High-Affinity Alkynyl Bisubstrate Inhibitors of NicotinamideN-Methyltransferase (NNMT)

Citation

Policarpo, R. L., L. Decultot, E. May, P. Kuzmic, S. Carlson, D. Huang, V. Chu, et al. 2019. "HighAffinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (Nnmt)." J Med Chem 62, no. 21: 9837-73. https://doi.org/10.1021/acs.jmedchem.9b01238.

Published Version

http://doi.org/10.1021/acs.jmedchem.9b01238

Permanent link

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37369014

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#OAP

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

High-Affinity Alkynyl Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT)

Supporting Information Part 1: Supplementary Figures \& Tables, Synthetic Schemes, and Experimental Protocols

Rocco L. Policarpo*, Ludovic Decultot*, Elizabeth May ${ }^{\dagger}$, Petr Kuzmič ${ }^{\S}$, Samuel Carlson ${ }^{\dagger}$, Danny Huang*, Vincent Chu*, Brandon Wright*, Saravanakumar Dhakshinamoorthy ${ }^{\ddagger}$, Aimo Kannt*, Shilpa Rani ${ }^{\ddagger}$, Sreekanth Dittakavi ${ }^{\ddagger}$, Joseph Panarese*, Rachelle Gaudet ${ }^{\dagger}$, and Matthew D. Shair*
* Department of Chemistry \& Chemical Biology, Harvard University, Cambridge MA 02138, USA
${ }^{\dagger}$ Department of Molecular \mathcal{B} Cellular Biology, Harvard University, Cambridge MA 02138, USA
§ BioKin Ltd., Watertown MA 02472, USA
${ }^{\ddagger}$ Jubilant Biosys Ltd., Yeshwantpur Bangalore - 560 022, Karnataka, India
*Sanofi Research and Development, Industriepark Hoechst, H823, D-65926, Frankfurt am Main, Germany

Table of Contents

1 Supplementary Figures \& Tables S3
2 List of Abbreviations S22
3 Positional Numbering System S24
4 Supplemental Schemes S25
5 Small-Molecule X-Ray Crystallography S49
5.1 NS1 • TFA (10) S49
5.2 NS1-Cyclopropyl: Cyclopropyl Alkyne S30 S56
5.3 NS1-Urea: Alkynyl Alcohol S53 S62
6 Methods: Molecular Docking, Biochemical Assays, Bioinformatic Analyses, and Protein Crystallography S68
6.1 Molecular Docking with Schrödinger Glide S68
6.2 NNMT Inhibition Assay S76
6.2.1 wt-hNNMT Preparation S76
6.2.2 Detailed NNMT Inhibition Assay Protocol S77
6.3 Sequence Similarity Analysis S78
6.4 DALI Structural Similarity Analysis S79
6.5 Protein Crystallography S79
6.5.1 tm-hNNMT Preparation S80
6.5.2 Crystallization and Data Collection S80
6.5.3 Data Processing and Refinement S81
6.6 INMT Selectivity Study S81
6.6.1 wt-hINMT Preparation S81
6.6.2 INMT Inhibition Assay S82

1 Supplementary Figures \& Tables

List of Figures

S1 Cross Metathesis Catalyst/Solvent Screening Experiments (Crude ${ }^{1} \mathrm{H}$ NMR) S5
S2 Sequence Similarity Network (SSN) of Human Methyltransferases S7
S3 Structural Similarity Dendrogram S13
S4 Heatmap of DALI Z-scores S14
S5 INMT IC 50 Assay with NS1 (10) S17
S6 Cellular Thermal Shift Assay (CETSA) with NS1 (10) S17
S7 Isothermal Dose Reponse (ITDR) CETSA with NS1 (10) S18
S8 CETSA with 25 (NS1-Urea) S18
S9 ITDR CETSA with 25 (NS1-Urea) S19
List of Tables
S1 Cross Metathesis Catalyst/Solvent Pairs Screening S4
S2 X-Ray Co-Crystallography Data Collection and Refinement Statistics S6
S3 Human Methyltransferases Used to Construct a Sequence Similarity Network (SSN) S9
S4 DALI Output Used to Rank Human Methyltransferases by Structural Similarity S15
S5 Selectivity Screening Assays S16
S6 CellTiter-Glo Cytotoxicity Assay (U2OS cells, 24 h) S19
S7 CellTiter-Glo Cytotoxicity Assay (U2OS cells, 48 h) S19
S8 Cellular MNAM Levels Measured by LC-MS/MS S20
S9 Caco-2 Permeability Assay S21

Table S1: Catalyst/solvent pairs screened in this work. All metathesis catalysts below were purchased from Strem, with the exception of Grubbs Catalyst C571, which was purchased from Millipore Sigma.
Catalyst/Solvent
Pair in Figure S 1 Catalyst

Figure S1: Crude ${ }^{1} \mathrm{H}$ NMR traces of alkene/aldehyde regions for solvent/catalyst pairs screened and shown in Table S1. All reactions were performed on 1 mmol of alkene $\mathbf{3}$ with $1 \mathrm{~mol} \%$ catalyst loading and 5 mmol of crotonaldehyde (5 equiv.). Crotonaldehyde (predominantly trans) was used as received from Millipore Sigma (catalog \#: 262668, CAS: 123-73-9).

Table S2: Data collection and refinement statistics.

Wavelength (A)	0.97910
Resolution range (A)	42.6-2.25 (2.33-2.25)
Space group	P 1
Unit cell (a, b, c (\AA) ; $\alpha, \beta, \gamma\left(^{\circ}\right)$)	46.0762 .20108 .2082 .5281 .8468 .35
Total reflections	80875 (8176)
Unique reflections	46037 (4664)
Multiplicity	1.8 (1.8)
Completeness (\%)	87.23 (86.28)
Mean I/ σ (I)	3.15 (1.34)
Wilson B-factor	28.87
$\mathrm{R}_{\text {merge }}$	0.1752 (1.151)
$\mathrm{R}_{\text {meas }}$	0.2478 (1.628)
$\mathrm{R}_{\text {pim }}$	0.1752 (1.151)
$\mathrm{CC}_{1 / 2}$	0.919 (0.182)
CC*	0.979 (0.555)
Reflections used in refinement	45689 (4534)
Reflections used for $\mathrm{R}_{\text {free }}$	2293 (220)
$\mathrm{R}_{\text {work }}$	0.2220 (0.3070)
$\mathrm{R}_{\text {free }}$	0.2631 (0.3378)
CC(work)	0.925 (0.673)
CC(free)	0.876 (0.669)
Number of non-hydrogen atoms	8600
macromolecules	8243
ligands	178
solvent	179
Protein residues	1058
RMS(bonds) (A)	0.002
RMS(angles) (${ }^{\circ}$)	0.48
Ramachandran favored (\%)	99.14
Ramachandran allowed (\%)	0.86
Ramachandran outliers (\%)	0.00
Rotamer outliers (\%)	0.88
Clashscore	3.40
Average B-factor	36.33
macromolecules	36.48
ligands	28.70
solvent	36.80
Number of TLS groups	24

Statistics for the highest-resolution shell are shown in parentheses.

Figure S2: Sequence similarity network (SSN) of human methyltransferases. Node labels correspond to UniProt IDs and Protein Names found in Table S3. Red nodes correspond to small-molecule methyltransferases. Edges are color coded according to sequence similarity (\%ID, legend at bottom right). A description of the SSN generation work flow is detailed in Section 6.3.

Figure S2 (Cont.): Sequence similarity network (SSN) of human methyltransferases. The NNMT, INMT, PNMT cluster appears at top left. Node labels correspond to UniProt IDs and Protein Names found in Table S3. Red nodes correspond to small-molecule methyltransferases. Edges are color coded according to sequence similarity (\%ID, legend at bottom right). A description of the SSN generation workflow is detailed in Section 6.3.

Table S3: Human methyltransferases used to construct a sequence similarity network (SSN). A description of the SSN generation workflow is provided in Section 6.3.

SSN Node Label	UniProt Entry ID	UniProt Entry Name	Gene Names	Protein Name
ALKBH8	Q96BT7	ALKB8_HUMAN	ALKBH8 ABH8	Alkylated DNA repair protein alkB homolog 8
AS3MT	Q9HBK9	AS3MT_HUMAN	AS3MT CYT19	Arsenite methyltransferase
ASMT	P46597	ASMT_HUMAN	ASMT	Acetylserotonin O-methyltransferase
ASMTL	O95671	ASML_HUMAN	ASMTL	N-acetylserotonin O-methyltransferase-like protein ShortASMTL
BCDIN3D	Q7Z5W3	BN3D2_HUMAN	BCDIN3D	Pre-miRNA 5'-monophosphate methyltransferase
C10orf138	Q5JPI9	EFMT2_HUMAN	EEF1AKMT2 C10orf138 METTL10	EEF1A lysine methyltransferase 2
C12orf72	Q8IXQ9	ETKMT_HUMAN	ETFBKMT C12orf72 METTL20	Electron transfer flavoprotein beta subunit lysine methyltransferase
C16orf24	Q9BQD7	F173A_HUMAN	FAM173A C16orf24 RJD7	Protein N-lysine methyltransferase FAM173A
C21orf127	Q9Y5N5	N6MT1_HUMAN	N6AMT1 C21orf127 HEMK2 PRED28	Methyltransferase N6AMT1
C2orf56	Q7L592	NDUF7_HUMAN	NDUFAF7 C2orf56 PRO1853	Protein arginine methyltransferase NDUFAF7, mitochondrial
C7orf60	Q1RMZ1	SAMTR_HUMAN	BMT2 C7orf60 SAMTOR	S-adenosylmethionine sensor upstream of mTORC1
C8orf79	Q9P272	TRM9B_HUMAN	TRMT9B C8orf79 KIAA1456 TRM9L	Probable tRNA methyltransferase 9B
C9orf41	Q8N4J0	CARME_HUMAN	CARNMT1 C9orf41	Carnosine N-methyltransferase
CAMKMT	Q7Z624	CMKMT_HUMAN	CAMKMT C2orf34 CLNMT	Calmodulin-lysine N-methyltransferase ShortCLNMT ShortCaM KMT
CARM1	Q86X55	CARM1_HUMAN	CARM1 PRMT4	Histone-arginine methyltransferase CARM1
CMTR1	Q8N1G2	CMTR1_HUMAN	CMTR1 FTSJD2 KIAA0082 MTR1	Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1
CMTR2	Q8IYT2	CMTR2_HUMAN	CMTR2 AFT FTSJD1	Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 2
COMT	P21964	COMT_HUMAN	COMT	Catechol O-methyltransferase
COMTD1	Q86VU5	CMTD1_HUMAN	COMTD1 UNQ766/PRO1558	Catechol O-methyltransferase domain-containing protein 1
COQ3	Q9NZJ6	COQ3_HUMAN	COQ3 UG0215E05	Ubiquinone biosynthesis O-methyltransferase, mitochondrial
COQ5	Q5HYK3	COQ5_HUMAN	COQ5	2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, mitochondrial
DIMT1	Q9UNQ2	DIM1_HUMAN	DIMT1 DIMT1L HUSSY-05	Probable dimethyladenosine transferase
DNMT1	P26358	DNMT1_HUMAN	DNMT1 AIM CXXC9 DNMT	DNA (cytosine-5)-methyltransferase 1 ShortDnmt1
DNMT3A	Q9Y6K1	DNM3A_HUMAN	DNMT3A	DNA (cytosine-5)-methyltransferase 3A ShortDnmt3a
DNMT3B	Q9UBC3	DNM3B_HUMAN	DNMT3B	DNA (cytosine-5)-methyltransferase 3B ShortDnmt3b
DOT1L	Q8TEK3	DOT1L_HUMAN	DOT1L KIAA1814 KMT4	Histone-lysine N-methyltransferase, H3 lysine-79 specific
EEF1AKMT4	P0DPD7	EFMT4_HUMAN	EEF1AKMT4	EEF1A lysine methyltransferase 4

EEF1AKMT4	P0DPD8	EFCE2_HUMAN	EEF1AKMT4-ECE2		
FAM119B	Q96AZ1	EFMT3_HUMAN	EEF1AKMT3 FAM119B	HCA557A	EEF1AKMT4-ECE2 readthrough transcript protein
EEF1A lysine methyltransferase 3					

METTL15P1	P0C7V9	ME15P_HUMAN	METTL15P1 METT5D2	Putative methyltransferase-like protein 15P1
METTL17	Q9H7H0	MET17_HUMAN	METTL17 METT11D1	Methyltransferase-like protein 17, mitochondrial
METTL18	O95568	MET18_HUMAN	METTL18 ASTP2 C1orf156	Histidine protein methyltransferase 1 homolog
METTL21A	Q8WXB1	MT21A_HUMAN	METTL21A FAM119A HCA557B	Protein N-lysine methyltransferase METTL21A
METTL21C	Q5VZV1	MT21C_HUMAN	METTL21C C13orf39	Protein-lysine methyltransferase METTL21C
METTL21EP	A6NDL7	MT21E_HUMAN	METTL21EP METTL21CP1	Putative methyltransferase-like protein 21E pseudogene
METTL22	Q9BUU2	MET22_HUMAN	METTL22 C16orf68 LP8272	Methyltransferase-like protein 22
METTL23	Q86XA0	MET23_HUMAN	METTL23 C17orf95	Methyltransferase-like protein 23
METTL25	Q8N6Q8	MET25_HUMAN	METTL25 C12orf26	Methyltransferase-like protein 25
METTL2A	Q96IZ6	MET2A_HUMAN	METTL2A METTL2 HSPC266	Methyltransferase-like protein 2A
METTL2B	Q6P1Q9	MET2B_HUMAN	METTL2B	Methyltransferase-like protein 2B
METTL3	Q86U44	MTA70_HUMAN	METTL3 MTA70	N6-adenosine-methyltransferase catalytic subunit
METTL4	Q8N3J2	METL4_HUMAN	METTL4	Methyltransferase-like protein 4
METTL5	Q9NRN9	METL5_HUMAN	METTL5 DC3 HSPC133	Methyltransferase-like protein 5
METTL6	Q8TCB7	METL6_HUMAN	METTL6	Methyltransferase-like protein 6
METTL7A	Q9H8H3	MET7A_HUMAN	METTL7A PRO0066 UNQ1902/PRO4348	Methyltransferase-like protein 7A
METTL7B	Q6UX53	MET7B_HUMAN	METTL7B UNQ594/PRO1180	Methyltransferase-like protein 7B
METTL8	Q9H825	METL8_HUMAN	METTL8	Methyltransferase-like protein 8
MSTP077	Q9H649	NSUN3_HUMAN	NSUN3 MSTP077 UG0651E06	tRNA (cytosine(34)-C(5))-methyltransferase, mitochondrial
N6AMT2	Q8WVE0	EFMT1_HUMAN	EEF1AKMT1 N6AMT2	EEF1A lysine methyltransferase 1
NNMT	P40261	NNMT_HUMAN	NNMT	Nicotinamide N-methyltransferase
NOP2	P46087	NOP2_HUMAN	NOP2 NOL1 NSUN1	$\begin{aligned} & \text { Probable 28S rRNA (cytosine(4447)-C(5))- } \\ & \text { methyltransferase }\end{aligned}$ -
NSUN2	Q08J23	NSUN2_HUMAN	NSUN2 SAKI TRM4	tRNA (cytosine(34)-C(5))-methyltransferase
NSUN4	Q96CB9	NSUN4_HUMAN	NSUN4	5-methylcytosine rRNA methyltransferase NSUN4
NSUN5	Q96P11	NSUN5_HUMAN	NSUN5 NSUN5A WBSCR20 WBSCR20A	Probable 28 S rRNA (cytosine-C(5))-methyltransferase
NSUN5P1	Q3KNT7	NSN5B_HUMAN	NSUN5P1 NSUN5B WBSCR20B	Putative NOL1/NOP2/Sun domain family member 5B
NSUN5P2	Q63ZY6	NSN5C_HUMAN	NSUN5P2 NSUN5C WBSCR20B WBSCR20C	Putative methyltransferase NSUN5C
NSUN6	Q8TEA1	NSUN6_HUMAN	NSUN6 NOPD1	Putative methyltransferase NSUN6
NSUN7	Q8NE18	NSUN7_HUMAN	NSUN7	Putative methyltransferase NSUN7
NTMT1	Q9BV86	NTM1A_HUMAN	NTMT1 C9orf32 METTL11A NRMT NRMT1 AD-003	N-terminal Xaa-Pro-Lys N-methyltransferase 1
PCMT1	P22061	PIMT_HUMAN	PCMT1	Protein-L-isoaspartate(D-aspartate) O-methyltransferase ShortPIMT
PNMT	P11086	PNMT_HUMAN	PNMT PENT	Phenylethanolamine N-methyltransferase ShortPNMTase
PP7517	Q8WZ04	TOMT_HUMAN	LRTOMT COMT2 TOMT PP7517	Transmembrane O-methyltransferase

Figure S3: Structural similarity dendrogram. The dendrogram is derived by average linkage clustering of the structural similarity matrix (Dali Z-scores).

Figure S4: Heatmap of DALI Z-scores. Axes are labelled with protein abbreviations and correspond to those listed in Table S4. Note the NNMT/INMT/PNMT cluster (top right) indicating high structural similarity between these proteins.

Table S4: DALI output used to rank human methyltransferases by structural similarity (sorted by Z-score). A detailed description of the DALI structural alignment workflow is given in Section 6.4

	Number	PDB ID	Z	rmsd	lali	nres	\%id	Abbrev.	Full Name	Substrate	UniProt ID
	1	3rod-A	51.2	0	260	260	100	NNMT	nicotinamide N-methyltransferase	SM	P40261
	30	2a14-A	43.2	1.1	258	258	52	INMT	indolethylamine N -methyltransferase	SM	O95050
	35	3hcd-B	37.6	1.5	252	269	39	PNMT	phenylethanolamine N -methyltransferase	SM	P11086
	115	6 dub-B	18.7	2.9	197	218	15	NTM1B	alpha N-terminal protein methyltransferase 1B	protein	Q5VVY1
	117	2ex4-A	18.5	2.9	197	222	18	NTM1A	N-terminal Xaa-pro-lys N-methyltransferase 1	protein	Q9BV86
	285	$3 \mathrm{bgv-B}$	15.9	3.2	192	271	13	RG7MT1	mRNA cap guanine-N7 methyltransferase	RNA	O43148
	349	2bzg-A	15.5	2.8	190	230	12	TPMT	thiopurine S-methyltransferase	SM	P51580
	385	$5 \mathrm{yf0}$-A	15.4	3.1	192	337	14	CARNMT1	carnosine N-methyltransferase	SM	Q8N4J0
	422	1jqe-B	15.2	3.0	188	281	12	HNMT	histamine N-methyltransferase	SM	P50135
	498	1r74-B	14.9	2.7	183	279	16	GNMT	glycine N -methyltransferase	SM	Q14749
	517	2pxx-A	14.8	2.9	173	214	14	EEF1AKMT4	EEF1A lysine methyltransferase 4	Protein	P0DPD7
	625	$4 \mathrm{a} \mathrm{e}-\mathrm{A}$	14.4	3.1	188	346	14	ASMT	acetylserotonin O-methyltransferase	SM	P46597
	633	$6 \mathrm{dcc}-\mathrm{A}$	14.4	3.1	179	222	17	MePCE	7SK snRNA methylphosphate capping enzyme	RNA	Q7L2J0
	666	3p71-T	14.2	3.5	205	315	8	LCMT1	leucine carboxyl methyltransferase 1	protein	Q9UIC8
\cdots	886	4xcx-A	13.1	3.2	169	217	12	HENMT1	Small RNA 2'-O-methyltransferase	RNA	Q5T8I9
	897	4 rfq - A	13.0	3.5	182	269	17	MTL18	histidine protein methyltransferase 1 homolog	protein	O95568
	-	3orh-A	13.0	3.3	192	231	17	GAMT	guanidinoacetate N-methyltransferase	SM	Q14353
	977	4qpn-A	12.5	2.8	162	203	17	METTL21B	EEF1A lysine methyltransferase 3	protein	Q96AZ1
	991	4pwy-A	12.4	3.3	174	251	15	CLNMT	calmodulin-lysine N -methyltransferase	Protein	Q7Z624
	1078	4lec-A	12.0	3.1	163	203	13	HSPA-KMT	protein N-lysine methyltransferase METTL21A	protein	Q8WXB1
	1090	5 wws -B	12.0	3.6	166	458	14	NSUN6	putative methyltransferase NSUN6	RNA	Q8TEA1
	1160	2avd-A	11.4	3.6	163	220	10	COMT	catechol O-methyltransferase domain-containing protein 1	SM	Q86VU5
	1230	$3 \mathrm{egi-A}$	10.4	3.0	156	195	10	TGS1	trimethylguanosine synthase	RNA	Q96RS0
	1233	5wcj-A	10.3	3.2	155	222	14	METTL13	methyltransferase-like protein 13	protein	Q8N6R0
	1246	3uwp-A	10.1	3.2	166	341	11	DOT1L	histone-lysine N-methyltransferase, H3 lysine-79 specific	protein	Q8TEK3
	1266	4 ikp -A	10.0	2.9	157	335	13	PRMT4	histone-arginine methyltransferase CARM1	protein	Q86X55
	1270	1zq9-A	9.9	2.8	156	279	13	DIMT1	probable dimethyladenosine transferase	RNA	Q9UNQ2
	1315	2h00-C	9.7	3.3	161	204	14	METTL16	RNA N6-adenosine-methyltransferase METTL16	RNA	Q86W50
	1342	4qqn-A	9.6	2.9	149	299	15	PRMT3	protein arginine N -methyltransferase 3	protein	O60678
	1351	5ccx-B	9.5	3.4	155	371	11	TRMT61A	tRNA (adenine(58)-N(1))-methyltransferase catalytic subunit TRMT61A	RNA	Q96FX7
	1558	4n48-B	7.7	4.0	164	406	6	CMTR1	cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1	RNA	Q8N1G2
	1588	4wxx-B	7.3	3.5	142	1178	10	DNMT1	DNA (cytosine-5)-methyltransferase 1	DNA	P26358
	1589	1i1n-A	7.2	3.3	137	225	15	PIMT	protein-L-isoaspartate(D-aspartate) O-methyltransferase	protein	P22061
	1601	1g55-A	7.0	4.5	132	314	11	TRDMT1	tRNA (cytosine(38)-C(5))-methyltransferase	RNA	O14717

Table S5: Assays performed in the course of this work to evaluate selectivity for NNMT.

Enzyme/Assay	Source	Substrate/Stimulus Tracer	Incubation	Measured Component	Detection Method	Reference
thiopurine S-methyltransferase (TPMT)	HR (E. coli)	6-mercaptopurine ($8 \mu \mathrm{M}$), SAM ($1.5 \mu \mathrm{M}$)	$30 \mathrm{~min}, 22^{\circ} \mathrm{C}$	SAH	MS	Krijt et al. ${ }^{\text {a }}$
indoleethylamine N -methyltransferase (INMT)	HR (E. coli)	tryptamine (1 mM), SAM ($10 \mu \mathrm{M}$)	$30 \mathrm{~min}, 22^{\circ} \mathrm{C}$	luminescence	plate reader	this work
catechol O-methyltransferase (COMT)	HR (E. coli)	pyrocatechol ($15 \mu \mathrm{M}$), SAM $(10 \mu \mathrm{M})$	$15 \mathrm{~min}, 37^{\circ} \mathrm{C}$	SAH	MS	Krijt et al. ${ }^{\text {a }}$
phenylethanolamine N-methyltransferase (PNMT)	HR (E. coli)	DL-normetanephrine $\quad(35$ $\mu \mathrm{M})$, SAM $(6 \mu \mathrm{M})$	$45 \mathrm{~min}, 22^{\circ} \mathrm{C}$	SAH	MS	Krijt et al. ${ }^{\text {a }}$
glycine N-methyltransferase (GNMT)	HR (E. coli)	glycine ($100 \mu \mathrm{M}$), SAM (20 $\mu \mathrm{M}$)	$30 \mathrm{~min}, 22^{\circ} \mathrm{C}$	SAH	MS	Krijt et al. ${ }^{\text {a }}$
guanidinoacetate N -methyltransferase (GAMT)	HR (E. coli)	guanidineacetic acid ($4 \mu \mathrm{M}$), SAM ($7 \mu \mathrm{M}$)	$30 \mathrm{~min}, 22^{\circ} \mathrm{C}$	SAH	MS	Krijt et al. ${ }^{\text {a }}$
histamine N -methyltransferase (HNMT)	HR (E. coli)	$\begin{aligned} & \text { histamine }(4 \mu \mathrm{M}) \text {, SAM }(4 \\ & \mu \mathrm{M}) \end{aligned}$	$15 \mathrm{~min}, 22^{\circ} \mathrm{C}$	SAH	MS	Krijt et al. ${ }^{\text {a }}$
DNMT3a	HR (Sf9 cells)	poly(dI-dC)-poly(dI-dC) $(0.6 \mathrm{mU} / \mathrm{ml})$, [3H] SAM (100 nM)	$10 \mathrm{~min}, 37^{\circ} \mathrm{C}$	methylated poly(dI-dC)-Poly (dI-dC)	scint. counting	Aoki et al. ${ }^{\text {b }}$
PRMT1	HR (E. coli)	histone H4 full length (50 $\mathrm{nM}),[3 \mathrm{H}]$ SAM (700 nM)	$20 \mathrm{~min}, 22^{\circ} \mathrm{C}$	methylated histone H4 full length	scint. counting	Cheng et al. ${ }^{\text {c }}$
ASH1L	HR (E. coli)	polynucleosome ($1.5 \mathrm{\mu g} / \mathrm{ml}$), [3H] SAM (150 nM)	$15 \mathrm{~min}, 22^{\circ} \mathrm{C}$	methylated polynucleosome	scint. counting	An et al. ${ }^{d}$
DOT1L	HR (E. coli)	polynucleosome ($2.5 \mathrm{\mu g} / \mathrm{ml}$), [3H]SAM (100 nM)	$15 \mathrm{~min}, 22^{\circ} \mathrm{C}$	methylated polynucleosome	scint. counting	Yost et al. ${ }^{e}$
EHMT1	HR (E. coli)	histone H3 full length (10 $\mathrm{nM}),[3 \mathrm{H}]$ SAM $(25 \mathrm{nM})$	$120 \mathrm{~min}, 22^{\circ} \mathrm{C}$	methylated histone H3 full length	scint. counting	Yost et al. ${ }^{\text {e }}$
G9a	HR (E. coli)	histone H3 full length (5 $\mathrm{nM}),[3 \mathrm{H}]$ SAM $(25 \mathrm{nM})$	$120 \mathrm{~min}, 22^{\circ} \mathrm{C}$	methylated histone H3 full length	scint. counting	Yost et al. ${ }^{\text {e }}$
SETDB1	HR (cellules Sf9)	histone H3 full length (30 $\mathrm{nM}),[3 \mathrm{H}]$ SAM $(250 \mathrm{nM})$	$30 \mathrm{~min}, 22^{\circ} \mathrm{C}$	methylated histone H3 full length	scint. counting	Schultz et al. ${ }^{f}$

[^0]${ }^{6}$ Aoki, A. Nucleic Acids Res. 2001, 29, 3506-3512.
${ }^{c}$ Cheng, D.; Yadav, N.; King, R. W.; Swanson, M. S.; Weinstein, E. J.; Bedford, M. T. J. Biol. Chem. 2004, 279, 23892-23899.
${ }^{d}$ An, S.; Yeo, K. J.; Jeon, Y. H.; Song, J.-J. J. Biol. Chem. 2011, 286, 8369-8374.
Yost, J. M.; Korboukh, I.; Liu, F.; Gao, C.; Jin, J. Curr. Chem. Genomics 2011, 5, $72-84$.
${ }^{f}$ Schultz, D. C.; Ayyanathan, K.; Negorev, D.; Maul, G. G.; Rauscher, F. J. Genes \& Dev. 2002, 16, 919-932.

Figure S5: INMT IC_{50} assay performed using the Promega MTase-Glo ${ }^{\mathrm{TM}}$ assay. Full experimental details are reported in Section 6.6.2.

Figure S6: Cellular Thermal Shift Assay (CETSA) with NS1 (10), performed according to experimental protocols outlined in the manuscript Experimental section.

Figure S7: Isothermal Dose Reponse (ITDR) CETSA with with NS1 (10), performed according to experimental protocols outlined in the manuscript Experimental section.

Figure S8: Cellular Thermal Shift Assay (CETSA) with 25 (NS1-Urea), performed according to experimental protocols outlined in the manuscript Experimental section.

Figure S9: Isothermal Dose Reponse (ITDR) CETSA with 25 (NS1-Urea), performed according to experimental protocols outlined in the manuscript Experimental section.

Table S6: Average \% viability in a CellTiter-Glo cytotoxicity assay (U2OS cells, $\mathbf{2 4} \mathbf{h}$ timepoint). Experimental details are reported in the manuscript Experimental section.

Compound Identifier	Trivial Name	$0.032 \mu \mathrm{M}$	$0.1 \mu \mathrm{M}$	$0.32 \mu \mathrm{M}$	$1 \mu \mathrm{M}$	$3.2 \mu \mathrm{M}$	$10 \mu \mathrm{M}$	$31.6 \mu \mathrm{M}$	$100 \mu \mathrm{M}$
10	NS1	103	105	104	105	106	111	104	106
21	NS1-Amine	102	100	98	99	105	104	97	102
23	NS1-MethylEster	102	104	103	104	106	109	105	106
24	NS1-AminoAmide	99	97	98	100	101	105	101	104
25	NS1-Urea	103	103	100	103	104	107	103	105
Doxorubicin (Positive control)	At $3 \mu \mathrm{M}$	At $5 \mu \mathrm{M}$	At $10 \mu \mathrm{M}$						

Table S7: Average \% viability in a CellTiter-Glo cytotoxicity assay (U2OS cells, $48 \mathbf{h}$ timepoint). Experimental details are reported in the manuscript Experimental section.

Compound Identifier	Trivial Name	$0.032 \mu \mathrm{M}$	$0.1 \mu \mathrm{M}$	$0.32 \mu \mathrm{M}$	$1 \mu \mathrm{M}$	$3.2 \mu \mathrm{M}$	$10 \mu \mathrm{M}$	$31.6 \mu \mathrm{M}$	$100 \mu \mathrm{M}$
10	NS1	103	105	104	103	103	103	102	106
21	NS1-Amine	102	104	104	103	103	102	103	102
23	NS1-MethylEster	102	104	104	102	102	103	102	104
24	NS1-AminoAmide	101	103	104	102	102	101	102	103
25	NS1-Urea	103	104	103	104	104	102	104	105
Doxorubicin (Positive control)	At $3 \mu \mathrm{M}$	At $5 \mu \mathrm{M}$	At $10 \mu \mathrm{M}$						
		26	25	16					

Table S8: Cellular MNAM levels measured by LC-MS/MS after compound treatment. Compounds noted with ${ }^{\text {A }}$ were ran on one plate and compounds noted with ${ }^{\mathrm{B}}$ were ran on a separate plate. $\boldsymbol{N} \mathbf{1}$ and $\boldsymbol{N 2}$ refer to independent experiments performed on different days. Each experiment was run with $\mathrm{n}=2$ replicates. *JBSNF-0088 refers to 6-methoxynicotinamide, a known NNMT inhibitor, and was used a control inhibitor for assay validation.

		N1		N2	
Compound Identifier	Compound Name	$\mathrm{IC}_{50}(\mathrm{\mu M})$	\% Inhibition at $31.6 \mu \mathrm{M}$	$\mathrm{IC}_{50}(\mu \mathrm{M})$	\% Inhibition at $31.6 \mu \mathrm{M}$
P180810 ${ }^{\text {A }}$	JBSNF-0088* ${ }^{\text {(control) }}$	1.24		1.03	
$10^{\text {A }}$	NS1	>31.6	15	>31.6	21
$23^{\text {A }}$	NS1-MethylEster	>31.6	31	>31.6	29
P180810 ${ }^{\text {B }}$	JBSNF-0088* ${ }^{\text {(control) }}$	0.78		1.01	
$21^{\text {B }}$	NS1-Amine	NA		NA	
$24^{\text {B }}$	NS1-AminoAmide	>31.6	18	>31.6	17
$25^{\text {B }}$	NS1-Urea	NA		NA	

Table S9: A-B permeability assay (Caco-2, $\mathrm{pH} 6.5 / 7.4$). Incubation: 0 and $60 \mathrm{~min}, 37^{\circ} \mathrm{C}$. Detection, HPLCMS/MS. ${ }^{1}$

| Compound
 Identifier | Trivial Name | Conc.
 $\mu \mathrm{M}$ | Perm., $1^{\text {st }}$
 $10^{-6} \mathrm{~cm} / \mathrm{s}$ | $2^{\text {nd }}$ | Mean | $\%$ Recovery $1^{\text {st }}$ | $2^{\text {nd }}$ | Mean | Flags |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 21 | NS1-Amine | 10 | 1.16 | 1.52 | 1.3 | 76 | 78 | 77 | |
| 23 | NS1-MethylEster | 10 | 0.07 | 0.06 | 0.1 | 74 | 83 | 78 | |
| 25 | NS1-Urea | 10 | 0.18 | 0.2 | <0.2 | 70 | 65 | 68 | BLQ 2 |
| 10 | NS1 | 10 | 0.75 | 0.75 | <0.7 | 90 | 100 | 95 | BLQ |
| 24 | NS1-AminoAmide | 10 | 0.07 | 0.07 | <0.1 | 92 | 92 | 92 | BLQ |

Table S10: Reference compounds used in the validation of the Caco-2 assay.

Reference Compound	Conc. $\mu \mathrm{M}$	Perm. 1st $10^{-6} \mathrm{~cm} / \mathrm{s}$	$2^{\text {nd }}$	Mean	\% Recovery $1^{\text {st }} \mathrm{st}$	$2^{\text {nd }}$	Mean
colchicine	10	0.17	0.22	0.2	72	85	78
labetalol	10	8.53	9.16	8.8	85	87	86
propranolol	10	22.25	25.12	23.7	66	68	67
ranitidine	10	0.56	0.46	0.5	97	96	97

[^1]
2 List of Abbreviations

\AA	angstrom
E	$G e r .$, entgegen
Z	Ger., zusammen
1 MQ	1-methylquinolinium
Ac	acetate
Bn	benzyl
BPE	bis(phospholano)ethane
BSA	N,O-bis(trimethylsilyl)acetamide
Bz	benzoyl
Cbz	benzyloxycarbonyl
DMAP	4-(dimethylamino)pyridine
DMEAD	di-2-methoxyethyl azodicarboxylate
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane
DMPU	N, N-dimethylpropylene urea
DMSO	dimethyl sulfoxide
DTBMP-OTf	2,6-di-tert-butyl-4-methylpyridinium triflate
equiv.	equivalent
Fmoc	9-fluorenylmethoxycarbonyl
HMPA	hexamethylphosphoramide
HRMS	high-resolution mass spectrometry
LDA	lithium diisopropylamide
M.S.	molecular sieves
MTBE	methyl tert-butyl ether
NAM	nicotinamide
Ns	2-nitrobenzenesulfonyl

ODE	ordinary differential equation
PhH	benzene
PhMe	toluene
PMHS	(poly)methylhydrosiloxane
Pyr	pyridine
quant.	quantitative
rbf	round-bottom flask
rfu	relative fluorescence units
RT	room temperature
SAH	S-adenosylhomocysteine
SAM	S-adenosylmethionine
SAR	structure-activity relationship
TASF	tris(dimethylamino)sulfonium difluorotrimethylsilicate
TBAF	tetra- n-butylammonium fluoride
TBAI	tetra- n-butylammonium iodide
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
$\mathrm{Tf}_{2} \mathrm{O}$	trifluoromethanesulfonic (triflic) anhydride
TFA	trifluoroacetic acid / trifluoroacetyl
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TMS	trimethylsilyl
Ts	p-toluenesulfonyl

3 Positional Numbering System

The following figure features representative examples of the positional numbering system used in this work. Several compound names directly derive from it, such as NS1-Pyr12' for the analog where the carbon atom at the 12^{\prime} position was replaced by a nitrogen atom or $\mathrm{NS} 1-12$ ' Cl for the analog where a chloro substituent was added at the 12 ' position.

NS1 (10)

NS1-12'Cl (33)

NS1-6'EpiAlkane (16)

NS1-Benzolactam6 (34)

Homo-NS1 (26)

NS1-Pyr12' (38)
(Intermediates that have not been assigned numbering in the main text are numbered sequentially in the experimental section starting with $\boldsymbol{S} \mathbf{1}$).

4 Supplemental Schemes

Scheme S1

Scheme S2

S3

Scheme S3

Scheme S4

Scheme S5

Scheme S6

$\xrightarrow[\substack{\left.\text { 2) } \mathrm{NH}_{3}, \mathrm{MeOH} \\ 62 \% \text { (2 steps }\right)}]{\text { 1) } \mathrm{LiOH} \text { aq., THF }}$
S12

S12

Scheme S7

Scheme S9

$\xrightarrow[\substack{\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(9: 1), 50^{\circ} \mathrm{C} \\ 89 \%}]{\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}(30 \mathrm{~mol} \%)}$

Scheme S10

S20

S21

S22

S23
$\underset{\substack{0 \\ 0}}{\substack{\left.\text { 2) } \mathrm{Ac}_{2} \mathrm{O}, \text { Pyr, DMAP } \\ \mathrm{CH}_{2} \mathrm{Cl}_{2}, \text { RT } \\ 88 \% \text { (2 steps }\right)}} \xrightarrow{\text { 1) } \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}}$

S24

S25

$\xrightarrow[\mathrm{MeOH}]{\mathrm{NH}_{3}}$
88\%

S27

S28

S29

S33

NS1-Cyclopropyl (18)

Scheme S12

Scheme S13

Scheme S14

Scheme S15

NS1-Amine (21)
Scheme S17

Scheme S18

1) $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ piperidine (2:2:1)
2) $\mathrm{NH}_{3}, \mathrm{MeOH}$

27\% (2 steps)

Scheme S20

1) $\mathrm{PhSH}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$

MeCN/DMF, RT

[^2]
$$
\xrightarrow[\substack{\mathrm{MeOH} \\ 80 \%}]{\mathrm{NH}_{3}}
$$

Scheme S21

S64

S65

Scheme S22

Scheme S23

Scheme S24

8

S68

Scheme S25

S68

$$
\xrightarrow[\substack{\text { 2) } \mathrm{NH}_{3}, \mathrm{MeOH} \\ 58 \%(2 \text { steps })}]{\text { 1) } \mathrm{LiOH} \text { aq., THF }}
$$

Scheme S26

Scheme S27

Scheme S28

Scheme S29

8

S71

Scheme S30

Scheme S31

Scheme S32

8

NS1-12'Me (31)

Scheme S34

Scheme S35

Scheme S36

Scheme S37

Scheme S38

Scheme S39

Scheme S40

8
 60\%

Scheme S41

S78
$\xrightarrow[\substack{\text { 2) } \mathrm{NH}_{3}, \mathrm{MeOH} \\ \text { quant (2 steps) }}]{\text { 1) } \mathrm{LiOH} \text { aq., THF }}$
quant. (2 steps)

Scheme S42

Scheme S43

S79
Scheme S44

8

$\xrightarrow[\substack{\text { 2) } \mathrm{NH}_{3}, \mathrm{MeOH} \\ 76 \% \text { (2 steps) }}]{\text { 1) } \mathrm{LiOH} \text { aq., THF }}$

S81

Scheme S45

$\xrightarrow[\substack{\text { PhMe/DMF/i-Pr } \\ 73 \%}]{\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{Cul}}(5: 1: 1)$

NS1-Methylenedioxy (36)
Scheme S46

8

Scheme S47

Scheme S48

8

Scheme S49

$\xrightarrow[\substack{\text { 2) } \mathrm{NH}_{3}, \mathrm{MeOH}}]{\text { 1) } \mathrm{LiOH} \text { aq., THF }}$

Scheme S50

8

Scheme S51

Scheme S52

8

S85
$\xrightarrow[\substack{\text { 2) } \mathrm{NH}_{3}, \mathrm{MeOH} \\ 82 \% \text { (2 steps) }}]{\text { 1) } \mathrm{LiOH} \text { aq., } \mathrm{THF}}$

Scheme S53

Scheme S54

,

Scheme S55

$$
\xrightarrow[\substack{\text { 2) } \left.\mathrm{NH}_{3}, \mathrm{MeOH} \\ 64 \% \text { (2 steps }\right)}]{\text { 1) } \mathrm{LiOH} \text { aq., THF }}
$$

S86

Scheme S56

5 Small-Molecule X-Ray Crystallography

A crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX DUO CCD diffractometer $\left(\mathrm{Cu}_{\mathrm{K} \alpha}\right.$ radiation, $\left.\lambda=1.54178 \AA\right)$, and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at $-30^{\circ},-55^{\circ},-80^{\circ}, 30^{\circ}, 55^{\circ}, 80^{\circ}$ and 115° in 2θ. Data integration down to $0.84 \AA$ resolution was carried out using SAINT V8.37 A^{2} with reflection spot size optimization. Absorption corrections were made with the program SADABS ${ }^{2}$. The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^{2} using SHELXT-2014 ${ }^{3}$ and SHELXL-2014 ${ }^{4}$ with OLEX 2 interface ${ }^{5}$. Nonhydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Tables S11, S14, and S16, for compounds 10, S30, and S53, respectively. Geometric parameters are shown in Tables S12, S15, S17 and hydrogen-bond parameters are listed in Tables S13 and S18. The Ortep plots were produced with SHELXL-2014, and the other images were produced with Accelrys DS Visualizer 2.0^{6}.

5.1 NS1 • TFA (10)

Table S11: Experimental Details

Crystal Data	
Chemical Formula	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{9}$
M_{r}	641.57
Crystal system, space group	Triclinic, $P 1$
Temperature (K)	100
$a, b, c(\AA)$	$5.0591(1), 10.9615(2), 13.2000(7)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$103.0375(11), 90.8460(9), 90.3108(10)$

[^3]| $V\left(\AA^{3}\right)$ | $713.03(2)$ |
| :--- | :--- |
| Z | 1 |
| Radiation type | Cu $K \alpha$ |
| $\mu\left(\mathrm{~mm}^{-1}\right)$ | 1.09 |
| Crystal size (mm) | $0.18 \times 0.08 \times 0.06$ |
| | |
| Data Collection | Bruker D8 goniometer with CCD area detector |
| Diffractometer | Multi-scan $S A D A B S$ |
| Absorption correction | $0.738,0.806$ |
| $T_{\min }, T_{\max }$ | $17748,4335,4280$ |
| No. of measured, independent and
 observed $[I>2 \sigma(I)]$ reflections | 0.027 |
| $R_{\text {int }}$ | 0.596 |
| $(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$ | |
| | $0.027,0.073,1.02$ |
| Refinement | 4335 |
| $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$ | 464 |
| No. of reflections | 9 |
| No. of parameters | H atom parameters constrained |
| No. of restraints | $0.53,-0.17$ |
| H-atom treatment | Flack x determined using 1012 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]^{7}$ |
| $\Delta \rho_{\max }, \Delta \rho_{\min }\left(e \AA^{-3}\right)$ | $-0.06(8)$ |
| Absolute structure | |
| Absolute structure parameter | |

Computer programs: SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

Table S12: Geometric parameters ($\mathrm{A},{ }^{\circ}$)

O1-C6	$1.417(3)$	C $9-\mathrm{H} 9$	1
O1-C5	$1.466(3)$	C10-C11	$1.537(3)$
O2-C7	$1.409(3)$	C10-H10A	0.99
O2-H2	$0.86(4)$	C10-H10B	0.99
O3-C8	$1.421(3)$	C11-C16	$1.474(4)$
O3-H3	$0.88(4)$	C11-C12	$1.549(3)$
O4-C15	$1.220(3)$	C11-H11	1
O5-C15	$1.301(3)$	C12-C13	$1.524(3)$
O5-H5	$1.14(6)$	C12-H12A	0.99
O6-C24	$1.252(3)$	C12-H12B	0.99

[^4]| N1-C1 | 1.370 (3) | C13-C14 | 1.528 (3) |
| :---: | :---: | :---: | :---: |
| N1-C5 | 1.380 (3) | C13-H13A | 0.99 |
| N1-C6 | 1.462 (3) | C13-H13B | 0.99 |
| N2-C2 | 1.319 (3) | C14-C15 | 1.516 (3) |
| N2-C1 | 1.346 (3) | C14-H14 | 1 |
| N3-C2 | 1.339 (3) | C16-C17 | 1.195 (4) |
| N3-C3 | 1.359 (3) | C17-C18 | 1.442 (4) |
| N4-C3 | 1.322 (3) | C18-C23 | 1.394 (3) |
| N4-H4A | 0.92 (4) | C18-C19 | 1.401 (4) |
| N4-H4B | 0.88 (4) | C19-C20 | 1.381 (4) |
| N5-C5 | 1.303 (3) | C19-H19 | 0.95 |
| N5-C4 | 1.386 (3) | C20-C21 | 1.393 (4) |
| N6-C14 | 1.492 (3) | C20-H20 | 0.95 |
| N6-H6A | 0.93 (4) | C21-C22 | 1.402 (4) |
| N6-H6B | 0.92 (4) | C21-H21 | 0.95 |
| N6-H6C | 0.97 (3) | C22-C23 | 1.389 (4) |
| N7-C24 | 1.319 (4) | C22-C24 | 1.499 (3) |
| N7-H7A | 0.90 (4) | C23-H23 | 0.95 |
| N7-H7B | 0.88 (4) | O11-C31 | 1.232 (3) |
| C1-C4 | 1.391 (3) | O12-C31 | 1.253 (3) |
| C2-H2A | 0.95 | C31-C32A | 1.540 (3) |
| C3-C4 | 1.417 (3) | C31-C32 | 1.540 (3) |
| C5-H5A | 0.95 | C32-F1 | 1.335 (9) |
| C6-C7 | 1.531 (3) | C32-F2 | 1.338 (9) |
| C6-H6 | 1 | C32-F3 | 1.374 (6) |
| C7-C8 | 1.516 (4) | C32A-F3A | 1.283 (12) |
| C7-H7 | 1 | C32A-F1A | 1.311 (18) |
| C8-C9 | 1.527 (3) | C32A-F2A | 1.378 (18) |
| C8-H8 | 1 | O1W-H1WA | 0.85 (6) |
| C9-C10 | 1.522 (3) | O1W-H1WB | 0.79 (5) |
| C6-O1-C9 | 109.24 (17) | C16-C11-C12 | 109.25 (19) |
| C7-O2-H2 | 104 (2) | C10-C11-C12 | 113.13 (19) |
| C8-O3-H3 | 103 (3) | C16-C11-H11 | 108 |
| C15-O5-H5 | 112 (3) | C10-C11-H11 | 108 |
| C1-N1-C5 | 105.4 (2) | C12-C11-H11 | 108 |
| C1-N1-C6 | 126.1 (2) | C13-C12-C11 | 110.10 (19) |
| C5-N1-C6 | 128.5 (2) | C13-C12-H12A | 109.6 |
| C2-N2-C1 | 111.4 (2) | C11-C12-H12A | 109.6 |
| C2-N3-C3 | 120.7 (2) | C13-C12-H12B | 109.6 |
| C3-N4-H4A | 120 (2) | C11-C12-H12B | 109.6 |

C3-N4-H4B	123 (2)	H12A-C12-H12B	108.2
H4A-N4-H4B	116 (3)	C12-C13-C14	116.8 (2)
C5-N5-C4	104.1 (2)	C12-C13-H13A	108.1
C14-N6-H6A	109 (2)	C14-C13-H13A	108.1
C14-N6-H6B	114 (2)	C12-C13-H13B	108.1
H6A-N6-H6B	111 (3)	C14-C13-H13B	108.1
C14-N6-H6C	108.9 (19)	H13A-C13-H13B	107.3
H6A-N6-H6C	106 (3)	N6-C14-C15	109.3 (2)
H6B-N6-H6C	108 (3)	N6-C14-C13	113.8 (2)
C24-N7-H7A	117 (2)	C15-C14-C13	113.6 (2)
C24-N7-H7B	125 (2)	N6-C14-H14	106.5
H7A-N7-H7B	116 (3)	C15-C14-H14	106.5
N2-C1-N1	127.3 (2)	C13-C14-H14	106.5
N2-C1-C4	126.6 (2)	O4-C15-O5	125.5 (2)
N1-C1-C4	106.1 (2)	O4-C15-C14	122.5 (2)
N2-C2-N3	128.2 (2)	O5-C15-C14	112.0 (2)
N2-C2-H2A	115.9	C17-C16-C11	173.0 (3)
N3-C2-H2A	115.9	C16-C17-C18	172.7 (3)
N4-C3-N3	119.1 (2)	C23-C18-C19	119.1 (2)
N4-C3-C4	125.3 (2)	C23-C18-C17	122.6 (2)
N3-C3-C4	115.6 (2)	C19-C18-C17	118.3 (2)
N5-C4-C1	110.4 (2)	C20-C19-C18	120.6 (2)
N5-C4-C3	132.1 (2)	C20-C19-H19	119.7
C1-C4-C3	117.5 (2)	C18-C19-H19	119.7
N5-C5-N1	114.1 (2)	C19-C20-C21	120.2 (2)
N5-C5-H5A	122.9	C19-C20-H20	119.9
N1-C5-H5A	122.9	C21-C20-H20	119.9
O1-C6-N1	109.56 (19)	C20-C21-C22	119.8 (2)
O1-C6-C7	106.44 (19)	C20-C21-H21	120.1
N1-C6-C7	113.56 (19)	C22-C21-H21	120.1
O1-C6-H6	109.1	C23-C22-C21	119.6 (2)
N1-C6-H6	109.1	C23-C22-C24	118.8 (2)
C7-C6-H6	109.1	C21-C22-C24	121.5 (2)
O2-C7-C8	113.55 (19)	C22-C23-C18	120.7 (2)
O2-C7-C6	112.21 (19)	C22-C23-H23	119.7
C8-C7-C6	101.34 (19)	C18-C23-H23	119.7
O2-C7-H7	109.8	O6-C24-N7	121.6 (2)
C8-C7-H7	109.8	O6-C24-C22	120.0 (2)
C6-C7-H7	109.8	N7-C24-C22	118.4 (2)
O3-C8-C7	110.95 (19)	O11-C31-O12	130.5 (2)
O3-C8-C9	108.27 (19)	O11-C31-C32A	115.1 (2)

C7-C8-C9	101.94 (18)	O12-C31-C32A	114.3 (2)
O3-C8-H8	111.7	O11-C31-C32	115.1 (2)
C7-C8-H8	111.7	O12-C31-C32	114.3 (2)
C9-C8-H8	111.7	F1-C32-F2	104.1 (11)
O1-C9-C10	107.96 (18)	F1-C32-F3	105.6 (7)
O1-C9-C8	105.45 (18)	F2-C32-F3	110.3 (7)
C10-C9-C8	115.4 (2)	F1-C32-C31	112.2 (9)
O1-C9-H9	109.3	F2-C32-C31	113.1 (7)
C10-C9-H9	109.3	F3-C32-C31	111.1 (3)
C8-C9-H9	109.3	F3A-C32A-F1A	112.6 (16)
C9-C10-C11	111.14 (19)	F3A-C32A-F2A	96.4 (15)
C9-C10-H10A	109.4	F1A-C32A-F2A	108 (2)
C11-C10-H10A	109.4	F3A-C32A-C31	115.7 (6)
C9-C10-H10B	109.4	F1A-C32A-C31	118 (2)
C11-C10-H10B	109.4	F2A-C32A-C31	103.0 (14)
H10A-C10-H10B	108	H1WA-O1W-H1WB	113 (5)
C16-C11-C10	110.3 (2)		
C2-N2-C1-N1	179.2 (2)	O3-C8-C9-C10	154.9 (2)
C2-N2-C1-C4	0.9 (3)	C7-C8-C9-C10	-88.1 (2)
C5-N1-C1-N2	-178.1 (2)	O1-C9-C10-C11	62.3 (2)
C6-N1-C1-N2	3.3 (4)	C8-C9-C10-C11	179.94 (19)
C5-N1-C1-C4	0.5 (2)	C9-C10-C11-C16	72.6 (2)
C6-N1-C1-C4	-178.1 (2)	C9-C10-C11-C12	-164.7 (2)
C1-N2-C2-N3	-0.5 (4)	C16-C11-C12-C13	-60.6 (3)
C3-N3-C2-N2	-0.9 (4)	C10-C11-C12-C13	176.03 (19)
C2-N3-C3-N4	-177.5 (2)	C11-C12-C13-C14	177.8 (2)
C2-N3-C3-C4	1.7 (3)	C12-C13-C14-N6	72.3 (3)
C5-N5-C4-C1	0.6 (3)	C12-C13-C14-C15	-53.6 (3)
C5-N5-C4-C3	178.2 (2)	N6-C14-C15-O4	7.7 (3)
N2-C1-C4-N5	177.9 (2)	C13-C14-C15-O4	136.0 (2)
N1-C1-C4-N5	-0.7 (2)	N6-C14-C15-O5	-174.33 (19)
N2-C1-C4-C3	-0.1 (3)	C13-C14-C15-O5	-46.0 (3)
N1-C1-C4-C3	-178.70 (19)	C23-C18-C19-C20	0.1 (4)
N4-C3-C4-N5	0.5 (4)	C17-C18-C19-C20	-177.7 (2)
N3-C3-C4-N5	-178.6 (2)	C18-C19-C20-C21	-0.2 (4)
N4-C3-C4-C1	177.9 (2)	C19-C20-C21-C22	0.5 (3)
N3-C3-C4-C1	-1.2 (3)	C20-C21-C22-C23	-0.6 (3)
C4-N5-C5-N1	-0.3 (3)	C20-C21-C22-C24	175.8 (2)
C1-N1-C5-N5	-0.2 (3)	C21-C22-C23-C18	0.4 (3)
C6-N1-C5-N5	178.5 (2)	C24-C22-C23-C18	-176.1 (2)

C9-O1-C6-N1	$-138.04(18)$	C19-C18-C23-C22	$-0.2(3)$
C5-O1-C6-C7	$-14.9(2)$	C17-C18-C23-C22	$177.5(2)$
C1-N1-C6-O1	$-110.1(2)$	C23-C22-C24-O6	$7.0(3)$
C5-N1-C6-O1	$71.5(3)$	C21-C22-C24-O6	$-169.5(2)$
C1-N1-C6-C7	$131.0(2)$	C23-C22-C24-N7	$-173.9(2)$
C5-N1-C6-C7	$-47.3(3)$	C21-C22-C24-N7	$9.7(3)$
O1-C6-C7-O2	$155.32(19)$	O11-C31-C32-F1	$148.7(9)$
N1-C6-C7-O2	$-84.1(2)$	O12-C31-C32-F1	$-33.4(9)$
O1-C6-C7-C8	$33.9(2)$	O11-C31-C32-F2	$-93.9(9)$
N1-C6-C7-C8	$154.47(19)$	O12-C31-C32-F2	$84.0(9)$
O2-C7-C8-O3	$-44.0(3)$	O11-C31-C32-F3	$30.7(6)$
C6-C7-C8-O3	$76.6(2)$	O12-C31-C32-F3	$-151.4(5)$
O2-C7-C8-C9	$-159.06(19)$	O11-C31-C32A-F3A	$1.0(9)$
C6-C7-C8-C9	$-38.5(2)$	O12-C31-C32A-F3A	$178.9(9)$
C6-O1-C9-C10	$113.7(2)$	O11-C31-C32A-F1A	$139(2)$
C6-O1-C9-C8	$-10.2(2)$	O12-C31-C32A-F1A	$-43(2)$
O3-C8-C9-O1	$-86.1(2)$	O11-C31-C32A-F2A	$-102.8(17)$
C7-C8-C9-O1	$30.9(2)$	O12-C31-C32A-F2A	$75.1(17)$

Table S13: Hydrogen-bond parameters

D - H . A	D - H (A$)$	H \cdots A (${ }_{\text {A }}$)	D ... A (${ }_{\text {A }}$)	D - H \cdots A $\left(^{\circ}\right.$)
$\mathrm{O} 2-\mathrm{H} 2 \cdot \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.86 (4)	1.92 (4)	2.757 (3)	163 (3)
O3-H3 • O11 ${ }^{\text {ii }}$	0.88 (4)	1.94 (4)	2.784 (2)	162 (4)
O3-H3 • O2	0.88 (4)	2.38 (4)	2.766 (3)	107 (3)
O5-H5 • • N3 ${ }^{\text {iii }}$	1.14 (6)	1.41 (6)	2.542 (3)	172 (5)
N4-H4A $\cdot \cdot \mathrm{O} 4^{\text {iv }}$	0.92 (4)	2.19 (4)	3.070 (3)	159 (3)
N4-H4B • ${ }^{\text {O }} 6^{\text {v }}$	0.88 (4)	2.01 (4)	2.876 (3)	166 (3)
N6-H6B • \cdot O12 ${ }^{\text {i }}$	0.92 (4)	1.95 (4)	2.861 (3)	174 (3)
N6-H6A • O O12	0.93 (4)	2.11 (4)	2.991 (3)	158 (3)
N6-H6A $\cdot \cdot \mathrm{O}^{\text {vi }}$	0.93 (4)	2.64 (3)	2.948 (3)	100 (2)
N6-H6C $\cdot \cdot \cdot \mathrm{O}^{\text {W }}$ Wi ${ }^{\text {vi }}$	0.97 (3)	1.91 (3)	2.830 (3)	156 (3)
N7-H7B • \cdot O11 ${ }^{\text {vii }}$	0.88 (4)	2.18 (4)	3.005 (3)	157 (3)
N7-H7A • • N5 ${ }^{\text {viii }}$	0.90 (4)	2.10 (4)	2.975 (3)	165 (3)
O1W-H1WB • • O6i	0.79 (5)	2.09 (5)	2.870 (3)	173 (5)
N4-H4A • ${ }^{\text {O }} 6^{\text {ix }}$	0.92 (4)	2.85 (4)	3.310 (3)	112 (3)
O1W-H1WB $\cdot \cdots \mathrm{O} 4^{\text {x }}$	0.79 (5)	2.79 (5)	3.052 (3)	102 (4)

Symmetry code(s): (i) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}$; (ii) $\mathrm{x}-1, \mathrm{y}+1$, z ; (iii) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}+1$; (iv) $\mathrm{x}+1, \mathrm{y}, \mathrm{z}-1$; (v) $\mathrm{x}-1, \mathrm{y}-1, \mathrm{z}-1$; (vi) x , $\mathrm{y}-1, \mathrm{z}$; (vii) $\mathrm{x}, \mathrm{y}+1, \mathrm{z}+1$; (viii) $\mathrm{x}+1, \mathrm{y}+1, \mathrm{z}+1$; (ix) $\mathrm{x}, \mathrm{y}-1, \mathrm{z}-1$; (x) $\mathrm{x}, \mathrm{y}+1$, z .

Figure S10: Perspective views showing 50% probability displacement.

Figure S11: Three-dimensional supramolecular architecture viewed along the a-axis direction.

5.2 NS1-Cyclopropyl: Cyclopropyl Alkyne S30

Table S14: Experimental Details

Crystal Data	
Chemical Formula	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$
M_{r}	238.27
Crystal system, space group	Monoclinic, $\mathrm{F} 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	$5.7618(1), 19.4824(4), 11.8204(2)$
$\beta\left(^{\circ}\right)$	$90.0232(11)$
$V\left(\AA^{3}\right)$	$1326.88(4)$
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.72
Crystal size (mm)	$0.14 \times 0.10 \times 0.06$
Data Collection	Bruker D 8 goniometer with CCD area detector
Diffractometer	Multi-scan $S A D A B S$
Absorption correction	$0.797,0.864$
$T_{\text {min }}, T_{\text {max }}$	$26548,4269,4245$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	
$R_{\text {int }}$	0.032
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.596
Refinement	$0.026,0.064,1.06$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	4269
No. of reflections	No. of parameters

No. of restraints	1
H atom parameters constrained	
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(e \AA^{\AA-3}\right)$	$0.11,-0.15$
Absolute structure	Flack x determined using 1834 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]^{8}$
Absolute structure parameter	$-0.02(9)$

Computer programs: SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

Table S15: Geometric parameters ($\AA,^{\circ}$)

O1-C2	1.426 (3)	O5-C21	1.421 (3)
O1-C1	1.438 (3)	O5-C25	1.428 (3)
O2-C3	1.410 (3)	O6-C23	1.408 (3)
O2-C4	1.439 (3)	O6-C24	1.442 (3)
O3-C1	1.428 (3)	O7-C22	1.428 (3)
O3-C5	1.429 (3)	O7-C21	1.434 (4)
O4-C3	1.415 (3)	O8-C23	1.413 (3)
O4-C8	1.433 (4)	O8-C28	1.434 (4)
C1-C7	1.512 (4)	C21-C26	1.505 (4)
C1-C6	1.516 (4)	C21-C27	1.508 (4)
C2-C3	1.529 (4)	C22-C23	1.521 (4)
C2-C5	1.550 (4)	C22-C25	1.540 (4)
C2-H2	1	C22-H22	1
C3-H3	1	C23-H23	1
C4-C9	1.509 (4)	C24-C29	1.510 (4)
C4-C5	1.528 (4)	C24-C25	1.520 (4)
C4-H4	1	C24-H24	1
C5-H5	1	C25-H25	1
C6-H6A	0.98	C26-H26A	0.98
C6-H6B	0.98	C26-H26B	0.98
C6-H6C	0.98	C26-H26C	0.98
C7-H7A	0.98	C27-H27A	0.98
C7-H7B	0.98	C27-H27B	0.98
C7-H7C	0.98	C27-H27C	0.98
C8-H8A	0.98	C28-H28A	0.98
C8-H8B	0.98	C28-H28B	0.98
C8-H8C	0.98	C28-H28C	0.98
C9-C10	1.492 (4)	C29-C30	1.500 (4)
C9-C11	1.514 (4)	C29-C31	1.517 (4)
C9-H9	1	C29-H29	1

${ }^{8}$ Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B 2013, 69, 249-259.

C10-C11	1.519 (5)	C30-C31	1.520 (4)
C10-H10A	0.99	C30-H30A	0.99
C10-H10B	0.99	C30-H30B	0.99
C11-C12	1.441 (5)	C31-C32	1.439 (4)
C11-H11	1	C31-H31	1
C12-C13	1.182 (5)	C32-C33	1.181 (4)
C13-H13	0.95	C33-H33	0.95
C2-O1-C1	107.74 (19)	C21-O5-C25	107.6 (2)
C3-O2-C4	107.8 (2)	C23-O6-C24	107.9 (2)
C1-O3-C5	107.19 (19)	C22-O7-C21	107.4 (2)
C3-O4-C8	112.1 (2)	C23-O8-C28	112.1 (2)
O3-C1-O1	103.8 (2)	O5-C21-O7	104.4 (2)
O3-C1-C7	108.9 (2)	O5-C21-C26	108.6 (2)
O1-C1-C7	109.1 (2)	O7-C21-C26	109.0 (2)
O3-C1-C6	111.3 (2)	O5-C21-C27	110.7 (2)
O1-C1-C6	111.1 (2)	O7-C21-C27	111.2 (3)
C7-C1-C6	112.2 (2)	C26-C21-C27	112.6 (2)
O1-C2-C3	110.1 (2)	O7-C22-C23	109.2 (2)
O1-C2-C5	104.7 (2)	O7-C22-C25	104.9 (2)
C3-C2-C5	103.9 (2)	C23-C22-C25	104.3 (2)
O1-C2-H2	112.5	O7-C22-H22	112.6
C3-C2-H2	112.5	C23-C22-H22	112.6
C5-C2-H2	112.5	C25-C22-H22	112.6
O2-C3-O4	111.9 (2)	O6-C23-O8	111.8 (2)
O2-C3-C2	106.2 (2)	O6-C23-C22	105.5 (2)
O4-C3-C2	107.4 (2)	O8-C23-C22	107.3 (2)
O2-C3-H3	110.4	O6-C23-H23	110.7
O4-C3-H3	110.4	O8-C23-H23	110.7
C2-C3-H3	110.4	C22-C23-H23	110.7
O2-C4-C9	112.7 (2)	O6-C24-C29	112.5 (2)
O2-C4-C5	104.2 (2)	O6-C24-C25	104.1 (2)
C9-C4-C5	114.6 (2)	C29-C24-C25	114.5 (2)
O2-C4-H4	108.4	O6-C24-H24	108.5
C9-C4-H4	108.4	C29-C24-H24	108.5
C5-C4-H4	108.4	C25-C24-H24	108.5
O3-C5-C4	108.9 (2)	O5-C25-C24	108.5 (2)
O3-C5-C2	103.72 (19)	O5-C25-C22	104.1 (2)
C4-C5-C2	104.5 (2)	C24-C25-C22	104.8 (2)
O3-C5-H5	113	O5-C25-H25	112.9
C4-C5-H5	113	C24-C25-H25	112.9

C2-C5-H5	113	C22-C25-H25	112.9
C1-C6-H6A	109.5	C21-C26-H26A	109.5
C1-C6-H6B	109.5	C21-C26-H26B	109.5
H6A-C6-H6B	109.5	H26A-C26-H26B	109.5
C1-C6-H6C	109.5	C21-C26-H26C	109.5
H6A-C6-H6C	109.5	H26A-C26-H26C	109.5
H6B-C6-H6C	109.5	H26B-C26-H26C	109.5
C1-C7-H7A	109.5	C21-C27-H27A	109.5
C1-C7-H7B	109.5	C21-C27-H27B	109.5
H7A-C7-H7B	109.5	H27A-C27-H27B	109.5
C1-C7-H7C	109.5	C21-C27-H27C	109.5
H7A-C7-H7C	109.5	H27A-C27-H27C	109.5
H7B-C7-H7C	109.5	H27B-C27-H27C	109.5
O4-C8-H8A	109.5	O8-C28-H28A	109.5
O4-C8-H8B	109.5	O8-C28-H28B	109.5
H8A-C8-H8B	109.5	H28A-C28-H28B	109.5
O4-C8-H8C	109.5	O8-C28-H28C	109.5
H8A-C8-H8C	109.5	H28A-C28-H28C	109.5
H8B-C8-H8C	109.5	H28B-C28-H28C	109.5
C10-C9-C4	119.2 (3)	C30-C29-C24	118.2 (2)
C10-C9-C11	60.7 (2)	C30-C29-C31	60.49 (19)
C4-C9-C11	116.3 (3)	C24-C29-C31	115.2 (2)
C10-C9-H9	116.3	C30-C29-H29	117
C4-C9-H9	116.3	C24-C29-H29	117
C11-C9-H9	116.3	C31-C29-H29	117
C9-C10-C11	60.4 (2)	C29-C30-C31	60.32 (19)
C9-C10-H10A	117.7	C29-C30-H30A	117.7
C11-C10-H10A	117.7	C31-C30-H30A	117.7
C9-C10-H10B	117.7	C29-C30-H30B	117.7
C11-C10-H10B	117.7	C31-C30-H30B	117.7
H10A-C10-H10B	114.9	H30A-C30-H30B	114.9
C12-C11-C9	119.9 (3)	C32-C31-C29	120.3 (3)
C12-C11-C10	121.5 (3)	C32-C31-C30	119.9 (3)
C9-C11-C10	58.9 (2)	C29-C31-C30	59.20 (19)
C12-C11-H11	115	C32-C31-H31	115.3
C9-C11-H11	115	C29-C31-H31	115.3
C10-C11-H11	115	C30-C31-H31	115.3
C13-C12-C11	179.2 (4)	C33-C32-C31	179.2 (4)
C12-C13-H13	180	C32-C33-H33	180
C5-O3-C1-O1	-36.5 (3)	C25-O5-C21-O7	-34.3 (3)

C5-O3-C1-C7	-152.6 (2)	C25-O5-C21-C26	-150.4 (2)
C5-O3-C1-C6	83.1 (3)	C25-O5-C21-C27	85.5 (3)
C2-O1-C1-O3	32.7 (3)	C22-O7-C21-O5	32.5 (3)
C2-O1-C1-C7	148.7 (2)	C22-O7-C21-C26	148.4 (2)
C2-O1-C1-C6	-87.1 (3)	C22-O7-C21-C27	-86.9 (3)
C1-O1-C2-C3	-127.7 (2)	C21-O7-C22-C23	-129.6 (2)
C1-O1-C2-C5	-16.6 (3)	C21-O7-C22-C25	-18.4 (3)
C4-O2-C3-O4	-81.8 (2)	C24-O6-C23-O8	-80.3 (2)
C4-O2-C3-C2	35.1 (3)	C24-O6-C23-C22	36.1 (3)
C8-O4-C3-O2	-61.9 (3)	C28-O8-C23-O6	-60.8 (3)
C8-O4-C3-C2	-178.2 (2)	C28-O8-C23-C22	-176.1 (2)
O1-C2-C3-O2	93.6 (2)	O7-C22-C23-O6	91.4 (2)
C5-C2-C3-O2	-18.1 (3)	C25-C22-C23-O6	-20.3 (3)
O1-C2-C3-O4	-146.4 (2)	O7-C22-C23-O8	-149.2 (2)
C5-C2-C3-O4	101.9 (2)	C25-C22-C23-O8	99.1 (2)
C3-O2-C4-C9	87.5 (3)	C23-O6-C24-C29	87.8 (3)
C3-O2-C4-C5	-37.3 (3)	C23-O6-C24-C25	-36.7 (3)
C1-O3-C5-C4	136.6 (2)	C21-O5-C25-C24	133.7 (2)
C1-O3-C5-C2	25.7 (3)	C21-O5-C25-C22	22.4 (3)
O2-C4-C5-O3	-86.3 (2)	O6-C24-C25-O5	-88.8 (2)
C9-C4-C5-O3	150.1 (2)	C29-C24-C25-O5	148.0 (2)
O2-C4-C5-C2	24.0 (3)	O6-C24-C25-C22	22.0 (3)
C9-C4-C5-C2	-99.6 (3)	C29-C24-C25-C22	-101.2 (2)
O1-C2-C5-O3	-5.4 (3)	O7-C22-C25-O5	-2.3 (3)
C3-C2-C5-O3	110.1 (2)	C23-C22-C25-O5	112.5 (2)
O1-C2-C5-C4	-119.4 (2)	O7-C22-C25-C24	-116.2 (2)
C3-C2-C5-C4	-3.9 (3)	C23-C22-C25-C24	-1.4 (3)
O2-C4-C9-C10	147.8 (3)	O6-C24-C29-C30	143.8 (3)
C5-C4-C9-C10	-93.2 (3)	C25-C24-C29-C30	-97.7 (3)
O2-C4-C9-C11	78.2 (3)	O6-C24-C29-C31	75.2 (3)
C5-C4-C9-C11	-162.8 (3)	C25-C24-C29-C31	-166.2 (2)
C4-C9-C10-C11	-105.6 (3)	C24-C29-C30-C31	-104.6 (3)
C10-C9-C11-C12	110.9 (4)	C30-C29-C31-C32	108.9 (3)
C4-C9-C11-C12	-138.8 (3)	C24-C29-C31-C32	-141.6 (3)
C4-C9-C11-C10	110.3 (3)	C24-C29-C31-C30	109.5 (3)
C9-C10-C11-C12	-108.3 (3)	C29-C30-C31-C32	-109.5 (3)

Figure S12: Perspective views showing 50% probability displacement.

Figure S13: Three-dimensional supramolecular architecture viewed along the a-axis direction.

5.3 NS1-Urea: Alkynyl Alcohol S53

Table S16: Experimental Details

Crystal Data	
Chemical Formula	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5}$
M_{r}	270.31
Crystal system, space group	Orthorhombic, $\mathrm{P} 2_{1} 2_{2} 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	$5.7488(1), 9.3963(2), 27.2172(7)$
$V\left(\AA^{3}\right)$	$1470.20(6)$
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.76
Crystal size (mm)	$0.18 \times 0.12 \times 0.10$
Data Collection	Bruker D8 goniometer with CCD area detector
Diffractometer	Multi-scan $S A D A B S$
Absorption correction	$0.796,0.864$
$T_{\text {min }}, T_{\text {max }}$	$31333,2577,2531$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	0.035
$R_{\text {int }}$	0.596
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	
	$0.040,0.107,1.09$
Refinement	2577
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	206
No. of reflections	252
No. of parameters	
No. of restraints	

H-atom treatment	H atom parameters constrained
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(e \mathrm{~A}^{-3}\right)$	$0.43,-0.23$
Absolute structure	Flack x determined using 1012 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]^{9}$
Absolute structure parameter	$0.10(4)$

Computer programs: APEX3 v2016.9-0 (Bruker-AXS, 2016), SAINT 8.37A (Bruker-AXS, 2015), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

Table S17: Geometric parameters ($\AA,^{\circ}$)

O1-C1	1.419 (3)	C8A-H8AA	0.99
O1-C5	1.438 (3)	C8A-H8AB	0.99
O2-C1	1.410 (3)	C9A-O5A	1.480 (9)
O2-C10	1.416 (4)	C9A-H9AA	0.99
O3-C2	1.424 (3)	C9A-H9AB	0.99
O3-C3	1.425 (3)	O5A-H5AA	0.84
O4-C3	1.428 (3)	C7B-C13	1.460 (4)
O4-C4	1.430 (3)	C7B-C8B	1.449 (15)
C1-C2	1.528 (4)	C7B-H7B	1
C1-H1	1	C8B-C9B	1.510 (19)
C2-C4	1.536 (3)	C8B-H8BA	0.99
C2-H2	1	C8B-H8BB	0.99
C3-C11	1.510 (4)	C9B-O5B	1.491 (11)
C3-C12	1.512 (4)	C9B-H9BA	0.99
C4-C5	1.527 (3)	C9B-H9BB	0.99
C4-H4	1	O5B-H5B	0.84
C5-C6	1.523 (3)	C7C-C13	1.460 (4)
C5-H5	1	C7C-C8C	1.606 (17)
C6-C7C	1.539 (4)	C7C-H7C	1
C6-C7	1.539 (4)	C8C-C9C	1.465 (18)
C6-C7A	1.539 (4)	C8C-H8CA	0.99
C6-C7B	1.539 (4)	C8C-H8CB	0.99
C6-H6A	0.99	C9C-O5C	1.497 (11)
C6-H6B	0.99	C9C-H9CA	0.99
C7-C13	1.460 (4)	C9C-H9CB	0.99
C7-C8	1.587 (11)	O5C-H5C	0.84
C7-H7	1	C10-H10A	0.98
C8-C9	1.505 (11)	C10-H10B	0.98
C8-H8A	0.99	C10-H10C	0.98
C8-H8B	0.99	C11-H11A	0.98
C9-O5	1.458 (8)	C11-H11B	0.98

${ }^{9}$ Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B 2013, 69, 249-259.

C9-H9A	0.99	C11-H11C	0.98
C9-H9B	0.99	C12-H12A	0.98
O5-H5A	0.84	C12-H12B	0.98
C7A-C13	1.460 (4)	C12-H12C	0.98
C7A-C8A	1.596 (13)	C13-C14	1.185 (4)
C7A-H7AA	1	C14-H14	0.95
C8A-C9A	1.567 (14)		
C1-O1-C5	109.19 (19)	C9A-C8A-H8AB	110
C1-O2-C10	111.5 (2)	C7A-C8A-H8AB	110
C2-O3-C3	108.15 (19)	H8AA-C8A-H8AB	108.4
C3-O4-C4	107.27 (18)	O5A-C9A-C8A	104.6 (10)
O2-C1-O1	112.0 (2)	O5A-C9A-H9AA	110.8
O2-C1-C2	108.0 (2)	C8A-C9A-H9AA	110.8
O1-C1-C2	106.3 (2)	O5A-C9A-H9AB	110.8
O2- $\mathrm{C} 1-\mathrm{H} 1$	110.2	C8A-C9A-H9AB	110.8
O1-C1-H1	110.2	H9AA-C9A-H9AB	108.9
C2-C1-H1	110.2	C9A-O5A-H5AA	109.5
O3-C2-C1	109.7 (2)	C13-C7B-C8B	123.8 (9)
O3-C2-C4	105.43 (19)	C13-C7B-C6	109.8 (2)
C1-C2-C4	104.7 (2)	C8B-C7B-C6	120.8 (10)
O3-C2-H2	112.2	C13-C7B-H7B	97.9
C1-C2-H2	112.2	C8B-C7B-H7B	97.9
C4-C2-H2	112.2	C6-C7B-H7B	97.9
O3-C3-O4	103.81 (19)	C7B-C8B-C9B	101.5 (13)
O3-C3-C11	108.9 (2)	C7B-C8B-H8BA	111.5
O4-C3-C11	109.1 (2)	C9B-C8B-H8BA	111.5
O3-C3-C12	110.8 (2)	C7B-C8B-H8BB	111.5
O4-C3-C12	111.1 (2)	C9B-C8B-H8BB	111.5
C11-C3-C12	112.8 (2)	H8BA-C8B-H8BB	109.3
O4-C4-C5	109.61 (19)	O5B-C9B-C8B	98.8 (13)
O4-C4-C2	102.89 (19)	O5B-C9B-H9BA	112
C5-C4-C2	105.0 (2)	C8B-C9B-H9BA	112
O4-C4-H4	112.9	O5B-C9B-H9BB	112
C5-C4-H4	112.9	C8B-C9B-H9BB	112
C2-C4-H4	112.9	H9BA-C9B-H9BB	109.7
O1-C5-C6	111.8 (2)	C9B-O5B-H5B	109.5
O1-C5-C4	104.0 (2)	C13-C7C-C6	109.8 (2)
C6-C5-C4	113.4 (2)	C13-C7C-C8C	103.7 (13)
O1-C5-H5	109.2	C6-C7C-C8C	124.7 (11)
C6-C5-H5	109.2	C13-C7C-H7C	105.8

C4-C5-H5	109.2	C6-C7C-H7C	105.8
C5-C6-C7C	112.5 (2)	C8C-C7C-H7C	105.8
C5-C6-C7	112.5 (2)	C9C-C8C-C7C	133 (2)
C5-C6-C7A	112.5 (2)	C9C-C8C-H8CA	103.8
C5-C6-C7B	112.5 (2)	C7C-C8C-H8CA	103.8
C5-C6-H6A	109.1	C9C-C8C-H8CB	103.8
C7-C6-H6A	109.1	C7C-C8C-H8CB	103.8
C5-C6-H6B	109.1	H8CA-C8C-H8CB	105.4
C7-C6-H6B	109.1	C8C-C9C-O5C	159 (3)
H6A-C6-H6B	107.8	C8C-C9C-H9CA	96.5
C13-C7-C6	109.8 (2)	O5C-C9C-H9CA	96.5
C13-C7-C8	113.5 (6)	C8C-C9C-H9CB	96.5
C6-C7-C8	104.0 (5)	O5C-C9C-H9CB	96.5
C13-C7-H7	109.8	H9CA-C9C-H9CB	103.4
C6-C7-H7	109.8	C9C-O5C-H5C	109.5
C8-C7-H7	109.8	O2-C10-H10A	109.5
C9-C8-C7	107.9 (8)	O2-C10-H10B	109.5
C9-C8-H8A	110.1	H10A-C10-H10B	109.5
C7-C8-H8A	110.1	O2-C10-H10C	109.5
C9-C8-H8B	110.1	H10A-C10-H10C	109.5
C7-C8-H8B	110.1	H10B-C10-H10C	109.5
H8A-C8-H8B	108.4	C3-C11-H11A	109.5
O5-C9-C8	112.2 (8)	C3-C11-H11B	109.5
O5-C9-H9A	109.2	H11A-C11-H11B	109.5
C8-C9-H9A	109.2	C3-C11-H11C	109.5
O5-C9-H9B	109.2	H11A-C11-H11C	109.5
C8-C9-H9B	109.2	H11B-C11-H11C	109.5
H9A-C9-H9B	107.9	C3-C12-H12A	109.5
C9-O5-H5A	109.5	C3-C12-H12B	109.5
C13-C7A-C6	109.8 (2)	H12A-C12-H12B	109.5
C13-C7A-C8A	112.1 (9)	C3-C12-H12C	109.5
C6-C7A-C8A	115.2 (6)	H12A-C12-H12C	109.5
C13-C7A-H7AA	106.4	H12B-C12-H12C	109.5
C6-C7A-H7AA	106.4	C14-C13-C7	176.6 (3)
C8A-C7A-H7AA	106.4	C14-C13-C7A	176.6 (3)
C9A-C8A-C7A	108.3 (10)	C14-C13-C7B	176.6 (3)
C9A-C8A-H8AA	110	C14-C13-C7C	176.6 (3)
C7A-C8A-H8AA	110	C13-C14-H14	180
C10-O2-C1-O1	-66.2 (3)	O1-C5-C6-C7C	57.3 (3)
C10-O2-C1-C2	177.1 (2)	C4-C5-C6-C7C	174.5 (2)

C5-O1-C1-O2	-88.6 (2)	O1-C5-C6-C7	57.3 (3)
C5-O1-C1-C2	29.2 (2)	C4-C5-C6-C7	174.5 (2)
C3-O3-C2-C1	-124.8 (2)	O1-C5-C6-C7A	57.3 (3)
C3-O3-C2-C4	-12.5 (3)	C4-C5-C6-C7A	174.5 (2)
O2-C1-C2-O3	-138.6 (2)	O1-C5-C6-C7B	57.3 (3)
O1-C1-C2-O3	101.1 (2)	C4-C5-C6-C7B	174.5 (2)
O2-C1-C2-C4	108.7 (2)	C5-C6-C7-C13	64.9 (3)
O1-C1-C2-C4	-11.6 (2)	C5-C6-C7-C8	-173.3 (6)
C2-O3-C3-O4	29.9 (3)	C13-C7-C8-C9	-75.3 (10)
C2-O3-C3-C11	146.0 (2)	C6-C7-C8-C9	165.5 (8)
C2-O3-C3-C12	-89.5 (3)	C7-C8-C9-O5	-167.4 (9)
C4-O4-C3-O3	-36.6 (2)	C5-C6-C7A-C13	64.9 (3)
C4-O4-C3-C11	-152.5 (2)	C5-C6-C7A-C8A	-167.3 (11)
C4-O4-C3-C12	82.6 (2)	C13-C7A-C8A-C9A	-62.2 (17)
C3-O4-C4-C5	139.4 (2)	C6-C7A-C8A-C9A	171.2 (12)
C3-O4-C4-C2	28.2 (2)	C7A-C8A-C9A-O5A	-172.7 (13)
O3-C2-C4-O4	-9.4 (2)	C5-C6-C7B-C13	64.9 (3)
C1-C2-C4-O4	106.3 (2)	C5-C6-C7B-C8B	-140.7 (10)
O3-C2-C4-C5	-124.1 (2)	C13-C7B-C8B-C9B	80.0 (17)
C1-C2-C4-C5	-8.4 (2)	C6-C7B-C8B-C9B	-70.7 (17)
C1-O1-C5-C6	88.4 (2)	C7B-C8B-C9B-O5B	-178.6 (14)
C1-O1-C5-C4	-34.3 (2)	C5-C6-C7C-C13	64.9 (3)
O4-C4-C5-O1	-84.7 (2)	C5-C6-C7C-C8C	-171.4 (18)
C2-C4-C5-O1	25.2 (2)	C13-C7C-C8C-C9C	-69 (4)
O4-C4-C5-C6	153.6 (2)	C6-C7C-C8C-C9C	165 (3)
C2-C4-C5-C6	-96.5 (2)	C7C-C8C-C9C-O5C	162 (7)

Table S18: Hydrogen-bond parameters

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H}(\mathrm{A})$	$\mathrm{H} \cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D} \cdots \mathrm{A}(\mathrm{A})$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$	0.84	2.33	$3.132(5)$	159.9

Symmetry code(s): (i) $x-1 / 2,-y+3 / 2,-z+1$.

Figure S14: Perspective views showing 50% probability displacement.

Figure S15: Three-dimensional supramolecular architecture viewed along the a-axis direction.

6 Methods: Molecular Docking, Biochemical Assays, Bioinformatic Analyses, and Protein Crystallography

6.1 Molecular Docking with Schrödinger Glide

General Considerations

The molecular docking workflow presented below was performed in Schrödinger Maestro Version 11.8.012, MMshare Version 4.4.012, Release 2018-4, Platform Windows-x64. A detailed tutorial (Structure-Based Virtual Screening Using Glide Workshop Tutorial, 2018-4) published by Schrödinger can be found at https: //www.schrodinger.com/training/tutorials.

Protein Preparation

Glide docking began with the Protein Preparation Wizard. The PDB entry 3ROD ${ }^{10}$ (NAM and SAH bound to NNMT) was imported into the workspace. Preprocessing parameters in the Import and Process tab were set as presented in Figure S16. The imported structure was preprocessed. Parameters in the Review and Modify tab were set as presented in Figure S17. All chains, waters, and hets not belonging to chain C were deleted. Parameters in the Refine tab were set as presented in Figure S18. H-bond assignment was optimized, waters were removed, and restrained minimization was performed.

Receptor Grid Generation

Receptor grid generation was performed according to the parameters outlined in Figure S19. No other tabs (Site, Constraints, Rotatable Groups, Excluded Volumes) were edited. Nicotinamide (NCA, NAM) was deleted from the workspace prior to choosing the workspace ligand SAH for grid generation.

Ligand Preparation

NS1 was drawn in ChemDraw and saved as an MDL Molfile (.mol). The .mol file was opened in the LigPrep wizard and was prepared using the parameters outlined in Figure S20.

Glide Docking

The Ligand Docking panel was opened and the output file from LigPrep was loaded with the parameters shown in Figure S21 and Figure S22. Docking calculations were run locally and NS1 was determined to have a Glide Score of -15.991 . A table of output values is presented below in Table S19. An image of the NS1

[^5]output pose is presented in Figure S23. Reference ligand S-adenosylmethionine (SAM) was docked using this same protocol, having a Glide score of -12.741 . An image of the SAM output pose is presented in Figure S24.

Table S19: Docking output values from the Maestro docking table.

parameter	NS1	SAM
glide rotatable bonds	12	9
docking score	-15.991	-12.741
glide ligand efficiency	-0.432	-0.472
glide ligand efficiency sa	-1.44	-1.416
glide ligand efficiency ln	-3.468	-2.966
glide gscore	-15.991	-12.741
glide lipo	-4.095	-2.187
glide hbond	-1.584	-0.986
glide metal	0	0
glide rewards	-3.069	-3.744
glide evdw	-72.943	-49.357
glide ecoul	-30.436	-29.203
glide erotb	0.631	0.737
glide esite	-0.227	-0.093
glide emodel	-213.421	-157.523
glide energy	-103.378	-78.56
glide einternal	9.997	8.134

Figure S16: Import and Process parameters in the Protein Preparation Wizard.

Figure S17: Review and Modify parameters in the Protein Preparation Wizard.

Figure S18: Refine parameters in the Protein Preparation Wizard.

(1) Receptor Grid Generation					-	\square	\times
Receptor	Site	Constraints	Rotatable G	Groups	Excluded Volume		
Van der Waals radius scaling To soften the potential for nonpolar parts of the receptor, you can scale the van der Waals radii of receptor atoms with partial atomic charge (absolute value) less than the specified cutoff. All other atoms in the receptor will not be scaled. Scaling factor: \square 1.0 Partial charge cutoff: \square 0.25							
\square Use input partial charges							
Advanced Settings...							
Job name: NNMT_glide_grid							Run
Host=localhost							?

Figure S19: Parameters set in the Receptor Grid Generation.

Figure S20: Parameters set during ligand preparation in LigPrep.

Figure S21: Parameters set in Ligand Docking (Ligands tab).

Figure S22: Parameters set in Ligand Docking (Settings tab).

Figure S23: Output image of docked NS1 (orange), taken directly from the Maestro workspace, overlaid with substrates SAH and NAM (green).

Figure S24: Output image of docked reference ligand SAM, taken directly from the Maestro workspace.

6.2 NNMT Inhibition Assay

6.2.1 wt-hNNMT Preparation

Cloning

The tm-hNNMT plasmid obtained from Addgene (40734; http://n2t.net/addgene:40734;
RRID:Addgene __40734) and used in protein crystallography experiments was supplied as a K100A:E101A: E103A mutant. In order to study the wild-type enzyme, we performed site-directed mutagenesis using Agilent's QuikChange Lightning Kit (P/N 210515) to generate a wt-hNNMT plasmid. The following primers were used:
forward: 5'-ggaccagtcaaaggcctctggctctttcttcagccacttctcc-3'
reverse: 5'-ggagaagtggctgaagaaagagccagaggcctttgactggtcc-3'

The wt-hNNMT protein sequence is as follows:

MGSSHHHHHHSSGLVPRGSMESGFTSKDTYLSHFNPRDYLEKYYKFGSRHSAESQILKHLLKNLFKIFCLDGVKGDLLI DIGSGPTIYQLLSACESFKEIVVTDYSDQNLQELEKWLKKEPEAFDWSPVVTYVCDLEGNRVKGPEKEEKLRQAVKQVL KCDVTQSQPLGAVPLPPADCVLSTLCLDAACPDLPTYCRALRNLGSLLKPGGFLVIMDALKSSYYMIGEQKFSSLPLGR EAVEAAVKEAGYTIEWFEVISQSYSSTMANNEGLFSLVARKLSRPL

Protein Expression and Purification

The plasmid containing N-terminally His $_{6}$-tagged wt-hNNMT (generated via cloning above) was transformed into NiCo21(DE3) Competent E. coli (New England BioLabs Catalog \# C2529H) according to the manufacturer's protocol. Bacteria were subsequently grown up in 1L LB (containing $50 \mathrm{\mu g} / \mathrm{mL}$ kanamycin sulfate and supplemented with $0.5 \mathrm{~mm} \mathrm{MgCl}_{2}$ and 0.5 mm CaCl 2) at $37{ }^{\circ} \mathrm{C}$, induced with IPTG (1 mm) when they reached an OD_{600} of ~ 0.8, and incubated overnight at $37^{\circ} \mathrm{C}$.

The following day the cell pellet was harvested by centrifugation and then suspended in 25 mL lysis buffer (50 mL prepared: 20 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.0,0.5 \mathrm{~m} \mathrm{NaCl}, 40 \mathrm{~mm}$ imidazole, 1 mm DTT, 20% glycerol, and 1 tablet of Roche cOmplete ${ }^{\mathrm{TM}}$ EDTA-containing protease inhibitor cocktail in $50 \mathrm{~mL} \mathrm{~V}_{\text {tot }}$). To the pellet/lysis buffer containing tube were added 10 mg lysozyme and 1 mL DNase and the contents were vortexed briefly to suspend the cells. The cell suspension was incubated on ice for 30 minutes and then sonicated on ice for 7 minutes (total sonication time) employing a duty cycle of $10 / 50 \mathrm{sec}$ on/off at 20% power. The crude lysate was clarified by centrifugation and MgCl_{2} was added to a final concentration of 2 mm (to chelate EDTA and prevent interference Ni-NTA affinity chromatography).

The clarified lysate was purified by automated affinity chromatography using a GE Healthcare ÄKTA chromatography system and a 5 mL GE FF HisTrap Crude Ni-NTA affinity chromatography column. The column was equilibrated with buffer A (40 mm imidazole, $500 \mathrm{~mm} \mathrm{NaCl}, 20 \mathrm{~mm}$ Tris- $\mathrm{HCl} \mathrm{pH} 8.0,1.0 \mathrm{~mm}$ DTT, 10% glycerol) and the clarified lysate was loaded via sample application pump. The column was washed with 30 CV (column volumes) buffer A and then a gradient of $0 \rightarrow 100 \%$ buffer B (500 mm imidazole, 500 $\mathrm{mm} \mathrm{NaCl}, 20 \mathrm{~mm}$ Tris-HCl pH 8.0, 1.0 mm DTT, 10% glycerol) was delivered over 20 CV . Eluted fractions corresponding to UV detector peaks were checked by SDS-PAGE analysis and showed clean elution of a single protein at the appropriate MW. Fractions were combined, concentrated, and desalted into storage buffer (20 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{~mm} \mathrm{NaCl}, 1 \mathrm{~mm}$ DTT, 5% glycerol) via GE HiTrap Desalting column. Fractions were combined, concentrated to $11.4 \mathrm{mg} / \mathrm{mL}$, flash-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ for future use.

6.2.2 Detailed NNMT Inhibition Assay Protocol

Molecular biology grade water and Tris- HCl buffer ($\mathrm{pH} 8.0 \pm 0.1,1 \mathrm{~m}$) were obtained from Corning (Manassas, VA). DL-dithiothreitol (DTT, for molecular biology, $\geq 98 \%$ (HPLC)) and quinoline (reagent grade, 98%) were purchased from Sigma-Aldrich (St. Louis, MO). DTT was used as received, while quinoline was distilled under reduced pressure before use and stored in the dark. S-adenosyl-L-methionine was obtained from New England BioLabs (Ipswich, MA) as a 32 mm solution in $0.005 \mathrm{~m}_{2} \mathrm{SO}_{4}$ and $10 \% \mathrm{EtOH}$ and used
as received (NEB catalog \#: B9003S).
The protocol described below was adapted from those outlined in Neelakantan et al. ${ }^{11}$ Enzymatic reactions were performed at room temperature in 96 -well plates (costar ${ }^{\circledR}$ black, flat bottom, non-treated, polystyrene, 14.3 mm height). To minimize potential small differences in initial reaction concentrations due to pipetting errors, a master stock consisting of 5 mm Tris- $\mathrm{HCl}(\mathrm{pH} 8.0), 1 \mathrm{~mm}$ DTT and $109 \mathrm{\mu M}$ quinoline was prepared by adding to a 50 mL falcon tube water $(50 \mathrm{~mL})$, Tris- $\mathrm{HCl} \mathrm{pH} 8.0 \pm 0.1$ buffer ($1 \mathrm{M}, 250.0$ $\mu \mathrm{L})$, DTT $(7.7 \mathrm{mg}, 50 \mu \mathrm{~mol})$ and a solution of quinoline in water $(20 \mathrm{~mm}, 272.5 \mu \mathrm{~L})$. This 50 mL stock was then split into 4 mL stocks.

Using ten PCR tubes of a twelve 0.2 mL tube strip, a dilution series of inhibitor concentrations was prepared. With a multichannel pipette, $10 \mu \mathrm{~L}$ of each of these solutions of inhibitor in water were transferred to the first ten PCR tubes of another twelve 0.2 mL tube strip. The two remaining tubes were charged with $10 \mu \mathrm{~L}$ of water (controls). To each of these tubes was then added $10 \mu \mathrm{~L}$ of a $250 \mu \mathrm{M}$ solution of SAM in water (prepared by mixing $15.6 \mu \mathrm{~L}$ of a freshly thawed 32 mm SAM solution in 2 mL of water). The reactions were initiated by adding to each tube $230 \mu \mathrm{~L}$ of a 109 nm solution of NNMT in master stock (prepared by adding $1.2 \mu \mathrm{~L}$ of a $362 \mu \mathrm{M}$ freshly thawed NNMT aliquot in 4 mL of master stock), bringing the final composition of each reaction to 4.6 mm Tris- $\mathrm{HCl}(\mathrm{pH} 8.0), 0.92 \mathrm{~mm}$ DTT, $100 \mu \mathrm{M}$ quinoline, $10 \mu \mathrm{M}$ SAM and 100 nm NNMT.

Immediately after initiation, the progress of each reaction was monitored using a SpectraMax ${ }^{\circledR} \mathrm{i} 3 \mathrm{x}$ multimode microplate reader and data were collected approximately every 27 seconds for 5.5 minutes (13 reads, 100 flashes/read, 1.00 mm read height). The production of $1-\mathrm{MQ}$ in each well was monitored by recording fluorescence emission intensities at 400 nm (excitation wavelength at 310 nm) with the detector bandwidths set up at 9 nm for the excitation and at 15 nm for the emission.

6.3 Sequence Similarity Analysis

To generate a data set for sequence similarity analysis, the UniProtKB ${ }^{12,13}$ was queried with the following conditions: ec:2.1.1.- ipr029063 AND reviewed:yes AND organism: "Homo sapiens (Human) [9606]" AND proteome:up000005640. These conditions searched the UniProt database for human (organism: "Homo sapiens (Human) [9606]") methyltransferases (ec:2.1.1.-, transferases, transferring one-carbon groups, methyltransferases) that were Swiss-Prot reviewed (reviewed:yes) belonging to the InterPro Homologous Superfamily of SAM-dependent MTases (ipr029063) in the human proteome (proteome:up000005640).

This query returned 113 UniProt IDs which were submitted to the Enzyme Function Initiative Enzyme

[^6]Similarity Tool ${ }^{14,15,16}$ (EFI-EST, settings: Computation Type: Option D, E-Value: 5, Fraction: 1). A sequence similarity network (SSN) was generated using an alignment score for output value of 18. The SSN was processed in Cytoscape v3.7.1. Specifically, node labels were set to Gene Name and edges were colored via continuous mapping based on $\% I D$. The node labels found in Figure S 2 correlate to UniProt IDs and Protein Names in Table S3.

6.4 DALI Structural Similarity Analysis

The DALI server ${ }^{17}$ (http://ekhidna2.biocenter.helsinki.fi/dali/) was queried using PDB search and entering identifier 3ROD (Chain A). The DALI structural alignment server returned 1792 hits with a DALI Z-score >2. Chain identifiers were removed from the DALI output (leaving a list of only PDB codes) and the list was then uploaded to the UniProt Retrieve/ID Mapping utility (https://www.uniprot.org/ uploadlists/). 871 out of 914 PDB identifiers were successfully mapped to 453 UniProtKB IDs, with the remaining 43 (unmatched) set aside for manual curation. Of the remaining 43 unmatched PDB IDs, none corresponded to human proteins, so they were not included in further analysis.

The list of 453 UniProtKB IDs was filtered to show only methyltransferase enzymes from Homo Sapiens (query with operators: ec:2.1.1.- AND organism:"Homo sapiens (Human) [9606]") leaving 34 UniProtKB IDs remaining (Class EC 2.1.1.- represents enzymes from the methyltransferase family). In many cases multiple PDB IDs mapped to a single UniProtKB ID. These redundancies in the data set were removed by selecting the PDB ID (and chain) with the highest Dali Z-score for further analysis. The authors noted that the PDB code for a known human small-molecule methyltransferase (guanidinoacetate N-methyltransferase, GAMT, with structure 3orh available in the PDB) was missing, so 3orh (chain A) was manually added to the list. The list of PDB codes (and chain identifiers) was uploaded to the DALI server and an all-against-all query was submitted. The all-against-all output was used to generate the dendrogram presented in Figure S3 and the heatmap presented in Figure S4.

6.5 Protein Crystallography

The tm-hNNMT plasmid obtained from Addgene (40734) and used in protein crystallography experiments was supplied as a K100A:E101A:E103A mutant (see Section 6.2.1. These mutations reduce the entropy of surface residues and facilitate crystallization.

[^7]The tm-hNNMT protein sequence is as follows:

Abstract

MGSSHHHHHHSSGLVPRGSMESGFTSKDTYLSHFNPRDYLEKYYKFGSRHSAESQILKHLLKNLFKIFCLDGVKGDLLI DIGSGPTIYQLLSACESFKEIVVTDYSDQNLQELEKWLKAAPAAFDWSPVVTYVCDLEGNRVKGPEKEEKLRQAVKQVL KCDVTQSQPLGAVPLPPADCVLSTLCLDAACPDLPTYCRALRNLGSLLKPGGFLVIMDALKSSYYMIGEQKFSSLPLGR EAVEAAVKEAGYTIEWFEVISQSYSSTMANNEGLFSLVARKLSRPL

6.5.1 tm-hNNMT Preparation

The pET-28a plasmid containing N-terminally His6-tagged tm-hNNMT (Addgene) was transformed into BL21(DE3) cells, which were subsequently grown in terrific broth at $37^{\circ} \mathrm{C}$. The cultures were induced with 1 mM IPTG when they reached an OD_{600} of ~ 1.1 and incubated overnight at $25^{\circ} \mathrm{C}$. Cell pellets were harvested by centrifugation and solubilized in lysis buffer $(50 \mathrm{mM}$ Tris- $\mathrm{HCl} \mathrm{pH} 8.0,0.5 \mathrm{M} \mathrm{NaCl}, 5 \mathrm{~mm}$ imidazole, 2 mm β-mercaptoethanol, 5% glycerol) supplemented with 1 mm PMSF and $1 \mu \mathrm{~g} / \mathrm{mL}$ lysozyme. Solubilized cell pellets were centrifuged and the supernatant was loaded onto Ni-NTA Agarose resin (Qiagen), washed with wash buffer (50 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.0,0.5 \mathrm{~m} \mathrm{NaCl}, 25 \mathrm{~mm}$ imidazole, 5% glycerol), and the tm-hNNMT protein was eluted with 50 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.0,0.5 \mathrm{M} \mathrm{NaCl}, 250 \mathrm{~mm}$ imidazole, and 5% glycerol. Eluted fractions were concentrated and buffer exchanged using a PD-10 desalting column (GE) into NNMT storage buffer (20 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{~mm} \mathrm{NaCl}, 1 \mathrm{~mm}$ DTT). The final purified protein was concentrated to $18 \mathrm{mg} / \mathrm{mL}$, flash-frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ for future use.

6.5.2 Crystallization and Data Collection

The purified tm-hNNMT was diluted by adding NNMT storage buffer and NS1 formulated in water to final concentrations of $10 \mathrm{mg} / \mathrm{mL}$ protein and 1 mm NS1. Co-crystals of tm-hNNMT and NS1 were obtained by sitting drop vapor diffusion at $20^{\circ} \mathrm{C}$ with a protein:precipitant volume ratio of 1:1 in $2 \mu \mathrm{~L}$ total volume drops. Crystals appeared after about one week in a precipitant condition containing 100 mm HEPES pH 6.8 and 2 m ammonium sulfate and were harvested about six weeks after setting the drops. Crystals were cryoprotected by briefly soaking in artificial mother liquor to which $16-20 \%$ glycerol had been added before flash-freezing in liquid nitrogen. Diffraction data were collected at Beamline ID-24C of the Northeastern Collaborative Access Team (NE-CAT) at the Advanced Photon Source in Argonne, Illinois.

6.5.3 Data Processing and Refinement

The crystals grew in clusters, and our diffraction data had multiple lattices. Images were indexed and integrated with the Diffraction Integration for Advanced Light Sources (DIALS) ${ }^{18}$ package using the multilattice search functionality within dials.index ${ }^{19}$. We searched for three lattices, providing initial unit cell parameters from the published NNMT structure $3 \mathrm{ROD}^{20}$. We chose the lattice accounting for the largest number of indexed spots for integration. Data were scaled and merged using the CCP4 suite programs POINTLESS and AIMLESS ${ }^{21,22,23}$. The NS1-bound NNMT structure was determined by molecular replacement with a previous NNMT structure (PDB ID 3ROD; chain A with all ligands removed) ${ }^{50}$ as a search model in PHASER as implemented in PHENIX ${ }^{24}$. Subsequent model building and refinement were done in Coot^{25} and PHENIX ${ }^{54}$. The asymmetric unit contains four protein chains (A-D) each bound to an NS1 inhibitor molecule. For all analyses and figures, chain A was used. Figures were prepared using PyMOL (Schrödinger) ${ }^{26}$. The diffraction images are available at the SBGrid Data Bank. The structure factors and refined coordinates are deposited in the Protein Data Bank (PDB ID 6ORR).

6.6 INMT Selectivity Study

6.6.1 wt-hINMT Preparation

The pET-28a plasmid containing N-terminally His ${ }_{6}$-tagged hINMT (Addgene 25475; http://n2t.net/ addgene:25475; RRID:Addgene_25475) was transformed into Agilent BL21-CodonPlus (DE3)-RIL Competent Cells (Agilent P/N: 230245) according to the manufacturer's protocol. Bacteria were subsequently grown up in terrific broth (containing $50 \mu \mathrm{~g}$ per mL kanamycin sulfate and $50 \mathrm{\mu g}$ per mL chloramphenicol) at $37{ }^{\circ} \mathrm{C}$, induced with IPTG $(1 \mathrm{mM})$ when they reached an OD_{600} of ~ 0.8, and incubated overnight at 32 ${ }^{\circ} \mathrm{C}$.

The following day cell pellets were harvested by centrifugation. Five grams of cell pellet was then suspended in lysis buffer ($15 \mathrm{~mL}, 20 \mathrm{~mm}$ Tris- $\mathrm{HCl} \mathrm{pH} 8,0.5 \mathrm{~m} \mathrm{NaCl}, 40 \mathrm{~mm}$ imidazole, 1 mm DTT, 10% glycerol) supplemented with 1 tablet Roche cOmplete EDTA-free protease inhibitor cocktail, 10 mg lysozyme, and 1 mL DNase. The cell suspension was incubated on ice for 30 min and then sonicated on ice for 7 minutes

[^8](total sonication time) employing a duty cycle of $10 / 50$ on/off at 20% power. The crude lysate was clarified by centrifugation and manually loaded onto a 5 mL GE FF HisTrap Crude Ni-NTA affinity chromatography column via syringe. The column was washed with 20 mL lysis buffer and then protein was eluted with 10 mL of elution buffer (20 mm Tris- $\mathrm{HCl} \mathrm{pH} 8,0.5 \mathrm{M} \mathrm{NaCl}, 400 \mathrm{~mm}$ imidazole, 1 mm DTT, 10% glycerol) while collecting 1.2 mL fractions. Eluted fractions were checked for the presence of protein via Bradford assay. Those containing purified INMT as evidenced by SDS-PAGE analysis were combined, concentrated, and desalted into storage buffer (20 mm Tris- $\mathrm{HCl} \mathrm{pH} 8.0,50 \mathrm{~mm} \mathrm{NaCl}, 1 \mathrm{~mm}$ DTT, 5% glycerol) via GE HiTrap Desalting column. Fractions were combined, concentrated to $13.5 \mathrm{mg} / \mathrm{mL}$, flash-frozen in liquid nitrogen and stored at $-80{ }^{\circ} \mathrm{C}$ for future use.

The hINMT protein sequence is as follows:

MGSSHHHHHHSSGLVPRGSMKGGFTGGDEYQKHFLPRDYLATYYSFDGSPSPEAEMLKFNLECLHKTFGPGGLQGDTLI DIGSGPTIYQVLAACDSFQDITLSDFTDRNREELEKWLKKEPGAYDWTPAVKFACELEGNSGRWEEKEEKLRAAVKRVL KCDVHLGNPLAPAVLPLADCVLTLLAMECACCSLDAYRAALCNLASLLKPGGHLVTTVTLRLPSYMVGKREFSCVALEK GEVEQAVLDAGFDIEQLLHSPQSYSVTNAANNGVCCIVARKKPGP

6.6.2 INMT Inhibition Assay

A luminescence-based indolethylamine N-methyltransferase (INMT) assay was developed based on the Promega MTase-Glo ${ }^{\text {TM }}$ Methyltransferase Assay (catalog \#: V7601). The Promega MTase-Glo ${ }^{\text {TM }}$ assay is a coupled luminescence-based assay that converts S-adenosylhomocysteine (SAH) to ADP which is then converted to light. ${ }^{27}$ Full instructions and protocols outlining assay development and validation can be found in Promega application note \#AN297 and technical manual TM453 (Revised 4/17).

INMT is capable of methylating a variety of tryptamine, harmine, and phenethylamine derivatives at variable rates, but the typical substrate is tryptamine. INMT is also known as thioether S-methyltransferase (TEMT) and is known to methylate a variety of thioethers and related compounds. From the UniProt ${ }^{28}$ entry O95050 ${ }^{29}$ (INMT_HUMAN):

Functions as thioether S-methyltransferase and is active with a variety of thioethers and the corresponding selenium and tellurium compounds, including 3-methylthiopropionaldehyde, dimethyl selenide, dimethyl telluride, 2-methylthioethylamine, 2-methylthioethanol, methyl-n-propyl sulfide and diethyl sulfide. Plays an important role in the detoxification of selenium compounds (By

[^9]similarity). Catalyzes the N-methylation of tryptamine and structurally related compounds.

Our first goal was to choose substrate concentrations that were physiologically relevant (close to INMT substrate $\mathrm{K}_{\mathrm{m}}{ }^{\text {app. values) and would also generate luminescence signal with adequate signal/noise ratio to }}$ study INMT inhibition. A literature search ${ }^{30,31}$ revealed the apparent K_{m} of tryptamine to be ca. 0.3-2.9 mM, so we pursued INMT assay development using 1.0-2.0 mm tryptamine. A SAM concentration of 20-30 $\mu \mathrm{M}$ was employed in our experiments, again close to literature reported apparent K_{m} values of SAM.

Assay validation according to protocols outlined in the Promega technical manual led us to the final conditions for the hINMT IC_{50} assay: $[\mathrm{hINMT}]=150 \mathrm{nM},[$ tryptamine $]=2 \mathrm{mM},[\mathrm{SAM}]=30 \mu \mathrm{M}$, and reaction time $=20 \mathrm{~min}$. A detailed IC_{50} assay protocol is reported below.

Reagents and Materials:

- SpectraMax i3x Multi-Mode Microplate Reader (Molecular Devices)
- MTase-Glo ${ }^{\text {TM }}$ Methyltransferase Assay (Promega V7601)
- assay plate, 384 well, with lid (Corning 3570)
- PCR strip tubes, with caps (Axygen Scientific, PCR-0208-A, PCR-02CP-A)
- disposable pipetting reservoir (polystyrene, 25 mL , VWR 89094-662)
- molecular biology grade water (Corning 46-000-CM)
- 0.5 m EDTA, pH 8.0 (Boston BioProducts BM-150)
- 5 m NaCl (Cell Signaling Technologies 7010S)
- $1 \mathrm{~m} \mathrm{MgCl}_{2}$ (invitrogen AM9530G)
- albumin standard ($2.0 \mathrm{mg} / \mathrm{mL} \mathrm{BSA}$ in $0.9 \% \mathrm{NaCl}$ solution containing NaN_{3}); (Thermo Scientific 23209)
- ethyl alcohol, 200 proof for molecular biology (Millipore Sigma E7023)
- DL-dithiothreitol BioUltra, for molecular biology (Millipore Sigma 43815)
- tryptamine (Millipore Sigma 193747)
- trifluoroacetic acid (VWR BDH15311.100)

[^10]
Protocol (NS1 IC_{50} curve):

Reactions were performed in PCR strip tubes (with caps), and only transferred to a 384 -well plate for final luminescence reading. Only every other well in a given row on the 384 -well plate was used (the intermediate wells were left empty). The methyltransferase reaction mixture (including hINMT, tryptamine, SAM, and NS1) had a total volume of $20 \mu \mathrm{~L}$. The experiment reported in Figure S 5 was performed in duplicate.

To begin, 12 PCR tubes were aligned in an empty pipette tip box to allow for multichannel pipetting. From left to right, tubes 1-9 were experimental wells (NS1 at varying concentrations), 10 and 11 were positive controls (no NS1), and tube 12 was a negative control (no SAM).

1. $5 \mu \mathrm{~L}$ of $4 \times \mathrm{NS} 1$ (prepared from a serial dilution to achieve the desired concentrations) was added to tubes $1-9$, and $5 \mu \mathrm{~L} 1 \times$ reaction buffer added to tubes $10-12$.
2. $5 \mu \mathrm{~L}$ of $4 \times$ SAM was added to tubes $1-11$, and $5 \mu \mathrm{~L} 1 \times$ reaction buffer added to tube 12 .
3. A master mix containing $2 \times$ hINMT and $2 \times$ tryptamine was prepared in a Falcon tube and poured into a multichannel pipette reagent reservoir.
4. Using a multichannel pipette, $10 \mu \mathrm{~L}$ of this master mix solution was transferred to all 12 tubes to initiate the INMT reaction.
5. The reactions were capped and incubated at RT for 20 min .
6. Reactions were quenched with $5 \mu \mathrm{~L}$ of $0.5 \% \mathrm{TFA}$ and incubated for 5 min at RT to stop the methyltransferase reaction.
7. $5 \mu \mathrm{~L}$ of prepared $6 \times$ MTase-Glo ${ }^{\mathrm{TM}}$ Reagent was added and the reactions were capped and incubated for 30 min at RT.
8. $30 \mu \mathrm{~L}$ of MTase-Glo ${ }^{\mathrm{TM}}$ Detection Solution was added to the reactions and they were mixed by pipetting up-and-down.
9. 50 LL of each reaction was immediately transferred to a 384 -well plate using a 12 -channel (multichannel) pipette. Tubes 1-12 map to a 384 -well plate as shown in Table S20 below.
10. The plate was centrifuged at 300 RPM for 2 min and immediately moved to the SpectraMax i3x Multi-Mode Microplate Reader.
11. Luminescence was read 5 min after transfer of the reaction mixtures from PCR tubes to the 384 -well plate.

Table S20: Example 384-well plate layout showing final contents of each well. Row A shown here for illustrative purposes.

	1	3	5	7	9	11	13	15	17	19	21	23
A	35.0000	14.0000	5.6000	2.2400	0.8960	0.3584	0.1434	0.0573	0.0229	+ control	+ control	- control
	$\mu \mathrm{M}$ NS1	$\mu \mathrm{M} \mathrm{NS} 1$	$\mu \mathrm{M} \mathrm{NS} 1$	$\mu \mathrm{M}$ NS1	M NS1	$\mu \mathrm{M} \mathrm{NS} 1$	$\mu \mathrm{M} \mathrm{NS1}$	$\mu \mathrm{M}$ NS1	$\mu \mathrm{M} \mathrm{NS} 1$	(no NS1)	(no NS1)	(no SAM)

Data analysis: Luminescence data were analyzed in Microsoft Excel and GraphPad Prism v8.0.2. To begin, background signal (value from A23) was subtracted from all wells. Positive control wells A19 and A21 (containing no inhibitor) were then averaged to provide a value representing signal derived from uninhibited hINMT reactions. Luminescence counts from wells containing inhibitor (A1-A17) were then each divided by the control value to generate values representing \% enzyme activity (relative to control). A plot of $\log (\mathrm{NS} 1)$ vs. \% hINMT activity was then fitted via nonlinear regression in Prism using the model \log (inhibitor) vs. response-Variable slope (four parameters) to generate the IC_{50} value.

[^0]: ${ }^{a}$ Krijt, J.; Dutá, A.; Kožich, V. J. Chromatogr., B 2009, 877, 2061-2066.

[^1]: ${ }^{1}$ Hidalgo, I. J.; Raub, T. J.; Borchardt, R. T. Gastroenterology, 1989, 96, 736-749.
 ${ }^{2} B L Q$: Below the Limit of Quantitation. Test compound was well detected in donor samples but not detected in receiver samples. The concentration of test compound in receiver sample was below the limit of quantitation.

[^2]: 2) TMS-NCO
 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{PrOH}, \mathrm{RT}$ 26\% (2 steps)
[^3]: ${ }^{2}$ Bruker AXS APEX3, Bruker AXS, Madison, Wisconsin, 2015.
 3 Sheldrick, G. M. Acta Crystallogr., Sect. A 2015, 71, 3-8.
 4 Sheldrick, G. M. Acta Crystallogr., Sect. C 2015, 71, 3-8.
 ${ }^{5}$ Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, $339-341$.
 6 Accelrys DS Visualizer v2.0.1, Accelrys Software Inc., 2007.

[^4]: 7 Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr., Sect. B 2013, 69, 249-259.

[^5]: ${ }^{10}$ Peng, Y.; Sartini, D.; Pozzi, V.; Wilk, D.; Emanuelli, M.; Yee, V. C. Biochemistry 2011, 50, 7800-7808.

[^6]: ${ }^{11}$ Neelakantan, H.; Vance, V.; Wang, H.-Y. L.; McHardy, S. F.; Watowich, S. J. Biochemistry 2017, 56, $824-832$.
 12 https://www.uniprot.org/
 ${ }^{13}$ UniProt Nucleic Acids Res. 2018, 47, D506-D515.

[^7]: ${ }^{14}$ https://efi.igb.illinois.edu/efi-est/
 ${ }^{15}$ Gerlt, J. A.; Bouvier, J. T.; Davidson, D. B.; Imker, H. J.; Sadkhin, B.; Slater, D. R.; Whalen, K. L. Biochim. Biophys. Acta, Proteins Proteomics 2015, 1854, 1019-1037.
 ${ }^{16}$ Zallot, R.; Oberg, N. O.; Gerlt, J. A. Curr. Opin. Chem. Biol. 2018, 47, 77-85.
 ${ }^{17}$ Holm, L.; Laakso, L. M. Nucleic Acids Res. 2016, 44, W351-W355.

[^8]: ${ }^{18}$ Winter, G. et al. Acta Crystallogr., Sect. D 2018, 74, 85-97.
 ${ }^{19}$ Gildea, R. J.; Waterman, D. G.; Parkhurst, J. M.; Axford, D.; Sutton, G.; Stuart, D. I.; Sauter, N. K.; Evans, G.; Winter, G. Acta Crystallogr., Sect. D 2014, 70, 2652-2666.
 ${ }^{20}$ Peng, Y.; Sartini, D.; Pozzi, V.; Wilk, D.; Emanuelli, M.; Yee, V. C. Biochemistry 2011, 50, 7800-7808.
 ${ }^{21}$ Winn, M. D. et al. Acta Crystallogr., Sect. D 2011, 67, 235-242.
 ${ }^{22}$ Evans, P. R. Acta Crystallogr., Sect. D 2011, 67, 282-292.
 ${ }^{23}$ Evans, P. R.; Murshudov, G. N. Acta Crystallogr., Sect. D 2013, 69, 1204-1214.
 ${ }^{24}$ Adams, P. D. et al. Acta Crystallogr., Sect. D 2010, 66, 213-221.
 ${ }^{25}$ Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Acta Crystallogr., Sect. D 2010, 66, 486-501.
 ${ }^{26}$ Schrödinger, LLC The PyMOL Molecular Graphics System, Version 1.8., 2015.

[^9]: ${ }^{27}$ Hsiao, K.; Zegzouti, H.; Goueli, S. A. Epigenomics 2016, 8, 321-339.
 ${ }^{28}$ UniProt Nucleic Acids Res. 2018, 47, D506-D515.
 ${ }^{29}$ https://www.uniprot.org/uniprot/095050

[^10]: ${ }^{30}$ Thompson M.A., W. R.; Thompson M. A., W. R. J. Biol. Chem. 1998, 273, 34502-10.
 ${ }^{31}$ Chu, U. B.; Vorperian, S. K.; Satyshur, K.; Eickstaedt, K.; Cozzi, N. V.; Mavlyutov, T.; Hajipour, A. R.; Ruoho, A. E. Biochemistry 2014, 53, 2956-2965.

