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Infectious Disease Modeling: Enhancing Epidemic Preparedness and Response 

Abstract 

Recent outbreaks of Ebola, Zika, and COVID-19, among others, have shown how 

infectious diseases can decimate economies and destroy lives. Infectious disease models are 

important tools for preparing for, preventing, and responding to such epidemics. Here, we use 

infectious disease modeling to analyze past outbreaks, prepare for future outbreaks, and respond 

to ongoing outbreaks, with the goal of informing public health response.  

We first analyze past Ebola and cholera outbreaks and build a simulation model to 

understand the role the incubation period, the time between exposure and symptom onset, has on 

epidemic trajectory. We find that diseases with longer incubation periods, such as Ebola, where 

infected individuals can travel further before becoming infectious, result in more long-distance 

sparking events and less predictable disease trajectories, as compared to the more predictable 

wave-like spread of diseases with shorter incubation periods, such as cholera. Second, we assess 

if augmenting classical randomized controlled trials of vaccines with pathogen sequence and 

contact tracing data can permit these trials to estimate vaccine efficacy against infectiousness, or 

the reduction in onward transmission from a vaccinated person who is infected compared to an 

unvaccinated infected person. Through simulations of a transmission model and a vaccine trial, 

we find that these data sources enhance identifiability of this key measure of vaccine efficacy. 

Finally, we simulate studies of SARS-CoV-2 seroprotection. We find that in studies assessing 

whether seropositivity confers protection against future infection, time varying epidemic 

dynamics can cause confounding; it is therefore necessary to adjust for geographic location and 

time of enrollment in order to reduce bias. These methods and findings demonstrate how 

infectious disease modeling can be used to enhance epidemic preparedness and response.  
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Chapter 1. Introduction 
 

Recent outbreaks of Ebola,1,2 Zika,3 and COVID-19,4 among others, have shown how 

infectious diseases can decimate economies and destroy lives. Infectious disease models are 

important tools for preparing for, preventing, and responding to such epidemics. Models allow us 

to test assumptions,5 identify key sources of uncertainty, examine interventions and advocate for 

policies or programs, explore the impact of different parameters, or plan the design and analysis 

of trials in advance.6  

Outbreak science is an emerging field that seeks to integrate mathematical modeling of 

infectious diseases more systematically into public health decision making.7 In the following 

chapters, we use infectious disease modeling to analyze past outbreaks, prepare for future 

outbreaks, and respond to ongoing outbreaks, with the goal of informing public health response 

and enhancing trial designs.  

In the second chapter, we analyze the trajectories of recent back-to-back outbreaks of 

Ebola and cholera in Sierra Leone. This analysis motivates a question regarding the role of the 

incubation period, the time between exposure and symptom onset, in predictability of outbreak 

spread. To answer this question, we develop a simulation model to compare metrics of outbreak 

trajectory across a range of incubation periods.  

In the third chapter, we aim to assess if vaccine trials can be designed to measure the 

vaccine candidate’s impact on infectiousness. Even if the vaccine does not prevent everyone 

from getting infected, does it have an impact on further transmission? Estimating this key 

measure, however, requires knowledge of who infected whom. We therefore simulate sampling 
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of genome sequences and contact tracing data to attempt to reconstruct transmission networks to 

inform estimation of vaccine efficacy against infectiousness.  

In the fourth chapter, we identify biases that can arise in studies that assess whether or 

not prior infection with SARS-CoV-2 confers protection against future infection. Using 

simulation models, we demonstrate when these biases occur and identify ways to ameliorate 

them. Accurate estimates of SARS-CoV-2 seroprotection will be critical for understanding the 

dynamics of this pandemic and implementing measures to control it. 

Looking across a range of pathogens, including Ebola, cholera, and SARS-CoV-2, we 

show how infectious disease modeling can shed insight on previous outbreaks that can be useful 

for informing response efforts for future outbreaks. This work also underscores the importance of 

using simulations to aid in the design and analysis of vaccine and seroprotection studies to 

minimize bias and enhance the information obtained from these trials conducted in urgent 

settings. Through these chapters, we aim to show that infectious disease modeling has the 

potential to change the course of epidemics and save lives. 
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Chapter 2. Incubation periods impact the spatial predictability of outbreaks: analysis of 
cholera and Ebola outbreaks in Sierra Leone 
 

2.1 ABSTRACT 

Forecasting the spatiotemporal spread of infectious diseases during an outbreak is an 

important component of epidemic response. However, it remains challenging both 

methodologically and with respect to data requirements as disease spread is influenced by 

numerous factors, including the pathogen’s underlying transmission parameters and 

epidemiological dynamics, social networks and population connectivity, and environmental 

conditions. Here, using data from Sierra Leone we analyze the spatiotemporal dynamics of 

recent cholera and Ebola outbreaks and compare and contrast the spread of these two pathogens 

in the same population. We develop a simulation model of the spatial spread of an epidemic in 

order to examine the impact of a pathogen’s incubation period on the dynamics of spread and the 

predictability of outbreaks. We find that differences in the incubation period alone can determine 

the limits of predictability for diseases with different natural history, both empirically and in our 

simulations. Our results show that diseases with longer incubation periods, such as Ebola, where 

infected individuals can travel further before becoming infectious, result in more long-distance 

sparking events and less predictable disease trajectories, as compared to the more predictable 

wave-like spread of diseases with shorter incubation periods, such as cholera.  

 

2.2 INTRODUCTION 

Epidemics of emerging infectious diseases such as Ebola and Zika underscore the need to 

improve global capacity for surveillance and response.3,8,9 Forecasting the spatiotemporal spread 

of infectious diseases during an outbreak can enable responders to stay ahead of an epidemic. 
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However, it remains challenging both methodologically and with respect to data 

requirements10,11 as disease spread is influenced by multiple factors, including: the pathogen’s 

underlying transmission parameters and epidemiological dynamics; social networks and 

population connectivity; and environmental conditions.12–15 Previous forecasting efforts have had 

varying levels of success in predicting the total number of cases and spatiotemporal spread of 

outbreaks like Ebola, and few have actually been used in real time in the midst of an epidemic.13 

Efforts to understand the likely performance of forecasts have shown that heterogeneity in 

contact structure and number of secondary infections can pose challenges, but reasonable 

predictions can be made in some cases, depending on disease-specific parameters.12 However, 

the epidemiological attributes that determine predictability remain uncertain in real-world 

settings.16–18 

The time from when individuals are infected to when they become infectious (the latent 

period) and to when they become symptomatic (the incubation period), and the relationship 

between the two, have been shown to play a large role in the epidemic potential of 

diseases.15,19,20 In particular, transmission that occurs during the incubation period before an 

individual develops symptoms can contribute to rapid disease spread. When the latent period is 

shorter than the incubation period for an infectious individual, pre-symptomatic transmission can 

be a strong driver of the total number of secondary infections by an infectious individual in a 

completely susceptible population (i.e. R0).19,20 Indeed, the basis of contact tracing protocols 

during an outbreak reflect the need to identify and contain individuals during the incubation 

period, and the relative effectiveness of interventions such as symptom monitoring or quarantine 

significantly depends on the relationship between infectiousness and symptoms.20 Additional 

related metrics, the generation interval (i.e. the time between infection of an infector-infectee 
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pair) and the serial interval (i.e. the time between symptom onset of an infector-infectee pair), as 

well as their variances, can further impact the growth rate and total number of infections during 

an epidemic.21 The incubation period is also likely to play a particularly important role in 

determining the spatial spread of an epidemic because one’s typical travel may continue prior to 

symptom onset, whereas travel behavior may change or stop altogether during illness,22 

particularly when symptoms are severe or immobilizing; even if symptoms are mild, if one 

knows they are infected, behavior may also change, impacting transmission.  

Back-to-back epidemics of cholera (2012-2013) and Ebola (2014-2015) in Sierra Leone 

present a unique opportunity to compare the spatial dynamics of two epidemics in the same 

population caused by pathogens with notable similarities in both the drivers of outbreaks and the 

interventions used to curtail them, including oral rehydration.23,24 Both are transmitted through 

contact with contaminated diarrhea or vomitus (plus other bodily fluids for Ebola), and the 

reproductive number (R0) for both diseases is thought to be between 1 and 3.25,26 Both diseases 

can cause immobilizing gastrointestinal symptoms of diarrhea and vomiting and, untreated, their 

case fatality rates can exceed 50%.27,28 Cultural factors and rituals, such as traditional funeral 

practices, are known to influence the spread of both cholera29 and Ebola,30 while water, 

sanitation, and hygiene (WASH) programs are often used to slow the spread of each.31 Both 

epidemics occurred against a backdrop of an immunologically naïve population. Although it 

seems likely that travel patterns and the density and distribution of people were broadly similar 

over the time period in question, regular movements may have been more impacted during the 

Ebola epidemic than during the cholera epidemic due travel restrictions, particularly during the 

multi-day lockdowns.32 One critical difference between the dynamics of these diseases, however, 
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is the incubation period, which is estimated at a median of 8-12 days between infection and onset 

of symptoms for Ebola8 and only 1-2 days for cholera.33 

We hypothesize that the disease incubation period may be a particularly influential driver 

of different patterns of disease spread through space and time. We analyze the spatiotemporal 

dynamics of a cholera outbreak and an Ebola outbreak in Sierra Leone, both of which occurred 

over a similar time period. We develop a simulation model of the spatial spread of an epidemic 

and examine the impact of the incubation period on the dynamics of spread and the predictability 

of outbreaks. We find that differences in the incubation period alone can determine the limits of 

predictability for these diseases with different natural history, both empirically and in our 

simulations. Our results show that diseases with longer incubation periods, such as Ebola, where 

infected individuals can travel further before becoming infectious, result in more long-distance 

sparking events and less predictable disease trajectories, as compared to the more predictable 

wave-like spread of diseases with shorter incubation periods, such as cholera.    

 

2.3 RESULTS 

We first summarize the cholera and Ebola epidemics in terms of their dynamics in time 

and space. More cases were reported during the cholera epidemic (22,691) than during the Ebola 

epidemic (11,903); however, far fewer cholera cases were fatal (324 vs. 3,956). Both epidemics 

lasted for similar periods of time, with cholera (January 7, 2012 – May 14, 2013) occurring two 

years prior to Ebola (May 18, 2014 – September 12, 2015). Data for both outbreaks were 

reported at the chiefdom level, the third-level administrative units. The times between the onset 

of an outbreak and when half or all of its cases were reported were longer when outbreaks were 

aggregated by district (second-level administrative units, comprised of chiefdoms), instead of 
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chiefdom (Figure 2.1), which has implications for the optimal scale for surveillance and 

response measures. The median time for a chiefdom cholera outbreak to report half its case total 

was 3.9 weeks, and median outbreak duration was 11.3 weeks. The median time for district 

outbreaks to report half their cholera cases was 7.9 weeks, and the median outbreak duration was 

43.7 weeks. Analysis of Ebola revealed similar trends, with chiefdoms reporting half of their 

cases at a median of 13.9 weeks and median outbreak duration of 43.3 weeks, and districts 

reporting half of their cases at a median of 23.5 weeks and median outbreak duration of 64.1 

weeks.   

Figure 2.1. The proportion of cholera and Ebola cases reported over time differed between 
district and chiefdom level 
 

 

The times between the onset of an outbreak and when half or all of its cases were reported were longer when 
outbreaks were aggregated by district instead of chiefdom, which has implications for the optimal scale for 
surveillance and response measures. The median time for a chiefdom cholera outbreak to report half its case total 
was 3.9 weeks and a median of 7.9 weeks for district cholera outbreaks. For Ebola, chiefdoms reported half of their 
cases at a median of 13.9 weeks and districts at a median of 23.5 weeks.  
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Both the cholera and Ebola epidemics were widespread, each reaching more than 75% of 

the country’s chiefdoms. However, their trajectories differed. The spread of cholera from the 

northwest followed a radial spatial dispersion gradually in all directions for the first six months, 

while Ebola spread from the southeast for two months before rapid expansion to the northwest 

which sparked the national epidemic (Figure 2.2 A-B; Supplementary Movie 2.1). These 

findings were statistically supported by space-time analysis of each epidemic, which revealed 

clusters of high case reporting of both diseases in western Sierra Leone and unique clusters of 

cholera in the south and Ebola in the east (Supplementary Figure 2.1). The wave front of 

chiefdom cholera outbreak onset progressed more slowly and gradually than for Ebola, which 

exhibited faster and more discontinuous expansion as shown by the larger spacing between 

monthly contour lines (Figure 2.2 A-B). Despite their different trajectories, the geography of the 

epidemics largely overlapped, with clusters of high cumulative attack rates of cholera and Ebola 

observed in the north and west regions of Sierra Leone (Figure 2.2 C-D) and confirmed through 

Local Moran’s I methods (Supplementary Figure 2.2).  

As a daily estimate of transmission intensity, we recorded the effective reproductive 

number (Rt) and its variation over time nationally and by region (Figure 2.3). While some areas 

sustained transmission (i.e., Rt > 1) of both cholera and Ebola for many days (e.g., Freetown in 

the west and Kenema Town in the east), 75% of chiefdoms during the cholera outbreak and 44% 

of chiefdoms during the Ebola outbreak recorded either zero cases or zero days with Rt > 1 

(Supplementary Figure 2.3). As expected, transmission intensity of both diseases was 

positively correlated in chiefdoms near each other (Supplementary Figure 2.4). Correlation 

decayed with distance, consistent with local disease spread, and inter-chiefdom distances of over 

100km eliminated any evidence of positive correlation of disease presence, chiefdom outbreak 
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time, case count, and cumulative attack rate (Supplementary Figure 2.4). These metrics appear 

more highly correlated in space for cholera than for Ebola, although the confidence intervals 

overlap (Supplementary Figure 2.4).  

 

Figure 2.2. Spatial trend contours of disease spread and chiefdom attack rates  

 
Spatial trend contours of disease spread and chiefdom attack rates highlight similarities and differences between the 
two epidemics. Spatial trend contours of cholera (A) and Ebola (B) spread from areas in dark red to light orange; 
thicker lines (A & B) show monthly increments and thinner lines (B) show 2 week increments. Each line of the same 
color represents the same timescale. Larger spacing between lines represents faster spread. Thick black lines denote 
regions and thin black lines denote districts. Chiefdom attack rate quartile for cholera (C) and Ebola (D) vary over 
space and regions. Colored boundaries denote regions, followed by bold black borders for districts and thin borders 
for chiefdoms. Figure made by coauthor Corey Peak. 
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Figure 2.3. Weekly case counts and effective reproductive number 

 

Weekly case counts show outbreak trajectory in the four regions of the country. The bars in A and B indicate the 
weekly case count on independent y-axes of cholera and Ebola, respectively. Black lines show maximum likelihood 
estimates of Rt of cholera and Ebola epidemics nationally (A and B, respectively) and in each region (C and D, 
respectively). Figure made by coauthor Corey Peak. 

 

Simulations 

To examine the role of the incubation period in the spread of disease, we simulated 

outbreaks characterized by varying incubation periods among agents distributed evenly on a 

spatial lattice, with movement between populations in the lattice based on a gravity model. These 

simulations show a systematic relationship between the incubation period and spatiotemporal 

patterns of disease spread. As expected, simulated epidemic curves of diseases with shorter 
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incubation periods were more acute while diseases with longer incubation periods peaked later 

(Figure 2.4 A). Although epidemics tend to last longer for diseases with longer incubation 

periods, the spread of the disease to more distant locations can progress more quickly, causing a 

discontinuous and more rapidly spreading wave front (Figure 2.4 C-D). In the first 50 days of 

our simulations, locations further from the origin of the epidemic experienced cases earlier on 

average in simulations with longer incubation periods compared to those with shorter incubation 

periods, likely due to long-distance sparking events from infected agents traveling during the 

incubation period (Figure 2.4 B). The dispersion kernel Kx(d), the probability that an agent will 

end up at a position separated a distance d from the initial position after x days, is more 

homogeneously spread and has non-vanishing probabilities at greater distances the higher the 

incubation period (x), explaining the enhancement in sparking events (Supplementary Figure 

2.5). 

Simulations on a lattice with relative population size based on Sierra Leone’s chiefdom 

census data (as opposed to the evenly distributed populations in the original lattice simulations) 

support the finding that the duration of epidemics is longer on a district (i.e. group of lattice 

points) rather than chiefdom (i.e. individual lattice point) scale, with duration lengthening with 

increasing incubation periods (Figure 2.5 A).  

Consistent with the correlation analysis comparing Sierra Leone’s cholera and Ebola 

outbreaks, time series from simulated outbreaks with shorter incubation periods were more 

highly correlated than those from simulations with longer incubation periods, with correlation 

decaying as distance between locations on the lattice increased (Figure 2.5 B-C). Higher 

correlation suggests increased predictability, which the results of the overlap function support 

(Figure 2.6). As the incubation period lengthened, the average predictability during the 
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beginning of the outbreak decreased as the epidemics spread via unpredictable sparking patterns. 

Predictability plateaued as the outbreaks became widespread.  

Figure 2.4. Simulated epidemic results 

 

Results of 700 simulations of 14 different incubation periods show the impact of incubation period on disease 
spread. Epidemics with shorter incubation periods are more acute than epidemics with longer incubation periods 
(A). The average start time of epidemics at all locations over the first 50 days of outbreak is later for shorter 
incubation periods than longer (B). Spatial trend contours of first 50 days of simulated outbreaks with shorter 
incubation period (2 days) (C) and longer incubation period (10 days) (D), spreading from areas in dark red to light 
red, show that shorter incubation periods result in a more wave front spread and longer incubation periods result in 
more long-distance sparking events; numbers show average start day relative to start of the outbreak.  
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Figure 2.5. Impact of the incubation period on outbreak dynamics 

 
The incubation period impacts the timing of outbreaks and as a result, the correlation. As the incubation period 
increases, the proportion of cases reported by 10 weeks, when a reactive vaccination campaign might begin, 
decreases in simulated epidemics (A). As the incubation period increases, the average correlation overall (B) and by 
distance from origin of simulated outbreaks (C) decreases.  
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Figure 2.6. Incubation period impact on predictability of outbreak spread 

 

The incubation period impacts the predictability of disease spread. As the incubation period increases, the average 
overlap (predictability) of the first 50 days (A) and over the first 50 days (B) of simulated outbreaks decreases.  

 

2.4 DISCUSSION 

 Analysis of the cholera and Ebola epidemics revealed commonalities and differences in the 

way these pathogens spread throughout Sierra Leone, and our simulations suggest the differences 

in the incubation period reproduce these differences. Spatial diffusion of Ebola occurred more 

quickly than cholera, as evidenced by the wave front contour lines and further supported by 

statistical tests considering a subset excluding cholera cases before the brief respite in June 

(Supplementary Figure 2.6). Additionally, cholera metrics were more correlated in space than 

Ebola metrics. Our model simulations suggest that these findings are potentially due to the 

counter-intuitive role of the longer incubation period for Ebola as compared to cholera. Travel 

during the incubation period will be a key driver of geographic disease dispersion and 
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predictability, especially in a population of individuals who decrease mobility when ill. 

Consequently, diseases with longer incubation periods will tend to have more long-distance 

sparking events caused by infected, but healthy, individuals traveling during the incubation 

period. This will result in faster epidemic dispersion to distant, unpredictable locations. These 

findings are in line with Marvel et al.’s results, which found epidemic wave fronts are less likely 

to occur for mobility kernels that decay more slowly;34 when the incubation period is longer, the 

effective mobility kernel can span to more distant places, making sparking events more probable 

given the same number of transmission events.  

Similar results were also obtained when infectious agents did not decrease mobility when 

ill, suggesting that travel during the incubation period has more influence on correlation and 

predictability than travel during the infectious period. While many other factors will influence 

wave speed, continuity, and epidemic synchrony, our simulations showed that small changes in 

the incubation period can powerfully influence epidemic dynamics. For example, environmental 

persistence of Vibrio cholerae in a local water source can potentially lead to a longer serial 

interval for local transmission35 and a fatter right tail in offspring distribution via super-

spreading. Following the dynamics of cholera and Ebola, our models assumed that the incubation 

and latent periods were equal; however, pre-symptomatic infectiousness may be an important 

factor increasing spatial heterogeneity of onward transmission especially in the context of 

decreasing mobility when ill. For a disease with pre-symptomatic infectiousness, we would 

expect to continue to see a positive correlation between long-range sparking events and the 

incubation period as well as a greater likelihood of intermediate-range sparking events as 

infectiousness increasingly precedes symptom onset and travelers transmit en route.  
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The incubation period has already been recognized as an important component for 

understanding epidemics and control,19 with the conventional knowledge that long incubation 

periods allow more time for responders to scale-up interventions against the overall epidemic 

and are therefore advantageous for disease control efforts. Here we demonstrated a counter-

intuitive mechanism whereby a longer incubation period may in fact hinder a response by 

decreasing the predictability of outbreaks and increasing their geographic scope as well as of the 

needs of surveillance and response. We use simulations to reproduce the double-edged sword of 

the influence of the disease incubation period on reactive interventions.  

Reactive vaccination strategies exist for both cholera and Ebola outbreaks, and a better 

understanding of spatiotemporal spread can facilitate locally-preemptive vaccination to target 

locations at high risk of introduction.36–38 Reactive vaccination campaigns must consider both the 

expected duration of an outbreak at a given spatial scale and the predictability of its spread. We 

found that both epidemics lasted longer at the district level than chiefdom level, likely due to the 

larger spatial scale of the districts. For cholera, we showed that chiefdom outbreaks tended to 

report half their cases within approximately 4 weeks, suggesting reactive vaccination of a 

chiefdom triggered by detection of a case may not be early enough to avert an outbreak and 

instead intervening at a wider scale, such as districts, might provide more favorable timing for 

intervention targeting. We posit for future study that regional-ring vaccination strategies may be 

better suited to diseases with short incubation periods, while contact-ring vaccination strategies 

may be better suited to diseases with longer incubation periods due to their regional 

unpredictability and the longer intervals between generations in infection. 

There are limitations to our work with regards to data as well as methods. Few cholera 

cases were confirmed during the epidemic and therefore we depend on the clinical definition as 
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well as the cases that were detected and recorded by the surveillance system. Ebola surveillance 

data are similarly prone to differences in reporting rates, but the use of only confirmed cases 

yielded similar results to those reported above using both confirmed and suspected cases. Our 

estimates for the effective reproductive number depend on, and absorb the limitations of, case 

data, serial interval estimates, and the chiefdom connectivity matrix. Specifically, we assume all 

cases in our dataset acquired infection from others in the dataset, thereby excluding missing 

cases and asymptomatic transmitters. However, this method has been shown to be robust to cases 

missing at random and we furthermore expect the role of asymptomatic transmission to be 

limited for both diseases due to the strong correlation between pathogen load, symptoms, and 

infectiousness.39,40 

Further, we assume no changes to the serial interval for either cholera or Ebola during the 

course of the epidemics. For cholera specifically, waterborne transmission could potentially lead 

to a heavy right-tail in serial intervals or change the distribution as pathogen accumulates or 

clears from a drinking source. Household data in Bangladesh, where the role of water 

contamination is expected to be large, suggest few serial intervals beyond 7 days.41 The 

geographic spread of cholera in Sierra Leone from the northwest and south towards the center of 

the country was not consistent with the direction of key waterways in the country, which 

primarily run from the eastern highlands to the western shores, suggesting population density and 

human-to-human contact likely played a larger role than water sources in this outbreak.  

Finally, our simulation model provides a proof-of-concept test of the hypothesis of the 

impact of the incubation period on disease spread and makes several simplifying assumptions. 

These assumptions could be relaxed in future work, including the complete overlap of symptoms 

and infectiousness and constant or structured diffusion of agents, for example without increased 
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probability of returning “home,” which could decrease the overall distance exposed agents travel 

and therefore lower the probability of longer range sparking events. One could use other models 

for the mobility of the agents, such as the one by Song et al.42 which includes probabilities for 

returning to already visited places, as well as for exploration of locations not previously visited. 

In general, complex travel patterns are difficult to measure in real populations and are highly 

context-specific, interacting in critical ways with the epidemiological drivers of epidemics 

examined here.  

The threat of cholera and Ebola re-emergence in Sierra Leone remains a concern.43 We 

have shown that differences in incubation period alone are a powerful driver of geographic 

dispersion and merit further study. Although this study only examines one epidemic from each 

disease, the size of these epidemics, combined with simulation results from our model, can lend 

information towards a better understanding of each disease and our ability to predict disease 

spread. This work can inform development of international preparedness and response strategies 

and ensure timely and effective interventions.  

2.5 METHODS 

Data 

Cholera cases were reported to the Sierra Leone Ministry of Health and Sanitation by 

treatment facilities throughout Sierra Leone between January 1, 2012 and May 15, 2013. 

Following standard WHO definitions,44 a suspected cholera case was defined as acute onset of 

watery diarrhea or severe dehydration in a person aged five years or older in a region without a 

known cholera outbreak; once the Government of Sierra Leone declared an outbreak of cholera 

on February 27, 2012, any case of acute watery diarrhea could henceforth be included as a 
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suspected cholera case. Data were compiled and anonymized by the WHO for analysis, with case 

reports temporally resolved by day and spatially resolved by chiefdom. For Ebola, we used a 

published dataset of 8,358 confirmed and 3,545 suspected Ebola cases reported to the Sierra 

Leone Ministry of Health and Sanitation from May 2014 to September 2015.45 Our analysis 

included both suspected and confirmed cases of Ebola according to standard WHO definitions.46 

Population estimates for 2012 and 2014 were imputed by chiefdom using a linear fit between 

chiefdom population estimates from the 2004 and 2015 Population and Housing Censuses.47 

Data and code are available on Github.48  

Sierra Leone has four administrative regions, which are divided into fourteen districts. 

Freetown, the capital and largest city, is comprised of two districts; the remaining twelve districts 

are subdivided into 149 chiefdoms, with a median of 11.5 chiefdoms per district. Chiefdom, as 

the finest administrative unit available for cases of both cholera and Ebola, was considered the 

unit of observation and the unit of analysis (with the exception of cases in Freetown which were 

solely reported at district level), as it is the likely scale of intervention campaigns like 

vaccination. To understand what would have been observed at a coarser spatial scale that is more 

common for surveillance, we additionally aggregated cases by district.  

Spatiotemporal analysis 

We defined the first outbreak week for each chiefdom as the week of the first reported 

case in that chiefdom. We visualized outbreak spread using a contour map of outbreak wave 

front direction and speed.45 Contours of spatial spread were generated using ArcMap 10.3.1 

Spatial Analyst extension by applying a fourth degree polynomial trend interpolation of 

chiefdom onset dates and generating contour lines of this surface in 2–4 week increments. With 



 

20 
 

this method, more closely-spaced contour lines indicate slower propagation, similar to the slope 

of a topographic map of geographic elevation. 

To identify space-time clusters, using the SaTScan software package,49 we ran a 

retrospective discrete Poisson-based Scan Statistic over the entirety of the outbreaks for which 

data were available, namely 16 months of cholera data and 17 months of Ebola data. Disease 

case reports were assumed to be Poisson-distributed given chiefdom population size. The unit of 

time aggregation for the analysis was specified as the median serial interval for each disease (5 

days for cholera50,51 and 13.3 days for Ebola8).  

  We calculated spline correlograms for four chiefdom outbreak metrics to measure spatial 

correlation of date of first case, case count, attack rate, and disease presence (yes/no). The 

maximum centroid-to-centroid distance was set to 150 km, approximately the radius of Sierra 

Leone. We used the spline.correlog function of the R package ncf for each disease and all 

chiefdom pairs.52  

We estimated the daily effective reproductive number (Rt), the average number of 

onward infections generated by cases with onset on day t, using methods described by Wallinga 

and Teunis and extended to metapopulations by White et al.53,54 This maximum likelihood 

method estimates the probability that an observed case was the infector for each subsequent case 

by leveraging information on the daily case count, the serial interval distribution, and a weights 

matrix that quantifies relative contact frequency within and between chiefdoms. The serial 

interval for cholera was assumed to follow a gamma distribution (rate = 0.1, shape = 0.5) with a 

median of five days, as has been used previously after consideration of both fast, person-to-

person, and slow, environmental, transmission routes.50,51 The serial interval for Ebola was 

assumed to follow a gamma distribution (rate = 0.17, shape = 2.59) with a median of 13.3 days 
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derived from the estimates by the WHO Ebola Response Team.8 The contact frequency between 

two given chiefdoms was assumed to decrease with squared distance between the chiefdom 

centroids. Additional weights matrices with different functional forms for distance decay yielded 

qualitatively similar measurements of Rt. 

Model 

We simulated an agent-based model with 45,000 agents distributed equally in 150 

locations, evenly spaced on a 15 x 10 lattice. Infected agents progressed through a traditional 

Susceptible-Exposed-Infectious-Recovered (SEIR) compartmental transmission framework. We 

assumed the incubation period (i.e. the time from exposure to symptom onset) overlapped 

completely with the latent period (i.e. the time from exposure to onset of infectiousness). 

Similarly, the duration of illnesses (5 days) aligned with the duration of infectiousness. The serial 

interval, which comprises both the incubation period and duration of infectiousness, can strongly 

influence epidemic dynamics. However, to isolate the impact of pre-symptomatic travel on 

spatiotemporal patterns of disease spread, in our simulations, we held the duration of 

infectiousness constant. The attack rate also remained constant throughout the epidemics, with an 

R0 of 1.5; simulations with larger R0s (e.g. 3) returned similar results. Movement of agents 

between two locations was simulated through a daily travel connectivity matrix A based on a 

gravity model, whereby connectivity was proportional to the population sizes of each location 

and the inverse squared distance between them.55 Different parametrizations of the gravity 

model, as well as simulations with relative population size based on Sierra Leone’s chiefdom 

census data,56 yielded similar results. Note that the effective dispersion kernel after x days Kx(d) 

mentioned in the simulation results is different from the daily mobility matrix A. In our 

simulations the mobility matrix is fixed independently of the disease, but the dispersion kernel 
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that is relevant for each disease depends on the incubation period. The element Aij of the mobility 

matrix A describes the probability that an agent will travel from location i to location j in one 

day. These elements depend on the populations of those locations and the distance between them 

as in a gravity model for mobility. The dispersion kernel Kx(d) measures the probability of 

finding an agent at a distance d from the place where she was x days before. Therefore the 

dispersion kernel is a direct consequence of the daily mobility matrix. It will tell us, for infected 

agents, the probability of being at a distance d from where they became infected after x days. As 

travel is stopped once they become infectious, the relevant dispersion kernel for each disease will 

be the one for which x equals the incubation period.  

Susceptible, exposed, and recovered individuals had a daily probability of movement. To 

simulate the impact of a reduction in mobility during illness, agents in the model had their 

movement reduced as far as zero throughout the course of their period of infectiousness (and, 

equivalently, illness). Holding all other parameters constant, we conducted 700 simulations of 

epidemics for incubation periods ranging from 1 to 14 days. We seeded the epidemic at the same 

location near the center of the lattice for all simulations.  

Synchrony was assessed with the R package ncf functions mSynch and Correlog.Nc,52 

which both estimate the correlation between the time series in each of the 150 locations across 

the 500 days of the simulations, with the latter incorporating distance.52. To assess the impact of 

the incubation period on the initial speed of spread, we calculated the average start time across 

all locations in the first 50 days of the outbreaks as well as at increasing distances from the 

location on the lattice where the outbreaks began.  

To estimate the predictability of outbreak spread in space and time, we adapted an 

overlap function used to measure predictability of a SARS outbreak.15 In each simulation, a 
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vector π"(t) represents the proportion of all infected individuals at time (t) who are at location 

(j). In a system with high predictability, π"(t) will be similar across simulations. The overlap 

between simulations I and II can be estimated by: Θ(t) = ∑ 'π"
((t) ∗ π"

(((t)" . Θ(t) ranges from 0 to 

1 with a higher value indicating more overlap and thus more predictability. We estimated 

predictability at each time point by calculating the average of the overlap functions for each pair 

of simulations for each incubation period. We calculated the average overlap across time points 

to provide a summary metric for predictability of each incubation period.  

Data Availability 

Code and data are available on Github:48 https://github.com/rek160/Sierra-Leone-

Cholera-Ebola. 
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Chapter 3. Leveraging pathogen sequence and contact tracing data to enhance vaccine 
trials in emerging epidemics  
 

3.1 ABSTRACT 

Advance planning of the design and analysis of vaccine trials conducted during infectious 

disease outbreaks increases our ability to rapidly define the efficacy and potential impact of a 

vaccine and inform public health response. Vaccine efficacy against infectiousness (VEI) is an 

important measure for understanding the full impact of a vaccine, yet it is currently not 

identifiable in many vaccine trial designs because it requires knowledge of the vaccination status 

of infectors. Recent advances in pathogen genomics have improved our ability to accurately 

reconstruct transmission networks. We aim to assess if augmenting classical randomized 

controlled trial designs with pathogen sequence and contact tracing data can permit these trials to 

estimate VEI.  

We develop a transmission model with a vaccine trial in an outbreak setting, incorporate 

pathogen sequence evolution data and sampling as well as contact tracing data, and assign 

probabilities to likely infectors. We then propose and evaluate the performance of an estimator of 

VEI. We find that under perfect knowledge of infector-infectee pairs, we are able to accurately 

estimate VEI. Use of sequence data results in imperfect reconstruction of the transmission 

networks, biasing estimates of VEI towards the null, with approaches using deep sequence data 

performing better than approaches using consensus sequence data. Inclusion of contact tracing 

data reduces the bias.  

Pathogen genomics enhance identifiability of VEI from individually randomized 

controlled trials, but imperfect transmission network reconstruction biases the estimates towards 

the null and limits our ability to detect VEI. Given the consistent direction of the bias, estimates 
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obtained from trials using these methods will provide lower bounds on the true VEI. A 

combination of sequence and epidemiologic data results in the most accurate estimates, 

underscoring the importance of contact tracing in reconstructing transmission networks.  

3.2 INTRODUCTION 

Vaccine trials conducted during epidemics of emerging infectious diseases provide an 

important opportunity to test the safety and efficacy of vaccine candidates. Increasing our ability 

to quickly and accurately understand the impact of a vaccine candidate in the urgent setting of an 

outbreak is critical for enhancing public health response. The use of the ring vaccination strategy 

in the Ebola ça Suffit trial during the 2013-2016 West African Ebola outbreak highlighted the 

importance of developing innovative designs for trials conducted during an ongoing outbreak.38 

It also underscored the need to think through trial design and analysis strategies in advance in 

order to expedite the rollout of a vaccine trial once an outbreak starts and to identify the best 

methods for obtaining high quality efficacy estimates in outbreak settings.57  

Multiple components of vaccine efficacy can be estimated from a vaccine trial.58 

Individually randomized controlled trials (iRCTs) estimate vaccine efficacy against susceptibility 

to infection (VES), the direct effect of the vaccine on vaccinated individuals.58 If reducing 

susceptibility to infection is the only effect of the vaccine, then this measure, combined with 

information on contact network structure and pathogen transmission dynamics, can be used to 

estimate the total effect of a vaccination program, a combination of the direct and indirect (i.e. 

herd immunity) effects. Vaccine efficacy against infectiousness (VEI), the reduction in onward 

transmission from a vaccinated person who is infected compared to an unvaccinated infected 

person, is another important measure for understanding the impact of a vaccine.58 Even if a 

vaccine does not protect everyone who is vaccinated from getting infected, its impact on 
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infectiousness for those who are vaccinated but nevertheless become infected plays a critical role 

in both outbreak dynamics and also cost-effectiveness of a vaccine program. The significance of 

understanding interventions’ effects on future transmission is exemplified by the efforts of HIV 

treatment-as-prevention programs to reduce patients’ viral loads to undetectable levels in order to 

prevent onward transmission.59,60  

In order to estimate VEI, the vaccination status of infectors must be known. VEI is 

therefore potentially measurable in household studies61,62 and partner transmission studies, such 

as HIV vaccine trials63 because in these settings, infector-infectee pairs can be identified (by 

assuming that household members or partners are the infectors), and thus the vaccination status 

of infectors is known. However, VEI is not currently identifiable in population-level vaccine 

trials, such as those often conducted during an infectious disease outbreak, because the 

transmission network, and consequently the vaccination status of infectors, are typically 

unknown.  

Recent advances in pathogen genomics have improved our ability to accurately 

reconstruct transmission networks.13,64–69 The West African Ebola epidemic and the ongoing 

COVID-19 pandemic have demonstrated our growing capacity to use sequence data in outbreak 

settings,53,70–74 and recent work has highlighted the potential for deep sequence data to add 

resolution to transmission networks.75–77 We aim to assess if augmenting classical randomized 

controlled trial designs with pathogen sequence data, as well as contact tracing data, would 

permit these trials to estimate VEI by reconstructing transmission networks and identifying the 

trial status of infectors.  

3.3 METHODS 
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We define θ as the risk ratio for becoming infected if one receives vaccine vs. control, or 

1 – VES, and Φ as the relative infectiousness of a vaccinated person who is infected compared to 

a control who is infected, or 1 – VEI. At the conclusion of a vaccine trial, the ratio of the 

proportion of people infected by vaccinated individuals to the proportion of people infected by 

controls is a product of both the vaccine’s effect on susceptibility to infection and its effect on 

infectiousness among those who are infected. With knowledge of who infected whom, using the 

ratio of infector vaccination status, we can therefore calculate VE(: 

θΦ =(1 − VE.)(1 − VE() = 
#	12345647	89	:;55

#	:;55
<
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We simulate a compartmental network model of an outbreak, together with a vaccine 

trial, the details of which have been previously described.78 Individuals are grouped into 

communities, with many connections between individuals in the same community and fewer 

between individuals in different communities. Introduction of infection into the network occurs 

at a time-varying rate, and the disease natural history in the communities follows a stochastic 

susceptible, exposed, infectious, recovered (SEIR) model, with Ebola-like parameters (Table 

3.1). Each individual has a daily probability of infection from their infectious contacts in the 

network. Individuals are enrolled into an iRCT, with 50% randomized to vaccine and 50% to 

control. The vaccine’s efficacy against susceptibility to infection is “leaky”, with 60% efficacy 

(VES = 0.60), meaning upon each exposure, the vaccine reduces a vaccinated individual’s chance 

of infection by 60%. The vaccine’s efficacy against infectiousness is 30%, meaning 

infectiousness among infected vaccinated individuals is 30% lower than among infected 
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unvaccinated individuals (VEI = 0.30). Table 3.2 shows the number of infections expected for 

each type of infector-infectee pair from the trial simulations.  

Table 3.1. Parameters 

Parameter Value in baseline 
model 

Values in 
supplement 

R0
25

 1.5  

Incubation period79 9.7 days  

Infectious period79 5 days  

VES 0.6  0.8 

VEI 0.3  0.7 

Number of communities 2  

Size of community 5,000  

Probability of connection within community 0.02   

Probability of connection between communities 0.001  

Importations from main population over trial period 78 20  

Trial length (days) 300  

Genome length64 18,958  

Mutation rate (per genome per generation)  0.012  0.003 

Bottleneck (size of pathogen inoculum at transmission)  10  2 

Cluster threshold80 0.2  0.1 

 

To estimate VEI, we first make the unrealistic assumption of complete knowledge of the 

transmission network, with perfect ascertainment of who infected whom and their infection and 

recovery times. We then relax the assumption of perfect knowledge of who infected whom. 

Using the R package seedy,81 we incorporate pathogen evolution and sampling of both consensus 

and deep sequence data into the simulations, specifying parameters such as genome length, 

mutation rate, and bottleneck size (Table 1). As the choice of parameters, particularly mutation 
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rate and bottleneck size, greatly impacts our ability to reconstruct transmission networks,75 we 

vary parameters across simulations to assess their impact on our ability to estimate VEI.  

Table 3.2. Expected number of infections 

Infector (column)  

Infectee (row) 

Vaccinee Control Any participant Ratio of 
infectees 

Vaccinee apqθ2Φ apqθ apqθ(1+θΦ) θ 

Control apqθΦ apq apq(1+Φ) 

Any participant apqθΦ(1+θ) apq(1+θ) apq(1+θ) (1+θΦ) 

Ratio of infectors θΦ 
 
A proportion p is randomized to vaccine and to control. In the absence of vaccination, a proportion a would become 
infected, and a proportion 2q of all exposures to infection of participants would come from other trial participants 
(with 1-2q external exposures). θ = 1 – VES, or the risk ratio for becoming infected if one receives vaccine vs. 
control, and Φ = 1 – VEI, or the relative infectiousness of a vaccinated person who becomes infected to a control 
who becomes infected. 
 

For each infectee we then assign a probability to each potential source of infection, based 

on comparisons of the sequence data for the candidate source(s) and each index case using four 

different approaches. In the first two approaches we use consensus sequence data. First, we 

assign probabilities to potential infectors based on the inverse of the genetic distance between the 

infectee and potential infectors. Second, we use a geometric-Poisson approximation of SNP 

distance to assign probabilities to potential infectors; this approach assumes genetically similar 

sequences are more likely to be infector-infectee pairs, while also accounting for mutation rate 

and times of infection.26 Third, we weight potential infectors by the number of rare variants (i.e. 

minority variants not seen in the consensus sequence that are rare in the population) they share 

with each infectee, which may be identified through deep sequence data and has previously been 

shown to provide additional resolution.75 Fourth, we combine the second and third approaches, 

using the consensus sequence data in the event that no shared minority variants for an infectee 

are identified through deep sequence data.75 For all four approaches, we then weight the 
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probabilities identified through the sequence data by the probability of infection given the time 

of symptom onset of the infectee and potential infector(s) based on the serial interval distribution 

(i.e. the time between when an infector becomes symptomatic and their infectee becomes 

symptomatic). 

Using each of these approaches, we then estimate the ratio of the number of cases 

infected by a vaccinated person to the number of cases infected by a control. We do this in three 

ways for each approach (see supplemental text 1 for more details). First, we weight each 

identified potential infector by the probability assigned to them and sum the probabilities by 

vaccination status. Second, we split the probabilities for each infectee into clusters based on the 

largest gap in probabilities between potential infectors.80 If the gap is larger than the specified 

threshold, we use the normalized probabilities from the infector(s) in the top cluster; otherwise 

we exclude that infectee from the analysis. Third, we use only the vaccination status of the most 

likely infector(s) for each infectee. Using the estimated ratio of the trial status of the potential 

infectors and the estimate of VES from the trial, we then estimate VEI, using the equation above. 

To incorporate the data from the network obtained through contact tracing efforts during an 

epidemic, we also conduct all of the approaches described above in a data set restricted to only 

potential infectors who are contacts of the infectees (i.e. connections in the network model).  

We propose the following procedure for estimating the standard errors of the estimates 

under the approaches that perform best. For a given simulation and estimate of VEI, we obtain a 

bootstrap estimate of the standard error as follows. We first sample with replacement from the 

infected individuals. We then construct a bootstrapped data set using each infected individual 

from the sample and all of their potential infectors identified by the approach. We estimate VEI 

from the bootstrapped data set and then repeat these steps 100 times. The standard deviation of 
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the 100 bootstrapped estimates is the standard error of the VEI estimate. This approach could be 

used with real data observed in a real trial and resembles the bootstrapping clusters approach 

(i.e., clusters are treated as units for resampling) for clustered data.83  

3.4 RESULTS 

As expected, under perfect knowledge of the transmission network, VEI is estimated 

correctly (median of 500 simulations: estimate = 0.29, standard error = 0.19), while imperfect 

reconstruction of the transmission networks using sequence data results in bias towards the null 

away from the true VEI of 0.30 (Figure 3.1). This imperfect reconstruction is due to the 

identification of multiple potential infectors for each infectee. For example, another infectee 

infected by the infector of an index case may share the same number of rare variants as the index 

case and thus be identified in the top cluster of potential infectors. Of the methods using only 

sequence data, the shared variant approach using deep sequence data and the hybrid approach 

return results closest to the true value of VEI, while the approaches using consensus sequence 

data alone return estimates closer to the null. The approaches using clustering result in more 

accurate estimates of VEI (Figure 3.1) than the methods weighting all possible infectors, or 

methods using only the most likely infector(s) (Supplementary Figure 3.1).  

In reality, sequence data are unlikely to be used in isolation, and adding epidemiologic 

data from the contact network decreases the bias. Using the infector(s) identified from the hybrid 

and shared variant approaches among potential infectors restricted to contacts results in median 

estimates of 0.28, close to the true value of 0.30 (Figure 3.1 & Supplementary Figure 3.1).  
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Figure 3.1. Median VEI Estimates 

 

The median VEI estimates from 500 simulations with the baseline parameters, with a true VEI of 0.3. “None” refers 
to simulations that use only sequence data, without incorporating any epidemiologic information from the network. 
“Restrict to contacts only” restricts the analysis of sequence data to potential infectors who are contacts from the 
network.  

 

The ability to accurately reconstruct transmission networks was previously found to be 

influenced by parameters such as the bottleneck size and the mutation rate.75 Varying these and 

other parameters in our simulations show similar results to the baseline scenario 
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(Supplementary Figures 3.2-3.5), with the hybrid and shared variant approaches performing 

worse with a lower mutation rate (Supplementary Figure 3.2) and a lower bottleneck size 

(Supplementary Figure 3.3), as expected because less shared variant information is available in 

these settings.75  

3.5 DISCUSSION 

In the case of an outbreak of an emerging infectious disease, the ability to rapidly define 

the efficacy and potential impact of a vaccine is crucial for improving public health and 

informing policy decisions. An important component of vaccine efficacy which is often 

overlooked is its ability not only to guard against acquisition of infection by vaccinated 

individuals, but also to prevent onward transmission from those who are vaccinated that 

nevertheless become infected. VEI is important for fully understanding and modeling the impact 

of a vaccine and both sequence and contact tracing data have the potential to allow us to estimate 

VEI in large individually-randomized controlled trials conducted during an epidemic. Previously, 

this estimate was only attainable from household and partner studies.61–63 Advance planning and 

understanding of the data requirements necessary are critical for obtaining efficacy estimates 

during the uncertain and urgent setting of an outbreak.  

We find that while sequence and contact tracing data have the potential for enabling 

estimation of VEI, misclassification of the trial status of infectors due to imperfect reconstruction 

of the transmission network leads to bias towards the null of VEI estimates and overall limits our 

ability to detect an effect of the vaccine on infectiousness. Given the consistent direction of the 

bias, if an estimate is obtained in a trial using the methods described here, it is expected to be an 

underestimate of the true VEI. The approaches using the top cluster of most likely infector(s) 

identified from the deep sequence shared variants and hybrid data perform the best of all of the 
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methods using sequence data alone and remain the most accurate method when contact tracing 

data are incorporated. If deep sequencing data are not available, relying on contact tracing data 

becomes even more important. The substantial improvement in the estimates when restricting to 

contacts further underscores the importance of contact tracing for reconstructing transmission 

networks.  

Previous work has pointed to the potential of shared variants identified in deep sequence 

data, to inform transmission.75–77 The intuition of this approach is that the pathogen population 

within an infected host is not composed of identical genomes, but contains some polymorphisms 

(depending on the population size and the mutation rate). If the transmission bottleneck is 

sufficiently large, more than one of these genotypes may be transmitted, and the finding that 

individuals share the resulting polymorphism is then a likely indication of transmission. The 

methods described here will therefore have variable efficacy for different pathogens. For 

example, influenza has a high mutation rate,64 so there is likely sufficient phylogenetic signal and 

within host variation to support reconstruction of the transmission network and estimation of 

VEI. Initial genomics analyses of SARS-CoV-2 found a low mutation rate;84 recently, however, 

there is evidence of minority variants detectable by deep sequencing,85 suggesting deep 

sequencing approaches have the potential to be used in ongoing vaccine trials to estimate VEI.  

Many simplifying assumptions have been made, which could be relaxed in future work. 

We assume perfect knowledge of infection and recovery times, allowing us to accurately identify 

the direction of transmission in infector-infectee pairs; in reality, particularly for pathogens with 

short incubation periods, the direction of transmission may be less clear. We also assume 

complete and correct sampling of sequence data (which in turn means that everyone in the 

community is a participant in the trial, as we assume, or at a minimum is followed up in the 
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trial), full knowledge of the contact network, and complete contact tracing. Approaches such as 

those in the TransPhylo R package could be used to assess where cases are likely missing and 

the overall proportion of the outbreak that has been sampled.86 A naïve Bayes approach using 

additional data on individuals in the trial, such as demographic or geographic covariates, has 

been shown to improve reconstruction of the transmission network when limited sequence and/or 

contact tracing data are available.87 Our methods further absorb the limitations of the seedy 

package, which assumes neutral evolution and does not permit superinfection, although this latter 

limitation is likely more of a concern for endemic rather than epidemic disease models. 

Despite these simplifying assumptions, this work highlights the potential for existing data 

sources to be used in the midst of an outbreak to estimate a key measure of vaccine efficacy. It 

further identifies the data sources that will lead to the most accurate estimation and can thus be 

used for better targeting of the limited resources available for data collection in the midst of an 

epidemic.    
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Chapter 4. Potential Biases Arising from Epidemic Dynamics in Observational 
Seroprotection Studies 
 

4.1 ABSTRACT 

The extent and duration of immunity following SARS-CoV-2 infection are critical 

outstanding questions about the epidemiology of this novel virus, and studies are needed to 

evaluate the effects of serostatus on reinfection. Understanding the potential sources of bias and 

methods to alleviate biases in these studies is important for informing their design and analysis. 

Confounding by individual-level risk factors in observational studies like these is relatively well 

appreciated. Here, we show how geographic structure and the underlying, natural dynamics of 

epidemics can also induce noncausal associations. We take the approach of simulating serologic 

studies in the context of an uncontrolled or a controlled epidemic, under different assumptions 

about whether prior infection does or does not protect an individual against subsequent infection, 

and using various designs and analytic approaches to analyze the simulated data. We find that in 

studies assessing whether seropositivity confers protection against future infection, comparing 

seropositive individuals to seronegative individuals with similar time-dependent patterns of 

exposure to infection, by stratifying or matching on geographic location and time of enrollment, 

is essential to prevent bias.  

4.2 INTRODUCTION 

The extent and duration of immunity following SARS-CoV-2 infection are critical 

outstanding questions about the epidemiology of this novel virus.88 Serologic tests, which detect 

the presence of antibodies, are becoming more widely available.89 However, the presence of 

antibodies, or seroconversion, does not guarantee immunity to reinfection, and experimental data 

with other coronaviruses raise concerns that antibodies could under some circumstances enhance 
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future infections.90 Studies are needed to evaluate the short and long term effects of 

seropositivity. Understanding the potential sources of bias and methods to alleviate biases in 

these studies is important for informing their design and analysis.  

Serologic studies may be useful for a variety of reasons, including to assess the 

cumulative incidence of infection within a community, to identify risk factors for transmission, 

and to determine the extent of clustering of infections within a community.91,92 While these types 

of studies are often cross-sectional and use seroconversion as the endpoint, we consider here 

longitudinal studies where seroconversion is the exposure of interest. 

These seroprotection studies may be conducted by starting with a cross-sectional 

serological survey, where the tested individuals are then followed to identify future infections. 

To obtain a sufficient cohort of seropositive individuals, enrollment may need to occur on 

multiple days. The follow-up to identify future infections depends on regular monitoring of 

symptoms and/or PCR testing for the virus. Consistent case definitions across the study, as well 

as tracking individual enrollment and seroconversion dates, are key to reduce the risk of 

misclassification. If cases are defined based on symptom onset, the study outcome will be the 

association between seropositivity and progression to symptoms. If cases are based on virologic 

testing, the study outcome will be the association between seropositivity and infection. These 

endpoints have different public health implications and the choice should depend on the 

scientific question of interest.93  

A crude analysis of this longitudinal study would compare time from enrollment to 

infection between those that are seropositive and those that are seronegative at enrollment. 

However, because seroprotection studies are observational, as the exposure (i.e., seropositivity) 

is not assigned at random, potential confounders must be controlled for to obtain unbiased 
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estimates. Studies of seropositivity and its effect on future infection are particularly prone to 

confounding because factors that affect someone’s risk of infection and therefore their serostatus 

prior to enrollment (the exposure) are likely similar to factors that affect someone’s risk of 

infection after enrollment (the outcome). For example, individuals in high-risk occupations (e.g., 

health care workers) are more likely to become seropositive and are more likely to be exposed 

again once they are seropositive.  

Confounding by individual-level risk factors is relatively well appreciated. Less obvious 

perhaps is that geographic structure78 or the underlying, natural dynamics of epidemics94,95 can 

induce noncausal associations between an exposure and an outcome. For example, even when 

seropositivity confers no protection against future infection, if the overall size of an epidemic is 

very different in different communities, individuals in communities with small epidemics will 

have low prevalence of the exposure (seropositivity) and low incidence of the outcome (infection 

after enrollment), while individuals in communities with larger epidemics will have higher 

prevalence of the exposure and higher incidence of the outcome, biasing estimates of the effect 

of seroprotection. Bias may also occur if individuals are enrolled at different times during an 

epidemic. If enrollment occurs during an upward trajectory (such as the early exponential phase 

of an epidemic), individuals enrolled early in the epidemic will be both less likely to be 

seropositive (exposure) and also less likely to become infected at a given point in time after 

enrollment (outcome) than those with a later date of enrollment. Moreover, in an epidemic that is 

controlled (thus with an up-then-down trajectory of incidence) the representation of seropositive 

individuals will increase with time, but the rate at which these individuals experience the 

outcome will increase then decrease, creating potential for confounding in either direction. 
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In this study we take the approach of simulating such studies in the context of an 

uncontrolled or a controlled epidemic, under different assumptions about whether prior infection 

does or does not protect an individual against subsequent infection, and using various designs 

and analytic approaches to analyze the simulated data. By identifying the direction and 

comparative magnitude of bias of the estimated degree of protection relative to a known true 

effect of prior infection (known because we have built it into the simulations), we identify means 

of designing and analyzing such studies that can render them less likely to show bias due to these 

confounding factors. This framework of simulating studies in the context of an epidemic has 

been widely used to understand experimental6 and observational94,96 studies of risk factors and 

prevention interventions for infectious disease. 

4.3 METHODS 

We simulate a stochastic outbreak of a disease in a network of people grouped into 

communities, with each community’s outbreak seeded by introductions over time.78,79 For each 

simulation, we generate a network graph, where individuals are grouped into either one 

community of 10,000 people or 10 communities of 1,000 people each. People are only connected 

to individuals in their own community, with the probability of such a connection based on an 

input parameter in the simulation. For “well mixed” communities, every individual is connected 

to every other individual within their community, while for simulations with “clustered” 

communities, individuals have a limited number of connections within their community, which 

creates smaller sub-communities, or “clusters”, by chance. In these latter simulations, individuals 

may have varying numbers of actual connections but all have the same expected number. The 

network graph of a “well mixed” community is a complete graph, while that of a “clustered” 

community is a random graph with uniform edge probability. In simulations with 10 
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communities, all communities are independent of one another, conditional on the introduction of 

infection from the outside. At each time step in the model, each susceptible individual has a daily 

probability of infection from each of their infectious contacts of 1 − ABC, where D is the force of 

infection. Hence ABCis the conditional infection-free survival probability over a single day 

among those at risk at the start of the day. If a subject has n infectious contacts on a given day, 

the force of infection is nD and thus the day’s conditional probability of infection is  1 − ABEC. 

Since the number of contacts per individual varies by simulation, D varies by simulation to keep 

R fixed  (see Web Appendix 1). The outbreak is seeded with stochastic introductions into the 

communities between days one and fifty based on an external force of infection (different from 

D,	see Supplementary Figure 4.1), which means in simulations with multiple communities, 

outbreaks may start at different times in each community, and some communities may avoid 

infection completely. 

The disease natural history follows a Susceptible-Exposed-Infectious-Susceptible’ 

(SEIS’) model, where under the null hypothesis (i.e., no immunity) those in the S and S’ 

compartments are equally susceptible, while under the alternative hypothesis, those in S’ are less 

susceptible (in principle, perhaps completely immune, but in keeping with prior evidence about 

coronaviruses, we assume partially immune).97,98 In simulations with partial immunity, we make 

the simplifying assumption that susceptibility is immediately decreased following the infectious 

period and remains constant over time. Seroconversion is assumed to be detectable at the end of 

the infectious period. We simulate scenarios with limited control measures in place (RE=1.5) and 

scenarios in which control measures that reduce the force of infection per infected individual (D) 

are implemented at day 120 of the study period, reducing RE from 2 to 0.8. D is set to yield these 

values of RE. Table 4.1 shows the specific numbers corresponding to these parameters of the 
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simulations, and Web Appendix 1 describes the generation of the network and outbreak in more 

detail. 

Table 4.1. Parameters 

Parameter Values 

Number of communities 1, 10 

Average community size 1 community simulations: 10,000 
10 community simulations: 1,000 

Probability of connection with 
someone within the same community 

Well mixed: 1 (everyone is connected to everyone in 
their community) 
Clustered: 0.002 probability per edge for 1 community 
and 0.02 probability per edge for 10 communities 

Probability of connection with 
someone in another community 

0 

RE
14 Controlled: 2.0 → 0.8  

Uncontrolled: 1.5 

Latent period 5.6 days (gamma distribution with shape = 5, rate = 
0.9) 

Infectious period 10 days (gamma distribution with shape = 3, rate = 0.3) 

Days of simulation 200 

Day control begins Controlled: 120 
Uncontrolled: Never 

Reduction in D after control 60% 

Days of enrollment Same day: 100 
Different days (uncontrolled): 50, 100, 150  
Different days (controlled): 100, 150 

% of individuals enrolled (unmatched) 50% 

Seropositivity protection 0 (null) 
50%  
95% 

RE = effective reproductive number 
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For each simulation setting (one or ten communities, well mixed or clustered 

communities, control measures or not, and seroprotective efficacy), we consider three sampling 

designs: enrolling individuals on a single day without matching (day 100), enrolling individuals 

on multiple days (days 50, 100, 150) without matching, and enrolling individuals on multiple 

days with matching of enrolled seropositive and seronegative individuals. Enrollment on 

multiple days may occur, for example, if different cross sectional surveys are conducted, and this 

study enrolls the participants in those surveys. A random sample of individuals are enrolled into 

the study at these specified time points over the course of the outbreak. We classify individuals 

as seropositive or seronegative based on their serostatus on day of enrollment into the study, and 

then we follow them up until they are infected or until the study period ends at day 200. In the 

unmatched designs, we enroll half of the individuals in each community into the study, with an 

equal number enrolled on each day of enrollment. In the matched designs, for every seropositive 

individual enrolled on each day of enrollment, we also enroll one seronegative individual on that 

day from the same community. This increases the balance between exposure arms but reduces 

the overall sample size.  

For each simulation setting and sampling design, we conduct two analyses. First, we 

conduct an unstratified analysis in which we calculate the hazard ratio of infection comparing 

seropositive to seronegative individuals, using a Cox proportional hazards model with time 

starting from enrollment (i.e., possibly not the same calendar time if individuals enroll on 

different dates). Second, given the potential for stochasticity to generate heterogeneous outbreaks 

between communities,78 we also conduct an analysis stratified by community and day of 

enrollment to prevent confounding by these variables. In this analysis, a Cox proportional 

hazards model with time starting from enrollment is fit with a separate baseline hazard function 
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for each community and day of enrollment combination, but a common hazard ratio due to 

seropositivity. R code for the simulations and analysis is available on Github,99 and additional 

analyses examined are described in Supplementary Text 4.2, Supplementary Figure 4.2, and 

Supplementary Figure 4.3.  

4.4 RESULTS 

Figure 4.1 shows the results for 1,000 simulations for each of 36 combinations of 

parameters (see Table 4.1). Figure 4.1 A–D summarize results from simulations with limited 

control measures in place (RE=1.5). Figure 4.1 A and C are under the null, meaning 

seropositivity provides no protection against reinfection (D+ = D-, where D+ is the force of 

infection for contact between an infectious individual and a seropositive individual and D- is the 

force of infection for contact between an infectious individual and a seronegative individual). In 

Figure 4.1B and D, seropositivity reduces susceptibility by 50% (D+ = 0.5*D-) and 95% (D+ = 

0.05*D-), respectively.   

Simulations are in well mixed communities, meaning everyone within a community is 

connected to each other, except in Figure 4.1 C which has random clustering within each 

community. This clustering leads to correlations between infection status of particular 

individuals close together in the network and may be understood as creating multiple smaller 

(albeit overlapping) “communities” within each discrete community.  

For simulations with one well mixed community with the same day of enrollment for all 

individuals (top lines of Figure 4.1A, B, and D), a crude analysis returns unbiased results. If 

enrollment occurs on different days (Figure 4.1 A, B, and D, second and third lines), a crude 

analysis yields an upwardly biased estimate of the hazard ratio, making seropositivity appear 
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harmful. However, matching on day of enrollment or stratifying the analysis by day of 

enrollment removes this bias. 

Figure 4.1. Hazard ratios 
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Figure 4.1. Hazard ratios (continued)                                  

 

  

                Stratified      

        Different day of enrollment, match 
                Unstratified    

                Stratified     

        Different day of enrollment, no match 
                Unstratified   

                Stratified    

10 Communities 
        Same day of enrollment, no match 
                Unstratified

                Stratified   

        Different day of enrollment, match 
                Unstratified  

                Stratified  

        Different day of enrollment, no match 
                Unstratified 

                Stratified 

1 Community 
        Same day of enrollment, no match 
                Unstratified

Simulation Setting

0.53 (0.48–0.58)
0.54 (0.49–0.59)

0.53 (0.46–0.59)
3.52 (2.75–4.76)

0.50 (0.42–0.59)
1.62 (1.20–2.29)

0.50 (0.45–0.56)
0.51 (0.46–0.57)

0.50 (0.44–0.57)
1.23 (1.08–1.39)

0.50 (0.42–0.60)
0.50 (0.42–0.60)

Median (IQR)

0 3 6
Hazard Ratio

B)



 

46 
 

Figure 4.1. Hazard ratios (continued)                                  
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Figure 4.1. Hazard ratios (continued)                                  
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Figure 4.1. Hazard ratios (continued)                                  
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Figure 4.1. Hazard ratios (continued)                                  

 

The median and IQR of estimated hazard ratios, comparing seropositives to seronegatives, for each set of 
simulation settings: A) well mixed communities, uncontrolled, null seroprotection; B) well mixed, uncontrolled, 
50% seroprotection; C) clustered communities, uncontrolled, null seroprotection; D) well mixed, uncontrolled, 95% 
seroprotection; E) well mixed, controlled, null seroprotection; F) well mixed, controlled, 50% seroprotection. Note 
the different x-axis scales. We consider three sampling designs for each simulation setting: enrolling individuals on 
a single day without matching, enrolling individuals on multiple days without matching, and enrolling individuals 
on multiple days with matching. In the matched designs, for each seropositive individual enrolled on each 
enrollment day, a seronegative individual from the same community is also enrolled on that day. We compare 
analyses stratified by enrollment day and community (black) to unstratified analyses (grey). Simulations with zero 
events in either the seropositive or seronegative arm were excluded (percent of simulations excluded in each 
figure: A: 0.85%, B: 1.6%, C: 0.28%, D: 22.1%, E: 4.7%, F: 6.3%). For analyses with a high infection hazard for any 
enrolled individuals (e.g., Figures 1B, 1D, and 1F with different days of enrollment), the estimated hazard ratio is 
between the ratio of the force of infection between seropositive and seronegatives (D+/D-) and the null HR=1. This 
occurs because an individual’s hazard is not simply the product of their number of contacts and the force of 
infection. This is not a bias in the conventional sense, but rather a difference between the ratio D+/D- and the 
parameter that is estimated by the Cox model (see Web Appendix 1 for more details).   
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With multiple communities (and thus multiple, unconnected epidemics, as in the bottom 

halves of Figure 4.1A, B, and D), an unadjusted analysis creates the same upward bias, 

regardless of whether enrollment is on the same or multiple calendar dates, as the same calendar 

date does not mean the same phase of the epidemic in each of the communities. Once again, the 

bias is upward because individuals in communities with larger or more advanced epidemics are 

exposed to higher hazards and are more likely to be seropositive at baseline (Figure 4.2 A–D). 

As before, the bias can be removed by a matched design or stratified analysis, this time matching 

or stratifying on both community and day of enrollment. For analyses with a high number of 

infectious contacts for any enrolled individuals (e.g., Figure 4.1 B and D with different days of 

enrollment), the estimated hazard ratio is between the ratio D+/D- and the null HR=1. This occurs 

because an individual’s hazard is not simply the product of their number of contacts and the 

force of infection. This is not a bias in the conventional sense, but rather a difference between the 

ratio D+/D- and the parameter that is estimated by the Cox model (see details in Supplementary 

Text 4.1). For settings with a lower force of infection or fewer infectious contacts, this difference 

is imperceptible. 

Clustering of contacts within communities (a departure from the assumption of a well 

mixed epidemic, Figure 4.1 C) produces an upward bias even in the matched design and 

stratified analyses. As noted, this reflects that the different parts of the network have different 

local prevalence at any given time, resulting in a milder form of the same heterogeneity-induced 

bias seen when there are many discrete communities. Because these clusters of high and low 

prevalence areas overlap and arise during the study, there is no a priori way to adjust for them. 
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Figure 4.2. Daily hazards                   
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Figure 4.2. Daily Hazards continued                                  
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Figure 4.2. Daily Hazards continued                                  
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Figure 4.2. Daily Hazards continued                                  

The average simulated daily hazard of infection for those in the initial susceptible compartment (i.e. never infected) 
to move to the exposed compartment in the simulations with one community: A) well mixed communities, 
uncontrolled, null seroprotection; B) well mixed, uncontrolled, 50% seroprotection; C) clustered communities, 
uncontrolled, null seroprotection; D) well mixed, uncontrolled, 95% seroprotection; E) well mixed, controlled, null 
seroprotection; F) well mixed, controlled, 50% seroprotection.  Note the different y-axis scales. Horizontal bars 
show lengths of follow-up for each day of enrollment. The height of the bars indicates the average hazard for that 
duration of follow-up. In A–D, follow-up begins on days 50, 100, and 150, while in E and F, follow-up begins on 
days 100 and 150 only. Vertical grey lines denote the day control measures are implemented, which reduce the force 
of infection by 60% (E and F). The number of infectious individuals continues to grow beyond the day of control for 
approximately the average length of the latent period (5.6 days) due to those infected in the days just before control. 
This causes the hazard to increase again after its initial drop before declining again. 

 

In the simulations summarized in Figure 4.1 E F, transmission is reduced partway 

through the outbreak in one or more well mixed communities, representing intensified control 

measures (RE=2 à 0.8). In these simulations, there are fewer reinfections, as reflected in the 

wider interquartile ranges. As before, the single-community estimates are unbiased when all 

individuals enroll on the same day, but when enrollment occurs on different days or there are 

multiple communities, the estimates are biased. In the single-community simulations with two 

different days of enrollment, the unstratified, non-matched analysis estimates are slightly biased 

away from the null, making seropositivity look protective. This occurs because there are more 

seropositives at later enrollment dates when the average hazard over the rest of the study is 

lowest (Figure 4.2 E and F).  

Hence, with multiple communities or multiple enrollment dates, confounding can go in 

either direction depending on the dynamics of the epidemic at the times of enrollment. Matching 

on enrollment alleviates the different biases, as does stratification in cases where there are 

infections in both the seropositive and seronegative arms. If there are substantially fewer 

seropositive individuals than seronegative individuals and the risk of infection after enrollment is 

low (i.e., because of effective control measures), there can be settings with no infections among 
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the seropositive enrollees in some or all strata. In these cases, stratified analyses can lead to 

unstable results because methods to account for one arm with zero cases (e.g., adding a case to 

each arm) can over-correct when the zero-case arm has far fewer individuals than the other. 

Matched designs are thus preferable because they remove this imbalance between the two 

exposure arms. 

We note that in the simulations under the null with limited control measures (Figure 4.2 

A and C), the daily hazard (proportion in the S compartment moving to the E compartment) 

initially increases during the early spread of the virus and then begins to plateau. In simulations 

with controlled epidemics and/or immunity (Figure 4.2 B, D–F), the daily hazard increases and 

then decreases.   

4.5 DISCUSSION 

We find that in studies assessing whether seropositivity confers protection against future 

infection, comparing seropositive individuals to seronegative individuals with similar time-

dependent patterns of exposure to infection is essential, because otherwise confounding can bias 

results; accounting for differential exposure among seropositive individuals and seronegative 

individuals is necessary to prevent bias. This bias can arise from either having multiple days of 

enrollment over the course of the study by design or by having multiple communities where the 

outbreak stochastically starts at different times. Matching in the design or stratifying in the 

analysis on community and day of enrollment alleviates this bias in well mixed communities. 

When there is clustering within communities, a slight upward bias remains, suggesting the local 

network structure in a study is an important factor to consider. 
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While most individuals are susceptible when they are enrolled into the study, it is 

possible for individuals to be exposed or infectious upon enrollment. Excluding individuals who 

are infected soon after enrollment (e.g., within the average latent period length) would remove 

many of these cases. For potentially asymptomatic infections, these cases would not be able to be 

excluded in a study without viral testing for active infection. Small biases may occur if all 

individuals enrolled in the study are not susceptible at enrollment. 

The results shown here assume perfect specificity of the serologic test. As expected,100 

imperfect specificity causes bias towards the null (Supplementary Text 4.3 and 

Supplementary Figure 4.4). More complex interactions of immunity and infection, including 

immunity that wanes over the time scale of the study, viral-load dependent infection, and effects 

of repeated exposures, such as boosting of titers, may affect these biases as well, or introduce 

other potential biases. Further research is needed to understand the effects of these biological 

mechanisms in the specific context of SARS-CoV-2. 

These simulations focus on the bias inherent in some study designs that may be 

considered, but do not address the feasibility of implementing these designs. In addition, we do 

not focus on the power of these studies; this may have important consequences in determining an 

adequate sample size. Sample size considerations will be particularly important in balancing the 

advantage of starting enrollment later, when the cumulative incidence is higher and thus the 

exposure arms are more likely to be balanced, and avoiding the tail of an outbreak or a setting 

after control measures have been implemented, which will reduce the infection risk for all 

participants. We have shown that matching can address these issues, but matching requires 

exposure status to be known at enrollment. This may be feasible if the study is designed 

following a serological survey, where individuals can be enrolled on the basis of their antibody 
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presence from the survey. If the exposure needs to be measured for the seroprotection study, 

however, matching may require far more serologic testing to be conducted, inflating the cost of 

the study. Investigators will need to consider the relative sample size requirements and testing 

burden of these designs in the context of their specific study. 

As serologic studies begin, understanding potential sources of bias and how to alleviate 

them are important for accurately estimating the extent and duration of immunity to SARS-CoV-

2 (Table 4.2). Here we have focused on the impact of epidemic dynamics on estimation of 

seroprotection and have assumed all individuals in the model are exchangeable and differ only in 

whom they contact. Future work could examine additional heterogeneity, such as behaviors or 

factors that increase risk of infection, which might lead to further biases.  

Table 4.2. Bias Summary 

Cause of bias Direction of bias Ways to correct 

Multiple communities with 
different timing of 
epidemics 

Upward Matched design or stratified analysis 
(matching works better when both 
number of seropositives and risk of 
infection are low) 

Different days of 
enrollment 

Upward or downward Matched design or stratified analysis 
(matching works better when both 
number of seropositives and risk of 
infection are low) 

Clustered communities Upward Cannot correct a priori but could consider 
matching on household or neighborhood 
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Chapter 5. Conclusion  
 

 Infectious disease modeling has the potential to help us prepare for and respond to 

epidemics of emerging infectious diseases. In these chapters, we showed how models can be 

used to increase our understanding of disease dynamics during epidemics and enhance our ability 

to respond.  

In the second chapter, we showed how analyzing the spatial and temporal spread of past 

outbreaks can shed light on transmission dynamics and help inform future response. Through 

simulations, inspired by trends observed in empirical data, we showed the impact a pathogen’s 

incubation period can have on outbreak trajectory. While historically longer incubation periods 

have been thought to allow more time to prepare, this model shows they in fact can cause the 

outbreak to spread further, faster, and in less predictable ways than shorter incubation periods. 

In the third chapter, we highlighted the importance of preparing for the design and 

analysis of vaccine trials in advance in order to understand and prioritize data that should be 

collected during a trial. We proposed and evaluated an estimator for vaccine efficacy against 

infectiousness and identified deep sequencing and contact tracing data as the most important for 

estimating this measure.  

In the fourth chapter, we identified potential biases that can arise during seroprotection 

studies conducted during the ongoing COVID-19 pandemic. We showed that adjusting for or 

matching on time of enrollment and geographic location reduces confounding by epidemic 

dynamics. These methods will increase our understanding of immunity to this novel virus.  

Models allow for flexible frameworks for evaluating key questions and testing 

assumptions. They can also be continuously updated as additional information becomes 
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available, allowing us to dynamically respond to outbreaks. Understanding how outbreaks spread 

and what makes them more or less predictable, whether vaccines have an impact on 

infectiousness, and if past infection protects against reinfection are all critical questions when 

working to stop outbreaks of emerging infectious diseases. The results from the studies described 

here can be used to improve surveillance systems amidst outbreaks, to enhance the design and 

analysis of trials conducted during outbreaks, and to prioritize public health resources to prepare 

for and prevent epidemics.  
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Appendix 
 

Supplementary Movie 2.1. Spread of cholera and Ebola 

See attached file.  

The spread of cholera (left panel) and Ebola (right panel) outbreaks across chiefdoms in Sierra Leone are shown in 
14-day windows of aggregated cases (fill color). The border of each chiefdom is colored by the time since the 
first infection in that chiefdom (bright red indicates recent first infection). Movie made by coauthor Juan Fernández 

Gracia 
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Supplementary Figure 2.1. SatScan space-time analysis 

 

Results of SatScan space-time analysis for Cholera (A), Ebola (B) and overlap of space-time clusters (C) 

 

  

B. Ebola Clusters May 2014-Sept 2015A. Cholera Clusters Jan 2012 – May 2013

C.  Overlap
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Supplementary Figure 2.2. Local Moran’s I attack rate 

 

Local Moran’s I Attack Rate Clustering for Cholera (A) and Ebola (B). Inverse distance squared neighborhood 
matrix used. 

Supplementary Figure 2.3. Rt 

Estimated number of days with an effective reproductive number above unity for cholera (A) and Ebola (B) show 
darker regions sustaining more transmission. Figure made by coauthor Corey Peak. 
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Supplementary Figure 2.4. Correlation 

 

Spline correlograms showing tendency towards positive correlation between disease presence (A), outbreak onset 
date (B), cumulative cases (C), and cumulative attack rate (D) for both cholera (red) and Ebola (blue) as a function 
of distance between chiefdom pairs (x-axis). Shaded regions indicate 95% confidence intervals calculated for 1000 
bootstrapped samples. Figure made by coauthor Corey Peak. 
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Supplementary Figure 2.5. Dispersion kernel 

 

The dispersion kernel Kx(d) is the probability that one an agent will end up at a position separated a distance d from 
the initial position after x days. For longer incubation periods (τ), the kernel is more homogeneously spread and has 
non-vanishing probabilities at greater distances, explaining the enhancement in sparking events for longer 
incubation periods. These simulations were conducted on a 50x50 lattice, with equal probability of left, right, up and 
down movement and 1/2 probability of not moving. Figure made by coauthor Juan Fernández Gracia.  
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Supplementary Figure 2.6. Survival curves 

 

Survival curves for chiefdom outbreak onset (A) and outbreak duration (B) when considering a subset of cases of 
cholera (red) or Ebola (blue). Figure A excludes cholera cases before June. Figure B includes only chiefdoms with 
more than one day of Rt>1. Figure made by coauthor Corey Peak. 
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Supplementary Text 3.1.  

Aim 

In order to estimate VEI, we need to estimate the ratio of the # people infected by a vaccinated 

person to the # infected by a control 

VE( = 1 - 
#	12345647	89	:;55

#	:;55
<

#		12345647	89	5=26>=?
#	5=26>=?
<

	/ (1 − VE.)      

 

Because # vacc = # cont: 

 

VE( = 1 - 
#	GHIJKLJM	NO	PQKK

#	GHIJKLJM	NO	KRHLSRT
/ (1 − VE.) 

 

Analysis  

The ratio of the # infected by vacc / # infected by control comes from summing probabilities 

based on the vaccination status of potential infectors across all infectees.  

Example for 1 infected person (probability could be obtained from any of the approaches 

described in the Methods) 

Potential 
Infector 

Trial 
Status 

Probability Cluster 

A Vacc 0.05 2 

B Vacc 0.40 1 

C Control 0.35 1 

D Control 0.10 2 

E Control 0.10 2 
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All prob: include all potential infectors and count each as their probability. We add 0.45 

[0.05+0.4] to the numerator of the ratio above and 0.55 [0.35 + 0.10 + 0.10] to the denominator. 

Cluster: Divide infectors into clusters based on biggest gap in probability (here: 0.35-0.10 

= 0.25). Include top cluster if gap is greater than or equal to the threshold (in simulations above, 

threshold=0.2 so 0.25 meets this criteria). We add 0.40/(0.40+0.35) to the numerator of the ratio 

above and 0.35/(0.40+0.35) to the denominator because only 0.40 and 0.35 fall into the top 

cluster.  

Max: Include only potential infector(s) that have the highest probability and count as 1. 

Here, we would add 1 to the numerator of the ratio and nothing to the denominator because 0.4, 

the maximum probability, is a vaccinated person. If two are tied for most likely then each counts 

½.  
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Supplementary Figure 3.1. All methods 

 

*Cluster: 0.2 threshold; Cluster 1: 0.1 threshold used 

The median VEI estimates from 500 simulations with the baseline parameters, with a true VEI of 0.3. All 
approaches, including multiple clustering thresholds and the approach using the vaccination status of only the most 
likely infector(s) (“Max”), are shown, as well as the average standard errors for the best performing approaches. 
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Supplementary Figure 3.2. Mutation rate = 0.003 

 

The median VEI estimates from 500 simulations with a lower mutation rate of 0.003, with a true VEI of 0.3. 
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Supplementary Figure 3.3. Bottleneck = 2 

 

The median VEI estimates from 500 simulations with a lower bottleneck size of 2, with a true VEI of 0.3. 
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Supplementary Figure 3.4. VEI = 0.7 

 

The median VEI estimates from 500 simulations, with a true VEI of 0.7. 

  



 

80 
 

Supplementary Figure 3.5. VES = 0.8 

 

The median VEI estimates from 500 simulations with a VES of 0.8, with a true VEI of 0.3. 
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Supplementary Text 4.1. Data generating details – network and outbreak 

Generate a network  

We use a stochastic block model to generate a network graph, using the sample_sbm 

function in the R package igraph.101 In our simulations, we create networks with one single 

community and networks with 10 communities. We keep the total population across simulations 

constant at 10,000. Therefore in simulations with 1 community, there are 10,000 nodes in that 

one community, and for simulations with 10 communities, there are 1,000 people in each 

community.  

The sample_sbm function conducts a Bernoulli trial for each potential edge in the graph. 

In our “well mixed” communities, the probability for each edge within the same community is 1, 

meaning all nodes in the community are connected. The probability of connection for nodes in 

different communities is 0, meaning there are no edges between communities. For “clustered” 

communities, the probability of an edge between nodes in different communities remains 0. 

While in the well mixed communities, the probability of an edge between nodes in the same 

community was 1, here it is greatly reduced. For the single community simulations, the 

probability of an edge is 0.002, and for the 10 community simulations, the probability of a 

within-community edge is 0.02, meaning the expected number of edges for each node is 

approximately 20. This creates smaller, overlapping communities, or clusters, within each larger 

discrete community. 
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In order to keep RE constant in all simulations, we use the following formula14,78 to 

calculate D (the force of infection):  

UV = W ∗ (
〈YZ〉

Y
− 1)  

W	 = 1 − (
\

\]b
)^  

where k is the mean degree of the network, _` is the mean of the distribution of the square of the 

number of connections an individual has in the network, γ is the infectious period rate, α is the 

infectious period shape (see Table 1).  

Seeding outbreak 

The outbreak in the communities is seeded by introductions from an outbreak in an 

external population102 of one million individuals. All introductions occur between day 1 and 50. 

The number of nodes infected externally on a given day is based on a binomial distribution, with 

the probability equal to 1 − ABab∗c where Fi is the proportionality constant for the amount of 

contact between the external population and a node in community i, and I is the number of 

infected individuals in the external population, which has an exponentially growing deterministic 

outbreak from day 1 to day 50. de =
B?2	(fB

(j)

ghb∗∑ ghbb
)

∫ c
jk

l m

 where φ = expected number of introductions, 

Ci  = size of community i and It is the number of infected individuals in the external population 

on day t. The probability of introduction for a given node scales with the size of that node’s 

community; however in our simulations, all communities have the same size so the probability is 

equal.   
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Supplementary Figure 4.1. Outbreak in external population 

 

Outbreak in communities 

When a node is infected, either from the external population or from an infected node in 

the community, they move from the susceptible compartment to the exposed compartment. Their 

latent period, the time between exposure and onset of infectiousness, is drawn from a gamma 

distribution with mean 5.6 days, independent of the period for any other node. After the latent 

period ends, individuals progress to the infectious compartment. Their infectious period is drawn 

from a gamma distribution with a mean of 10 days, independent of the period for any other node. 

After their infectious period ends, they move into the susceptible’ (S’) compartment.  

On each day, an infectious node has a daily probability of infecting each of the 

susceptible (seronegative) nodes they are connected to of 1 − ABC
n
where D- is the force of 

infection for those initially susceptible, and a daily probability of infecting each of the 

susceptible’ (seropositive) nodes they are connected to of 1 − ABC
o
 where D+ is the force of 

infection for those who have been infected previously. The nodes they infect then move into the 

exposed compartment and the steps above repeat.  
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For an uninfected node, the probability of infection on any given day is equal to 1 −

(ABC
o
)Eif the node is seropositive and 1 − (ABC

n
)E if the node is seronegative, where n is the 

number of infectious contacts of that uninfected node. For small n, these probabilities are 

approximately equal to pD] and pDB, respectively, so the ratio of these probabilities (i.e., the 

hazard ratio due to seroprotection) is approximately equal to the ratio D]/DB. When n is not 

small, however, this simplification no longer holds. Since in our data, we only record total daily 

new infections (in seropositives and seronegatives), Cox model software [that uses (conditional) 

logistic regression to deal with tied failure times] estimates the parameter  [1 − (ABC
o
)E]/[1 −

(ABC
n
)E], which is closer to the null than the instantaneous (i.e. continuous time) hazard 

ratio.D]/DB. If we had recorded the number of new infections occurring hourly rather than daily, 

the same Cox model software would have again outputted an estimate approximately equal to 

D]/DB as the number of hourly contacts, n_hour, is 1/16 of the daily contacts (assuming 8 hours 

sleep without contact).  
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Supplementary Text 4.2. Left truncation 

Supplementary Figure 4.2. Left truncation results 

 

We compare the median and IQR of the estimated hazard ratios, comparing seropositives to seronegatives, for 
simulations in one well mixed community in an uncontrolled epidemic with RE=2. We consider three sampling 
designs: enrolling individuals on a single day without matching, enrolling individuals on multiple days without 
matching, and enrolling individuals on multiple days with matching. In the matched designs, for each seropositive 
individual enrolled on each enrollment day, a seronegative individual from the same community is also enrolled on 
that day. We compare analyses stratified by enrollment day and community (black) to both unstratified analyses as 
described above (grey) and to unstratified analyses accounting for left truncation by enrollment time (orange). When 
individuals are enrolled in an unmatched design on different days, the left truncated analysis, which uses calendar 
time instead of time since enrollment, is biased down in a null setting with no effect of seropositivity. This occurs 
because the distribution of seropositives and seronegatives enrolled is not constant across days of enrollment. First, 
the proportion of seropositives enrolled on day 150 is greater than on day 50. Additionally, those enrolled at day 150 
from the S and S’ compartments cannot move into compartment I on day 151 as they must go through E first (which 
has an expected duration greater than 1 day), while a fraction of those enrolled on day 50 can be in the exposed state 
on day 150 already and thus can become infected on day 151. Thus a higher percentage of seronegatives are infected 
on day 151 compared to seropositives since these seronegatives are overrepresented in those enrolled on day 50. See 
below for a directed acyclic graph representing this bias. Matching removes this imbalance as equal numbers of 
seropositives and seronegatives are enrolled on each day. In settings with lower RE, this bias from left truncation is 
imperceptible. Overall, there are settings where stratified analyses are unbiased and unstratified analyses accounting 
for left truncation retain bias, so the former analysis approach is preferable.  
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Supplementary Figure 4.3. Left truncation directed acyclic graph 

 

Supplementary Text 4.3. 90% specificity 

Supplementary Figure 4.4. 90% specificity results 

 

The median and IQR of estimated hazard ratios, comparing seropositives to seronegatives, with 90% specificity for 
simulations with well mixed communities with an uncontrolled epidemic under settings of no seroprotection (A) and 
50% seroprotection (B). We consider three sampling designs for each simulation setting: enrolling individuals on a 
single day without matching, enrolling individuals on multiple days without matching, and enrolling individuals on 
multiple days with matching. In the matched designs, for each seropositive individual enrolled on each enrollment 
day, a seronegative individual from the same community is also enrolled on that day. We compare analyses stratified 
by enrollment day and community (black) to unstratified analyses (grey). As expected in settings with 
seroprotection, imperfect specificity biases results towards the null.  

 


