
Blocked Algorithms for Neural Networks: Design
and Implementation on GPUs

Citation
Tillet, Philippe G. 2020. Blocked Algorithms for Neural Networks: Design and Implementation on
GPUs. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368966

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368966
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Blocked%20Algorithms%20for%20Neural%20Networks:%20Design%20and%20Implementation%20on%20GPUs&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=3b291d40d83e37314cdc19768ee3a907&department
https://dash.harvard.edu/pages/accessibility

 HARVARD UNIVERSITY

Graduate School of Arts and Sciences

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the

Harvard John A. Paulson School of Engineering and Applied Sciences
have examined a dissertation entitled:

“Blocked Algorithms for Neural Networks

 Design and Implementation on GPUs”

presented by: Philippe Tillet

 Signature __
 Typed name: Professor H.T. Kung

 Signature __
 Typed name: Professor D. Cox

 Signature __
 Typed name: Professor D. Brooks

September 1, 2020

ljc562
Stamp

Blocked Algorithms for Neural Networks
Design and Implementation on GPUs

a dissertation presented
by

Philippe Tillet
to

School of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of
Computer Science

Harvard University
Cambridge, Massachusetts

September 2020

©2020 – Philippe Tillet
all rights reserved.

Dissertation Advisor: Prof. H. T. Kung; Prof. David D. Cox Philippe Tillet

Blocked Algorithms for Neural Networks

Abstract

The recent emergence of Deep Neural Networks (DNNs) for machine learning has been

largely enabled by the widespread availability of massively parallel computing devices. In

particular, Graphics Processing Units (GPUs) have played a critical role, allowing the

evaluation of increasingly large DNNs on increasingly large datasets. Unfortunately, the

development of efficient programs for GPUs remains laborious, requiring advanced knowl-

edge of specialized compute resources (e.g., tensor cores) and complex memory hierarchies

(e.g., caches). This has made it challenging to write efficient and reusable libraries for

novel research ideas (e.g., sparsity) in the field of Deep Learning.

In this thesis, we argue that programming paradigms based on blocked algorithms

can facilitate the construction of high-performance compute kernels for neural networks.

We specifically revisit traditional ”single program, multiple data” execution models for

GPUs, and propose a variant in which programs – rather than threads – are blocked. We

show that algorithms expressed using this paradigm define iteration spaces composed of

a collection of blocks whose shape and schedule can be automatically optimized using

context-aware auto-tuning and block-level data-flow analysis, respectively. We present the

design and implementation of these novel techniques in the Triton language and compiler

for blocked algorithms, and achieve significant speed-ups over state-of-the-art libraries

(cuBLAS/cuDNN) for a wide range of matrix multiplication and convolution tasks com-

iii

Dissertation Advisor: Prof. H. T. Kung; Prof. David D. Cox Philippe Tillet

monly encountered in practice.

We finally show how this approach can facilitate the development of efficient compute

kernels for some important emerging neural network architectures. We specifically focus

on block-sparse self-attention mechanisms in transformers, and demonstrate significant

performance gains for training tasks involving long sequence lengths.

iv

Contents

1 Introduction 1
1.1 Thesis Roadmap . 4

2 Background 6
2.1 Deep Neural Networks . 6

2.1.1 General Overview . 6
2.1.2 Multi-Layer Perceptrons . 7
2.1.3 Convolutional Neural Networks . 9
2.1.4 Transformers . 11
2.1.5 Opportunities for Parallelism . 12

2.2 Graphics Processing Units . 14
2.2.1 General Microarchitecture . 14
2.2.2 Programming Languages . 15
2.2.3 Optimization Challenges . 17

2.3 Compiler Construction . 19
2.3.1 General Overview . 19
2.3.2 Data-Flow Analysis . 20

3 Related Work 23
3.1 Polyhedral Compilation . 23

3.1.1 Program Representation . 24
3.1.2 Program Transformations . 26
3.1.3 Limitations . 28

3.2 Scheduling Languages . 28
3.2.1 Schedule Specification . 30
3.2.2 Compiling Scheduled Algorithms . 31
3.2.3 Limitations . 34

4 Context-Aware Auto-Tuning 36
4.1 Code Generation . 38

4.1.1 Matrix Multiplication . 39
4.1.2 Convolution . 43

4.2 Data Synthesis . 45
4.2.1 Rejection Sampling . 46
4.2.2 Generative Modeling . 48

4.3 Regression Analysis . 49
4.3.1 Logarithmic Feature Transformation 49
4.3.2 Accuracy . 50

4.4 Runtime Inference . 52

v

4.5 Numerical Evaluation . 53
4.5.1 Hardware architectures . 53
4.5.2 Experimental setup . 54
4.5.3 GEMM Performance . 54
4.5.4 CONV Performance . 58

4.6 Summary . 62

5 Block-Level Data-Flow Analysis 63
5.1 Triton-C . 66

5.1.1 Syntax . 67
5.1.2 Semantics . 68
5.1.3 Programming Model . 69

5.2 Triton-IR . 69
5.2.1 Structure . 70
5.2.2 Block-Level Data-Flow . 71
5.2.3 Block-Level Control-Flow . 72

5.3 Triton-JIT . 73
5.3.1 Simplifying Computations . 73
5.3.2 Parallelizing Computations . 74
5.3.3 Parallelizing Memory Accesses . 75
5.3.4 Maximizing Data Reuse . 76

5.4 Numerical Experiments . 78
5.4.1 Matrix Multiplication Performance 79
5.4.2 Convolutions . 82
5.4.3 Tensor Cores . 86

5.5 Summary . 87

6 Fast Sparse Transformers 88
6.1 Motivations . 89
6.2 Sparse Self-Attention . 90

6.2.1 Computing Attention Scores . 91
6.2.2 Normalizing Attention Scores . 93
6.2.3 Utilizing Attention Scores . 95

6.3 Optimizations . 96
6.3.1 Super-Blocking . 96
6.3.2 Static Load-Balancing . 99

6.4 Numerical Evaluation . 99
6.5 Summary . 101

7 Conclusion 102

References 109

vi

Citations to Previously Published Work

Portions of Chapter 4 have appeared in the following:
P. Tillet, D. Cox, “Input-Aware Auto-Tuning of Compute-Bound HPC Kernels” in
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2017.

Portions of Chapter 5 have appeared in the following:
P. Tillet, H. T. Kung, D. Cox, “Triton: an intermediate language and compiler for
tiled neural network computations” in Annual Machine Learning and Programming
Languages Workshop (MAPL) @ PLDI, 2019.

vii

Dedicated to my parents.

viii

Acknowledgments

Thanks to my co-advisors, David Cox and H. T. Kung, for their precious guidance

without which this dissertation would never have been possible. They have truly pushed

me to surpass myself in so many different ways, and their passion for research has been

an endless source of motivation throughout the years.

Thanks to my parents, who have always been here for me, and provided me with the

best support system I could have ever hoped for.

Thanks to all my amazing friends, for making this journey fun and joyful. The kind-

ness around me has been strong and unshakeable, but enumerating everyone responsi-

ble for it seems impossible. I am particularly grateful to Bradley, Xin, Cathy, Marcus,

Donglai and Yu for always being responsive when I needed someone to talk to.

Thanks to everyone in H.T’s and David’s group during my time at Harvard, not only

for their technical insights but also for their good mood and cheerful outlook on life.

Thanks to all the doctors and nurses I have seen throughout my numerous stays at

Mount Auburn and Massachusetts General Hospital. I have truly avoided the worst, and

will stay forever grateful to everybody who was here for me when I was at my worst.

ix

1
Introduction

Over the past decade, Deep Neural Networks (DNNs) have emerged as an important

class of Machine Learning (ML) models, capable of achieving state-of-the-art performance

across many domains ranging from natural language processing [1] to computer vision [2]

to computational neuroscience [3]. The strength of these models lies in their hierarchical

structure, composed of a sequence of parametric (e.g., convolutional) and non-parametric

(e.g., rectified linearity [4]) layers. This pattern, though notoriously computationally

expensive, also generates a large amount of highly parallelizable work particularly well

suited for multi- and many- core processors.

As a consequence, Graphics Processing Units (GPUs) have become a cheap and ac-

cessible resource for exploring and/or deploying novel research ideas in the field. This

trend has been accelerated by the release of several frameworks for General-Purpose GPU

(GPGPU) computing, such as CUDA and OpenCL, which have made the development of

1

high-performance programs easier. Yet, GPUs remain incredibly challenging to optimize

for locality and parallelism, especially for computations that cannot be efficiently imple-

mented using a combination of pre-existing optimized primitives. To make matters worse,

GPU architectures are also rapidly evolving and specializing, as evidenced by the recent

addition of tensor cores [5] to NVIDIA micro-architectures.

This tension between the computational opportunities offered by DNNs and the prac-

tical difficulty of GPU programming has created substantial academic and industrial in-

terest for Domain-Specific Languages (DSLs) and compilers. Regrettably, these systems

– whether they be based on polyhedral machinery (e.g., Tiramisu [6], Tensor Comprehen-

sions [7]) or scheduling languages (e.g., Halide [8], TVM [9]) – remain less flexible and

significantly slower than the best handwritten compute kernels available in libraries like

cuBLAS [10], cuDNN [11] or TensorRT [12].

1 int tm = get_thread_id (0) ;
2 int tn = get_thread_id (1) ;
3 int bm = get_block_id (0) ;
4 int bn = get_block_id (1) ;
5 f l o a t acc = 0;
6 for (int k = 0; k < K; k += 1)
7 acc += A[bm * MB + tm, k] *
8 B[k , bn * NB + tn]
9 C[m, n] = acc ;

(a) Matrix multiplication in the standard GPU
programming model (scalar program, blocked

threads)

1 int m = get_program_id (0) * MB;
2 int n = get_program_id (1) * NB;
3 f l o a t acc [MB, NB] = 0;
4 for (int k = 0; k < K; k += U)
5 acc += A[m : m + MB, k : k + U] *
6 B[k : k + U, n : n + NB] ;
7 C[m:m+MB, n : n+NB] = acc ;

(b) Matrix multiplication in the proposed
GPU programming model (blocked program,

scalar threads)

Figure 1.1: Matrix multiplication in the (a) standard and (b) proposed GPU programming model

2

In this thesis, we argue that programming paradigms based on blocked algorithms [13]

can facilitate the construction of high-performance compute kernels for neural networks.

We specifically revisit traditional ”Single Program, Multiple Data” (SPMD [14]) execu-

tion models for GPUs (Figure 1.1a), and propose a variant in which programs – rather

than threads – are blocked (Figure 1.1b). A key benefit of this approach is that it leads

to block-structured iteration spaces (Figures 1.2) that offer programmers more flexibility

than existing DSLs when implementing sparse operations, all while allowing compilers to

aggressively optimize programs for data locality and parallelism.

j

i

0

(a) Iteration spaces in the
polyhedral model

j

i

0

(b) Iteration spaces in the
Halide model

j

i

0

(c) Iteration spaces in the
proposed model

Figure 1.2: Existing (a) polyhedral and (b) schedule-based DSLs enforce restrictive iteration spaces
incompatible with many sparse operations.

One of the main challenges posed by our proposed paradigm is that of work granular-

ity, i.e., how much work each program instance should do. To address this issue, in Chap-

ter 4, we present context-aware auto-tuning, a method for selecting the shape of each iter-

ation block dynamically based on the value of important runtime parameters not known

in advance (e.g., input tensor shapes). Our approach uses simple machine learning tech-

niques (i.e., multi-layer perceptrons) to build a surrogate model for the performance of

different block shapes, thereby alleviating the need for empirical performance measure-

ments in auto-tuners [15]. To efficiently generate training data for this method, we pro-

pose a simple generative model of potentially efficient block shapes, and implement the

relevant blocked algorithms in pseudo-assembly (i.e., PTX [16]) for faster compilation.

Numerical experiments show performance often superior to handwritten vendor libraries

3

(cuBLAS/cuDNN), suggesting that well-parameterized blocked algorithms can be compet-

itive with state-of-the-art compute kernels when carefully implemented .

Another challenge posed by our proposed paradigm is that of work scheduling, i.e., how

the work done by each program instance should be partitioned for efficient execution on

modern GPUs. To address this issue, in Chapter 5, we present block-level data-flow anal-

ysis, a technique for scheduling iteration blocks statically based on the control- and data-

flow structure of the target program. We present the design and implementation of this

technique within Triton1, a language and compiler for blocked algorithms that uses syn-

tax similar to that shown in Figure 1.1b. The resulting system not only outperforms al-

ternative DSLs when applicable, but also often matches the performance of the baseline

parameterized pseudo-assembly implementations mentioned above.

Finally, in Chapter 6, we demonstrate how the above contributions can be used to

productively build efficient structured-sparse primitives for emerging neural network

architectures. We specifically present a collection of blocked algorithms for sparse self-

attention mechanisms in transformers, which we enhance using super-blocking and static

load-balancing optimization techniques. The resulting Triton implementation of sparse

transformers achieves state-of-the-art throughput when long sequence lengths are used.

1.1 Thesis Roadmap

(Chapter 2) Background provides background on Deep Neural Networks, Graphics

Processing Units and Compiler Construction. Readers familiar with these topics may pro-

ceed directly to Chapter 3.

(Chapter 3) Related Work reviews existing domain-specific languages and compilers

for deep neural networks. It specifically focuses on polyhedral compilers and scheduling

languages, highlighting the advantages and limitations of each solution so as to further

motivate the methods introduced in the remainder of this dissertation.
1https://triton-lang.org

4

https://triton-lang.org

(Chapter 4) Context-Aware Auto-Tuning presents a machine learning-based frame-

work for automatic block shape selection in the proposed block-based SPMD paradigm.

It specifically discusses the issue of (1) code generation, (2) data synthesis, (3) regres-

sion analysis and (4) runtime inference for context-aware auto-tuners. Numerical exper-

iments on common matrix multiplication and convolution tasks show 0.9-2x speed-ups

over cuBLAS and cuDNN .

(Chapter 5) Block-Level Data-Flow Analysis presents a language and compiler for

automatic program scheduling in the proposed block-based SPMD paradigm. It specif-

ically discusses the issue of (1) specifying blocked algorithms using high-level directives

(Triton-C), (2) representing the resulting programs in a format suitable for static analysis

(Triton-IR), and (3) automatically optimizing the resulting representation for data local-

ity and parallelism (Triton-JIT). A re-evaluation of the experiments conducted in Chap-

ter 4 shows code quality on par with handwritten pseudo-assembly – and far superior to

state-of-the-art DSLs for DNNs.

(Chapter 6) Fast Sparse Transformers validates our proposed block-based SPMD

paradigm on emerging neural network architectures, and more specifically on block-sparse

transformers. To this end, it presents (1) a set of naive blocked algorithms for sparse at-

tention mechanisms in transformers, and (2) a set of optimization techniques that im-

prove data-reuse and load-balancing for these workloads. An evaluation of their imple-

mentation in Triton shows state-of-the-art performance for end-to-end training in trans-

formers using long attention windows.

5

2
Background

In this chapter, we introduce Deep Neural Networks (DNNs) and explain why they are a

good fit for parallel processors. We then review the micro-architecture of modern Graph-

ics Processing Units (GPUs) as well as the languages commonly used to program them.

Finally, we recall the general architecture of a modern compiler, and discuss the basic

principles behind program analysis.

2.1 Deep Neural Networks

2.1.1 General Overview

Deep Neural Networks are a class of hierarchical machine learning models composed of

a succession of layers, each of which computes a parametric or non-parametric transfor-

mation of its input. The parameters (or weights) of each parametric layer are tuned to

6

minimize a given loss function through a process known as training, generally done using

the backpropagation algorithm [17] shown in Algorithm 1.

Algorithm 1: Backpropagation
Input: Dataset D; Loss L; Optimizer O; Neural Network N

1 repeat
// Iterate over data-set, with labels if supervised

2 for (xn[, yn]) in D do
// Evaluate network output

3 ŷn ← N (xn)
// Compute loss, using yn if supervised

4 L← L(ŷn[, yn])
// Gradient of the network weights w.r.t loss

5 dW ← dL/dN
// Update network weights

6 N ← O(N , dW)

7 until convergence;

In this procedure, the weights of a given neural network N are repeatedly updated us-

ing an optimizer O so as to eventually minimize the value of a loss function L on a given

dataset D. Though different choices for O, L and D can dramatically impact the perfor-

mance of Algorithm 1, in this work we focus specifically on speeding up the evaluation of

N (Line 3) and its gradients (Line 5).

At first sight, the layered structure of N may appear to create a large diversity of

possible networks that could seem difficult to optimize. Fortunately, over the past few

decades, a set of standard and regular network architectures have emerged, such as Multi-

Layer Perceptrons (MLPs) [17], Convolutional Neural Networks (CNNs) [18] and Trans-

formers [19].

2.1.2 Multi-Layer Perceptrons

Multi-Layer Perceptrons were originally invented in the 1980’s as a generalization of

Frank Rosenblatt’s 1958 Perceptron [20] algorithm. As shown in Figure 2.1, they consist

7

of a series of so-called fully-connected layers separated to one another by non-parametric

nonlinearities (e.g., sigmoid function, rectified-linear unit).

X

FC1

D1

ReLU 1

D2

FC 2
Y

X D1
W1

Fully Connected

ReLU

* =

Figure 2.1: A multi-layer perceptron. Fully connected and non-parametric layers are shown in green
and white respectively. For the sake of brevity, temporary results (red) and layer superscripts will be

omitted in the remainder of this work.

Algebraically, fully-connected layers correspond to linear projections, and are therefore

implemented as matrix multiplications with a weight matrix learned via backpropagation.

In other words, given two weight matrices W1 and W2, the output of the neural network

shown in Figure 2.1 can be computed as follows:

D1 = X.W1

D2 = max(D1, 0)

Y = D2.W2

One of the main reasons behind the success of MLPs in the 1980s – and their resur-

gence in the 2010s – is their natural affinity with high-performance implementations

of Basic Linear Algebra Subroutines (BLAS), such as GEneral Matrix Multiplication

(GEMM). Nowadays, however, MLPs are generally only used when more novel architec-

tures, such as those described below, are not applicable.

8

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks were invented in 1989 [18] as a way to provide more

parameter- and compute- efficient network architectures for computer vision tasks such

as object classification, semantic segmentation and image upsampling. There, fully con-

nected layers are replaced by convolutional layers that convolve their input with a set of

learnable filters (or weights), as shown in Figure 2.2.

Conv

ReLU

Concat

FC

Conv

ReLU

Conv

Residual Add

Batch Norm

ReLU

X W D

* =...

Convolution

Figure 2.2: A standard convolutional neural network. Convolution and batch normalization layers are
shown in blue and yellow respectively.

Specifically, convolutional layers are parameterized by a 4D tensor of weights contain-

ing C × K filters of R × S pixels each, where C and K respectively denote the number

of channels in the input data and the number of filters in the layer. Given an input data

tensor containing C images of H × W pixels, the output of the layer has K channels of

[P = (H − R + 1)] × [Q = (W − S + 1)] pixels each, and is computed by convolving each

image with each filter, and summing partial results across channels:

Yk =

C∑
c=0

Xc ⋆ Wc,k

In practice, this operation is usually repeated across N independent batches of input im-

ages:

∀n ≤ N Yn,k =
C∑
c=0

Xn,c ⋆ Wc,k

The remarkable success of CNNs over the past several years was further reinforced by

9

various enhancements made to their architecture, two very popular of which – residual

connections and batch normalization – are described below.

Residual Connections

For decades, it was believed that very deep neural networks could not be trained to satis-

fying accuracy with backpropagation due to a phenomenon known as vanishing gradients

[21]. In 2015, this issue was resolved through the addition of so-called residual connec-

tions after convolutional layers:

ResidualAdd(Conv(X, W)) = Conv(X,W) +X

Though this breakthrough was discovered in the context of CNN classification on Ima-

geNet, it has now found wider application across all other types of neural network archi-

tectures.

Batch Normalization

Deep Neural Networks trained using backpropagation are notoriously prone to overfitting,

and may therefore poorly generalize when deployed in the real world. Throughout the

years, various solutions to this problem have been proposed, the most popular of which

is batch-normalization. There, the output of each residual connection x = (x1, · · · , xn) is

normalized as follows:

BatchNorm(x) =
x− E(x)√

Var(x)

The exact mechanism behind the regularizing properties of batch normalization re-

mains largely unknown, but it has been proven to prevent gradient explosion in neural

networks with residual connections initialized using standard methods such as Xavier [22]

or Kaiming [23].

10

2.1.4 Transformers

The performance of DNNs in Natural Language Processing (NLP) tasks – for which con-

volutional layers have not been popular despite several interesting results [24, 25] – was

largely improved by the emergence of Recurrent Neural Networks (RNNs) and, more re-

cently, Transformer Networks. This dissertation will focus on the latter, which is inher-

ently more parallelizable and therefore more suitable for modern many-core hardware.

Residual Add

Batch Norm

FC

ReLU

FC

Residual Add

MultiHead Attn

Batch Norm

Residual Add

Batch Norm

Masked
MultiHead Attn

Residual Add

Batch Norm

MultiHead Attn

FC

ReLU

FC

Residual Add

Batch Norm

En
co

de
r B

lo
ck

D
ec

od
er

 B
lo

ck

Figure 2.3: An encoder and decoder block in the transformer architecture. MultiHead Attention
modules are shown in red.

Transformers are composed of a stack of encoder blocks, which encode a given sequence

of tokens (e.g., words), and a stack of decoder blocks, which decode it. The structure of

these basic building blocks, shown in Figure 2.3, relies on so-called attention mechanisms

– i.e. functions that map a query and a key-value pair to an output representing how

much each token should attend to other tokens in the same sequence. Typically, trans-

formers use the scaled dot-product attention function:

Attention(Q,K, V) = softmax(QKT /
√
dk)V

where Q ∈ Rci×dk , K ∈ Rco×dk and V ∈ Rco×dv respectively denote a set of ci dk-

11

dimensional queries, co dk-dimensional keys and co dv-dimensional values.

The above calculations are usually repeated for h different heads (i.e., embeddings) of

the keys, values and queries – prior to projecting the concatenation of all these partial

results onto yet another embedding for further processing by the neural network. In other

words,

MultiHead(Q,K, V) = Concat(A1, A2, · · · , Ah)W
O

∀i ∈ [1, h], Ai = Attention(QWQ
i ,KW

K
i , V W

V
i)

The resulting attention layer is followed by residual connections, batch normalization,

fully-connected layers and rectified-linear units to form encoder and decoder blocks.

2.1.5 Opportunities for Parallelism

It should be clear from the above discussions that the majority of common neural network

architectures can be efficiently implemented using just a small set of basic primitives for

(1) matrix multiplications; (2) reductions; (3) elementwise operations; and (4) convolu-

tions.

D

W

1 2

3

5

4

6

(a) matrix multiplication

D

1

2

3

4

5

6

(b) reduction

1 2 3

4 5 6

D

(c) element-wise operation

Figure 2.4: Parallelization strategies for (a) matrix multiplications, (b) reductions and (c)
element-wise operations. Tasks which can be executed independently are numbered from 1-6, and

different processors are represented by different colors

12

As shown in Figure 2.4, three of these primitives are embarassingly parallel: different

blocks of their output result can be computed, independently from one another, on dif-

ferent processors. If the dimension of each block is carefully chosen (see Chapter 4) and

the computation of each block properly scheduled (see Chapter 5), then this strategy

can generally achieve close to peak performance on modern parallel hardware – even for

structured-sparse computations (see Chapter 6). As it turns out, this straightforward par-

allelization strategy also works for convolutions, especially when they are represented as

implicit matrix multiplications.

H

C

* =
d
0

P

Data

K

Q

Filters Activations

S

R

S

R

d
m

W

P

Q

C

K

f
1 f

2 f
K

(a) Direct convolution

Data Filters Activations

d
0

d
1

d
m

HW

CRS

CRSX

K

 = PQ

K

f
1
f
2

f
k...

...

(b) Implicit matrix multiplication

Figure 2.5: Convolutional layers can be represented using (a) direct convolution or (b) implicit matrix
multiplication.

Implicit matrix multiplication is a technique that emerged along with AlexNet [26] to

speed up the evaluation of expensive convolutional layers using pre-optimized matrix mul-

tiplication subroutines (i.e., GEMM). There, the standard convolution operation is re-

arranged by flattening each C × R × S patch of input pixels into rows of an external data

13

matrix – as shown in Figure 2.5. This operation, commonly known as im2col, is however

itself expensive as it requires to replicate each pixel of the input image R × S times; it is

therefore, nowadays, usually done in cache memory using complex blocked algorithms as

described in Chapter 4.

2.2 Graphics Processing Units

2.2.1 General Microarchitecture

As mentioned above, GPUs have become one of the most popular hardware architectures

available for prototyping and/or deploying novel research ideas in the field of DNNs. This

is because their many-cores architecture is particularly suitable for the massively parallel

computations outlined above.

L0 Instruction Cache

Scheduler

Register File

FP
ALUS

INT
ALUS

TENSOR
CORES

SFUI/O UNITS

L0 Instruction Cache

Scheduler

Register File

FP
ALU

INT
ALU

TENSOR
CORES

SFUI/O UNIT

...

L1 Instruction Cache

L1 Data Cache / Shared Memory

Streaming Multiprocessor

SM SM

SM SM

L2 Data Cache

Memory Controller

Memory Controller

DRAM (GDDR / HBM)

DRAM (GDDR / HBM)

Figure 2.6: Typical architecture of a modern NVIDIA GPU.

As shown in Figure 2.6, modern GPUs are typically composed of a set of Streaming

Multiprocessor (SM) – or cores – which share a common L2 Data Cache as well as multi-

ple DRAM memory controllers. The number of SMs (resp. memory channels) available

may vary from architecture to architecture, but it is generally on the order of 64 (resp.

14

16). Importantly, good choices of block dimensions for the parallelization strategies dis-

cussed above (Section 2.1.5) directly depend on these parameters, as bigger GPUs can

only be fully utilized if more tasks are ran in parallel. Note that utilizing all of a GPU’s

SMs may not be necessary for I/O-bound workloads that already saturate all the memory

channels.

Each SM includes a number (typically 1-4) of scheduling units capable of concurrently

dispatching instructions onto independent groups of resources (FP ALUs, INT ALUs,

Tensor Cores, SFU, I/O Unit), each with their own L0 instruction cache and register file.

To reduce the latency of instruction fetching, each SM also includes an L1 instruction

cache and, to reduce that of data fetching, an L1 data-cache that may be configured by

users as addressable local memory (also known as shared memory).

In recent years, GPUs have rapidly specialized for DNNs, as evidenced by the recent

incorporation of tensor cores – specialized arithmetic units for tensor computations – in

streaming multi-processors. Tensor cores provide hardware-accelerated matrix multipli-

cation accumulation (MMA) instructions capable of much higher throughput than stan-

dards fused-multiply-adds (FMA) (see Table 2.1), but are also much harder to program

efficiently with existing tools and languages.

GPU Name Architecture FMA (TFLOPS) MMA (TFLOPS)
Tesla A100 Ampere 19.5 312
Titan RTX Turing 16.3 130
Tesla V100 Volta 15.7 120

Table 2.1: Theoretical peak performance of various modern NVIDIA GPUs

2.2.2 Programming Languages

Since GPUs were originally designed for computer graphics, they were for a long time

only programmable using shading languages such as GLSL (from OpenGL) or HLSL

(from DirectX). However, the release of CUDA in 2007 dramatically facilitated the devel-

opment of General Purpose GPU (GPGPU) software, and nowadays DNN computations

15

are almost always accelerated using this toolkit. Note that, however, shading languages

still remain the most common way to achieve portable hardware-acceleration for DNNs on

mobile GPUs [27].

Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing platform that was released by NVIDIA in 2007, and which

is now routinely used for DNN training and inference.

Host

Kernel 1

Kernel N

...

Device

...

 Grid 1

 Grid N

Block
 (0,0)

Block
 (1,0)

Block
 (2,0)

Block
 (0,1)

Block
 (1,1)

Block
 (2,1)

Block
 (0)

Block
 (1)

Block
 (2)

Block
 (3)

Block
Warp 0

Warp K

...

Figure 2.7: The CUDA execution model

The CUDA execution model, shown in Figure 2.7, is based on a standard Single Pro-

gram, Multiple Data (SPMD) paradigm wherein the same kernel (i.e., program) is repli-

cated multiple times on a one-to-three dimensional grid of instances (or block). Each in-

stance has a unique identifier (block id) that encodes its position in the grid, and which

can be used to access different portions of the input/output data as needed. All of these

instances execute with a fixed amount of threads, arranged in groups of 32 called warps.

1 __global__ void re lu (f l o a t *x , f l o a t *y , int N){
2 int id = blockIdx . x * blockDim . x + threadIdx . x ;
3 i f (id < N)
4 y [id] = max(x [id] , 0) ;
5 }

Listing 2.1: ReLU in CUDA-C

Each kernel is generally programmed using a C-based language known as CUDA-C

(sometimes simply abbreviated as CUDA for simplicity). There, individual threads are

16

handled separately and their ID, as well as that of their parent block, can be queried us-

ing threadIdx.{x,y,z} and blockIdx.{x,y,z} respectively. Listing 2.1 shows how easy it is to use

this language to implement element-wise operations such as ReLU. Efficiently implement-

ing other DNN primitives such as matrix-multiplication and convolutions in CUDA is

however much more challenging. The main purpose of this dissertation is to show how

most of these challenges (Section 2.2.3) disappear when kernels are blocked but single-

threaded.

GPUs designed by Advanced Micro Devices (AMD), though not considered in this

work, are similar. They are generally programmed using OpenCL instead of CUDA, and

have the same high-level architecture except for two major differences: tensor cores are

absent and threads are organized in groups of 64 called wavefronts rather than 32-wide

warps.

2.2.3 Optimization Challenges

Occupancy

As mentioned above, GPUs are best utilized when the resource shown in Figure 2.6 (mem-

ory controllers, ALUs, tensor cores) are as busy as possible. This means that the amount

of work done by each kernel must be adjusted adequately so that the number of instances

launched is neither too high nor too low. This is a complicated problem, as the right

amount of work to do depends not only on known architecture details (e.g., number of

SMs) but also on information only available at runtime such as, for example, the size of

the x and y arrays in Listing 2.1.

Some analytical models [28] have been developed to select good block sizes at runtime,

but these rarely account perfectly for cache effects. Therefore, in Chapter 4, we will show

how all this information can be learned automatically using context-aware auto-tuning.

17

Memory Efficiency

Memory operations on modern GPUs (i.e., DRAM load/store) are typically several orders

of magnitude slower than FMAs and Tensor Cores. This memory wall is a well-known

problem in high-performance computing, hence various techniques have been proposed

over the years to mitigate its impact.

DRAM

Thread ID
0 31

32b

1 warp

 128u

(a) coalesced memory accesses

DRAM

Thread ID
0 31

32b

1 warp

 128u

(b) uncoalesced memory accesses

Figure 2.8: Memory Coalescing

First, GPU memory controllers load data in burst mode to increase effective bandwidth.

This can be leveraged in parallel languages by coalescing memory accesses – i.e., accessing

consecutive memory locations from consecutive threads (see Figure 2.8). Second, mod-

ern GPU cores come with a large amount of L2 (∼10MB) and addressable L1 (∼128kB)

caches which can be used to reduce the latency of memory accesses on data that has al-

ready been seen before. Last but not least, the latency of memory accesses can be hidden

– i.e., overlapped with expensive computations – through the use of instruction-level paral-

lelism and data pre-fetching.

Bank Conflicts

Managing the aforementioned addressable L1 cache is difficult. It is divided in many (gen-

erally around 32) independent banks that must all be used at the same time to minimize

access latency. In other words, memory accesses from independent threads into the same

bank are serialized, leading to significant performance loss. To alleviate this issue, devel-

opers are expected to explicitly arrange data in shared memory so as to minimize bank

conflicts.

18

2.3 Compiler Construction

2.3.1 General Overview

As shown in Figure 2.9, modern compilers are typically composed of two sub-systems –

a frontend and a backend – connected to one another by an Intermediate Representation

(IR). Compiler frontends and backends play different roles, and they are therefore gener-

ally implemented in completely separate software packages, such as Clang and LLVM for

example.

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

Code
Generation
(IR)

Code
Optimization

Code
Generation
(ASM)

Source
string

Tokens AST AST IR IR ASM

Frontend Backend

Figure 2.9: High-level architecture of a modern compiler.

The role of the compiler frontend is to transform a piece of source code written in a

pre-defined input language (e.g., CUDA-C) into an IR (e.g., LLVM-IR) understandable by

the target backend. This is usually done in four stages:

• Lexical analysis decomposes a given source string into a sequence of tokens – key-

words, operators, identifiers, etc. – defined by the lexical grammar of the source

language. This process is typically done using finite-state machines, and can be au-

tomated through the use of tools like lex/flex.

• Syntactic analysis analyzes this sequence of tokens to produce an Abstract Syn-

tax Tree (AST) encoding the syntactical grammar of the source language. For the

languages typically used in GPU programming, this can be done using recursive

descent parsers, possibly via tools like yacc/bison.

19

• Semantic analysis checks the above AST for semantic issues pertaining to type

checking, type inference, variable declaration and – in the case of array operations –

shape compatibility.

• Intermediate code generation finally transforms the semantically analyzed AST

into an IR that can be optimized and translated into assembly by the target com-

piler backend.

The compiler backend then generates assembly code from the above IR in two major

steps:

• Code optimization optimizes the IR produced by the compiler frontend. This

phase is typically separated into machine-independent optimizations that reduce

the arithmetic/memory complexity of the target program, and machine-dependent

optimizations that aim to make best use of the target architecture.

• Assembly code generation transforms the optimized IR into assembly code that

can be readily executed by the target architecture.

2.3.2 Data-Flow Analysis

The code optimization passes performed by compiler backends often require the knowl-

edge of important information about the state of each variable at every possible program

point. The process of computing this information, also known as data-flow analysis, can

generally be done statically using the Control Flow Graph (CFG [29]) of the input pro-

gram.

20

float x = 0;
for(int i = 0; i < N; i++){
 x += a[i] * b[i];
 if (x > thresh)
 break;
}
return x;

ENTRY:
 x = 0;
 i = 0;
 repeat = lessthan i, N;
 branch repeat, LOOP, ENDLOOP;
LOOP:
 ptr_a = getelementptr a, i;
 ptr_b = getelementptr b, i;
 a = load ptr_a;
 b = load ptr_b;
 x = fma a, b, x;
 exit = greaterthan x, thresh;
 branch exit, ENDLOOP,
INCLOOP;
INCLOOP:
 i = add i, 1;
 repeat = lessthan i, N;
 branch repeat, LOOP, ENDLOOP;
ENDLOOP:
 return x;

ENTRY

ENDLOOP

LOOP

INCLOOP

Figure 2.10: Source code, intermediate representation and control flow graph for the operation
x = aT b

In essence, control flow graphs are graphical representations of all the possible paths

that might be taken by a given program throughout its execution. They take the form of

a directed acyclic graph whose nodes are basic blocks, (i.e., straight-line code sequences

that may only contain so-called terminator instructions at their end), and whose edges

represent jumps in control flow. As shown in Figure 2.10, they can be usually computed

rather easily by looking at the terminator of each basic block.

Algorithm 2: Worklist iterative data-flow analysis.
Input: control-flow graph G = (V,E)

1 for v ∈ V do
2 IN(v)← ∅;
3 OUT(v)← GEN(v);
4 do
5 v ← remove(worklist);
6 last← OUT(v);
7 IN(v)←

∪
p∈PRED(v) OUT(p);

8 OUT(v)← GEN(v) ∪ (IN(v)−KILL(v));
9 if last ̸= OUT(v) then

10 worklist← worklist ∪ SUCC(v)

11 while worklist ̸= ∅;

Data-flow analysis algorithms assign, to each node in the CFG of the target program,

21

a transfer function that determine how a given basic block may modify the state of its

input variables. Each transfer function is then applied – in forward or backward order –

repeatedly until the state of each variable at every program point reaches a fixpoint. It is

very common for transfer functions to modify the state IN(v) of each basic block into a

new state OUT(v) = GEN(v) ∪ (IN(v) − KILL(v)), where GEN and KILL respectively

denote policies for ”generating” new state attributes in a basic block or ”killing” existing

ones. When this is the case, data-flow information can be computed using the worklist

iterative algorithm shown in Algorithm 2. This procedure is guaranteed to terminate in

polynomial time [30, 31].

22

3
Related Work

In this chapter, we briefly review the two most popular approaches for automatic neu-

ral network code generation on GPUs: polyhedral compilation and scheduling languages.

The limitations of each method will be highlighted so as to motivate the need for the sys-

tems presented from Chapter 4 onward.

3.1 Polyhedral Compilation

Traditional compilers typically rely on intermediate representations, such as LLVM-IR

[32], that encode control flow information using (un)conditional branches. This relatively

low-level format makes it difficult to statically analyze the runtime behavior (e.g., cache

misses) of input programs, and to automatically optimize loops accordingly through the

use of tiling [33], fusion [34] and interchange [35]. To solve this issue, polyhedral compil-

ers [36] rely on program representations (Section 3.1.1) that have statically predictable

23

control flow, thereby enabling aggressive compile-time program transformations (Sec-

tion 3.1.2) for data locality and parallelism. Though this strategy has been adopted by

many languages and compilers for DNNs such as Tiramisu [6], Tensor Comprehensions [7],

Diesel [37] and the Affine dialect in MLIR [38], it also comes with a number of limitations

that will be described in Section 3.1.3.

3.1.1 Program Representation

Polyhedral compilation is a vast area of research. In this section we only outline the most

important aspects of this topic, but readers interested in the solid mathematical founda-

tions underneath may refer to the work of Schrijver [39] for more information.

1 for (int i = 0; i < 3; i++)
2 for (int j = i ; j < 5; j++)
3 A[i] [j] = 0;

(a) source code

j

i

j > 7

i > 3i < j

0

statement
legend

(b) iteration domain

Figure 3.1: Source code (a) and iteration domain (b) of an example program suitable for polyhedral
optimization

Polyhedral compilers focus on a class of programs commonly known as Static Control

Parts (SCoP), i.e., maximal sets of consecutive statements in which conditionals and loop

bounds are affine functions of surrounding loop indices and global invariant parameters.

As shown in Figure 3.1, programs in this format (Figure 3.1(a)) always lead to iteration

domains (Figure 3.1(b)) that are bounded by affine inequalities, i.e., polyhedral. These

24

polyhedra can also be defined algebraically; for the above example:

P = {i, j ∈ Z2 |



1 0

−1 0

−1 1

0 −1


i
j

+



0

2

0

4


≥ 0}

Each point (i, j) in P represents a polyhedral statement, that is a program statement

which (1) does not induce control-flow side effects (e.g., for, if , break) and (2) contains only

affine functions of loop indices and global parameters in array accesses. To facilitate alias

analysis, array accesses are also mathematically abstracted, using so-called access func-

tion. In other words, A[i][j] is simply A[f(i , j)] where the access function f is defined by:

f(i, j) =

1 0

0 1


i
j

 = (i, j)

Note that the iteration domains of am SCoP does not specify the order in which its

statements shall execute. In fact, this iteration domain may be traversed in many differ-

ent possible legal orders, i.e. schedules. Formally, a schedule is defined as a p-dimensional

affine transformation Θ of loop indices x and global invariant parameters g:

ΘS(x) = TS


x

g

1

 TS ∈ Zp×(dim(x)+dim(g)+1)

Where ΘS(x) is a p-dimensional vector representing the slowest to fastest growing indices

(from left to right) when traversing the loop nest surrounding S. For the code shown

25

above, the original schedule defined by the loop nest in C can be retrieved by using:

ΘS(x) =

1 0

0 1

(
i j

)T

=

(
i j

)T

where i and j are respectively the slowest and fastest growing loop indices in the nest.

If TS is a vector (resp. matrix), then ΘS is a said to be one-dimensional (resp. multi-

dimensional).

3.1.2 Program Transformations

Most of the program transformations done within the polyhedral framework actually boil

down to the production of schedules and iteration domains that enable loop transforma-

tions promoting parallelism and spatial/temporal data locality (see Table 3.1).

name description
fusion combines multiple perfectly nested loops into a single one
fission splits a single loop into multiple perfectly nested ones

interchange permute two perfectly nested loops
tiling reorganize a loop to process data in blocks for better locality

parallelization execute iterations of a loop in parallel on multiple processors

Table 3.1: non-exhaustive list of common loop transformations

Polyhedral compilers go through complex verification processes to ensure that the se-

mantics of their input program is preserved throughout this optimization phase. The it-

eration domain of each statement may however be altered into another polyhedron with-

out causing any issue. Note that polyhedral optimizers are not incompatible with more

standard optimization techniques. In fact, it is not uncommon for these systems to be

implemented as a set of LLVM passes that can be run independently of more traditional

compilation techniques [40].

26

Example

As an example, let us consider the matrix multiplication program shown in Listing 3.1.

As we saw in Chapter 2, this operation is an important basic primitive for neural network

computations; it is also highly regular, which makes it a good candidate for polyhedral

optimization.

1 for (int i = 0; i < M; i++)
2 for (int j = 0; j < N; j++){
3 C[i] [j] = 0; // Statement R
4 for (int k = 0; k < K; k++)
5 C[i] [j] += A[i] [k] * B[k] [j] ; // Statement S
6 }

Listing 3.1: Matrix Multiplication

The original schedule of the statement S in this program can be written as the follow-

ing (identity) affine transformation:

ΘS(x) =


1 0 0

0 1 0

0 0 1


(
i j k

)T

=

(
i j k

)T

Loop interchange can then simply be implemented by swapping j and i in the original

schedule, leading to the new schedule:

ΘS(x) =


0 1 0

1 0 0

0 0 1


(
i j k

)T

=

(
j i k

)T

Other loop transformations can be implemented similarly provided appropriate itera-

tion domain transformations. A detailed review of the theory behind common loop trans-

formations and their legality within the polyhedral framework can be found in the doc-

toral dissertation of U. Bondhugula [41].

27

3.1.3 Limitations

Polyhedral machinery is extremely powerful, when applicable. It has been shown to sup-

port most common loop transformations, and has indeed achieved performance compara-

ble to state-of-the-art GPU libraries for dense matrix multiplication [37]. Additionally, it

is also fully automatic and doesn’t require any hint from programmers apart from source-

code in a C-like format. Unfortunately, it also suffers from two major limitations that

have prevented its adoption as a universal method for code generation in neural networks.

First, the set of possible program transformations Ω = {ΘS | S ∈ program} is large,

and grows with the number of statements in the program as well as with the size of their

iteration domain. Verifying the legality of each transformation can also require the reso-

lution of complex integer linear programs, making polyhedral compilation very computa-

tionally expensive. To make matters worse, hardware properties (e.g., cache size, number

of SMs) and contextual characteristics (e.g., input tensor shapes) also have to be taken

into account by this framework, leading to expensive auto-tuning procedures [42].

Second, the polyhedral framework is not very generally applicable; SCoPs are relatively

common [43] but require loop bounds and array subscripts to be affine functions of loop

indices, which typically only occurs in regular, dense computations. For this reason, this

framework still has to be successfully applied to sparse – or even structured-sparse – neu-

ral networks, whose importance has been rapidly rising over the past few years.

On the other hand, blocked program representations advocated by this dissertation

are less restricted in scope (Chapter 6) and can achieve close to peak performance using

standard dataflow analysis (Chapter 5).

3.2 Scheduling Languages

Separation of concerns [44] is a well-known design principle in computer science: pro-

grams should be decomposed into modular layers of abstraction that separate the seman-

28

tics of their algorithms from the details of their implementation. Systems like Halide [8]

and TVM [9] push this philosophy one step further, and enforce this separation at the

grammatical level through the use of a scheduling language. The benefits of this method-

ology are particularly visible in the case of matrix multiplication, where, as one can see in

Listing 3.2, the definition of the algorithm (Line 1-7) is completely disjoint from its imple-

mentation (Line 8-16), meaning that both can be maintained, optimized and distributed

independently. The resulting code may however not be completely portable, as sched-

ules can sometimes rely on execution models (e.g., SPMD) or hardware intrinsics (e.g.,

matrix-multiply-accumulate) that are not widely available. Note that polyhedral compil-

ers (Section 3.1.2) also promote separation of concerns, though differently, by allowing

programmers to achieve better performance with simpler source code.

1 // algorithm
2 Var x(”x”) , y(”y”) ;
3 Func matmul(”matmul”) ;
4 RDom k(0 , matrix_size) ;
5 RVar ki ;
6 matmul(x , y) = 0.0 f ;
7 matmul(x , y) += A(k , y) * B(x , k) ;
8 // schedule
9 Var xi (” xi ”) , xo(”xo”) , yo(”yo”) , yi (”yo”) , y i i (” y i i ”) , x i i (” x i i ”) ;
10 matmul . vector i ze (x , 8) ;
11 matmul . update (0)
12 . s p l i t (x , x , xi , block_size) . s p l i t (xi , xi , x i i , 8)
13 . s p l i t (y , y , yi , block_size) . s p l i t (yi , yi , y i i , 4)
14 . s p l i t (k , k , ki , block_size)
15 . reorder (x i i , y i i , xi , ki , yi , k , x , y)
16 . pa r a l l e l (y) . vector i ze (x i i) . unro l l (x i) . unro l l (y i i) ;

Listing 3.2: Matrix multiplication in Halide.

Scheduling languages have gained in popularity over the past few years, and have even

been used to accelerate mobile implementations of common convolutional neural networks

[45]. In this section, we will describe their syntax and semantics (Section 3.2.1), their

compilation mechanisms (Section 3.2.2) and their limitations (Section 3.2.3). Note that

we will offer just a rudimentary overview of these aspects; for more details, readers may

refer to the doctoral dissertation of Jonathan Ragan-Kelley [46].

29

3.2.1 Schedule Specification

Writing valid schedules for Halide/TVM is far from trivial. It requires the consideration

of complex trade-offs between data locality, parallelism and redundant computations. To

make the exploration of this complex design space easier and more tractable, scheduling

languages generally provide a set of primitives that define optimization strategies on the

loop nest induced by their algorithm’s iteration domain.

name description
parallel(x) traverse the loop x in parallel
unroll(x) unroll the loop x

vectorize(x) vectorize the loop x
reorder(y, x) flip the traversal order of x and y

split(x, o, i, α) split loop x into an inner (i) and outer (o)
loop s.t. x = o ∗ α + i

fuse(x, y) fuse loops x and y

Table 3.2: (non-exhaustive) list of primitives in the Halide scheduling language

Storage
granularity

Computation
granularity

full
fission

Valid
Schedules

More redundant computations
full
fusion

Efficient
compute-
bound
schedulesEfficient

memory-
bound
schedules

Figure 3.2: Two-dimensional representation of schedule spaces in Halide/TVM.

As a whole, these primitives control four different attributes of the algorithm’s im-

plementation: (1) The iteration order of its loop nests, which is similar to polyhedral

schedules mentioned in Section 3.1.1; (2) The storage order, or internal layout, of its

30

input, output and temporary buffers; (3) The storage granularity of intermediate tem-

porary result; And (4) The computation granularity of blocks of function values.

Figure 3.2 shows a two-dimensional representation of possible schedules as a function

of their storage granularity and compute granularity. By default, most scheduling lan-

guages forbid computations to occur at a larger granularity than storage, hence the space

of valid schedules is delimited by a line. Different points in this space correspond to dif-

ferent trade-offs between data locality, parallelism and redundant computations. For ex-

ample, using lower granularity for temporary storage (e.g., loop fusion) means that values

will have to be recomputed whenever they are needed after having been evicted of the

specified scratch space. On the other hand, performing coarse-grained computations into

coarse-grained temporary buffers (e.g., loop fission) promotes parallelism at the expense

of memory locality between functions. Note that compute-bound (resp. memory-bound)

operations should avoid redundant computations (e.g., memory accesses) as much as pos-

sible, hence arithmetically intense computations such as dense matrix multiplications gen-

erally use larger storage granularity.

3.2.2 Compiling Scheduled Algorithms

Once all the functions in a given algorithm have been explicitly scheduled using the above

primitives, the resulting pipeline is compiled into a sequence of loop nests – and possibly

GPU kernels – that follows the optimization strategies specified by the user. Contrary to

traditional compilers, this process does not require the use of any heuristic, as all the in-

formation needed for program transformations is already specified by the given schedule.

bound inference flattening vectorization
/ unrolling

code
generation

intermediate
code generation

BackendFrontend

...

Figure 3.3: Typical compilation pipeline of a scheduling language.

A non-exhaustive list of optimizations done by Halide/TVM is shown in Figure 3.3.

31

Sliding window optimizations are voluntarily left out, since they are more applicable to

standard image processing pipelines than neural network computations.

Intermediate Code Generation

The compilation process starts with an intermediate code generation phase, which trans-

forms a given algorithm into a set of loop nests whose order, stride, minimum value and

extent are specified by the provided schedule. These loops are represented using an inter-

mediate representation that includes qualifiers for parallel, vectorized or unrolled loops, as

well as basic allocation primitives for temporary storage and output buffers. Note that at

this stage, many important quantities (loop bounds, allocation size) may still be known

only symbolically and lack a proper explicit definition.

Bound Inference

The bound inference phase aims to assign specific values to all the symbolic expressions

present in the above intermediate representation. This is done recursively back from the

algorithm’s output, by analyzing the intervals in which every input/temporary buffers

are accessed. Note that the resulting loops can only describe iterations over axis-aligned

boxes. We will see in Section 3.2.3 how this may be a problem for neural network compu-

tations.

Flattening

The intermediate representations used by scheduling languages generally allow for multi-

dimensional array accesses and allocations. In order to ensure compatibility with low-level

backends like C or LLVM-IR that rely on pointer dereferences, the flattening pass ”flat-

tens” these multi-dimensional operations into equivalent one-dimensional load/store/allo-

cations, using memory strides specified in the provided schedule. Note that the memory

32

stride of the innermost dimension must always be 1, so as to ensure memory alignment

properties compatible with vectorized memory operations.

Vectorization/Unrolling

Once symbolic expressions have been resolved and memory accesses have been flattened,

the body of each unrolled loop is replicated as many times as necessary, and every scalar

instruction is vectorized as needed. Scheduling languages generally have no divergent con-

trol flow, so these transformations are always well-defined.

Automatic Parallelization

On CPUs, automatic parallelization is achieved by scanning the program for parallel loops,

and compiling their body into separate functions that may take as argument any state

variable necessary (e.g., buffer pointers, loop bounds, etc.). These functions are then en-

queued into a thread pool managed by a task queue.

Schedules written for CPUs are not automatically portable to GPUs; parallel loops

need to be annotated with the block and thead dimensions to which they correspond. Per-

fect nests of parallel loops are then mapped to GPU kernels, whose launch characteristics

(e.g., number of threads, number of blocks) are usually determined through automatic

performance tuning.

Backend Code Generation

At this point, the backend code (e.g., C, CUDA, LLVM-IR) for the scheduled interme-

diate representation can finally be generated using simple pattern-matching instruction

selection algorithms.

33

3.2.3 Limitations

Scheduling languages are, without a doubt, one of the most popular approaches for neural

network code generation. Nonetheless, they suffer from a number of fundamental limita-

tions that reduces their applicability to sparse computations, as well as their performance

and portability to emerging hardware architecture.

Axis-Aligned Iteration Spaces

As mentioned above, existing scheduling languages generate loops whose bounds and in-

crements cannot depend on surrounding loop indices. This is problematic for sparse com-

putations, whose iteration spaces may be irregular.

K[i] = 4
K[i] = 2
K[i] = 5
K[i] = 1

x

for(int i = 0; i < 4; i++)
for(int j = 0; j < 4; j++){
 float acc = 0;
 for(int k = 0; k < K[i]; k++)
 acc += A[i][col[i,k]]*B[k][j]
 C[i][j] = acc;
}

A B

Figure 3.4: Sparse matrix multiplications define irregular iteration spaces that cannot be naturally
handled by existing scheduling languages.

As shown in figure 3.4, sparse matrix multiplication tasks tend to have inner loops

whose bounds depend on outer loop indices, making them a poor fit for most schedul-

ing languages. As it turns out, this operation has also been gaining in importance over

the past few years, with the advent of neural network pruning [47] and sparse attention

mechanisms [48, 49]. The block-based program representation that we advocate for in this

dissertation does not have such limitations, and can be used to develop efficient sparse

language models as shown in Chapter 6.

34

Tensor Intrinsics

Since the seminal release of Halide in 2013, graphics processor have been rapidly evolv-

ing and specializing for neural network computations. Scheduling languages have tackled

this problem through the introduction of intrinsic instructions for tensor computations

[50], which (as of August 2020) unfortunately lead to schedules that are difficult to write

and also lack portability. In fact, even the best schedules available for mixed-precision

convolutions remain much slower than good handwritten implementation at equal block

sizes. On the other hand, the blocked program representation presented in this work en-

ables block-aware instruction selection which guarantees automatic tensor core utilization

– and achieves performance within 15% of the best handwritten code available (see Sec-

tion 5.4.3).

35

4
Context-Aware Auto-Tuning

To overcome the limitations of existing DSLs for DNNs, this dissertation proposes a block-

based programming paradigm in which programmers are expected to write code in terms

of operations on block variables. This can be harder than it seems, as it requires the use

of appropriate block shapes that efficiently balance the trade-off between three major ex-

ternal factors. First, hardware characteristics – such as data/instruction cache size,

memory bandwidth, register file size and number of cores available – can make or break

performance for certain block shapes. For example, blocked implementations of matrix

multiplication only work well when sub-matrices used in arithmetically intense operations

(e.g., in Figure 4.1, A[m : m +MB, k : k + U | and B[k : k + U, n : n + NB]) can entirely

fit in cache memory. Second, compiler characteristics – such as heuristic algorithms

used for register allocation [51, 52] or instruction scheduling – can create artifacts that

reduce the performance of otherwise efficient blocked algorithms. For example, setting

36

MB = NB = 128 in Figure 4.1 may cause register spilling when implemented in CUDA-

C, leading to significantly worse performance than the equivalent handwritten assembly

implementation found in cuBLAS. Finally, contextual characteristics – such as the

shapes or sparsity pattern of input tensors – can limit opportunities for data parallelism

when blocks are large. For example, blocked matrix multiplication tasks shown in Fig-

ure 4.1 typically require M
MB
∗ N

NB
≥ NSM to fully occupy a GPU with NSM streaming

multi-processors. This is, in fact, true of any runtime parameter (i.e., execution context)

that may affect the amount of work done.

int m = get_program_id(0)*MB;
int n = get_program_id(1)*NB;
float acc[MB, NB] = 0;
for(int k = 0; k < K; k += U)
 acc += A[m:m+MB, k:k+U]*
 B[k:k+U, n:n+NB];
C[m:m+MB, n:n+NB] = acc;

MB

NBU
M

K

K

N Memory Controller

Memory Controller

SM

L2 Data Cache

L1

SM

SM SM

L1

L1L1

U

Figure 4.1: Mapping of a matrix multiplication onto parallel hardware in our blocked SPMD paradigm.
Large block shapes limit parallelism, while small block shapes limit data-reuse in L1 data caches.

In order to find acceptable trade-offs between all these factors, state-of-the-art im-

plementations of blocked algorithms generally rely on automatic performance tuning

(auto-tuning) techniques [15, 53]. There, the space of possible implementations is exhaus-

tively (or stochastically) searched for programs achieving high empirical performance, the

fastest of which is retained for subsequent use. Existing auto-tuning methods are typi-

cally context-agnostic, in that this search has to be repeated not only every time the un-

derlying platform (hardware, compiler) changes but also whenever important runtime

parameters (e.g., input shapes, sparsity pattern) do. This can lead to applications that

spend more time auto-tuning algorithms than executing them productively.

By contrast, in this chapter, we propose a context-aware auto-tuning method capable

of dynamically predicting block shapes that are preferable at runtime, given any con-

37

textual characteristics that may influence the amount of work done. Contrary to hand-

written heuristics and approximate cost models [54], our method – which relies on ma-

chine learning – requires no expert knowledge about the algorithm of interest or the

target hardware architecture. As shown in Figure 4.2, our system is composed of four

major components. First, a code generator transforms a given set of block shapes xB

into a compute kernel k(xB). The generated code is then repeatedly benchmarked in

different contexts xC so as to create a dataset of empirical performance measurements

D = {(xB,xC , y) | y = perf(k(xB),xC)}. Third, this dataset is used to build a surrogate

regression model ŷ = f(xB,xC) for the performance of k(xB) in any given xC . Finally,

when a new execution context x̂C is seen at runtime, the block shapes that perform best

on our performance model are returned: x̂B = argmaxxB
f(xB, x̂C). Throughout this

whole process, the overarching runtime environment (hardware, compiler) is assumed to

be fixed. Each of these four components will be discussed sequentially from Section 4.1

to Section 4.4, and the performance of the resulting system will be evaluated on various

computational tasks in Section 4.5.

Hardware
Compiler

Code Generator
k(xb)

Black Box Sample
(xB, xc)

Benchmark
perf(k(xb), xc)

Update Dataset

valid
repeat

STEP 3: Regression
Analysis

Train model
f(xb,xc) = perf(k(xb), xc)

Save surrogate model

STEP 4: Block Shape
Selection

Load surrogate
Model

xc

Offline Online

STEP 1: Code
Generation

argmax f(xb,xc)

invalid

xb

STEP 2: Training Data
Synthesis

Maximize surrogate
model

Figure 4.2: Context-aware auto-tuning.

4.1 Code Generation

The context-aware auto-tuning approach outlined above relies on the existence of a code

generator k(xB) capable of automatically generating high-performance implementations

38

of pre-defined blocked algorithms, for any possible block shapes xB. Before we see, in

Chapter 5, how to generalize the construction of such templates, this section describes the

design of specialized code generators for matrix multiplications and convolutions.

4.1.1 Matrix Multiplication

Let us consider the matrix multiplication problem:

C = AB C ∈ RM×N , A ∈ RM×K , B ∈ RK×N

Since the arithmetic intensity of this task α ∼ 2MLNL/(ML +NL) can be high for certain

values of (ML, NL), peak performance can only be achieved through sufficient data-reuse

and latency hiding. For this reason, we develop a parameterized implementation of matrix

multiplication which explores the trade-offs between (1) thread-level parallelism, (2) data

pre-fetching and (3) data re-use.

Importantly, we do not consider instruction-level parallelism in our design. Indeed,

modern GPUs typically outsource dependency analysis to their Instruction Set Archi-

tecture (ISA): assembly programs are required to specify stall counts (in addition to op-

codes and operands) for every instruction. It is therefore not possible for programmers

to control instruction-level parallelism unless writing Shader Assembly (SASS) directly,

which we avoid for the sake of productivity. Instead, the code templates presented here

use the Parallel Thread eXecution (PTX) pseudo-assembly language, where instruction-

level parallelism is automatically optimized by the ptxas assembler during the instruction

scheduling and selection process.

Thread Parallelism

Graphics processing units are warp-synchronous – they execute groups of 32 thread (i.e.,

warps) in lockstep – hence in the remainder of this dissertation we will refer to warp-level

39

parallelism rather than thread-level parallelism. Warp-level parallelism is implemented

in hardware through the use of one or multiple warp scheduler, which detect and pause

warps that are stalled due to e.g., unfinished data transfers, freeing up compute resources

that can then be used by any other warp available. For this reason, it is possible for

programmers to modulate warp-level parallelism by controlling the number of kernel in-

stances that are launched (inter-block parallelism) and/or the number of warps used in

each instance (intra-block parallelism). As a result, our code generator exposes two pa-

rameters (ML, NL) to control the amount of work done by each kernel instance, and two

other parameters (MS , NS) to control the amount of work done by each warp.

Data Pre-Fetching

Since the latency of DRAM memory accesses on modern GPUs is typically several orders

of magnitude higher than the latency of FMAs [55, 56], it is generally recommended to

overlap memory accesses with computations as much as possible. Listing 4.1-4.2 show

how this can be done in the case of matrix multiplication, by pre-fetching blocks of data

in the reduction loop before using them an iteration later. Note that this strategy is only

helpful when K ≫ TK, since the cost of the first – and not pre-fetched – memory loads

needs to be amortized over many iterations.

1 int m = get_program_id (0) * ML;
2 int n = get_program_id (1) * NL;
3 f l o a t acc [ML, NL] = 0;
4 fo r (int k = 0; k < K; k += U) {
5 // fetch
6 f l o a t a [ML, U] = A[m:m+ML, k : k+U] ;
7 f l o a t b [U, NL] = B[k : k+U, n : n+NL] ;
8 // matrix - mult ip l i cat ion
9 acc += dot (a , b) ;
10 }
11 C[m:m+ML, n : n+NL] = acc ;

Listing 4.1: Blocked matrix multiplication
without data pre-fetching.

1 int m = get_program_id (0) * ML;
2 int n = get_program_id (1) * NL;
3 f l o a t acc [8 , 8] = 0;
4 // pre - fetch
5 float a[ML, U] = A[m:m+ML, 0:U];
6 float b[U, NL] = B[0:U, n:n+NL];
7 fo r (int k = 0; k < K; k += U) {
8 acc += dot (a , b) ;
9 // pre - fetch
10 a = A[m:m+ML, k+U:k+2U];
11 b = B[k+U:k+2U, n:n+NL];
12 }
13 C[m:m+ML, n : n+NL] = acc ;

Listing 4.2: Blocked matrix multiplication
with data pre-fetching.

40

+
A

sub-
block

B

block

=C

C0

C1

GPU
core core

core core

block

...

Core

S
IM

D

S
IM

D

S
IM

D

atomicM

K

K

N

ML

NL

MS

NS

KG
U

Figure 4.3: Proposed parameterization of matrix multiplication. Components of xC and xB are
respectively shown in red and blue.

Data Reuse

As mentioned above, matrix multiplication is a potentially arithmetically intense opera-

tion which offers many opportunities for data-reuse. This property can be leveraged by

making sure that the ML × U blocks of A and the U × NL blocks of B reside in shared

memory before their elements are repeatedly accessed in the dot instruction. This reduces

the latency of subsequent memory accesses and also makes latency hiding easier. The

arithmetic intensity of the resulting algorithm is α = 2(MLNL)/(ML + NL), so ML and

NL should be as large as possible, i.e., they should fit in shared memory and the result-

ing reduction loop should fit in the L1 instruction cache. Importantly, ML and NL should

also be as close to one another as possible.

Trade-Offs

All the above optimization techniques exhibit trade-offs with one another. For example,

large block shapes increase data-reuse but also require more hardware resources to func-

tion, potentially limiting the amount of warps that can run concurrently. Conversely, if

blocks are too small, independent instructions will become rare and opportunities for par-

41

allelism will be reduced. Additionally, when the blocking factor along one direction (e.g.,

ML) is constrained to be “small“ by e.g., the shape of input matrices, it becomes neces-

sary to mindfully increase blocking along another dimension (e.g., NL) to increase arith-

metic intensity. Of course, what it means for a block to be “small“ or “large“ is a latent

property of the underlying hardware and execution context, hence optimal block shapes

depend not only on the target micro-architecture but also on characteristics of some im-

portant runtime parameters not necessarily known in advance. The system presented in

this chapter automatically learns this relationship from empirical benchmarking data.

Putting It All Together

Everything considered, our parameterized implementation of matrix multiplication (Fig-

ure 4.3) is able to adjust the above factors over a wide range of values, covering many

potential hardware architectures and input matrices. Each thread (resp. thread-block)

computes a block of MS × NS (resp. ML × NL) elements of C. In order maximize data-

reuse, each program prefetches, into shared memory, ML×U elements from A and U×NL

elements from B. These two blocks can be transposed in-place if necessary. The actual

computations are then unrolled, producing a set of MS × NS × U FMA instructions re-

peated K/U times. Because ML and/or NL may be constrained small by the size of A or

B, it can become necessary to create additional independent work by splitting the com-

putations along the reduction axis K, and accumulate the resulting partial results in a

separate step, as shown in [57]. We therefore introduce a parameter KG, which controls

how many partial results should be computed in parallel. Accumulation may then be per-

formed either in registers, shared memory or global memory via atomics. This technique,

which we refer to as reduction-splitting, will be used repeatedly throughout this disserta-

tion. To handle the cases where M (or N) is not a multiple of ML (or NL), we rely on

predicated instructions in PTX rather than input padding.

42

4.1.2 Convolution

We now consider the convolution operator C = A ⋆ B such that

Cco,:,:,z =

Ci∑
ci=0

Aci,:,:,z ⋆ Bci,:,:,co

where

C ∈ RCo×P×Q×Z A ∈ RCi×H×W×Z B ∈ RCi×R×S×Co

This task, first described in Section 2.1, is a common generalization of the usual 2D

convolution operator. Instead of convolving a single H ×W image with a single R × S fil-

ter, a set of Ci different channels are convolved with Ci different filters, and the resulting

images (of shape P×Q) are summed together. This process is repeated for Z independent

batches of images and Co batches of filters, so as to eventually generate a Co × P ×Q× Z

data tensor. This operator is one of the most important building blocks of convolutional

neural networks, and it is therefore used in many different contexts for many different

values of Z,Co, Ci,H,W,R, S. As such, it constitutes a valuable benchmark for context-

aware auto-tuning.

A blocked algorithm for convolution

In Section 2.1.5, we described how convolutions can be expressed as implicit matrix multi-

plications, and how doing so naively may cause significant performance issues. Following

this observation, we present a blocked algorithm in which im2col is performed implicitly

in cache memory, and show how it may be efficiently implemented using the exact same

parameterization as that shown in Figure 4.3.

Our blocked algorithm is shown in Figure 4.4 and works as follows. The 4D output of

the convolution C ∈ RZ×P×Q×Co is treated as matrix C ′ ∈ RM×N where M = ZPQ

43

 B

 A

 for(int m = 0; m < ZPQ ; m += ML) {
 for(int n = 0; n < CO ; n += NL) {
 float acc[ML, NL] = 0;
 // range of implicit rows
 int pq [ML] = m ... m + ML;
 int q [ML] = pq % Q;
 int p [ML] = pq / Q;
 // range for reduction
 int cirs[U] = 0 ... CiRSL;
 int s [U] = cirs % S; int ci [U] = (cirs / S) / R; int r [U] = (cirs / S) % R;
 // pre-fetch
 float *pa[ML, U] = A + q[:, newaxis] * stride_a_w + p[:, newaxis] * stride_a_h
 + r[newaxis, :] * stride_a_h + s[newaxis, :] * stride_a_w
 + ci[newaxis, :] * stride_a_ci;
 float a[ML, U] = *pa;
 float *pb[U, NL] = B + r[:, newaxis] * stride_b_r + s[:, newaxis] * stride_b_s
 + ci[:, newaxis] * stride_b_ci + co[newaxis, :] * stride_b_co;
 float b[U , NL] = *pb;
 for(int k = 0; k < CI*R*S; k += U) {
 acc += matmul(a, b);
 cirs += U;
 s = cirs % S; ci = (cirs / S) / R; r = (cirs / S) % R;
 // pre-fetch
 pa = A + q[:, newaxis] * stride_a_w + p[:, newaxis] * stride_a_h
 + r[newaxis, :] * stride_a_h + s[newaxis, :] * stride_a_w
 + ci[newaxis, :] * stride_a_ci;
 a = *pa;
 pb = B + r[:, newaxis] * stride_b_r + s[:, newaxis] * stride_b_s
 + ci[:, newaxis] * stride_b_c + co[newaxis, :] * stride_b_co;
 b = *pb;
 }
 float *pc[ML, NL] = C + q[newaxis, :] * stride_c_q + p[newaxis, :] * stride_c_p
 + co[:, newaxis] * stride_c_co;
 *pc = acc;
}
}

 AH

WCi U

RS

PQ

UR
S

 C

PQ
L

Figure 4.4: Blocked algorithm for dense convolutions. For simplicity, we assume N = 1.

and N = Co, and computed using 2D blocks of shape ML × NL, as before. These blocks

can be computed concurrently by different thread-blocks in a 2D grid, using an aggregate

”row” dimension m = (n, p, q) from which original dimensions can be retrieved by using

the following identities. 

q = m % Q

p = (m / Q) % P

z = (m / Q) / P

Similarly, we use an aggregate reduction dimension k = (ci, r, s) from which channel and

filter indices can be retrieved using



s = k % S

r = (k / S) % R

ci = (k / S) / R

Though A and B are both four-dimensional tensors, two-dimensional blocks can be

44

loaded from memory by dereferencing, element-wise, blocks of pointers constructed us-

ing broadcasting semantics. The corresponding language constructs (e.g., float *a[8, 8] =

A[:,newaxis]) should be intuitive to readers familiar with existing array languages such as

Numpy, but a more precise definition of an appropriate C-based language will be given

in Chapter 5. Once these blocks are loaded (into shared memory), they can be multiplied

together to update an accumulator block that is then written back to C.

It follows that we can use the exact same parameterization method as that exposed in

Figure 4.3, which is why these algorithms are often referred to as ”implicit matrix multi-

plication”. The only difference is that blocking is performed across aggregate dimensions

(M = PQZ,N = Co,K = CiRS). Specifically, each thread (resp. thread-block) com-

putes a block of MS × NS (resp. ML × NL) elements of C. For the sake of data-reuse,

each thread-block prefetches, into shared memory, ML × U elements from A and U × NL

elements from B. The offsets for these load operations are obtained using the aforemen-

tioned indirection. The actual computations are then fully unrolled, and the reduction is

split using a KG programs per reduction.

4.2 Data Synthesis

Context-aware auto-tuning works by building a regression model f(xB,xC) for the perfor-

mance of the above kernel generator on any block shapes xB and contextual characteris-

tics xC . At runtime, when the context x̂C is fixed, this surrogate model is then optimized

over xB only to guide the selection of efficient block shapes x̂B = argmaxxB
f(xB, x̂C).

While f(xB,xC) could technically be analytically approximated using expert knowledge,

doing so would reduce its portability – and performance-portability – across future hard-

ware architectures and applications. Instead, we learn f(xB,xC) automatically from a

large amount of empirical benchmarking data D gathered offline:

D = {(xB,xC , y) | y = perf(k(xB),xC)}

45

Where, following the notations adopted in the previous subsection,

xB = (ML,MS , NL, NS ,KG)

xmatmul
C = (M,N,K)

xconv
C = (M = ZPQ,N = Co,K = CiRS)

At first sight, the construction of D may seem straightforward: one can simply sample

many different block shapes xB and contextual characteristics xC , and measure the per-

formance of every resulting configuration: y = perf(k(xb),xc). While doing this is cer-

tainly possible, we observed that this tends to bias D towards inefficient samples, since

most possible configurations are typically slow. To resolve this issue, Section 4.2.1 will

present a rejection sampling method that conservatively discards samples unlikely to ever

perform well. To improve the scalability of this method to higher-dimensional configura-

tion spaces, Section 4.2.2 will introduce a Naive Bayes generative model that reduces the

amount of samples rejected.

4.2.1 Rejection Sampling

In our parameterized implementation of matrix multiplication and convolution, the space

of possible block shapes X ⊂ N5 can be large. To make matters worse, many possible

block shapes xB can exhibit low device utilization due to poor data/instruction cache per-

formance, register spilling or lack of parallelism. Therefore, sampling uniformly from X

can skew the training dataset D towards inefficient samples and reduce the performance

of our regression model where it matters. For this reason, we propose a rejection sam-

pling method (see Figure 4.5) that only draws sample from the space of potentially effi-

cient (xB,xC) pairs, using pruning heuristics shown below.

First, we reject block shapes that lead to inner reduction loops unable to fit in the un-

derlying hardware’s instruction cache. In other words, assuming 16-bytes wide instruc-

46

block shapes xB

xC / xB <= .5Ncores
Not enough
blocks

blocks too
small: not
enough
work

potentially
efficient

In
pu

t s
ha

pe
s

 x
C

training
sample

blocks too
large: not
enough local
memory

Figure 4.5: Potentially efficient samples (greens) are retained using rejection sampling.

tions (as is the case in Volta, Turing and Ampere) and an instruction cache of SIC bytes

per SM, we want 16Nloop ≤ SIC , where the number of instruction Nloop can be approxi-

mated by NA
load +NB

load +NFMA = (MS × U) + (NS × U) + (MS ×NS × U). In practice,

SIC ∼ 12KiB, meaning that we may for example want MS = NS = U = 8.

Second, we reject block shapes that are not powers of two. This is not strictly neces-

sary, but we found that this makes our search space more tractable without impacting

performance. Conveniently, doing so also ensures that ML is always divisible by MS as

long as MS < ML, and that the number of elements in a block ML.NL is always divisible

by the number of threads in a warp (32). Incidentally, this also means that blocks of size

ML × U or NL × U can fit tightly in shared memory, which is itself usually allocated in

powers of two by the driver.

Third, we reject block shapes that are too small. The rationale is that very small block

sizes (e.g., 2 × 2, 4 × 4) have less elements than threads in a warp, leading inevitably to

wasted computations. For this reason, we specifically discard blocks that have less than

32 elements.

Last, we reject pairs of (xB,xC) that lead to low GPU occupancy. In other words, we

want to avoid cases where there there are significantly less blocks than GPU cores avail-

able, which happens when ∥xC∥/∥xB∥ ≤ ρNcores, where ρ is a tolerance parameter that

we set to ρ = 0.5.

47

4.2.2 Generative Modeling

The pruning criteria outlined above lead to very high rejection rates – sometimes over

99.9% for matrix multiplication – that grow larger as the dimension of xB and xC in-

creases. To overcome this curse of dimensionality, we propose to build a generative model

G capable to sample more efficiently space of potentially efficient configurations (see Fig-

ure 4.6). It is easy to imagine scenarios where G would be defined by a complex graphical

model, but this would require an analysis that is beyond the scope of this work. Instead,

our framework uses a Naive Bayes method which is simpler yet significantly less wasteful

than uniform sampling.

block shapes xB

xC / xB <= .5Ncores
Not enough
blocks

blocks too
small: not
enough
work

potentially
efficient

In
pu

t s
ha

pe
s

 x
C

training
sample

blocks too
large: not
enough local
memory

Figure 4.6: Rejection rate in high-dimensional spaces can be reduced using a Naive Bayes method.

Specifically, we treat x = (xB,xC) as a random vector whose components xi are sta-

tistically independent assuming potential efficiency. In other words, we assume that the

probability of a sample being potentially efficient is:

p(E = x ∈ X̂) α p(x0|E)p(x1|E) · · · p(xN |E)

The probability distribution of each parameter xi conditioned on E can be approximated

empirically, as the proportion of accepted values after a short period of uniform sampling.

For instance, assuming that x1 = MS may only take four values – say, 1, 2, 4, 8 – which

48

respectively appear 5, 20, 25 and 50 times out of 100 uniformly sampled valid configura-

tions, our framework assigns:

p(x1 = 1) = .05 p(x1 = 2) = .2

p(x1 = 4) = .25 p(x1 = 8) = .5

To avoid setting any of these probabilities to zero, we initialize each count as a value α >

0 (our implementation uses α = 100).

4.3 Regression Analysis

Once a sufficient amount of training data D has been gathered using the above sampling

method, our system builds a predictive model for the performance of any block shape xB

in any given context xC . This is known as regression analysis. We evaluated multiple ma-

chine learning models before opting for a multi-layer perceptron (MLP), as it (1) scales

best with large datasets (given enough time and resources, our dataset can be made ar-

bitrarily large) and (2) naturally handles common non-linearities found in performance

modeling such as maximums and minimums.

4.3.1 Logarithmic Feature Transformation

Before going further, let us first quickly review the existing literature on GPU perfor-

mance modeling, for which a comprehensive review was offered by Volkov in his doctoral

dissertation [28]. A common strategy for estimating the average arithmetic and memory

throughput (in instructions/cycles) of the target kernel K is:

tarith(n) = max
(alu_latency

n
, alu_throughput

)
tmem(n) = max

(mem_latency
n

,mem_throughput
)

49

Where n is the mean occupancy (in warps per multi-processor), and alu_throughput,

mem_throughput are underlying hardware latency characteristics. The total execution

time t(n) of K is then:

t(n) = max(tarith(n)iarith, tmem(n)imem)

Where iarith and imem are respectively the number of arithmetic and memory instruc-

tions in K. The entire premise of our approach is that all the quantities involved in these

computations depend – more or less strongly – on the relationship between hidden hard-

ware features (e.g., number of ALU, memory bandwidth, maximum throughput, banking

structures) and known environmental or contextual parameters (e.g., input tensor shapes,

block shapes). A successful MLP should (implicitly) learn not only these relationships but

also the corresponding hidden variables.

As suggested by the above analytical model, it is expected that our target performance

model include multiplications, divisions and maximums between components of xB and

components of xC . Because neural networks are not naturally designed to handle mul-

tiplications between different features, modifying the input features as x′ = log(x) can

greatly improve the performance of our system. We also found the Rectified Linear Units

(ReLU) to perform best than any other activation function, possibly due to their natural

affinity with max computations commonly found in analytical models.

4.3.2 Accuracy

A common criticism of neural networks is that they are hard to engineer. In this subsec-

tion, we attempt to provide insights for designing good MLP architectures for context-

aware auto-tuning, as well as intuition regarding the amount of training data necessary to

achieve good performance. We used matrix multiplication for our analysis, but the same

results were observed in convolutions, which is expected since the underlying parameteri-

zation is the same.

50

Table 4.1 shows the cross-validation MSE of several MLP architectures, as measured on

a fixed set of 10, 000 cross-validation data-points separate from the 200, 000 samples used

for training. Unsurprisingly, deeper networks seem to perform much better than shallower

ones for a fixed parameter budget. In other words, the accuracy of the network can be

improved by adding layers, at the cost of longer training and higher runtime latency. We

emphasize the importance of the logarithmic feature transformation exposed in the pre-

vious subsection, without which our system would – at best – converge to much worse

solutions.

Hidden layer sizes #weights MSE (no log)
64 1k 0.17 (1.2)
512 10k 0.13 (1.0)

32, 64, 32 5k 0.088 (0.80)
64, 128, 64 17k 0.08 (0.75)

32, 64, 128, 64, 32 21k 0.073 (-)
64, 128, 256, 128, 64 83k 0.067 (-)

64, 128, 192, 256, 192, 128, 64 163k 0.062 (-)

Table 4.1: Cross-validation MSE of various MLP architectures.

1 5 10 15 20
Dataset size (104 samples)

0.06

0.08

0.10

0.12

0.14

0.16

Cr
os

s-
va

lid
at

io
n

M
SE

Figure 4.7: Cross-validation MSE of our most accurate MLP for various data-set sizes.

51

Figure 4.7 shows the evolution of our most accurate MLP’s accuracy as the amount

of training data available grows. Collecting more data does not seem to provide much

benefits beyond ∼ 150, 000 samples, or 6 hours of data collection.

4.4 Runtime Inference

At this point, we have designed a trained regression model that can predict, for matrix

multiplication and convolution, the performance of any given block shapes in any given

context. This model can be evaluated very quickly, in parallel, and with roughly constant

latency. This differs from direct auto-tuning methods for GPUs, which may be slow, lock

the underlying device, or even time-out when very inefficient kernels meet large problems.

At runtime, the context is known, and our regression model can be optimized over block

shapes only. Any discrete optimization method (e.g., simulated annealing, genetic algo-

rithm, exhaustive search) may be used for this purpose. In this work, we have opted for

an exhaustive search, as it has several attractive properties when applicable:

• It is guaranteed to find the global optimum within the specified search range.

• The search is highly parallelizable. On our best-performing MLP, up to a million

different configurations per second can be evaluated.

• It is straightforward to obtain the 10 (or more) fastest configurations instead of the

single top prediction, and re-evaluate them to smooth out the imperfections of our

predictive model.

The cost of this exhaustive search is relatively small – up to a few seconds – because

our surrogate model is fast to evaluate. In comparison, standard context-agnostic auto-

tuning procedure can be several orders of magnitude slower, taking up to 10 hours per

52

input matrix shape for some large matrices. The resulting predictions may be used di-

rectly in applications where this latency would be negligible, or cached on the filesystem,

or even used as heuristics for external libraries such as cuBLAS/cuDNN.

4.5 Numerical Evaluation

In this section, we evaluate the performance of our context-aware auto-tuning framework

on various matrix-multiplication and convolution problem settings found in scientific com-

puting, deep learning and signal processing.

4.5.1 Hardware architectures

While our work focuses primarily on context-awareness, it is equally important for our

system to be performance-portable across existing and future hardware architectures,

hence our numerical experiments will be repeated on two distinct GPUs whose main char-

acteristics are summarized in Table 4.2.

Pascal Volta
GPU GTX1070 Ti Tesla V100
Micro-architecture GP104 GV100
Die size 314 mm2 815 mm2

CUDA cores 2432 5148
Boost frequency 1683 MHz 1530 MHZ
Processing Power 8.1 TFLOPS 15.8 TFLOPS
Memory quantity 8 GB 32 GB
Memory Type GDDR5 HBM2
Memory Bandwidth 256 GB/S 900 GB/s
TDP 180W 300W

Table 4.2: Hardware platforms considered in this section.

These two devices, though both designed by NVIDIA within the span of two years, dif-

fer in many ways. First, the Tesla V100 has a larger die size than the GTX1070 Ti, which

leads to more CUDA cores. Second, the V100 offers twice the bandwidth of the GTX1070

TI due to its use of High Bandwidth Memory (HBM2) DRAM. It is worth pointing out

that HBM2 (large bus width, low frequency) and GDDR5 (small bus width, high fre-

53

quency) handle memory transfers in a different way, to the point where even IO-bound

code designed for Pascal is not guaranteed to perform well on Volta.

Note that, for reasons that are beyond the scope of this work, NVIDIA’s ptxas compiler

tends to generate higher-quality code for Volta than Pascal.

4.5.2 Experimental setup

We compare our framework against cuBLAS 9.2 and cuDNN 7.0. Despite the develop-

ment of new domain specific languages for array programming (Chapter 3), these two

libraries have remained the gold standard for linear algebra and deep learning on GPUs.

Both libraries rely on handcrafted heuristics for choosing among a set of statically opti-

mized assembly implementation of matrix multiplication. The cuBLAS API, however,

makes it possible to manually call individual kernels using the cublasGemmEx function, effec-

tively allowing us to bypass any existing heuristics. We use this feature to select the best

cuBLAS kernel available for each input shapes considered, ensuring that the performance

gains we observe are not just due to poor block shape selection heuristics in cuBLAS. As

for convolutions, we use the flag IMPLICIT_PRECOMP_GEMM to force cuDNN to use the

algorithm presented in Section 4.1, with a scratch space of 64MB that remains on the de-

vice throughout the entire duration of our benchmarks.

4.5.3 GEMM Performance

General Matrix Multiplication (GEMM) sits at the heart of High-Performance Comput-

ing (HPC). It is a crucial workload for many applications, including scientific computing,

machine learning and signal processing. In this section, we evaluate our proposed auto-

tuning method on a set of input configurations that we believe are representative of its

practical usage.

54

Square Matrices

Though square matrices are relatively uncommon in practice, they are often used as a

benchmark for GPU implementations of matrix multiplication. For this reason, this sub-

section evaluates the performance of our system on square matrices of increasing size

128 ≤ N ≤ 3072. As shown in Figure 4.8, context-aware auto-tuning (CAAT) almost

exactly matches the performance of cuBLAS’s handwritten assembly across the board on

the GTX1070Ti, which indicates that handwritten SASS may not necessary to achieve

peak FP32 performance on this device. This supports our decision to choose PTX as an

intermediate language for code generation. Similar performance trends are observed on

the Tesla V100.

0 500 1000 1500 2000 2500 3000
M = N = K

1

2

3

4

5

6

7

TF
LO

PS

CAAT
cuBLAS

(a) GTX 1070 Ti

0 500 1000 1500 2000 2500 3000
M = N = K

0

2

4

6

8

10

12

14

TF
LO

PS

CAAT
cuBLAS

(b) Tesla V100

Figure 4.8: Performance of context-aware auto-tuning for square matrix multiplication.

Multi-Layer Perceptron

The benefits of CAAT are more apparent for tasks involving tall and skinny matrices. To

evaluate this problem domain, we measure the performance of our framework on batched

MLP inference tasks C = A.BT , where A ∈ RN×N and B ∈ R16×N for 256 ≤ N ≤ 7168.

This corresponds to forward propagation across linear layers of increasing size.

55

0 1000 2000 3000 4000 5000 6000 7000
N

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

TF
LO

PS

CAAT
cuBLAS

(a) GTX 1070 Ti

0 1000 2000 3000 4000 5000 6000 7000
N

0

1

2

3

4

5

6

TF
LO

PS

CAAT
cuBLAS

(b) Tesla V100

Figure 4.9: Performance of context-aware auto-tuning for batched MLP inference (N = 16).

Figure 4.9 shows the performance of CAAT and cuBLAS on both hardware considered.

As we can see, CAAT and cuBLAS are largely on par when N < 2048. On the other

hand, CAAT outperforms cuBLAS for larger matrices. This is because, as shown in Ta-

ble 4.3, cuBLAS does not implement any kernel satisfying NL ≤ 16, leading to wasted

computations that matter in compute-bound regimes since C only has 32 columns.

N ML NL KG Nprograms
512 32 16 1 16
1536 64 16 4 96
4096 64 16 4 256

(a) Context-Aware Auto-Tuning

N ML NL KG Nprograms
512 32 32 4 64
1536 64 32 4 96
4096 64 32 6 384

(b) cuBLAS

Table 4.3: block shapes selection heuristics for different values of N on the Tesla V100.

Covariance

We now consider the matrix multiplication task C = A.BT , where A ∈ RM×K and

B ∈ RN×K , for M = N = 64 and 4096 ≤ K ≤ 131072. This task is common in sta-

tistical computing, when e.g., approximating the covariance matrix of M = N random

variables using K observations. Reduction-splitting (KG > 1) is critical to achieve good

performance in this scenario, since the result matrix C ∈ R64×64 is small and its computa-

56

tion cannot be massively parallelized without compromising data reuse.

0 20000 40000 60000 80000 100000 120000
K

0.75

1.00

1.25

1.50

1.75

2.00

2.25

TF
LO

PS

CAAT
cuBLAS

(a) GTX 1070 Ti

0 20000 40000 60000 80000 100000 120000
K

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

TF
LO

PS

CAAT
cuBLAS

(b) Tesla V100

Figure 4.10: Performance of context-aware auto-tuning for covariance matrix computations.

Figure 4.10 shows the performance of CAAT and cuBLAS on this task. As one can

see, our system achieves significant performance gains over cuBLAS for large value of K.

To understand why this is the case, Table 4.4 shows the compute kernels selected by our

auto-tuning framework for different values of K, along with the number of program in-

stances required in each case. Since the GTX1070Ti is composed of 30 SMs containing

2 warp schedulers each, we approximate the maximum number of programs necessary to

saturate this GPU as 2NSM = 60. Note that, while occupying a GPU completely is not

necessary to achieve optimal performance in memory-bound workloads [28], occupying it

at the expense of data-reuse can be harmful. The kernels selected by cuBLAS seem to fall

prey to this trap, privileging reduction-splitting (i.e., parallelism) over larger block sizes

(i.e., data re-use) for K > 16384. On the other hand, CAAT seems to automatically find

better trade-offs, increasing NL instead of KG when the GPU is saturated (K = 131072),

leading to the significant performance gains (> 50%) as shown in Figure 4.10(a). Inter-

estingly, we also note that CAAT automatically learns that larger block shapes are prefer-

able.

Similar performance trends are observed on the Tesla V100, where speed-ups of > 50%

are seen for very deep reductions (Figure 4.10b). Since this GPU has 80 SMs, up to 160

57

K ML NL KG Nprograms
4096 64 32 8 16
8192
16384 64 32 16 32
32768
65536
131072 64 64 32 32

(a) Context-Aware Auto-Tuning

K ML NL KG Nprograms
4096 32 32 2 8
8192 32 32 4 16
16384 32 32 8 32
32768 32 32 16 64
65536 32 32 32 128
131072 32 32 64 256

(b) cuBLAS

Table 4.4: block shape selection heuristics for different values of K on an NVIDIA GTX 1070Ti.
Configurations requiring more programs than the GPU can execute concurrently (2NSM = 60) are

shown in red.

programs can execute concurrently without saturating the GPU (Table 4.5). Unsurpris-

ingly, our system shows the largest performance gains under this regime (K ≥ 65536), as

no substantial difference with cuBLAS is noted for shallower reductions (i.e., K ≤ 32768).

K ML NL KG Nprograms
4096 32 32 16 64
8192 32 32 16 64
16384 32 32 16 64
32768 32 32 16 64
65536 32 32 32 128
131072 32 32 32 128

(a) Context-Aware Auto-Tuning

K ML NL KG Nprograms
4096 32 32 16 64
8192 32 32 16 64
16384 32 32 32 128
32768 32 32 32 128
65536 32 32 64 256
131072 32 32 128 512

(b) cuBLAS

Table 4.5: block shape selection heuristics for different values of K on an NVIDIA Tesla V100.
Configurations requiring more programs that the GPU can execute concurrently (2NSM = 160) are

shown in red.

4.5.4 CONV Performance

In this subsection, we compare the performance of our work against that of state-of-the-

art convolution routines from cuDNN. We specifically examine the use of 3 × 3 filters for

inference (Z = 1), and evaluate two scenarios: one in which the resolution of the input

image is fixed, and one in which its number of channels is fixed.

58

Fixed Input Resolution

We consider input images of 56× 56 pixels – as in the middle layers of typical ResNets for

ImageNet – and vary Ci = Co between 64 and 1024 so as to cover a wide range of layer

widths commonly seen in the literature.

Ci = Co ML NL KG Nprograms
64 64 64 1 49
128 64 128 1 49
256 98
384 147
512 196
768 294
1024 392

(a) Context-Aware Auto-Tuning

Ci = Co ML NL KG Nprograms
64 128 64 1 25
128 50
256 100
384 150
512 200
768 300
1024 400

(b) cuDNN

Table 4.6: block shape selection heuristics for different values of Ci = Co on an NVIDIA GTX
1070Ti.

As shown in Table 4.6, cuDNN always uses rather large tile sizes (i.e., (ML, NL) =

(128, 64)), regardless of the number of input/output channels being processed. This is in-

creases data reuse but also limits parallelism, which is not a major issue for small GPUs

(GTX1070 Ti) that only have a few dozens SMs and can remain fully occupied by only

50 program instances. As a result, our system is generally on par with NVIDIA’s hand-

written assembly kernels on this hardware (see Figure 4.11(a)). Note however the slightly

better (∼ 10%) performance of cuDNN for compute-bounds routine (C ≥ 512) where the

slight advantages of handwritten assembly (ie, instruction scheduling, register allocation)

are visible.

However, for larger GPUs (Table 4.7), the benefits of context-aware auto-tuning are

more pronounced. Our framework privileges smaller block shapes that allow for finer-

grained parallelism, while cuDNN uses the same 128 × 64 block shapes as before. This

can lead to notable performance gains when the number of channels is low (C ≤ 256) and

smaller blocks are necessary to fully occupy our GPUs. As a result, for C = 64, our ap-

proach is 50% faster than cuDNN. For bigger layers (C ≥ 768), CAAT uses 128 × 128

59

200 400 600 800 1000
Ci = Co

3.5

4.0

4.5

5.0

5.5

6.0

6.5

TF
LO

PS

CAAT
cuDNN

(a) GTX 1070 Ti

200 400 600 800 1000
Ci = Co

4

6

8

10

12

14

TF
LO

PS

CAAT
cuDNN

(b) Tesla V100

Figure 4.11: Performance of our context-aware auto-tuner on (a) GTX1070 Ti and (b) Tesla V100

block shapes, which provides more data reuse than in cuDNN.

Ci = Co ML NL KG Nprograms
64 32 32 1 196
128 392
256 64 64 1 196
384 294
512 392
768 128 128 1 150
1024 200

(a) Context-Aware Auto-Tuning

Ci = Co ML NL KG Nprograms
64 128 64 1 25
128 50
256 100
384 150
512 200
768 300
1024 400

(b) cuDNN

Table 4.7: block shape selection heuristics for different values of Ci = Co on an NVIDIA Tesla V100.

Fixed Channel Width

We now consider convolutional layers composed of Ci = Co = 256 channels, and vary the

resolution H = W of their input image between 8 and 256, which allows us to consider

a large variety of potential CNN workloads. Once again, we report the compute kernels

selected by our method and cuDNN in Table 4.8, and observe the same trend as before:

the heuristics used by cuDNN limit parallelism for small images. This reduces the perfor-

mance of cuDNN, especially for large GPUs (e.g., Tesla V100). As shown in Figure 4.12,

60

our system outperforms cuDNN by up to 2x in these scenarios (e.g., 0.4 vs 1 TFLOPs for

H =W = 8).

H =W ML NL KG Nprograms
8 32 64 1 8
16 32
32 64 128 1 32
64 128
128 512
256 2048

(a) Context-Aware Auto-Tuning

H =W ML NL KG Nprograms
8 128 64 1 4
16 8
32 32
64 128
128 512
256 2048

(b) cuDNN

Table 4.8: block shape selection heuristics for different values of H =W on a GTX 1070Ti.

H =W ML NL KG Nprograms
8 32 32 1 16
16 32 32 1 64
32 64 64 1 64
64 64 128 1 128
128 64 128 1 256
256 128 128 1 512

(a) Context-Aware Auto-Tuning

H =W ML NL KG Nprograms
8 128 64 1 4
16 8
32 32
64 128
128 512
256 2048

(b) cuDNN

Table 4.9: block shape selection heuristics for different values of H =W on an NVIDIA Tesla V100.

0 50 100 150 200 250
H = W

1

2

3

4

5

6

TF
LO

PS

CAAT
cuDNN

(a) GTX 1070 Ti

0 50 100 150 200 250
H = W

0

2

4

6

8

10

12

14

TF
LO

PS

CAAT
cuDNN

(b) Tesla V100

Figure 4.12: Performance of our context-aware auto-tuner on (a) GTX1070 Ti and (b) Tesla V100

61

4.6 Summary

In this chapter, we described the challenges of block shapes selection for blocked algo-

rithms, and introduced a method for doing this task automatically using carefully sam-

pled performance data. We first described, in Section 4.1, the design and implementation

of efficient parameterized blocked algorithms for matrix multiplication and convolution.

We then presented, in Section 4.2, a methodology for efficiently sampling the performance

of these implementations in various execution contexts, and used these samples to train

a predictive log-feature-transformed performance model in Section 4.3. In Section 4.4, we

showed how this model may be used as a surrogate for empirical performance measure-

ments to accelerate existing auto-tuning methods. The resulting system was benchmarked

and analyzed in Section 4.5, where notable speed-ups over state-of-the-art vendor libraries

were observed on both the GeForce GTX1070Ti and the Tesla V100 micro-architectures.

Although this approach seems to work well at first sight, it suffers from one major

drawback: efficient parameterized code templates are hard to write, optimize and main-

tain. For reference, the blocked algorithms presented in this chapter took us 6 months to

implement in PTX – making it impossible for us to consider emerging hardware features

(i.e., tensor cores) while productively addressing the concerns of our system’s users. Our

PTX code templates are also unlikely to remain performance-portable as hardware spe-

cializes and new tensor intrinsics become available. What we need is a more systematic

approach to code generation for blocked algorithms.

62

5
Block-Level Data-Flow Analysis

To support the claim that block-based programming paradigms facilitate the construction

of efficient compute kernels for DNNs, we need to show the existence of systems capable

of transforming high-level descriptions of blocked algorithms into high-performance GPU

code. While this problem has been well-studied over the past few years (see Chapter 3),

existing solutions do not support iteration spaces that may arise in emerging neural net-

work architectures (e.g., sparse transformer). Therefore, this chapter presents the design

and implementation of Triton 1, a language and compiler for the blocked ”single-program,

multiple-data” paradigm discussed in Chapter 1. We specifically address, in order, the

issue of (1) specifying, (2) representing and (3) compiling algorithms in this framework.

In Section 5.1, we introduce Triton-C, an imperative language for specifying blocked

algorithm using relatively high-level primitives. Although the syntax of this language
1Triton is freely available under the MIT/X11 license at https://triton-lang.org

63

https://triton-lang.org

(Listing 5.1) may seem at first sight similar to that of CUDA-C, a deeper look reveals

two major differences: (1) multi-dimensional blocks of data (e.g., float* px[TM, TN]) are first-

class citizens and (2) compute kernels are single-threaded, though multiple instances of

each kernel may execute in parallel. We believe that Triton-C could constitute a viable

alternative to CUDA for developers unfamiliar with the details of modern GPU architec-

tures.

1 void transpose (f l o a t ∗ X __noalias __readonly __aligned (16) ,
2 f l o a t ∗ Y __noalias __writeonly __aligned (16) ,
3 int M __multipleof (8) ,
4 int N __multipleof (8)) {
5 // program ids
6 int pid0 = get_program_id (0) ;
7 int pid1 = get_program_id (1) ;
8 // range for rows
9 int rm[TM] = pid0 ∗ TM + 0 . . . TM;
10 // range for columns
11 int rn [TN] = pid1 ∗ TN + 0 . . . TN;
12 bool in_bounds [TM, TN] = rm[: , newaxis] < M &&
13 rn [newaxis , :] < N;
14 // pointers to X
15 f l o a t ∗ px [TM, TN] = X + rm[: , newaxis] ∗ 1
16 + rn [newaxis , :] ∗ N;
17 // pointers to Y
18 f l o a t ∗ py [TM, TN] = Y + rm[: , newaxis] ∗ N
19 + rn [newaxis , :] ∗ 1 ;
20 // predicated write - back
21 ∗?(in_bounds)py = ∗?(in_bounds)px ;
22 }

Listing 5.1: Y = XT in Triton-C. Keywords specific to Triton are shown in purple.

In Section 5.2, we then present Triton-IR, an LLVM-based Intermediate Representa-

tion (IR) for block-level program analysis, transformation and optimization. Listing 5.2

shows the Triton-IR code for the transposition kernel specified in Listing 5.1. In our sys-

tem, Triton-IR programs are constructed directly from Triton-C after parsing, but au-

tomatic code generation from higher-level DNN compilers (e.g., TVM) could also be ex-

plored in the future.

Most importantly, in Section 5.3, we present Triton-JIT, a Just-In-Time (JIT) com-

piler and code generation backend which makes heavy use of the blocked structure of

iteration spaces enforced by Triton-C and Triton-IR. We specifically discuss the issue of

64

1 def void transpose (f32* X .readonly .noa l i a s .a l i gned (16) , f32* Y .wr i teonly .noa l i a s
.a l i gned (16) , i32 M .readonly , i32 N .readonly)

2 {
3 entry :
4 pid0 = get_program_id (0) i32 ;
5 pid1 = get_program_id (1) i32 ;
6 ; range fo r rows
7 %2 = make_range [0 : 32] i32<32>;
8 %3 = mul i32 pid0 , 32 ;
9 %5 = splat i32<32> %3;
10 rm = add i32<32> %5, %2;
11 ; range fo r columns
12 %10 = make_range [0 : 32] i32<32>;
13 %11 = mul i32 pid1 , 32 ;
14 %13 = splat i32<32> %11;
15 rn = add i32<32> %13, %10;
16 ; bounds - checking
17 %18 = splat i32 <1, 32> N;
18 %20 = reshape i32 <1, 32> rn ;
19 %22 = icmp_slt i1 <1, 32> %20, %18;
20 %25 = broadcast i1 <32, 32> %22;
21 %27 = zext i32 <32, 32> %25;
22 %29 = splat i32 <32, 1> M;
23 %31 = reshape i32 <32, 1> rm;
24 %33 = icmp_slt i1 <32, 1> %31, %29;
25 %36 = broadcast i1 <32, 32> %33;
26 %38 = zext i32 <32, 32> %36;
27 %40 = and i32 <32, 32> %38, %27;
28 %43 = broadcast i32 <32, 32> %40;
29 in_bounds = trunc i1 <32, 32> %43;
30 ; pointers to X
31 %47 = splat i32 <1, 32> N;
32 %49 = reshape i32 <1, 32> rn ;
33 %51 = mul i32 <1, 32> %49, %47;
34 %54 = broadcast i32 <32, 32> %51;
35 %56 = splat i32 <32, 1> 1 ;
36 %57 = reshape i32 <32, 1> rm;
37 %59 = mul i32 <32, 1> %57, %56;
38 %62 = splat f32*<32, 1> X;
39 %64 = getelementptr f32*<32, 1> %62, %59;
40 %67 = broadcast f32*<32, 32> %64;
41 px = getelementptr f32*<32, 32> %67, %54;
42 ; pointers Y
43 %72 = splat i32 <1, 32> 1 ;
44 %73 = reshape i32 <1, 32> rn ;
45 %75 = mul i32 <1, 32> %73, %72;
46 %78 = broadcast i32 <32, 32> %75;
47 %80 = splat i32 <32, 1> N;
48 %82 = reshape i32 <32, 1> rm;
49 %84 = mul i32 <32, 1> %82, %80;
50 %87 = splat f32*<32, 1> Y;
51 %89 = getelementptr f32*<32, 1> %87, %84;
52 %92 = broadcast f32*<32, 32> %89;
53 py = getelementptr f32*<32, 32> %92, %78;
54 %97 = splat f32 <32, 32> undef ;
55 %98 = masked_load f32 <32, 32> px , in_bounds , %97;
56 masked_store void py , %98, in_bounds ;
57 }

Listing 5.2: Y = XT in Triton-IR. Keywords specific to Triton are shown in purple.

65

scheduling different blocks of this iteration space onto different GPU cores, and use block-

level data-flow analysis to map work onto different SIMD units (see Figure 5.1). To this

end, this section will present a collection of techniques to simplify computations, paral-

lelize computations, parallelize memory accesses and maximize data-reuse at the level of

individual GPU cores.

n

m

0

k

iteration space of statement (s)

int m = get_program_id(0);
int n = get_program_id(1);
float acc[MB, NB] = 0;
for(int k = 0; k < K; k += U)
 float a[MB, U] = A[m:m+MB, k:k+U];
 float b[U, NB] = B[k:k+U, n:n+NB];
 acc += dot(a, b);
C[m:m+MB, n:n+NB] = acc;

statement (S)
statement (R)
statement (L)

prog. 1 prog. 2

prog. 3 prog. 4

GPU Core

SIMD SIMD

Local Mem

vector

tensor

vector

tensor

GPU
core core

core core

Figure 5.1: High-level mapping of Block-Structured Iteration Spaces onto Generic GPU architectures.
Individual iteration blocks are distributed onto the SIMD units of a GPU core.

Finally, in Section 5.4, we present a numerical evaluation of Triton that demonstrates

performance within 10% of the state-of-the-art PTX code presented in the previous chap-

ter, as well as significant speed-ups over TVM for matrix multiplication and convolutions

– with or without tensor cores.

5.1 Triton-C

Throughout this dissertation, we have stressed the importance of blocked algorithms and

described their core principles in pseudo-code. To facilitate their implementation on mod-

ern GPU hardware, we present Triton-C, a single-threaded imperative language in which

66

block variables are first-class citizen. This language may be used either directly by de-

velopers familiar with low-level GPU programming, or as an intermediate language for

existing (and future) transcompilers. In this section, we describe the CUDA-like syntax

of Triton-C (Section 5.1.1), its Numpy[58]-like semantics (Section 5.1.2) and its ”Single-

Program, Multiple-Data” (SPMD) programming model (Section 5.1.3).

5.1.1 Syntax

The syntax of Triton-C is based on that of ANSI C (more specifically CUDA-C), but was

modified and extended to accomodate the semantics and programming model described in

the next two subsections. These changes fall into the following categories:

Variable declarations: We added special-purpose syntax for multi-dimensional array

declarations (e.g., int block[16, 16]), which purposely differs from that of nested arrays found

in ANSI C (e.g., int block[16][16]). Block dimensions must be constant but can also be made

parametric with the use of pre-processor macros. One-dimensional blocks of integers may

be initialized using ellipses (e.g., int range[16] = 0 ... 16).

Built-in function: The usual C operators were extended to support element-wise ar-

ray operations (+, -, &&, *, etc.), and various built-in functions were added for concurrency

(get_program_id) and common block-level linear algebra primitives (dot, trans).

Slicing and broadcasting: Multi-dimensional blocks can be broadcast along any par-

ticular dimension using numpy-like slicing syntax (e.g., int array[8, 8] = range[:, newaxis] for

stacking columns). Note that, as of now, slicing blocks to retrieve sub-blocks (or scalars)

is forbidden as it is incompatible with the automatic parallelization methods presented in

Section 5.3.2.

Masked pointer dereferencement: Block-level operations in Triton-C are atomic:

they execute either completely or not at all. Basic control-flow for block-level operations

can nonetheless be achieved using ternary operators and the masked pointer dereference-

ment operator exemplified in Listing 5.3.

67

1 // create mask
2 bool mask [16 , 16] = . . . ;
3 // condit ional addit ion
4 f l o a t x [16 , 16] = mask ? a + b : 0 ;
5 // condit ional load
6 f l o a t y [1 6] 16] = mask ? *ptr : 0 ;
7 // condit ional s tore
8 *?(mask) ptr = y ;

Listing 5.3: Block-Level control flow in Triton-C.

5.1.2 Semantics

Block-Level Semantics

The existence of built-in block-level types, variable and operations in Triton-C offers two

main benefits. First, it simplifies the structure of blocked programs by hiding important

details pertaining to concurrent programming such as memory coalescing [59], cache man-

agement [60] and specialized tensor instrinsics [61]. Second, it opens the door for compil-

ers to perform these optimizations automatically, as discussed in Section 5.3.

Broadcasting Semantics

Block variables in Triton are strongly typed, meaning that certain instructions stati-

cally require their operands to satisfy strict shape constraints. For example, a scalar may

not be added to an array unless it is first appropriately broadcast. Broadcasting seman-

tics [58] provides two rules for performing these conversions automatically in the case

of binary operators (Listing 5.4): (1) the shape of the lowest-dimension operand is left-

padded with ones until both operands have the same dimensionality; and (2) the content

of both operands is replicated as many times as needed until their shape is identical. An

error is emitted if this cannot be done.

68

1 int a [1 6] , b [32 , 16] , c [16 , 1] ;
2 // a i s f i r s t reshaped to [1 , 16]
3 // and then broadcast to [32 , 16]
4 int x_1[32 , 16] = a [newaxis , :] + b ;
5 // Same as above but imp l i c i t l y
6 int x_2[32 , 16] = a + b ;
7 // a i s f i r s t reshaped to [1 , 16]
8 // a i s broadcast to [16 , 16]
9 // c i s broadcast to [16 , 16]
10 int y [16 , 16] = a + c ;

Listing 5.4: Broadcasting semantics in practice.

5.1.3 Programming Model

As discussed in Section 2.2, The execution of CUDA [62] code on GPUs is supported

by an SPMD [14] programming model in which each kernel instance is associated with

an identifiable thread-block, itself decomposed into warps of 32 threads. The Triton pro-

gramming model is similar, but each kernel is single-threaded – though automatically

parallelized – and associated with a global program id which varies from instance to in-

stance. This approach leads to simpler kernels in which CUDA-like concurrency primi-

tives (shared memory synchronization, inter-thread communication, etc.) do not exist.

The global program ids associated with each kernel instance can be queried using the

get_program_id(axis) built-in function in order to create e.g., blocks of pointers as shown at

the beginning of this chapter (Listing 5.1).

5.2 Triton-IR

Triton-IR is an LLVM-based Intermediate Representation (IR) whose purpose is to pro-

vide an environment suitable for block-level program analysis, transformation and opti-

mization. In this work, Triton-IR programs are constructed directly from Triton-C after

parsing, but they could also be formed directly by higher-level DSLs in the future. Triton-

IR and LLVM-IR programs share the same high-level structure (recalled in Section 5.2.1),

but the former also includes a number of extensions necessary for block-level data-flow

69

(Section 5.2.2) and control-flow (Section 5.2.3) analysis. These extensions are crucial for

carrying out the optimizations outlined in Section 5.3.

5.2.1 Structure

Modules

At the highest level, Triton-IR programs consist of one or multiple basic units of compi-

lation known as modules. These modules are compiled independently from one another,

and eventually aggregated by a linker whose role is to resolve forward declarations and

adequately merge global definitions. Ech module itself is composed of functions, global

variables, constants and other miscellaneous symbols such as metadata and attributes.

Functions

Triton-IR function definitions consist of a return type, a name and a potentially empty

arguments list. Additional visibility, alignment and linkage specifiers can be added if

desired. Function attributes (such as inlining hints) and parameter attributes (such as

”readonly”, aliasing hints) can also be specified, allowing compiler backends to perform

more aggressive optimizations by, for instance, making better use of read-only memory

caches found on NVIDIA GPUs. This header is followed by a body composed of a list of

basic blocks whose interdependencies form the Control Flow Graph (CFG) of the func-

tion.

Basic Blocks

Basic blocks are straight-line code sequences that may only contain so-called terminator

instructions (i.e., branching, return) at their end. To simplify program analysis, Triton-IR

uses the Static Single Assignment (SSA) form, meaning that each variable in each basic

block must be (1) assigned to only once and (2) defined before being used. In so doing,

70

each basic block implicitly defines a Data-Flow Graph (DFG) whose different paths cor-

respond to use-def chains in the program’s SSA representation. The SSA form can be

created directly from C-like Abstract Syntax Trees (ASTs) as shown in [63].

5.2.2 Block-Level Data-Flow

Types

Multi-dimensional blocks are at the center of data-flow analysis in Triton-JIT. They can

be declared using syntax similar to vector declarations in LLVM-IR. For example, i32<8, 8>

is the type corresponding to 8 × 8 blocks of 32-bit integers. Note that there is no prepro-

cessor in Triton-IR, hence parametric shape values must be resolved before programs are

generated. In our case, this is done by Triton-JIT’s auto-tuner.

Instructions

Triton-IR introduces a set of reblocking instructions whose purpose is to support broad-

casting semantics as described in Section 5.1.2. The reshape instruction creates a block

of the specified shape using the data from its input argument. This is particularly use-

ful to re-interpret variables as higher-dimensional arrays by padding their input shapes

with ones in preparation for broadcasting. The broadcast instruction creates a block of the

specified shapes by replicating its input argument as many times as necessary along di-

mensions of size 1 – as shown in Figure 5.2.

a
b
c

a
b
c

a
b
c

a
b
c

(a) [3× 1] input

a b c
a
a
a

b
b
b

c
c
c

(b) [1× 3] input

Figure 5.2: The broadcast <3,3> instruction

Usual scalar instructions (cmp, getelementptr, add, load...) were preserved and extended to

71

signify element-wise operations when applicable. Finally, Triton-IR also exposes special-

ized arithmetic instructions for transpositions (trans) and matrix multiplications (dot).

5.2.3 Block-Level Control-Flow

In Triton-IR, operations on block variables are atomic: they execute either in full or not

at all. As a result, traditional control flow structures (e.g., conditional, loops) are not

applicable to individual block elements. This is problematic, since a program may need to

e.g., partially guard blocked loads against memory access violations.

This issue could be resolved through the use of the Predicated SSA (PSSA) form [64]

and ψ-functions [65]. This would require the addition of two instruction classes (see List-

ing 5.5) to Triton-IR: cmpp and phi. The former is similar to the usual comparison (cmp)

instruction, but returns two opposite predicates instead of one. Conversely, the psi in-

struction merges instructions from different streams of predicated instructions created

using cmpp.

1 ; pt [i , j] , pf [i , j] = (true , f a l s e) i f x [i , j] < 5
2 ; pt [i , j] , pf [i , j] = (fa l s e , true) i f x [i , j] >= 5
3 %pt , %pf = icmpp s l t %x , 5
4 @%pt %x1 = add %y , 1
5 @%pf %x2 = sub %y , 1
6 ; merge values from d i f f e r en t predicates
7 %x = psi i32<8,8> [%pt , %x1] , [%pf , %x2]
8 %z = mul i32<8,8> %x , 2

Listing 5.5: The Predicated SSA (PSSA) form.

This machinery creates a lot of unnecessary complexity for GPUs, where the benefits

of PSSA are close to none as divergent program paths within warps are serialized anyway.

Therefore, recent versions of Triton handle intra-block control flow in a much simpler way,

using conditional instructions such as select, masked_load and masked_store (see Listing 5.6).

72

1 ; For a l l ind i ce s [idx] , return cond [idx] ? true_value [idx] : false_value [idx] ;
2 s e l e c t TYPE<TS1, . . . , TSN> cond , true_value , false_value ;
3 ; For a l l ind i ce s [idx] , return cond [idx] ? *true_addr [idx] : false_value [idx] ;
4 masked_load TYPE<TS1, . . . , TSN> cond , true_addr , false_value ;
5 ; For a l l ind i ce s [idx] , execute *true_addr [idx] = true_value [idx] i f cond [idx]
6 masked_store TYPE<TS1, . . . , TSN> cond , true_addr , true_value ;

Listing 5.6: Intra-Block Control Flow in Triton.

5.3 Triton-JIT

The existence of block-level data-flow information in Triton-IR enables new program op-

timizations that are out of the reach of traditional compiler backends. In this section, we

discuss how the block-based structure of iteration spaces induced by Triton-IR programs

can be exploited to develop novel techniques for simplifying computations (Section 5.3.1),

parallelizing computations (Section 5.3.2), parallelizing memory accesses (Section 5.3.3)

and maximizing data-reuse (Section 5.3.4).

5.3.1 Simplifying Computations

Peephole optimization [66] is a well-known instruction selection technique that replaces

small sequences of instructions (”peepholes”) with functionally equivalent sequences that

require less clock cycles to execute. Table 5.1 shows a few examples of peephole optimiza-

tions commonly done in scalar programs.

Before After
x = add x, x; x = ashl x, 1;

y = exp x; z = x;

z = log y;

x = x + y; nop;

x = x - y;

Table 5.1: Traditional Peephole Optimizations

The existence of block-level data-flow information in Triton-IR exposes new algebraic

identities that can be leveraged to improve existing peephole optimizers. Table 5.2 shows

two such examples. First, chains of transpositions can be simplified using the identity

73

X = (XT)T . Second, chains of reductions can be collapsed into a single reduction on a

”flattened” array, leading to more regular (i.e., one-dimensional) shared memory access

patterns that require less inter-thread synchronization.

Before After
y = trans x; z = x;

z = trans y;

y = sum x, 0; y = reshape x, -1;

z = sum y, 0; z = sum y, 0;

Table 5.2: Block-Based Peephole Optimizations

5.3.2 Parallelizing Computations

Triton programs are single-threaded. This makes them easier to write, maintain, optimize

and debug, but also begs for the existence of automatic parallelization mechanisms ca-

pable of generating efficient multi-threaded GPU code from high-level specifications of

blocked algorithms.

Core

Ve
ct

or
 S

IM
D

Ve
ct

or
 S

IM
D

Ve
ct

or
 S

IM
D

Ve
ct

or
 S

IM
D

Tensor
SIMD

Tensor
SIMD

element-wise

FP16 matrix-multiplication

GPU
core core

core core

float A[4,4] = ...
float B[4,4] = ...
float C[4,4] = A + B

half A[4,2] = ...
half B[2,2] = ...
float C[4,2] = dot(A,B)

iteration space
vectorization

iteration space
tensorization

Figure 5.3: Sub-blocking in the Triton-IR machine model.

In Triton, each operation implicitly defines a block of the algorithm’s iteration space

(i.e., an iteration block) that we aim to schedule efficiently on the SIMD units of a given

GPU core. To this end, we propose a sub-blocking technique that divides each iteration

block into a collection of fragments, each of is stored in registers/SRAM and computed

using different SIMD units. Importantly, the decomposition of an iteration block into

74

fragments may vary from operator to operator. For example, we vectorize iteration spaces

corresponding to element-wise operators, and tensorize those corresponding to FP16

block-level matrix-multiplications. This strategy is shown in Figure 5.3, where we use a

sub-block shape of 1 × 4 for element-wise operation and 2 × 2 × 2 for FP16 matrix multi-

plications.

Note that this is a generalization of the sub-blocking mechanism used for context-aware

auto-tuning (Section 4.1), hence the number of fragments per iteration block can be au-

tomatically optimized so as to increase resource utilization. As we will see below, their

shape can also be optimized so as to increase memory efficiency.

5.3.3 Parallelizing Memory Accesses

The above sub-blocking mechanism does not define the order in which different sub-blocks

should be scheduled (i.e., row-major vs. column-major, see Figure 5.4). This can have

profound consequences as modern DRAM controllers are designed to be accessed in burst

mode, reading from and writing to global memory in large batches. For this reason, it

is important for memory accesses to be coalesced, meaning that adjacent threads in the

same SIMD unit should access adjacent memory locations.

(a) row-major (b) column-major

Figure 5.4: Iteration sub-blocks can be scheduled in different orders.

Fortunately, as shown in Figure 5.5, the order in which memory accesses should be

partitioned between SIMD units can sometimes be determined statically. This is done

using a contiguity analysis pass that determine where memory accesses are contiguous,

and partition work accordingly.

75

A + 0*N + 0 A + 0*N + 1 A + 0*N + 2 A + 0*N + 3

A + 1*N + 0 A + 1*N + 1 A + 1*N + 2 A + 1*N + 3

A + 2*N + 0 A + 2*N + 1 A + 2*N + 2 A + 2*N + 3

A + 3*N + 0 A + 3*N + 1 A + 3*N + 2 A + 3*N + 3

int rows[4] = 0 … 4;
int cols [4] = 0 … 4;
int* ptr [4, 4] = A + rows[:,newaxis] * N
 + cols[newaxis, :]

row-major block, row-major SIMD

SIMD 1

SIMD 2

SIMD 3

SIMD 4

Figure 5.5: Automatic memory coalescing on GPUs. It is possible to determine statically that memory
accesses are row-major, and order warps (shown in different colors) accordingly.

5.3.4 Maximizing Data Reuse

Shared Memory Allocation

DRAM memory accesses are expensive. It is therefore necessary to amortize this cost by

re-using data as much as possible after each load. Contrary to CUDA and OpenCL where

this kind of memory management is left to the discretion of programmers, Triton-JIT

can detect potential for data reuse in the input program, and store data in fast shared

memory when this is deemed beneficial. In practice, this means that a block of data is

stored to shared memory whenever it is used as an operand in an arithmetically intense

operation (e.g., matrix multiplication). More formally, the arithmetic intensity of each

block-level operation v can be approximated (ignoring L2 cache effects) as

α(v) = comp(v)/
∑

p∈pred(v)
mem(p)

where comp(v) and mem(p) respectively denote the computation requirements of the

blocked operation v and the amount of memory transferred from DRAM by its prede-

cessors p.

It is also possible to determine where, in shared memory, each data block should reside

(when applicable). This can be done, as illustrated in Figure 5.6, by calculating the live

range of each variable that ought to reside there, as per the above three rules. A linear-

time static storage allocation algorithm [67] can then be used to assign a portion of the

76

M
em

or
y

Time

Capacity
Li

ve
 In

te
rv

al
s 4k

B
4k

B

4k
B

8k
B

Figure 5.6: Shared memory allocation.

shared memory to each live range. Though this heuristic algorithm may not find the best

solution in every case, we found it to be sufficient for the neural network workloads con-

sidered in this dissertation.

We recall that liveness analysis can be done in polynomial time by using iterative data-

flow analysis (see Algorithm 2 in Chapter 2) where the GEN(v) and KILL(v) set denote

respectively the set of variables that are used in v before any assignment, and the set of

variables that are assigned a new value in v.

Shared Memory Synchronization

Reads from and writes to shared memory are asynchronous on GPUs. This helps with

latency hiding, but also means that programs which do not manage shared memory prop-

erly are prone to undefined behavior. To preserve functional correctness in our program,

we need our compiler to automatically inserts barriers at the appropriate place in the

generated GPU source code. Of course, having too many barriers may cause unnecessary

synchronization overhead, which is bound to hurt performance.

This can be done using data-flow analysis, by maintaining a set of unsynchronized

memory buffers. Every time unsafe behavior is detected, a barrier is inserted and this

set is emptied. Read-after-writes (RAW) and write-after-read (WAR) hazards can be de-

77

tected using forward data-flow analysis with the following data-flow equations:

IN(RAW)(s) =
∪

p∈pred(s)
OUT(RAW)(p)

IN(WAR)(s) =
∪

p∈pred(s)

OUT(WAR)(p)

OUT(RAW)(s) =


∅ if IN(RAW)(s) ∩ read(s) ̸= ∅ (barrier)

IN(RAW)(s) ∪ write(s) otherwise

OUT(WAR)(s) =


∅ if IN(WAR)(s) ∩ write(s) ̸= ∅ (barrier)

IN(WAR)(s) ∪ read(s) otherwise

where read(s) and write(s) respectively denotes the intervals at which shared memory

is read from / written to in the statement s.

5.4 Numerical Experiments

In Chapter 4, we saw that context-aware auto-tuning could match (and sometimes ex-

ceed) the performance of state-of-the-art CUDA libraries – provided good enough code

templates. In this section, we wish to see whether or not this observation still holds for

templates generated using Triton. To ensure fairness and consistency with the results pre-

sented then, we consider the same workloads, use the same environment (Pascal/Volta +

cuBLAS 9.2 / cuDNN 7.0) and follow the same experimental protocol. When applicable,

we also report the performance of Auto-TVM v0.7, auto-tuning official schedule templates

for each problem size considered.

78

5.4.1 Matrix Multiplication Performance

In this section, we benchmark the performance of the Triton matrix multiplication kernel

shown in Listing 5.7. The values of TM, TN and TK are determined by the context-aware

auto-tuning method presented in the previous chapter. In-place transpositions are han-

dled by setting the value of STRIDE_AK appropriately. For now, we use TYPE = float; read-

ers interested in the half precision of Triton (TYPE = half) may refer to Section 5.4.3 for an

evaluation of Tensor Cores.

1 __global__ void matmul(TYPE * A, TYPE * B, TYPE * C, f l o a t alpha ,
2 int M, int N, int K, int lda , int ldb , int ldc) {
3 // prologue
4 int ridx = get_program_id (0) ;
5 int ridy = get_program_id (1) ;
6 int r idz = get_program_id (2) ;
7 K = K / TZ;
8 int rm[TM] = ridx * TM + 0 . . . TM;
9 int rn [TN] = ridy * TN + 0 . . . TN;
10 int rk [TK] = r idz * TZ + 0 . . . TK;
11 // pointers to operands
12 int o f f a [TM, TK] = rk [newaxis , :] * STRIDE_AK + rm[: , newaxis] * STRIDE_AM;
13 int o f fb [TK, TN] = rk [: . newaxis] * STRIDE_BK + rn [newaxis , :] * STRIDE_BN;
14 TYPE* pa [TM, TK] = A + of fa ;
15 TYPE* pb [TK, TN] = B + of fb ;
16 // pre fetches operands
17 bool checka [TM, TK] = rk [newaxis , :] < K;
18 bool checkb [TK, TN] = rk [: , newaxis] < K;
19 TYPE a [TM, TK] = checka ? *pa : 0 ;
20 TYPE b [TK, TN] = checkb ? *pb : 0 ;
21 // reduction loop
22 f l o a t acc [TM, TN] = 0;
23 for (int k = K; k > 0; k -= TK){
24 acc += A @ B;
25 bool checka [TM, TK] = k > TK;
26 bool checkb [TK, TN] = k > TK;
27 pa += TK * STRIDE_AK;
28 pb += TK * STRIDE_BK;
29 a = *?(checka)pa ;
30 b = *?(checkb)pb ;
31 }
32 acc = acc * alpha ;
33 TYPE c [TM, TN] = acc ;
34 // epi logue
35 int rxm[TM] = get_program_id (0) * TM + 0 . . . TM;
36 int rxn [TN] = get_program_id (1) * TN + 0 . . . TN;
37 int o f f c [TM, TN] = rxm [: , newaxis] * ldc + rxn [newaxis , :] ;
38 TYPE* pc [TM, TN] = C + o f f c ;
39 bool checkc [TM, TN] = (rxm [: , newaxis] < M) && (rxn [newaxis , :] < N) ;
40
41 #i f (TZ==1)
42 *?(checkc) pc = c ;
43 #e l s e
44 // accumulate par t i a l r e su l t using spin - locks

79

45 int *plock = locks + r id ;
46 int *pcount = plock + get_num_programs(0) * get_num_programs(1) ;
47 for (int repeat = 1; repeat == 1; repeat = atomic_cas (plock , 0 , 1)) ;
48 int count = *pcount ;
49 i f (count == 0)
50 *?(checkc) pc = c ;
51 e l s e
52 *?(checkc) pc = c + *?(checkc)pc ;
53 atomic_xchg(pcount , (count + 1) % TZ) ;
54 atomic_xchg(plock , 0) ;
55 #endi f
56 }

Listing 5.7: Matrix Multiplication in Triton-C.

As in Chapter 4, we measure the performance of this code template on (1) square matri-

ces, (2) covariance computation, and (3) batched MLP inference.

Square Matrices

In Figure 5.7, we show the performance of Triton on square matrix multiplication tasks

C = A.BT where A,B ∈ RN×N for 128 ≤ N ≤ 3072. As one can see, Triton is on par

with cuBLAS accross the board for both GPUs considered. The modest performance loss

observed on the GTX 1070 Ti is attributed to compilation artifact (e.g., worse instruction

scheduling), since close inspection of the generated assembly revealed abnormally high

register pressure.

0 500 1000 1500 2000 2500 3000
M = N = K

1

2

3

4

5

6

7

TF
LO

PS

CAAT
TVM
Triton
cuBLAS

(a) GTX 1070 Ti

0 500 1000 1500 2000 2500 3000
M = N = K

0

2

4

6

8

10

12

14

TF
LO

PS

CAAT
TVM
Triton
cuBLAS

(b) Tesla V100

Figure 5.7: Performance of Triton for square matrix multiplications.

80

Importantly, Triton outperforms TVM’s auto-tuned official matrix-multiplication sched-

ule by a non-negligible margin (up to > 30%). This suggests that, even after auto-tuning,

scheduling languages currently fail to achieve peak GPU performance – especially for

smaller matrices.

Covariance

Figure 5.8 shows the performance of Triton on covariance matrix computations of the

form C = A.BT where A ∈ RM×K and B ∈ RN×K for M = N = 64 and 4096 ≤

K ≤ 131072. The absence of reduction-splitting mechanisms compatible with matrix-

multiplication in TVM leads to performance an order of magnitude lower than any other

system considered. Triton is on par with the PTX code template presented in Chapter 4,

suggesting code quality similar to that of pseudo-assembly handwritten by experts.

0 20000 40000 60000 80000 100000 120000
K

0.5

1.0

1.5

2.0

2.5

TF
LO

PS

CAAT
TVM
Triton
cuBLAS

(a) GTX 1070 Ti

0 20000 40000 60000 80000 100000 120000
K

0

1

2

3

4

TF
LO

PS

CAAT
TVM
Triton
cuBLAS

(b) Tesla V100

Figure 5.8: Performance of Triton for covariance matrix computation.

Multi-Layer Perceptron

Figure 5.9 shows the performance of Triton on batched MLP inference tasks of the form

C = A × BT , where A ∈ RN×N and B ∈ R16×N , which are omnipresent in batched MLP

inference. We note that Triton is about 20-30% faster than CAAT on the GTX 1070 Ti,

81

but on par with it on the Tesla V100. We think that this means that the code generated

by Triton for matrix multiplication has higher quality, since the block shapes chosen by

CAAT and Triton are the same.

The poor performance of TVM on Volta is surprising, but makes sense considering that

the large number of SMs on this GPU cannot be fully occupied for matrix of these shapes

without the use of any reduction-splitting mechanism.

0 1000 2000 3000 4000 5000 6000 7000
N

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

TF
LO

PS

CAAT
TVM
Triton
cuBLAS

(a) GTX 1070 Ti

0 1000 2000 3000 4000 5000 6000 7000
N

0

1

2

3

4

5

6

TF
LO

PS

CAAT
TVM
Triton
cuBLAS

(b) Tesla V100

Figure 5.9: Performance of Triton for batched MLP inference (N = 16).

5.4.2 Convolutions

To assess the performance of Triton on common convolution tasks, we reconsider the

workloads presented in Section 4.5, using the Triton-C implementation of implicit matrix

multiplication (Figure 4.4) shown in Listing 5.8.

The values of TM, TN and TK are once again determined using context-aware auto-

tuning. By contrast, TVM relies on a context-aware auto-tuning approach that searches

over billions different implementations everytime new input tensor shapes are considered;

this necessitates approximate methods that are not guaranteed to find the optimal com-

pute kernels even after running for hours.

82

1 __global__ void conv(TYPE *A, TYPE *B, TYPE *C, int *ADELTA,
2 f l o a t alpha , int M, int N, int K,
3 int pad_h, int pad_w, int stride_h , int stride_w ,
4 int lda_z , int lda_ci , int lda_h , int lda_w ,
5 int ldb_ci , int ldb_r , int ldb_s , int ldb_co ,
6 int ldc_z , int ldc_co , int ldc_p , int ldc_q) {
7 // prologue
8 int ridx = get_program_id (0) ;
9 int ridy = get_program_id (1) ;
10 int rm[TM] = ridx * TM + 0 . . . TM;
11 int rn [TN] = ridy * TN + 0 . . . TN;
12 int rk [TK] = 0 . . . TK;
13 // unpack aggregate rows m = (z , p , q)
14 int rq [TM] = rm % Q;
15 int rzp [TM] = rm / Q;
16 int rp [TM] = rzp % PP;
17 int rz [TM] = rzp / PP;
18 // unpack aggregate reduction k = (ci , r , s)
19 int rs [TK] = rk % S ;
20 int r c i r [TK] = rk / S ;
21 int rr [TK] = r c i r % R;
22 int r c i [TK] = r c i r / R;
23 // padding / s t r id ing
24 int rh_0 [TM] = rp * stride_h - pad_h;
25 int rw_0[TM] = rq * stride_w - pad_w;
26 int rh [TM, TK] = rh_0 [: , newaxis] + rr [newaxis , :] ;
27 int rw [TM, TK] = rw_0 [: , newaxis] + rs [newaxis , :] ;
28 // pointers to lhs
29 int o f f a [TM, TK] = rz [: , newaxis] * lda_z + r c i [newaxis , :] * lda_ci +
30 rh * lda_h + rw * 1;
31 TYPE* pa [TM, TK] = A + of fa ;
32 int * padelta [TK] = ADELTA + rk ;
33 // pointers to rhs
34 int o f fb [TK, TN] = r c i [: , newaxis] * ldb_ci + rr [: , newaxis] * ldb_r +
35 rs [: , newaxis] * ldb_s + rn [newaxis , :] * 1 ;
36 TYPE* pb [TK, TN] = B + of fb ;
37 // pre fetches operands
38 bool checka [TM, TK] = rm[: , newaxis] < M && rh >= 0 && rh < H && rw >= 0 && rw < W;
39 bool checkb [TK, TN] = rn [newaxis , :] < N && rk [: , newaxis] < K;
40 TYPE a [TM, TK] = checka ? *pa : 0 ;
41 TYPE b [TK, TN] = checkb ? *pb : 0 ;
42 int to ta l = 0;
43 // reduction loop
44 f l o a t acc [TM, TN] = 0;
45 for (int k = K; k > 0; k -= TK){
46 acc += a @ b ;
47 // increment A
48 int adelta [TK] = *padelta ;
49 padelta += TK;
50 pa += adelta [newaxis , :] ;
51 // bounds - checking A
52 rk += TK;
53 rs = rk % S ;
54 r c i r = rk / S ;
55 rr = r c i r % R;
56 rh = rh_0 [: , newaxis] + rr [newaxis , :] ;
57 rw = rw_0 [: , newaxis] + rs [newaxis , :] ;
58 bool checka [TM, TK] = rm[: , newaxis] < M && rh >= 0 && rh < H && rw >= 0 && rw < W;
59 // increment B
60 pb += TK * ldb_s ;
61 // bounds - checking B
62 bool checkb [TK, TN] = rn [newaxis , :] < N && k > TK;
63 a = checka ? *pa : 0 ;

83

64 b = *?(checkb)pb ;
65 }
66 acc = acc * alpha ;
67 TYPE c [TM, TN] = acc ;
68 // epi logue
69 rm = ridx * TM + 0 . . . TM;
70 rn = ridy * TN + 0 . . . TN;
71 rq = rm % Q;
72 rzp = rm / Q;
73 rp = rzp % PP;
74 rz = rzp / PP;
75 int o f f c [TM, TN] = rz [: , newaxis] * ldc_z + rn [newaxis , :] * ldc_co +
76 rp [: , newaxis] * ldc_p + rq [: , newaxis] * 1 ;
77 TYPE* pc [TM, TN] = C + o f f c ;
78 bool checkc [TM, TN] = rm[: , newaxis] < M && rn [newaxis , :] < N;
79 *?(checkc) pc = c ;
80 }

Listing 5.8: Implicit matrix multiplication in Triton-C

To reduce the cost of 64-bit pointer arithmetics in the inner reduction loop, we pre-

compute pointer increments for A in ADELTA ∈ ZCiRS as shown in Listing 5.9. Since

ADELTA is usually small enough to fit in the GPU’s L1 cache, the cost of dereferencing it

(line 48-49) is usually smaller than that of the equivalent integer arithmetics.

1 for (int i = 0; i < CI*R*S ; i++){
2 int s = i % S ;
3 int cr = i / S ;
4 int r = cr % R;
5 int c = cr / R;
6 int nexti = i + TK;
7 int nexts = nexti % S ;
8 int nextcr = nexti / S ;
9 int nextr = nextcr % R;
10 int nextc = nextcr / R;
11 ADELTA[i] = (nextc - c)*W*H + (nextr - r)*W+ (nexts - s) ;
12 }

Listing 5.9: Pointer increment precomputation.

Fixed Input Resolution

Like in Chapter 4, we consider input images of 56×56 pixels and vary Ci = Co between 64

and 1024 for inference (Z = 1). The resulting performance trends, shown in Figure 5.10,

are largely consistent with the matrix multiplication benchmarks shown above. The dif-

ference between Triton and our handwritten PTX kernel is small (5% on the Tesla V100,

84

10 − 15% on the GTX1070Ti), and both systems outperform cuDNN on the Volta archi-

tecture.

200 400 600 800 1000
Ci = Co

3.5

4.0

4.5

5.0

5.5

6.0

6.5

TF
LO

PS

CAAT
TVM
Triton
cuDNN

(a) GTX 1070 Ti

200 400 600 800 1000
Ci = Co

4

6

8

10

12

14

TF
LO

PS

CAAT
TVM
Triton
cuDNN

(b) Tesla V100

Figure 5.10: Performance of Triton on fixed-channel-width convolutions.

TVM is consistently slower than Triton – even after hours of auto-tuning – despite re-

lying on schedule templates handwritten by experts. Though this gap is likely to close as

new scheduling primitives become available and the TVM compiler improves, it highlights

the potential of the new programming paradigm presented in this chapter.

Fixed Channel Width

We now consider the convolution tasks characterized by Z = 1 and Ci = Co = 256 as

H = W varies between 8 and 256. As shown in Figure 5.11, Triton is once again only

< 10% slower than state-of-the-art handwritten PTX and SASS, cementing the efficacy of

the compilation techniques presented in Section 5.3. Once again, TVM is almost always

slower than Triton, despite it being highly optimized for the inference workloads consid-

ered here [68, 69].

85

0 50 100 150 200 250
H = W

1

2

3

4

5

6

TF
LO

PS

CAAT
TVM
Triton
cuDNN

(a) GTX 1070 Ti

0 50 100 150 200 250
H = W

0

2

4

6

8

10

12

14

TF
LO

PS

CAAT
TVM
Triton
cuDNN

(b) Tesla V100

Figure 5.11: Performance of Triton on fixed-channel convolutions.

5.4.3 Tensor Cores

Specialized hardware intrinsics for Deep Neural Networks have become increasingly pop-

ular over the past few years, culminating with the introduction of tensor cores in 2017.

As a result, GPUs have become not only more powerful, but also harder to program.

Scheduling languages have dealt with this issue by introducing new, non-portable prim-

itives to deal with this added complexity, making the task of writing efficient schedules

even harder than before.

20 40 60 80 100 120
H = W

4 × 101

6 × 101

5 × 101

7 × 101

TF
LO

PS

TVM
Triton
cuDNN

(a) Fixed channel width

200 400 600 800 1000
Ci = Co

4 × 101

6 × 101

TF
LO

PS

TVM
Triton
cuDNN

(b) Fixed input resolution

Figure 5.12: Performance of Triton on convolutions with tensor cores.

86

By contrast, the usage of tensor cores in Triton can be transparently activated by

merely using #define TYPE half in Listing 5.7 and Listing 5.8. As shown in Figure 5.12, the

resulting GPU kernel is only 10− 15% slower than cuDNN and ∼ 50% faster than TVM’s

(nonportable) schedule. For small images H = W ≤ 16 and narrow layers Ci = Co ≤ 128,

our mixed-precision implementation of implicit matrix multiplication is even faster than

cuDNN’s highly optimized assembly – due to the use of smaller block shapes.

5.5 Summary

Motivated by the limitations of existing DSLs for DNNs, this chapter introduced Triton,

a language and compiler for blocked algorithms in the ”single-program, multiple-data” ex-

ecution model. We first presented Triton-C, an alternative to CUDA in which compute

kernels are single-threaded and multi-dimensional blocks of data are first class citizen.

To ensure compatibility with different frontends and provide a stable environment for

block-level program analysis, we then presented Triton-IR, an LLVM-based intermediate

representation in which block-level data- and control-flow information is made explicit

through the use of block-level instructions. We finally presented Triton-JIT, a just-in-

time compiler which leverages the blocked structure of iteration spaces defined by Triton

programs to efficiently schedule work on individual GPU cores. A validation of our sys-

tem on dense neural network workloads showed performance on par with the handwrit-

ten PTX code template presented in Chapter 4 – and clearly superior to state-of-the-art

DSLs for DNNS.

The main advantage of our approach, however, remains its potentially higher applica-

bility to emerging neural network architectures. More experiments are therefore needed

to establish whether or not our proposed block-based paradigm has any benefits beyond

enabling moderately faster DSLs for dense linear algebra.

87

6
Fast Sparse Transformers

Over the past two chapters, we have shown how to write, tune and compile blocked al-

gorithms for dense neural networks on graphics processor. This is encouraging, but does

not say much about the general applicability of our proposed block-based programming

paradigm to deep learning research: is it useful for anything beyond dense linear algebra?

can it be used to explore novel research ideas in the field?

To help answer these questions, this final chapter shows how blocked algorithms may

facilitate the development of efficient compute kernels for structured-sparse transformers.

After exposing, in Section 6.1, the opportunities and challenges presented by sparse self-

attention mechanisms, we describe naive implementations of important basic primitives

for block-sparse computations in Section 6.2, which we optimize using super-blocking and

static load-balancing in Section 6.3. We then evaluate, in Section 6.4, the resulting system

on the GPT-2 [70] architecture, where we show not only considerable speed-ups over a

88

dense PyTorch baseline, but also close to optimal performance on our hardware.

6.1 Motivations

Transformers are an important class of neural network architectures, applicable to many

different problems ranging from natural language processing [71, 72] to computer vision

[73] to biology [74]. As we saw in Chapter 2, they are composed of a succession of atten-

tion mechanisms aimed at transforming a given sequence of tokens (e.g., words) into a

higher-level embedding. Longer sequences are typically preferred, as they expose long-

term dependencies that increases predictive performance.

K

Q

A

L

L

(a) Transformer

proj.

pr
oj

.

pr
oj

.

K

Q

A

(b) Linformer

K

Q

A

(c) Longformer

K

Q

A

(d) Sparse Transformer

Figure 6.1: Faster attention mechanisms in Transformers.

Unfortunately, the cost of forward- and backward- propagation in these models grows

quadratically with the length of input sequence (i.e., attention window) [19] – both in

terms of memory and compute. This limitation has created substantial research inter-

est for novel attention mechanisms exhibiting better scaling properties. Figure 6.1 com-

89

pares the structure of three such alternatives against that of the original transformer ar-

chitecture. The Linformer [75] leverages the low-rank structure of attention matrices

to project keys and values onto a lower-dimensional space where an embedding of the

attention scores can be computed more efficiently. The Longformer [76] computes the

attention scores directly, but only for certain combinations of queries and keys. These

combinations are computed both locally using a sliding window (i.e., band-diagonal), and

globally for fixed long-term dependencies (i.e., dense rows/columns). The Sparse Trans-

former [48] works similarly, but uses slightly different sparsity patterns for attention

scores. Note that, to ensure compatibility with tensor cores, sparse attention mechanisms

are generally block-sparse, meaning that non-zeros values in the attention matrix are clus-

tered in blocks of 8× 8 or 16× 16 elements.

Although Linformers can be implemented efficiently using dense BLAS primitives,

Longformers and Sparse Transformers require the construction of custom compute ker-

nels for sparse matrix computations. Unfortunately, state-of-the-art implementations of

these primitives are generally written in CUDA-C, thereby requiring programmers to care-

fully schedule computations not only within attention blocks but also across them. This

results in large codebases that are challenging to build, maintain, distribute and upgrade.

In the remainder of this chapter, we propose to implement these primitives using Triton-

C instead, which allows attention blocks to be scheduled automatically using block-level

data-flow analysis (see Chapter 5). To address the issue of efficiently scheduling compu-

tations across different attention blocks, we will present super-blocking and static load-

balancing optimization techniques aimed at improving data-reuse and device utilization in

the aforementioned Triton-C programs.

6.2 Sparse Self-Attention

Sparse self-attention mechanism are composed of three major components shown in Fig-

ure 6.2. First, sparse attention scores are computed by multiplying a set of key vectors

90

with a set of query vectors. In the litterature, this operation is generally known as a sam-

pled dense-dense matrix multiplication (SDMM [77]). Second, sparse attention scores are

post-processed and normalized using a sparse softmax operation. Third, the normalized

sparse attention scores are utilized, i.e., multiplied with a value matrix to form a new em-

bedding of the input sequence. In this section, we will present a naive blocked algorithm

for each of these operations.

K

Q
V

S

L

L

ASPARSE = KDENSE x QDENSE ASPARSE
norm = softmax(ASPARSE) SDENSE = ASPARSE

norm x VDENSE

A A A

Figure 6.2: Flowchart of a sparse attention mechanism.

We will specifically consider attention tensors of the form

A ∈ RZ×H×L×L

where Z, H and L respectively denote the number of batches being processed, the num-

ber of attention heads in the model and the length of the input sequence. The sparsity

layout S of this attention tensor is composed of non-zero blocks of b × b elements, whose

positions are shared between all batches, but may vary from head to head, i.e., S ∈

RH×W/b×W/b. In this section we assume a Coordinate (COO) storage format for the at-

tention tensors (see Figure 6.3).

6.2.1 Computing Attention Scores

Attention scores in sparse transformers can be computed using a subroutine known as

Sampled Dense-Dense Matrix Multiplication (SDDMM). There, blocks of the attention

91

Head 1

1

3

5

109

4

2

7
6

1
11

13

15

18

14

12

17
16

Head 2

2 10 11 12 18... ...
Head 1 Head 2

0
0
0

2
1
0

8
8
0

0
0
1

2
2
1

7
1

8
... ...

i
j
h

indices

values

i
j

Figure 6.3: The sparse attention tensor is stored using a Coordinate (COO) storage format.

tensors are computed in parallel by different program instances, resulting in as many pro-

gram instances as there are non-zero blocks in the sparse attention layout. Each such pro-

gram can be written in Triton-C, using a variant of the matrix-multiplication implemen-

tation shown in the previous chapter (Listing 5.7). In this variant, the ranges of rows/-

columns in A and B (i.e., rm and rn) are determined by the layout of the output tensor

rather than coordinate of the program in the launch grid. These changes can be imple-

mented by modifying the prologue (Line 3-10) of Listing 5.7 as follows.

1 // non - zero block index
2 int ridx = get_program_id (0) ;
3 // batch index
4 int ridy = get_program_id (1) ;
5 // reduction sp l i t t i n g index
6 int r idz = get_program_id (2) ;
7 // coordinates of the block
8 int * coo = layout + ridx *3;
9 int m = *(coo + 0) ;
10 int n = *(coo + 1) ;
11 int h = *(coo + 2) ;
12 int rm[TM] = m * TM + 0 . . . TM;
13 int rn [TN] = n * TN + 0 . . . TN;
14 // reduction sp l i t t i n g as before
15 K = K / TZ;
16 int rk [TK] = r idz * TZ + 0 . . . TK;

Listing 6.1: Triton-C prologue for an SDDM with block size BLOCK.

where TM = TN = BLOCK. Note that our implementation of this algorithm also uses

reduction-splitting for increased performance in deep reduction loops.

92

As shown in Figure 6.4, this naive implementation is likely to limit data-reuse (for

small block sizes) because it replicates rows and columns of K and Q must be across dif-

ferent cores. We will see in Section 6.3 how this issue may be resolved through the use of

super-blocking.

21
43

Core 1
L1

Core 2

Core 3 Core 4

L1

L1L1

Not reusedNot reused

GPU

AK

Q

ASPARSE = KDENSE x QDENSE

Figure 6.4: Naive implementation of SDDMM limits data-reuse

6.2.2 Normalizing Attention Scores

Once the attention scores A ∈ RZ×H×L×L have been computed using the above SDDMM

subroutine, they are generally re-scaled (α ∈ R), masked (M ∈ RL×L) and added to

relative position embeddings [78] (P ∈ RZ×H×L×L) to form a new tensor Ã such that

Ãz,h,li,lj = (αAz,h,li,lj + Pz,h,li,lj)Mli,lj ∀z ≤ Z, ∀(h, li, lj) ∈ nnz(A)

This tensor is then normalized using the following softmax function to yield the final, nor-

malized attention scores Â:

Â = softmax(Ã) =
exp(Ãz,h,li,lj)∑
l̂j

exp(Ãz,h,li,l̂j
)
∀z ≤ Z, ∀(h, li, lj) ∈ nnz(A)

Implementing all these operations naively, using a separate compute kernel for each

binary operator, results in many unecessary memory transfers to/from temporary buffers

93

in DRAM, as shown in Figure 6.5 for an attention density factor ρ.

A * ɑ

Asca
le

Apos

Amas
k

+

*

P

M

Softmax()

GPU
A

Ascale

Ascale

P
Apos

Apos

M

Amask

Amask

Anorm

fusion

(a) naive: 8(1-⍴)L2 + 2L2 words

A * ɑ

Asca
le

Apos

+

*

P

M

GPU
A

P

M

Anorm

(b) fused: 2(1-⍴)L2 + 2L2 words

D
R

A
M

D
R

A
M

Amas
kSoftmax()

(a) Each operation is done in a separate kernel,
requiring 8ρZHL2 + ZHL2 + L2 memory

transfers from DRAM

(b) All operations are done in the same kernel,
requiring 2ρZHL2 + ZHL2 + L2 transfers from

DRAM.

Figure 6.5: Memory cost of (a) naive and (b) fused attention normalization. Shaded red regions
correspond to compute kernels.

By contrast, our ”fused” implementation implements all the operations in the same

compute kernel, which makes it possible to store temporary tensors in registers rather

than DRAM. The implementation of this algorithm in Triton-C is shown below. Note

that the softmax computation is always done in float regardless of the data-type of the

attention matrix. To further improve numerical stability, we also substract to each row its

maximum before exponentiating and normalizing it (line 45)

1 __global__ void softmax (TYPE *X, TYPE *P, TYPE *M, int *LUT,
2 f l o a t scale , int num_blocks , long stride_zx , int stride_zm ,
3 long stride_zp , int stride_hp , int stride_sp , int stride_zp){
4 int pidhm = get_program_id (0) ;
5 int pidz = get_program_id (1) ;
6 // create index ranges
7 int rxm = pidhm % BLOCK;
8 int rbm = pidhm / BLOCK;
9 int rxn [TN] = (0 . . . TN) % BLOCK;
10 int rbn [TN] = (0 . . . TN) / BLOCK;
11 // extract information from look -up table
12 int * header = LUT + rbm * 2;
13 int s i z e = *(header + 0) ;
14 int o f f s e t = *(header + 1) ;
15 // bounds checking
16 bool check [TN] = rbn < s i z e ;
17 int rbmn[TN] = check ? rbn : s i z e - 1 ;
18 // block id and column id
19 long blockid [TN] = *(LUT + o f f s e t + rbmn*4 + 0) ;
20 long columnid [TN] = *(LUT + o f f s e t + rbmn*4 + 1) ;
21 long rowid [TN] = *(LUT + o f f s e t + rbmn*4 + 2) ;

94

22 long headid [TN] = *(LUT + o f f s e t + rbmn*4 + 3) ;
23 // load input
24 TYPE* px [TN] = X + pidz * stride_zx
25 + blockid * BLOCK * BLOCK
26 + rxm * BLOCK
27 + rxn ;
28 TYPE x [TN] = check ? *px : -INFINITY;
29 // load r e l a t i v e pos i t ion embedding
30 TYPE* pp [TN] = p + pidz * stride_zp
31 + headid * stride_hp
32 + (rxm + rowid * BLOCK) * stride_sp
33 + rxn + columnid * BLOCK;
34 TYPE p [TN] = check ? *pp : 0 ;
35 // load attent ion mask
36 TYPE* pm[TN] = M + columnid * BLOCK
37 + (rxm + rowid * BLOCK) * stride_zm
38 + rxn ;
39 TYPE m[TN] = check ? *pm : -INFINITY;
40 m = (m == 0) ? -INFINITY : 0 ;
41 // apply scale , r e l a t i v e pos i t ion embeddings and attent ion mask
42 x = x * sca l e + p + m;
43 // compute softmax in f loat32
44 f l o a t Fx [TN] = x ;
45 f l o a t Fy [TN] = exp(Fx - Fx [max]) ;
46 f l o a t Fysum = (check ? Fy : 0) [+] ;
47 // write - back
48 *?(check)px = Fy / Fysum;
49 }

Listing 6.2: Triton-C implementation of scaled, masked softmax with relative position embeddings.

6.2.3 Utilizing Attention Scores

These normalized attention scores Â ∈ RZ×H×L×L are then multiplied with a E-dimen–

sional embedding of the mechanism’s values V ∈ RZ×H×L×E to form a dense output

sequence embedding S ∈ RZ×H×L×E .

V

SA

Figure 6.6: Naive implementation of S = Â× V .

The corresponding batched sparse-dense matrix multiplication S = Â × V can be im-

95

plemented efficiently in Triton-C by computing different blocks of the output results in

different programs (see Figure 6.6). Note that normalized attention scores are not only

sparse but also lower diagonal in the case of auto-regressive (e.g., GPT) models. This

means that different rows of the output matrix are computed using sometimes vastly dif-

ferent reduction sizes, which can lead to load-balancing issues. This will be addressed in

the next section of this chapter.

6.3 Optimizations

6.3.1 Super-Blocking

The naive implementation of SDDMM presented above works by computing different

blocks of attention scores in parallel. This limits data-reuse and can therefore hurt per-

formance, especially for small block sizes (e.g., 16× 16).

Core 1 Core 2

Core 3 Core 4

Local Mem

Local MemLocal Mem

SUPER
BLOCK

Local Mem
compres

s

GPU

K A

Q

Figure 6.7: Different blocks of attention scores can be computed in parallel to increase data-reuse
(i.e., super-blocking).

To mitigate this issue, we present super-blocking. There, blocks of attention scores

are arranged into super-blocks that can be computed using larger matrix multiplications

which promote data-reuse on both operands, as shown in Figure 6.7. Note that the max-

imum size of super-blocks is limited by hardware resource constraints: large super-blocks

may not fit in shared memory and/or registers, hence we limit their size to 128 × 128 ele-

ments (or 8× 8 blocks of 16× 16 elements each).

96

Algorithm 3: Super-Blocking
Input: Attention Scores A; Partial Results Q; Superblock size b
Output: List of superblocks L
// Iterate over data-set, with labels if supervised

1 for i in [0,W] do
2 for j in [0,W] do

// Row index of first nonzero in A above A[i, j]
3 i0 ← first_nnz_above(A, i, j);

// Column index of first nonzero in A left of A[i, j]
4 jj ← first_nnz_left_of(A, i, j);

// Width is 1 if blocks cannot be merged
// (i.e., there’s a 1 in the ”middle”

5 can_merge← True;
6 for ii in [i0, i] do
7 if first_nnz_left_of(A, ii, j) > j0 then
8 can_merge← False

9 for jj in [j0, j] do
10 if first_nnz_above(A, i, jj) > i0 then
11 can_merge← False

// Compute Q[i, j]
12 if can_merge then
13 Q[i, j] = min(Q[i0, j0], Q[i0, j], Q[i, j0]) + 1
14 else
15 Q[i, j] = 1

// Greedy approach: super-blocks that are sufficiently big are retained
// as soon as they are encountered

16 if Q[i,j] = b then
// Create super-block

17 superblock ← [];
18 for ii in [i0, i] do
19 for jj in [j0, j] do
20 if A[ii, jj] = 1 then
21 append(superblock, (ii, jj));

// Append super-block
22 append(L, superblock)

97

To determine which blocks can be grouped together into super-blocks while limiting

the amount of wasted computations, we use dynamic programming. Let us assume, with-

out loss of generality, that Z = H = 1 and define a function q(i, j) as:

∀i, j ∈ [0,W]2 q(i, j) = size of largest super-block at position (i,j)

The value of q(i, j) can be computed from the value of its closest nonzero neighbours

q(i0, j0), q(i0, j) and q(i, j0) as shown in Algorithm 3. To determine which super-blocks

should be retained and in which order they should, our super-blocking algorithm uses a

greedy approach which selects super-blocks as soon as they are encountered. This proce-

dure is ran multiple times on superblock of decreasing sizes (e.g., 128, 64, 32, 16) so as to

promote larger super-blocks.

Sequence Length Naive Super-Blocking
512 8.10 3.80
1024 12.5 13.4
2048 15.0 30.5
4096 15.7 36.7

Table 6.1: Performance (in TFLOPS) of blocked/superblocked SDDMM.

Table 6.1 shows the performance of our Triton-C implementation of super-blocking on

(87.5% sparse) attention matrices for sparse transformers, using an embedding dimen-

sion of 768 (as in GPT-2) and a Tesla V100 GPU with tensor cores. As one can see, this

optimization can provide up to 2.3x speed-up over a naive blocked implementation of SD-

DMM on large sequence lengths. Note that, when the sequence length is small, there may

not enough super-blocks to fully occupy the GPU, causing super-blocking to reduce the

performance of SDDMM.

98

6.3.2 Static Load-Balancing

Naive implementations of sparse-dense matrix-multiplications are prone to load balanc-

ing issues, as different GPU cores may not do the same amount of work when computing

a block of the output result S. As shown in Figure 6.8, this can be mitigated by decom-

posing the computation of S into a sum of partial tensors requiring the reduction of at

most k blocks (in Figure 6.8, k = 2). All these partial results can be computed in parallel,

and summed together using atomics and semaphores similarly to the reduction-splitting

mechanism introduced in Chapter 4.

1
2
2 1
2
2 1
2 2
2 1
2 2
2 2 1

reduction
size colidx

(0)
(0,1)
(0,1) (2)
(2,3)
(2,3) (4)
(2,3) (4,5)
(2,5) (6)
(2,5) (6,7)
(2,5) (6,7) (8)

0
1
3 5
6
8 10
11 13
15 17
18 20
22 24 26

 rowptr
cumsum

V S0A S2S1x = + +

Figure 6.8: Static load-balancing in sparse-dense matrix-matrix multiplication.

6.4 Numerical Evaluation

In this section, we measure the end-to-end performance (in ms/batch, including SGD) of

our implementation of the sparse transformer against that of a dense baseline, as a func-

tion of the sequence length. Importantly, we use gradient checkpointing ([79]) to reduce

the memory construction of the dense transformer we considered, which causes extra com-

putations during back-propagation. For a given embedding size E, the number of opera-

tions performed by dense attention mechanisms is:

99

Ndense
op = 3E2W query/key/value embedding (forward)

+ 3E2W query/key/value embedding (backward)

+ 2EW 2 attention + multiplication w/ values (forward)

+ 2EW 2 attention + multiplication w/ values (backward)

+ 2EW 2 attention + multiplication w/ values (checkpoint)

= 6E2W + 6EW 2

Similarly, the number of operations performed by our sparse transformer – which does

not require check-pointing – is N sparse
op = 6E2W + ρ4EW 2, where ρ = 0.125 denotes the

density factor of the attention mechanism. The theoretical minimum runtime reported

in Figure 6.9 is then tmin = (N sparse
op /Ndense

op)tdense, where tdense is measured using the

cuBLAS-accelerated PyTorch implementation of the dense Transformer.

2000 4000 6000 8000 10000
sequence length

0

1000

2000

3000

4000

5000

6000

7000

m
s/

ba
tc

h

Dense
Block-sparse
Theoretical speed-up

Figure 6.9: Performance of our block-sparse Transformer

As shown in Figure 6.9 for E = 768 (i.e., GPT-2), the performance of our Triton-C

implementation of the sparse transformers achieves close to peak performance, achieving

100

up to > 5x speed-ups over the aforementioned dense baseline.

6.5 Summary

Transformers are an important but computationally expensive class of neural network ar-

chitectures. And while block-sparse self-attention mechanisms have recently emerged as

a way to reduce the cost of forward- and backward- propagation in these models, their

implementation within conventional GPU programming paradigms (e.g., CUDA) re-

mains challenging. For this reason, in this chapter, we have presented a set of blocked

algorithms for sparse transformers, along with their implementation in Triton. A major

benefit of this strategy is that makes it possible for compilers to automatically schedule

computation within attention blocks, using the techniques presented in Chapter 4 and

Chapter 5; this leads to acceptable performance even when using naive implementations.

To address the issue of efficiently scheduling computations across different attention

blocks, we presented super-blocking and static load-balancing, two optimizations that in-

crease data-reuse and GPU utilization for the sparsity structures typically found in sparse

transformers. Finally, we presented a numerical evaluation of our work on large trans-

formers (i.e., GPT-2), and demonstrated close to optimal performance gains over a state-

of-the-art dense baseline.

101

7
Conclusion

Traditionally, GPUs have been programmed using a ”single program, multiple data” ex-

ecution model in which different blocks of threads execute different instances of a given

scalar program. This approach is great for general-purpose GPU programming – different

threads within the same block can do radically different work – but unnecessarily com-

plex for the kind of regular computations commonly encountered in DNNs. To simplify

the development of high-performance compute kernels for DNNs, we have proposed a new

paradigm in which programs are blocked instead of threads. We have shown how this

approach could overcome the limitations of existing DSLs for DNNs through the enforce-

ment of block-structured iteration spaces that are more suitable for sparse computations

than the polyhedra or boxes used in prior work.

We showed, in Chapter 4, how the shape of each block in this paradigm may be auto-

matically determined using learning-based methods. We specifically introduced context-

102

aware auto-tuning, a framework for dynamic block size selection using machine learning-

based techniques on empirical performance data sampled from simple generative models.

We showed, in Chapter 5, how the schedule of each block in this paradigm may be au-

tomatically determined using novel compilation techniques, which we implemented in the

Triton language and compiler for blocked algorithm. We most importantly addressed the

issue of automatically scheduling block-structured iteration spaces for efficient execution

on GPUs using block-level data-flow analysis.

Finally, to validate the applicability of the proposed paradigm to emerging neural net-

work architectures, we described a set of blocked algorithms for sparse attention mecha-

nisms in transformers, along with their implementation in Triton. To increase data-reuse

and hardware utilization in the resulting tasks, we presented super-blocking and static

load-balancing techniques, and achieved up to > 5x end-to-end speed-ups over GPT-2 for

long sequence lengths.

While these results are encouraging, we believe that they are not sufficient to create

a paradigm shift for something as established as GPU programming. We hope that our

work will inspire other researchers to further explore the relevance of blocked algorithms

for deep learning research, as well as their use in compilers for special-purpose hardware

architectures.

103

References

[1] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Advances in Neural Information Processing Systems 27, 2014.

[2] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[3] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung, “Superhuman accuracy on the
SNEMI3D connectomics challenge,” CoRR, 2017.

[4] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in in ICML Workshop on Deep Learning for Audio,
Speech and Language Processing, 2013.

[5] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter, “Nvidia tensor
core programmability, performance precision,” in 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2018.

[6] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral compiler for
expressing fast and portable code,” in Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization, 2019.

[7] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. Moses,
S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehensions:
Framework-agnostic high-performance machine learning abstractions,” CoRR, 2018.

[8] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: A language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” in Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
2013.

[9] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang,
Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: An automated
end-to-end optimizing compiler for deep learning,” in Proceedings of the 13th
USENIX Conference on Operating Systems Design and Implementation, (USA),
2018.

[10] NVIDIA, “The cublas library.” https://developer.nvidia.com/cublas.

[11] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and
E. Shelhamer, “cudnn: Efficient primitives for deep learning,” CoRR, 2014.

104

https://developer.nvidia.com/cublas

[12] NVIDIA, “The tensorrt library.” https://developer.nvidia.com/tensorrt.

[13] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and
optimizations of blocked algorithms,” in Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 1991.

[14] M. Auguin and F. Larbey, “Opsila: an advanced simd for numerical analysis and
signal processing,” in Ninth EUROMICRO Symposium on Microprocessing and
Microprogramming, 1983.

[15] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra software,” in
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, 1998.

[16] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A formal analysis of the nvidia ptx
memory consistency model,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2019.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal
Representations by Error Propagation, p. 318–362. MIT Press, 1986.

[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,”
Neural Computation, 1989.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems 30, 2017.

[20] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psychological Review, 1958.

[21] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural
nets and problem solutions,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 1998.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the International Conference on Artificial
Intelligence and Statistics, 2010.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), 2015.

[24] Y. Kim, “Convolutional neural networks for sentence classification,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014.

105

https://developer.nvidia.com/tensorrt

[25] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. Dauphin, “Convolutional
sequence to sequence learning,” in Proceedings of the 36th International Conference
on Machine Learning, 2017.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, 2012.

[27] J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin,
A. Kulik, and M. Grundmann, “On-device neural net inference with mobile gpus,”
CoRR, 2019.

[28] V. Volkov, Understanding Latency Hiding on GPUs. PhD thesis, University of
California, Berkeley, 2016.

[29] F. E. Allen, “Control flow analysis,” SIGPLAN Notices, 1970.

[30] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via
graph reachability,” POPL ’95, 1995.

[31] J. Knoop, B. Steffen, and J. Vollmer, “Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs,” 1996.

[32] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong program
analysis transformation,” in International Symposium on Code Generation and
Optimization, 2004.

[33] M. Wolfe, “More iteration space tiling,” in Proceedings of the 1989 ACM/IEEE
Conference on Supercomputing, 1989.

[34] A. Darte, “On the complexity of loop fusion,” in Proceedings of the 1999
International Conference on Parallel Architectures and Compilation Techniques,
1999.

[35] J. R. Allen and K. Kennedy, “Automatic loop interchange,” ACM SIGPLAN
Notices, 1984.

[36] C. Ancourt and F. Irigoin, “Scanning polyhedra with do loops,” in Proceedings of
the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 1991.

[37] V. Elango, N. Rubin, M. Ravishankar, H. Sandanagobalane, and V. Grover, “Diesel:
Dsl for linear algebra and neural net computations on gpus,” in Proceedings of the
2nd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages (MAPL’2018), 2018.

[38] C. Lattner and J. Pienaar, “Mlir primer: A compiler infrastructure for the end of
moore’s law,” CoRR, 2019.

[39] A. Schrijver, Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

106

[40] T. Grosser, A. Größlinger, and C. Lengauer, “Polly - performing polyhedral
optimizations on a low-level intermediate representation,” Parallel Processing
Letters, 2012.

[41] U. K. R. Bondhugula, Effective Automatic Parallelization and Locality Optimization
Using the Polyhedral Model. PhD thesis, Ohio State University, 2008.

[42] Y. Sato, T. Yuki, and T. Endo, “An autotuning framework for scalable execution of
tiled code via iterative polyhedral compilation,” ACM Transactions on Architecture
and Code Optimization, 2019.

[43] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and O. Temam,
“Semi-automatic composition of loop transformations for deep parallelism and
memory hierarchies,” International Journal of Parallel Programming, 2006.

[44] E. W. Dijkstra, “On the role of scientific thought,” Selected Writings on Computing:
A personal Perspective, pp. 60–66, 1982.

[45] L. Zheng and T. Chen, “Optimizing deep learning workloads on arm gpu with tvm,”
in Proceedings of the 1st on Reproducible Quality-Efficient Systems Tournament on
Co-Designing Pareto-Efficient Deep Learning, 2018.

[46] J. Ragan-Kelley, Decoupling Algorithms from the Organization of Computation for
High Performance Image Processing. Ph.d. thesis, Massachusetts Institute of
Technology, 2014.

[47] D. Blalock, J. Ortiz, J. Frankle, and J. Guttag, “What is the state of neural
network pruning?,” in Proceedings of Machine Learning and Systems, 2020.

[48] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with
sparse transformers,” CoRR, 2019.

[49] C. Malaviya, P. Ferreira, and A. F. T. Martins, “Sparse and constrained attention
for neural machine translation,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, 2018.

[50] “Tvm tutorial on tensor core optimization.”
https://tvm.apache.org/docs/tutorials/optimize/opt_conv_tensorcore.html.

[51] G. J. Chaitin, “Register allocation & spilling via graph coloring,” ACM SIGPLAN
Notices, 1982.

[52] M. Poletto and V. Sarkar, “Linear scan register allocation,” ACM Transactions on
Programming Languages and Systems, 1999.

[53] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimization
of software and the atlas project,” Parallel Computing, 2000.

[54] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of sparse
matrix-vector multiply on gpus,” in Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2010.

107

https://tvm.apache.org/docs/tutorials/optimize/opt_conv_tensorcore.html

[55] Z. Jia, M. Maggioni, B. Staiger, and D. Scarpazza, “Dissecting the nvidia volta gpu
architecture via microbenchmarking,” CoRR, 2018.

[56] Z. Jia, M. Maggioni, J. Smith, and D. Scarpazza, “Dissecting the nvidia turing t4
gpu via microbenchmarking,” CoRR, 2019.

[57] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar, “A
three-dimensional approach to parallel matrix multiplication,” IBM Journal of
Research and Development, 1995.

[58] T. Oliphant, “NumPy: A guide to NumPy.” http://www.numpy.org/, 2006–.

[59] J. W. Davidson and S. Jinturkar, “Memory access coalescing: A technique for
eliminating redundant memory accesses,” in Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, 1994.

[60] R. Nath, S. Tomov, and J. Dongarra, “Accelerating gpu kernels for dense linear
algebra,” in Proceedings of the 9th International Conference on High Performance
Computing for Computational Science, 2011.

[61] M. Martineau, P. Atkinson, and S. McIntosh-Smith, “Benchmarking the nvidia v100
gpu and tensor cores,” in Proceedings of the 24th International Conference on
Parallel and Distributed Computing, 2019.

[62] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming
with cuda,” Queue, vol. 6, pp. 40–53, Mar. 2008.

[63] M. Braun, S. Buchwald, S. Hack, R. Leissa, C. Mallon, and A. Zwinkau, “Simple
and efficient construction of static single assignment form,” in Proceedings of the
22Nd International Conference on Compiler Construction, 2013.

[64] L. Carter, B. Simon, B. Calder, L. Carter, and Ferrante, “Predicated static single
assignment,” in Proceedings of the PACT 1999 Conference on Parallel Architectures
and Compilation Techniques, 1999.

[65] A. Stoutchinin and F. de Ferriere, “Efficient static single assignment form for
predication,” in Proceedings of the 34th Annual ACM/IEEE International
Symposium on Microarchitecture, 2001.

[66] W. M. McKeeman, “Peephole optimization,” Communications of the ACM, 1965.

[67] J. Gergov, “Algorithms for compile-time memory optimization,” in Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1999.

[68] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, “Optimizing cnn model
inference on cpus,” in Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, 2019.

[69] L. Wang, Z. Chen, Y. Liu, Y. Wang, L. Zheng, M. Li, and Y. Wang, “A unified
optimization approach for CNN model inference on integrated gpus,” CoRR, 2019.

108

http://www.numpy.org/

[70] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” CoRR, 2019.

[71] A. Radford, “Improving language understanding by generative pre-training,” in
Proceedings of the 37th International Conference on Machine Learning, 2018.

[72] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, and
D. Amodei, “Language models are few-shot learners,” CoRR, 2020.

[73] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal, D. Luan, and
I. Sutskever, “Generative pretraining from pixels,” CoRR, 2020.

[74] J. Vig, A. Madani, L. R. Varshney, C. Xiong, R. Socher, and N. F. Rajani,
“Bertology meets biology: Interpreting attention in protein language models,”
bioRxiv, 2020.

[75] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer: Self-attention with
linear complexity,” CoRR, 2020.

[76] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document
transformer,” CoRR, 2020.

[77] I. Nisa, A. Sukumaran-Rajam, S. E. Kurt, C. Hong, and P. Sadayappan, “Sampled
dense matrix multiplication for high-performance machine learning,” in 2018 IEEE
25th International Conference on High Performance Computing, 2018.

[78] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position
representations,” CoRR, 2018.

[79] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with sublinear
memory cost,” CoRR, 2016.

109

	Abstract
	Dedication
	Introduction
	Thesis Roadmap

	Background
	Deep Neural Networks
	General Overview
	Multi-Layer Perceptrons
	Convolutional Neural Networks
	Transformers
	Opportunities for Parallelism

	Graphics Processing Units
	General Microarchitecture
	Programming Languages
	Optimization Challenges

	Compiler Construction
	General Overview
	Data-Flow Analysis

	Related Work
	Polyhedral Compilation
	Program Representation
	Program Transformations
	Limitations

	Scheduling Languages
	Schedule Specification
	Compiling Scheduled Algorithms
	Limitations

	Context-Aware Auto-Tuning
	Code Generation
	Matrix Multiplication
	Convolution

	Data Synthesis
	Rejection Sampling
	Generative Modeling

	Regression Analysis
	Logarithmic Feature Transformation
	Accuracy

	Runtime Inference
	Numerical Evaluation
	Hardware architectures
	Experimental setup
	GEMM Performance
	CONV Performance

	Summary

	Block-Level Data-Flow Analysis
	Triton-C
	Syntax
	Semantics
	Programming Model

	Triton-IR
	Structure
	Block-Level Data-Flow
	Block-Level Control-Flow

	Triton-JIT
	Simplifying Computations
	Parallelizing Computations
	Parallelizing Memory Accesses
	Maximizing Data Reuse

	Numerical Experiments
	Matrix Multiplication Performance
	Convolutions
	Tensor Cores

	Summary

	Fast Sparse Transformers
	Motivations
	Sparse Self-Attention
	Computing Attention Scores
	Normalizing Attention Scores
	Utilizing Attention Scores

	Optimizations
	Super-Blocking
	Static Load-Balancing

	Numerical Evaluation
	Summary

	Conclusion
	References

