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ABSTRACT 

The ability to undergo plastic and evolutionary change in adaptive traits is key for plant 

survival under future climate change. Both processes require genetic variation in adaptive traits 

within populations. Thus, for my dissertation I measured genetic variation in nonstructural 

carbohydrates (NSC) storage concentrations, a critical trait that provides resilience to tree species 

during times of stress, within two common gardens. Both gardens had the same 1,100 genotypes, 

sourced from 19 different populations, and clonally replicated 3x at each site, as well as full 

genomic sequences for all genotypes. Common gardens are ideal as they control for differences 

in environment, allowing researchers to parse phenotypic differences due to genetics (ie. genetic 

variation). I sampled the branches, stems, and roots of black cottonwood (Populus trichocarpa) 

trees in two different Department of Energy (DOE) common gardens in January 2017.  

 In Chapter 1, I demonstrate the presence of locally adapted, genetic variation in NSC 

storage in the stems and roots of black cottonwood trees, indicating the potential for range-wide 

adaptive evolution. Using a novel model of allele frequency distribution and climate, I predict 

that northern populations will be limited in their ability to adapt to future climates by a lack of 

genetic variation, while southern populations have high genetic diversity, but are at risk of local 

extinction due to more intense selective pressures.   



 iv 

In Chapter 2, I compare genetic variation in NSC stores to genetic variation in other traits 

to look for locally adapted tradeoffs. I discover a tradeoff between NSC storage and diameter 

growth/fungal pathogen resistance when traits are relativized for differences in carbon supply. 

This tradeoff is not current locally adapted, but populations exhibit high variation in the degree 

to which plants store vs. grow/defend, indicating an evolutionary potential.  

Finally, in Chapter 3 I explore genetic and plastic variation in branch total NSC 

concentrations and the proportion of NSC that resides in soluble sugars (ie. affect cell osmotic 

balance) and insoluble starch. I find genetic and plastic variation in both traits. Moving from the 

coastal (Clatskanie) to continental (Corvallis) garden, there was a 50% decrease in the average 

amount NSC stored as starch. There was no difference in the total amount of NSC concentrations 

between the two gardens. However, trees in Clatskanie grew much faster and were larger than 

trees in Corvallis, despite maintaining the same concentration of NSC in their tissues. Our 

findings suggest that a NSC storage – growth tradeoff may also be plastic.  
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Introduction  

Motivation 

Forests cover 30% of the world’s land surface1and are a net sink of 1.1 +- 0.8 Pg C/year, which 

accounts for about 40% of our annual fossil fuel emissions2. However, climate change is causing 

large-scale alterations to forest communities 3,4. Even under conservative scenarios, future climate 

changes are likely to include further increases in mean temperature (0.3 – 4.80C globally) over the 

0.850C it has already warmed during the past century, with significant increases in frequency and 

severity of extreme droughts, temperatures, and storms5. These changes are happening at a very 

rapid rate and may outstrip forests’ ability to adapt. Thus, climate changes has the potential to 

produce major shifts in vegetation distributions at unprecedented rates in the coming decades6-8. In 

order to understand the fate of vegetation, we must first understand what mechanisms trees can 

employ to persist on the landscape for decades to centuries. By understanding the genetic and 

environmental controls on these adaptive traits, their drivers, and constraints, we will be able to 

secure a better picture of the rate and direction of change in future forest communities.   

 

Nonstructural Carbohydrates 

The storage of nonstructural carbohydrates is a trait that has been hypothesized to provide 

trees with long-term resilience9-12. Nonstructural carbohydrates are the sugars, primarily glucose, 

fructose, and sucrose, and starch that are produced by trees during photosynthesis that are not 

immediately used for growth or reproduction, but rather are stored in the ray and parenchyma cells 

of a tree’s woody tissues (branch, stem, roots) 13,14. Like an animal’s fat stores, these labile sugars and 

starch represent the total energetic stores of the tree and serve as a vital buffer for plants in stressful 

times when demand (growth, protection, metabolism, etc.) exceeds current photosynthetic supply, 

such as during the dormant season or in response to environmental stress/disturbance15.  
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It is important to note that sugar allocation to storage is not constant, but follows distinct 

patterns on several different time scales, from 

small diurnal fluxes between daytime 

accumulation and nighttime use, to annual fluxes 

over the course of the growing and dormant 

season9,16-19. In general, woody perennial plants 

growing in seasonal environments draw down 

their sugar stores when growth is most rapid 

(mid-summer) and reach a peak in sugars 

during the dormant season; while starch holds 

the opposite pattern (Figure 1). These trends hold 

true for carbon stores in temperate, deciduous 

tree species, both diffuse and ring-porous16,20. 

Nonstructural carbohydrates are also moved and 

mixed within tissues. Across the outer segments 

of stem tissue, for example, there is a high degree 

of radial mixing of stores21 and stores have also been shown to decline radially with increasing 

distance from the cambium, which has been linked to parenchyma cell death and heartwood 

formation14. 

 

Study Species 

My study will focus on Populus trichocarpa (Black Cottonwood), a wide-ranging, fast growing 

species that has become the model for genomic studies in woody species 22. P. trichocarpa is an ideal 

species for this study as it inhabits a wide-array of environments and exhibits a diversity of 

phenotypes across its range23-26. P. trichocarpa can be found from isolated populations in the Aleutian 

Islands down to a few refugia in northern Baja and into central Canada, Montana, and 

Idaho27(Figure 2). Across this expanse, black cottonwood experiences a large range in climatic 

conditions, with annual precipitation ranging from 250 mm to 3,050 mm, minimum temperatures 

ranging from -47°C - 0°C, and maximum temperature ranging from 16°C - 47°C27. These large 

clines in temperature and precipitation will allow me to quantify how one species might survive 

under a variety of extreme conditions.  
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Figure 1. Branchwood sugar and starch concentrations from Harvard 
Forest in 2015. ACRU = Acer Rubrum, QURU = Quercus Rubrum, and BEPA 
= Betula Papirifera. Adapted from Furze et al. 2019. 
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P. trichocarpa can both vegetative and sexually reproduce. It is a dioecious species, having 

separate male and female catkins, but also resprouts readily via stump or root sprouting following 

disturbance. More uniquely, P. trichocarpa may abscise small shoots from their branches, complete 

with leaves, which can establish where they fall or be dispersed via water transport 27. Its fast growth 

and ease of reproduction also make it an ideal species to propagate.  

Finally, P. trichocarpa is ideal as it has become the models species for forest-tree genome 

studies since its genome was first sequenced in 200622,28. Populus has a relatively modest genome size 

in comparison to other flowering plant species at around 417 Mega base pairs (Mbp) long, but still 

lengthy in comparison to other organisms (Arabidopsis ~ 135 Mbp)22. It is a diploid species with a 

haploid number of 19 chromosomes, with no definitive sex chromosomes 29. So far, 41,377 protein-

coding gene loci have been identified in the nuclear genome (Tuskan et al. 2006; EnsemblPlants 

2015). Sequencing in 2006 revealed widespread patterns of linkage disequilibrium (LD) and 

population structure and previous and subsequent studies have demonstrated the prevalence of local 

adaptationeg28 (ex. Evans et al. 2014).  
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1 
A new perspective on ecological prediction reveals limits to climate 

adaptation in a temperate tree species 

 
 
 
 

Reprinted from: 

Blumstein, MJ, Richardson, AD, Weston, D, Zhang, J, Muchero, W, Hopkins, R. 2020. A new 

perspective on ecological prediction reveals limits to climate adaptation in a temperate tree species. 

Current Biology 30:1-7.  

 

Article and supplement available at https://doi.org/10.1016/j.cub.2020.02.001 
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SUMMARY

Forests absorb a large fraction of anthropogenic
CO2 emission, but their ability to continue to act as
a sink under climate change depends in part on plant
species undergoing rapid adaptation. Yet models of
forest response to climate change currently ignore
local adaptation as a response mechanism. Thus,
considering the evolution of intraspecific trait varia-
tion is necessary for reliable, long-term species and
climate projections. Here, we combine ecophysi-
ology and predictive climate modeling with analyses
of genomic variation to determine whether sugar and
starch storage, energy reserves for trees under
extreme conditions, have the heritable variation and
genetic diversity necessary to evolve in response to
climate change within populations of black cotton-
wood (Populus trichocarpa). Despite current pat-
terns of local adaptation and extensive range-wide
heritable variation in storage, we demonstrate that
adaptive evolution in response to climate change
will be limited by a lack of heritable variation within
northern populations and by a need for extreme ge-
netic changes in southern populations. Our method
can help design more targeted species management
interventions and highlights the power of using
genomic tools in ecological prediction to scale from
molecular to regional processes to determine the
ability of a species to respond to future climates.

INTRODUCTION

Rates of forest tree mortality are increasing across large regions
of the globe as a result of shifting drought regimes, extreme tem-
peratures, and pest outbreaks associated with global change
[1–4]. The rise in number and intensity of these climate-related
selective pressures means adaptive evolution from local stand-
ing heritable variation will be a core component of species

persistence strategies, along with migration and acclimation
via plasticity [5, 6]. Adaptive evolution is particularly important,
as tree populations already exhibit a high degree of local adap-
tation [7–9]. Despite high gene flow and long generation times
[10], tree populations are able to undergo rapid adaptation, as
evidenced by the paleoecological record following glaciation
[11, 12]. Furthermore, plasticity and migration are unlikely to
keep pace with climate change. Plastic variation may help plants
temporarily acclimate to new climates, but studies have demon-
strated that plastic variation may not be enough to cope with
predicted change [13, 14] or may even be maladaptive [15]. In
addition, migration rates may be limited due to dispersal rates
and dispersal barriers [16, 17]. Thus, adaptation is a critical pillar
of plant response to climate yet one that is often ignored in our
species projections, despite its demonstrated improvement of
models [18, 19].
Adaptive response is dependent on both the extent of herita-

ble variation underlying an adaptive trait as well as themagnitude
of evolutionary change necessary to meet the demands of un-
precedented environmental change. Therefore, adaptive alleles
must both be present in a population and be at appreciable allele
frequencies to allow rapid evolution in response to rising temper-
atures and shifting precipitation patterns. Without the intraspe-
cific trait variation necessary to evolve, populations will be at
risk of local extinction [20–22]. To predict whether a species
will be able to adapt to future climate, wemust first identify a trait
that is in fact adaptive, second quantify the amount and
geographic distribution of heritable variation in the trait, third
identify the genomic loci and subsequent alleles underlying the
trait, and fourth assess the potential for these alleles to undergo
local adaptive evolution [6, 9, 23, 24]. Here, we take these four
steps to determine the potential for black cottonwood (Populus
trichocarpa) to adapt to climate change through the evolution
of variation in sugar and starch storage, hereafter referred to
as nonstructural carbohydrate (NSC) storage.
The storage of NSCs has been hypothesized to be a key trait in

providing resilience to trees under stress [25–27]. NSCs are labile
sugars and starches stored in the parenchyma cells of woody tis-
sues (stems, roots, etc.) in plants [28, 29]. They can be stored on
the order of days to decades and support metabolic processes
in the dormant season as well as initiate leaf out in the spring

Current Biology 30, 1–7, April 20, 2020 ª 2020 Elsevier Ltd. 1

Please cite this article in press as: Blumstein et al., A New Perspective on Ecological Prediction Reveals Limits to Climate Adaptation in a Temperate
Tree Species, Current Biology (2020), https://doi.org/10.1016/j.cub.2020.02.001
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[30]. NSC storage has also recently been thought to serve as a
long-term ‘‘savings bank’’ for trees by allowing them to store
energy in excess of their base demands in case future environ-
mental extremes limit photosynthesis [25–27]. Under this hy-
pothesis, plants would storemore NSCs than needed in a normal
year, which then act as an osmotic metabolic or defense buffer
for trees growing in more stressful environments [26, 31]. Thus,
plants growing in variable or extreme environments would be
predicted to be locally adapted to store more than their counter-
parts in more ideal environments.

Recent studies on NSC storage have focused on the question
of whether or not plants can tap into their stores and prolong life
under stress. Many experimental and observational drought [32–
34] and defoliation studies [35, 36] have demonstrated that
plants can indeed draw down their NSC reserves under stress
to sustain life under certain conditions (i.e., drought or shade),
although some results are equivocal [37]. In addition, an experi-
mental study of 10 tropical species has demonstrated a positive

relationship between NSC storage and survival under drought,
demonstrating that individuals who storemore NSCs had higher
stem water potentials and lived longer under stress [27]. Finally,
interspecific studies indicate that average NSC storage can
differ by up to 100% between species, indicating a potential ge-
netic basis for the trait [38]. Together, these studies demonstrate
that NSC stores, and more of them, can confer resilience under
similar photosynthetically limiting stress, as predicted with
climate change. However, no study to date has looked at varia-
tion within a species or across populations.
To evaluate the extent to which NSC storage is locally adapted

and can continue to evolve in response to rapid climate change,
we used a Department of Energy (DOE) common garden of black
cottonwood (Populus trichocarpa) in Eastern Oregon [39]. We
sampled both aboveground (stem) and belowground (root)
woody tissues from 316 individuals, representing 242 genotypes
and 16 populations (Figure 1), to measure heritable variation in
NSC storage and find loci associated with the trait. We sampled
during the dormant season (January), when the phloem is largely
inactive [40, 41] and NSC variation is not impacted by variable
fresh photosynthates. We then used the larger dataset of 860 re-
sequenced genomes across 16 populations to make inferences
about the evolutionary potential of NSC storage [39, 42].

RESULTS AND DISCUSSION

NSC Storage Is Heritable
Black cottonwoods have the NSC storage variation necessary
for adaptive evolution. There is extensive total and heritable vari-
ation in aboveground (mean = 15.6 mg$g!1; sTotal = 6.0 mg$g!1

NSC; sHeritable = 2.8 mg$g!1 NSC) and belowground tissues
(mean = 24.3 mg$g!1; sTotal = 10.0 mg$g!1 NSC; sHeritable =
3.6mg$g!1 NSC). Roots store, on average, 1.6 ± 0.3 times higher
concentrations of NSCs, which is consistent with other studies
[38, 43]. By comparing genetic to total variation, we demonstrate
significant broad-sense heritability underlying both above-
ground and belowground NSC storage concentrations (Figure 1;
H2

aboveground = 0.43 ± 0.1; H2
belowground = 0.32 ± 0.1), indicating

that approximately 1/3 to 1/2 of variation measured in the garden
could be passed onto offspring. NSC heritability is higher than
most other physiological traits measured in the garden (H2

Physi-

olgy Traits = 0.26 ± 0.18) [44] and is on par with other traits thought
to be associated with climate adaptation, such as relative growth
rate (H2

Growth = 0.42 ± 0.1). However, we found no heritability of
variation in the ratio of above- to belowground storage concen-
trations (H2

A/B = 0.04 ± 0.0).
The amount of heritable variation in NSC storage is notable,

with ranges spanning several percentage points for both above-
ground (0.5%–3%; D 2.5%) and belowground (1%–4%; D 3%)
storage. This variation is biologically meaningful, as even a
2%–4% increase in NSC storage can prolong lifespan of tree
seedlings up to 9 days under experimental drought conditions
[27]. Black cottonwood trees are riverine species and highly sen-
sitive to changes in water level [45, 46], and Northwestern North
America is projected to become drier over the next 100 years,
with a significant decrease in the snowpack and precipitation
that maintains river water levels [47]. Thus, the ability to evolve
higher NSC storage concentrations as a back-up fuel source

Figure 1. Common Garden Study Design
(A–C) Genotypes were (A) taken from each of 16 populations and (B) replicated

twice via clonal propagation before being planted out in randomized blocks in

the garden in Clatskanie, OR, as pictured in (C). Populations are color coded

from cool to warm along a north-south axis.

(D) A map depicting the range of black cottonwood (Populus trichocarpa) and

the subset of the range from which ramets were collected for planting in the

common garden (black triangle).

2 Current Biology 30, 1–7, April 20, 2020

Please cite this article in press as: Blumstein et al., A New Perspective on Ecological Prediction Reveals Limits to Climate Adaptation in a Temperate
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or a pool for maintaining hydraulic function could be a crucial
survival trait for trees [48].

Climate Shapes NSC Storage
To determine the extent to which variation in NSCs are locally
adapted and shaped by selection, we compare the heritable trait
variation to the neutral genetic variation across populations.
Specifically, we calculate the quantitative genetic trait differenti-
ation among populations (Qst) and compared this to the genomic
differentiation at neutral sites among populations (Fst) [49] (mean;
95% credible interval; aboveground: Qst = 0.31, 0.12–0.56;
belowground: Qst = 0.30, 0.11–0.57; [mean ± SD] Fst = 0.17 ±
0.06). Among populations, NSC storage variation significantly
exceeds background genomic variation in both above and

belowground NSC storage, supporting that divergence in NSC
storage between populations is driven by natural selection (Wil-
coxon test; aboveground: W = 18,675,000, p < 0.001; below-
ground: W = 17,894,000, p < 0.001).
Heritable variation in NSC storage is highly correlated with

major environmental gradients across the range of black
cottonwood, indicating local adaptation. We used a principal-
component analysis (PCA) to reduce the dimensionality of
and control for collinearity among relevant climate variables
(Figures 2 and 3). The first PC describes an axis of colder/
wetter to hotter/drier climates and is significantly correlated
with heritable variation in both above- and belowground NSC
storage (Figures 2 and 3; aboveground: d.f. = 14, r = 0.62,
p = 0.01; belowground: d.f. = 14, r = 0.72, p = 0.002).

Figure 2. Population-Level Genetic Varia-
tion in NSC Storage Compared to the
Climate of Origin
(A) A principle components analysis (PCA) of

climate variables; the majority of the variance

(81%) among site climate variables can be ex-

plained by PC1.

(B) Climate variables represent 30-year normal of

parameters describing dryness and temperature,

with PC1 largely indicating a gradient from wet

and cool in the positive values to hot and dry in the

negative range, although PC2 represents a

gradient from warm and wet in the negative values

to cold and dry in the positive values. Each pop-

ulation’s current climate (triangle) and the site of

the common garden (large gray triangle) are indi-

cated. Population color varies from red in the

South to blue in the North as in Figure 1.

(C and D) The results of a correlation analysis be-

tween PC1 and (C) above- and (D) belowground

population-level heritable variation in NSC storage

concentrations are presented on the right.

Figure 3. Current and Future Climate of
Western North America Mapped in PC1
Space
Maps of (A) climatic variation along PC1 of pre-

sent-day climate (2019) and (B) the difference

along the climatic PC1 axis between the CCSM3

A1B future climate projections (2080) and the

present-day climate. Dots represent populations,

and the triangle is the location of the common

garden in Clatskanie. The entire region is pre-

dicted to move in the more negative direction

along PC1 (i.e., hotter and drier), with larger

changes (darker color) occurring at high elevation

and more southerly sites.

Current Biology 30, 1–7, April 20, 2020 3
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Individuals originating from hotter-drier environments have
greater storage, lending support to the hypothesized relation-
ship between environmental stress and NSC storage [25, 32],
although, in black cottonwood, it is difficult to isolate the effect
of latitude and subsequently phenological timing from climate.
Further, NSC variation is largely uncorrelated with heritable
variation in stem diameter (Figure S1; aboveground: m =
0.02, r = 0.13, p = 0.15; belowground: m = 0.03, r = 0.22, p =
0.04), suggesting that storage is genetically independent of
growth. The geographic patterns of heritable variation in NSC
storage are consistent with trees living at the extreme edge
of their environmental tolerance evolving an adaptive ‘‘bet-
hedging’’ strategy, although additional experiments teasing
apart climate variables, mean versus variance in climate met-
rics, and phenology are needed to hone in on the precise
climate drivers of local adaptation in storage.

Low Evolutionary Potential under Climate Change due
to Allele Frequency Distributions
Given the existence of heritable variation in NSC storage, we
used a genome-wide association study (GWAS) to identify
candidate loci underlying storage. We find 209 SNPs above
our inclusion cutoff from 111 genes associated with above-
ground NSC storage and 86 SNPs from 50 genes associated
with belowground storage (Figure 4A, 4B, and S2). Aboveground
loci are enriched for several biological and molecular process
gene ontology (GO) terms, such as carbohydrate metabolic
process and catalytic activity, although belowground loci are en-
riched in functions such as transport (Figure S3). In both ana-
lyses, several genes associated with carbohydrate synthesis
and transport were highlighted by our analysis (Table S1). All
subsequent analyses were replicated using both the complete
set of associated SNPs as well as a representative candidate

Figure 4. Using GWAS Results to Assess Adaptive Potential
(A and B) Genome-wide analysis study (GWAS) results for (A) aboveground and (B) belowground total NSC storage.

(C–F) The minor allele frequency (MAF) for the most significant loci in each GWAS (highlighted via a red line) is plotted for each population and 1,060 genomes

(C and E), with the plots directly adjacent (D and F) showing the predicted change in MAF over the next 60 years due to climate change (IPCC A1B scenario).

(G andH) The top row ofmaps illustrate the proportion of loci associated with (G) aboveground and (H) belowground NSC storage that entirely lack theminor allele

altogether (e.g., plot C and plot E; population Skwakwa), with warm colors lacking heritable variation. The bottom row of maps illustrates the average amount of

absolute MAF change predicted under future climate scenarios, with warmer colors requiring greater allele frequency shifts.

See also Table S1 and Figures S2 and S4.
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SNP for each unique gene; both show qualitatively similar
results.
Our goal is to determine whether there is available local herita-

ble variation at loci associated with variation in NSC storage that
will allow for rapid evolution in response to climate change. We
assess the current distribution of allele frequencies across pop-
ulations by calculating the minor allele frequency (MAF), or pro-
portion of individuals with the less common allele, within each
population for each locus associated with aboveground or
belowground NSC storage. This analysis uses the full DOE set
of 860 resequenced black cottonwood genomes. We then trans-
form our 30-year climate normal data, which represent the cur-
rent conditions, into PC space and statistically associate the
climate with population-level allele frequencies using a canoni-
cal-correlation analysis (CCA), which tests associations between
two sets ofmultivariate variables [50] (Figure 3).We used the cor-
relations between allele frequency and current climate to predict
allele patterns under future climate conditions. Specifically, we
used 2,080 projected climate conditions [47] transformed into
PC space for each of our sampled populations to predict the ex-
pected MAF at each locus that would allow for current levels of
local adaptation under future conditions (e.g., Figure 4C–4F;
IPCC A1B scenario, CSM4 model). We also found our results
to be robust to other climate models (Figure S4; IPCC A1B,
CMIP3 23 model ensemble).
Populations at the edges of the black cottonwood range are

vulnerable to extinction over the next 60 years due to insufficient
heritable variation required for adaptive evolution to climate
change. At the northern range limit, populations are entirely
missing alleles associated with greater storage; up to 50% of
loci within a population lack the allelic variation necessary to
respond to warmer and drier climates (Figure 4G and 4H). This
is concerning, given evidence that migration is unlikely to keep
pace with rapid warming [16, 17]. However, our results do pre-
sent opportunities for genetic rescue by identifying the target
populations and alleles for use in assisted migration. Genetic
rescue, or the migration of adaptive alleles into a population,
has enabled rapid adaptation in several animal species (re-
viewed in [51]), and an assisted migration program is already in
effect for the tree species larch [52].
In contrast, southern populations tend to contain the alleles

associated with warmer/drier conditions, but these populations
require extreme changes in allele frequency to adapt to future
climate conditions. MAFs at populations below 50! latitude
are predicted to shift in frequency D0.25–0.5 on average,
although northern populations’ frequencies are only projected
to shift D0.03–0.12 on average (Figure 4I and 4J). The cost of
the required selection in southern populations could result in
local extinctions, as the number of individuals that may die
could cause populations to drop below sustainable numbers
[20, 22, 53, 54]. If the size of a population is reduced below a
critical level, it becomes highly susceptible to extinction by de-
mographic stochasticity, even if the genetic capacity to adapt
to new environmental conditions is present in the population
[20, 22, 53]. Given the rapidity of change is likely to outstrip
generation time in populus (10–15 years to reproductive matu-
rity), phenotypic plasticity may be key in ameliorating the short-
term impacts of climate selection on southern populations [55,
56]. Future studies should examine the degree of plasticity in

NSC storage and the environmental conditions that may induce
higher storage.

Conclusions
We demonstrate the power of incorporating genomic data and
an evolutionary perspective with plant physiology to scale from
molecular measurements to regional predictions and thus better
understand species response to climate change. Black cotton-
wood populations have locally adapted to climate through vari-
ation in NSC storage. However, despite extensive range-wide
heritable intraspecific variation in storage, a lack of allelic varia-
tion locally will significantly limit the ability of this species to
rapidly evolve in response to climate change. We reveal nuances
in what is required for adaptation to occur across the range of a
species that should inform how we design species management
interventions and bring a new perspective to ecological
prediction.
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Kremer, A., Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R., and

Savolainen, O. (2013). Potential for evolutionary responses to climate

change - evidence from tree populations. Glob. Change Biol. 19, 1645–

1661.

10. Kremer, A., Ronce, O., Robledo-Arnuncio, J.J., Guillaume, F., Bohrer, G.,

Nathan, R., Bridle, J.R., Gomulkiewicz, R., Klein, E.K., Ritland, K., et al.

(2012). Long-distance gene flow and adaptation of forest trees to rapid

climate change. Ecol. Lett. 15, 378–392.

11. Davis, M.B., and Shaw, R.G. (2001). Range shifts and adaptive responses

to Quaternary climate change. Science 292, 673–679.

12. Davis, M.B., Shaw, R.G., and Etterson, J.R. (2005). Evolutionary re-

sponses to changing climate. Ecology 86, 1704–1714.

13. Duputi"e, A., Rutschmann, A., Ronce, O., and Chuine, I. (2015).

Phenological plasticity will not help all species adapt to climate change.

Glob. Change Biol. 21, 3062–3073.

14. Franks, S.J. (2011). Plasticity and evolution in drought avoidance and

escape in the annual plant Brassica rapa. New Phytol. 190, 249–257.

15. Hendry, A.P. (2016). Key questions on the role of phenotypic plasticity in

eco-evolutionary dynamics. J. Hered. 107, 25–41.

16. Zhu, K., Woodall, C.W., and Clark, J.S. (2012). Failure to migrate: lack of

tree range expansion in response to climate change. Glob. Change Biol.

18, 1042–1052.

17. McLachlan, J.S., Clark, J.S., and Manos, P.S. (2005). Molecular indicators

of tree migration capacity under rapid climate change. Ecology 86, 2088–

2098.

18. Cotto, O., Wessely, J., Georges, D., Klonner, G., Schmid, M., Dullinger, S.,

Thuiller, W., and Guillaume, F. (2017). A dynamic eco-evolutionary model

predicts slow response of alpine plants to climatewarming. Nat. Commun.

8, 15399.

19. Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M.B., Balaguer, L.,
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Meghan
Blumstein (blumsteinm@gmail.com). All data and scripts generated by this study have been deposited in (https://github.com/
blumsteinm/H2_Qst_Model).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Samples were collected from a Department of Energy black cottonwood (Populus trichocarpa) common garden, located near Clat-
skanie, Oregon (46.12!N, 123.27!W). The garden contains three randomized blocks of replicated genotypes along an East-West axis
each containing 1,060 unique genotypes for a total of 3,180 individuals in each garden, which originate from 16 different provenances
(referred to here as populations) (Figure 1). Population assignments were taken from a previous publication [64]. Plants in the garden
received no extra water or nutrients after their establishment in the first year. The collection of each accession is described in Slavov
et al. [39]. All individuals were planted in 2009, but one replicate was coppiced in the winter of 2013-2014, thus we only sampled from
the two non-coppiced replicates where individuals were eight years old at the time of sampling

METHOD DETAILS

Field Collection
All samples were collected from January 6th to January 10th 2017, between 7a.m. and 4 p.m. While NSC concentrations are well
known to fluctuate seasonally in predictable ways [38, 65], there is little evidence of diurnal fluctuations in total storage in woody

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Acetic Acid VWR BDH20108.292

95% Ethanol VWR 89125-180

Sodium Acetate VWR 200004-240

Alpha-Amylase Sigma Aldrich A4551

Amyloglucosidase Sigma Aldrich 1202332001

Phenol VWR BT135960-100G

Sulfuric Acid VWR BDH3072-2.5LG

PGO Sigma Aldrich P7119

O-dianisidine dihydrochloride Sigma Aldrich D3252

Deposited Data

Total Nonstrucral Carbohydrate concentrations This paper https://github.com/blumsteinm/H2_Qst_Model

Populus trichocarpa sequence data [42] https://genome.jgi.doe.gov/portal/Poptr1_1/Poptr1_1.

download.html

Climate Data of Western North America (WNA) [50] https://sites.ualberta.ca/"ahamann/data/climatewna.html

Software and Algorithms

R v.3.5.1 [57] https://www.r-project.org/

EMMAX [58] https://genome.sph.umich.edu/wiki/EMMAX

STAN/rstan v. 2.18.2 [59] http://www.mc-stan.org

Vegan v.2.5-3 (R package) [60] https://cran.r-project.org/web/packages/vegan/vegan.pdf

Fields v.9.6 [61] https://cran.r-project.org/web/packages/fields/index.html

Gamma hierarchical model This paper https://github.com/blumsteinm/H2_Qst_Model

topGO [62] https://bioconductor.org/packages/release/bioc/html/

topGO.html

GOstats [63] https://bioconductor.org/packages/release/bioc/html/

GOstats.html
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tissues, particularly in the dormant season. Carbohydrates may hydrolyze back and forth between sugar and starch over the course
of the day in woody tissues, while the total amount of sugars remains largely unchanged [66]. However, to account for potential dif-
ferences in time of sampling and microenvironment, we sampled in a randomized, hierarchical experimental design. The diameter at
breast height (DBH) was also taken during this period, with the average measuring 155.2mm ± 46.9mm.
We collected above (stem) and below-ground (root) tissue using a 4.3mm increment borer (Haglöf Company Group, Långsele,

Sweden). Stem tissue was taken at DBH and root tissue was taken from major coarse roots approximately 30cm away from the
base of the tree. Samples were kept on dry ice in the field during collection, then shipped to Harvard University in Cambridge,
MA and stored at !80"C.
Sampling was designed to collect aminimum of three unique genotypes (two replicates each) from each of the 16 populations, for a

total of 96 initial trees sampled for assessment of heritability. An additional 220 individuals were collected to increase power for in the
GWAS analysis for a total of 316 individuals from, representing 242 unique genotypes.

NSC Laboratory Preparation
We measured sugar and starch concentrations in the outer 2cm of the stem cores and outer 1.5cm of the root cores. Samples were
first freeze-dried for 24-hours (FreeZone 2.5; Labconco, Kansas City, MO, and Hybrid Vacuum Pump, Vacuubrand, Wertheim, Ger-
many), then ground to a fine powder (mesh 10, Thomas Scientific Wiley Mill, Swedesboro, NJ, USA; SPEX SamplePrep 1600; MiniG,
Metuchen, NJ) and stored in sealed glass vials. Sugar and starch extraction protocols were adapted from [67]
Sugar was extracted from 10 mg of dried tissue using 80% hot ethanol, followed by a colorimetric assay with phenol and sulfuric

acid, and read using a spectrophotometer at 490nm (Thermo Fisher Scientific GENESYS 10S UV-Vis, Waltham, MA). Sugar concen-
trations of mg sugar per g of dry wood were calculated using a 1:1:1 glucose-fructose-galactose standard curve (Sigma Chemicals,
St. Louis, MO).
Starch was extracted using the tissue remaining after sugar extraction. Tissue was solubilized in NAOH, then incubated for

24-hours with alpha-amylase and amyloglucosidase digestive enzymes, which digested starch into glucose. Solutions were then as-
sayed using a PGO-color reagent solution (Sigma chemicals) and read on the spectrophotometer at 525nm. Starch concentrations of
mg glucose-starch-equivalent per g dry wood were calculated based on a glucose standard curve (Sigma Chemicals).
For all lab analyses, at least two internal laboratory standards were included (Quercus rubrum stemwood fromHarvard Forest, MA;

42.01 ± 5.13 mg$g-1 Sugar, 30.17 ± 4.23 mg$g-1 starch). This acid methodology extracts all fructose, glucose, sucrose, and starch,
as well as other oligosaccharides and other glucans [68]. We report these carbohydrates as one combined metric of Total Nonstruc-
tural Carbohydrates (TNC), representing sugar and starch concentrations added together.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spatial Autocorrelation
Logged data were corrected for within-garden spatial autocorrelation using a thin-plate splinemethod (e.g., [64]), using the fields (9.6)
package in R v.3.5.1 [57]. The model intercept was then added back to the residuals and then the exponential of these values was
taken to place them back on a biologically meaningful scale.

Statistical Model
Given variation in our hierarchical sampling regime, we chose to use Bayesian hierarchical modeling to parse variation within and
among populations. All statistical analyses were conducted in R, using the programming language Stan (http://www.mc-stan.org)
[59], accessed via the rstan v.2.18.2 package. All model parameters were assigned noninformative priors (https://github.com/
blumsteinm/H2_Qst_Model). We chose to treat both above and belowground stores as separate traits because they appear to
vary independently in the literature [34, 35] and do not appear to tradeoff within other species [38] or across our populations. We
also calculated the ratio of above to below-ground storage concentrations within trees and examined heritable variation in this trait.
The ratio was calculated as the concentration of root storageminus the concentration of stem storage, divided by the larger of the two
values.
Two different models were run to parse (1) the heritable variation and (2) the variation within and among populations (Nstems = 314,

Nroots = 316). We chose to run two separate models for ease of extracting genetic variation values from the heritability model [e.g., 64,
69] The models took the form of the following hierarchical equations:

Yig = ag + εig (1)

Yigp = ap +agp + εigp (2)

where p is population (i.e., provenance of genotype; Npop = 16), g is genotype (Ng = 245), and i is individual. Both above and below-
ground data were modeled as a gamma distribution as they both had long right tails and no values at or below 0. The random effects
outcomes (a0s) of Equations 1 and 2 were estimated using 6,000 random draws from the posterior distribution of each equation
respectively, using the mean value of draw as each parameter estimate. These estimates for the heritable variation in storage are
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also known as the best linear unbiased predictions (BLUPs). This method was also repeated with our diameter measurements to
calculate the heritable variation in DBH.

Heritability, Qst, and Fst

Both broad-sense heritability (H2) and phenotypic divergence (Qst) were estimated using the Bayesian hierarchical model outputs.
Each parameter required for the H2 and Qst estimates were drawn from the posterior distributions of both Equations 1 and 2 and
used to calculate H2 and Qst 6,000 times (for each of the posterior draws), generating uncertainty bounds for each estimate. H2

was calculated using the random effects variances from Equation 1 as:

s2
Genotype

.!
s2
Genotype + s2

Microenvironment

"
(3)

Genotype variance was taken as the variance among replicates andmicroenvironmental variance was taken as the residual variance
of the model. Qst was calculated via the formula [49, 70]:

s2
Population

.!
2s2

Genotype + s2
Population

"
(4)

Fst estimates were taken from previous work [64], where Fst was calculated in 1-kb windows as (pT-pS)/pT; where pT is SNP diversity
across all individuals and pS is weighted within-population SNP diversity. A nonparametric Wilcoxon t test was performed to test
whether the distribution of Fst values and above and belowground Qst posterior estimates significantly differed. All results are re-
ported in text.

Climate
The past climatic data used to estimate clinal variation in NSC storage were climate-normal layers fit to western North America that
represent 30-year normals (1961-1990) from climateWNA [50]. We chose this dataset in particular because the down-scaling routine
is optimized for our study region and like-formatted (ie. scale and variables) climate projections were available for a multitude of
GCMs and climate scenarios, allowing us to project the environmental clines we identified into future climate space. However, by
using Normals data, we do lose many variables that go beyond means to capture climate stochasticity. All 26 available climate pa-
rameters were highly correlated, thus to reduce dimensionality and account for collinearity among our climatic variables, we used a
principle components analysis (PCA) (Figure 2). Many climate parameters were found to be redundant in our PCA given their high
correlation with other parameters and all parameters analyzed fell along a precipitation or temperature gradient. Thus, we chose
to include only the 8 climate variables with the highest loading values on PC1 and PC2 in our analysis to simplify visualization
(Figure 2).

We then fitted above and belowground NSC storage concentrations population-level heritable variation to the first two principle
components of this ordination space using ‘‘envfit’’ from the vegan v.2.5-3 package [60] and patterns were further teased out using
a linear regression of population-variation against PC1and PC2 as predictors (Figure 2, N = 16).

To get population-level estimates of future climate, we used down-scaled data representing the IPCC’s A1B (moderate) emissions
scenario from the National Center for Atmospheric Research’s CCSM3 global climate model for the year 2080 from climateWNA [50].
We chose to run NCAR’s CCSM3 model as it is part of the North American Multi-Model Ensemble and had available data on clima-
teWNA. CCSM3 predictions are in line with other models in the North American Multi-Model Ensemble as well as the ensemble pre-
dictions [71]. Once acquired, we projected future climate predictions into the PC space fit with current climate and used these values
to assess climate response (Figure 3). In addition, we repeated our analyses using ensemble data for all 23 CMIP3 models from cli-
mateWNA and found no significant differences in our predictions (Figure S4).

Genome-Wide Association Study & Gene Ontology
We performed a genome-wide association study (GWAS) on the spatial-autocorrelation corrected values of heritable variation for
both above and belowground total NSC storage concentrations following the protocol of Zhang et al. [58] and the software EMMAX
with a correction for kinship [72]. We utilized 8,253,066 SNP variants with dataset-wide minor allele frequencies > 0.05, from 917 ac-
cessions, using -log10(P) > = 5 as our inclusion cutoff (Figure 4). We also repeated analyses with more stringent multiple-testing FDR
rate corrections (-log10 = 6 and 6.5) and found them to be robust, but chose to use the threshold of -log10 = 5 given the likely poly-
genic nature of the trait and to more robustly build predictive models. Our analysis uncovered several gene models within 6kb (the
distance at which LD decays in populus [42]) of SNPs with p values above our inclusion cutoff with functions purportedly associated
with carbohydrate synthesis, binding, and transport in both stems, such as Potri.001G134900, Potri.001G226600 and
Potri.003G022900, and roots, such as Potri.006G122000, Potri.007G040700, Potri.011G110800 (Table S1). Genemodels associated
with the production/degradation of secondary compounds and lipids were also uncovered (Table S1). We then performed a gene
ontology (GO) analysis to summarize these results, then aggregate results into GO slim categories (Figure S2). We used the packages
topGO version 1.0 [62] and GOstats version 1.7.4 in R [63] and the P. trichocarpa v.3.1 annotation file from the DOE repository to
conduct the analysis [42, 64].
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Minor Allele Frequency Projections
At each locus associated with aboveground or belowground storage, we calculated the minor allele frequency (MAF) by population.
We then generated a statistical association between the MAF of each population at each locus associated with NSC storage and the
PCs defined in our previous climate analysis via a canonical correlation analysis (CCA) with 4,000 permutations, running above and
belowground loci in separate analyses. CCA is amultivariatemethod commonly used in community ecology to establish relationships
between biological assemblages of species and environment, where here each loci is acting like species. We checked the accuracy
of our model by plotting predicted allele frequencies against actual by population, finding (Figure S3). We then predicted the ex-
pected population-level MAF at each locus given the CCA model and 2080 projected climate PCs for each population. Finally, to
make interpolated maps of our population-level data for ease of viewing, we used a thin-plate spline method from the fields v.9.6
package in R [61] (all results in Figure 4). We also repeated this analysis using genes with representative SNPs, meaning we chose
the most significant SNP from each gene to use as the marker for each gene region.

DATA AND CODE AVAILABILITY

The datasets and code generated during this study are available on github (https://github.com/blumsteinm/H2_Qst_Model).
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Abstract 

Whether the storage of nonstructural carbohydrates (NSCs) by plants is a passive or active process is 

a central question in understanding carbon allocation strategies and predicting future plant 

productivity11,13,30,31. To date, evidence for passive versus active storage is equivocal as studies fail to 

simultaneously test both assumptions underlying active storage (eg.11,32): that it is (1) under genetic 

control and (2) allocated to at the expense of other sinks13. Building off recent data demonstrating 

that variation in NSC storage is heritable33, here we test whether genetic variation in NSC storage 

trades off with genetic variation in other carbon sinks within a temperate tree species. To test the 

active storage hypotheses, we measured genetic variation in seven traits related to carbon supply, 

defense, growth and storage within a common garden of black cottonwood (Populus trichocarpa) and 

searched for tradeoffs amongst them. We find allocation tradeoffs between individual’s investment 

in growth and defense versus storage once differences in productivity are accounted for, 

demonstrating that NSC reserve formation is an active process. Furthermore, we found that 

individuals who invest less in growth and defense can store up to 8-10 mg/g, or ~30%, more NSCs 

in their tissues then their counterparts, a sum that may be critical for tree survival under novel 

climate regimes. Our results suggest a paradigm shift in the way we conceptualize and model carbon 

allocation to storage in tree species.   

 

Body Text 

The storage of nonstructural carbohydrates (NSCs) is essential for long-lived, immobile tree species. 

NSC stores serve as a savings bank for trees by providing energetic reserves for both predictable and 

unpredictable carbon supply fluctuations (eg. night, dormant season, environmental disturbance)9,13. 

Higher NSC stores can prolong life under drought conditions34 and may enable trees to withstand 

stochastic environmental events, such as intense freeze-thaws, and herbivory11,30,32,35. Climate induced 
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changes in drought and herbivory cycles are already causing episodes of large-scale tree mortality (eg. 

3); thus it is important to better predict if and how trees may tolerate and eventually evolve under 

variable environments. Increasing NSC storage will likely benefit individuals living in temporally 

stochastic environments, and yet, it is still unclear if trees actively control the amount of carbon 

allocated to storage versus other carbon sinks such as growth. Is the underlying process of reserve 

carbon formation passive or active11,13,30,31?   

 Establishing the extent to which variation in NSCs are due to a passive or active allocation 

of resources is fundamental for determining how forests will physiologically respond to and evolve 

in response to climate change, human disturbance, and stress. The passive model of storage assumes 

that any accumulation of NSCs only occurs after the priority sink demands of growth, defense, 

respiration, and reproduction have all been satisfied30. Thus, the measured variation in NSC stores 

across trees is due to changes in carbon supply and other sink demands. Ecosystem models largely 

treat NSC reserve formation as this passive process (reviewed in30). Alternatively, the active model of 

storage posits that NSCs is a sink in itself and carbon may be allocated to reserves at the expense of 

other sinks11,13,30,32. This active allocation may serve as a bet-hedging strategy in stochastic 

environments and thus assumes that genetic variation in carbon storage measured across trees is due 

to a genetically regulated tradeoff between carbon storage and other carbon uses, such as growth 

and reproduction. Accommodating a scenario of active NSC allocation will alter climate model 

predictions. Specifically, estimates of carbon sink residence times (i.e. biomass, stores, exudates, etc.) 

and future tree mortality under climate change would be drastically altered, changing our predictions 

of the length of time and degree to which forests may continue to serve as global carbon sinks.   

Differentiating between active versus passive reserve formation has been exceedingly 

difficult due to the limitations of experimenting on long-lived, slow growing organisms and technical 

difficulty in extracting and measuring carbohydrates stored in wood. Previous studies have measured 
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correlations (or lack thereof) between variability in NSC stores and environmental clines or induced 

stress as evidence for or against active storage36-38. However, interpretation of results from these 

studies is ambiguous and conclusions have been equivocal (eg.11,32, Figure 1). Here we synthesize 

previous discussions on this topic13,15 by proposing a framework for empirically assessing whether 

NSC storage is active or passive. We define an active process of carbon storage as variation in NSC 

stores that are (1) under genetic control and (2) tradeoff with other carbon sinks, such that higher 

storage is favored at the expense of other sinks under certain environmental conditions13. Passive 

NSC storage is indicated by a lack of genetic variation in storage or a lack of tradeoffs with other 

carbon sinks. Our definition is mechanism agnostic, meaning that active reserve accumulation could 

be the result of an upregulation of sugar accumulation in cells or a down-regulation in growth or 

other carbon sinks, previously referred to as “quasi-active storage”11,30. We argue that regardless of 

mechanism, both scenarios represent an evolved, gene-regulated tradeoff which results in the 

accumulation of sugars and is distinct from the current paradigm of passive NSC reserve formation.  
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Figure 2.1. For nonstructural carbohydrate (NSC) reserve formation to be considered an active 
process, NSC storage accumulation must exhibit (1) genetic variation and (2) NSC stores must 
tradeoff of with other carbon sinks (negative correlation in variance). Here we demonstrate how (A) 
relationships between carbon sink values measured in the field may be (B) formed in a number of 
different ways, thus complicating our ability to draw conclusions about active versus passive storage 
unless both (C) genetic variation is measured and (D) relativized for differences in individual 
productivity.  

 

Our two criteria for distinguishing active storage are often difficult to assess in practice 

because carbon sinks are positively correlated with carbon supply and overall tree vigor, referred to 

here as “productivity”.  Trees that are more productive have more energy to allocate to growth and 
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storage and defense than trees that are less productive39-41(Figure 1). As such, uncovering allocation 

tradeoffs is challenging as high variation in productivity can mask variation in allocation strategies 

(Figure 1, scenario 3). This is best summarized by the analogy of the tradeoff between buying a nice 

car and a nice house. We know intuitively that individuals must choose how much wealth to allocate 

to each, and thus a tradeoff exists. However, when examined across all individuals, there is often a 

positive correlation between nice cars and nice houses, because people with more money can afford 

better of both (from39). Thus, to understand tradeoffs in this context we must normalize by income 

and to understand tradeoffs in the context of plants, we must normalize by total productivity (Figure 

1D). 

Decades of common garden experiments have demonstrated that plant productivity varies 

plastically (between environments) and often genetically (within environments) (reviewed in 42). 

Thus, both plastic and genetic variation in productivity have likely complicated previous attempts to 

identify active versus passive storage from NSC measures taken in the field (Figure 1). Under most 

conditions, variation measured in NSCs will be positively correlated with variation in other carbon 

sinks as each sink is also correlated with productivity. Positive correlation amongst sinks could be 

due to passive mechanisms of carbon storage if there is no genetic variation in NSC storage or plant 

productivity (all variation is plastic – scenario 1 Figure 1), or if there is genetic variation and 

plasticity in productivity but not in NSC storage (scenario 2 figure 1).  However, this positive 

correlation could also be the result of active storage if both NSC stores and productivity exhibit 

genetic variation (scenario 3 Figure 1). Thus, controlling for productivity reveals the genetically 

determined allocation strategy of each individual. Only under the seemingly unrealistic scenario that 

productivity is not correlated with carbon sinks will field-measured variation in NSCs show a 

negative correlation, or trade off, with other carbon sinks (scenario 4).    
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Here we demonstrate how to test if NSC storage formation is an active or passive process.  

We quantify genetic variation in carbon productivity, storage, and sinks by measuring traits within a 

Department of Energy (DOE) common garden of 900+ unique black cottonwood (Populus 

trichocarpa) genotypes replicated clonally 3x each, with full genomic sequences available (Figure S1)43. 

We used direct and indirect measurements of productivity (growing season length), growth (tree 

volume and relative growth rate), defense (Venturia resistance), and storage (root and stem NSC 

concentrations) traits to test for tradeoffs.  

 We find strong evidence of active NSC storage in black cottonwood trees.  There is ample 

genetic variation in carbon sinks (including storage) (H2 = 0.32-0.79, Table S1) and tradeoffs 

between NSC storage concentrations and other carbon sinks are revealed after productivity is 

accounted for (sensu Figure 1, scenario 3). As predicted, most carbon related traits (productivity, 

storage and other sinks) are positively correlated (12/15, Figure 2). Thus, we first used a principle 

components analysis (PCA) to determine if allocation tradeoffs are masked by large differences in 

productivity across genotypes (Figure 3). We found nearly half the variation in our data is due to 

variation in plant productivity as indicated by a gradient of low to high productivity along PC1 

(Variation Explained = 41.5%, Figure 3 ABC). PC2, which is formed from the residuals of PC1, 

then showed a tradeoff between NSC storage and other carbon allocation traits (Figure 3BD). We 

can further demonstrate this underlying trade off by regressing variance in productivity (represented 

by PC1) out of our trait values, removing the effect of productivity from each trait, and then 

correlating the residual sink variance pair-wise (Figure 4). In doing so, we see relationships between 

sinks flip from positive (Figure 2) to negative (Figure 4). When we relativize our trait data for 

differences in overall plant productivity, we see allocation tradeoffs emerge. Thus, we demonstrate 

that genetic variation in NSC storage trades off with genetic variation in other carbon sinks, 

satisfying the requirement for active storage.  
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Figure 2. A pairwise comparison of total variation (field measured) of productivity, growth, defense, 
and storage traits. Trait values are z-scored, with mean centered on zero. We tested for relationships 
amongst traits via linear regression; all test results are displayed in the top right of the matrix and 
significant relationships are demonstrated via a fit line in the bottom left.  
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Figure 3. A principle components analysis (PCA) of productivity, growth, defense and storage traits 
(N = 237 Genotypes). (A) The cumulative variation explained by each PC. (B) The PCA results, 
where each dot is a genotype in the common garden, colored by the latitude of its provenance, and 
arrows indicate increasing values of each trait. Each PC is then decomposed in (C) and (D), further 
highlighting synergies and tradeoffs amongst traits on each PC axis.   
 

 Our results demonstrate not only that NSC storage accumulation is an active process, but 

that there is substantial heritable variation in the degree to which trees invest in storage versus 

growth and defense within populations (Figure S2), although it is not currently locally adapted. The 

genetic variation we uncovered is biologically meaningful, as individuals who invest less in growth 

and defense can store up to 8-10 mg/g, or ~30%, more NSCs in their tissues than their high-growth 

counterparts (Figure 4). This increased storage capacity may be critical for trees living in temporally 

or microenvironmentally heterogenous environments (eg.44). Given genetic variation provides the 

raw material on which selection can act, we have demonstrated there is a wide diversity of carbon 

allocation strategies that are maintained within populations for novel future climate regimes to select  
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Figure 4. Residuals from linear regressions between genetic variation in growth, defense, and storage 
(unscaled data) and PC1, which represents differences in productivity between individuals (Figure 
S7). With variation due to PC1, or productivity, removed the pairwise relationships between carbon 
sink traits flip from positive, as shown in Figure 2, to negative correlations, indicating a tradeoff 
hidden by high variation in tree productivity.  
on45.  

 In conclusion, using common garden trait measurements and building off previous work33, 

we were able to demonstrate that NSC reserve formation satisfies the requirements for active 

storage; it is both (1) under genetic control and (2) exhibits tradeoffs with other carbon sinks. This 

finding has implications for how we conceptually understand tree physiology and subsequently how 
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we structure process-based carbon models. With a few exceptionseg.46, most ecosystem models treat 

NSC storage as a passive process in which the only way for storage pools to change is if supply or 

sink demands shift. However, we have demonstrated that NSC reserve formation is at least partially 

independent of carbon supply and other sink demands. Thus, while models may match past trends, 

future projections are likely based on flawed assumptions which may be challenged by novel climate 

regimes.  

 

Methods 

To test that NSC storage is an active allocation process, we utilized data collected from a 

Department of Energy (DOE) common garden of black cottonwood (Populus trichocarpa) in eastern 

Oregon between 2012 and 2017. We used direct and indirect measurements of carbon supply (bud 

flush/set), structural investment (growth/density), defense (Venturia incidence), and storage (root 

and stem NSC concentrations) traits.  

Field Collection 

All data were collected from a DOE black cottonwood (Populus trichocarpa) common garden, 

located near Clatskanie, Oregon (46.12˚N, 123.27˚W). The garden contains three randomized blocks 

of replicated genotypes along an East-West axis, each containing 917 unique genotypes for a total of 

2,751 individuals in the garden. All trees originate from 18 different provenances (referred to here as 

populations) (Figure 2). Population assignments were taken from a previous publication, where they 

were generated using sequence data28. The collection of each accession is described in Slavov et al.43 

All individuals were planted in 2009 and one replicate was coppiced in December of 2013. All traits 

were measured prior to this coppicing event except NSC storage. Thus, we have three replicates of 

uncoppiced trees for all traits, except NSC storage, where we use only the two uncoppiced replicates 

in our analysis.   
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Collection of carbon allocation trait data  

We chose variables that were direct measures of carbon supply, or a demand pool (defense, 

growth/structural, storage), or a close proxy. Of the 917 genotypes in the garden, 237 genotypes 

have replicated measures for all our variables of interest. All individuals in the garden have not yet 

reached a reproductive age (ie. not yet produced seed or pollen), thus allocation to reproductive 

traits was not included in this study.  

Growing Season Length 

We approximated productivity (carbon supply) as growing season length using bud flush and 

bud set score data that were collected during the 2010 growing season. Earlier bud flush and later 

bud set correspond to a longer growing season, and thus a larger carbon supply relative to other 

individuals with later bud flush and earlier bud set in the garden47. Phenological timing is locally 

adapted with early bud flush constrained by selection from frost damage to sensitive leaf tissues, 

while longer growing seasons are selectively advantageous due to greater resource aquisition48. Bud 

flush scores were taken on March 10 and March 29th, 2010 and bud set scores were taken on 

September 2nd & 15th, and October 1st, 2010 across all three replicates in the garden. Scores followed 

previously established criteria (Table S2 & S3) 49.  

However, since bud flush and set data were scores and not the actual date of leaf-out and 

leaf-drop, we used statistical models to estimate the actual start and end dates to the growing season. 

To estimate the date of bud flush, we combined data from our common garden in Clatskanie, OR 

with previously published data from a nearby common garden in Corvallis, OR to increase our 

sample size28. We then used the combined dataset to build a logistical regression model, which 

predicts that probability that a tree has leafed out (ie. is a 1) given the growing degree day (GDD) 

value and latitude of origin of the genotype. Growing degree data was calculated as the sum of the 

average daily temperature minus 5oC (representing the minimum threshold for plant growth) and 
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climate data were taken from daymet50. The phenophase data are in stages 0-6, where 0 is a tightly 

closed bud and 3 represents the beginning of budburst. Thus, we set all observations that were less 

than 3 to 0 (meaning no bud burst) and observations of 3 or more to 1 (meaning leafout has 

initiated) for the logistic regression. We then predicted the date where there was the probability of 

budburst exceeded 50% as the date of leafout using our logistic model (Figure S3). 

To estimate the end date of the growing season, we first needed to estimate the actual date 

of budset from our score data, then estimate the date of leaf-drop given our predicted budset date, 

since budset occurs when there are still leaves photosynthesizing on trees. To do so, we combined 

our 2010 budset score information with data on actual budset and leaf-drop dates taken between 

2008 and 2010 from the same genotypes, but gown in a common garden in Vancouver, Canada26. 

We got from bud set score to leaf drop date in three stages. The first was to create a logistic 

regression similar to bud flush using GDD and latitude as predictors and bud set converted to a 0/1 

variable, where an observation of 3 or higher was set to 1 and all else 0. Using this model, we then 

predicted the date on which there was a 50% probability of bud set for each genotype in our 

analysis. Next, we created a model of the relationship between bud set and leaf drop dates in the 

Vancouver garden, which contains the same genotypes, but is the only site where leaf drop was 

measured (Figure S4). This was done using a simple linear regression predicting leaf drop by bud set. 

Finally, we used this model to predict leaf drop using our estimated bud set dates as the predictor.  

Our process resulted in estimates for the start (leaf-out) and end (leaf-drop) date of each 

genotype’s growing season. The purpose of extrapolating from bud flush and set scores to growing 

season length was to make graphs and discussion more interpretable. To confirm this approach did 

not bias our results, we reran all analysis using the bud flush and latest bud set scores in our 

database, finding there to be no change in outcomes (Figure S5).  

Disease Resistance 
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Venturia incidence was observed on leaves on May 30th, 2013 and scored on a 0-4 scale 

according to the degree of the fungus found on leaves (Table S4). This score was then inversed to 

represent a metric of disease resistance. All three replicates of each of the 917 genotypes were 

recorded. Venturia is a genus of common, native fungal pathogens, which affect black cottonwoods 

across their range. It appears on leaves as a whitish film and hinders photosynthetic productivity. In 

order to fight off infection, trees increase secondary metabolite production of tannins. Previous 

studies have demonstrated that there is a high degree of variation in tannin production amongst 

genotypes and thus resistance to Venturia51.   

Size and Growth 

Two measures of growth were used to capture both primary (vertical) and secondary 

(horizontal) expansion of tree size. Diameter at breast height (DBH) was measured in mm, 

approximately 1.5 meters from the ground using DBH tape in November of 2013 and 2014. Relative 

growth rate was subsequently calculated as the difference between the two growth years. Stem 

volume was calculated in November of 2014, using measurements of the height of the tree, or tallest 

shoot, in meters and DBH. Stem volume was calculated as !"#$%& = (
!
"
"
), where radius d is the 

DBH and H is the height of the tree. We chose to use relative growth rate and volume rather than 

DBH and height to be consistent with the carbon allocation trait literature. Both metrics were 

measured on all 917 genotypes. Given that growth metrics were recorded post-winter coppicing, 2/3 

of genotypes had two replicates while the remaining 1/3 had three.   

NSC Storage 

Finally, we measured the amount of nonstructural carbohydrate (NSC) storage in both 

aboveground (stem) and belowground (root) tissues. NSCs are stored in the living ray and axial 

parenchyma cells in wood that must be extracted in lab. Wood tissues were sampled between 

January 6th and January 10th 2017, from 7a.m. and 4 p.m., as described in Blumstein et al52. We 
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extracted total fructose, glucose, sucrose, and starch, as well as other oligosaccharides and glucans 

following protocols from Chow and Landhäusser53,54. We report these carbohydrate concentrations 

as one combined metric of total nonstructural carbohydrates, representing sugar and starch 

concentrations together. We recognize that sampling a single time-point has its limitations given that 

NSC stores can fluctuate over the course of the year16. However, we chose to sample during the 

dormant season while phloem is largely shut-down. We are ultimately concerned about the relative 

difference amongst genotypes, which should be largely independent of sampling time.   

Calculation of genetic variation and heritability  

In a common garden design, we assume that any differences measured between individuals should 

be the result of genetic differentiation because all individuals are grown under the same climate and 

site conditions. However, within a garden there may still be microenvironmental variation which 

causes samples to be spatially autocorrelated (ie. plants growing closer together may be more similar) 

and vary depending on where in the site they are grown. We corrected for spatial autocorrelation 

and measured replicate genotypes across randomized blocks to ensure we captured genetic and not 

environmentally dependent variation. For this process, we conducted all statistical analyses in R 

v.3.5.1 (R Development Core Team, 2018).  

To control for spatial autocorrelation in the common garden, we used a thin-plate spline 

method28,33 via the fields (9.6) package to fit a 3-d surface over values in the garden. We then took the 

residuals from this surface and used them as our phenotypic estimates.  

Using our corrected phenotypic estimates, we parsed genetic variation from the total phenotypic 

variation measured across replicates. The model followed the formulation 

(1) *#$ =	,$ + .#$; 

where a is the random effect of each g genotype and e is the residual error of the ith individual of 

genotype g. In the case of our common garden design, the residual error e represents the deviation 
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of replicate i from ag, ag is the model fit intercept for genotype g, and Yig is the phenotypic value 

measured for replicate i of genotype g. We use the ag estimates for each trait as our measure of 

genetic variation. For the genotypes that are missing a complete set of three replicates due to 

coppicing, we expect genetic variation estimates to be pulled toward the grand mean of the model.  

To run the model, we used a Bayesian hierarchical model framework, via the rstan v.2.18.2 

package. All data was modeled as either a normal distribution or a gamma distribution with log link 

if the data were right skewed (eg. stem volume). The random effect of each genotype (,g) of 

equation (1) was estimated using 6,000 random draws from the posterior distribution of the model. 

We then used the mean value of the draws as our parameter estimate for each trait and genotype. 

These estimates for the genetic variation in each trait are also known as the best linear unbiased 

predictions (BLUPs).  

Heritability was calculated using the variation parsed from equation (1), following the equation: 

  

(2)	
2%&'()*+&
"

32%&'()*+&
" +	2,#-.(&'/#.('0&')

" 4
 

; where 2%&'()*+&"  is the variation due to a tree’s genotype and 2,#-.(&'/#.('0&')
"  is the residual 

variation of the model, presumed to be the microenvironmental differences among replicates within 

a genotype. In the context of our study, 2%&'()*+&"  is the variance among ,g’s.   

Detecting NSC storage tradeoffs 

We first compared genetic variation in all traits pairwise via linear regressions, using the base R 

function “lm”. We then used the vegan 2.5-5 package in R to examine all traits together in a principle 

components analysis (Figure 1,S6). Finally, to demonstrate whether tradeoffs arise once productivity 

is accounted for, we regressed productivity out of sink data and compared the residuals of these 

models. To do so, we defined productivity as the genotypic values of PC1 from our previous 
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analysis.PC1 is strongly correlated with growing season length and tree height, both of which are 

good proxies of higher carbon supply and productivity. We then regressed variation in relative 

growth rate, stem and root storage concentrations, and Venturia incidence against PC1. We finally 

compared the residuals of these three models against each other via regression to understand how 

trait relationships changed once differences in productivity were removed. All models were run 

using “lm” from the base R environment.  

Testing for Signatures of Local adaptation  

We used two different metrics to test whether our tradeoff axes exhibited signatures of local 

adaptation, Qst/Fst comparisons and a Qpc test55. To calculate a traditional Qst value for our PCs, we 

determined the degree to which phenotypic variation could be explained by between-population 

differences versus within-population differences. If populations are locally adapted and a trait is 

differentially selected across an environmental gradient, then phenotypic variation should be greater 

between populations and smaller within. To get between and within population variation, we again 

parsed phenotypic variation using a Bayesian hierarchical model in the package rstanarm v.2.18.2. 

Similar to the model for heritability, the formula includes an extra random effect term for 

population (,+): 

(3)	*#$+ =	,+ + 	,$+ + .#$+ 

We then used the variation due to population (,+) and the variation due to genotype (,$+) to 

calculate Qst, or the degree of divergence in a trait’s variation among populations versus within. 

 

(4)21(+234)#('
"

322%&'()*+&
" +	21(+234)#('

" 4
 

We use the equation from Whitlock and Gilbert56, which includes a 2 in the denominator due to the 

additional nested variable in the model. If variation among populations is higher than variation 
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within populations, our results are consistent with directional selection across populations. We can 

further compare whether the value of Qst is representative of selection or random processes by 

comparing it to Fst, or the variation at neutral genomic loci between and within populations. Traits 

varying due to selection across the environment are expected to have Qst exceeding neutral variation 

in Fst. Fst estimates were taken from previous work28, where Fst was calculated in 1-kb windows using 

all 917 genotypes available in the mapping population as (πT-πS)/πT; where πT is SNP diversity across 

all individuals and πS is weighted within-population SNP diversity28.    
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Summary 

1. Trees’ total amount of nonstructural carbohydrate (NSC) stores and the proportion of these 

stores residing as insoluble starch are vital traits for individuals living in variable 

environments. Given projected climate change, it is crucial to understand the plastic and 

evolutionary potential of such critical traits to predict species’ potential for survival.  

2. Here, we measured the amount of environmental and genetic variation in these traits using 

branch samples taken from black cottonwood (Populus trichocarpa) trees grown in two 

common gardens.  

3. We found heritable variation in both total NSC stores and the proportion of stores in starch 

(H2
TNC = 0.19, H2

PropStarch = 0.31), but no signatures of current local adaptation (Qst <= Fst). 

In addition, we found high amounts of plasticity in both traits, with most plastic variation in 

the proportion of NSC stores in starch due to environment (97%), while the plastic variation 

in total NSC stores is largely attributable to genotype-by-environment interactions (54%). 

4.  Overall, we found total NSC concentrations and the proportion of NSC in starch have both 

adaptive genetic variation and plasticity, enabling these traits to bolster forest tree species 

against climate change over the short-and-long term. 

Introduction 

Climate is changing and extreme temperature and precipitation events are expected to intensify over 

the coming century 57, presenting immense challenges for immobile, long-lived organisms such as 

trees. Rates of forest tree mortality are already increasing worldwide as a result of shifting drought 

regimes, extreme temperatures, and pest outbreaks associated with global change 3,58-60. In response 

to change, individual plants may physiologically adjust by plastically altering traits in the short term 

61-66, while populations may undergo local adaptive evolution through shifts in their genetic 

composition over longer time scales 67,68. Thus, understanding the extent to which trees are able to 
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alter their traits in response to climatic change over short (plastic) and long (evolutionary) timescales 

is critical to predicting species’ survival.  

One key trait that enables plants to tolerate stochastic environments is the storage of 

nonstructural carbohydrates (NSCs). NSCs are the sugars and starches produced via photosynthesis 

and stored in the parenchyma cells of plants’ woody tissues for later use 13,14. NSCs fuel 

photosynthesis at night, leaf-out in spring, and are also thought to serve as a back-up osmolytic or 

energetic reserve during periods of environmental extremes, like drought or freezing temperatures 

9,13,36,37,69. Total NSC storage concentrations are known to vary seasonally eg. 16, across species eg. 70, 

and within species eg. 33 and this variation in NSC storage concentrations has been linked to prolong 

survival under drought 34. However, what controls variation in total NSC stores and how sensitive it 

is to environment is still poorly understood. Thus, we are limited in our ability to predict whether 

forest trees will be able to vary NSC stores in order to tolerate or adaptively evolve in response to 

climate change.  

 Total NSC stores can be broken down into two categories: soluble sugars and insoluble 

starches 71-73.  Sugars affect cells’ osmotic balances and are readily accessible for metabolism as they 

are dissolved in solution, while starches are considered the longer-term storage molecule as they are 

insoluble and thus must be broken back down into sugar to be used by the cell as an osmolyte or 

metabolite. Sugars can hydrolyze into and out of starch form via a number of enzymatic pathways 73. 

The rate of starch transition varies daily 74, seasonally 16,19,70,75, by plant tissue 16,70, and in response to 

stress, such as water deficit 36,37,76,77, high salinity 78-82, or extreme temperatures 83-86. Under such 

environmental stressors, starch is degraded, leading to a subsequent rise in soluble sugars in stressed 

tissues 73 and an increased ability to withstand the applied stress. Thus, a plant’s ability to convert 

NSC stores from starch to sugar, and back again, is an important consideration for survival under 

climate change. While variation in starch degradation rates in response to environment is well 
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document, it is not yet understood if individuals exhibit differential sensitivities to environment, 

indicating a potential for adaptive evolution in response to increased stress.  

 Given that both the total amount of NSC stores a plant holds and the proportion of those 

stores reserved in starch can play crucial roles in woody plant survival under environmentally 

induced stress, measuring the degree of heritable genetic and plastic variation in these traits will be 

critical for predicting tree species’ persistence under climate change.  Transplant experiments across 

multiple sites with replicate clones or related individuals can be used to disentangle sources of 

variation 55,87. Genetic variation in these designs is measured within an environment across unique 

genotypes, while plastic variation is measured across environments within unique genotypes. In 

practice, because measuring plastic variation results in the additional capture of genetic variation by 

virtue of gathering data from multiple common environments, it is often broken down into three 

components; variation within a garden attributed to genetic differences (G), variation between gardens 

attributed to environmental plasticity (E), and the interaction between genotype and environment 

(GxE) (ie. some genotypes can be more plastic than others). While there is strong evidence that 

heritable genetic variation is responsible for some of the variation in NSCs in some plants such as 

Populus trichocarpa 33 and Pinus sylvestris 88, to our knowledge, no study to date has quantified the extent 

of plastic variation in NSCs. Furthermore, no study has examined genetic or plastic variation in the 

proportion of NSC that is kept in starch versus sugar, a potentially critical aspect of plant response 

to stress.  

By partitioning the variation in NSCs we can not only predict the potential for tress to 

respond to increased prevalence of stress, we can also begin to understand if trees are already locally 

adapted to variation in environmental stress across their ranges. If greater total NSC storage and 

more rapid transition between starch and sugar storage can increase survival in stressful events, we 

predict genetic variation in these traits to reflect geographic variation in stress. By controlling for 



 39 

neutral population genetic variation across the range of a tree species (e.g. Fst) we can determine the 

extent to which traits show genetic differentiation (e.g. Qst) reflective of local adaption.  

Here, we measure genetic and plastic variation in total NSC storage and the proportion of NSC 

stores held in insoluble starch versus soluble sugars. To do so, we utilized two Department of 

Energy (DOE) common gardens of black cottonwood (Populus trichocarpa) growing in the western 

United States. Each garden contains clonally replicated genotypes from multiple populations across 

the species range. We extracted sugars and starches from branch woody tissue of trees grown in two 

common gardens located at similar latitudes, but spanning a continental to coastal environmental 

cline (Figures 1 & 2A). Our objective is to understand the acclimatory and evolutionary potential of 

black cottonwood trees under future climate change. We accomplish this by parsing the amount of 

phenotypic variation attributable to genetic variation (G), environmental plasticity (E), and 

genotype-by-environment interactions (GxE) for both the total concentration of NSC stores, as well 

as the proportion of total stores in insoluble starch. In addition, we search for signatures of current 

local adaptation in both traits across the environmental gradient of source populations. 

 

Materials and Methods 

Sample collection 

We collected branch samples from two Department of Energy (DOE) common gardens in Oregon, 

USA in January of 2017. The gardens are located near Clatskanie, Oregon (46.12˚N, 123.27˚W; 

MAT = 10.4oC, MAP = 1,545 mm) and Corvallis, Oregon (44.56˚N, 123.26˚W; MAT = 11.2oC, 

MAP = 1,030 mm) respectively, which represent contrasting environments with similar daylength 

patterns (Figure 2A). Each garden contains the same 1,060 unique genotypes from 19 populations, 

which were replicated clonally three times each and planted out in 2009. The collection of each 

accession is described in Slavov et al. 43. However, we only sampled genotypes from 17 of the 
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populations, as some populations had high mortality, and from the 917 of 1,060 which have full 

genomic information available28 (Figure 1). In Corvallis, all three replicates were coppiced 

(aboveground biomass harvested) in the winter of 2013-2014, while only one replicate was coppiced 

in Clatskanie during the same period (Figure 1). Thus, we only sampled branches from coppiced 

replicates for this study. Non-coppiced trees in Clatskanie had an average diameter at breast height 

(DBH) in 2016 of 155.2 ± 46.9 mm, while coppiced trees averaged 84.0 ± 28.0 mm. DBH in 

Corvallis across all coppiced replicates in 2016 was 44.4 ± 14.9 mm. 

 

Figure 1. The transplant design. Genotypes were sourced from 17 populations from across western 
North America and replicated three times each in two common gardens located in Clatskanie and 
Corvallis. In the winter of 2013-2014, one replicate in Clatskanie and all three replicates in Corvallis 
were coppiced aboveground and allowed to regrow (shown as small trees). Sample tissues collected 
in January 2017 are reflected by the purple ovals with the subsequent number of samples taken of 
each tissue from each garden indicated.   
 

 We collected all samples between January 6th and January 11th 2017, between 7 A.M. and 4 

P.M. using pruning shears for branch sampling. We took All branch samples as 2cm segments from 



 41 

the previous growing season’s growth segment (2015) of coppiced replicates as it was accessible 

across all individuals. All samples were kept on dry ice during field collection, then shipped 

overnight to Cambridge, MA and stored at -80OC. In total, we collected and processed 616 branch 

samples (Figure 1).  

We collected additional stem and root tissue during this time period. Their collection and 

total nonstructural carbohydrate concentrations are reported in a previous publication 33. However, 

because only total NSC stores for these samples are previously detailed, we include heritability 

estimates for sugar and starch separately in the supplement of this paper for comparison (Table S1).  

 

NSC Laboratory Preparation 

We initially freeze-dried samples for 24-hours (FreeZone 2.5; Labconco, Kansas City, MO, 

and Hybrid Vacuum Pump, Vacuubrand, Wertheim, Germany), then ground them to a fine powder 

(mesh 10, Thomas Scientific Wiley Mill, Swedesboro, NJ, USA; SPEX SamplePrep 1600; MiniG, 

Metuchen, NJ) and stored them in sealed glass vials. Sugar and starch extraction protocols were 

adapted from Chow & Landhäusser 53.  

We extracted sugar from 20 mg of dried, ground tissue using 80% hot ethanol, followed by a 

colorimetric assay with phenol and sulfuric acid, and read using a spectrophotometer at 490nm 

(Thermo Fisher Scientific GENESYS 10S UV-Vis, Waltham, MA). We calculated sugar 

concentrations of mg sugar per g of dry wood using a 1:1:1 glucose-fructose-galactose standard 

curve (Sigma Chemicals, St. Louis, MO). We extracted starch using the tissue remaining after sugar 

extraction. We solubilized tissue in NAOH, then incubated it for 24-hours with alpha-amylase and 

amyloglucosidase digestive enzymes, which digested starch into glucose. We then assayed the 

solutions using a PGO-color reagent solution (Sigma chemicals) and read them on the 
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spectrophotometer at 525nm. Starch concentrations of mg glucose-starch-equivalent per g dry wood 

were calculated based on a glucose standard curve (Sigma Chemicals).  

For all lab analyses, we included at least two internal laboratory standards (Quercus rubra 

stemwood from Harvard Forest, MA; 42.01 ± 5.13 mg•g-1 Sugar, 30.17 ± 4.23 mg•g-1 starch). This 

acid methodology extracts all fructose, glucose, sucrose, and starch, as well as other oligosaccharides 

and other glucans 54. We then report these metrics as sugar and starch concentrations (mg•g-1) in the 

supplement, as well as the total nonstructural carbohydrates (TNC) concentration (sugar + starch) and the 

proportion of starch to total (starch/ (sugar + starch)) in the main text. All statistical analyses were 

performed in R v.3.5.189. 

 

Determining environmental conditions of population origins and gardens 

We accessed Daymet daily meteorological data for the past 38 years (1980-2018) at each site via the 

daymetr package in R90. Daymet data are 1km2 gridded estimates of daily weather variables, 

interpolated from weather station data50. Using these data, we calculated common descriptive climate 

variables that represent the temperature and aridity of our genotype provenances and 2 common 

garden sites. All climatic variables we calculated were highly colinear, thus we used a PCA analysis to 

describe the major axes of variation via the vegan v.2.5-3 package in R 91 (Figure 2A).  
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Figure 2. (A) A principle components analysis (PCA) of the climate over the past 38 years at each of 
the genotype’s source locations and the two common gardens. Dots represent each genotype’s 
source location in climate space, colored by latitude, and the two black triangles represent the 
common gardens in the climate space. (B-E) The average minimum and maximum temperatures 
over the past 38 years in Clatskanie and Corvallis (boxplots) as compared to the minimum and 
maximum temperatures in the year we collected samples (2017, black lines). Samples were collected 
in (B,D) Clatskanie on January 5th – January 9th and in (C,E) Corvallis on January 10th- January 11th. 
Data is sourced from Daymet 50. 
 

 

Control for spatial autocorrelation 

In common garden studies the spatial autocorrelation, or the probability that individuals growing 

closer together are more similar, of samples must be taken into account 92. To account for 

geographic patterns within each of our gardens (Clatskanie and Corvallis), we used a thin-plate spline 

method 28,33via the fields (9.6) 93 package in R. This method fits an interpolated surface to the garden, 

which uncovers regions of each site that significantly differ from the mean. To correct these patterns 

of spatial concordance, we take the residuals from the thin plate spline and add them back to the 

model intercept, thus removing spatial trends and placing sample values back on a biologically 
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meaningful scale. We did this for each of our metrics independently; sugar concentration, starch 

concentration, total nonstructural carbohydrate (TNC) concentration, the proportion of starch 

(starch / TNC), and diameter at breast height (DBH).    

 

Calculating the genetic contribution via heritable variation  

We estimated components of variation across all the data from both gardens to calculate broad-

sense heritability and Qst.  The spatial autocorrelation corrected data were used to parse variation in 

our nested hierarchical structure of population, genotype, and environment via the following 

equations:  
(1)*%#$+ =	 	ß% + ,% +	,%+ + 	,%+$ + .%#+$ 

Our goal is to quantify within-garden genetic variation, we therefore parsed variation in branches 

grown in two different gardens (G) using the fixed effect 	ß% . The parameters p for population (i.e. 

provenance of genotype), g for genotype, and i for the ith individual tree sampled are all random 

effects. All branch data were modeled as gamma distributions using Bayesian mixed regression 

models via the package rstan v.2.18.2 in 94. The random effects outcomes (,′:) and fixed effect 

(	ß%)	of equation (1) were estimated as the mean of 6,000 random draws from the posterior 

distribution (Table 1 & S1).  

Table 1.  Phenotypic means and standard deviations, variance component estimates from equation 
(1), and parameters for total nonstructural carbohydrate (TNC) storage concentrations and the 
proportion of total stores in starch of branch tissues of black cottonwood trees.  
 
 Clatskanie Corvallis      

  
Branch 
Trait µ s µ s (s 2Gipg) (s2Gpg) (s2Gp) (s2G) (bG) H2 Qst 

TNC 30.8 8.3 30.3 6.2 31.39 6.567 1.004 222.759 -0.099 0.19 0.07 

Proportion 0.2 0.07 0.1 0.08 0.002 0.001 0 0.003 -0.102 0.31 0.04 
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The resultant fixed and random effect estimates (	ß% + ,% +	,%+ + 	,%$+) from equation 

1 were then used as our genetic estimate for each genotype and are displayed in all graphical analyses 

(often referred to as a Best Linear Unbiased Prediction or BLUP). The variation parameters 

estimated from equation 1 were used to calculate broad-sense heritability, H2, and Qst of each of the 

traits. H2 was calculated for all traits in stems, branches, and roots, using the random effects 

variances from equation (1) as:  

(2) (2%&'()*+&" + 21(+234)#('
" )	/	(21(+234)#('

" + 2%&'()*+&
" +	2,#-.(&'/#.('0&')

" ) 

Population variance was included with Genotype as it is also representative of genetic differences 

between individuals. Genotype variance was taken as the variance among replicates and 

microenvironmental variance was taken as the residual variance of the model. Qst was calculated via 

the formula 95,96: 

(3) 21(+234)#('
" 	/	(22%&'()*+&

" +	21(+234)#('
" ) 

Fst was taken from a previous publication using the same genotypes and calculated in 1-kb windows 

as (πT-πS)/πT; where πT is SNP diversity across all individuals and πS is weighted within-population 

SNP diversity 28.  

 

Calculating plasticity: environmental and genotype-by-environment contribution 

Plastic variation is defined by Scheiner and Goodnight as the variation due to environment (E) and 

genotype-by-environment (GxE) interactions 97. To calculate each, we used a Bayesian mixed model 

regression analysis in R using the rstanarm v. 2.19.2 package98 via the following equation.  

(4)*#$% =	,% + ,$ + 	,%:$ + .#$%  

The model calculates the variation within the random effects of Environment (G or Garden), 

Genotype (g), and GxE (G:g, or Garden:genotype). We then use these variances, estimated as the 
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mean of 6,000 random draws from the posterior distribution of equation (4), to calculate the 

contribution of an individuals’ phenotype due to plasticity, also known as the S index99.  

(5)	= = (26
" 	+ 	2%76

" 	)/	(2%
" +	2%76

" +	26
" +	2&") 

We then used these properties to calculate the proportion of plasticity due to environment 

versus genotype-by-environment interactions (Table 2).  

(6)	21348)#-#)*
" = (26

" 	+ 	2%76
" 	) 

We build this model separately from our heritability model because of the way H2 and S are defined 

in the literature. Plasticity (S) estimates require us to separate variation due to GxE interactions from 

genetic variation. However, GxE interactions would be partially captured under the umbrella of 

genetic variation in our heritability model. Conversely, our heritability model also examines the 

variation due to population in order to calculate Qst, which is partially captured by the G and GxE 

random effect terms from our plasticity model. In order to accurately parse the subtle differences in 

how heritability and plasticity define genetic variation, we run two separate models.  

We also used Relative Distance Plasticity Index (RDPI) as a measure of genotypic plasticity, 

which is a more general way of calculating plasticity that doesn’t rely on assumptions of the 

underlying distribution of the data63 .  

 

(7)	@ABC = 	D	
|F934)8:4'#& −	F9(./433#8|

%HI(	F934)8:4'#& , F9(./433#8)	
	/	K 

RDPI measures the absolute difference in genetic trait values between genotypes grown in two 

different environments, then normalizes that measure by the maximum of the two values. All of 

these measures are then summed and divided by the number of samples to get the final average 

RDPI metric.  
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Results 

Environmental conditions of population origins and gardens 

Our genotypes originated from a steep climatic gradient of temperature (mean annual temperature: 

10-17oC), aridity (mean annual precipitation: 609mm-2,705mm), and continentality (temperature 

difference between hottest and coldest month: 14 – 26oC). When summarized via a Principle 

Components Analysis (PCA), the first major axis of variation amongst climate variables across sites 

(PC1) describes an axis of cold and wet sites to hot and dry sites (Figure 2A). The second axis of 

variation represents continentality, ranging from sites with consistently cold winters and high 

amounts of snowfall to sites that are generally warmer and do not experience as extreme lows 

(Figure 2A). In comparison to Clatskanie, Corvallis is hotter, drier, and has more continentality, 

meaning colder, wetter winters and hotter, dryer summers.  

 While these are the average site conditions, at the time of sampling, both Clatskanie and 

Corvallis experienced the lowest temperatures recorded for those dates over the past 38 years 

(Figure 2 B-E, solid line). Minimum temperatures ranged from -10oC to 0oC and maximum 

temperatures never reached higher than 3-5oC. This is a key detail as starch synthesis and 

degradation enzymes cease to perform under 3-5oC 100, thus these short-term temperature drops may 

have influenced our measures (Figure 2 B-E).  

 

Total phenotypic variation  

Across all tissues measured, NSC concentrations were highest in branches (Clatskanie: 30.8 ± 8.3 

mg•g-1, Corvallis: 30.3 ± 6.2 mg•g-1) and lowest in stems (Clatskanie: 15.6 ± 6.0 mg•g-1) (Table 1 & 

S1, Figure S1). The proportion of total NSCs in starch ranged from 0.10 ± 0.08 in branches in 

Corvallis to 0.28 ± 0.18 in roots in Clatskanie (Table 1 & S1, Figure S1).  
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The genetic contribution (G) 

We found heritable variation in branches for both total NSCs and proportion of NSCs in starch 

(Table 1, Branch H2
TNC = 0.19, Branch H2

PropStarch = 0.31). As previously reported, this is similar 

heritability as total NSC storage in P. trichocarpa stems and roots Table S1; 33. Here we found that the 

proportion of starch to total stores is also heritable in roots (Root H2
PropStarch = 0.37), but not stems 

(Stem H2
PropStarch = 0.01).  

Branch genetic variation does not exhibit high degrees of across population variation in either 

total NSCs or proportion of stores in starch (Qst TNC = 0.07, Qst Proportion = 0.04; Table 1). This stands 

in contrast to stems and roots, which demonstrate extensive differentiation across populations in 

total stores (Qst Roots = 0.30, Qst Stems = 0.31) and stem partitioning between sugar and starch (Qst Stems 

= 0.66) (Table S1). However, the finding of high Qst value for stems in the partitioning between 

sugar and starch is unlikely biologically meaningful. H2 for stems is only 0.01 for this trait, thus the 

high Qst value is calculated using just 1% of the phenotypic variation measured.  

 

Plasticity: Environmental Contribution (E) 

The proportion of NSC that trees put into starch vs. sugar is a plastic trait by both metrics of 

plasticity, RDPI and S (Table 2, RDPIproportion = 0.50, Sproportion = 0.74). This plastic variation is largely 

attributable to the effect of garden, which explains 97% of total plasticity (equation 7; Table 2, 

Figure 3). On average, Corvallis has higher sugar concentrations and lower starch concentrations, 

while Clatskanie has higher starch concentrations and lower sugar concentrations (Figures 3B & S2, 

Table 1). This pattern is reflected in the proportion of NSC stores in starch, where the proportion of 

starch to total stores in Corvallis is 50% more than in Clatskanie (Figure 3B). Thus, there is a clear 

difference in the degree to which total stores are partitioned between sugar and starch within each 

garden. 
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Figure 3. Plasticity between the two common gardens in the two traits measured, (A) total NSC 
stores (TNC) and (B) the proportion of TNC in starch. Black lines represent the average value 
across all genotypes, with error bars indicating one standard deviation from the mean. The other 
lines are colored by latitude and each line represents a genotype, where genotype values were 
estimated using equation (1).  

 

Table 2. Variance component estimates from equation (4) and parameters for total nonstructural 
carbohydrate (TNC) storage concentrations and the proportion of total stores in starch of branch 
tissues of black cottonwood trees.  
 

Branch 
Trait s 2g s 2G s 2G:g RDPI S (%) of S that is GxE 

TNC 2.4 3.4 3.2 0.03 0.43 46 

Proportion 0.025 0.091 0.017 0.5 0.75 3 
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In contrast, total NSC stores are only considered environmentally plastic by one metric 

(RDPITNC = 0.03, STNC = 0.43). Only 54% of the plastic variation (S) measured is explained by 

environment, while the rest is attributed to GxE effects. Thus, we find high genetic variation in 

TNC across the gardens, but low plasticity and almost no difference between the two gardens in 

average total NSC concentrations (Dgarden = 0.5 mg•g-1, Table 1, Figure 3A).  

 

Plasticity: Genotype-by-Environment Contribution (GxE) 

 Genotype-by-environment interactions explain almost 50% of the variation between gardens 

in total NSC stores (Table 12 Figure 3A), but only 3% of the variation between gardens in the 

proportion of NSC in starch (Table 2, Figure 3B). Thus, genetic differences explain most of the 

variation in total NSC stores, while plasticity explains most of the variation in the proportion of 

starch vs. sugar.  

In addition, some genotypes are more plastic than others, particularly in the amount of NSC 

they allocate to starch (Table 2, Figure 4). This pattern of increasing plasticity follows a latitudinal 

trend, where northern populations are more plastic in each trait measured than southern populations 

(Figure 4). However, while data trend this way, they are not significant at the 0.05 level (Figure 4).  

 

Figure 4. The relative distance plasticity index (RDPI) of the (A) proportion of starch to total and 
(B) total amount of NSC stores plotted by the latitude of each genotype’s source location. Black dots 
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represent each genotype’s RDPI and the line fits are shaded gray for one standard deviation. A larger 
RDPI indicates that there is a larger percent change in genotypic trait values between gardens.  
 

Discussion 

Genetic (G) variation in both total stores and partitioning between sugar and starch 

Genetic variation in traits act as the raw material with which populations can adapt to novel 

stress. Here, we found heritable genetic variation in total NSC concentrations (sugar + starch) in the 

branches of black cottonwood. Our results reveal that these trees could potentially evolve greater 

NSC storage in response to increased stress. An increase in the concentration of NSC a tree stores 

may confer enhanced resilience during times of photosynthetically limiting stress by serving as a fuel 

source or osmotic reservoir 9,30,32,34,101. Experimental and observational studies have demonstrated 

that trees will draw down NSC stores when experiencing photosynthetically limiting environmental 

conditions 36,37,77,102,103, such as drought, suggesting that NSCs may be serving a critical metabolic 

function. In addition, seedlings with higher NSC stores live longer through drought, indicating that 

higher NSC concentrations may enable trees to live longer under environmental stress 34. Given that 

climate forecasts generally predict more extreme weather events 5, the existence of heritable variation 

in total NSC stores may be crucial for tree populations to evolve in response to climate-driven 

selection in the future.  

In addition to total storage, the proportion of stores individuals put into starch versus sugar 

at any given time may be crucial for withstanding future climate-driven selection. We also found 

heritable variation in the proportion of these total stores residing in insoluble starch for branches, 

stems, and roots (Table 1, Table S1). Across most winter deciduous species, the proportion of total 

stores in starch is at its lowest in the winter, particularly in January, the month we sampled in 16,70. 

This is thought to be because the rate of starch degradation and synthesis is controlled in part by 

enzymes with different temperature sensitivities. Starch degradation enzymes are less sensitive to 
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low temperatures than starch synthesis enzymes 100, although below 3-5oC both degradation and 

synthesis enzymes cease to function. Thus, at low temperatures (but still above 3-5oC) starch is 

degraded, leading to a corresponding increase of sugar in cells 104. This newly available pool of sugar 

can be used for maintenance respiration and may confer an increased cold tolerance to individuals or 

even signal when to break dormancy in spring 105. Thus, being sensitive to changes in temperature 

and shifting stores between starch and sugar may be critical for tree survival under future, more 

chaotic climate regimes. Our results indicate that there is genetic variation in if or how trees shift 

stores between starch and sugar. This opens the possibility that trees can adapt their allocation 

strategy to better fit a changing, more stressful climate.  

 Although we found heritable variation in both branch total NSC stores and proportion of 

stores in starch, we did not find evidence that this variation was currently locally adapted. 

Differentiation across populations in genetic variation of these traits is minimal. The lack of adaptive 

signatures in branch total NSC stores stands in contrast to adaptive differentiation previously 

reported for stems and roots. One reason for this divergence may be that branches are the most 

proximal of the three tissues to carbon sources (leaves) and some sinks (buds and flowers). Over the 

course of a year, branch NSC stores fluctuate much more than roots or stems as they are the first 

storage sink to fill with new photosynthates and the first to be drawn down in spring 16. This pattern 

could also be caused by the fact that black cottonwoods have photosynthetic bark. Branches are 

exposed to more sunlight than stems and roots and thus may see a higher degree of variation in 

NSC produced via opportunistic bark photosynthesis. Together, these sources of variation may have 

a genetic signal, but the other sources of fluctuations may mask the genetic variation in storage 

preventing selection from effectively causing genetic differentiation. 

 

Environmental (E) plasticity in partitioning between sugar and starch 
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Immediate response to stress depends on an organism’s ability to plastically adjust trait values to 

accommodate changing environments. The degree to which an organism can plastically respond will, 

in many causes, determine its ability to survive stress. Here, we found extensive plastic variation due 

to environmental response in the proportion of NSC stores in starch versus sugar (Table 2, Figure 3, 

solid black lines). In Clatskanie an average of 20% of total NSC stores were found in starch, while 

only half that amount was found in Corvallis (Figure 3). Clatskanie has a coastal climate with rainfall 

spread throughout the year and small temperature differences between winter and summer (Figure 

2). In contrast, Corvallis has a continental climate which regularly experiences extreme temperatures 

and long periods without rainfall (Figure 2). Thus, these results may reflect the differential enzymatic 

sensitivities of starch degradation and synthesis to average climatic conditions at these two sites 

100,105. The warmer average temperatures in Clatskanie could have led to a higher proportion of NSC 

being left in starch while the colder, more stressful conditions of Corvallis resulted in more sugar 

storage.  

The observed plasticity in proportion of starch storage could also be driven by the weather 

patterns on the dates of sampling. We happened to collect woody tissues on the coldest days 

recorded over the past 38 years in Clatskanie and extremely cold days in Corvallis (Figure 3). Low 

temperatures in Clatskanie fell below -10oC some days and highs never went above 4oC, within the 

minimum temperature range that starch synthesis and degradation enzymes can work 100. The sharp 

drop in temperatures due to the polar vortex may have halted enzymatic activity entirely. Thus, 

instead of starch steadily degrading to sugar as temperatures drop, the quick temperature change 

may have prevented starch from degrading further. Conversely, we travelled to Corvallis after 

sampling in Clatskanie, where the temperature reached just above 5oC on our sample dates; just 

above the minimum temperature range for enzymatic activity. Thus, starch may have degraded into 
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sugar in trees at this site. Such a quick change could be possible given that starch synthesis and 

degradation have been observed on diurnal scales 74.  

It is difficult to pinpoint whether the plasticity in the proportion of NSC in starch between 

the two gardens was attributable to the average climate of the two sites, or the weather at the time of 

sampling. However, there is mounting evidence that this plasticity in the synthesis and degradation 

of starch in plants is critical for seasonal signaling in plants 15,105,106. Branch NSC stores begin to 

synthesize from sugar into starch as temperatures rise in spring 16,70, and this process likely occurs 

faster in branches than in roots because branches are exposed to air and not insulated in the soil. 

Thus, temperature gradients across the plant may drive the movement of carbohydrates upward in 

spring to support leaf flush and stem growth 107. This synthesis of starch or movement of 

carbohydrates could be the signal plants sense in spring to break dormancy or initiate leafout. Thus, 

it may be this plasticity in the conversion of sugar to starch that is in part driving observed plasticity 

in phenological timing, a key trait for future tree adaptation to climate change 108-110.   

 

Environmental plasticity in total NSC stores unveiled when tree size is considered 

While partitioning of stores between sugar and starch is plastic, we found total NSC stores 

to be the same, on average, between the two gardens. This is particularly interesting as the timing of 

leaf out and growth rates of trees significantly differ between the two sites. In Clatskanie, leaves 

come out earlier than Corvallis, potentially giving the Clatskanie trees a greater opportunity to 

produce carbon compared to the Corvallis trees28. This carbon advantage is reflected in the 

diameters of trees at both sites, where trees in Clatskanie are almost double the size of trees in 

Corvallis (Figure 5). However, both sites average the same total NSC storage concentrations. 

Without the growth data, total NSC stores appear to have no environmentally driven plasticity, 

however with the growth data, the lack of difference between the two sites could actually be 
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indicative of environmental plasticity in a tradeoff between the growth and storage. Trees growing in 

more variable or extreme conditions may “bet-hedge” by storing more NSC at the expense of other 

uses, such as growth 11,32. This particular pattern has been shown in Arabidopsis, where plants favor 

storage over growth when photosynthetic productivity declines 106,111. Our results here suggest that 

this may be similar in the case in black cottonwoods, where genotypes grown in the continental 

garden (Corvallis), with larger temperature and precipitation extremes, maintain the same 

concentration of stores, but down-regulate growth to compensate. Thus, proportionally more energy 

is allocated to storage at the expense of growth in the more stressful environment. 

s 

Figure 5. (A) Genetic variation in diameter at breast height (DBH) as compared to (B) genetic 
variation in total nonstructural carbohydrates as measured at each common garden.  

 

Genotype-by-environment (GxE) plasticity in total stores, but not in proportion of stores in starch 

Genetic variation in environmental response could provide a key mechanism through which 

populations can evolve a more adaptive response to future environmental stress. Here, we found 

that plastic variation in total storage is almost entirely comprised of genotype-by-environment 

interactions. The average total NSC storage concentrations between the two gardens only differ by 

0.5 mg•g-1, but individual genotypes differ by -3.4 to 3.3 mg•g-1 between the two gardens. This 

flexibility amongst genotypes may be the result of intrinsic differences in response to environment 65 

or slight variation in other traits correlated with storage. For example, if growing season length also 

exhibits some GxE, then individuals with slightly longer growing seasons may have more NSC to 
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allocate to storage than those with shorter seasons. Future research should investigate whether the 

observed genotype-by-environment variation represents local adaptation for plastic responses to the 

environment.  

 In contrast, plastic variation in the proportion of NSC stores in starch is almost entirely 

attributed to differences in environment and not GxE interactions. This finding further supports a 

model where by the amount of NSC residing in starch is driven by intrinsic enzymatic 

environmental limits. While GxE for this trait is lower than the amount of GxE for total NSC 

stores, there is a clear latitudinal pattern in the proportion of starch GxE variation (Figure S3). The 

trending correlation between latitude and the proportion of starch RDPI suggests that some 

genotypes may be more plastic than others in their ability to move between sugar and starch (Figure 

5). In particular, genotypes from northern populations appear to have more flexibility between the 

two gardens. Put another way, northern genotypes are more responsive to environmental differences 

between the two sites. One possible explanation for this trend is that their starch degradation 

enzymes may be more sensitive to temperature fluctuations or are able to continue to act at slightly 

lower temperatures than those from southern populations. This may be beneficial to trees in 

northern latitudes experiencing extreme temperature lows and large temperature swings throughout 

the day. Although the amount of variation explained by GxE interactions may be small, the 

importance for immediate environmental response may be very important and is worth further 

investigation. 

Conclusion  

Our study is the first of its kind to study heritable variation and plasticity in branch nonstructural 

carbohydrate storage. NSC stores have been demonstrated over the past decade to confer resilience 

to climate stress in woody species and are likely critical for plant response to future climate. We 

found high amounts of heritable variation in both the total NSC concentration of stores and the 
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proportion of stores that are found in starch versus sugar, indicating a range-wide potential for tree 

species to adaptively evolve. Furthermore, we found environmental plasticity in the amount of total 

NSC stores put into starch, a critical trait for responding to temperature extremes, and a potential 

plastic tradeoff between NSC storage and growth. Finally, we found consistent environmental 

plasticity across all genotypes in the proportion of NSCs stored as starch vs. sugar.  Overall, we 

demonstrate that the concentration of total NSCs that trees store as well as the degree to which they 

partition these stores between soluble sugars and starch have both adaptive genetic variation and 

plasticity, potentially bolstering forest tree species against climate change in the short-and-long term.  
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Conclusion 
 

In Chapter 1, I uncovered locally adapted, heritable variation in the storage of nonstructural 

carbohydrates for the first time and identified genomic loci significantly associated with the trait, 

indicating the potential for future adaptation in this trait. This variation follows a latitudinal cline, 

where trees from hotter/drier environments store higher concentrations of NSCs on average than 

trees from the colder/wetter northern sites. This heritable variation in NSC concentrations also 

positively correlates with heritable variation in growth rates and defense ability. Thus, at first glance, 

it appeared that investing in NSC storage did not lead a predicted tradeoff with other carbon sinks 

such as growth and defense. Trees that were good at one thing were good at all things.     

However, when we accounted for differences in carbon supply, the story became more 

complex in Chapter 2. Trees from southern environments are taller and have longer growing 

seasons, enabling them to sequester more carbon in the common garden than their southern 

counterparts. Thus, when we relativized all sinks for carbon supply, true tradeoffs emerged. I 

uncovered a genetic tradeoff between growth rates and defense ability with NSC storage (ie. some 

trees store more and invest less in growth, and vice versa). Unlike in Chapter 1 however, this genetic 

tradeoff is not locally adapted, but found in all populations. Thus, there is ample standing variation 

across all populations for future selection to act upon should higher stores or higher growth be 

favored under future climates.  

Finally, in Chapter 3 I measured plasticity in NSC storage. Trees are long-lived, immobile 

species that will need to adjust to our rapidly changing climate over shorter time-scales as well as 

long. I found that the degree to which NSCs are stored as sugars vs starch exhibited a lot of 
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environmental plasticity, where trees put more NSC into sugar when grown in a colder environment. 

Conversely, total storage concentrations exhibited little environmental plasticity, but genotypes 

varied widely in their responses (ie. High genotype-by-environment interaction). However, the 

heritable growth-storage tradeoff discovered in chapter 2 may also have plasticity. While total 

storage concentrations between the two common gardens remained the same on average, tree 

growth rates and phenological timing differed markedly, suggesting that one garden stored more and 

grew less, while the other grew more and stored less on average. 

My results advance our basic understanding of the role of NSC stores in trees, how NSC 

stores vary with other carbon sinks, and the potential for NSC storage concentrations to evolve or 

acclimate in response to climate change. Further, the novel predictive framework I developed in 

Chapter 1 has the ability to both identify venerable populations to climate change and the 

alleles/genotypes necessary for genomic rescue and restoration. Taken all together, I advance both 

our knowledge base of NSC storage in trees and present new methodologies for predicting how 

trees will respond to future environmental change.  

 

 

 

 

 

 

 

 

 

 



 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 1 

Supplementary materials for Chapter 2 
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Table S1. Bud flush scoring rubric.  

Bud Flush 

Score  Phenological Stage 

0 Buds tightly closed 

1 Buds swollen/breaking/leaf primordia visible 

2 Leaves emerging just outside the bud scales 

3 Leaves fully emerged and unfolding 

4 Leaves fully unfolded 

5 Leaves fully expanded 

 

 

Table S2. Bud set scoring rubric.  

Bud Set Score Phenological Stage 

0 Actively Growing 

1 Slowing down, some new leaves at apex 

2 Single new leaf at apex, stipules forming 

3 Stipules form a point at apex 

4 Small reddish bud formed 

5 Large reddish bud formed 

 

Table S3. Venturia scoring rubric.  

Venturia Score Phenological Stage 
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0 No Venturia readily apparent 

1 some leaves affected 

2 

more leaves affected, maybe a small number of petioles and 

terminal branch buds 

3 

many petioles and terminal buds affected, shepherds crook 

appearance common, still estimated to be less than one third of 

the canopy affected 

4 

many petioles and terminal buds affected, shepherds crook 

appearance common, estimated to be less than one third of the 

canopy affected 
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Figure 1. Probability of budburst based on latitude of genotype and growing degree days (GDD) 

accumulated in the garden.  

Blumstein Fall 2018 Summary

m <- glm(PP ~ Latitude + GDD + Garden_Binary, data = flush, family = binomial(link = "logit"))

y <- coef(m)[1] + coef(m3)[2] * lat + coef(m3)[3] * gdd

probability_budburst <- 1/(1 + exp(-y))

The model seems to produce believable results when fed in Latitudes and GDD from the 2016

growing seasons (2016 is the chosen year as I collected NSC samples the following winter,

which were presumably largely prodcued during the 2016 growing season).

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

GDD

Pr
ob

ab
ilit

y 
of

 B
ud

 B
ur

st

44

46

48

50

52

54

La
tit

ud
e

Corvallis
Clatskanie

Figure 4

To further verify these results, I checked predicted leaf out dates against independent data

from poplar plantation phenocam located very close to my Corvallis site. I downloaded the

Page 7
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Figure S2. The relationship between days between bud set and senescence stage and date of 

budburst as measured in Vancouver, Canada between 2008-2010.  

Blumstein Fall 2018 Summary
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Figure 6: The number to days between Bud Set and the di↵erent stages of leaf senesence

vs. the day of BudSet at the UBC gardens. Percent of yellow leaves observations were only

taken in 2010, while leaf drop was recorded in 2008, 2009, and 2010.

I predicted leaf yellowing and drop from this additional dataset in three parts: (1) I first

predicted bud set for all of my genotypes in the same way that I predicted leaf flush, then

(2) used the UBC bud set dates, GDD, and daylength to predict the DOY of various stages

of leaf yellowing/drop, then finally (3) used the predicted Clatskanie and Corvallis Bud Set

dates and UBC model to predict end of season for the two sites.

Step 1: Create Model of Bud Set - Similar to Bud Flush, I set all observations of phenophase

of 3 or higher to 1 and all else to 0 (where the transition from 2-3 is budset). I then used a

Page 10
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Figure S3. A replicate principle component analysis (PCA) and importance plot utilizing bud set and 

bud flush scores rather than calculated growing season length. Results demonstrate that using the 

calculated growing season length or raw scores does not alter trait relationships or results.  
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Figure S4. Results for all 6 PCs. Stem_GE and Root_GE are stem and root NSC concentrations, 

Volume_m3 is stem volume, Leaf Lifespan is growing season, Venturia is the inverse Venturia score, 

and rel_GrRt is relative growth rate of the diameter. Points represent genotypes and are colored by 

latitude of the genotypes provenance, where warmer colors are more southern clines.  
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Figure S5. Carbon sinks plotted against “productivity”, as measured by PC1 (Figure 4). Linear 

regression fits are shown, with slope, R2 values, and p-value.  
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Appendix 2 

Supplementary materials for Chapter 3 
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Table S1. Average and standard deviations of phenotypic values, as well as heritability and Qst for 
bulk sugar (glucose+fructose+sucrose), starch, total nonstructural carbohydrates (TNC), and the 
proportion of starch to TNC. TNC values for stems and roots were previously reported.  

Tissue Trait Mean SD H2 Qst 

Stems 

Sugar 13.4 5.3 0.46 0.34 
Starch 2.3 2.9 0.00 0.54 
TNC 15.6 6.0 0.43 0.31 

Proportion 0.1 0.2 0.01 0.66 

Roots 

Sugar 16.6 5.7 0.35 0.53 
Starch 7.5 6.8 0.21 0.03 
TNC 24.3 10.0 0.32 0.30 

Proportion 0.28 0.18 0.37 0.05 
 
Table S2. Broad-sense heritability, Qst, Relative Distance Plasticity Index (RDPI), and Plasticity (S) 
estimates of sugar and starch taken from branch wood samples. Also presented is the proportion of 
our plasticity estimate (S) that is attributable to genotype-by-environment interactions (GxE).  
 

  H2 Qst RDPI S 
(%) of S that is 
GxE 

Branches 
Sugar 0.21 0.05 0.08 0.58 22.0 
Starch 0.03 0.36 0.18 0.6 17.0 

 
Table S3. Variance components from equations 1 and 4. All parameters were estimated using 6,000 
random draws from the posterior distribution. Values calculated for sugar and starch concentrations 
of branch samples from black cottonwood trees grown in Clatskanie and Corvallis.  
 Equation 1  Equation 4 

 (sGipg) (sGpg) (sGp) (sG) (bG) (sg) (sG) (sG:g) 
Sugar 21.589 5.303 0.535 246.471 0.9 2.1 4.8 2.5 

Starch 4.652 0.068 0.076 16.56 -1.017 0.82 2.19 0.98 
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Figure S1. (A) Barplots of the amount of sugar and starch measured in each tissue in each garden as 
well as (B) the proportion of starch to the total amount of nonstructural carbohydrates (sugar + 
starch) measured. Error bars represent the standard deviation of each tissue respectively.  
 

 
 
Figure S2.  Plasticity between the two common gardens in (A) sugar concentration and (B) starch 
concentration. Black lines represent the average value across all genotypes, with error bars indicating 
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one standard deviation from the mean. The other lines are colored by latitude and each line 
represents a genotype, where genotype values were estimated using equation (1). 
 

 
S3. The relative distance plasticity index (RDPI) of the amount of  (A) sugar and (B) starch in 
branch woody tissue plotted by the latitude of each genotype’s source location. Black dots represent 
each genotype’s RDPI and the line fits are shaded gray for one standard deviation. A larger RDPI 
indicates that there is a larger percent change in genotypic trait values between gardens.  
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