
Flavanols, Mild Cognitive Impairment, and 
Alzheimer’s Dementia

Citation
Patel, Ami K, Jack T Rogers, and Xudong Huang. "Flavanols, Mild Cognitive Impairment, and 
Alzheimer's Dementia." International Journal of Clinical and Experimental Medicine 1, no. 2 
(2008): 181-91.

Published Version
http://www.ijcem.com/803002A.html;http://www.ijcem.com/files/IJCEM803002.pdf

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37369222

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37369222
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Flavanols,%20Mild%20Cognitive%20Impairment,%20and%20Alzheimer%E2%80%99s%20Dementia&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=2c80a7696e2382afc14035fadebd5e75&department
https://dash.harvard.edu/pages/accessibility


 

Int J Clin Exp Med (2008) 1, 181-191 
www.ijcem.com/IJCEM803002 

 
Review Article 
Flavanols, Mild Cognitive Impairment, and Alzheimer’s 
Dementia 
 
Ami K. Patel1, Jack T. Rogers2, and Xudong Huang1,2 
 
1Conjugate and Medicinal Chemistry Laboratory, Department of Radiology, Brigham and Women's Hospital and 
Harvard Medical School, Boston, MA 02115, USA; 2Neurochemistry Laboratory, Department of Psychiatry, 
Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA 
 
 

Received March 17, 2008; accepted April 14, 2008; available online April 15, 2008 
 
Abstract: Alzheimer’s disease (AD) is a dementing neurological disorder that results in progressive memory loss 
and cognitive decline thought to be associated with buildup of amyloid plaques and neurofibrillary tangles in the 
brain. Vascular Dementia (VaD) is another common dementing disorder characterized by decreased brain 
perfusion. Together, AD and VaD constitute mixed dementia, an extremely common type of dementia associated 
with aging. Neuroimaging research suggests that brain vascular atrophy results in mild cognitive impairment 
(MCI), a possible precursor for AD. Additionally, literature suggests that attention to cardiovascular risk factors 
such as hypertension could reduce or delay the incidence of mixed dementia. Furthermore, foods and beverages 
rich in natural antioxidant flavanoids (i.e. epicatechin and catechin) are currently being advocated as possible 
preventative agents for a number of pathological conditions ranging from coronary heart disease to dementia. 
Experimental evidence is mounting that oxidative stress is involved in the pathophysiology of AD, and numerous 
studies are indicating that polyphenolic antioxidants found in fruits and vegetables can be useful in countering 
this and blocking neuronal death. More specifically, several cocoa studies suggest that daily intake of cocoa 
flavanols leads to cardiovascular benefits including vasodilatation via a nitric oxide mechanism and increased 
brain perfusion. The following text will consider an important question that thus arises regarding the potential of 
flavanols as effective agents for the prevention and delay of the onset of brain vascular atrophy and subsequently 
MCI and AD. It will also review the molecular mechanisms through which flavanols operate to accomplish their 
protective effects. 
 
Key Words: Brain vascular atrophy, mild cognitive impairment, Alzheimer’s disease, flavanols, oxidative stress, 
antioxidants
 
 
 
Introduction 
 
Over the past few decades, the number of 
people suffering from dementia has risen 
significantly. One estimate has the number of 
people with the condition doubling between 
the years of 1990 and 2020. These numbers 
are alarmingly high and, if not addressed in 
the near future, will constitute a grave 
epidemic [1]. AD is the most common form of 
senile dementia and affects at least 4.5 
million Americans [2-3]. More than $100 
billion is spent exclusively on direct care of 
those suffering from AD each year [3]. The 
etiology and pathogenesis of AD is largely 
unknown but a number of hypotheses have 

been proposed and research in this field is 
very active and ongoing. A few of the 
hypotheses that have been proposed over the 
years include abnormal phosphorylation of the 
protein tau, unconventional infectious agents, 
trace element neurotoxicity, growth factor 
deficiency, excitatory amino acid insult, altered 
calcium homeostasis, free radical toxicity, 
deficits in energy metabolism, and altered 
protein processing resulting in abnormal β-
amyloid peptide (Aβ) accumulation [4]. 
 
The amyloid hypothesis established largely by 
John Hardy and his colleagues particularly has 
received a great deal of attention. It essentially 
states that “deposition of amyloid β protein 
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(AβP), the main component of the plaques, is 
the causative agent of Alzheimer's 
pathology…” [5]. Hardy is now awaiting results 
from the first clinical trials of agents designed 
to break down the Aβ plaques that build up in 
AD afflicted brains. If two or three of these 
agents fail, evaluation and modification of the 
amyloid hypothesis will be necessary [6]. 
 
Another popular theory, the vicious cycle 
hypothesis, proposes that the form of 
dementia known as AD is characterized by a 
vicious metabolic cycle in which fibrillar 
aggregates of amyloid beta (Aβ) peptides build 
up in affected regions of the brain [7-8]. This 
aggregation is thought to be caused by a 
number of factors including (i) up-regulation of 
β-secretase and γ-secretase proteolytic activity 
that generate Aβ from amyloid precursor 
protein (APP), (ii) down-regulation of α-
secretase activity which hinders the 
production of Aβ, (iii) increased synthesis or 
stability of APP which is a precursor of Aβ, and 
(iv) reduced efficiency of protease 
mechanisms such as the activity of insulin-
degrading protease (IDE) which catabolizes Aβ 
[9]. Other proteases that have been proven to 
degrade Aβ include cathepsin D [10], serine 
protease-2-macroglobulin complex [11], and 
neprilysin [12]. Neprilysin is thought to be the 
most potent Aβ degrading enzyme in vivo 
among endopeptidases whose activities are 
sensitive to thiorphan and phosphoramidon 
[12]. 
 
It is thought that the formation of Aβ 
aggregates then triggers the activation of 
microglia and induces the formation of 
oxidants, cytokines, and prostanoids that work 
to increase the production of Aβ via neurons 
and astrocytes, making the vicious cycle come 
full circle. Aβ aggregation may initiate the 
killing of neurons either directly or indirectly by 
increasing their sensitivity to excitotoxicity [9]. 
In addition, research using AD mouse models 
suggests that deposition of neurotoxic forms of 
Aβ aggregates may induce neuronal apoptosis 
due to abnormal proteolytic processing of APP 
[13]. Low levels of telomerase, especially the 
catalytic subunit of telomerase TERT, and 
associated proteins that protect neurons from 
apoptosis [14-15] have been linked to 
increased levels of oxidative stress and 
mitochondrial dysfunction following exposure 
of the neuron to Aβ peptides [16]. Further, 
neurons showed decreased vulnerability to 
amyloid β-peptide-induced apoptosis as a 

result of overexpression of TERT in 
pheochromocytoma cells [16]. Other studies 
suggest that oxidative stress induces the 
transcription of β-amyloid precursor protein 
cleaving enzyme 1 (BACE1) perhaps via γ-
secretase activity involving the c-jun N-terminal 
kinase (JNK)/c-jun pathway, thereby promoting 
pathological levels of Aβ in AD; increased 
levels of BACE1 have been found in vulnerable 
regions of AD brains as well [17]. Aβ 
aggregates may also trigger the formation of 
neurofibrillary tangles and disrupt neuron 
structure and function by promoting excess 
phosphorylation of the tau protein [9]. In AD, 
the six adult tau isoforms are abnormally 
phosphorylated and form paired helical 
filaments. These helical filaments are the 
major fibrous component of the characteristic 
neurofibrillary lesions in AD [18]. Recent 
studies strongly suggest that conformational 
changes and truncation of tau occur after the 
phosphorylation of tau. Two pathways have 
been proposed for the pathological processing 
of tau protein during AD. These include either 
phosphorylation and cleavage of tau followed 
by the Alz-50 conformational change or 
phosphorylation followed by the 
conformational change and then cleavage 
[19]. In addition, there is evidence that Aβ 
aggregation disrupts the protective function of 
astrocytes as well, leading to the death of 
neurons [9]. 
 
Data suggests that a major key factor in 
controlling the prevalence of dementia is 
attention to vascular risk factors such as 
hypertension, coronary artery disease, 
hyperlipidemia, and smoking [2]. Many studies 
have confirmed that good control of 
hypertension prevents dementia as do 
administration of statins [20-21]. The control 
of cholesterol is another important factor 
because cholesterol-rich “lipid raft” regions 
promote β- and γ-secretase activities and 
thereby high cholesterol may promote Aβ 
production from APP [22-24]. Further, it seems 
that there is a direct link between brain 
vascular atrophy and mild cognitive 
impairment (MCI), a precursor for AD. In the 
following text, the use of flavanols known to 
promote cardiovascular health, in part by 
inhibiting brain vascular atrophy, shall be 
investigated for potential use in preventing 
and delaying the onset of MCI and AD. 
 
Polyphenols and Neurodegenerative Diseases 
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A number of studies have shown that 
polyphenols affect neurons in the brain. One 
such study determined that polyphenols found 
in fruits may help in lessening the motor and 
cognitive behavioral deficits in motor function 
and memory respectively by altering stress 
signaling and neuronal signaling using rodent 
models [25-27]. The AD pathophysiology has a 
direct relation to the oxidative stress on 
neurons. Oxidative stress may cause neuronal 
damage and modulate intracellular signaling, 
leading to cellular death by apoptosis or 
necrosis [27]. It appears that as aging 
continues, the central nervous system (CNS) 
becomes more susceptible to the negative 
effects of oxidative stress [26]. Early in the 
pathology of AD, the Aβ amyloid peptide 
employs different mechanisms such as 
apoptosis, mitochondrial dysfunction, and the 
nuclear transcription factor NF-kB to destroy 
neurons. The toxicity of the plaques also 
involves transition metals, the formation of 
hydrogen peroxide, and the buildup of reactive 
oxygen species. This results in oxidative stress 
that leads to the development of AD [5, 28-
30]. The CNS is especially susceptible to 
increases in the ratio of oxidized glutathione to 
total glutathione, the accumulation of lipofusin 
along with bcl-2, increases in membrane lipid 
peroxidation, reductions in glutamine 
synthetase, reductions in redox-active iron, 
and alterations in membrane lipids [26]. In 
accordance with this, it has been found that 
most tissues from post-mortem AD brains 
contain elevated levels of lipid peroxidation 
products [31], as well as protein and DNA 
oxidation products. 
 
A growing body of evidence suggests that the 
interaction of redox-active metals and Aβ 
elevates oxidative stress. The dyshomeostasis 
of cerebral biometals such as Fe, Cu, Zn, and 
APP/Aβ/metal redox interactions contribute to 
the neuropathology of AD [32-33]. It has also 
been determined that metals can interact 
directly with Aβ, constituting one of the primary 
lesions in AD pathology. Metals bind and 
promote in vitro aggregation of Aβ peptides 
into tinctorial Aβ amyloid. Further, Aβ amyloid 
plaques in post-mortem AD brains are 
abnormally enriched in copper, iron, and zinc. 
Metal chelators have been shown to dissolve 
these proteinaceous deposits from post-
mortem AD brains and thereby attenuate the 
cerebral Aβ amyloid burden in APP transgenic 
mouse models. In addition, our experiments 
have shown that redox-active Cu(II) and Fe(III) 

are reduced in the presence of Aβ concurrent 
with the production of reactive oxygen species: 
H2O2 and hydroxyl (OH·) radicals. These 
Aβ/metal redox reactions are silenced by 
redox-inert Zn(II) but are exacerbated by 
biological reducing agents and lead to 
oxidation damages in AD brains. In addition, 
H2O2 mediates Aβ cellular toxicity and 
increases the production of both Aβ and APP. 
Moreover, the 5’ untranslated region (5’UTR) 
of APP mRNA has a functional iron-response 
element (IRE) consistent with biochemical 
evidence that APP is a redox-responsive 
metalloprotein. Therefore, the redox 
interactions between Aβ, APP, and metals may 
be at the heart of a pathological feedback 
system in which Aβ amyloidosis and oxidative 
stress work to promote each other. These 
findings lead to the idea that amyloid-specific 
metal-complexing agents and antioxidants 
should be investigated as possible treatments 
for AD due to their potential effects in reducing 
oxidative stress via dissolution of redox-active 
metals and counteraction of free radicals [34]. 
 
A sufficient amount of evidence suggests, for 
example, that antioxidants from the diet can 
influence the occurrence of neurodegenerative 
disorders such as AD and Parkinson’s disease 
(PD). In particular, the antioxidant flavanols- 
epicatechin and catechin have shown great 
promise. One study confirmed that 
consumption of the plant-derived flavanol (-) 
epicatechin enhances cognition in sedentary 
or wheel-running female C57BL/6 mice via 
positive effects on neuronal survival and 
plasticity. It also helped to enhance retention 
of spatial memory in these mice when 
administered in conjunction with exercise. The 
improvement in spatial memory resulted from 
increased angiogenesis and neuronal spine 
density, not from newborn cell survival in the 
dentate gyrus of the hippocampus. In addition, 
microarray analysis showed upregulation of 
genes associated with learning and down-
regulation of markers of neurodegeneration in 
the hippocampus [35]. Other studies have 
found that (-)-epigallocatechin-3-gallate 
(EGCG), an important type of catechin, helps to 
regulate the iron metabolism proteins APP and 
transferrin receptor (tfR) due to its metal-
chelating and radical-scavenging properties. 
The amount of APP protein in the cells was 
significantly reduced but the amount of mRNA 
encoding APP remained the same, suggesting 
a post-transcriptional effect. EGCG also 
reduced the formation of toxic beta-amyloid 
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peptide in Chinese hamster ovary (CHO) cells 
that overexpressed the ‘Swedish’ mutation 
[36]. Further, EGCG has been found to hinder 
lipopolysaccharide (LPS)-activated microglial 
secretion of nitric oxide (NO) and tumor 
necrosis factor-alpha (TNF-α) by down-
regulating inducible NO synthase and TNF-α 
expression. It was also found that EGCG 
protects against microglial activation-induced 
neuronal injury in the human SH-SY5Y cell line 
and in primary rat mesencephalic cultures, 
suggesting that it may have powerful 
therapeutic effects in treating and/or 
preventing AD and PD by promoting neuronal 
health [37]. Both catechin and epicatechin 
have been found to have anti-fibrillogenic 
properties as well in that they have been 
shown to reduce already existing alphaS fibrils 
in addition to causing a reduction in the 
formation of alphaS fibrils in brain cells [38]. 
Another study determined that administration 
of the antioxidant quercetin preserves the 
activity of antioxidant enzymes (to counter 
oxidative stress due to free radicals) and 
reduces the formation of cellular edema in rat 
neuronal cells [39]. The Personnes Agees Quid 
study [40] found that people who drank 3-4 
glasses of wine per day developed dementia 
80% less three years later than people who 
drank less or did not drink at all even after 
corrections had been made for confounding 
factors [41]. In addition, a follow-up study 5 
years later suggested an inverse relationship 
between flavanoid intake and the risk of 
dementia in subjects over the age of 65. The 
sources of flavanols included fruits, 
vegetables, wine, and tea [42]. Further, 
consumption of two more cups of tea per day 
helped to reduce the risk of PD [43]. Other 
sources of flavanol such as gingko biloba 
extract Egb 761 have been shown to improve 
cognitive function in AD patients [44-46]. The 
neuroprotective effects of these flavanoids 
and polyphenols have been suggested using 
mostly animal models. Rats that consumed a 
diet rich in antioxidants from sources such as 
blueberries, strawberries, and spinach 
experienced less decline in cognitive function 
[26, 47]. Overall, the consumption of foods 
and beverages rich in polyphenols has been 
shown to increase the antioxidant levels in 
serum and, therefore, it is thought that they 
have a beneficial effect against oxidative 
damages [44-45]. 
 
Many studies have demonstrated in animal 
models that tea may have a role in reducing 

PD though this has not been demonstrated in 
regards to AD. However, in vitro studies have 
shown that green tea extract may protect 
neurons from Aβ amyloid-induced damages 
[48-50]. Recently, APP proteolysis and Aβ 
metabolism have been targeted for potential 
use in AD therapy. APP can be processed by a 
nonamyloidogenic pathway involving the 
cleavage of APP to soluble APP by α-secretase 
activity or it can be processed by 
amyloidogenic β and γ-secretases. EGCG, a 
main phenollic constituent may promote the 
nonamyloidogenic α-secretase pathway and 
epicatechin (EC) may reduce the formation of 
Aβ amyloid fibrils [51]. However, the presence 
of another catechin epigallocatechin (EGC) in 
conjunction with EC increases Aβ peptide 
production by 20-30% in SweAPPN2a neuronal 
cells and 10-15% in TgAPPsw-derived neuronal 
cells. The presence of these two catechins 
together inhibits the ability of EGCG to reduce 
Aβ amyloid peptide generation [52]. 
 
Cardiovascular Risk Factors 
 
It is clearly evident that maintaining healthy 
cerebrovasculature decreases the risk of VaD. 
Recently, more data suggest that healthy 
cerebrovasculature also reduces the risk of AD 
because most risk factors for vascular disease 
have been found to influence AD risk [1]. The 
inhabitants of the Melanesian island of Kitava 
demonstrate this trend. They do not salt their 
food and their quasi-vegan diet contains only a 
small amount of animal product in the form of 
potassium-rich fish. Due to this very low-salt 
diet, the Kitavans remain thin and free from 
hypertension and stroke as well as maintain 
insulin sensitivity throughout their lives [53-
55]. Excellent cerebrovascular health is 
attributed to their lack of strokes. Another 
point of great interest is that in addition to 
good cardiovascular health, senile dementia is 
virtually absent in the Kitavan society, even 
though many Kitavans live to reach a very old 
age [56]. Further, similar trends were noted 
among the sub-Saharan African population 
early in the 20th century. Hypertension, stroke, 
and senile dementia were all rarely present in 
this population [57]. Therefore, a link seems to 
exist between excellent cerebrovascular health 
and not developing dementia [1]. 
 
Other evidence shows that cerebral ischemia 
exerts a pro-inflammatory effect that up-
regulates the metabolic cycle that may result 
in AD, or it directly kills neurons and makes 
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them more susceptible to stimuli that would 
kill them [58-61]. Chronic hypoperfusion in 
rodents has been shown to enhance the 
expression of APP in affected brain regions in 
rodents [62-64]. Up-regulation of β-secretase 
and down-regulation of α-secretase have also 
been reported following ischemic brain injury 
[65-66]. The low concentrations of NO 
produced by a healthy cerebrovascular 
endothelium act in a protective way toward 
parenchymal brain cells [67-68]. Nitric oxide 
has been documented to up-regulate the 
expression of alpha-secretase and down-
regulate the expression of β-secretase in 
cultured neuroblastoma cells. These actions 
suggest that cerebrovascular NO might act to 
suppress the production of Aβ in the absence 
of superoxide [69]. 
 
Flavanols in unprocessed cocoa powder, 
mostly epicatechin, act directly on 
endothelium to stimulate eNO activity, thereby 
causing increased cerebral blood flow [70-72]. 
The Kuna Indians off the coast of Panama 
drink about 900 mg of cocoa a day and are 
the only civilization that consumes salt and is 
still hypertension-free, suggesting that cocoa 
has profoundly beneficial cardiovascular 
effects [73-75]. Data also suggests that the 
increased cardiovascular health of the Kuna 
Indians is not genetic but environmental 
because the effects are not sustained in those 
members of the population who have moved 
to urban areas. In one study that investigated 
cocoa flavanols and vasodilatation [75-76], 27 
healthy individuals were studied before and 
after ingestion of 920 mL of flavanol-rich 
cocoa over a 5-day period in 4 equal doses. 
Each cocoa dose contained a total of 821 mg 
of flavanols. To monitor blood flow, pulse wave 
amplitude readings were taken in the fingertip 
using peripheral arterial tonometry. After 4 
days of cocoa ingestion, a 29% increase in 
amplitude resulted when measured in the 
morning 12 hours after the last dose of cocoa. 
On the 5th day, another dose of cocoa led to a 
33% increase after 90 minutes [75]. Evidence 
shows that the mechanism that causes this 
vasodilator response is NO-dependent 
because a nitric oxide synthase (NOS) inhibitor 
NG-nitro-L-arginine methyl ester (L-NAME) 
administered after 4 days of cocoa ingestion 
completely reversed the increase in 
vasodilatation. Thus, reversal of the response 
clearly involves a mechanism that inhibits 
NOS. The agent in the cocoa responsible for 
the vasodilator response was isolated by 

setting up a control in which subjects ingested 
a flavanol-poor cocoa drink. The vasodilator 
response was notably smaller in these 
subjects, suggesting that the vasodilator 
response is in fact due to flavanols [73, 76]. 
Further evidence that flavanols play a role in 
producing vasodilatation includes a number of 
different studies. Researchers found that red 
wine elicits NO-dependent relaxation in rabbit 
and rat aorta and red wine polyphenol extract 
increases the production of NOS as well as NO 
in human umbilical vein endothelium [77-79]. 
 
This NO-dependent vasodilator response can 
be classified as a measure of enhanced 
endothelial function, an ability that declines as 
a result of increasing age but is a major 
cardiovascular risk factor and predictor of 
future cardiovascular events. Thus, growing 
evidence suggests that flavanols may have 
beneficial effects on endothelial function. In 
one study, the vasodilator response in 15 
young healthy subjects was compared to that 
of 19 older healthy subjects. Baseline readings 
from the subjects were obtained following the 
ingestion of cocoa for 4-6 days. A second 
reading was taken at the end of this period, 
90-180 min after ingestion of the last cocoa 
dose. Blood pressure, flow mediated dilation, 
and pulse wave amplitude readings were 
obtained. Twelve of the young subjects and 9 
of the older subjects were then administered 
L-NAME intravenously. The results of this study 
suggest that cocoa enhanced with flavanols 
improved measures of endothelial function to 
a greater degree in healthy elderly people than 
in the younger people. The elderly saw greater 
increases in flow-mediated dilation and 
peripheral vasodilatation after administration 
of the cocoa-rich flavanols as well as greater 
increases in blood pressure as a result of 
administration of the NOS inhibitor L-NAME. 
These findings suggest that flavonols may be 
useful in counteracting decreases in 
endothelial function associated with aging 
[80]. 
 
Furthermore, flavanols can reverse endothelial 
dysfunction due to insults such as smoking. A 
study conducted by Heiss determined that a 
single-dose of flavanol-rich cocoa can acutely 
reduce endothelial dysfunction. After ingestion 
of flavanol-enriched cocoa for 7 days, FMD 
responses increased significantly. Thus, it has 
been shown that daily consumption of 
flavanol-rich cocoa not only prevents 
endothelial dysfunction, but can also 
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effectively reverse endothelial dysfunction in a 
sustained and dose-dependent manner [81]. 
In addition to resulting in cardiovascular 
disease, aging is a common risk factor for 
cerebrovascular diseases such as stroke and 
dementia. One out of 10 adults over the age of 
65 is afflicted, as are half of all adults above 
the age of 85. Most of the elderly population 
develops dementia as a result of AD or VaD 
[82-83]. Evidence suggests that dementia is 9 
times more likely to occur in the first year after 
cerebral infarct; the chances of developing AD 
during this time increase by 50% [84-85]. 
Epidemiologically, AD and VaD share many risk 
factors such as age, ApoE4 genotype, 
hypertension, arteriosclerosis, diabetes 
mellitus, smoking, and atrial fibrillation [86]. In 
addition to this overlap, the neuropathology of 
these two diseases also relates. Neurofibrillary 
plaques and tangles exist in VaD and vascular 
pathology is present in AD. A number of 
cerebromicrovascular abnormalities show up 
in AD pathology as well as vascular lesions, 
cerebral amyloid angiopathy, microvascular 
degeneration, and periventricular white matter 
lesions [82, 87]. The vascular abnormalities 
seen in AD are consistent with impairment of 
the BBB, decreased microvascular density, 
vascular distortions, functional alteration, 
damaged cerebral endothelial function, and 
arteriolar changes such as lipohyalinosis [82]. 
 
The Effect of Flavanols upon Cerebral Blood 
Flow 
 
A few studies have documented the use of 
polyphenols to increase cerebral blood flow. 
Galli found that fruit polyphenols decrease the 
susceptibility of rat brains to the damage 
caused by oxidative stress as aging occurs 
[88]. In a French study, it was found that an 
inverse relationship exists between the 
ingestion of flavanoids and the development of 
dementia, a finding that might be explained by 
the concept that flavanols improve vascular 
function and increase cerebral blood flow [89]. 
Further, there is much speculation that 
decreased cerebral blood flow leads to the 
development of dementia. 
 
The Rotterdam study in which the cerebral 
blood flow of 1730 subjects over the age of 55 
was monitored over a 6-year period concluded 
that cerebral hypoperfusion precedes and may 
contribute to the onset of clinical dementia 
[90]. Other studies have also concluded using 
single-photon emission computed tomography 

(SPECT) that the cerebral blood flow is much 
lower in certain brain regions (mainly the 
prefrontal and inferior parietal cortices) of 
those who progressed rapidly to AD [91-92]. 
Moreover, another cocoa study determined 
that there is an increase in cerebral blood flow 
through the middle cerebral artery after 
ingestion of 900 mg of cocoa daily for a week. 
This effect of cocoa was sustained [76]. 
Finally, a study that employed functional 
magnetic resonance imaging based on blood 
oxygenation level-dependent (BOLD) contrast 
to explore the effect of flavanols on the human 
brain found an increase in the BOLD signal 
intensity in response to a cognitive task 
following ingestion of 150 mg of flavanol-rich 
cocoa for 5 days. In addition, a pilot study that 
was conducted to evaluate the relationship 
between cerebral blood flow and a single 
acute dose of cocoa consisting of 450 mg of 
flavanols concluded that flavanol-rich cocoa 
can increase cerebral blood flow to gray 
matter, suggesting the potential of flavanols as 
a treatment for vascular impairment, 
dementia, strokes, and the maintenance of 
cardiovascular health [93]. 
 
Link between Brain Vascular Atrophy, 
Alzheimer’s Disease, and Flavanols 
 
Through a number of studies it has been 
determined that polyphenols may be used to 
delay the onset of neurodegenerative diseases 
as discussed earlier and that flavanols, a type 
of polyphenols, may be used to improve 
cardiovascular health, including 
cerebrovascular health. Further, evidence 
exists that brain vascular atrophy leads to MCI; 
MCI often converts into the AD form of 
dementia [94]. Because flavanols can be used 
to prevent or delay the onset of brain vascular 
atrophy through the benefits they impart 
cardiovascularly, they should also be effective 
in delaying the conversion of MCI into AD. MCI 
consists of memory complaints and objective 
evidence of cognitive impairment but no 
evidence of dementia and, as such, is 
considered a stage between normal aging and 
dementia. Conversion to AD is associated with 
the worsening of executive functions and 
functional status [94]. In one particular study, 
MRIs of patients progressing from MCI to AD 
were studied throughout the duration of the 
conversion, and it was determined that 3 years 
before the diagnosis of AD, deficits included 
primarily grey matter loss in the medial 
temporal lobes, including the amygdala, 
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anterior hippocampus, entorhinal cortex, and 
partially in the fusiform gyrus. However, 1 year 
before the diagnosis of AD, cerebral atrophy 
had progressed and spread to the middle 
temporal gyrus, the posterior regions of the 
temporal lobe, and the entire extent of the 
hippocampus. By the time AD was diagnosed, 
atrophy had further spread throughout the 
middle temporal lobes, the temporoparietal 
association lobes, as well as the frontal lobes 
[95]. Moreover, the Sydney Stroke Study found 
that post-stroke dementia and MCI are very 
common in older individuals through the study 
of MRI brain scans, further suggesting a link 
between brain vascular atrophy and dementia 
[96]. 
 
Lacunar infarcts and deep white matter 
changes characterize subcortical ischemic 
vascular disease (SIVD). From 36% to 50% of 
vascular dementia is attributed to SIVD. In 
rats, it has been determined that aging 
produces changes in blood flow that makes 
the brain more susceptible to insults such as 
oxidative stress and other changes involved in 
AD. Impaired delivery of oxygen due to 
decreased blood flow to neurons leads to 
further cognitive detriments. The effects are 
cyclic in that insults such as amyloids promote 
further changes in blood hemorheology and 
decreased blood flow. Hippocampal and 
cortical atrophy resulting from a mixture of 
ischemic and degenerative pathologies rather 
than the presence of lacunes is the main 
factor leading to dementia in SIVD and AD 
[97]. 
 
Conclusion 
 
Overall, a great deal of evidence suggests that 
flavanols increase blood flow and perfusion of 
the brain. In addition, a number of 
experimental data also suggest that flavanols 
may delay the onset of neurodegenerative 
diseases such as AD through a number of 
different mechanisms. In particular, it has 
been determined that the natural antioxidant 
flavanols decrease the incidence of vascular 
atrophy and offer many cardiovascular 
benefits in addition to counteracting oxidative 
stress via their antioxidant properties. Further, 
brain vascular atrophy and the development of 
MCI are directly linked. In turn, MCI is often a 
precursor for the development of AD. 
Therefore, it seems that the next most likely 
step for investigation should be the effects of 
flavanols on AD development and progression 

in humans via consideration of the flavanols’ 
vascular benefits and the mechanisms by 
which they impart these benefits. It looks 
promising that flavanols may be natural 
agents that have potential in effectively 
treating and/or preventing AD by a number of 
mechanisms. A discovery such as this would 
greatly benefit millions of people and help in 
warding off the dementia epidemic that is 
upon us. 
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