 𝑓(𝑈𝒳) is mean-zero and subgaussian (respectively subexponential) with parameter

1/2. Then 𝒢𝒳 and ℰ𝒳 are symmetric and distinguishing, so by Lemma 2.2.13 the respective distances

induced by 𝒢𝒳 and ℰ𝒳 are jointly convex metrics called the subgaussian distance and subexponential

distance respectively and are denoted as 𝑑𝒢(𝑃, 𝑄) and 𝑑ℰ(𝑃, 𝑄).

Remark 2.4.5. We choose subgaussian parameter 1/2 in Definition 2.4.4 as by Hoeffding’s lemma, all

functions 𝑓 ∶ {0, 1}𝑚 → [0, 1] have that 𝑓(𝑈𝑚) − 𝔼[𝑓(𝑈𝑚)] is subgaussian with parameter 1/2, so

this choice preserves the same “scale” as total variation distance. However, the choice of parameter is

essentially irrelevant by linearity, as different choices of parameter simply scale the metric 𝑑𝒢.

Note that absolute averaging samplers for 𝒢{0,1}𝑚 from Definition 2.3.6 are exactly subgaussian

samplers as defined in the introduction. Thus, by Remark 2.3.7 and Theorem 2.3.8 , to construct

subgaussian samplers it is enough to construct extractors for the subgaussian distance 𝑑𝒢.

2.4.1 Composition

Unfortunately, the subgaussian distance has a major disadvantage compared to total variation distance

that complicates extractor construction: it does not satisfy the data-processing inequality, that is, there

are probability distributions 𝑃 and𝑄 over a set𝐴 and a function 𝑓 ∶ 𝐴 → 𝐵 such that

𝑑𝒢(𝑓(𝑃), 𝑓(𝑄)) ≰ 𝑑𝒢(𝑃, 𝑄).

This happens because subgaussian distance is defined by functions which are required to be subgaussian

only with respect to the uniform distribution. A simple explicit counterexample comes from taking

𝑓 ∶ {0, 1}1 → {0, 1}𝑚 defined by 𝑥 ↦ (𝑥, 0𝑚−1) and taking 𝑃 to be the point mass on 0 and𝑄 the point

mass on 1. Their subgaussian distance in {0, 1}1 is obviously𝑂(1), but the subgaussian distance of 𝑓(𝑃)

and 𝑓(𝑄) in {0, 1}𝑚 isΘ(√𝑚).
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The reason this matters is because a standard operation (cf. Nisan and Zuckerman [NZ96 ], Goldre-

ich and Wigderson [GW97 ], and Reingold, Vadhan, and Wigderson [RVW00  ]) in the construction of

samplers and extractors for bounded functions is to do the following: given extractors

Ext𝑜ᵆ𝑡 ∶ {0, 1}
𝑛 × {0, 1}𝑑 → {0, 1}𝑚

Ext𝑖𝑛 ∶ {0, 1}
𝑛′ × {0, 1}𝑑

′
→ {0, 1}𝑑,

define Ext ∶ {0, 1}𝑛+𝑛
′
× {0, 1}𝑑

′
→ {0, 1}𝑚 by

Ext((𝑥, 𝑦), 𝑠) = Ext𝑜ᵆ𝑡(𝑥,Ext𝑖𝑛(𝑦, 𝑠)).

The reason this works for total variation distance is exactly the data-processing inequality: if 𝑌 has

enoughmin-entropy given𝑋, thenExt𝑖𝑛(𝑌, 𝑈𝑑′)will be close in total variationdistance to𝑈𝑑, andby the

data-processing inequality for total variation distance this closeness is not lost under the application of

Ext𝑜ᵆ𝑡. The assumption that𝑌 hasmin-entropy given𝑋means that (𝑋, 𝑌) is a so-called block-source, and

is implied by (𝑋, 𝑌) having enough min-entropy as a joint distribution. From the sampler perspective,

this construction uses the inner sampler Ext𝑖𝑛 to subsample the outer sampler. On the other hand,

for subgaussian distance, the distribution Ext𝑖𝑛(𝑌, 𝑈𝑑′) can be 𝜀-close to uniform but still have some

element with excess probability massΩ(𝜀/√𝑑), and this element (seed) when mapped by Ext𝑜ᵆ𝑡 can

retain2  this excess mass in {0, 1}𝑚, which results in subgaussian distance Θ(𝜀√𝑚/𝑑) ≫ 𝜀. Similarly,

from the sampler perspective, even when the outer sampler Ext𝑜ᵆ𝑡 is a good subgaussian sampler for

{0, 1}𝑚, there is no reason that a good subgaussian sampler Ext𝑖𝑛 for {0, 1}𝑑 the seeds of Ext𝑜ᵆ𝑡 will

preserve the larger sampler property when𝑚 ≫ 𝑑.

2Given a subgaussian extractor Ext with 𝑑 ≥ lg(𝑚/𝜀), adding a single extra seed ∗ to Ext such that Ext(𝑥, ∗) = 0𝑚

results in a subgaussian extractor with error at most 2−𝑑 ⋅ √2𝑚+𝜀 ≤ 3𝜀 by convexity of 𝑑𝒢 and the fact that ‖‖𝑑𝒢{0,1}𝑚
‖
‖∞

<

√2𝑚.

34



Thus, since this composition operation is used in all existing constructions of high-min entropy

extractors for total variation distance with the desired seed length, to construct such extractors for

subgaussian distance we need to bypass this barrier. The natural approach is to construct extractors for

a better-behaved weak divergence that bounds the subgaussian distance.

Remark 2.4.6. Similar reasoning shows that if Ext is a strong (𝑘, 𝜀) subgaussian extractor, then it is not

necessarily the case that the function (𝑥, 𝑠) ↦ (𝑠,Ext(𝑥, 𝑠)) that prepends the seed to the output is a

(non-strong) (𝑘, 𝜀) subgaussian extractor (in contrast to extractors for total variation distance), though

the converse does hold.

2.4.2 Connections to other weak divergences

Therefore, to aid in extractor construction, we show how 𝑑𝒢 relates to other statistical weak divergences.

Most basically, the subgaussian distance over {0, 1}𝑚 differs from total variation distance up to a

factor of𝑂(√𝑚).

Lemma 2.4.7. Let 𝑃 and𝑄 be distributions on {0, 1}𝑚. Then

𝑑TV(𝑃, 𝑄) ≤ 𝑑𝒢(𝑃, 𝑄) ≤ √2 ln 2 ⋅ 𝑚 ⋅ 𝑑TV(𝑃, 𝑄)

Proof. That 𝑑TV ≤ 𝑑𝒢 is immediate from Hoeffding’s lemma and the discussion in Remark 2.4.5 .

The reverse bound holds since any subgaussian function takes values at most√ln 2/2 ⋅ 𝑚 away from

the mean by the tail bounds from part 3 of Lemma 2.4.3 , and so any subgaussian test function 𝑓

has the property that 1/2 + 𝑓/√2 ln 2 ⋅ 𝑚 is [0, 1]-valued and thus lower bounds the total variation

distance.

While this allows constructing subgaussian extractors and samplers from total variation extractors,

35



as discussed in the introduction the fact that the upper bound depends on 𝑚 leads to suboptimal

bounds. By starting with a stronger measure of error, we pay a much smaller penalty.

Lemma 2.4.8. Let 𝑃 and𝑄 be distributions on {0, 1}𝑚. Then for every 𝛼 > 0

2𝑑TV(𝑃, 𝑄) = 𝑑ℓ1(𝑃, 𝑄) ≤ 2𝑚𝛼/(1+𝛼) ⋅ 𝑑ℓ1+𝛼(𝑃, 𝑄)

𝑑𝒢(𝑃, 𝑄) ≤ 2𝑚𝛼/(1+𝛼)
√1+ 1

𝛼 ⋅ 𝑑ℓ1+𝛼(𝑃, 𝑄)

In particular, that there is only an additional√1 + 1/𝛼 factor when moving to subgaussian distance

compared to total variation, which in particular does not depend on𝑚 and is constant for constant 𝛼.

Proof. By Example 2.2.9 , for any function 𝑓 ∶ {0, 1}𝑚 → ℝ it holds that

D{𝑓}(𝑃 ‖ 𝑄) ≤ ‖𝑓(𝑈𝑚)‖1+ 1
𝛼
⋅ 𝑑ℳ

1+ 1
𝛼
(𝑃, 𝑄) = ‖𝑓(𝑈𝑚)‖1+ 1

𝛼
⋅ 2𝑚𝛼/(1+𝛼) ⋅ 𝑑ℓ1+𝛼(𝑃, 𝑄).

The result follows since [−1, 1]-valued functions 𝑓 satisfy moment bounds ‖𝑓(𝑈𝑚)‖𝑞 ≤ 1 for all 𝑞 ≥ 1,

and functions 𝑓 which are subgaussian satisfy moment bounds ‖𝑓(𝑈𝑚)‖𝑞 ≤ √𝑞 by Lemma 2.4.3 .

One downside of starting with bounds on ℓ1+𝛼 is that, extending a well-known linear seed length

linear bound for ℓ2-extractors (e.g. [Vad12 , Problem 6.4]), we show in Corollary 2.5.29 that for every

1 > 𝛼 > 0, there is a constant 𝑐𝛼 > 0 such any ℓ1+𝛼 extractor with error smaller than 𝑐𝛼 ⋅ 2−𝑚𝛼/(1+𝛼)

requires seed length linear in 𝛼 ⋅ min(𝑛 − 𝑘,𝑚), for 𝑛 − 𝑘 the entropy deficiency and𝑚 the output

length. One might hope that sending 𝛼 to 0would eliminate this linear lower bound but still bound the

subgaussian distance, but phrased this way sending 𝛼 to 0 just results in a total variation extractor.

However, with a shift in perspective essentially the same approach works: by Example 2.2.4 ,

𝑑ℓ2(𝑃, 𝑈𝑚) ≤ 𝜀 ⋅ 2−𝑚/2 implies D2(𝑃 ‖ 𝑈𝑚) ≤ 𝜀2/ ln 2, and there is an analogous linear seed length

lower bound on constant errorD1+𝛼 extractors for every 𝛼 > 0. In this case, however, sending 𝛼 to 0
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results in the KL divergence, which does upper bound the subgaussian distance, and in fact with the

same parameters as for total variation distance.

Lemma 2.4.9. Let 𝑃 be a distribution on {0, 1}𝑚. Then

𝑑𝒢(𝑃, 𝑈𝑚) ≤ √
ln 2
2 ⋅ KL(𝑃 ‖ 𝑈𝑚)

𝑑ℰ(𝑃, 𝑈𝑚) ≤

⎧
⎪

⎨
⎪
⎩

√
ln 2
2
⋅ KL(𝑃 ‖ 𝑈𝑚) if KL(𝑃 ‖ 𝑈𝑚) ≤

1
2 ln 2

ln 2
2
⋅ KL(𝑃 ‖ 𝑈𝑚) +

1
4

if KL(𝑃 ‖ 𝑈𝑚) >
1

2 ln 2

where these bounds are concave inKL(𝑃 ‖ 𝑈𝑚). In the reverse direction, it holds that

KL(𝑃 ‖ 𝑈𝑚) ≤ 𝑚 ⋅ 𝑑TV(𝑃, 𝑈𝑚)

Proof. Theupper bounds follow froma general formof Pinsker’s inequality as in [BLM13 , Lemma4.18],

but for completeness we include its proof here in these special cases, based on the Donsker–Varadhan

“variational” formulation of KL divergence [DV76 , Theorem 5.2]:

KL(𝑃 ‖ 𝑈𝑚) =
1
ln 2 ⋅ sup

𝑔∶{0,1}𝑚→ℝ
(𝔼[𝑔(𝑃)] − ln𝔼[𝑒𝑔(𝑈𝑚)]).

Now if 𝑓 ∶ {0, 1}𝑚 → ℝ satisfies 𝔼[𝑓(𝑈𝑚)] = 0, then by letting 𝑔(𝑥) = 𝑡 ⋅ 𝑓(𝑥), this implies

𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑈𝑚)] =
1
𝑡 ⋅ 𝔼[𝑔(𝑃)] ≤

ln 2 ⋅ KL(𝑃 ‖ 𝑈𝑚) + ln𝔼[𝑒𝑡⋅𝑓(𝑈𝑚)]
𝑡

for all 𝑡 > 0. Thus, when ln𝔼[𝑒𝑡⋅𝑓(𝑈𝑚)] ≤ 𝑡2/8, we have 𝔼[𝑓(𝑃)] − 𝔼[𝑓(𝑈𝑚)] ≤ ln 2 ⋅KL(𝑃 ‖ 𝑈𝑚)/𝑡 +

𝑡/8.

Then since subgaussian random variables satisfy such a bound for all 𝑡, we can make the optimal

choice 𝑡 = √8 ln 2 ⋅ KL(𝑃 ‖ 𝑈𝑚) to get the claimed bound on𝑑𝒢. For subexponential randomvariables,
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which satisfy such a bound only for |𝑡| ≤ 2, we choose 𝑡 = min(√8 ln 2 ⋅ KL(𝑃 ‖ 𝑈𝑚), 2), which gives

𝑑ℰ(𝑃, 𝑈𝑚) ≤

⎧
⎪

⎨
⎪
⎩

√
ln 2
2
⋅ KL(𝑃 ‖ 𝑈𝑚) if KL(𝑃 ‖ 𝑈𝑚) ≤

1
2 ln 2

ln 2
2
⋅ KL(𝑃 ‖ 𝑈𝑚) +

1
4

if KL(𝑃 ‖ 𝑈𝑚) >
1

2 ln 2

as desired. The concavity of this bound follows by noting that it has a continuous and nonincreasing

derivative.

The reverse inequality is a special case of the Reverse Pinsker’s inequality of Verdú [Ver14 ,Theorem

7].

Remark 2.4.10. In Chapter 5 we give a general framework that provides a more principled and intuitive

derivation of the relationship between the subgaussian distance and the Kullback–Leibler divergence.

2.5 Extractors for KL divergence

By Lemma 2.4.9 , the subgaussian distance can be bounded in terms of the KL divergence to uniform,

so by the following easy lemma to construct subgaussian extractors it suffices to construct extractors

for KL divergence.

Lemma 2.5.1. Let 𝑉1 and 𝑉2 be weak divergences on the set {0, 1}𝑚 and 𝑓 ∶ ℝ → ℝ be a function such

that 𝑉1(𝑃 ‖ 𝑈𝑀) ≤ 𝑓(𝑉2(𝑃 ‖ 𝑈𝑚)) for all distributions 𝑃 on {0, 1}𝑚. Then if 𝑓 is increasing on (0, 𝜀), every

(𝑘, 𝜀) extractor Ext for 𝑉1 is also a (𝑘, 𝑓(𝜀))-extractor for 𝑉2, and if 𝑓 is also concave, then if Ext is strong or

average-case as a 𝑉1-extractor, it has the same properties as a (𝑘, 𝑓(𝜀)) extractor for 𝑉2.

Importantly, the KL divergence does not have the flaws of subgaussian distance discussed in

Section 2.4.1 . The classic data-processing inequality says that KL divergence is non-increasing under
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postprocessing by (possibly randomized) functions, and the chain rule for KL divergence says that

KL(𝐴, 𝐵 ‖ 𝑋, 𝑌) = KL(𝐴 ‖ 𝑋) + 𝔼
𝑎∼𝐴

[KL(𝐵|𝐴=𝑎 ‖ 𝑌|𝑋=𝑎)]

for all distributions𝐴, 𝐵, 𝑋, and 𝑌, so that in particular

𝔼
𝑠∼𝑈𝑑

[KL(Ext(𝑋, 𝑠) ‖ 𝑈𝑚)] = KL(𝑈𝑑,Ext(𝑋, 𝑈𝑑) ‖ 𝑈𝑑, 𝑈𝑚)

and prepending the seed of a strong KL-extractor does in fact give a non-strong KL-extractor:

Lemma 2.5.2. A function Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is a (𝑘, 𝜀) strong KL-extractor (respectively

strong average-case KL-extractor) if and only if the function Ext′ ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑑+𝑚 defined

by Ext′(𝑥, 𝑠) = (𝑠,Ext(𝑥, 𝑠)) is a (non-strong) (𝑘, 𝜀) KL-extractor (respectively average-case KL-extractor).

Furthermore, KL divergence satisfies a type of triangle inequality when combined with higher

Rényi divergences:

Lemma 2.5.3. Let 𝑃,𝑄, and 𝑅 be distributions over a finite set𝒳. Then for all 𝛼 > 0, it holds that

KL(𝑃 ‖ 𝑅) ≤ (1 + 1
𝛼) ⋅ KL(𝑃

‖ 𝑄) +D1+𝛼(𝑄 ‖ 𝑅)

Proof. This follows from a characterization of Rényi divergence due to van Erven and Harremoës

[vErv10 , Lemma 6.6] [vEH14 , Theorem 30] and Shayevitz [Sha11 , Theorem 1], who prove that for for

every positive real 𝛽 ≠ 1 and distributions 𝑋 and 𝑌 that

(1 − 𝛽)D𝛽(𝑋 ‖ 𝑌) = inf
𝑍
{𝛽KL(𝑍 ‖ 𝑋) + (1 − 𝛽)KL(𝑍 ‖ 𝑌)}.

In particular, choosing𝛽 = 1+𝛼,𝑋 = 𝑄, and𝑌 = 𝑅 and upper bounding the infimumby the particular

choice of 𝑍 = 𝑃 gives the claim.
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2.5.1 Composition

These properties imply that composition does work as we want (without any loss depending on the

output length𝑚) assuming we have extractors for KL and higher divergences.

Theorem 2.5.4 (Composition for high min-entropy Rényi entropy extractors, cf. [GW97 ]). Suppose

1. Ext𝑜ᵆ𝑡 ∶ {0, 1}
𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is an (𝑛 − lg(1/𝛿), 𝜀𝑜ᵆ𝑡) extractor forD1+𝛼 with 𝛼 > 0,

2. Ext𝑖𝑛 ∶ {0, 1}
𝑛′ × {0, 1}𝑑

′
→ {0, 1}𝑑 is an (𝑛′ − lg(1/𝛿), 𝜀𝑖𝑛) average-case KL-extractor,

and defineExt ∶ {0, 1}𝑛+𝑛
′
×{0, 1}𝑑

′
→ {0, 1}𝑚 byExt((𝑥, 𝑦), 𝑠) = Ext𝑜ᵆ𝑡(𝑥,Ext𝑖𝑛(𝑦, 𝑠)). ThenExt is an

(𝑛 + 𝑛′ − lg(1/𝛿), 𝜀𝑜ᵆ𝑡 + (1 + 1/𝛼) ⋅ 𝜀𝑖𝑛) extractor for KL. Furthermore, if Ext𝑖𝑛 is a strong average-case

KL-extractor, then Ext is a strong KL-extractor, and if Ext𝑜ᵆ𝑡 is average-case then so is Ext.

Proof. Let (𝑍, 𝑋, 𝑌) be jointly distributed random variables with 𝑋 distributed over {0, 1}𝑛 and 𝑌 over

{0, 1}𝑛
′
such that H̃∞(𝑋, 𝑌|𝑍) ≥ 𝑛 + 𝑛′ − lg(1/𝛿). Let 𝑆′ be a distribution over {0, 1}𝑑

′
which is

independent of 𝑋, 𝑌, and 𝑍. Then for every 𝑧 ∈ Supp(𝑍), we have by Lemma 2.5.3 and the data-

processing inequality for KL divergence that

KL(Ext((𝑋|𝑍=𝑧, 𝑌 |𝑍=𝑧), 𝑆′) ‖ 𝑈𝑚)

= KL(Ext𝑜ᵆ𝑡(𝑋|𝑍=𝑧,Ext𝑖𝑛(𝑌|𝑍=𝑧, 𝑆′)) ‖ 𝑈𝑚)

≤ (1 + 1/𝛼) ⋅ KL(Ext𝑜ᵆ𝑡(𝑋|𝑍=𝑧,Ext𝑖𝑛(𝑌|𝑍=𝑧, 𝑆′)) ‖ Ext𝑜ᵆ𝑡(𝑋|𝑍=𝑧, 𝑈𝑑))

+D1+𝛼(Ext𝑜ᵆ𝑡(𝑋|𝑍=𝑧, 𝑈𝑑) ‖ 𝑈𝑚)

≤ (1 + 1/𝛼) ⋅ KL(𝑋|𝑍=𝑧,Ext𝑖𝑛(𝑌|𝑍=𝑧, 𝑆′) ‖ 𝑋|𝑍=𝑧, 𝑈𝑑) +D1+𝛼(Ext𝑜ᵆ𝑡(𝑋|𝑍=𝑧, 𝑈𝑑) ‖ 𝑈𝑚)

= (1 + 1/𝛼) ⋅ 𝔼
𝑥∼𝑋|𝑍=𝑧

[KL(Ext𝑖𝑛(𝑌|𝑋=𝑥,𝑍=𝑧, 𝑆′) ‖‖ 𝑈𝑑)] +D1+𝛼(Ext𝑜ᵆ𝑡(𝑋|𝑍=𝑧, 𝑈𝑑) ‖ 𝑈𝑚)

where the last equality follows from the chain rule for KL divergence. Now by standard properties
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of conditional min-entropy (see for example [DORS08 , Lemma 2.2]), we know that H̃∞(𝑋|𝑍) ≥

H̃∞(𝑋, 𝑌|𝑍) − lg||Supp(𝑌)|| ≥ 𝑛 − lg(1/𝛿) and H̃∞(𝑌|𝑋, 𝑍) ≥ H̃∞(𝑋, 𝑌|𝑍) − lg||Supp(𝑋)|| ≥ 𝑛′ −

lg(1/𝛿).

IfExt𝑜ᵆ𝑡 is not average-case, take𝑍 to be a constant independent of𝑋 and𝑌, and ifExt𝑜ᵆ𝑡 is average-

case then take the average of both sides over 𝑍. The claim for non-strong Ext𝑖𝑛 then follows by taking

𝑆′ = 𝑈𝑑 which bounds the first term by (1 + 1/𝛼) ⋅ 𝜀𝑖𝑛 and the second by 𝜀𝑜ᵆ𝑡. The claim for strong

Ext𝑖𝑛 follows by choosing 𝑆′ = 𝑈{𝑠} to be the point mass on 𝑠 ∈ {0, 1}𝑑 and then taking the expectation

of both sides over a uniform 𝑠 ∈ {0, 1}𝑑.

Remark 2.5.5. Theorem 2.5.4 in fact a construction of a block-source KL-extractor, meaning that the

claimed error bounds hold for any joint distributions (𝑋, 𝑌) such that H∞(𝑌) ≥ 𝑛′ − lg(1/𝛿) and

H̃∞(𝑋|𝑌) ≥ 𝑛 − lg(1/𝛿) rather than just those distributions withH∞(𝑋, 𝑌) ≥ 𝑛 + 𝑛′ − lg(1/𝛿). The

extra lg(1/𝛿) entropy loss inherent in the non-block analysis is why Reingold, Vadhan, and Wigderson

[RVW00 ] introduced the zig-zag product for extractors, which we will apply for KL-extractors in

Corollary 2.5.19 .

2.5.2 Existing explicit constructions

The construction of Theorem 2.5.4 required both aD1+𝛼-extractor and an average-case KL-extractor,

so for the result not to be vacuous we need to show the existence of such extractors. Thankfully,

Example 2.2.4 implies that extractors forℓ2 are also extractors forD2, sowe canuse existingℓ2 extractors

from the literature, such as the Leftover Hash Lemma of Impagliazzo, Levin, and Luby [ILL89 ] (see

also [McI87 ; BBR88 ]) and its variant using almost-universal hash functions due to Srinivasan and

Zuckerman [SZ99 ].
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Proposition 2.5.6 ([McI87 ; BBR88 ; ILL89 ; IZ89 ; SZ99 ; DORS08  ]). Letℋ be a collection of 𝜀-almost

universal hash functions from the set {0, 1}𝑛 to the set {0, 1}𝑚, meaning that for all 𝑥 ≠ 𝑦 ∈ {0, 1}𝑛 it holds

that Prℎ∼ℋ[ℎ(𝑥) = ℎ(𝑦)] ≤ (1 + 𝜀)/2𝑚. Then the function Ext ∶ {0, 1}𝑛 ×ℋ → ℋ × {0, 1}𝑚 defined by

Ext(𝑥, ℎ) = (ℎ, ℎ(𝑥)) is an average-case (𝑚 + lg(1/𝜀), 2/ ln 2 ⋅ 𝜀)D2-extractor.

In particular, for every 𝑘, 𝑛 ∈ ℕ and 1 > 𝜀 > 0 there is an explicit strong average-case (𝑘, 𝜀) extractor for

D2 (andKL)with seed length𝑑 = 𝑂(𝑘+ lg(𝑛/𝜀)) and𝑚 = 𝑘− lg(1/𝜀)−𝑂(1), given byExt′(𝑥, ℎ) = ℎ(𝑥)

for ℎ drawn from an appropriate almost-universal hash family.

Proof. The D2 claim is implicit in Rackoff ’s proof of the Leftover Hash Lemma (see [IZ89 ]) and

Srinivasan and Zuckerman’s proof of the claim for total variation [SZ99 ], which both analyzed the

collision probability of the output, and the average-case claim was proved by Dodis et al. [DORS08 ],

though we include a proof here for completeness.

Given a joint distribution (𝑍, 𝑋) such that𝑋 is distributed over {0, 1}𝑛with H̃∞(𝑋|𝑍) ≥ 𝑚+lg(1/𝜀),

we have

𝔼
𝑧∼𝑍

[D2(Ext(𝑋|𝑍=𝑧,ℋ) ‖ℋ ×𝑈𝑚)]

= 𝔼
𝑧∼𝑍

[lg(2𝑚 ⋅ |ℋ| ⋅ Pr
ℎ,ℎ′∼ℋ,𝑥,𝑥′∼𝑋|𝑍=𝑧

[(ℎ, ℎ(𝑥)) = (ℎ′, ℎ′(𝑥′))])]

= 𝔼
𝑧∼𝑍

[lg(2𝑚 ⋅ Pr
ℎ∼ℋ,𝑥,𝑥′∼𝑋|𝑍=𝑧

[𝑥 = 𝑥′ ∨ (𝑥 ≠ 𝑥′ ∧ ℎ(𝑥) = ℎ(𝑥′))])]

≤ 𝔼
𝑧∼𝑍

[lg(2𝑚 ⋅ (2−H∞(𝑋|𝑍=𝑧) + 1 + 𝜀
2𝑚 ))]

≤ lg( 𝔼
𝑧∼𝑍

[2𝑚−H∞(𝑋|𝑍=𝑧)] + 1 + 𝜀) (by Jensen’s inequality)

= lg(2𝑚−H̃∞(𝑋|𝑍) + 1 + 𝜀) ≤ lg(1 + 2𝜀) ≤ 2
ln 2 ⋅ 𝜀.

Theinparticular statement follows fromLemma2.5.7 belowand from the existenceof 𝜀-almost universal

hash families with size poly(2𝑘, 𝑛, 1/𝜀) as constructed by [SZ99 ].
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To establish the claim about strong extractors, we generalize Lemma 2.5.2 to extractors forD1+𝛼

for 𝛼 > 0:

Lemma 2.5.7. If Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑑 × {0, 1}𝑚 is a (𝑘, 𝜀) D1+𝛼-extractor (respectively

average-case D1+𝛼-extractor) for 𝛼 > 0 such that Ext(𝑥, 𝑠) = (𝑠,Ext′(𝑥, 𝑠)), then Ext′ is a strong (𝑘, 𝜀)

D1+𝛼-extractor (respectively strong average-case (𝑘, 𝜀)D1+𝛼-extractor).

Proof.

𝔼
𝑠∼𝑈𝑑

[D1+𝛼(Ext′(𝑋, 𝑠) ‖‖ 𝑈𝑚)] = 𝔼
𝑠∼𝑈𝑑

[ 1𝛼 lg(2𝑚𝛼 ∑
𝑦∈{0,1}𝑚

Pr[Ext′(𝑋, 𝑠) = 𝑦]1+𝛼)]

≤ 1
𝛼 lg(2𝑚𝛼 𝔼

𝑠∼𝑈𝑑
[ ∑
𝑦∈{0,1}𝑚

Pr[Ext′(𝑋, 𝑠) = 𝑦]1+𝛼])

= 1
𝛼 lg(2𝛼(𝑚+𝑑) ∑

(𝑠,𝑦)∈{0,1}𝑑+𝑚
Pr[(𝑈𝑑,Ext′(𝑋, 𝑈𝑑)) = (𝑠, 𝑦)]1+𝛼)

= D1+𝛼(Ext(𝑋, 𝑈𝑑) ‖ 𝑈𝑑, 𝑈𝑚)

Following Vadhan [Vad12 ], we also note that the extractor based on expander walks due to Goldre-

ich andWigderson [GW97  ], which has the nice property that its seed length depends only on 𝑛−𝑘 the

entropy deficiency of the source rather than 𝑛 itself, is also an ℓ2 extractor. Before stating the extractor

formally, we introduce some notation and terminology we will need.

Definition 2.5.8. Let𝐺 be a𝐷-regular graph on {0, 1}𝑛 with adjacencymatrix𝐴𝐺 and transitionmatrix

𝑀𝐺 = 1
𝐷
𝐴𝐺. Then if𝑀𝐺 has eigenvalues 1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆2𝑛 ≥ −1, the spectral expansion of𝐺 is

𝜆 = max{𝜆2, −𝜆2𝑛}. A function Γ𝐺 ∶ {0, 1}𝑛 × [𝐷] → {0, 1}𝑛 is a neighbor function of𝐺 if there is some

labelling of the edges of𝐺 for which Γ𝐺(𝑣, 𝑖) is the vertex obtained by following the 𝑖th edge out of 𝑣 in

𝐺. Γ𝐺 is consistently labelled if for all 𝑣 ≠ 𝑣′ ∈ {0, 1}𝑛 and 𝑖 ∈ [𝐷]we have Γ(𝑣, 𝑖) ≠ Γ(𝑣′, 𝑖), that is, at

most one incoming edge is labelled by 𝑖.
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Lemma2.5.9. LetΓ ∶ {0, 1}𝑛×{0, 1}𝑑 → {0, 1}𝑛 be the neighbor function of a graph𝐺with spectral expan-

sion 𝜆. Then for every 0 ≤ 𝑘 ≤ 𝑛, Γ is a (𝑘, 𝜆√2−𝑘 − 2−𝑛) ℓ2-extractor and a (𝑘, lg(1 + 𝜆2(2𝑛−𝑘 − 1)))

D2-extractor. Furthermore, if Γ𝐺 is consistently labelled, then the functionW(𝑥, 𝑠) = 𝑠 is such that (Γ𝐺,W) is

an injection out of {0, 1}𝑛 × {0, 1}𝑑.

In particular, if 𝜆2 ≤ 𝜀⋅2𝑘−𝑛 thenExt is an average-case (𝑘,√𝜀⋅2−𝑛/2) ℓ2-extractor and an average-case

(𝑘, 𝜀/ ln 2)D2-extractor.

Proof. If 𝑋 is a distribution over {0, 1}𝑛 withH∞(𝑋) ≥ 𝑘, then lg(1 + 2𝑛𝑑ℓ2(𝑋, 𝑈𝑛)) = D2(𝑋 ‖ 𝑈𝑛) ≤

D∞(𝑋 ‖ 𝑈𝑛) ≤ 𝑛 − 𝑘 so that 𝑑ℓ2(𝑋, 𝑈𝑛) ≤ √2−𝑘 − 2−𝑛. Then identifying 𝑋 and𝑈𝑛 with the column

vector representation of their probability mass functions, we have

𝑑ℓ2(Ext(𝑋, 𝑈𝑑), 𝑈𝑛) = ‖Γ𝐺𝑋 − 𝑈𝑛‖2 = ‖Γ𝐺(𝑋 − 𝑈𝑛)‖2 ≤ 𝜆‖𝑋 − 𝑈𝑛‖2 ,

where the first equality is by definition of Ext, the second is because Γ𝐺 sends the identity to itself since

𝐺 is regular, and the inequality is because 𝑋 −𝑈𝑛 is orthogonal to the all-ones vector and Γ𝐺 shrinks all

such vectors by a factor of at least 𝜆 by definition. This completes the proof of the ℓ2 extraction claim,

and theD2-extraction claim follows from the fact thatD2(𝑌 ‖ 𝑈𝑛) = lg(1 + 2𝑛𝑑ℓ2(𝑌, 𝑈𝑛)
2) for every

distribution 𝑌 on {0, 1}𝑛.

For the furthermore claim, weneed to show that (𝑥, 𝑠) ↦ (Γ𝐺(𝑥, 𝑠), 𝑠) is an injection, or equivalently

that given Γ𝐺(𝑥, 𝑠) and 𝑠, one can recover 𝑥. But by definition of consistent labelling, at most one edge

into Γ𝐺(𝑥, 𝑠) is labelled by 𝑠, and so taking this edge from Γ𝐺(𝑥, 𝑠) gives 𝑥, as desired.

Finally, for the in particular claim, we have for any joint distributions (𝑋, 𝑍)with 𝑋 distributed over

{0, 1}𝑛, we have

𝔼
𝑧∼𝑍

[𝑑ℓ2(Ext(𝑋|𝑍=𝑧, 𝑈𝑑), 𝑈𝑛)] 𝔼
𝑧∼𝑍

[D2(Ext(𝑋|𝑍=𝑧, 𝑈𝑑 ‖ 𝑈𝑛)]
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≤ 𝔼
𝑧∼𝑍

[𝜆√2−H∞(𝑋|𝑍=𝑧) − 2−𝑛] ≤ 𝔼
𝑧∼𝑍

[lg(1 + 𝜆2(2𝑛−H∞(𝑋|𝑍=𝑧) − 1))]

≤ 𝜆√ 𝔼
𝑧∼𝑍

[2−H∞(𝑋|𝑍=𝑧) − 2−𝑛] ≤ lg(1 + 𝜆2( 𝔼
𝑧∼𝑍

[2𝑛−H∞(𝑋|𝑍=𝑧) − 1]))

= 𝜆√2−H̃∞(𝑋|𝑍) − 2−𝑛 = lg(1 + 𝜆2(2𝑛−H̃∞(𝑋|𝑍) − 1))

where the first inequality is by the main claim, the second by Jensen’s inequality, and the equality is by

definition of conditional min-entropy.

Remark 2.5.10. The fact that (𝑠,Ext(𝑥, 𝑠)) is an injection implies that, unlike for the extractors from

hashing of Proposition 2.5.6 , the result of prepending the seed to the output of the expander-walk

extractor does not give aD2 extractor. However, it will be very useful in concert with Reingold, Vadhan,

and Wigderson’s zig-zag product for extractors [RVW00 ] to avoid the entropy loss in Theorem 2.5.4 .

Corollary 2.5.11 ([GW97 ] [Vad12 , Discussion after Theorem 6.22]). There is a universal constant

𝐶 ≥ 1 such that for every 1 > 𝜀 > 0, Δ > 0, and 𝑛 ∈ ℕ there is an explicit (𝑛 − Δ, 𝜀/ ln 2) average-case

D2-extractor (respectively (𝑛 − Δ,√𝜀 ⋅ 2−𝑛/2) average-case ℓ2-extractor) Ext ∶ {0, 1}
𝑛 × {0, 1}𝑑 → {0, 1}𝑛

with 𝑑 = ⌈𝐶 ⋅ (Δ + lg(1/𝜀))⌉ + 𝑂(1) such that the function (𝑥, 𝑠) ↦ (𝑠,Ext(𝑥, 𝑠)) is an injection.

Moreover, if there is an explicit construction of consistently labelled neighbor functions for Ramanujan

graphs over {0, 1}𝑛 with degree𝐷 = 𝑂(2Δ/𝜀), then one can take 𝐶 = 1.

Proof. By Lemma 2.5.9 it suffices to demonstrate the existence of an explicit𝐷-regular expander graph

over {0, 1}𝑛 with a consistently labelled neighbor function Γ𝐺, spectral expansion 𝜆2 ≤ 𝜀 ⋅ 2−Δ, and

𝐷 = 𝑂((2Δ/𝜀)𝐶). The claim about Ramanujan graphs is thus immediate since a Ramanujan graph with

degree𝑂(2Δ/𝜀) has 𝜆2 ≤ 4/𝐷 ≤ 𝜀 ⋅ 2−Δ.

Without the assumption of good Ramanujan graphs, we can use a power of the the explicit constant

degree expander of Margulis–Gabber–Galil [Mar73 ; GG81 ] (technically this requires 𝑛 even, which
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following Goldreich [Gol11b ] we can fix when 𝑛 is odd by joining two graphs on {0, 1}𝑛−1 by the

canonical perfect matching, and we can add self-loops to ensure the degree is a power of 2). This graph

𝐺 is consistently labelled with degree𝐷𝑀𝐺𝐺 = 𝑂(1) and constant spectral expansion 𝜆𝑀𝐺𝐺 < 1. Then

the graph𝐺𝑤 on {0, 1}𝑛with edges representing𝑤-lengthpaths has spectral expansion𝜆𝑤𝑀𝐺𝐺 anddegree

𝐷𝑤
𝑀𝐺𝐺, which for𝑤 = ⌈log𝜆𝑀𝐺𝐺

(1/2) ⋅ (Δ + lg(1/𝜀))⌉ gives 𝜆 ≤ 𝜀 ⋅ 2−Δ and degree𝐷 = 𝑂((2Δ/𝜀)𝐶)

for 𝐶 ≤ lg(𝐷𝑀𝐺𝐺) ⋅ log𝜆𝑀𝐺𝐺
(1/2) as desired.

We argued that the above extractors are KL-extractors using the fact they are ℓ2 (and thus D2)

extractors, but one can also show that any total variation extractor with sufficiently small error is a

KL-extractor, albeit with some loss of parameters.

Lemma 2.5.12. If Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is a (𝑘, 𝜀) extractor for total variation distance, then

Ext is also a (𝑘,𝑚 ⋅ 𝜀)-KL-extractor. Furthermore, if Ext is strong, average-case, or both as a total variation

extractor, then it has the same properties as a KL-extractor.

In particular, every (𝑘, 𝜀/(3𝑚)) extractor (respectively strong extractor) is an average-case (𝑘, 𝜀) KL-

extractor (respectively strong average-case (𝑘, 𝜀) KL-extractor).

Proof. The main claim is an immediate corollary of Lemmas 2.4.9 and 2.5.1 , and the in particular then

follows from Theorem 2.3.12 .

Remark 2.5.13. Reducing 𝜀 by a factor of 3𝑚 increases the seed length and entropy loss of the input

extractor. For the former, this is often (but not always) tolerable since the input extractor may already

depend suboptimally on lg(𝑛/𝜀). For the latter, wewill show inCorollary 2.5.21 how touse the transform

of Raz, Reingold, and Vadhan [RRV02 ] to recover𝑂(lg(𝑚/𝜀)) bits of lost entropy (at least this much

must be lost by Radhakrishnan and Ta-Shma [RT00 ]) at a cost of𝑂(lg(𝑛/𝜀)) in the seed length.
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Instantiating Lemma 2.5.12 with the Guruswami–Umans–Vadhan [GUV09 ] extractor for total

variation distance, we see that the increased seed length and entropy loss are simply absorbed into the

existing hidden constants:

Theorem 2.5.14 (KL-analogue of [GUV09 , Theorem 1.5]). For every 𝑛 ∈ ℕ, 𝑘 ≤ 𝑛, and 1 > 𝛼, 𝜀 > 0,

there is an explicit average-case (respectively strong average-case) (𝑘, 𝜀) KL-extractor Ext ∶ {0, 1}𝑛 ×

{0, 1}𝑑 → {0, 1}𝑚 with 𝑑 ≤ lg𝑛 + 𝑂𝛼(lg(𝑘/𝜀)) and 𝑚 ≥ (1 − 𝛼)𝑘 (respectively 𝑚 ≥ (1 − 𝛼)𝑘 −

𝑂𝛼(lg(𝑛/𝜀))).

2.5.3 Reducing the entropy loss of KL-extractors

In this section, we show how to avoid the entropy loss inherent in Theorem 2.5.4 using the zig-zag

product for extractors, introduced by Reingold, Vadhan, and Wigderson [RVW00 ]. This product

combines a technique of Raz and Reingold [RR99 ] to preserve entropy and the method of Wigderson

and Zuckerman [WZ99 ] to extract entropy left over in a source after an initial extraction, and we show

that these techniques extend to the setting of KL-extractors. Furthermore, these techniques (along

with the Leftover Hash Lemma) are also the key to the transformation of Raz, Reingold, and Vadhan

[RRV02 ] to convert an arbitrary extractor into one with optimal entropy loss, so we show that this

transformation works for KL-extractors as well.

For all of these results, the key is the following lemma:

Lemma 2.5.15 (Re-extraction from leftovers). Let

1. Ext1 ∶ {0, 1}
𝑛 × {0, 1}𝑑1 → {0, 1}𝑚1 be a (𝑘1, 𝜀1) KL-extractor,

2. W1 ∶ {0, 1}𝑛 × {0, 1}𝑑1 → {0, 1}𝑤 be a function such that (Ext1,W1) ∶ {0, 1}𝑛 × {0, 1}𝑑1 →

{0, 1}𝑚1 × {0, 1}𝑤 is an injective map,
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3. Ext2 ∶ {0, 1}
𝑤 × {0, 1}𝑑2 → {0, 1}𝑚2 be a (𝑘2, 𝜀2) average-case KL-extractor for 𝑘2 ≤ 𝑘1+𝑑1−𝑚1.

Then Ext ∶ {0, 1}𝑛 × {0, 1}𝑑1+𝑑2 → {0, 1}𝑚1+𝑚2 defined by

Ext(𝑥, (𝑠, 𝑡)) = (Ext1(𝑥, 𝑠),Ext2(W1(𝑥, 𝑠), 𝑡))

is a (𝑘1, 𝜀1 + 𝜀2) KL-extractor. Furthermore, if Ext1 is average-case then so is Ext.

Remark 2.5.16. Thepair (Ext1,W1) is a special case ofwhatRaz andReingold [RR99 ] called an extractor-

condenser pair. One can think ofW1 as preserving “leftovers” or “waste,” which is then “re-extracted” or

“recycled” by Ext2. The identity function on {0, 1}𝑛 × {0, 1}𝑑1 is a valid choice ofW1, but the advantage

of the more general formulation is that𝑤 can be much smaller than 𝑛 + 𝑑1, and most known explicit

constructions of extractors have seed length depending on the input length of the source.

Proof. Given any joint distribution (𝑍, 𝑋) with 𝑋 distributed over {0, 1}𝑛 and H̃∞(𝑋|𝑍) ≥ 𝑘1, we have

for every 𝑧 ∈ Supp(𝑍) that

KL(Ext(𝑋|𝑍=𝑧, (𝑈𝑑1, 𝑈𝑑2)) ‖‖ 𝑈𝑚1+𝑚2)

= KL(Ext1(𝑋|𝑍=𝑧, 𝑈𝑑1),Ext2(W1(𝑋|𝑍=𝑧, 𝑈𝑑1), 𝑈𝑑2) ‖‖ 𝑈𝑚1, 𝑈𝑚2)

= KL(Ext1(𝑋|𝑍=𝑧, 𝑈𝑑1) ‖‖ 𝑈𝑚1)

+ 𝔼
𝑜1∼Ext1(𝑋|𝑍=𝑧,𝑠)

[KL(Ext2(W1(𝑋,𝑈𝑑1)|𝑍=𝑧,Ext1(𝑋,𝑈𝑑1)=𝑜1
, 𝑈𝑑2)

‖‖ 𝑈𝑚2)] (2.1)

where the last line follows from the chain rule for KL divergence. Note that

H̃∞(W1(𝑋,𝑈𝑑1)
|| 𝑍,Ext1(𝑋,𝑈𝑑1))

= H̃∞(Ext1(𝑋,𝑈𝑑1),W1(𝑋,𝑈𝑑1)
|| 𝑍,Ext1(𝑋,𝑈𝑑1))

= H̃∞(𝑋,𝑈𝑑1
|| 𝑍,Ext1(𝑋,𝑈𝑑1)) ((Ext1,W1) is an injection)
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≥ H̃∞(𝑋,𝑈𝑑1 | 𝑍) − lg||Supp(Ext1(𝑋,𝑈𝑑1))|| (*)

= H̃∞(𝑋 | 𝑍) +H∞(𝑈𝑑1) − lg||Supp(Ext1(𝑋,𝑈𝑑1))|| (by independence)

≥ 𝑘1 + 𝑑1 −𝑚1 ≥ 𝑘2

where the line (*) follows from standard properties of conditional min-entropy (e.g. [DORS08  , Lemma

2.2]). That Ext is a (𝑘1, 𝜀1 + 𝜀2) KL-extractor now follows immediately from Eq. (2.1 ) by taking 𝑍

independent of 𝑋, and the average-case claim follows from taking expectations over 𝑧 ∼ 𝑍.

Remark 2.5.17. The proof above works for any weak divergenceD such that

D(𝑋, 𝑌 ‖‖ 𝑈𝑚1, 𝑈𝑚2) ≤ D(𝑋 ‖‖ 𝑈𝑚1) + 𝔼
𝑥∼𝑋

[D(𝑌|𝑋=𝑥 ‖‖ 𝑈𝑚2)]

for all joint distributions (𝑋, 𝑌) independent of (𝑈𝑚1, 𝑈𝑚2). In particular, the same proof also gives

Lemma 2.5.15 for standard (total variation) extractors.

By Lemma 2.5.2 , we get an analogous result for strong KL-extractors.

Corollary 2.5.18. Let

1. Ext1 ∶ {0, 1}
𝑛 × {0, 1}𝑑1 → {0, 1}𝑚1 be a strong (𝑘1, 𝜀1) KL-extractor,

2. W1 ∶ {0, 1}𝑛 × {0, 1}𝑑1 → {0, 1}𝑤 be such that the map (𝑥, 𝑠) ↦ (𝑠,Ext1(𝑥, 𝑠),W1(𝑥, 𝑠)) is an

injection,

3. Ext2 ∶ {0, 1}
𝑤×{0, 1}𝑑2 → {0, 1}𝑚2 be a (𝑘2, 𝜀2) strong average-case KL-extractor for 𝑘2 ≤ 𝑘1−𝑚1.

Then Ext ∶ {0, 1}𝑛 × {0, 1}𝑑1+𝑑2 → {0, 1}𝑚1+𝑚2 defined by

Ext(𝑥, (𝑠, 𝑡)) = (Ext1(𝑥, 𝑠),Ext2(W1(𝑥, 𝑠), 𝑡))

is a strong (𝑘1, 𝜀1 + 𝜀2) KL-extractor. Furthermore, if Ext1 is average-case then so is Ext.
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Thezig-zagproduct for extractors due toReingold, Vadhan, andWigderson [RVW00 ] (in the special

case of injective (Ext,W)-pairs) is an immediate consequence of Lemma 2.5.15 and Theorem 2.5.4 our

basic composition result. Recall that Theorem 2.5.4 was able to combine an “outer” extractor, generally

taken to have seed length depending only (but linearly) on 𝑛 − 𝑘, with an “inner” extractor to produce

seeds for the outer extractor with logarithmic seed length. However, as discussed in Remark 2.5.5 that

basic composition necessarily lost lg(1/𝛿) bits of entropy, so the zig-zag product uses Lemma 2.5.15 to

recover this entropy, using an (Ext,W)-pair to ensure that the re-extraction adds additional seed length

depending logarithmically on 𝑛 − 𝑘 rather than 𝑛.

Corollary 2.5.19 (Zig-zag product for KL-extractors, analogous to [RVW00 , Theorem 3.6]). Let

1. Ext𝑜ᵆ𝑡 ∶ {0, 1}
𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be an (𝑛 − lg(1/𝛿), 𝜀𝑜ᵆ𝑡) extractor forD1+𝛼 with 𝛼 > 0,

2. W𝑜ᵆ𝑡 ∶ {0, 1}
𝑛 × {0, 1}𝑑 → {0, 1}𝑤 be a function such that the pair (Ext𝑜ᵆ𝑡,W𝑜ᵆ𝑡) is an injection

from {0, 1}𝑛 × {0, 1}𝑑,

3. Ext𝑖𝑛 ∶ {0, 1}
𝑛′ × {0, 1}𝑑

′
→ {0, 1}𝑑 be an (𝑛′ − lg(1/𝛿), 𝜀𝑖𝑛) average-case KL-extractor,

4. W𝑖𝑛 ∶ {0, 1}
𝑛′ × {0, 1}𝑑

′
→ {0, 1}𝑤

′
be such that the pair (Ext𝑖𝑛,W𝑖𝑛) is an injection from {0, 1}𝑛

′
×

{0, 1}𝑑
′
,

5. Ext𝑤𝑎𝑠𝑡𝑒 ∶ {0, 1}
𝑤+𝑤′

× {0, 1}𝑑
″
→ {0, 1}𝑚

″
be an average-case (𝑛 + 𝑛′ − lg(1/𝛿) − 𝑚, 𝜀𝑤𝑎𝑠𝑡𝑒)

KL-extractor,

and define

1. Ext𝑐𝑜𝑚𝑝 ∶ {0, 1}𝑛+𝑛
′
× {0, 1}𝑑

′
→ {0, 1}𝑚 by Ext𝑐𝑜𝑚𝑝((𝑥, 𝑦), 𝑠) = Ext𝑜ᵆ𝑡(𝑥,Ext𝑖𝑛(𝑦, 𝑠)) as in

Theorem 2.5.4 ,

50



2. W𝑐𝑜𝑚𝑝 ∶ {0, 1}
𝑛+𝑛′ × {0, 1}𝑑

′
→ {0, 1}𝑤+𝑤

′
by

W𝑐𝑜𝑚𝑝((𝑥, 𝑦), 𝑠) = (W𝑜ᵆ𝑡(𝑥,Ext𝑖𝑛(𝑦, 𝑠)),W𝑖𝑛(𝑦, 𝑠)),

3. Ext ∶ {0, 1}𝑛+𝑛
′
× {0, 1}𝑑

′+𝑑″ → {0, 1}𝑚+𝑚″
by

Ext((𝑥, 𝑦), (𝑠, 𝑡)) = (Ext𝑐𝑜𝑚𝑝((𝑥, 𝑦), 𝑠),Ext𝑤𝑎𝑠𝑡𝑒(W𝑐𝑜𝑚𝑝((𝑥, 𝑦), 𝑠), 𝑡))

as in Lemma 2.5.15 .

Then Ext is an (𝑛 + 𝑛′ − lg(1/𝛿), 𝜀𝑜ᵆ𝑡 + (1 + 1/𝛼) ⋅ 𝜀𝑖𝑛 + 𝜀𝑤𝑎𝑠𝑡𝑒)-extractor for KL. Furthermore, if Ext𝑖𝑛

and Ext𝑤𝑎𝑠𝑡𝑒 are strong average-case KL-extractors, then Ext is a strong KL-extractor, and if Ext𝑜ᵆ𝑡 is

average-case then so is Ext.

Proof. We claim thatW𝑐𝑜𝑚𝑝 is such that (Ext𝑐𝑜𝑚𝑝,W𝑐𝑜𝑚𝑝) is an injection: by assumption on the pair

(Ext𝑜ᵆ𝑡,W𝑜ᵆ𝑡) we have that given Ext𝑜ᵆ𝑡(𝑥,Ext𝑖𝑛(𝑦, 𝑠)) andW𝑜ᵆ𝑡(𝑥,Ext𝑖𝑛(𝑦, 𝑠)) we can recover 𝑥 and

Ext𝑖𝑛(𝑦, 𝑠), and by assumption on (Ext𝑖𝑛,W𝑖𝑛) given Ext𝑖𝑛(𝑦, 𝑠) andW𝑖𝑛(𝑦, 𝑠) we can recover (𝑦, 𝑠),

so that (Ext𝑐𝑜𝑚𝑝,W𝑐𝑜𝑚𝑝) has an inverse and is injective as desired. Therefore, since Theorem 2.5.4 

implies Ext𝑐𝑜𝑚𝑝 is an (𝑛 + 𝑛′ − lg(1/𝛿), 𝜀𝑜ᵆ𝑡 + (1 + 1/𝛼) ⋅ 𝜀𝑖𝑛)KL-extractor, the result follows from

Lemma 2.5.15 . The furthermore claims follow from the corresponding claims of these lemmas (and

Corollary 2.5.18 for the strong case).

Remark 2.5.20. Corollary 2.5.19 was presented by Reingold, Vadhan, and Wigderson [RVW00 ] as

a transformation that combined three extractor-condenser pairs into a new extractor-condenser pair.

We do not use this generality, so for simplicity we do not present it here, but both Lemma 2.5.15 and

Corollary 2.5.19 can be easily extended in this manner if required.

The Raz–Reingold–Vadhan [RRV02 ] transformation to avoid entropy loss follows similarly using
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the Leftover Hash Lemma (Proposition 2.5.6 ).

Corollary 2.5.21 (KL-extractor analogue of [RRV02 , Lemma 28]). Let Ext1 ∶ {0, 1}
𝑛 × {0, 1}𝑑1 →

{0, 1}𝑚1 be a strong (𝑘, 𝜀/2) KL-extractor with entropy loss Δ1, meaning 𝑚1 = 𝑘 − Δ1. Then for every

𝑑𝑒𝑥𝑡𝑟𝑎 ≤ Δ1 there is an explicit (𝑘, 𝜀) strong KL-extractor Ext ∶ {0, 1}𝑛 × {0, 1}𝑑
′
→ {0, 1}𝑚

′
with

seed length 𝑑′ = 𝑑1 + 𝑂(𝑑𝑒𝑥𝑡𝑟𝑎 + lg(𝑛/𝜀)) and entropy loss Δ1 − 𝑑𝑒𝑥𝑡𝑟𝑎 + lg(1/𝜀) − 𝑂(1), meaning

𝑚′ = 𝑘 − (Δ1 − 𝑑𝑒𝑥𝑡𝑟𝑎) − lg(1/𝜀) + 𝑂(1), which is computable in polynomial time making one oracle call

to Ext1. Furthermore, if Ext1 is average-case then so is Ext.

In particular, by taking 𝑑𝑒𝑥𝑡𝑟𝑎 = Δ1 we get an extractor with optimal entropy loss lg(1/𝜀) + 𝑂(1) by

paying an additional𝑂(Δ + lg(𝑛/𝜀)) in seed length.

Proof. LetW1 ∶ {0, 1}
𝑛×{0, 1}𝑑1 → {0, 1}𝑛 be givenbyW1(𝑥, 𝑠) = 𝑥, and letExt2 ∶ {0, 1}

𝑛×{0, 1}𝑑2 →

{0, 1}𝑚2 be the strong average-case (𝑑𝑒𝑥𝑡𝑟𝑎, 𝜀/2)KL-extractor of Proposition 2.5.6 using almost-universal

hash functions, so that 𝑑2 = 𝑂(𝑑𝑒𝑥𝑡𝑟𝑎 + lg(𝑛/𝜀)) and𝑚2 = 𝑑𝑒𝑥𝑡𝑟𝑎 − lg(1/𝜀) − 𝑂(1). The result follows

from taking Ext to be the extractor of Corollary 2.5.18 .

Remark 2.5.22. An analogous versions of the above claim for non-strong KL-extractors follows by

takingW1(𝑥, 𝑠) = (𝑥, 𝑠) and using Lemma 2.5.15 .

We can apply Corollary 2.5.21 to Theorem 2.5.14 the KL-extractors from the total variation extrac-

tors of Guruswami, Umans, and Vadhan [GUV09 ], thereby avoiding the extra𝑂(lg(𝑛/𝜀)) entropy loss

in the strong extractors.

Corollary 2.5.23. For every 𝑛 ∈ ℕ, 1 > 𝛼, 𝜀 > 0, and 𝑘, 𝑘′ ≥ 0with 𝑘+𝑘′ ≤ 𝑛, there is an explicit strong

average-case (𝑘 + 𝑘′, 𝜀) KL-extractor Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 with 𝑑 ≤ 𝑂𝛼(lg(𝑛/𝜀)) + 𝑂(𝑘′)

and𝑚 ≥ (1 − 𝛼)𝑘 + 𝑘′ − lg(1/𝜀) − 𝑂(1).
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2.5.4 Lower bounds

In this section, we give lower bounds on extractors for the Rényi divergences𝐷𝛽 of all orders, including

the special case 𝛽 = 1 of KL-extractors. A reader primarily interested in explicit constructions of

subgaussian samplers can skip to Section 2.6 .

For Rényi divergences𝐷𝛽 with 𝛽 ≤ 1we reduce to Radhakrishnan and Ta-Shma’s [RT00 ] lower

bounds for total variation extractors and dispersers, which can be understood as a one-sided relaxation

of total variation extractors.

Definition 2.5.24 (Sipser [Sip88 ] and Cohen and Wigderson [CW89  ]). A functionDisp ∶ {0, 1}𝑛 ×

{0, 1}𝑑 → {0, 1}𝑚 is a (𝑘, 𝜀) disperser if for all random variables 𝑋 over {0, 1}𝑛 withH∞(𝑋) ≥ 𝑘, it holds

that ||Supp(Disp(𝑋, 𝑈𝑑))|| ≥ (1 − 𝜀)2𝑚.

Dispersers are of interest in the context of Rényi extractors because theRényi 0-entropy of a random

variable is the logarithm of its support size (see Example 2.2.4 ), and hence dispersers are equivalent to

D0-extractors:

Lemma 2.5.25. Disp is a (𝑘, 𝜀) disperser if and only ifDisp is a (𝑘, lg(1/(1 − 𝜀)))D0-extractor.

Given Lemma 2.5.25 , we can use the lower bounds of Radhakrishnan and Ta-Shma [RT00 ] to

give an optimal lower bound on the seed length of 𝐷𝛽-extractors for 𝛽 ≤ 1 in terms of the error 𝜀,

input length 𝑛 and supported entropy 𝑘 (we will give a matching non-explicit upper bound in the

next section), as well as lower bounds on the entropy loss. For the case 𝛽 = 1 of KL-extractors, the

non-explicit upper bound (Theorem 2.5.30 ) also shows that the entropy loss lower bound is optimal.

Theorem 2.5.26. Let 0 ≤ 𝛽 ≤ 1 and Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be a (𝑘, 𝜀) extractor for 𝐷𝛽

with 𝑘 ≤ 𝑛 − 2, 𝑑 ≤ 𝑚 − 1, and 22−𝑚 < 𝜀 < 1/4. Then 𝑑 ≥ lg(𝑛 − 𝑘) + lg(1/𝜀) − 𝑂(1) and𝑚 ≤

𝑘+𝑑− lg lg(1/𝜀)+𝑂(1). Furthermore, if 𝜀 is at most 𝛽/(2 ln 2) then𝑚 ≤ 𝑘+𝑑− lg(1/𝜀)+ lg(1/𝛽)+𝑂(1).
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Proof. Since 𝐷𝛽 is nondecreasing in 𝛽 we have that Ext is a (𝑘, 𝜀) extractor for D0, and thus by

Lemma 2.5.25 it is a (𝑘, 1 − 2−𝜀) disperser. Then the disperser seed length lower bound of Radhakrish-

nan andTa-Shma [RT00 ] tells us that𝑑 ≥ lg(𝑛−𝑘)+lg(1/(1−2−𝜀))−𝑂(1) ≥ lg(𝑛−𝑘)+lg(1/𝜀)−𝑂(1)

and𝑚 ≤ 𝑘 + 𝑑 − lg lg(1/(1 − 2−𝜀)) + 𝑂(1) ≤ 𝑘 + 𝑑 − lg lg(1/𝜀) + 𝑂(1).

For the other entropy loss lower bound, we use Gilardoni’s [Gil10 ] generalization of Pinsker’s

inequality, which shows in particular that 𝑑TV(𝑃, 𝑈𝑚) ≤ √ln 2/(2𝛽) ⋅D𝛽(𝑃 ‖ 𝑈𝑚). Thus, Ext is also

a (𝑘,√𝜀 ⋅ ln 2/(2𝛽)) total variation extractor, and if√𝜀 ⋅ ln 2/(2𝛽) ≤ 1/2 (equivalently 𝜀 ≤ 𝛽/(2 ln 2))

then the [RT00 ] total variation extractor entropy loss lower bound implies that 𝑚 ≤ 𝑘 + 𝑑 −

2 lg(1/√𝜀 ⋅ ln 2/(2𝛽)) + 𝑂(1) ≤ 𝑘 + 𝑑 − lg(1/𝜀) + lg(1/𝛽) + 𝑂(1).

Remark 2.5.27. For the case of 0 < 𝛽 < 1, we do not know whether the entropy loss lower bound of

Theorem 2.5.26 is tight.

It is well-known that ℓ2-extractors (which are equivalent toD2-extractors by Example 2.2.4 ) require

seed length at least linear inmin(𝑛 − 𝑘,𝑚) (see e.g. [Vad12 , Problem 6.4]). We generalize this to give a

linear seed length lower bound on𝐷𝛽 extractors for all 𝛽 > 1, in the regime of constant 𝜀, improving on

the logarithmic lower bound given by Theorem 2.5.26 .

Theorem 2.5.28. Let Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be a (𝑘, 0.99)D1+𝛼-extractor for 𝛼 > 0. Then

𝑑 ≥ min{(𝑛 − 𝑘 − 3) ⋅ 𝛼, (𝑚 − 2) ⋅ 𝛼/(𝛼 + 1)}.

Proof. We follow the strategy suggested by Vadhan [Vad12 , Problem 6.4], and view Ext as a bipartite

graph with𝑁 = {0, 1}𝑛 left-vertices,𝑀 = {0, 1}𝑚 right-vertices, and𝐷 = 2𝑑 edges per left-vertex given

by 𝐸 = {(𝑥 ∈ {0, 1}𝑛, 𝑦 ∈ {0, 1}𝑚) | ∃𝑠 ∈ {0, 1}𝑑 ∶ Ext(𝑥, 𝑠) = 𝑦}.

Assume for the sake of contradiction that 𝑑 ≤ 𝛼/(𝛼 + 1) ⋅ (𝑚 − 2) and 𝑑 ≤ 𝛼(𝑛 − 𝑘 − 3),

so that 𝑀 ≥ 4𝐷1+1/𝛼 and 𝑁/(8𝐷1/𝛼) ≥ 𝐾. Now, we claim there exists a set 𝑇 ⊆ {0, 1}𝑚 of size
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at most 𝑀/(2𝐷1+1/𝛼) such that 𝑋 = {𝑥 ∈ {0, 1}𝑛 | ∃𝑠 ∈ {0, 1}𝑑 s.t Ext(𝑥, 𝑠) ∈ 𝑇} has size at least

𝑁/(8𝐷1/𝛼) ≥ 𝐾. This follows from the following iterative procedure: until |𝑋| ≥ 𝑁/(8𝐷1/𝛼), choose

the vertex 𝑦 ∈ {0, 1}𝑚 of highest degree, add it to 𝑇, and remove 𝑦 and its neighbors from the graph

(the neighbors go in 𝑋). Then at each step we will add to 𝑋 a number of vertices at least the average

degree

(𝑁 − |𝑋|) ⋅ 𝐷
𝑀 − |𝑇| ≥ (𝑁 − 𝑁/(8𝐷1/𝛼)) ⋅ 𝐷

𝑀 ≥ 𝑁𝐷
2𝑀 ,

so that the size of 𝑇 will be at most ⌈𝑁/(8𝐷1/𝛼) ⋅ 2𝑀/𝑁𝐷⌉ = ⌈𝑀/(4𝐷1+1/𝛼)⌉ ≤ 𝑀/(2𝐷1+1/𝛼) as

desired. Now, since 𝑋 has size at least 𝐾 and Ext is a (𝑘, 0.99)D1+𝛼-extractor, we have that

0.99 ≥ D1+𝛼(Ext(𝑈𝑋, 𝑈𝑑) ‖ 𝑈𝑚)

= 1
𝛼 lg( ∑

𝑦∈{0,1}𝑚

Pr[Ext(𝑈𝑋, 𝑈𝐷) = 𝑦]1+𝛼

2−𝑚𝛼 )

≥ 1
𝛼 lg(𝑀𝛼 ∑

𝑦∈𝑇
Pr[Ext(𝑈𝑋, 𝑈𝐷) = 𝑦]1+𝛼)

≥ 1
𝛼 lg(𝑀𝛼 ⋅ |𝑇|−𝛼 ⋅ (∑

𝑦∈𝑇
Pr[Ext(𝑈𝑋, 𝑈𝑑) = 𝑦])

1+𝛼

) (By Hölder’s inequality)

≥ 1
𝛼 lg(𝑀𝛼 ⋅ (𝑀/(2𝐷1+1/𝛼))−𝛼 ⋅ (1/𝐷)1+𝛼) = 1 (By definition of 𝑇)

which is a contradiction, as desired.

We can also use this lower bound to get a similar lower bound for 𝑑ℓ1+𝛼-extractors for all 𝛼 > 0,

though in this case the lower bound applies up to an error threshold that depends on 𝛼.

Corollary 2.5.29. Let Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be a (𝑘, 𝜀𝛼 ⋅ 2−𝑚𝛼/(1+𝛼)) extractor for 𝑑ℓ1+𝛼

where 𝛼 > 0 and 𝜀𝛼 = (2/3) ⋅ 𝛼/(𝛼 + 1). Then 𝑑 ≥ min{(𝑛 − 𝑘 − 3) ⋅ 𝛼, (𝑚 − 2) ⋅ 𝛼/(𝛼 + 1)}.

Proof. Note that the proof of Theorem 2.5.28 gave a lower bound on the sum∑𝑦∈{0,1}𝑚 𝑃
1+𝛼
𝑦 where
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𝑃 = Ext(𝑈𝑋, 𝑈𝑑), whereas 𝑑ℓ1+𝛼(𝑃, 𝑈𝑚)
1+𝛼 = ∑𝑦∈{0,1}𝑚

||𝑃𝑦 − 2−𝑚||1+𝛼. For ℓ2 these can be related

without any loss, but in general we can use the triangle inequality to get

D1+𝛼(𝑃 ‖ 𝑈𝑚) ≤
1
𝛼 ⋅ lg(2𝑚𝛼 ⋅ (𝑑ℓ1+𝛼(𝑃, 𝑈𝑚) + 2−𝑚𝛼/(𝛼+1))

1+𝛼
)

so that if 𝑑ℓ1+𝛼(𝑃, 𝑈𝑚) ≤ 𝜀𝛼 ⋅ 2−𝑚𝛼/(1+𝛼) where 𝜀𝛼 = (2/3) ⋅ 𝛼/(𝛼 + 1) ≤ 20.99⋅𝛼/(𝛼+1) − 1, then

D1+𝛼(𝑃 ‖ 𝑈𝑚) ≤ 0.99, and we conclude by Lemma 2.5.1 and Theorem 2.5.28 .

2.5.5 Non-explicit construction

In this section, we show non-constructively the existence of KL-extractors matching the lower-bound

of Theorem 2.5.26 and in particular implying the optimal parameters of standard extractors for total

variation distance. Formally, we will prove:

Theorem 2.5.30. For every 𝑛 ∈ ℕ, 𝑘 ≤ 𝑛, and 1 > 𝜀 > 0 there is an average-case (respectively strong

average-case) (𝑘, 𝜀) KL-extractor Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 with seed length 𝑑 = lg(𝑛 − 𝑘 + 1) +

lg(1/𝜀) + 𝑂(1) and output length𝑚 = 𝑘 + 𝑑 − lg(1/𝜀) + 𝑂(1) (respectively𝑚 = 𝑘 − lg(1/𝜀) − 𝑂(1)).

Remark 2.5.31. For 𝜀 ≫ 1 the above parameters are not necessarily optimal, and it would be interested

to get matching upper and lower bounds in this regime of parameters.

We will prove Theorem 2.5.30 using the probabilistic method, analogously to Zuckerman [Zuc97 ]

or Radhakrishnan and Ta-Shma [RT00 ] for total variation extractors. However, rather than using

Hoeffding’s inequality, we use the following lemma:

Lemma2.5.32. Let𝑋 be uniform over a subset of {0, 1}𝑛 of size𝐾. Then ifExt ∶ {0, 1}𝑛×{0, 1}𝑑 → {0, 1}𝑚

is a random function, it holds for every 𝜀 > 0 that

Pr
Ext
[ 𝔼
𝑠∼𝑈𝑑

[KL(Ext(𝑋, 𝑠) ‖ 𝑈𝑚)] > 𝜀] ≤ 2𝑀𝐷−𝐾𝐷𝜀/2
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where𝐷 = 2𝑑 and𝑀 = 2𝑚.

Remark 2.5.33. For total variation extractors, the analogous bound is

Pr
Ext
[𝑑TV((𝑈𝑑,Ext(𝑋, 𝑈𝑑)), (𝑈𝑑, 𝑈𝑚)) > 𝜀] ≤ 2𝑀𝐷−2𝐾𝐷𝜀2/ ln 2.

One sees that the bounds are very similar, except the KL divergence version depends on 𝜀 rather than

𝜀2. For the regime where 𝜀 < 1 the linear dependence is preferable, and is responsible for the 1 ⋅ lg(1/𝜀)

seed length for KL-extractors compared to the 2 ⋅ lg(1/𝜀) seed length for total variation extractors.

Proof of Lemma 2.5.32 . Note that for each 𝑠 ∈ {0, 1}𝑑 and fixed Ext, the random variable Ext(𝑋, 𝑠)

is uniform over the multiset {Ext(𝑥, 𝑠) || 𝑥 ∈ Supp(𝑋)}. Hence, since Ext is a random function, this

multiset is distributed exactly as taking 𝐾 iid uniform samples from {0, 1}𝑚, so we wish to bound the

KL divergence between this empirical distribution and the true distribution. For this, in Chapter 4 we

give the moment generating function bound

𝔼
Ext
[2𝑡⋅KL(Ext(𝑋,𝑠) ‖‖ 𝑈𝑚)] ≤ ( 1

1 − 𝑡/𝐾)
𝑀−1

for every 0 ≤ 𝑡 < 𝐾, which for 𝑡 = 𝐾/2 is at most 2𝑀. Then since Ext(𝑋, 𝑠) is independent across

𝑠 ∈ {0, 1}𝑑, we have

Pr
Ext
[ 𝔼
𝑠∼𝑈𝑑

[KL(Ext(𝑋, 𝑠) ‖ 𝑈𝑚)] > 𝜀] = Pr
Ext
[2

𝐾/2⋅∑
𝑠∈{0,1}𝑑

KL(Ext(𝑋,𝑠) ‖‖ 𝑈𝑚) > 2𝐾/2⋅𝐷𝜀]

≤ 2−𝐾𝐷𝜀/2 ⋅
𝐷
∏
𝑖=1

2𝑀

We can now prove Theorem 2.5.30 :

Proof of Theorem 2.5.30 . We will show that a random function Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 is a

strong average-case (𝑘, 𝜀)KL-extractor with positive probability, the non-strong version then follows
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from Lemma 2.5.2 . By Lemma 2.3.14 , it is enough to prove that Ext is a strong (𝑘 − 𝑡, 2𝑡+1/3 ⋅ 𝜀)

KL-extractor for every 𝑡 ≥ 0. To reduce the range of 𝑡 we need to consider, note that it suffices to

be a (lg⌊2𝑘−𝑡⌋, 2𝑡+1/3 ⋅ 𝜀) extractor for every 𝑡 ≥ 0, so that by rounding down it is enough to be a

(𝑘 − 𝑡, 2𝑡/3 ⋅ 𝜀) strong KL-extractor for each 𝑡 ≥ 0 such that 2𝑘−𝑡 is an integer.

Now, consider a fixed 𝑡 ≥ 0 such that 2𝑘−𝑡 is an integer. Since the KL divergence is convex in

its first argument and all distributions of min-entropy at least 𝑘 − 𝑡 are convex combinations of “flat”

distributions which are uniform over a set of size 2𝑘−𝑡 (Chor and Goldreich [CG88 ]), it suffices to

analyze the behavior of Ext on such distributions. Then for every subset 𝑋 ⊆ {0, 1}𝑛 of size 2𝑘−𝑡,

Lemma 2.5.32 tells us that

Pr
Ext
[ 𝔼
𝑠∼𝑈𝑑

[KL(Ext(𝑈𝑋, 𝑠) ‖ 𝑈𝑚)] > 2𝑡/3 ⋅ 𝜀] ≤ 2𝑀𝐷−2𝑘−𝑡⋅𝐷⋅(2𝑡/3⋅𝜀)/2 = 2𝑀𝐷−𝐾𝐷𝜀/6

where 𝑀 = 2𝑚, 𝐷 = 2𝑑, and 𝐾 = 2𝑘. There are ∑𝐾
𝑗=0 (

𝑁
𝑗 ) such subsets 𝑋 of {0, 1}𝑛 for which we

simultaneously need to establish that 𝔼𝑠∼𝑈𝑑[KL(Ext(𝑈𝑋, 𝑠) ‖ 𝑈𝑚)] ≤ 2𝑡/3 ⋅ 𝜀, so we have by a union

bound that the probability that Ext is not a strong average-case (𝑘, 𝜀)KL-extractor is at most

2𝑀𝐷−𝐾𝐷𝜀/6 ⋅
𝐾
∑
𝑗=0

(
𝑁
𝑗
) ≤ 2𝑀𝐷−𝐾𝐷𝜀/6 ⋅ (𝑁𝑒𝐾 )

𝐾
= 2𝑀𝐷+𝐾 lg(𝑁𝑒/𝐾)−𝐾𝐷𝜀/6.

Hence, as long as

𝑀𝐷 < 𝐾𝐷𝜀
12 𝐾 lg(𝑁𝑒𝐾 ) < 𝐾𝐷𝜀

12

𝑚 ≤ 𝑘 − lg(1/𝜀) − 𝑂(1) 𝑑 ≥ lg(𝑛 − 𝑘 + 1) + lg(1/𝜀) + 𝑂(1)

we know that a random function is a strong average-case (𝑘, 𝜀)KL-extractor with positive probability

as desired.
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2.6 Constructions of subgaussian samplers

2.6.1 Subconstant 𝜀 and 𝛿

The goal of this section is to establish the following theorem, which is our explicit construction of

subgaussian samplers with sample complexity having no dependence on𝑚, and with randomness

complexity and sample complexity matching the best-known [0, 1]-valued sampler when 𝜀 and 𝛿 are

subconstant (up to the hidden polynomial in the sample complexity).

Theorem 2.6.1. For all𝑚 ∈ ℕ, 1 > 𝜀, 𝛿 > 0, and 𝛼 > 0 there exists an explicit (𝛿, 𝜀) absolute averaging

sampler (respectively strong absolute averaging sampler) for subgaussian and subexponential functionsSamp ∶

{0, 1}𝑛 → ({0, 1}𝑚)𝐷 with sample complexity 𝐷 = poly(lg(1/𝛿), 1/𝜀) and randomness complexity 𝑛 =

𝑚 + (1 + 𝛼) ⋅ lg(1/𝛿) (respectively 𝑛 = 𝑚 + (1 + 𝛼) ⋅ lg(1/𝛿) + 2 lg(1/𝜀) + 𝑂(1)).

We will use essentially the same construction used for bounded samplers in this regime, namely

applying the Reingold, Vadhan, andWigderson [RVW00 ] zig-zag product for extractors to combine the

expander extractor of Goldreich andWigderson [GW97  ] and an extractor with logarithmic seed length.

However, as described in detail in Section 2.4.1 , even the basic composition used in this construction

does not work for general subgaussian extractors, so we will instead use the zig-zag product for KL-

extractors (Corollary 2.5.19 ) combining extractors for Rényi divergences, specifically theD2-extractor

from Corollary 2.5.11 and the KL-extractor from Corollary 2.5.23 , to get the following high-entropy

KL-extractor:

Theorem 2.6.2. For all integers𝑚 and 1 > 𝛼, 𝛿, 𝜀 > 0 there is an explicit average-case (respectively strong

average-case) (𝑘, 𝜀)KL-extractor Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 with 𝑛 = 𝑚+ (1+ 𝛼) lg(1/𝛿) −𝑂(1)

(respectively 𝑛 = 𝑚+ (1 + 𝛼) ⋅ lg(1/𝛿) + lg(1/𝜀) + 𝑂(1)), 𝑘 = 𝑛 − lg(1/𝛿), and 𝑑 = 𝑂𝛼(lg(lg(1/𝛿)/𝜀)).
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Proof. We prove the claim for strong extractors, for the non-strong claim one can simply define

Ext(𝑥, (𝑠, 𝑡)) = Ext𝑠𝑡𝑟𝑜𝑛𝑔((𝑥, 𝑡), 𝑠)where 𝑡 has length lg(1/𝜀) + 𝑂(1).

By Corollary 2.5.11 , there is a universal constant 𝐶 > 0 such that for 𝑑𝑜ᵆ𝑡 = ⌈𝐶 lg(1/(𝛿𝜀))⌉ ≤

𝐶 lg(1/𝛿) + 𝐶 lg(1/𝜀) + 1 there is an explicit average-case (𝑛𝑜ᵆ𝑡 − lg(1/𝛿), 𝜀/4)D2-extractor Ext𝑜ᵆ𝑡 ∶

{0, 1}𝑛𝑜𝑢𝑡 × {0, 1}𝑑𝑜𝑢𝑡 → {0, 1}𝑛𝑜𝑢𝑡 with 𝑛𝑜ᵆ𝑡 = 𝑚 − 𝑑𝑜ᵆ𝑡. Furthermore, Ext𝑜ᵆ𝑡 has the property that

the functionW𝑜ᵆ𝑡(𝑥, 𝑠) = 𝑠 is such that (Ext𝑜ᵆ𝑡,W𝑜ᵆ𝑡) is an injection.

Let 𝑘′𝑖𝑛 = 𝐶 lg(1/𝛿)/(1 − 𝛽), 𝑘″𝑖𝑛 = (𝐶 + 1) lg(1/𝜀) + 𝑂(1), and 𝑘𝑖𝑛 = 𝑘′𝑖𝑛 + 𝑘″𝑖𝑛 for 0 < 𝛽 < 1

some parameter to be chosen later. Then by Corollary 2.5.23 , there is an explicit (𝑘𝑖𝑛, 𝜀/4) strong

average-case KL-extractor Ext𝑖𝑛 ∶ {0, 1}
𝑛𝑖𝑛 × {0, 1}𝑑𝑖𝑛 → {0, 1}𝑚𝑖𝑛 with 𝑛𝑖𝑛 = 𝑘𝑖𝑛 + lg(1/𝛿), 𝑑𝑖𝑛 =

𝑂𝛽(lg(𝑛𝑖𝑛/𝜀)) + 𝑂(𝑘″𝑖𝑛) = 𝑂𝛽(lg(lg(1/𝛿)/𝜀)), and𝑚𝑖𝑛 = (1 − 𝛽)𝑘′𝑖𝑛 + 𝑘″𝑖𝑛 − lg(1/𝜀) − 𝑂(1) = 𝑑𝑜ᵆ𝑡.

Furthermore, the functionW𝑖𝑛(𝑥, 𝑠) = (𝑥, 𝑠) is an injection.

Furthermore, for 𝑘𝑤𝑎𝑠𝑡𝑒 = (𝑛𝑜ᵆ𝑡 + 𝑛𝑖𝑛 − lg(1/𝛿)) − 𝑛𝑜ᵆ𝑡 = 𝑛𝑖𝑛 − lg(1/𝛿) = 𝑘𝑖𝑛 = 𝑘′𝑖𝑛 + 𝑘″𝑖𝑛,

by Corollary 2.5.23 there is also an explicit (𝑘𝑤𝑎𝑠𝑡𝑒, 𝜀/4) strong average-case KL-extractor Ext𝑤𝑎𝑠𝑡𝑒 ∶

{0, 1}𝑑𝑜𝑢𝑡+𝑛𝑖𝑛+𝑑𝑖𝑛 × {0, 1}𝑑𝑤𝑎𝑠𝑡𝑒 → {0, 1}𝑚𝑤𝑎𝑠𝑡𝑒 such that𝑚𝑤𝑎𝑠𝑡𝑒 = 𝑑𝑜ᵆ𝑡 and

𝑑𝑤𝑎𝑠𝑡𝑒 = 𝑂𝛽(lg((𝑑𝑜ᵆ𝑡 + 𝑛𝑖𝑛 + 𝑑𝑖𝑛)/𝜀)) + 𝑂(𝑘″𝑖𝑛) = 𝑂𝛽(lg(lg(1/𝛿)/𝜀)) .

Then by the zig-zag product for KL-extractors (Corollary 2.5.19 ), there is an explicit (𝑛𝑜ᵆ𝑡 + 𝑛𝑖𝑛 −

lg(1/𝛿), 𝜀) strong average-case KL-extractor Ext ∶ {0, 1}𝑛𝑜𝑢𝑡+𝑛𝑖𝑛 ×{0, 1}𝑑𝑖𝑛+𝑑𝑤𝑎𝑠𝑡𝑒 → {0, 1}𝑛𝑜𝑢𝑡+𝑚𝑤𝑎𝑠𝑡𝑒 ,

where we have

𝑛𝑜ᵆ𝑡 + 𝑛𝑖𝑛 = (𝑚 − 𝑑𝑜ᵆ𝑡) + ((𝐶 lg(1/𝛿)/(1 − 𝛽) + (𝐶 + 1) lg(1/𝜀) + 𝑂(1)) + lg(1/𝛿))

≤ 𝑚 + lg(1/𝛿) + lg(1/𝜀) + lg(1/𝛿) ⋅ 𝐶 ⋅ (1/(1 − 𝛽) − 1) + 𝑂(1)

𝑑𝑖𝑛 + 𝑑𝑤𝑎𝑠𝑡𝑒 = 𝑂𝛽(lg(lg(1/𝛿)/𝜀))
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𝑛𝑜ᵆ𝑡 +𝑚𝑤𝑎𝑠𝑡𝑒 = (𝑚 − 𝑑𝑜ᵆ𝑡) + 𝑑𝑜ᵆ𝑡 = 𝑚.

Choosing 𝛽 = 𝛼/(𝛼 + 𝐶) so that 𝐶 ⋅ (1/(1 − 𝛽) − 1) ≤ 𝛼 gives the claim.

We can now prove Theorem 2.6.1 .

Proof of Theorem 2.6.1 . Let Ext ∶ {0, 1}𝑛 × {0, 1}𝑑 → {0, 1}𝑚 be the explicit (𝑛 − lg(1/(𝛿/2)), 𝜀2) KL-

extractor (respectively strong KL-extractor) of Theorem 2.6.2 , so that 𝑑 = 𝑂𝛼(lg lg(1/𝛿)/𝜀) and 𝑛 =

𝑚 + (1 + 𝛼) lg(1/𝛿) (respectively 𝑛 = 𝑚 + (1 + 𝛼) lg(1/𝛿) + 2 lg(1/𝜀) + 𝑂(1)).

ThenbyLemmas 2.4.9 and 2.5.1 ,Ext is also an (𝑛 − lg(1/(𝛿/2)), 𝜀) 𝑑ℰ-extractor (respectively strong

𝑑ℰ-extractor), so by Theorem 2.3.8 the function Samp ∶ {0, 1}𝑛 × ({0, 1}𝑚)𝐷 given by Samp(𝑥)𝑖 =

Ext(𝑥, 𝑖) is an explicit (𝛿/2, 𝜀) sampler for ℰ (respectively strong sampler for ℰ), and thus by symmetry

of ℰ an explicit (𝛿, 𝜀) absolute subexponential sampler (respectively absolute strong subexponential

sampler) as desired.

2.6.2 Constant 𝛿

We recall from the introduction that the pairwise independent sampler of Chor and Goldreich [CG89 ]

works for subgaussian functions, and in fact the more general class of functions with bounded variance.

The sampler has exponentially worse dependence on 𝛿 than is necessary for subgaussian samplers, but

is very simple and has randomness complexity optimal up to constant factors.

Theorem 2.6.3 ([CG89 ]). For all 𝑚 ∈ ℕ and 1 > 𝜀, 𝛿 > 0 with 1/(𝛿𝜀2) < 2𝑚, there is an explicit

strong sampler Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷 for functions with bounded varianceℳ2, with randomness

complexity 𝑛 = 𝑂(𝑚) and sample complexity𝐷 = 𝑂( 1
𝜀2𝛿
) defined as Samp(ℎ)𝑑 = ℎ(𝑑) where ℎ is drawn

at random from a size 2𝑛 pairwise-independent hash familyℋ of functions from [𝐷] → {0, 1}𝑚.
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Proof. Thefact that pairwise independence gives rise to a strongbounded-variance sampler is immediate

by Chebyshev’s inequality. The existence of a pairwise indepenent hash family with the claimed

parameters is due toChor andGoldreich [CG89 ], with similar constructions in the probability literature

due to Joffe [Jof71 ].

We also show that the Expander Neighbor sampler of [KPS85 ; GW97 ] is a bounded-variance

sampler.

Theorem 2.6.4. There is a universal constant 𝐶 ≥ 1 such that for all𝑚 ∈ ℕ and 1 > 𝜀, 𝛿 > 0 there is an

explicit sampler Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷 for functions with bounded varianceℳ2, with randomness

complexity 𝑛 = 𝑚 and sample complexity𝐷 = 𝑂(( 1
𝜀2𝛿
)
𝐶
). Moreover, if the algorithm is given access to a

consistently labelled neighbor function of a Ramanujan graph over {0, 1}𝑛 of degree𝑂(1/(𝛿𝜀2)), then one can

take 𝐶 = 1.

Proof. By Corollary 2.5.11 , there is an explicit (𝑛 − lg(1/𝛿), 𝜀 ⋅ 2−𝑚/2) ℓ2-extractor Ext ∶ {0, 1}
𝑚 ×

{0, 1}𝑑 → {0, 1}𝑚 with 𝑑 = ⌈𝐶(lg(1/𝛿) + 2 lg(1/𝜀))⌉ + 𝑂(1), where one can take 𝐶 = 1 given the

assumed Ramanujan graph. Then by Example 2.2.9 Ext is also an (𝑛 − lg(1/𝛿), 𝜀)ℳ2-extractor, so we

conclude by Theorem 2.3.8 .

Remark 2.6.5. Note that given explicit constructions of Ramanujan graphs,Theorem 2.6.4 has the same

sample complexity but better randomness complexity than the sampler of Theorem 2.6.3 .

2.6.3 Non-explicit construction

Applying Lemmas 2.4.9 and 2.5.1 to Theorem 2.5.30 our non-explicit construction of KL-extractors

gives:
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Corollary 2.6.6. For every 𝑛 ∈ ℕ, 𝑘 ≤ 𝑛, and 1 > 𝜀 > 0 there is an average-case (respectively strong

average-case) (𝑘, 𝜀) 𝑑ℰ-extractorExt ∶ {0, 1}
𝑛×{0, 1}𝑑 → {0, 1}𝑚 with𝑑 = lg(𝑛−𝑘+1)+2 lg(1/𝜀)+𝑂(1)

and𝑚 ≥ 𝑘 + 𝑑 − 2 lg(1/𝜀) − 𝑂(1) (respectively𝑚 ≥ 𝑘 − 2 lg(1/𝜀) − 𝑂(1))

Since 𝑑ℰ-extractors are also total variation extractors, Corollary 2.6.6 is optimal up to additive

constants by the lower bound of Radhakrishnan and Ta-Shma [RT00 ].

Using the fact that extractors are samplers (Theorem 2.3.8 ), we get

Corollary 2.6.7. For every integer𝑚 and 1 > 𝛿, 𝜀 > 0 there is a (𝛿, 𝜀) sampler (respectively strong sampler)

Samp ∶ {0, 1}𝑛 → ({0, 1}𝑚)𝐷 for subgaussian and subexponential functions with sample complexity

𝐷 = 𝑂( lg 1/𝛿
𝜀2

) and randomness complexity 𝑛 = 𝑚 + lg(1/𝛿) − lg lg(1/𝛿) + 𝑂(1) (respectively 𝑛 =

𝑚 + lg(1/𝛿) + 2 lg(1/𝜀) + 𝑂(1)).

Note that this matches the best-known (non-explicit) parameters of averaging samplers for [0, 1]-

valued functions due to Zuckerman [Zuc97 ].
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Chapter 3

UnifyingComputational Entropies via

Kullback–LeiblerDivergence

This chapter is based on joint work with Yi-Hsiu Chen,Thibaut Horel, and Salil Vadhan [ACHV19  ].

3.1 Introduction

3.1.1 One-way functions and computational entropy

One-way functions [DH76 ] are on one hand the minimal assumption for complexity-based cryptog-

raphy [IL89 ], but on the other hand can be used to construct a remarkable array of cryptographic

primitives, including such powerful objects as CCA-secure symmetric encryption, zero-knowledge

proofs and statistical zero-knowledge arguments for all of NP, and secure multiparty computation

with an honest majority [GGM86 ; GMW91 ; GMW87 ; HILL99 ; Rom90  ; Nao91 ; HNORV09 ]. All of

these constructions begin by converting the “raw hardness” of a one-way function (OWF) to one of

the following more structured cryptographic primitives: a pseudorandom generator (PRG) [BM82 ;
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Yao82 ], a universal one-way hash function (UOWHF) [NY89 ], or a statistically hiding commitment

scheme (SHC) [BCC88 ].

The original constructions of these three primitives from arbitrary one-way functions [HILL99 ;

Rom90 ; HNORV09 ] were all very complicated and inefficient. Over the past decade, there has been

a series of simplifications and efficiency improvements to these constructions [HRVW09 ; HRV13 ;

HHRVW10 ; VZ12 ], leading to a situation where the constructions of two of these primitives —

PRGs and SHCs — share a very similar structure and seem “dual” to each other. Specifically, these

constructions proceed as follows:

1. Show that every OWF 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 has a gap between its “real entropy” and an

appropriate form of “computational entropy”. Specifically, for constructing PRGs, it is shown that

the function G(𝑥) = (𝑓(𝑥), 𝑥1, 𝑥2, … , 𝑥𝑛) has “next-block pseudoentropy” at least 𝑛 + 𝜔(lg𝑛)

while its real entropy is H(G(𝑈𝑛)) = 𝑛 [VZ12 ] where H(⋅) denotes Shannon entropy. For

constructing SHCs, it is shown that the function G(𝑥) = (𝑓(𝑥)1, … , 𝑓(𝑥)𝑛, 𝑥) has “next-block

accessible entropy” at most 𝑛−𝜔(lg𝑛)while its real entropy is againH(G(𝑈𝑛)) = 𝑛 [HRVW09  ].

Note that the differences between the two cases are whether we break 𝑥 or 𝑓(𝑥) into individual

bits (which matters because the “next-block” notions of computational entropy depend on the

block structure) and whether the form of computational entropy is larger or smaller than the real

entropy.

2. An “entropy equalization” step that converts G into a similar generator where the real entropy in

each block conditioned on the prefix before it is known. This step is exactly the same in both

constructions.

3. A “flattening” step that converts the (real and computational) Shannon entropy guarantees of
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the generator into ones on (smoothed) min-entropy and max-entropy. This step is again exactly

the same in both constructions.

4. A “hashing” step where high (real or computational) min-entropy is converted to uniform

(pseudo)randomness and low (real or computational) max-entropy is converted to a small-

support or disjointness property. ForPRGs, this steponly requires randomness extractors [NZ96 ;

HILL99 ], while for SHCs it requires (information-theoretic) interactive hashing [NOVY98 ;

DHRS04  ]. (Constructing full-fledged SHCs in this step also utilizes UOWHFs, which can be

constructed from one-way functions [Rom90  ]. Without UOWHFs, we obtain a weaker binding

property, which nevertheless suffices for constructing statistical zero-knowledge arguments for

all ofNP.)

This common construction template came about through a back-and-forth exchange of ideas between

the two lines of work. Indeed, the uses of computational entropy notions, flattening, and hashing

originate with PRGs [HILL99 ], whereas the ideas of using next-block notions, obtaining them from

breaking (𝑓(𝑥), 𝑥) into short blocks, and entropy equalization originate with SHCs [HRVW09  ]. All

this leads to a feeling that the two constructions, and their underlying computational entropy notions,

are “dual” to each other and should be connected at a formal level.

In this paper, we make progress on this project of unifying the notions of computational entropy,

by introducing a new computational entropy notion that yields both next-block pseudoentropy and

next-block accessible entropy in a clean and modular fashion. It is inspired by the proof of [VZ12  ] that

(𝑓(𝑥), 𝑥1, … , 𝑥𝑛) has next-block pseudoentropy 𝑛 + 𝜔(lg𝑛), which we will describe now.

66



3.1.2 Next-block pseudoentropy via relative pseudoentropy

We recall the definition of next-block pseudoentropy, and the result of [VZ12  ] relating it to one-wayness.

Definition 3.1.1 (next-block pseudoentropy [HRV10 ], informal). Let 𝑛 be a security parameter, and

𝑋 = (𝑋1, … , 𝑋𝑚) be a random variable distributed on strings of length poly(𝑛). We say that 𝑋 has

next-block pseudoentropy at least 𝑘 if there is a random variable 𝑍 = (𝑍1, … , 𝑍𝑚), jointly distributed

with 𝑋, such that:

1. For all 𝑖 = 1, … ,𝑚, (𝑋1, … , 𝑋𝑖−1, 𝑋𝑖) is computationally indistinguishable from (𝑋1, … , 𝑋𝑖−1, 𝑍𝑖).

2. ∑𝑚
𝑖=1H(𝑍𝑖|𝑋1, … , 𝑋𝑖−1) ≥ 𝑘.

Equivalently, for 𝐼 uniformly distributed in [𝑚], 𝑋𝐼 has conditional pseudoentropy at least 𝑘/𝑚 given

(𝑋1, … , 𝑋𝑖−1).

It was conjectured in [HRV10 ] that next-block pseudoentropy could be obtained from any OWF

by breaking its input into bits, and this conjecture was proven in [VZ12 ]:

Theorem 3.1.2 ([VZ12  ], informal). Let 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 be a one-way function, let 𝑋 be uniformly

distributed in {0, 1}𝑛, and let 𝑋 = (𝑋1, … , 𝑋𝑚) be a partition of 𝑋 into blocks of length 𝑂(lg𝑛). Then

(𝑓(𝑋), 𝑋1, … , 𝑋𝑚) has next-block pseudoentropy at least 𝑛 + 𝜔(lg𝑛).

The intuition behind Theorem 3.1.2 is that since 𝑋 is hard to sample given 𝑓(𝑋), then it should

have some extra computational entropy given 𝑓(𝑋). This intuition is formalized using the following

notion of “relative pseudoentropy,” which is a renaming of [VZ12  ]’s notion of “KL-hard for sampling,”

to better unify the terminology with the notions introduced in this work.

Definition 3.1.3 (relative pseudoentropy [VZ12 ]). Let 𝑛 be a security parameter, and (𝑋, 𝑌) be a

pair of random variables, jointly distributed over strings of length poly(𝑛). We say that 𝑋 has relative
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pseudoentropy at least Δ given 𝑌 if for all probabilistic polynomial-time S, we have

KL(𝑋, 𝑌 ‖ S(𝑌), 𝑌) ≥ Δ,

whereKL(⋅ ‖ ⋅) denotes the relative entropy (a.k.a. Kullback–Leibler divergence).1  

That is, it is hard for any efficient adversary S to sample the conditional distribution of 𝑋 given 𝑌,

even approximately.

The first step of the proof of Theorem 3.1.2 is to show that one-wayness implies relative pseudoen-

tropy (which can be done with a one-line calculation):

Lemma3.1.4. Let𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 be a one-way function and let𝑋 be uniformly distributed in {0, 1}𝑛.

Then 𝑋 has relative pseudoentropy at least 𝜔(lg𝑛) given 𝑓(𝑋).

Next, we break 𝑋 into short blocks, and show that the relative pseudoentropy is preserved:

Lemma 3.1.5. Let 𝑛 be a security parameter, let (𝑋, 𝑌) be random variables distributed on strings of length

poly(𝑛), let 𝑋 = (𝑋1, … , 𝑋𝑚) be a partition of 𝑋 into blocks, and let 𝐼 be uniformly distributed in [𝑚].

If 𝑋 has relative pseudoentropy at least Δ given 𝑌, then 𝑋𝐼 has relative pseudoentropy at least Δ/𝑚 given

(𝑌, 𝑋1, … , 𝑋𝐼−1).

Finally, themain part of the proof is to show that, once we have short blocks, relative pseudoentropy

is equivalent to a gap between conditional pseudoentropy and real conditional entropy.

Lemma3.1.6. Let 𝑛 be a security parameter,𝑌 be a random variable distributed on strings of length poly(𝑛),

and 𝑋 a random variable distributed on strings of length𝑂(lg𝑛). Then 𝑋 has relative pseudoentropy at least

Δ given 𝑌 iff 𝑋 has conditional pseudoentropy at leastH(𝑋|𝑌) + Δ given 𝑌.

1Recall that for random variables𝐴 and𝐵 with Supp(𝐴) ⊆ Supp(𝐵), the relative entropy is defined byKL(𝐴 ‖ 𝐵) =
𝔼𝑎←𝐴[lg(Pr[𝐴 = 𝑎]/Pr[𝐵 = 𝑎])].
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Putting these three lemmas together, we see that when 𝑓 is a one-way function, and we break𝑋 into

blocks of length𝑂(lg𝑛) to obtain (𝑓(𝑋), 𝑋1, … , 𝑋𝑚), on average, the conditional pseudoentropy of 𝑋𝐼

given (𝑓(𝑋), 𝑋1, … , 𝑋𝐼−1) is larger than its real conditional entropy by 𝜔(lg𝑛)/𝑚. This tells us that the

next-block pseudoentropy of (𝑓(𝑋), 𝑋1, … , 𝑋𝑚) is larger than its real entropy by 𝜔(lg𝑛), as claimed in

Theorem 3.1.2 .

We remark that Lemma 3.1.6 explains why we need to break the input of the one-way function into

short blocks: it is false when 𝑋 is long. Indeed, if 𝑓 is a one-way function, then we have already seen

that 𝑋 has 𝜔(lg𝑛) relative pseudoentropy given 𝑓(𝑋) (Lemma 3.1.4 ), but it does not have conditional

pseudoentropy noticeably larger thanH(𝑋|𝑓(𝑋)) given 𝑓(𝑋) (as correct preimages can be efficiently

distinguished from incorrect ones using 𝑓).

3.1.3 Inaccessible entropy

As mentioned above, for constructing SHCs from one-way functions, the notion of next-block pseu-

doentropy is replaced with next-block accessible entropy:

Definition 3.1.7 (next-block accessible entropy [HRVW09  ], informal). Let 𝑛 be a security parameter,

and 𝑌 = (𝑌1, … , 𝑌𝑚) be a random variable distributed on strings of length poly(𝑛). We say that 𝑌 has

next-block accessible entropy at most 𝑘 if the following holds.

Let 𝐺 be any probabilistic poly(𝑛)-time algorithm that takes a sequence of uniformly random

strings 𝑅 = (𝑅1, … , 𝑅𝑚) and outputs a sequence 𝑌 = (𝑌1, … , 𝑌𝑚) in an “online fashion” by which we

mean that 𝑌𝑖 = 𝐺(𝑅1, … , 𝑅𝑖) depends on only the first 𝑖 random strings of𝐺 for 𝑖 = 1, … ,𝑚. Suppose

further that Supp(𝑌) ⊆ Supp(𝑌).

Then we require:
𝑚
∑
𝑖=1

H(𝑌𝑖|𝑅1, … , 𝑅𝑖−1) ≤ 𝑘.
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(Next-block) accessible entropy differs from (next-block) pseudoentropy in two ways:

1. Accessible entropy is useful as an upper bound on computational entropy, and is interesting when

it is smaller than the real entropyH(𝑌). We refer to the gapH(𝑌) − 𝑘 as the next-block inaccessible

entropy of 𝑌.

2. The accessible entropy adversary 𝐺 is trying to generate the random variables 𝑌𝑖 conditioned

on the history rather than recognize them. Note that we take the “history” to not only be the

previous blocks (𝑌1, … , 𝑌𝑖−1), but the coin tosses (𝑅1, … , 𝑅𝑖−1) used to generate those blocks.

Note that one unsatisfactory aspect of the definition is that when the random variable 𝑌 is not flat (i.e.

uniform on its support), then there can be an adversary𝐺 achieving accessible entropy even larger than

H(𝑌), for example by making 𝑌 uniform on Supp(𝑌).

Similarly to (and predating) Theorem 3.1.2 , it is known that one-wayness implies next-block

inaccessible entropy.

Theorem 3.1.8 ([HRVW09 ]). Let 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 be a one-way function, let 𝑋 be uniformly

distributed in {0, 1}𝑛, and let (𝑌1, … , 𝑌𝑚) be a partition of 𝑌 = 𝑓(𝑋) into blocks of length 𝑂(lg𝑛). Then

(𝑌1, … , 𝑌𝑚, 𝑋) has next-block accessible entropy at most 𝑛 − 𝜔(lg𝑛).

Unfortunately, however, the existing proof of Theorem 3.1.8 is not modular like that of Theo-

rem 3.1.2 . In particular, it does not isolate the step of relating one-wayness to entropy-theoretic

measures (like Lemma 3.1.4 does) or the significance of having short blocks (like Lemma 3.1.6 does).

3.1.4 Our results

We remedy the above state of affairs by providing a new, more general notion of hardness in relative en-

tropy that allows us to obtain next-block inaccessible entropy in amodular waywhile also encompassing
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what is needed for next-block pseudoentropy.

Like in relative pseudoentropy, wewill consider a pair of jointly distributed randomvariables (𝑌, 𝑋).

Following the spirit of accessible entropy, the adversary 𝐺 for our new notion will try to generate 𝑌

together with 𝑋, rather than taking 𝑌 as input. That is, 𝐺 will take randomness 𝑅 and output a pair

(𝑌, 𝑋) = 𝐺(𝑅) = (𝐺1(𝑅), 𝐺2(𝑅)), which we require to be always within the support of (𝑌, 𝑋). Note

that𝐺 need not be an online generator; it can generate both 𝑌 and 𝑋 using the same randomness 𝑅. Of

course, if (𝑌, 𝑋) is efficiently samplable (as it would be in most cryptographic applications),𝐺 could

generate (𝑌, 𝑋) identically distributed to (𝑌, 𝑋) by just using the “honest” sampler G for (𝑌, 𝑋). So, in

addition, we require that the adversary𝐺 also come with a simulator S, that can simulate its coin tosses

given only 𝑌. The goal of the adversary is to minimize the relative entropy

KL(𝑅, 𝑌 ‖‖ S(𝑌), 𝑌)

for a uniformly random 𝑅. This divergence measures both how well𝐺1 approximates the distribution

of 𝑌 as well as howwell S simulates the corresponding coin tosses of𝐺1. Note that when𝐺 is the honest

sampler G, the task of S is exactly to sample from the conditional distribution of 𝑅 given G1(𝑅) = 𝑌.

However, the adversary may reduce the divergence by instead designing the sampler𝐺 and simulator

S to work in concert, potentially trading off how well 𝐺(𝑅) approximates 𝑌 in exchange for easier

simulation by S. Explicitly, the definition is as follows.

Definition 3.1.9 (hardness in relative entropy, informal version of Definition 3.3.4 ). Let 𝑛 be a security

parameter, and (𝑌, 𝑋) be a pair of random variables jointly distributed over strings of length poly(𝑛).

We say that (𝑌, 𝑋) has hardness at least Δ in relative entropy if the following holds.

Let𝐺 = (𝐺1, 𝐺2) and S be probabilistic poly(𝑛)-time algorithms such that Supp(𝐺(𝑅)) is contained
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in Supp((𝑌, 𝑋)), where 𝑅 is uniformly distributed. Then writing 𝑌 = 𝐺1(𝑅), we require that

KL(𝑅, 𝑌 ‖‖ S(𝑌), 𝑌) ≥ Δ.

Similarly to Lemma 3.1.4 , we can show that one-way functions achieve this notion of hardness in

relative entropy.

Lemma 3.1.10. Let 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 be a one-way function and let 𝑋 be uniformly distributed in

{0, 1}𝑛. Then (𝑓(𝑋), 𝑋) has hardness 𝜔(lg𝑛) in relative entropy.

Note that this lemma implies Lemma 3.1.4 . If we take 𝐺 to be the “honest” sampler 𝐺(𝑥) =

(𝑓(𝑥), 𝑥), then we have:

KL(𝑋, 𝑓(𝑋) ‖ S(𝑌), 𝑌) = KL(𝑅, 𝑌 ‖‖ S(𝑌), 𝑌),

which is is 𝜔(lg𝑛) by Lemma 3.1.10 . That is, relative pseudoentropy (as in Definition 3.1.3 and

Lemma 3.1.4 ) is obtained by fixing 𝐺 and focusing on the hardness for the simulator S, i.e. the di-

vergenceKL(𝑋, 𝑌 ‖ 𝑆(𝑌), 𝑌). Furthermore, the step of breaking into short blocks (Lemma 3.1.5 ) is

equivalent to requiring the simulator be online and showing that relative pseudoentropy implies the

following notion of next-block relative pseudoentropy:

Definition 3.1.11 (next-block relative pseudoentropy, informal). Let 𝑛 be a security parameter, (𝑋, 𝑌)

be jointly distributed random variables over strings of length poly(𝑛), and let 𝑋 = (𝑋1, … , 𝑋𝑚) be a

partition of 𝑋 into blocks. We say that 𝑋 has next-block relative pseudoentropy at least Δ given 𝑌 if for all

probabilistic polynomial-time S, we have

𝑚
∑
𝑖=1

KL(𝑋𝑖|𝑋<𝑖, 𝑌 ‖ S(𝑋<𝑖, 𝑌)|𝑋<𝑖, 𝑌) ≥ Δ,

where we use the notation 𝑧<𝑖 ≝ (𝑧1, … , 𝑧𝑖−1).
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Here, the simulator S is required to be “online” in the sense that it cannot simulate (𝑋1, … , 𝑋𝑚) at

once, but must simulate 𝑋𝑖 only as a function of 𝑋<𝑖 and 𝑌.

In particular, Lemma 3.1.6 is thus equivalent to the statement that having next-block relative

pseudoentropy at least Δ for blocks of length𝑂(lg𝑛) is equivalent to having next-block pseudoentropy

at least Δ +∑𝑚
𝑖=1H(𝑋𝑖|𝑋<𝑖, 𝑌) in the sense of Definition 3.1.1 .

Conversely, we show that inaccessible entropy arises from hardness in relative entropy by first

requiring the generator G to be online and breaking the relative entropy into blocks to obtain the

following next-block hardness property.

Definition 3.1.12 (next-block hardness in relative entropy, informal). Let 𝑛 be a security parameter,

and 𝑌 = (𝑌1, … , 𝑌𝑚) be a random variable distributed on strings of length poly(𝑛). We say that 𝑌 has

next-block hardness at least Δ in relative entropy if the following holds.

Let 𝐺 be any probabilistic poly(𝑛)-time algorithm that takes a sequence of uniformly random

strings 𝑅 = (𝑅1, … , 𝑅𝑚) and outputs a sequence 𝑌 = (𝑌1, … , 𝑌𝑚) in an “online fashion” by which we

mean that 𝑌𝑖 = 𝐺(𝑅1, … , 𝑅𝑖) depends on only the first 𝑖 random strings of𝐺 for 𝑖 = 1, … ,𝑚. Suppose

further that Supp(𝑌) ⊆ Supp(𝑌). Additionally, let S be a probabilistic poly(𝑛)-time algorithm such for

all 𝑖 = 1, … ,𝑚, S takes as input 𝑅1, … , 𝑅𝑖−1 and 𝑌𝑖 and outputs 𝑅𝑖, where 𝑅𝑗 has the same length as 𝑅𝑗.

Then we require that for all such (𝐺, S), we have:

𝑚
∑
𝑖=1

KL(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) ≥ Δ.

Observe that hardness in relative entropy can be seen as the specific case of next-block hardness in

relative entropy when there is only one block (i.e., setting𝑚 = 1 in the previous definition).

Next, we fix the simulator, analogously to how relative pseudoentropy was obtained by fixing the

generator, and obtain next-block inaccessible relative entropy:
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Definition 3.1.13 (next-block inaccessible relative entropy, informal). Let 𝑛 be a security parameter,

and 𝑌 = (𝑌1, … , 𝑌𝑚) be a random variable distributed on strings of length poly(𝑛). We say that 𝑌 has

next-block inaccessible relative entropy at least Δ if the following holds.

Let 𝐺 be any probabilistic poly(𝑛)-time algorithm that takes a sequence of uniformly random

strings 𝑅 = (𝑅1, … , 𝑅𝑚) and outputs a sequence 𝑌 = (𝑌1, … , 𝑌𝑚) in an online fashion, and such that

Supp(𝑌) ⊆ Supp(𝑌). Then we require that for all such𝐺, we have:

𝑚
∑
𝑖=1

KL(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) ≥ Δ,

where 𝑅 = (𝑅1, … , 𝑅𝑚) is a dummy random variable independent of 𝑌.

That is, the goal of the online generator𝐺 is to generate 𝑌𝑖 given the history of coin tosses 𝑅<𝑖 with

the same conditional distribution as 𝑌𝑖 given 𝑌<𝑖. As promised, there is no explicit simulator in the

definition of next-block inaccessible relative entropy, as we essentially dropped all 𝑅 variables from the

definition of next-block hardness in relative entropy. Nevertheless we can obtain it from hardness in

relative entropy by using sufficiently short blocks:

Lemma 3.1.14. Let 𝑛 be a security parameter, let 𝑌 be a random variable distributed on strings of length

poly(𝑛), and let 𝑌 = (𝑌1, … , 𝑌𝑚) be a partition of 𝑌 into blocks of length𝑂(lg𝑛).

If (𝑌1, … , 𝑌𝑚) has next-block hardness at least Δ in relative entropy, then (𝑌1, … , 𝑌𝑚) has next-block

inaccessible relative entropy at least Δ − negl(𝑛).

An intuition for the proof is that since the blocks are of logarithmic length, given 𝑌𝑖 we can simulate

the corresponding coin tosses of 𝑅𝑖 of𝐺 by rejection sampling and succeed with high probability in

poly(𝑛) tries.

A nice feature of the definition of next-block inaccessible relative entropy compared to inaccessible
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entropy is that it is meaningful even for non-flat random variables, as the Kullback–Leibler divergence

is always nonnegative. Moreover, for flat random variables, it equals the inaccessible entropy:

Lemma 3.1.15. Suppose 𝑌 = (𝑌1, … , 𝑌𝑚) is a flat random variable. Then 𝑌 has next-block inaccessible

relative entropy at least Δ if and only if 𝑌 has accessible entropy at mostH(𝑌) − Δ.

Intuitively, this lemma comes from the identity that if 𝑌 is a flat random variable and Supp(𝑌) ⊆

Supp(𝑌), thenH(𝑌) = H(𝑌) − KL(𝑌 ‖ 𝑌). We stress that we do not require the individual blocks 𝑌𝑖

have flat distributions, only that the random variable 𝑌 as a whole is flat. For example, if 𝑓 is a function

and 𝑋 is uniform, then (𝑓(𝑋), 𝑋) is flat even though 𝑓(𝑋) itself may be far from flat.

Putting together Lemmas 3.1.10 , 3.1.14 , and 3.1.15 , we obtain a new, more modular (and slightly

tighter) proof of Theorem 3.1.8 . The reduction implicit in the combination of these lemmas is the

same as the one in [HRVW09 ], but the analysis is different. (In particular, [HRVW09 ] makes no

use of KL divergence.) Like the existing proof of Theorem 3.1.2 , this proof separates the move from

one-wayness to a form of hardness involving relative entropies, the role of short blocks, and the move

from hardness in relative entropy to computational entropy, as summarized in Figure 3.1 . Moreover,

this further illumination of and toolkit for notions of computational entropy may open the door to

other applications in cryptography.

We remark that another interesting direction for future work is to find a construction of universal

one-way hash functions (UOWHFs) from one-way functions that follows a similar template to the

above constructions of PRGs and SHCs. There is now a construction of UOWHFs based on a variant

of inaccessible entropy [HHRVW10  ], but it remains more complex and inefficient than those of PRGs

and SHCs.
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hardness in relative entropy

relative pseudoentropy next-block hardness
in relative entropy

next-block relative
pseudoentropy

next-block inaccessible
relative entropy

next-block pseudoentropy gap next-block inaccessible entropy

Fix𝐺 Make online and split into blocks

Make online and split into blocks Fix S for short blocks

Assuming short blocks Assuming flat distribution

Figure 3.1: Relationships between hardness notions.

3.2 Preliminaries

Notations. For a tuple 𝑥 = (𝑥1, … , 𝑥𝑛), we write 𝑥≤𝑖 for (𝑥1, … , 𝑥𝑖), and 𝑥<𝑖 for (𝑥1, … , 𝑥𝑖−1).

poly denotes the set of polynomial functions and negl the set of all negligible functions: 𝜀 ∈ negl if

for all 𝑝 ∈ poly and large enough 𝑛 ∈ ℕ, 𝜀(𝑛) ≤ 1/𝑝(𝑛). We will sometimes abuse notations and write

poly(𝑛) to mean 𝑝(𝑛) for some 𝑝 ∈ poly and similarly for negl(𝑛).

ppt stands for probabilistic polynomial time and can be either in the uniform or non-uniform

model of computation. All our results are stated as uniform polynomial time oracle reductions and are

thus meaningful in both models.

For a random variable 𝑋 over𝒳, Supp(𝑋) ≝ {𝑥 ∈ 𝒳 ∶ Pr[𝑋 = 𝑥] > 0} denotes the support of

𝑋. A random variable is flat if it is uniform over its support. Random variables will be written with

uppercase letters and the associated lowercase letter represents a generic element from its support.
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Information theory.

Definition 3.2.1 (Entropy). For a random variable𝑋 and 𝑥 ∈ Supp(𝑋), the sample entropy (also called

surprise) of 𝑥 is H∗
𝑥(𝑋) ≝ lg(1/Pr[𝑋 = 𝑥]). The entropy H(𝑋) of 𝑋 is the expected sample entropy:

H(𝑋) ≝ 𝔼𝑥←𝑋[H∗
𝑥(𝑋)].

Definition 3.2.2 (Conditional entropy). Let (𝐴, 𝑋) be a pair of random variables and consider (𝑎, 𝑥) ∈

Supp(𝐴, 𝑋), the conditional sample entropy of (𝑎, 𝑥) isH∗
𝑎|𝑥(𝐴|𝑋) ≝ lg(1/Pr[𝐴 = 𝑎 | 𝑋 = 𝑥]) and the

conditional entropy of𝐴 given 𝑋 is the expected conditional sample entropy:

H(𝐴|𝑋) ≝ 𝔼
(𝑎,𝑥)←(𝐴,𝑋)

[lg 1
Pr[𝐴 = 𝑎 | 𝑋 = 𝑥]]

.

Proposition 3.2.3 (Chain rule for entropy). Let (𝐴, 𝑋) be a pair of random variables, thenH(𝐴, 𝑋) =

H(𝐴|𝑋) +H(𝑋) and for (𝑎, 𝑥) ∈ Supp(𝐴, 𝑋),H∗
𝑎,𝑥(𝐴, 𝑋) = H∗

𝑎|𝑥(𝐴|𝑋) +H∗
𝑥(𝑋).

Definition 3.2.4 (Relative entropy2  ). For a pair (𝐴, 𝐵) of random variables and (𝑎, 𝑏) ∈ Supp(𝐴, 𝐵)

the sample relative entropy (lg-probability ratio) is:

KL∗𝑎(𝐴 ‖ 𝐵) ≝ lg Pr[𝐴 = 𝑎]
Pr[𝐵 = 𝑎]

,

and the relative entropy of𝐴with respect to 𝐵 is the expected sample relative entropy:

KL(𝐴 ‖ 𝐵) ≝ 𝔼
𝑎←𝐴

[lg
Pr[𝐴 = 𝑎]
Pr[𝐵 = 𝑎] ]

.

Definition 3.2.5 (Conditional relative entropy). For pairs of random variables (𝐴, 𝑋) and (𝐵, 𝑌), and

2Relative entropy is another name for the Kullback–Leibler divergence, but in this chapter we prefer the relative entropy
terminology to better match existing cryptographic notions of entropy and for uniformity across the notions discussed in
this chapter.
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(𝑎, 𝑥) ∈ Supp(𝐴, 𝑋), the conditional sample relative entropy is:

KL∗𝑎|𝑥(𝐴|𝑋 ‖ 𝐵|𝑌) ≝ lg
Pr[𝐴 = 𝑎|𝑋 = 𝑥]
Pr[𝐵 = 𝑎|𝑌 = 𝑥]

,

and the conditional relative entropy is:

KL(𝐴|𝑋 ‖ 𝐵|𝑌) ≝ 𝔼
(𝑎,𝑥)←(𝐴,𝑋)

[lg
Pr[𝐴 = 𝑎|𝑋 = 𝑥]
Pr[𝐵 = 𝑎|𝑌 = 𝑥] ]

.

Proposition 3.2.6 (Chain rule for relative entropy). For pairs of random variables (𝑋, 𝐴) and (𝑌, 𝐵):

KL(𝐴, 𝑋 ‖ 𝐵, 𝑌) = KL(𝐴|𝑋 ‖ 𝐵|𝑌) + KL(𝑋 ‖ 𝑌) ,

and for (𝑎, 𝑥) ∈ Supp(𝐴, 𝑋):

KL∗𝑎,𝑥(𝐴, 𝑋 ‖ 𝐵, 𝑌) = KL∗𝑎|𝑥(𝐴|𝑋 ‖ 𝐵|𝑌) + KL∗𝑥(𝑋 ‖ 𝑌) .

Proposition 3.2.7 (Data-processing inequality). Let (𝑋, 𝑌) be a pair of random variables and let 𝑓 be a

function defined on Supp(𝑌), then:

KL(𝑋 ‖ 𝑌) ≥ KL(𝑓(𝑋) ‖ 𝑓(𝑌)) .

Definition 3.2.8 (min relative entropy). Let (𝑋, 𝑌) be a pair of random variables and 𝛿 ∈ [0, 1]. We

defineKL𝛿min(𝑋 ‖ 𝑌) to be the quantile of level 𝛿 ofKL∗𝑥(𝑋 ‖ 𝑌), equivalently it is the smallest Δ ∈ ℝ

satisfying:

Pr
𝑥←𝑋

[KL∗𝑥(𝑋 ‖ 𝑌) ≤ Δ] ≥ 𝛿 ,

and it is characterized by the following equivalence:

KL𝛿min(𝑋 ‖ 𝑌) > Δ ⟺ Pr
𝑥←𝑋

[KL∗𝑥(𝑋 ‖ 𝑌) ≤ Δ] < 𝛿 .
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Block generators

Definition 3.2.9 (Block generator). An𝑚-block generator is a function G ∶ {0, 1}𝑠 → ∏𝑚
𝑖=1{0, 1}

ℓ𝑖 .

G𝑖(𝑟) denotes the 𝑖-th block of G on input 𝑟 and |G𝑖| = ℓ𝑖 denotes the bit length of the 𝑖-th block.

Definition 3.2.10 (Online generator). An online𝑚-block generator is a function𝐺 ∶ ∏𝑚
𝑖=1{0, 1}

𝑠𝑖 →

∏𝑚
𝑖=1{0, 1}

ℓ𝑖 such that for all 𝑖 ∈ [𝑚] and 𝑟 ∈ ∏𝑚
𝑖=1{0, 1}

𝑠𝑖 ,𝐺𝑖(𝑟) only depends on 𝑟≤𝑖. We sometimes

write𝐺𝑖(𝑟≤𝑖)when the input blocks 𝑖 + 1, … ,𝑚 are unspecified.

Definition 3.2.11 (Support). The support of a generator G is the support of the random variable

Supp (G(𝑅)) for uniform input 𝑅. If G is an (𝑚 + 1)-block generator, andΠ is a binary relation, we say

that G is supported onΠ if Supp (G≤𝑚(𝑅),G𝑚+1(𝑅)) ⊆ Π.

When G is an (𝑚 + 1)-block generator supported on a binary relation Π, we will often use the

notation Gw ≝ G𝑚+1 to emphasize that the last block corresponds to a witness for the first𝑚 blocks.

Cryptography.

Definition 3.2.12 (One-way Function). Let 𝑛 be a security parameter, 𝑡 = 𝑡(𝑛) and 𝜀 = 𝜀(𝑛). A

function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 is a (𝑡, 𝜀)-one-way function if:

1. For all time 𝑡 randomized algorithmA: Pr𝑥←𝑈𝑛[A(𝑓(𝑥)) ∈ 𝑓−1(𝑓(𝑥))] ≤ 𝜀, where𝑈𝑛 is uniform

over {0, 1}𝑛.

2. There exists a polynomial time algorithm B such that B(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ {0, 1}𝑛.

If 𝑓 is (𝑛𝑐, 1/𝑛𝑐)-one-way for every 𝑐 ∈ ℕ, we say that 𝑓 is (strongly) one-way.
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3.3 Search Problems andHardness in Relative Entropy

In this section, we first present the classical notion of hard-on-average search problems and introduce the

new notion of hardness in relative entropy. We then relate the two notions by proving that average-case

hardness implies hardness in relative entropy.

3.3.1 Search problems

For a binary relationΠ ⊆ {0, 1}∗ × {0, 1}∗, we writeΠ(𝑦,𝑤) for the predicate that is true iff (𝑦, 𝑤) ∈ Π

and say that 𝑤 is a witness for the instance 𝑦3  . To each relationΠ, we naturally associate (1) a search

problem: given 𝑦, find𝑤 such thatΠ(𝑦,𝑤) or state that no such𝑤 exist and (2) the decision problem

defined by the language 𝐿Π ≝ {𝑦 ∈ {0, 1}∗ ∶ ∃𝑤 ∈ {0, 1}∗, Π(𝑦, 𝑤)}. FNP denotes the set of all

relationsΠ computable by a polynomial time algorithm and such that there exists a polynomial 𝑝 such

thatΠ(𝑦,𝑤) ⇒ |𝑤| ≤ 𝑝(|𝑦|). WheneverΠ ∈ FNP, the associated decision problem 𝐿Π is inNP. We

now define average-case hardness.

Definition 3.3.1 (distributional search problem). A distributional search problem is a pair (Π, 𝑌) where

Π ⊆ {0, 1}∗ × {0, 1}∗ is a binary relation and 𝑌 is a random variable supported on 𝐿Π.

The problem (Π, 𝑌) is (t, 𝜀)-hard if Pr [Π(𝑌,A(𝑌))] ≤ 𝜀 for all time 𝑡 randomized algorithm A,

where the probability is over the distribution of 𝑌 and the randomness of A.

Example 3.3.2. For 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛, the problem of inverting 𝑓 is the search problem asso-

ciated with the relation Π𝑓 ≝ {(𝑓(𝑥), 𝑥) ∶ 𝑥 ∈ {0, 1}𝑛}. If 𝑓 is a (𝑡, 𝜀)-one-way function, then the

distributional search problem (Π𝑓, 𝑓(𝑋)) of inverting 𝑓 on a uniform random input 𝑋 ∈ {0, 1}𝑛 is

3We used the unconventional notation 𝑦 for the instance (instead of 𝑥) because our relations will often be of the
formΠ𝑓 for some function 𝑓; in this case an instance is some 𝑦 in the range of 𝑓 and a witness for 𝑦 is any preimage
𝑥 ∈ 𝑓−1(𝑦).
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(𝑡, 𝜀)-hard.

Remark 3.3.3. Consider a distributional search problem (Π, 𝑌). Without loss of generality, there

exists a (possibly inefficient) two-block generator G = (G1,Gw) supported onΠ such that G1(𝑅) = 𝑌

for uniform input 𝑅. If Gw is polynomial-time computable, it is easy to see that the search problem

(ΠG1,G1(𝑅)) is at least as hard as (Π, 𝑌). The advantage of writing the problem in this “functional” form

is that the distribution (G1(𝑅), 𝑅) over (instance, witness) pairs is flat, which is a necessary condition

to relate hardness to inaccessible entropy (see Theorem 3.4.12 ).

Furthermore, if G1 is also polynomial-time computable and (Π, 𝑌) is (poly(𝑛), negl(𝑛))-hard, then

𝑅 ↦ G1(𝑅) is a one-way function. Combined with the previous example, we see that the existence of

one-way functions is equivalent to the existence of (poly(𝑛), negl(𝑛))-hard search problems for which

(instance, witness) pairs can be efficiently sampled.

3.3.2 Hardness in relative entropy

Instead of considering an adversary directly attempting to solve a search problem (Π, 𝑌), the adversary

in the definition of hardness in relative entropy comprises a pair of algorithm (𝐺, S)where𝐺 is a two-

block generator outputting valid (instance, witness) pairs for Π and S is a simulator for 𝐺: given an

instance 𝑦, the goal of S is to output randomness 𝑟 for𝐺 such that𝐺1(𝑟) = 𝑦. Formally, the definition is

as follows.

Definition 3.3.4 (hardness in relative entropy). Let (Π, 𝑌) be a distributional search problem. We say

that (Π, 𝑌) has hardness (𝑡, Δ) in relative entropy if:

KL(𝑅, 𝐺1(𝑅) ‖‖ S(𝑌), 𝑌) > Δ ,

for all pairs (𝐺, S) of time 𝑡 algorithms where 𝐺 is a two-block generator supported on Π and 𝑅 is
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uniform randomness for𝐺1. Similarly, for 𝛿 ∈ [0, 1], (Π, 𝑌) has hardness (𝑡, Δ) in 𝛿-min relative entropy

if for all such pairs:

KL𝛿min(𝑅, 𝐺1(𝑅) ‖‖ S(𝑌), 𝑌) > Δ .

Note that a pair (𝐺, S) achieves a relative entropy of zero in Definition 3.3.4 if𝐺1(𝑅) has the same

distribution as 𝑌 and if𝐺1(S(𝑦)) = 𝑦 for all 𝑦 ∈ Supp(𝑌). In this case, writing𝐺w ≝ 𝐺2, we have that

𝐺w(S(𝑌)) is a valid witness for 𝑌 since𝐺 is supported onΠ.

More generally, the composition𝐺w ∘ S solves the search problem (Π, 𝑌) whenever𝐺1(S(𝑌)) = 𝑌.

When the relative entropies in Definition 3.3.4 are upper-bounded, we can lower bound the probability

of the search problem being solved (Lemma 3.3.7 ). This immediately implies that hard search problems

are also hard in relative entropy.

Theorem 3.3.5. Let (Π, 𝑌) be a distributional search problem. If (Π, 𝑌) is (𝑡, 𝜀)-hard, then it has hardness

(𝑡′, Δ′) in relative entropy and (𝑡′, Δ″) in 𝛿-min relative entropy for every 𝛿 ∈ [0, 1] where 𝑡′ = Ω(𝑡),4  

Δ′ = lg(1/𝜀) and Δ″ = lg(1/𝜀) − lg(1/𝛿).

Remark 3.3.6. As we see, a “good” simulator S for a generator𝐺 is one for which𝐺1(S(𝑌)) = 𝑌 holds

often. It will be useful in Section 3.4 to consider simulators Swhich are allowed to fail by outputting

a failure string 𝑟 ∉ Supp(𝑅), (e.g. 𝑟 = ⊥) and adopt the convention that 𝐺1(𝑟) = ⊥ whenever

𝑟 ∉ Supp(𝑅). With this convention, we can without loss of generality add the requirement that

𝐺1(S(𝑌)) = 𝑌 whenever S(𝑌) ∈ Supp(𝑅): indeed, S can always check that it is the case and if not

output a failure symbol. For such a simulator S, observe that for all 𝑟 ∈ Supp(𝑅), the second variable on

both sides of the relative entropy in Definition 3.3.4 is obtained by applying𝐺1 on the first variable and

can thus be dropped, leading to a simpler definition of hardness in relative entropy: KL(𝑅 ‖‖ S(𝑌)) > Δ.

4For the theorems in this paper that relate two notions of hardness, the notation 𝑡′ = Ω(𝑡)means that there exists a
constant𝐶 depending only on the computational model such that 𝑡′ ≥ 𝐶 ⋅ 𝑡.
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Theorem 3.3.5 is an immediate consequence of the following lemma.

Lemma 3.3.7. Let (Π, 𝑌) be a distributional search problem and (𝐺, S) be a pair of algorithms with

𝐺 = (𝐺1, 𝐺w) a two-block generator supported onΠ. Define the linear-time oracle algorithm A𝐺w,S(𝑦) ≝

𝐺w(S(𝑦)). For Δ ∈ ℝ+ and 𝛿 ∈ [0, 1]:

1. IfKL(𝑅, 𝐺1(𝑅) ‖‖ S(𝑌), 𝑌) ≤ Δ then Pr[Π(𝑌,A𝐺w,S(𝑌))] ≥ 1/2Δ.

2. IfKL𝛿min(𝑅, 𝐺1(𝑅) ‖‖ S(𝑌), 𝑌) ≤ Δ then Pr[Π(𝑌,A𝐺w,S(𝑌))] ≥ 𝛿/2Δ.

Proof. We have:

Pr[Π(𝑌,A𝐺w,S(𝑌))] = Pr[Π(𝑌, 𝐺w(S(𝑌)))]

≥ Pr[𝐺1(S(𝑌)) = 𝑌] (𝐺 is supported onΠ)

= ∑
𝑟∈Supp(𝑅)

Pr[S(𝑌) = 𝑟 ∧ 𝑌 = 𝐺1(𝑟)]

= 𝔼
𝑟←𝑅

[
Pr[S(𝑌) = 𝑟 ∧ 𝑌 = 𝐺1(𝑟)]

Pr[𝑅 = 𝑟]
]

= 𝔼
𝑟←𝑅

𝑦←𝐺1(𝑟)

[2−KL∗𝑟,𝑦(𝑅,𝐺1(𝑅) ‖‖ S(𝑌),𝑌)] .

Now, the first claim follows by Jensen’s inequality (since 𝑥 ↦ 2−𝑥 is convex) and the second claim

follows by Markov’ inequality when considering the event that the sample relative entropy is smaller

than Δ (which occurs with probability at least 𝛿 by assumption).

Relation to relative pseudoentropy. In [VZ12  ], the authors introduced the notion of relative pseu-

doentropy5  : for jointly distributed variables (𝑌,𝑊), 𝑊 has relative pseudoentropy given 𝑌 if it is

5As already mentioned in the introduction, this notion was in fact called “KL-hardness for sampling” in [VZ12 ] but
we rename it here to unify the terminology between the various notions discussed here.
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hard for a polynomial time adversary to approximate—measured in relative entropy—the conditional

distribution𝑊 given 𝑌. Formally:

Definition3.3.8 (relative pseudoentropy,Def. 3.4 in [VZ12  ]). Let (𝑌,𝑊)be apair of randomvariables,

we say that𝑊 has relative pseudoentropy (𝑡, Δ) given 𝑌 if for all time 𝑡 randomized algorithm S, we have:

KL(𝑌,𝑊 ‖ 𝑌, S(𝑌)) > Δ .

As discussed in Section 3.1.2 , it was shown in [VZ12  ] that if𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 is a one-way func-

tion, then (𝑓(𝑋), 𝑋1, … , 𝑋𝑛) has next-bit pseudoentropy for uniform 𝑋 ∈ {0, 1}𝑛 (see Theorem 3.1.2 ).

The first step in proving this result was to prove that 𝑋 has relative pseudoentropy given 𝑓(𝑋) (see

Lemma 3.1.4 ).

We observe that when (𝑌,𝑊) is of the form (𝑓(𝑋), 𝑋) for some function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 and

variable 𝑋 over {0, 1}𝑛, then relative pseudoentropy is implied by hardness in relative entropy by simply

fixing𝐺 to be the “honest sampler”𝐺(𝑋) = (𝑓(𝑋), 𝑋). Indeed, in this case we have:

KL(𝑋, 𝐺1(𝑋) ‖‖ S(𝑌), 𝑌) = KL(𝑋, 𝑓(𝑋) ‖ S(𝑌), 𝑌) .

We can thus recover Lemma 3.1.4 as a direct corollary of Theorem 3.3.5 .

Corollary 3.3.9. Consider a function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 and defineΠ𝑓 ≝ {(𝑓(𝑥), 𝑥) ∶ 𝑥 ∈ {0, 1}𝑛}

and 𝑌 ≝ 𝑓(𝑋) for 𝑋 uniform over {0, 1}𝑛. If 𝑓 is (𝑡, 𝜀)-one-way, then (Π𝑓, 𝑌) has hardness (𝑡′, lg(1/𝜀)) in

relative entropy and 𝑋 has relative pseudoentropy (𝑡′, lg(1/𝜀)) given 𝑌 with 𝑡′ = Ω(𝑡).

Witness hardness in relative entropy. We also introduce a relaxed notion of hardness in relative

entropy called witness hardness in relative entropy. In this notion, we further require (𝐺, S) to approx-

imate the joint distribution of (instance, witness) pairs rather than only instances. For example, the
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problem of inverting a function 𝑓 over a random input 𝑋 is naturally associated with the distribution

(𝑓(𝑋), 𝑋). The relaxation in this case is analogous to the notion of distributional one-way function for

which the adversary is required to approximate the uniform distribution over preimages.

Definition 3.3.10 (witness hardness in relative entropy). LetΠ be a binary relation and (𝑌,𝑊) be a

pair of random variables supported onΠ. We say that (Π, 𝑌,𝑊) has witness hardness (𝑡, Δ) in relative

entropy if for all pairs of time 𝑡 algorithms (𝐺, S)where𝐺 is a two-block generator supported onΠ, for

uniform 𝑅:

KL(𝑅, 𝐺1(𝑅), 𝐺w(𝑅) ‖‖ S(𝑌), 𝑌,𝑊) > Δ .

Similarly, for 𝛿 ∈ [0, 1], (Π, 𝑌,𝑊) has witness hardness (𝑡, Δ) in 𝛿-min relative entropy, if for all such

pairs:

KL𝛿min(𝑅, 𝐺1(𝑅), 𝐺w(𝑅) ‖‖ S(𝑌), 𝑌,𝑊) > Δ .

We introducedhardness in relative entropy first, since it is the notionwhich ismost directly obtained

from the hardness of distributional search problems. Observe that by the data processing inequality for

relative entropy (Proposition 3.2.7 ), dropping𝐺w(𝑅) and𝑊 in the relative entropies inDefinition 3.3.10 

only decreases them. Hence, hardness in relative entropy (as inTheorem3.3.5 ) implieswitness hardness

(as in Theorem 3.3.11 below). As we will see in Section 3.4 witness hardness in relative entropy is the

“correct” notion to obtain inaccessible entropy from: it is in fact equal to inaccessible entropy up to

1/ poly losses.

Theorem 3.3.11. LetΠ be a binary relation and (𝑌,𝑊) be a pair of random variables supported onΠ. If

(Π, 𝑌) is (𝑡, 𝜀)-hard, then (Π, 𝑌,𝑊) has witness hardness (𝑡′, Δ′) in relative entropy and (𝑡′, Δ″) in 𝛿-min

relative entropy for every 𝛿 ∈ [0, 1] where 𝑡′ = Ω(𝑡), Δ′ = lg(1/𝜀) and Δ″ = lg(1/𝜀) − lg(1/𝛿).

Remark 3.3.12. The data processing inequality does not hold exactly forKLmin, hence the statement
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about 𝛿-min relative entropy in Theorem 3.3.11 does not follow with the claimed parameters in a

black-box manner from Theorem 3.3.5 . However, an essentially identical proof yields the result.

3.4 Inaccessible Entropy andHardness in Relative Entropy

In this section, we relate our notion of witness hardness in relative entropy to the inaccessible entropy

definition of [HRVW16  ]. Roughly speaking, we “split” the relative entropy into blocks and obtain the

intermediate notion of next-block inaccessible relative entropy (Section 3.4.1 ) which we then relate to

inaccessible entropy (Section 3.4.2 ). Together, these results show that if 𝑓 is a one-way function, the

generator G𝑓(𝑋) = (𝑓(𝑋)1, … , 𝑓(𝑋)𝑛, 𝑋) has superlogarithmic inaccessible entropy.

3.4.1 Next-block hardness and rejection sampling

For an online (adversarial) generator 𝐺, it is natural to consider simulators S that also operate in an

online fashion. That is:

Definition 3.4.1 (online simulator). Let𝐺 ∶ ∏𝑚
𝑖=1{0, 1}

𝑠𝑖 →∏𝑚
𝑖=1{0, 1}

ℓ𝑖 be an online𝑚-block gen-

erator. An online simulator for𝐺 is a PPT algorithm S such that for all 𝑦 = (𝑦1, … , 𝑦𝑚) ∈ ∏𝑚
𝑖=1{0, 1}

ℓ𝑖 ,

defining inductively ̂𝑟𝑖 ≝ S( ̂𝑟<𝑖, 𝑦𝑖) ∈ {0, 1}𝑠𝑖 , we have for all 𝑖 ∈ [𝑚]:

𝐺𝑖( ̂𝑟≤𝑖) = 𝑦𝑖 or ̂𝑟𝑖 = ⊥ .

The running time of S is the total amount of time required to compute ̂𝑟1, … , ̂𝑟𝑚.

The goal of such an online simulator S is to ensure that the distribution of 𝑅𝑖 = S( ̂𝑟<𝑖, 𝑦𝑖) is close

to that of 𝑅𝑖|(𝑅<𝑖 = ̂𝑟<𝑖, 𝑌𝑖 = 𝑦𝑖) where (𝑌1, … , 𝑌𝑚) ≝ 𝐺(𝑅≤𝑚) for uniformly random (𝑅1, … , 𝑅𝑚).

Equivalently, 𝑅𝑖 should be close to uniform on { ̂𝑟𝑖 ∶ 𝐺𝑖( ̂𝑟≤𝑖) = 𝑦𝑖}. Measuring closeness with relative
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entropy, we have:

Definition 3.4.2 (next-block hardness in relative entropy). The joint distribution 𝑌 = (𝑌1, … , 𝑌𝑚)

has next-block hardness (𝑡, Δ) in relative entropy if the following holds for every time 𝑡 online𝑚-block

generator𝐺 and every time 𝑡 online simulator S for𝐺.

Write 𝑌≤𝑚 ≝ 𝐺(𝑅≤𝑚) for uniform 𝑅≤𝑚, and define inductively 𝑅𝑖 ≝ S(𝑅<𝑖, 𝑌𝑖). Then we require:

𝑚
∑
𝑖=1

KL(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) > Δ .

Similarly, for 𝛿 ∈ [0, 1], we say that (𝑌1, … , 𝑌𝑚) has next-block hardness (𝑡, Δ) in 𝛿-min relative entropy

if, with the same notations as above:

Pr
𝑟≤𝑚←𝑅≤𝑚

𝑦≤𝑚←𝐺(𝑟≤𝑚)

[
𝑚
∑
𝑖=1

KL∗𝑟𝑖,𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) ≤ Δ] < 𝛿 .

Observe that using the chain rule for relative entropy, the sum of relative entropies appearing in

Definition 3.4.2 is exactly equal to the relative entropies appearing in Definition 3.3.4 . Since, further-

more considering an online generator𝐺 and online simulator S is only less general than arbitrary pairs

(𝐺, S), we immediately obtain the following theorem.

Theorem 3.4.3. Let (Π, 𝑌) be a distributional search problem. If (Π, 𝑌) has hardness (𝑡, Δ) in relative

entropy then (𝑌1, … , 𝑌𝑚) has next-block hardness (𝑡, Δ) in relative entropy.

Similarly, for any 𝛿 ∈ [0, 1], if (Π, 𝑌) has hardness (𝑡, Δ) in 𝛿-min relative entropy then (𝑌1, … , 𝑌𝑚)

has next-block hardness (𝑡, Δ) in 𝛿-min relative entropy.

Proof. Immediate using the chain rule for relative (sample) entropy.

The next step is to obtain a notion of hardness that makes no reference to simulators by considering,

for an online block generator𝐺, a specific simulator Sim𝐺,𝑇 which on input ( ̂𝑟<𝑖, 𝑦𝑖), generates 𝑅𝑖 using
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rejection sampling until𝐺𝑖( ̂𝑟<𝑖, 𝑅𝑖) = 𝑦𝑖. The superscript 𝑇 is the maximum number of attempts after

which Sim𝐺,𝑇 gives up and outputs⊥. The formal definition of Sim𝐺,𝑇 is given in Algorithm 1 .

Algorithm 1 Rejection sampling simulator Sim𝐺,𝑇 for 1 ≤ 𝑖 ≤ 𝑚
Input: 𝑦𝑖 ∈ {0, 1}∗, ̂𝑟<𝑖 ∈ ({0, 1}𝑣 ∪ {⊥})𝑖−1
Output: ̂𝑟𝑖 ∈ {0, 1}𝑣 ∪ {⊥}

if ̂𝑟𝑖−1 = ⊥ then
̂𝑟𝑖 ← ⊥; return

end if
repeat

sample ̂𝑟𝑖 ← {0, 1}𝑣

until𝐺𝑖( ̂𝑟≤𝑖) = 𝑦𝑖 or≥ 𝑇 attempts
if𝐺𝑖( ̂𝑟≤𝑖) ≠ 𝑦𝑖 then

̂𝑟𝑖 ← ⊥
end if

For the rejection sampling simulator Sim𝐺,𝑇, we will show in Lemma 3.4.6 that the next-block

hardness in relative entropy in Definition 3.4.2 decomposes as the sum of two terms:

1. A term measuring how well𝐺≤𝑚 approximates the distribution 𝑌 in an online manner, without

any reference to a simulator.

2. An error termmeasuring the failure probability of the rejection sampling procedure due to having

a finite time bound 𝑇.

As we show in Lemma 3.4.7 , the error term can be made arbitrarily small by setting the number of trials

𝑇 in Sim𝐺,𝑇 to be a large enoughmultiple of𝑚⋅2ℓ where ℓ is the length of the blocks of𝐺≤𝑚. This leads

to a poly(𝑚) time algorithm whenever ℓ is logarithmic in𝑚. That is, given an online block generator

𝐺 for which𝐺≤𝑚 has short blocks, we obtain a corresponding simulator “for free”. Thus, considering

only the first term leads to the following clean definition of next-block inaccessible relative entropy that

makes no reference to simulators.
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Definition 3.4.4 (next-block inaccessible relative entropy). The joint distribution (𝑌1, … , 𝑌𝑚) has next-

block inaccessible relative entropy (𝑡, Δ), if for every time 𝑡 online𝑚-block generator𝐺 supported on 𝑌≤𝑚,

writing 𝑌≤𝑚 ≝ 𝐺(𝑅≤𝑚) for uniform 𝑅≤𝑚, we have:

𝑚
∑
𝑖=1

KL(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) > Δ ,

where𝑅𝑖 is a “dummy” random variable over the domain of𝐺𝑖 and independent of𝑌≤𝑚+1. Similarly, for

𝛿 ∈ [0, 1], we say that (𝑌1, … , 𝑌𝑚+1) has next-block inaccessible 𝛿-min relative entropy (𝑡, Δ) if for every𝐺

as above:

Pr
𝑟≤𝑚←𝑅≤𝑚

𝑦≤𝑚←𝐺(𝑟≤𝑚)

[
𝑚
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) ≤ Δ] < 𝛿 ,

where (𝑌≤𝑚, 𝑅≤𝑚) are defined as above.

Remark 3.4.5. Since 𝑌<𝑖 is a function of 𝑅<𝑖, the first conditional distribution in the KL is effectively

𝑌𝑖|𝑅<𝑖. Similarly the second distribution is effectively 𝑌𝑖|𝑌<𝑖. The extra random variables are there for

syntactic consistency.

With this definition in hand, we can make formal the claim that, even as sample notions, the next-

block hardness in relative entropy decomposes as next-block inaccessible relative entropy plus an error

term.

Lemma 3.4.6. For a joint distribution (𝑌1, … , 𝑌𝑚), let 𝐺 be an online 𝑚-block generator supported on

𝑌≤𝑚. Define (𝑌1, … , 𝑌𝑚) ≝ 𝐺(𝑅) for uniform random variable 𝑅 = (𝑅1, … , 𝑅𝑚) and let 𝑅𝑖 be a “dummy”

random variable over the domain of𝐺𝑖 and independent of 𝑌≤𝑚. We also define 𝑅𝑖 ≝ Sim𝐺,𝑇(𝑅<𝑖, 𝑌𝑖) and

𝑌𝑖 = 𝐺(𝑅≤𝑖). Then, for all 𝑟 ∈ Supp(𝑅) and 𝑦 ≝ 𝐺(𝑟):

𝑚
∑
𝑖=1

KL∗𝑟𝑖,𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖)
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=
𝑚
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) +
𝑚
∑
𝑖=1

lg( 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖]

) .

Moreover, the running time of Sim𝐺,𝑇 on input 𝑅<𝑖, 𝑌𝑖 is𝑂(|𝑟𝑖| ⋅ 𝑇), with at most 𝑇 oracle calls to𝐺.

Proof. Consider 𝑟 ∈ Supp(𝑅) and 𝑦 ≝ 𝐺(𝑟). Then:

𝑚
∑
𝑖=1

KL∗𝑟𝑖,𝑦𝑖|𝑟<𝑖,𝑦<𝑖 (̃𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖)

=
𝑚
∑
𝑖=1

KL∗𝑟𝑖,𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖)

=
𝑚
∑
𝑖=1

(KL∗𝑟𝑖|𝑟<𝑖,𝑦≤𝑖(𝑅𝑖|𝑅<𝑖, 𝑌≤𝑖 ‖‖ 𝑅𝑖|𝑅<𝑖, 𝑌≤𝑖) + KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖))

=
𝑚
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) =
𝑚
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖(𝑌𝑖|𝑅<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖) .

Thefirst equality is because𝑌𝑖 = 𝑌𝑖 sincewe are only considering non-failure cases (𝑟𝑖 ≠ ⊥). The second

equality is the chain rule. The penultimate equality is by definition of rejection sampling: 𝑅𝑖|𝑅<𝑖, 𝑌≤𝑖

and 𝑅𝑖|𝑅<𝑖, 𝑌≤𝑖 are identical on Supp(𝑅𝑖) since conditioning on 𝑌𝑖 = 𝑦 implies that only non-failure

cases (𝑟𝑖 ≠ ⊥) are considered. The last equality is because 𝑌<𝑖 (resp. 𝑌<𝑖) is a deterministic function of

𝑅<𝑖 (resp. 𝑅<𝑖).

We now relate 𝑌𝑖|𝑅<𝑖 to 𝑌𝑖|𝑌<𝑖:

Pr[𝑌𝑖 = 𝑦𝑖|𝑅<𝑖 = 𝑟<𝑖] = Pr[𝑌𝑖 = 𝑦𝑖, 𝑌𝑖 = 𝑦𝑖|𝑅<𝑖 = 𝑟<𝑖] (𝑌𝑖 = 𝑦𝑖 ⇔ 𝑌𝑖 = 𝑦𝑖 ∧ 𝑌𝑖 = 𝑦𝑖)

= Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖] ⋅ Pr[𝑌𝑖 = 𝑦𝑖|𝑅<𝑖 = 𝑟<𝑖] (Bayes’ Rule)

= Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖] ⋅ Pr[𝑌𝑖 = 𝑦𝑖|𝑌<𝑖 = 𝑦<𝑖] ,

where the last equality is because when 𝑟 ∈ Supp(𝑅), 𝑅<𝑖 = 𝑟<𝑖 ⇒ 𝑌<𝑖 = 𝑦<𝑖 and because 𝑌𝑖 is

independent of 𝑅<𝑖 given 𝑌<𝑖 (as 𝑅<𝑖 is simply a randomized function of 𝑌<𝑖). The conclusion of the

lemma follows by combining the previous two derivations.
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Observe that taking expectations with respect to a uniform 𝑅 on both sides in the conclusion of

Lemma 3.4.6 , we get that next-block hardness in relative entropy is equal to the sum of next-block

inaccessible relative entropy and the expectation of the error term coming from the rejection sampling

procedure. The following lemma upper bounds this expectation.

Lemma 3.4.7. Let 𝐺 be an online𝑚-block generator, and let 𝐿𝑖 ≝ 2|𝐺𝑖| be the size of the codomain of 𝐺𝑖,

𝑖 ∈ [𝑚]. Then for all 𝑖 ∈ [𝑚], 𝑟<𝑖 ∈ Supp(𝑅<𝑖) and uniform 𝑅𝑖:

𝔼
𝑦𝑖←𝐺𝑖(𝑟<𝑖,𝑅𝑖)

[lg 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖]

] ≤ lg (1 +
𝐿𝑖 − 1
𝑇 ) .

Proof of Lemma 3.4.7 . By definition of Sim𝐺,𝑇, we have:

Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖] = 1 − (1 − Pr[𝐺𝑖(𝑟<𝑖, 𝑅𝑖) = 𝑦𝑖])
𝑇
.

Applying Jensen’s inequality, we have:

𝔼
𝑦𝑖←𝐺𝑖(𝑟<𝑖,𝑅𝑖)

[lg( 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖]

)]

≤ lg 𝔼
𝑦𝑖←𝐺𝑖(𝑟<𝑖,𝑅𝑖)

[ 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖]

]

= lg( ∑
𝑦∈Im(𝐺𝑖(𝑟<𝑖,⋅))

𝑝𝑦
1 − (1 − 𝑝𝑦)𝑇

)

where 𝑝𝑦 = Pr[𝐺𝑖(𝑟<𝑖, 𝑅𝑖) = 𝑦]. Since the function 𝑥/ (1 − (1 − 𝑥)𝑇) is convex (see Lemma 3.4.8 

below), the maximum of the expression inside the logarithm over probability distributions {𝑝𝑦} is

achieved at the extremal points of the standard probability simplex. Namely, when all but one 𝑝𝑦 → 0

and the other one is 1. Since lim𝑥→0 𝑥/(1 − (1 − 𝑥)𝑇) = 1/𝑇:

lg( ∑
𝑦∈Im(𝐺𝑖)

𝑝𝑦
1 − (1 − 𝑝𝑦)𝑇

) ≤ lg (1 + (𝐿𝑖 − 1) ⋅ 1𝑇) .
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Lemma 3.4.8. For all 𝑡 ≥ 1, 𝑓 ∶ 𝑥 ↦ 𝑥
1−(1−𝑥)𝑡

is convex over [0, 1].

Proof. We instead show convexity of ̃𝑓 ∶ 𝑥 ↦ 𝑓(1 − 𝑥). A straightforward computation gives:

̃𝑓″(𝑥) =
𝑥𝑡−2𝑡(𝑡(1 − 𝑥)(𝑥𝑡 + 1) − (1 + 𝑥)(1 − 𝑥𝑡))

(1 − 𝑥𝑡)3

so that it suffices to show the non-negativity of 𝑔(𝑥) = 𝑡(1 − 𝑥)(𝑥𝑡 + 1) − (1 + 𝑥)(1 − 𝑥𝑡) over [0, 1].

The function 𝑔 has second derivative 𝑡(1 − 𝑥)(𝑡2 − 1)𝑥𝑡−2, which is non-negative when 𝑥 ∈ [0, 1], and

thus the first derivative 𝑔′ is non-decreasing. Also, the first derivative at 1 is equal to zero, so that 𝑔′ is

non-positive over [0, 1] and hence 𝑔 is non-increasing over this interval. Since 𝑔(1) = 0, this implies

that 𝑔 is non-negative over [0, 1] and 𝑓 is convex as desired.

By combining Lemmas 3.4.6 and 3.4.7 , we are now ready to state the main result of this section,

relating witness hardness in relative entropy to next-block inaccessible relative entropy.

Theorem 3.4.9. LetΠ be a binary relation and let (𝑌,𝑊) be a pair of random variables supported onΠ.

Let 𝑌 = (𝑌1, … , 𝑌𝑚) be a partition of 𝑌 into blocks of at most ℓ bits. Then we have:

1. if (Π, 𝑌,𝑊) has witness hardness (𝑡, Δ) in relative entropy, then for every 0 < Δ′ ≤ Δ, (𝑌1, … , 𝑌𝑚,𝑊)

has next-block inaccessible relative entropy (𝑡′, Δ − Δ′) where 𝑡′ = Ω(𝑡Δ′/(𝑚22ℓ)).

2. if (Π, 𝑌,𝑊) has witness hardness (𝑡, Δ) in 𝛿-min relative entropy then for every 0 < Δ′ ≤ Δ and

0 ≤ 𝛿′ ≤ 1−𝛿, we have that (𝑌1, … , 𝑌𝑚,𝑊) has next-block inaccessible (𝛿+𝛿′)-min relative entropy

(𝑡′, Δ − Δ′) where 𝑡′ = Ω(𝑡𝛿′Δ′/(𝑚22ℓ)).

Proof. We consider an online generator 𝐺 supported on (𝑌1, … , 𝑌𝑚,𝑊) and the simulator Sim𝐺,𝑇.

For convenience, we sometimes write 𝑌𝑚+1 for 𝑊. Define 𝑅 ≝ 𝑅≤𝑚 where 𝑅≤𝑚 is a sequence of

independent and uniformly random variables, 𝑌≤𝑚+1 ≝ 𝐺(𝑅),𝐺1(𝑅) ≝ 𝑌≤𝑚 and𝐺w(𝑅) ≝ 𝑌𝑚+1. We

also write for 1 ≤ 𝑖 ≤ 𝑚, 𝑅𝑖 ≝ Sim𝐺,𝑇(𝑅<𝑖, 𝑌𝑖), 𝑌𝑖 ≝ 𝐺(𝑅≤𝑖)𝑖. Finally we define S𝐺,𝑇(𝑌) ≝ 𝑅≤𝑚.
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Observe that (𝐺1, 𝐺w) is a two-block generator supported onΠ, so the pair (𝐺, S𝐺,𝑇) forms a pair a

algorithms as in the definition of witness hardness in relative entropy (Definition 3.3.10 ). We focus on

sample notions first, and consider 𝑟 ∈ Supp(𝑅), 𝑦 ∈ Supp(𝑌≤𝑚) and𝑤 ∈ Supp(𝑌𝑚+1). First we use

the chain rule to isolate the witness block:

KL∗𝑟,𝑦,𝑤(𝑅, 𝐺1(𝑅), 𝐺w(𝑅) ‖‖ S𝐺,𝑇(𝑌), 𝑌,𝑊)

= KL∗𝑤|𝑟,𝑦(𝐺w(𝑅)|𝑅, 𝐺1(𝑅) ‖‖ 𝑊|S𝐺,𝑇(𝑌), 𝑌) + KL∗𝑟,𝑦(𝑅, 𝐺1(𝑅) ‖‖ S𝐺,𝑇(𝑌), 𝑌)

= KL∗𝑦𝑚+1|𝑟≤𝑚,𝑦≤𝑚(𝑌𝑚+1|𝑅≤𝑚, 𝑌≤𝑚 ‖‖ 𝑌𝑚+1|𝑅≤𝑚, 𝑌≤𝑚) + KL∗𝑟,𝑦(𝑅, 𝐺1(𝑅) ‖‖ S𝐺,𝑇(𝑌), 𝑌) .

Next, as in Theorem 3.4.3 we apply the chain rule to decompose the second term on the right-hand

side and obtain next-block hardness in relative entropy:

KL∗𝑟,𝑦(𝑅, 𝐺1(𝑅) ‖‖ S𝐺,𝑇(𝑌), 𝑌) =
𝑚
∑
𝑖=1

KL∗𝑟𝑖,𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) .

Finally, we use Lemma 3.4.6 to further decompose the right-hand side term into inaccessible relative

entropy and the rejection sampling error:

𝑚
∑
𝑖=1

KL∗𝑟𝑖,𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑅𝑖, 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖)

=
𝑚
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) +
𝑚
∑
𝑖=1

lg( 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖]

) .

Combining the previous derivations, we obtain:

KL∗𝑟,𝑦,𝑤(𝑅, 𝐺1(𝑅), 𝐺w(𝑅) ‖‖ S𝐺,𝑇(𝑌), 𝑌,𝑊)

=
𝑚+1
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) +
𝑚
∑
𝑖=1

lg( 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑌𝑖 = 𝑦𝑖, 𝑅<𝑖 = 𝑟<𝑖]

) .

Now, the first claim of the theorem follows by taking expectations on both sides and observing that
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when 𝑇 = 𝑚 ⋅ 2ℓ/(Δ′ ln 2), Lemma 3.4.7 implies that the expected value of the rejection sampling error

is smaller than Δ′.

For the second claim, we first establish using Lemma 3.4.7 and Markov’s inequality that:

Pr
𝑦≤𝑚+1←𝑌≤𝑚+1

𝑟←𝑅

[
𝑚
∑
𝑖=1

lg( 1
Pr[𝑌𝑖 = 𝑦𝑖|𝑅<𝑖 = 𝑟<𝑖, 𝑌<𝑖 = 𝑦<𝑖]

) ≥ 𝑚 ⋅ 2ℓ

𝑇𝛿′ ln 2] ≤ 𝛿′

and we reach a similar conclusion by setting 𝑇 = 𝑚 ⋅ 2ℓ/(𝛿′Δ′ ln 2).

Remark 3.4.10. For fixed distribution and generators, in the limit where 𝑇 grows to infinity, the error

term caused by the failure of rejection sampling in time 𝑇 vanishes. In this case, hardness in rela-

tive entropy implies next-block inaccessible relative entropy without any loss in the relative entropy

parameters.

3.4.2 Next-block inaccessible relative entropy and inaccessible entropy

We first recall the definition from [HRVW16 ], slightly adapted to our notations.

Definition 3.4.11 (Inaccessible Entropy). Let (𝑌1, … , 𝑌𝑚+1) be a joint distribution.6  We say that

(𝑌1, … , 𝑌𝑚+1) has inaccessible entropy (𝑡, Δ) if for all (𝑚 + 1)-block online generators𝐺 running in time

𝑡 and consistent with (𝑌1, … , 𝑌𝑚+1):

𝑚+1
∑
𝑖=1

(H(𝑌𝑖|𝑌<𝑖) −H(𝑌𝑖|𝑅<𝑖)) > Δ .

where (𝑌1, … , 𝑌𝑚+1) = 𝐺(𝑅1, … , 𝑅𝑚+1) for a uniform 𝑅≤𝑚+1.

Similarly (𝑌1, … , 𝑌𝑚+1) has inaccessible 𝛿-max entropy (𝑡, Δ) if for all (𝑚+1)-block online generators

6We write𝑚+ 1 the total number of blocks, since in this section we will think of 𝑌𝑚+1 (also written as𝑊) as the
witness of a distributional search problem and (𝑌1, … ,𝑌𝑚) are the blocks of the instance as in the previous section.
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𝐺 running in time 𝑡 and consistent with (𝑌1, … , 𝑌𝑚+1):

Pr
𝑟≤𝑚+1←𝑅≤𝑚+1

𝑦≤𝑚+1←𝐺(𝑟≤𝑚+1)

[
𝑚+1
∑
𝑖=1

(H∗
𝑦𝑖|𝑦<𝑖(𝑌𝑖|𝑌<𝑖) −H∗

𝑦𝑖|𝑟<𝑖(𝑌𝑖|𝑅<𝑖)) ≤ Δ] < 𝛿 .

Unfortunately, one unsatisfactory aspect of Definition 3.4.11 is that inaccessible entropy can be

negative since the generator𝐺 could havemore entropy than (𝑌1, … , 𝑌𝑚+1): if all the𝑌𝑖 are independent

biased random bits, then a generator𝐺 outputting unbiased random bits will have negative inaccessible

entropy. On the other hand, next-block inaccessible relative entropy (Definition 3.4.4 ) does not suffer

from this drawback.

Moreover, in the specific case where (𝑌1, … , 𝑌𝑚+1) is a flat distribution7  , then no distribution with

the same support can have higher entropy and in this case Definitions 3.4.4 and 3.4.11 coincide as

stated in the following theorem.

Theorem 3.4.12. Let (𝑌1, , … , 𝑌𝑚+1) be a flat distribution and𝐺 be an (𝑚 + 1)-block generator consistent

with 𝑌≤𝑚+1. Then for 𝑌≤𝑚+1 = 𝐺(𝑅≤𝑚+1) for uniform 𝑅≤𝑚+1:

1. For every 𝑦≤𝑚+1, 𝑟≤𝑚+1 ∈ Supp(𝑌≤𝑚+1, 𝑅≤𝑚+1), it holds that

𝑚+1
∑
𝑖=1

(H∗
𝑦𝑖|𝑦<𝑖(𝑌𝑖|𝑌<𝑖) −H∗

𝑦𝑖|𝑟<𝑖(𝑌𝑖|𝑅<𝑖))

=
𝑚+1
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖)

In particular, (𝑌1, … , 𝑌𝑚+1) has next-block inaccessible 𝛿-min relative entropy (𝑡, Δ) if and only if it

has inaccessible 𝛿-max entropy (𝑡, Δ).

7For example, the distribution (𝑌≤𝑚, 𝑌𝑚+1) = (𝑓(𝑈),𝑈) for a function 𝑓 and uniform input𝑈 is always a flat
distribution even if 𝑓 itself is not regular.
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2. Furthermore,

𝑚+1
∑
𝑖=1

(H(𝑌𝑖|𝑌<𝑖) −H(𝑌𝑖|𝑅<𝑖)) =
𝑚+1
∑
𝑖=1

KL(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖),

so in particular, (𝑌1, … , 𝑌𝑚+1) has next-block inaccessible relative entropy (𝑡, Δ) if and only if it has

inaccessible entropy (𝑡, Δ).

Proof. For the sample notions, the chain rule (Proposition 3.2.6 ) gives:

𝑚+1
∑
𝑖=1

H∗
𝑦𝑖|𝑦<𝑖(𝑌𝑖|𝑌<𝑖) = H∗

𝑦(𝑌≤𝑚+1) = lg | Supp(𝑌≤𝑚+1)|

for all 𝑦 since 𝑌 is flat. Hence:

lg|Supp(𝑌≤𝑚+1)| −
𝑚+1
∑
𝑖=1

H∗
𝑦𝑖|𝑟<𝑖(𝑌𝑖|𝑅<𝑖) =

𝑚+1
∑
𝑖=1

(H∗
𝑦𝑖|𝑦<𝑖(𝑌𝑖|𝑌<𝑖) −H∗

𝑦𝑖|𝑟<𝑖(𝑌𝑖|𝑅<𝑖))

=
𝑚+1
∑
𝑖=1

KL∗𝑦𝑖|𝑟<𝑖,𝑦<𝑖(𝑌𝑖|𝑅<𝑖, 𝑌<𝑖 ‖‖ 𝑌𝑖|𝑅<𝑖, 𝑌<𝑖) ,

so the second claim follows by taking the expectation over (𝑌≤𝑚+1, 𝑅≤𝑚+1) on both sides.

By chaining the reductions between the different notions of hardness considered in this work

(hardness in relative entropy, next-block inaccessible relative entropy and inaccessible entropy), we

obtain a more modular proof of the theorem of Haitner, Reingold, Vadhan, and Wee [HRVW16 ],

obtaining inaccessible entropy from any one-way function.

Theorem 3.4.13. Let 𝑛 be a security parameter, 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛 be a (𝑡, 𝜀)-one-way function, and 𝑋

be uniform over {0, 1}𝑛. For ℓ ∈ {1, … , 𝑛}, decompose 𝑓(𝑋) ≝ (𝑌1, … , 𝑌𝑛/ℓ) into blocks of length ℓ. Then:

1. For every 0 ≤ Δ ≤ lg(1/𝜀), (𝑌1, … , 𝑌𝑛/ℓ, 𝑋) has inaccessible entropy (𝑡′, lg(1/𝜀) − Δ) for 𝑡′ =

Ω(𝑡 ⋅ Δ ⋅ ℓ2/(𝑛2 ⋅ 2ℓ)).
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2. For every 0 < 𝛿 ≤ 1 and 0 ≤ Δ ≤ lg(1/𝜀)− lg(2/𝛿), (𝑌1, … , 𝑌𝑛/ℓ, 𝑋) has inaccessible 𝛿-max entropy

(𝑡′, lg(1/𝜀) − lg(2/𝛿) − Δ) for 𝑡′ = Ω(𝑡 ⋅ 𝛿 ⋅ Δ ⋅ ℓ2/(𝑛2 ⋅ 2ℓ)).

Proof. Since𝑓 is (𝑡, 𝜀)-one-way, the distributional search problem (Π𝑓, 𝑓(𝑋))whereΠ𝑓 = {(𝑓(𝑥), 𝑥) ∶

𝑥 ∈ {0, 1}𝑛} is (𝑡, 𝜀)-hard. Clearly, (𝑓(𝑋), 𝑋) is supported onΠ𝑓, so by applying Theorem 3.3.11 , we

have that (Π𝑓, 𝑓(𝑋), 𝑋) has witness hardness (Ω(𝑡), lg(1/𝜀)) in relative entropy and (Ω(𝑡), lg(1/𝜀) −

lg(2/𝛿)) in 𝛿/2-min relative entropy. Thus, by Theorem 3.4.9 we have that (𝑌1, … , 𝑌𝑛/ℓ, 𝑋) has next-

block inaccessible relative entropy (Ω (𝑡 ⋅ Δ ⋅ ℓ2/(𝑛2 ⋅ 2ℓ)) , lg(1/𝜀) − Δ) and next-block inaccessible

𝛿-min relative entropy (Ω (𝑡 ⋅ 𝛿 ⋅ Δ ⋅ ℓ2/(𝑛2 ⋅ 2ℓ)) , lg(1/𝜀) − lg(2/𝛿) − Δ), and we conclude by Theo-

rem 3.4.12 .

Remark 3.4.14. For comparison, the original proof of [HRVW16 ] shows that for every 0 < 𝛿 ≤ 1,

the joint distribution (𝑌1, … , 𝑌𝑛/ℓ, 𝑋) has inaccessible 𝛿-max entropy (𝑡′, lg(1/𝜀) − 2 lg(1/𝛿) − 𝑂(1))

for 𝑡′ = Ω̃ (𝑡 ⋅ 𝛿 ⋅ ℓ2/(𝑛2 ⋅ 2ℓ)), which in particular for fixed 𝑡′ has quadratically worse dependence

on 𝛿 in terms of the achieved inaccessible entropy: lg(1/𝜀) − 2 ⋅ lg(1/𝛿) − 𝑂(1) rather than our

lg(1/𝜀) − 1 ⋅ lg(1/𝛿) − 𝑂(1).

Corollary 3.4.15 (Theorem 4.2 in [HRVW16 ]). Let 𝑛 be a security parameter, 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑛

be a strong one-way function, and 𝑋 be uniform over {0, 1}𝑛. Then for every ℓ = 𝑂(lg𝑛), the joint distribu-

tion (𝑓(𝑋)1…ℓ, … , 𝑓(𝑋)𝑛−ℓ+1…𝑛, 𝑋) has inaccessible entropy (𝑛𝜔(1), 𝜔(lg𝑛)) and inaccessible 1/𝑛𝜔(1)-max

entropy (𝑛𝜔(1), 𝜔(lg𝑛)).
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Chapter 4

Finite-SampleConcentration of the

Multinomial in Relative Entropy

This chapter is based on [Agr20 ].

4.1 Introduction

A key problem in statistics is to understand the rate of convergence of an empirical distribution of

independent samples to the true underlying distribution. Indeed, this convergence is the basis of

hypothesis testing and statistical inference in general [Pit79 ]. For the case of discrete distributions

over a finite alphabet, the Neyman–Pearson lemma [NP33 ] shows that for optimal hypothesis testing

it is important to consider the likelihood-ratio statistic, or equivalently [HT12 ], the Kullback–Leibler

divergence (relative entropy) from the true distribution to the empirical distribution, as formally

defined in Definition 4.1.1 :

Definition 4.1.1. Let 𝑋 = (𝑋1, … , 𝑋𝑘) be distributed according to a multinomial distribution with 𝑛
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samples and probabilities 𝑃 = (𝑝1, … , 𝑝𝑘), and define

𝑉𝑛,𝑘,𝑃 ≝ KL((𝑋1/𝑛, … , 𝑋𝑘/𝑛) ‖‖ (𝑝1, … , 𝑝𝑘))

where

KL((𝑞1, … , 𝑞𝑘) ‖‖ (𝑝1, … , 𝑝𝑘)) ≝
𝑘
∑
𝑖=1

𝑞𝑖 ln
𝑞𝑖
𝑝𝑖

is the Kullback–Leibler divergence between two probability distributions on a finite set {1, … , 𝑘} (rep-

resented as probability mass functions), and ln is the logarithm in the natural base (as are all logarithms

and exponentials in this chapter). The likelihood-ratio statistic is 2𝑛𝑉𝑛,𝑘,𝑃 [HT12 ].

In this language, the Neyman–Pearson lemma states that the uniformly most powerful hypothesis

test for significance 𝛼 rejects a hypothesis 𝑃 = (𝑝1, … , 𝑝𝑘) if and only if 𝑉𝑛,𝑘,𝑃 is at least 𝜀𝛼, where 𝜀𝛼

is such that Pr[𝑉𝑛,𝑘,𝑃 ≥ 𝜀𝛼] ≤ 𝛼. To apply this test in practice an upper bound on 𝜀𝛼 is needed, so

to maximize the power of a provably correct finite-sample test we seek upper bounds on Pr[𝑉 ≥ 𝜀]

which are meaningful (less than 1) for 𝜀 as small as possible. Equivalently, tight control on 𝜀 reduces

the number of samples needed to obtain a given level of significance, which is of importance in areas as

disparate as high-dimensional statistics [Wai19 ], combinatorial constructions in complexity theory

(Chapter 2 ), learning theory [Can20 ], and private machine learning [DWCS20 ].

In this chapter, we focus on tail bounds for Pr[𝑉𝑛,𝑘,𝑃 ≥ 𝜀] which decay exponentially for small

𝜀, ideally when 𝜀 ≈ 𝔼[𝑉𝑛,𝑘,𝑃]. Paninski [Pan03 ] showed that 𝔼[𝑉𝑛,𝑘,𝑃] ≤ ln(1 + 𝑘−1
𝑛
) ≤ 𝑘−1

𝑛
, and

conversely Jiao et al. [JVHW17 ] showed that for 𝑃 the uniform distribution and large enough 𝑛 that

𝔼[𝑉𝑛,𝑘,𝑈𝑘] ≥
𝑘−1
𝑛

⋅ 1
2
, so in general the smallest 𝜀 for which one can expect a meaningful bound is of

order (𝑘 − 1)/𝑛. In this chapter, we derive the first tail bound decaying exponentially in 𝜀 for 𝜀 as small

as (𝑘 − 1)/𝑛, whereas existing bounds either require 𝜀 to be at least order (𝑘 − 1)/𝑛 ⋅ ln(𝑛/𝑘) when
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𝑘 < 𝑛 ([Csi98 ; MJTNW19  ]) or work only for the uniform distribution and decay exponentially in 𝜀2

([AK01 ]), which when 𝜀 < 1 is significantly weaker than decay in 𝜀1. Formally, our result is as follows:

Theorem 4.1.2. Let 𝑉𝑛,𝑘,𝑃 be as in Definition 4.1.1 . Then for all 𝜀 > 𝑘−1
𝑛

, it holds that

Pr[𝑉𝑛,𝑘,𝑃 ≥ 𝜀] ≤ 𝑒−𝑛𝜀 ⋅ ( 𝑒𝜀𝑛
𝑘 − 1)

𝑘−1
.

Theorem 4.1.2 is in fact an immediate corollary of our main technical result, which is a bound on

the moment generating function of 𝑉𝑛,𝑘,𝑃.

Theorem 4.1.3. Let 𝑉𝑛,𝑘,𝑃 be as in Definition 4.1.1 . Then for all 0 ≤ 𝑡 < 𝑛 it holds that

𝔼[exp(𝑡 ⋅ 𝑉𝑛,𝑘,𝑃)] ≤ ( 1
1 − 𝑡/𝑛)

𝑘−1
.

Note that this is also the moment generating function of a gamma distribution with shape 𝑘 − 1

and rate 𝑛. Bounding the moment generating function is a standard technique to obtain concentration

bounds (see e.g. [BLM13 ]), but to the best of our knowledge Theorem 4.1.3 is the first to give a finite

bound on 𝔼[exp(𝑠 ⋅ 2𝑛𝑉𝑛,𝑘,𝑃)] independent of 𝑛 for any constant 𝑠 > 0. As a consequence, we are able

to give the first (to the best of our knowledge) upper bounds on the𝑚’th moments of 2𝑛𝑉𝑛,𝑘,𝑃 which

do not depend on 𝑛 for all𝑚 > 2. Using Wilks’ theorem [Wil38  ] on the asymptotic distribution of the

likelihood-ratio statistic, we are then able to compute the asymptotic moments of 2𝑛𝑉𝑛,𝑘,𝑃 for fixed 𝑘

and 𝑃 as 𝑛 goes to infinity. Furthermore, our finite sample bounds on the𝑚’th non-central moment are

within constant factors (with the constant depending on𝑚) of the asymptotic value.

The rest of this chapter is organized as follows. In Section 4.2 we prove Theorems 4.1.2 and 4.1.3 ,

with the proof divided into two parts: in Section 4.2.1 we show Theorem 4.1.3 can be derived from

bounds for the special case of a binary alphabet (𝑘 = 2), e.g. a binomial distribution, and in Section 4.2.2 

we give a bound for this simpler case. In Section 4.3 we use Theorem 4.1.3 to derive moment bounds
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and asymptotic results. Finally, in Section 4.4 we compare our bounds to existing results in the literature

and suggest possible directions for future research, and in particular conjecture an improvement to

Theorem 4.1.3 which would nearly close the quadratic gap between our finite-sample bound and the

bound of Wilks’ theorem on the asymptotic distribution of likelihood-ratio statistic (which does not

hold in general for finite 𝑛).

4.2 Proof of Finite-Sample Bounds

In this section we prove our main technical result, the moment generating function bound of Theo-

rem 4.1.3 , and use it to derive our new tail bound Theorem 4.1.2 .

4.2.1 Reducing theMultinomial to the Binomial

We first show that the moment generating function of the empirical relative entropy for arbitrary finite

alphabets of size 𝑘 can be bounded in terms of the special case 𝑘 = 2. Formally, this requires the bound

to be of a particular form:

Definition 4.2.1. A function 𝑓 ∶ [0, 1) → ℝ is a sample-independent MGF bound for the binomial KL if

for every positive integer 𝑛, real 𝑡 ∈ [0, 𝑛), and 𝑝 ∈ [0, 1] it holds that

𝔼[exp(𝑡 ⋅ 𝑉𝑛,2,(𝑝,1−𝑝))] ≤ 𝑓(𝑡/𝑛).

Remark 4.2.2. Recalling that 2𝑛𝑉𝑛,𝑘,𝑃 is the likelihood-ratio statistic, Definition 4.2.1 is equivalent to

requiring bounds on the moment generating function 𝔼[exp(𝑠 ⋅ 2𝑛𝑉𝑛,2,(𝑝,1−𝑝))] for 0 ≤ 𝑠 < 1/2which

do not depend on 𝑛 or 𝑝.

We can now state our reduction.

101



Proposition 4.2.3. Let 𝑃 = (𝑝1, … , 𝑝𝑘) be a distribution on a set of size 𝑘 for 𝑘 ≥ 2. Then for every

sample-independent MGF bound for the binomial KL 𝑓 ∶ [0, 1) → ℝ and 0 ≤ 𝑡 < 𝑛, the moment

generating function of 𝑉𝑛,𝑘,𝑃 satisfies

𝔼[exp(𝑡 ⋅ 𝑉𝑛,𝑘,𝑃)] ≤ 𝑓(𝑡/𝑛)𝑘−1.

Proof. This is a simple induction on 𝑘. The base case 𝑘 = 2 holds by definition of sample-independent

MGF bound for the binomial KL.

For the inductive step, we compute conditioned on the value of 𝑋𝑘. Note that if 𝑝𝑘 = 1 then

the inductive step is trivial since 𝑉𝑛,𝑘,𝑃 = 0 with probability 1, so assume that 𝑝𝑘 < 1. For each

𝑖 ∈ {1, … , 𝑘 − 1} define 𝑝′𝑖 = 𝑝𝑖/(1 − 𝑝𝑘), so that conditioned on 𝑋𝑘 = 𝑚, the variables (𝑋1, … , 𝑋𝑘−1)

are distributed multinomially with 𝑛 − 𝑚 samples and probabilities 𝑃′ = (𝑝′1, … , 𝑝′𝑘−1). Simple

rearranging (using the chain rule) implies that

𝑉𝑛,𝑘,𝑃 = KL((𝑋1/𝑛, … , 𝑋𝑘/𝑛) ‖ (𝑝1, … , 𝑝𝑛))

= KL((𝑋𝑘/𝑛, 1 − 𝑋𝑘/𝑛) ‖‖ (𝑝𝑘, 1 − 𝑝𝑘)) +
𝑛 − 𝑋𝑘
𝑛 ⋅ 𝑉𝑛−𝑋𝑘,𝑘−1,𝑃′ (4.1)

where

𝑉𝑛−𝑋𝑘,𝑘−1,𝑃′ = KL((
𝑋1

𝑛 − 𝑋𝑘
, … ,

𝑋𝑘−1
𝑛 − 𝑋𝑘

) ‖‖‖ (𝑝
′
1, … , 𝑝′𝑘−1))

and where we treat the second term of Eq. (4.1 ) as 0 if 𝑋𝑘 = 𝑛. Now for every 0 ≤ 𝑡 < 𝑛we have

𝔼[exp(𝑡 ⋅ 𝑉𝑛,𝑘,𝑃)] = 𝔼[𝔼[exp(𝑡 ⋅ 𝑉𝑛,𝑘,𝑃) || 𝑋𝑘]]

= 𝔼[exp(𝑡 ⋅ KL((𝑋𝑘/𝑛, 1 − 𝑋𝑘/𝑛) ‖‖ (𝑝𝑘, 1 − 𝑝𝑘)))

⋅ 𝔼[exp(𝑡 ⋅
𝑛 − 𝑋𝑘
𝑛 ⋅ 𝑉𝑛−𝑋𝑘,𝑘−1,𝑃′)

||| 𝑋𝑘]].
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Since 0 ≤ 𝑡 ⋅ 𝑛−𝑋𝑘
𝑛

< 𝑛 − 𝑋𝑘, the inductive hypothesis for 𝑉𝑛−𝑋𝑘,𝑘−1,𝑃′ implies the upper bound

≤ 𝔼[exp(𝑡 ⋅ KL((𝑋𝑘/𝑛, 1 − 𝑋𝑘/𝑛) ‖‖ (𝑝𝑘, 1 − 𝑝𝑘))) ⋅ 𝑓(
𝑡(𝑛 − 𝑋𝑘)/𝑛
𝑛 − 𝑋𝑘

)
𝑘−2

]

= 𝑓(𝑡/𝑛)𝑘−2 ⋅ 𝔼[exp(𝑡 ⋅ KL((𝑋𝑘/𝑛, 1 − 𝑋𝑘/𝑛) ‖‖ (𝑝𝑘, 1 − 𝑝𝑘)))].

By definition of a sample-independent MGF bound for the binomial KL, the second term is at most

𝑓(𝑡/𝑛), so we get a bound of 𝑓(𝑡/𝑛)𝑘−1 as desired.

Remark 4.2.4. Mardia et al. [MJTNW19  ] use the same chain rule decomposition of the multinomial

KL to inductively bound the (non-exponential) moments.

4.2.2 Bounding the Binomial

It remains to give a sample-independent MGF bound for the binomial KL:

Proposition 4.2.5. The function

𝑓(𝑥) = 1
1 − 𝑥

is a sample-independent MGF bound for the binomial KL.

Remark 4.2.6. Hoeffding’s inequality [Hoe63 ] can be used to give a simple proof of the weaker claim

that 2𝑥/(1 − 𝑥) is a sample-independent MGF bound for the binomial KL.

Proof. Let 𝐵𝑛,𝑝 denote a random variable with Binomial(𝑛, 𝑝) distribution. Using the fact that

exp (𝑛 ⋅ KL((𝑖/𝑛, 1 − 𝑖/𝑛) ‖‖ (𝑝, 1 − 𝑝))) =
Pr[𝐵𝑛,𝑖/𝑛 = 𝑖]
Pr[𝐵𝑛,𝑝 = 𝑖]

for any integers 0 ≤ 𝑖 ≤ 𝑛, we can expand the moment generating function as

𝔼[exp(𝑛𝑥 ⋅ KL((
𝐵𝑛,𝑝
𝑛 , 1 −

𝐵𝑛,𝑝
𝑛 ) ‖‖‖ (𝑝, 1 − 𝑝)))] =

𝑛
∑
𝑖=0

Pr[𝐵𝑛,𝑝 = 𝑖]1−𝑥 Pr[𝐵𝑛,𝑖/𝑛 = 𝑖]𝑥.
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For every 𝑛 and 𝑖, the function 𝑞 ↦ Pr[𝐵𝑛,𝑞 = 𝑖] = (𝑛𝑖 )𝑞
𝑖(1 − 𝑞)𝑛−𝑖 is easily seen to be log-concave

over [0, 1], so we can upper bound the moment generating function by

𝐺𝑛(𝑝, 𝑥) ≝
𝑛
∑
𝑖=0

Pr[𝐵𝑛,(1−𝑥)𝑝+𝑖𝑥/𝑛 = 𝑖] =
𝑛
∑
𝑖=0

(
𝑛
𝑖
)((1 − 𝑥)𝑝 + 𝑖𝑥/𝑛)𝑖(1 − ((1 − 𝑥)𝑝 + 𝑖𝑥/𝑛))𝑛−𝑖

It turns out𝐺𝑛 does not depend on𝑝 and can be simplified significantly, whichwe prove in the following

two lemmas.

Lemma 4.2.7. For all non-negative integers 𝑛 and real numbers 𝑥 and 𝑝 we have𝐺𝑛(𝑝, 𝑥) = 𝐺𝑛(0, 𝑥).

Proof. Define 𝑅𝑛(𝑞, 𝑥) = ∑𝑛
𝑖=0 (

𝑛
𝑖 )(𝑞 + 𝑖𝑥/𝑛)𝑖(1 − 𝑞 − 𝑖𝑥/𝑛)𝑛−𝑖 (where when 𝑖 = 𝑛 = 0 we treat

0/0 = 1) so that 𝐺𝑛(𝑝, 𝑥) = 𝑅𝑛((1 − 𝑥)𝑝, 𝑥) and it suffices to prove that 𝑅𝑛(𝑞, 𝑥) = 𝑅𝑛(0, 𝑥). We

prove this by induction on 𝑛: the base case of 𝑛 = 0 holds since 𝑅𝑛(𝑞, 𝑥) = 1 always, and for the

inductive step we have

𝜕
𝜕𝑞𝑅𝑛(𝑞, 𝑥)

=
𝑛
∑
𝑖=0

(
𝑛
𝑖
) 𝜕𝜕𝑞((𝑞 + 𝑖𝑥/𝑛)𝑖(1 − 𝑞 − 𝑖𝑥/𝑛)𝑛−𝑖)

=
𝑛
∑
𝑖=0

(
𝑛
𝑖
)(𝑖(𝑞 + 𝑖𝑥/𝑛)𝑖−1(1 − 𝑞 − 𝑖𝑥/𝑛)𝑛−𝑖 − (𝑛 − 𝑖)(𝑞 + 𝑖𝑥/𝑛)𝑖(1 − 𝑞 − 𝑖𝑥/𝑛)𝑛−𝑖−1)

= 𝑛
𝑛
∑
𝑖=1

(
𝑛 − 1
𝑖 − 1

)(𝑞 + 𝑥/𝑛 + 𝑖 − 1
𝑛 − 1 ⋅

𝑥(𝑛 − 1)
𝑛 )

𝑖−1
(1 − 𝑞 − 𝑥/𝑛 − 𝑖 − 1

𝑛 − 1 ⋅
𝑥(𝑛 − 1)

𝑛 )
𝑛−1−(𝑖−1)

− 𝑛
𝑛−1
∑
𝑖=0

(
𝑛 − 1
𝑖

)(𝑞 + 𝑖
𝑛 − 1 ⋅

𝑥(𝑛 − 1)
𝑛 )

𝑖
(1 − 𝑞 − 𝑖

𝑛 − 1 ⋅
𝑥(𝑛 − 1)

𝑛 )
𝑛−1−𝑖

= 𝑛
𝑛−1
∑
𝑖=0

(
𝑛 − 1
𝑖

)(𝑞 + 𝑥/𝑛 + 𝑖
𝑛 − 1 ⋅

𝑥(𝑛 − 1)
𝑛 )

𝑖
(1 − 𝑞 − 𝑥/𝑛 − 𝑖

𝑛 − 1 ⋅
𝑥(𝑛 − 1)

𝑛 )
𝑛−1−𝑖

− 𝑛
𝑛−1
∑
𝑖=0

(
𝑛 − 1
𝑖

)(𝑞 + 𝑖
𝑛 − 1 ⋅

𝑥(𝑛 − 1)
𝑛 )

𝑖
(1 − 𝑞 − 𝑖

𝑛 − 1 ⋅
𝑥(𝑛 − 1)

𝑛 )
𝑛−1−𝑖

= 𝑛(𝑅𝑛−1(𝑞 +
𝑥
𝑛,
𝑥(𝑛 − 1)

𝑛 ) − 𝑅𝑛−1(𝑞,
𝑥(𝑛 − 1)

𝑛 ))

= 𝑛(𝑅𝑛−1(0, 𝑥(𝑛 − 1)/𝑛) − 𝑅𝑛−1(0, 𝑥(𝑛 − 1)/𝑛)) = 0
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where the last line is by the inductive hypothesis.

Lemma 4.2.8. For all non-negative integers 𝑛 we have𝐺𝑛(𝑝, 𝑥) =
𝑛
∑
𝑖=0

𝑛!
𝑛𝑖(𝑛 − 𝑖)!

⋅ 𝑥𝑖.

Proof. By Lemma 4.2.7 we have that 𝐺𝑛(𝑝, 𝑥) = 𝐺𝑛(0, 𝑥) = ∑𝑛
𝑖=0(

𝑖𝑥
𝑛
)
𝑖
(1 − 𝑖𝑥

𝑛
)
𝑛−𝑖

is a polynomial

in 𝑥 of degree at most 𝑛. For any non-negative integer 𝑖 ≤ 𝑛we can compute the coefficient of 𝑥𝑖 in

𝐺𝑛(0, 𝑥) by summing over the power of 𝑥 contributed by the (𝑗𝑥/𝑛)𝑗 term for each 𝑗:

𝑖
∑
𝑗=0

(
𝑛
𝑗
)(
𝑗
𝑛)

𝑗
⋅ (
𝑛 − 𝑗
𝑖 − 𝑗

)(−
𝑗
𝑛)

𝑖−𝑗
=

𝑖
∑
𝑗=0

𝑛!
𝑗!(𝑛 − 𝑗)!

⋅
(𝑛 − 𝑗)!

(𝑖 − 𝑗)!(𝑛 − 𝑖)!
⋅ (
𝑗
𝑛)

𝑖
(−1)𝑖−𝑗

= 𝑛!
𝑛𝑖(𝑛 − 𝑖)!

⋅ 1𝑖!

𝑖
∑
𝑗=0

(
𝑖
𝑗
)𝑗𝑖(−1)𝑖−𝑗

where 1
𝑖!
∑𝑖

𝑗=0 (
𝑖
𝑗)𝑗

𝑖(−1)𝑖−𝑗 is by definition the Stirling number of the second kind {𝑖𝑖} and is equal to 1

(see e.g. [GKP94 , Chapter 6.1]), so that we can simplify this to

𝑛!
𝑛𝑖(𝑛 − 𝑖)!

as desired.

Putting together Lemma 4.2.7 and Lemma 4.2.8 , we have that the moment generating function is at

most𝐺𝑛(𝑝, 𝑥) = ∑𝑛
𝑖=0

𝑛!
𝑛𝑖(𝑛−𝑖)!

𝑥𝑖, where 𝑛!
𝑛𝑖(𝑛−𝑖)!

= ∏𝑖−1
𝑗=0(1 − 𝑗/𝑛) ≤ 1 and thus for each 𝑥 ∈ [0, 1)

we have𝐺𝑛(𝑝, 𝑥) ≤ ∑𝑛
𝑖=0 𝑥

𝑖 ≤ ∑∞
𝑖=0 𝑥

𝑖 = 1/(1 − 𝑥).

Together, Propositions 4.2.3 and 4.2.5 imply our moment generating function bound (Theo-

rem 4.1.3 ), and thus a Chernoff bound implies our tail bound:

Proof of Theorem 4.1.2 . By Theorem 4.1.3 , we know for every 𝑡 ∈ [0, 𝑛) that 𝔼[exp(𝑡 ⋅ 𝑉𝑛,𝑘,𝑃)] ≤

( 1
1−𝑡/𝑛

)
𝑘−1

, so by a Chernoff bound

Pr[𝑉𝑛,𝑘,𝑃 ≥ 𝜀] ≤ inf
𝑡∈[0,𝑛)

exp(−𝑡𝜀) ⋅ ( 1
1 − 𝑡/𝑛)

𝑘−1
.
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The result follows by making the optimal choice 𝑡/𝑛 = 1 − (𝑘 − 1)/(𝜀𝑛)when 𝜀 > (𝑘 − 1)/𝑛.

4.3 Moment and Asymptotic Bounds

In this section we use Theorem 4.1.3 to give finite-sample and asymptotic bounds on the moments of

𝑉𝑛,𝑘,𝑃. We will need some basic facts about subexponential random variables, for which we follow the

textbook of Vershynin [Ver18 ].

Lemma 4.3.1 ([Ver18 , Definition 2.7.5, Proposition 2.7.1]). There is a universal constant 𝐶 > 0

such that every real-valued random variable 𝑋 with finite subexponential norm ‖𝑋‖𝜓1 ≝ inf{𝑡 > 0 ∶

𝔼[exp(|𝑋|/𝑡)] ≤ 2} satisfies 𝔼[|𝑋|𝑚]1/𝑚 ≤ 𝐶𝑚‖𝑋‖𝜓1 for all𝑚 ≥ 1.

Lemma 4.3.1 allows us to bound the moments of 2𝑛𝑉𝑛,𝑘,𝑃 uniformly for all 𝑛.

Theorem 4.3.2. For every 𝑛, 𝑘, and 𝑃, it holds that ‖‖2𝑛𝑉𝑛,𝑘,𝑃‖‖𝜓1 ≤ 4(𝑘 − 1) and that ‖‖2𝑛𝑉𝑛,𝑘,𝑃 −

𝔼[2𝑛𝑉𝑛,𝑘,𝑃]‖‖𝜓1
≤ 8(𝑘 − 1). In particular, there exist universal constants𝐶1, 𝐶2 > 0 such that for all 𝑛, 𝑘, 𝑃

and𝑚 ≥ 1

𝔼[(2𝑛𝑉𝑛,𝑘,𝑃)
𝑚] ≤ (𝐶1𝑚(𝑘 − 1))𝑚 𝔼[(2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])

𝑚
] ≤ (𝐶2𝑚(𝑘 − 1))𝑚

Proof. Theorem 4.1.3 implies for all 𝑛, 𝑘, and 𝑃 that

𝔼[exp( 1
4(𝑘 − 1)

⋅ 2𝑛𝑉𝑛,𝑘,𝑃)] ≤ (1 − 1
2(𝑘 − 1))

−(𝑘−1)
≤ 2,

so by Lemma 4.3.1 we have that ‖‖2𝑛𝑉𝑛,𝑘,𝑃‖‖𝜓1 ≤ 4(𝑘 − 1). By the triangle inequality and convexity of

norms, this lets us bound the norm of the centered random variable as ‖‖2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃]‖‖𝜓1 ≤

2‖‖2𝑛𝑉𝑛,𝑘,𝑃‖‖𝜓1 ≤ 8(𝑘 − 1).

Our asymptotic results rely onWilks’ theorem [Wil38  ] on the asymptotic behavior of the likelihood
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ratio test, which for fixed 𝑘 and 𝑃 implies that the random variable 2𝑛𝑉𝑛,𝑘,𝑃 converges in distribution

to the chi-squared distribution with 𝑘 − 1 degrees of freedom as 𝑛 goes to infinity (see also [CS05 ,

Theorem 4.2]). Though in general convergence in distribution does not imply convergence ofmoments

or of the moment generating function [Bil99 ], it turns out that the bounds from Theorem 4.3.2 are

strong enough for convergence in distribution to imply convergence of the moments.

Theorem 4.3.3. Let 𝑘 ≥ 2 be an integer and 𝑃 = (𝑝1, … , 𝑝𝑘) be a probability distribution over a finite

alphabet of size 𝑘 with 𝑝𝑖 ≠ 0 for every 𝑖 ∈ {1, … , 𝑘}. Then for every𝑚 ≥ 1 we have

lim
𝑛→∞

𝔼[(2𝑛𝑉𝑛,𝑘,𝑃)𝑚] = 𝔼[(𝜒2𝑘−1)
𝑚] = 2𝑚

Γ(𝑚 + 𝑘−1
2
)

Γ(𝑘−1
2
)

lim
𝑛→∞

𝔼[(2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])
𝑚
] = 𝔼[(𝜒2𝑘−1 − 𝔼[𝜒2𝑘−1])

𝑚
]

and for every 𝑠 ∈ [0, 1/2) we have

lim
𝑛→∞

𝔼[exp(𝑠 ⋅ 2𝑛𝑉𝑛,𝑘,𝑃)] = 𝔼[exp(𝑠 ⋅ 𝜒2𝑘−1)] = (1 − 2𝑠)−(𝑘−1)/2

lim
𝑛→∞

𝔼[exp(𝑠 ⋅ (2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃]))] = 𝔼[exp(𝑠 ⋅ (𝜒2𝑘−1 − 𝔼[𝜒2𝑘−1]))]

= 𝑒−(𝑘−1)𝑠(1 − 2𝑠)−(𝑘−1)/2

Remark 4.3.4. [MJTNW19 ] prove the one-sided lower bound that lim inf𝑛→∞ Var(2𝑛𝑉𝑛,𝑘,𝑃) ≥

Var(𝜒2𝑘−1), which is a special case of the second equality above.

Proof. Given a sequence of random variables (𝑋𝑛)𝑛∈ℕ which convergence in distribution to a random

variable 𝑋, a sufficient condition for lim𝑛→∞ 𝔼[𝑋𝑛] = 𝔼[𝑋] is that sup𝑛 𝔼[|𝑋𝑛|
1+𝛼] < ∞ for some

𝛼 > 0 (see e.g. [Bil99 ]).

Wilks’ theorem [Wil38  ] shows that 2𝑛𝑉𝑛,𝑘,𝑃 converges in distribution to𝜒2𝑘−1, and thus the contin-

uous mapping theorem implies that (2𝑛𝑉𝑛,𝑘,𝑃)
𝑚 converges in distribution to (𝜒2𝑘−1)

𝑚 for every𝑚 ≥ 1.
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Theorem4.3.2 implies sup𝑛 𝔼[||(2𝑛𝑉𝑛,𝑘,𝑃)
𝑚||

2
] ≤ (𝐶𝑚(𝑘−1))2𝑚 < ∞, which establishes the first claim.

In particular, for𝑚 = 1 we have lim𝑛→∞ 𝔼[2𝑛𝑉𝑛,𝑘,𝑃] = 𝔼[𝜒2𝑘−1], so Slutsky’s theorem implies that

2𝑛𝑉𝑛,𝑘,𝑃−𝔼[2𝑛𝑉𝑛,𝑘,𝑃] converges in distribution to𝜒2𝑘−1−𝔼[𝜒
2
𝑘−1]. Again by the continuousmapping

theoremwe thus have that (2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])
𝑚 converges in distribution to (𝜒2𝑘−1 − 𝔼[𝜒2𝑘−1])

𝑚,

so sinceTheorem 4.3.2 implies sup𝑛 𝔼[||(2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])
𝑚||

2
] ≤ (𝐶𝑚(𝑘−1))2𝑚 < ∞, we also

get the second claim.

For the moment generating function claims, first note that they are trivial for 𝑠 = 0, as both

sides are always 1, and for 𝑠 ∈ (0, 1/2) we have 1/2 > 1/4 + 𝑠/2 > 𝑠. Now, since the continuous

mapping theorem implies exp(𝑠⋅2𝑛𝑉𝑛,𝑘,𝑃) converges in distribution to exp(𝑠 ⋅ 𝜒2𝑘−1), andTheorem4.1.3 

implies sup𝑛 𝔼[||exp((1/4 + 𝑠/2) ⋅ 2𝑛𝑉𝑛,𝑘,𝑃)||] ≤ (1/2 − 𝑠)𝑘−1 < ∞, we get the third claim. Finally,

for the last claim, we again have that exp(𝑠 ⋅ (2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])) converges in distribution to

exp(𝑠 ⋅ (𝜒2𝑘−1 − 𝔼[𝜒2𝑘−1])) by the continuous mapping theorem, and since 𝑉𝑛,𝑘,𝑃 ≥ 0we have

exp((1/4 + 𝑠/2) ⋅ (2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])) ≤ exp((1/4 + 𝑠/2) ⋅ 2𝑛𝑉𝑛,𝑘,𝑃)

and we conclude as for the third claim.

4.4 Discussion

In this sectionwe compare our bounds to existing results in the literature and discuss possible directions

for future work.

4.4.1 Moment generating function bounds

To the best of our knowledge, this work is the first to explicitly consider the moment generating

function of the empirical divergence, and existing tail bounds do not give finite bounds on the quantity
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sup𝑛 𝔼[exp(𝑥 ⋅ 𝑛𝑉𝑛,𝑘,𝑃)] = sup𝑛 ∫
∞
0 Pr[𝑛𝑉𝑛,𝑘,𝑃 >

ln 𝑡
𝑥
] 𝑑𝑡 for any 𝑘 ≥ 3 or constant 𝑥 > 0. Thus, we

focus on comparing our finite sample bound (Theorem 4.1.3 ) to the asymptotic one (Theorem 4.3.3 ).

In Theorem 4.3.3 we showed for all 𝑥 ∈ [0, 1) that lim𝑛→∞ 𝔼[exp(𝑥 ⋅ 𝑛𝑉𝑛,𝑘,𝑃)] = (1 − 𝑥)−(𝑘−1)/2,

whereas our finite sample bound of Theorem 4.1.3 instead gave the upper bound 𝔼[exp(𝑥 ⋅ 𝑛𝑉𝑛,𝑘,𝑃)] ≤

(1 − 𝑥)−(𝑘−1), which is quadratically worse. This loss arises from our binomial bound from Proposi-

tion 4.2.5 of (1 − 𝑥)−1 for the case 𝑘 = 2, where the correct asymptotic bound is (1 − 𝑥)−1/2. Unfortu-

nately, it is not the case that this latter asymptotic bound holds for all 𝑛, 𝑝, and 0 ≤ 𝑥 < 1: indeed, this

is violated even for (𝑛, 𝑝, 𝑥) = (2, 1/2, 1/2). Nevertheless, we conjecture that Proposition 4.2.5 can be

improved to something closer to the asymptotic bound:

Conjecture 4.4.1. The function

𝑓(𝑥) = 2
√1 − 𝑥

− 1

is a sample-independent MGF bound for the binomial KL.

Remark 4.4.2. 1/√1 − 𝑥 ≤ 2/√1 − 𝑥 − 1 ≤ 1/(1 − 𝑥) for all 𝑥 ∈ [0, 1).

Conjecture 4.4.1 would follow from the following more natural conjecture, which looks at a single

branch of the KL divergence and is supported by numerical evidence:

Conjecture 4.4.3. Letting

KL>(𝑝 ‖ 𝑞) ≝

⎧
⎪

⎨
⎪
⎩

0 𝑝 ≤ 𝑞

KL((𝑝, 1 − 𝑝) ‖‖ (𝑞, 1 − 𝑞)) 𝑝 > 𝑞

it holds for every positive integer 𝑛, real 𝑡 ∈ [0, 𝑛), and 𝑝 ∈ [0, 1] that

𝔼[exp(𝑡 ⋅ KL>(𝐵/𝑛 ‖ 𝑝))] ≤
1

√1 − 𝑡/𝑛
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where 𝐵 ∼ Binomial(𝑛, 𝑝).

Remark 4.4.4. We believe the results (or techniques) of Zubkov and Serov [ZS13 ] and Harremoës

[Har17 ] strengthening Hoeffding’s inequality may be of use in proving these conjectures.

Proof of Conjecture 4.4.1 given Conjecture 4.4.3 . We have that

KL((𝑝, 1 − 𝑝) ‖‖ (𝑞, 1 − 𝑞)) = KL>(𝑝 ‖ 𝑞) + KL>(1 − 𝑝 ‖ 1 − 𝑞)

so for every 𝑖 ∈ {0, 1, … , 𝑛}

exp(𝑡 ⋅ KL((𝑖/𝑛, 1 − 𝑖/𝑛) ‖‖ (𝑝, 1 − 𝑝))) = exp(𝑡 ⋅ KL>(𝑖/𝑛 ‖ 𝑝)) ⋅ exp(𝑡 ⋅ KL>(1 − 𝑖/𝑛 ‖ 1 − 𝑝)).

Letting 𝑥 = exp(𝑡 ⋅ KL>(𝑖/𝑛 ‖ 𝑝)) and 𝑦 = exp(𝑡 ⋅ KL>(1 − 𝑖/𝑛 ‖ 1 − 𝑝)), we have that at least one

of 𝑥 and 𝑦 is equal to 1, so that

𝑥𝑦 = (1 + (𝑥 − 1))(1 + (𝑦 − 1)) = 1 + (𝑥 − 1) + (𝑦 − 1) + (𝑥 − 1)(𝑦 − 1) = 𝑥 + 𝑦 − 1,

and thus by taking expectations over 𝑖 = 𝐵 for 𝐵 ∼ Binomial(𝑛, 𝑝), we get

𝔼[exp(𝑡 ⋅ KL(𝐵/𝑛 ‖ 𝑝))] = 𝔼[exp(𝑡 ⋅ KL>(𝐵/𝑛 ‖ 𝑝))] + 𝔼[exp(𝑡 ⋅ KL>(1 − 𝐵/𝑛 ‖ 1 − 𝑝))] − 1.

We conclude by bounding both terms using Conjecture 4.4.3 , since 𝑛 − 𝐵 ∼ Binomial(𝑛, 1 − 𝑝).

Itwould alsobe interesting to improve thebounds in the regimeof parameterswhere𝑘 is comparable

to or larger than 𝑛, since [Pan03 ] show 𝔼[𝑉𝑛,𝑘,𝑃] ≤ ln(1 + 𝑘−1
𝑛
) but Theorem 4.1.3 implies only the

weaker 𝔼[𝑉𝑛,𝑘,𝑃] ≤
𝑘−1
𝑛

. After the initial dissemination of this work, Guo and Richardson [GR20 ]

extend the technique used in Proposition 4.2.5 to bound the moment generating function of 𝑉𝑛,𝑘,𝑃

directly for arbitrary 𝑘 ≥ 2, thereby strengtheningTheorem4.1.3 and furthermore obtaining the correct
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order of growth when 𝑘 ≫ 𝑛.

Another approach to this problem would be to try to bound the centered moment generating

function of 𝑉𝑛,𝑘,𝑃, that is, the moment generating function of 𝑉𝑛,𝑘,𝑃 − 𝔼[𝑉𝑛,𝑘,𝑃]. Numerical evidence

suggests the following strengthening of Theorem 4.1.3 , which asserts that 𝑉𝑛,𝑘,𝑃, after centering, has

moment generating function dominated by that of a centered gamma-distributed random variable with

shape 𝑘 − 1 and rate 𝑛.

Conjecture 4.4.5. Letting 𝑉𝑛,𝑘,𝑃 as in Definition 4.1.1 , for all 0 ≤ 𝑡 < 𝑛 it holds that

𝔼[exp(𝑡 ⋅ (𝑉𝑛,𝑘,𝑃 − 𝔼[𝑉𝑛,𝑘,𝑃]))] ≤ ( 𝑒−𝑡/𝑛
1 − 𝑡/𝑛)

𝑘−1

.

We remark that Conjecture 4.4.5 would imply concentration of 𝑉𝑛,𝑘,𝑃 around its expectation as

conjectured in [MJTNW19 , Conjecture 2].

4.4.2 Moment bounds

The moments of 𝑉𝑛,𝑘,𝑃 have seen some study in the literature. Most notably, Paninski [Pan03 ] showed

by comparison to the 𝜒2-statistic that 𝔼[𝑉𝑛,𝑘,𝑃] ≤ ln(1 + 𝑘−1
𝑛
) ≤ 𝑘−1

𝑛
. In the reverse direction,

[JVHW17 ] showed that if 𝑛 ≥ 15𝑘 then for the uniform distribution it holds that 𝔼[𝑉𝑛,𝑘,𝑈𝑘] ≥
𝑘−1
2𝑛

,

complementing the asymptotic result that lim𝑛→∞ 𝔼[𝑛𝑉𝑛,𝑘,𝑈𝑘] =
𝑘−1
2

, which follows from Theo-

rem 4.3.3 (and can also be derived from [MJTNW19 ]). For higher moments, [MJTNW19 ] showed

that Var(𝑉𝑛,𝑘,𝑃) ≤ 𝐶𝑘/𝑛2 for some constant 𝐶, and asymptotically that lim inf𝑛→∞ Var(2𝑛𝑉𝑛,𝑘,𝑃) ≥

Var(𝜒2𝑘−1) = 2(𝑘− 1). To the best of our knowledge, no bounds on the higher moments have appeared

in the literature.

In Theorem 4.3.2 we showed for every𝑚 ≥ 1 that 𝔼[(2𝑛𝑉𝑛,𝑘,𝑃)
𝑚] ≤ (𝐶𝑚(𝑘 − 1))𝑚 for some uni-

versal constant𝐶 > 0, andwe showed inTheorem4.3.3 the asymptotic equality lim𝑛→∞ 𝔼[(2𝑛𝑉𝑛,𝑘,𝑃)
𝑚]
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= 2𝑚
Γ(𝑚+𝑘−1

2 )

Γ(𝑘−12 )
= (𝐶′𝑚(𝑘 − 1))𝑚 where 𝐶′ is bounded in a constant range. Thus, our finite-sample

bound is asymptotically optimal up to the universal constant 𝐶.

However, the situation is different for the central moments 𝔼[(2𝑛𝑉𝑛,𝑘,𝑃 − 𝔼[2𝑛𝑉𝑛,𝑘,𝑃])
𝑚], where

we again showed the finite sample bound (𝐶𝑚(𝑘 − 1))𝑚, but asymptotically from Theorem 4.3.3 the

bound is (𝐶′𝑚(𝑘 − 1))⌊𝑚/2⌋ for𝑚 ≥ 2 and some 𝐶′ in a constant range. For𝑚 = 2, [MJTNW19 ]

were able to achieve this bound up to constant factors, but it is an intriguing open question to get finite

sample central moment bounds with the asymptotically correct power for𝑚 > 2, with one possible

approach being bounding the centered moment generating function as suggested in Conjecture 4.4.5 .

4.4.3 Tail bound

Tounderstandour tail bound (Theorem4.1.2 ), we compareour result to existingbounds in the literature.

Antos and Kontoyiannis [AK01 ] used McDiarmid’s bounded differences inequality [McD89 ] to give a

concentration bound for the empirical entropy, which in the case of the uniform distribution implies

the bound

Pr[||𝑉𝑛,𝑘,𝑈𝑘 − 𝔼[𝑉𝑛,𝑘,𝑈𝑘]
|
| ≥ 𝜀] ≤ 2𝑒−𝑛𝜀2/(2 ln

2 𝑛).

This bound has the advantage of providing subgaussian concentration around the expectation, but for

the case of small 𝜀 < 1 it is preferable to have a bound with linear dependence on 𝜀. Unfortunately,

existing tail bounds which decay like 𝑒−𝑛𝜀 are not, in the common regime of parameters where 𝑛 ≫ 𝑘,

meaningful for 𝜀 close to 𝔼[𝑉𝑛,𝑘,𝑃] ≤ (𝑘 − 1)/𝑛. For example, the method of types [Csi98 ] is used to

prove the standard bound

Pr[𝑉𝑛,𝑘,𝑃 > 𝜀] ≤ 𝑒−𝑛𝜀 ⋅ (
𝑛 + 𝑘 − 1
𝑘 − 1

), (4.2)
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which is commonly used in proofs of Sanov’s theorem (see e.g. [CT06 ]). However, this bound is

meaningful only for 𝜀 > 1
𝑛
⋅ln (𝑛+𝑘−1𝑘−1 ) ≥ 𝑘−1

𝑛
⋅ln(1 + 𝑛

𝑘−1
), which is off by a factor of order ln(1 + 𝑛

𝑘−1
).

A recent bound due to Mardia et al. [MJTNW19 ] improved on the method of types bound for all

settings of 𝑘 and 𝑛, but for 3 ≤ 𝑘 ≤ 𝑒2

2𝜋
⋅ 𝑛 still requires 𝜀 > 𝑘

𝑛
⋅ ln(√

𝑒3𝑛
2𝜋𝑘

) > 𝑘−1
𝑛

⋅ ln(1 + 𝑛−1
𝑘
)/2,

which again has dependence on ln(1 + 𝑛−1
𝑘
).

Thus, if 𝑘 ≤ 𝑛, then our bound is meaningful for 𝜀 smaller than what is needed for the method of

types bound or the bound of [MJTNW19  ] by a factor of order ln(𝑛/𝑘), which for 𝑘 as large as 𝑛0.99 is

still ln(𝑛), and for 𝑘 as large as 𝑛/ ln𝑛 is of order ln ln𝑛. However, Theorem 4.1.2 has slightly worse

dependence on 𝜀 than the other bounds, so for example it is better than the method of types bound if

and only if

𝑘 − 1
𝑛 < 𝜀 < 𝑘 − 1

𝑛 ⋅ (1𝑒
𝑘−1

√
(
𝑛 + 𝑘 − 1
𝑘 − 1

)). (4.3)

In particular, when 𝑛 ≥ 𝑒(𝑘 − 1), our bound is better for 𝜀 up to order 𝑛
𝑘−1

times larger than 𝑘−1
𝑛

. How-

ever, we can also see that our bound can be better only when 𝑘−1
√(𝑛+𝑘−1𝑘−1 ) ≥ 𝑒, which asymptotically is

equivalent to 𝑘−1 ≤ 𝐶𝑛, where𝐶 ≈ 1.84 is the solution to the equation (1+𝐶)/𝐶 ⋅𝐻(𝐶/(1+𝐶)) = 1

for𝐻 the binary entropy function in nats. From a finite-sample perspective, note that the condition is

always satisfied in the standard setting of parameters where 𝑛 ≥ 𝑘, that is, the number of samples is

larger than the size of the alphabet. In this regime, we can also compare to the “interpretable” upper

bound of [MJTNW19 , Theorem 3], to see that Theorem 4.1.2 is better if

𝑘 − 1
𝑛 < 𝜀 < 𝑘 − 1

𝑛 ⋅ 1𝑒(
6𝑒2

𝜋3/2√
𝑒3𝑛
2𝜋𝑘

𝑘

)

1/(𝑘−1)

,

so that in particular our bound is better for 𝜀 up to order√
𝑛
𝑘

1+1/(𝑘−1)
≥ √

𝑛
𝑘
times larger than 𝑘−1

𝑛
.
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Chapter 5

Optimal Bounds between𝑓-Divergences and

Integral ProbabilityMetrics

This chapter is based on joint work with Thibaut Horel [AH20 ].

5.1 Introduction

Quantifying the extent to which two probability distributions differ from one another is central in

most, if not all, problems and methods in machine learning and statistics. In a line of research going

back at least to the work of Kullback [Kul59 ], information theoretic measures of dissimilarity between

probability distributions have provided a fruitful and unifying perspective on a wide range of statistical

procedures. A prototypical example of this perspective is the interpretation of maximum likelihood

estimation as minimizing the Kullback–Leibler divergence between the empirical distribution—or

the ground truth distribution in the limit of infinitely large sample—and a distribution chosen from a

parametric family.
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A natural and important generalization of the Kullback–Leibler divergence is provided by the

family of 𝜙-divergences1  [Csi63 ; Csi67a ] also known in statistics as Ali–Silvey distances [AS66 ].

Informally, a 𝜙-divergence quantifies the divergence between two distributions 𝜇 and 𝜈 as an average

cost of the likelihood ratio, that is,D𝜙(𝜇 ‖ 𝜈) ≝ ∫𝜙(𝑑𝜇/𝑑𝜈) 𝑑𝜈 for a convex cost function 𝜙 ∶ ℝ≥0 →

ℝ≥0. Notable examples of 𝜙-divergences include the Hellinger distance, the 𝛼-divergences (a convex

transformation of the Rényi divergences), and the 𝜒2-divergence.

Crucial in applications of 𝜙-divergences are their so-called variational representations. For example,

theDonsker–Varadhan representation [DV76 ,Theorem5.2] expresses theKullback–Leibler divergence

KL(𝜇 ‖ 𝜈) between probability distributions 𝜇 and 𝜈 as

KL(𝜇 ‖ 𝜈) = sup
𝑔∈ℒ𝑏

{∫𝑔𝑑𝜇 − ln∫𝑒𝑔 𝑑𝜈} , (5.1)

whereℒ𝑏 is the space of bounded measurable functions. Similar variational representations were for

example used by [NWJ08 ; NWJ10 ; RRGP12 ; Bel+18 ] to construct estimates of 𝜙-divergences by

restricting the optimization problem in (5.1 ) to a class of functions 𝒢 ⊆ ℒ𝑏 for which the problem

becomes tractable (for example when 𝒢 is a RKHS or representable by a given neural network architec-

ture). In recent work, [NCT16 ; NCMQW17 ] conceptualized an extension of generative adversarial

networks (GANs) in which the problem of minimizing a 𝜙-divergence is expressed via variational

representations such as (5.1 ) as a two-player game involving two neural networks, one minimizing over

probability distributions 𝜇, the other maximizing over 𝑔 as in (5.1 ).

Another important class of distances between probability distributions is given by Integral Proba-

1In the rest of this chapter, we use 𝜙-divergence instead of 𝑓-divergence and reserve the letter 𝑓 for a generic function.
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bility Metrics (IPMs) defined by [Mül97 ] and taking the form

𝑑𝒢(𝜇, 𝜈) = sup
𝑔∈𝒢

{|||∫𝑔𝑑𝜇 −∫𝑔𝑑𝜈|||} , (5.2)

where 𝒢 is a class of functions parametrizing the distance. Notable examples include the total variation

distance (𝒢 is the class of all functions taking value in [0, 1]), the Wasserstein metric (𝒢 is a class of

Lipschitz functions) and Maximum Mean Discrepancies (𝒢 is the unit ball of a RKHS). Being already

expressed as a variational problem, IPMs are amenable to estimation, as was exploited by [SFGSL12 ;

GBRSS12 ]. MMDs have also been used in lieu of 𝜙-divergences to train GANs as was first done by

[DRG15 ].

Rewriting the optimization problem (5.1 ) as

sup
𝑔∈ℒ𝑏

{∫𝑔𝑑𝜇 −∫𝑔𝑑𝜈 − ln∫𝑒(𝑔−𝜈(𝑔)) 𝑑𝜈} (5.3)

reveals an important connection between 𝜙-divergences and IPMs. Indeed, (5.3 ) expresses the diver-

gence as the solution to a regularized optimization problem in which one attempts to maximize the

mean deviation∫𝑔𝑑𝜇 − ∫𝑔𝑑𝜈, as in (5.2 ), while also penalizing functions 𝑔 which are too “complex”

as measured by the centered log moment-generating function of 𝑔. In this chapter, we further explore

the connection between 𝜙-divergences and IPMs, guided by the following question:

what is the best lower bound of a given 𝜙-divergence

as a function of a given integral probability metric?

Some specific instances of this question are already well understood. For example, the best lower bound

of the Kullback–Leibler divergence by a quadratic function of the total variation distance is known as

Pinsker’s inequality. More generally, describing the best lower bound of a 𝜙-divergence as a function of

the total variation distance (without being restricted to being a quadratic), is known as Vajda’s problem,
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to which an answer was given by [FHT03 ] for the Kullback–Leibler divergence and by [Gil06 ] for an

arbitrary 𝜙-divergence.

Beyond the total variation distance—in particular, when the class 𝒢 in (5.2 ) contains unbounded

functions—few results are known. Using (5.3 ), [BLM13 , §4.10] shows that Pinsker’s inequality holds

as long as the log moment-generating function grows at most quadratically. Since this is the case for

bounded functions (via Hoeffding’s lemma), this recovers Pinsker’s inequality and extends it to the

class of so-called subgaussian functions. This was recently used by [RZ20  ] to control bias in adaptive

data analysis.

In this chapter, we systematize the convex analytic perspective underlying many of these results,

thereby developing the necessary tools to resolve the above guiding question. As an application, we

recover in a unified manner the known bounds between 𝜙-divergences and IPMs, and extend them

along several dimensions. Specifically, starting from the observation of [RRGP12 ] that the variational

representation of 𝜙-divergences commonly used in the literature is not “tight” for probability measures

(in a sense which will be made formal in the chapter), we make the following contributions:

• we derive a tight representation of 𝜙-divergences for probability measures, exactly generalizing

the Donsker–Varadhan representation of the Kullback–Leibler divergence.

• we define a generalization of the log moment-generating function and show that it exactly

characterizes the best lower bound of a 𝜙-divergence by a given IPM. As an application, we show

that this function grows quadratically if and only if the 𝜙-divergence can be lower bounded by a

quadratic function of the given IPM and recover in a unified manner the extension of Pinsker’s

inequality to subgaussian functions and the Hammersley–Chapman–Robbins bound.

• we characterize the existence of any non-trivial lower bound on an IPM in terms of the general-
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ized log moment-generating function, and give implications for topological properties of the

divergence, for example regarding compactness of sets of measures with bounded 𝜙-divergence

and the relationship between convergence in 𝜙-divergence and weak convergence.

• the answer to Vajda’s problem for bounded functions is re-derived in a principledmanner, provid-

ing a new geometric interpretation on the optimal lower bound of the 𝜙-divergence by the total

variation distance. From this, we derive a refinement of Hoeffding’s lemma and generalizations

of Pinsker’s inequality to a large class of 𝜙-divergences.

The rest of this chapter is organized as follows: Section 5.2 discusses related work, Section 5.3 gives

a brief overview of concepts and tools used in this chapter, Section 5.4 derives the tight variational

representation of the𝜙-divergence, Section 5.5 focuses on the case of an IPMgiven by a single function 𝑔

with respect to a referencemeasure 𝜈, deriving the optimal bound in this case and discussing topological

applications, and Section 5.6 extends this to arbitrary IPMs and sets of measures, with applications to

subgaussian functions and Vajda’s problem.

5.2 Related work

The question studied in this chapter is an instance of the broader problem of the constrained mini-

mization of a 𝜙-divergence, which has been extensively studied in works spanning information theory,

statistics and convex analysis.

Kullback–Leibler divergence. Theproblem ofminimizing the Kullback–Leibler divergence [KL51 ]

subject to a convex constraint can be traced back at least to [San57 ] in the context of large deviation

theory and to [Kul59 ] for the purpose of formulating an information theoretic approach to statistics.
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In information theory, this problem is known as an 𝐼-projection [Csi75 ; CM03 ]. The case where the

convex set is defined by finitely many affine equality constraints, which is closest to our work in this

chapter, was specifically studied in [BC77 ; BC79 ] via a convex duality approach. This special case is of

particular relevance to the field of statistics, since the exponential family arises as the optimizer of this

problem.

Convex integral functionals and general 𝜙. With the advent of the theory of convex integral func-

tionals, initiated in convex analysis by [Roc66 ; Roc68 ], the problem is generalized to arbitrary 𝜙-

divergences, sometimes referred to as 𝜙-entropies, especially when seen as functionals over spaces of

functions, and increasingly studied via a systematic application of convex duality [TV93  ]. In the case

of affine constraints, the main technical challenge is to identify constraint qualifications guaranteeing

that strong duality holds: [BL91 ; BL93 ; BK06 ] investigate the notion of quasi-relative interior for

this purpose, and [Léo01a ; Léo01b ] consider integrability conditions on the functions defining the

affine constraints. A comprehensive account of this case can be found in [CM12 ]. We also note the

work [AS06  ], which shows a duality between approximate divergence minimization—where the affine

constraints are only required to hold up to a certain accuracy—and maximum a posteriori estimation

in statistics.

At a high level, in this chapter we show in Section 5.6 that one can essentially reduce the problem of

minimizing the divergence on probability measures subject to a constraint on an IPM to the problem

of minimizing the divergence on finite measures subject to two affine constraints: the first restricting to

probability measures, and the second constraining the mean deviation of a single function in the class

defining the IPM. For the restriction to probability measures, we prove that constraint qualification

always holds, a fact which was not observed in the aforecited works, to the best of our knowledge. For
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the second constraint, we show in Section 5.5.3 that by focusing on a single function, we can relate

strong duality of the minimization problem to compactness properties of the divergence. In particular,

we obtain strong duality under similar assumptions as those considered in [Léo01a ], even when the

usual interiority conditions for constraint qualification do not hold.

Relationship between 𝜙-divergences. A specific case of the minimization question which has seen

significant work is when the feasible set is defined by other 𝜙-divergences, and most notably is a

level set the total variation distance. The best-known result in this line is Pinsker’s inequality, first

proved in a weaker form in [Пин60 ] and then strengthened independently in [Kul67 ; Kem69 ; Csi67a ],

which gives the best possible quadratic lower bound on the Kullback–Leibler divergence by the total

variation distance. More recently, for 𝜙-divergences other than the Kullback–Leibler divergence,

[Gil10  ] identified conditions on𝜙 under which quadratic “Pinsker-type” lower bounds can be obtained.

More generally, the problem of finding the best lower bound of the Kullback–Leibler divergence as

a (possibly non-quadratic) function of the total variation distance was introduced by Vajda in [Vaj70 ]

and generalized to arbitrary 𝜙-divergences in [Vaj72 ], and is therefore sometimes referred to as Vajda’s

problem. Approximations of the best lower bound were obtained in [BH79 ; Vaj70 ] for the Kullback–

Leibler divergence and in [Vaj72 ; Gil08 ; Gil10 ] for 𝜙-divergences under various assumptions on 𝜙.

The optimal lower bound was derived in [FHT03 ] for the Kullback–Leibler divergence and in [Gil06  ]

for any 𝜙-divergence. As an example application of Section 5.6 , in Section 5.6.3 we rederive the optimal

lower bound as well as its quadratic relaxations in a unified manner.

In [RW09 ; RW11 ], the authors consider the generalization of Vajda’s problem of obtaining a tight

lower bound on an arbitrary 𝜙-divergence given multiple values of generalized total variation distances;

their result contains [Gil06 ] as a special case. Beyond the total variation distance, [HV11 ] introduced
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the general question of studying the joint range of values taken by an arbitrary pair of 𝜙-divergences,

which has its boundary given by the best lower bounds of one divergence as a function of the other.

[GSS14 ] generalize this further and consider the general problem of understanding the joint range of

multiple𝜙-divergences, i.e. minimizing a𝜙-divergence subject to a finite number of constraints on other

𝜙-divergences. A key conceptual contribution in this line of work is to show that these optimization

problems, which are defined over (infinitely dimensional) spaces of measures, can be reduced to finite

dimensional optimization problems.

Our work in the present chapter differs from results of this type since we are primarily concerned

with IPMs other than the total variation distance, and in particular with those containing unbounded

functions. It was shown in [KFG06 ; KFG07 ; SGFSL09 ; SFGSL12 ] that the class of 𝜙-divergences and

the class of pseudometrics (including IPMs) intersect only at the total variation distance. As such, the

problem studied in this chapter cannot be phrased as the one of a joint range between two𝜙-divergences,

and to the best of our knowledge cannot be handled by the techniques used in studying the joint range.

Transport inequalities. Startingwith thework ofMarton [Mar86 ], transportation inequalities upper

bounding the Wasserstein distance by a function of the relative entropy have been instrumental in the

study of the concentration of measure phenomenon (see e.g. [GL10 ] for a survey). These inequalities

are related to the question studied in this chapter since the 1-Wasserstein distance is an IPM when the

probability space is a Polish space and coincides with the total variation distance when the probability

space is discrete and endowed with the discrete metric. In an influential paper, Bobkov and Götze

[BG99 ] proved that upper bounding the 1-Wasserstein distance by a square root of the relative entropy

is equivalent to upper bounding the log moment-generating function of all 1-Lipschitz functions by a

quadratic function. The extension of Pinsker’s inequality in [BLM13 , §4.10], which was inspired by
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[BG99 ], is also based on quadratic upper bounds of the log moment-generating function and we in

turn follow similar ideas in Sections 5.4.3 and 5.5.1 of this chapter.

5.3 Preliminaries

5.3.1 MeasureTheory

Notation. Unless otherwise noted, all the probability measures in this chapter are defined on a

common measurable space (Ω,𝒜), which we assume is non-trivial in the sense that {∅,Ω} ⊊ 𝒜, as

otherwise all questions considered in this chapter become trivial. We denote byℳ(Ω,𝒜),ℳ+(Ω,𝒜)

andℳ1(Ω,𝒜) the sets of finite signedmeasures, finite non-negativemeasures, and probabilitymeasures

respectively. ℒ0(Ω,𝒜) denotes the space of all measurable functions fromΩ toℝ, andℒ𝑏(Ω,𝒜) ⊆

ℒ0(Ω,𝒜) is the set of all bounded measurable functions. For 𝜈 ∈ ℳ(Ω,𝒜), and 1 ≤ 𝑝 ≤ ∞,

ℒ𝑝(𝜈,Ω,𝒜) denotes the space of measurable functions with finite 𝑝-norm with respect to 𝜈, and

𝐿𝑝(𝜈,Ω,𝒜) denotes the space obtained by taking the quotient with respect to the space of functions

which are 0 𝜈-almost everywhere. Similarly, 𝐿0(𝜈,Ω,𝒜) is the space of all measurable functionsΩ toℝ

up to equality 𝜈-almost everywhere. When there is no ambiguity, we drop the indication (Ω,𝒜).

For two measures 𝜇, 𝜈 ∈ ℳ, 𝜇 ≪ 𝜈 (resp. 𝜇 ⟂ 𝜈) denotes that 𝜇 is absolutely continuous (resp.

singular) with respect to 𝜈 and we defineℳ𝑐(𝜈) ≝ {𝜇 ∈ ℳ | 𝜇 ≪ 𝜈} andℳ𝑠(𝜈) ≝ {𝜇 ∈ ℳ | 𝜇 ⟂ 𝜈},

so that by the Lebesgue decomposition theorem we have the direct sumℳ =ℳ𝑐(𝜈) ⊕ℳ𝑠(𝜈). For

𝜇 ∈ ℳ𝑐(𝜈),
𝑑𝜇
𝑑𝜈

∈ 𝐿1(𝜈) denotes the Radon–Nikodym derivative of 𝜇with respect to 𝜈. For a signed

measure 𝜈 ∈ ℳ, we write the Hahn–Jordan decomposition 𝜈 = 𝜈+ − 𝜈− where 𝜈+, 𝜈− ∈ ℳ+, and

denote by |𝜈| = 𝜈+ + 𝜈− the total variation measure.

For a measurable function 𝑓 ∈ ℒ0 and measure 𝜇 ∈ ℳ, 𝜇(𝑓) ≝ ∫𝑓𝑑𝜇 denotes the integral
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of 𝑓 with respect to 𝜇, and ess sup𝜈 𝑓 and ess inf𝜈 𝑓 denote the 𝜈-essential supremum and infimum

respectively.

Finally, for brevity, we define for a subspace 𝑋 ⊆ ℳ of finite signed measures the subsets 𝑋+ ≝

𝑋 ∩ℳ+ and𝑋1 ≝ 𝑋 ∩ℳ1, and for 𝜈 ∈ ℳwe also define𝑋𝑐(𝜈) ≝ 𝑋 ∩ℳ𝑐(𝜈) and𝑋𝑠(𝜈) ≝ 𝑋 ∩ℳ𝑠(𝜈).

Integral ProbabilityMetrics.

Definition 5.3.1. For a non-empty set of measurable functions 𝒢 ⊆ ℒ0, the integral probability metric

associated with 𝒢 is defined by

𝑑𝒢(𝜇, 𝜈) ≝ sup
𝑔∈𝒢

{|||∫𝑔𝑑𝜇 −∫𝑔𝑑𝜈|||} ,

for all pairs of measures (𝜇, 𝜈) ∈ ℳ2 such that all functions in 𝒢 are absolutely 𝜇- and 𝜈-integrable.

We extend this definition to all pairs of measures (𝜇, 𝜈) ∈ ℳ2 by 𝑑𝒢(𝜇, 𝜈) = +∞ in cases where there

exists a function in 𝒢which is not 𝜇- or 𝜈- integrable.

Remark 5.3.2. When the class 𝒢 is closed under negation, one can drop the absolute value in the

definition.

Example 5.3.3. The total variation distance 𝑑TV(𝜇, 𝜈) is obtained when 𝒢 is the class of measurable

functions taking values in [0, 1], and the related 𝐿1 distance is obtained by taking the classℬ of measur-

able functions taking values in [−1, 1].

Example 5.3.4. Note that the integrals∫𝑔𝑑𝜇 and∫𝑔𝑑𝜈 depend only on the pushforward measures

𝑔∗𝜇 and 𝑔∗𝜈 onℝ. Equivalently, when 𝜇 and 𝜈 are the probability distributions of random variables

𝑋 and 𝑌 taking values in Ω, we have that ∫𝑔𝑑𝜇 = ∫ Idℝ 𝑑𝑔∗𝜇 = 𝔼[𝑔(𝑋)], the expectation of the

random variable 𝑔(𝑋), and similarly∫𝑔𝑑𝜈 = 𝔼[𝑔(𝑌)]. The integral probability metric 𝑑𝒢 thus defines
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the distance between random variables 𝑋 and 𝑌 as the largest difference in expectation achievable by

“observing” 𝑋 and 𝑌 through a function from the class 𝒢.

5.3.2 Convex analysis

Most of the convex functions considered in this chapter will be defined over spaces of measures or

functions. Consequently, we will apply tools from convex analysis in its general formulation for locally

convex topological vector spaces. References on this subject include [BCR84 ] and [Bou87 , II. and

IV.§1] for the topological background, and [ET99 , Part I] and [Zăl02 , Chapters 1 & 2] for convex

analysis. We now briefly review the main concepts appearing in this chapter.

Definition 5.3.5 (Dual pair). A dual pair is a triplet (𝑋, 𝑌, ⟨ ⋅ , ⋅ ⟩)where𝑋 and 𝑌 are real vector spaces,

and ⟨ ⋅ , ⋅ ⟩ ∶ 𝑋 × 𝑌 → ℝ is a bilinear form satisfying the following properties:

(i) for every 𝑥 ∈ 𝑋 ⧵ {0}, there exists 𝑦 ∈ 𝑌 such that ⟨𝑥, 𝑦⟩ ≠ 0.

(ii) for every 𝑦 ∈ 𝑌 ⧵ {0}, there exists 𝑥 ∈ 𝑋 such that ⟨𝑥, 𝑦⟩ ≠ 0.

We say that the pairing ⟨ ⋅ , ⋅ ⟩ puts 𝑋 and 𝑌 in (separating) duality. Furthermore, a topology 𝜏 on 𝑋

is said to be compatible with the pairing if it is locally convex and if the topological dual 𝑋⋆ of 𝑋with

respect to 𝜏 is isomorphic to 𝑌. Topologies on 𝑌 compatible with the pairing are defined similarly.

Example 5.3.6. For an arbitrary dual pair (𝑋, 𝑌, ⟨ ⋅ , ⋅ ⟩), the weak topology 𝜎(𝑋, 𝑌) induced by 𝑌 on 𝑋

is defined to be the coarsest topology such that for each 𝑦 ∈ 𝑌, 𝑥 ↦ ⟨𝑥, 𝑦⟩ is a continuous linear form

on 𝑋. It is a locally convex Hausdorff topology induced by the family of seminorms 𝑝𝑦 ∶ 𝑥 ↦ |⟨𝑥, 𝑦⟩|

for 𝑦 ∈ 𝑌 and is thereby compatible with the duality between 𝑋 and 𝑌.

Note that in finite dimension, all Hausdorff vector space topologies coincide with the standard

topology.
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In the remainder of this section, we fix a dual pair (𝑋, 𝑌, ⟨ ⋅ , ⋅ ⟩) and endow𝑋 and 𝑌with topologies

compatible with the pairing. As is customary in convex analysis, convex functions take values in the

set of extended reals ℝ ≝ ℝ ∪ {−∞,+∞} to which the addition over ℝ is extended using the usual

conventions, including (+∞)+(−∞) = +∞. In thismanner, convex functions can always be extended

to be defined on the entirety of their domain by assuming the value+∞ when they are not defined.

For a convex function 𝑓 ∶ 𝑋 → ℝ, dom𝑓 ≝ {𝑥 ∈ 𝑋 | 𝑓(𝑥) < +∞} is the effective domain of 𝑓 and

𝜕𝑓(𝑥) ≝ {𝑦 ∈ 𝑌 | ∀𝑥′ ∈ 𝑋, 𝑓(𝑥′) ≥ 𝑓(𝑥) + ⟨𝑥′ − 𝑥, 𝑦⟩} denotes its subdifferential at 𝑥 ∈ 𝑋.

Definition 5.3.7 (Lower semicontinuity, inf-compactness). The function 𝑓 ∶ 𝑋 → ℝ is lower semi-

continuous (resp. inf-compact) if for every 𝑡 ∈ ℝ the sublevel set 𝑓−1(−∞, 𝑡] ≝ {𝑥 ∈ 𝑋 | 𝑓(𝑥) ≤ 𝑡} is

closed (resp. compact).

Lemma 5.3.8. If 𝑓 ∶ 𝑋 × 𝐶 → ℝ is a convex function for 𝐶 a convex subset of some linear space, then

𝑔 ∶ 𝑋 → ℝ defined as 𝑔(𝑥) ≝ inf𝑐∈𝐶 𝑓(𝑥, 𝑐) is convex. Furthermore, if for some topology on 𝐶 the function

𝑓 is inf-compact with respect to the product topology, then 𝑔 is also inf-compact.

Definition 5.3.9 (Properness). A convex function𝑓 ∶ 𝑋 → ℝ is proper if dom𝑓 ≠ ∅ and𝑓(𝑥) > −∞

for all 𝑥 ∈ 𝑋.

Definition 5.3.10 (Convex conjugate). The convex conjugate (also called Fenchel dual or Fenchel–

Legendre transform) of 𝑓 ∶ 𝑋 → ℝ is the function 𝑓⋆ ∶ 𝑌 → ℝ defined for 𝑦 ∈ 𝑌 by

𝑓⋆(𝑦) ≝ sup
𝑥∈𝑋

{⟨𝑥, 𝑦⟩ − 𝑓(𝑥)} .

For a set 𝐶 ⊆ 𝑋, 𝛿𝐶 ∶ 𝑋 → ℝ≥0 denotes the characteristic function of 𝐶, that is 𝛿𝐶(𝑥) is 0 if 𝑥 ∈ 𝐶

and+∞ elsewhere. The support functionof𝐶 isℎ𝐶 ∶ 𝑌 → ℝ∪{+∞}definedbyℎ𝐶(𝑦) = sup𝑥∈𝐶⟨𝑥, 𝑦⟩.

If 𝐶 is closed and convex then (𝛿𝐶, ℎ𝐶) form a pair of convex conjugate functions.
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Proposition 5.3.11. Let 𝑓 ∶ 𝑋 → ℝ be a function. Then:

1. 𝑓⋆ ∶ 𝑌 → ℝ is convex and lower semicontinuous.

2. for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, 𝑓(𝑥) + 𝑓⋆(𝑦) ≥ ⟨𝑥, 𝑦⟩ with equality iff 𝑦 ∈ 𝜕𝑓(𝑥).

3. 𝑓⋆⋆ ≤ 𝑓 with equality iff 𝑓 is proper convex lower semicontinuous, 𝑓 ≡ +∞ or 𝑓 ≡ −∞.

4. if 𝑓 ≤ 𝑔 for some 𝑔 ∶ 𝑋 → ℝ, then 𝑔⋆ ≥ 𝑓⋆.

Remark 5.3.12. In Proposition 5.3.11 , Item 2 is known as the Fenchel–Young inequality and Item 3 as

the Fenchel–Moreau theorem.

In the special case of 𝑋 = ℝ = 𝑌 and a proper convex function 𝑓 ∶ ℝ → ℝ, we can be more

explicit about the domain of 𝑓⋆.

Definition 5.3.13. For 𝑓 ∶ ℝ → ℝ a proper convex function, we define for ℓ ∈ {−∞,+∞} the

quantity 𝑓′(ℓ) ≝ lim𝑥→ℓ 𝑓(𝑥)/𝑥 ∈ ℝ ∪ {+∞}.

Remark 5.3.14. The limit is always well-defined inℝ ∪ {+∞} for proper convex functions. The name

𝑓′(ℓ) is motivated by the fact that when 𝑓 is differentiable, we have 𝑓′(ℓ) = lim𝑥→ℓ 𝑓′(𝑥).

Lemma 5.3.15. If 𝑓 ∶ ℝ → ℝ is a proper convex function, then the domain of 𝑓⋆ ∶ ℝ → ℝ satisfies

int(dom𝑓⋆) = (𝑓′(−∞), 𝑓′(+∞)).

Fenchel duality theorem is arguably the most fundamental result in convex analysis, and we will

use it in this chapter to compute the convex conjugate and minimum of a convex function subject to a

linear constraint. The following proposition summarizes the conclusions obtained by instantiating the

duality theorem to this specific case.
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Proposition 5.3.16. Let 𝑓 ∶ 𝑋 → (−∞,+∞] be a convex function. For 𝑦 ∈ 𝑌 and 𝜀 ∈ ℝ, define

𝑓𝑦,𝜀 ∶ 𝑋 → (−∞,+∞] by

𝑓𝑦,𝜀(𝑥) ≝ 𝑓(𝑥) + 𝛿{𝜀}(⟨𝑥, 𝑦⟩) =

⎧
⎪

⎨
⎪
⎩

𝑓(𝑥) if ⟨𝑥, 𝑦⟩ = 𝜀

+∞ otherwise

for all 𝑥 ∈ 𝑋.

1. Assume that 𝑓 is lower semicontinuous and define ⟨dom𝑓, 𝑦⟩ ≝ {⟨𝑥, 𝑦⟩ | 𝑥 ∈ dom𝑓}. If 𝜀 ∈

int(⟨dom𝑓, 𝑦⟩), then 𝑓⋆𝑦,𝜀(𝑥⋆) = inf𝜆∈ℝ 𝑓⋆(𝑥⋆ + 𝜆𝑦) − 𝜆 ⋅ 𝜀 for all 𝑥⋆ ∈ 𝑌, where the infimum is

reached whenever 𝑓⋆𝑦,𝜀(𝑥⋆) is finite.

2. Assume that 𝑓 is non-negative and satisfies 𝑓(0) = 0. Define the marginal value function

ℒ𝑦,𝑓(𝜀) ≝ inf
𝑥∈𝑋

𝑓𝑦,𝜀(𝑥) = inf{𝑓(𝑥) | 𝑥 ∈ 𝑋 ∧ ⟨𝑥, 𝑦⟩ = 𝜀} . (5.4)

Thenℒ𝑦,𝑓 is a non-negative convex function satisfyingℒ𝑦,𝑓(0) = 0 and its convex conjugate is given

byℒ⋆
𝑦,𝑓(𝑡) = 𝑓⋆(𝑡𝑦). Furthermore,ℒ𝑦,𝑓 is lower semicontinuous at 𝜀, that isℒ𝑦,𝑓(𝜀) = ℒ⋆⋆

𝑦,𝑓(𝜀),

if and only if strong duality holds for problem (5.4 ), i.e. if and only if

inf{𝑓(𝑥) | 𝑥 ∈ 𝑋 ∧ ⟨𝑥, 𝑦⟩ = 𝜀} = sup{𝑡 ⋅ 𝜀 − 𝑓⋆(𝑡 ⋅ 𝑦) || 𝑡 ∈ ℝ} .

Proof. 1. This follows from a direct application of Fenchel’s duality theorem (see e.g. [Zăl02 , Corol-

lary 2.6.4, Theorem 2.8.1]).

2. Define the perturbation function 𝐹 ∶ 𝑋 × ℝ → ℝ by 𝐹(𝑥, 𝜀) ≝ 𝑓𝑦,𝜀(𝑥) = 𝑓(𝑥) + 𝛿{0}(⟨𝑥, 𝑦⟩ − 𝜀)

so thatℒ𝑦,𝑓(𝜀) = inf𝑥∈𝑋 𝐹(𝑥, 𝜀). Since 𝐹 is non-negative, jointly convex over the convex set

𝑋 ×ℝ and 𝐹(0, 0) = 0, we get thatℒ𝑦,𝑓 is itself convex, non-negative, and satisfiesℒ𝑦,𝑓(0) = 0.
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Furthermore, 𝐹⋆(𝑥⋆, 𝑡) = 𝑓⋆(𝑥⋆ + 𝑡𝑦) and ℒ⋆
𝑦,𝑓(𝑡) = 𝐹⋆(0, 𝑡) = 𝑓⋆(𝑡𝑦) by e.g. [Zăl02 ,

Theorem 2.6.1, Corollary 2.6.4].

Finally, we will use the following result giving a sufficient condition for a convex function to

be bounded below. Most such results in convex analysis assume that the function is either lower

semicontinuous or bounded above on an open set. In contrast, the following lemma assumes that the

function is upper bounded on a closed, convex, bounded set of a Banach space, or more generally on a

cs-compact subset of a real Hausdorff topological vector space.

Lemma 5.3.17 (cf. [Kön86 , Example 1.6(0), Remark 1.9]). Let 𝐶 be a cs-compact subset of a real

Hausdorff topological vector space. If 𝑓 ∶ 𝐶 → ℝ is a convex function such that sup𝑥∈𝐶 𝑓(𝑥) < +∞,

then inf𝑥∈𝐶 𝑓(𝑥) > −∞. In particular, if 𝑓 ∶ 𝐶 → ℝ is linear, then sup𝑥∈𝐶 𝑓(𝑥) < +∞ if and only if

inf𝑥∈𝐶 𝑓(𝑥) > −∞.

The notion of cs-compactness (called 𝜎-convexity in [Kön86 ]) was introduced and defined by

Jameson in [Jam72 ], and Proposition 2 of the same paper states that closed, convex, bounded sets of

Banach spaces are cs-compact.

5.3.3 Orlicz spaces

We will use elementary facts from the theory of Orlicz spaces which we now briefly review (see for

example [Léo07 ] for a concise exposition or [RR91 ] for a more complete reference). A function

𝜃 ∶ ℝ → [0, +∞] is a Young function if it is a convex, lower semicontinuous, and even function with

𝜃(0) = 0 and 0 < 𝜃(𝑠) < +∞ for some 𝑠 > 0. Then writing 𝐼𝜃,𝜈 ∶ 𝑓 ↦ ∫𝜃(𝑓) 𝑑𝜈 for 𝜈 ∈ ℳ, one

defines2  two spaces associated with 𝜃:

2The definition and theory of Orlicz spaces holds more generally for 𝜍-finite measures. The case of finite measures
already covers all the applications considered in this chapter whose focus is primarily on probability measures.

128



• the Orlicz space 𝐿𝜃(𝜈) ≝ {𝑓 ∈ 𝐿0(𝜈) || ∃𝛼 > 0, 𝐼𝜃,𝜈(𝛼𝑓) < ∞},

• the Orlicz heart [ES89 ] 𝐿𝜃♡(𝜈) ≝ {𝑓 ∈ 𝐿0(𝜈) || ∀𝛼 > 0, 𝐼𝜃,𝜈(𝛼𝑓) < ∞}, also known as the

Morse–Transue space [MT50 ],

which are both Banach spaces when equippedwith the Luxemburg norm ‖𝑓‖𝜃 ≝ inf{𝑡 > 0|𝐼𝜃,𝜈(𝑓/𝑡) ≤

1}. Furthermore, 𝐿𝜃♡(𝜈) ⊆ 𝐿𝜃(𝜈) ⊆ 𝐿1(𝜈) and 𝐿∞(𝜈) ⊆ 𝐿𝜃(𝜈) for all 𝜃, and 𝐿∞(𝜈) ⊆ 𝐿𝜃♡(𝜈) when

dom 𝜃 = ℝ. If 𝜃⋆ is the convex conjugate of 𝜃, we have the following analogue of Hölder’s inequality:

∫𝑓1𝑓2 𝑑𝜈 ≤ 2‖𝑓1‖𝜃‖𝑓2‖𝜃⋆ , for all 𝑓1 ∈ 𝐿𝜃(𝜈) and 𝑓2 ∈ 𝐿𝜃⋆(𝜈), implying that (𝐿𝜃, 𝐿𝜃⋆) are in dual

pairing. Furthermore, if dom 𝜃 = ℝ, we have that the dual Banach space (𝐿𝜃♡, ‖ ⋅ ‖𝜃)⋆ is isomorphic to

(𝐿𝜃⋆, ‖ ⋅ ‖𝜃⋆).

5.4 Variational representations of 𝜙-divergences

In the rest of this chapter, we fix a convex and lower semicontinuous function 𝜙 ∶ ℝ → ℝ ∪ {+∞}

such that 𝜙(1) = 0. After defining 𝜙-divergences in Section 5.4.1 , we start with the usual variational

representation of the 𝜙-divergence in Section 5.4.2 , which we then strengthen in the case of probability

measures in Section 5.4.3 . A reader interested primarily in optimal bounds between 𝜙-divergences and

IPMs can skip Sections 5.4.2 and 5.4.3 at a first reading.

5.4.1 Convex integral functionals and 𝜙-divergences

The notion of a 𝜙-divergence is closely related to the one of a convex integral functional that we define

first.

Definition 5.4.1 (Integral functional). For 𝜈 ∈ ℳ+ and 𝑓 ∶ ℝ → ℝ ∪ {∞} a proper convex function,

the convex integral functional associated with 𝑓 and 𝜈 is the function 𝐼𝑓,𝜈 ∶ 𝐿1(𝜈) → ℝ ∪ {∞} defined
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for 𝑔 ∈ 𝐿1(𝜈) by

𝐼𝑓,𝜈(𝑔) = ∫𝑓 ∘ 𝑔 𝑑𝜈 .

The systematic study of convex integral functionals from the perspective of convex analysis was

initiated by Rockafellar in [Roc68 ; Roc71 ], who considered more generally functionals of the form

𝑔 ↦ ∫𝑓(𝜔, 𝑔(𝜔)) 𝑑𝜈 for 𝑔 ∶ Ω → ℝ𝑛 and 𝑓 ∶ Ω × ℝ𝑛 → ℝ such that 𝑓(𝜔, ⋅) is convex 𝜈-almost

everywhere. A good introduction to the theory of such functionals can be found in [Roc76 ; RW98 ].

The specific case of Definition 5.4.1 is known as an autonomous integral functional, but we drop this

qualifier since it applies to all functionals studied in this chapter.

Definition 5.4.2 (𝜙-divergence). For𝜇 ∈ ℳ and 𝜈 ∈ ℳ+, write𝜇 = 𝜇𝑐+𝜇𝑠 with𝜇𝑐 ≪ 𝜈 and𝜇𝑠 ⟂ 𝜈,

the Lebesgue decomposition of 𝜇with respect to 𝜈, and 𝜇𝑠 = 𝜇+𝑠 −𝜇−𝑠 with 𝜇+𝑠 , 𝜇−𝑠 ∈ ℳ+, the Hahn–

Jordan decomposition of𝜇𝑠. The𝜙-divergence of𝜇with respect to 𝜈 is the quantityD𝜙(𝜇 ‖ 𝜈) ∈ ℝ∪{∞}

defined by

D𝜙(𝜇 ‖ 𝜈) ≝ ∫𝜙(
𝑑𝜇𝑐
𝑑𝜈 ) 𝑑𝜈 + 𝜇+𝑠 (Ω) ⋅ 𝜙′(∞) − 𝜇−𝑠 (Ω) ⋅ 𝜙′(−∞) ,

with the convention 0 ⋅ (±∞) = 0.

Remark 5.4.3. An equivalent definition ofD𝜙(𝜇 ‖ 𝜈)which does not require decomposing𝜇 is obtained

by choosing 𝜆 ∈ ℳ+ dominating both 𝜇 and 𝜈 (e.g. 𝜆 = |𝜇| + 𝜈) and defining

D𝜙(𝜇 ‖ 𝜈) = ∫ 𝑑𝜈
𝑑𝜆 ⋅ 𝜙(

𝑑𝜇/𝑑𝜆
𝑑𝜈/𝑑𝜆 ) 𝑑𝜆,

with the conventions coming from continuous extension that 0 ⋅ 𝜙(𝑎/0) = 𝑎 ⋅ 𝜙′(∞) if 𝑎 ≥ 0 and

0 ⋅ 𝜙(𝑎/0) = 𝑎 ⋅ 𝜙′(−∞) if 𝑎 ≤ 0 (see Definition 5.3.13 ). It is easy to check that this definition does

not depend on the choice of 𝜆 and coincides with Definition 5.4.2 .

The notion of 𝜙-divergence between probability measures was introduced by Csiszár in [Csi63 ;
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Table 5.1: Common 𝜙-divergences (see e.g. [SV16 ])

Name 𝜙 𝜙′(∞) < ∞? 𝜙(0) < ∞? Notes

𝛼-divergences 𝑥𝛼−1
𝛼(𝛼−1)

when 𝛼 < 1 when 𝛼 > 0 𝜙†𝛼 = 𝜙1−𝛼
KL 𝑥 ln𝑥 No Yes Limit of 𝛼 → 1−

reverse KL − ln𝑥 Yes No Limit of 𝛼 → 0+

squared Hellinger (√𝑥 − 1)2 Yes Yes Scaling of 𝛼 = 1
2

𝜒2-divergence (𝑥 − 1)2 No Yes Scaling of 𝛼 = 2
Jeffreys (𝑥 − 1) ln𝑥 No No KL+ reverse KL
𝜒𝛼-divergences |𝑥 − 1|𝛼 when 𝛼 = 1 Yes For 𝛼 ≥ 1 [Vaj73 ]

Total variation 1
2
|𝑥 − 1| Yes Yes Scaling of 𝜒1-divergence

Jensen–Shannon
𝑥 ln𝑥 −

(1 + 𝑥) ln( 1+𝑥
2
) Yes Yes a.k.a. total divergence

to the average
Triangular
discrimination

(𝑥−1)2

𝑥+1
Yes Yes a.k.a. Vincze–Le Cam

distance

Csi67a ] in information theory and independently by Ali and Silvey [AS66 ] in statistics. The generaliza-

tion to finite signed measures is from [CGG99  ]. Some useful properties of the 𝜙-divergence include: it

is jointly convex in both its arguments, if 𝜇(Ω) = 𝜈(Ω) thenD𝜙(𝜇 ‖ 𝜈) ≥ 0, with equality if and only if

𝜇 = 𝜈 assuming that 𝜙 is strictly convex at 1.

Remark 5.4.4. If𝜇 ≪ 𝜈, the definition simplifies toD𝜙(𝜇 ‖ 𝜈) = 𝜈(𝜙 ∘ 𝑑𝜇
𝑑𝜈
). Furthermore, if𝜙′(±∞) =

±∞, thenD𝜙(𝜇 ‖ 𝜈) = +∞whenever 𝜇≪̸𝜈. When either 𝜙′(+∞) or 𝜙′(−∞) is finite, some authors

implicitly or explicitly redefine D𝜙(𝜇 ‖ 𝜈) to be +∞ whenever 𝜇≪̸𝜈, thus departing from Defini-

tion 5.4.2 . This effectively definesD𝜙(⋅ ‖ 𝜈) as the integral functional 𝐼𝜙,𝜈 and the rich theory of convex

integral functionals can be readily applied. As we will see in this chapter, this change of definition is

unnecessary and the difficulties arising from the case 𝜇≪̸𝜈 in Definition 5.4.2 can be addressed by

separately treating the component of 𝜇 singular with respect to 𝜈.

An important reason to prefer the general definition is the equality D𝜙(𝜈 ‖ 𝜇) = D𝜙†(𝜇 ‖ 𝜈)

where 𝜙† ∶ 𝑥 ↦ 𝑥𝜙(1/𝑥) is the Csiszár dual of 𝜙, which identifies the reverse 𝜙-divergence—where the
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arguments are swapped—with the divergence associatedwith𝜙†. Consequently, any result obtained for

the partial function𝜇 ↦ D𝜙(𝜇 ‖ 𝜈) can be translated into results for the partial function 𝜈 ↦ D𝜙(𝜇 ‖ 𝜈)

by swapping the role of 𝜇 and 𝜈 and replacing 𝜙 with 𝜙†. Note that (𝜙†)′(∞) = lim𝑥→0+ 𝜙(𝑥) and

(𝜙†)′(−∞) = lim𝑥→0− 𝜙(𝑥), and for many divergences of interest (including the Kullback–Leibler

divergence) at least one of 𝜙′(∞) and 𝜙(0) is finite. See Table 5.1 for some examples.

5.4.2 Variational representations: general measures

In this section, we fix a finite non-negative measure 𝜈 ∈ ℳ+ ⧵ {0} and study the convex functional

D𝜙,𝜈 ∶ 𝜇 ↦ D𝜙(𝜇 ‖ 𝜈) on a space of finite measures put in dual pairing with a space of functions via

⟨𝜇, 𝑔⟩ = 𝜇(𝑔) for a measure 𝜇 and function 𝑔.

We consider two types of dual pairs depending on whether the space of measures is contained

inℳ𝑐(𝜈). Generic instances of these two types of duals pairs will be denoted by (𝑋, 𝑌) and (𝒳, 𝒴)

respectively, and we assume that the spaces constituting those pairs are endowed with topologies

compatible with the pairing (for example the weak topologies as in Example 5.3.6 ). Furthermore, we

require that the spaces considered contain a large enough class of “elementary” measures or functions

as defined next.

Assumption 5.4.5. The pairs (𝑋, 𝑌) and (𝒳, 𝒴) are in separating duality and satisfy:

1. {𝜇 ∈ ℳ𝑐(𝜈) ||
𝑑𝜇
𝑑𝜈

∈ 𝐿∞(𝜈)} ⊆ 𝑋 ⊆ ℳ𝑐(𝜈) and 𝐿∞(𝜈) ⊆ 𝑌 ⊆ 𝐿0(𝜈).

2. {𝜇 ∈ ℳ𝑐(𝜈) ||
𝑑𝜇
𝑑𝜈

∈ 𝐿∞(𝜈)} ⊆ 𝒳 ⊆ ℳ and ℒ𝑏(Ω) ⊆ 𝒴 ⊆ ℒ0(Ω). Furthermore for any 𝐴 ∈

𝒜 ⧵ {∅}with 𝜈(𝐴) = 0, there exists 𝜇 ∈ 𝒳+ ⧵ {0} such that 𝜇(Ω ⧵ 𝐴) = 0.

Note that in Assumption 5.4.5 1 ., since 𝑋 ⊆ ℳ𝑐(𝜈) cannot distinguish two functions equal on a

𝜈-null set, we require that 𝑌 ⊆ 𝐿0(𝜈). For Assumption 5.4.5 2 ., since not all measures are continuous
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with respect to 𝜈, we require 𝑌 ⊆ ℒ0(Ω) in order for integration to be well-defined. Examples of such

dual pairs are (𝑋, 𝑌) = (ℳ𝑐(𝜈), 𝐿∞(𝜈)) and (𝒳, 𝒴) = (ℳ,ℒ𝑏(Ω)). Another example is given by the

following definition constructing a dual pair tailored to a specific class of function 𝒢, as will be useful

when considering IPMs.

Definition 5.4.6. For a (possibly empty) set 𝒢 ⊆ ℒ0(Ω,𝒜), define the space𝒳𝒢 ⊆ ℳ as the set of all

𝜇 integrating every 𝑔 ∈ 𝒢 (i.e. such that |𝜇|(|𝑔|) < ∞), and define the space 𝒴𝒢 ⊆ ℒ0(Ω,𝒜) as the set

of all ℎ such that ℎ is 𝜇-integrable for every 𝜇 ∈ 𝒳𝒢.

Similarly, for 𝜈 ∈ ℳ+ and a (possibly empty) set 𝒢 ⊆ 𝐿0(𝜈), define 𝑋𝒢(𝜈) ≝ 𝒳𝒢 ∩ ℳ𝑐(𝜈), and

define the space 𝑌𝒢(𝜈) ⊆ 𝐿0(𝜈) as the set of all ℎ such that ℎ is 𝜇-integrable for every 𝜇 ∈ 𝑋𝒢(𝜈).

For brevity, if 𝒢 = {𝑔} is a singleton, we write𝒳𝑔 and 𝑋𝑔(𝜈) for𝒳{𝑔} and 𝑋{𝑔}(𝜈) respectively.

Lemma 5.4.7. The pairs (𝒳𝒢, 𝒴𝒢) and (𝑋𝒢(𝜈), 𝑌𝒢(𝜈)) from Definition 5.4.6 satisfy

(i) For every 𝜇 ∈ 𝒳𝒢 (resp. 𝜇 ∈ 𝑋𝒢(𝜈)), {𝜇′ ∈ ℳ𝑐(𝜇)
|||
𝑑𝜇′

𝑑𝜇
∈ 𝐿∞(𝜇)} is contained in𝒳𝒢 (resp. 𝑋𝒢(𝜈)).

Furthermore,𝒳𝒢 contains all Dirac measures.

(ii) 𝒴𝒢 contains 𝒢 ∪ ℒ𝑏(Ω,𝒜), and 𝑌𝒢(𝜈) contains 𝒢 ∪ 𝐿∞(𝜈).

(iii) (𝒳𝒢, 𝒴𝒢) and (𝑋𝒢(𝜈), 𝑌𝒢(𝜈)) are in dual pairing via (𝜇, ℎ) ↦ 𝜇(ℎ).

In particular, (𝑋𝒢(𝜈), 𝑌𝒢(𝜈)) satisfies Assumption 5.4.5 1 ., and (𝒳𝒢, 𝒴𝒢) satisfies Assumption 5.4.5 2 .

Proof. (i) For 𝜇 ∈ 𝒳𝒢 (resp. 𝜇 ∈ 𝑋𝒢(𝜈)) and functions 𝑑𝜇′

𝑑𝜇
∈ 𝐿∞(𝜇) and 𝑔 ∈ 𝒢, we have

|𝜇′|(|𝑔|) = ∫|||
𝑑𝜇′

𝑑𝜇
||||𝑔| 𝑑|𝜇| ≤

‖‖‖
𝑑𝜇′

𝑑𝜇
‖‖‖∞
⋅ |𝜇|(|𝑔|) < ∞ .

𝒳𝒢 contains all Dirac measures since for every 𝑔 ∈ 𝒢 and 𝜔 ∈ Ω, we have |𝛿𝜔|(|𝑔|) = |𝑔(𝜔)| < ∞.
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(ii) All finite signed measures integrate all bounded measurable functions, and the containment of

𝒢 is by definition.

(iii) Bilinearity and well-definedness of (𝜇, ℎ) ↦ 𝜇(ℎ) is by definition, and separation is by (i) and

(ii).

The following proposition gives an explicit formula for the convex conjugateD⋆
𝜙,𝜈 defined for 𝑔 ∈ 𝑌

by

D⋆
𝜙,𝜈(𝑔) = sup

𝜇∈𝑋
{𝜇(𝑔) −D𝜙,𝜈(𝜇)} (5.5)

and states thatD𝜙,𝜈 is lower semicontinuous. Using the identityD𝜙,𝜈 = D⋆⋆
𝜙,𝜈 we thus obtain a vari-

ational representation of D𝜙(𝜇 ‖ 𝜈), expressing it as the solution of an optimization problem over 𝑌.

Since 𝑋 ⊆ ℳ𝑐(𝜈),D𝜙,𝜈 coincides with the integral functional 𝐼𝜙,𝜈. This lets us exploit the well-known

fact that under mild assumptions, (𝐼𝜙,𝜈, 𝐼𝜙⋆,𝜈) form a pair of convex conjugate functionals. This fact was

first observed in [LZ56 ] in the context of Orlicz spaces, and then generalized in [Roc68 ; Roc71 ].

Proposition 5.4.8. Let (𝑋, 𝑌) be a dual pair as in Assumption 5.4.5 1 . Then the functionalD𝜙,𝜈 over 𝑋

has convex conjugateD⋆
𝜙,𝜈 given for all 𝑔 ∈ 𝑌 by

D⋆
𝜙,𝜈(𝑔) = 𝐼𝜙⋆,𝜈(𝑔) = ∫𝜙⋆ ∘ 𝑔 𝑑𝜈.

FurthermoreD𝜙,𝜈 is lower semicontinuous, therefore for all 𝜇 ∈ 𝑋

D𝜙(𝜇 ‖ 𝜈) = sup
𝑔∈𝑌

{∫𝑔𝑑𝜇 −∫𝜙⋆ ∘ 𝑔 𝑑𝜈}. (5.6)

Proof. Since 𝜈 ∈ 𝑋 by assumption, the functionD𝜙,𝜈 is proper and convex over 𝑋. The proposition is

then immediate consequenceof [Roc76  ,Theorem3C]after identifyingℳ𝑐(𝜈)with𝐿1(𝜈)by theRadon–

Nikodym theorem and noting that 𝑋 and 𝑌 are decomposable [Roc76  , Section 3] by Assumption 5.4.5 .
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Example 5.4.9. Consider the case of the Kullback–Leibler divergence, corresponding to the func-

tion 𝜙 ∶ 𝑥 ↦ 𝑥 ln𝑥. A simple computation gives 𝜙⋆(𝑥) = 𝑒𝑥−1 and (5.6 ) yields as a variational

representation, for all 𝜇 ∈ 𝑋

KL(𝜇 ‖ 𝜈) = sup
𝑔∈𝑌

{𝜇(𝑔) −∫𝑒𝑔−1 𝑑𝜈}, (5.7)

Note that this representation differs from the Donsker–Varadhan representation (5.1 ) discussed in the

introduction. This discrepancy will be explained in the next section.

The variational representation of the 𝜙-divergence in Proposition 5.4.8 is well-known (see e.g.

[RRGP12 ]). If 𝜙′(±∞) ≠ ±∞, it is also of interest to consider the case of a space 𝒳 containing

measures 𝜇 such that 𝜇≪̸𝜈, which has comparatively been less studied in the literature. The following

proposition gives an expression forD⋆
𝜙,𝜈 in this case, which is new to the best of our knowledge.

Proposition 5.4.10. Let (𝒳, 𝒴) be a dual pair as in Assumption 5.4.5 2 . Then the functionalD𝜙,𝜈 over𝒳

has convex conjugateD⋆
𝜙,𝜈 given for all 𝑔 ∈ 𝒴 by

D⋆
𝜙,𝜈(𝑔) =

⎧
⎪

⎨
⎪
⎩

𝐼𝜙⋆,𝜈(𝑔) if 𝑔(Ω) ⊆ [𝜙′(−∞), 𝜙′(∞)]

+∞ otherwise

. (5.8)

Proof. For 𝑔 ∈ 𝒴, let 𝐶(𝑔) be the right-hand side of Eq. (5.8 ), our claimed expression forD⋆
𝜙,𝜈(𝑔).

First, we show the upper bound sup𝜇∈𝒳{𝜇(𝑔) − D𝜙,𝜈(𝜇)} ≤ 𝐶(𝑔). We assume that 𝑔(Ω) ⊆

[𝜙′(−∞), 𝜙′(∞)], otherwise 𝐶(𝑔) = +∞ and there is nothing to prove. For 𝜇 ∈ 𝒳, write 𝜇 =

𝜇𝑐 + 𝜇+𝑠 − 𝜇−𝑠 with 𝜇𝑐 ∈ ℳ𝑐(𝜈) and 𝜇+𝑠 , 𝜇−𝑠 ∈ ℳ+
𝑠 (𝜈), so that

𝜇(𝑔) −D𝜙,𝜈(𝜇) = 𝜇𝑐(𝑔) − 𝐼𝜙,𝜈(
𝑑𝜇𝑐
𝑑𝜈 ) + 𝜇+𝑠 (𝑔) − 𝜇+𝑠 (Ω) ⋅ 𝜙′(∞) − 𝜇−𝑠 (𝑔) + 𝜇−𝑠 (Ω) ⋅ 𝜙′(−∞). (5.9)
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Observe that 𝜇𝑐(𝑔) − 𝐼𝜙,𝜈(
𝑑𝜇𝑐
𝑑𝜈
) = 𝜈(𝑑𝜇𝑐

𝑑𝜈
⋅ 𝑔 − 𝜙 ∘ 𝑑𝜇𝑐

𝑑𝜈
) ≤ 𝜈(𝜙⋆ ∘ 𝑔) = 𝐼𝜙⋆,𝜈(𝑔), by the Fenchel–

Young inequality applied to 𝜙 and monotonicity of the integral. Since sup 𝑔(Ω) ≤ 𝜙′(∞), we have

𝜇+𝑠 (𝑔) − 𝜇+𝑠 (Ω) ⋅ 𝜙′(∞) = 𝜇+𝑠 (𝑔 − 𝜙′(∞)) ≤ 0. Similarly 𝜇−𝑠 (Ω) ⋅ 𝜙′(−∞) − 𝜇−𝑠 (𝑔) ≤ 0. Using these

bounds in (5.9 ) yields 𝜇(𝑔) −D𝜙,𝜈(𝜇) ≤ 𝐶(𝑔) as desired.

Next, we show that sup𝜇∈𝒳{𝜇(𝑔) −D𝜙,𝜈(𝜇)} ≥ 𝐶(𝑔). Observe that

sup
𝜇∈𝒳

{𝜇(𝑔) −D𝜙,𝜈(𝜇)} ≥ sup
𝜇∈𝒳𝑐(𝜈)

{𝜇(𝑔) −D𝜙,𝜈(𝜇)} = 𝐼𝜙⋆,𝜈(𝑔) , (5.10)

where the equality follows from Proposition 5.4.8 applied to 𝑋 = 𝒳𝑐(𝜈) and 𝑌 = 𝒴/ ∼𝜈 where ∼𝜈

is the equivalence relation of being equal 𝜈-almost everywhere. If 𝑔(Ω) ⊆ [𝜙′(−∞), 𝜙′(∞)], then

𝐼𝜙⋆,𝜈(𝑔) = 𝐶(𝑔) and (5.10 ) gives the desired conclusion. If sup 𝑔(Ω) > 𝜙′(∞), let 𝛼 ∈ ℝ such that

𝜙′(∞) < 𝛼 < sup 𝑔(Ω). Then𝐴 = {𝜔 ∈ Ω|𝑔(𝜔) > 𝛼} is a non-emptymeasurable set. If𝜈(𝐴) > 0, then

𝐼𝜙⋆,𝜈(𝑔) = ∞ = 𝐶(𝑔), since dom𝜙⋆ ⊆ [𝜙′(−∞), 𝜙′(∞)] and (5.10 ) again gives the desired conclusion.

If 𝜈(𝐴) = 0, then by Assumption 5.4.5 , there exists 𝜇𝐴 ∈ 𝒳+ ⧵ {0} such that 𝜇𝐴(Ω ⧵ 𝐴) = 0. But then

sup
𝜇∈𝒳

{𝜇(𝑔) −D𝜙,𝜈(𝜇)}

≥ sup
𝑐>0

{(𝜈 + 𝑐𝜇𝐴)(𝑔) −D𝜙,𝜈(𝜈 + 𝑐𝜇𝐴)} = 𝜈(𝑔) + sup
𝑐>0

{𝑐𝜇𝐴(𝑔) − 𝑐𝜇𝐴(Ω) ⋅ 𝜙′(∞)}

≥ 𝜈(𝑔) + sup
𝑐>0

{𝑐𝜇𝐴(Ω) ⋅ (𝛼 − 𝜙′(∞))} = +∞ = 𝐶(𝑔) ,

where the first equality is because 𝐼𝜙,𝜈(
𝑑𝜈
𝑑𝜈
) = 𝜙(1) = 0 and 𝜇𝐴 ∈ 𝒳+

𝑠 (𝜈), and the second is because

𝜇𝐴(Ω) > 0 and 𝛼 > 𝜙′(∞). The case inf 𝑔(Ω) < 𝜙′(−∞) is analogous.

Remark 5.4.11. Compared to the expression forD⋆
𝜙,𝜈 obtained in Proposition 5.4.8 , the expression

in Proposition 5.4.10 explicitly constrains the range of 𝑔 to be contained in [𝜙′(−∞), 𝜙′(∞)]. Note

however, that there is an implicit constraint on the essential range of 𝑔 in Proposition 5.4.8 . Indeed,

136



unless it is contained in dom𝜙⋆ = [𝜙′(−∞), 𝜙′(∞)], the integral functional 𝐼𝜙⋆,𝜈(𝑔) is infinite. As

such, Proposition 5.4.10 simply extends this implicit constraint to the entire range of 𝑔 to account for

the measures 𝜇 ∈ 𝒳with 𝜇≪̸𝜈.

Finally, we prove thatD𝜙,𝜈 is lower semicontinuous over𝒳, yielding a variational representation of

D𝜙(𝜇 ‖ 𝜈), even when 𝜇≪̸𝜈.

Proposition 5.4.12. Let (𝒳, 𝒴) be a dual pair as in Assumption 5.4.5 2 . ThenD𝜙,𝜈 is lower semicontinuous,

equivalently, we have for all 𝜇 ∈ 𝒳 the biconjugate representation

D𝜙(𝜇 ‖ 𝜈) = sup{𝜇(𝑔) − 𝐼𝜙⋆,𝜈(𝑔) || 𝑔 ∈ 𝒴 ∧ 𝑔(Ω) ⊆ [𝜙′(−∞), 𝜙′(∞)]} .

Proof. Since D𝜙,𝜈 is proper, by the Fenchel–Moreau theorem it suffices to show that D⋆⋆
𝜙,𝜈 ≥ D𝜙,𝜈.

For 𝜇 ∈ 𝑋, write 𝜇 = 𝜇𝑐 + 𝜇+𝑠 − 𝜇−𝑠 with 𝜇𝑐 ∈ ℳ𝑐(𝜈), and 𝜇+𝑠 , 𝜇−𝑠 ∈ ℳ+
𝑠 (𝜈) by the Lebesgue

and Hahn–Jordan decompositions. Furthermore, let (𝐶, 𝑃, 𝑁) ∈ 𝒜3 be a partition of Ω such that

|𝜇𝑐|(Ω ⧵ 𝐶) = 𝜈(Ω ⧵ 𝐶) = 0, 𝜇+𝑠 (Ω ⧵ 𝑃) = 0 and 𝜇−𝑠 (Ω ⧵ 𝑁) = 0. By Proposition 5.4.10 ,

D⋆⋆
𝜙,𝜈(𝜇) = sup{𝜇𝑐(𝑔) − 𝐼𝜙⋆,𝜈(𝑔) + 𝜇+𝑠 (𝑔) − 𝜇−𝑠 (𝑔) || 𝑔 ∈ 𝒴 ∧ 𝑔(Ω) ⊆ [𝜙′(−∞), 𝜙′(∞)]} . (5.11)

Let 𝛼 ∈ ℝ such that 𝛼 < 𝐼𝜙,𝜈(
𝑑𝜇𝑐
𝑑𝜈
). Applying Proposition 5.4.8 with 𝑋 = ℳ𝑐(𝜈) and 𝑌 = 𝐿∞(𝜈),

we get the existence of 𝑔𝑐 ∈ 𝐿∞(𝜈) such that 𝜇𝑐(𝑔𝑐) − 𝐼𝜙⋆,𝜈(𝑔𝑐) > 𝛼. Furthermore, since dom𝜙⋆ ⊆

[𝜙′(−∞), 𝜙′(∞)], we have that 𝑔𝑐 ∈ [𝜙′(−∞), 𝜙′(∞)] 𝜈-almost everywhere. Consequently, there

exists a representative ̃𝑔𝑐 ∈ ℒ𝑏(Ω) of 𝑔𝑐 such that for every 𝜔 ∈ Ω, 𝜙′(−∞) ≤ ess inf𝜈 𝑔𝑐 ≤ ̃𝑔𝑐(𝜔) ≤

ess sup𝜈 𝑔𝑐 ≤ 𝜙′(∞).

For 𝛽, 𝛾 ∈ ℝ ∩ [𝜙′(−∞), 𝜙′(∞)] ⊇ dom𝜙⋆ (nonempty since 𝜙 is convex and proper), define
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𝑔 ∶ Ω → ℝ by

𝑔(𝜔) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

̃𝑔𝑐(𝜔) if 𝜔 ∈ 𝐶

𝛽 if 𝜔 ∈ 𝑃

𝛾 if 𝜔 ∈ 𝑁

.

By construction 𝑔 ∈ ℒ𝑏(Ω) and thus 𝑔 ∈ 𝒴 by Assumption 5.4.5 . Furthermore, 𝜇𝑐(𝑔) − 𝐼𝜙⋆,𝜈(𝑔) =

𝜇𝑐( ̃𝑔𝑐) − 𝐼𝜙⋆,𝜈( ̃𝑔𝑐) = 𝜇𝑐(𝑔𝑐) − 𝐼𝜙⋆,𝜈(𝑔𝑐) > 𝛼, 𝜇+𝑠 (𝑔) = 𝜇+𝑠 (Ω) ⋅ 𝛽, and 𝜇−𝑠 (𝑔) = 𝜇−𝑠 (Ω) ⋅ 𝛾. Since

𝑔(Ω) ⊆ [𝜙′(−∞), 𝜙′(∞)] by construction, for this choice of 𝑔 ∈ 𝑌, the optimand in (5.11 ) is at least

𝛼 + 𝜇+𝑠 (Ω) ⋅ 𝛽 − 𝜇−𝑠 (Ω) ⋅ 𝛾, which concludes the proof since 𝛼, 𝛽, 𝛾 can be made arbitrarily close to

𝐼𝜙,𝜈(
𝑑𝜇𝑐
𝑑𝜈
), 𝜙′(∞), and 𝜙′(−∞) respectively.

5.4.3 Variational representations: probability measures

When applied to probability measures, which are the main focus of this chapter, the variational repre-

sentations provided by Propositions 5.4.8 and 5.4.12 are loose. This fact was first explicitly mentioned

in [RRGP12 ], where the authors also suggested that tighter representations could be obtained by

specializing the derivation to probability measures.

Specifically, given a dual pair (𝒳, 𝒴) as in Section 5.4.2 , we restrictD𝜙,𝜈 to probability measures by

defining D̃𝜙,𝜈 ∶ 𝜇 ↦ D𝜙,𝜈(𝜇) + 𝛿ℳ1(𝜇) for 𝜇 ∈ 𝒳. For 𝑔 ∈ 𝒴we get

D̃
⋆
𝜙,𝜈(𝑔) = sup

𝜇∈𝒳
{𝜇(𝑔) − D̃𝜙,𝜈(𝜇)} = sup

𝜇∈𝒳1
{𝜇(𝑔) −D𝜙,𝜈(𝜇)} . (5.12)

Observe that compared to (5.5 ), the supremum is now taken over the smaller set𝒳1 = 𝒳 ∩ℳ1, and

thus D̃
⋆
𝜙,𝜈 ≤ D⋆

𝜙,𝜈. When D̃𝜙,𝜈 is lower semicontinuous we then get for 𝜇 ∈ 𝒳1

D𝜙(𝜇 ‖ 𝜈) = D̃𝜙,𝜈(𝜇) = D̃
⋆⋆
𝜙,𝜈(𝜇) = sup

𝑔∈𝒴
{𝜇(𝑔) − D̃

⋆
𝜙,𝜈(𝑔)} . (5.13)
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This representation should be contrasted with the one obtained in Section 5.4.2 ,

D𝜙(𝜇 ‖ 𝜈) = sup
𝑔∈𝒴

{𝜇(𝑔) −D⋆
𝜙,𝜈(𝑔)} ,

which holds for any 𝜇 ∈ 𝑋 and in which the optimand is smaller than in (5.13 ) for all 𝑔 ∈ 𝒴 (see also

Examples 5.4.16 and 5.4.18 below for an illustration).

In the rest of this section, we carry out the above program by giving an explicit expression for

D̃
⋆
𝜙,𝜈 defined in (5.12 ) and showing that D̃𝜙,𝜈 is lower semi-continuous. We will assume in the rest of

this chapter that dom𝜙 contains a neighborhood of 1, as otherwise the 𝜙-divergence on probability

measures becomes the discrete divergenceD𝜙(𝜇 ‖ 𝜈) = 𝛿{𝜈}(𝜇)which is only finite when 𝜇 = 𝜈 and

for which the questions studied in this work are trivial. We start with the following lemma giving a

simpler expression for D̃𝜙,𝜈.

Lemma 5.4.13. Define 𝜙+ ∶ 𝑥 ↦ 𝜙(𝑥) + 𝛿ℝ≥0(𝑥) for 𝑥 ∈ ℝ. Then for all 𝜇 ∈ 𝒳

D̃𝜙,𝜈(𝜇) = D𝜙+,𝜈(𝜇) + 𝛿{1}(𝜇(Ω)) .

Proof. Using the same notations as in Definition 5.4.2 , and since 𝜙′+(−∞) = −∞, it is easy to see that

D𝜙+,𝜈(𝜇) equals+∞whenever 𝜇−𝑠 ≠ 0 or 𝜈({𝜔 ∈ Ω || 𝑑𝜇𝑐
𝑑𝜈
(𝜔) < 0}) ≠ 0 and equalsD𝜙,𝜈(𝜇) otherwise.

In other words,D𝜙+,𝜈(𝜇) = D𝜙,𝜈(𝜇)+𝛿ℳ+(𝜇). This concludes the proof since 𝛿ℳ+(𝜇)+𝛿{1}(𝜇(Ω)) =

𝛿ℳ1(𝜇).

In the expression of D̃𝜙,𝜈 given by Lemma 5.4.13 , the non-negativity constraint on 𝜇 is “encoded”

directly in the definition of 𝜙+ (cf. [BL91 ]), only leaving the constraint 𝜇(Ω) = 1 explicit. Since

𝜇(Ω) = ∫𝟏Ω 𝑑𝜇, this is an affine constraint which is well-suited to a convex duality treatment. In

particular, we can use Proposition 5.3.16 to compute D̃
⋆
𝜙,𝜈.
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Proposition 5.4.14. Assume that 𝜈 ∈ ℳ1 and define 𝜙+ ∶ 𝑥 ↦ 𝜙(𝑥) + 𝛿ℝ≥0(𝑥). Then,

1. the convex conjugate of D̃𝜙,𝜈 with respect to a dual pair (𝑋, 𝑌) satisfying Assumption 5.4.5 1 . is, for all

𝑔 ∈ 𝑌,

D̃
⋆
𝜙,𝜈(𝑔) = inf

𝜆∈ℝ
{∫𝜙⋆+ (𝑔 + 𝜆) 𝑑𝜈 − 𝜆} . (5.14)

2. the convex conjugate of D̃𝜙,𝜈 with respect to a dual pair (𝒳, 𝒴) satisfying Assumption 5.4.5 2 . is, for

all 𝑔 ∈ 𝒴,

D̃
⋆
𝜙,𝜈(𝑔) = inf{∫𝜙⋆+ (𝑔 + 𝜆) 𝑑𝜈 − 𝜆 ||| 𝜆 + sup 𝑔(Ω) ≤ 𝜙′(∞)} . (5.15)

In (5.14 ) and (5.15 ) the infimum is reached whenever it is finite. In particular, this is the case in (5.14 )

whenever 𝑔 ∈ 𝐿∞(𝜈) and in (5.15 ) whenever 𝑔 ∈ ℒ𝑏(Ω).

Proof. The first part of the proof is identical for both statements of Proposition 5.4.14 . We use

Lemma 5.4.13 and apply Proposition 5.3.16 with 𝑓 = D𝜙+,𝜈, 𝑦 = 𝟏Ω and 𝜀 = 1. We need to

verify that 1 ∈ int({𝜇(𝟏Ω) | 𝜇 ∈ domD𝜙+,𝜈}). This is immediate since (1 ± 𝛼)𝜈 ∈ domD𝜙+,𝜈 for

sufficiently small 𝛼 by the assumption that 1 ∈ int dom𝜙.

Thus, by Proposition 5.3.16 , for all 𝑔 ∈ 𝑌 (resp. 𝑔 ∈ 𝒴)

D̃
⋆
𝜙,𝜈(𝑔) = inf

𝜆∈ℝ
{D⋆

𝜙+,𝜈(𝑔 + 𝜆) − 𝜆} ,

where the infimum is reached whenever it is finite.

1. Equation (5.14 ) follows immediately since in this case, D⋆
𝜙+,𝜈(𝑔) = 𝐼𝜙⋆+,𝜈(𝑔) for all 𝑔 ∈ 𝑌 by

Proposition 5.4.8 .

2. Similarly, Equation (5.15 ) followsbyusing the expressionofD⋆
𝜙+,𝜈(𝑔) givenbyProposition5.4.10 

after observing that 𝜙′+(∞) = 𝜙′(∞) and 𝜙′+(−∞) = −∞.

140



It remains to verify the claims about finiteness of D̃
⋆
𝜙,𝜈(𝑔). For 𝑔 ∈ 𝐿∞(𝜈), write𝑀 ≝ ess sup𝜈 𝑔.

Since int(dom𝜙⋆+ ) = (−∞, 𝜙′(∞)), for any𝐴 < 𝜙′(∞), the choice of 𝜆 = 𝐴−𝑀makes the optimand

in (5.14 ) finite. Similarly the choice 𝜆 = 𝐴 − sup 𝑔(Ω) for𝐴 < 𝜙′(∞)makes the optimand in (5.15 )

finite when 𝑔 ∈ ℒ𝑏(Ω).

Remark 5.4.15. Since dom𝜙⋆+ = (−∞, 𝜙′(∞)], the optimization variable 𝜆 in (5.14 ) is in fact implicitly

constrained to 𝜆 + ess sup𝜈 𝑔 ≤ 𝜙′(∞). In (5.15 ) this constraint is extended to the (true) supremum

of 𝑔 to account for singular measures in𝒳 (see also Remark 5.4.11 above).

Example 5.4.16. The effect of the restriction to probability measures is particularly pronounced for

the 𝐿1 distance, which is the 𝜙-divergence for 𝜙(𝑥) = |𝑥 − 1|. In the unrestricted case, a simple

calculation shows 𝜙 has convex conjugate 𝜙⋆(𝑥) = 𝑥 for |𝑥| ≤ 1 and 𝜙⋆(𝑥) = +∞when |𝑥| > 1, so

that the conjugate of the unrestricted divergenceD⋆
𝜙,𝜈(𝑔) is+∞ unless 𝑔(Ω) ⊆ [−1, 1]. In the case of

probabilitymeasures, the restriction of𝜙 to the non-negative reals𝜙+(𝑥) has conjugate𝜙⋆+ (𝑥) = 𝑥when

|𝑥| ≤ 1, 𝜙⋆+ (𝑥) = +∞when 𝑥 > 1, but 𝜙⋆+ (𝑥) = −1when 𝑥 < −1. Thus,D⋆
𝜙+,𝜈(𝑔) < +∞whenever

𝑔(Ω) ⊆ (−∞, 1]. Furthermore, because of the additive 𝜆 shift in Eq. (5.14 ), we have D̃
⋆
𝜙,𝜈(𝑔) < +∞

whenever sup 𝑔(Ω) < +∞, in particular whenever 𝑔 ∈ ℒ𝑏(Ω).

As a corollary, we obtain a different variational representation of the 𝜙-divergence, valid for proba-

bility measures and containing as a special case the Donsker–Varadhan representation of the Kullback–

Leibler divergence.

Corollary 5.4.17. Assume that 𝜈 ∈ ℳ1 and define 𝜙+ ∶ 𝑥 ↦ 𝜙(𝑥) + 𝛿ℝ≥0(𝑥). Then,

1. For a dual pair (𝑋, 𝑌) satisfyingAssumption 5.4.5 1 ., D̃𝜙,𝜈 is lower semicontinuous over𝑋. In particular
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for all probability measures 𝜇 ∈ 𝑋1 = 𝑋 ∩ℳ1

D𝜙(𝜇 ‖ 𝜈) = sup
𝑔∈𝑌

{𝜇(𝑔) − inf
𝜆∈ℝ

{𝐼𝜙⋆+,𝜈(𝑔 + 𝜆) − 𝜆}}.

2. For a dual pair (𝒳, 𝒴) satisfying Assumption 5.4.5 2 ., D̃𝜙,𝜈 is lower semicontinuous over 𝒳. In

particular for all probability measures 𝜇 ∈ 𝒳1 = 𝒳 ∩ℳ1

D𝜙(𝜇 ‖ 𝜈) = sup
𝑔∈𝒴

{𝜇(𝑔) − inf{𝐼𝜙⋆+,𝜈(𝑔 + 𝜆) − 𝜆 || 𝜆 + sup 𝑔(Ω) ≤ 𝜙′(∞)}}.

Proof. Since 𝟏Ω ∈ 𝑌 (resp. 𝟏Ω ∈ 𝒴), the linear form 𝜇 ↦ 𝜇(𝟏Ω) is continuous for any topology

compatible with the dual pair (𝑋, 𝑌) (resp. (𝒳, 𝒴)). Consequently, the function 𝜇 ↦ 𝛿{1}(𝜇(Ω)) is

lower semicontinuous as the composition of the lower semicontinuous function 𝛿{1} with a continuous

function. Finally, D𝜙+,𝜈 is lower semicontinuous by Propositions 5.4.8 and 5.4.12 . Hence D̃𝜙,𝜈 is

lower semicontinuous as the sum of two lower semicontinuous functions, by using the expression in

Lemma 5.4.13 . The variational representation immediately follows by expressing D̃𝜙,𝜈 as its biconjugate.

Example 5.4.18. As in Example 5.4.9 , we consider the case of the Kullback–Leibler divergence, given

by 𝜙(𝑥) = 𝜙+(𝑥) = 𝑥 ln𝑥. For a dual pair (𝑋, 𝑌) satisfying Assumption 5.4.5 1 ., since 𝜙⋆(𝑥) = 𝑒𝑥−1,

Proposition 5.4.14 implies that for 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝑌we have

D̃
⋆
𝜙,𝜈(𝑔) = inf

𝜆∈ℝ
∫𝑒𝑔+𝜆−1 𝑑𝜈 − 𝜆 = ln∫𝑒𝑔 𝑑𝜈 ,

where the last equality comes from the optimal choice of 𝜆 = − ln∫ 𝑒𝑔−1 𝑑𝜈. Using Corollary 5.4.17 

we obtain for all probability measure 𝜇 ∈ 𝑋1

KL(𝜇 ‖ 𝜈) = sup
𝑔∈𝑌

{𝜇(𝑔) − ln∫𝑒𝑔 𝑑𝜈}
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= sup
𝑔∈𝑌

{𝜇(𝑔) − 𝜈(𝑔) − ln∫𝑒(𝑔−𝜈(𝑔)) 𝑑𝜈} ,

which is the Donsker–Varadhan representation of the Kullback–Leibler divergence [DV76 ]. For

𝜇 ∈ 𝑋1, the variational representation obtained in (5.7 ) can be equivalently written

KL(𝜇 ‖ 𝜈) = sup
𝑔∈𝑌

{1 + 𝜇(𝑔) −∫𝑒𝑔 𝑑𝜈} .

Using the inequality ln(𝑥) ≤ 𝑥 − 1 for 𝑥 > 0, we see that the optimand in the previous supremum is

smaller than the optimand in the Donsker–Varadhan representation for all 𝑔 ∈ 𝑌. We thus obtained a

“tighter” variational representation by restricting the divergence to probability measures.

Example 5.4.19. Consider the family of divergences 𝜙(𝑥) = |𝑥 − 1|𝛼/𝛼 for 𝛼 ≥ 1. A simple compu-

tation gives 𝜙⋆(𝑦) = 𝑦 + |𝑦|𝛽/𝛽where 𝛽 ≥ 1 is such that 1
𝛼
+ 1

𝛽
= 1. In [JHW17 ], the authors used

the variational representation given by Proposition 5.4.8 , that isD𝜙(𝜇 ‖ 𝜈) = sup𝑔 𝜇(𝑔) − 𝜈(𝜙⋆(𝑔)).

However, Corollary 5.4.17 shows that the tight representation uses 𝜙⋆+ (𝑦) which has the piecewise

definition 𝑦 + |𝑦|𝛽/𝛽 when 𝑦 ≥ −1 and the constant −1/𝛼 when 𝑦 ≤ −1, and writes D𝜙(𝜇 ‖ 𝜈) =

sup𝑔 𝜇(𝑔) − inf𝜆 𝜈(𝜙⋆+ (𝑔 + 𝜆)). Note that the additive 𝜆 shift, in e.g. the case 𝛼 = 2, reduces the second

term from the raw second moment 𝜈(𝑔2) to something no larger than the variance 𝜈((𝑔 − 𝜈(𝑔))2),

which is potentially much smaller.

5.5 Optimal bounds for a single function and referencemeasure

As a first step to understand the relationship between a 𝜙-divergence and an IPM, we consider the case

of a single fixed probability measure 𝜈 ∈ ℳ1 and measurable function 𝑔 ∈ ℒ0, and study the optimal

lower bound ofD𝜙(𝜇 ‖ 𝜈) in terms on the mean deviation 𝜇(𝑔) − 𝜈(𝑔). We characterize this optimal

lower bound and its convex conjugate in Section 5.5.1 and then present implications for topological
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question regarding the divergence itself in subsequent sections.

In the remainder of this chapter, since we are interested in probability measures, which are in

particular non-negative, we assume without loss of generality that 𝜙 is infinite on the negative reals,

that is 𝜙(𝑥) = 𝜙+(𝑥) = 𝜙(𝑥) + 𝛿ℝ≥0(𝑥). As per the discussion in Section 5.4.3 (see in particular

Lemma 5.4.13 ), this does not change the value of the divergence on non-negative measures, that is

D𝜙(𝜇 ‖ 𝜈) = D𝜙+(𝜇 ‖ 𝜈) for 𝜇 ∈ ℳ+, but yields a tighter variational representation since 𝜙⋆+ ≤ 𝜙⋆.

Furthermore, since for probability measures D𝜙(𝜇 ‖ 𝜈) is invariant to affine shifts of the form

𝜙(𝑥) = 𝜙(𝑥) + 𝑐 ⋅ (𝑥 − 1) for 𝑐 ∈ ℝ, it will be convenient to assume that 0 ∈ 𝜕𝜙(1) (e.g. 𝜙′(1) = 0),

equivalently that 𝜙 is non-negative and has global minimum at 𝜙(1) = 0. This can always be achieved

by an appropriate choice of 𝑐 and is therefore without loss of generality. As an example, we now write

for the Kullback–Leibler divergence 𝜙(𝑥) = 𝑥 ln𝑥 − 𝑥 + 1 which is non-negative with 𝜙′(1) = 0, and

equivalent to the standard definition 𝜙(𝑥) = 𝑥 ln𝑥.

5.5.1 Derivation of the bound

We first define the optimal lower bound function, which comes in two flavors depending on whether

the mean deviation or the absolute mean deviation is considered.

Definition 5.5.1. For a probability measure 𝜈 ∈ ℳ1, a function 𝑔 ∈ ℒ1(𝜈), and set of probability

measures𝑀 integrating 𝑔, the optimal lower bound onD𝜙(𝜇 ‖ 𝜈) in terms of the mean deviation is the

functionℒ𝑔,𝜈,𝑀 defined for 𝜀 ∈ ℝ by:

ℒ𝑔,𝜈,𝑀(𝜀) ≝ inf{D𝜙(𝜇 ‖ 𝜈) || 𝜇 ∈ 𝑀 ∧ 𝜇(𝑔) − 𝜈(𝑔) = 𝜀}

= inf
𝜇∈𝑀

{D𝜙(𝜇 ‖ 𝜈) + 𝛿{0}(𝜇(𝑔) − 𝜈(𝑔) − 𝜀)} (5.16)

ℒ{±𝑔},𝜈,𝑀(𝜀) ≝ inf{D𝜙(𝜇 ‖ 𝜈) || 𝜇 ∈ 𝑀 ∧ |𝜇(𝑔) − 𝜈(𝑔)| = 𝜀}
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= min{ℒ𝑔,𝜈,𝑀(𝜀),ℒ𝑔,𝜈,𝑀(−𝜀)} (5.17)

where we follow the standard convention that the infimum of the empty set is+∞. For the common

case where𝑀 = 𝑋1
𝑔(𝜈) (see Definition 5.4.6 ) we drop the𝑀 subscript and simply writeℒ𝑔,𝜈, and

similarly the case𝑀 = 𝒳1
𝑔 is abbreviated asℒ𝑔,𝜈,⟂.

Lemma 5.5.2. For every 𝜈 ∈ ℳ1, 𝑔 ∈ ℒ1(𝜈), and convex set 𝑀 of probability measures integrating 𝑔,

the functionℒ𝑔,𝜈,𝑀 is convex and non-negative. Furthermore, ℒ𝑔,𝜈,𝑀(0) = 0 whenever 𝜈 ∈ 𝑀, and if

𝜙′(∞) = ∞ thenℒ𝑔,𝜈,𝑀 = ℒ𝑔,𝜈,𝑀∩ℳ𝑐(𝜈).

Proof. Convexity is immediate from Lemma 5.3.8 applied to Eq. (5.16 ), non-negativity follows from

non-negativity ofD𝜙(⋅ ‖ 𝜈), the choice 𝜇 = 𝜈 impliesℒ𝑔,𝜈,𝑀(0) = 0when 𝜈 ∈ 𝑀, and if 𝜙′(∞) = ∞

thenD𝜙(𝜇 ‖ 𝜈) = +∞when 𝜇 ∈ 𝑀 ⧵ℳ𝑐(𝜈).

We compute the convex conjugate ofℒ𝑔,𝜈 by applying Fenchel duality to Eq. (5.16 ).

Proposition 5.5.3. Let 𝜈 ∈ ℳ1. Then for 𝑔 ∈ 𝐿1(𝜈) and 𝑡 ∈ ℝ,

ℒ⋆
𝑔,𝜈(𝑡) = inf{∫𝜙⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 − 𝑡 ⋅ 𝜈(𝑔) − 𝜆 ||| 𝜆 ∈ ℝ} , (5.18)

and similarly for 𝑔 ∈ ℒ1(𝜈) and 𝑡 ∈ ℝ,

ℒ⋆
𝑔,𝜈,⟂(𝑡) = inf{∫𝜙⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 − 𝑡 ⋅ 𝜈(𝑔) − 𝜆 ||| 𝜆 + sup(𝑡 ⋅ 𝑔(Ω)) ≤ 𝜙′(∞)} . (5.19)

Furthermore, we have for𝑀 ∈ {𝑋1
𝑔(𝜈), 𝒳1

𝑔} and 𝜀 ∈ ℝ thatℒ𝑔,𝜈,𝑀(𝜀) = ℒ⋆⋆
𝑔,𝜈,𝑀(𝜀) if and only if strong

duality holds in the optimization problem Eq. (5.16 ).

Remark 5.5.4. Proposition 5.5.3 holds more generally forℒ𝑔,𝜈,𝑋1 (resp.ℒ𝑔,𝜈,𝒳1) where (𝑋, 𝑌) (resp.

(𝒳, 𝒴)) is a dual pair satisfying Assumption 5.4.5 1 . (resp. Assumption 5.4.5 2 .) and 𝑔 ∈ 𝑌 (resp.
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𝑔 ∈ 𝒴). This shows in particular that the convex conjugate ofℒ𝑔,𝜈,𝑋1 does not depend on 𝑋 as long as

𝑋 is sufficiently large. Thus, in the rest of this section we focus on the largest possible choice, that is

𝑋 = 𝑋𝑔(𝜈) and 𝑋 = 𝒳𝑔 (see Definition 5.4.6 ).

Remark 5.5.5. Note that if 𝜙′(∞) = ∞ then the infimum in Eq. (5.19 ) is taken over all 𝜆 ∈ ℝ and so

Eq. (5.19 ) and Eq. (5.18 ) coincide, which is consistent with the fact that, in this case,D𝜙,𝜈 is infinite

on singular measures. More generally, since dom𝜙⋆ ⊆ [−∞, 𝜙′(∞)], Eq. (5.18 ) is equivalent to

optimizing over 𝜆 such that 𝜆 + ess sup𝜈 𝑡𝑔 ≤ 𝜙′(∞), where in Eq. (5.19 ) the essential supremum is

replaced by the true supremum.

Proof. For 𝑋 ∈ {𝑋𝑔(𝜈), 𝒳𝑔}, let Φ ∶ 𝑋 → ℝ defined by Φ(𝑥) = D̃𝜙,𝜈(𝑥 + 𝜈) so that Φ is convex, lsc,

non-negative, and 0 at 0. Furthermore,Φ⋆(ℎ) = D̃
⋆
𝜙,𝜈(ℎ)−𝜈(ℎ) forℎ ∈ 𝑌, andℒ𝑔,𝜈,𝑋1(𝜀) = inf{Φ(𝑥)|

𝑥 ∈ 𝑋 ∧ ⟨𝑥, 𝑔⟩ = 𝜀}. The result then follows by Propositions 5.3.16 and 5.4.14 .

Remark 5.5.6. Unlike in Proposition 5.4.14 , it is not always true that the interiority constraint qualifica-

tion conditions hold, and indeed strong duality does not always hold for the optimization problem

(5.16 ). For example, for Ω = (−1/2, 1/2), 𝜈 the Lebesgue measure, 𝑔 the canonical injection into

ℝ, and 𝜙 ∶ 𝑥 ↦ 1
2
|𝑥 − 1| corresponding to the total variation distance, we have ℒ𝑔,𝜈(±1/2) =

ℒ𝑔,𝜈,⟂(±1/2) = ∞ butℒ𝑔,𝜈,⟂(𝑥) ≤ ℒ𝑔,𝜈(𝑥) ≤ 1 for |𝑥| < 1/2. However, as noted in Theorem 5.5.12 

below, this generally does not matter since it only affects the boundary of the domain ofℒ𝑔,𝜈 orℒ𝑔,𝜈,⟂,

which contains at most two points. Furthermore, we will show in Corollary 5.5.35 via a compactness

argument that when 𝜙′(∞) = ∞ and domℒ⋆
𝑔,𝜈 = ℝ—e.g. when 𝑔 ∈ 𝐿∞(𝜈)—strong duality holds in

(5.16 ).

We can simplify the expressions in Proposition 5.5.3 by introducing the function𝜓 ∶ 𝑥 ↦ 𝜙(𝑥+1).

We state some useful properties of its conjugate 𝜓⋆ below, which follow immediately from basic results
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in convex analysis onℝ (recall that at the beginning of Section 5.5 we assumed, without loss of generality,

that 0 ∈ 𝜕𝜙(1) and dom𝜙 ⊆ ℝ≥0, which is necessary for Lemma 5.5.7 to hold).

Lemma 5.5.7. The function 𝜓⋆ ∶ 𝑥 ↦ 𝜙⋆(𝑥) − 𝑥 is non-negative, convex, and inf-compact. Furthermore,

it satisfies 𝜓⋆(0) = 0, 𝜓⋆(𝑥) ≤ −𝑥 when 𝑥 ≤ 0, and int(dom𝜓⋆) = (−∞, 𝜙′(∞)).

The right-hand side of Eq. (5.18 ), expressed in terms of 𝜓⋆, will be central to our theory, so we give

it a name in the following definition.

Definition 5.5.8 (Cumulant generating function). For 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿0(𝜈), we define the (𝜙, 𝜈)-

cumulant generating function 𝐾𝑔,𝜈 ∶ ℝ → ℝ for 𝑡 ∈ ℝ by

𝐾𝑔,𝜈(𝑡) ≝ inf
𝜆∈ℝ

∫𝜓⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 , (5.20)

where 𝜓 ∶ 𝑥 ↦ 𝜙(𝑥 + 1). Similarly, given 𝑔 ∈ ℒ0(Ω), the (𝜙, 𝜈, ⟂)-cumulant generating function is

given, for 𝑡 ∈ ℝ, by

𝐾𝑔,𝜈,⟂(𝑡) ≝ inf{∫𝜓⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 ||| 𝜆 + sup(𝑡 ⋅ 𝑔(Ω)) ≤ 𝜙′(∞)} .

In particular 𝐾𝑔,𝜈,⟂ ≥ 𝐾𝑔,𝜈, and 𝐾𝑔,𝜈,⟂ = 𝐾𝑔,𝜈 if 𝜙′(∞) = ∞. Note also that sup(𝑡 ⋅ 𝑔(Ω)) is the

piecewise-linear function

sup(𝑡 ⋅ 𝑔(Ω)) =

⎧
⎪

⎨
⎪
⎩

𝑡 ⋅ sup 𝑔(Ω) 𝑡 ≥ 0

𝑡 ⋅ inf 𝑔(Ω) 𝑡 ≤ 0

.

Example 5.5.9. For the Kullback–Leibler divergence, we see by Example 5.4.18 that 𝐾𝑔,𝜈(𝑡) =

ln 𝜈(𝑒𝑡(𝑔−𝜈(𝑔))), which is the standard (centered) cumulant generating function, thereby justifying the

name.
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Note that the (𝜙, 𝜈)-cumulant generating function 𝐾𝑔,𝜈 depends only on the pushforward measure

𝑔∗𝜈 of 𝜈 through 𝑔. In particular, when 𝜈 is the probability distribution of a random variable 𝑋, as in

Example 5.3.4 , 𝐾𝑔,𝜈(𝑡) can be equivalently written as

𝐾𝑔,𝜈(𝑡) = inf
𝜆∈ℝ

𝔼[𝜓⋆(𝑡 ⋅ 𝑔(𝑋) + 𝜆)] , (5.21)

highlighting the fact that 𝐾𝑔,𝜈 only depends on 𝑔(𝑋). This contrasts with the (𝜙, 𝜈, ⟂)-cumulant gener-

ating function, for which the constraint on the minimization parameter 𝜆 depends on the range 𝑔(Ω),

which is not a property of the random variable 𝑔(𝑋) since it depends on the value of 𝑔 on 𝜈-null sets.

Furthermore, since for 𝑡 ∈ ℝ, the function 𝜆 ↦ 𝐼𝜓⋆,𝜈(𝑡𝑔 + 𝜆) is convex in 𝜆, the (𝜙, 𝜈)-cumulant

generating function is defined by a single-dimensional convex optimization problem whose objective

function is expressed as an integral with respect to a probability measure (5.20 , 5.21 ). Hence, the rich

spectrum of stochastic approximation methods, such as stochastic gradient descent, can be readily

applied, leading to efficient numerical procedures to evaluate 𝐾𝑔,𝜈(𝑡), as long as the pushforward

measure 𝑔∗𝜈 is efficiently samplable.

Remark 5.5.10. Since the mean deviation, and thus the optimal boundℒ𝑔,𝜈 is invariant to shifting

𝑔 by a constant, we are in fact implicitly working in the quotient space 𝐿1(𝜈)/ℝ𝟏Ω. As such, 𝑔 ↦

inf𝜆∈ℝ 𝐼𝜓⋆,𝜈(𝑔 + 𝜆) can be interpreted as the integral functional induced by 𝐼𝜓⋆,𝜈 on this quotient space,

by considering its infimum over all representatives of a given equivalence class. This is analogous to the

definition of a norm on a quotient space.

The following proposition states some basic properties of the cumulant generating function.

Proposition 5.5.11. For every 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿0(𝜈), 𝐾𝑔,𝜈 ∶ ℝ → ℝ is non-negative, convex, lower

semicontinuous, and satisfies 𝐾𝑔,𝜈(0) = 0. Furthermore, it is inf-compact unless there is 𝑐 ∈ ℝ such that

𝑔 = 𝑐 𝜈-a.s., in which case 𝐾𝑔,𝜈 ≡ 0.
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Proof. Define 𝑓(𝑡, 𝜆) ≝ ∫𝜓⋆(𝑡𝑔 + 𝜆) 𝑑𝜈, so that 𝐾𝑔,𝜈(𝑡) = inf𝜆∈ℝ 𝑓(𝑡, 𝜆). Then since 𝜓⋆ is a non-

negative proper convex function which is 0 at 0, we have that 𝑓 ∶ ℝ2 → ℝ is as well, so that 𝐾𝑔,𝜈(𝑡)

is non-negative, convex by Lemma 5.3.8 , and satisfies 𝐾𝑔,𝜈(0) = 0. Furthermore, we get that if 𝑔 = 𝑐

holds 𝜈-almost surely for 𝑐 ∈ ℝ, then 0 ≤ 𝐾𝑔,𝜈(𝑡) ≤ 𝑓(𝑡, −𝑡𝑐) = ∫𝜓⋆(𝑡𝑔 − 𝑡𝑐) 𝑑𝜈 = 𝜓⋆(0) = 0 so

that 𝐾𝑔,𝜈(𝑡) = 0 for all 𝑡, and the constant 0 function is lsc but not inf-compact.

Now, assume 𝑔 is not almost-surely constant, so that we wish to show that 𝐾𝑔,𝜈 is inf-compact,

for which it suffices by Lemma 5.3.8 to show that the function 𝑓(𝑡, 𝜆) is inf-compact as a function on

ℝ2. For lower semicontinuity, given a sequence (𝑡𝑛, 𝜆𝑛) → (𝑡, 𝜆), we have by Fatou’s lemma and the

non-negativity and lower semicontinuity of 𝜓⋆ that

lim inf
𝑛→∞

𝑓(𝑡𝑛, 𝜆𝑛) = lim inf
𝑛→∞

∫𝜓⋆(𝑡𝑛𝑔 + 𝜆𝑛) 𝑑𝜈

≥ ∫ lim inf
𝑛→∞

𝜓⋆(𝑡𝑛𝑔 + 𝜆𝑛) 𝑑𝜈 ≥ ∫𝜓⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 = 𝑓(𝑡, 𝜆) ,

so sinceℝ2 is a metric space the sets {(𝑡, 𝜆) ∈ ℝ2 || 𝑓(𝑡, 𝜆) ≤ 𝛼} are closed, and it remains only to show

that they are bounded. Since 𝑔 is not almost surely constant, there exists 𝑝 > 0 and disjoint compact

intervals [𝑎1, 𝑏1] and [𝑎2, 𝑏2] such that Pr𝜈(𝑔 ∈ [𝑎𝑖, 𝑏𝑖]) ≥ 𝑝 for 𝑖 ∈ {1, 2}. Furthermore, since 𝜓⋆

is inf-compact, there exists 𝜏 ≥ 0 such that |𝑥| ≥ 𝜏 implies 𝜓⋆(𝑥) ≥ 2(1 + 𝛼)/𝑝. Thus, by Markov’s

inequality we have that 𝑓(𝑡, 𝜆) ≤ 𝛼 only if Pr𝜈(|𝑡𝑔 + 𝜆| ≥ 𝜏) ≤ 𝑝/2, which in particular requires

that there exist 𝑥𝑖 ∈ [𝑎𝑖, 𝑏𝑖] such that |𝑡𝑥𝑖 + 𝜆| ≤ 𝜏 for 𝑖 ∈ {1, 2}. But since [𝑎1, 𝑏1] and [𝑎2, 𝑏2] are

disjoint, there is a 𝑡0 > 0 such that for |𝑡| > 𝑡0, the intervals [𝑡𝑎1, 𝑡𝑏1] and [𝑡𝑎2, 𝑡𝑏2] are at distance

at least 4𝜏 so no 𝜆 satisfies the constraint, and then for smaller |𝑡| ≤ 𝑡0 we have that |𝑡𝑥𝑖 + 𝜆| ≤ 𝜏

implies |𝜆| ≤ 𝜏 + |𝑡𝑥𝑖| ≤ 𝜏 + 𝑡0 ⋅ sup𝑥𝑖∈[𝑎𝑖,𝑏𝑖]|𝑥𝑖| so that the set of (𝑡, 𝜆)with |𝑡𝑥𝑖 + 𝜆| < 𝜏 is uniformly

bounded.
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With these definitions, we can state the main result of this section giving an expression for the

optimal lower bound function.

Theorem 5.5.12. Let 𝜈 ∈ ℳ1. Then for every 𝑔 ∈ 𝐿1(𝜈) and 𝜀 ∈ int(domℒ𝑔,𝜈),

ℒ𝑔,𝜈(𝜀) = 𝐾⋆
𝑔,𝜈(𝜀) . (5.22)

Similarly, for every 𝑔 ∈ ℒ1(𝜈) and 𝜀 ∈ int(domℒ𝑔,𝜈,⟂),

ℒ𝑔,𝜈,⟂(𝜀) = 𝐾⋆
𝑔,𝜈,⟂(𝜀) , (5.23)

and if 𝜙′(∞) = ∞ thenℒ𝑔,𝜈,⟂ = ℒ𝑔,𝜈.

Furthermore, ifℒ is lower semi-continuous, equivalently if strong duality holds in (5.16 ), then (5.22 )

and (5.23 ) hold for all 𝜀 ∈ ℝ.

Remark 5.5.13. As in Remark 5.5.4 , the above theorem holds more generally forℒ𝑔,𝜈,𝑋1 andℒ𝑔,𝜈,𝒳1

for any spaces 𝑋 and𝒳 satisfying Assumption 5.4.5 .

Proof. Lemma 5.5.2 implies that if 𝜙′(∞) = ∞ that ℒ𝑔,𝜈 = ℒ𝑔,𝜈,⟂, and more generally that ℒ is

proper and convex forℒ ∈ {ℒ𝑔,𝜈,ℒ𝑔,𝜈,⟂}. Thus, by the Fenchel–Moreau theorem, we haveℒ = ℒ⋆⋆

except possibly at the boundary of its domain, so this is simply a restatement of Proposition 5.5.3 using

the terminology from Definition 5.5.8 .

The following easy corollary is an “operational” restatement of Theorem 5.5.12 highlighting the du-

ality between upper bounding the cumulant generating function and lower bounding the 𝜙-divergence

by a convex lower semicontinuous function of the mean deviation.

Corollary 5.5.14. Let 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿1(𝜈) (resp. 𝑔 ∈ ℒ1(𝜈)). Then for every convex lower semicontin-

uous function 𝐿 ∶ ℝ → ℝ≥0, the following are equivalent:
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(i) D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(𝜇(𝑔) − 𝜈(𝑔)) for every 𝜇 ∈ ℳ1
𝑐 (𝜈) (resp. 𝜇 ∈ ℳ1) integrating 𝑔.

(ii) 𝐾𝑔,𝜈 ≤ 𝐿⋆ (resp. 𝐾𝑔,𝜈,⟂ ≤ 𝐿⋆).

Example 5.5.15. The Hammersley–Chapman–Robbins bound in statistics is an immediate corollary

of Corollary 5.5.14 applied to the 𝜒2-divergence given by 𝜙(𝑥) = (𝑥 − 1)2 + 𝛿ℝ≥0(𝑥): The convex

conjugate of 𝜓(𝑥) = 𝑥2 + 𝛿[−1,∞)(𝑥) is

𝜓⋆(𝑥) =

⎧
⎪

⎨
⎪
⎩

𝑥2/4 𝑥 ≥ −2

−1 − 𝑥 𝑥 < −2

and satisfies in particular 𝜓⋆(𝑥) ≤ 𝑥2/4, so that 𝐾𝑔,𝜈(𝑡) ≤ inf𝜆 ∫(𝑡𝑔 + 𝜆)2/4 𝑑𝜈 = 𝑡2 Var𝜈(𝑔)/4. Since

the convex conjugate of 𝑡 ↦ 𝑡2 Var𝜈(𝑔)/4 is 𝑡 ↦ 𝑡2/Var𝜈(𝑔), we obtain for all 𝜇, 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿1(𝜈)

that 𝜒2(𝜇 ‖ 𝜈) ≥ (𝜇(𝑔) − 𝜈(𝑔))2/Var𝜈(𝑔).

Theorem 5.5.12 also gives a useful characterization of the existence of a non-trivial lower bound by

the absolute mean deviation.

Corollary 5.5.16. For 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿1(𝜈), the optimal lower boundℒ{±𝑔},𝜈 is non-zero if and only if

0 ∈ int(dom𝐾𝑔,𝜈). Similarly, for 𝑔 ∈ ℒ1(𝜈) the optimal lower boundℒ{±𝑔},𝜈,⟂ is non-zero if and only if

0 ∈ int(dom𝐾𝑔,𝜈,⟂). In other words, the following are equivalent

(i) there exists a non-zero function 𝐿 ∶ ℝ≥0 → ℝ≥0 such thatD𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(|𝜇(𝑔) − 𝜈(𝑔)|) for every

𝜇 ∈ ℳ1
𝑐 (𝜈) (resp. 𝜇 ∈ ℳ1) integrating 𝑔.

(ii) the function 𝐾𝑔,𝜈 (resp. 𝐾𝑔,𝜈,⟂) is finite on an open interval around 0.

Proof. For 𝑀 ∈ {𝑋1
𝑔(𝜈), 𝒳1

𝑔} we have by Eq. (5.17 ) that the function ℒ{±𝑔},𝜈,𝑀 is non-zero if and

only if there exists 𝜀 > 0 such that ℒ𝑔,𝜈,𝑀(𝜀) ≠ 0 ≠ ℒ𝑔,𝜈,𝑀(−𝜀). Since ℒ𝑔,𝜈,𝑀 is convex, non-
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negative, and 0 at 0 by Lemma 5.5.2 , such an 𝜀 exists if and only if 0 is contained in the interval

(ℒ′
𝑔,𝜈,𝑀(−∞),ℒ′

𝑔,𝜈,𝑀(∞)), the interior of the domain ofℒ⋆
𝑔,𝜈,𝑀.

Remark 5.5.17. We will see in Theorem 5.6.15 that when we consider a true IPM where we require

the bound 𝐿 to hold for all 𝜈, the distinction between the absolutely continuous caseℳ1
𝑐 (𝜈) and the

general caseℳ1 disappears.

5.5.2 Subexponential functions and connections to Orlicz spaces

In Sections 5.5.2 to 5.5.4 , we explore properties of the set of functions satisfying the conditions of

Corollary 5.5.16 , i.e. for which there is a non-trivial lower bound of the 𝜙-divergence in terms of the

absolute mean deviation, and show its relation to topological properties of the divergence. A reader

primarily interested in quantitative bounds for IPMs can skip to Section 5.6 .

In light of Corollary 5.5.16 , we need to consider the set of functions 𝑔 such that dom𝐾𝑔,𝜈 or

dom𝐾𝑔,𝜈,⟂ contains a neighborhood of zero. The following lemma shows that this is the case for

bounded functions, and that furthermore, when 𝜙′(∞) < ∞, boundedness is necessary. In other

words, when 𝜙′(∞) < ∞, the 𝜙-divergence cannot upper bound the absolute mean deviation of an

unbounded function. This is in sharp contrast with the KL divergence (satisfying 𝜙′(∞) = ∞), for

which such upper bounds exist as long as the function satisfies Gaussian-type tail bounds [BLM13 ,

§4.10].

Lemma 5.5.18. Let 𝜈 ∈ ℳ1 be a probability measure. If 𝑔 ∈ 𝐿∞(𝜈) (resp. 𝑔 ∈ ℒ𝑏(Ω)) then dom𝐾𝑔,𝜈

(resp. dom𝐾𝑔,𝜈,⟂) is all ofℝ, and in particular contains a neighborhood of zero. Furthermore, when𝜙′(∞) <

∞, we have conversely that if 0 is in the interior of the domain of 𝐾𝑔,𝜈 (resp. dom𝐾𝑔,𝜈,⟂), then 𝑔 ∈ 𝐿∞(𝜈)

(resp. 𝑔 ∈ ℒ𝑏(Ω)), in which case 𝐾𝑔,𝜈(𝑡) = 𝐾𝑔,𝜈,⟂(𝑡) whenever |𝑡| ⋅ (sup 𝑔(Ω) − inf 𝑔(Ω)) ≤ 𝜙′(∞).

152



Remark 5.5.19. As already discussed, Lemma 5.5.18 implies that when 𝜙′(∞) < ∞, boundedness of 𝑔

is necessary for the existence of a non-trivial lower bound onD𝜙(𝜇 ‖ 𝜈) in terms of the |𝜇(𝑔) − 𝜈(𝑔)|.

Moreover, we can deduce from Lemma 5.5.18 that in this case, any non-trivial lower bound must

depend on ‖𝑔‖∞ and cannot depend only on properties of 𝑔 such as its 𝜈-variance. In particular, any

non-trivial lower bound must converge to 0 as ‖𝑔‖∞ converges to+∞, for if it were not the case, one

could obtain a non-trivial lower bound for an unbounded function 𝑔 by approximating it with bounded

functions 𝑔 ⋅ 𝟏{|𝑔| ≤ 𝑛}.

Proof. Recall that (−∞, 0] ⊆ dom𝜓⋆ and that 𝜓⋆(𝑥) ≤ −𝑥 for 𝑥 ≤ 0 by Lemma 5.5.7 . For 𝑔 ∈ 𝐿∞(𝜈)

(resp. 𝑔 ∈ ℒ𝑏(𝜈)), write 𝐵 for ess sup𝜈|𝑔| (resp. sup𝜔∈Ω|𝑔(𝜔)|), and for 𝑡 ∈ ℝ, write 𝜆 ≝ −|𝑡| ⋅ 𝐵. Then

we have that −2|𝑡|𝐵 ≤ 𝑡 ⋅ 𝑔(𝜔) + 𝜆 ≤ 0 ≤ 𝜙′(∞) holds 𝜈-a.s. (resp. for all 𝜔 ∈ Ω), and thus also

𝜓⋆(𝑡𝑔(𝜔)+ 𝜆) ≤ 2|𝑡| ⋅ 𝐵 holds 𝜈-a.s. Thus𝐾𝑔,𝜈(𝑡) (resp.𝐾𝑔,𝜈,⟂(𝑡)) is at most 2|𝑡| ⋅ 𝐵 < ∞ by definition,

and since 𝑡 is arbitrary, we get dom𝐾𝑔,𝜈 = ℝ (resp. dom𝐾𝑔,𝜈,⟂ = ℝ).

We now assume 𝜙′(∞) < ∞ and prove the converse claim. If 𝐾𝜈,𝑔(𝑡) (resp. 𝐾𝜈,𝑔,⟂(𝑡)) is finite

for some 𝑡 ∈ ℝ, then 𝑡𝑔 + 𝜆 ≤ 𝜙′(∞) holds 𝜈-a.s. (resp. for all 𝜔 ∈ Ω). In particular, if it holds for

some 𝑡 > 0, then ess sup𝜈 𝑔 (resp. sup 𝑔(Ω)) is finite, and if it holds for some 𝑡 < 0, then ess inf𝜈 𝑔 (resp.

inf 𝑔(Ω)) is finite.

For the remaining claim, since𝜓⋆ is non-decreasing on thenon-negative realswehave that𝐾𝑔,𝜈(𝑡) =

inf{𝐼𝜓⋆,𝜈(𝑡𝑔+𝜆)||𝜆 ∈ ℝ} = inf{𝐼𝜓⋆,𝜈(𝑡𝑔+𝜆)|| inf(𝜆+𝑡⋅𝑔(Ω)) ≤ 0}. But if sup(𝑡 ⋅𝑔(Ω))− inf(𝑡 ⋅𝑔(Ω)) ≤

𝜙′(∞), then inf(𝜆 + 𝑡 ⋅ 𝑔(Ω)) ≤ 0 implies 𝜆 + sup(𝑡 ⋅ 𝑔(Ω)) ≤ 𝜙′(∞) and 𝐾𝑔,𝜈(𝑡) ≥ 𝐾𝑔,𝜈,⟂(𝑡) ≥

𝐾𝑔,𝜈(𝑡).

Since Lemma 5.5.18 completely characterizes the existence of a non-trivial lower bound when

𝜙′(∞) < ∞, we focus on the case𝜙′(∞) = ∞ in the remainder of this section. Recall that𝐾𝑔,𝜈 = 𝐾𝑔,𝜈,⟂

153



in this case, so we only need to consider 𝐾𝑔,𝜈 in the following definition.

Definition5.5.20 ((𝜙, 𝜈)-subexponential functions). Let𝜈 ∈ ℳ1 be aprobabilitymeasure. We say that

the function 𝑔 ∈ 𝐿0(𝜈) is (𝜙, 𝜈)-subexponential if 0 ∈ int(dom𝐾𝑔,𝜈) and we denote by 𝑆𝜙(𝜈) the space

of all such functions. We further say that 𝑔 ∈ 𝐿0(𝜈) is strongly (𝜙, 𝜈)-subexponential if dom𝐾𝑔,𝜈 = ℝ

and denote by 𝑆𝜙⋆(𝜈) the space of all such functions.

Example 5.5.21. For the case of the KL-divergence, if the pushforward 𝑔∗𝜈 of 𝜈 induced by 𝑔 onℝ

is the Gaussian distribution (respectively the gamma distribution), then 𝑔 is strongly subexponential

(respectively subexponential). Furthermore, it follows from Example 5.5.9 that 𝑔 ∈ 𝑆𝜙(𝜈) iff the

moment-generating function of 𝑔 is finite on a neighborhood of 0, which is the standard definition of

subexponential functions (see e.g. [Ver18 , §2.7]) and thus justifies our terminology.

Example 5.5.22. Lemma 5.5.18 shows that 𝐿∞(𝜈) ⊆ 𝑆𝜙⋆(𝜈) and that furthermore, if 𝜙′(∞) < ∞, then

𝐿∞(𝜈) = 𝑆𝜙⋆(𝜈) = 𝑆𝜙(𝜈).

We start with the following key lemma allowing us to relate the finiteness of 𝐾𝑔,𝜈 to the finiteness

of the function 𝑡 ↦ 𝐼𝜓⋆,𝜈(𝑡𝑔).

Lemma5.5.23. For𝜈 ∈ ℳ1, 𝑔 ∈ 𝐿0(𝜈), and 𝑡 ∈ dom𝐾𝑔,𝜈, we have that if𝜙′(∞) = ∞ (resp.𝜙′(∞) > 0)

then 𝛼𝑡𝑔 ∈ dom 𝐼𝜓⋆,𝜈 for all 𝛼 ∈ (0, 1) (resp. for sufficiently small 𝛼 > 0).

Proof. Let 𝜆 ∈ ℝ be such that∫𝜓⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 < ∞ (such a 𝜆 exists since 𝑡 ∈ dom𝐾𝑔,𝜈). Using the

convexity of 𝜓⋆, we get for any 𝛼 ∈ (0, 1)

∫𝜓⋆(𝛼𝑡𝑔) 𝑑𝜈 = ∫𝜓⋆(𝛼(𝑡𝑔 + 𝜆) + (1 − 𝛼) −𝛼𝜆1 − 𝛼) 𝑑𝜈

≤ 𝛼∫𝜓⋆(𝑡𝑔 + 𝜆) 𝑑𝜈 + (1 − 𝛼)𝜓⋆( −𝛼𝜆1 − 𝛼) .
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The first summand is finite by definition, and if−𝛼𝜆/(1 − 𝛼) ∈ dom𝜓⋆ ⊇ (−∞, 𝜙′(∞)) then so is the

second summand. If 𝜙′(∞) = ∞ this holds for all 𝛼 ∈ (0, 1), and if 𝜙′(∞) > 0 it holds for sufficiently

small 𝛼 > 0.

Remark 5.5.24. When 𝜙′(∞) < ∞, it is not necessarily true that any 𝛼 ∈ (0, 1) can be used in

Lemma 5.5.23 . For example, Lemma 5.5.18 implies that dom𝐾𝑔,𝜈 = ℝ for all 𝑔 ∈ 𝐿∞(𝜈), but since

dom𝜓⋆ ⊆ (−∞, 𝜙′(∞)]we have 𝐼𝜓⋆,𝜈(𝑡𝑔) = ∞ for sufficiently large (possibly only positive or nega-

tive) 𝑡, unless 𝑔 is zero 𝜈-a.s.

The following proposition gives useful characterizations of subexponential functions in terms of

the finiteness of different integral functionals of 𝑔.

Proposition 5.5.25. Suppose that 𝜙′(∞) = ∞ and fix 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿0(𝜈). Then the following are

equivalent:

(i) 𝑔 is (𝜙, 𝜈)-subexponential

(ii) 𝐾|𝑔|,𝜈(𝑡) < ∞ for some 𝑡 > 0

(iii) 𝑔 ∈ 𝐿𝜃(𝜈) for 𝜃 ∶ 𝑥 ↦ max{𝜓⋆(𝑥), 𝜓⋆(−𝑥)} (here 𝐿𝜃(𝜈) is the Orlicz space defined in Section 5.3.3 )

Proof. (𝑖) ⟹ (𝑖𝑖) If dom𝐾𝑔,𝜈 contains an open interval around 0, Lemma 5.5.23 and the convexity

of dom 𝐼𝜓⋆,𝜈 imply that there exists 𝑠 > 0 such that∫𝜓⋆(𝑡𝑔) 𝑑𝜈 < ∞ for all |𝑡| < 𝑠. By non-negativity

of 𝜓⋆, ∫𝜓⋆(𝑡|𝑔|) 𝑑𝜈 ≤ ∫𝜓⋆(𝑡𝑔) + 𝜓⋆(−𝑡𝑔) 𝑑𝜈 < ∞ for all 𝑡 ∈ (−𝑠, 𝑠), which in turns implies

(−𝑠, 𝑠) ⊆ dom𝐾|𝑔|,𝜈.

(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Define 𝜂(𝑥) ≝ 𝜓⋆(|𝑥|). Since 𝜓⋆(𝑥) ≤ −𝑥 for 𝑥 ≤ 0 by Lemma 5.5.7 , we have

that 𝜂(𝑥) ≤ 𝜃(𝑥) ≤ 𝜂(𝑥) + |𝑥| for all 𝑥 ∈ ℝ. Since we also have 𝐿𝜂(𝜈) ⊆ 𝐿1(𝜈), this implies that
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𝑔 ∈ 𝐿𝜂(𝜈) if and only if 𝐿𝜃(𝜈). We conclude after observing that 𝐾|𝑔|,𝜈(𝑡) < ∞ for some 𝑡 > 0 implies

that 𝑔 ∈ 𝐿𝜂(𝜈) by Lemma 5.5.23 .

(𝑖𝑖𝑖) ⟹ (𝑖) Observe that for all 𝑡 ∈ ℝ,

max{𝐾𝑔,𝜈(𝑡), 𝐾𝑔,𝜈(−𝑡)} ≤ max{∫𝜓⋆(𝑡𝑔) 𝑑𝜈,∫𝜓⋆(−𝑡𝑔) 𝑑𝜈} ≤ ∫𝜃(𝑡𝑔) 𝑑𝜈 , (5.24)

where the first inequality is by definition of 𝐾𝑔,𝜈 and the second inequality is by monotonicity of the

integral and the definition of 𝜃. Since dom𝐾𝑔,𝜈 is convex, if there exists 𝑡 > 0 such that 𝐼𝜃,𝜈(𝑡𝑔) < ∞,

then (5.24 ) implies that [−𝑡, 𝑡] ⊆ dom𝐾𝑔,𝜈 and 𝑔 is (𝜙, 𝜈)-subexponential.

Remark 5.5.26. Though Proposition 5.5.25 implies that the set of (𝜙, 𝜈)-subexponential functions is the

same as the set 𝐿𝜃(𝜈) for 𝜃(𝑥) = max{𝜓⋆(𝑥), 𝜓⋆(−𝑥)}, we emphasize that the Luxemburg norm ‖ ⋅ ‖𝜃

does not capture the relationship betweenD𝜙(𝜇 ‖ 𝜈) and the absolute mean deviation |𝜇(𝑔) − 𝜈(𝑔)|.

First, the function 𝜃, being a symmetrization of 𝜓⋆, induces integral functionals which are potentially

much larger than those defined by 𝜓⋆, in particular it is possible to have max{𝐾𝑔,𝜈(𝑡), 𝐾𝑔,𝜈(−𝑡)} <

inf𝜆∈ℝ 𝐼𝜃,𝜈(𝑡𝑔 + 𝜆) < 𝐼𝜃,𝜈(𝑡𝑔). Furthermore, the Luxemburg norm summarizes the growth of 𝑡 ↦

𝐼𝜃,𝜈(𝑡𝑔) with a single number (specifically its inverse at 1), whereas Theorem 5.5.12 shows that the

relationship with the mean deviation is controlled by 𝐾⋆
𝑔,𝜈, which depends on the growth of 𝐾𝑔,𝜈(𝑡)

with 𝑡.

We are now ready to prove the main result of this section, which is that the space 𝑆𝜙(𝜈) of (𝜙, 𝜈)-

subexponential functions is the largest space of functions which can be put in dual pairing with (the

span of) all measures 𝜇 ∈ ℳ𝑐(𝜈) such thatD𝜙(𝜇 ‖ 𝜈) < ∞, i.e. dom 𝐼𝜙,𝜈.

Theorem 5.5.27. For 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿0(𝜈), the following are equivalent:

(i) 𝑔 is (𝜙, 𝜈)-subexponential, i.e. 𝑔 ∈ 𝑆𝜙(𝜈).
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(ii) 𝑔 is 𝜇-integrable for every 𝜇 ∈ ℳ𝑐(𝜈) withD𝜙(𝜇 ‖ 𝜈) < ∞.

(iii) 𝑔 is 𝜇-integrable for every 𝜇 ∈ ℳ1
𝑐 (𝜈) withD𝜙(𝜇 ‖ 𝜈) < ∞.

Proof. (𝑖) ⟹ (𝑖𝑖) If 𝜙′(∞) < ∞ this follows since 𝐿∞(𝜈) = 𝑆𝜙(𝜈), so assume that 𝜙′(∞) = ∞. If

𝑔 ∈ 𝑆𝜙(𝜈) then 𝑔 ∈ 𝐿𝜃(𝜈) for 𝜃(𝑥) = max{𝜓⋆(𝑥), 𝜓⋆(−𝑥)} by Proposition 5.5.25 . Since 𝜃 ≥ 𝜓⋆ we

have 𝜃⋆ ≤ 𝜓, and thus for 𝜇 ∈ ℳ𝑐(𝜈)withD𝜙(𝜇 ‖ 𝜈) < ∞,

𝐼𝜃⋆,𝜈(
𝑑𝜇
𝑑𝜈 − 1) ≤ 𝐼𝜓,𝜈(

𝑑𝜇
𝑑𝜈 − 1) = D𝜙(𝜇 ‖ 𝜈) < ∞ ,

implying that 𝑑𝜇
𝑑𝜈

− 1 ∈ 𝐿𝜃⋆(𝜈). Furthermore, since 1 ∈ 𝐿∞(𝜈) ⊆ 𝐿𝜃⋆(𝜈) we get that 𝑑𝜇
𝑑𝜈

∈ 𝐿𝜃⋆(𝜈).

Property 2. then follows from the fact that (𝐿𝜃⋆, 𝐿𝜃) form a dual pair.

(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Immediate.

(𝑖𝑖𝑖) ⟹ (𝑖) Define 𝐶 ≝ {𝜇 ∈ ℳ1
𝑐 (𝜈) ||D𝜙(𝜇 ‖ 𝜈) ≤ 1}, which is closed and convex as a

sublevel set of the convex lower semicontinuous functional D̃𝜙,𝜈 on the Banach spaceℳ𝑐(𝜈)with the

total variation norm (recall that this space is isomorphic to 𝐿1(𝜈) by the Radon–Nikodym theorem).

Since furthermore 𝐶 ⊆ ℳ1, it is bounded in ℳ𝑐(𝜈) and so is cs-compact [Jam72 , Proposition 2].

Then by assumption, the linear function 𝜇 ↦ 𝜇(|𝑔|) is well-defined and bounded below by 0 on 𝐶, so

Lemma 5.3.17 implies that there exists 𝐵 ∈ ℝ such that 𝜇(|𝑔|) ≤ 𝐵 for all 𝜇 ∈ 𝐶. Thus, we get that for

all 𝜇 ∈ 𝐶, |𝜇(𝑔) − 𝜈(𝑔)| ≤ 𝜇(|𝑔|) + 𝜈(|𝑔|) ≤ 𝐵 + 𝜈(|𝑔|). In particular, if |𝜇(𝑔) − 𝜈(𝑔)| > 𝐵 + 𝜈(|𝑔|) then

D𝜙(𝜇 ‖ 𝜈) > 1, proving the existence of a non-zero function 𝐿 such thatD𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(|𝜇(𝑔)− 𝜈(𝑔)|).

This implies that 𝑔 ∈ 𝑆𝜙(𝜈) by Corollary 5.5.16 .

We have the following characterization of the space 𝑆𝜙⋆(𝜈) of strongly subexponential functions. In

particular 𝑆𝜙⋆(𝜈) can be identified as a set with 𝐿∞(𝜈) or the Orlicz heart 𝐿𝜃♡(𝜈) depending on whether

𝜙′(∞) is finite or infinite (with the finite case from Lemma 5.5.18 ).
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Proposition 5.5.28. Suppose that 𝜙′(∞) = ∞ and fix 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿0(𝜈). Then the following are

equivalent:

(i) 𝑔 is strongly (𝜙, 𝜈)-subexponential, i.e. 𝑔 ∈ 𝑆𝜙⋆(𝜈).

(ii) 𝐾|𝑔|,𝜈(𝑡) < ∞ for all 𝑡 > 0.

(iii) 𝑔 ∈ 𝐿𝜃♡(𝜈) for 𝜃 ∶ 𝑥 ↦ max{𝜓⋆(𝑥), 𝜓⋆(−𝑥)}.

Proof. (𝑖) ⟹ (𝑖𝑖) Since 𝜙′(∞) = ∞, Lemma 5.5.23 implies that 𝑡𝑔 ∈ dom 𝐼𝜓⋆,𝜈 for all 𝑡 ∈ ℝ,

and since 𝜓⋆ is non-negative we have for each 𝑡 > 0 that 𝐾|𝑔|,𝜈(𝑡) ≤ ∫𝜓⋆(𝑡|𝑔|) 𝑑𝜈 ≤ ∫𝜓⋆(𝑡𝑔) +

𝜓⋆(−𝑡𝑔) 𝑑𝜈 < ∞.

(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Define 𝜂 ∶ 𝑥 ↦ 𝜓⋆(|𝑥|), so that by Lemma 5.5.23 we have ∫𝜂(𝑡𝑔) 𝑑𝜈 =

∫𝜓⋆(𝑡|𝑔|) 𝑑𝜈 < ∞ for all 𝑡 > 0, and hence Property 2. implies 𝑔 ∈ 𝐿𝜂♡(𝜈). As in the proof of

Proposition 5.5.25 , 𝜂(𝑥) ≤ 𝜃(𝑥) ≤ 𝜂(𝑥) + |𝑥| for all 𝑥 ∈ ℝ and since 𝐿𝜂♡(𝜈) ⊆ 𝐿1(𝜈), we have that

𝑔 ∈ 𝐿𝜂♡(𝜈) iff 𝑔 ∈ 𝐿𝜃♡(𝜈).

(𝑖𝑖𝑖) ⟹ (𝑖) Immediate since for 𝑡 ∈ ℝ, 𝐾𝑔,𝜈(𝑡) ≤ ∫𝜓⋆(𝑡𝑔) 𝑑𝜈 ≤ ∫𝜃(𝑡𝑔) 𝑑𝜈 < ∞.

Finally, we collect several statements from this section and express them in a form which will be

convenient for subsequent sections.

Corollary 5.5.29. Define 𝜃(𝑥) ≝ max{𝜓⋆(𝑥), 𝜓⋆(−𝑥)}. Then we have 𝑆𝜙⋆(𝜈) ⊆ 𝑆𝜙(𝜈) ⊆ 𝐿1(𝜈) and

dom 𝐼𝜙,𝜈 ⊆ 𝐿𝜃⋆(𝜈) ⊆ 𝐿1(𝜈). Furthermore, 𝐿𝜃⋆(𝜈) is in dual pairing with both 𝑆𝜙(𝜈) and 𝑆𝜙⋆(𝜈), and when

𝜙′(∞) = ∞ the topology induced by ‖ ⋅ ‖𝜃 on 𝑆𝜙⋆(𝜈) is complete and compatible with the pairing.

Proof. The containment 𝑆𝜙(𝜈) ⊆ 𝐿1(𝜈) is because 𝑆𝜙(𝜈) is equal as a set to the Orlicz space 𝐿𝜃(𝜈) by

Proposition 5.5.25 , and the containmentdom 𝐼𝜙,𝜈 ⊆ 𝐿𝜃⋆(𝜈) can be found in the proof of (𝑖) ⟹ (𝑖𝑖) of

Theorem 5.5.27 . The fact that (𝐿𝜃⋆(𝜈), 𝑆𝜙(𝜈)) form a dual pair is also immediate from the identification
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of 𝑆𝜙(𝜈)with 𝐿𝜃(𝜈) as a set. Finally, the last claim follows from the identification of 𝑆𝜙⋆(𝜈)with 𝐿𝜃♡(𝜈) as

a set and the fact that when 𝜙′(∞) = ∞, then dom 𝜃 = ℝ implying that the topological dual of the

Banach space (𝐿𝜃♡(𝜈), ‖ ⋅ ‖𝜃) is isomorphic to (𝐿𝜃⋆(𝜈), ‖ ⋅ ‖𝜃⋆).

5.5.3 Inf-compactness of divergences and connections to strong duality

In this section, we study the question of inf-compactness of the functionalD𝜙,𝜈 and that of its restriction

D̃𝜙,𝜈 to probabilitymeasures. Specifically, wewish to understand underwhich topology the information

“ball”ℬ𝜙,𝜈(𝜏) ≝ {𝜇 ∈ ℳ |D𝜙(𝜇 ‖ 𝜈) ≤ 𝜏} is compact. Beyond being a natural topological question,

it also has implications for strong duality in Theorem 5.5.12 , since the following lemma shows that

compactness of the ball under suitable topologies implies strong duality.

Lemma 5.5.30. For every 𝑔, 𝜈, and𝑀 as in Definition 5.5.1 , if 𝜇 ↦ D𝜙(𝜇 ‖ 𝜈) is inf-compact (or even

countably inf-compact) with respect to a topology on𝑀 such that 𝜇 ↦ 𝜇(𝑔) is continuous, thenℒ𝑔,𝜈,𝑀 is

inf-compact (and in particular lower semicontinuous), so that strong duality holds in Theorem 5.5.12 .

Proof. Recall from Eq. (5.16 ) that

ℒ𝑔,𝜈,𝑀(𝜀) = inf
𝜇∈𝑀

D𝜙(𝜇 ‖ 𝜈) + 𝛿{0}(𝜇(𝑔) − 𝜈(𝑔) − 𝜀)

where𝑓(𝜀, 𝜇) = D𝜙(𝜇 ‖ 𝜈)+𝛿{0}(𝜇(𝑔)−𝜈(𝑔)−𝜀) is convex. Furthermore, under the stated assumption,

we have that 𝑓 is also inf-compact so that Lemma 5.3.8 gives the claim.

Throughout this section, we assume that 𝜙′(∞) = ∞,3  which implies that dom𝜓⋆ = ℝ by

Lemma 5.5.7 , and furthermore that 𝜇 ∈ ℳ𝑐(𝜈) whenever D𝜙(𝜇 ‖ 𝜈) < ∞ and hence D𝜙,𝜈 = 𝐼𝜙,𝜈

andℬ𝜙,𝜈(𝜏) ⊂ ℳ𝑐(𝜈) for all 𝜏 ≥ 0. It is well known that in this case,ℬ𝜙,𝜈(𝜏) is compact in the weak

3When𝜙′(∞) < ∞, compactness of information balls is very dependent on the specific measure space (Ω,𝒜, 𝜈), and
in this chapter we avoid such conditions.
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topology 𝜎(𝐿1(𝜈), 𝐿∞(𝜈)) (e.g. [Roc71  , Corollary 2B] or [TV93 ]). This fact can be derived as a simple

consequence of the Dunford–Pettis theorem sinceℬ𝜙,𝜈(𝜏) is uniformly integrable by the de la Vallée-

Poussin theorem (see e.g. [Val70 , pages 67–68]). In light of Lemma 5.5.30 , it is however useful to

understand whetherℬ𝜙,𝜈(𝜏) is compact under topologies for which 𝜇 ↦ 𝜇(𝑔) is continuous, where

𝑔 could be unbounded. Léonard [Léo01a , Theorem 3.4] showed, in the context of convex integral

functionals on Orlicz spaces, that strong duality holds when 𝑔 ∈ 𝑆𝜙⋆(𝜈), and in this section we reprove

this result in the language of 𝜙-divergences by noting (as is implicit in [Léo01a , Lemma 3.1]) that

ℬ𝜙,𝜈(𝜏) is compact for the initial topology induced by the maps of the form 𝜇 ↦ 𝜇(𝑔) for all strongly

subexponential function 𝑔 ∈ 𝑆𝜙⋆(𝜈).

Proposition 5.5.31. Fix 𝜈 ∈ ℳ1 and define 𝜃 ∶ 𝑥 ↦ max{𝜓⋆(𝑥), 𝜓⋆(−𝑥)} as in Proposition 5.5.28 . If

𝜙′(∞) = ∞, then the functional 𝐼𝜙,𝜈 is 𝜎(𝐿𝜃⋆(𝜈), 𝑆𝜙⋆(𝜈)) inf-compact.

Proof. By Corollary 5.5.29 , we know that (𝑆𝜙⋆(𝜈), ‖ ⋅ ‖𝜃) is a Banach space in dual pairing with 𝐿𝜃⋆(𝜈).

Thus, from Proposition 5.4.8 , the integral functional 𝐼𝜙⋆,𝜈 defined on 𝑆𝜙⋆(𝜈) is convex, lower semicon-

tinuous, and has conjugate 𝐼𝜙⋆⋆,𝜈 = 𝐼𝜙,𝜈 on 𝐿𝜃⋆(𝜈). Furthermore, from Lemma 5.5.23 we know for

every 𝑔 ∈ 𝑆𝜙⋆(𝜈) that 𝐼𝜙⋆,𝜈(𝑔) < ∞, so 𝐼𝜙⋆,𝜈 is convex, lsc, and finite everywhere on a Banach space,

and thus continuous everywhere by [Brø64 , p. 2.10]. Finally, [Mor64 , Proposition 1] implies that its

conjugate 𝐼𝜙,𝜈 is inf-compact on 𝐿𝜃⋆(𝜈)with respect to the weak topology 𝜎(𝐿𝜃⋆(𝜈), 𝑆𝜙⋆(𝜈)).

Remark 5.5.32. This result generalizes [Roc71  , Corollary 2B] since 𝐿∞(𝜈) ⊆ 𝑆𝜙⋆(𝜈) whenever 𝜙′(∞) =

∞ (see Example 5.5.22 ).

Corollary 5.5.33. Under the same assumptions and notations as Proposition 5.5.31 , the functional D̃𝜙,𝜈 is

𝜎(𝐿𝜃⋆(𝜈), 𝑆𝜙⋆(𝜈)) inf-compact.
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Proof. Observe that since 𝜙(𝑥) = ∞ for 𝑥 < 0, we have for every 𝜏 ∈ ℝ that {𝜇 ∈ 𝐿𝜃⋆(𝜈) | D̃𝜙,𝜈(𝜇) ≤

𝜏} = {𝜇 ∈ ℳ1 ∩ 𝐿𝜃⋆(𝜈) | 𝐼𝜙,𝜈(𝜇) ≤ 𝜏} = {𝜇 ∈ 𝐿𝜃⋆(𝜈) | 𝐼𝜙,𝜈(𝜇) ≤ 𝜏} ∩ 𝑓−1(1) where 𝑓 ∶ 𝜇 → 𝜇(𝟏Ω)

is continuous in the weak topology 𝜎(𝐿𝜃⋆(𝜈), 𝑆𝜙⋆(𝜈)) since 𝐿∞(𝜈) ⊆ 𝑆𝜙⋆(𝜈) by Lemma 5.5.18 . Hence,

ℳ1 ∩ ℬ𝜙,𝜈(𝜏) is compact as a closed subset of a compact set.

Corollary 5.5.34. If 𝜙′(∞) = ∞, then for every 𝜏 ∈ ℝ the setsℬ𝜙,𝜈(𝜏) andℳ1 ∩ ℬ𝜙,𝜈(𝜏) are compact

in the initial topology induced by {𝜇 ↦ 𝜇(𝑔) | 𝑔 ∈ 𝑆𝜙⋆(𝜈)}.

Proof. Immediate from Proposition 5.5.31 and Corollary 5.5.33 .

Corollary 5.5.35. Let 𝜈 ∈ ℳ1 be a probability measure and assume that 𝜙′(∞) = ∞. If 𝑔 ∈ 𝐿0(𝜈) is

strongly (𝜙, 𝜈)-subexponential and𝑀 ⊆ ℳ1
𝑐 (𝜈) is a convex set of probability measures containing every

𝜇 ∈ ℳ1
𝑐 (𝜈) withD𝜙(𝜇 ‖ 𝜈) < ∞, then the functionℒ𝑔,𝜈,𝑀 is lower semicontinuous.

Proof. Follows from Lemma 5.5.30 and Corollary 5.5.34 .

Remark 5.5.36. Corollary 5.5.35 does not apply when 𝜙′(∞) < ∞ or 𝑔 ∈ 𝑆𝜙(𝜈) ⧵ 𝑆𝜙⋆(𝜈) (e.g. when

the pushforward measure 𝑔∗𝜈 is gamma-distributed in the case of the KL divergence), and it would

be interesting to identify conditions other than inf-compactness ofD𝜙,𝜈 under whichℒ𝑔,𝜈 is lower

semicontinuous.

5.5.4 Convergence in 𝜙-divergence and weak convergence

Our goal in this section is to relate two notions of convergence for a sequence of probability measures

(𝜈𝑛)𝑛∈ℕ and 𝜈 ∈ ℳ1: (i)D𝜙(𝜈𝑛 ‖ 𝜈) → 0,4  and (ii) |𝜈𝑛(𝑔)−𝜈(𝑔)| → 0 for 𝑔 ∈ ℒ0(Ω). Specifically, we

would like to identify the largest class of functions 𝑔 ∈ ℒ0(Ω) such that convergence in 𝜙-divergence (i)

4Throughout this section, we restrict our attention to 𝜙 which are not the constant 0 on a neighborhood of 1, i.e.
such that 1 ∉ int dom{𝑥 ∈ ℝ | 𝜙(𝑥) = 0}, as otherwise it is easy construct probability measures 𝜇 ≠ 𝜈 such that
D𝜙(𝜇 ‖ 𝜈) = 0, henceD𝜙(𝜈𝑛 ‖ 𝜈) → 0 does not define a meaningful convergence notion.
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implies (ii). In other words, we would like to identify the finest initial topology induced by linear forms

𝜇 ↦ 𝜇(𝑔) for which (sequential) convergence is implied by (sequential) convergence in 𝜙-divergence5  .

This question is less quantitative than computing the best lower bound of the 𝜙-divergence in terms of

the absolute mean deviation, since it only characterizes when |𝜈𝑛(𝑔) − 𝜈(𝑔)| converges to 0, whereas

the optimal lower bound quantifies the rate of convergence to 0when it occurs.

This has been studied in the specific case of the Kullback–Leibler divergence by Harremoës, who

showed [Har07 , Theorem 25] thatKL(𝜈𝑛 ‖ 𝜈) → 0 implies |𝜈𝑛(𝑔) − 𝜈(𝑔)| → 0 for every non-negative

function 𝑔 whose moment generating function is finite at some positive real (in fact, the converse

was also shown in the same paper under a so-called power-dominance condition on 𝜈). In this section,

we generalize this to an arbitrary 𝜙-divergence and show that convergence in 𝜙-divergence implies

𝜈𝑛(𝑔) → 𝜈(𝑔) if and only if 𝑔 is (𝜙, 𝜈)-subexponential.

This question is also closely related the one of understanding the relationship between weak conver-

gence and modular convergence in Orlicz spaces (e.g. [Nak50 ] or [Mus83 ]). Although convergence in

𝜙-divergence as defined above only formally coincides with the notion of modular convergence when

𝜙 is symmetric about 1 (though this can sometimes be relaxed [Her67 ]) and satisfies the so-called Δ2

growth condition, it is possible that this line of work could be adapted to the question studied in this

section.

We start with the following proposition, showing that this question is equivalent to the differentia-

bility ofℒ⋆
𝑔,𝜈 at 0.

Proposition 5.5.37. Let 𝜈 ∈ ℳ1, 𝑔 ∈ ℒ1(𝜈), and𝑀 ⊆ ℳ1 be a convex set of measures integrating 𝑔 and

5The natural notion of convergence in 𝜙-divergence defines a topology on the space of probability measures for
which continuity and sequential continuity coincide (see e.g. [Kis60 ; Dud64 ; Har07 ]), so it is without loss of generality
that we consider only sequences rather than nets in the rest of this section. Note that the information balls {𝜇 ∈ ℳ1 |
D𝜙(𝜇 ‖ 𝜈) < 𝜏} for 𝜏 > 0 need not be neighborhoods of 𝜈 in this topology, and the information balls do not in general
define a basis of neighborhoods for a topology on the space of probability measures [Csi62 ; Csi64 ; Csi67b ; Dud98 ].
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containing 𝜈. Then the following are equivalent:

(i) lim𝑛→∞ 𝜈𝑛(𝑔) = 𝜈(𝑔) for all (𝜈𝑛)𝑛∈ℕ ∈ 𝑀ℕ such that lim𝑛→∞D𝜙(𝜈𝑛 ‖ 𝜈) = 0.

(ii) ℒ𝑔,𝜈,𝑀 is strictly convex at 0, that isℒ𝑔,𝜈,𝑀(𝜀) = 0 if and only if 𝜀 = 0.

(iii) 𝜕ℒ⋆
𝑔,𝜈,𝑀(0) = {0}, that isℒ⋆

𝑔,𝜈,𝑀 is differentiable at 0 andℒ⋆′
𝑔,𝜈,𝑀(0) = 0.

Proof. (𝑖) ⟹ (𝑖𝑖) Assume for the sake of contradiction thatℒ𝑔,𝜈,𝑀(𝜀) = 0 for some 𝜀 ≠ 0. Thenby

definition ofℒ𝑔,𝜈,𝑀, there exists a sequence (𝜈𝑛)𝑛∈ℕ ∈ 𝑀ℕ such that for all 𝑛 ∈ ℕ,D𝜙(𝜈𝑛 ‖ 𝜈) ≤ 1/𝑛

and 𝜈𝑛(𝑔) − 𝜈(𝑔) = 𝜀, thus contradicting (𝑖). Hence, ℒ𝑔,𝜈,𝑀(𝜀) = 0 if and only if 𝜀 = 0, which

is equivalent to strict convexity at 0 since ℒ𝑔,𝜈,𝑀 is convex with global minum ℒ𝑔,𝜈,𝑀(0) = 0 by

Lemma 5.5.2 .

(𝑖𝑖) ⟹ (𝑖) Let (𝜈𝑛)𝑛∈ℕ ∈ 𝑀ℕ be a sequence such that lim𝑛→∞D𝜙(𝜈𝑛 ‖ 𝜈) = 0. By definition

of ℒ𝑔,𝜈,𝑀, we have that D𝜙(𝜈𝑛 ‖ 𝜈) ≥ ℒ𝑔,𝜈,𝑀(𝜈𝑛(𝑔) − 𝜈(𝑔)) ≥ 0 for all 𝑛 ∈ ℕ, and in particular

lim𝑛→∞ℒ𝑔,𝜈,𝑀(𝜈𝑛(𝑔) − 𝜈(𝑔)) = 0. Assume for the sake of contradiction that 𝜈𝑛(𝑔) does not converge

to 𝜈(𝑔). This implies the existence of 𝜀 > 0 such that |𝜈𝑛(𝑔) − 𝜈(𝑔)| ≥ 𝜀 for infinitely many 𝑛 ∈ ℕ.

But then ℒ𝑔,𝜈,𝑀(𝜈𝑛(𝑔) − 𝜈(𝑔)) ≥ min{ℒ𝑔,𝜈,𝑀(𝜀),ℒ𝑔,𝜈,𝑀(−𝜀)} > 0 for infinitely many 𝑛 ∈ ℕ, a

contradiction.

(𝑖𝑖) ⟺ (𝑖𝑖𝑖) By a standard characterization of the subdifferential (see e.g. [Zăl02 , Theorem

2.4.2(iii)]), we have that 𝜕ℒ⋆
𝑔,𝜈,𝑀(0) = {𝑥 ∈ ℝ | ℒ⋆

𝑔,𝜈,𝑀(0) + ℒ⋆⋆
𝑔,𝜈,𝑀(𝑥) = 0 ⋅ 𝑥} = {𝑥 ∈ ℝ |

ℒ⋆⋆
𝑔,𝜈,𝑀(𝑥) = 0}. Sinceℒ𝑔,𝜈,𝑀 is convex, non-negative, and 0 at 0, this subdifferential contains 𝜀 ≠ 0 if

and only if there exists 𝜀 ≠ 0withℒ𝑔,𝜈,𝑀(𝜀) = 0.

The above proposition characterizes continuity in terms of the differentiability at 0 of the conjugate

of the optimal lower bound function, or equivalently by Proposition 5.5.3 , differentiability of the
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functions𝐾𝑔,𝜈 and𝐾𝑔,𝜈,⟂. In the previous sectionwe investigated in detail the finiteness (or equivalently

by convexity, the continuity) of these functions around 0; in this section we show that continuity at 0 is

equivalent to differentiability at 0 assuming that 𝜙 is not the constant 0 on a neighborhood of 1.

Proposition 5.5.38. Assume that 1 ∉ int{𝑥 ∈ ℝ | 𝜙(𝑥) = 0}. Then for 𝜈 ∈ ℳ1 and 𝑔 ∈ ℒ0(Ω), we have

that 0 ∈ int dom𝐾𝑔,𝜈 (resp. 0 ∈ int dom𝐾𝑔,𝜈,⟂) if and only if 𝐾′
𝑔,𝜈(0) = 0 (resp. 𝐾′

𝑔,𝜈,⟂(0) = 0).

Proof. The if direction is immediate, since differentiability at 0 implies continuity at 0. Thus, for the

remainder of the proof we assume that 𝐾𝑔,𝜈 (resp. 𝐾𝑔,𝜈,⟂) is finite on a neighborhood of 0.

We first consider the case 𝜙′(∞) < ∞, where Lemma 5.5.18 implies 𝑔 ∈ 𝐿∞(𝜈) (resp. 𝑔 ∈ ℒ𝑏(Ω)).

Define 𝐵 ≝ ess sup𝜈|𝑔| (resp. 𝐵 ≝ sup |𝑔|(Ω)), and let 𝜎 ∈ {−1, 1} be such that 𝜙(1 + 𝜎𝑥) > 0 for all

𝑥 > 0 as exists by assumption on𝜙. Since𝜓 is non-negative and 0 at 0, a standard characterization of the

subdifferential (e.g. [Zăl02 , Theorem 2.4.2(iii)]) implies that the function 𝑡 ↦ 𝜓⋆(𝜎|𝑡|) has derivative

0 at 0. Then for all 𝑡 ∈ ℝ, by considering 𝜆 = 𝜎𝑡𝐵 in (5.20 ), we obtain 𝐾𝑔,𝜈(𝑡) (resp. 𝐾𝑔,𝜈,⟂(𝑡)) is at

most 𝜈(𝜓⋆(𝑡𝑔 + 𝜎𝑡𝐵)) + 𝛿[−∞,𝜙′(∞)](2𝜎|𝑡|𝐵) ≤ 𝜓⋆(2𝜎|𝑡|𝐵) + 𝛿[−∞,𝜙′(∞)](2𝜎|𝑡|𝐵). Now, if 𝜎 = −1

then 2𝜎|𝑡|𝐵 ≤ 0 ≤ 𝜙′(∞) for all 𝑡, and if 𝜎 = 1 then necessarily 𝜙′(∞) > 0 and so 2𝜎|𝑡|𝐵 ≤ 𝜙′(∞) for

sufficiently small |𝑡|. Thus, we have for sufficiently small |𝑡| that 𝐾𝑔,𝜈(𝑡) (resp. 𝐾𝑔,𝜈,⟂(𝑡)) is between 0

and 𝜓⋆(2𝜎|𝑡|𝐵), both of which are 0with derivative 0 at 0, completing the proof in this case.

Now, assume that 𝜙′(∞) = ∞, so that we have 𝐾𝑔,𝜈,⟂ = 𝐾𝑔,𝜈 = inf𝜆∈ℝ 𝑓(⋅, 𝜆) for 𝑓(𝑡, 𝜆) ≝

𝜈(𝜓⋆(𝑡𝑔 + 𝜆)). Note that 𝜓 ≥ 0 implies 𝑓 ≥ 0, so since 𝐾𝑔,𝜈(0) = 𝑓(0, 0) = 0 we have by standard

results in convex analysis (e.g. [Zăl02 , Theorem 2.6.1(ii)]) that 𝜕𝐾𝑔,𝜈(0) = {𝑡⋆ | (𝑡⋆, 0) ∈ 𝜕𝑓(0, 0)}.

Furthermore, by assumption 𝐾𝑔,𝜈 is finite on a neighborhood of 0, so since 𝐾𝑔,𝜈 = 𝐾𝑔+𝑐,𝜈 for all

𝑐 ∈ ℝ, Lemma 5.5.23 implies int(dom𝐾𝑔,𝜈) × ℝ ⊆ dom𝑓 and in particular (0, 0) ∈ int dom𝑓. Thus,

defining for each 𝜔 ∈ Ω the function 𝑓𝜔(𝑡, 𝜆) ≝ 𝜓⋆(𝑡 ⋅ 𝑔(𝜔) + 𝜆), standard results on convex integral
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functionals (e.g. [Lev68 ,Theorem 1] or [IT69 , Formula (7)]) imply that (𝑡⋆, 𝜆⋆) ∈ 𝜕𝑓(0, 0) if and only

(𝑡⋆, 𝜆⋆) = (𝜈(𝑡⋆𝜔), 𝜈(𝜆⋆𝜔)) for measurable functions 𝑡⋆𝜔, 𝜆⋆𝜔 ∶ Ω → ℝ such that (𝑡⋆𝜔, 𝜆⋆𝜔) ∈ 𝜕𝑓𝜔(0, 0)

holds 𝜈-a.s.

Now, for each𝜔 ∈ Ω, we have that (𝑡⋆𝜔, 𝜆⋆𝜔) ∈ 𝜕𝑓𝜔(0, 0) if and only if𝜓⋆(𝑡⋅𝑔(𝜔)+𝜆) ≥ 𝑡⋆𝜔 ⋅𝑡+𝜆⋆𝜔 ⋅𝜆

for all (𝑡, 𝜆) ∈ ℝ2. By considering 𝑡 = 0, this implies that 𝜆⋆𝜔 ∈ 𝜕𝜓⋆(0) = {𝑥 ∈ ℝ | 𝜓(𝑥) = 0}, which

is contained in either ℝ≥0 or ℝ≤0 since 𝜓 is not 0 on a neighborhood of 0. Then since the integral

of a function of constant sign is zero if and only if it is zero almost surely, we have that (𝑡⋆, 0) =

(𝜈(𝑡⋆𝜔), 𝜈(𝜆⋆𝜔)) if and only if 𝜆⋆𝜔 = 0 holds 𝜈-a.s. But (𝑡⋆𝜔, 0) ∈ 𝜕𝑓𝜔(0, 0) if and only if for all 𝑡 ∈ ℝ we

have 𝑡⋆𝜔 ⋅ 𝑡 ≤ inf𝜆 𝜓⋆(𝑡 ⋅ 𝑔(𝜔) + 𝜆) = 𝜓⋆(0) = 0, i.e. if and only if 𝑡⋆𝜔 = 0.

Putting this together, we get that 𝜕𝐾𝑔,𝜈(0) = {𝑡⋆ | (𝑡⋆, 0) ∈ 𝜕𝑓(0, 0)} = {𝜈(𝑡⋆𝜔) | (𝑡⋆𝜔, 0) ∈

𝜕𝑓𝜔(0, 0) 𝜈-a.s.} = {𝜈(𝑡⋆𝜔) | 𝑡⋆𝜔 = 0 𝜈-a.s.} = {0} and 𝐾′
𝑔,𝜈(0) = 0 as desired.

Remark 5.5.39. If 𝜙 is 0 on a neighborhood of 1, then it is easy to show that 𝐾𝑔,𝜈 is not differentiable at

0 unless 𝑔 is 𝜈-essentially constant. Thus, the above proposition shows that the following are equivalent:

(i) 1 ∉ int dom{𝑥 ∈ ℝ | 𝜙(𝑥) = 0}, (ii) for every 𝑔, continuity of 𝐾𝑔,𝜈 at 0 implies differentiability at 0,

(iii)D𝜙(𝜇 ‖ 𝜈) = 0 for probability measures 𝜇 and 𝜈 if and only if 𝜇 = 𝜈.

A similar (but simpler) proof shows that the following are equivalent: (i) 𝜙 strictly convex at 1, (ii)

for every 𝑔, continuity of 𝑡 ↦ 𝐼𝜓⋆,𝜈(𝑡𝑔) at 0 implies differentiability at 0, and (iii)D𝜙(𝜇 ‖ 𝜈) = 0 for

finite measures 𝜇 and 𝜈 if and only if 𝜇 = 𝜈. The similarity of the statements in both cases suggest there

may be a common proof of the equivalences using more general techniques in convex analysis.

Thus, combining the previous two propositions and Proposition 5.5.3 computing the convex

conjugate of the optimal lower bound function, weobtain the following theorem in the case of absolutely

continuous measures.
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Theorem 5.5.40. Assume that 1 ∉ int({𝑥 ∈ ℝ | 𝜙(𝑥) = 0}). Then for 𝜈 ∈ ℳ1, 𝑔 ∈ 𝐿1(𝜈), and

𝑀 = 𝑋1
𝑔(𝜈), the following are equivalent:

(i) for all (𝜈𝑛)𝑛∈ℕ ∈ 𝑀ℕ, lim𝑛→∞D𝜙(𝜈𝑛 ‖ 𝜈) = 0 implies lim𝑛→∞ 𝜈𝑛(𝑔) = 𝜈(𝑔).

(ii) 𝜕𝐾𝑔,𝜈(0) = {0}, i.e. 𝐾𝑔,𝜈 is differentiable at 0 and 𝐾′
𝑔,𝜈(0) = 0.

(iii) 𝑔 is (𝜙, 𝜈)-subexponential, i.e. 0 ∈ int(dom𝐾𝑔,𝜈).

Recall that measures which are not absolutely continuous are only interesting when 𝜙′(∞) < ∞,

as otherwise the 𝜙-divergence is infinite on such measures. Since in this case, Lemma 5.5.18 shows that

the space of subexponential functions coincides with the space of bounded functions, we also obtain

the following theorem.

Theorem 5.5.41. Assume that 𝜙′(∞) < ∞ and that 1 ∉ int({𝑥 ∈ ℝ | 𝜙(𝑥) = 0}). Then for 𝜈 ∈ ℳ1,

𝑔 ∈ ℒ1(𝜈), and𝑀 = 𝒳1
𝑔 , the following are equivalent:

(i) for all (𝜈𝑛)𝑛∈ℕ ∈ 𝑀ℕ, lim𝑛→∞D𝜙(𝜈𝑛 ‖ 𝜈) = 0 implies lim𝑛→∞ 𝜈𝑛(𝑔) = 𝜈(𝑔).

(ii) {0} = 𝜕𝐾𝑔,𝜈,⟂(0), i.e. 𝐾𝑔,𝜈,⟂ is differentiable at 0 with 𝐾′
𝑔,𝜈,⟂(0) = 0.

(iii) 𝑔 ∈ ℒ𝑏(Ω).

5.6 Optimal bounds relating 𝜙-divergences and IPMs

In this section we generalize Theorem 5.5.12 on the optimal lower bound function for a single measure

and function to the case of sets of measures and measurable functions.
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5.6.1 On the choice of definitions

When considering a class of functions𝒢, there are several ways to define a lower bound of the divergence

in terms of the mean deviation of functions in 𝒢. The first one is to consider the IPM 𝑑𝒢 induced by

𝒢 and to ask for a function 𝐿 such thatD𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(𝑑𝒢(𝜇, 𝜈)) for all probability measures 𝜇 and 𝜈,

leading to the following definition of the optimal bound.

Definition 5.6.1. Let 𝒢 ⊆ ℒ0(Ω) be a non-empty set of measurable functions and let𝑁,𝑀 ⊆ ℳ1 be

two sets of probability measures such that 𝒢 ⊆ 𝐿1(𝜈) for every 𝜈 ∈ 𝑁 ∪𝑀. The optimal lower bound

functionℒ𝒢,𝑁,𝑀 ∶ ℝ → ℝ≥0 is defined by

ℒ𝒢,𝑁,𝑀(𝜀) ≝ inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇) ∈ 𝑁 ×𝑀 ∧ sup
𝑔∈𝒢

(𝜇(𝑔) − 𝜈(𝑔)) = 𝜀} .

The definition generalizes to the case where𝑀 ∶ 𝑁 → 2ℳ1 is a set-valued function by ranging over all

pairs (𝜇, 𝜈)with 𝜈 ∈ 𝑁 and 𝜇 ∈ 𝑀(𝜈).

Remark 5.6.2. Note that when 𝒢 is closed under negation, then sup𝑔∈𝒢(𝜇(𝑔) − 𝜈(𝑔)) = 𝑑𝒢(𝜇, 𝜈) and

ℒ𝒢,𝑁,𝑀 exactly quantifies the smallest value taken by the 𝜙-divergence given a constraint on the IPM

defined by 𝒢.

An alternative definition, using the notations of Definition 5.6.1 , is to consider the largest function

𝐿 such thatD𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(𝜇(𝑔) − 𝜈(𝑔)) for all (𝜈, 𝜇) ∈ 𝑁 × 𝑀 and 𝑔 ∈ 𝒢. It is easy to see that this

function can simply be expressed as

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝑀(𝜀) = inf
𝑔∈𝒢
𝜈∈𝑁

ℒ𝑔,𝜈,𝑀(𝜀) = inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇, 𝑔) ∈ 𝑁 ×𝑀 × 𝒢 ∧ 𝜇(𝑔) − 𝜈(𝑔) = 𝜀} .

Observe that inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 = ℒ𝒢,𝑁,𝑀 when 𝒢 = {𝑔} or 𝒢 = {−𝑔, 𝑔}. More generally, the goal of

this section is to explore the relationship betweenℒ𝒢,𝑁,𝑀 and inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀. In particular, we will
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show that assuming a basic convexity condition on the set of measures𝑀, both of these functions

are non-decreasing on the non-negative reals, and can differ only on their (at most countably many)

discontinuity points.

Lemma 5.6.3. Let𝑁,𝑀 ⊆ ℳ1 be two sets of probability measures with𝑁 ⊆ 𝑀 and𝑀 convex. Then the

functionsℒ𝒢,𝑁,𝑀 and inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 are non-negative and non-decreasing on the non-negative reals. The

result holds more generally for𝑁 ⊆ ℳ1 and𝑀 ∶ 𝑁 → 2ℳ1 a set-valued function such that 𝜈 ∈ 𝑀(𝜈) and

𝑀(𝜈) is convex for all 𝜈 ∈ 𝑁.

Proof. Let𝑁 and𝑀 be as in the lemma statement. It is sufficient to prove the result forℒ𝒢,𝑁,𝑀, since

the result for inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 follows from the fact that taking infima preserves sign and monotonicity.

Fix 0 ≤ 𝑥 ≤ 𝑦 and consider 𝛼 > ℒ𝒢,𝑁,𝑀(𝑦), so that by definition there exist 𝜇 ∈ 𝑀 and 𝜈 ∈ 𝑁

with D𝜙(𝜇 ‖ 𝜈) < 𝛼 and sup𝑔∈𝒢(𝜇(𝑔) − 𝜈(𝑔)) = 𝑦. Define 𝜇′ = 𝑥/𝑦 ⋅ 𝜇 + (1 − 𝑥/𝑦) ⋅ 𝜈, which

is a probability measure in 𝑀 since 𝜈 ∈ 𝑁 ⊆ 𝑀 and 𝑀 is convex. Then we have for every 𝑔 ∈ 𝒢

that 𝜇′(𝑔) − 𝜈(𝑔) = 𝑥/𝑦 ⋅ (𝜇(𝑔) − 𝜈(𝑔)), and thus sup𝑔∈𝒢(𝜇
′(𝑔) − 𝜈(𝑔)) = 𝑥. Furthermore, by

convexity ofD𝜙,𝜈 we haveD𝜙(𝜇′ ‖ 𝜈) ≤ 𝑥/𝑦 ⋅D𝜙(𝜇 ‖ 𝜈) + (1 − 𝑥/𝑦) ⋅D𝜙(𝜈 ‖ 𝜈) < 𝑥/𝑦 ⋅ 𝛼 ≤ 𝛼 since

𝑥/𝑦 ≤ 1. This implies thatℒ𝒢,𝑁,𝑀(𝑥) < 𝛼 and since 𝛼 can be made arbitrarily close toℒ𝒢,𝑁,𝑀(𝑦) that

ℒ𝒢,𝑁,𝑀(𝑥) ≤ ℒ𝒢,𝑁,𝑀(𝑦).

Remark 5.6.4. For convex sets ofmeasures𝑀 and𝑁 and a single function 𝑔 ∈ 𝐿1(𝜈), a simple adaptation

of Lemma 5.5.2 shows thatℒ𝑔,𝑁,𝑀 is convex, non-decreasing, and non-negative on the non-negative

reals. Lemma 5.6.3 extends the latter two properties to the case ofℒ𝒢,𝑁,𝑀 for a set of functions 𝒢, and

in fact its proof shows thatℒ𝒢,𝑁,𝑀(𝑦)/𝑦 is non-decreasing, which is necessary for convexity. It would

be interesting to characterize the set of 𝒢, 𝑁, and𝑀 for whichℒ𝒢,𝑁,𝑀 and inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 are in fact

convex.
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Proposition 5.6.5. Under the assumptions of Lemma 5.6.3 , we have for every 𝜀 > 0 that

lim
𝜀′→𝜀−

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝑀(𝜀′) ≤ ℒ𝒢,𝑁,𝑀(𝜀) ≤ inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝑀(𝜀) ,

with equality if inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 is lower semicontinuous (equivalently left-continuous) at 𝜀 or if 𝒢 is compact

in the initial topology onℒ0 induced by the maps ⟨𝜇 − 𝜈, ⋅ ⟩ for 𝜇 ∈ 𝑀 and 𝜈 ∈ 𝑁.

Proof. Under the assumptions of Lemma 5.6.3 we have inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 andℒ𝒢,𝑁,𝑀 are non-decreasing

on the positive reals. Thus, we have

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝑀(𝜀)

= inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇) ∈ 𝑁 ×𝑀 ∧ ∃𝑔 ∈ 𝒢, 𝜇(𝑔) − 𝜈(𝑔) = 𝜀}

≥ inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇) ∈ 𝑁 ×𝑀 ∧ sup
𝑔∈𝒢

(𝜇(𝑔) − 𝜈(𝑔)) ≥ 𝜀} (5.25)

= inf
𝜀′≥𝜀

ℒ𝒢,𝑁,𝑀(𝜀′) = ℒ𝒢,𝑁,𝑀(𝜀) (5.26)

= inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇) ∈ 𝑁 ×𝑀 ∧ ∀𝜀′ < 𝜀 ∃𝑔 ∈ 𝒢, 𝜇(𝑔) − 𝜈(𝑔) ≥ 𝜀′}

≥ sup
𝜀′<𝜀

inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇) ∈ 𝑁 ×𝑀 ∧ ∃𝑔 ∈ 𝒢, 𝜇(𝑔) − 𝜈(𝑔) ≥ 𝜀′}

= sup
𝜀′<𝜀

inf{D𝜙(𝜇 ‖ 𝜈) || (𝜈, 𝜇, 𝑔) ∈ 𝑁 ×𝑀 × 𝒢 ∧ 𝜇(𝑔) − 𝜈(𝑔) ≥ 𝜀′}

= sup
𝜀′<𝜀

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝑀(𝜀′) = lim
𝜀′→𝜀−

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝑀(𝜀′) (5.27)

where Eq. (5.25 ) is since if there is 𝑔 ∈ 𝒢with 𝜇(𝑔) − 𝜈(𝑔) = 𝜀 then sup𝑔∈𝒢 𝜇(𝑔) − 𝜈(𝑔) ≥ 𝜀, Eq. (5.26 )

is becauseℒ𝒢,𝑁,𝑀 is non-decreasing, and Eq. (5.27 ) is because inf𝑔∈𝐺ℒ𝑔,𝑁,𝑀 is non-decreasing.

For the equality claims, since inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 is non-decreasing, lower semicontinuity at 𝜀 is equiva-

lent to left-continuity, and lim𝜀′→𝜀− inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀(𝜀′) = inf𝑔∈𝐺ℒ𝑔,𝑁,𝑀(𝜀) in this case. If 𝒢 is compact

in the claimed topology, then sup𝑔∈𝒢(𝜇(𝑔)−𝜈(𝑔)) is the supremumof the continuous function ⟨𝜇−𝜈, ⋅⟩
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on the compact set 𝒢, so that sup𝑔∈𝒢(𝜇(𝑔) − 𝜈(𝑔)) = max𝑔∈𝒢(𝜇(𝑔) − 𝜈(𝑔)) and thus Eq. (5.25 ) is an

equality.

Thus, the functions inf𝑔∈𝐺ℒ𝑔,𝑁,𝑀 andℒ𝒢,𝑁,𝑀 differ only at the (at most countably many) dis-

continuity points of the non-decreasing function inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀, where at those points we have

inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀 ≥ ℒ𝒢,𝑁,𝑀. In particular, these two functions have the same lsc regularization and

thus the same convex conjugate and biconjugate (recall that the lsc regularization of a function is the

largest lsc function which lower bounds it pointwise). This will be useful in the next section where the

optimal lower bound function will be described via its convex conjugate, which is easier to compute

from the expression inf𝑔∈𝐺ℒ𝑔,𝑁,𝑀.

Another consequence of Proposition 5.6.5 is that inf𝑔∈𝐺ℒ𝑔,𝑁,𝑀 andℒ𝒢,𝑁,𝑀 have the same gener-

alized inverse. This generalized inverse is simply the optimal upper bound function, that is the smallest

function𝑈 such that𝜇(𝑔)−𝜈(𝑔) ≤ 𝑈(D𝜙(𝜇 ‖ 𝜈)) for all (𝜇, 𝜈, 𝑔) ∈ 𝑀×𝑁×𝒢, or equivalently such that

𝑑𝒢(𝜇, 𝜈) ≤ 𝑈(D𝜙(𝜇 ‖ 𝜈)) for all (𝜇, 𝜈) ∈ 𝑀 × 𝑁. In this language, any discontinuity of inf𝑔∈𝒢ℒ𝑔,𝑁,𝑀

corresponds to an interval on which𝑈 is constant, i.e. in which changing the value of the divergence

does not change the largest possible value of 𝑑𝒢(𝜇, 𝜈).

We conclude this section with two lemmas showing how the lower bound is preserved under

natural transformations of the sets of functions 𝒢 or measures𝑀,𝑁.

Lemma 5.6.6. For every set 𝒢 ⊆ ℒ0(Ω) and pair of measures 𝜇, 𝜈 ∈ 𝒳𝒢, we have that

sup
𝑔∈𝒢

(𝜇(𝑔) − 𝜈(𝑔)) = sup
𝑔∈co𝒢

(𝜇(𝑔) − 𝜈(𝑔))

where co𝒢 is the 𝜎(𝒴𝒢, 𝒳𝒢)-closed convex hull of 𝒢.

Proof. We have 𝒢 ⊆ co𝒢, and furthermore since ⟨𝜇 − 𝜈, ⋅ ⟩ is a 𝜎(𝒴𝒢, 𝒳𝒢)-continuous linear function
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we have that the set {ℎ ∈ 𝒴𝒢 || ⟨𝜇 − 𝜈, ℎ⟩ ≤ sup𝑔∈𝒢(𝜇(𝑔) − 𝜈(𝑔))} is convex, 𝜎(𝒴𝒢, 𝒳𝒢)-closed, and

contains 𝒢, and so also contains co𝒢.

Lemma 5.6.7. For every 𝑔 ∈ ℒ0(Ω), we haveℒ𝑔,𝒳1
𝑔 ,𝒳1

𝑔
= ℒIdℝ,𝑔∗𝒳1

𝑔 ,𝑔∗𝒳1
𝑔
where 𝑔∗𝒳1

𝑔 = {𝑔∗𝜈 || 𝜈 ∈ 𝒳1
𝑔}

is the set of probability measures onℝ obtained by pushing forward through 𝑔 the probability measures 𝜈 ∈

ℳ1(Ω) integrating 𝑔. Furthermore, for every 𝜈 ∈ ℳ1 and 𝑔 ∈ 𝐿1(𝜈)we have thatℒ𝑔,𝜈 = ℒIdℝ,𝑔∗𝜈,𝑔∗𝑋1
𝑔(𝜈).

Proof. Wefirst prove themain claim. As inExample 5.3.4 , wehave for every𝜇, 𝜈 ∈ 𝒳1
𝑔 that𝜇(𝑔)−𝜈(𝑔) =

∫ Idℝ 𝑑𝑔∗𝜇 − ∫ Idℝ 𝑑𝑔∗𝜈, so it suffices to show for every 𝜇0, 𝜈0 ∈ 𝒳1
𝑔 the existence of 𝜇, 𝜈 ∈ 𝒳1

𝑔 with

𝑔∗𝜇 = 𝑔∗𝜇0, 𝑔∗𝜈 = 𝑔∗𝜈0, andD𝜙(𝑔∗𝜇0 ‖ 𝑔∗𝜈0) = D𝜙(𝜇 ‖ 𝜈) ≤ D𝜙(𝜇0 ‖ 𝜈0).

For this, write 𝜉 = 1
2
(𝜇0+𝜈0) so that𝜇0, 𝜈0 ≪ 𝜉 and 𝜉 ∈ 𝒳1

𝑔 , anddefine themeasures𝜇, 𝜈 ∈ ℳ1
𝑐 (𝜉)

by 𝑑𝜇
𝑑𝜉

= 𝑑𝑔∗𝜇0
𝑑𝑔∗𝜉

∘ 𝑔 and 𝑑𝜈
𝑑𝜉

= 𝑑𝑔∗𝜈0
𝑑𝑔∗𝜉

∘ 𝑔 (note that these are just the conditional expectations of 𝑑𝜇0
𝑑𝜉

and

𝑑𝜈0
𝑑𝜉

with respect to 𝑔). It remains to show that 𝜇 and 𝜈 have the desired properties, for which we first

note that for every (Borel) measurable function ℎ ∶ ℝ3 → ℝ ∪ {+∞}we have

∫ℎ(
𝑑𝜇
𝑑𝜉

, 𝑑𝜈
𝑑𝜉
, 𝑔) 𝑑𝜉 = ∫ℎ(

𝑑𝑔∗𝜇0
𝑑𝑔∗𝜉

∘ 𝑔,
𝑑𝑔∗𝜈0
𝑑𝑔∗𝜉

∘ 𝑔, 𝑔) 𝑑𝜉

= ∫ℎ(
𝑑𝑔∗𝜇0
𝑑𝑔∗𝜉

,
𝑑𝑔∗𝜈0
𝑑𝑔∗𝜉

, Idℝ) 𝑑𝑔∗𝜉 .

Then taking ℎ(𝑥, 𝑦, 𝑧) = 𝑥 we get 𝜇(Ω) = 𝜇(𝟏Ω) = 𝑔∗𝜇0(𝟏ℝ) = 𝜇0(𝟏Ω) = 1, and similarly by

taking ℎ(𝑥, 𝑦, 𝑧) = 𝑦 we get 𝜈(Ω) = 1. Taking ℎ(𝑥, 𝑦, 𝑧) = 𝑥 ⋅ |𝑧| we get 𝜇(|𝑔|) = 𝜇0(|𝑔|) < ∞ so

that 𝜇 ∈ 𝒳1
𝑔 , and similarly by taking ℎ(𝑥, 𝑦, 𝑧) = 𝑦 ⋅ |𝑧| we get 𝜈(|𝑔|) = 𝜈0(|𝑔|) < ∞ and 𝜈 ∈ 𝒳1

𝑔 .

Finally, as in Remark 5.4.3 , taking ℎ(𝑥, 𝑦, 𝑧) = 𝑦 ⋅ 𝜙(𝑥/𝑦) if 𝑦 ≠ 0 and ℎ(𝑥, 𝑦, 𝑧) = 𝑥 ⋅ 𝜙′(∞) if 𝑦 = 0

gives D𝜙(𝜇 ‖ 𝜈) = D𝜙(𝑔∗𝜇0 ‖ 𝑔∗𝜈0), and furthermore Jensen’s inequality implies that D𝜙(𝜇 ‖ 𝜈) ≤

D𝜙(𝜇0 ‖ 𝜈0) since ℎ is convex.

The furthermore claim is analogous after noting that since we have 𝜇 ≪ 𝜈 for every 𝜇 ∈ 𝑋1
𝑔(𝜈)we
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can take 𝜉 = 𝜈0 = 𝜈.

5.6.2 Derivation of the bound

In this section we give our main results computing optimal lower bounds on a 𝜙-divergence given an

integral probabilitymetric. Note that fromSection 5.6.1 , the optimal lower bound is simply the infimum

of the optimal lower boundℒ𝑔,𝜈 for each 𝑔 ∈ 𝒢 and 𝜈 ∈ 𝑁. Sinceℒ⋆
𝑔,𝜈 = 𝐾𝑔,𝜈 by Proposition 5.5.3 ,

and given the order-reversing property of convex conjugacy, it is natural to consider the the best upper

bound on 𝐾𝑔,𝜈 which holds uniformly over all 𝑔 ∈ 𝒢 and 𝜈 ∈ 𝑁. Formally, we have the following

definition.

Definition 5.6.8. For a set of measurable functions 𝒢 ⊆ ℒ0(Ω) and a set of measures 𝑁 ⊆ ℳ1, we

write 𝐾𝒢,𝑁(𝑡) ≝ sup{𝐾𝑔,𝜈(𝑡) | (𝑔, 𝜈) ∈ 𝒢 × 𝑁}, and 𝐾𝒢,𝑁,⟂(𝑡) ≝ sup{𝐾𝑔,𝜈,⟂(𝑡) | (𝑔, 𝜈) ∈ 𝒢 × 𝑁}.

Note that 𝐾𝒢,𝑁 and 𝐾𝒢,𝑁,⟂ are convex and lower semicontinuous as suprema of convex and lower

semicontinuous functions. Furthermore, as alluded to before Definition 5.6.8 , we expect 𝐾𝒢,𝑁 to be

equal to the conjugate of the optimal lower bound functions. This is stated formally in the following

theorem which also gives a sufficient condition under which the optimal lower bound functions are

convex and lower semicontinuous (see also Remark 5.6.10 below).

Theorem 5.6.9. Let 𝒢 ⊆ ℒ0(Ω) be a non-empty set of functions and 𝑁 ⊆ 𝒳1
𝒢 be a non-empty set of

probability measures integrating all functions in 𝒢. Then, we have for all 𝜀 ≥ 0 that

ℒ⋆
𝒢,𝑁,𝒳1

𝒢
(𝜀) = ( inf

𝑔∈𝒢
ℒ𝑔,𝑁,𝒳1

𝒢
)
⋆
(𝜀) = 𝐾𝒢,𝑁,⟂(𝜀) , (5.28)

and similarly for absolutely continuous measures,

ℒ⋆
𝒢,𝑁,𝑋1

𝒢(⋅)
(𝜀) = ( inf

𝑔∈𝒢
ℒ𝑔,𝑁,𝑋1

𝒢(⋅))
⋆
(𝜀) = 𝐾𝒢,𝑁(𝜀) . (5.29)
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Proof. It follows from Proposition 5.6.5 and the discussion following it that the convex conjugates

of inf𝑔∈𝒢ℒ𝑔,𝑁,𝒳1
𝒢
andℒ𝒢,𝑁,𝒳1

𝒢
coincide on the non-negative reals, which justifies the first equality in

(5.28 ). For the second equality,

( inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝒳1
𝒢
)
⋆
(𝜀) = ( inf

(𝑔,𝜈)∈𝒢×𝑁
ℒ𝑔,𝜈,𝒳1

𝒢
)
⋆
(𝜀) = sup

𝑔∈𝐺
𝜈∈𝑁

ℒ⋆
𝑔,𝜈,𝒳1

𝒢
(𝜀) = sup

𝑔∈𝐺
𝜈∈𝑁

𝐾𝑔,𝜈,⟂(𝜀) = 𝐾𝒢,𝑁,⟂(𝜀) ,

where we used successively the definition ofℒ𝑔,𝑁,𝒳1
𝒢
, the fact that (inf𝛼∈𝐴 𝑓𝛼)⋆ = sup𝛼∈𝐴 𝑓

⋆
𝛼 for any

collection (𝑓𝛼)𝛼∈𝐴 of functions, Proposition 5.5.3 and Remark 5.5.4 , and Definition 5.6.8 .

Remark 5.6.10. Theorem 5.6.9 computes the conjugate of the optimal lower bound functions, but if

this function is not convex or lsc, it is also useful to discuss what we can say about inf𝑔∈𝒢ℒ𝑔,𝑁 itself.

First, ifℒ𝑔,𝜈 (resp.ℒ𝑔,𝜈,⟂) is lower semicontinuous for each 𝑔 ∈ 𝒢 and 𝜈 ∈ 𝑁 (e.g. when 𝜙′(∞) = ∞

and 𝒢 ⊆ 𝑆𝜙⋆(𝜈) for all 𝜈 ∈ 𝑁 by Corollary 5.5.35 ), then

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝒳1
𝒢
(𝜀) = inf

(𝑔,𝜈)∈𝒢×𝑁
ℒ𝑔,𝜈,⟂(𝜀) = inf

(𝑔,𝜈)∈𝒢×𝑁
𝐾⋆
𝑔,𝜈,⟂(𝜀) ,

and similarly for absolutely continuous measures. Furthermore, if we also know that the function

inf(𝑔,𝜈)∈𝒢×𝑁 𝐾⋆
𝑔,𝜈,⟂ is itself convex and lsc, then

inf
𝑔∈𝒢

ℒ𝑔,𝑁,𝒳1
𝒢
(𝜀) = ℒ𝒢,𝑁,𝒳1

𝒢
(𝜀) = 𝐾⋆

𝒢,𝑁,⟂(𝜀) ,

and similarly for absolutely continuous measures.

Similarly to Corollary 5.5.14 , we give in the following corollary an “operational” restatement of

Theorem5.6.9 emphasizing the duality between upper bounds on𝐾𝒢,𝑁 and lower bounds onD𝜙(𝜇 ‖ 𝜈)

in terms of 𝑑𝒢(𝜇, 𝜈).

Corollary 5.6.11. Let 𝒢 ⊆ ℒ0(Ω) be a non-empty set of measurable functions and let𝑁 ⊆ 𝒳1
𝒢 be a non-

empty set of probability measures. Then for every convex and lower semicontinuous function 𝐿 ∶ ℝ≥0 → ℝ,
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the following are equivalent:

(i) D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(𝑑𝒢(𝜇, 𝜈)) for all 𝜈 ∈ 𝑁 and 𝜇 ∈ ℳ1 (resp.ℳ1
𝑐 (𝜈)) integrating 𝒢.

(ii) D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(|𝜇(𝑔) − 𝜈(𝑔)|) for all 𝑔 ∈ 𝒢, 𝜈 ∈ 𝑁, 𝜇 ∈ ℳ1 (resp.ℳ1
𝑐 (𝜈)) integrating 𝒢.

(iii) 𝐾𝑔,𝜈,⟂(𝑡) ≤ 𝐿⋆(|𝑡|) (resp. 𝐾𝑔,𝜈(𝑡) ≤ 𝐿⋆(|𝑡|)) for all 𝑡 ∈ ℝ, 𝑔 ∈ 𝒢, and 𝜈 ∈ 𝑁.

Proof. If 𝒢 is closed under negation then the result is immediate from Theorem 5.6.9 since then

sup𝑔∈𝐺 𝜇(𝑔) − 𝜈(𝑔) = 𝑑𝒢(𝜇, 𝜈) and 𝐾𝒢,𝑁(𝑡) = 𝐾𝒢,𝑁(−𝑡). For the general case, the result follows

by applying Theorem 5.6.9 to 𝒢′ ≝ 𝒢 ∪ −𝒢 where −𝒢 ≝ {−𝑔 | 𝑔 ∈ 𝒢}, for which 𝐾𝒢′,𝑁(𝑡) =

max{𝐾𝒢,𝑁(𝑡), 𝐾𝒢,𝑁(−𝑡)}.

Example 5.6.12 (Subgaussian functions). For the Kullback–Leibler divergence, [BLM13 , Lemma

4.18] shows thatKL(𝜇 ‖ 𝜈) ≥ 1
2
𝑑𝒢(𝜇, 𝜈)

2 for all 𝜇 ∈ ℳ1 if and only if ln∫ 𝑒𝑡(𝑔−𝜈(𝑔)) 𝑑𝜈 ≤ 𝑡2/2 for all

𝑔 ∈ 𝒢 and 𝑡 ∈ ℝ. Such a quadratic upper bound on the log moment-generating function is one of

the characterizations of the so-called subgaussian functions, which contain as a special case the class

of bounded functions by Hoeffding’s lemma [Hoe63 ] (see also Example 5.6.31 ). Corollary 5.6.11 

recovers this result by considering the (self-conjugate) function 𝐿 ∶ 𝑡 ↦ 𝑡2/2, thus showing that

Pinsker’s inequality generalize to all subgaussian functions.

Theorem 5.6.9 generalizes this further to an arbitrary 𝜙-divergence, showing that a subset 𝒢 ⊆

ℒ0(Ω) ofmeasurable functions satisfiesD𝜙(𝜇 ‖ 𝜈) ≥
1
2
𝑑𝒢(𝜇, 𝜈)

2 for all 𝜇 ∈ ℳ1 if and only if𝐾𝑔,𝜈(𝑡) ≤

𝑡2/2 for all 𝑔 ∈ 𝒢 and 𝑡 ∈ ℝ. By analogy, we refer to functions whose cumulant generating function

admits such a quadratic upper bound as 𝜙-subgaussian functions.

Example5.6.13. Recall fromExample 5.5.15 that the𝜒2-divergence givenby𝜙(𝑥) = (𝑥−1)2+𝛿ℝ≥0(𝑥)
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satisfies

𝜓⋆(𝑥) =

⎧
⎪

⎨
⎪
⎩

𝑥2/4 𝑥 ≥ −2

−1 − 𝑥 𝑥 < −2

and𝐾𝑔,𝜈(𝑡) ≤ inf𝜆 ∫(𝑡𝑔 + 𝜆)2/4 𝑑𝜈 = 𝑡2 Var𝜈(𝑔)/4, showing that the class of 𝜒2-subgaussian functions

(see Example 5.6.12 ) includes all those with bounded variance.

Example 5.6.14. As a step towards understanding theWasserstein distance, Bolley and Villani [BV05 ]

define a “weighted total variation distance” between probability measures 𝜇 and 𝜈 as ∫𝑔𝑑|𝜇 − 𝜈|

for some non-negative measurable function 𝑔 ∈ ℒ0(Ω), and their main result [BV05 , Theorem 2.1]

bounds this weighted total variation in terms of the KL divergence.

We rederive their result by noting that the 𝑔-weighted total variation is 𝑑𝑔ℬ(𝜇, 𝜈) for 𝑔ℬ = {𝑔 ⋅ 𝑏 |

𝑏 ∈ ℬ} where ℬ is the set of measurable functions taking values in [−1, 1], so that it suffices by

Theorem 5.6.9 to upper bound 𝐾𝑔⋅𝑏,𝜈(𝑡) for each 𝑏 ∈ ℬ in terms of ln∫ 𝑒𝑔 𝑑𝜈 or ln∫ 𝑒𝑔2 𝑑𝜈. But since

𝑔 ≥ 0, we have 𝑔 ⋅ 𝑏 ≤ |𝑔| = 𝑔 and we conclude by using the fact that finiteness of ln∫ 𝑒ℎ 𝑑𝜈 (resp.

ln∫ 𝑒ℎ2 𝑑𝜈) implies a quadratic upper bound bound on the centered log-moment generating function

𝐾ℎ,𝜈(𝑡) for |𝑡| ≤ 1/4 (resp. all 𝑡 ∈ ℝ) for any non-negative function ℎ (see e.g. [Ver18 , Propositions

2.5.2 and 2.7.1]).

Finally, we show that when we take 𝑁 = 𝒳1
𝒢 = 𝑀, that is, we want a lower bound 𝐿 such that

D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(𝑑𝒢(𝜇, 𝜈)) for all probability measures 𝜇 and 𝜈, we no longer need to distinguish be-

tween absolutely continuous and non-absolutely continuous measures for the best convex lsc bound.

Intuitively, this is because it is always possible to approximate a non-absolutely continuous measure by

continuous ones.
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Theorem 5.6.15. Let 𝒢 ⊆ ℒ0(Ω) be a non-empty set of measurable functions. Then

ℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝒳1
𝒢
= ℒ⋆⋆

𝒢,𝒳1
𝒢 ,𝑋1

𝒢(⋅)
= 𝐾⋆

𝒢,𝒳1
𝐺
(| ⋅ |) .

In other words, the following are equivalent for every convex lsc 𝐿 ∶ ℝ≥0 → ℝ:

(i) D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(𝑑𝒢(𝜇, 𝜈)) for all 𝜇, 𝜈 ∈ ℳ1 integrating 𝒢.

(ii) D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(|𝜇(𝑔) − 𝜈(𝑔)|) for all 𝑔 ∈ 𝒢 and 𝜇, 𝜈 ∈ ℳ1 integrating 𝒢.

(iii) 𝐾𝑔,𝜈(𝑡) ≤ 𝐿⋆(|𝑡|) for all 𝑡 ∈ ℝ, 𝑔 ∈ 𝒢, and 𝜈 ∈ ℳ1 integrating 𝒢.

Proof. We first show thatℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝒳1
𝒢
= ℒ⋆⋆

𝒢,𝒳1
𝒢 ,𝑋1

𝒢(⋅)
. The≤ direction is immediate since 𝑋1

𝒢(𝜈) ⊆ 𝒳1
𝒢 , so

we need to show the other direction. Given any 𝜇, 𝜈 ∈ 𝒳1
𝒢 and 𝛿 ∈ [0, 1] let 𝜈𝛿 = (1 − 𝛿) ⋅ 𝜈 + 𝛿 ⋅ 𝜇 so

that 𝜈𝛿 ∈ 𝒳1
𝒢 . Then for each 𝛿 ∈ [0, 1]we have that

𝑑𝒢(𝜇, 𝜈𝛿) = (1 − 𝛿)𝑑𝒢(𝜇, 𝜈) and D𝜙(𝜇 ‖ 𝜈𝛿) ≤ (1 − 𝛿)D𝜙(𝜇 ‖ 𝜈) ≤ D𝜙(𝜇 ‖ 𝜈) ,

where the equality is because 𝜇(𝑔) − 𝜈𝛿(𝑔) = (1 − 𝛿)(𝜇(𝑔) − 𝜈(𝑔)) for all 𝑔 ∈ 𝒢, and where the

inequalities are by convexity and-negativity ofD𝜙(𝜇 ‖ ⋅ ). Furthermore, for 𝛿 ∈ (0, 1] we have that

𝜇 ≪ 𝜈𝛿 and so 𝜇 ∈ 𝑋1
𝒢(𝜈𝛿), and thus for all 𝛿 ∈ (0, 1]

D𝜙(𝜇 ‖ 𝜈) ≥ D𝜙(𝜇 ‖ 𝜈𝛿) ≥ ℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝑋1
𝒢(⋅)

(𝑑𝒢(𝜇, 𝜈𝛿)) = ℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝑋1
𝒢(⋅)

((1 − 𝛿)𝑑𝒢(𝜇, 𝜈)).

Then by lower semicontinuity ofℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝑋1
𝒢(⋅)

we get that

D𝜙(𝜇 ‖ 𝜈) ≥ lim
𝛿→0+

ℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝑋1
𝒢(⋅)

((1 − 𝛿)𝑑𝒢(𝜇, 𝜈)) ≥ ℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝑋1
𝒢(⋅)

(𝑑𝒢(𝜇, 𝜈)) .

In particular,ℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝑋1
𝒢(⋅)

is a convex lsc lower bound on 𝑑𝒢(𝜇, 𝜈) in terms ofD𝜙(𝜇 ‖ 𝜈) for all𝜇, 𝜈 ∈ 𝒳1
𝒢 ,

establishingℒ⋆⋆
𝒢,𝒳1

𝒢 ,𝒳1
𝒢
≥ ℒ⋆⋆

𝒢,𝒳1
𝒢 ,𝑋1

𝒢(⋅)
as desired. The remaining claims follow from Theorem 5.6.9 .
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5.6.3 Application to bounded functions and the total variation

In this section, we consider the problem of lower bounding the 𝜙-divergence by a function of the total

variation distance. Though it is a well-studied problem and most of the results we derive are already

known, we consider this case to demonstrate the applicability of the results obtained in Section 5.6.2 .

In Section 5.6.3 , we study Vajda’s problem [Vaj72 ]: obtaining the best lower bound of the 𝜙-divergence

by a function of the total variation distance, and in Section 5.6.3 we show how to obtain quadratic

relaxations of thebest lower bound as inPinsker’s inequality andHoeffding’s lemma. Note that following

the conventions of the literature on this problem, we actually formulate everything in terms of the 𝐿1

distance, which is equal to twice the total variation distance as defined in the rest of this thesis.

Vajda’s problem

The Vajda problem [Vaj72 ] is to quantify the optimal relationship between the 𝜙-divergence and the

total variation, that is to compute the function

ℒℬ,ℳ1,ℳ1(𝜀) = inf{D𝜙(𝜇 ‖ 𝜈) || (𝜇, 𝜈) ∈ ℳ1 ×ℳ1 ∧ 2𝑑TV(𝜇, 𝜈) = 𝜀}

= inf{D𝜙(𝜇 ‖ 𝜈) || (𝜇, 𝜈) ∈ ℳ1 ×ℳ1 ∧ 𝑑ℬ(𝜇, 𝜈) = 𝜀}

whereℬ is the set of measurable functionsΩ → [−1, 1]. In this section, we use Theorem 5.6.15 to give

for an arbitrary 𝜙 an expression for the Vajda function as the convex conjugate of a natural geometric

quantity associated with the function 𝜓⋆, the inverse of its sublevel set volume function, which we call the

height-for-width function.

Definition 5.6.16. The sublevel set volume function sls𝜓⋆ ∶ ℝ≥0 → ℝ≥0 maps ℎ ∈ ℝ to the Lebesgue

measure of the sublevel set {𝑥 ∈ ℝ || 𝜓⋆(𝑥) ≤ ℎ}. Since 𝜓⋆ is convex and inf-compact, the sublevel sets

are compact intervals and their Lebesgue measure is simply their length.
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The height-for-width function hgt𝜓⋆ ∶ ℝ≥0 → ℝ is the (right) inverse of the sublevel set volume

function given by hgt𝜓⋆(𝑤) = inf{ℎ ∈ ℝ || sls𝜓⋆(ℎ) ≥ 𝑤}.

To understand this definition, note that since 𝜓⋆ is defined onℝ, the sublevel set volume function

can be interpreted as giving for each height ℎ the length of longest horizontal line segment that can

be placed in the epigraph of 𝜓⋆ but no higher than ℎ. The inverse, the height-for-width function, asks

for the minimal height at which one can place a horizontal line segment of length𝑤 in the epigraph

of 𝜓⋆. See Fig. 5.1 for an illustration of this in the case of 𝜓⋆(𝑥) = 𝑒𝑥 − 𝑥 − 1, corresponding to the

Kullback–Leibler divergence.

The following lemma shows that the height-for-width function can be equivalently formulated as

the optimal value of a simple convex optimization problem.

Lemma 5.6.17. For all𝑤 ∈ ℝ≥0, hgt𝜓⋆(𝑤) = inf𝜆∈ℝmax{𝜓⋆(𝜆 + 𝑤/2), 𝜓⋆(𝜆 − 𝑤/2)}. Furthermore,

if for𝑤 > 0 there exists 𝜆𝑤 such that𝜓⋆(𝜆𝑤−𝑤/2) = 𝜓⋆(𝜆𝑤+𝑤/2), then hgt𝜓⋆(𝑤) = 𝜓⋆(𝜆𝑤−𝑤/2) =

𝜓⋆(𝜆𝑤 + 𝑤/2).

Proof. For every 𝑤 ≥ 0, define the function ℎ𝑤 ∶ 𝜆 ↦ max{𝜓⋆(𝜆 − 𝑤/2), 𝜓⋆(𝜆 + 𝑤/2)} which is

the supremum of two convex inf-compact functions with overlapping domain, and so is itself proper,

convex, and inf-compact. Inparticular,ℎ𝑤 achieves its globalminimum𝑦𝑤 ∈ ℝ, wherebydefinition and

convexity of𝜓⋆ we have 𝑦𝑤 is the smallest number such that there exists an interval [𝜆 −𝑤/2, 𝜆 +𝑤/2]

of length𝑤 such that𝜓⋆([𝜆−𝑤/2, 𝜆+𝑤/2]) ⊆ (−∞, 𝑦𝑤], and thus 𝑦𝑤 = inf{𝑥 ∈ ℝ || sls𝜓⋆(𝑥) ≥ 𝑤} =

hgt𝜓⋆(𝑤) as desired.

For the remaining claim, consider 𝑤 > 0 for which there is 𝜆𝑤 ∈ ℝ such that 𝜓⋆(𝜆𝑤 − 𝑤/2) =

𝜓⋆(𝜆𝑤 + 𝑤/2). By convexity of 𝜓⋆ we have for every 𝜆 < 𝜆𝑤 that 𝜓⋆(𝜆 − 𝑤/2) ≥ 𝜓⋆(𝜆𝑤 − 𝑤/2), and

analogously for every 𝜆 > 𝜆𝑤 that𝜓⋆(𝜆+𝑤/2) ≥ 𝜓⋆(𝜆𝑤+𝑤/2). Thus for every 𝜆we havemax{𝜓⋆(𝜆−
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𝑤/2), 𝜓⋆(𝜆+𝑤/2)} ≥ min{𝜓⋆(𝜆𝑤−𝑤/2), 𝜓⋆(𝜆𝑤+𝑤/2)} = 𝜓⋆(𝜆𝑤−𝑤/2) = 𝜓⋆(𝜆𝑤+𝑤/2), so the

result follows from the main claim.

≈ −0.54 ≈ 0.46 𝜆(𝑤) + 𝑤/2𝜆(𝑤) − 𝑤/2 0
hgt𝜓⋆(1) ≈ 0.12

hgt𝜓⋆(𝑤)

hgt𝜓⋆(3) ≈ 1.01

width 1

width𝑤

width 3

Figure 5.1: Illustration of height-for-width function for 𝜓⋆(𝑥) = 𝑒𝑥 − 𝑥 − 1

Example5.6.18. For the caseof theKLdivergence forwhich𝜓⋆(𝑤) = 𝑒𝑤−𝑤−1, one can compute that

𝜓⋆(𝜆(𝑤) +𝑤/2) = 𝜓⋆(𝜆(𝑤) −𝑤/2) for 𝜆(𝑤) = − ln 𝑒𝑤/2−𝑒−𝑤/2

𝑤
= − ln 2 sinh(𝑤/2)

𝑤
, so that hgt𝜓⋆(𝑤) =

−1 + 𝑤
2
coth 𝑤

2
+ ln 2 sinh(𝑤/2)

𝑤
.

The duality result of Theorem 5.6.15 computes the biconjugate of the optimal boundℒℬ,ℳ1,ℳ1 , so

we first prove that this function is convex and lsc.

Lemma 5.6.19. Let𝑀 the set of probability measures on the set {−1, 1} with the discrete 𝜎-algebra. Then

ℒℬ,ℳ1,ℳ1 = ℒId{−1,1},𝑀,𝑀 is convex and lower semicontinuous. In particularℒℬ,ℳ1,ℳ1(𝜀) = 𝐾⋆
ℬ,ℳ1(𝜀)

for 𝜀 ≥ 0.

Proof. By Theorem 5.6.15 we have thatℒ⋆
ℬ,ℳ1,ℳ1 = 𝐾ℬ,ℳ1 , so the in particular statement follows

immediately from the main claim. The main claim, thatℒℬ,ℳ1,ℳ1 = ℒId{−1,1},𝑀,𝑀 is convex and lower

semicontinuous, is well-known and can easily be derived using the methods of e.g. [Vaj72 ], but we

include a proof here in our language for completeness and to illustrate how it could be generalized

beyond the total variation.
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Note that the setℬ = [−1, 1]Ω ∩ ℒ0(Ω) is convex, and furthermore is 𝜎(ℒ𝑏(Ω),ℳ)-compact by

the Banach–Alaoglu theorem, and so by the Krein–Milman theorem ℬ is the 𝜎(ℒ𝑏(Ω),ℳ)-closed

convex hull of its extreme points ext(ℬ) = {−1, 1}Ω ∩ ℒ0(Ω) the set of measurable {−1, 1}-valued

functions. Thus, Lemma 5.6.6 implies 𝑑ℬ = 𝑑ext(ℬ), and soℒℬ,ℳ1,ℳ1 = ℒext(ℬ),ℳ1,ℳ1 .

We now prove that inf𝑔∈ext(ℬ)ℒ𝑔,ℳ1 is convex and lsc, which by Proposition 5.6.5 also implies

ℒext(ℬ),ℳ1,ℳ1 = inf𝑔∈ext(ℬ)ℒ𝑔,ℳ1 is convex and lsc. By Lemma 5.6.7 , for each 𝑔 ∈ ext(ℬ) we have

ℒ𝑔,ℳ1 = ℒId{−1,1},𝑀𝑔,𝑀𝑔 for𝑀𝑔 = {𝑔∗𝜇 |𝜇 ∈ ℳ1}. In particular, if 𝑔 is constant this set is the singleton

𝑀𝑔 = {𝛿𝑔(Ω)}, and if 𝑔 is non-constant then it is exactly the set𝑀 of probability measures supported on

{−1, 1}. Thus, inf𝑔∈ext(ℬ)ℒ𝑔,ℳ1 = ℒId{−1,1},𝑀,𝑀.

Note that the set 𝑀 with the total variation norm is homeomorphic to the unit interval [0, 1]

via the linear map 𝑝 ↦ 𝑝 ⋅ 𝛿{1} + (1 − 𝑝) ⋅ 𝛿{−1}. Then the function 𝑓 ∶ ℝ × 𝑀2 → ℝ given

by 𝑓(𝜀, (𝜇, 𝜈)) = D𝜙(𝜇 ‖ 𝜈) + 𝛿{0}(𝜇(Id{−1,1}) − 𝜈(Id{−1,1}) − 𝜀) is jointly convex and lower semi-

continuous, and hence since 𝑀 is compact also inf-compact. Thus, by Lemma 5.3.8 , the function

ℒId{−1,1},𝑀,𝑀 = inf(𝜇,𝜈)∈𝑀2 𝑓( ⋅ , (𝜇, 𝜈)) is convex and inf-compact as desired.

Lemma 5.6.19 implies that it suffices to compute 𝐾ℬ,ℳ1 .

Lemma 5.6.20. 𝐾ℬ,ℳ1(𝑡) = hgt𝜓⋆(2𝑡) for every 𝑡 ≥ 0.

Proof. For 𝑀 = {𝑝 ⋅ 𝛿{1} + (1 − 𝑝) ⋅ 𝛿{−1} | 𝑝 ∈ [0, 1]}, we have by Lemma 5.6.19 and Theo-

rem 5.6.15 that 𝐾ℬ,ℳ1 = ℒ⋆
ℬ,ℳ1,ℳ1 = ℒ⋆

Id{−1,1},𝑀,𝑀 = sup𝜈∈𝑀 𝐾Id{−1,1},𝜈. For 𝑝 ∈ [0, 1] we have

𝐾Id{−1,1},𝑝⋅𝛿{1}+(1−𝑝)⋅𝛿{−1} = inf𝜆∈ℝ(𝑝 ⋅ 𝜓⋆(𝑡 + 𝜆) + (1 − 𝑝) ⋅ 𝜓⋆(−𝑡 + 𝜆)), so that

𝐾ℬ,ℳ1(𝑡) = sup
𝑝∈[0,1]

inf
𝜆∈ℝ

(𝑝 ⋅ 𝜓⋆(𝜆 + 𝑡) + (1 − 𝑝) ⋅ 𝜓⋆(𝜆 − 𝑡)) . (5.30)

This mixed optimization problem is convex in 𝜆 for each 𝑝 and linear in 𝑝 for each 𝜆 ∈ ℝ, and the
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interval [0, 1] is compact, so by the Sion minimax theorem [Sio58 ] we can swap the supremum and

infimum to get

𝐾ℬ,ℳ1(𝑡) = inf
𝜆∈ℝ

sup
𝑝∈[0,1]

(𝑝 ⋅ 𝜓⋆(𝜆 + 𝑡) + (1 − 𝑝) ⋅ 𝜓⋆(𝜆 − 𝑡))

= inf
𝜆∈ℝ

max{𝜓⋆(𝜆 + 𝑡), 𝜓⋆(𝜆 − 𝑡)}

so the claim follows from Lemma 5.6.17 .

Example 5.6.21. For the Kullback–Leibler divergence, since 𝐾𝑔,𝜈(𝑡) = ln 𝜈(𝑒𝑡(𝑔−𝜈(𝑔))) as in Exam-

ple 5.4.18 , Lemma 5.6.20 and Example 5.6.18 imply that the optimal bound on the cumulant generating

functionof a randomvariable𝑔with𝜈(𝑔) = 0 and𝑚 ≤ 𝑔 ≤ 𝑀𝜈-a.s. is ln 𝜈(𝑒𝑡𝑔) ≤ hgt𝜓⋆ [(𝑀 −𝑚)𝑡] =

−1 + 𝑀−𝑚
2

coth 𝑀−𝑚
2

+ ln 2 sinh((𝑀−𝑚)𝑡/2)
𝑡

. This is a refinement of Hoeffding’s lemma, which gives

the upper bound of (𝑀 − 𝑚)2𝑡2/8, which we will also derive as consequence of a general quadratic

relaxation on the height function in Example 5.6.31 .

Corollary 5.6.22. ℒℬ,ℳ1,ℳ1(𝜀) = hgt⋆𝜓⋆(𝜀/2) for all 𝜀 ≥ 0. In particular, if hgt𝜓⋆ is differentiable then

ℒℬ,ℳ1,ℳ1(2 hgt′𝜓⋆(𝑥)) = 𝑥 hgt′𝜓⋆(𝑥) − hgt𝜓⋆(𝑥).

Proof. The main claim is immediate from Lemmas 5.6.19 and 5.6.20 , and the supplemental claim

follows from the explicit expression for the convex conjugate for differentiable functions.

Example 5.6.23. For the Kullback–Leibler divergence, using Example 5.6.18 , the supplemental claim

of Corollary 5.6.22 applied to 𝑥 = 2𝑡 givesℒℬ,ℳ1,ℳ1(𝑉(𝑡)) = ln 𝑡
sinh 𝑡

+ 𝑡 coth 𝑡 − 𝑡2

sinh2 𝑡
for 𝑉(𝑡) =

2 coth 𝑡 − 𝑡
sinh2 𝑡

− 1/𝑡, which is exactly the formula derived by [FHT03 ].

Remark 5.6.24. Corollary 5.6.22 shows that lower bounds on the 𝜙-divergence in terms of the total

variation are equivalent to upper bounds on the height-for-width function hgt𝜓⋆ , equivalently to lower
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bounds on the sublevel set volume function of 𝜓⋆. The complementary problem of obtaining upper

bounds on the sublevel set volume function is of interest in harmonic analysis due to its connection

to studying oscillatory integrals (e.g. [Ste93 , Chapter 8, Proposition 2] and [CCW99 , §1-2]), and it

would be interesting to see if techniques from that literature could be applied in this context.

Remark 5.6.25. Since the𝐿1 distance𝑑ℬ(𝜇, 𝜈) is symmetric in terms of𝜇 and 𝜈, the optimal lower bound

onD𝜙(𝜇 ‖ 𝜈) in terms of 𝑑ℬ(𝜇, 𝜈) is the same as the optimal lower bound onD𝜙(𝜈 ‖ 𝜇) = D𝜙†(𝜇 ‖ 𝜈)

for 𝜙† = 𝑥𝜙(1/𝑥). By Corollary 5.6.22 , this implies that hgt𝜓⋆ = hgt(𝜓†)⋆ (note that this can also be

derived directly from the definition).

Application to Pinsker-type inequalities

Corollary 5.6.22 implies that to obtain Pinsker-type inequalities, it suffices to upper bound the height

function hgt𝜓⋆(𝑡) by a quadratic function of 𝑡. In this section, we show such bounds undermild assump-

tions on 𝜓⋆, both rederiving optimal Pinsker-type inequalities for the Kullback–Leibler divergence

and 𝛼-divergences for −1 ≤ 𝛼 ≤ 2 due to Gilardoni [Gil10 ], and deriving new but not necessarily

optimal Pinsker-type inequalities for all 𝛼 ∈ ℝ. We proceed by giving two arguments approximating

the minimizer 𝜆(𝑡) in the optimization problem defining the height (Lemma 5.6.17 ), and an argument

that works directly with the optimal 𝜆(𝑡).

We begin with the crudest but most widely applicable bound.

Corollary5.6.26. If𝜙 is twice differentiable on its domain and𝜙″ ismonotone, thenhgt𝜓⋆(𝑡) ≤ 𝑡2/(2𝜙″(1))

for all 𝑡 ≥ 0. Equivalently, for such 𝜙 we have thatD𝜙(𝜇 ‖ 𝜈) ≥
𝜙″(1)
8

⋅ 𝑑ℬ(𝜇, 𝜈)
2 for all 𝜇, 𝜈 ∈ ℳ1.

Proof. If 𝜙″(1) = 0, then the claim is trivial, so we assume that 𝜙″(1) > 0. If 𝜙″ is non-decreasing,

we have by Taylor’s theorem that 𝜙(𝑥) ≥ 𝜙″(1)
2
(𝑥 − 1)2 for 𝑥 ≥ 1, equivalently 𝜓(𝑥) ≥ 𝜙″(1)

2
𝑥2 for
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𝑥 ≥ 0, so that 𝜓⋆(𝑥) ≤ 1
2𝜙″(1)

𝑥2 for 𝑥 ≥ 0. Then hgt𝜓⋆(𝑡) = inf𝜆∈ℝmax{𝜓⋆(𝜆 − 𝑡/2), 𝜓⋆(𝜆 + 𝑡/2)} ≤

max{𝜓⋆(0), 𝜓⋆(𝑡)} ≤ 𝑡2/(2𝜙″(1)). On the other hand, if 𝜙″ is non-increasing, then analogously we

have 𝜓⋆(𝑥) ≤ 1
2𝜙″(1)

𝑥2 for 𝑥 ≤ 0, so that Then hgt𝜓⋆(𝑡) = inf𝜆∈ℝmax{𝜓⋆(𝜆 − 𝑡/2), 𝜓⋆(𝜆 + 𝑡/2)} ≤

max{𝜓⋆(0), 𝜓⋆(−𝑡)} ≤ 𝑡2/(2𝜙″(1)).

Example 5.6.27. Most of the standard 𝜙-divergences satisfy the condition of Corollary 5.6.26 , in

particular the 𝛼-divergences given by 𝜙𝛼 =
𝑥𝛼−𝛼(𝑥−1)−1

𝛼(𝛼−1)
have 𝜙″𝛼(𝑥) = 𝑥𝛼−2 which is monotone for all

𝛼. As a result, we get for all 𝛼 the (possibly suboptimal) Pinsker inequalityD𝜙𝛼(𝜇 ‖ 𝜈) ≥
1
8
⋅ 𝑑ℬ(𝜇, 𝜈)

2

for all 𝜇, 𝜈 ∈ ℳ1. Such a bound appears to be new for 𝛼 > 2, but for 𝛼 ∈ [−1, 2]Gilardoni [Gil10 ]

established the better boundD𝜙𝛼(𝜇 ‖ 𝜈) ≥
1
2
⋅ 𝑑ℬ(𝜇, 𝜈)

2, extending the standard case of the Kullback–

Leibler divergence 𝛼 = 1. We rederive this optimal constant for these divergences below, and also give

general conditions under which such bounds hold.

Corollary 5.6.26 used the crude linear relaxation−𝑡/2 ≤ 𝜆(𝑡) ≤ 𝑡/2. In the following Corollary, we

derive a tighter Pinsker-type inequality by using a Taylor expansion of 𝜆(𝑡).

Corollary 5.6.28. Suppose that 𝜙 strictly convex and twice differentiable on its domain, thrice differentiable

at 1 and that

27𝜙″(1)
(3 − 𝑧𝜙‴(1)/𝜙″(1))3

≤ 𝜙″(1 + 𝑧)

for all 𝑧 ≥ −1. Then hgt𝜓⋆(𝑡) ≤ 𝑡2/(8𝜙″(1)) for all 𝑡 ≥ 0, equivalently, for such 𝜙 we haveD𝜙(𝜇 ‖ 𝜈) ≥

𝜙″(1)
2

⋅ 𝑑ℬ(𝜇, 𝜈)
2 for all 𝜇, 𝜈 ∈ ℳ1.

Remark 5.6.29. ThePinsker constant inCorollary 5.6.28 is best-possible, since if𝜙 is twice-differentiable

at 1, then Taylor’s theorem gives the local expansion 𝜙(𝑥) = 𝜙″(1)/2 ⋅ (𝑥 − 1)2 +𝑜((𝑥 − 1)2), and thus

the distributions 𝜇𝜀 = (1/2 + 𝜀/2, 1/2 − 𝜀/2) and 𝜈 = (1/2, 1/2) on the set {0, 1} have 𝑑ℬ(𝜇𝜀, 𝜈) = 𝜀

andD𝜙(𝜇𝜀 ‖ 𝜈) = 𝜙″(1)/2 ⋅ 𝜀2 + 𝑜(𝜀2).
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Proof. Under suitable regularity assumptions on 𝜙 and 𝜓⋆, one can easily show that the second order

expansion of the function 𝜆(𝑡) implicitly defined by𝜓⋆(𝜆(𝑡)+ 𝑡/2) = 𝜓⋆(𝜆(𝑡)− 𝑡/2) is 𝐿(𝑡) = − 𝑐𝑡2

24
for

𝑐 = (𝜓⋆)‴(0)/(𝜓⋆)″(0) = −𝜙‴(1)/𝜙″(1)2. Taking this as given, we showunder the stated assumptions

of the proposition that for 𝐿(𝑡) = − 𝑐𝑡2

24
and 𝑐 = −𝜙‴(1)/𝜙″(1)2, we have that 𝜓⋆(𝐿(𝑡) + 𝑠𝑡/2) ≤

𝑡2/(8𝜙″(1)) for 𝑠 ∈ {±1}. Since both sides are 0 at 0, it thus suffices to show (𝐿′(𝑡) + 𝑠/2)(𝜓⋆)′(𝐿(𝑡) +

𝑠𝑡/2) ≤ 𝑡/(4𝜙″(1)). Now, let ⋚ indicate ≤ if 𝐿′(𝑡) + 𝑠/2 ≥ 0 and ≥ if 𝐿′(𝑡) + 𝑠/2 ≤ 0. Since 𝜙 strictly

convex implies 𝜓′ = ((𝜓⋆)′)−1 is strictly increasing, we thus have that this is equivalent to

𝐿(𝑡) + 𝑠𝑡/2 ⋚ 𝜓′(
𝑡/(4𝜙″(1))
𝐿′(𝑡) + 𝑠/2)

(5.31)

Write 𝑧 = 𝑡/(4𝜙″(1))
𝐿′(𝑡)+𝑠/2

= 𝑡/(4𝜙″(1))
−𝑐𝑡/12+𝑠/2

so that 𝑧 has the same sign as 𝐿′(𝑡) + 𝑠/2 and 𝑡 = 6𝑠𝑧𝜙″(1)
3+𝑐𝑧𝜙″(1)

. Plugging

this in and using the fact that 𝑠2 = 1, we wish to show that

3𝑧𝜙″(1)(6 + 𝑐𝑧𝜙″(1))
2(3 + 𝑐𝑧𝜙″(1))2

− 𝜓′(𝑧) ⋚ 0 (5.32)

for all 𝑧 such that 𝑡 ≥ 0. The left hand side of Eq. (5.32 ) is 0 at 0, so since 𝑧 > 0 implies⋚ is≤ and 𝑧 < 0

implies⋚ is≥, it suffices to show that the derivative of the left-hand side of Eq. (5.32 ) with respect to 𝑧

is non-positive for all 𝑧. This derivative is

27𝜙″(1)
(3 + 𝑐𝑧𝜙″(1))3

− 𝜓″(𝑧) =
27𝜙″(1)

(3 − 𝑧𝜙‴(1)/𝜙″(1))3
− 𝜙″(1 + 𝑧) (5.33)

which since dom𝜓 ⊆ [−1,∞) is non-positive for all 𝑧 if and only if it is non-positive for all 𝑧 ≥ −1.

Example 5.6.30 ([Gil10  ]). For the 𝛼-divergences, we have 𝜙″𝛼(𝑥) = 𝑥𝛼−2, and 𝜙‴𝛼 (𝑥) = (𝛼 − 2)𝑥𝛼−3

so that Corollary 5.6.28 is equivalent to the condition 27
(3+(2−𝛼)𝑧)3

≤ (1 + 𝑧)𝛼−2 for 𝑧 ≥ −1. Note that

this is true for 𝑧 = 0 for all𝛼, and the derivative of 27(1+𝑧)2−𝛼

(3+(2−𝛼)𝑧)3
with respect to 𝑧 is 27(𝛼−2)(𝛼+1)𝑧(1+𝑧)1−𝛼

(3+(2−𝛼)𝑧)4
.

Thus, for 𝛼 ∈ [−1, 2] the sign of the derivative is the opposite of the sign of 𝑧, and the condition holds
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for all 𝑧 ≥ −1, recovering the result of Gilardoni [Gil10 ] as desired.

Example 5.6.31. For the case of the Kullback–Leibler divergence, Example 5.6.30 rederives Pinsker’s

inequality and Hoeffding’s lemma.

Finally, we show that one can also obtain optimal Pinsker-type inequalities while arguing directly

about the optimal 𝜆(𝑡), for which we need the following lemma.

Lemma 5.6.32. Suppose that 𝑓 ∶ ℝ → ℝ is a convex function continuously differentiable on (𝑎, 𝑏) the

interior of its domain with a unique global minimum and such that lim𝑥→𝑎+ 𝑓(𝑥) = ∞ = lim𝑥→𝑏− 𝑓(𝑥).

Then there is a continuously differentiable function 𝜆 ∶ (𝑎 − 𝑏, 𝑏 − 𝑎) → ℝ such that hgt𝑓(𝑡) = 𝑓(𝜆(𝑡) +

𝑡/2) = 𝑓(𝜆(𝑡) − 𝑡/2) and

𝜆′(𝑡) =
𝑓′ (𝜆(𝑡) + 𝑡/2) + 𝑓′ (𝜆(𝑡) − 𝑡/2)

2 (𝑓′ (𝜆(𝑡) − 𝑡/2) − 𝑓′ (𝜆(𝑡) + 𝑡/2))
(5.34)

hgt′𝑓(𝑡) =
𝑓′(𝜆(𝑡) + 𝑡/2)𝑓′(𝜆(𝑡) − 𝑡/2)
𝑓′(𝜆(𝑡) − 𝑡/2) − 𝑓′(𝜆(𝑡) + 𝑡/2)

. (5.35)

Proof. For each 𝑡 ∈ (𝑎−𝑏, 𝑏−𝑎), the function𝜆 ↦ 𝑓(𝜆+𝑡/2)−𝑓(𝜆−𝑡/2) is continuously differentiable

on its domain (𝑎 + |𝑡|
2
, 𝑏 − |𝑡|

2
), with limits −∞ and∞. Thus, for all such 𝑡 there exists 𝜆 satisfying

the implicit equation 𝑓(𝜆(𝑡) + 𝑡/2) = 𝑓(𝜆(𝑡) − 𝑡/2), which by Lemma 5.6.17 also defines hgt𝑓(𝑡).

Furthermore, the fact that𝑓 has a unique globalminimum implies this function is strictly increasing in 𝜆

for each 𝑡, and thus the implicit function theorem guarantees the existence of the claimed continuously

differentiable 𝜆(𝑡).

Given the existence of 𝜆(𝑡), we have by its definition that 𝑑
𝑑𝑡
𝑓(𝜆(𝑡)+ 𝑡/2) = 𝑑

𝑑𝑡
𝑓(𝜆(𝑡)− 𝑡/2), which

implies by the chain rule the claimed value for 𝜆′(𝑡), which since hgt′𝑓(𝑡) =
𝑑
𝑑𝑡
𝑓(𝜆(𝑡) + 𝑡/2) implies the

claimed expressions for the derivative of hgt𝑓.

Using theprevious lemma,weobtain the sameoptimalPinsker-type inequality as inCorollary 5.6.28 
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under related but incomparable assumptions.

Corollary 5.6.33. If 𝜙 is strictly convex, has a positive second derivative on its domain, 1/𝜙″ is concave, and

lim𝑥→𝜙′(∞)− 𝜓⋆(𝑥) = ∞ (e.g. if 𝜙′(∞) = ∞), then hgt𝜓⋆(𝑡) ≤ 𝑡2/(8𝜙″(1)) for all 𝑡 ≥ 0. Equivalently,

for such 𝜙 we haveD𝜙(𝜇 ‖ 𝜈) ≥
𝜙″(1)
2

⋅ 𝑑ℬ(𝜇, 𝜈)
2 for all 𝜇, 𝜈 ∈ ℳ1.

Proof. By standard results in convex analysis, the existence and positivity of 𝜓″ imply that 𝜓⋆ is

itself twice differentiable (e.g. [HL93 , Proposition 6.2.5] or [Gor91 , Proposition 1.1]). Thus, by

Lemma 5.6.32 , it suffices to show that hgt′𝜓⋆(𝑡) ≤ 𝑡/(4𝜙″(1)), or equivalently

(𝜓⋆)′(𝜆(𝑡) + 𝑡/2)(𝜓⋆)′(𝜆(𝑡) − 𝑡/2)
(𝜓⋆)′(𝜆(𝑡) − 𝑡/2) − (𝜓⋆)′(𝜆(𝑡) + 𝑡/2)

≤ 𝑡
4𝜙″(1)

. (5.36)

Since 𝜓⋆(𝜆(𝑡) + 𝑡/2) = 𝜓⋆(𝜆(𝑡) − 𝑡/2) and 𝜓⋆ has global minimum at 0, we have 𝜆(𝑡) − 𝑡/2 ≤ 0 and

𝜆(𝑡) + 𝑡/2 ≥ 0, and (𝜓⋆)′(𝜆(𝑡) − 𝑡/2) ≤ 0 and (𝜓⋆)′(𝜆(𝑡) + 𝑡/2) ≥ 0. Thus, we have that the left-hand

side of Eq. (5.36 ) is half the harmonic mean of (𝜓⋆)′(𝜆(𝑡) + 𝑡/2) and−(𝜓⋆)′(𝜆(𝑡) − 𝑡/2), so it suffices

by the arithmetic mean–harmonic mean inequality to prove

(𝜓⋆)′(𝜆(𝑡) + 𝑡/2) − (𝜓⋆)′(𝜆(𝑡) − 𝑡/2) ≤ 𝑡
𝜙″(1)

. (5.37)

Since Eq. (5.37 ) holds when 𝑡 = 0, it suffices to prove that

(1/2 + 𝜆′(𝑡)) ⋅ (𝜓⋆)″(𝜆(𝑡) + 𝑡/2) + (1/2 − 𝜆′(𝑡)) ⋅ (𝜓⋆)″(𝜆(𝑡) − 𝑡/2) ≤ 1
𝜙″(1)

. (5.38)

By the relationship between the second derivative of a function and the one of its conjugate (e.g. [HL93 ,

Proposition 6.2.5]), this is equivalent to

1/2 + 𝜆′(𝑡)
𝜓″((𝜓⋆)′(𝜆(𝑡) + 𝑡/2))

+ 1/2 − 𝜆′(𝑡)
𝜓″((𝜓⋆)′(𝜆(𝑡) − 𝑡/2))

≤ 1
𝜙″(1)

. (5.39)

Now, by Eq. (5.34 ), we have that 𝜆′(𝑡) ∈ [−1/2, 1/2], so that by Jensen’s inequality and the concavity
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of 1/𝜓″, the left-hand side of Eq. (5.39 ) is at most

1/𝜓″((1/2 + 𝜆′(𝑡))(𝜓⋆)′(𝜆(𝑡) + 𝑡/2) − (𝜆′(𝑡) − 1/2)(𝜓⋆)′(𝜆(𝑡) − 𝑡/2)). (5.40)

Finally, since by definition 𝜓⋆(𝜆(𝑡) + 𝑡/2) = 𝜓⋆(𝜆(𝑡) − 𝑡/2), the term inside 1/𝜓″ in Eq. (5.40 ) is 0, so

since 𝜓(𝑥) = 𝜙(1 + 𝑥)we are done.

Example 5.6.34. For the 𝛼-divergences, we have 1/𝜙″𝛼(𝑥) = 𝑥2−𝛼 which is concave for 𝛼 ∈ [1, 2], so

Corollary 5.6.33 applies for these divergences. Furthermore, by Remark 5.6.25 , we can consider the

reverse 𝛼-divergences with 𝜙†𝛼(𝑥) = 𝑥𝜙𝛼(1/𝑥) which has 1/(𝜙†𝛼)″(𝑥) = 𝑥1+𝛼, which is concave for

𝛼 ∈ [−1, 0].

5.7 Discussion

Throughout this chapter, the 𝜙-cumulant generating function has proved central in explicitating the

relationship between 𝜙-divergences and integral probability metrics. As a starting point, the identity

𝐾𝑔,𝜈 = ℒ⋆
𝑔,𝜈 (Theorem 5.5.12 ) expresses the cumulant generating function as the convex conjugate of

the best lower bound ofD𝜙(𝜇 ‖ 𝜈) in terms of𝜇(𝑔)−𝜈(𝑔). This establishes a “correspondence principle”

by which properties of the relationship between𝜙-divergences and integral probabilitymetrics translate

by duality into properties of the cumulant generating function, and vice versa. An advantage of this

correspondence is that the function 𝐾𝑔,𝜈, being expressed as the solution of a single-dimensional

convex optimization problem (Definition 5.5.8 ), is arguably easier to evaluate and analyze than its

counterpartℒ𝑔,𝜈, expressed as the solution to an infinite-dimensional optimization problem. Following

Theorem 5.5.12 , several results from this chapter can be seen as instantiations of this “correspondence

principle” and we summarize some of them in Table 5.2 .
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Table 5.2: Several examples, proved in this chapter, of the dual correspondence between properties of
the 𝜙-cumulant generating function and properties of the relationship between the 𝜙-divergence and
mean deviations. Throughout, 𝜇 ∈ ℳ1, 𝑔 ∈ 𝐿1(𝜈), 𝐵 ∶ ℝ → ℝ is arbitrary, 𝐸 ∶ ℝ → ℝ is even, and
𝒢 ⊆ ℒ0. Recall that 𝑋1

𝑔(𝜈) is the set of all probability measures 𝜇 ≪ 𝜈 and integrating 𝑔, and that𝒳1
𝒢 is

the set of all probability measures integrating all functions in 𝒢.

Ref. Property of the 𝜙-cumulant
generating function Property of the 𝜙-divergence

§5.5.1 𝐾𝑔,𝜈(𝑡) ≤ 𝐵(𝑡) for all 𝑡 ∈ ℝ D𝜙(𝜇 ‖ 𝜈) ≥ 𝐵⋆(𝜇(𝑔) − 𝜈(𝑔))
for all 𝜇 ∈ 𝑋1

𝑔(𝜈)

§5.5.2 0 ∈ int(dom𝐾𝑔,𝜈)
D𝜙(𝜇 ‖ 𝜈) ≥ 𝐿(|𝜇(𝑔) − 𝜈(𝑔)|)
for some 𝐿 ≢ 0, all 𝜇 ∈ 𝑋1

𝑔(𝜈)

§5.5.4 𝐾𝑔,𝜈 differentiable at 0 D𝜙(𝜈𝑛 ‖ 𝜈) → 0 implies
𝜈𝑛(𝑔) → 𝜈(𝑔) for all (𝜈𝑛) ∈ 𝑋1

𝑔(𝜈)ℕ

§5.6.2 

𝐾𝑔,𝜈(𝑡) ≤ 𝐸(𝑡) for all
𝑡 ∈ ℝ, 𝑔 ∈ 𝒢, 𝜈 ∈ 𝒳1

𝒢

D𝜙(𝜇 ‖ 𝜈) ≥ 𝐸⋆(𝑑𝒢(𝜇, 𝜈))
for all 𝜇, 𝜈 ∈ 𝒳1

𝒢

§5.6.3 hgt𝜓⋆(2𝑡) ≤ 𝐵(𝑡) for all 𝑡 ∈ ℝ D𝜙(𝜇 ‖ 𝜈) ≥ 𝐵⋆(𝑑ℬ(𝜇, 𝜈))
for all 𝜇, 𝜈 ∈ ℳ1

A limitation of this correspondence is that it only describes the optimal lower bound functionℒ𝑔,𝜈

via its convex conjugate. Whenℒ𝑔,𝜈 is lower semicontinuous, this is without any loss of information by

the Fenchel–Moreau theorem, but in general this only provides information about the biconjugateℒ⋆⋆
𝑔,𝜈 .

Whileℒ𝑔,𝜈 andℒ⋆⋆
𝑔,𝜈 differ in at most two points, as discussed in Section 5.5.1 , the difference between

the optimal lower bound and its biconjugate is potentially much more important when considering

a class of functions 𝒢 or a class of measures𝑁 as in Section 5.6.1 . Some conditions under which this

function is necessarily convex and lower semicontinuous were derived in Sections 5.5.3 and 5.6.3 , but

they do not provide a complete characterization (cf. Remarks 5.5.36 and 5.6.4 ). We believe that an

interesting direction for future work would be to identify natural necessary or sufficient conditions

under whichℒ𝒢,𝑁 is convex and lower semicontinuous.
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Chapter 6

Conclusion

Wehave seen throughout this thesis the power of reasoning about random variables via unpredictability-

type notions, even when working with computationally bounded algorithms or when the goal is to

later bound an integral probability metric. We conclude by giving two directions for future research in

this vein which are more general than the specific open problems mentioned in Chapters 2 to 5 .

Composition for unpredictability notions. Though (as we have seen) the Kullback–Leibler diver-

gence is useful for analyzing constructions in complexity theory and cryptography, it has a major

drawback that complicates reasoning about composition: the KL divergence does not satisfy (even

relaxed versions of) the triangle inequality, that is, for all constants 𝐶 ∈ ℝ, there are distributions 𝑃,𝑄,

and 𝑅 on the set {0, 1} such that

KL(𝑃 ‖ 𝑅) > 𝐶(KL(𝑃 ‖ 𝑄) + KL(𝑄 ‖ 𝑅)) .

In Chapter 2 , to get around this we used a different inequality (Lemma 2.5.3 ) which replaces the

KL(𝑄 ‖ 𝑅) term with a larger Rényi divergence, and in Chapter 3 we worked almost exclusively with
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sample notions (equivalently log-probability ratios) and took an expectation only at the end of the

analysis, which allowed us to use the triangle equality satisfied by log-ratios. It would be interesting to

find more general-purpose ways to reason about composition in the absence of the triangle inequality,

perhaps by either identifying structural conditions on the distributions 𝑃,𝑄, and 𝑅 under which similar

inequalities hold, or by using a different measure than KL that is better behaved in this sense but still

easy to reason about.

Isolating computational reasoning. One way to interpret the role played by the KL divergence in

Chapter 2 and especially Chapter 3 is that it allowed us to cleanly delineate the statistical or information-

theoretic versus computational aspects of the problems. For example, the fact that one-way function

adversaries in cryptography are required to be polynomial-time bounded appears in Chapter 3 only

in the first step of establishing hardness in relative entropy from one way functions (Theorem 3.3.5 )

and in the fact that we explicitly measure the error in rejection sampling a finite number of times

(Lemma 3.4.7 ). It seems likely that using entropy-type notions is not the only way to obtain a similar

separation of concerns, and it would be interesting to find other such techniques.
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