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ABSTRACT

A primary goal in biology is understanding the relationship between genomic sequence and cell
state or function. Pharmacogenomic experiments, for instance, measure how different genomic
profiles correlate with cell survival under varying drug dosages, thus finding genomic markers and
signatures associated with eftective therapy. ChIP-seq experiments, on the other hand, isolate pro-
teins and/or transcription factors (TF) bound to the genome and subsequently measure genomic
sequence variability with these TFs across different conditions. In both these cases the fundamental
problem formulation is set up with some genomic input space, X, and interest lies in associations
with some outcome Y. How one defines either X or Yfor any given application has a tremendous
downstream effect on the conclusions drawn. The focus of this dissertation is the development of
methods for three -omics applications which address the importance of defining X and Yin a data
driven manner. Improved model interpretability and an agreement with intuition highlight the
benefit of such an approach for each application. A multi-level model is detailed in the pharmacoge-
nomics application to show the effect assuming an outcome variable Y'is a continuous univariate
random variable when in fact Y follows a two-component mixture distribution. Estimated asso-
ciations between X and Y are compared under the differing assumptions, as well as bivariate mea-
sures of association such as those between the Y collected in one experiment and those collected in
another. The second application uses weight constraints and regularization to illustrate how the
inherent structure of the genomic sequence X, namely being composed of a string of nucleotides,
allows one to transform X into a set of learnable sequence motifs using the first layer weights in con-
volutional neural networks (CNNs). These feature extractors allow one to encode prior informa-
tion into the sequence-function analysis and extract interpretable sequence motifs after fitting the
model. The final results again focus on CNNs and TF binding and show the utility of employing an
exponential activation function in the first layer feature extractors. Specifically, measures of model
interpretability are improved relative to state-of-the-art methods and there are no effects on test set
accuracy. Interestingly, the learned functions with the exponential tend to be less noisy and more
robust to hyper-parameter selections. A discussion of deep learning for TF binding applications
completes the dissertation.
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Reassessing pharmacogenomic cell

sensitivity with multi-level statistical models

PHARMACOGENOMIC EXPERIMENTS allow for the systematic testing of drugs, at varying dosage
concentrations, to study how genomic markers correlate with cell sensitivity to treatment. We for-

mulate a hierarchical mixture model to estimate the drug-specific mixture distributions for estimat-



ing cell sensitivity and for assessing drug effect type (broad versus targeted effect). We motivate two
formulations: 1) fit independently within dataset and 2) fit jointly across dataset. Case studies are
provided to assess pairwise agreements for cell lines/drugs within the intersection of two datasets
and confirm moderate pairwise agreement between many publicly-available pharmacogenomic
datasets. An analysis is presented for the drug Crizotinib and identifies high estimated posterior
drug sensitivity for cells harboring EML4-ALK or NPM1-ALK gene fusions, as well as significantly

down-regulated cell matrix pathways associated with Crizotinib sensitivity.

1.1 INTRODUCTION

Pharmacogenomic studies offer insight into which genomic markers predict drug response and hold
potential for developing effective personalized cancer treatment regimes?®'®7%77:145:12:24 The ap-
proach relies on quantifying the response of cell lines to variable dosage concentrations of drugs
of interest. The cell line’s relative viability is recorded at each concentration for each cell-line/drug
combination and a dose response curve is produced (supplementary figure S1). Genomic measure-
ments are also obtained for each cell line and used to learn molecular signatures correlated with drug
response to discover novel biomarkers. For this final part of the analysis, the dose curves are sum-
marized into one number with statistics such as the area-above-the-curve (AAC), the half maximal
effective concentration (ECso) or the half maximal inhibitory concentration (ICso). To identify
biomarkers, this summary statistic is defined as the outcome and association tests or machine learn-
ing algorithms are applied to search for predictive genomic measurements. The quality of these
studies are therefore entirely dependent on the quality of the dose curve summaries used as out-
comes in these downstream analysis.

In a 2013 paper, the quality of these data were questioned due to the fact that dose curve sum-

maries for the same cell line/drug combinations measured by two independent studies, the Cancer



Cell Line Encyclopedia (CCLE) dataset *° and the Genomics of Drug Sensitivity in Cancer (GDSC)

46 60,22,37,111,47,113,100,112

dataset ¢, exhibited low Spearman correlations *°. However, several follow up studies
pointed out that Spearman correlation was not an appropriate measure of agreement for these dose
curve summaries. For example Geeleher et al. 37 argued that Spearman correlation does not reflect
the true level of concordance for highly-targeted drugs because data from the relatively few cell lines
sensitive to the compound, such as the case with nilotinib, appeared as outliers when compared

to the majority of resistant cell lines*”. Thus the random measurement error associated with the
resistant cell lines will dominate any biological signal. This debate led several groups to propose
dichotomizing the data into sensitive and resistant cell lines for each drug and computing binary
measures of agreement between these assigned labels*>'*3. For example, Consortium et al. ** bina-
rized the sensitivities using the waterfall method (see ">*¢ for details) and found improved agreement
upon calculating Cohen’s Kappa statistic relative to the Spearman correlation 12622 - Alternative bi-
narization approaches include denoting sensitive cell lines with a hard cutoft (i.e. AAC > 0.2,""3),
assigning sensitive cell lines as those with sensitivity greater than the 66™ percentile, assigning resis-
tant to those less than 334 percentile, and discarding the observations in the middle tercile*”, and
fitting two-component mixture distributions +7°°. Alternative measures of agreement assessed by
Safikhani et al. "*3> which account for the binarization of the data include Matthew’s correlation ®?,
Cramer’s V*5, and Informedness®° .

Discretizing cell line sensitivities and computing a binary metric of concordance highlighted
greater levels of agreement than originally reported for highly-targeted drugs regardless of method
and metric employed "> and motivated the use of dichotomization for downstream analysis>>'5".
However, limitations hinder the universal applicability of each method across pharmacogenomic
datasets for several reasons. First, determining a hard threshold to call sensitive cell lines is a diffi-
cult manual procedure with no clear and evident cutoff both within study as well as across study

(supplementary figure S3). Second, discarding the middle tercile of observations reduces the sample



size by 33% and decreases statistical power for biomarker discovery. Finally, it ignores the fact that
while most drugs appear to affect only a few cell-lines, what we refer to as a zargeted effects, some
drugs appear to have broad effects (supplementary figure S3) making dichotomization inappropriate
for downstream analysis. While a strict labelling of drugs as broad effect or targeted effect may be
achieved using domain expertise or ad-hoc thresholding '3, the notion of drug fargetedness is not a
well defined concept which necessarily justifies a strict dichotomization; a continuum of drug tar-
getedness is reasonable and may better model the complexity of effect type. Indeed, drugs exhibiting
modest degrees of targetedness, such as the drug PD-0332991, may explain why the distribution of
AAC appears slightly targeted in the CCLE dataset but less so in the GDSC dataset (supplementary
figure S3).

Fitting two-component mixture distributions has been proposed as a data-driven way to binarize
cell lines into sensitivity and resistant 247 However, such a procedure is not applicable to the broad
effect drugs whose sensitivity distributions are continuous and unimodal. Here, we extend and im-
prove on this idea by proposing a multi-level mixture model in which the first level estimates drug
type, broad effect or sensitive, with two-component mixture distributions and the second models
the response of the cell-line conditioned on the drug type modeled in the first level. Specifically,
two-component mixture distributions are estimated only for targeted drugs in order to classify cells
into sensitive or resistant, whereas single-component distributions are estimated for broad effect
drugs. Fitting this model permits us to fully described all cell-type/drug combinations without man-
ual annotations and supports the notion that some cell type distributions are continuous while oth-
ers are binary. A further advantage of our approach is that the probabilistic approach permits us to
combine data from different studies in a statistically rigorous way. We note that several other large-
scale pharmacogenomic datasets are publicly-available in addition to CCLE and GDSC7% 45124,
We fit our model to all 1,381 distinct cell lines and 733 distinct drugs available in five cell line viabil-

ity datasets and estimate agreement across common cell lines and drugs. We then use the results of



our fitted model to detect biomarkers that are not found with previous approaches. Specifically, a
comparison of biomarkers associated with the ALK-inhibitor crizotinib, a highly-targeted drug used
for treating non small cell lung carcinoma (NSCLC), identifies significantly down-regulated cell

matrix pathways drivers of dose sensitivity.

1.2 RESULTS

CORRELATION IS NOT AN APPROPRIATE ASSOCIATION MEASURE FOR TARGETED DRUGS

Bivariate correlation measures between the reported dose curve summaries have been used to assess
pairwise dataset concordance for cell line-drug pairs assayed in more than one study *>*#'*7. When
comparing the CCLE and GDSC datasets, both Pearson and Spearman correlation measures sug-
gest strong agreement for some drugs but moderate to low for others (supplementary figure S4)a.
We observe similar results for comparisons between other studies (supplementary figures Sto, S11).
We confirm previously published observation that these different results are explained by some
drugs having broad effects and others being targeted *7"'3>47_ A targeted drug that, for example,
inhibits a specific pathway will be effective only against cells which up-regulate that pathway. This
will result in two collections of cells, sensitive and resistant to that drug, and thus the distribution
of the quantified effect (AAC, for example) will be a mixture of two components (figure 1.1b). Be-
cause correlation is a summary statistic defined for bivariate normal variables, in general, it does not
provide a useful summary of association for data with an underlying dichotomous nature (sup-
plementary figure S2). Measures that explicitly model the underlying two-component generating
distributions, such as the odds ratio, result in consistent assessments of agreement and demonstrate

consistent measurements from these studies (supplementary figure S4b).
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Figure 1.1: Estimated posterior distributions of cell sensitivity for CCLE (X-axis) and GDSC (Y-axis) for broad effect
drug (a 17-AAG) and targeted drug (b Crizotinib). c¢) Estimated posterior probability of drug targetedness for CCLE
(salmon) and GDSC (green) for drugs tested in common between the two studies. Solid line represents an estimated
50% probability of the drug being targeted. 14 out of the 15 drugs exhibit strong agreement between drug type. d)
Mean correlation +/- 95% confidence intervals based on 1000 samplings from the estimated posterior distributions for

CCLE and GDSC.



MULTI-LEVEL MODEL PROVIDES INTERPRETABLE PARAMETERIZATION

To better quantify the effect of drugs on cell-type we developed a two-level mixture model in which
the first level accounts for drug targetedness, broad in effect or targeted, and the second level mod-
els cell sensitivity conditioned upon drug type. We modeled targeted drug sensitivity with a two-
component mixture distribution. If we condition on the drug being targeted, the effect of the drug
can be quantified with the posterior probabilities of being sensitive. If we condition on the drug
being broad effect, the effect can be quantified with continuous measures such as the Z-score or an
empirical cumulative distribution function. Note that this model can be applied to each dataset
separately or jointly to all datasets. Applying the model within-dataset is usetul for validation by
calculating pairwise study agreements of drugs and cell lines. Applying the model across-datasets is
useful to estimate a unified measure of cell sensitivity for each cell-drug combination. We used the
latter approach to estimate biomarker associations. Below we provide a summary of how the model
provides a useful quantification with further details in the Methods Section.

For any cell lines 7, drug 7, and pharmacogenomic dataset £ we denote the observed dose curve
summary statistic with Y; ; ;. For the results presented in this section we use AAC values standard-
ized to be between o and 1. We define the dichotomous latent variable 17 to be o if the drug has a
broad effect and 1 if it is a targeted drug. We define p = Pr(7#; = 1) as the proportion of drugs that
are targeted. For targeted drugs, when W; =1, we define another latent variable Z; ;o be 1 if cell

line 7 is sensitive to drug 7 and o otherwise. We next define

7 =Pr(Z;; = 1)

as the proportion of cell lines sensitive to drug 7, define p*(7;) = p(z; | W; = 1) which we assume
to be beta distributed with parameters 4 and &*. Because dichotomizing is not appropriate when

w; =0, for convenience, we assume 7i=1land Z;; =1 for all 7, j when w;=0.



We then model the bimodal behaviour of the observed summaries Y7, 7, £ for targeted drugs with

the following mixture distribution

2igl(Yij) + (1= 2i)p (Vi)

with P the distribution density of the sensitive component for drug 7 in dataset £ and P the dis-
tribution density of the resistant component. We assume both p* and p” are beta distributions with
with parameters ¢; , and &}, and cjb’ , and df’ ;> respectively. Finally, we assume that for broad effect

drugs, ¥; ik follows a beta distribution pﬁ , with parameters cﬁ , and dj[i 4 We estimate p, CJb’ B djb’ b c; B

&4

o € o d; , using maximum likelihood estimation.

MODEL-BASED MEASURES OF DRUG TARGETEDNESS AND CELL SENSITIVITY

With these assumptions and estimates in place we can now compute quantities useful for down-
stream analyses. Specifically, for targeted drugs we can compute the posterior probability of cell line
i being sensitive to drug /, Pr(Z;; = 1 | Yy ..., Y%, W; = 1). Note that we can compute
this posterior probability for each study £ and use this to assess agreement, or compute one quantity

using data from all studies. For broad eftect drugs we compute the cumulative probability

y
Pr(Yijp <y | W;=0) = /0 P,l?,/e(y \ f]b-,/ead,l?,/e)d)’

as it will remove study eftects such as the location shifts (supplementary figure S3a; paclitaxel and
17-AAG, supplementary figure 1.5a).

For the above calculations we need to decide if a drug is targeted or not. To guide this decision we
compute the posterior probability of a drug being targeted given the observed data. Specifically, for

each drugj and study £ we can compute the posterior distribution Pr(17; = 1 | I ks YT J',k)



with 7 the total number of cell lines. We use this estimate to measure drug targetedness (figure 1.1¢).

ACROSS-STUDY AGREEMENT IS HIGH

We reassessed three pharmacogenomic dataset comparisons 4624107 \WJe begin with the oft-compared
Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC)

datasets to validate the model 3¢

. We considered the entirety of each dataset and fit models inde-
pendently to each, making use of all drugs tested across all cell lines. We then restricted the pairwise
concordance analysis to those cell line/drug pairs tested in common in both experiments. Statistical
assessments of the different dose curve summary statistics find that AAC has better properties than
ECso or IC50°7, and is the quantification used here, when available. Dose curve summaries were
computed based on common dosage concentration ranges when possible. After model fitting, the
estimated posterior quantities of interest and distributional parameters, such as the posterior prob-
ability of cell sensitivity and the posterior probability of drug targetedness, were extracted and used

for the assessments. Confidence intervals were computed based on Monte Carlo samplings from the

estimated posterior distributions. Additional details are found in the Methods section.

AGREEMENT VARIES IN CCLE aND GDSC DESPITE HIGH DRUG TYPE AGREEMENT

Model-based sensitivities were estimated for the CCLE and GDSC datasets based on the recom-
puted AACs available in the PharmacoGx R package "*'. The estimated posterior probabilities of
drug targetedness were consistent for 14 of the 15 drugs tested in common between the CCLE and
GDSC studies (figure 1.1¢, solid vertical line indicates 50% probability of being targeted). Only the
drug PD-0332991 was estimated more targeted in CCLE but more broad effect in GDSC. Com-
paring the original distributions of AAC for all cell lines assayed for PD-0332991 in CCLE and

GDSC (supplementary figure S3a, sixth drug from the top) highlights the disconnect; sensitivities



do indeed appear targeted in CCLE but much less so in GDSC. We assigned drugs to broad effect

or targeted effect by computing the product between the studies of the estimated posterior drug
type quantities and selecting the maximum. In the cases of 17-AAG, paclitaxel, and PD-0325901
this resulted in drug assignment to broad eftect (supplementary figures S4,Ss; broad eftect drugs
denoted in yellow). For all other drugs the estimated posterior probability of the drug being targeted
in both studies was larger (supplementary figures S4,Ss; targeted drugs denoted in purple). These
data-driven drug types match manual annotations for 14 of 15 drugs tested in common between
CCLE and GDSC, and for 22 of 24 drugs tested in CCLE""3¢°.

We then measured the agreement between the two datasets through Monte Carlo sampling from
the estimated posterior distributions having conditioned on the observed AAC values (figure 1.1d,
mean correlation and 95% confidence intervals based on 1000 samplings, see Methods for details).
All drugs estimated to be more broad effect in nature (17-AAG, paclitaxel, PD-0325901) exhibit
moderate-to-high agreement, as do several of the more targeted drugs nilotinib, PLX 4720, lapatinib,
crizotinib; mean correlation > 0.25). Estimated agreement is moderate but significantly greater than
o (o ¢ 95% CI) for the drugs TAE684, AZD6244, AZDos 30. For the remaining five drugs the mean
estimated correlation is non-negative however the estimates of uncertainty suggest low-to-moderate
agreement at best. This often appears to be due to a lack of cell lines sampled in common from the
sensitive mixture components (supplementary figure S7,58, tick marks on mixture distributions
represent full set of cell lines tested in each dataset whereas points represent cell lines sampled in
common).

Maximum a posteriori (MAP) estimates of agreement are improved for nine of the twelve tar-
geted drugs in comparison to a naive binarization denoting sensitive cells as those with measured
AAC>o.2 (supplementary figure Ssa, purple points). Moderate-to-high agreement is again con-
firmed for four highly targeted drugs (nilotinib, PLX 4720, lapatinib, and crizotinib) and three

broad effect drugs (supplementary figure Ssb, yellow points. Pearson correlation on the X-axis

I0



computed using the raw AAC values and on the Y-axis computed using the estimated posterior
cumulative distribution functions). Several of the drugs exhibit high targetedness and high agree-
ment (crizotinib, nilotinib, PLX4720) using Matthew’s correlation coefficient (MCC) as the metric
for assessing agreement (supplementary figure Ssa) attain much lower values of estimated agreement
when using Pearson correlation as the metric instead (supplementary figure Ssb, Y-axis). Addition-
ally, the Pearson correlations calculated from the 72w AAC values are notably higher (i.e. the points
fall significantly below the diagonal) highlighting the effect of modelling a targeted drug as a broad
effect drug; namely the influence of assuming the data arise from a single continuous distribution
when in fact the data generating process is a mixture of two distributions.

Three additional pharmacogenomic datasets are available for download in the PharmacoGx pack-
age'?'. These are from 1) the Genentech Cell Line Screening Initiative (gCSI)7°, 2) the Institute
for Molecular Medicine Finland (FIMM) 45, and 3) the Cancer Therapeutics Response Portal
(CTRPv2)'»'°%117  Additionally, we replace the GDSC dataset with the newer GDSC1o00 dataset
and then estimate model parameters independently in each of the five datasets. Reasonable and
somewhat consistent levels of agreement are found for each pairwise comparison between any of
the five datasets (supplementary figure S14). Correlations based on the modeling procedure as op-
posed to Spearman rank correlation computed using the raw AAC values are predictably improved
for many of the targeted drugs present in at least two of datasets. The gCSI dataset is the most dis-
cordant of the five, attaining the lowest levels of agreement with the CTRPv2 dataset, GDSC1o00
dataset, and FIMM dataset, respectively. While approximately 75% of estimated drug types are con-

sistent across many pairwise dataset comparisons (supplementary figure St s, just over 50% are equal

between gCSI and CTRPv2, again highlighting relatively lower agreement between these datasets.

A LACK OF SENSITIVE CELLS INFLUENCES REPORTED AGREEMENT IN PRISM
Corsello et al. ** developed a public resource called the Cancer Dependency Map containing dose

II



sensitivities for 4,518 drugs tested across 578 cell lines by measuring relative barcode abundance
with the PRISM molecular barcoding and multiplexed screening method. A validation of the
method was performed by comparing the sensitivities obtained from the PRISM multiplexed cell
line profiling with the sensitivities obtained from the CTRP and GDSC studies **. Dose curve sum-
maries (measured by AAC) were computed based over common dosage ranges and only cell lines
and drugs tested in all zhree experiments were included. Corsello et al. *# report moderate levels of
agreement which are broadly consistent across pairwise comparison (CTRP and GDSC, CTRP
and PRISM, GDSC and PRISM) based on Pearson correlations computed across common cell lines
for each drug (supplementary figure Sr2a X-axis). Interestingly, they also find a large number of
drugs target selective subsets of cell lines and the selectivity is at times predictable based on molecu-
lar features, while other drugs with highly unimodal activity distributions are less predictable. Such
conclusions support the notion of a drug type continuum and motivate the use of the multi-level
model previously described, with agreement measures taking into consideration the underlying two-
component data distributions.

We repeated the comparative analysis described by Corsello et al. ** and estimated drug type and
cell type using the multi-level model fit only to those cell line/drug pairs present in all three datasets.
MC sampling from the estimated posterior distributions was used to obtain 95% confidence in-
tervals for measuring the pairwise agreement (figure 1.2a). Mean estimated agreements between
sampled cell type are significantly lower between the GDSC and PRISM datasets than the GDSC
and CTRP datsets, however CTRP and PRISM agree nearly as well CTRP-GDSC (figure 1.2b).
The varying levels of agreement are more pronounced by calculating the correlation between the
sampled drug types for each of the 1000 MC samplings (figure 1.2¢); Matthew’s correlation coef-
ficient computed between the sampled drug types is significantly higher in the CTRP and GDSC
comparison, with a mean correlation of about 0.72, whereas the mean correlation between drug

types is 0.6 in the CTRP-PRISM comparison and even lower for GDSC-PRISM at 0.58. As noted
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by Corsello et al. *#, there is a clear trend between the correlations in that relative levels of agreement
for many drugs are consistent across pairwise comparison. Indeed, many drugs exhibiting moderate-
to-high agreement found in the CCLE-GDSC comparison also attain comparable levels herein (e.g.
paclitaxel, crizotinib, PLX4720), as do drugs with lower agreement (nutlin-3, erlotinib). However
this is not true universally, as drugs like lapatinib attain low agreement in both figure 1.2a and *#

but high agreement in figures 1.1d and 1.3f. The reason for this is a lack of sensitive cells present

in the 3-way intersection and a result of the highly targeted nature of the drugs. When considering
the full datasets and refitting the models, then calculating the agreement between cell lines present
in any two datasets, we observe more reasonable levels of agreement for lapatinib (supplementary

figure S13).
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MAP measures of agreement further validate moderate but consistent concordance (figure S12a
Y-axis). Several drugs with the lowest concordance attain more reasonable levels of agreement when
adjusting for the targeted nature of the drugs. Notably, the lowest Spearman correlations in all three
pairwise comparisons (figure S12b, right-hand panel outlier points) improve and confirm consistent
agreement between the datasets. Collectively there is no evident decrease in agreement based upon
the estimated posterior sensitivities (little-to-no change in P-values as provided above the box plots).
Additionally, a large proportion (>0.75) of the drugs tested in common exhibit similar degrees of

drug targetedness for all pairwise comparisons (figure Sr2c).

TARGETED DRUGS ARE MORE REPRODUCIBLE THAN BROAD EFFECT DRUGS IN CELLMIN-

ErRCDB

The CellMinerCDB is a web-based resource useful for unifying the richest cancer cell line datasets
and identifying pharmacogenomic determinants and signatures of drug response *>'*7. Specifi-
cally, it integrates the NCI-60, GDSC, and CTRP datasets, with sensitivity measured by the ICso
or GIso metrics for NCI-60 and GDSC but AAC for CTRP. Regardless of metric, however, Ra-
japakse et al. *°7 find certain drugs exhibit specific activity for a small collection of cells (i.e. targeted)
or appear broadly active in mechanism, and this is consistent across dataset *°7. Estimated posterior
distributions corroborate this observation; for instance the estimated posterior probability of tar-
geted for the drug dabrafenib is greater than o.90 (figure 1.3a) and the estimated two-component
mixture distributions seem to reasonably model the underlying data generating process regardless of
dose response summary metric used (figure 1.3b, dashed lines represent > 50% probability of mem-
bership to the orange sensitive component). Similar findings are supported for broad effect drugs

such as topotecan (figure 1.3c¢).
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Figure 1.3: a) Estimated posterior probability of drug targetedness for CTRP (red), GDSC (blue) and NCI-60 (green) for
drugs tested in common between the three studies. Solid line represents an estimated 50% probability of the drug being
targeted. 29 of the 38 drugs exhibit strong agreement between drug type. b) Estimated posterior component distribu-
tions for the targeted drug dabrafenib. Dashed lines represent equal probability over membership in either component.
c) Estimated posterior distributions for the broad effect drug topotecan. Stong agreement is evident. d) Mean estimated
agreement per drug calculated over 1000 MC samplings of the estimated posterior distributions indicates no significant
differences in agreement between the three datasets. e) Distributions of drug type correlation from samplings of the
estimated posterior distributions indicates significantly higher agreement between drug types for the CTRP-GDSC com-
parison. f) Reproducibility rank scores (X-axis, see *°” for a description) are highly correlated with rank scores based on
partial correlations of the estimated posterior sensitivities while adjusting for dataset comparison. Many highly targeted
drugs which exhibit moderate reproducibility based upon the X-axis measure attain higher levels of reproducibility upon

explicitly modeling the two-component data generating process.
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Mean estimated agreement, per drug and per pairwise comparison, was calculated based on 1000
MC samples drawn from the estimated posterior distributions for those cell lines present in both
datasets considered in the comparison (figure 1.3d). All three datasets agree to a similar extent with
one another, and overall these agreements are slightly improved relative to the PRISM dataset com-
parisons (figure 1.2b). It is important to note that the CTRP-GDSC comparison presented in fig-
ure 1.2 only considers cell lines present in all three datasets (CTRP, GDSC, PRISM) whereas the
CTRP-GDSC comparison presented in figure 1.3d contains any cell lines present in then CTRP-
GDSC intersection. The drug-type agreement is again higher between CTRP and GDSC than in
comparisons between NCI-60 and either of the two (figure 1.2a¢).

The reproducibility rank score introduced by Rajapakse et al. *7 is an average across the three
pairwise comparisons of the ranks of the g-values obtained by calculating the Pearson correlation
per drug between sensitivity measures for cell lines present in each pairwise comparison (figure 1.3f
X-axis). This score was used to aggregate correlations across pairwise comparison, thus finding that
strong activity correlations are not limited to just select targeted drugs, such as protein kinase in-
hibitors, but that some broad effect drug sensitivities (such as topotecan) are reproducible as well.
We calculated a comparable rank score based on the estimated posterior sensitivities by calculating
the partial correlation between all sensitivities conditional on dataset comparison. We then ordered
these correlations and assigned ranks (figure 1.3f Y-axis). The Pearson correlation between the two
rank scores is strikingly high (o = 0.65,p < 2¢7°). Additionally, broad effect drugs found to be
reproducible by Rajapakse et al. *°7, such as topotecan and trametinib, still attain moderate-to-high
levels of reproducibility under the estimated posterior rank score however the fifteen most repro-
ducible drugs are all drugs with very high estimated posterior targetedness. This latter result suggests
highly targeted compounds represent the most reproducible class of drug but broad eftect drugs

may still be reproducible across dataset.
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MODEL-BASED CLASSIFICATIONS IMPROVE DOWNSTREAM ANALYSIS

CCLE and GDSC contain independently-measured molecular covariate information (RNA-seq,
mutation status, and copy-number variants) for each cell which may be used to ascertain biomarkers
significantly associated with drug response. We used this information to perform a differential anal-
ysis relating the RN A-seq expression levels with the drug sensitivity metric (AAC) for each of the

15 drugs tested in common between the studies. LIMMA "'® was used to obtain test statistics esti-
mating the association between each marker with estimated posterior drug sensitivity. In the case of
drugs estimated to be more targeted in nature we rounded estimated sensitivities such that cells with
an estimated posterior probability of belonging to the sensitive component greater than o.5 were
denoted as sensitive (¥; = 1), else resistant (¥; = 0, see Supplementary Methods for more infor-
mation). We then computed the Pearson correlation between the estimated eftect sizes output from
LIMMA across the two studies, resulting in a single measure of correlation per drug (figure 1.4a Y-
axis). We compared the correlations computed using the estimated posterior sensitivities with the
correlations attained using the original AAC values (raw AAC for broad effect drugs as described
by or binarized AAC using a threshold of 0.2 as described by ''>. We then repeated this procedure

for both the mutation and the CNV feature sets.
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Figure 1.4: a) Pearson correlation between effect size estimates of differential gene expression (RNA) and copy num-
ber variant (CNV) for all drugs tested in common between CCLE and GDSC. Effect sizes are estimated using LIMMA
with the outcome variable representing raw AAC (continuous in the case of broad effect drugs, binarized using the
AAC> 0.2 threshold for targeted drugs, X-axis) or the model-based estimated posterior probability of sensitivity. Col-
oring represents broad effect drug type (yellow) or targeted (purple). 11 of the 15 drugs exhibit increased correlation
due to the model-based metric. b) Counts of significant feature associations (Benjamini-Hochberg adjusted P-value

< .05) between different feature sets. Counts are summed over all drugs falling within that drug-type (broad effect or
targeted), and indicate a similar number of significant associations between method (AAc-based versus model-based).
c) Counts of significant feature associations, as in b, however restricted to only those biomarkers with previously-
annotated associations for each drug. In nearly all feature types, the model-based outcome measure of sensitivity
results in a greater number of significant associations with known biomarkers, suggesting the model-based sensitivity

metric sharpens biological signal relative to the raw AAC-based outcome measures.
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The Pearson correlations calculated between the estimated test statistics are increased for 11 of 15
drugs when assessing RNA association using the model-based measure of drug sensitivity (estimated
posterior probability targeted, figure 1.4a right-hand panel, Y-axis) versus using the raw AAC (fig-
ure 1.4a X-axis yellow points) or a binarized AAC with a threshold of AAC>o.2 (figure 1.4a X-axis
purple points). 11 drugs also exhibit improved consistency for copy number variant associations
(figure 1.4a left-hand panel), and only crizotinib and AZDos 30 show decreased consistency for
both RNA and CNV associations. We investigate crizotinib biomarkers more fully in later results.

P-values were obtained from LIMMA and features with estimated false discovery rate (FDR)
less than o.05 were denoted as significant (figure 1.4b). Benjamini-Hochberg was used to control
for multiple hypothesis testing *>. Counts of significant biomarkers by drug type (targeted or broad
effect, bar plot shading), by feature type (CNV, RNA-seq, mutation; rows in the faceting), and by
study (CCLE and GDSC, columns in the faceting) are shown. Notably the counts of significant
biomarkers are not universally larger when using the estimated posterior sensitivities as the outcome
measure compared with using the AAC-based values (light versus dark colored bars, respectively).
We next used curations from MolecularMatch Trials, Cancer Genome Interpreter, and Clinical In-
terpretation of Variants in Cancer to annotate kzown biomarkers®"'354'; namely those features
with previously found associations with each drug under consideration (figure 1.4c). Interestingly,
biomarkers with significant associations found when using the estimated posterior sensitivities as
the outcome variable tend to include more of the kzown biomarkers than when using the original
AAC as the outcome, suggesting the model-based sensitivity metrics capture at least as much biolog-

ical signal as the raw AAC-based outcome measures.
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CELL MATRIX PATHWAYS HIGHLIGHT MOLECULAR COMPLEXITY DRIVING CRIZOTINIB SEN-

SITIVITY

Many pharmacogenomic datasets are publicly available and contain varying degrees of overlap be-
tween cells and drugs tested in common (figure S9). Cells tested in more than one experiment with
the same targeted drug and within the same concentration ranges effectively define replicate sam-
plings, with the true underlying cell sensitivity (Z;;) a random variable for which we now have mul-
tiple measurements. Using the model formulation previously described, we again estimate the latent
sensitivity for all cells and all drugs per study, regardless of the number of datasets it may be available
in, but now relax the notation such that a common latent variable is estimated across all studies for
those cell/drug pairs tested in more than one study. Distributions are fit within study to account for
experiment effects (see Methods section for additional details). AACs are computed over common
dosage concentrations.

We highlight this approach by focusing on a tyrosine kinase inhibitor Crizotinib, which was the
only drug with high estimated posterior targetedness and was also present in each of the five datasets
(CCLE, GDSCr1oo00, FIMM, gCSI, CTRPv2, figure 1.5a estimated mixture component distribu-
tions, crizotinib estimated posterior probability targeted >0.9). We only consider the five datasets

131 The relation-

with AACs calculated over common dosage ranges as provided by PharmacoGx
ship between AAC and the model-estimated posterior sensitivity for cell lines which were present
in only a single dataset follow a sigmoidal curve (figure 1.5b) whereas the impact of estimating pos-
terior sensitivity jointly for cell lines present in multiple datasets is to pull values away from that

curve to a unifying value per cell line across dataset (figure 1.5b Y-axis). Gene fusions (EML4-ALK

or NPM1-ALK) were curated from 7.
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Figure 1.5: a) Estimated component distributions (resistant:blue, sensitive:orange) fit using the joint model for the drug
Crizotinib. b) Estimated posterior cell sensitivity (Y-axis) given the observed AAC (X-axis) for all cell lines tested. Color
denotes whether the cell harbors a known gene fusion through which Crizotinib targets for therpeutic intervention
(EML4-ALK: black, NPM1-ALK: red, None:grey). Fusions are curated from?’ supplementary table 2. c) Estimated test
statistic (X-axis) measuring the association between gene expression for genes with previously-annotated association
with Crizotinib sensitivity. Drug sensitivity is measured with the raw AAC (binarized at AAC> 0.2, tail of arrow) and
using the estimated posterior probability of sensitivity from the joint model (estimated posterior > 0.5, head of arrow).
Coloring indicates whether the test statistics are more extreme using the model fit (lighter blue) or more extreme using
the raw AAC (darker blue). Dashed lines represent a statistical significance threshold ofp < .05.d) — loglO(P—vaIue)
from performing a KEGG pathway analysis using either binarized raw AAC values (X-axis) or the model-based estimated
posterior probability of sensitivity (Y-axis). Shape indicates statistical significance at the p < .05 level and red coloring

indicates pathways with mechanistic KEGG annotations to Crizotinib sensitivity.
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Crizotinib is a small-molecule inhibitor of receptor tyrosine kinases and has proven an effective
therapy for inducing remission in cases of anaplastic lymphoma kinase (ALK) rearranged non-small
cell lung carcinomas (NSCLC)?5"*#. ALK-rearranged NSCLCs represent only a small subset of
total NSCLC cases yet the consistent efficacy documented in ALK-rearranged NSCLC patients
led to FDA approval of crizotinib as the first ever ALK inhibitor in 2011 . The EML4-ALK gene
tusion is the most common ALK rearrangement in NSCLC and results in constitutive kinase ac-
tivity 5**'514»51 A similar increase in the oncogenic potential of ALK has been identified for the
NPM1-ALK fusion?*. Evidence supports the high dependence of ALK-driven lung cancers on this
ALK fusion, however resistance may be acquired during treatment, perhaps due to a loss of epithe-
lial differentiation '3*'43,

Cell lines harboring either a NPM1-ALK or EML4-ALK gene fusion exhibit at least 50% esti-
mated posterior sensitivity to Crizotinib (figure 1.5b). In two datasets, CCLE and FIMM, using the
naive cutoft of AAC>o0.2 to denote sensitive cells would result in calling three of the cell lines with
the NPM1-ALK fusion as resistant. On the other hand, the joint posterior estimated probabilities
of sensitivity are greater than o.s for these same cell lines. All other cell lines harboring one of the
two fusions exhibit large estimated sensitivity under the model.

We next assessed how the associations with known biomarkers changed due to utilizing the new
sensitivity metric. Biomarkers with previously-documented associations with crizotinib sensitivity
were curated from MolecularMatch Trials, Cancer Genome Interpreter, and Clinical Interpretation
of Variants in Cancer?"'35#'. The estimated test statistics from performing LIMMA for 20 of these
25 known biomarkers increase in statistical significance when measuring the association between
gene expression variability and drug sensitivity as defined with the multi-level model or the AAC
raw value (binarized at AAC>o.2 for targeted drugs); the tail of the arrow denotes the estimated

test statistic had sensitivity been measured by AAC whereas the head of the arrow denotes the test

statistic based upon the modeling procedure (figure 1.5¢c). The estimated test statistic increases in
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absolute magnitude for 20 of the 25 biomarkers, with multiple-testing adjusted statistical signifi-
cance of 0.05 attained for three of these biomarkers (NTRK1, ABL1, EVT6) which would not have
been realized under the AAC-based approach. Regardless of sensitivity metric, the largest estimated
association is with ALK expression, as one might expect.

A KEGG pathway analysis (figure 1.5d) was performed to identify up- and down-regulated path-
ways significantly associated with crizotinib sensitivity ®3. Target KEGG pathways are denoted in
red text (e.g. JAK-STAT signaling pathway) and for each of the four pathways an increase in sta-
tistical significance due to the model-based sensitivity metric is observed (— log, , (P-value) based
on AAC-based sensitivity: X-axis, model-based: Y-axis). T helper cells have a relatively well charac-
terized role in NSCLC tumor development and progression°, and pathways related to T helper
cells are significantly enriched regardless of sensitivity metric. More importantly is the cluster of
down-regulated cell matrix pathways, pathways which would not be found to be significantly asso-
ciated with response under the alternative approach. Of these, focal adhesion kinase 1 has recently
been identified as a relevant target for inhibiting neurofibromatosis type 2-associated malignancies

through the repurposing of crizotinib ***

. Somatic mutations in axon guidance pathway genes have
also been implicated for their carcinogenic potential in pancreatic cancer '4, with crizotinib found
effective for one pancreatic cancer case harboringa DCTN1-ALK fusion '*'. Additionally, Wei

etal. '#* find mutations in genes associated with epithelial-mesenchymal transition (EMT)-related
pathways, such as proteoglycans in cancer and ECM-receptor interaction, to confer a mechanism for
crizotinib resistance '+3. Crizotinib is a multi-targeted tyrosine kinase inhibitor, originally developed
as a MET inhibitor prior to clinical trials noting benefit for ALK-positive NSCLC cases”’. The
mechanisms for developing resistance to crizotinib as well as potential for drug repurposing are little

understood and the KEGG pathways associated with the model-based sensitivity metric capture this

molecular complexity driving drug response.
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1.3 DiscussioN

Despite early concerns of discordance, pharmacogenomic datasets are largely in agreement once
conditioning upon drug type. The difficulty, however, lies in the classification of drugs into effect
type and the subsequent binarization of cell lines into sensitive and resistant components for those
drugs classified as targeted. While manual annotation with domain expertise is indeed possible, and
perhaps optimal, the increasingly large number of drugs tested and the rigorous determination of
thresholds for binarization of cell lines makes this a difficult and infeasible task. Indeed the quality
of any downstream analyses, such as that of learning biomarkers associated with drug response, are
entirely dependent on the quality of the dose curve summaries used as the outcome in the analysis.

We extend and improve upon past methods for modeling dose curve summary measures by
proposing a multi-level mixture model in which the first level estimates drug type, broad effect or
sensitive, with two-component mixture distributions and the second models the response of the cell
line conditioned on the drug type modeled in the first level. Specifically, two-component mixture
distributions are estimated only for targeted drugs in order to classify cells into sensitive or resistant,
whereas single-component distributions are estimated for broad effect drugs. Fitting this model
permits us to fully described all cell-type/drug combinations without manual annotations and sup-
ports the notion that some cell type distributions are continuous while others are binary. A further
advantage of our approach is that the probabilistic approach permits us to combine data from dif-
ferent studies in a statistically rigorous way. We note that several other large-scale pharmacogenomic
datasets are publicly-available in addition to CCLE and GDSC7%'45'**4 W fit our model to all
1,381 distinct cell lines and 733 distinct drugs available in five cell line viability datasets and find rea-
sonable agreement across common cell lines and drugs. We then use the results of our fitted model
to detect biomarkers that are not found with previous approaches. Specifically, a comparison of

biomarkers associated with the ALK-inhibitor crizotinib, a highly-targeted drug used for treating
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non small cell lung carcinoma (NSCLC), identifies significantly down-regulated cell matrix path-
ways as drivers of dose sensitivity.

Developments in pharmacogenomics continue to progress at a rapid pace since the pioneering
NCI-60 panel. Advances include applications to biotherapeutics, "7, testing of 3D patient-derived
organoid models”**?, and in how to bridge the gap between laboratory findings and clinical applica-
tion®>74. Additionally, a greater understanding of technical artifacts which confound the analysis,
such as the cell line growth rate, has elucidated how intra- and inter-laboratory factors affect repro-
ducibility”> and led to the development of dose curve summary statistics which explicitly adjust for
the experimental biases #4457 42 While our multi-level model is adaptable to these new measures and
in vitro models, the assumption of two classes of effect type may no longer be valid as new classes
of drug molecules are added. Determining the suitable number of first-level mixture components
requires domain expertise and may vary across datasets. Furthermore, there is no rule to determine
which datasets to include in the analysis. Different studies test drugs at different dosages and over
different concentration ranges, with some collecting measurements on dose curve confounders and
others not; Failing to discard a highly disconcordant dataset or compute sensitivities over common
ranges will undoubtedly affect downstream analyses. While our interpretation of cell line sensitivity
as the estimated probability of membership to the sensitive mixture component is agnostic of dose
curve summary measure, it remains unclear if comparisons should even be made between datasets
which report different dose curve summaries, let alone combined in a joint analysis. Interesting av-
enues for follow up include measuring the effect of the model-based sensitivity estimates on predic-
tive performance and feature selection *75 and how agreements calculated by statistical frameworks

106

such as the Alternating Imputation and Correction Method (AICM)>? or copulas*°° change.
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IMPLEMENTATION

Posterior sensitivities may be estimated using an R package '+ available at https://github.com/
mPloenzke/PharmacoMixtuR. Code to reproduce the analysis and figures herein is available at https:
//github.com/mPloenzke/PharmacoMixtuR_scripts. A shiny application'? is available at https://
mploenzke.shinyapps.io/correlation_app/ which may be used to view the relationship between
various correlation measures when the random variables being correlated arise from bivariate two-

component mixture distributions.

1.4 METHODS

MEASURING ASSOCIATION

A fundamental assumption underlying Pearson correlation is a linear relationship between the two
continuous random variables, Xj and X5, with the conditional distribution P(X; | X; = x;) bivari-
ate normal (supplementary figure S2a); indeed it is this assumption of joint normality which under-
pins inferential procedures in the ordinary least squares (OLS) estimator. For instance, consider a
normal random variable Y ~ N{(g,, ). IfX1; = Y+ eand Xp; = ¥, + ¢; withe ~ N(0,02),
then P(X; | X; = x1) ~ N(uy, o3 + o7) and the Pearson correlation is simply the signal-to-total
variation ratio % This is the optimal measure in the class of linear unbiased estimators'® and
thus in such cases of bivariate normality Pearson correlation is the optimal measure to assess agree-
ment. The Spearman correlation will yield predictably similar results in this case regardless of the
signal-to-noise ratio due to a valid monotonicity assumption.

On the other hand, consider the case when the random variables Xj and X, do not follow a sin-
gle continuous distribution but instead a two-component mixture-of-normals distribution with

Z ~ Bernoulli(p) specifying the second mixture membership probability (supplementary fig-
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ure S2.¢; mixture distribution of a single normal distribution (black) mixed with a small, second
component (red). Four signal-to-noise regimes pictured with the signal measured by the distance
between the generating mixture component means and the noise as the sum of the component vari-
ances). Under such a formulation the conditional distributions P(X; | Z = z) and P(X; | Z = z)
are themselves normal however the distribution of P(X, | X; = x;) is no longer bivariate normal
and is confounded by Z. Thus the bivariate normality assumption is no longer valid and a measure
of association which takes into account the underlying binary nature of the data is warranted (sup-
plementary figure S2bd; simply thresholding values at one-half the signal (mean of red mixture)
suffices for high agreement even under low signal-to-noise regimes. Pearson correlation (derived
analytically) and Spearman correlation (smoothed estimate across five simulation repetitions) re-
main predictably low). The use of a2 X 2 contingency table (or logistic regression model) follows
to highlight that the correct measure of association in this case is in terms of an odds ratio (perfect
agreement is expressed as an infinite odds ratio) or the Matthew’s correlation coefficient (i.e. an
equivalent to Pearson correlation when the underlying variables follow binomial distributions as
opposed to gaussians). Further, given the binarization, the interpretation of such a measure as the
probability the latent random variables are equal (i.e. both X; and X; arose from the same mixture
component) is a more intuitive notion of association than the alternative Pearson measure express-
ing the expected standardized change in X, given a change in X;, which is influenced by the signal
of the second mixture component (supplementary figure S2b; slope of blue lines is non-zero despite
zero intra-cluster covariance). Subsequent reporting of Spearman or Pearson correlations will result
in different assessments of agreement based on the signal-to-noise regime because the monotonicity
assumption is invalid (supplementary figure S2d).

Different drugs exhibit larger or smaller mean sensitivity and spread due to their mode of action,
and thus it follows to report differing measures of drug sensitivity concordance based upon the na-

ture of the drug under consideration (supplementary figure S3a; y-axis ordering by median AAC
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places targeted drugs near the bottom and broad effect drugs near the top). Indeed one expects few
cells to respond to targeted, targeted drugs and thus a binarization of the continuous AAC value
into sensitive or resistant calls follows logically (supplementary figure S3b; dashed lines indicate sen-
sitivity threshold: AAC> 0.2). On the other hand, cells treated by broadly-active drugs, such as
cytotoxic drugs, all tend to exhibit some degree of response (supplementary figure S3b; broad effect
drugs paclitaxel, 17-AAG, and PD-0325901), suggesting a continuous measure of cell sensitivity
and within-dataset agreement (Pearson correlation) be reported. The difficulty in such an approach,
however, lies in determining both the drug-specific thresholds to discretize the cell sensitivity mea-
sures (sensitive versus resistant) as well as the method for classifying drugs into effect types (broad

versus targeted effect), both of which affect downstream biomarker inference.

MODEL FORMULATIONS

To better quantify the effect of drugs on cell type we developed a two-level mixture model in which
the first level accounts for drug targetedness, broad in effect or targeted, and the second level mod-
els cell sensitivity conditioned upon drug type. We modeled targeted drug sensitivity with a two-
component mixture distribution. If we condition on the drug being targeted, the effect of the drug
can be quantified with the posterior probabilities of being sensitive. If we condition on the drug
being broad effect, the effect can be quantified with continuous measures such as the Z-score or an
empirical cumulative distribution function. Note that this model can be applied to each dataset
separately or jointly to all datasets. Applying the model within-dataset is useful for validation by
calculating pairwise study agreements of drugs and cell lines. Applying the model across-datasets
is useful to estimate a unified measure of cell sensitivity for each cell-drug combination. Below we
detail how the modeling procedure.

For any cell lines 7, drug 7, and pharmacogenomic dataset £ we denote the observed dose curve

summary statistic with Y; ; ;. The dose curve summary measure is assumed to be the area-above-the-
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curve (AAC) normalized to a range of o-1 in the following formulation. In case studies in the text in
which AAC is not available we model ICs0 as the dose curve summary and use normal component
distributions as opposed to the second-level beta distributions described below. We opt for AAC
based on the statistical assessment of dose curve summary measures provided by Jang et al. ®. Three
reported advantages of AAC are 1) AAC summarizes the entirety of the dose response curve as op-
posed to at a single dosage concentration, 2) AAC is finite and bounded for all tested observations,
and 3) ACC capture differences in dose response curves which ECs0 and ICs0 do not®>#7. When
growth rate information is available, the growth-rate adjusted AAC proposed by Hafner et al. +*

may be normalized to a range of o-1 and modeled similarly to the AAC.

LEVEL 1: MODELING DRUG TYPE

We define the dichotomous latent variable /7 to be o if the drug has a broad effect and 1 if itis a
targeted drug. We define p = Pr(7¥; = 1) as the proportion of drugs that are targeted. For targeted
drugs, when W; =1, we define another latent variable Z; j o be 1 if cell line 7 is sensitive to drug j

and o otherwise. We next define

7 =Pr(Z;; =1)

as the proportion of cell lines sensitive to drug j and assume that for targeted drugs 7; has distri-
bution p*(7;) = p(#; | W; = 1) which we assume to be beta with parameters 2 and &*. The values
of 7; for true targeted drugs will be low given the small proportion of cells which are targeted by the
drug. Values of 7; for broad effect drugs modeled as targeted drugs will be much larger.

Because dichotomizing is not appropriate when 1#7; = 0, for convenience, we assume 7; = 1and

Z;; = lforallz,jwhen W; = 0.
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LEVEL 2: MODELING CELL TYPE

We then model the bimodal behaviour of the observed summaries for targeted drugs (figure 1.1b;

targeted drug crizotinib) with the following mixture distribution

P(Yz'z/',/e ’ ZZ'J = Zijs VV; = 1) = zl‘zlpjj‘,/e(Yi,/}k) + (1 - zl}/‘)ﬁj‘,/e(z}j,k)

with ]fj‘ , the distribution density of the sensitive component for drug / in dataset £ and P;, , the
distribution density of the resistant component. We assume both p’ and p” are beta distributions
with with parameters c} , and dj‘ 4> and cjl.” , and dﬁ 4> respectively. These component distributions
are replaced with normal distributions when modeling ICs0 or ECso0 as the dose curve summary
statistic.

Finally, we assume that for broad eftect drugs, Y; ; ; follows a beta distribution pﬁ , with parame-

ters c]b , and df ;- This distribution is also replaced with a normal distribution when modeling ICs0

: b b
or ECso. We estimate p, G d‘,k’ c;k, d?’k, c

s . i L
¥ o € o dﬁ , using maximum likelihood estimation.

MODEL-BASED MEASURES OF DRUG TARGETEDNESS AND CELL SENSITIVITY

With these assumptions and estimates in place we can now compute quantities useful for down-
stream analyses. Specifically, for targeted drugs we can compute the posterior probability of cell line
i being sensitive to drug /, Pr(Z;; = 1 | Yy, ..., Y1k, W; = 1). Note that we can compute
this posterior probability for each study & and use this to assess agreement, or compute one quantity

using data from all studies. For broad effect drugs we compute the cumulative probability

Y
Pelre <1 8= 0) = [ | dundiy
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as it will remove study eftects such as the location shifts (supplementary figure S3a; paclitaxel and
17-AAG, supplementary figure 1.5a).

For the above calculations we need to decide if a drug is targeted or not. To guide this decision we
compute the posterior probability of a drug being targeted given the observed data. Specifically, for
each drugj and study £ we can compute the posterior distribution Pr(17; = 1 | I ks YT M)

with 7 the total number of cell lines. We use this estimate to measure drug targetedness (figure 1.1¢).

DATA-DRIVEN MODEL INITIALIZATION

The I} are referred to as drug types and the Z; ; as cell types. We initialize the first-level of the
model using the median and MAD (median absolute deviation) (supplementary figure S6a,b;
CCLE and GDSC datasets, respectively). Drugs are initialized to targeted (blue points) if their me-
dian AAC is below the overall median AAC within study (vertical dashed line), and their MAD is
below the overall study MAD (horizontal dashed line). All drugs and cell lines in a given dataset are
included during this procedure as well as during model fitting. Drugs not satisfying both conditions
are initialized to broad effect (red points). In practice we find the 6oth percentile as opposed to the
median results in a slightly more concordant initialization when comparing to the drug types de-
scribed in**? (14 drug types concordant of the 15 tested in both CCLE and GDSC) and ° (22 of 24
drug types concordant of the 24 tested in CCLE). We therefore report results based upon the 6oth
quantile. The empirical proportion of drugs initialized to the targeted component based upon this
procedure is interpreted as the prior probability a drug is targeted.

Cell type is initialized by assigning cells to sensitive if the observed AAC value is greater than the
median AAC value across dataset, else resistant. The proportion of cells initialized to sensitive, ), is
computed and used as the empirical prior probability the cell is sensitive to drug ;.

We observe a bimodal distribution for 7; initialized in this manner for the CCLE and GDSC

datasets (supplementary figure S6¢). One component of the distributions have a mode around o.15
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implying around 15% of cell lines are sensitive to drugs of this type, namely targeted compounds.
The second component distribution is flatter with a mode near 1, following the interpretation that
cell lines treated by broad effect drugs exhibit a continuous degree of sensitivity. Recall we assume
7; = 1for all broad effect drugs and the 7; depicted in supplementary figure Séc represent the 7; if

the drug were to be modeled as a targeted drug type.

ESTIMATING AGREEMENT

We obtain estimates for Z; ;and 1¥; along with the distributional parameters using the expectation-
maximization algorithm and then use these quantities to compute the posterior agreement between
any two studies. There are two quantities we are interested in: 1) the posterior cell agreement (is the
same cell sensitive to the same drug in both experiments?), 2) the posterior drug-type agreement (is
the same drug estimated to be the same drug type in both experiments?). We calculate these agree-
ments in two manners: 1) maximum « posteriori (MAP) estimates, 2) Monte Carlo sampling.

The MAP estimate of drug type agreement is calculated by rounding the estimated posterior
probability of drug targetedness for drug; in study & and calculating the correlation between the
cells of the contingency table summing the counts of broad drugs (W ) = 0, W} ;) = 0)and
targeted drugs (W) 4y = 1, Wj ) = 1) for the two datasets £ and /. Note we add the dataset
subscripts, (£) and (/), to denote these values were estimated only using dataset & or /, respectively.
To generate confidence intervals associated with drug type agreement, we perform samplings from
the estimated posterior drug type distributions and during each sampling calculate the correlation
between cells of the resultant contingency table.

Cell agreement is always measured with Pearson correlation however the underlying data distri-
bution differs conditional upon drug type. For targeted drug j with fits obtained only using study £

the posterior distribution is
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P Zig | Yipp =3, Wiy = 1) ~ Bernoulli(7; 1))

Then defining Z. ; »y = >, "z, (k) it follows that Z.; ;) ~ Binomial(z, 7; (4)). Calculating

the Pearson correlation for drug 7 in datasets £ and / then amounts to computing

Cov(Z w2 w)  EZjwZ,0) —EZ,;wEZ, o)

\/Var ) \/Var o) \/Var A®) \/Var(Z

In the case of two random variables following binomial distributions Pearson correlation may

be calculated from a two-by-two contingency table with cells tallying the counts of the binomial

realizations. That s for 77 ~ Bin(z, p1) and W5 ~ Bin(n, p,)

— Z?:l w; 1W;2 — nwiwy
V(L — 1) \/w (1 — )

This metric is often referred to as Matthew’s correlation coefficient®® and is interpreted in terms

of prediction quality (i.c. ) " ; w;1w; > represents the count of true positives). Its utility has been
highlighted when assessing pharmacogenomic agreement for targeted drugs as described in*7'*3.
In these cases, MCC is calculated by binarizing AAC using a threshold such as AAC > 0.2, and has
improved many of the agreements initially reported for targeted drugs. A similar approach is used
to compute the MAP agreement for targeted drugs: the cell probability of sensitive is binarized by
rounding the estimated posterior probabilities. To obtain the confidence intervals, we perform MC
sampling with each iteration consisting of a drug type sampling of 17/} (;) followed by a cell type
sampling from P(Z;; ) | Yije = 9, Wy = 1) forall W} i) = 1. The process is repeated for
W,y and P(Z, ; 1y Correlation is computed based on the contingency table generated from these
counts. On the other hand, when the sampled drug type is broad effect, W} 1) = 0, the posterior

distribution is 2(¥; ;4 | Wj ) = 0) ~ Beta(c” o djb ) and we calculate Pearson correlation under
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a normality approximation. Mean correlation and confidence intervals are calculated over all MC

samplings.

CROSS-DATASET MODEL

The cross-dataset model combines datasets using several sources of sensitivity data to provide one
estimate of cell sensitivity to treatment regardless of the number of times it has been tested (i.c. the
number of datasets which contain this specific cell-drug pair). This is achieved by computing the ex-
pectation across all X studies during the E step of the EM algorithm. To control for batch effects we
allow for the maximization step to proceed within study such that posterior sensitivity distributions
are study specific (figure 1.5a). Similarly, the latent variable denoting cell 7 is sensitive to drug 7 (Z; ;)
is shared across all datasets resulting in a single estimate of cell sensitivity (figure 1.sb). Notably,
estimates for cell lines tested in a single study are unaffected by cell lines tested in different studies,
however estimates for cell lines tested in multiple studies are pulled towards a cell-specific latent
variable. First-level drug type initialization is performed using the median and 60™ percentile abso-
lute deviation however these computations are performed by pooling all available data, regardless of

study, and making global drug assignments.

LIKELIHOOD SPECIFICATION

Denote K the set of experiments under consideration, / the full set of drugs tested in all studies & €

K, and I;; the set of cell lines tested with drug j in study k. The full Bayesian hierarchical model
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contains the following stages:

Stage (Ve | 21y = 17y = m, W = 1) ~ Betald )

PTija | Zij= 0,75 =7, Wy =1,p) ~ Beta(d, ;)
P(Yija | Wy =1,p) ~ Beta(c)}, d7})

StageI: p(Z;; | m; = @, Wj = 1, p) ~ Bernoulli(z)

Stage I1L: p(7; | W; =1,p) ~ Beta(a', b')

Stage IV: p(W; | p) ~ Bernoulli(p)
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Interpretable convolution methods for

learning genomic sequence motifs

FIRST-LAYER FILTERS EMPLOYED IN CONVOLUTIONAL NEURAL NETWORKS tend to learn, or
extract, spatial features from the data. Within their application to genomic sequence data, these

learned features are often visualized and interpreted by converting them to sequence logos; an
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information-based representation of the consensus nucleotide motif. The process to obtain such
motifs, however, is done through post-training procedures which often discard the filter weights
themselves and instead rely upon finding those sequences maximally correlated with the given filter.
Moreover, the filters collectively learn motifs with high redundancy, often simply shifted representa-
tions of the same sequence. We propose a schema to learn sequence motifs directly through weight
constraints and transformations such that the individual weights comprising the filter are directly
interpretable as either position weight matrices (PWM:s) or information gain matrices (IGMs). We
additionally leverage regularization to encourage learning highly-representative motifs with low
inter-filter redundancy. Through learning PWMs and IGMs directly we present preliminary results
showcasing how our method is capable of incorporating previously-annotated database motifs along
with learning motifs de novo and then outline a pipeline for how these tools may be used jointly in a

data application.

2.1 INTRODUCTION

Applications of deep learning methods have become ubiquitous over recent years due primarily to
excellent predictive accuracy and user-friendly implementations. One such application has been to
nucleotide sequence data, namely data arising in the field of genomics, in which the convolutional
neural network (CNN) has enjoyed particular success. The convolutional layers composing a CNN
work by extracting and scoring local patches of the input data by computing the cross-correlation
between all nucleotide subsequences in the observation and each filter. These feature scores are then
passed through any number of subsequent weightings (so-called dense or fully-connected layers)
and used to output a final predictive value or values, as in the case of a multi-dimensional output.
For example, one of the earliest CNNs trained on genomic data, DeepSea, predicted with high accu-

racy a 919-dimensional output array with each entry representing the presence/absence of a specific
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chromatin feature '>*. DeepBind, developed near the same time as DeepSea, further demonstrated
the utility of training CNNs on genomic data by showcasing how the first-layer convolutional fil-
ters tend to learn relevant sequence motz'f;(’. This latter finding highlighted, within the applica-
tion to genomic data, the potential for illuminating the black box that deep models are typically
considered; namely it sparked interest in developing computational methods for both incorporat-

125:449:82 35 well as interpreting the learned model

ing known biological structure into the models
knowledge 72394,

Much progress has been made to improve predictive accuracy since these pioneering manuscripts
however the process proposed by to infer sequence motifs from convolutional filters remains
largely unchanged. Specifically, each trained filter is convolved over input test set observations
to produce a vector of activation values per filter per observation. High scoring activation values
above some threshold are identified and the subsequence giving rise to each value is extracted. All
extracted subsequences are stacked together per filter and used to compute a position frequency ma-
trix (PFM). The PFM for filter jisa 4 X L; matrix in which the rows represent nucleotide (A, C,
G, T) and columns represent position. L; is generally on the order of 8-18bp. The columns may
be subsequently normalized by their sum to yield a position probability matrix (PPM), and then
converted into a position weight matrix (PWM) by computing, for each element w,, in the PPM,
logs(w,) — loga(by,) where b, represents the background probability for the nucleotide 7. The
PWM is often visualized as the so-called sequence logo 16 which is computed by multiplying each
entry in the PPM by the column-wise sum of the expected self-information gain (i.e. the Hadamard
product of the PPM and PWM). Sequence-logo motifs constructed and visualized in this manner
are shown in the bottom rows of Fig. 2.1A-D. We refer to the matrix of values denoting the heights
of the nucleotides as the znformation gain matrix (IGM) of the PWM. A worked example convert-
ing a PFM to an IGM is provided in the supplementary materials.

Under the standard CNN framework there are no restrictions on the values of the weights com-
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prising each convolutional filter to any range. In addition, the visualization procedure requires the
analyst to select the threshold for extracting high activation values and is dependent upon the input
observations themselves. As illustrated in panels A and B of Fig. 2.1 however, filters tend to learn
redundant and highly-correlated features. Given the non-identifiability of the many weights in a
typical CNN it is no wonder why the learned features are so correlated. One recently-proposed tech-
nique specifically developed to remedy the issue of correlated filters is to include all possible circular
shifts of the filter when convolving it with the sequence '5. Such a procedure increases the compu-
tation time and memory footprint as every convolutional operation now requires all possible spins
of the filter and also requires input observations to interpret what has been learned. An alternative
approach somewhat abandons the notion of filter interpretability as a sequence motif and instead
takes a reverse approach via back-propagating the activation values, in effect addressing which se-
quences are most important for model classification for a given observation relative to some refer-
ence observation '*3. A third approach involves solving a reformulated optimization problem which
seeks to find the single consensus sequence maximally activating the model”*?#. None of these tech-
niques simultaneously address the issues of redundancy and interpretability and, moreover, they
require input observations or a post-hoc optimization procedure to infer the learned motif.

We propose to directly learn the sequence motifs such that interpretation of the convolutional
filters is not reliant upon test set observations and the weights comprising the filter are directly inter-
pretable as information gain or position weights, both of which may be easily visualized as sequence
logos. We simultaneously address the issue of filter redundancy along with interpretability by in-
corporating weight constraints and regularization techniques. The weight constraints limit the
range of the individual filter weights to restrict their values as to be directly interpretable as IGMs
or PWMs while the regularization scheme encourages learning non-redundant motifs. Under such
a framework previously-annotated database motifs either in the form of PWMs or IGMs, such as

those available from JASPAR 7, may be used to initialize the convolutional filters in the model and
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subsequently held constant or updated during training. In section 2 we provide a brief introduc-
tion to the notation that will be used before detailing the method through a toy simulation. Section
3 showcases results for a more realistic simulation study as well as a data example using ChIP-seq

peaks from the ENCODE Consortium . Section 4 concludes with a brief discussion.

2.2 MATERIALS AND METHODS

Here we introduce notation and motivate the methodology through a simple simulation study.
Consideraset of N = 30K nucleotide sequences X, where each sequence is of length 7, =

200 and composed of bases 4, C, G, T'drawn from some genome background probabilities (e.g.
[.3,.2,.2,.3]). Randomly label half of the N'sequences ¥, = 1 and the remaining ¥, = 0. For 98%
of the positively-labeled cases, insert the sequence GGGGGGG at position 7 € 1 : [, with 7 drawn
uniformly at random. Conversely, insert the sequence CCCCCCC into the negatively-labeled cases
with a similar uniform-location probability. We wish to train a binary classifier to predict the associ-
ated label ¥, € {0,1} for a given sequence X,,. Of course, under this framework, perfect model ac-
curacy would be obtained if an oracle could encode a binary feature denoting the presence/absence
of GGGGGGG in each sequence (or similarly, the CCCCCCC). The discovery and representation

of such a sequence, however, is what interests us. In other words, can our model directly learn the
predictive subsequences without defining features  priors or requiring post-hoc interpretation pro-
cedures?

We utilize techniques from the deep learning literature to form such a feature finder. Specifi-
cally, we consider the convolution operator employed in convolutional deep neural network (CNN)
architectures®°. Consider a set of / convolutional filters where the fh convolutional operator com-
putes the inner product between a weight matrix (Y and an observation matrix X, at each posi-

tion sliding along user-specified dimensions. These convolutional filters, or patches, are particu-
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larly suited for learning local spatial relationships and when employed in deep learning are stacked
together, potentially in the hundreds within a single layer, from which the activations produced
by each convolutional filter are fed as input into subsequent deeper layers. In genomics applica-
tions each first-layer filter ( isa 4 x L; matrix of weights w]A Jfork € {4,C,G,Thand!] €

1 : L;convolved upon a one-hot encoding of the input sequence X,,. That is, each X, is trans-
formed from a nucleotide string of length 7, into a binary matrix of size 4 X I, with rows cor-
responding to each base and column 7 denoting the presence/absence of a nucleotide at position
i € 1 : I,. Generally some sort of pooling operation is performed such that either the max-
imum (max-pooling) or average (average pooling) is selected within a small window, eftectively
reducing the parameter space and alleviating observational noise. We may write the model explic-
itly under the logistic link function with max-pooling performed over the entire input sequence
asG(X,) = PY, = 11X, = x) = —L—— where/ = ma}(g(xi * ) indicates

1+€*ﬁo*2f:1/3]13j i€l:l,

a max-pooled convolution operation. The convolutional operation itself is explicitly defined as
gl * ) = g(32L Yheqacon a/k,[leHZk + [}, with g(-) representing the sigmoidal
activation function in our experiments. We note it is these £/ matrices which contain the weights
which collectively capture the sequence motifs and are often visualized as sequence logos through
the methods described in the introduction.

For this first simulation study, we arbitrarily set/ = 4and L; = 12 forallj. We restrict our
model to simply the maximum value of the convolutional operator per filter as this represents the
best match, or similarity score, between the motif and the sequence, and is also readily interpretable
while maintaining parsimony. The four activation values produced from the four filters may be
thought of as constituting the input features, or design matrix, to a logistic regression formulation.
Any additional predictors may of course be included as well. It should be noted that all subsequent
formulations may be extended to any number of layers as the model described is equivalently a sin-

gle convolutional layer and single connected layer CNN (i.e. a shallow CNN). This vanilla CNN
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provides the baseline comparison and is depicted in panel A of Fig. 2.1. Of particular importance

is to note that the weights, w]é’ ;> (middle row of sequence logos within panel A) are unconstrained.
Thus we also provide the sequence-logo motifs calculated as described in the introduction in the
bottom row of panel A with the threshold set at 0.75 x max(activation) per filter. The background
nucleotide probabilities used when calculating, displaying, or learning any PWMS/IGMs presented
herein are taken to be uniform (i.e. &, = .25,k € {4, C, G, T}). While our method and software
implementation allow for non-uniform probabilities, motifs such as those downloaded from JAS-
PAR 7 are generally calculated and visualized against a uniform background. We opt to follow suit
and note that learning motifs as IGMs against a uniform background is the simplest and quickest
option in our implementation. Plots of the weights are also readily interpretable as sequence logos.
Details are provided in the supplementary materials.

The top row box plots depict the test set activation differences for each filter broken down by
true label (Y € {0,1}, left versus right, respectively), as well as the associated (8/1 coefficients in red.
These ﬂll may be interpreted as effect size estimates for each motif. Not striking is the observation
that the sign of the [@/1 coefhicients associated with filters j = 1, 2, 3 is negative while it is positive for
filter 4. The sequence logos indicate that, as expected, the strings of cytosine nucleotides are highly
predictive for negative sequences while the string of guanine nucleotides is highly predictive for
positive sequences.

Our first contribution is illustrated in panel B of Fig. 2.1: we constrain the model weights during
the training procedure to encourage motif interpretability. Specifically, we restrict the individual
filter weights wi’ ; = 0and their associated offsets ﬂlo < 0, and additionally, re-scale the weights
column-wise to maintain a valid information-theoretic relationship peri-training. The constraint
on the offset weights [86 for each filter to be strictly non-positive is incorporated to improve the
interpretation of the filter activations: consider that the minimum activation value, fn for observa-

tion 7 and filter 7, attainable without a bias offset ﬁlo and under the sigmoidal activation would be
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Figure 2.1: Effect of weight constraints and regularization on learning motifs. Box plots show first-layer convolutional
filter activations post sigmoid transformation by class label. Y = 0 sequences containing the CCCCCCCC motif
achieve large activations with the C-motif filters (filters 1, 2, 3), Y = 1 sequences containing the GGGGGGGG motif
achieve large activations with the G-motif filter (filter 4). Red X's indicate the associated [8’1 coefficients (effect size
estimates). A. Unconstrained filters (middle row) within an unregularized model (top row) learn redundant sequence
motifs and require test set observations for motif interpretation (bottom row). B. Unregularized filters constrained to
represent valid IGMs do not require test set observations and are directly interpretable as sequence-logo motifs. Filter
redundancy remains. C. Filter regularization discourages learning redundant features. D. Constrained filters within a
regularized model learn distinct sequence motifs directly with no need for post-hoc interpretation procedures.
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1/2. Quite simply the addition of a negative offset allows the value of f;l to decrease to zero. The
middle row of Fig. 2.1B highlights the utility of the weight constraints by plotting the weights di-
rectly; no input test set observations or post-hoc optimization procedures were required. The filters
maintain the strong class-discrimination as evident in the top row box plots, however there appears
significant redundancy as the same 1o-mer motifs were learned by two filters each. Thus our sec-
ond contribution, also aimed at encouraging model interpretability, is to regularize the weights
during the training procedure. We utilize the sparse group lasso penalty with each filter defined as
agroup '*7. L1 regularization (i.e. the so-called Jasso penalty '37) on the filter weights pushes non-
informative weights to zero and may be interpreted as encouraging a KL divergence of o between
the observed distribution and the background probabilities. We consider the sum of all weightsina
filter as a measure of total motif information gain and these are the values regularized via the group
lasso penalty which enourages irrelevent motifs to contain zero information gain and discourages
correlated motifs. We detail these regularization schemes and interpretations in the supplementary
materials.

Panel C of Fig. 2.1 shows the results of such a regularization scheme applied to the vanilla CNN
in panel A. As desired, two of the filters now contain zero information gain and their associated
effect estimates (@]1 and offsets [@6 (not pictured) are also zero. These filters may be discarded with-
out impacting model performance. Finally, panel D shows the results of utilizing both the con-
straints and the regularization scheme. We see the weights perfectly recapitulate the inserted 8-mer
sequences and in fact illustrate the motif more clearly than the approach based on test set observa-
tions (bottom row). We note that all models achieved near-perfect predictive accuracy (98%) and
were trained for five epochs. Parameter tuning was performed to identify suitable values for the reg-
ularization penalties. While we only present the results for learning IGMs, learning PWMs is also
possible and included in our software implementation. The reader is encouraged to view the supple-

ment for a brief discussion on the implications of learning IGMs or PWMs.
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2.3 REsULTs

SIMULATION STUDY

The toy example previously described is useful for illustration but it represents an unrealistic situ-
ation in which nearly all observations contain an optimal representative motif. We therefore con-
sider a second and more challenging simulation study and base the methodology on that laid out
in **?. Specifically, we utilize the simdna package 76 to generate 100K nucleotide sequences of length
200bp sampling from motifs with less degenerate distributions. We sampled from three motifs:
MYC, CTCF, and IRF", where positively-labelled sequences (¥ = 1) contain o-3 occurrences of
each motif. 100K negatively-labelled sequences (Y = 0) were generated from random genome
background with 40% GC-content. Additionally, 10% of the observations were shuffled between
positive and negative classes to increase the difficulty of the learning procedure. The top row of Fig.
2.2B shows the target sequence logos for the three sampled motifs (MYC_knowni1, CTCF_knowni,
IRF knownr)embedded in the positive cases. These motifs are the subsequences we wish to learn.
Multi-dimensional output model: A regularized and constrained CNN (as described in the
previous section) was trained via stochastic gradient descent for twenty epochs with the learning rate
initially setat 0.02. / = 8 first-layer convolutional filters were randomly initialized following a uni-
form distribution on the interval (0, 0.5). Logistic loss plus the regularization terms was minimized
over the three motif classes. Thus the target output vector Y, for observation X, isa1 X 3 binary
array with each entry indicating the presence/absence of motif j. Sequences containing no motif in-
stances (i.e. purely random background) are labelled ¥, = [0 0 0] whereas a sequence containing,
for example, the motifs MYC and CTCF but not IRF would be labelled ¥, = [110]. Under such

a formulation, ﬂll isnolongeral X Jvector buta3 x Jmatrix with rows corresponding to entries

"The JASPAR naming convention denotes the IRF motif (which we sampled from) as the IRF2 motif.
We maintain this distinction throughout the text, i.e. when initializing filters with JASPAR motifs the name
IRF2 is used (Supplementary Fig.S18) yet when learning IRF de zovo, the IRF label is used.
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in the target array Y. Fig. 2.2 panel A plots the fitted [3/1 estimates (Y-axis) against the mean activa-
tion difference between test set observations containing a7y motif occurrences (i.e. any entry in the
1 x 3 binary array is greater than zero) and test set observations containing 7o motif occurrences
(all entries exactly zero). Faceting corresponds to rows in the ,@/1 matrix such that the heading CTCF
represents the CTCF target class, the IRF heading represents the IRF target class, etc. It is indeed
reassuring that a single filter exhibits both the largest mean activation difference and the largest ef-
fect size within a facet, and whence visualized as a sequence logo (panel B bottom row) this filter
recapitulates the desired target motif (panel B top row). Five of the eight filters have associated ,8]1
coeflicients equal to zero across all facets as well as zero activation difference. These filters may be re-
moved from the model without impacting predictive accuracy and, as evident in Supplementary Fig.
S16, are zero information gain motifs, thus indicating the effectiveness of the regularization. Only
the three filters with non-zero information gain, effect size, and mean activation difference need to
be retained in the model. The weights composing these filters are shown in panel B of Fig. 2.2 with
associated Q-values from running the Tomtom motif matching tool**. In all three cases the most
significant Q-value is the desired target motif (Supplementary Fig. S17). We label the points in panel
A with the most significant Tomtom match and note that due to the construction of the simulation
(sequences may contain two or even three different motifs), the mean activation difference is non-
zero for two motifs in each facet however the effect size estimate is zero. Thus the two oft-target de
novo learned motifs are uninformative for prediction of a given target class, however approximately
one-third of sequences may of course contain either (or both) of the motifs.

Single-dimensional output model: While often considered in the literature the multiple-output
model previously described is of little use in practice; rarely would such labels exist denoting the
presence/absence of each motif. Indeed it is these motifs which we wish to learn and thus a single-
output model is of more practical use. Such a model formulation might arise from, for example,

a ChIP-seq experiment in which sequences extended from called peaks would be labelled as ¥ =
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1 while sequences of equivalent length would be drawn from random genome background and
labelled as ¥ = 0. The analytic goal of such a formulation would be, again, discovering which
motifs (perhaps even beyond those ChIP-ed for) are abundant in the peaks versus the background.
For this reason we collapse the 1 X 3 target vector into a single value denoting the presence of any
motif (¥, = 1) versus the absence of 2// motifs (¥, = 0) and highlight a use case for our method.
We show how one might initialize filters based on annotated motifs from a database and also learn
any extra motifs de novo.

We consider two models to highlight this use case: Model 1 initializes filters based on the 579
previously-annotated motifs found in the 2018 CORE vertebrates non-redundant JASPAR database
and holds these filter weights fixed throughout training®”. Such a use case might arise when one
does not have z priori knowledge of which motifs may be present in the sequences and wishes to
estimate the prevalence of previously-annotated motifs. Model 2, on the other hand, initializes two
filters with the JASPAR MYC and CTCF motifs and tackles the issue of discovering a motif which
is present in the data but not the motif database (in this case, the IRF/IRF2 motif). To achieve this
we simply remove the IRF2 motif from the filter initialization and try to learn it de novo. We ini-
tialize two filters uniformly at random on the interval (0, .5) and learn the motif directly. Such a
use case might arise during a specific TF ChIP-seq experiment when one believes several previously-
annotated motifs may be present but also wishes to learn unannotated motifs de novo. In the first
model we impose sparse regularization via the L1-norm on the ﬁll coefhicients to encourage those
motifs with little-to-no abundance to exhibit an exactly zero effect size ((@/1 = 0) while in the second
model we impose the regularization strategy outlined in the previous section to discourage redun-
dancy.

Supplementary Fig. S18 panel A plots the estimated effect size (ﬂ/l) against the mean activation
difference between classes in the test set for each JASPAR-initialized convolutional filter (post-

sigmoid transformation). It is evident that, of the 579 JASPAR-initialized filters, only four exhibit
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Figure 2.3: Simulation model 2. The two first-layer filters initialized to JASPAR-annotated CTCF and MYC motifs, how-
ever the IRF motif must be learned de novo. A. Filter motif effect size against mean activation difference between class
labels by motif source indicates equivalent magnitudes of effect size for both the JASPAR filters and the de novo filters.
The red cross indicates a low-information gain de novo filter that may discarded without affecting model performance. B.
Gold standard IRF motif (top) exhibits high similarity with de novo IRF motif (bottom).
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an effect size greater than zero and three of these are the true motifs used in the data simulation
(CTCF, IRE/IRF2, MYC). Panel B shows that the fourth, MAX::MYC, is nearly identical to MYC
and one may include only a single instance of these during the initialization procedure. We con-
clude that 575 of the 579 convolutional filters (motifs) may be discarded with no effect on model
performance. Similarly, Fig. 2.3 showcases the results for Model 2, in which the IRF motif has
been removed. Of note is the large activation difference and estimated eftect size for the de novo
learned IRF motif (Panel A). As desired, the estimated effect size is of an equivalent magnitude as
the JASPAR-initialized motifs. Comparing the gold standard embedded motif (left-hand sequence
logo of panel B) with the de novo IRF motif it is evident how similar these motifs are and how one
might utilize our tool for learning motifs de zovo. We note that, in addition to simply initializing
and fixing filters with JASPAR -annotated motifs, one need not hold these fixed during training and
may instead choose to update the individual filter weights (motif position-probabilities) to both
improve model fit and compare the updated motif with the original motif. We leave this for future
work.

Latent variable interpretation: Under the sigmoidal activation function applied to the convo-
lution output (activations) from Model 2, each &, is interpretable as the probability that sequence
n contains motif 7, i.e. P(gfn = 1|X,). We sought to assess the accuracy of this latent variable in-
terpretation in Fig. 2.4A-C on a held out test set in which we did not randomly shuffle 10% of
the observations between classes. We find the fn representations are extremely accurate, achieving
> 98% accuracy and an area-under-the-precision-recall curve of > 0.99 for all three motifs (MYC,
CTCEF, IRF). Pooling information across all motifs slightly diminishes performance, especially for
the sequences containing only a single unique motif (combined-model accuracy for sequences con-
taining a single motif ranges from 0.617 — 0.816 yet accuracy is perfect for all sequences containing

two or more unique motifs). One should take care to note the imbalance in the individual motif

comparisons relative to the balanced dataset (1:4 versus 1:1 positive:negative cases, respectively).
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Figure 2.4: Model-based evaluation of simulated motif presence. A-C. ROC curve, precision-recall curve, and prediction
statistics evaluating correctness of calling individual motifs present within test set sequences based on max-pooled filter
activation values. The All label simply combines the three filters in a logistic regression model to evaluate presence of

any motif versus absence of all motifs. Dashed lines represent using the true, sampled-from motif whereas solid lines
represent the de novo-learned motifs. D. Effect size estimates for each motif based on Monte Carlo realizations treating
the max-pooled filter activation values as Bernoulli random variables. E. Multi-dimensional scaling using the max-pooled

filter activation values as features.
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Additionally, in panel D, we explored the possibility of using Monte Carlo Bernoulli draws with
probability based on the individual &, and using the realizations to fit a logistic GLM. We find all
coeflicients are statistically significant at the # = .05 level across all simulations (7 = 1000), how-
ever the fitted effect sizes underestimate the true effect as fixed by the simulation, presumably due
to the collinearity of the predictors. Panel E plots two dimensions from multi-dimensional scaling
(MDS) performed on the activation values from the retained filters (three in total), highlighting a
separation between both the class labels (Y = 0/1) and, to a lesser degree, the separation within the

positive cases due to the underlying embedded motifs.

DATA APPLICATION

We applied our method to 7% vivo transcription factoring binding data from the ENCODE Con-
sortium**. Specifically, following the protocol described in '* with slight modifications, we down-
loaded CTCF TF ChIP-seq data for the Gm12878 cell line. 100bp windows were extended from
the called peaks for the positive cases while negative cases were obtained by removing from all DNase
peaks in Gm12878 the top 150K relaxed TF peaks called by SPP at a 90% FDR 7. Peaks originating
from chromosome 1 were utilized for the training set and peaks originating from chromosome 2
were utilized for the validation set. We down-sampled the negative cases (genome background) dur-
ing the training procedure however did not down-sample cases in the validation set.

Fig. 2.5 A showcases the utility of our approach: we begin by initializing the filters with all pos-
sible JASPAR motifs. We denote this as the shotgun approach as many of the motifs miss the mark
(e.g. left-hand panel of A, the vast majority of motifs exhibit both o mean activation difference and
o effect size). We discard all filters from the model which do not have both an estimated effect size
greater than o.o1. In the case of this analysis, five motifs were retained and indeed it is reassuring to
see both the CTCF motif and the CTCF reverse complement (CTCF_RC) as retained. We train

this model for 10 epochs to obtain fitted values for all filters’ ‘@/0 and /3{, and then initialize a de novo
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model with these five filters (and their associated f8) fixed, but also eight filters randomly initialized.
These latter filters will be used to learn the de zovo motifs. We train this model for 30 epochs, this
time utilizing both the regularization tactics and the weight constraints, and report the estimated
effect size and mean activation difference for the de zovo motifs in the middle panel. We calculate
the information gain of each motif as the sum of all weights in the filter and provide this value as
the size of the associated point. We find six filters to contain zero information gain and thus we dis-
card these filters. Our final model then makes use of the five JASPAR filters and the two de novo
filters, and we train this model for another 30 epochs to obtain values for each [8{, and ‘@{, as well as
the overall offset £,. The right-hand panel of Fig. 2.5 A illustrates both the high information gain
of the de novo motifs, as well as the larger effect size and mean activation difference. Visualizing all
the motifs in Fig. 2.5B sheds light on what the de novo filters have learned: namely slightly altered
representations of the CTCF and CTCF RC motifs. In fact, we find the effect of the leading G to
be amplified in the de novo 2 motif relative to the CTCF known motif, and, correspondingly, the
trailing C in the RC to be amplified. This suggests the subsequence GCGC is more abundant than
expected by the CTCF JASPAR motifs. Similarly we note the deletion of a rather uninformative
position in the motif (position 18 in CTCF_RC and position 2 in CTCF). We finally provide test
set accuracy statistics and illustrate via MDS the class-separability of sequences using these seven

activation values as features.

2.4 DiscussioN

Our proposed model directly learns sequence motifs such that interpretation of the convolutional
filters is not reliant upon test set observations and the weights comprising the filter are directly inter-
pretable as information gain measures or position weight (log-odds) measures. We address the issue

of filter redundancy along with interpretability by incorporating weight constraints and regulariza-
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Figure 2.5: ENCODE pipeline results. A. Motif effect size against mean activation difference between class labels. The
Pipeline model includes all 2018 JASPAR-annotated motifs (core vertebrates, non-redundant). Any motifs with associ-
ated effect size < .01 are discarded and subsequently held fixed while eight de novo motifs are learned (center panel).
The Final model discards uninformative de novo motifs and refits effect size estimates with filter weights fixed. B. Col-
lection of motifs selected from Final model plotted as sequence-logos. C. Prediction statistics evaluating classification
based on model. D. Multi-dimensional scaling using the max-pooled filter activation values from the Final as features,

colored by label (purple: Y =1, yellow: ¥ = 0).
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tion techniques. The weight constraints limit the range of the individual filter weights to restrict
their values to be directly interpretable as IGMs/PWM:s while the regularization scheme encourages
learning non-redundant and high-relevance motifs.

To the authors knowledge this is the first method capable of incorporating previously-annotated
sequence motifs in a CNN framework, similar to "' but with the ability to learn motifs de novo.
Notably the method achieves this by leveraging IGMs/PWMs as convolutional filters and ensuring
the de novo motifs are valid information gain/position weight measures. Interestingly, other motif
measurement systems such as the position probability matrix (PPM) may also be used as convo-
lutional filters although several changes must be made. First, the regularization scheme must be
adjusted. In the case of the PPM, filter weights would need to be regularized around their expected
background frequencies (e.g. 0.25). Further, all weights would require a column-wise sum to unity,
thus all weights would need to be initialized under such a condition and enforced throughout the
training procedure. Additionally, any low-information gain motifs would be those filters with all
weights centered at their background frequencies, and thus summing all weights within the motif
would not constitute a measure of information gain since all sums would be the same, regardless
of the amount of information gain contained. One would likely transform the PPM into an IGM
in order to quantify importance as measured by the KL divergence. The same holds for using the
PWM, as the negative values associated with the low abundance nucleotide positions would over-
whelm the sum calculation.

Like any regularization method, parameter tuning is essential and as the number of parameters
to tune increases, so does the difficulty in finding suitable values. This issue, however, is ubiquitous
with deep learning techniques and does not affect our method any more than usual. Furthermore,
as our primary concern is more with learning discriminatory features and less with predictive accu-
racy, we find parameter tuning to act as a sort of interpretability sieve; under stricter regularization

only the most discriminatory features will appear at the cost of predictive accuracy while under laxer
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regularization predictive accuracy may improve at the cost of lesser filter interpretability. Indeed

this trade-oft epitomizes the divide between traditional statistical techniques and machine learning
methods, however once discriminatory motifs/features have been learned one may refit a more com-
plicated (i.e. deeper) model to attain improved predictive accuracy. One may even desire to learn
motifs de novo as IGMs, and then refit the model using PWM:s given the one-to-one correspondence
between the two.

The proposed methods may be useful for several interesting genomics applications; namely any
application requiring the need to learn differential sequence motifs. Examples include DNase-seq
and ATAC-seq footprinting. We leverage deep learning infrastructures to provide a more suc-
cinct set of features and abandon the traditional machine learning paradigm stating that higher
accuracy is paramount. We instead focus on a simple modelling framework which provides end-
to-end interpretation throughout. Our methods are implemented in an R package available at

https://github.com/mPloenzke/learnMotifs which relies upon Keras*' for all of the heavy lift-

ing.
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Improving CNN interpretability with

exponential activations

DEEP CONVOLUTIONAL NEURAL NETWORKS (CNNs) trained on regulatory genomic sequences
tend to learn distributed representations of sequence motifs across many first layer filters. This

makes it challenging to decipher which features are biologically meaningful. Here we introduce
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the exponential activation that — when applied to first layer filters — leads to more interpretable
representations of motifs, both visually and quantitatively, compared to rectified linear units. We
demonstrate this on synthetic DNA sequences which have ground truth with various convolutional

networks, and then show that this phenomenon holds on 7z vivo DNA sequences.

3.1 INTRODUCTION

Convolutional neural networks (CNNs) applied to genomic sequence data have become increas-
ingly popular in recent years “*®'54, demonstrating state-of-the-art accuracy on a wide variety of
regulatory genomics prediction tasks, including transcription factor binding and chromatin acces-
sibility. Their success has been attributed to the ability to learn features directly from the training
data in a distributed manner®°. These learned features are, in some cases, suggested to correspond to
biologically-relevant sequence motifs, particularly in first convolutional layer filters 6,66

An understanding of what a trained model has learned is then possible through attribution
scores, which can be attained with perturbation methods 6154 and saliency maps/gradient tech-

niques 128,123,71

. However, the resultant attribution maps tend to be difficult to interpret, requiring
downstream analysis to obtain more interpretable features, such as sequence motifs, by averaging
clusters of attribution scores '*#. The factors that influence the quality of attribution scores — such
as the CNN architecture, regularization, and training procedure — are not well characterized. There
is no guarantee that attribution methods will reveal features that are biologically interpretable for a
given CNN, even if it is capable of a high classification performance.

An alternative approach is to design CNNs such that their filters directly learn more interpretable
features73°%. In this manner, minimal posthoc analysis is required to obtain representations of

“salient” features, such as sequence motifs. For instance, pre-convolution weight transformations

that model the first layer filters as position weight matrices (PWMs) may be used to learn sequence
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motifs through the weights?®. Another CNN design choice employs a large max-pool window size
after the first layer, which obfuscates the spatial ordering of partial features, preventing deeper layers
from heirarchically assembling them into whole feature representations”?. Hence, the CNN’s first
layer filters must learn whole features, because it only has one opportunity to do so.

One drawback to current design principles of CNNs with interpretable filters is that they tend
to be limited to shallower networks. Depth of a network significantly increases its expressivity ',
which enables it to learn a wider repertoire of features. In regulatory genomics, deeper networks
have found greater success at classification performance. In practice, deeper CNNs are generally
harder to train and are more susceptible to performance variations with different hyperparameter
settings.

One consideration for the interpretability of a CNN’s filters that has not been thoroughly ex-
plored in genomics is the activation function. Rectified linear units (ReLUs) are the most com-
monly employed activations in genomics. In computer vision, neurons activated with a rectified
polynomial, which has a close relationship to dense associative memories’ , were shown to learn rep-
resentations of numbers when applied to the MNIST dataset. This activation breaks common sense
because it is unbounded and hence can diverge relatively quickly.

A divergent activation is intriguing from a signal processing perspective because it can force the
network to regulate its weights such that the activity of a neuron does not blow up. For instance, if
background signals are propagated through, then the rest of the network has to suppress this ampli-
fied noise in order to make accurate classification. We suspect that the network would instead opt
for a simpler strategy of suppressing background signals prior to activation, thereby only propagat-
ing discriminatory signals. One drawback of the rectified polynomial, however, is that it is unclear
how to select the order of the polynomial thus introducing another hyperparameter to tune.

Building upon these previous studies, we introduce a novel application of an exponential activa-

tion function. We perform systematic experiments on synthetic data that recapitulates a multi-class
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classification task to compare how activations of first layer filters affect representation learning of
sequence motifs. We find that an exponential activation applied only to the first layer filters con-
sistently learn whole motif representations, irrespective of the network’s depth and design. On the
other hand, motif representations for CNNs that employ ReLU activations in the first layer predic-

tively depend on CNN design. We then show that these results generalize to 7% vivo sequences.

3.2 MATERIALS AND METHODS

Data.  We analyzed a dataset from7?, which consists of synthetic DNA embedded with known
transcription factor (TF) motifs to recapitulate a multi-class classification task of identifying tran-
scription factor binding motifs. Specifically, synthetic sequences, each 200 nucleotides long and
composed of random DNA, were implanted with 1 to 5 known TF motifs, randomly selected with
replacement from a pool of 12 motifs. This dataset makes a simplifying assumption that the only
important pattern for a given binding event is the presence of a PWM-like motif in a sequence.
Since we have ground truth for all of the relevant TF motifs, and also where they are embedded in

each sequence, we can test the efficacy of the representations learned by a trained CNN.

MopEeLs.  We used two CNNs, namely CNN-so and CNN-273, to learn “local” representations
(whole motifs) and “distributed” representations (partial motifs), respectively. Both networks take
as input a 1-dimensional one-hot-encoded sequence with 4 channels, one for each nt (A, C, G, T),
and have a fully-connected (dense) output layer with 12 neurons that use sigmoid activations. The

hidden layers for each model are:
1. CNN-2

1. convolution (30 filters, size 19, stride 1)

(
(128 filters, size s, stride 1, ReLLU)
max-pooling (size so, stride s0)

max-pooling (size 2, stride 2)

2. convolution

3. fully-connected layer (512 units, ReLU)
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2. CNN-s0

1. convolution (30 filters, size 19, stride 1)
(size 5o, stride 50)
(

128 filters, size s, stride 1, ReLU)
max-pooling (size 2, stride 2

max-pooling

2. convolution

3. fully-connected layer (5 12 units, ReLU)

3. CNN-deep
1. convolution (30 filters, size 19, stride 1)

2. convolution (48 filters, size 9, stride 1, ReLLU)
max-pooling (size 3, stride 3)
3. convolution (96 filters, size 6, stride 1, ReLU)
max-pooling (size 4, stride 4)
(

128 filters, size 4, stride 1, ReLU)
max-pooling (size 3, stride 3)

4. convolution

5. fully-connected layer (512 units, ReLU)

All models incorporate batch normalization 57 in each hidden layer; dropout '** with probabil-
ities corresponding to layerr o.1, layer2 o.1, layer3 o.5 for CNN-2 and CNN-50; and layer1 o.1,
layer2 0.2, layer3 o.3, layer4 0.4, layers o.5 for DistNet; and L2-regularization on all parameters in

the network with a strength equal to 1e-6.

TRAINING.  We uniformly trained each model by minimizing the binary cross-entropy loss func-
tion with mini-batch stochastic gradient descent (100 sequences) for 100 epochs. We updated the
parameters with Adam using default settings®®. All reported performance metrics are drawn from
the test set using the model parameters which yielded the lowest loss on the validation set. Each

model was trained s times with different random initializations according to**.

VISUALIZATION OF CONVOLUTIONAL FILTERS. To visualize first layer filters, we scanned each
filter across every sequence in the test set. Sequences whose maximum activation was less than a
cutoft of 50% of the maximum possible activation achievable for that filter were removed. A sub-

sequence the size of the filter is taken about the max activation for each remaining sequence and
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assembled into an alignment. Subsequences that are shorter than the filter size due to their max acti-
vation being too close to the ends of the sequence were also discarded. A position frequency matrix

was then created from the alignment and converted to a sequence logo.

QUANTITATIVE MOTIF COMPARISON.  The interpretability of each filter was assessed using the
Tomtom motif comparison search tool** to determine statistically significant matches to the 2016
JASPAR vertebrates database’ . Since the ground truth motifs are available for our synthetic dataset,

we can test whether the CNNs have captured relevant motifs.

3.3 RESULTS

To test the extent that activation functions influence representation learning by first layer filters, we
trained various CNNs, namely CNN-2, CNN-50, and CNN-deep, on the synthetic dataset with
different initializations and used the average area under the precision recall curve (auPR) to compare
performance and quantify the ability to learn sequence motifs using Tomtom #*. For each network,
we compared ReLU and exponential activations only on the first layer, while employing ReLU

activations for the other hidden layers.

ANALYZING SYNTHETIC SEQUENCES  CNNis trained on the synthetic dataset show no signifi-
cant differences in the auPR on held-out test sequences across models and across activations (Table
3.1). A visual comparison of the representations learned by first layer filters show that CNN-2 and
CNN-deep do not learn sequence motifs well when employing ReLU activations (Figure 3.1). This
is expected because deeper layers are able to build hierarchical representations from partial motif fea-
tures for these networks. Indeed less than 1% of the filters match ground truth motifs according to a
Tomtom motif comparison search across 5 independent trials for each network. Nevertheless, about

60% of the filters of CNN-2 and CNN-deep have a statistically significant match to some motif in
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the JASPAR database, even though most of these matches are not relevant. As expected, larger max-
pooling is required to yield interpretable filters for CNNs with ReLU activations”?. Indeed 92% of
CNN-50’s filters match ground truth motifs.

Strikingly, the convolutional filters for CNN-2 and CNN-deep, which were unable to learn mo-
tifs with ReLU activations, visually seem to capture many ground truth motifs when switching to
an exponential activation (Figure 3.1). Quantification by Tomtom confirms that greater that 90%
of the filters match ground truth motifs. This demonstrates that exponential activations provide
interpretable filters for CNNgs, irrespective of max-pooling size.

Functions with positive second derivatives, such as the exponential function, produce increas-
ingly larger values for increasing input values, and as such may be referred to as divergent functions.
Undoubtedly, activation values attain much larger values under such a transformation than un-
der a convergent transformation such as the sigmoid function or a linear transformation such as
the ReLU (in the positive domain). Despite this signal amplification in terms of magnitude, how-
ever, a noise dampening effect is observed as the noisy activation values which the filters propagate
through the model, namely false positive motif scans, are all but eliminated when employing the
exponential activation function (Figure 3.2C; vertical blue line signifies the location of the embed-
ded MAX motif, vertical red line signifies FOSL1). On the other hand, many high activation values
arising from false positive motif scans are evident when employing the ReLU (Figure 3.2B; the filter
learning the MAX motif produced only the seventh largest activation value) or the standard PWM
scan Figure 3.2A). This phenomenon of sharpened signal was observed when employing other di-
vergent activation functions, such as a third order polynomial, and may be related to the gains in

interpretability, however this remains an open question at the time.

ANALYZING IN v1vo SEQUENCES  To test whether the same representation learning princi-

ples generalize to 2% vivo sequences, we modified the DeepSea dataset *>* to include only 7z vive
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sequences that have a peak called for at least one of 12 ChIP-seq experiments, each of which corre-
spond to a TF in the synthetic dataset (see Supplemental Table St in7?). The truncated-DeepSea
dataset is similar to the synthetic dataset, except that the input sequences now have a size of 1,000 nt
in contrast to the 200 nt sequences in the synthetic dataset.

We trained each CNN on the 7% vivo dataset following the same protocol as the synthetic dataset.
Similarily, a qualitative comparison of the first layer filters show that employing exponential activa-
tions consistently leads to more interpretable filters that visually matches known motifs (Fig. 3.3).
By employing the Tomtom motif comparison search tool, we quantified the percentage of statis-
tically significant hits between the first layer filters against the JASPAR database (see Table 3.1).
Indeed, a higher fraction of the filters of CNNs that employ exponential activations have a statisti-
cally significant match to known motifs. On the other hand, CNNs that employ ReLU activations
are more sensitive to their network design with CNN-s0 being the only network that learns motifs
well, yielding a percent match of 90%. We note that the performance drop for iz vivo sequences is
expected as they are more complicated, 7.e. many filters find a GATA motif. We envision that adding

more filters in the first layer can help address some of this discrepancy.

3.4 CONCLUSION

A major goal is to interpret learned representations of CNNs so that we can gain insights into the
underlying biology. Deep CNNs, however, tend to learn distributed representations of sequence
motifs that are not necessarily human interpretable. Although attribution methods can identify
features that lead to decision making, their scores tend to be noisy and difficult to interpret. We
show that an exponential activation is a powerful approach to encourage first layer filters to learn
sequence motifs. We believe that if applied to deeper layers, it could also improve interpretability

in deeper layers to potentially capture motif-motif interactions. Moving forward, one promising
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avenue is to combine attribution methods with CNNs that employ exponential activations so that

noisy attribution scores can be aided with the interpretable first layer filters.
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Deep learning for inferring transcription

factor binding sites

DEEP LEARNING is a powerful tool for predicting transcription factor binding sites from DNA
sequence. Despite their high predictive accuracy, there are no guarantees that a high-performing

deep learning model will learn causal sequence-function relationships. Thus a move beyond perfor-
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mance comparisons on benchmark datasets is needed. Interpreting model predictions is a powerful
approach to identify which features drive performance gains and ideally provide insight into the un-
derlying biological mechanisms. Here we highlight timely advances in deep learning for genomics,
with a focus on inferring transcription factors binding sites. We describe recent applications, model
architectures, and advances in local and global model interpretability methods, then conclude with a

discussion on future research directions.

4.1 INTRODUCTION

Deep learning is a machine learning paradigm that is represented as a multi-layer, 7.¢. deep, neural
network, composed of layers that enable hierarchical representations to be learned automatically
from the data through training on one or more tasks. The popularity of deep learning in -omics
applications has exploded in recent years**. One major reason for this rise is the democratization
of deep learning code through high-level APIs, such as Pytorch ¢ and Tensorflow ', which make

it possible to seamlessly build and train deep neural networks (DNNs) on graphical processing
units in just a few lines of code. Another reason is the big data boom in genomics, enabled by high-
throughput experiments and next generation sequencing®. Deep learning is thriving in this big
data regime and its applications are extending to many areas in genomics ' 54+6¢14%:153:5%:16_ Here,
we highlight timely advances in applications for deep learning in genomics, with a focus on inferring
transcription factors binding sites. We highlight recent applications and advances in model inter-

pretability and then conclude with a discussion on future research directions.

4.2 MODELING SEQUENCE-FUNCTION RELATIONSHIPS WITH DEEP LEARNING

The computational task for inferring TF binding sites from DNA sequence is framed as a single-

class or multi-class binary classification problem (for an overview, see Fig. 4.1a). The 2017 ENCODE-
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Figure 4.1: Overview of TF binding site prediction task. a) Transcription factors bind to regions of the genome based on
sequence specificities and modulate various biological functions. ChlP-seq experiments enrich for short DNA sequences
that are interacting with the TF under investigation. The resultant DNA sequences (so-called reads) are aligned to a ref-
erence genome and a peak calling tool is employed to find read distributions that are statistically significant compared
to background levels. Upon binning the full genome into bins of length L, it is possible to then associate each bin with

a binary label denoting the presence (Y; = 1) or absence (Y; = 0) of TF 7 based on sufficient overlap between the
peaks and the bin. The DNA within each bin is represented by a 1-hot encoded matrix and the associated label vectors
are used to train a model as a single-class or multi-class supervised learning task. b) Convolutional neural networks are
powerful methods to learn sequence-function relationships directly from DNA sequence. A CNN is comprised of a num-
ber of first layer filters (F;) which learn features directly from the /N input sequences by computing the cross-correlation
between each set of filter weights and the 1-hot encoded sequence. The resultant scans, so-called feature maps, intu-
itively represent the match between each pattern being learned in a given filter and the input sequence. The feature
map then undergoes a series of functional (e.g. batch normalization, non-linear activation) and spatial transformations
(e.g. pooling) resulting in a truncated length (L;). This tensor is then fed into deeper convolutional layers which dis-
criminate higher-order relationships between the learned features. Two convolutional blocks are depicted however this
feed-forward process may be repeated any number of times, after which a flattening operation is utilized to reshape the
tensor into a N X L3 matrix. Fully-connected layers perform additional matrix multiplications and ultimately output a
probability of class membership for each target. Loss is calculated between the predicted values and the targets, and the
weights are updated with a learning rule that uses backpropagation to calculate gradients throughout network.
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DREAM challenge exemplifies this task, as competitors were ranked on their ability to accurately
predict 2z vivo TF binding on held out test cells and TFs (https://www.synapse.org/#!Synapse:
syn6131484). The processed data consists of DNA sequences (as a one-hot representation) that

are input to the model and corresponding binary labels (peak or no peak). Convolutional neural
networks (CNNs) are particularly adept at modeling regulatory genomic sequences (see Fig. 4.1b
for details of CNNs). A more detailed review of the computational task and CNNs can be found
in Ref.®. The primary focus of the following sections will be in the context of CNNs, however
many of the techniques described, (e.g. interpretation) are extendable to other classes of DNN.
Moreover, these methods extend naturally to other data modalities that describe sequence-function

relationships, such as inferring chromatin accessibility sites and RNA-protein interaction sites.

4.2.1 RECENT ADVANCES IN DNN ARCHITECTURES

There have been many advances in DNN architectures over recent years, primarily driven by ap-
plications in computer vision and natural language processing (NLP), that have been slowly ported
into genomics, including hybrid models, such as CNN-recurrent neural networks (RNNs) 1012193,

. . . . . < . ?
dilated convolutions '#%, residual connections*?, dense connections 5*, and (self-)attention’ .

NETWORK MODULEs  Dilated convolutions are interesting because they provide a mechanism for
considering a large sequence context, with receptive fields as large as rokb without pooling 58,65,9
Dilated convolutions can be combined with other network modules such as residual blocks * or
dense connections S, both of which foster gradient flow to lower layers. Notably, dilated residual
modules were a key component of Alphafold '*?, the top protein folding method in the CASP13

free modeling competition.
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ATTENTION An interesting direction that is worth serious exploration is attention **>*> ™4, At-
tention provides an intrinsically interpretable mechanism to place focus on regions-of-interest in
the inputs. Albeit, recent evidence suggests that attention is not strongly related to explainability 7.
There are many types of attention mechanisms. State-of-the-art language models in NLP employ

a multi-head self-attention, also referred to as a scaled-dot-product attention, which are key com-
ponents of transformer networks like BERT ** and XL Net 146 Recently, Ullah et al. demonstrated
how self-attention can be employed to extract associations between TFs that reside in accessible

chromatin sites *#*.

4.2.2 INCORPORATING BIOPHYSICAL PRIORS

The salient features in domains such as computer vision or NLP (where most deep learning progress
is taking place) are different from genomics, particularly for TF binding, which consists of primary
and alternative protein binding sites, cooperative and competitive binding factors, and sequence
context (e.g. DNA shape features, GC-content, nucleosome positioning, accessibility and chro-
matin structure) . In genomics, low-level sequence features, such as motifs, are of particular inter-
est, whereas in images, higher-level features of objects are generally more important. In TF binding
prediction tasks, incorporation of biophysical features may provide additional gains in performance.
For instance, the top scoring teams’? in the ENCODE-DREAM challenge report increases in pre-
dictive performance through the inclusion of manually-crafted chromatin accessibility features (me-
dian gains on the area under the precision-recall curve of 0.252 and 0.0504, respectively). Thus an
emerging trend is to design DNNs with biophysical priors, making them more suitable to model ge-
nomic features, including reverse-compliment equivariance and parameters that capture biophysical

properties.
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REVERSE-COMPLIMENT EQUIVARIANCE  Reverse-compliment (RC) awareness can be achieved

103

via data augmentation with RC sequences, incorporating separate inputs for RC sequences'?, and

weight tying **>' 7, which is more computationally efficient. These domain-motivated models
yield improved predictive performance over standard DNNG, with reported gains on the area under
the receiver-operating characteristic curve of around 0.02 '*5. Reverse-compliment pooling can
turther reduce the number of parameters 7, albeit introducing a strong prior of motif directional
invariance. These strategies are particularly important when analyzing data generated via single-

stranded sequencing. To enforce positional invariance of a motif within a filter, circular filters have

been shown to be effective 5.

BIOPHYSICAL PARAMETERS  Recasting traditional physics-based models as a neural network is
an active area of research**3%%3 Tareen & Kinney recently showed that biophysical models of TF
binding can be represented as a neural network '>®, where edges represent meaningful biophysical
quantities, such as free energies. In parallel, 83 has also demonstrated how DNNs can be designed
with strong biophysical priors. These networks are highly-constrained, but provide interpretable
biophysical parameters. They offer starting points which can be embellished upon with machine

learning tricks-of-the-trade using deep learning frameworks 96,1

4.3 MODEL INTERPRETABILITY IS KEY TO MOVING FORWARD

Biological experiments are noisy but often treated as ground truth for both training and testing. Im-
proved predictions on unvalidated experimental benchmark datasets may not necessarily serve as a
reliable way of comparing model performance (Fig. 4.2a). Interpreting models can therefore help to
elucidate whether a DNN has learned new biology not captured by previous methods or has gained
an advantage by learning correlated features that are indirectly related, such as technical biases of

an experiment. Since binary classification tasks require discrimination of sequences between the
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Figure 4.2: Overview of model evaluation and interpretability. a) Model performance is assessed using the receiver-
operating characteristic curve (top) or precision-recall curve (bottom). b) Visualizing CNN filters helps to understand
learned representations. This can be achieved by scanning each filter across test set sequences, extracting subse-
quences (the length of the filter) centered on sufficiently large activations (above some threshold), aligning the sub-
sequences, from which a position frequency matrix can be constructed and visualized as a sequence logo. Motif com-
parison search tools, such as Tomtom, can compare motif similarity against a database of previously-annotated motifs. c)
In silico mutagenesis provides a single-nucleotide resolution map consisting of an importance score for each nucleotide
variant at each position by calculating the difference in predicted values between a given wildtype sequence and new
sequences with all possible single nucleotide variants. d) Gradient-based attribution methods analogously provide a
single-nucleotide resolution map by calculating the derivative of the output (or logits) of a given class with respect to
the inputs. €) A CNN can be used to generate and refine biological hypotheses by querying the model with a set of care-
fully chosen sequence models and estimating the global importance. f) Given a representative null background model
(light gray N nucleotides) the global importance of a pattern (left panel) or spacing between patterns (right panel) may
be estimated by querying the trained CNN with a sufficiently-large corpus of randomized, null sequences, each with an
instance containing the feature as well as a matched instance without the feature. Such a method allows practitioners to
quantitatively test a variety of biological hypotheses while controlling for unwanted confounders.
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positive and negative class, interpretability can also help to diagnose whether the DNN has learned
poor features that directly result from a poor choice of negative sequences. In genomics, the main

6,66

approaches to interpret a CNN are through visualizing convolutional filters>®°, attribution meth-

ods "*%15%123 "and more recently 77 silico experiments 7",

4.3.1 FILTER VISUALIZATION

First layer filters can be directly visualized as sequence logos via activation-based alignments (Fig.
4.2b). This representation makes it possible to compare filter representations against known databases
of motifs, such as JASPAR *#, using Tomtom*?, a motif comparison search tool. Filter visualization
has been a popular interpretability approach to support that a CNN has learned meaningful biol-

6:66:16,8,102,26:5088 "T'here are many drawbacks to filter interpretation, including the challenge in

ogy
quantifying the importance of the feature and how to relate the features to model prediction. Due
to the complex dependencies with other filters within and across layers, oft-the-shelf CNNs may
not necessarily learn complete motif representations in first layer filters. Representations learned by
CNN's are strongly influenced by many factors, including inductive biases provided by architectural
constraints73°% activation functions’?, and training procedure °*. Hence, filter analysis should

only be employed when a model is explicitly trained to learn interpretable motif representations. A

more thorough discussion of the benefits and drawbacks to visualizing first layer filters can be found

in7398.

4.3.2 ATTRIBUTION METHODS

15466 saliency maps '**, integrated

n genomics, attribution methods — such as 7z szlzco mutagenesis
Ing teribut thod: h 7t tag
gradients >4, DeepLift '*?, and DeepSHAP 86 _ provide a single-nucleotide resolution map con-

sisting of an importance score for each nucleotide variant at each position that are directly linked
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to predictions (Figs. 4.2, c-d). In practice, attribution methods have been utilized to validate that
amodel has learned representations that resemble known motifs in TF binding®5?, chromatin

6,154,66

accessibility , RNA-protein interactions 38 There are other interpretability methods that

have been developed for genomics, including maximum entropy-based sampling** and occlusion

150

experiments”'5°, as well as many other methods that have not yet been thoroughly explored in ge-

. ?
nomics 150,109,1182 .

LimrTaTIONS  Attribution methods are Jocal interpretability methods that provide feature im-
portance of individual nucleotides for a single sequence. Hence many attribution maps have to

be observed on an individual basis to deduce what features the network has learned globally at a
population-level. This can be challenging, because attribution methods tend to produce noisy rep-
resentations with spurious importance scores for seemingly arbitrary nucleotides. TF-MoDISco
aims to simplify this process by clustering attribution scores **#. Even still, attribution methods are
unable to quantify the effect that a whole putative motif (not just one nucleotide) has on model
predictions. Ongoing research is exploring to what extent we can trust attribution methods »*'3°? .
SECOND-ORDER INTERACTIONS  The previously described attribution methods are first-order
interpretability methods, revealing the independent contribution of single nucleotide variants in

a sequence. There has been growing interest in uncovering interactions between two nucleotide
positions, including second-order 7z silico mutagenesis”', integrated Hessians 61 self-attention net-

works "4, filter visualization in deeper layers®®, and other gradient-based methods'®+>-4.

4.3.3 GLOBAL IMPORTANCE ANALYSIS

Global importance analysis (GIA) provides a framework to quantify the effect size of such putative

motifs as well as the ability to map specific functions learned by a DNN’. GIA performs 2 silico
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experiments where synthetic sequences are designed with embedded hypothesis patterns while the
other positions are randomized by sampling a null sequence model (Fig. 4.2f). By averaging the
predictions of these synthetic sequences, GIA quantifies the average effect of the embedded pat-
terns while marginalizing out the contributions of the other positions. Important to this approach
is an appropriate null sequence model that minimizes distributional shift between the synthetic
sequences and the experimental data. Prior knowledge is critical to determine the null model. For
instance, Koo et al. employed GIA to find that the number of motifs, spacing between motifs, rel-
ative positions, and aspects of RNA secondary structure were significant learned features in their
DNN7'. More recently, Avsec et al. employed GIA to understand motif syntax, including coop-
erative associations and positional periodicity?. We envision GIA will play a critical role in testing
hypotheses of what DNNs have learned, moving beyond speculation from observing putative fea-

tures in attribution maps and individual filters.

4.4 CONCLUSION

The timely advances in deep learning and genomics have made research at this intersection progress
at a rapid pace. Improvements to architecture and interpretability have been key to the synergy.
Yet there are many pressing avenues that are beginning to emerge, including end-to-end models,

generative modeling, causal inference, variant effect prediction, and robustness properties.

END-TO-END MODELS ~ Framing TF binding as a binary classification task is limiting, because peak
calling is noisy and the read distributions themselves can be informative of the underlying biological
signals. Recent applications have bypassed the peak calling preprocessing step altogether, directly
predicting read distributions from sequence ®°. This allows the DNN to learn how to discriminate
peaks. Interpreting these so-called end-to-end DNNs may help to isolate biological signals from

experimental noise.
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GENERATIVE MODELING  In contrast to supervised representation learning, which are informed
only through the task they are trained on, unsupervised representations learned with deep gener-
. . . ? . . ?
ative models, such as generative adversarial networks® and variational autoencoders® , can reveal
latent structure of the data on a low dimensional manifold. Deep generative models are an active re-
. . . ?? . . .

search area in protein sequence modeling® * but is largely lagging for regulatory genomic sequences.
Applications for proteins demonstrate that deep generative models could potentially help to study

. . ? . . . . ?
evolution of sequences across phylogenies® and design new sequences with desired properties® .

CAUSAL INFERENCE A fundamental assumption in the field of causal inference is ignorability,
for which domain-knowledge is employed to build structural causal graphs which capture relevant
data dependencies and explicitly formulate model assumptions to ensure there are no unmeasured
confounders. On the other hand, highly-parameterized DNNs which estimate complex functions
from rich functional classes run counter to such explicit formulations. A hallmark technique to
ensure ignorability is the randomized control trial (RCT). Experiments performed in regulatory
genomics, such as massively parallel reporter assaysé9, are by design RCTs given a sufficiently large
library. While costly, such experiments provide valuable insight into the underlying causal mech-
anism dictating sequence-function relationships. An alternative to physically performing these
experiments is to simulate them 7z sz/ico, namely by performing global importance analysis. To do
so, however, requires robust models which accurately learn the functional relationships under con-
sideration. We therefore prioritize the collaboration between bench scientists and computational
scientists such that hypotheses generated 7z silico may be validated 7z vivo and a feedback loop may
be utilized to develop better models (Fig. 4.2¢). DNNs that accurately model the true causal effects
are more robust to distribution shifts and improve generalizability? . The same may be said when
integrating multiple data modalities. For instance, adjusting for confounders such as chromatin

accessibility is critical for learning a generalizable function across cell types. Subsequent improved
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design of models will reduce costs associated with experimental validation, accelerate hypothesis

generation and refinement, and provide more accurate discovery of causal biological mechanisms.

ROBUSTNESS AND INTERPRETABILITY By learning sequence-function relationships, a trained
DNN can be used to score the effect that disease-associated variants have on the phenotype that

6,00,153,58,10,65,152 Thyis of course assumes that the model has learned an invariant

it was trained on
causal representation which is generalizeable beyond the data that it was trained on. Demonstration
of out-of-distribution generalization performance has been limiting due to a lack of reliable bench-
mark datasets with ground truth. In other domains, it has been shown that small, targeted pertur-
bations to the inputs, so-called adversarial examples? , generated by an adversary whose sole mission
is to trick the classifier, can result in highly unreliable predictions. This has resurrected the field of
robust machine learning which focuses on the trustworthiness of model predictions? . Counter-
intuitively, high performing DNNs do not necessarily yield reliable attribution scores '**7, even in
genomics? . This raises a red flag that we should not blindly trust model predictions on variant ef-
fects just because they generalize well on held-out test data generated from the same distribution,
which share the same biases. It has been demonstrated that adversarial training, which incorpo-
rates adversarial examples during training, not only leads to improved robustness properties but also
improved interpretability”? . Although adversarial examples is not a meaningful phenomenon in
genomics, their potential for improving the robustness and interpretability properties of DNNs
through adversarial training makes them an exciting area of exploration. A thorough evaluation and
understanding of how training procedure, incorporation of biophysical priors, and the various ad-
vances in DNN architectures all influence model robustness and interpretability is an avenue for

future research.
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BEYOND VALIDATION — DISCOVERING NEW BIOLOGY  Deep learning ofters a new paradigm for
data analysis in genomics. As powerful function approximators, DNNs can be employed to chal-
lenge our underlying assumptions made by traditional (non-deep learning) models. To make mean-
ingful contributions, however, we need to move beyond performance comparisons on benchmark
datasets. Through model interpretation, we can identify what novel features drive performance
gains. In practice, we believe that a combination of interpretability methods — such as first-order
and second-order attribution methods and filter visualization — can collectively help to generate hy-
potheses of putative features and their syntax. This strategy should compensate for the failures of
any individual approach. As a follow up, global importance analysis can be employed to quantify
the effect size of putative features and also tease out specific functional relationships of the features,
including positional dependence, sequence context, and higher-order interactions. We recommend
training various DNNs — ranging from models designed to be highly expressive to models designed
to learn interpretable representations — to identify features that are robust across models and initial-
izations. Averaging an ensemble of models is a powerful approach to improve performance and it
can also be extended to improve interpretability. Interpreting model predictions is a powerful ap-
proach to suggest biological insights and generate hypotheses. The patterns they learn are not proof

of biological mechanisms, so any new insights should be followed with experimental validation.
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A.1 CHAPTER 1: SUPPLEMENTARY FIGURES
a) Cell ID: NCI-H1666 viability to compound: lapatinib b) Cell ID: HCC1187 viability to compound: lapatinib
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Figure S1: Quantification of cell response to treatment is obtained from a dose response curve in which variable dosage

concentrations are administered and the cell relative viability (relative to control wells, viability depicted on Y-axis) is

recorded at each dosage concentration (X-axis). Cells exhibiting high sensitivity to a drug attain higher values of area-
above-the-curve (a, AAC=0.36) while resistant cells maintain high levels of cell relative viability regardless of dose con-
centration and thus low values of AAC (b, AAC=0). Dashed lines indicate estimated ECs, (vertical) and E, (horizontal),
two alternative measures of cell sensitivity, however these measures may not exist for resistant dose response curves

(i.e. ECso = 00 in b).
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Figure S2: a) Two normally-distributed random variables X and X, which follow a bivariate normal distribution. Four
signal-to-noise regimes depict the relationship between the signal-to-noise ratio (covariance divided by uncorrelated
variance) and the Pearson correlation (covariance divided by total variance). A single simulation repetition is pictured.

b) Two random variables which instead follow a bivariate two-component mixture of normals. Color indicates mixture
membership and dashed lines denote one-half the signal, a naive method for classifying points to a given mixture and
used for calculating Matthew’s binary correlation. c) The generating mixture distributions under the same four signal-to-
noise regimes. Signal is defined as the distance between the means of the distributions and noise is the total uncorre-
lated variance. Again dashed lines represent one-half the signal. d) Three measures of agreement (Pearson correlation,
Spearman rank, and Matthew's correlation) for two random variables simulated from the generating distributions in c.
Pearson correlation is derived analytically (see Supplementary Methods) while Matthew’s correlation and Spearman rank
are smoothed across five repetitions.
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Figure S3: a) Distributions of drug response (AAC) appear either broad (top three drugs) or targeted (bottom twelve
drugs) in nature, regardless of study (CCLE: salmon, GDSC: green), suggesting a broad sense of agreement between
studies. b) AACs computed across common dosage ranges for cell lines tested in both studies (points) and drugs (panels)
suggest moderate agreement as measured by Pearson correlation (blue lines) for many drugs. Following '3, AACs may
be naively denoted as sensitive if AAC greater than 0.2 (dashed horizontal and vertical lines), else resistant. After such
thresholding, binary correlation measures (such as Matthew's correlation coefficient or the log-odds ratio) will more
accurately measure agreement given the underlying data generating mechanism consists of resistant and sensitive
mixture distributions, as in the case of the targeted drugs (e.g. Nilotinib). We employ a mixture modeling approach to
estimate study and drug-specific thresholds since no universal threshold is evident for all targeted drugs across both
studies.
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Figure S4: Different association measures suggest different levels of study agreement based upon distributions of cell

response (AAC). a) Study agreement for broad effect drugs (yellow points) measured with either Pearson correlation

or Spearman rank will yield concordant assessments due to a valid univariate monotonicity assumption. In these cases

reasonably-high study agreement is observed. On the other hand, when drug mechanisms of action are more targeted in

nature, one expects a small proportion of sensitive cells to respond and many others to exhibit resistance. In these cases

(purple points) the data generating distributions are comprised of a sensitive component and a resistant component,

and thus Spearman rank correlation and Pearson correlation will yield differing conclusions of concordance due to a

violation of their assumptions. An association measure which takes into account the underlying binary nature of the

data is more appropriate and yields consistent conclusions of agreement (b). The odds ratio (log transformed on the
X-axis) or Matthew’s correlation coefficient are two such binary measures which may be used for targeted drugs.
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Figure S5: a) Binary agreement as measured with Matthew's correlation coefficient is improved for 9 of 12 targeted
drugs (purple points) which were tested in common between the CCLE and GDSC studies. AAC is binarized into re-
sistant and sensitive components using a threshold of AAC>0.2 (X-axis) or an estimated posterior probability of

sensitivity>0.5 (Y-axis) based upon the model fits. Yellow points are broad effect drugs and thus measuring agree-

ment with MCC is inappropriate. On the other hand, agreements as measured by Pearson'’s correlation coefficient are

little changed for broad effect drugs (b).
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Figure S6: The median AAC computed per drug (X-axis) along with the median absolute deviation (Y-axis) may be used
to reasonably classify drugs into drug type (broad effect: red, targeted: blue) for both the a) CCLE and b) GDSC studies.
Dashed lines represent the 60™ percentile and are used to initialize the model fit for the expectation-maximization
algorithm. ¢) Both CCLE and GDSC exhibit bimodality in the drug-type priors based upon initialization using the median
AAC and median absolute deviation results.
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Figure S7: Estimated posterior distributions of cell sensitivity for CCLE (X-axis) and GDSC (Y-axis) for drug and cell

lines present in both datasets. Distributions are fit using all available cell lines (tick marks provided alongside densities).

a) 17-AAG, b) AZD0530, c) AZD6244, d) Crizotinib, e) Erlotinib, f) Lapatinib, g) Nilotinib, h) Nutlin-3, i) Paclitaxel, j)

PD0325901, k) PD0332991, ) PHA665752, m) PLX4720, n) Sorafenib, o) TAE684 (continued on following figure).
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Figure S9: Heatmaps indicating the number of drugs (a) and cell lines (b) tested in common between any two studies
(CCLE, GDSC1000, CTRPv2, FIMM, gCSlI).
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Figure S10: Spearman rank correlation (X-axis) and Pearson correlation (Y-axis) between the raw AAC values for all
drugs and cell lines tested in common between any two studies (CCLE, GDSC1000, CTRPv2, FIMM, gCSl). Yellow color-

ing represents drugs estimated to be broad effect, purple coloring represents drugs estimated to be targeted.
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Figure S11: Spearman rank correlation (X-axis) and Pearson correlation (Y-axis) between the raw AAC values for drugs

and cell lines tested in common between all three studies (CTRP, GDSC, PRISM). Yellow coloring represents drugs esti-

mated to be broad effect, purple coloring represents drugs estimated to be targeted.
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Figure S12: a) Pearson correlation between raw AAC values (X-axis) for all drugs and cell lines tested in common be-
tween all three studies (CTRP, GDSC, and PRISM). The Y-axis represents either the Pearson correlation (yellow points,
broad effect drugs) or the Matthew’s correlation coefficient (purple points, targeted drugs). Panels represent pairwise
comparisons for AAC values calculated over common dosage concentrations for all cell lines/drugs tested in common
between all three studies (AAC values provided by ?*). Coloring indicates whether the drug was estimated to be targeted
(purple, estimated posterior probability of drug targetedness > posterior probability of drug being broad effect; yel-
low). Targeted drugs exhibit improved concordance when considering an appropriate measure of agreement (Matthew’s
correlation coefficient, Y-axis purple points), and unchanged concordance for broad effect drugs (Spearman rank corre-
lation for yellow points). b) Boxplots of Spearman rank correlation (right panel) for the three pairwise comparisons using
the AAC values provided by ?* highlight several drugs with negative correlation. Reporting a binary measure of agree-
ment improves the low correlations as assumptions are violated when the underlying data distribution is composed of

a mixture of distributions (targeted drugs) rather than a single univariate distribution (broad effect drugs). Reported
correlation in the left-hand panel is Spearman correlation for broad effect drugs and Matthew's correlation coefficient
for targeted drugs. There is no evident decrease in overall agreement based upon the estimated posterior sensitivities
(little-to-no change in P-values as provided above the boxplots). ¢) Proportion of drugs with estimated posterior drug
type (broad effect or targeted) equal between the pairwise comparisons. A large proportion (>0.75) of the drugs tested
in common exhibit similar degrees of drug targetedness for all pairwise comparisons.
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Figure S13: a) Estimated posterior distributions for the drug lapatinib when fitting the model using only drugs and cell
lines present in each of PRISM, CTRP, and GDSC (a) as opposed to considering the datasets in their entirety (b). Each
point represents the AAC value for that dataset and the number in the upper corner of each plot is the mean correlation
calculated based on 1000 MC samplings from the estimated posterior distributions. The number of cells sensitive to
lapatinib is very low due to the highly targeted nature of the drug, and essentially zero by restricting the analysis to only
those cell lines present in the 3-way intersection. This results in low levels of estimated agreement. On the other hand,

agreement is improved when considering the full datasets as there are a sufficient number of sensitive cells. We than

k24

for kindly sharing the data necessary for a but were unable to replicate the values using the full dataset, hence there is

no one-to-one correspondence between points in a and b.
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Figure S14: Spearman rank correlation between the raw AAC values (X-axis) for all drugs and cell lines tested in com-
mon between any two studies (CCLE, GDSC1000, CTRPv2, FIMM, gCSI). The Y-axis represents either the Spearman
rank correlation (yellow points, broad effect drugs) or the Matthew's correlation coefficient (purple points, targeted
drugs). Panels represent pairwise comparisons for AAC values calculated over common dosage concentrations for all
cell lines/drugs tested in common between the two studies. Coloring indicates whether the drug was estimated to be
targeted (purple, estimated posterior probability of drug targetedness > 0.5 for both studies) or broad effect (yellow).
Targeted drugs exhibit improved concordance when considering an appropriate measure of agreement (Matthew's cor-
relation coefficient, Y-axis purple points), and unchanged concordance for broad effect drugs (Spearman rank correlation

for yellow points).
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Figure S15: Proportion of drugs tested in common with estimated posterior drug type (broad effect or targeted) equal
between any two studies (CCLE, GDSC1000, CTRPv2, FIMM, gCSl). Over 90% of the 41 drugs tested in common be-
tween the GDSC1000 and FIMM studies exhibit agreement between estimated posterior drug type, whereas 5 out of
10 drugs tested in common between gCSI and CTRPv2 agree.
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Figure S16: All de novo motif simulation filters. All first-layer convolutional filter weights trained on the CTCF-IRF-MYC
simulation dataset. Many weights are regularized to zero and thus do not contribute to the model performance.
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learned motifs against the 2018 JASPAR Core Non-vertebrates database o7,

I0I




A
0.20+ |
8 .45 i
&0 5 :
30.101
i} '
0.05 |
0.00 T »< =588 ' -------- PEOBR BRI~ - - - -
0.0 0.1 0.2 0.3
Mean Activation Difference
MAX::MYC
B 2.0
PR
210
0.5 A T
0.0==S =
MYC
2.0
PR
510
05 AC 0(1:-0
0.0 ==== =

Figure S18: Simulation model 1. All first-layer convolutional filters initialized to 2018 JASPAR Core Non-vertebrates
database ®’. All but four motifs exhibit zero effect size and thus may be discarded. Of the four non-zero effect-size
motifs, MAX::MYC and MYC are nearly identical and one of the pair could be removed.
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Figure S19: ENCODE Gm12878 CTCF TF ChlP-seq data application Tomtom query. Results from running the Tomtom
motif similarity tools* querying learned motifs against the 2018 JASPAR Core Non-vertebrates database o7,

103



A.3 CHAPTER 2: SUPPLEMENTARY METHODS

FrROM NUCLEOTIDE SEQUENCES TO INFORMATION GAIN

A position frequency matrix (PFM) tabulates the frequency of each nucleotide at each position
in a set of reads. For example, consider 1oo sequences each of length six letters composed of the
nucleotides {4, C, G, T}. A single example sequence could be ACCTAG. Under a uniform distri-

bution, one would expect 25 of each nucleotide at each position and the resulting PFM would be:

25 25 25 25 25 25

25 25 25 25 25 25

25 25 25 25 25 25

25 25 25 25 25 25

The top-left entry corresponds to the count of 4 nucleotides in the first position. Dividing
by the column sums yields a position probability matrix (PPM), of which each column defines a
multinomially-distributed random variable. Denote this r.v. 2, for column ¢ and for the example

consider the PFM and resulting PPM below:

39 4 1 10 25 30

61 30 94 8 25 20
PFM =

0 29 2 70 25 20
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39 04 01 1 .25 3

613 94 .08 .25 .2
PPM =

0o .29 .02 7 .25 2

0 37 .03 12 25 3

If one observed counts as tallied in column three of the PFEM, then one might expect to reject a
frequentist null hypothesis of uniform nucleotide probability (P; ~ multinomial(1, .25, .25, .25, .25)).
A likelihood ratio test could be used to perform such inference with the log-likelihood of observing

the data under the null taking the form ™

Uqa:qc,96:qtlcas ccicgier) = — 10g100‘ - Z logc,! + Z 100 108 4n

where g, denotes the null probabilities (0.25) for nucleotide 7z and ¢, denotes the observed count

(in the PFM). Following the derivation provided by '** and making use Stirling’s approximation for

large N (log N! =~ Nlog N — N) gives us:

1 1 Cn
Ug4,9c, 96, qrleas cc, 6, 1) = (Nlog N = N) — NZ(C” loge, — ) + N 084
Cn Cn
= log N — Z Nlogcn + Z Nlogqn
- _ Z o log Z log g,
- N
== _palogpa+ ) puloggn

= —KL(zll)
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Here N denotes the total number of sequences observed (100 in the example) and p,, denotes
the observed PPM values for nucleotide n € {4, C, G, T} calculated from the PFM. The last line
follows by the definition of Kullback—Leibler (KL) divergence, a measure which has many interpre-
tations including the negative observed log-likelihood, the relative entropy or information content,
and in the bayesian paradigm the information gain from using the posterior probabilities p,, rela-
tive to ¢,. Rearranging the last line reveals how the this quantity takes into account the background

distribution:

KL(pllg) = pn logzn

This is a weighted sum of the log-odds (log ‘;—Z), terms which define the position weight matrix
(PWM). Under a uniform background, the equation above simplifies to 2 — ) », log p,, and in our

example gives the following PWM:

0.64 —2.64 —4.64 —132 0 0.26

1.29  0.26 191 —-164 0 —0.32
PWM =

—oo 021 -—-3.64 148 0 -0.32

—oo 056 —=3.05 —-1.05 0 0.26

Each entry is upper bounded by 2 due to the choice of the uniform background but the entries
are not lower bounded. The absolute magnitudes of the column sums indicate how different the
probabilities are and are also unbounded. Pseudo-counts may be added to the PFM or PPM to
remedy the —oo terms. When done so by adding 0.5 to the zero entries in the PFM results in the

following PWM and KL divergence:
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0.64 —2.64 —4.64 —132 0 0.26

1.29 0.26 191 —-1.64 0 -0.32
PWM =

—5.64 021 —-3.64 148 0 —0.32

| —5.64 056 —=3.05 —-1.05 0 0.26

KL= 1098 0.244 158 0.65 0 0.03

As expected the KL divergence is zero in the fifth column, small in the sixth column, and largest
in the third and first columns. In the bayesian paradigm, the information gained by using the pos-
terior probabilities depicted in the PPM relative to a uniform prior would be largest in the third
column and zero in the fifth. One may lastly obtain the weights shown in the sequence logo plots'*®
by multiplying each value in the PPM by its corresponding column in the KL divergence vector. We

term this matrix the information gain matrix (IGM). Many other names would suffice including the

sequence logo matrix.

0.38 0.01 0.02 0.06 0 0.01

0.60 0.07 1.49 0.05 0 0.01
IGM =

0.00 0.07 0.03 045 0 0.01

0.00 0.09 0.05 0.08 0 0.01

Of course the IGM and PWM contain the same information and are simply rescalings; one may
start with a PWM and calculate an IGM and vice versa. Indeed one may transform a PWM/IGM
based on background probabilities ¢,, into a PWM/IGM based on background probabilities 7,

simply by backing out the p, and recalculating the quantity of interest.
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MODEL FORMULATION

We develop our model based on the convolution operator employed in convolutional deep neural
network (CNN) architectures*° considering the PWMs and IGM:s as the filters. Since each filter is
itself directly interpretable as a sequence motif, we may initialize (or fix) the filter values with those
of previously-annotated database motifs directly. We may also attempt to learn the motifs de zovo
given the weights maintain an equivalent interpretation.

Consider a set of J convolutional filters where the jth convolution operator computes the inner
product between a weight matrix £ and an observation matrix X, at each position sliding along
user-specified dimensions. These convolutional filters, or patches, are particularly suited for learning
local spatial relationships and when employed in deep learning are often stacked together in the
hundreds within a single layer, from which the activations produced by each convolutional filter at
each position are fed as input into subsequent deeper layers. The choice to use these filters to learn
sequence motifs is motivated by the work of "5+ In these genomics applications each filter (/ is a
4 X L; matrix of weights co//% fork € {4,C,G, Tyand/ € 1: L; convolved upon a one-hot encoding
of the input sequence X,,. That is, each X, is transformed from a nucleotide string of length 7, into
a binary matrix of size 4 x I, with rows corresponding to each base and column 7 denoting the
presence/absence of a nucleotide at position7 € 1 : 7,.

We write the model explicitly under the logistic link function (i.e. the sigmoidal activation func-

tion), due to binary classification objective as follows:

1
14 P Sm Be®)

G(X,) =P(Y, =1X, =x) =
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where Z indicates a max-pooled convolution transformation for filter 7 at location 7:

7 = max (x; * )

i€1:1,

and g(+) is some activation function (e.g. linear). The convolution operation is explicitly defined for

observation X, = x at position 7 as:

L
X; ¥ o= Z Z w]é,llxi-ﬁ—l—l:k + 1@/0

=1 ke{4,C,G,T}
We again note that it is these / matrices which contain the weights which collectively capture the
sequence motifs. We introduce this notation to motivate the merger of the convolutional filter as a
linear predictor: consider the case when / = 1 and the weights are all fixed such that co//'e, ;= lfork =
C,l € 1 : L;and O else. This trivial filter does nothing more than compute the count of C nu-
cleotides within a Z;-bp sliding window for each observation and assigns the maximum sigmoidal-
transformed value as a feature to be fed into a logistic regression model. Interestingly it does this by
computing the similarity (cross-correlation) between each test sequence with the all-C motif. There
is nothing ‘deep’ about this model and there are only two parameters to fit, £, and 4,, either via an

iterative maximum-likelihood approach

or gradient descent. Moreover, the interpretations of
these values directly correspond to the standard statistical interpretation of regression coefficients.

We now introduce the random variable Z, ~ Ber(ﬂj,;) to denote the presence (Z]n = 1) of motif

in sequence X,,. 7, is unobserved and we wish to estimate it via:

1

P2y =1, =) = ¢lf) =

where ¢ denotes the max-pooled convolution operator from above. Note that Z,is computed sim-
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ply by transforming the max-pooled convolution operation to be in [0, 1] via the sigmoid function.
Recalling that the outcome variable Y, is itself a random Bernoulli variable with probability p,, we

may condition upon the hidden variables 7, to rewrite equation ?? as:

1
14+ g_ﬁo'i'z:f:u@é‘”j

PY, =1X, =x,72,=4) =

Thus Y, is simply modeled via a transformation of a linear combination of hidden variables de-
noting the presence or absence of a given motif based on its maximum subsequence similarity. Of
course there is no reason beyond parsimony and interpretability for the need to reduce the j‘h fea-
ture map to a single maximum value (versus, for example, the sum of all elements, or the average
within the first half of the sequence and a separate term for the average in the second half). We also
note that one may encode any subsequent values from the fh filter as further hidden states shar-

ing the same motif filter to assess the additive impact of motif occurrences in this nested modeling
framework. Finally, we note that one may consider a difterent distribution for the Zl, such as a Pois-
son to model to the count of a given motif or a linear link to model intensity, however we leave this
for future work. We fit all model parameters via stochastic gradient descent in Keras*' with a batch

size of 64.

ENCOURAGING INTERPRETABILITY

Upon successful model training there are three interpretable quantities of interest in our model: 1)
The set of filters { representing motifs, 2) their associated ﬂjl model coefficients of estimated effect
sizes, and 3) the hidden variables Z, denoting the presence/absence of motif / in sequence 7. We
present this simple model in the text to encourage the interpretability of each model layer within the
CNN terminology. One may opt for a more complicated (deeper) model while still maintaining the

interpretation of filters as motifs. We detail the weight constraints and peri-training transformations



below, along with some practical considerations for implementation.

IGMSs AS FILTERS

When representing the motifs (convolutional filters) as information gain matrices we restrict the
individual filter weights a/é’ ; = 0and their associated offsets ﬂ/(') < 0. Additionally, the weights
for a given filter at a given position must be valid information gain measures. To achieve this we
restrict the column-wise sum to be less than or equal to 2 under uniform background and rescale
the weights column-wise to maintain a valid information-theoretic relationship during training.
This latter step is accomplished by rescaling the weights from information gain to probabilities by
dividing each weight by its column-wise sum and subsequently converting back to information gain
by multiplying each weight in the PPM by the column-wise sum of the expected self-information
gain. A psuedo-count of 0.05 is added to entries whose column sum is less than o.1 when converting
to the PPM to control for cases in which a single, small weight in the column is non-zero and thus
occupies a position-probability of 1. We perform this rescaling at the end of each training epoch.
The constraint on the offset weights ﬂé for each filter to be strictly non-positive is incorporated to
improve the interpretation of the filter activations: consider that the minimum activation value, fn
for observation 7z and filter 7, could take without a bias offset /3’0 and under the sigmoidal activation
would be 1/2. Quite simply the addition of a negative offset helps decrease the value of &, to o for
certain 7.

Under such a scheme we find that the learned filters may be interpreted as information gain and
are directly comparable to previously-annotated database motifs in the form of IGMs. For this rea-
son we consider the sum over the filter as a measure of information gain of the motif, which may
equivalently be interpreted as the KL divergence. In addition, the associated [8/1 model coefficients
are interpreted as the estimated effect size of the motif. Under the model described above, and

within the context of the applications considered, the 2] estimates translate to log-odds ratios. In



experiments in which the negatively-labelled cases represent purely random genome background, we
also constrain these ﬁll to be strictly non-negative. While the inclusion of such a constraint is surely
debatable per the application at hand, when the task is to discover enriched motifs in the positively-
labelled class, such as in the MYC-CTCEF-IRF simulation, the constraint is justifiable as one does
not expect to discover depleted motifs. Surely any motifs with negative effect sizes would, by con-
struction of the simulation, be due to over-fitting or spurious learned features. For this reason we
include the ﬁ’l > 0 constraint in the data application, but do not in the first simulation presented

with the C-motifs and G-motifs. In the latter case no such constraint is warranted.

PWMs AS FILTERS

When representing the motifs as position wieght matrices an altered weight constraint scheme is
used. We no longer require the non-negativity constraint on the a/é ; nor the I@{) negativity con-
straint. We limit the upper bound of the individual weights to be less than or equal to 2 (again for
the case of uniform background) and rescale the weights column-wise to maintain a valid distribu-
tional relationship during training. This latter step is accomplished by rescaling the weights from
log-odds to probabilities by adding /og> (,,) to each weight and raising two to this power. We sub-
sequently convert the calculated probability back to a position weight by computing the log-odds.
Again a psuedo-count of 0.05 is added to the zero entries to avoid values of negative infinity. We
perform this rescaling at the end of each training epoch as in the IGM case. Under such a scheme
the regularization is again interpretable, this time encouraging small and non-zero log-odds to shrink
to zero. The filter-level regularization again discourages redundancy but this time does so on the
log-odds scale instead of the information gain scale. Lastly, it is worth noting that backing the prob-
abilities out during the weight rescaling performed for the PWM requires the addition operation
and the power operation, while in the case of the IGM, the calculation simply requires the division

by the column sum.



PRACTICAL CONSIDERATIONS

All sequence motifs have been represented as information gain matrices (IGM:s) in this manuscript
however this need not be the case and our software implementation provides support for initializ-
ing and/or learning motifs as PWM representations. As previously described, there is a one-to-one
correspondence between the two measures some notes should be made on the implications between
choosing one representation over the other. Notably the use of a PWM tends to spread out the ac-
tivation values due to the negatively-unboundedness of the log-odds computed on multinomial
probabilities. This leads to an asymmetry in how the sparsity in interpreted since extremely small
position probabilities will never attain zero probability (—oo position weight). The same is not true
for the IGM representation as low position probabilities indeed attain zero. In other words, in the
case of the IGM the sparsity encourages position probabilities to not only attain exactly 0.25 but to
also attain smaller values. In the case of the PWM the sparsity exclusively encourages position prob-
abilities of 0.25. Another consideration is that interpretation and weight visualization is a bit more
nuanced when utilizing PWMs because the weights may be both positive and negative. Whereas
added weight constraints were used in the case of the IGM to encourage interpretability, the same

is not justifiable for the PWM. Additionally, in light of the large influence of increasingly-negative
position weights, one may opt to abandon the latent variable interpretation presented herein and in-
stead use a ReLU activation function to alleviate this. Undoubtedly it is a decision best determined
by the problem at hand and the goals of the analysis.

A uniform background assumption simplifies the training procedure because the maximum
value in the weight constraints is simply two across the board. Under a different background prob-
abilities assumption, we do not include a maximum constraint while performing gradient descent,
and instead recommend rescaling the weights after each batch (as opposed to epoch). This proce-

dure is computationally more expensive and one may instead train all weights under the uniform
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background assumption and rescale them after the fact.

REGULARIZING REDUNDANCY

Despite encouraging interpretable learning through weight constraints, the filters tend to learn cor-
related and often redundant features, with this being related to the hyper-parameter / determining
the number of such motifs to learn de novo. We remedy this issue through regularization, specifi-
cally by incorporating a sparse group lasso penalty into the formulation to encourage learning highly

predictive and distinct motifs '*7. Our regularization scheme may be expressed as:

J
min (Rg + WRF + AR + 3R + 142 |18]1>

0,8€R =
N
1 ¢9%)
Ko = z_} G [log (1 n eg(Xn)ﬂ ~ (1= 1) Jlog (1 + eg(Xn))]
L

7 , J ,
Rr =3 Jax Ll b =3\ Jax L | (,)?
= =1

I=1 ke{4,C,G,T}

J

R =ii > ladl

j=1 I=1 ke{4,C,G,T}
I )
J 4 Wkﬂ

=Yy

=1 I=1 k€{4,C,G,T} L

Model training proceeds by trying to find the weights which minimize this sum. In other words, gra-
dient descent is performed to minimize this sum. Rg simply denotes the standard logistic loss func-
tion and the 1 parameters dictate the trade-off between minimizing this loss at the cost of each reg-
ularization penalty, respectively. R 7 encourages filter-level group sparsity with the L2/L1 norm *#,
R encourages nucleotide-level sparsity with the L1 norm, and R encourages motifs to form near

the center of the filter with a location-specific penalty p I Recall in the genomic data applications we
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consider each filteris a 4 x L; matrix, with L; assuming values around 8-16 depending on the spe-
cific problem. We wish to discourage learning shifted versions of the same motif and so we set the
vector p to be a concatenation of a sequence of decreasing values beginning at A3 and ending at o of
length of equal to Z;/2, concatted with a reversed version of the same sequence (i.e. increasing val-
ues from o to A3). Thus sparsity is more strongly encouraged at the outer positions of the filter than
towards the middle, in turn discouraging redundant and shifted versions of the same motif. Finally,
we penalize the L1 norm of the ﬁ/l and include this regularization penalty in many of the models
considered throughout the text. This penalty simply pushes effect size estimates to o and is often
employed in CNNs. While group sparsity has surely been implemented in the context of image anal-
ysis (for example, 14681147 this is the first instance the authors are aware of using this regularization
framework on genomic data. The regularization scheme in total pushes many individual weights

to zero and discourages spurious motifs by pushing entire filters to zero except for those attaining

suitably large KL divergence (or log-odds in the case of the PWM).
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