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ABSTRACT

In this dissertation, I interrogate how scaling computational systems for complex ‘omics prob-
lems efficiently can lead to novel biological discoveries in the context of both how the microbiome
modulates host metabolism and how the immune system responds to cancer. In Chapter 2, the
method Aether is introduced. Aether is a tool that allows for intelligence bidding on cloud compute
to reduce the cost of computational tasks in genomics by up to .7 orders of magnitude. In Chapter
3, Aether is utilized to handle de novo assembled meta‘omic data at massive scale to help yield the
discovery a novel microbe present in the stomach of professional athletes. Chapter 4 shows how
working with complex single cell sequencing data of immune cells at scale can yield novel insight
into tumors non-invasively through the creation of machine learning algorithms that can predict
whether a CD8" T cell in blood is in a shared clonal lineage as T cells in tumor. Taken together,

these projects demonstrate the power of coupling experimental design with computation at scale.
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Introduction

COMPUTATIONAL TRAINING HABITUATES ONE TO BREAK DOWN COMPLEX PROBLEMS INTO
. . . * .
MANAGEABLE CHUNKS in order to find the fastest, most logical, and elegant solution.” The primary

focus of my PhD has been building tools to handle large scale genomic data and utilizing computa-

"Portions of this chapter have been previously published in Nature, Genome Biology, Science Immunology,
Current Biology, and GigaScience.



tional and machine learning approaches to integrate messy human data with more straightforward
data from model organisms. Applying the logical premise of Occam’s razor to applications in biol-

ogy and genomics is inherently dangerous as evolution does not design things neatly.

1.1  LEVERAGING COMPUTATION AT SCALE FOR EXPERIMENTAL BroLoGgy

The first two projects of my dissertation (Chapter 2 and Chapter 3) focus on computational meth-
ods to handle large scale meta‘omic data. The third project of my dissertation focuses on using single
cell sequencing to study clonal lineages of T cells in blood and tumor (Chapter 4). In this introduc-
tion chapter, I go over some basic background information covering Next Generation Sequencing,
how this relates to the microbiome, background on single cell sequencing in cancer immunology,
some small literature reviews on these topics that I previous published (Luber & Kostic, 2017, 2019),

as well as some minor projects I contributed to early in my PhD.

1.2 NEXT GENERATION SEQUENCING

While these topics are seemingly very different, a common thread that links them is that all require
optimized computation to account for the fact that the rate in which sequencing technologies are
decreasing in cost is far greater than the rate that computational resources are decreasing in cost
(Muers, 2011). Next generation sequencing methods commonly rely on recovering “shot-gun” frag-
ments of genomic material, which can then either be mapped to reference genomes or de novo assem-

bled into larger contiguous regions (‘contigs’). Computational methods in metagenomics lag behind



genomics. In the context of the microbiome, as dozens or hundreds of unique microbial strains ex-
ist together in environmental samples that often have many genes that are evolutionarily similar to
each other, it is difficult associate sequenced genomic material with a specific strain, and therefore it
is much harder to reconstruct the entire community from sequencing data than it is to reconstruct a

single human genome.

1.3 SEQUENCING THE MICROBIOME

Gut microbes play a critical role in human health through production of secondary metabolites,
small RNA interactions with the host, and perturbation of colonization trends of other species (De-
vlin & Fischbach, 2015; Magnusdéttir et al., 2017). For the past decade, the field of metagenomics
has made a series of tradeofts to deal with the complexity of parsing shotgun sequencing data that
encompasses thousands of potential species in one sample that has resulted in a lack of ability to
recover low abundance microbes.

The microbes that constitute an average human gut microbiome are difficult to study as estimates
of the number of species present have increased during the past decade from being in the hundreds
to being in the thousands (Lloyd-Price et al., 2016). The true range of their abundances is unknown
as there are possibly microbes whose genome has never been recovered but whose secondary metabo-
lites still functionally interact with the host (see more in depth literature review on this later in the
introduction chapter). Most metagenomics analysis to date almost exclusively relies on tools that

utilize alignment to a limited set of a few thousand reference genomes previously obtained from



isolates (Lloyd-Price et al., 2017). The methods derived from this philosophy of align then analyze
are extremely memory efficient and allow for easy analysis of large patient cohorts with reasonable
amounts of computational resources (Quince et al., 2017; Truong et al., 2015) A small number of
metagenomics studies to-date such as metaHIT have relied more on algorithms that utilize de novo
assembly methods on relatively smaller datasets, which require much more computational resources
but yield more informative results (Qin et al., 2010; Li et al., 2014). The assembly approach is better
overall than the alignment approach for finding new microbes under complex conditions but there
remains room for improvement in terms of data standardization, scale of databases, and studies of
niches other than the gut microbiome (Nielsen et al., 2014). Specifically, the size of cohorts that can
be studied with the assembly approaches are limited by computational considerations.

The continual reliance on reference based alignment methods means that even if complete metagenomes
are recovered, the tools to computationally analyze them have not been developed yet. There are ap-
proximately the same number of microbes in a human than there are human cells (Sender et al.,
20162,b). Full characterization of the gut microbiome remains impossible without developing meth-
ods to account for the complexity of the unannotated portions of the microbiome not present in
reference genomes; Chapter 2 and Chapter 3 focus on developing such methods in specific contexts
related to scaling computation as well as discovering novel host associated function in microbial

gene catalogs.



1.4 SINGLE CELL SEQUENCING IN IMMUNOLOGY

Tumor immunotherapy has revolutionized the clinical course of cancer treatment, harnessing the
power of the immune system to eliminate malignant cells without the need for more toxic treatment
methods (Giladi & Amit, 2018; Keir et al., 2008; Pauken et al., 2016; Sharpe & Pauken, 2018; Daud
etal., 2016; Luber, 2015). There is significant clinical interest in tracking host immune responses
to cancer immunotherapy in the peripheral blood since this site can be easily and repeatedly be
sampled for immune monitoring purposes, and likely contains a significant population of tumor-
antigen specific T cells that are en route to the tumor (Yost et al., 2019; Zhang et al., 2018). However,
tracking tumor-associated immune responses in the peripheral blood has been challenging due to (1)
the low number of tumor-specific T cells that are likely present in the blood at any given time and
(2) challenges in tracking known tumor antigen-specific T cell responses using traditional methods
(e.g. tetramers) (Raki et al., 2007; Robert et al., 2014). Overcoming these obstacles to allow routine
tracking of T cell populations that are actually responding to the tumor would provide a powerful
tool to the field, allowing a focused analysis of the most relevant T cell populations during the anti-
tumor response rather than relying on bulk analyses on T cells in a non-antigen specific way.
Peripheral blood serves as a potential window into the systemic anti-tumor immune response
in patients. Blood can easily be repeatedly sampled, and there is therefore intense interest in using
blood samples to track the evolution of anti-tumor responses and correlate changes in immune
populations in the blood to tumor outcomes following immunotherapy. However, immune pop-

ulations (e.g. T cells) extracted from blood are heavily diluted for signals of anti-tumor response



because only a small fraction of the cells in blood are relevant to an ongoing anti-tumor immune
response. Chapter 4 asks whether the improved sensitivity afforded by single cell RNA sequencing
(scRNAseq) paired with T cell receptor (TCR) sequencing could be used as a method to identify
tumor-antigen specific T cells in the peripheral blood by using the TCR as a molecular barcode for T

cells that share specificity with tumor-infiltrating lymphocyte (TIL) populations.

.5 RoTaTION PROJECTS

I was quite fortunate to have contributed to three projects during my rotations prior before begin-
ning work in my dissertation labs that ended up being published. I have briefly summarized this

work below.

5.1 4D NucLEoME CoNsORTIUM/H1GLASS

During my first rotation, I implemented some of the backend code for HiGlass http://higlass.
io (Kerpedjiev et al., 2018). HiGlass is a fast visualization tool for large Hi-C and other genomic
data sets. Hi-C data maps chromatin contact points genome wide, so HiGlass can be thought of as
“google maps” for viewing the 3D structure of genomes (Figure 1.r). Many of the backend problems
that I wrote code for handled how to efficiently serve “tiles” of contact map through an API when
a user zoomed in or out. Through my work on this project, I also contributed to the 4D Nucleome

(3D nucleomes over time) perspective piece in Nature (Dekker et al., 2017).
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Figure 1.1: An example view of a Hi-C contact map in the HiGlass Web Application. HiGlass is a fast visualization tool

for large Hi-C and other genomic data sets. HiGlass can be accessed at http: //higlass.1o.
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1.5.2 GENERALIZED LINEAR MODEL (GLM) REGRESSION ANALYSIS FOR RELATIVE SPECIES

ABUNDANCE AND THEIR GC CONTENT ACRrROSS Two PLATFORMS

For this project I worked with BGI to benchmark how their at the time unreleased BGISEQ-s00
platform performed when using reference based metagenomic tools compared to the Illumina
HiSeq 2000 (Fang et al., 2017).

A generalized linear model (GLM) regression analysis was conducted to investigate the associ-
ations between approximate relative species abundance and GC content across the 2 platforms.
MetaPhlAn2 (Truong et al., 2015) was utilized to generate estimates of relative abundance for each
species in each sample. The GC content of each species was retrieved from NCBI. Samples were clas-
sified as either high/low abundance (above/below median = 0.2844), either high/low GC content
(above/below median = 43.8%) with respect to sequencing platform (BGISEQ-soo or Illumina)
(Figure 1.2). A log-linear model was used to model the total number of species in each of the 8 cate-
gories (abundance high/low, GC content high/low, BGI/Illumina), and a likelihood ratio test then
suggested that the association between relative species abundances and their GC content did not

vary across the BGISEQ-so00 and HiSeq 2000 sequencing platforms (P = 0.323, chi-square test)

DETAILED METHODS

Generalized linear model (GLM) regression was used to assess whether the association between rel-
ative abundance and GC content varied between the BGISEQ-soo and the HiSeq 2000 sequencing

platforms. Samples were categorized into eight categories based on abundance (high or low), GC
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abundance calculated with MetaPhlAn2 across BGl replicates plotted against microbial abundance for the correspond-
ing lllumina replicates for all samples. Species are colored by GC content.



content (high or low), and sequencing platform (BGISEQ-soo or HiSeq 2000). High relative abun-
dance and GC content were classified as being above the median level (abundance median = 0.2844,
GC content median = 43.8%). A log linear model was used to model the expected number of sam-

ples in each of the 8 categories. Let X, ¥, and Z be random variables describing GC content, relative

abundance, and sequencing platform for each sample:
X ~ GC content (o=below median, 1=above median), i=o/1

Y ~ Abundance (o=below median, 1=above median), j=0/1
Z ~ Sequencing (o=BGISEQ-s00, 1=HiSeq 2000), k=0/1

Then, the probability of being in category 77k is denoted as:
min=P(X=1,Y=j,Z=F)
and the expected number of counts in category 7k is
i = E |:‘7ijk} = 1% ijk

where n is the total sample size.
Two models were used to model expected counts. The first (model 1) models the null hypothesis

that the association between relative abundance and GC content does not vary across sequencing

10



platform. The second (model 2) represents the alternative hypothesis that the association between

relative abundance and GC content vary across sequencing platform.
Model 1:

log (Mijk) = A+ AN XN+ NN

Model 2:

log () = A+ AT+ A+ AF + X+ NZ + NF 4 031

A likelihood ratio test was used to test the significance of the addition of the three-way interac-
tion term (AXZ). A significant test statistic would suggest that the null hypothesis that the associ-
ation between relative abundance and GC content does not vary across the BGISEQ-s00 and the

HiSeq 2000 sequencing platforms can be rejected.

1.6 LITERATURE REVIEWS

A general theme of my dissertation is bridging computation, metagenomics, and immunology. The
below section contains two small published literature reviews from early in my PhD covering these

topics.

1.6.1 DispaTcH: GUT M1ICROBIOTA: SMALL MOLECULES MODULATE HosT CELLULAR

FuncTiOoNs

The human gut metagenome has been recently discovered to encode vast collections of biosynthetic

gene clusters (BGCs) with diverse chemical potential, almost none of which are yet functionally

II



validated (Cimermancic et al., 2014; Donia et al., 2014).T Recent work by Chun-Jun Guo et al. eluci-
dates common microbiome-derived BGCs encoding peptide aldehydes that inhibit human proteases
(Guo etal., 2017).

Biosynthetic gene clusters (BGCs) are tightly clustered groups of genes in bacteria that encode
pathways capable of producing small molecule natural products without cellular machinery such as
ribosomes (Cimermancic et al., 2014). The array of diverse natural products produced by BGCs are
vast; current databases hold more than one million predicted BGCs, a substantial fraction of which
are found in the human microbiome (Medema et al., 2015; Hadjithomas et al., 2015). A class of an-
tibiotics in clinical trials was simultaneously discovered to be produced by a a human microbiome-
encoded BGC, which suggests that understanding and subsequently engineering BGCs could yield
highly effective new drug pipelines (Donia et al., 2014). However, small perturbations in the genomes
encoding these biosynthetic pathways can yield radically different functional secondary metabolites
(Medema et al., 2011). This biochemical diversity is achieved through small genetic perturbations
that yield chemical variants in the resulting metabolites, which makes interpreting BGCs both an in-
teresting computational problem in terms of combinatorics as well as a challenge to experimentally
validate.

Research into secondary metabolites thus far has aimed almost exclusively to provide a window
into microbe-microbe interactions in environmental organisms (Li & Vederas, 2009; Courtois et al.,
2003). Guo et. al. attempt to identify the most commonly shared BGC family in the human micro-

biome by mining the NIH Human Microbiome Project Phase I dataset, a large study profiling the

TPortions of this section were previously published in Current Biology
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“healthy” human gut microbiome in Americans, and then subsequently determine the function of
this BGC family (Guo et al., 20175 Human Microbiome Project Consortium, 2012). This synergistic
approach couples computational analysis of large metagenomic datasets, synthetic biology to express
genetic elements from uncultured bacteria in laboratory strains, and chemistry to identify and inter-
pret the BGC products. The BGC family identified consists of thirty-seven similar clusters shared
among ninety percent of individuals in the cohort that are also rarely present in environmental
bacterial isolates, which suggests a possible direct role for the BGC products in human physiology.
However, the gut metagenome is massively complex and elucidating fine grained interactions with
the host in a sea of trillions of bacteria is far from easy.

For fourteen members of said family, the resulting product was reconstructed by either directly
cloning from native hosts or synthesizing the entire BGC de novo and transforming the construct
into either E. coli or Bacillus subtilis. Several of these BGCs, derived from Gram-positive bacteria,
were not only transcribed but shown to produce unique small molecule products in E. coli driven by
an E. coli promoter, an encouraging result that meant it is possible to have functioning BGCs even
when they’re expressed in vastly divergent bacteria (Guo et al., 2017). With these fourteen BGCs
reconstructed in vivo, the next step was to elucidate their cognate small molecule product. Liquid
Chromatography-Mass Spectrometry was used to identify new peaks that show up in the BGC
product—seven out of the fourteen BGCs produced new peaks that corresponded to thirty-two
unique compounds (Guo et al., 2017).

With these compounds identified, two important questions remained: Are these compounds

produced in the native host bacteria? Which of these compounds have activity that interact with
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host function and which are products of degradation or other artifacts? Through careful experimen-
tal validation, dipeptide aldehyde fit the clear role of the active product as it is stable long enough

to be active, known to be a cell-permeable protease inhibitor, and subsequently demonstrated cell
protease inhibition activity (Guo et al., 2017).

How does the inhibition of a human cellular process by a natural product produced non-ribosomally
by gut microbes potentially enhance mutualism, if in fact it does? It seems highly counterintuitive
that inhibiting host cellular proteases that break down metabolic debris and unnecessary proteins
would have a positive effect on mutualism. However, one of the dipeptide aldehydes, Phe-Phe-H,
has specific activity against cathepsins, which are an important component of the antigen presen-
tation machinery. This suggests that inhibition of hosts proteases may facilitate the ability of mu-
tualists to reside in the gut without being targeted by the immune system. Figure 1.3 illustrates this
concept. The discovery of a family of BGCs that are present in the vast majority of healthy human
adults that are also generally unique to humans suggests that the resulting product from this BGC
plays a direct role in signaling to the host. If this finding is validated, it represents the first example
of a microbe-derived BGC responsible for maintaining the symbiosis between humans and their
microbiome.

Natural products from BGCs are an important source of FDA-approved drugs. However, these
are all derived from environmental microbes and plants rather than human-associated microbes (Li
& Vederas, 2009; Courtois et al., 2003). The conventional focus of the field has been on discovering
gene products with antimicrobial properties which can be segued into new antibiotic pipelines (Hei-

drich et al., 1998; Lubelski et al., 2008). The Fischbach group has previously found large numbers
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Figure 1.3: Microbial BGC-derived Secondary Metabolites Modulate Host Proteases
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of BGCs in the human microbiome and subsequently found the resulting product[s] to modulate
host function in some way (Cimermancic et al., 2014; Zimmermann & Fischbach, 2010). One BGC
identified in this prior work that is commonly present in the vaginal microbiome was shown to en-
dogenously produce lactocillin, of which there was a synthetic version simultaneously in clinical
trials (Donia et al., 2014). In extending this type of analysis to healthy cohorts, Fishbach’s group has
clearly shown that small-molecule products from gene clusters in the human gut microbiome that
are widely shared across healthy individuals exist. However, it is still not known how many other
health-associated BGCs exist. On a molecular level, it is still not fully conclusive what dipeptide alde-
hydes actually do and whether or not they act on immune cells as hypothesized.

The evidence of widespread microbiome-encoded BGCs being present in healthy individuals and
likely modulating human physiology is an important result, yet poses many challenges to further
exploration. Gut microbes clearly have immunomodulatory and inflammatory effects on humans
(Round & Mazmanian, 2009; Cullen et al., 2015). However, the discovery of a unary BGC family
present across healthy individuals required a massive amount of data mining coupled with com-
plex experimental validation. The groundbreaking methods used by Fischbach’s group to analyze
BGCs present across a healthy human cohort are necessary to prove their existence; the next step is
to understand their role. Mining large metagenomic databases can yield putative common BGCs of
large effect, but whether the products of these BGCs have additive effects remains an open question.
To tully discern the role of the complete microbiome in modulating human health, bioinformatics
must be further coupled with experimental design so that BGC calling algorithms inform experi-

mentation and vice versa (Medema et al., 2012; Smanski et al., 2016). Understanding the functional
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complexities of BGCs on health will require the utilization of 3rd generation long read sequencing
as a first step for calling putative BGCs that are rare in gut microbial populations. BGC enzymes are
highly conserved with strong homology across distant taxa. Additionally, horizontal gene transfer
events for BGCs are likely. Therefore, short reads often cannot be uniquely mapped to BGCs even
at extremely high coverage. Long reads and methods to assemble them that span the entire BGC
represent a potential leap forward (Koren et al., 2017).

To understand the full functional landscape of BGCs, perturbing and engineering minimal
communities of microbes (i.e. “toy” microbiomes) in model organisms will help reduce the com-
plexity involved with the human microbiome, and make it possible to understand the complete
metagenome, metatranscriptome, metaproteome, and metabolome of closed system. To perform
perturbation at this scale, high throughput CRISPR based methods will likely need to be utilized,
which presents other implicit challenges (Xu et al., 2015). Extensions of this initial work by Guo et al.
will be the first steps in elucidating the function of poorly understood elements of the metagenome.
Further efforts into understanding natural products produced by BGCs, and engineering microbes
that produce them, could eventually yield a deeper understanding of how host-microbe interactions

modulate human health.
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1.6.2 Focus: A PERFECT STORM: GENETICS AND ANTI-COMMENSAL ANTIBODIES SHORE

Upr TYrE 1 DIABETES

HLA haplotypes in conjunction with serum anti-commensal antibody responses are predictive of
type 1 diabetes progression.*

Many recent studies have found associations between the gut microbiota and autoimmune dis-
eases such as type 1 diabetes (T1D). In this issue of Science Immunology, studies by Paun et al. hint
at possible mechanisms behind immunopathogenesis of T1D by associating HLA haplotypes with
anti-commensal antibody (ACAb) responses and islet autoantibodies (IABs) in two distinct cohorts
(Paun et al., 2019) , and crucially observes a genetic determinant in these associations.

The hygiene hypothesis postulates that at the population level, the frequency of autoimmune
disorders and diseases related to allergy are inversely correlated with the frequency of infectious dis-
ease (Strachan, 2000). Epidemiological associations support the hygiene hypothesis, but a causal
mechanism has never been conclusively validated; a widely supported theory is that tolerance in Toll
Like Receptors (TLRs) recognizing both commensals and pathogens leads to increased incidence of
autoimmunity in specific populations based on their aggregate gut microbiome composition (Bach,
2018).

Recent work in the microbiome field has found associations between both low diversity in gut

microbiota composition at the taxa level and longitudinal progression of autoimmune disorders like

T1D (Kostic et al., 2016), as well as an association between autoimmunity and lipopolysaccharide (a

*Portions of this section were previously published in Science Immunology
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potential TLR4 agonist) from microbes in countries with lesser incidence of infectious disease (Vata-
nen et al., 2016). This association is not found in other countries (of shared common genetic back-
ground) with geopolitically limited genetic admixture that in contrast have comparatively higher
incidence of infectious disease (Vatanen et al., 2016). These findings have recently nudged the mi-
crobiome field towards pursuing massive collections of metagenomes without genome or exome
sequencing of component individuals in these cohorts, such as in the The Environmental Deter-
minants of Diabetes in the Young (TEDDY) study (Vatanen et al., 2018; TEDDY Study Group,
2007). The association between HLA haplotypes, gut microbes, and IABs presented by Paun et al.
in this issue raises the compelling point that more nuanced approaches are needed to account for
genetic determinants in host-microbe interactions related to autoimmunity and implicitly posits
that for sustained forward progress in elucidating autoimmune disease pathogenesis silos need to
come down between the fields of computational metagenomics, human genetics, and experimental
immunology.

In order to measure ACAb responses from serum, Paun et al. created an assay where serially di-
luted serum is combined with bacterial targets and fluorophore-labeled antibodies, after which flow
cytometry is conducted to calculate a “response” index for each sample (Paun et al., 2019) . This as-
say showed elevated ACAb responses to a diverse group of commensals in Crohn’s disease patients
compared to healthy controls. The authors subsequently applied their assay to T1D cohorts: one
simply comparing serum from pediatric T1D patients to age matched healthy controls and one com-
paring serum obtained during a pre-diabetic (seropositive for JABs but normal glucose levels) phase

in at risk patients from the Type 1 Diabetes TrialNet (long term sample collections from family mem-
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Figure 1.4: Using two separate cohorts of pediatric T1D, Paun et al. (Paun et al., 2019) found that the anticommensal
antibody (ACADb) response against multiple bacteria is able to discriminate between healthy controls and individuals re-
cently diagnosed with T1D. Although the ACAb response on its own cannot distinguish healthy controls from samples
taken before the onset of diabetes, serum IgG2 antibodies against commensal bacteria in combination with the HLA
DR3/DR4 haplotype were associated with future diagnosis of T1D.

bers of existing T1D patients) who also went on to develop T1D (Skyler et al., 2008). A summary of
the underlying biology is shown in Figure 1.4.

In the first cohort comparing age matched pediatric T1D patients and healthy controls, the au-
thors found significant differences in both IgG and IgA ACAD responses against a range of commen-
sals and were able to use LDA to distinguish healthy controls from age matched T1D patients. When
the assay was applied to the cohort comparing healthy controls and pre-diabetes TrialNet patients,

no differences in ACAD responses to commensals were found between the two groups. However,
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when HLA genotype information was included in the multivariate statistical comparison between
the two groups, the cohorts stratified with certain ACAD responses predicting future T1D status in

a HLA haplotype dependent manner (Paun et al., 2019). The HLA locus encodes both the MHC
complex and other machinery that assists with antigen processing and presentation; certain MHC
class IT haplotypes have large effect size in predicting T1D risk (Dendrou et al., 2018). The authors
subsequently went on to show that in addition to IAB antigen specificity that is dependent on high
risk HLA haplotypes, an association also exists between IAB antigen specificity and ACAb responses
(Paun et al., 2019) .

This association, while not validated to be causal, raises vital and perhaps incommodious ques-
tions about how study design for future longitudinal cohorts aiming to look at host-microbiome
interactions in T1D immunopathogenesis should be conducted. Perhaps the no holds barred ap-
proach of sequencing as many metagenomic samples as possible for greater statistical power in down-
stream analyses (Vatanen et al., 2018) is misapprehending crucial underlying biology in that human
genetic determinants likely play a significant role in disease. Coupling results from experimental
assays with clinical genotyping like Paun et al is laudable; their findings should serve as impetus to in-
clude either full exome or genome sequencing in future longitudinal studies looking at the interface
between the metagenome and disease.

We have learned much from the non-obese diabetic mouse, the most widely used animal model
of T1D, but unlike the human it has been cured of diabetes in over 700 different ways and has
many nuanced differences in disease pathogenesis compared to humans (Jayasimhan et al., 2014).

Therefore, understanding the human genetic determinants of how the microbiome affects T1D im-
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munopathogenesis is critical in pursuing future treatments and cures for T1D . Integrating analyses
of longitudinal human microbiome studies and human genetic determinants of disease to inform,
characterize, modify, and improve experiments utilizing mechanistic animal models of autoimmune

disease will be critical to developing treatments for T1D.
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No physical quantity can continue to change exponen-

tially forever. Your job is delaying forever.

Gordon Moore

Scaling Cloud Computing For ‘omics

ACROSS BIOLOGY, WE ARE SEEING RAPID DEVELOPMENTS IN SCALE OF DATA production with-
out a corresponding increase in data analysis capabilities. In this chapter, the design, implemen-

tation, and validation of the computational tool Aether is presented (Luber et al., 2017).” Aether

“Portions of this chapter were previously published in Bioinformatics. This paper has an additional co-
first author, Braden T. Tierney. Braden and I co-conceived the algorithm, I implemented the algorithm, and
Braden conceptualized test cases where the algorithm could be benchmarked.
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(http://aether.kosticlab.org)isan intuitive, easy-to-use, cost-effective and scalable frame-
work that uses linear programming to optimally bid on and deploy combinations of underutilized
cloud computing resources. This approach simultaneously minimizes the cost of data analysis and

provides an easy transition from users’ existing HPC pipelines.

2.1 INTRODUCING AETHER

Data accumulation is exceeding Moore’s law, which only still progresses due to advances in parallel
chip architecture (Esmaeilzadeh et al., 2013). Moore’s law states that the every two years the num-
ber of transistors that can fit on a computer chip doubles, while the cost of the chip itself halves
(Moore, 1965). Fortunately, the shift away from in-house computing clusters to cloud infrastructure
has yielded approaches to computational challenges in biology that both make science more repro-
ducible and eliminate time lost in high-performance computing queues (Beaulicu-Jones & Greene,
2017; Garg et al., 2011); however, existing off-the-shelf tools built for cloud computing often remain

inaccessible, cumbersome, and in some instances, costly.

2.1.1 WHERE MOORE’s LAw FALLS SHORT IN BioLoGgy

Solutions to parallelizable compute problems in computational biology are increasingly necessary;
however, batch job-oriented cloud computing systems, such as Amazon Web Services (AWS) Batch,
Google preemptible Virtual Machines (VMs), Apache Spark and MapReduce implementations are
either closed source, restrictively licensed, or locked in their own ecosystems making them inacces-

sible to many bioinformatics labs (Shvachko et al., 20105 Yang et al., 2007). Other approaches for
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bidding on cloud resources exist, but they neither provide implementations nor interface with a dis-
tributed batch job process with a backend implementation of all necessary networking (Andrzejak

et al., 2010; Tordsson et al., 2012; Zheng et al., 2015).

2.2 CrLoup COMPUTE MARKETS

Our proposed tool, Aether, leverages a linear programming (LP) approach to minimize cloud com-
pute cost while being constrained by user needs and cloud capacity, which are parameterized by

the number of cores, RAM, and in-node solid-state drive space. Specifically, certain types of in-
stances are allocated to large web service providers (e.g. Netflix) and auctioned on a secondary mar-
ket when they are not fully utilized (Zheng et al., 2015). Users bid amongst each other for use of this
already purchased but unused compute time at extremely low rates (up to 90% off the listed price;
https://aws.amazon.com/eca2/pricing/). However, this market is not without its complex-
ities. For instance, significant price fluctuations, up to an order of magnitude, could lead to early
termination of multi-hour compute jobs (Figure 2.1). Clearly, bidding strategies must be dynamic to
overcome such hurdles.

Aether consists of bidder and batch job processing command line tools that query instance meta-
data from the vendor application programming interface (APIs) to formulate the LP problem. LP is
an optimization method that simultaneously solves a large system of equations to determine the best
outcome of a scenario that can be described by linear relationships. The Aether bidder, described in

detail in the Supplementary Methods, generates and solves a system of 140 inequalities using the sim-
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Figure 2.1: Pricing history of an x1.16xlarge EC2 Instance showcasing variability of an order of magnitude, in both
directions, for spot prices.
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Figure 2.2: Simplified example showing three constraints on a sample bidding approach minimizing an objective func-
tion cTx considering cost according to a system of constraints represented as inequalities. x;, x,, ...x, represent the
number of specific types of compute nodes to solve for. Each inequality represents a constraint and adds another di-
mension to the space which the simplex algorithm needs to traverse vertices in to find ideal solution. The green line
represents the optimal solution.

plex algorithm (Figure 2.2). For the purposes of reproducibility, an implementation of the bidder
using CPLEX is also provided as an optional command line flag.

Subsequently, the replica nodes specified by the LP result are placed under the control of a pri-
mary node, which assigns batch processing jobs over transmission control protocol, monitors for
any failures, gathers all logs, sends all results to a specified cloud storage location, and terminates all

compute nodes once processing is complete (Figure 2.3). Additionally, Aether is able to distribute
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Figure 2.3: General overview of Aether.

compute across multiple cloud providers. Sample code for this is provided with the Aerher imple-
mentation although it was not utilized in our reported tests due to cost feasibility. Our implemen-
tation runs on any Unix-like system; we ran our pipeline and cost analysis using AWS but have pro-

vided code to spin up compute nodes on either Microsoft Azure or on a user’s local physical clusters.

2.3 VALIDATION OF APPROACH

To test our bidding approach and batch job pipeline at scale, we used our framework to de novo
assemble and annotate 1572 metagenomic, longitudinal samples from the stool of 222 infants in
Northern Europe Figure (Figure 2.4) (Bickhed et al., 2015; Kostic et al., 2016; Vatanen et al., 20165
Yassour et al., 2016). The sequencing data within datasets from the DIABIMMUNE consortium
ranged from 4680 to 22, 435, 430 reads/sample with a median of 19, 020, 036 reads/sample. Assem-
blies were performed with MEGAHIT and annotations were done with PROKKA (Li et al., 2015;

Seemann, 2014). Metagenomic data, typically shotgun DNA sequencing of microbial communities,
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Figure 2.4: Overview of the assembly process. A total of 1572 fecal samples were collected and sequenced at various
timepoints during the first 3 years of 379 individuals lives. These were assembled with MEGAHIT into 68,181,571
contigs. Across all samples, a total of 62,257,853 genes, 1,000,000 of which were unique, were then annotated using
Prokka. Only contigs that were over 1000 bases long were used. The mean length of this group was 4278 bases.
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Figure 2.5: Cost comparison between Aether, standard cloud computing, and user-maintained hardware. Total assem-
bly cost was 18% ($471.60) of what it would have been using on-demand instances. We estimated the upfront cost of a
server equivalent to those used to analyze the data being $10,000. Given that we used 30 in- stances of these servers,
the total cost of hardware would be $300,000 according to pricing information from Penguin Computing and Dell, not
counting system maintenance and depreciation.

is difficult to analyze because of the enormous amounts of compute required to naively assemble
short sequence reads into large contiguous spans (contigs) of DNA. To accomplish our assemblies,
our bidding algorithm suggested that the optimal strategy would be to spin up 30TB of RAM across
underutilized compute nodes. Our networked batch job processing module utilized these nodes for
13 h and yielded an assembly and annotation cost of US $0.30 per sample (Figure 2.5).

Theoretically, the pipeline can complete in the time it takes for the longest sub-process (i.e. assem-
bly in this case) to finish (7 h). Spinning up the same nodes for this long without a bidding approach
would cost US $1.60 per sample (Figure 2.6).

In order for on-site hardware to achieve the same cost efficiency as our pipeline, one would have
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Figure 2.6: Plot of the Expected Value of worst case job price for different bidding strategies to showcase the advan-
tage of Aether using a price “lookback” as a constraint for optimization.

31



to carry out on the order of 1 million assemblies over the lifespan of the servers, a practically insur-
mountable task (Figure 2.5). Such efficiency in both time and cost at scale is unprecedented. In fact,
due to resource paucity, computational costs have forced the field of metagenomics to rely on algo-
rithmic approaches that utilize mapping back to reference genomes rather than de novo methods

(Truong et al., 2015).

2.4 ADVANTAGES OF AETHER

Additional testing of Aether showed marginally better relative cost savings (compared to the assem-
bly example) when tasked with aligning braw reads to the previously assembled genomes with BWA-
MEM (Li & Durbin, 2009); this is not surprising as shorter computational tasks are less sensitive to
the risks of early spot instance termination. Additionally, in simulated runs of the bidder incorporat-
ing pricing history from periods where ask prices were approximately an order of magnitude higher
than normal on the east coast of the United States (Figure 2.1), Aerher suggested utilization of dif-
ferent instance types that would have resulted in similar cost and time to completion as our actual
run. To allow users to make optimal usage of these benefits, the ability to simulate bidding for dif-
ferent timeframes is included as a feature. By not having to potentially re-run analysis pipelines (due
to being outbid on compute during runtime), we claim that utilizing Aether leads to a reduction

of market inefficiencies. We have both qualitatively and empirically compared Aether to existing
AWS tools such as AWS Batch and Spot Fleet Pricing (Figure 2.6). Additionally, where empirical

validation of benefit was possible, we have iterated on previous work and incorporated strategies
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such as basing a subset of constraints on service level agreements (Andrzejak et al., 2010). Future di-
rections include training the bidding algorithm to predict its own effect on pricing variability when
being utilized at massive scale as well as distributing compute nodes across datacenters when enough

resources are being spun up to strongly influence the market.

2.5 GENERAL IMPLEMENTATION

Implementation Details Computational resources and monetary costs are mapped to each available
instance type at run-time by querying the cloud providers web- based public APIs. To identify the
ideal resource selection, we feed these data, along with constraints provided by the user, into our
multi-objective optimization procedure. The user-defined set of jobs is subdivided into computa-
tional workloads according to the resources available to each node, and distributed across the worker
nodes by a central server. In a single nodes workload, jobs are executed in parallel but may complete
asynchronously. Upon completion of a job, the replica node notifies the central server, which then
schedules another task for the replica. To prevent scheduling errors, we synchronized changes in the
primary nodes job ledger, and used at-least-once message delivery. We controlled access to computa-
tional resources and accounts with AWS Identity & Access Management (IAM) security groups and
Azure Identity and Access Management (IAM) , which their respective providers recommend for au-
thentication and authorization. Additional details regarding Aether’s implementation are available

on the project website (http://aether.kosticlab.org).
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2.6 BIDDING ALGORITHM

Due to pricing variability, it can be optimal to bid on non-auctioned instances in certain regions. To
properly handle this case, we include additional linear constraints for both an instances on-demand
and at-auction prices. The solution vector is bounded by the number of currently running instances
as well as limits due to provider capacity. Finally, to avoid bidding on instances that will spike in
price, the algorithm looks at pricing history and sets a final constraint corresponding to a users
maximum tolerable pricing variability. For each run of the bidder, this system of 140 inequalities

is converted to slack (standard) form and then solved with the simplex algorithm as implemented in
Pythons scipy.linprog library (Figure 2.2) (Jones et al., 2001). This naively outputs suggested com-
pute bids as floats; obviously, a fraction of an instance is not a valid bid and generating integer so-
lutions to linear programming problems is NP-hard. However, a true integer linear programming
solution is not required, as the constraints still hold if the floor is taken from each bid, provided that
preprocessing is done to remove underutilized instance types and those that cannot process a unary
compute job. To reach this optimal integer pseudo-solution, the linear programming solver is run re-
cursively such that these non-feasible fractional bids are iteratively removed. Additionally, adhering
to the pricing variability constraint is not guaranteed to yield the optimal value, so the simplex algo-
rithm is applied iteratively, setting the pricing variability from zero to the maximum specified value
until either the optimal value is found or it is determined that there is no solution to the system. In
the event of finding no solution, the user must re-run the program with a higher maximum cost.

This approach results in a tractable average case runtime, which yields essentially instant bidding
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suggestions given the small size of the system being solved.

The key code implementing this algorithm can be found in Appendix D.

2.7 COMPARISONS

Information about how to access a tutorial to run Aether as well as documentation of the command

line interface (CLI) options are in Appendix A.

2.7.1  COMPARISON WITH OTHER THEORETICAL ALGORITHMS

While we did mention that there are other bidding strategies available, direct comparisons are dif-
ficult as universally every method cited either provides a theoretical algorithm and not an imple-
mentation (Zheng et al., 2015; Andrzejak et al., 2010)or an implementation with an algorithm that is
closed source (i.e. AWS Batch with Spot Fleet Pricing). Aether already incorporates ideas proposed
by existing algorithms that do not have implementations that we were able to empirically validate
(i.e. incorporation of SLA constrains as in (Andrzejak et al., 2010)). In the case where there was a
closed source implementation (AWS Batch), we were able to make both qualitative and empirical

comparisons to Aether.

2.7.2. COMPARING AETHER WiTH AWS BATCH

The problem of comparing two bidding algorithms on AWS cloud is difficult—one could easily
sample outliers to paint a comparison picture that is not true (in either direction). Thus, as authors

the burden of proof is on us to prove mathematically that Aether’s bidding algorithm yields better
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prices than the closed source algorithm in AWS Batch. It is difficult to accurately compare two algo-
rithms (and easy to fake—both algorithms running at the same time would affect the other; if they
are running at separate times they are subject to different conditions. It is financially not feasible to
run the same Batch process at realistic scale on both platforms with sufficient replicates to ensure sta-
tistical significance). Thus, we have attempted to logically showcase the features that make Aerber a
superior algorithm through examples comparing mechanisms of querying the Expectation of batch
job runtime in both bidding approaches. The reasons that Aether’s bidding approach is superior is
quite simple—AWS Batch never asks the user how long they expect each of their batch jobs to take.
The goal of any arbitrary bidding algorithm looking at AWS spot instances (those that can terminate
if you are outbid on price; Aether’s advantage comes from bidding on these types of instances effi-
ciently) is to minimize the amount of “wasted” compute that occurs when you bid on an instance,
run you job for an arbitrary amount of time, and have somebody outbid you before your job com-
pletes. Two important things to note here are 1) that AWS benefits if you bid incorrectly—they can
very easily make more money having users bidding incorrectly and use more compute on spot in-
stances than anticipated compared with initially utilizing on a fixed price instance and 2) unlike the
stock market, past prices in a region do correlate well with future prices—it is quite common for the
price of a region to fall into a “local minima” where it is underutilized for some reason. Besides pa-
rameterizing its Linear Programming (LP) bidding strategy with the characteristics of the compute
that a user will require for a batch job, Aerher also asks the user how long that they estimate each
batch job will take. AWS Batch does not inquire as to an estimate of how long each batch job will

take. The Aether bidding backend subsequently takes this estimate to parameterize a “lookback”

36



that assigns essentially serves as a regularization parameter penalizing regions that are not under-
utilized with price in a stable local minima. Without this lookback, it is not feasible to have a spot
instance bidding strategy that provides more utility per dollar than utilizing fixed price instances.
Giving Amazon the benefit of the doubt, they could possibly be using extra compute to run ma-
chine learning algorithms that predict the Expectation of the amount of time a job will run for any
AWS Batch user; we would argue non-objectively that the variability of runtime between bioinfor-
matics tasks (i.e. de novo assembly versus alignment) would make such a hypothetical implication
useless. Finally, it is worth noting that there is value in having a fully open source bidding algorithm
as it holds AWS accountable in the context of providing the best service to their users by making
the potential effects from the conflicts of financial interest in AWS running a tool to compete in a

market that they fully control less opaque. Steps needed to run AWS batch are listed in Appendix A.

2.8 OPTIMIZATION PROBLEM SPECIFICATION

For bidding on the Amazon cloud, Aether’s approach minimizes

n m
> 00+ > WS
i=1 j=1

where there are 7 types of on demand instances , 7 types of spot instances available (there is not a
spot instance for every type of on demand instance), O = {0y, 0,, ...0,} is the set of prices for on
demand instances, S = {s,5,, ...5m } is the set of maximum prices for spot instance types over a user

specified “lookback” period, Q@ = {41, 42, ---gn } is the set of “bids” (number of instances requested)
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for on demand instances, and § = {s;, 5,, ...5n } is the set of “bids” (number of instances requested)

for spot instances. This minimization is constrained by:

iQiO;am_i_zm:VVjS;am > R

j=r

n m

Cpus pus
> Q07+ WSt > p
i=I1

j=1

n m
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i=1 j=1

where R is the minimum amount of total ram, Pis the total number of processors, and £ is the
amount of scratch space available without need for purchasing EBS storage. To reach the 140 in-
equalities mentioned in the paper, an additional constraint is added for each instance type that
bounds the number that can be bid upon (SLA Agreement constraints inspired by the work in (An-
drzejak et al., 2010)) to the number of that type of instance the user currently has spun up subtracted
for the users service limit for that type of instance. As mentioned previously in the supplemental
methods section, the default Aether solve utilizes a recursive set reduction heuristic to reach an esti-
mated ILP solution (code is available here: https://github.com/kosticlab/aether/blob/
master/1p/1lp.py). To allow for reproducibility, the ILP solution can also be generated with

the CPLEX solver (code is available here: https://github.com/kosticlab/aether/blob/

master/lp/ilp.py).
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2.9 CONCLUSIONS

To our knowledge, this is the first implementation of a bidding algorithm for cloud compute re-
sources that is tied both to an easy-to-use front-end as well as a distributed backend that allows for
spinning up purchased compute nodes across multiple providers. Conceivably, this tool can be ap-
plied to any number of disciplines, bringing cost-effective cloud computing into the hands of scien-

tists in fields beyond biology.

2.10 OTHER DIRECTIONS

After publication of Aether (Luber et al., 2017), I utilized the efficiency gains to probe the complex-
ity of the athlete microbiome at scale (see Chapter 3), which Braden T. Tierney (Aether co-first au-
thor) also assisted on. While I was spearheading this project, Braden was utilizing Aether to 1) prove
that the number of unique ORFs in the human associated microbiome is larger than previously es-
timated by a few million (Tierney et al., 2019) and 2) benchmark various machine learning models
for metagenomic applications using data that is de novo assembled (Le Goallec et al., 2020). Like
Braden assisted with my followup project, I also assisted with these projects. The interrogation and
discovery of the larger than expected complexity of the genetic landscape of the human associated
microbiome (Tierney et al., 2019) potentially explains why some of the failed projects included in

Chapter 1 failed.
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A Performance Enhancing Microbe

THE HUMAN GUT MICROBIOME IS LINKED TO MANY STATES OF HUMAN HEALTH AND DIS-
. * . . . . .
EASE(Gilbert et al,, 2018)." The metabolic repertoire of the gut microbiome is vast, but the health

implications of these bacterial pathways are poorly understood. This chapter will cover a study

"Portions of this chapter were previously published in Nature Medicine (Scheiman et al., 2019). I was
co-first authors on this paper with Jonathan Scheiman and Ted Chavkin. Jonathan and Ted performed the
experiments, and I did all computational work.
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where we identify a link between members of the genus Veillonella and exercise performance. We ob-
served an increase in Veillonella relative abundance in marathon runners postmarathon and isolated
a strain of Veillonella atypica from stool samples. Inoculation of this strain into mice significantly
increased exhaustive treadmill run time. Veillonella utilize lactate as their sole carbon source, which
prompted us to perform a shotgun metagenomic analysis in a cohort of elite athletes, finding that
every gene in a major pathway metabolizing lactate to propionate is at higher relative abundance pos-
texercise. Using 13C3-labeled lactate in mice, we demonstrate that serum lactate crosses the epithelial
barrier into the lumen of the gut. We also show that intrarectal instillation of propionate is sufh-
cient to reproduce the increased treadmill run time performance observed with V. atypica gavage.
Taken together, these studies reveal that V. arypica improves run time via its metabolic conversion of
exercise-induced lactate into propionate, thereby identifying a natural, microbiome-encoded enzy-

matic process that enhances athletic performance.

3.1  APPLYING AETHER

After completing the development of Aether (Luber et al., 2017), finding a biological application to
prove the applicability of the method was the logical next step. The current state of the art in the
microbiome has focused on combining the use of reference and de novo assembly based computa-
tional analysis of metagenomic samples (Pasolli et al., 2019). Furthermore, coupling understanding
of computational analyses with that of bacterial metabolism is starting to yield higher resolution

understanding towards how the microbiome interacts with the host (Shepherd et al., 2018; Mallick
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et al., 2019). Many new microbiome analysis methods that go beyond using reference databases re-
quire lots of computing power; such methods were utilized in the work described later in this chap-

ter. This is where Aether provided much utility for accelerating analyses.

3.2 BACKGROUND ON COMPUTATIONAL METHODS TO ANALYZE THE MICROBIOME

For much of the last decade, advances in the computational analysis of the microbiome have focused
on improving reference based tools. Initial work utilizing 16S amplicon sequencing allowed for com-
putational tools that could utilize raw sequencing reads and make predictions about taxonomic
abundance and predictive functional profiling of a given sample (Douglas et al., 2018; Langille et al.,
2013). From the groundwork that these 16S based methods provided, the idea of creating reference
databases that raw reads could be aligned against cheaply and easily without complicated down-
stream analyses was expanded to utilize whole metagenome shotgun sequencing (Mclver et al.,
2018).

The first series of tools that implemented this idea were able to take raw NGS shotgun reads,
align them to a database that associated genomic sequences with location on a bacterial taxonomic
tree, and then infer the composition of a microbiome sample down to the species level (Segata et al.,
2012). Further iterations of these methods improved their sensitivity and introduced predictive pro-
filing at the strain level (Truong et al., 20155 Franzosa et al., 2018). These methods allowed for some
of the first large scale consortium studies profiling the human associated microbiome (Turnbaugh

etal., 2007; Lloyd-Price et al., 2017).
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At the same time these reference based microbial methods were being developed, other consor-
tiums were working on methods that relied on de novo assembly of reads from microbial samples
as opposed to utilizing reference based approaches (Dusko Ehrlich & The MetaHIT Consortium,
2011). Initial work here focused on building larger and larger non-redundant gene catalogs from as-
semblies generated from metagenomic samples to better understand the diversity of the microbiome
(Qin etal, 20105 Li et al., 2014). Commonly, the CD-HIT algorithm was utilized for construction
of these non-redundant gene catalogs (Fu et al., 2012). These gene catalogs have been utilized to
conduct metagenome wide association studies (Qin et al., 2012). Other recent work has shown that
there are many more genes in the microbial universe than previously estimated by a few ten million
(Tierney et al., 2019). Groups have also been able to reconstruct thousands of complete bacterial
genomes from public databases of metagenomic studies that have mostly been used for past refer-
ence based analysis (Parks et al., 2017; Pasolli et al., 2019).

Studies have begun to combine computational analyses of the microbiome with synthetic biology
based perturbation methods that depend on a deep understanding of microbial enzymatic chemistry
and metabolism (Shepherd et al., 2018). A major criticism of de novo assembly based metagenomic
analysis methods is that the vast majority of what they produce (i.e. non-redundant gene catalogs or
metagenome assembled genomes) have no useful functional annotation and do not contribute to
understanding of host-microbiome interaction. The study that I present in the rest of this chapter
provides an example of how using massive computational resources coupled with a deep interro-
gation of microbial metabolism shines light on a previously functionally unannotated interaction

between the microbiome and the host.
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3.3 GUT VEILLONELLA ABUNDANCE IS SIGNIFICANTLY ASSOCIATED WITH MARATHON RUN-

NING

Human microbiome studies have generally examined individuals who are ‘healthy’ or diseased and
identified features of the microbiome associated with these states (Lax et al., 2014; Rothschild et al.,
2018; Dusko Ehrlich & The MetaHIT Consortium, 2o11). Athlete microbiomes have been found
to contain distinct microbial compositions defined by elevated abundances of Veillonellaceae, Bac-
teroides, Prevotella, Methanobrevibacter or Akkermansia (Petersen et al., 2017; Clarke et al., 2014).
These studies show that exercise is associated with changes in microbiome composition, although
the effects of these microbial genera on phenotype remain unknown.

To identify gut bacteria associated with athletic performance and recovery states, we recruited
athletes (n=15) who ran in the 2015 Boston Marathon, along with a set of sedentary controls (n=10),
and conducted 16S ribosomal DNA (rDNA) sequencing on approximately daily samples collected
up to one week before and one week after marathon day (n=209 samples; access Supplementary
Tables 1 and 2 in Appendix /refAppendixB). Phylum-level relative abundance partitioned by indi-
vidual, time (=5 to +sd in relation to running the marathon), and whether the participant was an
athlete (Figure 3.1) showed that, at this high-level taxonomic view, any orthogonal differences were
likely to be due to variation at the level of the individual. The bacterial genus Veillonella was the
most differentially abundant microbiome feature between pre- and postexercise states (access Sup-
plementary Table 2 in Appendix B). There was a significant difference in relative Vzillonella abun-

dance (P=o0.02, Wilcoxon rank-sum test with continuity correction) between samples collected be-
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fore and after exercise (Figure 3.2). To validate the significance of the association between Veillonella
and postmarathon state, we constructed a series of generalized linear mixed-effect models (GLMM:s)
to predict Veillonella relative abundance in the marathon participants (Figure 3.3). Subsequently,
significance was calculated using Wald Z-tests for all of the coefficients included in the GLMM (Fig-
ure 3.4), revealing that no coefhicients were significant except time in relation to (Figure 3.5). Addi-
tionally, it appears that Veillonella is more prevalent among runners than non-runners (Figure 3.6),
although this was not statistically significant. These correlations raise the question of whether there
is a causal link between Veillonella and marathon runners’ performance, but no conclusions can be

made without proper validation.

3.4 V. aryricA GAVAGE IMPROVES TREADMILL RUN TIME IN MICE

To assess whether there are any potential benefits of Veillonella on performance in an animal exer-
cise model, we designed an AB/BA crossover mouse experiment spanning 2 weeks, consisting of a
control group (Lactobacillus bulgaricus gavage; n=16) and a treatment group (Veillonella atypica
gavage; n=16), with a treatment/control crossover happening between weeks (n =32 mice in total).
L. bulgaricus was chosen as a control due its inability to catabolize lactate, thus mimicking the bac-
terial load but without impacting lactate metabolism (Garvie, 1980). The Veillonella strain used,
Veillonella atypica, was directly isolated from one of the marathon runners. Mice were administered
either V. atypica or L. bulgaricus and run to exhaustion sh later. In aggregate, on both sides of the

crossover, mice gavaged with V. atypica had statistically significantly longer maximum run times
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Figure 3.1: Phylum-level relative abundance in marathon runners, partitioned by individual and time (-5to +5d in
relation to running the marathon (#,), where negative values are premarathon and positive values are postmarathon),
showing few global differences in composition.
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Figure 3.2: Veillonella relative abundance at the genus level, partitioned by individual and time (-5 to +5 d in relation
to running the marathon), showing that there is a significant difference in Veillonella relative abundance (P = 0.02, two-
sided Wilcoxon rank-sum test with continuity correction; n = 15 individuals) between samples collected before and
after exercise.
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48



Protein supplements (NS) —_—

Dairy (NS) i
Protein (NS) —r
Grains (NS) ——
Fruits (NS) ———
Vegetables (NS) —

Menstruation: Y’ (NS)

Menstruation: ‘Pregnant’ (NS)

P values

Menstruation: ‘N’ (NS)
Race: ‘White’ (NS)
Race: ‘Asian/White’ (NS)

Age (NS) -
BMI (NS) I
Weight (NS) -
Sex (NS)
Time (**P = 0.0014) -
—O.I015 —0.610 —0.I005 0 0.(;05 0.610

Figure 3.4: 95% confidence intervals for all of the fixed effects (coefficients) included in the GLMMs. All coefficients
except time (P = 0.0014, Wald Z-test; time postmarathon corresponds to increased Veillonella relative abundance)
were not significant (NS), suggesting that Veillonella blooms in runners correspond to exercise state and not other fixed
effects (n = 15 individuals).
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Figure 3.5: a Histogram of P values (Wald Z-tests) for time coefficient from LOOCV models predicting 16S Veillonella
abundance. The red line represents the P value for the model trained without any hold outs. b Histogram of P values
for time coefficients from 1,000 label permutations in GLMM models predicting Veillonella relative abundance. The red
line represents the P value for the model trained without any label permutation.

than mice gavaged with L. bulgaricus (P=o0.02, paired t-test; Figure 3.7, Figure 3.8, access Supple-
mentary Table 3 from Appendix B). Both LOOCV and iterative permutation of labels were con-
ducted as part of the GLMM analysis (Figure 3.8). Per-mouse run times overlaid on the GLMM

fits (Figure 3.9), as well as the difference between the maximum run times in L. bulgaricus versus V.
atypica gavage, showed a distinction between ‘responders’ and ‘non-responders’ to V. arypica gavage
(Figure 3.10). Mice treated with V. atypica ran, on average, 13% longer than the control group (Figure
3.7). Testing the significance of coefficients in the GLMM for their contribution to treadmill run
time (Wald Z-test) showed that the sequence effect was not significant (P=0.758), while treatment
day (P =o0.031; negative effect on run time) and Veillonella treatment (P =0.016; positive effect on

run time) were significant (Figure 3.11 and Figure 3.8). In a separate experiment, levels of inflamma-
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Figure 3.6: a 16S composition in control subjects. b Veillonella relative abundance in control subjects.
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tory cytokines were quantified postexercise, and were significantly reduced in Veillonella-treated
animals compared with L. bulgaricus or phosphate buftered saline (PBS) (Figure 3.12; access Supple-
mentary Table 4 from Appendix B). To assess changes in muscle physiology, the glucose transporter

GLUT}4 was quantified via western blot, but we observed no changes regardless of treatment (Figure

3.13).

3.5 THE ATHLETE GUT MICROBIOME IS FUNCTIONALLY ENRICHED FOR THE METABOLISM

OF LACTATE TO PROPIONATE POSTEXERCISE

To test whether our results would be replicated in an independent cohort of human athletes, we
performed shotgun metagenomic sequencing of stool samples (n=87) from ultramarathoners and
Olympic trial rowers both before and after exercise (access Supplementary Table 5 from Appendix
B). Putative taxonomic abundances reproduced the previous 16S sequencing-based association with
Veillonella (Figure 3.14) (Truong et al., 2015). By utilizing novel algorithms that allow for cheap con-
struction of metagenomic gene catalogs at a massive scale through the efficient use of cloud com-
puting, we investigated phenotypic modulating effects of millions of microbial genes on athletes

by building a sample (n=87) by gene (n=2,288,155) relative abundance matrix (Figure 3.14) (Luber
etal., 2017; Li et al., 20155 Seemann, 2014; Fu et al,, 2012; Qin et al., 2012). The inability of Veillonella
to ferment carbohydrates, coupled with the high observed abundance of the lactate import permease
in previously sequenced isolates, suggests that metabolic enzymes facilitating lactate breakdown are

likely conserved (van den Bogert et al., 2013). Across the entire ultramarathon and rower cohorts,
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Figure 3.7: Mice gavaged with V. atypica had greater maximum run times per week than mice gavaged with L. bulgaricus
in an AB/BA crossover trial. The graph shows the maximum run times out of 3 d of consecutive treadmill running for a
given treatment (all mice switched treatments for the second week). The jitter plot shows each mouse as an individual
point, with the central bar representing the mean and error bars representing s.e.m. (n = 32). *P = 0.02, as determined
by two-sided paired t-test.
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Figure 3.8: a Density plot of maximum run times in the AB/BA crossover study. A two-sided Shapiro-Wilk normality
test on the maximum run times for each mouse in each treatment group resulted in P = 0.67, with the null hypothesis
that the distribution of data is normal (n = 64). b 95% confidence intervals for the coefficient effect on treadmill run
time in AB/BA crossover (Wald Z-tests, n = 64). Center values are the regression estimate for each coefficient. Error
bars represent the 95% confidence interval. c Histogram of P values for the treatment coefficient from LOOCV models
predicting treadmill run time. The red line represents the P value for the model trained without any hold outs (Wald
Z-tests, n = 64). d Histogram of P values for the treatment coefficient from 1,000 label permutations in GLMM models
predicting treadmill run time. The red line represents the P value for the model trained without any label permutation
(Wald Z-tests, n = 64 per permutation).
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Figure 3.9: Each of the 32 facets (each representing an individual mouse) has six longitudinal treadmill run times plot-
ted (three pre- and three post-treatment crossover). The shapes of the points represent the treatment sequence. Each
mouse facet has two horizontal lines showing the mean run time when dosed with L. bulgaricus (light blue) or V. atyp-
ica (light red). Each facet has a GLMM fit to all data in a treatment sequence (green), a LOOCV GLMM fit trained on

all mice except for the mouse the facet represents (red), and a GLMM fit showing the change in intercept related to
random effect for each mouse (blue).
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Figure 3.10: Difference in maximum run time between V. atypica and L. Bulgaricus gavage treatment periods, segre-
gated into ‘responders’ and ‘non-responders’ to V. atypica treatment (n = 32).
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Figure 3.11: GLMMs predicting run time in the 2-week AB/BA crossover trial. The colors of the lines (GLMM fits) and
points (runs by an arbitrary mouse) represent the treatment sequence (in the legend, L represents L. bulgaricus and V
represents Veillonella atypica). The shapes of the points represent the treatment at a given time point. These models
incorporate both random effects (individual variation per mouse that manifests longitudinally) and fixed effects (treat-
ment day, treatment sequence and treatment given). Visualization of all of the longitudinal data points with the GLMM
predictions overlayed shows the effect of V. atypica increasing performance on both sides of the crossover when aggre-
gated by treatment group (thick lines), as well as the trends for each of the 32 individual mice (thin lines). *P = 0.016, as
determined by Wald Z-test on model coefficients.
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Figure 3.12: a,b Cytokines after V. atypica and L. bulgaricus gavage. Each mouse sample is represented as an individual
point, with the central bar representing the mean and error bars representing s.e.m. (n = 64, 32 and 32 for baseline,

L. bulgaricus and V. atypica, respectively). c,d Cytokines after intrarectal propionate instillation. Each mouse sample

is represented as an individual point, with the central bar representing the mean and error bars representing s.e.m.
(n=32, 16 and 16 for baseline, L. bulgaricus and V. atypica, respectively). P values were determined by one-way ANOVA

followed by Tukey’s posthoc test.
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Figure 3.13: a Representative section of western blot showing GLUT4 abundance in pre-exercise states, as well as
following L. bulgaricus and V. atypica gavage. A stain-free control was used to normalize the densitometry analysis
shown. The experiment was performed once (n = 8). b Fold-change in GLUT4 abundance. Each point represents an
individual mouse sample, the centre bar represents the mean and error bars represent s.e.m. (n = 8).

there exists a group of gene families with differential relative abundance pre- and postexercise (Fig-
ure 3.15), representing every step of the enriched methylmalonyl-CoA pathway (P=o0.00147), de-
grading lactate into propionate, as assigned by Enzyme Commision (EC) ID numbers (Figure 3.16).
Given the limited prevalence of the methylmalonyl-CoA pathway across lactate-utilizing microbes
(Figure 3.17 and Figure 3.18, this enrichment postexercise may implicate Veillonella in causing func-
tional changes in the metabolic repertoire of the gut microbiome. We verified strong production of
acetate and propionate by performing mass spectrometry on spent media collected after growing
three Veillonella strains isolated from the human athletes (V. parvula, V. dispar and V. atypica) in
lactate-supplemented brain-heart infusion media (BHIL) and semi-synthetic lactate media (Figure

3.19; access Supplementary Table 6 from Appendix B).
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Figure 3.14: a Fraction of putative Veillonella relative abundance from metagenomics (calculated utilizing
MetaPhlAn2(Truong et al., 2015)) before and after exercise in rowers and runners. b Significant alleles (calculated
from pairwise ANOVA) that are present in each of the 87 samples. ¢ The aforementioned 396 significant alleles segre-
gated by exercise state and sample. d Histogram comparing non-redundant gene family size and annotation fraction.
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Figure 3.15: Enzyme-resolution, log-transformed relative abundances of differentially abundant non-redundant gene
families mapped by EC ID to methylmalonyl-CoA pathway components. a Pathway in aggregate. b-i Individual reac-
tions in the pathway (n = 8). Data are represented as violin plots, which display the distribution of data as a rotated

kernel density distribution.
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Figure 3.17: Bacterial phylogenetic tree showing the diversity of microbes that have the ability to utilize lactate as a

carbon source.

63



Acylphosphatase/phosphate acetyltransferase
Fumarate hydratase

Fumarate reductase

Lactate dehydrogenase

Malate dehydrogenase
Methylmalonyl-CoA carboxyltransferase
Methylmalonyl-CoA epimerase
Methylmalonyl-CoA mutase
Pyruvate:ferredoxin oxidoreductase
Pyruvate carboxylase

Pyruvate dehydrogenase
Succinate-CoA transferase

Succinate dehydrogenase

l Enzyme present

l Enzyme absent

Bacillus subtilis
Bifidobacterium bifidum
Escherichia coli
Eubacterium hallii
Eubacterium limosum
Lactobacillus bulgaricus
Leuconostoc lactis
Veillonella atypica
Veillonella dispar
Veillonella parvula

Mycoplasma gallisepticum
Rothia dentocariosa

Anaerostipes caccae
Clostridium butyricum
Selenomonas ruminantium
Staphylococcus aureus

Butyrivibrio fibrisolvens
Streptococcus thermophilus

=0
23
©

o
3
32
=S

wn
E o
»n O
& >
S &
oS
S
.:N
S
<<(

Pediococcus pentosaceus

Figure 3.18: Prevalence of enzymes in the methylmalonyl-CoA pathway that break down lactate into acetate and
propionate in reference genomes from the representative subset of lactate-processing microbes in Figure 3.17.

Butyrate (uM) Propionate (uM) Pyruvate (uM) Lactate (uM) Acetate (uM)
V. atypica LM 19£0.3"** 10,611 £ 584** 404" 431 £ 56" 92,432 + 3,129**
L. bulgaricus LM 9+0.5" 3+15 32+27 737 £ 45 4,985 + 247"
LM alone 11+0.1 4+05 41+04 851 + 6.6 1,741 £12.2
V. atypica BHIL 69 +0.5* 2,286 + 68" NA NA 4,149 + 118*
BHIL alone 147 £ 4.1 160+ 1.4 NA NA 7,557 +30

Figure 3.19: SCFAs detected in spent media after 48 h of growth with the indicated strain. LM, semi-synthetic lactate
media; NA, not quantified. Each table entry shows the mean = s.e.m. (BHIL, n = 2; LM, n = 3). P values from left to right,
row by row were: ***P = 0.0008; **P = 0.003; ***P = 4.4 x 10-7; ***P = 1.4 x 10-6; **P = 0.001; *P = 0.023; **P = 0.006;
*P =0.03; *P =0.02; and *P = 0.015, compared with the media control, as determined by two-sided Welch's t-test.
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Figure 3.20: Schematic of the 3 C flux-tracing experimental design. Mice were injected with * C; sodium lactate, then
sacrificed after 12 minutes. Serum and plasma were collected via cardiac puncture. Cecum and colon contents were
collected by dissection.

Veillonella species metabolize lactate into the short-chain fatty acids (SCFAs) acetate and propi-
onate via the methylmalonyl-CoA pathway (Ng & Hamilton, 1973). Lactate dehydrogenase—the
enzyme responsible for the first step of lactate metabolism—is present in a phylogenetically diverse
group of bacteria (Figure 3.17). Querying microbial isolate strain genome annotations from Na-
tional Center for Biotechnology Information (NCBI) shows that, unlike V. atypica, many other
microbes are theoretically capable of utilizing lactate through lactate dehydrogenase, but do not pos-
sess the full pathway to convert lactate into propionate (Figure 3.18). Other obligate anaerobes, such
as Anaerostipes caccae and Eubacterium hallii commonly ferment lactate into butyrate via different
pathways (Figure 3.18). E. ballii can also produce propionate; however, this has been demonstrated
as a biotransformation of 1,2-propanediol, rather than a complete pathway from lactate to propi-
onate. Of note, the reference genomes on NCBI for both Veillonella dispar and Veillonella parvula
are not annotated to have the succinate-CoA transferase needed for propionate production to occur;

this is likely to be due to an annotation error, as we validated the production of propionate via mass
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Figure 3.21: Abundance of ®C; lactate quantified relative to the abundance of unlabeled lactate.
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Figure 3.22: B C, lactate abundance normalized to the expected natural abundance of C; lactate. The ratio of la-
beled/unlabeled lactate was quantified for experimental samples, as well as for the unlabeled lactate standard. Exper-
imental samples are represented as the fold-change relative to the unlabeled standard. In Figure 3.21 and this figure,
each mouse sample is represented as an individual point, with the central bar representing the mean and error bars
representing s.e.m. (n = 7). P values were determined by two-sided, one-sample t-test versus natural abundance.
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Figure 3.23: Intracolonic infusion of propionate improves the maximum run time in mice. The graph shows the maxi-
mum run times out of 3 days of consecutive treadmill running. The jitter plot shows each mouse as an individual point,
with the central bar representing the mean and error bars representing s.e.m. (n = 8). The P value was determined by
two-sided unpaired t-test.

68



Liver

Muscle

Glucose Glucose

Lactate Lactate

Improved
performance

Microbiome

Figure 3.24: Proposed model of the microbiome-exercise interaction. Black arrows represent the well-known steps
of the Cori cycle, where glucose is converted to lactate in the muscle, enters the liver via blood circulation, and is then
is converted back to glucose in the liver via gluconeogenesis. Red arrows represent the steps proposed in this work.
First, lactate produced in the muscle enters the intestinal lumen via the blood circulation. In the intestine, it acts as

a carbon source for specific microbes, including Veillonella species. This causes the observed bloom in intestinal Veil-
lonella, as well as the production of SCFA byproducts (predominantly propionate), which are taken up by the host via
the intestinal epithelium. The presence of microbiome-sourced SCFAs in the blood improves athletic performance via
an unknown mechanism. Together, this creates an addendum to the Cori cycle by converting an exercise byproduct
into a performance-enhancing molecule, mediated by naturally occurring members of the athlete gut microbiome.

69



spectrometry on isolates of these species (access Supplementary Table 6 from Appendix B).

Taken together, these results show that not only is the genus Veillonella enriched in athletes after
exercise but the metabolic pathway that Veillonella species utilize for lactate metabolism is also en-
riched. This result raises the possibility that systemic lactate resulting from muscle activity during

exercise may enter the gastrointestinal lumen and become metabolized by Veillonella.

3.6 SERUM LACTATE CROSSES THE EPITHELIAL BARRIER INTO THE GUT LUMEN, AND
COLORECTAL PROPIONATE INSTILLATION IS SUFFICIENT TO ENHANCE TREADMILL

Run TiME

Next, we sought to determine whether systemic lactate is capable of crossing the epithelial barrier
into the gut lumen, as this has not been demonstrated before to our knowledge. To investigate this,
we performed tail vein injections of ®C; sodium lactate into mice colonized with either V. atypica or
L. bulgaricus, and sacrificed them 12 minutes after injection. This time point was chosen because it
was the earliest time at which we observed serum lactate levels return to baseline levels after tail vein
injections in pilot experiments. At sacrifice, we immediately collected serum and plasma following
cardiac puncture, and collected intestinal luminal contents by removing the colon and cecum from
the mice and gently sampling the inner surface of the tissue. By performing liquid chromatography—
mass spectrometry (LC-MS) on these tissues, we were able to identify ® C;-labeled lactate present in
both the serum and plasma, as well as in the lumen of the colons and ceca (Figure 3.20, Figure 3.21,

and Figure 3.22; access Supplementary Table 7 from Appendix B). We were unable to detect any
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B(;-labeled propionate in these tissues; however, the 12-minute time point from tail vein injection
to sacrifice is likely to have been insufficient time for labeled lactate crossing the gut barrier to be
metabolized into propionate by the gut Veillonella.

As we have shown that serum lactate is capable of entering the intestinal lumen, we sought to
determine whether Veillonella colonization may actively limit blood lactate levels by serving as a
metabolic ‘sink’. To test the capability of Veillonella to accelerate blood lactate clearance in vivo, we
performed intraperitoneal injections of sodium lactate in mice colonized with either V. atypica or
L. bulgaricus, and monitored blood lactate over time. Neither the basal nor the peak lactate levels
between the treatment groups were significantly different (Figure 3.25; access Supplementary Table
8 from Appendix B). The vast majority of lactate processing occurs in the liver (Phypers & Pierce,
20006), and although systemic lactate infiltrates the intestinal lumen, we did not observe a change in
overall lactate clearance on inoculation with Veillonella.

Propionate has been shown to increase the heart rate and maximum rate of oxygen consumption,
and to affect blood pressure in mice (Kimura et al., 20113 Pluznick et al., 20135 Pluznick, 2014), as well
as raise the resting energy expenditure and lipid oxidation in fasted humans (Chambers et al., 2018).
To test whether the exercise-enhancing effects of Veillonella may be attributable at least in part to
propionate, we performed intrarectal instillation of propionate in our mouse treadmill model. Pro-
pionate was introduced intrarectally rather than orally because colonic absorption provides a more
direct route for propionate to reach the systemic circulation, mirroring the location of Veillonella-
sourced propionate. Intrarectal propionate instillation (n=8) compared with saline vehicle (n=8)

resulted in increased treadmill run times similar to those of V. atypica gavage (P = 0.03; Figure 3.23).
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Figure 3.25: a Mice were gavaged either V. atypica or L. bulgaricus and, 5 h later, injected with sodium lactate

(750 mg kg-1). Blood lactate was measured 5 min postinjection and every subsequent 10 min (n = 8). Points are
means + s.e.m. b, Area under the curve (AUC) was determined for each mouse and compared between treatments.
Each mouse is represented as an individual point, with the central bar representing the mean and error bars represent-
ing s.e.m. (P = 0.72 by two-sided unpaired t-test, n = 8).

As in the Veillonella gavage experiments, we ran the same panel of inflammatory cytokines on serum
taken 40 min after treadmill running, but found no significant differences in cytokine levels (Figure
3.12; access Supplementary Table 4 from Appendix B). Therefore, the introduction of propionate
into the colon is sufficient to result in an enhanced exercise phenotype via a mechanism that does

not impact the inflammatory cytokines measured.

3.7 CoUPLING COMPUTATION AND EXPERIMENTATION

Coupling computational approaches, multi'omic data collection approaches and experimental val-
idation looks promising as a method to approach unvalidated metagenomic associations that have
been proposed in the past decade. Acting on this principle, we observed that: (1) Veillonella abun-

dance increased in the gut microbiome postexercise in two independent cohorts of athletes; (2) the
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Veillonella methylmalonyl-CoA pathway is overrepresented in athlete metagenomic samples postex-
ercise; (3) systemic lactate can cross the gut barrier into the lumen of the gut; (4) in a longitudinal
AB/BA crossover study in mice, Veillonella inoculation improved treadmill performance; and (s)
treadmill performance is improved in mice administered propionate via intracolonic infusion.

These data illustrate a model in which systemic lactate produced during exercise crosses to the gut
lumen and is metabolized by Veillonella into propionate in the colon, which in turn serves to pro-
mote performance. Gut colonization of Veillonella may be augmenting the Cori cycle by providing
an alternative lactate-processing method whereby systemic lactate is converted into SCFAs that re-
enter the circulation (Figure 3.24). SCFAs are absorbed in the sigmoid and rectal region of the colon
and enter circulation via the pelvic plexus, bypassing the liver and draining via the vena cava to reach
the systemic circulation directly (Araghizadeh, F.,Abdelnaby, A., 2012). Microbiome-derived SCFAs
then augment performance directly and acutely, suggesting that lactate generated during sustained
bouts of exercise could be accessible to the microbiome and converted to these SCFAs that improve
athletic performance.

In conclusion, we have shown that the microbiome may be a critical component of physical per-
formance, and highlight the benefits derived from it. An important question is how this performance-
facilitating organism first came to be more prevalent among athletes. We propose that the high-
lactate environment of the athlete provides a selective advantage for colonization by lactate-metabolizing
organisms such as Veillonella. Future studies are needed to help explain why there is an apparent
preference for Veillonella and not any of the many other lactate-metabolizing organisms. Veillonella

in the physically active host therefore serves as a potential example of a symbiotic relationship in the
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human microbiome.

3.8 COMPUTATIONAL METHODS

Wetlab methods that generated the data for the analyses below conducted by my two experimental

co-first authors for this project are located in Appendix B.

3.8.1 16S ANALYSIS

Each subject provided fecal samples on a daily basis, up to one week before and one week after the
marathon (controls did not run in the marathon but provided fecal samples). Next, we extracted
genomic DNA from these samples and performed 16S rDNA amplicon sequencing, followed by
bioinformatic analysis, to obtain genus-level resolution of bacteria in each individual’s microbiome
(access Supplementary Tables 1 and 2 in Appendix B).

16S reads were processed with the DADA2 pipeline and phyloseq (Callahan et al., 2016; McMur-
die & Holmes, 2013). There exist excellent alternatives to the software packages that were utilized
(Langille et al., 2013). Default settings were used for filtering and trimming. Built-in training models
were utilized to learn error rates for the amplicon dataset. Identical sequencing reads were combined
through DADA2’s dereplication functionality, and the DADA2 sequence—-variant inference algo-
rithm was applied to each dataset. Subsequently, paired-end reads were merged, a sequence table
was constructed, taxonomy was assigned, and abundance was calculated at all possible taxonomic

levels.
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3.8.2 16S MIXED-EFFECT MODELING IN THE HUMAN COHORT

We constructed a series of GLMM:s to predict Veillonella relative abundance in the marathon partic-
ipants from both random effects (individual variation per athlete that manifests longitudinally) and
fixed effects (United States Department of Agriculture (USDA) MyPlate consumption categories,
protein powder supplementation, menstruation status, race, time, body mass index (BMI), weight,
gender and age).

The longitudinal nature of the microbiome sampling, coupled with the unique lifestyles of ath-
letes, means that diet, physical characteristics, age, gender, ethnicity and the menstrual cycle could
potentially confound the association between postmarathon state and Veillonella relative abundance
(Jurkowski et al., 1981; Pimentel et al., 2017). As some food compounds can selectively increase the
relative abundance of Veillonella, 1,267 meal records logging every instance of food consumption
over the course of the study (access Supplementary Table 1 from Appendix B) were quantified ac-
cording to USDA MyPlate and associated with daily microbiome samples. LOOCV was performed
for the GLMM analysis where the Pvalue for the time coefficient was calculated for all permuta-
tions of eliminating one athlete, which revealed a general trend of no individual athlete driving sig-
nificance, with one minor outlier (Figure 3.5; Wald Z-tests). To ensure that an arbitrary shuffling
of participant labeling would not yield significant results, the GLMM was trained 1,000 times on
input data with permuted labels, which generated uniformly distributed P values and showed the
significance of the original labeling (Figure 3.5; Wald Z-tests). Thus, the observed significance of

the association between Veillonella relative abundance and pre- and postmarathon state is likely not
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confounded by any fixed effects. To test whether Veillonella has any phenotypic impact on running
ability, we next introduced Veillonella to mice in a treadmill experiment.

Modeling of 16S Veillonella relative abundance for athletes participating in the marathon was
done with the R nlme package (Pinheiro et al., 2014). A total of 1,267 meal records logging every
instance of food consumption over the course of the study were quantified according to USDA My-
Plate and associated with daily 16S samples by a nutritionist. Relative abundance was first modeled
as:

Abundance=B; + Biime + Bsex + Buweight + Bamr + Bage + Brace + Bmenstruation + Bvegerables +
Bfruits + Bgrains + Bprotein + Bdairy 1 Bdietary protein supplementation

Subsequently, a second model was generated that included interaction terms of time:vegetables
and time:menstruation. Significance was calculated for all of the coefficients included in the GLMM
with Wald Z-tests (default calculation in the library utilized). Coefficients were created with the
coefplota package (Bolker, 2012).

The code for the two models is provided below.

Model_1<-lme(Veillonella~time + sex +weight + BMI + age + race + menstruation
+vegetables + fruits + grains +protein+dairy+dietary_protein_supp,random

=~1|subjectID,data=marathonl6S)

Model_2 < -lme(Veillonella~time + sex +weight + BMI + race + menstruation +
vegetables + fruits + grains + protein+dairy +dietary_protein_supp+

time:vegetables + time:menstruation,random=~1|subjectID,data=marathonl6S)
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Model predictions overlaid on the underlying data were visualized with the ggplota R package
(Wickham & Chang, 2015). Model results were validated with both LOOCV and permutation test-

ing on shuffled labels.

3.8.3 TREADMILL RUN TIME MIXED-EFFECTS MODELING

Despite the high number of mice utilized in the AB/BA crossover experiment, comparisons of raw
run times in this context could be confounded both by carryover effect (modeled as a sequence ef-
fect) inherent in the longitudinal study design, as well as unavoidably high intermouse variation. To
account for this, we constructed a series of GLMM:s predicting run time. These models incorporate
both random effects (individual variation per mouse that manifests longitudinally) and fixed effects
(treatment day, treatment sequence and treatment type given). Modeling was conducted with the R
nlme package (Pinheiro et al., 2014). Visualization of coefficients was conducted using the coef2plot
R package (Bolker, 2012). Visualization of predictions overlayed on data was conducted using the R
ggplota package (Wickham & Chang, 2015).

Visualization of all longitudinal data points with the GLMM predictions overlaid showed both
the effect of V. atypica increasing performance on both sides of the crossover when aggregated by
treatment group (thick lines), and the trends for each of the 32 individual mice (thin lines) (Figure
3.11). LOOCV was performed for the GLMM analysis where the Pvalue for the V. arypica treat-
ment coefficient was calculated for all permutations of eliminating one mouse, which revealed that
no individual mice were driving significance (Figure 3.8; Wald Z-tests). To ensure that an arbitrary

shuffling of mouse labeling would not yield significant results, the GLMM was trained 1,000 times
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on input data with permuted labels, which generated uniformly distributed P values and showed
the significance of the original labeling (Figure 3.8; Wald Z-tests). This longitudinal modeling ap-
proach allows us to interpret that, as the treadmill runs were conducted back to back each week on
subsequent days, the mice in aggregate had decreasing run times as the time to exhaustion decreased
(visible as a slope of predictions in Figure 3.11), while V. atypica treatment independently increased
run times (visible as the crossover of predictions showing the Veillonella treatment group having
longer times to exhaustion on both sides of the crossover in Figure 3.11). To identify possible bio-
logical mechanisms for the Veillonella eftect, we quantified levels of various inflammatory cytokines
in the blood immediately following the treadmill run. We observed that several proinflammatory
cytokines, including tumor necrosis factor-a and interferon-y, were significantly reduced in V. atyp-
ica-treated mice compared with both the baseline and the control treatment (Figure 3.12; access Sup-
plementary Tables 4 and 13 from Appendix B). In a separate experiment, we quantified levels of the
muscle glucose transporter GLUT4 to assess the effects on muscle physiology, but found no dif-
ference between the V. atypica treatment and control (Figure 3.13). Together, taking into account
intermouse variation, the longitudinal study design and the possible carryover effects of an AB/BA
crossover trial, V. atypica treatment causes substantial increases in treadmill run time in mice.

The models were constructed to predict treadmill run time in the AB/BA crossover experiment
to include the treatment effect of Veillonella, period effects (time of treatment), carryover eftects due
to the treatment crossover, and effects for naturally occurring mouse variation. In general, we can
model expected run time as:

Sequence: V. atypica— L. bulgaricus Week 1: p + 7 4 ay Week 2: o + 7, + ap + Ay
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Sequence: L. bulgaricus— V. atypica Week 1: u + 7 4 ap Week 2: o + 7, + g + A

Where a4 and ag are treatment effects, A4 and Ap are carryover effects, and 7, and 7, are period
effects.

We initially attempted to model carryover effect as a sequence effect or a period-specific treatment

effect (interaction term). The R code for the models is provided below:

Model_1 < -lme(seconds_run~treatment + sequence + period,random

=~1|subject,data=datain)

Model_2 < - lme(seconds_run~treatment*period,random

=~1|subject,data=datain)

By gauging the correlation of coefficients, we selected Model_1 for the analysis in Figure 3.11.

3.8.4 METAGENOMIC ANALYSIS

All of the steps in the processing of raw metagenomic data were done utilizing the Aether package
(Luber et al., 2017). Raw reads were de novo assembled using megahit (Li et al., 2015). Open reading
frames and annotations were generated using prokka (Seemann, 2014). A gene family catalog was
generated from the called open reading frames at 95% identity utilizing the CD-HIT software pack-
age (Fu etal,, 2012). A raw abundance count matrix was generated utilizing the gene family catalog,
Bowtie 2 and SAMtools (Langmead & Salzberg, 2012; Li et al,, 2009). The raw abundance count
matrix was normalized both by sample and by gene length (Qin et al., 2012). Metabolic pathways

were queried using MetaCyc, and EC IDs were pulled from prokka annotations (Seemann, 2014;
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Caspi et al., 2010). R was utilized to perform the majority of statistical tests, with the exception of
pairwise analysis of variance (ANOVA) tests, for which the SciPy library in Python was used (Jones
et al., 2001). Root mean square error calculations were performed using the plotrix package (Lemon

etal., 2007).

3.8.5 METAPHLAN2 TAXONOMY IN METAGENOMICS DATA

Putative taxonomic abundances were calculated with MetaPhlAna (Truong et al., 2015) and found
to have the same association between Veillonella and exercise status as the previous marathon runner

results (P =o0.03; Figure 3.14).

3.8.6 ANNOTATIONS

To compare trends in the aggregate microbiome with the metabolic processes of microbes that
had elevated 16S abundance in the previous experiment, a pairwise ANOVA was performed on all
2.3 million genes in the catalog to look for significant differences before and after exercise. A to-
tal of 396 gene families with unique annotations showed statistically different relative abundance
(P<o0.005). While false discovery rate correction did not yield significant individual genes, of these
396 gene families, 391 share functional annotations with the reference assemblies of the V. aryp-
ica-type strain on NCBI. Of the significant genus-level results from the 16S data, Jeillonella has ex-
tremely high-quality assemblies of cultured isolates.

Significant alleles are present in each of the 87 samples (Figure 3.14). Interestingly, when all 396

significant alleles are segregated by exercise state and sample, discordant shifts of relative abundance
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are observed (Figure 3.14). This suggests that changes in global microbiome function are associated

with Veillonella abundance, and that conserved Veillonella genes may generally play metabolic roles.

3.8.7 COMPARATIVE GENOMICS

Genome annotations were retrieved from NCBI reference genomes. Phylogenetic trees were gener-
ated from NCBI taxonomy and visualized with phylo.io (Robinson et al., 2016). Heat maps were

generated with the pheatmap package in R (Kolde, 2012).

3.8.8 GENE CATALOG CREATION

Raw reads were processed and de novo assembled into 4,802,186 contigs (Luber et al., 2017; Li et al.,
2015). A total of 4,792,638 total open reading frames were called, which were subsequently clustered
into 2,288,155 gene families with a threshold of 95% identity to create a gene catalog alongside pu-
tative annotations assigned by homology (Seemann, 2014; Fu et al., 2012). Of these gene families,
801,307 were assigned annotations and 1,486,948 were putatively classified as hypothetical proteins.
Comparing annotation state versus gene family size yields the expected result that larger families,
which are likely to be present in more microbes, tend to have many more annotations (Figure 3.14).
Raw reads were then aligned back to the gene catalog to create a raw count abundance matrix (Lang-
mead & Salzberg, 2012; Li et al., 2009). This matrix was normalized both per sample and by gene

length to create a relative abundance matrix (Qin et al., 2012).
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3.8.9 PATHWAY ELUCIDATION

Reactions involved in the breakdown of lactate to both propionate and acetate were manually associ-

ated with EC IDs using MetaCyc (Caspi et al., 2010).

3.9 STATISTICS

3.9.1 16S ANALYSIS

For Figure 3.1 and Figure 3.2, Wilcoxon rank-sum tests with continuity correction were used to in-
vestigate differences in taxonomic composition before and after exercise. The mean Jeillonella abun-
dance was 0.9 orders of magnitude greater 1day post-exercise compared with rhour before exercise.

For Figure 3.3 and Figure 3.4, longitudinal data were modeled using a GLMM approach. In our
model, the random effect was individual variation per marathon runner. Fixed effects are shown in
Figure 3.4. An advantage of this type of statistical analysis is that it can account for the large varia-
tion between marathon participants in this type of study.

To determine statistical significance, a Wald Z-test was used to assign Pvalues to coefficients in the
GLMM. No outliers were removed in this analysis.

For Supplementary Table 1 (access from Appendix B, P values were generated using Welch’s t-test

(unequal variances t-test).
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3.9.2 CROSSOVER MOUSE EXPERIMENT

For Figure 3.7, each animal was treated with both V. atypica and L. bulgaricus as part of the AB/BA
crossover. Because all 32 animals were treated twice and compared between treatments, the Pvalue
was generated using a paired t-test (P=0.022). The normality assumption was assessed via Shapiro—
Wilk’s normality test (P =0.67), validating the use of the t-test.

For Figure 3.11, longitudinal data were modeled usinga GLMM approach. In our model, the
random effect was individual variation per mouse. Fixed effects were treatment effect, period effect
(the time point at which measurements were made) and carryover/sequence effect (if the order of
treatments in the crossover affected later results). An advantage of this type of statistical analysis is
that it can account for the large variation between mice in this type of study.

Figure 3.11 shows the number of seconds run until exhaustion at six time points, with each of
the 32 mice having one measurement per time point. For each treatment order (LLLVVV and
VVVLLL), the GLMM was fitted both to each individual mouse (skinny blue and red lines; note
that these are all parallel for mice in the same treatment order—the space between these lines repre-
sents the ‘random effect’ of natural variation between mice) and all mice with the same treatment
order (thick blue and red lines).

To determine statistical significance, a Wald Z-test was used to assign Pvalues to coeflicients in the

GLMM. No outliers were removed from this analysis.
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3.9.3 METAGENOMIC ANALYSES

For Figure 3.16 and Figure 3.15, Pvalues for individual genes were generated utilizing pairwise ANOVA
comparing the relative abundance before and after exercise. Non-significant families were associated
with homologs common in other microbes that do not change in abundance. To determine the sig-
nificance of potential over-representation, 1,000 global EC IDs were randomly selected, and mean
differences in relative abundance between samples taken before and after exercise were calculated.
These EC IDs were used to construct an odds table to determine the probability of having a set of
eight selected EC IDs with increases in mean gene level relative abundance after exercise. This calcu-
lation determined that the relative abundance changes in Figure 3.15 B-I are significant (P=o0.00147,

Fisher’s exact test for count data).

3.9.4 “C, FLUX-BALANCE EXPERIMENTS

For Figure 3.22, Pvalues were generated using a one-sample t-test. Ratios of labeled/unlabeled lac-
tate from samples were compared with the expected ratio determined mathematically. Each sam-
ple was independently compared with the expected ratio, then multiple hypothesis correction was
performed using the false discovery rate correction method of Benjamini and Hochberg (serum,

P=o0.00001; plasma, P =0.00001; cecum content, P=0.00001; colon content, P=o0.001).

3.9.5 INTRACOLONIC INSTILLATION OF PROPIONATE EXPERIMENT

For Figure 3.23, the Pvalue (P =0.028) was generated using Welch’s t-test (unequal variances t-test).
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Single Cell Immunology of Cancer

UsING THE T CELL RECEPTOR AS A MOLECULAR BARCODE, we identify a population of “tumor
matching” (TM) CD8" T cells in mouse peripheral blood that share TCRs with tumor infiltrating

lymphocytes (TILs) in MC38 tumors.” These TM cells have a unique transcriptional profile com-

"Portions of this chapter (application of shiny app to Layilin data) were previously published in the Jour-
nal of Experimental Medicine(Mahuron et al., 2020), and additional portions of it were under revision in a
separate publication at the time of dissertation submission.
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Figure 4.1: Overview of how both Single Cell Gene Expression (GEX) and Single Cell TCR data is collected from both
mouse tumor and mouse blood.

pared to T cells in the blood that do no have TCRs shared with TILs and represent all TIL T cell
phenotypes. Using machine learning, we leveraged this unique transcriptional program to identify a
marker panel that can recover TM cells via flow cytometry and subsequently validated top markers
using CITE-Seq in an independent mouse cohort. A schematic of the data collected to enable these

analyses is provided in Figure 4.1.

4.1 SINGLE CELL LANDSCAPES OF BLOOD AND TUMOR

We performed scRNAseq with TCR sequencing on paired peripheral blood and tumor from Bé
mice that received MC38 colon adenocarcinoma tumor cells subcutaneously in the flank. In order
to enrich for antigen-experienced cells in the blood, peripheral blood CDS8™ T cells were sorted for

CD44". Samples were computationally integrated and the single cell transcriptomic landscape was
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characterized of sorted CD44" CD8™ T cells in both blood (n=10,289 cells; Figure 4.2) and tumor
infiltrating lymphocytes (TILs) (n=8s40 cells; Figure 4.3). 10-15 Phenotypes were defined based on
gene signatures, and included a range of differentiation states including central memory, effector,
effector memory, IFN-stimulated, cycling, and exhausted (Singer et al., 2017). We overlaid TCR
clones between the tissues and observed a notable population of CD8+ T cells in the blood that
shared matching TCRs with CD8+ T cells in the tumor, which hereafter are referred to as “tcumor-
matching” or TM cells (Figure 4.4). When overlaying the location of TCRs in the tumor that have
matches in blood, cells were detected in every transcriptional cluster in the tumor (Figure 4.5), sug-
gesting that the TM cells present in blood provide a broad window into the clones in the tumor mi-
croenvironment. Contextualizing the TM cells in the context of the entire cell landscape revealed sig-
natures indicative of stronger proliferation and activation capacity than non-matching cells. These
data suggested that TM cells in the blood provided a wide window into many phenotypes of T cell
differentiation in the tumor, and that they could be clinically useful if they could be distinguished
from the remainder of cells in blood. Indeed, when we created an integrated landscape of all cells
from both tissues and applied trajectory inference, we observed the TM cells fitting into distinct
lineage states (cycling and exhausted), but also being members of lineages that represent all T cell

phenotypes in the tumor, which goes against the current understanding in the field.
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4.2 CURRENT UNDERSTANDING OF THE T CELL RECEPTOR REPERTOIRE

The results presented in this chapter are slightly surprising when taken in context with recent studies
in the field. Prominent work looking at specificity groups in the TCR repertoire has suggested that
said repertoire is incredibly vast, and the TCRs do not need to have perfectly matching alpha and
beta chains in order to recognize a common antigen (Glanville et al,, 2017). Rather, this work sug-
gests that TCRs containing merely similar motifs in the alpha and beta chains are able to recognize
common antigens, and that it is a rare occurrence to find perfect sequence matches in both chains

in different T cells. A updated version of the method developed by the same group that is designed
to match these motifs between T cells to identify common antigen specificity found similar results
(Huang et al., 2020).

A recent paper with a a sample collection strategy of sequencing human tumor, blood, and longi-
tudinal human tumor introduced the idea of “clonal replacement”, where large clones in the tumor
do not persist and instead are replaced over time, perhaps as a response to tumor immune evasion
(Yost et al., 2019). Due to this finding of clonal replacement, this study claimed not to find repre-
sentative matching clones for all major tumor cell populations in paired blood, which differs sig-
nificantly from our study. This could potentially be because of differences between human and
mouse studies, but it is also possible that the clonal replacement study did not perform deep enough
sequencing of their 5> TCR library to properly identify cells with perfectly homologous chains be-
tween tissues. Thus, in the context of recent work in the field, what is presented in this chapter is

significantly different and raises the question of great relevance querying whether our mouse find-
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Figure 4.2: Clustering and UMAP visualization of peripheral blood (n=10,289 cells, paired MC38 tumor also collected)
on day 18+ post tumor cell implantation. Data integrated from three mice (M1, M2, and M3) from two independent
experiments (experiment 1 = M1, experiment 2 = M2, M3). Colors indicate distinct transcriptional clusters determined
using Seurat clustering. Labels marking each cluster indicate the phenotypic description of the cluster based on gene
expression data (see Methods).

ings will generalize to humans.

4.3 USING MACHINE LEARNING TO MAKE PREDICTIONS ABOUT CLONAL T CELL LIN-

EAGES

Considering the observation that TM cells in the blood had a unique transcriptional profile com-

pared to non-matching cells, we determined whether classifiers could be constructed that were
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Figure 4.3: Clustering and UMAP visualization of MC38 tumors (n=8,450 cells, paired blood also collected) on day 18+
post tumor cell implantation. Data integrated from three mice (M1, M2, and M3) from two independent experiments
(experiment 1 = M1, experiment 2 = M2, M3). Colors indicate distinct transcriptional clusters determined using Seurat
clustering. Labels marking each cluster indicate the phenotypic description of the cluster based on gene expression
data (see Methods).

trained on gene expression (GEX) data to predict whether blood cells match to the tumor with train-
ing labels defined by TCR matches (Figure 4.6) (Pedregosa et al., 20115 Luber, 2016). Subsequently,
to explore the possibility of tracking these cells using standard flow cytometry-based sorting meth-
ods, classifiers were created with training data limited to only cell surface markers (Figure 4.7, cross
validated AUC=0.9849). Top contributing genes to these predictions were identified using COMET
(Figure 4.8) (Delaney et al., 2019). Based on these results, a method was applied that utilizes the XL-
MHG test to robustly predict flow-cytometry marker panels for specific cell populations to the TM
cells (Delaney et al., 2019). Figure 4.10 shows the top predicted markers assigned into putative bio-
logical function. Flow cytometry was used to validate that many of the markers that were detected at

the transcript level were also detected at the protein level. Moreover, many of the markers detected
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Figure 4.4: UMAP showing blood CD8+ T cells colored in the integrated mouse data that have a TCR matching to
CD8+ T cells found in tumor (referred to as TM cells), colored by each mouse. Numbers next to each sample in the
legend indicate the number of TM cells recovered in each mouse. Grey indicates CD8+ T cells that do not have a TCR
matching to T cells in tumor (referred to as non-TM).
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Figure 4.5: UMAP showing tumor CD8+ T cells colored in the integrated mouse data that have a TCR matching to
CD8+ T cells found in blood (referred to as TM cells).
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Figure 4.6: Logistic regression showing classification of cells as TM or non-TM based on all genes. Shown are the first
two principal component projections (left), ROC curves (middle), and the Recall-Precision plots (right) with 5-fold cross
validation.

in our scRNAseq data were also detected as co-expressed on CD44+ CD8+ T cells by flow cytom-
etry (Figure 4.9). In order to confirm that detection of surface proteins were successfully enriching
for our TM population based on having TCRs that matched to TIL, we performed a validation
cohort experiment and sequenced GEX, TCR, and CITE-Seq antibodies for predicted surface mark-
ers (CD39, CX3CRy, and NKG2D) simultaneously and observed that TM cells were subsequently
overrepresented and strongly aligned to the protein expression for all of these markers (Figure 4.11)
(Stoeckius et al., 2017).

Our algorithmic approach to generate marker panels (perhaps patient specific) to identifty TM
cells coupled with future longitudinal studies will be widely applicable to the field in assisting in the
creation of diagnostics that aim to predict response to immunotherapy. These data show the poten-

tial for the use of single-cell RNA-seq to identify TM CD8™ T cells in blood that provide a wide
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Figure 4.7: Logistic regression showing classification of cells as TM or non-TM based on a pre-selected list enriched
for surface-marker genes (Chihara et al., 2018). Shown are the first two principal component projections (left), ROC
curves (middle), and the Recall-Precision plots (right) with 5-fold cross validation
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Figure 4.8: Top genes as calculated using COMET (Delaney et al., 2019) that contribute to performance of the classi-
fiers (Figure 4.6 and Figure 4.7) utilized to predict tumor matching cells in blood.
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Figure 4.9: Comparison of CX3CR1, CD39, and NKG2D on CD81 T cells in blood vs MC38 tumors. This plot was
created by Kristen Pauken.
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Figure 4.10: Top markers from the classification and XL-MHG steps assigned to putative biological function from the
literature (Negative Regulatory Pathways, Trafficking, Postive Regulatory Pathways, and NK Receptors). This plot was
created by Kristen Pauken.
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Figure 4.11: Results from 2 mice where GEX, TCR, and CITE-Seq (CX3CR1, CD39, and NKG2D antibodies) was col-
lected; this data shows that the computationally selected markers have high expression on “tumor matching” cells from
blood. Matching plots made by overlaying TCR data on a UMAP calculated from GEX data. P Values generated from
two sided t tests considering the null hypothesis that marker expression and tumor matching status as determined by
TCR sequence matching are independent.

window in the immunologic landscape of the tumor, and to provide new means to track these cells
and monitor their responses to therapy. Future work needs to be done to make these computational
methods that work well in mouse also work in humans, where T cell phenotypes are more complex

due to the complex antigen stimulation history and lifetimes of senescent T cell memory.

4.4 COMPUTATIONAL METHODS

Wetlab methods that generated the data for the analyses below conducted by my experimental co-

first authors for this project are located in Appendix C.

4.4.1 DEMULTIPLEXING AND READ PROCESSING

Raw reads were processed using cellranger v3.0.2 to generate raw counts matrices of gene expression

and csv files corresponding to TCR clonality. Aether version 1.0 (Luber et al., 2017) was used to
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process certain resource heavy jobs on compute instances rented from Amazon Web Services. TCR
data were additionally processed for downstream use with a group of scripts written by the authors

to determine for each cell barcode the alpha and beta chain attributes detected.

4.4.2 COMPUTATIONAL PROCESSING OF GENE EXPRESSION DATA

All analyses were conducted using R version 3.6.1 and Seurat version 3 with additional utilization of
the dplyr, data.table, ggplota, cowplot, viridis, gridExtra, RColorBrewer, ggpubr, ggrepel, gtools, De-
scTools, doParallel, doSNOW, and tibble packages (R Core Team & Others, 2013; Butler et al., 2018;
Wickham & Francois, 20155 Dowle et al., 2019; Wickham & Chang, 2015; Wilke, 2016; Auguie &
Antonov, 2017; Neuwirth, 2014; Kassambara, 2018; Slowikowski, 2017; Warnes et al., 2015; Signorell
et al., 2016; Analytics & Weston, 2013; Miiller & Wickham, 2018). Seurat objects were created with
the min.cells parameter set to 3 and the min.features parameter set to 400. Filtering cells based on
expression of housekeeping genes was conducted using the human and mouse (where appropriate)
gene lists maintained by the Seurat developers (available on the Satija lab website), with cells passing
the filtering criteria if they had expression greater than 0 for more than half of the genes in the list.
Subsequently, the MitoCarta database from the Broad institute was utilized to filter out cells based
on expression of mitochondrial genes (Calvo et al., 2016). Cells were filtered out if they expressed
more than 500 of the 1158 mitochondrial genes in human, or if the number of mitochondrial genes
expressed was higher than 2 standard deviations from the mean in mouse.

Data were normalized using the default Seurat function (generating log-transformed transcripts-

per-10K read measurements) followed by scaling, and variable genes were found using “ExpMean”
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for the mean.function parameter and “LogVMR” for the dispersion.function parameter. The Run-
PCA function was run utilizing so principal components and then the FindNeighbors function was
run using 30 dimensions. Subsequently, the FindClusters function was run with a resolution aiming
to generate 5-7 biologically meaningful clusters per sample. When applicable, samples were inte-
grated using the SCTransform method (Hafemeister & Satija, 2019). Upon obtaining transcriptional
clusters in the integrated datasets, upregulated genes associated with each cluster were determined

via the Wilcox Rank Sum test implemented in the FindAllMarkers function in Seurat.

4.4.3 SINGLE-CELL TCR AND CLONAL ANALYSIS

Cells for which at least one alpha and one beta chain were annotated in the TCR data were deter-
mined as “tcumor/blood-matching” or “tumor/blood-non-matching” based on whether there was a
cell in the paired tissue data that had the exact same alpha and beta chain composition as the given
cell. Only cells that had at least one alpha chain and one beta chain annotated were included in all

of the analyses and visualizations comparing “matching” to “non-matching” cells. Two cells were as-
signed to be in the same clone if they had the exact same sets of alpha and beta chains assigned. This
strict definition was used to ensure each pair of cells within the same clone has complete similarity of

the TCR chains detected, and hence is with high probability derived from the same T cell clone.

4.5 SHINY Arp

In the process of exploring the data for the previously described project and building machine learn-

ing models to predict whether a cell in blood is tumor matching or not, it became clear that while
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there are great tools for processing and visualizing 10X s’ sequencing data (Satija et al., 2017; Butler
et al., 2018; Wolf et al., 2018; Hindson et al., 2014; Freytag et al., 2018), there do not exist quality tools
for visualizing 5> TCR data in the context of gene expression data. To allow for rapid hypothesis
generation and collaboration with experimental collaborators, I built a Shiny web application to vi-
sualize TCR data, matching clonality, and other related plots (Beeley, 2016; R Core Team & Others,
2013).

The Shiny web application can be accessed at http://3.18.231.190:3838/matching/. Addi-
tionally, as this website is not guaranteed to be hosted for eternity, the code to generate all appli-
cation views described below is also included in Appendix D. Data outputted from the 10X cell-
ranger pipeline is processed with the TCR clone pipeline (available at https: //github.com/
MSingerlLab/blood-tcr-pipeline and in Appendix D), then integrated into a Seurat object
and lightweight CSVs metadata files (Satija et al., 2017) which are accessed by the application to re-
actively generate plots. Cells that are “matching” according to clonotype in the TCR pipeline are
defined as cells between tissues that have exact match in TCR sequence and have at least one alpha
and one beta chain. There are six views (with a tab for each in the menu bar) in the Shiny Appli-
cation: viewing louvain clustering (De Meo et al., 2011) for a selected tissue (Figure 4.12), viewing
“matching” T cells between two selected paired tissues (Figure 4.13), viewing marker expression for a
selected tissue (Figure 4.14), viewing clonal expansion for a selected tissue (Figure 4.15), viewing num-
ber of genes per cell for a selected tissue (Figure 4.16), and viewing individual clones for a selected
tissue (Figure 4.17). All of the views in the Shiny application are reactive, meaning that the page will

automatically update when user input (i.e. selected tissue) is changed; plots are generated on the fly
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Figure 4.12: View of the Shiny Application showing pre-computer Louvain clustering of a sample. The view is reactive
and the plots change according to the sample selection toolbar on the left.

on the backend server hosted by AWS using their EC2 product.

4.6 APPLICATIONS OF THE SHINY APPLICATION

The Shiny App was utilized on human paired blood and tumor data for a project that I contributed
to as a middle author showing how Layilin augments integrin activation to promote antitumor im-
munity (Mahuron et al., 2020). The functionality of the Shiny application (access code in Appendix
D) to view marker expression across tissues (Figure 4.18) and T cell clonality (Figure 4.19) were both
utilized. Additionally, the T cell clone processing pipeline output (access python code in Appendix

D) was used to generate coxcomb plots showing information about the TCR repertoire (Figure
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"Primary Tissue' is the sample selected on the left and 'Secondary Tissue' is the sample that appears at the top of this page.

Figure 4.13: View of the Shiny Application showing matching T cells (defined as having a perfect match between all
called alpha and beta chains while also having at least one alpha chain and at least one beta chain) between two tissues.
On the left if a selector for choosing the primary tissue; after this is selected a “secondary tissue” selector is reactively
generated (there is a selector in case there are more than 2 paired samples; if there is only a single secondary tissue
this is automatically selected and there is no option to change it). Once the primary and secondary tissue are selected,
four UMAP plots are generated on the backend and reactively added to the page. The first row contains plots for

the primary tissue while the second row contains plots for the secondary tissue. The first column contains plots of
matching cells and the second column contains plots of not matching cells. In each plot, if a cell is not expanded at all it
is colored black. If it is expanded it is colored according to a grey to purple gradient. For a given tissue, both of the two
plots (matching and not matching) are plotted in the same UMAP space.
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Figure 4.14: View of the Shiny Application showing marker expression from a tissue selected in the sample selector on
the left of the screen. Gene names entered into the “Genes” text entry field will generate UMAP plots for the selected
markers and automatically space multiple plots out on the page. Smart text autocompletion is also implemented for
the gene entry field.
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Figure 4.15: View of the Shiny Application showing clonal expansion from a tissue selected in the sample selector on
the left of the screen. In the UMAP plot, if a cell is not expanded at all it is colored black. If it is expanded it is colored
according to a grey to purple gradient. The plot generated in this menu is similar to the plots generated in Figure 4.13,
with the main difference that there is no segregation of the plot into matching and not matching states as only one

tissue is being plotted.
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Figure 4.16: View of the Shiny Application showing Number of genes from a tissue selected in the sample selector on
the left of the screen. In the UMAP plot, number of genes are colored on a gradient from grey to red.
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Figure 4.17: View of the Shiny Application showing T Cell clones from a tissue selected in the sample selector on

the left of the screen. Selecting a TCR sequence from the dropdown menu (ordered according to descending clone
size) will reactively generate a UMAP plot where cells in the clone are red and cells that are not in the clone are black.
Clones are assigned based on perfect TCR matching in both alpha and beta chains with the requirement that a match-
ing cell have at least one alpha chain and at least one beta chain.
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Figure 4.19: UMAP plots generated from scRNA-seq and scTCR-seq demonstrating LAYN expression and clone size
from a human patient involved LN. Clones are defined as sets of cells with perfect matches for all called TCR 2 and

chains from single-cell TCR data.
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Figure 4.20: Coxcomb plots showing the 20 most expanded LAYNT and LAYN clones in a human patient involved LN.
Each pie slice represents a unique CcD8™ Teell clonotype, and pie slice height is proportional to clone size.
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Conclusion

EACH OF THE PROJECTS THAT I HAVE WORKED ON HAS ADVANCED OR PROVIDES POTENTIAL
TO ADVANCE THE FIELD into which is was introduced. However, there were many failures that
led to the successful projects in my dissertation. In this conclusion, I will briefly go over two failed

projects that enabled the portions of my PhD that were published, summarize the work covered by
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my dissertation, and outline some potential future directions.

5.1 FAILED PROJECTS

Many of my projects have failed and will never be included in the scientific record. It is still impor-

tant that why they failed is documented.

s..i  DETECTING HGT 1N BACTERIA FROM CHIMERIC LONG READS

OVERVIEW OF IDEA

The general idea for this failed project is quite simple: circa 2016 when long read sequencing from
Oxford Nanopore (ONT) was starting to have actually usable base calling accuracy and the ability
to generate quality microbial contigs (Figure 5.1), it seemed promising to try to infer potential Hor-
izontal Gene Transfer (HGT) events between microbes by sequencing new samples. The basic idea
here is that at some point in the past, a HGT event event occurred between two microbes which
were then sequenced as isolates and deposited into a database such as the ones provided by NCBI.
With traditional short read sequencing, there is large probability that genetic material transferred
from one microbe to another is not included in assembly scaffolds generated from short reads. How-
ever, using long read sequencing of environmental or gut samples could yield reads that have good
mappings to more than one isolate reference generated from scaffolds utilizing short Illumina reads
(Figure 5.2). Subsequently, potential HGT sites in reference isolate genomes could be algorithmi-

cally “imputed” (Figure 5.3).

110



3-50kb Oxford Nanopore Reads

[ Better, More
De novo Assembly of Pooled, Represen't'atlve
I Non-barcoded Reads... Scaffolds!!
/ Resolved to
Contigs
9 contig 1 1‘

/ R
* contig 2

Hidden Markov Model
Base Calling

CONTIG CONTIG
V ROB

REFERENCE

Figure 5.1: lllustration of how scaffolds for microbial assemblies could be improved through the utilization of long
reads.
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Figure 5.3: lllustration of how potential HGT events could be “imputed” into existing reference genomes from informa-
tion contained in “chimeric” long reads have many-fold genome coverage in
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FAILURES

After implementing a scraper to download many isolate genomes, it became apparent that the scale
of this problem is quite challenging in the computational, which in part motivated some of the work

in Chapter 2.

5..2 DCAs9 COMPLETE METAGENOMES

BACkGROUND

Low abundance microbes play a crucial role in microbial communities (Kurm et al., 2017; Dawson
etal,, 2017; Hausmann et al.,, 2016). However, current metagenomic sequencing techniques do not
account for low abundance microbes as the random shotgun method recovers many-fold genome
coverage of the most abundant constituents, but only a few reads from the lowest abundance con-
stituents (see illustration in Figure s5.4). It is past time for the field of metagenomics to move be-
yond marker gene and 16S estimates of taxonomic abundance and develop new methods that can
accurately recover the full genomes of low abundance microbes. Without such genome recovery,
functional elucidation of the mechanisms underpinning how communities of microbes interact
with themselves and their environment will be difficult to achieve. Developing a sequencing system
that is comprised of the coupling of a gRNA selection algorithm and an engineered biotinylated
catalytically-dead Casg (bdCasg) pulldown with the goal of recovering the currently unrecoverable

genomes of low abundance microbes could potentially recover low abundance microbes.
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Figure 5.4: a High abundance microbes have many-fold genome coverage in shotgun sequencing; low abundance
organisms are hardly sampled at all. Preliminary data showing efficiency of engineered dCas? based DNA pulldown
method. b Purification of His- MBP-tagged dCas9. c Gel analysis of recovered DNA from pulldown assays at varied
molar ratios of pUC19 to biotinylated dCas9. d Measurement of recovery ratios by Qubit DNA assays.
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ExPERIMENTAL WORK

To show feasibility of using a bdCas9 pulldown to retrieve desired genomic DNA, Casg plasmids
were modified with mutations at sites D1oA and H840A to disrupt the catalytic residues of both
HNH and RuvC-like domains and create catalytically dead (dCas9) that has no endonuclease abil-
ity.” Subsequently, His-MBP tagged dCasg was purified via a resin filter (Figure 5.4 B) and a biotin
bead was affixed to create bdCasg. At varying molar ratios, bdCas9 and pUCi9 plasmids were com-
bined with a constant amount of gRNA with target regions matching pUCi9; bdCasg were subse-
quently pulled down with a Streptavidin coated bead and bdCasg was separated from bound pUCrg
with a phenol-chloroform solution (Figure 5.4 C). Qubit assays were performed both before intro-
duction of bdCasg and after the post pulldown separation for varying molar ratios to measure DNA
recovery efficiency (Figure 5.4 D). These results show that with a sufficient concentration of bdCaso,
pulldown of targeted genomic DNA fragments large enough (pUCig is 2686bp) to theoretically

amplify and assemble circularized low abundance microbial genomes is feasible.

COMPUTATIONAL GOALS

The computational goal of this project was to develop an algorithm to effectively identify unique
genomic regions in low abundance microbes. An issue with any Casg based targeted binding is the
selection of gRNAs whose 20bp target regions are unique to the desired genomic DNA binding site

s0 as to minimize off-targets. The combinatorial complexity of avoiding off targets is not compu-

“I worked on this project jointly with an experimental postdoc, Tao Xu

116



tationally scalable beyond 1oMbp of genomic material ("1 large genome) (Spoto et al., 2017). Due

to properties of de bruijn graphs, when metagenomes are de novo assembled from one sample con-
taining many microbes, reads that do not incorporate into the consensus contig are less likely to
have enough homology to potentially cause an off-target effect and more likely to be part of a low
abundance microbe. Thus, given reads from a metagenomic sample, my proposed approach to select
gRNA target regions corresponding to low abundance microbial genomes is to perform de novo
metagenome assembly, then select the set of reads that were not used. Using references databases
and trained Hidden Markov Models, putative non-microbial reads (archaea, phage, eukaryotes, etc.)
could be filtered out. The proposed algorithm would then select the subset of these reads that pu-
tatively minimize off-target effects. These sequences could then be utilized to create gRNAs that

target low abundance microbes for any Casg based targeting system.

FAILURES

While this system worked great on the pUCig plasmid trials, pilots with minimum communities
of microbes abjectly failed (Wymore Brand et al., 2015). This was likely either due to problems in
the synthetic biology platform, or the algorithm not properly accounting for complex homology in
microbial genomes. More information about followup projects that try to decipher and quantify

the complexity of the genetic landscape of the microbiome are covered in Chapter 2.

1y



5.2 INFLUENCE OF DISSERTATION PROJECTS ON THE FIELD

5.2.1 AETHER

Shortly after Aether was published, Amazon introduced a nearly identical algorithm on their plat-
form. This is interesting as Amazon essentially serves as a market maker offering an illiquid asset
(compute servers): they control the prices but must compete with other companies offering a similar
product (Google, Microsoft, etc.). Anecdotally, shortly after Aether was published, there were quite
substantial market distortions on the secondary cloud computing marketplace, which clearly was
not in Amazon’ interest. However, after AWS implemented their own version of our open source
algorithm, the playing field was more level: every AWS user was now able to access predictions about
whether their spot instances would terminate.

This feature release by Amazon certainly decreased the utility of Aether in obtaining extremely
cheap cloud computing for genomic assemblies. In a way, Aether was taking advantage of a zero-
sum game for people who used it. However, the feature introductions that Aether spurred played a
role in leveling the playing field for everyone: users at small Universities without their own clusters

can now attempt to utilize cloud computing without paying exorbitant prices.

5.2.2 THE ATHLETE MICROBIOME

The athlete microbiome paper has had significant influence on both debates about policy and sport-
ing; it has also influenced the microbiome field. Our publication of this paper spurred widespread

discussion on social media and speculation that sporting could potentially be ruined forever by hav-
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ing doping be possible through a microbe that may or may not be naturally present in the guts of
elite athletes. Does the microbe engraft into the GI tracts of elite athletes because of higher lactate
levels or do athletes become elite because of coincidental engraftment of the microbe? This question
has not yet been answered.

In the context of contributions to the microbiome field, our findings related to the discovery of
Veillonella as a performance enhancing microbe provide a strong argument for the potential value
of moving away from easy to use and off the shelf reference based metagenomics tools. Rather, con-
ducting more challenging analyses requiring de novo assembly of sequencing samples such as in our
study would likely benefit many other studies. Critics of non reference based approaches argue that
after assembly and gene catalog creation occurs, the vast majority of genes detected have no func-
tional annotation and no route to this without involved experimentation (Quince et al., 2017).

However, while it is true that the vast majority of genes in the catalog generated for the athlete mi-
crobiome paper had no functional annotation (approximately 2 out of 2.3 million), we were still able
to discover unannotated function by inferring where poor annotations had occurred in reference
databases, which led to hypothesis generation about novel microbial enzymatic chemistry and inter-
esting metabolism. These hypotheses were subsequently experimentally validated. Leveraging our
gene catalog allowed us to look at the microbiome as a system, and then improve our understanding
of how it worked in the context of the human host. Such an approach would never have worked
had we solely utilized pre-existing reference based approaches, as the novel biology discovered was

not present in said databases.
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5.2.3 TCR MATCHING

As the single cell immunology chapter is still in revision at the time of submission of this disserta-
tion, it has not yet had the ability to exert any influence on the field of single cell cancer immunol-
ogy. However, once it is published the results that the field will likely find most interesting are the
fact that exactly matching TCR chain sequences are present between paired tissues at a greater than
expected frequency. This could have potential exciting implications in the future, as this may pro-
vide some utility for future algorithms that try to detect whether a tumor will respond or not to

immunotherapy based on a peripheral blood draw.

5.3 CONCLUSIONS

Soon after Aether was published (open source under a MIT license), Amazon Web Services imple-
mented a nearly identical predictor on their AWS platform which provided a GUI that allowed users
to see predictions about whether a spot instance that they chose to bid on would be terminated or
not. While certainly detracting from the number of citations received, Aether laid the foundation
for many scientists working with large scale data to be able to access cheaper and more efficient com-
pute.

The athlete microbiome project received substantial media attention almost immediately after it
was published in ArsTechnica, Forbes, The New York Times, The Los Angeles Times, CNN, NPR
Science Friday, Der Spiegel, Scientific American, PBS, and The Guardian because the idea of a probi-

otic supplement that could yield to undetectable doping is an idea that permeates instantly into the
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sports obsessed American conscious. The power of this project was showing how powerful coupling
experimentation and computational approaches can be: the whole is greater than the sum of the
individual parts.

The machine learning approaches for reasoning about T cells in the context of cancer immunother-
apy are perhaps the most important contributions that this dissertation makes, as they lay the very
initial ground work for liquid biopsies that could predict effectiveness of cancer immunotherapy

treatments far in the future.

5.4 FUTURE DIRECTIONS

A general theme of my dissertation work has been building computational tools to enable the han-
dling of complexity in biological problems at a scale not previously possible. Advances in spatial
transcriptomics and multiplexed imaging make relevant to the field of computational biology mas-
sive scale imaging data with greater complexity than traditional sequencing data; this area greatly

needs development of computational tooling over the next few years.
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Aether: Scaling Cloud Compute

A1 DATA AVAILABILITY

Data utilized are available at https://pubs.broadinstitute.org/diabimmune and with
EBI SRA accession ERPo05989. Source code is available at (https://github.com/kosticlab/
aether). Examples, documentation and a tutorial are available at http: //aether.kosticlab.

org.
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Ao TuTORIAL

We have provided a tutorial to help users with migrating their computational workflows to Aether.

The tutorial can be accessed here: http://aether.kosticlab.org/tutorials/. Additionally,

the tutorial page provides information about using Aether across multiple cloud compute service

providers or with your own hardware.

A.3 CommAND LINE OPTIONS

Usage: \textit{aether} [OPTIONS]

The \textit{Aether} Command Line Interface

Options:

-I, --interactive

--dry_run

-A, ——input-file TEXT

Enables interactive mode.

Runs \textit{Aether} in dry-run mode. This shows what
cloud computing resources \textit{Aether} would use,
but does not actually use them or perform any
computation.

Runs the LP algorithm as a dry run with the

CPLEX solver instead of the default solver

The name of a text file, wherein each line
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corresponds to an argument passed to one of
the distributed batch jobs.

-L, --provisioning-file TEXT Filename of the provisioning file.

-P, —-processors TEXT The number of cores that each batch job
requires
-M, --memory TEXT The amount of memory, in Gigabytes, that each

batch job will require.
-N, —--name TEXT The name of the project. This should be
unique, as an S3 bucket 1is created on Amazon

for this project, and they must have unique

names.
-E, —--key-ID TEXT Cloud CLI Access Key ID.

-K, --key TEXT Cloud CLI Access Key.

-R, --region TEXT The region/datacenter that the pipeline should

be run in (e.g. "us-east-1").

-B, --bin-dir TEXT The directory with applications runnable on
the cloud image that are dependencies for your
batch jobs. Paths in your scripts must be
reachable from the top level of this
directory.

-S, —--script TEXT The script to be run for every line in dinput-
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file and distributed across the cluster.

--data TEXT The directory of any data that the job script

will need to access.

--help Show this message and exit.

Al

StEPs NEEDED To RUN AWS BaTcH

An AWS Batch user one must first manually set up IAM user permissions, which is a 12 step

process.

Subsequently, an AWS Batch user needs to create IAM roles for these IAM users, which Ama-

zon’s most detailed batch instructions do not provide clear instructions for.

. Subsequently, an AWS Batch user then needs to follow an up to 13 step process to manually

create a key pair for the AWS Batch backend to authenticate to provisioned resources that the

batch process job will end up using.

Subsequently, an AWS Batch user must manually change non-default networking settings to
create a VPC (a closed virtual network) where the provisioned AWS Batch jobs will run. This

is a 5 step manual process.

. Subsequently, an AWS Batch user must manually create a security group to allow correct port

access to provisioned resources that will be utilized. This is a manual 6 step process.

. Subsequently, an AWS Batch user must configure their job options for each job they run.

This is a manual 3 step process.

Subsequently, an AWS Batch user must specify the run time environment on their batch
job via parameterizing a virtual container. This is a manual 3 step process. Note that this has

nothing to do with how long the job runs but rather run time environment.

. Subsequently, an AWS Batch user must specify resources that their compute job will need

(Aether also asks for this but also asks for anticipated length of time that a job will run for).

This is a manual 4 step process.
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Subsequently, an AWS Batch user must configure their computer environment type. This is a

manual 3 step process.
Subsequently, an AWS Batch user must configure instances. This is a manual 6 step process.

Subsequently, an AWS Batch user must configure networking for the instances they config-

ured in step 10. This is a manual 3 step process.

Subsequently, an AWS Batch user must tag their networked instances. This is a manual 3 step

process.

Finally, an AWS Batch user must manually create their job queue.
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Athlete Microbiome Project

Ba: WeT LAB METHODS

Below are methods related to work done by my two experimental co-first authors on this project,
Ted Chavkin and Jonathan Scheiman. Computational methods that I developed are located in the

main chapter.
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B.i1 PARTIPATION RECRUITMENT

All study participants were recruited following a Sports Genomics protocol (number IRB15-0869)
approved by the Institutional Review Board of the Wyss Institute for Biologically Inspired Engi-
neering. Each participant read and signed a consent form before study enrollment, and we have

complied with all of the relevant ethical regulations.

B2 SamMPLE COLLECTION, EXTRACTION AND LIBRARY PREPARATION

For the collection of materials, study participants were provided with a 15ml falcon tube with a rml
pipette tip inserted inside. Participants were instructed to dip the pipette tips into soiled toilet tis-
sue, then place them back into the tubes and label the tubes with the date and time of collection.
Samples were kept at 4°C for short-term storage until sample pickup, at which point they were im-
mediately placed onto dry ice, then transferred to a —80°C freezer for long-term storage.

Fecal samples were thawed on ice and resuspended in 2—sml of PBS, 250 ul of which was used
for DNA extraction using the Mo Bio PowerSoil high-throughput DNA extraction kit, following
the manufacturer’s protocol. For 16S rDNA library construction, 1—sul of purified DNA was used
for PCR amplification of the V4 variable region using Qs Hot Start Polymerase (NEB). Primers
were adapted from the Earth Microbiome Project (http://www.earthmicrobiome.org/), at-
taching Illumina paired-end adapters (forward: CTT TCC CTA CAC GAC GCT CTT CCG ATC
TGT GCC AGC MGC CGC GGT AA; reverse: GGA GTT CAG ACG TGT GCT CTT CCG

ATCTGG ACT ACH VGG GTW TCT AAT). lllumina barcodes were added to libraries during
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a second PCR step (forward: AAT GAT ACG GCG ACC ACC GAG ATCTACACT CTT TCC
CTA CAC GAC GCT C; reverse: CAA GCA GAA GAC GGC ATA CGA GAT GTG ACT GGA
GTT CAG ACG TGT GCT C) and end products were purified via column chromatography (Zymo
Research). Individual libraries were quantified and normalized for sequencing using the Quant-iT
PicoGreen reagent (Thermo Fisher Scientific). For whole-genome shotgun library construction, 1ng
of purified DNA was used for Illumina’s Nextera XT Tagmentation kit, following the manufac-
turer’s protocol. Libraries were submitted to the Harvard Biopolymers core sequencing facility for
bioanalyzer quality control and 150-base pair paired-end sequencing reads using either the Illumina

MiSeq or HiSeq 2500 system (high output mode) for 16S rDNA and shotgun analysis, respectively.

B.i3 MEeTADATA COLLECTION

Each study participant was provided with a questionnaire to collect health, dietary and athletic back-
ground information (adapted from The American Gut; http://americangut.org/). Addi-
tionally, for each sample collection, study participants filled out a daily annotation sheet to collect

dietary, exercise and sleep information.

B.1.4 DPREPARATION OF BACTERIA FOR GAVAGE

V. atypica and L. bulgaricus were grown in 250 ml BHIL (1o ml of 60% sodium lactate per liter) and
MRS broth, respectively. The optical density measured at a wavelength of 6oonm (OD6oo) was
monitored and at an optical density of 0.4-0.6, cells were pelleted by refrigerated centrifugation at

5,000g for tomin. The pellet was washed in PBS and resuspended in 2 ml residual PBS. Aliquots of
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1ooul were frozen at —80°C and the numbers of colony-forming units (c.f.u.) per ml were measured
by serial dilution onto BHIL agar plates. V. arypica was gavaged in wild-type Cs7BL/6 mice to de-
termine viability and transit time through the gastrointestinal tract, observing peak viable bacterial

c.f.u. counts in fecal pellets s h after gavage.

B..s; TREADMILL CROSSOVER EXPERIMENT

Animal research was approved by the Joslin Diabetes Center Institutional Animal Care and Use
Committee and we complied with all of the relevant ethical regulations. For the treadmill experi-
ments, 8- to 12-week-old CLs7BL/6 mice (n=32) were acclimated to treadmilling with two bouts
of 30min of s mmin—1 walking, split over two consecutive days. For exhaustion measurements,
mice were fasted for 7 h before exercise. Then, 6h before exercise, mice were gavaged with 200ul
of 2.5% sodium bicarbonate to neutralize the stomach contents, and 20 min after the first gavage,
mice were gavaged 200yl of either V. atypica or L. bulgaricus, prepared as above and normalized to
stogc.f.u.ml'. Next, shours postgavage, mice were run on the treadmill, starting at smmin® and in-
creasing the speed by 1mmin' every minute until exhaustion. The time of exhaustion was recorded
for every animal, defined as a mouse failing to return to the treadmill from the rest platform after
three consecutive attempts to continue running. This protocol was repeated for two more days,
followed by 4d of rest and 3d of crossover treatment. On the first day of treatment, serum was
collected 40 min post-exhaustion via a tail vein bleed and measured via Ciraplex multiplex mouse

cytokine assay (Aushon Biosystems).
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B.1.6 In vitRo GROWTH AND SCFA ANALYSIS

Veillonella species (V. dispar, V. parvula and V. atypica) were isolated and purified from several study
participants and grown in three different media compositions: (1) BHIL (1o ml of 60% sodium lac-
tate per liter); (2) MRS broth (BD) supplemented with lactate (10 ml of 60% sodium lactate per
liter); and (3) semi-synthetic lactate medium (per liter: 5g bacto yeast extract, 0.75g sodium thiogly-
colate, 25 ml basic fuchsin and 21ml 60% sodium lactate (pH?7.5)). Veillonella species were inoculated
into each medium, under anaerobic conditions, and allowed to grow for 48 hours to reach the sta-
tionary phase. After 48hours, bacteria were pelleted and supernatants were collected for lactate and
SCFA measurements. Approximately 10 ul of supernatant was used to measure the lactate via the
Lactate Scout (lactate.com). The remaining supernatants were frozen at —80°C, then submitted
to the Harvard Small Molecule Mass Spectrometry core facility for butyrate, propionate and acetate
quantitative analysis.

SCFAs identified from the mass spectrometry in all three media conditions corresponded with
the propionate end product suggested by the metagenomic results. Acetate was not observed in
MRS or BHIL, likely due to high existing concentrations in the media making the forward reaction
thermodynamically unfavorable. However, acetate production was observed in semi-synthetic lac-

tate media (access Supplementary Table 7 from Appendix B).
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B.ia7  ®C,-LAcTATE FLUX TRACING

Ten-week-old Cs7BL/6 mice were treated with sodium bicarbonate followed by 109 c.f.u. of either
V. atypica(n=4) or L. bulgaricus (n= 4), prepared as above. Then, 20% w/w ®C, sodium lactate
(Cambridge Isotope Laboratories) was diluted to a concentration of 400 mM in PBS. Mice were in-
jected with 100 ul intravenously via the tail vein and, after 9 minutes, anesthetized with isoflurane.
One mouse treated with V. atypica was unable to be injected due to vein clamping and had to be
removed. Next, 1o min post-injection, anesthesia was confirmed via foot pinch and mice were sac-
rificed via cardiac puncture. Whole blood was divided into two samples to obtain both serum and
plasma. These were flash frozen in liquid nitrogen at 12 minutes post-injection and stored at —80°C.

Immediately following cardiac puncture, mice were dissected to remove the colon and cecum,
and the contents were removed by squeezing with sterilized forceps into preweighed tubes. The
contents were immediately flash frozen in liquid nitrogen. The timing varied slightly, but this was
done between 17 and 19 minutes post-injection.

Samples were analyzed for lactate and propionate by the Broad Institute Metabolomics Platform.
LC-MS metabolomics were performed as previously described (Fujisaka et al., 2018). LC-MS traces

were identified and integrated to quantify the presence of *C, — and ®C;-lactate isotopes.

B.1.8 CoOLORECTAL PROPIONATE INSTILLATION

Treadmilling followed the same protocol as above. Mice were fasted 7 hours before exercise to nor-

malize their metabolic profiles. Some 30 minute before exercise, mice were treated with 200 ul of
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either PBS vehicle alone (n=8) or 5o mM sodium propionate in PBS (n=38), using a flexible gavage
needle to introduce 200 ul of solution into the colon. Mice were then run to exhaustion as above.
This protocol was repeated for three consecutive days. On the first day of treatment, serum was col-
lected 40 minutes post=exhaustion via tail vein bleed and measured using the Ciraplex multiplex

mouse cytokine assay (Aushon Biosystems).

B.i.9 LacTATE CLEARANCE

To measure the lactate clearance rate, mice were first fasted for 7 hours before measurement to sta-
bilize the basal lactate levels. Then, shours before measurement, mice were treated with sodium
bicarbonate followed by 109 c.f.u. of either V. atypica or L. bulgaricus, prepared as above (n=8).
Next, 30 minutes before measurement, mice were weighed and individually caged, and a baseline
blood lactate reading was taken using a Lactate Scout meter. Mice were administered sodium lactate
via intraperitoneal injection with a dose of 7s0mgkg', prepared as a 7smgml' solution of sodium lac-
tate in pH 7.0 PBS. Blood lactate levels were monitored with a Lactate Scout meter at s, 15, 25, 35 and

45minutes post-injection

B.2 DaTa AVAILABILITY

All raw sequencing data have been uploaded to NCBI and SRA in the form of the BioProjects
PRJNA472785 (16S) (http://www.nchi.nlm.nih.gov/sra?term=PRINA47278s) and PR-
JNA472768 (MGX) (http://www.ncbi.nlm.nih.gov/sra?term=PRINA472768). These are

linked to associated BioSamples, which in turn are linked to the paired-end read files in the SRA,
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and correspond to the metadata in the Supplementary Information (https: //www.nature.com/

articles/s41591-019-0485—4#MOESM2) files.

B.3 SUPPLEMENTARY TABLES

All supplementary tables are available at https://static-content.springer.com/esm/art%

3A10.1038%2FSs41591-019-0485—4/MedialObjects/41591_2019_485_MOESM2_ESM.x1sx.

B.4 CODE AVAILABILITY

Unless otherwise noted, all plots were generated in R version 3.4.1 with the ggplota, dplyr, scales,
grid and reshape2 packages (Wickham & Chang, 201s; 2; Wickham & Francois, 2015; Murrell, 2002;
Wickham, 2012). Large-scale data analysis was done on AWS, utilizing machines running Ubuntu
16.04. Data curation methods were coded in python version 2.7.12. The Aether package utilized for

analysis is available at https: //github.com/kosticlab/aether.

B.s UNPROCESSED WESTERN BroT

Recent work by scientists doing a huge amount of unappreciated service to the greater scientific
community such as Elizabeth Bik have discovered how widespread gel manipulation is in biomedical
research (Bik et al., 2016). It should be the standard for authors to include unprocessed Western gels

with their work to combat this. This is provided in Figure B.1.

134


https://www.nature.com/articles/s41591-019-0485-4#MOESM2
https://www.nature.com/articles/s41591-019-0485-4#MOESM2
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-019-0485-4/MediaObjects/41591_2019_485_MOESM2_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41591-019-0485-4/MediaObjects/41591_2019_485_MOESM2_ESM.xlsx
https://github.com/kosticlab/aether

/ eyeq papua}x3 4o} jo|g Wa)sap) passaosoidun

Figure B.1: Unprocessed Western Blot for Figure 3.13
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Single Cell Cancer Immunology

Cai WEeT LAB METHODS

Below are methods related to work done by my two experimental co-first authors on this project.

Computational methods that I developed are located in the main chapter.
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C.1 Mice aND CELL LINES

Wild type (WT) female Cs7BL/6 mice were purchased from the Jackson Laboratory (stock num-
ber 000664). Tumor cells were implanted into mice at 8-10 weeks of age. Mice were maintained at
Harvard Medical School in specific pathogen-free facilities under standard housing, husbandry, and
diet conditions in accordance with Institutional Animal Care and Use Committee (IACUC) and
NIH guidelines. All experimental procedures performed were approved by the IACUC at Harvard
Medical School. For tumor studies, MC38 colon adenocarcinoma cells (a gift from Dario Vignali,
University of Pittsburgh School of Medicine) were used. MC38 cells were grown in DMEM supple-
mented with 10% FBS, 100 U penicillin, and 100 g streptomycin in a 37°C incubator with % CO2.
Cells were harvested at passage 2-3 after thaw, and 2.5x105 tumor cells were injected subcutaneously
into the flank of mice anesthetized with 2.5% 2,2,2,-Tribromoethanol (Avertin). Tumors were mea-
sured every 2-3 days using calipers, and mice were sacrificed when tumors reached 2 cm3 volume,
ulceration, or a body condition of >2 in accordance with IACUC guidelines. Tumor volume was
determined using the formula for the volume of an ellipsoid, % x D x d2, where “D” is the major axis
of the tumor and “d” is the minor axis. Tumors were harvested from mice at days 19-23 after implan-
tation for single cell RNA sequencing experiments and flow validation experiments as indicated in

the Figure Legends.
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C.i2 LymrPHOCYTE IsoLATION FROM MOUSE TISSUES

Peripheral blood was collected from mice using the retroorbital bleeding route, and blood was col-
lected into 4% sodium citrate (Sigma) to prevent clotting. RPMI+10% FBS was added to dilute out
the anti-coagulant, and then white blood cells were separated from red blood cells using centrifu-
gation through histopaque-1083 (Sigma). The white blood cell layer at the interface between the
histopaque and remaining media was subsequently washed and subjected to staining for flow cy-
tometry analysis or sorting for single cell RNA sequencing. Tumors were dissected and mechanically
disaggregated. For flow cytometry validations, a GentleMACS (Miltenyi) was used for disaggrega-
tion, whereas for single cell RNA sequencing vertical scissors used to mince the tumors instead of
the GentleMACS. The dissociated tissue was digested with Collagenase Type I (400 U/ml; Wor-
thington Biochemical) for 20-30 minutes at 37°C. Samples were then passed through a 7o um filter,
and lymphocytes were enriched using centrifugation through a Percoll gradient (40% and 70%).
The enriched lymphocyte layer at the 40%/70% interface was subsequently washed and stained for

flow cytometry or sorted for single cell RNA sequencing.

C.13 FrLow CYTOMETRY AND SORTING OF MOUSE SAMPLES

Single cell suspensions were generated as described above. Suspensions were labeled with LIVE/DEAD
Fixable Near-IR Cell Stain in PBS (Thermo Fisher Scientific) to exclude dead cells from downstream
analyses. Cells were pre-incubated with TruStain Fc Receptor Block (anti-mouse CD16/CD32,

clone 93, BioLegend), then labeled with extracellular antibodies including: CD3 (clone 145-2Cix)
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and CD8a (clone 53-6.7) (from BD); CD1a (clone M17/4) (from Thermo Fisher Scientific); CCR2
and NKG2I (R&D Systems); Lag3 (clone CoB7W) (from Bio-Rad); and CD4s.2 (clone 104), PD-1
(clone RMPI-30), CX3CR1 (clone SAoruFir), CD62L (MEL-14), CD44 (IM7), CCRs (clone HM-
CCRs), CXCRG6 (clone SAosiDr), CD49D (clone Ri-2), CD18 (clone M18/2), CD29 (clone HMB
1-1), CD48 (clone HM48-1), CDo4 (clone 18d3), NKG2D (clone CX5 or C7), CD39 (clone Duhasy),
NKG:2A (clone 16A11), NKr.1 (clone PK136), Tim-3 (clone RMT3-23), CD16o (clone 7Hi), Slamf7
(clone 4G2), TIGIT (clone IG9), and NRP1 (clone 3Er2) (from BioLegend). Flow cytometry label-
ing (without inclusion of Feature Barcoding antibodies from BioLegend) was performed in PBS sup-
plemented with 2% FBS. For CITE-seq validation experiments, cells were labeled with TotalSeqC
antibodies against CD39 (TotalSeq Co834, clone Duhasg) and CX3CR1 (TotalSeq Cos63, clone
SAomF) as directly conjugated antibodies, and NKG2D as a biotin/streptavidin reaction (NKG2D-
biotin clone C7 paired with TotalSeq Co971-Steptavidin) (from BioLegend). Labeling with Feature
Barcoding antibodies was performed in PBS supplemented with 2% BSA and 0.01% Tween. Samples
were acquired on a FACSymphony (BD Biosciences) and analyzed with Flow Jo software (BD Bio-
sciences). Flow cytometry-based sorting for single cell RNA seq was performed using a FACSAria
(BD Biosciences). Blood samples were sorted based on live, CD4s.2™,CD3™, CD8a ™, CD44high.

Tumor samples were sorted based on live, CD4s5.2", CD31, CD8a™.

C..4 SINGLE CELL RNA SEQUENCING OF MOUSE SAMPLES

Gene expression and TCR libraries for mouse samples were generated using the Chromium Single

Cell s’ Library and V(D)]J Reagent Kit (10X Genomics) according to the manufacturer’s recommen-
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dations. For samples requiring Feature Barcoding libraries to detect TotalSeqC antibodies (from
BioLegend), the Chromium Single Cell 5’ Feature Barcode Library Kit (10X Genomics) was used
according to the manufacturer’s reccommendations. Following sorting as described above, approx-
imately 10,000 cells per sample were loaded into each channel of the Chromium Chip, and rec-
ommendations were followed assuming targeted cell recovery of 2,001-6,000 cells. Libraries were
sequenced on a NextSeq sequencer (Illumina) by the DFCI Sequencing Core. Gene expression
libraries and Feature Barcoding libraries were sequenced using the 26 x 8 x 91 bp parameters rec-
ommended by 10X Genomics. TCR libraries were sequenced using the 150 x 8 x 150 bp parameters
recommended by 10X Genomics. Based on approximate cell numbers expected, we sequenced a
minimum of 20,000 reads per cell for gene expression libraries and 5,000 reads per cell for TCR and

Feature Barcoding libraries.

C.2 FunNDING

This dissertation was supported in part by the a National Science Foundation Graduate Research

Fellowship.
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Code

D.1 SeLEcTED CODE EXAMPLES

D.i1 ArTHER LINEAR PROGRAMMING LOGIC

import subprocess

import os

import json

from scipy.optimize import linprog
import sys

import pickle

import math

import numpy

#from pandas import *
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#this program will minimize cost per hour of distributed compute by utilizing Linear Programming to minimize cost/hour constrained by
1: minimum total cores desired at once, 2: minimum total RAM wanted at once, 3: minimum total free ephemeral storage desired, 4:
AWS account limits, 5: variability in spot bidding price. Inherently, this considers both absolute cost of resources and risk
of being outbid on the cheapest possible resources to optimize compute utilization.

global dirr
dirr='/'.join(os.path.dirname(os.path.realpath(__file__)).split('/')[:-1]1)+"'/

class AWS_Instance:
def __init__(self,procs,ram,eph,name,limit,running,running_spot,historical_max,current_spot,current_od):

self.instance_type = name
self.procs = procs
self.ram = ram
self.storage = eph
self.limit = limit
self.running = running
self.running_spot = running_spot
self.historical_max = historical_max
self.current_od = current_od
self.current_spot = current_spot

#params for constraints
def get_user_params():
min_cores = int(raw_input("What is the minimum number of distributed cores required?"))
min_ram = int(raw_input("What is the minimum amount in GB of distributed RAM required?"))
min_free_storage = int(raw_input("What is the minimum amount in GB of free ephemeral storage required?"))
max_cost_hour = float(raw_input("What is the max cost that you are willing to pay per hour for your virtual cluster?"))
ram_per_job = int(raw_input("What amount of RAM is required per job?"))
procs_per_job = int(raw_input("How many Processors are required per job?"))
return min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job

def handle_grep_non_zero_output(command) :
try:
result = subprocess.check_output(command,shell=True)
return result
except subprocess.CalledProcessError as e:
result = e.output
return result

def define_A_matrix():
current_time = int(subprocess.check_output("date +%s",shell=True))
weeks_back = float(raw_input("How many weeks do you anticipate running your job for?"))
start_time = int(current_time-(weeks_back*x604800))
eph = {}
eph_file = open(dirr+"resources/ephemeral_store_info.csv",'r')
for line in eph_file:
q = line.rstrip().split(',")
eph_value = 1int(q[3])
if eph_value > 0:
eph[q[0]] = eph_value
eph_file.close()
retrievable_account_limits = set()
gl_limits_file = open(dirr+"resources/gamelift_instances.txt",'r')
for line in gl_limits_file:
retrievable_account_limits.add(line.rstrip())
gl_limits_file.close()
aws_instance_file = open(dirr+"resources/instances.csv",'r')
aws_instances = []
os.system("aws ec2 describe-instances > ec2_instances.json")
os.system("aws ec2 describe-spot-instance-requests > ec2_spot_instances.json")
datacenters_fh = open(dirr+"resources/datacenters.txt",'r")
datacenters = []
for lines in datacenters_fh:
datacenters.append(lines.rstrip())
for i in range(0,len(datacenters)):
print(str(i+1)+" "+datacenters[i])
datacenter_idx = int(raw_input("Please enter the qinteger corresponding to the amazon datacenter in which you are in:"))
datacenter = datacenters[datacenter_idx-1]
os.system("gunzip -c "+dirr+"resources/odprices.gz > odprices")
print("Please visit https://console.aws.amazon.com/ec2/v2/home?region=REGION#Limits: replacing REGION with the region in which you
plan to run this scalable cluster in and provide the requested information that is not available in the API but critical for
proper bidding when prompted.")

idx = 0
pickleq = raw_input("Would you like to use a pickle file?")
if os.path.isfile(pickleq):
aws_instances = pickle.load( open(pickleq,"rb"))
else:
for line in aws_instance_file:
split_line = line.rstrip().split(',"')
instance_name = split_line[0]
instance_ram_float = float(split_line[2])
instance_procs_int = int(split_line[1])
instance_eph_int = eph[instance_name] if eph.has_key(instance_name) else 0
running_ec2 = int(subprocess.check_output("grep \""+instance_name+"\" ec2_instances.json | wc -1",shell=True))
running_spot = int(subprocess.check_output("grep \""+instance_name+"\" ec2_spot_instances.json | wc -1",shell=True))
if instance_name in retrievable_account_limits:
os.system("aws gamelift describe-ec2-instance-limits --ec2-instance-type "+instance_name+" | jq -r '.EC2InstancelLimits
[1'" > i_temp.json")
with open("i_temp.json",'r') as jsf:
gamelift_api_out = json.load(jsf)
instance_limit_pre = int(gamelift_api_out["InstanceLimit"])
jsf.close()
else:
instance_limit_pre = int(raw_input("What is your account limit for "+instance_name+" in the current region being used?"

instance_limit = instance_limit_pre-running_spot

historical_price_pre = handle_grep_non_zero_output("aws ec2 describe-spot-price-history --instance-types "+instance_name+"
--end-time "+str(current_time)+" --start-time "+str(start_time)+" --product-descriptions='Linux/UNIX' --query '
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SpotPriceHistory[*].{az:AvailabilityZone, price:SpotPrice}' | grep 'price' | sed 's/\"price\": \"//' | sed 's/* x//

| sed 's/\",//' | uniq | sort | tail -1")
historical_price = float(historical_price_pre)
current_price_pre = float(handle_grep_non_zero_output("aws ec2 describe-spot-price-history --instance-types c4.large --
start-time=$(date +%s) --product-descriptions=\"Linux/UNIX\" --query 'SpotPriceHistory[x].{az:AvailabilityZone,
price:SpotPrice}' | grep 'price' | sed 's/\"price\": \"//' | sed 's/* x//' | sed 's/\",//' | uniq | sort | tail -1")
)

current_price=float(current_price_pre)
print("retrieved info for: "+instance_name)
od_string = handle_grep_non_zero_output("cat odprices | grep '"+instance_name+"' | grep -v 'Reserved' | grep 'Shared' |
grep -v 'SUSE' | grep -v 'Windows' | grep 'Linux' | grep '"+datacenter+"'")
od_price = float(od_string.split(',')[9][1:-1])
new_instance_type = AWS_Instance(instance_procs_int,instance_ram_float,instance_eph_int,instance_name,instance_limit,
running_ec2,running_spot,historical_price,current_price,od_price)
aws_instances.append (new_instance_type)
pickle.dump( aws_instances, open("instances.p", "wb"))
aws_instance_file.close()
return aws_instances

#characteristics of compute nodes (A)
def formulate_problem(aws_instances):
od_names = map(lambda name: name+".od",map(lambda instance_object: instance_object.instance_type, aws_instances))
spot_names = map(lambda name: name+".spot",map(lambda instance_object: instance_object.instance_type, aws_instances))
names = spot_names+od_names
spot_prices = map(lambda instance_object: instance_object.current_spot, aws_instances)
od_prices = map(lambda instance_object: instance_object.current_od, aws_instances)
prices = spot_prices+od_prices
procs_pre = map(lambda instance_object: instance_object.procs, aws_instances)
procs = procs_pre+procs_pre
gbRAM_pre = map(lambda instance_object: instance_object.ram, aws_instances)
gbRAM = gbRAM_pre+gbRAM_pre
freestorage_pre = map(lambda instance_object: instance_object.storage, aws_instances)
#print freestorage_pre
freestorage = freestorage_pre+freestorage_pre
mc_pre = map(lambda instance_object: instance_object.historical_max, aws_instances)
max_cost_in_previous_time_window = mc_pre+od_prices
account_limits_pre = map(lambda instance_object: instance_object.limit, aws_instances)
account_limits = account_limits_pre+account_limits_pre
num_types = len(procs_pre)
return num_types,names,prices,procs,gbRAM, freestorage,max_cost_in_previous_time_window,account_limits

#setting up LP problem formulation
def run_LP(num_types,names,prices,procs,ghRAM, freestorage,max_cost_in_previous_time_window,account_limits,min_cores,min_ram,
min_free_storage,max_cost_hour,ram_per_job,procs_per_job,aws_instances):
= prices
= [procs,gbRAM, freestorage]
[min_cores,min_ram,min_free_storage]
map (lambda x: map(lambda y:yx-1,x),A_1)
map(lambda z: zx-1,b_1)
i in range(0®,num_types):
append_a = [0] * num_types
append_a[i] = 1
add_a = append_a+append_a
A.append(add_a)
b.append(account_limits[i])
A_limits = []
b_limits = []
for i in range(0,num_types):
a_arr = [0]xnum_types
a_arr[i] = 1
new_a = a_arr+a_arr
A_limits.append(new_a)
b_limits.append(account_limits[i])
cost = 0
status = 4
while status != 0:
A_t = A
b_t=b
if cost > max_cost_hour:
break
cost+=1
A_t.append(max_cost_in_previous_time_window)
b_t.append(cost)
#print("solving:"+str(A_t)+"*x="+str(b_t)
bounds_input = map(lambda x: (0,x),account_limits)
1p_output = linprog(c,A_ub=A_t,b_ub=b_t,bounds=tuple(bounds_input))
#print("x="+str(lp_output.x)+"\n\n")
#1p_output = linprog(c,A_ub=A_t,b_ub=b_t,bounds=tuple(bounds_input),options={"bland": True})
status=1p_output.status
A_t.pop()
b_t.pop()
if status == 0:
break
lp_output_n = linprog(c,A_ub=A,b_ub=b,bounds=tuple(bounds_input),options={"bland": True})
return lp_output,lp_output_n

SO0 e

c
A_
b_
A
b
fo

def helper_recursive(input_item,names,instances):
print input_item.x
zipped_output = zip(names,input_item.x)

filtered_output = filter(lambda x: x[1] != 0, zipped_output)
remove_these_pre = map(lambda y: y[0], filter(lambda x: float(x[1]) < 1, filtered_output))
remove_these = map(lambda x: '.'.join(x.split('.')[:2]), remove_these_pre)

new_instances = filter(lambda x: x.instance_type not in remove_these,instances)
return new_instances

def recursive_lp_n(lp_output,lp_output_n,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,old_names,
aws_instances):
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def

new_instances = helper_recursive(lp_output_n, old_names, aws_instances)
num_types,names,prices,procs,gbRAM, freestorage,max_cost_in_previous_time_window,account_limits = formulate_problem(new_instances)
new_lp_output, new_lp_output_n = run_LP(num_types,names,prices,procs,gbRAM,freestorage,max_cost_in_previous_time_window,
account_limits,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,new_instances)
if type(new_lp_output_n.x)==float:
return lp_output_n,old_names
if len(new_lp_output_n.x) 0:
return lp_output_n,old_names
if list(new_lp_output_n.x) == Llist(lp_output_n.x):
return lp_output_n,old_names
else:
new_return = recursive_lp_n(new_lp_output,new_lp_output_n,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,
procs_per_job,names,new_instances)
return new_return

recursive_lp(lp_output,lp_output_n,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,old_names,
aws_instances):
new_instances = helper_recursive(lp_output, old_names, aws_instances)
num_types,names,prices,procs,gbRAM, freestorage,max_cost_in_previous_time_window,account_limits = formulate_problem(new_instances)
new_lp_output, new_lp_output_n = run_LP(num_types,names,prices,procs,gbRAM, freestorage,max_cost_in_previous_time_window,
account_limits,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,new_instances)
if type(new_lp_output.x) float:
return lp_output,old_names
elif len(new_lp_output.x) 0:
return lp_output,old_names
elif list(new_lp_output.x) == list(lp_output.x):
return lp_output,old_names
else:
new_return = recursive_lp(new_1lp_output,new_lp_output_n,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,
procs_per_job,names,new_instances)
return new_return

#add filtering for running instances and job size

def

def

def

def

wn

start_bidding():

min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job = get_user_params()

aws_instances = define_A_matrix()

if min_free_storage > 0:

aws_instances = filter(lambda x: x.storage > 0, aws_instances)

aws_instances filter (lambda Xx.procs > procs_per_job, aws_instances)

aws_instances = filter(lambda x: x.ram > ram_per_job, aws_instances)

num_types,old_names,prices,procs,ghRAM, freestorage,max_cost_in_previous_time_window,account_limits = formulate_problem(
aws_instances)

1p_output,lp_output_n = run_LP(num_types,old_names,prices,procs,gbRAM, freestorage,max_cost_in_previous_time_window,
account_limits,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,aws_instances)

1p,names = recursive_lp(lp_output,lp_output_n,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,
old_names,aws_instances)

1p_n,names_n = recursive_lp_n(lp_output,lp_output_n,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job,
old_names,aws_instances)

return lp,lp_n,names,names_n,aws_instances,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job

find_provisioning_info(name,aws_instances):

pre_desired_instance = filter(lambda x: x.instance_type == '.'.join(name.split('.')[:2]), aws_instances)
assert(len(pre_desired_instance) ==

desired_instance = pre_desired_instance[0]

#print procs

procs = str(desired_instance.procs)

ram = str(int(desired_instance.ram))

storage = desired_instance.storage

name = '.'.join(name.split('."')[:2])

return procs,ram,storage,name

write_prov_file(lp_output,names,aws_instances):
prov_file = open(dirr+"prov.psv",'w')
out_data = zip(names,lp_output.x)
sum_deploy = 0
print("The follwoing is the LP generated provisioning:")
for elem in out_data:
pre_name = elem[0]
procs,ram,storage,name = find_provisioning_info(pre_name,aws_instances)
boolstr = "true" if storage > 0 else "false"
number_to_deploy = 1int(round(float(elem[1])))
sum_deploy += number_to_deploy
for count in range(0,number_to_deploy):
print(name+'|'+procs+'|'+ram+'|'+boolstr+"|aws\n"
prov_file.write(name+'|'+procs+'|'+ram+'|'+boolstr+"|aws\n")
prov_file.close()
if sum_deploy == 0:
sys.exit(1l)
return

go():
try:
1p_output,lp_output_n,names,names_n,aws_instances,min_cores,min_ram,min_free_storage,max_cost_hour,ram_per_job,procs_per_job =
start_bidding()
write_prov_file(lp_output,names,aws_instances)
return ram_per_job,procs_per_job
except:
print "No feasible solution found, try again with different parameters"
return "exit",0

if len(lp_output_n.x) > 0:

naive_out = zip(names_n,lp_output_n.x)

print "\n"

print "Going by the seat of your pants and choosing the cheapest options that meet your criteria at the curren moment would
result in this bi

146



print filter(lambda x: x[1] != 0,naive_out)
else:
print "There is no solution"
if len(lp_output) > 0:
print "Taking in to account pricing variability, your <ideal bid dis:"
cost_out = zip(names,lp_output.x)
print filter(lambda x: x[1] != 0,cost_out)

wn

D.12 TCR CLONE PROCESSING

import sys
import os

#input files: 1 tumor tcr filtered contig annotations; 2 blood tcr filtered contig annotations; 3 tumor projection; 4 blood projection;
5 tumor clonotypes; 6 blood clonotypes
#output files: 7 new tumor projection; 8 new blood projection

btcr_fh = open(sys.argv[2],'r')
ttcr_fh = open(sys.argv[1],'r")
bclonotypes_fh = open(sys.argv[6],'r")
tclonotypes_fh = open(sys.argv[5],'r")

blood_clono_to_barcode
tumor_clono_to_barcode
blood_clonotypes = set()
tumor_clonotypes = set()

{}
{3

#logic to handle multiple barcodes assigned to same clonotype
def make_clono_to_barcode_dicts(fh,dictionary):
for lines in fh:
line = lines.rstrip().split(',"')
if line[16] != "None":
if line[10] == "True":
if dictionary.has_key(line[16]):
existing_barcodes = dictionary[line[16]]
existing_barcodes.append(line[0])
dictionary[line[16]] = existing_barcodes
else:
dictionary[line[16]] = [line[0]]
return dictionary

blood_clono_to_barcode
tumor_clono_to_barcode

make_clono_to_barcode_dicts(btcr_fh,blood_clono_to_barcode)
make_clono_to_barcode_dicts(ttcr_fh,tumor_clono_to_barcode)

btcr_fh.close()
tter_fh.close()

class Clonotype:
def __init__(self,chains_aa,clonotype,clono_to_barcode, frequency):
self.barcodes = clono_to_barcode[clonotype]
#self.frequency = frequency
self.frequency = str(len(set(self.barcodes)))
self.tra = []
self.trb = []
chains_arr = chains_aa.split(';")
for elem in chains_arr:
chain = elem.split(':"')
if chain[0] "TRA":
self.tra.append(chain[1])
if chain[0] == "TRB":
self.trb.append(chain[1])
def geta(self):
return self.tra
getb(self):
return self.trb
def getname(self):
return '-'.join(self.tra)+'|'+'-'.join(self.trb)

de

iy

def make_clonotype_sets(fh,clono_set,clono_to_barcode):
for lines in
line = lines.rstrip().split(',"')
clonotype_id = line[0]
chains = line[3]
frequency = line[1]
if clonotype_id != "clonotype_id":
if clono_to_barcode.has_key(clonotype_id):
clonotype = Clonotype(chains,clonotype_id,clono_to_barcode, frequency)
clono_set.add(clonotype)
return clono_set

blood_clonotypes = make_clonotype_sets(bclonotypes_fh,blood_clonotypes,blood_clono_to_barcode)
tumor_clonotypes = make_clonotype_sets(tclonotypes_fh,tumor_clonotypes,tumor_clono_to_barcode)
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bclonotypes_fh.close()
tclonotypes_fh.close()

tp_fh = open(sys.argv[3],'r")

bp_fh = open(sys.argv([4],'r")
output_tp_fh = open(sys.argv[7],'w'")
output_bp_fh = open(sys.argv[8],'w')

def find_a_chain_matches(clonotype,other_set):
if len(clonotype.tra) > 0:
other_matches = set()
for tra_chain in clonotype.tra:
matches = filter(lambda ctype: tra_chain in ctype.tra, other_set)
for match in matches:
other_matches.add(match)
if len(other_matches) == 0:
return (matches,"")
perfect_hits = filter(lambda ctype: clonotype.tra == ctype.tra, other_set)
if len(perfect_hits) > 0:
return (perfect_hits,'f")
return (matches,'')
return (set(),'')

def find_b_chain_matches(clonotype,other_set):
if len(clonotype.trb) > 0:
other_matches = set()
for trb_chain in clonotype.trb:
matches = filter(lambda ctype: trb_chain in ctype.trb, other_set)
for match in matches:
other_matches.add(match)
if len(other_matches) == 0:
return (matches,"")
perfect_hits = filter(lambda ctype: clonotype.trb == ctype.trb, other_set)
if len(perfect_hits) > 0:
return (perfect_hits,'f')
return (matches,'')
return (set(),'')

def make_tsne_output(input_fh,output_fh,matching_set,other_set):

clonotype_dict = {}

count = 0

for lines in dinput_fh:
line = lines.rstrip().split(',"')
barcode = line[0]
clonotype_hits = filter(lambda ctype: barcode in ctype.barcodes, matching_set)
assert len(clonotype_hits) < 2
if len(clonotype_hits) > 0:

clonotype = clonotype_hits[0]

#find all a chain matches

a_matches = find_a_chain_matches(clonotype,other_set)
#find all b chain matches

b_matches = find_b_chain_matches(clonotype,other_set)

if b_matches[1] == a_matches[1l] == 'f':
state = False
#perfect matches
for x in b_matches[0]:
for y in a_matches[0]:
if x.geta() == y.geta() == clonotype.geta():
if x.getb() == y.getb() == clonotype.getb():
#check that a clonotype exists with both a perfect a chain and b chain match
assert len(set(b_matches[0]).intersection(set(a_matches[0]))) > 0
state = True
strkey = ",".join(y.geta())+'|'+",".join(y.getb())
if clonotype_dict.has_key(strkey):
t = clonotype_dict[strkey]
t.append([lines.rstrip(),"matching",clonotype.frequency,clonotype.getname()])
clonotype_dict[strkey] = t
else:
clonotype_dict[strkey] = [[lines.rstrip(),"matching",clonotype.frequency,clonotype.getname()]]
if not state:
#a and b chains both present and from different clonotypes --- not counted as hit
aset = set(sum(map(lambda x:x.geta(), a_matches[0]),[])) #geta gives list of clonotypes, so map returns list of
lists that needs to be flattened
bset = set(sum(map(lambda x:x.getb(), b_matches[0]),[]))
#check that both a and b chains have a clonotype match
assert len(set(clonotype.geta()).intersection(aset)) > 0 and len(set(clonotype.getb()).intersection(bset)) > 0
#confirm that separate a and b chain matches are assigned to different clonotypes
assert len(set(b_matches[0]).intersection(set(a_matches[0]))) ==
output_fh.write(lines.rstrip()+",not_matching,"+clonotype.frequency+',"'+clonotype.getname()+'\n')
else:
# one matching chain, missing second chain --- counted as hit
statel = False
if bool(len(b_matches[0]) > 0) * bool(len(a_matches[0]) > 0):
if len(b_matches[0]) > 0:
if clonotype.getb() in map(lambda x: x.trb, b_matches[0]):
#confirm that there are no a matches
assert len(map(lambda x: x.tra, a_matches[0])) ==
for x in b_matches[0
if len(x.tra) == 0:
#confirm that full set of chains match
assert clonotype.getb() == x.getb()
if len(clonotype.tra) H
strkey = ",".join(x.geta())+'|'+",".join(x.getb())
statel = True
if clonotype_dict.has_key(strkey):
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t =

clonotype_dict[strkey]

t.append([lines.rstrip(),"beta_matching",clonotype.frequency,clonotype.getname()])
clonotype_dict[strkey] = t

else:

clonotype_dict[strkey] = [[lines.rstrip(),"beta_matching",clonotype.frequency,clonotype.

getname () 1]
if len(a_matches[0]) > 0:

if clonotype.geta() in map(lambda x: x.tra, a_matches[0]):

#confirm that there are no b matches

assert len(map(lambda x: x.trb, b_matches[0])) == 0

for x in a_matches[0
if len(x.trb) == 0:

#confirm that full set of chains match

assert clonotype.geta() == x.geta()
if len(clonotype.trb) == 0:
strkey = ",".join(x.geta())+'|'+",".join(x.getb())

statel = True

if clonotype_dict.has_key(strkey):

t =

clonotype_dict[strkey]

t.append([lines.rstrip(),"matching",clonotype.frequency,clonotype.getname()])
clonotype_dict[strkey] = t

else:

clonotype_dict[strkey] =
01

if not statel:
assert(len(clonotype.getname()) > 1)

[[lines.rstrip(),"matching",clonotype.frequency,clonotype.getname

output_fh.write(lines.rstrip()+",not_matching,"+clonotype.frequency+','+clonotype.getname()+'\n')

else:
assert(len(clonotype.getname()) > 1)

output_fh.write(lines.rstrip()+",not_matching,"+clonotype.frequency+',"'+clonotype.getname()+'\n')

else:
if count == 0:
output_fh.write(lines.rstrip()+",Group,Frequency,Tcr\n")
count = 1
else:

assert(len(clonotype.getname()) > 1)

output_fh.write(lines.rstrip()+",no_clonotype,1,notcr\n")

return clonotype_dict

tumors = make_tsne_output(tp_fh,output_tp_fh,tumor_clonotypes,blood_clonotypes)
bloods = make_tsne_output(bp_fh,output_bp_fh,blood_clonotypes,tumor_clonotypes)
#print bloods

intersection =

def write_out_matches(d,intersection,fh):
for key in d.keys():
if key in intersection:
for x in d[key]:
fhowrite(",".join(x)+'\n")
else:
print "hit"
for x in d[key]:
x[1] = "not_matching"
#fh.write(",".join(x)+'\n")

write_out_matches(bloods,intersection,output_bp_fh)
write_out_matches(tumors,intersection,output_tp_fh)

output_tp_fh.close()
output_bp_fh.close()

tp_fh.close()
bp_fh.close()
output_tp_fh.close()
output_bp_fh.close()

set(bloods.keys()).intersection(set(tumors.keys()))

D.1.3 MOUSE MACHINE LEARNING

#!/usr/bin/env python
# coding: utf-8

# In[1]:

from __future__ import division
import numpy as np

import sys

from sklearn.decomposition import PCA
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import math

import matplotlib.pyplot as plt

from sklearn.metrics import precision_recall_curve, auc, roc_auc_score
from sklearn.model_selection import KFold

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import roc_curve

# In[17]:

arr = []
f = open("counts_2chains_surface.csv",'r')
for lines in f:
line = lines.rstrip().split(',")
arr.append(line)
f.close()
nparr np.array(arr)
print "data loaded"
nparr_t = np.transpose(nparr)[1:]
print len(nparr_t)
print "done transposing"

labels = []
dataarr = []
count = 0

for elem in nparr_t:
print count
count += 1
labels.append(elem[0])
unlabeled = map(lambda x: int(x), elem[1:])
sumrow = sum(unlabeled)
normalized = map(lambda x: math.log(x/sumrow) if x > 0 else @,unlabeled)
dataarr.append(normalized)
print "log normalized"
npdataarr = np.array(dataarr)

# In[18]:

pca = PCA(n_components=int(100))
transformed = pca.fit_transform(npdataarr)
print "transformed"

labels_d {}
label_fh open("metadata.csv",'r")
for lines in label_fh:

line = lines.rstrip().split(',"')

if 1ine[9] == "Group":
continue

if 1ine[9] != "not_matching" and 1line[3] != "no_clonotype":
labels_d[line[0]] = 1

else:

labels_d[line[0]] = ©
label_fh.close()

(]
]

for i in range(0,len(labels)):
if labels_d.has_key(labels[i]):
ypre.append(labels_d[labels[i]])
Xpre.append(transformed[i])

Xpre
ypre

X = np.array(Xpre)
= np.array(ypre)

=

In[19]:

class_weight_d = {0:1, 1: 10000}

# In[20]:

FOLDS = 5
k_fold = KFold(n_splits=FOLDS, shuffle=True, random_state=32)
predictor = LogisticRegression(random_state=0, solver='liblinear',penalty="12",C=.02,class_weight=class_weight_d)

# In[21]:

f, axes = plt.subplots(1l, 3, figsize=(10, 5))

axes[0].scatter (X[y==0,0], X[y==0,1], color='blue', s=2, label='y=0"')
axes[0].scatter(X[y!=0,0], X[y!=0,1], color='red', s=2, label='y=1"')
axes[0].set_xlabel('X[:,0]")

axes[0].set_ylabel('X[:,1]")

axes[0].legend(loc="'lower left', fontsize='small')

y_real = []
y_proba = []
y_pred = []

for i, (train_index, test_index) in enumerate(k_fold.split(X)):



Xtrain, Xtest = X[train_index], X[test_index]

ytrain, ytest = y[train_index], y[test_index]

predictor.fit(Xtrain, ytrain)

pred_proba = predictor.predict_proba(Xtest)

pred = predictor.predict(Xtest)

#explainer = shap.LinearExplainer(pred,Xtrain,feature_dependence="independent")
#shap_values = explainer.shap_values(X_test)

#X_test_array = X_test.toarray()
#shap.summary_plot(shap_values,X_test_array,feature_names=labels)
precision, recall, _ = precision_recall_curve(ytest, pred_proba[:,1])
fpr, tpr, _ = roc_curve(ytest, np.array(pred))

lab = 'Fold %d AUPRC=%.4f' % (i+1, auc(recall, precision))

lab2 = 'Fold % %.4f' % (i+1, roc_auc_score(ytest, pred_probal:,1]))
axes[2].step(recall, precision, label=1lab)

axes[1].step(fpr, tpr, label=lab2)

y_real.append(ytest)

y_proba.append(pred_proba[:,1])

y_pred.append(pred)

y_real = np.concatenate(y_real)
y_proba = np.concatenate(y_proba)
y_pred = np.concatenate(y_pred)

precision, recall, _ = precision_recall_curve(y_real, y_proba)

fpr, tpr, _ = roc_curve(y_real, y_pred)

no_skill = len(y_real[y_real==1]) / len(y_real)

plt.plot([0, 1], [no_skill, no_skill], linestyle='--', label='No Skill')

lab = 'Overall AUPRC=%.4f' % (auc(recall, precision))

lab2 = 'Overall AUC=%.4f' % (roc_auc_score(y_real, y_proba))
axes[2].step(recall, precision, lw=2,label=1lab, color='black')
axes[2].set_xlabel('Recall')

axes[2].set_ylabel('Precision')

axes[2].legend(loc="'lower left', fontsize='small')
axes[1].step(fpr, tpr, label=lab2, lw=2, color='black')
axes[1l].set_xlabel('FPR")

axes[1].set_ylabel('TPR')

axes[1].legend(loc="'lower left', fontsize='small')

f.tight_layout()
stro = "result"+"100"+".pdf"
f.savefig(stro)

print "done"
# In[22]:

clf = RandomForestClassifier(random_state=0, n_jobs=-1)
model = clf.fit(dataarr, y)

# In[23]:
importances = model.feature_importances_
# In[24]:

feature_names = []
f = open("counts_2chains.csv",'r")
for lines 1in f:
if len(lines.rstrip().split(',')[0]) > 0O:
feature_names.append(lines.rstrip().split(',')[0])
f.close()

# In[25]:
indices = np.argsort(importances)[::-1]

names = [feature_names[i] for i in indices[0:20]]
plt.figure()

plt.title("Feature Importance")

imps = importances[indices][0:20]
plt.bar(range(0,20), imps)
plt.xticks(range(0,20), names, rotation=90)

stro = "result"+"_features"+".pdf"
plt.savefig(stro,bbox_inches="'tight')

plt.show()
# In[190]:
indices[0:10]

# In[ ]:
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# In[168]:

# In[162]:

importances[indices][0:9]

# In[142]:

# In[144]:

# In[ ]:

D.i.4 MOUSE SEURAT PROCESSING

#!/usr/bin/env Rscript

Tlibrary(Seurat)

library(dplyr)

library(data.table)

Tibrary(ggplot2)

Tibrary(cowplot)

library(viridis)

library(gridExtra)

Tlibrary(RColorBrewer)

Tibrary(tibble)

#1: 10X dir, 2: freq file, 3: sample, 4: output folder loc

#Example: Rscript pipeline.R /Users/jacobluber/Desktop/ucsf/working_soLNGEX/outs/filtered_gene_bc_matrices/GRCh38 /Users/jacobluber/
Dropbox\ \(HMS\)/Jacob\ Work/Analysis/layn/chi-square/working_so_plotting.csv working_so /Users/jacobluber/Dropbox\ \(HMS\)/
Jacob\ Work/working/working_so/

#parse command line data

#args = commandArgs (trailingOnly=TRUE)

#tenxdir <- args[1]

#freq <- args[2]

#sample <- args[3]

setwd("/Users/jacobluber/Desktop/cwd/plml")

data <- ReadlOX(data.dir = "/Volumes/Jacob's Backup /plml")
#read data from Kraken and create Seurat object
#data <- Readl0X(data.dir = tenxdir)

#data <- Readl0X(data.dir = "/Volumes/Jacob's Backup /k468")

data2 <- CreateSeuratObject(data, min.cells = 3,min.features=400, project = "test")

housekeeping_genes_pre <- read.table("/Users/jacobluber/Desktop/cwd/HK_Satija_mus_musculs.david.converted.txt",stringsAsFactors = FALSE
)

housekeeping_genes <- housekeeping_genes_pre$Vl

housekeeping_genes <- intersect(rownames(data2), housekeeping_genes)
subset_counts_matrix <- data.frame(data2@assays$RNA@counts) [housekeeping_genes,]
subset_counts_matrix[subset_counts_matrix > 0] =1

summary (colSums (subset_counts_matrix))
hist(colSums(subset_counts_matrix),main="> .5 selected as cutoff for HK genes")
pdf ("HK_genes_hist.pdf",width=7,height=7)
hist(colSums(subset_counts_matrix),main="> .5 selected as cutoff for HK genes")
dev.off()

counts <- colSums(subset_counts_matrix)

counts2 <- data.frame(counts)

counts3 <- counts2 %>% tibble::rownames_to_column() %>% filter(counts > 48)

all.genes <- rownames(x = data2)

mito_pre <- read.table("/Users/jacobluber/Desktop/cwd/mito_genes_mouse.txt",stringsAsFactors = FALSE
mito_genes <- mito_pre$Vi

mito_genes <- intersect(rownames(data2), mito_genes)

subset_counts_matrix <- data.frame(data2@assays$RNA@counts) [mito_genes,]
subset_counts_matrix[subset_counts_matrix > 0] =1

summary (colSums (subset_counts_matrix))

hist(colSums(subset_counts_matrix),main="< 200/1158 genes (Broad list) selected as cutoff for mito genes")
pdf("mito_genes_hist.pdf",width=7,height=7)
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hist(colSums(subset_counts_matrix),main="< 200/1158 genes (Broad list) selected as cutoff for mito genes")

dev.off()

counts4 <- colSums(subset_counts_matrix)
counts5 <- data.frame(counts4)
counts6 <- counts5 %>% tibble::rownames_to_column() %>% filter(counts4 < 200)

cells <- intersect(counts6$rowname,counts3$rowname)

#Run all processing through UMAP step

#all.genes <- rownames(x = working_so)

#housekeeping_genes_pre <- read.table("/Users/jacobluber/Desktop/cwd/HK_Satija.txt")
#housekeeping_genes <- housekeeping_genes_pres$Vl

#non.mito.genes <- grep("AMT-", x = all.genes, value = TRUE, invert = TRUE
#mito.genes <- grep("AMT-", x = all.genes, value = TRUE, invert = FALSE)

#housekkeeping and mito gene plots
# hist_arr_hk =
# for (i in 1:length(colnames(data2@assays$RNA@counts))) {
hk_genes <- 0
for (j in 1l:length(housekeeping_genes)) {
if (data2@assays$RNA@counts[,i][housekeeping_genes[j]] == 1){
old <- hk_genes
hk_genes <- old+1l

}
hist_arr_hk<- c(hist_arr_hk,hk_genes)
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}

hist_arr_hk2 = c()
for (i in 1:100) {
print(i)
hk_genes <- 0
for (j in 1l:length(housekeeping_genes)) {
if (data2@assays$RNA@counts[,i][housekeeping_genes[j]] >= 1){
hk_genes <- hk_genes+1

}
hist_arr_hk2<- c(hist_arr_hk2,hk_genes/106)
}

m_genes_arr <- c()
for (i in 1:300) {
print(i)
m_genes <- 0
for (j in 1l:length(mito.genes)) {
if (data2@assays$RNA@counts[,i][mito.genes[j]] == 1){
m_genes <- m_genes+1

m_genes_arr<- c(m_genes_arr,m_genes/13)

}
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working_so <- NormalizeData(data2)
working_so <- SubsetData(working_so, cells = cells)
working_so <- ScaleData(object = working_so, features = rownames(working_so))

working_so <- FindVariableFeatures(object = working_so, mean.function = ExpMean, dispersion.function = LogVMR,

do.plot = FALSE)
hv.genes <- head(x = VariableFeatures(object = working_so), 1000)

working_so <- RunPCA(object = working_so, pc.genes = hv.genes, do.print = FALSE, pcs.print

genes.print = 5, pcs.compute = 50)
working_so <- FindNeighbors(object = working_so, dims = 1:30)
working_so <- FindClusters(object = working_so, resolution = 1.2)

working_so <- RunUMAP(object = working_so, reduction.use = "pca", dims = 1:15, n_neighbors

#optionally read in existing Seurat object
#working_so <- readRDS("/Users/jacobluber/browser/k409.1ln-blood.rds")

1:5,

15, min_dist

#get the tcr data to determine matching cluster status, and add various other things to the metadata

#tcr <- read.csv("/Users/jacobluber/browser/k468.blood-1n.csv")
ughl <- readRDS("/Users/jacobluber/browser/plml.blood-tumor.rds")
tcr <- ughl@meta.data

#tcr <- read.csv(freq)

tecr.idents <- tcr$matching

#CHECK INPUT FILE

ter$pcluster <- as. numerwc(tcr$match1ng)
teré$pcluster[ter$pcluster==1] <-
ter$pcluster[ter$pcluste
ter$pcluster[ter$pcluste
ter$pcluster[ter$pcluste
ter$pcluster [ter$pcluster==
ter$ambig <- as. numer1c(tcr$match1ng)
tersambig[tcr$ambi 1] <-
ter$ambig[ters$ambi 2] <-
tersambig[tcr$ambi 3] <-
tersambig[tcr$ambi 4] <
tersambig[ter$ambi
tcrsconsis <- as.numeric(tcrsmatching)
tcr$consis[tersconsis==1] <-
ter$consis[ter$consis
tcr$consis[ters$consi
ter$consis[tcrsconsi
ter$consis[tersconsi
tcr$Barcode <- rownames(tcr)

tcr$Barcode <- gsub("(.*)\\-(1)","\\1",tcr$Barcode)
names (tcr.idents)=tcr$Barcode

ter.pclusters <- tcr$pcluster

tcr.ambig <- tcr$ambig

NN R
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names (tcr.pclusters)=tcr$Barcode

names (tcr.ambig)=tcr$Barcode

tcr.consis <- tcr$consis

names (tcr.consis)=tcr$Barcode

working_so <- AddMetaData(working_so,tcr.pclusters,col.name="'pcluster')

working_so <- AddMetaData(working_so,tcr.consis,col.name="'consistent')

working_so <- AddMetaData(working_so,tcr.ambig,col.name="ambig")

working_so <- AddMetaData(working_so,tcr.idents,col.name="'matching"')

working_so <- AddMetaData(working_so,data.frame(working_so@reductionsSumap@cell.embeddings)$UMAP_1,col.name="ul')
working_so <- AddMetaData(working_so,data.frame(working_so@reductionssumap@cell.embeddings)$UMAP_2,col.name="'u2")

#determine which clusters to keep
clusters <- levels(working_so@meta.data$seurat_clusters)

#iterative function to see if a given cluster should be kept, results aggregate like a fold in Haskell
see_if_keep_cluster <- function(so, cluster, idents){
copy_so <- so
cso <- SubsetData(copy_so, ident.use = cluster, do.clean = TRUE, do.scale = TRUE)
new_id <- NULL
cd3e <- sum(as.numeric(GetAssayData(object = cso, slot
cd3d <- sum(as.numeric(GetAssayData(object = cso, slot
cd3g <- sum(as.numeric(GetAssayData(object = cso, slot
cd8b <- sum(as.numeric(GetAssayData(object cso, slot "data")["Cd8b1",]1>0))/nrow(cso@meta.data)
cd8a <- sum(as.numeric(GetAssayData(object = cso, slot = "data")["Cd8a",]>0))/nrow(cso@meta.data)
foxp3 <- sum(as.numeric(GetAssayData(object = cso, slot = "data")["Foxp3",]>0))/nrow(cso@meta.data)
#cd4 <- sum(as.numeric(GetAssayData(object = cso, slot = "data")["Cd4",]>0))/nrow(cso@meta.data)
if (cd3e > .3 || cd3d > .3 || cd3g > .3) {
if (cd8b > .3 & cd8a > .3 && foxp3 < .05) {
new_id <- cluster
}

"data") ["Cd3e",]>0))/nrow(cso@meta.data)
"data") ["Cd3d",]>0))/nrow(cso@meta.data)
"data")["Cd3g",]>0)) /nrow(cso@meta.data)

}
idents <- c(idents,new_id)
return(idents)

}

idents <- c()
for (i in clusters){
idents <- see_if_keep_cluster(working_so, as.numeric(i),idents)

#CHANGE
sample <- "plm2"

working_sol <- SubsetData(working_so, ident.use = idents, do.clean = TRUE, do.scale = TRUE)
working_sol <- ScaleData(object = working_sol, features = rownames(working_sol))
working_sol <- FindVariableFeatures(object = working_sol, mean.function = ExpMean, dispersion.function = LogVMR,
do.plot = FALSE)
hv.genes <- head(x = VariableFeatures(object = working_sol), 1000)
working_sol <- RunPCA(object = working_sol, pc.genes = hv.genes, do.print = FALSE, pcs.print = 1:5,
genes.print = 5, pcs.compute = 50)
working_sol <- FindNeighbors(object = working_sol, dims = 1:30)
working_sol <- FindClusters(object = working_sol, resolution = 1.2)
working_sol <- RunUMAP(object = working_sol, reduction.use = "pca", dims = 1:15, n_neighbors = 15, min_dist = 0.3)

#Generate UMAPs to check cluster selection

tl <- paste@("Clusters Kept=",paste(idents, collapse=', ' ))
pl <- DimPlot(object = working_so, reduction.use = "umap", no.legend = FALSE, do.return = TRUE, label = TRUE, vector.friendly = TRUE,
pt.size = .4) + ggtitle(pasted(length(colnames(data2))," -> ",length(colnames(working_so))," cells (HK/mito filtering)")) +

theme(plot.title = element_text(hjust = 0.5)) + coord_fixed()

p2 <- DimPlot(object = working_sol, reduction.use = "umap", no.legend = FALSE, do.return = TRUE, label = TRUE, vector.friendly = TRUE,
pt.size = .4) + ggtitle(pasted(length(colnames(working_so))," -> ",length(colnames(working_sol))," cells (CD8 filtering)")) +
theme(plot.title = element_text(hjust = 0.5)) + coord_fixed() + labs(subtitle = t1)

p3 <- FeaturePlot(working_sol,features=c("Foxp3","Cd4","Cd3g","Cd8b1","Cd8a","Cd3d","Cd3e"), reduction = "umap",cols=c("gray","red"),pt
.size = .4, coord.fixed = TRUE,combine=FALSE)

title <- paste®(sample,"_UMAP_original.pdf")

pdf(title,width=7,height=7)

pl

dev.off()

pdf (paste®(sample,"_UMAP_cd8s.pdf"),width=7,height=7)
2

p
dev.off()

pdf(paste®(sample,"_UMAP_genes.pdf") ,width=7,height=7)

p3

dev.off()

pdf(paste@(sample,"_UMAP_matching_plots.pdf"),width=7,height=7)

FeaturePlot(working_sol,features=c("pcluster"), reduction = "umap",pt.size = .4, coord.fixed = TRUE) + NoLegend() + labs(title ="

Definition Used (consistent U ambiguous), matching in grey")
FeaturePlot(working_sol, features=c("ambig"), reduction = "umap",pt.size = .4, coord.fixed = TRUE) + NoLegend() + labs(title =
Ambiguous Definition, matching in grey")

FeaturePlot(working_sol,features=c("consistent"), reduction = "umap",pt.size = .4, coord.fixed = TRUE) + NoLegend() + labs(title ="
Consistent Definition, matching in grey")
dev.off()

p4 <- FeaturePlot(working_so,features=c("Foxp3","Cd4","Cd3g","Cd8b1","Cd8a","Cd3d","Cd3e"), reduction = "umap",cols=c("gray","red"),pt.
size = .4, coord.fixed = TRUE,combine=FALSE)

titlel <- paste@(sample,"_UMAP_genes_noCD8_filtering.pdf")

pdf(titlel,width=20,height=6)

p4
dev.off()

#rerun UMAP pipeline on data with non CD8 clusters removed
#working_sol <- SubsetData(working_so, ident.use = idents, do.clean = TRUE, do.scale = TRUE)

markers <- FindMarkers(working_sol, ident.1l = 1, ident.2 = NULL, only.pos = TRUE,test.use = "MAST")
write.table(markers,"MAST_matching_markers.txt")
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#write output files for COMET
write.table(GetAssayData(object = working_sol, slot = "counts"),file=paste®("counts_matrix",".txt"),sep="\t",quote=FALSE,row.names=TRUE

)
write.table(GetAssayData(object = working_sol, slot = "scale.data"),file=paste®@("normalized_matrix",".txt"),sep="\t",quote=FALSE,row.
names=TRUE)
write.table(Embeddings(working_sol[["umap"]]),file=paste®("viz",".txt"),sep="\t",quote=FALSE,row.names=TRUE)
cluster_out <- working_sol@meta.data %>% tibble::rownames_to_column('barcode') %>% select(barcode,pcluster)
write.table(cluster_out,file=paste@("clusters",".txt"),sep="\t",quote=FALSE,row.names=FALSE)
write.csv(working_sol@meta.data,file=paste@("metadata",".csv"))
#write out metadata
saveRDS (working_so, file = paste@(sample,".rds"))

#pl <- DimPlot(object = working_so, reduction.use = "umap", no.legend = FALSE, do.return = TRUE, label = TRUE, vector.friendly = TRUE,
pt.size = 1) + ggtitle("UMAP Clusters Removed") + theme(plot.title = element_text(hjust = 0.5)) + coord_fixed()

D.i.s MOUSE SAMPLE INTEGRATION

library(Seurat)

plml_tumor <- readRDS(file
p2ml_tumor <- readRDS(file
p2m2_tumor <- readRDS(file
plml_blood <- readRDS(file
p2ml_blood <- readRDS(file
p2m2_blood <- readRDS(file

= "/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/tumor/plml/plml.rds")
= "/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/tumor/p2ml/p2ml.rds")
= "/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/tumor/p2m2/p2m2.rds")
= "/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/blood/plml/pliml.rds")
= "/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/blood/p2ml/p2ml.rds")
= "/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/blood/p2m2/p2m2.rds")
addLevel <- function(x, newlevel=NULL) {
if(is.factor(x)) {
if (is.na(match(newlevel, levels(x))))
return(factor(x, levels=c(levels(x), newlevel)))

return(x)

fixMatching <- function(seurat_obj,sample) {
seurat_obj@meta.data$matching <- addLevel(seurat_obj@meta.data$matching,paste@(sample,"_matching"))
seurat_obj@meta.data$matching <- addLevel(seurat_obj@meta.data$matching,"not_matching")
seurat_obj@meta.data$matching[seurat_obj@meta.datasmatching "beta_matching"] <- "not_matching"
seurat_obj@meta.data$matching[seurat_obj@meta.datasmatching "alpha_matching"] <- "not_matching"
seurat_obj@meta.data$matching[seurat_obj@meta.data$matching "no_clonotype"] <- "not_matching"
seurat_obj@meta.data$matching[seurat_obj@meta.datasmatching both_matching"] <- paste@(sample,"_matching")
seurat_obj@meta.data$matching[seurat_obj@meta.datasmatching "matching"] <- pasteO(sample,"_matching")
sample <- rep(sample,length(seurat_obj@meta.data$matching))
names (sample) <- rownames(seurat_obj@meta.data)
seurat_obj<- AddMetaData(seurat_obj,sample,col.name="'sample')
return(seurat_obj)

}

plml_tumor <- fixMatching(plml_tumor,"plml_tumor")
p2ml_tumor <- fixMatching(p2ml_tumor,"p2ml_tumor")
p2m2_tumor <- fixMatching(p2m2_tumor,"p2m2_tumor")
plml_blood <- fixMatching(plml_blood,"plml_blood")
p2ml_blood <- fixMatching(p2ml_blood,"p2ml_blood")
p2m2_blood <- fixMatching(p2m2_blood,"p2m2_blood")

samples.list <- c(plml_tumor,p2ml_tumor,p2m2_tumor,plml_blood,p2ml_blood,p2m2_blood)
for (i in l:length(samples.list)) {
samples.list[[i]] <- SCTransform(samples.list[[i]], verbose = T)

options(future.globals.maxSize = 3145728000) #Jacob's note: 3000 * 10242 bytes to resolve error with 2GB list
samples.features <- SelectIntegrationFeatures(object.list = samples.list, nfeatures = 3000)
samples.list <- PrepSCTIntegration(object.list = samples.list, anchor.features = samples.features,

verbose = T)

samples.anchors <- FindIntegrationAnchors(object.list = samples.list, normalization.method = "SCT",
anchor.features = samples.features, verbose = T)
Sys.setenv('R_MAX_VSIZE'= 100000000000)
samples.integrated <- IntegrateData(anchorset = samples.anchors, normalization.method = "SCT",
verbose = T)
# dntegration.anchors <- FindIntegrationAnchors(object.list = list(plml,p2ml,p2m2), dims = 1:30, verbose=T)
# dntegrated.mouse.blood <- IntegrateData(anchorset = integration.anchors, dims = 1:30)

#

#

DefaultAssay(object = samples.integrated) <- "RNA"

samples.integrated <- ScaleData(samples.integrated , verbose = T)
samples.integrated <- RunPCA(samples.integrated , npcs = 30, verbose = T)
#

#

samples.integrated <- backup
samples.integrated <- FindNeighbors(object = samples.integrated , dims = 1:30)
samples.integrated <- FindClusters(samples.integrated , resolution = .30,verbose=T)
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samples.integrated <- RunUMAP(samples.integrated , reduction = "pca", dims = 1:30)

#samples.integrated@meta.data$matching <- replace(samples.integrated@meta.data$matching,is.na(samples.integrated@meta.datasmatching),"
p2m2_blood_matching")

setwd("/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/ptime/second_clustering")

DefaultAssay(object = tumor.integrated) <- "RNA"

saveRDS (tumor.integrated, file = "mouse_tumor_integrated.RDS")
pdf("mouse_sample.pdf",width=7,height=7)
DimPlot(samples.integrated , reduction = "umap", label = FALSE,

repel = TRUE, group.by = "sample",coord.fixed = TRUE) + ggtitle("Integrated Mouse Tumor Samples")
dev.off()

pdf("mouse_matching_plml.pdf",width=7,height=7)

DimPlot(samples.integrated, reduction = "umap",group.by = "matching",coord.fixed = TRUE,cols=c("gray","red","blue","gray","gray","gray"
,"gray"))+ ggtitle("Integrated Mouse Tumor Cells Matching To Blood \n [8540 Total Cells, 2427 Matching Cells]")

dev.off()

pdf ("mouse_matching_p2ml.pdf",width=7,height=7)

DimPlot(samples.integrated, reduction = "umap",group.by = "matching",coord.fixed = TRUE,cols=c("gray","gray","gray","red","blue","gray"
,"gray"))+ ggtitle("Integrated Mouse Tumor Cells Matching To Blood \n [8540 Total Cells, 2427 Matching Cells]")

dev.off()

pdf ("mouse_matching_p2m2.pdf",width=7,height=7)

DimPlot(samples.integrated, reduction = "umap",group.by = "matching",coord.fixed = TRUE,cols=c("gray","gray","gray","gray","gray","red"
,"blue"))+ ggtitle("Integrated Mouse Tumor Cells Matching To Blood \n [8540 Total Cells, 2427 Matching Cells]")

dev.off()

pdf ("mouse_clusters2.pdf",width=7,height=7)
DimPlot(samples.integrated, reduction = "umap",coord.fixed = TRUE)+ ggtitle("Integrated Mouse Tumor Clusters")
dev.off()

pdf ("mouse_tumor_markers.pdf",width=7,height=7)

FeaturePlot(samples.integrated, features=c("Foxp3","Cd4","Cd3g","Cd8a","Cd3d","Cd3e","Pdcd1","Ctla4","Sell","Gzmb","Mki67","I17r","Lag3"
,"Tcf7","Entpdl","Ifng","Foxp3"), reduction = "umap",cols=c("gray","red"),pt.size = .4, coord.fixed = TRUE,combine=FALSE)

dev.off()

#b2<-subset(blood.integrated, subset = sample != "NA")

markers_mast <- FindAllMarkers(samples.integrated, only.pos = TRUE,test.use = "MAST")
markers <- FindAllMarkers(samples.integrated, only.pos = TRUE)
write.csv(markers_mast,"mouse_markers_MAST2.csv")
write.csv(markers,"mouse_markers2.csv")

saveRDS(samples.integrated, file = "integration.RDS")

#saveRDS (integrated.k468, file = "/Users/jacobluber/Desktop/ptime/k468_1.rds")

tumor@meta.datasmatching[tumor@meta.datasmatching
tumor@meta.data$matching[tumor@meta.data$matching "alpha_matching"] <- "tumor_not_matching"
tumor@meta.data$matching[tumor@meta.data$matching "no_clonotype"] <- "tumor_not_matching"
tumor@meta.datasmatching <- addLevel(tumor@meta.data$matching, "tumor_matching")
tumor@meta.datasmatching[tumor@meta.datasmatching == "matching"] <- "tumor_matching"

"not_matching"] <- "tumor_not_matching"

# blood@meta.datasmatching <- addLevel(blood@meta.data$matching, "blood_not_matching")

# blood@meta.data$matching[blood@meta.data$matching "beta_matching"] <- "blood_not_matching"
# blood@meta.data$matching[blood@meta.data$matching "alpha_matching"] <- "blood_not_matching"
# blood@meta.data$matching[blood@meta.datasmatching "not_matching"] <- "blood_not_matching"
# blood@meta.datasmatching[blood@meta.datasmatching == "no_clonotype"] <- "blood_not_matching"
# blood@meta.data$matching <- addLevel(blood@meta.datasmatching, "blood_matching")

# blood@meta.data$matching[blood@meta.data$matching == "matching"] <- "blood_matching"

# tumor@meta.data$matching <- addLevel(tumor@meta.data$matching, "tumor_not_matching")

# tumor@meta.datas$matching[tumor@meta.datasmatching == "beta_matching"] <- "tumor_not_matching"
#

#

#

#

#

integration.anchors <- FindIntegrationAnchors(object.list = list(plml_tumor,p2ml_tumor,p2m2_tumor,plml_blood,p2ml_blood,p2m2_blood),
dims = 1:30, verbose=T)
integrated.mouse.blood <- IntegrateData(anchorset = integration.anchors, dims = 1:20)

backup <- integrated.mouse.blood

integrated.mouse.blood <- ScaleData(integrated.mouse.blood , verbose = FALSE)
integrated.mouse.blood <- RunPCA(integrated.mouse.blood , npcs = 30, verbose = FALSE)
integrated.mouse.blood <- FindNeighbors(object = integrated.mouse.blood, dims = 1:30)
integrated.mouse.blood <- RunUMAP(integrated.mouse.blood , reduction = "pca", dims = 1:30)

setwd("/Users/jacobluber/Dropbox (HMS)/blood-tumor_pipeline/ptime/")

pdf("sample.pdf",width=7,height=7)

DimPlot(integrated.mouse.blood , reduction = "umap", label = TRUE,
repel = TRUE, group.by = "sample")

dev.off()

DimPlot(integrated.mouse.blood , reduction = "umap", group.by = "matching")
DimPlot(object = integrated.mouse.blood, reduction.use = "umap", no.legend = FALSE, do.return = TRUE, label = TRUE, vector.friendly =
TRUE, pt.size = .4) + theme(plot.title = element_text(hjust = 0.5)) + coord_fixed()

test <- dintegrated.mouse.blood

test@metadata
FeaturePlot(integrated.mouse.blood,features=c("matching"), reduction = "umap",pt.size = .4, coord.fixed = TRUE,combine=FALSE)

156



DimPlot(integrated.mouse.blood , reduction = "umap", group.by = "celltype", label = TRUE,
repel = TRUE) + NolLegend()

FeaturePlot(samples.integrated, features=c("Sell"), reduction = "umap",cols=c("gray","red"),pt.size = .4, coord.fixed = TRUE,combine=
FALSE)

DimPlot(object = integrated.mouse.blood, reduction.use = "umap", no.legend = FALSE, do.return = TRUE, label = TRUE, vector.friendly =
TRUE, pt.size = .4)
+ theme(plot.title = element_text(hjust = 0.5))
+ coord_fixed()

saveRDS(working_sol, file = paste@(sample,".rds"))
#saveRDS (integrated.k468, file = "/Users/jacobluber/Desktop/ptime/k468_1.rds")

D.1.6 SHINY APP

This is a Shiny web application. You can run the application by clicking
the 'Run App' button above.

Find out more about building applications with Shiny here:

http://shiny.rstudio.com/

3 3 36 36 I I I A

Tibrary(shiny)
Tibrary(Seurat)
library(ggplot2)
Tibrary(cowplot)
Tibrary(viridis)
Tibrary(mltools)
library(data.table)
library(dplyr)
Tibrary(tidyr)

options(shiny.sanitize.errors = FALSE)
ui <= fluidPage(

# Application title

sidebarlLayout(
sidebarPanel(
selectInput("sample", h4("Sample:"),
c("K409 LN [Human]"="k409.ln-blood.tcr.rds","K409 Tumor [Human]" = "k409.tumor-blood.tcr.rds","K411 LN [Human]"="k411l.ln

—-ablood.tcr.rds","K411 LN (matching PD1 high blood) [Human]"="k411l.ln-bblood.tcr.rds","K468 LN [Human]"="k468.1ln-
blood.tcr.rds", "Pilot 1 M1 Tumor [Mouse]"="plml.tumor-blood.tcr.rds", "K409 Blood (mathing K409 LN) [Human]"="
k409.blood-1n.tcr.rds","K409 Blood (matching K409 Tumor) [Human]"="k409.blood-tumor.tcr.rds","K411 Blood A [Human
]" = "k4ll.ablood-1ln.tcr.rds","K411 Blood B [Human]"="k411l.bblood-1ln.tcr.rds","K468 Blood [Human]"="k468.blood-1n
.ter.rds", "Pilot 1 M1 Blood [Mouse]"="plml.blood-tumor.tcr.rds","Pilot 2 M1 Blood [Mouse]"="p2ml.blood-tumor.tcr
.rds","Pilot 2 M1 Tumor [Mouse]"="p2ml.tumor-blood.tcr.rds","Pilot 2 M2 Blood [Mouse]"="p2m2.blood-tumor.tcr.rds"
,"Pilot 2 M2 Tumor [Mouse]"="p2m2.tumor-blood.tcr.rds"))
#selectInput("tissue", h4("Matching Tissue Selection (SAMPLE_ID MATCHING_TISSUE [ORGANISM} <-> SAMPLE_ID PRIMARY_TISSUE:"),
# c("K409 Blood [Human] <-> K409 LN"="k409.blood-1ln.csv", "K409 LN [Human] <-> K409 Blood"="k409.1ln-blood.csv","K409 Tumor
[Human] <-> K409 Blood" = "k409.tumor-blood.csv","K411 LN [Human] <-> K411 Blood A"="k411.ln-ablood.csv","K411 LN [Human] <->
K411 Blood B"="k411l.ln-bblood.csv","K468 LN [Human] <-> K468 Blood"="k468.ln-blood.csv", "Mouse Pilot 1 Tumor [Mouse] <-> Mouse
Pilot 1 Blood"="mpl.tumor-blood.csv","K409 Blood [Human] <-> K409 Tumor"="k409.blood-tumor.csv","K411l Blood A [Human] <-> K409
LN" = "k41ll.ablood-1ln.csv","K411l Blood B [Human] <-> K411 LN"="k41l1l.bblood-1ln.csv","K468 Blood [Human] <-> K468 LN"="k468.blood-
1n.csv", "Mouse Pilot 1 Blood [Mouse] <-> Mouse Pilot 1 Tumor"="mpl.blood-tumor.csv')),
# Sidebar with a slider dinput for number of bins

# Show a plot of the generated distribution
#selectizeInput("text", c(), selected = "Pdcdl", multiple = TRUE,
# options = NULL),
#h4 ("Show Matching Clones From:"),
#uiOutput('selectui')
#div(id="matching")

#h3("Gene Expression Plot[s]"),
#h4("Gene[s]:"),
#div(id="gene")

#h4 ("TCR Sequence:"),
#div(id="tcr")

)
mainPanel(

tabsetPanel(
tabPanel("Clusters",plotOutput("distPlot2")),
#tabPanel("Matching Clones",splitLayout(plotOutput("matchingPlot"),plotOutput("matchingPlot2"))),
tabPanel("Matching Clones",fluidPage(fluidRow(column(6,wellPanel(span(h4("Secondary Tissue:"),uiOutput('selectui'))))),
fluidRow (
column(6,
plotOutput (outputId = "matchingPlot")
)s
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column(6,
plotOutput(outputId = "notMatchingPlot")
)

fluidRow(
column(6,
plotOutput (outputId = "matchingPlotl")

)s
column(6,

plotOutput(outputId = "notMatchingPlotl")
)

fluidRow(h5("'Primary Tissue' is the sample selected on the left and 'Secondary Tissue' is the sample that
appears at the top of this page."))

)

s

tabPanel("Marker Expression",fluidPage( fluidRow(h4("Gene[s]:"),uiOutput('geneui')),fluidRow(plotOutput("distPlot")) )),

tabPanel("Clonal Expansion Frequency",plotOutput("distPlot3")),

tabPanel("Number of Genes",plotOutput("distPlot4")),

#tabPanel("Clones",plotOutput("distPlot5"))

tabPanel("Clones", fluidPage (fluidRow(h4 ("TCR Sequence (Decreasing by Clone Size):"),uiOutput('cloneui')),fluidRow(plotOutput("
distPlot5"))) ) )

#textInput("text", label = h3("Gene"), value = "PDCD1")#,
#sliderInput("bins",

# "Number of bins:",
# min = 1,
# max = 50,
# value = 30)

)

)

# Define server logic required to draw a histogram
selector2 <- list("k409.blood-1ln.csv"="K409 Blood [Human]")

server <- function(input, output) {
k4091ln <- c("K409 Blood [Human]"="k409.blood-1n.csv")
k409tumor <- c("K409 Blood [Human]"="k409.blood-tumor.csv")

k409blood <- c("K409 Tumor [Human]" = "k409.tumor-blood.csv")

k409bloodl <- c("K409 LN [Human]"="k409.ln-blood.csv")

k411ln <- c("K411 Blood A [Human]" = "k41ll.ablood-ln.csv")

k411lnhigh <- c("K411 Blood B [Human]" ="k411l.bblood-1ln.csv")

k4llablood <- c("K411 LN [Human]" = "k41l.ln-ablood.csv")

k4llbblood <- c("K41l LN (matching PD1 high blood) [Human]" = "k411.ln-bblood.csv")

k4681n <- c("K468 Blood [Human
k468blood <- c("K468 LN [Human

"k468.blood-1n.csv")
"k468.1n-blood.csv")

mpltumor <- c("Pilot 1 M1 Blood [Mouse]" = "mpl.blood-tumor.csv")
mplblood <- c("Pilot 1 M1 Tumor [Mouse]" = "mpl.tumor-blood.csv")
p2mltumor ilot 2 M1 Blood [Mouse]" = "p2ml.blood-tumor.csv")

p2mlblood ilot 2 M1 Tumor [Mouse]" p2ml.tumor-blood.csv"
p2m2tumor <- c("Pilot 2 M2 Blood [Mouse]" "p2m2.blood-tumor.csv'")
p2m2blood <- c("Pilot 2 M2 Tumor [Mouse]" = "p2m2.tumor-blood.csv")
k471tumor <- c("K471 Blood [Human]"="k471.blood-tumor.csv")
k471blood <- c("K471 Tumor [Human]"="k471.tumor-blood.csv")

#selectddInput("sample", h4("Primary Tissue Selection (SAMPLE_ID PRIMARY_TISSUE [ORGANISM] <-> SAMPLE_ID MATCHING_TISSUE):"),

# c("K409 LN [Human] <-> K409 Blood"="k409.ln-blood.tcr.rds","K409 Tumor [Human] <-> K409 Blood" = "k409.tumor-blood.tcr.
rds","K411 LN [Human] <-> K411 Blood A"="k411l.ln-ablood.tcr.rds","K411 LN [Human] <-> K411 Blood B"="k41l.ln-bblood.tcr.rds","
K468 LN [Human] <-> K468 Blood"="k468.1ln-blood.tcr.rds", "Mouse Pilot 1 Tumor [Mouse] <-> Mouse Pilot 1 Blood"="mpl.tumor-blood.
ter.rds", "K409 Blood [Human] <-> K409 LN"="k409.blood-1ln.tcr.rds","K409 Blood [Human] <-> K409 Tumor"="k409.blood-tumor.tcr.rds

","K411 Blood A [Human] <-> K409 LN" = "k41ll.ablood-ln.tcr.rds","K411 Blood B [Human] <-> K411 LN"="k411l.bblood-1ln.tcr.rds","
K468 Blood [Human] <-> K468 LN"="k468.blood-1ln.tcr.rds", "Mouse Pilot 1 Blood [Mouse] <-> Mouse Pilot 1 Tumor"="mpl.blood-tumor.
ter.rds"))

selector <- list("k409.ln-blood.tcr.rds"=k4091ln,"k409.tumor-blood.tcr.rds"=k409tumor,"k411.ln-ablood.tcr.rds"=k4111ln,"k411.ln-bblood.
ter.rds"=k411lnhigh,"k468.ln-blood.tcr.rds"=k4681n,"plml.tumor-blood.tcr.rds"=mpltumor,"k409.blood-1n.tcr.rds"=k409bloodl,"k409.
blood-tumor.tcr.rds"=k409blood,"k411.ablood-1n.tcr.rds"=k411lablood,"k411.bblood-1n.tcr.rds"=k411bblood,"k468.blood-1ln.tcr.rds"=
k468blood,"plml.blood-tumor.tcr.rds"=mplblood,"p2ml.blood-tumor.tcr.rds"=p2mlblood,"p2ml.tumor-blood.tcr.rds"=p2mltumor,"p2m2.
tumor-blood. tcr.rds"=p2m2tumor,"p2m2.blood-tumor.tcr.rds"=p2m2blood,"k471.tumor-blood.tcr.rds"=k471tumor,"k471.blood-tumor.tcr
rds"=k471blood)

ter_regex <- function(sof){
sof <= sub('A([*]1)',"TRA:\\1",s0f)
sof <= sub('A\\|',"TRB:"
sof <- sub('\\|',",TRB:",
sof <- sub('.#notcr','notcr',sof)
return(sof)

}

tcr_regex_reverse <-function(sof){
sof <- sub('ATRB:','|',sof)
sof <- sub('ATRA:','',sof)
sof <- sub(',TRB:','|"',sof)
return(sof)

}

tcr_conv <- reactive({
output <- lapply(sam_ordered_freq()$TCR,tcr_regex)
1))

output$cloneui = renderUI ({
selectizeInput("tcr", label = NULL, tcr_conv(),selected=1,multiple=FALSE,options=NULL)
b
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output$geneui = renderUI ({
selectizeInput("text", label = NULL, rownames(x = sam()),selected = c(rownames(x = sam())[idx()],rownames(x = sam())[idx()-1],
rownames (x = sam()) [idx()-2],rownames(x = sam())[idx()-3]), multiple = TRUE,options = NULL)

b

output$selectui = renderUI ({
selectInput("tissue", label = NULL, sublist(),multiple=FALSE,selected=1)

b

#output$matchingt = renderText ({
# sublist()[1]

#})

sublist <- reactive({
object = selector[[input$sample]]

sam <- reactive({
seurat_object = readRDS(input$sample)

sam_ordered_freq <- reactive({
sof <- sam()@meta.datalorder(sam()@meta.data$Frequency,decreasing=TRUE),]
b

sam2 <- reactive({
seurat_obect = read.csv(input$tissue)

idx <- reactive({
rand_num = sample(5:length(rownames(sam())),1)

b

md_oh <- reactive({
output = one_hot(data.table(sam()@meta.data),cols=c("TCR"))

b
sam_matching <- reactive({
output = sam()@meta.data %>% filter(matching == "both_matching" | matching == "matching" | matching == "beta_matching" |
matching == "alpha_matching" )
b
sam_notmatching <- reactive({
output = sam()@meta.data %>% filter(matching != "both_matching" & matching != "matching" & matching != "beta_matching" &
matching != "alpha_matching")
b
sam2_matching <- reactive({
output = sam2() %>% filter(matching == "matching" | matching == "both_matching" | matching == "beta_matching" | matching == "
alpha_matching")
b

sam2_notmatching <- reactive({
output = sam2() %>% filter(matching != "both_matching" & matching != "matching" & matching != "beta_matching" & matching != "
alpha_matching")
b

ulmax <- reactive({
output = max(sam()@meta.datasul)
1

ulmin <- reactive({
output = min(sam()@meta.datasul)
1)

u2max <- reactive({
output = max(sam()@meta.datasu2)
1)

u2min <- reactive({
output = min(sam()@meta.datasu2)
b

ulmax2 <- reactive({
output = max(sam2()$ul)
1

ulmin2 <- reactive({
output = min(sam2()$ul)

u2max2 <- reactive({
output = max(sam2()3$u2)
1)

u2min2 <- reactive({
output = min(sam2()3$u2)
b

output$matchingPlot <- renderPlot({
ggplot(sam_matching(), aes(x=ul, y=u2))+

geom_point(aes(color=freq),size=1)+
xlab("UMAP 1")+
ylab("UMAP 2")+
ggtitle("Expansion Plot Of Matching Cells For Primary Tissue")+
coord_fixed()+
labs(color="Frequency')+
scale_colour_gradient(low="gray",high="purple", na.value="black")+
labs( subtitle = "(black indicates no expansion)")+
xLim(ulmin() ,ulmax())+
ylim(u2min() ,u2max())
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outputsSmatchingPlotl <- renderPlot({
ggplot(sam2_matching(), aes(x=ul, y=u2))+

geom_point(aes(color=freq),size=1)+
xlab ("UMAP 1")+
ylab("UMAP 2")+
ggtitle("Expansion Plot Of Matching Cells For Secondary Tissue")+
coord_fixed()+
labs(color="'Frequency')+
scale_colour_gradient(low="gray",high="purple", na.value="black")+
labs( subtitle = "(black indicates no expansion)")+
xTim(ulmin2() ,ulmax2())+
ylim(u2min2() ,u2max2())

b

output$notMatchingPlot <- renderPlot ({
ggplot(sam_notmatching(), aes(x=ul, y=u2))+

geom_point(aes(color=freq),size=1)+
xlab("UMAP 1")+
ylab("UMAP 2")+
ggtitle("Expansion Plot Of Not Matching Cells For Primary Tissue")+
coord_fixed()+
labs(color="'Frequency')+
scale_colour_gradient(low="gray",high="purple", na.value="black")+
labs( subtitle = "(black indicates no expansion)")+
xLim(ulmin() ,ulmax())+
ylim(u2min() ,u2max())

b

output$notMatchingPlotl <- renderPlot ({
ggplot(sam2_notmatching(), aes(x=ul, y=u2))+

geom_point(aes(color=freq),size=1)+
xLlab("UMAP 1")+
ylab("UMAP 2")+
ggtitle("Expansion Plot Of Not Matching Cells For Secondary Tissue")+
coord_fixed()+
labs(color="'Frequency')+
scale_colour_gradient(low="gray",high="purple", na.value="black")+
labs( subtitle = "(black indicates no expansion)")+
xLim(ulmin2() ,ulmax2())+
ylim(u2min2() ,u2max2())

b

outputsdistPlot5 <- renderPlot({
ggplot(md_oh(), aes(x=ul, y=u2))+
geom_point(aes(color=as.factor(md_oh() [[paste®("TCR_",tcr_regex_reverse(inputs$tcr))]])),size=1)+
xLlab("UMAP 1")+
ylab("UMAP 2")+

ggtitle(paste@("Clone ",inputé$ter," (",toString(sum(md_oh()[[paste®("TCR_",tcr_regex_reverse(input$tcr))]] == 1)),"
Cells)"))+
scale_color_manual(breaks = c("0", "1"), values=c("black", "red"))+

theme (legend.position="none")+
coord_fixed()
},height=800,width=800)

output$distPlot <- renderPlot({
FeaturePlot(sam(),features=c(inputStext), reduction = "umap",cols=c("gray","red"), pt.size = 1, coord.fixed=T)
},height=800,width=800)

outputsdistPlot2 <- renderPlot({

DimPlot(object = sam(), reduction.use = "umap", no.legend = FALSE, do.return = TRUE, vector.friendly = TRUE, pt.size = 1,label=
FALSE,label.size=12,repel=TRUE) + ggtitle("UMAP") + theme(plot.title = element_text(hjust = 0.5))+ggtitle("Clusters")+
coord_fixed()

},height=800,width=800)

outputsdistPlot3 <- renderPlot({
FeaturePlot(sam(),features=c("freq"), pt.size = 1, reduction = "umap",coord.fixed=T,cols=c("gray","purple"))+scale_colour_gradient
(low="gray",high="purple", na.value="black")+labs(title = "Clonal Expansion", subtitle = "(black indicates no expansion)")
},height=800,width=800)

outputsdistPlot4 <- renderPlot({
FeaturePlot(sam(),features=c("nFeature_RNA"), pt.size = 1, reduction = "umap",coord.fixed=T,cols=c("gray","red"))+ggtitle("Number
of Genes")
},height=800,width=800)
}

# Run the application
shinyApp(ui = ui, server = server)
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