

High-Affinity Alkynyl Bisubstrate Inhibitors of NicotinamideN-Methyltransferase (NNMT)

Citation

Policarpo, R. L., L. Decultot, E. May, P. Kuzmic, S. Carlson, D. Huang, V. Chu, et al. 2019. "High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (Nnmt)." J Med Chem 62, no. 21: 9837-73. https://doi.org/10.1021/acs.jmedchem.9b01238.

Published Version

http://doi.org/10.1021/acs.jmedchem.9b01238

Permanent link

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37369014

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#0AP

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

<u>Accessibility</u>

High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT)

Supporting Information Part 1: Supplementary Figures & Tables, Synthetic Schemes, and Experimental Protocols

Rocco L. Policarpo^{*}, Ludovic Decultot^{*}, Elizabeth May[†], Petr Kuzmič[§], Samuel Carlson[†], Danny Huang^{*}, Vincent Chu^{*}, Brandon Wright^{*}, Saravanakumar Dhakshinamoorthy[‡], Aimo Kannt^{*}, Shilpa Rani[‡], Sreekanth Dittakavi[‡], Joseph Panarese^{*}, Rachelle Gaudet[†], and Matthew D. Shair^{*}

*Department of Chemistry & Chemical Biology, Harvard University, Cambridge MA 02138, USA
 [†]Department of Molecular & Cellular Biology, Harvard University, Cambridge MA 02138, USA
 [§]BioKin Ltd., Watertown MA 02472, USA
 [‡]Jubilant Biosys Ltd., Yeshwantpur Bangalore - 560 022, Karnataka, India
 *Sanofi Research and Development, Industriepark Hoechst, H823, D-65926, Frankfurt am Main, Germany

Table of Contents

1	1 Supplementary Figures & Tables												
2	2 List of Abbreviations												
3	3 Positional Numbering System												
4 Supplemental Schemes													
5	Sma	all-Molecule X-Ray Crystallography S4	9										
	5.1	NS1 • TFA (10)	9										
	5.2	NS1-Cyclopropyl: Cyclopropyl Alkyne S30 S5	6										
	5.3	NS1-Urea: Alkynyl Alcohol S53	52										
6	Met	thods: Molecular Docking, Biochemical Assays, Bioinformatic Analyses, and Protein											
	Cry	vstallography S6	8										
	6.1	Molecular Docking with Schrödinger Glide	18										
	6.2	NNMT Inhibition Assay	6										
		6.2.1 wt-hNNMT Preparation	6										
		6.2.2 Detailed NNMT Inhibition Assay Protocol	7										
	6.3	Sequence Similarity Analysis	'8										
	6.4	DALI Structural Similarity Analysis	'9										
	6.5	Protein Crystallography	'9										
		6.5.1 tm-hNNMT Preparation	30										
		6.5.2 Crystallization and Data Collection	30										
		6.5.3 Data Processing and Refinement	31										
	6.6	INMT Selectivity Study	31										
		6.6.1 wt-hINMT Preparation	31										
		6.6.2 INMT Inhibition Assay	32										

1 Supplementary Figures & Tables

List of Figures

S1	Cross Metathesis Catalyst/Solvent Screening Experiments (Crude $^1{\rm H}$ NMR) $~\ldots$
S2	Sequence Similarity Network (SSN) of Human Methyltransferases
S3	Structural Similarity Dendrogram
S4	Heatmap of DALI Z-scores
S5	INMT IC ₅₀ Assay with NS1 (10) \ldots S17
$\mathbf{S6}$	Cellular Thermal Shift Assay (CETSA) with NS1 $({\bf 10})$
S7	Isothermal Dose Reponse (ITDR) CETSA with NS1 $({\bf 10})$ \ldots
$\mathbf{S8}$	CETSA with 25 (NS1-Urea)
$\mathbf{S9}$	ITDR CETSA with 25 (NS1-Urea)

List of Tables

S1	Cross Metathesis Catalyst/Solvent Pairs Screening	S4
S2	X-Ray Co-Crystallography Data Collection and Refinement Statistics	S6
S3	Human Methyltransferases Used to Construct a Sequence Similarity Network (SSN) $\ . \ . \ .$	S9
$\mathbf{S4}$	DALI Output Used to Rank Human Methyltransferases by Structural Similarity	S15
S5	Selectivity Screening Assays	S16
$\mathbf{S6}$	CellTiter-Glo Cytotoxicity Assay (U2OS cells, ${\bf 24}~{\bf h})$	S19
$\mathbf{S7}$	CellTiter-Glo Cytotoxicity Assay (U2OS cells, ${\bf 48}~{\bf h})$	S19
$\mathbf{S8}$	Cellular MNAM Levels Measured by LC-MS/MS	S20
$\mathbf{S9}$	Caco-2 Permeability Assay	S21

Catalyst/Solvent Pair in Figure S1	Catalyst	Solvent	Catalyst CAS $\#$	Catalyst Structure
1	nitro-Grela	MTBE	502964-52-5	
2	Grubbs Cat- alyst C571	$\rm CH_2\rm Cl_2$	927429-61-6	
3	StickyCat Cl	$\rm CH_2 Cl_2$	1452227-72-3	
4	GreenCat	$\rm CH_2\rm Cl_2$	1448663-06-6	
5	M71-S1Pr	$\rm CH_2 Cl_2$	1212008-99-5	
6 7	nitro-Grela	fluorobenzene CH.Cl	502964-52-5 502964-52-5	see entry 1
1	muo-Greia	$011_{2}01_{2}$	002904-02-0	see entry 1

Table S1: Catalyst/solvent pairs screened in this work. All metathesis catalysts below were purchased from Strem, with the exception of Grubbs Catalyst C571, which was purchased from Millipore Sigma.

Figure S1: Crude ¹H NMR traces of alkene/aldehyde regions for solvent/catalyst pairs screened and shown in Table S1. All reactions were performed on 1 mmol of alkene **3** with 1 mol % catalyst loading and 5 mmol of crotonaldehyde (5 equiv.). Crotonaldehyde (predominantly *trans*) was used as received from Millipore Sigma (catalog #: 262668, CAS: 123-73-9).

Wavelength (Å)	0.97910
Resolution range $(Å)$	42.6-2.25 (2.33-2.25)
Space group	P 1
Unit cell (a, b, c (Å); α , β , γ (°))	46.07 62.20 108.20 82.52 81.84 68.35
Total reflections	80875 (8176)
Unique reflections	46037 (4664)
Multiplicity	1.8 (1.8)
Completeness (%)	87.23 (86.28)
Mean $I/\sigma(I)$	3.15 (1.34)
Wilson B-factor	28.87
R _{merge}	0.1752(1.151)
R _{meas}	0.2478 (1.628)
R _{pim}	0.1752 (1.151)
$CC_{1/2}$	0.919 (0.182)
CC*	0.979 (0.555)
Reflections used in refinement	45689 (4534)
Reflections used for $R_{\rm free}$	2293 (220)
R _{work}	0.2220 (0.3070)
R _{free}	$0.2631 \ (0.3378)$
CC(work)	$0.925 \ (0.673)$
CC(free)	$0.876 \ (0.669)$
Number of non-hydrogen atoms	8600
macromolecules	8243
ligands	178
solvent	179
Protein residues	1058
RMS(bonds) (Å)	0.002
RMS(angles) (°)	0.48
Ramachandran favored $(\%)$	99.14
Ramachandran allowed $(\%)$	0.86
Ramachandran outliers $(\%)$	0.00
Rotamer outliers (%)	0.88
Clashscore	3.40
Average B-factor	36.33
macromolecules	36.48
ligands	28.70
solvent	36.80
Number of TLS groups	24

Table S2: Data collection and refinement statistics.

Statistics for the highest-resolution shell are shown in parentheses.

Figure S2: Sequence similarity network (SSN) of human methyltransferases. Node labels correspond to UniProt IDs and Protein Names found in Table S3. Red nodes correspond to small-molecule methyltransferases. Edges are color coded according to sequence similarity (%ID, legend at bottom right). A description of the SSN generation work flow is detailed in Section 6.3.

Figure S2 (Cont.): Sequence similarity network (SSN) of human methyltransferases. **The NNMT, INMT, PNMT cluster appears at top left**. Node labels correspond to UniProt IDs and Protein Names found in Table S3. Red nodes correspond to small-molecule methyltransferases. Edges are color coded according to sequence similarity (%ID, legend at bottom right). A description of the SSN generation workflow is detailed in Section 6.3.

SSN Node Label	UniProt Entry ID	UniProt Entry Name	Gene Names	Protein Name
ALKBH8	Q96BT7	ALKB8_HUMAN	ALKBH8 ABH8	Alkylated DNA repair protein alkB homolog 8
AS3MT	Q9HBK9	AS3MT_HUMAN	AS3MT CYT19	Arsenite methyltransferase
ASMT	P46597	ASMT_HUMAN	ASMT	Acetylserotonin O-methyltransferase
ASMTL	O95671	ASML_HUMAN	ASMTL	N-acetylserotonin O-methyltransferase-like protein Short-ASMTL
BCDIN3D	Q7Z5W3	BN3D2_HUMAN	BCDIN3D	Pre-miRNA 5'-monophosphate methyltransferase
C10orf138	Q5JPI9	EFMT2_HUMAN	EEF1AKMT2 C10orf138 METTL10	EEF1A lysine methyltransferase 2
C12orf72	Q8IXQ9	ETKMT_HUMAN	ETFBKMT C12orf72 METTL20	Electron transfer flavoprotein beta subunit lysine methyl-
				transferase
C16orf24	Q9BQD7	F173A_HUMAN	FAM173A C16orf24 RJD7	Protein N-lysine methyltransferase FAM173A
C21 or f127	Q9Y5N5	N6MT1_HUMAN	N6AMT1 C21orf127 HEMK2 PRED28	Methyltransferase N6AMT1
C2orf56	Q7L592	NDUF7_HUMAN	NDUFAF7 C2orf56 PRO1853	Protein arginine methyltransferase NDUFAF7, mitochon- drial
C7orf60	Q1RMZ1	SAMTR HUMAN	BMT2 C7orf60 SAMTOR	S-adenosylmethionine sensor upstream of mTORC1
C8orf79	Q9P272	TRM9B HUMAN	TBMT9B C8orf79 KIAA1456 TBM9L	Probable tBNA methyltransferase 9B
C9orf41	Q8N4J0	CARME HUMAN	CARNMT1 C9orf41	Carnosine N-methyltransferase
САМКМТ	Q7Z624	CMKMT_HUMAN	CAMKMT C2orf34 CLNMT	Calmodulin-lysine N-methyltransferase ShortCLNMT ShortCaM KMT
CARM1	Q86X55	CARM1 HUMAN	CARM1 PRMT4	Histone-arginine methyltransferase CARM1
CMTR1	Q8N1G2	CMTR1 HUMAN	CMTR1 FTSJD2 KIAA0082 MTR1	Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1
CMTR2	Q8IYT2	CMTR2 HUMAN	CMTR2 AFT FTSJD1	Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 2
COMT	P21964	COMT HUMAN	COMT	Catechol O-methyltransferase
COMTD1	Q86VU5	CMTD1_HUMAN	COMTD1 UNQ766/PRO1558	Catechol O-methyltransferase domain-containing protein 1
COQ3	Q9NZJ6	COQ3_HUMAN	COQ3 UG0215E05	Ubiquinone biosynthesis O-methyltransferase, mitochon- drial
COQ5	Q5HYK3	COQ5_HUMAN	COQ5	2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mito- chondrial
DIMT1	Q9UNQ2	DIM1_HUMAN	DIMT1 DIMT1L HUSSY-05	Probable dimethyladenosine transferase
DNMT1	P26358	DNMT1_HUMAN	DNMT1 AIM CXXC9 DNMT	DNA (cytosine-5)-methyltransferase 1 ShortDnmt1
DNMT3A	Q9Y6K1	DNM3A_HUMAN	DNMT3A	DNA (cytosine-5)-methyltransferase 3A ShortDnmt3a
DNMT3B	Q9UBC3	DNM3B_HUMAN	DNMT3B	DNA (cytosine-5)-methyltransferase 3B ShortDnmt3b
DOT1L	Q8TEK3	DOT1L_HUMAN	DOT1L KIAA1814 KMT4	Histone-lysine N-methyltransferase, H3 lysine-79 specific
EEF1AKMT4	P0DPD7	EFMT4_HUMAN	EEF1AKMT4	EEF1A lysine methyltransferase 4

Table S3: Human methyltransferases used to construct a sequence similarity network (SSN). A description of the SSN generation workflow is provided in Section 6.3.

	Table S3 continued from previous page										
EEF1AKMT4	P0DPD8	EFCE2_HUMAN	EEF1AKMT4-E	CE2		EEF1AKMT4-ECE2 readthrough transcript protein					
FAM119B	Q96AZ1	EFMT3_HUMAN	EEF1AKMT3	FAM119B	HCA557A	EEF1A lysine methyltransferase 3					
			METTL21B								
FAM173B	Q6P4H8	F173B_HUMAN	FAM173B			Protein N-lysine methyltransferase FAM173B					
FAM86A	Q96G04	EF2KT_HUMAN	EEF2KMT FAM	186A SB153		Protein-lysine N-methyltransferase EEF2KMT					
FAM86B1	Q8N7N1	F86B1_HUMAN	FAM86B1			Putative protein N-methyltransferase FAM86B1					
FAM86B2	P0C5J1	F86B2_HUMAN	FAM86B2	FAM86B2 Putative protein N-methyltransferase							
FBL	P22087	FBRL_HUMAN	FBL FIB1 FLR	N		rRNA 2'-O-methyltransferase fibrillarin					
FBLL1	A6NHQ2	FBLL1_HUMAN	FBLL1			rRNA/tRNA 2'-O-methyltransferase fibrillarin-like protein					
						1					
FJH1	Q9UI43	MRM2_HUMAN	MRM2 FJH1 F7	$\Gamma SJ2$		rRNA methyltransferase 2, mitochondrial					
FTSJ1	Q9UET6	TRM7_HUMAN	FTSJ1 JM23			Putative tRNA $(cytidine(32)/guanosine(34)-2'-O)-$					
						methyltransferase					
FTSJ3	Q8IY81	SPB1_HUMAN	FTSJ3 SB92			pre-rRNA processing protein FTSJ3					
GAMT	Q14353	GAMT_HUMAN	GAMT			Guanidinoacetate N-methyltransferase					
GNMT	Q14749	GNMT_HUMAN	GNMT			Glycine N-methyltransferase					
HEMK1	Q9Y5R4	HEMK1_HUMAN	HEMK1 HEMK			HemK methyltransferase family member 1					
HENMT1	Q5T8I9	HENMT_HUMAN	HENMT1 Clorf	59		Small RNA 2'-O-methyltransferase					
HMT2	Q99873	ANM1_HUMAN	PRMT1 HMT2 HRMT1L2 IR1B4		1B4	Protein arginine N-methyltransferase 1					
HNMT	P50135	HNMT_HUMAN	MT_HUMAN HNMT			Histamine N-methyltransferase ShortHMT					
HUSSY	O43709	BUD23_HUMAN	BUD23 MERM	1 WBSCR22	HUSSY-03	Probable 18S rRNA (guanine- $N(7)$)-methyltransferase					
			PP3381								
INMT	O95050	INMT_HUMAN	INMT			Indolethylamine N-methyltransferase ShortIndolamine N-					
						methyltransferase					
KIAA1393	Q32P41	TRM5_HUMAN	TRMT5 KIAA1	393 TRM5		tRNA (guanine(37)-N1)-methyltransferase					
LCMT1	Q9UIC8	LCMT1_HUMAN	LCMT1 LCMT	CGI-68		Leucine carboxyl methyltransferase 1					
LCMT2	O60294	TYW4_HUMAN	LCMT2 KIAA03	547 TYW4		tRNA wybutosine-synthesizing protein 4 ShorttRNA yW-					
						synthesizing protein 4					
MEPCE	Q7L2J0	MEPCE_HUMAN	MEPCE BCDIN	13		7SK snRNA methylphosphate capping enzyme Short-					
						MePCE					
METT10D	Q86W50	MET16_HUMAN	METTL16 MET	T10D		RNA N6-adenosine-methyltransferase METTL16					
METTL1	Q9UBP6	TRMB_HUMAN	METTL1 C12or	f1		tRNA (guanine-N(7)-)-methyltransferase					
METTL11B	Q5VVY1	NTM1B_HUMAN	METTL11B C1a	orf184 NRMT2	2	Alpha N-terminal protein methyltransferase 1B					
METTL12	A8MUP2	CSKMT_HUMAN	CSKMT METT	L12		Citrate synthase-lysine N-methyltransferase CSKMT, mi-					
						tochondrial					
METTL13	Q8N6R0	EFNMT_HUMAN	EEF1AKNMT Þ	KIAA0859 ME	FTL13 CGI-	Methyltransferase-like protein 13					
			01								
METTL15	A6NJ78	MET15_HUMAN	METTL15 MET	T5D1		Probable methyltransferase-like protein 15					

METTL15P1	P0C7V9	ME15P_HUMAN	METTL15P1 METT5D2	Putative methyltransferase-like protein 15P1		
METTL17	Q9H7H0	MET17_HUMAN	METTL17 METT11D1	Methyltransferase-like protein 17, mitochondrial		
METTL18	O95568	MET18_HUMAN	METTL18 ASTP2 C1orf156	Histidine protein methyltransferase 1 homolog		
METTL21A	Q8WXB1	MT21A_HUMAN	METTL21A FAM119A HCA557B	Protein N-lysine methyltransferase METTL21A		
METTL21C Q5VZV1 MT21C_HUMAN		MT21C_HUMAN	METTL21C C13orf39	Protein-lysine methyltransferase METTL21C		
METTL21EP	A6NDL7	MT21E_HUMAN	METTL21EP METTL21CP1	Putative methyltransferase-like protein 21E pseudogene		
METTL22	Q9BUU2	MET22_HUMAN	METTL22 C16orf68 LP8272	Methyltransferase-like protein 22		
METTL23	Q86XA0	MET23_HUMAN	METTL23 C17orf95	Methyltransferase-like protein 23		
METTL25	Q8N6Q8	MET25_HUMAN	METTL25 C12orf26	Methyltransferase-like protein 25		
METTL2A	Q96IZ6	MET2A_HUMAN	METTL2A METTL2 HSPC266	Methyltransferase-like protein 2A		
METTL2B	Q6P1Q9	MET2B_HUMAN	METTL2B	Methyltransferase-like protein 2B		
METTL3	Q86U44	MTA70_HUMAN	METTL3 MTA70	N6-adenosine-methyltransferase catalytic subunit		
METTL4	Q8N3J2	METL4_HUMAN	METTL4	Methyltransferase-like protein 4		
METTL5	Q9NRN9	METL5_HUMAN	METTL5 DC3 HSPC133	Methyltransferase-like protein 5		
METTL6	Q8TCB7	METL6_HUMAN	METTL6	Methyltransferase-like protein 6		
METTL7A	Q9H8H3	MET7A_HUMAN	METTL7A PRO0066 UNQ1902/PRO4348	Methyltransferase-like protein 7A		
METTL7B	Q6UX53	MET7B_HUMAN	METTL7B UNQ594/PRO1180	Methyltransferase-like protein 7B		
METTL8	Q9H825	METL8_HUMAN	METTL8	Methyltransferase-like protein 8		
MSTP077	Q9H649	NSUN3_HUMAN	NSUN3 MSTP077 UG0651E06	tRNA $(cytosine(34)-C(5))$ -methyltransferase, mitochon-		
				drial		
N6AMT2	Q8WVE0	EFMT1_HUMAN	EEF1AKMT1 N6AMT2	EEF1A lysine methyltransferase 1		
NNMT	P40261	NNMT_HUMAN	NNMT	Nicotinamide N-methyltransferase		
NOP2	P46087	NOP2_HUMAN	NOP2 NOL1 NSUN1	Probable 28S rRNA $(cytosine(4447)-C(5))$ -		
				methyltransferase		
NSUN2	Q08J23	NSUN2_HUMAN	NSUN2 SAKI TRM4	tRNA (cytosine(34)-C(5))-methyltransferase		
NSUN4	Q96CB9	NSUN4_HUMAN	NSUN4	5-methylcytosine rRNA methyltransferase NSUN4		
NSUN5	Q96P11	NSUN5_HUMAN	NSUN5 NSUN5A WBSCR20 WBSCR20A	Probable 28S rRNA (cytosine- $C(5)$)-methyltransferase		
NSUN5P1	Q3KNT7	NSN5B_HUMAN	NSUN5P1 NSUN5B WBSCR20B	Putative NOL1/NOP2/Sun domain family member $5B$		
NSUN5P2	Q63ZY6	NSN5C_HUMAN	NSUN5P2 NSUN5C WBSCR20B WB-	Putative methyltransferase NSUN5C		
			SCR20C			
NSUN6	Q8TEA1	NSUN6_HUMAN	NSUN6 NOPD1	Putative methyltransferase NSUN6		
NSUN7	Q8NE18	NSUN7_HUMAN	NSUN7	Putative methyltransferase NSUN7		
NTMT1	Q9BV86	NTM1A_HUMAN	NTMT1 C9orf32 METTL11A NRMT NRMT1 AD-003	N-terminal Xaa-Pro-Lys N-methyltransferase 1		
PCMT1	P22061	PIMT_HUMAN	PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase ShortPIMT		
PNMT	P11086	PNMT HUMAN	PNMT PENT	Phenylethanolamine N-methyltransferase ShortPNMTase		
PP7517	Q8WZ04	TOMT_HUMAN	LRTOMT COMT2 TOMT PP7517	Transmembrane O-methyltransferase		

Table S3 continued from previous p	page
------------------------------------	------

PRMT2	P55345	ANM2_HUMAN	PRMT2 HMT1 HRMT1L1	Protein arginine N-methyltransferase 2
PRMT3	O60678	ANM3_HUMAN	PRMT3 HRMT1L3	Protein arginine N-methyltransferase 3
PRMT5	O14744	ANM5_HUMAN	PRMT5 HRMT1L5 IBP72 JBP1 SKB1	Protein arginine N-methyltransferase 5
PRMT6	Q96LA8	ANM6_HUMAN	PRMT6 HRMT1L6	Protein arginine N-methyltransferase 6
PRMT7	Q9NVM4	ANM7_HUMAN	PRMT7 KIAA1933	Protein arginine N-methyltransferase 7
PRMT8	Q9NR22	ANM8_HUMAN	PRMT8 HRMT1L3 HRMT1L4	Protein arginine N-methyltransferase 8
PRMT9	Q6P2P2	ANM9_HUMAN	PRMT9 PRMT10	Protein arginine N-methyltransferase 9
RNMT	O43148	MCES_HUMAN	RNMT KIAA0398	mRNA cap guanine-N7 methyltransferase
RRP8	O43159	RRP8_HUMAN	RRP8 KIAA0409 NML hucep-1	Ribosomal RNA-processing protein 8
TFB1M	Q8WVM0	TFB1M_HUMAN	TFB1M CGI-75	Dimethyladenosine transferase 1, mitochondrial
TFB2M	Q9H5Q4	TFB2M_HUMAN	TFB2M NS5ATP5	Dimethyladenosine transferase 2, mitochondrial
TGS1	Q96RS0	TGS1_HUMAN	TGS1 HCA137 NCOA6IP PIMT	Trimethylguanosine synthase
TPMT	P51580	TPMT_HUMAN	TPMT	Thiopurine S-methyltransferase
TRDMT1	O14717	TRDMT_HUMAN	TRDMT1 DNMT2	tRNA (cytosine(38)-C(5))-methyltransferase
TRMT1	Q9NXH9	TRM1_HUMAN	TRMT1	tRNA (guanine(26)-N(2))-dimethyltransferase
TRMT11	Q7Z4G4	TRM11_HUMAN	TRMT11 C6orf75 MDS024	tRNA (guanine(10)-N2)-methyltransferase homolog
TRMT1L	Q7Z2T5	TRM1L_HUMAN	TRMT1L C1orf25 TRM1L MSTP070	TRMT1-like protein
TRMT2A	Q8IZ69	TRM2A_HUMAN	TRMT2A HTF9C	tRNA (uracil-5-)-methyltransferase homolog A
TRMT2B	Q96GJ1	TRM2_HUMAN	TRMT2B CXorf34	tRNA (uracil(54)- $C(5)$)-methyltransferase homolog
TRMT44	Q8IYL2	TRM44_HUMAN	TRMT44 C4orf23 METTL19	Probable tRNA (uracil- $O(2)$ -)-methyltransferase
TRMT61A	Q96FX7	$TRM61_HUMAN$	TRMT61A C14orf172 TRM61	tRNA (adenine (58)-N(1))-methyltransferase catalytic sub-
				unit TRMT61A
TRMT61B	Q9BVS5	TR61B_HUMAN	TRMT61B	tRNA (adenine(58)-N(1))-methyltransferase, mitochon-
				drial
VCPKMT	Q9H867	MT21D_HUMAN	VCPKMT C14orf138 METTL21D	Protein-lysine methyltransferase METTL21D

Figure S3: Structural similarity dendrogram. The dendrogram is derived by average linkage clustering of the structural similarity matrix (Dali Z-scores).

Figure S4: Heatmap of DALI Z-scores. Axes are labelled with protein abbreviations and correspond to those listed in Table S4. Note the NNMT/INMT/PNMT cluster (top right) indicating high structural similarity between these proteins.

Number	PDB ID	Z	\mathbf{rmsd}	lali	nres	%id	Abbrev.	Full Name	Substrate	UniProt ID
1	3rod-A	51.2	0	260	260	100	NNMT	nicotinamide N-methyltransferase	SM	P40261
30	2a14-A	43.2	1.1	258	258	52	INMT	indolethylamine N-methyltransferase	SM	O95050
35	3hcd-B	37.6	1.5	252	269	39	PNMT	phenylethanolamine N-methyltransferase	SM	P11086
115	6dub-B	18.7	2.9	197	218	15	NTM1B	alpha N-terminal protein methyltransferase 1B	protein	Q5VVY1
117	2ex4-A	18.5	2.9	197	222	18	NTM1A	N-terminal Xaa-pro-lys N-methyltransferase 1	protein	Q9BV86
285	3bgv-B	15.9	3.2	192	271	13	RG7MT1	mRNA cap guanine-N7 methyltransferase	RNA	O43148
349	2bzg-A	15.5	2.8	190	230	12	TPMT	thiopurine S-methyltransferase	SM	P51580
385	5yf0-A	15.4	3.1	192	337	14	CARNMT1	carnosine N-methyltransferase	SM	Q8N4J0
422	1jqe-B	15.2	3.0	188	281	12	HNMT	histamine N-methyltransferase	SM	P50135
498	1r74-B	14.9	2.7	183	279	16	GNMT	glycine N-methyltransferase	SM	Q14749
517	2pxx-A	14.8	2.9	173	214	14	EEF1AKMT4	EEF1A lysine methyltransferase 4	Protein	P0DPD7
625	4a6e-A	14.4	3.1	188	346	14	ASMT	acetylserotonin O-methyltransferase	SM	P46597
633	6dcc-A	14.4	3.1	179	222	17	MePCE	7SK snRNA methylphosphate capping enzyme	RNA	Q7L2J0
666	3p71-T	14.2	3.5	205	315	8	LCMT1	leucine carboxyl methyltransferase 1	protein	Q9UIC8
886	4xcx-A	13.1	3.2	169	217	12	HENMT1	Small RNA 2'-O-methyltransferase	RNA	Q5T8I9
897	4rfq-A	13.0	3.5	182	269	17	MTL18	histidine protein methyltransferase 1 homolog	protein	O95568
_	3orh-A	13.0	3.3	192	231	17	GAMT	guanidinoacetate N-methyltransferase	SM	Q14353
977	4qpn-A	12.5	2.8	162	203	17	METTL21B	EEF1A lysine methyltransferase 3	protein	Q96AZ1
991	4pwy-A	12.4	3.3	174	251	15	CLNMT	calmodulin-lysine N-methyltransferase	Protein	Q7Z624
1078	4lec-A	12.0	3.1	163	203	13	HSPA-KMT	protein N-lysine methyltransferase METTL21A	protein	Q8WXB1
1090	5wws-B	12.0	3.6	166	458	14	NSUN6	putative methyltransferase NSUN6	RNA	Q8TEA1
1160	2avd-A	11.4	3.6	163	220	10	COMT	catechol O-methyltransferase domain-containing protein 1	SM	Q86VU5
1230	3egi-A	10.4	3.0	156	195	10	TGS1	trimethylguanosine synthase	RNA	Q96RS0
1233	5wcj-A	10.3	3.2	155	222	14	METTL13	methyltransferase-like protein 13	protein	Q8N6R0
1246	3uwp-A	10.1	3.2	166	341	11	DOT1L	histone-lysine N-methyltransferase, H3 lysine-79 specific	protein	Q8TEK3
1266	4ikp-A	10.0	2.9	157	335	13	PRMT4	histone-arginine methyltransferase CARM1	protein	Q86X55
1270	1zq9-A	9.9	2.8	156	279	13	DIMT1	probable dimethyladenosine transferase	RNA	Q9UNQ2
1315	2h00-C	9.7	3.3	161	204	14	METTL16	RNA N6-adenosine-methyltransferase METTL16	RNA	Q86W50
1342	4qqn-A	9.6	2.9	149	299	15	PRMT3	protein arginine N-methyltransferase 3	protein	O60678
1351	5ccx-B	9.5	3.4	155	371	11	TRMT61A	tRNA (adenine(58)-N(1))-methyltransferase catalytic subunit TRMT61A	RNA	Q96FX7
1558	4n48-B	7.7	4.0	164	406	6	CMTR1	cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1	RNA	Q8N1G2
1588	4wxx-B	7.3	3.5	142	1178	10	DNMT1	DNA (cytosine-5)-methyltransferase 1	DNA	P26358
1589	1i1n-A	7.2	3.3	137	225	15	PIMT	protein-L-isoaspartate(D-aspartate) O-methyltransferase	protein	P22061
1601	1g55-A	7.0	4.5	132	314	11	TRDMT1	tRNA (cytosine(38)-C(5))-methyltransferase	RNA	O14717

Table S4: DALI output used to rank human methyltransferases by structural similarity (sorted by Z-score). A detailed description of the DALI structural alignment workflow is given in Section 6.4

Enzyme/Assay	Source	Substrate/Stimulus Tracer	Incubation	Measured Compo- nent	Detection Method	Reference
thiopurine S-methyltransferase (TPMT)	HR (E. coli)	6-mercaptopurine (8 μ M), SAM (1.5 μ M)	$30 \text{ min}, 22^{\circ}\text{C}$	SAH	MS	Krijt et al. ^{a}
indoleethylamine N-methyltransferase (INMT)	HR (E. coli)	tryptamine (1 mM), SAM (10 µM)	30 min, $22^{\circ}\mathrm{C}$	luminescence	plate reader	this work
catechol O-methyltransferase (COMT)	HR (E. coli)	pyrocatechol (15 µM), SAM (10 µM)	15 min, 37°C	SAH	MS	Krijt et al. ^a
$phenyle than olamine \ N-methyl transferase \ (PNMT)$	HR (E. coli)	DL-normetanephrine (35 µM), SAM (6 µM)	45 min, 22°C	SAH	MS	Krijt et al. ^a
glycine N-methyltransferase (GNMT)	HR (E. coli)	glycine (100 µM), SAM (20 µM)	30 min, $22^{\circ}\mathrm{C}$	SAH	MS	Krijt et al. ^a
guanidinoacetate N-methyltransferase (GAMT) $$	HR (E. coli)	guanidineacetic acid (4 µM), SAM (7 µM)	30 min, $22^{\circ}\mathrm{C}$	SAH	MS	Krijt et al. ^a
histamine N-methyltransferase (HNMT)	HR (E. coli)	histamine (4 µM), SAM (4 µM)	15 min, 22°C	SAH	MS	Krijt et al. ^a
DNMT3a	HR (Sf9 cells)	poly(dI-dC)-poly(dI-dC) (0.6 mU/ml), [3H] SAM (100 nM)	10 min, 37°C	methylated poly(dI-dC)-Poly(dI-dC)	scint. counting	Aoki et al. ^b
PRMT1	HR (E. coli)	histone H4 full length (50 nM), [3H]SAM (700 nM)	20 min, $22^{\circ}\mathrm{C}$	methylated histone H4 full length	scint. counting	Cheng et al. ^{c}
ASH1L	HR (E. coli)	polynucleosome (1.5 µg/ml), [3H] SAM (150nM)	15 min, 22°C	methylated polynu- cleosome	scint. counting	An et al. ^{d}
DOT1L	HR (E. coli)	polynucleosome (2.5 µg/ml), [3H]SAM (100 nM)	15 min, 22°C	methylated polynu- cleosome	scint. counting	Yost et al. ^{e}
EHMT1	HR (E. coli)	histone H3 full length (10 nM) [3H]SAM (25 nM)	120 min, 22°C	methylated histone H3 full length	scint. counting	Yost et al. ^e
G9a	HR (E. coli)	histone H3 full length (5 nM) [3H]SAM (25 nM)	120 min, 22°C	methylated histone	scint. counting	Yost et al. ^e
SETDB1	HR (cellules Sf9)	histone H3 full length (30 nM), [3H]SAM (250 nM)	30 min, $22^{\circ}\mathrm{C}$	methylated histone H3 full length	scint. counting	Schultz et al. ^{f}

Table S5: Assays performed in the course of this work to evaluate selectivity for NNMT.

^a Krijt, J.; Dutá, A.; Kožich, V. J. Chromatogr., B 2009, 877, 2061–2066.
 ^b Aoki, A. Nucleic Acids Res. 2001, 29, 3506–3512.
 ^c Cheng, D.; Yadav, N.; King, R. W.; Swanson, M. S.; Weinstein, E. J.; Bedford, M. T. J. Biol. Chem. 2004, 279, 23892–23899.
 ^d An, S.; Yeo, K. J.; Jeon, Y. H.; Song, J.-J. J. Biol. Chem. 2011, 286, 8369–8374.
 ^e Yost, J. M.; Korboukh, I.; Liu, F.; Gao, C.; Jin, J. Curr. Chem. Genomics 2011, 5, 72–84.
 ^f Schultz, D. C.; Ayyanathan, K.; Negorev, D.; Maul, G. G.; Rauscher, F. J. Genes & Dev. 2002, 16, 919–932.

Figure S5: INMT IC₅₀ as say performed using the Promega MTase-GloTM as say. Full experimental details are reported in Section 6.6.2.

Figure S6: Cellular Thermal Shift Assay (CETSA) with NS1 (10), performed according to experimental protocols outlined in the manuscript Experimental section.

Figure S7: Isothermal Dose Reponse (ITDR) CETSA with with NS1 (10), performed according to experimental protocols outlined in the manuscript Experimental section.

Figure S8: Cellular Thermal Shift Assay (CETSA) with 25 (NS1-Urea), performed according to experimental protocols outlined in the manuscript Experimental section.

Figure S9: Isothermal Dose Reponse (ITDR) CETSA with 25 (NS1-Urea), performed according to experimental protocols outlined in the manuscript Experimental section.

Table S6: Average % viability in a CellTiter-Glo cytotoxicity assay (U2OS cells, **24 h timepoint**). Experimental details are reported in the manuscript Experimental section.

Compound Identifier	Trivial Name	$0.032~\mu\mathrm{M}$	$0.1~\mu\mathrm{M}$	$0.32~\mu\mathrm{M}$	$1 \ \mu M$	$3.2~\mu M$	$10 \ \mu M$	$31.6~\mu\mathrm{M}$	100 µM
10	NS1	103	105	104	105	106	111	104	106
21	NS1-Amine	102	100	98	99	105	104	97	102
23	NS1-MethylEster	102	104	103	104	106	109	105	106
24	NS1-AminoAmide	99	97	98	100	101	105	101	104
25	NS1-Urea	103	103	100	103	104	107	103	105
Doxorubicin (Positiv	e control)	At 3 μM 66	At 5 μM 39	At 10 μM 33					

Table S7: Average % viability in a CellTiter-Glo cytotoxicity assay (U2OS cells, **48 h timepoint**). Experimental details are reported in the manuscript Experimental section.

Compound Identifier	Trivial Name	$0.032~\mu\mathrm{M}$	$0.1 \ \mu M$	$0.32~\mu M$	$1 \ \mu M$	$3.2~\mu M$	$10 \ \mu M$	$31.6~\mu M$	100 µM
10	NS1	103	105	104	103	103	103	102	106
21	NS1-Amine	102	104	104	103	103	102	103	102
23	NS1-MethylEster	102	104	104	102	102	103	102	104
24	NS1-AminoAmide	101	103	104	102	102	101	102	103
25	NS1-Urea	103	104	103	104	104	102	104	105
Doxorubicin (Positiv	e control)	At 3 μM 26	At 5 μM 25	At 10 μM 16					

Table S8: Cellular MNAM levels measured by LC-MS/MS after compound treatment. Compounds noted with ^A were ran on one plate and compounds noted with ^B were ran on a separate plate. N1 and N2 refer to independent experiments performed on different days. Each experiment was run with n=2 replicates. *JBSNF-0088 refers to 6-methoxynicotinamide, a known NNMT inhibitor, and was used a control inhibitor for assay validation.

		-	N1	-	N2
Compound Identifier	Compound Name	IC ₅₀ (µM)	% Inhibition	IC ₅₀ (µM)	% Inhibition
-	-	50 (I)	at 31.6 µM	50 (I)	at 31.6 µM
P180810 ^A	$JBSNF-0088^*$ (control)	1.24		1.03	
10 ^A	NS1	>31.6	15	>31.6	21
23 ^A	NS1-MethylEster	>31.6	31	>31.6	29
$\mathbf{P180810}^{\mathrm{B}}$	$JBSNF-0088^*$ (control)	0.78		1.01	
21 ^B	NS1-Amine	NA		NA	
$24^{ m B}$	NS1-AminoAmide	>31.6	18	>31.6	17
25^{B}	NS1-Urea	NA		NA	

Compound Identifier	Trivial Name	Conc. µM	Perm., 1^{st} 10^{-6} cm/s	2^{nd}	Mean	$\%$ Recovery $1^{\rm st}$	2^{nd}	Mean	Flags
21	NS1-Amine	10	1.16	1.52	1.3	76	78	77	
23	NS1-MethylEster	10	0.07	0.06	0.1	74	83	78	
25	NS1-Urea	10	0.18	0.2	< 0.2	70	65	68	BLQ^2
10	NS1	10	0.75	0.75	< 0.7	90	100	95	BLQ
24	NS1-AminoAmide	10	0.07	0.07	< 0.1	92	92	92	BLQ

Table S9: A-B permeability as say (Caco-2, pH 6.5/7.4). Incubation: 0 and 60 min, 37°C. Detection, HPLC-MS/MS.¹

Table S10: Reference compounds used in the validation of the Caco-2 assay.

Reference Compound	Conc. µM	Perm. 1st 10^{-6} cm/s	2^{nd}	Mean	$\%$ Recovery $1^{st}st$	2^{nd}	Mean
colchicine	10	0.17	0.22	0.2	72	85	78
labetalol	10	8.53	9.16	8.8	85	87	86
propranolol	10	22.25	25.12	23.7	66	68	67
ranitidine	10	0.56	0.46	0.5	97	96	97

¹ Hidalgo, I. J.; Raub, T. J.; Borchardt, R. T. *Gastroenterology*, **1989**, *96*, 736–749.

 $^{^{2}}$ *BLQ*: Below the Limit of Quantitation. Test compound was well detected in donor samples but not detected in receiver samples. The concentration of test compound in receiver sample was below the limit of quantitation.

2 List of Abbreviations

Å	angstrom
E	Ger., entgegen
Ζ	Ger., zusammen
1MQ	1-methylquinolinium
Ac	acetate
Bn	benzyl
BPE	bis(phospholano)ethane
BSA	$N, O ext{-bis}(trimethylsilyl)$ acetamide
Bz	benzoyl
Cbz	benzyloxycarbonyl
DMAP	4-(dimethylamino)pyridine
DMEAD	di-2-methoxyethyl azodicarboxylate
DMF	N,N-dimethylformamide
DMP	Dess-Martin periodinane
DMPU	N,N'-dimethyl propylene urea
DMSO	dimethyl sulfoxide
DTBMP-OTf	$2,\!6\text{-di-}tert\text{-butyl-}4\text{-methylpyridinium triflate}$
equiv.	equivalent
Fmoc	9-fluorenylmethoxycarbonyl
НМРА	hexamethylphosphoramide
HRMS	high-resolution mass spectrometry
LDA	lithium diisopropylamide
M.S.	molecular sieves
MTBE	methyl <i>tert</i> -butyl ether
NAM	nicotinamide
Ns	2-nitrobenzenesulfonyl

ODE	ordinary differential equation
PhH	benzene
PhMe	toluene
PMHS	(poly)methylhydrosiloxane
Pyr	pyridine
quant.	quantitative
rbf	round-bottom flask
rfu	relative fluorescence units
RT	room temperature
SAH	S-adenosylhomocysteine
SAM	S-adenosylmethionine
SAR	structure-activity relationship
TASF	${\it tris} ({\it dimethylamino}) {\it sulfonium \ diffuor otrimethyl silicate}$
TBAF	tetra- <i>n</i> -butylammonium fluoride
TBAI	tetra-n-butylammonium iodide
TBDPS	<i>tert</i> -butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
$\mathrm{Tf}_{2}\mathrm{O}$	trifluoromethanesulfonic (triflic) anhydride
TFA	trifluoroacetic acid / trifluoroacetyl
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TMS	trimethylsilyl
Ts	<i>p</i> -toluenesulfonyl

3 Positional Numbering System

The following figure features representative examples of the positional numbering system used in this work. Several compound names directly derive from it, such as NS1-Pyr12' for the analog where the carbon atom at the 12' position was replaced by a nitrogen atom or NS1-12'Cl for the analog where a chloro substituent was added at the 12' position.

(Intermediates that have not been assigned numbering in the main text are numbered sequentially in the experimental section starting with S1).

4 Supplemental Schemes

Scheme S7

NHBz

N=

S18

Scheme S8

Scheme S10

Scheme S11

S33

NS1-Cyclopropyl (18)

 NH_3

MeOH

93%

Scheme S14

MeOH/TFA (2:1), 80 °C 42%

Scheme S15

S39

S40

3-iodobenzamide Pd(PPh₃)₄, Cul PhMe/DMF/*i*-Pr₂NEt (5:1:1) 82%

Scheme S17

 NH_3

MeOH 45%

Scheme S18

Scheme S20

Scheme S35

Scheme S36

Scheme S37 $\,$

Scheme S38

Scheme S50 $\,$

Scheme S54 $\,$

Scheme S55

Scheme S56 $\,$

5 Small-Molecule X-Ray Crystallography

A crystal mounted on a diffractometer was collected data at 100 K. The intensities of the reflections were collected by means of a Bruker APEX DUO CCD diffractometer ($Cu_{K\alpha}$ radiation, $\lambda=1.54178$ Å), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at -30° , -55° , -80° , 30° , 55° , 80° and 115° in 2θ . Data integration down to 0.84 Å resolution was carried out using SAINT V8.37 A² with reflection spot size optimization. Absorption corrections were made with the program SADABS². The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^2 using SHELXT-2014³ and SHELXL-2014⁴ with OLEX 2 interface⁵. Nonhydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Tables S11, S14, and S16, for compounds **10**, **S30**, and **S53**, respectively. Geometric parameters are shown in Tables S12, S15, S17 and hydrogen-bond parameters are listed in Tables S13 and S18. The Ortep plots were produced with SHELXL-2014, and the other images were produced with Accelrys DS Visualizer 2.0⁶.

5.1 NS1 \cdot TFA (10)

Table S11: Experimental Details

Crystal Data	
Chemical Formula	$C_{26}H_{30}F_{3}N_{7}O_{9}$
M_r	641.57
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	5.0591(1), 10.9615(2), 13.2000(7)
α, β, γ (°)	103.0375 (11), 90.8460 (9), 90.3108 (10)

² Bruker AXS APEX3, Bruker AXS, Madison, Wisconsin, 2015.

³ Sheldrick, G. M. Acta Crystallogr., Sect. A 2015, 71, 3–8.

⁴ Sheldrick, G. M. Acta Crystallogr., Sect. C 2015, 71, 3-8.

⁵ Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339–341.

⁶ Accelrys DS Visualizer v2.0.1, Accelrys Software Inc., 2007.

V(A)	713.03 (2)
	1
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	1.09
Crystal size (mm)	0.18 imes 0.08 imes 0.06
Data Collection	
Diffractometer	Bruker D8 goniometer with CCD area detector
Absorption correction	Multi-scan SADABS
T_{\min}, T_{\max}	0.738, 0.806
No. of measured, independent and	17748, 4335, 4280
observed $[I > 2\sigma(I)]$ reflections	
$R_{\rm int}$	0.027
$(\sin\theta/\lambda)_{\max}(\text{\AA}^{-1})$	0.596
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.073, 1.02
No. of reflections	4335
No. of parameters	464
No. of restraints	9
H-atom treatment	H atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min}(e{ m \AA}^{-3})$	0.53, -0.17
Absolute structure	Flack x determined using 1012 quotients $[(I+)-(I-)]/[(I+)+(I-)]^7$
Absolute structure parameter	-0.06 (8)

Computer programs: SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

O1–C6	1.417(3)	С9-Н9	1
O1–C9	1.466(3)	C10-C11	1.537(3)
O2–C7	1.409(3)	C10–H10A	0.99
O2–H2	0.86(4)	C10–H10B	0.99
O3–C8	1.421(3)	C11–C16	1.474(4)
O3–H3	0.88(4)	C11–C12	1.549(3)
O4–C15	1.220(3)	C11–H11	1
O5–C15	1.301(3)	C12–C13	1.524(3)
O5–H5	1.14 (6)	C12–H12A	0.99
O6–C24	1.252 (3)	C12–H12B	0.99

Table S12:	Geometric parameters	(Å,	°)
------------	----------------------	-----	----

⁷ Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B **2013**, 69, 249–259.

N1–C1	1.370 (3)	C13-C14	1.528(3)
N1–C5	1.380 (3)	C13–H13A	0.99
N1–C6	1.462(3)	C13–H13B	0.99
N2–C2	1.319(3)	C14–C15	1.516(3)
N2–C1	1.346(3)	C14–H14	1
N3-C2	1.339(3)	C16–C17	1.195(4)
N3-C3	1.359(3)	C17–C18	1.442(4)
N4-C3	1.322(3)	C18–C23	1.394(3)
N4–H4A	0.92(4)	C18–C19	1.401(4)
N4–H4B	0.88 (4)	C19–C20	1.381(4)
N5–C5	1.303(3)	C19–H19	0.95
N5–C4	1.386(3)	C20–C21	1.393(4)
N6-C14	1.492(3)	C20-H20	0.95
N6–H6A	0.93(4)	C21–C22	1.402(4)
N6–H6B	0.92(4)	C21–H21	0.95
N6–H6C	0.97(3)	C22–C23	1.389(4)
N7-C24	1.319 (4)	C22–C24	1.499(3)
N7–H7A	0.90 (4)	C23–H23	0.95
N7–H7B	0.88 (4)	O11–C31	1.232(3)
C1-C4	1.391 (3)	O12-C31	1.253(3)
C2–H2A	0.95	C31–C32A	1.540(3)
C3–C4	1.417(3)	C31–C32	1.540(3)
C5–H5A	0.95	C32–F1	1.335(9)
C6–C7	1.531(3)	C32–F2	1.338(9)
C6–H6	1	C32–F3	1.374(6)
C7–C8	1.516(4)	C32A–F3A	1.283(12)
C7–H7	1	C32A–F1A	1.311 (18)
C8–C9	1.527(3)	C32A–F2A	1.378 (18)
С8-Н8	1	O1W–H1WA	0.85(6)
C9-C10	1.522(3)	O1W-H1WB	0.79(5)
C6-O1-C9	109.24 (17)	C16-C11-C12	109.25(19)
С7-О2-Н2	104 (2)	C10-C11-C12	113.13 (19)
С8-О3-Н3	103 (3)	C16-C11-H11	108
C15–O5–H5	112 (3)	C10-C11-H11	108
C1-N1-C5	105.4 (2)	C12-C11-H11	108
C1-N1-C6	126.1 (2)	C13-C12-C11	110.10 (19)
C5-N1-C6	128.5 (2)	C13–C12–H12A	109.6
C2-N2-C1	111.4 (2)	C11–C12–H12A	109.6
C2-N3-C3	120.7(2)	C13-C12-H12B	109.6
C3–N4–H4A	120 (2)	C11–C12–H12B	109.6

C3–N4–H4B	123 (2)	H12A-C12-H12B	108.2
H4A–N4–H4B	116(3)	C12-C13-C14	116.8(2)
C5–N5–C4	104.1(2)	C12–C13–H13A	108.1
C14–N6–H6A	109(2)	C14–C13–H13A	108.1
C14–N6–H6B	114(2)	C12–C13–H13B	108.1
H6A-N6-H6B	111 (3)	C14–C13–H13B	108.1
C14-N6-H6C	108.9(19)	H13A-C13-H13B	107.3
H6A-N6-H6C	106(3)	N6-C14-C15	109.3(2)
H6B-N6-H6C	108(3)	N6-C14-C13	113.8(2)
C24-N7-H7A	117(2)	C15–C14–C13	113.6(2)
C24-N7-H7B	125~(2)	N6-C14-H14	106.5
H7A-N7-H7B	116(3)	C15–C14–H14	106.5
N2-C1-N1	127.3(2)	C13–C14–H14	106.5
N2-C1-C4	126.6(2)	O4-C15-O5	125.5(2)
N1-C1-C4	106.1(2)	O4-C15-C14	122.5(2)
N2-C2-N3	128.2(2)	O5-C15-C14	112.0(2)
N2–C2–H2A	115.9	C17-C16-C11	173.0(3)
N3-C2-H2A	115.9	C16-C17-C18	172.7(3)
N4-C3-N3	119.1(2)	C23-C18-C19	119.1(2)
N4-C3-C4	125.3(2)	C23-C18-C17	122.6(2)
N3-C3-C4	115.6(2)	C19–C18–C17	118.3(2)
N5-C4-C1	110.4(2)	C20-C19-C18	120.6(2)
N5-C4-C3	132.1(2)	С20-С19-Н19	119.7
C1-C4-C3	117.5(2)	C18-C19-H19	119.7
N5-C5-N1	114.1(2)	C19–C20–C21	120.2(2)
N5-C5-H5A	122.9	C19–C20–H20	119.9
N1-C5-H5A	122.9	C21-C20-H20	119.9
O1-C6-N1	109.56(19)	C20–C21–C22	119.8 (2)
O1–C6–C7	106.44(19)	C20–C21–H21	120.1
N1-C6-C7	113.56(19)	C22–C21–H21	120.1
O1–C6–H6	109.1	C23–C22–C21	119.6(2)
N1-C6-H6	109.1	C23–C22–C24	118.8 (2)
С7-С6-Н6	109.1	C21–C22–C24	121.5(2)
O2–C7–C8	113.55(19)	C22–C23–C18	120.7(2)
O2–C7–C6	112.21 (19)	C22–C23–H23	119.7
C8-C7-C6	101.34 (19)	С18-С23-Н23	119.7
O2–C7–H7	109.8	O6-C24-N7	121.6(2)
C8–C7–H7	109.8	O6-C24-C22	120.0(2)
С6-С7-Н7	109.8	N7-C24-C22	118.4(2)
O3–C8–C7	110.95(19)	O11-C31-O12	130.5(2)
O3-C8-C9	108.27(19)	O11–C31–C32A	115.1(2)

C7–C8–C9	101.94(18)	O12–C31–C32A	114.3(2)
O3–C8–H8	111.7	O11-C31-C32	115.1(2)
C7-C8-H8	111.7	O12-C31-C32	114.3(2)
С9-С8-Н8	111.7	F1-C32-F2	104.1 (11)
O1-C9-C10	107.96(18)	F1-C32-F3	105.6(7)
O1–C9–C8	105.45(18)	F2-C32-F3	110.3(7)
С10-С9-С8	115.4(2)	F1-C32-C31	112.2(9)
О1-С9-Н9	109.3	F2-C32-C31	113.1(7)
С10-С9-Н9	109.3	F3-C32-C31	111.1(3)
С8-С9-Н9	109.3	F3A-C32A-F1A	112.6(16)
C9-C10-C11	111.14(19)	F3A-C32A-F2A	96.4(15)
C9–C10–H10A	109.4	F1A-C32A-F2A	108(2)
C11–C10–H10A	109.4	F3A-C32A-C31	115.7(6)
C9-C10-H10B	109.4	F1A-C32A-C31	118 (2)
C11–C10–H10B	109.4	F2A-C32A-C31	103.0(14)
H10A-C10-H10B	108	H1WA-O1W-H1WB	113(5)
C16-C11-C10	110.3(2)		
C2-N2-C1-N1	179.2(2)	O3-C8-C9-C10	154.9(2)
C2-N2-C1-C4	0.9(3)	C7-C8-C9-C10	-88.1(2)
C5-N1-C1-N2	-178.1(2)	O1-C9-C10-C11	62.3(2)
C6-N1-C1-N2	3.3(4)	C8-C9-C10-C11	179.94(19)
C5-N1-C1-C4	0.5(2)	C9-C10-C11-C16	72.6(2)
C6-N1-C1-C4	-178.1(2)	C9-C10-C11-C12	-164.7(2)
C1-N2-C2-N3	-0.5(4)	C16-C11-C12-C13	-60.6 (3)
C3-N3-C2-N2	-0.9 (4)	C10-C11-C12-C13	176.03(19)
C2-N3-C3-N4	-177.5(2)	C11-C12-C13-C14	177.8(2)
C2-N3-C3-C4	1.7(3)	C12-C13-C14-N6	72.3(3)
C5-N5-C4-C1	0.6(3)	C12-C13-C14-C15	-53.6(3)
C5-N5-C4-C3	178.2(2)	N6-C14-C15-O4	7.7(3)
N2-C1-C4-N5	177.9(2)	C13-C14-C15-O4	136.0(2)
N1-C1-C4-N5	-0.7(2)	N6-C14-C15-O5	-174.33(19)
N2-C1-C4-C3	-0.1(3)	C13-C14-C15-O5	-46.0(3)
N1-C1-C4-C3	-178.70(19)	C23-C18-C19-C20	0.1~(4)
N4-C3-C4-N5	0.5~(4)	C17-C18-C19-C20	-177.7(2)
N3-C3-C4-N5	-178.6(2)	C18-C19-C20-C21	-0.2(4)
N4-C3-C4-C1	177.9(2)	C19-C20-C21-C22	0.5(3)
N3-C3-C4-C1	-1.2 (3)	C20-C21-C22-C23	-0.6 (3)
C4-N5-C5-N1	-0.3 (3)	C20-C21-C22-C24	175.8(2)
C1-N1-C5-N5	-0.2(3)	C21-C22-C23-C18	0.4(3)
C6-N1-C5-N5	178.5(2)	C24-C22-C23-C18	-176.1(2)

-138.04 (18)	C19-C18-C23-C22	-0.2(3)
-14.9(2)	C17-C18-C23-C22	177.5(2)
-110.1 (2)	C23-C22-C24-O6	7.0(3)
71.5(3)	C21-C22-C24-O6	-169.5(2)
131.0(2)	C23-C22-C24-N7	-173.9(2)
-47.3(3)	C21-C22-C24-N7	9.7(3)
155.32(19)	O11-C31-C32-F1	148.7(9)
-84.1 (2)	O12-C31-C32-F1	-33.4 (9)
33.9(2)	O11-C31-C32-F2	-93.9 (9)
154.47(19)	O12-C31-C32-F2	84.0 (9)
-44.0 (3)	O11-C31-C32-F3	30.7~(6)
76.6(2)	O12-C31-C32-F3	-151.4 (5)
-159.06(19)	O11–C31–C32A–F3A	1.0(9)
-38.5(2)	O12–C31–C32A–F3A	178.9(9)
113.7(2)	O11–C31–C32A–F1A	139(2)
-10.2 (2)	O12-C31-C32A-F1A	-43(2)
-86.1 (2)	O11–C31–C32A–F2A	-102.8 (17)
30.9(2)	O12–C31–C32A–F2A	75.1(17)
	$\begin{array}{c} -138.04 \ (18) \\ -14.9 \ (2) \\ -110.1 \ (2) \\ \hline \\ 71.5 \ (3) \\ 131.0 \ (2) \\ -47.3 \ (3) \\ 155.32 \ (19) \\ -84.1 \ (2) \\ 33.9 \ (2) \\ 154.47 \ (19) \\ -44.0 \ (3) \\ \hline \\ 76.6 \ (2) \\ -159.06 \ (19) \\ \hline \\ -38.5 \ (2) \\ 113.7 \ (2) \\ -10.2 \ (2) \\ -86.1 \ (2) \\ 30.9 \ (2) \end{array}$	-138.04 (18)C19-C18-C23-C22-14.9 (2)C17-C18-C23-C22-110.1 (2)C23-C22-C24-O671.5 (3)C21-C22-C24-O6131.0 (2)C23-C22-C24-N7-47.3 (3)C21-C22-C24-N7-47.3 (3)C21-C22-C24-N7155.32 (19)O11-C31-C32-F1-84.1 (2)O12-C31-C32-F1-38.9 (2)O11-C31-C32-F2154.47 (19)O12-C31-C32-F3-44.0 (3)O11-C31-C32-F3-66 (2)O12-C31-C32-F3-159.06 (19)O11-C31-C32A-F3A-38.5 (2)O12-C31-C32A-F3A113.7 (2)O11-C31-C32A-F1A-10.2 (2)O12-C31-C32A-F1A-86.1 (2)O11-C31-C32A-F2A30.9 (2)O12-C31-C32A-F2A

Table S13: Hydrogen-bond parameters

$D-H\cdotsA$	$\mathrm{D-H}\ (\mathrm{\AA})$	$\mathrm{H} \cdots \mathrm{A} (\mathrm{\AA})$	$D \cdots A (A)$	$\mathrm{D}-\mathrm{H}\cdots\mathrm{A}\left(^{\circ} ight)$
$O2-H2 \cdot \cdot \cdot N2^{i}$	0.86(4)	1.92(4)	2.757(3)	163(3)
$O3-H3 \cdot \cdot \cdot O11^{ii}$	0.88(4)	1.94(4)	2.784(2)	162(4)
$O3-H3 \cdot \cdot \cdot O2$	0.88(4)	2.38(4)	2.766(3)	107(3)
$O5-H5 \cdot \cdot \cdot N3^{iii}$	1.14(6)	1.41(6)	2.542(3)	172(5)
N4–H4A \cdot \cdot \cdot O4 ^{iv}	0.92(4)	2.19(4)	3.070(3)	159(3)
$N4-H4B \cdot \cdot \cdot O6^v$	0.88(4)	2.01(4)	2.876(3)	166(3)
$N6-H6B \cdot \cdot \cdot O12^{i}$	0.92(4)	1.95(4)	2.861(3)	174(3)
N6–H6A \cdot · · O12	0.93(4)	2.11(4)	2.991(3)	158(3)
N6–H6A \cdot \cdot \cdot O3 ^{vi}	0.93(4)	2.64(3)	2.948(3)	100 (2)
$N6-H6C \cdot \cdot \cdot O1W^{vi}$	0.97(3)	1.91(3)	2.830(3)	156(3)
N7–H7B \cdot · · O11 ^{vii}	0.88(4)	2.18(4)	3.005(3)	157(3)
N7–H7A · · · N5 ^{viii}	0.90(4)	2.10(4)	2.975(3)	165(3)
O1W–H1WB · · · O6i	0.79(5)	2.09(5)	2.870(3)	173(5)
N4–H4A \cdot \cdot \cdot O6 ^{ix}	0.92(4)	2.85(4)	3.310 (3)	112 (3)
$O1W-H1WB \cdot \cdot \cdot O4^x$	0.79(5)	2.79(5)	3.052(3)	102 (4)

 $\begin{array}{l} \text{Symmetry code(s): (i) x-1, y, z; (ii) x-1, y+1, z; (iii) x-1, y, z+1; (iv) x+1, y, z-1; (v) x-1, y-1, z-1; (vi) x, y-1, z; (vii) x, y+1, z+1; (viii) x+1, y+1, z+1; (ix) x, y-1, z-1; (x) x, y+1, z. \end{array}$

Figure S10: Perspective views showing 50% probability displacement.

Figure S11: Three-dimensional supramolecular architecture viewed along the a-axis direction.

5.2 NS1-Cyclopropyl: Cyclopropyl Alkyne S30

Table S14: Experimental Details

Crystal Data	
Chemical Formula	$C_{13}H_{18}O_4$
M_r	238.27
Crystal system, space group	Monoclinic, F2 ₁
Temperature (K)	100
a, b, c (Å)	5.7618(1), 19.4824(4), 11.8204(2)
β (°)	90.0232 (11)
$V(\text{\AA}^3)$	1326.88 (4)
Z	4
Radiation type	Cu Ka
$\mu \ (\mathrm{mm}^{-1})$	0.72
Crystal size (mm)	$0.14 \times 0.10 \times 0.06$
Data Collection	
D'C I	
Diffractometer	Bruker D8 goniometer with CCD area detector
Diffractometer Absorption correction	Bruker D8 goniometer with CCD area detector Multi-scan <i>SADABS</i>
Diffractometer Absorption correction T_{\min}, T_{\max}	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and	Bruker D8 goniometer with CCD area detectorMulti-scan SADABS0.797, 0.86426548, 4269, 4245
DiffractometerAbsorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	Bruker D8 goniometer with CCD area detectorMulti-scan SADABS0.797, 0.86426548, 4269, 4245
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int}	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864 26548, 4269, 4245 0.032
$ \begin{array}{ c c c c c c } \hline \text{Diffractometer} \\ \hline \text{Absorption correction} \\ \hline T_{\min}, T_{\max} \\ \hline \text{No. of measured, independent and} \\ \hline \text{observed } [I > 2\sigma(I)] \text{ reflections} \\ \hline R_{\text{int}} \\ \hline (\sin \theta / \lambda)_{\max}(\text{\AA}^{-1}) \\ \hline \end{array} $	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864 26548, 4269, 4245 0.032 0.596
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta / \lambda)_{\max}(\text{\AA}^{-1})$	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864 26548, 4269, 4245 0.032 0.596
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta / \lambda)_{\max}(\text{\AA}^{-1})$ Refinement	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864 26548, 4269, 4245 0.032 0.596
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta / \lambda)_{\max}(\text{\AA}^{-1})$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864 26548, 4269, 4245 0.032 0.596 0.026, 0.064, 1.06
Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta / \lambda)_{\max}(\text{\AA}^{-1})$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections	Bruker D8 goniometer with CCD area detector Multi-scan SADABS 0.797, 0.864 26548, 4269, 4245 0.032 0.596 0.026, 0.064, 1.06 4269

No. of restraints	1
H atom parameters constrained	
$\Delta ho_{ m max}, \Delta ho_{ m min}(e{ m \AA}^{-3})$	0.11, -0.15
Absolute structure	Flack x determined using 1834 quotients $[(I+)-(I-)]/[(I+)+(I-)]^8$
Absolute structure parameter	-0.02 (9)

Computer programs: SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

O1–C2	1.426(3)	O5–C21	1.421(3)
O1–C1	1.438(3)	O5–C25	1.428(3)
O2–C3	1.410 (3)	O6–C23	1.408(3)
O2–C4	1.439(3)	O6–C24	1.442(3)
O3–C1	1.428(3)	O7–C22	1.428(3)
O3–C5	1.429(3)	O7–C21	1.434(4)
O4–C3	1.415(3)	O8–C23	1.413(3)
O4–C8	1.433(4)	O8–C28	1.434(4)
C1-C7	1.512(4)	C21–C26	1.505(4)
C1–C6	1.516(4)	C21–C27	1.508(4)
C2–C3	1.529(4)	C22–C23	1.521(4)
C2-C5	1.550(4)	C22–C25	1.540(4)
C2–H2	1	C22–H22	1
С3–Н3	1	C23–H23	1
C4–C9	1.509(4)	C24–C29	1.510(4)
C4–C5	1.528(4)	C24–C25	1.520(4)
C4–H4	1	C24–H24	1
C5-H5	1	C25–H25	1
C6–H6A	0.98	C26–H26A	0.98
C6–H6B	0.98	C26–H26B	0.98
C6–H6C	0.98	C26–H26C	0.98
C7–H7A	0.98	C27–H27A	0.98
C7–H7B	0.98	C27–H27B	0.98
C7-H7C	0.98	C27–H27C	0.98
C8–H8A	0.98	C28–H28A	0.98
C8–H8B	0.98	C28–H28B	0.98
C8–H8C	0.98	C28–H28C	0.98
C9–C10	1.492(4)	C29–C30	1.500(4)
C9–C11	1.514 (4)	C29–C31	1.517 (4)
С9–Н9	1	C29–H29	1

Table S15: Geometric parameters (Å, °)

⁸ Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B **2013**, 69, 249–259.

C10-C11	1.519(5)	C30–C31	1.520(4)
C10–H10A	0.99	С30-Н30А	0.99
C10-H10B	0.99	C30–H30B	0.99
C11–C12	1.441(5)	C31–C32	1.439(4)
C11–H11	1	C31–H31	1
C12–C13	1.182(5)	C32–C33	1.181(4)
C13–H13	0.95	C33–H33	0.95
C2-O1-C1	107.74(19)	C21-O5-C25	107.6(2)
C3–O2–C4	107.8(2)	C23-O6-C24	107.9(2)
C1-O3-C5	107.19(19)	C22–O7–C21	107.4(2)
C3–O4–C8	112.1(2)	C23–O8–C28	112.1(2)
O3-C1-O1	103.8 (2)	O5-C21-O7	104.4(2)
O3-C1-C7	108.9(2)	O5-C21-C26	108.6(2)
O1-C1-C7	109.1 (2)	O7-C21-C26	109.0(2)
O3-C1-C6	111.3 (2)	O5-C21-C27	110.7(2)
O1-C1-C6	111.1 (2)	O7-C21-C27	111.2 (3)
C7-C1-C6	112.2 (2)	C26-C21-C27	112.6 (2)
O1-C2-C3	110.1 (2)	O7-C22-C23	109.2(2)
O1-C2-C5	104.7(2)	O7-C22-C25	104.9 (2)
C3-C2-C5	103.9(2)	C23-C22-C25	104.3(2)
O1-C2-H2	112.5	O7–C22–H22	112.6
С3-С2-Н2	112.5	C23–C22–H22	112.6
С5-С2-Н2	112.5	C25-C22-H22	112.6
O2-C3-O4	111.9(2)	O6-C23-O8	111.8 (2)
O2-C3-C2	106.2(2)	O6-C23-C22	105.5(2)
O4-C3-C2	107.4 (2)	O8-C23-C22	107.3 (2)
O2-C3-H3	110.4	O6-C23-H23	110.7
O4-C3-H3	110.4	O8-C23-H23	110.7
С2-С3-Н3	110.4	C22-C23-H23	110.7
O2-C4-C9	112.7(2)	O6-C24-C29	112.5(2)
O2-C4-C5	104.2 (2)	O6-C24-C25	104.1 (2)
C9–C4–C5	114.6 (2)	C29–C24–C25	114.5 (2)
O2-C4-H4	108.4	O6-C24-H24	108.5
С9-С4-Н4	108.4	C29–C24–H24	108.5
С5-С4-Н4	108.4	C25-C24-H24	108.5
O3-C5-C4	108.9 (2)	O5-C25-C24	108.5(2)
O3-C5-C2	103.72 (19)	O5-C25-C22	104.1 (2)
C4–C5–C2	104.5 (2)	C24-C25-C22	104.8 (2)
O3-C5-H5	113	O5-C25-H25	112.9
C4-C5-H5	113	C24-C25-H25	112.9
۱			

С2-С5-Н5	113	C22–C25–H25	112.9
C1–C6–H6A	109.5	C21–C26–H26A	109.5
С1-С6-Н6В	109.5	С21-С26-Н26В	109.5
H6A-C6-H6B	109.5	H26A-C26-H26B	109.5
С1-С6-Н6С	109.5	C21-C26-H26C	109.5
H6A–C6–H6C	109.5	H26A-C26-H26C	109.5
H6B-C6-H6C	109.5	H26B-C26-H26C	109.5
C1–C7–H7A	109.5	C21–C27–H27A	109.5
С1-С7-Н7В	109.5	C21–C27–H27B	109.5
H7A–C7–H7B	109.5	H27A–C27–H27B	109.5
C1-C7-H7C	109.5	C21-C27-H27C	109.5
H7A–C7–H7C	109.5	H27A–C27–H27C	109.5
H7B-C7-H7C	109.5	H27B-C27-H27C	109.5
O4–C8–H8A	109.5	O8–C28–H28A	109.5
O4–C8–H8B	109.5	O8–C28–H28B	109.5
H8A–C8–H8B	109.5	H28A–C28–H28B	109.5
O4–C8–H8C	109.5	O8-C28-H28C	109.5
H8A–C8–H8C	109.5	H28A-C28-H28C	109.5
H8B-C8-H8C	109.5	H28B-C28-H28C	109.5
С10-С9-С4	119.2(3)	C30-C29-C24	118.2(2)
C10-C9-C11	60.7(2)	C30-C29-C31	60.49(19)
C4–C9–C11	116.3(3)	C24-C29-C31	115.2(2)
С10-С9-Н9	116.3	С30-С29-Н29	117
С4-С9-Н9	116.3	С24-С29-Н29	117
С11-С9-Н9	116.3	С31-С29-Н29	117
C9-C10-C11	60.4(2)	C29-C30-C31	60.32(19)
С9-С10-Н10А	117.7	С29-С30-Н30А	117.7
C11-C10-H10A	117.7	C31-C30-H30A	117.7
С9-С10-Н10В	117.7	C29-C30-H30B	117.7
C11-C10-H10B	117.7	C31-C30-H30B	117.7
H10A-C10-H10B	114.9	H30A-C30-H30B	114.9
C12–C11–C9	119.9(3)	C32-C31-C29	120.3(3)
C12-C11-C10	121.5(3)	C32-C31-C30	119.9(3)
C9-C11-C10	58.9(2)	C29-C31-C30	59.20(19)
C12-C11-H11	115	C32-C31-H31	115.3
С9-С11-Н11	115	C29-C31-H31	115.3
С10-С11-Н11	115	С30-С31-Н31	115.3
C13-C12-C11	179.2(4)	C33-C32-C31	179.2(4)
С12-С13-Н13	180	С32-С33-Н33	180
C5-O3-C1-O1	-36.5(3)	C25-O5-C21-O7	-34.3 (3)

C5-O3-C1-C7	-152.6 (2)	C25-O5-C21-C26	-150.4 (2)
C5-O3-C1-C6	83.1 (3)	C25-O5-C21-C27	85.5 (3)
C2-O1-C1-O3	32.7 (3)	C22-O7-C21-O5	32.5(3)
C2-O1-C1-C7	148.7(2)	C22–O7–C21–C26	148.4(2)
C2-O1-C1-C6	-87.1 (3)	C22-O7-C21-C27	-86.9 (3)
C1-O1-C2-C3	-127.7 (2)	C21-O7-C22-C23	-129.6 (2)
C1-O1-C2-C5	-16.6 (3)	C21-O7-C22-C25	-18.4 (3)
C4-O2-C3-O4	-81.8 (2)	C24-O6-C23-O8	-80.3 (2)
C4-O2-C3-C2	35.1(3)	C24-O6-C23-C22	36.1(3)
C8-O4-C3-O2	-61.9 (3)	C28-O8-C23-O6	-60.8 (3)
C8-O4-C3-C2	-178.2 (2)	C28-O8-C23-C22	-176.1 (2)
O1-C2-C3-O2	93.6 (2)	O7-C22-C23-O6	91.4 (2)
C5-C2-C3-O2	-18.1 (3)	C25-C22-C23-O6	-20.3 (3)
O1-C2-C3-O4	-146.4 (2)	O7-C22-C23-O8	-149.2 (2)
C5-C2-C3-O4	101.9 (2)	C25-C22-C23-O8	99.1 (2)
C3-O2-C4-C9	87.5 (3)	C23-O6-C24-C29	87.8 (3)
C3–O2–C4–C5	-37.3 (3)	C23-O6-C24-C25	-36.7 (3)
C1-O3-C5-C4	136.6 (2)	C21-O5-C25-C24	133.7(2)
C1-O3-C5-C2	25.7(3)	C21-O5-C25-C22	22.4(3)
O2-C4-C5-O3	-86.3 (2)	O6-C24-C25-O5	-88.8 (2)
C9-C4-C5-O3	150.1(2)	C29-C24-C25-O5	148.0(2)
O2-C4-C5-C2	24.0(3)	O6-C24-C25-C22	22.0 (3)
C9-C4-C5-C2	-99.6 (3)	C29-C24-C25-C22	-101.2 (2)
O1-C2-C5-O3	-5.4 (3)	O7-C22-C25-O5	-2.3 (3)
C3-C2-C5-O3	110.1 (2)	C23-C22-C25-O5	112.5(2)
O1-C2-C5-C4	-119.4(2)	O7-C22-C25-C24	-116.2 (2)
C3-C2-C5-C4	-3.9(3)	C23-C22-C25-C24	-1.4 (3)
O2-C4-C9-C10	147.8(3)	O6-C24-C29-C30	143.8(3)
C5-C4-C9-C10	-93.2 (3)	C25-C24-C29-C30	-97.7 (3)
O2-C4-C9-C11	78.2(3)	O6-C24-C29-C31	75.2(3)
C5-C4-C9-C11	-162.8 (3)	C25-C24-C29-C31	-166.2 (2)
C4-C9-C10-C11	-105.6 (3)	C24-C29-C30-C31	-104.6 (3)
C10-C9-C11-C12	110.9 (4)	C30-C29-C31-C32	108.9(3)
C4-C9-C11-C12	-138.8 (3)	C24-C29-C31-C32	-141.6 (3)
C4-C9-C11-C10	110.3 (3)	C24-C29-C31-C30	109.5(3)
C9-C10-C11-C12	-108.3 (3)	C29-C30-C31-C32	-109.5 (3)

Figure S12: Perspective views showing 50% probability displacement.

Figure S13: Three-dimensional supramolecular architecture viewed along the a-axis direction.

5.3 NS1-Urea: Alkynyl Alcohol S53

Table S16: Experimental Details

Crystal Data	
Chemical Formula	$C_{14}H_{22}O_5$
M_r	270.31
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	100
a, b, c (Å)	5.7488(1), 9.3963(2), 27.2172(7)
$V(\text{\AA}^3)$	1470.20 (6)
Z	4
Radiation type	Cu $K\alpha$
$\mu \ (\mathrm{mm}^{-1})$	0.76
Crystal size (mm)	$0.18 \times 0.12 \times 0.10$
Data Collection	
Diffractometer	Bruker D8 goniometer with CCD area detector
Absorption correction	Multi-scan SADABS
T_{\min}, T_{\max}	0.796, 0.864
No. of measured, independent and	31333, 2577, 2531
observed $[I > 2\sigma(I)]$ reflections	
$R_{ m int}$	0.035
$(\sin\theta/\lambda)_{\max}(\text{\AA}^{-1})$	0.596
Refinement	
$R[F^2>2\sigma(F^2)], wR(F^2), S$	0.040, 0.107, 1.09
No. of reflections	2577
No. of parameters	206
No. of restraints	252

H-atom treatment	H atom parameters constrained
$\Delta ho_{ m max}, \Delta ho_{ m min}(e{ m \AA}^{-3})$	0.43, -0.23
Absolute structure	Flack x determined using 1012 quotients $[(I+)-(I-)]/[(I+)+(I-)]^9$
Absolute structure parameter	0.10 (4)

Computer programs: APEX3 v2016.9-0 (Bruker-AXS, 2016), SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

O1–C1	1.419(3)	C8A–H8AA	0.99
O1–C5	1.438(3)	C8A–H8AB	0.99
O2–C1	1.410 (3)	C9A–O5A	1.480(9)
O2-C10	1.416 (4)	С9А–Н9АА	0.99
O3–C2	1.424(3)	С9А–Н9АВ	0.99
O3–C3	1.425(3)	O5A–H5AA	0.84
O4–C3	1.428(3)	C7B-C13	1.460 (4)
O4–C4	1.430(3)	C7B–C8B	1.449(15)
C1–C2	1.528(4)	C7B–H7B	1
C1-H1	1	C8B–C9B	1.510 (19)
C2–C4	1.536(3)	C8B–H8BA	0.99
С2-Н2	1	C8B-H8BB	0.99
C3–C11	1.510(4)	C9B–O5B	1.491 (11)
C3–C12	1.512(4)	C9B–H9BA	0.99
C4–C5	1.527(3)	C9B–H9BB	0.99
C4–H4	1	O5B–H5B	0.84
C5–C6	1.523(3)	C7C-C13	1.460 (4)
С5-Н5	1	C7C–C8C	1.606(17)
C6-C7C	1.539(4)	C7C–H7C	1
C6–C7	1.539(4)	C8C–C9C	1.465(18)
C6–C7A	1.539(4)	C8C–H8CA	0.99
C6-C7B	1.539(4)	C8C–H8CB	0.99
C6–H6A	0.99	C9C-O5C	1.497(11)
C6–H6B	0.99	C9C–H9CA	0.99
C7–C13	1.460(4)	C9C–H9CB	0.99
C7–C8	1.587(11)	O5C–H5C	0.84
C7-H7	1	C10–H10A	0.98
C8–C9	1.505(11)	C10–H10B	0.98
C8–H8A	0.99	C10–H10C	0.98
C8–H8B	0.99	C11–H11A	0.98
C9–O5	1.458(8)	C11–H11B	0.98

Table S17: (Geometric	parameters	(Å,	°)
--------------	-----------	------------	-----	----

⁹ Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B **2013**, 69, 249–259.

С9–Н9А	0.99	С11-Н11С	0.98
С9–Н9В	0.99	C12–H12A	0.98
O5–H5A	0.84	C12–H12B	0.98
C7A-C13	1.460 (4)	C12–H12C	0.98
C7A–C8A	1.596 (13)	C13-C14	1.185 (4)
C7A–H7AA	1	C14–H14	0.95
C8A–C9A	1.567(14)		
C1-O1-C5	109.19 (19)	С9А-С8А-Н8АВ	110
C1-O2-C10	111.5(2)	C7A–C8A–H8AB	110
C2-O3-C3	108.15 (19)	H8AA–C8A–H8AB	108.4
C3-O4-C4	107.27(18)	O5A-C9A-C8A	104.6 (10)
O2-C1-O1	112.0(2)	О5А-С9А-Н9АА	110.8
O2-C1-C2	108.0(2)	С8А-С9А-Н9АА	110.8
O1–C1–C2	106.3(2)	О5А-С9А-Н9АВ	110.8
O2-C1-H1	110.2	С8А-С9А-Н9АВ	110.8
O1-C1-H1	110.2	Н9АА-С9А-Н9АВ	108.9
C2-C1-H1	110.2	C9A–O5A–H5AA	109.5
O3-C2-C1	109.7(2)	C13-C7B-C8B	123.8(9)
O3-C2-C4	105.43(19)	C13-C7B-C6	109.8(2)
C1-C2-C4	104.7(2)	C8B-C7B-C6	120.8 (10)
O3-C2-H2	112.2	C13–C7B–H7B	97.9
С1-С2-Н2	112.2	C8B-C7B-H7B	97.9
C4-C2-H2	112.2	С6-С7В-Н7В	97.9
O3-C3-O4	103.81 (19)	C7B-C8B-C9B	101.5(13)
O3-C3-C11	108.9(2)	C7B-C8B-H8BA	111.5
O4-C3-C11	109.1 (2)	C9B-C8B-H8BA	111.5
O3-C3-C12	110.8 (2)	C7B-C8B-H8BB	111.5
O4-C3-C12	111.1 (2)	C9B-C8B-H8BB	111.5
C11-C3-C12	112.8 (2)	H8BA-C8B-H8BB	109.3
O4–C4–C5	109.61 (19)	O5B-C9B-C8B	98.8 (13)
O4–C4–C2	102.89 (19)	O5B-C9B-H9BA	112
C5-C4-C2	105.0 (2)	С8В-С9В-Н9ВА	112
O4–C4–H4	112.9	O5B-C9B-H9BB	112
С5-С4-Н4	112.9	С8В-С9В-Н9ВВ	112
С2-С4-Н4	112.9	H9BA-C9B-H9BB	109.7
O1-C5-C6	111.8 (2)	C9B-O5B-H5B	109.5
O1-C5-C4	104.0 (2)	C13-C7C-C6	109.8 (2)
C6-C5-C4	113.4 (2)	C13-C7C-C8C	103.7 (13)
O1-C5-H5	109.2	C6–C7C–C8C	124.7 (11)
C6-C5-H5	109.2	С13-С7С-Н7С	105.8

С4-С5-Н5	109.2	C6–C7C–H7C	105.8
C5-C6-C7C	112.5(2)	C8C-C7C-H7C	105.8
C5-C6-C7	112.5(2)	C9C-C8C-C7C	133 (2)
C5-C6-C7A	112.5(2)	C9C-C8C-H8CA	103.8
C5-C6-C7B	112.5(2)	C7C-C8C-H8CA	103.8
С5-С6-Н6А	109.1	C9C-C8C-H8CB	103.8
С7-С6-Н6А	109.1	C7C-C8C-H8CB	103.8
С5-С6-Н6В	109.1	H8CA-C8C-H8CB	105.4
С7-С6-Н6В	109.1	C8C-C9C-O5C	159(3)
H6A–C6–H6B	107.8	C8C-C9C-H9CA	96.5
C13-C7-C6	109.8 (2)	O5C-C9C-H9CA	96.5
C13-C7-C8	113.5(6)	С8С-С9С-Н9СВ	96.5
C6-C7-C8	104.0(5)	O5C-C9C-H9CB	96.5
С13-С7-Н7	109.8	Н9СА-С9С-Н9СВ	103.4
С6-С7-Н7	109.8	C9C-O5C-H5C	109.5
С8-С7-Н7	109.8	O2-C10-H10A	109.5
C9–C8–C7	107.9(8)	O2-C10-H10B	109.5
С9-С8-Н8А	110.1	H10A-C10-H10B	109.5
С7-С8-Н8А	110.1	O2-C10-H10C	109.5
С9-С8-Н8В	110.1	H10A-C10-H10C	109.5
С7-С8-Н8В	110.1	H10B-C10-H10C	109.5
H8A–C8–H8B	108.4	C3-C11-H11A	109.5
O5–C9–C8	112.2(8)	С3-С11-Н11В	109.5
О5-С9-Н9А	109.2	H11A-C11-H11B	109.5
С8-С9-Н9А	109.2	C3-C11-H11C	109.5
О5-С9-Н9В	109.2	H11A-C11-H11C	109.5
С8-С9-Н9В	109.2	H11B-C11-H11C	109.5
Н9А-С9-Н9В	107.9	C3–C12–H12A	109.5
С9–О5–Н5А	109.5	C3-C12-H12B	109.5
C13-C7A-C6	109.8(2)	H12A-C12-H12B	109.5
C13–C7A–C8A	112.1 (9)	C3–C12–H12C	109.5
C6–C7A–C8A	115.2(6)	H12A-C12-H12C	109.5
С13-С7А-Н7АА	106.4	H12B-C12-H12C	109.5
C6–C7A–H7AA	106.4	C14-C13-C7	176.6(3)
С8А-С7А-Н7АА	106.4	C14-C13-C7A	176.6(3)
C9A-C8A-C7A	108.3(10)	C14-C13-C7B	176.6(3)
С9А-С8А-Н8АА	110	C14-C13-C7C	176.6 (3)
C7A–C8A–H8AA	110	C13-C14-H14	180
C10-O2-C1-O1	-66.2 (3)	O1-C5-C6-C7C	57.3(3)
C10-O2-C1-C2	177.1(2)	C4-C5-C6-C7C	174.5(2)

C5-O1-C1-O2	-88.6 (2)	O1-C5-C6-C7	57.3 (3)
C5-O1-C1-C2	29.2(2)	C4-C5-C6-C7	174.5(2)
C3-O3-C2-C1	-124.8 (2)	O1-C5-C6-C7A	57.3 (3)
C3-O3-C2-C4	-12.5 (3)	C4-C5-C6-C7A	174.5(2)
O2-C1-C2-O3	-138.6 (2)	O1-C5-C6-C7B	57.3 (3)
O1-C1-C2-O3	101.1(2)	C4-C5-C6-C7B	174.5(2)
O2-C1-C2-C4	108.7(2)	C5-C6-C7-C13	64.9(3)
O1-C1-C2-C4	-11.6 (2)	C5-C6-C7-C8	-173.3 (6)
C2-O3-C3-O4	29.9(3)	C13-C7-C8-C9	-75.3 (10)
C2-O3-C3-C11	146.0(2)	C6-C7-C8-C9	165.5(8)
C2-O3-C3-C12	-89.5 (3)	C7-C8-C9-O5	-167.4 (9)
C4-O4-C3-O3	-36.6 (2)	C5-C6-C7A-C13	64.9(3)
C4-O4-C3-C11	-152.5(2)	C5–C6–C7A–C8A	-167.3 (11)
C4-O4-C3-C12	82.6(2)	C13–C7A–C8A–C9A	-62.2(17)
C3-O4-C4-C5	139.4(2)	C6-C7A-C8A-C9A	171.2 (12)
C3-O4-C4-C2	28.2(2)	C7A-C8A-C9A-O5A	-172.7(13)
O3-C2-C4-O4	-9.4 (2)	C5-C6-C7B-C13	64.9(3)
C1-C2-C4-O4	106.3(2)	C5-C6-C7B-C8B	-140.7 (10)
O3-C2-C4-C5	-124.1 (2)	C13-C7B-C8B-C9B	80.0 (17)
C1-C2-C4-C5	-8.4 (2)	C6-C7B-C8B-C9B	-70.7 (17)
C1-O1-C5-C6	88.4 (2)	C7B-C8B-C9B-O5B	-178.6(14)
C1-O1-C5-C4	-34.3 (2)	C5-C6-C7C-C13	64.9(3)
O4-C4-C5-O1	-84.7 (2)	C5-C6-C7C-C8C	-171.4 (18)
C2-C4-C5-O1	25.2(2)	C13-C7C-C8C-C9C	-69 (4)
O4-C4-C5-C6	153.6(2)	C6-C7C-C8C-C9C	165(3)
C2-C4-C5-C6	-96.5(2)	C7C-C8C-C9C-O5C	162(7)

Table S18: Hydrogen-bond parameters

$D - H \cdots A$	D - H(Å)	$\mathrm{H} \cdots \mathrm{A} (\mathrm{\AA})$	$D \cdots A (A)$	$\mathrm{D}-\mathrm{H}\cdots\mathrm{A}\left(^{\circ} ight)$
$O5 - H5A \cdots O5^i$	0.84	2.33	3.132(5)	159.9

Symmetry code(s): (i) x-1/2, -y+3/2, -z+1.

Figure S14: Perspective views showing 50% probability displacement.

Figure S15: Three-dimensional supramolecular architecture viewed along the a-axis direction.

6 Methods: Molecular Docking, Biochemical Assays, Bioinformatic Analyses, and Protein Crystallography

6.1 Molecular Docking with Schrödinger Glide

General Considerations

The molecular docking workflow presented below was performed in Schrödinger Maestro Version 11.8.012, MMshare Version 4.4.012, Release 2018-4, Platform Windows-x64. A detailed tutorial (Structure-Based Virtual Screening Using Glide Workshop Tutorial, 2018-4) published by Schrödinger can be found at https: //www.schrodinger.com/training/tutorials.

Protein Preparation

Glide docking began with the Protein Preparation Wizard. The PDB entry $3ROD^{10}$ (NAM and SAH bound to NNMT) was imported into the workspace. Preprocessing parameters in the *Import and Process* tab were set as presented in Figure S16. The imported structure was preprocessed. Parameters in the *Review and Modify* tab were set as presented in Figure S17. All chains, waters, and hets not belonging to chain C were deleted. Parameters in the *Refine* tab were set as presented in Figure S18. H-bond assignment was optimized, waters were removed, and restrained minimization was performed.

Receptor Grid Generation

Receptor grid generation was performed according to the parameters outlined in Figure S19. No other tabs (*Site, Constraints, Rotatable Groups, Excluded Volumes*) were edited. Nicotinamide (NCA, NAM) was deleted from the workspace prior to choosing the workspace ligand SAH for grid generation.

Ligand Preparation

NS1 was drawn in ChemDraw and saved as an MDL Molfile (.mol). The .mol file was opened in the LigPrep wizard and was prepared using the parameters outlined in Figure S20.

Glide Docking

The Ligand Docking panel was opened and the output file from LigPrep was loaded with the parameters shown in Figure S21 and Figure S22. Docking calculations were run locally and NS1 was determined to have a Glide Score of -15.991. A table of output values is presented below in Table S19. An image of the NS1

¹⁰Peng, Y.; Sartini, D.; Pozzi, V.; Wilk, D.; Emanuelli, M.; Yee, V. C. *Biochemistry* **2011**, *50*, 7800–7808.

output pose is presented in Figure S23. Reference ligand S-adenosylmethionine (SAM) was docked using this same protocol, having a Glide score of -12.741. An image of the SAM output pose is presented in Figure S24.

parameter	NS1	\mathbf{SAM}
glide rotatable bonds	12	9
docking score	-15.991	-12.741
glide ligand efficiency	-0.432	-0.472
glide ligand efficiency sa	-1.44	-1.416
glide ligand efficiency ln	-3.468	-2.966
glide gscore	-15.991	-12.741
glide lipo	-4.095	-2.187
glide hbond	-1.584	-0.986
glide metal	0	0
glide rewards	-3.069	-3.744
glide evdw	-72.943	-49.357
glide ecoul	-30.436	-29.203
glide erotb	0.631	0.737
glide esite	-0.227	-0.093
glide emodel	-213.421	-157.523
glide energy	-103.378	-78.56
glide einternal	9.997	8.134

Table S19: Docking output values from the Maestro docking table.

_

Protein Preparation Wizard		×
Job prefix: NNMT Host: localhost (8) •		
Display hydrogens: O None O Polar only O All ligand, polar receptor O All		
Import and Process Review and Modify Refine		
Import structure into Workspace		
PDB: 3ROD Import		
Include: Diffraction data Biological unit		
Import structure file: Browse		
Preprocess the Workspace structure		
Align to: Selected entry PDB:		
Assign bond orders Use CCD database		
Add hydrogens Remove original hydrogens		
✓ Create zero-order bonds to metals		
Create disulfide bonds		
Convert selenomethionines to methionines		
✓ Delete waters beyond 5.00 ♀ Å from het groups		
Generate het states using Enik. pH: 7.0 $\pm 1/2.0$		
Preprocess		
ulique Drahame Draham Damachandran Dist		
	Re	eset
	C	?)

Figure S16: Import and Process parameters in the Protein Preparation Wizard.

b prefix: N splay hydrog Import and Analyze Wc Select Hets Select Hets C	INMT Process Revie Process Revie Vaters within 5. Waters Invert S Cha) Polar only () w and Modify election only () Å of sel election	All ligand, polar re Refine Pick Delete lected chains	Host: ceptor C 2 3	localhost () All /ater No.	3) - C C	Chain	406 426	Residue No.
splay hydrog Import and Analyze Wo I Fit on se Select Hets Select Lone C	ens: O None O Process Reviewerkspace Uter Display s Waters Waters Invert S Cha	Polar only A of sel election Name	All ligand, polar re Refine Pick Delete lected chains	Ceptor C W 2 3) All //ater No.	C C C	Chain	406 426	Residue No.
Import and Analyze Wc Select Hets Select Lone	Process Revie rkspace lect Display s /Waters within 5. Waters Invert S Cha	w and Modify	Refine] Pick Delete lected chains	2 3	/ater No.	c c	Chain	406 426	Residue No.
Analyze Wo Fit on se Select Hets Select Lone C	rkspace lect Display s (Waters within 5 Waters Invert S Cha	election only 0 Å of sel election in Name	Pick Delete	2 3	/ater No.	c	Chain	406 426	Residue No.
Fit on se Select Hets Select Lone	lect Display s (Waters within 5. Waters Invert S Cha	election only 0 Å of sel election in Name	Pick Delete	2 3	/ater No.	c c	Chain	406 426	Residue No.
Select Hets Select Lone	Waters within 5. Waters Invert S Cha	0 Å of sel	lected chains	2 3	/ater No.	c c	Chain	406 426	Residue No.
C	Waters Invert S	election In Name		2 3	/ater No.	c c	Chain	406 426	Residue No.
C	Cha	in Name		2 3	/ater No.	c c	Chain	406 426	Residue No.
C				2 3		c c		406	
				3		C		426	
				<					>
Het N	0. C'SAH ('	Het	Name		Orig.	52			
6	CINCA (202)				•			
0	CINCA (502)			⊻_				
Pogoporato	Stator						- DLI- 7	0	1/ 20
Regenerate	states						pri. 7		
iew Problem	s Protein Repo	rts Ramachar	ndran Plot						
									-

Figure S17: $\mathit{Review}\ and\ \mathit{Modify}\ parameters$ in the Protein Preparation Wizard.
1 Protein	Preparation Wizard	_		×						
Job prefix:	NNMT Host: localhost (8) •									
Display hyd	rogens: O None O Polar only O All ligand, polar receptor O All									
Import a	nd Process Review and Modify Refine									
H-bon	assignment									
✓ Sar	nple water orientations									
Use Mir	crystal symmetry imize hydrogens of altered species									
 Use 	PROPKA pH: 7.0 Label pKas									
O Use	simplified rules pH: Very low Low Neutral High									
Opt	imize									
Intera	ctive Optimizer									
Remov	e waters									
Remo	Remove waters with less than 2 - H-bonds to non-waters									
Restra	ined minimization									
Conver	ge heavy atoms to RMSD: 0.30 Å									
Hyd	lrogens only									
Force f	eld: OPLS3e 🔹									
Min	imize									
Restrained	minimization job incorporated.									
			Re	set						

Figure S18: *Refine* parameters in the Protein Preparation Wizard.

🚺 Recep	otor Grid Ger	neration		—		\times				
Recept	or Site	Constraints	Excluded Volumes							
Defin If the ident	Define receptor If the structure in the Workspace is a receptor plus a ligand, you must identify the ligand molecule so it can be excluded from the grid generation. Pick to identify the ligand Molecule You have a structure of the s									
Van To sc van c value not b Scalin	Van der Waals radius scaling To soften the potential for nonpolar parts of the receptor, you can scale the van der Waals radii of receptor atoms with partial atomic charge (absolute value) less than the specified cutoff. All other atoms in the receptor will not be scaled. Scaling factor: 1.0 Partial charge cutoff: 0.25 V									
Use input partial charges Generate grid suitable for peptide docking Advanced Settings										
Job name: Host=loca	NNMT_glide_ host	.grid		* * ()	Ru	in				

Figure S19: Parameters set in the Receptor Grid Generation.

🙆 LigPrep	—							
Use structures from: File	•							
File name: C:\Users\Rocco\Desktop\NS1.mol		Browse						
Filter criteria file:	Create	Browse						
Force field: OPLS3e •								
Ionization: Do not change Neutralize								
Generate possible states at target pH: 7.0	+/- 2.0							
Using: O Ionizer O Epik Add metal binding states								
Desalt Generate tautomers Stereoisomers								
Computation:								
Output format: Maestro SDF								
Job name: NS1	* = ()	Run						
Host=localhost:8, Incorporate=Append new entries as	a new group	?						

Figure S20: Parameters set during ligand preparation in LigPrep.

🔮 Ligand Docking –	- 🗆	×
Recentor arid: From file	Show (arid boxes
File name: C:Ulcarci Doccimentel Schrodinger NNMT, glide, grid NNMT, glide, grid zin	E chorry	rowco
Linande Cattinge Core Constrainte Tarrianal Constrainte Output		101036
Ligands to be docked		
Use ligands from: Files •		
File name: C:\Users\Rocco\Documents\Schrodinger\NS1\NS1-out.maegz	Browse	
Range: 1 to: 1000 🔶 🗹 End		
Do not dock or score ligands with more than: 100 rotatable bonds Scaling of van der Waals radii To soften the potential for nonpolar parts of the ligand, you can scale the vdW radii of ligand atoms with partial atom (absolute value) less than the specified cutoff. No other atoms in the ligand will be scaled. Scaling factor: 0.80 Partial charge cutoff: 0.15 +	iic charge	
lob name: glide-dock_SP_NS1		Run
uu haine. Uue uuck_ar_nai	·	Null
Host=localhost:8, Incorporate=Append new entries as a new group		?

Figure S21: Parameters set in Ligand Docking (Ligands tab).

🔞 Ligand Docking		_		×				
Receptor grid: From file	• Display n	eceptor 🖂	Show grid b	oxes				
File name: C:\Users\Rocco\Documents\Schrodinger\NNMT_glide_grid\NNMT_glide_grid.zip			Brows	e				
Ligands Settings Core Constraints Torsional Constraints Output								
Precision: SP (standard precision)								
Write XP descriptor information								
Ligand sampling: Flexible								
Sample nitrogen inversions Sample ring conformations Sample macrocycles using Prime. Non-macrocycle ligands will be skipped. Include input ring conformation Bias sampling of torsions for:								
Amides only: Penalize nonplanar conformation								
None								
Add Epik state penalties to docking score								
Reward intramolecular hydrogen bonds Finhance planarity of conjugated pi groups								
Anny Large z evoluted volumes penalties								
Show excluded volumes								
Advanced Settings								
Job name: glide-dock_SP_NS1		☆	R	un				
Host=localhost:8, Incorporate=Append new entries as a new group			0	0 .				

Figure S22: Parameters set in Ligand Docking (Settings tab).

Figure S23: Output image of docked NS1 (orange), taken directly from the Maestro workspace, overlaid with substrates SAH and NAM (green).

Figure S24: Output image of docked reference ligand SAM, taken directly from the Maestro workspace.

6.2 NNMT Inhibition Assay

6.2.1 wt-hNNMT Preparation

Cloning

The tm-hNNMT plasmid obtained from Addgene (40734; http://n2t.net/addgene:40734;

RRID:Addgene _40734) and used in protein crystallography experiments was supplied as a K100A:E101A: E103A mutant. In order to study the wild-type enzyme, we performed site-directed mutagenesis using Agilent's QuikChange Lightning Kit (P/N 210515) to generate a wt-hNNMT plasmid. The following primers were used:

forward: 5'-ggaccagtcaaaggcctctggctctttcttcagccacttctcc-3'

reverse: 5'-ggagaagtggctgaagaaagagccagaggcctttgactggtcc-3'

The wt-hNNMT protein sequence is as follows:

MGSSHHHHHHHSSGLVPRGSMESGFTSKDTYLSHFNPRDYLEKYYKFGSRHSAESQILKHLLKNLFKIFCLDGVKGDLLI DIGSGPTIYQLLSACESFKEIVVTDYSDQNLQELEKWLKKEPEAFDWSPVVTYVCDLEGNRVKGPEKEEKLRQAVKQVL KCDVTQSQPLGAVPLPPADCVLSTLCLDAACPDLPTYCRALRNLGSLLKPGGFLVIMDALKSSYYMIGEQKFSSLPLGR EAVEAAVKEAGYTIEWFEVISQSYSSTMANNEGLFSLVARKLSRPL

Protein Expression and Purification

The plasmid containing N-terminally His₆-tagged wt-hNNMT (generated via cloning above) was transformed into NiCo21(DE3) Competent E. coli (New England BioLabs Catalog # C2529H) according to the manufacturer's protocol. Bacteria were subsequently grown up in 1L LB (containing 50 µg/mL kanamycin sulfate and supplemented with 0.5 mM MgCl₂ and 0.5 mM CaCl₂) at 37 °C, induced with IPTG (1 mM) when they reached an OD₆₀₀ of ~0.8, and incubated overnight at 37 °C.

The following day the cell pellet was harvested by centrifugation and then suspended in 25 mL lysis buffer (50 mL prepared: 20 mM Tris-HCl pH 8.0, 0.5 M NaCl, 40 mM imidazole, 1 mM DTT, 20% glycerol, and 1 tablet of Roche cOmpleteTM EDTA-containing protease inhibitor cocktail in 50 mL V_{tot}). To the pellet/lysis buffer containing tube were added 10 mg lysozyme and 1 mL DNase and the contents were vortexed briefly to suspend the cells. The cell suspension was incubated on ice for 30 minutes and then sonicated on ice for 7 minutes (total sonication time) employing a duty cycle of 10/50 sec on/off at 20% power. The crude lysate was clarified by centrifugation and MgCl₂ was added to a final concentration of 2 mM (to chelate EDTA and prevent interference Ni-NTA affinity chromatography).

The clarified lysate was purified by automated affinity chromatography using a GE Healthcare ÅKTA chromatography system and a 5 mL GE FF HisTrap Crude Ni-NTA affinity chromatography column. The column was equilibrated with buffer A (40 mM imidazole, 500 mM NaCl, 20 mM Tris-HCl pH 8.0, 1.0 mM DTT, 10% glycerol) and the clarified lysate was loaded via sample application pump. The column was washed with 30 CV (column volumes) buffer A and then a gradient of $0 \rightarrow 100$ % buffer B (500 mM imidazole, 500 mM NaCl, 20 mM Tris-HCl pH 8.0, 1.0 mM DTT, 10% glycerol) was delivered over 20 CV. Eluted fractions corresponding to UV detector peaks were checked by SDS-PAGE analysis and showed clean elution of a single protein at the appropriate MW. Fractions were combined, concentrated, and desalted into storage buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM DTT, 5% glycerol) via GE HiTrap Desalting column. Fractions were combined, concentrated to 11.4 mg/mL, flash-frozen in liquid nitrogen and stored at -80 °C for future use.

6.2.2 Detailed NNMT Inhibition Assay Protocol

Molecular biology grade water and Tris-HCl buffer (pH 8.0 \pm 0.1, 1 M) were obtained from Corning (Manassas, VA). DL-dithiothreitol (DTT, for molecular biology, \geq 98% (HPLC)) and quinoline (reagent grade, 98%) were purchased from Sigma-Aldrich (St. Louis, MO). DTT was used as received, while quinoline was distilled under reduced pressure before use and stored in the dark. *S*-adenosyl-L-methionine was obtained from New England BioLabs (Ipswich, MA) as a 32 mM solution in 0.005 M H₂SO₄ and 10% EtOH and used

as received (NEB catalog #: B9003S).

The protocol described below was adapted from those outlined in Neelakantan et al.¹¹ Enzymatic reactions were performed at room temperature in 96-well plates (costar[®] black, flat bottom, non-treated, polystyrene, 14.3 mm height). To minimize potential small differences in initial reaction concentrations due to pipetting errors, a master stock consisting of 5 mM Tris-HCl (pH 8.0), 1 mM DTT and 109 μ M quinoline was prepared by adding to a 50 mL falcon tube water (50 mL), Tris-HCl pH 8.0 ± 0.1 buffer (1 M, 250.0 μ L), DTT (7.7 mg, 50 μ mol) and a solution of quinoline in water (20 mM, 272.5 μ L). This 50 mL stock was then split into 4 mL stocks.

Using ten PCR tubes of a twelve 0.2 mL tube strip, a dilution series of inhibitor concentrations was prepared. With a multichannel pipette, 10 µL of each of these solutions of inhibitor in water were transferred to the first ten PCR tubes of another twelve 0.2 mL tube strip. The two remaining tubes were charged with 10 µL of water (controls). To each of these tubes was then added 10 µL of a 250 µM solution of SAM in water (prepared by mixing 15.6 µL of a freshly thawed 32 mM SAM solution in 2 mL of water). The reactions were initiated by adding to each tube 230 µL of a 109 nM solution of NNMT in master stock (prepared by adding 1.2 µL of a 362 µM freshly thawed NNMT aliquot in 4 mL of master stock), bringing the final composition of each reaction to 4.6 mM Tris-HCl (pH 8.0), 0.92 mM DTT, 100 µM quinoline, 10 µM SAM and 100 nM NNMT.

Immediately after initiation, the progress of each reaction was monitored using a SpectraMax[®] i3x multimode microplate reader and data were collected approximately every 27 seconds for 5.5 minutes (13 reads, 100 flashes/read, 1.00 mm read height). The production of 1-MQ in each well was monitored by recording fluorescence emission intensities at 400 nm (excitation wavelength at 310 nm) with the detector bandwidths set up at 9 nm for the excitation and at 15 nm for the emission.

6.3 Sequence Similarity Analysis

To generate a data set for sequence similarity analysis, the UniProtKB^{12,13} was queried with the following conditions: ec:2.1.1.– ipr029063 AND reviewed:yes AND organism: "Homo sapiens (Human) [9606]" AND proteome:up000005640. These conditions searched the UniProt database for human (organism: "Homo sapiens (Human) [9606]") methyltransferases (ec:2.1.1.–, transferases, transferring one-carbon groups, methyl-transferases) that were Swiss-Prot reviewed (reviewed:yes) belonging to the InterPro Homologous Superfamily of SAM-dependent MTases (ipr029063) in the human proteome (proteome:up000005640).

This query returned 113 UniProt IDs which were submitted to the Enzyme Function Initiative Enzyme

¹¹Neelakantan, H.; Vance, V.; Wang, H.-Y. L.; McHardy, S. F.; Watowich, S. J. Biochemistry 2017, 56, 824–832.

¹²https://www.uniprot.org/

¹³ UniProt Nucleic Acids Res. **2018**, 47, D506–D515.

Similarity Tool^{14,15,16} (EFI-EST, settings: *Computation Type*: Option D, *E-Value*: 5, *Fraction*: 1). A sequence similarity network (SSN) was generated using an *alignment score for output* value of 18. The SSN was processed in Cytoscape v3.7.1. Specifically, node labels were set to *Gene Name* and edges were colored via continuous mapping based on *%ID*. The node labels found in Figure S2 correlate to UniProt IDs and Protein Names in Table S3.

6.4 DALI Structural Similarity Analysis

The DALI server¹⁷ (http://ekhidna2.biocenter.helsinki.fi/dali/) was queried using PDB search and entering identifier 3ROD (Chain A). The DALI structural alignment server returned 1792 hits with a DALI Z-score >2. Chain identifiers were removed from the DALI output (leaving a list of only PDB codes) and the list was then uploaded to the UniProt Retrieve/ID Mapping utility (https://www.uniprot.org/ uploadlists/). 871 out of 914 PDB identifiers were successfully mapped to 453 UniProtKB IDs, with the remaining 43 (unmatched) set aside for manual curation. Of the remaining 43 unmatched PDB IDs, none corresponded to human proteins, so they were not included in further analysis.

The list of 453 UniProtKB IDs was filtered to show only methyltransferase enzymes from Homo Sapiens (query with operators: ec:2.1.1.– AND organism:"Homo sapiens (Human) [9606]") leaving 34 UniProtKB IDs remaining (Class EC 2.1.1.– represents enzymes from the methyltransferase family). In many cases multiple PDB IDs mapped to a single UniProtKB ID. These redundancies in the data set were removed by selecting the PDB ID (and chain) with the highest Dali Z-score for further analysis. The authors noted that the PDB code for a known human small-molecule methyltransferase (guanidinoacetate N-methyltransferase, GAMT, with structure 3orh available in the PDB) was missing, so 3orh (chain A) was manually added to the list. The list of PDB codes (and chain identifiers) was uploaded to the DALI server and an *all-against-all* query was submitted. The *all-against-all* output was used to generate the dendrogram presented in Figure S3 and the heatmap presented in Figure S4.

6.5 Protein Crystallography

The tm-hNNMT plasmid obtained from Addgene (40734) and used in protein crystallography experiments was supplied as a K100A:E101A:E103A mutant (see Section 6.2.1. These mutations reduce the entropy of surface residues and facilitate crystallization.

¹⁴https://efi.igb.illinois.edu/efi-est/

¹⁵Gerlt, J. A.; Bouvier, J. T.; Davidson, D. B.; Imker, H. J.; Sadkhin, B.; Slater, D. R.; Whalen, K. L. Biochim. Biophys. Acta, Proteins Proteomics **2015**, 1854, 1019–1037.

¹⁶Zallot, R.; Oberg, N. O.; Gerlt, J. A. Curr. Opin. Chem. Biol. 2018, 47, 77–85.

¹⁷Holm, L.; Laakso, L. M. Nucleic Acids Res. **2016**, 44, W351–W355.

The tm-hNNMT protein sequence is as follows:

MGSSHHHHHHSSGLVPRGSMESGFTSKDTYLSHFNPRDYLEKYYKFGSRHSAESQILKHLLKNLFKIFCLDGVKGDLLI DIGSGPTIYQLLSACESFKEIVVTDYSDQNLQELEKWLKAAPAAFDWSPVVTYVCDLEGNRVKGPEKEEKLRQAVKQVL KCDVTQSQPLGAVPLPPADCVLSTLCLDAACPDLPTYCRALRNLGSLLKPGGFLVIMDALKSSYYMIGEQKFSSLPLGR EAVEAAVKEAGYTIEWFEVISQSYSSTMANNEGLFSLVARKLSRPL

6.5.1 tm-hNNMT Preparation

The pET-28a plasmid containing N-terminally His₆-tagged tm-hNNMT (Addgene) was transformed into BL21(DE3) cells, which were subsequently grown in terrific broth at 37 °C. The cultures were induced with 1 mM IPTG when they reached an OD₆₀₀ of ~1.1 and incubated overnight at 25 °C. Cell pellets were harvested by centrifugation and solubilized in lysis buffer (50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 5 mM imidazole, 2 mM β -mercaptoethanol, 5% glycerol) supplemented with 1 mM PMSF and 1 µg/mL lysozyme. Solubilized cell pellets were centrifuged and the supernatant was loaded onto Ni-NTA Agarose resin (Qiagen), washed with wash buffer (50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 25 mM imidazole, 5% glycerol), and the tm-hNNMT protein was eluted with 50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 250 mM imidazole, and 5% glycerol. Eluted fractions were concentrated and buffer exchanged using a PD-10 desalting column (GE) into NNMT storage buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM DTT). The final purified protein was concentrated to 18 mg/mL, flash-frozen in liquid nitrogen and stored at -80 °C for future use.

6.5.2 Crystallization and Data Collection

The purified tm-hNNMT was diluted by adding NNMT storage buffer and NS1 formulated in water to final concentrations of 10 mg/mL protein and 1 mM NS1. Co-crystals of tm-hNNMT and NS1 were obtained by sitting drop vapor diffusion at 20 °C with a protein:precipitant volume ratio of 1:1 in 2 µL total volume drops. Crystals appeared after about one week in a precipitant condition containing 100 mM HEPES pH 6.8 and 2 M ammonium sulfate and were harvested about six weeks after setting the drops. Crystals were cryoprotected by briefly soaking in artificial mother liquor to which 16-20% glycerol had been added before flash-freezing in liquid nitrogen. Diffraction data were collected at Beamline ID-24C of the Northeastern Collaborative Access Team (NE-CAT) at the Advanced Photon Source in Argonne, Illinois.

6.5.3 Data Processing and Refinement

The crystals grew in clusters, and our diffraction data had multiple lattices. Images were indexed and integrated with the Diffraction Integration for Advanced Light Sources (DIALS)¹⁸ package using the multilattice search functionality within *dials.index*¹⁹. We searched for three lattices, providing initial unit cell parameters from the published NNMT structure 3ROD²⁰. We chose the lattice accounting for the largest number of indexed spots for integration. Data were scaled and merged using the CCP4 suite programs POINTLESS and AIMLESS^{21,22,23}. The NS1-bound NNMT structure was determined by molecular replacement with a previous NNMT structure (PDB ID 3ROD; chain A with all ligands removed)⁵⁰ as a search model in PHASER as implemented in PHENIX²⁴. Subsequent model building and refinement were done in Coot²⁵ and PHENIX⁵⁴. The asymmetric unit contains four protein chains (A-D) each bound to an NS1 inhibitor molecule. For all analyses and figures, chain A was used. Figures were prepared using PyMOL (Schrödinger)²⁶. The diffraction images are available at the SBGrid Data Bank. The structure factors and refined coordinates are deposited in the Protein Data Bank (PDB ID **6ORR**).

6.6 INMT Selectivity Study

6.6.1 wt-hINMT Preparation

The pET-28a plasmid containing N-terminally His₆-tagged hINMT (Addgene 25475; http://n2t.net/ addgene:25475; RRID:Addgene_25475) was transformed into Agilent BL21-CodonPlus (DE3)-RIL Competent Cells (Agilent P/N: 230245) according to the manufacturer's protocol. Bacteria were subsequently grown up in terrific broth (containing 50 µg per mL kanamycin sulfate and 50 µg per mL chloramphenicol) at 37 °C, induced with IPTG (1 mM) when they reached an OD_{600} of ~0.8, and incubated overnight at 32 °C.

The following day cell pellets were harvested by centrifugation. Five grams of cell pellet was then suspended in lysis buffer (15 mL, 20 mM Tris-HCl pH 8, 0.5 M NaCl, 40 mM imidazole, 1 mM DTT, 10% glycerol) supplemented with 1 tablet Roche cOmplete EDTA-free protease inhibitor cocktail, 10 mg lysozyme, and 1 mL DNase. The cell suspension was incubated on ice for 30 min and then sonicated on ice for 7 minutes

¹⁸Winter, G. et al. Acta Crystallogr., Sect. D 2018, 74, 85–97.

¹⁹Gildea, R. J.; Waterman, D. G.; Parkhurst, J. M.; Axford, D.; Sutton, G.; Stuart, D. I.; Sauter, N. K.; Evans, G.; Winter, G. Acta Crystallogr., Sect. D 2014, 70, 2652–2666.

²⁰Peng, Y.; Sartini, D.; Pozzi, V.; Wilk, D.; Emanuelli, M.; Yee, V. C. Biochemistry 2011, 50, 7800–7808.

²¹Winn, M. D. et al. Acta Crystallogr., Sect. D 2011, 67, 235–242.

²² Evans, P. R. Acta Crystallogr., Sect. D 2011, 67, 282–292.

²³Evans, P. R.; Murshudov, G. N. Acta Crystallogr., Sect. D 2013, 69, 1204–1214.

²⁴ Adams, P. D. et al. Acta Crystallogr., Sect. D **2010**, 66, 213–221.

²⁵ Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Acta Crystallogr., Sect. D 2010, 66, 486–501.

²⁶Schrödinger, LLC The PyMOL Molecular Graphics System, Version 1.8., 2015.

(total sonication time) employing a duty cycle of 10/50 on/off at 20% power. The crude lysate was clarified by centrifugation and manually loaded onto a 5 mL GE FF HisTrap Crude Ni-NTA affinity chromatography column via syringe. The column was washed with 20 mL lysis buffer and then protein was eluted with 10 mL of elution buffer (20 mM Tris-HCl pH 8, 0.5 M NaCl, 400 mM imidazole, 1 mM DTT, 10% glycerol) while collecting 1.2 mL fractions. Eluted fractions were checked for the presence of protein via Bradford assay. Those containing purified INMT as evidenced by SDS-PAGE analysis were combined, concentrated, and desalted into storage buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM DTT, 5% glycerol) via GE HiTrap Desalting column. Fractions were combined, concentrated to 13.5 mg/mL, flash-frozen in liquid nitrogen and stored at -80 °C for future use.

The hINMT protein sequence is as follows:

MGSSHHHHHHSSGLVPRGSMKGGFTGGDEYQKHFLPRDYLATYYSFDGSPSPEAEMLKFNLECLHKTFGPGGLQGDTLI DIGSGPTIYQVLAACDSFQDITLSDFTDRNREELEKWLKKEPGAYDWTPAVKFACELEGNSGRWEEKEEKLRAAVKRVL KCDVHLGNPLAPAVLPLADCVLTLLAMECACCSLDAYRAALCNLASLLKPGGHLVTTVTLRLPSYMVGKREFSCVALEK GEVEQAVLDAGFDIEQLLHSPQSYSVTNAANNGVCCIVARKKPGP

6.6.2 INMT Inhibition Assay

A luminescence-based indolethylamine N-methyltransferase (INMT) assay was developed based on the Promega MTase-GloTM Methyltransferase Assay (catalog #: V7601). The Promega MTase-GloTM assay is a coupled luminescence-based assay that converts S-adenosylhomocysteine (SAH) to ADP which is then converted to light.²⁷ Full instructions and protocols outlining assay development and validation can be found in Promega application note #AN297 and technical manual TM453 (Revised 4/17).

INMT is capable of methylating a variety of tryptamine, harmine, and phenethylamine derivatives at variable rates, but the typical substrate is tryptamine. INMT is also known as thioether S-methyltransferase (TEMT) and is known to methylate a variety of thioethers and related compounds. From the UniProt²⁸ entry O95050²⁹ (INMT_HUMAN):

Functions as thioether S-methyltransferase and is active with a variety of thioethers and the corresponding selenium and tellurium compounds, including 3-methylthiopropionaldehyde, dimethyl selenide, dimethyl telluride, 2-methylthioethylamine, 2-methylthioethanol, methyl-n-propyl sulfide and diethyl sulfide. Plays an important role in the detoxification of selenium compounds (By

²⁷Hsiao, K.; Zegzouti, H.; Goueli, S. A. *Epigenomics* **2016**, *8*, 321–339.

²⁸ UniProt Nucleic Acids Res. **2018**, 47, D506–D515.

²⁹https://www.uniprot.org/uniprot/095050

similarity). Catalyzes the N-methylation of tryptamine and structurally related compounds.

Our first goal was to choose substrate concentrations that were physiologically relevant (close to INMT substrate $K_m^{app.}$ values) and would also generate luminescence signal with adequate signal/noise ratio to study INMT inhibition. A literature search^{30,31} revealed the apparent K_m of tryptamine to be ca. 0.3-2.9 mM, so we pursued INMT assay development using 1.0-2.0 mM tryptamine. A SAM concentration of 20-30 μ M was employed in our experiments, again close to literature reported apparent K_m values of SAM.

Assay validation according to protocols outlined in the Promega technical manual led us to the final conditions for the hINMT IC₅₀ assay: [hINMT]=150 nM, [tryptamine]=2 mM, [SAM]=30 μ M, and reaction time=20 min. A detailed IC₅₀ assay protocol is reported below.

Reagents and Materials:

- SpectraMax i3x Multi-Mode Microplate Reader (Molecular Devices)
- MTase-GloTMMethyltransferase Assay (Promega V7601)
- assay plate, 384 well, with lid (Corning 3570)
- PCR strip tubes, with caps (Axygen Scientific, PCR-0208-A, PCR-02CP-A)
- disposable pipetting reservoir (polystyrene, 25 mL, VWR 89094-662)
- molecular biology grade water (Corning 46-000-CM)
- 0.5 M EDTA, pH 8.0 (Boston BioProducts BM-150)
- 5M NaCl (Cell Signaling Technologies 7010S)
- 1M MgCl₂ (invitrogen AM9530G)
- albumin standard (2.0 mg/mL BSA in 0.9% NaCl solution containing NaN₃); (Thermo Scientific 23209)
- ethyl alcohol, 200 proof for molecular biology (Millipore Sigma E7023)
- DL-dithiothreitol BioUltra, for molecular biology (Millipore Sigma 43815)
- tryptamine (Millipore Sigma 193747)
- trifluoroacetic acid (VWR BDH15311.100)

³⁰ Thompson M.A., W. R.; Thompson M. A., W. R. J. Biol. Chem. **1998**, 273, 34502–10.

³¹Chu, U. B.; Vorperian, S. K.; Satyshur, K.; Eickstaedt, K.; Cozzi, N. V.; Mavlyutov, T.; Hajipour, A. R.; Ruoho, A. E. Biochemistry **2014**, 53, 2956–2965.

Protocol (NS1 IC₅₀ curve):

Reactions were performed in PCR strip tubes (with caps), and only transferred to a 384-well plate for final luminescence reading. Only every other well in a given row on the 384-well plate was used (the intermediate wells were left empty). The methyltransferase reaction mixture (including hINMT, tryptamine, SAM, and NS1) had a total volume of 20 µL. The experiment reported in Figure S5 was performed in duplicate.

To begin, 12 PCR tubes were aligned in an empty pipette tip box to allow for multichannel pipetting. From left to right, tubes 1–9 were experimental wells (NS1 at varying concentrations), 10 and 11 were positive controls (no NS1), and tube 12 was a negative control (no SAM).

- 1. 5 μ L of 4× NS1 (prepared from a serial dilution to achieve the desired concentrations) was added to tubes 1–9, and 5 μ L 1× reaction buffer added to tubes 10–12.
- 2. 5 μ L of 4× SAM was added to tubes 1–11, and 5 μ L 1× reaction buffer added to tube 12.
- 3. A master mix containing $2 \times$ hINMT and $2 \times$ tryptamine was prepared in a Falcon tube and poured into a multichannel pipette reagent reservoir.
- 4. Using a multichannel pipette, $10 \ \mu$ L of this master mix solution was transferred to all 12 tubes to initiate the INMT reaction.
- 5. The reactions were capped and incubated at RT for 20 min.
- 6. Reactions were quenched with 5 μ L of 0.5% TFA and incubated for 5 min at RT to stop the methyl-transferase reaction.
- 7. 5 μ L of prepared 6× MTase-GloTM Reagent was added and the reactions were capped and incubated for 30 min at RT.
- 30 μL of MTase-GloTM Detection Solution was added to the reactions and they were mixed by pipetting up-and-down.
- 9. 50 µL of each reaction was immediately transferred to a 384-well plate using a 12-channel (multichannel) pipette. Tubes 1–12 map to a 384-well plate as shown in Table S20 below.
- 10. The plate was centrifuged at 300 RPM for 2 min and immediately moved to the SpectraMax i3x Multi-Mode Microplate Reader.
- 11. Luminescence was read 5 min after transfer of the reaction mixtures from PCR tubes to the 384-well plate.

Table S20: Example 384-well plate layout showing final contents of each well. Row A shown here for illustrative purposes.

	1	3	5	7	9	11	13	15	17	19	21	23
	35.0000	14.0000	5.6000	2.2400	0.8960	0.3584	0.1434	0.0573	0.0229	+ control	+ control	- control
A	µM NS1	$\mu M NS1$	$\mu M NS1$	μM NS1	M NS1	µM NS1	µM NS1	$\mu M NS1$	$\mu M NS1$	(no NS1)	(no NS1)	(no SAM)

Data analysis: Luminescence data were analyzed in Microsoft Excel and GraphPad Prism v8.0.2. To begin, background signal (value from A23) was subtracted from all wells. Positive control wells A19 and A21 (containing no inhibitor) were then averaged to provide a value representing signal derived from uninhibited hINMT reactions. Luminescence counts from wells containing inhibitor (A1–A17) were then each divided by the control value to generate values representing % enzyme activity (relative to control). A plot of log(NS1) vs. % hINMT activity was then fitted via nonlinear regression in Prism using the model log(inhibitor) vs. response–Variable slope (four parameters) to generate the IC₅₀ value.