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ABSTRACT

The Lambda Cold Dark Matter (ΛCDM) model has long been lauded for its exquisite

fit to large-scale cosmological observations. Recent years, however, have revealed cracks

in this model and the theories that underpin it. Tensions have arisen between the values of

some cosmological parameters inferred from high-redshift and low-redshift independent

observables. Little progress has been made in confirming, or at least improving, our

understanding about some of the most important theoretical foundations the model rests

on, including inflation, dark energy, and dark matter.

This dissertation aims to shed light on some of the most important outstanding issues

in the ΛCDM picture of the universe and develop statistical tools to (1) extract more and

better information from cosmological and astrophysical observables, and to (2) improve

the accuracy of statistical inference pipelines, questioning established modeling choices

and assumptions that can give us unfair confidence in our model of the universe, skew

our understanding of the universe, or both. In the first part of the dissertation we focus

on probes of cold dark matter on the kiloparsec scale, a regime that remains untested

and is very sensitive to dark matter microphysics. We present novel ways of mapping the

distribution of dark matter on these scales that offer a variety of advantages compared

to traditional methods: sensitivity to lower masses (smaller scales), much more model-

independence, and a significant speed-up. In the second part of the dissertation we

address the impact of canonical modeling choices in cosmological data analyses and how

this relates to the important tensions we observe between high-precision datasets. We

use and develop data-driven methods that can incorporate our ignorance into statistical

inference pipelines, removing important assumptions that are usually baked into analyses.

We conclude by assessing the reach of our work and placing it in the context of the

broader field, envisioning how it will shape research in the years to come.
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List of Abstracts

Chapter 3: Direct Detection of Dark Matter Substructure in

Strong Lens Images with Convolutional Neural Networks [1]

Strong gravitational lensing is a promising way of uncovering the nature of dark mat-

ter, by finding perturbations to images that cannot be well accounted for by modeling the

lens galaxy without additional structure, be it subhalos (smaller halos within the smooth

lens) or line-of-sight (LOS) halos. We present results attempting to infer the presence

of substructure from images without requiring an intermediate step in which a smooth

model has to be subtracted, using a simple convolutional neural network (CNN). We find

that the network is only able to infer the presence of subhalos with > 75% accuracy when

they have masses of ≥ 5× 109 M� if they lie within the main lens galaxy. Since less mas-

sive foreground LOS halos can have the same effect as higher mass subhalos, the CNN can

probe lower masses in the halo mass function. The accuracy does not improve significantly

if we add a population of less massive subhalos. With the expectation of experiments

such as HST and Euclid yielding thousands of high-quality strong lensing images in the

next years, having a way of analyzing images quickly to identify candidates that merit

further analysis to determine individual subhalo properties while preventing extensive

resources being used for images that would yield null detections could be very useful. By

understanding the sensitivity as a function of substructure mass, non-detections could be

combined with the information from images with substructure to constrain the cold dark

matter scenario, in particular if the sensitivity can be pushed to lower masses.
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Chapter 4: Extracting the Subhalo Mass Function from Strong

Lens Images with Image Segmentation [2, 3]

Detecting substructure within strongly lensed images is a promising route to shed

light on the nature of dark matter. However, it is a challenging task, which traditionally

requires detailed lens modeling and source reconstruction, taking weeks to analyze each

system. We use machine learning to circumvent the need for lens and source modeling

and develop a neural network to both locate subhalos in an image as well as determine

their mass using the technique of image segmentation. The network is trained on images

with a single subhalo located near the Einstein ring. Training in this way allows the

network to learn the gravitational lensing of light and, remarkably, it is then able to

accurately detect entire populations of substructure, even far from the Einstein ring. In

images with a single subhalo and without noise, the network detects subhalos of mass

106 M� 62% of the time and 78% of these detected subhalos are predicted in the correct

mass bin. The detection accuracy increases for heavier masses. When random noise

at the level of 1% of the mean brightness of the image is included (which is a realistic

approximation for the Hubble Space Telescope, for sources brighter than magnitude 20),

the network loses sensitivity to the low-mass subhalos; with noise, the 108.5 M� subhalos

are detected 86% of the time, but the 108 M� subhalos are only detected 38% of the time.

The false-positive rate is around 2 false subhalos per 100 images with and without noise,

coming mostly from masses m ≤ 108 M�. With good accuracy and a low false-positive

rate, counting the number of pixels assigned to each subhalo class over multiple images

allows for a measurement of the subhalo mass function (SMF). When measured over five

mass bins from 108 M� to 1010 M� the SMF slope is recovered with an error of 14.2

(16.3)% for 10 images, and this improves to 2.1 (2.6)% for 1000 images without (with

1%) noise.
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Chapter 5: Power Spectrum of Dark Matter Substructure in

Strong Gravitational Lenses [4]

Studying the smallest self-bound dark matter structure in our Universe can yield im-

portant clues about the fundamental particle nature of dark matter. Galaxy-scale strong

gravitational lensing provides a unique way to detect and characterize dark matter sub-

structures at cosmological distances from the Milky Way. Within the cold dark matter

(CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to

be large, implying that their contribution to the lensing convergence field is approxi-

mately Gaussian and could thus be described by their power spectrum. We develop here

a general formalism to compute from first principles the substructure convergence power

spectrum for different populations of dark matter subhalos. As an example, we apply

our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White

subhalo population motivated by standard CDM, and a truncated cored subhalo pop-

ulation motivated by self-interacting dark matter (SIDM). We study in detail how the

subhalo abundance, mass function, internal density profile, and concentration affect the

amplitude and shape of the substructure power spectrum. We determine that the power

spectrum is mostly sensitive to a specific combination of the subhalo abundance and mo-

ments of the mass function, as well as to the average tidal truncation scale of the largest

subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the

substructure power spectrum at large wave number reflects the internal density profile of

the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepen-

ing at large wave number absent in the CDM power spectrum, opening the possibility of

using this observable, if at all measurable, to discern between these two scenarios.

Chapter 6: Gravitational Lensing and the Power Spectrum of

Dark Matter Substructure: Insights from the ETHOS N-body

Simulations [5]

Strong gravitational lensing has been identified as a promising astrophysical probe

to study the particle nature of dark matter. We present a detailed study of the power

xix



spectrum of the projected mass density (convergence) field of substructure in a Milky

Way-sized halo. This power spectrum has been suggested as a key observable that can

be extracted from strongly lensed images and yield important clues about the matter

distribution within the lens galaxy. We use two different N -body simulations from the

ETHOS framework: one with cold dark matter and another with self-interacting dark

matter and a cutoff in the initial power spectrum. Despite earlier works that identified

k & 100 kpc−1 as the most promising scales to learn about the particle nature of dark

matter we find that even at lower wavenumbers - which are actually within reach of

observations in the near future - we can gain important information about dark matter.

Comparing the amplitude and slope of the power spectrum on scales 0.1 . k/kpc−1 . 10

from lenses at different redshifts can help us distinguish between cold dark matter and

other exotic dark matter scenarios that alter the abundance and central densities of

subhalos. Furthermore, by considering the contribution of different mass bins to the

power spectrum we find that subhalos in the mass range 107−108 M� are on average the

largest contributors to the power spectrum signal on scales 2 . k/kpc−1 . 15, despite the

numerous subhalos with masses > 108 M� in a typical lens galaxy. Finally, by comparing

the power spectra obtained from the subhalo catalogs to those from the particle data in

the simulation snapshots we find that the seemingly-too-simple halo model is in fact a

fairly good approximation to the much more complex array of substructure in the lens.

Chapter 7: Quantifying the Line-of-Sight Halo Contribution to

the Dark Matter Convergence Power Spectrum from Strong Grav-

itational Lenses [6]

Galaxy-galaxy strong gravitational lenses have become a popular probe of dark mat-

ter (DM) by providing a window into structure formation on the smallest scales. In

particular, the convergence power spectrum of subhalos within lensing galaxies has been

suggested as a promising observable to study DM. However, the distances involved in

strong-lensing systems are vast, and we expect the relevant volume to contain line-of-

sight (LOS) halos that are not associated with the main lens. We develop a formalism

xx



to calculate the effect of LOS halos as an effective convergence power spectrum. The

multi-lens plane equation couples the angular deflections of consecutive lens planes, but

by assuming that the perturbations due to the LOS halos are small, we show that they

can be projected onto the main-lens plane as effective subhalos. We test our formalism

by simulating lensing systems using the full multi-plane lens equation and find excellent

agreement. We show how the relative contribution of LOS halos and subhalos depends

on the source and lens redshift, as well as the assumed halo and subhalo mass functions.

For a fiducial system with fraction of DM halo mass in substructure fsub = 0.4% for sub-

halo masses [105− 108] M�, the interloper contribution to the power spectrum is at least

several times greater than that of subhalos for source redshifts zs & 0.5. Furthermore,

it is likely that for the SLACS and BELLS lenses the interloper contribution dominates:

fsub & 2% (4%) is needed for subhalos to dominate in SLACS (BELLS), which is higher

than current upper bounds on fsub for our mass range. Since the halo mass function

is better understood from first principles, the dominance of interlopers in galaxy-galaxy

lenses with high-quality imaging can be seen as a significant advantage when translating

this observable into a constraint on DM.

Chapter 8: Observable Predictions for Massive-Neutrino Cos-

mologies with Model-Independent Dark Energy [7]

We investigate the bounds on the sum of neutrino masses in a cosmic-acceleration

scenario where the equation of state w(z) of dark energy (DE) is constructed in a model-

independent way, using a basis of principal components (PCs) that are allowed to cross the

phantom barrier w(z) = −1. We find that the additional freedom provided to w(z) means

the DE can undo changes in the background expansion induced by massive neutrinos at

low redshifts. This has two significant consequences: (1) it leads to a substantial increase

in the upper bound for the sum of the neutrino masses (Mν < 0.33− 0.55 eV (95% C.L.)

depending on the datasets and number of PCs included) compared to studies that choose

a specific parametrization for w(z); and (2) it causes ∼ 1σ deviations from ΛCDM in

the luminosity distance and the Hubble expansion rate at higher redshifts (z & 2), where
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the contribution of DE is subdominant and there is little constraining data. The second

point consequently means that there are also observable deviations in the shear power

spectrum and in the matter power spectrum at low redshift, since the clustering of matter

throughout cosmic time depends on the expansion rate. This provides a compelling case

to pursue high-z BAO and SN measurements as a way of disentangling the effects of

neutrinos and dark energy. Finally, we find that the additional freedom given to the dark

energy component has the effect of lowering S8 with respect to ΛCDM.

Chapter 9: Flow-Based Likelihoods for Non-Gaussian Inference

[8]

We investigate the use of data-driven likelihoods to bypass a key assumption made

in many scientific analyses, which is that the true likelihood of the data is Gaussian. In

particular, we suggest using the optimization targets of flow-based generative models, a

class of models that can capture complex distributions by transforming a simple base

distribution through layers of nonlinearities. We call these flow-based likelihoods (FBL).

We analyze the accuracy and precision of the reconstructed likelihoods on mock Gaussian

data, and show that simply gauging the quality of samples drawn from the trained model

is not a sufficient indicator that the true likelihood has been learned. We nevertheless

demonstrate that the likelihood can be reconstructed to a precision equal to that of

sampling error due to a finite sample size. We then apply FBLs to mock weak lensing

convergence power spectra, a cosmological observable that is significantly non-Gaussian

(NG). We find that the FBL captures the NG signatures in the data extremely well,

while other commonly-used data-driven likelihoods, such as Gaussian mixture models

and independent component analysis, fail to do so. This suggests that works that have

found small posterior shifts in NG data with data-driven likelihoods such as these could be

underestimating the impact of non-Gaussianity in parameter constraints. By introducing

a suite of tests that can capture different levels of NG in the data, we show that the

success or failure of traditional data-driven likelihoods can be tied back to the structure

of the NG in the data. Unlike other methods, the flexibility of the FBL makes it successful
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at tackling different types of NG simultaneously. Because of this, and consequently their

likely applicability across datasets and domains, we encourage their use for inference

when sufficient mock data are available for training.
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Chapter 1

Introduction

A century ago we did not yet know that there was anything in the universe other than

our own galaxy. A series of astounding theoretical and observational breakthroughs

throughout the twentieth century, starting with Einstein’s theory of General Relativity in

1915 and Hubble’s discoveries that there are other galaxies (1924) and that the universe

is expanding (1929), paved the way to establishing the standard cosmological model,

called the Λ Cold Dark Matter (ΛCDM) model. It is a relatively simple model, governed

primarily by six parameters: Ωb (the energy density in baryons), Ωc (the energy density in

cold dark matter), ΩΛ (the energy density in dark energy, assumed to be the cosmological

constant), τ (the reionization optical depth), ns (the scalar spectral index), and As (the

curvature fluctuation amplitude).1 Except for the scalar spectral index, which is predicted

to be slightly smaller than 1 by inflation [9], the values of the ΛCDM parameters are not

predicted but rather inferred from observations.

Cosmology is a unique science. Cosmologists cannot run controlled experiments, we

have to rely on observations. To be more specific, we have to rely on observations of a

single universe. Determining the parameters of a cosmological model therefore requires a

Bayesian perspective: the data is fixed and we have to vary our models to find the best

fit to observed data. Despite this limitation, we can obtain independent estimates for

the cosmological parameters from different observables in our single universe. We can

1There are of course many extensions to this base model; some of the most popular ones include a
redshift-dependant equation of state for dark energy, massive neutrinos, and a nonzero tensor-to-scalar
ratio.



combine different measurements to enhance their statistical power when inferring model

parameters, or we can compare the parameter values they yield to check for concordance

or discordance with the model. In particular, parameters that are not inputs into the

ΛCDM model but can be derived from them (and in some cases checked against mea-

surements that are cosmology-independent), such as the Hubble constant, H0, or the

amplitude of the linear power spectrum on the scale of 8h−1 Mpc, σ8, are immensely

important to check the consistency between our universe and the ΛCDM model.

As large-scale cosmological data became available, the ΛCDM model was lauded for

successfully matching observed signals. These successes spanned very different observa-

tions that probe vastly different times in cosmic history − from the primary anisotropies

in the cosmic microwave background (CMB) [10, 11], to the expansion of the universe

[12–14] and the growth and clustering of matter [15, 16]. Since the turn of the century,

the best-fit ΛCDM model has painted a mysterious picture of the universe, with ∼ 95%

of the energy content in the form of unknown, invisible components called dark matter

and dark energy.

However, the last few years have cast a more critical lens on the ΛCDM model as

cracks in the model have started to surface. For one, we have entered the era of precision

cosmology. And with high precision comes great power: comparing the parameters in-

ferred by high-precision independent datasets has turned the era of precision cosmology

into the era of cosmological tensions. Where before different datasets saw agreement in

the best-fit ΛCDM model parameters, or derived parameters, they now see tension. The

two most notorious tensions are the H0 and S8 tensions,2 which correspond to the expan-

sion rate of the universe and the growth of structure in the universe, respectively. The

values of these parameters inferred from local measurements differ from those measured

by the CMB at the level of a few standard deviations [17–21]. Whether this points to

unknown new physics requires we revisit fundamental modeling choices and assumptions

we’ve had to make.

Furthermore, many of the theoretical foundations on which the ΛCDM model rests

2S8 ≡ σ8

√
Ωm, where Ωm = Ωb + Ωc.
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are showing signs of faltering. Despite our best efforts for several decades, direct detection

experiments have failed to detect any hint of dark matter. There has also been no progress

in reconciling the observed abundance of dark energy with the expectation of vacuum

energy from quantum field theory, nor advances in obtaining conclusive evidence in favor

of an alternative candidate to the cosmological constant as the origin of the accelerated

expansion of the universe. Definitive proof for inflation, in the form of primordial B-

modes imprinted in the CMB, has remained elusive. While structure formation on large

scales based on the cold dark matter paradigm has worked remarkably well, probing it

on small scales has proved to be a very challenging task, marred by the complexity of

disentangling cosmology and dark matter physics from complex astrophysical processes

that are relevant on these scales (both theoretically and observationally).

This dissertation aims to shed light on some of the most important outstanding issues

with the ΛCDM model by developing statistical tools to (1) extract more and better

information from cosmological and astrophysical observables, and to (2) improve the

accuracy of statistical inference pipelines, questioning established modeling choices and

assumptions that can give us unfair confidence in our model of the universe, skew our

understanding of the universe, or both.

The first part of the dissertation, Strong Gravitational Lensing as a Dark Matter

Probe, is concerned with pioneering new methods to understand the particle nature of

dark matter using the distorted light of galaxies that have been strongly lensed. Strong

lens images give us a window into the distribution of dark matter on the kiloparsec scale,

a regime where the ΛCDM model remains untested. Chapter 2 provides background

information to understand the importance of these images and how they can be used for

dark matter science. We then present methods that can improve and expand the way that

inference is done with these images, driven by innovative statistical and machine learning

techniques. In Chapters 3 [1] and 4 [2, 3] we introduce machine learning models that can

extract information on the distribution of dark matter on sub-galactic scales by analyzing

strong lens images in a much faster and more model-independent way than traditional

methods. In Chapters 5 [4], 6 [5], and 7 [6] we pioneer and extensively develop the
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use of the strong lensing convergence power spectrum, an observable that has imprints

of the statistical properties of the dark matter distribution on these scales. We show

that the power spectrum’s sensitivity peaks at lower masses (i.e., smaller scales) than

methods that are traditionally used, making it a very promising target to either falsify

or corroborate the CDM paradigm. Finally, we also assess how astrophysical processes −

which can be very relevant on these scales − can lead to wrong conclusions being drawn

on the particle nature of dark matter, but remain optimistic by showing that, for the

high-quality imaging data we have, they are subdominant.

The second part of the dissertation, Statistical Inference in the Era of Cosmologi-

cal Tensions, is concerned with improving the quality of parameter constraints obtained

from data analysis pipelines. The overall goal is to emphasize the much-needed overlap

between precision cosmology and accuracy cosmology. Without ensuring the parameters

inferred from our data are as accurate as they are precise, we cannot know whether the

persistent tensions we are seeing in the data are truly “smoking guns” for new physics

or not. We scrutinize canonical modeling choices and assumptions, and replace user-

imposed choices in favor of data-driven methods. In Chapter 8 we discuss the important

degeneracy between dark energy and neutrinos, and how traditionally-used, restrictive

parametrizations for dark energy (i.e. assuming it is the cosmological constant) can sig-

nificantly underestimate the uncertainty on neutrino masses. Given the considerable gaps

in our knowledge regarding the nature and behavior of dark energy, we opt for building

the dark energy equation of state using principal components and let the data constrain

their amplitudes. We discuss the relevance of our findings for the S8 tension. In Chapter

9 we introduce a novel likelihood method, called flow-based likelihood (FBL), that is

uniquely flexible, accurate, and general. Despite the ubiquity of Gaussian likelihoods in

cosmology, many cosmological datasets are related to distributions of galaxies, which are

the result of the highly non-linear process of structure formation due to gravity, and are

therefore highly non-Gaussian. FBLs can remove the bias introduced in parameter con-

straints with the use of a wrong likelihood. By removing the inaccuracy of the likelihood

as a possible source of systematic bias artificially creating tensions, FBLs could either
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dispel or reinforce them.

We conclude in the section Final Remarks, discussing the impact of this work in the

broader field as well as how we envision it will shape research in the years to come.
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Strong Gravitational Lensing as a

Dark Matter Probe
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Chapter 2

Probing ΛCDM on Small Scales with

Strong Gravitational Lensing

Following the many successes of the Λ Cold Dark Matter standard cosmological model at

explaining the universe we observe on large scales [22–29], many have turned their sights

to sub-galactic scales as a way of either reaffirming or falsifying it (see e.g. Refs. [30–

41]). Many dark matter theories that are consistent on large scales have very different

behaviors on sub-galactic scales. For instance, significant dark matter free streaming [42–

46] or possible interactions with relativistic species [47–57] at early times can substantially

reduce the number of low-mass subhalos orbiting a typical galaxy [58–60]. In addition,

dark matter self-interaction [61–64] could modify the density profile of dark matter halos

[60, 65–70] away from the standard CDM prediction [71]. Other dark matter particle

candidates such as ultralight axions [72, 73] might also lead to interesting phenomenology

on small scales (see e.g. Refs. [74, 75]). Therefore, gaining insight into the small-scale

distribution and abundance of dark matter can be used to check for consistency with

predictions of the CDM paradigm and, if falsified, it can offer clues as to what exotic

microphysical properties it might have. Precisely because of this probing small-scale

structure has become one of the most promising ways of deciphering the particle nature

of dark matter.

However, assessing whether CDM provides a good fit to observations on these scales



can be significantly more difficult than it is for large-scale observations. These small-

scale modes are deep in the nonlinear regime at low redshifts, and baryonic processes

can play an important role on these scales [76–84], thus significantly affecting the dark

matter distribution inside galaxies and their satellites. These factors make it difficult to

compute robust theoretical predictions that can be compared to observations. Conse-

quently, high resolution hydrodynamical simulations are necessary to make predictions

and test observations. Not only are these simulations very computationally expensive,

but how to model astrophysical phenomena accurately remains an open problem (see Ref.

[85] for an overview of different approaches to modeling baryonic physics in cosmological

hydrodynamical simulations).

While it is never entirely possible to neglect the influence of baryonic structures on

the evolution of the small-scale dark matter distribution (see, e.g. Ref. [84]), it can be

minimized by focusing our attention on the lowest mass subhalos present in galaxies. Star

formation becomes increasingly inefficient as halo mass decreases [86, 87], which makes

them less susceptible to baryonic feedback effects, while their abundance and internal

structure are quite sensitive to the particle nature of dark matter. This combination

makes them an important laboratory to test the consistency of the CDM paradigm on

small scales. The flip side of the coin is that low-mass halos can be difficult− or impossible

− to directly observe and characterize, even within the Local Group [88].

The fact that disentangling the impact of dark matter physics on structure formation

from that of baryons is key to probing the fundamental nature of dark matter motivates

the use of a gravitational method for substructure detection. Within the Local Group,

methods such as tidal streams [33, 35, 89, 90] and looking at the motions of stars within

the Milky Way [91], attempt to look for dark halos. Beyond the Local Group, however,

galaxy-scale strong lensing systems in which a massive foreground galaxy is multiply-

imaging a background source (such as another galaxy or a quasar) constitute ideal envi-

ronments to study the cosmological population of low-mass (meaning sub-galactic masses)

dark matter halos. The main idea behind this method is that sufficiently massive dark

matter overdensities that lie close in projection to the lensed arcs or images can cause
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distortions that deviate from predictions based on a smooth lens model (also called macro

model). By comparing the model fit with and without clumps we can localize overdensi-

ties and attribute them a mass. They can be detected by flux-ratio anomalies in strongly

lensed quasars, or in surface brightness variations in extended lensed arcs and rings (called

gravitational imaging). In this dissertation we focus on galaxy-galaxy lensing systems be-

cause they are particularly well suited for dark matter science: the extended arcs/rings

cover many image pixels, meaning there is a large surface area for perturbations, and

mitigate the impact of microlensing by stars.

Until very recently, detections of these localized overdensities were discussed in the

context of substructure/subhalos − i.e. with the assumption that the image-distorting

clumps were gravitationally bound to the main lens. Constraints were phrased in terms

of subhalo masses and positions, substructure abundance, and the subhalo mass function.

This includes measurements from quasars [92–102], as well as those from gravitational

imaging [103–109] and spatially-resolved spectroscopy [110–112]. Overall, there have been

a handful of claimed detections using these methods, with masses as low as a few times

108 M�.

However, there is no reason to believe that line-of-sight (LOS) field halos cannot be

the source of these perturbations, since the volume between the observer and the lens,

and the lens and the source, is far larger than that spanned by the main lens itself. This

idea has gained traction in the literature and there has been a shift away from assuming

that detections are of substructure. Evaluating, and wherever necessary, correcting this

assumption is crucial: whether the sources of perturbations are subhalos or LOS halos

can have profound implications for the conclusions drawn about the particle nature of

dark matter.

Regardless of the origin of the signal, the examples outlined above constitute direct

detection efforts, where individual halos are identified and characterized, and different

detections can be subsequently combined to constrain the nature of dark matter (by their

abundance and mass distribution). In Chapters 3 and 4 we will present work done on

using machine learning to significantly speed up and expand the capabilities of direct

9



detection pipelines.

The direct detection approach to substructure detection is intuitive and easy to visu-

alize − you can point at the pixels in an image and claim the presence of a dark matter

overdensity at that specific location. However, phrasing the problem in this manner is

not necessarily ideal. The CDM prediction that the (sub)halo mass function rises steeply

towards lower masses motivates using statistical detection efforts to constrain the proper-

ties of entire populations of unresolvable dark overdensities [4–6, 100, 113–116]. The idea

is that, although the majority of dark matter halos perturbing a strong lens image are

not individually detectable, their collective perturbations can be statistically identified.

In terms of connecting observations to models of dark matter, this is also a more intuitive

way of phrasing the problem because dark matter theories do not make predictions about

individual dark matter clumps but rather statistical predictions about the characteristics

of dark matter halo populations.

In Chapters 5, 6 and 7 we discuss using the power spectrum of the projected dark

matter mass density field, called the convergence power spectrum, as a statistical observ-

able to constrain dark matter. This idea was put forth by Ref. [117] (see also Ref. [118])

and expanded upon extensively in our work [4–6]. We start off assuming that all the

perturbers are subhalos, because in this regime the convergence is well defined and the

problem is considerably simpler. This will allow us to gain an intuition for how to calcu-

late this observable, and how dark matter microphysics and statistical properties of the

perturber population get imprinted on it. We will also be able to compare its sensitivity

on detectable scales to direct detection methods. With this foundation we will move on

to the harder problem of a three-dimensional distribution of perturbers.

Due to the length of this dissertation, we redefine key equations whenever it is con-

venient for the reader, instead of referencing equations across chapters.
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Chapter 3

Direct Detection of Dark Matter

Substructure in Strong Lens Images

with Convolutional Neural Networks

As discussed in Chapter 2, direct detection efforts are a popular approach to constrain

the properties of dark matter from strong lens images by individually locating and char-

acterizing small-scale (∼ kpc) dark matter clumps. An important prerequisite for direct

detection methods is modeling the smooth (or macro) component of the lens galaxy and

reconstructing the source before (or at the same time as) inferring the presence and

properties of substructure.

Modeling strong lensing systems is a complicated process that can take O(weeks)

for a single system. Different approaches to modeling a same system can yield different

results (see e.g. [109]). Furthermore, mistakes in the macro model can translate into false

positive substructure detections, although steps can be taken to minimize the likelihood

of this happening (see e.g. [119]). Substructure is also highly degenerate with structure

in the source, although in principle the presence of multiple images in the strong lensing

regime can break this degeneracy, given sufficient image resolution [120, 121].

One of our primary objectives is to gauge the feasibility of sidestepping the crucial

steps of modeling the smooth component of the lens and reconstructing the source, both



because of their potential to bias detections and because of their time cost. The process

of inferring subhalo properties, even after a fit for the smooth lens model is obtained,

is also computationally expensive and, more often than not, detailed analyses find no

compelling evidence for the presence of substructure [109, 119].

Until now, there have been� 100 high-quality galaxy-galaxy lensing images available

for studies of this type, which means that the time cost has not been prohibitive. In

the coming years, however, hundreds or thousands of new strong lensing systems are

expected to be found with optical imaging data [122–124] by experiments such as the

Wide Field Infrared Survey Telescope (WFIRST), the Hubble Space Telescope (HST),

the Vera Rubin Observatory, the Dark Energy Survey (DES), and Euclid, vastly increasing

the number of images that can be used for dark matter science.1 In an ideal world, each of

these images could be analyzed individually but, in practice, having a fast method to find

interesting candidates to focus resources on could accelerate the capacity of gravitational

lensing-based methods to truly constrain dark matter properties.

To this end, we present results using a convolutional neural network (CNN) [125]

to analyze strong lens images with varying sources, macro model parameters, and sub-

structure populations to determine whether they are likely to contain detectable massive

substructures in the vicinity of the Einstein radius of the lens. In particular, we do the

inference directly on the (simulated) data, instead of first fitting a smooth model to the

images, reconstructing the source, and inferring the presence of dark substructures from

the residual between the smooth model image and the data.

We seek to answer the question: what is the minimum mass that subhalos in the

vicinity of the Einstein ring have to have for the neural network to identify a feature on

the image as being due to their presence instead of noise or the smooth model? Note that

it is not obvious that a neural network would be able to do this at all. Traditionally,

classification done with NNs is based on some of the largest or most obvious features in

images they are trained on, for example with the canonical MNIST [126] or CIFAR10 [127]

1There are other surveys, such as the interferometer Atacama Large Millimeter/submillimeter Array
(ALMA), that are expected to find many new lenses as well, but in this work we focus more on optical
imaging-type data instead of, for example, working with uv visibilities.
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datasets. Indeed, previous works that have applied CNNs to do regression or classification

directly on images in the context of strong lensing have mostly focused on macro model

parameters. Refs. [128] and [129] proposed using them to identify images with strong

lenses in photometric data; Refs. [130] and [131] applied this deep learning method to

determine the parameters (and uncertainties) of the smooth lens model using optical

imaging data; and [132] used CNNs and recurrent neural networks to extract smooth lens

parameters from interferometric data.

The focus of this work is fundamentally different: our goal is to address whether the

image processing capability of a CNN is powerful enough to classify images based on

minute differences (whether a perturber is present) even when the large-scale features of

the images vary as well (the macro model parameters and sources vary from image to

image). We therefore tackle the substructure detection problem as a binary classification

task. Such an approach could be used to analyze any number of observed images as a filter

to identify candidates that are likely to have a detectable subhalo somewhere in the image,

such that traditional analyses can be carried out on them to determine substructure

properties (i.e., masses and positions), while avoiding doing the same for images that

would yield null detections. We emphasize that are not implying that images devoid

of detectable substructure are not interesting, quite the opposite: null detections are a

crucial ingredient to constrain the subhalo mass function and test the CDM paradigm

(indeed, to date, constraints on subhalo properties using strong lens images are driven

more by non-detections than detections). Rather, the point is that a pipeline such as the

one we are suggesting in this work could determine what images have null detections in

a fraction of a second instead of requiring detailed analyses for a much longer time. In

essence, if the CNN’s sensitivity to substructure were understood well enough, it could

serve as a proxy for the detailed sensitivity function that has to be obtained on an image-

by-image basis for gravitational imaging, e.g. [106, 107, 109, 119], meaning that the

information from non-detections could be leveraged to constrain CDM as well. In this

work, we focus in particular on galaxy-galaxy lensing systems, although this could be

done for point-like sources such as quasars as well.
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This chapter is organized as follows. In Section 3.1 we describe how we simulated

strongly lensed images (Section 3.1.1), briefly review neural networks (Section 3.1.2),

specify how we constructed our training, validation, and test sets (Section 3.1.3), and

present the specific architecture and optimization parameters employed in this chapter

(Section 3.1.4). In Section 3.2 we present our results and in Section 3.3 we discuss the

implications of this work and conclude.

3.1 Data and Methods

3.1.1 Simulating strongly-lensed images

We employ a neural network as a supervised machine learning technique, meaning that,

in order to learn, the algorithm requires the training data to be labelled. To train and

evaluate the neural network we therefore use simulated strong lens images. We use

the publicly available software package lenstronomy [133] to generate the images. We

simulate images with 79 × 79 pixels that correspond to a field of view of 5.0′′ × 5.0′′,

meaning they have a resolution of 0.06′′/pixel.

Each image has five different ingredients (or three, in the case of macro-only images

that contain no substructure): a smooth component, a stochastic population of subhalos,

a negative mass sheet to compensate for the surface mass density added in subhalos, a

simulated source of light, and instrumental effects and noise. Figure 3.1 shows an example

of all the components that go into simulating an image that contains substructure (fourth

column), except the mass sheet since it is just constant across the image: the source (first

column), smooth model (second column), and subhalo population (third column). The

fifth column shows what the image looks like once it is convolved with a point spread

function (PSF) kernel and noise is added to it. More details about each of these steps

are provided below and in the figure caption. Figure 3.2 shows several more examples of

simulated images to illustrate that the width, completeness, and shape of the Einstein

ring, vary from image to image.
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Figure 3.1: An example of the simulation pipeline (minus the negative mass sheet) for an image with a
complete Einstein ring: the source brightness (first column), the convergence field of the smooth model
in log units (second column), the convergence field of the subhalo population in log units (third column),
the image resulting from the smooth model plus subhalos (fourth column), the image after convolving
it with a PSF and adding noise (fifth column). The units of the panels are in arcseconds (′′), each
has a field of view of 5′′ × 5′′ and 79 × 79 pixels. The convergence field is simply the surface mass
density normalized by the critical density for lensing, Σcrit = c2Dos/(4πGDolDls), where c is the speed
of light, Dos the angular diameter distance from the observer to the source, Dls between the lens and the
source, and Dol between the observer and the lens. The image brightness is in arbitrary units of surface
brightness integrated over units of an angle squared. The source has Nclumps = 3, the center of the lens
is at (x, y) = (−0.05′′,0.12′′), and its ellipticity is (εx, εy) = (0.09, 0.04), there are 52 subhalos and the
highest mass is mhigh = 9.9× 109 M�. The Gaussian PSF kernel has a size of 0.07′′ and the images have
Poisson noise corresponding to an exposure of 1000 seconds and 10% white noise.

Figure 3.2: Examples of images generated with the simulation pipeline detailed in Section 3.1. The
axes have been omitted for clarity, but all of these images correspond to a field of view of 5′′ × 5′′ (79 ×
79 pixels).
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Smooth lens model

We model the smooth component of the main lens as a singular isothermal ellipsoid (SIE),

with surface mass density given by [134]:

Σ(r) =
fσ2

v

2G
√
x2 + f 2y2

, (3.1)

where r = (x, y) is the projected two-dimensional position on the lens plane, σv is the

velocity dispersion of the host along the line-of-sight, f the axis ratio and G the gravita-

tional constant.

The SIE profile in lenstronomy is parametrized in an equivalent but slightly differ-

ently way: by the Einstein radius θE, which relates to the velocity dispersion by

σv =

√
θE

4π

Dos

Dls

, (3.2)

where Dos is the angular diameter distance from the observer to the source, and Dls the

angular diameter distance from the lens to the source; and the x and y components of

the ellipticity {εx, εy}, which are related to the axis ratio as

f = 1−
√
ε2x + ε2y. (3.3)

Finally, one can also specify the center of the lens {x, y}.

In this work, we vary x, y, εx and εy from image to image and keep the Einstein radius

fixed to 1.0′′2 for all the images (although its position does change due to the offset

between the source and the center of the lens). This corresponds roughly to the typical

angular size of galaxy-galaxy lenses. These parameters are chosen randomly from uniform

2In reality, due to the dependence of the surface mass density on the axis ratio, see Eq. (3.1), and
the fact that the host has non-zero ellipticity, the Einstein radius of the images is never actually equal to
one. Furthermore, the addition of substructure can change its value. See Section 3.1.3 for a discussion of
the steps we took to ensure that the Einstein radii of the images with substructure was consistent with
that of the macro-only images.
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distributions U with ranges:

x, y ∼ U [−0.25′′, 0.25′′] (3.4)

εx, εy ∼ U [0, 0.1]. (3.5)

The lenses are placed at zl = 0.2. Although it is not an intrinsic parameter of the host

lens, the external shear (due to, for example, large-scale structure) is generally bunched

into the parameters of the macro model. Here we do not include an external shear

component, however, leaving this for future work.

Subhalo population

Our goal is to gauge the sensitivity of a neural network to perturbations caused by sub-

structure. In the simplest case, we can therefore add a single subhalo to each image,

changing its mass and position from image to image. Due to the abundance of substruc-

ture in the CDM paradigm, however, we expect there to be many subhalos in a projected

area like the one under consideration in this chapter. So we can instead add a stochastic

population of subhalos, where the numbers, positions and masses of the subhalos vary

from image to image.

To populate our images we consider expectations from CDM and constraints from

observations on the number of subhalos Nsub and the mass fraction in substructure,

defined as fsub =
∑Nsub

i=1 mi/Mhost. Since these are functions of the range of subhalo

masses considered, the host redshift, the host mass, etc., we compiled constraints for

systems that are similar to our ensemble of lenses. From the high-resolution N -body

simulation of a Milky Way-like halo ETHOS [60], Ref. [5] finds that between redshifts

of 0 and 0.5, there are be between 25 - 35 subhalos in a projected area corresponding

to the field of view of the images we are considering, by averaging over many different

lines-of-sight. Note, however, that this halo is about an order of magnitude smaller than

the typical masses of massive elliptical galaxies, so this can be seen as a lower bound:

Ref. [135] showed that a dark matter halo eight times more massive than a Milky Way
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halo can contain almost a factor of 2 more substructures with larger circular velocities.

Ref. [136] finds that for a 1013 M� host, 0.1% . fsub . 1% between 106−1011 M�. Using

the lower limit from N -body simulations of fsub = 0.3% [137], Ref. [108] estimates that

in the CDM paradigm, we can expect there to be 6.46± 0.95 substructures with masses

between 4× 106 − 4× 109 M� within an annulus of 0.6′′centered on the Einstein radius

[137–139].

Attempts to measure fsub from substructure detections and non-detections have yielded

values that vary considerably, but all seem to roughly agree with the expectations from N -

body simulations. We cite in particular constraints where the lenses were at redshifts sim-

ilar to the one we are using in this work. Ref. [106] put a constraint of fsub = 2.15+2.05
−1.25%

or fsub = 2.56+3.26
−1.50% between 4 × 106 − 4 × 109 M�, depending on the choice of prior,

with a single lens at zl = 0.222. More recently, using 11 SLACS lenses, Ref. [109] put

a constraint of fsub = 0.76+2.08
−0.52% or fsub = 0.64+0.8

−0.42%, depending on the choice of prior,

between 4 × 106 − 4 × 109 M� in a sample of lenses with mean 〈zl〉 = 0.2. Using the

same sample of lenses, Ref. [140] finds a higher value of fsub < 8.7% (68% C.L.) between

105− 1011 M�, which the authors attribute to a different definition of substructure mass

and mass limits, and a different shape of the substructure mass function.

To populate the host lenses with substructure we therefore consider the following

points. First, we certainly want to test the networks on images that are considered

“realistic” by the above guidelines. However, as can be glimpsed by the plethora of

different values we gathered above, it is not necessarily clear what “realistic” means.

Furthermore, the small number of actual detections and systems that have been analyzed

to date means that we do not yet have a sufficient grasp of what these subhalo populations

actually look like in real lenses, outside the idealized scenarios of N -body simulations that

do not take into account the impact of baryonic physics. Therefore, we also want to gauge

the performance of the network on a broader range of types of subhalo populations, to

see how the network could fare if real subhalo populations deviate either slightly, or

significantly, from the expectations based on N -body simulations.

Taking all these factors into consideration, we devise two different schemes for pop-
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ulating lenses with substructure. In our first approach, which we call the Nsub-bound

approach, we impose a constraint on the number of subhalos that lie in the area covered

by the image, and vary the highest subhalo mass mhigh (Section 3.1.1). This has the

consequence of having images with very different values of fsub, since it will be highly

dependent on the value of mhigh in an image. In the second approach, which we call

fsub-bound, we instead constrain the value of fsub. This has the consequence of hav-

ing very different numbers of subhalos depending on what mhigh is. For instance, for

mhigh << fsubMhost, thousands of subhalos are required to satisfy the bound on fsub,

while for mhigh . fsubMhost, a handful of subhalos saturate it.

These two approaches, together with the single-subhalo case, are complimentary and

shed light on different aspects of the network’s sensitivity. For example, we can under-

stand whether it is more sensitive to a larger number of lower mass subhalos, or a lesser

number of more massive halos. For a given value of mhigh we can also understand how

the presence (or absence) of other lower mass perturbers affects the network’s sensitiv-

ity. Furthermore, it allows us to explore the network’s behavior among a broad range of

different subhalo population characteristics.

The perturbers are placed within the lens itself, as opposed to considering line-of-sight

halos that lie in the vicinity of the lensed arcs in projection. All the subhalos are always

modeled with Navarro-Frenk-White (NFW) [141] profiles, and their concentrations fixed

to c = 15. This choice is intended to be representative of the average concentration

one might expect for substructure. In reality, concentration is a non-trivial function of

mass and redshift. Concentration-mass relations extracted from cosmological N -body

simulations show that it is a decreasing function of mass and an increasing function of

redshift. In the mass ranges we are considering, the concentration is predicted to be

& 10. When considering subhalos, however, there is the added complication that they

are tidally stripped as they move within their host’s potential, so the concentration is not

necessarily always well defined. Instead, subhalo profiles are sometimes characterized with

an analogous parameter which is the ratio between the tidal radius and the scale radius.

Using the same phenomenological equations as Ref. [4], we find that this parameter is
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roughly . 29 (with the upper bound corresponding to subhalos at the outskirts of the

host), and an average of ≈ 20. Because the tidal radius is smaller than the virial radius

[138] the corresponding values of the concentration are expected to be somewhat smaller

than this.

Single subhalo: We first draw a mass from a log-uniform distribution between 108−1011

M�. Lenstronomy parametrizes the deflection due to NFW profiles using the scale radius

in angular units and the radial deflection angle at the scale radius, and to convert physical

NFW masses to these parameters we need to specify a cosmology and source and lens

redshifts. We place the source at zs = 0.6, the lens at zl = 0.2, and use the Planck 2015

cosmology [142].

We allow the subhalo to be at any position in the image that satisfies two constraints:

1. It has to lie within 0.25′′ of the Einstein radius of the host, i.e. |θE− rhigh| ≤ 0.25′′,

where rhigh =
√
x2

high + y2
high.

2. The intensity at rhigh must be greater than or equal to a minimum intensity thresh-

old, unique to each image, determined by generating a macro-only image with the

same macro model parameters, masking the annulus encompassed by θE ± 0.35′′,

and obtaining the maximum of the masked image.

The reason behind these constraints is that direct detection methods only have sensitivity

to substructure in the vicinity of the Einstein ring or arcs in the image (e.g. [103, 104]).

Therefore, if we want to know whether perturbations caused by subhalos of a given

mass can be detected by the CNN, the substructure with that mass must be close to

the ring/arcs. In particular, the reason for the second constraint is to make sure that,

in images where the ring is largely incomplete, the subhalo still lies near an area with

non-negligible intensity.

Constraining the number of subhalos: In the Nsub-bound approach we generate

images where the number of subhalos is drawn from a Normal distribution with mean

µ = 60 and standard deviation σ = 15. Once Nsub is drawn, we sample Nsub masses from a
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subhalo mass function consistent with CDM, taken to be a power law with slope β = −1.9

[143] between mmin = 106 M� and mhigh, with mhigh anywhere between 108−1011 M�. We

again convert the masses into the scale radius in angular units and the radial deflection

angle at the scale radius as required by lenstronomy, using the same cosmology and

source and lens redshifts as above.

All the subhalo positions are chosen randomly to lie within the full area of the image3,

except for that of the most massive subhalo. The position of the most massive subhalo

rhigh is modified to obey the same two constraints as those detailed in Section 3.1.1 above.

Constraining the fraction of mass in substructure: In the fsub-bound approach,

we fix the mass fraction in substructure to be 1 ± 0.05%. For a given value of the

highest subhalo mass mhigh, we generate draws of the subhalo mass function until the fsub

constraint is satisfied. In the cases where mhigh is high enough that it already saturates

the bound on fsub, we instead draw a different set of masses from the subhalo mass

function that obeys the bound, and append the most massive subhalo. Alternatively we

could have added a single subhalo to the image in this regime, but since we already had a

dataset comprised of images with a single subhalo, we opted for this alternative approach

here. In this way, we could see if there is any difference in the network’s sensitivity in

this regime due to an additional population of low mass subhalos.

The position of the most massive subhalo in a given image is again constrained by

the two conditions described in Section 3.1.1.

More details on some of the relevant properties of the subhalo populations in the

images used for training/validating/testing are provided in Appendix A.

Negative mass sheet

Since we fix the Einstein radius of the host to 1′′, we add a negative mass sheet to

the substructure images to ensure that the convergence in the image is the same as for

the macro-only images (since the Einstein radius depends on the convergence). The

3Due to projection effects, and the fact that the area probed by lensing transverse to the line-of-sight
is very small, the subhalo distribution is essentially isotropic in the region of interest. See e.g. [5].
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convergence field is simply the surface mass density normalized by the critical density

for lensing, Σcrit = c2Dos/(4πGDolDls), where c is the speed of light, Dos the angular

diameter distance from the observer to the source, Dls between the lens and the source,

and Dol between the observer and the lens. For each image with substructure we generate

a macro-only image with the same macro-model parameters, find the total difference in

convergence between the two images and add a negative convergence field that cancels

this difference. All the results we present correspond to substructure and macro-model

images that have the same effective Einstein radius, defined as the radius from the host

center at which the convergence decreases below one.

Source

An image’s sensitivity to substructure, measured as the surface brightness change δIsub

due to a potential perturbation caused by a subhalo δψsub, is proportional to the gradient

of the source ∇S [103, 104, 120]:

δIsub(y) = −∇S(x)|x=y−∇ψ0(y) · ∇δψsub(y), (3.6)

where y are the coordinates on the image plane and x the coordinates on the source

plane. The gradient of the source brightness distribution evaluated on the source plane

is translated into the image plane with the lens equation evaluated with the smooth

component of the lens ψ0. This is why highly structured sources, for example dusty star-

forming galaxies that are very clumpy, are considered prime candidates to find subhalos

(see e.g. [111]).

Here we focus on extended sources instead of point-like sources like quasars. We

simulate sources with some degree of structure but not so much that it would be unlikely

to be resolved by typical optical imaging surveys (i.e. much less structured than the

simulated sources in Ref. [111] used to forecast the sensitivity of ALMA). We model the

source S as one or more discrete but very close-by clumps of light si each modelled as

a Sérsic ellipse, determined by five parameters for the ith clump: the amplitude of the

intensity Ii, the half-light radius Rser,i, the Sersic index ni, and the x and y components

22



of the ellipticity {εx,i,εy,i}.

The source is different in each image. For a given image, the number of clumps is

drawn from a uniform distribution Nclumps ∼ U [1, 4]. For each clump, the amplitude of

the intensity is always fixed to unity (in arbitrary units of surface brightness integrated

over units of an angle squared), and the remaining four parameters of a Sérsic ellipse are

drawn from the following uniform distributions:

Rser,i ∼ U [0.1kpc, 1kpc] (3.7)

εx,i, εy,i ∼ U [−0.5, 0.5]. (3.8)

(3.9)

εx,i and εy,i are subject to the additional constraint that the magnitude of the ellipticity

is εi =
√
ε2x,i + ε2y,i ≤ 0.4. If there is a single clump, it is chosen to lie at the center of the

image. For Nclumps > 1, the relative positions of the clumps are drawn from a multivariate

Normal distribution with mean µ = (0, 0) and covariance matrix with diagonal entries

σ2
xx = σ2

yy = 0.01 and off-diagonal entries σ2
xy = σ2

yx ∼ U [−0.25, 0.25]. The final source S

is a sum of all the individual clumps, S =
∑Nclumps

i=0 si. As mentioned above, we place the

source at zs = 0.6.

Instrumental effects and noise

After the lensed image has been generated, it is convolved with a Gaussian point spread

function (PSF) kernel with a full-width-half-max (FWHM) of 0.07′′ (roughly equivalent

to that of HST). Then, Poisson shot noise for an exposure of 1000 seconds and Gaussian

noise with a standard deviation given by some fraction p of the mean signal in the Einstein

ring/arcs are added to the image; we showcase p = {0.01, 0.1, 0.33}.

Generally, the Gaussian noise added to simulated lensed images in the literature

is uncorrelated and independent in each pixel. However, real data could have more

complicated, correlated noise among nearby pixels due to, for example, drizzling [144].

We thus also test the performance of the NN when the noise added to the image is
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Figure 3.3: Examples of noise with varying correlation length L, obtained using the covariance matrix
in Eq. (3.10). The standard deviation was fixed to σ = 1 for this Figure, and all the panels share the same
colorbar (units are arbitrary). Starting from the left, the first panel corresponds to no correlation (L = 0).
The second panel corresponds to a very small correlation length (L = 0.025), which is indistinguishable
from the uncorrelated case. The third and fourth columns correspond to L = 0.05 and L = 0.1,
respectively. The increase in correlation between the pixel values as L increases is readily apparent.

correlated. We expect that this will degrade the classification accuracy, since correlated

noise could replicate the effect of subhalos more closely. We use a Gaussian Process with

a squared exponential kernel K,

K(x, x′) = σ2 exp

(
−(x− x′)2

2L2

)
, (3.10)

to generate the correlated noise. σ is the standard deviation and L is the lengthscale,

which determines the distance over which the pixels are correlated. We use the same

value of σ as in the uncorrelated case (L = 0) and vary L = {0.05, 0.1}. To speed

up sampling from this multivariate Gaussian distribution we use the reparametrization

trick [145] with the Cholesky decomposition of the covariance matrix. Figure 3.3 shows

examples of the noise with varying values of L.

3.1.2 Neural Networks

For readers unfamiliar with neural networks, we provide here a brief, high-level overview

of how they work.

Neural networks are an extremely powerful tool when one has a dataset that consists of

input-output pairs, (X{i},y{i}) and wants to be able to obtain outputs ŷj given inputsXj

for j /∈ {i}. The outputs are also referred to as (class) labels in the case of classification.

Neural networks simply act as extremely complicated functions fNN that are taught how

to map an input Xk to an output ŷk, ŷk = fNN(Xk).
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Neural networks are arranged into layers, and each layer contains a number of neurons.

There are two different types of layers that are relevant to this work. The first type are

fully-connected, also called dense, layers. These are one-dimensional layers where the

neurons in a given layer are connected to all the neurons in the previous and following

layers. The other type of layers are convolutional layers, which tend to be two- or three-

dimensional. In these layers, the inputs are convolved with a filter that is slid over the

neurons. Regardless of the type of layer, each neuron in a layer takes a linear combination

of its inputs and applies a nonlinear function to them (called activation function).

The process of learning involves feeding the neural network many thousands (or more)

of samples X i for which their true label yi is known, and optimizing all the parameters

in the network (e.g. the weights and biases used to make linear combinations of inputs at

each neuron) to minimize the loss function, which quantifies the difference between the

predicted ŷi by the network and the true value yi.

In general, the optimization is done numerically with stochastic gradient descent

(SGD), or some variant of it. The general idea is to use the chain rule to find the

gradient of the loss with respect to every parameter in the network (called backpropaga-

tion in the ML jargon), and update the parameters after each iteration to minimize the

loss until convergence is reached.

3.1.3 Training, validation and test sets

To convert simulated images into training/validation/test sets that can be fed into a

neural network, they need to be given class labels C. Since we are trying to understand

down to what subhalo mass is the CNN sensitive, we turn the problem into a binary

classification task. We train a neural network on images with no substructure (macro-

only images), labeled with a zero (C = 0), and images with substructure, with the highest

subhalo mass anywhere between mhigh = 108 − 1011 M�, all labeled with a one (C = 1).

We carry out this test with datasets that have different subhalo populations, different

levels of noise, and different amounts of noise correlation. The number of samples in the

training/test/validation sets can vary slightly from table to table and row to row, but
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we ensure that there are at least 105 images for each. For cases in which there is an

uneven number of images for a given class Nsamples,C=i, we compensate by weighing the

loss function by the inverse of the fraction of training samples in a given class fC=i:

wC=i =
1

fC=i

=
Nsamples

Nsamples,C=i

, (3.11)

for i = {0, 1}. When a given class has images with substructure, we ensure that there are

an equal number of images with 108 < mhigh/M� < 109 and 109 < mhigh/M� < 1011. We

use 80% of the images for training, and 10% each for validating and testing. Furthermore,

the training set is always augmented on-the-fly: each image is rotated by a random

angle before going through the network, meaning that the network never sees exactly the

same image twice. This helps prevent overfitting and also teaches the CNN rotational

invariance.

3.1.4 CNN architecture and optimization strategy

We used pytorch [146] to implement the CNN. The results presented in this work are

the result of a non-exhaustive grid search (see below for details) carried out using the

Nsub-bound training/validation sets that had 1% uncorrelated noise. Our goal is to have

our results serve as a proof-of-concept, showing that CNNs can become a valuable tool

to help tackle an extremely complicated problem, not to spend many extra GPU hours

squeezing every last point of accuracy, especially since our simulated images are not

geared to replicate any one particular experiment. In reality, if one wanted to apply a

pipeline like the one we are suggesting here to images taken by one (or several different)

experiment(s), then a more exhaustive grid search could be carried out to improve the

accuracy further.

Along these lines, we emphasize that once a good CNN architecture was found using

this training/validation set, the same architecture was used for the other training sets

considered. For example, the training set we used to do the grid search had images with

1% noise, but when we train a network on images with a different amount of noise, we
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do not carry out a new grid search to re-optimize the network architecture. It is likely

that the architecture could be fine tuned further to improve the results for the different

training/validation sets.

The grid search consisted of running the networks for 100 epochs and using the ac-

curacy over the validation set to rank the networks’ performance. The parameters that

were fixed or varied in the grid search are as follows. The network was forced to have two

convolutional layers, each with varying filter size, stride, and number of channels. There

was no zero padding, batch normalization was imposed, but maxpooling was optional.

The number and width of fully connected layers was allowed to vary, from zero to five

layers, and 25 to 100 nodes each. The network weights were initialized using a Normal

Xavier initialization [147], whereby the weights are drawn from a Normal distribution

with mean zero and variance σ2 determined by σ =
√

2/(Nin +Nout), where Nin (Nout)

is the number of input (output) neurons. Preliminary tests indicated that augmenting

the data did an excellent job of preventing overfitting, so we did not implement dropout

in any layer nor a regularization term in the loss function. The activation function for

all layers (except for the last layer) was a ReLU function. The final outputs were passed

through a softmax function, which transforms them into probabilities, by restricting them

to lie between 0 and 1 and together sum to 1. We use these to assign classes: for a given

image, if the probability of class 0 (1) is greater than the probability of class 1 (0), then

it is assigned to class 0 (1). The loss function we used was the negative log-likelihood

applied to the outputs of the softmax function, and we trained the CNN using the Adam

optimizer. We set the learning rate to 0.001 and did not use a learning rate scheduler. The

batch size was fixed to 64 samples per graphics processing unit (GPU), and 4 NVIDIA

Tesla 2xK80s GPUs were used to train the network.

During the grid search we found that several different architectures had the same

classification accuracy after 100 epochs, so out of these we picked the one with the

least amount of parameters (the number of parameters varied by more than two orders

of magnitude). Opting for the minimal number of parameters is beneficial to speed

up training and prevent overfitting. Table 3.1 shows the network architecture that we
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ultimately used. The network has 195,103 parameters.

Table 3.1: Network architecture: this network has 195,103 trainable parameters. Note that we have
omitted the batch size in the dimensions of the inputs/outputs for clarity.

Number Layer Type Features Dimension

1 2D Convolution Filter size: 7 Input : 1× 79× 79

Depth: 16 Output : 16× 37× 37

Stride: 2

Maxpool: False

1 2D Convolution Filter size: 4 Input : 16× 37× 37

Depth: 16 Output : 16× 12× 12

Stride: 3

Maxpool: False

1 Fully-connected 2304

4 Fully-connected 75

1 Fully-connected 2

3.2 Results

All the numbers given in this section correspond to having trained the network for 100

epochs with a learning rate of 10−3, and an additional maximum of 30 epochs with

a learning rate of 10−4. All these results correspond to substructure and macro-only

images that have the same effective Einstein radius.

Generally, the results for classification networks are given in terms of the overall

accuracy. In this context, however, that number does not give us any insight into the

NN’s capacity to identify subhalos based on their mass. Furthermore, it is going to be

strongly dependent on the distribution of mhigh in the test set: we know that images with

low mhigh will be misclassified, since to the network they will be indistinguishable from

macro-only images, while those with high mhigh can be classified with more ease. This

is true also of the ROC curve, which is oftentimes used to gauge the performance of a

binary classifier. Due to this, we instead consider separately the accuracy for images with

substructure and for macro-only images. In particular, for images with substructure we

quantify the classification accuracy as a function of the highest subhalo mass.
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The results for all three datasets are shown in Figure 3.4. The mass range between

108 − 109 M� is omitted because its accuracy lies below 50%. Typically, in binary clas-

sification problems, the worst job a classifier can do is having around a 50% accuracy,

since this corresponds to classifying randomly. Here, we can see that for low values of

mhigh, the accuracy in fact lies well below 50%. This reflects the fact that, to the network,

these images are indistinguishable from macro-only images: the perturbations created by

subhalos with these masses are not significant enough to create features the network can

identify and distinguish from features of the source and/or macro model (or the noise, in

the case of images with noise).

It is immediately apparent that the results are very similar in all three datasets for

the three levels of uncorrelated noise considered. This shows us that the network is not

being aided significantly by the presence of additional lower mass perturbers in the Nsub-

bound and fsub-bound datasets, and the classification is still mainly driven by the single

most massive subhalo. Furthermore, while in the lowest mass bin shown the accuracy

consistently surpasses 50% for low noise, we can see that subhalos have to be quite massive

in order to have a classification accuracy considerably greater than 50%: the mass bin

(0.5− 1)× 1010 M� is where we start seeing accuracy ≥ 75%. Unsurprisingly, increasing

the level of noise decreases the classification accuracy.

The addition of correlated noise, shown in the top right panel, decreases the accuracy

in all the mass bins and for the macro-only images. For large correlations, the perturbers

have to be somewhat more massive before they can be identified with ≥ 75% accuracy,

between (1− 5)× 1010 M�.

As a null test, we attempted to train a network using the same images as those in

the single-subhalo dataset but without having imposed the positional constraint on the

most massive subhalo, meaning it was allowed to lie anywhere in the image. Since the

area of the full image is much larger than the area covered by the lensed arcs/rings, it is

much more likely for the highest mass subhalo to lie somewhere where it cannot have a

significant impact. Our expectation was that the network should not be able to learn to

distinguish these from the macro-only images. Indeed this is what we observed.
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Figure 3.4: Percentage classification accuracy for the one-subhalo (top), Nsub-bound (middle) and
fsub-bound (bottom) test set images, as a function of the subhalo mass and for different levels of noise.
In the middle panel, the accuracy line for the 1% case in the mass bin (0.5 − 1) × 1011 M� has been
shifted upwards slightly for it to be visible, because the classification accuracy for all three levels of noise
was the same. The top right panel shows the classification accuracy when the level of noise is fixed to
10% and instead the correlation lengthscale (as defined in Eq. (3.10)) is increased. All images have the
same effective Einstein radius.
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3.3 Discussion and Conclusion

In this chapter we have set out to explore the usability of convolutional neural networks

− a machine learning technique whose image recognition capability has achieved aston-

ishing results in many different fields over the last few years − to infer the presence of

dark matter substructure in strong lens images directly, without having to carry out the

inference at the level of the residual between a smooth model image and the observed

image. Model fitting is troublesome in its own right: modeling choices and conventions

for smooth lenses vary drastically in the literature, and it is possible to find quite different

results for a same lens. Reconstructing the source is also highly non-trivial, and the strong

degeneracy between source structure and subhalos (which can in theory be broken by the

presence of multiple images in sufficiently high-resolution data) is a concerning source of

uncertainty. Since finding a model for the smooth lens and reconstructing the source are

(generally) prerequisites to finding substructure, any mistakes in these steps can trickle

down into inference on the presence of substructure and its properties. Methods such

as gravitational imaging mitigate the likelihood of such an eventuality by carrying out a

pixel-based reconstruction of the potential instead of relying solely on an analytic fit to

minimize the residual between a smooth model and a model that also has one (or more)

clump(s). Such analyses have the additional advantage of being Bayesian; however, they

are very computationally expensive and time consuming. Most importantly, more often

than not they result in null detections.

With the expectation of thousands of new high-quality strong lens images becoming

available in the near future, these factors thus motivate the development of fast, model-

independent techniques to analyze strong lens images and find substructure, or come

up with principled ways of choosing how to divert resources to where they can have

the largest scientific impact. To this end, we train a CNN to classify images based on

whether they have substructure or not. We emphasize that this classification problem

is non-trivial because we are asking the network to classify images based on minute

features while introducing huge variations in the large-scale characteristics from image to

image, since the macro and source model parameters (which are highly degenerate with
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the substructure) vary from image to image. We believe that phrasing the substructure

problem in this binary way could be advantageous because it means that the images that

are found to contain no detectable substructure (i.e. classified as indistinguishable from

macro-only images) will not have to see more resources diverted towards them just to

return null detections. Instead, resources and time can be spent analyzing images that

the CNN finds are likely to have detectable substructure. If the network’s sensitivity

is understood sufficiently well (analogously to the sensitivity function in gravitational

imaging), detections could be leveraged with non-detections to constrain the cold dark

matter scenario.

We found, however, that subhalos have to be very massive, msub & 5 × 109 M�,

in the vicinity of the Einstein ring in order to be recognized with an accuracy > 75%.

Furthermore, the sensitivity does not seem to improve noticeably due to the presence of

a larger population of lower mass subhalos, meaning that the classification is essentially

driven by single very massive perturbers.

Comparisons between the sensitivity of this network and that of different methods to

detect substructure is not straightforward, since sensitivity to substructure is a function

of many different variables, such as the image resolution, the noise, and the source struc-

ture. Furthermore, we have not taken into account additional complicating factors in

our simulated data, such as the host (or other sources of) brightness, or cosmic rays/bad

pixels.

However, we can attempt to put the capacity of this CNN into context, keeping in

mind the simplified nature of our simulated data. In Refs. [103, 104], the gravitational

imaging technique applied to HST-like simulated images (with a resolution of 0.05′′/pixel

and a signal-to-noise of at least 3 per pixel) was shown to have a sensitivity to subhalo

masses as low as a few times 108 M� for an NFW profile when the substructure is on the

Einstein ring, and quickly increases with distance from the lensed images.

In terms of actual detections, to date two systems with compelling evidence for sub-

structure have been found with gravitational imaging. One of these, SDSSJ0946+1006,

was found to have a subhalo with mass (3.51 ± 0.15) × 109 M� [106], while the other,
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JVAS B1938+666, was found to have a subhalo with mass (1.9± 0.1)× 108 M� [107]. In

both cases the subhalos were modelled as truncated pseudo-Jaffe profiles [99] to obtain

mass estimates; mass estimates done with NFW profiles tend to recover masses that can

be significantly higher (for instance around ∼ 1010 M� for the 3.51×109 M� Pseudo-Jaffe

subhalo in SDSSJ0946+1006 [140]).

It therefore seems like the sensitivity of this CNN might be sufficient to find the per-

turber in SDSSJ0946+1006; it is less likely that it could find the one in JVAS B1938+666.

It is worth keeping in mind, however, that the values for the accuracy as a function of

subhalo mas cited in this work are the true subhalo masses, while direct detection efforts

are sensitive only to the effective subhalo mass: Ref. [148] showed that the true subhalo

mass can be biased by up to an order of magnitude higher than what is actually measured

with strong lensing, the effective mass, meaning it is possible that claimed substructure

detections actually have higher true masses than the numbers that are given.

If one did want to apply a method such as this to real data, much work would have

to be done to understand the generalizability of the network’s classification capacity.

We explicitly avoided fine-tuning our simulation pipeline to emulate observations of a

particular experiment and instead remained agnostic to serve as a proof-of-concept that

could be relevant to any survey that produces similar images (i.e. it would not be valid

for interferometric data, for example), so this would require matching the experimental

specifications of the images in each survey as well as certainly adding complexity to the

simulated data. Furthermore, while in this work we fixed the radius of the Einstein ring to

the typical value of galaxy-galaxy lenses, and did not add an external shear component,

we have to understand whether the network’s capacity is robust to varying these two

macro-model components, since known galaxy-scale strong lens images span a range of

values for both of these parameters and they can be degenerate with subhalo properties.

Another important aspect of the generalizability of the network relates to the implicit

modelling of the smooth component of the lens. Although we have not done any explicit

smooth modeling to determine the presence or absence of substructure, the network has

implicitly learned about the SIE density profile since all the samples in our training data

33



had smooth SIE components. Although many galaxy-scale lenses seem to be well fit

with SIE profiles, gauging the network’s performance when trained on images simulated

with a variety of density profiles would be advantageous before testing on real images.

Similarly, training the network on images where the source and lens redshifts vary, the

PSF is allowed to be anisotropic, and additional models for the source components are

included, could also reveal important information about the network’s applicability to real

data. Understanding all of these factors would be crucial in order to be able to leverage

the images classified as non-detections to constrain CDM together with the information

extracted from images with substructure. Finally, it would be advantageous to develop

a method to quantify confidence in classification, for instance using Gaussian Processes,

so that images that are likely to be false positives/negatives can be identified. We leave

these to future work.

In addition, we emphasize that there is no reason to believe that an approach such as

this one would not be valid for images from an experiment such as ALMA, if the network

were trained with an appropriate dataset. This could be an interesting extension of

this work, since lens modeling in configuration (uv-visibility) space is even more time

consuming than in real space, and experiments such as ALMA are expected to produce

very high-quality strong lens images.

The results presented in this work were produced with a CNN whose architecture

was the result of a grid search using training/validation samples from the Nsub-bound

dataset in which the image had 1% uncorrelated noise. It is therefore possible that

the architecture could be optimized further for the different datasets, improving these

results. More generally, if one had a specific experiment in mind, a grid search could be

carried out with images that contained the expected levels of noise and any other relevant

experimental details, such as the (possibly anisotropic) PSF.

Furthermore, the network architecture used in this work is very simple, and has few

parameters compared to many typical convolutional net architectures used in the lit-

erature. For instance, well-known networks such as AlexNet [149], GoogLeNet [150],

ResNet [151] and DenseNet [152] can have tens of millions of parameters. These typically
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have many more convolutional layers and use additional tricks for training; for example,

DenseNet has “dense blocks”, within which the feature maps at each layer are concate-

nated to the input of every successive layer within the block, allowing later layers to

leverage information from earlier layers. For instance, our results seem to suggest that

the network cannot leverage information from the collective perturbations of lower mass

halos, while the recent results from Refs. [153] and [154], which both used CNNs based

on ResNet to infer different aspects of substructure populations from strong lenses (the

subhalo mass function normalization and slope in the former, and to distinguish between

substructure pertaining to two very different dark matter scenarios in the latter), show

that machine learning methods can in fact be used to probe more than the single most

massive halos in lenses.

We are therefore optimistic that there is room for improvement with respect to the

classification capacity of the network we are using here by using a more complex CNN

architecture. This is important since, if such an approach were to be pursued moving

forward, uncertainties derived on, for example, substructure population parameters or

likelihood of CDM, would be inextricably tied to the network’s classification accuracy.

A final remark we want to bring up is with regard to the perturbations from substruc-

ture versus from line-of-sight (LOS) halos outside of the main lens halo. Original studies

about perturbations to lensed images focused on subhalos as the perturbers. However, it

has been pointed out that the contribution of the latter is actually likely to be compara-

ble to, or even greater than, that of the substructure within the lens [155, 156], meaning

that any attempt to use strong lensing images to constrain the particle nature of dark

matter must take into account both contributions. This is particularly relevant because

the effect of a LOS halo between the observer and the lens is larger than that of a subhalo

of the same mass [156]. What this means is that in fact the sensitivity limits we give

here for the subhalo mass function substructure can actually translate into sensitivity to

lower masses in the full halo mass function if we consider LOS halos.

Strong gravitational lensing as a probe of the particle nature of dark matter has

harnessed much interest over the last few years. This, together with the advent of a
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huge increase in the amount of high-quality strong lens images available for dark matter

science, has led to an explosion of research into methods of extracting information from

strong lens images. Previous work has used ML to infer strong lens parameters [130–

132], to reconstruct the sources from strong lens images [157], and most recently to infer

properties of the substructure population [153, 154]. Now, this work is another step

forwards towards understanding the usability of deep learning methods to speed up the

analysis of strong lens images for dark matter science. With the considerable momentum

that this subfield is gaining, it is possible that in the near future strong lensing will

consolidate itself as one of the premier ways to uncover the nature of dark matter.
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Chapter 4

Extracting the Subhalo Mass

Function from Strong Lens Images

with Image Segmentation

In the previous chapter we developed a technique to identify promising strong lens candi-

dates (in the sense that they were likely to not yield null substructure detections). Thus,

our ML approach would fit in with traditional inference pipelines, where detections and

non-detections can ultimately be combined with a joint likelihood to infer population-

level parameters. In this chapter, we improve upon this work and build a fully ML-based

pipeline for substructure detection and inference on population-level characteristics (the

logarithmic slope of the subhalo mass function). We do so using a technique for object

detection called image segmentation. Much like in the previous chapter, we use simulated

strong lens images to train and test our model.

Image segmentation seeks to classify every pixel in an image. We use a U-Net [158]

architecture for this task, which consists of many convolutional layers, along with a

down-sampling portion and an up-sampling portion to help the network detect features

at different scales. The U-Net was designed to track cells in biological images but it has

since emerged as one of the best architectures for image segmentation more broadly. We

use it to classify each pixel in an image as belonging to one of several predetermined
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Figure 4.1: Examples of segmenting gravitationally-lensed images. The left panels show simulated
images which are fed into the neural network. Each pixel in an image is mapped to a label as either
being the main lens within the Einstein radius, having a subhalo of a given mass, or as none of these
(background). The middle panels show the true labels for the corresponding input image. The effects
of only a few of the subhalos are visible by eye. The right panels show the corresponding output of our
neural network. The network was trained only on images with a single subhalo, but it is still able to
find substructure in images with a rich population of subhalos. Subhalos in dimmer pixels (either in the
center of the ring or the edge of the image) are more likely to be missed. Subhalos that are close together
sometimes get detected as a single subhalo with the combined mass. As an example, these images do

not contain noise. The effect of noise is to reduce the sensitivity to low-mass subhalos.

classes the network is trained to identify. Each pixel in our simulated images can fall

into one of eleven different classes: part of the main lens, a subhalo with a mass within

one of nine mass bins, or neither (background). At the pixel level, this is a classification

task. However, it allows us to both locate and get the mass of substructure in the

gravitational lens. Furthermore, as opposed to the traditional direct detection methods,

the mass predicted by the network corresponds to the true (simulated) subhalo mass, not

the effective mass.

An example of our image segmentation is shown in Fig. 4.1. The network takes in as

input a lensed image as given by the left column and labels each pixel, quickly identifying

both the main lens and the substructure, as shown by the right panel. The mass of the

subhalos is denoted by the color of the pixel. In the middle column, we have used truth

knowledge of the lens to label the area within the Einstein radius of the main lens and

the different subhalos. The network has good accuracy, but does struggle to detect

substructure near the edges of the image. We also see that it does not appear to add in
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spurious subhalos. These two factors (good accuracy and low false-positive rate) allow

us to apply this method to incorporate the step of combining images to put constraints

on the subhalo mass function into a single analysis pipeline.

This chapter is organized as follows. In Sec. 4.1, we discuss our image generation

pipeline; it shares many features with the pipeline in Chapter 3 but there are some key

differences and additions. A detailed discussion of the network setup and the training

regiment is contained in Sec. 4.2. The effect of noise in the network training is explored

in Sec. 4.3. We study the accuracy of the network and the false-positive rate in Sec. 4.4.

In Sec. 4.5, we apply the network to images with multiple subhalos and infer the subhalo

mass function. We conclude in Sec. 4.6.

4.1 Data generation

The goal of our work is to detect dark substructure within strong lens images using the

technique of image segmentation. This is a supervised learning problem, so in order

to train the network, a set of training data, including the target labels, is needed. We

generate strongly-lensed images using the software package lenstronomy [133]. We use

images with 80×80 pixels with a field of view of 5′′×5′′. This corresponds to a resolution

of 0.06′′ per pixel. Each image contains a background source light, a smooth lens, possibly

substructure in the lens, possibly noise, and it is always convolved with a point spread

function (PSF) of 0.07′′. In each image, the gravitational lens (main halo and subhalos)

as well as the source light are unique. Each step in the simulation pipeline is detailed

below.

Smooth Lens: The halo of the main lens is chosen as a singular isothermal ellipsoid

(SIE) [134]. In lenstronomy, the SIE is parametrized by the Einstein radius (θE) and

the ellipticity moduli. We choose the size of the Einstein radius to be typical of observed

strongly-lensed galaxy-galaxy systems, drawn from a uniform distribution

θE ∈ U [0.95, 1.05]′′ , (4.1)
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and an ellipticity drawn from

ε1,2 ∈ U [0, 0.1] . (4.2)

The center is chosen to be near the middle of the image so that the images/arcs lie within

the field of view. The x and y positions are drawn randomly as

x, y ∈ U [−0.25, 0.25]′′ . (4.3)

In this work, we fix the distance to the lens at a redshift of zlens = 0.2. Our fiducial

cosmology is given by Planck 2015 results in Ref. [159]. These lens parameters (and the

location of the source light) were chosen such that the main lens has a mass of order 1013

M� (depending on the specific Einstein radius in a given image).

Subhalos: When we add substructure to the lens, it is modeled as a truncated

NFW profile [160] with a concentration parameter c = 15. The subhalos are truncated

at five times the scale radius. The network is trained on images that have either zero

or one subhalo. The subhalo masses are chosen to be log-uniform over the mass range

[105.75− 1010.25] M�, such that we obtain equal numbers of images in each mass bin. The

subhalos are placed near the Einstein radius, where their effects are largest, defined by

pixels which are at least 20% as bright as the brightest pixel in the image.

In Sec. 4.5, we test a trained network on images with many subhalos. For these

images, the masses are drawn according to a power-law given by

dN

dM
= a0

(
M

m0

)β

, (4.4)

which was found to be a good fit of the subhalo population in the Aquarius simula-

tion [143] with power-law index β = −1.9, amplitude a0 = 3.26 × 10−5 M−1
� , and pivot

point of m0 = 2.52× 107 M� although this specific normalization doesn’t necessarily ap-

ply outside of the Aquarius simulation, the general form of Eq. (4.4) is universally found

in N -body CDM simulations. In such simulations, the three-dimensional distribution

of subhalo positions is nearly spherically symmetric, with a strong dependence on the
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radius. However, because their positions are projected onto a single plane, and the fact

that strong lens images have a small field of view compared to the full extent of the halo

perpendicular to the line of sight, a uniform distribution for subhalo positions is a good

approximation (for example, see Ref. [5]). Thus, in our images with many subhalos, we

will draw their locations uniformly across the whole image.

Target Labels: The target labels, which the network is trying to predict, are gener-

ated only from the smooth lens and substructure, and do not use information from the

source light or the observed image. Pixels which are inside the (possibly elliptical) Ein-

stein radius are identified as the main lens class. For each subhalo, we draw a circle with

a radius of 2 pixels centered on its location and assign all the pixels within the circle as

belonging to a given subhalo mass bin class. Any pixel which has not been labeled as the

main lens or a subhalo is denoted as background. This method of identifying subhalos

treats all subhalo masses as identical in that the more (less) massive subhalos do not get

larger (smaller) circles, even though their effects are larger (smaller). We choose to do

this for two reasons. The first is that it leads to more stable training of the network.

When the pixel labels change size with different masses, there are many more training

pixels for the heavier classes than the light classes. This creates an imbalance that would

need to be corrected for, be it by weighting subhalo classes differently in the loss function

or having different numbers of training images for each subhalo mass bin. The second

reason is that it makes counting subhalos easier. The predicted subhalo count can be

obtained by dividing the total number of pixels predicted to be part of a subhalo mass bin

by the expected area per subhalo (4π pixels). Furthermore, as we will discuss extensively

in Sec. 4.5, we are interested in extracting the subhalo mass function from an ensemble of

images, for which we simply need the number of subhalos in each mass bin, and therefore

do not need to faithfully reconstruct the surface mass density on the lens plane.

Source Light: This work is focused on images of lensed extended objects because

they offer better chances for detecting substructure than point source-like objects [111].

We do not use galaxy images (simulated or real), but allow for some structure in the

source, placing between one and four clumps of light, as done in Ref. [1]. Each clump is
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modeled as a Sérsic ellipse with a radius randomly drawn from a uniform distribution

Rser,i ∈ U [0.1 kpc, 1.0 kpc]

and ellipticity

εx,i, εy,i ∈ U [−0.5, 0.5],

subject to the constraint
√
ε2x,i + ε2y,i ≤ 0.4. The location of each clump is drawn from

a multivariate Gaussian with a covariance matrix with diagonal elements σ2
xx = 0.012,

σ2
yy = 0.012, and off-diagonal element σ2

xy randomly chosen for each image, with a range

of [−0.25, 0.25]. The source is placed at a distance of redshift zsource = 0.6. These

parameters give images that resemble true strongly-lensed galaxies rather than 4 very

far-away clumps of light that are lensed into four different images. The amplitude of the

intensity of each clump is set to unity (in arbitrary units of surface brightness integrated

over units of angle squared).

Noise and detector effects: We consider images both with and without noise to

understand the strengths and limitations of our image segmentation-based model. When

noise is added, it is drawn, per-pixel, from a Gaussian with mean µ = 0. The standard

deviation of the Gaussian is set to 1% of the mean brightness near the Einstein ring,

unless otherwise stated. This sounds like an optimistic level of noise considering the

current quality of galaxy-galaxy lens images (Ref. [109] looks for substructure in images

that have a signal-to-noise ratio of at least 3). However, we show in Appendix B.4 that

our 1% Gaussian noise approximation results in similar signal-to-noise ratio profiles for

sources brighter than magnitude 20 compared to a more detailed Hubble Space Telescope

(HST)-like noise simulation. This choice also allows us to accurately quantify how the

network is affected by noise. We do not include detector effects other than convolving

the image with a Gaussian PSF kernel with a full-width half-maximum of 0.07′′, which is

comparable to that of the HST. The PSF is applied to all images, regardless of the noise.

With the input images and the target labels, we are able to train the network. The

specific model setup and the training details are described in more detail in the next
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section.

4.2 Model architecture and training

Much of the work of the machine learning community is about object detection. For

instance, a self-driving car needs to be able to identify cars, pedestrians, traffic lights,

and so forth. One common method is placing boxes inside the image and then classifying

what is inside the boxes, see Ref. [161] for a review. An alternative method is to classify all

of the individual pixels in an image. This technique is referred to as image segmentation

and a recent review of various methods can be found in Ref. [162]. While there are many

models for segmenting images, the best-performing ones have some similar features. First,

they are fully convolutional (in that there are no fully-connected layers). The best models

also tend to have an encoder-decoder structure. This allows the models to extract features

across different scales and return a high-resolution segmentation map. In particular, our

network is based on the U-Net architecture [158], which has excellent sensitivity to small

objects in images.

In this work, we use a U-Net to classify each pixel in a strongly lensed image into one

of 11 classes. The classes are broken down as: belonging to the main lens, a subhalo with

mass {106, 106.5, 107, 107.5, 108, 108.5, 109, 109.5, 1010} M�, or none of the above (which

we will refer to as background throughout the chapter). While the goal of the network is

classification, it allows us to both locate subhalos and obtain their mass.

Before an image is put through the network, the image is pre-processed by dividing by

the maximum pixel value. This normalization helps by forcing the brightness in all the

images to have similar ranges, since despite the fact that all our source-light clumps have

the same intensity, different lens parameters lead to differing amounts of magnification.

Consequently, the network cannot base its classification on the absolute brightness of an

image.

Once the image has been normalized, it is ready to be segmented. Our U-Net model

architecture is implemented in PyTorch [146], and Fig. 4.2 depicts our specific set up.
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Figure 4.2: Network architecture. It takes in an 80 × 80 pixels image with a single layer and returns
an image of the same size. The pixel values in the output correspond to the predicted class.

Each orange arrow represents three operations. The first one is a 2D convolution in which

a number of 3× 3 pixels filters with learnable weights are convolved with the image. The

number of filters for each convolutional layer is denoted above each layer in the figure.

The second operation is batch normalization [163], which normalizes the data after the

convolution, leads to faster training, and helps regularize the network. The final operation

represented by the orange arrows is applying the rectified linear unit (ReLU) activation

function to the normalized data. This is given by

ReLU(x) =

0, x < 0

x, x ≥ 0
. (4.5)

The convolutions in a given block are padded to preserve the number of pixels.

The green and red arrows depict the down- and up-sampling procedures, which cut
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the number of pixels in half and double the pixel count, respectively. The down-sampling

is done with a 2 × 2 maximum pooling operation. The up-sampling is done with a

transposed convolution operation. Note that the height and width of the data at each

stage is marked at the beginning of each row in the figure. Repeating the convolutional

blocks (orange arrows) on the down sampled data with the same filter size allows the

network to detect features at larger scales. The up-sampling transmits the information

from these other scales back to the previous scale. After the up-sampling, the layer is

concatenated with the last layer of the same height and width before down sampling

(shown by the black arrows). This allows the network to localize the new features and

to avoid losing pattern information.

After the last convolution, our images have a depth of 11 channels corresponding to

the 11 classes. We apply the Softmax function along the channel such that the sum of

a given pixel across all 11 channels is unity, and therefore its value for each channel can

be thought of as a probability of belonging to the corresponding class. Explicitly, this is

given by

Softmax (zi) =
ezi∑K
k=1 e

zk
≡ p̂i, (4.6)

where z is the output for a pixel, the subscript denotes the pixel channel, and K is the

total number of channels, 11 for the problem at hand. In this way, we interpret the

channel to represent the predicted probability of belonging to a given class, denoted by

p̂i.

We train the network using a set of 9×104 images. Of these images, 9×103 have only

the source light and a smooth lens. The remaining training images additionally contain

exactly one subhalo. There are 9 × 103 images for each of the nine mass bins. We use

an independent set of 104 images, with 103 from each of the sets mentioned above, to

validate the model.

As a classification problem, the cross-entropy loss per pixel is used. This is given by

L =
−1

n× p

n∑
i=1

p∑
j=1

K∑
k=1

y
(i,j)
k log

(
p̂

(i,j)
k

)
, (4.7)
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Figure 4.3: Example of training on images with no noise. The left panel displays the categorical cross
entropy loss as a function of the training epoch. The lowest validation loss occurs at after epoch 36, but
the network is allowed to continue training until the validation loss has not improved for 15 epochs. The
learned parameters from the epoch with the lowest validation loss are used when applying the network to
new data. The right panel shows the per-pixel accuracy of the validation data for each of the 11 classes.
The background and smooth lens pixels are predicted correctly nearly 100% of the time. The subhalos

pixels are located and assigned the correct mass with accuracy between 40%− 85%.

where the sum over i goes over the n images, the sum over j runs over all of the p pixels

in an image, the sum over k is the different possible classes, y
(i,j)
k represents the true

probability of pixel j in image i to belong to class k. As the true pixel is either in a given

class or not, y
(i,j)
k is either 0 or 1. Finally, p̂ is the probability predicted by the model.

We minimize the loss using the Adam optimizer [164] with a learning rate of 10−3 and

the default β values. The batch size is set to 100 images. When the loss evaluated on the

validation set has not improved for 5 epochs, the learning rate is dropped by a factor of

10, with a minimum rate of 10−6. The training procedure is stopped when the validation

loss has not improved for 15 epochs.

An example of the training is shown in Fig. 4.3 for images with no noise. The left

panel shows the cross entropy loss as a function of the training epoch, where the blue and

orange lines denote the training and validation sets, respectively. In addition to tracking

the loss during training, we also compute the per-pixel accuracy of the validation data.

We define the per-pixel accuracy as

Pixel accuracy for class k =
Number of pixels correctly predicted as class k

Total number of truth-level class k pixels
. (4.8)

For this, we define the a correct pixel assignment when the class with the largest prob-
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ability
(

max
k

p̂k

)
for a given pixel matches the true assignment. There are 11 possible

class assignments, so if the network is unsure of a given pixel’s identity, all of the pre-

dicted probabilities could be around 1/11 ∼ 9%. For now we still define a correct pixel

assignment if the class with the largest probability matches the true class, even if the

probability is low. We will examine setting a threshold on this assignment in a later

section. We emphasize that the pixel accuracy for the subhalo classes requires getting

both the location (the pixel) and the mass of the subhalo correct.

The pixel accuracy for each class is shown as a function of the training epoch for the

validation images with no noise in the right panel of Fig. 4.3. In the first epochs, the

model quickly learns to distinguish the main smooth lens from the background. After

this, the effects of the subhalos are recognized, starting with the heaviest, which have the

largest effects on the image. The accuracy for the 106 M� subhalo pixels reaches 40% by

the end of training. We note that at this stage we are only tagging pixels as belong to

a subhalo (or not), but have not discussed the detection of a subhalo as a whole. The

eventual goal, however, is to build a catalog of subhalos with their positions and masses.

This is done later in Sec. 4.4.

With the training procedure defined, we now move on to how noise in the images

affects the training.

4.3 The effects of noise

The last section showcased our training procedure and showed examples from the noise-

less images. In general, we find that applying a network that was trained with less noise

to images with more noise results in very poor performance. This is not surprising, but it

implies that we need to train on images with noise if we want the network to detect sub-

halos in noisy images. To do this, we generate 9× 104 training images and 104 validation

images for different fixed levels of noise, as discussed in Sec. 4.1. The noise is Gaus-

sian with zero mean and standard deviation of a factor of (10−6, 10−5, 10−4, 10−3, 10−2)

of the mean of the pixel brightness for the pixels that are at least as bright as 10% of
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Figure 4.4: Accuracy for the different pixel classes as a function of the training epoch. The label in
each panel denotes the amount of noise included in the images. The network performance on the heavy
subhalos is unaffected by noise while it loses sensitivity to the lower mass subhalos with increasing noise.
Networks trained on less noise and applied to more noise perform very bad, even for the main lens and
heavy subhalos. Conversely, training on more noise and applying to cleaner images performs according

to the noise level the network was trained on.

the maximum pixel. The smallest levels of noise are unrealistic for currently observed

strong lensing systems, although 1% results in similar signal-to-noise ratios as HST (see

App. B.4). The noise levels are chosen to illustrate the correlation between the network’s

ability to identify pixels from a subhalo and the mean fractional change in intensity due

to subhalos of a given mass. This helps us to understand what the network is doing and

what causes it to fail.

Fig. 4.4 shows the per-pixel accuracy as a function of the training epoch for each of

the classes. The amount of noise in each panel is indicated by the label. For reference,

the upper-left panel shows the results with no noise, which were also shown in Fig. 4.3.

The upper-middle and upper-right panels have very small amounts of noise, 10−6 and

10−5, respectively. Despite these small levels of noise, the pixel accuracy for the 106 M�

and the 106.5 M� classes starts to decrease. The lower-left panel, with a noise at the

level of 10−4, has enough noise that the accuracy for the 106 M� subhalos is almost zero.

Similarly, the accuracy for the pixels of the 106.5 M� class is very low. The pixel accuracy

for the heavier subhalos is not significantly changed.
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As the noise is further increased to 10−3 (in the bottom-middle panel), the network

loses sensitivity to subhalos with mass below 107 M�. However, we again see that the

accuracy for the subhalos with m > 108 M� is not affected. In the final panel (lower-

right), the noise level is 1%. With this much noise, the accuracy for the pixels coming

from 108 M� subhalos is significantly decreased (by 70%) and the accuracy of the 108.5

M� class pixels is decreased by around 25%. Again, the pixel accuracy for the heaviest

subhalos do not change.

The noise level at which the network loses sensitivity to subhalos of a certain mass can

be explained by the size of the perturbations caused by the subhalo. To demonstrate this,

we examine 103 images before and after adding in a subhalo. As we have done so far, the

subhalo is placed near the Einstein radius (defined by the pixels which are at least 20%

as bright as the brightest pixel). We then compute the relative change in the observed

image brightness for the pixels within a circle with a radius of 2 pixels centered on the

location of the subhalo.1 We plot the distribution for the mean relative change in each

circle for each subhalo mass in Fig. 4.5. The bands mark 1 and 2 standard deviations.

Detecting a subhalo in the 106 M� bin requires noticing changes in intensity in clusters

of pixels of order 0.01%. This highlights the enormous potential of the U-Net architecture.

Without noise, it is able to correctly identify around 40% of the pixels for the 106 M�

bin which cause tiny changes in the image. When the images contain noise at this same

10−4 level, it washes away the effects of these subhalos, as shown in the lower-left panel

of Fig. 4.4. Similarly, Fig. 4.5 shows that subhalos in the 107 M� and 108 M� bins cause

changes of order 0.1% and 1%, respectively. Fig. 4.4 likewise shows that the network

loses sensitivity to these subhalos with these corresponding levels of noise. Throughout

the rest of this work, we will compare the model with no noise or 1% noise. This amount

of noise is realistic for strong lens images with apparent magnitudes brighter than 20.

Before moving on, we raise two points to the attention of the reader. The first is

that the network needs to be trained on similar levels of noise to the data it will be

used on. For instance, applying the network trained without noise to the noisy images

1This corresponds to the pixels which are labeled as the subhalo in the target data of the training
set.

49



10
6

10
6.
5

10
7

10
7.
5

10
8

10
8.
5

10
9

10
9.
5

10
10

Subhalo mass [M¯]

10-4

10-3

10-2

10-1

100

M
ea

n
 f
ra

ct
io

n
al

 i
n
te

n
si

ty
 d

if
fe

re
n
ce

Single subhalo in annulus

Figure 4.5: Detecting subhalos require methods that are sensitive to small changes in pixel intensities.
Images are generate without substructure. A single subhalo is then added, and the mean fractional
change in the circle with a radius of 2 pixels around the subhalo are recorded. The bars show the
mean from repeating this process 103 times. The green and yellow bands show the range of the 1 and 2

standard deviations.

leads to very poor performance. However, one cannot just be conservative and train on

images with too much noise. We tested this explicitly by taking the network trained on

images with 10−2 noise and applying it to images with no noise. The performance of the

subhalos with masses greater than 108 M� was very similar to that shown in the last

panel of Fig. 4.4 for the images with 10−2 noise. Even though the images now have no

noise, the network is not able to detect the low-mass subhalos. Training on images with

varying levels of noise could alleviate this concern.

The second point we want to raise is that it is most likely possible to achieve sensi-

tivity to higher levels of noise that we show here. Unlike random noise, the effects from

perturbations to the lens are correlated across several pixels. Changing the size of the

convolutional filters or the number of filters could help detect these small correlations

on top of the noise. Additionally, we did not implement any class weights into the loss

function. It is possible to make the network place greater emphasis on identifying certain

classes more than others. Our current setup has orders of magnitude more background

pixels than subhalo pixels in the target data. Forcing the network to place greater em-

phasis on learning the more subtle subhalos, especially in the noisy images, could help.
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As a proof-of-principle, designing an optimal network for higher levels of noise is beyond

the scope of this work. To this point, we have only shown results from the training and

validation images. We now move onto to completely independent data to characterize the

network’s performance on images that it has not seen during either training or validation.

4.4 Characterizing the network performance

After the network has been trained, we apply it to a series of images that the network

has not seen during training or validation to evaluate its out-of-sample performance. We

do this both for a network trained on images with no noise and a network trained on

images with 1% noise. First, we show an example output of the network, which helps

to visualize the different channel probabilities and see common ways for the network

to mislabel pixels. We then compare the true target pixels to the predicted pixels to

quantify the amount of correct and mislabeled pixels. Finally, we run the network on

images without substructure to determine the rate at which the network will claim to

detect subhalos when they are not there (false positives).

4.4.1 Example output

In Fig. 4.6, we show a detailed example of the network without noise applied to a noiseless

image with a very light subhalo, in the 106 M� bin. The upper row displays the observed

image, which serves as input to the network (left), the truth-level target labels (middle),

and prediction (right). We have assigned each pixel in the prediction image according to

whichever class had the largest probability for that pixel. The lower three rows display

the individual class probabilities, with red representing low probabilities (the network

is certain that the pixel does not belong to that class) and blue is high probabilities

(the network thinks this pixel belongs to the class). We chose a color map such that

probabilities near 50% are white, showing that the network is unsure of those pixels.

In examining the target and prediction images of the top row, we see that the network

successfully identified the subhalo in the image, despite its extremely low mass and its
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Figure 4.6: The top row shows (from left to right) an image with no noise which is input to the network,
the target labels for each pixel, and the prediction from the network. The lower three rows show the
probability assigned to each class for each pixel. The network prediction for each pixel is determined
by the class with the maximum probability for that pixel. The true subhalo has a mass in the 106 M�
bin and is detected in the prediction. A few pixels around the edge of the subhalo or main lens get
misclassified. A single pixel is incorrectly predicted to belong to the 108 M� class, but this prediction

can be corrected by imposing a probability threshold.
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overlap with the main lens. The mass of the subhalo is indicated by the pixel colors (dark

blue) representing a subhalo in the 106 M� bin. In addition, we see that the predicted size

is also very close to the target, although the shape is not exactly the same. For instance,

the pixel on the top of the subhalo in the predicted image extends further into the main

lens than it does in the true label. When examining the per-pixel accuracy in the next

subsection, this will show up as a pixel which should be predicted to be part of the main

lens, but is predicted to be in a subhalo class. Similarly, there are a couple of pixels along

the bottom of the predicted subhalo that are not part of the target. In the discussion of

the next section, these will show up as pixels which should be predicted as background,

but are instead predicted as belonging to a subhalo class. In both of these cases, although

the pixels were misidentified, the subhalo was still found and they do not represent the

network introducing spurious substructure. If we examine the probability map for the 106

M� class (2nd row, 3rd column), we see that the pixels around the edge of the subhalo are

white, indicating that the network was not confident in these assignments. In general, we

find that sometimes the subhalos are predicted to be a few pixels too large and sometimes

a few pixels too small, but just as in the preceding discussion, if a single pixel that should

be assigned to a subhalo class is misclassified into the main lens or background, this does

not indicate that the subhalo was not found.

Similar features can be seen along the edge of the main lens. The shape and size

of the lens is very similar between the target image and the predicted image. However,

there are a few instances along the edge where the pixel assignments are incorrect. In

the discussion below, these will be pixels that should be classified as background (main

lens) but are misclassified as main lens (background). Looking at the probability maps

in the 2nd row for the background and main lens, we can see that the regions where the

network had classification errors have class probabilities near 50%.

This example contains another interesting feature; there is a single pixel that was

predicted to belong to a 108 M� subhalo. It is challenging to find the pixel on the

predicted image (it is on the lower-right side of the main lens) but the probability maps

shed light on it. The background probability map has a swath of pixels beneath the
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main lens that the network is unsure about. We see that these pixels are assigned some

probability to belong to all of the subhalos classes with m ≤ 108.5 M�, although for

nearly all of them the background has the highest probability. However, one of the pixels

has a probability in the 108 M� bin that is slightly larger, so it gets assigned to that

class despite the probability being low. Often these spurious pixels can be removed by

imposing a probability threshold. For instance, the probability for these pixels is spread

among many classes, and in no class is the probability at least 50%. If we default all

pixels to the background class unless a subhalo probability is greater than 50%, the wrong

prediction will be removed. We note that most images do not contain random pixels like

this one.

While instituting a probability threshold can remove spurious pixels, it also leads to

a reduction in the overall accuracy for the true subhalo pixels, which is why we did not

implement a probability threshold for our fiducial results. Recall that in Eq. (4.8) the

accuracy was defined as the correctly assigned pixels for a class divided by the total true

pixels for that class. Some pixels along the edge of subhalos will now get misclassified as

background, reducing the accuracy.

4.4.2 Testing on a single subhalo

Now that the output of the network is better understood, we move on to quantify the

network’s predictions. The purpose of this is to determine what the network is predicting

for the pixels of any class: are most of them correct? And if they are predicted wrongly,

what class are they assigned to? To assess this, we generate a new set of 104 images with

the same amount of images with and without substructure as in the validation set: 103

have no substructure and the remaining images have a single subhalo in each and are

evenly split between the nine mass bins, meaning there are 103 images in each.

In Fig. 4.7, we examine the per-pixel predictions on the images in the test set.2

The title in each panel states the true label of the pixels, while the x-axis denotes the

predicted class. The solid (dashed) lines represent a prediction with no probability (50%

2In Appendix B.2 we show the full confusion matrix. Note that each panel in Fig. 4.7 is a cross-section
of the confusion matrix.

54



probability) threshold. The blue line corresponds to images without noise while the

orange line corresponds to images with 1% Gaussian noise. Each panel is normalized

such that the sum of all the classes is unity.

The first two panels (at the top, from left to right) show the pixels that at truth-

level correspond to the background or main lens classes, respectively. The network often

misclassifies a few pixels around the edge of the main lens (e.g. Fig. 4.6 in the previous

subsection). This can either be the main lens being reconstructed as slightly too large

or too small, or getting the shape slightly off, although it is typically only a handful of

pixels. Because there are so many background pixels, this corresponds to 0.1% of the

background pixels getting misclassified as the main lens over the entire test set; this is the

most common type of misclassification for the background pixels. Similarly, these errors

around the edges of the main lens lead to . 1% of the pixels which should be predicted

as the main lens getting misclassified as the background class.

The rest of the class assignments in these two panels are roughly uniform for the

images without noise. In the images with noise, the same effect happens for subhalos

with masses > 108 M�. The explanation is similar to that of the main lens itself: when

the network locates a subhalo, some of the pixels around the edge can get mislabeled. It

is rare for the network to get the exact shape of the subhalo correct. This was also shown

in Fig. 4.6. We emphasize that most of the pixels that are supposed to be background

or the main lens, but are predicted to be a subhalo, do not represent additional false

subhalos but are rather edge effects of this type. More evidence of this is given in the

next subsection. Recall that, with 1% noise, the network does not detect subhalos with

m < 107.5 M�. This means that there are no edge effects associated to these classes (and

consequently no pixels getting misclassified as a subhalo with m < 107.5 M�), as can be

seen by the cutoff in the orange histograms in both of these panels.

In these first two panels, we also see the effect of including a probability threshold

when making a prediction. Specifically for the images without noise, the background and

main lens pixels that get predicted into the 106.5 M�-107.5 M� classes are reduced by a

factor of 1.5-2. This shows that network is uncertain of some of these pixels that are
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Figure 4.7: Each panel corresponds to pixels which truth-level are of the indicated class. The x-axis
denotes the class that the pixels are predicted to be. The solid and dashed lines represent the predictions
with no probability threshold and a 50% probability threshold, respectively. The blue lines denote the
network predictions on images without noise and the orange is for images with 1% Gaussian noise. Each

line in each panel is normalized to unity.
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misclassified. The probability threshold does not have as large of an effect on the heavier

subhalos because their effects are larger and allow the network to be more certain in its

predictions pertaining to these mass classes.

The edge effects can also be seen in the other panels. For example, in the bottom-right

panel, most of the pixels are correctly identified as belonging to a very massive subhalo.

However, some are incorrectly marked as the main lens or background. These are from

pixels around the edge of the subhalo. In addition to edge effects, the network sometimes

gets the mass wrong by one mass bin. There is little difference in the results with and

without noise, or with and without the probability threshold, for the heavy subhalos.

For subhalos with mass larger than & 107.5 M� for no noise, and 108.5 M� with noise,

the most typical way for the prediction to be wrong is to predict the wrong mass bin.

Progressing towards the panels with the lighter subhalos, we notice that the fraction of

pixels incorrectly labelled as background and/or main lens increases. This makes sense

as the magnitude of the deflection angles decreases with decreasing halo mass, so their

effects are easier for the network to miss.

Fig. B.1 in App. B.1 shows the distribution of true labels for pixels predicted to belong

to a given class, from which we see that in fact the predicted class is very likely to be

correct. Thus, if the network predicts a group of pixels to have the same class, it is

very likely that a subhalo is present there. The most common type of error for a pixel

predicted to belong to a subhalo is that it should belong to a different (adjacent) mass

bin.

Up to this point, we have only been discussing the per-pixel predictions. This makes

sense from a machine learning perspective, but it does not necessarily address the physics

goal of detecting subhalos themselves. This brings to light one potential challenge of using

image segmentation to detect substructure in images of strong lensing: how does one go

from pixels to subhalos? We have found that it is possible to either add extra pixels or

miss pixels from a subhalo, especially around the edge. However the per-pixel accuracies

and the example shown in Fig. 4.6 suggest that, on average, the size should be correct.

This means that we can get a subhalo count by summing the number of pixels predicted
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in each subhalo class and dividing by 4π pixels/subhalo (because we defined the target

pixels such that the subhalos are comprised of a circle with a radius of 2 pixels).

We can then examine the subhalo detection accuracy over the test set. To define this

accuracy, we take the pixels that at truth-level belong to a given subhalo class and count

the number of these pixels assigned to each of the eleven possible classes. We then label

the subhalo as belonging to the class with the largest count. Using this notion of a subhalo

detection, Table 4.1 shows how the 103 subhalos of each mass bin were reconstructed.

These numbers are for the predictions without a probability threshold (see App. B.3 for

an analogous table including the probability threshold). The results for the network on

images without noise and with 1% noise are indicated by the number without and with

brackets, respectively. For the noiseless images, the network finds 616 (480 + 127 + 8 +

1) of the 1000 subhalos with a mass of 106 M� (62%), of which 78% are in the correct

mass bin. The subhalo detection accuracy, as well as the probability of getting the mass

correct, increase for heavier subhalo masses. Subhalos with m ≥ 108 M� are detected

more than 97% of the time in images with no noise.

For images with 1% noise, nearly all of the subhalos lighter than m ≤ 107.5 M� are

missed. Even though the 1% noise is on the same level as the effects on the brightness due

to a 108 M� subhalo, 39% of them are detected. Once the subhalos are heavy enough to

produce effects larger than the noise level, the accuracy is similar to the noiseless images.

We find that subhalos with m ≥ 108.5 M� (m ≥ 109 M�) are detected more than 86%

(98%) of the time with 1% noise.
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4.4.3 Null tests

The claim of the last section is that the pixels that should have been predicted as back-

ground, but were instead classified as a subhalo pixel, were dominantly from edge effects.

Fig. 4.6 provided an example of one such case. In this section, we provide evidence of

this claim systematically by determining the rate at which the network finds spurious

substructure in images where there is only a smooth lens.

We generates a set of 103 images that contain only the source light and the smooth

main lens, and another set that also contained 1% Gaussian noise. The trained networks

were then applied to each of the images. We did not use a probability threshold for

the predictions here to allow low-probability substructure to appear in the count which

provides a more conservative estimate. The resulting counts are shown in Fig. 4.8 for the

noiseless images in the left panel and the images with 1% noise in the right panel. The

error bars were estimated using the square root of the estimated subhalo count,
√
Nsubhalo.

While the images do not contain subhalos, the network incorrectly predicts a few

subhalos with low masses. The rate for this to happen is less than 10 subhalo per

103 images for each class separately, for the images without noise. The total rate of

false subhalos is around 20 subhalos per 103 images, coming entirely from subhalos with
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Figure 4.8: Approximate predicted subhalo counts from 103 images that do not contain substructure in
the lens. Uncertainties are estimated using

√
Nsubhalo. The left and right panels correspond to noiseless

images and images with 1% noise, respectively. For noiseless images, in each individual class the false-
positive rate is less than 10 subhalos per 103 images, and the combined rate is around 20 subhalos per
103 images. The total false-positive rate in images with noise is around 25 subhalos per 103 images, most

of which are in the 108 M� mass bin.
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masses m ≤ 108 M�. This gives us strong confidence that there is substructure in the

lens when the network predicts a subhalo.

When noise is included, the total number of spurious subhalos increases slightly, to 25

per 103 images. Most of these are in the 108 M� bin. This makes sense because subhalos

with this mass cause changes in the pixel brightness on the order of 1%.

4.4.4 Testing on images with many subhalos

Up to this point, we have presented results from networks trained on images with at most

a single subhalo near the brightest pixels. However, galaxies are expected to have a large

population of subhalos distributed throughout the main dark matter halo. We therefore

investigate whether, without knowing this true distribution of subhalos, our network can

be used to identify a population of substructure (i.e. more than a single subhalo per

image). This is an example of domain adaptation, in the ML jargon. We describe this

process applied to our model in Appendix B.5.

To test this, we generate a set of images with up to 25 subhalos (with the actual

number in each image drawn from a uniform distribution) with random masses and

locations. Four of these images are shown in the left panels of Fig. 4.9. The middle

panels show the true pixel labels and the right panels show the network output. We

denote the number of subhalos in each of the target and predicted images. All of these

images have no noise, but the results generalize to images with noise (losing efficiency for

the lower masses, as explained above).

The network predictions for these images illustrate that light substructure far from the

images is hard for the network to capture. Each row also illustrates different interesting

properties. In the top row, on the lower-right side of the main lens, where there are two

overlapping subhalos and the network only picks up on the heavier one of the two, which

makes sense. The second row contains an example of a subhalo in which the network is

unsure of the mass bin. The subhalo at the top of the main lens gets half of its pixels

reconstructed in the 106 M� class while the other half are put in to the 106.5 M� class,

although the truth-level subhalo belongs to the 106 M� class. In the third row, five
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Figure 4.9: The network trained on noiseless images with a single subhalo is now applied to noiseless
images with rich distributions of substructure. The network has low sensitivity to subhalos that are far
from the bright pixels around he Einstein ring. Subhalos that are near each other can get reconstructed
as a single subhalo with their combined mass. The number of true/predicted subhalos are denoted in

the figure.

subhalos are inside of the Einstein radius. The heaviest of these is reconstructed, but the

others are missed. The interior of the ring is also far from the light, making detection

harder. Additionally, it seems like the network could have compensated for these subhalos

by slightly increasing the main lens, but instead it does find the 109 M� subhalo, which

is impressive. Finally, in the last row, we see examples of heavier subhalos, which are

able to be detected closer to the edge of the image than the lighter subhalos.

From these examples, we see that the network trained on images with a single subhalo

is able to detect a population of substructure. As the subhalos get further away from

the bright pixels, the network loses sensitivity to them. The presence of subhalos close

together is also a challenge for the network. When there is a hierarchy between their

masses, the heavier subhalo will wash out the effects of the smaller one. This results in

only a detection of the heavy subhalo. If nearby subhalos are similar in mass, they may

get reconstructed as a single subhalo in the bin corresponding to the sum of their masses.
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The variety of subhalo populations that were detected in Fig. 4.9 (both in terms of

raw number of subhalos as well as their mass distribution) also highlights one of the

strengths of our single-subhalo training methodology. We found empirically that when

we instead trained a network on images with many subhalos drawn from a power-law

mass function and then tested it on images with populations of subhalos drawn from a

mass function with a different power-law index, the detection accuracy became biased.

For instance, if the network is trained on images with many subhalos drawn from a steep

mass function, the few images with heavy subhalos will almost certainly have lots of light

substructure as well. When we applied the network to images generated with a shallower

mass function, the false-positive rate was higher for images with heavy subhalos: when it

saw a heavy subhalo, it expected more light subhalos than there were, thus introducing

false substructure. By only having a single subhalo in the training images, our fiducial

network never learns to make decisions based on population characteristics, and thus

generalizes extremely well to images with very different subhalo populations.

We have now shown the our network detects subhalos near the Einstein ring with high

accuracy, and is capable of generalizing to images with different subhalo populations.

Additionally, it has a very low false positive subhalo rate of 2.5 subhalos per 100 images.

In the next section we demonstrate how such a network could be used to extract the

subhalo mass function from an ensemble of strong lens images.

4.5 Determination of the subhalo mass function

The population of subhalos under a CDM scenario is found to be well described by a

power-law of the form

dN

dm
∝ mβ, (4.9)

with β = −1.9 [143]. However, models beyond CDM can affect this subhalo mass function.

In previous sections, we have described how our U-Net model is able to accurately detect

subhalos in simulated images. In this section, we show that we can determine the subhalo

mass function using the network outputs from many images.
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We first generate a mock catalog of images that can have more than a single subhalo.

In each image, we draw the number of subhalos from a uniform distribution between 0

and 25, and place them uniformly throughout the image. The masses of the subhalos

are drawn from a power-law with fixed β = −1.9. As the network with noise is not able

to detect substructure with m < 108 M�, and we want to compare the performance of

the networks trained on noiseless and 1% noise images, we do not generate subhalos with

masses that would end up in the m ≤ 107.5 M� bins. Our goal will be to infer the value

of β from this catalog.

If we were able to perfectly reconstruct every subhalo, we could just fit the counts-

per-bin to the functional form in Eq. (4.9). However, the accuracy is worse for lower mass

subhalos, effectively changing the shape of the extracted mass function. An example of

this is shown in Fig. 4.10. Here we simulated 105 images, using the same prescription as

in our mock catalog, for β =-1.7, -1.8, -1.9, and -2.0. We then applied the network to

each image and counted how many pixels were assigned to each class. This pixel count

was converted to an approximate subhalo count by dividing by 4π. The left panel shows

the average number of detected subhalos for the images with no noise, and the right panel

shows the average counts for the images with 1% Gaussian noise. While the curves in

the noiseless images are nearly straight (in log-log space), there is still some curvature.

This is exaggerated even more in the images with noise, where in fact the subhalo counts

plateau below ∼ 108 M�.

Rather than trying to fit the data with Eq. (4.9), we instead infer the most probable

power-law index to have generated the observed subhalo counts extracted from a set of

images with our U-Net model. To do so, we build a likelihood function which is the

product of Gaussian likelihoods for each mass bin. Namely, the likelihood is given by

L(β) ≡
∏

i∈mass bins

G
(
oi

∣∣∣µi(β), σi(β)
)
, (4.10)

where oi is the observed number of detected subhalos in bin i, µi(β) is the expected value,

and σi(β) is the estimated standard deviation given β. To use the likelihood to infer β,
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Figure 4.10: The left and right panels display the average number of detected subhalos per class for 105

images with an without noise, respectively. The images can have between 0 and 25 truth-level subhalo
uniformly distributed throughout the image. The masses of the subhalos are drawn from a power-law
with an index denoted by β. The network has less sensitivity to lower mass subhalos, resulting in the
curved shape. To infer the power-law index of an independent dataset, we find which value of β yields

a curve closest to that observed in the data.

we need to derive µi(β) and σi(β). This is done in the next subsection. We emphasize

that these derivations will include details that are specific to our mock catalog of images,

and may not generalize to the real world, but we will discuss how to generalize to other

catalogs.

4.5.1 Expectation and variance

Here, we derive the expectation and variance used in the likelihood function given in

Eq. (4.10). First, we define the efficiency to tag a subhalo as

εi =
Number of subhalos predicted in class i

Number of true subhalos in class i
. (4.11)

Because we train our network on images with a single subhalo, the network does not

know about population level statistics, which is why the efficiency to zeroth order is not

a function of β. If an image has N real subhalos, we define ϕ as the true fraction of

subhalos in each mass bin, Ni. Note that ϕ is necessarily a function of β and is given by

Ni(β) = ϕi(β) N, (4.12)
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where Ni is the true number of subhalos in the ith bin. Thus, the number of subhalos

expected to be predicted in a given class for an image with N total true subhalos can be

written as

〈ni(β)|N〉 = εi ϕi(β) N. (4.13)

where ni is the number of predicted subhalos in bin i.

From running a large number of images, we obtain a good estimate for

εi(β) = εi ϕi(β)

= 〈ni(β)|N〉/N , (4.14)

where εi(β) is essentially the rate at which subhalos are detected in mass bin i given the

value of β. For example, in Fig. 4.11 we applied the network to count the number of

predicted subhalos in 105 images for various fixed values of β with an average of 12.5

subhalos per image. Rather than showing the results as a function of the subhalo mass

bin (as done in Fig. 4.10), we show the average count per image as a function of β, with

each mass bin shown in a different panel. We find that the data can be fit well with an

exponential function of the form

εi(β) = ai + bi e
ciβ . (4.15)

Given the rate (εi) and the true number of subhalos (N) in a single image, the number

of predicted pixels in a given class should be be Poisson-distributed about the expectation.

Thus, the probability (p) to predict ni subhalos is given by

p
(
ni(β)

)
= P

(
ni|εi(β) N

)
=

(
εi(β) N

)nie−εi(β) N

ni!
. (4.16)

The expected number of detected subhalos in a single image with N true subhalos from

Eq. (4.13) can then be rewritten in terms of the weighted sum over the individual prob-
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Figure 4.11: Data points show the average number of subhalos detected by our network per image over
105 sample images with and without noise. The lines show exponential fits to the data as described in
the text. These are used to define the expected subhalo counts and the standard deviations used in the
likelihood function. The downward trend for increasing β in the 108 M� panel is because of the fixed

range for the number of subhalos.

abilities

〈ni(β)|N〉 =
∑
ni

ni p
(
ni(β)

)
. (4.17)

We now build in the assumptions about our mock data. In each image, we have

placed between 0 and Nmax = 25 true subhalos, with the number drawn from a uniform

distribution. The expected number of detected subhalos in class i for any image is then

the average over the Nmax + 1 possible values (including 0 subhalos),

〈ni(β)〉 =
Nmax∑
N=0

1

Nmax + 1

∑
ni

ni p
(
ni(β)

)
. (4.18)

In an analysis of real data, the actual distribution of subhalos would need to be obtained

through detailed N -body simulations, which is beyond the scope of this work.

In any given image, the number of subhalos in a bin can vary widely. To compute the

variance, we calculate 〈n2
i 〉 as a function of β, given by

〈n2
i (β)〉 =

Nmax∑
N=0

1

Nmax + 1

N∑
ni=0

n2
i p
(
ni(β)

)
. (4.19)
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Then the variance is

σ2
ni

(β) = 〈n2
i (β)〉 − 〈ni(β)〉2 . (4.20)

The range of possible true subhalos makes this variance large.

Up to this point, we have examined the expectation and variance for the number of

detected subhalos per bin in a single image. However, to determine the subhalo mass

function we will analyze many images together. The expected number of pixels and the

variance for Nimages independent images is given by

〈ni(β)|Nimages〉 = Nimages〈ni(β)〉; (4.21)

σ2
ni(β)|Nimages

= Nimagesσ
2
ni

(β). (4.22)

The value of the mean and standard deviations for each bin included in the likelihood

function are then given by

µi(β) = Nimages〈ni(β)〉 (4.23)

and

σi(β) =
√
Nimagesσ2

ni
(β) . (4.24)

4.5.2 Inferring the power-law

At this stage, given a subhalo mass function power-law index and some number of images,

we can compute the expected number of detected subhalos and the standard deviation for

each bin. When we apply our network to a set of images, we can then determine which

value of β yields expectations closest to the observed detections using the likelihood

function defined in Eq. (4.10). Recalling that the Gaussian expectation and variance are

a function of β and that the observed data does not change, the likelihood is then a

function only of β,

L = L(β). (4.25)
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To test a hypothesized value of β, the likelihood ratio is used,

`(β) =
L
(
β
)

L
(
β̂
) , (4.26)

where β̂ is the value of the slope which maximizes the likelihood. To find β̂, we use the

Nelder-Mead [165] algorithm implemented in SciPy [166]. We then compute the test

statistic tβ, defined as

tβ = −2 log ` (β) , (4.27)

with which we can determine confidence intervals.

Fig. 4.12 does this for images containing subhalo populations drawn from a subhalo

mass function with βtrue = −1.9, for different numbers of images in each panel. The best

fit is the value of β that minimizes tβ, while the 1σ(2σ) uncertainty is given by the range

between tβ = 1(4). The orange and blue lines denote the results from images with and

without noise, respectively. The last panel shows the spread of the confidence intervals

as a function of the number of images used for the fit.

The first panel uses only 10 images, and the resulting inferred values have large

uncertainties. This is primarily due to the large variance in the number of subhalos per

image, which is incorporated into the uncertainty. While the central value for the noiseless

images is not close to the true value of βtrue = −1.9, it is within the 1σ confidence interval.

Increasing the number to 50 images, the uncertainty drops by a factor of 1/3. The best

fit values also start to get closer to the true value. The trend continues as more images

are added, with the best fit converging to the true value and the uncertainty decreasing.

We again note that noise affects our ability to tag low-mass substructure. As shown

in Fig. 4.10, the number of detected subhalos does not resemble a power-law for the noisy

images. Despite this, we find that the uncertainty on the inferred value of β is only

around 20% worse. With 500 images, the uncertainty on the power-law index is less than

0.1. Overall, we find that, when measured over five mass bins from 108 M� to 1010 M�,

the SMF slope is recovered with an error of 14.2 (16.3)% for 10 images, and this improves

to 2.1 (2.6)% for 1000 images without (with 1%) noise
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Figure 4.12: Result of scanning the test statistic tβ when scanning over the power-law index β. The
test statistic is defined in Eq. (4.27). The value of β that minimizes tβ produces expected count most
similar to that in the mock observed data. The true value of β in the mock data is -1.9 and is marked
by the grey dotted line. The 1 and 2 σ confidence intervals are the values of β between tβ = 1 and 4,
respectively. The last panel shows that the uncertainty decreases as the number of images increases. The
blue and orange lines shown the results for image with no noise or 1% Gaussian noise, respectively. The
last panel shows the spread (maximum - minimum) of the 1- and 2-σ confidence bands. The uncertainty

on the best fit for the images with noise is about 20% larger than the noiseless images.

The results presented here strongly depend on our mock catalog. Specifically, for

the images in our catalog, the number of subhalos in an image is drawn from a uniform

distribution between 0-25 for the detectable mass bins (m > 108 M�). To generalize

this procedure to real lensing data, we would need to estimate the expected number of

detectable subhalos per mass bin and the variance from N -body simulations.

4.6 Discussion and outlook

We developed a method to detect subhalos in strong gravitational lens images. The

method is based on image segmentation: we classify each pixel in an image as belonging

to either the main lens, a subhalo within a given mass range, or neither. We trained a

convolutional neural network with a U-Net architecture on images with either no sub-

structure or a single subhalo near the lensed images. When the network is applied to an
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independent test set, it performs remarkably well.

We find that there are three common ways for the network to misclassify a pixel.

1. The subhalo is not detected and all of the pixels are assigned to the background or

main lens classes. This happens more for light subhalos than large subhalos.

2. The pixel is on the edge of a subhalo and it is labeled as background instead of

belonging to a subhalo. In these cases, the network finds the subhalo, but it is

predicted to be a few pixels too large or too small.

3. Misidentifying the mass bin, generally by assigning the pixel to an adjacent mass

bin. In these cases, the subhalo is still located correctly, but the mass is shifted up

or down by a bin.

While the network is trained specifically looking pixel-by-pixel, we need to cluster

the detected pixels into subhalos to extract some physical meaning to the pixel-based

accuracies. On average, the subhalos have an area of 4π pixels, allowing for an easy

conversion between the number of tagged pixels and the number of subhalos. Pixels

around the edge of a subhalo can be missed while allowing for a detection of the subhalo.

Because of this, the subhalo detection accuracy is better than the per-pixel accuracy.

Without noise, the class with the worst accuracy is that of subhalos in the 106 M�

mass bin, but 62% of these subhalos are located, of which 78% get assigned the correct

mass. The accuracy improves for heavier subhalos. At a mass of 108 M�, the subhalos

are detected 97% of the time, with 80% in the correct mass bin. The heaviest subhalos

we considered have masses in the 1010 M� bin, and 99.9% of these subhalos are detected,

with 96% getting assigned to the correct mass bin. When noise is included, the network

loses sensitivity to the low-mass subhalos. For instance, with 1% noise, only 39% of the

108 M� subhalos are detected. However, the accuracy is similar for m ≥ 109 M� with

and without noise.

To put this in perspective, Refs. [103, 104] showed that gravitational imaging can find

subhalos with masses of a few times 108 M� for a signal to noise ratio of as low as 3 when

the subhalo has an NFW profile and on the Einstein ring. Additionally, these methods
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have detected subhalos with masses of (3.51± 0.15)× 109 M� [106] and (1.9± 0.1)× 108

M� [107]. We reach good accuracy for the same range of masses detected by traditional

methods using similar amounts of noise; see App. B.4 for a comparison of noise profiles.

An advantage of our method is that we do not need to initially model the smooth lens to

detect substructure in the system, which can take O(weeks) to analyze in real systems.

Instead, it takes us less than a second to run an image through the network. It is also

important to keep in mind that our accuracies are presented for the true subhalo mass

which was simulated. Direct detection methods are sensitive to the effective subhalo

mass. Ref. [148] showed that the true mass can be biased by up to an order of magnitude

compared to what is measured.

The network was also tested on images that do not contain substructure. False sub-

structure was predicted at a rate of around 2.5 subhalos per 100 images. Most of these

fall into the lightest mass bins that a network is sensitive to. The good detection accuracy

and low false-positive rate implies that if the network predicts substructure is present an

image, it is mostly likely truly due to a subhalo being present.

We also applied the network trained on images with single subhalos to images with

many subhalos. We showed that the network has out-of-sample adaptability and can

generalize to identify an abundance of substructure in a single image, although it does

not see any such data during training. With this, we examined a method to determine

the subhalo mass function power-law index from the network output of multiple images.

The subhalo mass function is a key target for dark matter science because it can diagnose

deviations from the standard cold dark matter scenario.

The technique uses a likelihood ratio for the count of detected subhalos in all of the

bins, taking into account the expected counts given the power-law index and the network’s

detection accuracy for each class. We estimate that a 10% determination of the slope

of the subhalo mass function will require around 50 (100) images without (with) noise.

However, this is strongly dependent on astrophysical assumptions concerning the total

mass of a halo contained in substructure. For instance, our catalog contained images with

[0,25] subhalos with masses m ≥ 108 M�. If the true distribution of subhalos produces
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significantly more or less subhalos near the Einstein ring, the number of images necessary

for an accurate determination of the power-law index of the subhalo mass function could

change.

We also note that Ref. [153] uses likelihood-free inference to extract population-level

substructure properties about the dark matter subahalo population. They use a neural

network to approximate the likelihood ratio function to obtain both the slope and the

amplitude of the subhalo mass function with O(100) images. In contrast, we infer about

the subhalo mass function by explicitly resolving individual subhalo, which can then be

further studied.

In the near future, the Vera Rubin Observatory is expected to find 104 galaxy-galaxy

strong lenses [167] and Euclid expects 105 galaxies lensed by galaxies in the field-of-

view [168]. The ability to quickly detect substructure in these lenses could dramatically

improve our understanding of dark matter. Image segmentation is a promising method to

study dark matter subhalos. We stress that work will be needed to increase the robustness

to noisier images (dimmer sources). Additionally, we have ignored the possibility of extra

perturbations to the lens along the line-of-sight [6, 155, 156, 169], but not part of the

main lens halo. These are both interesting problems that we save for future work.
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Chapter 5

Power Spectrum of Dark Matter

Substructure in Strong Gravitational

Lenses

The main limitation of direct subhalo detection efforts is that only the most massive

substructures lying within or very close to lensed arcs can be detected with large statistical

significance. Even for our method in Chapter 4, the lowest mass that can be reliably

obtained is ∼ 108.5 M�. While not directly detectable, smaller-mass substructures or

those lying further away from lensed images could still potentially lead to observable

effects on the lensing signal of extended arcs. Within the CDM paradigm, the (sub)halo

mass function is expected to rise rapidly toward smaller masses [143], implying that

typical lensed images could be perturbed by a fairly large number of unresolved low-mass

substructures. In this limit, it becomes somewhat impractical to phrase the perturbations

to lensed images in terms of individual subhalos. For instance, Refs. [114–116] proposed

statistical techniques to harness the constraining power from these marginal detections

for the properties and abundance of dark matter subhalos within lens galaxies.

The approach we propose is to describe the substructure convergence field in terms

of its n-point correlation functions. For CDM, the large number of small-mass subha-

los contributing to the total substructure convergence field implies that the statistics of



the latter should be nearly Gaussian. In this case, we expect the two-point correlation

function (or its Fourier transform, the power spectrum) to dominate the statistical de-

scription of the substructure field. This last point was put forth in Ref. [117] to motivate

an exploratory study of the detectability of the substructure convergence power spectrum

within lens galaxies using the Atacama Large Millimeter/submillimeter Array (ALMA).

In practice, given that strong lensing is probing the matter density field deep in the non-

linear regime, we do not expect the substructure density field to be entirely Gaussian.

Nevertheless, measuring the substructure power spectrum might still lead to important

insights about the abundance and internal structure of subhalos within lens galaxies.

Interestingly, Ref. [117] showed that it is possible, in principle, to measure the sub-

structure convergence power spectrum by looking at the correlations of lensed image

residuals, once a model image obtained from a purely smooth lens potential is subtracted

from the data. They further showed that deep observations of strong gravitational lenses

with ALMA could lead to 3σ detection of the nonvanishing amplitude of the substructure

power spectrum (at least if there is abundant substructure, which is the case in CDM).

Given that such measurements might be possible in the near future, the immediate ques-

tion that comes to mind is: What will we learn about low-mass subhalos from measuring

the substructure convergence power spectrum?

In this chapter, we present some much-needed answers to this question. Using the

standard halo model [170] as our framework, we first develop a general formalism to com-

pute the power spectrum of the convergence field on the lens plane due to substructure.

We extend the initial approach presented in Ref. [117] to include subhalo populations that

are not necessarily isotropic and homogeneous, and also take into account the 2-subhalo

term. This formalism is developed in a way that makes it easy to change the statistical

properties of the population as well as the intrinsic properties of subhalos, in order to

facilitate its application to different dark matter scenarios. As an example we apply it

to two different subhalo populations: one in which subhalos are modeled as truncated

Navarro-Frenk-White (NFW) halos as would occur in standard CDM, and another one

in which they are modeled as truncated cored halos as would happen in the presence of
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self-interacting dark matter (SIDM). We choose the latter because of there is evidence of

cored density profiles in at least some of the Local Group satellites (e.g. Refs. [171–173]).

More generally, comparing these two models is interesting since they roughly bracket the

range of possibilities for the inner density profiles of low-mass subhalos in a broad range

of dark matter theories. We use these two examples as a springboard to discuss how the

internal structure, statistical properties, and abundance of low-mass subhalos affect the

shape and amplitude of the substructure convergence power spectrum.

This chapter is organized as follows. In Sec. 5.1 we present our halo model-based

formalism to compute the substructure convergence power spectrum from first principles.

In Sec. 5.2 we apply this formalism to study the 1- and 2-subhalo contributions to the

substructure power spectrum from a population of truncated NFW subhalos. In Sec. 5.3

we turn our attention to the substructure power spectrum in the presence of a population

of truncated cored subhalos, highlighting along the way the differences from the NFW

case. We finally discuss our findings and conclude in Sec. 5.4.

5.1 Substructure statistics within the halo model

We work within the framework of the halo model [170], where all the dark matter is bound

in roughly spherical halos. Within this model, the dark matter content of a typical lens

galaxy is comprised of a smooth dark matter halo containing most the galaxy’s mass, as

well as a certain number of subhalos orbiting within the smooth halo. In the following,

we will be concerned with these subhalos.

5.1.1 Preliminaries: Subhalo statistics

We work in projected two-dimensional (2D) space, with r denoting the projected 2D

vector in the plane of the sky. In the limit that most of the lensing is caused by a single

massive galaxy we can use the thin-lens approximation, so the relevant quantity is the

surface mass density Σ of the lens galaxy in units of the critical density for lensing Σcrit,

which is usually referred to as the convergence. Σcrit depends on the angular diameter
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distance between the observer and the source Dos, the observer and the lens Dol and the

lens and the source Dls:

Σcrit =
c2Dos

4πGDolDls

. (5.1)

Here, G is the gravitational constant and c the speed of light. The convergence is also

related to the projected Newtonian gravitational potential φ via the Poisson equation:

O2φ = 2κ. The strong lensing regime occurs when κ becomes of order unity.

The total convergence at a given point r on the lens plane is

κtot(r) = κ0(r) + κsub(r), (5.2)

where κ0 denotes the contribution from the smooth lens model (dark matter + baryons)

and κsub denotes that from the subhalos. According to the standard CDM model, a

typical lens galaxy will contain a large population of subhalos, all of which contribute to

κsub as:

κsub(r) =

Nsub∑
i=1

κi(r− ri,mi,qi), (5.3)

where κi and ri are the convergence and the position of the ith subhalo, respectively, mi

is the total mass of the ith subhalo, and the qi’s are sets of parameters that determine the

internal properties of the ith subhalo. Nsub is the total number of subhalos contributing

to the lensing convergence at position r. Note that in Eq. (5.3) we have taken advantage

of the fact that the overall contribution of the subhalo population is equivalent to the

sum of the effect of each subhalo, which follows from the linearity of Poisson’s equation.

Since the convergence profile of a subhalo is always directly proportional to the subhalo

mass mi, it is useful to define κ̂i ≡ Σcritκi/mi. The advantage of this notation is that κ̂i

obeys a very simple normalization condition

∫
d2ri κ̂i(ri,qi) = 1, (5.4)

independent of the value of qi. Here, the integral runs over the whole lens plane.
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In general, it is impossible to know the mass, position, and internal properties of

every subhalo within a lens galaxy. Instead, we would like to determine the “ensemble-

averaged” properties of gravitational lensing observables given the statistical properties

of subhalos, such as their mass function and spatial distribution. We shall denote by 〈X〉

the ensemble average of quantity X over all possible realizations of the subhalo density

field within a lens galaxy. On the other hand, the notation X̄ will be used to denote the

“spatial” average of X over a given area of the lens plane.

Let us assume that all the statistical properties of subhalos within a lens galaxy are

captured by a probability distribution function P(r,m,q). It is, in general, a very good

approximation (see Refs. [143, 174]) to assume that the mass and projected position of

a subhalo are uncorrelated. This allows us to write the overall distribution as a product

of a mass and position probability distributions as follows:

P(r,m,q) = Pr(r)Pm(m)Pq(q|m, r), (5.5)

where we have taken into account that the intrinsic properties of a given subhalo likely

depend on its mass and position within the lens galaxy. The distribution Pr(r) contains

all the information about the projected spatial distribution of subhalos within the host

galaxy. Given a projected number density nsub(r) of subhalos, the probability of finding

a subhalo within an area d2r centered at position r is

Pr(r)d2r =
nsub(r)d2r∫
A
d2rnsub(r)

, (5.6)

where A is the area of the lens plane where we have sensitivity to substructures (see

below). The denominator in Eq. (5.6) is just the total number of subhalos within the

area A ∫
A

d2rnsub(r) = Nsub ≡ A n̄sub, (5.7)

where n̄sub is the average number density of subhalos averaged over the whole area A. It
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is useful to write the subhalo number density as

nsub(r) = n̄sub (1 + δ(r)) , (5.8)

where δ(r) is a stochastic random variable with 〈δ(r)〉 = 0. Here, the δ(r) field describes

the fractional excess probability (compared to n̄sub) of finding a subhalo at position

r. While any choice of δ(r) fully specifies the probability density function Pr(r) as per

Eq. (5.6) statistically independent, we will, in general, be interested in ensemble-averaging

over realizations of the δ(r) field.

Numerical studies [143, 174] indicate that the 3D spatial distribution of subhalos near

the central part of the host has a rather weak radial dependence. Taking into account

projection effects and the fact that galaxy-scale strong lensing is mostly probing a small

region near the projected center of the host, it is usually an excellent approximation to

take 〈nsub(r)〉 = n̄sub = constant.

The subhalo mass probability distribution can be written as

Pm(m) ≡ 1

Nsub

dNsub

dm
, (5.9)

where dNsub/dm is the standard subhalo mass function. While our results are easily

generalizable to any choice of mass function, we restrict ourselves to a power law mass

function, Pm ∝ mβ, for mlow < m < mhigh. In the following, we assume that P(r,m,q)

is normalized such that ∫
dmd2r dqP(r,m,q) = 1, (5.10)

which is trivially satisfied by Eqs. (5.6) and (5.9).

As in most lensing calculations in the literature, the calculations presented in the

remainder of this chapter assume that each subhalo represents an independent draw from

the P(r,m,q) probability distribution. We emphasize though that this does not mean

that we neglect spatial correlations between subhalos; these are fully encoded in our

choice of Pr(r). In this case, the probability distribution describing the properties of

79



the whole subhalo population Ppop can be factored out as a product of the probability

distribution for single subhalos

Ppop =

Nsub∏
i=1

P(ri,mi,qi). (5.11)

We now have all the ingredients to perform ensemble averages over all possible realizations

of a subhalo population.

5.1.2 Ensemble-averaged substructure convergence

It is instructive to first compute the mean ensemble-averaged substructure convergence

on the lens plane κ̄sub. It is given by

κ̄sub =
1

A

∫
d2s 〈κsub(s)〉 (5.12)

=
Nsub

A

∫
dmi dqiPm(mi)Pq(qi)

×
∫
d2s d2ri κi(s− ri,mi,qi)Pr(ri),

where we used the fact that every term in the sum in Eq. (5.3) contributes equally to

κ̄sub. The result is not surprising since it just states that the average convergence for the

whole population of (statistically independent) subhalos is just Nsub times the average

convergence of a single subhalo. Next, we note that the ri integral above is nothing more

than the convolution of the subhalo density profile κi with the spatial distribution Pr.

Using the general result for the integral of a convolution,

∫
d2s (f ∗ g)(s) =

∫
d2s f(s)

∫
d2r g(r), (5.13)

we obtain,

κ̄sub =
Nsub

AΣcrit

∫
dmiPm(mi)mi

=
Nsub〈m〉
AΣcrit

, (5.14)
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where we used Eq. (5.4). In the above, we have introduced the notation

〈m〉 ≡
∫
dmiPm(mi)mi (5.15)

to denote the average subhalo mass. We note that Eq. (5.14) is useful to relate Nsub and

A to the physically relevant quantities 〈m〉 and κ̄sub.

5.1.3 The power spectrum of the convergence field

We now turn our attention to the computation of the two-point correlation function of

the substructure density field, or its Fourier transform, the substructure power spectrum.

We emphasize that we do not assume here that the substructure convergence field is

necessarily Gaussian. As such, we do not expect the power spectrum to characterize

the substructure density field completely, and expect higher-point correlation functions

to also contain nontrivial information. Nevertheless, the rapidly rising subhalo mass

function toward the low-mass end in CDM models ensures that Gaussianity is a good

first approximation [113]. Importantly, the main contributors of non-Gaussianities to the

substructure field are the most massive subhalos within the lens galaxy [117]. Since we

expect them to be directly detectable [106, 107, 111, 112], we can limit their influence

on the statistics of the κsub field by absorbing the most massive subhalos within the

macrolens mass model κ0.

To obtain a general expression for the substructure power spectrum Psub(k), we first

compute the lens plane-averaged connected two-point correlation function ξsub(r) of the

substructure convergence field κsub. To simplify the derivation and avoid clutter, we first

focus exclusively on performing the spatial averages encoded in the probability distribu-

tion Pr(r). The averages over the subhalo mass and internal properties will be restored

at the end of the calculation. The substructure convergence two-point function takes the
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form

ξsub(r) ≡ 1

A

∫
d2s

∫ ∏
i

d2riPr(ri) (5.16)

× (κsub(s)− κ̄sub)(κsub(s + r)− κ̄sub).

Substituting Eq. (5.3) in the above and using the normalization condition given in

Eq. (5.10), we obtain

Aξsub(r) =
∑
i

∫
d2s d2riκi(s− ri)κi(s + r− ri)Pr(ri)

+
∑
i

∑
j 6=i

∫
d2s d2ri d

2rjPr(ri)Pr(rj)

× κi(s− ri)κj(s + r− rj)

− κ̄sub

∑
i

∫
d2s d2riκi(s− ri)Pr(ri)

− κ̄sub

∑
i

∫
d2s d2riκi(s + r− ri)Pr(ri)

+ κ̄2
sub

∫
d2s. (5.17)

The first term arises from ensemble-averaging over the spatial distribution of a single

subhalo (the “1-subhalo” term), the second term arises from averaging over pairs of

distinct subhalos (the “2-subhalo” term), while the last three terms ensure that we are

computing only the connected part of the two-point function. In the language of the halo

model, the 1-subhalo term refers to particles or mass elements within a same subhalo,

while the 2-subhalo term is due to those in distinct subhalos. The 1-subhalo term is

nothing else than the convolution of the subhalo density profile with itself

∫
d2s d2riκi(s− ri)κi(s + r− ri)Pr(ri)

=

∫
d2xκi(x)κi(x + r)

= (κi ∗ κi)(r). (5.18)
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The 2-subhalo contribution contains Nsub(Nsub − 1) identical terms which have the fol-

lowing form [175]

∫
d2s d2ri d

2rjPr(ri)Pr(rj)κi(s− ri)κj(s + r− rj)

=

∫
d2x d2y κi(x)κj(y)(Pr ∗ Pr)(y − x− r). (5.19)

Using Eqs. (5.6) and (5.8), the convolution of the subhalo’s spatial distribution is

(Pr ∗ Pr)(r) =

∫
d2sPr(s)Pr(s + r)

=
n̄2

sub

N2
sub

∫
d2s (1 + δ(s))(1 + δ(s + r))

=
n̄sub

N2
sub

(
Nsub + n̄sub

∫
d2s δ(s)δ(s + r)

)
=
n̄sub

Nsub

(1 + ξss(r)) , (5.20)

where we have identified the two-point subhalo correlation function ξss(r), which encodes

spatial correlation between pairs of distinct subhalos. Finally, the three last terms of

Eq. (5.17) all have the same form and lead to a net contribution of−κ̄2
subA. The connected

two-point correlation function of the substructure convergence field thus takes the form

ξsub(r) =
Nsub

A
(κi ∗ κi)(r) (5.21)

+
n̄subNsub(Nsub − 1)

ANsub

∫
d2x d2y κi(x)κj(y)

× (1 + ξss(y − x− r))

− κ̄2
sub.

Noting that some of the integrals not involving ξss in the second term exactly cancel the
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third term, we are left with

ξsub(r) = n̄sub(κi ∗ κi)(r) (5.22)

+ n̄2
sub

∫
d2x d2y κi(x)κj(y)ξss(y − x− r)

− n̄2
sub

Nsub

∫
d2x d2y κi(x)κj(y) (1 + ξss(y − x− r)) .

The first two terms correspond to the 1-subhalo and 2-subhalo terms, respectively, while

the last term, suppressed by an extra factor of Nsub, corresponds to the shot noise term,

which only becomes important if the number of subhalos within the area of interest in

the lens plane is small.

It is now straightforward to compute the convergence power spectrum by Fourier

transforming Eq. (5.22). Using the following Fourier transform conventions:

κ̃(k) =

∫
d2r e−ik·rκ̂(r), (5.23)

κ̂(r) =

∫
d2k

(2π)2
eik·rκ̃(k), (5.24)

the convergence power spectrum takes the form

Psub(k) =

∫
d2r e−ik·rξsub(r)

= n̄sub|κ̃i(k)|2

+ n̄2
sub(1− 1

Nsub

)κ̃i(k)κ̃∗j(k)Pss(k), (5.25)

where k is the wavevector, and where we have used the convolution theorem to perform

the Fourier transform. We note that the r-independent part of the last term in Eq. (5.22)

contributes an unobservable zero-mode, which we dropped in the above. Here, Pss(k)

is the Fourier transform of the subhalo two-point correlation function ξss(r). In the

remainder of the chapter we neglect the 1/Nsub term in Eq. (5.25).

Up to this point, the only assumptions underpinning our calculation of the substruc-

ture convergence power spectrum are the statistical independence of each subhalo within
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a lens galaxy, and the fact that the subhalo internal properties qi do not depend on the

subhalo position ri. We now introduce two simplifying assumptions:

• We take the subhalo convergence profile to be circularly symmetric, implying that

κ̃i(k) = κ̃i(k).

• We assume that the subhalo two-point correlation function ξss is homogeneous and

isotropic, hence leading to Pss(k) = Pss(k).

Here, k ≡ |k|. While subhalos are generally triaxial, projection effects and ensemble-

averaging over all possible orientations and sizes of the subhalos’ ellipticity imply that the

average convergence profile is close to circularly symmetric, hence our first assumption.

Our second point amounts to assuming that the small area of the lens plane probed by

strong lensing images is typical of other nearby lines of sight. With these assumptions,

the Fourier transform of the subhalo convergence profile is

κ̃(k) =

∫
d2r e−ik·rκ̂(r)

= 2π

∫
dr r J0(k r)κ̂(r), (5.26)

where J0(x) is the 0th order Bessel function.

The last step of the calculation is to reinstate the averages over subhalo mass and

internal properties. We can write the total substructure convergence power spectrum as

the sum of the 1-subhalo and 2-subhalo terms,

Psub(k) = P1sh(k) + P2sh(k), (5.27)

where the 1-subhalo term P1sh(k) takes the form

P1sh(k) =
(2π)2κ̄sub

〈m〉Σcrit

∫
dmdqm2 Pm(m) Pq(q|m)

×
[∫

dr rJ0(k r)κ̂(r,q)

]2

(5.28)

(the subscript i has been dropped since it is now superfluous) and the 2-subhalo term
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takes the form

P2sh(k) =
(2π)2κ̄2

sub

〈m〉2
Pss(k)

[∫
dmdqmPm(m)Pq(q|m)

×
∫
dr rJ0(k r)κ̂(r,q)

]2

. (5.29)

The amplitude of the 1-subhalo term is approximately given by P1sh(k) ∝ κ̄submeff ,

where the quantity meff ≡ 〈m2〉/〈m〉 has been referred to as the “effective mass” in the

lensing literature [176–178]. This specific mass scale constitutes the primary dependence

of the substructure power spectrum on the subhalo mass function, so we expect it to be

one of the most constrained quantities with actual observations. The amplitude of the 1-

subhalo term can be approximated as P1sh(k) ≈ κ̄submeff/Σcrit. For a typical gravitational

lens with 0.003 < κ̄sub < 0.03 [99], meff ∼ 107 M�, and Σcrit ∼ 3 × 109 M�/kpc2 (given

our choices for the source and lens redshift), we thus expect

P1sh(k) ∼ 10−5 − 10−4 kpc2 (5.30)

for scales larger than the typical size of a subhalo. On the other hand, the amplitude

of the 2-subhalo term is approximately P2sh(k) ∝ κ̄2
subPss(k), with very little dependence

on the subhalo mass function. Given that typically κ̄sub � 1 and that Pss(k) can be

important only on scales larger than the typical subhalo spatial separation, this term is

generally subdominant compared to the 1-subhalo term, except maybe on larger scales,

depending on the size of Pss(k).

Having derived the general expression for the lens plane-averaged substructure power

spectrum, we can now apply it to realistic subhalo populations by specifying the prob-

ability distributions P(r,m,q) and the subhalo convergence profile κ(r,m,q). For defi-

niteness, we make the following choices throughout the rest of this chapter whenever we

present numerical results: we assume a lens galaxy at redshift z = 0.5 with virial mass

and radius Mvir = 1.8× 1012 M�, Rmax = 409 kpc, and Einstein radius b = 6.3 kpc. We

take the source to be at z = 1.
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5.2 Truncated Navarro-Frenk-White subhalo popu-

lation

5.2.1 Characteristics of the subhalo population

In this section we compute the substructure power spectrum for a realistic population

of smoothly truncated Navarro-Frenk-White subhalos. We are particularly interested in

the strong lensing region, namely the region bounded more or less by the Einstein radius

of the lens. Reference [113] performed a detailed analysis of the statistics of subhalo

populations in strong lenses by looking at both the “local” (close to the Einstein radius of

the host) and “distributed” (extending past the host virial radius) populations of subhalos

and looking at their relative effects on lensing observables such as the lensing potential,

deflection, shear and convergence. They found that the substructure contribution at a

typical image position is largely dominated by the local subhalos.

The NFW density profile [71] has been found to provide a good fit to simulated CDM

halos and is widely used to model the distribution of dark matter within galaxies and their

satellites. This density profile (see Fig. 5.1) has an inner slope that goes as R−1 until it

reaches the scale radius rs, where the slope steepens to R−3. Formally, the NFW density

profile leads to a divergent total subhalo mass. However, we expect tidal interactions to

provide a finite truncation radius for a realistic subhalo orbiting within its host galaxy,

hence leading to a finite subhalo mass. Here, we adopt the following truncated NFW

profile (tNFW) [160] for our subhalos:

ρtNFW(R) =
mNFW

4πR(R + rs)2

(
r2

t

R2 + r2
t

)
, (5.31)

which is also shown in Fig. 5.1. Here, R is the three-dimensional distance from the center

of the subhalo and rt is the tidal radius. Observe that for R � rt, the density profile

decays quickly as R−5. Basically, our truncation scheme is meant to reflect that any

dark matter particles outside rt are tidally stripped as the subhalo undergoes a full orbit

within its host. The tidal radius thus evolves in time, generally getting smaller as the
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subhalo orbits within the tidal field of the host.

Projecting Eq. (5.31) along the line of sight leads to the following convergence profile

for a tNFW subhalo [160]

κtNFW(x) =
mNFW
Σcritr2

s

τ 2

2π(τ 2 + 1)2

[
τ 2 + 1

x2 − 1
(1− F (x))

+ 2F (x)− π√
τ 2 + x2

+
τ 2 − 1

τ
√
τ 2 + x2

L(x)

]
, (5.32)

where

x =
r

rs

, τ =
rt

rs

, (5.33)

F (x) =
cos−1(1/x)√

x2 − 1
, (5.34)

L(x) = ln

(
x√

τ 2 + x2 + τ

)
. (5.35)

The scale mass mNFW is related to the total subhalo mass m via the relation [160]

m =
mNFWτ 2

(τ 2 + 1)2

[
(τ 2 − 1) ln(τ) + τπ − (τ 2 + 1)

]
. (5.36)

The parameter τ is similar to the concentration parameter, cvir = Rvir/rs, which measures

how concentrated the mass of a halo is since most of the mass is contained within rs. The

tidal radius and virial radius are not necessarily the same however, so cvir 6= τ .

In the notation of Sec. 5.1, the internal structure parameters for a truncated NFW

subhalo are simply q = {rs, rt}. Here, we adopt the following phenomenological relations
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Figure 5.1: Density profile for a regular NFW profile (dashed red) and a truncated NFW profile (blue)
for τ = 15 and m = 106 M�. The dotted and dashed-dotted gray lines represent the scale and tidal

radius, respectively.

between the internal structure parameters and the subhalo mass and position [113]:

rs = rs,0

(
m

m0

)γ
, (5.37)

rt = rt,0

(
m

m0

)1/3(
r3D

r3D,0

)ν
, (5.38)

where we adopt below a fiducial value of γ = 1/3 [179, 180], and ν is a parameter that

depends on the density profile of the host; for an isothermal profile ν = 2/3, while ν = 1

for a subhalo outside the scale radius of an NFW host [113]. The quantity r3D is the

three-dimensional distance between the subhalo and the center of the host galaxy, and

rs,0 and rt,0 are, respectively, the scale and truncation radii for a subhalo of mass m0 at

position r3D,0. For a pivot mass m0 = 106 M�, we adopt rs,0 = 0.1 kpc [179], rt,0 = 1

kpc, and r3D,0 = 100 kpc [139, 143].

In order to apply the result from the previous section, we need to know the distribution

Pq(rs, rt|m), which we assume can be written as

Pq(rs, rt|m) = Ps(rs|m)Pt(rt|m). (5.39)

We model the distribution for scale radii assuming that the scatter in the scale radius-
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mass relation Eq. (5.37) is normally distributed such that

Ps(rs|m) = N
(
rs,0

(
m

m0

)γ
, σrsrs,0

(
m

m0

)γ)
, (5.40)

where N (µ, σ) is a Gaussian probability distribution with mean µ and standard deviation

σ, and σrs is the fractional scatter about the scale radius-mass relation given in Eq. (5.37).

We take σrs = 0.2 throughout the rest of this chapter, but we note that this specific choice

has very little impact on our results.

Noting that r2
3D = r2 + h2, where h is the projection of r3D along the line of sight and

r is the projection onto the lens plane, the distribution of tidal radii marginalized over h

can be written as

Pt(rt|m, r) =
1

Z

∫
dh P3D

(√
r2 + h2

)
(5.41)

δ

(
rt − rt,0

(
m

m0

)1/3
(√

r2 + h2

r3D,0

)ν)
,

where P3D is the three-dimensional distribution of subhalos within the lens galaxy and

Z is a normalization factor equal to the projection integral,

Z ≡
∫
dh P3D(

√
r2 + h2) = Pr(r). (5.42)

Under the assumption that the projected distribution of subhalos is uniform, the

radial distribution of subhalos is simply equal to the inverse area of the strong lensing

region, Pr = 1/A. The choice of P3D to obtain this is not unique. However, in the limit

that the strong lensing region is probing only a small projected area of the host lens

galaxy, we can obtain a unique expression for Pt even when the distribution of subhalos

is nonuniform. As shown in Appendix C.1, the integral in Eq. (5.41) can be performed

in this limit to yield

Pt(rt|m) =
1

νRmax

r3D,0

rt

[(m0

m

)1/3 rt

rt,0

]1/ν

. (5.43)
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Figure 5.2: Subhalo mass function (Eq. 5.44) for different values of the power-law index β.

In the following we model the host as being isothermal, for which ν = 2/3 as stated above.

Note that Pt has no dependence on the subhalo position within the host, consistent with

the assumptions used in Sec. 5.1.

Lastly, we express the mass probability distribution as a power-law function [143]

dNsub

dm
= a0

(
m

m∗

)β
, (5.44)

where β = −1.9 and m∗ = 2.52 × 107 M�. This mass function is illustrated in Fig. 5.2

for different choices of β. We note that the constant a0, which normalizes the subhalo

mass function, and the average convergence κ̄sub are proportional to one another as per

Eq. (5.14). Typical gravitational lenses have an average convergence in the range 0.003 <

κ̄sub < 0.03 [99], so we normalize the subhalo mass function such that κ̄sub = 0.02.

Although we do not require the convergence field to be Gaussian, nor do we assume it,

we do limit the large non-Gaussian contributions from the few most massive subhalos by

setting an appropriate upper bound on the subhalo mass range included in our analysis.

In practice, the maximum subhalo mass to include in the substructure convergence power

spectrum calculation should be dictated by the dataset used to measure it. Indeed, the

spatial resolution, pixel size, and the signal-to-noise ratio of the data specifies a subhalo

mass sensitivity threshold below which a statistically significant direct detection of a

subhalo is unlikely. For high-quality space-based optical data, this threshold could be

as low as ∼ 108 M� [109], while for interferometric data it could reach ∼ 107 M� [111].

Here, we adopt a fiducial value of mhigh = 108 M�. The minimum subhalo mass we
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consider is mlow = 105 M�. As we will show below, the specific choice of mlow is largely

inconsequential as long as mlow � mhigh.

5.2.2 Power spectrum: 1-subhalo term

We can now apply the formalism developed in Sec. II to a population of tNFW subhalos

to study how the abundance, density profile, radial distribution, and subhalo sizes affect

the convergence power spectrum. In this case, Eq. (5.28) for the 1-subhalo term becomes

P1sh(k) =
κ̄sub

〈m〉Σcrit

∫
dm m2 Pm(m)

∫
drs drt Ps(rs|m)

× Pt(rt|m) |κ̃(k, rs, rt)|2. (5.45)

Analytical discussion

For typical Poisson realizations of a population of spherically symmetric tNFW subhalos,

we expect the behavior of the 1-subhalo term to depend mostly on three quantities: a

low-k power spectrum amplitude, a turnover scale ktrunc corresponding approximately to

the size of the largest subhalos, and an asymptotic high-k slope dictated by the small-r

behavior of the subhalo density profile, which takes over for k � kscale (defined below).

For small k values, we expect the 1-subhalo contribution to the power spectrum to

plateau to a constant value since taking k → 0 makes J0(kr) → 1 in Eq. (5.28), in

which case κ and P1sh are k-independent. Another way to understand this low-k plateau

is to realize that subhalos can be modeled as point masses, i.e. κ̂i = δ(2)(r − ri), on

scales larger than the biggest subhalo’s truncation radius, hence leading to P1sh(k) =

κ̄sub〈m2〉/(〈m〉Σcrit). With κ̄sub = 0.02 and our choice for the mass function parameters

described above, we expect a low-k amplitude of ∼ 10−4 kpc2.

As k is increased, the power spectrum begins probing the actual density profile of the

subhalos, leading to a suppression of the power compared to the pure point-mass case.

This turnover scale is determined by the truncated size of the largest subhalos, since this

is the largest scale in the problem relevant to the 1-subhalo term. We therefore expect

that this turnover is going to occur near a scale that corresponds to the inverse of the
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tidal radius of the largest subhalo: ktrunc ≡ 1/rt,max.

As k is further increased, the 1-subhalo term probes the intermediate scales between

the typical truncation and scale radii of the tNFW subhalo population. Finally, we expect

the convergence power spectrum to asymptote to a power-law behavior at large k where

it is probing scales deep within the NFW scale radius. This power law can be determined

by finding the small-x limit of the convergence profile given in Eq. (5.32),

κtNFW(x) −→ mNFW

2πr2
s Σcrit

(
ln

(
2

x

)
− 1

)
, x� 1, (5.46)

and taking the (2D) Fourier transform, which leads to

κ̃tNFW(k) −→ 1

(k rs)2
, krs � 1. (5.47)

This implies that P1sh(k) ∝ 1/k4 for krs � 1. We expect the power spectrum to reach

this slope at a scale below that of the smallest scale radii in the population. It is therefore

useful to define the wave number kscale ≡ 1/rs,min beyond which the convergence power

spectrum is a simple power law determined by the inner density profile of the subhalos.

Numerical results

Before ensemble-averaging over Ps and Pt, it is informative to consider the shape of the

convergence power spectrum for specific values of rs(m) and rt(m). Making the following

choices:

Ps(rs|m) = δ

(
rs − rs,0

(
m

109 M�

)γ)
, (5.48)

Pt(rt|m) = δ(rt − 15rs), (5.49)
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the 1-subhalo term takes the simple form

P1sh(k) =
κ̄sub

〈m〉Σcrit

∫
dm m2 Pm(m) |κ̃(k,m)|2. (5.50)

Note that Eq. (5.49) is equivalent to having a constant ratio for τ = rt/rs = 15, which is

not generally the case. From our expressions for the scale and tidal radius we expect τ

to lie in the range ≈ 1− 25, depending on subhalo mass and position.

Figure 5.3 shows the power spectrum defined in Eq. (5.50). Panel (a) displays the

features discussed in the preceding section, which have the expected behavior. The

asymptotic low-k amplitude is 1.2× 10−4 kpc2 and matches the amplitude of the power

spectrum of a population of point masses (black) with the same mass function. The

truncation scale, which for rt,max ' 7 kpc is ktrunc = 0.14 kpc−1 (dashed-dotted gray),

very closely matches the scale at which the power spectrum turns over, consistent with

the fact that this scale corresponds to the sizes of the largest subhalos. Furthermore, past

kscale = 21.5 kpc−1 (gray) the large-k behavior matches a power law 1/k4 (dashed red),

which again matches our expectation since in this regime we are within the scale radius

of even the smallest subhalos i.e., where the tNFW convergence goes as Eq. (5.46).

In the remaining panels we vary several parameters of relevance to the power spectrum.

Panel (b) shows the effect of changing the density profiles of subhalos by changing τ .

When we increase τ , we are keeping rs and m fixed while increasing rt, which means that

the subhalo size is increasing and subhalos are becoming less concentrated toward the

center. This has the effect of decreasing power on small scales and decreasing ktrunc.

Panels (c) and (d) both reflect changes in the subhalo mass function: the former

shows the result of varying mhigh and mlow, and the latter, the effect of making the power

law shallower. Both changes affect the low-k amplitude as well as the distribution of

power and slope on scales larger than ktrunc; to disentangle these two effects we keep the

quantity κ̄submeff = κ̄sub〈m2〉/〈m〉 fixed while changing the mass function, which makes

the low-k amplitude remain the same. In this manner, we can isolate the effects of the

subhalo mass function on the shape of the convergence power spectrum at high k. In

Panel (c) we see that decreasing mhigh by an order of magnitude adds power on small
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scales. Indeed, removing the largest subhalos and redistributing their mass among smaller

subhalos causes an increase in ktrunc, which adds power on small scales. Panel (c) also

illustrates the impact of increasing mlow from 105 M� to 106 M�. The resulting change to

the convergence power spectrum is rather small, reflecting the fact that the more massive

subhalos tend to dominate the behavior of the power spectrum. This also implies that

the convergence power spectrum shows little sensitivity to the low-mass cutoff of the

mass function. Finally, Panel (d) shows that, by making the power law shallower, we are

reducing power on small scales. To understand this effect, we refer the reader to Fig. 5.2,

where one can see that by making the logarithmic slope shallower, we are decreasing the

number of low-mass subhalos and are in fact increasing the number of subhalos more

massive than the pivot mass. Note that despite the change in the shape of the power

spectrum on intermediate scales, the spectra still match the 1/k4 power law of the fiducial

case at k & kscale.

Having gained some intuition into how different parameters in our model affect the

power spectrum, we can move on to the more general case where we perform ensemble

averages over the two intrinsic subhalo parameters: rs and rt. The 1-subhalo power

spectrum in this case is shown in Fig. 5.4. The fiducial model – shown in black in both

panels – corresponds to the parameter values for Pt and Ps, given in Eqs. (5.40) and

(5.43)), ν = 2/3 (isothermal lens) and γ = 1/3.

In each panel we show the effect of changing one of these parameters. Panels (a) and

(b) reflect changes in ν and γ, respectively. It is immediately obvious from Panel (a) that

changing the index ν has little impact on the convergence power spectrum, beside from

a slight redistribution of power at intermediate and small scales. This means that the

power spectrum will have limited sensitivity to the host galaxy’s density profile; on the

other hand, it also means that uncertainties on the density profile of the host will not

prevent the power spectrum from being an effective tool to study subhalo populations.

Panel (b) of Fig. 5.4 demonstrates that the power law in the scale radius-mass relation

can have a significant impact on the small-scale substructure convergence power spectrum.

As we increase γ, the minimum scale radius decreases quickly, and so kscale increases. In
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Figure 5.3: The 1-subhalo term of the convergence power spectrum of a population of truncated NFW
subhalos. The solid blue line that appears in every subfigure represents the fiducial model with τ = 15,
105 M� ≤ m ≤ 108 M�, rs given by Eq. (5.37) with γ = 1/3, and dNsub/dm given by Eq. (5.44)
with β = −1.9. Panel (a) shows the features outlined in Sec. 5.2.2: the low-k amplitude of the power
spectrum matches that of a population of point masses (solid black); the high-k slope is proportional to
1/k4 (dashed red); ktrunc ≡ 1/rt,max = 0.14 kpc−1 (dotted-dashed gray); and kscale ≡ 1/rs,min = 21.5
kpc−1 (solid gray). The dotted green line corresponds to the fitting function described by Eqs. (5.51)
− (5.56). In Panels (b) - (d) we change one parameter in the fiducial model while leaving the others
unchanged. (b): changing τ by keeping rs unchanged but increasing rt. (c): decreasing (increasing)
mhigh (mlow) by an order of magnitude. (d): decreasing the logarithmic slope of the mass function
down to β = −1.3. In Panels (c) and (d) κ̄submeff is held constant as the parameters are varied, where

meff ≡ 〈m2〉/〈m〉. Note the different horizontal axis in Panel (a) and Panels (b) - (d).
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Figure 5.4: Ensemble-averaged 1-subhalo term for a population of truncated NFW halos. The black
line that appears in both panels has parameter values equal to the fiducial model in Fig. 5.3 (except for
τ , which we do not fix). There are two additional parameters: ν = 2/3 and σrs = 0.2. Panel (a) varies
the power-law dependence of the tidal radius on r3D, Eq. (5.38). Panel (b) varies the power law of the

scale radius-mass relation, Eq. (5.37).

fact rs,min decreases by an order of magnitude as we change γ from 1/4 to 1/2. This has

the effect of adding power on small scales, as discussed in Sec. 5.2.2.

Another natural parameter to vary would be the scatter in the scale radius-mass

relationship, σrs . However, for a scatter of 20% or less, the impact on the convergence

power spectrum is much smaller than the change associated with varying the index γ, and

we therefore do not show it here. We also note that for a scatter larger than ∼ 20%, the

approximate model presented in Eq. (5.40) likely breaks down at small subhalo masses,

and should be replaced by a more realistic distribution of Ps(rs|m).

We find that the 1-subhalo term for a population of tNFW halos is well fit by a

function of the form

P1sh(k) =
g0

1 + g1k + (g2k)2 + (g3k)3 + (g4k)4 , (5.51)

where

g0 =
κ̄sub〈m2〉
Σcrit〈m〉

, (5.52)

g1 =
(1/3)

γ

〈τ〉rs,max

2π
, (5.53)
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g2 =

(
(1/3)

γ

)2 〈τ〉rs,max

2π
, (5.54)

g3 = rs,max, (5.55)

g4 =
〈m2〉∫ dmdrt drsm2Pm(m)Ps(rs|m)Pt(rt|m)

r4s

(
τ2

(τ2+1)2
[(τ2−1) ln(τ)+τπ−(τ2+1)]

)2

. (5.56)

As shown, the parameters gi are determined by the truncation, the scale radius, the mass

function, and the mass-concentration relation. We note that this fit works best for values

of γ ≤ 1/3, and starts deviating from the “true” curve for higher values of γ. In the

above, we have defined

〈τ〉 ≡
∫
dmdrt drsPm(m)Ps(rs|m)Pt(rt|m)

rt

rs

. (5.57)

The fitting function is shown as a dotted green line in Panel (a) of Fig. 5.3.

5.2.3 Power spectrum: 2-subhalo term

To find the total power spectrum we have to include the contribution of the 2-subhalo

term, given by Eq. (5.29). As explained in Ref. [181], the 2-subhalo term receives contri-

butions from two distinct effects. First, subhalos have, in general, a nonuniform spatial

distribution (Pr(r) from Eq. (5.6)) due to their interaction with the potential well of their

host halo. This so-called “host” contribution simply reflects the fact that subhalos can

be gravitationally bound to their host lens galaxy, hence leading to a local enhancement

of the convergence’s two-point function. Second, subhalos can form self-bound groups or-

biting their host galaxy. Due to tidal interactions with the latter, however, these subhalo

groups are not expected to survive for more than a few dynamical times, [181] and we thus

foresee their contribution to be subdominant. So far, this contribution to ξss(r) has not

been measured nor extracted from simulations, at least at the mass scale of interest (see
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Figure 5.5: Full convergence power spectrum (magenta) and individual contributions from the 1-
subhalo (blue) and 2-subhalo (green) terms, where the radial subhalo distribution used to calculate the

2-subhalo term is given by Eq. (5.58).

Ref. [182] for a measurement on cluster scales.). Due to this, we focus below on the host

contribution, but the reader should keep in mind that the subhalo group contribution

should be added in order to get a fully accurate estimate of the 2-subhalo term.

As an illustrative example, we choose a radial distribution of subhalos that is cored

and decays as 1/r for large r,

Pr(r) =
1

2π(a+ r)
(
Rmax + a log

(
a

a+Rmax

)) , (5.58)

where a = 10 kpc correponds to the core size. The total power spectrum Psub(k) is shown

in Fig. 5.5, together with the individual contribution of the 1- and 2-subhalo terms. On

large scales, for k . 0.1 kpc−1 = 1/a, the 2-subhalo term dominates, adding power and

changing the low-k slope from a constant to a power law. On small scales, however, the

1-subhalo term dominates (as expected), and the addition of the 2-subhalo term leaves

the power spectrum unchanged. Note that the oscillations at small k come from having

Pr(r) nonzero over a finite region in the lens plane.
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5.3 Truncated Cored subhalo population

In Sec. 5.1 we applied the convergence power spectrum formalism to a population of

truncated NFW subhalos, since CDM halos in simulations seem to universally have NFW

density profiles. We now apply the same methodology to a population of subhalos whose

density profiles approximate what we expect SIDM subhalos to look like: cored at the

center and with a large-r behavior similar to NFW. The idea is to gauge the extent to

which the power spectrum differs for NFW and cored profiles, which could be indicative

of the utility of this observable in discerning between CDM and a different dark matter

scenario in which halos are predicted to have cores instead, like SIDM. As we have

emphasized in preceding sections, there are essentially two types of ingredients that go

into the convergence power spectrum: the statistical properties of the subhalo population

and the internal subhalo parameters, which determine the surface mass density profile.

With respect to the first point, SIDM N -body simulations have shown that, at least

in the case of elastic scattering with cross section σ/m . 1 cm2/g, the spatial distribution

and number density of subhalos are largely unchanged [65–68]. Indeed, we expect that

the subhalo distribution on the lens plane will be largely intact with respect to the CDM

case since the volume occupied from the outskirts of the lens galaxy to the edge of its

central region, where dark matter self-interactions can play a role, is many orders of

magnitude larger than the volume occupied by the host’s core itself; in fact the latter

makes up about ∼ 2% of the total line-of-sight volume. Furthermore, simulations find

that there is essentially no change to the subhalo mass function for moderate dark matter

self-interaction cross sections (at least down to 106 M�; refer to Fig. 6 of Ref. [65] to see

both of these points).

With respect to the second point, there is a stark contrast between CDM and SIDM

dark matter halos due to the appearance of a central core in the latter. A common cored

density profile is the Burkert profile [183],

ρb(R) =
mb

4π(R + rb)(R2 + r2
b)
, (5.59)
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where rb is the core radius, and the scale mass mb is the mass within the core. Here we

set rb = p rs, where p is a constant that represents the size of the core as a fraction of the

scale radius. Furthermore, we also add a smooth truncation term, resulting in a profile

of the form

ρtBurk(R) =
mb

4π(R + p rs)(R2 + p2r2
s )

(
r2

t

R2 + r2
t

)
, (5.60)

where the total mass of the subhalo with this profile is given by

m = mb

τ 2
(
π(p− τ)2 + 4τ 2 log

[
p
τ

])
4(p4 − τ 4)

. (5.61)

We call this a truncated Burkert (tBurk) profile. Note that for a given p, the intrinsic

parameters for the tBurk subhalos are the same as for the tNFW ones: q = {rs, rt}.

This profile is shown in Fig. 5.6, where we show the tNFW profile and tBurk profile for

p = 0.7. This choice for p is motivated by the fact that Ref. [66] finds that for them, rb

in Eq. (5.59) corresponds to the CDM rs value of rb = 0.7rs. The tBurk profile exhibits a

characteristic bump expected in SIDM halos, which is due to the redistribution of mass at

the halo center caused by injecting kinetic energy from the outskirts of the halo towards

the inner regions [60].

Using Eq. (5.60) we find an analytic expression for the convergence:

κtBurk(x) =
mb

8πΣcritr2
s

τ 2

{
π

(
2p
√

1
τ2+x2

p4 − τ 4
−

√
1

x2−p2

p(τ 2 + p2)

−

√
1

x2+p2

p3 − pτ 2

)
+

2 arctan

[
p√
x2−p2

]
√
x2 − p2(p3 + pτ 2)

−

2 tanh−1

[
p√
p2+x2

]
√
x2 + p2(p3 − pτ 2)

+
4τ tanh−1

[
τ√

x2+τ2

]
√
x2 + τ 2(p4 − τ 4)

}
, (5.62)

where again x = r/rs and τ = rt/rs (refer to Appendix C.2 for details).

As stated above, we are assuming that the spatial distribution of subhalos within the

host dark matter halo remains essentially intact in going from CDM to SIDM. Under this

assumption, the 2-subhalo term should remain unchanged in going from one dark matter
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Figure 5.6: Density profile for a truncated NFW profile (solid blue) and a truncated Burkert profile
(solid green) for τ = 15, p = 0.7, and m = 106 M�. The gray dotted and dashed-dotted lines represent

the scale and tidal radius, respectively.

scenario to the other. Of course, realistically it is likely that the 2-subhalo term would

actually be different to some extent: as subhalos orbit the host, the friction felt between

the parent halo and the smaller subhalos would have an effect on the correlation of subhalo

positions, especially since this effect would affect different subhalo orbits asymmetrically.

Assuming the 2-subhalo term to be the essentially same as in the tNFW case, we

focus the rest of this section on the expected redistribution of power on small scales in

the 1-subhalo term. In the forthcoming discussion we will therefore explore the extent of

this high-k difference between the two density profiles we’ve chosen to be representative

of each dark matter scenario.

We follow an identical procedure to the tNFW case to determine the 1-subhalo term of

the power spectrum, which is shown in Fig. 5.7. We also show, for reference, the fiducial

tNFW case shown in blue in Fig. 5.3. There is a slight increase in power with respect

to the tNFW population on intermediate scales due to the redistribution of mass as the

core forms, followed by the expected decrease in power on small scales due to the actual

core. Despite these differences, we note that the changes of the substructure convergence

power spectrum on scales ktrunc . k . kscale in going from the tNFW to the tBurk case
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Figure 5.7: 1-subhalo power spectrum for a population of tNFW subhalos (solid blue; same fiducial
model as in Fig. 5.3) and tBurk subhalos (solid green). We also show ktrunc (dotted-dashed gray) and

kscale (solid gray), as well as the k � kscale behavior of both power spectra.

is well within the variation allowed by varying the statistical properties of the subhalo

population, i.e., the different effects shown across Figs. 5.3 and 5.4. This implies that

measurements of the power spectrum on these scales are unlikely to distinguish between

a cored or cusped subhalo profile.

On even smaller scales k � kscale, the tBurk power spectrum P1sh(k) begins to signif-

icantly deviate from its tNFW counterpart. Indeed, since the Fourier transform of the

truncated Burkert profile behaves as

κ̃tBurk(k)→ 8(p4 − τ 4)

τ 2
(
π(p− τ)2 + 4τ 2 log

[
p
τ

]) 1

(k p rs)4
, (5.63)

for k p rs � 1, the 1-subhalo term for a population of cored subhalos goes as P1sh(k) ∝

1/k8 for large k, much steeper than the 1/k4 expected for NFW subhalos. Therefore, if

at all measurable (see discussion below), the slope of the power spectrum on these scales

could be decisive in determining the inner density profile of subhalos, which in turn could

shed light on the particle nature of dark matter.
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5.4 Discussion and Conclusion

In this chapter we have introduced a general formalism to study the two-point correlation

function of the convergence field due to subhalo populations in strong gravitational lenses,

keeping in mind that the observables for these types of problems tend to be photon count

or surface brightness maps that exhibit multiple images due to the light from a back-

ground source (e.g. a quasar or a galaxy) having been warped by a massive foreground

object, namely the gravitational lens. Fundamentally, the crucial insight to be gained

from considering the convergence power spectrum is the ability to describe the effect of

substructure in a language that is closer to what strong lensing observations are directly

measuring. Indeed, while substructure lensing is often phrased in terms of the subhalo

mass function, gravitational lensing observations primarily constrain the length of the

deflection vectors at different positions on the lens plane. Since the power spectrum di-

rectly describes on which length scales the substructure contributes most to the deflection

field, it allows a more direct connection to the actual observations without introducing

an intermediate mass function. For the purpose of using lensing observations to extract

information about dark matter physics, it is nevertheless important to connect the power

spectrum language to the perhaps more familiar halo model of structure formation, for

which predictions for different dark matter theories are more readily available.

We have explored in depth how different subhalo population properties affect the

substructure convergence field, as well as how it differs for two alternative dark matter

scenarios: CDM, which we have represented as a population of tNFW subhalos, and

SIDM, where we used a truncated generalized Burkert profile to represent the subhalo

population.

Using the CDM scenario as our baseline, we found that the form of the 1-subhalo

term is largely determined by three key quantities: a low-k amplitude proportional to

κ̄sub〈m2〉/〈m〉, a turnover scale ktrunc where the power spectrum starts probing the density

profile of the largest subhalos, and the wave number kscale corresponding to the smallest

scale radii beyond which the slope of the power spectrum reflects the inner density profile

of the subhalos. We have shown that the first of these is directly related to subhalo
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abundance and specific statistical moments of the subhalo mass function. On the other

hand, the turnover scale is determined by the average truncation radius of the largest

subhalo included in the power spectrum calculation. On scales ktrunc . k . kscale, there

is significant variability depending on the statistical properties of subhalos - i.e. changes

to the tidal truncation, to parameters pertaining to the subhalo mass function, or to the

scale radius-mass relation can shift the distribution of power and slope on these scales in

a rather degenerate manner (see Figs. 5.3 and 5.4). This indicates that measurements of

the substructure convergence power spectrum might not be able to distinguish between

changes to these different subhalo statistical properties.

For SIDM-like subhalos with a truncated Burkert profile, much of the same discussion

applies. While in general the difference between the tNFW and tBurk power spectra is

well within the range allowed by varying subhalo population parameters (such as the

mass function), there is one defining characteristic that could set both scenarios apart:

the high-k slope. For a population of cored, tBurk subhalos, the high-k slope is much

steeper than for tNFW, and goes as 1/k8 as opposed to the 1/k4 behavior of tNFW.

While not discussed in this chapter, we note that a population of truncated isothermal

(“pseudo-Jaffe” [184]) subhalos would lead to a shallower substructure convergence power

spectrum going as 1/k2 at large wave numbers. Remarkably, the high-k (k & kscale) slope

appears robust to changes in other parameters that govern the statistical properties of

the subhalo population, despite the variation at intermediate wave numbers. Note that

this is true even when taking into account our lack of knowledge about the 2-subhalo

term, since it will not have a noticeable contribution on such small scales. Therefore,

determining the high-k slope of the power spectrum would be of particular interest since

it would allow us to distinguish between cusped and cored profiles, and more generally,

to determine the average small-r behavior of the subhalo density profile.

The Fisher forecast estimates of Ref. [117] (Fig. 5 in their paper) seem to imply that

∼ 10− 40 hour long ALMA observations would be able to measure the amplitude of the

power spectrum as well as ktrunc. However, based on their results, it seems unlikely that

these observations would be able to constrain the high-k slope of the power spectrum.
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Therefore, although we may characterize the abundance of subhalos and the average size

of the largest unresolved subhalos with ALMA, it appears unlikely that we will be able to

fully constrain the average density profile of subhalos. A measurement of the latter would

require a ∼ 10 pc-level resolution within an object that is cosmologically distant from the

Milky Way, a very difficult observation indeed, but not necessarily out of reach of very

long baseline interferometry. Even if such a measurement could be made, however, it is

likely that baryonic structures such as giant molecular clouds [185] and globular clusters

[186, 187] would contribute to the convergence power spectrum on these scales and could

contaminate the signal on scales k & 10 kpc−1.

There are several potential future directions to the work presented here. An immediate

next step would be to compare our analytical results to the substructure convergence

power spectrum extracted from high-resolution simulations. Such a comparison could

also allow us to obtain a better estimate of the magnitude of the 2-subhalo term, and

help us determine whether it can become more important than the 1-subhalo term on

larger scales. This is done in Chapter 6. It would also be interesting to estimate the

contribution to the convergence power spectrum from baryonic structures and line-of-

sight subhalos [155, 188, 189]. The line-of-sight contribution is the subject of Chapter

7. Our analysis could also be improved by allowing the internal shape of the subhalo

density profile to vary as a function of mass to take into account the fact that more

massive subhalos may be more affected by baryonic feedback (and thus allowing them to

form cores) than less massive subhalos. In order to combine measurements from different

strong lenses, it will also be of primary importance to understand how the substructure

power spectrum depends on the properties (e.g. redshift, concentration, stellar content,

etc.) of the host lens galaxy [190].

In this chapter, we have computed the lens plane-averaged (that is, the monopole)

substructure convergence power spectrum since it is the quantity that is most readily

extracted from observations. However, since lens galaxies are generally not spherically

symmetric (see e.g. Refs. [191, 192]), it is entirely possible that the substructure power

spectrum is not isotropic, and it might be fruitful to also consider the higher multipoles of
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the power spectrum, as it is done, for instance, in the case of the galaxy power spectrum

in large-scale structure surveys (see e.g. Ref. [193]). By breaking rotational symmetry a

new relevant scale could arise in the power spectrum, potentially breaking some of the

degeneracy between different astrophysical parameters that was exhibited in the power

spectra we considered in this chapter. In addition, it is possible that non-Gaussian sig-

natures encoded in the higher n-point correlation functions could also contain important

information about mass substructures within lens galaxies.

In conclusion, we have performed a detailed study of the amplitude and shape of

the substructure convergence power spectrum within lens galaxies. We have shown how

important features of the subhalo population get imprinted on the power spectrum. Based

on the sensitivity and resolution of near-future observations, it appears unlikely that

substructure power spectrum measurements would be able to probe the inner density

profile of dark matter subhalos. Nevertheless, such measurements will provide some

constraints on the abundance, mass function, and tidal truncation of low-mass subhalos

within lens galaxies, and thus constitute a key consistency test of the standard CDM

paradigm. In the event that the measured substructure power spectrum significantly

deviates from our CDM expectations, they may even shed new light on the particle

nature of dark matter.
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Chapter 6

Gravitational Lensing and the Power

Spectrum of Dark Matter

Substructure: Insights from the

ETHOS N-body Simulations

In this chapter, we present the first in-depth analysis of the dark matter substructure

power spectrum in zoom-in N -body simulations of galactic halos at redshifts relevant

to galaxy-scale strong lensing. We consider two high-resolution simulations of a Milky

Way-sized halo, one in which the simulation particles are modeled as being CDM (namely

they only interact gravitationally) and another in which they are allowed to self-interact

and a cutoff is imposed in the initial cosmological matter power spectrum. We use these

simulations to compute the substructure power spectrum and study its behavior as a

function of redshift and of dark matter microphysics.

We focus here exclusively on the contribution from the subhalos orbiting the main

lens galaxy to avoid complications related to multi-plane lensing. Since the line-of-sight

contribution [155, 156, 194, 195] to the power spectrum is unlikely to be correlated with

the galactic contribution we study here, it can be computed separately. This is precisely

the subject of the following chapter.



This chapter is organized as follows. In Section 6.1 we succinctly summarize and

rewrite some of the key equations from Chapter 5 in a format that will be beneficial

here. In Section 6.2 we present the main features of the simulations used in this chapter,

and in Section 6.3 we introduce our methodology. In particular, we calculate the power

spectrum in two different ways: one is akin to the halo model prescription, where matter

overdensities are assumed to be neatly packed into halos, and another where we make no

such assumption. Comparing these two methods is instructive because the substructure

within a lens is varied, and all contributions to the convergence that cannot be ascribed

to the main lens galaxy do not necessarily come from neatly distinguishable subhalos. In

Section 6.4 we present our results and we conclude in Section 6.5.

6.1 The Power Spectrum of Dark Matter Substruc-

ture within galaxies

Recall that the power spectrum of the substructure convergence field can be written as

the sum of a one-subhalo and two-subhalo contributions

Psub(k) = P1sh(k) + P2sh(k), (6.1)

where

P1sh(k) =
κ̄subΣcrit

〈m〉
〈κ̃(k)2〉, (6.2)

and

P2sh(k) =

(
κ̄subΣcrit

〈m〉

)2

〈κ̃(k)〉2Pss(k). (6.3)

κ̃(k) is the Fourier transform of the subhalo convergence profile, Pss(k) is the Fourier

transform of the subhalo spatial two-point correlation function (describing subhalo clus-

tering), and the angular brackets represent an ensemble average over subhalo properties
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such as their mass, truncation radius, and scale radius.

While the substructure power spectrum given in Eq. (6.1) is in principle anisotropic

due to the complex structure of a typical galaxy, we expect the isotropic (monopole)

contribution to dominate the signal within the small region probed by strong lensing.

This monopole power spectrum is simply given by

Psub(k) =
1

2π

∫ 2π

0

Psub(k) dφ, (6.4)

where φ is the polar angle of the k vector. We will focus on this isotropic contribution

in the remainder of this chapter.

6.2 Simulations

The N -body simulations used in this work are the ETHOS (Effective Theory of Struc-

ture Formation) simulations, originally presented in Ref. [60]. The goal of the ETHOS

project [196, 197] is to understand how the fundamental dark matter microphysics affects

structure formation on a broad range of scales. To this end, five different dark matter

models were investigated: a cold dark matter (CDM) scenario and four scenarios that

explore the dark matter parameter space that includes dark matter-dark radiation (DM-

DR) interactions, which are responsible for a primordial cutoff in the power spectrum,

and self-interacting dark matter (SIDM), labeled ETHOS1-4 depending on the choice

of parameter values. In this work we focus on the CDM simulation together with the

ETHOS4 model, which has been chosen to reproduce the observed kinematics and prop-

erties of Milky Way (MW) dwarf spheroidals.1 We refer the reader to Refs. [60, 196] for

more details about the ETHOS4 dark matter model, including the values of the particle

physics parameters used in the simulations.

The simulations are initialized at z = 127 within a 100h−1 Mpc periodic box, from

which a MW-sized halo (1.6× 1012 M�) is chosen to be resimulated. The parent simula-

1Note that the halos in the CDM and ETHOS4 simulations have the same initial conditions (but of
course differ in the initial power spectrum and dark matter microphysics).
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tion has 10243 particles, a mass resolution of 7.8 × 107h−1 M�, and a spatial resolution

(Plummer-equivalent softening length) of ε = 2h−1 kpc. They are thus able to resolve

halos down to ∼ 2.5×109h−1 M� with 32 particles. They re-simulate the MW-sized halo

to different resolution levels. For this work we use the highest resolution simulation (level

1), where the dark matter particle mass is mDM = 2.756× 104 M�, ε = 72.4 pc and there

are approximately 4.44× 108 high-resolution particles in each zoomed-in simulation.

The cosmological parameters used in the simulations are: Ωm = 0.302, ΩΛ = 0.698,

Ωb = 0.046, h = 0.69, σ8 = 0.839 and ns = 0.967. The Ωi are the density parameters for

matter (m), dark energy (Λ) and baryons (b). h is defined as h ≡ H0/100, where H0 is

the Hubble constant. σ8 is the amplitude of fluctuations on a scale of 8h−1 Mpc, and ns

the primordial index of scalar fluctuations.

6.3 Methods

We extract the substructure power spectrum from the simulations in two ways. We first

do so by using the subhalo catalogs obtained using the SUBFIND algorithm [198] after

applying a friends-of-friends (FoF) halo finder with linking length b = 0.2. This procedure

yields positions for all the detected subhalos together with several subhalo properties,

such as the mass, half-light radius, maximum circular velocity, etc. This method is

particularly advantageous because it is easier to compare to theoretical predictions, since

it closely matches the notion of substructure in the halo model. Furthermore, it allows

us to study novel properties of the convergence power spectrum, such as the contribution

and detectability of different mass bins. We also extract the power spectrum directly

from the particle data in the simulation snapshots (which we shall henceforth refer to as

simulation snapshots for brevity) of the zoomed-in MW-like halo. The advantage of this

method is that we do not impose any notion of how a subhalo is defined, meaning that

all substructure within the simulated galactic halo is captured.

In our fiducial analysis we use the simulation snapshot (and its derived subhalo cat-

alog) at z = 0.5 (a typical redshift for a lens galaxy), and place the background source
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at z = 1.5. With the cosmological parameter values used in the simulations this yields a

critical density for lensing Σcrit = 2.35× 109 M�/kpc2.

Figure 6.1 shows the projected density field obtained from the simulation snapshots

(top two panels) and built from the subhalo catalogs (bottom two panels) with no

mass/resolution threshold imposed. In the middle two panels we have superimposed

a host profile on the convergence field obtained from the subhalo catalogs, to serve as a

direct comparison to the simulation snapshots. See the section below for details on how

this was done. Note that, despite the fact that Milky Way-like halos are generally less

massive than typical galaxy-scale gravitational lenses, the two halos we are considering

here are not far from being critical, with their convergence fields peaking around 0.3.

6.3.1 Power spectra from subhalo catalogs

We first extract the three-dimensional (3D) subhalo positions from the subhalo catalogs.

We only keep subhalos within a comoving cube with side L = 300 kpc centered on the

main lens galaxy, and those that have more than 50 particles, which corresponds to a

minimum mass of 1.38× 106 M�. In our fiducial case we limit the highest subhalo mass

to 108 M�, since direct detection methods are expected to be able to detect subhalos

above this mass in strong lensing images [107, 111, 199]. For completeness, we will also

display power spectra that include these more massive subhalos.

To emulate ensemble averaging we project the 3D positions onto Nproj different lens

planes, which replicates observing different lines-of-sight. We thus end up with Nproj

two-dimensional (2D) maps of projected positions {Hp}, where the index p reflects which

projection the map corresponds to. We emphasize that considering Nproj different projec-

tions of the same galaxy can underestimate the variance of the power spectrum: Ref. [200]

compared the variance with 1000 projections of a same subhalo population and that of

1000 independent subhalo populations, and found that the latter was significantly larger.

They did however find that the difference between both scenarios was much smaller when

the largest subhalos are removed (they imposed mhigh = 109 M�), meaning that for our

fiducial case we don’t expect to be underestimating the variance so drastically.

112



Figure 6.1: Top left : convergence field from the particle data for the CDM simulation at z = 0.5.
Top right : convergence field from the particle data for the ETHOS4 simulation at z = 0.5. Middle left :
convergence field from the subhalo catalog for the CDM simulation at z = 0.5 with a truncated NFW
fit to the host superimposed. Middle right: convergence field from the subhalo catalog for the ETHOS4
simulation at z = 0.5 with a truncated Burkert fit to the host superimposed. Bottom left : convergence
field from the subhalo catalog for the CDM simulation at z = 0.5. Bottom right : convergence field
from the subhalo catalog for the ETHOS4 simulation at z = 0.5. The white square in the bottom two
panels is centered at the origin and has a size of L = 100 kpc, therefore it represents the region under

consideration in the fiducial case.

Subhalos in the CDM simulations are shown to be well fit by NFW profiles, so we

fit a (truncated) NFW convergence profile to each subhalo in the projected map (see

Appendix D.1). This profile is determined by three subhalo parameters: the total mass
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m, the scale radius rs and the tidal truncation radius rt. Note that truncating the NFW

profile ensures that each subhalo has a total finite mass.

The subhalo finder assigns a gravitationally-bound mass to each subhalo, which we

identify with the total mass parameter m of a truncated NFW subhalo. We obtain the

scale radius of our subhalos using the well-known relation rmax/rs = 2.1626 [201] for the

NFW profile, where rmax is the radius at which the maximum circular velocity of the

subhalo is attained, which the subhalo finder computes. We finally set the value of the

tidal radius rt by numerically solving the nonlinear relation 2m(< rhalf) = m, where rhalf

is the radius containing half the subhalo mass, which is also reported by the subhalo

finder.2

Due to the presence of dark matter self-interaction, the subhalos in the ETHOS4

simulation are instead fit with truncated Burkert profiles (see Appendix D.1), which can

be fully specified by three parameters, namely the total massm, the Burkert radius rb, and

the tidal truncation radius rt. It is useful to write the Burkert radius as rb = p rs, where p

defines the core size. We use a similar procedure as above to obtain the values of rs and rt

from the subhalo catalog, fixing p = 0.666 to ensure that the standard kinematic relation

rmax/rs = 2.1626 is preserved. As a check of our calibration procedure, we compute the

predicted values of vmax from our Burkert fits and compare those to the corresponding

catalog entries, finding at most a 20% scatter between these values.

Notice that, although we have included all the subhalos within a cube with side

L = 300 kpc, strong lensing cannot probe such a large area transverse to the line of

sight (LOS). Therefore, after projecting we limit the box size to either L = 100 kpc,

i.e. ±50 kpc from the host center, or L = 200 kpc, depending on the scales we want to

probe. Conversely, strong lens images do give us access to the entire LOS volume of the

main halo, which is why it is important to first allow all the subhalos within the host

to be projected before limiting the box size transverse to the LOS to a more realistic3

2We note that we could have simultaneously solved for both rs and rt using the nonlinear relations
2m(< rhalf) = m and (dv2/dr)|rmax

= 0, where v is the circular velocity profile of the subhalo. Our tests
show that doing so leads to differences in the substructure power spectrum that are smaller than the
scatter between different projections.

3We note that our projected area with sides of comoving length L = 100 kpc is still larger than a
typical galaxy-scale strong lensing region. This allows us to capture the impact of subhalos that are on
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observable size.

Applying this procedure to the 2D position maps {Hp}, we obtain Nproj 2D conver-

gence maps {κp}, which we Fourier transform and square to obtain an estimate of the

2D power spectrum for each individual map |κ̃p(k)|2. A factor of A2
pix/Abox is neces-

sary to normalize each power spectrum, where Apix is the pixel area and Abox is the box

area. An estimate of the monopole substructure power spectrum Psub,p(k) from the pth

convergence map is finally computed by azimuthally averaging |κ̃p(k)|2,

Psub,p(k) =
1

2π

∫ 2π

0

|κ̃p(k)|2 dφ. (6.5)

Repeating this procedure for our Nproj maps, we can compute the average substructure

power spectrum P̄sub(k) as well as the 68th and 90th percentiles characterizing the distri-

bution of power spectrum values at each wavenumber. We generally find that for a given

k bin the power spectrum values are not Gaussian-distributed.

Carrying out this procedure we obtain the total subhalo power spectrum, including

both the one- and two-subhalo contributions (see Eq. (6.1)). It is however possible to

isolate the two-subhalo term by simply carrying out the procedure above directly from

the position projections. For each map Hp we create a 2D map S of

Sp,j =
Np,j − N̄p

N̄p

, (6.6)

where for the pth projection Np,j is the number of subhalos in the jth spatial pixel

and N̄p is the average number of subhalos per pixel. We can then follow the same

procedure to Fourier transform and azimuthally average to obtain Pss(k). The two-

subhalo contribution can then be computed according to Eq. (6.3) given a choice of the

subhalo convergence profile. It is important to avoid over-counting the subhalo clustering,

since it contributes both in the Pss(k) term and the 〈κ̃(k)〉 term. To avoid this issue when

isolating the two-subhalo term we randomize all the subhalo positions within a given

projection before making the convergence maps.

the outskirts of the strong lensing region but can still influence the lensed images.
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Finally, we want to point out that the smallest k mode accessible is determined by

the box size as kmin = 2π/Lbox, while the largest k mode accessible is determined by the

pixel size, kmax = 2π/Lpix = 2πNpix/Lbox, where Npix is the number of pixels on a given

size of the box. Unless otherwise mentioned, we limit the box size to Lbox = 100 kpc

(symmetrically centered about the host center). For computational efficiency we limit

the image resolution to be 501 × 501 pixels. Thus, kmin ≈ 0.06 kpc−1 and kmax ≈ 30

kpc−1.

6.3.2 Power spectra from simulation snapshots

The level-1 ETHOS simulations we use in this work contain almost half a billion particles,

meaning that it can be quite costly to carry out this analysis at the N -body particle level.

We use the publicly available code nbodykit [202] to perform parts of our analysis.4 All

its algorithms are parallel, which greatly expedites the analysis procedure.

Starting from particle catalogs, nbodykit can build a density mesh equal to 1 + δ(x),

meaning that to obtain the convergence field we have to rescale the mesh with factors of

the average number density of particles n̄, Σcrit, and the N -body particle mass mpart:

κ(x) =
n̄ mpart

Σcrit

(1 + δ(x)). (6.7)

Much like our analysis based on the subhalo catalogs, we limit the particles out to 300 kpc

from the host center, but we do not impose any resolution/mass thresholds for inclusion.

Unlike our catalog-based analysis where we were able to isolate the substructure con-

tribution κsub in Eq. (5.2), we instead directly obtain the total convergence κ from the

simulation snapshot. To isolate the substructure signal we are interested in, we therefore

have to subtract the main host halo contribution κ0. Our approach to remove this contri-

bution consists of averaging many different projections to approximate the host profile,

κhost(r) ≈ 〈κbox(r)〉, (6.8)

4nbodykit is an open source large-scale structure toolkit written in Python.
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and then subtracting this average map from a given projection p to obtain our estimate

of the 2D substructure power spectrum

|κ̃p(k)|2 =

[∫
d2r e−ik·r (κbox,p(r)− κhost(r))

]2

, (6.9)

before performing the angular averaging as in Eq. (6.5).

Due to the discrete nature of the simulation particles, we impose a conservative kmax

cut beyond which we do not trust the results. For our choice of box size and Nmesh = 1024,

we impose kmax = 3 kpc−1.

6.4 Results

6.4.1 Subhalo catalog

Figure 6.2 shows the convergence power spectrum for the fiducial CDM (blue) and

ETHOS4 (cyan) simulations for the larger box size, L = 200 kpc. This larger pro-

jected area allows us to be sensitive to the two-subhalo term on sufficiently large scales.

For the CDM case, the two-subhalo term appears as an upturn in the power spectrum

for k . 0.06 kpc−1. To show that this upturn is indeed due to subhalo clustering we have

overlaid the isolated two-subhalo contribution in dashed red, obtained with the method

outlined in 6.3.1. As explained in Refs. [4, 181], this two-subhalo term corresponds to

the so-called “host” contribution arising because all subhalos are gravitationally bound

to their host galaxy. Of course, such small values of k are unobservable with the small

field of view of typical strongly lensed images.

This figure has been made with 90 different projections. The solid lines correspond

to the median and the shaded regions to the 68% and 90% confidence level areas. The

vertical dashed line corresponds to the truncation wavenumber for the CDM simulation,

defined as ktrunc ≡ 1/rt,max. As predicted in Ref. [4], the break in the power spectrum is

related to the size of the largest subhalos and the two-subhalo term becomes dominant

below ktrunc. We can see that the amplitude of the one-subhalo term is well approximated

117



Figure 6.2: Substructure convergence power spectrum from the subhalo catalog at z = 0.5 and mhigh =
108 M� for both the CDM (blue) simulation and the ETHOS4 (cyan) simulation for a box with side
L = 200 kpc. The shaded gray horizontal region shows the predicted amplitude from Ref. [4] with κ̄sub

and meff (and their associated errors) obtained from the CDM simulations, and the vertical dashed line
is the median ktrunc ≡ 1/rtrunc,max. The red dashed line is the isolated two-subhalo contribution for the

CDM simulation. The wavenumbers k are in comoving coordinates.

by κ̄submeff/Σcrit (just as for ktrunc we only show this for the CDM simulation for clarity,

but the same applies to the power spectrum obtained from the ETHOS4 simulation). The

amplitude of the power spectrum is noticeably lower in ETHOS4, since there are many

fewer subhalos. This dearth of small-mass subhalos is also responsible for the steeper

slope at k & 1 kpc−1 in ETHOS4. The power spectrum slope on these scales appears as

a key observable that can probe the abundance of small-mass subhalos in lens galaxies.

Finally, we can see that the two-subhalo term does not appear to contribute significantly

to the ETHOS4 power spectrum on large scales. Indeed, the small overall number of

subhalos in this case makes it difficult to probe the subhalo clustering signal.

In Figure 6.3 we show how the power spectrum shape and amplitude change as a

function of redshift (top) and highest subhalo mass included (bottom) for the CDM (left)

and ETHOS4 (right) simulations. The fiducial cases are kept in the same color as in Figure

6.2 (but notice that with L = 100 kpc the two-subhalo term is no longer clearly discernible

in the CDM simulation). For the redshit evolution, we consider three different epochs:

z = {0, 0.5, 1}. These redshifts correspond to the redshift of the simulation snapshot

from which the subhalo catalog was obtained. For all cases, the source is assumed to be

at z = 1.5.
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Figure 6.3: Top Left : redshift dependence of the convergence power spectrum times the critical density
for the CDM simulation. Top Right : redshift dependence of the convergence power spectrum times the
critical density for the ETHOS4 simulation. The critical density has been factored out to isolate the
redshift evolution of the host. Bottom Left : mass dependence of the convergence power spectrum for the
CDM simulation. Bottom Right : mass dependence of the convergence power spectrum for the ETHOS4
simulation. Note that the y-axis is the same for a given row but differs between rows. The wavenumbers
k are in comoving coordinates. *As discussed in the text, the z = 0 power spectra are computed using
the subhalo catalog at z = 0 but the distance between the observer and the lens Dol is fixed to be the

same as for a lens at z = 0.5 because Σcrit diverges as z → 0.
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Since the convergence and the Einstein radius become ill-defined quantities as zlens →

0, we artificially put our simulated z = 0 lens galaxy at a redshift zlens = 0.5 in order to

compute their convergence field. In order words, we use the critical density for lensing

Σcrit corresponding to having a lens at z = 0.5 and source at z = 1.5 to compute the sub-

structure convergence field of our simulated z = 0 galactic halo. For the other two epochs

(z = {0.5, 1}), Σcrit is computed self-consistently using the redshift of the simulated halo

as the lens redshift.

Note, however, that to isolate the effect of the redshift evolution in the top two panels

of Figure 6.3 we plot the product PsubΣcrit, since the value of the critical density changes

between z = 1 and z = 0.5 by about a factor ∼ 2. This means that any differences in the

three curves are telling us something about subhalo accretion and evolution within the

lens halo.

The redshift dependence shown in Figure 6.3 qualitatively agrees with what one would

expect within the standard cosmological evolution: as we approach z = 0, more subhalos

are accreted into the host halos, implying that the amplitude of the power spectrum

increases. This increase is more pronounced in the CDM case as more subhalos with

m < 108 M� are accreted between z = 0.5 and z = 0 in this model. Also, as subhalos are

accreted and move closer to the host center, mass loss due to tidal interaction becomes

important. For the ETHOS4 simulation, we find that this leads on average to a reduction

of the effective subhalo mass meff between z = 0.5 and z = 0, which partially compensates

the slight increase in κ̄sub to leave the low-k amplitude nearly unchanged5. Furthermore,

the much larger total number of subhalos in the CDM case also means that the two-

subhalo term makes a non-negligible contribution at z = 0, which tends to increase the

magnitude of the redshift evolution in this case. In contrast, the ETHOS4 model does

not get a significant two-subhalo contribution at z = 0.

Another important aspect of the redshift evolution is the difference in the power

spectrum slope for k & 2 kpc−1. Again, this effect is more apparent in the ETHOS4

simulation than in the CDM simulation due to the lower central densities of subhalos in

5Refer to Appendix D.2 for meff and κ̄sub values at z = {0, 0.5, 1} for the two different simulation
suites: Tables D.2.1, D.2.1, and D.2.1 for CDM; and Tables D.2.2, D.2.2, and D.2.2 for ETHOS4.
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the former, making them more susceptible to tidal effects and mass loss. We indeed find

that the substructure mass fraction in subhalos with m < 107 M� grows more rapidly

between z = 0.5 and z = 0 in the ETHOS4 case compared to the CDM case, hence

leading to a net transfer of power from larger to smaller scales in the power spectrum.

This in turn results in a shallower slope for k & 2 kpc−1 at z = 0 as compared to z = 0.5.

The three different upper mass thresholds we consider in the lower panels of Figure

6.3 are: mhigh = {108 M�, 109 M�} and “All subhalos”, where “All subhalos” means we

include all subhalos above the resolution threshold. The behavior as a function of mass

similarly shows the intuitive notion that, as we increase mhigh, the amplitude increases

due to the fact that both meff and Nsub increase. The error bars are much larger for the

case where all the subhalos are included because there are only a handful of subhalos with

mass > 109 M�, and they do not always get projected into the center-most region of the

host. In the projections where even a single one of these subhalos is projected into the

region of interest the amplitude is higher by about an order of magnitude. This shows

that the low-k amplitude (k . 1 kpc−1) is largely determined by the largest subhalos,

as described in Refs. [4, 117, 200]. Note that for the “All subhalos” ETHOS4 power

spectrum the lower bound is very small. This is simply due to the fact that, except for

the rare cases when a very massive subhalo gets projected into the center-most region,

the highest subhalo mass across projections is nearly constant for this simulation. On

the other hand, for the CDM simulation the upper mass bound displays more variation,

which is why the lower bound is larger.

A question that often comes to mind when discussing the substructure power spec-

trum is which mass scale is this observable most sensitive to. It is generally assumed

that the largest subhalos within the strong lensing region dominate the observable power

spectrum signal, since subhalos of higher mass generally warp images more. However,

what we find here is more subtle. Figure 6.4 shows the decomposition of the dimension-

less6 convergence power spectrum into four different mass bins together with the power

6The dimensionless power spectrum is defined (in 2 dimensions) as usual:

∆2
sub(k) ≡ k2Psub(k)

2π
.
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spectrum including all subhalos with masses below 1010 M� for four different projections

in the CDM simulation (one in each panel). Surprisingly, it can be seen that the 107−108

M� subhalos dominate the signal almost entirely on scales 2 kpc−1 . k . 15 kpc−1. Sub-

halos with masses between 109 − 1010 M� are quite rare, and in fact sometimes are not

even present (e.g. lower right panel) in the strong lensing region. When present, they

can of course dominate the signal at the lowest wavenumbers as discussed above, but

they generally do not make the largest contribution to power spectrum on all observable

scales. Another somewhat surprising element shown in Figure 6.4 is the relatively small

contribution that the 108−109 M� subhalos make to the overall power spectrum. Despite

being quite numerous and fairly massive, they have a lesser contribution to the overall

signal than their less massive counterparts, except possibly at the lowest wavenumbers.

A similar decomposition is done for the ETHOS4 simulations, and it is shown in

Figure 6.5. It can be seen that the ETHOS4 projections display more variability than

their CDM counterparts, due to the fact that there are many fewer subhalos. Even in this

case, subhalos with mass m < 108 M� seem to make on average a sizable contribution

on scales 2 kpc−1 . k . 15 kpc−1.

122



Figure 6.4: Decomposition of the CDM substructure power spectrum into its contributions from sub-
halos in different mass ranges. Note that the wavenumber axis is shown here on a linear scale. The four
panels show different projections of the CDM subhalo populations. The blue squares show the substruc-
ture power spectrum including all subhalos with masses less than 1010 M�, while the other point types
show the contributions from separate mass bins. We note that the contribution from the most massive
subhalos included here (109 M� < Msub < 1010 M�) varies significantly between different projections,

with them making no contribution in the lower right panel.
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Figure 6.5: Same as Figure 6.4 but for the ETHOS4 simulation.

6.4.2 Snapshot particle data

The host convergence field obtained by averaging projections along different LOS in the

CDM simulation is shown in Figure 6.6. The power spectra for both simulation suites

are displayed in Figure 6.7. The top (bottom) panel corresponds to the CDM (ETHOS4)

simulation. The solid blue line is the power spectrum obtained from a single projection of

the N -body particles, without having performed any host subtraction. The dashed blue

line is the power spectrum after removing the host contribution from a single projection

map, thus approximating the power spectrum due to the substructure, as per Eq. (6.9).

The green line is that of the average convergence map, i.e. approximately the host (the

Fourier transform of Figure 6.6).

There are several notable features in these figures. First of all, notice the suppression

in power at high k of the green lines compared to the solid blue lines, which shows that

the averaging procedure is indeed removing the contribution from substructure on these

scales. Furthermore, when the host is subtracted (dashed lines), a lot of power is lost
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Figure 6.6: Convergence field of the host in the CDM simulation found by averaging many projections
along different LOS, as per Eq. (6.8).

at low k but conversely we regain the power on small scales, which corresponds to the

substructure convergence field remaining after the host is removed.

The overall amplitude is the same for both simulations, since both simulations have

roughly the same number of particles in the region of interest. However, in the host and

in the substructure power spectra at high k (> 1 kpc−1) we can still see the suppression

of power of ETHOS4 with respect to CDM due to the cutoff in the initial matter power

spectrum (and to the self-interactions, albeit to a lesser extent), which causes both a

suppressed number of small-mass subhalos and reduced central densities for the remaining

ones.

In both figures we also overlay the catalog power spectra with no high mass cut

(i.e. the same two red lines as in Figure 6.3). Unexpectedly, at high k the amplitude

of the power spectra derived from the catalogs is higher than that obtained from the

corresponding particle snapshot when looking at the CDM simulation (and comparable

in the ETHOS4 simulation). We expected the opposite since when we Fourier transform

the full simulation box we are capturing all the substructure (e.g.tidal debris), not just

objects found by the halo finder. However this can be understood by considering the

discrete nature of the simulation particles, and the fact that when we reach very small

scales (i.e. around the scale radius of subhalos) there are in fact only a handful of

particles. By instead imposing a smooth, truncated NFW profile at the catalog level we

are artificially boosting the high-k signal with respect to the particle power spectrum.
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Figure 6.7: Power spectrum of the full simulation snapshots at z = 0.5. The CDM (ETHOS4)
simulation is in the top (bottom). The solid blue line is the power spectrum of the full projected field.
The green line is the power spectrum of many projections averaged together, which approximates that
of the host halo (as per Eq. (6.8)). The dashed blue line is the power spectrum of a single projection
with the average map subtracted, yielding the power spectrum due to substructure (as per Eq. (6.9)).
In each plot we have overlaid the substructure power spectrum obtained from the catalogs in red, when

all the subhalos are included (i.e. the same red lines as in the bottom two panels of Figure 6.3).
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This effect is not quite as palpable in the ETHOS4 simulation since the truncated Burkert

fit is cored in the central regions. By looking at Figure 6.1 and comparing the projections

from the simulation snapshots and those built from the subhalo catalogs it becomes

apparent that a part of this discrepancy might also be due to the loss of ellipticity when

imposing spherically-symmetric convergence profiles.

Finally, notice that at small k the dashed lines lie within the 90% confidence band of

the catalog power spectrum. This is indicative of the fact that the very large substructure

in the lens is well captured by the halo finder, and since said structure dominates the

amplitude (as shown in the previous section), the particle and catalog power spectra are

similar on these scales. Note that because the dashed blue line is the power spectrum

obtained from a single projection we do not necessarily expect it to match the solid red

line. Nevertheless, it is also possible that there is an additional contribution coming from

the residual host halo profile, since we are approximating the host as being spherically

symmetric (Figure 6.6) but in the top panels of Figure 6.1 the host appears to have some

ellipticity.

6.5 Discussion and Conclusion

In this chapter we have provided a comprehensive study of the substructure convergence

power spectrum in N -body simulations. By comparing this observable in two simulations

within the ETHOS framework [60] that differ in their treatment of dark matter micro-

physics (both at early and late times, through dark matter-dark radiation interactions

in the former and DM-DM self-interactions in the latter) we have been able to identify

different ways in which details in the particle nature of dark matter can come to light

through this observable.

We chose to carry out our analysis in two different, but complimentary, ways. On

one hand, we have an idealized scenario in which all substructure is perfectly spherical

and identifiable, and can be fit with simple density profiles. On the other hand, we have

a scenario in which there are no assumptions or definitions built into what is considered
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to be a subhalo − instead we capture all the structure within the host halo. The former

method of course benefits from its simplicity: it allows us to clearly disentangle different

subhalo properties and their impact on the shape and amplitude of the power spectrum.

The latter, however, more closely approximates reality, where one cannot choose what

perturbs an image or an arc, and has to carefully think about how to account for the

mass distribution of the main lens galaxy itself.

By comparing the power spectrum obtained directly from the N -body particles with

that from the subhalo catalogs we saw that the halo model-based computation (as used

in Ref. [4]) is in fact an excellent approximation to the more detailed density field (as

captured by the simulation snapshots). As we mentioned above, this does break down at

high k, where the imposition of a smooth convergence profile leads to an overestimation

with respect to the N -body particle power spectrum on those same scales due to the finite

spatial resolution of the mass particles. On intermediate scales, the difference between the

catalog and particle power spectra is well within forecasted error bars for the convergence

power spectrum [120]. This result lends weight to the robustness of this observable to

study substructure populations at cosmological distances from the Milky Way.

Doing the catalog analysis we confirmed many of the properties outlined in Chapter

5 and brought to light several new ones. We were able to show how the amplitude

and shape of the power spectrum are related to the abundance, sizes, and masses of

subhalos. Furthermore, we showed the redshift evolution of the power spectrum, and saw

a difference in the standard CDM vs. DM-DR+SIDM scenarios: in the former we observed

an expected increase in the amplitude of the power spectrum as more substructure was

accreted; conversely, in the latter, between z = 0 and z = 0.5 there was nearly no change

in the amplitude in these two redshift bins. This was partly the result of the lower

total number of subhalos accreted during that time span in ETHOS4, as well the higher

susceptibility of ETHOS4 subhalos to tidal disruption which caused meff to shrink within

the strong lensing region. A non-negligible two-subhalo contribution at z = 0 for CDM

also helps explain the faster growth of the overall power spectrum amplitude in this latter

case.
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The other interesting effect that came to light when comparing the ETHOS4 redshift

evolution between z = 0 and z = 0.5 was the difference in slope on scales k & 2 kpc−1,

which reflected the changing subhalo mass function as the host evolves. Both of these

effects that appear in the redshift evolution of ETHOS4 - the amplitude and the slope -

offer exciting possibilities. In Ref. [4] the highest k values (& 100 kpc−1) were identified

as the most interesting region in the power spectrum to study the particle nature of

dark matter. This was unfortunate since it is unlikely that we will be able to measure

modes past k ∼ 100 kpc−1 in the near future, and baryonic structures of comparable

sizes would interfere with the isolation of the dark matter power spectrum slope on these

scales. However, here we have identified other ways of probing dark matter microphysics

that involve scales that can in fact be probed with current and future observations (0.1 ≤

k/kpc−1 < 100).

Furthermore, by looking into the mass decomposition of the power spectrum we found

that it is not exclusively sensitive to the most massive subhalos. For instance, we found

that the mass range 107−108 M� tends to dominate the power spectrum on intermediate

scales (2 kpc−1 . k . 15 kpc−1), particularly in the CDM simulation. In more standard

gravitational imaging searches for substructure, sensitivity is assumed to be an increasing

function of mass (and proximity to the images/arcs; see also e.g. Ref. [179] to see how

other parameters, like concentration, can affect distortions). In this different, statistical

approach we can see that this is no longer necessarily the case, and observations could

probe lower masses in the highly coveted subhalo mass function.

Our results highlight several important issues in the quest to constrain the particle

nature of dark matter with strong gravitational lensing. First, it confirms the statement

that statistical detection methods are sensitive to an unresolvable but numerous popula-

tion of subhalos. Furthermore, they show that that combining different lenses in order to

boost the signal-to-noise of a substructure power spectrum measurement is highly non-

trivial. Indeed, detailed models for the redshift evolution of the subhalo population for

different host properties would have to be included in the fit. The other side of that coin

is that when (if) observations are good enough to measure the power spectrum with a
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single lens, comparing the low-k amplitude with lenses at different redshifts can serve as

a diagnostic tool for dark matter deviations from standard CDM, be it an effect at early

time that is imprinted on the initial power spectrum and consequently delays structure

formation, or an effect at late times, like self-interactions that are strong (or weak but

inelastic [203]) enough to cause subhalo stripping and/or disruption. One would of course

also have to consider how the presence of baryons can disrupt substructure. Carrying this

analysis out with a hydrodynamical simulation would allow for more robust predictions

that can be compared with observations, since we know that on these scales baryonic

processes can have quite significant effects on the dark matter distribution. Some work

has been carried out to study the difference in distortions due to a population of globular

clusters versus dark matter subhalos [187], showing that milliarcsecond resolution images

could distinguish between these in direct detection efforts. But the impact on the power

spectrum has yet to be addressed.

We want to point out that the MW-like halos we have considered in this work are not

typical lens galaxies (recall that both halos are sub-critical, i.e. κ < 1). Gravitational

lenses at cosmological distances from our own galaxy in general have to be more massive

and dense to act as strong lenses (see, e.g., Ref. [204]). Such galaxies are expected to

have more substructure (since substructure content scales with host mass). On the other

hand, the increased central density in more typical strong lenses could increase subhalo

tidal disruption [174]. Quantifying these effects as a function of host halo density is an

interesting future step in understanding this observable.

We conclude this chapter by emphasizing that these statements are only strictly true

if the main contribution to the convergence power spectrum indeed comes from small

dark matter halos within the lens galaxy (what we have called substructure or subhalos),

which is a key assumption we’ve made. If it instead comes from field halos along the line

of sight, the conclusions to be drawn are different. We address this crucial distinction in

Chapter 7.
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Chapter 7

Quantifying the Line-of-Sight Halo

Contribution to the Dark Matter

Convergence Power Spectrum from

Strong Gravitational Lenses

In the previous four chapters we have discussed extensively how to extract and how to

interpret information pertinent to dark matter science on small scales from galaxy-galaxy

strong lensing systems. Despite showcasing different approaches, all four chapters were

based on the same fundamental premise that perturbations to the strong lens images are

due to substructure/subhalos, i.e. dark matter halos gravitationally bound to the lens

galaxy.

However, it has been claimed that a large (most likely larger) contribution to the

perturbations in strong lenses comes from free dark matter clumps along the line of sight

(LOS) [155]. These halos are commonly referred to as LOS halos or interlopers. This

claim is not surprising nor hard to believe. The entire line-of-sight volume, comprised of

a double-cone with base at the lens and ends at the observer and the source, is huge (far

larger than the LOS volume spanned by the lens, which is why generally the thin-lens

approximation is used in single-plane lensing). Their contribution to lensing observables



is an active area of study [156, 169, 205, 206] and recent analyses of strong gravitational

lenses have begun to take it into account when placing constraints on ΛCDM [21, 140, 207–

211].

In fact, it is crucial to take the LOS contribution into account before making any claim

about dark matter; otherwise, we risk wrongfully falsifying or reinforcing the standard

ΛCDM scenario. If, as expected, the contribution of interlopers really is greater than

that of substructure, this could be good news for the ability of lensing observations

to constrain the properties of dark matter: while subhalos are subject to messy, ill-

understood processes as they travel through the main lens halo (such as tidal disruption),

by virtue of being in the field, LOS interlopers are much less subject to environmental

effects that might cause them to be disrupted.

Let us present a toy example that illustrates both the benefit gained from having the

LOS contribution supersede that of subhalos and also how failing to take into account the

LOS contribution can bias any inference about the particle nature of dark matter. Let us

assume that the cold dark matter (CDM) paradigm really is the true dark matter model

in our universe. In this scenario, the subhalo mass function rises steeply at the low-mass

end and we expect a very high number of subhalos. However, if by traveling within

their host’s halo a large number of them are tidally disrupted, effectively disappearing,

the observable number of subhalos might be a lot smaller than the expected number of

subhalos under the CDM assumption. If the subhalo contribution is dominant, so we

only consider subhalos, we might wrongfully falsify CDM if we do not observe a certain

number of subhalos in a given mass range: for example, we may attribute the lack of halos

to warm or self-interacting dark matter. If the LOS contribution really is dominant, then

the lack of detection of halos in a given mass range is a much more faithful reflection of

the fact that there may be some exotic dark matter physics reducing the number of halos

with respect to the CDM expectation.

The importance of distinguishing between the subhalo and the interloper contributions
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can be succinctly illustrated with the following schematic equation:

SMF = HMF (M < Mhost) ∗ f(Mhost, zhost, {msub}, {zacc},M∗, SFR...), (7.1)

where SMF stands for subhalo mass function, HMF for halo mass function, and the

second term on the right hand side represents a function of the host lens mass (Mhost),

the host redshift (zhost), the subhalo population masses ({msub}), and the redshifts at

which they were accreted into the host ({zacc}), the stellar mass in the host (M∗), and

the star formation rate (SFR), among others. What this equation represents is the crucial

insight that the low-mass end of the HMF is not equal to the subhalo mass function. The

SMF is a processed version of the HMF, modified by a complicated interplay between

host properties, subhalo properties, and astrophysical/baryonic effects. This is relevant

to the convergence power spectrum because if it is dominated by substructure, it probes

the subhalo mass function, while if it is dominated by interlopers, it probes the halo mass

function. Clearly the latter is a much cleaner probe of the underlying dark matter theory

than the former.

In this chapter, we develop the formalism of the LOS contribution to the convergence

power spectrum, in contrast to the substructure contribution analyzed in the previous

two chapters. Because previous analyses have neglected the LOS contribution, some

features that have been deemed significant in past works may not be if the interlopers

are included in the analysis. Furthermore, the dominance of the interloper contribution

could facilitate deriving constraints on DM from the convergence power spectrum.

This chapter is organized as follows. In Section 7.1, we quantify the LOS contribution

to the convergence power spectrum analytically by deriving an effective convergence for

the LOS halos. In Section 7.2, we quantify the same contribution numerically by simulat-

ing a multi-plane lens system populated by LOS halos, then solving the multi-plane lens

equation without any approximation. We discuss our findings and conclude in Section

7.3.

We shall refer to the halo that dominates the strong lensing as the main lens, the LOS

halos as interlopers and the halos within the main lens as subhalos throughout the rest
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of this chapter. When we are agnostic to whether a perturbation is due to subhalos or

interlopers we refer to them as perturbers. Since we incorporate the LOS contribution to

the power spectrum formalism, we will exclusively refer to this observable as the (effective)

convergence power spectrum, instead of the substructure power spectrum, throughout the

remainder of this chapter. We assume flat ΛCDM cosmology when calculating distances

and the halo mass function.

7.1 Analytical Calculation

In the case where perturbations to strong-lens images are assumed to be caused by sub-

halos, the relative length scales in the problem are the physical size of the main lens along

the line of sight and the distance traveled by light rays from the source to the observer.

Obviously, the former is orders of magnitude smaller than the latter. Therefore, all the

mass that is doing the lensing can be thought of as being on a single thin-lens plane (aptly

called the thin-lens approximation). The convergence power spectrum calculation in this

case is relatively straightforward since the convergence field is well defined. The addition

of interlopers complicates the calculation since there is no well-defined convergence for

a case with multiple consecutive thin-lens planes where each one deflects the light rays

before they go onto the next plane. The angular deflections are not only added as vector

fields but also are coupled to each other.

In this section we circumvent these problems by defining an effective convergence for a

special case with a massive main lens coupled to low-mass interlopers. We will first go over

some fundamentals of multi-plane lensing before deriving this effective convergence and,

ultimately, arriving at expressions for the convergence power spectrum in the presence of

interlopers in front of and behind the main lens.

7.1.1 Multi-plane Lens Equation

We model the main lens and interlopers as N consecutive thin-lens planes at redshifts zi,

where i = 1, 2, ..., l, ..., N and i > j implies zi > zj (see Fig. 7.1). The main-lens plane
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is indexed by l and the source plane by s = N + 1.

Figure 7.1: A simplified 2D sketch of the strong-lens system with interlopers. This is an example of
a multi-lens plane system with N = 7 and l = 4. The orange line depicts the path that a single light
ray travels from the source to the observer. The vertical gray lines correspond to the interloper planes,
the vertical black line corresponds to the main-lens plane, and the vertical blue line to the source plane.
Dixi is the physical distance between the point where the light ray intersects the ith plane and the main
axis that connects the center of the source plane to the observer. Dsy = DN+1xN+1 is the physical

distance between the origin of the light ray and the center of the source plane.

Let us start with the multi-plane lens equation,

~y = ~x1 −
N∑
i=1

~αi(~xi), (7.2)

where ~y, ~x1 ∈ R2 are the positions on the source plane and image plane, respectively. ~xi

is the angular position and ~αi the deflection angle of the light ray at the ith lens plane.

Recall that, in strong gravitational lensing, the deflection angle is given by

~αi(~xi) =
1

π

∫
R2

d2~x
~xi − ~x
|~xi − ~x|2

κi(~x). (7.3)

κi is the convergence of lens plane i, defined as the projected mass density Σi weighted

by the critical surface density Σcrit,i,
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κi(~x) ≡ Σi(Di~x)

Σcrit,i

, (7.4)

Σcrit,i ≡
c2Ds

4πGDiDis

, (7.5)

where c is the speed of light and G is the gravitational constant. Di and Dij are the

angular diameter distances from the observer to the lens plane i and from lens plane i to

lens plane j, respectively. For each lens plane, the derivative of the deflection angle can

be written as

∂~αi(~xi)

∂~xi
=

κi + γ1,i γ2,i

γ2,i κi − γ1,i

 (~xi), (7.6)

which is a symmetric matrix because the deflection angle at each lens plane is the gradient

of the lensing potential, which is a scalar function [212]. Here γ1 and γ2 are shear terms

that determine the amount that the image is elliptically distorted.

The intermediate lens-plane positions can be obtained by the following recursive equa-

tion:

~xj = ~x1 −
j−1∑
i=1

βij~αi(~xi), where βij ≡
DijDs

DjDis

. (7.7)

Note that for j = s, ~xs = ~y, and βis = 1, we recover Eq. (7.2).

7.1.2 Effective Convergence for Interlopers

We want to define a single effective convergence that gives rise to images that are in-

distinguishable from those from a system with a main lens and interlopers. In general,

angular deflections of multiple lens planes cannot be recreated by a single lens plane, so

we will need to make some approximations in order to do so. In Section 7.2.2, we will

show that the error introduced by these approximations is minimal.

We consider interlopers that are multiple orders of magnitude less massive than the

main lens (an interloper with mass comparable to the main lens would distort the images

enough to be detected and modeled directly). In strong-lensing systems, images are
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formed near the Einstein radius θE of the main lens. We therefore use the Critical Sheet

Born (CSB) approximation [213], where the intermediate lens-plane positions are assumed

to be

~xi =


~x1 zi < zl

(1− βli) ~x1 zi > zl.

(7.8)

The underlying assumption is that the main lens does most of the lensing and the inter-

lopers only slightly perturb the image. More specifically, first it is assumed that the light

follows a path that is only deflected by the main lens. Then, the gravitational pull of an

interloper on the light is integrated over this path as a perturbation. These perturbations

are added to the angular deflections caused only by the main lens to get the final angular

deflections.

We take the derivative of the multi-plane lens equation (Eq. 7.2),

∂~y

∂~x1

= I −
l−1∑
i=1

∂~αi(~xi)

∂~x1︸ ︷︷ ︸
foreground

−∂~αl(~xl)
∂~x1︸ ︷︷ ︸

main-lens coupling

−
s−1∑
i=l+1

∂~αi(~xi)

∂~x1︸ ︷︷ ︸
background

, (7.9)

and define the effective convergence as

∂~α(~x1)

∂~x1

=

κeff + γ1,eff γ2,eff

γ2,eff κeff − γ1,eff

 (~x1), (7.10)

where

~α(~x1) ≡
s−1∑
i=1

~αi(~xi) (7.11)

is the total deflection angle. In Eq. (7.9) we decompose the sum over lens planes of Eq.

(7.2) into three separate terms: one for the foreground interlopers, one for the coupling to

the main lens, and one for the background interlopers. Due to the recursive nature of the

multi-plane lensing equation, and thus the different effect that interlopers have whether
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they are in front of or behind the main lens, these terms will each lead to different effective

convergences. In the remainder of this subsection we consider each term separately.

Foreground Interlopers

We derive the effective convergence for foreground interlopers by rewriting the second

term on the RHS of Eq. (7.9) using the CSB approximation (Eq. 7.8):

l−1∑
i=1

∂~αi(~xi)

∂~x1

=
l−1∑
i=1

∂~αi(~x1)

∂~x1

=
l−1∑
i=1

κi + γ1,i γ2,i

γ2,i κi − γ1,i

 (~x1). (7.12)

Thus, the effective convergence for foreground halos is simply the sum of each interloper’s

convergence up to the main lens:

κeff,fg(~x1) =
l−1∑
i=1

κi(~x1) =
l−1∑
i=1

Σi(Di~x1)

Σcrit,i

. (7.13)

By taking the continuum limit, we can write this as an integral over comoving distance

χ,

κeff,fg(~x1) =

∫ χl

0

dχ
a(χ)ρ̄m(χ)δ(χ, ~x1)

Σcrit(χ)
, (7.14)

where a is the scale factor, ρ̄m is the average matter density of the universe, δ is the

overdensity, and χl is the comoving distance to the main-lens plane. We can rewrite this

more concisely using the definition of the average matter density,

ρ̄m ≡
3H2

0

8πG

Ω0,m

a3
, (7.15)

where H0 is the Hubble constant and Ω0,m the matter density parameter:

κeff,fg(~x1) = C

∫ χs

0

dχWfg(χ) δ(χ, ~x1), (7.16)
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with C = 3Ω0,mH
2
0/2c

2 and

Wfg(χ) =


χ

a(χ)

(
1− χ

χs

)
χ ≤ χl

0 χ > χl.

(7.17)

Note that Wfg(χ) plays the role of a selection function for the foreground interlopers.

Main-Lens Coupling

The third term on the RHS of Eq. (7.9) corresponds to the coupling between the fore-

ground interlopers and the main lens. This term arises because a small angular deflection

by a foreground interloper not only shifts the image, but also shifts the location where the

light ray intersects with the main-lens plane, consequently altering the deflection caused

by the main lens.

The angular position at the lens plane can be found evaluating Eq. (7.7) at j = l:

∂~xl
∂~x1

= I −
l−1∑
i=1

βil
∂~αi(~x1)

∂~x1

= I −
l−1∑
i=1

βil

κi + γ1,i γ2,i

γ2,i κi − γ1,i

 (~x1). (7.18)

We can thus see that the effective convergence corresponding to this coupling term is a

weighted sum of the foreground interlopers:

κeff,cp(~x1) = −
l−1∑
i=1

βilκi(~x1). (7.19)

Following the same procedure as in Section 7.1.2, we take the continuum limit and write

this as an integral over the comoving distance,

κeff,cp(~x1) = C

∫ χs

0

dχWcp(χ) δ(χ, ~x1), (7.20)
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where the selection function is now given by

Wcp(χ) =


−χβχl
a(χ)

(
1− χ

χs

)
χ ≤ χl

0 χ > χl.

(7.21)

Background Interlopers

Finally, we derive an effective convergence for background interlopers by rewriting the

last term on the RHS of Eq. (7.9),

s−1∑
i=l+1

∂~αi(~xi)

∂~x1

=
s−1∑
i=l+1

∂~xi
∂~x1

∂~αi(~xi)

∂~xi

=
s−1∑
i=l+1

(1− βli)
∂~αi((1− βli) ~x1)

∂~xi
, (7.22)

where on the last line we have used the CSB approximation. The effective convergence

corresponding to the background interlopers is then

κeff,bg =
s−1∑
i=l+1

(1− βli)κi((1− βli)~x1). (7.23)

In the continuum limit, we get

κeff,bg(~x1) = C

∫ χs

0

dχWbg(χ) δ(χ, (1− βlχ)~x1), (7.24)

where the selection function is

Wbg(χ) =


0 χ ≤ χl

χ(1− βlχ)

a(χ)

(
1− χ

χs

)
χ > χl.

(7.25)
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Interlopers as effective subhalos

Combining these results, we see that for a strong-lensing system with some foreground

and background perturbers we can write a single effective convergence that characterizes

the effect of the interlopers as

κeff(~x) =
l−1∑
i=1

(1− βil)κi(~x)︸ ︷︷ ︸
foreground + coupling

+
N∑

i=l+1

(1− βli)κi((1− βli)~x)︸ ︷︷ ︸
background

. (7.26)

We can write this in the continuum limit as

κeff(~x) = C

∫ χs

0

dχWI(χ)δ(χ, g(χ)~x1), (7.27)

where

WI ≡ Wfg +Wcp +Wbg =
f(χ)Dχsχ

2

DχDs

, (7.28)

and f(χ) and g(χ) are piecewise functions of the comoving distance:

f(χ) =

 1− βχl χ ≤ χl

1− βlχ χ > χl

(7.29)

g(χ) =

 1 χ ≤ χl

1− βlχ χ > χl.
(7.30)

We can think of Eq. (7.26) as a projection that takes interlopers at some plane

i and projects them onto the lens plane l with an effective convergence. Under this

approximation, we calculate the deflection of the interlopers assuming that the light ray

travels a path that is only deflected by the main lens. Since βil and βli go to 0 as the

distance between the planes i and l goes to 0, the interlopers that are sufficiently close

to the main lens are unchanged by this projection. Furthermore, since βil goes to 1
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as the distance between plane i and the observer goes to 0, and βli goes to 1 as the

distance between plane i and the source goes to 0, the interlopers that are sufficiently

close to the observer and the source become insignificant after projection. At intermediate

positions, where neither of these approximations hold, one could imagine that the error

introduced by this projection could be significant. We discuss this further and quantify

the error in Section 7.2.2, showing that it is in fact an excellent approximation even in

this intermediate regime.

For the remainder of this chapter, when we have to specify a density profile for a halo

we will do so with a truncated NFW profile [160] (tNFW). The form of this profile will

be shown explicitly later on in Eq. (7.45); for now, the relevant aspect of this profile is

that it is fully determined by two parameters, the scale radius rs and the dimensionless

truncation parameter τ , defined in terms of the truncation radius rt: τ ≡ rs/rt.

Eq. (7.26) implies that an interloper with mass m and convergence κ at comoving

distance χ has an effective convergence

κχ,eff(~x ; m, rs, τ) = f(χ)κ(g(χ)~x ; m, rs, τ). (7.31)

Therefore, we can think of the interlopers as subhalos on the main-lens plane with a mod-

ified scale radius and mass. To obtain these scaling relations, we express the convergence

in terms of the projected mass density (Eq. 7.4),

Σχ,eff(Dl~x ; m, rs, τ)

Σcrit,l

= f(χ)
Σ(g(χ)Dχ~x ; m, rs, τ)

Σcrit,χ

, (7.32)

and make use of the following rules:

εΣ(~r ; m, rs, τ) = Σ(~r ; εm, rs, τ) (7.33)

Σ(η~r ; m, rs, τ) = Σ(~r ;
m

η2
,
rs

η
, τ), (7.34)

where ε and η are scaling constants. These are derived in Appendix E.1. With these in
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hand we can rewrite Eq. (7.32) as

Σχ,eff(Dl~x ; m, rs, τ) = Σ(Dl~x ; meff , rs,eff , τ), (7.35)

where

rs,eff(χ) =
Dl

g(χ)Dχ

rs (7.36)

and

meff(χ) = f(χ)
Σcrit,l

Σcrit,χ

(
Dl

g(χ)Dχ

)2

m (7.37)

are the effective scale radius and the effective mass for interlopers, respectively (shown

in Fig. 7.2). The effective scale radius is larger than the true scale radius for both

foreground and the background interlopers. The effective mass, on the other hand, is

smaller for foreground and larger for background interlopers.

7.1.3 Power Spectrum of Interlopers

In this section, we calculate the power spectrum of the interlopers using two different

approaches. In the first approach we use the Limber approximation [214], which neglects

the Fourier modes of the 3D matter distribution parallel to the line of sight. For this, we

will express the 2D line-of-sight density as an integral over the 3D density with a window

function that weighs the integral over distance, as we did in Section 7.1.2. The second

approach consists of replacing the interlopers with effective subhalos that live on the

lens plane, using Eq. (7.31), and calculating the Fourier transform of their 2D two-point

correlation function. The interlopers that are projected onto the lens plane will be within

a volume with the shape of a double cone, shown in Fig. 7.3.

While the former approach might be more familiar to cosmologists due to its similarity

to the weak lensing literature, the latter is more akin to previous works on the statistics

of dark matter substructure in strong gravitational lenses. In particular, this calculation

closely follows that of Ref. [4] for the subhalo power spectrum. The main difference is the

addition of the comoving distance χ as a parameter that an interloper has as an effective
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Figure 7.2: The comoving distance dependence of (from the top) 1: the selection function WI

which weighs the overdensities at different distances to get the effective convergence in Eq. (7.27),
2: (WI/g(χ)χ)2 which weighs the 3D power to get the 2D power spectrum in Eq. (7.39), 3: the ratio
of effective scale radius to the scale radius of the interlopers (Eq. 7.36), 4: the ratio of effective mass to
the mass of the interlopers (Eq. 7.37). These functions also depend on the source and lens distances.
Here, zl = 0.5 and zs = 1.0 for the lens and source redshifts, respectively. Their comoving distances are

shown as red and green vertical lines.

subhalo. We will see that ultimately both approaches are in agreement.

Power Spectrum of the Interlopers using the Limber Approximation

For a 2D projected density that can be written in the form [215]

δ2D(~x) =

∫ χs

0

dχW (χ)δ3D(χ, g(χ)χ~x), (7.38)

where δ3D is the 3D matter overdensity, W (χ) is the selection function that weighs dis-

tances, and g(χ) is a function that represents how the 3D density is projected down to
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Main Lens
Source

Observer

=Interloper

Figure 7.3: Double cone (Eq. E.17) volume integrated over for the analytical calculation of the effective
convergence power spectrum due to interlopers (Eq. 7.67).

2D, the 2D power spectrum can be written in terms of the 3D power spectrum as

P2D(~l) =

∫ χs

0

dχ

(
W (χ)

g(χ)χ

)2

P3D

(
χ,

~l

g(χ)χ

)
, (7.39)

where ~l is the Fourier conjugate to the angular position ~x.

Combining the selection functions in Eqs. (7.17), (7.21), and (7.25), and noticing that

~k = ~l/Dl at the lens plane, we can write the interloper power spectrum as

PI(~k) = C2D2
l

∫ χs

0

dχ
W 2

I (χ)

g2(χ)χ2
P3D

(
χ,

~kDl

g(χ)χ

)
. (7.40)

Our goal is to write this power spectrum as a function of the density profiles and en-

semble properties of interlopers. Therefore, we will expand the 3D matter power spectrum

in order to express it in terms of these quantities.

Let us write the 2-point correlation function of the matter overdensities,

ε(~r) =
1

V

∫
d3~s δ(~s)δ(~s+ ~r), (7.41)

where ~s and ~r are positions in comoving coordinates, and V is the comoving volume
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over which these correlations are integrated. Writing the overdensities as the sum of

overdensities of each individual interloper, δ(~x) =
∑

i δi(~x), we can rewrite the 2-point

correlation function as the sum of the correlation of each interloper with itself and the

correlation of each interloper with other interlopers,

ε(~r) =
1

V

∑
i

∫
d3~s δi(~s)δi(~s+ ~r)︸ ︷︷ ︸

1−halo term

+
1

V

∑
i

∑
j 6=i

∫
d3~s δi(~s)δj(~s+ ~r)︸ ︷︷ ︸

2−halo term

, (7.42)

where the summation is now over interlopers rather than lens planes.

We assume that the interloper positions are uncorrelated, which makes the 2-halo

term vanish. Therefore, we can write the 3D matter power spectrum as the Fourier

transform of the 1-halo term,

P3D(~k) ≡ F [ε](~k) (7.43)

=
1

V

∫
d3~r exp[−i~k · ~r]

×
∑
i

∫
d3~s δi(~s)δi(~s+ ~r)

=
1

V

∑
i

∣∣∣F [δi](~k)
∣∣∣2 . (7.44)

For convenience, we denote the Fourier transform of a function as δ̃(~k) ≡ F [δ](~k) in the

remainder of the text.

We now assume the interlopers to be tNFW halos, which have a spherically symmetric

density profile (in physical coordinates) given by

ρ(r; m, rs, τ) =
m

4πr(r + rs)2u(τ)

(
τ 2r2

s

r2 + τ 2r2
s

)
, (7.45)

where

u(τ) ≡ τ 2

(τ 2 + 1)2

[
(τ 2 − 1) ln(τ) + τπ − (τ 2 + 1)

]
. (7.46)
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The density profile can be cast in dimensionless form by defining ξ = r/rs and

φ(ξ; τ) ≡ 1

4πξ(ξ + 1)2u(τ)

(
τ 2

ξ2 + τ 2

)
, (7.47)

such that

ρ(r; m, rs, τ) =
m

r3
s

φ

(
r

rs

; τ

)
. (7.48)

Near halos, the overdensity is much larger than the average density ρ̄, so we can write

the overdensity due to a single tNFW interloper i as

δi(s, χ; mi, rs,i, τi) =
ρ(a(χ)s; mi, rs,i, τi)− ρ̄(χ)

ρ̄(χ)

∼=
mi

r3
s,iρ̄(χ)

φ

(
a(χ)

rs,i

s; τi

)
, (7.49)

and its Fourier transform as

δ̃(k, χ; mi, rs,i, τi) =
mi

ρ0

φ̃

(
rs,i

a(χ)
k; τi

)
, (7.50)

where ρ0 = ρ̄(χ = 0)a3(χ = 0). Spherical symmetry of the tNFW profile implies δ̃(~k) =

δ̃(k), where k ≡ |~k|.

Substituting this into Eq. (7.43) we obtain an expression for the 3D power spectrum

in terms of the density profile of interlopers:

P3D(χ, k) =
1

V

∑
i

m2
i

ρ2
0

∣∣∣∣φ̃( rs,i

a(χ)
k; τi

)∣∣∣∣2 . (7.51)

Following the procedure in Ref. [4], we can convert this sum into an integral over the

probability distribution of the interloper parameters,

P3D(χ, k) =
N

V

∫
dmd2~qP(m, ~q |χ)

× m2

ρ2
0

∣∣∣∣φ̃( rs

a(χ)
k; τ

)∣∣∣∣2 , (7.52)

where ~q = (rs, τ) are the intrinsic halo parameters, N is the total number of interlopers
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in the ensemble, and P(m, ~q |χ) is the probability that an interloper has mass m and

intrinsic parameters ~q, given that it is at comoving distance χ. We now separate the

probabilities,

P(m, ~q |χ) = P(m |χ)P(~q |m,χ), (7.53)

since P(A,B) = P(A |B)P(B) for any two propositions A and B. For the mass, we

assume

P(m |χ) =
V

N
n(m,χ), (7.54)

where n(m,χ) is the Sheth-Tormen mass function [216],

n(m, z) = −Bρ0

m

2g(z)δc

σ2
m

dσm
dm

(
2a

π

)1/2

×

[
1 + a−p

(
g(z)δc

σm

)−2p
]

× exp

[
−a(g(z)δc)

2

2σ2
m

]
, (7.55)

with the free parameters set to a = 0.707 and p = 0.3 [217], where g(z) is the growth

function, B ≡ (1 + (2p
√
π)−1Γ(−p+ 1/2))−1, σm is the standard deviation of the matter

fluctuations smoothed with a top-hat filter of size ∼ (m/ρ0)1/3, and δc = 1.686 is the

collapse threshold. This probability density is already normalized since
∫
dmn(m,χ) =

N/V .

With this assumption, the 3D power spectrum has the form

P3D(χ, k) =
1

ρ2
0

∫ mhigh

mlow

dmn(m,χ)m2

×
∫
d2~qP(~q |m,χ)

∣∣∣∣φ̃( rs

a(χ)
k; τ

)∣∣∣∣2 , (7.56)

where mlow and mhigh are the lower and upper bounds of the mass range of the interlopers.

Using Eq. (7.40) we can finally write the power spectrum of the effective convergence

148



of the interlopers as a function of the density profile of interlopers:

PI(k) =

(
4πG

c2

)2

D2
l

∫ χs

0

dχ
W 2

I (χ)

g2(χ)χ2

×
∫
dmn(m,χ)m2

×
∫
d2~qP(~q |m,χ)

∣∣∣∣φ̃( Dlrs

g(χ)Dχ

k; τ

)∣∣∣∣2 . (7.57)

Power Spectrum of the Interlopers as Effective Subhalos

We start with the 2-point correlation function of the effective convergence,

ε2D(~r) =
1

A

∫
d2~s κeff(~s)κeff(~s+ ~r), (7.58)

where ~r and ~s are physical coordinates on the lens plane, and A is the lens plane area.

The subscript 2D is added to differentiate this from the 3D 2-point correlation function

of the matter overdensities in Eq. (7.41). Just like in the 3D case, we write the total

effective convergence as the sum of the effective convergence of each interloper, κeff(~r) =∑
i κi,eff(~r). Again, we assume that the interloper positions are uncorrelated which makes

the 2-halo term in Eq. (7.42) vanish and lets us write

ε2D(~r) =
1

A

∑
i

∫
d2~s κi,eff(~s)κi,eff(~s+ ~r), (7.59)

and consequently

P2D(k) ≡ ε̃2D(k) =
1

A

∑
i

|κ̃i,eff(k)|2 , (7.60)

where we again dropped the vector notation in ~k due to the radial symmetry of the

effective convergence.
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Using Eqs. (7.35) and (7.47), we can write

κi,eff(s) =
Σ(s;meff,i, rs,eff,i, τi)

Σcrit,l

=
1

Σcrit,l

meff,i

r3
s,eff,i

∫
dz φ

(√
s2 + z2

rs,eff,i

; τi

)
. (7.61)

In Appendix E.2, we show that the Fourier transform of κi.eff can be expressed in terms

of the Fourier transform of the dimensionless density profile φ and, consequently, we can

rewrite Eq. (7.60) as

P2D(k) =
1

A

∑
i

m2
eff,i

Σ2
crit,l

|φ (rs,eff,ik ; τi)|2 . (7.62)

Analogously to the procedure in §7.1.3, we convert the sum into an integral over the

probability distribution of the interloper parameters:

P2D(k) =
N

A

∫
dχ dmd2~qP(χ,m, ~q)

× m2
eff(χ)

Σ2
crit,l

|φ (rs,eff(χ)k ; τ)|2 , (7.63)

where P(χ,m, ~q) is the probability of an interloper being at comoving distance χ and

having mass m and intrinsic parameters ~q. We substitute the effective scale radius and

mass from Eqs. (7.36) and (7.37), and again separate the probabilities P(χ,m, ~q) =

P(~q |m,χ)P(m,χ), which gives

P2D(k) =
N

A

∫
dχ

[
f(χ)

1

Σcrit,χ

(
Dl

g(χ)Dχ

)2
]2

×
∫
dmP(m,χ)m2

×
∫
d2~qP(~q |m,χ)

∣∣∣∣φ( Dlrs

g(χ)Dχ

k ; τ

)∣∣∣∣2 . (7.64)

The probability that an interloper has mass m and is at comoving distance χ is

proportional to the halo mass function n(m,χ) and the cross section of the double cone
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with the lens plane as the base (Fig. 7.3). Thus, we can write1

P(m,χ) =
S(χ)

N
n(m,χ), (7.65)

where S(χ) is the cross section of the double cone in comoving units at comoving distance

χ and is given by

S(χ)

A
=
χ2

D2
l

g2(χ), (7.66)

where A is the physical area of the main lens and g(χ) was defined in Eq. (7.30) (see

Appendix E.3 for a careful derivation).

Substituting Eqs. (7.65) and (7.66) into Eq. (7.64) gives

P2D(k) =

(
4πG

c2

)2

D2
l

∫
dχ

[
f(χ)Dχsχ

2

DsDχ

]2
1

g2(χ)χ2

×
∫
dmn(m,χ)m2

×
∫
d2~qP(~q |m,χ)

∣∣∣∣φ( Dlrs

g(χ)Dχ

k ; τ

)∣∣∣∣2 . (7.67)

We see that the factor in square brackets is exactly the selection function in Eq.

(7.28). Therefore, this equation is identical to Eq. (7.57). We conclude that calculating

the power spectrum of the effective convergence on the lens plane after projecting the

interlopers onto the lens plane as effective subhalos is equivalent to calculating it using the

Limber approximation from the 3D matter power spectrum with the selection function

derived in Section 7.1.2.

7.1.4 Effective Convergence Power Spectrum for a Population

of tNFW Perturbers

In this section, we compare the convergence power spectrum of interlopers to that of

subhalos, referring to both collectively as perturbers. We calculate both contributions to

the convergence power spectrum for a fiducial system and show, independently of profile,

1This is already normalized because
∫
dχS(χ)

∫
dmn(m,χ) = N .
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how each contribution varies differently as a function of source and lens redshift.

Since the power spectrum depends on the perturber profile parameters, we now specify

the probability distribution P(~q|m,χ) of the intrinsic halo parameters ~q = (rs, τ). For

both interlopers and subhalos, we assume the following form:

P(~q |m,χ) = δ (rs − rs(m)) δ (τ − 20) (7.68)

rs(m) = rs,0

[
m

m0

]γ
, (7.69)

where rs,0 = 0.1 kpc, m0 = 106 M�, and γ = 1/3 [113, 179, 180]. These parameters are

chosen so our results are directly comparable to the convergence power spectrum from

only substructure in Ref. [4].

We carry out the integral over ~q in Eq. (7.67), which fixes τ = 20 and rs = rs(m) (given

in Eqs. 7.68 and 7.69). After these choices, the effective convergence power spectrum for

interlopers is

PI(k) =

(
4πG

c2

)2

D2
l

∫ χs

0

dχ
W 2

I (χ)

g2(χ)χ2

×
∫ mhigh

mlow

dmn(m,χ)m2

∣∣∣∣φ̃( rs(m)Dl

g(χ)a(χ)χ
k; τ

)∣∣∣∣2 , (7.70)

where n(m,χ) is the Sheth-Tormen mass function [216]. We use a perturber mass range

from mlow = 105 M� to mhigh = 108 M�, since lower-mass perturbers contribute little to

the total power and higher-mass perturbers can be modeled directly. For subhalos, the

convergence power spectrum is [4]

PS(k) =
1

Σ2
crit

∫ mhigh

mlow

dmm2nsub(m)
∣∣∣φ̃(rs(m)k; τ)

∣∣∣2 , (7.71)

where nsub(m) is the number of subhalos per physical area per mass. We use (see Ap-

pendix E.4)

nsub(m, zl) =
0.3Σcrit,0.5fsub,0.5(2 + β)

(m2+β
high −m

2+β
low )

(1 + zl)
5/2

(1 + 0.5)5/2
mβ, (7.72)
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where β = −1.9 and fsub,zl is the fraction of halo mass in substructure within the mass

range at redshift zl. The factor of (1 + zl)
5/2 accounts for the redshift evolution of

the subhalo mass function as the subhalos travel within their host [218]. A value of

β = −1.9 ± 0.1 is fairly well agreed-upon in the literature, both in observations [219]

and simulations [135, 220–223], but fsub,zl is much less constrained. This is because

the population of subhalos evolves as it travels within the host and is subject to tidal

stripping.

There is no consensus of the extent to which tidal stripping happens − both with and

without baryons − as a function of redshift and host mass. Different N -body simulations

have found fsub,0 on the order of 10−3 to 10−2 using host halo masses of ∼ 1012 M�

[5, 60, 137, 143], and we expect baryons to decrease these values. Observations for similar

lens redshifts and masses seem to be consistent with a wide range of possible values. Ref.

[109] found that for a sample of SLACS galaxies of similar masses (mass within Einstein

radius ∼ 1011.4 M� [224]) and lens redshifts (z ∼ 0.2), fsub,0.2 = 0.0076+.0208
−.0052 for subhalos

in [4× 106 − 4× 109] M�. Ref. [119] found that for BELLS lenses, the upper bound on

fsub,0.5 is 7% with an upper subhalo mass bound of 1011 M�. This constraint includes

both interlopers and subhalos. Because our upper mass bound is 3 orders of magnitude

below the one cited, we expect the upper bound on fsub,0.5 from BELLS to be significantly

below that for our mass range.

Taking into account the considerable uncertainty in these observations, and the wide

range of plausible values extracted from simulations, we settle on a fiducial value of

fsub,0.5 = 4 × 10−3 for our mass range [105 − 108] M� and host redshift (zl = 0.5), for

typical galaxy-scale lenses. We will nevertheless discuss in detail the dependence of our

results on fsub,0.5 below.

Fig. 7.6 displays the convergence power spectrum due only to interlopers (blue), due

only to subhalos (green), and due to both (red) for a fiducial lensing system with zl = 0.5,

zs = 1, and mass functions as described above. The numerical results in this figure will be

described in detail in Section 7.2. For this lensing system, the power spectrum amplitude

due to interlopers is 7.4 times larger than that of subhalos, meaning the former would be
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the dominant contribution to any measured signal.

A signal known to be dominated by interlopers would be especially useful for con-

straining the low-mass end of the halo mass function, which is considered a key way

of distinguishing between vanilla CDM and exotic dark matter scenarios that can lead

to low-mass cutoffs. This is both because interlopers are simpler to model, as they are

generally not subject to the same degree of astrophysics and tidal effects as subhalos,

and because the density of interlopers is much better understood. Indeed, while fsub,0.5

may range between several orders of magnitude, the two commonly-used mass functions

that would affect the interloper amplitude, Sheth-Tormen [216] and Press-Schechter [225],

only differ by about a factor of two. Simulations agree with Sheth-Tormen to roughly a

10% level [226, 227], and future observations could in principle measure the halo mass

function to percent-level accuracy [228].

Refs. [4, 5] pointed to several features of the power spectrum that could be used to

constrain the particle nature of dark matter, such as the slope at k > 2 kpc−1; however

in the remainder of this section we focus on the amplitude at small values of k, i.e.

the k → 0 limit,2 which primarily provides information about the overall abundance of

perturbers within a given mass range. We will refer to this regime as the plateau (due to

the fact that the power spectrum is constant on these scales), whose amplitude we define

as P0 ≡ limk→0 P (k). Expressions for the interloper and subhalo plateau, PI,0 and PS,0,

are derived in Appendix E.5.

We focus on the low-k scales for two main reasons. First, they are the most readily

observable ones. Second, they neatly illustrate the importance of taking into account the

contribution of interlopers in order to use strong-lens measurements to draw conclusions

about dark matter, without having to worry about the specific details of how the interlop-

ers and subhalos are modeled (which affect the power spectrum at higher wavenumbers

[4]), since the amplitude depends only on their mass functions. Due to the fact that both

the halo and subhalo mass functions evolve with redshift, P0 depends on the geometry of

2To be precise, our definition of the plateau only matches the k → 0 limit of power when we neglect
the 2-halo term from Eq. (7.42), which would contribute an additional term to Eqs. (7.70) and (7.71).
However, this term is expected to be small (particularly in the presence of baryons) and only becomes
relevant at k . 10−1 kpc−1 [5], so it is safe to neglect here.
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the lensing system. At higher source redshifts, there are more interlopers along the line

of sight, which produces a higher interloper power. The subhalo power spectrum depends

on source and lens redshifts through Σcrit,l and nsub, resulting in a somewhat different

redshift dependence.

The first row of Fig. 7.4 shows the results for the power spectrum plateau due to

interlopers (left), subhalos (center), and the ratio between the two (right), for our fiducial

choice of fsub,0.5. As expected, the relative interloper contribution generally increases with

increasing source redshift, so interlopers contribute a greater fraction to the total power

spectrum for the higher source redshift BELLS systems compared to SLACS: interlopers

dominate over subhalos by a factor of a few for SLACS and by just over an order of

magnitude for BELLS. The third row shows the same three panels but for a higher value

of fsub,0.5 = 0.02. We can see that, for this value of the fraction of dark matter in

substructure, the subhalo and interloper contributions for SLACS become roughly equal.

To better understand this turnover, and the relative contribution of perturbers more

generally, we plot the number of perturbers per solid angle, as well as the ratio of sub-

halos to interlopers, in the second and fourth rows of Fig. 7.4. We see that the redshift

dependence of these numbers is quite different from that of the plateaus,3 but the ratios

share a similar pattern. They are slightly different because a factor of m2n(m) goes into

the integral for the plateau. Compared to the plateau ratios at a given redshift, the num-

ber density ratios tend to be slightly larger, which means that to a rough approximation,

we can think of the plateau turnover as the place where there are slightly more subhalos

than interlopers in the field of view.

Because these results are strongly dependent on the choice of subhalo and halo mass

functions, we provide an interactive version of the power spectrum plots at https://

arthur-tsang.github.io/interloper_widget.html, where the reader can adjust the

value of fsub,0.5 as well as the halo mass function (Sheth-Tormen or Press-Schechter) to

see how the results are affected. For SLACS lenses up to fsub,0.5 ∼ 2%, the interloper

contribution dominates. For larger values of fsub,0.5, however, the subhalo contribution

3In particular, the number of interlopers has a strong dependence on lens redshift, which comes from
converting into angular dimensions.
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takes over (albeit by less than an order of magnitude). For the BELLS lenses, a higher

value of fsub,0.5 ∼ 4% is necessary for the subhalos to dominate due to their higher source

redshifts.

7.2 Numerical Calculation

To verify our analytic results and, in particular, the validity of our approximations, we in-

dependently calculate the (effective) convergence power spectrum numerically. The main

concern is the error introduced by approximating the interlopers as effective subhalos at

the redshift of the main lens.4 To understand the error introduced by this approximation,

we calculate the convergence power spectrum from a lensing system simulated using the

full multi-plane lens equation.

In short, our procedure is to first use ray-tracing to generate a map of the total angular

deflection ~α(~x1) ≡
∑N

i=1 ~αi(~xi), and then calculate

κeff,total ≡
1

2
∇ · ~α, (7.73)

which is the multi-plane equivalent of the traditional convergence for single-plane lensing

[206]. To single out the effective convergence of the interlopers (or subhalos), we subtract

the convergence of the main lens:

κeff = κeff,total − κl. (7.74)

We then convert κeff into a power spectrum using a 2D Fourier transform (squared) [5].

Since we are interested in the monopole term, we perform an azimuthal average.

In Section 7.2.1 we describe the lensing system we simulate, while in Section 7.2.2 we

detail the procedure used to obtain the effective convergence power spectrum from it.

4Note that other works have made this approximation as well [155, 156].
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Figure 7.4: Rows 1 and 3: Plateau, i.e. k → 0 limit, of the convergence power spectrum of perturbers
in the range [105-108] M�, for interlopers (left), subhalos (center), and the ratio of subhalos to interlopers
(right). Rows 2 and 4: Number of perturbers per arcsec2, for perturbers in mass range [105-108] M�, for
interlopers (left), subhalos (center), and the ratio (right). Top two rows: Fiducial subhalo normalization,
fsub,0.5 = 4× 10−3. Bottom two rows: Higher subhalo normalization, fsub,0.5 = 2× 10−2, which gives a
roughly equal subhalo and interloper contribution for SLACS systems. The line of equal contribution is
shown in black. The dots represent some of the galaxy-galaxy lensing systems that have been studied in
the literature [107, 112, 119, 140]. See https://arthur-tsang.github.io/interloper_widget.html

for an interactive version of the power spectrum plateau plots, with adjustable fsub,0.5 and halo mass
function.
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7.2.1 A Simulated Strong-Lensing System with Interlopers and

Subhalos

We set the lens at zl = 0.5 and the source at zs = 1.0, and we assume a flat ΛCDM

cosmology with h = 0.675 and Ωm = 0.316 [11]. The lens is a singular isothermal sphere

(SIS) with an Einstein radius of θE = 7′′, which corresponds to a virial mass of ∼ 1014

M�. This is larger than the typical ∼ [0.1 − 1]′′ or ∼ [1012 − 1013] M� of galaxy-galaxy

lenses [229, 230], although note that some systems may go up to 1014.5 M� [231]. We use

a somewhat larger lens in order to probe a broader range of wavenumbers; nevertheless,

our results are fully applicable to galaxy-scale lenses because we use values of fsub,0.5

consistent with typical galaxy lenses, instead of scaling it up for a larger halos mass.

Furthermore, the power spectrum is otherwise independent of lens size in our formalism.

Note that because we calculate the power spectrum from deflection angles rather than

from an observed image, the only relevant property of the source is its redshift.

We randomly populate interlopers on 100 planes, evenly spaced in redshift between

the source and observer.5 The number of interlopers on each plane is chosen as a Pois-

son random variable whose expected value is the number of interlopers between adjacent

redshift planes according to the Sheth-Tormen mass function [216] (same as in Section

7.1.3). The interloper masses are randomly chosen between [105−108] M�, again accord-

ing to Sheth-Tormen. Their positions within each plane are uncorrelated and uniformly

distributed within the double pyramid of visible structure (analogous to the double cone

in Fig. 7.3, but now instead we use a double pyramid, since we simulate a square field of

view). The interloper profiles are modeled as in Section 7.1.4. While the true profile of

interlopers may be slightly different, note that the low-k limit of the power spectrum is

sensitive to the abundance of interlopers and not to the intrinsic profile parameters. In

addition to the interlopers, we add a negative mass sheet to each redshift plane to cancel

out the net mass of the interlopers, which captures the fact that the underdense regions

along the line of sight effectively lens as negative masses.

For completeness, we also simulate a lensing system that only has subhalos, and

5Note that the result is unchanged if we increase the number of planes.
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one that has both subhalos and interlopers. To populate the lens with subhalos, we

assume that subhalos are uncorrelated, uniformly spatially distributed, and follow the

mass function of Eq. (7.72). Note that it is possible to simulate the two-subhalo term by

modifying the spatial distribution, however, in a realistic lensing galaxy with baryons we

expect this term to be subdominant [5].

7.2.2 Obtaining the Convergence Power Spectrum from a Sim-

ulation

We calculate the total deflection vector ~α(~x1) using the full multi-plane lens equation

for the simulated lensing systems using lenstronomy [133], which is a publicly available

Python package. We then calculate κeff by taking the divergence of ~α using the five-point

stencil method (see Appendix E.6) to limit the numerical error.

We run two different simulations, both with (500 × 500) pixels, but with different

fields of view: (1.6× 1.6)′′ (small) and (16× 16)′′ (large). This is to sample a wide range

of wavenumbers that would otherwise require a much larger number of pixels and would

thus be computationally intractable. These two different fields of view require different

treatments to be processed into the convergence power spectrum. This is because when

all parts of the κeff map are statistically equivalent, the Fourier transform squared of κeff

is the two-dimensional interloper power spectrum. However, our analytic approximation

from Section 7.1 only applies near the Einstein radius (since the derivation relied on the

CSB approximation).

Due to this, for the large field of view we filter κeff with an annular mask centered on

the main lens, setting κeff = 0 outside the mask (see Fig. 7.5).6 For the small field of

view, we center the image on a point on the Einstein ring in order to remain in a regime

where the CSB approximation is valid, so we can compare with our analytic results.

Having to impose a mask for the large field of view has several limitations. First, while

it is not desirable to use points too far from the Einstein ring (the CSB approximation

6Using a mask affects the normalization of the Fourier transform, so to correct for it we divide the
power by the fraction of the image covered by the mask.
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Figure 7.5: Illustration of the effective convergence field κeff used for the full multi-plane lensing
calculation with zl = 0.5 and zs = 1.0. The annular mask can be seen for the large field of view (16′′).
The small field of view (1.6′′) is represented with an orange square on the right. The white dashed line

shows the Einstein radius.

gets progressively worse with increasing distance), a narrow mask does not estimate well

the lowest-k modes since they correspond to sizes larger than the annulus width. Fur-

thermore, the Fourier transform of the mask can itself give rise to unphysical oscillations.

Ultimately, we opted for a mask width of ±(3/7)θE. An annulus of this width is sufficient

to smooth out the oscillations and probe relatively low-k modes. Furthermore, because

it is quite wide, it allows us to be conservative when comparing it to the analytical re-

sults: we know that as the mask becomes wider, the validity of the CSB approximation

decreases.

Comparison to Analytical Results

In Fig. 7.6, we compare the effective convergence power spectrum obtained following the

procedure outlined above to the analytical predictions derived in Section 7.1.4. We show

the contribution due solely to interlopers (blue), solely to subhalos (green), and their

combination (red).7 The analytical results are shown as dotted lines, and the numerical

results are shown as solid lines. We see that the two independent estimates of the effective

convergence power spectrum show excellent agreement,8 even though the annular mask

7We used the same subhalo and interloper population characteristics, as described in Eqs. (7.68) to
(7.72).

8Note that, for images without masks (subhalo only and all small field of view images), the minimum k
we plot is 2π/L, where L is the width of the image. For the images with masks (interloper and combined

160



used was quite wide. This agreement shows that treating the interlopers as effective

subhalos using our framework introduces a very small error compared to the full ray

tracing results, even in a regime far from the Einstein radius. Furthermore, we note that

the small difference between the analytical and numerical results is much smaller than

even the most optimistic expected error bars from near-future surveys [120].
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Figure 7.6: Power spectra for interlopers (blue), subhalos (green), and both (red). We show analytic
results (dotted) and numerical results (solid) for the simulations with field of view (FoV) of 1.6′′(darker)
and 16′′(lighter). All numerical curves are cut off at high k due to loss of power near a pixel size, and

the masked simulations are cut off at low k, corresponding to the mask width.

Quantifying the Error in the Numerical Effective Convergence

The advantage of calculating the effective convergence as in Eq. (7.73) is that we do not

have to make any approximations, such as the CSB approximation that was necessary for

the analytical derivation in Section 7.1. However, this single-plane effective convergence,

and the one derived in Section 7.1, do not reproduce the deflection angles exactly. To see

for large field of view), the minimum k is 2π/L′, where L′ = L/4 is the width of the annulus mask (see
Fig. 7.5).
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why this is the case let us separate the deflection angles into a curl-free and a divergence-

free component:

~α = ~αdiv + ~αcurl (7.75)

∇× ~αdiv = 0 & ∇ · ~αcurl = 0. (7.76)

We call ~αdiv the divergence component and ~αcurl the curl component.

In single-plane lensing, ~αcurl vanishes because the deflection angle can be written as

the gradient of the lensing potential Ψ [212]:

~α(~x) = ∇xΨ(~x) ⇒ ∇× ~α = 0. (7.77)

However, in the multi-plane lensing case, the coupling between the successive lens

planes introduces a curl component [207]. In our calculation it is a nuisance since it

indicates that the single-plane effective convergence is not fully capturing the multi-plane

lensing of the interlopers. In terms of the total deflection angle, the two components can

be written as (see Appendix E.6)

~αdiv(~x) =
1

π

∫
d2x′

~x− ~x′

|~x− ~x′|2

[
1

2
∇~x′ · ~α

]
(7.78)

~αcurl(~x) = ẑ × 1

π

∫
d2x′

~x− ~x′

|~x− ~x′|2

[
1

2
∇~x′ × ~α

]
. (7.79)

Here ẑ is the unit vector that is orthogonal to the lens-plane and pointing towards the

observer. We see that what we defined as κeff in Eq. (7.73) sources the divergence

component, i.e.

κdiv = κeff ≡
1

2
∇ · ~α, (7.80)

and

κcurl ≡
1

2
∇× ~α (7.81)

sources the curl component. So we can compare κcurl to κeff in order to gain an under-
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standing of the error introduced by treating interlopers as effective subhalos.

We see in Fig. 7.7 that for our simulation, κcurl � κeff ,9 especially near the Einstein

radius. We thus conclude that the curl component of the angular deflection is also much

smaller than the divergence component, meaning that the coupling between the interlop-

ers and the main lens is small enough to justify the projection of interlopers as effective

subhalos in the main lens. To test whether the κcurl in Fig. 7.7 is simply a numerical

artifact, we simulate a system with only a main lens and subhalos (no interlopers) in

Appendix E.6, and show in Fig. E.6.1 that the numerical error is more than two orders

of magnitude smaller than the curl observed in Fig. 7.7, showing that the curl term

sourced by the interlopers is physical.

Figure 7.7: Two types of effective convergences calculated from the divergence and the curl of angular
deflections in a simulated strong-lensing system with interlopers and subhalos. Left: Effective conver-
gence of the interlopers + subhalos, defined in Eq. (7.74), which sources the divergence component of
the angular deflections. The central dipole is caused by the coupling between the uneven distribution
of interlopers and subhalos and the main lens. We can safely ignore the dipole as we are interested in
a small annulus around the Einstein ring where the strong-lensing images are produced. Right: κcurl,
defined in Eq. (7.81), which sources the curl component of the angular deflections. The interlopers that
are far from the lens plane, either towards the observer or towards the source, contribute more to the

curl component.

9We know from Eq. (7.77) that the curl component has to be zero when there are no interlopers,
i.e. when the lensing is caused by mass on a single lens plane. In Appendix E.6 we show that the curl
component that we measure is not a numerical artifact but indeed a result of the coupling of the lensing
effect of multiple lens planes at various redshifts.
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7.3 Conclusions

Strong gravitational lensing has long provided some of the most decisive evidence for the

existence of dark matter in our universe. Within the past couple of decades, the use of

gravitational lensing for dark matter science has expanded considerably, and significant

theoretical and observational advances have turned it into one of the most promising

probes of the nature of dark matter. In particular, there is great interest in using strongly

lensed images to constrain the very low-mass end of the halo mass function (. 108 M�),

since this regime can distinguish between vanilla CDM and more exotic models, such as

warm dark matter or self-interacting dark matter, that can lead to low-mass cutoffs.

The canonical approach followed has been to try to directly detect individual dark

matter clumps, such as in gravitational imaging [103]. This approach has claimed detec-

tions of substructures with masses as small as a few times 108 M� [106, 107, 109, 111,

119, 140], but reliably reaching lower masses in galaxy-galaxy lenses with this approach

has remained elusive.

The idea of using the subhalo convergence power spectrum [4, 5, 117, 200] was de-

veloped as a statistical detection method to obtain population-level constraints without

having to individually resolve clumps. Unlike in direct detection efforts where by con-

struction the sensitivity is maximal for the most massive clump close to the lensed images,

in a power spectrum approach the higher number of lower-mass halos can actually make

the sensitivity peak for the mass range of 107−108 M� for a CDM population of subhalos,

and still maintain some sensitivity at lower masses [5].

However, while perturbations due to line-of-sight halos have been studied in the con-

text of lensed galaxies [155, 156] and lensed quasars [169, 206], and has become standard

practice in direct detection pipelines [140, 207–209], its contribution to the convergence

power spectrum had not yet been quantified. In this work, we set out to do so.

We show that it is possible to define an effective convergence for multi-plane lensing

systems with a dominant main lens coupled to lower-mass interlopers. One can think of

this effective convergence as mapping an interloper at any point along the line of sight
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onto the lens plane as an effective subhalo with a modified mass and scale radius.10 It is

then possible to analytically calculate its power spectrum, incorporating the relative effect

of interlopers at different redshifts as a lensing kernel. We find that the interlopers that

are closest to the main-lens plane have the largest contribution to the power spectrum,

while those close to the observer or source are negligible.

Because the halo and subhalo mass functions evolve with redshift, and in fact there are

still considerable unknowns with respect to the subhalo mass function’s normalization,

we do not expect that a global statement can be made about the importance of one

versus the other. Instead, we opt to thoroughly quantify each contribution as a function

of both source and lens redshift, and for different choices of mass function and subhalo

mass function normalizations. We show specifically what we expect the ratio of power

between subhalos and interlopers to be for galaxy-galaxy lensing systems for which we

currently have high-resolution imaging (Fig. 7.4).

For our fiducial choice of fsub,0.5 = 4 × 10−3, we find that for both the BELLS and

SLACS lenses the interloper contribution dominates, albeit to different extents. Due to

the higher redshift of the BELLS sources, the interloper contribution is larger by over

an order of magnitude, while the lower redshift of the SLACS sources lead the interloper

plateau to only be larger by a factor of a few. As we increase or decrease fsub,0.5, each

group of lenses is affected differently: for SLACS, the subhalos dominate for as little

as fsub,0.5 & 2%, while for BELLS they do so for fsub,0.5 & 4%. This can be intuitively

understood: with increasing source redshift, the LOS volume increases, overwhelming the

subhalo signal.

Let us put these bounds into context by discussing the expected values of fsub,0.5

in these systems. As we discussed in Section 7.1.4, there is considerable uncertainty

both on the simulation side and on the observational side. Nevertheless, even with this

uncertainty, it seems unlikely that fsub,0.2 and fsub,0.5 would reach these values, especially

with an upper subhalo mass of 108 M�. Ref. [109] found that for SLACS lenses, the

upper bound on fsub,0.2 was about 2.7% with an upper mass bound of 4× 109 M�. Ref.

10The scale radius is the relevant lensing length scale in our density profile of choice (truncated NFW).
Other density profiles would see an analogous rescaling of relevant intrinsic parameters.
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[119] found that for BELLS lenses, the upper bound on fsub,0.5 is 7% with an upper mass

bound of 1011 M�, which corresponds to fsub,0.5 < 2.3% for an upper mass bound of 108

M�. Thus, we conclude that it is likely for the interloper contribution to dominate in

these two ensembles of lenses.

One worry about this approach might be that treating the interlopers as effective

subhalos is overly simplistic since it neglects the recursive nature of the multi-plane lens

equation, which couples the deflection angles of successive lens planes. To study this,

we tested the analytical calculation with mock lensing simulations obtained by doing ray

tracing with the multi-lens plane equation (without any approximations). We find that

the power spectrum from the simulations matches the analytical prediction extremely

well.

Furthermore, we note that defining the effective convergence as the divergence of the

deflection angle does not capture the divergence-free part (what we call the curl compo-

nent in Section 7.2.2) of the angular deflections sourced by interlopers. For our analysis,

which projects the interlopers onto the main lens as effective subhalos, the curl part

quantifies the error in doing such a projection since a single-plane effective convergence

cannot create such a term (See Appendix E.6). We show in Fig. 7.7 that the curl term

for low-mass interlopers is very small compared to the divergence term, meaning that

the projection introduces minimal error in calculating the angular deflections for multi-

plane lensing. We point out that, for more massive perturbers, the fact that multiple

lens planes source a curl term suggests a novel way of identifying multi-plane lensing

and therefore distinguish interlopers from subhalos, by for example measuring a B-mode

power spectrum.

Our results on the importance of incorporating interlopers into the analysis of strong-

lensing systems are broadly consistent with Refs. [155] and [156], which did so in the

context of direct detection efforts. An important point to keep in mind is that the mass

ranges and subhalo mass function normalizations they consider are different to ours;

their perturber mass range spans ∼ 106 M� − 1011 M�, so converting to our definition

of fsub,0.5 gives a lower value than what they cite. Ref. [155] considered a single lensing
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configuration (zl = 0.2 and zs = 1) and found that the number of interlopers is roughly

four times higher than that of subhalos. Ref. [156] found that the number of line-of-

sight perturbers is comparable to subhalo perturbers for low-redshift lenses (e.g. SLACS

lenses) and dominant over subhalo perturbers for high-redshift lenses (e.g. BELLS lenses).

The difference between our results and these can be understood because of the different

mass range: although they have a smaller subhalo mass function normalization, the extra

subhalos at larger masses make the subhalo contribution comparable for SLACS instead

of subdominant, as is the case in our fiducial results.11

As the LOS contribution has gained recognition as an integral ingredient in lens

modeling, new systems have been analyzed, and older systems reanalyzed, taking it

into account. To date, a single real lens has been analyzed through a power spectrum

approach. Ref. [232] placed an upper bound on the convergence power spectrum due to

subhalos using lens system SDSS J0252+0039 (zl = 0.280, zs = 0.982)12. Their upper

bound on the power spectrum was significantly higher than the expected amplitude due

to subhalos in a CDM scenario, but interestingly, according to our results, for this redshift

combination we expect the line-of-sight contribution to dominate.

The fact that under many lensing configurations and reasonable subhalo population

assumptions the interloper contribution dominates the signal can be good news for the

capacity of strong gravitational lenses to constrain the particle nature of dark matter.

The amplitude of the convergence power spectrum can essentially be tied back to a mass

function (halo mass function for interlopers, subhalo mass function for subhalos), so in

order to translate a power spectrum amplitude to a dark matter theory, it is paramount

to understand the relevant mass function(s). The subhalo mass function is very hard

to pin down. It depends on the host mass and inevitably evolves with redshift. How it

is affected by subhalos traveling within the host’s dark matter halo, as well as due to

11While these two references developed the notion of using interlopers as effective subhalos, we note
that our projection prescription is inherently different. For example, Ref. [156] relied on first projecting
the interloper positions onto the lens plane by ensuring they remained on the same line of sight, and then
varied their mass to minimize the residual of the angular deflections between the projected interloper
and a subhalo of a given mass. The downside of this projection prescription is that the minimization is
done for an unobservable lensing quantity.

12This system had been analyzed with gravitational imaging in Ref. [109] and no evidence of a
substructure above the mass-detection threshold was found.
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any baryons in the host, remains an open problem: neither theory nor simulations have

yet converged on a satisfying answer to these questions. In comparison, halos that are

only subject to large-scale tidal fields have relatively calmer lives, and their evolution is

better understood. Therefore, having a window into the smallest dark matter scales in

the universe without relying on subhalos can make gravitational lensing a much more

powerful (and reliable) probe of dark matter.

Furthermore, we note that the advantages of statistical detection efforts compared

to direct detection ones that were introduced in the subhalo context, namely taking

advantage of the much more numerous population of low-mass halos that are individually

below the detection threshold, are undeniably advantageous in the interloper context as

well. For instance, the number of interlopers that are massive enough for direct detection

was shown to be roughly unity for the 17 BELLS lenses shown in Fig. 7.4 [119], which

prevents lack of detections in the ensemble of lenses to be used to rule out CDM. Since the

lower-mass interlopers are expected to be much more abundant, if the power spectrum can

be measured (which Refs. [117, 120] claim can be done using near future observations),

the lack of power at high redshift lenses can more decisively rule out the CDM scenario.

There is considerable momentum being harnessed by gravitational lensing as a cosmo-

logical probe. Much progress has been made over the course of the last decade regarding

how to model these systems. Furthermore, in the last couple of years new methods that

harness the image recognition power of machine learning methods have started being de-

veloped to accelerate the indirect and direct detection of perturbers in strong-lens images

[1, 153, 154, 233]. Between these advances in detecting perturbers in optical imaging data,

and the fact that we expect thousands of new high-quality optical imaging strong-lens

systems to become available in the near future [122–124], we expect to have a treasure

trove of data for dark matter science soon. In order for strong gravitational lensing to

establish itself as a premier way of constraining dark matter, however, we need to en-

sure that the mapping from observations to theory is done correctly, which undoubtedly

involves accounting for the line-of-sight contribution.
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Chapter 8

Observable Predictions for

Massive-Neutrino Cosmologies with

Model-Independent Dark Energy

The source of the observed accelerated expansion of the universe (dark energy from now

on) has remained an elusive component since its discovery, two decades ago [12, 234].

The standard paradigm in cosmology, the ΛCDM model, assumes that the cosmological

constant Λ is the source of acceleration, and its six free parameters are constrained to

exquisite precision by current Cosmic Microwave Background (CMB; e.g. [11]), Baryon

Acoustic Oscillations (BAO; e.g. [235]) and weak lensing (WL) measurements (e.g. [236]).

Despite the success of the ΛCDM model in providing a solid statistical fit to these var-

ious probes, no satisfying theoretical model elucidates the microphysical origin of the

cosmological constant.

Cosmological probes have become precise enough that they can be used to look for

physics beyond the Standard Model of particle physics; for example, to study neutrino

properties. In the early universe, neutrinos are relativistic, while at late times they

become non-relativistic, with their mass constituting a non-negligible fraction of the

total dark matter component. The conversion of radiation to hot dark matter affects

the Hubble expansion, and the residual streaming velocities are still significant enough



at low redshifts to slow down the growth of structure. This means that neutrinos affect

cosmology at both the background and perturbation level.

Direct detection experiments on Earth have measured the three mixing angles and the

two mass-squared splittings of the three neutrino mass eigenstates with high precision

[237]. However, so far cosmology appears to be the most sensitive probe to the absolute

mass scale of neutrinos. To date, the most stringent upper limit of the sum of neutrino

masses (Mν ≡
∑
mν < 0.12 eV) is given by the combination of CMB TT,TE,EE power

spectra and lensing from Planck, together with BAO data, assuming the standard ΛCDM

scenario [11].

When probing the presence of additional light particles (such as neutrinos) with cos-

mological datasets, dark energy acts as a source of systematic uncertainty that needs to

be marginalized over. Extensions to the base ΛCDM model in terms of dark energy are

generally implemented by allowing the equation of state w to be a function of redshift z.

The most common parametrization for w(z) is known as the Chevallier-Polarski-Linder

(CPL) parametrization, given by w(z) = w0 + waz/(1 + z), i.e. it has two free param-

eters {w0, wa}. However, the fact that there is no firm theoretical backbone to support

any particular parametrization for w(z) motivates the study of the effects of dark energy

using nonparametric methods, such as Principal Components Analysis (PCA).

We consider a dark energy scenario known as the Smooth Dark Energy Paradigm [238],

which makes a set of assumptions about the microphysical nature of dark energy. It

assumes that the source of dark energy: (1) does not cluster inside the horizon, (2)

interacts only gravitationally with dark matter and baryons, and that (3) gravity is set

by General Relativity. An analysis of such a scenario has been performed in the past,

including cross-checks between the background expansion of the universe and the growth

of linear perturbations [239], as a smoking gun to falsify models where dark energy follows

these assumptions [240]. In fact this chapter partially generalizes Ref. [240] with the

inclusion of the sum of neutrino masses, except that in that work 20 principal components

(PCs) were used, and here we restrict ourselves to considering 1, 3 or 5 PCs. Ref. [240]

required a complete basis of PCs, and the authors determined empirically that 20 PCs
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were sufficient to satisfy this requirement. Here, however, we do not require completeness

but rather modes with a non-negligible signal-to-noise, and we seek to contrast our results

to specific parametrizations of w(z), which generally have 1-2 parameters.

There are two distinct regimes when studying extensions to ΛCDM concerning the

dark energy equation of state. In the first, and most commonly considered regime, the

equation of state has a lower bound set by the value of the cosmological constant, i.e.

w(z) ≥ −1. Alternatively, models that do not satisfy this criterion are in the “phantom

dark energy” regime. Ref. [241] showed that the bound on the sum of the neutrino masses

is more stringent with a CPL non-phantom dark energy source than in a standard ΛCDM

cosmology. Indeed, the expansion rate is faster for non-phantom dynamical dark energy

than for ΛCDM. The sum of neutrino masses is consequently pushed downwards to keep

the angular diameter distance to the surface of the last scattering fixed. Conversely, in

phantom dark energy scenarios the opposite is true and thus the bounds on Mν degrade.

Similar results have been found by other extensions to ΛCDM that include CPL-based

dark energy [242, 243]. Note that the general argument is independent of the chosen CPL

parametrization for the dark energy equation of state.

In this work, we aim to generalize these findings by studying constraints on the sum

of neutrino masses in a cosmology with a model-independent, time-varying dark energy

component, without forbidding the cross into the phantom regime. In Section 8.1 we

introduce our methodology and the datasets used. In Section 8.2 we present our main

results, and in Section 8.3 we discuss the implications of our findings.

8.1 Data and Methods

The datasets considered in this work include: BAO data from BOSS DR12 [244], 6dF

Galaxy Survey (6dF) [245] and SDSS DR7 Main Galaxy Sample (MGS) [246]); the full

2015 lensed Planck CMB temperature and polarization data [247] and lensing reconstruc-

tion [248]; Dark Energy Survey (DES) four-bin tomographic weak lensing data [249, 250],

shown in Figure 8.2; and the Pantheon supernovae (SN) sample [14]. The latter covers
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a redshift range 0.01 < z < 2.3, and the BAO measurements lie within this range. To

account for the non-linear scales in the matter power spectrum we adopt the HALOFIT

fit [251], and a mapping between arbitrary w(z) and a constant dark energy equation of

state is implemented as in Ref. [252].

We perform a Markov Chain Monte Carlo (MCMC) likelihood analysis with a modified

version of the CosmoMC code [253–256]. We ran two different sets of chains. The first of

these, which we will refer to as the All chains, includes all the aforementioned datasets.

The second one, which we refer to as the Reduced chains, does not include the DES weak

lensing. The datasets used for each of these chains are summarized in Table 8.1. Note

that there is a known (2.4σ) tension between the value of S8 from Planck (0.848+0.024
−0.024)

and DES (0.782+0.027
−0.027) [19], and we will discuss this in Sections 8.2 and 8.3. Nevertheless,

note that CMB lensing reconstruction (included in both datasets) favors a lower S8 that

than inferred from the CMB temperature and polarization under the ΛCDM model [142],

and thus more in accordance with the value of S8 measured with WL.

Table 8.1: Datasets that define the All and Reduced sets of chains

All Reduced
CMB Full Planck 2015 Full Planck 2015

BAO BOSS DR12 + 6dF + MGS BOSS DR12 + 6dF + MGS

SN Pantheon Pantheon

WL DES -

We represent the dark energy equation of state as

w(z) = wfiducial +

NPC∑
i=1

αiei(z), (8.1)

where ei(z), with i = 1, ..., NPC, are the principal components of a covariance matrix of

perturbations around the fiducial model wfiducial = −1. The principal components used

here have support in the range 0 < z < zmax, and for z > zmax we extrapolate assuming

w = −1.

We construct the PC basis from the eigenvectors of the Wide Field Infrared Survey

Telescope (WFIRST) experiment [257] supernovae Fisher matrix, which has SN data
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Figure 8.1: The first five principal components of the dark energy equation of state obtained from the
WFIRST supernovae Fisher matrix, as described in Section 8.1 and Ref. [240].

up to zmax = 3 [257]. Note that we do not include simulated WFIRST data in our

likelihood analysis; instead, our goal is to use current datasets to make predictions for

future experiments, such as WFIRST, that will gather SN and WL data. Finally, a

Planck -like likelihood is also added to the total Fisher matrix. The details on how the

basis was constructed can be found in equations 6 - 14 in Ref. [240]. The shape of the 5

PCs used in this work are shown in Figure 8.1.

For this work we ran three different sets of chains for each of the All and Reduced

datasets with varying numbers of principal components, NPC = {1, 3, 5}. The choice of

number of principal components is based on the following considerations. A single PC

is equivalent to the usual cosmological constant model for dark energy, and serves as a

baseline. Using 3 PCs is useful to contrast to results with two-parameter models for w(z)

(such as CPL), illustrating the consequences of such restrictive models of Dark Energy,

since there is usually still a significant amount of useful information in the third PC

[258]. The case of 5 PCs is chosen to showcase the effect of including PCs that have low

signal-to-noise, i.e. they are relatively unconstrained by the data, on the Mν constraints.

In Section 8.3 we discuss the posteriors of the PC amplitudes to show that indeed, past
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the third PC they cannot be constrained to better than ten percent.

Note that the minimum supernova redshift from the Pantheon sample imposes zmin =

0.01, which means that in fact for 0 < z < zmin the PCs can oscillate significantly. There

is no fundamental reason why w(z) must not change arbitrarily at ultra-low redshift [259],

and the PCs capture that possibility.

The vector of model parameters for the chains is given by

~θ = {Ωc, θA,Ωb, τ, ns, lnAs, τ, α1, ..., αNPC
,Mν}. (8.2)

Here, Ωc is the cold dark matter density, θA is the angular size of the horizon at the time

of recombination, Ωb is the baryon density, τ is the reionization optical depth, and As and

ns are the initial curvature power spectrum amplitude and tilt. We define Mν ≡
∑
mν as

the sum of the neutrino masses and assume the so-called degenerate hierarchy, where all

three neutrino eigenstates are equally massive (i.e. the mass of the ith neutrino eigenstate

is mν,i = Mν/3 for i = {1, 2, 3}). Finally, the αi parameters are the amplitudes of the

PCs ei(z), as per Eq. (8.1).

To evaluate the joint effect of massive neutrinos and a model-independent equation

of state for dark energy, we consider a variety of cosmological probes of geometry (the

Hubble expansion rate as a function of redshift H(z) and the luminosity distance DL(z))

and probes of the growth (the matter power spectrum P (k), the shear power spectrum

P κ
` , and S8 ≡ σ8

√
Ωm/0.3, where σ8 is the amplitude of the linear matter power spectrum

at a scale of 8h−1 Mpc1).

Since conventions for the calculation of the shear power spectrum vary across the lit-

erature, we briefly outline the procedure used in this chapter. The shear power spectrum

1Generally, the parameter combination f(z)σ8 (where f(z) is the logarithmic derivative of the linear
growth rate of matter fluctuations) is of interest to measure the growth of structure because it is insensi-
tive to galaxy bias. In the ΛCDM cosmology, f(z) is well approximated by f(z) = Ωm(z)0.545. Different
conventions exist for the definition of S8 however: the value of the exponent varies and sometimes Ωm is
divided by a fiducial value Ωm,fid. Here we choose 0.5 as our exponent and use Ωm,fid = 0.3 for a direct
comparison of S8 with values quoted in Ref. [236].
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is given by

P κ
` =

2π2

`3

∫ zs

0

dz
W 2(z)χ(z)

H(z)
∆2 (k, z) (8.3)

=
2π2

`3

∫ zs

0

dz F (z) ∆2 (k, z) , (8.4)

where ∆2 is the dimensionless matter power spectrum,

∆2(k, z) =
k3P (k, z)

2π2
(8.5)

and

F (z) =
W 2(z)χ(z)

H(z)

1

c3
(8.6)

is known as the lensing weight function. Note that we use the Limber approximation

[214], whereby k ≈ `/χ(z), to evaluate the integral.

For a dark energy model that has an equation of state that is a function of redshift

(and a flat universe),

H(z) = H0

[
Ωm(1 + z)3 + Ων(z) + ΩDE × exp

[
3

∫ z

0

d ln(1 + z′)(1 + w(z′))
]]1/2

, (8.7)

where Ων(z)h2 ≈ Mν(1 + z)3/93.14 eV when neutrinos become non-relativistic, χ is the

comoving distance:

χ(z) = c

∫
dz

1

H(z)
, (8.8)

and W (z) is the weight function,

W (z) =
3

2
ΩmH

2
0g(z)(1 + z). (8.9)

Here g(z) is known as the efficiency factor, and it is defined as

g(z) ≡ χ(z)

∫ ∞
z

dz′n(z′)
χ(z′)− χ(z)

χ(z′)
, (8.10)

where n(z) is the distribution of lenses (normalized such that
∫
n(z)dz = 1). The four
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Figure 8.2: Tomographic distribution of lenses n(z) in the Dark Energy Survey [250].

tomographic bins for DES [250] are shown in Figure 8.2.

Throughout the remainder of the chapter, we refer to the set of chains that vary

neutrino mass and w(z) constructed with PCs as νwCDM. The chains that vary neutrino

mass but w = −1 are referred to as νΛCDM, and those with the usual cosmology (i.e.

with w = −1 and Mν = 0.06 eV) are referred to as ΛCDM.

8.2 Results

We have stated that the first three PCs are generally generally well constrained, while

higher PCs are not. For our PC basis and the datasets we have employed, we find that,

indeed, the first three PCs can be constrained to better than 10% while the 4th and 5th

PCs cannot. We therefore emphasize that the results with 3 PCs are out fiducial results

while the ones for 5 PCs should be seen as an extreme example that illustrates the effect

of including modes that are ill-constrained by the data.

Tables 8.2 and 8.3 show the best-fit and 95% C.L. bounds on several cosmological

parameters, including Mν and S8, marginalized over principal component amplitudes, for

both models and datasets. For a given dataset combination, the posteriors in the νwCDM

chains are significantly degraded with respect to ΛCDM, which is expected since we are

marginalizing over several more parameters2. More important, however, is the fact that

2Ref. [241] points out that since the expansion rate in models where the dark energy is exclusively
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the extra freedom given to the dark energy in the νwCDM chains is able to undo some of

the changes induced by neutrinos, which consequently means that larger neutrino masses

can be accommodated within the data: notice the difference in the νwCDM posteriors

shown in Figure 8.3. As we increase the number of PCs - and thus give the dark energy

more freedom - the allowed neutrino masses increase considerably, with an upper bound

of . 0.38 (0.33) eV (95% C.L.) with 3 PCs and . 0.55 (0.42) eV (95% C.L.) with 5 PCs

in the All (Reduced) dataset. Compare this to the results in Ref. [241], where the allowed

parameter space for massive neutrinos in a cosmology with a phantom, CPL-parametrized

w(z) was (slightly) broader than ΛCDM but still quite limited, with Mν < 0.19 eV.

Clearly, letting the behavior of dark energy be dictated by the data instead of imposing

a specific parametrization can significantly open up the allowed parameter space for Mν .

Furthermore, comparing the two different dataset combinations for a given model reveals

that low-redshift growth information has a slight preference for cosmologies with massive

neutrinos: for both the νΛCDM and νwCDM chains, Mν is pushed upwards when going

from the Reduced to the All dataset. This makes sense considering that WL surveys,

such as DES, tend to have a values of S8 that are 2− 3σ lower than that of Planck [236],

and S8 and Mν are anti-correlated. Note that this anti-correlation is also why in going

from νΛCDM to νwCDM the value of S8 decreases.

Table 8.2: Mean and 95% C.L. errors for Mν and S8 in the νwCDM chains, for the All and Reduced
group of chains, and varying number of PCs. Entries with no subscript correspond to chains where only
an upper bound was obtained for that parameter.

All Reduced

NPC 1 3 5 1 3 5

Mν [eV] < 0.23 < 0.38 < 0.55 < 0.21 < 0.33 < 0.42

S8 0.81+0.02
−0.02 0.81+0.02

−0.02 0.80+0.02
−0.03 0.82+0.02

−0.02 0.82+0.02
−0.03 0.82+0.03

−0.03

phantom is higher than that of the cosmological constant, this degrades constraints on Mν to maintain
the distance to the last scattering surface fixed (and the converse is true in non-phantom dark energy
models, despite the larger parameter space). Note, however, that while this contributes to our wider
posteriors to some extent, our dark energy is not forced to be phantom − and indeed Figure 8.4 shows
that the fractional difference between H(z)νwCDM and H(z)ΛCDM is not always positive.
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Figure 8.3: Constraints on the sum of neutrino masses and S8 ≡ σ8

√
Ωm/0.3 from the νwCDM and

νΛCDM scenarios. Top: All dataset. Bottom: Reduced dataset.

Table 8.3: Mean and 95% C.L. errors for Mν and S8 in the νΛCDM chains, for the All and Reduced
group of chains. Entries with no subscript correspond to chains where only an upper bound was obtained
for that parameter.

All Reduced

Mν [eV] < 0.21 < 0.20

S8 0.81+0.02
−0.02 0.82+0.02

−0.02

For the remainder of the chapter we focus on the chains with the All dataset; we found

that the differences in the remaining posteriors between the All and the Reduced datasets

were marginal, so to avoid clutter we choose to show results for the more comprehensive

of the two. For reference, Appendix F.1 shows the results for the Reduced dataset.

Figure 8.4 shows the fractional difference of νwCDM (left) and νΛCDM (right) with

respect to ΛCDM for the luminosity distance DL(z) (top row) and the Hubble expansion

rate as a function of redshift H(z) (bottom row), for the chains with 1, 3, and 5 PCs.

Note that the bands shown correspond to the 1σ confidence levels. Looking at the top left

panel of Figure 8.4, it can be seen that the luminosity distance in the νwCDM and ΛCDM

models agree at small redshifts (z . 1), but at higher redshifts there is an amplitude

difference between them, reaching a ∼ 1σ difference for the case with 3 PCs, and > 1σ
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Figure 8.4: Fractional difference for the luminosity distance DL(z) (top row) and the Hubble expansion
rate as a function of redshift H(z) (bottom row) for νwCDM (left) and νΛCDM (right), with respect to

ΛCDM, for the All dataset. Bands correspond to 1σ confidence levels.

Figure 8.5: Fractional difference for the matter power spectrum P (k) at z = 0 (top row) and the shear
power spectrum Pκl (bottom row) for νwCDM (left) and νΛCDM (right) with respect to ΛCDM, for the

All dataset. Bands correspond to 1σ confidence levels.

with 5 PCs. This is indicative of the fact that neutrinos change the background evolution,

and while at low redshifts the dynamical dark energy can counteract these changes, the

same is not true for redshifts z & 2, where it becomes subdominant. Furthermore, we
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do not have support from BAO and SN data in this redshift range, so we find that at

these redshifts the changes massive neutrinos induce in the background expansion are

disfavored by the ΛCDM model. The fact that at low redshifts the dark energy is able

to counteract the effects induced by neutrinos is what allows for the much larger values

of Mν in νwCDM than in ΛCDM, as shown in Figure 8.3.

This effect is also visible in the posterior for H(z) (naturally, since H(z) and DL(z)

are related by an integral). Between z ≈ 1 − 2.5, the expansion rate in the νwCDM

cosmology is lower than in ΛCDM, which is indicative of the dark energy behaving as a

phantom component (indeed we see the w(z) posteriors having values lower than −1 in

this range, consistent with what is found in Ref. [260]). This behavior is driven by the

dark energy attempting to appease the aforementioned “discrepancy” in the background

favored by BAO data versus massive neutrinos.

Figure 8.5 shows the fractional difference in the matter power spectrum (at z = 0) and

the cosmic shear power spectrum for the same combination of models as the ones used in

Figure 8.4. On small scales we can see the characteristic suppression of power on scales

below the free-streaming length of neutrinos (O(10−2 h/Mpc) for the allowed neutrino

masses in the νwCDM chains) in the matter power spectrum. Since quite large neutrino

masses can be accommodated as we increase the number of PCs, this suppression becomes

more marked with increasing PC number. Furthermore, on large scales (small k), there

is an overall amplitude shift upwards, with the shift constituting a > 1σ deviation from

ΛCDM for the chains with 5 PCs. This is expected since the amplitude of the power

spectrum increases as we increase the amount of dark energy in the universe (or decrease

the amount of matter).

For the shear power spectrum, we show the fractional difference in the fourth source

tomographic redshift bin n(z4) shown in Figure 8.2 (it is nearly identical in all redshift

bins so we chose to show a single one for clarity). The deviation away from ΛCDM of

the shear power spectrum on large scales (` . 100) is larger than that of the matter

power spectrum. Recall from Eq. (8.3) that the integral to calculate the shear power

spectrum contains two distinct terms: the dimensionless matter power spectrum, and the
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lensing weight function, which encodes the background expansion. It is this additional

dependence on the background which makes the difference with respect to ΛCDM larger

in the shear power spectrum than the matter power spectrum, since as discussed above,

neutrinos induce large differences in the background at high redshift.

The potentially large deviation from ΛCDM suggests this observable as an exciting

candidate to falsify ΛCDM, assuming weak lensing surveys can observe a wide enough `

range to mitigate systematics such as the multiplicity bias, which is a nuisance parameter

that shifts the overall amplitude of the cosmic shear signal. Upcoming data from the

Wide Field Infrared Survey Telescope (WFIRST) [261, 262], the Vera Rubin Observatory

[167, 263] and Euclid [264], will soon have better constraining power at large scales,

although they will only be able to reach scales of about `min ≈ 30.

8.3 Discussion

We have studied the constraints on the sum of the neutrino masses when marginalizing

over principal components of the equation of state of a dynamical dark energy compo-

nent that is allowed to cross the phantom barrier w(z) = −1. Exploring cosmological

constraints on Mν in the context of a general dark energy scenario is necessary because

the background expansion is critical to probe the sum of the neutrino masses, meaning

that there is a degeneracy between the dynamics of the dark sector and our ability to

provide strong constraints on Mν .

Our ability to constrain neutrinos with cosmology is further complicated by the fact

that typical SN and (most) BAO measurements correspond to redshifts where dark energy

cannot be ignored (z . 0.7). At higher redshifts, where dark energy is a subdominant

component in the universe, the ability to compensate for neutrinos with large masses is

diminished, and we found that this leads to observable deviations from ΛCDM.

We investigated the effect of massive neutrinos on a variety of cosmological probes of

geometry and growth within our cosmic-acceleration scenario and found that, by giving

the dark energy equation of state more freedom than in traditionally-used parametriza-
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tions, dark energy can undo changes in the background expansion induced by the presence

of massive neutrinos at late times. This was visible in the luminosity distance, where for

z < 2 the posteriors for the ΛCDM and νwCDM chains agreed.

This effect had two important consequences. First, much larger neutrino masses can

be accommodated within the data: the upper bound of Mν is as high as 0.38 eV (95%

C.L., 3 PCs) or 0.55 eV (95% C.L., 5 PCs), when including weak lensing data. Second,

at higher redshifts, where dark energy is a subdominant component in the universe and

we do not have supporting data, there are large (∼ 1σ) deviations from ΛCDM in the

background, since such large neutrino masses are not generally allowed by the combination

of CMB and BAO data in ΛCDM (which is why analyses using combinations of these

datasets find stringent upper bounds Mν < 0.12 eV). Furthermore, these large changes

to the expansion history of the universe are also visible in the matter power spectrum at

z ≈ 0, where there is a large amplitude increase on large scales in νwCDM with respect

to ΛCDM and, consequently, on the shear power spectrum, since it is a measure of the

integrated large-scale structure along the line-of-sight.

Since BAO measurements can probe amplitude shifts in distances, our results can be

seen as a compelling case to pursue the BAO signal with high-z tracers of the underlying

baryonic density field [265, 266]. High-redshift Type IA supernovae can also be critical,

since they can constrain changes in the shape of the luminosity distance induced by the

transition between the low- and high-z behavior. These measurements are within reach

in the near future. For instance, recently there was a first detection of the BAO with the

Lyman-α forest, at z = 2.4 [267]. Furthermore, experiments like eBOSS [268] and DESI

[269] will provide distance measurements at these redshifts in the very near future.

The large amplitude offset in the shear power spectrum also makes it an exciting

candidate to falsify ΛCDM, particularly since future surveys like the Vera Rubin Obser-

vatory, Euclid, and WFIRST will reach very large scales, down to `min ≈ 30 (although

this might not be enough to mitigate systematics that could hinder the use of this observ-

able to falsify ΛCDM). As an aside, having more precise weak lensing information will be

interesting due to the S8 tension between Planck and other weak lensing surveys, since
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to date there is no satisfying mechanism to solve it (although plenty of exotic models

have been proposed); several weak lensing measurements [19, 236, 270–272] seem to have

values of S8 that are slightly lower than those of Planck.

Previous works have shown that allowing neutrino mass to vary when inferring cosmo-

logical parameters from weak lensing datasets lowers S8: for instance, Ref. [236] showed

that their best-fit value of S8 was lowered with respect to ΛCDM by 0.5σ when allowing

neutrino mass to vary. Adding neutrinos to Planck data has a similar effect, meaning

that simply extending the base ΛCDM model by allowing Mν 6= 0.06 eV does not solve

the tension. Here we have seen that our PC-built equation of state further reduces S8,

and would have this effect if we considered a CMB likelihood and a WL likelihood in-

dependently, meaning that the additional freedom given to the dark energy component

does not solve the tension either.

Note that, conversely, previous works that used nonparametric equations of state

for dark energy were optimistic about the prospect of an evolving dark energy to solve

cosmological tensions: Ref. [260] found that they could mitigate the tensions in H0

(between local H0 and Planck) and Ωm (between BOSS and Planck) with such an evolving

dark energy model. Furthermore, Ref. [273] claimed that extending ΛCDM to include

neutrinos could solve the S8 tension; however, this paper did not consider separately the

effect of adding neutrinos to datasets that favor high S8 (e.g. CMB) and datasets that

favor low S8 (e.g. WL), which is an important distinction that we have made here.

Our goal for this chapter was to construct a model-independent w(z) and see how

the constraints on Mν compared not only to ΛCDM but also to other works that have

considered Mν in the context of specific parametrizations for w(z). As we have already

mentioned, Ref. [241] found Mν ≤ 0.19 eV in their phantom, two-parameter dark energy

cosmology. However, Ref. [258] showed, by choosing specific parametrizations for w(z)

and projecting them onto the PC basis, that the first three PCs contain most of the

information, which means that two-parameter models could be neglecting relevant infor-

mation, leading to constraints on Mν that are artificially tight. Our results corroborate

this conclusion: we find that the first three PCs can be constrained with better than
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10% precision. The crucial consequence of this is that with only 3 PCs we have already

opened up the allowed parameter space of neutrinos considerably (Mν . 0.4). This puts

into question the claim that current data prefers Mν � 0.3 eV, since we have shown that

this depends quite dramatically on our assumption about the behavior of dark energy.

However, this is a double-edged sword: while having too few PCs might yield artifi-

cially tight constraints, very high PCs cannot be probed well by the SNe data. Since most

of the information is contained in the first few PCs, the higher PCs are essentially given

free rein to alter the background cosmology, consequently opening up the parameter space

of neutrinos even more. As we point out throughout the text, the discrepancies between

ΛCDM and νΛCDM are significantly larger with 5 PCs than with 3 PCs. Looking at

Figure 2 it is apparent that as we add more PCs to parametrize w(z) the constraint on

Mν is loosened. This means it is possible for theories of w(z) to fit the SNe data but

increase Mν posteriors considerably. One must therefore be cautious, and we leave results

with 5 PCs as an extreme example.

Ultimately, there is no theoretical reason to favor the CPL (or similar) parametriza-

tions over others, and models yet to be investigated might rely on higher PCs to be

distinguished from ΛCDM [274], which is why pursing a model-independent approach to

parametrizing w(z) (and being cautious when building a basis so as to not have many

unconstrained basis vectors) is an attractive alternative.

Unlike parametric forms for w(z), using PCs allows us to remain agnostic with respect

to what the alternative to the cosmological constant may be, since at present there is no

strong theoretical or observational support for any particular exotic dark energy scenario.

It is worth noting that the main caveat of the PCA method lies in the fact that it does

not assess by itself the physical plausibility of the w(z) shapes that are marginalized over.

Finally, it is important to keep in mind that, as we mentioned in Section 8.1, PCs

oscillate quite drastically at ultra-low redshifts (outside the region of SNe support), but

they do so by construction: they are unphased by physical assumptions, and are only

driven by the data. Although many dark energy models are very smooth, there is no a

priori reason to believe that dark energy models with a low-redshift oscillatory w(z) are

185



unphysical (and in fact some models do predict such behavior [259]). If one wanted to use

the PCA method but had a strong reason to rule out the low-redshift oscillations allowed

by the data, one could impose a prior that would punish such behavior, thus limiting the

behavior of the PCs outside the redshift range supported by the data. For example, one

could impose that the PCs only have non-zero weight at z > zmin.

In our implementation, where we have not imposed any prior at low-redshift to remain

agnostic, the low-redshift oscillations degrade our ability to use local H0 to constrain Mν .

We are therefore not claiming that every model of dark energy would allow Mν ∼ 0.5

eV, but merely that it is still possible to generate models that could make such extreme

masses compatible with the data.
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Chapter 9

Flow-Based Likelihoods for

Non-Gaussian Inference

There are three key ingredients when doing inference: data, a model, and a likelihood

function (in the case of Bayesian inference, there is also a prior). The quality of the

inferred parameters of course hinges on the quality of the data, how closely the model

approximates the process that gave rise to the data, and how accurately the likelihood

maps the probability of observing the data given the model. Throughout this work, we

are going to be concerned with the last of these.

In data analysis across many disciplines the likelihood used for inference is often

assumed to be Gaussian. Gaussian likelihoods are attractive and widespread because

they are well understood and inference boils down to obtaining a covariance matrix for

the data. However, in reality, it is not generally true that the underlying likelihood of a

dataset is Gaussian.

There are several general points one can keep in mind when considering the applica-

bility of a Gaussian likelihood function. One is the central limit theorem (CLT), which

states that the difference between a sample mean and a true mean, normalized by the

standard error, tends toward the standard normal distribution as the number of samples

tends to infinity. This is generally invoked in favor of using Gaussian likelihoods, even

when datasets are known to be non-Gaussian. For example, for data in Fourier space



(such as power spectra), many modes contribute at high wave numbers and thus the CLT

approximately applies. Conversely, at low wave numbers few modes contribute and the

CLT is not applicable. Another important point is that, in works where the covariance

matrix of the data is an estimated quantity, meaning it is not known a priori, it becomes a

stochastic object with some uncertainty. Thus, to obtain the likelihood of the data given

the estimated covariance matrix, the likelihood function has to be marginalized over the

true (unknown) covariance, conditioned on the estimated one. If the original likelihood

is assumed to be Gaussian, this marginalization step in fact leads to a multivariate t-

distribution [275]. Finally, it is also important to consider that systematic effects might

introduce correlations in the data that are not Gaussian.

There are also field-specific factors that can inform the choice of likelihood function.

Although the method we develop in this work is applicable for inference with any dataset,

here we apply it to a cosmological one. There are several puzzling tensions in different

cosmological datasets that have so far stood the test of time [19, 20, 276] that would

be interesting to reconsider under a new, more accurate likelihood. For cosmological

data, we can use knowledge about the physical processes that give rise to an observable

to understand its Gaussianity. For instance, while some cosmological fields such as the

cosmic microwave background (CMB) are essentially Gaussian, those that follow from

nonlinear gravitational collapse − such as distributions of galaxies and cosmic shear −

are highly non-Gaussian. It is therefore likely that the underlying likelihoods of such

fields are themselves non-Gaussian: a nonlinear function of a Gaussian random variable

is not Gaussian distributed.

Recently, several works have studied the impact of using Gaussian likelihoods to infer

parameters from non-Gaussian cosmological data, showing that it can bias the posteriors

of inferred cosmological parameters and underestimate uncertainties [275, 277–279]. The

reason behind this is quite intuitive: the use of Gaussian likelihoods to model non-

Gaussian processes becomes a source of systematic error.

One promising approach to avoid relying on a Gaussian likelihood is to use what are
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called data-driven likelihoods (DDL): likelihoods that are learned directly from the data.1

Nevertheless, there is not yet a unified framework to deal with non-Gaussian likelihoods.

Instead, data-driven approaches rely heavily on trial and error, and tend to not generalize

well in different contexts [277]. In fact, we will show that depending on the type of non-

Gaussianity in the data some DDL methods might not be appropriate and thus offer little

improvement upon a multivariate normal (MVN) likelihood.

Here, we use a flow-based generative model [280] to achieve this task. Generative

models are models from which new samples can be drawn when trained, by for example

learning the underlying true likelihood that gave rise to the data. Flow-based models, in

particular, consist of applying a series of transformations (a flow) to a simple probability

density that is easy to sample from (e.g., a univariate Gaussian) to transform it into a

(theoretically) arbitrarily complex probability density function [281]. If the transforma-

tions are known, an exact form for the resulting likelihood can be obtained and sampled

from. By parametrizing the transformations with neural networks, these models can be

made very expressive (in this context, “expressive” refers to a model that can capture

complex features in the data accurately). Flow-based models have been used to enrich

variational posteriors or enhance other generative models (e.g., [281–285]) and for den-

sity estimation, to learn complicated probability distributions (e.g., governing images of

human faces) [286–291]. The driving interest behind these models has been their capac-

ity to learn complicated probability distributions, but understanding how faithfully they

reconstruct the true data distribution is an open area of research [292, 293].

We seek to understand the quality of the learned likelihood function with the goal of

establishing flow-based likelihoods (FBLs) as an extremely flexible and adaptable method

to obtain data-driven likelihoods that are more accurate than other methods to deal with

1We detail two points with respect to this terminology. We use the term DDL to refer to likelihoods
that are more flexible than a multivariate Gaussian (or other ubiquitous, simple parametric likelihoods)
and do not necessarily fix the functional form at the outset. Note that, while for a MVN likelihood
the covariance matrix can be estimated from data too, the functional form of the likelihood is otherwise
fixed. The second point is what is meant by “data”. We only have one universe, so in cosmology we often
have to rely on mock (simulated) realizations of the universe to assess the fit of a model to some data.
Because the method presented in this chapter is applied in the context of cosmology, we will technically
be using mock data-driven likelihoods. But because our method is equally applicable in any field, one
could imagine disciplines where experiments are repeatable and thus the likelihoods are indeed learned
from real data.
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known (or suspected) non-Gaussianities in datasets. FBLs have appeared in the machine

learning and cosmology/astrophysics literature in other settings, such as in likelihood-

free inference (e.g., DELFI) [294–298] and simulation-based inference [21, 299–301]. We

demonstrate that FBLs can match the underlying likelihood of the data very well, even

in high-dimensional spaces, by comparing the non-Gaussian features of the generated

samples and the data. Furthermore, we show that this is not trivial: under certain condi-

tions, the samples generated can be indistinguishable from the original data and yet the

likelihood can be significantly biased and imprecise. We apply the FBL to mock weak

lensing power spectra, which we show have strong non-Gaussianities. This observable is

representative of many observables in cosmology for which, given a set of cosmological

model parameters, we can generate sophisticated mock data with forward simulations

(including instrumental effects, selection biases, and other systematics) but we cannot

write down a tractable likelihood. Along the way we create a thorough pipeline, incorpo-

rating some elements from previous works [277, 278], which can be applied to any dataset

to analyze the presence (or absence) of non-Gaussianities. With this pipeline we are also

able to gain some insight into why some data-driven methods work for some datasets

and not for others. Seeing that FBLs are capable of overcoming barriers that other data-

driven methods can face depending on the type of non-Gaussianity in the data further

emphasizes the advantage of using FBLs for inference. We emphasize that no aspect of

the NG pipeline nor FBLs are specific to cosmology and therefore these methods can be

applied in any context.

In Section 9.1 we briefly present two data-driven likelihood methods, Gaussian mixture

models (GMMs) and independent component analysis (ICA), which we use to compare

to our FBL. We also outline the basic principles behind normalizing flows and describe

FFJORD [280], a flow-based generative model that uses ordinary differential equations

to evolve the initial probability density. In Section 9.2 we present the exhaustive tests

we carry out to characterize non-Gaussianity in the data. In Section 9.3 we introduce

the observable to which we apply our flow-based likelihood (FBL), the weak lensing

convergence power spectrum, and finally we show our results applying the FBL to this

190



data in Section 9.4. We discuss our results and conclude in Sections 9.5 and 9.6. All the

code used in this work will be made available upon publication.

Throughout the remainder of the chapter, we will use the terms Gaussian, multivariate

Gaussian, and multivariate Normal interchangeably. Furthermore, we will abbreviate

“non-Gaussian” (and its derivatives) as NG when convenient.

9.1 Data-Driven Likelihoods

A probability density function (PDF) can be estimated by drawing sufficient samples

from it. This is the key idea behind data-driven likelihoods. With access to sufficient

(mock) data, it is not necessary to impose a restrictive functional form for the likelihood a

priori ; instead, we can think of independent (mock) catalogs as independent draws from

the underlying true likelihood function, and can use this fact to estimate the likelihood

directly from the samples. The benefit of this method is that, if an appropriate method

for density estimation is used, the reconstructed likelihood can take into account any

non-Gaussian features in the data.2

We refer to likelihoods learned from the data as data-driven likelihoods (DDL). In this

work, we implement three different DDLs. The first two, used as our baseline, were chosen

to serve as a direct comparison of the work in Ref. [277], which studied NG in large-

scale structure data. These are Gaussian mixture models and independent component

analysis. We briefly summarize key aspects of each of these in the section below, but due

to their ubiquity in the literature we provide references for more detailed explanations.

The third method is what we refer to as flow-based likelihoods (FBL): we propose using

the likelihood learned by flow-based generative models as a DDL. We discuss this in detail

below.

2We are using the terms PDF and likelihood interchangeably, although they are different objects. We
explain this in Appendix G.1.
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9.1.1 Gaussian Mixture Model

As its name indicates, a Gaussian mixture model (GMM) is simply a convex combination

(mixture) of multiple Gaussians with unknown means and covariances, each with a weight

that determines their contribution to the PDF. In a multidimensional setting, the final

PDF for a vector x in a GMM with K components can be written as

p̂GMM(x) =
K∑
i=1

φiN (x|µi,Σi), (9.1)

where µi, Σi and φi are the mean, covariance, and weight of the ith Gaussian in the

mixture, respectively, and N is the multivariate normal PDF. The weights are normalized

such that
∑K

i=1 φi = 1. The number of parameters in these models is given by

K

(
d+

1

2
d(d+ 1)

)
+K, (9.2)

where d is the dimension of the data vector x. This is because for each of the K com-

ponents we have to learn a d-dimensional mean vector and a covariance matrix with

1
2
d(d + 1) degrees of freedom (since it is positive semidefinite)3. We also have to learn

K weights, one for each component. Notice that for K = 1 we recover a standard MVN

likelihood.

We use the scikit-learn [302] implementation of GMMs, which uses expectation

maximization [303] to estimate the model parameters, and the Bayesian information

criterion (BIC) to decide how many components to include in the mixture. This method

of model selection considers the maximum likelihood of a model while penalizing model

complexity. We refer the reader to Ref. [304] for a thorough explanation of GMMs and

the expectation maximization procedure.

3The number of parameters can also be decreased by putting additional constraints on the covariance
matrix, such as having different components share a covariance matrix or forcing it to be diagonal, but
we will use full covariances throughout this chapter.
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9.1.2 Independent Component Analysis

Independent Component Analysis (ICA) is typically used to isolate linear mixtures of

independent sources. For some observed data vector x, this amounts to the assumption

x = As, (9.3)

where A is an unknown matrix, called the mixing matrix, that mixes the sources s. The

goal of ICA is to solve for A, which is done by actually solving for its inverse, A−1 = W,

ŝ = Wx, (9.4)

such that ŝ ≈ s.

ICA solves for W by breaking it up into three different linear operations. The first

one is decorrelating the data (i.e. projecting the data onto the principal components),

an operation usually referred to as principal components analysis. The data is then

normalized, and finally a rotation matrix is solved for such that the statistical indepen-

dence of the sources is maximized. We refer the readers to Ref. [305] for details on how

this maximization is carried out. We use the scikit-learn implementation of the ICA

algorithm.

For our purposes, what matters is that ICA provides a way of turning the d-dimensional

likelihood for x into d one-dimensional likelihoods by converting x into d independent

components4:

ŝ ≡ xICA = Wx = {x1,ICA, ...,xN,ICA}, (9.5)

where N is the number of ICA components. In this work, we set N = d, although in

principle ICA can also be used for dimensionality reduction.

The one-dimensional probability density of each component, p̂n, can then be estimated

using a Kernel Density Estimator (KDE). We use a Gaussian kernel, with a standard

4Recall that statistical independence requires that neither second-order nor higher-order correlations
exist.

193



deviation5 given by Scott’s bandwidth [306]. Finally, the likelihood for x is a factorial

distribution, a product of the N independent PDFs:

p̂ICA(x) =
N∏
n=1

p̂n(x). (9.6)

9.1.3 Flow-Based Likelihood

Flow-based Generative Models

For a given data vector x, the goal of generative models is to learn the distribution that

x is drawn from: x ∼ p∗(x), where the asterisk denotes the true underlying distribution.

Once an estimate of p∗ is obtained, new samples of x can be generated, thus the name

of this class of models.

In flow-based methods, the generative process starts by drawing a sample z from a

(simple) probability distribution that has a tractable PDF and is easy to sample from

(such as a univariate Gaussian),

z ∼ pz(z). (9.7)

This prior distribution then undergoes a “flow”, which means that it is transformed

repeatedly while conserving its probability. The optimization process relies on finding a

series of transformations such that the resulting distribution approaches p∗(x).

Consider a series of transformations that are bijective, so that the relationship between

z and x can be summarized as

x ≡ h0
f1←→
gK

h1
f2←−−→

gK−1

...
fK−1←−−→
g2

hK−1
fK←→
g1

hK ≡ z, (9.8)

such that g = g1◦g2◦...gK , f = f1◦f2◦...fK and z = fθ(x) = g−1
θ (x). If the transformation

fθ(x) is learned from the data, then the invertibility criterion ensures that, after drawing

a sample of z, fθ can be inverted to generate new samples of x. Furthermore, notice that

enforcing the transformations to be bijective enforces volume preservation (and unlike

5More generally, kernels are controlled by a parameter called the bandwidth. It decides how much to
smooth each data point, and therefore controls the bias-variance trade-off. For the case of a Gaussian
kernel, the bandwidth is the same as the standard deviation.
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Generative direction 
(sampling)

Training direction

Figure 9.1: Schematic depiction of a flow-based generative model in one dimension. The left-hand
panel shows a standard Normal, which is chosen as the base distribution pz(z ≡ hK), following the
notation in Eq. (9.8). The right-hand panel shows the target distribution, i.e. the distribution of the
data px(x ≡ h0), which is visibly more complex than the prior. The middle panel shows the distribution
at an intermediate point in the flow, h0<i<K . The green arrows reflect the direction in which training
takes place: the model is fed the data x, which then undergoes the flow into the latent space. The
blue arrows reflect the generative, or sampling, direction, whereby a sample is drawn from the prior

distribution and undergoes the inverse flow to generate a data sample.

other generative models such as variational autoencoders [145], the dimension of the

latent space and the data is the same). In theory, if the transformations are expressive

enough, pz can be turned into an arbitrarily complex distribution. To this end, the

transformations tend to involve (invertible) neural networks. Figure 9.1 depicts how

flow-based generative models work in a simplified one-dimensional setting.

Ultimately, Eq. (9.8) is simply a concatenated sequence of changes of variables, so

the log-density of the final distribution can be written as a sum of the log-PDF of the

original distribution plus the sum of the log-determinant of the Jacobian matrix of each

transformation:

log px(x) = log pz(z) + log

∣∣∣∣ det

(
dz

dx

) ∣∣∣∣ (9.9)

= log pz(z) +
K∑
i=1

log

∣∣∣∣ det

(
dhi
dhi−1

) ∣∣∣∣. (9.10)

The loss function used for training is then simply the negative log-likelihood over the
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entire training set D:

L = − 1

|D|
∑
x∈D

log pθ(x), (9.11)

and the model can be trained using stochastic gradient descent.

There are two main catches to flow-based models: one, the transformations must be

easily invertible, and two, they must have an easy-to-compute Jacobian determinant,

since computing the determinant of a matrix scales as n3 for an n× n matrix.

Models in the literature have tackled these issues in different ways: the form of the

transformation can be restricted such that determinant identities can be exploited [281];

the models can be made autoregressive, such that the Jacobian is lower triangular [307];

or dimensions can be split up and affine transformations used such that the Jacobian is

easy to compute [287–289]. All these methods have their own advantages and drawbacks,

but they all have one feature in common: they sacrifice model expressivity to improve

the speed of the Jacobian determinant computation.

FFJORD: Free-Form Jacobian of Reversible Dynamics

Due to the limited expressivity of the aforementioned flow-based models, we opt for

FFJORD [280],6 which replaces the transformation function with an integral of continuous-

time dynamics, giving rise to continuous normalizing flows (CNFs) [308]. We summarize

key details of FFJORD in this section but refer the reader to Refs. [280, 308] for addi-

tional details on the derivation and optimization procedure.

For FFJORD, the transformation from prior to data is seen as an evolution in time.

Let us define the observable data as z(t1) and the original sample drawn from the prior as

z0 = z(t0). If we then define the time evolution of z as an ordinary differential equation

(ODE)

∂z(t)

∂t
= f(z(t), t; θ), (9.12)

(where f can be a neural network and θ its parameters) we can obtain z(t1) by solving

the ODE subject to the initial condition z0 = z(t0). The change in log-density is given

6https://github.com/rtqichen/ffjord

196

https://github.com/rtqichen/ffjord


by the instantaneous change of variables formula:

∂logp(z(t))

∂t
= −Tr

(
∂f

∂z(t)

)
, (9.13)

and thus the total change in log-density can be obtained by integrating across time:

log p(z(t1)) = logp(z(t0))−
∫ t1

t0

Tr

(
∂f

∂z(t)

)
dt. (9.14)

Optimizing Eq. (9.14) is non-trivial, and requires a continuous-time analog to back-

propagation. It can nevertheless be combined with gradient-based optimization methods

to fit the parameters θ. In general, computing the trace of this transformation scales

as O(n2), but by using an unbiased stochastic estimator of Eq. (9.14) Ref. [280] de-

creases 7 the complexity further to O(n). This makes FFJORD scalable without having

to constrain the Jacobian, yielding a very expressive model.

A key point we want to make is that the focus in works that employ these model

is generally on their capacity as generators, or their abstract capacity to increase the

complexity of distributions (e.g. as variational posteriors). The log-likelihood is used

as the training objective, and the model quality is for example judged by the quality of

the samples produced (often in a qualitative fashion). Here, together with quantitatively

discussing sample quality, we zero-in on the quality of the likelihood itself (showing that

sample likelihood is not necessarily indicative of likelihood quality, Appendix G.2), with

the goal of establishing FBLs as very accurate and versatile DDLs that can themselves

be used for inference.

9.2 Measuring Non-Gaussianity

Quantifying the non-Gaussianity of a dataset is the first step in understanding the ap-

plicability or shortcoming of applying a Gaussian likelihood for inference. We propose

carrying out three different tests to quantify the NG of a given dataset, which rely on

diagnosing deviations from the null hypothesis that the underlying likelihood is a MVN,

7It is shown that the variance of the log-likelihood induced by the estimator is less than 10−4.
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and act at different “resolutions”:

1. t-statistic of skewness and excess kurtosis of each bin, which quantifies the NG of

bins independently;

2. transcovariance matrix [278], which considers the NG of all pairs of bins;

3. the Kullback-Leibler (KL) divergence [309] of all the data with respect to a MVN

distribution.

Notice that the latter two tests are sensitive to all higher-order correlations in the

data. The different scopes of these three tests culminate in a very holistic indicator of

NG when combined. As we will show in subsequent sections, the pipeline’s tiered scope

is capable of shedding light into why some DDLs work in some settings and not others,

with the important consequence that methods that have applied DDLs in the past may

have failed to capture non-Gaussianities adequately.

9.2.1 t-statistic of Skewness and Excess Kurtosis

By having many mocks of a given observable, we can obtain an estimate of the distribution

for each bin (e.g. the power spectrum at a specific multipole number). We then calculate

the t-statistic of skewness and excess kurtosis of each to diagnose a deviation away from

Gaussianity (under the Gaussian assumption, the null hypothesis is zero skewness and

excess kurtosis). Henceforth, for conciseness we refer to the excess kurtosis simply as

kurtosis.

Recall that the t-statistic is basically a measure of how many standard deviations

away from the null hypothesis a given measure is. For a given parameter β,

t =
β̂ − βnull

SE(β̂)
, (9.15)

where β̂ is the estimated value of β, βnull is the value of β under the null hypothesis,

and SE(β̂) is the standard error of β̂. t is thus a dimensionless quantity that measures
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the deviation of the estimated parameter away from the null hypothesis in units of the

standard error.

For our purposes, β is going to be either the skewness or the kurtosis of a sample,

and βnull = 0 under the null hypothesis that the samples are drawn from a Gaussian

distribution. The variance of the skewness of a random sample of size n from a Normal

distribution is

V̂arskew =
6n(n− 1)

(n− 2)(n+ 1)(n+ 3)
, (9.16)

and the variance of the kurtosis

V̂arkurt =
24n(n− 1)2

(n− 3)(n− 2)(n+ 3)(n+ 5)
. (9.17)

Taking SE =
√

V̂ar, we can thus obtain the t-statistic for the skewness and kurtosis of

each bin. One thing to notice is that the t-statistic is an extensive quantity: it depends

on the number of data points in a bin (or, equivalently, the number of mocks).

9.2.2 Pairwise Non-Gaussianity of Data Points

Following Ref. [278], we use the basic observation that a sum of two independent Gaussian

random variables should itself be a Gaussian random variable− if xi ∼ N (µi, σ
2
i ) and xj ∼

N (µj, σ
2
j ), then xi + xj ∼ N (µi + µj, σ

2
i + σ2

j ), where N (µ, σ2) is the normal distribution

with mean µ and standard deviation σ8 − to test the pairwise non-Gaussianity of data

bins.

To perform this test, Ref. [278] considers the pairwise sum of all the bins in a given

observable. Consider an ensemble of N realizations of a d-dimensional observable x.

Denoting the d elements of the ith data vector as xui , where i ∈ [1, N ] and u ∈ [1, d], for

8Ref. [278] also tests two other conditions, regarding the product and quotient of normal random
variables. The expected distributions are a superposition of χ2 random variables and the Cauchy dis-
tribution, respectively. These are both very sharply peaked distributions and we found that estimating
their density with a limited number of mock samples was unreliable, so we only show results for the sum.
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each pair xui , x
v
i with u 6= v it is straightforward to obtain the sum

su,vi = xui + xvi . (9.18)

For each pair of bins (u, v), there are N samples of the distribution su,vi .

The N samples are grouped into b bins of a histogram Hb. Under the Gaussian as-

sumption, if N →∞ and b→∞ the histogram will tend to a Gaussian distribution. The

deviation from the estimate of the density of su,vi and the expected normal distribution

can be calculated using the mean integrated square error (MISE):

1

b

b∑
a=1

[Ha(s
u,v
i )−N ]2 ≡ S+

u,v. (9.19)

Each pair of bins can be pre-processed by mean-subtracting and whitening the 2× 2

covariance matrix, to destroy all the Gaussian (second-order) correlations in the data,

such that any remaining correlations are necessarily of non-Gaussian origin (in practice,

this means diagonalizing the covariance matrix; we also normalize the variance of each

dimension such that the final covariance matrix is the identity matrix). After these two

steps each bin should be a draw from a standard univariate normal N (0, 1) if they were

originally truly Gaussian, and consequently su,vi ∼ N (0, 2).

By finding the MISE for each pair of points, Ref. [278] builds a transcovariance

matrix S+: while covariance matrices measure Gaussian correlations between pairs of

parameters/bins, the transcovariance matrix measures non-Gaussian correlations. The

total contamination of the uth data point is then simply the sum over a column of the

matrix:

ε+u =
∑
v 6=u

S+
u,v. (9.20)

We carry out this procedure with one importance difference: instead of using a his-

togram of data points, we use a kernel density estimator instead. We prefer this method-

ology because while the density estimate of a histogram is strongly dependent on the
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number of bins, and thus applying Eq. (9.19) requires finding the value of b that mini-

mizes S+
u,v, the KDE is insensitive to this (although it does have other tuning parameters,

as discussed in Section ??). We therefore modify Eq. (9.19):

1

b

b∑
a=1

[Ka(su,vi )−N (0, 2)]2 ≡ S+
u,v, (9.21)

where K(·) denotes the KDE, and here b is simply the number of discrete values at

which we estimate the KDE and the normal distribution. We use a Gaussian kernel

with standard deviation given by Scott’s bandwidth. Just like for the NG test above, we

note that ε+ is extensive, since it relies on summing over the columns of a matrix whose

dimension depends on the number of data bins.

9.2.3 Nonparametric Kullback-Leibler (KL) divergence

Following Ref. [277], we use a nonparametric estimator of the KL divergence to quantify

the non-Gaussianity in a dataset. The KL divergence is a well-known measure of the

(dis)similarity between two PDFs p and q:

Dn,m(p||q) =

∫
p(x) log

p(x)

q(x)
dx. (9.22)

For cases in which p and q are unknown and we instead just have ensembles of draws

from unknown distributions, Ref. [310] derived an unbiased estimator of the KL diver-

gence that essentially relies on estimating the probability density using k-nearest neigh-

bors (kNN). Consider two densities p and q, defined on Rd, and independent and identi-

cally distributed (i.i.d.) d-dimensional samples {X1, X2, ...Xn} and {Y1, Y2, ...Ym} drawn

from each, respectively. Letting ρk(i) be the Euclidean distance between Xi and its

kNN in {Xj}j 6=i, and νk(i) the distance from Xi to its kNN in {Yj}, the KL divergence

estimator can be written as:

D̂n,m(p||q) =
d

n

n∑
i=1

log
νk(i)

ρk(i)
+ log

m

n− 1
. (9.23)

Ref. [277] proposed estimating non-Gaussianity in an ensemble of mocks by comparing
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the nonparametric KL divergence between samples of a mock observable and samples

drawn from a MVN with mean and covariance taken from the mocks. If the true likelihood

that gave rise to the data were Gaussian, then the KL divergence between these two sets

of samples would vanish, while deviations away from zero would indicate the presence of

NG in the data.

Despite the theoretical appeal of this test, we find that for the number of data samples

and bins we use, it is not quite as robust as the other two. This is due to the curse of

dimensionality: kNN-based algorithms struggle in high-dimensional spaces due to the

fast increase of volume with increasing dimensions, which makes the data sparse.

In Appendix G.4 we show the variability of the KL divergence estimate when com-

paring two MVN distributions for different random seeds. We find that two sample

distributions drawn from the same likelihood can have as little as ∼ 20% overlap between

them. So when showing results for this test, we will keep this lower bound in mind to

judge whether a deviation can be due to NG or simply due to random error. Note that,

despite these limitations, we include this test because we find that for data with signif-

icant NG (like the one used in this chapter) the KL divergence estimate is much larger

than the random scatter.

9.3 Mock Weak Lensing Convergence Power Spectra

9.3.1 Background

In the standard cosmological picture, infinitesimal initial fluctuations in the matter den-

sity field evolved through gravitational collapse in a highly non-linear fashion to yield

all the structure we have in the universe today. Mapping the distribution of matter on

cosmic scales is non-trivial because ∼ 85% of all the matter is dark: it does not interact

with light and therefore we cannot observe it directly. One approach to do so is to use

weak gravitational lensing (WL): as photons from far-away background sources (such as

galaxies) travel towards us, the cosmic web itself acts as a gravitational lens, distorting

their paths and thus distorting the shape of the sources.
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Galaxies that are nearby will be lensed by similar structure so they will have cor-

related shapes. WL galaxy surveys look at millions of galaxies [311] to find statistical

correlations in their shapes. The large number of galaxies is needed both due to the

intrinsic shape noise of galaxies as well as the weakly correlated nature of the underlying

signal. These surveys construct shear maps, which can be used to reconstruct the pro-

jected distribution of matter in the universe between us and the sources. The resulting

surface mass density maps are referred to as convergence maps. By providing a direct

view into the distribution of dark matter across cosmic times, convergence maps can

constrain cosmological parameters, the halo mass function, and can be cross-correlated

with images at other frequencies to learn about halo bias and dependence of astrophysical

processes on the dark matter density.

9.3.2 Mock Data

In this work, we focus on the weak lensing convergence power spectrum. Like many other

observables in cosmology that are the product of the highly non-linear process of structure

formation on small scales, writing down a tractable (and correct) likelihood function

for weak lensing observables is not trivial. Instead, we have to rely on simulations:

given a set of cosmological parameters that we seek to constrain, we can run complex

forward simulations to generate mock data, which we can then use to infer cosmological

parameters from real data.

In Appendix G.6 we detail how we obtain the mock convergence maps and power

spectra used in this work. We summarize some key details here. We obtain 75,000

mock maps by running four N -body simulations with different initial seeds and using

LensTools [312] to generate convergence maps from them. Each map has a sky coverage

of 3.5 × 3.5 deg and 1024 × 1024 pixels. We set the density of matter Ωm = 0.3, the

density of dark energy ΩΛ = 0.7, the density of baryons Ωb = 0.046, the variance of

matter fluctuations σ8 = 0.8, the scalar spectral index ns = 1, and the Hubble constant

H0 = 72 km/s/Mpc. We obtain the convergence power spectrum in 34 different multipole

bins uniformly distributed in log space for ` = [100, 5000] (past ` = 5000 the calculated
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Figure 9.2: Left : mock convergence power spectra as a function of multipole number `. Right : mock
convergence map with a sky coverage of 3.5× 3.5 deg. and 1024× 1024 pixels.

power spectrum deviates from theory significantly [313]). Figure 9.2 displays an example

of a mock convergence map (right) and the 68% CL and 95% CLs of the convergence

power spectra in blue (left).

We point out that for the results presented in this chapter we do not include observa-

tional effects in the maps such as noise or filtering. The reason for this is twofold. First, as

we will show below, the NG is strongest at the lowest multipoles, where even a pessimistic

amount of noise level would not Gaussianize the data. Furthermore, while adding noise

could Gaussianize high-` bins, the objective of this work is to analyze the capacity of

different DDLs to capture non-Gaussianities, and thus how strong the non-Gaussianities

have to be in order to be adequately picked up, so we opt against introducing noise. In

follow-up work where we study the impact of using FBLs on parameter inference, we take

into account observational effects that would actually be present in the data.

9.3.3 Weak Lensing Likelihood Non-Gaussianity

If a field is decomposed into spherical harmonics, with coefficients a`,m, then an angular

power spectrum bin at a given ` is given by:

P` =
1

2`+ 1

∑̀
m=−`

|a`,m|2. (9.24)
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The transformation into a`,m space is linear, so Gaussian fields will have Gaussian-

distributed a`,ms. Because each bin is a sum over quadratic combinations of Gaussian-

distributed variables, power spectrum bins are governed by Gamma distributions. The

applicability of a Gaussian likelihood therefore decreases with decreasing multipole num-

ber (the sum is over less modes as ` decreases), which is precisely why CMB analyses

only apply a Gaussian likelihood at high multipoles [314]. In WL analyses this distinc-

tion is not commonly made, and there are two additional effects that are important.

The underlying field is itself non-Gaussian, meaning that the a`,ms are not necessarily

Gaussian-distributed. Furthermore, the fact that galaxies are discrete tracers (as opposed

to a smooth random field like the CMB) also increases the skewness [315]. Finally, recall

that, compared to the CMB, WL observables have the added complexity of requiring

computationally-expensive forward-modelling.

Ref. [278] showed that there are significant non-Gaussian correlations in the cosmic

shear correlation functions (the real-space analogue of the power spectrum) for the weak

lensing survey CFHTLenS [316]. Furthermore, they showed that because the one-point

correlation statistics are skewed, WL datasets are likely to lead to a systematically low

lensing amplitude. Since the WL amplitude increases with Ωm and σ8, the authors suggest

that this could (partially) explain the discrepancy in the value of S8 = σ8

√
Ωm between

WL and CMB surveys (the so-called S8 tension [19]). Finally, they show that the non-

Gaussianities become more relevant on larger angular scales, meaning that this issue will

be more relevant for upcoming wide-angle surveys such as Euclid and the Vera Rubin

Observatory. This can be understood as a break of the CLT on these scales. These results

were confirmed and expanded in Ref. [315].

For our suite of NG tests (Section 9.2), we use the power spectra from an ensemble

of 2,048 maps instead of the full set. The reason why we use this seemingly arbitrary

number of mocks is to have a direct point of comparison to the caliber of non-Gaussianity

discussed in the context of galaxy power spectra in Ref. [277]: there, the authors only

have access to 2,048 mocks for their observable. As we discussed above, our measures of

non-Gaussianity are extensive (both in terms of number of bins and in terms of number of
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mocks), so an “apples to apples” comparison between two observables requires the same

number of mocks and bins. We relegate the details of this comparison to Appendix G.5,

but in short, we find that the WL power spectrum is significantly more non-Gaussian

than the galaxy power spectrum at the scales considered, and its potential to have a

larger effect on biasing inferred parameters makes it a more exciting target of data-driven

likelihood methods.

Finally, we pre-process the mock power spectra by subtracting off the mean and

whitening them using the Cholesky decomposition of the precision matrix: Σ−1 = LLT,

where Σ is the covariance matrix and the superscript T denotes the transpose. The data

is whitened by applying the linear transformation L on the mean-subtracted mock data

matrix. It can subsequently be unwhitened by applying the inverse transformation.

The results of the NG tests are shown in Figure 9.3. The strong non-Gaussian sig-

natures are apparent in all three tests. The top row shows the absolute value of the

t-statistic for the distribution of each bin as red crosses. The dark (light) gray shaded

region is the 1σ (2σ) confidence level (CL) obtained from 2,048 Gaussian realizations

drawn with mean and covariance extracted from the mock power spectra. As expected,

the Gaussian CL matches a t value of 1 (2). Clearly, the strongest NG correspond to the

largest scales (lowest `), but notice that for nearly all bins the t-statistic is significantly

larger than 2σ, and even 3σ. In Appendix G.6.2 we show the individual distributions for

each bin, together with each KDE fit, which make the statistically-significant skewness

and kurtosis visible for many of them.

The middle row shows the S+ matrix for the mock data (left) and for Gaussian samples

drawn with mean and covariance given by the mock data (center). The stark difference

between both panels is easily visible by eye. The sum of each column in S+, ε+, is shown

on the right. The red crosses represent the mock data while the gray circles correspond

to the Gaussian samples. There is a non-negligible gap between both, and in fact the

mean of the red crosses (shown as a horizontal red bar) is ∼ 8 times greater than the

mean for the Gaussian mocks.

Finally, the histograms in the bottom row reflect the nonparametric KL divergence
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Figure 9.3: Top: absolute value of the t-statistic of skewness (left) and kurtosis (right) of individual
bins for 2,048 weak lensing mock power spectra in red. The gray contours correspond to averaging 100
different sets of 2,048 samples drawn from a multivariate normal likelihood with the same mean and
covariance as the mock data. As expected, they correspond to t-statistic values of 1 (dark gray) and 2
(light gray). The fact that most of the red crosses lie above the Gaussian contours reflects the per-bin NG
in the data. Middle: the S+ matrix for the mock data (left) and equivalent Gaussian samples (middle).
The sum over columns of each matrix, ε+u ≡

∑
S+
u,v, is shown on the right as red crosses and gray circles,

respectively. The red line is a factor of 8 higher than the gray line. Comparing the two S+ matrices,
there is structure in the data that is not present in the Gaussian samples. This, and the vertical offset
between the red and gray crosses on the rightmost panel, reflect the pairwise NG in the data. Bottom:
nonparametric KL divergence estimate between the mock data and their Gaussian counterparts (red),
and the Gaussian samples with themselves (gray). The fact that the gray histogram is not perfectly
centered at zero is due to the slight variability of the KL estimator in 34 dimensions, given the number of
mocks considered (Appendix G.4). If the data were truly Gaussian, we would expect the red histogram
to lie on (or near, see Appendix G.4) the gray histogram; the large horizontal offset reflects the NG in

the distribution as a whole.

207



test with the number of nearest neighbors set to k = 10. Each histogrammed data

point represents a KL divergence test between the 2,048 mock power spectra and 2,048

Gaussian power spectra drawn from an analogous MVN. We repeated this procedure 100

different times, with the red histogram showing the estimated KL divergence distribu-

tion. The gray histogram is the KL divergence of an ensemble of Gaussian mocks with

another ensemble of Gaussian mocks, and therefore serves as a reference for the expected

nonparametric KL divergence. The large horizontal offset between these two distribu-

tion reflects the fact that the true likelihood for the power spectra is not a multivariate

Gaussian.

9.4 Learning Flow-Based Likelihoods (FBL)

9.4.1 Network architecture and training procedure

Before training, we apply the same pre-processing steps as the ones mentioned in Section

9.3: we subtract off the mean and whiten the data using the Cholesky decomposition

of the precision matrix. We do so because our tests on toy Gaussian data suggest that

training benefits from standardizing the variance of each bin (see Appendix G.2), both

in terms of speed and in terms of the quality of the final likelihood fit. Furthermore,

by destroying Gaussian correlations in the data, the network can focus on picking up

non-Gaussian signatures, and by subtracting off the mean all bins are equally important

to the network.

In terms of the network architecture, we stack a single continuous normalizing flow

with a hidden layer of dimension d = 64. We use exponential linear unit (ELU) activation

functions, given by:

ELU(x) = max(0,x) + min(0, α ∗ (exp(x)− 1)), (9.25)

with α = 1 and ∗ denoting element-wise multiplication. The network has 13,449 param-

eters.
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Our mock dataset consists of 75,000 samples. We reserve 10% for testing, 10% for

validation, and the remaining 80% for training. We train the network with batches of

500 samples using the Adam optimizer [164] and a learning rate of 0.001. We do not

introduce any regularization and thus rely on the validation loss to gauge overfitting.

The results shown in the remainder of the chapter correspond to training for 75 epochs.

We have checked that our results are robust to different activation functions, network

architectures, and learning rate. Furthermore, we find that as the network is trained

on & 20, 000 samples, it is able to learn the likelihood without overfitting (unsurprising,

since as a rule of thumb the number of training samples has to be at least greater than

the number of parameters in the model).

Before training on real data, we analyzed the fidelity of FBLs on toy Gaussian data.

We detail our results in Appendix G.2, but summarize some of the relevant findings for

training here. By studying the learned likelihood in Gaussian problems with singular

and non-singular covariance matrices, we noticed that although the sample quality was

excellent in both, the recovered likelihood becomes significantly biased and imprecise as

the determinant of the covariance approaches zero. Conversely, for a full-rank covariance

the likelihood was recovered perfectly to within sampling error. Therefore, we tried

whitening the data before training and found that indeed training is much faster and

well-behaved when we do so.

9.4.2 Results

In Figure 9.4 we show the log-likelihood of the mock samples under a MVN likelihood

versus that of the FBL (top), as well as the progression of the test loss as a function of

iteration number (bottom). Note that we do not expect the FBL to match the likelihood

under a MVN (quite the opposite, given the level of NG detected in Section 9.3), we

simply show it to see how the likelihood values are distorted with respect to the Gaussian

likelihood commonly used for inference. Interestingly, we can actually see that after a

full epoch FFJORD has learned the multivariate Normal likelihood: the likelihood values

of the test set under the FBL (blue) are in perfect agreement with the MVN likelihood
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Figure 9.4: Top: In blue, log-likelihood of the test set samples under a multivariate normal likelihood
versus the flow-based likelihood for various epochs. The green line is the MVN log-likelihood against
itself, shown to make deviations from Gaussianity in the FBL more obvious. Bottom: test loss as a

function of batch iteration number. Note that there are 120 iterations per epoch.

(green line), and the loss plateaus due to having found a local minimum with the MVN

likelihood. With further training, however, the network is able to pick up on the non-

Gaussianities and we can see the loss starts decreasing while simultaneously the deviation

away from the MVN likelihood becomes stronger in the test set.

We compare the FBL to two other DDLs: ICA with 34 components (i.e. no di-

mensionality reduction) and a Gaussian mixture model with two components (chosen by

minimizing the Bayesian information criterion; from here onwards, we refer to this model

as GMM2). Note that we fit these two likelihoods with the full set of weak lensing mocks

as well, to ensure that the comparison to the FBL was fair. In Appendix G.3 we show

how our results are affected by fitting the DDLs with many less mocks, to mimick the

data-limited regime in which some previous works that have applied DDLs in cosmology

have found themselves in. In short, we find that the DDLs severely underestimate the

non-Gaussianities in the data, concluding that the claimed parameter shifts works that

have applied DDLs in this regime have observed are unlikely to truly incorporate the full

extent of the impact that non-Gaussinities can have, if modeled correctly.
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Figure 9.5: Each row corresponds to a different data-driven likelihood. From top to bottom: ICA,
GMM2, and FBL. Left : mock weak lensing convergence power spectrum 68% and 95% CLs (light blue)
together with the CLs obtained from sampling the DDLs (red), as a function of multipole number `.
Right : residual between the log-likelihood of each test set sample under a MVN likelihood and under
the DDL. While the samples drawn from all three DDLs appear to match the data when looking at the

mean, 1 and 2σ intervals, the likelihood is significantly different.

In Figure 9.5, each row corresponds to a different DDL likelihood: ICA, GMM2, and

FBL from top to bottom. The left column shows the true mean, 68% and 95% CLs of

the mock data in blue, and the same quantities obtained from sampling the DDL and

unwhitening in red. The 1σ contours of all likelihoods show excellent agreement with the

data, while the 2σ boundaries show small discrepancies, especially for ICA.

The right-hand panels show the residual between the MVN likelihood and the DDL

for the test set samples. The non-zero residual for most test set samples indicates that

the DDLs are picking up on some NG features in the data. All three DDLs show a similar
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moon-shaped residual, although it is more apparent for GMM2 and FBL than for ICA.

This shows that the MVN likelihood is not capturing the tail-ends of the data distribution

correctly, which could have important implications in inference pipelines.

By generating samples from all three likelihoods we can also carry out the three non-

Gaussianity tests detailed in Section 9.2. In Figure 9.6, the red contours in the first

three columns correspond to the 68% and 95% CLs of the skewness, kurtosis, and ε+,

from left to right, from drawing sets of 2,048 samples from each likelihood 100 different

times. They can be contrasted to the ones obtained from 100 different draws of 2,048

power spectra from the full set of mocks, which are shown in blue, and to the ones that

correspond to draws from a MVN, shown in gray. Furthermore, the fourth column shows

the KL divergence between the mock data and a MVN likelihood (red); between the mock

data and the DDL (green); and between a MVN and itself (gray).

ICA and GMM2 each seem to have different strengths. ICA is able to pick up on the

strong skewness and kurtosis of the first 2-4 bins, since they are the ones that display the

strongest non-Gaussianities. On the other hand, the GMM2 approximates the true ε+

while failing to capture most of the skewness and kurtosis. Interestingly, by looking at the

right-hand panels of these two DDLs, we can see that capturing the pairwise NGs is much

more strongly correlated to improving the KL divergence of the distribution as a whole.

The shortcomings of GMM2 in terms of the skewness and kurtosis are overcome by the

FBL, which shows excellent agreement with the data except the skewness at the highest

multipoles, and the KL divergence estimate between the FBL and the data (green) has

near-perfect alignment with the reference distribution (gray).

9.5 Discussion

We have shown that, for our mock weak lensing data, neither the GMM nor the ICA

likelihoods fully succeed in capturing the NG in the data, while the FBL does so extremely

well. By considering the underlying principles behind each of the three DDLs we can try

to understand their performance when applied to the task of capturing non-Gaussianities.
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Figure 9.6: Each row corresponds to a different data-driven likelihood. From top to bottom: ICA,
GMM2, and FBL. From left to right: absolute value of the t-statistic of the skewness, kurtosis, and ε+ of
each bin for 100 different sets of 2,048 mock WL power spectra (blue), DDL samples (red), and Gaussian
samples (gray). The vertical offset between the blue and gray shaded regions reflects the high NG in
the data. Overlap between the red and blue contours indicates that the DDL has captured the NG. The
rightmost panel shows the KL divergence between a Gaussian with itself (gray), between the data and
the MVN likelihood (red), and between the data and the DDL likelihood (green). The horizontal offset
between the red and gray histograms reflects the fact that the true likelihood is not MVN. If the DDL
has captured the true likelihood correctly, we expect the green histogram to lie on (or near, see Appendix

G.4) the gray histogram.
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The fact that ICA is predicated upon maximizing the non-Gaussianity of the compo-

nents means that it is able to reproduce the distributions of independent bins, even when

these have significant skewness or kurtosis. However, because it also requires indepen-

dence between dimensions, it destroys the non-Gaussian correlations between datapoints

that the S+ test is sensitive to. On the other hand, GMMs cannot account for strong

distortions away from Gaussianity of individual bins. The FFJORD-based FBLs are

built from transformations with unconstrained Jacobians, and are thus given much more

freedom of expressivity than the other DDLs considered in this work. Nevertheless, al-

though the FBL outperforms the ICA and GMM likelihoods in terms of the three NG

tests carried out, we find that there is a minimum threshold for the per-bin NG below

which the FBL struggles to distinguish from a Gaussian (as can be seen for the skewness

at high mutipoles).

The strengths and weaknesses of each of the three DDLs offers strong evidence that

data volume is not the only factor that will determine the success or failure of a DDL.

Ultimately, having some understanding of the type of NG present in the data is crucial to

select the right model and not underestimate the impact of NG when inferring parameters

from the data. Using our multi-resolution NG tests, which focus on increasingly coarser

levels of non-Gaussianity in the data, is beneficial to faithfully diagnose the quality of

the DDLs: in isolation, they could mislead one into having false confidence in the learned

likelihood (like the bin-wise non-Gaussianity for ICA or ε+ for GMM2), but taken together

they succeed in identifying shortcomings in each of these models. The fact that the FBLs

succeed in capturing the different types of NG diagnosed through the three tests suggests

that FBLs are likely to be widely applicable across datasets and domains much more

readily than ICA and GMM, which can require a trial-and-error procedure [277].

The impact of using FBLs for parameter inference, instead of MVN or another DDL,

is left for follow-up work, but looking at the deviations from the Gaussian expectation

can give us some insight. By comparing the evolution of the loss during training to

the likelihood of the samples, we can see how the loss is progressively minimized as the

likelihood of the test samples deviates from the Gaussian expectation. The trained model
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shows that the FBL boosts the lowest likelihood values the most, although it also boosts

the highest ones. This suggests that, at the very least, misuse of MVN likelihoods could

be underestimating uncertainties in inferred parameters.

9.6 Conclusion

In this chapter, we have investigated the use of data-driven likelihoods to capture non-

Gaussianities in the data. In particular, we have suggested exploiting flow-based machine

learning models. These models are interesting because the loss function used for opti-

mization is the negative log-likelihood of the data itself. We focus on the quality of this

optimized likelihood and its capacity to pick up non-Gaussian signatures in the training

data, with the goal of using it for inference. We refer to it as flow-based likelihood, or

FBL.

We applied the FBL to a significantly non-Gaussian mock cosmological dataset: the

weak lensing convergence power spectrum. We built on the work of Refs. [277, 278] to

design a suite of tests that seek to capture different non-Gaussian features in the data −

from a bin at a time to the observable as a whole − and used it to gauge to what extent

three different data-driven likelihood methods succeed in capturing the non-Gaussianities

in the data they are fit on. We used two DDLs used in Ref. [277] for different cosmological

large-scale structure observables, ICA and GMM, and contrasted them to our proposed

FBL. An interesting point to keep in mind is that the non-Gaussianities exhibited by

the mock weak lensing data are much stronger than the ones of the mock galaxy power

spectra used in that work, meaning that while they found that using DDLs lead to small

posterior shifts compared to a Gaussian likelihood, the shift could be greater for a dataset

such as this one (see also Appendices G.3, G.4, and G.5).

We found that the FBL captured the underlying likelihood much better than the

other two DDLs we considered: neither GMM nor ICA fully succeeded in capturing

a vast portion of the non-Gaussianities. Through our three NG tests we were able to

gain some insight into the applicability of each of these three DDLs, showing that the
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NG structure in the data can determine whether a given DDL is appropriate or not.

Seeing the strong impact of pairwise non-Gaussian correlations in WL data, and the

shortcomings of ICA in addressing them, is particularly interesting since works such as

Ref. [313] used an ICA dimensionality reduction before performing inference on weak

lensing data, and concluded that the impact of a non-Gaussian likelihood was small.

Unlike GMM and ICA, which require some restrictions in order to fit the data (e.g.,

independence between components in ICA), the FBLs used in this work are the prod-

uct of transformations with unconstrained Jacobians, which allows them to be much

more expressive. Not only do they succeed in capturing the NG in the data, but this

freedom makes it likely for them to be widely applicable across datasets with different

types of NG. Furthermore, the flexibility of the FBL when fitting different types of NG

could prove beneficial not only to prevent having to follow a trial-and-error procedure to

find appropriate DDLs for different observables, but also to avoid choosing a wrong one

altogether.

One final consideration when weighing what DDL to apply is also the quantity of

(mock) data available for training. While all data-driven methods are data-intensive,

out of the three methods we consider, ICA requires significantly less parameters than

GMMs, and GMMs than FBLs. Thus, depending on the computational expense required

to generate mock data, employing a FBL could be prohibitive. In such a setting, looking

at the type of NG features in the data through an approach like the one we suggest could

aid the selection of an adequate DDL that is more restrictive than an FBL but requires

less data.

When placing this work in the context of other research that has studied the impact

of non-Gaussianity in WL data in particular, we want to point out that data is some-

times “Gaussianized”, by for instance combining bins) before applying Gaussian and/or

non-Gaussian likelihoods. Such works have concluded that NGs do not shift posteriors

considerably (e.g., [296, 317]). However, this process can destroy potentially-useful infor-

mation, and we therefore advocate not Gaussianizing the data and instead opting for more

accurate non-Gaussian likelihoods, such as FBLs. This plight is addressed in the context
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of the thermal Sunyaev-Zel’dovich one-point PDF in Ref. [318], which discusses the un-

fortunate need to Gaussianize clearly non-Gaussian data due to not having access to an

adequate non-Gaussian likelihood, with the consequence of weakening the constraining

power of the PDF. We emphasize that even highly complex and data-driven approaches

can (inadvertently) Gaussianize the data in their pipelines (e.g., [319]), and thus advo-

cate for scrutinizing data processing steps to ensure that non-Gaussian information isn’t

erased.

This work has required the use of simulated data to fit the three DDLs. The use

of mocks in canonical large scale structure analyses is widespread, usually to estimate

covariance matrices. As we have previously emphasized, adding theoretical and obser-

vational systematics can be easier with mocks than it is to incorporate directly into a

likelihood. Mocks used for inference are extensively validated against the data they are

needed for, but there is always the possibility that the way in which these effects are in-

corporated into mocks is insufficient or incorrect. Just like this could lead to an incorrect

covariance being extracted from mocks, it can lead to DDLs that miss certain effects that

are pertinent to the data. Understanding whether this deficit can be more important for

a machine learning-based DDL such as FBLs, given that domain adaptation is nontrivial,

than it is for other DDLs is left to future work.

We emphasize that this method is certainly not restricted to cosmological data. In-

ference in any domain can be improved by relaxing assumptions about the Gaussianity

of the data. In particular, there is nothing about FBLs or the NG pipeline in this work

that is specific to cosmology, and can thus easily be applied in any domain. Nevertheless,

there are intriguing tensions in cosmological data that have caused much interest in the

community [19, 20, 276] and, thus, make it an exciting target of FBLs. By relying on the

Gaussian approximation for inference, we might be biasing inferred parameters or being

falsely confident in them. While in the past this approximation may have been sufficient,

as data precision increases considerably we enter a regime in which errors induced by

using incorrect likelihoods can be significant.
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Final Remarks



The work presented in this dissertation was done with the goal of getting a step closer

to answering a single question: is the ΛCDM model, and by extension the primary theories

it is based on, the correct model of the universe? We have presented a series of statistical

techniques that can push the boundaries of the ΛCDM model and test it in novel ways.

Our work has spanned a variety of fields, and a breadth of theory, simulations, and

applications.

The first part of the dissertation focused on one of the largest enigmas that the

ΛCDM model is predicated upon (and gives it 75% of its acronym): cold dark matter.

Because there is widespread agreement between the CDM paradigm and observations on

cosmological scales, we set our sights on an observable that can probe much smaller (∼

kpc) scales: strong lens images. This observable can test our current understanding of

CDM structure formation in a so-far untested regime. On these scales exotic dark matter

physics can lead to interesting phenomenology that is observably different from CDM

predictions, meaning that we can learn something fundamental about the particle nature

of dark matter by adequately probing them. We presented novel ways of mapping the

distribution of dark matter on these scales that offer a variety of advantages compared

to traditional methods: sensitivity to lower masses (smaller scales), much more model-

independence, and a significant speed-up.

In the second part of the dissertation we addressed the more practical concern of how

to correctly determine the cosmological parameters (and consequently assess the adequacy

of the ΛCDM model) from data. Without ensuring that this step is done correctly, we

can’t be certain whether apparent deviations from ΛCDM mean we need new theories to

explain the universe we observe today. We explored a data-driven approach to incorporate

our ignorance about elements of the theories underlying ΛCDM into how the model is

parametrized (and ultimately into parameter constraints). We did so with the equation

of state of dark energy, and other works have done so for reionization and inflation

[320, 321]. We also explored the issue of likelihood Gaussianity, an assumption that is

made in the vast majority of cosmological analyses. We developed a method to learn

any likelihood from (simulated) data instead of having to impose it, and analyzed how
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common approaches used to move away from a Gaussian likelihood might inadvertently

be less effective than expected. At the time of writing this dissertation, we are working

on applying our FBL to weak lensing data to get a definitive answer on whether using

Gaussian likelihoods has biased constraints on Ωm and σ8 and artificially given rise to

the S8 tension.9

It is interesting to reflect on the reach of our work, and how we envision it will fit into

the broader field in the years to come. The years encompassed in this work, from 2016 to

2020, have seen important shifts in the interests and focus of the field as a whole. To put

this into perspective, in 2016 the H0 tension between the CMB and local measurements

was only at the level of ∼ 2σ [322], while today it is a > 5σ tension [21], with papers

discussing it being published nearly on a daily basis. Seminal discoveries have included

the first direct detection of gravitational waves by LIGO [323], and the first image of a

black hole by the Event Horizon Telescope [324–329].

Strong lensing has moved from being a probe of dark matter physics on sub-galactic

scales used by a small community to a very exciting and growing subfield, arousing interest

from astrophysicists, particle physicists, and cosmologists alike. Since our initial paper

on the convergence power spectrum [4], Ref. [200] used a semi-analytic galaxy formation

model to compute the power spectrum and found broad agreement with the predictions

of our work, and Ref. [120] did an in-depth study into how source and lens properties can

affect the observability of the substructure power spectrum in strong lenses. Key members

of the lensing community and collaborations that traditionally rely on other methods

have recognized its potential, with Ref. [232] having analyzed a strongly-lensed image

and put an upper bound on the amplitude of the power spectrum, and most recently the

TDCOSMO collaboration including the power spectrum extracted from image residuals

in their analysis [121]. Concurrently, there have been several ML methods put forth to

accelerate and enhance the extraction of small-scale dark matter information from strong

lens images that fall into the statistical detection category [153, 154, 330].

So far, in this dissertation we have strongly emphasized the benefits of statistical de-

9Recall S8 ≡ σ8

√
Ωm/0.3.
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tection techniques, in terms of harnessing the additional constraining power of a huge but

unresolvable population of very-low-mass halos. However, this discussion was implicitly

from the point of view of constraining dark matter. There are other settings in which

direct detection methods can have an advantage, if obtaining a lens model including per-

turbers is a precursor to another science objective: statistical methods have the downside

of not being easy to visualize or incorporate into a high-fidelity lens model. In these

settings, we believe that our direct detection-like ML implementations, which can serve a

dual purpose − enhancing traditional analyses or replacing them altogether − will make

them a particularly attractive model to incorporate into the analysis of real images.

One such setting is time-delay cosmography, which has now established itself as a pow-

erful and independent way of measuring H0 from multiply-lensed quasars [21, 210, 211].10

So far the measurement of H0 from time delays seems to agree with local measurements,

thus widening the chasm between low-redshift and high-redshift determinations of H0.

Time delays aren’t independent of the perturber problem we’ve been concerned with,

since accurate lens modeling (including substructure) is a necessary ingredient before

estimating H0 (the projected gravitational potential of the lens enters the time delay

equation). In a small sample of 6 lenses Ref. [121] found that unaccounted for structure

can inflate error bars on H= between 0.7 − 2.4% in individual systems, with the highest

source redshift zs,max = 2.355. They establish that, intuitively, the error scales with the

square root of the LOS volume (divided by the longest time delay), meaning that for

higher-redshift sources the additional error could be considerably larger. Their results

mean that the true error from time delays is somewhat higher than the claimed H0 pre-

cision of 2.4% for the joint sample of 6 lenses analyzed by the HOLiCOW collaboration

[21] (5 of them are common to both analyses). Clearly it will be crucial to remove this

contribution to the uncertainty to shrink error bars to the sub-percent level. We are

excited by the prospect of our work on quantifying and identifying invisible structures

in strong lens images aiding H0 estimates from time delays and helping in the quest to

pinpoint the source of the H0 tension.

10It can also constrain other cosmological parameters, such as the curvature and the equation of state
of dark energy, but with much less precision than other cosmological observables.
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As a final point on this topic, we emphasize that constraints extracted from strong

lens images with respect to dark matter and H0, although not quite at the level of other

measurements at present, are based on O(10) images. In the next several years, the

number of high-quality images at our disposal is going to increase by several orders of

magnitude, so we are optimistic that, hand-in-hand with improved ways of understanding

the contribution of perturbers, we’ll soon be able to place state-of-the-art constraints on

both the nature of dark matter and the expansion rate of the universe with strong lens

images.

These last few years have also coincided with the machine learning boom, which

has trickled into many scientific disciplines. The original polarization towards machine

learning methods in the field − on one side reticence toward these “black box” models,

and on the other boundless optimism about their applicability and capability − has

given way to a fruitful middle ground, with excitement about their capacity for data

processing and analysis compensated by thorough and ingenious ways of improving their

interpretability and thus our comfort in using them for science. We foresee a hybrid

approach between ML and canonical modeling techniques becoming increasingly popular

in the near future.

Our flow-based likelihood approach is one such example, where the “black box” is

used to learn a likelihood, which is extensively validated, and is not the final product

of the analysis but rather a tool that can subsequently be used to perform a traditional

likelihood analysis. The huge advantage of this approach is that, although it incorporates

an ML element, the data analysis pipeline maintains a fully Bayesian treatment of the

data, thus quelling a common complaint of inferring parameters with ML models in

cosmology (the adequacy of error estimates from (Bayesian) machine learning models

remains an open problem).

As the quality and volume of our data increases, and our error bars shrink, pursuing

such hybrid approaches is more relevant than ever before. As we emphasized throughout

the text, evaluating − and wherever necessary, changing − canonical modeling choices

and assumptions is going to become crucial. We are excited by the prospect of re-
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analyzing data that have given rise to some of the most important cosmological tensions

with FBLs. Whether we find that using accurate non-Gaussian likelihoods does or does

not significantly shift parameters with respect to a Gaussian likelihood can increase our

confidence in our current model of the universe or offer decisive evidence to catalyze the

move towards a new model.

Finally, looking to the future impact of ML in the cosmology community more broadly,

we believe we are going to see important shifts away from having to rely on summary

statistics towards more “map-level” inference: instead of having to reduce observations

to a low-dimensional vector (for example a 3D distribution of millions of galaxies into a

power spectrum), erasing a lot of valuable information in the process, we are going to

see a rise in methods that can perform inference directly on the full-dimensional dataset.

Cosmologists often have to rely on two-point functions (and sometimes three-point func-

tions), so this would be a marked improvement, leading to significantly tighter constraints

on cosmological parameters. Map-level comparisons to theory can also make deviations

from ΛCDM more obvious (for instance if they are hidden as higher-order correlations).

We believe several factors are going to allows for this shift. The first of these are huge

improvements in the complexity, detail, and availability of forward-modelling techniques

for a wide range of observables. The second is the speed-up provided by machine learning

in terms of forward-model emulators and in terms of data analysis. The final key element

is the development of novel data-driven likelihood methods, such as our flow-based likeli-

hoods, or likelihood-free methods such as DELFI, since traditional parametric likelihoods

will be inadequate for these purposes.
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Appendix A

Direct Detection of Dark Matter

Substructure in Strong Lens Images

with Convolutional Neural Networks

A.1 Subhalo population characteristics

Here we show relevant features of the subhalo populations in the images that were simu-

lated following the procedure in Section 3.1, and are in the training/validation/test sets

we used.

Single subhalo:

Figure A.1: Images with a single subhalo Left : mass fraction in substructure fsub as a function of
the mass of the subhalo in the image. Right : absolute distance from the subhalo’s position rsub to the

Einstein ring θE in arcseconds.
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Figure A.2: Images with Nsub constrained Top left : in blue, the mass fraction in substructure
fsub as a function of the highest subhalo mass in the image mhigh. The “reduced” markers correspond
to having removed the most massive subhalo. Top right : in blue, the total number of subhalos in an
annulus 0.6′′wide centered on the Einstein ring. In gray, the number of subhalos with masses between
4× 106 − 4× 109 M� in this same area. The solid, dashed, and dotted red lines correspond to the 50th,
16th/84th and 2.5th/97.5th percentiles, respectively. Bottom: absolute distance from the position of the

most massive subhalo rhigh to the Einstein ring θE, in units of arcseconds.

Figure A.1 shows, on the left, the correspondence between the subhalo mass and

the mass fraction in substructure, and on the right the absolute distance between the

subhalo’s position and the Einstein ring. Since these images have a single subhalo, the

correspondence between fsub and msub is trivially one-to-one. Also, notice that the distri-

bution of the subhalo’s position rsub is not uniform from 0′′- 0.25′′because of the additional

constraint on the minimum intensity at the subhalo position.

Nsub-bound:

Figure A.2 shows different features of the subhalo populations over the entire train-

ing/validation/test sets images, where the number of subhalos per image was constrained.

The top left panel shows the fraction of mass in substructure as a function of the highest-

mass subhalo in the image. Most images have a fraction of mass in substructure well

below 1% (in particular all the images with mhigh < 109 M�) and, as expected, fsub

increases considerably with increasing mhigh. The orange markers show the value of fsub
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if the most massive subhalo in the image is removed. This shows that for the majority

of the images with mhigh & 109 M� the value of fsub is driven by the single most massive

halo, although there is some scatter. In Section 3.2 we discuss the effect (or lack thereof)

of the images with high fsub due to more than a single subhalo.

The top right panel shows the number of subhalos within an annulus of width 0.6′′centered

on the Einstein ring together with a histogram of the number of subhalos in the annulus

only with masses between 4×106−4×109 M�, to have a direct point of comparison to the

numbers cited in [108], where it was found that, in the context of CDM, for fsub = 0.3%

there should be ∼ 7±1 subhalos with masses between 4×106−4×109 M� in an annulus

of this width. We can see that the number of subhalos (and fsub) lie comfortably in the

lower end of the expectations within CDM. Finally, the bottom panel shows the absolute

distance between the position of the most massive subhalo and the Einstein radius. Again

it is apparent that the distribution is not perfectly uniform due to the fact that the most

massive subhalo has to lie at a point on the image with non-negligible intensity.

fsub-bound:

Figure A.3 is analogous to Figure A.2 but for the dataset where the mass fraction in

substructure per image was constrained to be fsub = 1± 0.05%. The top left panel shows

that, up to fsubMhost, the mass fraction in substructure is 1± 0.05%. Past this point, as

explained in Section 3.1.1, the single most massive subhalo already saturates this bound

so instead, for a given mhigh > fsubMhost, we generate a population of subhalos that does

obey the bound on fsub but has m′high < mhigh, and then add mhigh to the image. The

orange markers show the “reduced” value of fsub, where the most massive subhalo isn’t

taken into account. It can be seen that it obeys the constraint of 1± 0.05%.

The top right panel again shows the number of subhalos in an annulus that is 0.6′′wide

centered on the Einstein ring in blue, and in gray the number of subhalos with masses

between 4×106−4×109 M�. It has a mean of 21 subhalos, which is expected since these

images have a ∼ 3× greater value of fsub than those in Ref. [108]. The bottom panel

shows, as before, the absolute distance from the position of the most massive subhalo to

the Einstein ring.
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Figure A.3: Images with fsub constrained Top left : in blue, the mass fraction in substructure fsub as
a function of the highest subhalo mass in the image mhigh. The “reduced” markers correspond to having
removed the most massive subhalo for images with mhigh > fsubMhost to show that for these images
fsub is still bound to 1 ± 0.05% when the most massive subhalo isn’t taken into account. Top right : in
blue, the total number of subhalos in an annulus 0.6′′wide centered on the Einstein ring. In gray, the
number of subhalos with masses between 4× 106− 4× 109 M� in this same area. The solid, dashed, and
dotted red lines correspond to the 50th, 16th/84th and 2.5th/97.5th percentiles, respectively. Bottom:
absolute distance from the position of the most massive subhalo rhigh to the Einstein ring θE, in units

of arcseconds.
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Appendix B

Extracting the Subhalo Mass

Function from Strong Lens Images

using Image Segmentation

B.1 Single subhalo pixel predictions

In the main text, we examine the per-pixel predictions on the images of the test set in

Fig. 4.7. There, each panel corresponded to the true label of the pixel and the x-axis

represented the predicted class for the pixel. Here we flip the information around. Each

panel in Fig. B.1 corresponds to pixels that are predicted to be part of the class indicated

by the title. The x-axis then shows the true label and the panels are again normalized to

unity. The blue and orange lines are for images with no noise and 1% noise, respectively.

The solid lines do not use a probability threshold for the pixel prediction, while the dotted

lines enforce that a pixel will not be predicted to a subhalo class unless the probability

is at least 50%.

It is now clear that the class that is predicted is very likely to be correct. For the

images with no noise, every panel has the class with highest probability correct for the

prediction. The probability threshold reduces the number of pixels predicted to belong

to the light subhalos. This slightly increases the fraction of pixels coming for the correct
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Figure B.1: Each panel corresponds to pixels which are predicted of the indicated class. The x-axis
denotes the class that the pixels belong to at truth-level. Each panel is normalized to unity. The results
for images without (with 1%) noise are shown in the blue (orange) lines. The solid lines denote when
the predicted class has no probability threshold. The dotted lines require that the predicted probability

is at least 50% before assigning a pixel to a subhalo class.
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class while reducing the predictions from pixels which were supposed to belong to the

background or main lens.

With noise, the network essentially does not predict pixels to belong to subhalos

lighter than m ≤ 107 M�. While it predicts some pixels in the 107.5 M� bin, these are

not very accurate, although the probability threshold does help. Once the subhalos are

as heavy as 108 M�, the predicted class usually comes from pixels which at truth level

were that same class.

B.2 Confusion matrix

In Fig. B.2, we show the confusion matrix for the individual pixels for all the images in

the test set. The columns correspond to the true class (target) of a given pixel, while the

rows show what the model classifies it as (predicted). We normalize the columns such

that they sum to unity: with this choice, the values in each column show the probability

that a pixel with a given true label was predicted to be in each of the eleven possible

classes. The left panel corresponds to a model trained and tested on images with no

noise, while the right panel corresponds to a model trained and tested on images with

Gaussian noise with a standard deviation of 1% of the mean brightness of the pixels near

the Einstein ring. All images (with or without noise) are convolved with a Gaussian point

spread function (PSF) with a full-width half-max of 0.07′′, which roughly corresponds to

the PSF size of the Hubble Space Telescope.

We can see from the left panel of Fig. B.2 that the matrix is mostly diagonal, implying

remarkable accuracy overall. The two dark squares in the lower-left corner show that

background and main lens pixels are almost always classified correctly.

For the subhalo classes, we see that there is always a non-zero probability of pixels

getting assigned to the two adjacent classes by the model. When the network misclassifies

a pixel, it is often still locating a subhalo but getting a slightly higher or lower mass

estimate. This is not surprising since the subhalo masses can lie anywhere within their

class and can therefore lie near the boundaries of adjacent classes. It is remarkable that
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Figure B.2: Confusion matrix for the pixels of the 104 test images. Each image contains 80× 80 pixels
which are then placed in the matrix according to their truth target label and the label predicted by the
network. The matrix is then normalized so the sum of the columns is unity. Most of the data lies along
the diagonal, showing good accuracy. The network makes some errors by correctly locating the subhalo,
but predicting the neighboring mass bin. When including noise, subhalos with m . 108 M� are likely

to be missed altogether and get predicted as background or the main lens.

even for extremely low-mass subhalos . 107 M�, the highest probability lies along the

diagonal, although there is also a non-negligible probability of getting classified as main

or background, as expected. Impressively, the network is able to identify these light

subhalos despite their perturbations to the brightness being less than a 0.1% effect.

While the method in principle has an exceptionally good sensitivity, it invariably de-

grades with noise. When including noise at the level of 1% of the mean image brightness,

the lower mass reach of the model is around 108 M�. This 1% noise is found to be a

realistic approximations for sources brighter than magnitude 20 (App. B.4). Above this

mass, the matrix is again nearly diagonal. Below this mass, nearly all of the pixels are

predicted as main or background because the effect induced by the substructure is less

than the noise. One important conclusion we draw is that, despite losing sensitivity, the

network does not add spurious subhalos randomly across the image when noise is added.

B.3 Subhalo predictions with probability threshold
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Table B.1 shows the subhalo detection accuracy when using a probability threshold.

The results are quite similar to those without the probability threshold in Tab. 4.1.

The probability threshold defaults individual pixels to the background class unless the

probability for a subhalo class is larger than 50%. In general, this causes a few of the

subhalos which were detected without the threshold to now be not detected. However,

it also causes a few to jump to an adjacent mass bin. These subhalos have are nearly

equally predicted to belong to two different classes, which happens when the mass is near

the edge of a mass bin. If a pixel around the edge is now assigned to the background, the

secondary class may now have more predicted pixels, resulting in a changed mass.

B.4 How realistic is 1% white noise?

Throughout this work, we have shown how the U-Net is able to detect dark matter sub-

halos in strong lens images without noise and when 1% white noise is included. Framing

the noise as a fraction of the mean image brightness allowed us the easily see when the

network would lose sensitivity to subhalos of a certain mass (Sec. 4.3). However, it is

reasonable to ask how realistic this is. For instance, the gravitational imaging method

searches for subhalos in pixels with a signal-to-noise ratio (S/N) of at least 3. We point

out that using 1% noise does not imply that all of the pixels have S/N of 100. Instead,

there is wide range, with some pixels having very strong signal compared to the noise,

and other pixels that are swamped by noise.

To get a better sense of this, we simulated images including a more realistic noise

similar to that of the Hubble Space Telescope. In particular, this requires us to set the

brightness of the sky, the brightness of the source, the threshold brightness, and the

exposure time. We generated 100 images using an exposure of 5400 seconds, assuming

the background sky has a magnitude of 22, and that the threshold is 25.9 magnitude. For

each image, we compute the signal-to-noise for each pixel and generate the cumulative

distribution, starting from the highest ratio. In effect, this counts the number of pixels

which have a signal-to-noise greater than a given number. These distributions are shown
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Figure B.3: The number of pixels in an 80× 80 pixel strong lens image that have signal-to-noise (S/N)
larger than the number on the x-axis. The blue denotes using Gaussian white noise with a standard
deviation 1% of the mean image brightness. The orange is the result of using an HST-like simulation.
The bands show the range over 100 images. For bright sources (lower magnitude), the HST-like noise
results in larger S/N than 1% Gaussian white noise. In dimmer sources, the 1% Gaussian white noise is

an optimistic assumption.

in Fig. B.3, where the blue regions show our simple white noise assumption and the orange

displays the HST-like noise. The bands span the range observed for the 100 images.

In the upper left panel, the source has a magnitude between 17 and 18, which is

much brighter than the sky. This implies that the Poisson shot noise for the HST-like

scenario dominates over the white noise. The orange band is near the top of or above

the blue-band; there are more pixels with large S/N for HST-like noise than if we use

1% white noise, making substructure easier to detect. The upper right panel shows that

our approximation is very similar to HST for sources with magnitudes between 18 and

20. The source light in the bottom left panel is now comparable with the background

sky. The blue band is above the orange band, indicating that our noise approximation is

optimistic for such sources. Finally, the lower right panel has very dim sources. In these

images, the noise from the sky dominates and is much larger than our 1% estimate.

As a proof-of-concept, we used 1% Gaussian white noise, which yields similar noise

profiles as HST for sources brighter than magnitude 20. This reduced a number of
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Figure B.4: Example of finding subhalos with image segmentation. The simulated convergence field
of lens halos (upper-left panel) is used to define target labels (lower-left). We define our subhalo labels
to be a circle with radius 2 pixels centered on the subhalo. Even though this is not representative of
relative convergences of the different masses, it was found to lead to more stable results. A light source
(upper-middle) is placed behind the lens, resulting in an observed image (upper-right) after ray-tracing
the light through the gravitational potential of the lens. A neural network takes in only the observed

image and predicts the label for each pixel (lower-right).

variables in our simulation, such as the source brightness. To apply image segmentation

to real strong lens images, one should include all of these considerations.

B.5 Domain adaptation

Machine learning models work by discovering correlations in training data. It is chal-

lenging to get them to work when new data is outside the realm of what they have been

trained on, and a whole subfield is dedicated to the problem of adapting to new domains.

Both in the training and in the testing presented, each image had either no substruc-

ture or exactly one subhalo. Due to the steep slope of the subhalo mass function, we

expect that many subhalos should be present in strong lensing images [143]. We therefore

assess whether the network is capable of generalizing to other lensing situations after this

training regiment.

In Fig. B.4 we show an example with no noise, where we included many subhalos
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Figure B.5: The left column displays the strongly lensed images used as input to the neural network.
The middle column contains the pixel-by-pixel labels we want the network to reproduce. The right

column shows the network predictions.

both near the Einstein ring and closer to the edge. Near the edge, the network is able to

detect many of the heavier subhalos, but does not capture the lighter ones. The fact that

training on a single subhalo generalizes to many subhalos is remarkable. This opens the

possibility of using the results of the network to infer the subhalo mass function using

many fewer images than if we could only detect a single subhalo at a time, which was

precisely the object of Chapter 4.

In panels A and B of Fig. B.5, we examine the effect of two subhalos being close

or overlapping. We choose two subhalos in the 109.5 M� bin because they are easy to

identify by eye. The source light and main galaxy lens are kept constant throughout

these images to see only the effect due to subhalos, and we include 1% Gaussian noise.

In A, the two subhalos are far enough away from each other that the network is able to

resolve them separately. In panels B, the two subhalos are close enough that the true

pixels are touching each other. The network does not correctly identify two individual

subhalos in this case, but it does classify the pixels as belonging to a single, higher mass

subhalo, 1010 M�. An animation of the subhalo traversing the image and its effect on

the network output can be found at this link.
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Finally, in panels C and D of Fig. B.5 a second large halo is included in the image with

a mass on the same order of the main lens, meaning that there are two main lens halos

rather than a single one. The combined lenses result in much larger distortions of the

light, as shown in the input images in the left columns. The Einstein ring in the training

images was always around 1′′ in radius, while in these images it is closer to 2′′. This is

why the network predicts the central lens as around 30% too large. While the network

is capable of identifying the presence and location of a second main lens, its shape is not

captured well. In fact, we can see in panel D, how it adds a heavy subhalo to the center

of the second lens. An animation showing the different positions of the second lens, and

its effect on pixel classification, is available at this link.
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Appendix C

Power Spectrum of Dark Matter

Substructure in Strong Gravitational

Lenses

C.1 Deriving Pt

Let us consider a subhalo population that is uniformly distributed. Starting with Eq. (5.41)

and setting g(h) ≡ rt − rt,0

(
m
m0

)1/3 (√
r2+h2

r3D,0

)ν
, we obtain

Pt(rt|m, r) =
1

Z

∫
dh P3D(r3D) δ(g(h))

=
1

Z

1

2ARmax

∫
dh δ(g(h))

=
1

Z

1

2ARmax

2

|g′(hi)|

=
1

Rmax|g′(hi)|
, (C.1)

where hi is the solution of g(hi) = 0, and where we used Z = 1/A. Then,

|g′(hi)| = ν
rt

r2
3D,0

√
r2

3D,0

[(m0

m

)1/3 rt

rt,0

]2/ν

− r2

×
[(m0

m

)1/3 rt

rt,0

]−2/ν

. (C.2)
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where 0 ≤ r . b. Letting x2 = r2
3D,0

[(
m0

m

)1/3 rt
rt,0

]2/ν

, we can do the following expansion:

√
x2 − r2 = x

√
1− r2

x2
+ .... ≈ x, (C.3)

where we have used the fact that x2 � r2. In reality this equality does not hold perfectly:

when subhalos are at 3D halo-centric distances close to (or below) the Einstein radius,

their tidal radius can be such that x2 is comparable to (or less than) r2. However, we

can take advantage of the fact that the volume in which rt takes on such small values

makes up only ∼ 1% of the entire line-of-sight volume within the host, so the number

of subhalos with these tidal radii will make up a minute portion of the entire subhalo

population after projection onto the lens plane.

Then,

|g′(hi)| = ν
rt

r3D,0

[(m0

m

)1/3 rt

rt,0

]−1/ν

(C.4)

and plugging this into Eq. (C.1),

Pt(rt|m) =
1

νRmax

r3D,0

rt

[(m0

m

)1/3 rt

rt,0

]1/ν

. (C.5)

In fact Pt is unchanged in a case where Pr has some radial dependence. Using as an

example Pr(r) = (1/2πb)(1/r), we obtain P3D(r) = (1/4πbRmax)(1/r). Then,

Pt(rt|m, r) =
1

Z

1

4πbRmax

∫
dh

1

r
δ(g(h))

=
2πbr

4πbRmaxr

2

|g′(hi)|

=
1

Rmax|g′(hi)|
. (C.6)
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C.2 SIDM convergence profile

To normalize Eq. (5.60) (i.e., determinemb), we simply integrate the profile out to infinity,

which gives us Eq. (5.61). To obtain the convergence profile, we calculate the projection

integral

κtBurk(r) =
1

Σcrit

∫ ∞
−∞

ρtBurk(
√
h2 + r2) dh, (C.7)

where r is the 2D radial coordinate on the lens plane, h is the line-of-sight coordinate,

and thus R =
√
h2 + r2. We can in fact simplify this expression by doing a slight change

of variables. We can rewrite Eq. (5.60) as

ρtBurk(y) =
mb

4πr3
s

1

(p+ y)(p2 + y2)

(
τ 2

y2 + τ 2

)
, (C.8)

where y = R/rs and τ = rt/rs. Then, with l = h/rs and x = r/rs,

κtBurk(x) =
rs

Σcrit

∫ ∞
−∞

ρ(
√
l2 + x2) dl

=
mb

2πΣcritr2
s

τ 2

{
π

(
2p
√

1
τ2+x2

p4 − τ 4
−

√
1

x2−p2

p(τ 2 + p2)

−

√
1

x2+p2

p3 − pτ 2

)
+

2 arctan

[
p√
x2−p2

]
√
x2 − p2(p3 + pτ 2)

−

2 tanh−1

[
p√
p2+x2

]
√
x2 + p2(p3 − pτ 2)

+
4τ tanh−1

[
τ√

x2+τ2

]
√
x2 + τ 2(p4 − τ 4)

}
. (C.9)

240



C.3 Table of Constants and Variables

Table C.1

Constant or Variable Value Description
Mlens 1.8× 1012 M� Lens mass
Rmax 409.6 kpc Maximum radius of the lens
b 6.3 kpc Einstein radius of the lens

Σcrit 3× 109 M�/kpc2 Critical surface mass density
mhigh 108 M� Upper bound for the subhalo mass
mlow 105 M� Lower bound for the subhalo mass
m∗ 2.52× 107 M�
β -1.9 Subhalo mass function slope
rs Subhalo scale radius
rs,0 0.1 kpc
rt Subhalo tidal radius
rt,0 1 kpc
r3D 3D halocentric distance to a subhalo
r3D,0 100 kpc
m0 106 M�
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Appendix D

Gravitational Lensing and the Power

Spectrum of Dark Matter

Substructure:

Insights from the ETHOS N-body

Simulations

D.1 Truncated convergence profiles

The truncated NFW profile (tNFW) [160] is given by

ρtNFW(r) =
mNFW

4πr(r + rs)2

(
r2

t

r2 + r2
t

)
, (D.1)

where rs is the scale radius, rt is the tidal radius and mNFW is defined below. Integrating

this profile along the line of sight and diving by the critical density for lensing Σcrit, we

obtain the tNFW convergence profile:
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κtNFW(x) =
mNFW
Σcritr2

s

τ 2

2π(τ 2 + 1)2

[
τ 2 + 1

x2 − 1
(1− F (x))

+ 2F (x)− π√
τ 2 + x2

+
τ 2 − 1

τ
√
τ 2 + x2

L(x)

]
, (D.2)

where

x =
r

rs

, τ =
rt

rs

, (D.3)

F (x) =
cos−1(1/x)√

x2 − 1
, (D.4)

L(x) = ln

(
x√

τ 2 + x2 + τ

)
, (D.5)

and

m =
mNFWτ 2

(τ 2 + 1)2

[
(τ 2 − 1) ln(τ) + τπ − (τ 2 + 1)

]
. (D.6)

The truncated Burkert profile [4, 183] is given by:

ρtBurk(r) =
mb

4π(r + p rs)(r2 + p2r2
s )

(
r2

t

r2 + r2
t

)
, (D.7)

where rb is the core radius, and the scale mass mb is the mass within the core. Here we

set rb = p rs, where p is a constant that represents the size of the core as a fraction of

the scale radius. The convergence field of this density profile is then [4]:
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κtBurk(x) =
mb

8πΣcritr2
s

τ 2

{
π

(
2p
√

1
τ2+x2

p4 − τ 4
−

√
1

x2−p2

p(τ 2 + p2)

−

√
1

x2+p2

p3 − pτ 2

)
+

2 arctan

[
p√
x2−p2

]
√
x2 − p2(p3 + pτ 2)

− (D.8)

2 tanh−1

[
p√
p2+x2

]
√
x2 + p2(p3 − pτ 2)

+
4τ tanh−1

[
τ√

x2+τ2

]
√
x2 + τ 2(p4 − τ 4)

}
,

where again x and τ are defined as in Eq. (D.3).

D.2 Features of the convergence maps

The tables in this Section display some quantities of interest extracted from the two

simulations. The main value quoted corresponds to the median across 90 projections for

a box size with L = 100 kpc, while the errors correspond to the 90% confidence interval.

The exception to this is the first entry in each table, Nsub(L = 300 kpc), since this is

a quantity extracted from the original simulations before doing any projections. The

Einstein radius is fixed to 1′′. With our cosmology, this corresponds to a physical size

RE = 6.18 kpc at z = 0.51 and RE = 8.10 kpc at z = 1.

Notice that in the “All subhalos” column the meff ≡ 〈m2〉/〈m〉 entry displays very

large upper bounds. This is due to the fact that when there are very few subhalos with

masses > 109 M� they only rarely get projected into the region of interest. Even a one

order of magnitude difference in the maximum subhalo mass can change meff considerably,

yielding a very large upper bound. This is reflected in the large 90% confidence interval

in the red lines of Figure 6.3.

1We will be using this value in the z = 0 tables as well for the reasons outlined in 6.4.1.

244



D.2.1 CDM

Table D.1: Relevant properties of the CDM subhalo population at z = 0

mhigh = 108 M� mhigh = 109 M� All subhalos

Nsub(Lbox = 300 kpc) 9810 10007 10031

Nsub(Lbox = 100 kpc) 1004+116
−97 1026+148

−116 1024+104
−109

Nsub(RE) 12+8
−6 13+8

−5 13+7
−6

κ̄sub

(
3.28+0.54

−0.37

)
× 10−4

(
5.06+1.19

−0.97

)
× 10−4

(
1.22+0.94

−0.51

)
× 10−3

〈m〉 [M�]
(
7.75+0.41

−0.57

)
× 106

(
1.20+0.18

−0.20

)
× 107

(
2.99+2.34

−1.33

)
× 107

meff ≡ 〈m2〉/〈m〉 [M�]
(
2.72+0.17

−0.27

)
× 107

(
1.64+0.83

−0.83

)
× 108

(
7.79+20.1

−7.30

)
× 109

rt,max [kpc] 8.17+11.67
−2.70 9.51+5.53

−3.33 10.96+26.50
−2.88

rs,min [kpc] 0.03+0.00
−0.01 0.03+0.00

−0.01 0.03+0.00
−0.01

Table D.2: Relevant properties of the CDM subhalo population at z = 0.5

mhigh = 108 M� mhigh = 109 M� All subhalos

Nsub(Lbox = 300 kpc) 6516 6651 6669

Nsub(Lbox = 100 kpc) 587+70
−57 584+103

−59 596+88
−59

Nsub(RE) 9+3
−4 9+5

−5 9+5
−5

κ̄sub

(
1.90+0.16

−0.22

)
× 10−4

(
2.93+0.72

−0.58

)
× 10−4

(
4.18+7.87

−1.55

)
× 10−4

〈m〉 [M�]
(
7.67+0.48

−0.58

)
× 106

(
1.20+0.23

−0.19

)
× 107

(
1.66+3.04

−0.58

)
× 107

meff ≡ 〈m2〉/〈m〉 [M�]
(
2.53+0.45

−0.37

)
× 107

(
1.09+1.04

−0.44

)
× 108

(
5.95+128.00

−4.99

)
× 108

rt,max [kpc] 9.62+4.14
−3.95 10.90+6.38

−2.94 12.19+6.12
−2.87

rs,min [kpc] 0.06+0.02
−0.02 0.07+0.02

−0.02 0.06+0.02
−0.02
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Table D.3: Relevant properties of the CDM subhalo population at z = 1

mhigh = 108 M� mhigh = 109 M� All subhalos

Nsub(Lbox = 300 kpc) 4694 4783 4798

Nsub(Lbox = 100 kpc) 446+80
−49 459+75

−46 453+90
−54

Nsub(RE) 11+4
−6 11+4

−6 11+5
−6

κ̄sub

(
7.93+1.71

−1.26

)
× 10−5

(
1.52+0.53

−0.52

)
× 10−4

(
1.74+2.63

−0.64

)
× 10−4

〈m〉 [M�]
(
7.57+0.66

−0.58

)
× 106

(
1.43+0.36

−0.36

)
× 107

(
1.66+1.91

−0.51

)
× 107

meff ≡ 〈m2〉/〈m〉 [M�]
(
2.60+0.33

−0.38

)
× 107

(
2.05+1.14

−0.95

)
× 108

(
2.82+44.1

−1.64

)
× 108

rt,max [kpc] 10.12+7.08
−3.28 14.27+6.15

−5.47 16.00+10.70
−5.72

rs,min [kpc] 0.08+0.03
−0.01 0.08+0.03

−0.02 0.08+0.03
−0.02

D.2.2 ETHOS4

Table D.4: Relevant properties of the ETHOS4 subhalo population at z = 0

mhigh = 108 M� mhigh = 109 M� All subhalos

Nsub(Lbox = 300 kpc) 821 898 918

Nsub(Lbox = 100 kpc) 93+28
−15 100+35

−15 101+47
−14

Nsub(RE) 1+2
−1 2+2

−2 2.00+2
−2

κ̄sub

(
4.06+1.33

−1.08

)
× 10−5

(
1.28+0.49

−0.59

)
× 10−4

(
7.36+12.80

−5.65

)
× 10−4

〈m〉 [M�]
(
1.05+0.15

−0.19

)
× 107

(
2.92+1.77

−1.11

)
× 107

(
1.89+2.58

−1.47

)
× 108

meff ≡ 〈m2〉/〈m〉 [M�]
(
3.07+0.84

−0.90

)
× 107

(
3.63+1.79

−2.40

)
× 108

(
1.08+2.35

−1.02

)
× 1010

rt,max [kpc] 10.86+18.13
−3.54 13.85+12.21

−4.80 20.28+45.90
−6.99

rs,min [kpc] 0.06+0.00
−0.02 0.06+0.00

−0.02 0.06+0.00
−0.02
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Table D.5: Relevant properties of the ETHOS4 subhalo population at z = 0.5

mhigh = 108 M� mhigh = 109 M� All subhalos

Nsub(Lbox = 300 kpc) 579 629 642

Nsub(Lbox = 100 kpc) 57+19
−10 60+19

−8 62+17
−8

Nsub(RE) 0.50+1.5
−0.5 0.5+2

−0.5 0.5+2
−0.5

κ̄sub

(
3.43+1.38

−1.02

)
× 10−5

(
7.17+2.71

−3.30

)
× 10−5

(
1.91+8.38

−0.77

)
× 10−4

〈m〉 [M�]
(
1.45+0.38

−0.32

)
× 107

(
2.77+1.16

−1.01

)
× 107

(
8.06+37.30

−3.25

)
× 107

meff ≡ 〈m2〉/〈m〉 [M�]
(
3.75+0.70

−0.76

)
× 107

(
1.47+3.26

−0.88

)
× 108

(
1.31+17.30

−0.36

)
× 109

rt,max [kpc] 13.33+59.01
−5.75 20.22+34.73

−10.95 26.57+25.22
−14.72

rs,min [kpc] 0.11+0.02
−0.04 0.11+0.02

−0.04 0.11+0.02
−0.04

Table D.6: Relevant properties of the ETHOS4 subhalo population at z = 1

mhigh = 108 M� mhigh = 109 M� All subhalos

Nsub(Lbox = 300 kpc) 462 511 521

Nsub(Lbox = 100 kpc) 56+14
−14 62+12

−14 65+11
−20

Nsub(RE) 1+3
−1 1+3

−1 1+3
−1

κ̄sub

(
1.17+0.55

−0.44

)
× 10−5

(
4.68+2.68

−2.74

)
× 10−5

(
9.58+11.30

−6.86

)
× 10−5

〈m〉 [M�]
(
9.33+2.87

−2.75

)
× 106

(
3.33+2.28

−1.59

)
× 107

(
6.26+10.10

−3.81

)
× 107

meff ≡ 〈m2〉/〈m〉 [M�]
(
3.32+1.11

−1.75

)
× 107

(
2.71+2.41

−1.70

)
× 108

(
7.84+49.50

−5.85

)
× 108

rt,max [kpc] 14.17+21.39
−5.24 22.73+22.16

−11.53 23.11+21.78
−9.12

rs,min [kpc] 0.12+0.04
−0.04 0.12+0.04

−0.04 0.12+0.04
−0.02

247



Appendix E

Quantifying the Line-of-Sight Halo

Contribution to the Dark Matter

Convergence Power Spectrum from

Strong Gravitational Lenses

E.1 Scaling Relations for tNFW Projected Density

In this Appendix we derive the scaling laws for the surface density that we used in

§7.1.2. Let us start with Eq. (7.33), which is trivial because scaling the surface density

everywhere by a constant amount scales the total mass by the same amount. Eq. (7.34)

can be derived by first denoting

Σ(~r ; m′, r′s, τ) = Σ(η~r ; m, rs, τ). (E.1)
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The new mass m′ can then be found by integrating over the whole 2D plane:

m′ =

∫
d2~r Σ(~r ; m′, r′s, τ

′) (E.2)

=
1

η2

∫
d2(η~r) Σ(η~r ; m, rs, τ) (E.3)

=
m

η2
. (E.4)

The new scale radius can be found by setting |~r| = r′s in Eq. (E.1), which gives the

relation

r′s =
rs

η
. (E.5)

E.2 2D Fourier Transform of a Projection

In this Appendix we derive a useful relationship between the Fourier transform of the

dimensionless tNFW density profile φ (defined in Eq. 7.47) and its projection.

Let us write the effective convergence as

κi,eff(s) =
1

Σcrit,l

meff,i

r2
s,eff,i

Θ

(
s

rs,eff,i

; τi

)
, (E.6)

where Θ is defined in terms of φ as

Θ(t ; τ) ≡
∫
dw φ(

√
t2 + w2 ; τ) (E.7)

and its Fourier transform is

κ̃i,eff(k) =
meff,i

Σcrit,l

Θ̃ (rs,eff,ik ; τi) . (E.8)

If we write the Fourier transform of Θ explicitly, we can relate it to the Fourier transform
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of φ. Let us start with

Θ̃(k ; τ) =

∫
d2~t exp[−i~k · ~t ]Θ(t ; τ)

=

∫
d2~t dw exp[−i~k · ~t ]φ(

√
t2 + w2 ; τ). (E.9)

We can combine (~t, w) into a 3D vector ~r. We can also replace ~k · ~t with ~k · ~r since ~k is

perpendicular to the z-axis. We then obtain

Θ̃(k ; τ) =

∫
d3~r exp[−i~k · ~r ]φ(r ; τ)

= φ̃(k ; τ). (E.10)

Therefore, we can write the Fourier transform of the effective convergence of each inter-

loper i as

κ̃i,eff(k) =
meff,i

Σcrit,l

φ̃ (rs,eff,ik ; τi) . (E.11)

E.3 The Area of the Double Cone

The radius of the double cone (Fig. 7.3) increases linearly from 0 to its maximum at

the lens with comoving distance from the observer χ, and it decreases linearly from its

maximum at the lens to 0 with the comoving distance from the lens χ−χl. With this in

mind, we can write the follow relation for the radius of the double cone R(χ):

R(χ)

R(χl)
=


a1(χ+ b1) χ ≤ χl

a2(χ+ b2) χ > χl,

(E.12)
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where a1, a2, b1, and b2 are the linearity constants which we will obtain from the boundary

values. We know that

R(0)

R(χl)
= 0 ⇒ b1 = 0 (E.13)

R(χl)

R(χl)
= 1 ⇒ a1,2(χl + b1,2) = 1 (E.14)

R(χs)

R(χl)
= 0 ⇒ a2(χs − b2) = 0. (E.15)

Solving for the constants we get

R(χ)

R(χl)
=


χ

χl
χ ≤ χl

χs − χ
χs − χl

χ > χl.

(E.16)

Then, the normalized area is

S(χ)

A/a2(χl)
=



(
χ

χl

)2

χ ≤ χl

(
χs − χ
χs − χl

)2

χ > χl

(E.17)

=
χ2

χ2
l

g2(χ) (E.18)

where A is the physical area of the main lens.

E.4 Number density of subhalos

Here we derive Eq. (7.72), which gives the number of subhalos per area as a function of

mass and lens redshift. In particular, the expression is shown in terms of the fraction of

halo mass in substructure, fsub,zl , which is commonly used in the literature as a proxy

for the subhalo mass function normalization.

At any redshift, the total mass in subhalos within the mass range [105− 108] M� can
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be written as

Msub = Aκ̄subΣcrit, (E.19)

where A is the area of the lens, and κ̄sub is the average convergence of the subhalos. We

assume a moderately elliptical isothermal lens, so that the convergence of the main lens

near the Einstein radius is κl = 0.5, and roughly 40% of matter within the Einstein

radius comes from stars [224]. Therefore, we can write

fsub,zl =
2

0.6
κ̄sub, (E.20)

which we can substitute into Eq. (E.19) and get

Msub =
0.6

2
Afsub,zlΣcrit,zl . (E.21)

Our goal is to express the normalization of nsub evaluated at zl = 0.5, denoted F , in

terms of fsub,0.5 evaluated at that same redshift. So we write

nsub(m, zl = 0.5) = Fmβ. (E.22)

The total mass in subhalos can be calculated from nsub:

Msub =

∫
dA

∫ mhigh

mlow

dmmnsub(m, 0.5)

= AF

∫ mhigh

mlow

dmmβ+1

= AF
m2+β

high −m
2+β
low

2 + β
. (E.23)

Combined with Eq. (E.21), we get

F = Σcrit,0.5
0.6fsub,0.5

2

2 + β

m2+β
high −m

2+β
low

. (E.24)

Plugging this into Eq. (E.22) we obtain the final expression for the number density
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of subhalos:

nsub(m, zl = 0.5) =
0.3Σcrit,0.5fsub,0.5(2 + β)

(m2+β
high −m

2+β
low )

mβ. (E.25)

The redshift dependence of the halo number density per comoving area is found to be

(1 + zl)
1/2 [218]. The number density per physical area will then depend on lens redshift

as (1 + zl)
5/2 where the extra factor of 2 comes from the scale factor. We now have the

final expression for the subhalo mass function:

nsub(m, zl) = nsub(m, zl = 0.5)
(1 + zl)

5/2

(1 + 0.5)5/2
. (E.26)

E.5 k → 0 Limit of the Perturber Power Spectrum

For interlopers, we first calculate the Fourier transform of the profile φ (defined in Eq.

7.47) in the k → 0 limit. Letting ζ ≡ (Dlrs/g(χ)Dχ)k, we can write

lim
ζ→0

φ̃(ζ ; τ) =

∫ ∞
0

4πξ2 dξ lim
ζ→0

[
sin(ζξ)

ζξ

]
φ(ξ ; τ)

=

∫ ∞
0

4πξ2 dξ φ(ξ ; τ) = 1. (E.27)

This means that in the k → 0 limit, Eq. (7.57) gives

PI,0 ≡ PI(k → 0) =

(
4πG

c2

)2

D2
l

∫ χs

0

dχ
W 2

I (χ)

g2(χ)χ2

×
∫ mhigh

mlow

dmn(m,χ)m2, (E.28)

where WI(χ) and g(χ) depend on zl and zs. The intrinsic halo parameters completely

drop out because
∫
d2~qP(~q |m,χ) = 1.

From Eq. (E.28), there are two limits where the interloper power spectrum (in Fig.

7.4) goes to zero. In one limit, zl → 0, the power goes to zero due to the factor of D2
l . In

the other limit, zl → zs, the power goes to zero because f(χ) → 0 for all χ, and WI in

the integrand contains a factor of f(χ).
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For subhalos, we take the k → 0 limit by applying Eq. (E.27) to Eq. (7.71), which

gives

PS,0 =
1

Σ2
crit

∫ mhigh

mlow

dmm2nsub(m). (E.29)

E.6 Curl and Divergence Components

Helmholtz Decomposition in 2D: We can express a 2D vector function ~α(~x) in a

volume V from its divergence ∇ · ~α, curl ∇× ~α, and its values on the boundary ∂V . We

use the fact that 1
2π

ln |~x− ~x′| is the Green’s function for the Laplacian in 2D, i.e. we can

write

δ2D(~x− ~x′) =
1

2π
∇2 ln |~x− ~x′|, (E.30)

where δ2D is the 2D delta function and ∇2 is the Laplace operator that acts on ~x.

We have

~α(~x) =

∫
V

dV ′ ~α(~x′)δ(~x− ~x′) (E.31)

=
1

2π
∇2

∫
V

dV ′ ~α(~x′) ln |~x− ~x′|. (E.32)

Using the identities

∇2~q = ∇(∇ · ~q)−∇× (∇× ~q) (E.33)

~q · ∇φ = −φ(∇ · ~q) +∇ · (φ~q) (E.34)

~q ×∇φ = φ(∇× ~q)−∇× (φ~q), (E.35)
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we obtain

~α(~x) =
1

2π
∇
(
∇ ·
∫
V

dV ′ ~α(~x′) ln |~x′ − ~x|
)

− 1

2π
∇×

(
∇×

∫
V

dV ′ ~α(~x′) ln |~x′ − ~x|
)

(E.36)

~α(~x) = − 1

2π
∇
(∫

V

dV ′ ~α(~x′) · ∇′ ln |~x′ − ~x|
)

− 1

2π
∇×

(∫
V

dV ′ ~α(~x′)×∇′ ln |~x′ − ~x|
)

(E.37)

~α(~x) =
1

2π
∇
(∫

V

dV ′ ln |~x− ~x′|∇′ · ~α(~x′)

)
− 1

2π
∇
(∫

V

dV ′∇′ · [ln |~x− ~x′|~α(~x′)]

)
+

1

2π
∇×

(∫
V

dV ′ ln |~x− ~x′|∇′ × ~α(~x′)

)
− 1

2π
∇×

(∫
V

dV ′∇′ × [ln |~x− ~x′|~α(~x′)]

)
, (E.38)

where ∇′ acts on ~x′. Now we use the divergence theorem to write

~α(~x) =
1

2π
∇
(∫

V

dV ′ ln |~x− ~x′|∇′ · ~α(~x′)

)
− 1

2π
∇
(∮

∂V

dS ′ n̂′ · [ln |~x− ~x′|~α(~x′)]

)
− 1

2π
∇×

(∫
V

dV ′ ln |~x− ~x′|∇′ × ~α(~x′)

)
+

1

2π
∇×

(∮
∂V

dS ′ n̂′ × [ln |~x− ~x′|~α(~x′)]

)
, (E.39)

where n̂′ is the unit vector normal to the boundary ∂V . If ~α vanishes faster than

1/|~x′| ln |~x′|, the boundary terms vanish as we make V infinitely large. This allows us to
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write

~α(~x) =
1

2π
∇
(∫

V

dV ′ ln |~x− ~x′|∇′ · ~α(~x′)

)
− 1

2π
∇×

(∫
V

dV ′ ln |~x− ~x′|∇′ × ~α(~x′)

)
(E.40)

=
1

π

∫
V

dV ′ {∇ · ln |~x− ~x′|}
[

1

2
∇′ · ~α(~x′)

]
− 1

π

∫
V

dV ′ {∇ × ln |~x− ~x′|}
[

1

2
∇′ × ~α(~x′)

]
(E.41)

=
1

π

∫
V

dV ′
{

~x− ~x′

|~x− ~x′|2

}[
1

2
∇′ · ~α(~x′)

]
︸ ︷︷ ︸

κeff

− 1

π

∫
V

dV ′
{
x̂3 ×

~x− ~x′

|~x− ~x′|2

}[
1

2
∇′ × ~α(~x′)

]
︸ ︷︷ ︸

κcurl

, (E.42)

where x̂3 ≡ x̂1 × x̂2 is the unit vector that is perpendicular to the 2D plane on which ~α

lives. x̂1 and x̂2 are the unit vectors of the 2D plane.

Five-Point Stencil: For a function f : R→ R, the first derivative can be approximated

by [331],

f ′(x) =5pt[f ](x ; h) +
h4

30
f (5)(x) +O(h5), (E.43)

where

5pt[f ](x ; h) ≡ 2

3
[f(x+ h)− f(x− h)]

− 1

12
[f(x+ 2h)− f(x− 2h)] . (E.44)

The error scales with the fourth power of the discrete interval size h and the 5th

derivative of the function. Defining ~x ≡ (x1, x2), α1(x) ≡ x̂1 · ~α(x, x2), and α2(x) ≡

x̂2 · ~α(x1, x), the divergence of ~α can be calculated as

∇ · ~α ∼= 5pt[α1](x1 ; h) + 5pt[α2](x2 ; h), (E.45)
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where the leading error term is

h4

30

(
α

(5)
1 (x1) + α

(5)
2 (x2)

)
. (E.46)

Numerical Artifacts: As with the divergence, we calculate the curl using the five-

point stencil. Defining ~x ≡ (x1, x2), α1(x) ≡ x̂1 · ~α(x1, x), and α2(x) ≡ x̂2 · ~α(x, x2), the

curl of ~α is calculated as

∇× ~α ∼= 5pt[α1](x2 ; h)− 5pt[α2](x1 ; h), (E.47)

where the leading error term is

h4

30

(
α

(5)
1 (x2)− α(5)

2 (x1)
)
. (E.48)

To study how this numerical effect appears, we simulate a lensing system with a main

lens and subhalos (i.e. no interlopers). From Eq. (7.77), we know that we should have

κcurl = 0. Therefore, any non-zero value we get after calculating the curl using Eq. (E.47)

will be a numerical artifact. In Fig. E.6.1, we see that this numerical effect is only present

at the centers of subhalos, as well as the center of the main lens, where the central cusp

has a large 5th derivative, which increases the error. Nevertheless, it is more that 2 orders

of magnitude smaller than the curl that we calculate in Fig. 7.7.
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Figure E.6.1: κcurl of a simulated lensing system described in Section 7.2.1 without the interlopers.
Without interlopers there is nothing that can source a curl component. This figure shows the numerical

error in calculating the curl using discrete pixel values.
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Appendix F

Observable Predictions for

Massive-Neutrino Cosmologies with

Model-Independent Dark Energy

F.1 Results for the Reduced dataset

We show the 1σ confidence levels for the posteriors of the luminosity distance and the

Hubble expansion rate (Figure F.1.1) and the matter power spectrum at z = 0 (Figure

F.1.2) for the Reduced dataset, in analogy with Figures 8.4 and 8.5 in the main text for

the All dataset. Note that we do not show the shear power spectrum since the Reduced

dataset does not have weak lensing data.
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Figure F.1.1: Fractional difference for the luminosity distance DL(z) (top row) and the Hubble ex-
pansion rate as a function of redshift H(z) (bottom row) for νwCDM (left) and νΛCDM (right), with

respect to ΛCDM, for the Reduced dataset. Bands correspond to 1σ confidence levels.

Figure F.1.2: Fractional difference for the matter power spectrum at z = 0 P (k) for νwCDM (left) and
νΛCDM (right) with respect to ΛCDM, for the Reduced dataset. Bands correspond to 1σ confidence

levels.
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Appendix G

Flow-Based Likelihoods for

Non-Gaussian Inference

G.1 Likelihood versus Sampling density

Throughout this chapter, we have referred to the sampling density learned from the data,

p̂DDL(x), as a learned likelihood, although these are distinct entities. In this Appendix

we explain the reason behind our use of this terminology, and reconcile the difference

between these two functions.

For some data x, the likelihood is a function of the model parameters θ: Lx(θ).

The likelihood is not a probability density function, and as such does not have the same

restrictions (e.g., having to integrate to unity in the case of a continuous distribution).

Conversely, for a choice of parameters θ the probability density function is in fact nor-

malized to unity when integrated over the data:
∫
dxpθ(x) = 1. Although they have the

exact same functional form (up to constant factors), they represent different things: the

likelihood is a function of the model parameters with the data fixed, while the PDF is a

function of the data with the model parameters fixed.

In this chapter, for the DDL methods discussed we used N mocks for a given value

of the cosmological model parameters θ. This is analogous to likelihood analyses that

use the mocks for a given cosmology to obtain the covariance matrix and then employ a
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MVN likelihood:

p(x|θ) ∝ exp
[
(x− µ(θ))T Σ̂−1(x− µ(θ))

]
, (G.1)

where we have put a hat on the precision matrix to emphasize that it is an estimated

quantity. This means that Σ is evaluated at some fiducial cosmology and assumed to be

cosmology-independent. In principle, Σ does vary with cosmology, and this dependence

can have a significant impact on inferred parameters [332–334].

Note that the dependence on the cosmological parameters enters the likelihood through

the estimate of the mean µ(θ). We can rewrite Eq. (G.1) as

p(x|θ) ∝ exp
[
∆(θ)T Σ̂−1∆(θ)

]
, (G.2)

to emphasize that the parameter dependence is encoded in the difference between the

data and the model ∆(θ). To find the parameters that provide the best fit for the data,

it is necessary to have a model to obtain µ for any point in the allowed parameter space.

In this chapter, our estimates from mock data are analogous to the step of estimat-

ing the covariance matrix in the MVN example above in the sense that all the mocks

correspond to a single value of the cosmological parameters. Unlike in the MVN case,

what we estimate from the mocks is the full sampling density p̂DDL(x). However, we

interchangeably use the term DDL to refer to this function because it can in fact be

used as a likelihood [277]. All we require is an array ∆(θ) and we can apply p̂DDL as a

likelihood, which will now depend on the cosmological parameters: p̂DDL(x|θ). Thus, the

terminology data-driven likelihoods in this chapter foreshadows the possibility of using

them as true likelihoods for inference. Although the focus here was showing their abil-

ity to capture NG in the data, using them as actual likelihoods is the ultimate goal of

developing this method, and is done in forthcoming work.

We emphasize that, just like in the case for a MVN likelihood, where using a fixed-

cosmology covariance matrix is an approximation made for convenience (otherwise every

point in the parameter space of θ requires a whole suite of mock data), the impact of
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using a DDL estimated with mock data from a single cosmology has to be studied. The

cosmology dependence will also be addressed in forthcoming work.

G.2 Toy Problems

To study the quality of the likelihoods provided by a flow-based model such as FFJORD,

we first analyze the results with data whose likelihood is known and we can sample from.

The advantage of these toy problems is that (1) we can compare the likelihood given by

the model and the true likelihood and (2) by being able to sample from the likelihood,

we can obtain a virtually infinite number of unique training samples.

G.2.1 In two dimensions

Our first stepping stone is simple two-dimensional data. The benefit in two dimensions

is that we can visualize the reconstructed PDF. We train FFJORD on a dataset whose

PDF is comprised of 8 equal, symmetric Gaussians arranged around a circle. We use

three stacked continuous normalizing flows with hidden dimensions d = 256.

The results are shown in Figure G.2.1. The top left panel is the true PDF, while the

middle panel is the one obtained after training FFJORD. In Ref. [280], the authors also

showed these two panels. What interests us is the difference between them and how this

translates into log-likelihood values. The top right panel shows the residual, which is on

the order of 10%. The middle row shows the same but for the marginalized probability

distributions along the x and y axes. Finally, the bottom row shows the fractional log-

likelihood residual between the true log-likelihood L and the model log-likelihood L̂. We

can see that the scatter is around 10-15%.

G.2.2 In higher dimensions

The next step is gauging the flow-based likelihood obtained in higher dimensions, on the

order of the mock observables discussed in the main text. We train FFJORD on samples
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Figure G.2.1: Top: true (left) and flow-reconstructed PDF (middle), together with their residual
(right). Middle: true and reconstructed marginal PDF (left) along x (red) or y (green), together with
their residual (right). Bottom: fractional difference between the true log-likelihood L and the FBL L̂ as

a function of the true log-likelihood.
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drawn from a 30-dimensional Gaussian distribution with mean

µ = 10 sin(x) (G.3)

and a covariance matrix obtained from a squared exponential kernel K:

K(x, x′) = σ2 exp

(
−(x− x′)2

2L2

)
, (G.4)

where σ is the standard deviation and L the correlation lengthscale. We set σ = 1 and

L =
√

8. Note that this choice of mean and covariance was completely arbitrary.

Something that we were interested in was how the learning was inhibited (or not)

by using an approximately singular vs. non-singular covariance matrix. As given above,

the squared exponential kernel using bin numbers as values for x and x′ yields a singular

covariance. By adding “noise” to the diagonal (adding the identity matrix), we can turn

it into a full rank matrix.

The results training on data drawn from a non-singular covariance matrix are shown

in Figure G.2.2. The two rows of Panel (a) show the difference between the reconstructed

FBL covariance (precision) matrix and the true one, as well as between the sample MVN

covariance (precision) and the true one. It can be seen that the error in the FBL matrices

is of the same order than that of the sampled MVN. The left figure in Panel (b) shows

the mean, 68% and 95% CLs from 2,000 samples drawn from a MVN with mean and

covariance given by Eqs. (G.3) and (G.4) in blue, and the mean, 68% and 95% CLs

obtained from sampling the learned FBL in red. The right one shows the difference

between the true and sample FBL mean (dashed red) and true and sample MVN mean

(blue), which shows that the error in the FBL’s mean is on the same order of magnitude

as the sampling error.

Finally, Panel (c) shows what the values of the log-likelihood are under a MVN for

the test data with different combinations of µ and Σ, in blue. The green line common

to all the subpanels is the true log-likelihood, and the red points are the log-likelihood

given by the trained FBL for the same data. Clearly, the small scatter about the green
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(a)

(b)

(c)

Figure G.2.2: Results when training FFJORD on Gaussian 30-dimensional data with mean and co-
variance given by Eqs. (G.3) and (G.4), and noise added to the covariance to make it full rank. (a): The
true covariance ΣTrue and precision matrix Σ−1

True, together with the MVN sample covariance Σ̂MVN and

precision Σ̂−1
MVN, and FBL sample covariance Σ̂FBL and precision Σ̂−1

FBL, obtained from 2,000 samples. It
can be seen that the FFJORD-reconstructed matrices are accurate to within sampling error. (b): On
the left, the mean, 68% and 95% CLs for the toy data in blue, and for 2,000 FBL samples in red. On
the right, the difference between the true mean and the FBL sample mean (red) and between the true
mean and MVN sample mean (blue). The FBL mean, 1 and 2σ contours match the data very well;
the mean residual is of the same order of magnitude as the error due to sampling. (c): the green line
corresponds to the true log-likelihood of the test data. In blue, the log-likelihoood of the test data under
a MVN for different combinations of the mean and covariance in blue. In red, the log-likelihood of the
test data under the FBL. Agreement between the red scatter points and the green line would reflect that
the FBL has learned the likelihood perfectly. The small scatter around the green line can be attributed
to sampling error, as it is also present when using a sample mean and covariance with a MVN likelihood.
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line visible in the FBL values is of the same order than that due simply to sampling error

when estimating the covariance matrix from a finite number of samples.

Figure G.2.3 shows the analogous results but for the case where no constant is added

to the diagonal terms of the covariance matrix and it is thus singular. Everything else is

the same as in the toy problem above. The interesting thing to notice is that, although the

sample quality is still excellent, the quality of the likelihood is significantly worse. In Panel

(c) we see that the FBL has a much larger scatter as well as a constant offset with respect

to the true likelihood. Furthermore, the MVN likelihood is much more sensitive to tiny

deviations away form the true mean, as can be seen in the middle-bottom subpanel: even

though the difference between the FBL sample mean and the true mean is very small,

the likelihood values are abysmal. This is a general feature of MVN likelihoods with

(nearly) singular covariances. Comparing the true and reconstructed precision matrices

also reflects the fact that the model has not been able to learn the likelihood correctly.

The dissonance between sample quality and likelihood quality is very interesting, and

emphasizes the value in scrutinizing the likelihoods that flow-based models are learning,

as we do in this work. The point is that simply sampling from the FBL and looking at

the distribution of generated samples does not guarantee that the likelihood learned by

the model is actually correct.

G.3 Data-driven Likelihoods in Data-Limited Regimes

As their name suggests, data-driven likelihoods can only truly thrive with plentiful data.

Ultimately, these methods are trying to estimate densities (often in very high-dimensional

spaces). We illustrate the potential shortcomings of reaching conclusions by using DDLs

fit on a limited number of mocks in Figure G.3.1. It shows the same results as in Figure

9.6 for the ICA likelihood, but fit on 2,048 convergence power spectrum mocks instead

of 75,000. Comparing these two figures it is clear that 2, 048 mocks are not enough

for the DDL to capture the skewness and kurtosis in the first few bins. It is therefore

possible that works that have operated in such data-limited regimes (e.g. [277, 313] have
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(a)

(b)

(c)

Figure G.2.3: Results when training FFJORD on Gaussian 30-dimensional data with mean and covari-
ance given by Eqs. (G.3) and (G.4). (a): The true covariance ΣTrue and precision matrix Σ−1

True, together

with the MVN sample covariance Σ̂MVN and precision Σ̂−1
MVN, and FBL sample covariance Σ̂FBL and

precision Σ̂−1
FBL, obtained from 2,000 samples. (b): On the left, the mean, 68% and 95% CLs for the toy

data in blue, and for 2,000 FBL samples in red. On the right, the difference between the true mean and
the FBL sample mean (red) and between the true mean and MVN sample mean (blue). (c): the green
line corresponds to the true log-likelihood of the test data. In blue, the log-likelihoood of the test data
under a MVN for different combinations of the mean and covariance in blue. In red, the log-likelihood

of the test data under the FBL.
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Figure G.3.1: Same as the first three panels for the ICA likelihood in Figure 9.6, but fit on 2,048 mocks
instead of the full 75,000. From left to right: absolute value of the t-statistic of the skewness, kurtosis,
and ε+ of each bin for 100 different sets of 2,048 mock WL power spectra (blue), ICA samples (red),
and Gaussian samples (gray). A vertical offset between the blue and gray contours reflects the NG in
the data. Lack of overlap between the red and blue contours indicates that the ICA likelihood has not

succeeded in capturing the NG.

underestimated the effect that NGs can have on inferred parameters.

G.4 Robustness of the nonparametric KL Divergence

Estimator

In this appendix we test the robustness of the nonparametric KL Divergence estimator

introduced in Section 9.2. To do so, we estimate the same reference KL divergence

histogram as the one shown in gray in Figure G.5.1 for two different Gaussian datasets

drawn from the same likelihood. Figure G.4.1 shows the results using different random

seeds. It can be seen that the degree of overlap can vary quite a bit, even from samples

drawn from the same underlying distribution. The leftmost panel, with an overlapping

area equal to 0.19, is the lowest we found. Therefore, while the large horizontal offset

seen between the reference and data histograms in Figure 9.3 and Figure 9.6 still seems

statistically significant, the one seen for GMM2 in Figure 9.6 does not. This is likely due

to the curse of dimensionality, since the KL estimator relies on a kNN algorithm, and

further emphasizes the importance of including more fine-grained measures of NG that

are more robust with limited numbers of samples when quantifying non-Gaussianity.
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Figure G.4.1: KL divergence estimate (Eq. 9.23) of two ensembles of draws with respect to the same
reference distribution, all drawn from a 34-dimensional multivariate Normal likelihood with mean and
covariance from the weak lensing convergence power spectra mocks. Each panel corresponds to a different

random seed.

G.5 Galaxy Power Spectrum Non-Gaussianity

Ref. [277] studied non-Gaussianities in two large-scale structure observables, one of them

being the galaxy power spectrum. They used the MultiDark-PATCHY mock catalogs

[335], which were built to match the BOSS Data Release 12 observations. In particular,

they looked at the 2,048 mocks for the North Galactic Cap (NGC) in the redshift bin

0.2 < z < 0.5 and obtained mock power spectra using NBodyKit [202]. They used the

nonparametric KL divergence test described in Section 9.2 to establish the likelihood

non-Gaussianity.

They then sought to build a data-driven likelihood that would incorporate the NG.

They showed that the estimated KL divergence was unchanged with a GMM likelihood1,

but nearly vanished with an ICA likelihood. They used this likelihood to perform impor-

tance sampling on an MCMC chain that had been previously analyzed with a Gaussian

likelihood [193] (essentially re-weighting the points by the ratio of the ICA likeliood to

the MVN likelihood) and found small shifts (< 0.5σ) in relevant cosmological parameters.

We produced mock galaxy power spectra from the MultiDark-PATCHY catalogs using

the same procedure as Ref. [277], so we refer the reader to them for details. Ultimately we

obtain 2,048 mock power spectra in 37 bins, encompassing the power spectrum monopole,

quadrupole, and hexadecapole. For the remainder of this section, however, we truncate

1When we try fitting a GMM to the same mock dataset, we find that the BIC is minimized for a
single component. The fact that the BIC increases monotonically with more components is due to the
number of mocks being too small to fit the large number of parameters without overfitting. For example,
with our WL mocks we find that with 2,048 samples the BIC behaves similarly, while with more mocks
it finds the minimum at K = 2.
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the power spectrum at 34 bins, so that the NG tests (Section 9.2) are directly comparable

to the ones in Section 9.3 for the WL power spectra (recall that the tests are extensive).

Note that this means that our measures of non-Gaussianity are conservative compared

to those in Ref. [277]. Just like we did for the WL mocks, we mean-subtract and whiten

the data before running it through the NG tests.

Figure G.5.1 is analogous to the one shown for the WL mock data in the main text

showing the non-Gaussianity results from our three tests. In addition, Figure G.5.2 shows

the individual galaxy power spectrum bin distributions. Comparing the values of the t-

statistics here and the ones for the WL mocks reveals that the skewness and kurtosis are

much more pronounced in the latter. The same can be said when comparing the mock

and Gaussian S+ matrices, as well as the vertical offset between the mock and Gaussian

ε+.

Keeping in mind the discussion in the main text on the applicability of different DDLs

depending on the type of NG in the data, we can see that the fact that ε+ is virtually

indistinguishable between the data and the Gaussian samples, while some individual bins

do exhibit non-negligible skewness and kurtosis, could explain why the ICA likelihood

worked better in this setting than the GMM did (though the small number of mocks

might also be a contributing factor).

The top two panels of Figure G.5.1 also show the 68% and 95% CLs from 2,048

samples drawn from the ICA likelihood. It can be seen that, while slightly higher than

the Gaussian ones, few of the data points with strong NG fall within the 2σ boundary of

the ICA samples. This corroborates our results on WL data and Appendix G.4, which

showed that even if the KL divergence is small between a catalog of data and a data-

driven likelihood, the DDL may not be accurately capturing the NG in the data. We

thus conclude that it is likely that the non-Gaussian signatures in galaxy power spectrum

data could actually have a larger impact than was found in Ref. [277], but the limited

number of mocks makes this a difficult task for a DDL to solve adequately.
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Figure G.5.1: Same as Figure 9.3 but for the BOSS DR12 mock galaxy power spectra, as a function of
bin number. Top: the red crosses are the absolute value of the t-statistic of skewness (left) and kurtosis
(right) of individual bins for 2,048 mock galaxy power spectra. The gray contours correspond to the one
(dark gray) and two sigma (light gray) confidence level when averaging 100 different sets of 2,048 samples
drawn from a multivariate normal likelihood with the same mean and covariance as the mock data. As
expected, they correspond to t-statistic values of 1 (dark gray) and 2 (light gray). In addition, the red
solid and dashed lines show the 68% and 95% CLs for 2,048 draws from the ICA likelihood fit on the
data. Notice that ICA fails to capture the strong deviations from Gaussianity in the skewness. Middle:
the S+ matrix for the mock data (left) and equivalent Gaussian samples (middle). The sum over columns
of each matrix, ε+u ≡

∑
S+
u,v, is shown on the right as red crosses and gray circles, respectively. Bottom:

nonparametric KL divergence estimate between the mock data and their Gaussian counterparts (red),
and the Gaussian samples with themselves (gray). The fact that the gray histogram is not perfectly
centered at zero is due to the slight variability of the KL estimator in 34 dimensions , given the number

of mocks considered (Appendix G.4).
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Figure G.5.2: Distribution for each of the 34 bins in the ensemble of 2,048 mock galaxy power spectra
for the BOSS DR12 North Galactic Cap in the redshift bin 0.2 < z < 0.5. The histogrammed values are
shown in light blue, while the KDE is shown in black. The dashed red line is a Gaussian fit to each bin.
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G.6 Mock Weak Lensing Convergence Maps

G.6.1 Generating the mocks

Generating mock WL maps involves running full N -body simulations, which consist of

evolving millions of particles under the force of gravity to simulate the formation of

structure from an early time, when the matter field was nearly homogeneous, to late

times, where it is highly clustered. As a first step, we generated a primordial power

spectrum for a given choice of cosmological parameters2 with the Boltzmann solver CAMB

[254]. From the power spectrum we used N-GenIC [336] to generate the initial conditions

for the particles in the simulation box, and finally Gadget2 [337] to evolve the particles.

We used a box with a comoving length of 240 Mpc/h on each side and 5123 particles.

The particles were initialized at redshift z = 100, evolved until z = 0, and snapshots were

saved at 60 different redshifts between z = 3 and z = 0. For reasons described below,

we ran four different N -body simulations, all with the same underlying cosmological

parameters but with different seeds for the initial density and velocity perturbations.

To generate the convergence maps we used the software package LensTools [312],

which implements a multi-lens-plane algorithm for ray-tracing. This algorithm approx-

imates the three-dimensional distribution of matter δ(x, z) (obtained from an N -body

simulation) between the source redshift zs and us as a series of discrete two-dimensional

planes perpendicular to the line of sight, with thickness 4 and surface mass density σ:

σ(x, z) =
3H2

0 Ωmχ(z)

2c2a(z)

∫
4
dχ′δ(x, z(χ′)), (G.5)

where χ is the comoving distance, a = 1/(1 + z) is the scale factor, Ωm the matter

density, H0 the Hubble constant and c the speed of light. Since the surface density and

the gravitational potential φ are related via the two-dimensional Poisson equation,

∇2
xφ(x, z) = 2σ(x, z), (G.6)

2We set Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.046, σ8 = 0.8, ns = 1 and H0 = 72 km/s/Mpc.
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the gravitational potential can be solved for. Then, the angular photon trajectory β can

be calculated using the geodesic equation. Finally, the shear γ and the convergence κ

can be obtained, since they are elements in the Jacobian of the angular trajectory of a

photon as a function of its initial position θ:

∂β

∂θ
=

1− κ+ γ1 −γ2

−γ2 1− κ− γ1

 . (G.7)

To make the two-dimensional density planes we cut each snapshot at three points (55,

167, 278) Mpc and project slabs (along all three axes) that are 111 Mpc thick around each

cut point. The planes are generated at a resolution of 4096×4096 pixels to make sure that

small-scale information is preserved. To build the convergence maps we place a source at

zs = 1 and 30 planes between zs and z = 0, where a plane at a given redshift is randomly

chosen from the planes made from each of the four different N -body simulations at that

redshift. This is done to generate random realizations of the convergence field that are

statistically independent. We created 1024×1024 pixel convergence maps that have a sky

coverage of 3.5× 3.5 deg. The left panel of Figure 9.2 shows an example of a simulated

convergence map. We obtained the convergence power spectra through LensTools as

well. We ultimately obtain 75,000 mock power spectra in 34 bins, uniformly distributed

in log space for ` = [100, 5000], where the lower limit is set by the size of the map and

the upper limit by the fact that at higher multipoles the numerical power spectra were

shown to deviate from theory significantly [313]. The 68% CL and 95% CLs of our mock

observable can be seen in the right panel of Figure 9.2.

G.6.2 Convergence Power Spectrum Distribution per Bin

In Section 9.3 we showed the absolute value of the t-statistic for each bin in the ensemble

of 2,048 mock convergence power spectra. In Figure G.6.1 we show the actual distribution

for each bin as blue histograms. We also show a Gaussian fit to the histogram in dashed

red, and a KDE of the distribution in black. For many of the bins, the deviation away

from zero skewness and kurtosis can be seen by eye by comparing the Gaussian fit to
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Figure G.6.1: Distribution for each of the 34 bins in an ensemble of 2,048 mock convergence power
spectra. The histogrammed values are shown in light blue, while the KDE is shown in black. The dashed

red line is a Gaussian fit to each bin.

either the KDE or the histogram.
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